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Abstract

Large real-world graphs often show interesting properties, such as power-law degree distributions and very

small diameters. Discovering such patterns and regularities has a wide range of potential applications. It could

help us with detecting outliers or abnormal subnetworks (such as terrorist networks or illegal money-laundering

rings), maximizing e�ciency of disease controlling, marketing, forecasting and simulations, to name a few.

A graph generating model, the �recursive matrix� (R-MAT) model is introduced and a method (AutoMAT)

is shown for automatically estimating the input parameters for R-MAT in order for it to match a given real-

world graph. Using these parameters, the resulting R-MAT graphs are shown to match many properties of

real graphs. Also, a set of plots (A-plots) are introduced as original ways for viewing large graphs. Their

applications in �nding interesting patterns and outliers in real, large graphs are demonstrated.
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1 Introduction

Graphs, networks and their surprising regularities have been attracting signi�cant interest recently. The ap-

plications are diverse, and the discoveries are striking: The World Wide Web follows surprising power-laws, a

�bow-tie� structure [9], while still has a surprisingly small diameter [3]. Similar startling discoveries have also

been made for power laws in the Internet topology [17], for Peer-to-Peer (gnutella/Kazaa) overlay graphs [30],

and for who-trusts-whom in the epinions.com network [29].

Finding patterns, laws and regularities in large real networks has numerous applications: link analysis, for

criminology and law enforcement [13]; analysis of virus propagation patterns, on both social/email as well as

physical-contact networks [35]; analysis of network performance, on the router connection networks; and maxi-

mizing e�ects of marketing e�orts on social networks.

In fact, any table with two categorical columns, that is, any many-to-many relationship in database terminol-

ogy [27] readily corresponds to a graph: a table of customers buying products yields a bipartite graph; similarly

for actors playing in movies (such as www.imdb.com); scienti�c authors citing other authors leads to a directed

graph; and so does a table with epinions.com users trusting others.

The long term motivation behind this work is how do real graphs look like? What patterns do they follow,

in addition to (or replacement of) the power laws, the �six degrees of separation�, the �bow-tie�, or �jelly�sh�

shapes [33]. There will never be a �nal answer to that question, but at least we want to �nd as many such �laws�

as we can.

Such �laws� are important for several reasons: They can help us spot outliers, that is, �abnormal� graphs or

subgraphs (criminal rings, faulty Internet router con�gurations. etc.). They help us generate realistic graphs and

discard unrealistic generators, for simulations, e.g., of Internet protocols, immunization policies etc., when real

graphs are di�cult, impossible, or illegal to collect. They may help us do extrapolations: given a real, evolving

graph, we expect it to have x% more nodes next year; how will it then look like, assuming that the �laws� are

still obeyed? Finally, they can check the realism of a small sample sub-graph: sampling is very useful, since most

graph algorithms are super-linear on the node count, and thus prohibitive for large graphs.

Discovering and listing such laws is an important �rst step for graph mining. Ideally, we would like a generating

model with the following properties: (a) It would have only a few parameters. (b) It would generate graphs that

obey the above �laws�, and it would match the properties of real graphs (degree exponents, diameters, etc.) with

the appropriate values of its parameters. And, (c) It would generate the graphs quickly.

This work tries to answer two important questions for graph mining:

� How to generate realistic graphs?

� How to check properties/spot patterns of real and/or generated graphs?
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We �rst introduce the R-MAT model for generating graphs and the AutoMAT method for estimating the input

parameters of R-MAT for it to match a real graph. With a series of tests we check the properties of real graphs

and their R-MAT counterparts. We also show plots/properties for real world graphs and introduce the A-plots

as a convenient way for viewing large undirected graphs and spotting certain properties from such graphs.

The rest of this paper is organized as follows: Section 2 surveys the existing graph mining tools, mainly graph

laws and generators. Section 3 describes our new proposed ideas for mining graphs. We describe the properties

we use to check R-MAT graphs in Section 4. Section 5 gives the experimental results for two real graphs and their

R-MAT counterparts as well as our observations in A-plots and the explanations. Section 6 gives the conclusions

and in Section 7 we discuss some future research directions.

2 Survey

First, let us establish some terminology. An undirected graph G = (V;E), or simply a graph, is a set V of nodes,

and a set E of undirected edges between them. For example, the network of Internet routers and their physical

links is an undirected graph. The de�nition of a directed graph is obvious. For example, the network of who-

trusts-whom in the epinions.com database [29] forms a directed graph. The above graphs will also be referred

to as self-graphs, to emphasize their di�erence from the bipartite graphs, like, for example, the graph of the

movie-actor database (www.imdb.com). A bipartite graph has two sets of nodes, V1 (�actors�) and V2 (�movies�),

with edges between them (which actor played in which movie). All of the above types of graphs are not weighted.

In a weighted graph, each edge has an associated weight. For example, consider the Internet routers, the physical

links between them have di�erent bandwidths.

The adjacency matrix A of an undirected graph is de�ned as aij = 1 if there is an edge from node i to node j

and aij = 0 otherwise. If a graph is weighted, aij is the weight of the corresponding edge. The adjacency matrix

of an undirected graph is symmetric. All real-world large graphs have very sparse adjacency matrices.

Next we survey related work. First we summarize important patterns that have been discovered in real graphs,

then we discuss existing graph generators and their limitations.

2.1 Patterns and �Laws�

The patterns seem to form the following groups:

Power laws: Skewed distributions, and laws of the form y = x
a, appear very often. Such a law comes out as a

line of slope a, when we plot y versus x in log-log scale. In the Internet topology graph, the degree distribution

follows such a power-law [17]. That is, the count of nodes with degree k (Ck), versus the degree k, is a line in

log-log scale. The biggest eigenvalues of the adjacency matrix of the Internet graph also follows a power law.
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Figure 1: The Clickstream dataset: A degree distribution which does not obey a power law.

The World Wide Web graph also obeys power laws [20]: the in-degree and out-degree distributions both follow

power-laws, as well as the number of the so-called �bipartite cores�. Redner shows that the citation graph follows

a power law with exponent 3 [28]. Recently, deviations from the power laws have been observed.

Deviations/generalizations from power laws, and �DGX�: For the WWW graph, Pennock et al. �nd that,

although the Web shows a power-law degree distribution on the whole, the distribution is �unimodal� for individual

categories such as, say, news sites [26]. Speci�cally, it is curving, like the one in Figure 1. This �gure gives the

degree distribution of the Clickstream dataset (who-visits-what bipartite graph - see Section 5 for details). Bi

et al. show that a truncated, discretized lognormal (�DGX�) includes the power laws as a special case, while it

matches well unimodal distributions, like the one from the Clickstream dataset above [6].

Diameter - small world phenomena: Most real graphs have surprisingly small diameters: Milgram discovered

the famous �six degrees of separation� in a who-knows-whom graph [23]. Albert et al. estimate the diameter of

the Web to be 19 [3]. Tauro et al. introduce the �jelly�sh� model for Internet topology, where they observe that

the �e�ective� diameter of the Internet is very small [33]. Reittu et al. 1 prove that, under certain assumptions,

the diameter of power law graphs is practically constant, growing like O(log logN).

Measures : There is a huge list of measures in the literature of computer networks, social networks and graph

theory. To name a few, for a node, we have the clustering coe�cient, �prestige�, and �importance� [11]; for a whole

network, we can compute the �expansion�, �resilience�, �distortion� [32], and the characteristic path length [10];

for each edge, the �stress�. Later on we describe the measures we used for our experiments and our reasons for

choosing them.

2.2 Graph generators

The earliest, and most famous graph generating model is the Erdos-Renyi model [15]: A node picks another node

at random, and gets connected to it. This model exhibits fascinating phase-transition properties, but it provably

1http://www.ercim.org/publication/Ercim_News/enw50/reittu.html
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violates the power laws above.

Recent graph generators can be grouped in two classes: degree-based, and procedural generators.

Degree-based generators are less powerful for pattern discovery. Given a degree distribution, typically one that

follows a power-law, they try to construct a graph that matches this degree distribution [1] [2] [21] [25]. These

generators give no insights about the graph, and they do not even try to match other criteria, like the diameter,

eigenvalues, etc., of a graph.

Procedural generators : This is the class that our proposed R-MAT method belongs to. The typical represen-

tative here is the Barabasi-Albert (BA) method [3] with the �preferential attachment� idea: Keep adding nodes;

new nodes prefer to connect to nodes with high degrees. Surprisingly, this simple mechanism leads to power-law

tails in the degree distribution. Procedural generators try to �nd such simple mechanisms, to generate graphs

that match a property of the real graphs and, typically, the power law degree distribution. However, the original

BA method leads to a degree power law with the slope �xed at 3, and has a relatively large diameter O(logN) [8].

Modi�cations and alternatives include the �rewiring� idea [4], the copying mechanism [20], the modi�cations [10],

and the �winners don't take all� model [26]. The BRITE graph generator [22] uses components from both the

Barabasi-Albert model and the Waxman model [36]. The latter belongs to the subclass of generators that in-

clude geometry, assuming that the nodes are points (e.g., on the plane); wiring decisions take into account the

geographical distances. The Heuristically Optimized Tolerance (H.O.T.) method is another generator considering

geometry [16]. However, the Waxman method gives graphs that do not �t power laws well, and H.O.T. is studied

only for trees.

In general, all of the above generators fail to meet one or more of the following goals: (a) The generator should

be procedural. (b) There should be a way to estimate its parameters. (c) It should be able to generate all types

of graphs (directed/undirected, bipartite, weighted). (d) It should satisfy more criteria (like diameter, eigenvalue

plots) in addition to the degree distribution.

3 Proposed Ideas

The contributions outlined here are threefold: (1) The R-MAT (Recursive MATrix) graph generating model is

introduced. (2) We present a tool (AutoMAT) that does automatic parameter-�tting for R-MAT And, (3) We

introduce the �A-plots� for visualizing large graphs, speci�cally, their adjacency matrices. These are described

below. Some symbols used in this section and Sections 4 and 5 are summarized in Table 1.
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Symbol(s) De�nition

a; b; c; d Probability of dropping an edge into partitions in the

R-MAT model. a+ b+ c+ d = 1

S1; S2 For a self R-MAT graph, S1 = S2. The total number of nodes is 2S1.

For a bipartite R-MAT graph, the total number of nodes are 2S1 and 2S2

for the two types of nodes. These node numbers include those �hidden� nodes

that have an outdegree (indegree) of zero. The dimension of the starting

adjacency matrix in the R-MAT model is 2S1 � 2S2.

E Number of unique edges in an R-MAT graph.

Ĉin;i; Ĉout;i Counts of nodes with an indegree (outdegree) of i for an R-MAT graph.

Cin;i; Cout;i Counts of nodes with an indegree (outdegree) of i for a real-world graph

that AutoMAT tries to match.

din; dout The biggest indegree (outdegree) whose corresponding count AutoMAT uses

for �tting R-MAT input parameters.

N1; N2 For a real-world self graph, N1 = N2, which is the number of nodes in the graph.

For a real-world bipartite graph, N1 and N2 are the numbers of the two types of nodes.

�1 The �rst eigenvalue of an adjacency matrix of a graph.

u1;v1 The �rst left- and right-eigenvectors of an adjacency matrix.

v1;i The i'th element of v1.

Ii The network value of node i in an undirected graph.

Same as v1;i for an undirected graph.

Table 1: Table of symbols

7



2

2S2

S1

a

c d

a b

c d

Figure 2: The R-MAT model: The 2S1�2S2 adjacency matrix is subdivided into four equal partitions. Edges are

dropped into the matrix one at a time, choosing partitions with probabilities (a; b; c; d) as shown. The process

continues recursively.

3.1 The R-MAT generator

It is necessary for a realistic graph generator to generate graphs with skewed indegree distributions, skewed

outdegree distributions and small diameters. We would also want a simple model to achieve those goals. These

are the thoughts we have when designing and testing the R-MAT graph generator.

The R-MAT model generates a graph by operating on its adjacency matrix in a recursive manner. It is based

on the idea of self-similar multi-fractals, where we put in the same skewed probability distribution over all scales

in the graph. The basic idea behind R-MAT is to recursively subdivide the adjacency matrix into four equal-sized

partitions, and distribute edges within these partitions with a skewed probability distribution. The probabilities

are represented by the ordered set (a; b; c; d) with a + b+ c + d = 1, as is shown in Figure 2. Let E denote the

total number of edges we want to generate in the adjacency matrix, then there are E non-zero elements in A.

Starting with an empty adjacency matrix, we �drop� edges into the matrix one at a time. Each edge chooses one

of the four partitions with probabilities a; b; c and d, respectively (some details about using a; b; c and d values

can be found in Appendix Section A); this process goes on for each partition of the adjacency matrix until the

partition becomes a 1� 1 matrix. Duplicate edges are eliminated.

The above procedure works straightforwardly for generating directed self graphs. For bipartite graphs, the

adjacency matrix is not square, but we can apply the R-MAT model to rectangular adjacency matrices easily

with rectangular partitions. When the length or height of the submatrix becomes 1, further partitions are only

in the dimension that is bigger than 1.

Why would we expect R-MAT to work well? Intuitively, the R-MAT algorithm gives skewed degree distribu-

tions, with multi-fractal patterns in its adjacency matrix. The recursive nature of the generating algorithm could

lend itself readily in simulating the community-within-community pattern which happens in real-world social
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networks.

3.2 Automatic R-MAT parameter estimation (AutoMAT)

We just argued qualitatively that R-MAT has the potential to match some properties of real graphs, but how

can we test R-MAT graphs against real ones? Given a real graph, we need a method for �nding out the input

parameters of R-MAT so that the R-MAT graph matches the real dataset. AutoMAT is a tool for doing this.

There are �ve input parameters for R-MAT: a; b; c; S1; S2; and E (Table 1). The goal for parameter estimation

for the R-MAT graph is to �nd a way to �gure out the input parameters such that the R-MAT graph that is

generated matches a given real graph in as many aspects as possible. However, we need to choose priorities when it

comes to the criteria we use for parameter �tting. The degree distribution of a real graph is one of the �rst things

that researchers want to match for any graph generator. It is also one of the least computationally expensive

criteria to check. Therefore, for estimating the R-MAT input parameters, we match exactly the number of edges

of a real graph and by optimizing a; b; c; S1 and S2, we try to obtain the best match for the degree distributions.

It turns out that upon matching the degree distributions, R-MAT allows an extra degree of freedom which we

use in order to match the Scree plot (see Section 4 about the Scree plot).

Cost function: Currently R-MAT generates directed self graphs and bipartite graphs. There are two degree

distributions (indegree and outdegree) for each graph. Our goal is to minimize the weighted sum of square

di�erences in the degree distribution plots in log-log scale between the R-MAT generated graph and the real

graph. The upper portions of the distribution plots have less �uctuations in the logarithm scale and these parts

are used for �ttings of R-MAT input parameters. For the sum of square di�erences, the value that corresponds to

a degree of i is weighted by 1=i, which is the derivative of log i, to account for the skewed density of data points

on the degree axis in logarithm scale. Furthermore, the sum of square di�erences in the two distribution plots

are weighted according to the counts of the one-degree nodes. The Nelder-Mead downhill simplex minimization

algorithm [34] is used to �nd the optimal R-MAT parameters that minimize the cost function F (Equation 1).

In Equation 1, Ĉin;i and Cin;i are the counts of nodes with an indegree of i for the R-MAT graph and the real

graph, respectively. In practice, din is chosen so that the number of nodes with an indegree greater than din is

often less than 10. Same logic applies for the part of equation that corresponds to the outdegrees.

F (a; b; c; S1; S2; E) =
1

(logCin;1)2

dinX

i=1

[
1

i
(log Ĉin;i � logCin;i)

2] +
1

(logCout;1)2

doutX

i=1

[
1

i
(log Ĉout;i � logCout;i)

2]

(1)

Algorithm: Estimation of R-MAT input parameters is done in steps. First E is �xed at the number of edges

of the given real graph. and we try to determine the optimal values for S1 and S2. Since S1 and S2 have
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Figure 3: The steps of AutoMAT

to be integers, and their values must satisfy 2S1 and 2S2 be the total number of nodes (including those with

degrees of zero) in the R-MAT graph, good starting values for them are ceiling(log
2
N1) and ceiling(log

2
N2)

(N1 and N2 are the numbers of nodes in the real graph). By doing an exhaustive search of all plausible S1

and S2 combinations, �nding the minimized F value by varying a; b and c for each S1 and S2 pair, we get the

optimal combination of S1 and S2. The next step is to �x S1 and S2 as well as E. For di�erent a values, we use

the Nelder-Mead simplex algorithm to �t the optimal b and c values. Since approximately (ignoring the e�ects

of duplicate edge elimination) the two degree distributions are determined by a + b and a + c, respectively. In

practice, within a certain range of a values, the optimal b and c values are approximately linear functions of a.

We get equally good �ts for all such a, b and c combinations in terms of minimized F values. Now we can vary

the value of a in order to pick a speci�c a, b and c combination to obtain the best �t for the �rst eigenvalues of

the adjacency matrix. These steps are summarized in Figure 3.

3.3 A-plots

Is it possible to plot an adjacency matrix so that we can visually inspect a graph? If we naively plot the adjacency

matrix we get plots like the ones shown in Figure 4. In Figure 4(a) the matrix is plotted without any sorting

of the nodes. Though there seem to be some patterns in it, we can not really tell much from the plot with all

the details of data collection and preprocessing mangled in there. Not surprisingly, if we randomize the nodes

for plotting the adjacency matrix we just see a largely homogeneous block (Figure 4(b)). So if we want to get

anything interesting out of plots of adjacency matrices we need to order the nodes in some way. It turns out that

interesting patterns do show up when we order the nodes properly, say, by their network values. The �A-plots�

(for �Adjacency matrix-related plots�) consist of three types of plots for undirected graphs: (1) the plot of the

adjacency matrix with nodes sorted in decreasing order by their network values (RV-RV plot, for Rank of network

Value), (2) the plot of the degree of a node versus its rank of network value (D-RV plot, for Degree versus Rank
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(a) (b)

Figure 4: Plots of the adjacency matrix of a router connection graph. (a) shows the adjacency matrix plotted

without any sorting of the nodes. (b) shows the adjacency matrix with the nodes in random order.

of network Value), and (3) the plot of the adjacency matrix with nodes sorted in decreasing order by their degrees

(RD-RD plot, for Rank of Degree). Interesting patterns in these plots readily reveal certain properties of the

graph. We propose these as valuable tools for an overall view of an undirected graph.

4 Criteria for Tests

We need to compare graphs generated by the R-MATmodel against real-world graphs. The criteria for comparison

and our reasons for choosing them are listed below:

(1) Degree plots: These are the plots for the count of nodes with in-degree/out-degree k (Cin;k/Cout;k), versus

the degree k. That is, these are the plots of the probability density functions of the in-degree (out-degree) of nodes

in graphs. This is the easiest criterion to justify: there is an overwhelming number of real power-law graphs [5].

In these graphs, the degree plot will come out as a straight line. Even for the graphs that deviate from power

laws and show a tilt (see Figure 1), the log-log scale degree plot should come out as a truncated parabola, as

�DGX� dictates. In either case, a good graph generator should match the degree plot of the target real graph.

(2) Scree plot: This is the plot of the �rst eigenvalues �1; �2; : : : �i; : : : of the adjacency matrix, versus their

rank i, again in log-log scale. The reason for choosing this criterion is that often the eigenvalues follow a power

law [17]. Moreover, the eigenvalues contain much information about the connectivity of the graph and the relative

sizes of its connected or near-connected components. We choose to �ll with zeros the diagonal of the adjacency

matrix. Filling it with 1's is another reasonable choice, but the impact on the eigenvalues was very small.

(3) Network values of nodes: The elements v1;i in the �rst eigenvector v1 of the adjacency matrix correspond
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to the �network values� of nodes in an undirected graph [29]. In a directed graph, the �rst left eigenvector u1

and the �rst right eigenvector v1 give the �hub� and �authority� values of nodes in a graph [12]. Thus, we do

the SVD, estimate the �rst left- and �rst right-eigenvectors, sort their elements in decreasing order, and plot the

values against their rank, in log-log scale.

There are lots of other potential criteria we can use to compare an R-MAT generated graph with a real-world

one. Some of the choices are:

(1) �Hop-plot� and the e�ective diameter: The neighborhood function F (h) [25] is the number of pairs of

nodes that can reach each other within h hops or less. The �hop-plot� is the number of pairs F (h), versus h. The

�e�ective diameter� is de�ned as the number of hops in which 90% of the reachable pairs of nodes are reached [33].

The �small world phenomenon� states that real graphs have small diameters, which a successful graph generator

should match. Moreover, the neighborhood function shows how well connected a graph is.

(2) Min-cut: A min-cut of a graph G = (V;E) is a partition of the set of vertices V into two sets: V1 and

V � V1 such that both partitions are of approximately the same size, and the number of edges crossing partition

boundaries is minimized. The number of such edges in the min-cut is called the min-cut size. The min-cut sizes

of a graph and its subgraphs re�ect the intrinsic dimensionality and other properties of the graph [31].

(3) Edge stress distribution: When we send one unit of tra�c through the shortest path between every pair of

nodes in a graph, the tra�c that goes through a particular edge is its stress [18]. Stress shows the importance of

an edge during the communication.

(4) Clustering coe�cient: The clustering coe�cient of a node is the ratio between the number of edges among

its immediate neighbors and the maximum number of possible edges among those neighbors. Real-world social

networks typically show much higher clustering coe�cients than random graphs [5].

(5) Distribution of bipartite cores: A bipartite core Cij has all possible connections between a group of i nodes

and another group of j nodes. The distributions of bipartite cores of a graph of webpages were shown to follow

certain power laws [20].

Our AutoMAT parameter �tting tool seeks to match the degree distributions and the Scree plot by changing

the input parameters of R-MAT. In Section 5 we will show these �tting results as well as comparing the �nal

R-MAT graphs with their real-world counterparts using the network value plots. Other criteria are also used for

evaluating R-MAT graphs (not included in this work, see Appendix Section B for details).

5 Experiments

The questions we wish to answer through experiments are:
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� Q1: How well does AutoMAT work? How do R-MAT generated graphs compare with real graphs for (a)

directed, and (b) bipartite graphs?

� Q2: How can A-plots be used for analyzing large graphs?

The real-world datasets we used for the experiments are:

� Epinions: This is a graph of who-trusts-whom from www.epinions.com. It is a directed graph with 75; 879

nodes and 508; 837 edges.

� Clickstream: This is a bipartite graph obtained from an ISP which collects information about Internet users'

browsing behavior. There are 23; 396 users, 199; 308 URLs and 952; 190 edges in this graph.

� Router: This is an undirected graph of network routers, obtained from www.isi.edu/scan/mercator/maps.html.

It is an undirected graph with 284; 805 nodes and 898; 492 edges.

5.1 AutoMAT R-MAT graphs

Epinions: We show the indegree, outdegree, eigenvalue and eigenvector plots for this dataset in Figure 5. The

parameters used for R-MAT are produced by AutoMAT: a = 0:550; b = 0:228; c = 0:212; S1 = 17; S2 = 17; E =

508837.

Observations: The R-MAT graph shows excellent match to the real dataset in both indegree distribution and

outdegree distribution. The match for the Scree plot is also pretty good. Since we do not try to match the

network values of the R-MAT graph to the real dataset in AutoMAT, the fact that the network value plots also

match very well is a pleasant surprise.

Clickstream: The results are shown in Figure 6. The parameters obtained using AutoMAT are: a = 0:675; b =

0:00309; c = 0:181; S1 = 15; S2 = 23; E = 952190.

Observations: We see that the outdegree of the real dataset follows a DGX-like distribution while the indegree

follows the power law. Still R-MAT is able to match both degree distributions very well. Any graph generator that

is unable to generate a DGX degree distribution as well as a power law degree distribution will fail in generating

a graph like this Clickstream dataset. The R-MAT graph matches the real dataset in the Scree plot reasonably

well. Again, the network values match those of the real graph very well.

Thus, we see that the R-MAT generated graphs match the properties of real-world graphs very well for our

tests. Some other tests that were performed on these R-MAT graphs against the real datasets are presented in

Appendix Section B. It is impressive that these good matches are achieved with such a parsimonious model.
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Figure 5: Epinions dataset: These are the indegree distribution, outdegree distribution, the Scree plot, and the

network value plots. The crosses and dashed lines represent the R-MAT graph, while the pluses and solid lines

represent the real graph.
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Figure 6: Clickstream dataset: These are the indegree distribution, outdegree distribution, the Scree plot, and

the network value plots. The crosses and dashed lines represent the R-MAT graph, while the pluses and solid

lines represent the real graph.

15



Stripes

(a) RV-RV plot (b) Estimated boundaries from Eqs 2,3

(c) RD-RD plot

Figure 7: A-plots for the Router graph: (a) shows the RV-RV plot. The �boundary lines� and the �secondary

lines� in the RV-RV plot can be calculated from the �rst eigenvalue and eigenvector of the adjacency matrix, as

are shown in (b) (solid lines are for the �boundary lines� and dashed lines are for the �secondary lines�). (c) shows

the RD-RD plot.
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5.2 A-plots

Figures 7 and 8 show A-plots for the Router dataset. Figure 7 shows the RV-RV and RD-RD plots, and Figure 8

shows the D-RV plot under di�erent scalings. We can make the following observations:

Observation 1 (�Water-Drop�) The RV-RV plot has a clean and smooth oval-shaped boundary for the edges

in the graph.

Explanation: The boundary of the edges is de�ned by the one-degree nodes in the graph. There are many such

nodes because of the power law distribution of the degrees. Let Ii denote the network value of node i; if node i

has a degree of one and node j is the only node it is connected to, the properties of spectral decomposition (See

Appendix Section C for details) of a matrix imply that

Ii =
1

�1
� Ij (2)

where �1 is the largest eigenvalue of the adjacency matrix of the graph. Therefore the boundary of edges in the

RV-RV plot can be calculated from the �rst eigenvalue and eigenvector (See Appendix Section C for details).

Figure 7(b) shows just this; the solid lines represent edges involving one-degree nodes. These are obviously the

boundary lines for plot (a).

We also see that there is no edge at all outside of the boundary. Let node i have network value Ii, and have node

j with network value Ij as its most �important� (in the sense of high network value) neighbor. Then, Ii �
1

�1
Ij .

Therefore all edges are con�ned within the boundary in the RV-RV plot.

Observation 2 (Nested Water-Drops) There is a pair of �secondary� lines within the boundary of the edges

in the RV-RV plot.

Explanation: These lines are the results of some two-degree nodes. When a node i has two degrees and the two

nodes it is connected to have about the same network values (say, Ij), we can calculate where the involved edges

will show up in the RV-RV plot similar to the one-degree case(See Appendix Section C for details):

Ii =
2

�1
� Ij (3)

The dashed lines in Figure 7(b) show the results, which match with the RV-RV plot. The presence of these

�secondary� lines in the plot means that a signi�cant number of the two-degree nodes in the graph are connected

to two �similar� (similar as is de�ned by similar network values) nodes. The presence of the faint �tertiary� lines

can be explained accordingly.

Observation 3 (Diagonal) There is more or less a solid line that goes through the diagonal of the RV-RV plot

even though the adjacency matrix does not include any self-edges.
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Explanation: This means a node is more likely to be connected with �similar� nodes.

Observation 4 (Isolated Components) There are dots in the largely empty white square in the corner of the

RD-RD plot.

Explanation: These dots represent connections between one-degree nodes. All dots (edges) in this area corre-

spond to two-node isolated components.

Observation 5 (White Stripes) There are white stripes (both vertical and horizontal) visible in both the RV-

RV and the D-RV plots.

Explanation: The stripes come from a large number of nodes that are connected to exactly the same nodes,

usually just one or two. Since nodes that are connected the same way have exactly the same network values, they

show up as a group and become visible in the RV-RV and D-RV plots (Figures 7(a) and 8(a, b) respectively).

Observation 6 (High degree does not mean high Network Value) Figure 8(c) shows several points in

the D-RV plot having high degrees, but low network values (and thus low ranks). Thus, high degree does not

imply high network importance.

Explanation: The D-RV plot in Figure 8(c) shows that the two highest-degree nodes have relatively low network

values. This is counter-intuitive - how could it possibly be the case, in a power-law graph? Is it a data collection

error?

The answer is surprising, and actually it also explains the most prominent white stripe in Figure 8(a,b): The

two highest-degree nodes (labeled `Spike1' and `Spike2') and a large number of two-degree nodes form a subgraph

like the one shown in Figure 8(d). `Spike1' and `Spike2', being away from the core of the network, have much lower

network values than what their high degrees would promise. Their satellites (all the 2-degree nodes connected

to them) have identical network values, which cause the most prominent white stripe in Figure 8(a,b). We are

currently investigating with domain experts the reasons for such a weird sub-graph. However, our point is that

the proposed D-RV and RV-RV plots spotted this strange pattern, which would go undetected if we only used

the traditional tools like the degree distribution plots.

6 Conclusions

Novel tools for mining large graphs are proposed. The major contributions of this work are:

� The R-MAT graph generator: Not only can R-MAT be tuned to match a given real-world graph in degree

distributions (power law distributions as well as DGX distributions) and the Scree plot, the R-MAT graphs

also match real graphs in network values.
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Stripe Stripe

(a) D-RV plot (log-lin) (b) D-RV plot (blowup)

Spikes

2−degree nodes
(Forming stripe)

Spike 1 Spike 2

External connections

(c) D-RV plot (lin-lin) (d) Spike-and-stripe links

Figure 8: A-plots for the Router dataset: (a) shows the D-RV plot, and (b) shows a blowup of a portion, clearly

demonstrating the �white stripes� phenomenon. (c) shows the D-RV plot in the linear-linear scale; nodes with

the highest degree do not have the highest network value. (d) shows the actual network con�guration of routers

involved in the stripe and spikes.
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� AutoMAT parameter estimation method for the R-MAT graph generator: The method works well in �nding

the input parameters of the R-MAT graph generator so that the R-MAT graph matches a given real graph

in degree distributions and the Scree plot.

� A-plots: These plots provide new viewpoints for inspecting large graphs. We noticed some striking patterns

(�water-drops�, white stripes, spikes, etc.) and we showed how to interpret them.

Thanks to the proposed tools, we were able to make several interesting observations. We showed how A-plots can

be used to spot outliers, and make observations about the degree of nodes, by simply looking at the adjacency

matrix in di�erent ways. When its input parameters are estimated with AutoMAT, R-MAT can match a given

real graph with respect to the degree distributions, the Scree plot, and by virtue of the model, the network values

of the nodes and the diameter (Appendix Section B) of the graph as well. This is a great advantage of R-MAT

over all previous graph generators, which mostly only seek to generate skewed degree distributions, if at all, with

some simple mechanisms. R-MAT is the �rst graph generator that focuses on matching additional criteria. The

R-MAT model is successful in generating directed graphs and bipartite graphs that match real-world ones.

7 Future Research Directions

Further work could extend the application of R-MAT for generating weighted graphs and undirected graphs. In

fact, given the way R-MAT works, it can naturally generate weighted graphs. The number of edges dropped into

any 1�1 cell in the adjacency matrix could be viewed as a weight for the graph (currently we are eliminating all the

duplicate edges for generating unweighted graphs). The distribution of the weights of the edges thus generated

will be skewed. This is the case for some weighted datasets we have checked. Therefore we believe R-MAT

should be a promising model for weighted graphs. This aspect of R-MAT is not matched by any previous graph

generating models. With some minor modi�cations, R-MAT could be used for generating undirected graphs,

too. A simple option is to do the following: (a) throw away the half of the square adjacency matrix below the

diagonal; and (b) mirror the upper half to it. This way we get a symmetric adjacency matrix for an undirected

graph. Thus R-MAT may become a powerful graph generating model that handles self graphs as well as bipartite

graphs, directed graphs as well as undirected graphs, and weighted graphs as well as unweighted graphs.

More criteria need to be tested to explore R-MAT further. Some of this work has already been done by other

researchers (see Appendix Section B). Testing R-MAT graphs against real graphs with many criteria is useful at

this point.

Theoretical analysis establishes that the eigenvector of the second smallest eigenvalue of an undirected graph's

Laplacian matrix (de�ned as L = diag(d) � A, where d is the vector of degrees of nodes, A is the adjacency

matrix of the graph) contains information about separating a graph into two approximately equal �communities�
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with minimal number of cross-community edges between them (related to the min-cut of a graph) [14]. Similar

conclusions go for other eigenvectors. If this method can be applied to mining large real-world graphs, we could

have a new way of generating A-plots as well as getting the min-cut sizes for graphs. The A-plots made this way

may give us better ways of getting a general idea of how the graph is connected.
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Appendix

A Details about Using a; b; c; d Values in R-MAT

Here we describe a subtle problem in R-MAT as well as our solution to it. For the recursive steps of R-MAT, if

we always use the exact a; b; c and d values, the degree distributions of the resulted graph will show �wiggles�. An

example is shown in Figure 9. To eliminate the �wiggles�, we vary the values of a; b; c and d around their original

values randomly for each recursive step in R-MAT. There are di�erent ways to do this in practice. However, we

need to be careful about choosing the method, because the randomization we apply to vary a; b; c and d can result

in di�erent results in the �nal degree distributions. It is actually the case that if we apply the randomization in

signi�cant enough amplitudes to remove the �wiggles� then these random numbers have a very signi�cant e�ect on

the resulted degree distribution. Hence, we need to �x the random numbers involved for di�erent a; b; c and d values

if we want to apply any �tting methods to tune the input parameters of R-MAT in order to match a given real

graph. We currently vary the a; b; c and d values by having ai = a(1+�a); bi = b(1+�b); ci = c(1+�c); di = d(1+�d)

and use the normalized values of ai; bi; ci and di for dropping edges in recursive step i. �a; �b; �c and �d are generated

from a uniform distribution in [�0:6;+0:6] for di�erent steps and they are �xed for all R-MAT runs. It works

well for removing the �wiggles� and also allows AutoMAT to do the �ttings on the input parameters of R-MAT.
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Figure 9: Using the exact values of a; b; c and d for dropping the edges at each recursive step leads to �wiggles�

in the degree distributions of the R-MAT graph.

B Other Criteria for Testing R-MAT Graphs

The following is a brief summary of some work done exclusively by other researchers (Deepayan Chakrabarti et

al. for the Hop-plots and stress distributions, and Daniel Blandford et al. for the min-cuts). We will present

them here for completeness of the tests on R-MAT graphs. These experiments further support that R-MAT is a
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realistic generator for large directed and bipartite graphs.

B.1 Hop-plot and e�ective diameter

Figure 10 compares the Hop-plots for the R-MAT graphs to the real graphs for the Epinions and the Clickstream

datasets. To compare the e�ective diameter for directed graphs, the directed edges were treated as if they were

undirected. We can see that the R-MAT graphs match the Hop-plots for real graphs very well, that they have

small e�ective diameters (3-4) just like real graphs do.
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Figure 10: Hop-plots for the Epinions (a) and Clickstream (b) datasets. The dashed lines represent the R-MAT

graphs, while the solid lines represent the real graphs.

B.2 Stress distribution

Figure 11 shows the stress distributions of the Epinions and Clickstream graphs, along with those of the graphs

generated using AutoMAT. To make these plots, 100 starting nodes were randomly chosen for �ooding the

network. The process was stopped when each packet had reached 1000 nodes. It is observed in these plots as

well as in plots for various other datasets that the count of nodes with a given stress value seems to follow a

power-law for real graphs, except at the highest stress value. The nodes corresponding to these high-stress values

might constitute the �core� of the network. We can see in Figure 11 that the R-MAT stress distributions match

the real graphs very well.

B.3 Min-cut sizes

The min-cut sizes were plotted for the Epinions dataset and the corresponding AutoMAT generated graph (Fig-

ure 12). For each graph the Metis graph partitioning library [19] was used to generate a separator, as is described
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Figure 11: Stress distributions for the Epinions (a) and Clickstream (b) datasets. The dashed lines represent the

R-MAT graphs, while the solid lines represent the real graphs.

by Blandford, etc. [7]. Figure 12 shows that the shapes of the min-cut plots are similar for the AutoMAT graph

and the real Epinions graph.
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Figure 12: Min-cut plots for the Epinions dataset and the corresponding R-MAT graph.

C Details About Calculating Boundary lines in RV-RV Plots

For an undirected graph with n nodes and adjacency matrix A, let Ii denote the network value of node i. Let �1

and v1 be the �rst eigenvalue and the �rst eigenvector of A. We have:

Lemma 1: If node i is connected to nodes j1; j2; : : : ; jk (k � 1), then Ii =
1

�1

Pk

l=1 Ijl.

Proof 1: Since �1 and v1 are the �rst eigenvalue and �rst eigenvector of the square matrix A. We have

Av1 = �1v1. The result of both sides is a n� 1 vector. Note that Ii = v1;i and Aij = 1 only when nodes i and j

are connected. The i'th element of this n� 1 vector as is calculated at the left side is
Pk

l=1 Ijl. At the right side,

it is �1Ii. Therefore Ii =
1

�1

Pk

l=1 Ijl.

As a result of Lemma 1, if node i is only connected with node j, we have Equation 2. If node i is connected

to two nodes of equal network importance, we have Equation 3.
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Assuming that we have sorted the elements of vector v1 in decreasing order, let f be the mapping from the rank

of a node i to its network value Ii = v1;i, i.e., Ii = f(i). f is a discrete non-increasing function by this de�nition,

however, to simplify the explanations, we are going to use it as if it is a continuous decreasing function below,

just to give the intuition. If we know that node i is a one-degree node, then the corresponding edge for node i is

going to be at position (i; f�1(�1Ii)) and (f�1(�1Ii); i) in the RV-RV plot, since the network importance of the

node that node i is connected to is �1Ii. For calculating the �water-drop� boundaries we just �nd the positions of

these edges for many di�erent i's. Similarly, to calculate the secondary lines we calculate points (i; f�1( 1
2
�1Ii))

and (f�1( 1
2
�1Ii); i).
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