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Abstract

Conditional densities, f(y|x), are integral to uncertainty quantification when predicting a target y from covariates x,

but they are challenging to estimate well. It is therefore difficult to ensure that (1 − α)-level prediction sets for y

constructed from a conditional density model have the correct conditional coverage; that is, they contain the observed

y with probability (1 − α) at all locations x in feature space. We investigate how we can, with access to an observed

“ground truth” sample of (x, y), develop diagnostics that specify how an estimated conditional density errs from the

true density, at any location x. With this detailed insight into quality of fit at any x, we are then naturally able to

develop a calibration method, to correct an initial estimated conditional density using a ground truth data sample.

This method produces calibrated densities for f(y|x) that are approximately accurate across all locations x, yielding

calibrated prediction sets with accurate conditional coverage.

In the first part of this thesis, we present practical procedures for identifying, localizing, and interpreting the nature

of (statistically significant) discrepancies between an approximated and true conditional density, over the entire feature

space. Our flexible framework is more discerning than previous diagnostics, in that we can distinguish an arbitrarily

misspecified model from the true conditional density of an observed sample. We also provide ”Amortized Local P-P

plots” (ALP), which are interpretable graphical summaries of distributional differences at any location in the feature

space. In the second part of this thesis, we leverage this diagnostic framework to correct misspecified conditional

density models, from which we can then construct calibrated prediction sets that have desired conditional coverage.

Because our diagnostics directly specify where in feature space and how an estimated and true conditional CDF may

differ, we can use this information to directly correct the model towards the target conditional coverage. We explore an

application to the real-world astrophysical problem of photometric redshift (“photo-z”) prediction, where conditional

density models are difficult to estimate and conditional coverage is of practical significance. In the third part of this

thesis, we explore an extension of this calibration method that hybridizes it with local conformal inference, allowing

it to achieve finite-sample marginal and local validity at the expense of some precision.
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Chapter 1

Introduction

With the increasing complexity and popularity of black box algorithms, there has been growing interest in the machine

learning community for precise uncertainty quantification for their predictions, beyond just point estimates of the

conditional mean. The conditional density f(y|x) of the response variable y given features x can be used to build

predictive regions for y, which are more informative than point predictions. Indeed, in prediction settings, f(y|x)

provides a full account of the uncertainty in the outcome y given new observations x. Conditional densities are

also central to Bayesian parameter inference, where the posterior distribution f(θ|x) is key to quantifying uncertainty

about the parameters θ of interest after observing data x. Any downstream analysis in predictive modeling or Bayesian

inference depends on the trustworthiness of the assumed conditional density model.

Validating such models can be challenging. Prior to our work, there did not exist a comprehensive and rigorous set

of diagnostics that describe, for all values of x, the quality of fit of a conditional density model. It is especially

challenging to gain insight into different modes of failure of conditional density models, particularly for high-

dimensional or mixed-type data x. While previous diagnostic tools could determine whether an approximated

conditional density is compatible overall with a data sample, they lacked a principled framework for identifying,

locating, and interpreting the nature of statistically significant discrepancies over the entire feature space. While there

is rapidly growing interest in both methods and applications for describing the entire predictive distribution of Y

given X (see Section 2.1 for a survey), most current research on predictive inference concerns constructing calibrated

prediction sets only. It is often believed that the problem of obtaining and assessing entire conditionally calibrated

predictive distributions is too challenging. Here, conditional calibration refers to the property that (1 − α)-level

prediction sets for y have the correct conditional coverage; that is, they contain the observed y with probability (1−α)

at all locations x in feature space.

In this thesis, we show that comprehensive and interpretable diagnostics of entire predictive distributions, and

moreover recalibration of those distributions towards conditional coverage, are indeed attainable goals in practice.

Our proposed method relies on the idea of regressing probability integral transform (PIT) scores, computed given an
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initial conditional density model f̂(y|x), against X. This regression gives full and granular diagnostics of conditional

coverage across the entire feature space, which can then be used to recalibrate the entire model.

In the first part of this thesis, we present a rigorous framework for assessing the quality of conditional density

models, and diagnosing where locally and how exactly the models may be fitting poorly. Our “Global Coverage

Test” (GCT) can distinguish an arbitrarily misspecified model from the true conditional density of the sample, while

our “Local Coverage Test” (LCT) can pinpoint where specifically in the feature space the model is fitting poorly.

Furthermore, we develop “Amortized Local P-P plots” (ALP), which efficiently provide simple, interpretable graphical

summaries of distributional differences at any location x in the feature space. These diagnostics provide rich insight

into model quality in simple, explainable terms like coverage, bias, dispersion, and multimodality in y as a function

of x. Our validation procedures scale to high dimensions and can potentially adapt to any type of data at hand. We

demonstrate the effectiveness of our tests and local plots through simulated experiments including a prediction problem

for high-dimensional image data.

In the second part of this thesis, we describe how we can leverage the practical goodness-of-fit diagnostics

described above to calibrate conditional densities to be accurate across all locations x. In many scientific contexts,

the calibrated conditional PDFs themselves are of vital interest. Additionally, we can use calibrated conditional PDFs

to construct calibrated prediction sets with accurate conditional coverage. Note that our diagnostic framework, which

quantify deviations between actual and nominal coverage in y at any given x for an initial CDE f̂(y|x), is directly

measuring the achieved conditional coverage of the initial model. Therefore, these diagnostics can guide us in directly

targeting (and fixing) what is wrong with the conditional coverage. Compared to other methods that do not directly try

to optimize for conditional validity directly, we can achieve better empirical results. We also observe that if regression

estimates for coverage are consistent, then our method should achieve asymptotic conditional validity and asymptotic

conditional efficiency, even if the initial CDE f̂(y|x) is not consistent. We benchmark our corrected prediction bands

against oracle bands and state-of-the-art predictive inference algorithms for synthetic data, including settings with

a distributional shift. Furthermore, we produce calibrated predictive distributions for two scientific applications:

probabilistic nowcasting based on sequences of satellite images, and estimation of galaxy distances based on imaging

data (photometric redshifts).

In the third part of this thesis, we explore an extension of the calibration method that hybridizes it with local

conformal inference. Instead of directly using a different regression of PIT scores against X at every different location

in feature space, we partition the feature space and estimate a single conformal correction within each partition

element. This alternative framework, with the appropriate data splitting scheme, is able to achieve certain finite-

sample coverage guarantees that are characteristic of conformal prediction methods (see Section 2.4 for an overview

of conformal prediction), at the expense of requiring an additional split of the data. We also observe that if regression

estimates for coverage are consistent, then our method should achieve asymptotic conditional validity. We demonstrate

the practical advantages and disadvantages of this approach on a simulated experiment as well as an application to

photometric redshift estimation.
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This thesis is structured as follows. Chapter 2 provides an in-depth review of relevant literature, beginning

broadly with the general problem of uncertainty quantification, then focusing on related work on assessing quality

of conditional density models, quantile regression, and conformal inference. Chapter 3 presents our method for

diagnostics of conditional density models, explains how it improves upon the limitations of previous diagnostics, and

highlights its properties using two stylized examples. Chapter 4 presents our method for calibrating conditional density

models using this diagnostic framework, describes its theoretical properties, and highlights its practical properties on

two stylized examples as well as two applications to real-world scientific problems. Chapter 5 presents our hybrid

conformalized calibration approach, describes its theoretical properties, and compares its practical properties with our

original calibration framework using a stylized example and a real-world application. Finally, Chapter 6 provides a

summary and discussion of the thesis and potential future work.
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Chapter 2

Literature Review

This chapter provides a review of existing work relevant to this thesis. We start with an overview of the literature

on uncertainty quantification, highlighting the recent interest in the machine learning community in estimating full

conditional densities or predictive distributions f(y|x). We then examine the challenges of assessing the quality of

these estimated conditional densities and the limitations of existing methods. Next, we describe quantile regression

methods, a popular related approach to uncertainty quantification that estimates conditional quantile functions instead

of conditional densities. Finally, we give an overview of conformal prediction methods, which share some of the goals

of our work while starting from a different framework.

2.1 Uncertainty Quantification for Predictive Inference

The term “uncertainty quantification” is often used as an umbrella term to describe all approaches that go beyond

using point estimation of a variable of interest to assess the predictive accuracy of models (Berger and Smith, 2019;

Abdar et al., 2021). In scientific applications, uncertainty quantification is sometimes more important than point

predictions, as often the goal is to construct a probabilistic forecast, which takes the form of a predictive probability

distribution over future quantities or events of interest (Gneiting and Katzfuss, 2014; Chen et al., 2022). In engineering

and finance, uncertainty quantification can also be essential for decision-making tasks like optimizing supply chains

for actual demand (Farmer, 2017; Göttlich and Knapp, 2020). In this work, we consider the problem of assessing the

uncertainty about a continuous response or “target” variable Y ∈ R given input features or covariates X ∈ X .

Figure 2.1 shows a simple illustration of why point estimation of a continuous response Y given a feature X may

be insufficient. For some values of x, the conditional distribution of Y is a unimodal Gaussian, while in other parts of

the feature space the conditional distribution of Y is a bimodal Gaussian. Point estimation of the conditional mean or

median would simply predict Y = 0 for every input value of x, and merely including an estimate of the conditional

variance (or a confidence interval) is not enough to fully describe the behavior of f(y|x).
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Figure 2.1: Scatterplot of the joint distribution of f(x, y) reveals that the conditional density f(y|x) is unimodal for some values
of x and bimodal for other values of x, as highlighted by vertical red lines at x = 0.2, x = 1.0, and x = 1.8. Point estimation of
the conditional mean of y|x, even accompanied by conditional variance estimates, is insufficient for fully describing the behavior
of f(y|x).

The literature on uncertainty quantification for predictive inference is vast, but much existing research, such as the

burgeoning field of conformal prediction, is concerned with constructing calibrated prediction intervals and prediction

sets only, rather than obtaining and assessing entire predictive distributions that are well-calibrated. It is often believed

that the latter problem is too challenging. While prediction sets are certainly useful in quantifying uncertainties

in predictive models, we have been witnessing a transformation across scientific disciplines in terms of interest in

the entire predictive distribution of Y given x. For instance, see Gneiting (2008) for a discussion of probabilistic

forecasting in weather predictions, Timmermann (2000) for a survey of conditional density estimation in financial risk

management, Alkema et al. (2007) for applications of computing Bayesian posteriors in epidemiological projections,

and Mandelbaum et al. (2008); Malz and Hogg (2022) for the importance of predictive distributions for astrophysical

studies.

To meet this demand for more precise uncertainty quantification across scientific fields, recently a large body of

work in machine learning has been developed for estimating conditional densities f(y|x) for all possible values of x,

or to generate predictions that follow the unknown conditional density. Standard approaches for directly estimating

the conditional density functions f(y|x) using neural networks include mixture density networks (Bishop, 1994) and

kernel mixture networks (Ambrogioni et al., 2017). Alternatively, one can quantify uncertainty by training multiple

models on the same data; for instance, by ensembling neural networks (Lakshminarayanan et al., 2017; Pearce et al.,

2020) or using dropout methods (Srivastava et al., 2014; Gal and Ghahramani, 2016) that randomly drop units from

the network during training. Another approach is Bayesian neural networks (MacKay, 1992; Neal, 2012; Goan and

Fookes, 2020), which incorporate priors on the neural network weights and output posterior predictive distributions
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instead of point predictions. Much recent work has improved the quality, flexibility, and efficiency of Bayesian neural

networks (Graves, 2011; Blundell et al., 2015; Louizos and Welling, 2017; Pawlowski et al., 2017).

Additional approaches include normalizing flows, a model class that includes neural autoregressive models (Uria

et al., 2014; Sohn et al., 2015; Papamakarios et al., 2019; Kobyzev et al., 2021) and Gaussian process CDEs (Dutordoir

et al., 2018). Furthermore, one can use simpler nonparametric CDE methods (Izbicki and Lee, 2016; Izbicki et al.,

2017; Dalmasso et al., 2020), as well as implicit CDE methods that encode the predictive distribution implicitly, such as

conditional generative adversial networks (Mirza and Osindero, 2014)) and quantile regression methods that estimate

all quantiles simultaneously (Chung et al., 2021; Fasiolo et al., 2021; Tagasovska and Lopez-Paz, 2019; Amerise, 2018;

Liu and Wu, 2011). In addition, with the advent of high-precision data and simulations, simulation-based inference

(Cranmer et al., 2020) has also played a growing role in disciplines ranging from physics, chemistry and engineering

to the biological and social sciences. Advances in simulation-based-inference have led to the development of machine-

learning based methods to learn an explicit surrogate model of the posterior (Marin et al., 2016; Papamakarios and

Murray, 2016; Lueckmann et al., 2017; Chen and Gutmann, 2019; Izbicki et al., 2019; Greenberg et al., 2019).

Though there are numerous ways one can obtain predictive distributions, the models are only useful in practice

if they are approximately individually or conditionally calibrated, meaning that the estimated cumulative distribution

function (CDF)

F̂ (y|x) ≈ F (y|x) for all y ∈ R at every x ∈ X .

In words, the predicted conditional probability of an event happening given input x should match its observed

probability. Instance-wise uncertainties are crucial in practical applications. For example, weather forecasts may

predict the probability of rainfall given the current state of environmental predictors. Similarly, medical research may

estimate the efficacy of a drug for individuals of specific demographics after taking a given dose. Achieving instance-

wise uncertainties can be important for algorithmic fairness so as not to over- or under-predict risks for certain groups

of individuals (Kleinberg et al., 2016; Zhao et al., 2020).

When one obtains an entire predictive distribution that is conditionally calibrated, one can also derive various

quantities of interest, such as conditional moments, prediction intervals, or even more general prediction sets.

Figure 2.2 illustrates Highest Probability Density (HPD) sets, which include all values of y for which the estimated

conditional density f̂(y|x) exceeds a certain threshold. HPD sets are more general than intervals, in that they need

not be contiguous. By construction, individually well-calibrated predictive distributions F̂ (Y |X) lead to conditionally

valid prediction sets. Indeed, if Cα(X) is a prediction set derived from F̂ (Y |X) with nominal coverage 1 − α, then

having individually calibrated F̂ (Y |X) implies that

P(Y ∈ Cα(X)|X = x) = 1− α , ∀x ∈ X . (2.1)
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Figure 2.2: The Highest Probability Density (HPD) regions defined by a specific value y for input features x include all values
y′ ∈ R for which the estimated conditional density f̂(y′|x) exceeds the threshold defined by f̂(y|x). Note that these regions,
highlighted in red in this example, need not form a single contiguous interval.

Unfortunately, off-the-shelf methods for obtaining predictive distributions, even the numerous complex ones cited

above, are usually far from being calibrated. The fundamental issue is that conditional density estimators are typically

fitted by minimizing a loss function, such as the Kullback-Leibler divergence or integral probability metrics, that

do not directly depend upon calibration (Papamakarios et al., 2019; Dalmasso et al., 2020; Rothfuss et al., 2019).

This is especially true of large machine learning models, such as deep generative autoregressive models or Bayesian

networks. Loss functions are useful for training models but only provide relative comparisons of overall model fit.

Hence, a practitioner may not know whether he or she should keep looking for better models (by e.g., using larger

training samples, training times, etc.), or if the current estimate is “close enough”. For example, none of the above

Bayesian neural network methods provide frequentist coverage guarantees, and empirically they can often generate

prediction sets with poor coverage (Yao et al., 2019).

2.2 Assessing Quality of Conditional Density Models

To ensure that an estimated predictive distribution is well-calibrated, we would naturally seek statistical tests or

diagnostics that indicate how well the model fits on a held-out data sample. However, existing approaches to goodness-

of-fit testing are usually not tailored for assessing conditional density models, and do not provide the kind of granular

insight we desire.

One line of work assesses goodness-of-fit of a conditional density model via a two-sample test that compares

samples from f̂(y|x) and f(y|x). Earlier tests involved a conditional version of the standard Kolmogorov test

(Andrews, 1997; Zheng, 2000) in one dimension, or were tailored to specific families of conditional densities (Stute

and Zhu, 2002; Moreira, 2003). Recently, Jitkrittum et al. (2020) developed a fast kernel-based approach that can

also identify local regions of poor fit. Kernel approaches also require the user to specify an appropriate kernel and
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tuning parameters, which can be challenging in practice. In general, we note that while these two-sample tests are

useful for deciding whether or not an estimated predictive distribution needs to be improved, they do not provide any

means to actually correct discrepancies. That is, while these tests are consistent, they do not provide insight on how

the distributions of f̂(y|x) and f(y|x) differ locally.

Another approach which does allow for recalibration of predictive distributions is to assess how the marginal

distribution of probability integral transform (PIT) values differs from a uniform distribution (Cook et al., 2006;

Freeman et al., 2017; Talts et al., 2018; D’Isanto and Polsterer, 2018) and apply corrections to bring them into

agreement (Bordoloi et al., 2010). Figure 2.3 shows that the probability integral transform at location x for value

y measures the probability mass of the estimated conditional density f̂(·|x) that lies below y.

y

f (y′|x)

y′

Probability Integral Transform (PIT)

Figure 2.3: The probability integral transform (PIT) measures the amount of probability mass that lies below a certain threshold.
If a conditional density model f̂(y|x) is well-calibrated, then PIT values computed using this model on an i.i.d. sample from
F (x, y) should be uniformly distributed on average.

This approach does provide us with diagnostics that describe the nature of inconsistencies between f̂(y|x) and

f(y|x). If, for example, the marginal distribution of PIT values contains too many large values relative to the uniform

distribution, this indicates that the estimated f̂(y|x) models are on average positively biased, and all of them should be

adjusted downwards. While informative, these diagnostics were originally developed for assessing unconditional

density models (Gan and Koehler, 1990). As such, they are known to fail to detect some clearly misspecified

conditional models including models that ignore the dependence on the covariates altogether (Schmidt et al., 2020).

This is because they are only testing for a form of overall coherence between a data-averaged conditional (posterior)

distribution and its marginal (prior) distribution. In other words, they only assess average or marginal calibration over

the entire distribution of X ∈ X . Average calibration is often simply referred to as just “calibration” (Naeini et al.,

2015; Guo et al., 2017; Kuleshov et al., 2018), although it is a well-known problem that one can achieve marginally

calibrated distributions, EX∼FX

[
F̂ (y|x)

]
= EX∼FX

[F (y|x)], which completely ignore the input x.

In particular, the marginal distribution of PIT values obtained from a model f̂(y|x) will be uniformly distributed

if f̂(y|x) = f(y), even though f̂(y|x) is a terrible estimator that has not learned anything about the conditional
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distribution of y given x, and is simply asserting the marginal distribution f(y) everywhere while ignoring x.

Figure 2.4, taken from Figure 2 of Schmidt et al. (2020), shows a real-world application where existing diagnostics

used by scientists are susceptible to precisely this sort of problem. The figure compares various methods that

astronomers have developed for estimating the predictive distribution of galaxy distances based on imaging data

(photometric redshifts), a problem known as photo-z estimation. The method in the bottom right, “TrainZ”, is a

pathological model developed by the authors that simply asserts the empirical marginal f̂(y) everywhere instead of

trying to learn the true function f(y|x). The distribution of marginal PIT values, as visualized with Q-Q plots and

histograms, looks perfectly uniform for TrainZ. Thus, existing PIT diagnostics would indicate that the model fits well,

even though we know the model is completely misspecified.

Figure 2.4: Taken from Figure 2 of Schmidt et al. (2020). Each of the eight panels shows, for a different CDE method, the QQ
plot (red) and histogram (blue) of the marginal PIT distributions based on the estimated photo-z PDFs on a held-out data sample,
along with the ideal QQ (black dashed diagonal) and ideal uniform histogram (gray horizontal) curves. The lower inset in each
panel shows a difference plot for the QQ deviation from the ideal diagonal. “TrainZ”, the bottom right panel, is a misspecified
model that simply predicts the empirical marginal f̂(y). A precise diagnostic method should be able to easily tell that TrainZ fits
the data poorly. However, existing diagnostics based on the marginal distribution of PIT values fail to detect any problems with
TrainZ, as the distribution is perfectly uniform.

More generally, inconsistencies in various regions of the feature space can cancel out when looked at as an

ensemble (Jitkrittum et al., 2020; Luo et al., 2021). In other words, the local distribution of PIT values can be far from
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uniform in various parts of the feature space, while the overall marginal distribution of PIT values is still uniform. For

a stylized illustration of this, see Figure 2.5.
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Figure 2.5: Top row: For a well-calibrated “good” model, PIT values computed anywhere in the feature space (consisting of
X1, X2 in this example) have distribution Unif [0, 1], and when aggregated across the feature space are also uniform. Existing
diagnostics based on the marginal uniformity of PIT values will correctly indicate that this model fits well. Bottom row: This “bad”
model fits the data poorly everywhere in the feature space; PIT values are too low in some places, too high in others, and never
well-calibrated locally. However, when aggregated across the feature space, these errors cancel out, yielding a uniform marginal
PIT distribution. Thus, existing diagnostics cannot determine that there is anything wrong with this clearly misspecified model.

By construction, any recalibration scheme based on the marginal distribution of PIT values would only fit the

data on average, and thus only improve marginal calibration. The existing literature does not provide a method for

recalibrating CDEs towards individual or conditional calibration of the predictive distributions.

2.3 Quantile Regression

A popular alternative to directly estimating the conditional density is instead to estimate conditional quantiles, which

is a way of implicitly estimating the conditional CDF. This approach is known as quantile regression (Koenker and

Bassett Jr., 1978; Koenker and Hallock, 2001). In a regression setting, being able to specify the full quantile function is

an appealing goal; a model that predicts the true conditional quantiles F−1(α|x) of Y , for each input X at all quantile

levels α ∈ [0, 1], presents a full and efficient account of the uncertainty in predicting Y given X. Quantiles are easily

interpretable, and can directly be used to construct prediction intervals. Indeed, the conditional quantiles of Y |X = x

are perhaps the most natural way to produce intervals satisfying conditional coverage (Equation 2.1). Given the true

conditional quantiles, F−1(0.5α|x) and F−1(1− 0.5α|x), we can simply build the (1− 0.5α)-level oracle prediction
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interval

C∗
α(x) =

[
F−1(0.5α|x), F−1(1− 0.5α|x)

]
. (2.2)

The true conditional quantiles are unknown but can be estimated with quantile regression, yielding the prediction

interval

Cα(x) =
[
F̂−1(0.5α|x), F̂−1(1− 0.5α|x)

]
. (2.3)

To achieve this, standard quantile regression methods focus on optimizing the so-called pinball loss, a tilted

transformation of the absolute value function. Given a target y, an estimate ŷ, and quantile level τ ∈ [0, 1], the

pinball loss is defined as

Lτ (y, ŷ) = (ŷ − y) (I (ŷ > y)− τ) (2.4)

Note that when setting τ = 1/2, Equation 2.4 becomes the L1 norm that is used to estimate the conditional median of

Y given X. By setting τ ̸= 1/2, we get a tilted version that instead estimates the specified conditional quantile τ of Y

given X.

Because of the flexibility of the pinball loss, quantile regression can be used to model complex distributions in a

non-parametric way, yielding prediction intervals that are adaptive to heteroscedasticity without requiring parametric

assumptions (Takeuchi et al., 2006; Zhou and Portnoy, 1996). Moreover, as mentioned, quantiles provide an attractive

representation for uncertainty because they are directly interpretable with units in the target output space, allowing

for easy construction of prediction intervals. Quantiles can also be used to efficiently sample from the predictive

distribution via inverse transform sampling (Hao and Naiman, 2007).

Despite the numerous appealing properties of quantile regression, these methods face the same fundamental

limitations as models that entire predictive distribution of Y given X, when it comes to the question of individual

or conditional calibration. Namely, the prediction intervals Cα(X) in Equation 2.3 for various x might not satisfy

the conditional coverage statement in Equation 2.1. While these intervals do converge in the large-sample limit to

the oracle intervals C∗
α(X) (Koenker and Bassett Jr., 1978; Taylor and Bunn, 1999), frequentist coverage of these

intervals is only guaranteed for specific model classes, under certain regularity and asymptotic conditions (Takeuchi

et al., 2006; Meinshausen, 2006). Even though C∗
α(X) satisfies Equation 2.1 in theory, quantile regression with the

standard pinball loss has been empirically shown to sometimes yield highly miscalibrated quantile estimates with

incorrect conditional coverage in practice (Chung et al., 2021; Feldman et al., 2021).

Recent alternatives to standard quantile regression have been proposed, with the goal of achieving better

calibration. Conformalized quantile regression (Romano et al., 2019) combines the standard method with conformal

prediction (to be discussed in Section 2.4), in order to guarantee marginal calibration of prediction intervals. They

achieve this using a custom conformity score function based on the learning the 0.5α and 1 − 0.5α quantiles.

As previously discussed, marginal calibration is no guarantee of individual calibration, especially when using the

standard pinball loss. Another method proposed by Chung et al. (2021) empirically estimates conditional quantiles
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from a kernel density conditional density estimator, then fits a regression model to interpolate between the estimated

quantiles. Conditional calibration of this method relies on the consistency of this CDE, and hence reintroduces the

familiar problem of how to assess and ensure the quality of conditional density models. Orthogonal quantile regression

(Feldman et al., 2021) amends the pinball loss with an orthogonality loss function to promote independence between

the size of prediction intervals and their achieved conditional coverage, the idea being that these two quantities are

independent for the true conditional quantiles. However, this orthogonality loss is an indirect metric that is not the

same as actually optimizing for conditional coverage. We show empirically in Section 4.4 why using the orthogonality

loss does not necessarily lead to individual calibration. The bottom line here is that quantifying predictive uncertainty

in ways that achieve conditional coverage in practice remains a challenging open problem, whether one tackles it by

directly estimating CDEs or by estimating conditional quantile functions.

We also note that while estimating full predictive distributions yields all quantiles by construction, quantile

regression does not directly yield the full predictive distributions. On the one hand, recent work in quantile regression

has improved the ability to train for all quantiles simultaneously (Rodrigues and Pereira, 2020; Tagasovska and Lopez-

Paz, 2019), and in principle one can invert and differentiate the quantile functions in order to obtain the full predictive

distributions. Indeed, under certain regularity assumptions, estimates of conditional quantile functions using the

standard pinball loss are proven to be asymptotically consistent (Steinwart and Christmann, 2011). However, in

practice for finite samples, quantile crossing is major concern. Quantile crossing, commonly observed when modeling

multiple quantiles simultaneously, is the failure of the estimated conditional quantile function to obey the required

monotonicity constraint. In other words, for some values α1 > α2, there exists x such that

F̂−1(α1|x) < F̂−1(α2|x)

Mitigating quantile crossing is a difficult problem and is still an active area of research, with recent proposed

approaches including sorting-based post-processing at the end (Chernozhukov et al., 2010; Kim et al., 2021), expensive

constrained optimization (Liu and Wu, 2009), or some linear or non-linear monotonic interpolation between quantile

estimates (Gasthaus et al., 2019; Park et al., 2022). Despite theoretical consistency, because quantile regression is

not guaranteed to be conditionally calibrated (or even monotonic) in practice, the implicitly estimated predictive

distributions are unlikely to be of high quality.

2.4 Conformal Inference

In this section, we give a brief overview of conformal inference (Vovk et al., 1999), a framework for uncertainty

quantification that is primarily appealing for two reasons: (i) it provides a mathematical guarantee of marginal

calibration in finite samples, and (ii) it requires minimal distributional assumptions on the data-generating process,

and therefore can be applied to a range of black box models. Consider a setting with covariates X ∈ X and a
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continuous response Y ∈ R drawn from a joint distribution FX,Y . Conformal prediction methods have the special

property of yielding prediction sets Cα(X) with finite-sample marginal validity; that is,

P(X,Y )∼F (Y ∈ Cα(X)) = 1− α, (2.5)

as long as the data are exchangeable (Vovk et al., 2005).

One creates conformal prediction sets by evaluating potential candidate values y, and including them in the set

if they are not too extreme relative to previous observations. The measure of extremeness comes from a conformal

or non-conformal score. A conformal score has smaller values indicating more extremeness; a common example

is the conditional density estimate f̂(y|x). A non-conformal score has larger values indicating more extremeness;

a common example is the quantity |y − µ(x)| defined using a regression function µ(x). (Multiplying by -1 would

convert a conformal score to a non-conformal score, and vice-versa.) For brevity, we refer to either conformal or

non-conformal scores as “conformity scores” for the rest of this thesis.

The original, or full, conformal procedure often requires conformity scores to be calculated an impractically large

number of times (Lei et al., 2018), so we focus on inductive or split conformal prediction (Papadopoulos et al., 2002),

which is more efficient at the cost of splitting the data. After defining a conformity score function cs(·), split conformal

prediction decides whether a candidate value y should be included in a prediction region for x in three steps. First,

split the observed data into disjoint training and calibration sets, which we denote Dtrain and Dcal. Second, build a

prediction model using the training set that is used to calculate conformity scores, cs (yi|xi), for observations in the

calibration set Dcal. Third, for a test point xn+1, evaluate candidate values ŷn+1, and include the value in the output

set if the conformity score cs (ŷn+1|xn+1) is less extreme than 100α% of the conformal scores for the calibration set.

Algorithm 1 formally presents the split conformal approach.

Why is this procedure able to mathematically guarantee finite-sample marginal validity? It results from the

assumption of exchangeability of points in the calibration set and the new test point. Given this exchangeability,

the rank of the conformal score for the true observation yn+1 with respect to the conformal scores from the calibration

set is distributed uniformly between 1 and 1 + |Dcal|. Therefore, including all candidate values ŷn+1 that are less

extreme than 100α% of the conformal scores for the calibration set will by construction contain the true point yn+1

with probability 1− α as desired.

Obtaining marginal calibration in finite samples, under minimal parametric assumptions on the data generating

process, is the hallmark of conformal prediction. None of the various methods we have previously considered

in this chapter (except those that incorporate the conformal framework) provide such a mathematical guarantee.

However, there is no guarantee that conformal prediction sets will satisfy conditional calibration (Equation 2.1), even

approximately. Indeed, it is provably impossible to obtain exact conditional validity in finite samples, unless one

imposes strong assumptions on the underlying distribution, which goes against the “distribution-free” spirit of the

method (Vovk, 2012; Lei and Wasserman, 2014; Barber et al., 2020).
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Algorithm 1 Split Conformal Prediction

Input: Conformity score function cs(·); significance level α; data points (xi, yi), i = 1, . . . , n split into disjoint training and
calibration sets Dtrain and Dcal; new test point xn+1; candidate value ŷn+1.
Task: Decide if ŷn+1 should be included in a (1− α)-level prediction set for xn+1.
Algorithm:

1. Train conformity score function cs(·) on training set Dtrain.

2. Compute conformity scores on the calibration dataset:

For all (xj , yj) ∈ Dcal, set
tj = cs((xj , yj))

3. Compute conformity score for the new observation:

tn+1 = cs((xn+1, ŷn+1))

4. Compute

τ =
# {(xj , yj) ∈ Dcal : tj ≥ tn+1}

1 + |Dcal|

5. Include ŷn+1 in the new prediction region if τ > α.

In light of this, recent efforts in conformal prediction have attempted to achieve approximate conditional validity

by designing conformity scores with an approximately homogeneous distribution across the feature space X . For

example, reg-split (Lei et al., 2018) constructs conformity scores using the residuals (evaluated on Dcal) from

a regression model (trained on Dtrain), and may use a second regression to account for heteroskedasticity. Another

method dist-split (Izbicki et al., 2020) constructs conformity scores using empirical PIT scores (evaluated on

Dcal) based on a conditional density model (trained on Dtrain). In the large-sample limit, if the models used to build

conformity scores are statistically consistent, then the conformity scores will be homogeneously distributed across

(that is, independent of) X , and the prediction sets will achieve conditional coverage. This property is known as

asymptotic conditional validity.

Unfortunately, it is difficult to verify whether these methods provide good conditional coverage in practice for

finite samples. We also note that conformal prediction sets are not conditionally valid, even asymptotically, if the

initial model for assigning conformity scores is misspecified. Furthermore, conformal prediction methods cannot

obtain, even implicitly, full predictive distributions. Therefore, in the context of this thesis, which seeks to assess and

recalibrate entire predictive distributions, conformal prediction is best viewed as an adjacent field with some shared

goals and insights but also key differences.
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Chapter 3

Local Diagnostics for Conditional Density

Models

This chapter presents a diagnostic framework for identifying, locating, and interpreting the nature of statistically

significant discrepancies between a fitted conditional density model f̂(y|x) and the true conditional density f(y|x)

over the entire feature space (refer also to our published work, Zhao et al. (2021)). These diagnostic tools provide

insight into fundamental properties such as coverage, bias, dispersion, and multimodality in y (output of interest) as

a function of x (observed inputs). Existing diagnostics for conditional density models, described in Section 2.2, are

known to be unable to detect every kind of misspecified model, and furthermore they do not give insight into local

quality of fit of the model at any given x. Our proposed method is sensitive enough to detect arbitrarily misspecified

models. Moreover, because our method quantifies deviations between actual and nominal coverage in y as a function

of x, it is able to assess and visualize quality of fit anywhere in the feature space, even at points without observed data,

in terms of easy-to-explain diagnostics. Having interpretable diagnostics is crucial for scientific collaborators and end

users to build trust in large machine learning models.

Section 3.1 provides a theoretical framework for our problem, and details different failure modes of previous

diagnostic methods. Section 3.2 explains how our new diagnostics address these limitations to achieve desirable

properties. Section 3.3 describes the procedure for testing local and global consistency of CDEs, while Section 3.4

describes how to construct local plots that visualize the nature of deviations from local consistency in different parts of

the feature space X . Section 3.5 explores a stylized example that demonstrates the favorable properties of our method,

and Section 3.6 applies our method to a high-dimensional example with image data. Finally, Section 3.7 discusses an

extension of our framework to handle multivariate responses. All code used to produce our experiments is available

at https://github.com/zhao-david/CDE-diagnostics. We have also included an installable Python
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package cde-diagnostics with a detailed tutorial.

Notation. Let D = {(X1, Y1), . . . , (Xn, Yn)} denote an i.i.d. sample from FX,Y , the joint distribution of (X, Y )

for a random variable Y ∈ Y ⊆ R (in Section 3.7, Y is multivariate), and a random vector X ∈ X ⊆ Rd. Let

f̂(y|x) denote a conditional density estimate (CDE) for which we seek goodness-of-fit diagnostics. In a prediction

setting, D represents a hold-out “calibration” set not used to train f̂(y|x). In a Bayesian setting, Y represents the

parameter of interest (sometimes also denoted as θ), and each element of D is obtained by first drawing Yi from the

prior distribution, and then drawing Xi from the statistical model of X|Yi.

3.1 Previous Diagnostics were Insensitive to Covariate Transformations

Prior to our work, there did exist diagnostic methods that could describe the nature of inconsistencies between

f̂(y|x) and f(y|x) (see Section 2.2 for a more in-depth discussion). But these previous diagnostics only tested

for a form of overall coherence between a data-averaged conditional (or posterior) distribution and its marginal (or

prior) distribution. Typically, they relied on computing probability integral transform (PIT) values (Cook et al., 2006;

Freeman et al., 2017; Talts et al., 2018; D’Isanto and Polsterer, 2018). While informative, these diagnostics were

originally developed for assessing unconditional density models (Gan and Koehler, 1990). As such, they are known

to fail to detect clearly misspecified conditional models, including models that ignore the dependence of the response

on the covariates altogether (Schmidt et al., 2020).

Ideally, a test should be able to distinguish any given alternative conditional density model f̂(y|x) from the true

density f(y|x), as well as locate discrepancies in the feature space X . More precisely, a test should be able to identify

what we in this section define as global and local consistency.

Definition 1 (Global Consistency). An estimate f̂(y|x) is globally consistent with the density f(y|x) if the following

null hypothesis holds:

H0 : f̂(y|x) = f(y|x) for every x ∈ X and y ∈ Y. (3.1)

Note that f̂(y|x) is a particular fixed conditional density estimate, and we test whether samples from f̂(y|x) are

consistent with samples from f(y|x).

Previous diagnostics typically validated density models by computing PIT values on an independent calibration

dataset, which was not used to estimate f̂(y|x):
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Definition 2 (PIT). Fix x ∈ X and y ∈ Y . The probability integral transform of y at x, as modeled by the conditional

density estimate f̂(y|x), is

PIT(y;x) =
∫ y

−∞
f̂(y′|x)dy′. (3.2)

See Figure 2.3 for an illustration of this calculation.

Remark 1. For implicit models of f̂(y|x) (that is, generative models that via e.g. MCMC can sample from, but not

directly evaluate f̂ ), we can approximate the PIT values by forward-simulating data: For fixed x ∈ X and y ∈ Y ,

draw Y1, . . . , YL ∼ f̂(·|x). Then, approximate PIT(y;x) via the cumulative sum L−1
∑L

i=1 I(yi ≤ y).

If the conditional density model f̂(y|x) is globally consistent, then the PIT values are uniformly distributed. More

precisely, if H0 (Equation 3.1) is true, then the random variables

PIT(Y1;X1), . . . ,PIT(Yn;Xn)
i.i.d.∼ Unif(0, 1).

This result was often used to test goodness-of-fit of conditional density models in practice (Cook et al., 2006; Bordoloi

et al., 2010; Tanaka et al., 2018).

Unfortunately, such random variables can be uniformly distributed even if global consistency does not hold. This

is shown in the following theorem, which essentially details different failure modes of previous diagnostics.

Theorem 1 (Insensitivity to Covariate Transformations). Suppose there exists a function g : X −→ Z , where

Z ⊆ Rk for some k, that satisfies

f̂(y|x) = f(y|g(x)). (3.3)

Let (X, Y ) ∼ FX,Y . Then PIT(Y ;X) ∼ Unif(0, 1).

Many models naturally lead to estimates that could satisfy the condition in Equation 3.3, even without being

globally consistent. In fact, clearly misspecified models f̂(y|x) can yield uniform PIT values and “pass” an associated

goodness-of-fit test regardless of the sample size. For example, if f̂(y|x) is based on a linear model, then f̂(y|x)

will by construction depend on x ∈ Rd only through g(x) := βTx for some β ∈ Rd. As a result, we could have

f̂(y|x) = f(y|g(x)) even when f̂(y|x) is potentially very different from f(y|x). As another example, a conditional

density estimator that performs variable selection (Shiga et al., 2015; Izbicki et al., 2017; Dalmasso et al., 2020) could

satisfy f̂(y|x) = f(y|g(x)) for g(x) := (x)S , where S ⊂ {1, . . . , d} is a subset of the covariates. A test of the overall

uniformity of PIT values is no guarantee that we are correctly modeling the relationship between y and the predictors

x; see Figure 3.2 for an illustration.
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Previous diagnostics were also unable to pinpoint the locations in the feature space X where the estimates of

f(y|x) should be improved. Hence, in addition to global consistency, we need diagnostics that test for the following

property:

Definition 3 (Local Consistency). Fix x ∈ X . An estimate f̂(y|x) is locally consistent with the density f(y|x) at

fixed x if the following null hypothesis holds:

H0(x) : f̂(y|x) = f(y|x) for every y ∈ Y. (3.4)

In the next three sections, we introduce new diagnostics that are able to test whether a conditional density

model f̂(y|x) is both globally and locally consistent with the underlying conditional distribution f(y|x) of the

data. Our diagnostics are still based on the probability integral transform, and hence they retain the properties (e.g.,

interpretability, ability to provide graphical summaries, and so on) that have made PIT a popular choice in model

validation.

3.2 New Diagnostics Test Local and Global Consistency

We now present a new diagnostic framework that addresses the shortcomings of previous methods. The framework

has three main components:

• [GCT - Global Coverage Test] A statistical hypothesis test that can distinguish any misspecified density model

from the true conditional density. (This is a test of global consistency; see Definition 1.)

• [LCT - Local Coverage Test] A statistical hypothesis test that identifies where in the feature space the model

fits poorly. (This is a test of local consistency; see Definition 3.)

• [ALP - Amortized Local P-P plots] Interpretable graphical summaries of the fitted model that show how it

deviates from the true density at any location in feature space (see Figure 3.1 for examples). We also provide

amortized PIT histograms that contain the same information as ALPs but in a different format (see Section 3.4

for details).

This section provides the conceptual and theoretical basis for our approach. Section 3.3 discusses the GCT and LCT,

and Section 3.4 discusses ALPs.

At the heart of our approach is the realization that the local coverage of a CDE model is itself a conditional

probability (see Equation 4.2) that often varies smoothly with x. Hence, we can estimate the local coverage at any given

x by leveraging a suitable regression method using sample points in a neighborhood of x. Thanks to the impressive

arsenal of existing regression methods, we can adapt our approach to different types of potentially high-dimensional
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data to obtain computationally and statistically efficient validation. Finally, because we specifically evaluate local

coverage (rather than other types of discrepancies), the practitioner can “zoom in” on statistically significant local

discrepancies flagged by the LCT, and identify common modes of failure in the fitted conditional density (see Figure

3.3 for an example).

Our new diagnostics rely on the following key result:

Theorem 2 (Local Consistency and Pointwise Uniformity). For any x ∈ X , the local null hypothesis H0(x) :

f̂(·|x) = f(·|x) holds if, and only if, the distribution of PIT(Y ;x) given x is uniform over (0, 1).

Theorem 2 implies that if we had a sample of Y ’s at the fixed location x, we could test the local consistency

(Definition 3) of f̂ by determining whether the sample’s PIT values come from a uniform distribution. In addition, for

global consistency we need local consistency at every x ∈ X . Clearly, such a testing procedure would not be practical:

typically, we have data of the form (X1, Y1), . . . , (Xn, Yn) with at most one observation at any given x ∈ X .

Our solution is to instead address this problem as a regression. For fixed γ ∈ (0, 1), we consider the cumulative

distribution function (CDF) of PIT at x,

r(γ;x) := P (PIT(Y ;x) < γ|x) , (3.5)

which is the regression of the random variable

W γ := I(PIT(Y ;X) < γ) (3.6)

on (X, γ).

From Theorem 2, it follows that the estimated density is locally consistent at x if and only if r(γ;x) = γ for every

γ ∈ (0, 1):

Corollary 1. Fix x ∈ X . Then r(γ;x) = γ for every γ ∈ (0, 1) if, and only if, f̂(y|x) = f(y|x) for every y ∈ Y .

Of course, in practice we do not have access to the true r(γ;x) function, which describes the true coverage of

f̂(y|x). But the key idea is that we can estimate this function. In this way, our new diagnostics are able to test for both

local and global consistency, by relying on the simple idea of estimating r(γ;x) via regression, and then evaluating

how much it deviates from γ (see Section 3.3 for details).

Note that

PIT(Y ;x) < α ⇐⇒ Y ∈ (−∞, q̂γ(x))
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where q̂γ(x) is the γ-quantile of f̂(y|x). That is, r(γ;x) assesses the local level-γ coverage of f̂(y|x) at x. In Section

3.4, we explore the connection between test statistics and coverage, for interpretable descriptions of how conditional

density models f̂(y|x) may fail to approximate the true conditional density f(y|x).

3.3 Local and Global Coverage Tests

Our procedure for testing local and global consistency is very simple and can be adapted to different types of data. For

an i.i.d. test sample (X1, Y1), . . . , (Xn, Yn) from FX,Y (which was not used to construct f̂(y|x)), we compute

W γ
i := I(PIT(Yi;Xi) < γ). (3.7)

That is, for each test point i, we compute W γ
i over multiple sampled values of γ ∼ G from some distribution G over

(0, 1). By default, we take G to be the Unif [0, 1] distribution. To estimate the coverage r(γ;x) (Equation 3.5) for

any x ∈ X , we then simply regress W on (X, γ). Numerous classes of regression estimators can be used, from kernel

smoothers to random forests to neural networks.

Algorithm 2 P-values for Local Coverage Test

Input: conditional density model f̂ ; test data {Xi, Yi}ni=1; test point x ∈ X ; regression estimator r̂; distribution G of nominal
coverage values γ over (0, 1); number of null training samples B
Output: estimated p-value p̂(x) for any x ∈ X

1: Compute test statistic at x:
2: Compute values PIT(Y1;X1), . . . ,PIT(Yn;Xn)
3: for γ ∼ G do
4: Compute indicators W γ

1 , . . . ,W
γ
n

5: Train regression estimator r̂(γ;x) on {Xi,W
γ
i }

n
i=1

6: end for
7: Compute test statistic T (x) (Eq. 3.8)
8: Recompute test statistic under null distribution:
9: for b in 1, . . . , B do

10: Draw U
(b)
1 , . . . , U

(b)
n ∼ Unif[0, 1].

11: for γ ∼ G do
12: Compute indicators

{
W

γ,(b)
i := I(U (b)

i < γ)
}n

i=1

13: Train new regression estimator r̂(b)(γ;x) on
{
Xi,W

γ,(b)
i

}n

i=1
14: end for
15: Compute T (b)(x) :=

∑
γ

(
r̂(b)(γ;x)− γ

)2
16: end for

17: return p̂(x) :=
1

B

B∑
b=1

I
(
T (x) < T (b)(x)

)
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To test local consistency (Definition 3), we introduce the Local Coverage Test (LCT) with the test statistic

T (x) :=
∑
γ

(r̂(γ;x)− γ)
2
, (3.8)

where r̂(γ;x) denotes the regression estimator and we evaluate over a fixed set of γ values (which may or may not

be evenly spaced). Large values of T (x) indicate a large discrepancy between f̂(y|x) and f(y|x) at x in terms of

coverage, and Corollary 1 links coverage to consistency. To decide on the correct cutoff for rejecting H0(x), we use a

Monte Carlo technique that simulates T (x) under H0. Algorithm 2 details our procedure.

For the LCT, note that we are performing multiple hypothesis tests at different locations x. After obtaining LCT

p-values, we recommend using a multiple testing correction procedure like Benjamini-Hochberg to control the false

discovery rate.

Algorithm 3 P-values for Global Coverage Test

Input: conditional density model f̂ ; test data {Xi, Yi}ni=1; regression estimator r̂; distribution G of nominal coverage values γ

over (0, 1); number of null training samples B
Output: estimated p-value p̂(x) across all x ∈ X

1: Compute test statistic over X1, . . . ,Xn:
2: Compute values PIT(Y1;X1), . . . ,PIT(Yn;Xn)
3: for γ ∼ G do
4: Compute indicators W γ

1 , . . . ,W
γ
n

5: Train regression estimator r̂(γ;x) on {Xi,W
γ
i }

n
i=1

6: end for
7: Compute test statistic T (Xi) (Eq. 3.8) for i = 1, . . . .n

8: Compute test statistic S =
1

n

n∑
i=1

T (Xi)

9: Recompute test statistic under null distribution:
10: for b in 1, . . . , B do
11: Draw U

(b)
1 , . . . , U

(b)
n ∼ Unif[0, 1].

12: for γ ∼ G do
13: Compute indicators

{
W

γ,(b)
i := I(U (b)

i < γ)
}n

i=1

14: Train new regression estimator r̂(b)(γ;x) on
{
Xi,W

γ,(b)
i

}n

i=1
15: end for
16: Compute T (b)(Xi) :=

∑
γ

(
r̂(b)(γ;Xi)− γ

)2
for i = 1, . . . , n

17: Compute S(b) :=
1

n

n∑
i=1

T (b)(Xi)

18: end for

19: return p̂(x) :=
1

B

B∑
b=1

I
(
S < S(b)

)
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Similarly, we can also test global consistency (Definition 1) with a Monte Carlo strategy. We introduce the Global

Coverage Test (GCT) based on the following test statistic:

S :=
1

n

n∑
i=1

T (Xi). (3.9)

Algorithm 3 details our procedure.

We recommend performing the global test first and, if the global null is rejected, investigating further with local

tests. Empirically, we have found that the power of our tests is related to the MSE (a measurable quantity) of the

regression method we use. This observation is in line with similar results in Kim et al. (2019, Theorems 3.3 and 4.1).

Hence, as a practical strategy, we can maximize power by choosing the regression model that achieves the smallest

MSE on validation data.

We now give sufficient conditions under which the p-values from the local coverage test are approximately valid.

We rely on the following assumption.

Assumption 1 (Local regression estimator). There exists ϵ > 0 such that r̂ only uses the sample points in D′ with

Xi ∈ B(x; ϵ), where B(x; ϵ) is a ball of radius ϵ centered at x.

Assumption 1 holds for regression estimators that are based on partitions, such as tree-based estimators (e.g.,

random forests, boosting methods) or smoothing kernel estimators with kernels with bounded support.

Theorem 3. Under the null hypothesis

Hϵ
0(x) : F̂ (y|x) = F (y|x) for every y ∈ Y for all x′ ∈ B(x; ϵ)

and under Assumption 1, for any 0 < α < 1,

lim
B−→∞

P (p(x) ≤ α) = α.

3.4 Amortized Local P-P Plots

Our diagnostic framework does not just give us the ability to identify deviations from local consistency in different

parts of the feature space X . It also provides us with insight into the nature of such deviations at any given location

x. For unconditional density models, data scientists have long favored using P-P plots (which plot two cumulative

distribution functions against each other) to assess how closely a density model agrees with actual observed data. What

makes our work unique is that we are able to construct “amortized local P-P plots” (ALPs) with similar interpretations

to assess conditional density models over the entire feature space.

Figure 3.1 illustrates how a local P-P plot of r̂(γ;x) against γ (that is, the estimated CDF against the true CDF at

x) can identify different types of deviations in a conditional density model. For example, positive or negative bias in
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Figure 3.1: P-P plots are commonly used to assess how well a density model fits actual data. Such plots display, in a clear
and interpretable way, effects like bias (left panel) and dispersion (right panel) in an estimated distribution f̂ vis-a-vis the true
data-generating distribution f . Our framework yields a computationally efficient way to construct “amortized local P-P plots” for
comparing conditional densities f̂(θ|x) and f̂(y|x) at any location x of the feature space X . See text for details and Sections 3.5
and 3.6 for examples.

the estimated density f̂ relative to f leads to P-P plot values that are too high or too low, respectively. We can also

easily identify overdispersion or underdispersion of f̂ from an “S”-shaped P-P plot.

Of particular note is that our local P-P plots are “amortized”, in the sense that computationally expensive steps do

not have to be repeated with e.g Monte Carlo sampling at each x of interest. Both the consistency tests in Section 3.3

and the local P-P plots or ALPs only require initially training r̂(γ;x) on the observed data; the regression estimator

can then be used to compute r̂(γ;xval) at any new evaluation point xval. Because of the flexibility in the choice of

regression method, our construction also potentially scales to high-dimensional or different types of data x. Algorithm

4 details the construction of confidence bands for ALPs (under the null) using a Monte Carlo algorithm.

25



Algorithm 4 Confidence band for ALP under H0

Input: test data {Xi}ni=1; test point x ∈ X ; regression estimator r̂; distribution G of nominal coverage values γ over (0, 1);
number of null training samples B; confidence level 1− η

Output: estimated (1− η) confidence band {L(x), U(x)} for r̂(γ;x) under the null, for any x ∈ X , and γ ∈ (0, 1)

1: Recompute regression under null distribution:
2: for b in 1, . . . , B do
3: Draw U

(b)
1 , . . . , U

(b)
n ∼ Unif[0, 1].

4: for γ ∼ G do
5: Compute indicators

{
W

γ,(b)
i := I

(
U

(b)
i < γ

)}n

i=1

6: Train regression method r̂(b)(γ;x) on
{
Xi,W

γ,(b)
i

}n

i=1
7: end for
8: Compute r̂(b)(γ;x) for test point x.
9: end for

10: Compute (1− η) confidence band for r̂(b)(γ;x):
11: L(x), U(x)← ∅
12: for γ ∼ G do
13: L(x)← L(x) ∪ η

2
-quantile of

{
r̂(b)(γ;x)

}B
b=1

14: U(x)← U(x) ∪
(
1− η

2

)
-quantile of

{
r̂(b)(γ;x)

}B
b=1

15: end for
16: return L(x), U(x)

As an alternative to ALPs, one can also visualize the same information in local PIT histograms. Algorithm 5

describes how to construct local PIT histograms. Note that if one has already obtained an estimator r̂(γ;x) for the

local PIT distribution (CDF) via regression (by, for example, running Algorithm 2), then one can generate a local

histogram at any x ∈ X by simply evaluating those r̂ functions at x, without needing to rerun any regressions.

Similarly, there is no need to repeat the MC sampling under the null in Algorithm 6 to create confidence bands for the

local PIT histograms.

Algorithm 5 Local PIT histograms

Input: conditional density model f̂ ; test data {Xi, Yi}ni=1; test point x ∈ X ; regression estimator r̂; distribution G of nominal
coverage values γ over (0, 1); number of bins nbin

Output: local PIT histogram H(x) for any x ∈ X
1: Compute estimated local coverage at x:
2: Compute values PIT(Y1;X1), . . . ,PIT(Yn;Xn)
3: for γ ∼ G do
4: Compute indicators {W γ

i := I(Ui < γ)}ni=1

5: Train regression method r̂(γ;x) on {Xi,W
γ
i }ni=1

6: Compute value r̂(γ;x) for test point x
7: end for
8: Compute local PIT histogram:
9: Create histogram H(x) of r̂(γ;x) values by dividing [0, 1] into nbin equal-sized bins

10: return histogram H(x)
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Algorithm 6 Confidence band for local PIT histogram under H0

Input: test data {Xi}ni=1; test point x ∈ X ; regression estimator r̂; number of bins nbin; distribution G of nominal coverage values
γ over (0, 1); number of null training samples B; confidence level 1-η; number of bins nbin

Output: estimated (1− η) confidence band {L(x), U(x)} for local PIT histogram H(x) under the null, for any x ∈ X
1: Recompute regression under null distribution:
2: for b in 1, . . . , B do
3: Draw U

(b)
1 , . . . , U

(b)
n ∼ Unif[0, 1].

4: for γ ∼ G do
5: Compute indicators

{
W

γ,(b)
i := I(U (b)

i < γ)
}n

i=1

6: Train regression method r̂(b)(γ;x) on
{
Xi,W

γ,(b)
i

}n

i=1
7: end for
8: end for
9: Compute confidence band:

10: for b in 1, . . . , B do
11: Create histogram H(b)(x) of

{
r̂(b)(γ;x)

}
by dividing [0, 1] into nbin equal-sized bins

12: end for
13: L(x)← η

2
-quantile of

{
H(b)(x)

}B
b=1

14: U(x)←
(
1− η

2

)
-quantile of

{
H(b)(x)

}B
b=1

15: return L(x), U(x)

3.5 Example: Omitted Variable Bias in CDE Models

This stylized example involves omitted but clearly relevant variables in a prediction setting. Inspired by Section 2.2.2

of Shalizi (2013), we generate

X =

X1

X2

 ∼ N(
0

0

 ,

 1 0.8

0.8 1

)

and take the response to be

Y |X ∼ N(X1 +X2, 1).

To mimic the variable selection procedure common in high-dimensional inference methods, we fit two conditional

density models: f̂1, trained only on X1, and f̂2, trained on X. Both models are fitted using a nearest-neighbor kernel

CDE (Dalmasso et al., 2020) with hyperparameters chosen by data splitting.

This is a stylized example where omitting one of the variables might lead to unwanted bias when predicting the

outcome Y for new inputs X. As an indication of this bias, we have included a heat map (see panel (d) of Figure 3.3)

of the difference in the true (unknown) conditional means, E[Y |x1]− E[Y |x1, x2] as a function of x1 and x2. (In this

example, the omitted variable bias is approximately the same as the difference in the averages of the predictions of Y

when using the model f̂1 versus the model f̂2 at any given x ∈ X ; see Figure 3.3 panels (c) and (d)). Despite the clear

relationship between Y and X2, both f̂1 (which omits X2) and f̂2 pass previous goodness-of-fit tests based on PIT

(Figure 3.2). This result can be explained by Theorem 1: because PIT is insensitive to covariate transformations and
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Figure 3.2: Standard diagnostics for showing histograms of PIT values computed on 200 test points (with 95% confidence bands
for a Unif[0,1] distribution). Left: Results for f̂1, which has only been fit to the first of two covariates. Right: Results for f̂2, which
has been fit to both covariates. The top panel shows that standard PIT diagnostics cannot tell that f̂1 is a poor approximation to f .
GCT, on the other hand, detects that f̂1 is misspecified (p=0.004), while not rejecting the global null for f̂2 (p=0.894).

(a) (b) (c) (d)

Figure 3.3: Diagnostics for omitted variable bias example. (a) P-values for LCTs for f̂1 indicate a poor fit across most of the
feature space. (b) Amortized local P-P plots at selected points show the density f̂1 as negatively biased (blue), well estimated at
significance level α = 0.05 with barely perceived overdispersion (purple), and positively biased (red). (Gray regions represent 95%
confidence bands under the null.) (c) f̂1 and f̂2 vs. the true (unknown) conditional density f at the selected points. f̂1 is clearly
negatively and positively biased at the blue and red points, respectively, while the model does not reject the local null at the purple
point. f̂2 fits well at all three points. The difference on average in the predictions of Y from f̂1(·|x) vs. the true distribution f(·|x)
for fixed x indeed corresponds to the “omitted variable bias” E[Y |x1]− E[Y |x1, x2]. (Note: Panels (c) and (d) require knowledge
of the true f , which would not be available to the practitioner.)
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f̂1(y|x) ≈ f(y|x1), PIT values are uniformly distributed, even though f̂1 omits a key variable. The GCT, however,

detects that f̂1 is misspecified (p = 0.004), while the global null (Equation 3.1) is not rejected for f̂2 (p = 0.894).

The next question a practitioner might ask is: “What exactly is wrong with the fit?”. LCTs and local P-P plots can

pinpoint the locations of discrepancies and describe the failure modes. Panel (a) of Figure 3.3 shows p-values from

local coverage tests for f̂1 across the entire feature space of X. The patterns in these p-values are largely explained by

panel (d), which shows the difference between the conditional means of Y given x1 and given x1, x2. The detected

level of discrepancy between the estimate f̂1 and the true conditional density f at a point x directly relates to the

omitted variable bias E[Y |x1] − E[Y |x1, x2] = 0.8x1 − x2: the LCT p-values close to the line x2 = 0.8x1 are large

(indicating no statistically significant deviations from the true model), and p-values decrease as we move away from

this line.

Panel (b) of Figure 3.3 zooms in on a few different locations x with local P-P plots that depict and interpret

distributional deviations. At the blue point, f̂1 underestimates the true Y : we reject the local null (Equation 3.4), and

the P-P plot indicates negative bias. Conversely, at the red point, f̂1 overestimates the true Y ; we reject the local null,

and the P-P plot indicates positive bias. At the purple point, f̂1 is close to f , so the local null hypothesis is not rejected.

For reference, we show the results of the local test for the well-specified model f̂2, which does pass the global test.

Figure 3.4, right panel, shows p-values from LCTs across the feature space for the model f̂2. Unlike model f̂1, which

was fit on X1 alone, f̂2 was fit on both X1 and X2. Hence, f̂2 is able to pass all tests, with local P-P plots indicating a

good fit (with two examples shown in the Figure 3.4, left panel).

Figure 3.4: P-values for LCTs for f̂2 suggest an adequate fit everywhere in the feature space; local coverage plots at selected
points also suggest a good fit.

This stylized example is a simple illustration of the general phenomenon of potentially unwanted omitted variable

bias, which can be difficult to detect without testing for local and global consistency of models. Our proposed

diagnostics identify this issue and provide insight into how the omitted variable distorts the fitted model relative

to the true conditional density, across the entire feature space.
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3.6 Example: Conditional Neural Densities for Galaxy Images

In this high-dimensional example of conditional density estimation in a prediction setting, we assess the quality of

CDEs fit to image data x ∈ R400. In particular, we apply neural density models to estimate the distribution of

synthetic “redshift” Z (a proxy for distance; the response) assigned to photometric or “photo-z” galaxy images X

(the predictors). We then illustrate how our methods distinguish between well-fitting and poorly fitting CDEs. This

toy example is motivated by the urgent need for metrics to assess photo-z probability density function accuracy.

Diagnostics currently used by astronomers have known shortcomings as we have discussed (Schmidt et al., 2020), and

our method is the first to properly address them.

Here, x represents a 20 × 20-pixel image of an elliptical galaxy generated by GalSim, an open-source toolkit

for simulating realistic images of astronomical objects (Rowe et al., 2015). In GalSim, we can vary the axis ratio

λ, defined as the ratio between the minor and major axes of the projection of the elliptical galaxy. We create four

equally sized populations of galaxies, with λ ∈ {0.8, 0.7, 0.6, 0.5}. We then assign a response variable Z according

to different distributions (unimodal, skewed and bimodal) as follows:

Z|λ = 0.8 ∼ N(0.1, 0.02)

Z|λ = 0.7 ∼ Beta(3, 7)

Z|λ = 0.6 ∼ 0.6N(0.3, 0.05) + 0.4N(0.7, 0.05)

Z|λ = 0.5 ∼ Beta(7, 3).

Figure 3.5 shows the true conditional densities of the simulated “redshift” Z, indexed by the axis ratio λ of the

corresponding galaxy image.
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Figure 3.5: We assign a unimodal distribution of “redshift” Z for to the galaxy population with λ = 0.8, and higher, more skewed
and bimodal distributions of Z to the populations with λ = 0.7, 0.6, 0.5.

30



For illustration, we fit a unimodal Gaussian neural density model to estimate the conditional density Z|X. Our

diagnostics then pinpoint where in the feature space the density is bimodal or skewed, and thus a fit with one Gaussian

is inadequate. We know of no other diagnostics that can provide such insight when fitting neural density models.

Specifically, we fit a convolutional mixture density network (ConvMDN, D’Isanto and Polsterer (2018)) with a single

Gaussian component, two convolutional and two fully connected layers with ReLU activations (Glorot et al., 2011).

(We train on 10000 images using the Adam optimizer (Kingma and Ba, 2014) with learning rate 10−3, β1 = 0.9,

and β2 = 0.999.) This gives an estimate of f(z|x). We expect this CDE model to fit well for the λ = 0.8 unimodal

population, and fit poorly for the other bimodal or skewed populations.

Our diagnostic framework effectively detects the shortcomings of this conditional density model. First, we perform

the global coverage test, which rejects the global null (p < 0.001). Next, we turn to local coverage tests and local P-P

plots to explore where and how the fit is inadequate. Figure 3.6 shows a principal component map of the test data. The

LCTs are able to identify a unimodal Gaussian model fits well for the λ = 0.8 population, but that the same model

fails to adequately estimate the PDFs of the remaining populations. P-P plots at selected test points indicate significant

distributional deviations and suggest the need to consider more flexible model classes that incorporate bimodal and

skewed distributions. For instance, CDE models not based on mixtures (Papamakarios et al., 2019) could be more

effective for this data.
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Figure 3.6: Diagnostics for galaxy images example. For visualization, we show the location of the test galaxy points in R400

along the first two principal components (see center panel “PCA map with LCT p-values”). Test statistics from the LCTs indicate
that the unimodal density model generally fits well for the λ = 0.8 population, while fitting poorly for the other three populations
with skewed and bimodal true redshift distributions. Local P-P plots or ALPs show statistically significant deviations in the
CDEs (gray regions are 95% confidence bands under the null) for the latter population, suggesting the need for more flexible
model classes. We also display local PIT histograms with confidence bands under the null, as a different way to present the same
information as in the ALPs. (The histograms are computed from the r̂α values according to Algorithm 4; no additional regression
is needed.)

3.7 Handling Multivariate Responses

If the response Y is multivariate, then the random variable FY|X(Y|X) is not uniformly distributed (Genest and

Rivest, 2001), so PIT values cannot be trivially generalized to higher dimensions.

One way to overcome this is to evaluate the PIT statistic of univariate projections of Y, as done by Talts et al.

(2018) for Bayesian consistency checks and Mucesh et al. (2020) for the prediction setting. That is, the PIT values can

be computed using the estimate f̂(h(Y)|x) induced by f̂(Y|x) for some chosen h : Rp −→ R. Different projections

can be used depending on the context. For instance, in Bayesian applications, posterior distributions are often used to

compute credible regions for univariate projections of the parameters θ. Thus, it is natural to evaluate PIT values of

h(θ) = θi for each parameter of interest. Another useful projection is copPIT (Ziegel et al., 2014), which creates a

unidimensional projection that has information about the joint distribution of Y.
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Our diagnostic techniques are not enough to consistently assess the fit to f(Y|x) if applied to these projections,

but they do consistently evaluate the fit to f(h(Y)|x), which is often good enough in practice.

An alternative approach to assessing f̂ is through highest predictive density values (HPD values; Harrison et al.

2015; Dalmasso et al. 2020), which are defined by

HPD(y;x) =

∫
y′:f̂(y′|x)≥f̂(y|x)

f̂(y′|x)dy′

(see Figure 2.2 for an illustration). HPD(y;x) is a measure of how plausible y is according to f̂(y|x) (in the Bayesian

context, this is the complement of the e-value (de Bragança Pereira and Stern, 1999); small values indicate high

plausibility). As with PIT values, HPD values are uniform under the global null hypothesis (Dalmasso et al., 2020).

However, standard goodness-of-fit tests based on HPD values share the same problem as those based on PIT: they are

insensitive to covariate transformations (see Theorem 5 in Appendix A). Fortunately, HPD values are uniform under

the local consistency hypothesis:

Theorem 4. For any x ∈ X , if the local null hypothesis H0(x) : f̂(·|x) = f(·|x) holds, then the distribution of

HPD(Y ;x) given x is uniform over (0, 1). (The reverse is however not true.)

It follows that the same techniques developed in Sections 3.3 and 3.4 can be used with HPD values to check global

and local consistency for multivariate responses, as well as to construct local P-P plots.

The HPD statistic is especially appealing if one wishes to construct predictive regions with f̂ as HPD values are

intrinsically related to highest predictive density sets (Hyndman, 1996). HPD sets are region estimates of y that contain

all y’s for which f̂(y|x) is larger than a certain threshold (in the Bayesian case, these are the highest posterior credible

regions). More precisely, if HPDα(x) is the α-level HPD set for y, then

HPD(y;x) < α ⇐⇒ Y ∈ HPDα(x).

Thus, by testing local consistency of f̂ via HPD values, we assess the coverage of HPD sets. It should be noted,

however, that even if the HPD values are uniform (conditional on x), it may be the case that f̂ ̸= f .
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Chapter 4

Calibration of Conditional Density Models

This chapter presents a calibration framework for conditional density models that leverages the diagnostic framework

developed in Chapter 3 for evaluating the quality of such models. Because the diagnostics introduced in Section 3.2

assess the empirical conditional coverage of a given model f̂(y|x), we can directly use the detailed information they

provide in order to recalibrate f̂(y|x) towards achieving individual calibration across all locations x ∈ X . Our

non-parametric and easily interpretable approach is unique both in how it directly targets conditional coverage and,

moreover, in how it allows for the construction of entire calibrated predictive distributions rather than just prediction

sets; of course, well-calibrated prediction sets are a natural byproduct of well-calibrated predictive distributions.

Although estimating entire distributions non-parametrically is difficult, the performance of our method is on par

with state-of-the-art predictive inference algorithms for constructing prediction sets, in terms of achieving conditional

coverage in practice.

Section 4.1 introduces our approach for obtaining full calibrated conditional PDFs, by using the insights from our

new diagnostic framework. Section 4.2 explains how our algorithm for calibrated predictive distributions can easily be

adapted for constructing calibrated prediction intervals and HPD sets. Section 4.3 discusses the theoretical properties

of our regression approach and the resulting calibrated prediction sets. Section 4.4 presents a stylized example in

which our method successfully recovers the full predictive distribution, and achieves state-of-the-art performance for

conditional coverage. Section 4.5 shows how our method can handle model misspecifications, in a stylized example

of diagnostics and recalibration in a setting with distributional shift. Section 4.6 features an application to a high-

impact physics problem that requires good estimates of multimodal distributions. Section 4.7 explores an application

to a high-impact nowcasting problem in climate science. Finally, Section 4.8 describes an alternative approach to

recalibration that relies on estimates of local HPD coverage rather than local PIT coverage. All code used to produce

our experiments is available at https://github.com/zhao-david/Cal-PIT.
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4.1 Calibrated Full Conditional PDFs

This section introduces the Cal-PITmethod for a calibrating conditional density model f̂(y|x), using the probability

integral transform (PIT) and a calibration set D that was not used to train the initial f̂(y|x). Our approach leverages

the key observation that an estimated conditional CDF F̂ (Y |X) is conditionally calibrated if and only if its PIT value

is uniformly distributed conditionally on x.

For fixed x ∈ X and y ∈ Y , recall that the local probability integral transform (PIT) of y at x (see Equation 3.2)

is given by

PIT(y;x) :=
∫ y

−∞
f̂(y′|x)dy′ = F̂ (y|x). (4.1)

where F̂ is CDF associated with f̂ .

The diagnostics developed in Chapter 3 require the estimation of the true CDF of the PIT values, which we refer to

as the PIT-CDF. Note that we defined this earlier in Equation 3.5, but now we need to amend the notation to indicate

which CDE f̂ we are computing the PIT coverage for.

Definition 4 (PIT-CDF). For every x ∈ X and γ ∈ (0, 1), the CDF of the local PIT distribution, for conditional

density model f̂(y|x), is given by

rf̂ (γ;x) := P (PIT (Y ;x) ≤ γ | x) = P
(
F̂ (Y |x) ≤ γ

∣∣∣ x) . (4.2)

Recall that the PIT-CDF values rf̂ (γ;x) characterize the local consistency (Definition 3) of f̂ . For a fixed location

x, f̂(·|x) is locally consistent if and only if rf̂ (γ;x) = γ for every γ ∈ (0, 1). Hence, by plotting an estimate of

rf̂ (γ;x) versus γ via amortized local P-P plots (ALPs) (see Section 3.4), we can assess how close f̂ is to f across the

entire feature space. We can also describe the type of deviations that might occur; refer back to Figure 3.1 for some

representative examples.

As described in Section 3.3, our approach involves learning rf̂ (γ;x) using regression. We first augment the

calibration data by drawing multiple values of γ ∼ U(0, 1) for each data point in D to form the indicator random

variable W γ
i (Equation 3.7), then regress W γ

i on both Xi and γ. As rf̂ (γ;x) is a non-decreasing function of γ, we

use monotonic neural networks (Wehenkel and Louppe, 2019) as our regression algorithm, though our framework is

flexible and any other suitable regression method may be used. Again, thanks to the impressive arsenal of existing

regression methods, we can adapt to different types of potentially high-dimensional data. In practice, estimating

empirical coverage via regression may be “easier” (or more statistically efficient) than training a consistent CDE. We

then obtain the regression function

r̂f̂ (γ;x) := P̂(PIT(Y ;x) ≤ γ). (4.3)

We note that if the initial estimate is perfectly accurate (f̂ = f ), then we have the simple function rf̂ (γ;x) = γ,

which is very smooth and easy to estimate (indeed, it is constant in x). Thus, the extra step of using our recalibration
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procedure should not cost much when the initial CDE estimates are decent. It is when the initial CDE is not well

estimated that r̂f̂ (γ;x) becomes nontrivial to learn, but in this case the extra effort is well worth it, because the

original CDE estimates are not properly calibrated.

The Cal-PIT method uses the estimated regression function r̂f̂ (γ;x) (Equation 4.3) to correct the initial CDE

f̂(y|x), so that the recalibrated CDE, which we denote f̃ , is approximately locally consistent across the feature space.

Our strategy for calibration is to “adjust” or “relabel” the quantiles of F̂ (y|x), which indicate nominal coverage

according to the initial CDE, so that they match their true achieved coverage as estimated by r̂f̂ (γ;x). In particular,

we will perform this relabeling via the direct composition of the r̂f̂ and F̂ (y|x) functions. Given these two functions,

we define the new calibrated CDF F̃ as follows:

F̃ (y|x) := r̂f̂
(
F̂ (y|x);x

)
. (4.4)

The intuition behind our recalibration procedure is the following. Suppose that we know the true CDF of F̂ ; that

is, we know rf̂ (γ;x) := P
(
F̂ (Y |x) ≤ γ

∣∣∣ x) for all γ ∈ (0, 1) and every x ∈ X . Then, by construction, we have:

rf̂
(
F̂ (y|x);x

)
= P

(
F̂ (Y |x) ≤ F̂ (y|x)

∣∣∣ x)
= P (Y ≤ y|x)

= F (y|x).

Hence, if the regression is perfectly estimated (that is, r̂f̂ = rf̂ ), then, as long as both F and F̂ are continuous and

F̂ dominates F (see Assumptions 2 and 3 in Section 4.3 for details), the recalibrated CDF is locally consistent across

the feature space:
F̃ (y|x) = r̂f̂

(
F̂ (y|x);x

)
= rf̂

(
F̂ (y|x);x

)
= F (y|x) .

Algorithm 7 details the Cal-PIT procedure for constructing re-calibrated CDEs. In practice, for each x of

interest, we first evaluate F̃ (y|x) across a grid G of values y, then use smoothing splines to interpolate between

these values. Afterwards, we can differentiate these spline functions to obtain f̃ (y|x), which is our estimate for the

calibrated conditional PDF at x.

After calibration, the nominal quantiles of F̃ (y|x) should reflect the true coverage level; that is, we expect that

r̂f̃ (γ;x) ≈ γ for any test point x. Note that r̂f̃ refers to the estimated PIT coverage of the new calibrated conditional
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PDF, f̃(y|x). Indeed, we verify that if r̂ is perfectly estimated (that is, r̂f̂ = rf̂ and r̂f̃ = rf̃ ), then:

r̂f̃ (γ;x) = rf̃ (γ;x)

= P
(
F̃ (Y |x) ≤ γ

∣∣∣ x)
= P (F (Y |x) ≤ γ|x)

= P
(
Y ≤ F−1(γ|x)|x

)
= F

(
F−1(γ|x)|x

)
= γ.

Algorithm 7 Cal-PIT for Calibrated PDFs

Input: initial CDE f̂(y|x) evaluated at y ∈ G; calibration set D = {(x1, y1), . . . , (xn, yn)}; oversampling factor K; test points
V = {x1, . . . ,xm}; nominal miscoverage level α, flag HPD (true if computing HPD sets)
Output: calibrated CDF F̃ (y|x), calibrated CDE f̃(y|x), for all x ∈ V

1: Learn PIT-CDF from augmented and upsampled calibration data D′

2: Set D′ ← ∅
3: for i in {1, ..., n} do
4: for j in {1, ...,K} do
5: Draw γi,j ∼ U(0, 1)
6: Compute Wi,j ← I (PIT(Yi;Xi) ≤ γi,j)
7: Let D′ ← D′ ∪ {(Xi, γi,j ,Wi,j)}
8: end for
9: end for

10: Use D′ to learn r̂f̂ (γ;x) := P̂ (PIT(Y ;x) ≤ γ | x) via a regression of W on X and γ, which is monotonic w.r.t.
γ.

11:
12: Calibration using PIT-CDF
13: for x ∈ V do
14: Construct recalibrated CDF and CDE
15: Compute F̂ (y|x)← cumsum(f̂(y|x)) for y ∈ G

16: Let F̃ (y|x)← r̂f̂ (F̂ (y|x);x) for y ∈ G

17: Apply interpolating (or smoothing) splines to obtain F̃ (·|x)
18: Differentiate F̃ (y|x) to obtain recalibrated PDF f̃(y|x) for y ∈ G

19: Renormalize f̃(y|x) according to Izbicki and Lee (2016, Section 2.2)
20: end for
21: return F̃ (y|x), f̃(y|x), for all x ∈ V

Note that Line 10 of Algorithm 7 computes exactly the local PIT regression r̂f̂ (γ;x) used to construct the local

P-P plots described in Section 3.4. Our procedure applies a correction that, if ideally estimated, would result in perfect

calibration of the conditional density at every location X. In other words, the new corrected densities f̃ would have

r̂f̃ (γ;x) = γ for every γ, across all X , and all the local P-P plots would be perfectly calibrated straight 45◦ lines.
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4.2 Calibrated Predictive Inference

After computing calibrated conditional densities f̃(y|x), it is straightforward to construct calibrated prediction sets

Cα(x) for Y |X = x that are individually calibrated (Equation 2.1). There are various ways to derive valid prediction

sets from some full predictive distribution f̂(y|x). One simple and common formulation is the prediction interval:

INT(x, lx, ux) =
{
y : lx < F̂ (y|x) < ux

}
.

To build prediction intervals using our method, we do not even need to explicitly compute the full calibrated conditional

PDF f̃(y|x); the calibrated conditional quantile function is sufficient. After defining F̃−1 (·|x) using interpolating or

smoothing splines (refer to Algorithm 8), we can, for each x of interest, obtain the Cal-PIT prediction interval at x,

defined as

Cα(x) :=
[
F̃−1(0.5α|x), F̃−1(1− 0.5α|x)

]
, (4.5)

which approximately achieves 1− α conditional coverage.

Alternatively, we can use Cal-PIT to form Highest Predictive Density (HPD) prediction sets instead of prediction

intervals:

HPD(x, hx) =
{
y : f̂(y|x) > hx

}
.

The oracle (1-α)-level HPD set (based on the true density f(y|x)) is defined as

HPDα(x) = {y : f(y|x) ≥ tx,α} ,

where tx,α is such that ∫
y∈HPDα(x)

f(y|x)dy = 1− α.

HPDs are the smallest prediction sets that have coverage 1−α, and thus they may be more informative and considerably

smaller than quantile-based intervals, while maintaining the conditional coverage at the nominal level; see Section 4.4

for an example with a bimodal predictive distribution.

The Cal-PIT estimate of HPDα(x) is given by

Cα(x) =
{
y : f̃(y|x) ≥ t̃x,α

}
, (4.6)
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where f̃ is the Cal-PIT calibrated CDE derived in Algorithm 7) and t̃x,α is such that

∫
y∈Cα(x)

f̃(y|x)dy = 1− α.

Algorithm 8 details the Cal-PIT procedure for constructing either prediction intervals or HPD prediction sets.

Algorithm 8 Cal-PIT for Calibrated Prediction Sets

Input: initial CDE f̂(y|x) evaluated at y ∈ G; calibration set D = {(x1, y1), . . . , (xn, yn)}; oversampling factor K; test points
V = {x1, . . . ,xm}; nominal miscoverage level α, flag HPD (true if computing HPD sets)
Output: Cal-PIT prediction set C(x), for all x ∈ V

1: Learn PIT-CDF from augmented and upsampled calibration data D′

2: Set D′ ← ∅
3: for i in {1, ..., n} do
4: for j in {1, ...,K} do
5: Draw γi,j ∼ U(0, 1)
6: Compute Wi,j ← I (PIT(Yi;Xi) ≤ γi,j)
7: Let D′ ← D′ ∪ {(Xi, γi,j ,Wi,j)}
8: end for
9: end for

10: Use D′ to learn r̂f̂ (γ;x) := P̂ (PIT(Y ;x) ≤ γ | x) via a regression of W on X and γ, which is monotonic w.r.t.
γ.

11:
12: Calibration using PIT-CDF
13: for x ∈ V do
14: Construct recalibrated CDF and CDE
15: Compute F̂ (y|x)← cumsum(f̂(y|x)) for y ∈ G

16: Let F̃ (y|x)← r̂f̂ (F̂ (y|x);x) for y ∈ G

17: Apply interpolating (or smoothing) splines to obtain F̃ (·|x) and F̃−1(·|x)
18: Differentiate F̃ (y|x) to obtain recalibrated PDF f̃(y|x) for y ∈ G

19: Renormalize f̃(y|x) according to Izbicki and Lee (2016, Section 2.2)
20:
21: Construct Cal-PIT prediction set with conditional coverage 1− α
22: Compute interval C(x)← [F̃−1(0.5α|x); F̃−1(1− 0.5α|x)]
23: if HPD then
24: Obtain HPD sets C(x)← {y : f̃(y|x) ≥ t̃x,α}, where t̃x,α is such that

∫
y∈Cα(x)

f̃(y|x)dy = 1− α

25: end if
26: end for
27: return C(x), for all x ∈ V

4.3 Theoretical Properties

In this section, we provide convergence rates for the recalibrated CDF estimator F̃ . We also show that Cal-PIT

intervals achieve asymptotic conditional validity even if the initial CDE f̂ is not consistent, and prove the Fisher

40



consistency of Cal-PIT HPD sets.

We note that the following results are conditional on f̂ ; that is, all uncertainty comes from the calibration sample,

and we take the initial CDE f̂ as given.

We assume that the true distribution of Y |x and its initial estimate are continuous, and that F̂ places its mass on

a region that is at least as large as that of F :

Assumption 2 (Continuity of the cumulative distribution functions). For every x ∈ X , F̂ (·|x) and F (·|x) are strictly

continuous functions.

Assumption 3 (F̂ dominates F ). For every x ∈ X , F̂ (·|x) dominates F (·|x).

To provide convergence rates for the recalibrated CDF, we assume that F (·|x) cannot place too much mass in

regions where the initial estimate F̂ (·|x) places little mass:

Assumption 4 (Bounded density). There exists K > 0 such that, for every x ∈ X , the Radon-Nikodym derivative of

F (·|x) with respect to F̂ (·|x) is bounded above by K.

Finally, we assume that the regression method converges at a rate O(n−κ):

Assumption 5 (Convergence rate of the regression method). The regression method used to estimate rf̂ is such that

its convergence rate is given by

E
[∫ ∫ (

r̂f̂ (γ;x)− rf̂ (γ;x)
)2

dγdP (x)

]
= O

(
1

nκ

)

for some κ > 0.

Many methods satisfy Assumption 5 for some value κ, which is typically rated to the dimension of X and the

smoothness of the true regression r (see, for instance, Györfi et al. 2002).

Under these assumptions, we can derive the rate of convergence for F̃ :

Theorem 6. Under Assumptions 2, 3, 4 and 5,

E
[∫ ∫ (

F̃ (y|x)− F (y|x)
)2

dP (y,x)

]
= O

(
1

nκ

)
.

Next, we show that with a uniformly consistent regression estimator r̂f̂ (γ;x) (see Bierens 1983; Hardle et al.

1984; Liero 1989; Girard et al. 2014 for some examples), Cal-PIT intervals achieve asymptotic conditional validity,

even if the initial CDE f̂(y|x) is not consistent.
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Assumption 6 (Uniform consistency of the regression estimator). The regression estimator is such that

sup
x∈X ,γ∈[0,1]

∣∣∣r̂f̂ (γ;x)− rf̂ (γ;x)
∣∣∣ a.s.−−−−→

n−→∞
0,

where the convergence is with respect to the calibration set D only; f̂ is fixed.

Theorem 7 (Consistency and conditional coverage of Cal-PIT intervals). Let C∗
α(x) =

[
F−1(0.5α|x);F−1(1− 0.5α|x)

]
be the oracle prediction band, and let Cn

α(x) denote the Cal-PIT interval. Under Assumptions 2, 3 and 6,

λ (Cn
α(X)∆C∗

α(X))
a.s.−−−−→

n−→∞
0,

where λ is the Lebesgue measure in R and ∆ is the symmetric difference between two sets. It follows that Cn
α(X) has

asymptotic conditional coverage of 1− α (Lei et al., 2018).

Finally, we show the Fisher consistency of HPD prediction sets estimated with the Cal-PIT method. For every

x ∈ X , let

Cα(x) =
{
y : f̃(y|x) ≥ t̃x,α

}
,

where t̃x,α is such that ∫
y∈Cα(x)

f̃(y|x)dy = 1− α

be the Cal-PIT HPD set. Similarly, let

HPDα(x) = {y : f(y|x) ≥ tx,α}, (4.7)

where tx,α is such that ∫
y∈HPDα(x)

f(y|x)dy = 1− α

be the true oracle HPD set. The next theorem shows that if the probabilistic classifier is well estimated, then Cal-PIT

HPD sets are exactly equivalent to oracle HPD sets.

Theorem 8 (Fisher consistency of Cal-PIT HPD sets). Fix x ∈ X . If r̂(γ;x) = r(γ;x) for every γ ∈ [0, 1],

Cα(x) = HPDα(x) and P(Y ∈ Cα(X)|x) = 1− α.

4.4 Example: IID Data, No Model Misspecification

Our first example is a low-dimensional stylized version of the galaxy photometric redshift (photo-z) application in

Section 4.6, for which we expect the true predictive distributions to be multimodal in some parts of the feature space,

as multiple widely different distances (redshifts) can be consistent with the observed features (colors) of a galaxy.
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Motivated by the photo-z application, we modify the two-group example of Feldman et al. (2021) to have a bimodal

structure. The data for this example consist of two groups with different spreads:

ϵ1 ∼ N(0, 1),

ϵ2 ∼ N(0, 0.12),

X0 ∼ Bern(0.2),

X1,2
i.i.d.∼ Unif[−5, 5]2,

Y =



3ϵ2 + 0.2(X1 + 5)ϵ1, X0 = 0, X1 < 0

3ϵ2 − 0.2(X1 − 5)ϵ1, X0 = 1, X1 < 0

3ϵ2 + 0.2(X1 + 5)ϵ1 +X1, X0 = 0, X1 > 0

3ϵ2 − 0.2(X1 − 5)ϵ1 −X1, X0 = 1, X1 > 0

The target variable Y depends on three variables (X0, X1, X2), with one of the variables (X0) indicating group

membership. However, the practitioner only has access to the predictors X1 and X2, resulting in the CDE being

bimodal in the regime X1 > 0 with one branch for each class (see “Majority” versus “Minority” in Figure 4.1).

5.0 2.5 0.0 2.5 5.0

X1

5

0

5

10

Y

Majority (80%)
Minority (20%)

5.0 2.5 0.0 2.5 5.0

X2

Figure 4.1: Visualization of one random instance of the data used for this example. There are two covariates (X1, X2), and a
target variable Y . The analytic form of the true data distribution is described in the text. The data set consists of two groups with
different spreads. Y splits into two branches for X1 > 0; that is, the true CDE is bimodal in this region.

Our primary goal is to calibrate entire predictive distributions, but because of the rich literature on constructing

calibrated prediction sets, we also benchmark Cal-PIT prediction sets against results from state-of-the-art quantile

regression and conformal inference methods, in addition to comparing our results to oracle bands from Monte Carlo

simulations from the true data-generating process.

For benchmarking purposes, we compute 90% prediction sets for Y with Cal-PIT (INT) and Cal-PIT

(HPD), and then compare the results to prediction sets from five state-of-the-art methods, namely: (i) quantile
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regression (QR; Koenker and Bassett Jr. 1978) with a pinball loss; (ii) conformalized quantile regression (CQR;

Romano et al. 2019); (iii) orthogonal quantile regression (OQR; Feldman et al. 2021) which introduces a penalty on

the pinball loss to improve conditional coverage; (iv) Reg-split (Lei et al., 2018); and (v) distributional conformal

prediction (DCP; Chernozhukov et al. 2018). Methods (i)-(iv) are all trained with XGBoost (Chen and Guestrin, 2016).

Our Cal-PIT methods use an initial CDE trained using FlexCode with an XGBoost regressor (Izbicki et al., 2017;

Dalmasso et al., 2020) and a monotonic neural network (Wehenkel and Louppe, 2019) for learning r̂f̂ (γ;x). Finally,

DCP computes a conformity score based on PIT values derived from the same initial CDE as Cal-PIT. We split data

of total size n equally into train and calibration sets (except for QR and OQR which use all data for training).

It is mathematically impossible in practice to exactly verify whether conditional validity has been achieved in finite

datasets (Zhao et al., 2020). But here in this stylized example, we have knowledge of and are able to simulate from

the true data generating process for the synthetic data (which would not in reality be available to a practitioner). We

can therefore use Monte Carlo simulations to compute the true conditional coverage at a fixed set of 1000 uniformly

sampled test points in X. Similarly, we can compute “oracle” prediction sets.

QR CQR OQR DCP
Reg-split

Cal-PIT(INT)

Cal-PIT(HPD)0%

20%

40%

60%

80%

100%
n=1000
undercoverage
correct coverage
overcoverage

QR CQR OQR DCP
Reg-split

Cal-PIT(INT)

Cal-PIT(HPD)0%

20%

40%

60%

80%

100%
n=2000

Figure 4.2: The proportion of test points with correct conditional coverage for different methods. Data of total size n are split
equally into train and calibration sets (except for QR which uses all data for training). While conformal methods improve upon QR,
Cal-PIT leads to better conditional coverage, even for smaller sample sizes.

Figure 4.2 compares the conditional coverage of each method, evaluated using Monte Carlo simulations as

described above. Test points with coverage within two standard deviations (SD) of 1− α = 0.9 based on 100 random

realizations are labeled as having “correct” coverage. All methods improve in terms of conditional coverage with

increasing sample size, but only Cal-PIT consistently attains the nominal 90% coverage across the feature space for

n ≥ 2000.

Figure 4.3 shows the calibrated CDEs from Cal-PIT. These estimates reveal that the true conditional density is

bimodal for X1 > 0; thus, the most efficient prediction sets in this feature subspace would not be single intervals,
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but rather pairs of intervals. Indeed, Figure 4.4 shows that Cal-PIT (HPD) yields smaller prediction sets than

Cal-PIT (INT). Because HPD sets can capture the bimodality in the data while intervals cannot, this is a case

where Cal-PIT (HPD) has better efficiency. This qualitative insight is only possible because Cal-PIT estimates

the entire predictive distributions.
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Figure 4.3: Conditional PDFs for sample points at different locations of X1. The true ”oracle” PDF is bimodal for X1 > 0; thus,
the most efficient prediction sets in this feature subspace are not single intervals, but pairs of intervals. Cal-PIT estimates entire
predictive distributions, which converge to oracle predictive distributions as the sample size increases.

Figure 4.4 shows that both Cal-PIT (INT) and Cal-PIT (HPD) have set sizes that are as small as their

optimal counterparts (“Oracle Band” and “Oracle HPD”, respectively), and that Cal-PIT (HPD) sets are indeed

more informative (that is, the regions are smaller) than Cal-PIT (INT).

Oracle Band Oracle HPD Cal-PIT(INT) Cal-PIT(HPD)

4
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Average prediction set sizes
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1000
2000

Figure 4.4: Average prediction set sizes for test points for different methods along with the ideal “Oracle Band” and “Oracle
HPD”. Box plots show the size distribution for multiple trials of the experiment. Cal-PIT achieves prediction sets that are at least
as tight as those by other methods, while simultaneously providing more accurate coverage.

We saw that this example is difficult for both quantile regression (QR) and orthogonal quantile regression (OQR)

to learn. As described in Section 2.3, the OQR method augments the standard pinball loss of QR with a penalty on

the correlation between prediction set size and coverage, which can improve conditional coverage in certain settings

(Feldman et al., 2021), but is not very helpful in this example. Figure 4.5 shows that in this example, the initial

prediction sets learned by QR have bad conditional coverage, but also do not have much correlation between size and

coverage. Thus, the penalty applied by OQR is unable to substantially improve upon the QR results.
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Figure 4.5: Top: Prediction sets from quantile regression (QR). We see clear correlations between size and coverage, but note that
X0 is not actually available as a predictor, i.e. we cannot “see” the blue and orange colors. The overall correlations, without the
colors, are weak. Bottom: Prediction sets from orthogonalized quantile regression (OQR). Because the overall correlation between
size and coverage is weak, penalizing it does not change the results very much. In particular, we still see high correlations (and bad
conditional coverage) in the minority group.

We emphasize that methods like OQR target proxies for conditional coverage, while our Cal-PIT method directly

targets conditional coverage. Therefore, our method succeeds in more general settings. This example is a case where

penalizing the correlation between prediction set size and coverage is not a good proxy for achieving conditional

coverage, so OQR is not as successful as Cal-PIT at achieving conditional coverage.

4.5 Example: Misspecified Models

This example demonstrates that our method can effectively diagnose and correct model misspecifications, yielding

prediction sets that still achieve conditional coverage when the training and calibration datasets are not the same. We

explore a problem with a single predictor X in two different settings: One in which the true target distribution f(y|x)

is skewed and a second for which f(y|x) is kurtotic. In both cases, the initial estimate of the distribution, f̂(y|x) (used

for the inputs to Cal-PIT) is a Gaussian.
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In particular, the training distribution is a Gaussian centered on the true conditional mean,

Y0|X ∼ N (µ = X,σ = 2),

while the two target distributions have skew and excess kurtosis relative to the Gaussian training distribution:

Y1|X ∼ sinh-arcsinh(µ = X,σ = 2− |X|, γ = X, τ = 1),

Y2|X ∼ sinh-arcsinh(µ = X,σ = 2, γ = 0, τ = 1−X/4).

These different initial (training) and target (calibration) distributions are illustrated in the left panel of Figure 4.6.

The family of sinh-arcsinh normal distributions (Jones and Pewsey, 2009) has been suggested before by Barnes et al.

(2021) as a flexible parametric model that supports estimation of the type of heteroscedastic, asymmetric uncertainties

often observed in climate data.

Figure 4.6: Left: Initial and target distributions model misspecifications example. The initial fit is Gaussian, but the target
distributions are skewed and kurtotic, so the model is mis-specified. Conditional densities for each distribution are shown at slices
of X . Center: Diagnostic local P-P plots. Cal-PIT identifies that, relative to the training density, the skewed observed data are
biased at X = −1/X = 1 but well estimated at X = 0, and that the observed data for the kurtotic target are well estimated
at X = 0 but under-dispersed at X = −1 and over-dispersed at X = 1. These insights allow Cal-PIT to correct the initial
model. Right: Conditional coverage obtained via different calibration methods on target data; nominal coverage level 1−α = 0.9.
Cal-PIT is the only method to achieve conditional validity for all inputs X .

We split the data evenly between training and calibration sets with each having 10,000 data points. Using a

monotonic neural network regression function for local PIT coverage trained on the calibration set, r̂f̂ (γ;x), we

construct “amortized local P-P plots” (ALPs) to show how the estimated conditional density f̂(y|x) deviates from the

true density in each setting. These insights are visualized in the center panel of Figure 4.6. We then use Cal-PIT to

recalibrate the initial predictions on a test set, which comes from the same distribution as the calibration set (but not

the training set).

As with the previous example, we are able to draw Monte Carlo samples from the true data generating processes

to assess the conditional coverage for various values of X on an independent test set, which is shown in the right panel
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of Figure 4.6. The predictive distributions achieve nominal conditional coverage after recalibration using Cal-PIT

whereas reg-split, CQR and DCP fail to achieve conditional coverage, even though they are calibrated using data

from the true data-generating process. Our method is the only one that pinpoints the nature of the discrepancy from

the estimated distribution and then directly corrects for deviations in conditional coverage.

Predictive inference has proven challenging in the presence of dataset shift, where the training and test distributions

are not the same. While recent work has adapted conformal inference to achieve marginal coverage in specific settings,

such as covariate shift (Tibshirani et al., 2019) and label shift (Podkopaev and Ramdas, 2021), the assumptions on the

specific type of distributional shift can be hard to verify in practice. The method of (Cauchois et al., 2020) estimates the

amount of future dataset shift based on the variability in the training data, and achieves approximate marginal validity

in the worst-case scenario given a specified amount of shift. A similar method developed by Gibbs and Candès

(2021) adaptively forms prediction sets that are robust to dataset shift in an online setting, and achieves approximate

marginal validity at most time steps. The related work described above concerns settings where the test set differs

from both training and calibration sets; dataset shift is such that new test data comes from a distribution that has not

been encountered before, and therefore one must either estimate the amount of dataset shift or make distributional

assumptions about it, in order to obtain (approximate or exact) marginal validity.

In contrast, this example highlights a situation where the test set is drawn from the same distribution as the

calibration set, but different from the training set. In other words, the exchangeability assumption necessary for finite-

sample marginal validity in conformal prediction still holds, but conformal methods do not obtain conditional validity

in practice because the conformity scores are constructed using the training distribution, which is misspecified for the

calibration and test sets. Our method presents a novel way of diagnosing and correcting this model misspecification

using the calibration set, allowing it to achieve much better conditional coverage in practice.

4.6 Application: Photo-z PDF Recalibration

This section applies our method to the real-world problem of photo-z estimation. Redshift, which we denote as z, is a

measure of distance to a galaxy and is essential for estimating intrinsic luminosity and 3D location in space, which is

crucial information for many astrophysical studies. However, obtaining direct redshift measurements of a large number

of objects is prohibitively resource-intensive. Therefore, redshift estimates often must be derived from easier-to-obtain

imaging data, resulting in measurements called photometric redshifts or photo-z’s. We have chosen this application

because of its high impact in a scientific field, and because the photo-z data challenge (DC1) of Schmidt et al. (2020)

provides us with clear benchmarks against state-of-the-art CDE methods.

Because images contain limited information about redshifts, multiple redshifts can be consistent with a given

photo-z measurement. That is, galaxies at very different redshifts can have similar image properties Conditional

density models are commonly used to represent photo-z estimates and their associated uncertainties; the predictive

distributions are often multimodal (because of degeneracies), and do not conform to any of the standard models
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(Benı́tez, 2000; Mandelbaum et al., 2008; Malz and Hogg, 2022). Machine learning-based methods are widely used

to predict photo-z-distributions when adequate training data are available (e.g., (Beck et al., 2016; Zhou et al., 2021;

Dalmasso et al., 2020; Almosallam et al., 2016; Dey et al., 2021)). However, none of these methods can ensure that

PDFs are well-calibrated at every point in feature space. Bordoloi et al. (2010) described a method to recalibrate

PDFs using a single correction factor based on the overall distribution of PIT values; this ensures a uniform global

distribution of PIT values, but does not ensure PDFs are well-calibrated locally in feature space.
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Figure 4.7: Top: Diagnostic local P-P plot for five galaxies before and after Cal-PIT is applied. Bottom: CDEs for the
corresponding galaxies before and after calibration along with their true redshifts. Recalibration using Cal-PIT can recover
multimodalities while ensuring good conditional coverage.

For this application, we use the simulated data from Schmidt et al. (2020), which has been used to benchmark

photo-z CDE prediction methods in the past. The features used to train the models are called apparent magnitudes

and colors which are various measures of total light in an image. We use the “training set” from Schmidt et al. (2020)

with about 44,000 instances as our calibration set; then split the remaining data into two sets: a validation set (twice

as large as the calibration set) and a larger test set comprised of roughly 250,000 instances. We start with the marginal

distribution of redshifts as our initial CDE estimate. As described in Section 2.2, Schmidt et al. (2020) demonstrated

that such a pathologically misspecified CDE estimate performs well on many commonly used metrics that only check

for marginal coverage, while it does not provide information about conditional coverage.

We learn the local distribution of PIT values by training rf̂ on the calibration set and use it to recalibrate the CDEs

in our validation and test sets via our Cal-PIT method. To assess the quality of our recalibrated CDEs, we train

another regression model using the validation set and its recalibrated CDEs. We also use the CDE loss (Izbicki et al.,

2017) as another independent metric of conditional coverage. We infer the local CDF of PIT for every instance in the

test set before and after recalibration using the two trained models. The top panel of Figure 4.7 shows the diagnostic
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local P-P plot for five sample galaxies in the test set. The local CDF of PIT for these instances follows the identity line

closely (i.e., the CDF of a uniform distribution), indicating good conditional coverage. The bottom panel of Figure 4.7

also shows that multimodal CDEs can be recovered, even when the input CDE before calibration is unimodal.

Table 4.1: Comparison with methods benchmarked in the LSST-DESC Photo-z Data Challenge (Schmidt et al., 2020). In terms of
CDE loss, Cal-PIT performs better than all the other methods compared including one approach which was specifically optimized
for minimum CDE loss (FlexZBoost).

Photo-z Algorithm CDE Loss
ANNz2 (Sadeh et al., 2016) -6.88
BPZ (Benı́tez, 2000) -7.82
Delight (Leistedt and Hogg, 2017) -8.33
EAZY (Brammer et al., 2008) -7.07
FlexZBoost (Izbicki et al., 2017) -10.60
GPz (Almosallam et al., 2016) -9.93
LePhare (Arnouts et al., 1999) -1.66
METAPhoR (Cavuoti et al., 2017) -6.28
CMNN (Graham et al., 2018) -10.43
SkyNet (Graff et al., 2014) -7.89
TPZ (Carrasco Kind and Brunner, 2013) -9.55
trainZ (Schmidt et al., 2020) -0.83
Cal-PIT -10.71

We also see a large improvement in the value of the CDE Loss, with a decrease from −0.84 to −10.71

after recalibration. Table 4.1 shows that Cal-PIT yields lower CDE loss than any of the cutting-edge methods

benchmarked by Schmidt et al. (2020) as part of the LSST-DESC data challenge. The Cramér-von Mises statistic

between the local PIT CDF and the uniform distribution is another measure of the quality of conditional coverage

(Schmidt et al., 2020). Figure 4.8 shows that the Cramér-von Mises statistic decreases significantly on the entire test

set when comparing both fits, with a mean decrease of about 4.5 times.

As discussed, due to the noisy and limited information about redshift contained in galaxy images, galaxies with

similar imaging data may have different redshifts and vice versa. We want this property to be captured in photo-

z predictive distributions, requiring them to be multimodal. Since we do not know the “ground truth” CDEs, we

generally have to rely on indirect methods to assess coverage.

Here, we provide a rudimentary but direct demonstration that the CDEs we predict are indeed meaningful. We

compare the CDEs of the five galaxies shown in Figure 4.7 with the distribution of true redshifts of other galaxies

with similar imaging data. What does similar imaging data mean? We identify similar galaxies by searching for

other galaxies in the training set whose colors and magnitudes (rescaled by subtracting the mean and dividing by the

standard deviation for each feature) lie within a Euclidean distance of 0.5 units of our selected galaxies. Figure 4.9

shows their redshift distribution as an inverse-distance weighted histogram along with their CDEs. We observe that

the histograms show bimodal distributions when our inferred CDEs are bimodal, and unimodal distributions when our

inferred CDEs are unimodal, matching expectations.
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Figure 4.8: Distribution of the Cramér-von Mises (CvM) Statistic (i.e., mean squared difference) between the local PIT CDF
of each galaxy in the test set and the CDF of a Uniform distribution. As the “ground truth” CDEs are unknown, we assess
conditional coverage by training regression models to predict the local PIT CDFs on the calibration and validation sets. We observe
a significant decrease in the value of CvM statistic for the entire test set, with the average value decreasing by ∼ 4.5×. The value
of CDE loss (Izbicki et al., 2017) which is another independent measure of conditional coverage decreases from −0.84 to −10.71
after recalibration.
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Figure 4.9: Comparison of photo-z CDEs for the galaxies shown in Figure 4.7 with the distribution of true redshifts of other
galaxies having similar imaging properties. We observe that the histograms show bimodal distributions only when our inferred
CDEs are bimodal.

4.7 Application: Tropical Cyclone Intensity Nowcasting

This section presents an application to probabilistic nowcasting of tropical cyclone intensities. We illustrate Cal-PIT

calibration of entire predictive distributions of Yt|S<t for dependent high-dimensional sequence data {(S<t, Yt)},

which are based on satellite images of tropical cyclones (TCs). The target variable Yt represents TC intensity at time

t, and the predictor S<t is an entire 24-hour sequence of one-dimensional functions summarizing the spatio-temporal

evolution of TC convective structure leading up to time t. The sequence data are strongly correlated as the image

sequences from time t to t+ 1 are only shifted by 30 minutes. Here, we simulate from a model fit to observed data so

that we can directly assess conditional coverage, via Monte Carlo simulations from a known data generating process.

The original data capture TC convective structure, as observed every 30 minutes by Geostationary Operational

Environmental Satellite (GOES) infrared imagery (Janowiak et al., 2020) of storms from the North Atlantic (NAL)

and Eastern North Pacific (ENP) basins between 2000-2020; in addition, we have TC intensities at a 6-hour time
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resolution from NHC’s HURDAT2 best track database (Landsea and Franklin, 2013). Every thirty minutes during

the lifetime of a storm, we record a ∼800 km×800 km “stamp” of IR imagery surrounding the TC location, showing

cloud-top temperatures for the storm. The left panel of Figure 4.10 shows two such stamps.

Figure 4.10: Left: The raw data is a sequence of TC-centered cloud-top temperature images from GOES. Center: We convert each
GOES image into a radial profile. Right: The 24-hour sequence of consecutive radial profiles, sampled every 30 minutes, defines a
structural trajectory or Hovmöller diagram. These trajectories serve as high-dimensional inputs for predicting TC intensity. Figure
from (McNeely et al., 2022).

The radial profile, defined as T (r) = 1
2π

∫ 2π

0
Tb(r, θ)dθ, captures the structure of cloud-top temperatures Tb as a

function of radius r from the TC center and serves as an easily interpretable description of the depth and location of

convection near the TC core (McNeely et al., 2020; Sanabia et al., 2014). The radial profiles are computed at 5-km

resolution from 0-400km (d = 80); see Figure 4.10, center. Finally, at each time t we stack the preceding 24 hours (48

profiles) into a structural trajectory, S<t, consisting of an image of the most recent 48 rows of the data. We visualize

these summaries over time with Hovmöller diagrams (Hovmöller (1949); see Figure 4.10, right).

Our goal is to create a synthetic data generating process that has a similar dependency structure as actual TCs.

The left panel of Figure 4.11 shows an example sequence of observed radial profiles every 30 minutes for a real TC,

along with observed wind speed Y . We interpolate Y , which is available every 6 hours, to a 30-minute resolution.

Using the radial profiles from all TC data, we perform a principal component analysis (PCA). Figure 4.12 shows the

first three principal components, or empirical orthogonal functions (EOFs). The right panel of Figure 4.11 shows the

reconstruction of the TC using just these three EOFs.

First, we create a synthetic model for the high-dimensional sequences of TC image data, using PCA reconstruction.

Let ∆PCt := PCt − PCt−30m be the 30-minute change in a principal component (PC) coefficient at time t for

observed data. We fit a vector autoregression (VAR) model to (∆PC1t,∆PC2t,∆PC3t) to capture the dependence

of each component on its own lags as well as the lags of the other components. The model chosen by the BIC criterion

has order 3, for a lag of 90 minutes. With the fitted VAR model, we can jointly simulate synthetic time series data for
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Figure 4.11: Observed and reconstructed radial profiles Xt over time for Hurricane Teddy 2020 (left). These are recorded every
30 mins. We obtain a decent reconstruction by using the first 3 PCs. Observed wind speed values Yt, recorded every 6 hours but
interpolated on the same 30 min grid (right).
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Figure 4.12: Top 3 PCA components, or empirical orthogonal functions (EOFs), for TC radial profiles.

PC1, PC2, PC3. A TC structural trajectory is constructed by multiplying simulated time series of PCA coefficients

with their corresponding eigenvectors, which are illustrated in Figure 4.12.

Next, we model the time evolution of intensities Y , by fitting a time series regression of intensity change on its

past values together with PC coefficients for present and past TC structure. Let Z := logit(Y/200) so that simulated

values of intensities Y are reasonable, i.e. fall between 0 and 200 knots. We then define ∆Zt = Zt − Zt−6h. Finally,

we fit the following linear regression model for ∆Z:

∆Zt =β0 + β1Zt−6h + β2∆Zt−6h + β3PC1t + β4PC2tβ5PC3t + β6PC1t−6h + β7PC2t−6h

+ β8PC3t−6h + β9PC1t−12h + β10PC2t−12h + β11PC3t−18h + β12PC2t−24h + ϵt

(4.8)
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where ϵt is Gaussian noise with mean 0 and standard deviation set to the root mean squared error between the real

and predicted radial profiles in the training set. Note that ∆Zt has dependencies on its own lagged values as well as

lagged values of PCt. As a sanity check, Figure 4.13 shows that the marginal distributions of the simulated and real

wind speed values (Y ) look similar.
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Figure 4.13: Left: Marginal distribution of generated wind speed values Y , based on the model in Equation 4.8. Right: Marginal
distribution of observed wind speed values.

Figure 4.14 shows an example of data from a simulated storm. On the left, we have a Hovmöller diagram of

the evolution of TC convective structure {(Xt)}t≥0, with each row representing the radial profile Xt ∈ R120 of

cloud-top temperatures as a function of radial distance from the TC center; time evolution is top-down in hours.

On the right, we have {Yt}t≥0, the simulated TC “intensities” at corresponding times t. Let a sequence S<t :=

(Xt−48,Xt−47, . . . ,Xt) include the 24-hour history of convective structure (49 radial profiles). We simulate 800

“storms” from a fitted TC length distribution. Sequence data {(S<t, Yt)} from the same storm are shifted by 30

minutes; hence, they are strongly correlated. Sequence data from different storms, on the other hand, are independent.

Our goal is to construct prediction sets for Yt|S<t, and illustrate how Cal-PIT improves upon an initial MDN

fit. With our trained VAR model, we generate a very long time series for PC1, PC2, PC3 with a value of the PC’s

randomly selected from the training set of storms as the initial point. The time series is then divided into 24-hour-long

chunks and the structural trajectory and intensities are reconstructed. We create 8000 such instances for our training

set, 8000 more for our calibration set, and 4000 instances for our test sets. We rejected a 24-hour long window between

each chunk of the time series to ensure that each instance has no memory of the previous ones. Train, calibration, and

testing were performed on different simulated “storms”.

We then fit a unimodal Gaussian neural density model to estimate the conditional density f(y|s) of TC intensities

given past radial profiles. Specifically, we fit a convolutional mixture density network (ConvMDN, D’Isanto and

Polsterer (2018)) with a single Gaussian component, two convolutional and two fully connected layers which gives

an initial estimate of f(y|s). We then use a convolutional neural network with two convolutional layers followed by

5 fully connected layers which take the structural trajectory images and the coverage level (α) as inputs training. The

network output is restricted to be monotonic w.r.t. α Wehenkel and Louppe (2019). For both the models we use ReLU

54



5 25 45 65 85 10
5

12
5

14
5

16
5

18
5

20
5

22
5

24
5

26
5

28
5

30
5

32
5

34
5

36
5

38
5

Radial distance (km)

0
26
50
76

100
126
150
176
200
226
250
276
300
326
350
376
400
426
450
476
500
526
550
576
600
626
650
676
700
726
750
776
800

Ti
m

e 
(H

ou
rs

)

{Xt}t 0 {(Yt)}t 0

100

50

0

50

Te
m

pe
ra

tu
re

 (
C

)

40

60

80

100

In
te

ns
ity

 (k
t)

Figure 4.14: Simulated radial profiles and intensities for an example TC. Left: Hovmöller diagram of the evolution of TC
convective structure {Xt}t≥0; each row represents the radial profile Xt of cloud-top temperatures as a function of radial distance
from the TC center at time t. Our predictors are 48-hour overlapping sequences {St}t≥0 with data from the same “storm” being
highly dependent. Right: The target response, here shown as a time series {(Yt)}t≥0 of simulated TC intensities.

activations (Glorot et al., 2011) for intermediate layers and train using the Adam optimizer (Kingma and Ba, 2014)

with learning rate 10−3, β1 = 0.9, and β2 = 0.999.

Next, we apply Cal-PIT to learn r̂f̂ (γ; s) using 8000 calibration points. Finally, we evaluate the conditional

coverage of the initial CDE and Cal-PIT on 4000 test points, using Monte Carlo samples from the known data

generating process. Figure 4.15 shows that Cal-PIT recalibration improves upon the initial ConvMDN fit: The

left panel shows prediction sets for Yt|S<t for a sample simulated TC, before and after calibration. The calibrated

prediction sets track the behavior of the observed trajectory more closely. Moreover, the right panel shows Cal-PIT

achieves better conditional coverage, even though the effective sample size is small because of dependencies between

intensities in the same storm.

The ConvMDN struggles in this example because of the conditional distribution of Y |S sometimes being skewed

towards larger intensities; this phenomenon can partly be observed in Figure 4.16, where we show the distribution of

Yt at fixed values of t for some example simulated TCs. Cal-PIT is able to adjust for the model misspecification

(similar to the example in Section 4.5), resulting in narrower prediction bands that are still conditionally valid.
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Figure 4.15: Left: Simulated TC example with dependent high-dimensional sequence data. Prediction sets for TC intensities,
before and after calibration (blue bars), together with the actual trajectory of intensities {Yt}t (solid black lines). Cal-PIT

tracks the behavior of the trajectories more closely. Right: Conditional coverage of both methods across sequences s. The initial
ConvMDN fit with a single Gaussian component over-covers in certain regions of the feature space. Cal-PIT partly corrects for
the over-coverage and returns more precise prediction sets.
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Figure 4.16: Boxplots of the distribution of Yt at fixed values of t, for simulated TCs. The distributions show skewness, which
may explain why the uncalibrated ConvMDN does not fit perfectly. Moreover, the calibrated prediction sets appear to track the
observed trajectories (black curves) more closely than the ConvMDN.

4.8 Calibration with Local HPD Coverage

This section proposes an alternative method called Cal-HPD that performs diagnostics and recalibration by leveraging

local HPD coverage instead of PIT coverage.
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We define HPD values as follows:

Ĥ(y;x) :=

∫
{y:f̂(y′|x)≤f̂(y|x)}

f̂(y′|x)dy′.

Analogously to Cal-PIT, the idea of Cal-HPD is to estimate the local HPD coverage at each x,

hf̂ (γ;x) := P(Ĥ(Y ;x) ≤ γ|x),

by regression, just as we would estimate the PIT-CDF in Cal-PIT. Let ĥf̂ (γ;x) denote such an estimate. The

recalibrated (1 − α)-level HPD set at a location x is given by the (1 − α∗(x))-level HPD set of the original density

f̂(y|x), where α∗(x) is such that

ĥf̂ (α∗(x);x) = α.

One drawback of this framework is that it does not yield full predictive distributions. Moreover, although the

approach corrects HPD sets, aiming for conditional coverage, the constructed sets will not be optimal if the initial

model f̂ is misspecified. That is, because Cal-HPD does not learn and correct the entire predictive distribution, it

relies on the consistency of the initial model f̂ and provides no mechanism for, e.g., correcting an initial unimodal

CDE into a recalibrated bimodal CDE. In this work, we only report results for Cal-PIT (INT) and Cal-PIT

(HPD), and we do not report results for Cal-HPD.
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Chapter 5

Local Conformalized Calibration

This chapter presents a “hybrid” framework that combines the structure of local conformal prediction with the

Cal-PIT calibration methodology developed in Chapter 4. At the expense of requiring an additional split of the

data, the hybrid approach yields prediction sets with the same finite-sample marginal and local coverage guarantees as

local split-conformal methods. The idea is, instead of directly using the calibrated conditional PDF f̃(y|x) for building

prediction sets, we partition the feature space and perform a conformal adjustment to these prediction sets within each

partition element. When defining local regions with such a partition, the hope is to cluster together parts of the feature

space where the data points x are similar, so that estimating a single conformal adjustment to the f̃(y|x) function in a

partition element leads to good conditional coverage in practice. In finite-sample settings where we have no guarantee

of estimating r̂f̂ (and therefore f̃(y|x)) perfectly, this hybrid method may lead to better robustness, but the tradeoff is

that we need an additional data split if we seek finite-sample coverage guarantees.

Section 5.1 provides background on the structure and goals of local conformal prediction, and describes the

CD-split+ methodology of Izbicki et al. (2022) that in some ways is a foundational framework for our hybrid

method. Section 5.2 introduces our hybrid method that essentially puts a local conformal “wrapper” around the

calibrated predictive inference method detailed in Section 4.2. Section 5.3 discusses the theoretical properties of

our approach, namely that it achieves finite-sample marginal and local validity as well as asymptotic conditional

validity. Section 5.4 presents a stylized example that illustrates how finite-sample coverage guarantees can improve

conditional coverage when comparing the hybrid method to the original method in Section 4.2, despite the tradeoff of

additional sample splitting. Finally, Section 5.5 features an application to a high-impact physics problem where we

form prediction sets for multimodal distributions.
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5.1 Local Conformal Prediction

Recall that conformal prediction methods have the special property of yielding prediction sets Cα(X) with finite-

sample marginal validity (see Equation 2.5); that is,

P(X,Y )∼F (Y ∈ Cα(X)) = 1− α,

as long as the data are exchangeable (Vovk et al., 2005). In practice, we usually care more about obtaining conditional

validity (see Equation 2.1),

P(Y ∈ Cα(X)|X = x) = 1− α , ∀x ∈ X ,

but exact finite-sample conditional validity is provably impossible to obtain unless one imposes unrealistically strong

assumptions on the underlying distribution (Vovk, 2012; Barber et al., 2020).

Local conformal prediction (Lei and Wasserman, 2014; Guan, 2019) offers a practical “middle ground” between

practically insufficient marginal validity and practically unattainable conditional validity. This method provides locally

valid prediction regions. Local validity is a weaker guarantee than conditional validity, but a stronger guarantee than

marginal validity. Given a partition A of the feature space X , it ensures 1 − α level coverage not only on average

across X, but also within each predefined local region A ∈ A of the partition. That is,

P(X,Y )∼F (Y ∈ Cα(x)|x ∈ A) > 1− α , ∀A ∈ A, (5.1)

where A is a partition of X .

After defining a partition A over the feature space X , local conformal prediction then computes a conformal ad-

justment for a new instance x using only the subset of a conformal calibration datasetD′ = {(X′
1, Y

′
1), . . . , (X

′
n, Y

′
n)}

that falls in the same partition element as x, as defined below:

Definition 5. Let A be a partition of X . For each partition element A ∈ A, let

A(x) := {(X′
i, Y

′
i ) ∈ D′ : ∃A ∈ A s.t. x ∈ A and X′

i ∈ A}. (5.2)

In the large-sample limit of an infinite number of infinitesimal partition elements, local validity effectively becomes

equivalent to conditional validity (A(x) in the limit will only contain x itself). Hence, local conformal prediction

methods typically satisfy asymptotic conditional validity (Lei and Wasserman, 2014; Guan, 2019; Izbicki et al., 2022).

In practice, with finite data samples, local conformal prediction is only useful if there are enough data points in each

partition element A to perform a meaningful conformal adjustment. Therefore, the key practical challenge is how to

define the partition A such that data points within each partition element are relatively homogeneous (and therefore

benefit similarly from the conformal adjustment), while ensuring there are not too many partition elements so that
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there is still a sufficient sample size within each element. For instance, if the partition were defined simply using

the Euclidean distance over the feature space X , this scheme would not scale to high-dimensional feature spaces

(Lei and Wasserman, 2014; Barber et al., 2020; Tibshirani et al., 2019). The curse of dimensionality means that in

high-dimensional feature spaces, Euclidean neighborhoods need to be large in order to contain sufficiently many data

points. Therefore, partition elements are likely to be heterogeneous, which means there may still be strong deviations

from conditional validity even after ensuring local validity across each partition element.

The CD-split+ method of Izbicki et al. (2022) addresses the issue of scaling to high dimensions by partitioning

the feature space based on a fitted conditional density model f̂(y|x). Essentially, it group two points xi and xj into the

same partition element if their fitted conditional PDFs f̂(Y |xi) and f̂(Y |xj) are sufficiently similar overall (comparing

across various quantiles with the notion of a profile distance; see Defn.16 in Izbicki et al. (2022)). After defining this

partition, CD-split+ then takes the fitted CDE scores f̂(yi|xi) themselves as the conformity score, and computes a

conformal adjustment within each partition element. Since the fitted CDE itself is used for the conformity score, and

points with similar fitted CDEs are grouped together, this method hopes to produce relatively homogeneous partition

elements and achieve approximate conditional coverage.

The CD-split+ method depends crucially upon having a well-fitted initial CDE f̂(y|x). Partition elements will

only be relatively homogeneous if f̂(y|x) is a decent approximation of the true predictive distribution f(y|x). In

the next section, we introduce a new local conformal prediction method that similarly relies on CDEs for conformity

scores and for defining a partition, but leverages the calibration framework we developed in Chapter 4 so that instead

of using an initial CDE f̂(y|x), we compute everything using a calibrated CDE f̃(y|x). This allows us to achieve

asymptotic conditional validity in theory as well as better conditional coverage in practice, even when the initial CDE

f̂(y|x) is misspecified or poorly fit.

5.2 Local Conformalized Calibrated Predictive Inference

This section presents our local conformalized approach to calibrated predictive inference. As discussed in Section 5.1,

one way of viewing this approach is that it is essentially the CD-split+ method of Izbicki et al. (2022) but using the

calibrated CDE f̃(y|x) instead of the initial CDE f̂(y|x). Another perspective is that it is essentially the same as the

calibration method detailed in Section 4.2, except that we use an extra data split in order to put a conformal “wrapper”

around the prediction sets to ensure finite-sample marginal and local validity.

Recall that after we obtain a calibrated conditional PDF f̃(y|x), it is straightforward to compute either calibrated

prediction intervals (see Equation 4.5)

Cα(x) :=
[
F̃−1(0.5α|x), F̃−1(1− 0.5α|x)

]
,
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or calibrated HPD sets (see Equation 4.6),

Cα(x) =
{
y : f̃(y|x) ≥ t̃x,α

}
,

where t̃x,α is such that ∫
y∈HPDα(x)

f̃(y|x)dy = 1− α.

If the regression function r̂f̂ (γ;x) is well estimated, the PDFs f̃(y|x) should be approximately correct, which

means the calibration prediction intervals or HPD sets should be approximately conditionally valid. While we derive

asymptotic conditional validity and efficiency results in Section 4.3, we cannot guarantee that r̂f̂ (γ;x) is always well

estimated in practice. By incorporating the framework of local conformal prediction, we can obtain a sensible partition

A of the feature space and ensure exact finite-sample validity within each partition element A ∈ A, which may also

improve conditional coverage in cases where r̂f̂ (γ;x) is not well estimated.

To form the partition A, we first use the calibration framework presented in Chapter 4 to obtain calibrated PDFs

f̃(y|x), computed over the calibration set. Then, we define a model diagnostic distance, similar in spirit to LeRoy and

Zhao (2021), between two points xi and xj , computed over a grid of y values covering the support of f̃(y|x):

d2md (xi,xj) :=
∑
y∈

[y0,y0+δ,y0+2δ,...,y1]

(
f̃(y|xi)− f̃(y|xj)

)2
. (5.3)

With this distance, we can use a clustering algorithm to obtain a partition A over the calibration set, based on a

specified number of clusters K. In our method, we use the k-means++ algorithm, which identifies K cluster centroids

C1, . . . , CK . Each calibration point Xi is then assigned to the cluster that has the closest centroid Ck based on the

distance d2md. This idea is similar to how Izbicki et al. (2022) partitions the feature space for local conformal inference,

by defining a profile distance between the initial CDEs f̂(y|xi) and f̂(y|xj). Our method can yield a sensible partition

A even when the initial CDE is poorly fit.

So far, we have implicitly required a training set Dtrain to learn the initial CDE f̂(y|x) as well as a calibration

set D to learn the regression function r̂f̂ (γ;x), from which we can derive calibrated PDFs f̃(y|x) anywhere in the

feature space. Section 4.2 describes how we can then obtain calibrated prediction sets Cα. To implement our local

conformalized approach, we now need an additional data split to provide a wrapper around the calibrated prediction

sets; call this the “conformal data set”, D′ = (x′
1, y

′
1), . . . , (x

′
n, y

′
n). Across this third data set, we now compute a set

of conformity scores, using f̃(y′1|x′
1), . . . , f̃(y

′
n|x′

n).

Finally, consider a new test point x, and let Ax be the partition element that x belongs to (see Definition 5). To

obtain (1− α)-level prediction intervals, we first compute conformity scores F̃ (y′1|x′
1), . . . , F̃ (y′n|x′

n) across D′.
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Algorithm 9 Local Conformalized Calibrated Prediction Sets

Input: regression function r̂f̂ (γ;x) trained on calibration set D = {(x1, y1), . . . , (xn, yn)} according to Algorithm 7; conformal
data set D′ = {(x′

1, y
′
1), . . . , (x

′
n, y

′
n)}; test points V = {x1, . . . ,xm}; initial CDE f̂(y|x) evaluated at y ∈ G; nominal

miscoverage level α; flag HPD (true if computing HPD sets)
Output: local conformalized Cal-PIT prediction set C(x), for all x ∈ V

1: for (x′, y′) ∈ D′ do
2: Compute conformity scores on conformal data set D′

3: Compute F̂ (y|x′)← cumsum(f̂(y|x′)) for y ∈ G

4: Let F̃ (y|x′)← r̂f̂ (F̂ (y|x′);x′) for y ∈ G

5: Apply interpolating (or smoothing) splines to obtain F̃ (·|x′) and F̃−1(·|x′)

6: Differentiate F̃ (y|x′) to obtain recalibrated PDF f̃(y|x′) for y ∈ G

7: Renormalize f̃(y|x′) according to Izbicki and Lee (2016, Section 2.2)
8: if HPD then
9: Compute conformity score H̃(y′;x′) =

∫
{y:f̃(y|x′)≥f̃(y′|x′)}

f̃(y|x′)dy

10: else
11: Compute conformity score F̃ (y′|x′)
12: end if
13: end for
14:
15: Calibration using PIT-CDF and local conformity scores
16: Define partition A via k-means++ clustering algorithm, using d2md(xi,xj) as the distance metric (see Def.5).
17: for x ∈ V do
18: Compute F̂ (y|x)← cumsum(f̂(y|x)) for y ∈ G

19: Let F̃ (y|x)← r̂f̂ (F̂ (y|x);x) for y ∈ G

20: Apply interpolating (or smoothing) splines to obtain F̃ (·|x) and F̃−1(·|x)
21: Differentiate F̃ (y|x) to obtain recalibrated PDF f̃(y|x) for y ∈ G

22: Renormalize f̃(y|x) according to Izbicki and Lee (2016, Section 2.2)
23: Determine partition element A(x).
24: if HPD then
25: Define α′ as the α-quantile of

{
H̃(y′j ;x

′
j) : x′

j ∈ Ax

}
26: Obtain HPD sets C(x) =

{
y : f̃(y|x) ≥ Tx,α

}
, where Tx,α is s.t.

∫
{y:f̃(y|x)≥Tx,α}

f̃(y|x)dy = 1− α′

27: else
28: Obtain intervals C(x) =

{
y : Lx,α ≤ F̃ (y|x) ≤ Ux,α

}
, where Lx,α is the 0.5α-quantile and Ux,α is the

(1− 0.5α)-quantile of
{
F̃ (y′j |x′

j) : x′
j ∈ Ax

}
29: end if
30: end for
31: return C(x), for all x ∈ V
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Then, the local conformalized calibrated prediction interval at x is:

Cα(x) =
{
y : Lx,α ≤ F̃ (y|x) ≤ Ux,α

}
(5.4)

where Lx,α is the 0.5α-quantile of the conformity scores from D′ that are in the same partition as x, namely{
F̃ (y′j |x′

j) : x′
j ∈ Ax

}
, and Ux,α is the (1 − 0.5α)-quantile of those scores. Similarly, to obtain (1 − α)-level

HPD sets, we first compute conformity scores H̃(y′1;x
′
1), . . . , H̃(y′n;x

′
n) across D′, where

H̃(y′;x′) =

∫
{y:f̃(y|x′)≥f̃(y′|x′)}

f̃(y|x′)dy.

Then, the local conformalized calibrated prediction HPD set at x is

Cα(x) =
{
y : f̃(y|x) ≥ Tx,α

}
(5.5)

where Tx,α is such that ∫
{y:f̃(y|x)≥Tx,α}

f̃(y|x)dy = 1− α′

and α′ is the α-quantile of the conformity scores from D′ that are in the same partition as x, namely the set{
H̃(y′j ;x

′
j) : x′

j ∈ Ax

}
. In other words, the thresholds for determining prediction intervals and HPD sets are not

directly taken from f̃(y|x), but first undergo a conformal adjustment based on appropriate conformity scores computed

on the subset of D′ that falls in the same partition element Ax as the test point x.

To ensure local conformal validity, the data used to obtain the local region partition A must be independent of the

data used to compute conformity scores. That is, we reiterate that compared to our original calibration framework,

we now need an additional “conformal data set”, D′ = {(X′
1, Y

′
1), . . . , (X

′
n, Y

′
n)}, on which to compute conformity

scores. In total, the procedure requires a three-part split of the data: (1)Dtrain for training the initial CDE f̂ ; (2)D for

training r̂f̂ , which is used to construct calibrated PDFs f̃(y|x) as well as to define the partition A; (3) D′ over which

to compute conformity scores f̃(y|x), then used to calibrate thresholds in each partition element. In practice, the

comparison between our original calibration framework and this local conformalized version is the tradeoff between

guaranteeing finite-sample local validity vs. requiring an extra data split.

Algorithm 9 details the local conformalized Cal-PIT procedure for constructing either prediction intervals or

HPD prediction sets.

5.3 Theoretical Properties

In this section, we show that the proposed method achieves marginal and local validity. We also show that the method

obtains asymptotic conditional validity, even if the initial CDE f̂ is not consistent.
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Consider a new test point Xn+1. Let cs : X ×Y −→ R be a conformity score function (in our case, either F̃ (y|x)

or H̃(y′x)), which was trained on the calibration set D. What we call the conformal set D′ is then used to calculate

split residuals, Ui = cs(X′
i, Y

′
i ), i = 1, . . . , n. Under the assumption that the split residuals are exchangeable (with

each other and with the new test point), the rank of Un+1 = cs(Xn+1, Yn+1) is uniform among 1, . . . , n+ 1. Let

U⌊α⌋ denote the ⌊nα⌋-th order statistic of U1, . . . , Un. We then have

P
(
Un+1 ≥ U⌊α⌋

)
≥ 1− α

P
(
cs(Xn+1, Yn+1) ≥ U⌊α⌋

)
≥ 1− α

P
(
Yn+1 ∈

{
y : cs(Xn+1, y) ≥ U⌊α⌋

})
≥ 1− α.

In other words,
{
y : cs(Xn+1, y) ≥ U⌊α⌋

}
is a marginally valid prediction region for Y given Xn+1.

Now, let A be a partition of X , and for each A ∈ A, let A(Xn+1) be as defined in Definition 5. Let UA
⌊α⌋ denote

the ⌊|A(Xn+1)| · α⌋-th order statistic of the Ui for only those points (Xi, Yi) that fall within A(Xn+1).

Theorem 9. If D′ = {(X′
1, Y

′
1 , . . . , (X

′
n, Y

′
n))} are exchangeable with each other and with new test point

(Xn+1, Yn+1), then

C(Xn+1) =
{
y : cs(Xn+1, y) ≥ UA

⌊α⌋

}
satisfies marginal validity as well as local validity with respect to A.

Since our local conformalized calibrated prediction method is directly based on the split conformal method with

adaptive cutoffs, it follows from Theorem 9 that, so long as the points in the conformal set D′ are exchangeable, our

method satisfies marginal and local validity:

Theorem 10. If the points in conformal set D′ = {(X′
1, Y

′
1 , . . . , (X

′
n, Y

′
n))} are exchangeable with each other

and with new test point (Xn+1, Yn+1), then the local conformalized calibration prediction method, as detailed in

Algorithm 9, satisfies marginal validity as well as local validity with respect to its defined partition A.

Proof. This follows directly from Theorem 9 and the definition of Algorithm 9.

Next, we show that with a uniformly consistent regression estimator r̂f̂ (γ;x), our method produces prediction

intervals and HPD sets that achieve asymptotic conditional validity, even if the initial CDE f̂(y|x) is not consistent.

Theorem 11. Let C∗
α(x) =

[
F−1(0.5α|x);F−1(1− 0.5α|x)

]
be the oracle prediction band, and let Cn

α(x) denote

the prediction interval output by Algorithm 9. Under Assumptions 2, 3, and 6 (refer to Section 4.3),

λ (Cn
α(X)∆C∗

α(X))
a.s.−−−−→

n−→∞
0,

where λ is the Lebesgue measure in R and ∆ is the symmetric difference between two sets. It follows that Cn
α(X) has

asymptotic conditional coverage of 1− α (Lei et al., 2018).
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Similarly, the next theorem shows that if the probabilistic classifier is well estimated, then our local conformalized

HPD sets converge asymptotically to oracle HPD sets, HPDα(x) = {y : f(y|x) ≥ tx,α} (see Equation 4.7).

Theorem 12. Fix x ∈ X , and let Cn
α(x) denote the prediction HPD set output by Algorithm 9. If r̂(γ;x) = r(γ;x) for

every γ ∈ [0, 1], then λ (Cn
α(X)∆HPDα(x))

a.s.−−−−→
n−→∞

0. It follows that Cn
α(X) has asymptotic conditional coverage

of 1− α (Lei et al., 2018).

5.4 Example: Low-dimensional Feature Space Partitioning

Our first example is the same low-dimensional stylized version of the galaxy photometric redshift (photo-z) problem

presented in Section 4.4; see the text for equations and Figure 4.1 for a visualization of the data. The task is to predict

the target variable Y based on predictors X1 and X2. We compute 90% prediction sets for Y using this hybrid local

conformal calibration method detailed in Algorithm 9, and we obtain both prediction intervals and HPD sets, which

we refer to as Hybrid INT and Hybrid HPD respectively. For a total sample size n, we split the data equally

into three sets: training (to learn f̂ ), calibration (to learn r̂f̂ , then used to construct f̃ ), and conformal (to compute

conformity scores). We compare the results to our original Cal-PIT (INT) and Cal-PIT (INT) prediction sets,

as well as to CD-split+ prediction intervals and HPD sets; recall that for these algorithms, we only split the n data

points into two equal training and calibration sets.

As before, it is impossible to exactly verify conditional validity in finite datasets in practice, but this stylized

example gives us control over the true data generating process. We use Monte Carlo simulations of synthetic data to

compute the true conditional coverage at a fixed set of 1000 uniformly sampled points in X, as well as to compute

“oracle” prediction sets.

CD-split+

(INT) CD-split+

(HPD) Cal-PIT

(INT) Cal-PIT

(HPD) Hybrid

(INT) Hybrid

(HPD)

0%
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80%

100%
n=1000

CD-split+

(INT) CD-split+

(HPD) Cal-PIT

(INT) Cal-PIT

(HPD) Hybrid

(INT) Hybrid

(HPD)
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undercoverage
correct coverage
overcoverage

Figure 5.1: The proportion of test points with correct conditional coverage for different methods. Data of total size n are split
equally three ways into train, calibration, conformal sets for Hybrid methods, and equally into train and calibration sets for
Cal-PIT and CD-split+. For n = 1000, Hybrid methods obtain improved conditional coverage.
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Figure 5.1 compares the conditional coverage of each method, evaluated using Monte Carlo simulations as

described above. Test points with coverage within two standard deviations (SD) of 1 − α = 0.9 based on 100

random realizations are labeled as having “correct” coverage. For n = 2000, all methods approximately attain the

nominal 90% coverage across the feature space. For n = 1000, the data size is too small for f̃(y|x) to always be well

estimated, and therefore Cal-PIT methods exhibit some undercoverage. By performing local conformal corrections,

Hybrid methods are able to attain improved conditional coverage, even though the extra data split means they have

fewer points with which to estimate f̂ and r̂f̂ .

Why exactly are the local conformal corrections of the Hybrid methods useful in this example? Figure 5.2 shows

which of the test points achieve undercoverage vs. correct coverage for the Cal-PIT methods for data size n = 1000.

We see that the difficulty of estimating f̃(y|x) does not appear to be uniform across X1; rather, the parts of the feature

space with more complex bimodality tend to be more challenging to calibrate.

4 2 0 2 4
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2.5
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2.5

5.0

7.5

10.0

Y

Cal-PIT INT
correct coverage
undercoverage
overcoverage

4 2 0 2 4

Cal-PIT HPD

X1

Figure 5.2: Performance of Cal-PITmethods on test set, for total data size of n = 1000. Test points are color-coded by whether
they are on average correctly covered, undercovered, or overcovered. Points with incorrect coverage are not uniformly dispersed
across the feature space, but tend to be clustered in the regions of X1 with more challenging bimodality.

Now, consider the partitions learned by the Hybrid methods; three random instances of these clusterings are

shown in Figure 5.3. While the group labels shift at random and are not meaningful, the learned clusters are mostly

consistent across random iterations. This is expected since the partition reflects how the structure of the learned

f̃(y|x) changes depending on X1: in the leftmost X1 region, the true f(y|x) is two Gaussians with the same mean

but different variances; in the center X1 region, f(y|x) is essentially a single Gaussian; in the rightmost X1 region,

f(y|x) is a bimodal mixture of two separated Gaussians. Within each partition element, or cluster, we perform a single

conformal correction so that marginal coverage is achieved across each partition element.

Comparing Figures 5.2 and 5.3, we see that the test points for which the Cal-PIT methods (for n = 1000)

achieve incorrect conditional coverage tend to fall into the same cluster. Therefore, performing a single conformal

correction within each cluster is able to improve conditional coverage. Intuitively, if a given partition element A
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Figure 5.3: Partitions of the test set learned by the Hybrid methods, for n = 1000. Three random instances are shown; group
labels are not meaningful, but the learned clusters themselves are stable across iterations. Essentially the same three clusters,
reflecting the changing structure of f(y|x) across X1, are learned each time, and they are structured such that the points that on
average have incorrect conditional coverage in the Cal-PIT methods, for n = 1000, tend to fall into the same cluster.

happens to contain most of the points with undercoverage, then the local conformal correction to A would adjust the

thresholds (Lx and Ux, or α′) to be “wider”, thus raising the average coverage of all the points in A.

In contrast, the local conformal corrections of CD-split+ are less useful in this example, because the initial

CDE f̂(y|x) is not very good. Figure 5.4 shows that the partitions learned by CD-split+ are less meaningful, and

do not really capture either the structure of X1. Furthermore, local conformal corrections only ensure correct coverage

on average within each partition element. The quality of the CDE is still what primarily matters when it comes to

conditional coverage, so the main advantage of Hybrid over CD-split+ is that it works with the calibrated CDEs

f̃ which are more accurate than the original CDEs f̂ .
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Figure 5.4: Partitions of the test set learned by the CD-split+ methods, for n = 1000. Three random instances are shown. The
learned clusters are not as meaningful as those learned by the Hybrid method, and are less reflective of the changing structure of
f(y|x) across X1.
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5.5 Application: Photometric Redshift Prediction

This section considers the photo-z estimation problem described previously in Section 4.6. Here, we use the Happy A

dataset, which contains 74,944 galaxies based on the Sloan Digital Sky Survey DR12 (Beck et al., 2017). Our goal is

to construct 1 − α = 90% prediction sets for redshifts based on corresponding photo-z estimates. We hold out 5000

galaxies for the test set, and divide the remaining n = 69, 944 galaxies equally as required by sample splitting for

each method. That is, for the Hybrid method developed in this chapter, we split n into three sets: training (to learn

f̂ ), calibration (to learn r̂f̂ , then used to construct f̂ ), and conformal (to compute conformity scores). For Cal-PIT,

we need only split n into two sets, because conformity scores are not needed. We also compare our methods with

CD-split+ (Izbicki et al., 2022), which is a local conformal method based on f̂ (rather than f̃ , as the Hybrid

method is), and with Reg-split (Lei et al., 2018), a regression-based conformal method that incorporates local

adaptivity by estimating the conditional mean absolute deviation; for these methods, we split n into two sets, for

training the conformity score and calibration. For illustrative purposes, we use a Gaussian neural density model for

the initial CDE f̂ for CD-split+, Cal-PIT, and Hybrid. We will see that Cal-PIT and Hybrid can recalibrate

the unimodal Gaussian densities to be bimodal if necessary, leading to possibly discontiguous prediction sets, while

CD-split+ can only provide prediction intervals. We use XGBoost to fit Reg-split. (A similar experiment was

performed on the same dataset by Izbicki et al. (2022), with a key difference being that here we are deliberately starting

with a misspecified initial CDE f̂ in order to demonstrate the advantages of our method in this type of setting.)

Because we do not have the true data generating process for this dataset, we cannot assess conditional coverage via

Monte Carlo sampling as we did for toy examples. Instead, we consider local coverage of the methods in two regions

of the feature space: bright galaxies and faint galaxies. Galaxies are classified based on the r-magnitude values of

their photometric estimates as either bright (low r-magnitude, in the units of this dataset) or faint (high r-magnitude).

Table 5.1 compares the achieved coverage and average size of the prediction sets of different methods on bright vs.

faint galaxies. Reg-split achieves the smallest prediction sets among the methods, but has undercoverage for faint

galaxies. In this example, CD-split+ can only provide prediction intervals when starting from an initial unimodal

CDE, so it has the largest prediction sets. It also undercovers for faint galaxies. Only the Hybrid method achieves

approximate local coverage; Cal-PIT has slightly larger prediction sets than Hybrid, which results in overcoverage.

Table 5.1: Coverage and average size of the prediction sets for various methods, along with their standard errors. Only the
Hybrid method achieves nominal local coverage among bright and faint galaxies.

Galaxy Reg-split CD-split+ Cal-PIT Hybrid

Coverage Bright 0.924 (0.009) 0.945 (0.007) 0.983 (0.004) 0.908 (0.009)
Faint 0.818 (0.022) 0.799 (0.023) 0.914 (0.016) 0.871 (0.019)

Size Bright 0.131 (0.005) 0.408 (0.008) 0.267 (0.007) 0.217 (0.007)
Faint 0.181 (0.011) 0.456 (0.014) 0.297 (0.013) 0.255 (0.012)

Figure 5.5 shows examples of prediction sets produced by each method for sample bright and faint galaxies, along

with an horizontal line indicating the true redshift in each instance. Faint galaxies have larger prediction sets across all
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methods, since they often have multimodal densities (Wittman, 2009; Kügler et al., 2016; Dalmasso et al., 2020). We

see that while bright galaxies have consistently low redshifts, the redshifts of faint galaxies often appear to be bimodal.

However, Reg-split and CD-split+ produce prediction intervals that do not reflect this bimodal structure. Only

the Cal-PIT and Hybrid methods are able to recalibrate an initial unimodal CDE to yield bimodal densities f̃ and

therefore discontiguous prediction sets.
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Figure 5.5: Based on Figure 11 in Izbicki et al. (2022). Prediction sets from various methods on sample bright and faint galaxies
from the test set. Horizontal lines indicate the true redshift of each galaxy. For faint galaxies, the true density is often bimodal, but
only Cal-PIT and Hybrid can provide prediction sets that are not single intervals.

Why does CD-split+ in this example not achieve local coverage, while the Hybrid method does? Figure 5.6

compares the partitions learned by the two methods. The clusters learned by the Hybrid method, based on the

structure of f̃(y|x), roughly correspond to r-magnitude, which is the basis for defining bright vs. faint galaxies. In

contrast, the clusters learned by CD-split+, based on a poorly fitting initial CDE f̂(y|x), do not cleanly separate

bright and faint galaxies; therefore the conformal adjustment within each learned partition element does not ensure

nominal coverage for the faint galaxies.

Of course, here we deliberately chose a unimodal Gaussian CDE for f̂ to highlight the unique ability of our

Hybrid method to overcome a misspecified initial CDE. CD-split+ would likely perform better on this dataset if

given a better choice of f̂ , such as a non-parametric CDE method. In real world applications, it is often difficult to be

confident that an initial CDE is well-specified and decently fit. When the initial CDE fits poorly, the Hybrid method

is able to recalibrate the CDE via the Cal-PIT procedure we have developed, while also guaranteeing finite-sample

marginal and local coverage by virtue of its conformal inference framework.

70



4 2 0 2 40

20

40

60

80

100

120

140

#
 o

f o
bs

er
va

tio
ns

Hybrid Method
group 0
group 1

4 2 0 2 40

20

40

60

80

100

120

140
CD-split+

r-magnitude

Figure 5.6: Identified clusters of test set galaxies based on the Hybrid and CD-split+ methods, visualized by r-magnitude
on the x-axis. Because the initial CDE f̂(y|x) is a misspecified unimodal Gaussian, the clusters identified by CD-split+ are not
optimal and do not correspond to bright vs. faint galaxies (a classification determined by r-magnitude). However, the Hybrid
clusters are based on the recalibrated CDE f̃(y|x), so they reflect a cleaner separation based on r-magnitude.
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Chapter 6

Conclusion and Future Work

This chapter has three subsections. Section 6.1 summarizes the conclusions of the previous chapters and the general

contributions of the work in this thesis. Section 6.2 discusses limitations to our methods, as well as potential extensions

and future work that could address those limitations. Finally, Section 6.3 describes potential future applications that

could incorporate the work in this thesis into future research directions.

6.1 Summary

This thesis introduced a novel framework for (i) diagnosing the quality of conditional density estimators in terms of

conditional calibration (as described in Chapter 3), and (ii) leveraging these diagnostics via the Cal-PIT method

to correct those CDEs towards better conditional coverage (as described in Chapter 4). Our work represents a small

contribution to the vast field of uncertainty quantification, and we hope that others will find our methods practically

useful, as well as complementary to the many other promising lines of related research that seek to accurately describe

full predictive distributions f(y|x).

As discussed in Chapter 2, there is much scientific interest in estimation beyond point predictions to capturing full

predictive distributions, and the machine learning community has developed many new, complex models to meet this

demand. Less attention has been devoted to assessing the conditional calibration of these models, and our work is

an original examination of this problem that also addresses some known limitations of previous diagnostic methods.

Recent work in the complementary field of quantile regression has also sought to promote conditional calibration of

estimated conditional quantiles, but our method is unique in how it directly targets conditional coverage as a goal.

Conformal inference is also a related field that provides mathematical finite-sample coverage guarantees for prediction

sets; in Chapter 5, we were able to synthesize ideas from conformal inference to develop an extension of Cal-PIT

that combines desirable properties of both methods.
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To our knowledge, ours is the first and only diagnostic framework that allows one, at any location x ∈ X in

the feature space, to identify and describe the distributional differences between an estimated conditional density and

the true distribution of y at x. Our ALP plots visualize this information in simple, intuitive graphical summaries;

from these plots, the practitioner directly sees an overall picture of the quality of conditional calibration at x, and can

easily identify patterns such as bias, dispersion, and multimodality in y as a function of x. This rich diagnostic

information powers our recalibration framework of Cal-PIT, which is unique in how it directly optimizes for

conditional calibration and is able to produce full recalibrated predictive distributions f̃(y|x).

We demonstrated the effectiveness of our diagnostics and recalibration through experiments on synthetic data,

where our methods compare favorably on the metric of achieved conditional coverage with state-of-the-art predictive

inference algorithms. Furthermore, we explored an application to the real-world astrophysical problem of estimating

galaxy distances based on imaging data (photometric redshifts), a problem for which conditional density models

are difficult to estimate and conditional calibration is of practical significance. In particular, we have developed

a solution to the problem examined in Schmidt et al. (2020) (see Section 2.2 for details), which seeks improved

diagnostics for evaluating probabilistic photometric redshift estimation approaches for The Rubin Observatory Legacy

Survey of Space and Time (LSST), a large-scale synoptic astronomical survey that is expected to launch in 2024.

Indeed, astronomers affiliated with the Dark Energy Science Collaboration (DESC), which is the international

science collaboration that will make high accuracy measurements of fundamental cosmological parameters using data

collected from the LSST, have expressed interest in incorporating our diagnostics into their evaluation pipeline, which

is very gratifying and exciting for us.

6.2 Limitations and Extensions

One limitation of our method is that it requires reasonably large sample sizes in order to learn the regression function

r̂(γ;x), which can be a complex function of both γ and x. This means that sometimes it may not be practically useful

to apply our method, if one cannot expect to obtain a decent estimate of r̂(γ;x) given the available data sample size and

complexity of the task at hand. One possible avenue for mitigating this issue is to apply active learning (Settles, 2009)

in order to choose the calibration sample D = {(X1, Y1), . . . , (Xn, Yn)} in a smarter way. The framework of active

learning allows the practitioner to iteratively choose the data points on which to train a machine learning algorithm.

By iteratively identifying points that are expected to bring greatest improvement to the model, active learning helps the

model focus on more critical regions of the feature space X (e.g., regions whose distribution is more difficult to learn),

thereby leading to greater overall accuracy with fewer required training instances. Currently, we assume that the points

in D are drawn i.i.d. from FX,Y . Future work could try to incorporate active learning to sample more intentionally, at

locations x that would be most useful for improving the fit of r̂(γ;x). One idea for determining such locations would

be to try to evaluate where there is greatest uncertainty in the currently trained r̂(γ;x) function; this would be similar

in spirit to recent work that uses active learning to more efficiently train deep Gaussian processes (Sauer et al., 2022).
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Another limitation of our method is that it operates under the assumption that Y is continuous, so it only applies

to regression tasks and not to classification tasks. There has been substantial recent interest on how to improve

the conditional calibration of classification algorithms. Recognized approaches include Platt scaling (Platt, 1999),

histogram binning (Zadrozny and Elkan, 2001), temperature scaling (Guo et al., 2017), robust conditionals Wald

and Globerson (2017), and Dirichlet calibration (Kull et al., 2019), among others. It would be interesting if future

work could extend the unique perspective developed in this thesis to the classification setting, to obtain analogous

diagnostics that directly estimate the empirical conditional coverage of classification algorithms. Unlike the other

methods mentioned above, our method would implicitly assume and leverage the smoothness of conditional coverage

across the feature space. It is not obvious how we would develop such a method. We might consider as a starting point

whether, given a binary probabilistic classifier f̂(y|x) for Y ∈ {0, 1}, we could train a regression function analogous

to r̂(γ;x) that assesses the empirical quality of the predicted class probabilities. One suggestion is to use a monotonic

probabilistic classifier to regress the (now binary) output Yi on the two variables (Xi, P̂ (Yi = 1|Xi)); whereas

previously we had sampled multiple γ quantiles for each Xi, here we would pair each Xi with a single predicted class

probability P̂ (Yi = 1|Xi). It would be exciting if future work could augment and refine this process, and ultimately

be able to successfully diagnose and recalibrate binary classification algorithms (which could then naturally extend to

general classification settings).

6.3 Future Applications

We hope that the work in this thesis will be viewed as a practical “toolkit” that is complementary to and can be

incorporated into other lines of research. There are natural directions for future research that investigate how our

method may assist in the development or improvement of other uncertainty quantification methods. If the practitioner

already has a parametric or pre-specified model class in mind, they could potentially still use our diagnostics (which are

inherently non-parametric) to obtain insight into quality of fit and guidance on where optimally to sample next. More

generally, we can also apply our full Cal-PIT recalibration scheme to complex, non-parametric modeling scenarios

with intricate dependency structures beyond what we have examined in this thesis. We elaborate on an example of

each of these future directions below.

An example of a modeling scenario where our non-parametric diagnostic toolkit could give guidance on improving

the fit, without seeking to replace the original model, is Gaussian process regression, which is commonly used in the

physical sciences. The practitioner may have good reason to stay within the Gaussian process model class, which is

flexible enough to capture model nonlinearities while being simple enough to yield closed-form variance expressions.

Our diagnostic ALP plots may be able to guide model fitting by identifying, say, regions or potential underfitting or

overfitting, both of which are common issues with Gaussian process modeling. This could potentially form the basis

of an active learning scheme where the practitioner would sample future points in a more informed way; that is, by

choosing the points where the current fit is most in need of improvement, based on the metric of empirical conditional
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coverage. In contrast, standard active learning for Gaussian processes is based on choosing the new sample point

that would decrease the overall variance or uncertainty the most, whereas our approach would be trying to optimally

improve the conditional calibration of the model.

A key consideration here is that our diagnostic method applies to stochastic simulators with aleatoric uncertainty,

but typically Gaussian processes that perform emulation only have epistemic uncertainty, as the target of inference is

a non-stochastic function f from which one obtains non-stochastic, noise-free evaluations yi = f(xi). If the Gaussian

process is an epistemic model and the uncertainties are epistemic uncertainties, it is unclear whether it is conceptually

meaningful to talk about “validation” of those uncertainties. However, there are indeed situations where f truly is a

random function, so that observations yi = f(xi) for fixed points xi are now random. Because the target of inference

for new points x∗ is now the random quantity y∗ = f(x∗), this is now a prediction problem for which the Gaussian

process formalism yields prediction intervals for y∗.

Recent work in climate science (Kuusela and Stein, 2018) leverages just this Gaussian process formalism to

model seawater temperature from Argo floats (Roemmich et al., 2015) in the upper 2000 meters of the global ocean.

The authors use locally stationary Gaussian process regression to obtain moving-window estimates of covariance

parameters that adapt to the large, non-stationary spatiotemporal dataset at hand. Because temperature and salinity

variation represent true stochastic variation, it is a well-defined problem to construct prediction sets for these quantities

and assess their frequentist coverage. That is, if the underlying stochastic process truly follows a locally Gaussian

process with known parameters, then the obtained prediction intervals will have correct unconditional (marginal)

coverage, where “coverage” is typically understood in the sense of getting new realizations of the (entire) random

function. Figure 6.1, taken from Figure 5 of Kuusela and Stein (2018), assesses the marginal coverage for temperature

prediction intervals achieved by different methods. The “student nugget” uncertainty quantification methods developed

by the authors have less deviation between sample and theoretical quantiles of the predictive distribution, and thus

obtain substantially better empirical coverage than prior (reference) procedure.

This prediction setting is very complicated due to the high-noise ocean environment, complex spatio-temporal

dynamics, and in situ nature of the Argo floats (which drift randomly in the ocean, rather than being on a fixed grid).

Recent work by Park et al. (2021) strives to improve the quality of prediction intervals via debiasing the Gaussian

process. It would be interesting to explore whether our diagnostic framework could say something about conditional

coverage in this type of setting, and potentially improve the prediction intervals so that they are not only better

marginally calibrated but also better conditionally calibrated with respect to the state vector x (or certain key variables

within that vector). Again, we see our diagnostic framework not as a non-parametric competitor or replacement

for pre-specified models like Gaussian processes, which may have well-known inherent advantages, but rather as a

complementary tool for identifying potential issues and assisting in the modeling process.

The other direction for future work we have identified is to apply Cal-PIT to more complex non-parametric

modeling situations, because we have the flexibility to choose the regression function for r̂(γ;x) to adapt to various

complex forms that may be needed for the task at hand. Here, we discuss one specific example of a promising extension
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Figure 6.1: Taken from Figure 5 of Kuusela and Stein (2018). The y-axis plots the difference between the cross-validated sample
quantile and the corresponding standard Gaussian theoretical quantile for temperature prediction intervals at 300 dbar. The closer
the curves are to a horizontal straight line at 0, the better the marginal calibration of the predictive distributions. The models with a
Student nugget achieve better marginal coverage than the Roemmich–Gilson-like reference model.

that comes from the following observation: Cal-PIT can potentially be extended to multivariate output vectors Y

by the decomposition f(y|x) =
∏

i f(yi|x,y<i); thus, we could perform Cal-PIT corrections on autoregressive

components of the conditional distribution, allowing us to validate the conditional calibration of f(y|x) even when

it has this highly complex dependence structure. This is a particularly promising direction for deep Pixel-CNN and

Pixel-RNN models (Van den Oord et al., 2016; Van Den Oord et al., 2016).

Figure 6.2: Taken from Figure 2 of McNeely et al. (2023). (a) As described in Figure 4.10, radial profiles quantify the evolution
of spatio-temporal convective structure. (b) The authors generate structural forecasts by projecting the radial profiles into the future
via a PixelSNAIL model. (c) A CNN nowcasting model generates forecasted intensities at +6 to +12 hours from three sources of
inputs: (i) observed structure, (ii) forecasted structure, and (iii) observed storm intensity.
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Such models have recently been leveraged for a much more realistic and sophisticated version of the synthetic time

series trajectories for tropical cyclones that we simulated in Section 4.7. Using a deep autoregressive Generative Model

(PixelSNAIL), McNeely et al. (2023) develop a novel structural forecasting method, where not only TC intensity but

also TC convective structure is propagated 6 to 12 hours forward in time based on past observed infrared imagery

({S<t}) and operational intensities ({Y<t}). See Figure 6.2 for an illustration of this. The PixelSNAIL model achieves

this by stochastically simulating possible trajectories of radial profiles, as captured by Hovmöller diagrams (refer to the

right panel of Fig. 4.10), forward in time by forecasting one pixel at a time. The authors then use a nowcasting model

to predict TC intensity as a function of observed intensities and the observed and forecasted structural trajectories.

This approach is successful and performs well alongside state-of-the-art TC forecasting techniques, but it relies on a

large spatiotemporal model with hundreds of thousands of parameters, trained on a limited dataset of real hurricane

trajectories. Therefore, it may be desirable to validate how well calibrated the model is, i.e. to validate the PixelSNAIL

model used for structural forecasts, which is really the crux of the method.

Since Pixel-RNNs have complex autoregressive dependency structure (including long short-term memory

connections to past observations), it is not immediately obvious how one would diagnose and correct potential

issues with the structural forecasts. It would be interesting to explore whether we could apply our Cal-PIT

framework to this complex non-parametric task. Figure 6.3, taken from Figure 3 of McNeely et al. (2023), shows

how the PixelSNAIL model essentially models a new CDE for each pixel, one pixel at a time while respecting

the autoregressive structure. By using the decomposition stated above, f(y|x) =
∏

i f(yi|x,y<i), we could also

potentially fit Cal-PIT by learning the r̂(γ;x) regression function one pixel at a time. Specifically, we could fit the

regression function using a deep Pixel-CNN architecture that respects the same autoregressive structure. This would

yield diagnostic information about the quality of conditional CDEs located at each pixel that is forecasted forward in

time.

Figure 6.3: Taken from Figure 3 of McNeely et al. (2023). Masking in Pixel Autoregression. Illustration of raster-scan ordering
and the causal masking. Convolutions at index i only have access to pixel values in previous rows (earlier time points, color coded
by yellow), and pixel values in the same row but to the left of pixel xi (same time point, color coded by orange).

We have described just two potential applications to frequentist uncertainty quantification in the physical sciences

where the work developed in this thesis may yield synergies, by helping to assess and possibly correct issues in
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complex models of full predictive distributions. Encouraged by the success we saw in applying our method to photo-z

estimation, as well as its success on illustrative synthetic examples, we are eager to publicize our ideas and optimistic

that in some small way they may prove useful for future lines of research in uncertainty quantification.
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Appendix A

Proofs

In this section, we show proofs of the results stated in this thesis.

A.1 Proof of Theorem 1

Proof. Let z = g(x) and Z = g(X). Notice that Equation 3.3 implies F̂ (Y |x) = F (Y |g(x)) = F (Y |z).

Thus,

F̂ (Y |X) = F (Y |g(X)) = F (Y |Z) (A.1)

If (X, Y ) ∼ FX,Y , then, for every 0 ≤ a ≤ 1,

P(PIT(Y,X) ≤ a) = P
(
F̂ (Y |X) ≤ a

)
=

∫
Z
P
(
F̂ (Y |X) ≤ a|Z = z

)
f(z)dz

=

∫
Z
P(F (Y |Z) ≤ a|Z = z)f(z)dz (Eq. A.1)

=

∫
Z
P(F (Y |z) ≤ a|Z = z)f(z)dz

=

∫
Z
P
(
Y ≤ F−1(a|z)|Z = z

)
f(z)dz

=

∫
Z
F
(
F−1(a|z)|Z = z

)
f(z)dz

=

∫
Z
af(z)dz

= a.
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A.2 Proof of Theorem 2

Proof. Assume that f̂(y|x) = f(y|x). It follows that, for any 0 < α < 1,

P (PIT(Y ;X) < α|x) = P
(
FY |x(Y ) ≤ α|x

)
= P

(
Y ≤ F−1

Y |x(α)|x
)

= FY |x

(
F−1
Y |x(α)

)
= α,

which shows that the distribution of PIT(Y ;X), conditional on x, is uniform.

Now, assume that P (PIT(Y ;X) < α|x) = α for every 0 < α < 1 and let

F̂y|x(y) =

∫ y

−∞
f̂(y′|x)dy′

Then, we have

α = P (PIT(Y ;X) < α|x)

= P
(
F̂Y |x(Y ) ≤ α|x

)
= P

(
Y ≤ F̂−1

Y |x(α)|x
)

= FY |x

(
F̂−1
Y |x(α)

)
.

It follows that

FY |x

(
F̂−1
Y |x(α)

)
= α,

and thus

F̂−1
Y |x(α) = F−1

Y |x (α) , ∀α ∈ (0, 1).

The conclusion follows from the fact that the CDF characterizes the distribution of a random variable.

A.2.1 Proof of Corollary 1

Proof. Notice that

rα(x) = E [Zα|x] = P (PIT(Y ;X) < α|x)

It follows that rα(x) = α for every α ∈ (0, 1) if, and only if, the distribution of PIT(Y;X), conditional on X, is

uniform over (0, 1). The conclusion follows from Theorem 2.
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A.3 Proof of Theorem 3

Proof. Notice that, under Hϵ
0(x), for every x′ ∈ B(x; ϵ),

PIT(Yi;Xi)|Xi = x′ ∼ Unif(0, 1),

and therefore

(Xi, γi,j ,W
(b)
i,j )|Xi = x′, γi,j

i.i.d.∼ (Xi, γi,j ,Wi,j)|Xi = x′, γi,j .

It follows that

D′
x|C

i.i.d.∼ D(b)
x |C,

where C = {(Xi, γi,j)}i,j , D′
x = {(Xi, γi,j ,Wi,j) ∈ D′ : Xi ∈ B(x; ϵ)} and

D(b)
x :=

{
(Xi, γi,j ,W

(b)
i,j ) ∈ D(b) : Xi ∈ B(x; ϵ)

}
.

Now, by Assumption 1, T (x) (similary, T (b)(x)) is a function of D′
x (similarly, D(b)

x ). It follows that

T (x)|C i.i.d.∼ T (b)(x)|C.

Thus, by the law of large numbers, for every fixed augmented dataset D′ = dobs,

p(x)|C,D′ = dobs
a.s.−−−−−→

B−→∞
P (TD′=dobs(x) < TD′(x)|C)

= 1− FTD′ (x)|C(TD′=dobs(x)),

where TD′=dobs is the test statistic computed at D′ = dobs, and hence

p(x)|C L−−−−−→
B−→∞

1− FTD′ (x)|C(TD′(x)),

The conclusion follows from the fact that FTD′ (x)|C(TD′(x)) is a uniform random variable, and therefore so is 1 −

FTD′ (x)|C(TD′(x)).

A.4 Proof of Theorem 4

Proof. Under the null hypothesis H0(x) for any x ∈ X , we have that:

HPD(y;x) =

∫
y′:f̂(y′|x)≥f̂(y|x)

f̂(y′|x)dy

=

∫
y′:f(y′|x)≥f(y|x)

f(y′|x)dy.

(A.2)

(A.3)
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Applying the results about uniformity of HPD for f(·|x) from Harrison et al. (2015, Section A.2) (also reproduced

in the proof of Theorem 5) proves the theorem.

A.5 Theorem 5

We show that using HPD values are also insensitive to covariate transformations, and therefore replacing PIT values

with HPD values in previous diagnostic methods does not address their fundamental limitations.

Theorem 5 (HPD values are insensitive to covariate transformations). Let (X,Y) ∼ FX,Y. If there exists a

function g : X → Z such that f̂(y|x) = f(y|g(x)), then HPD(Y;X) ∼ Unif(0, 1).

Proof of Theorem 5. Under the assumption, we can rewrite the HPD value as:

HPD(y,x) =

∫
y′:f(y′|g(x))>f(y|g(x))

f(y′|g(x))dy′

=

∫
y′:f(y′|z)>f(y|z)

f(y′|z)dy′

= HPD(y, z),

with g(x) = z.

Following the proof structure by Harrison et al. (2015) closely, we define the random variable

ξz,y = HPD(z,y),

equipped with the probability density function h : (Z × Y) → R. Dropping the subscripts for simplicity, let ξ∗ =

HPD(z∗,y∗) the HPD value of a specific pair (z∗,y∗); ξ∗ is the probability mass of f above the level set f(y∗|z∗ =

g(x∗)). Without loss of generality, if we show that h(ξ∗) = 1, then we can conclude that ξ(y, z) is uniformly

distributed Unif [0, 1].
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Using the fundamental theorem of calculus we can write:

h(ξ∗) =
∂

∂ξ∗

∫ ξ∗

−∞
g(ϵ)dϵ

=
∂

∂ξ∗

∫ ξ∗

−∞

∫
Z×Y

δ(ξ(y, z)− ϵ)dF (z, y)dϵ

=
∂

∂ξ∗

∫
Z×Y

Φ(ξ(y, z)− ξ∗)dF (z, y)

=
∂

∂ξ∗

∫
Z

[∫
Y
Φ(ξ(y, z)− ξ∗)f(y|z)dy

]
f(z)dz

=
∂

∂ξ∗

∫
Z
ξ∗f(z)dz

=
∂

∂ξ∗
ξ∗

= 1

where Φ is the Heavyside function, which is 1 when the argument is positive and 0 otherwise.

A.6 Proof of Theorem 6

Lemma 1. Let G and H be two cumulative distribution functions such that G dominates H, and let µG and µH be

their associated measures over R. Then, for every fixed y ∈ R,

µH ({y′ ∈ R : y′ ≤ y}) = µH ({y′ ∈ R : G(y′) ≤ G(y)}) .

Proof. Fix y ∈ R and let A = {y′ ∈ R : y′ ≤ y} and B = {y′ ∈ R : G(y′) ≤ G(y)}. Because A ⊆ B,

µH(A) ≤ µH(B). (A.4)

We note that µG(B∩Ac) = 0. From this and the assumption that G dominates H , we conclude that µH(B∩Ac) =

0. It follows that

µH(B) = µH(B ∩A) + µH(B ∩Ac)

≤ µH(A) + 0

= µH(A).

(A.5)

(A.6)

From Equations A.4 and A.5, we conclude that µH(A) = µH(B).

Lemma 2. Fix y ∈ R and let γ := F̂ (y|x). Then, under Assumptions 2 and 3, F̃ (y|x) = r̂f̂ (γ;x) and F (y|x) =

rf̂ (γ;x).
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Proof. We note that γ = F̂ (y|x) implies that y = F̂−1(γ|x). It follows then by construction,

F̃ (y|x) = F̃
(
F̂−1(γ|x)|x

)
= r̂f̂ (γ;x).

Moreover,

F (y|x) = P(Y ≤ y|x)

= P
(
F̂ (Y |x) ≤ F̂ (y|x)|x

)
(Assumption 3 and Lemma 1)

= P
(

PIT(Y ;x) ≤ F̂ (y|x)|x
)

= P (PIT(Y ;x) ≤ γ|x)

= rf̂ (γ;x),

(A.7)

(A.8)

(A.9)

which concludes the proof.

Proof of Theorem 6. Consider the change of variables γ = F̂ (y|x), so that dγ = f̂(y|x)dy. Lemma 2 implies that

F̃ (y|x) = r̂f̂ (γ;x) and F (y|x) = rf̂ (γ;x). It follows from that and Assumption 4 that∫ ∫ (
F̃ (y|x)− F (y|x)

)2
dP (y,x)

≤ K

∫ ∫ (
F̃ (y|x)− F (y|x)

)2
f̂(y|x)dyP (x)

= K

∫ ∫ (
r̂f̂ (γ;x)− rf̂ (γ;x)

)2
dγdP (x).

The conclusion follows from Assumption 5.

A.7 Proof of Theorem 7

Proof. From Lemma 2,
sup

x∈X ,y∈R

∣∣∣F̃ (y|x)− F (y|x)
∣∣∣

= sup
x∈X ,γ∈[0,1]

∣∣∣r̂f̂ (γ;x)− rf̂ (γ;x)
∣∣∣ a.s.−−−−→

n−→∞
0,

where the last step follows from Assumption 6. It then follows from Assumption 2 that

sup
x∈X ,γ∈[0,1]

∣∣∣F̃−1(γ|x)− F−1(γ|x)
∣∣∣ a.s.−−−−→

n−→∞
0,

and, in particular,

sup
x∈X ,α∈{.5α,1−.5α}

∣∣∣F̃−1(α|x)− F−1(α|x)
∣∣∣ a.s.−−−−→

n−→∞
0,
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from which the conclusion of the theorem follows.

A.8 Proof of Theorem 8

Proof. Fix y ∈ R and let γ = F̂ (y|x), so that y = F̂−1(γ|x). It follows that

F̃ (y|x) = F̃
(
F̂−1(γ|x)|x

)
= r̂(γ;x)

= r(γ;x)

= P
(
F̂ (Y |x) ≤ F̂ (y|x)|x, γ

)
= P (Y ≤ y|x, γ)

= F (y|x),

and therefore f̃(y|x) = f(y|x) for almost every y ∈ R. It follows that Cα(x) = HPDα(x). The claim about

conditional coverage follows from the definition of the HPD.

A.9 Proof of Theorem 9

Proof. Following the proof structure by Izbicki et al. (2022) closely, we note that cs is a function of D′. Therefore,

cs(Xi, Yi) can be written as u(Xi, Yi,D′). Since the points inD′ are exchangeable, it follows that Ui := u(Xi, Yi,D′)

are exchangeable. Therefore, for every A ∈ A, {Ui : Xi ∈ A} are exchangeable. In particular, given that Xn+1 ∈ A,

we have that {Ui : Xi ∈ A(Xn+1)} are exchangeable. Now, we have that for every A ∈ A,

P
(
Un+1 ≥ UA

⌊α⌋(Xn+1)|Xn+1 ∈ A)
)
≥ 1− α

P
(
cs(Xn+1, Yn+1) ≥ UA

⌊α⌋(Xn+1)|Xn+1 ∈ A)
)
≥ 1− α

P
(
Yn+1 ∈

{
y : cs(Xn+1, y) ≥ UA

⌊α⌋(Xn+1)
}
|Xn+1 ∈ A)

)
≥ 1− α

P (Yn+1 ∈ C(Xn+1)|Xn+1 ∈ A)) ≥ 1− α

It follows that C(Xn+1) satisfies local validity with respect toA, and therefore by construction also satisfies marginal

validity.
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A.10 Proof of Theorem 11

Proof. From Lemma 2,
sup

x∈X ,y∈R

∣∣∣F̃ (y|x)− F (y|x)
∣∣∣

= sup
x∈X ,γ∈[0,1]

∣∣∣r̂f̂ (γ;x)− rf̂ (γ;x)
∣∣∣ a.s.−−−−→

n−→∞
0,

where the last step follows from Assumption 6.

Let U⌊γ⌋ denote the empirical γ-quantile of the set
{
F̃ (y′|x′) : x′ ∈ Ax

}
for the calibrated CDF. Let V⌊γ⌋ denote

the empirical γ-quantile of the set {F (y′|x′) : x′ ∈ Ax} for the true CDF. We have that

sup
x∈X ,γ∈[0,1]

∣∣U⌊γ⌋ − V⌊γ⌋
∣∣ a.s.−−−−→

n−→∞
0.

But the conformal set (X′
1, Y

′
1), . . . , (X

′
n, Y

′
n) is drawn i.i.d. from FX,Y , so

sup
x∈X ,γ∈[0,1]

∣∣V⌊γ⌋ − γ
∣∣ a.s.−−−−→

n−→∞
0,

and thus

sup
x∈X ,γ∈[0,1]

∣∣U⌊γ⌋ − γ
∣∣ a.s.−−−−→

n−→∞
0.

That is, the empirical distribution of
{
F̃ (y′|x′) : x′ ∈ Ax

}
converges to the Unif [0, 1] distribution.

Since Lx,α is defined to be the empirical 0.5α-quantile of
{
F̃ (y′|x′) : x′ ∈ Ax

}
,

sup
x∈X
|Lx,α − 0.5α| a.s.−−−−→

n−→∞
0.

Similarly, since Ux,α is defined to be the empirical 1− 0.5α-quantile of
{
F̃ (y′|x′) : x′ ∈ Ax

}
,

sup
x∈X
|Ux,α − (1− 0.5α)| a.s.−−−−→

n−→∞
0.

Recall that we showed in the proof of Theorem 7, under the same assumptions, that

sup
x∈X ,α∈{.5α,1−.5α}

∣∣∣F̃−1(α|x)− F−1(α|x)
∣∣∣ a.s.−−−−→

n−→∞
0.
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Therefore, we have
sup
x∈X

∣∣∣F̃−1(Lx,α|x)− F−1(0.5α|x)
∣∣∣ a.s.−−−−→

n−→∞
0,

sup
x∈X

∣∣∣F̃−1(Ux,α|x)− F−1(1− 0.5α|x)
∣∣∣ a.s.−−−−→

n−→∞
0,

from which the conclusion of the theorem follows.

A.11 Proof of Theorem 12

Proof. Recall that we showed in the proof of Theorem 8 under the same assumptions, that F̃ (y|x) = F (y|x) and

therefore f̃(y|x) = f(y|x) for almost every y ∈ R.

Let U⌊γ⌋ denote the empirical γ-quantile of the set of HPD values
{
H̃(y′;x′) : x′ ∈ Ax

}
for the calibrated density,

and let V⌊γ⌋ denote the empirical γ-quantile of the set of HPD values {H(y′|x′) : x′ ∈ Ax} for the true density. We

have that U⌊γ⌋ = V⌊γ⌋ for almost every y ∈ R.

But the conformal set (X′
1, Y

′
1), . . . , (X

′
n, Y

′
n) is drawn i.i.d. from FX,Y , so

sup
x∈X ,γ∈[0,1]

∣∣V⌊γ⌋ − γ
∣∣ a.s.−−−−→

n−→∞
0,

and thus

sup
x∈X ,γ∈[0,1]

∣∣U⌊γ⌋ − γ
∣∣ a.s.−−−−→

n−→∞
0.

That is, the empirical distribution of
{
H̃(y′|x′) : x′ ∈ Ax

}
converges to the Unif [0, 1] distribution.

Since α′ is defined to be the empirical α-quantile of
{
H̃(y′|x′) : x′ ∈ Ax

}
,

sup
x∈X
|α′ − α| a.s.−−−−→

n−→∞
0,

from which the conclusion of the theorem follows.

103


	List of Tables
	List of Figures
	Introduction
	Literature Review
	Uncertainty Quantification for Predictive Inference
	Assessing Quality of Conditional Density Models
	Quantile Regression
	Conformal Inference

	Local Diagnostics for Conditional Density Models
	Previous Diagnostics were Insensitive to Covariate Transformations
	New Diagnostics Test Local and Global Consistency
	Local and Global Coverage Tests
	Amortized Local P-P Plots
	Example: Omitted Variable Bias in CDE Models
	Example: Conditional Neural Densities for Galaxy Images
	Handling Multivariate Responses

	Calibration of Conditional Density Models
	Calibrated Full Conditional PDFs
	Calibrated Predictive Inference
	Theoretical Properties
	Example: IID Data, No Model Misspecification
	Example: Misspecified Models
	Application: Photo-z PDF Recalibration
	Application: Tropical Cyclone Intensity Nowcasting
	Calibration with Local HPD Coverage

	Local Conformalized Calibration
	Local Conformal Prediction
	Local Conformalized Calibrated Predictive Inference
	Theoretical Properties
	Example: Low-dimensional Feature Space Partitioning
	Application: Photometric Redshift Prediction

	Conclusion and Future Work
	Summary
	Limitations and Extensions
	Future Applications

	Bibliography
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Corollary 1

	Proof of Theorem 3
	Proof of Theorem 4
	Theorem 5
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Proof of Theorem 9
	Proof of Theorem 11
	Proof of Theorem 12


