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Abstract

A prominent feature of modern machine learning is acting in envi-
ronments with high degrees of uncertainty. Without enforcing structure
on the environment or its type of uncertainty, efficiently making intelli-
gent decisions is impossible. This thesis studies and formalizes structure
under which machine learning systems can efficiently learn and make
decisions that maximize our utility. It is split into two parts.

The first part focuses on research that has identified the presence of
such structure in a variety of sequential decision making problems,
particularly in reinforcement learning and online learning settings. This
structure is motivated by real world problems. We present formal
theoretical results which guarantee that such structure permits efficient
learning. Various notions of efficiency are considered, including both
statistical and computational.

The second part describes research on solving empirical risk minimiza-
tion (ERM) problems, while being robust to uncertainty in the data.
Under mild assumptions on the loss functions and uncertainty sets, we
provide a framework via which a practitioner can specify and solve
robust ERM problems. Notably, this can be done in just a few lines of
code, in a manner that naturally follows the math.
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1 Introduction

When we deploy a machine learning (ML) system in the real world, we must ensure that
it acts reliably in the face of uncertainty or in a stochastic environment. This problem
is paramount in both the supervised learning regime and also in the sequential decision
making regime. For instance, in the sequential regime, ML algorithms are deployed in
online environments (such as recommendation systems) where they make decisions based
on interactive and highly stochastic user feedback. And in the supervised regime, it is
common today to train massive ML models on immense amounts of stochastic and possibly
adversarial data. In both settings, the uncertainty in the data and feedback must be
accounted for.

It is thus natural to consider when and how we can train an ML algorithm to successfully
and efficiently handle such uncertainty. A long line of work has studied this question in
various forms, under various criteria for success, and under various notions of efficiency.
Typically, one desires an algorithm which is both statistically and computationally efficient.
In particular, an ideal algorithm should require an amount of data that is only a lower order
polynomial function of the environment parameters, and should not only run in polynomial
time but also be easily implementable. And in some cases, due to inherent difficulties in
the problem, one trades off computation for a statistically efficient algorithm. Continuing
in this line of work, this thesis focuses on the following high level questions.

In the sequential decision making regime, can we develop algorithms that exploit structure in
the uncertain environment to more efficiently make decisions that maximize their cumulative
reward? Towards answering this question, this thesis is organized as follows.

• Section 2 focuses on reinforcement learning with function approximation, and when
statistically efficient RL is possible in this setting. A vast prior literature has shown
that when we impose linearity on the environment, or restrict the complexity of the
function approximation class, then statistically efficient RL is possible. However, such
assumptions are unlikely to be satisfied in many practical scenarios, such as the simple
video game benchmarks that are popular for deep RL. Motivated by these gaming
benchmarks, we take an orthogonal approach, and consider structure that makes no
linearity restrictions and allows for powerful neural network function approximation.
We provide an algorithm which exploits this structure and is provably statistically
efficient.

• Section 3 focuses on online learning. We are motivated by recommender systems,
where there is an interactive feedback loop between the algorithm and the user, and
we desire a formalism that can handle this interaction and is also efficiently solvable.
On one end, the classical stochastic multi armed bandit is incapable of expressing
such interaction, while on the other end, a generic reinforcement learning formulation
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is expressive enough to handle this interaction but is impossible to solve efficiently.
We study a suitable middle ground, which generalizes the multi armed bandit by
incorporating a notion of memory, while also specializing the RL setting by ensuring
the dynamics are deterministic and known. More concretely, we formalize structure
where the algorithm’s reward for playing an action is a function of the number of
times that action was recently played. We provide an algorithm which is provably
statistically efficient, and complement this with a lower bound which demonstrates
the algorithm’s near optimality.

• Section 4 continues the study of online learning initialized in Section 3. Motivated by
tasks where a player requires some visuomotor calibration, we specialize the structure
that was introduced in the previous chapter (while still strictly generalizing the
stochastic multi armed bandit), by incorporating the additional assumption that
there exists some action which yields optimal value after it is played repetitively. We
find that this significantly larger and ostensibly more difficult class of problems can
be solved with essentially the same statistical and computational efficiency as the
classical stochastic multi armed bandit.

In the supervised learning regime, can we identify structure in possibly adversarial training
data that allows us to efficiently train a more robust ML model? Towards answering this
question, this thesis is organized as follows.

• Section 5 considers robust empirical risk minimization. We assume convex uncertainty
sets that are guaranteed to contain the data and are independent from data point
to data point. Our focus is on identifying a practical software framework, that
for such uncertainty sets and convex loss functions, allows a practitioner to both
specify and solve the robust ERM problem. Notably, we desire a methodology that
is convenient and does not require the practitioner to be an expert. Our proposed
framework leverages CVXPY, a popular Python-embedded modeling language for
convex optimization, and enables a practitioner to specify and solve the robust ERM
problem with complex uncertainty sets in just a few lines of code.
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2 Sample Efficient Reinforcement Learning in Continuous
State Spaces: A Perspective Beyond Linearity

The content of this section is based on [MPSL21].

Abstract

Reinforcement learning (RL) is empirically successful in complex nonlinear Markov
decision processes (MDPs) with continuous state spaces. By contrast, the majority of
theoretical RL literature requires the MDP to satisfy some form of linear structure,
in order to guarantee sample efficient RL. Such efforts typically assume the transition
dynamics or value function of the MDP are described by linear functions of the state
features. To resolve this discrepancy between theory and practice, we introduce the
Effective Planning Window (EPW) condition, a structural condition on MDPs that
makes no linearity assumptions. We demonstrate that the EPW condition permits
sample efficient RL, by providing an algorithm which provably solves MDPs satisfying
this condition. Our algorithm requires minimal assumptions on the policy class, which
can include multi-layer neural networks with nonlinear activation functions. Notably,
the EPW condition is directly motivated by popular gaming benchmarks, and we show
that many classic Atari games satisfy this condition. We additionally show the necessity
of conditions like EPW, by demonstrating that simple MDPs with slight nonlinearities
cannot be solved sample efficiently.

2.1 Introduction

Over the past decade, reinforcement learning (RL) has emerged as the dominant paradigm for
sequential decision making in modern machine learning. During this time period, video games
have served as popular means to benchmark the incremental improvement in state of the art
RL. The Arcade Learning Environment (ALE), comprising a suite of classic Atari games, is
an archetypical example of such a benchmark [BNVB13]. Agents trained by RL efficiently
learn to surpass human level performance in such games [MKS+13, M+15, BPK+20].

Motivated by these empirical accomplishments, there has been a major thrust to
theoretically characterize the conditions which permit sample efficient RL. A significant
line of work has greatly advanced our understanding of the tabular RL setting, where the
number of states is finite and relatively small [SJ19, PW21]. Sample efficiency bounds in
this setting scale with cardinality of the state space. However, in practice this cardinality is
often large or infinite. For instance, many gaming applications of RL, ranging in complexity
from Atari to Dota, all have continuous state spaces [B+19]. These scenarios are handled
in the function approximation setting [DLWZ19, DKWY20]. Here, each state is associated
with a known feature, and one desires a sample efficiency bound that scales with the
dimensionality of the features (instead of the cardinality of the state space).

To understand when RL is sample efficient in continuous state spaces, theoreticians make
certain assumptions on the features or the underlying Markov Decision Process (MDP). A
prominent assumption, which has appeared in various forms, is that the problem satisfies
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some sort of linear structure. For instance, in the well studied linear MDP, the transitions
and rewards are described by linear functions of the features [YW19, JYWJ20, YW20]. In
particular, the transition probabilities at a state-action pair are defined by linear functions of
the feature corresponding to that state-action pair. A weaker, but frequently occurring, form
of this assumption is that value function of any policy is nearly linear [DKWY20, LSW20],
or that the optimal value function is linear [DLWZ19, WAJ+21, WAS21]. Such linear
structure is amenable to theoretical analysis, since it permits analysts to leverage the vast
literature on supervised and online learning.

To obtain a holistic understanding of RL, examining such linear structure is certainly
important. Nevertheless, it is unclear whether the aforementioned linearity conditions
actually hold in practical scenarios. We illustrate this via a very simple example. Consider
an MDP where there is a set of n states with the property that taking any action at one
of these states leads to the same state. To cast this MDP in the aforementioned linear
MDP setting, the dimensionality of the state features would have to scale linearly with n.
This precludes the existence of algorithms that can solve this MDP with sample complexity
independent of the cardinality of the state space.

Moreover, it has recently been shown both theoretically and empirically that the optimal
value function and optimal policy can be very complex, even in ostensibly elementary
continuous state space MDPs [DLY+20]. Since even powerful linear functions such as
the Neural Tangent Kernel [JGH18, LL18a, ALS19] are significantly worse in terms of
representation power and robustness than nonlinear neural networks [AZL19, LMZ20,
AZL20, AL20], it is unclear whether such weaker linear functions can be used to approximate
the value function or the underlying policy well.

Even in simple RL gaming benchmarks, there is no evidence that the aforementioned
linearity assumptions hold. Indeed, nonlinear neural networks are the predominant means
to approximate policies and value functions, when solving these games in practice. For
instance, consider the Pong game from the ALE benchmark, which is depicted in Figure 1.
In this game, the agent must use its paddle to prevent the ball from crossing a boundary,
while playing against a pseudorandom opposing paddle. Despite the simplicity of Pong,
state of the art methods solve this game using neural networks [MKS+13, M+15, BPK+20],
and it is not apparent whether this game is linear in any sense.

This reveals a significant gap between the theory and practice of RL. In theory, one
usually employs some sort of linearity assumption to ensure efficient RL. Yet, in practice,
RL appears to succeed in domains which do not satisfy such linear structure. In an effort
to resolve this discrepancy, we ask the following question:

Which (non-linear) structure is typical of popular RL domains, and how does
this structure permit sample efficient RL?

This question underlies the analysis of our paper. Towards answering this question, we
make the following contributions:
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Figure 1: An image of the Atari Pong game. The green paddle must move up and down to hit the
ball (the white dot) while playing against the opposing orange paddle.

• We propose the Effective Planning Window (EPW) condition, a structural condition
for MDPs which goes beyond linearity. Indeed, this condition is compatible with neural
network policies, and MDPs satisfying EPW can have highly nonlinear (stochastic)
transitions. Informally, this condition requires the agent to consistently plan C
timesteps ahead, for a value of C significantly smaller than the horizon length. We
show that popular Atari benchmark games satisfy this condition.

• We provide a simple algorithm, which exploits the EPW condition to provably solve
MDPs satisfying EPW. We prove the sample efficiency of our algorithm, and show
that it requires a number of trajectories that is a lower order polynomial of the horizon
length and other relevant problem dependent quantities.

• We argue that one must look beyond linear structure, and further motivate the study
and necessity of conditions like EPW, by demonstrating that even slightly nonlinear
MDPs cannot be solved sample efficiently.

2.2 Related Work

Linear Function Approximation. The majority of RL literature in the function
approximation setting focuses on MDPs that satisfy some form of linear structure. A
notable example is the linear MDP, where the transitions and rewards are described by
linear functions of the state features [YW19, JYWJ20, YW20]. A weaker form of this
assumption is that the value function for each policy is nearly linear [DKWY20, LSW20],
or that the optimal value function is linear [DLWZ19, WAJ+21, WAS21]. We note that
the algorithm of Weisz et al. [WAJ+21] requires a generative model, while we work in the
standard episodic RL setting. As argued earlier, such linear assumptions are unlikely to
hold true in practice. In our work, we eschew any sort of linearity assumption.

Nonlinear Function Approximation. Empirically, it is typical to use nonlinear func-
tion approximators such as neural networks [SLA+15, LFDA16]. But from a theoretical
perspective, the understanding of nonlinear function approximation is limited. There is

12



prior work which studies the sample complexity of RL when using function approximation
with nonlinear function classes [WVR13, JKA+17, VRD19, DPWZ20, DLMW20, WSY20,
JLM21, WWDK21]. However, these works often are restricted to MDPs with deterministic
transitions [WVR13, VRD19, DLMW20]. In this deterministic setting, an algorithm can
repeatedly visit the same state and simply memorize an optimal path. By contrast, we
focus on MDPs with stochastic transitions, as is typical in many Atari games. Here, an
algorithm generally cannot visit the same state more than once, and must generalize beyond
the trajectories it samples to learn something global. Moreoever, the aforementioned
analyses of nonlinear function approximation typically make some stringent assumption
on the complexity of the function class [JKA+17, DPWZ20, WSY20, JLM21, WWDK21].
Such complexity measures either cannot or are not known to handle neural networks. By
contrast, our results place minimal restrictions on the function class, and we can handle
nonlinear multilayer neural networks. In a different line of work, Dai et al. [DSL+18] study
RL with nonlinear function approximators and provide a convergent algorithm for this
setting. However, they do not precisely relate the quality of the solution found by their
algorithm to the approximation error of the function class.

Linear Quadratic Regulator. To characterize the sample complexity of RL in con-
tinuous state spaces, a different line of work investigates the linear quadratic regulator
(LQR) [FGKM18, DMM+19, MPB+20]. Here, the transition dynamics of the MDP are
assumed to be noisy linear functions of the state and action, and the rewards are quadratic
functions of the state and action. We remark that in this setting, the action space is
continuous. By contrast, we exclusively study MDPs with finite action spaces, since these
are most typical in the RL video game domains that motivate our paper.

2.3 Problem Formulation

2.3.1 Problem Statement

Notation & Preliminaries. We use the notation [n] to denote {0, 1 . . . n − 1} for any
positive integer n. Recall that an undiscounted, finite horizon MDP M = (S,A, T , R,H)
is defined by a set of states S, a set of actions A, a transition function T which maps from
state-action pairs to a probability density defined over states, a reward function R which
maps from state-action pairs to non-negative real numbers, and a finite planning horizon
H. Throughout our paper, we assume that S ⊆ Rd and A is a finite set. Without loss of
generality, we assume a single initial state s0. For simplicity, we assume that S can be
partitioned into H different levels. This means that for each s ∈ S there exists a unique
h ∈ [H] such that it takes h timesteps to arrive at s from s0. We say that such a state s lies
on level h, and denote Sh to be the set of states on level h. Note this assumption is without
loss of generality, and our results apply to generic MDPs which cannot be partitioned into
levels. This is because we can always make the final coordinate of each state encode the
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number of timesteps that elapsed to reach the state. Taking any action from level H − 1
exits the game. The notation ∥x∥2 denotes the Euclidean norm of x.

A policy maps each state to a corresponding distribution over actions. In practice, one
typically uses a policy that is parameterized by parameters belonging to some set Θ ⊆ Rk.
We study such policies, and use π(θ) to denote the policy induced by using parameter
θ ∈ Θ. When discussing a policy which is not parameterized, we simply use π to denote
the policy. We use πa

s (θ) to denote the probability of taking action a at state s when using
the policy π(θ). We use π(Θ) to denote {π(θ) s.t. θ ∈ Θ}, which is the set of feasible
policies and defines our policy class. Given a vector θ ∈ ΘH , we let π(θ) denote the policy
which executes π(θh) at for any state lying on level h ∈ [H], where θh denotes the hth entry
of θ. The value of a policy π(θ) in a (stochastic) MDP M when initialized at state s is

denoted V s
M(π(θ)). It is given by V s

M(π(θ)) = E
[∑H−1

h=level(s)R(sh, ah) | π(θ)
]
, where the

expectation is over the trajectory {(sh, ah)}H−1
h=level(s) conditioned on the fact that the first

state in the trajectory is s. Given an accuracy ϵ and failure probability tolerance δ, the
goal of RL is to find a policy π which satisfies V s0

M(π) ≥ maxπ′ V s0
M(π′) − ϵ with probability

at least 1 − δ.

Query Model. We adopt the standard episodic RL setup. During each episode, an agent
is allowed to interact with the MDP by starting from s0, taking an action and to observe
the next state and reward, and repeating. The episode terminates after the agent takes
H actions, and the next episode starts at s0. The agent thus takes a single trajectory in
each episode, and the total query complexity of the agent is measured by the total number
of trajectories. Given a desired solution accuracy ϵ and failure probability tolerance δ,
we are interested in algorithms which can successfully solve an MDP using a number of
trajectories that is at most polynomial in H, |A|, d, k, 1

ϵ and 1
δ . If an algorithm provably

accomplishes this, we call such an algorithm sample efficient or tractable. Notably, such
algorithms cannot depend on the (possibly uncountable) number of states.

Without any assumptions on the MDP, approximating an optimal policy is intractable. To
permit sample efficient RL, prior theoretical work has often assumed that MDP satisfies
some form of linear structure. For instance, the transition or value function might be
described by a linear function of the states. However, it is well documented that RL is
empirically successful in highly nonlinear domains [SLA+15, LFDA16]. We aim to bridge
this gap between theory and practice. We now formally state the problem that we consider
throughout our paper.

Our goal is to present nonlinear characteristic conditions which permit sample efficient RL,
and argue that these conditions are satisfied in practice by popular RL domains.
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2.3.2 Effective Planning Window Condition

We first state basic conditions that are satisfied by most RL problems encountered in
practice. We will later refine these to obtain our Effective Planning Window (EPW)
condition, and then show that EPW enables sample efficient RL.

Let us begin by observing that in practice, the policy class π(Θ) typically satisfies some
mild regularity assumptions. We formalize this in the following condition.

Condition 1 (Regular Policy Class). A policy class π(Θ) is said to be Regular when:

(a) Bounded Domain. There exists B > 0 such that each θ ∈ Θ satisfies ∥θ∥2 ≤ B.

(b) Lipschitz Continuous Policies. There exists ϕ > 0 such that for any θ, θ′ ∈ Θ
and any (s, a) ∈ S ×A, we have |πa

s (θ) − πa
s (θ′)| ≤ ϕ∥θ − θ′∥2.

We stress that this is a very mild condition, and places minimal restrictions on π(Θ).
Indeed, a policy parameterized by a multi-layer neural network with a nonlinear activation
function satisfies this condition [FRH+19]. Using this condition on the policy class, we now
introduce the following Generic Game condition. As we will discuss in the sequel, many
popular gaming RL benchmarks such as Atari games satisfy this condition.

Condition 2 (Generic Game). An MDP and Regular policy class pair (M, π(Θ)) form
a Generic Game if:

(a) Failure States. There is a set of failure states F ⊂ S, and taking any action from a
state in F exits the game.

(b) Complete Policy Class. There exists some θ⋆ ∈ Θ such that executing π(θ⋆) from
s0 arrives at some state in SH−1 \ F almost surely1. We define S⋆ to be the set of all
states s ∈ S \ F such that executing π(θ⋆) from s reaches SH−1 \ F almost surely. If
a state lies in S⋆ we call it a safe state.

(c) Binary Rewards. For any state s ∈ SH−1 \ F and any a ∈ A, R(s, a) = 1. For any
other state s and any a ∈ A, R(s, a) = 0.

A few comments are in order. Note that F is essentially used to describe states where
the agent has lost the game. Also, observe that in Generic Games, an optimal policy is one
that arrives at a non-failure state in level H − 1 almost surely. Hence π(θ⋆) is indeed an
optimal policy.

Let us now describe how popular Atari games can be cast as Generic Games. Recall the
famous Pong game depicted in Figure 1, which is a part of the ALE benchmark [BNVB13].

1The Generic Game condition can also be defined in the case when this property of θ⋆ holds true with
probability exponentially large in H, as would occur when using a softmax policy class. Our results hold
true when using this notion of a Generic Game. We focus on the almost sure case to avoid complicating
notation.
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Figure 2: An image of the Atari Skiing game. The skier must move through flagged checkpoints.

In this game, an RL agent must learn to move the paddle up and down to hit the ball and
prevent it from crossing its boundary. Note that in the context of RL, this is a single player
game, since the opposing paddle hits the ball back according to a pre-specified stochastic
decision rule (which is not trained). The agent loses the game if the ball crosses its own
boundary, and wins the game if it hits the ball past the opposing paddle. Another game
in the ALE benchmark is the Skiing game, depicted in Figure 2. Here, the agent must
move the skier through a series of randomly appearing flagged checkpoints, which appear
frequently over a long time horizon. The skier receives a penalty each time it misses a
checkpoint.

We claim that an Atari game like Pong or Skiing, together with a neural network policy
class, satisfy the Generic Game condition. The first two conditions of Generic Games are
easy to verify. Note that the states in Pong (resp. Skiing) are images, so F includes any
state where the ball has crossed the agent’s boundary (resp. where the skier has missed a
prior checkpoint), since this corresponds to the agent failing to complete the game. It is
well known that Atari can be solved using a neural network policy [M+15], so a policy class
parameterized by neural networks is indeed complete.

To ensure that Pong and Skiing satisfy the third condition, we need to design an
appropriate binary reward function. For Pong, this is handled by redefining F to include
any state s ∈ SH−1 where the ball has not crossed the opposing paddle. Similarly for
Skiing, this is done by ensuring F includes any state where the skier has already missed a
checkpoint. Then one can simply assign a reward of 1 to any state in SH−1 \ F , and 0 to
all other states, as required by the Generic Game condition. Hence, playing optimally in
this Generic Game framework ensures that the ball has moved past the opposing paddle, or
that the skier has made all checkpoints, corresponding to winning the game.

The aforementioned reward design is an example of reward shaping, which is unavoidable
in RL and ubiquitous in practice [HMMA+17]. Nevertheless, we stress that the reward
function we described above is very similar to the reward function that practitioners already
use. Concretely, in Pong one typically assigns a reward of 1 if the ball has moved past
the opposing paddle, a reward of −1 if the ball has moved past the agent’s paddle, and
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a reward of 0 otherwise [BNVB13]. Similarly, in Skiing, the skier receives reward at the
end of the game, in proportion to the number of checkpoints it has cleared [BPK+20]. Our
reward function thus requires no more effort to design than the reward functions already in
use, since they require the same information, and these are identical in spirit.

Beyond Pong and Skiing, other Atari games (and other similarly themed video games)
can be cast in the Generic Game framework. In Appendix A.1, we describe this reduction
for the Atari games Tennis and Journey Escape, and also for the more complex RL gaming
benchmark CoinRun [CKH+19].

Let us make one more remark about the binary reward structure of Generic Games.
There are many games which naturally have a set of goal states, and these immediately can
be described as Generic Games. Examples include Pong, Tennis and CoinRun (latter two
are described in Appendix A.1). More generally, however, EPW applies to many games
which do not naturally have a binary reward structure. As we discussed, Skiing can be cast
in the EPW framework with binary rewards, by ensuring that F includes any state where
the skier has missed a checkpoint. However, in certain scenarios, one may be satisfied with
only collecting a large fraction of the checkpoints in Skiiing, or more generally, obtaining a
large (but not perfect) score in games where one continually collects small rewards. We
emphasize that such scenarios can be cast in our Generic Game framework. For instance,
in Skiing if checkpoints arrive roughly every x timesteps, and we desire to give a reward of
1 for each checkpoint collected, then we can design F to include any state at timestep t
where the agent has not collected Ω(t/x) reward thus far. Similar reductions apply to other
games where one continually needs to collect a small amount of reward at regular intervals.

Does the Generic Game condition permit sample efficient RL? Unfortunately, there
exist Generic Games where the MDP is only slightly nonlinear, but even approximating an
optimal policy sample efficiently is impossible. We later show this formally in Proposition 1.
So we must further restrict this class of games. In order to refine our notion of a Generic
Game, we first state a useful definition.

Definition 1 (x-Ancestor). Given a Generic Game (M, π(Θ)), consider any h ∈ [H]
and any state s′ ∈ Sh. A state s ∈ S is an x-ancestor of s′, if s ∈ Smax{0,h−x} and there
exists some θ ∈ Θ such that following π(θ) from s will reach s′ with nonzero probability.

We are now in a position to formally state our Effective Planning Window (EPW)
condition, which refines our notion of Generic Games. For the statement of the condition,
recall our notion of S⋆, which was defined in the Generic Game condition.

Condition 3 (Effective Planning Window). A Generic Game (M, π(Θ)) satisfies the
Effective Planning Window condition with parameter C if there exists C ∈ [H] such that
the following holds. Consider any s′ ∈ S \ F . If s is a C-ancestor of s′, then s ∈ S⋆.

Before examining RL benchmark games in the context of this condition, a few comments
about the condition itself are in order. The quantity C ensures that any C-ancestor of a
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st′′ ∈ S⋆ st−C ∈ S⋆ st′ ∈ S \ (S⋆ ∪ F) st ∈ S \ (S⋆ ∪ F) st+1 ∈ F

Figure 3: Five states from the Pong game. Here we let t′′ < t − C < t′ < t, and the ball is
progressively moving towards the lower right corner. At timesteps t′, t, the paddle has not lost the
game. However, it does not have enough time to react and reach the ball in time. At timestep t + 1
the game is over. At timesteps t′′, t− C, the paddle has enough time to react and reach the ball.

non-failure state is a safe state. So if an agent is at timestep t and the game is not over,
then at timestep t − C it was in a state from where it could have achieved the highest
reward possible in the MDP (if it took the correct sequence of actions). For the purposes
of RL, this effectively means that at each timestep, the agent must consistently plan over
the next C timesteps instead of the entire horizon length H. Thus, when C is small or a
constant, then it is reasonable to believe that sample efficient RL is possible.

Of course, any Generic Game satisfies the EPW condition for a choice of C = H − 1.
However, many popular RL benchmark games satisfy the EPW property with a value of C
that is much smaller than H. Informally, the C quantity is the amount of time required by
the agent to successfully react to scenarios in the game (without losing). Let us understand
this more deeply in the Pong and Skiing games.

In Pong, after the opposing paddle hits the ball, the agent must react to the trajectory
of the ball and adjust its position accordingly to hit it. If it takes too long to react before it
starts adjusting its position, then it will be unable to reach the ball in time. We depict this
in Figure 3. More formally, assume that at timestep t the paddle has not lost the game and
the ball is moving towards its boundary. At timestep t, the ball may be too close to the
boundary, and so the agent will not not have enough time to move its paddle fast enough
in order to reach the ball in time. However, at timestep t−C the ball is further away from
the boundary, so the agent has enough time to move its paddle appropriately in order to
react, reach the ball and hit it back. So at timestep t − C the agent lies in a safe state
in S⋆, since it has enough time to adjust its paddle and hit the ball back, and hence play
optimally. Notably, if we let C ′ be the number of timesteps it takes for the ball to traverse
from one end of the board to the other, then C ≤ C ′. Hence, when H is large and the agent
needs to control the paddle for many rounds, then C is a constant independent of H.

Similarly, in the Skiing game, the skier must react to the location of the oncoming
checkpoint, and adjust its position accordingly. Formally, assume at timestep t a checkpoint
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is oncoming. In such a scenario, as depicted in Figure 4, the skier might be too far from the
checkpoint in order to actually clear it (even if it moves directly towards the checkpoint).
However, at timestep t − C the skier has enough time to adjust its position in order to
clear the checkpoint. Hence at timestep t− C, the skier is in a safe state in S⋆ since it can
play optimally from this state. Again, if we let C ′ be the number of timesteps it takes for a
skier to move from the left edge of the screen to the right edge, then C ≤ C ′. Hence, when
H is large and there are many checkpoints to be cleared, then C is a constant independent
of H, as previously observed in Pong.

Beyond Pong and Skiing, other Atari games satisfy the EPW condition, with a con-
stant value of C. We demonstrate this for the Atari games Tennis & Journey Escape in
Appendix A.1. In Appendix A.1 we additionally show that more complex games, such as
CoinRun [CKH+19], also satisfy EPW with a small value of C. We stress that EPW is
orthogonal to linearity. Indeed, there are MDPs satisfying linearity but not EPW, and
vice versa. We conclude this section by highlighting two important aspects of the EPW
condition.

The Magnitude Of C. We treat C as a constant that is independent of and much smaller
than H. This is certainly reasonable given our above discussion. So an algorithm incurring
O(|A|C) sample complexity is efficient. Furthermore, as we discuss later, there exist EPW
games where Ω(|A|C) sample complexity is necessary to solve the game.

The Challenge Of Solving EPW Games. We note that a deterministic EPW game is
straightforward to solve, since an agent can just try each of the |A|C trajectories when it is
at level h, to discover which trajectories do not lead to F . In such a case, an agent can
simply memorize a good path. However, when transitions are stochastic (as in Atari), the
agent cannot simply try each trajectory to memorize one that does not lead to F . This is
because in general stochastic MDPs, a finite sample algorithm might only visit any given
state at most once. Instead, the algorithm must learn and generalize beyond the trajectories
it samples, to learn something global about the MDP. Furthermore, we emphasize that
stochastic EPW games cannot be solved as simply as just splitting the horizon H into H/C
distinct planning windows, and then solving these planning problems independently of each
other. Instead, the key difficulty is that the agent must consistently plan C timesteps ahead.
By this, we mean that just because an agent has arrived at a non-failure state at time t,
does not imply that at time t+ 1 it is guaranteed to avoid F . Indeed, if we execute a policy
and the resulting trajectory ends in a failure state after t timesteps, then it is unclear at
which of the prior timesteps {t − C . . . t − 1} that we took an incorrect action. And we
cannot rollback to timestep t−C and rerun the same trajectory to discover when we made
a mistake. This complicates the design of efficient algorithms for this setting.
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st′′ ∈ S⋆ st−C ∈ S⋆ st′ ∈ S \ (S⋆ ∪ F) st ∈ S \ (S⋆ ∪ F) st+1 ∈ F

Figure 4: Five states from the Skiing game. Here we let t′′ < t − C < t′ < t, and the skier is
progressively moving towards the checkpoint. At timesteps t′, t, the skier has not lost. However,
it does not have enough time to react and adjust its position to reach the checkpoint in time. At
timestep t+ 1 the game is over. At timesteps t′′, t−C, the skier has enough time to react and reach
the checkpoint.

2.4 Main Results

We now turn to our main results. Before diving into the details, let us provide a brief
overview for the results. Our main contribution is an algorithm which sample efficiently
solves games satisfying the EPW condition. We prove the efficiency of this algorithm
and discuss the role of the EPW condition in permitting sample efficient RL. We then
further motivate the study of conditions like EPW, as opposed to the study of linear
structure, by proving a lower bound which shows that Generic Games with even slight
nonlinearities cannot be solved sample efficiently. Hence, we must look beyond linear
structure to characterize when sample efficient RL is possible in realistic domains. With
this outline in mind, let us now formally present our main results.

Our primary contribution is an algorithm which exploits the EPW condition to sample
efficiently find an optimal policy. Our algorithm is defined in Algorithm 1. For this method,
recall our notation that for a vector θ ∈ ΘH , we let π(θ) denote the policy which executes
π(θh) at each h ∈ [H], where θh denotes the hth entry of θ. We make the basic assumption
that there exists θrand ∈ Θ such that π(θrand) maps each state to the uniform distribution
over A.

In our main result Theorem 1, we bound the sample complexity of Algorithm 1 and
demonstrate that it efficiently finds a near optimal policy for any EPW game. Before stating
the theorem, let us discuss Algorithm 1 and provide some intuition for this method. Recall
that in Generic Games, a near optimal policy avoids failure states with high probability.
The method initializes θ(0) to be the parameter vector which induces a uniformly random
policy regardless of the state (Line 2). It then incrementally updates θ(t), in a fashion
that ensures π(θ(t)) avoids failure states with high probability for each t′ ≤ t (Line 7).
Ultimately it returns the parameter vector θ(H − 1) (Line 9). More concretely, at each
timestep t in the inner loop, the algorithm samples n trajectories from the policy π(θ(t))
that it has constructed thus far (Line 4). Via these sampled trajectories it defines the
empirical loss L̂t, as shown in Eq. (1). Intuitively, L̂t penalizes those parameters θ such
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Algorithm 1

1: Inputs: MDP M, policy class π(Θ), sample size n
2: Initialize θ(0) = [θrand, θrand . . . θrand] ∈ ΘH−1

3: for t ∈ {0, 1 . . . H − 2} do
4: Sample n trajectories {τi}ni=1 ∼ π(θ(t)), where each trajectory τi = {(si,h, ai,h)}H−1

h=0

5: Define the loss function L̂t : Θ → R as

L̂t(θ) = |A|C+1 ·

 1

n

n∑
i=1

Isi,t+C+1∈F

C∏
j=0

π
ai,t+j
si,t+j (θ)

 (1)

6: Minimize L̂t over Θ to obtain

θ̂t ∈ argmin
θ∈Θ

L̂t(θ) (2)

7: Define θ(t + 1) = [θ̂0, θ̂1 . . . , θ̂t−1, θ̂t, θrand, . . . , θrand]
8: end for
9: return θ(H − 1)

that executing π(θ) over timesteps {t, t + 1 . . . t + C} arrives at a failure state with high
probability. This intuition suggests that a minimizer θ̂t of L̂t, as defined in Eq. (2), will
assign low probability to trajectories ending in a failure state when playing θ̂t. The quantity
θt then defines the t + 1th entry of θ(t + 1). Note that θ(t + 1) agrees with θ(t) in its first t
entries.

The form of the loss L̂t suggests that a pracitioner needs to know the exact value of C
to use Algorithm 1. This may be a stringent requirement in practice. We emphasize that
any upper bound C ′ ≥ C can be used in place of C in the definition of L̂t. As discussed in
Section 2.3.2, such an upper bound is easy to find in gaming domains where we expect the
EPW condition to hold. For example, in Pong we can play the game manually (in OpenAI
Gym), and observe the number of timesteps it takes the paddle to traverse its side. This
yields C ≤ 15, while 200 ≤ H. As to how this affects the sample complexity of the method,
one can simply substitute C ′ for C in the bound provided in our main result Theorem 1.

Before formally presenting Theorem 1, a remark on the computational requirements
of Algorithm 1 is imperative. The method requires oracle access to a minimizer θ̂t of
the loss L̂t, which in turn is defined by the policy class π(Θ). In our paper, we impose
minimal assumptions on π(Θ). Our motivation for this choice is that in practice, it is
most common to parameterize a policy via a multi-layer neural network with nonlinear
activation function. Beyond our extremely mild Regularity condition, is unclear which (if
any) desirable properties such a policy class satisfies. Hence, for a worst case Regular policy
class π(Θ), obtaining even an approximation of θ̂t could be extremely computationally
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intractable. Nevertheless, we stress that in both theory and practice, stochastic gradient
descent and its variants have been shown to efficiently find global minima of loss functions
parameterized by neural networks [LL18b, AZLS19, DLL+19]. Furthermore, as we show
in our proofs, the function L̂t is Lipschitz continuous with a tolerable Lipschitz constant.
Hence by Rademacher’s Theorem, L̂t is differentiable almost everywhere, and it is reasonable
to minimize L̂t via the stochastic gradient type methods that are popular for minimizing
complex neural network losses. We also remark that it is fairly common in the RL literature
to assume access to a computational oracle, when studying sample complexity [AHK+14,
DKJ+19, AKKS20, MHKL20].

We now formally state Theorem 1, our main result. This theorem bounds the sample
complexity required by Algorithm 1 to find a near optimal policy for any EPW game.

Theorem 1. Fix error tolerance ϵ > 0 and failure probability tolerance δ > 0. Given any
(M, π(Θ)) satisfying the EPW condition, and sample size

n =
4H2|A|2C+2

ϵ2

(
log

(
2H

δ

)
+ k log

(
1 +

32H|A|C+1CϕB

ϵ

))
,

Algorithm 1 outputs θ satisfying

V s0
M(π(θ)) ≥ V s0

M(π(θ⋆)) − ϵ

with probability at least 1 − δ.

A formal proof for the theorem is presented in Appendix A.2. A few comments are
in order. Note that Algorithm 1 samples n trajectories at each timestep in its inner loop.
Recall from the definition of our query model in Section 2.3.1, that we measure the total
sample complexity by the total number of trajectories sampled. Hence, the total sample

complexity of Algorithm 1 scales as O(H
3|A|2C+2k

ϵ2
), where we have discarded logarithmic

factors. Observe that the total sample complexity depends only logarithmically on the
failure probability tolerance δ, the bound B on the Euclidean norm of Θ and the Lipschitz
constant ϕ of the policy. It is also worth noting that the sample complexity has no explicit
dependence on the dimension d of states. However, it does depend linearly on the dimension
k of the policy parameter space Θ, and of course in general k will scale with d. We note
that in practical RL, one typically employs a shallow neural net, with only two or three
layers. k is relatively small in this regime, in contrast to NLP or vision tasks where models
are much larger.

Observe that the sample complexity bound in Theorem 1 has an exponential dependence
on C. Recall that in our framework, as motivated at the end of Section 2.3.2, C is a
constant, so our algorithm is indeed efficient. Nevertheless, we remark that as a direct
corollary of the work of Du et al. [DKWY20], this exponential dependence on C cannot be
improved by a better algorithm or sharper analysis.
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More generally, in the context of existing literature, we provide some intuition for why
the EPW condition permits efficient learning. A major issue that hinders sample efficient RL,
in both theory and practice, is that an agent must plan over the entire horizon H. Roughly
speaking, at each timestep the agent can choose any of |A| actions, so the total sample
complexity required to plan over H timesteps scales as Ω(|A|H). This is a recurrent theme
in the RL literature, and various prior works have shown that even when the MDP has some
non-trivial structure, in the worst case such a scaling is unavoidable [DKWY20, MPSL21].
Assuming that the MDP satisfies significant linear structure, is one way to avoid this
difficulty. By contrast, we are able to avoid this difficulty while making no linearity
assumptions. Instead, the EPW condition guarantees that an agent needs only to plan over
C timesteps. Hence we exchange the worst case Ω(|A|H) scaling for the benign O(|A|2C+2)
scaling.

We believe that the EPW condition (or other conditions that are similar in spirit) is
the correct condition for characterizing when sample efficient RL is possible, at least in RL
domains like video games. By contrast, the linearity assumptions which prominently appear
in prior literature, in addition to lacking clear empirical justification, are quite brittle. To
demonstrate this, we leverage prior work to show the existence of Generic Games which
have only slight nonlinearities, yet cannot be solved sample efficiently. Before we state this
lower bound, we recall two standard definitions.

Definition 2 (Optimal Value Function). The optimal value function V ⋆
M : S → R of

an MDP M is defined as V ⋆
M(s) = V s

M(π⋆), where π⋆ is an optimal policy of M.

Definition 3 (Softmax Linear Policy). For an MDP M, a softmax linear policy π(θ)
is parameterized by θ ∈ R|A|×d. Letting θi denote the ith row of θ, the policy π(θ) satisfies

πai
s (θ) =

exp(sTθi)∑
aj∈A exp(sTθj)

.

Briefly, the optimal value function takes as input a state and outputs the optimal value
that one can achieve from that state. A softmax linear policy is parameterized by a matrix,
whose rows are in correspondence with actions. Given a state, the softmax linear policy
outputs a probability distribution over actions, where the probabilities are exponentially
weighted linear functions of the state.

We now demonstrate the existence of Generic Games, which have only slight nonlineari-
ties, where even approximating an optimal policy in a sample efficient manner is impossible.
This result is heavily inspired by the recent work of Du et al. [DKWY20], and we claim no
technical novelty. Rather, the purpose of this result in our setting, is to further motivate
the importance of studying conditions such as EPW, instead of assuming that the MDP
has linear structure.

Proposition 1. There exists a Generic Game (M, π(Θ)), where d, k, ϕ, B are all at
most polynomial in H and |A|, and π(Θ) is the class of softmax linear policies, such that

23



the following holds. There exists an unknown neural network f : Rd → R, where f is a
linear combination of two ReLU neurons, such that V ⋆

M(s) = f(s) for all s ∈ S. Yet, any
algorithm requires Ω(min{|A|H , 2d}) trajectories to find, with probability at least 3/4, a policy
π satisfying

V s0
M(π) ≥ V s0

M(π(θ⋆)) − 1/4.

We stress that the essence of this result follows from Du et al. [DKWY20], and we
only make small modifications to their proof to fit it in our Generic Game setting. We
nevertheless provide a proof sketch in Appendix A.4. The result shows the existence of
MDPs for which a softmax linear policy is optimal, and where the optimal value function
can be expressed as a neural network with only two ReLU neurons. Despite only this slight
nonlinearity, sample efficient RL is impossible. Notice that in the statement of this result,
there is no dependency of π on θ. This is because we do not restrict the algorithm to only
search over policies lying in π(Θ). In particular, the policy π mentioned in the result can
be arbitrary, and does not have to lie in π(Θ).

Proposition 1 demonstrates that if the Generic Game is even slightly nonlinear, as
one would expect in practice, sample efficient RL is impossible. So we must look beyond
linearity to obtain a realistic characterization of when sample efficient RL is possible. Our
EPW condition, which makes no linearity assumptions, is one example of this.

2.5 Discussion

In this paper, we studied structural conditions which permit sample efficient RL in continuous
state spaces, with a focus on conditions that are typical in popular RL domains such as
Atari games. We introduced the EPW condition, which in contrast to prior work, makes no
linearity assumptions about the MDP structure. We provided an algorithm which provably
solves MDPs satisfying EPW. We analyzed the sample complexity of this algorithm, and
showed it requires a number of trajectories that is a lower order polynomial of the horizon
length and other relevant problem dependent quantities. We also showed that MDPs which
have very slight nonlinearities (but do not satisfy EPW) cannot be solved sample efficiently.
Our analysis thus highlights the important need to look beyond linear structure, in order
to establish the sample efficiency of RL in popular domains.

A number of open questions remain. First, while our EPW condition is directly
motivated by RL gaming domains such as Atari, it is unclear whether EPW is satisfied
by other RL application domains such as robotics. A natural direction for future work is
to study these domains more closely, and identify structure that permits sample efficient
RL in such domains. Second, recall that our algorithm requires access to a particular
computational oracle. As discussed, we made this computational abstraction since we
placed minimal restrictions on the policy class, so in the worst case obtaining such an oracle
could be intractable. Nevertheless, we suspect that when using a neural network policy
class with an appropriate architecture, one could approximate this oracle efficiently. It
would be interesting to precisely characterize when this is possible. Third, it would be
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interesting to see whether a variant of our theoretically justified algorithm can be deployed in
practice. Using our theoretical insight to design a pragmatic method, with strong empirical
performance, is an important direction for future work.
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3 Complete Policy Regret Bounds for Tallying Bandits

The content of this section is based on [MLS22].

Abstract

Policy regret is a well established notion of measuring the performance of an
online learning algorithm against an adaptive adversary. We study restrictions on the
adversary that enable efficient minimization of the complete policy regret, which is the
strongest possible version of policy regret. We identify a gap in the current theoretical
understanding of what sorts of restrictions permit tractability in this challenging setting.
To resolve this gap, we consider a generalization of the stochastic multi armed bandit,
which we call the tallying bandit. This is an online learning setting with an m-memory
bounded adversary, where the average loss for playing an action is an unknown function
of the number (or tally) of times that the action was played in the last m timesteps.
For tallying bandit problems with K actions and time horizon T , we provide an
algorithm that w.h.p achieves a complete policy regret guarantee of Õ(mK

√
T ), where

the Õ notation hides only logarithmic factors. We additionally prove an Ω̃(
√
mKT )

lower bound on the expected complete policy regret of any tallying bandit algorithm,
demonstrating the near optimality of our method.

3.1 Introduction

When decision making algorithms are deployed in the real world, the reward associated with
choosing a decision is rarely static. Instead, an algorithm’s decision impacts the state of its
environment, which in turn influences the quality of that same decision in the future. For
instance, in recommender systems such as YouTube and Netflix, the choice to recommend a
type of content is often instrumental in shaping the preferences of the user for that content
genre. This creates a feedback loop between an algorithm and its environment, and results
in a complex back and forth interaction.

Such dynamic and interactive settings are well modeled as online learning problems,
where a player competes against an adaptive adversary. To measure the performance of the
player, most of the literature on online learning has focused on a performance metric called
the traditional regret [ACBFS02, FKM05, AHR08, HK12]. However, a significant line of
work has established that when the adversary is adaptive, the traditional regret is a poor
indicator of the performance of an algorithm [MOSW02, ADT12, CBDS13, HKR16, LHK21].
Instead, one typically opts for a stronger performance metric, known as policy regret. The
policy regret accumulated over a time horizon T is defined with respect to a competitor
class CT of deterministic policies (or length T action sequences). The policy regret with

respect to CT , which we denote Rpol
CT , compares the algorithm’s cumulative loss to that of

the best policy in CT .
Much of the prior work on policy regret has focused on the restrictive assumption that

CT contains only those action sequences that repeatedly play the same action [ADT12,
CBDS13, DDKP14, ADMM18]. We allude to the policy regret with this choice of CT as
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the constant action policy regret. The strongest possible version of policy regret is when CT
is the complete policy class (i.e., the set of all deterministic policies), and we abbreviate
this as the complete policy regret. This challenging setting has recently received attention
from the online learning community [HKR16, SMLV20, LHK21]. On the other hand, this
performance metric is equivalent to the one that is standard in the closely related field
of reinforcement learning, where a vast literature explores how to efficiently maximize
cumulative reward [KMN99, SMSM00, KKL03, JAZBJ18, WDYK20, MLR21].

Unfortunately, prior work has shown that without restrictions on the adversary, obtaining
non-trivial guarantees on even the constant action policy regret is impossible [ADT12].
Hence, to attain meaningful guarantees on the complete policy regret (CPR), it is necessary
to restrict the adversary. Prior literature on policy regret studies different competitor classes
CT , along with varying types of restrictions on the adversary, to demonstrate non-trivial
guarantees on the corresponding policy regret Rpol

CT . We comprehensively survey these
restrictions, and identify a gap in the current theoretical understanding of when it is
possible to attain meaningful guarantees on CPR. To resolve this gap, we make the following
contributions:

• We introduce an online learning setting known as the tallying bandit. Here the average
loss for playing an action is a function of the number (or tally) of times that action
was played in the last m timesteps. The stochastic multi armed bandit (sMAB) is
a special case of the tallying bandit, via a choice of m = 1. From a more practical
angle, we view the tallying bandit as a step towards handling feedback loops that
arise in applications such as recommender systems.

• For tallying bandit problems with K actions and time horizon T , we provide an
algorithm, that given any δ ∈ (0, 1), achieves with probability at least 1−δ a complete

policy regret guarantee of Õ
(
mK

√
T log (T,m,K, 1/δ)

)
.

• We complement our algorithmic development with an Ω̃(
√
mKT ) minimax lower

bound on the expected complete policy regret of any method designed for tallying
bandits. This demonstrates the near optimality of our algorithm.

3.2 Problem Formulation

3.2.1 Online Learning & Complete Policy Regret

We begin by providing a generic formulation of online learning against adaptive adversaries,
following rather closely the description of Arora et al. [ADT12]. An online learning problem
with time horizon T and action set X is an iterative game between a player and an adaptive
adversary. Throughout, we let K denote the cardinality of X . Before the game begins, the
adversary fixes a sequence of history dependent loss functions {ft}Tt=1, where ft maps X t

to the interval [0, 1]. At each timestep t of the game, the player chooses an action at ∈ X .
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In the bandit feedback model, the player then observes the loss value ft(a1:t), where we
have used a1:t as shorthand for a1, a2 . . . at. By contrast, in the full information model, the
player observes ft(a1:t−1, x) for all x ∈ X .

The cumulative loss experienced by the player during this game is
∑T

t=1 ft(a1:t). Note
that this is a random variable, since the player’s strategy can be random. In order to
evaluate the performance of the player, we compare this cumulative loss to a baseline. In
particular, we let CT ⊆ X T be a competitor class of policies (or length T action sequences).
Given some CT , one typically measures the player’s performance via either the policy
regret, which we denote Rpol

CT , or the traditional regret, which we denote Rtrad
CT . The policy

regret [ADT12, CBDS13, ADMM18] is defined as

Rpol
CT =

T∑
t=1

ft(a1:t) − min
(y1,y2...yT )∈CT

T∑
t=1

ft(y1, y2 . . . yt). (3)

Notably, this definition differs substantially from the traditional regret [ACBFS02, FKM05,
AHR08, HK12], given by

Rtrad
CT =

T∑
t=1

ft(a1:t) − min
(y1,y2...yT )∈CT

T∑
t=1

ft(a1:t−1, yt). (4)

In the aforementioned adversarial online learning setup, the traditional regret lacks meaning-
ful interpretation. Instead, one opts for the policy regret to measure the player’s performance.
We refer the interested reader to Arora et al. [ADT12] for further details on the motivation
for this choice.

Let Xconst denote the set of constant action sequences, so that Xconst = {(x, x . . . x) s.t. x ∈
X}. We refer to Rpol

Xconst
and Rtrad

Xconst
respectively as the constant action policy regret and

constant action traditional regret. The constant action policy regret (and hence the constant
action traditional regret) yields a weak measure of performance, since we are comparing the
player’s performance to a very restricted baseline policy class. Expanding the competitor
class CT yields stronger notions of performance. In our paper, we are interested in the
challenging setting where CT is the complete policy class (the set of all length T action
sequences), or equivalently where CT = X T . This choice of CT in Eq. (3) yields the strongest
version of policy regret, and we refer to it as complete policy regret (CPR), and denote it by
Rcp. An optimal policy is a policy in X T that minimizes the cumulative loss. We will often
use the terminology “efficiently minimize the CPR”, which means to obtain a CPR bound
that is sublinear in T and at most polynomial in all other problem dependent parameters.
Our exclusive focus is on statistical (rather than computational) efficiency.

3.2.2 Restricting The Adversary

Prior work due to Arora et al. [ADT12] has shown that without any restrictions on the
adversary, and even when CT = Xconst, for any player there exists an adversary such
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that the player’s constant action policy regret satisfies Rpol
Xconst

= Ω̃(T ). To prove this
lower bound, Arora et al. [ADT12] construct an adversary that is wholly unrestricted
and hence extremely powerful. Thus, to obtain non-trivial upper bounds on even the
constant action policy regret, it is necessary to weaken the adversary. One natural type
of restriction that has been well studied in prior work, is to restrict the memory of the
adversary [ADT12, CBDS13, ADMM18].

Definition 2. We say that an adversary is m-memory bounded if for all t ≥ m, all
a1:t ∈ X t, all a′1:t−m ∈ X t−m and all ft we have that

ft(a1:t) = ft(a
′
1, a

′
2 . . . a

′
t−m, at−m+1 . . . at).

Hence, an m-memory bounded adversary is only permitted to define its loss function
based on the player’s most recent m actions. Prior work has shown that when m is
sublinear in T and CT is sufficiently restricted (informally, when CT equals or is only slightly

larger than Xconst), then the player can achieve policy regret Rpol
CT that is sublinear in

T [ADT12, CBDS13, DDKP14, ADMM18].
When m = 1, then the adversary is oblivious, and we overload notation and write

ft(a1:t) = ft(at). Notably, for a fixed CT , the policy regret Rpol
CT equals the traditional regret

Rtrad
CT in this scenario. It is well known that against an oblivious adversary, a player can

achieve sublinear constant action policy regret [ADT12]. Hence, it is natural to question
whether a player can achieve sublinear CPR, when the adversary is oblivious. We show
via the following counterexample that this is impossible. Note that the result of the
counterexample holds even in the full information feedback model (as opposed to just bandit
feedback). A similar result is given by Mohri and Yang [MY18].

Counterexample 1. Let X = {x1, x2}. To define its sequence of loss functions, the
adversary first samples a bit string b uniformly at random from {0, 1}T . For each t, it then
defines

ft(x1) = bt and ft(x2) = 1 − bt.

Attaining sublinear complete policy regret is then equivalent to making a sublinear number of
mistakes when guessing the value of bt. Since this is impossible, we have that E [Rcp] = Ω̃(T ),
where the expectation is over the sampling of b and the player’s (possibly randomized) strategy.

Crucially, the above counterexample relies on the fact that even though the adversary is
oblivious, its loss functions ft, ft′ for t ̸= t′ are time varying and are constructed independent
of each other. In this scenario, the player cannot predict anything about ft via knowledge
of ft′ for t′ < t. To evade such counterexamples, a different type of restriction on the
adversary’s power is to ensure that some knowledge of ft′ leaks some information about ft.
This motivates the following definition.
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Definition 3. An m-memory bounded adversary is said to be g-restricted if the following is
true. For each action x ∈ X , there exists a base function gx : ∪m

m′=1Xm′ → [0, 1], such that

ft(a1:t) ≡ ft(amax{1,t−m+1}:t) = gat(amax{1,t−m+1}:t).

Although we are not aware of prior work on online learning that uses g-restricted
adversaries without additional restriction, in the sequel we will discuss prior work that
consider g-restricted adversaries with significant additional restrictions [HKR16, LCM17,
SLC+19, SMLV20, LHK21, ABGK22]. For now, we note that a g-restricted adversary must
define loss functions whose value for a fixed input cannot vary with time. With such a
restriction, the player can learn information about each gx (and hence about ft) as the game
progresses, and this enables the player to choose better actions over time. This restriction
thus precludes the setting of Counterexample 1.

When the adversary is g-restricted, it is straightforward to achieve CPR bounds that are
sublinear in T and depend exponentially on m. However, throughout our paper we interested
in efficiently minimizing CPR, which means we desire bounds that scale polynomially with
m. Unfortunately, there exist online learning games where the adversary is m-memory
bounded and g-restricted, but it is impossible to efficiently minimize CPR. We demonstrate
this in the following counterexample, which holds even in the full information feedback
model (as opposed to just bandit feedback).

Counterexample 2. Let X = {x1, x2}. Sample a tuple b of length m − 1 uniformly at
random from Xm−1. Define gx1 : ∪m

m′=1Xm′ → [0, 1] as

gx1(a1:m′) = 1 if m′ < m and gx1(a1:m) = 1 −
m−1∏
i=1

I (ai = bi) .

Also define gx2 = 1. Via the base functions gx1 , gx2 we define the adversary’s loss functions
as

ft(a1:t) ≡ ft(at−m+1:t) = gat(at−m+1:t).

The policy that cyclically plays actions b1, b2 . . . bm−1, x1 suffers a loss of zero at least once
every m timesteps. Meanwhile, suffering zero loss for the player is at least as hard as
identifying b, and a standard “needle in the haystack” argument [DKWY20] shows that
this requires Ω̃(2m) timesteps. Hence we have that E [Rcp] = Ω̃(min{2m, T}/m), where the
expectation is over the sampling of b and the player’s (possibly randomized) strategy.

This counterexample demonstrates that even if the adversary is m-memory bounded and g-
restricted, any player suffers CPR that scales exponentially with m. So, further restrictions
on the adversary are necessary. A natural restriction is to enforce that each gx has special
structure. This is precisely the approach taken by works on rotting bandits [HKR16,
LCM17, SLC+19, SMLV20], improving bandits [HKR16], single peaked bandits [LHK21]
and congested bandits [ABGK22]. Concretely, these works use base functions {gx}x∈X that
have the following special “tallying” structure.
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Definition 4. An m-memory bounded and g-restricted adversary is said to be h-tallying, if
for each x ∈ X there exists hx : {1, 2 . . .m} → [0, 1] such that

ft(a1:t) ≡ ft(amax{1,t−m+1}:t) = gat(amax{1,t−m+1}:t) = hat

 t∑
t′=max{1,t−m+1}

I(at′ = at)

 .

As discussed by the aforementioned works, this tallying structure is often a natural model
in practice. For instance, Heidari et al. [HKR16] discuss a crowdsourcing setting where an
agency utilizes workers to repeatedly perform the same task (such as classifying images)
at each timestep. The agency picks a worker at each timestep, with the goal of picking a
sequence of workers that makes the fewest number of mistakes when performing the task.
Here, it is reasonable that an individual worker’s performance changes as an (unknown)
function of the number of times that the worker has already performed the task (for example,
due to fatigue), thus motivating the tallying structure.

We emphasize that in addition to assuming the adversary is h-tallying, the aforemen-
tioned works of Heidari et al. [HKR16], Levine et al. [LCM17], Seznec et al. [SLC+19],
Seznec et al. [SMLV20], Lindner et al. [LHK21] and Awasthi et al. [ABGK22] make sup-
plemental benign assumptions on the structure of the functions {hx}x∈X , as we detail in
Section 3.5. For instance, the rotting bandit setting of Heidari et al. [HKR16] assumes that
hx is an increasing function for each x ∈ X . Under this benign assumption, they provide
algorithms that efficiently minimize CPR. Notably, such strong assumptions on hx enable
this line of work to (often) tackle the case where m = T (although algorithms designed for
this case generally do not handle m < T ), and additionally enables these works to (often)
handle the more difficult scenario of when the losses are stochastically observed.

This exposes a gap in our understanding of when one can efficiently minimize CPR. In
particular, it remains unclear whether we can attain this goal for h-tallying adversaries
where we make no assumptions on the structure of each hx. This motivates the following
question.

Assume the adversary is m-memory bounded, g-restricted and h-tallying. Without any
assumptions on the functions {hx}x∈X , and in the bandit feedback model with (possibly)

stochastically observed losses, when is it possible to efficiently minimize the complete policy
regret?

The remainder of this paper is devoted to resolving this question. To this end, in the sequel
we define the tallying bandit, and provide upper and lower bounds on the achievable CPR
in this setting.

3.3 Tallying Bandits

Let us formally introduce the tallying bandit setting.
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Definition 4. An online learning game is an (m, g, h)-tallying bandit if the adversary is
m-memory bounded, g-restricted and h-tallying, and if after playing action at the player
observes a random variable h̃at(yt) ∈ [0, 1] satisfying

E
[
h̃at(yt)

]
= hat (yt) = gat(amax{1,t−m+1}:t) = ft(a1:t),

where yt =
∑t

t′=max{1,t−m+1} I(at′ = at).

We assume the cardinality K of the action set X is finite, and also that m is known
(although we discuss how to relax this in Section 3.6). With this definition of the setting in
hand, we can restate our goal of efficiently minimizing the CPR. Concretely, we desire an
algorithm, which when given an (m, g, h)-tallying bandit problem, has a CPR bound that
is polynomial in K,m and is sublinear in T . The tallying bandit strictly generalizes the
well studied stochastic multi armed bandit (sMAB) [LR85, ACBF02], simply via a choice
of m = 1. Hence, we generalize the study of sMAB to m > 1. We remark that tallying
bandit is a special case of the rested bandit, a general framework for nonstationary MAB
where the reward of an arm evolves when it is pulled, and we defer detailed discussion of
this to Section 3.5.

Recall that in sMAB, the optimal policy plays the same optimal arm at each timestep.
Hence, in sMAB obtaining zero constant action traditional regret is equivalent to obtaining
zero constant action policy regret and also zero CPR. Given that the tallying bandit is
highly structured and generalizes sMAB via m = 1, it is natural to question whether
minimizing constant action policy (or traditional) regret implies minimizing CPR. The
following counterexample answers this question in the negative when m > 1. More generally,
this counterexample shows that even when the adversary is restricted (as in tallying bandits),
minimizing the constant action policy (or traditional) regret can lead to solutions whose
cumulative loss is Ω̃(T ) larger than the minimum achievable total loss.

Counterexample 3. Let X = {x1, x2} and m = 2. Define hx1(1) = hx2(1) = 0 and
hx1(2) = hx2(2) = 1. A policy that fixes either of the two actions, and then plays this action
at every timestep, incurs cumulative loss T − 1 but has zero constant action policy regret
and zero constant action traditional regret. Meanwhile, the complete policy regret of this
policy is T − 1, since the optimal policy that alternates playing actions x1 and x2 incurs
zero cumulative loss.

Thus far, our motivation for the tallying bandit setting has been primarily theoretical, to re-
solve the gap in our understanding of when we can efficiently minimize CPR. Nevertheless, in
similar vein to Heidari et al. [HKR16], Lindner et al. [LHK21] and Awasthi et al. [ABGK22],
we believe that the tallying bandit is a simple approximation for various practical settings.
For instance, in recommender systems the reward associated with an action is rarely static,
because the stimulus of recommended content influences user preferences [CLA+03, SGR16].
Moreover, literature on psychology and cognition suggests that humans often forget prior
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stimuli and do not always encode them in permanent memory [Kla80, CM07]. Thus, one
way to model a user’s preferences is via an (unknown) function of the number of times
a content genre has been recommended in a recent time interval, motivating both the
h-tallying structure as well as bounded m. Nevertheless, the tallying bandit is just one
plausible model, and we suggest possible extensions in Section 3.6.

Let us now discuss potential avenues for efficiently minimizing CPR in tallying bandit
problems. One approach is to observe that any tallying bandit problem can be cast as
a reinforcement learning (RL) problem, where each state corresponds to a sequence of
actions taken in the last m timesteps. However, methods for solving such RL problems
typically scale with the cardinality of the state space [AMK13, AOM17, JAZBJ18], and
such approaches would suffer Ω̃(Km) CPR.

Hence it is necessary to leverage the additional properties of tallying bandit problems. To
gain intuition, let us consider the simplified setting of deterministic bandit feedback, where
for each t, a1:t ∈ X t the player observes ft(a1:t) with no noise. Since the loss functions ft
are fully defined by the functions {hx}x∈X , it is natural to consider the following algorithm,
which we denote ALGdet. First, the algorithm queries hx(y) at each (x, y) ∈ X ×{1, 2 . . .m}.
This yields full information about the loss functions ft. Then, the algorithm plans offline
an optimal sequence of actions for the remaining timesteps. ALGdet is formally specified as
Algorithm 4 in Appendix B.12, and the following result shows that its CPR is minimax
optimal (upto constant factors).

Proposition 1. Consider any (m, g, h)-tallying bandit problem with deterministic bandit
feedback. Then the complete policy regret of Algorithm 4 (ALGdet) is almost surely upper
bounded as Rcp ≤ (m + 1)K. Moreover, there exists an (m, g, h)-tallying bandit problem,
such that the (expected) complete policy regret of any (possibly randomized) algorithm on
this problem with deterministic feedback is lower bounded as E [Rcp] ≥ mK/128.

The proof of Proposition 1 is included in Appendix B.12. Due to the optimality of ALGdet

given deterministic feedback, it is reasonable to extend it to handle stochastic feedback.
One natural way to do so is via an “explore then exploit” modification, which has been
studied even for sMAB [Sli19]. Consider the following “explore then exploit” algorithm,
which we denote ALGstoch. It queries repeatedly to receive stochastic realizations of hx(y)
at each (x, y) ∈ X × {1, 2 . . .m}, and constructs tight confidence intervals for these hx(y).
It then uses these estimated values of hx(y) to plan offline an optimal sequence of actions
for the remaining timesteps. ALGstoch is provably efficient, in the sense that its CPR
is sublinear in T and polynomial in m,K. However, a standard argument [Sli19] shows
that the dependency on T for ALGstoch scales as Θ̃

(
T 2/3

)
, and it is unclear whether this

dependency is optimal for tallying bandits. In the forthcoming section, we show that this
dependency on T can be significantly improved.
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3.4 Main Results

We now turn to our main results. In Section 3.4.1, we formulate Algorithm 2, a method
designed for solving tallying bandit problems, and prove an Õ(mK

√
T ) upper bound on

its CPR, where Õ hides only logarithmic factors. In Section 3.4.2, we prove an Ω̃(
√
mKT )

lower bound on the CPR of any method designed to solve tallying bandit problems. This
shows that Algorithm 2 is nearly optimal.

3.4.1 Upper Bound

To formulate our algorithm for tallying bandits, it is natural to exploit the h-tallying
structure of the problem, by building estimates of hx(y) for each (x, y) ∈ X × {1, 2 . . .m}.
As discussed in Section 3.3, “explore then exploit” algorithms such as ALGstoch incur a
poor dependency on T . Instead, it is critical to balance exploration and exploitation, by
estimating hx(y) only by playing those actions that will not increase the regret too fast. To
this end, we introduce a key definition. Recall that a deterministic policy π is length T
sequence of actions. We say that a deterministic policy π is

√
T -cyclic if πk

√
T+t = πt for

each 1 ≤ t ≤
√
T and each 0 ≤ k ≤

√
T − 1. The basis for our algorithm relies on the key

claim that for any tallying bandit problem, there exists a
√
T -cyclic policy that is nearly

optimal. This claim is formalized as Lemma 3 in Appendix B.1.
Assuming this claim to be true, to solve tallying bandits it is tempting to leverage

algorithms designed for multi armed bandits with expert advice [ACBFS02], where we
treat each

√
T -cyclic policy as an expert. However, such an approach would only guarantee

Õ
(
T 3/4

)
CPR, since there are K

√
T experts. Instead, our algorithm draws inspiration from

the successive elimination (SE) algorithm, which has been applied to sMAB [EDMM02,
Sli19]. Before we apply SE in our setting, let us recall SE in the context of sMAB. The
method proceeds in epochs. Within each epoch s, it maintains a set As of feasible arms,
where an arm is feasible only if its estimated optimality gap lies within a confidence interval
of size Cs−1. The algorithm pulls each arm in As repeatedly to obtain a sharper estimate of
its optimality gap. Then the method uses these sharper estimates to prune As and create a
smaller set As+1, where As+1 contains only those arms in As whose estimated optimality
gap is smaller than some Cs < Cs−1.

To apply SE in our tallying bandit setting, we define the initial set A1 as the set of
all

√
T -cyclic policies, and treat each such policy to be analogous to an “arm” in sMAB.

Our aforementioned key claim ensures that there is some policy in A1 that is guaranteed
to be nearly optimal. However, there are two salient technical issues that prevent a naive

application of SE to solve tallying bandits. First, note that the cardinality of A1 is K
√
T .

This is too large to apply a traditional SE approach, since naively estimating the optimality
gap of each policy in As by repeatedly playing the policy and applying a concentration
inequality would incur large regret. To resolve this, we exploit the h-tallying structure
of the problem to modify SE, and estimate the optimality gap of each policy in As by
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iteratively estimating hx(y) for each (x, y) ∈ X × {1, 2 . . .m}. Second, note that unlike in
the sMAB, in the tallying bandit the prior history of actions affects the loss of the current
action, which biases the estimation of the optimality gap of the policies in As. To handle
this, we modify SE to incorporate an additional overheard step before the estimation, and
our proof shows that this overhead step removes the bias from the estimation without
incurring much additional regret.

Algorithm 2 Successive Elimination for Tallying Bandits (SE-TB)

Require: memory capacity m, time horizon T , failure probability tolerance δ ∈ (0, 1),
number of actions K

1: Define S = log2

( √
T

4Km + 1
)

.

2: Define ns = 2s, Ts = 2nsKm
√
T and Cs =

√
32Km
ns

√
T

log
(
2KmS

δ

)
.

3: Construct A1 to be the set of all
√
T -cyclic policies.

4: for s ∈ {1, 2 . . . S} do
5: for x ∈ X do
6: for y ∈ {1, 2 . . .m} do
7: Select πsxy ∈ argmaxπ′∈As

{Nxy(π′)}, where Nxy is defined in Eq. (5).
8: if Nxy(πsxy) = 0 then
9: Execute πsxy for 2ns periods and store nothing.

10: else
11: Execute πsxy for ns periods and store nothing.

12: Execute πsxy for ns periods and store {h̃x(y)s,k}nsNxy(πsxy)
√
T

k=1 .
13: end if
14: end for
15: end for
16: for π ∈ As do

17: Define µ̂s(π) =
∑

(x,y)∈X×{1,2...m}Nxy(π) 1
nsNxy(πsxy)

√
T

∑nsNxy(πsxy)
√
T

k=1 h̃x(y)s,k.

18: end for
19: Select π̂s ∈ argminπ∈As

µ̂s(π).
20: Construct As+1 = {π ∈ As s.t. µ̂s(π) ≤ µ̂s(π̂s) + 2Cs}.
21: end for

With this outline in mind, let us present our method, which is formalized in Algorithm 2.
To define Algorithm 2, we say that to execute a

√
T -cyclic policy π for k ≤

√
T periods means

to choose the action sequence π1, π2 . . . πk
√
T . We also define for each

√
T -cyclic policy π and

(x, y) ∈ X ×{1, 2 . . .m}, the quantity Nxy(π) via the following procedure. Execute π for n+
1 ≤

√
T periods so that we have played the action sequence π1 . . . πn

√
T , πn

√
T+1 . . . π(n+1)

√
T .
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Then use this action sequence to define

Nxy(π) =
1√
T

(n+1)
√
T∑

t=n
√
T+1

I(πt = x) · I

y =
t∑

t′=max{1,t−m+1}

I(πt′ = x)

 . (5)

Intuitively, Nxy(π) is the fraction of times that the player (stochastically) observes the loss
value hx(y) when they repeatedly play the

√
T -cyclic policy π. In Lemma 2 in Appendix B.1,

we show that if m ≤
√
T , then as long as n ≥ 1, the number Nxy(π) is well defined and

independent of n, and also independent of any action sequence that was played before
we executed π for n + 1 periods. It suffices to consider tallying bandit problems where
m ≤

√
T (as we show in our proofs). Hence, lines 11 and 12 in Algorithm 2 are well defined,

because when we execute π for 2ns ≥ 2 periods, then in the latter ns ≥ 1 periods we observe
(stochastic instantiations of) the loss value hx(y) for a total of nsNxy(π)

√
T times, and

we have denoted these observations as {h̃x(y)s,k}nsNxy(πsxy)
√
T

k=1 . Note that various steps in
Algorithm 2, such as line 7, require knowledge of Nxy(π), but this can be computed offline
when m is known. Indeed, the only steps of Algorithm 2 that are online (or incur regret)
are lines 9, 11 and 12. Let us now analyze the performance of Algorithm 2.

Theorem 1. For any (m, g, h)-tallying bandit problem and any input δ ∈ (0, 1), with
probability at least 1− δ the complete policy regret of Algorithm 2 (SE-TB) is upper bounded
as

Rcp ≤ 1200Km
√
T
(√

log (2Km log(T )/δ) + log2

(√
T/(2Km)

))
.

The proof of Theorem 1 is deferred to Appendix B.1. This result guarantees that given
any tallying bandit problem, Algorithm 2 efficiently minimizes CPR, with a favorable
dependency on m,K, T . Nevertheless, we acknowledge that our result has the following
two limitations.

Knowledge of m. Algorithm 2 requires m as an input, which is unrealistic in practice. It
is possible to modify Algorithm 2 to be adaptive to an unknown m, albeit at the expense of
polynomially worse (and not sharp) dependency on m,K. Our focus is on obtaining a sharp
characterization of the achievable CPR when m is known, and so we relegate discussion
of this modification to Section 3.6. Sharply characterizing the minimax CPR when m is
unknown remains an important open question.

Computational Efficiency. Algorithm 2 is computationally inefficient. We emphasize that
our exclusive focus is on statistical (rather than computational) efficiency, since our work is
only a first step. We believe this is a worthwhile endeavor, since attaining sublinear CPR is a
non-trivial task riddled with subtleties, even in settings that make much stronger assumptions
than we do. For instance, the improving [HKR16] and single peaked [LHK21] bandit settings
enforce m = T , require monotonicity and convexity conditions on {hx}x∈X , and also require
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the losses are observed deterministically. Even with these strong requirements, the best
known CPR guarantees are asymptotic bounds that may decay arbitrarily slowly, and
their algorithms cannot handle m < T . Hence we believe that our effort to provide nearly
optimal non-asymptotic bounds on the CPR, in our realistic and practically motivated
setting where m ≤ T and losses are observed stochastically, is worthwhile. Nevertheless,
devising computationally efficient algorithms for the tallying bandit remains an important
future direction, and we believe this is a non-trivial task. Indeed, even for the congested
bandit [ABGK22], which is the tallying bandit with the additional strong assumption that
{hx}x∈X are increasing, existing algorithms are computationally inefficient.

3.4.2 Lower Bound

It is reasonable to question whether the dependency of Algorithm 2 on m,K, T is optimal.
Since the tallying bandit is equivalent to sMAB when m = 1, a classical result [Sli19] shows

that any tallying bandit algorithm suffers Ω̃
(√

KT
)

expected CPR. However, the correct

dependency on m is unclear when m > 1, due to the highly structured nature of the tallying
bandit. For instance, the proof of Theorem 1 shows that any tallying bandit problem can be
equivalently cast as a Markov decision process (MDP), where it takes at most m timesteps
to transition from any state to any other state in this MDP. One may wonder whether we
can utilize such structure to design a smarter algorithm that exchanges the multiplicative
dependence on m in the result of Theorem 1 for an additive dependence on m. Concretely,

one may desire a bound that scales as Õ
(

poly(m,K) + K
√
T
)

. The following result shows

that this is impossible.

Theorem 2. There exists an (m, g, h)-tallying bandit problem and a numerical constant
c > 0, such that the (expected) complete policy regret of any (possibly randomized) algorithm
on this problem is lower bounded as

E [Rcp] ≥ c · max
{
mK,

√
mKT

}
.

The proof of Theorem 2 is deferred to Appendix B.11. This result demonstrates that Algo-

rithm 2 is nearly minimax optimal, and its suboptimality is bounded by Õ
(√

mK log (T,m,K)
)

.

A comment on the proof technique of Theorem 2 is in order. Our proof reduces the tallying
bandit setting to that of best arm identification in sMAB problems [AB10, Sli19]. We
construct a tallying bandit problem where minimizing CPR is at least as hard as identifying
the best arm in an sMAB problem with Θ̃ (mK) arms. Indeed, when m = 1 then tallying
bandit is equivalent to sMAB, and Theorem 2 recovers the classical lower bound on the
expected regret suffered by any algorithm designed for sMAB with K arms. Notably, a
key component of our proof is to non-trivially upper bound the cumulative loss of the
optimal policy in our construction, to ensure that we get a multiplicative (in lieu of additive)
dependence on m in our lower bound.
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3.5 Related Work

Policy Regret. The incompatibility of the traditional regret with an adaptive adversary
was first identified by Merhav et al. [MOSW02], who studied the full information feedback
model. The notion of policy regret was formalized by the foundational work of Arora et
al. [ADT12]. They provide an algorithm which efficiently minimizes constant action policy

regret Rpol
Xconst

against generic m-memory bounded adversaries. It is unclear how to apply
this algorithm to our setting, since our focus is on minimizing the CPR Rcp. Arora et
al. [ADT12] do also consider minimizing the policy regret Rpol

CT when CT ⊋ Xconst. For
instance, when CT is the set of all piecewise constant sequences with at most s switches,
they provide an algorithm whose policy regret satisfies Rpol

CT ≤ Õ
(
m(Ks)1/3T 2/3

)
. Our

Counterexample 3 shows that this algorithm cannot minimize CPR in the tallying bandit
setting, since the optimal policy in Counterexample 3 has Θ̃(T ) switches. Cesa-Bianchi
et al. [CBDS13], Dekel et al. [DDKP14] and Arora et al. [ADMM18] study the constant
action policy regret, and do not discuss CPR. The results of Mohri and Yang [MY18] can
be extended to yield policy regret guarantees relative to rather large comparator classes,
but do not provide CPR guarantees.

Reinforcement Learning (RL). Minimizing CPR is equivalent to the performance metric
used in RL, which is to maximize the total collected reward [SB18]. As we show (see
Lemma 1), any tallying bandit problem can be cast as an RL problem. However, RL
methods typically scale with the cardinality of the state space [AMK13, AOM17, JAZBJ18].
Hence, applying off the shelf RL algorithms to solve tallying bandit problems would incur
Ω̃ (Km) CPR.

Restless & Rested Bandits. In restless bandits, the reward of an arm evolves according
to a stochastic process, independently of the actions chosen by the player [Whi81, GM11,
BGZ14]. This is incompatible with tallying bandits. By contrast, tallying bandits is a
special case of rested bandits, which is a general non-stationary MAB framework where an
arm’s reward changes when it is pulled. Tekin and Liu [TL12] and Cortes et al. [CDK+20]
both study rested bandits where an arm’s reward evolves according to a stochastic process,
but both consider notions of regret that are significantly weaker than the CPR. A different
variant of rested bandits is studied by Bouneffouf and Féraud [BF16], who assume that
the dynamics of how the reward changes is known upto a constant factor, and hence their
results are incomparable to ours.

Recharging, Recovering, Blocking, Delay-Dependent & Last Switch Dependent
Bandits. This line of work studies settings where an arm’s reward changes according to
the number of timesteps that have passed since the arm was last pulled [KI18, BSSS19,
PBG19, CCB20, LCCG21]. Such settings typically cannot be cleanly classified as either
rested or restless bandits, but are related to both. The models in these works for how the
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reward evolves are different than our tallying structure, where the reward of an arm instead
depends on the number of times that arm was played.

Rotting Bandits. The rotting bandits setting [HKR16, LCM17, SLC+19, SMLV20] is a
special case of our tallying bandit formulation, and merits close comparison to our work.
This setting enforces m = T , and an arm’s reward is assumed to be a decreasing function
of the number of times that arm has been pulled. In our language, this means the {hx}x∈X
functions are increasing. This strong assumption enables these works to efficiently minimize
CPR even though m = T , although we note that algorithms for this setting cannot handle
general m < T . By contrast, in our setting we make no assumptions on the structure of the
functions {hx}x∈X , and assuming m < T is necessary. Indeed, in our setting, when m is
Ω̃(T ) then the result of Theorem 2 shows that any player suffers Ω̃(T ) worst case CPR.

Improving & Single Peaked Bandits. The improving bandit [HKR16] and single
peaked bandit [LHK21] are both special cases of our tallying bandit setting, and deserve
special attention. In improving bandits, the reward of an arm is an increasing, concave
function of the number of times it has been pulled. The single peaked bandit generalizes
this, so that the reward function of an arm is initially increasing and concave, but may
become decreasing at some point. In our language, this means that the {hx}x∈X functions
are decreasing and convex, or decreasing and convex and then possibly increasing after some
point. Both settings enforce m = T , and algorithms for these settings do not handle general
m < T . By contrast, since we make no assumptions on the structure of the functions
{hx}x∈X , our Theorem 2 shows that when m is Ω̃(T ) then the worst case CPR scales
as Ω̃(T ). We remark that the CPR bounds in these works are asymptotic, whereas we
provide non-asymptotic guarantees. We also remark that these works require the losses
to be observed deterministically, and they only provide a heuristic to handle stochastic
observations of the loss.

Congested Bandits. In concurrent work, Awasthi et al. [ABGK22] introduced the
congested bandit, which is a special case of the tallying bandit. Their formulation considers
arbitrary m ≤ T , and the reward of an arm is a decreasing function of the number of times
it has been pulled. Hence the congested bandit is the tallying bandit with the additional
assumption that the {hx}x∈X functions are increasing. This additional assumption enables

them to provide an Õ
(√

mKT
)

CPR bound, although we note that their algorithm is

computationally inefficient.

3.6 Discussion

In this paper, we studied conditions under which it is possible to efficiently minimize
CPR in online learning. To this end, it is necessary the restrict the adversary, and we
considered several natural restrictions on the adversary that have appeared in prior work.
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We then exposed a gap in our understanding of when it is possible to efficiently minimize
CPR. To resolve this gap, we introduced the tallying bandit setting, and formulated an

algorithm whose CPR (after discarding logarithmic factors) is w.h.p at most Õ
(
mK

√
T
)

.

We also provided a lower bound of Ω̃
(√

mKT
)

on the expected CPR of any tallying bandit

algorithm, demonstrating the near optimality of our method.
Our Algorithm 2 required as input the true value of m. In practice, this knowledge is

unrealistic, and one instead might only have an upper bound m on the true value of m.
Let us describe a modified version of Algorithm 2 that can be used in this setting. Recall
from the proof of Theorem 1 that Algorithm 2 proceeds in epochs, and in each epoch s it
stores a set As of policies whose (average) loss is Õ

(
2−sT−1/4

)
greater than that of the

optimal policy. Hence, for the setting with unknown m, we can run m instantiations of
Algorithm 2. After each epoch s, we identify the instantiation that has the policy with the
minimum estimated (average) loss, and denote this instantiation as ms. We then discard
those instantiations whose policies have (average) loss that is Ω̃

(
2−sT−1/4

)
greater than the

(average) loss of the best policy stored by ms. With such an approach, we are guaranteed
to never discard the instantiation corresponding to the true m. And via the techniques
used in the proof of Theorem 1, we can show that if we do not discard an instantiation
corresponding to m′ ̸= m, then playing policies stored by this instantiation does not incur

large regret. This approach yields a Õ
(√

T
)

upper bound on the CPR, at the expense of

polynomial factors of m,K.
A number of open directions remain. A natural open question is resolving the gap

between our upper and lower bounds on the achievable CPR in the tallying bandit. Sepa-
rately, although Algorithm 2 is nearly statistically optimal, it is computationally inefficient.
However, since the tallying bandit is highly structured, it is possible that the computational
efficiency of even our own Algorithm 2 can be improved. For instance, can we design a data
structure, which stores policies in a manner that allows efficient elimination of suboptimal
policies after each epoch? Devising computationally efficient algorithms for tallying bandits
is an important direction for future work. Finally, we view the tallying bandit as only a
first step towards modeling interactive settings like recommender systems. For example,
consider the following generalization of tallying bandits, where the loss of an action is a
function of a weighted sum of the number of times the action has been played in the past,
where more recent plays are given more weight. This naturally corresponds to a model of
human memory, where more importance is placed on more recent events. Can we design
efficient algorithms for such settings?
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4 Weighted Tallying Bandits: Overcoming Intractability via
Repeated Exposure Optimality

The content of this section is based on [MILS23].

Abstract

In recommender system or crowdsourcing applications of online learning, a human’s
preferences or abilities are often a function of the algorithm’s recent actions. Motivated
by this, a significant line of work has formalized settings where an action’s loss is a
function of the number of times that action was recently played in the prior m timesteps,
where m corresponds to a bound on human memory capacity. To more faithfully capture
decay of human memory with time, we introduce the Weighted Tallying Bandit (WTB),
which generalizes this setting by requiring that an action’s loss is a function of a
weighted summation of the number of times that arm was played in the last m timesteps.
This WTB setting is intractable without further assumption. So we study it under
Repeated Exposure Optimality (REO), a condition motivated by the literature on
human physiology, which requires the existence of an action that when repetitively
played will eventually yield smaller loss than any other sequence of actions. We study
the minimization of the complete policy regret (CPR), which is the strongest notion of
regret, in WTB under REO. Since the precise value of m is typically unknown, we assume
that we only have access to an upper bound M on m. We show that for problems with
K actions and horizon T , a simple modification of the successive elimination algorithm

has (upto a logarithmic factor) a CPR bound of Õ
(√

KT + (m + M)K
)

. Interestingly,

upto an additive (in lieu of mutliplicative) factor in (m+M)K, this recovers the classical
guarantee for the far simpler stochastic multi-armed bandit with traditional regret.
We additionally show that in our setting, any algorithm will suffer an additive CPR
factor of Ω̃ (mK + M), demonstrating that our result is nearly optimal. Our algorithm
is computationally efficient, and we experimentally demonstrate its practicality and
superiority over natural baselines in various simulation domains.

4.1 Introduction

When online learning algorithms are deployed in interactive applications, the algorithm’s
decisions impact the state of the environment. In turn, this impacts the quality of subsequent
decisions made by the algorithm. This is especially true in human-centered applications
such as recommender systems or crowdsourcing. For instance, consider a crowdsourcing
setting where at each timestep we want to select a worker to perform a task, without prior
knowledge of any worker’s ability. The task may be complex or require some fine-tuning, and
each worker might need a calibration period where they repeatedly perform the task, before
they start exhibiting their true performance. The existence of such a calibration period has
been extensively demonstrated in tasks that require visuomotor calibration [Ada61], such as
throwing darts [WHFM20] or shooting a basketball [PMR+20]. Hence, an algorithm that
asks workers to alternately perform the task, without intelligently allowing each worker time
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to calibrate themselves to the task, may bias its estimation of each worker’s true ability.
This interaction between an algorithm and its environment separates this scenario from
classical non-interactive frameworks such as the multi-armed bandit.

To capture one aspect of this interactivity, a significant research thrust in online learning
has studied settings where an action’s loss is described by the number of times that action
was recently played in the prior m timesteps [HKR16, LCM17, SLC+19, SMLV20, LHK21,
ABGK22, MLS22]. The quantity m typically corresponds to a bound on human memory
capacity or capability. For example, in the aforementioned scenario m would be the number
of timesteps required by a worker to fine-tune and calibrate themselves to the task, before
revealing their true ability.

Of course, such settings are an approximation to reality. For instance, psychological
research demonstrates that humans typically display a better memory for more recently
occurring events [Kla80, RVC16]. So if we play an action once in the previous m timesteps,
its impact on the present may greatly differ depending on whether it was played on the
previous timestep or m timesteps ago. In the context of the aforementioned crowdsourcing
setting, a worker may need a shorter calibration period if they performed the task on
the previous timestep, as opposed to many timesteps ago. However, prior formalizations
are oblivious to this difference. Motivated by these considerations, we make the following
contributions:

• We introduce the Weighted Tallying Bandit (WTB), which generalizes prior formal-
izations by requiring that an action’s loss is described by a weighted summation of the
number of times that action was played in the prior m timesteps. Since this setting
is dynamic and interactive, we eschew the traditional regret, and instead study the
minimization of the strongest notion of regret known as the complete policy regret
(CPR).

• We show that minimizing CPR in WTB is generally intractable. So we study it under
the additional condition of Repeated Exposure Optimality (REO), which enforces the
existence of an action that when repetitively played m times will yield smaller loss
than other action sequences. In the context of the aforementioned example, REO is
interpreted as the existence of a worker that once calibrated to the task, will perform
better than other (calibrated or uncalibrated) workers. We motivate this condition
via literature on human physiology.

• For WTB problems with K actions and horizon T that satisfy REO, and in the
regime where only an upper bound M on the true value of m is known, we show
that a slight modification of the classical successive elimination algorithm achieves a

CPR guarantee (upto a logarithmic factor) of Õ
(√

KT + (m + M)K
)

. Besides an

additive factor in (m+M)K, this matches the lower bound on the weaker traditional
regret of the stochastic multi-armed bandit (which is the special m = 1 case of WTB
with REO).
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• While one may desire an algorithm that is fully adaptive to m and requires no
such upper bound M , we show this is impossible. Concretely, we show that any
algorithm with sublinear CPR must require such an upper bound M , and then show
that a linear dependency on this input M is necessary. This implies a lower bound

of Õ
(√

KT + mK + M
)

on the achievable CPR of any algorithm in our setting,

highlighting our algorithm’s near optimality.

• Via diverse numerical simulations, we demonstrate our (computationally efficient)
method’s practicality and superiority over various baselines.

4.2 Problem Formulation

4.2.1 Weighted Tallying Bandit

We begin by formally introducing the Weighted Tallying Bandit as an online learning game
with bandit feedback over time horizon T , where the player has access to an action set
X with finite cardinality K. A long line of prior work has studied the scenario where an
action’s loss at any timestep is a function of the number of timesteps it was played in the
prior m timesteps [HKR16, LCM17, SLC+19, SMLV20, LHK21, ABGK22, MLS22]. We
refer to these settings as “tallying” settings. Our goal is to generalize this work, to the case
where an action’s loss is a function of a weighted tally of the number of times it was played
in the past m timesteps.

To this end, we first introduce some notation. Assume the player has played the game
for t timesteps, and for each timestep 1 ≤ t′ ≤ t the player plays action at′ . For a fixed
action x ∈ X , we define the vector yt,x,m ∈ {0, 1}m in a componentwise fashion as

yt,x,mi =

{
I(at−i+1 = x) if t− i + 1 ≥ 1

0 if t− i + 1 < 1
,

for each component 1 ≤ i ≤ m. Hence, the vector yt,x,m stores the timesteps where action x
was played in the previous m timesteps upto (and including) the current timestep t. With
this notation in hand, we are now in a position to formally define the Weighted Tallying
Bandit.

Definition 5 (Weighted Tallying Bandit (WTB)). An online learning game is said to
be an (m,w, h)-weighted tallying bandit with memory capacity m, if there exists an integer
m ≥ 1, a set of vectors {wx}x∈X ⊂ (0, 1]m, and a set of functions {hx}x∈X each mapping
from R to [0, 1], such that the following is true. For each x ∈ X , the expected loss incurred
at timestep t by playing action at = x is given by

hx

(
w⊤
x y

t,x,m
)
,

43



and the player observes as feedback a random observation h̃x(w⊤
x y

t,x,m) ∈ [0, 1], that is
independent of all other random observations, and satisfies

E
[
h̃x(w⊤

x y
t,x,m)

]
= hx

(
w⊤
x y

t,x,m
)
.

In general, the quantities m, {wx}x∈X , {hx}x∈X are all unknown, and the player only learns
about them via bandit feedback over time. When m = 1, then WTB recovers the stochastic
multi-armed bandit (sMAB) [LR85, ACBF02]. However, WTB with m ≥ 2 is often a better
model for human-centered applications that require calibration. To understand this, let
us concretize the crowdsourcing application introduced in Section 4.1. Assume that the
task to be performed is throwing a dart at a dartboard, and that each worker is a different
darts player. Without prior knowledge of any player’s true ability to hit the dartboard, our
goal is to discover which of the K players is the best, by picking (at each timestep) a player
to throw a dart and seeing whether they hit or miss. At first glance, this seems to be a
classical sMAB problem, where each player has some true ability, and each time we query a
player we (stochastically) observe their true ability.

Unfortunately, this sMAB formulation is agnostic to the calibration period that darts
players require before they can exhibit their true performance. The existence of such a
calibration period has been demonstrated in the literature on visuomotor calibration. For
instance, Wunderlich et al. [WHFM20] show that when professional darts players toss darts
in a row, the first toss is significantly less accurate than the remainder of the darts, although
the performance stabilizes after the first dart toss. They attribute this phenomenon to
the warm-up decrement [Ada61, AW93, Ans95], which describes the decline in performance
due to a break in a specific motor skill, as well as its recovery once the skill is resumed.
Simply put, a player performs better once they are “in motion” and have fine-tuned their
movement parameters after their first toss.

This phenomenon affects the design of algorithms for our darts setting, since we do not
observe the true performance of a dart player until after their first toss. Furthermore, this
cannot be resolved by simply having each player toss once, so that they are calibrated, and
then running a standard sMAB algorithm while assuming that the players stay calibrated
forever. Indeed, Wunderlich et al. [WHFM20] demonstrate that even small interruptions
in the dart tosses (such as the few seconds required for the player to retrieve their darts
from the board) can cause the player to “reset”, and subconsciously lose their fine-tuned
movement parameters. Hence, the sMAB is hence a poor model for this setting. By contrast,
the WTB with m ≥ 2 is a more faithful model, since m describes the number of times a
player must toss a dart in a row before we (stochastically) observe their true performance.
The “reset” phenomenon that exists in this motivating example (as well as our forthcoming
examples) requires that if we model this problem with WTB, then m should be non-trivially
smaller than the horizon T . We will assume this throughout our paper.

WTB more naturally models this phenomenon than the aforementioned tallying set-
tings [HKR16, LCM17, SLC+19, SMLV20, LHK21, ABGK22, MLS22], which are all special
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cases of the WTB where wx is the all ones vector 1⃗ for each x ∈ X . As a stylized example,
assume the task is shooting basketball free-throws, and that we need to find the best of
two players x1, x2. Consider two different sequences of selecting players — x1, x2, x1 versus
x2, x1, x1. Phatak et al. [PMR+20] show that players require a calibration period of length
at least 3 while shooting free-throws, and that their shooting performance monotonically
improves with each successive free-throw. This implies that picking x1, x2, x1 (i.e., x1 shoots,
then x2, then x1 again) will cause x1 to have a worse expected performance on her final
shot, relative to her performance if we select x2, x1, x1 (i.e., x2 shoots, then x1 shoots twice).
If we model this with WTB where m = 3 and wx = 1⃗, then we cannot distinguish these two
scenarios, since in both cases x1 shot twice in the past m timesteps. By contrast, WTB
with w ̸= 1⃗ allows us to model different losses for these two scenarios. For instance, if we
use the model wx1 = [1, 1/2, 1/4] and hx1(z) = 1 − z/3, then this model says that selecting
x2, x1, x1 will cause x1 to have better expected performance on her final shot than if we
selected x1, x2, x1.

More broadly, WTB significantly generalizes prior tallying settings, by allowing us to
better approximate the decay in memory strength that occurs with passage of time, that
has been documented extensively by studies on short and long term human memory [Kla80,
RVC16]. This more naturally models the human-centered applications that motivate tallying
settings. For instance, Malik et al. [MLS22] motivate their study via recommender systems,
arguing that recommended content impacts human preferences, and assume the quantity
m ≪ T bounds the length of time that a human remembers past recommendations. But
their formulation is agnostic to how recently a piece of content was recommended within
this window of length m. So if some content was recommended k times in the past m
timesteps, then their framework requires that this incurs the same loss regardless of the
ordering of those k recommendations. This is rather limiting, since human preferences
today may depend only mildly on recommendations that occurred Ω̃(m) timesteps ago.
Our WTB formulation is more fine grained, and allows for the possibility of different losses
incurred by each of the different orderings of those k recommendations.

4.2.2 Complete Policy Regret

A key property of WTB is that the loss incurred by an action depends on the past actions
of the algorithm. In such dynamic scenarios, it has been well established that the popular
traditional regret is inappropriate to measure the performance of an algorithm [ADT12].
Instead, one typically opts for the stronger notion of policy regret [CBDS13, ADMM18].
In line with prior work on tallying settings [HKR16, LCM17, SLC+19, SMLV20, LHK21,
ABGK22, MLS22], we study the minimization of the complete policy regret (CPR), which
is the strongest possible notion of regret. Given an (m,w, h)-weighted tallying bandit and
an algorithm that plays action sequence (a1, a2 . . . aT ) ∈ X T , the CPR Rcp of the algorithm

45



is defined as

Rcp =
T∑
t=1

hat

(
w⊤
aty

t,at,m
)
− min

(x1,x2...xT )∈XT

T∑
t=1

hxt

(
w⊤
xt
yt,xt,m

)
. (6)

Following prior convention, we refer to any length T sequence of actions (i.e., an element
of X T ) as a policy. The CPR is hence the cumulative loss experienced by the algorithm,
relative to the minimum loss achieved by the best policy in X T . Minimizing CPR is hence
equivalent to minimizing the cumulative expected loss of the algorithm, and we note that
this performance metric is identical to the one used in reinforcement learning [JAZBJ18,
WDYK20, IGS22]. If the CPR of an algorithm is sublinear in T and polynomial in m,K
then we say it has statistically efficient CPR.

Prior work has shown that in the case of WTB with wx = 1⃗ for each x ∈ X , without
any further assumption, there exists an algorithm with statistically efficient CPR [MLS22].
Unfortunately, the following result shows that such an algorithm does not exist in WTB
with wx ̸= 1⃗.

Proposition 2. For any m ≥ 1, there exists an (m,w, h)-weighted tallying bandit with
K = 2 such that the following is true. Any (possibly randomized) algorithm has expected
CPR satisfying E [Rcp] = Ω̃ (min{2m, T}/m).

The proof of Proposition 2 is deferred to Appendix C.3. At a high level, the proof shows
that if wx ̸= 1⃗ then hx can take on Ω̃ (2m) different values, and so discovering the optimal
sequence of actions requires Ω̃ (2m) queries. This result demonstrates that if we desire an
algorithm with statistically efficient CPR, then we must impose structure on the WTB
setting that restricts the set of optimal action sequences. We motivate and formalize such
structure in the sequel.

4.2.3 Repeated Exposure Optimality

To motivate additional structure in the types of problems that are modeled by WTB, we
recall the darts setting illustrated in Section 4.2.1. Notably, if we ask a player to toss darts
in a row, then on the first toss, their uncalibrated performance is poor and not necessarily
indicative of their subsequent performance. But on successive tosses after the first toss,
Wunderlich et al. [WHFM20] show that their calibrated performance stabilizes and is better
than the uncalibrated performance on the first toss. A similar observation holds for shooting
free-throws [PMR+20]. So if we let x⋆ ∈ X denote the player with the best calibrated
performance, then this implies that the calibrated performance x⋆ is better than not only
the calibrated performances of player x ̸= x⋆, but also the uncalibrated performances of all
players. We formalize this insight in the following condition.

Definition 6 (Repeated Exposure Optimality (α-REO)). An (m,w, h)-weighted
tallying bandit satisfies the Repeated Exposure Optimality condition with parameter α, if
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there exists an action x⋆ ∈ X , such that for each x ∈ X and each y ∈ {1} × {0, 1}m−1 we
have

hx⋆ (∥wx⋆∥1) ≤ hx

(
w⊤
x y
)

+ α.

The α-REO condition thus requires that there is some action x⋆ ∈ X , which when played
repetitively for at least m times in a row, will have smaller loss (upto the suboptimality
α) than other action sequences. Two remarks are in order, to understand this condition
in the context of prior work. First, observe that even when we additionally impose the
α-REO condition on WTB, the sMAB remains a special case of this setting via a choice of
α = 0,m = 1. Second, significant prior work on tallying settings has focused on when the
loss functions {hx}x∈X are monotonic. For instance, the improving bandit [HKR16] is a
special case of WTB under significant additional restrictions, including (but not limited to)
the facts that {wx}x∈X = {⃗1} and {hx}x∈X are decreasing. We note that this property of
decreasing {hx}x∈X functions is a special case of the 0-REO condition.

We have motivated REO via the warm-up decrement phenomenon that has been
extensively demonstrated in the psycho-physiological literature. And we believe REO may
also be relevant in other interactive settings such as recommender systems, as we discuss in
Section 4.6. Nevertheless, we acknowledge that our setting is ultimately a mathematical
abstraction that falls short of ground truth reality, and fails to model many subtleties that
make human-centered applications challenging. A complete formulation and study of all
these subtleties is beyond the scope of our paper, and we relegate discussion of important
avenues for future work to Section 4.6.

With the REO condition thus motivated and formalized, the following question is
natural:

Consider any (m,w, h)-weighted tallying bandit satisfying α-REO. Is there a
computationally efficient and practical algorithm that solves this problem with a statistically

efficient CPR guarantee?

The remainder of our paper’s analysis is devoted to answering this question.

4.3 Main Results

We present two categories of results. In Section 4.3.1 we present a statistically and
computationally efficient algorithm that can solve WTB problems satisfying REO. This
method requires only an upper bound M on the true memory capacity m, whose exact
value is often unknown. In Section 4.3.2, we show the impossibility of an algorithm that
is fully adaptive to an unknown m (i.e., does not require knowledge of an upper bound
M < T on m). We also show that if such an upper bound M < T on m is known, then the
dependency of our method on M is optimal.
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4.3.1 A Statistically & Computationally Efficient Algorithm

Before we present our algorithm, let us consider some natural approaches. Since the
WTB is a subclass of reinforcement learning (RL) problems, one may attempt to use RL
algorithms to solve it. But even when {wx}x∈X = {⃗1}, such algorithms will suffer Ω̃ (Km)
CPR [ABGK22, MLS22]. One may also attempt to extend the classical UCB algorithm
from sMAB to WTB as follows. Solve the problem in epochs of length m, where at the
beginning of each epoch, we select the action that minimizes the usual UCB estimate, and
then play it m times in a row instead of just once. Then we record the loss observed in the
most recent play, since this is an unbiased estimate of the action’s eventual loss, and use it
to update the action’s UCB estimate. While this seems like a reasonable heuristic, each
epoching has an m-length overhead which can substantially increase regret.

Algorithm 3 Successive Elimination for WTB

Require: upper bound M on memory capacity m, time horizon T , failure probability
tolerance δ ∈ (0, 1), number of actions K

1: Define S = log2
(

T
4KM + 1

)
.

2: Define A1 = X .

3: Define ns = KM2s/|As|, Ts = 2|As|ns and Cs =
√

32
ns

log
(
2KS
δ

)
.

4: for s ∈ {1, 2 . . . S} do
5: for x ∈ As do
6: Execute action x for ns ≥ m times and store nothing.
7: Execute action x for ns times and store {h̃x(∥wx∥1)s,k}ns

k=1.

8: Define µ̂s(x) = 1
ns

∑ns
k=1 h̃x(∥wx∥1)s,k.

9: end for
10: Select x̂s ∈ argminx∈As

µ̂s(x).
11: Construct As+1 = {x ∈ As s.t. µ̂s(x) ≤ µ̂s(x̂s) + 2Cs}.
12: end for

A different idea is to adapt algorithms from prior tallying settings for our problem. But
prior tallying settings that are most comparable to ours all have CPR bounds that scale
multiplicatively with m (see Section 4.5 for details). Our key theoretical contribution is
to demonstrate that due to the additional presence of REO, we can solve not just these
tallying settings but also WTB with a CPR guarantee that is only additive (in lieu of
multiplicative) in m. The algorithm that achieves this bound is a slightly modified version
of successive elimination (SE), and is presented in Algorithm 3. Our inspiration for this is
due to Malik et al. [MLS22], who adapt SE for their tallying bandit setting, although their
modification is more involved. By contrast, our modification is very simple, since REO
permits us to only estimate the eventual losses of each action. We now present our main
result, which bounds the CPR of this algorithm.
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Theorem 3. Fix any (m,w, h)-weighted tallying bandit problem satisfying Repeated Exposure
Optimality with parameter α. When Algorithm 3 is run with inputs M ≥ m and δ ∈ (0, 1),
then with probability at least 1 − δ it has complete policy regret upper bounded as

Rcp ≤ 4KM + Km log(T ) + 800

√
KT log

(
2K log(T )

δ

)
+ αT. (7)

The proof of Theorem 3 is deferred to Appendix C.1. Let us highlight some key aspects of
this result.

Comparison to sMAB & Tallying Settings. Recall that in the classical sMAB, which is

a special case of WTB with 0-REO via m = 1, any algorithm suffers Ω̃
(√

KT
)

traditional

regret. Theorem 3 thus shows that the much larger class of WTB with Õ
(√

K/T
)

-REO

problems can be solved with essentially this guarantee on CPR, upto a logarithmic factor
and an additive dependence on mK. Our guarantee scales more favorably than those
obtained for prior comparable tallying settings (see Section 4.5 for details).

Efficiency & Practicality. Algorithm 3 is computationally efficient and scalable. This
is in contrast to results on prior comparable tallying settings (see Section 4.5 for details).
Moreover, implementing Algorithm 3 does not require exact knowledge of unknown quanti-
ties such as {hx}x∈X , {wx}x∈X , α or m; an upper bound M on m suffices.

Statistical Optimality In Various Regimes. In the regime where m is known (so
M = m) and REO is satisfied with α = 0, the guarantee of Theorem 3 is optimal within
a single logarithmic factor. To see this, note that in the RHS of Eq. (7), the Km term
cannot be improved due to Proposition 1 of Malik et al. [MLS22], and the

√
KT term

is of course tight due to the classical sMAB lower bound. Moreover, when m is known

and REO is satisfied with α = Θ̃
(√

mK/T
)

, then the proof of Theorem 2 of Malik et

al. [MLS22] shows that there is a regime of non-trivial 0 < α ≪ 1 where the dependence on
αT in Theorem 3 cannot be improved, and so Theorem 3 is optimal (within a logarithmic
factor). We note that it is unclear whether the αT term in Eq. (7) is optimal for all
α > 0, and investigating this is an interesting future direction. We defer our investiga-
tion into the optimal dependency on M , in the regime where m is unknown, to Section 4.3.2.

The proof of Theorem 3 requires some care to ensure optimal dependencies, but the technique
is standard, and our contribution is not a novel analysis route. Rather, our contribution is
to demonstrate that a classical algorithm for the canonical sMAB can be easily adopted to
solve a much more general, and ostensibly more complex, class of problems that are very
well motivated in practice. The prior tallying settings that are comparable to our WTB
have inherent computational and statistical difficulties (see Section 4.5 for details). We
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believe that our formalization of REO and Theorem 3 is an important identification of well
motivated structure that permits statistically and computationally efficient solutions to
problems arising in interactive human-centered applications.

4.3.2 Adaptivity To Memory Capacity

While Algorithm 3 does not require knowledge of the true memory capacity m, it does
require an upper bound M on m. Theorem 3 suggests that the CPR of Algorithm 3
scales linearly in this input M , which is disadvantageous in scenarios where it is difficult
to non-trivially upper bound m. In general, we desire an algorithm which scales more
favorably (or not at all) with the input M . For instance, this could be achieved via an
algorithm that maintains a confidence interval of the true value m, and adaptively queries
to refine its estimate of m, in order to improve or remove its dependency on M . We now
show that such an algorithm cannot exist, even in the simpler “tallying setting” that is a
special case of WTB, and in the case when REO is satisfied with parameter α = 0.

To this end, we introduce some notation. For any positive integers T,M,K with M ≤ T ,
let UTBT,M,K denote the set of unweighted tallying bandit problems (i.e., WTB problems
where wx is the all ones vector for each action x), that each have horizon length T , number
of actions K, and memory capacity m ∈ {1, 2 . . .M}, and that satisfy 0-REO. For any
possibly randomized algorithm A and any unweighted tallying bandit problem tb, let mtb

denote the memory capacity of tb, and let Rcp(A, tb) denote the expected CPR of algorithm
A when it is used to solve tb. And for a choice of ϵ = (ϵ1, ϵ2, ϵ3) satisfying ϵ1, ϵ2 ∈ (0, 1) and
ϵ3 ∈ [0, ϵ2), and a choice of function f : R2 → R, let Aϵ,f be the set of algorithms A which,
when given as input any positive integers T,M,K with M ≤ T (and no other information),
satisfy for each problem instance tb ∈ UTBT,M,K that

E[Rcp(A, tb)] ≤ min
{
T/4, f(mtb,K)

(
T 1−ϵ1 + T ϵ3M1−ϵ2

)}
. (8)

An algorithm A in the set Aϵ,f thus has a benign dependence on M in the following
sense. When given any positive integers T,M,K with M ≤ T , and any problem instance
tb ∈ UTBT,M,K , the algorithm A does not a priori know the memory capacity mtb of tb,
and only knows the upper bound M . Nevertheless, the CPR of A when solving tb scales
sublinearly in the bound M . Unfortunately, the following result demonstrates that such an
algorithm does not exist.

Theorem 4. For each ϵ satisfying ϵ1, ϵ2 ∈ (0, 1) and ϵ3 ∈ [0, ϵ2), and each function f , the
corresponding set Aϵ,f is the empty set.

The proof is deferred to Appendix C.2. The result demonstrates a “price for adaptivity”
(see, for example, [LC18] for similar results in a different context), showing that if we only
have an upper bound M on the unknown true memory capacity, then any algorithm’s CPR
cannot be sublinear in both M and T . We concretize this via two salient corollaries. The
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following corollary is stated for the case when we have no non-trivial bound on the memory
capacity, or equivalently that M = T .

Corollary 1. Fix any function f : R2 → R. There is no (possibly randomized) algorithm
which has expected CPR bounded by õ(T )f(mtb,K) for each tb ∈ UTBT,T,K .

The result of Corollary 1 shows that it is impossible to have an algorithm whose CPR is
sublinear in T for all unweighted tallying bandit instances tb with horizon T that satisfy
0-REO, even at the expense of arbitrarily poor dependence on mtb,K. Thus, to obtain
a sublinear CPR guarantee of the sort afforded by Theorem 3, it is necessary to have
knowledge of some bound M < T on the true memory capacity. The next corollary is stated
for when we have a non-trivial bound M < T on the memory capacity.

Corollary 2. Fix any function f : R2 → R. There is no (possibly randomized) algorithm,
which given an input M , has expected CPR bounded by f(mtb,K) (õ(T ) + õ(M)) for each
tb ∈ UTBT,M,K .

The result thus shows that we cannot hope to have an algorithm with sublinear dependency
on both M and T for all unweighted tallying bandit instances tb with horizon T that
satisfy 0-REO, even at the expense of arbitrarily bad dependence on K,mtb. Note that
ignoring logarithmic factors, Theorem 3 shows that Algorithm 3 has CPR bounded by

Õ
(√

KT + K(M + m)
)

for each tb ∈ UTBT,M,K . Combined with our earlier discussion of

Theorem 3, Corollary 2 thus shows that any algorithm must suffer Ω̃
(√

KT + mK + M
)

CPR, highlighting the near optimality of Algorithm 3 for WTB problems satisfying 0-REO,
even in the regime when we only have an upper bound M on the unknown true memory
capacity.

4.4 Numerical Results

In this section, we evaluate the performance of Algorithm 3, which we denote SE, in different
domains which are modeled as WTB problems satisfying REO. In each domain, we compare
this performance to the following three baselines — (A) The EXP3 algorithm [ACBFS02],
which has sublinear traditional regret in our setting (B) The batched version of EXP3
described by Arora et al. [ADT12], denoted as EXP3B, which has a statistically efficient
CPR guarantee in our setting (C) The modified UCB algorithm described in Section 4.3.

4.4.1 Synthetic Loss Functions on Unweighted Tallying Bandit

We consider {wx}x∈X = {⃗1}, and fix some x⋆ ∈ X . We define hx = 0.5 for each x ∈ X ,
with the modification that hx⋆(∥wx⋆∥1) = 0.35. Hence, the losses are identical, except
until we play x⋆ at least m times, implying that this instance satisfies 0-REO. To de-
fine the feedback model, we require the random variable h̃x(w⊤

x y
t,x,m) has distribution
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Figure 5: We plot the expected CPR of each algorithm. In both plots, each datapoint is obtained
by averaging over 20 problem instances, and the shaded region depicts ±1 standard error around
the mean. In (a) we fix K = 5, m = 3 and M = 3. In (b) we fix m = 4 and T = 106.

Bernoulli(hx(w⊤
x y

t,x,m)). When m = 1, this is a hard instance for sMAB [Sli19], and UCB
is of course optimal. For m > 1, we note that the UCB variant will perform best in regimes
where hx ≈ hx(∥wx⋆∥1), since the loss incurred during steps of the m-length overhead are
nearly equivalent to the eventual losses of repetitively playing an action. Hence, we consider
our experimental design to be as favorable to the UCB variant as possible. In Figure 5a,
we plot the expected CPR of each method over time. As expected, SE outperforms each
baseline. In Appendix C.4.1, we present similar results for other choices of m,K,M , and
also present results for a problem where α-REO is satisfied with α > 0. Separately, we
study the deterioration of the performance of SE as a function of its input M , for the same
fixed m,T,K. In Figure 5b, we observe that the CPR of SE is at most a linear function
of M , as one would expect from Theorem 3. However, we also see that in several cases,
the scaling is sublinear and hence better than the worst case linear scaling predicted by
Theorem 3.

4.4.2 Synthetic Loss Functions on Weighted Tallying Bandit

We now consider a WTB problem satisfying REO where {wx}x∈X ̸= {⃗1}. We relegate the
discussion of the precise loss functions used to Appendix C.4.2. Since the optimal policy is
difficult to compute for this problem, the CPR is also difficult to compute. So in lieu of the
CPR, we plot the expected cumulative loss of each algorithm in excess of SE’s loss (hence
the CPR at any time is obtained by applying a constant shift to each algorithm’s excess
loss). The results are shown in Figure 6a, and demonstrate the superiority of our method
over the baselines.
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Figure 6: In (a), we plot as a function of time the expected cumulative loss of each algorithm in
excess of that of SE, in the WTB instance where {wx}x∈X ̸= {⃗1} described in Section 4.4.2, with
K = 5, m = 4 and M = 4. In (b), we plot as a function of time the expected CPR of each algorithm
in the simulated darts tournament described in Section 4.4.3, and truncate the y-axis below 102 for
illustrative purpose. In both (a) & (b), data is obtained by averaging over 20 problem instances,
and the shaded region depicts ±1 standard error around the mean.

4.4.3 Simulated Dart Throwing Tournament

Motivated by prior work showing the existence of a calibration period in motor tasks [Ada61,
PMR+20, WHFM20], we simulate a simplified dart throwing tournament with K = 20 play-
ers. As discussed in Section 4.2.3, Wunderlich et al. [WHFM20] show that while a player’s
first toss is uncalibrated and not necessarily indicative of their subsequent performance,
in immediately subsequent tosses the performance calibrates, stabilizes and is better than
that of the first toss. We model each (random) instance of the tournament as a WTB
with m = 2 and arbitrary w, where each player x ∈ X has expected loss function sampled
from hx(wx,1) ∼ Unif[0.68, 0.72] and hx(∥wx∥1) ∼ Unif[0.58, 0.62]. We obtained the bounds
for these distributions from Wunderlich et al. [WHFM20], who showed that most players’
average performance was concentrated in these intervals. To define the feedback model, we
require the random variable h̃x(w⊤

x y
t,x,m) has distribution Bernoulii(hx(w⊤

x y
t,x,m)). While

our experimental design eschews some real world subtleties that may occur while throwing
darts (for instance, missing a throw might affect the player’s confidence on the next throw),
we believe that it is a reasonable preliminary model for the calibration period required
to throw darts optimally. In Figure 6b, we plot the CPR of each method over time. As
expected, SE performs significantly better than each baselines.

4.4.4 Simulated F1 Tournament

In a Formula One (F1) tournament, the goal is to discover the fastest driver out of a set of
K drivers. Each driver in the tournament must complete a number of laps. We simulate a

53



modified version of an F1 tournament, where K = 2, and at each timestep we pick one of
the two drivers to complete a lap (i.e., only a single driver can be on the track at any given
timestep). After a lap is completed, we observe (a stochastic realization of) the driver’s lap
time.

Notably, a driver’s lap time depends on the number of laps they have previously
completed. To demonstrate this, we utilize F1 lap time data from 1950 to 2022 [Rao22]
to fit a probabilistic lap time model for each F1 driver (details of our probabilistic model
and data processing are provided in Appendix C.4.3). In Figure 7a, we illustrate our
probabilistic model of lap times for a typical driver pair, and show that their lap times
tend to decrease as the lap index increases. There are several plausible reasons for this; for
instance, the mass of the driver’s vehicle decreases with fuel consumption, and the driver’s
calibration to the race track improves. We thus argue that the sMAB is a poor model for
our F1 tournament. Instead it is better modeled as a WTB problem satisfying REO, and
our tournament’s goal is to discover the driver with the fastest calibrated lap time, which
we only observe after repeated exposure.

We simulate multiple instances of our modified F1 tournament, each with K = 2. The
two drivers for each instance are chosen such that their calibrated performance is difficult
to distinguish (details in Appendix C.4.3) Here, we present results for a single instance.
The results for other instances are presented in Appendix C.4.3. For this instance, we use
the probabilistic model depicted in Figure 7a to a create a WTB problem with K = 2
and m = 10. We maintain a tally of the number of times each driver was chosen in the
prior m timesteps. The loss associated with picking a driver is governed by the distribution
parameterized by our fitted probabilistic model. In particular, if we pick driver x and we
have picked them y times in the last m timesteps, then the instantaneous loss is sampled
from the distribution parameterized by our fitted probabilistic model for driver x at lap
index y. Note that in this setting, one has o(T ) CPR if and only if one plays the worse driver
o(T ) many times. In Figure 7b, we plot each method’s CPR over time for this tournament
instance, showing that SE outperforms the baselines. Similar results are observed for the
other tournament instances shown in Appendix C.4.3.

4.5 Related Work

Tallying Settings with m = T . A significant thrust of prior work studies tally-
ing settings that are special cases of WTB with {wx}x∈X = {⃗1}, and require that
m = T [HKR16, LCM17, SLC+19, SMLV20, LHK21, MTPR22]. Of course, to ensure
tractability they enforce various additional types of assumptions, typically in the form
of monotonicity on the {hx}x∈X functions. Results here do not apply to the case when
m < T , because m < T causes complications in the design of algorithms since an action’s
loss “resets” if it is not played. Since our paper is primarily motivated by applications
where m < T , we do not view these works as directly comparable to ours. Nevertheless,
we note that upto an additive factor in mK and a logarithmic factor, the CPR guaran-
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(a) Illustration of probabilistic lap time model.
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Figure 7: In (a), we depict our fitted probabilistic lap time model for two drivers in the 2001 German
Grand Prix. Our probabilistic model parameterizes a distribution over lap times for each lap index
from 1 to 10. The solid line depicts the mean of this distribution, for each lap index. The shaded
region contains ±2 standard deviations of this distribution, centered around the distribution’s mean.
The dotted points are the actual lap times. Note that all the lap times are normalized, so that each
lap time lies in the interval [0, 1] (see Appendix C.4.3 for details). In (b), we plot as a function of
time the expected CPR of each algorithm. Data is obtained by averaging over 20 problem instances,
each with K = 2, m = 10, M = 10 and T = 106, and the shaded region depicts ±1 standard error
around the mean.

tees in all these works generally scale less favorably than the rates provided by our Theorem 3.

Tallying Settings with m < T . A different body of prior work studies tallying settings
that are special cases of WTB with {wx}x∈X = {⃗1}, and like us, they are motivated by
applications where m < T [ABGK22, MLS22]. These settings are more comparable to ours,
since they do not enforce that m = T . The tallying bandit [MLS22] makes no assumptions

beyond {wx}x∈X = {⃗1}, and here any algorithm must suffer Ω̃
(√

mKT
)

CPR. They adapt

successive elimination, and our algorithm is heavily inspired by theirs. The congested
bandit [ABGK22] specializes the tallying bandit by requiring that the {hx}x∈X functions

are increasing, and even here the best known upper bounds scale as Õ
(√

mKT
)

. The best

CPR bounds of these settings thus seem to scale multiplicatively with m. Moreover, the
computational complexities of the best known algorithms in these settings scale exponen-
tially in T,m respectively. By contrast, our REO condition allows for a computationally
efficient algorithm achieving a statistically optimal CPR guarantee that is only additive in m.

Related Non-Tallying Settings. A massive body of work studies various settings where
the loss of each action evolves over time in some structured fashion, for instance, according
to some stochastic process or according to the number of timesteps since the action was
last played [Whi81, GM11, TL12, BGZ14, BF16, KI18, BSSS19, PBG19, CCB20, CDK+20,
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LCCG21]. The models for the evolution of loss in all these works are different than our
(weighted) tallying setting.

Policy Regret. Many works study policy regret against generic m-memory bounded adver-
saries, and their algorithms apply to our setting [ADT12, CBDS13, DDKP14, ADMM18,
MY18]. However, these results ignore the special weighted tallying structure that we
consider, and a direct application would result in a suboptimal CPR bound that is worse
than our Theorem 3.

4.6 Discussion

In this paper, we formulated the Weighted Tallying Bandit, which generalizes prior tallying
settings so that the loss at a timestep is a function of a weighted summation of the number of
times it was recently played. To ensure tractability in this challenging setting, we introduced
the Repeated Exposure Optimality condition, which we motivated via human-centered
applications where one’s best performance requires a calibration period before it stabilizes.
We showed that a simple modification of the classical successive elimination algorithm
achieves an optimal complete policy regret guarantee (upto a single logarithmic factor), and
our numerical results demonstrate its practicality, scalability and superiority over alternative
baselines. Finally, we showed that while our algorithm required as input a non-trivial upper
bound M < T on m, any algorithm that has sublinear CPR requires such an input, and
that our method’s dependency on this input M is optimal. Collectively, this implies our
algorithm’s CPR is optimal for WTB problems satisfying 0-REO.

We acknowledge our work has certain limitations. From a theoretical perspective, while

there is a regime of non-trivial α = Θ̃
(√

mK/T
)

(as discussed in Section 4.3.1) where

Theorem 3 is optimal and its dependence on α cannot be improved, it is unclear whether
this dependence is optimal for all values of α. Investigating this is an interesting direction
for future work.

More practically, a limitation of our WTB and REO setting is that while it is a reasonable
step to model the calibration period that arises before we see true best performance, it fails
to model many other subtleties that arise in the human-centered domains that motivate
our work to begin with. For instance, it is plausible that in more strenuous tasks, after
repeatedly performing a task for a long m < T , a calibrated individual may begin to
experience fatigue. In this case, the best model for losses associated with repeatedly playing
an action would be an initial period where the individual calibrates and their performance
improves to “sweet-spot”, but then their performance eventually deteriorates as fatigue
accumulates (this model is analogous to the m = T setting considered by [LHK21]). Our
setting can handle the initial period of calibration and performance improvement, but
cannot handle the latter phase of deterioration. We believe that exploring algorithms that
can handle this is a key direction for future work.

A different way to improve our model, is by studying more general settings where each
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action x is associated with its own memory capacity mx (instead of a single m for all
actions), or where the memory capacity of the problem changes with time. Can we design
algorithms that intelligently adapt to such complexities?

Our concrete motivating examples for the REO condition are primarily derived from
the psycho-physiological literature on the warm-up decrement phenomenon. Nevertheless,
we generally expect that it may additionally apply to other interactive settings such as
recommender systems. For instance, it is plausible that a user needs to see a type of content
multiple times before she decides her preferences for it, but if she is not shown the content
for a while, then she forgets its details and requires another exploratory calibration period
to re-affirm her preference for that content relative to more recent recommendations. In this
case, the goal is to explore the eventual preferences of the user, and then repetitively select
the item that the user eventually prefers the most. Such a setting would be a reasonable
application for WTB with REO. Quantitatively analyzing recommender system data, and
showing that such settings exist and can be modeled well by WTB with REO, is a very
interesting direction for future work with potentially broad practical impact.
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5 Specifying and Solving Robust Empirical Risk Minimiza-
tion Problems Using CVXPY

The content of this section is based on [LML+24].

Abstract

We consider robust empirical risk minimization (ERM), where model parameters
are chosen to minimize the worst-case empirical loss when each data point varies over a
given convex uncertainty set. In some simple cases, such problems can be expressed in
an analytical form. In general the problem can be made tractable via dualization, which
turns a min-max problem into a min-min problem. Dualization requires expertise and
is tedious and error-prone. We demonstrate how CVXPY can be used to automate this
dualization procedure in a user-friendly manner. Our framework allows practitioners to
specify and solve robust ERM problems with a general class of convex losses, capturing
many standard regression and classification problems. Users can easily specify any
complex uncertainty set that is representable via disciplined convex programming (DCP)
constraints.

5.1 Robust empirical risk minimization

Robust optimization is used in mathematical optimization, statistics, and machine learning,
to handle problems where the data is uncertain. In this note we consider the robust empirical
risk minimization (RERM) problem

minimize
∑n

i=1 supxi∈Xi
f(xTi θ − yi)

subject to θ ∈ Θ,
(9)

with variable θ ∈ Rd. Here, Θ ⊆ Rd is closed and convex, Xi ⊂ Rd is compact and convex
for each i = 1, . . . , n, f : R → R is convex and {xi, yi}ni=1 is a dataset. The objective is
to find θ ∈ Θ that minimizes the worst-case value of

∑n
i=1 f(xTi θ − yi) over all possible

xi in the given uncertainty sets Xi. Beyond convexity, we will assume that f is either
non-increasing, or f is non-decreasing on R+ and a function of the absolute value of its
argument, i.e., f(z) = f(|z|).

Examples. Our assumptions capture a wide range of loss functions in both regression
and classification, including the following.

• Finite p-norm loss. f(z) = |z|p for 1 ≤ p < ∞.

• Huber loss. f(z) = 1
2z

2 for |z| ≤ δ, and f(z) = δ|z| − δ2

2 for |z| > δ, where δ > 0 is a
parameter.

• Hinge loss. f(z) = max(0, 1 − z).
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• Logistic loss. f(z) = log(1 + exp(−z)).

• Exponential loss. f(z) = exp(−z).

Our formulation includes the case of using hinge, logistic, or exponential loss for binary
classification, by solving (9) with the transformed dataset {yixi, 0}.

5.1.1 Solving RERM problems

The problem (9) is convex, but not immediately tractable because of the suprema appearing
in the worst-case loss terms. It can often be transformed to an explicit tractable form that
does not include suprema.

Analytical cases. In some simple cases we can directly work out a tractable expression
for the worst-case loss. As a simple example, consider Xi = {xi | ∥xi − x̃i∥2 ≤ ρ}, where
ρ > 0. When f is non-increasing, the worst-case loss term is

sup
xi∈Xi

f(xTi θ − yi) = f(x̃Ti θ − yi − ρ∥θ∥2).

When f is non-decreasing on R+ with f(z) = f(|z|), the worst-case loss term is

sup
xi∈Xi

f(xTi θ − yi) = f(|x̃Ti θ − yi| + ρ∥θ∥2).

Both righthand sides are explicit convex expressions that comply with the disciplined convex
programming (DCP) rules. This means they can be directly typed into domain specific
languages (DSLs) for convex optimization such as CVXPY [DB16].

Dualization. For more complex uncertainty sets the problem (9) can still be transformed
to a tractable form, using dualization of the suprema apprearing in the worst-case loss
terms. This dualization process converts the suprema in (9) to infima, so that the problem
can be solved by standard methods as a single minimization problem. Unfortunately, this
dualization procedure is cumbersome and error-prone. Many practitioners are not well
versed in this procedure, limiting its use to experts. Moreover, a key step in this procedure
involves writing down a conic representation of Xi. Such a calculation is antithetical to the
spirit of DSLs such as CVXPY, which were introduced precisely to alleviate users of this
burden.

Automatic dualization via CVXPY. In this note we show how CVXPY can be used
to conveniently solve (9) with just a few lines of code, even when the uncertainty sets
Xi are complicated. We also demonstrate how DSP, a recent DSL for disciplined saddle
programming [SLB23] that is based on CVXPY, can solve the RERM problem (9) with

59



the same ease and convenience. In both approaches no explicit dualization is needed, and
the code is short and naturally follows the math. We demonstrate our approach with a
synthetic regression example that, however, uses real data, where the uncertainty sets are
intervals intersected with a Euclidean ball.

5.1.2 Previous and related work

Robust optimization and saddle problems. Robust optimization is an approach
that takes into account uncertainty, variability or missing-ness of problem parameters
[BTEGN09]. Saddle problems are robust optimization problems that include the partial
supremum or infimum of convex-concave saddle functions. While (9) is not a priori a
saddle problem, we can solve it via DSP [SLB23], a recently introduced DSL for saddle
programming.

RERM. In machine learning and statistics, it is common to learn a robust predictor or
classifier by solving (9) with appropriate choices of f,Xi [EGL97, XCM08, XCM09, BBC11].
When each Xi has benign structure, then (9) admits convenient reformulation for many
choices of f [BV04]. As an example, such reformulations have been applied to learn
linear regression functions when the feature matrix has missing data, and the features are
known to lie with high probability in an ellipsoid, so that (9) is easily written as an SOCP
[SBS06, AFG22]. However, when Xi is not a simple set such as an ellipsoid or box, then
prior techniques reformulate (9) by writing Xi in conic form and then dualizing [BTEGN09].

5.2 Reformulating the RERM problem

Throughout, our only requirement on the uncertainty sets Xi is that each is a compact,
convex set that can be expressed via DCP constraints. This includes canonical scenarios,
such as when Xi is a polytope, or is a norm ball centered at a nominal value. But it also
includes many complex uncertainty sets, such as the intersection of a norm ball and a
polytope. We now reformulate (9) in a manner that permits easy specification and solution
via CVXPY, under various monotonicity assumptions on f . Recall that the support function
of a non-empty closed convex set C is given by SC(θ) = sup{xT θ : x ∈ C}, which is a
fundamental object in convex analysis [BV04].

Introducing the epigraph variables c ∈ Rn, the problem (9) is straightforwardly equiva-
lent to

minimize
∑n

i=1 ci
subject to θ ∈ Θ,

supxi∈Xi
f(xTi θ − yi) ≤ ci, i = 1, . . . , n.

(10)

with variables c ∈ Rn, θ ∈ Rd. We now use the assumptions on f to rewrite the constraints
supxi∈Xi

f(xTi θ − yi) ≤ ci in a tractable form.
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Loss f is non-increasing. If f is non-increasing, then introducing an auxiliary variable
zi shows that

sup
xi∈Xi

f(xTi θ − yi) ≤ ci ⇐⇒ f

(
inf

xi∈Xi

xTi θ − yi

)
≤ ci

⇐⇒ inf
xi∈Xi

xTi θ − yi ≥ zi, f(zi) ≤ ci

⇐⇒ sup
xi∈Xi

−xTi θ + yi ≤ −zi, f(zi) ≤ ci.

So, after eliminating the epigraph variable c from (10), we have shown (9) is equivalent to

minimize
∑n

i=1 f(zi)
subject to θ ∈ Θ,

SXi(−θ) + yi ≤ −zi, i = 1, . . . , n,
(11)

with variables z ∈ Rn, θ ∈ Rd. Typical classification losses, such as the hinge, logistic and
exponential losses, are non-increasing.

Loss f is non-decreasing on R+ and f(a) = f(|a|). If f is monotone on nonnegative
arguments, and depends only on its argument through the absolute value, then introducing
the auxiliary variable zi shows that

sup
xi∈Xi

f(xTi θ − yi) ≤ ci ⇐⇒ f

(
sup
xi∈Xi

|xTi θ − yi|
)

≤ ci

⇐⇒ sup
xi∈Xi

|xTi θ − yi| ≤ zi, f(zi) ≤ ci

⇐⇒ sup
xi∈Xi

xTi θ − yi ≤ zi, sup
xi∈Xi

−xTi θ + yi ≤ zi, f(zi) ≤ ci.

So, after eliminating the epigraph variable c from (10), we have shown (9) is equivalent to

minimize
∑n

i=1 f(zi)
subject to θ ∈ Θ,

SXi(θ) − yi ≤ zi, i = 1, . . . , n,
SXi(−θ) + yi ≤ zi, i = 1, . . . , n,

(12)

with variables z ∈ Rn, θ ∈ Rd. Typical regression losses, such as p-norm and Huber losses,
satisfy this requirement on f .

CVXPY code. The robust constraints in (11) and (12) include suprema over Xi of
bilinear forms involving xi, θ. While this ostensibly requires dualization to handle, the
CVXPY transform SuppFunc allows one to easily specify the support function SC(θ) of a set
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C created via DCP constraints. Since this function is already implemented in CVXPY, we
can directly specify the robust constraints in (11) and (12) without additional reformulation
or dualization. As an example, we depict below the CVXPY code that specifies and solves
(12) with f = | · |2 and Θ = Rd, which is a robust least squares problem. For convenience,
we assume y has already been specified as y.

1 import cvxpy as cp

2 from cvxpy.transforms.suppfunc import SuppFunc

3

4 theta, z = cp.Variable(d), cp.Variable(n)

5 constraints = []

6

7 for i in range(n):

8 # Create variables for uncertainty set

9 x = cp.Variable(d)

10

11 # Construct uncertainty set containing x (filled in by user)

12 local_constraints = []

13

14 # Implement the support function of the uncertainty set

15 G1 = SuppFunc(x, local_constraints)(theta)

16 G2 = SuppFunc(x, local_constraints)(-theta)

17

18 # Store robust constraints

19 constraints.append(G1 - y[i] <= z[i])

20 constraints.append(G2 + y[i] <= z[i])

21

22 obj = cp.Minimize(cp.sum_squares(z))

23 prob = cp.Problem(obj, constraints)

24 prob.solve()

To fully specify the problem, the user only needs to describe the uncertainty set Xi for each
i = 1, . . . , n in Line 12, in terms of the x instantiated in Line 9. This is done exactly as one
would typically do for any Variable in CVXPY. If, for example, Xi was the intersection
of the Euclidean unit ball, the non-negative orthant, and the set of vectors whose first
coordinate is 0.25, then replacing Line 12 with the code block below is sufficient.

12 local_constraints = [x >= 0, cp.sum_squares(x) <= 1, x[0] == 0.25]

This manner of expressing Xi is thus natural, user-friendly and directly follows the math.
Alternatively, one may recognize that the constraints in (11) and (12) include the
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partial suprema of a convex-concave saddle function. Since DSP was designed to solve
saddle problems, and a bilinear function is an atom in DSP, we can use DSP to solve (11)
and (12) with the same convenience and ease. All that is required is importing DSP via
from dsp import *, and replacing lines 8-16 above with the code block below.

8 # Creating local variables for uncertainty set

9 x1, x2 = LocalVariable(d), LocalVariable(d)

10

11 # Create bilinear form of theta and x

12 g1, g2 = saddle_inner(theta, x1), saddle_inner(-theta, x2)

13

14 # Construct uncertainty set containing x (filled in by user)

15 local_constraints1 = []

16 local_constraints2 = []

17

18 # Take suprema over x

19 G1 = saddle_max(g1, local_constraints1)

20 G2 = saddle_max(g2, local_constraints2)

For the user’s convenience, in Appendix D we present a helper Python function that
automatically converts problems of the form (9) to problems of the form (11) and (12).

5.3 Example

We consider the problem of predicting nightly Airbnb rental prices in London, from different
features such as coordinates, distance from city center, and neighborhood restaurant quality
index. We will consider a simulated hypothetical case where we do not have full acess to the
rentals’ location. We will use robust regression to handle the uncertain location features.
We can then use uncertainty sets for the unknown locations, allowing us to illustrate the
ease of specifying RERM problems with our framework. This example is artificial, but does
use real original data. We do not advocate using robust regression in particular for this
problem; replacing each unknown location with a center of the uncertainty set performs
nearly as well as the best robust regression method, and is much simpler. The code to
reproduce this example is available at

https://github.com/cvxgrp/rerm_code.

Data. We begin with a curated dataset from London [GN21], and remove rentals with
prices exceeding 1000 Euros and those located more than 7 km from the city center, resulting
in a dataset of 3400 rows and 20 columns. We then remove categorical features and randomly
sub-sample to obtain a training set with 1000 data points and test data set with 500 data
points. The training feature matrix is X ∈ R1000×9, with rows xTi . The first two columns
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Figure 8: A visualization of Di and Si for a particular rental i. The large disk around the red dot
corresponds to Di. The square containing the blue dot corresponds to Si. The overlap of the square
and the disk corresponds to Di ∩ Si.

of X correspond to the longitude and latitude respectively. Our baseline predictor of rental
price is a simple linear ordinary least squares (OLS) regression based on all 9 features. Its
test RMS error is 138 euros.

Hidden location features. To illustrate our method, we imagine a case where rental
owners have elected to not release the exact longitude and latitude of their properties.
(While not identical to this example, Airbnb does in fact mask rental locations.) We grid
London into 1 km by 1 km squares, and for each rental only give the square Si it is located
in. This generates an uncertainty set for data point i given by

X S
i = {x ∈ R9 | x1:2 ∈ Si, x3:9 = Xi

3:9}.

We also know the distance of each rental from the city center c ∈ R2, denoted by di. Using
this, we can consider a more refined uncertainty set

X S∩D
i = X S

i ∩Di,

where Di = {x ∈ R9 | ∥x1:2 − c∥2 ≤ di}. See figure 8 for a visualization of these uncertainty
sets.

We solve (12) with squared loss f = | · |2 and the two choices of the uncertainty sets
described above. These choices correspond to using square or disk-intersected-with-square

64



S D S Drop
0

1

2

3

4

5

6

Pe
rc

en
ta

ge
 in

cr
ea

se
 in

 te
st

 e
rro

r o
ve

r O
LS

Figure 9: Excess test error in the Airbnb price prediction experiment.

uncertainty sets for the missing coordinates. Note that the square uncertainty set combined
with the quadratic loss is a special case where we can derive an analytical form for the
worst-case loss. However, the analytical form is lost once we intersect the square with the
disk.

Comparing the methods. We depict the performance of the two RERM predictors,
as well as a predictor that completely ignores coordinate information, in figure 9. Our
performance metric is the mean squared error on the test set, in excess of the baseline OLS
predictor trained on X without any missing entries.

We observe that the dropping scheme, denoted as Drop in figure 9, performs the worst.
The robust predictors that use square uncertainty sets (denoted as S) and the intersected
uncertainty sets (denoted as S ∩ D) outperform the others. The robust predictor that
uses uncertainty sets S ∩ D outperforms the robust predictor that uses only S. Indeed,
its performance is nearly as good as the OLS predictor baseline that has access to all the
columns of X. These intersected uncertainty sets are complex and do not admit the sort
of convenient reformulation afforded by using square or disk uncertainty sets. Yet, our
framework allows us to handle these uncertainty sets conveniently, and hence obtain less
conservative predictors.
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6 Conclusion

In this thesis, we considered the broad and challenging problem of ensuring that a ma-
chine learning system can learn and act reliably and efficiently in an uncertain stochastic
environment. We studied both statistical and also computational notions of efficiency, in
both the supervised learning and sequential decision making regimes. Since this problem is
intractable in the worst case, our primary focus was on determining structure that exists in
such environments, which would guarantee efficiency. We particularly emphasized structural
properties that are motivated by practical problems and arise in real world scenarios.

In the sequential decision making regime, our contribution was twofold. We considered
structure that appears in simple video games, that allows for a smaller effective planning
window. We used this to devise a statistically efficient reinforcement learning algorithm.
We then considered interactive feedback loops between an algorithm and a user, as occurs in
recommender systems. We formalized this structure by generalizing the classical stochastic
multi armed bandit to incorporate this interactivity, while also specializing the RL setting
to ensure tractability. We provided a statistically efficient and near optimal algorithm for
this problem, and under an additional assumption, we also provided a computationally
tractable method.

In the supervised learning regime, we considered robust empirical risk minimization,
when the loss function and uncertainty sets are convex. Under the assumption that these
uncertainty sets are guaranteed to contain the data and are independent from data point
to data point, we provided a practical framework based on CVXPY to specify and solve
such robust empirical risk minimization problems. Notably, a user can specify problems
involving very complicated uncertainty sets in just a few lines of code, in a convenient and
natural fashion that directly follows the math.

We believe that there are a number of interesting directions for future work. In the
sequential decision making regime, it would be interesting to see whether our notion of a
small effective planning window can be integrated into problems where hierarchical planning
is necessary. Are there practical problems where one can decompose the entire planning
problem into a sequence of larger steps, where each individual step can be formalized and
solved via our effective planning window framework? In the supervised learning regime, it
would be interesting to see whether our work can be extended to kernelized settings. Is
there a way to specify and solve the robust problem when the uncertainty sets are described
by some featurization, in a manner that does not require the feature map to be explicitly
computed, but instead only requires the specification of an appropriate kernel?

More broadly, we view this thesis as a stepping stone towards a foundational under-
standing of when machine learning systems can be successfully deployed in the real world.
Our approach emphasized formalizing structure that theoretically permits efficient learning
and decision making. While this approach is valuable, we believe that subsequent lines of
inquiry that utilize this approach should augment it with other perspectives. In particular,
the algorithms that exploit such formalized structure are not always very practical, even
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though on paper they are guaranteed to be efficient. We believe that the most fruitful
subsequent efforts will be those that first formalize structure and devise a theoretically
justified algorithm, and then use the insights gleaned during this process to relax this
provably efficient algorithm into one that is easily implementable, without compromising
significantly on its key efficiency properties.
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A Appendix for Section 2

A.1 Other Games Satisfying EPW

In this section, we shall verify that several other games besides Pong and Skiing satisfy
the EPW condition. In Appendix A.1.1 we will verify this for the Atari games Tennis
and Journey Escape. In Appendix A.1.2 we will verify this for the RL gaming benchmark
CoinRun [CKH+19], which is more complex than Atari.

A.1.1 Atari Games

Tennis. This game is very similar to Pong, and is depicted in Figure 10. Here the agent
controls the tennis player depicted at the top of the screen, who must hit the ball and
prevent it from crossing its boundary. It plays against a player which hits the ball back
according to a pre-specified stochastic decision rule (which is not trained). The agent loses if
the ball crosses its own boundary, and wins if it hits the ball past the opponent’s boundary.

The first two conditions of Generic Games are easy to verify. Note that the states in
Tennis are raw images, so F is defined by any state where the ball has crossed the agent’s
boundary since this corresponds to the agent losing. It is known that Atari can be solved
using a neural network policy [M+15], and this ensures that a policy class parameterized
by neural networks is indeed complete.

Figure 10: An image of the Atari Tennis game. The yellow player must move to hit the ball (the
white dot) while playing against the opposing blue player.

To ensure that Tennis satisfies the third condition, we need to design an appropriate
binary reward function. This is handled by redefining F to include any state s ∈ SH−1

where the ball has not crossed the opposing player’s boundary. Then one can simply assign
a reward of 1 to any state in SH−1 \ F , and 0 to all other states, as required by the Generic
Game condition. Hence, playing optimally in this Generic Game framework ensures the
ball has moved past the opponent’s boundary, corresponding to winning the game.

We now verify that Tennis satisfies the EPW condition with a relatively small value of
C. In Tennis, after the opposing player hits the ball, the agent must react to the trajectory
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of the ball and adjust its position accordingly to hit it. If it takes too long to react before it
starts adjusting its position, then it will be unable to reach the ball in time. More formally,
assume that at timestep t the paddle has not lost the game and the ball is moving towards
its boundary. At timestep t, the ball may be too close to the boundary, and so the agent
will not not have enough time to move its player fast enough in order to reach the ball in
time. However, at timestep t− C the ball is further away from the boundary, so the agent
has enough time to move its player appropriately in order to react, reach the ball and hit it
back. So at timestep t− C the agent lies in a safe state in S⋆, since it has enough time to
adjust its player and hit the ball back, and hence play optimally. Notably, if we let C ′ be
the number of timesteps it takes for the ball to traverse from one end of the screen to the
other, then C ≤ C ′. Hence, when H is large and the agent needs to control its player for
many rounds, then C is a constant independent of H.
Journey Escape. This game is similar to Skiing, and is depicted in Figure 11. In this
game, there are friendly and enemy objects. These objects come sequentially, and the agent
must dodge enemy objects and collide with friendly objects.

The first two conditions of Generic Games are easy to verify. Note that the states in
Journey Escape are raw images, so F is defined by any state where the agent has collided
with an enemy object or missed a friendly object. It is known that Atari can be solved
using a neural network policy [M+15], and this ensures that a policy class parameterized
by neural networks is indeed complete.

Figure 11: An image of the Atari Journey Escape game. The agent must avoid the enemy objects
on screen to avoid receiving a penalty, and must collide with other friendly objects (not depicted) to
increase the score.

To ensure that Journey Escape satisfies the third condition, we need to design an
appropriate binary reward function. This is done by ensuring that F includes any state
where the agent has collided with an enemy object or missed a friendly object, as described
above. Then one can simply assign a reward of 1 to any state in SH−1 \ F , and 0 to all
other states, as required by the Generic Game condition. Hence, playing optimally in this
Generic Game framework ensures the agent has avoided all enemy objects while colliding
with all friendly objects, corresponding to winning the game.

We now verify that Journey Escape satisfies the EPW condition with a relatively small
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value of C. As the objects come towards the agent, it must react appropriately to adjust
its position depending on whether the oncoming object is friendly or enemy. Let us focus
on the enemy object case, since the friendly object case is symmetric. Formally, assume
that at timestep t an enemy object is moving towards the agent. At timestep t, the object
may be too close to the agent, and so the agent will not not have enough time to move
away fast enough and get away from the enemy object. However, at timestep t − C the
agent is further away from the enemy object, so the agent has enough time to move away
appropriately in order to react. So at timestep t− C the agent lies in a safe state in S⋆,
since it has enough time to adjust its position and hence play optimally. Notably, if we let
C ′ be the number of timesteps it takes for the agent to traverse from one end of the screen
to the other, then C ≤ C ′. Hence, when H is large and the agent needs to play for many
rounds, then C is a constant independent of H.

A.1.2 CoinRun

CoinRun is a recent RL gaming benchmark [CKH+19], and is depicted in Figure 12. In
any CoinRun instance, an agent must move right and jump to avoid obstacles, which are
sometimes randomly moving, until it arrives at a coin. It receives unit reward if it reaches
the coin, and zero reward otherwise. If it collides with an obstacle then the game is over.

The first two conditions of Generic Games are easy to verify. Note that the states in
CoinRun are raw images, so F is defined by any state where the agent has collided with an
obstacle, as well as any state s ∈ SH−1 where the agent has not already reached the coin.
It is known that CoinRun can be solved using a neural network policy [CKH+19], and this
ensures that a policy class parameterized by neural networks is indeed complete.

Figure 12: An image of the CoinRun game. The agent must move towards the coin while avoiding
obstacles.

Note that the third condition of Generic Games is automatically satisfied by the reward
function we described above. This is because the game already has a binary reward function,
with unit reward for reaching the coin and completing the game, and zero reward otherwise.
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To verify the EPW condition, note that the agent must react to obstacles which move
towards it. Formally, assume that at timestep t an obstacle is moving towards the agent.
At timestep t, the obstacle may be too close to the agent, and so the agent will not not
have enough time to move away fast enough and get away from the obstacle. However, at
timestep t−C the agent is further away from the obstacle, so the agent has enough time to
move away appropriately in order to react. So at timestep t− C the agent lies in a safe
state in S⋆, since it has enough time to adjust its position and hence play optimally. In
this game, C is a small constant, since it only takes a few timesteps for the agent to have
enough time to move away from an oncoming obstacle.

A.2 Upper Bound Proof

In this section we will prove Theorem 1. First, we shall develop notation and state some
helpful lemmas. We then present the proof of Theorem 1, and return to complete the
proofs of the lemmas.

Recall that Algorithm 1 iteratively constructs a new θ(t) after each timestep in its inner
loop. So after t iterations of its inner loop, the algorithm has constructed θ(t). For each
t ∈ {0, 1 . . . H − 2} define the function Lt : Θ → R as follows:

Lt(θ) = |A|C+1 · Eτ∼π(θ(t))

Ist+1+C∈F

C∏
j=0

π
at+j
st+j (θ)


Here, the expectation is over the sampling of trajectories τ from policy π(θ(t)), where

τ =
{

(sh, ah)H−1
h=0

}
. So for each t ∈ {0, 1 . . . H − 2}, the function Lt is associated with the

quantity θ(t) that has been constructed by Algorithm 1. Observe that the function L̂t

defined in the inner loop of Algorithm 1 is the empirical version of Lt. Also recall the
definition of θ̂t from Eq. (2).

We now define the notation Pθ(E | X) to denote the probability of event E occurring when
using policy π(θ), conditioned on executing π(θ) from the state X. We now state a key
lemma, which is essential to our proof of Theorem 1.

Lemma 1. For any (M, π(Θ)) satisfying the EPW condition, and θ(t) constructed by
Algorithm 1 for any t ∈ {0, 1 . . . H − 2} when given sample size n, assume that
Pθ(t)(st ∈ S⋆ | s0) ≥ 1 − α for some α ∈ (0, 1). Then the event

Pθ(t+1)(st+1 /∈ S⋆ | s0) ≤ 2|A|C+1

√
log(2/δ′)

n
+ α
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holds with probability at least 1 − δ′
(

1 + 16
√

n
log(2/δ′)CϕB

)k

.

Simply put, the lemma shows the following. Assume that up till timestep t, Algorithm 1
has computed a policy which arrives at a state in S⋆ with high probability. Then at
timestep t + 1 it will compute a policy which arrives at a state in S⋆ with only slightly
worse probability. We shall return to prove this lemma in Appendix A.3.1. Let us now
prove Theorem 1.

A.3 Proof Of Theorem 1

Note that by definition of a Generic Game, V s0
M(π(θ⋆)) = 1. Furthermore we have

V s0
M(π(θ)) = Pθ(sH−1 ∈ SH−1 −F | s0)

≥ Pθ(sH−1 ∈ S⋆ | s0)

where the equality is by the definition of the binary reward function in Generic Games, and
the inequality is since the MDP is partitioned into disjoint levels and additionally because
S⋆ ⊆ S − F . It is hence to sufficient to show that Algorithm 1 returns θ ≡ θ(H − 1)
satisfying

Pθ(H−1)(sH−1 ∈ S⋆ | s0) ≥ 1 − ϵ (13)

with probability at least 1 − δ. We shall devote the remainder of the proof to this.

Let δ′ be some real number in the interval (0, 1), whose precise value we will specify later.
For each t ∈ [H], let us define Et to be the event that Algorithm 1 constructs θ(t) satisfying

Pθ(t)(st /∈ S⋆ | s0) ≤ t · 2|A|C+1

√
log(2/δ′)

n
. (14)

Let Pn denote the randomness of Algorithm 1, which manifests due to sampling of
trajectories at each timestep of the inner loop of the algorithm. We claim that

Pn(∩j≤tEj) ≥ 1 − t · δ′
(

1 + 16

√
n

log(2/δ′)
CϕB

)k

(15)

for each t ∈ [H]. We will prove this by strong induction, repeatedly using Lemma 1 and
union bounding to obtain the desired estimate.

For the base case at timestep t = 0, notice we trivially have Pθ(0)(s0 ∈ S⋆ | s0) = 1, since

s0 ∈ S⋆ by definition of θ⋆. This implies Eq. (14). In particular, we have Pn(E0) = 1,
verifying Eq. (15) when t = 0.
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Now for the inductive step, assume that for some t we have

Pn

(⋂
j≤t Ej

)
≥ 1 − t · δ′

(
1 + 16

√
n

log(2/δ′)CϕB

)k

. Then by conditioning on
⋂
j≤t

Ej and

applying Lemma 1, we obtain that the event

Pθ(t+1)(st+1 ∈ S⋆ | s0) ≥ 1 − 2|A|C+1

√
log(2/δ′)

n
− t · 2|A|C+1

√
log(2/δ′)

n

= 1 − (t + 1) · 2|A|C+1

√
log(2/δ′)

n

holds with probability at least 1 − δ′
(

1 + 16
√

n
log(2/δ′)CϕB

)k

. Note that the above

equation exactly matches Eq. (14), so conditioned on
⋂
j≤t

Ej we have shown

Pn(Et+1) ≥ 1 − δ′
(

1 + 16
√

n
log(2/δ′)CϕB

)k

. Applying a union bound, we have shown that

Pn

 ⋂
j≤t+1

Ej

 ≥ 1 − (t + 1) · δ′
(

1 + 16

√
n

log(2/δ′)
CϕB

)k

,

which thus verifies Eq. (15) and hence the inductive step. We have therefore shown that
Algorithm 1 constructs θ(H − 1) satisfying

Pθ(H−1)(sH−1 ∈ S⋆ | s0) ≥ 1 − 2H|A|C+1

√
log(2/δ′)

n

with probability at least 1 −Hδ′
(

1 + 16
√

n
log(2/δ′)CϕB

)k

. To show that the above

equation exactly matches Eq. (13), we need only check that our choice of n yields the
desired values of ϵ and δ.

To obtain our choice of n, we first set 2H|A|C+1
√

log(2/δ′)
n = ϵ. This yields

n =
4H2|A|2C+2

ϵ2
log

(
2

δ′

)
⇐⇒

√
n

log(2/δ′)
=

2H|A|C+1

ϵ
. (16)

Next, we make the substitution

δ = Hδ′
(

1 + 16

√
n

log(2/δ′)
CϕB

)k

,
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which results in

δ = Hδ′
(

1 +
32H|A|C+1

ϵ
CϕB

)k

,

implying that

δ′ = δ

(
H

(
1 +

32H|A|C+1

ϵ
CϕB

)k
)−1

.

Substituting the above expression for δ′ into the first equivalence of Eq. (16), we finally get

n =
4H2|A|2C+2

ϵ2

(
log

(
2H

δ

)
+ k log

(
1 +

32H|A|C+1CϕB

ϵ

))
,

and this completes the proof.

A.3.1 Proof Of Lemma 1

To facilitate our proof, we first state the following useful lemma. Recall the definition of θ̂t
from Eq. (2).

Lemma 2. For any (M, π(Θ)) satisfying the EPW condition, and θ(t) constructed by
Algorithm 1 for any t ∈ {0, 1 . . . H − 2} when given sample size n, assume that
Pθ(t)(st ∈ S⋆ | s0) ≥ 1 − α for some α ∈ (0, 1). Then the event

Est∼π(θ(t))

[
P
θ̂t

(st+C+1 ∈ F | st)
]
≤ 2|A|C+1

√
log(2/δ′)

n
+ α

holds with probability at least 1 − δ′
(

1 + 16
√

n
log(2/δ′)CϕB

)k

.

We will return to prove Lemma 2 in Appendix A.3.2. For now, let us return to the proof of
Lemma 1. By the result of Lemma 2, the event

Est∼π(θ(t))

[
P
θ̂t

(st+C+1 ∈ F | st)
]
≤ 2|A|C+1

√
log(2/δ′)

n
+ α

holds with probability at least 1 − δ′
(

1 + 16
√

n
log(2/δ′)CϕB

)k

. Let us denote this event as
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E . Then on this event, we have

Est∼π(θ(t))

[
P
θ̂t

(st+1 /∈ S⋆ | st)
]

= Est∼π(θ(t))

[
P
θ̂t

(st+1 /∈ S⋆ ∧ st+C+1 ∈ F | st)

+ P
θ̂t

(st+1 /∈ S⋆ ∧ st+C+1 /∈ F | st)
]

(i)

≤ Est∼π(θ(t))

[
P
θ̂t

(st+C+1 ∈ F | st) + P
θ̂t

(st+1 /∈ S⋆ ∧ st+C+1 /∈ F | st)
]

(ii)

≤ 2|A|C+1

√
log(2/δ′)

n
+ α + Est∼π(θ(t))

[
P
θ̂t

(st+1 /∈ S⋆ ∧ st+C+1 /∈ F | st)
]

(iii)
= 2|A|C+1

√
log(2/δ′)

n
+ α.

Here, step (i) is trivial as P(A ∧B) ≤ P(A). Step (ii) follows from the definition of E , and
finally, step (iii) follows from the EPW condition and definition of C. It remains to note
that

Est∼π(θ(t))

[
P
θ̂t

(st+1 /∈ S⋆ | st)
]

= Pθ(t+1)(st+1 /∈ S⋆ | s0),

which follows directly from the definition θ(t + 1) = [θ̂0, θ̂1 . . . , θ̂t−1, θ̂t, θrand, . . . , θrand] and
the Law of Total Expectation.

A.3.2 Proof Of Lemma 2

To facilitate this proof, we first state the following two auxiliary lemmas.

Lemma 3. For any (M, π(Θ)) satisfying the EPW condition, and θ(t) constructed by
Algorithm 1 for any t ∈ {0, 1 . . . H − 2}, we have

Lt(θ) = Est∼π(θ(t)) [Pθ(st+C+1 ∈ F | st)] ,

where the expectation is taken with respect to the marginal distribution of st while sampling
trajectories from π(θ).

Lemma 4. For any (M, π(Θ)) satisfying the EPW condition, and θ(t) constructed by
Algorithm 1 for any t ∈ {0, 1 . . . H − 2}, the functions Lt, L̂t are each Lipschitz with
Lipschitz constant |A|C+1(C + 1)ϕ.

We shall return to prove these lemmas in Appendices A.3.3 and A.3.4 respectively. Let us
now return to the proof of Lemma 2. Recall from Lemma 3 that

Est∼π(θ(t))

[
P
θ̂t

(st+C+1 ∈ F | st)
]

= Lt(θ̂t). So it is sufficient to show that the event

Lt(θ̂t) ≤ 2|A|C+1

√
log(2/δ′)

n
+ α
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holds with probability at least 1 − δ′
(

1 + 16
√

n
log(2/δ′)CϕB

)k

, and we will devote the

remainder of the proof to showing this. First, we use the characterization of Lt derived in
Lemma 3 to show the helpful fact that

Lt(θ
⋆) = Est∼π(θ(t)) [Pθ⋆(st+C+1 ∈ F | st)]

= Est∼π(θ(t)) [Pθ⋆(st+C+1 ∈ F | st)Ist∈S⋆ + Pθ⋆(st+C+1 ∈ F | st)Ist /∈S⋆ ]

= Est∼π(θ(t)) [Pθ⋆(st+C+1 ∈ F | st)Ist /∈S⋆ ]

≤ α,

(17)

where the final equality follows from the definition of S⋆ and the inequality follows from
the assumption that Pθ(t)(st ∈ S⋆ | s0) ≥ 1 − α.

By the Regularity of π(Θ), we are guaranteed that Θ is contained in the Euclidean ball of
radius B. For any γ > 0, we use N (γ) to denote a minimal γ-covering of Θ. Recall that

Θ ⊂ Rk. Also recall the standard fact [Ver18] that |N (γ)| ≤
(

1 + 2B
γ

)k
.

Now for any fixed θ ∈ N (γ), we know from Hoeffding’s inequality that the bound

|L̂t(θ) − Lt(θ)| ≤ |A|C+1

2

√
log(2/δ′)

n
(18)

holds with probability at least 1 − δ′. Hence, applying a union bound, we know that the
above bound holds for every θ ∈ N (γ) with probability at least

1 − δ′|N (γ)| ≥ 1 − δ′
(

1 + 2B
γ

)k
.

For any θ ∈ Θ, let θγ be an element of N (γ) such that ∥θ − θγ∥2 ≤ γ. We now argue that

with probability at least 1 − δ′
(

1 + 2B
γ

)k
, any θ ∈ Θ satisfies the bound

|L̂t(θ) − Lt(θ)|
(i)

≤ |L̂t(θ) − L̂t(θγ)| + |L̂t(θγ) − Lt(θγ)| + |Lt(θγ) − Lt(θ)|
(ii)

≤ 2|A|C+1(C + 1)ϕγ + |L̂t(θγ) − Lt(θγ)|
(iii)

≤ 2|A|C+1(C + 1)ϕγ +
|A|C+1

2

√
log(2/δ′)

n
,

where step (i) follows from the triangle inequality, step (ii) is due to the Lipschitz property
of Lt, L̂t we derived in Lemma 4, and step (iii) is due to Eq. (18). Now set

γ = 1
4(C+1)ϕ

√
log(2/δ′)

n . Then the bound

|L̂t(θ) − Lt(θ)| ≤ |A|C+1

√
log(2/δ′)

n
(19)
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holds for uniformly for each θ ∈ Θ with probability at least 1− δ′
(

1 + 16
√

n
log(2/δ′)CϕB

)k

.

Let E denote the event that Eq. (19) holds uniformly for each θ ∈ Θ.

We now use this uniform bound to control the quantity Lt(θ̂t). Concretely, on the event E
we have that

Lt(θ̂t) = Lt(θ̂t) − L̂t(θ̂t) + L̂t(θ̂t) − L̂t(θ
⋆) + L̂t(θ

⋆)

(iv)

≤ Lt(θ̂t) − L̂t(θ̂t) + L̂t(θ
⋆)

(v)

≤ |A|C+1

√
log(2/δ′)

n
+ L̂t(θ

⋆),

where step (iv) follows from the definition θ̂t ∈ argminθ L̂t(θ), and step (v) follows from
Eq. (19). To obtain control on Lt(θ̂t), it remains to bound L̂t(θ

⋆). Simply observe that on
the event E we have

L̂t(θ
⋆) = L̂t(θ

⋆) − Lt(θ
⋆) + Lt(θ

⋆)

(vi)

≤ |A|C+1

√
log(2/δ′)

n
+ Lt(θ

⋆)

(vii)

≤ |A|C+1

√
log(2/δ′)

n
+ α.

Steps (vi) and (vii) follow from Eq. (19) and Eq. (17) respectively. Putting the previous
two equations together and recalling the definition of E , we have demonstrated that the
bound

Lt(θ̂t) ≤ 2|A|C+1

√
log(2/δ′)

n
+ α

holds with probability at least 1 − δ′
(

1 + 16
√

n
log(2/δ′)CϕB

)k

. As argued earlier, this is

sufficient to complete the proof.

A.3.3 Proof Of Lemma 3

Recall that notation τ =
{

(sh, ah)H−1
h=0

}
. Also recall from Algorithm 1 that at timestep t

onwards, π(θ(t)) executes θrand, implying it selects actions uniformly at random regardless
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of the state. This fact allows us to decompose Lt(θ) as follows

Lt(θ) = |A|C+1 · Eτ∼π(θ(t))

Ist+1+C∈F

C∏
j=0

π
at+j
st+j (θ)


= |A|C+1 · Est∼π(θ(t))

Eπ(θrand)

Ist+1+C∈F

C∏
j=0

π
at+j
st+j (θ)

∣∣∣∣∣∣ st


= Est∼π(θ(t))

[
Eπ(θ)

(
Ist+1+C∈F

∣∣ st
)]

= Est∼π(θ(t)) [Pθ(st+C+1 ∈ F | st)] .

This completes the proof.

A.3.4 Proof Of Lemma 4

We first note that the product of m ≥ 2 functions {fi}mi=1 which are bounded by 1 and
Lipschitz continuous with constant L is also Lipschitz continuous with constant mL. This
can be proved by induction. Consider the base case when m = 2. For any x, y in the
domain, we have

|f1(x)f2(x) − f1(y)f2(y)| = |f1(x)f2(x) − f1(x)f2(y) + f1(x)f2(y) − f1(y)f2(y)|
(i)

≤ |f1(x)| |f2(x) − f2(y)| + |f2(y)| |f1(x) − f2(y)|
(ii)

≤ |f2(x) − f2(y)| + |f1(x) − f1(y)|
(iii)

≤ 2L∥x− y∥2,

where in steps (i), (ii) and (iii) we have used the triangle inequality, the fact that f1, f2
are bounded by 1 and the Lipschitz continuity of f1, f2 respectively.

Now assume that g[k] = f1 . . . fk is Lipschitz continuous with constant kL for some k ≥ 2.
Following the same steps from above, we see that g[k]fk+1 is (k + 1)L-Lipschitz. This
completes the proof of the fact.

We now prove the statement of the lemma. Let θ, θ′ be two distinct policy parameters. For
any h ∈ [H], we have

∣∣Lh(θ) − Lh(θ′)
∣∣ = |A|C+1 ·

∣∣∣∣∣∣Eτ∼π(θ)

Ist+1+C∈F

C∏
j=0

π
at+j
st+j (θ)

− Eτ∼π(θ)

Ist+1+C∈F

C∏
j=0

π
at+j
st+j (θ′)

∣∣∣∣∣∣
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= |A|C+1 ·

∣∣∣∣∣∣Eτ∼π(θ)

Ist+1+C∈F

 C∏
j=0

π
at+j
st+j (θ) −

C∏
j=0

π
at+j
st+j (θ′)

∣∣∣∣∣∣
(iv)

≤ |A|C+1 · Eτ∼π(θ)

Ist+1+C∈F

∣∣∣∣∣∣
C∏

j=0

π
at+j
st+j (θ) −

C∏
j=0

π
at+j
st+j (θ′)

∣∣∣∣∣∣


(v)

≤ |A|C+1 · Eτ∼π(θ)

[
Ist+1+C∈F ·

(
(C + 1)ϕ∥θ − θ′∥2

)]
≤ |A|C+1(C + 1)ϕ∥θ − θ′∥2.

Step (iv) is due to Jensen’s inequality, and step (v) is due the Lipschitz continuity of a
product of Lipschitz continuous functions bounded by 1 which was shown earlier. Since the
functions are policy probabilities, they are bounded by 1, and are also ϕ-Lipschitz due to
the Regularity of π(Θ).

Analogously, we can show the Lipschitz continuity of L̂h for any h ∈ {0, 1 . . . , H − 2}, by
replacing the expectation with the empirical average over trajectory samples, and this
completes the proof of the Lemma.

A.4 Lower Bound Proof Sketch

As discussed earlier, this result follows almost directly from the results of Du et
al. [DKWY20], and so we only sketch the proof. First we note it is well known that
softmax linear policies are Lipschitz [AKLM20]. In our proof, we use Θ as the scaled unit
ball in Rk, where the scaling factor is polynomial in H,A. Hence the policy class π(Θ) is
indeed Regular. For the construction of M, we use the same construction that was given in
the proof of Theorem 4.1 in [DKWY20]. Recall this construction is defined by a horizon H
MDP M whose states, actions and transitions are defined by a binary tree with H levels.
There is a single state on the final level with unit reward, and all the other states in the tree
have zero reward. To cast this construction in our Generic Game framework, we only need
to make a slight modification. For each state on the penultimate level whose child does not
have reward, modify it transitions so that taking any action from here deterministically
exits the MDP. Then discard each of the now unreachable states on the final level, so the
final level only contains a state with unit reward. The set F is precisely defined by the
states on the penultimate level of the tree from where taking any action exits the MDP.
The binary rewards property is true by definition. And the complete policy class property
is true directly by the proof of [DKWY20]. Note here, that since we have a bounded Θ and
are using a softmax linear policy class π(Θ), the θ∗ does not lead to SH−1 −F almost
surely. However, since B is polynomial in H,A, using θ∗ will lead to SH−1 −F with
probability exponentially large in H. Our main Theorem 1 easily handles this.
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It remains to show the existence of f : Rd → R where f is a linear combination of two
neurons, and V ⋆

M(s) = f(s) for each s ∈ S. Again, this follows almost immediately from
the proof provided by [DKWY20]. Recall that for d sufficiently large, their proof
demonstrates the existence of θ⋆⋆ such that sT θ⋆⋆ = 1 if V ⋆

M(s) = 1 and sT θ⋆⋆ ≤ 0.25 if
V ⋆
M(s) = 0. It remains to observe that the function f defined as

f(x) = ReLU(2xT θ⋆⋆ − 1) − ReLU(−2xT θ⋆⋆ − 1)

exactly satisfies the claim.
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B Appendix for Section 3

B.1 Analysis of Algorithm 2

In this section, we analyze the complete policy regret of Algorithm 2, and prove Theorem 1.
Before we formally prove Theorem 1, we first state below two key lemmas, that will be
useful throughout. The first lemma shows an equivalence between tallying bandit problems
and Markov decision processes (MDPs) [SB18]. The second lemma verifies that the Nxy(π)
quantity defined in Algorithm 2 is well defined. We additionally introduce new quantities µ
and π⋆ which will be useful for our proofs. With this outline in mind, let us begin the
analysis.

Lemma 1. Any (m, g, h)-tallying bandit problem can be equivalently expressed as a finite
horizon Markov decision process (MDP).

The proof of this Lemma 1 is given in Appendix B.10. For the sake of brevity, we have not
stated the explicit details of the reduction (for instance, the definition of state space or
transition function of the corresponding MDP) in the statement of this lemma.
Nevertheless, these details are readily found in the proof.
Recall that in Section 3.4.1, to facilitate the definition of Algorithm 2 we defined the
quantity Nxy(π) via the following procedure. Execute π for n + 1 periods so that we have
played the action sequence π1, π2 . . . πn

√
T , πn

√
T+1 . . . π(n+1)

√
T . Then use this action

sequence to define

Nxy(π) =
1√
T

(n+1)
√
T∑

t=n
√
T+1

I(πt = x) · I

y =

t∑
t′=max{1,t−m+1}

I(πt′ = x)

 .

The next lemma shows that Nxy(π) is always well defined if 1 ≤ n ≤
√
T − 1 and m ≤

√
T .

Lemma 2. Consider any (m, g, h)-tallying bandit problem where m ≤
√
T , and fix any√

T -cyclic policy π, any x ∈ X and any y ∈ {1, 2 . . .m}. When defined via the
aforementioned procedure, the quantity Nxy(π) is well defined for any 1 ≤ n ≤

√
T − 1.

Furthermore, Nxy(π) is independent of any action sequence that was played before π was
executed for n + 1 periods.

The proof of this Lemma 2 is deferred to Appendix B.9. Now for each
√
T -cyclic policy π,

we define the quantity µ(π) as follows

µ(π) =
∑

(x,y)∈X×{1,2...m}

Nxy(π)hx(y).
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Via this definition and the result of Lemma 2, it is immediate that when m ≤
√
T , if we

play an arbitrary action sequence and then execute π for n + 1 periods, then the (expected)
cumulative loss experienced in the final period (i.e., the (n + 1)th period) is µ(π)

√
T . We

use this notion of µ to define the policy π⋆ as

π⋆ ∈ argmin
π∈A1

µ(π).

Recall for this definition that A1 as defined in Algorithm 2 is the set of all
√
T -cyclic

policies. With these definitions in hand, we are now in a position to formally prove
Theorem 1.

B.2 Proof of Theorem 1

First, we note that if m >
√
T , then the statement of the theorem is trivially true since the

complete policy regret is always upper bounded by T . Hence, for the remainder of the
proof it suffices to assume that m ≤

√
T . For any policy π, which is a length T

deterministic sequence of actions, let ℓt(π) denote the expected loss suffered at timestep t
while playing π. Our next lemma shows that for any tallying bandit problem, the loss
suffered by the optimal policy (i.e., the policy in X T that experiences the minimum
cumulative expected loss) can be well approximated by Tµ(π⋆).

Lemma 3. Given any (m, g, h)-tallying bandit problem, let π⋆⋆ denote an optimal policy in
X T . Then

Tµ(π⋆) −
T∑
t=1

ℓt(π
⋆⋆) ≤ (m + 1)

√
T .

The proof of Lemma 3 is deferred to Appendix B.8. Now let ℓs denote the loss experienced
in epoch s ∈ {1, 2 . . . S} of Algorithm 2. The following lemma bounds the cumulative loss
of Algorithm 2 relative to Tµ(π⋆).

Lemma 4. Assume that m ≤
√
T . With probability at least 1 − δ, the total loss of

Algorithm 2 relative to Tµ(π⋆) can be upper bounded as

S∑
s=1

ℓs − Tµ(π⋆) ≤ Km
√
T

(
5 log2

( √
T

4Km
+ 1

)
+ 400

√
log

(
2Km log(T )

δ

))
.

The proof of this Lemma 4 is provided in Appendix B.3. With the results of Lemma 3 and
Lemma 4 in hand, we now utilize them to prove Theorem 1 as follows. Note that the
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complete policy regret Rcp of Algorithm 2 satisfies

Rcp =

S∑
s=1

ℓs −
T∑
t=1

ℓt(π
⋆⋆)

=

S∑
s=1

ℓs − Tµ(π⋆) + Tµ(π⋆) −
T∑
t=1

ℓt(π
⋆⋆)

≤ Km
√
T

(
5 log2

( √
T

4Km
+ 1

)
+ 400

√
log

(
2Km log(T )

δ

))
+ (m + 1)

√
T

≤ 1200Km
√
T
(√

log (2Km log(T )/δ) + log2

(√
T/(2Km)

))
.

This completes the proof of Theorem 1. ■

B.3 Proof of Lemma 4

To facilitate the proof, we require the following critical lemma, which bounds the loss
incurred by Algorithm 2 in each epoch s ∈ {1, 2 . . . S}. For the statement of the following
lemma, note that completing any epoch s ∈ {1, 2 . . . S} takes a total of Ts = 2nsKm

√
T

timesteps.

Lemma 5. Assume that m ≤
√
T . With probability at least 1 − δ, we have simultaneously

for each epoch s ∈ {2, 3 . . . S} that the total loss relative to Tsµ(π⋆) is bounded as

ℓs − Tsµ(π⋆) ≤ Km
(√

T + 8ns

√
TCs−1

)
.

The proof of this Lemma 5 is provided in Appendix B.4. Observe that by the result of
Lemma 5, we are guaranteed with probability at least 1 − δ that

S∑
s=1

ℓs − Tµ(π⋆) =
S∑

s=1

(ℓs − Tsµ(π⋆))

≤ 4Km
√
T +

S∑
s=2

(ℓs − Tsµ(π⋆))

≤ 4Km
√
T +

S∑
s=2

Km
(√

T + 8ns

√
TCs−1

)
≤ 5SKm

√
T + 8Km

S∑
s=2

ns

√
TCs−1.

(20)
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Now substituting in the definitions

ns = 2s and Cs−1 =

√
32Km

ns−1

√
T

log

(
2KmS

δ

)
=

√
64Km

ns

√
T

log

(
2KmS

δ

)
,

which were provided in Algorithm 2, into the final term on the RHS of Eq. (20) yields that

8Km

S∑
s=2

ns

√
TCs−1 = 8Km

S∑
s=2

ns

√
T

√
64Km

ns

√
T

log

(
2KmS

δ

)

= 64K1.5m1.5

√
log

(
2KmS

δ

) S∑
s=2

ns

√
T

√
1

ns

√
T

= 64K1.5m1.5

√
log

(
2KmS

δ

)
T 1/4

S∑
s=2

√
ns

= 64K1.5m1.5

√
log

(
2KmS

δ

)
T 1/4

S∑
s=2

2s/2

≤ 400K1.5m1.5

√
log

(
2KmS

δ

)
T 1/42S/2.

Finally, we recall the definition of S = log2

( √
T

4Km + 1
)

to observe that

8Km
S∑

s=2

ns

√
TCs−1 ≤ 400K1.5m1.5

√
log

(
2KmS

δ

)
T 1/42S/2

= 400K1.5m1.5

√
log

(
2KmS

δ

)
T 1/4

√√√√( √
T

4Km
+ 1

)

≤ 400K1.5m1.5

√
log

(
2KmS

δ

)
T 1/4 T 1/4

√
Km

= 400Km

√
log

(
2KmS

δ

)√
T

≤ 400Km

√
log

(
2Km log(T )

δ

)√
T

(21)

Combining Eq. (20) with Eq. (21) yields the result. ■
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B.4 Proof of Lemma 5

To facilitate the proof, we leverage the following critical lemma, which bounds the gap of
the average value µ of policies in As versus µ(π⋆).

Lemma 6. Assume that m ≤
√
T . The event

∩S
s=1 ∩π∈As {µ(π) − µ(π⋆) ≤ 4Cs−1} ,

occurs with probability at least 1 − δ.

The proof of this Lemma 6 is provided in Appendix C.1.4. Let us now return to the main
proof. For ease in notation, let ℓsxy denote the total loss experienced in epoch s of
Algorithm 2 while executing the policy πsxy for 2ns epochs. Hence we have
ℓs =

∑
(x,y)∈X×{1,2...m} ℓ

sxy.
Note that within a single epoch s > 1, for each (x, y) ∈ X × {1, 2 . . .m} we execute the
policy πsxy for 2ns periods, where each period takes

√
T timesteps. Recall the fact that

when m ≤
√
T , if we play an arbitrary action sequence and then execute πsxy for n + 1

periods for n ≥ 1, then the (expected) cumulative loss experienced in the final period (i.e.,
the (n + 1)th period) is µ(πsxy)

√
T . In particular, this fact implies that if we execute πsxy

for 2ns periods, then the total loss experienced ℓsxy during these 2ns periods is upper
bounded by

ℓsxy ≤ µ(πsxy)
√
T (2ns − 1) +

√
T ≤ 2nsµ(πsxy)

√
T +

√
T .

Hence we can use Lemma 6 to upper bound

ℓsxy − 2nsµ(π⋆)
√
T ≤ 2nsµ(πsxy)

√
T +

√
T − 2nsµ(π⋆)

√
T

=
√
T + 2ns

√
T (µ(πsxy) − µ(π⋆))

≤
√
T + 8ns

√
TCs−1.

This bound holds uniformly for each (x, y) ∈ X × {1, 2 . . .m}, and hence we have that

ℓs − Tsµ(π⋆) =
∑

(x,y)∈X×{1,2...m}

(
ℓsxy − 2nsµ(π⋆)

√
T
)
≤ Km

(√
T + 8ns

√
TCs−1

)
.

This completes the proof. ■

B.5 Proof of Lemma 6

To facilitate the proof, we require the following two critical helper results. The first result
bounds the error incurred when estimating µ(π) via the stochastic realizations
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{
{h̃x(y)s,k}nsNxy(πsxy)

√
T

k=1

}
(x,y)∈X×{1,2...m}

. The second result shows that while running

Algorithm 2, which is based on successive elimination of inferior policies over epochs
s ∈ {1, 2 . . . S}, at any epoch s we never eliminate π⋆ from our set As of feasible policies.

Lemma 7. Assume that m ≤
√
T . Fix any s ∈ {1, 2 . . . S}, and let Bs denote the event

that for all π ∈ As we simultaneously have that

|µ̂s(π) − µ(π)| ≤ Cs.

Then Bs occurs with probability at least 1 − δ/S.

Lemma 8. Assume that m ≤
√
T . The event ∩S

s=1Bs, where the event Bs is defined in
Lemma 7, implies the event that

π⋆ ∈ ∩S
s=1As and ∩S

s=1 {0 ≤ µ̂s(π
⋆) − µ̂s(π̂s) ≤ 2Cs} .

The proofs of Lemma 7 and Lemma 8 are provided in Appendix B.6 and Appendix B.7
respectively.
Let us now return to the proof. By the result of Lemma 7 and a union bound, the event
∩S
s=1Bs occurs with probability at least 1 − δ. Furthermore, the result of Lemma 8 shows

that the event ∩S
s=1Bs implies the event

π⋆ ∈ ∩S
s=1As. (22)

So on the event ∩S
s=1Bs, note that for any s and any π ∈ As we have

µ(π) − µ(π⋆)
(i)

≤ µ̂s−1(π) − µ(π⋆) + Cs−1

(ii)

≤ µ̂s−1(π̂s−1) − µ(π⋆) + 3Cs−1

(iii)

≤ µ̂s−1(π
⋆) − µ(π⋆) + 3Cs−1

(iv)

≤ µ(π⋆) − µ(π⋆) + 4Cs−1

= 4Cs−1,

where step (i) follows from Lemma 7, step (ii) follows from the definition of As and the
fact that π ∈ As, step (iii) follows from the definition of π̂s−1 and Eq. (22), and step (iv)
follows again from Lemma 7 and Eq. (22). This completes the proof. ■
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B.6 Proof of Lemma 7

For the proof of this lemma, it is useful to define the quantity Csxy as

Csxy =

√
32

nsNxy(πsxy)
√
T

log

(
2KmS

δ

)
,

for each (s, x, y) ∈ {1, 2 . . . S} × X × {1, 2 . . .m}. Fix any (x, y) ∈ X × {1, 2 . . .m}. Note
that by Hoeffding’s bound [Hoe63], we are guaranteed that the event∣∣∣∣∣∣hx(y) − 1

nsNxy(πsxy)
√
T

nsNxy(πsxy)
√
T∑

k=1

h̃x(y)s,k

∣∣∣∣∣∣ ≤ Csxy, (23)

occurs with probability at least 1 − δ/(KmS). A union bound then ensures that the above
event occurs simultaneously for all (x, y) ∈ X × {1, 2 . . .m} with probability at least
1 − δ/S. We now claim that this (simultaneous) event is a subset of B, which is sufficient
to complete the proof.
To establish the claim, note that on this event, we are guaranteed for any π ∈ As that

|µ(π) − µ̂s(π)|

=

∣∣∣∣∣∣
∑

(x,y)∈X×{1,2...m}

Nxy(π)hx(y) −
∑

(x,y)∈X×{1,2...m}

Nxy(π)
1

nsNxy(πsxy)
√
T

nsNxy(πsxy)
√
T∑

k=1

h̃x(y)s,k

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(x,y)∈X×{1,2...m}

Nxy(π)

hx(y) − 1

nsNxy(πsxy)
√
T

nsNxy(πsxy)
√
T∑

k=1

h̃x(y)s,k

∣∣∣∣∣∣
≤

∑
(x,y)∈X×{1,2...m}

Nxy(π)Csxy,

where the final step follows from the triangle inequality and Eq. (23). Continuing the
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above, we have that

|µ(π) − µ̂s(π)| ≤
∑

(x,y)∈X×{1,2...m}

Nxy(π)Csxy

=

√
32

ns

√
T

log

(
2KmS

δ

) ∑
(x,y)∈X×{1,2...m}

Nxy(π)√
Nxy(πsxy)

(i)

≤
√

32

ns

√
T

log

(
2KmS

δ

) ∑
(x,y)∈X×{1,2...m}

√
Nxy(π)

(ii)

≤
√
Km

√
32

ns

√
T

log

(
2KmS

δ

)
= Cs,

where step (i) follows from the fact that Nxy(πsxy) ≥ Nxy(π) by its definition in
Algorithm 2, and step (ii) follows from the fact that Nxy(π) ∈ [0, 1], that∑

(x,y)∈X×{1,2...m}Nxy(π) = 1 as well as the Cauchy-Schwarz inequality. This establishes
the claim and hence completes the proof. ■

B.7 Proof of Lemma 8

Assume that the event ∩S
s′=1Bs′ is true. On this event, we prove the lemma by induction

on s. First we demonstrate the base case of s = 1, which is that π⋆ ∈ A1 and
0 ≤ µ̂1(π

⋆) − µ̂1(π̂1) ≤ 2C1. Then for the inductive step we show that if the event
π⋆ ∈ As−1 and 0 ≤ µ̂s−1(π⋆)− µ̂s−1(π̂s−1) ≤ 2Cs−1 occurs, then we also have that the event

π⋆ ∈ As and 0 ≤ µ̂s(π
⋆) − µ̂s(π̂s) ≤ 2Cs,

is also true.
For the base case, note that by definition we are guaranteed π⋆ ∈ A1. And by the
definition of π̂1, we know that 0 ≤ µ̂1(π⋆) − µ̂1(π̂1). Furthermore, recalling the definition of
the event B1 in Lemma 7, on the event B1 we have that

µ̂1(π
⋆) − µ(π⋆) ≤ C1 and µ(π̂1) − µ̂1(π̂1) ≤ C1.

Putting these equations together and using the fact that µ(π⋆) ≤ µ(π̂1) ensures that

µ̂1(π
⋆) − µ̂1(π̂1) ≤ 2C1.

This verifies the base case.
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For the inductive step, assume that π⋆ ∈ As−1 and 0 ≤ µ̂s−1(π
⋆) − µ̂s−1(π̂s−1) ≤ 2Cs−1

occurs. Then the definition of As and the inductive hypothesis directly imply that π⋆ ∈ As.
Hence, it is true by definition of π̂s that 0 ≤ µ̂s(π

⋆) − µ̂s(π̂s). Then recalling the definition
of the event Bs in Lemma 7, on the event Bs we have that

µ̂s(π
⋆) − µ(π⋆) ≤ Cs and µ(π̂s) − µ̂s(π̂s) ≤ Cs.

Putting these equations together and using the fact that µ(π⋆) ≤ µ(π̂s) ensures that

µ̂s(π
⋆) − µ̂s(π̂s) ≤ 2Cs.

This verifies the inductive step. As argued earlier, this is sufficient to complete the proof. ■

B.8 Proof of Lemma 3

Note that since µ(π⋆) ∈ [0, 1], the statement is trivial for m ≥
√
T . Hence, assume for the

remainder of the proof that m <
√
T . There exists some k ∈ {0, 1 . . .

√
T − 1} such that

(k+1)
√
T∑

t=k
√
T+1

ℓt(π
⋆⋆) ≤ 1√

T

T∑
t=1

ℓt(π
⋆⋆).

Define the
√
T -cyclic policy π by letting πt = π⋆⋆

k
√
T+t

for all 1 ≤ t ≤
√
T . Note that via the

MDP characterization provided in Lemma 1, we can equivalently think of the tallying
bandit problem as some MDP that we denote M . The proof of Lemma 1 shows that
regardless of the state we start at, either playing π1, π2 . . . πm or playing
π⋆⋆
k
√
T+1

, π⋆⋆
k
√
T+2

. . . π⋆⋆
k
√
T+m

leads to the same state in M . From that state, either playing

πm+1, πm+2 . . . π√T or playing π⋆⋆
k
√
T+m+1

, π⋆⋆
k
√
T+m+2

. . . π⋆⋆
(k+1)

√
T

leads to the same

sequence of states, and hence the same sequence of (expected) losses. Hence we have shown
that after a single first execution of π, we can bound the loss as

√
T∑

t=1

ℓk(π) ≤ m +

(k+1)
√
T∑

t=k
√
T+1

ℓk(π⋆⋆) ≤ m +
1√
T

T∑
t=1

ℓt(π
⋆⋆).

Repeating this argument for
√
T executions of π, we have shown that

T∑
t=1

ℓk(π) ≤ m
√
T +

√
T

(k+1)
√
T∑

t=k
√
T+1

ℓk(π⋆⋆) ≤ m
√
T +

T∑
t=1

ℓt(π
⋆⋆). (24)

Now, we observe that Tµ(π) ≤∑T
t=1 ℓk(π) +

√
T , where we used the fact that when

m ≤
√
T , if we play an arbitrary action sequence and then execute π for n + 1 periods for
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n ≥ 1, then the (expected) cumulative loss experienced in the final period (i.e., the
(n + 1)th period) is µ(π)

√
T . Finally, we note that µ(π⋆) ≤ µ(π) by definition, and so we

have that

Tµ(π⋆) ≤ Tµ(π) ≤
T∑
t=1

ℓk(π) +
√
T ,

which combined with Eq. (24) implies that

Tµ(π⋆) −
T∑
t=1

ℓt(π
⋆⋆) ≤ (m + 1)

√
T .

This completes the proof. ■

B.9 Proof of Lemma 2

To prove this result, we leverage the MDP characterization of tallying bandits provided by
Lemma 1. Let M denote the MDP corresponding to the given (m, g, h)-tallying bandit
problem. Note that by the proof of Lemma 1, and by the assumption that m ≤

√
T , after

executing π for n ≥ 1 periods we have arrived at the state (πn
√
T−m+1 . . . πn

√
T ). And since

π is
√
T -cyclic we are guaranteed that

(πn
√
T−m+1 . . . πn

√
T ) = (π√T−m+1 . . . π

√
T ).

So if we execute π for one more period (i.e., the (n + 1)th period) from this starting state,
then regardless of n we will observe an identical sequence of states, since the transition
function of the MDP M is deterministic. Hence, the quantity

(n+1)
√
T∑

t=n
√
T+1

I(πt = x) · I

y =

t∑
t′=max{1,t−m+1}

I(πt′ = x)

 ,

used to define Nxy(π) is independent of n, ensuring that Nxy(π) is well defined. It remains
to establish the claim that Nxy(π) is independent of the action sequence that was played
before π was executed for n + 1 periods. Denote this prior action sequence as a1:k for any
finite value of k. Note that regardless of what a1:k is, after we execute π for n periods we
still arrive at the state

(πn
√
T−m+1 . . . πn

√
T ) = (π√T−m+1 . . . π

√
T ),

in the MDP M . Then if we execute π for one more period (i.e., the (n + 1)th period) from
this starting state, then regardless of a1:k we will observe an identical sequence of states,
since the transition function of the MDP M is deterministic. This ensures that Nxy(π) is
well defined. ■
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B.10 Proof of Lemma 1

Given an (m, g, h)-tallying bandit problem, for ease in notation let the (finite) action set X
be denoted as {1, 2 . . .K}. To define the MDP M , let its state space be ({0} ∪X )m and let
its action space be X . Let the initial state be the length m vector (0, 0 . . . 0). For each
state s = (s1, s2 . . . sm) and action i, define the deterministic transition function
TM : ({0} ∪ X )m ×X → ({0} ∪ X )m of the MDP as

TM (s, i) = (s2, s2 . . . sm−1, sm, i).

Let the (finite) horizon of the MDP be the time horizon T of the tallying bandit problem.
Finally, define for each state s the (expected) reward function RM : ({0} ∪ X )m → [0, 1] of
the MDP as

RM (s) = 1 − hsm

(
m∑
t=1

I(st = sm)

)
.

It is immediate the taking actions in the tallying bandit problem corresponds to taking
actions in the state space of this MDP. ■

B.11 Proof of Theorem 2

First note that as an immediate consequence of Proposition 1, we must have
E [Rcp] ≥ mK/128. So for the remainder of the proof, we focus on showing that
E [Rcp] ≥ c

√
mKT for some numerical constant c > 0. Also note that due to the result of

Proposition 1, we can assume for this proof that m ≤ T/100, because the complete policy
regret scales linearly with T in the regime that m > T/100.
At a high level, our proof will proceed via a reduction to best arm identification in
stochastic multi armed bandit problems [Sli19]. Roughly speaking, we will show the
existence of an (m, g, h)-tallying bandit problem, such that minimizing the complete policy
regret in this problem is at least as hard as identifying the best arm in a stochastic multi
armed bandit problem with Θ̃ (mK) arms.
To this end, we first recall Lemma 1, which was originally stated at the beginning of
Appendix B.1 and proved in Appendix B.10. We have restated it here for convenience since
it shall be useful for our proof of Proposition 1.

Lemma 1. Any (m, g, h)-tallying bandit problem can be equivalently expressed as a finite
horizon Markov decision process (MDP).

Now, construct an (m, g, h)-tallying bandit problem using the following procedure, where
we assume that m is at least some sufficiently large universal constant. Sample (x⋆, y⋆)
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uniformly at random from X × {23m/24, 23m/24 + 1 . . .m}. Define hx(y) = 1/2 for each
(x, y) ∈ X × {1, 2 . . .m} such that (x, y) ̸= (x⋆, y⋆). Also define hx⋆(y⋆) = 1/2 − ϵ for some
ϵ ∈ (0, 1) to be specified later.
We now define the stochastic bandit feedback model for this tallying bandit problem as
follows. When the player plays action x, and this action x has been played a total of y
times in the past m timesteps (including the current timestep), then the player receives as
feedback a Bernoulli random variable with mean hx(y). It is immediate that this feedback
model meets the criteria outlined in Definition 4.
Let us now upper bound the cumulative loss incurred by the optimal policy in this tallying
bandit problem. To do so, consider the policy π, which is a length T sequence of actions,
that we define as follows. Choose some x ∈ X such that x ̸= x⋆. We define π to choose
action x⋆ for y⋆ timesteps and then choose action x for m− y⋆ timesteps, and then repeat
this length m sequence over and over. Recalling the definition of a

√
T -cyclic policy that

was stated in Section 3.4.1, we can analogously say that π is an m-cyclic policy, such that
within each period of length m it plays x⋆ for y⋆ times and then plays x for m− y⋆ times.
By Lemma 1, there exists an MDP M that is equivalent to the constructed tallying bandit
problem. Recalling the characterization of this MDP M provided in the proof of Lemma 1,
let us understand the sequence of states in M that we arrive at when we follow π. In the
first m timesteps, π plays x⋆ for y⋆ times and then plays x for m− y⋆ times, and so we
arrive at the state

(x⋆, x⋆ . . . x⋆, x, x . . . x) ≡ (x⋆)y
⋆ × xm−y⋆ . (25)

Then for the next y⋆ timesteps, π plays x⋆ repeatedly. This leads to the progression of
states given by

(x⋆)y
⋆−1 × xm−y⋆ × (x⋆)

(x⋆)y
⋆−2 × xm−y⋆ × (x⋆)2

(x⋆)y
⋆−3 × xm−y⋆ × (x⋆)3

...

(x⋆) × xm−y⋆ × (x⋆)y
⋆−1

xm−y⋆ × (x⋆)y
⋆
.

(26)

Then for the next m− y⋆ timesteps, it plays x, so that the state after these timesteps is

(x⋆, x⋆ . . . x⋆, x, x . . . x) ≡ (x⋆)y
⋆ × xm−y⋆ ,

and we have arrived back at the state listed in Eq. (25).
Let us now use this insight to bound the expected loss incurred by following π. Critically,
for every period of m timesteps after the very first period, Eq. (26) shows that we observe
(stochastic instantiations of) the loss value hx⋆(y⋆) for exactly
y⋆ ∈ {23m/24, 23m/24 + 1 . . .m} timesteps. We hence upper bound the expected
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cumulative loss incurred by π as

(1/2)m + ((1/2 − ϵ)y⋆ + (1/2)(m− y⋆))
T −m

m
= m/2 + (−ϵy⋆ + (1/2)m)

T −m

m

= −ϵy⋆
T −m

m
+

T −m

2
+ m/2

≤ −ϵ
23m

24

T −m

m
+ T/2

= −ϵ
23(T −m)

24
+ T/2

= T/2 − ϵ23T/24 + 23mϵ/24.

(27)

Let us now consider the performance of any algorithm which attempts to solve this tallying
bandit problem. Instead of the algorithm operating in the usual oracle model, where it
might need m actions to arrive at a state that it deems beneficial, let us strengthen the
algorithm by equipping it with a generative model. Concretely, we strengthen the
algorithm so that at any timestep, it can query any state in M and receive a stochastic
instantiation of the hx(y) loss value corresponding to that state. Given this generative
model, it is immediate that an algorithm that is attempting to minimize its cumulative loss
(or equivalently, minimize its complete policy regret), is attempting to maximize the
number of times it queries states whose loss value is hx⋆(y⋆).
Hence, we can interpret this algorithm as running best arm identification on a classical
stochastic multi armed bandit problem with mK/24 arms. Note that the number of arms
in this stochastic multi armed bandit problem is mK/24, since (x⋆, y⋆) was sampled
uniformly at random from a set of cardinality mK/24. The remainder of the argument
closely follows that of Slivkins [Sli19]. So pick ϵ =

√
cmK/T , for some numerical constant

c > 0 whose precise value can be found in the proofs of Corollary 2.9 and Theorem 2.10 of
Slivkins [Sli19]. These two results show that for each timestep less than or equal to T , with
probability at least 1/12 the algorithm does not select a state whose loss value is hx⋆(y⋆).
In particular, this means that the expected cumulative loss of this algorithm is at least

(1/12)T/2 + (11/12)T (1/2 − ϵ) = T/24 + 11T/24 − 11ϵT/12 = T/2 − 11ϵT/12. (28)

Putting together Eq. (27) and Eq. (28), we hence have that the expected complete policy
regret of this algorithm is lower bounded as

E [Rcp] ≥ T/2 − 11ϵT/12 − (T/2 − ϵ23T/24 + 23mϵ/24)

= −11ϵT/12 + ϵ23T/24 − 23mϵ/24

= ϵT/24 − 23mϵ/24

≥ c
√
mKT,

where in the final step we used our assumption that m ≤ T/100, substituted in the
definition of ϵ =

√
cmK/T and redefined the value of the numerical constant c. This

completes the proof. ■
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B.12 Proof of Proposition 1

First, we recall Lemma 1, which was originally stated at the beginning of Appendix B.1
and proved in Appendix B.10. We have restated it here for convenience since it shall be
useful for our proof of Proposition 1.

Lemma 1. Any (m, g, h)-tallying bandit problem can be equivalently expressed as a finite
horizon Markov decision process (MDP).

We now formally define the algorithm ALGdet below in Algorithm 4. Subsequently, we
prove the upper bound in Proposition 1, and then we prove the lower bound in
Proposition 1.

Algorithm 4 ALGdet

Require: memory capacity m, time horizon T
1: for x ∈ X do
2: for y ∈ {1, 2 . . .m} do
3: Choose action x.
4: Observe and store hx(y).
5: end for
6: end for
7: Plan (offline) an optimal policy π = {πk}Tk=mK+1 to play for remaining T − mK

timesteps.
8: Choose actions according to π for remaining T −mK timesteps.

B.13 Proof of Upper Bound in Proposition 1

First note that the offline planning step in Algorithm 4 is statistically (although perhaps
not computationally) feasible, since the player has full information about the loss functions
once it stores hx(y) for each (x, y) ∈ X × {1, 2 . . .m}.
Let π⋆⋆ denote the optimal policy for the problem, so that π⋆⋆ ∈ X T is a length T sequence
of actions such that following this sequence achieves the minimum loss. Let ℓt(π

⋆⋆) denote
the loss incurred at the tth timestep while playing the action sequence {π⋆⋆

t }Tt=1. Let ℓ(π)
denote the total loss incurred by the final step of Algorithm 4 which starts playing π at
timestep mK + 1.
To complete the proof, we will leverage the MDP characterization of tallying bandit
problems that was established in the proof of Lemma 1. Let M denote the equivalent MDP
for this tallying bandit problem. Observe that π is the optimal policy for the remaining
T −mK timesteps assuming that π is initialized at the initial state s = (K,K . . .K) in
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this MDP M . Also note that playing the action sequence {π⋆⋆
t }Tt=mK+1 from the state s

leads to a cumulative loss that is upper bounded by

m +
T∑

t=m(K+1)+1

ℓt(π
⋆⋆),

which follows because regardless of the initial state, we arrive at state
s′ = (π⋆⋆

mK+1, π
⋆⋆
mK+2 . . . π

⋆⋆
m(K+1)) in M after playing the length m action sequence

{π⋆⋆
t }m(K+1)

t=mK+1. From state s′, the losses we experience when playing {π⋆⋆
t }Tt=m(K+1)+1 at

each timestep t ≥ m(K + 1) + 1 are exactly ℓt(π
⋆⋆). The optimality of π hence implies that

ℓ(π) ≤ m +
T∑

t=m(K+1)+1

ℓt(π
⋆⋆). (29)

Hence, by naively upper bounding the loss incurred in the first mK timesteps, the
complete policy regret of Algorithm 4 is upper bounded via Eq. (29) as

Rcp ≤ mK + ℓ(π) −
T∑

t=mK+1

ℓt(π
⋆⋆)

≤ mK + m +

T∑
t=m(K+1)+1

ℓt(π
⋆⋆) −

T∑
t=mK+1

ℓt(π
⋆⋆)

= mK + m−
m(K+1)∑
t=mK+1

ℓt(π
⋆⋆)

≤ (m + 1)K.

This verifies the upper bound in Proposition 1. ■

B.14 Proof of Lower Bound in Proposition 1

Construct an (m, g, h)-tallying bandit problem via the following procedure. Sample an
action x⋆ uniformly at random from X , and keep its identity hidden from the user. Define
the functions {hx}x∈X as

hx⋆(y) =

{
1 if y < m

0 if y = m
and hx = 1 if x ̸= x⋆.

It is immediate that the optimal policy always plays the action x⋆, and its cumulative loss
is precisely m− 1. Meanwhile, to obtain zero loss at any timestep, the player must identify
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x⋆. Note that to identify whether a certain action x equals x⋆, the player must play x for
m consecutive times, in order to receive the feedback hx(m). Since there are K actions,
and identifying whether an action is the correct one requires m queries, a standard
counting argument [DKWY20] reveals that (in expectation over a possibly randomized
strategy) the player makes at least mK/64 queries before observing hx⋆(m). Hence, the
(expected) complete policy regret of the (possibly randomized) player is lower bounded as

E [Rcp] ≥ mK/64 − (m− 1) ≥ mK/128,

where we assume that K is larger than some numerical constant. This verifies the lower
bound in Proposition 1. ■
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C Appendix for Section 4

C.1 Analysis of Algorithm 3

In this section, we analyze the complete policy regret of Algorithm 3, and prove Theorem 3.
As discussed in Section 4.3, our analysis is overall rather standard, although we require a
careful choice of parameters to ensure optimal dependencies in the final result. Thus, many
of the computations closely follow those of Malik et al. [MLS22], but we nevertheless
provide the entire argument for the sake of completeness. Before we formally prove
Theorem 3, we first introduce the function µ : X → [0, 1] which will be useful for our proofs.
For any action x ∈ X let us define µ(x) as

µ(x) = hx(∥wx∥1),

With this definition in hand, we are now in a position to formally prove Theorem 3.

C.1.1 Proof of Theorem 3

For any policy π, which is a length T deterministic sequence of actions, let ℓt(π) denote the
expected loss suffered at timestep t while playing π. Define the policy π⋆ as

π⋆ ∈ argmin
π∈XT

T∑
t=1

ℓt(π),

so that π⋆ is an optimal policy (i.e., a policy that suffers the minimum cumulative expected
loss). Note that the definition of an (m,w, h)-weighted tallying bandit ensures that for any
timestep t, there exists an action x ∈ X and y ∈ {1} × {0, 1}m−1 such that
ℓt(π

⋆) = hx(w⊤
x y). Thus, the α-REO condition ensures that

µ(x⋆) = hx⋆(∥wx⋆∥1) ≤ hx(w⊤
x y) + α = ℓt(π

⋆) + α.

In particular, this implies that

T∑
t=1

ℓt(π
⋆) ≥ Tµ(x⋆) − αT. (30)

Now let ℓs denote the loss experienced in epoch s ∈ {1, 2 . . . S} of Algorithm 3. The
following lemma bounds the cumulative loss of Algorithm 3 relative to Tµ(x⋆).
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Lemma 9. With probability at least 1 − δ, the total loss of Algorithm 3 relative to Tµ(x⋆)
can be upper bounded as

S∑
s=1

ℓs − Tµ(x⋆) ≤ 4KM + Km log(T ) + 800

√
KT log

(
2K log(T )

δ

)
.

The proof of this Lemma 9 is provided in Appendix C.1.2. With the result of Lemma 9 in
hand, we now utilize it to prove Theorem 3 as follows. Note via Eq. (30) and Lemma 9
that the complete policy regret Rcp of Algorithm 3 satisfies

Rcp =
S∑

s=1

ℓs −
T∑
t=1

ℓt(π
⋆)

≤
S∑

s=1

ℓs − Tµ(x⋆) + αT

≤ 4KM + Km log(T ) + 800

√
KT log

(
2K log(T )

δ

)
+ αT.

This completes the proof of Theorem 3. ■

C.1.2 Proof of Lemma 9

To facilitate the proof, we require the following critical lemma, which bounds the loss
incurred by Algorithm 3 in each epoch s ∈ {1, 2 . . . S}. For the statement of the following
lemma, note that completing any epoch s ∈ {1, 2 . . . S} takes a total of Ts = 2|As|ns

timesteps.

Lemma 10. With probability at least 1 − δ, we have simultaneously for each epoch
s ∈ {2, 3 . . . S} that the total loss relative to Tsµ(x⋆) is bounded as

ℓs − Tsµ(x⋆) ≤ |As| (m + 4(2ns −m)Cs−1) .

The proof of this Lemma 10 is provided in Appendix C.1.3. Observe that by the result of
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Lemma 10, we are guaranteed with probability at least 1 − δ that

S∑
s=1

ℓs − Tµ(x⋆) =

S∑
s=1

(ℓs − Tsµ(x⋆))

≤ 4KM +

S∑
s=2

(ℓs − Tsµ(x⋆))

≤ 4KM +
S∑

s=2

|As| (m + 4(2ns −m)Cs−1)

≤ 4KM + SKm + 8
S∑

s=2

|As|nsCs−1.

(31)

Recall the definitions ns = KM2s/|As| and Ts = 2|As|ns provided in Algorithm 3. Also
note that

Cs−1 =

√
32

ns−1
log

(
2KS

δ

)
=

√
32

ns|As|/(2|As−1|)
log

(
2KS

δ

)
=

√
64|As−1|
ns|As|

log

(
2KS

δ

)
.

Substituting the above relations into the final term on the RHS of Eq. (31), we get that

8
S∑

s=2

|As|nsCs−1 = 8
S∑

s=2

|As|ns

√
64|As−1|
ns|As|

log

(
2KS

δ

)

= 8

√
log

(
2KS

δ

) S∑
s=2

|As|ns

√
64|As−1|
ns|As|

= 8

√
log

(
2KS

δ

) S∑
s=2

|As|
√
ns

√
64|As−1|
|As|

= 8

√
log

(
2KS

δ

) S∑
s=2

|As|
√

KM2s

|As|

√
64|As−1|
|As|

= 8

√
log

(
2KS

δ

) S∑
s=2

√
KM2s

√
64|As−1|

≤ 8

√
log

(
2KS

δ

) S∑
s=2

K
√
M2s

√
64

≤ 800

√
log

(
2KS

δ

)
K
√
M2S/2.
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Now recall from Algorithm 3 the definition of S = log2
(

T
4KM + 1

)
. Substituting this into

the equation above, we get that

8
S∑

s=2

|As|nsCs−1 ≤ 800

√
log

(
2KS

δ

)
K
√
M2S/2

= 800

√
log

(
2KS

δ

)
K
√
M

√
T

4KM
+ 1

≤ 800

√
log

(
2KS

δ

)
K
√
M

√
T

KM

= 800

√
log

(
2KS

δ

)√
K
√
T .

(32)

Combining Eq. (31) with Eq. (32) and using the upper bound S ≤ log(T ) yields the result.
■

C.1.3 Proof of Lemma 10

To facilitate the proof, we leverage the following critical lemma, which bounds the gap of
the value µ(x) of each action x ∈ As versus µ(x⋆).

Lemma 11. The event

∩S
s=2 ∩x∈As {µ(x) − µ(x⋆) ≤ 4Cs−1} ,

occurs with probability at least 1 − δ.

The proof of this Lemma 11 is provided in Appendix C.1.4. Let us now return to the main
proof. For any epoch s > 1 and any action x ∈ As, let ℓs denote the total loss experienced
in epoch s of Algorithm 3 while executing the action x for 2ns times. Hence we have
ℓs =

∑
x∈As

ℓsx.
Note that within a single epoch s > 1, for each x ∈ As we execute x for 2ns times. For the
latter 2ns −m times that x is executed, action x has been played m times in the previous
m timesteps. Hence, for the latter 2ns −m times that x is executed, the expected loss of
playing the action x is hx(m) = µ(x). Thus, we have that

ℓsx ≤ m + (2ns −m)µ(x).
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Hence, for each s > 1 and x ∈ As, we can use Lemma 11 to upper bound

ℓsx − 2nsµ(x⋆) ≤ m + (2ns −m)µ(x) − 2nsµ(x⋆) + mµ(x⋆)

≤ m + (2ns −m) (µ(x) − µ(x⋆))

≤ m + 4(2ns −m)Cs−1.

This bound holds uniformly for each x ∈ As. Recalling that Ts = 2|As|ns, we hence have
that

ℓs − Tsµ(x⋆) =
∑
x∈As

ℓsx − 2|As|nsµ(x⋆)

=
∑
x∈As

(ℓsx − 2nsµ(x⋆))

≤
∑
x∈As

(m + 4(2ns −m)Cs−1)

= |As| (m + 4(2ns −m)Cs−1) .

This completes the proof. ■

C.1.4 Proof of Lemma 11

To facilitate the proof, we require the following two critical helper results. The first result
bounds the error incurred when estimating µ(x) via the stochastic realizations {h̃x(m)s,k}.
The second result shows that while running Algorithm 3, which is based on successive
elimination of inferior actions over epochs s ∈ {1, 2 . . . S}, at any epoch s we never
eliminate x⋆ from our set As of feasible actions.

Lemma 12. Fix any s ∈ {1, 2 . . . S}, and let Bs denote the event that for all actions
x ∈ As we simultaneously have that

|µ̂s(x) − µ(x)| ≤ Cs.

Then Bs occurs with probability at least 1 − δ/S.

Lemma 13. The event ∩S
s=1Bs, where the event Bs is defined in Lemma 12, implies the

event that
x⋆ ∈ ∩S

s=1As and ∩S
s=1 {0 ≤ µ̂s(x

⋆) − µ̂s(x̂s) ≤ 2Cs} .

The proofs of Lemma 12 and Lemma 13 are provided in Appendix C.1.5 and
Appendix C.1.6 respectively.
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Let us now return to the proof. By the result of Lemma 12 and a union bound, the event
∩S
s=1Bs occurs with probability at least 1 − δ. Furthermore, the result of Lemma 13 shows

that the event ∩S
s=1Bs implies the event

x⋆ ∈ ∩S
s=1As. (33)

So on the event ∩S
s=1Bs, note that for any s > 1 and any action x ∈ As we have

µ(x) − µ(x⋆)
(i)

≤ µ̂s−1(x) − µ(x⋆) + Cs−1

(ii)

≤ µ̂s−1(x̂s−1) − µ(x⋆) + 3Cs−1

(iii)

≤ µ̂s−1(x
⋆) − µ(x⋆) + 3Cs−1

(iv)

≤ µ(x⋆) − µ(x⋆) + 4Cs−1

= 4Cs−1,

where step (i) follows from Lemma 12, step (ii) follows from the definition of As and the
fact that x ∈ As, step (iii) follows from the definition of x̂s−1 and Eq. (33), and step (iv)
follows again from Lemma 12 and Eq. (33). This completes the proof. ■

C.1.5 Proof of Lemma 12

Fix any x ∈ X . Recalling the definition of Cs provided in Algorithm 3, Hoeffding’s
bound [Hoe63] ensures that the event

|µ̂s(x) − µ(x)| =

∣∣∣∣∣µ(x) − 1

ns

ns∑
k=1

h̃x(m)s,k

∣∣∣∣∣ ≤
√

32

ns
log

(
2KS

δ

)
= Cs, (34)

occurs with probability at least 1 − δ/(KS). Since |As| ≤ K, a union bound then ensures
that the above event occurs simultaneously for all x ∈ As with probability at least 1 − δ/S.
■

C.1.6 Proof of Lemma 13

Assume that the event ∩S
s′=1Bs′ is true. On this event, we prove the lemma by induction

on s. First we demonstrate the base case of s = 1, which is that x⋆ ∈ A1 and
0 ≤ µ̂1(x

⋆) − µ̂1(x̂1) ≤ 2C1. Then for the inductive step we show that if the event
x⋆ ∈ As−1 and 0 ≤ µ̂s−1(x⋆)− µ̂s−1(x̂s−1) ≤ 2Cs−1 occurs, then we also have that the event

x⋆ ∈ As and 0 ≤ µ̂s(x
⋆) − µ̂s(x̂s) ≤ 2Cs,
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is also true.
For the base case, note that by definition we are guaranteed x⋆ ∈ A1. And by the
definition of x̂1, we know that 0 ≤ µ̂1(x⋆) − µ̂1(x̂1). Furthermore, recalling the definition of
the event B1 in Lemma 12, on the event B1 we have that

µ̂1(x
⋆) − µ(x⋆) ≤ C1 and µ(x̂1) − µ̂1(x̂1) ≤ C1.

Putting these equations together and using the fact that µ(x⋆) ≤ µ(x̂1) ensures that

µ̂1(x
⋆) − µ̂1(x̂1) ≤ 2C1.

This verifies the base case.
For the inductive step, assume that x⋆ ∈ As−1 and 0 ≤ µ̂s−1(x

⋆) − µ̂s−1(x̂s−1) ≤ 2Cs−1

occurs. Then the definition of As and the inductive hypothesis directly imply that x⋆ ∈ As.
Hence, it is true by definition of x̂s that 0 ≤ µ̂s(x

⋆) − µ̂s(x̂s). Then recalling the definition
of the event Bs in Lemma 12, on the event Bs we have that

µ̂s(x
⋆) − µ(x⋆) ≤ Cs and µ(x̂s) − µ̂s(x̂s) ≤ Cs.

Putting these equations together and using the fact that µ(x⋆) ≤ µ(x̂s) ensures that

µ̂s(x
⋆) − µ̂s(x̂s) ≤ 2Cs.

This verifies the inductive step. As argued earlier, this is sufficient to complete the proof. ■

C.2 Proof of Theorem 4

Assume for the sake of contradiction that the statement is false. Then there exists some ϵ
satisfying the given conditions and some function f , such that Aϵ,f is not empty. This
implies the existence of an algorithm A, such that when it is given as input any positive
integers T,K,M with M ≤ T , the algorithm A satisfies that

E[Rcp(A, tb)] ≤ min
{
T/4, f(mtb,K)

(
T 1−ϵ1 + T ϵ3M1−ϵ2

)}
for all tb ∈ UTBT,M,K . (35)

If A was a randomized algorithm, then this implies the existence of a deterministic
algorithm with the same property. So we can assume without loss of generality that A is
deterministic.
Fix some integer K ≥ 2. Pick some sufficiently large T,M such that the following
conditions hold simultaneously

M < T/4 and f(1,K)
(
T 1−ϵ1 + T ϵ3M1−ϵ2

)
< M/2. (36)
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To see these conditions are simultaneously feasible, recall that ϵ1 ∈ (0, 1) and
0 ≤ ϵ3 < ϵ2 < 1. Let γ = min{ϵ1, ϵ2 − ϵ3} > 0. So if we choose M = T 1−γ/2, then since this
M satisfies M = T 1−γ/2 < T , we have that

f(1,K)
(
T 1−ϵ1 + T ϵ3M1−ϵ2

)
< f(1,K)

(
T 1−ϵ1 + T ϵ3T 1−ϵ2

)
= f(1,K)

(
T 1−ϵ1 + T 1−(ϵ2−ϵ3)

)
≤ 2f(1,K)T 1−γ .

So for sufficiently large T , we have for this choice of M = T 1−γ/2 that M < T/4 and also
that f(1,K)

(
T 1−ϵ1 + T ϵ3M1−ϵ2

)
< M/2. This shows that Eq. (36) is feasible.

We will now define two unweighted tallying bandit problems, each of which have K actions.
Recall that in an unweighted tallying bandit problem with memory capacity m, the loss
associated with playing an action at a given timestep is fully defined by the number of
times that action was played in the last m timesteps. Concretely, assume that in some
unweighted tallying bandit problem tb, we play action x on the current timestep, and the
total number of times it has been played in the last m timesteps (including the current
timestep) is 1 ≤ y ≤ m. Then there exists a function htb,x : {1, 2 . . .m} → [0, 1], such that
denote the loss associated with playing this action is given by htb,x(y). We will use this
notation to instantiate the forthcoming unweighted tallying bandit problems.
With this notation in hand, let us instantiate the unweighted tallying bandit problem tbA
with memory length mtbA = 1 as follows. For action x1, we have that htbA,x1 = 1/2. For
action x2, we have that htbA,x2 = 1. And for every other action x, let htbA,x = 1. We say
that whenever the player plays action x, the player almost surely observes htbA,x(1). Notice
that since mtbA = 1, and there is no stochasticity in the observation of losses when we play
any action, tbA is indeed a deterministic multi-armed bandit problem.
Now, we instantiate the tallying bandit problem tbB with memory length mtbB = M as
follows. For action x1 we define htbB ,x1 = 1/2. For action x2 we define

htbB ,x2(y) =

{
1 if 1 ≤ y < M

0 if y = M
.

And for every other action x, we define htbB ,x = 1. Once again, we enforce that there is no
stochasticity in the player’s observation of losses when the player plays an action. So the
feedback model in tbB is deterministic.
Let the horizon length for problems tbA and tbB be the T chosen as per Eq. (36). Note
also that both problem instances satisfy REO with parameter α = 0, and so
tbA, tbB ∈ UTBT,M,K . So via our assumption of the determinism of A, via Eq. (35) and
via the fact that mtbA = 1, we have that

Rcp(A, tbA) ≤ f(mtbA ,K)
(
T 1−ϵ1 + T ϵ3M1−ϵ2

)
= f(1,K)

(
T 1−ϵ1 + T ϵ3M1−ϵ2

)
< M/2,

(37)
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where the final inequality follows due to Eq. (36). And again by our assumption of the
determinism of A and via Eq. (35), we have that

Rcp(A, tbB) ≤ T/4. (38)

When A is run on problem tbA, there are 2 cases. Either A plays x2 for M times in a row
(at some point in its execution for T timesteps while solving tbA) or it does not.
Consider the first case, where A plays x2 for M times in a row on problem tbA. Then we
have that Rcp(A, tbA) ≥ M/2. This is because the optimal strategy for tbA always plays
x1 on each timestep, and so any timestep where A plays action x ̸= x1 will add
htbA,x − htbA,x1 = 1 − 1/2 = 1/2 to the CPR of A. This is a contradiction to Eq. (37).
Consider the second case, where A never plays x2 for M times in a row on problem tbA.
Note that the deterministic algorithm A can be viewed as a length T sequence of functions,
where the tth function maps the past t− 1 action choices and loss observations to the
action played at timestep t. Also note that the observed loss of a playing an action in tbB
is different from playing the same action in tbA, if and only if that action was x2 and it
was played M times in the prior M timesteps (including the current timestep).
Thus, since A never plays x2 for M times in a row on problem tbA, it sees the identical
sequence of loss outputs when it is deployed on tbB, and hence makes the identical
sequence of actions as it would have if deployed in tbA, which in turn implies that it never
plays x2 for M times in a row on problem tbB. Since M < T/4 via Eq. (36), and playing
any action x ̸= x2 will always yield loss at least 1/2, the strategy that always plays x2 is
optimal and has cumulative loss of M − 1. So, since Eq. (36) implies that

T/2 − (M − 1) > T/2 −M > T/2 − T/4 = T/4,

we have that
Rcp(A, tbB) ≥ T/2 − (M − 1) > T/4.

This is a contradiction to Eq. (38).
In either case, we have arrived at a contradiction. Hence, we have shown that for each ϵ
satisfying the given conditions and each function f , the corresponding set Aϵ,f is the empty
set. This completes the proof. ■

C.3 Proof of Proposition 2

In this section, we provide a formal proof of Proposition 2. Let X = {x1, x2}. Let w be
defined componentwise as wi = 1

2i
for each 1 ≤ i ≤ m. Set wx = w for each x ∈ X . Now

sample a bit string y⋆ uniformly at random from {0, 1}m−1, whose identity is kept hidden
from the player. Define hx1 = 1 and define

hx2(w⊤
x2
yt,x2,m) = hx2(w⊤yt,x2,m) =

{
1 if w⊤yt,x2,m ̸= w⊤(1, y⋆)

0 if w⊤yt,x2,m = w⊤(1, y⋆)
.
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We assume that there is no stochasticity in the loss feedback experienced by the player.
This defines an (m,w, h)-weighted tallying bandit game. For ease in notation in the sequel,
we also define v ∈ Xm−1 as

vi =

{
x2 if y⋆i = 1

x1 if y⋆i = 0
.

We claim that with our choice of w, if y ̸= y′ ∈ {1} × {0, 1}m−1 then w⊤y ̸= w⊤y′. We
defer the formal proof of this claim for now, and use this claim to complete the proof of
Proposition 2. Critically, the claim implies that we incur non-unit loss at timestep t if and
only if we play action x2 at timestep t and have yt,x2,m = (1, y⋆). Equivalently, we incur
non-unit loss at timestep t if and only if our action sequence for the timesteps
t, t− 1 . . . t−m is (x2, v). Thus, the policy that cyclically plays vm−1, vm−2 . . . v1, x2 incurs
a loss of zero at least once every m timesteps. Meanwhile, identifying the optimal policy is
at least as hard as playing the action sequence (x2, v), which in turn is at least as hard as
identifying y⋆.

A standard “needle in the haystack” argument [DKWY20] then shows that identifying y⋆

requires Ω̃ (2m) timesteps. In turn, since the cyclic policy vm−1, vm−2 . . . v1, x2 incurs a loss
of zero at least once every m timesteps, this implies that the expected CPR E [Rcp] of any
(possibly randomized) algorithm is lower bounded by Ω̃ (min{2m, T}/m), where the
expectation is over the (possible) randomization of the algorithm as well as the sampling of
y⋆.

Let us now return to prove our claim that if y ̸= y′ ∈ {1} × {0, 1}m−1 then w⊤y ̸= w⊤y′.
Assume for the sake of contradiction that y ̸= y′ but w⊤y = w⊤y′. Let J ⊆ {2, 3 . . .m} be
the set of coordinates that y, y′ differ, and let j⋆ = min J . Note that J is non-empty by
assumption, and so j⋆ is well defined. Assume without loss of generality that yj⋆ − y′j⋆ = 1
(the case when yj⋆ − y′j⋆ = −1 is completely symmetric). Then observe that

0 = w⊤(y − y′)

=
m∑
j=1

wj(yj − y′j)

=
∑
j∈J

wj(yj − y′j)

= wj⋆ +
∑

j ̸=j⋆∈J
wj(yj − y′j).

(39)
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We can now lower bound Eq. (39) as

0 = wj⋆ +
∑

j ̸=j⋆∈J
wj(yj − y′j)

≥ wj⋆ −
∑

j ̸=j⋆∈J
wj |yj − y′j |

= wj⋆ −
∑

j ̸=j⋆∈J
wj

≥ wj⋆ −
m∑

j=j⋆+1

wj .

(40)

Now substituting in our choice of w into Eq. (40), we find that

0 ≥ wj⋆ −
m∑

j=j⋆+1

wj =
1

2j⋆
−

m∑
j=j⋆+1

1

2j
=

1

2j⋆

1 −
m−j⋆∑
j=1

1

2j

 > 0,

which of course is a contradiction. This proves our claim that if y ̸= y′ ∈ {1} × {0, 1}m−1

then w⊤y ̸= w⊤y′. ■

C.4 Extended Numerical Results & Details

C.4.1 Unweighted Tallying Bandit

In this section, we first present additional experimental results for the unweighted tallying
bandit problem, where the loss functions are identical to those described in Section 4.4.1.
Hence, this problem satisfies 0-REO. Here, we vary the values of m,K,M , and plot the
CPR of each method over time. The results are shown in Figure 13. In each case, we
observe that SE outperforms the baselines. These results also show that the performance of
Algorithm 3 is robust to using a conservative upper bound M on m.

We now present results for a different unweighted tallying bandit problem, where α-REO is
satisfied with α > 0. For each action x ∈ X , we define wx = 1⃗/(4m). We fix an action
x⋆ ∈ X and a different action x⋆⋆ ∈ X , and then define the loss functions {hx}x∈X as

hx(yt,x,m) =


1 − w⊤

x y
t,x,m − 0.15 if x = x⋆, yt,x,m = 1⃗

1 − w⊤
x y

t,x,m − m−1
2m − 0.2 if x = x⋆⋆, yt,x,m = (1, 0, 0 . . . 0)

1 − w⊤
x y

t,x,m otherwise

.
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Figure 13: We plot the expected CPR of each algorithm, when deployed on the unweighted tallying
bandit problem described in Section 4.4.1, with varying values of m,K,M . In all plots, each
datapoint is obtained by averaging over 20 problem instances, and the shaded region depicts ±1
standard error around the mean.
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Figure 14: We plot as a function of time the expected cumulative loss of each algorithm in excess
of that of SE, on the unweighted tallying bandit instance described in Appendix C.4.1, with
m = 4,K = 5,M = 4. Note this instance satisfies α-REO with α = 0.1125. Each datapoint is
obtained by averaging over 20 problem instances, and the shaded region depicts ±1 standard error
around the mean.

A numerical computation reveals that this unweighted tallying bandit problem instance
satisfies α-REO with α = max{0,−0.2 + 2m−3

4m }. We empirically study the performance of
Algorithm 3 relative to the baselines on this problem instance, with a choice of
m = 4,K = 5,M = 4. Since the optimal policy in this problem is not obvious, the CPR is
difficult to compute. So in lieu of the CPR, we plot the expected cumulative loss of each
algorithm in excess of SE’s loss (hence the CPR at any time is obtained by applying a
constant shift to each algorithm’s excess loss). The results are shown in Figure 14, where
we observe that our method outperforms all others.

C.4.2 Weighted Tallying Bandit

Here, we describe the loss functions that were used to define the WTB problem instance
described in Section 4.4.2. For each action x ∈ X , we define wx in the following fashion.
First we define the vector v ∈ Rm coordinate wise by setting its ith coordinate as vi = 1/2i.
Then we set wx = v/(2∥v∥1) for each x ∈ X . We fix an action x⋆ ∈ X , and then define the

109



loss functions {hx}x∈X as

hx(yt,x,m) =

{
1 − w⊤

x y
t,x,m − 0.15 if x = x⋆, yt,x,m = 1⃗

1 − w⊤
x y

t,x,m otherwise
.

Hence, this weighted tallying bandit problem satisfies 0-REO.

C.4.3 Simulated F1 Tournament

In this section, we provide details of our F1 lap time dataset, data processing and
probabilistic model fitting, as well as criteria used to define meaningful WTB problem
instances. We conclude this section with extended results for the simulated F1 tournament.

Dataset & Data Processing
As discussed in 4.4.4, we make use of pre-first-pit-stop F1 lap time data from 1950-2022
[Rao22] to learn a probabilistic lap time model for various drivers and races, which we then
use to define WTB instances. This dataset consists of race data from 1120 races and 858
drivers. Note that in each race, a different subset of drivers participated in the race. For
the purposes of this paper, each entry in the dataset is a tuple of the form
(driver ID, race ID, Lap Times), where driver ID ∈ {1, . . . , 858},
race ID ∈ {1, . . . , 1120}, and Lap Times is a list of tuples, where each tuple of the form
(Lap Time, Pit Stop). Lap Time denotes the official recorded time in seconds for the
driver to complete a lap during the F1 tournament, and Pit Stop is a binary-valued
variable indicating whether the lap included a pit stop.

In order to make lap times comparable across races, all lap times in this dataset have been
normalized such that they lie in the interval [0,1]. Specifically, if the raw lap time for driver
i’s kth lap in race j is ℓi,j,k, then the normalized lap time is given by

τi,j,k :=
ℓi,j,k−minw,x ℓw,j,x

maxy,z ℓy,j,z−minw,x ℓw,j,x
.

Additionally, for each race j, we filter lap time data to include eligible drivers that have
sufficient data to justify fitting a model. Within a fixed race j, a driver is considered
eligible if the dataset includes at least 8 consecutive lap time datapoints until their first pit
stop. After the set of eligible drivers has been determined for race j, we shorten the
sequence of all drivers’ lap time data in race j to match the length of the shortest sequence
in race j. For example, if there are 3 eligible drivers in race j, where driver a takes 8 laps
until taking a pit stop, driver b takes 9 laps, and driver c takes 10 laps, then we only make
use of the first 8 lap times of drivers b and c when learning their lap time model.

Probabilistic Model Fitting
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We use our normalized lap time data to fit a probabilistic model of lap times for each
eligible driver-race pair with maximum likelihood. In particular, we assume that for driver
i in race j, the kth normalized lap time, which is denoted τi,j,k, has distribution

N
(
βi,j exp(−kαi,j) − |γi,j |k, σ2

i,j

)
.

Thus, for each driver-race (i, j) pair, our formulation involves fitting 4 parameters
(αi,j , βi,j , γi,j , σi,j). We use all normalized pre-first-pit-stop data (at least 8 datapoints) to
fit these parameters using maximum likelihood with scipy.optimize.curve fit, which
leverages the Levenberg-Marquardt algorithm as implemented in MINPACK [V+20].

At a high level, our probabilistic model stipulates that for each driver i and race j, the lap
times decrease exponentially at first and then linearly. More concretely, as the lap index k
increases, the expected lap time of the driver i in race j decreases at a rate determined by
αi,j (with initial condition βi,j), but it never drops below −|γi,j |k (our k values are small,
and so the lap times plateau to a positive number). The variance of the lap times for driver
i in race j is σi,j (note that this quantity is independent of k). Figure 15 shows normalized
lap time data and the learned probabilistic model for 9 races (the probabilistic model for
the 10th race is given in Figure 7a). By inspection, the probabilistic model is a reasonable
approximation for the distribution of (sequential) lap times.

Constructing Meaningful Tallying Bandit Instances
In order to test SE, we further filter the drivers such that the driver lap time models define
a meaningfully challenging bandit problem. Specifically, we define an eligible TB driver
pair to be two drivers competing in the same race such that both of their terminal mean
lap times are difficult to discriminate. In particular, denote the terminal expected lap time
for driver i (resp. i′) with µi (resp. µi′). Then, drivers i and i′ are considered to define an
eligible TB driver pair if the following conditions hold:

• driver i and i′ both compete in the same race j,

• µi ∈ [µi′ − σ2
i′,j , µi′ + σ2

i′,j ],

• µi′ ∈ [µi − σ2
i,j , µi + σ2

i,j ].

Note these conditions essentially imply that the problem is at least as hard as
distinguishing the means of two Gaussians that are “close” to each other. Ten eligible TB
driver pairs meet these criteria, which we use to define 10 TB instances. Specifically, the
lap time model of each driver in the pair for race j defines the loss in a TB instance, with
each driver corresponding to an arm. The (stochastic) instantaneous loss at timestep t for
‘playing’ driver i in race j depends on the number of times driver i has completed a lap in
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Figure 15: In each plot, we select a driver pair and a particular race, and we depict our fitted
probabilistic lap time model. In each plot, our probabilistic model parameterizes a distribution over
lap times for each lap index (note that different plots have different lap indices). The solid line
depicts the mean of this distribution, for each lap index. The shaded region contains ±2 standard
deviations of this distribution, centered around the distribution’s mean. The dotted points are the
actual lap times (we note that these almost always lie within 2 standard deviations of the mean).
Note that all the lap times are normalized, so that each lap time lies in the interval [0, 1].
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race j in the previous m timesteps, or equivalently (the tally) denoted k. This
instantaneous loss is thus τi,j,k ∼ N (βi,j exp(−kαi,j) − |γi,j |k, σ2

i,j).

Extended Results
We now show results for all 10 instances of our simulated F1 tournament, where each
instance is constructed in similar fashion to the instance constructed in Section 4.4.4. We
select 10 different driver pairs and races in which they competed. For each driver pair and
race, we utilize F1 lap time data [Rao22] to fit a probabilistic lap time model as discussed
above. In Figure 15, we illustrate our probabilistic models of lap times for each of the
selected driver pairs, and show that their lap times tend to decrease as the lap index
increases.

We use the probabilistic models depicted in Figure 15 to simulate 9 instances of this
tournament with K = 2 and m equaling the number of lap indices in the appropriate plot.
The results for the 10th race were given in Section 4.4.4. For each instance, we maintain a
tally of the number of times each driver in that instance was chosen in the prior m
timesteps. The loss associated with picking a driver is governed by the distribution
parameterized by our fitted probabilistic model. In particular, if we pick driver x and we
have picked them y times in the last m timesteps, then the instantaneous loss is sampled
from the distribution parameterized by our fitted probabilistic model for driver x at lap
index y. The two drivers for each instance are chosen such that their calibrated
performance is difficult to distinguish, as discussed above. Note that in this setting, one
has o(T ) CPR if and only if one plays the worse driver o(T ) many times. In Figure 16, we
plot each method’s CPR over time for each of the 10 instances of this tournament, showing
in each case that SE outperforms the baselines.
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Figure 16: For each plot in Figure 15, we simulate a WTB instance and compare the performance of
the various algorithms. We depict as a function of time the expected CPR of each algorithm. Data
is obtained by averaging over 20 problem instances, each with K = 2 and T = 106. The shaded
region depicts ±1 standard error around the mean. The value m used in a plot is the length of the
lap index in the corresponding plot in Figure 15. We set M to equal m.

D Appendix for Section 5

In this section, we present a helper function that automatically converts problems of the
form (9) to problems of the form (11) and (12). This helper function requires the user to
pass as inputs the CVXPY variables, constraints and loss function that define (9), and is
presented below. The code is available at

https://github.com/cvxgrp/rerm_code.

1 from typing import Callable, List

2 import cvxpy as cp
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3 import numpy as np

4 from cvxpy.transforms.suppfunc import SuppFunc

5

6 def form_rerm(

7 f: Callable,

8 y: np.ndarray,

9 theta: cp.Variable,

10 theta_constraints: List[cp.Constraint],

11 xs: List[cp.Variable],

12 x_constraints: List[List[cp.Constraint]],

13 mode: str

14 ):

15 """

16 Args:

17 f: a convex function

18 y: a vector of length n

19 theta: a CVXPY variable

20 theta_constraints: a list of constraints on theta

21 xs: a list of n scalar CVXPY variables

22 x_constraints: a list of n lists of constraints on xs

23 mode: "non_increasing" or "non_decreasing_sym_abs"

24

25 Returns:

26 A CVXPY problem instance of the robust ERM

27 problem.

28 """

29 n = len(xs)

30 assert theta.ndim <= 1

31 assert n == len(x_constraints) == len(y)

32

33 z = cp.Variable(n)

34 obj = 0.0

35 constraints = theta_constraints

36

37 for i in range(n):

38 obj += f(z[i])

39 G = SuppFunc(xs[i], x_constraints[i])

40 if mode == "non_increasing":

41 constraints += [

42 G(-theta) + y[i] <= -z[i],

43 ]
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44 elif mode == "non_decreasing_sym_abs":

45 constraints += [

46 G(theta) - y[i] <= z[i],

47 G(-theta) + y[i] <= z[i],

48 ]

49 else:

50 raise NotImplementedError

51

52 prob = cp.Problem(cp.Minimize(obj), constraints)

53 return prob

We emphasize that the loss function f provided by the user is not verified to have the
claimed curvature properties specified in the mode argument. It is impossible to verify this
in general, so the user must be careful to provide a loss function that has the correct
curvature properties. We also mention that the user is not limited to pass in a loss function
f that is a CVXPY atom. Instead, the user has the flexibility to create a loss function that
is a composition of several CVXPY atoms, as follows.

1 def f(x: cp.Variable):

2 """

3 An example non-decreasing convex function of the magnitude of x.

4 This is how a user can specify a arbitrary convex function.

5 """

6 return cp.square(cp.power(cp.abs(x), 1.5))
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Break your bandit routine with LSD rewards: a last switch dependent
analysis of satiation and seasonality. arXiv preprint arXiv:2110.11819, 2021.

[LCM17] Nir Levine, Koby Crammer, and Shie Mannor. Rotting bandits. In Advances
in Neural Information Processing Systems, 2017.

122



[LFDA16] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end
training of deep visuomotor policies. The Journal of Machine Learning
Research, 17:1334–1373, 2016.

[LHK21] David Lindner, Hoda Heidari, and Andreas Krause. Addressing the
long-term impact of ML decisions via policy regret. In International Joint
Conference on Artificial Intelligence, 2021.

[LL18a] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks
via stochastic gradient descent on structured data. In Advances in Neural
Information Processing Systems, 2018.

[LL18b] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks
via stochastic gradient descent on structured data. In Advances in Neural
Information Processing Systems, 2018.

[LML+24] Eric Luxenberg, Dhruv Malik, Yuanzhi Li, Aarti Singh, and Stephen Boyd.
Specifying and solving robust empirical risk minimization problems using
CVXPY. Journal of Optimization Theory and Applications, 202:1158–1168,
2024.

[LMZ20] Yuanzhi Li, Tengyu Ma, and Hongyang R. Zhang. Learning
over-parametrized two-layer neural networks beyond ntk. In Proceedings of
the Conference on Learning Theory, 2020.

[LR85] T.L Lai and Herbert Robbins. Asymptotically efficient adaptive allocation
rules. Advances in Applied Mathematics, 6(1):4–22, 1985.

[LSW20] Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good
feature representations in bandits and in RL with a generative model. In
Proceedings of the International Conference on Machine Learning, 2020.

[M+15] Volodymyr Mnih et al. Human-level control through deep reinforcement
learning. Nature, 518:529–533, 2015.

[MHKL20] Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford.
Kinematic state abstraction and provably efficient rich-observation
reinforcement learning. In Proceedings of the International Conference on
Machine Learning, 2020.

[MILS23] Dhruv Malik, Conor Igoe, Yuanzhi Li, and Aarti Singh. Weighted tallying
bandits: Overcoming intractability via repeated exposure optimality. In
International Conference on Machine Learning, 2023.

123



[MKS+13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. In NIPS Deep Learning Workshop. 2013.

[MLR21] Dhruv Malik, Yuanzhi Li, and Pradeep Ravikumar. When is generalizable
reinforcement learning tractable? arXiv preprint arxiv:2101.00300, 2021.

[MLS22] Dhruv Malik, Yuanzhi Li, and Aarti Singh. Complete policy regret bounds
for tallying bandits. In Conference on Learning Theory, 2022.

[MOSW02] N. Merhav, E. Ordentlich, G. Seroussi, and M.J. Weinberger. On sequential
strategies for loss functions with memory. IEEE Transactions on Information
Theory, 48(7):1947–1958, 2002.

[MPB+20] Dhruv Malik, Ashwin Pananjady, Kush Bhatia, Koulik Khamaru, Peter L
Bartlett, and Martin J Wainwright. Derivative-free methods for policy
optimization: Guarantees for linear quadratic systems. Journal of Machine
Learning Research, 21:1–51, 2020.

[MPSL21] Dhruv Malik, Aldo Pacchiano, Vishwak Srinivasan, and Yuanzhi Li. Sample
efficient reinforcement learning in continuous state spaces: A perspective
beyond linearity. In International Conference on Machine Learning, 2021.

[MTPR22] Alberto Maria Metelli, Francesco Trovò, Matteo Pirola, and Marcello Restelli.
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