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Abstract

The typical start to a paper on explainability is something along the lines of “as machine
learned models have a greater impact on society, there is a greater need for us to be able to
understand them.” Note that this argument consists of two implicit steps. First, addressing
potential problems with our models is more important as their impact on society grows. Second,
understanding a model, in some abstract way, will allow us to address those potential problems.
However, when we look at specific applications of explainability (i.e., using an explainability
method to address a specific potential problem with a model), this second step often turns
out to be incorrect. So, the question is: how do we rigorously address a specific application
of explainability? In this thesis, we provide an answer to this question by demonstrating the
effectiveness of an application-based pipeline for explainability.

This thesis is organized as follows. To start, we summarize the application-based pipeline that
we follow. At a high level, this pipeline starts by defining the application, selecting methods
to address that application, and then designing a series of increasingly complex and realistic
evaluations based on that application. Then, we demonstrate the effectiveness of this pipeline
by applying it to several different applications of explainability: helping end-users interact
with a model, helping domain experts discover new knowledge from a model, and helping
model-developers debug a model (in two different ways, by detecting spurious patterns and
by detecting more general systemic errors). In the process of doing so, we make contributions
towards each of these applications in terms of new explainability methods and evaluations.
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Chapter 1

Introduction

The typical start to a paper on explainability is something along the lines of “as machine learned
models have a greater impact on society, there is a greater need for us to be able to understand
them.” Interestingly, this statement is emblematic of several critiques of explainability that
have been consistently brought up and that largely persist today [20, 31, 61]:

• Explainability is not a monolithic concept. As a result, we must define which specific aspect
of a model’s behavior an explainability method helps us understand.
• There are a wide range of potential problems with a model that may have caused us to want

to better understand it. For example, we may want to help an end-user interact with a model
that is making predictions about them or we may want to help a model-developer identify
specific subsets of the data where their model is performing worse. Further, it is likely that
different potential problems will be best addressed by different methods. As a result, we
must define what specific potential problem(s) with a model we are addressing.
• There is a lack of rigorous protocols for evaluating explainability methods. Further, it is

uncommon to directly test the usefulness of an explainability method for addressing a specific
potential problem with a model. As a result, we do not know which of the proxy metrics or
desired properties proposed for explainability methods are actually informative.

In short, explainability has primarily focused on helping us understand a model, in some
abstract way, and has mostly ignored showing that doing so is useful for addressing specific
potential problems with that model. This makes it difficult for practitioners to find a method
that addresses their problems of interest and for researchers to effectively compare methods.

1.1 Thesis Question

Motivated by these persisting critiques, this thesis focuses on the following question:

How do we rigorously address a specific application of explainability?

Before explaining our answer to this question in Section 1.1.4, we have to define some terms.

1



1.1.1 What do we mean by “explainability?”

We mean the research area that studies the collection of methods that aim to help us understand
the patterns that a model uses to make predictions. While explainability methods share this
common goal, they vary widely in terms of the technical objectives they optimize for and in
terms of how directly those technical objectives relate to this goal [20].

For example, consider several different ways that an explainability method could convey that a
model trained to detect tennis rackets in an image is relying on the presence of a person:1

• It could use a counterfactual approach and tell us that the model’s predictions frequently
change when we remove the people from an image [75].
• It could use a feature attribution approach and show us that the pixels corresponding to

people have a positive influence on the model’s predictions [45].
• It could use a concept-based approach and tell us that the “person concept” has a positive

influence on the model’s predictions [44, 50].
• It could use an example-based approach and show us that many of the training images that

positively influence the model’s predictions have people but no tennis rackets [49, 117].
• It could use a performance-based approach and tell us that the model has a lower recall on

images without people than with people and has a higher false positive rate on images with
people than without people [74, 75].

Note that this definition means that some methods that are explainability methods by-function
are not explainability methods in-name. The aforementioned example-based approach is one
example because it uses a method from robust statistics [49]. The aforementioned performance-
based approach is another example that we will discuss later in this thesis.

1.1.2 What do we mean by a “specific application?”

We mean addressing a clearly defined potential problem with a model. In the context of
explainability, a reasonable litmus test is to ask “who is the intended user of this explainability
method and what notion of utility is increased by using it?” If the answer to this question is not
clear, then that explainability method was not shown to be useful for a specific application.

For example, consider a generalization of the tennis racket example, where the goal is to design
an explainability method to find patterns of the form “the model’s prediction for some task, Y ,
depends on some feature, X .” In general, these patterns lead to sensitivity to distribution shift,
when X should not be related to Y , and to bias, when X is a protected attribute. Then one
way to pass this litmus test would be to show that a model developer can increase the utility of
their model by decreasing its sensitivity to distribution shifts related to the patterns conveyed
by this explainability method. Another way to pass this litmus test would be to show that an
auditor can increase the utility of the auditing process by more reliably determining if a model
is biased by using this explainability method.

1 Note that many of these approaches could be implemented either by-design (i.e., built into the model’s structure) or
post-hoc. For this thesis, this distinction is largely immaterial.
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1.1.3 What do we mean by “rigorously?”

We mean carefully and directly showing that an explainability method actually produces the
increased utility that is part of the litmus test to determine if it is useful for a specific application.
Showing this can be difficult (e.g., because it may require running a user study), but is the
strongest evidence of the usefulness of that method [20, 31]. As a result, a common pitfall is
relying on an intuitive connection between this increased utility and general arguments such
as: doing better on some proxy metric, having some desired property, or showing that users
report higher levels of trust in or understanding of the model. Instead, the goal is to empirically
support these connections, so that future work may build on them [20, 31].

For example, once again consider the tennis racket example and suppose that the model
developer has retrained the model to make it less sensitive to distribution shifts that change the
portion of images with people in them. Then, the question is: did retraining the model work?
One way to try to answer this question would be to re-run the explainability method that helped
the model developer find this pattern in the first place and check whether it still says that the
retrained model is still using this pattern. However, that is not a direct evaluation because it is
based on the explainability method. Instead, the model developer should directly check if the
model is less sensitive to this type of distribution shifts by checking if the retrained model has
smaller performance gaps between images with and without people in them.

1.1.4 How do we answer this question?

We apply an application-based pipeline for explainability (explained in Section 1.2) to the
different applications that we study in this thesis (summarized in Section 1.3). In doing so,
we provide a template demonstrating how to shift explainability’s focus away from providing
some abstract notion of understanding a model and toward being a set of tools that are useful
for specific applications.

1.2 An Application-based Pipeline for Explainability

We follow an application-based pipeline for explainability, initially described by Doshi-Velez
and Kim [31] and later refined by Chen et al. [20]. At a high level, this pipeline proceeds
by defining the application, selecting methods for the application, and designing a series of
increasingly complex and realistic evaluations based on the application. In more detail, each of
its five steps are as follows:

1. Define the Application with enough specificity such that we produce a clear and testable
hypothesis about what notion of utility will increase if we are successful. It is important for
this step to be explicit because it informs many of the choices in the later steps.

2. Select Methods based on the application and specify how they could be useful for it.
Additionally, we consider baselines from work outside of explainability on the application.

3. Define Faithfulness Evaluations, which are algorithmic evaluations that are based on formal
definitions of explainability (e.g., doing well on some proxy metric or having some desired
property). These are chosen based more on the explainability method than the application.
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4. Define Simulation Evaluations, which are algorithmic and application specific evaluations
where we simplify the application in order to distill success into an algorithmically measur-
able quantity. For example, we may simplify the application by: controlling the model’s
behavior to give us ground-truth to compare against, assuming that the user will use an
explanation in a specific way, or even training an algorithmic agent to act as a substitute for
a user (as done by Chen et al. [19]).

5. Define Usefulness Evaluations, which are the closest practical evaluations of an explainabil-
ity method’s usefulness for the application. These evaluations usually require a user and
provide the strongest evidence for a method’s utility.

Note that the order of this presentation is a little backwards: the Usefulness Evaluation should
be defined first and then the Simulation Evaluation should be designed by simplifying the
Usefulness Evaluation in order to make it algorithmic.

How do these evaluation steps fit together? Ultimately, our goal is to help practitioners find
methods that are useful for their applications and help researchers design useful methods. To
do this, we want to identify relationships between more easily measured quantities (e.g., the
results of the Faithfulness Evaluations, the dimensionality of the data, the complexity of the
model, the type of explanation, the expertise of the users) and the results of the Usefulness
Evaluations [20, 31]. However, this has proven to be challenging, in part because the Usefulness
Evaluations can be difficult to run and to reproduce. To address these challenges, we use the
Simulation Evaluations as a potentially noisy way to approximate the Usefulness Evaluations.

1.3 Applications Studied

To support our claim that we can use the application-based pipeline described in the previous
section to answer the thesis question, we demonstrate how to apply that pipeline to several
different applications of explainability. The next four subsections explain how we instantiate
each of the five steps of this pipeline for the four different applications that we study in this
thesis. Table 1.1 provides a high level summary of this instantiation.

1.3.1 User Interaction

1. Define the Application. One of explainability’s original motivating applications is helping
end-users interact with a model that is making predictions about them. For example, we might
want to help a person change their loan application so that the bank will give them a loan
when they re-apply. In this context, a good explainability method will help the user find such a
change more quickly or help them find a change that is more preferable to make. Specifically,
we allow the user to iteratively modify the initial point in order to change the model’s prediction
by a specific amount and want them to finish this process in as few iterations as possible. We
study this application for regression and classification models trained on tabular datasets.

2. Select Methods. Local approximation explanations or local counterfactual explanations
are a natural fit because they both tell the user how the model’s prediction will change for the
type of small perturbations of the initial point that we allow users to make. We focus on local
approximations because they offer the user more flexibility in their choices.
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Table 1.1: Each of the steps in the application-based pipeline that we follow and a summary of how we apply that pipeline to
the different applications that we study in this thesis.

1. Define the
Application

2. Select Methods 3. Faithfulness
Evaluation

4. Simulation
Evaluation

5. Usefulness
Evaluation

User Interaction [72] Help end-users
change a model’s
prediction about
them

Local Approximations Fidelity,
Stability

Algorithmic
agent

Human
subjects

Knowledge
Discovery [73]

Find which fea-
tures a dimension-
ality reduction al-
gorithm is using to
separate clusters

Global Counterfactuals Correctness,
Coverage

Synthetic/
Modified
Datasets

Real Datasets

Spurious Patterns [75] Find and fix Spuri-
ous Patterns where
the model relies on
the presence of one
object to detect a
different object

Global Counterfactuals Probability
prediction
changes

Artificially
induced
Spurious
Patterns

Naturally
occurring
Spurious
Patterns

Blindspots [74] Find Blindspots
where the model
performs worse
on a semantically
meaningful subset
of the data

Bespoke Methods [Skipped, Past
work used:
Blindspot
Size and Error
Rate]

Artificially
induced
Blindspots

Naturally
occurring
Blindspots

3. Faithfulness Evaluation. We use the two standard proxy metrics for this type of explanation:
Fidelity, which is the approximation error of the explanation, and Stability, which is the
explanation’s sensitivity to small perturbations of the initial point. Intuitively, an explanation
with poor Fidelity or Stability will not be useful for this application because will not accurately
convey how the model’s prediction will change for perturbations of the initial point.

4. Simulation Evaluation. We approximate a user with a semi-random greedy algorithmic
agent that, at each iteration, changes the feature that the explanation says will change the
model’s prediction by the amount nearest to the specified amount.

5. Usefulness Evaluation. We simply replace the algorithmic agent from the Simulation
Evaluation with a human subject.

1.3.2 Knowledge Discovery

1. Define the Application. Another motivating application is helping domain-experts use a
model to discover new knowledge. For example, a computational biologist might want to
understand which genes differentiate two different types of cells. In this context, a good explain-
ability method will identify specific genes for the biologist to test. We study this application
for unsupervised clustering tasks where the clusters are defined in a 2D representation.

5



2. Select Methods. A natural way to determine how a model differentiates a target cluster
from an initial cluster is to find a counterfactual transformation that, when applied to any point
from the initial cluster, makes the model treat the transformed point as if it were part of the
target cluster. To do this, we introduced a new type of explanation: Global Counterfactual
Explanations. In this context, the counterfactual transformation used by a Global Counterfactual
Explanation tells the computational biologist how to change a small set of gene expressions in
order to change the cell’s type from the initial type into the target type. Without this explanation,
a computational biologist would typically find a similar change by looking at the difference
between the average expression of each gene, so we use this as a baseline against which to
compare.

3. Faithfulness Evaluation. We define two proxy metrics: Correctness, which measures the
probability that this counterfactual transformation moves a point from the initial cluster into the
target cluster, and Coverage, which measures the probability that a point from the target cluster
is close to a transformed point from the initial cluster. Intuitively, these metrics respectively
measure the degree to which the explanation has found the correct differences between two
clusters and all of the differences between those clusters.

4. Simulation Evaluation. We set up two different types of experiments where we know the
ground-truth differences between the clusters and can measure whether an explanation captures
them: (1) a synthetic dataset, where we generate a number of causal variables that define the
clusters and some correlated variables that depend on those causal variables, and (2) a set of
modified real datasets, where we add a modified copy of a cluster to the dataset.

5. Usefulness Evaluation. For unaltered real datasets, we compare the explanations to domain
knowledge.

1.3.3 Spurious Patterns

1. Define the Application. An increasingly popular application is helping model developers
debug their models. One way to do this is to find and fix Spurious Patterns, which are patterns
a model uses that do not align with domain knowledge and will not generalize. For example,
consider the Spurious Patterns where a model relies on the presence of a person to detect
a tennis racket. In this context, a model developer can benefit by decreasing the model’s
sensitivity to distribution shifts. We study this application for image classification models with
the assumption that we can manipulate the presence of “binary features” (e.g., the presence of
objects) in an image.

2. Select Methods. We define a type of Global Counterfactual Explanation that tells the model
developer “the model’s prediction for class Y changes p% of the time when we remove feature
X from images that are from class Y .” Then, by finding the values of X and Y where p is the
largest, the model developer can find the strongest patterns that the model is relying on and use
their domain knowledge to determine whether or not those patterns are spurious. Separately,
we choose methods to use to fix the model by decreasing its sensitivity to distribution shift by
preventing it from relying on the spurious patterns.
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3. Faithfulness Evaluation. We use the aforementioned probability, p%, as a proxy metric to
identify the strongest patterns that the model is relying on.

4. Simulation Evaluation. We artificially induce Spurious Patterns of varying strengths by
inducing correlations between objects in the model’s training data and verify the connection
between this proxy metric and the strength of the induced Spurious Pattern. Further, we
compare several methods for fixing these Spurious Patterns in terms of how they affect a
model’s performance and sensitivity to distribution shift.

5. Usefulness Evaluation. We find Spurious Patterns in a normally trained model and measure
how fixing them affects the model’s performance and sensitivity to distribution shift.

1.3.4 Blindspots

1. Define the Application. A more general way to debug a model is to find and fix systemic
errors that occur when the model performs worse on a semantically meaningful subset of the
data. For example, when a model relies on the presence of a person to detect a tennis racket, it
will have a lower recall on images without people than with people and a higher false positive
rate on images with people than without people. Specifically, we focus on Blindspot Discovery,
which is the problem of finding systemic errors (which we call Blindspots in this context) in
image classification models while making minimal assumptions (e.g., not assuming access to
metadata to help define semantically meaningful subsets of the data).

2. Select Methods. Because this problem is broader than debugging via Spurious Patterns
(e.g., it contains a larger set of bugs), we limit the scope of this work to finding Blindspots
using algorithmic methods designed specifically for this problem.2

3. Faithfulness Evaluation. Past works have used metrics such as the Size or Error Rate of a
hypothesized Blindspot as proxy metrics. However, there are two problems with these metrics.
First, they do not capture whether the images from a hypothesized Blindspot are semantically
similar. Second, even if those images are similar, they may not be representative of the model’s
performance on other similar images. Consequently, we focus on Simulation Evaluation.

4. Simulation Evaluation. By mislabeling specific sets of points in the training data, we
artificially induce Blindspots in the model to use as a ground-truth to compare the hypothesized
Blindspots against. We do this for both synthetic and real datasets.

5. Usefulness Evaluation. We look at naturally occurring Blindspots and illustrate an evalua-
tion approach that is based on “collecting new data matching a text description of a hypothesized
Blindspot.” This approach addresses the two aforementioned issues with past Faithfulness
Evaluations and would allow us to evaluate arbitrary methods.

1.4 Contributions

In order to demonstrate the effectiveness of the application-based pipeline for explainability
(Section 1.2) we apply it to several different applications (Section 1.3). In the process of doing

2Note that there is reasonable evidence that existing explainability methods will not be effective for finding Blindspots
[3, 45] and that, once we have found Blindspots, we can fix them with algorithms such as GDRO [83].
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so, we make contributions towards each of those applications in terms of new explainability
methods and evaluations, which we will now summarize.

User Interaction. Our main contributions, based on the work in [72], are:

• We introduce a black-box regularizer that allows us to incentivize the model to have higher
Fidelity explanations. This allows us to easily quantify and control this specific instantiation
of the accuracy-explainability trade-off.
• We demonstrate that Fidelity is a useful metric for this application by showing that both an

algorithmic agent and people perform better on it when an explanation has higher Fidelity.

Knowledge Discovery. Our main contributions, based on the work in [73], are:

• The introduction of Global Counterfactual Explanations.
• An algorithm for finding Global Counterfactual Explanations for clustering problems.

Spurious Patterns. Our main contributions, based on the work in [75], are:

• We introduce a framework for finding and fixing Spurious Patterns in image classifiers that is
based on Global Counterfactual Explanations. We show that this framework finds new types
of Spurious Patterns and is more effective at fixing those Spurious Patterns than prior work.
• We introduce new metrics for evaluating the extent to which a model relies on a Spurious

Pattern that capture the model’s sensitivity to related distribution shifts.

Blindspots. Our main contributions, built on the initial work in [74], are:

• A new Blindspot Discovery Method, which we find to be more effective than existing
methods. This method uses a 2D image representation, which suggests that a human-in-the-
loop approach based on a similar representation may be effective.
• An evaluation framework for Blindspot Discovery Methods. Using this framework, we

identify factors that influence the performance of these methods and identify ways for future
work to improve these methods.

Other Contributions. Besides the primary contributions towards each of the applications
presented in this thesis, there are other related research contributions from other projects that
the author has contributed towards, which are summarized next. We describe the application-
based pipeline followed in this thesis in more detail [20] and, in particular, study Simulation
Evaluations where we replace the user in a user study with a machine learned model [19]. For
the local approximation explanations used for the User Interaction application, we introduce a
new explanation method [71], and we identify a theoretical connection between a variation of
Fidelity and model generalization [58]. For saliency map explanations, which could be useful
for the Spurious Pattern applications, we introduce a new evaluation framework, the results of
which suggest that current methods are unlikely to be useful for this application [45].

1.5 Reading Guide

The main chapters of this thesis discuss each of the applications that we study in order
to demonstrate the effectiveness of the application-based pipeline described in Section 1.2.
Specifically, Chapter 2 looks at User Interaction, Chapter 3 looks at Knowledge Discovery,
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Chapter 4 looks at Spurious Patterns, and Chapter 5 looks at Blindspots. These chapters can be
read in any order, because they are entirely self-contained (i.e., they have their own notation,
background, and related work).

In Chapter 6, we conclude by summarizing the goal, approach, and contributions of this thesis
and discussing a few relevant directions for future work.
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Applications
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Chapter 2

User Interaction

Recall that the goal of this application is to help end-users interact with a model that is making
predictions about them.1 In particular, we allow the user to iteratively modify their feature
vector in order to change the model’s prediction about them. Then, in this context, a more
useful method will help the user to complete this task with fewer modifications.

To help the user complete this task, we explain the model to them by approximating it with
a simple function across some neighborhood centered around their feature vector. Then, we
measure the quality of these explanations using metrics such as fidelity and stability. Both these
explanations and these metrics are described in the first part of Section 2.2. The key idea in this
work is that we can regularize a model to have higher fidelity explanations (Section 2.3) and,
empirically, find that this does not reduce the model’s accuracy (Section 2.4).

To determine whether higher fidelity explanations are more useful for this application, we run
two evaluations. For the first, we have an algorithmic agent complete this task and, for the
second, we have real people complete this task. For both of these evaluations, we find that it
takes fewer modifications to complete this task for the fidelity-regularized model than for the
normally trained model, which suggests that higher fidelity explanations are more useful for
this application (Section 2.5).

2.1 Introduction

Complex learning-based systems are increasingly shaping our daily lives. To monitor and
understand these systems, we require clear explanations of model behavior. Although model
interpretability has many definitions and is often application specific [61], local explanations
are a popular and powerful tool [78] and will be the focus of this work.

Recent techniques in interpretable machine learning range from models that are interpretable
by-design [e.g.,, 16, 107] to model-agnostic post-hoc systems for explaining black-box models
such as ensembles and deep neural networks [e.g.,, 44, 57, 62, 78, 85]. Despite the variety
of technical approaches, the underlying goal of these methods is to develop an interpretable
predictive system that produces two outputs: a prediction and its explanation.

1This application is also called “actionable recourse” [81, 105].

11



Both by-design and post-hoc approaches have limitations. On the one hand, by-design ap-
proaches are restricted to working with model families that are inherently interpretable, poten-
tially at the cost of accuracy. On the other hand, post-hoc approaches applied to an arbitrary
model usually offer no recourse if their explanations are not of suitable quality. Moreover,
recent methods that claim to overcome this apparent trade-off between prediction accuracy
and explanation quality are in fact by-design approaches that impose constraints on the model
families they consider [e.g.,, 5, 6, 71].

In this work, we propose a strategy called Explanation-based Optimization (EXPO) that allows
us to interpolate between these two paradigms by adding an interpretability regularizer to the
loss function used to train the model. EXPO uses regularizers based on the fidelity [71, 78] or
stability [6] metrics. See Section 2.2 for definitions.

Unlike by-design approaches, EXPO places no explicit constraints on the model family because
its regularizers are differentiable and model agnostic. Unlike post-hoc approaches, EXPO
allows us to control the relative importance of predictive accuracy and explanation quality. In
Figure 2.1, we see an example of how EXPO allows us to interpolate between these paradigms
and overcome their respective weaknesses.

Although fidelity and stability are standard proxy metrics, they are only indirect measurements
of the usefulness of an explanation. To more rigorously test the usefulness of EXPO, we
additionally devise a more realistic evaluation task where humans are asked to use explanations
to change a model’s prediction. Notably, our user study falls under the category of Human-
Grounded Metric evaluations as defined by Doshi-Velez and Kim [31].

The main contributions of our work are as follows:

1. Interpretability regularizer. We introduce, EXPO-FIDELITY, a differentiable and model
agnostic regularizer that requires no domain knowledge to define. It approximates the fidelity
metric on the training points in order to improve the quality of post-hoc explanations of the
model.
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Figure 2.1: Neighborhood Fidelity of LIME-generated explanations (lower is better) vs. predictive Mean Squared Error of
several models trained on the UCI ‘housing’ regression dataset. The values in blue denote the regularization weight of EXPO.
One of the key contributions of EXPO is allowing us to pick where we are along the accuracy-interpretability curve for a
black-box model.
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2. Empirical results. We compare models trained with and without EXPO on a variety of
regression and classification tasks.2 Empirically, EXPO slightly improves test accuracy
and significantly improves explanation quality on test points, producing at least a 25%
improvement in terms of explanation fidelity. This separates it from many other methods
which trade-off between predictive accuracy and explanation quality. These results also
demonstrate that EXPO’s effects generalize from the training data to unseen points.

3. User study. To more directly test the usefulness of EXPO, we run a user study where
participants complete a simplified version of a realistic task. Quantitatively, EXPO makes
it easier for users to complete the task and, qualitatively, they prefer using the EXPO-
regularized model. This is additional validation that the fidelity and stability metrics are
useful proxies for interpretability.

2.2 Background and Related Work

Consider a supervised learning problem where the goal is to learn a model, f : X 7→ Y , f ∈ F ,
that maps input feature vectors, x ∈ X , to targets, y ∈ Y , trained with data, {xi, yi}Ni=1. If F is
complex, we can understand the behavior of f in some neighborhood, Nx ∈ P [X ] where P [X ]
is the space of probability distributions over X , by generating a local explanation.

We denote systems that produce local explanations (i.e.,, explainers) as e : X ×F 7→ E , where
E is the set of possible explanations. The choice of E generally depends on whether or not X
consists of semantic features. We call features semantic if users can reason about them and
understand what changes in their values mean (e.g.,, a person’s income or the concentration of
a chemical). Non-semantic features lack an inherent interpretation, with images as a canonical
example. We primarily focus on semantic features but we briefly consider non-semantic features
in Appendix A.8.

We next state the goal of local explanations for semantic features, define fidelity and stability
(the metrics most commonly used to quantitatively evaluate the quality of these explanations),
and briefly summarize the post-hoc explainers whose explanations we will use for evaluation.

Goal of Approximation-based Local Explanations. For semantic features, we focus on local
explanations that try to predict how the model’s output would change if the input were perturbed
such as LIME [78] and MAPLE [71]. Thus, we can define the output space of the explainer as
Es := {g ∈ G | g : X 7→ Y}, where G is a class of interpretable functions. As is common, we
assume that G is the set of linear functions.

Fidelity metric. For semantic features, a natural choice for evaluation is to measure how
accurately g models f in a neighborhood Nx [71, 78]:

F (f, g,Nx) := Ex′∼Nx [(g(x′)− f(x′))
2
], (2.1)

which we refer to as the neighborhood-fidelity (NF) metric. This metric is sometimes evaluated
with Nx as a point mass on x and we call this version the point-fidelity (PF) metric.3 Intuitively,

2https://github.com/GDPlumb/ExpO
3Although Plumb et al. [71] argued that point-fidelity can be misleading because it does not measure generalization of

e(x, f) across Nx, it has been used for evaluation in prior work [78, 79]. We report it in our experiments along with the
neighborhood-fidelity for completeness.
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Table 2.1: A breakdown of how EXPO compares to existing methods. Note that EXPO is the only method that is differentiable
and model agnostic that does not require domain knowledge.

Method Differentiable Model Agnostic Domain Knowledge Goal Type

ExpO Yes Yes No Quality Neighborhood
FTSD No Yes Sometimes Quality Neighborhood
SENN Yes No No Quality Gradient
RRR Yes Yes Yes Content Gradient

an explanation with good fidelity (lower is better) accurately conveys which patterns the model
used to make this prediction (i.e.,, how each feature influences the model’s prediction around
this point).

Stability metric. In addition to fidelity, we are interested in the degree to which the explanation
changes between points in Nx, which we measure using the stability metric [6]:

S(f, e,Nx) := Ex′∼Nx [||e(x, f)− e(x′, f)||22] (2.2)

Intuitively, more stable explanations (lower is better) tend to be more trustworthy [6, 7, 35].

Post-hoc explainers. Various explainers have been proposed to generate local explanations of
the form g : X 7→ Y . In particular, LIME [78], one of the most popular post-hoc explanation
systems, solves the following optimization problem:

e(x, f) := arg min
g∈Es

F (f, g,Nx) + Ω(g), (2.3)

where Ω(g) stands for an additive regularizer that encourages certain desirable properties of
the explanations (e.g.,, sparsity). Along with LIME, we consider another explanation system,
MAPLE [71]. Unlike LIME, its neighborhoods are learned from the data using a tree ensemble
rather than specified as a parameter.

Related Methods

There are three methods that consider problems conceptually similar to EXPO: Functional
Transparency for Structured Data (FTSD) [55, 56], Self-Explaining Neural Networks (SENN)
[6], and Right for the Right Reasons (RRR) [82]. In this section, we contrast EXPO to these
methods along several dimensions: whether the proposed regularizers are (i) differentiable,
(ii) model agnostic, and (iii) require domain knowledge; whether the (iv) goal is to change an
explanation’s quality (e.g.,, fidelity or stability) or its content (e.g.,, how each feature is used);
and whether the expected explainer is (v) neighborhood-based (e.g.,, LIME or MAPLE) or
gradient-based (e.g.,, Saliency Maps [91]). These comparisons are summarized in Table 2.1,
and we elaborate further on them in the following paragraphs.

FTSD has a very similar high-level objective to EXPO: it regularizes black-box models to
be more locally interpretable. However, it focuses on graph and time-series data and is not
well-defined for general tabular data. Consequently, our technical approaches are distinct. First,
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FTSD’s local neighborhood and regularizer definitions are different from ours. For graph data,
FTSD aims to understand what the model would predict if the graph itself were modified.
Although this is the same type of local interpretability considered by EXPO, FTSD requires
domain knowledge to define Nx in order to consider plausible variations of the input graph.
These definitions do not apply to general tabular data. For time-series data, FTSD aims to
understand what the model will predict for the next point in the series and defines Nx as a
windowed-slice of the series to do so. This has no analogue for general tabular data and is thus
entirely distinct from EXPO. Second, FTSD’s regularizers are non-differentiable, and thus it
requires a more complex, less efficient bi-level optimization scheme to train the model.

SENN is a by-design approach that optimizes the model to produce stable explanations. For
both its regularizer and its explainer, it assumes that the model has a specific structure. In
Appendix A.1, we show empirically that EXPO is a more flexible solution than SENN via
two results. First, we show that we can train a significantly more accurate model with EXPO-
FIDELITY than with SENN; although the EXPO-regularized model is slightly less interpretable.
Second, if we increase the weight of the EXPO-FIDELITY regularizer so that the resulting
model is as accurate as SENN, we show that the EXPO-regularized model is much more
interpretable.

RRR also regularizes a black-box model with a regularizer that involves a model’s explanations.
However, it is motivated by a fundamentally different goal and necessarily relies on extensive
domain knowledge. Instead of focusing on explanation quality, RRR aims to restrict what
features are used by the model itself, which will be reflected in the model’s explanations. This
relies on a user’s domain knowledge to specify sets of good or bad features. In a similar vein to
RRR, there are a variety of methods that aim to change the model in order to align the content
of its explanations with some kind of domain knowledge [32, 80, 109]. As a result, these works
are orthogonal approaches to EXPO.

Finally, we briefly mention two additional lines of work that are also in some sense related
to EXPO. First, [76] proposed a method for local linearization in the context of adversarial
robustness. Because its regularizer is based on the model’s gradient, it will have the same issues
with flexibility, fidelity, and stability discussed in Appendix A.2. Second, there is a line of work
that regularizes black-box models to be easier to approximate by decision trees. [113] does this
from a global perspective while [114] uses domain knowledge to divide the input space into
several regions. However, small decision trees are difficult to explain locally by explainer’s
such as LIME (as seen in Figure 2.1) and so these methods do not solve the same problem as
EXPO.

Connections to Function Approximations and Complexity

The goal of this section is to intuitively connect local linear explanations and neighborhood
fidelity with classical notions of function approximation and complexity/smoothness, while also
highlighting key differences in the context of local interpretability. First, neighborhood-based
local linear explanations and first-order Taylor approximations both aim to use linear functions
to locally approximate f . However, the Taylor approximation is strictly a function of f and
x and cannot be adjusted to different neighborhood scales for Nx, which can lead to poor
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fidelity and stability. Second, Neighborhood Fidelity (NF), the Lipschitz Constant (LC), and
Total Variation (TV) all approximately measure the smoothness of f across Nx. However,
a large LC or TV does not necessarily indicate that f is difficult to explain across Nx (e.g.,,
consider a linear model with large coefficients which has a near zero NF but has a large LC/TV).
Instead, local interpretability is more closely related to the LC or TV of the part of f that cannot
be explained by e(x, f) across Nx. Additionally, we empirically show that standard l1 or l2
regularization techniques do not influence model interpretability. Examples and details for all
of these observations are in Appendix A.2.

2.3 Explanation-based Optimization

Recall that the main limitation of using post-hoc explainers on arbitrary models is that their
explanation quality can be unpredictable. To address this limitation, we define regularizers that
can be added to the loss function and used to train an arbitrary model. This allows us to control
for explanation quality without making explicit constraints on the model family in the way that
by-design approaches do. Specifically, we want to solve the following optimization problem:

f̂ := arg min
f∈F

1

N

N∑
i=1

(L(f, xi, yi) + γR(f,N reg
xi

)) (2.4)

where L(f, xi, yi) is a standard predictive loss (e.g.,, squared error for regression or cross-
entropy for classification),R(f,N reg

xi
) is a regularizer that encourages f to be interpretable in

the neighborhood of xi, and γ > 0 controls the regularization strength. Because our regularizers
are differentiable, we can solve Equation 2.4 using any standard gradient-based algorithm; we
use SGD with Adam [47].

We defineR(f,N reg
x ) based on either neighborhood-fidelity, Eq. (2.1), or stability, Eq. (2.2). In

order to compute these metrics exactly, we would need to run e; this may be non-differentiable
or too computationally expensive to use as a regularizer. As a result, EXPO consists of two main
approximations to these metrics: EXPO-FIDELITY and EXPO-STABILITY. EXPO-FIDELITY

approximates e using a local linear model fit on points sampled from N reg
x (Algorithm 1). Note

that it is simple to modify this algorithm to regularize for the fidelity of a sparse explanation.
EXPO-STABILITY encourages the model to not vary too much across N reg

x and is detailed in
Appendix A.8.

Computational cost. The overhead of using EXPO-FIDELITY comes from using Algorithm 1
to calculate the additional loss term and then differentiating through it at each iteration. If x
is d-dimensional and we sample m points from N reg

x , this has a complexity of O(d3 + d2m)
plus the cost to evaluate f on m points. Note that m must be at least d in order for this loss
to be non-zero, thus making the complexity Ω(d3). Consequently, we introduce a randomized
version of Algorithm 1, EXPO-1D-FIDELITY, that randomly selects one dimension of x to
perturb according to N reg

x and penalizes the error of a local linear model along that dimension.
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This variation has a complexity of O(m) plus the cost to evaluate f on m points, and allows us
to use a smaller m.4

2.4 Experimental Results

In our main experiments, we demonstrate the effectiveness of EXPO-FIDELITY and EXPO-
1D-FIDELITY on datasets with semantic features using seven regression problems from the
UCI collection [27], the ‘MSD’ dataset5, and ‘Support2’ which is an in-hospital mortality
classification problem6. Dataset statistics are in Table 2.2.

We found that EXPO-regularized models are more interpretable than normally trained models
because post-hoc explainers produce quantitatively better explanations for them; further, they
are often more accurate. Additionally, we qualitatively demonstrate that post-hoc explanations
of EXPO-regularized models tend to be simpler. In Appendix A.8, we demonstrate the
effectiveness of EXPO-STABILITY for creating Saliency Maps [91] on MNIST [54].

Experimental setup. We compare EXPO-regularized models to normally trained models
(labeled “None”). We report model accuracy and three interpretability metrics: Point-Fidelity
(PF), Neighborhood-Fidelity (NF), and Stability (S). The interpretability metrics are evaluated
for two black-box explanation systems: LIME and MAPLE. For example, the “MAPLE-PF”
label corresponds to the Point-Fidelity Metric for explanations produced by MAPLE. All of
these metrics are calculated on test data, which enables us to evaluate whether optimizing for
explanation fidelity on the training data generalizes to unseen points.

All of the inputs to the model are standardized to have mean zero and variance one (including
the response variable for regression problems). The network architectures and hyper-parameters
are chosen using a grid search; for more details see Appendix A.3. For the final results, we set
Nx to be N (x, σ) with σ = 0.1 and N reg

x to be N (x, σ) with σ = 0.5. In Appendix A.4, we
discuss how we chose those distributions.

Regression experiments. Table 2.4 shows the effects of EXPO-FIDELITY and EXPO-1D-
FIDELITY on model accuracy and interpretability. EXPO-FIDELITY frequently improves the
interpretability metrics by over 50%; the smallest improvements are around 25%. Further, it
lowers the prediction error on the ‘communities’, ‘day’, and ‘MSD’ datasets, while achieving
similar accuracy on the rest. EXPO-1D-FIDELITY also significantly improves the interpretabil-
ity metrics, although on average to a lesser extent than EXPO-FIDELITY does, and it has no
significant effect on accuracy on average.

A qualitative example on the UCI ‘housing’ dataset. After sampling a random point x,
we use LIME to generate an explanation at x for a normally trained model and an EXPO-
regularized model. Table 2.3 shows the example we discuss next. Quantitatively, training
the model with EXPO-1D-FIDELITY decreases the LIME-NF metric from 1.15 to 0.02 (i.e.,,
EXPO produces a model that is more accurately approximated by the explanation around x).

4Each model takes less than a few minutes to train on an Intel 8700k CPU, so computational cost was not a limiting factor
in our experiments. That being said, we observe a 2x speedup per iteration when using EXPO-1D-FIDELITY compared to
EXPO-FIDELITY on the ‘MSD’ dataset and expect greater speedups on higher dimensional datasets.

5As in [11], we treat the ‘MSD’ dataset as a regression problem with the goal of predicting the release year of a song.
6http://biostat.mc.vanderbilt.edu/wiki/Main/SupportDesc.
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Algorithm 1 Neighborhood-fidelity regular-
izer
input fθ, x, N reg

x , m
Sample points:
x′1, . . . , x

′
m ∼ N reg

x

Compute predictions:
ŷj(θ) = fθ(x

′
j) for j = 1, . . . ,m

Produce a local linear explanation:
βx(θ) = arg minβ

∑m
j=1(ŷj(θ)− β>x′j)2

output 1
m

∑m
j=1(ŷj(θ)− βx(θ)>x′j)2

Table 2.2: Statistics of the datasets.

Dataset # samples # dims

autompgs 392 7
communities 1993 102
day 731 14
housing 506 11
music 1059 69
winequality-red 1599 11
MSD 515345 90
SUPPORT2 9104 51

Table 2.3: An example of LIME’s explanation for a normally
trained model (“None”) and an EXPO-regularized model.
Because these are linear explanations, each value can be
interpreted as an estimate of how much the model’s prediction
would change if that feature’s value were increased by one.
Because the explanation for the EXPO-regularized model is
sparser, it is easier to understand and, because it has better
fidelity, these estimates are more accurate.

Data Explanation

Feature Value None ExpO

CRIM 2.5 -0.1 0.0
INDUS 1.0 0.1 0.0
NOX 0.9 -0.2 -0.2
RM 1.4 0.2 0.2
AGE 1.0 -0.1 0.0
DIS -1.2 -0.4 -0.2
RAD 1.6 0.2 0.2
TAX 1.5 -0.3 -0.1
PTRATIO 0.8 -0.1 -0.1
B 0.4 0.1 0.0
LSTAT 0.1 -0.3 -0.5

Further, the resulting explanation also has fewer non-zero coefficients (after rounding), and
hence it is simpler because the effect is attributed to fewer features. More examples, that show
similar patterns, are in Appendix A.5.

Medical classification experiment. We use the ‘support2’ dataset to predict in-hospital
mortality. Since the output layer of our models is the softmax over logits for two classes, we
run each explainer on each of the logits. We observe that EXPO-FIDELITY had no effect on
accuracy and improved the interpretability metrics by 50% or more, while EXPO-1D-FIDELITY

slightly decreased accuracy and improved the interpretability metrics by at least 25%. See
Table A.5 in Appendix A.6 for details.

2.5 User Study

The previous section compared EXPO-regularized models to normally trained models through
quantitative metrics such as model accuracy and post-hoc explanation fidelity and stability on
held-out test data. Doshi-Velez and Kim [31] describe these metrics as Functionally-Grounded
Evaluations, which are useful proxies for more direct applications of interpretability. To more
directly measure the usefulness of EXPO, we conduct a user study to obtain Human-Grounded
Metrics [31], where real people solve a simplified task.
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Table 2.4: Normally trained models (“None”) vs. the same models trained with EXPO-FIDELITY or EXPO-1D-FIDELITY on
the regression datasets. Results are shown across 20 trials (with the standard error in parenthesis). Statistically significant
differences (p = 0.05, t-test) between FIDELITY and None are in bold and between 1D-FIDELITY and None are underlined.
Because MAPLE is slow on ‘MSD’, we evaluate interpretability using LIME on 1000 test points.

Metric Regularizer autompgs communities day† (10−3) housing music winequality.red MSD

None 0.14 (0.03) 0.49 (0.05) 1.000 (0.300) 0.14 (0.05) 0.72 (0.09) 0.65 (0.06) 0.583 (0.018)
MSE FIDELITY 0.13 (0.02) 0.46 (0.03) 0.002 (0.002) 0.15 (0.05) 0.67 (0.09) 0.64 (0.06) 0.557 (0.0162)

1D-FIDELITY 0.13 (0.02) 0.55 (0.04) 5.800 (8.800) 0.15 (0.07) 0.74 (0.07) 0.66 (0.06) 0.548 (0.0154)

None 0.040 (0.011) 0.100 (0.013) 1.200 (0.370) 0.14 (0.036) 0.110 (0.037) 0.0330 (0.0130) 0.116 (0.0181)
LIME-PF FIDELITY 0.011 (0.003) 0.080 (0.007) 0.041 (0.007) 0.057 (0.017) 0.066 (0.011) 0.0025 (0.0006) 0.0293 (0.00709)

1D-FIDELITY 0.029 (0.007) 0.079 (0.026) 0.980 (0.380) 0.064 (0.017) 0.080 (0.039) 0.0029 (0.0011) 0.057 (0.0079)

None 0.041 (0.012) 0.110 (0.012) 1.20 (0.36) 0.140 (0.037) 0.112 (0.037) 0.0330 (0.0140) 0.117 (0.0178)
LIME-NF FIDELITY 0.011 (0.003) 0.079 (0.007) 0.04 (0.07) 0.057 (0.018) 0.066 (0.011) 0.0025 (0.0006) 0.029 (0.007)

1D-FIDELITY 0.029 (0.007) 0.080 (0.027) 1.00 (0.39) 0.064 (0.017) 0.080 (0.039) 0.0029 (0.0011) 0.0575 (0.0079)

None 0.0011 (0.0006) 0.022 (0.003) 0.150 (0.021) 0.0047 (0.0012) 0.0110 (0.0046) 0.00130 (0.00057) 0.0368 (0.00759)
LIME-S FIDELITY 0.0001 (0.0003) 0.005 (0.001) 0.004 (0.004) 0.0012 (0.0002) 0.0023 (0.0004) 0.00007 (0.00002) 0.00171 (0.00034)

1D-FIDELITY 0.0008 (0.0003) 0.018 (0.008) 0.100 (0.047) 0.0025 (0.0007) 0.0084 (0.0052) 0.00016 (0.00005) 0.0125 (0.00291)

None 0.0160 (0.0088) 0.16 (0.02) 1.0000 (0.3000) 0.057 (0.024) 0.17 (0.06) 0.0130 (0.0078) —
MAPLE-PF FIDELITY 0.0014 (0.0006) 0.13 (0.01) 0.0002 (0.0003) 0.028 (0.013) 0.14 (0.03) 0.0027 (0.0010) —

1D-FIDELITY 0.0076 (0.0038) 0.092 (0.03) 0.7600 (0.3000) 0.027 (0.012) 0.13 (0.05) 0.0016 (0.0007) —

None 0.0180 (0.0097) 0.31 (0.04) 1.2000 (0.3200) 0.066 (0.024) 0.18 (0.07) 0.0130 (0.0079) —
MAPLE-NF FIDELITY 0.0015 (0.0006) 0.24 (0.05) 0.0003 (0.0004) 0.033 (0.014) 0.14 (0.03) 0.0028 (0.0010) —

1D-FIDELITY 0.0084 (0.0040) 0.16 (0.05) 0.9400 (0.3600) 0.032 (0.013) 0.14 (0.06) 0.0017 (0.0008) —

None 0.0150 (0.0099) 1.2 (0.2) 0.0003 (0.0008) 0.18 (0.14) 0.08 (0.06) 0.0043 (0.0020) —
MAPLE-S FIDELITY 0.0017 (0.0005) 0.8 (0.4) 0.0004 (0.0004) 0.10 (0.08) 0.05 (0.02) 0.0009 (0.0004) —

1D-FIDELITY 0.0077 (0.0051) 0.6 (0.2) 1.2000 (0.6600) 0.09 (0.06) 0.04 (0.02) 0.0004 (0.0002) —

†The relationship between inputs and targets on the ‘day’ dataset is very close to linear and hence all errors are orders of magnitude smaller than across other

datasets.

In summary, the results of our user study show that the participants had an easier time complet-
ing this task with the EXPO-regularized model and found the explanations for that model more
useful. See Table 2.5 and Figure A.6 in Appendix A.7 for details. Not only is this additional
evidence that the fidelity and stability metrics are good proxies for interpretability, but it also
shows that they remain so after we directly optimize for them. Next, we describe the high-level
task, explain the design choices of our study, and present its quantitative and qualitative results.

Defining the task. One of the common proposed use cases for local explanations is as follows.
A user is dissatisfied with the prediction that a model has made about them, so they request an
explanation for that prediction. Then, they use that explanation to determine what changes they
should make in order to receive the desired outcome in the future. We propose a similar task on
the UCI ‘housing’ regression dataset where the goal is to increase the model’s prediction by a
fixed amount.

We simplify the task in three ways. First, we assume that all changes are equally practical to
make; this eliminates the need for any prior domain knowledge. Second, we restrict participants
to changing a single feature at a time by a fixed amount; this reduces the complexity of
the required mental math. Third, we allow participants to iteratively modify the features
while getting new explanations at each point; this provides a natural quantitative measure of
explanation usefulness, via the number of changes required to complete the task.

Design Decisions. Figure 2.2 shows a snapshot of the interface we provide to participants.
Additionally, we provide a demo video of the user study in the Github repository. Next, we
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describe several key design aspects of our user study, all motivated by the underlying goal of
isolating the effect of EXPO.

1. Side-by-side conditions. We present the two conditions side-by-side with the same initial
point. This design choice allows the participants to directly compare the two conditions and
allows us to gather their preferences between the conditions. It also controls for the fact that
a model may be more difficult to explain for some x than for others. Notably, while both
conditions have the same initial point, each condition is modified independently. With the
conditions shown side-by-side, it may be possible for a participant to use the information
gained by solving one condition first to help solve the other condition. To prevent this from
biasing our aggregated results, we randomize, on a per-participant basis, which model is
shown as Condition A.

2. Abstracted feature names and magnitudes. In the explanations shown to users, we
abstract feature names and only show the magnitude of each feature’s expected impact.
Feature names are abstracted in order to prevent participants from using prior knowledge to
inform their decisions. Moreover, by only showing feature magnitudes, we eliminate double
negatives (e.g.,, decreasing a feature with a negative effect on the prediction should increase
the prediction), thus simplifying participants’ required mental computations. In other words,
we simplify the interface so that the ‘+’ button is expected to increase the prediction by the
amount shown in the explanation regardless of explanation’s (hidden) sign.

3. Learning Effects. To minimize long-term learning (e.g.,, to avoid learning general patterns
such as ‘Item 7’s explanation is generally unreliable.’), participants are limited to completing
a single experiment consisting of five recorded rounds. In Figure A.5 from Appendix A.7,
we show that the distribution of the number of steps it takes to complete each round across
participants does not change substantially. This result indicates that learning effects were
not significant.

4. Algorithmic Agent. Although the study is designed to isolate the effect EXPO has on
the usefulness of the explanations, entirely isolating its effect is impossible with human
participants. Consequently, we also evaluate the performance of an algorithmic agent that
uses a simple heuristic that relies only on the explanations. See Appendix A.7 for details.

Collection Procedure. We collect the following information using Amazon Mechanical Turk:

1. Quantitative. We measure how many steps (i.e.,, feature changes) it takes each participant
to reach the target price range for each round and each condition.

2. Qualitative Preferences. We ask which condition’s explanations are more useful for com-
pleting the task and better match their expectation of how the price should change.7

3. Free Response Feedback. We ask why participants preferred one condition over the other.

Data Cleaning. Most participants complete each round in between 5 and 20 steps. However,
there are a small number of rounds that take 100’s of steps to complete, which we hypothesize
to be random clicking. See Figure A.4 in Appendix A.7 for the exact distribution. As a result,
we remove any participant who has a round that is in the top 1% for number of steps taken (60

7Note that we do not ask participants to rate their trust in the model because of issues such as those raised in Lakkaraju
and Bastani [52].
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Figure 2.2: An example of the interface participants were
given. In this example, the participant has taken one step
for Condition A and no steps for Condition B. While the
participant selected ‘+’ for Item 7 in Condition A, the change
had the opposite effect and decreased the price because of
the explanation’s low fidelity.

Table 2.5: The results of the user study. Participants took
significantly fewer steps to complete the task using the EXPO-
regularized model, and thought that the post-hoc explanations
for it were both more useful for completing the task and better
matched their expectations of how the model would change.

Condition Steps Usefulness Expectation
None 11.45 11 11
ExpO 8.00 28 26
No Preference N.A. 15 17

participants with 5 rounds per participant and 2 conditions per round gives us 600 observed
rounds). This leaves us with a total of 54 of the original 60 participants.

Results. Table 2.5 shows that the EXPO-regularized model has both quantitatively and qualita-
tively more useful explanations. Quantitatively, participants take 8.00 steps on average with the
EXPO-regularized model, compared to 11.45 steps for the normally trained model (p = 0.001,
t-test). The participants report that the explanations for the EXPO-regularized model are both
more useful for completing the task (p = 0.012, chi-squared test) and better aligned with their
expectation of how the model would change (p = 0.042, chi-squared test). Figure A.6 in
Appendix A.7 shows that the algorithmic agent also finds the task easier to complete with the
EXPO-regularized model. This agent relies solely on the information in the explanations and
thus is additional validation of these results.

Participant Feedback. Most participants who prefer the EXPO-regularized model focus on
how well the explanation’s predicted change matches the actual change. For example, one
participant says “It [EXPO ] seemed to do what I expected more often” and another notes
that “In Condition A [None] the predictions seemed completely unrelated to how the price
actually changed.” Although some participants who prefer the normally trained model cite
similar reasons, most focus on how quickly they can reach the goal rather than the quality of the
explanation. For example, one participant plainly states that they prefer the normally trained
model because “The higher the value the easier to hit [the] goal”; another participant similarly
explains that “It made the task easier to achieve.” These participants likely benefited from the
randomness of the low-fidelity explanations of the normally trained model, which can jump
unexpectedly into the target range.
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2.6 Conclusion

In this work, we regularize black-box models to be more interpretable with respect to the
fidelity and stability metrics for local explanations. We compare EXPO-FIDELITY, a model
agnostic and differentiable regularizer that requires no domain knowledge to define, to classical
approaches for function approximation and smoothing. Next, we demonstrate that EXPO-
FIDELITY slightly improves model accuracy and significantly improves the interpretability
metrics across a variety of problem settings and explainers on unseen test data. Finally, we run
a user study demonstrating that an improvement in fidelity and stability improves the usefulness
of the model’s explanations.
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Chapter 3

Knowledge Discovery

Recall that the goal of this application is to identify the patterns that a model has learned from
the data, in the hope that these patterns lead to new knowledge. In particular, we are interested
in finding the differences between clusters defined in a learned low-dimensional representation
of the data. To do this, we use global counterfactual explanations and measure the quality of
these explanations using correctness and coverage (Section 3.3).

To evaluate the usefulness of these explanations for this application, we run a series of evalu-
ations where we progressively trade-off knowledge of the ground-truth differences between
clusters in order to consider more realistic settings (Section 3.4.2):

• We generate synthetic data with a known causal structure. Then, we check whether the
explanation identifies that structure.
• We run a quantitative analysis of modified versions of UCI datasets. To do this, we take a

cluster from one of those datasets and add a modified copy of it back into the dataset. Then,
we check whether the explanation identifies the modifications that we made to that cluster.
• We run qualitative analysis of UCI datasets using the labels. To do this, we compare the

explanations to domain knowledge based on those labels. Note that, from an explainability
perspective, the results of this analysis need to be interpreted with some caution because we
need to make sure that the explanations still accurately explain the model, even when they
match our domain knowledge.

3.1 Introduction

A common workflow in data exploration is to: 1) learn a low-dimensional representation
of the data, 2) identify groups of points (i.e., clusters) that are similar to each other in that
representation, and 3) examine the differences between the groups to determine what they
represent. We focus on the third step of this process: answering the question “What are the key
differences between the groups?”

For data exploration, this is an interesting question because the groups often correspond to an
unobserved concept of interest and, by identifying which features differentiate the groups, we
can learn something about that concept of interest. For example, consider single-cell RNA
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analysis. These datasets measure the expression levels of many genes for sampled cells. Usually
the cell-type of each of those cells is unknown. Because gene expression and cell-type are
closely related, the groups of points that can be seen in a low-dimensional representation of
the dataset often correspond to different cell-types (Figure 3.1). By determining which gene
expressions differentiate the groups, we can learn something about the connection between
gene expression and cell-type.

One common approach for answering this question is manual interpretation. One simple way
to do this, that we will use as a naive baseline, is to calculate the Difference Between the Mean
(DBM) value of each feature in the original input space between a pair of groups. For example,
consider using DBM to explain the differences between the cells in Group 3 and Group 17 from
Figure 3.1. In this case, DBM’s explanation contains many hundreds of non-zero elements,
which is far too many to be understood by a person (Figure 3.2). If we make DBM’s explanation
sparse by thresholding it to include only the k largest changes, it is no longer an effective
explanation because it no longer reliably maps points from Group 3 to Group 17 (Figure 3.3).
More generally, manual interpretation can be time-consuming and typically ad-hoc, requiring
the analyst to make arbitrary decisions that may not be supported by the data.

Another, more principled, method is statistical hypothesis testing for the differences between
features across groups [86]. However, the trade-off between the power of these tests and their
false positive rate becomes problematic in high-dimensional settings.

Both manual interpretation and statistical testing have an additional key shortcoming: they
do not make use of the model that learned the low dimensional representation that was used
to define the groups in the first place. Intuitively, we would expect that, by inspecting this
model directly, we should be able to gain additional insight into the patterns that define the
groups. With this perspective, answering our question of interest becomes an interpretable
machine learning problem. Although there are a wide variety of methods developed in this area
[16, 62, 78, 79, 107, 121], none of them are designed to answer our question of interest. See
Section 3.2 for further discussion.

To answer our question of interest, we want a counterfactual explanation because our goal
is to identify the key differences between Group A and Group B using the low-dimensional
representation and the most natural way to do this is to find a transformation that causes the

Figure 3.1: A representation learned for a single-cell RNA sequence dataset using the model from [30]. Previous work on this
dataset showed that these groups of cells correspond to different cell-types [88]. The goal of a GCE is to use this representation
to identify the changes in gene expression that are associated with a change of cell type.
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Figure 3.2: DBM’s explanation for the difference in gene
expression between the cells in Group 3 and Group 17. The
x-axis shows which feature index (gene expression) is being
changed and the y-axis shows by how much. Because it is
very high dimensional and not sparse, it is difficult to use
DBM to determine what the key differences actually are
between this pair of groups (i.e., which genes differentiate
these cell-types).

Figure 3.3: By thresholding DBM’s explanation for the dif-
ferences between Group 3 and Group 17 to include only the
k largest changes (250 in this case), we can make it sparse
enough to be human interpretable. However, this simplified
explanation is no longer an effective explanation. We show
this visually: the magenta points are the representations of
points sampled randomly from Group 3 and the red points are
the representations of those points after the explanation was
applied to them. We can see that the red points are usually
not in Group 17 (poor correctness) and that they do not cover
much of Group 17 (poor coverage). These metrics will be
defined in Section 3.3.

model to assign transformed points from Group A to Group B. Additionally, we want a global
explanation because we want to find a explanation that works for all of the points in Group A
and because we want the complete set of explanations to be consistent (i.e., symmetrical and
transitive) among all the groups. See Section 3.3.2 for further discussion of our definition of
consistency in this context. Hence, our goal is to find a Global Counterfactual Explanation
(GCE). Although the space of possible transformations is very large, we consider translations
in this work because their interpretability can be easily measured using sparsity.

Contributions: To the best of our knowledge, this is the first work that explores GCEs.
Motivated by the desire to generate a simple (i.e., sparse) explanation between each pair of
groups, we derive an algorithm to find these explanations that is motivated by compressed
sensing [15, 104]. However, the solutions from compressed sensing are only able to explain
the differences between one pair of groups. As a result, we generalize the compressed sensing
solution to find a set of consistent explanations among all groups simultaneously. We call this
algorithm Transitive Global Translations (TGT).

We demonstrate the usefulness of TGT with a series of experiments on synthetic, UCI, and
single-cell RNA datasets. In our experiments, we measure the effectiveness of explanations
using correctness and coverage, with sparsity as a proxy metric for interpretability, and we
compare the patterns the explanations find to those we expect to be in the data. We find the
TGT clearly outperforms DBM at producing sparse explanations of the model and that its
explanations match domain knowledge.1

1Code for all algorithms and experiments is available at https://github.com/GDPlumb/ELDR
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3.2 Related Work

Most of the literature on cluster analysis focuses on defining the clusters; the interpretation
methods discussed in that literature are primarily manual inspection/visualization or statistical
testing [41]. Consequently, the focus of our related work will be on interpretable machine
learning. Although interpretability is often loosely defined and context specific [61], we
categorize existing methods along two axes in order to demonstrate how a GCE differs from
them. Those axes are the explanation’s level and its form.

The first axis used to categorize explanations is their level: local or global. A local explanation
explains a single prediction made by the model [62, 71, 78]. Kauffmann et al. [43] studies a
problem closely related to ours of explaining why a point was assigned to its cluster/group. A
global explanation will explain multiple predictions or the entire model at once [16, 79, 107].

The second axis we use to categorize explanations is their form: feature attribution, approxima-
tion, or counterfactual. A feature attribution explanation assigns a value measuring how each
feature contributed to the model’s prediction(s) [62, 99]. Importantly, it is necessary to define
a baseline value for the features in order to compute these explanations. An approximation
explanation approximates the model being explained using a function that is simple enough
to be considered directly interpretable (e.g., a sparse linear model or a small decision tree)
across some neighborhood, which could be centered around a point or could be the entire
input space [16, 71, 78, 79, 107]. A counterfactual explanation finds a transformation of the
input(s) such that the transformed version of the input is treated in a specific way by the model
[28, 29, 37, 121].

For various reasons, it would be challenging to use other types of explanations to construct a
GCE. Local explanations would have to be aggregated in order to produce an explanation that
applies to a group of points and it would be nontrivial to ensure that the resulting “aggregated
group explanations” are consistent (i.e., symmetrical and transitive). For feature attribution
and local approximation explanations, it is difficult to guarantee that the baseline value or
neighborhood they consider is defined broadly enough to find the transformation we want. For
global approximation explanations, we might not be able to approximate a complex model well
enough to find the transformation we want because of the accuracy-interpretability trade-off that
stems from the complexity constraint on the explanation model [61]. For a concrete example of
these difficulties, see the Appendix B.1. This example uses Integrated Gradients [99] which is
a local feature attribution method that produces symmetrical and transitive explanations with
respect to a single class.

3.3 Global Counterfactual Explanations

We will start by introducing our notation, more formally stating the goal of a GCE, and defining
the metrics that we will use to measure the quality of GCEs. We do this under the simplifying
assumption that we have only two groups of points that we are interested in. Then, in Section
3.3.1, we will demonstrate the connection between finding a GCE and compressed sensing. We
use that connection to derive a loss function we can minimize to find a GCE between a single
pair of groups of points. Finally, in Section 3.3.2, we will remove our simplifying assumption
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and introduce our algorithm, TGT, for finding a set of consistent GCEs among multiple groups
of points.

Notation: Let r : Rd → Rm denote the function that maps the points in the feature space into
a lower-dimensional representation space. The only restriction that we place on r is that it is
differentiable (see the Appendix B.2 for more discussion on r). Suppose that we have two
regions of interest in this representation: Rinitial, Rtarget ⊂ Rm. Let Xinitial and Xtarget denote
their pre-images. Then, our goal is to find the key differences between Xinitial and Xtarget in
Rd and, unlike manual interpretation or statistical testing, we will treat this as an interpretable
machine learning problem by using r to help find those key differences.

Defining the Goal of GCEs: At a high level, the goal of a GCE is to find a transformation
that takes the points in Xinitial and transforms them so that they are mapped to Rtarget by r; in
other words, r treats the transformed points from Xinitial as if they were points from Xtarget.
Formally, the goal is to find a transformation function t : Rd → Rd such that:

r(t(x)) ∈ Rtarget ∀x ∈ Xinitial (3.1)

Because we are using t as an explanation, it should be as simple as possible. Since they are
very simple and their complexity can be readily measured by their sparsity, we limit t to a
translation:

t(x) = x+ δ (3.2)

Measuring the Quality of GCEs: To measure the quality of a GCE we use two metrics:
correctness and coverage. Correctness measures the fraction of points mapped from Xinitial

into Rtarget. Coverage measures the fraction of points in Rtarget that transformed points from
Xinitial are similar to. Mathematically, we define correctness as:

cr(t) =
1

|Xinitial|
∑

x∈Xinitial

1[∃x′ ∈ Xtarget | ||r(t(x))− r(x′)||22 ≤ ε] (3.3)

And coverage as:

cv(t) =
1

|Xtarget|
∑

x∈Xtarget

1[∃x′ ∈ Xinitial | ||r(x)− r(t(x′))||22 ≤ ε] (3.4)

Clearly, correctness is a necessary property because an explanation with poor correctness has
failed to map points from Xinitial into Rtarget (Equation 3.1). However, coverage is also a
desirable property because, intuitively, an explanation with good coverage has captured all of
the differences between the groups.

Defining these metrics requires that we pick a value of ε.2 Observe that, if Xinitial = Xtarget

and t(x) = x, then cr(t) = cv(t) and we have a measure of how similar a group of points is to
itself. After r has been learned, we increase ε until this self-similarity metric for each group of
points in the learned representation is between 0.95 and 1.

2We use an indicator based on l2 distance and the points themselves for two reasons. First, it is necessary for the definition
of coverage. Second, it makes it easier to define Rtarget for representations that are more than two-dimensional.
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Figure 3.4: Two groups of points and
the transformed version of Group 0.
The red circles indicate the balls of ra-
dius ε used to calculated the metrics.
Observe that the translation has both
good correctness and coverage.

Figure 3.5: The same idea as Figure
3.4, but now Group 0 has a smaller
variance than Group 1. Observe that
the translation has good correctness but
poor coverage.

Figure 3.6: The same setup as in Fig-
ure 3.5, but showing what happens
when the negative of the translation is
applied to Group 1. Observe that it has
good coverage but poor correctness.

A Simple Illustration: We will now conclude our introduction to GCEs with a simple example
to visualize the transformation function and the metrics. In Figures 3.4, 3.5, and 3.6, the data is
generated from two Gaussian distributions with different means and r(x) = x. We use DBM
between Group 1 and Group 0 to define the translation/explanation. In Figure 3.4, the two
distributions have an equal variance and, as a result, the translation is an effective explanation
with good correctness and coverage. In Figures 3.5 and 3.6, Group 0 has a smaller variance
than Group 1. Because a simple translation cannot capture that information3, the translation
has poor coverage from Group 0 to Group 1 while its negative has poor correctness from Group
1 to Group 0. This illustrates the connection between correctness and coverage that we will
discuss more in Section 3.3.2.

3.3.1 Relating GCEs and Compressed Sensing

We will now demonstrate how the problem of finding a GCE between a pair of groups is
connected to compressed sensing. We start with an “ideal” loss function that is too difficult to
optimize and then make several relaxations to it.

In principle, Equations 3.1, 3.3, or 3.4 define objective functions that we could optimize, but
they are discontinuous and hence difficult to optimize. To progress towards a tractable objective,
first consider a continuous approximation of correctness (Equation 3.3):

lossmin(t) =
1

|Xinitial|
∑

x∈Xinitial

min
x′∈Xtarget

||r(t(x))− r(x′)||22 (3.5)

This loss could be optimized by gradient descent using auto-differentiation software, although
doing so might be difficult because of the min operation. Consequently, we consider a
simplified version of it:

lossmean(t) =
1

|Xinitial|
∑

x∈Xinitial

||r(t(x))− r̄target||22 (3.6)

3This is true regardless of how the translation is found (e.g., TGT or DBM). So this example also motivates the usefulness
of more complex transformation functions.
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where r̄i = 1
|Xi|

∑
x∈Xi

r(x). 4

Next, we are going to make use of our restriction of t to a translation, δ, and assume, for now,
that r is a linear mapping: r(x) = Ax for A ∈ Rm×d. Although this assumption about r
will not be true in general, it allows us to connect a GCE to the classical compressed sensing
formulation. Under these constraints, we have that:

lossmean+linear(δ) =
1

|Xinitial|
∑

x∈Xinitial

||A(x+ δ)− r̄target||22 (3.7)

By setting its derivative to zero, we find that solving Aδ = r̄target − r̄initial yields an optimal
solution to Equation 3.7. Observe that this is an undetermined linear system, because m < d,
and so we can always find such a δ.

Recall that, in general, we want to find a sparse δ. This is partially because we need the
explanation to be simple enough to be understood by a person, but also because the explanation
is hopefully modeling real world phenomena and these phenomena often have nice structure
(e.g., sparsity). Then, because we are finding a GCE by solving Aδ = r̄target − r̄initial5 , we
can see that r̄target − r̄initial is the model’s low-dimensional measurement that we are trying
to reconstruct using the high-dimensional but sparse underlying signal, δ. This is exactly the
classical compressed sensing problem formulation. As a result, we will add l1 regularization
to δ as an additional component to the loss function as is done in both linear and non-linear
compressed sensing [12].

Consequently, we could consider finding a GCE by minimizing the linear compressed sensing
loss:

losscs(δ) = ||A(x̄initial + δ)− r̄target||22 + λ||δ||1 (3.8)

where x̄i = 1
|Xi|

∑
x∈Xi

x. Or, by removing the assumption that r(x) = Ax, minimizing the more

general version that we use for our experiments:

loss(δ) = ||r(x̄initial + δ)− r̄target||22 + λ||δ||1 (3.9)

3.3.2 Computing GCEs

We have thus far limited ourselves to explaining the differences between l = 2 groups of points
labeled as X0 (“initial”) and X1 (“target”), and focused on learning an explanation t0→1 from
X0 to X1. However, this is not a realistic setting because this labeling was arbitrary and because
we usually have l > 2.

Unfortunately, the naive solution of using compressed sensing to independently produce
explanations for all O(l2) pairs of groups will fail to satisfy two desirable properties related

4Note that lossmin clearly optimizes for correctness and it does not directly penalize coverage. However, because
lossmean encourages r(t(x)) to be close to r̄target, it is optimizing for correctness at the expense of coverage. In Section
3.3.2, we will discuss why this is not as harmful as it seems in our setting where t is a symmetrical translation.

5Note that DBM solves this but does not consider sparsity.
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to the internal consistency of the explanations. For instance, we would like t0→1 to agree
with t1→0, a property we call symmetry. Additionally, we would like t0→2 to agree with the
combined explanations t0→1 and t1→2; we call this transitivity. Formally, symmetry requires
that ti→j = t−1

j→i and transitivity requires that ti→k = tj→k ◦ ti→j for any j.

Our approach to finding a consistent (i.e., symmetrical and transitive) set of explanations is to
enforce the consistency constraints by-design. We do this by computing a set of explanations
relative to a reference group. We assume that X0 is the reference group and find a set of
basis explanations t1, . . . , tl−1, where ti = t0→i. We then use this set of basis explanations to
construct the explanation between any pair of the groups of points.6 Algorithm 3 describes how
ti→j can be constructed from t1, . . . , tl−1.

Overview of TGT. We now have all of the pieces necessary to actually compute a GCE: a
differentiable loss function to measure the quality of ti→j , l1 regularization to help us find
the simplest possible explanation between Xi and Xj , and a problem setup to ensure that our
explanations are consistent across X0, . . . , Xl−1. At a high level, TGT will proceed to sample
random “initial” and “target” groups from the set of all groups, construct that explanation from
the set of basis explanations (Algorithm 3), and then use Equation 3.9 as a loss function to use
to update the explanation using gradient descent (Algorithm 4). Pseudo-code for this process
is in Algorithm 2.7 The main hyper-parameter that requires tuning is the strength of the l1
regularization, λ.

Why can we prioritize correctness in Equation 3.9? In the previous subsection, we noted
that the Equation 3.9 prioritizes correctness over coverage. Because Algorithm 2 randomly
chooses the “initial” and “target” groups many times, it updates the basis explanations based
on both cr(δi→j) and cr(δj→i). When t is a translation and the explanations are symmetrical,
we can see that cr(δj→i) is closely related to cv(δi→j). This is because they only differ in
whether they add δj→i to a point in Xj or subtract δj→i from a point in Xi in their respective
indicator functions. Further, if we consider r(x) = Ax, then they are identical metrics (this
is consistent with the example from Figure 3.5). Collectively, this means that Algorithm 2
implicitly considers both cr(δi→j) and cv(δi→j) while computing the explanations.

3.3.3 Controlling the Level of Sparsity

Because neither TGT nor DBM is guaranteed to produce a k-sparse explanation, we will
threshold each of the explanations to include only the k most important features (i.e., the k
features with the largest absolute value) for our experiments. This is done after they have
been calculated but before their quality has been evaluated. Importantly, TGT has a hyper-
parameter, λ, which roughly controls the sparsity of its explanations; as a result, we will tune λ
to maximize correctness for each value of k.

6Importantly, the transitivity constraint also ensures that our choice of how we label the groups or which group is the
reference group does not influence the optimal solution of our algorithm.

7The pseudo-code leaves out some of the details of the optimization process such as how often we sample new “initial”
and “target” groups and how convergence is defined. For those details, see the code on GitHub.
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Algorithm 2 TGT: Calculating GCEs with
a Reference Group. Note that, because λ is
applied to all of the explanations, we cannot
tune it to guarantee that each explanation is
exactly k-sparse.

Input: Model: r
Group Means: x̄i (feature space) and

r̄i (representation
space)

for i = 0, . . . , l − 1
l1 Regularization Weight: λ
Learning Rate: α

Initialize: δ1, . . . , δl−1 to vectors of 0
while not converged do

Sample i 6= j from {0, . . . , l − 1}
Construct ti→j (δi→j) using Algorithm 3
Calculate objective: v = loss(δi→j) us-
ing Equation 3.9
Update the components of δi→j using
Algorithm 4

end while
Return: δ1, . . . , δl−1

Algorithm 3 How to construct any explana-
tion between an arbitrary pair of groups, ti→j ,
using the set of basis explanations relative to
the reference group, t1, . . . , tl−1

Input: i, j
if i == 1 then

Return: tj
else if j == 1 then

Return: t−1
i

else
Return: tj ◦ t−1

i

end if

Algorithm 4 How to update the basis explana-
tions, δ1, . . . , δl−1, based on the performance
of δi→j . This splits the signal from the gra-
dient between the basis explanations used to
construct δi→j . Note that it does not maintain
any fixed level of sparsity.

Input: i, j, α (learning rate),∇v (gradient
of the loss function)
if i == 1 then
δj = δj − α∇v

else if j == 1 then
δi = δi + α∇v

else
δj = δj − 0.5α∇v
δi = δi + 0.5α∇v

end if

The fact that λ is tuned for each value of k raises an interesting question: “Does TGT use
a subset of the features from its k2-sparse explanation for its k1-sparse explanation when
k1 < k2?”. Naturally, we would like for the answer to be “yes” because, for example, it does
not seem like a desirable outcome if a 2-sparse explanation uses Features A and B but a 1-sparse
explanation uses Feature C.

Suppose we have two explanations between Group i and Group j: e1 which is k1-sparse and e2

which is k2-sparse with k1 < k2. To address this question, we define the similarity of e1 and e2

as:

similarity(e1, e2) =

∑ |e1[i]|1[e2[i] 6= 0]

||e1||1
(3.10)
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This metric captures how much of e1’s explanation uses features that were also chosen by e2.8

So a score of 1 indicates that e1 uses a subset of the features of e2 and a score of 0 indicates that it
uses entirely different features. Because DBM does not solve a different optimization problem to
achieve each level of sparsity, its similarity measure is always 1. When we run experiments with
a list of sparsity levels k1, . . . , km, we will plot similarity(e1, e2), . . . , similarity(em−1, em)
to measure how similar TGT’s explanations are as the level of sparsity increases.

3.4 Experimental Results

Our experimental results are divided into two sections. In the first section, we demonstrate
that TGT is better at explaining the model than DBM is when we restrict the explanations to
varying degrees of sparsity. In the second section, we move beyond assessing whether or not
TGT explains the model and demonstrate that it also appears to capture real signals in the data.

3.4.1 TGT’s Efficacy at Explaining the Model

From an interpretable machine learning perspective, our goal is help practitioners understand
the dimensionality-reduction models they use in the data exploration process. We measure
the quality of GCEs using correctness (Equation 3.3) and coverage (Equation 3.4) at varying
degrees of sparsity (Figure 3.7).

We use the model from [30]9on the UCI Iris, Boston Housing, and Heart Disease datasets
[27] and a single-cell RNA dataset [88] and use its a visualization of its two-dimensional
representation to define the groups of points. Figure 3.1 shows this representation and grouping
for the single-cell RNA dataset; similar plots for all of the datasets are in the Appendix B.3.
This model learns a non-linear embedding using a neural network architecture which is trained
to be a parametric version of t-SNE [63] that also preserves the global structure in the data [48].

Next, because the acceptable level of complexity depends on both the application and the
person using the explanation, we measure the effectiveness of the explanations produced by
TGT and DBM at explaining the model across a range of sparsity levels.

Explanation effectiveness at different levels of sparsity. Figure 3.7 shows the results of this
comparison. We can see that TGT performed at least as well as DBM and usually did better.
Further, we can see that TGT’s explanations are quite similar to each other as we ask for sparser
explanations. Note that all of these metrics are defined for a single pair of groups and so these
plots report the average across all pairs of groups.

Exploring a Specific Level of Sparsity. Figure 3.7 shows that TGT’s performance: is almost
as good when k = 1 as when k = 4 on Iris, drops off sharply for k < 5 on Boston Housing,
and drops off sharply for k < 3 on Heart Disease. Further, on the single-cell RNA dataset, it
shows that TGT significantly outperforms DBM when k = 250 (Appendix B.4 Figure B.7)
and that this comparison becomes more favorable for TGT for smaller k. The level of sparsity
where the metrics drop off indicates the minimum explanation complexity required for these

8Note that this metric also includes the run to run variance of TGT.
9We use this model because previous analysis showed that its representation identifies meaningful groups on the single-cell

RNA dataset [30].
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methods to explain the model. See Figure 3.8 for an example of the pairwise correctness and
coverage metrics for these levels of sparsity.

Figure 3.3 shows that DBM does not produce a good 250-sparse explanation for the difference
between Group 3 and Group 17 from Figure 3.1. For the sake of an easy comparison, Figure
3.9 shows a similar plot that uses TGT’s 250-sparse explanation; it is clearly a much better
explanation.

Figure 3.7: A comparison of the effectiveness of TGT to DBM at explaining the model (measured by correctness and coverage)
at a range of sparsity levels. Note that TGT performs at least as well as DBM and usually does better. Looking at the similarity
metric, we see that TGT is fairly consistent at picking a subset of the current features when asked to find an even sparser
solution.

3.4.2 TGT’s Efficacy at Capturing Real Signals in the Data

In the previous section, we demonstrated that TGT provides accurate explanations of the
model that learned the low-dimensional representation. However, in practice, there could be a
mismatch between what the model itself learns and the true underlying structure in the data.
In this section, we evaluate empirically whether or not TGT provides explanations that match
underlying patterns in the data.

We begin with an experiment on a synthetic dataset with a known causal structure and demon-
strate that TGT correctly identifies this structure. This also serves as an intuitive example of
why a sparser explanation can be as effective as a less-sparse explanation. Next, we leverage the
labels that come with the UCI datasets to compare TGT’s explanations to some basic domain
knowledge. Finally, we modify the UCI datasets and demonstrate that TGT is able to identify

Figure 3.8: The pairwise explanation metrics for TGT with:
Top Left) 1-sparse explanations on Iris, Top Right) 5-sparse
explanations on Boston Housing, Bottom Left) 3-sparse ex-
planations on Heart Disease, and Bottom Right) 250-sparse
explanations on single-cell RNA.

Figure 3.9: Unlike DBM, TGT is able to produce an effec-
tive 250-sparse explanation for the difference between Group
3 and Group 17 on the single-cell RNA dataset. This can
be seen both visually and with the correctness and coverage
metrics.
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Table 3.1: A comparison of the explanations from TGT and from DBM. Note that they are similar except that TGT does not
use x4, which is the variable that is not causaly related to the groups.

Explanation Method x1 x2 x3 x4

0→ 1 TGT -1.09 0.01 0.03 0.00
DBM -1.02 0.04 0.01 -1.03

0→ 2 TGT 0.00 0.88 0.00 0.00
DBM -0.01 0.97 0.06 -0.03

0→ 3 TGT -0.99 0.71 0.00 0.00
DBM -1.02 1.03 -0.01 -1.03

those modifications. Together, these results indicate that TGT is identifying real patterns in the
data.

Synthetic Data with a Known Causal Structure. By specifying the causal structure of the
data, we can know which differences are necessary in the explanation, since they are the casual
differences, and which differences are unnecessary, since they are explained by the causal
differences. We find that TGT correctly identifies the causal structure of this dataset and that
DBM does not.

We use the following procedure to generate each point in our synthetic dataset: x1, x2 ∼
Bern(0.5) +N (0, 0.2), x3 ∼ N (0, 0.5), and x4 ∼ x1 +N (0, 0.05). The causal structure of
this dataset is simple. x1 and x2 jointly cause 4 different groups of points. The explanation for
the differences between these groups must include these variables. x3 is a noise variable that is
unrelated to these groups and, as a result, should not be included in any explanation. x4 is a
variable that is correlated with those groups, since it is caused by x1, but does not cause those
groups. As a result, it is not necessary to include it in any explanation.

We generate a dataset consisting of 400 points created using this process and train an autoen-
coder [51] to learn a two dimensional representation of the dataset. A visualization of this
learned representation is in the Appendix B.3 Figure B.5; as expected, there are four distinct
groups of points in it. Then, we use TGT and DBM to calculate the GCEs between these
groups. The pairwise and average correctness and coverage metrics for these solutions are in
the Appendix B.4 Figures B.8 and B.9; observe that the two methods are equally effective at
explaining the model.

When we inspect the explanations ()Table 3.1), we see that both TGT and DBM use x1 and
x2, neither use x3, and that DBM uses x4 while TGT does not. This shows that, even in a very
simple setting, there is good reason to believe that an explanation that is simpler (i.e., sparser)
than the DBM explanation exists and that TGT might be able to find it.

Qualitative Analysis of the UCI Datasets using the Labels. Qualitatively, we find that TGT’s
explanations agree with domain knowledge about these datasets. Specifically: On the Iris
dataset, its explanations agree with a simple decision tree because they both rely mostly on the
Petal Width to separate the groups. On the Boston Housing dataset, it identifies the differences
between a set of inexpensive urban houses vs expensive suburban houses as well as equally
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priced groups of houses that differ mainly in whether or not they are on the Charles River.
Finally on the Heart Disease dataset, it finds that the difference between a moderate and a low
risk group of subjects was that the low-risk group’s symptoms are explained by something other
than heart disease and the difference between the moderate and high risk group of subjects is
that the former is made up of men and the later of women. For full details, see the Appendix
B.5.

Quantitative Analysis of Modified Versions of the UCI Datasets. In order to perform a
more quantitative analysis, we artificially add a known signal to the dataset by choosing one
of the groups of points, creating a modified copy of it by translating it, and adding those new
points back into the dataset. We then ask two important questions about TGT’s behavior. First,
does TGT correctly identify the modifications we made to the original dataset? Second, do
TGT’s explanations between the original groups change when the modified group is added to
the dataset? Details of how we setup these experiments and their results are in the Appendix
B.6.

We find that TGT does identify the modifications we made and that, in doing so, it does not
significantly change the explanations between the original groups. Importantly, this result
remains true even if we retrain the learned representation on the modified dataset.

These results are a strong indicator that TGT finds real patterns in the data because it recovers
both the original signal and the artificial signal even when the algorithm is rerun or the
representation is retrained.

3.5 Conclusion

In this work, we introduced a new type of explanation, a GCE, which is a counterfactual
explanation that applies to an entire group of points rather than a single point. Next, we
defined reasonable metrics to measure the quality of GCEs (i.e., correctness and coverage) and
introduced the concept of consistency (i.e., symmetry and transitivity), which is an important
additional criteria that GCEs must satisfy. Given that, we defined an algorithm for finding
consistent GCEs, TGT, that treats each pairwise explanation as a compressed sensing problem.
Our first experiments empirically demonstrated that TGT is better able to explain the model
than DBM across a range of levels of sparsity. Our next experiments showed that TGT captures
real patterns in the data. This was done using a synthetic dataset with a known causal structure
and by comparing TGT’s explanations to background knowledge about the UCI datasets. As an
additional test, we then added a synthetic signal to the UCI datasets and demonstrated that TGT
can recover that signal without changing its explanations between the real groups. Importantly,
this result remains true even when the representation is retrained.

Although we focused on data exploration in this work, similar groups arise naturally whenever
the model being trained uses an encoder-decoder structure. This technique is ubiquitous in
most areas where deep learning is common (e.g., semi-supervised learning, image classification,
natural language processing, reinforcement learning). In these settings, identifying the key
differences between the groups is an interesting question because we can observe that “The
model treats points in Group A the same/differently as points in Group B”, determine that “The
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key differences between Group A and Group B are X”, and then conclude that “The model
does not/does use pattern X to make its decisions”. We believe that exploring these applications
is an important direction of future work that will require more sophisticated transformation
functions, optimization procedures, and definitions of the groups of points of interest.
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Chapter 4

Spurious Patterns

Recall that the goal of this application is to find and fix spurious patterns in image classification
models. To find these patterns, we use global counterfactual explanations that tell us “the
model’s prediction for class Y changes p% of the time when we remove feature X from
images that are from class Y .” Then, we use this probability, p, to measure the degree to
which the model relies on the pattern represented by one of these explanations. Finally, we
fix these patterns by retraining the model on a dataset that has been carefully augmented with
counterfactual images. This approach is described in Section 4.3.

To evaluate the usefulness of these methods for this application, we run two evaluations. For
the first, we deliberately induce spurious patterns in models by subsampling the COCO dataset
(Section 4.5.1). For the second, we consider a more realistic setting by finding and fixing
spurious patterns in a model trained on the entire COCO dataset (Section 4.5.2).

Beyond this individual work, there are a few general ideas to keep in mind for this application:

• Whether a pattern is “spurious” and whether a spurious pattern is worth fixing both depend
on domain knowledge and are ultimately up to the model developer.
• When using counterfactual images, it is important to be aware of the fact that these images

are off-distribution, which means that the model may behave differently on them than it does
on real images. This influences how methods for finding and fixing spurious patterns work
and how we should evaluate those methods. Ideally, all evaluations are done using only real
images to prevent this from influencing the results.

4.1 Introduction

With the growing adoption of machine learning models, there is a growing concern about Spu-
rious Patterns (SPs) – when models rely on patterns that do not align with domain knowledge
and do not generalize [80, 82, 89, 93, 102]. For example, a model trained to detect tennis
rackets on the COCO dataset [60] learns to rely on the presence of a person, which leads to
systemic errors: it is significantly less accurate at detecting tennis rackets for images without
people than with people (41.2% vs 86.6%) and only ever has false positives on images with
people. Relying on this SP works well on COCO, where the majority of images with tennis
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rackets also have people, but would not be as effective for other distributions. Further, relying
on SPs may also lead to serious concerns when they relate to protected attributes such as race
or gender [13].

We focus on SPs where an image classifier is relying on a spurious object (e.g., using people to
detect tennis rackets) and we propose Spurious Pattern Identification and REpair (SPIRE)1 as an
end-to-end solution for these SPs. As illustrated in Figure 4.1, SPIRE identifies which patterns
the model is using by measuring how often it makes different predictions on the original and
counterfactual versions of an image. Since it reduces a pattern to a single value that has a clear
interpretation, it is easy for a user to, when needed, label that pattern as spurious or valid. Then,
it mitigates SPs by retraining the model using a novel form of data augmentation that aims to
shift the training distribution towards the balanced distribution, a distribution where the SP is
no longer helpful, while minimizing any new correlations between the label and artifacts in the
counterfactual images. Each of these steps is based on the assumption that we have access to
pixel-wise object-annotations to use to create counterfactual images by adding or removing
objects.

To verify that the baseline model relies on a SP and quantify the impact of mitigation methods,
we measure gaps in accuracy between images with and without the spurious object (e.g., there is
a 45.4% accuracy drop between images of tennis rackets with and without people). Intuitively,
the more a model relies on a SP, the larger these gaps will be and the less robust the model
is to distribution shift. Consequently, an effective mitigation method will decrease these gap
metrics and improve performance on the balanced distribution. Empirically, we show SPIRE’s
effectiveness with three sets of experiments:

• Benchmark Experiments. We induce SPs with varying strengths by sub-sampling COCO
in order to observe how mitigation methods work in a controlled setting. Overall, we find
that SPIRE is more effective than prior methods. Interestingly, we also find that most prior

Through data 
augmentation

Remove people: 
63% of predictions change 

P(racket)=99%

Mitigation

A
Labeling

Spurious

P(racket)=1%

B

C

Identification

Figure 4.1: For the tennis racket example, SPIRE identifies this pattern by observing that, when we remove the people from
images with both a tennis racket and a person, the model’s prediction changes 63% of the time. Since we do not remove
the tennis racket itself, we label this pattern as spurious. Then, SPIRE carefully adds/removes tennis rackets/people from
different images to create an augmented training set where tennis rackets and people are independent while minimizing any
new correlations between the label and artifacts in the counterfactual images (e.g., grey boxes).

1Code is available at https://github.com/GDPlumb/SPIRE
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Figure 4.2: Based on the saliency map [91] (Left), one might mistakenly infer that the model is not relying on the person.
However, the model fails to detect the racket after the person is removed (Center) and incorrectly detects a racket after it is
removed (Right).

methods are ineffective at mitigating negative SPs (e.g., when the model learns that the
presence of a “cat” means that there is no “tie”).
• Full Experiment. We show that SPIRE is useful “in the wild” on the full COCO dataset. For

identification, it finds a diverse set of SPs and is the first method to identify negative SPs, and,
for mitigation, it is more effective than prior methods. Additionally, we show that it improves
zero-shot generalization (i.e., evaluation without re-training) to two challenging datasets:
UnRel [70] and SpatialSense [116]. These results are notable because most methods produce
no improvements in terms of robustness to natural distribution shifts [101].
• Generalization Experiments. We illustrate how SPIRE generalizes beyond the setting from

our prior experiments, where we considered the object-classification task and assumed
that the dataset has pixel-wise object-annotations to use to create counterfactual images.
Specifically, we explore three examples that consider a different task and/or do not make this
assumption.

4.2 Related Work

We discuss prior work as it pertains to identifying and mitigating SPs for image classification
models.

Identification. The most common approach is to use explainable machine learning [28, 37,
42, 50, 78, 80, 82, 85, 91, 92]. For image datasets, these methods rely on local explanations,
resulting in a slow process that requires the user to look at the explanation for each image, infer
what that explanation is telling them, and then aggregate those inferences to assess whether
or not they represent a consistent pattern (Figure 4.2). In addition to this procedural difficulty,
there is uncertainty about the usefulness of some of these methods for model debugging [2, 3].

In contrast, SPIRE avoids these challenges by measuring the aggregated effect that a specific
counterfactual has on the model’s predictions (e.g., the model’s prediction changes 63% of the
time when we remove the people from images with both a tennis racket and a person). While
prior work has defined similar measurements, Shetty et al. [89] and Singh et al. [93] fail to
identify negative SPs and Xiao et al. [115] fail to identify specific SPs (e.g., they find that the
model is relying on “something” rather than “people”).

Mitigation. While prior work has explored data augmentation for mitigation [4, 18, 39, 89,
102], it has done so with augmentation strategies that are agnostic to the training distribution
(e.g., Shetty et al. [89] simply remove either the tennis rackets or the people, as applicable,
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uniformly at random for each image). In contrast, SPIRE aims to use counterfactual images
to create a training distribution where the label is independent of the spurious object, while
minimizing any new correlations between the label and artifacts in the counterfactual images.
We hypothesize that this is why we find that SPIRE is more effective than these methods.

Another line of prior work adds regularization to the model training process [39, 59, 80, 82,
93, 102, 108]. Some of these methods specify which parts of the image should not be relevant
to the model’s prediction [80, 82]. Other methods encourage the model’s predictions to be
consistent across counterfactual versions of the image [39, 59, 102]. All of these methods could
be used in conjunction with SPIRE.

Finally, there are two additional lines of work that make different assumptions than SPIRE.
Making weaker assumptions, there are methods based on sub-sampling, re-weighting, or
grouping the training set [17, 25, 83]. These methods have been found to be less effective
than methods that use data augmentation or regularization [36, 67, 80, 93]. Making stronger
assumptions, there are methods which assume access to several distinct training distributions
[22, 110].

Consequently, the methods designed for image classification that use data augmentation or
regularization represent SPIRE’s most direct competition. As a result, we compare against
“Right for the Right Reasons” (RRR) [82], “Quantifying and Controlling the Effects of Context”
(QCEC) [89], “Contextual Decomposition Explanation Penalization” (CDEP) [80], “Gradient
Supervision” (GS) [102], and the “Feature Splitting” (FS) method from [93].

4.3 Spurious Pattern Identification and REpair

In this section, we explain SPIRE’s approach for addressing SPs. We use the object-
classification task as a running example, where Main is the object being detected and Spurious
is the other object in a SP. The same methodology applies to any binary classification problem
with a binary “spurious feature;” see Appendix C.2.1 for a discussion on how to do this.

Preliminaries. We view a dataset as a probability distribution over a set of image splits, which
we call Both, Just Main, Just Spurious, and Neither, depending on which of Main and/or
Spurious they contain (e.g., Just Main is the set of images with tennis rackets, without people,
and either with or without any other object). Figure 4.3 (Left) shows these splits for the tennis
racket example. Critically, we can take an image from one split and create a counterfactual
version of it in a different split by either adding or removing either Main or Spurious (e.g.,
removing the people from an image in Both moves it to Just Main). To do this, we assume
access to pixel-wise object-annotations; note that this is a common assumption (i.e., RRR,
QCEC, CDEP, and GS also make it). See Appendix C.2.2 for more details on the counterfactual
images.

To summarize, SPIRE makes two general assumptions:

• That we can determine which of these splits an image belongs to.
• That we can create a counterfactual version of an image from one split that belongs to a

different split.

40



Identification. SPIRE measures how much the model relies on Spurious to detect Main by
measuring the probability that, when we remove Spurious from an image from Both, the
model’s prediction changes (e.g., the model’s prediction for tennis racket changes 63% of
the time when we remove the people from an image with both a tennis racket and a person).
Intuitively, higher probabilities indicate stronger patterns.

To identify the full set of patterns that the model is using, SPIRE measures this probability for
all (Main, Spurious) pairs, where Main and Spurious are different, and then sorts this list to
find the pairs that represent the strongest patterns. Recall that not all patterns are necessarily
spurious and that the user may label patterns as spurious or valid as needed before moving to
the mitigation step.

Mitigation. It is often, but not always, the case that there is a strong correlation between Main
and Spurious in the original training distribution, which incentivizes the model to rely on this
SP. As a result, we want to define a distribution, which we call the balanced distribution, where
relying on this SP is neither inherently helpful nor harmful. This is a distribution, exemplified
in Figure 4.3 (Right), that:

• Preserves P(Main). This value strongly influences the model’s relative accuracy on {Both,
Just Main} versus {Just Spurious, Neither} but does not incentivize the SP. As a result, we
preserve it in order to maximize the similarity between the original and balanced distributions.
• Sets P(Spurious | Main) = P(Spurious | not Main) = 0.5. This makes Main and Spurious

independent, which removes the statistical benefit of relying on the SP, and assigns equal
importance to images with and without Spurious. However, this does not go so far as to
invert the original correlation, which would directly punish reliance on the SP.

As shown in Figure 4.3 (Right), SPIRE’s mitigation strategy uses counterfactual images to
manipulate the training distribution. The specifics are described in Section 4.3.1, but they
implement two goals:

• Primary: Shift the training distribution towards the balanced distribution. While the original
distribution often incentivizes the model to rely on the SP, the balanced distribution does not.
However, adding too many counterfactual images may compromise the model’s accuracy
on natural images. As a result, we want to shift the training distribution towards, but not
necessarily all the way to, the balanced distribution.
• Secondary: Minimize the potential for new SPs. While shifting towards the balanced distri-

bution, we may inadvertently introduce new potential SPs between Main and artifacts in the
counterfactual images. For example, augmenting the dataset with the same counterfactuals
that SPIRE uses for identification (i.e., images from Both where Spurious has been covered
with a grey box) introduces the potential for a new SP because P(Main | “grey box”) = 1.0.
Because the augmentation will be less effective if the model learns to rely on new SPs, we
minimize their potential by trying to set P(Main | Artifact) = 0.5.

4.3.1 Specific Mitigation Strategies

While SPIRE’s augmentation strategy follows the aforementioned goals, its specific details
depend on the problem setting, which we characterize using two factors:
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Figure 4.3: Left. The training image splits and the original training distribution for the tennis racket example. Because of the
strong positive correlation between Main and Spurious, it is helpful for the model to rely on this SP. Right. The balanced
distribution for the tennis racket example. This SP is no longer helpful because Main and Spurious are now independent and
there are the same number of images in Both and Just Main.

• Can the counterfactuals change an image’s label? For tasks such as object-classification,
counterfactuals can change an image’s label by removing or adding Main. However, for tasks
such as scene identification, we may not have counterfactuals that can change an image’s
label. For example, we cannot turn a runway into a street or a street into a runway by
manipulating a few objects. This fundamentally shapes how counterfactuals can change the
training distribution.
• Is the dataset class balanced? While working with class balanced datasets drastically

simplifies the problem and analysis, it is not an assumption that usually holds in practice.

These two factors define the three problem settings that we consider, which correspond to the
experiments in Sections 4.5.1, 4.5.2, and 4.5.3 respectively. For each setting, we summarize
what makes it interesting, define SPIRE’s specific augmentation strategy for it, and then discuss
how that strategy meets SPIRE’s goals.

Setting 1: Counterfactuals can change an image’s label and the dataset is class-balanced.
Here, P(Main) = P(Spurious) = 0.5 and we can define the training distribution by specifying p
= P(Main | Spurious). If p > 0.5, SPIRE moves images from {Both, Neither} to {Just Main,
Just Spurious} with probability 2p−1

2p
for each of those four combinations. If p < 0.5, SPIRE

moves images from {Just Main, Just Spurious} to {Both, Neither} with probability p−0.5
p−1

.

Table 4.1 shows how SPIRE changes the training distributions for p = 0.9 and p = 0.1. For
p = 0.9, it succeeds at both of its goals. For p = 0.1, it produces the balanced distribution, but
does add the potential for new SPs because P(Main | Removed an object) = 0 and P(Main |
Added an object) = 1. We contrast SPIRE to the most closely related method, QCEC [89], which
removes either Main or Spurious uniformly at random, as applicable, from each image. For
both values of p, QCEC does not make Main and Spurious independent and adds the potential
for new SPs. This example highlights the fact that, while prior work has used counterfactuals
for data augmentation, SPIRE uses them in a fundamentally different way by considering the
training distribution.

Setting 2: Counterfactuals can change an image’s label, but the dataset has class imbal-
ance. Class imbalance makes two parts of the definition of the balanced distribution problematic
for augmentation:
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Table 4.1: Setting 1. For p = 0.9 and p = 0.1, we show the original size of each split for a dataset of size 200 as well as the
size of each split after SPIRE’s or QCEC’s augmentation. Note that SPIRE produces the balanced distribution, while QCEC
does not even make Main and Spurious independent.

p = 0.9 p = 0.1

Split Original SPIRE QCEC Original SPIRE QCEC

Both 90 90 90 10 90 10
Just Main 10 90 55 90 90 95

Just Spurious 10 90 55 90 90 95
Neither 90 90 110 10 90 190

• Preserves P(Main). When P(Main) is small, this means that we generate many more
counterfactual images without Main than with it, which can introduce new potential SPs.
• Sets P(Spurious | not Main) = 0.5. When P(Spurious) is also small, this constraint requires

that most of the counterfactual images we generate belong to Just Spurious, which can lead
to the counterfactual data outnumbering the original data by a factor of 100 or more for this
split.

Consequently, we relax these constraints. If P(Spurious |Main) > P(Spurious), SPIRE creates
an equal number of images to add to Just Main/Spurious by removing the appropriate object
from an image from Both. Specifically, this number is the smallest positive solution for δ to:

|Both|
|Both|+|Just Spurious|+δ = |Just Main|+δ

|Just Main|+|Neither|+δ . Otherwise, SPIRE creates an equal number of images
to add to Both/Just Spurious by adding Spurious to Just Main/Neither. Specifically, this number
solves: |Both|+δ

|Both|+|Just Spurious|+2δ
= |Just Main|
|Just Main|+|Neither| . SPIRE achieves its primary goal by making

P(Main | Spurious) = P(Main | not Spurious) (i.e., Main and Spurious are now independent)
and it achieves its secondary goal by adding an equal number of counterfactual images with
and without Main (i.e., P(Main | Artifact) = 0.5).

Setting 3: Counterfactuals cannot change an image’s label. This constraint prevents the
previous strategies from being applied. Therefore, SPIRE removes Spurious from every image
with Spurious and adds Spurious to every image without Spurious. While this process does
achieve SPIRE’s primary goal, it does not achieve SPIRE’s secondary goal (i.e., the original
correlation between the label and Spurious is the same as the correlation between the label and
grey boxes from removing Spurious).

4.4 Evaluation

Because relying on the SP is usually helpful on the original distribution, we cannot measure the
effectiveness of a mitigation method using that distribution. Instead, we measure the model’s
performance on the balanced distribution, using metrics such as accuracy and average precision.
Intuitively, using the balanced distribution provides a fairer comparison because the SP is
neither helpful nor harmful on it. However, like any performance metric that is aggregated over
a distribution, these metrics hide potentially useful details.

We address this limitation by measuring the model’s accuracy on each of the image splits. These
per split accuracies yield a more detailed analysis, allow us to estimate the model’s performance
on any distribution (e.g., the balanced distribution) by re-weighting the model’s accuracy on
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them, and allow us to calculate two “gap metrics”. The Recall Gap is the difference in accuracy
between Both and Just Main; the Hallucination Gap is the difference in accuracy between
Neither and Just Spurious. Intuitively, a smaller recall gap means that the model is more robust
to distribution shifts that move weight between Both and Just Main. The same is true for the
hallucination gap and shifts between Neither and Just Spurious. As a concrete example of these
metrics, consider the tennis racket example (Figure 4.3 Left), where we observe that the recall
gap is 45.4% (i.e., the model is much more likely to detect a tennis racket when a person is
present) and a hallucination gap of 0.5% (i.e., the model is more likely to hallucinate a tennis
racket when a person is present; see Appendix C.3.2).

Note that these per split accuracies are measured using only natural (i.e., not counterfactual)
images, in order to prevent the model from “cheating” by learning to use artifacts in the
counterfactual images. As a result, the gap metrics and the performance on the balanced
distribution also only use natural images.

Class Balanced vs Imbalanced Evaluation. When there is class balance, we use the standard
prediction threshold of 0.5 to measure a model’s performance using accuracy on the balanced
distribution (i.e., balanced accuracy) and its gap metrics. When there is class imbalance,
Average Precision (AP), which is the area under the precision vs recall curve, is the standard
performance metric. Analogous to AP, we can calculate the Average Recall Gap by finding the
area under the “absolute value of the recall gap” vs recall curve; the Average Hallucination Gap
is defined similarly. As a result, we measure a model’s performance using AP on the balanced
distribution (i.e., balanced AP) and the Average Recall/Hallucination Gaps. Appendix C.4
provides more details for these metrics by showing how they are calculated using the tennis
racket example.

4.5 Experiments

We divide our experiments into three groups:

• In Section 4.5.1, we induce SPs with varying strengths by sub-sampling COCO in order
to understand how mitigation methods work in a controlled setting. We show that SPIRE
is more effective at mitigating these SPs than prior methods. We also use these results to
identify the best prior method, which we use for comparison for the remaining experiments.
• In Section 4.5.2, we find and fix SPs “in the wild” using all of COCO; this means finding

multiple naturally occurring SPs and fixing them simultaneously. We show that SPIRE
identifies a wider range of SPs than prior methods and that it is more effective at mitigating
them. Additionally, we show that it improves zero-shot generalization to two challenging
datasets (UnRel and SpatialSense).
• In Section 4.5.3, we demonstrate that SPIRE is effective for problems other than COCO.

To do so, we consider tasks other than object-classification and/or explore techniques for
constructing counterfactuals for datasets without pixel-wise object-annotations.

For the baseline models (i.e., the normally trained models that contain the SPs that we are going
to identify and mitigate), we fine-tune a pre-trained version of ResNet18 [38] (see Appendix
C.5). We compare SPIRE to RRR [82], QCEC [89], CDEP [80], GS [102], and FS [93]. We
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Figure 4.4: A comparison of the baseline model to various mitigation methods. The results shown are averaged across both
the pairs accepted for our benchmark and across eight trials. Left - Balanced Accuracy. For p ≤ 0.2 and p ≥ 0.8, SPIRE
produces the most accurate models. None of the methods have much of an impact for p = 0.4 or p = 0.6, likely because those
create weak SPs. Center/Right - Recall/Hallucination Gaps. SPIRE generally shrinks the absolute value of both of the gap
metrics by more than prior methods.

use the evaluation described in Section 4.4 and, for any split that is too small to produce a
reliable accuracy estimate, we acquire additional images (using Google Images) such that each
split has at least 30 images to use for evaluation.

Measuring variance across trials. Because we are applying these mitigation methods to the
baseline model, the results of some metric (e.g., Balanced AP) for the mitigated model and
the baseline model are not independent. As a result, we do not directly report the variance of
this metric across trials and, instead, report the variance its difference between the mitigated
and baseline models. Subsequently, the “[σ=]” entries in our tables will denote the standard
deviation of a particular metric’s difference across trials.

4.5.1 Benchmark Experiments

We construct a set of benchmark tasks from COCO consisting of different SPs with varying
strengths, by manipulating the model’s training distribution, in order to better understand how
mitigation methods work in a controlled setting. Appendix C.6 has additional details.

Creating the benchmark. We start by finding each pair of objects that has at least 100 images
in each split of the testing set (13 pairs). For each of those pairs, we create a series of controlled
training sets of size 2000 by sampling images from the full training set such that P(Main) =
P(Spurious) = 0.5 and p = P(Main | Spurious) ranges between 0.025 and 0.975. Each controlled
training set represents a binary task, where the goal is to predict the presence of Main.

While varying p allows us to control the strength of the correlation between Main and Spurious
(i.e., p near 0 indicates a strong negative correlation while p near 1 indicates a strong positive
correlation), it does not guarantee that the model actually relies on the intended SP. Indeed,
when we measure the models’ balanced accuracy as p varies, we observe that 5 out of the 13
pairs show little to no loss in balanced accuracy as p approaches 1. Consequently, subsequent
evaluation considers the other 8 pairs. For these pairs, the model’s reliance on the SP increases
as p approaches 0 or 1 as evidenced by the increasing loss of balanced accuracy.
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Results. Figure 4.4 (Left) presents the balanced accuracy results. We find that SPIRE consis-
tently improves balanced accuracy and that it does so by more than prior methods. Interestingly,
while most prior methods are beneficial for strong positive SPs (p ≥ 0.9), only FS is also
(mildly) beneficial for negative SPs (p < 0.5).

Figure 4.4 (Center/Right) presents the gap metric results. We find that SPIRE is the most
effective method at shrinking these metrics, which indicates that it produces a model that is
more robust to distribution shift. Interestingly, QCEC and GS, which are the two prior methods
that include data augmentation, are the only prior methods that substantially shrink the gap
metrics (at the cost of balanced accuracy for p < 0.9).

Overall, this experiment shows that SPIRE is an effective mitigation method and that our
evaluation framework enables us to easily understand how methods affect the behavior of a
model. We use FS as the baseline for comparison for the remaining experiments because, of
the prior methods, it had the best average balanced accuracy across p’s range.

4.5.2 Full Experiment

We evaluate SPIRE “in the wild” by identifying and mitigating SPs learned by a multi-label
binary object-classification model trained on the full COCO dataset. Appendices C.4 and C.7
have additional details.

Identification. Out of all possible (Main, Spurious) pairs, we consider those which have at
least 25 training images in Both (≈ 2700). From these, SPIRE identifies 29 where the model’s
prediction changes at least 40% of the time when we remove Spurious. Table 4.2 shows a few
of the identified SPs; overall, they are quite diverse: the spurious object ranges from common
(e.g., person) to rare (e.g., sheep); the SPs range from objects that are commonly co-located
(e.g., tie-person) to usually separate (e.g., dog-sheep); and a few Main objects (e.g., tie and
frisbee) have more than one associated SP. Notably, SPIRE identifies negative SPs (e.g., tie-cat)
while prior work [89, 93, 102] only found positive SPs. Appendix C.7 includes a discussion of
how we verified the veracity of these identified SPs.

Mitigation. Unlike the Benchmark Experiments, this experiment requires mitigating many
SPs simultaneously. Because we found that SPIRE was more effective if we only re-train the
final layer of the model in the Benchmark Experiments (see Appendix C.5), we do this by
re-training the slice of the model’s final layer that corresponds to Main’s class on an augmented
dataset that combines SPIRE’s augmentation for each SP associated with Main. All results
shown (Tables 4.3 and 4.4) are averaged across eight trials.

We conclude that SPIRE significantly reduces the model’s reliance on these SPs based on
two main observations. First, it increases balanced AP by 1.1% and shrinks the average
recall/hallucination gaps by a factor of 14.2/28.1%, relative to the baseline model, on COCO.
As expected, this does slightly decrease Mean Average Precision (MAP) by 0.4% on the
original (biased) distribution. Second, it increases MAP on the UnRel [70] and SpatialSense
[116] datasets. Because this evaluation was done in a zero-shot manner and these datasets are
designed to have objects in unusual contexts, this is further evidence that SPIRE improves
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Table 4.2: A few examples of the SPs identified by SPIRE
for the Full Experiment. For each pair, we report several
basic dataset statistics including bias, P(Spurious | Main) - P(Spurious)

P(Spurious) ,
which captures how far Main and Spurious are away from
being independent as well as the sign of their correlation.

Main Spurious P(M) P(S) P(S | M) bias

tie cat 0.03 0.04 0.01 -0.66
toothbrush person 0.01 0.54 0.54 -0.01
bird sheep 0.03 0.01 0.01 0.00
frisbee person 0.02 0.54 0.83 0.54
tie person 0.03 0.54 0.95 0.76
tennis racket person 0.03 0.54 0.99 0.83
dog sheep 0.04 0.01 0.03 1.05
frisbee dog 0.02 0.04 0.24 5.44
fork dining table 0.03 0.10 0.76 6.56

Table 4.3: Mitigation results for the Full Experiment. Bal-
anced AP is averaged across the SPs identified by SPIRE.
Similarly, the gap metrics are reported as the “mean (me-
dian)” change from the baseline model, aggregated across
those SPs.

Original MAP Balanced AP %∆ Avg.
Recall Gap

%∆ Avg.
Hallucination Gap

Baseline 64.1 46.2 — —
SPIRE 63.7 [σ=0.1] 47.3 [σ=0.5] -14.2 (-14.5) -28.1 (-27.3)
FS 62.5 [σ=1.0] 44.7 [σ=1.9] 9.7 (-5.9) 25.7 (-6.9)

Table 4.4: The MAP results of a zero-shot evaluation on
the classes that are in the UnRel/SpatialSense datasets that
SPIRE also identified as being Main in a SP.

UnRel SpatialSense

Baseline 38.9 20.3
SPIRE 41.3 [σ=1.3] 20.7 [σ=0.5]
FS 39.6 [σ=2.1] 18.6 [σ=0.3]

Table 4.5: Results for the Scene Identification Experiment
(averaged across sixteen trials).

Original AP Balanced AP %∆ Avg.
Recall Gap

%∆ Avg.
Hallucination Gap

Baseline 95.0 48.9 — —
SPIRE 92.8 [σ=1.6] 83.2 [σ=7.3] -82.1 -75.5
FS 93.7 [σ=1.3] 47.8 [σ=8.6] -11.5 3.7

Table 4.6: Results for the No Object Annotation Experiment
for the tennis racket example (averaged across eight trials).

Original AP Balanced AP %∆ Avg.
Recall Gap

%∆ Avg.
Hallucination Gap

Baseline 93.9 79.9 — —
SPIRE 92.9 [σ=0.4] 80.5 [σ=1.3] -31.3 -27.3
SPIRE-R 94.0 [σ=0.6] 81.0 [σ=1.7] -9.1 -44.9
FS 92.9 [σ=1.0] 80.7 [σ=2.2] -10.4 -22.3

Table 4.7: Results for the ISIC Experiment (averaged across
eight trials).

Original AP Balanced AP %∆ Avg.
Recall Gap

%∆ Avg.
Hallucination Gap

Baseline 78.3 71.0 — —
SPIRE-EM 78.8 [σ=4.9] 76.4 [σ=2.4] -20.5 -39.0
FS 70.7 [σ=6.8] 68.0 [σ=3.8] -31.3 -61.0

distributional robustness. In contrast, FS decreases the model’s performance, has inconsistent
effects on the gap metrics, and has mixed results on the zero-shot evaluation.

SPIRE and Distributional Robustness. Noting that robustness to specific distribution shifts
is one of the consequences of mitigating SPs, we can contextualize the impact of SPIRE by
considering an extensive meta-analysis of methods that aim to provide general robustness
[101]. This analysis finds that the only methods that consistently work are those that re-train
the baseline model on several orders of magnitude more data. It also describes two necessary
conditions for a method to work. Notably, SPIRE satisfies both of those conditions: first, it
improves performance on the shifted distributions (i.e., the balanced distributions, UnRel, and
SpatialSense) and, second, this improvement cannot be explained by increased performance
on the original distribution. Consequently, SPIRE ’s results are significant because they show
improved robustness without using orders of magnitude more training data. We hypothesize that
SPIRE is successful because it targets specific SPs rather than using a less targeted approach.
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4.5.3 Generalization Experiments

We illustrate how SPIRE generalizes beyond the setting from COCO, where we considered
the object-classification task and assumed that the dataset has pixel-wise object-annotations.
Specifically, we explore three examples that consider a different task (Generalization 1) or do
not assume this (Generalization 2).

Scene Identification Experiment (Generalization 1). In this experiment, we construct a
scene identification task using the image captions from COCO and show that SPIRE can
identify and mitigate a naturally occurring SP. To do this, we define two classes: one where
the word “runway” (the part of an airport where airplanes land) appears in the caption (1,134
training images) and another where “street” appears (12,543 training images); images with
both or without either are discarded. For identification, we observe that removing all of the
airplanes from an image of a runway changes the model’s prediction 50.7% of the time.

Table 4.5 shows the results. SPIRE reduces the model’s reliance on this SP because it substan-
tially increases balanced AP and it reduces the average recall and hallucination gaps by factors
of 82.1% and 75.5%. In contrast, FS is not effective at mitigating this SP.

No Object Annotation Experiment (Generalization 2). In this experiment, we mitigate the
SP from the tennis racket example without assuming that we have pixel-wise object-annotations;
instead, we make the weaker assumption that we have binary labels for the presence of Spurious.
To do this, we train a linear (in the model’s representation space) classifier to predict whether
or not an image contains a person (similar to [44]). Then, we project across this linear classifier
to essentially add or remove a person from an image’s representation (so we call this method
SPIRE-R) (see Appendix C.8.1).

Table 4.6 shows the results. First, note that SPIRE provides a small increase in Balanced AP
while providing the largest average decrease in the gap metrics. Second, note that SPIRE-R is
preferable to FS because it produces a larger reduction in the hallucination gap while being
otherwise comparable.

ISIC Experiment (Generalizations 1 & 2). In this experiment, we imitate the setup from
[80] for the ISIC dataset [24]. Specifically: the task is to predict whether an image of a skin
lesion is malignant or benign; the model learns to use a SP where it relies on a “brightly colored
sticker” that is spuriously correlated with the label; and the dataset does not have annotations
for those stickers to use create counterfactual images. For this experiment, we illustrate another
approach for working with datasets that do not have pixel-wise object-annotations: using
external models (so we call this method SPIRE-EM) to produce potentially noisy annotations
with less effort than actually annotating the entire dataset. The external model could be an
off-the-shelf model (e.g., a model that locates text in an image) or a simple pipeline such as the
super-pixel clustering one we use (see Appendix C.8.2).

Table 4.7 shows the results. We can see that SPIRE-EM is effective at mitigating this SP
because it generally improves performance while also shrinking the gap metrics.2 In contrast,

2 Note that, because the dataset does not contain enough malignant images with stickers to produce a reliable accuracy
estimate, we had to use counterfactual images for this evaluation. This may influence the results for balanced AP and the recall
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FS does not seem to be beneficial because it substantially reduces performance on both the
original and balanced distributions (which outweighs shrinking the gap metrics).

4.6 Conclusion

In this work, we introduced SPIRE as an end-to-end solution for addressing Spurious Patterns
for image classifiers that are relying on spurious objects to make predictions. SPIRE identifies
potential SPs by measuring how often the model’s prediction changes when we remove the
Spurious object from an image with a positive label and mitigates SPs by shifting the training
distribution towards the balanced distribution while minimizing any correlations between the
label and artifacts in the counterfactual images. We demonstrated that SPIRE is able identify
and, at least partially, mitigate a diverse set of SPs by improving the model’s performance on
the balanced distribution and by making it more robust to specific distribution shifts. We found
that these improvements lead to improved zero-shot generalization to challenging datasets.
Then, we showed that SPIRE can be applied to tasks other than object-classification and we
illustrated two potential ways to apply SPIRE to datasets without pixel-wise object-annotations
to use to create counterfactuals (creating counterfactual representations and using external
models). More generally, in terms of identifying SPs, our findings provide additional evidence
for the claim that a correlation is neither sufficient nor necessary for a model to learn a SP.

gap metric. However, SPIRE-EM is still an improvement over the baseline because of the original AP and hallucination gap
metric results.
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Chapter 5

Blindspots

Recall that the goal of this application is to find blindspots, which occur when an image
classification model underperforms on a semantically meaningful subset of the data, while
making minimal assumptions. To do this, we use a family of bespoke methods called Blindspot
Discovery Methods. While past works have used evaluations based on the size or error rate of
the hypothesized blindspots returned by these methods, these evaluations have limitations that
we seek to address. Both these methods and these evaluations are described in Section 5.2.

To evaluate the usefulness of these methods for this application, we run two evaluations. For the
first, we artificially induce blindspots in a model in order to directly compare the hypothesized
blindspots returned by these methods to the blindspots that we induced (Sections 5.3 and 5.5).
For the second, we illustrate a pipeline to measure the ability of a user to identify naturally
occurring blindspots in a model using these methods (Section 5.6).

Beyond this individual work, there are a few general ideas to keep in mind for this application:

• At a high level, these methods help facilitate a type of model debugging where the model
developer iteratively finds and fixes blindspots in a model by suggesting blindspots to the
model developer. Then, the model developer can determine whether a blindspot is worth
fixing and, if it is, what the best fix is.1

• This application does not cover all of model debugging. For example, there may be systemic
errors that are not semantically meaningful (e.g., those defined by the Fourier spectrum of
an image). As a result, we should view it as a complementary approach to approaches that
focus on other notions of model robustness or performance.

5.1 Introduction

A growing body of work has found that models with high test performance can still make
systemic errors, which occur when the model performs significantly worse on a semantically
meaningful subset of the data [13, 23, 68, 77, 94]. For example, past works have demonstrated
that models trained to diagnose skin cancer from dermoscopic images sometimes rely on

1Blindspots can have many different causes such as relying on spurious correlations, small sample sizes, labeling errors,
and data processing errors, which may require different fixes.
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spurious artifacts (e.g., surgical skin markers that some dermatologists use to mark lesions);
consequently, they have different performance on images with or without those spurious
artifacts [64, 111]. More broadly, finding systemic errors can help us detect algorithmic bias
[13] or sensitivity to distribution shifts [83, 93].

In this work, we focus on what we call the blindspot discovery problem, which is the problem
of finding an image classification model’s systemic errors2 without making many of the
assumptions considered in related works (e.g., we do not assume access to metadata to define
semantically meaningful subsets of the data, tools to produce counterfactual images, a specific
model structure or training process, or a human in the loop). We call methods for addressing
this problem Blindspot Discovery Methods (BDMs) [e.g., 26, 33, 46, 94, 97].

We note that blindspot discovery is an emerging research area and that there has been more
emphasis on developing BDMs than on formalizing the problem itself. Consequently, we
propose a problem formalization, summarize different approaches for evaluating BDMs, and
summarize several high-level design choices made by BDMs. When we do this, we observe the
following two gaps. First, existing evaluations are based on an incomplete knowledge of the
model’s blindspots, which limits the types of measurements and claims they can make. Second,
dimensionality reduction is a relatively underexplored aspect of BDM design.

Motivated by these gaps in prior work, we propose a new evaluation framework, SpotCheck,
and a new BDM, PlaneSpot. SpotCheck is a synthetic evaluation framework for BDMs that
gives us complete knowledge of the model’s blindspots and allows us to identify factors that
influence BDM performance. Additionally, we refine the metrics used by past evaluations.
PlaneSpot is a simple BDM that finds blindspots using a 2D image representation.

We use SpotCheck to run controlled experiments that identify factors that influence BDM
performance (e.g., the number of blindspot in a model) and show that PlaneSpot outperforms
existing BDMs. We run additional semi-controlled experiments using the COCO dataset [60]
and find that these trends discovered using SpotCheck generalize to real image data. Overall,
we hope that the methodology and analyses presented in this work will help facilitate a more
rigorous science of blindspot discovery.

5.2 Background

In this section, we formalize the problem of blindspot discovery for image classification. We
then discuss general approaches for evaluating the Blindspot Discovery Methods (BDMs)
designed to address this problem as well as high-level design choices made by BDMs.

Problem Definition. The broad goal of finding systematic errors has been studied across a
range of problem statements and method assumptions. Some common assumptions are:

• Access to metadata help define coherent subsets of the data [e.g., 13, 44, 93].
• The ability to produce counterfactual images [e.g., 10, 53, 75, 89, 95, 115].

2In past work, “systemic errors” have also been called “failure modes” or “hidden stratification.” We introduce “blindspot”
to mean the same thing and use it make it clear when we are specifically discussing blindspot discovery.
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• A specific structure for the model we are analyzing [e.g., 6, 50] or for training process used
to learn the model’s parameters [e.g., 112].
• A human-in-the loop, either through an interactive interface [e.g., 8, 14] or by inspecting

explanations [e.g., 3, 118].

While appropriate at times, these assumptions all restrict the applicability of their respective
methods. For example, consider assuming access to metadata to help define coherent subsets of
the data. To start, this metadata is much less common in applied settings than it is for common
ML benchmarks. Further, the efficacy of methods that rely on this metadata is limited by the
quantity and relevance of this metadata; in general, efficiently collecting large quantities of
relevant metadata is challenging because it requires anticipating the model’s systemic errors.

Consequently, we define the problem of blindspot discovery as the problem of finding an image
classification model’s systemic errors without making any of these assumptions. More formally,
suppose that we have an image classifier, f , and a dataset of labeled images, D = [xi]

n
i=1.

Then, a blindspot is a coherent (i.e., semantically meaningful) set of images, Ψ ⊂ D, where
f performs significantly worse (i.e., p(f,Ψ)� p(f,D \Ψ) for some performance metric, p,
such as recall). We denote the set of f ’s true blindspots as Ψ : {Ψm}Mm=1. Next, we define
the problem of blindspot discovery as the problem of finding Ψ using only f and D. Then, a
BDM is a method that takes as input f and D and outputs an ordered (by some definition of
importance) list of hypothesized blindspots, Ψ̂ : [Ψ̂k]

K
k=1. Note that the Ψm and Ψ̂k are sets of

images.

Approaches to BDM evaluation. We observe that existing approaches to quantitatively
evaluate BDMs fall in two categories. The first category of evaluations simply measure the
error rate or size of Ψ̂k [26, 94]. However, these evaluations have two problems. First, none
of the properties they measure capture whether Ψ̂k is coherent (e.g., a random sample of
misclassified images has high error but may not match a single semantically meaningful
description). Second, f ’s performance on Ψ̂k may not be representative of f ’s performance on
similar images because BDMs are optimized to return high error images (e.g., suppose that f
has a 90% accuracy on images of “squares and blue circles”; then, by returning the 10% of
such images that are misclassified, a BDM could mislead us into believing that f has a 0%
accuracy on this type of image).

The second category of evaluations compares Ψ̂ to a subset of Ψ that has either been previously
found or artificially induced [33, 97]. While these evaluations address the issues with those
from the first category, they require knowledge of Ψ, which is usually incomplete (i.e., we
usually do not know some of the Ψm). This incompleteness makes it difficult to identify factors
that influence BDM performance or to measure a BDM’s recall or false positive rate. It is not
practical to fix this incompleteness using real data because we cannot realistically enumerate
all of the possible coherent subsets of D to check if they are blindspots. To address these
limitations, we introduce SpotCheck, which gives us complete knowledge of Ψ by using
synthetic data.

High-level design choices of BDMs. In Table 5.1, we summarize three of the high-level
design choices made by existing BDMs. First, each BDM uses a model to extract an image
representation. Many BDMs use a representation from f , but some use pre-trained external
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Table 5.1: A high level overview the high-level design choices made by different BDMs.

Method 1. Image Representation 2. Dimensionality Reduction 3. Hypothesis Class
Multiaccuracy [46] VAE representation Linear model
GEORGE [97] Model representation UMAP (d = 0, 1, 2) Gaussian kernels
Spotlight [26] Model representation Gaussian kernels
Barlow [94] Adversarially-Robust Model representation Decision Tree
Domino [33] CLIP representation PCA (d = 128) Gaussian Kernels
PlaneSpot Model representation scvis (d = 2) Gaussian Kernels

models or other models trained on D. Second, some of the BDMs apply some form of
dimensionality reduction to that image representation. Third, each BDM learns a model from
a specified hypothesis class to predict if an image belongs to a blindspot from that image’s
(potentially reduced) representation.

Interestingly, while there has been significant effort focused on the choice of a BDM’s image
representation and hypothesis class (along with its associated learning algorithm), we note that
dimensionality reduction has received much less attention. This is surprising because these
BDMs are all solving clustering or learning problems, which are generally easier in lower
dimensions. Motivated by this gap in prior work, we introduce a simple BDM, PlaneSpot,
that uses a 2D representation.

5.3 Evaluating BDMs using Knowledge of the True Blindspots

In Section 5.3.1, we introduce SpotCheck, which is an evaluation framework for BDMs that
gives us complete knowledge of the model’s true blindspots by using synthetic images and
allows us to identify factors that influence BDM performance. In Section 5.3.2, we define the
metrics that we use to measure the performance of BDMs given knowledge of the model’s true
blindspots.

5.3.1 SpotCheck: A Synthetic Evaluation Framework for BDMs

SpotCheck builds on ideas from Kim et al. [45] by generating synthetic datasets of varying
complexity and training models to have specific blindspots on those datasets. We summarize
its key steps below; see Appendix D.1 for details.

Dataset Definition. Each dataset is defined using semantic features that describe the possible
types of images it contains. Datasets that have a larger number of features have a larger variety
of images and are therefore more complex. For example, a simple dataset may only contain
images with squares and blue or orange circles (see Figure 5.1), while a more complicated
dataset may also contain images with striped rectangles, small text, or grey backgrounds.

Blindspot Definition. Each blindspot is defined using a subset of the semantic features that
define its associated dataset (see Figure 5.1). Similarly to how a dataset with more features is
more complex, a blindspot defined using more semantic features is more specific.

Training a Model to have Specific Blindspots. For each dataset and blindspot specification,
we train a ResNet-18 model [38] to predict whether a square is present. To induce blindspots,
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label: 0 label: 0 label: 0 label: 1 label: 0 label: 0

blindspot: images with squares and circles

Figure 5.1: By controlling the data generation process, SpotCheck gives us complete knowledge of a model’s true blindspots.
Here, we show images sampled from a dataset created with SpotCheck. Dataset Complexity. This dataset is defined by 3
semantic features that vary across images: the presence of a square, the presence of a circle, and the color of the circle. We do
not count the “color of the square” because it is always blue. Blindspot Specificity. This blindspot is defined by 2 semantic
features: the presence of a square and the presence of a circle. As a result, it contains any image with both a square and a
circle, regardless of the circle’s color. Data Labels. In general, the label indicates if a square is present. However, training
images belonging to this blindspot are mislabeled.

we generate data where the label for each image in the training and validation sets is correct
if and only if it does not belong to any of the blindspots (see Figure 5.1). The test set images
are always correctly labeled. Then, because we know the full set of semantic features that
define the dataset, we can verify that the model learned to have exactly the set of blindspots
that we intended it to. As a result, SpotCheck gives us complete knowledge of the model’s
true blindspots.

Generating Diverse Experimental Configurations (ECs). Since our goal is to study how
various factors influence BDM performance, we generate a diverse set of experimental con-
figurations, (i.e., dataset, blindspots, and model triplets). To do this, we randomize several
factors: the features that define a dataset (both the number of them and what they are) as well
as the blindspots (the number of them, the number of features that define them, and what those
features are). Importantly, we sample these factors independently of one another across this set
of ECs so that we can estimate their individual influence on BDM performance.

5.3.2 Evaluation Metrics based on Knowledge of the True Blindspots

These metrics measure how well the hypothesized blindspots returned by a BDM, Ψ̂, capture a
model’s true blindspots, Ψ. Recall that the Ψ̂k and Ψm are sets of images. To do this, we start
by measuring how well a BDM finds each individual true blindspot (Blindspot Recall) and
build on that to measure how well a BDM finds the complete set of true blindspots (Discovery
Rate and False Discovery Rate); see Appendix D.2 for a discussion of how these metrics refine
prior definitions.
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Blindspot Precision. If Ψ̂k is a subset of Ψm, we know that the model underperforms on Ψ̂k

and that Ψ̂k is coherent. We measure this using the precision of Ψ̂k with respect to Ψm:

BP(Ψ̂k,Ψm) =
|Ψ̂k ∩Ψm|
|Ψ̂k|

(5.1)

Then, we say that Ψ̂k belongs to Ψm if, for some threshold λp:

BP(Ψ̂k,Ψm) ≥ λp (5.2)

However, Ψ̂k can belong to Ψm without capturing the same information as Ψm. For example,
Ψ̂k could be “squares and blue circles” while Ψm could be “squares and blue or orange circles”.
Because this excessive specificity could result in the user arriving at conclusions that are too
narrow, we need to incorporate some notion of recall into the evaluation.

Blindspot Recall. One way to incorporate recall is using the proportion of Ψm that Ψ̂k covers:

BRnaive(Ψ̂k,Ψm) =
|Ψ̂k ∩Ψm|
|Ψm|

(5.3)

We relax this definition by allowing Ψm to be covered by the union of the Ψ̂k that belong to it:

BR(Ψ̂,Ψm) =

∣∣∣∣∣
( ⋃

Ψ̂k:BP(Ψ̂k,Ψm)≥λp
Ψ̂k

)
∩Ψm

∣∣∣∣∣
|Ψm|

(5.4)

Then, we say that Ψ̂ covers Ψm if, for some threshold λr:

BR(Ψ̂,Ψm) ≥ λr (5.5)

We do this because “squares and blue circles” and “squares and orange circles” belong to and
jointly cover “squares and blue or orange circles.” So, if a BDM returns both, a user could
combine them to arrive at the correct conclusion.

Discovery Rate (DR). We define the DR of Ψ̂ and Ψ as the fraction of the Ψm that Ψ̂ covers:

DR(Ψ̂,Ψ) =
1

M

∑
m

1(BR(Ψ̂,Ψm) ≥ λr) (5.6)

False Discovery Rate (FDR). When the DR is non-zero, we define FDR of Ψ̂ and Ψ as the
fraction of the Ψ̂k that do not belong to any of the Ψ:3

FDR(Ψ̂,Ψ) =
1

K

∑
k

1(max
m

BP (Ψ̂k,Ψm) < λp) (5.7)

Note that it is impossible to calculate the FDR without the complete set of true blindspots.
While SpotCheck gives us this knowledge, it is generally not available.

3While calculating DR, we may only need the top-u items of Ψ̂. As a result, we only calculate the FDR over those
top-u items. This prevents the FDR from being overly pessimistic when we intentionally pick K too large in our experiments.
However, it is unclear what value of u to use for ECs that have a DR of zero, so we exclude these ECs from our FDR analysis.
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5.4 PlaneSpot: A simple BDM based on Dimensionality Reduction

In this section, we define PlaneSpot. As shown in Table 5.1, PlaneSpot uses the most
common choices for the image representation (i.e., f ’s own representation) and the hypothesis
class (i.e., gaussian kernels). PlaneSpot also uses standard techniques to learn a model from
that hypothesis class. As a result, the most interesting aspect of PlaneSpot’s design is that it
finds blindspots using a 2D representation. We start by defining some additional notation and
then explain PlaneSpot’s choice for each of the high-level design choices made by a BDM.

Notation. Suppose that we want to find f ’s blindspots for a class, c, and let Dc be the
set of images from D that belong to c. Further, suppose that we have divided f into two
parts: g : X → Rd, which extracts f ’s representation of an image (i.e., its penultimate layer
activations), and h : Rd → [0, 1], which gives f ’s predicted confidence for c.

Image Representation. We use g to extract f ’s representation for Dc, G = g(Dc) ∈ Rn×d,
and h to extract f ’s predicted confidences for Dc, H = h(G) ∈ [0, 1]n×1. Note that, because
all of the images in Dc belong to c, entries of H closer to 1 denote higher confidence in the
true class.

Dimensionality Reduction. We use G to train scvis [30], which combines the objective
functions of tSNE and an autoencoder, in order to learn a 2D representation of f ’s representation,
s : Rd → R2. Then, we use s to get the 2D representation of Dc, S = s(G) ∈ Rn×2. Finally,
we normalize the columns of S to be in [0, 1], S̄ ∈ [0, 1]n×2.

Hypothesis Class. We want PlaneSpot to be aware of both the representation of Dc, S̄,
and f ’s predicted confidences for Dc, H , so we combine them into a single representation,
R = [S̄;w ·H] ∈ Rn×3 where w is a hyperparameter controlling the relative weight of these
components. Then, we pass R to a Gaussian Mixture Model clustering algorithm, where the
number of clusters is chosen using the Bayesian Information Criteria. Finally, we return those
clusters in order of decreasing importance, which we define using the product of their error rate
and the number of errors in them.

5.5 Experiments

In Section 5.5.1, we use SpotCheck to run a series of controlled experiments using synthetic
data. In Section 5.5.2, we demonstrate how to setup semi-controlled experiments to validate
that the findings from SpotCheck generalize to settings with real data.

5.5.1 Synthetic Data Experiments

We use SpotCheck to generate 100 ECs whose datasets have 6-8 semantic features and whose
models have 1-3 blindspots defined with 5-7 features. We evaluate three recent BDMs: Spotlight
[26], Barlow [94], Domino [33], and PlaneSpot. We give all BDMs the positive examples (i.e.,
images with squares) from the test set and limit them to returning 10 hypothesized blindspots.
We use a held-out set of 20 ECs to tune each BDM’s hyperparameters (see Appendix D.3). We
use λp = λr = 0.8 for our metrics.
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Table 5.2: Average BDM DR and FDR with their standard
errors across 100 SpotCheck ECs.

Method DR FDR

Barlow 0.43 (0.04) 0.03 (0.01)
Spotlight 0.79 (0.03) 0.09 (0.01)
Domino 0.64 (0.04) 0.07 (0.01)
PlaneSpot 0.88 (0.03) 0.02 (0.01) Figure 5.2: The fraction of blindspots covered (with shaded

95% CIs) for blindspots defined using 5, 6, and 7 features
using 2 different Spotlight hyperparameter choices.

Figure 5.3: (Left/Center) Average BDM DR/FDR (with shaded 95% confidence intervals) for ECs that have 1, 2, and 3
blindspots. (Right) The fraction of blindspots covered, across the individual blindspots from the ECs, for blindspots defined
using 5, 6, and 7 features.

Figure 5.4: The fraction of blindspots covered (with shaded 95% confidence intervals) that are or are not defined with (Left)
the “relative position” feature (whether the square appears above the centerline of the image), (Center) a “texture” feature
(whether any object in the image has vertical stripes), or (Right) the presence of a circle (whether there is a circle in the image).
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Overall Results. Table 5.2 shows the DR and FDR results averaged across all 100 ECs. We
observe that PlaneSpot has the highest DR and that PlaneSpot and Barlow have a lower
FDR than Spotlight and Domino. In Appendix D.4, we take a deeper look at why these BDMs
are failing and conclude that a significant portion of all of their failures can be explained by
their tendency to merge multiple true blindspots into a single hypothesized blindspot.

Identifying factors that influence BDM performance. We study two types of factors: per-
configuration factors, which measure properties of the dataset (e.g., how complex is it?) or of
the model (e.g., how many blindspots does it have?), and per-blindspot factors, which measure
properties of a blindspot (e.g., is it defined with this feature?). For per-configuration factors,
we average DR and FDR across the ECs. For per-blindspot factors, we report the fraction of
blindspots covered averaged across each individual blindspot from the ECs (see Equation 5.5).

The number of blindspots matters. In Figure 5.3 (Left), we plot the average DR for ECs
with 1, 2, and 3 blindspots. Average DR decreases for all methods as the number of blindspots
increases. Figure 5.3 (Center) shows that FDR increases as the number of blindspots increases.
Together these observations show that BDMs perform worse in settings with multiple blindspots,
which is particularly significant because past evaluations have primarily focused on settings
with one blindspot.

The specificity of blindspots matters. In Figure 5.3 (Right), we plot the fraction of blindspots
covered for blindspots defined using 5, 6, and 7 features. With the exception of Spotlight, all of
these methods are less capable of finding more specific/less frequently occurring blindspots.

The features that define a blindspot matter. In Figure 5.4, we plot the fraction of blindspots
covered for blindspots that either are or are not defined using various features. In general, we
observe that the performance of these BDMs is influenced by the types of features used to define
a blindspot (e.g., the presence of spurious objects, color or texture information, background
information). For example, all methods are less likely to find blindspots defined using the
“relative position” feature. Interestingly, BDMs that use the model’s representation for their
image representation (i.e., PlaneSpot and Spotlight) are less sensitive to the features that
define a blindspot than those that use an external model’s representation (i.e., Barlow and
Domino).

Hyperparameters matter. We make two observations about BDM hyperparameters that,
jointly, suggest that it is critical that future BDMs provide ways to tune their hyperparameters.
First, in Appendix D.3, we observe that many BDMs have significant performance differences
when we vary their hyperparameters. However, hyperparameter tuning is harder in real
settings than in these experiments because there is no information about the true blindspots
to use. Second, in Figure 5.2, we observe that two hyperparameter settings that perform
nearly identically on average exhibit significantly different performance at finding blindspots
defined using differing numbers of features. This suggests that there may not be a single best
hyperparameter choice to find all of the blindspots in a single model, which could contain
multiple blindspots of different specificity or size.
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5.5.2 Real Data Experiments

We demonstrate how to design semi-controlled experiments using the COCO dataset [60] to
test whether or not some of the findings observed using SpotCheck generalize to settings with
real data. Despite the fact COCO is a fairly large dataset with extensive annotations, it does
not have enough metadata to test all of the findings from SpotCheck (e.g., we cannot induce
blindspots that depend on the texture of an object). Therefore, we study the following questions
using real data:

• Are BDMs still less effective for models with more true blindspots?
• Are BDMs still less effective at finding more specific blindspots?
• Will the 2D image representation used by PlaneSpot still be effective?

Notice that means we we are interested in two factors: the number of blindspots in a model and
of the specificity of those blindspots. Then, in order to try to estimate their influence on BDM
performance, we use the same strategy as SpotCheck and generate a set of ECs where we
randomize these factors independently of one another. We provide details of how we generate
these ECs in Appendix D.5 and show an example EC in Figure 5.5.

However, one key difference from our synthetic experiments is that when we use real data, we
cannot guarantee that the model will learn the blindspots that we try to induce in it. Then, if
the model fails to learn the intended blindspots in a non-random way, the factors that we want
to investigate may be correlated and, consequently, their effects may be confounded, which
makes it difficult to estimate their individual effects. Table 5.3 shows that this confounding
occurs between the effects of the number and the specificity of the blindspots in the COCO
ECs. To eliminate this confounding, we generate a new set of ECs for each factor where we
hold the other confounding factor constant.

We call the set of ECs, where all of the factors are chosen independently, the general pool
because it covers a wider range of possible ECs, which is better for measuring overall BDM
performance. We call this new set of ECs the conditioned pool because it is generated by
conditioning the distribution used to generate the general pool on specific confounding factors.
Because blindspot discovery is harder with real data, we use more lenient thresholds for our
metrics and set λp = λr = 0.5.

label: 0 label: 1 label: 0 label: 0 label: 0

blindspot 1: elephants with people

label: 0

blindspot 2: zebras

Figure 5.5: Images sampled from an example EC created using COCO. In this example, the task is predict to detect whether
an animal is present. The EC has two true blindspots: “elephants with people,” which is more-specific because it is defined
using two objects, and “zebras,” which is less-specific because it is defined using only one object.
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Table 5.3: The effect of number of blindspots is confounded
with the effect of the specificity of those blindspots: as we
try to induce more blindspots in the model, the model is less
likely to learn more specific blindspots. Overall, the model
learned the intended blindspots in 65 of the 90 ECs in the
general pool.

Num Blindspots
Fraction of successfully

induced Blindspots
that are more specific

1 0.54
2 0.47
3 0.40

1 2 3
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Figure 5.6: When we condition on only having less specific
blindspots, we see that BDM performance decreases as we
increase the number of blindspots. These results are based
on 82 ECs where the model learned the intended blindspots.

Table 5.4: For the 65 ECs where the model learned the
intended blindspots, we report BDM DR with its standard
error. We only have knowledge of the blindspots that we
induced, so the DR is calculated relative to those blindspots
and we cannot calculate the FDR.

Method DR

Barlow 0.09 (0.03)
Spotlight 0.14 (0.04)
Domino 0.38 (0.05)
PlaneSpot 0.48 (0.05)
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Figure 5.7: When we condition on only having a single
blindspot, we see that BDMs are less effective at finding
more specific blindspots. These results are based on 70 ECs
where the model learned the intended blindspots.

Results. Overall, all of the findings that we observed using SpotCheck generalized to these real
data experiments. In Figure 5.6, using the conditioned pool, we observe that BDM performance
generally decreases as the number of blindspots increases. In Figure 5.7, using the conditioned
pool, we observe that these BDMs are less able to find blindspots that are more specific. In
Table 5.4, using the general pool, we observe that PlaneSpot is still effective on real data.
These results provide evidence that results from SpotCheck may generalize to a wider range
of more realistic settings. Additionally, in Appendix D.6, we include qualitative examples of
the 2D representation used by PlaneSpot for models trained on benchmark datasets.

Interpreting these results. While these results are promising, there are general challenges as-
sociated with running semi-controlled experiments on real data that influence the interpretation
of these results (or the results of any similar experiments). At a high-level, these challenges all
add noise (or bias) to the results.

First, models trained on real data probably have naturally occurring blindspots (i.e., blindspots
that we did not intend the model to learn) that may influence the results. One example of how
they do this is that we do not know how many hypothesized blindspots to ask a BDM to return
because we do not know how many true blindspots (including both the naturally occurring ones
and the ones we induced) a model has.
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Second, the chosen BDM hyperparameters are probably sub-optimal because we cannot tune
them for a specific EC. Because the set of ECs from the synthetic data experiments is relatively
homogeneous, it is reasonable to use a single set of hyperparameters for all of those ECs.
However, this is not the case for our COCO experiments.

Third, the results may be biased in potentially unknown ways towards certain BDMs whenever
some of the models in the set of ECs fail to learn the intended blindspots. For example, our
general pool of ECs contains more less-specific blindspots than more-specific blindspots, which
will bias the results towards BDMs that are more effective at finding less-specific blindspots.
Further, there are probably other biases that we cannot identify because we lack the metadata
needed to measure them.

Fourth, there can be false positives in verifying that a model actually learned an intended
blindspot. This is because there could be a sub-blindspot (that we may not have the metadata to
define) within that intended blindspot that is actually causing the model to perform significantly
worse on the intended blindspot.

5.6 Evaluating BDMs without Knowledge of the Model’s True Blindspots

In this section, we shift our focus and consider evaluating BDMs in real settings, where we do
not know the model’s true blindspots. Recall from Section 5.2, that there are two problems
with existing approaches for doing this. Specifically, they do not consider whether or not:

1. A hypothesized blindspot is coherent (e.g., a random sample of misclassified images has
high error but may not match a single semantically meaningful description).

2. The model’s performance on a hypothesized blindspot is representative of the model’s
performance on other similar images (e.g., suppose that the model has a 90% accuracy on
images of “squares and blue circles”; then, by returning the 10% of such images that are
misclassified, a BDM could mislead us into believing that the model has a 0% accuracy on
this type of image).

Additionally, there is a third, more general, problem with approaches for evaluating BDMs:

3. These evaluations only work for BDMs and cannot be used to compare BDMs to other
methods (e.g., methods from explainable machine learning). Largely, this is because they
are designed around the fact that BDMs return hypothesized blindspots as sets of images.

To address these problems, we propose a two-step user-based evaluation process:

1. Using the output of the method, the user writes a text description that describes the images
that belong to their hypothesized blindspot.
• This address Problem 1 because, if the hypothesized blindspots returned by a BDM are

not coherent, the user will not be able to describe them.
• This addresses Problem 3 because the user is converting the output of the method into a

standardized format.
• Throughout Appendix D.6, we essentially did this step ourselves for the figure captions.

2. Gather new images that match that text description and use those images to measure the
model’s performance on the user’s hypothesized blindspot.
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• This addresses Problem 2 because these newly gathered images were chosen without
direct knowledge of the model’s performance on them and are chosen only based on the
user’s text description.
• Note that these images could come from an external source or they could be taken from

the same set of images that the method was given.
• Interestingly, these images could also be re-used as a type of “unit test” to compare

models.
• In Appendix D.6.2, we did this step ourselves with images from Google Images.

5.7 Conclusion

In this work, we introduced SpotCheck, a synthetic evaluation framework for BDMs, and
PlaneSpot, a simple BDM that uses a 2D image representation. Using SpotCheck, we
identified factors that influence BDM performance and two technical challenges for future
work on developing new BDMs to address (i.e., providing a practical way to tune BDM
hyperparameters and preventing BDMs from merging multiple true blindspots into a single
hypothesized blindspot). We found that PlaneSpot outperforms existing BDMs on both
synthetic and real data.

Beyond the insights made in the experiments that we ran, we believe that our evaluation
workflow has laid further groundwork for a more rigorous science of blindspot discovery.
Researchers interested in benchmarking their own BDM or answering scientific questions
about blindspot discovery can first use SpotCheck (or harder variations of it) to run controlled
experiments using synthetic data. Next, researchers can also set up semi-controlled experiments
using real data. While both harder and noisier (in part, because of the challenges that we
identified), these experiments are also more realistic. A natural open direction for future work
is how to evaluate BDMs in more realistic settings where we have no knowledge of the model’s
true blindspots (we described one potential approach in Section 5.6).

We note that this workflow is particularly well suited to identifying factors that influence BDM
performance and that understanding these factors can benefit both researchers and practitioners
using BDMs. For researchers, understanding these factors is essential to running fair and
informative experiments (e.g., only evaluating BDMs in settings that only have one blindspot,
which we have identified as being easier, may misrepresent how BDMs perform in more
realistic settings). For practitioners, understanding these factors may help them use any prior
knowledge they may have to select an effective BDM for their problem. Two potential factors
that future work could consider are: First, how does the methodology used to induce blindspots
(i.e., training with mislabeled images) influence BDM performance? Second, for models trained
on real data, how different are the naturally occurring blindspots from those that we have the
metadata to artificially induce and how do those differences influence BDM performance?
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Chapter 6

Conclusion

To conclude this thesis, we start by summarizing its goal, approach, and contributions. Then
we finish by discussing a few relevant directions for future work.

6.1 Summary

One of the core problems facing explainability is the fact that it has primarily focused on
identifying the patterns that a model uses to make its predictions and has mostly ignored
showing that doing so is useful for addressing specific potential problems with that model.
This is problematic in two ways. From an applied perspective, it makes finding a method that
actually addresses your application of interest challenging. From a research perspective, it
makes comparing explainability methods challenging because it is difficult to directly compare
two sets of patterns and argue that one is better than the other.

In this thesis, we suggest addressing this problem by following an application-based pipeline for
explainability. By making it explicit what application is being addressed, this pipeline makes
it easier for practitioners to find useful methods. By defining a clear and testable hypothesis
about what notion of utility will increase if we are successful, this pipeline provides a way to
quantitatively compare explainability methods.

We provide evidence that this pipeline is effective by using it to study several different applica-
tions. In the process of doing so, we make contributions towards each of those applications in
terms of new explainability methods and evaluations, which we will now summarize.

For User Interaction, we want to help end-users change their profile so that a model making
predictions about them will give them their desired prediction in the future. We consider using
local approximation explanations and measure the quality of these explanations using fidelity
and stability. Then, we introduce a regularizer that allows us to empirically explore the trade-off
between fidelity and model accuracy. Finally, we demonstrate that users are able to more easily
change the models prediction when these explanations have higher fidelity.

For Knowledge Discovery, we want to help domain-experts discover new knowledge from
their models. We introduce a new type of explanation, global counterfactual explanations,
and an algorithm for finding such explanations for unsupervised clustering problems in low
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dimensional representations. We demonstrate that these explanations are able to identify both
the structure that we explicitly added to the data and the structure that we would expect to be
present in the data based on domain knowledge.

For Spurious Patterns, we want to help model developers debug their models by finding and
fixing spurious patterns where the model relies on a spurious feature to make predictions. For
finding, we use global counterfactual explanations and demonstrate that these explanations are
able to find a wider range of spurious patterns than past methods. For fixing, we introduce a
new way to measure how sensitive a model is to distribution shifts related to a spurious pattern
and show that a smarter form of data augmentation is more effective at fixing spurious patterns
than past methods.

For Blindspots, we want to help model developers debug their models by finding blindspots
where the model performs worse on a semantically meaningful subset of the data (this encom-
passes a wider range of systemic errors than those induced by spurious patterns). We introduce
a new method for finding blindspots, which we show to be more effective than past methods,
and a new evaluation framework, which addresses limitations of past evaluations. Further, we
identify promising directions for future methods and evaluations to explore.

However, this pipeline is not without limitations. First, it is an abstract template to follow rather
than a prescriptive set of concrete steps to take. Second, it tends to produce conclusions that
apply to a relatively narrow set of conditions.

6.2 Future Work

There are three different directions for future work that we will discuss. First, identifying
shared approaches between different applications. Second, building on the specific results that
this pipeline produces in order to identify more general trends. Third, further exploring model
debugging via finding and fixing blindspots.

Identifying shared approaches between different applications. One of the limitations of
the application-based pipeline for explainability is that it describes what we want to do, but
not necessarily how to do it. As a result, we want to make following this pipeline easier by
recognizing and utilizing the fact that there will be approaches for each of the steps of this
pipeline that can be used for multiple applications.

Looking at how other work has done evaluation (even if they have not followed this pipeline in
its entirety), we can see a few such common approaches:

• Naturally, Faithfulness Evaluations are commonly used across different applications, because
they are specific to the explainability method and not the application. For example, variations
of fidelity or stability are frequently used to measure the quality of local approximation based
explanations (see Chapter 2 and [71, 119]).
• For applications related to model debugging, a common approach for Simulation Evaluations

is to induce bugs into the model by either creating correlations in the training data or by
mislabeling specific parts of the training data (see Chapters 4 and 5 as well as [33, 45, 83]).
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• For applications related to model debugging, a common approach for Usefulness Evaluations
is to gather fresh data to assess whether a hypothesized bug is real or a method for fixing a
bug works (see see Chapters 4 and 5 as well as [34, 77]).
• Finally, we note that using (semi)synthetic data to control the model’s behavior and gain

ground-truth to compare against is used in a wide range of applications, ranging from
Knowledge Discovery to a variety of versions of model debugging (see Chapters 3 and
5 as well as [2, 19, 21, 45, 124]). In general, we argue that this is useful because these
(semi)synthetic settings are easier than real settings and it seems unlikely that a method that
does not work in an easier setting will start working in a harder setting.

Identifying more general trends. While evaluating the usefulness of a method for a specific
application is an important first step, doing so leads to considering applications under relatively
narrow conditions and in isolation. As a result, one way to help make these results more
actionable is to try to identify more general trends by asking questions about the conditions
these results were produced under and how different applications relate to one another.

One question to ask is: what potentially relevant “experimental factors” were held fixed
for a particular result? For example, consider the results from Chapter 2 where we showed
that fidelity is a good proxy metric for the ability of a user to change the model’s input to
produce a specific change in the model’s prediction. Here we held both the “complexity of the
explanation” and the “expertise of the users” fixed. As a result, we do not know if this result
would generalize if we were to replace the linear approximation with a generalized additive
model (which should have higher fidelity but is also more complex). In all likelihood, the
results of this change would depend on the expertise of the users. As a result, as the number of
identified relationships between various Faithfulness Evaluations and Usefulness Evaluations
grows, it will be important to consider these other "factors" (both to help resolve potentially
conflicting results and to help practitioners find effective methods).

Another question to ask is: what is required for success? For example, consider the difference
between Knowledge Discovery and finding Spurious Patterns. If a pattern that the model is
using is true about the world and was previously unknown, we say that we have discovered new
knowledge. If a pattern that the model is using is not true about the world, we say that we have
found a spurious pattern in the model. Interestingly, from the perspective of an explainability
method, these two applications are functionally the same (modulo any assumptions made about
the model or the data). As a result, when considering a new application, it is important to
consider how that application may relate to other applications that have previously been studied
in order to identify more general trends. Naturally, similar applications are also more likely to
have shared approaches between them.

Debugging via finding and fixing Blindspots. There are many interesting questions to ask
along these lines, some of which are:

What is the correct formalization for fixing blindspots? To start, we want to measure T , which
is the model’s performance on the test set, and {Bi}mi=1, which is the model’s performance
on a set of identified blindspots. Then the question is, what function of T and the Bi should
we use to measure the effectiveness of a method for fixing blindspots? For example, if
we used the formalization from Group Distributionally Robust Optimization, we would use
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min(T,B1, . . . , Bm). Alternatively, would we be better off measuring performance on some
chosen “challenge datasets” (as done in Chapter 4)?

Relatedly, what happens when multiple rounds of finding and fixing blindspots are carried
out? Will the same blindspot discovery method find more blindspots, {Bi}ni=m+1, or do these
methods find what they are going to find during the first round? When we go to fix {Bi}ni=m+1,
do we need to enforce that the model not “forget” about {Bi}mi=1? Lastly, is there a metric that
can tell us when this process has converged (e.g., if the model’s loss has the same mean and
variance across its representation, then it seems unlikely that the model has more blindspots)?

What are the trade-offs made when choosing what data to pass to a blindspot discovery method?
There are a few things to consider when answering this question. First, how diverse is the
data? Intuitively, we want the data to be as diverse as possible (while still being relevant to
the predictive task) because this will allow us to measure the model’s performance in as many
situations as possible. Because collecting diverse data is hard, there is a question of whether
or not we can use artificially generated data (e.g., images with objects masked or that were
generated by a GAN) or unlabeled data. However, both of these options present their own
challenges. Second, was the data used to train the model? If it was, the model’s performance
estimates on it are probably biased, so we may need to adjust for that.

Finally, what types of blindspots are identifiable in the model’s own representation? This is
influenced by the spatial arrangement (in the model’s representation) of the points in a blindspot
relative to the locations of points outside of the blindspot and relative to the model’s decision
boundary. For example, if the model should make different predictions for two different groups
of images but also maps those two groups to the same part of its representation, then the
resulting blindspot will not be identifiable in that representation. While we are not aware of any
examples of this happening, this could be because blindspot discovery methods cannot find this
problem or because we typically study blindspot discovery using fairly simple classification
benchmarks.
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Appendix A

User Interaction

A.1 Comparison of EXPO to SENN

We compare against SENN [6] on the UCI ‘breast cancer’ dataset which is a binary classification
problem. Because SENN’s implementation outputs class probabilities, we run the post-hoc
explainers on the probability output from the EXPO-regularized model as well (this differs
from the ‘support2’ binary classification problem where we explain each logit individually).
The results are in Table A.1.

By comparing the first row, which shows the results for an EXPO-FIDELITY-regularized model
whose regularization weight is tuned for accuracy, to the third row, which shows SENN’s results,
we can see that SENN’s by-design approach to model interpretability seriously impaired its
accuracy. However, SENN did produce a more interpretable model. From these results alone,
there is no objective way to decide if the EXPO or SENN model is better. But, looking at
the MAPLE-NF metric, we can see that its explanations have a standard error of around 4%
relative to the model’s predicted probability. This is reasonably small and probably acceptable
for a model that makes a fraction as many mistakes.

Looking at the second row, which shows the results for a EXPO-FIDELITY-regularized model
whose regularization weight has been increased to produce a model that is approximately
accurate as SENN, we can see that the EXPO-regularized model is more interpretable than
SENN.

Considering both of these results, we conclude that EXPO is more effective than SENN at
improving the quality of post-hoc explanations.

However, this is a slightly unusual comparison because SENN is designed to produce its own
explanations but we are using LIME/MAPLE to explain it. When we let SENN explain itself, it
has a NF of 3.1e-5 and a Stability of 2.1e-3. These numbers are generally comparable to those
of LIME explaining EXPO-Over Regularized. This further demonstrates EXPO’s flexibility.
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Table A.1: A comparison of EXPO-FIDELITY, with the regularization weight tuned for accuracy and with it set too high to
intentionally reduce accuracy, to SENN. Results are shown across 10 trials (with the standard error in parenthesis). EXPO can
produce either a more accurate model or an equally accurate but more interpretable model.

Method Accuracy MAPLE-PF MAPLE-NF MAPLE-S LIME-PF LIME-NF LIME-S

EXPO 0.99 (0.0034) 0.013 (0.0065) 0.039 (0.026) 0.38 (0.27) 0.1 (0.039) 0.1 (0.039) 0.0024 (0.0012)
EXPO- Over Regularized 0.92 (0.013) 0.00061 (0.00031) 0.0014 (0.00079) 0.0085 (0.01) 0.0035 (0.0037) 0.0035 (0.0037) 2.4e-05 (1.2e-05)
SENN 0.92 (0.033) 0.0054 (0.0024) 0.014 (0.0048) 0.097 (0.044) 0.012 (0.0043) 0.013 (0.0045) 0.00075 (0.00012)
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A.2 Expanded Version of Section 2.2

This section provides the details for the results outlined in Section 2.2.

Local explanations vs. Taylor approximations. A natural question to ask is, Why should we
sample from Nx in order to locally approximate f when we could use the Taylor approximation
as done in [6, 82]? The downside of a Taylor approximation-based approach is that such an
approximation cannot readily be adjusted to different neighborhood scales and its fidelity and
stability strictly depend on the learned function. Figure A.1 shows that the Taylor approxima-
tions for two close points can be radically different from each other and are not necessarily
faithful to the model outside of a small neighborhood.

Fidelity regularization and the model’s LC or TV. From a theoretical perspective, EXPO-
FIDELITY is similar to controlling the Lipschitz Constant or Total Variation of f across Nx

after removing the part of f explained by e(x, f). From an interpretability perspective, having
a large LC or TV does not necessarily lead to poor explanation quality, which is demonstrated
in Figure A.2.

Standard Regularization. We also consider two standard regularization techniques: l1 and
l2 regularization. These regularizers may make the network simpler (due to sparser weights)
or smoother, which may make it more amenable to local explanation. The results of this
experiment are in Table A.2; notice that neither of these regularizers had a significant effect on
the interpretability metrics.

Figure A.1: A function (blue), its first order Taylor approx-
imations at x = 0.4 (green) and x = 0.5 (red), and a local
explanation of the function (orange) computed with x = 0.5
andNx = [0, 1]. Notice that the Taylor approximation-based
explanations are more strongly influenced by local variations
in the function.

Figure A.2: Top: Two functions (blue) and their local linear
explanations (orange). The local explanations were computed
with x = 0.5 and Nx = [0, 1]. Bottom: The unexplained
portion of the function (residuals). Comment: Although
both functions have a relatively large LC or TV, the one on
the left is much better explained and this is reflected by its
residuals.
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Table A.2: Using l1 or l2 regularization has very little impact impact on the interpretability of the learned model.

Metric Regularizer autompgs communities day housing music winequality.red

MSE None 0.14 0.49 0.001 0.14 0.72 0.65
L1 0.12 0.46 1.7e-05 0.15 0.68 0.67
L2 0.13 0.47 0.00012 0.15 0.68 0.67

MAPLE-PF None 0.016 0.16 0.001 0.057 0.17 0.013
L1 0.014 0.17 1.6e-05 0.054 0.17 0.015
L2 0.015 0.17 3.2e-05 0.05 0.17 0.02

MAPLE-NF None 0.018 0.31 0.0012 0.066 0.18 0.013
L1 0.016 0.32 2.6e-05 0.065 0.18 0.016
L2 0.016 0.32 4.3e-05 0.058 0.17 0.021

MAPLE-Stability None 0.015 1.2 2.6e-07 0.18 0.081 0.0043
L1 0.013 1.2 3e-07 0.21 0.072 0.004
L2 0.011 1.3 3.2e-06 0.17 0.065 0.0058

LIME-PF None 0.04 0.1 0.0012 0.14 0.11 0.033
L1 0.035 0.12 0.00017 0.13 0.1 0.034
L2 0.037 0.12 0.00014 0.12 0.099 0.047

LIME-NF None 0.041 0.11 0.0012 0.14 0.11 0.033
L1 0.036 0.12 0.00018 0.13 0.1 0.034
L2 0.037 0.12 0.00015 0.12 0.099 0.047

LIME-Stability None 0.0011 0.022 0.00015 0.0047 0.011 0.0013
L1 0.0012 0.03 3e-05 0.0048 0.011 0.0016
L2 0.00097 0.032 1.7e-05 0.004 0.011 0.0021
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A.3 Model Details and Selection

The models we train are Multi-Layer Perceptrons with leaky-ReLU activations. The model
architectures are chosen by a grid search over the possible widths (100, 200, 300, 400, or
500 units) and depths (1, 2, 3, 4, or 5 layers). The weights are initialized with the Xavier
initialization and the biases are initialized to zero. The models are trained with SGD with the
Adam optimizer and a learning rate of 0.001. For each dataset, the architecture with the best
validation loss is chosen for final evaluation as the “None” model. Then, we use that same
architecture and add the EXPO regularizer with weights chosen from 0.1, 0.05, 0.025, 0.01,
0.005, or 0.001. Note that these are not absolute weights and are instead relative weights: so
picking 0.1 means that the absolute regularization weight is set such that the regularizer has
1/10th the weight of the main loss function (estimated using a single mini-batch at the start of
training and then never changed). This makes this hyper-parameter less sensitive to the model
architecture, initialization, and dataset. We then pick the best regularization weight for each
dataset using the validation loss and use that for the final evaluation as the EXPO model. Final
evaluation is done by retraining the models using their chosen configurations and evaluating
them on the test data.
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A.4 Defining the Local Neighborhood

Choosing the neighborhood shape. Defining a good regularization neighborhood, requires
considering the following. On the one hand, we would like N reg

x to be similar to Nx, as used
in Eq. 2.1 or Eq. 2.2, so that the neighborhoods used for regularization and for evaluation
match. On the other hand, we would also like N reg

x to be consistent with the local neighborhood
defined internally by e, which may differ from Nx. LIME can avoid this problem since the
internal definition of the local neighborhood is a hyperparameter that we can set. However,
for our experiments, we do not do this and, instead, use the default implementation. MAPLE
cannot easily avoid this problem because the local neighborhood is learned from the data, and
hence the regularization and explanation neighborhoods probably differ.

Choosing σ for Nx and N reg
x . In Figure A.3, we see that the choice of σ for Nx was not

critical (the value of LIME-NF only increased slightly with σ) and that this choice of σ for
N reg
x produced slightly more interpretable models.
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Figure A.3: A comparison showing the effects of the σ parameter ofNx andNreg
x on the UCI Housing dataset. The LIME-NF

metric grows slowly with σ for Nx as expected. Despite being very large, using σ = 0.5 for Nreg
x is generally best for the

LIME-NF metric.
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A.5 More Examples of EXPO’s Effects

Here, we demonstrate the effects of EXPO-FIDELITY on more examples from the UCI ‘housing’
dataset (Table A.3). Observe that the same general trends hold true:

• The explanation for the EXPO-regularized model more accurately reflects the model (LIME-
NF metric)
• The explanation for the EXPO-regularized model generally considers fewer features to be

relevant. We consider a feature to be ‘significant’ if its absolute value is 0.1 or greater.
• Neither model appears to be heavily influenced by CRIM or INDUS. The EXPO-regularized

model generally relies more on LSTAT and less on DIS, RAD, and TAX to make its
predictions.

The same comparison for examples from the UCI ‘winequality-red’ are in Table A.4. We can
see that the EXPO-regularized model depends more on ‘volatile acidity’ and less on ‘sulphates’
while usually agreeing about the effect of ‘alcohol’. Further, it is better explained by those
explanations than the normally trained model.
Table A.3: More examples comparing the explanations of a normally trained model (“None”) to those of a EXPO-FIDELITY-
regularized model. For each example we show: the feature values of the point being explained, the coefficients of the normal
model’s explanation, and the coefficients of the EXPO-regularized model’s explanation. Note that the bias terms have been
excluded from the explanations. We also report the LIME-NF metric of each explanation.

Example Number Value Shown CRIM INDUS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT LIME-NF

1 x -0.36 -0.57 -0.86 -1.11 -0.14 0.95 -0.74 -1.02 -0.22 0.46 0.53
None 0.01 0.03 -0.14 0.31 -0.1 -0.29 0.27 -0.26 -0.07 0.13 -0.24 0.0033
EXPO 0.0 0.01 -0.14 0.25 0.03 -0.16 0.15 -0.1 -0.12 -0.01 -0.47 0.0033

2 x -0.37 -0.82 -0.82 0.66 -0.77 1.79 -0.17 -0.72 0.6 0.45 -0.42
None 0.01 0.06 -0.15 0.32 -0.1 -0.29 0.24 -0.27 -0.12 0.11 -0.24 0.057
EXPO 0.0 0.0 -0.15 0.25 0.01 -0.15 0.15 -0.12 -0.13 0.01 -0.47 0.00076

3 x -0.35 -0.05 -0.52 -1.41 0.77 -0.13 -0.63 -0.76 0.1 0.45 1.64
None -0.01 0.06 -0.16 0.29 -0.08 -0.31 0.27 -0.27 -0.11 0.1 -0.18 0.076
EXPO -0.03 -0.01 -0.13 0.19 -0.0 -0.15 0.14 -0.11 -0.12 0.0 -0.43 0.058

4 x -0.36 -0.34 -0.26 -0.29 0.73 -0.56 -0.51 -0.12 1.14 0.44 0.14
None 0.02 0.06 -0.18 0.29 -0.1 -0.34 0.31 -0.21 -0.09 0.12 -0.27 0.10
EXPO -0.02 0.01 -0.13 0.21 0.02 -0.16 0.17 -0.11 -0.12 -0.0 -0.47 0.013

5 x -0.37 -1.14 -0.88 0.45 -0.28 -0.21 -0.86 -0.76 -0.18 0.03 -0.82
None 0.02 0.08 -0.17 0.33 -0.11 -0.36 0.29 -0.27 -0.08 0.1 -0.28 0.099
EXPO -0.0 -0.0 -0.14 0.26 0.0 -0.16 0.15 -0.11 -0.15 0.01 -0.47 0.0021

Table A.4: The same setup as Table A.3, but showing examples for the UCI ‘winequality-red’ dataset

Example Number Value Shown fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol LIME-NF

1 x -0.28 1.55 -1.31 -0.02 -0.26 3.12 1.35 -0.25 0.41 -0.2 0.29
None 0.02 -0.11 0.14 0.08 -0.1 0.05 -0.15 -0.13 -0.01 0.31 0.29 0.021
EXPO 0.08 -0.22 0.01 0.04 -0.04 0.06 -0.12 -0.09 -0.01 0.17 0.3 6.6e-05

2 x 1.86 -1.91 1.22 0.87 0.39 -1.1 -0.69 1.48 -0.22 1.96 -0.35
None 0.02 -0.15 0.11 0.07 -0.08 0.07 -0.23 -0.09 -0.06 0.3 0.27 0.033
EXPO 0.09 -0.23 0.02 0.04 -0.05 0.06 -0.13 -0.09 -0.0 0.18 0.3 0.0026

3 x -0.63 -0.82 0.56 0.11 -0.39 0.72 -0.11 -1.59 0.16 0.42 2.21
None 0.03 -0.1 0.13 0.05 -0.06 0.12 -0.21 -0.19 -0.08 0.38 0.29 0.11
EXPO 0.09 -0.22 0.02 0.04 -0.04 0.06 -0.12 -0.09 -0.0 0.18 0.3 8.2e-05

4 x -0.51 -0.66 -0.15 -0.53 -0.43 0.24 0.04 -0.56 0.35 -0.2 -0.07
None 0.03 -0.16 0.12 0.05 -0.13 0.09 -0.21 -0.13 -0.05 0.35 0.24 0.61
EXPO 0.09 -0.22 0.01 0.04 -0.04 0.06 -0.12 -0.09 -0.01 0.18 0.3 6.8e-05

5 x -0.28 0.43 0.1 -0.65 0.61 -0.62 -0.51 0.36 -0.35 5.6 -1.26
None 0.03 -0.12 0.09 0.12 -0.11 0.03 -0.19 -0.13 -0.03 0.13 0.24 0.19
EXPO 0.08 -0.22 0.02 0.04 -0.05 0.05 -0.13 -0.09 -0.0 0.16 0.3 0.0082
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A.6 Quantitative Results on the ‘support2’ Dataset

In Table A.5, we compare EXPO-regularized models to normally trained models on the
‘support2’ dataset.
Table A.5: A normally trained model (“None”) vs. the same model trained with EXPO-FIDELITY or EXPO-1D-FIDELITY
on the ‘support2’ binary classification dataset. Each explanation metric was computed for both the positive and the negative
class logits. Results are shown across 10 trials (with the standard error in parenthesis). Improvement due to FIDELITY and
1D-FIDELITY over the normally trained model is statistically significant (p = 0.05, t-test) for all of the metrics.

Output Regularizer LIME-PF LIME-NF LIME-S MAPLE-PF MAPLE-NF MAPLE-S

None 0.177 (0.063) 0.182 (0.065) 0.0255 (0.0084) 0.024 (0.008) 0.035 (0.010) 0.34 (0.06)
Positive FIDELITY 0.050 (0.008) 0.051 (0.008) 0.0047 (0.0008) 0.013 (0.004) 0.018 (0.005) 0.13 (0.05)

1D-FIDELITY 0.082 (0.025) 0.085 (0.025) 0.0076 (0.0022) 0.019 (0.005) 0.025 (0.005) 0.16 (0.03)

None 0.198 (0.078) 0.205 (0.080) 0.0289 (0.0121) 0.028 (0.010) 0.040 (0.014) 0.37 (0.18)
Negative FIDELITY 0.050 (0.008) 0.051 (0.008) 0.0047 (0.0008) 0.013 (0.004) 0.018 (0.005) 0.13 (0.03)

1D-FIDELITY 0.081 (0.026) 0.082 (0.027) 0.0073 (0.0021) 0.019 (0.006) 0.024 (0.007) 0.16 (0.06)

Accuracy (%): None: 83.0 ± 0.3, FIDELITY: 83.4 ± 0.4, 1D-FIDELITY: 82.0 ± 0.3.
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A.7 User Study: Additional Details

Data Details. Figure A.4 shows the histogram of the number of steps participants take to
complete each round. We use 150 as our cut-off value for removing participant’s data from
the final evaluation. Figure A.5 shows a histogram of the number of steps participants take to
complete each round. There is no evidence to suggest that the earlier rounds took a different
amount of time than the later rounds. So learning effects were not significant in this data.

Algorithmic Agent. In addition to measuring humans’ performance on this task (see Section
2.5 for details), we are also interested in measuring a simple algorithmic agent’s performance
on it. The benefit of this evaluation is that the agent relies solely on the information given in
the explanations and, as a result, does not experience any learning affects that could confound
our results.

Intuitively, we could define a simple greedy agent by having it change the feature whose
estimated effect is closest to the target change. However, this heuristic can lead to loops that
the agent will never escape. As a result, we consider a randomized version of this greedy agent.

Let λ the degree of randomization for the agent, y denote the model’s current prediction, t
denote the target value, and ci denote the explanation coefficient of feature i. Then the score of
feature i, which measures how close this features estimated effect is to the target change, is:
si = −λ ∗ ||ci| − |y − t||. The agent then chooses to use feature i with probability esi∑

j
esj

.

Looking at this distribution, we see that it is uniform (i.e.,, does not use the explanation at all)
when λ = 0 and that it approaches the greedy agent as λ approaches infinity.

In Figure A.6, we run a search across the value of λ to find a rough trade-off between more
frequently using the information in the explanation and avoiding loops. Note that the agent
performs better for the EXPO-regularized model.

Figure A.4: A histogram showing the number of steps
participants take to complete each round.

Figure A.5: A series of histograms showing how many
steps participants take to complete each round for each
condition. Generally, there is no evidence of learning
effects over the course of the five rounds.
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Figure A.6: A comparison of the average number of steps it takes for either a human or an algorithmic agent to complete
our task. The x-axis is a measure of the agent’s randomness: 0 corresponds to a totally random agent with increasing values
indicating a greedier agent. Both humans and the agent find it easier to complete the task for the EXPO-regularized model.
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A.8 Non-Semantic Features

When X consists of non-semantic features, we cannot assign meaning to the difference between
x and x′ as we could with semantic features. Hence it does not make sense to explain the
difference between the predictions f(x) and f(x′) and fidelity is not an appropriate metric.

Instead, for non-semantic features, local explanations try to identify which parts of the input
are particularly influential on a prediction [62, 99]. Consequently, we consider explanations
of the form Ens := Rd, where d is the number of features in X , and our primary explanation
metric is stability. Note that we could consider these types of local explanations for semantic
features as well, but that they answer a different question than the approximation-based local
explanations we consider.

Post-hoc explainers. Various explainers [90, 96, 99, 120] have been proposed to generate local
explanations in Ens for images. However, it should be noted that the usefulness and evaluation
of these methods is uncertain [1, 103]. For our experiment, we will consider saliency maps
[91] which assign importance weights to image pixels based on the magnitude of the gradient
of the predicted class with respect to the corresponding pixels.

Stability Regularizer. For EXPO-STABILITY, we simply require that the model’s output not
change too much across N reg

x (Algorithm 5). A similar procedure was explored previously in
[123] for adversarial robustness.

Experimental setup. For this experiment, we compared a normally trained convolutional
neural network on MNIST to one trained using EXPO-STABILITY. Then, we evaluated the
quality of saliency map explanations for these models. Both Nx and N reg

x where defined as
Unif(x − 0.05, x + 0.05). Both the normally trained model and model trained with EXPO-
STABILITY achieved the same accuracy of 99%. Quantitatively, training the model with
EXPO-STABILITY decreased the stability metric from 6.94 to 0.0008. Qualitatively, training
the model with EXPO-STABILITY made the resulting saliency maps look much better by
focusing them on the presence or absence of certain pen strokes (Figure A.7).

Algorithm 5 Neighborhood-stability regu-
larizer
input fθ, x, N reg

x , m
1: Sample points: x′1, . . . , x

′
m ∼ N reg

x

2: Compute predictions:

ŷj(θ) = fθ(x
′
j), for j = 1, . . . ,m

output 1
m

∑m
j=1(ŷj(θ)− f(x))2

Figure A.7: Original images (left) and saliency maps
of an normally trained model (middle) and a EXPO-
STABILITY-regularized model (right).
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Appendix B

Knowledge Discovery

B.1 An Example of the Difficulty of Using Existing Methods

For this example, we are going to consider Integrated Gradients (IG) [99] which produces local
feature attribution explanations. Because IG is a supervised method, we start by training a
classifier on top of the learned representation to get a multi-class classification model f that
predicts which group a point belongs to. Because our goal is to explain the difference between
Group A and Group B with IG, we average IG’s explanation for each point in Group B relative
to each possible baseline value of a point in Group A for f ’s Class B label. To be more precise:

δIG(A→ B) =
1

|XA| |XB|
∑
x∈XB

∑
a∈XA

IG(x, class = B, baseline = a) (B.1)

We will refer to this as ‘group Integrated Gradients’ or gIG.

Challenge 1: Comparing Explanation Types. Because IG produces feature attributions and
TGT produces counterfactuals, there is no reliable metric in the literature to directly compare
them. On the one hand, most feature attributions are the ‘correct explanation’ for their specific
definitions for ‘attribution’ and the ‘baseline’ value; this has made measuring their quality
challenging [103]. On the other hand, we cannot treat a feature attribution as a transformation
function/translation, so our metrics and other metrics for counterfactual explanations cannot be
applied.

As a result, we compare TGT to gIG on the same synthetic dataset we used earlier. We found
that gIG identifies the causal variables as being significant and ignores the noise variable, but
that it also identifies the correlated variable as being significant. This indicates that it is likely
to be unable to find sparse explanations as well as TGT can.

Challenge 2: Consistency of Aggregated Local Explanations. One of the reasons we chose
IG as a baseline method to aggregate is because its attributions are symmetrical and transitive
with respect to a fixed class. In other words, if all we cared about was explaining the differences
between all of the groups of points with respect to a single reference group, say Group C,
then IG would produce consistent explanations. However, explaining the features that separate
Group A from Group B relative to Group C is not the problem we are trying to solve.

89



When we use Equation B.1 to calculate δIG(i→ j) we found that the resulting explanations
were not consistent. This does not violate the theory of IG because each δIG(i → j) is
calculated with reference Group j and so the assumption that we have a single reference group
is not satisfied.

When we considered modifying Equation B.1 to aggregate over the reference ‘class/group’ and
potentially gain consistency that way, we either got uniform zero attributions (if we averaged
over all reference groups) or inconsistent explanations (if we excluded any subset of {i, j}
from the averaging).

Conclusion. As suggested in Section 3.2, using existing explanation methods to find GCEs is
going to be challenging because it is not what they are designed to do. We found that IG, a
method that theoretically looked promising, was unable to be extended in a simple way to this
setting.
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B.2 Representation Function

Differentiability. TGT assumes that r is a differentiable function. Hidden in this assumption
is the assumption that r is a function that we can evaluate on an arbitrary point. Although
most methods for learning a low-dimensional representation satisfy this assumption, t-SNE
does not. Fortunately there are parametric variations of t-SNE such as the one we used in
our experiments [30]. The assumption that r is differentiable can be relaxed by using a
finite-difference optimization method, such as SPSA [98], at the expense of computational cost.

Learning Meaningful Structure. One assumption that every analysis (whether that is manual
inspection, statistical testing, or interpretable ML) of the representation learned by r is that this
function learned meaningful structure from the data. Because practitioners are already relying
on these representations and, in some situations, have verified that they are meaningful, this
concern is largely orthogonal to our work.

However, from an interpretable ML perspective, our goal is to explain r. So, if r identifies
different structure when it is retrained or when it is trained with a different algorithm or
structure, we expect TGT to produce different explanations since the embedding itself has
changed.

Our experimental results show that the representation learned by [30] is stable to being retrained
and to modifications to the dataset and that TGT produces stable explanations for these
representations.

Identifying that Structure with Explanations. It is possible to have a model that learned the
true structure of the data and to have an explanation that is technically true (as measured by
some proxy metric for interpretability) about the model but that also fails to capture meaningful
patterns. For example, adversarial examples [100] are technically local counterfactual explana-
tions but they usually look like random noise and, as a result, do not tell a person much about
the patterns the model has learned. TGT’s design, which calculates the explanation between
each pair of groups as if it were a compressed sensing problem but constrains those solutions
to be symmetrical and transitive among all groups, was chosen as a prior to prevent this type of
behavior.
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B.3 Learned Representations

The learned representations and the corresponding groups of points for the datasets we studied
are in Figures B.1, B.2, B.3, B.4, and B.5.

Figure B.1: The learned representation and grouping for the
UCI Iris dataset

Figure B.2: The learned representation and grouping for the
UCI Boston Housing dataset

Figure B.3: The learned representation and grouping for the
UCI Heart Disease dataset

Figure B.4: The learned representation and grouping for the
single-cell RNA dataset

Figure B.5: The learned representation and grouping for the
synthetic dataset.
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B.4 Pairwise Correctness and Coverage Plots

TGT is much better than DBM for finding 250-sparse explanations on the single-cell RNA
dataset (Figures B.6 and B.7). On the synthetic dataset, TGT and DBM are equally effective
explanations of the model (Figures B.8 and B.9). However, TGT only relied on the two causal
variables while DBM included the correlated variable as well.

Figure B.6: The pairwise metrics for TGT on the single-cell
RNA dataset for 250-sparse explanations.

Figure B.7: The pairwise metrics for DBM on the single-cell
RNA dataset for 250-sparse explanations.

Figure B.8: The pairwise metrics for TGT on the synthetic
dataset with no sparsity constraint.

Figure B.9: The pairwise metrics for DBM on the synthetic
dataset with no sparsity constraint.
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B.5 Qualitative Analysis of the UCI Datasets using the Labels

Although the representations we learned for these datasets were trained in an unsupervised
manner, the groups that they find often have strong connections to the labels for the datasets;
see Table B.1, Figure B.12, and Table B.2. By using the connection between the groups and
labels, we will be able to qualitatively assess whether or not TGT is finding real patterns in the
data.

Iris Dataset. Looking at Table B.1, we can see that the groups in this representation match
very closely with the class labels. As a result, we would like to know whether or not the
explanations TGT finds are consistent with a model trained directly to predict the labels. For
this comparison, we used a simple decision tree, which is shown in Figure B.10. Looking at
TGT’s explanations (Figure B.11), we can see that they largely agree with the decision tree
since both primarily use Petal Width to separate the classes/groups.

Boston Housing Dataset. Looking at Figure B.12, we can see that two comparisons between
the groups stand out: Group 0 to Group 2, which shows a significant increase in the price, and
Group 3 to Group 5, which has relatively little effect on the price. As a result, we would like to
determine what the differences between these groups of houses are that influence their price.

Looking at Figure B.13, we see that TGT found that the key differences between Group 0
and Group 2 appears to be the difference between a house being in an urban area vs being in
a suburb: the proportion of land zoned for large residential lots and B1 both increase while
access to radial highways and tax rates both decrease. It also found that the key differences
between Group 3 and Group 5 are, first, moving the house onto the Charles river and, second,
decreasing B.

Heart Disease Dataset. Looking at Figure B.2, we see that there are three large groups that
stand out: Group 1, which has a balanced risk of heart disease, Group 3, which has a relatively
low risk, and Group 6, which has a relatively high risk. As a result, we would like to determine
what the differences between these groups of subjects are that influence their risk of heart
disease.

Looking at Figure B.14, TGT found that the key differences between Group 1 and Group 3
are a moderate decrease in chest pain along with having exercised induced angina; these are
subjects whose symptoms are explained by exercise induced angina rather than heart disease.
It also found that the key difference between Group 1 and Group 6 is that Group 1 is made up
of men while Group 6 is made up of women; this is consistent with the fact that heart disease is
the leading cause of mortality in women [9].

1This is a unusually defined feature that is related to the racial demographics of a town. Determining what it means to
change this feature depends on a measurement that is not in the dataset.
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Table B.1: The distribution of the labels per group for the
UCI Iris dataset (classification).

Group
Class

Iris Setosa Iris Versicolour Iris Virginica

0 0 5 38
1 0 44 12
2 48 0 0

Figure B.10: A small decision tree trained on this dataset.
Notice that it relies on the Petal Width feature.

Figure B.11: TGT’s 1-sparse explanation of the difference between Group 0 and Group 1 (left) and Group 0 and Group 2
(right). Similar to the decision tree, they rely on the Petal Width feature.
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Figure B.12: The distribution of the labels per group for the UCI Boston Housing dataset (regression).

Figure B.13: TGT’s 5-sparse explanation for Group 0 to Group 2 (Left) and Group 3 to Group 5 (right).

Table B.2: The distribution of the labels per group for the UCI Heart Disease dataset (classification).

Group
Class

No Heart Disease Heart Disease

0 6 15
1 46 62
2 10 1
3 52 14
4 4 1
5 10 7
6 8 59
7 2 5
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Figure B.14: TGT’s 3-sparse explanations for the difference between Group 1 and Group 3 (Left) and Group 1 and Group 6
(right).
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B.6 Quantitative Analysis of Modified Versions of the UCI Datasets.

Because the UCI datasets are not synthetic datasets, we do not know the underlying process
that generated the data and, as a result, it is difficult to quantitatively determine whether or not
an explanation is “correct” in the way that we could with the synthetic dataset. Consequently,
we performed a series of experiments on modified versions of the original datasets in order to
answer two important questions:

• Does TGT correctly identify the modifications we made to the original dataset?
• Do TGT’s explanations between the original groups change when the modified group is

added to the dataset?

We found that TGT does identify the modifications we made and that, in doing so, it does
not significantly change the explanations between the original groups. Importantly, this result
remains true even if we retrain the learned representation on the modified dataset. These results
are a strong indicator that TGT is finding real patterns in the data.

How do we modify the datasets? We create a modified version of the original dataset by:
picking one of the groups of points in the original dataset, modifying that group of points in
some way, and adding that new modified group of points to the original dataset. We will call
the original dataset D and the modified dataset D′, where D′ = D ∪G′ and G′ is the modified
version of some group of points G.

The critical choice to make during this process is to determine what modification to apply to G
to get G′. We chose to add random noise to some of the features of the points in G and used
the following two criteria when defining this modification for a particular dataset:

• G′ should be approximately within the range/distribution of D.
• r(G′) should form it’s own (approximately) distinct group. Intuitively, if r(G′) does not

form its own group, then r thinks G′ is similar to some other group in the dataset and, as a
result, we would not expect TGT to be able to explain the differences between G′ and that
group of points.

The modifications we used are in Table B.3.

Experimental Setup: We now have two versions of each dataset: D and D′. We also have the
original learned representation r, which was trained on D, and a new learned representation r′,
which is trained on D′. As a result, we have three sets of explanations:

• Original: These explain r when applied to D
• Modified: These explain r when applied to D′

• Retrained: These explain r′ when applied to D′

The visualization of the representation for the first setting is in the Appendix B.3 and the later
two these settings is in Figures B.15, B.16, and B.17. Note that applying r to D′ looks the same
as applying r to D except for the fact that there is an additional group from adding G′ to D
and that applying r′ to D′ often shows that r′ has learned to separate G′ from the other groups
better than r did.
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Does TGT correctly identify the modifications we made to the original dataset? In Figure
Figures B.18, B.19, and B.20, we can see the explanations TGT found for the difference
between G and G′ for each of the datasets. If we compare the explanations to the modifications
from Table B.3, we can see that they identified which features we changed and, approximately,
by how much. The error in the estimation of “by how much” is due to the l1 regularization used
to find a simple explanation.

Do TGT’s explanations between the original groups change when the modified group is
added to the dataset? In Figures B.21, B.22, and B.23, we can see a comparison of the
explanations for the differences between the original groups for the Original vs the Modified
and the Original vs the Retrained explanations. Adding G′ to D did not cause TGT to
find significantly different explanations between the groups in D. Explaining r′ resulted in
explanations that were generally similar, but adding another layer of variability (i.e., training
r′) did add some noise.
Table B.3: For each dataset, we chose a group of points to modify and modified it by applying these perturbations to the
specified features.

Dataset Group Modified Feature Perturbation Applied

Iris 0 Sepal Width -0.4 + Uniform(-0.1, 0.1)
Housing 1 ZN 0.9 + Uniform(-0.1, 0.1)

TAX -0.5 + Uniform(-0.1, 0.1)
Heart 1 restecg -0.9 + Uniform(-0.1, 0.1)

exang 0.6 + Uniform(-0.1, 0.1)

Figure B.15: The learned representation for: r applied to D′ (Left) and r′ applied to D′ (Right) for the Iris dataset

Figure B.16: The learned representation for: r applied to D′ (Left) and r′ applied to D′ (Right) for the Boston Housing
dataset
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Figure B.17: The learned representation for: r applied to D′ (Left) and r′ applied to D′ (Right) for the Heart Disease dataset

Figure B.18: The Modified (Left) and Retrained (Right) explanation’s explanation for the difference between G and G′ on the
Iris dataset.
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Figure B.19: The Modified (Left) and Retrained (Right) explanation’s explanation for the difference between G and G′ on the
Boston Housing dataset.
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Figure B.20: The Modified (Left) and Retrained (Right) explanation’s explanation for the difference between G and G′ on the
Heart Disease dataset.

Figure B.21: The absolute difference between the Modified (Left)/Retrained (Right) explanations and the Original explanations
scaled relative to the Original explanations on the Iris dataset.

Figure B.22: The absolute difference between the Modified (Left)/Retrained (Right) explanations and the Original explanations
scaled relative to the Original explanations on the Boston Housing dataset.

102



Figure B.23: The absolute difference between the Modified (Left)/Retrained (Right) explanations and the Original explanations
scaled relative to the Original explanations on the Heart Disease dataset.
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Appendix C

Spurious Patterns

C.1 Discussion

In this section, we elaborate on SPIRE’s strengths, its weaknesses, and suggested directions for
future work. While there are many ways to improve SPIRE, we have demonstrated that it is a
clear step forwards for the problem of addressing SPs.

Generating Counterfactual Images. SPIRE relies on the ability to produce counterfactual
images. As a result, finding ways to produce similar counterfactuals with fewer assumptions
(e.g., being able to add/remove objects without relying on having an annotated dataset) or to
produce different types of counterfactuals (e.g., changing attributes such as “color”) are both
directions for future work. The former would improve the general applicability of SPIRE while
the later would increase the scope of the types of SPs SPIRE could address.

Identification. SPIRE’s strategy for identification can be summarized as “measure the proba-
bility that the model’s prediction changes when we take an image from Group X and apply
Counterfactual Transformation Y .” Intuitively, this strategy is effective because the original
and counterfactual versions of an image differ only in terms of the effect of the counterfactual
transformation while, if we were to compare natural images in one group to another group,
there are probably going to be additional differences. Because SPIRE uses X = Both, it may
not be as effective as possible for identifying negative SPs because this split is likely to be very
small for negatively correlated objects. As a result, future work could increase the scope of
the types of SPs SPIRE could identify by considering different definitions of X (e.g., X is the
set of images that have objects 1, . . . ,m and do not have objects m+ 1, . . . , n; X is the set of
images where objects 1 and 2 appear near to/far from each other) or Y (e.g., Y removes objects
1 and 2; Y changes the location of object 1).

Interestingly, we find that a strong correlation is neither sufficient (Figure C.3 shows that
the model can ignore a strong correlation) nor necessary (Table 4.2 shows that some SPs
are between objects that are almost uncorrelated) for a model to learn to use a SP, which is
consistent with prior findings [65, 87]. These result demonstrates SPIRE’s advantage over
identification methods that only consider the training distribution [e.g., 106].
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Mitigation. To begin with, it is worth noting that mitigating a SP may not always be worthwhile
(e.g., when one is certain that the distribution will not shift).

At a high level, SPIRE’s strategy for mitigation works by removing the statistical incentive
for the model to rely on the SP, while trying not to add new SPs; this strategy may be less
effective for SPs that do not arise from correlations in the training distribution. Previous
augmentation-based mitigation methods might be less effective because they are intuitive rather
than statistical (e.g., it makes intuitive sense that removing people should lessen the model’s
reliance on people to detect tennis rackets, but this intuition does not carry over to the dataset
statistics). Previous regularization-based mitigation methods might be less effective because
they may interfere with the learning process (e.g., cause the model to become stuck in a local
minimum) or they may have effects that are too local to matter (e.g., changing the model’s
gradient at a point may not change its predictions very far away from that point). In particular,
the Feature Splitting (FS) method from [93] assumes that one half of the features learned by
the model are relevant for detecting objects “in context” and that the other half are relevant
for objects “out of context;” while plausible for a single SP, this assumption becomes more
tenuous as the number of SPs being mitigated increases.

While SPIRE’s mitigation strategy is defined by two high-level goals, it is not always successful
at realizing those goals (e.g., for p < 0.5 in Section 4.5.1, SPIRE introduces the potential
for new SPs) and the way those goals are realized depends on the problem setting. As a
result, future work could improve the general applicability of SPIRE by finding a unified
strategy that does not depend on the problem setting, generalizing that strategy to work for
more general SPs, and extending that strategy to problems other than image classification.
Additionally, future work could develop a theoretical framework to help understand the effects
of augmentation-based mitigation strategies.
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C.2 Method Details

C.2.1 When can SPIRE be applied to a problem?

In this section, we walk through the assumptions needed to apply SPIRE to a model that has
been trained to perform some task using some data.

• SPIRE is model-agnostic and, as a result, can be applied to any type of model.
• SPIRE assumes that task is binary-classification and, consequently, that each image has a

binary label.
• SPIRE assumes that each image has a different binary label for the “spurious feature” that

we are interested in studying. For example, this could be variable indicating whether or not
the image contains some high frequency signal.
• SPIRE assumes we can manipulate the images in such a way that we can create a counterfac-

tual version of an image in one split that belongs to a different split. This entails being able
to change an image’s label and/or the value of the “spurious feature.”

Collectively, these assumptions allow us to define the image splits (Table C.1) and produce the
counterfactual images that SPIRE uses to identify and mitigate spurious patterns.

C.2.2 Generating Counterfactual Images

Similar to prior work, SPIRE generates counterfactual images by adding objects to or removing
objects from the original image [4, 18, 59, 89, 102, 115]. In this work, use the pixel-wise object-
annotations that are part of various datasets such as COCO to generate the counterfactual images.
Figure C.1 shows examples. Orthogonally, there is prior work that generates fundamentally
different types of counterfactual images [36, 67, 84, 122].

Removing an Object. We consider two different ways to define which region of the image we
are going to replace (pixel-wise or bounding-box) and two different ways to in-fill that region
(using constant grey color or in-painting with the model from [66]). When we say that we
“remove” an object, we mean that we found its bounding-box region and in-filled it with grey.
When we say that we “in-paint” an object, we mean that we found its pixel-wise region and
in-painted it. In order to minimize label noise, we make sure we do not include Main in the
region that is going to be removed when we are removing Spurious.

Table C.1: A more general definition of the image splits defined in Section 4.3.

Binary Image Label Binary “Spurious Feature” Image Split

1 1 Both
1 0 Just Main
0 1 Just Spurious
0 0 Neither
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Adding an Object. To add an object to an image, we find the pixel-wise region for that object
in a different image and then replace that region’s counterpart in the original image with it. In
order to minimize label noise, we make sure that we do not cover Main when we add Spurious.

Figure C.1: Example counterfactual images for the tennis racket example. (Left) An example of moving an image from
Just Spurious to Neither by Removing Spurious. (Center) An example of moving an image from Both to Just Spurious by
In-Painting Main. (Right) An example of moving an image from Neither to Just Main by Adding Main.

C.2.3 What does it mean to introduce new potential SPs?

We try to minimize the potential for new SPs by ensuring that P(Main | Artifact) = 0.5, where the
Artifact could be “Grey Box” from removing objects from an image or objects with “Unusual
Placement” from adding objects to an image. However, it is not clear whether 0.5 or P(Main) is
the “correct” choice for this value. One one hand, using P(Main | Artifact) = 0.5 maximizes
the loss that the model will receive if it relies on Artifact. On the other hand, setting P(Main |
Artifact) = P(Main) means that Main is independent of Artifact and that there is no statistical
incentive for the model to rely on Artifact. Because we will not be evaluating the model (in
terms of accuracy) on images with Artifact, we chose 0.5 because it actively discourages using
Artifact rather than simply not encouraging it.

C.2.4 Setting 1: Working through SPIRE’s augmentation strategy

In this setting, {Both, Neither} each have size 0.5p while {Just Main, Just Spurious} have size
0.5(1− p).

For p > 0.5, SPIRE removes {Main, Spurious} from Both with probability 2p−1
2p

and, as a
result, P(Main | Grey Box) = 0.5. Similarly, SPIRE adds {Main, Spurious} to Neither with
the same probability and, as a result, P(Main | Unusual Placement) = 0.5. As a result, {Just
Main, Just Spurious} each receive 0.25(2p− 1) images from each of {Both, Neither} and have
an augmented size of 0.5p. So SPIRE produces the balanced distribution without creating the
potential for new SPs.

For p < 0.5, SPIRE adds Main to Just Spurious and adds Spurious to Just Main with probability
p−0.5
p−1

and, as a result, P(Main | Unusual Placement) = 1. Similarly, SPIRE removes Spurious
from Just Spurious and removes Main from Just Main with the same probability and, as a
result, P(Main | Grey Box) = 0. As a result, {Both, Neither} each receive 0.5(0.5− p) images
from each of {Just Main, Just Spurious} and have an augmented size of 0.5(1− p). So SPIRE
produces the balanced distribution while creating the potential for new SPs.
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C.3 Evaluation Details

C.3.1 Why not set P(Spurious | Main) = P(Spurious | not Main) = P(Spurious) for the
Balanced Distribution?

Using P(Spurious) instead of 0.5 may be an intuitive choice because it would mean that the
main statistical difference between the original and balanced distributions is that Main and
Spurious are now independent. However, doing so can have dramatic and unexpected effects
on which splits are more important for evaluation. To see this, consider Main = “fork” and
Spurious = “dining table”. For the original distribution, we have P(Spurious | Main) = 0.76
which means we have, roughly, a 3:1 ratio of images in Both to Just Main. For the balanced
distribution, using λ = P(Spurious) = 0.1 would change this ratio to 1:9. Not only would this
choice change which split is more important for evaluation (from Both to Just Main) but it
would also would increase the degree to which that split is more important (from a factor of 3
to a factor of 9). Without domain knowledge telling us that such a dramatic shift is warranted,
using 0.5 is the more conservative option because assigning equal importance to images with
and without Spurious never flips which splits are more important for evaluation.

C.3.2 Why do small, in absolute terms, Hallucination gaps matter?

To understand this, consider the per split accuracies for the tennis racket example (Figure 4.3
Left) where we observe that the Hallucination gap is “only” 0.5% and may be tempted to
conclude that it is not significant. However, when we look at where the model’s errors come
from on the original distribution, we find that roughly 40% of them come from Just Spurious,
despite the model’s 99.5% accuracy on this split. This means that the model’s performance is
sensitive to both small changes to its accuracy on Just Spurious and Neither and distribution
shifts that move weight between Just Spurious and Neither.

As a result, small, in absolute terms, changes to the Hallucination gap can have large impacts on
the model’s robustness to distribution shift. In general, we adjust for this by measuring changes
in the gap metrics relative to their original value (e.g., if the new model had a hallucination gap
of 0.25% we would say that it “reduced the hallucination gap by a factor of 50%”).

C.3.3 Why can the Gap Metrics change much more than performance on the
Balanced Distribution?

In general, mitigation methods shrink the gap metrics by sacrificing accuracy on the splits
where relying on the SP is helpful in order to gain accuracy on the other splits; whether or
not this trade-off improves performance on the balanced distribution depends on how much
accuracy is sacrificed and gained. As a result, the size of the gap metrics and performance
on the balanced distribution are not necessarily closely connected. As an extreme example of
this, consider a hypothetical mitigation method that works by reducing the model’s accuracy
on the higher performing splits to match its accuracy on the lower performing splits: this will
improve the gap metrics by setting them to zero, but it will harm performance on the balanced
distribution.

108



C.3.4 Counterfactual Evaluation

While the evaluations described in Section 4.4 are all based on the natural images, we also run
a counterfactual evaluation. Unlike in SPIRE’s identification step, where we only measure the
probability that “removing Spurious from an image from Both” changes the model’s prediction,
this evaluation measures the probability that the model’s prediction changes when we move an
image from one split to another for each pairs of splits that differs by one object. This acts as an
additional sanity check that a mitigation strategy has reduced the model’s reliance on a SP, but
we consider it to be less important than the model’s performance on the balanced distribution
and the gap metrics because its results depend on the specific definition of the counterfactuals
used (e.g., it is easy to do well on this evaluation for a specific type of counterfactual by training
the model on that same type of counterfactual).

109



C.4 Tennis Racket Example: Metrics and Mitigation Results.

Here, we walk through the evaluation described in Section 4.4 for class imbalanced problems
using the tennis racket example. Figure C.2 shows the results. The numbers in the legends are
“mean (standard deviation)” across 8 trials for the metric measured in that plot.

Top Left: Average Precision. This panel shows the model’s Precision vs Recall curve, for the
balanced distribution, which we use to calculate Average Precision by finding its Area Under
the Curve (AUC). SPIRE improves Average Precision on the balanced distribution for this SP
by 0.6%.

Top Middle: Average Recall Gap. This panel shows the model’s recall gap (the absolute value
of the difference of the model’s accuracy on Both and Just Main) vs its Recall on the balanced
distribution. We calculate this metric by finding the AUC. SPIRE decreases this metric by
31.4% which means that it produces a model that is more robust to distribution shifts that move
probability between Both and Just Main.

Top Right: Average Hallucination Gap. This panel shows the model’s hallucination gap (the
absolute value of the difference of the model’s accuracy on Just Spurious and Neither) vs
its Recall on the balanced distribution. We calculate this metric by finding the AUC. SPIRE
decreases this metric by 25.0% which means that it produces a model that is more robust to
distribution shifts that move probability between Just Spurious and Neither.

Center Row: Accuracy on Both and Just Main. These panels plot the model’s accuracy on
Both/Just Main vs its Recall on the balanced distribution. The value shown is the AUC of this
curve. Because the baseline model uses the presence of a person to help detect a tennis racket,
we expect a model that does not rely on this SP to lose accuracy on Both and gain it on Just
Main. SPIRE does this.

Bottom Row: Accuracy on Just Spurious and Neither. These panels plot the log of the model’s
accuracy on Just Spurious/Neither vs its Recall on the balanced distribution. The value shown
is the AUC of this curve (before taking the log). Because the baseline model uses the presence
of a person to help detect tennis rackets, we expect a model that does not rely on this SP to lose
accuracy on Neither and gain it on Just Spurious. Because SPIRE improved AP, we do not see
this because it’s accuracy on these splits is higher for most levels of recall.

110



Figure C.2: The results of our evaluation for the tennis racket example. The numbers in the legends are “mean (standard
deviation)” across 8 trials. SPIRE improved Average Precision on the balanced distribution by 0.6%, decreased the average
recall gap by 31.4%, and decreased the average hallucination gap by 25.0%. Further, it had the expected effect of decreasing
accuracy on Both and increasing it on Just Main. As a result, we conclude that it reduced the model’s reliance on this SP.
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C.5 Model Training Details

Many of our experiments are based on the COCO dataset [60]. Because the test set for this
dataset is not publicly available, we used its validation set as our test set and divided its training
set into 90-10 training and validation splits.

All of our experiments started with the pretrained ResNet18 [38] that is available from PyTorch
[69]. For each task, the classification layer was replaced with one of the appropriate dimension
and then trained via transfer learning (i.e., only the classification layer had its weights updated).
The resulting model was then fine-tuned (i.e., all of its weights were updated) to produce what
we call the Baseline Model throughout this work.

Optimization. We minimized the binary cross entropy loss using Adam [47] with a batch size
of 64. For transfer-learning, we used a learning rate of 0.001 and, for fine-tuning, we used a
learning rate of 0.0001; we explored other options during early experiments, but found there
was no benefit to doing so. If the training loss failed to decrease sufficiently after some number
of epochs, we lowered the learning rate.

Model selection. During the training process, we selected the best model weights using their
performance on the validation set. For the Benchmark Experiments, we measured performance
using Accuracy and, for the Full Experiment, No Object Annotation Experiment, Scene
Identification Experiment, and ISIC Experiment, we used F1. If the validation performance
failed to increase sufficiently after some number of epochs, we stopped training.

Benchmark Experiments: Hyper-parameter selection. For this experiment, we tuned the
hyper-parameters using balanced accuracy on the bottle-person pair with p = 0.95. For all
methods, we considered both transfer-learning and fine-tuning, as applicable. For SPIRE, we
considered both removing objects by covering them with a grey box and by in-painting them;
we found that transfer-learning while covering objects with a grey box was the most effective
(see Table C.2). RRR, CDEP, and GS all have regularization weights that can be tuned. FS has
a minimum weight for images of objects “out of context” that can be tuned. For these methods,
we considered values that are powers of 10 ranging from 0.1 to 10,000; no method chose one
of the extreme values.

Full Experiment: Hyper-parameter selection. For this experiment, we tuned the hyper-
parameters using the mean, across SPs, Average Precision on the balanced distribution for a
model trained on 50% of the training dataset and then evaluated on the remaining 50% of the
training dataset; we used such large chunk of the dataset for evaluation in order to be able
to estimate the per split accuracies, which are required to calculate Average Precision on the
balanced distribution.

For SPIRE, we use transfer-learning while covering objects with a grey box because this
is what we found worked best in the Benchmark Experiments. However, we tune the
weight of the augmentation by scaling δ from Setting 2 in Section 4.3.1 by a factor of
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}; intuitively, this is to prevent us from adding too
many counterfactual images. Note that the weight for each SP is tuned independently and each
weight is tuned by training a linear classifier.
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For FS, the configuration chosen by this procedure yielded poor results and, consequently, we
used the default value of 3 for our results [93].
Table C.2: The results of the Hyper-parameter Selection for SPIRE on the Benchmark Experiments. We see that SPIRE is
consistently more effective when it retrains the model using transfer-learning and when it removes objects by covering them
with grey boxes. Results shown are averaged across eight trials.

Removal Strategy Parameters Adjusted Mean (Standard Deviation)
Grey Box Transfer-Learning 70.4 (1.7)

Fine-Tuning 69.4 (1.3)
In-Painting Transfer-Learning 70.2 (1.3)

Fine-Tuning 68.2 (1.4)
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C.6 Additional Results: Benchmark Experiments - Section 4.5.1

Creating the benchmark. While varying p allows us to control the strength of the correlation
between Main and Spurious (i.e., p near 0 indicates a strong negative correlation while p near 1
indicates a strong positive correlation), it does not guarantee that the model actually relies on
the intended SP. Indeed, when we plot the models’ balanced accuracy as p varies (Figure C.3),
we observe that 5 out of the 13 pairs show little to no loss in balanced accuracy as p approaches
1 (dashed lines). Consequently, subsequent evaluation considers the other 8 pairs (solid lines).
For these pairs, the model’s reliance on the SP increases as p approaches 0 or 1 as evidenced by
the increasing loss of balanced accuracy and confirmed via counterfactuals (Figure C.4).

Counterfactual Evaluation. For models that are trained on a dataset augmented with a specific
type of counterfactual images, the results of this evaluation for that type of counterfactual
are often skewed and, consequently, we exclude those results. Specifically, this means that:
SPIRE is only evaluated on In-Painting counterfactuals, QCEC is not evaluated on In-Painting
counterfactuals, and GS is not evaluated on counterfactuals that In-Paint Main.

Figure C.5 shows the results (averaged across the chosen object pairs and eight trials per pair).
The first thing to note is that all of the counterfactual evaluations show that the Baseline model
is relying on the intended SP because their results get worse as P(Main | Spurious) approaches
0 or 1 (i.e., there is a strong negative or positive correlation between Main and Spurious in the
training dataset). Observe that SPIRE improves all of evaluations based on In-Painting with
the exception of “Just Spurious and In-Paint Spurious” for 0.05 < p < 0.5. In contrast, the
other mitigation methods have clear and consistent failures (e.g., RRR, CDEP, GS, and FS all
make the evaluation worse for “Both and Remove Main”, QCEC makes the evaluation worse
for “Neither and Add Main”).

Per split analysis. By looking at the models’ accuracy on each split (Figure C.6, averaged
across the chosen object pairs and eight trials per pair), we see that SPIRE exhibits all of the
expected signs of a method that is reducing a model’s reliance on a SP:

• It sacrifices accuracy on splits where relying on the SP is helpful (e.g., Both for p > 0.5 and
Just Main for p < 0.5) in order to gain accuracy on the splits where the SP is not helpful
(e.g., Just Main for p > 0.5 and Both for p < 0.5).
• It substantially flattens the per split accuracy curves for images with Spurious and, to a lesser

extent, flattens them for images without Spurious. This indicates that it produces a model
that is less sensitive to the original training distribution.

Comparing Augmentation Strategies. In this experiment, we want to explore the specific
effect of SPIRE’s augmentation strategy. We do this by comparing SPIRE to modified versions
of the two augmentation-based methods that we consider:

• QCEC-Aug, which augments the dataset with images where either Main or Spurious has
been removed (uniformly at random, as applicable). Compared to QCEC, it differs in that it
removes objects by covering them with a grey box (as SPIRE does) instead of in-painting
them.
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• GS-Aug, which augments the dataset with images where Main has been removed (if possible).
Compared to GS, it differs in that it it removes objects by covering them with a grey box (as
SPIRE does) instead of in-painting them and in that it does not include GS’s regularization
term.

In Figure C.7 shows the results:

• SPIRE is the most effective method for increasing Balanced Accuracy and decreasing the
Recall Gap.
• While QCEC-Aug and GS-Aug are somewhat better at reducing the Hallucination Gap, this

usually is not worth the loss in Balanced Accuracy.
• Note that the results for the baseline model and for SPIRE are slightly different than they are

in Figure 4.4 because these results are based on re-running this experiment from scratch.
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Figure C.3: For each pair of objects, we plot the models’
balanced accuracy as we vary p for the training set. The
y-axis is normalized so that we can easily compare the
curvature of the plots. We either accept (solid line) or
reject (dashed line) pairs based on whether or not we
see a significant drop in balanced accuracy both as p
approaches 0 and as it approaches 1. The rejected pairs
show an insufficient drop as p approached 1.

Figure C.4: For each pair of objects, we plot the metric SPIRE
uses to identify SPs as we vary p for the training set. The y-axis
is normalized so that we can easily compare the curvature of
the plots. We see that SPIRE generally agrees with the decision
to accept (solid line) or (dashed line) pairs from the benchmark
because the accepted pairs generally show more curvature.
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Figure C.5: The columns correspond to Removing, In-Painting, and Adding an object. The first two rows do that to Spurious
and, as a result, a lower value is better. The last two rows do that to Main and, as a result, a higher value is better. Methods that
train on an augmented dataset that contains a certain type of counterfactual are excluded from its evaluation because their
results are usually skewed.
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Figure C.6: The models’ accuracies on each split.

Figure C.7: A summary of the comparison of various augmentation strategies for the Benchmark Experiments.
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C.7 Additional Results: Full Experiment - Section 4.5.2

Validating the Identified SPs. In Figure C.8, we verify that the model is generally robust to
masking objects. In Figure C.9, we verify that the model has large recall and hallucination gaps
for the identified SPs. Both of these results indicate, in different ways, that the model is indeed
relying on the SPs that SPIRE identifies.

SPIRE’s effect on each SP. Figures C.10, C.11, and C.12 show SPIRE’s effect on the Balanced
Average Precision, the Average Recall Gap, and Average Hallucination Gap respectively. SPIRE
improved Balanced Average Precision by an average of 1.1% with a positive change for 21
of the SPs. SPIRE decreased the Average Recall/Hallucination Gaps by an average factor of
14.2%/28.1% for 24/29 of the SPs. Overall, these results indicate that SPIRE consistently
reduces the model’s reliance the identified SPs.

Figure C.8: A histogram of the metric that SPIRE uses to
identify SPs. In general, the model’s predictions are quite
robust to masking objects: changing a mean of 10.0% and a
median of 7.7% of the time. As a result, it is unlikely we can
explain the fact that the model’s prediction changes more than
40% of the time for the identified SPs using the fact that these
images are out-of-distribution (they contain grey boxes).

Figure C.9: When a model is relying on a SP, we expect
positive gap metrics, if it has positive bias, and negative gap
metrics, if it has negative bias. In general, this is what we
find. (Left) A comparison of the Recall Gap to the bias of the
dataset for the SP. (Right) A comparison of the Hallucination
Gap to the bias.

Figure C.10: The Average Precision
on the balanced distribution for SPIRE
compared to the baseline for each SP.

Figure C.11: The percent change of
the Average Recall Gap for SPIRE
compared to the baseline model for
each SP.

Figure C.12: The percent change
of the Average Hallucination Gap
for SPIRE compared to the baseline
model for each SP.
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C.8 Additional Results: Generalization Experiments - Section 4.5.3

C.8.1 SPIRE-R - Projection PseudoCode

Algorithm 6 details the process that we use for “adding” or “removing” Spurious from a model’s
representation. This process is guaranteed to change the initial linear model’s prediction for
whether or not the representation contains Spurious, which suites our goal of changing the most
“obvious” signal for Spurious in the representation. Future work could explore more ambitious
goals (e.g., removing all of the information about Spurious from the model’s representation).

Algorithm 6 Our algorithm for “adding” or “removing” Spurious from a model’s representa-
tion.
Require: {ri}ni=1 {The model’s penultimate layer’s representation of each image}
Require: {yi}ni=1 {A binary label for whether or not each image contains Spurious}
Require: c {A confidence threshold, we used 0.0001}
Require: s {A step size, we used 0.1}
w, b ← LogisticRegression({ri}, {yi}) {Train a linear model to predict if an image con-
tains Spurious}
for i = 1, . . . , n do
r′i = ri {Initialize the counterfactual representation}
if yi == 1 then {If the image contains Spurious, remove it}
y′i ← 0
while 1

1+e−(wr′
i
+b)

> c do
r′i ← r′i − s ∗ w {Maximally decrease the linear model’s confidence that Spurious is
present}

end while
else {If the image doesn’t contain Spurious, add it}
y′i ← 1
while 1

1+e−(wr′
i
+b)

< 1− c do
r′i ← r′i + s ∗ w {Maximally increase the linear model’s confidence that Spurious is
present}

end while
end if

end for
output Return {r′i}, {y′i}

C.8.2 ISIC Experiment- Pipeline for creating counterfactuals

Our pipeline, which is based on clustering image segments (i.e., super-pixels), is constructed as
follows:

• We use an image segmentation algorithm to extract segments from an image and represent
each segment using its mean RGB value.
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• We run a hierarchical clustering on those RGB values to produce nine clusters. Then, we
manually inspect several randomly sampled images from each cluster and label those clusters
based on whether or not they represent stickers.
• Finally, we use a K-NearestNeighbor classifier to predict which of those nine clusters an

image segment belongs to.

Overall, this pipeline produces a per-image map of which pixels belong to a sticker and identifies
stickers with 86.7% recall and 99.0% precision. We use this map to produce counterfactual
images.

Note that this pipeline significantly reduced the cost of producing these pixel-wise annotations
because it only required labeling a small number of image segments as “sticker or not.” However,
the annotations are noisier than manually collected annotations would be.
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Appendix D

Blindspots
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D.1 Generating Experimental Configurations, Extended

In this section we detail how we use SpotCheck to generate random experimental configura-
tions.

• In Section D.1.1, we define the different types of semantic features that can appear in each
image.
• In Section D.1.2, we define a synthetic image dataset, how we generate random datasets, and

how we sample images from a dataset.
• In Section D.1.3, we define a blindspot for a synthetic image dataset, how we generate a

random blindspot, and how we generate an unambiguous set of blindspots.
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D.1.1 Semantic Features

Table D.1 defines all of the semantic features that SpotCheck uses to generate synthetic images.
We call these semantic features Attributes and group them into Layers based on what part of an
image they describe. Each Attribute has two possible Values: a Default and Alternative Value.
Each synthetic image has an associated list of (Layer, Attribute, Value) triplets that describes
the image. Figure D.1 shows this triplet list for two synthetic images.

We sometimes refer to the Square/Rectangle/Circle/Text Layers as Object Layers because they
all describe a specific object that can be present in an image. The location of each object within
an image is chosen randomly, subject to the constraint that each object doesn’t overlap with
any other object.

Table D.1: The Layers and Attributes that define the synthetic images.

Layer Attribute Default Value Alternative Value

Background Color White Grey
Texture Solid Salt and Pepper Noise

Square/Rectangle/Circle/Text Presence False True
Size Normal Small
Color Blue Orange
Texture Solid Vertical Stripes

Square (continued) Number 1 2
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D.1.2 Defining a Dataset using these Semantic Features

At a high level, SpotCheck defines a Dataset by deciding whether or not each Attribute of each
Layer is Rollable (i.e., the Attribute can take either its Default or Alternative Value, uniformly
at random) or not Rollable (i.e., the Attribute only takes its Default Value). We measure a
Dataset’s complexity using the number of Rollable Attributes it has. Figure D.1 describes the
Rollable and Not Rollable Attributes for an example Dataset.

Generating a Random Dataset. We start by picking which Layers will be part of the Dataset:

• Images need a background, so all Datasets have the Background Layer.
• The task is to predict whether there is a square in the image, so all Datasets have the Square

Layer.
• We add 1-3 (chosen uniformly at random) of the other Object Layers (chosen uniformly at

random without replacement from the set {Rectangle, Circle, Text}) to the Dataset.

Once the Layers are chosen, we make 6-8 (chosen uniformly at random) of the Attributes
Rollable:

• Each Object Layer has its Presence Attribute made Rollable.
• Then, the remaining Rollable Attributes are chosen by iteratively:
◦ Selecting a Layer uniformly at random from those that have at least one Not Rollable

Attribute.
◦ Selecting an Attribute from that Layer uniformly at random from those that are Not

Rollable.

Sampling an Image from a Dataset. Once a Dataset’s Rollable Attributes have been defined,
generating a random image is straightforward:

• For each Attribute from each Layer in the Dataset, we pick a random Value if the Attribute is
Rollable. Attributes that are Not Rollable will take their Default Value.
◦ If the Layer is an Object Layer:
• If the Presence Attribute is True, the location of the object is chosen randomly (subject

to the non-overlapping constraint).
• If the Presence Attribute is False, the object will not be rendered (regardless of the

Values chosen for the other Attributes of this Layer).
• We then use the resulting (Layer, Attribute, Value) triplet list and the list of object locations

to render a 224x224 RGB image.
• Finally, we calculate any MetaAttributes (explained next) and append these (Layer, MetaAt-

tribute, Value) triplets to the image’s definition list.

Calculating MetaAttributes. While each Attribute corresponds to a semantic feature, there
are a potentially infinite number of MetaAttributes that one could calculate as semantically
meaningful functions of an image. We list the MetaAttributes that we calculate in our ex-
periments in Table D.2. Because this space is infinitely large and grows with the number of
Attributes, we exclude MetaAttributes from our measure of Dataset complexity.
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Dataset Definition:
Rollable Attributes

Background: {Color: False, 
Texture: True}

Square: {Presence: True,
Size: False,
Color: True,
Texture: True,
Number: False}

Text: {Presence: True,
  Size: False,

      Color: True,
      Texture: False}

Example Image #1 (Background, Texture, Solid),

(Square, Presence, True),
(Square, Color, Blue),
(Square, Texture, Vertical 
Stripes),

(Text, Presence, True),
(Text, Color, Orange}

Example Image #2 (Background, Texture, Salt & 
Pepper),

(Square, Presence, False),
(Square, Color, Blue),
(Square, Texture, Solid),

(Text, Presence, True),
(Text, Color, Blue)

Figure D.1: Top Row. The definition of an example Dataset generated by SpotCheck. Notice that this Dataset has 3 Layers
and 6 Rollable Attributes. Middle/Bottom Row. Two example images generated from this Dataset along with their (Layer,
Attribute, Value) triplet lists. Notice that Not Rollable Attributes in this Dataset take on their Default Values in these images
and are not in the images’ triplet lists.
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Table D.2: The MetaAttributes that we calculate for each synthetic image.

Layer MetaAttribute Value Meaning

Background Relative Position 1 Square is above the horizontal centerline of the image
0 Square is bellow the horizontal centerline of the image
-1 No Square
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D.1.3 Defining the Blindspots for a Dataset

SpotCheck defines a Blindspot using a list of (Layer, (Meta)Attribute, Value) triplets. We
measure a Blindspot’s specificity using the length of its definition list. An image belongs to a
blindspot if and only if the Blindspot’s definition list is a subset of the image’s definition list.
Figure D.2 shows two example Blindspots.

Generating a Random Blindspot. SpotCheck generates a random Blindspot consisting of
5-7 (chosen uniformly at random) (Layer, (Meta)Attribute, Value) triplets for a Dataset by
iteratively:

• Selecting a Layer (uniformly at random from those that have at least one Rollable Attribute1

that is not already in this Blindspot)
• Selecting a Rollable Attribute from that Layer:
◦ Object Layers: If the Layer’s Presence Attribute is not in this Blindspot, select its Presence

Attribute. Otherwise, select an Attribute uniformly at random from those that are not
already in this Blindspot and set the Layer’s Presence Attribute Value to True for this
Blindspot.
◦ Background Layers: Select an Attribute uniformly at random from those that are not

already in this Blindspot.
• Selecting a Value for that Attribute (uniformly at random)

Notice that, if an Object Layer is selected more than once, then we ensure that the Object’s
Presence Attribute has a Value of True in the Blindspot definition. We enforce this Feasibility
Constraint to ensure that every triplet in the Blindspot’s definition list correctly describes the
images belonging to the Blindspot (e.g., [(Circle, Presence, False), (Circle, Color, Blue)] is
infeasible because an image with a blue circle must have a circle in it).

Generating an Unambiguous Set of Blindspots. For each Dataset, we generate 1-3 (chosen
uniformly at random) Blindspots using the process described above. However, when generating
multiple blindspots, they can be ambiguous which causes problems when using them to evaluate
BDMs.

Definition. A set of Blindspots, S1, is ambiguous if there exists a different set of Blindspots,
S2, such that both:

1. The union of images belonging to S1 is equivalent to the union of images belonging to S2.
As a result, S1 and S2 would both correctly describe the model’s blindspots.

2. An evaluation that uses Discovery Rate (Equation 5.6) would penalize a BDM if it returns
S2 instead of S1. More precisely, DR(S2, S1) < 1 for λp = λr = 1.

Example. Suppose that we have a very simple Dataset with two Rollable Attributes, X and Y
which are uniformly distributed and independent, and consider two different sets of Blindspots
for this Dataset:

• S1 = {B1, B2} where B1 = [(X = 1)] and B2 = [(X = 0), (Y = 1)]
• S2 = {B′1, B

′
2} where B′1 = [(X = 1), (Y = 0)] and B′2 = [(Y = 1)]

1All MetaAttributes are considered to be “Rollable” when generating a random Blindspot.
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Then, S1 is ambiguous because:

• S1 and S2 induce the same behavior in the model: they both mislabel an image if X =
1 ∨ Y = 1.
• A BDM would be penalized for returning S2:

BP(B
′

1, B1) = 1.0 ∧ BP(B
′

1, B2) = 0 ∧ BP(B
′

2, B1) = BP(B
′

2, B2) = 0.5 =⇒

BR(S2, B1) = 0.5 ∧ BR(S2, B2) = 0 =⇒

DR(S2, S1) = 0

In fact, for this example, there are only two sets of two unambiguous Blindspots, ({[(X =
0), (Y = 0)], [(X = 1), (Y = 1)]} and {[(X = 0), (Y = 1)], [(X = 1), (Y = 0)]}), and there
exists no unambiguous set of three Blindspots.

Preventing Ambiguity. In general, ambiguity occurs whenever the union of two blindspots
forms a contiguous region in the discrete space defined by the Rollable Attributes. Consequently,
we prevent ambiguity by ensuring that any pair of blindspots has at least two of the same
Rollable Attributes with different Values in their definition lists. We call this the Ambiguity
Constraint.

Implications of the Ambiguity and Feasibility Constraints. In our experiments, our goal is to
generate experimental configurations with a diverse set of Datasets and associated Blindspots.
However, the Ambiguity Constraint (AC) and Feasibility Constraint (FC) limit the number of
valid Blindspots for any specific Dataset.

To see this, notice that the AC places more constraints on each successive Blindspot added to an
experimental configuration. This has two implications. First, that generating an experimental
configuration with more Blindspots requires a Dataset with more Rollable Attributes (more
complexity) and Blindspots with more triplets (more specificity). Further, because we cannot
set the Attribute Values of a Blindspot’s triplets independently of each other [FC], we need
more complexity and specificty than a simple analysis based only on the AC suggests. Second,
that each successive Blindspot is more closely related to the previous ones which means that
larger sets of Blindspots are “less diverse” or “less random” in some sense.

With these trade-offs in mind, we generated experimental configurations with:

• Background, Square, and 1-3 other Object Layers
• A total of 6-8 Rollable Attributes
• 1-3 Blindspots
• 5-7 triplets per Blindspot

because an experimental configuration with any combination of these values is able to satisfy
the AC and the FC while still having a diverse set of Blindspots.
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(Background, Texture, Salt & Pepper),

(Square, Presence, True),
(Square, Color, Orange),
(Square, Texture, Striped),

(Text, Presence, True),
(Text, Color, Orange)

Blindspot #1 Blindspot #2

“images with salt & pepper backgrounds, 
blue striped squares,
and orange text” 

Example Images

(Background, Texture, Salt & Pepper),

(Square, Presence, True),
(Square, Color, Orange),
(Square, Texture, Striped),

(Text, Presence, True)

“images with salt & pepper backgrounds, 
blue striped squares,
and text” 

Figure D.2: Two example Blindspots, Blindspot #1 (Left) and Blindspot # 2 (Right) for the example Dataset from Figure
D.1. Each Blindspot is defined by a list of (Layer, (Meta)Attribute, Value) triplets as shown above. We also display example
images belonging to each Blindspot: all of the images inside of the blue border belong to Blindspot #1, while only the subset
of images inside of the orange border belong to Blindspot #2. In this example, Blindspot #2 is more specific (defined using 6
semantic features) than Blindspot #1 (defined using 5 semantic features).
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D.2 How do our definitions of “belonging to” and “covering” build on similar ideas in
existing work?

At a high level, we refine these ideas so that they better reflect the fact that, in practice, a
user is going to look at the hypothesized blindspots returned by a BDM in order to come to
conclusions about the model’s true blindspots. This entails making three specific changes.

First, our definition of “belonging to” uses a high, in absolute terms, threshold for λp (i.e.,
0.8) in order to minimize the amount of noise the user has to deal with when determining the
semantic definition of a blindspot. This is in contrast to a relative definition (e.g., better than
random chance) which would lead to significant amounts of noise for uncommon blindspots.
For example, Table 2 from Sohoni et al. [97] shows that as few as one in seven images in the
hypothesized blindspots are actually from the true blindspots for the Waterbirds and CelebA
datasets. While better than random chance, the output of the BDM is still very noisy, which is
likely to create problems for the user.

Second, our definition of “covering” incorporates blindspot recall in order to prevent the user
from coming to conclusions that are too narrow. For example, consider the middle row of
Figure 5 from Eyuboglu et al. [33]. In these examples, the blindspots are defined as “people
wearing glasses,” “people with brown hair,” or “smiling people.” However, the BDM returns
images that are of “men wearing glasses,” “women with brown hair, and “smiling women.” As
a result, the user may incorrectly conclude that the model is exhibiting gender bias because the
BDM led them to conclusions that are too narrow.

Third, our definition of “covering” allows for hypothesized blindspots to be combined in
order to take advantage of the user’s ability to synthesize what they see and come to more
general conclusions, which is something that would be very challenging to do algorithmically.
Experimentally, we observe that this combining is essential for some of these BDMs to work
on SpotCheck. Further, in Appendix D.6, we qualitatively observe that this useful for real
problems as well. For example, the “ties without people” blindspots includes a set of images of
“cats wearing ties” that are separate, in the model’s representation space, from the other images
in the blindspot and that, as a result, are likely to be returned separately by a BDM.
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D.3 Hyperparameter Tuning

To tune hyperparameters, we use a secondary set of 20 ECs to calculate BDM DR and
FDR. While some of these BDMs have multiple hyperparameters, we focused on the main
hyperparameter for each BDM and left the others at their default values.

Barlow [94]. The main hyperparameter is the maximum depth of the decision tree whose leaves
define the hypothesized blindspots. The results of the hyperparameter search are in Table D.3.

Spotlight [26]. The main hyperparameter is the minimum weight assigned to a hypothesized
blindspot. The results of the hyperparameter search are in Table D.4.

Domino [33]. The main hyperparmeter is γ which controls the relative importance of coherence
and under-performance in the hypothesized blindspots. The results of the hyperparameter search
are in Table D.5.

PlaneSpot. For our BDM, the main hyperparameter is w which controls the weight of the
model-confidence dimension relative to the two spatial dimensions from the scvis embedding.
The results of the hyperparameter search are in Table D.6.

Table D.3: The hyperparameter tuning results for Barlow.
For maximum depths of 11 and 12, we noticed that Barlow’s
outputs matched exactly for all of the configurations. This
indicates that it never learned a decision tree of depth 12. As
a result, we use a maximum depth of 11 for our experiments.

Maximum Depth DR FDR

3 0.07 0.0
4 0.14 0.0
5 0.19 0.0
6 0.27 0.12
7 0.36 0.15
8 0.37 0.09
9 0.43 0.11
10 0.43 0.08
11 0.48 0.07
12 0.48 0.07

Table D.4: The hyperparameter tuning results for Spotlight.
We use a minimum weight of 0.01 in our experiments. In Fig-
ure 5.2 we show that, despite the fact that 0.01 and 0.02 have
very similar average results, they behave very differently.

Minimum Weight DR FDR

0.005 0.49 0.04
0.01 0.88 0.06
0.02 0.88 0.08
0.04 0.48 0.00

Table D.5: The hyperparameter tuning results for Domino.
We use γ = 10 in our experiments.

γ DR FDR

5 0.48 0.06
10 0.72 0.03
15 0.70 0.06
20 0.60 0.09

Table D.6: The hyperparameter tuning results for
PlaneSpot. We use w = 0.025 in our experiments.

w DR FDR

0 0.57 0.00
0.025 0.95 0.00
0.05 0.88 0.00
0.1 0.87 0.00
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D.4 Why are these BDMs failing?

In this section, we are going to try to identify, from a methodological standpoint, why these
BDMs are failing. We start by defining some additional metrics that allow us to understand
why a BDM failed to cover a specific true blindspot. Then, we describe how we average those
metrics across our ECs to observe general patterns. Finally, we give some possible explanations
for the observed trends.

Explaining a Specific Failure. Given the output of a BDM, Ψ̂, we want to understand why it
failed to cover a specific true blindspot, Ψm. To do this, we measure the fraction of the images
in that true blindspot, i ∈ Ψm, that fall into each of four categories:2

• i was not returned by the BDM. Intuitively, this tells us how often the BDM does not show
an image to the user that it should. Specifically, this means that i 6∈ Ψ̂k ∀k.
• i is found by the BDM. Intuitively, this tells us how close the BDM is to covering Ψm.

Specifically, this means that ∃k | i ∈ Ψ̂k ∧ BP(Ψ̂k,Ψm) ≥ λp.
• i was part of a merged blindspot according to the BDM. Intuitively, this tells us how often

the BDM merges multiple true blindspots into a single hypothesized blindspot. Specifically,
this means that ∃k | i ∈ Ψ̂k ∧ BP(Ψ̂k,∪mΨm) ≥ λp. Note that BP(Ψ̂k,∪mΨm) measures
the fraction of the images in Ψ̂k that belong to any true blindspot.
• i was part of a impure blindspot according to the BDM. Intuitively, this tells us how often the

BDM includes too many images that do not belong to any true blindspot into a hypothesized
blindspot. Specifically, this means that BP(Ψ̂k,∪mΨm) < λp (∀k | i ∈ Ψ̂k).

Averaging to gain more general patterns. While these metrics can help us understand why a
BDM failed to cover a specific true blindspot from a specific EC, we want to arrive at more
general results. To do this, we first average these metrics across the true blindspots in an EC
that are not covered by the BDM, {Ψm | BR(Ψ̂,Ψm) < λr}, and then average them across the
ECs where the BDM did not cover all of the true blindspots, {Ψ | DR(Ψ̂,Ψ) 6= 1}. Table D.7
shows the results.

Explaining observed trends. Our main observation is that a significant portion of all of the
BDMs’ failures can be explained by the fact that they tend to merge multiple true blindspots
into a single hypothesized blindspot. However, this raises the question: is the a failure of the
BDMs or are they simply inheriting the problem from their image representation, which is
failing to separate the true blindspots? To address this question, we manually inspected the 2D
scvis embedding used by PlaneSpot, which exhibits this failure the most strongly, for the 10
ECs where at least 50% of the images in the true blindspots that were not covered belonged
to a hypothesized blindspot that merges multiple true blindspots. For 8 of those 10 ECs, the
true blindspots were easily visually separable in this 2D embedding, which means that the true
blindspots are also separable in the original image representation. Consequently, we conclude
that this is a failing of the BDMs.

Additionally, we make two less significant observations. First, that Spotlight is the only BDM
that fails to return a non-trivial fraction of the images that it is should. Because it is the only

2Every image, i, falls into exactly one of these categories. The definition of each category is written under the assumption
that i does not fall into any of the previous categories.
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BDM that does not do this, we suggest that BDMs should partition the entire input space
(including partitions that do not have higher than average error). Second, that Barlow is the only
that has more failures due to returning impure hypothesized blindspots than merged blindspots.
Between this and Barlow’s generally poor performance, this suggests that axis-aligned decision
trees are not a particularly promising hypothesis class for BDMs.

Table D.7: The average value of each of the four metrics we use to explain why a BDM failed to cover a true blindspot.

Method Not Returned Found Merged Impure

Barlow 0.02 0.15 0.39 0.44
Spotlight 0.13 0.46 0.33 0.04
Domino 0.0 0.38 0.36 0.24
PlaneSpot 0.0 0.0 0.57 0.42
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D.5 COCO Experiments, Details

We detail the methodology used to generate ECs using the COCO dataset [60].

D.5.1 Prediction Task & Data Preprocessing

COCO is a large-scale object detection dataset. We use the 2017 version of the dataset. We
re-sample from the given train-test-validation splits to have a larger test set of images for use
in blindspot discovery. Our final train, test, and validation sets have 66874, 44584, and 11829
images respectively.

Prediction Task. We define the binary classification task as detecting whether an object
belonging to some super-category (containing multiple of the 80 object categories) is present
in the image. In our experiments, each EC is associated with 1 of 3 different super-category
prediction tasks: detecting if an animal (e.g., a dog, cat, etc), a vehicle (e.g., a car, airplane, etc),
or a furniture item (e.g., a chair, bed, etc) are present in an image. We use the super-category
definitions provided in the COCO paper [60]. We sample ECs from multiple (as opposed to
only a single) prediction tasks so that we have a larger number of possible blindspot definitions.

EC Preprocessing. For each EC, we use the EC’s prediction task to down-sample the original
COCO dataset to ensure that the dataset’s blindspots are identifiable (i.e.,, so that there is no
ambiguity or overlap in the blindspots we induce in our models). Specifically, we drop all
images that have more than 1 unique object category belonging to the task super-category (e.g.,,
if the task is to detect animals, we drop all images that have both a dog and a cat). We also
down-sample so that the final train, test, and validation sets are all class-balanced.

D.5.2 Blindspot Definitions

All blindspots in our ECs are defined using an object category that is a subset of those belonging
to the task super-category. For example, an EC with the “animal” prediction task can have the
blindspot “zebra”, as the zebra object category belongs to the animal super-category (Figure
5.5).

Specificity. To measure the effect of blindspot specificity, we generate two different types of
blindspots: more and less specific. Less-specific blindspots are defined using only one object
category, such as the “zebra” blindspot. More-specific blindspots are defined using two object
categories. Like the less-specific blindspots, one of the object categories must belong to the task
super-category (e.g.,, must be an animal for an animal prediction EC). But, the second object
category used to define a more-specific blindspot must not belong to the task super-category.
For example, the second object can be “person” (but not “dog”) because a person is not an
animal.

Each more-specific blindspot is then defined using (1) the presence of the object belonging
to the super-category, and (2) either the presence or absence of the object outside of the
super-category. For example, valid blindspot definitions include “images of elephants with
people” (task: animal), “images of bicycles without a backpack” (task: vehicle), or “images
of dining tables with forks” (task: furniture item). We chose to allow some blindspots to be
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defined using the absence of a second object inspired by the past observation that models can
incorrectly rely on the presence of spurious artifact objects instead of identifying the true object
class [75], consequently underperforming on images without these artifacts.

D.5.3 Model Training

Similarly to our experiments using SpotCheck, we induce true blindspots by training with
the wrong labels for images belonging to blindspots. For each EC, we train a Resnet-18. We
perform model selection by picking the model with the best validation set loss.

Validating that models learn the induced blindspots. Because real data is more complex
than synthetic data, it is possible that even when we train with the wrong labels for a particular
subgroup, the model may not underperform on other images belonging to the subgroup. We
call this behavior failing to induce a true blindspot. For each true blindspot, we measure if
the blindspot was successfully induced by comparing the model’s performance on images
belonging to, vs. outside of the blindspot in the separate test set. We only retain ECs where the
model has at least a 20% recall gap inside vs. outside of the blindspot.

D.5.4 ECs: General Pool

We began our analysis by replicating the procedure we used to sample random ECs using
SpotCheck as closely as possible. Recall that when using SpotCheck to measure the effect
of various factors, we generated a pool of ECs where each factor (e.g.,, the number of model
blindspots and each blindspot’s specificty) were chosen independently. We repeat this general
procedure using the COCO dataset, and call these ECs the “General Pool”.

We provide pseudocode that we use to sample a pool of N = 90 ECs:

• For each super-category prediction task in {animal, vehicle, furniture item }:
◦ For each number of blindspots in [1, 2, 3]:
• Generate 10 experimental configurations. For each configuration:
◦ For each blindspot, choose the blindspot’s definition:
• Choose the blindspot’s specificity uniformly at random from {More-Specific,

Less-Specific}.
• Choose an object category that belongs to the task super-category uniformly at

random from those that were not already used in the EC’s other blindspots.
• If the blindspot is more-specific:
◦ Choose a second object category that does not belong to the task super-category

uniformly at random from those that are eligible. An object category is eligible
if it has not yet been used to define another of the ECs blindspots, and if both the
intersection and set difference of the first and second object categories have at
least 100 images in the train set. We impose these eligibility constraints to avoid
selecting blindspots that are too small, as we hypothesize that larger blindspots
may be easier to induce.
◦ Choose if the blindspot will be defined using the {Presence, Absence} of the

second object uniformly at random.
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Note that for each EC sampled using the above pseudocode, the EC’s number of blindspots and
each indivudal blindspot’s specificity are selected independently.
Table D.8: Counts the retained ECs in the general pool (where all blindspots are successfully induced) for each prediction task
and number of blindspots.

Prediction Task Number of blindspots Count of (ECs retained for analysis) / (total ECs sampled)

animal 1 10 / 10
2 8 / 10
3 7 / 10

furniture 1 8 / 10
2 6 / 10
3 5 / 10

vehicle 1 8 / 10
2 6 / 10
3 7 / 10

Summary Statistics. Of the 90 sampled ECs in the general pool, we retain 65 for our
analysis, dropping 25 where we failed to induce the sampled blindspot. Table D.8 summarizes
the prediction tasks and number of blindspots in the retained general pool of ECs.

D.5.5 ECs: Conditioned Pools

Number of Blindspots: Conditioned Pool. We provide pseudocode that we use to sample
a pool of N = 84 ECs. We hold each blindspot’s specificity constant and only sample
less-specific blindspots.

Before sampling the conditioned pool ECs, we first train several models where for each model,
we try to induce a single COCO object category as a blindspot. We sample the blindspots for
the conditioned distribution only from the subset of C object categories that were successfully
induced as singleton blindspots.

• For each super-category prediction task in {animal, vehicle, furniture item }:
◦ For each number of blindspots in [1, 2, 3]:
• Using the C object categories that belong to the task super-category and that were able

to be learned as singleton blindspots, sample up to N = 20 ECs from the list of C nCr
(number of blindspots) possible combinations.

We only have 22 ECs with 1 (singleton) blindspot because there are only 22 total object
categories that can be induced as singleton blindspots. All blindspots were successfully induced
for the 84 sampled ECs. To measure the effect of the number of blindspots, we compare BDM
performance the 22, 30, and 30 ECs with 1, 2, and 3 blindspots respectively.

Blindspot Specificity: Conditioned Pool. We provide pseudocode that we use to sample a
pool of N = 70 ECs. We hold the number of blindspots constant and only sample ECs with a
single blindspot.
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• For each super-category prediction task in {animal, vehicle, furniture item }:
◦ Using the C object categories that belong to the task super-category and that were able to

be learned as singleton blindspots, construct a list of all of the eligible blindspots:
• For the less-specific blindspots, all C sub-categories are eligible.
• For the more-specific blindspots, we define eligibility equivalently to the general pool:

i.e., for each C object categories belonging to the task super-category, a second object
category (that does not belong to the task super-category) is a eligible if both the
intersection and set difference of the first and second object categories have at least
100 images in the train set. Concretely, the list of eligible blindspots consists of all
eligible pairs of objects with both options of whether the blindspot is defined using the
{Presence, Absence} of the second object.
• From the list of eligible blindspots, sample up to 20 ECs (each with 1 blindspot) without

replacement.

Of the 60 generated more-specific ECs, we retain 48 ECs for analysis, dropping the 12 ECs
where we failed to induce the sampled blindspot. Like the other conditioned pool, there are
only 22 possible less-specific ECs. To measure the effect of blindspot specificity, we compare
BDM performance on the 48 more-specific to the 24 less-specific ECs.
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D.6 Observations from a Qualitative Inspection of Real Data

In Appendix D.4, we used the 2D scvis embedding of the model’s learned representation as an
analysis tool to determine that these BDMs’ tendency to merge true blindspots is a failing of
the methods themselves. In this section, we do something similar and qualitatively inspect that
2D embedding for models trained on real image datasets in order make additional observations
that may be relevant to the design of future BDMs.

A low-dimensional embedding can work for real data. In the next subsections, we demon-
strate that this 2D embedding contains the information required to identify a wide range
of blindspots from prior work and to identify novel blindspots. As a result, it seems that
dimensionality-reduction is a potentially important aspect of BDM design or that an interactive
approach based on this embedding could be effective.

Getting a maximally general definition of a specific blindspot often requires merging
multiple groups of images. For example, reaching the conclusions presented in Figures D.8,
D.15, D.26, and D.23 all required merging several distinct groups of images. As a result, it
seems that being able to suggest candidate merges is a potentially important goal for BDM
design.

A small blindspot may appear as a a small cluster (Figure D.14) or as a set of outliers
(Figure D.32). The former is likely to cause problems for BDMs that use more standard
supervised learning techniques (e.g., those that use Linear Models or Decision Trees for
their hypothesis class). The later is likely to cause problems for BDMs that model the data
distribution (e.g., those that use Gaussian Kernels for their hypothesis class). As a result, it
seems that being able to identify blindspots of varying sizes and densities is a potentially
important and challenging goal for BDM design.

The boundaries of a blindspot can be “fuzzy” in the sense that there may be images that
do not belong to the blindspot that are both close, in the image representation space, to
images in the blindspot and that have higher error. For example, looking at Figure D.12,
we can see that the model’s confidence decreases relatively smoothly as we approach the region
that reflects “baseball gloves with people, but not in a baseball field.” However, if we look at
the region around this region (Figure D.13), we see that these images are almost all in baseball
fields. As a result, it seems that being able to handle this fuzziness is a potentially important
and challenging goal for BDM design.
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D.6.1 Preliminaries

Before presenting the details of our results, there are two questions to address.

What blindspots do we study? We consider blindspots discovered by prior works [40, 75, 93,
94, 97] as well as novel blindspots [3]. Note that these prior works:

• Are not all explicitly about blindspots (e.g., some consider “spurious patterns” which imply
the existence of blindspots).
• All consider a model that was trained with standard procedures (e.g., no adversarial training)

on a real dataset (e.g., no semi-synthetic images or sub-sampling the dataset).
• All consider blindspots that pertain to a single class.

How are our visualizations produced? To start, we use scvis [30] to learn a 2D embedding
of the model’s representation of all of the training images of the class of interest. Because
scvis combines the objective functions of tSNE and an AutoEncoder, we expect similar images
to be near each other and dissimilar images to be far from each other in this 2D embedding.
Then, we visualize that embedding and color code the points by the model’s confidence in its
predictions for the class of interest. As a result, blindspots should appear as groups of lighter
colored points.

With this visualization, we start by first exploring what types of images were in different parts
of the embedding. Then, given a specific type of image, we go back and highlight the part of
the embedding that best represents that type of image. As a result, many of the figures we show
are more like “summaries that support our conclusions” than “exhaustive descriptions of all the
types of images we identified.”
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D.6.2 Summit

In Figure 1 of their paper, Hohman et al. [40] show that their method reveals that the model is
relying on “hands holding fish” to detect “tench.”

• Dataset: ImageNet
• Class: tench
• Blindspots: tench without people holding them

Results of inspecting the 2D embedding:

• The embedding also reveals this blindspot. However, our analysis suggests that this blindspot
is too broadly defined because “people holding tench” (Figure D.3) has similar performance
to “tench in a net” (Figure D.4) and that the performance drop comes from “tench underwater”
(Figure D.5). We confirmed hypothesis by finding images on Google Images that match
these descriptions and measuring the model’s accuracy on them.
• Additionally, the embedding reveals mislabeled images (Figure D.6).
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Figure D.3: “tench with people holding them.” Model accuracy on images from Google Images: 100% (40/40).

Figure D.4: “tench in a net.” Model accuracy on images from Google Images: 98% (39/40).
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Figure D.5: “tench underwater.” Model accuracy on images from Google Images: 88% (35/40).

Figure D.6: Mislabeled images
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D.6.3 George

In Appendix C.1.4 of their paper, Sohoni et al. [97] discuss how their method is not effective
at identifying one of the blindspots commonly studied in Group Distributionally Robust
Optimization without using an external model’s representation for the image representation.

• Dataset: CelebA
• Class: blond hair
• Blindspot: men with blond hair

Results of inspecting the 2D embedding:

• By comparing Figure D.7 to Figure D.8, we can see that the embedding clearly reveals this
blindspot.
• Additionally, Figure D.9 shows that the embedding reveals an additional “blond women

playing sports” blindspot.
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Figure D.7: “blond men”

Figure D.8: “blond women”
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Figure D.9: “blond women playing sports”
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D.6.4 Feature Splitting

In Table 6 of their paper, Singh et al. [93] organize the spurious patterns that they identify by
their own measure of bias. We consider both the most and least biased spurious patterns from
that table.

Most biased.
• Dataset: COCO
• Class: baseball glove
• Blindspot: baseball gloves without people

Results of inspecting the 2D embedding:

• Comparing Figure D.10 to Figure D.11, we see that the embedding also reveals this blindspot.
• However, we can also see that the model’s performance is not uniform across different types

of images of “baseball gloves with people.” In particular, the embedding reveals two other
blindspots (Figures D.12 and D.14)

Least biased.
• Dataset: COCO
• Class: cup
• Blindspot: cups without dining tables

Results of inspecting the 2D embedding:

• Comparing Figure D.15 to Figure D.16, we see that the embedding also reveals this blindspot.
• However, we can also see that the model’s performance is not uniform across different types

of “cups without dining tables.” Figures D.17, D.18, and D.19 show a few examples of the
additional blindspots the embedding reveals.
• These results highlight an interesting subtlety. The cups in images with dining tables take up

a greater portion of the image than the cups in images of sports stadiums, which raises the
question: “Does this blindspot exist solely because the model is relying on ‘context’ that it
shouldn’t be? Or is the standard image pre-processing making the cups too small (in terms
of their size in pixels) to detect?”

147



Figure D.10: “baseball gloves without people”

Figure D.11: “baseball gloves with people”
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Figure D.12: “baseball gloves with people, but not in a baseball field”

Figure D.13: If we look at the region around the “baseball gloves with people, but not in a baseball field” region (Figure
D.12), we see that the model’s confidence is still lower despite the fact that these images still are in baseball fields.
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Figure D.14: “black and white images of baseball teams”

Figure D.15: “Cups without dining tables”
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Figure D.16: “Cups with dining tables”

Figure D.17: “Cups in bathrooms”
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Figure D.18: “Cups in living rooms or bedrooms”

Figure D.19: “Cups in sports stadiums”. Is the model using ‘context’ that it shouldn’t be? Or is the image pre-processing
making detecting these cups very hard by compressing them to only a few pixels? Or is this a limitation of the model
architecture?
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D.6.5 Barlow

In Table 2 of their paper, Singla et al. [94] summarize some of the blindspots that they identify.
We consider two of them. The first is “hog”, which is the class with the largest ALER-BER
score (which they use as a measurement of how important a blindspot is). The second is “tiger
cat”, which is the class with the largest increase in error rate for images in the blindspot.

Largest ALER-BER Score.
• Dataset: ImageNet
• Class: hog
• Blindspot: not “pinkish animals”

Results of inspecting the 2D embedding:

• By comparing Figure D.20 to Figure D.21, we can see that the embedding reveals this
blindspot.

Largest increase in error rate.
• Dataset: ImageNet
• Class: tiger cat
• Blindspot: not “face close up”

Results of inspecting the 2D embedding:

• It does not appear that the embedding reveals this blindspot.
• By comparing Figure D.22 to Figures D.23 and D.24, we can see that the embedding reveals

a “grey tiger cats inside” blindspot.
• Looking at Figure D.25, we can see that the embedding reveals mislabeled images.
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Figure D.20: “pink hogs”

Figure D.21: “brown hogs”
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Figure D.22: “grey tiger cats inside”

Figure D.23: “grey tiger cats outside”
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Figure D.24: “orange tiger cats”

Figure D.25: Mislabeled Images
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D.6.6 Spire

Plumb et al. [75] claim that, compared to past works on identifying spurious patterns, that
theirs is the first to identify negative spurious patterns. So we explore the example of a negative
spurious pattern that they give. Additionally, they note that this class is part of two spurious
patterns.

• Dataset: COCO
• Class: tie
• Blindspot: ties without people
• Blindspot: ties with cats

Results of inspecting the 2D embedding:

• Comparing Figure D.26 to Figure D.27, we see that the embedding reveals the “ties without
people” blindspot.
• Comparing Figure D.28 to Figure D.29, we see that the embedding reveals the “ties with

cats” blindspot. Note that this is a subset of the “ties without people” blindspot.
• Figures D.30 and D.31 show a few examples of the additional blindspots the embedding

reveals.
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Figure D.26: “ties without people”

Figure D.27: “ties with people”
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Figure D.28: “ties with cats”

Figure D.29: “ties without cats”
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Figure D.30: “ties with teddybears”

Figure D.31: “ties with buses” Is the model using ‘context’ that it shouldn’t be or is the image pre-processing making detecting
these ties very hard (the bus driver is frequently wearing a tie, but that tie is very small)?
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Figure D.32: Additionally, when we see that the embedding also reveals the “frisbees without dogs or people” blindspot from
[75]. However, these images look more like outliers than a proper cluster.
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D.6.7 New Blindspots

Because it has been observed that it is easier to find “bugs” in models when we know what to
look for [3], we also explore classes that have not been discussed in prior work. We asked a
colleague to pick a class from the list of ImageNet classes and they chose “library” because
they thought that it seemed related to or correlated with other ImageNet classes.

• Dataset: ImageNet
• Class: library
• Blindspot: images of the outside of libraries
• Blindspot: images of a single bookshelf

Results of inspecting the 2D embedding:

• Figure D.33 shows that the model is less able to label an image as a library when the image
is of the outside of a library. Interestingly, this is even true when the building is labeled as a
library.
• By comparing Figure D.34 to Figures D.35 and D.36, we see that, without the context clues

of “people” or “multiple bookshelves” the model is less able to label an image as a library
when the image contains only a single bookshelf. This may be a data labeling problem
because “bookcase” is another class in ImageNet.
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Figure D.33: “outside of libraries”

Figure D.34: “single bookshelf”
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Figure D.35: “people near bookshelves’

Figure D.36: “multiple bookshelves without people”

164


	Introduction
	Thesis Question
	What do we mean by ``explainability?''
	What do we mean by a ``specific application?''
	What do we mean by ``rigorously?''
	How do we answer this question?

	An Application-based Pipeline for Explainability
	Applications Studied
	User Interaction
	Knowledge Discovery
	Spurious Patterns
	Blindspots

	Contributions
	Reading Guide

	I Applications
	User Interaction
	Introduction
	Background and Related Work
	Explanation-based Optimization
	Experimental Results
	User Study
	Conclusion

	Knowledge Discovery
	Introduction
	Related Work
	Global Counterfactual Explanations
	Relating GCEs and Compressed Sensing
	Computing GCEs
	Controlling the Level of Sparsity

	Experimental Results
	TGT's Efficacy at Explaining the Model
	TGT's Efficacy at Capturing Real Signals in the Data

	Conclusion

	Spurious Patterns
	Introduction
	Related Work
	Spurious Pattern Identification and REpair
	Specific Mitigation Strategies

	Evaluation
	Experiments
	Benchmark Experiments
	Full Experiment
	Generalization Experiments

	Conclusion

	Blindspots
	Introduction
	Background
	Evaluating BDMs using Knowledge of the True Blindspots
	SpotCheck: A Synthetic Evaluation Framework for BDMs
	Evaluation Metrics based on Knowledge of the True Blindspots

	PlaneSpot: A simple BDM based on Dimensionality Reduction
	Experiments
	Synthetic Data Experiments
	Real Data Experiments

	Evaluating BDMs without Knowledge of the Model's True Blindspots
	Conclusion

	Conclusion
	Summary
	Future Work

	Bibliography

	II Appendices
	User Interaction
	Comparison of ExpO to SENN
	Expanded Version of Section 2.2
	Model Details and Selection
	Defining the Local Neighborhood
	More Examples of ExpO's Effects
	Quantitative Results on the `support2' Dataset
	User Study: Additional Details
	Non-Semantic Features

	Knowledge Discovery
	An Example of the Difficulty of Using Existing Methods
	Representation Function
	Learned Representations
	Pairwise Correctness and Coverage Plots
	Qualitative Analysis of the UCI Datasets using the Labels
	Quantitative Analysis of Modified Versions of the UCI Datasets.

	Spurious Patterns
	Discussion
	Method Details
	When can SPIRE be applied to a problem?
	Generating Counterfactual Images
	What does it mean to introduce new potential SPs?
	Setting 1: Working through SPIRE's augmentation strategy

	Evaluation Details
	Why not set P(Spurious | Main) = P(Spurious | not Main) = P(Spurious) for the Balanced Distribution?
	Why do small, in absolute terms, Hallucination gaps matter?
	Why can the Gap Metrics change much more than performance on the Balanced Distribution?
	Counterfactual Evaluation

	Tennis Racket Example: Metrics and Mitigation Results.
	Model Training Details
	Additional Results: Benchmark Experiments - Section 4.5.1
	Additional Results: Full Experiment - Section 4.5.2
	Additional Results: Generalization Experiments - Section 4.5.3
	SPIRE-R - Projection PseudoCode
	ISIC Experiment- Pipeline for creating counterfactuals


	Blindspots
	Generating Experimental Configurations, Extended
	Semantic Features
	Defining a Dataset using these Semantic Features
	Defining the Blindspots for a Dataset

	How do our definitions of ``belonging to'' and ``covering'' build on similar ideas in existing work?
	Hyperparameter Tuning
	Why are these BDMs failing?
	COCO Experiments, Details
	Prediction Task & Data Preprocessing
	Blindspot Definitions
	Model Training
	ECs: General Pool
	ECs: Conditioned Pools

	Observations from a Qualitative Inspection of Real Data
	Preliminaries
	Summit
	George
	Feature Splitting
	Barlow
	Spire
	New Blindspots




