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Abstract
As machine learning models are more frequently deployed in various applications, there is

a growing need to better understand, interact with, and regulate their behaviors. Explainable
machine learning is a research field dedicated to this need, whose primary focus initially
has been on methodological developments satisfying favorable algorithmic properties that
elicit potentially useful information about the model predictions. However, critiques have
also emphasized the need for more critical evaluations of these methods applied to concrete
tasks with different users. In this thesis, we provide our individual contributions to both
methodological and applied aspects of the field.

Methodologically, we present an efficient algorithm providing important information about
the model behavior through influential training data points. We then propose a principled
framework for understanding the model’s trade-offs with performance and fairness metrics.
Next, from an application-driven perspective, we discuss an evaluation framework that tests
if the existing saliency methods on images are suitable for the practical task of spurious cor-
relation detection. Lastly, motivated by practical issues in academic peer review, we present
our findings on the utility of new and existing methods in helping human users perform the
task of document matching.
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Chapter 1

Introduction

With impressive performance in practical domains like computer vision and natural language process-
ing, complex machine learning models are increasingly adopted to assist humans in high-stakes decision-
making, such as medical, financial, legal, and social applications. Such accelerated adoption creates a
growing need for human users to better understand, regulate, and interact with these models.

Explainable machine learning1 is a broad research field dedicated to this need [34, 79]. Many work
in the literature focuses on methodological developments: developing new methods satisfying various
technical objectives that can efficiently elicit important and useful information from a black-box machine
learning model. However, various technical objectives used by these methods have no clear connection
to the actual “importance” or “usefulness” of the information elicited, which inherently is dependent on
the users using the information for some downstream task [28]. Hence, evaluating the developed methods
based on concrete applications is critical to fully close the loop of developing novel methods with practical
utility. In this thesis, we present individual contributions to both methodological and application-focused
aspects of the field.

Methodology Application
Method Name Information Useful To Useful For

Ch. 2 Representer points [143]
Important

samples ML practitioners
Dataset debugging,

understanding misclassification

Ch. 3
Fairness-Accuracy

Trade-off diagnostic [63]
Fairness

guarantees
ML practitioners,

regulators

Communicating trade-offs in
fairness and accuracy for

compliance and development

Ch. 4 Saliency methods
Important

input features ML practitioners Detecting spurious correlations [64]

Ch. 5 Task-specific methods
Important

input features Meta-reviewers Matching submitted papers
to potential reviewers [65]

Table 1.1: Organization of our contributions presented in the thesis (bold parts indicate primary focus of
each work). In Chapters 2 and 3, we focus on methodology, presenting novel methods that elicit different
types of information about the model. In Chapters 4 and 5, we focus on application, where we study the
practical benefits of given methods and information for different users and tasks. Considering both the
methodology and application can lead to methods that are well-grounded on practical utility with desirable
algorithmic properties.

1It is also often alternatively referred to as explainable AI (XAI in short), or interpretable machine learning.
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Methodological Contributions

Picking Important Training Samples. One family of methods in explainable machine learning lit-
erature is sample-based explanation which attributes the model prediction to individual training samples.
For instance, [68] approximate the influence function for deep neural networks to measure the impact of
individual training data points on the trained model’s loss function. Several follow-up works have sug-
gested alternatives or improvements for selecting influential training samples for the model [45, 60, 98].

In Chapter 2, we present an efficient method of this family that selects a set of representer points, or a
set of training data points, that are computationally influential to the model’s loss function [143]. We do
this by decomposing the prediction of the model into a linear combination of activations of training points.
The quality of the selected representer points is evaluated in simulated tasks such as data label fixing and
model debugging, which are generally important parts of a general workflow for ML practitioners (first
row of Table 1.1). The proposed method is able to maintain the quality of the selection while being
computationally efficient compared to the baselines for large-scale datasets.

Assessing Model Fairness. Another family of methods in the literature is performance-based meth-
ods, where they detect biases or blindspots of the model through relationships among model performance
metrics on different subgroups of the test data based on specific features. For instance, a broad set of
methods in algorithmic fairness assesses the model’s bias using these relationships for different sub-
groups based on protected attributes [15, 21, 29, 36, 47, 67, 92] and try to mitigate it with data pre-
processing [125, 148], regularization during training [145, 146], or model post-processing [47].

In Chapter 3, we present a principled framework that unifies different notions of algorithmic fairness
to better inform trade-offs between fairness vs. accuracy and fairness vs. fairness [63]. The resulting
Fairness-Accuracy Trade-off (FACT) diagnostic allows one to better formalize what the model is capa-
ble of in terms of satisfying multiple fairness criteria and predictive performance guarantees for a given
dataset. For instance, ML practitioners who train models subject to compliance and regulators who estab-
lish a policy based on the model’s capability can all potentially benefit from the framework (second row
of Table 1.1).

Application-focused Contributions

Testing Correctness of Saliency Methods. Saliency methods refer to the set of methods that attribute
scores (called feature attribution scores) to individual input features (e.g., pixels for images, tokens of text)
based on how “influential” they are to the model’s prediction [7, 11, 83, 101, 108, 113, 114, 117, 124, 147].
The output of these methods are typically presented in the form of heatmaps or highlights over the input
features, based on the intensity of the feature attribution scores assigned per given input feature.

In Chapter 4, we develop a synthetic evaluation framework that tests if multiple leading saliency
methods in the literature are capable of correctly detecting spurious correlations, an important task for
ML practitioners where they check if the patterns a model relies on indeed align with expectations or
domain knowledge (third row of Table 1.1)[64]. Although the existing saliency methods on image data
are designed to highlight regions important to the model, we find that this may not be true and the methods
are, in fact, more brittle. The presented evaluation framework, called SMERF, verifies if the methods can
faithfully highlight the truly important region for a model under different conditions, allowing one to
screen methods that are more suitable for practice.

Assisting Human Users for Matching. Compared to synthetic evaluations, human-based evaluations
aim to capture the pros and cons of the methods applied to a specific task more realistically, via random-
ized controlled experiments with human users who directly interact with the information provided by the
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methods to complete some task. It is often the case that the methods previously claimed to be effective in
synthetic evaluations may not be as effective in human-based evaluations [6, 9, 12, 53]. Such discrepancy
speaks for the importance of human-based evaluation to fully gauge the method’s practical utility.

In Chapter 5, we present our study of different types of explanation methods on a specific downstream
task: assisting humans in document matching [65]. One motivating example of this application is paper-
reviewer assignment in academic peer review for which the meta-reviewers are responsible (fourth row
of Table 1.1). The increasing volume of papers submitted and the need to better understand existing
matching algorithms call for more useful tools to assist their work. To this end, we not only develop
new task-specific methods, but also test them, along with other existing methods, for their explicit utility
on real human users. We present our findings on a simplified experimental setup, showing the potential
advantages of the task-specific methods over the existing ones. We further present our efforts in adapting
the methods to a more realistic setting of academic peer review, to further examine their true practical
utility.
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Chapter 2

Understanding Model Decisions through
Influential Training Samples

2.1 Introduction

As machine learning systems start to be more widely used, we are starting to care not just about the
accuracy and speed of the predictions, but also why it made its specific predictions. While we need not
always care about the why of a complex system in order to trust it, especially if we observe that the
system has high accuracy, such trust typically hinges on the belief that some other expert has a richer
understanding of the system. For instance, while we might not know exactly how planes fly in the air, we
trust some experts do. In the case of machine learning models however, even machine learning experts
do not have a clear understanding of why say a deep neural network makes a particular prediction. Our
work proposes to address this gap by focusing on improving the understanding of experts, in addition to
lay users. In particular, expert users could then use these explanations to further fine-tune the system (e.g.
dataset/model debugging), as well as suggest different approaches for model training, so that it achieves a
better performance.

Our key approach to do so is via a representer theorem for deep neural networks, which might be of
independent interest even outside the context of explainable ML. We show that we can decompose the
pre-activation prediction values into a linear combination of training point activations, with the weights
corresponding to what we call representer values, which can be used to measure the importance of each
training point has on the learned parameter of the model. Using these representer values, we select repre-
senter points – training points that have large/small representer values – that could aid the understanding
of the model’s prediction.

Such representer points provide a richer understanding of the deep neural network than other ap-
proaches that provide influential training points, in part because of the meta-explanation underlying our
explanation: a positive representer value indicates that a similarity to that training point is excitatory, while
a negative representer value indicates that a similarity to that training point is inhibitory, to the prediction
at the given test point. It is in these inhibitory training points where our approach provides considerably
more insight compared to other approaches: specifically, what would cause the model to not make a par-
ticular prediction? In one of our examples, we see that the model makes an error in labeling an antelope
as a deer. Looking at its most inhibitory training points, we see that the dataset is rife with training images
where there are antelopes in the image, but also some other animals, and the image is labeled with the
other animal. These thus contribute to inhibitory effects of small antelopes with other big objects: an
insight that as machine learning experts, we found deeply useful, and which is difficult to obtain via other
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explanatory approaches. We demonstrate the utility of our class of representer point explanations through
a range of theoretical and empirical investigations.

Source code supporting the contents of this chapter can be found here: https://github.com/
chihkuanyeh/Representer_Point_Selection.

2.2 Related Work

There are two main classes of approaches to explain the prediction of a model. The first class of
approaches point to important input features. Ribeiro et al. [101] provide such feature-based explanations
that are model-agnostic; explaining the decision locally around a test instance by fitting a local linear
model in the region. Ribeiro et al. [102] introduce Anchors, which are locally sufficient conditions of
features that “holds down” the prediction so that it does not change in a local neighborhood. Such feature
based explanations are particularly natural in computer vision tasks, since it enables visualizing the regions
of the input pixel space that causes the classifier to make certain predictions. There are numerous works
along this line, particularly focusing on gradient-based methods that provide saliency maps in the pixel
space [11, 114, 117, 124].

The second class of approaches are sample-based, and they identify training samples that have the most
influence on the model’s prediction on a test point. Among model-agnostic sample-based explanations are
prototype selection methods [16, 61] that provide a set of “representative” samples chosen from the data
set. Kim et al. [62] provide criticism alongside prototypes to explain what are not captured by prototypes.
Usually such prototype and criticism selection is model-agnostic and used to accelerate the training for
classifications. Model-aware sample-based explanation identify influential training samples which are
the most helpful for reducing the objective loss or making the prediction. Recently, Koh and Liang [68]
provide tractable approximations of influence functions that characterize the influence of each sample in
terms of change in the loss. Anirudh et al. [8] propose a generic approach to influential sample selection
via a graph constructed using the samples.

Our approach is based on a representer theorem for deep neural network predictions. Representer theo-
rems [105] in machine learning contexts have focused on non-parametric regression, specifically in repro-
ducing kernel Hilbert spaces (RKHS), and which loosely state that under certain conditions the minimizer
of a loss functional over a RKHS can be expressed as a linear combination of kernel evaluations at train-
ing points. There have been recent efforts at leveraging such insights to compositional contexts [18, 129],
though these largely focus on connections to non-parametric estimation. Bohn et al. [18] extend the rep-
resenter theorem to compositions of kernels, while Unser [129] draws connections between deep neural
networks to such deep kernel estimation, specifically deep spline estimation. In our work, we consider
the much simpler problem of explaining pre-activation neural network predictions in terms of activations
of training points, which while less illuminating from a non-parametric estimation standpoint, is arguably
much more explanatory, and useful from an explainable ML standpoint.

2.3 Representer Point Framework

Consider a classification problem, of learning a mapping from an input space X ⊆ Rd (e.g., im-
ages) to an output space Y ⊆ R (e.g., labels), given training points x1,x2, ...xn, and corresponding
labels y1,y2, ...yn. We consider a neural network as our prediction model, which takes the form ŷi =
σ(Φ(xi,Θ)) ⊆ Rc, where Φ(xi,Θ) = Θ1fi ⊆ Rc and fi = Φ2(xi,Θ2) ⊆ Rf is the last intermediate
layer feature in the neural network for input xi. Note that c is the number of classes, f is the dimension
of the feature, Θ1 is a matrix ⊆ Rc×f , and Θ2 is all the parameters to generate the last intermediate

5

https://github.com/chihkuanyeh/Representer_Point_Selection
https://github.com/chihkuanyeh/Representer_Point_Selection


layer from the input xi. Thus Θ = {Θ1,Θ2} are all the parameters of our neural network model. The
parameterization above connotes splitting of the model as a feature model Φ2(xi,Θ2) and a prediction
network with parameters Θ1. Note that the feature model Φ2(xi,Θ2) can be arbitrarily deep, or simply
the identity function, so our setup above is applicable to general feed-forward networks.

Our goal is to understand to what extent does one particular training point xi affect the predic-
tion ŷt of a test point xt as well as the learned weight parameter Θ. Let L(x,y,Θ) be the loss,
and 1

n

∑n
i L(xi,yi,Θ) be the empirical risk. To indicate the form of a representer theorem, suppose

we solve for the optimal parameters Θ∗ = argminΘ
{

1
n

∑n
i L(xi,yi,Θ) + g(||Θ||)

}
for some non-

decreasing g. We would then like our pre-activation predictions Φ(xt,Θ) to have the decomposition:
Φ(xt,Θ

∗) =
∑n

i αik(xt,xi). Given such a representer theorem, αik(xt,xi) can be seen as the contri-
bution of the training data xi on the testing prediction Φ(xt,Θ). However, such representer theorems
have only been developed for non-parametric predictors, specifically where Φ lies in a reproducing kernel
Hilbert space. Moreover, unlike the typical RKHS setting, finding a global minimum for the empirical
risk of a deep network is difficult, if not impossible, to obtain. In the following, we provide a representer
theorem that addresses these two points: it holds for deep neural networks, and for any stationary point
solution.
Theorem 2.3.1. Let us denote the neural network prediction function by ŷi = σ(Φ(xi,Θ)), where
Φ(xi,Θ) = Θ1fi and fi = Φ2(xi,Θ2). Suppose Θ∗ is a stationary point of the optimization prob-
lem: argminΘ

{
1
n

∑n
i L(xi,yi,Θ)) + g(||Θ1||)

}
, where g(||Θ1||) = λ||Θ1||2 for some λ > 0. Then

we have the decomposition:

Φ(xt,Θ
∗) =

n∑
i

k(xt,xi, αi),

where αi =
1

−2λn
∂L(xi,yi,Θ)
∂Φ(xi,Θ) and k(xt,xi, αi) = αif

T
i ft, which we call a representer value for xi given

xt.

Proof. Note that for any stationary point, the gradient of the loss with respect to Θ1 is equal to 0. We
therefore have

1

n

n∑
i=1

∂L(xi,yi,Θ)

∂Θ1
+ 2λΘ∗

1 = 0 ⇒ Θ∗
1 = − 1

2λn

n∑
i=1

∂L(xi,yi,Θ)

∂Θ1
=

n∑
i=1

αif
T
i (2.1)

where αi = − 1
2λn

∂L(xi,yi,Θ)
∂Φ(xi,Θ) by the chain rule. We thus have that

Φ(xt,Θ
∗) = Θ∗

1ft =
n∑

i=1

k(xt,xi, αi), (2.2)

where k(xt,xi, αi) = αif
T
i ft by simply plugging in the expression (2.1) into (2.2).

We note that αi can be seen as the resistance for training example feature fi towards minimizing the
norm of the weight matrix Θ1. Therefore, αi can be used to evaluate the importance of the training
data xi have on Θ1. Note that for any class j, Φ(xt,Θ

∗)j = Θ∗
1jft =

∑n
i=1 k(xt,xi, αi)j holds by

(2.2). Moreover, we can observe that for k(xt,xi, αi)j to have a significant value, two conditions must be
satisfied: (a) αij should have a large value, and (b) fTi ft should have a large value. Therefore, we interpret
the pre-activation value Φ(xt,Θ)j as a weighted sum for the feature similarity fTi ft with the weight αij .
When ft is close to fi with a large positive weight αij , the prediction score for class j is increased. On the
other hand, when ft is close to fi with a large negative weight αij , the prediction score for class j is then
decreased.
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We can thus interpret the training points with negative representer values as inhibitory points that
suppress the activation value, and those with positive representer values as excitatory examples that does
the opposite. We demonstrate this notion with examples further in Section 2.4.2. We note that such
excitatory and inhibitory points provide a richer understanding of the behavior of the neural network: it
provides insight both as to why the neural network prefers a particular prediction, as well as why it does
not, which is typically difficult to obtain via other sample-based explanations.

2.3.1 Training an Interpretable Model by Imposing L2 Regularization.

Theorem 2.3.1 works for any model that performs a linear matrix multiplication before the activation
σ, which is quite general and can be applied on most neural-network-like structures. By simply introduc-
ing a L2 regularizer on the weight with a fixed λ > 0, we can easily decompose the pre-softmax prediction
value as some finite linear combinations of a function between the test and train data. We now state our
main algorithm. First we solve the following optimization problem:

Θ∗ = argmin
Θ

1

n

n∑
i

L(yi,Φ(xi,Θ)) + λ||Θ1||2. (2.3)

Note that for the representer point selection to work, we would need to achieve a stationary point with
high precision. In practice, we find that using a gradient descent solver with line search or LBFGS solver
to fine-tune after converging in SGD can achieve highly accurate stationary point. Note that we can
perform the fine-tuning step only on Θ1, which is usually efficient to compute. We can then decompose
Φ(xt,Θ) =

∑n
i k(xt,xi, αi) by Theorem 2.3.1 for any arbitrary test point xt, where k(xt,xi, αi) is the

contribution of training point xi on the pre-softmax prediction Φ(xt,Θ). We emphasize that imposing L2
weight decay is a common practice to avoid overfitting for deep neural networks, which does not sacrifice
accuracy while achieving a more interpretable model.

2.3.2 Generating Representer Points for a Given Pre-trained Model.

We are also interested in finding representer points for a given model Φ(Θgiven) that has already been
trained, potentially without imposing the L2 regularizer. While it is possible to add the L2 regularizer
and retrain the model, the retrained model may converge to a different stationary point, and behave dif-
ferently compared to the given model, in which case we cannot use the resulting representer points as
explanations. Accordingly, we learn the parameters Θ while imposing the L2 regularizer, but under the
additional constraint that Φ(xi,Θ) be close to Φ(xi,Θgiven). In this case, our learning objective becomes
Φ(xi,Θgiven) instead of yi, and our loss L(xi, yi,Θ) can be written as L(Φ(xi,Θgiven),Φ(xi,Θ)).
Definition 2.3.1. We say that a convex loss function L(Φ(xi,Θgiven),Φ(xi,Θ)) is “suitable” to an
activation function σ, if it holds that for any Θ∗ ∈ argminΘ L(Φ(xi,Θgiven),Φ(xi,Θ)), we have
σ(Φ(xi,Θ

∗)) = σ(Φ(xi,Θgiven)).
Assume that we are given such a loss function L that is “suitable to” the activation function σ. We can

then solve the following optimization problem:

Θ∗ ∈ argmin
Θ

{
1

n

n∑
i

L(Φ(xi,Θgiven),Φ(xi,Θ)) + λ||Θ1||2
}
. (2.4)

The optimization problem can be seen to be convex under the assumptions on the loss function. The
parameter λ > 0 controls the trade-off between the closeness of σ(Φ(X,Θ)) and σ(Φ(X,Θgiven)), and
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Figure 2.1: Pearson correlation between the actual and approximated softmax output (expressed as a linear
combination) for train (left) and test (right) data in CIFAR-10 dataset. The correlation is almost 1 for both
cases.

the computational cost. For a small λ, σ(Φ(X,Θ)) could be arbitrarily close to σ(Φ(X,Θgiven)), while
the convergence time may be long. We note that the learning task in Eq. (2.4) can be seen as learning from
a teacher network Θgiven and imposing a regularizer to make the student model Θ capable of generating
representer points. In practice, we may take Θgiven as an initialization for Θ and perform a simple line-
search gradient descent with respect to Θ1 in (2.4). In our experiments, we discover that the training for
(2.4) can converge to a stationary point in a short period of time, as demonstrated in Section 5.4.3.

We now discuss our design for the loss function that is mentioned in (2.4). When σ is the soft-
max activation, we choose the softmax cross-entropy loss, which computes the cross entropy between
σ(Φ(xi,Θgiven)) and σ(Φ(xi,Θ)) for Lsoftmax(Φ(xi,Θgiven),Φ(xi,Θ)). When σ is ReLU activation,
we choose LReLU(Φ(xi,Θgiven),Φ(xi,Θ)) = 1

2 max(Φ(xi,Θ), 0)⊙Φ(xi,Θ)−max(Φ(xi,Θgiven), 0)⊙
Φ(xi,Θ), where ⊙ is the element-wise product. In the following Proposition, we show that Lsoftmax and
LReLU are convex, and satisfy the desired suitability property in Definition 2.3.1. The proof is provided in
Appendix A.

Proposition 2.3.1. The loss functions Lsoftmax and LReLU are both convex in Θ1. Moreover, Lsoftmax is
“suitable to” the softmax activation, and LReLU is “suitable to” the ReLU activation, following Defini-
tion 2.3.1.

As a sanity check, we perform experiments on the CIFAR-10 dataset [71] with a pre-trained VGG-
16 network [116]. We first solve (2.4) with loss Lsoftmax(Φ(xi,Θ),Φ(xi,Θgiven)) for λ = 0.001, and
then calculate Φ(xt,Θ

∗) =
∑n

i=1 k(xt,xi, αi) as in (2.2) for all train and test points. We note that the
computation time for the whole procedure only takes less than a minute, given the pre-trained model.
We compute the Pearson correlation coefficient between the actual output σ(Φ(xt,Θ)) and the predicted
output σ(

∑n
i=1 k(xt,xi, αi)) for multiple points and plot them in Figure 2.1. The correlation is almost 1

for both train and test data, and most points lie at the both ends of y = x line.
We note that Theorem 2.3.1 can be applied to any hidden layer with ReLU activation by defining a

sub-network from input x and the output being the hidden layer of interest. The training could be done in
a similar fashion by replacing Lsoftmax with LReLU. In general, any activation can be used with a derived
“suitable” loss.
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2.4 Experiments

We perform a number of experiments with multiple datasets and evaluate our method’s performance
and compare with that of the influence functions.1 The goal of these experiments is to demonstrate that se-
lecting the representer points is efficient and insightful in several ways. Additional experiments discussing
the differences between our method and the influence function are included in Appendix A.

2.4.1 Dataset Debugging

Figure 2.2: Dataset debugging performance for several methods. By inspecting the training points using
the representer value, we are able to recover the same amount of mislabeled training points as the influence
function (right) with the highest test accuracy compared to other methods (left).

To evaluate the influence of the samples, we consider a scenario where humans need to inspect the
dataset quality to ensure an improvement of the model’s performance in the test data. Real-world data is
bound to be noisy, and the bigger the dataset becomes, the more difficult it will be for humans to look for
and fix mislabeled data points. It is crucial to know which data points are more important than the others
to the model so that prioritizing the inspection can facilitate the debugging process.

To show how well our method does in dataset debugging, we run a simulated experiment on CIFAR-
10 dataset [75] with a task of binary classification with logistic regression for the classes automobiles
and horses. The dataset is initially corrupted, where 40 percent of the data has the labels flipped, which
naturally results in a low test accuracy of 0.55. The simulated user will check some fraction of the train
data based on the order set by several metrics including ours, and fix the labels. With the corrected version
of the dataset, we retrain the model and record the test accuracies for each metrics. For our method, we
train an explainable model by mimimizing (2.3) as explained in section 2.3.1. The L2 weight decay is
set to 1e−2 for all methods for fair comparison. All experiments are repeated for 5 random splits and we
report the average result. In Figure 2.2 we report the results for four different metrics: “ours” picks the
points with bigger |αij | for training instance i and its corresponding label j; “influence” prioritizes the
training points with bigger influence function value; and “random” picks random points. We observe that
our method recovers the same amount of training data as the influence function while achieving higher
testing accuracy. Nevertheless, both methods perform better than the random selection method.

1Source code available at github.com/chihkuanyeh/Representer Point Selection.
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2.4.2 Excitatory (Positive) and Inhibitory (Negative) Examples

We visualize the training points with high representer values (both positive and negative) for some test
points in Animals with Attributes (AwA) dataset [140] and compare the results with those of the influence
functions. We use a pre-trained Resnet-50 [48] model and fine-tune on the AwA dataset to reach over 90
percent testing accuracy. We then generate representer points as described in section 2.3.2. For computing
the influence functions, just as described in [68], we froze all top layers of the model and trained the last
layer. We report top three points for two test points in the following Figures 2.3 and 2.4. In Figure 2.3,
which is an image of three grizzly bears, our method correctly returns three images that are in the same
class with similar looks, similar to the results from the influence function. The positive examples excite
the activation values for a particular class and supports the decision the model is making. For the negative
examples, just like the influence functions, our method returns images that look like the test image but
are labeled as a different class. In Figure 2.4, for the image of a rhino the influence function could not
recover useful training points, while ours does, including the similar-looking elephants or zebras which
might be confused as rhinos, as negatives. The negative examples work as inhibitory examples for the
model – they suppress the activation values for a particular class of a given test point because they are
in a different class despite their striking similarity to the test image. Such inhibitory points thus provide
a richer understanding, even to machine learning experts, of the behavior of deep neural networks, since
they explicitly indicate training points that lead the network away from a particular label for the given test
point. More examples can be found in Appendix A.

Ours Influence Function

Figure 2.3: Comparison of top three positive and negative influential training images for a test point
(left-most column) using our method (left columns) and influence functions (right columns).

2.4.3 Understanding Misclassified Examples

The representer values can be used to understand the model’s mistake on a test image. Consider a
test image of an antelope predicted as a deer in the left-most panel of Figure 2.5. Among 181 test images
of antelopes, the total number of misclassified instances is 15, among which 12 are misclassified as deer.
All of those 12 test images of antelopes had the four training images shown in Figure 2.5 among the top
inhibitory examples. Notice that we can spot antelopes even in the images labeled as zebra or elephant.
Such noise in the labels of the training data confuses the model – while the model sees elephant and
antelope, the label forces the model to focus on just the elephant. The model thus learns to inhibit the
antelope class given an image with small antelopes and other large objects. This insight suggests for
instance that we use multi-label prediction to train the network, or perhaps clean the dataset to remove
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Ours Influence Function

Figure 2.4: Here we can observe that our method provides clearer positive and negative examples while
the influence function fails to do so.

such training examples that would be confusing to humans as well. Interestingly, the model makes the
same mistake (predicting deer instead of antelope) on the second training image shown (third from the left
of Figure 2.5), and this suggests that for the training points, we should expect most of the misclassifications
to be deer as well. And indeed, among 863 training images of antelopes, 8 are misclassified, and among
them 6 are misclassified as deer.

Figure 2.5: A misclassified test image (left) and the set of four training images that had the most negative
representer values for almost all test images in which the model made the same mistakes. The negative
influential images all have antelopes in the image despite the label being a different animal.

2.4.4 Sensitivity Map Decomposition

From Theorem 2.3.1, we have seen that the pre-softmax output of the neural network can be de-
composed as the weighted sum of the product of the training point feature and the test point feature, or
Φ(xt,Θ

∗) =
∑n

i αif
T
i ft. If we take the gradient with respect to the test input xt for both sides, we get

∂Φ(xt,Θ∗)
∂xt

=
∑n

i αi
∂fTi ft
∂xt

. Notice that the LHS is the widely-used notion of sensitivity map (gradient-
based attribution), and the RHS suggests that we can decompose this sensitivity map into a weighted sum
of sensitivity maps that are native to each i-th training point. This gives us insight into how sensitivities
of training points contribute to the sensitivity of the given test image.

In Figure 2.6, we demonstrate two such examples, one from the class zebra and one from the class
moose from the AwA dataset. The first column shows the test images whose sensitivity maps we wish to
decompose. For each example, in the following columns we show top four influential representer points in
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the the top row, and visualize the decomposed sensitivity maps in the bottom. We used SmoothGrad [120]
to obtain the sensitivity maps.

For the first example of a zebra, the sensitivity map on the test image mainly focuses on the face of
the zebra. This means that infinitesimally changing the pixels around the face of the zebra would cause
the greatest change in the neuron output. Notice that the focus on the head of the zebra is distinctively
the strongest in the fourth representer point (last column) when the training image manifests clearer facial
features compared to other training points. For the rest of the training images that are less demonstrative
of the facial features, the decomposed sensitivity maps accordingly show relatively higher focus on the
background than on the face. For the second example of a moose, a similar trend can be observed –
when the training image exhibits more distinctive bodily features of the moose than the background (first,
second, third representer points), the decomposed sensitivity map highlights the portion of the moose on
the test image more compared to training images with more features of the background (last representer
point). This provides critical insight into the contribution of the representer points towards the neuron
output that might not be obvious just from looking at the images itself.

Figure 2.6: Sensitivity map decomposition using representer points, for the class zebra (above two rows)
and moose (bottom two rows). The sensitivity map on the test image in the first column can be readily
seen as the weighted sum of the sensitivity maps for each training point. The less the training point
displays spurious features from the background and more of the features related to the object of interest,
the more focused the decomposed sensitivity map corresponding to the training point is at the region the
test sensitivity map mainly focuses on.
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2.4.5 Computational Cost and Numerical Instabilities

Computation time is particularly an issue for computing the influence function values [68] for a large
dataset, which is very costly to compute for each test point. We randomly selected a subset of test points,
and report the comparison of the computation time in Table 2.1 measured on CIFAR-10 and AwA datasets.
We randomly select 50 test points to compute the values for all train data, and recorded the average and
standard deviation of computation time. Note that the influence function does not need the fine-tuning step
when given a pre-trained model, hence the values being 0, while our method first optimizes for Θ∗ using
line-search then computes the representer values. However, note that the fine-tuning step is a one time
cost, while the computation time is spent for every testing image we analyze. Our method significantly
outperforms the influence function, and such advantage will favor our method when a larger number of
data points is involved. In particular, our approach could be used for real-time explanations of test points,
which might be difficult with the influence function approach.

Influence Function Ours
Dataset Fine-tuning Computation Fine-tuning Computation

CIFAR-10 0 267.08± 248.20 7.09± 0.76 0.10± 0.08

AwA 0 172.71± 32.63 12.41± 2.37 0.19± 0.12

Table 2.1: Time required for computing an influence function / representer value for all training points
and a test point in seconds. The computation of Hessian Vector Products for influence function alone took
longer than our combined computation time.

While ranking the training points according to their influence function values, we have observed nu-
merical instabilities, more discussed in the supplementary material. For CIFAR-10, over 30 percent of the
test images had all zero training point influences, so influence function was unable to provide positive or
negative influential examples. The distribution of the values is demonstrated in Figure 2.7, where we plot
the histogram of the maximum of the absolute values for each test point in CIFAR-10. Notice that over
300 testing points out of 1,000 lie in the first bin for the influence functions (right). We checked that all
data in the first bin had the exact value of 0. Roughly more than 200 points lie in range [10−40, 10−28],
the values which may create numerical instabilities in computations. On the other hand, our method (left)
returns non-trivial and more numerically stable values across all test points.

Figure 2.7: The distribution of influence/representer values for a set of randomly selected 1,000 test points
in CIFAR-10. While ours have more evenly spread out larger values across different test points (left), the
influence function values can be either really small or become zero for some points, as seen in the left-most
bin (right).
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Chapter 3

Understanding Model Decisions through
Fairness-Performance Trade-offs

3.1 Introduction

As machine learning continues to be more widely used for applications with societal impact such as
credit decisioning, predictive policing, and employment applicant screening, practitioners face regulatory,
ethical, and legal challenges to prove whether or not their models are fair [32]. To provide quantitative
tests of model fairness, the practitioners further need to choose between multiple definitions of fairness
that exist in the machine learning literature [22, 92, 132]. Among them is a class of definitions called
group fairness, which measures how a group of individuals with certain protected attributes are treated
differently from other groups. From a technical point of view however, several notions of group fair-
ness have been shown to be incompatible with one another [29, 67], sometimes with a necessary cost in
loss of accuracy [80]. Such considerations complicate the practical development and assessment of ma-
chine learning models designed to satisfy group fairness, as the conditions under which these trade-offs
must necessarily occur can be too abstract to understand. Previous works on these trade-offs have been
presented in ad hoc and definition-specific manner, which further calls for a more general perspective
addressing the trade-offs in practice.

As an example, suppose an engineer is responsible for training a loan prediction model from a large
user dataset, subject to mandatory group fairness requirements shaped by regulatory concerns. One has
many choices for how to train this fair model, with fairness enforced before [57, 85, 104, 121, 125, 148],
during [145, 146], or after [36, 39, 47] training. However, the engineer must resort to trial and error
to determine which of these myriad approaches, if any, will produce a compliant model with sufficient
performance1 to satisfy business needs. It may even turn out that despite one’s best efforts, the fairness
constraints set by the regulators are actually impossible to satisfy to begin with, due to limitations intrinsic
to the prediction task and data at hand. If there was a tool to understand the potential trade-offs exhibited
by the model, even before training, it would be easier for multiple parties to effectively reconcile the
conflicting components in designing fair classifiers.

Motivated by such practical considerations, we propose the FACT (FAirness-Confusion Tensor) diag-
nostic for exploring the trade-offs involving group fairness: the diagnostic provides a general framework
under which the practitioners can understand both fairness–fairness trade-offs and fairness–performance
trade-offs. At the core of our diagnostic lies the fairness–confusion tensor, which is the confusion matrix

1In this work, performance refers to classical metrics derived from the confusion matrix, e.g., accuracy, precision and fairness
notions are not part of it.

14



divided along an additional axis for protected attributes. The FACT diagnostic first expresses the majority
of group fairness notions as linear/quadratic functions of the elements of this tensor. The simplicity of
these functions makes it easy for them to be naturally integrated into a class of optimization problems
over the elements of the tensor (not over the model parameters), which we call performance–fairness
optimality problem (PFOP). It essentially considers the geometry of valid fairness–confusion tensors that
satisfy a specified set of performance and/or fairness conditions.

By noting that many settings involve only linear notions of fairness, in this work we focus on least-
squares accuracy–fairness optimality problem (LAFOP) and model-specific least-squares accuracy–fairness
optimality problem (MS-LAFOP), which are specific instantiations of PFOP, each representative of model-
agnostic and model-specific scenarios. These problems allow one to not only understand group fairness
incompatibility, but also analyze difficulty of learning a classifier under additional group fairness condi-
tions imposed. In particular, for the model-agnostic case, the diagnostic allows for a comparative analysis
of the relative difficulty of learning a classifier under additional group fairness constraints imposed. This
difficulty is interpreted with respect to the Bayes error, which is the inherent difficulty of the fairness-
unconstrained learning problem, hence a natural reference point.

Our contributions are:
1. to demonstrate how fairness–confusion tensor characterizes the majority of group fairness defini-

tions in the literature as linear or quadratic functions, whose simplicity can be leveraged to formulate
optimization problems suited for trade-off analysis,

2. to formulate the FACT diagnostic as a PFOP, LAFOP, and MS-LAFOP over the fairness–confusion
tensor, enabling both model-agnostic and model-specific analysis of fairness trade-offs,

3. to provide a general understanding of group fairness incompatibility, which simplifies the existing
results in the literature and extends them to new types,

4. to demonstrate the use of the FACT diagnostic on synthetic and real datasets, e.g. how it can be
used for diagnosis of relative influence of the fairness notions on performance and other fairness
conditions, and how it can be used as a post-processing method for designing fair classifiers.

Source code supporting the contents of this chapter can be found here: https://github.com/
wnstlr/FACT.

3.2 Related Work

Fairness–confusion tensor is not a completely new notion – several work has implicitly mentioned
it, mostly disregarding it as a simple computational tool that eases the computation on an implementation
level [14, 24]. It is also a natural object considered in several post-processing methods in fairness [47,
96], a group of algorithms that fine-tune a trained model to mitigate the unfairness while keeping the
performance change minimal. Here we take a closer look at the fairness–confusion tensor itself and study
how this object naturally brings together several notions of group fairness, simplifying and generalizing
the analysis of inherent trade-offs within.

Quantitative definitions of group fairness exist in many different variations [15, 21, 29, 36, 47, 67,
92] but few work exists to categorize these notions with a broader perspective encompassing the trade-off
schemes. Verma and Rubin [131] categorized the existing group fairness definitions based on entries and
rates derived from the fairness–confusion tensor but did not explore any trade-offs and incompatibilities
within. Our work extends this effort and provides a versatile geometric formalism to study the trade-offs.

Fairness–performance trade-offs have been studied in many specific cases [22, 39, 57, 80, 89, 132,
151], for limited definitions of fairness, performance, and models. To our knowledge, these trade-offs have
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not been studied in the general way we present below. Zafar et al. [145, 146] presented an optimization-
based analysis of the trade-offs, albeit over the parameter space of a particular model.

Fairness–fairness trade-offs describe the incompatibility of multiple notions of group fairness [15,
29, 67, 96] without some strong assumptions about the data and the model. Previous incompatibility re-
sults have been presented mostly in ad hoc and definition-specific manner, which our diagnostic addresses
with a more general perspective for understanding incompatibilities. We show a general incompatibility
result involving Calibration fairness condition, which naturally implies the result in Kleinberg et al. [67]
along with many other new ones. To the best of our knowledge, our work is the first to provide a system-
atic approach to diagnose both fairness–fairness and fairness–performance trade-offs together for group
fairness under the same formalism.

3.3 The Fairness–confusion Tensor

Our key insight is that the elements of the fairness–confusion tensor encode all the information needed
to study many notions of performance and group fairness. The fairness–confusion tensor is simply the
stack of confusion matrices for each protected attribute a, as shown in Table 3.1. We focus on the simplest
case, with one binary protected attribute a ∈ {0, 1}, and a binary classifier ŷ ∈ {0, 1} for a binary
prediction label y ∈ {0, 1}.2

a = 1 y = 1 y = 0

ŷ = 1 TP1 FP1

ŷ = 0 FN1 TN1

a = 0 y = 1 y = 0

ŷ = 1 TP0 FP0

ŷ = 0 FN0 TN0

Table 3.1: The fairness–confusion tensor, showing the two planes corresponding to the confusion matrix
for each of the favored (a = 1) and disfavored groups (a = 0).

Let us denote the elements of the fairness–confusion tensor as TPa, FPa, FNa, TNa, each element
with subscripts indicating a, N be the number of data points, Na = TPa + FNa + FPa + TNa be the
number of data points in each group a ∈ {0, 1}, and Ma = TPa + FNa be the number of positive-
class instances (y = 1) for each group. Assume N , Na and Ma are known constants. Unraveling the
fairness–confusion tensor into an 8-dimensional vector, we write it as

z = (TP1, FN1, FP1, TN1, TP0, FN0, FP0, TN0)
T /N,

normalized and constrained to lie on K = {z ≥ 0 : Aconstz = bconst, ∥z∥1 = 1}, where Aconst and
bconst encode marginal sum constraints of the dataset (e.g., TPa + FNa = Ma) in matrix notations:

Aconst =


1 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 0 0

 ,

bconst = (N1,M1, N0,M0)
T /N.

We show below that some typical notions of group fairness can be reformulated as simple functions
of z, namely as a form of ϕ(z) = 0.

2The arguments generalize to multiple and non-binary protected attributes with high-dimensional tensors.
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Demographic parity (DP) states that each protected group should receive positive prediction at an
equal rate: Pr(ŷ = 1|a = 1) = Pr(ŷ = 1|a = 0), which is equivalent to (TP1 + FP1)/N1 = (TP0 +
FP0)/N0, or also the linear system ϕ(z) = ADPz = 0, where

ADP =
(
N0 0 N0 0 −N1 0 −N1 0

)
/N. (3.1)

The choice of normalization, 1/N , ensures that the matrix coefficients are in [0, 1]. We will refer to these
matrices A that encode information about the fairness conditions as fairness matrices.

Predictive parity (PP) [29] states that the likelihood of being in the positive class given the positive
prediction is the same for each group: Pr(y = 1|ŷ = 1,a = 1) = Pr(y = 1|ŷ = 1,a = 0), which is
equivalent to TP1

TP1+FP1
= TP0

TP0+FP0
⇐⇒ TP1

TP0
= FP1

FP0
. Unlike for DP, the marginal sum constraints do not

relate TPa and FPa, so this notion of fairness is not linear in the fairness–confusion tensor. PP actually
can be expressed using a quadratic form:

ϕ(z) =
1

2
zTBPPz = 0, BPP =



0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


. (3.2)

Calibration within groups (CG) [67], when specialized to binary classifiers and binary protected
classes, can be written as the system of equations FNa = v0(FNa + TNa);TPa = v1(TPa + FPa),
where the vis are scores satisfying 0 ≤ v0 < v1 ≤ 1 and have no implicit dependence on any entries
of the fairness–confusion tensor. We can rewrite this this condition explicitly as the matrix equation
ϕ(z) = ACGz = 0 with a fairness matrix

ACG =


1− v1 0 −v1 0 0 0 0 0

0 1− v0 0 −v0 0 0 0 0
0 0 0 0 1− v1 0 −v1 0
0 0 0 0 0 1− v0 0 −v0

 . (3.3)

Equalized odds (EOd) [47] states that true-positive rates and false-positive rates are the same for both
groups, which can be expressed as a linear system ϕ(z) = AEODz = 0 with a fairness matrix

AEOD =
1

N

(
M0 0 0 0 −M1 0 0 0
0 0 N0 −M0 0 0 0 −N1 +M1 0

)
(3.4)

where each row respectively corresponds to conditions for Equality of Opportunity (EOp) [47] and Pre-
dictive Equality (PE) [29]. Likewise, vertically stacking multiple fairness matrices results in a fairness
matrix corresponding to the conjunction of different fairness notions.

In Table 3.2 we generalize this formulation to a wide majority of group fairness definitions in the
literature, along with their abbreviations used throughout the paper. We find that most of the definitions
take either linear or quadratic form with respect to z. We further introduce a graphical notation to help
visualize which components of the fairness–confusion tensor participate in the fairness definition. Depict
the fairness–confusion tensor as , with the left matrix for the favored class (a = 1) and the right
matrix for the disfavored class (a = 0). Since each component of z corresponds to some element of the
fairness–confusion tensor, we shade each component that appears in the equation. Blue shading denotes
the favored class, while red shading denotes the disfavored class. We further distinguish two kinds of
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dependencies. Components that have a nonzero coefficient in the matrix are shaded fully. However,
the values of these coefficients themselves can depend on other components, albeit implicitly, and we
shade these implicit components in a lighter shade. Putting this all together, we can represent DP in (3.1)
graphically as , EOd as ∧ , PP as ( )(2) , with the superscript denoting the quadratic
order of the term. As shown in the third column of Table 3.2, all group fairness notions can be effectively
described in this notation.

Name of fairness Definition and linear system Terms in fairness–confusion tensor

Demographic parity (DP) Pr(ŷ = 1|a = 1) = Pr(ŷ = 1|a = 0)
ADP =

1
N

(
N0 0 N0 0 −N1 0 −N1 0

)
Equality of opportunity (EOp)[47] Pr(ŷ = 1|y = 1,a = 1) = Pr(ŷ = 1|y = 1,a = 0)

AEOP =
1
N

(
M0 0 0 0 −M1 0 0 0

)
Predictive equality (PE)[29] Pr(ŷ = 1|y = 0,a = 1) = Pr(ŷ = 1|y = 0,a = 0)

APE = 1
N

(
0 0 N0 −M0 0 0 0 −N1 +M1 0

)
Equalized odds (EOd)[47] EOp ∧ PE ∧
Equal false negative rate (EFNR) 2 Pr(ŷ = 0|y = 1,a = 1) = Pr(ŷ = 0|y = 1,a = 0)

AEFNR = 1
N

(
0 M0 0 0 0 −M1 0 0

)
Calibration within groups (CG)[67] Pr(y = 1|Pθ(x) = s,a = 1) = Pr(y = 1|Pθ(x) = s,a = 0) = s

ACG =


1− v1 0 −v1 0 0 0 0 0

0 1− v0 0 −v0 0 0 0 0
0 0 0 0 1− v1 0 −v1 0
0 0 0 0 0 1− v0 0 −v0

 ∧ ∧ ∧

Positive class balance (PCB)[67] E(Pθ|y = 1,a = 1) = E(Pθ|y = 1,a = 0)

APCB = mina(Ma)
( v1
M1

v0
M1

0 0 − v1
M0

− v0
M0

0 0
)

Negative class balance (NCB)[67] E(Pθ|y = 0,a = 1) = E(Pθ|y = 0,a = 0)

ANCB = mina(Na −Ma)
(
0 0 v1

N1−M1

v0
N1−M1

0 0 − v1
N0−M0

− v0
N0−M0

)
Relaxed Equalized Odds (REod)[96] α0FPR0 + β0FNR0 = α1FPR1 + β1FNR1

AREOD =
(
0 β1

M1

α1

N1−M1
0 0 β0

M0

α0

N0−M0
0
)
/N

Predictive parity (PP)[29] Pr(y = 1|ŷ = 1,a = 1) = Pr(y = 1|ŷ = 1,a = 0)
1
2z

TBPPz = (TP1FP0 − TP0FP1)/N
2 ( )(2)

Equal false omission rate (EFOR) 1 Pr(y = 1|ŷ = 0,a = 1) = Pr(y = 1|ŷ = 0,a = 0)
1
2z

TBEFORz = (TN1FN0 − TN0FN1)/N
2 ( )(2)

Conditional accuracy equality (CA)[15] PP ∧ EFOR ( )(2) ∧ ( )(2)

1 To our knowledge, EFOR has not been described in literature in isolation, but is used in the definition of conditional accuracy equality (CA)[15].
2 Defined implicitly in [29].

Table 3.2: Some common group fairness definitions and corresponding abbreviations used throughout the
paper in terms of linear functions ϕ(z) = Az or quadratic functions ϕ(z) = 1

2z
TBz that appear in the

performance–fairness optimality problem (3.5). There are two groups separated by the horizontal line:
those that are specified by linear functions (above), or quadratic functions (below). The graphical notation
is described in Section 3.3. Pθ is the probability produced by a model (parameterized by θ) of ŷ = 1. The
fairness functions ϕ are uniquely defined only up to a normalization factor and overall sign.

3.4 Optimization over the Fairness–confusion Tensor

The fairness–confusion tensor z allows for a succinct linear and quadratic characterization of group
fairness definitions in the literature. We naturally consider the following family of optimization problems
over z ∈ K, where the objective function is constructed so that the solution reflects trade-offs between
fairness and performance.
Definition 3.4.1. Let f (i) : K → [0, 1] be performance metrics (indexed by i) with best performance 0
and worst performance 1, ϕ(j)(z) be fairness functions (indexed by j) with µi, λj be real constants with
µ0 = 1. Then, the performance–fairness optimality problem (PFOP) is a class of optimization problem of
form:

argmin
z∈K

∑
i≥0

µif
(i)(z) +

∑
j≥0

λjϕ
(j)(z) (3.5)
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PFOP is a general optimization problem containing two groups of terms; the first quantifying perfor-
mance loss; the second quantifying unfairness. The restriction z ∈ K is necessary to ensure that z is a
valid fairness–confusion tensor that obeys the requisite marginal sums. In our discussion below, it will be
convenient to consider solutions with explicit bounds on their optimality.
Definition 3.4.2. Let ϵ ≥ 0 and δ ≥ 0. Then, a (ϵ, δ)-solution to the PFOP is a z that satisfies (3.5) such
that

∑
j λjϕ

(j)(z) ≤ ϵ and
∑

i µif
(i)(z) ≤ δ.

The parameters ϵ and δ represent the sum total of deviation from perfect fairness and perfect predictive
performance respectively. Unless otherwise stated, the rest of the paper is dedicated to analyzing one of
the simplest instantiations of PFOP, defined below.
Definition 3.4.3. The least-squares accuracy–fairness optimality problem (LAFOP) is a PFOP with ac-
curacy (or classification error rate) as the performance function f (0), and K ≥ 1 fairness constraints in
the form of a fairness matrix A (each row indexed by j), with

ϕ(j)(z) = (Aj,∗z)
2, j = 0, ...,K − 1

f (0)(z) = (c · z)2,
c = (0, 1, 1, 0, 0, 1, 1, 0)T ,

λ = λ0 = ... = λK−1.

(3.6)

In other words, LAFOP is the problem

argmin
z∈K

(c · z)2 + λ∥Az∥22, (3.7)

where c · z encodes the usual notion of classification error, and A encodes K linear fairness func-
tions stacked together as the regularizer. A single hyperparameter λ specifies the relative importance of
satisfying the fairness constraints while optimizing classification performance, with λ = 0 considering
only performance and disabling all fairness constraints, and λ = ∞ imposing fairness constraints without
regard to accuracy.

LAFOP is a convex optimization problem which is simple to analyze. Despite its simplicity, LAFOP
encompasses many situations involving linear notions of fairness, allowing us to reason about multiple
fairness constraints as well as fairness–accuracy trade-offs under versatile scenarios.

3.4.1 Reduction to a post-processing method for fair classification

PFOP and LAFOP do not assume anything about the model, therefore are designed to be model-
agnostic. In this section we highlight the versatility of LAFOP by showing that adding a model-specific
constraint on LAFOP reduces it to a post-processing algorithm for fair classification.

Post-processing method, in particular for EOd as introduced in Hardt et al. [47], solves the following
optimization problem for Ỹ , which is a post-processed, supposedly fair, classifier, given Ŷ , a vanilla
classifier:

min
Ỹ

El(Ỹ , Y ) such that γ0(Ỹ ) = γ1(Ỹ ) and γ0(Ỹ ) ∈ P0(Ŷ ), γ1(Ỹ ) ∈ P1(Ŷ ) (3.8)

where γa(Ỹ ) represents EOd constraints for Ỹ as a tuple of (FPRa, TPRa), and Pa(Ŷ ) is a model-
specific set of feasible γa values, defined as Pa(Ŷ ) = convhull{(0, 0), γa(Ŷ ), γa(1− Ŷ ), (1, 1)}. All the
components of (3.8) can be rewritten in terms of ẑ and z̃, the fairness–confusion tensors corresponding
to the classifiers Ŷ and Ỹ respectively. This yields a LAFOP over z̃ with additional model-specific con-
straints derived from ẑ on the solution space. More formally, we have the following optimization problem
for post-processing:
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Definition 3.4.4. Given a classifier to be post-processed and its corresponding fairness–confusion ten-
sor ẑ, the model-specific LAFOP (MS-LAFOP) for EOd is the variant of LAFOP with model-specific
constraints on the solution space as the following:

argmin
z̃∈K̂

(c · z̃)2 + λ∥AEODz̃∥22, (3.9)

where

K̂ =
{
z̃ ≥ 0 : Aconstz̃ = bconst, ∥z̃∥1 = 1, βa(z̃) ∈ convhull {(0, 0), βa(ẑ), βa(1− ẑ), (1, 1)} ∀a

}
with βa expressing (FPRa, TPRa) tuples computed from the corresponding fairness–confusion tensor of
group a.

From the solution of MS-LAFOP, it is possible to compute mixing rates for post-processing the given
classifier. We note that MS-LAFOP can be extended to other group fairness notions as long as the model-
specific constraints are accordingly set up for them. For more details, refer to Section B.7.3.

3.5 Incompatible Group Fairness Definitions

In this section, we show how LAFOP yields a more general view of understanding group fairness
incompatibility results. As λ → ∞, for linear fairness functions ϕ(i)(z) = A(i)z, LAFOP becomes
equivalent to solving the following linear system of equations:

A(0)

...
A(K−1)

Aconst

 z =


0
...
0

bconst

 , z ≥ 0, (3.10)

Notice the compatibility of fairness conditions encoded by these K fairness matrices A(i) is equivalent
to having infinitely many solutions to the above linear system. We formally define (in)compatibility of
fairness notions below based on this observation.
Definition 3.5.1. Let Φ = {ϕ(i)}K−1

i=0 be a set of linear fairness functions, encoded in a fairness matrix
A (of which each row corresponds to ϕ(i)), and let ρ be the number of solutions for the system in (3.10).
If ρ = 0, then Φ is said to be incompatible. Otherwise, Φ is compatible. When Φ is incompatible, some
additional set of constraints on the dataset or the model is required for it to be compatible.

This means that in general, incompatibility results among the group fairness definitions can be proven
simply by asking if and when solutions exist to their corresponding linear system of form (3.10).

3.5.1 The incompatibility involving CG

We introduce a general incompatibility result involving CG that leads to many other new results as
well as the one from Kleinberg et al. [67].
Theorem 3.5.1. Let B = 2 be the number of bins in the definition of calibration within groups fairness
(CG) [67], and v0, v1 be the scores, with 0 ≤ v0 < v1 ≤ 1, and K > 1 with ϕ(0)(z) = ACGz. Then, the
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corresponding (3.10) has the only solution

z0 =
1

N(v1 − v0)



v1(M1 −N1v0)
v0(−M1 +N1v1)

(1− v1)(M1 −N1v0)
(1− v0)(−M1 +N1v1)

v1(M0 −N0v0)
v0(−M0 +N0v1)

(1− v1)(M0 −N0v0)
(1− v0)(−M0 +N0v1)


, (3.11)

and only when

0 ≤ v0 ≤ min
a

(
Ma

Na

)
≤ max

a

(
Ma

Na

)
≤ v1 ≤ 1. (3.12)

Otherwise, no solution exists.
Theorem 3.5.1 yields other extended results regarding the incompatibility of CG and other notions

of fairness. As one canonical instance, simply substituting z0 in (3.11) to the linear system of the form
in (3.10) with PCB and NCB fairness matrices yields the following corollary, which is equivalent to the
result presented in Kleinberg et al. [67] (proof is in Section B.2).
Corollary 3.5.1.1 (Re-derivation of [67]). Consider a classifier that satisfies CG, PCB and NCB fairness
simultaneously. Then, at least one of the following statements is true:

1. the data have equal base rates for each class a, i.e. M0/N0 = M1/N1, or
2. the classifier has perfect prediction, i.e. v0 = 0 and v1 = 1.
Similar approach can be applied to derive incompatibilities of CG with other linear and quadratic

notions of fairness as below (proofs in Section B.3, Section B.4).
Corollary 3.5.1.2. (Linear notion of fairness: DP) Consider a classifier that satisfies CG and DP fairness
simultaneously. Then, the data have equal base rates for each group a.
Corollary 3.5.1.3. (Quadratic notion of fairness: PP) Consider a classifier that satisfies CG and PP
fairness simultaneously. Then, at least one of the following is true:

1. v0 = (M1 −M0)/(N1 −N0).
2. v1 = 1.
From Theorem 3.5.1 and its corollaries, we curate the extended incompatibility results involving CG

in Table 3.3 along with conditions for compatibility. To our knowledge, all cases other than the bottom
row of the table are new.

3.5.2 The incompatibility of {PE, EFNR, PP}

Using the same logic as the previous section, we re-derive an incompatibility result in Chouldechova
[29] and provide more precise necessary conditions for compatibility. For details of the proof, refer to
Section B.5.
Theorem 3.5.2 (Restatement of Chouldechova [29]). Consider a classifier that satisfies {PE, EFNR, PP}.
Then, at least one of these statements must be true:

1. The classifier has no true positives.
2. The classifier has no false positives.
3. Each protected class has the same base rate.
Theorem 3.5.2 systematically shows that equal false positive rates, equal false negative rates, and pre-

dictive parity are compatible only under specific data/model-dependent circumstances, that were otherwise
not clear in the original statements in Chouldechova [29].
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Sets of fairness definitions Necessary conditions
{CG, PP, DP, and any of EOp, PE, PCB, NCB, EFOR} M0 = M1 and N0 = N1

{CG, DP, and any of EOp, PE, PCB, NCB, EFOR} EBR only
{CG,EOp}, {CG,PCB}, {CG,EOp,PCB},{CG,EFOR,EOp},
{CG,EFOR,PCB},{CG,EFOR,EOp,PCB}

v0 = 0
or EBR

{CG,PE}, {CG,NCB}, {CG,EOp,NCB}, {CG,EFOR,PE},
{CG,EFOR,NCB}, {CG,EFOR,EOp,NCB}

v1 = 1
or EBR

{CG,EOd}[96], {CG, PCB, NCB} [67],{CG,EOd,PCB,NCB},
{CG,EFOR,EOd}, {CG,EFOR,PCB,NCB},{CG,EFOR,EOd,PCB,NCB}

(v0 = 0 and v1 = 1)
or EBR

Table 3.3: Some sets of fairness definitions containing Calibration(CG), which are incompatible in the
sense of Definition 3.5.1 (left-column), together with their necessary conditions to be compatible (right
column). EBR is the equal base rate condition, M0/N0 = M1/N1. For other abbreviations, refer to
Table 3.2. These are all special cases of Theorem 3.5.1, while not exhaustive.

3.6 Experiments

In this section we show how the FACT diagnostic can practically show the relative impact of several
notions of fairness on accuracy on synthetic and real datasets3. First we introduce FACT Pareto frontiers
which characterize a model’s achievable accuracy for a given set of fairness conditions, as a tool for
understanding the trade-offs and contextualizing some recent works in fair classification (Section 3.6.2).
We then explore a model-agnostic assessment of multiple fairness conditions via LAFOP (Section 3.6.3,
Section B.7.2), as well as a model-specific assessment of post-processing methods in fair classification via
MS-LAFOP (Section 3.6.4, Section B.7.3).

3.6.1 Datasets

We study a synthetic dataset similar to that in Zafar et al. [145], consisting of two-dimensional fea-
tures along with a single binary protected attribute that is either sampled from an independent Bernoulli
distribution (“unbiased” variant, denoted S(U)), or sampled dependent on the features (“biased” variant,
denoted S(B)). The synthetic dataset consists of two-dimensional data x = (x0, x1) that follow the Gaus-
sian distributions

x|y = 1 ∼N
((

2
2

)
,

(
5 1
1 5

))
x|y = 0 ∼N

((
−2
−2

)
,

(
10 1
1 3

))
.

(3.13)

For the S(U) dataset, the protected attribute value is independent of x and y, and is instead distributed
according to the Bernoulli distribution a ∼ B

(
1
2

)
. This notion of fairness was described in [22].

For the S(B) dataset, the protected attribute value is assigned as a|x = sgn(x0), which corresponds to
a situation when some features (but not all) encode a protected attribute.

We also study the UCI Adult dataset [35], a census dataset used for income classification tasks where
we consider sex as the protected attribute of interest.
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Figure 3.1: Model-agnostic (MA) and model-specific (MS) FACT Pareto frontiers of equalized odds on
the Adult dataset. Three fair models (FGP, Eq.Odd., Op.) are shown in context by varying the strength
of the fairness condition imposed, along with some baseline models (LR, SVM, RF, ConstantPrediction).
The MA frontier should be interpreted relative to the Bayes error because it is oblivious to it — δ = 0
means that the upper bound of the accuracy is the accuracy of the Bayes classifier, not 1. The MS frontier
on the other hand provides realistic more bounds.

3.6.2 FACT Pareto frontiers

With LAFOP and MS-LAFOP, one can naturally consider a FACT Pareto frontier of accuracy and
fairness by plotting (ϵ, δ) values of the (ϵ, δ)-solutions. In this section, we want to highlight the use of this
frontier in the context of several published results in the literature as well as its implications.

The FACT Pareto frontier can be computed both in model-agnostic (MA) and model-specific (MS)
scenarios by solving LAFOP and MS-LAFOP respectively, and Figure 3.1 shows such example on the
Adult dataset for EOd fairness. We also consider three fair classification models: FGP [125], Op. [145],
and Eq.Odd. [47], individually representing three different approaches one can take in training fair models
(imposing fairness before, during, or after training). Some baseline models (logistic regression, SVM,
random forest) are also plotted for reference, and a perfectly fair classifier (ConstantPredict: predicting all
instances to be negative) on the bottom right corner is considered as an edge-case.

It is important to note that the MA FACT Pareto frontier should be interpreted as characterizing the
model’s achievable accuracy relative to the Bayes error (i.e., the degree to which the added fairness con-
straints adversely impact the Bayes error), which in this case is empirically estimated at around 0.12 from
a wide range of ML models that have been tested on the Adult datset [25]. This relatively less realizable
bound calls for a model-specific counterpart, the MS FACT Pareto frontier, which limits the frontier to be
derived from a given pre-trained classifier. As shown in Figure 3.1, it indeed provides a more reasonable
frontier for the models considered.

Placing different types of classifiers on the frontier, it is easy to visually grasp strengths and weak-
nesses of each models. FGP seems to outperform all other models in terms of the trade-off, while Op and
EqOdd suffer more from early accuracy drops. The frontier further informs that for any model trained,
only for fairness gaps below 10−2 will the accuracy start to suffer. Such understanding of the trade-offs
will be helpful in anticipating practical limitations of models to be trained, as well as in comparing multi-
ple models to determine which is better-suited for different situations.

In the rest of the following sections and figures, for the model-agnostic analysis, δ should be inter-
preted in reference to the Bayes error, i.e δ = 0 means that the upper bound of the best-achievable accuracy

3Code available at github.com/wnstlr/FACT

23

https://github.com/wnstlr/FACT


{PCB, CB}, {PE, NCB}

{PCB, DP}

{EOd, DP},  
{EOd, DP, PCB},  
{EOd, DP, CB, PE},  
{EOd, DP, CB, PE, EOp}

{PCB, NCB, CG}

{CG, CB, EOp, DP}

Figure 3.2: Model-agnostic FACT Pareto frontier for different groups of fairness notions (colored and
grouped according to their convergence value as ϵ → 0) for three datasets (Section 3.6.1). The bottom
two groups of fairness notions are incompatible (black, red), hence the halted trajectories before reaching
smaller values of ϵ. Similar convergence behaviors within the fairness groups in blue reflect the dominance
of {EOd, DP} – any additional fairness notions added on top of these have no impact on the convergence
value. Best viewed in color.

is the accuracy of the Bayes classifier, not 1.

3.6.3 Model-agnostic scenario with multiple fairness conditions

We are now interested in how a group of fairness conditions simultaneously affect accuracy. This
can be assessed by looking at the shape of the MA FACT Pareto frontier of LAFOP with multiple fair-
ness constraints, particularly δ values of (ϵ, δ)-solutions when ϵ is varied to be zero (or very close to it)
on multiple fairness notions. Figure 3.2 shows this in two different ways: (i) (ϵ,δ)-solutions obtained
when fairness conditions are imposed as hard inequality constraints instead of as regularizers, i.e. solv-
ing argminz∈K (c · z)2 s.t. ∥Az∥22 ≤ ϵ (solid line), and (ii) (ϵ,δ)-solutions obtained from the LAFOP (3.7)
while varying λs (crosses). Different groups of fairness notions are colored according to their convergence
behaviors.

Similar trajectories and convergence of the curves allow us to identify fairness notions that come “for
free” given some others, in terms of additional accuracy drops. In other words, the Pareto frontiers are
effective at demonstrating the relative strength of the fairness notions within a group. For instance, under
{EOd, DP} (third group, blue) the best attainable accuracy drops by over 60 percent for S(U) and S(B),
but we also observe that adding CB, PE, and/or PCB on top of them causes no additional accuracy drop –
{EOd, DP} essentially determines δ for the entire group of fairness notions in blue.

The MA FACT Pareto frontiers for multiple fairness conditions also show not only the existing incom-
patibility of the fairness notions, but also how much relaxation is required for them to be approximately
compatible. The halted trajectories before hitting much smaller ϵ for the bottom two groups in black and
red clearly verify this. Because the S(U) dataset has a smaller base rate gap between the groups compared
to the Adult or the S(B) dataset by design, the incompatibility in S(U) becomes only visible at a much
smaller ϵ value.

Taking a more macroscopic perspective, the MA FACT Pareto frontiers also show which dataset allows
overall better trade-off scheme compared to the others. Because the S(U) dataset was designed to be less
biased compared to the S(B) dataset, it exhibits significantly smaller drop in overall accuracy, particularly
for the green group involving DP. The way S(U) was designed aligns with this observation, as the sensitive
attributes were randomly sampled independently from the features. However, EOd and DP together (in
blue) drives down the accuracy just like the biased counterpart, which demonstrates how conservative EOd
fairness is for these datasets.

More observations and experiments are presented in Section B.7.2. It is possible to further extend
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these analyses to an arbitrary number of fairness constraints imposed on LAFOP, as well as to other
performance metrics like precision or recall as seem fit.

3.6.4 Model-specific scenario with post-processing methods

While the MA FACT Pareto frontier shows a broader trade-off landscape for any classifiers, model-
specific analysis using MS-LAFOP in (3.9) can be helpful in practice with more reasonable MS Pareto
frontiers. Also after solving the MS-LAFOP, its solution can be used to compute the mixing rates for post-
processing any given classifier just like done in Hardt et al. [47]. For more details, refer to Section B.7.3.
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Figure 3.3: Model-specific FACT Pareto frontier of EOd on Adult dataset. Compared to the model-
agnostic frontier, it yields a more realizable bounds on the trade-off between fairness and accuracy. Post-
processed solutions for the given classifiers (crosses) using the algorithm in [47] (circles, EOd-solution)
and FACT (stars, FACT-solution) are also shown. The FACT-solutions suffer significantly less from the
trade-off, yielding competitive accuracy to the original classifiers while achieving smaller fairness gaps
compared to the EOd-solutions.

Figure 3.3 shows the MS FACT Pareto frontier of EOd computed from MS-LAFOP for the Adult
dataset (it is a zoomed-in version of the MA FACT Pareto frontier in Figure 3.1). We also plot two types
of post-processed classifiers: EOd-solutions using the algorithm in Hardt et al. [47] (circles), and FACT-
solutions using MS-LAFOP (stars). EOd solutions undergo steeper trade-off while the FACT-solutions
are able to find a better configuration with smaller fairness gaps, retaining a competitive accuracy level to
the original classifier (cross).
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Chapter 4

Testing Model Explanations for
Correctness

4.1 Introduction

Saliency methods are a popular tool to help understand the behavior of machine learning models.
Given a model and an input image, these methods output a feature attribution that indicates which pixels
they deem to be most “important” to the model’s prediction [83, 117, 124]. Then, a natural question to
ask is: how do we define “important” and subsequently evaluate the efficacy of these methods?

One intuitive approach to answering this question is to measure how well a saliency method locates
the expected pixels of interest in the input image. In fact, this so-called “pointing game” [149] is one of
the predominant evaluations used today [10, 27, 44, 108, 138, 153]. Current versions of this evaluation
rely on external knowledge to define an expected feature attribution that highlights the region that a human
would expect to be important for the given task. Then, the quality of a saliency method is measured using
the overlap between its output and this expected feature attribution by metrics such as Intersection-Over-
Union (IOU) (See Section 4.4).

Unfortunately, this approach has two key limitations. First, the results are unreliable when the model’s
ground-truth reasoning does not match human expectations, e.g., when the model is relying on spurious
correlations. This is particularly problematic because detecting such discrepancies is one of the motivating
use cases of saliency methods. Second, existing versions are based on relatively simple object classifica-
tion tasks where we expect only a single region of the image, i.e., the object itself, to be relevant to the
prediction. In practice, there exist more complex tasks, e.g., in medical imaging or autonomous driving,
where considering interactions among multiple regions of the image may be necessary for the model to
achieve high predictive accuracy.

These two limitations highlight the same fundamental concern: we do not know a priori what or how
complex the model’s reasoning will be, irrespective of how simple we think the underlying task is. For
instance, the top panel of Figure 4.1 considers the seemingly simple task of identifying a baseball bat in
an image. Based on the description of the task, we might expect the model to use simple reasoning, which
we define as relying on a single region of the image, e.g., the bat itself, to make its prediction. If this is
the case, the expected feature attribution should highlight the bat only. However, if the model actually
uses more complex reasoning, which we define as relying on interactions among multiple regions of the
image, e.g., using the presence of a hitter and a glove to identify a bat, the actual ground-truth feature
attribution should highlight the hitter and the glove, not the bat. As illustrated through this example, the
correct evaluation of saliency methods fundamentally depends on the model’s ground-truth reasoning.
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predict:  
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predict:  
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hitter ⇢ small box 
bat ⇢ letter B 
glove ⇢ big box 

Feature Attribution

Figure 4.1: Top. Existing pointing game evaluations do not have access to ground-truth feature attributions
but instead rely on expected feature attributions. For instance, while a model trained to identify a baseball
bat is expected to rely on the baseball bat region of the image (top), it may rely on a more complex
reasoning by using the presence of a hitter and a glove to identify a bat (bottom). Bottom. SMERF
constructs a synthetic set of tasks that are stylized versions of real object classification tasks. Consider the
task of identifying the letter ‘B’ in an image, where the letter and the two boxes correspond to the bat, the
hitter, and the glove, respectively. SMERF controls the model’s underlying reasoning via simulations over
different data distributions, providing ground-truth feature attributions used to evaluate saliency methods
(in this example, a model is relying on two boxes to identify the letter).

Consequently, we aim to address these key limitations by controlling the model’s ground-truth rea-
soning. To do this, we start by generating synthetic images composed of simplified objects and consis-
tent backgrounds that are stylized versions of real-world scenarios (e.g., Figure 4.1 Bottom). Then, by
controlling the distribution and label of these images, we can induce and then verify a specific ground-
truth reasoning for the model. By repeating this process for different levels of reasoning complexity, we
build a benchmark called Simulated ModEl Reasoning Evaluation Framework (SMERF) that can evaluate
saliency methods against ground-truth model reasoning.

Using SMERF, we consider seven distinct model reasoning settings with varying complexity, and per-
form an extensive evaluation of 10 leading saliency methods for each setting. Our analyses are summa-
rized in Figure 4.2 and discussed at length throughout Section 4.4. We observe that for simple reasoning
settings, leading saliency methods perform reasonably well on average, though still exhibit certain failure
cases (Section 4.4.1). We further observe clear performance degradation as we increase model reasoning
complexity. Indeed, in all complex reasoning settings, none of the methods meet our (lenient) definition
of correctness1, and all of them demonstrate acute failure cases (Section 4.4.2, 4.4.3).

Our results highlight major limitations of existing saliency methods, especially given the relative sim-
plicity of SMERF’s synthetic evaluation tasks. We further illustrate how SMERF’s synthetic evaluations
translate to more natural images, by presenting qualitatively similar yet generally worse results on analo-
gous reasoning tasks that leverage natural image backgrounds instead of synthetic ones (Section 4.4.4).

1While we view the IOU > 0.5 as a lenient definition of correctness in synthetic settings, this value is commonly used in
practice when evaluating on real tasks [38, 136].
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Figure 4.2: Summary of ground-truth-based evaluation of saliency methods via SMERF. Left. In simple
reasoning settings, where the model relies on a single region of the image to make its prediction, average
performance (blue) is reasonably good for most of the methods. However, all methods still demonstrate
failure cases as shown by minimum performance (orange) over various tasks. Right. In more complex
reasoning settings, where the model relies on interactions among multiple regions of the image, average
performance drops with more acute failure cases.

Source code supporting the contents of this chapter can be found here: https://github.com/
wnstlr/SMERF.

4.2 Related Work

Pointing Game Evaluation. The pointing game, which measures how well a saliency method iden-
tifies the relevant regions of an image, is one of the predominant ways to evaluate the efficacy of these
methods [10, 27, 44, 108, 138, 153]. Many existing pointing game evaluations lack access to ground-truth
model reasoning but instead rely on expected feature attributions generated by domain experts. Intuitively,
this might appear to be reasonable by observing that the model has high test accuracy and concluding that
it must be using the correct reasoning. However, datasets often contain spurious correlations and, as a
result, a model may be able to achieve high test accuracy using incorrect reasoning. Consequently, these
evaluations have confounded the correctness of the explanation with the correctness of the model. SMERF
eliminates this confounding factor by leveraging the model’s ground-truth reasoning, which allows us to
demonstrate that several methods previously deemed to be effective are in fact sometimes ineffective for
more complex model reasoning.

Adebayo et al. [2], Yang and Kim [142] try to address this same limitation using semi-synthetic
datasets where the ground-truth reasoning is known by combining the object from one image with the
background from another. Both analyses are based on the simple reasoning setting and, in that setting,
our results roughly corroborate theirs. However, our analysis extends to more complex reasoning settings
and demonstrates that methods that worked in the simple reasoning setting mostly perform much worse
in these settings. It is important to consider the complex reasoning setting because we do not know how
complex the model’s reasoning is in practice (e.g., a model may rely on a spurious correlation and use
complex reasoning for a simple task).

A concurrent work by Zhou et al. [155] introduces a similar semi-synthetic pipeline for testing saliency
methods, where a family of image manipulations is applied to the input so that the ground-truth impact of
specific features on the model prediction is known. Whereas Zhou et al. [155] focuses on model reasoning
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that relies on a single artificial feature in the image, we establish a complementary criteria for saliency
methods by focusing on a more diverse set of model reasoning complexity induced by interactions among
different features in the image.

Direct Criticisms of Saliency Methods. Adebayo et al. [1] uses two sanity checks that measure the
statistical relationship between a saliency method and the model’s parameters or the data it was trained
on. They found that only a few methods (i.e., Gradient [117] and Grad-CAM [108]) passed these tests.
Kindermans et al. [66] similarly tests several saliency methods for input invariance and finds that the
Gradient satisfies the property while other methods generally do not. While SMERF is orthogonal to such
types of analyses, it demonstrates that even methods that pass these tests have failure cases (as shown
in Figure 4.2). Shah et al. [109] suggests that a model’s adversarial robustness impacts how well the
Gradient is able to correctly focus only on the relevant features. SMERF verifies this observation for
simple reasoning, and further shows that the problem persists in complex reasoning settings even for
robust models for all tested methods.

Other Evaluations. Beyond the pointing game, several proxy metrics have been proposed to evaluate
saliency methods [4, 7, 11, 51]. Additionally, Liu et al. [82] introduces a benchmarking framework based
on synthetic datasets sampled from different types of Gaussian distributions to evaluate the methods on
these proxy metrics. However, Tomsett et al. [127] shows that several popular proxy metrics inherently
depend on subtle hyperparameters that are not well understood and that this leads to analyses with incon-
sistent results. The unreliability of these popular proxy metrics further emphasizes the advantage of using
a more intuitive evaluation like SMERF. Similar setups with humans in the loop are also being introduced
to measure the user’s perception of the feature attributions in detecting model biases [119].

4.3 Methods

SMERF is a synthetic evaluation benchmark where several types of ground-truth model reasoning,
ranging from simple to complex, are generated to test a saliency method’s ability to recover them. We first
describe several types of model reasoning that are motivated by real-world examples and then captured in
SMERF’s synthetic family of datasets called TextBox. We then explain the data generation and training
process in SMERF with TextBox. Additional details are in Appendix C.1.

4.3.1 Types of Simple and Complex Model Reasoning

We are interested in evaluating the performance of saliency methods in capturing both simple and
complex model reasoning, where the complexity of reasoning is defined based on whether the model
relies on a single or multiple regions of the image. We next describe three different ways in which a model
may exhibit simple or complex reasoning characterized by the model’s reliance on the true set of features
(X) and/or the set of spurious features (F ).

Consider the model trained to detect a baseball bat from Figure 4.1. The model may correctly rely on
the true set of features (e.g. the bat), without relying on spurious features (e.g. the glove or the hitter). We
denote models that exhibit no reliance on spurious features as the No-Reliance (NR) setting (Figure 4.3,
left). Another model could instead depend on the existence of the glove and the hitter, thus fully relying on
spurious features, a setting we call Full-Reliance (FR) (Figure 4.3, middle). Finally, the model may rely
on both the true and the spurious sets of features (Figure 4.3 right), a setting we denote as Conditional-
Reliance (CR). For instance, a model may learn to rely on the glove only when the hitter is present, but
otherwise on the bat itself for the prediction.

CR by default prescribes complex reasoning due to its conditional nature. In contrast, the complexity
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Figure 4.3: Given true features X and spurious features F in the training data, the model may exhibit simple or
complex reasoning depending on how it relies on X and/or F . No-Reliance (NR) and Full-Reliance (FR) denote
settings where the model relies solely on X or F , respectively. Conditional Reliance (CR) denotes settings where the
model depends on both X and F . SMERF allows us to control the model’s reasoning and to thus evaluate saliency
methods against the ground-truth feature attribution (denoted in red) derived from this underlying reasoning.

Box2 Box1 Text

Figure 4.4: Features in the TextBox datasets.

of model reasoning for NR and FR depends on how many objects are included in X and F : simple when
X and F each consists of features corresponding to a single object, and complex when they consist of
multiple objects. It is notable that existing pointing game evaluations in the literature are performed with
respect to a simple reasoning under the assumption that the model exhibits NR, with X being the single
object of interest [108, 153]. Moreover, previous controlled setups for evaluating saliency methods were
limited to simple model reasoning in the FR setting, e.g., setting F as the background and X as a single
object of interest [2, 142].

SMERF instantiates simple and complex model reasoning across these three settings by creating a
family of datasets called TextBox. These datasets all consist of 64-by-64 pixel images with black back-
ground that include three types of white objects in random locations of each image (Figure 4.4): Text,
“A”, “B”; Box1, a 10-by-10 box; and Box2, a 4-by-4 box. SMERF simulates the objects’ relationship with
the labels (as in Figure 4.3) to control the model reasoning for X = Text, F = {Box1, Box2}. Note that
the choice of these features are arbitrary – they can be replaced by other shapes, colors, and backgrounds.

4.3.2 Training Models with Ground-truth Reasoning

SMERF first creates an appropriate training dataset for a particular desired model reasoning. Specif-
ically, SMERF starts by generating 12 buckets2 of images (as shown in Figure 4.5), where each bucket
contains images with particular X and F , and an associated label designated by the desired model rea-
soning. More formally, considering the joint distribution p(X,F, Y ), each bucket will be composed of
images with features X = x, F = f along with the label y ∼ p(Y |X = x, F = f) determined by the

2The total number of buckets depends on the cardinality of X and F , as we create buckets for all possible (X,F ) value pairs;
hence for TextBox datasets we consider 12 buckets: there are three different values for Text (Nothing, ‘A’, or ‘B’), two for
Box1, and two for Box2, resulting in a total of 12 distinct combinations (Appendix C.1.1).
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Figure 4.5: Workflow of SMERF for a model with FR on Box1 and Box2, where the model predicts 1 if both boxes
are present, otherwise 0 (Complex-FR in Table 4.1). Twelve buckets of images each composed of different sets of
features are generated. These are then labeled according to the model reasoning. The model is then trained/validated
on samples from each bucket. The ground-truth feature attribution should focus/avoid certain objects in the image,
as labels depend on specific objects only, e.g. labels do not depend on Text, but only on both Boxes (shown in the
table). Feature attributions from saliency methods are compared against this ground-truth.

Name Simple-FR Simple-NR Complex-FR Complex-CR1 Complex-CR2 Complex-CR3 Complex-CR4

Reasoning
(How buckets
are labeled)

if B1: 1;
otherwise: 0

if T=A: 0;
if T=B: 1

if B1 & B2: 1;
otherwise: 0

if B2 & B1: 1;
if B2 & NO B1: 0;

if NO B2 & T=A: 0;
if NO B2 & T=B: 1

if B1 & B2: 1;
if B1 & NO B2: 0;

if NO B1 & T=A: 0;
if NO B1 & T=B: 1

if B2 & T=A: 0;
if B2 & T=B: 1;

if NO B2 & B1: 1;
if NO B2 & NO B1: 0

if B1 & T=A: 0;
if B1 & T=B: 1;

if NO B1 & B2: 1;
if NO B1 & NO B2: 0

# of Buckets 12 8 12 10 10 10 10
ID of Buckets

Labeled 0
1,2,3,4,5,6 2,5,8,11 1,2,3,4,5,6,7,8,9 2,4,5,6,8 2,5,7,8,9 1,2,3,5,11 1,2,3,8,11

ID of Buckets
Labeled 1

7,8,9,10,11,12 3,6,9,12 10,11,12 3,9,10,11,12 3,6,10,11,12 6,7,8,9,12 4,5,6,9,12

ID of Undefined
Buckets

None 1,4,7,10 None 1,7 1,4 4,10 7,10

Objects
to Focus

1,2,3,4,5,6: N
7,8,9,10,

11,12: B1

2,3,5,6,8,
9,11,12: T

1,2,3,4,5
,6,7,8,9: N

10,11,12: B1,B2

2,3,8,9: T
4,5,6: B2

10,11,12: B1, B2

2,3,5,6: T
7,8,9: B1

10,11,12: B1, B2

1,2,3: N
5,6,11,12: B2,T

7,8,9:B1

1,2,3: N
4,5,6: B2

8,9,11,12:B1,T

Objects
to Avoid

1: N
2,3,8,9: T
4,10: B2

5,6,11,12: B2, T

2,3: N
5,6: B2
8,9: B1

11,12: B1,B2

1,4,7,10: N
2,3,5,6,11,12: T

2,3,4,10: N
8,9: B1

5,6,11,12: T

2,3,7,10: N
5,6: B2

8,9,11,12: T

1,5,6,7: N
2,3,8,9: T
11,12: B1

1,4,8,9: N
2,3,5,6: T
11,12: B2

Table 4.1: The seven model reasoning settings considered in the experiments (Section 4.4). Each column represents
a model reasoning setting that belongs to one of the three categories depicted in Figure 4.3. B1 stands for Box1,
B2 stands for Box2, T stands for Text, and N stands for None (see Figure 4.4). Depending on the reasoning,
there are different numbers of buckets that belong to the positive/negative classes, and different objects that feature
attributions should focus on/avoid. Bucket ID numbers are taken from Figure 4.5, which corresponds to the setting
described in the third column of this table (Complex-FR). See Appendix C.1.1 for more details.

specified model reasoning, with different images in each bucket varying by the location of the features. A
convolutional neural network3 is trained on the entire set of buckets, which is then validated with unseen
data points from each bucket to ensure that the ground-truth model reasoning has been properly learned.

3We consider a shallow CNN, AlexNet [72], and VGG16 [116] for the model architectures. The results in Section 3.6 are from
the shallow CNN, and we observe similar results from other deep architectures, as reported in Section 4.4.3 and Appendix C.2.6.
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Because the data distribution is simulated, we can generate arbitrary number of images from different
buckets which differ only in terms of a single feature and use them to confidently verify that specific
features are responsible for the model’s prediction. Repeating this for all possible subsets of features
effectively ensures that the model follows the intended reasoning. Ground-truth feature attributions are
derived from this verified model reasoning and are later used for evaluating saliency methods.

Figure 4.5 depicts the steps of dataset generation and model training/validation for complex model
reasoning with FR. In this example, we want the labels to depend only on the presence of both boxes, thus
providing positive labels only for the three buckets that include both boxes (buckets 10-12), and negative
labels for the nine buckets that include at most one box (buckets 1-9). We verify that the model learns the
desired model reasoning, as it achieves near-perfect accuracy on unseen samples from each bucket. The
ground-truth model reasoning provides ground-truth feature attribution shown in the table of Figure 4.5,
defining regions the saliency methods should focus and/or avoid for images from each buckets. This
information will later be used to evaluate the feature attributions obtained from the saliency methods.

4.4 Experiments

We use SMERF and the TextBox datasets to show the performance of leading saliency methods for
different types of model reasoning presented in Table 4.1 with varying complexity (the example from
Figure 4.5 corresponds to Complex-FR in the third column). For simple reasoning (Section 4.4.1), we
find that saliency methods perform reasonably well (with a few exceptions), which is generally consistent
with previous pointing game evaluations. However, we observe a general trend of decreasing performance
when input images become more “saturated” (i.e., filled with more objects), even when the model’s un-
derlying reasoning does not change. For complex reasoning (Section 4.4.2), the average performance for
all methods decreases, with several failure cases due to methods focusing more on irrelevant objects. As
a result, feature attributions qualitatively become indistinguishable across different model reasoning, rais-
ing practical concerns since users in general do not know the type of reasoning being used (and in fact
would potentially rely on saliency methods to get this information). We further show that a similar trend
is present when varying factors like model architecture choice and robust training (Section 4.4.3). And
when the images contain more natural backgrounds (Section 4.4.4), even lower worst-case performance
is observed. Additional details about the results are in Appendix C.2.

Saliency Methods and Baselines. We use a modified version of the open-source library iNNvestigate[3]
which includes several implementations of leading saliency methods. We use the following methods:
Gradient (G) [117], SmoothGradients (SG) [120], DeConvNet (DCN) [147], Guided Backpropagation
(GBP) [122], Deep Taylor Decomposition (DT) [91], Input*Gradient (I*G) [114], Integrated Gradients
(IG) [124], and Layerwise Relevance Propagation (LRP) [11] (four variations: LRP-z, LRP-ϵ, LRP-A♭,
LRP-B♭), DeepLIFT (DL) [114] (two variations: DL-RC (using Reveal-Cancel rule), DL-R (using Rescale
rule)), Grad-CAM (G-CAM) [108], and DeepSHAP (D-SHAP) [83]. We also add some simple baselines,
like Random (random-valued feature attribution) and Edge-detection (Edge), both of which are model-
independent and therefore are not useful in understanding the model reasoning.

Evaluation Metrics. Typical pointing game evaluations measure the performance of saliency methods
with the Intersection-Over-Union (IOU) metric [38, 153]. This metric computes the ratio of the area of
the intersection to the area of the union of the binary-masked feature attribution and the ground-truth
feature attribution. The binary-masked feature attribution is obtained by first blurring the original feature
attribution averaged across the three color channels, followed by thresholding the pixel intensity to select
the top-K pixels, where K is equal to the number of pixels that contain the object of interest. Given the
popularity of this metric, we perform extensive experiments with it: Figure 4.2 summarizes the results,
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Figure 4.6: (a) PAFL (left) and SAFL (right) for Simple-FR and Simple-NR (Table 4.1). The black vertical
lines indicate the standard deviation across different buckets. Most methods perform well on average,
with reasonable PAFL and low SAFL. The methods on the left part of the plot (G, SG, CGN, CBP) are
the exception. The colored lines indicate average performance for different buckets that have either Text
or Box1 (i.e. the irrelevant features) present (o) or absent (x). (b) PAFL decreases and SAFL increases as
the number of objects (regardless of their relevance to the prediction) increases, which indicates that the
methods perform worse as images become “saturated.”

which are consistent with those of our main results.
However, we find that IOU loses information about raw attribution values on extra objects when

thresholding to generate the binary-masked feature attribution for evaluation. It is therefore more likely to
disregard non-trivial signals from extra objects in the image (see Appendix C.1.4).

To address these issues, we also consider a previously introduced [134] but unnamed metric that we
call Attribution Focus Level (AFL). This metric quantifies the proportion of the total attribution values that
are assigned to the region of interest. Given the raw, normalized feature attribution values, it is the sum of
values assigned to pixels inside the region of interest. Intuitively, values near 1 indicate a stronger level of
focus on the region of interest. We define a threshold value of 0.5, chosen to indicate that more than half
of the total attribution values is focused on the object, to roughly distinguish good and bad performance
in terms of AFL.

To better account for the relationship among multiple features in the image, we use two types of
AFL: (1) Primary AFL (PAFL), which measures the level of focus on the correct (primary) features that
are relevant for the prediction (corresponding to objects to focus in Table 4.1 and Figure 4.5), and (2)
Secondary AFL (SAFL), which measures the same quantity for the incorrect (secondary) features that
are irrelevant for the prediction (corresponding to objects to avoid in Table 4.1 and Figure 4.5, excluding
background). Notably, the sum of PAFL and SAFL is upper bounded by 1, so PAFL > 0.5 implies that
PAFL > SAFL, which further indicates that the feature attribution correctly focuses more on the relevant
features than the irrelevant ones (our definition of “success”). Conversely, when SAFL > PAFL, the
feature attribution incorrectly focuses more on irrelevant regions and is thus considered undesirable (our
definition of “failure”).

4.4.1 Simple Reasoning Setting

For a high-level understanding of how the methods generally perform, we plot PAFL and SAFL av-
eraged across all buckets for simple reasoning instantiated with Simple-FR and Simple-NR (grey vertical
bars in Figure 4.6a). We observe that most of the methods, except for G, SG, DCN, and GBP, perform
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Less than half fails
More than half fails

Figure 4.7: Top: The fraction of buckets for which the methods are successful (i.e., PAFL > 0.5). Most success
cases (white) are concentrated on simple reasoning setting. Bottom: The cases where the method fails due to wrong
focus (i.e., SAFL > PAFL) on more than half of the buckets for each reasoning (colored with black). Most failure
cases are concentrated on complex reasoning, which aligns with increasing SAFL observed in Figure 4.8a.
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Figure 4.8: (a) PAFL and SAFL for complex reasoning. Average performance on PAFL is mostly lower than 0.5,
with worse performance compared to the results for simple reasoning. Further, SAFL increases significantly (to
the point where it is on par with PAFL for some methods). Per-bucket performance variation for Complex-CR2
(from Table 4.1) is plotted with colored lines, each color corresponding to the methods’ performance on a bucket
with either Box1 or Box2 present (o) or absent (x). (b) Worst-case buckets show worse PAFL values in complex
reasoning (red) with a sharp drop from simple reasoning setting (blue).

reasonably well, with PAFL exceeding the 0.5 correctness threshold and SAFL being lower. This reason-
able level of performance aligns with what existing evaluations in the literature have shown with simple
reasoning [2, 108].

Despite their reasonable performance in average, we observe a trend that PAFL decreases and SAFL
increases as more objects are visible in the image, even though the model reasoning remains simple. The
colored lines in Figure 4.6a exemplify this trend by showing per-bucket performance for two different
buckets in Simple-FR (blue and orange) and Simple-NR (green and red) each. For both reasoning, all
methods show lower PAFL on buckets where an irrelevant object (Text for Simple-FR in blue and Box1
for Simple-NR in green) is present, compared to buckets where that object is absent (orange and red). This
means that part of the feature attribution originally assigned to the relevant object shifts to the irrelevant
ones when they are visible in the image. Figure 4.6b verifies this trend for all buckets containing different
number of visible objects: PAFL from buckets with fewer objects strictly upper bounds PAFL from buckets
with more objects, while SAFL increases along with the number of objects. These variations in AFL based
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on the number of objects in the image lead to non-trivial variance across buckets as shown with black
vertical error bars (standard deviation) in Figure 4.6a. Qualitative examples confirm this undesirable
dependence of methods’ AFL values on the number of objects in the image (Appendix C.2.2).

To better view the success/failure cases, we record the fraction of buckets that contain both relevant
and irrelevant features for which each method is considered successful and indicate it with a color ranging
from black (0) to white (1) (Figure 4.7 Top). For simple reasoning (the first two rows), methods in the
middle (I*G through DL) have relatively higher success rates overall. Among these, DL-R is the only
method that succeeds in all buckets for both types of simple reasoning. Methods like G, SG, DCN, and
GBP fail to be successful for all buckets.

4.4.2 Complex Reasoning Setting

We consider 5 types of complex reasoning in Table 4.1: Complex-FR, and Complex-CR1 through
Complex-CR4. Compared to the simple reasoning case, PAFL drops for all methods (grey vertical bars in
Figure 4.8a). Methods with strong performance in simple reasoning settings (IG, LRP, and DL) narrowly
meet the correctness threshold for complex reasoning settings, while those with decent performance (G-
CAM and D-SHAP) suffer from bigger drops in PAFL. Methods like G, SG, DCN, and GBP, which
showed weak performance in simple reasoning settings, continue to show low PAFL.

In addition to lower average PAFL overall, we see an increase in SAFL for complex reasoning. In
some cases, SAFL approaches the 0.5 threshold, demonstrating a clear failure by focusing on the wrong
object(s) more (grey bars in Figure 4.8a right). This is immediately verified in Figure 4.7 (top), where
with a single exception (LRP-ϵ on Complex-FR), none of the methods are successful in all of the buckets
for complex reasoning (rows below the red dotted line). Figure 4.7 (bottom) further demonstrates that
the majority of the buckets show failures for complex reasoning (colored with black), contrary to simple
reasoning (mostly white).

We next measure the worst-case performance of different methods (i.e., by evaluating the worst-
performing buckets for each method, as we also visualized in Figure 4.2). We observe that the worst-case
PAFL for complex reasoning is much lower than that for simple reasoning (Figure 4.8b). Qualitative sam-
ples from these worst-performing buckets speak for the low PAFL with clear lack of focus on the relevant
features (Appendix C.2.2).

Moreover, we observe that per-bucket performance variation is more extreme in complex reasoning
settings. For instance, per-bucket performance on Complex-CR2 (blue, orange, and green lines in Fig-
ure 4.8a) shows that most methods are successful in a bucket where only Box2 is present (orange), while
for other buckets with only Box1 (blue) or both Boxes (green), all methods clearly fail. Such variation
is also visible across other types of complex reasoning (Appendix C.2.3). These altogether contribute to
higher variance of performance for complex reasoning settings (indicated with black vertical error bars in
Figure 4.8a), higher than the simple reasoning settings (Figure 4.6a).

Finally, we contextualize the aforementioned failure cases of saliency methods from a practitioners’
perspective, who are not aware of the type of model reasoning used, but are relying on the feature attribu-
tions for this information. By failing to point to only the correct set of features, these methods are likely
to mislead practitioners. Figure 4.9 visualizes the feature attributions from IG (one of the best methods in
our evaluation) for each model reasoning (see Appendix C.2.5 for other methods). Essentially all objects
are highlighted in all samples, and it is thus not clear how to discern the underlying model reasoning from
any of them. For example, Box1 appears to be the most important object according to the feature attribu-
tions in the third row, even when this object is clearly not part of the model reasoning for Simple-NR (3rd
column) and Complex-CR1 (5th column).
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Figure 4.9: Feature attributions from Integrated Gradients for different model reasoning on four inputs from dif-
ferent buckets, labeled with their relevant features to highlight. Essentially all objects in the image are highlighted,
making it difficult to identify which type of model reasoning is used for each column.

4.4.3 Impact of Model Architecture and Robustness

We next vary the model’s architecture and its robustness and show that the trends we observed in
previous sections persist.
Model Architecture. We repeat the same set of experiments with AlexNet [72] and VGG16 [116] to
confirm that the trends we observe for the saliency methods are not the artifact of model architecture
choice. Figure 4.10 shows similar trends we have observed so far: both the average (blue lines) and the
worst-case performance drops (orange lines) as the reasoning becomes more complex (comparing solid
against dotted lines). For more details, see Appendix C.2.6.
Adversarial Robustness. It has been previously suggested that Gradient feature attribution applied on
adversarially robust models tend to better ignore the signals from spurious objects in the image [109]. We
verify that this trend for Gradient feature attribution is somewhat true, yet the general problem persists
for most of the methods even for robust models [86], in both simple and complex reasoning settings
(Figure 4.11). While Gradient (G) and SmoothGradient (SG)’s performance on robust models (solid lines)
is higher compared to plain models (dotted lines) for simple reasoning, we still observe performance drops
in complex reasoning throughout all methods. For more details, see Appendix C.2.7.

4.4.4 Extending to Natural Image Backgrounds

In previous sections we focused on images with uniform black background. With this black back-
ground, we aimed to make it easy for the model to identify the objects present in the image. We also
expected that this simplistic background would improve the performances of the saliency methods4.

However, we can simulate more realistic scenarios by replacing the black background with natural
images. To this end, we replace the background of the TextBox datasets with real images of baseball

4We also run experiments using random noise pixels for the background and observe performance drops (Appendix C.2.8).
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Figure 4.10: IOU results on VGG16 (Left) and AlexNet (Right). For both models, all methods show drops
in both average (blue) and worst-case (orange) performance on complex reasoning (solid lines) compared
to simple reasoning (dotted lines).
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Figure 4.11: IOU results on robust models trained against PGD attacks (solid lines) and plain models
(dotted lines, taken from Figure 4.2) for simple (left) and complex reasoning settings (right). Robust mod-
els show higher average performance for Gradient and SmoothGradient in simple reasoning compared to
plain models, as suggested in [109]. Nevertheless, there still are performance drops for complex reasoning
across all methods.

stadiums, chosen to simulate tasks that are more similar in spirit to the one depicted in the top panel of
Figure 4.1, sampled from the Places dataset [154], while still reasoning over the same objects (Text, Box1,
Box2), and repeat the experiments in Sections 4.4.1 and 4.4.2.

Figure 4.12 shows the summary of results on images with real backgrounds (solid lines), comparing
them to what was observed in Sections 4.4.1 and 4.4.2 on images with black backgrounds (dotted lines,
identical to Figure 4.8b). There are two types of performance drop observed. First, we observe a similar
drop as we move from simple (blue solid line) to complex (red solid line) reasoning for both the black
and real background settings. Second, we see a general performance drop in the real background setting
as compared to the black background setting. For instance, in the real background setting, all methods are
far from the threshold even for simple reasoning settings (solid blue line), which differs from results in
the black background setting (dotted blue line). See Appendix C.2.9 for more details.

Collectively, these results suggest that the performance of these saliency methods is likely to further
deteriorate under even more realistic, noisier scenarios. They thus highlight the importance of consistent
success in controlled (synthetic) settings as a stepping stone to success in real-world settings.

37



G SG DC
N

GB
P DT I*G IG

LR
P-

z
LR

P-
LR

P-
Ab

LR
P-

Bb
DL

-R
C

DL
-R

G-
CA

M
D-

SH
AP

Ra
nd

om
Ed

ge
0.0

0.2

0.4

0.6

0.8

1.0

PA
FL

(h
ig

he
r t

he
 b

et
te

r)

Minimum PAFL Across Buckets
Simple (real background)
Simple (black background)
Complex (real background)
Complex (black background)

Figure 4.12: Minimum PAFL comparison between cases with uniform black background (dotted lines) and real
background (solid lines). We observe a decrease in performance when moving from simple (blue) to complex
reasoning (red) even for the real background case. Due to more noise from the background, the overall PAFL values
are lower for the real background case.
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Chapter 5

Assisting Human Decisions in
Document Matching

5.1 Introduction

An important application in which human decision makers play a critical role, is document matching,
i.e., when a query document needs to be matched to one of the many candidate documents from a larger
pool based on their relevance. Concrete instances of this setup include: academic peer review, where
meta-reviewers—associate editors in journals (e.g., https://jmlr.org/tmlr/ae-guide.html)
or area chairs in conferences [111] or program directors conducting proposal reviews [59]—are asked
to assign one or more candidate reviewers to submitted papers with relevant expertise based on their
previously published work (illustrated in Figure 5.1, solid arrows); recruitment, where recruiters screen
through a list of resumes from candidate applicants for an available position at the company [97, 106]; and
plagiarism detection, where governing members (e.g., ethics board members of a conference, instructors
of a course) review submissions to determine the degree of plagiarism [42]. Because the pool of candidate
documents is typically large and the decision makers have limited time, they first use automated matching
models to pre-screen the candidate documents. These matching models typically base their screening on
affinity scores, which measure the relevance of each candidate document to the query document [5, 26,
30, 77]. The human decision makers subsequently determine the best-matching document, taking both
their expertise and the affinity scores computed by the matching models into account. Such intervention
by human decision makers is required for such tasks, as often times either errors made by the models
are so consequential that they warrant human oversight, or the overall performance can be considerably
improved by incorporating the domain knowledge of human experts.

Despite the growing prevalence of automated matching models and human decision makers working
jointly for such practical matching tasks, humans generally find it difficult to completely rely on the
models due to a lack of assistive information other than the models’ output itself. For instance, in peer
review, 20% of the meta-reviewers from past NLP conferences found the affinity scores from the matching
model to be “not very useful or not useful at all” in a recent survey [126]. The survey also reports that
the affinity scores rank the least important for the respondents, compared to more tangible and structured
information about the candidate reviewers such as whether they have worked on similar tasks, datasets, or
methods. Additionally, the survey finds that providing just the affinity scores increases the meta-reviewers’
workload as they “have to identify the information they need from a glance at the reviewer’s publication
record.” and “are presented with little structured information about the reviewers.” Similarly, in hiring,
the recruiters need to manually evaluate more profiles further down the search result pages due to too
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Figure 5.1: An example document matching application of peer review. For each submitted paper, the matching
model pre-screens a list of candidate reviewers via affinity scores (solid arrows). Meta-reviewers, typically under
a time constraint, then select the best match to the submitted paper among the pre-screened reviewer (box with a
solid line). We study whether providing additional assistive information, namely highlighting potentially relevant
information in the candidate documents, can help the meta-reviewers make better decisions (dotted arrows and
boxes). We do so by focusing on a proxy matching task on a crowdsourcing platform that is representative of
real-world applications not limited to peer review, including recruitment and plagiarism detection which follow the
similar setup with different documents and decision makers.

generalized matches suggested by the model [77].
To address the lack of additional assistive information in the document matching setup, we conduct

the first evaluation of what additional information can help the human decision makers to find matches
accurately and quickly (Figure 5.1, dotted arrows). To do so, we first design a proxy task of summary-
article matching that is representative of the general setup so that several methods providing different
types of assistive information can be readily tested at scale via crowdsourced users (Section 5.3.1). The
choice of proxy task addresses the logistical difficulty and expenses of directly experimenting with real
domain-specific decision makers.

On this proxy task, we explore different classes of methods that have been previously suggested as
tools for users to understand model outputs or document content. To standardize the format of assistance,
we focus on methods that highlight assistive information within the candidate documents that the decision
makers can utilize for matching (Section 5.3.2):

• SHAP [83], a popular black-box model explanation [28, 34], highlights input tokens in the document
that contribute both positively and negatively to the affinity scores. The utility of SHAP on several
concrete downstream tasks remain controversial with conflicting results [6, 53, 58], and has yet to
be evaluated for its effectiveness in document matching.

• BERTSum [81], a state-of-the-art text summarization method, which highlights key sentences in the
candidate documents to help reduce the user’s cognitive load for the task.

• Two task-specific methods, that we design ourselves (Section 5.3.2), to highlight details in the can-
didate documents relevant to the details in the query (by using sentence and phrase-level similarity
measures).

With assistive information provided by these methods as treatments, and a control group provided
with just the affinity scores and no additional assistive information, we conduct a pre-registered user study
(with 271 participants) on a crowdsourcing platform.1 The study finds that (Section 5.4):

• Despite its usage in numerous applications, SHAP decreases the participants’ matching performance

1Pre-registration document is available here: https://aspredicted.org/LMM_4K9
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compared to the control group.
• Contrary to the expectation that summarizing long articles could improve task efficiency, the sum-

maries generated by BERTSum adversely impact the participants. Participants take longer to finish
and are less accurate compared to the control group.

• Our task-specific methods, which are tailored to better identify details useful for the task, help the
participants to be quicker and more accurate compared to the control group.

• An overwhelming number of participants in all treatment groups perceive that the highlighted in-
formation is helpful, whereas the quantitative performance (accuracy and time) says otherwise.

The results suggest the benefits of designing task-specific assistive tools over general black-box so-
lutions, and highlight the importance of quantitative evaluation of the methods’ utility that is grounded
on a specific task over subjective user perceptions [28]. The code from the study is available at https:
//github.com/wnstlr/document-matching.

5.2 Related Work

Prior Evaluation of Assistive Information. We discuss how our proposed evaluation of different types
of assistive information, which include affinity scores, black-box model explanations, and text summaries,
differs from how they have been previously evaluated.

Affinity scores, computed by comparing the similarity of representations learned by language models,
are commonly used in practice to rank or filter the candidate documents [26, 30, 90, 103, 128, 137] Their
quality has been evaluated both with or without human decision makers: some may evaluate them based
on the user’s self-reported confidence score [90], while others may use performance from proxy tasks like
document topic classification, where a higher test accuracy of the classification model using the learned
representation indicates better ability to reflect more meaningful components in the documents [30]. How-
ever, the utility of affinity scores for assisting human decision makers for the document matching task is
less studied.

While information provided by black-box model explanations have been evaluated for their utility
to assist human decision makers in various downstream tasks, the results have been lackluster. On the
deception detection task, where users are asked to determine if a given hotel review is fake or not, prior
work have shown that only some explanation methods improve a user’s task performance [73, 74]. Arora
et al. [9] further show that none of the off-the-shelf explanations help the users better understand the
model’s decisions on the task. On more common NLP tasks like sentiment classification and question-
answering, providing explanations to the users decreases the task performance compared to providing
nothing when the model’s prediction is incorrect [12]. For the fraud detection task with domain experts,
providing some model explanations showed conflicting effects on improving the performance [6, 53]. In
this work, we expand user evaluations of black-box model explanations to the document matching task
and propose alternatives that could be more helpful.

Summaries generated by text summarization models [76, 81, 112, 150] are typically either evaluated
by metrics like ROUGE with respect to the annotated ground-truth summary in a standardized dataset,
or by a human’s subjective rating of the quality. To the best of our knowledge, the usefulness of these
automatically summarized information to the human decision makers in concrete downstream tasks is
rarely studied. Even for a few applied works that utilize these methods to practical documents in legal
or business domains, the final evaluations do not explore beyond these task-independent metrics [13, 37,
52]. In this work, we explicitly evaluate whether the generated summaries can help improve the decision
makers’ task performance in document matching.
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Practical Concerns in Document Matching Applications. There are a number of real-world document
matching applications including peer review, hiring, and plagiarism detection. For each application, we
discuss practical issues that have been raised by users that can be mitigated by providing more assistive
information about the data and the model.

In scientific peer review, submitted papers need to be matched to appropriate reviewers with proper
expertise or experience in the paper’s subject area. First, a set of candidate reviewers are identified using an
affinity scoring model based on representations learned by language models [26, 30, 90, 103, 128, 137].
Additional information such as reviewer bids or paper/reviewer subject areas may also be elicited [41,
88, 110]. Based on this information, meta-reviewers may either be asked to directly assign one or more
reviewers to each paper, or to modify the assignment that has been already made as they see appropriate.
For example, in the journal Transactions on Machine Learning Research, for any submitted paper the
meta-reviewer (action editor) is shown a list of all non-conflicted reviewers sorted according to the affinity
scores. The meta-reviewer may also click on any potential reviewer’s name to see their website or list of
publication. The meta-reviewer is then required to assign three reviewers to the paper based on this
information. However, a recent survey of meta-reviewers from past NLP conferences reveal that the
affinity scores alone are not as useful, and most respondents prefer to see more tangible and structured
information about the reviewers [126].

In hiring, many companies resort to various algorithmic tools to efficiently filter and search for suitable
candidates for a given job listing [17, 40, 97]. Many recruiters, while using these tools, express difficulties
in reconciling a mismatch between algorithmic results and the recruiter’s own assessments. This is mainly
attributed to “too generalized and imprecise” relevant matches suggested by the model, which lead to more
“manually evaluating more profiles further down the search result pages” increasing the task completion
time [77]. Also, the general lack of understanding about the algorithmic assessments makes the recruiters
more reluctant to adopt them.

In plagiarism detection, many existing software tools aim to reduce the governing members’ workload
by providing detailed information about the match, e.g., what specific parts of the query document are
identical or similar to parts of the candidate documents. However, their performance in identifying various
forms of plagiarism (e.g., ones involving paraphrasing or cross-language references) is still limited [55].
Also many existing tools lack user-friendly presentation of information that can better assist the task [43].
As the governing members need to ultimately assess the proposed evidence by the model to determine the
degree of penalty [42], additional assistive information about the match may improve their experience.

5.3 Task Setup and Methods

In Section 5.3.1, we describe the design of a summary-article matching task, which is an instance of
the document matching tasks. We use this task as a proxy for other document matching tasks (e.g., match-
ing reviewers to papers in peer-review), as it is more amenable for crowdsourcing experiments at scale.
The summary-article matching task addresses common difficulties encountered when directly experiment-
ing on real-world applications like recruiting real domain-specific decision makers (e.g., meta-reviewers
in academia), building on complex systems in practice (e.g., internal systems that govern workflows in
academic conferences), and coordinating logistical issues (e.g., longer turnaround for receiving feedback
for each paper assignment). Our task may also be useful for early prototyping and validation of differ-
ent methods. Then in Section 5.3.2, we present existing and our proposed methods that provide assistive
information that we evaluate with human users on the the summary-article matching task.
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Figure 5.2: Interface for our summary-article matching task, an instance of the general document matching task.
For each question, the participants are provided with the summary, three candidate articles to select from, and affinity
scores for each candidate. The articles here are abridged to save space.

5.3.1 Instantiating Document Matching

In the general document matching task, a matching model pre-selects a set of candidate documents
based on the affinity scores, which capture the relevance between the query document and the candidate
document. These affinity scores facilitate filtering candidates from a large pool of documents, but are
nevertheless prone to errors. The user therefore goes over the candidate documents with the scores and
selects the most relevant candidate document. A practical concern which we would like to address is when
the affinity scores from the matching model alone may not provide sufficient information to determine a
match quickly and accurately. We outline how we instantiate the summary-article matching task that
captures these details.
Task setup. We instantiate the general document matching tasks with a summary-article matching task.
Here, the query and candidate documents are each sampled from human-written summaries and news
articles in the CNN/DailyMail dataset [49, 107], a common NLP dataset used for summarization task. We
select this dataset because the contents are accessible to a general audience, which enables us to evaluate
a variety of assistive methods by employing crowdworkers as in Lai et al. [74], Wang and Yin [135].
So in our task, the participants are given a series of questions composed of a query summary with three
candidate articles2, and are asked to select an article from which the summary is generated under a time
constraint (Figure 5.2).

As in the general document matching task, each candidate article is presented with an affinity score
computed by a language model, which captures the similarity between the article and the summary. The
affinity scores are computed by taking a cosine similarity between the final hidden representation of a

2While the decision makers in a general matching task may observe more than three candidate articles, we devise a simpler
instantiation here to reduce the complexity of the task, which will be better suited for the crowdsourcing task.
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Figure 5.3: Distribution of affinity scores—computed by the matching model—for hard and easy questions. The
box plot shows maximum absolute difference in affinity scores between the correct and wrong candidate articles for
each of the hard and easy questions. The smaller the absolute difference is, the smaller the gap between the correct
and the wrong article, making the scores less helpful in identifying the correct article (e.g., for the hard questions).

language model for the article and the summary [26, 139]. We use the representations from the Distil-
BART [112] model fine-tuned on the CNN/DailyMail dataset.
Question types. In practice, there are some questions where the correct (document) match is obvious,
whereas other questions require a more thorough inspection of the specifics. For instance, in scientific
peer review, a paper about a new optimization method in deep learning may be assigned to a broad range
of candidate reviewers whose general research area is within deep learning. However, a reviewer who
has worked both on optimization theory and deep learning may be a better fit compared to others who
have primarily worked on large-scale deep-learning based vision models. Even among the reviewers in
optimization theory, the reviewers who have worked on similar type of methods to the one proposed may
be better suited for the match. Such subtleties require more careful examination by the meta-reviewers.

We capture such scenarios by creating a data pool composed of two types of questions via manual
inspection: easy and hard. Easy questions have candidate answers (articles) from different topics or
events that are easily discernible from one another, and therefore can be easily matched correctly. On
the other hand, hard questions have candidate articles with a shared topic that only differ in small details,
requiring a more careful inspection by the users.

On easy versus hard questions, the affinity scores naturally show distinctive behaviors. The gap of the
scores between the correct and the wrong matches is smaller for the hard questions than for the easy ones
(Figure 5.3). Because the scores for all candidate articles are similar to one another in the hard questions,
the affinity scores are not as helpful in identifying the best match. Additionally, it is more likely that
the candidate article with the highest affinity score is not the correct match in the hard questions. If a
hypothetical user was to simply select a candidate article which has the highest affinity score by completely
relying on the matching model’s output, they would be accurate only for 33.3 percent of the time for the
hard questions, compared to 100 percent of the time for the easy questions. We believe that providing
users with assistive information might be critical for improving outcomes when making decisions on the
hard questions, when the model is less accurate and the correct match is more difficult to find.
Defining ground-truth matches. A ground-truth match for a given summary and a set of candidate
articles is necessary to measure participant performance. To construct pairs of summary and candidate
articles, we first sample a summary-article pair from raw dataset and consider the article as the ground-
truth for the given summary. We then select two other articles from the dataset which have the highest
affinity scores with respect to the given summary as the incorrect candidate articles for the given summary.

There are several instances where the two alternate candidate articles, which should be incorrect
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(CNN)As ash from Chile's Calbuco Volcano spread 
east into Argentina, … 
The volcano has already erupted twice this week, 
spewing ash to a depth of about 23½ inches (60 
centimeters) in some places, according to the 
Ministry of Interior and Public Safety. … 
Calbuco erupted twice in 24 hours, the geological 
agency said early Thursday. … 
Authorities issued a red alert for the popular 
tourist towns of Puerto Montt and Puerto Varas in 
the south. …
A 12-mile (20-kilometer) exclusion zone was 
established around the crater. … 
An additional 2,000 residents of Chamiza were being 
evacuated as a preventive measure after river 
levels rose due to volcanic flows. …

Volcano already has erupted twice this week. 
It has spewed ash to a depth of about 23½ inches in some places, Chilean officials say. 
Authorities issue an alert for two towns, and there's a 12-mile exclusion zone.

Chile's Calbuco Volcano already has erupted twice in 24 hours. 
Authorities issued a red alert for popular tourist destinations like Puerto 
Montt and Puerto Varas in southern Chile.
Volcanic flows made river levels to rise, forcing thousands of residents to be 
evacuated as a precaution.

(CNN)Chile's Calbuco Volcano erupted again Thursday, 
marking the third time since last week, but not as 
severe as the two prior ones. … 
A 20-kilometer (12-mile) exclusion zone has been 
established around the crater, and Chilean authorities 
have been keeping residents away from that zone. … 
The volcanic debris has landed and piled up in some 
places to a depth of almost 2 feet, the Ministry of 
Interior and Public Safety said. … 
Authorities last week issued a red alert for the 
popular tourist towns of Puerto Montt and Puerto Varas 
in southern Chile. … 

(CNN)Chile's Calbuco volcano erupted twice in 24 hours, the 
country's National Geology and Mining Service said early 
Thursday. 
The agency said it was evaluating the spectacular nighttime 
eruption, but indicated it was "stronger than the first one." 
About 23½ inches (60 centimeters) of ash fell in some places, 
according to the Ministry of Interior and Public Safety. 
Authorities issued a red alert for the towns of Puerto Montt 
and Puerto Varas in southern Chile. Both are popular tourist 
destinations. 
A 12-mile (20 kilometer) exclusion zone was established around 
the crater. …

Original Summary

Ground-truth Article Alternate Candidate Article 1 Alternate Candidate Article 2

Adjusted Summary

information unique  
to the ground-truth only

Figure 5.4: Ensuring a single correct match for the questions. For an original summary sampled from the dataset,
the three candidate articles appear to be all correct matches – the critical information highlighted with different colors
in the original summary is contained in all three candidate articles (highlighted with the same colors). To resolve
having multiple correct matches for the question, we manually extract information unique to the ground-truth article
only (underlined text in dotted box) and add it to the adjusted summary to ensure that only the ground-truth article
is the correct match for the summary.

choices, may arguably be a suitable choice for the given summary. This happens because the dataset
contains multiple articles covering the same event. To resolve this issue of having multiple ground-truths,
we manually modify the given summary so that it is consistent only with the ground-truth article. Specif-
ically, we manually identify unique information in the ground-truth article that is not part of the alternate
candidate articles and add that information to the summary (Figure 5.4).

5.3.2 Tested Methods

In this section, we describe the methods used to highlight assistive information that we evaluate in our
study and how they are presented to the users.

Black-box Model Explanation. Black-box model explanations include techniques that aim to high-
light important input tokens for a model’s prediction [83, 113, 117, 124]. While there are several candi-
dates to consider, we use a widely-applied method called SHAP [83]. SHAP assigns attribution scores to
each input token that indicate how much they contribute to the prediction output. We select SHAP from
a pool of prominent explanation methods (which include Integrated Gradients [124] and Input x Gradi-
ents [113]) by examining how much the distribution of attribution scores deviate from random distribution
of attribution scores (see Appendix D.1 for details).

We visualize SHAP (example shown in Figure 5.5, third row) by highlighting the input tokens ac-
cording to their attribution scores. Tokens that contribute to increasing the affinity score (i.e., those with
positive attribution scores) are highlighted in cyan, while those that decrease the score (i.e., those with
negative attribution scores) are highlighted in pink. The color gradients of the highlights indicate the
magnitude of the attribution scores: the darker the color, the bigger the magnitude.

Extractive Summarization. Summarization methods are trained to select key information within a
large body of text. These methods can potentially help users process multiple lengthy articles in a shorter
amount of time [76, 81, 150, 152]. Summaries generated by these methods are typically either generative
(i.e., the summary is a newly-generated text that may not be part of the original text) or extractive (i.e., the
summary is composed of text pieces extracted from the original text) [46]. Because generative summaries
are more susceptible to hallucinating information not present in the original text [23, 54, 87], we focus
on evaluating extractive summaries. In particular, we use BERTSum [81], which achieves state-of-the-
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Query		
Summary

Chile's Calbuco Volcano already has erupted twice in 24 hours. Authorities issued a red alert for popular 
destinations like Puerto Montt and Puerto Varas in southern Chile. Volcanic flows made river levels to rise, 
forcing thousands of residents to be evacuated as a precaution.

Key	Parts

(CNN)As ash from Chile's Calbuco Volcano spread east into Argentina, geologists warned of the potential for 
more activity Friday. Evacuations in the region involved not only people but animals as well. … The volcano 
has already erupted twice this week, spewing ash to a depth of about 23½ inches (60 centimeters) in some 
places, according to the Ministry of Interior and Public Safety. … Calbuco erupted twice in 24 hours, the 
geological agency said early Thursday. … Authorities issued a red alert for the popular tourist towns of 
Puerto Montt and Puerto Varas in the south. … An additional 2,000 residents of Chamiza were being evacuated 
as a preventive measure after river levels rose due to volcanic flows. … Another person said: "It was 
impressive to see an enormous mushroom cloud, with the immense force of the volcano, and to see the ashes. … 

SHAP

(CNN)As ash from Chile's Calbuco Volcano spread east into Argentina, geologists warned of the potential for 
more activity Friday. Evacuations in the region involved not only people but animals as well. … The volcano 
has already erupted twice this week, spewing ash to a depth of about 23½ inches (60 centimeters) in some 
places, according to the Ministry of Interior and Public Safety. … Calbuco erupted twice in 24 hours, the 
geological agency said early Thursday. … Authorities issued a red alert for the popular tourist towns of 
Puerto Montt and Puerto Varas in the south. … An additional 2,000 residents of Chamiza were being evacuated 
as a preventive measure after river levels rose due to volcanic flows. … Another person said: "It was 
impressive to see an enormous mushroom cloud, with the immense force of the volcano, and to see the ashes. …

BERTSum

(CNN)As ash from Chile's Calbuco Volcano spread east into Argentina, geologists warned of the potential for 
more activity Friday. Evacuations in the region involved not only people but animals as well. … The volcano 
has already erupted twice this week, spewing ash to a depth of about 23½ inches (60 centimeters) in some 
places, according to the Ministry of Interior and Public Safety. … Calbuco erupted twice in 24 hours, the 
geological agency said early Thursday. … Authorities issued a red alert for the popular tourist towns of 
Puerto Montt and Puerto Varas in the south. … An additional 2,000 residents of Chamiza were being evacuated 
as a preventive measure after river levels rose due to volcanic flows. … Another person said: "It was 
impressive to see an enormous mushroom cloud, with the immense force of the volcano, and to see the ashes. …

Co-
occurrence

(CNN)As ash from Chile's Calbuco Volcano spread east into Argentina, geologists warned of the potential for 
more activity Friday. Evacuations in the region involved not only people but animals as well. … The volcano 
has already erupted twice this week, spewing ash to a depth of about 23½ inches (60 centimeters) in some 
places, according to the Ministry of Interior and Public Safety. … Calbuco erupted twice in 24 hours, the 
geological agency said early Thursday. … Authorities issued a red alert for the popular tourist towns of 
Puerto Montt and Puerto Varas in the south. … An additional 2,000 residents of Chamiza were being evacuated 
as a preventive measure after river levels rose due to volcanic flows. … Another person said: "It was 
impressive to see an enormous mushroom cloud, with the immense force of the volcano, and to see the ashes. …

Semantic

(CNN)As ash from Chile's Calbuco Volcano spread east into Argentina, geologists warned of the potential for 
more activity Friday. Evacuations in the region involved not only people but animals as well. … The volcano 
has already erupted twice this week, spewing ash to a depth of about 23½ inches (60 centimeters) in some 
places, according to the Ministry of Interior and Public Safety. … Calbuco erupted twice in 24 hours, the 
geological agency said early Thursday. … Authorities issued a red alert for the popular tourist towns of 
Puerto Montt and Puerto Varas in the south. … An additional 2,000 residents of Chamiza were being evacuated 
as a preventive measure after river levels rose due to volcanic flows. … Another person said: "It was 
impressive to see an enormous mushroom cloud, with the immense force of the volcano, and to see the ashes. … 

Figure 5.5: Highlighted information using different methods on the ground-truth article of the summary-
article pair example in Figure 5.4. Highlights for “Key Parts” (second row) indicate information relevant
to the query summary (first row), all of which ideally should be visibly highlighted by the methods that
follow. SHAP (third row) and BERTSum (fourth row) fail to fully highlight all key parts. Critically, they
fail to visibly highlight the key part about river levels rising (yellow highlights in Key Parts), the unique
information that distinguishes the ground-truth from other candidate articles (as described in Figure 5.4),
which can directly impact the participant’s performance. On the other hand, our task-specific methods,
both Co-occurrence (fifth row) and Semantic (sixth row) ones, are able to visibly highlight all key parts.

art performance on the CNN/DailyMail dataset [94], to extract three key sentences from the article. We
visualize the extracted summary by highlighting the selected sentences from the original text with a single
solid color (example shown in Figure 5.5, fourth row).

Task-specific Methods. The summary-article matching task requires users to accurately and quickly
identify whether all details in the summary are correctly presented in each article. This is particularly
challenging for hard questions, where the ground-truth can only be identified by looking at the right part
of the articles due to their subtle differences.

Next we propose two task-specific methods that are more tailored to addressing this challenge. The
methods operate at sentence and phrase-level information in the summary and candidate articles. Specif-
ically, we select and show the top K sentences3 from each article with the highest similarity measure to

3We pick K = 3, but this can be tuned for different levels of detail, depending on the length of the summary or the article.
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each sentence in the summary4. To further provide more fine-grained detail on why that sentence could
have been selected, we then show exactly-matching phrases within those selected sentences. Essentially,
the methods are designed to guide the users to relevant parts in the article for each summary sentence
by presenting the relevance hierarchically – by first showing the key sentences and then the key phrases
within.

We consider two versions of the method which use different similarity measures to select the sen-
tences:

• Co-occurrence method uses F1 score of ROUGE-L [78], a common performance metric used to
capture the degree of n-gram co-occurrence between two texts.

• Semantic method uses the cosine similarity between the sentence representations from Sentence-
BERT [100], a transformer model trained for sentence-level tasks. These scores are more sensitive
to semantic similarities among texts like paraphrased components that may not be effectively cap-
tured by ROUGE-L.

Once we select K sentences based on the similarity measures, we visualize them using different colors
to differentiate sentences in the article related to different sentence in the summary. Like before, we use
color gradients to indicate the magnitude of the similarity score for each sentence (the higher the similarity,
the darker the color). We then color the exactly-matching phrases using the darkest shade. For instance,
in Figure 5.5 (fifth and sixth rows), the pink, blue and yellow highlights indicate relevant parts to first,
second, and third sentence in the summary respectively. We include additional examples from each of the
explored methods in Appendix D.2.

5.4 Experiments

We run a pre-registered5 user study on the summary-article matching task introduced in Section 5.3.1
to evaluate the methods described in Section 5.3.2 as treatment conditions. In this section, we outline
the details of the user study (Section 5.4.1), followed by our main hypotheses (Section 5.4.2) and results
(Sections 5.4.3).

5.4.1 User Study Design

We present 16 questions to each participant. The 16 questions comprise 4 easy and 12 hard questions
in random order. Participants complete all questions in one sitting. For each question, participants see a
query summary followed by three longer candidate articles (see Figure 5.2 for an example). To incorporate
the time constraints typical decision makers may face in practical settings, as similarly done in [95], we
limit participants to spend 3 minutes to answer each question, after which they automatically see the next
question. We offer bonus payments to encourage high-quality responses in terms of both accuracy and
time (more details in Appendix D.3.4).

We recruit 275 participants from a balanced pool of adult males and females located in the U.S.
with minimum approval ratings of 90% on Prolific (www.prolific.co), with diverse demographic

4Note that one could alternatively consider applying SHAP to the sentence-level information from the summary instead of
the entire summary. While seemingly providing an apples-to-apples comparison to the sentence-level task-specific methods,
a sentence-level application of SHAP would be unconventional and inconsistent with SHAP’s intended use. Indeed, SHAP is
designed to explain a model’s prediction, and in our set up the model makes a prediction for the affinity score between the entire
summary and the article. Hence, the most natural and consistent way of using SHAP is applying it to the entire input. For text
summarization method, a similar argument holds: the method summarizes a longer text by extracting a subset of information and
therefore is meant to take in the entire document content as the input.

5Pre-registration document is available at https://aspredicted.org/LMM_4K9
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background (more details in Appendix D.3.2). The sample size is determined from Monte Carlo power
analysis based on data collected from a separate pilot study, for a statistical power above 0.8 (more details
in Appendix D.3.1). Each participant is then randomly assigned to one of five groups:

• Control: participants see the basic information (summary, articles, affinity scores)
• SHAP: participants see the basic information + highlights from SHAP
• BERTSum: participants see the basic information + highlights from BERTSum
• Co-occurrence: participants see the basic information + highlights from Co-occurrence method
• Semantic: participants see the basic information + highlights from Semantic method

We include two attention check questions in the study in addition to the 16 questions above. 271 out of
275 participants pass both attention-check questions, and we exclude responses from the 4 non-qualifying
participants from our further analysis. We include mode details about the user study in Appendix D.3.

5.4.2 Main Hypotheses

We pose the following null hypotheses with two-sided alternatives about the mean accuracy of partic-
ipants on the hard questions, using different kinds of assistive information:

(H1) The mean accuracy of participants using SHAP is not different from that of the control.

(H2) The mean accuracy of participants using BERTSum is not different from that of the control.

(H3) The mean accuracy of participants using Co-occurrence method is not different from the con-
trol.

(H4) The mean accuracy of participants using Semantic method is not different from the control.
To test each hypothesis, we compare the mean accuracy of the participants in different treatment

settings against the control group with two-tailed permutation tests, where the test statistic is the difference
in the mean accuracy. We account for multiple comparisons with Sidak correction [115] for the family-
wise error rate of 0.05.

5.4.3 Results

We now discuss the participants’ task accuracy, completion time, and qualitative responses in different
treatment groups.

Accuracy Difference

We find a statistically significant difference in the mean accuracy of all treatment groups compared to
the control and reject the null hypotheses H1 through H4 in Section 5.4.2.

• Participants using SHAP perform significantly worse than the control (p = 0.001599 < 0.05).
• Participants using BERTSum perform significantly worse than the control (p = 0.0056 < 0.05).
• Participants using Co-occurrence method perform significantly better than the control (p = 0.002997 <
0.05).

• Participants using using the Semantic method perform significantly better than the control (p =
0.002997 < 0.05).

Comparing the participants’ accuracy against the model accuracy on different question types, we
verify that the assistive information is particularly helpful for the hard questions (Figure 5.6a). Note
that the model is only accurate around 33.3% of the time in hard questions (red dotted line) while being
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Figure 5.6: (a) On hard questions, we observe significantly higher accuracy in groups presented with assistive
information from Co-occurrence and Semantic methods compared to the control, and lower accuracy in groups
presented with assistive information from SHAP and BERTSum. The dotted lines indicate the accuracy of the
matching model, i.e., accuracy when selecting the article with the highest affinity score. For easy questions, it is
more effective to simply follow the affinity scores without support from additional assistive information. For hard
questions where the correct match is less obvious, using Co-occurrence or Semantic methods may be effective.
(b) We observe a lower average time for groups given SHAP, Co-occurrence, and Semantic methods compared to
control in both types of questions, but higher average time for BERTSum.

100% accurate on easy questions (blue dotted line). The information from Semantic method is the most
effective for the hard questions with the highest average accuracy of 58.6%, which is a 26% increase in
accuracy compared to the control (46.6%) and a 77% increase compared to the model accuracy (33.3%),
while SHAP (35.2%) and BERTSum (36.7%) remain less effective (red checker-patterned bars). On the
other hand, there appears no significant difference in accuracy among the methods for the easy questions
(blue dotted bars), all of them slightly less accurate than the model accuracy. The results suggest that while
it is more efficient to rely on the affinity scores for the easy questions, assistive information via Semantic
methods can be particularly helpful for the hard questions, when the correct match is less obvious for
both the models and humans. This further suggests that for the best results in practice, it may be useful
to consider first identifying the difficulty of the question and then determine if additional information is
necessary.

Time Difference

We record the average response time (in seconds/question) for participants in each treatment group.
We observe that on average the participants using SHAP, Co-occurrence, and Semantic methods respond
more quickly compared to the control group for both types of questions (Figure 5.6b). For both easy and
hard questions, the participants using the Semantic method take the shortest average time (26.6 seconds
for easy and 32.9 seconds for hard), which is approximately a 20% improvement over the control (34.4
seconds for easy and 41.7 seconds for hard). The participants using BERTSum take the longest (36
seconds for easy and 48.9 seconds for hard), where they experience a 17% increase in time for the hard
questions. Given that the Semantic method is also able to significantly boost the task accuracy, it is the
most effective method among the tested ones. On the other hand, as BERTSum simultaneously decreases
the task accuracy and increases the completion time, it may be considered the least effective method.
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Qualitative Responses

1.9

Figure 5.7: Participants’ responses (in percentage) for “Were the highlights helpful?”. For all the methods, the
majority of the participants respond positively to the question regardless of their actual task accuracy.

At the end of the user study, the participants are asked several qualitative questions about the task.
“Were the highlights helpful?” Participants from all of the treatment groups generally respond pos-

itively to this question – Figure 5.7 shows the proportion of different responses from the participants in
each group, and positive responses in blue form the majority in all groups. While the participants believe
the highlights to be helpful, their task performance shows the contrary for participants using SHAP and
BERTSum. Such discrepancy between the subjective perception of a tool’s utility and the objective utility
measured by task-grounded performance metrics corroborate similar previous observations on different
assistive tools [12, 58].
“What information was the most helpful in answering the question?” While the majority of the partici-
pants using BERTSum, Co-occurrence, and Semantic methods respond that the highlights were the most
helpful, the participants using SHAP have more diverse responses that showed no particular preference
(Figure 5.8). It is interesting to note that the participants using either Co-occurrence or Semantic methods
find the role of highlights to be significantly helpful when compared to other methods.

1.7
1.7

1.9

Figure 5.8: Participants’ responses (in percentage) to a question “What information was the most helpful?”

“Were there too many highlights?” We find that the participants using SHAP most strongly agree to this
sentiment (Figure 5.9). One factor that could have contributed to this is the default output values from
SHAP used to generate the highlights, which are not post-processed for more succinct representation of
information. Appropriate post-processing of the attribution scores may be necessary to better account for
this—the impact of the amount of highlights on the task performance is an open research question that
requires future work.
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Figure 5.9: Participants’ responses (in percentage) to a question “Were there too many highlights?”

Figure 5.10: Overview of R2P2. While typical meta-reviewers only see the ranked list of potential review-
ers and their respective affinity scores (left), R2P2 helps provide more context to the match, by searching
for top relevant papers by the reviewer, as well as relevant pieces of information within those papers
(right).

5.5 Towards Application to Peer Review

Based on the results obtained in our user study for summary-article matching, we apply the semantic
method to a more specific set of documents for peer review: academic abstracts. Abstracts contain rich
and compact information about what the paper is about and are therefore widely utilized in practice. For
instance, large language models use the embeddings of the abstracts to subsequently assign affinity scores
to each candidate reviewer [31]. In this section, we introduce a tool we developed that uses the academic
abstracts and the semantic method to assist meta-reviewers check the quality of a potential match between
a submitted paper and a reviewer.

Meta-reviewers generally “are presented with little structured information about the reviewers” [126]:
what the meta-reviewers typically see is just a list of candidate reviewers, sorted according to their affinity
scores (Figure 5.10, left). They can then click on each reviewer’s profile to see more details about the
reviewer (e.g., Google scholar page, personal websites, etc.). The tool, which we call R2P2 (Reviewer
TO Paper for Peer Review), is designed to provide more structured information about each reviewers
relevant to the submission. It takes in a title and an abstract of the submitted paper, and a potential
reviewer’s profile (Semantic Scholar profile link). It then searches for previous papers written by the
reviewer and ranks each paper based on its abstract’s similarity to the submitted abstract, computed with
embeddings from a language model of choice6. Once the papers are ranked and top papers are retrieved, it
further uses the language model to highlight relevant sentences within the abstracts of the retrieved papers

6In our current version, we use Specter2[31, 118].
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Paper with the highest affinity score (0.954)

Sentences from submission abstract Sentences from the paper’s abstract

Overlapping phrases in blue

Sliders to control the number of information to show

Paper with the second-highest affinity score (0.944)

Figure 5.11: R2P2 first provides relevant sentence pairs from the submission abstract (left) and the top
papers by the reviewer (right). Example here is for the TPMS paper [26] as the submission and Nihar
Shah as the reviewer. From the presented information, it is easy to catch that both the reviewer and the
submission have a common interest in peer review.

(Figure 5.10, right), just as we have done in the summary-article matching setup. The tool is available for
trial here7.

Unlike the summary-article matching setup where the users are simply asked to process three candidate
texts and a short paragraph of summary text, this setup involves longer input text (e.g., submitted abstract)
as well as multiple candidate texts (e.g., reviewer’s previous papers) to process. This requires a change
in how the highlights and relevant information are presented, as visualizing all highlights with different
colors at once with all text (as we did in the summary-article matching task) is not practical. R2P2 displays
a more stratified set of information as described below.

Initial Information. First, the users are shown succinct characterization of what parts from the ab-
stracts (one from the submitted paper, one from the reviewer’s previous paper) make them similar. In
particular, we pick the top relevant sentence pairs (based on relevance scores computed by the language
model) from the submitted abstract and the abstracts of the reviewer’s top relevant papers and display them
side-by-side (Figure 5.11). We further allow users to change the number of top papers by the reviewer
and top sentence pairs to show for each paper. We highlight common phrases that are present in both
sentences with blue. Noting the common phrases and the content of the top pairs, the similarity between
the submission and the reviewer

Additional Information. If the provided information above is not sufficient, the users have a choice
to explore each of the reviewer’s previous papers in more detail. This part gives the users more degrees
of freedom to select a specific reviewer’s paper, a specific sentence from the submitted abstract, and the
number of relevant sentences to show from the abstract of the selected reviewer’s paper (Figure 5.12).

7https://huggingface.co/spaces/jskim/paper-matching
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1. Pick a paper by  
the reviewer

2. Pick a sentence from  
the submission abstract

3. Set the number of relevant sentences to see

4. Observe which sentences  
from the paper’s abstract  
are the most relevant. 

Figure 5.12: R2P2 then allows users to explore more details for each of the reviewer’s paper. One can
select a particular paper, select a particular sentence from the submission abstract, to see which sentences
of the paper’s abstract are the most relevant to the selected sentence.

The red highlights indicate the relevant sentences from the selected paper’s abstract, where the darkness
of the color scales with the magnitude of the relevance score (the darker the higher). Again, we highlight
common phrases in blue. The users can interactively click on different parts to better understand the
similarities and differences between the reviewer and the submission. It is also useful to look at the list
of titles on the left to quickly verify if the reviewer has frequently published on a similar topic to that of
the submission. In Figure 5.12, we see that all papers have affinity scores above 0.92, which indicate a
potential strong match.

We perform interviews with few colleagues to collect qualitative feedback about the tool. To make
them interact with the tool in a more meaningful manner (and therefore to make them more likely to
provide quality feedback), we devise a small task that emulates the meta-reviewer’s job of evaluating
the quality of the given paper-reviewer assignment. Specifically, they are asked to use the tool to rate
the quality of 5 different paper-reviewer assignments, using a score from 1 - 5 (5 being the strongest
match, 1 being the weakest). The paper-reviewer assignments are sampled from a gold-standard dataset,
which consists of “self-reported expertise scores provided by researchers who evaluated their expertise in
reviewing papers they have read previously” [123].

Generally, the feedback was positive with suggestions for improving the UI and the algorithm. One
common feature that the participants found useful was the title of top relevant papers from the reviewer’s
profile. Part of the workflow was to go through the list of these titles to deduce how the reviewer may be
relevant. One participant also pointed out that skimming through the reviewer’s publication list manually
without such information would make it easy to miss few papers that could be highly relevant.

Sentence-by-sentence comparison presented as the initial information was generally useful, but the
participants suggested it could be improved in terms of selecting the sentences to display. There were cases
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where the selected sentence pairs were introductory sentences of respective abstracts which contain less
specific information about the assignment. While they were useful in checking for the general alignment
of expertise, more detail was needed to ensure the quality of the match (hence the participants needed
to look at the additional information section to ascertain their impressions). One participant suggested a
possibility of improving this by leveraging a structural nature of academics abstracts (e.g., first sentence
of the abstract is almost always about the general field of study; last few sentences mostly discuss specific
details that are unique to the paper) to diversify the way we pick information to present.

Next steps would include addressing these feedback and running a scaled-up controlled study based
on the task described above with domain experts. The gold-standard dataset contains multiple paper-
reviewer assignments that can be utilized to design such study, so it would be possible to objectively test
the effectiveness of the tool by comparing the control and treatment groups’ performance. However, one
needs to modify the task format so that it accounts for calibration issues, as the scores given in the datasets
will be different from scores given by the participants. Additionally, setting up the study would require
more care due to the high cost of recruiting domain experts in scale. It would also be helpful to pitch the
tool to few domain experts with meta-reviewer experience and ask for their direct feedback.
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Chapter 6

Conclusion

6.1 Summary

Explainable machine learning is a broad research field actively developing, both in terms of method-
ology and application. In this thesis, we presented our contributions to both of these aspects.

In Chapter 2, we proposed a novel method of selecting representer points, the training examples that
are influential to the model’s prediction. To do so we introduced the modified representer theorem that
could be generalized to most deep neural networks, which allows us to linearly decompose the prediction
(activation) value into a sum of representer values. The optimization procedure for learning these repre-
senter values is tractable and efficient, especially when compared against the influence functions proposed
in [68]. We have demonstrated our method’s advantages and performances on several large-scale mod-
els and image datasets, along with some insights on how these values allow the users to understand the
behaviors of the model. Source code is available here.1

In Chapter 3, we introduced the FACT diagnostic, which facilitates systematic reasoning about dif-
ferent kinds of trade-offs involving arbitrarily many notions of performance and group fairness notions,
which all can be expressed as functions of the fairness–confusion tensor. In our formalism, the majority
of group fairness definitions in the literature are in fact linear or quadratic thus are easy to be imposed
as constraints to the PFOP. The FACT diagnostic further benefits from elementary linear algebra and
convex optimization to provide a unified perspective of viewing fairness–fairness trade-offs and fairness–
performance trade-offs. We have also empirically demonstrated the practical use of the FACT diagnostic
in several scenarios. Source code is available here.2

In Chapter 4, using SMERF, we created seven stylized prediction tasks which revealed significant
shortcomings of existing saliency methods, especially in their ability to recover complex model reason-
ing. We further corroborated the main results with additional results using natural image backgrounds,
demonstrating similar qualitative trends but degraded quantitative performance. SMERF serves as a nat-
ural benchmark to evaluate saliency methods’ correctness, and our results suggest that it can roughly
provide an optimistic upper bound of a method’s performance in more complicated real-world scenarios.
Source code is available here.3

In Chapter 5, motivated by practical concerns in document matching tasks with human decision mak-
ers, we conducted a user study to investigate the utility of different kinds of assistive information for the
summary-article matching task. We found that even well-established black-box model explanations can

1https://github.com/chihkuanyeh/Representer_Point_Selection
2https://github.com/wnstlr/FACT
3https://github.com/wnstlr/SMERF
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potentially impair the users’ decisions, while task-specific approaches can effectively assist them. Existing
methods are typically not explicitly optimized for the task’s objective: Model explanations are contingent
on the matching model; it attempts to explain what the model considers important, not necessarily what hu-
man users find important to perform well in the task. General text summarization methods can be helpful
for succinctly expressing a high-level topic of the article, but may lack the precision of picking the details
directly related to the given summary. Furthermore, we observed that the users’ subjective perception
on the utility of (assistive) information was misaligned with their performance on the task. These results
altogether emphasize that it is important for the developers of such assistive tools to articulate the specific
use (and users) it serves, and rigorously evaluate their proposals. We also made a step forward wrapping
the methods tested into a concrete tool that people can openly utilize for paper-reviewer matching process
in peer review. Source code is available here.4

6.2 Future Work

There remains many interesting open research directions moving forward for each of the presented
work. To truly see if RPS is applicable to different domains other than image datasets with different types
of neural networks, applying them to some signature language model architectures like LSTM [50] or
transformers [130] would be interesting. Preliminary experiment results on LSTM for sentiment classifi-
cation task is presented in Appendix A.

In FACT diagnostics, many of the presented results require only linear fairness functions and accu-
racy, as in the LAFOP/MS-LAFOP setting. Nevertheless, it is easy to extend this to quadratic fairness
functions with more varied performance metrics depending on different use cases. We believe there are
more interesting theoretical results to explore that stem from the formulation. For instance, we briefly
introduce a small theoretical result regarding fairness–accuracy trade-offs using the FACT diagnostic in
Appendix B.6, which deserves further analysis.

We believe that SMERF can broadly play an important role in guiding future methodological advances
to overcome the demonstrated shortcomings of current saliency methods by systematically and quantita-
tively defining what correct behavior looks like on various tasks. Moreover, SMERF can be extended over
time as new methods are developed that perform consistently well on these stylized settings, by generat-
ing more sophisticated perception and reasoning tasks, e.g., by introducing semi-synthetic objects and/or
encoding more complex reasoning through which the objects impact predictions. An interested reader can
take the source code to (i) run the entire pipeline from generating datasets to computing results; and (ii)
evaluate new tasks by encoding new model reasoning and new methods. Finally, generalizing the main
ideas behind SMERF may also be useful in settings where saliency methods are inherently not appropriate,
e.g. problems that involve counterfactual model explanations [133].

The summary-article matching task developed as part of our work on document matching can be
used as a first-pass test to validate promising methods (and promote development of new approaches).
Relaxing some assumptions in our setup can provide further insights on strengths and weaknesses of
individual methods in more complex scenarios (e.g., allowing multiple or no ground-truths in questions).
Also, recent developments in generative large language models [19, 20, 130] provide broader family of
models that can be explored as the core basis for picking the relevant information from text and explaining
them. We are looking forward to continue testing the developed tool and iterate with meta-reviewers so
that it could be potentially integrated with the peer review system in practice.

4https://github.com/wnstlr/document-matching
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Appendix A

Supplementary for Chapter 2

A.1 Proof of Proposition 2.3.1

Proof. The convexity can be checked easily. If Θ∗ ∈ argminΘ Lsoftmax(Φ(xi,Θgiven),Φ(xi,Θ)), by
the first order condition we have

∂Lsoftmax(Φ(xi,Θgiven),Φ(xi,Θ
∗))

∂Θ∗
1

= 0 (A.1)

By chain rule we obtain

∂Lsoftmax(Φ(xi,Θgiven),Φ(xi,Θ
∗))

∂Φ(xi,Θ∗)

∂Φ(xi,Θ
∗)

∂Θ∗
1

= 0, (A.2)

and thus we have (
∂Lsoftmax(Φ(xi,Θgiven),Φ(xi,Θ

∗))

∂Φ(xi,Θ∗)

)
fTi = 0, (A.3)

When fi is not a zero vector, this reduces to

∂Lsoftmax(Φ(xi,Θgiven),Φ(xi,Θ
∗))

∂Φ(xi,Θ∗)
= 0, (A.4)

and we show that σ(Φ(xi,Θ))− σ(Φ(xi,Θgiven)) = 0. As a result, Lsoftmax is “suitable to” the softmax
activation.

If Θ∗ ∈ argminΘ LReLU(Φ(xi,Θgiven),Φ(xi,Θ)), we can rewrite LReLU as

LReLU(Φ(xi,Θgiven),Φ(xi,Θ))

=
1

2
max(Φ(xi,Θ), 0)⊙ Φ(xi,Θ)− Φ(xi,Θgiven)⊙ Φ(xi,Θ)

=
c∑

j=0

1

2
max(Φj(xi,Θ), 0)Φj(xi,Θ)− Φj(xi,Θgiven)Φj(xi,Θ),

(A.5)

and we note that Θ1j , the j-th row for Θ1, is only related to Φj(xi,Θ). Therefore, we have Θ∗
1j ∈

argminΘ1j LReLU(Φj(xi,Θgiven),Φj(xi,Θ)). We now consider the cases where max(Φj(xi,Θgiven), 0) =
0 and max(Φj(xi,Θgiven), 0) > 0.

71



When max(Φj(xi,Θgiven), 0) = 0,

LReLU(Φj(xi,Θgiven),Φj(xi,Θ)) =
1

2
max(Φj(xi,Θ), 0) · Φj(xi,Θ). (A.6)

Θ1j obtains the minimum when max(Φj(xi,Θ), 0) = 0, therefore σ(Φj(xi,Θ)) = σ(Φj(xi,Θgiven)).
When max(Φj(xi,Θgiven), 0) > 0,

LReLU(Φj(xi,Θgiven),Φj(xi,Θ)) =
1

2
max(Φj(xi,Θ), 0) · Φj(xi,Θ)− Φj(xi,Θgiven) · Φj(xi,Θ).

For Φj(xi,Θ) ≤ 0, the minimum for LReLU is 0. For Φj(xi,Θ) > 0, the minimum for LReLU is
−1

2Φj(xi,Θgiven)
2 only if Φj(xi,Θ) = Φj(xi,Θgiven). Therefore, the minimum is reached again when

σ(Φj(xi,Θ)) = σ(Φj(xi,Θgiven)). As a result, LReLU is “suitable to” the ReLU activation.
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Figure A.1: Demonstration of numerical stability on a 2-D toy data. Even with a big margin, our values
faithfully provide positive examples from the same class and negative examples from the different class
near the decision boundary. Influence functions return zeros for all training points, thus is not able to
provide influential points.

A.2 Relationship with the Influence Function

In this section, we compare the behaviors of our method and the influence functions [68]. Recall
that for a training point xi and a test point xt, the influence function value is computed in terms of the
gradients/hessians of the loss, and it reflects how the loss at a test point xt will change when the training
point xi is perturbed (weighted more/less). Because the influence function is defined in terms of the
loss, its value can easily become arbitrarily close to zero if the the loss is flat in some region. On the
other hand, our representer values are computed using the neurons’ activation values, which may result in
comparatively larger values in general. We verify this in a toy dataset in 2-D with a large margin shown
in Figure A.1.

We train a multi-layer perceptron with ReLU activations as a binary classifier. The influential points,
we would expect, are the points that are closer to the decision boundary. As shown on the left of Fig-
ure A.1, the influence function does not provide positive or negative examples from each class for the
given test point in green square because all training points have exactly zero influence function values,
marked with cyan crosses. However, our method provides correct positive and negative points near the
decision boundary as we can see from the rightmost panel of Figure A.1.

In Figure A.2, we compare the behaviors of several metrics (Euclidean distance, influence function,
representer value) for selecting training points that are most similar to a test point from CIFAR-10 dataset.
We use a pre-trained VGG-16. As we can observe from the first two plots, the Euclidean distance does not
reflect the class each training point is in – even if the training point is far away from the test point it may
still be a similar image in the same class. On the other hand, representer and influence function values tell
us about which class each training point is in. From the third plot, we observe that influence function and
representer values agree on selecting images of horses as harmful and dogs as helpful.
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(a)

(b)

Figure A.2: Euclidean vs Influence Function vs Representer Value (ours). Representer values have bigger
scale in general. Some examples from regions (a) where the influence function value is zero while our
representer value is big and (b) where our representer value is small while the influence function value is
big are shown.

A.3 More Examples of Positive/Negative Reperesenter Points

More examples of positive and negative representer points are shown in Figure A.3. Observe that the
positive points all have the same class label as the test image with high resemblance, while the negative
points, despite their similarity to the test image, have different classes.
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Figure A.3: More examples of positive and negative representer points. The first column is composed of
test images from different classes from AwA dataset; the next three images are the positive representer
points; the next three are negative representer points for each test image.
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A.4 Representer Points of LSTM on NLP Data

We perform a preliminary experiment on an LSTM network trained on a IMDB movie review dataset
[84]. Each data point is a review about a movie, and the task is to identify whether the review has a positive
or negative sentiment. The pretrain model achieves 87.5% accuracy. We obtain the positive and negative
repesenter points with methods described in section 2.3.2. In Table A.1, we show the test review which is
predicted as a negative review by the LSTM network. We observe that both the top-1 positive and negative
representer contain negative connotations just like the test review, but in the negative representer (which
is a positive review about the movie) the negative connotation comes from a character in the movie rather
than from a reviewer.

Test Review ¡START¿ when i first saw this movie in the theater i was so angry it completely
blew in my opinion i didn’t see it for a decade then decided what the hell let’s see

i’m watching all ¡¿ movies now to see where it went wrong my guess is it was with
sequel 5 that was the first to ¡¿ the whole i am in a dream ¡¿ i see weird stuff oh ¡¿
it’s not a dream oh wait i see something spooky oh never mind ¡¿ storyline those

which made it so scary in the first place nothing fantasy nothing weird the box got
opened boom they came was the only one that could bargain her way out of it first

Positive Representer ¡START¿ no not the ¡¿ of ¡¿ the ¡¿ ¡¿ ¡¿ but the mini series ¡¿ ¡¿ lifetime must
have realized what a dog this was because the series was burned off two episodes at a
time most of them broadcast between 11 p m friday nights and 1 a m saturday ¡¿ as to
why i watched the whole thing i can only ¡¿ to ¡¿ sudden ¡¿ attacks of ¡¿ br br most

of the cast are ¡¿ who are likely to remain unknown the only two ¡¿ names are shirley
jones and rachel ward who turn in the only decent performances jones doesn’t make it
through the entire series lucky woman ward by the way is aging quite well since her

Negative Representer ¡START¿ this time around ¡¿ is no longer royal or even particularly close to being any
such thing instead rather a butler to the prince ¡¿ portrayed by hugh ¡¿ who ¡¿ tim ¡¿

who presence is ¡¿ missed and that hole is never filled his character had an innocent charm
was a bumbling and complete ¡¿ we can’t help but care for him which isn’t at all true of his

¡¿ as being ¡¿ which he apparently was according to the ¡¿ page not to mention loud
¡¿ and utterly non threatening ¡¿ can now do just about what he ¡¿ and does so why is

he so frustrated and angry honestly it gets depressing at times yes his master is a ¡¿ they

Table A.1: An example of top-1 positive and negative representer points for IMDB dataset. ¡¿ stands for
unknown words since only top 5000 vocabularies are used.
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Appendix B

Supplementary for Chapter 3

B.1 Proof of Theorem 3.5.1

A useful strategy is to solve (3.10) for a set of solutions, then ask if any of these solutions satisfies an
additional fairness constraint ϕ(K)(z) = 0. This proof, as well as many of the ones below, illustrate this
strategy in practice.

Proof. First, set K = 1 and A(0) = ACG in (3.10). Since v0 ̸= v1, the matrix A is full rank and therefore
admits the solution (3.11). Considering z0 ≥ 0 yields immediately the condition (3.12).

Next, set K > 1. Then either z0 is a solution (which is the case when all other fairness notions are

linear and linearly dependent on
(

ACG

Aconst

)
), or otherwise no solution exists to both (3.10) and ϕ(1)(z) =

· · · = ϕ(K−1)(z) = 0 simultaneously.

This theorem states that Φ ={CG} is incompatible when v0 ̸= v1, since it is a singleton set of
incompatible fairness.

The condition v0 ̸= v1 is necessary in Theorem 3.5.1, which is reasonable to assume as we would
expect the positive class to have a higher score than the negative class in the definition of CG. We can
prove the necessity of this condition by contradiction. In the degenerate case v0 = v1 = v, Φ ={CG} is a
set of compatible fairness notions. It turns out that (3.10) with K = 1 is only on rank 6. Denoting i⃝ as
the ith row of the matrix, we have two linear dependencies, 5⃝+ 6⃝+ v 1⃝ = 2⃝ and 7⃝+ 8⃝+ v 3⃝ = 4⃝.
There is no longer a unique solution to the (3.10); instead, we have a two-parameter family of solutions,

z(α, β) =
1

N(1− v)



v(N1(1− v)− α)
vα

(1− v)(N1(1− v)− α)
(1− v)α

v(N0(1− v)− β)
vβ

(1− v)(N0(1− v)− β)
(1− v)β


,

0 ≤ α ≤ (1− v)N1, 0 ≤ β ≤ (1− v)N0.

(B.1)

Furthermore, this family of solutions satisfies Aconstz0 = bconst if and only if v = M0/N0 = M1/N1,
i.e. the base rates are equal and furthermore the score for both bins is equal to the base rate.
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B.2 Proof of Corollary 3.5.1.1

Proof. Consider the product(
APCB

ANCB

)
z0 =

M1N0 −M0N1

N

(
v0v1

M0M1
(1−v0)(1−v1)

(M0−N0)(M1−N1)

)
. (B.2)

This product equals the zero vector (and hence satisfies both PCB and NCB) if and only if either of
the conditions of the Corollary hold. (The last solution, v0 = 1 and v1 = 0, is inadmissible since v0 < v1
by assumption.)

B.3 Proof of Corollary 3.5.1.2

Proof. The result follows from solving

ADPz0 =
M1N0 −M0N1

N2(v1 − v0)
= 0. (B.3)

B.4 Proof of Corollary 3.5.1.3

Proof. The result follows from solving

ϕPP(z0) = v1(1− v1)
(
(M1 −N1v0)

2 − (M0 −N0v0)
2
)
= 0 (B.4)

which is true if and only if either condition in the Corollary is true. (The last case, v1 = 0, is inadmissible
by assumption.)

In addition, here is a situation of fairness “for free”, in the sense that one notion of fairness automati-
cally implies another.
Corollary B.4.0.1. Consider a classifier that satisfies CG fairness. Then, the classifier also satisfies
EFOR fairness. In other words, {CG, EFOR} is incompatible.

Proof. ϕEFOR(z0) = 0 vanishes identically.

B.5 Proof of Theorem 3.5.2

Proof. Finding the solution to ϕPP(z) = ϕEFPR(z) = ϕEFNR(z) = 0 and also the linear system Aconstz =
bconst yields the three conditions of the Theorem.

B.6 CG–accuracy trade-offs

In the paper, we have only considered the case when λ = ∞ in the LAFOP: we only consider when the
fairness criteria are satisfied exactly yielding several fairness–fairness trade-off results without heed to the
accuracy of the classifiers. Nonetheless, recall that LAFOP allows us to express both fairness–accuracy
and fairness–fairness trade-offs by introducing an accuracy objective along with a fairness regularizer. In
this section, we show how the LAFOP can be used to theoretically analyze a simple fairness–accuracy
trade-off. We present a small result that is relevant to the CG–accuracy trade-off considered in [80].
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Theorem B.6.1. Let α = (M0 + M1)/N be the base rate. Consider a classifier that satisfies CG with
0 ≤ v0 < v1 ≤ 1. Then, perfect accuracy is attained if and only if

v0(1− 2v1)

1− v1 + v0
= α ≤ 1

8
,

∣∣∣∣v0 − 1

4

∣∣∣∣ ≤ √
1− 8α

4
. (B.5)

Proof. The case of necessity (⇒) follows immediately from solving c · z0 = 0, where z0 is defined
in Theorem 3.5.1. The inequality conditions follow immediately from the constraint 0 ≤ v0 < v1 ≤
1. The case of sufficiency (⇐) follows immediately from Theorem 3.5.1 and substituting the equality
condition.

The condition of this theorem relates the scores v0 and v1 to the base rate of the data, thus providing
simple, explicit data dependencies that are necessary and sufficient.

B.7 Experiment Details

B.7.1 Optimization

For solving the optimization problems, we used solvers in the scipy package for Python [56]. For
linear fairness constraints, we used the simplex algorithm [33], and for other constrained optimization
forms, we used sequential least-squares programming (SLSQP) solver [69, 70].

B.7.2 Model-agnostic multi-way fairness–accuracy trade-offs

We have only considered situations where zero or one parameter is sufficient to simultaneously specify
the fairness strength for every fairness function, i.e. λ = λ0 = · · · = λK−1. In this section, we generalize
this and allow each regularization parameter to vary freely. It is then natural to consider the multilinear
least-squares accuracy–fairness optimality problem (MLAFOP): argminz∈K (c · z)2+

∑K−1
i=0 λi∥A(i)z∥22,

where the regularization parameters λi now take different values across each of the K fairness constraints.
This allows for a general inspection of the individual effect of fairness constraints in a group.

For instance, a three-way trade-off among EOd, DP, and accuracy can be visualized as a contour plot,
similar to the one shown in Figure B.1. And for general (K + 1)-way trade-offs involving K fairness
constraints and accuracy, we visualize two-dimensional slices along the K + 1-dimensional surface. For
example, consider a four-way trade-off between a group of three fairness definitions (DP, EOd, PCB) and
accuracy. Figure 3.2 already showed that imposing PCB given (DP, EOd) does not affect δ, which implies
that PCB is the weakest in terms of its influence on δ. To get more information, for the S(B) dataset,
we show in Figure B.2 three cases of varying one λ for one fairness constraint while keeping the other λ
values fixed in MLAFOP. Sweeping through PCB condition (left) does not affect 1 − δ at fixed EOd and
DP levels, confirming the observation from Figure 3.2. Sweeping through DP conditions while keeping
PCB and EOd strengths fixed (middle) results in a slight drop, but not big enough to make all levels to
converge to values reported in Figure 3.2 (0.392). Sweeping through EOd while keeping PCB and DP
strengths fixed (right) on the other hand results in significant changes for all levels and convergence to the
value 0.392, suggesting EOd is stronger than DP in terms of its influence on changing δ. This notion of
relative influence of fairness deserves further investigation, to see if these preliminary results are robust
across other slices and datasets. Nonetheless, such analysis demonstrates a clear picture of how different
notions of fairness interact with one another when they are to be imposed together.
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Figure B.1: Fairness–fairness–accuracy trade-off analysis using contour plot of accuracy with varying
regularization strengths of Demographic Parity (DP) and Equalized Odds (EOd) for the unbiased synthetic
dataset (left), biased synthetic dataset (middle), and Adult dataset (right). The contours show how the
regularization strength of each fairness individually influence the accuracy (1−δ) given the other (accuracy
of 1.0 being the accuracy of the Bayes classifier). For the unbiased synthetic data, the accuracy change
along the vertical axis (DP) is practically nonexistent given EOd, while along the horizontal axis (EOd)
the change is drastic. Other datasets demonstrate more complex relationships.

B.7.3 Connection to the post-processing methods for fair classification

We can explicitly rewrite the constraints in (3.8) using ẑ and z̃, which respectively correspond to the
fairness–confusion tensor of the given pre-trained classifier Ŷ and the derived fair classifier Ỹ :

γ0(Ỹ ) = γ1(Ỹ ) ⇐⇒ AEODz̃ = 0

γ0(Ỹ ) ∈ P0(Ŷ ) ⇐⇒
(

z̃7
z̃7 + z̃8

,
z̃5

z̃5 + z̃6

)
∈

convhull
{
(0, 0),

(
ẑ7

ẑ7 + ẑ8
,

ẑ5
ẑ5 + ẑ6

)
,

(
ẑ8

ẑ7 + ẑ8
,

ẑ6
ẑ5 + ẑ6

)
, (1, 1)

}
(B.6)

γ1(Ỹ ) ∈ P1(Ŷ ) ⇐⇒
(

z̃3
z̃3 + z̃4

,
z̃1

z̃1 + z̃2

)
∈

convhull
{
(0, 0),

(
ẑ3

ẑ3 + ẑ4
,

ẑ1
ẑ1 + ẑ2

)
,

(
ẑ4

ẑ3 + ẑ4
,

ẑ2
ẑ1 + ẑ2

)
, (1, 1)

}
(B.7)

where the subscript i of the fairness–confusion tensor corresponds to the i-th element in their vector
representation as in Section 3.3. By setting the objective function to be the classification error, imposing
EOd fairness constraint and the model-dependent feasibility constraints in (B.6) and (B.7), MS-LFAOP
is the same optimization problem as the post-processing methods, now over the space of the fairness–
confusion tensors. The FACT Pareto frontier obtained by solving MS-LAFOP therefore can assess the
trade-off exhibited by any classifier post-processed in such ways.

In practice, the post-processing method solves (3.8) by parameterizing Ỹ with two variables for each
group a = 0, 1: Pr(Ỹ = 1|Ŷ = 1, A = a),Pr(Ỹ = 1|Ŷ = 0, A = a). [47]. These values are called
the mixing rates, as they indicate the probability of labels that should be flipped or kept for each group
when post-processing the given classifier Ŷ . The algorithm then randomly selects the instances for each
group to flip according to these mixing rates. These mixing rates can also be written in terms of the
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Figure B.2: The four-way trade-off between accuracy, PCB, EOd, and DP in the biased synthetic dataset
(Section 3.6.1). Shown here is the (1−δ) value as a function of some regularization strength λϕ for some
fairness function ϕ, while holding all other λϕ′s constant (accuracy of 1.0 being the accuracy of the Bayes
classifier). The value next to each colored line in the legend represents constant values for the fixed λϕ′s.
Sweeping through PCB while keeping DP and EOd fixed (left) does not change the accuracy, whereas the
other plots show multiple levels of variations. For EOd (right), the accuracy levels converge quickly to the
limiting value of 0.392 as shown in Figure 3.2, suggesting that the accuracy is more sensitive to changes
in EOd constraint strength compared to the others.

fairness–confusion tensor z̃ and ẑ, by using the fact that

Pr(Ỹ = ỹ|Y = y,A = a) = Pr(Ỹ = ỹ|Ŷ = 1, A = a)Pr(Ŷ = 1|Y = y,A = a)+

Pr(Ỹ = ỹ|Ŷ = 0, A = a)Pr(Ŷ = 0|Y = y,A = a),

and that Pr(Ỹ = ỹ|Y = y,A = a), Pr(Ŷ = ŷ|Y = y,A = a) terms are essentially what z̃ and ẑ
encode. Therefore, by using z̃ obtained from the MS-LAFOP above, we can compute the mixing rates to
post-process the given classifier.
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Appendix C

Supplementary for Chapter 4

C.1 Experiment Details

The repository of code used to generate the dataset and the results in the paper is available here1.

C.1.1 TextBox Dataset

The model for each reasoning was trained on a different number of training data points, based on the
number of buckets available to the dataset, as shown below in Table C.1. The total number of buckets
depend on how the reasoning is set up (according to Table 4.1), i.e. how the labels are given based on
the various combinations of features present/absent in the image. Based on this reasoning, primary and
secondary objects are determined, which are objects in the image that should be highlighted (relevant for
the prediction) and that should not be highlighted (not relevant for the prediction) respectively. If the
object of interest is absent in the image, the corresponding primary/secondary metrics are not computed
for further evaluations.

Name Simple-FR Simple-NR Complex-FR Complex-CR1 Complex-CR2 Complex-CR3 Complex-CR4
Total Training 24000 16000 36000 150000 150000 150000 150000

Training/bucket 2000 2000
2000 (for 0)
6000 (for 1)

15000 15000 15000 15000

Total Validation 6000 4000 6000 4000 4000 4000 4000
Validation/bucket 500 500 500 400 400 400 400

Table C.1: The seven model reasoning settings considered in the experiments (Section 3.6) number of data
points used. The total number of data points depend on a potential class imbalance between positive and
negative samples, along with the total number of buckets.

Note that while all seven settings start with twelve buckets of images (since the same set of features is
used throughout), some buckets may end up with undefined labels and will not be used to train the model.
For instance, Simple-NR (second column of Table 4.1) has 8 labeled buckets instead of 12, because images
from four buckets without any Text (Buckets 1, 4, 7, 10 in Figure 4.5) have undefined labels given that
the specified model reasoning relies on Text to produce a label. To balance the number of positive and
negative samples in the dataset, more instances are sampled from buckets 10-12 for the training data
for Complex-FR in particular. Finally, we note that even for a specified model reasoning, the object to
focus on and/or avoid may differ across buckets. For instance, because Simple-NR relies only on Text

1https://github.com/wnstlr/SMERF
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for predictions, Text is always the object to focus for buckets in which it is present In contrast, Box1 and
Box2 are objects to avoid in buckets when they appear, but of course cannot be avoided in buckets 2 and
3 where they do not appear in the first place.

TextBox dataset is generated by sampling a random vector, each element indicating a specific feature
the image should exhibit. The features include: the type of Text, location of the Text, color of the character,
the background color, existence of Box1 and/or Box2. When randomly placing Box1 and/or Box2 on top
of the Text images, the locations of these objects are constrained to avoid overlapping with one another.
The resulting images have a dimension of 64-by-64 with three color channels. The pixel values are scaled
to be between 0 and 1. In Figure C.1, we show some examples of data points for each reasoning, along
with their labels, primary objects, and secondary objects. For each images, we also show what our trained
model predicted (all of which are correct). The code for generating the dataset can be adapted to create
different settings.

We show in Figure C.1 some sample data points from different buckets with bounding boxes around
primary and secondary objects for each reasoning. For each images, we also show what the trained model
predicted (all of which are correct).
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Data Samples From Each Reasoning with Primary (Green) and Secondary (Magenta) Objects

Figure C.1: Data samples from each reasoning, with bounding boxes for primary (green) and secondary
(magenta) objects, along with the trained model’s predictions on them (all of which are correct).
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C.1.2 Model Architecture and Hyperparameters for Training

For all results presented in the Experiments section (Section 3.6), we trained separate convolutional
neural networks for different types of model reasoning, but kept the same architecture of the same type.
For simple reasoning, we have three convolutional layers (32 filters, kernel-size 3, stride (2,2); 64 filters,
kernel-size 3, stride (2,2); 64 filters, kernel-size 3, stride (2,2)), followed by two fully-connected layers
(200 units; 2 units), all with ReLU activation functions except for the output layer. For complex reasoning,
however, to account for the more complex feature relationships encoded in the dataset (lower number of
parameters for the model could not achieve near-perfect accuracy on these datasets) the model has more
parameters: four convolutional layers (64 filters, kernel-size 3, stride (2,2); 128 filters, kernel-size 3, stride
(2,2); 256 filters, kernel-size 3, stride (2,2); 64 filters, kernel-size 3, stride (2,2)), followed by three fully-
connected layers (200 units; 200 units; 2 units), all with ReLU activation functions except for the output
layer.

Learning rate was set as 0.0001, trained with Adam optimizer minimizing the binary cross entropy
loss, with maximum epoch of 10. No particular grid search on these hyperparameters was performed,
but the models were trained up to near-perfect accuracy for each model reasoning within several runs
with different initializations (Table C.2 shows bucket-wise test performance of the trained model for each
reasoning). SMERF overall does not require much computational load as the model sizes are not big; the
entire pipeline was tested out on a machine with a single GPU (GTX 1070, 8GB), with a system memory
of 16GB.

To further ensure that our findings are not affected by the specific choice of model architecture as
described above, we additionally experimented with more complex model architectures: AlexNet [72]
and VGG16 [116]. The results are presented in Appendix C.2.6.

Simple-FR Simple-NR Complex-FR Complex-CR1 Complex-CR2 Complex-CR3 Complex-CR4
Bucket1 1.00 - 1.00 - - 1.00 1.00
Bucket2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bucket3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Bucket4 1.00 - 1.00 1.00 - - 0.9975
Bucket5 1.00 1.00 1.00 0.95 1.00 0.9875 0.95
Bucket6 1.00 1.00 1.00 1.00 0.9975 1.00 0.9225
Bucket7 1.00 - 1.00 - 1.00 1.00 -
Bucket8 1.00 1.00 1.00 1.00 1.00 1.00 0.9975
Bucket9 1.00 1.00 1.00 0.9575 1.00 0.995 0.9975

Bucket10 1.00 - 1.00 1.00 1.00 - -
Bucket11 1.00 1.00 0.968 1.00 0.975 1.00 1.00
Bucket12 1.00 1.00 0.976 0.975 0.9125 0.9 0.995

Table C.2: Bucket-wise test accuracy of the trained models.

C.1.3 Saliency Methods Tested

We used various saliency methods as implemented in iNNvestigate2 library [3], which is licensed
under the BSD License. For methods that are not included in the library, we used the existing imple-
mentations for Grad-CAM3 (Unlicensed) and DeepSHAP4 (MIT Licensed) and integrated them into the
pipeline. The details of the hyperparameters used for these methods are all available in the source code,
specifically in smerf/explanations.py file. No particular grid search was performed for these
hyperparameters.

2https://github.com/albermax/innvestigate
3https://github.com/wawaku/grad-cam-keras
4https://github.com/slundberg/shap
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C.1.4 Evaluation Metric: Intersection-Over-Union (IOU) and Attribution Focus Level
(AFL)

Instead of using the typical IOU value as our main metric5, we use Attribution Focus Level (AFL),
which alternatively computes the proportion of attribution values assigned to specific objects out of the
total attribution value (normalized to be 1). Below we will demonstrate the advantage of using AFL over
IOU in the context of SMERF.

IOU loses information from raw feature attribution values, so misses the impact of signals from
other objects in the image.
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Primary AFL: 0.7554

Secondary AFL: 0.2446

Primary IOU: 1

Secondary IOU: 0

Object B: 0.8 Object A: 1.0

Area of Intersection btw Object and Detection
Area of Union btw Object and Detection

Sum of attribution values inside the object
Sum of attribution values in the whole image

Figure C.2: Computing AFL vs IOU on a toy example where attribution values from a secondary object
are non-trivial. In this example, object A (primary) and B (secondary) are both highlighted by the feature
attribution as shown, where the attribution values for each pixel of A being 1, B being 0.8, and background
being 0.001. AFL is computed by taking the sum of values inside the object of interest and dividing that to
the sum of attribution values in the whole image. This results in PAFL value of 0.75, and SAFL value of
0.24. Notice the non-zero SAFL that indicates non-trivial signal from the secondary object B. On the other
hand, typical IOU, due to its thresholding to contain only a limited number of pixels for the evaluation,
fails to capture this non-trivial signal from object B, resulting in the Secondary IOU value of 0.

Consider a feature attribution which focuses on two objects A and B in an image (A being primary and
B being secondary), where the attribution values of pixels inside object A are all 1, those inside object B
are all 0.8, and 0.001 elsewhere in the background. The example is shown in Figure C.2. PAFL and SAFL
for this feature attribution are 0.75 and 0.24 respectively. Note that the SAFL value is non-zero, correctly
reflectin the fact that the feature attribution values are non-trivial on the secondary object despite most of
the attribution still focused on the primary object.

However, IOU fails to correctly show this non-trivial signal on the secondary object (ie.e Secondary
IOU is zero). This is mainly due to the thresholding process which selects only top-K pixels with the
highest attribution values and masking only those to be included when computing the areas of intersection

5Nevertheless, we provide full results on IOU in Appendix C.2.1, which are consistent with our results with AFL.
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Input Image Feature Attribution

Thresholded for 
 100 Pixels

IOU:0.188

Thresholded for 
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IOU:0.310

Thresholded for 
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IOU:0.445

Thresholded for 
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IOU:0.445

Thresholded for 
 271 Pixels

IOU:0.445

Thresholded for 
 314 Pixels

IOU:0.488

Thresholded for 
 357 Pixels

IOU:0.488

Thresholded for 
 400 Pixels

IOU:0.432

Figure C.3: Change of thresholded masks based on the number of pixels to include, and the correspond-
ing Primary IOU values on feature attributions obtained with Integrated Gradients. The IOU values are
sensitive to the amount of thresholding.

and union. For this example, as shown in the image on the second column of Figure C.2 for IOU, 247
pixels are selected from thresholding, which ends up selecting only the region of object A, as the pixels
within this region all have higher attribution values (1) compared to those in object B (0.8). This results
in Primary IOU and Secondary IOU of 1 and 0 respectively, which fails to capture non-trivial strength
of focus on the secondary object. As SMERF’s model reasoning settings require analyzing the feature
attributions’ strength on both primary and secondary objects, it is important to correctly address this issue.

IOU is sensitive to the number of pixels to include when thresholding.

Another problem with thresholding is that it is usually unclear what the thresholding value should be.
In the above example, 247 pixels are selected to include the number of pixels that consists the primary
object. While this is an intuitive choice, this value can be arbitrary and the resulting IOU values can vary
significantly based on the choice. Figure C.3 shows Primary IOU from a feature attribution obtained by
Integrated Gradients on one of the data points where the Text is primary and the Box1 is secondary.

AFL provides more intuitive understanding about the saliency methods’ level of focus among vari-
ous objects.

The sum of PAFL and SAFL is upper-bounded by one, as the sum of all attribution values in the
image is normalized to sum up to 1. By comparing these values, it is intuitive to deduce whether more
focus is present on the primary/secondary object, or on the background. Also it is easy to understand
how the level of focus shifts among these objects. Figure C.4 shows an example of how different degrees
of attribution values placed on the secondary object (top) and the background (bottom) can change the
corresponding PAFL and SAFL values. Note that as more we can observe PAFL decreasing and SAFL
increasing, as more proportion of the total attributions are assigned to the secondary object (top). Also
when the background has higher attribution values than the objects, both PAFL and SAFL values plummet.
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Background < ObjectsBackground > Object B

Background << Object A < Object BBackground << Object B < Object A

Figure C.4: Taking the example of Objects A/B from Figure C.2, (Top) as the strength of attribution values
placed on object B increases, the PAFL values decrease and SAFL values increase. With the background
attribution values being significantly smaller than the objects, PAFL and SAFL sums up to one. Naturally,
when SAFL > PAFL, it more focus is attributed to the secondary object compared to the primmary.
(Bottom) When the attribution values on the background are high (higher than objects), PAFL and SAFL
approaches zero as the background dominates the share in the total attribution (first three images). So
when both PAFL and SAFL is low, it represents the case where most of the signals are coming from the
background.

C.2 Additional Experimental Results

C.2.1 Results with IOU Metric

Intersection-Over-Union (IOU) metric is a ratio of the intersecting area to the union area of the 0-1
masked feature attribution and the ground-truth feature attribution. The ground-truth feature attributions
are predefined from the data generation process (by the ground-truth model reasoning). The 0-1 masked
feature attribution from the saliency methods is obtained by first blurring the original feature attribution
averaged across the three color channels, followed by thresholding the pixel intensity to select top-K
pixels, where K is equal to the number of pixels that correspond to the primary object. Given the 0-1
masked feature attribution and the ground-truth feature attribution, we compute two types of IOU values
just like AFL: (1) primary IOU (PIOU), which measures how much of the 0-1 masked feature attribution
overlaps with the ground-truth for the region relevant to the model prediction; and (2) secondary IOU
(SIOU), which measures the same value with respect to the region not relevant to the model prediction.
Just like AFLs, PIOU should be high and SIOU should be low for methods that are more effective and
correct. Throughout this section we use the threshold value of 0.5 to roughly distinguish good and bad
performance in terms of IOU as commonly done in practice [38, 136].

Figure C.5a shows PIOU and SIOU values for simple reasoning settings. Note that most methods
achieve PIOU higher than 0.5, just like the results from AFL. SIOU values are mostly low throughout,
even lower than what we observed from AFL. However, we notice that the IOU values fail to capture the
unexpected variation of level of focus given to multiple objects based on how saturated the images are,
unlike what we observed from AFLs (Figure C.5b).

Figure C.6a shows the PIOU and SIOU values for complex reasoning settings. In this case, all meth-
ods score PIOU below 0.5 correctness threshold, just like AFL. Also the minimum PIOU across different

88



Gr
ad

ie
nt

Sm
oo

th
Gr

ad
De

co
nv

ne
t

Gu
id

ed
 B

ac
kp

ro
p

De
ep

Ta
yl

or
In

pu
t *

 G
ra

di
en

t
In

te
gr

at
ed

 G
ra

di
en

ts
LR

P-
Z

LR
P-

Ep
sil

on
LR

P-
Pr

es
et

AF
la

t
LR

P-
Pr

es
et

BF
la

t
De

ep
LI

FT
-R

ev
ea

lC
an

ce
l

De
ep

LI
FT

-R
es

ca
le

Gr
ad

-C
AM

De
ep

SH
AP

Ra
nd

om
Ed

ge
-d

et
ec

tio
n0.0

0.2

0.4

0.6

0.8

1.0
th

e 
hi

gh
er

 th
e 

be
tte

r

Primary IOU (for Different Buckets)
Simple Reasoning

Gr
ad

ie
nt

Sm
oo

th
Gr

ad
De

co
nv

ne
t

Gu
id

ed
 B

ac
kp

ro
p

De
ep

Ta
yl

or
In

pu
t *

 G
ra

di
en

t
In

te
gr

at
ed

 G
ra

di
en

ts
LR

P-
Z

LR
P-

Ep
sil

on
LR

P-
Pr

es
et

AF
la

t
LR

P-
Pr

es
et

BF
la

t
De

ep
LI

FT
-R

ev
ea

lC
an

ce
l

De
ep

LI
FT

-R
es

ca
le

Gr
ad

-C
AM

De
ep

SH
AP

Ra
nd

om
Ed

ge
-d

et
ec

tio
n0.0

0.2

0.4

0.6

0.8

1.0

th
e 

lo
we

r t
he

 b
et

te
r

Secondary IOU (for Different Buckets)
Simple Reasoning

(FR) Text o
(FR) Text x
(NR) Box1 o
(NR) Box1 x
0.5 threshold
average

(a) PIOU and SIOU for Simple Reasoning
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axis is the same as Figure C.5a)

Figure C.5: (a) PIOU (left) and SIOU (right) for Simple-FR and Simple-NR from Table 4.1. The black
vertical lines indicate the standard deviation across different buckets. The dotted horizontal line is the
correctness threshold of 0.5. Most methods perform well on average, with reasonable PIOU and low
SIOU, except for a few methods on the left. (b) There is not much difference between the PIOU and SIOU
values based on the number of objects in the image.

buckets from complex reasoning is strictly lower than those from simple reasoning for all methods (Fig-
ure C.6b). Therefore, general trend of methods being reasonably good for simple reasoning and being bad
for complex reasoning still is observable using IOU. However, note that the SIOU values remain relatively
low for both cases despite the decrease in PIOU for complex reasoning. This is where the aforementioned
limitation of IOU metric is exposed, where it is difficult to clearly deduce where the changes in the primary
values are coming from, contrary to what we observe from AFL.

Relatedly, IOU metric is relatively more generous to primary objects due to the way they are thresh-
olded and it is more prone to ignoring potential non-trivial signals from objects that are not primary. This
naturally leads to low SIOU values and a lack of clear relationship between primary and secondary metric:
an increase in one would not necessarily imply a decrease in another, and vice-versa. In addition, the loss
of information from the attribution values makes it difficult to better understand why one value decreased
and how much of that change could be attributed to different objects in the image. Due to these limitations
(as well as examples mentioned earlier in Appendix C.1.4, we present AFL results in the main text for
better insights and highlighting the shortcomings of the methods in different settings.

C.2.2 Qualitative Results

Figure C.7 and C.8 show samples from simple reasoning (each from Simple-FR and Simple-NR) in
buckets where the methods record the lowest PAFL (indicated with red). For instance, in Simple-FR setup
(Figure C.7) almost all methods achieve the lowest PAFL on the bucket where all features are present (top
panel). Recall that Simple-FR relies fully on Box1; however we observe that several methods highlight all
objects that are present in the image to a certain degree. Such tendency explains the unexpected variation
of AFL based on the number of objects present in the image. Nevertheless, some minimum PAFL values
are still above 0.5 for a method like LRP-Epsilon, which makes it the most effective method for Simple-
FR that is less prone to errors (it also correctly focuses on Box1 without being distracted by other objects
in the image). Compared to Simple-FR, Simple-NR shows more evenly distributed failure cases across
different buckets shown (Figure C.8).

In Figure C.9 we have the samples from buckets with minimum PAFL for complex reasoning setup,
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(a) PIOU and SIOU for Complex Reasoning
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Figure C.6: (a) PIOU and SIOU for complex reasoning. Average performance on PIOU is mostly lower
than 0.5, with worse performance compared to the results from simple reasoning. (b) Worst-case buckets
show worse PIOU values in complex reasoning.

in particular, Complex-CR2. This time most of the cases with minimum performance is concentrated
on the bucket with Box1 and Text B (top panel; 13 out of 15 methods have minimum PAFL on this
bucket). Recall that for this bucket, the ground-truth feature attribution should highlight just Box1. For
most of the methods, more focus is given to the Text, which results in a particularly low PAFL across
all methods. Notice that all the values are below 0.5: this aligns with our earlier observation that the
worst-case performance of the methods on complex reasoning setup is much worse than simple reasoning
setup.
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Figure C.7: Image samples from buckets where minimum PAFL values are recorded for different methods
(marked with red), for FR-Simple. The ground-truth is to focus on Box1 only.
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Figure C.8: Image samples from buckets where minimum PAFL values are recorded for different methods
(marked with red, along with corresponding PAFL values), for NR-Simple. The ground-truth is to focus
on the Text only.
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Figure C.9: Image samples from buckets where minimum PAFL values are recorded for different methods
(marked with red), for CR-Complex2. The ground-truth is to focus on the Box1 and Box2 if Box1 is
present, otherwise on Text.
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C.2.3 Per-bucket Performance Variation for Complex Reasoning

In Figure C.10, we show additional details from different types of complex reasoning that show high
variance of PAFL and SAFL we observed from Figure 4.8a. From top to bottom, we plot the variation of
the values per bucket for Complex-CR1, Complex-CR3, Complex-CR4, and Complex-FR, in addition to
the results from Complex-CR2 reported in the main text. We similarly observe that the variation is quite
extreme for different buckets.
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Figure C.10: Additional information for the variance of PAFL and SAFL across different buckets for
complex reasoning (from top to bottom, Complex-CR1, Complex-CR3, Complex-CR4, Complex-FR).
The performance varies significantly from bucket to bucket, just as we described in the main text.
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C.2.4 Additional Failure Case Analysis

While the AFL may be more suited to give a high-level understanding of the methods’ performance,
to further understand the degree to which the model focuses more on the incorrect region compared to the
correct region (i.e. to identify failure due to wrong focus), we also compute the mean of the attribution
values inside the relevant (which we call Primary Mean-AFL, or PMAFL) and irrelevant (which we call
Secondary Mean-AFL, or SMAFL) regions for comparison. For a successful method, primary MAFL
should always upper bound secondary MAFL because on average the correct regions should always be
assigned higher attribution values compared to the incorrect regions. In this analysis, the actual values of
primary and secondary MAFL do not matter; only a relative comparison does.

( ) vs (■) ( ) vs ( )( ) vs (A) ( ) vs (B) ( ) vs (B,■)( ) vs (A,■) ( ) vs (■) ( ) vs (A) ( ) vs (A,■) ( ) vs (B) ( ) vs (B,■)

(A) vs ( ) (B) vs ( ) (A) vs ( ) (B) vs ( ) (A) vs (■) (B) vs (■) (A) vs ( ,■) (B) vs ( ,■)

NR

FR

Figure C.11: MAFL value comparison within buckets for simple reasoning with FR and NR. Title of each
panel indicates the bucket with “( correct feature ) vs ( incorrect feature )”, and the blue and red lines
show the general trend of primary and secondary MAFL values across different methods (x-axis being the
same as Figure 4.6a, omitted for brevity). Primary MAFL should ideally always upper-bound secondary
MAFL: while that is the case for FR, there are occasional failure cases in NR where the opposite happens.

(A) vs ( ) (B) vs ( ) (A) vs ( ) (B) vs ( ) (■) vs ( ) (■) vs (A) (■) vs (B) (■, ) vs ( ) (■, ) vs (A) (■, ) vs (B)
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( ) vs (A) ( ) vs (A,■) ( ) vs (B) ( ) vs (B,■) ( ,■) vs ( ) ( ) vs (A, ) ( ,■) vs (A) ( ) vs (B, ) ( ,■) vs (B)

Figure C.12: MAFL values for complex reasoning. While PMAFL (blue) should be always bigger than
SMAFL (red), some buckets exhibit much larger SMAFL. This means the methods are failing due to
focusing significantly more on irrelevant regions features than relevant ones.

Figure C.11 plots MAFL value comparison for different buckets in Simple-NR and Simple-FR. It
is important that the blue line (PMAFL) should always upper-bound the red line (SMAFL). While that
is the case for FR for all buckets, there are occasional cases in NR with the opposite relationship for
certain methods. Although the gap between the values are not big, this still indicates that the feature
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attribution may sometimes be wrongly focusing on irrelevant regions of the image more than the correct
ones. Such failure cases have not been actively discussed in previous works that dealt models with simple
reasoning [2, 142].

As further shown in Figure C.12 it is observed that the gap between PMAFL (blue) and SMAFL (red)
is bigger for some buckets in complex reasoning compared to the simple reasoning case in Figure C.11.
Such larger gaps clearly demonstrate and verify the methods’ more frequent failure due to wrong focus
from complex reasoning.
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C.2.5 Identifiability Problem Samples

Figure C.13 shows samples that illustrate the difficulty of clearly distinguishing model reasoning based
on the feature attributions (i.e. identifiability). Along with Integrated Gradients (as in Figure 4.9), all
other methods including the ones presented here (Gradients, LRP-Z, DeepLIFT) highlight all objects in
the image up to a certain level regardless of the model reasoning used, making it difficult to discern the
reasoning based on the feature attributions.

Figure C.13: Identifiability problem samples with other methods (Gradient, LRP-Z, DeepLIFT from top
to bottom). All methods highlight all objects in the image up to a certain degree regardless of the model
reasoning, making it difficult for the users to clearly distinguish among different types of model reasoning
used.
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C.2.6 Results on Other Model Architectures

Gr
ad

ie
nt

Sm
oo

th
Gr

ad

De
co

nv
ne

t

GB
P

De
ep

Ta
yl

or IG LR
P

Gr
ad

-C
AM

De
ep

SH
AP

0.0

0.2

0.4

0.6

0.8

1.0

IO
U

(h
ig

he
r t

he
 b

et
te

r)
Simple Reasoning

Gr
ad

ie
nt

Sm
oo

th
Gr

ad

De
co

nv
ne

t

GB
P

De
ep

Ta
yl

or IG LR
P

Gr
ad

-C
AM

De
ep

SH
AP

Complex Reasoning
Avg
Min
correctness threshold

Gr
ad

ie
nt

Sm
oo

th
Gr

ad

De
co

nv
ne

t

GB
P

De
ep

Ta
yl

or IG LR
P

Gr
ad

-C
AM

De
ep

SH
AP

0.0

0.2

0.4

0.6

0.8

1.0

IO
U

(h
ig

he
r t

he
 b

et
te

r)

Simple Reasoning

Gr
ad

ie
nt

Sm
oo

th
Gr

ad

De
co

nv
ne

t

GB
P

De
ep

Ta
yl

or IG LR
P

Gr
ad

-C
AM

De
ep

SH
AP

Complex Reasoning
Avg
Min
correctness threshold

Figure C.14: IOU results using AlexNet (left) and VGG16 (right) architecture for the model.
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Figure C.15: PAFL results using AlexNet (left) and VGG16 (right) architecture for the model.

We repeat the same set of experiments with the model architecture using AlexNet [72] and VGG16 [116],
to confirm that the trends we observe for the saliency methods are not the artifact of architecture choice.
IOU and AFL results for these models are shown in Figures C.14 and C.156, which show similar trends
we have observed so far in the simple CNN case: the average and the worst-case performance drops as the
reasoning gets more complex.

6Note that DeepLIFT was left out from the experiments on these models as the library for DeepLIFT does not support
MaxPooling2D layer at the moment.
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C.2.7 Relationship with Adversarial Robustness

Shah et al. [109] showed that gradient feature attributions applied on more adversarially robust models
tend to do better in ignoring the signals from spurious objects in the image. We verify that such trend for
gradient attribution is somewhat true, yet the general problem persists for most of the other methods even
for the robust models, in both simple and complex settings.
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Figure C.16: IOU (left) and PAFL (right) results on models trained against PGD attack (solid lines) and
plain models (dotted lines, taken from Figure 4.2) for simple and complex reasoning settings. We observe
increase in average performance for Gradient and SmoothGradient for simple reasoning compared to plain
models, as suggested in [109]. Nevertheless, in both metrics and across all methods, there still are sharp
performance drops for complex reasoning.

Figure C.16 shows results for models trained against PGD attacks [86]7. Throughout all methods, we
still observe sharp performance drops in complex reasoning. We also observe the trend reported in [109]
as well, where Gradient and SmoothGradient’s performance for simple reasoning (solid lines) is generally
higher compared to plain models (dotted lines). As shown, while training the model against adversarial
attacks can help some methods in simple reasoning settings, SMERF suggests that the overarching problem
of methods not being able to reliably recover complex reasoning still persists.

7Used a Python library https://github.com/Trusted-AI/adversarial-robustness-toolbox
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C.2.8 TextBox with Noisy Background

Instead of having zero-valued black pixels for the background, we set the background to consist of
random pixel values between 0-150 for each of the RGB channels (before being normalized to [0,1]).

The models were trained on these images to achieve near-perfect accuracy for all seven types of
reasoning. Figure C.17 shows PAFL and SAFL for simple reasoning settings, and Figure C.18 for complex
reasoning settings. Similar to our earlier observations, methods under complex reasoning settings show
sharp degradation of performance compared to the simple reasoning settings (lower PAFL, higher SAFL).
Also we notice that additional noise from the background lowers the worst-case PAFL values throughout,
even for the simple reasoning settings (Figure C.18b).

Figure C.17: PAFL and SAFL for Simple Reasoning, tested with non-zero random noisy background.

(a) PAFL and SAFL for Complex Reasoning, tested with non-zero random back-
ground.

(b) Minimum PAFL across
buckets on simple (blue circle)
vs. complex (red x) reason-
ing (x-axis is the same as Fig-
ure C.18a).

Figure C.18: (a) PAFL and SAFL for complex reasoning. (b) Worst-case buckets show worse PAFL values
in complex reasoning.
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C.2.9 TextBox with Realistic Backgrounds

Figure C.19: Images with real backgrounds used for the experiments.

We replace the background of TextBox images with real images of different scenes taken from
the Places dataset8[154]. In particular, we replaced the background with images of baseball stadium
and ran the same set of experiments (Figure C.19). The models trained on these images achieved near-
perfect accuracy on both simple and complex settings (test accuracy for each reasoning: Simple-FR: 0.99,
Simple-NR: 0.99, Complex-FR: 0.93, Complex-CR1: 0.98, Complex-CR2: 0.99, Complex-CR3: 0.93,
Comlpex-CR4: 0.99).

Figure C.20: PAFL and SAFL for Simple Reasoning, for images with real baseball stadium as background.

(a) PAFL and SAFL for Complex Reasoning, tested with real background of base-
ball stadiums.

(b) Minimum PAFL across
buckets on simple (blue cir-
cle) vs. complex (red x) rea-
soning (x-axis is the same as
Figure C.21a).

Figure C.21: (a) PAFL and SAFL for complex reasoning, for images with real baseball stadium as back-
ground. (b) Worst-case buckets show overall lower PAFL values in complex reasoning compared to simple
reasoning.

8http://places2.csail.mit.edu/
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Figure C.20 and Figure C.21 respectively shows AFL results on simple and complex reasoning set-
tings. Figure C.21b in particular shows that similar to the black background scenario studied earlier, there
is a performance degradation moving from simple to complex reasoning, but at a lower level compared to
the black background scenario. Notably, the general performance drop relative to the black background
setting was larger in this case than what we observed for the noisy background setting in Appendix C.2.8.
The results suggest that synthetic results of SMERF on the black background provides an optimistic upper
bound for the methods’ performance on the real background.
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Appendix D

Supplementary for Chapter 5

D.1 Proxy Test of Black-box Model Explanations

There are several black-box model explanations to consider for the task. While testing all of them on
real users can be an interesting research on its own, as we are more broadly interested in what distinct
types of information could be helpful, we decide to select one representative method in the literature. As
there is no absolute answer to which method is superior, we conduct a simple proxy test of what method
can be a better choice for the task.
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random
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0.58 1.00 0.00 0.00

0.64 0.64 0.82 0.00

Normalized Average EM Distance

Figure D.1: Proxy quality test for the black-box model explanations using average EM distances between
the distributions of attribution scores of input tokens. The higher the values (the darker the color), the
more different the distribution of the attribution scores. SHAP shows the most distinct distribution from
the random attributions (bottom row).

We consider the following feature attribution methods: Integrated Gradients [124], Input x Gradi-
ents [113], and SHAP [83]. In Figure D.1, we plot the mean EM distance (averaged across 50 different
random attributions, normalized to be between 0 and 1) between the distribution of attribution scores for
the input tokens in our ground-truth articles. The higher the value (darker the color), the more distinct the
distribution of the attribution scores computed by respective methods. Notice that SHAP shows the most
distinct distribution from random attributions compared to other methods, indicating it may be a better
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choice that carry more information about the important tokens. We have also qualitatively verified that the
highlights from other two methods were not as meaningful as SHAP on the articles.

Note also that SHAP is a promising candidate to apply to the task due to its popularity and its common
presence in more sophisticated domains like biology, physics, chemistry, and finance [53, 93, 99, 141,
144].
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D.2 Method Examples

We show below some example highlights presented to the users using different methods.

Figure D.2: Example highlights for SHAP.
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Figure D.3: Example highlights for BERTSum.
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Figure D.4: Example highlights for Co-occurrence method.
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Figure D.5: Example highlights for Semantic method.
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D.3 User Study Details

D.3.1 Pilots and Sample Size

Prior to conducting the actual user study, we ran pilot studies on a smaller number of participants.
Using the data points collected from these studies, we conducted a Monte Carlo simulation-based power
analysis to determine the effective sample size. We determined to recruit 55 participants per condition (so
total of 275 = 55 × 5 conditions) for a statistical power over 0.8 with the effect size (Cohen’s d) of 0.5
(orange line with circle markers in Figure D.6). This effect size corresponds to 0.1 difference in the mean
accuracy between the control and the treatment.
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Power Analysis: alpha=0.05
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mean-diff=0.20 / cohens-d=1.00
effective sample size

Figure D.6: Power analysis for the effective sample size. We collect 55 samples per group (vertical dotted
line) for a statistical power over 0.8 for the effect size (Cohen’s d) of 0.5 (orange line with circle markers).

D.3.2 Demographic Background

In Figure D.7, we provide demographic background of the participants (age, ethnicity, student status,
employment status) recruited for the study. 275 participants were recruited from a balanced pool of
adult males and females located in the U.S. with minimum approval ratings of 90% using Prolific (www.
prolific.co).

D.3.3 Tutorial

We provide the participants with a set of instructions laying out what the highlights indicate and how
one might use them for the task. The instruction is followed by two sample questions on which the
participants could take unlimited time to get an understanding of what the questions look like. For the
sample questions, the participants were provided the correct answers and the justification behind them as
feedback.

D.3.4 Payments

Base payment per participants was $3.15, determined based on the minimum hourly payment set
by the platform and the median completion time of all participants, resulting in an average reward of
$12.07 per hour. To encourage quicker and more accurate responses, we designed bonus payments so that
each participant could earn additional $ (base payment for the question × multiplier) for each correctly
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61 - 70
5.4%
51 - 60
16.3%

41 - 50
14.5%

less than 21
4.2%

21 - 30
28.3%

31 - 40
31.3%

Age

Mixed
6.0%
Black
10.1%
Asian
6.0%
Other
1.5%

White
76.5%

Ethnicity

No
81.3%

Yes
18.7%

Student Status

Part-Time
19.8%

Other
12.6%

Due to start
1.8%
Not in paid 
15.6%

Full-Time
35.3%

Unemployed 
15.0%

Employment Status

Figure D.7: Demographic background of the participants (age, ethnicity, student status, and employment
status).

answered questions, where the multiplier is determined by the response time on the question (Table D.1).
One could ideally earn up to ×1.5 the base payment by answering all questions correctly, all within 30
seconds. All payments (base and bonus) were processed after the data collection was complete, accounting
for invalid responses.

Response Time (seconds) < 30 < 60 < 90 < 120 > 120

Multiplier x0.5 x0.4 x0.3 x0.2 x0.0

Table D.1: Reward multiplier based on response time for correct answers. Incorrect answers have the
multiplier of zero.
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