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Abstract
Recently-developed technologies for monitoring activity in populations of neurons

make it possible for the first time, in principle, to ask many basic questions in
neuroscience. However, computational tools for analyzing newly available data need
to be developed. The goal of this thesis is to contribute to this effort by focusing on
two specific problems.

First, we used a point-process regression framework to provide a methodology for
statistical assessment of the link between neural spike synchrony and network-wide
oscillations. In simulations, we showed that our method can recover ground-truth
relationships, and in two types of spike train data we illustrated the kinds of results
the method can produce. The approach improves on methods in the literature and
may be adapted to many different experimental settings.

Second, we considered the problem of source extraction in calcium imaging data,
i.e., the detection of neurons within a field of view and the extraction of each neuron’s
activity. The data we mainly focus on are recorded with a microendoscope, which has
the unique advantage of imaging deep brain regions in freely behaving animals. These
data suffer from high levels of background fluorescence, as well as the potential for
overlapping neuronal signals. Based on the existing constrained nonnegative matrix
factorization (CNMF) framework, we developed an efficient method to process
microendoscopic data. Our method utilizes a novel algorithm to initialize the spatial
shapes and temporal activity of the neurons from the raw video data independently
from the strong fluctuating background. This step ensures the efficiency and accuracy
of solving a nonconvex CNMF problem. Our method also models the complicated
background by including its low-spatial frequency structure and the locally-low-rank
feature to avoid absorbing cellular signals into the background term. We developed a
tractable solution to estimate the background activity using this new model. After
subtracting the approximated background, we followed the CNMF framework to
demix neural signals and recover denoised and deconvolved temporal activity. We
optimized several algorithms in solving the CNMF problems to get accurate results.
In practice, our method outperforms all existing methods and has been adopted by
many experimental labs.



iv



Acknowledgments
First and foremost I want to thank my thesis advisor Rob Kass. I appreciate all

his contributions of time and ideas to make my Ph.D. experience stimulating. He is a
great mentor that has helped me out of many difficulties in both research and life. He
encouraged me to find research topics that I love. When I showed him interests in
calcium imaging data analysis, he introduced me to Liam Paninski, who is the second
person I want to express my greatest appreciations.

Liam is my second advisor and a majority of work in this thesis was done under
his supervision. He is always ready to provide help when I get stuck in a particular
research problem. Even though we live in two different cities, I can always get his
same-day responses from him. I thank Liam for being so generous and resourceful in
sharing his ideas and knowledge.

I would also like to thank my other two committee members, Professor Geoffrey
Gordon and Professor Aarti Singh for their brilliant comments and suggestions on
my thesis projects. They inspired me to think more about the theoretical properties of
the computational methods developed in this thesis.

I thank my wonderful collaborators in multiple projects: Shawn Burton, Adam
Snyder, Nathan Urban, Matthew Smith, CNMF-E users’ group, and Johannes Friedrich.
Thanks for their data sharing and constructive suggestions. Specially, I want to thank
members from three labs whose PIs are Garret Studer, Susanne Ahmari, and Mazen
Kheirbek. They provided me with tremendous support during the early stage of
developing CNMF-E.

I thank all the colleagues in the Kass lab, especially Kensuke Arai, with whom I
shared many valuable discussions about my work, and Spencer Koerner, Ying Yang
and Natalie Klein for helping me preparing multiple presentations. It is my pleasure
and honor to work with them during the past few years.

During my Ph.D. study, dozens of faculties and students in CNBC have helped
and taught me immensely. I thank Bard Ermentrout for allowing me to do a rotation
in his lab where I gained lots of knowledge about computational neuroscience. I
thank Tai Sing Lee for suggestions on academic career and the funding support in my
last year.

I would like to thank my undergraduate advisor Guoqiang Bi for introducing
me to neuroscience. He spoke to me about many cutting-edge research topics and
recommended me to study computational neuroscience. Even though I left his lab 5
years ago, we still discuss science frequently and I usually seek advices from him.

At last I want to thank my family for their encouragements and supports. I want
to give my special thanks to my wife Jiawen Zhao. Thank you for staying together
with me in the last half year of my Ph.D. life. Without you, I could not imagine how I
would have gotten through those stressful days. Thank you for everything!



vi



Contents

1 Introduction 1
1.1 Tools for monitoring neural activity . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Electrophysiological recording . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Calcium imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Statistical challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Role of oscillations in modulating spike synchrony . . . . . . . . . . . . 5
1.2.2 Source extraction in calcium imaging data . . . . . . . . . . . . . . . . . 6

1.3 Contributions and organization of the thesis . . . . . . . . . . . . . . . . . . . . 8

2 Statistical link between network oscillation and neural synchrony 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Establish the statistical relationship between individual neuron’s spiking
activity and oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Assessing the contribution of oscillations in spike synchrony . . . . . . . 15
2.2.3 Data and preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Point process model for spike trains . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Estimation of LFP phase modulation . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Comparison with Spike Field Coherence . . . . . . . . . . . . . . . . . 27
2.3.4 Synchrony and Oscillatory Phase . . . . . . . . . . . . . . . . . . . . . 28
2.3.5 Applications to Experimental Neural Recordings . . . . . . . . . . . . . 31

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Background on calcium imaging data analysis 37
3.1 Spike inference from calcium imaging data . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Model for calcium dynamics and spike inference through deconvolution . 38
3.1.2 Issues in FOOPSI and constrained FOOPSI . . . . . . . . . . . . . . . . 39

3.2 ROI analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Process microendoscopic data with ROI analysis . . . . . . . . . . . . . 41

3.3 Matrix factorization approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.1 PCA/ICA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 CNMF framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.3 Problems of the vanilla CNMF in processing microendoscopic data . . . 46

vii



3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Efficient and accurate extraction of in vivo calcium signals from microendoscopic
video data 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Model and model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.1 CNMF for microendoscope data (CNMF-E) . . . . . . . . . . . . . . . . 52
4.2.2 Fitting the CNMF-E model . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 CNMF-E can reliably estimate large high-rank background fluctuations . 55
4.3.2 CNMF-E accurately initializes single-neuronal spatial and temporal com-

ponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.3 CNMF-E recovers the true neural activity and is robust to noise contami-

nations on simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.4 Application to dorsal striatum data . . . . . . . . . . . . . . . . . . . . . 62
4.3.5 Application to data in prefrontal cortex . . . . . . . . . . . . . . . . . . 64
4.3.6 Application to ventral hippocampus neurons . . . . . . . . . . . . . . . 66
4.3.7 Application to footshock responses in the bed nucleus of the stria termi-

nalis (BNST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.1 Algorithms for solving problem (P-S) . . . . . . . . . . . . . . . . . . . 70
4.5.2 Algorithms for solving problem (P-T) . . . . . . . . . . . . . . . . . . . 71
4.5.3 Estimating background by solving problem (P-B) . . . . . . . . . . . . . 71
4.5.4 Initialization of model variables . . . . . . . . . . . . . . . . . . . . . . 72
4.5.5 Interventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.6 Pipeline, complexity analysis, and running time of CNMF-E . . . . . . . 77
4.5.7 Simulation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.8 In vivo microendoscopic imaging and data analysis . . . . . . . . . . . . 80
4.5.9 Code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 Supporting information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Fast and accurate spike inference with hard shrinkage 85
5.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Solving the thresholded FOOPSI with OASIS . . . . . . . . . . . . . . . . . . . 86
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusions and Future work 93
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



A Appendix for Chapter Statistical link between network oscillation and neural syn-
chrony 97
A.1 GLM fitting of one CA1 neuron. . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 Spike triggered average of two V4 neurons . . . . . . . . . . . . . . . . . . . . . 98
A.3 Explaining synchrony when firing rate is modulated by the amplitude of the

oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.4 Experimental dataset used in this paper . . . . . . . . . . . . . . . . . . . . . . . 98
A.5 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 101

ix



x



List of Figures

1.1 Cyberkinetics microelectrode array and example waveforms (Figure is from [71]).
A, The array, closeup, and perspective with a penny. B, Examples of sorted
waveforms from three representative channels and one channel of noise. . . . . . 2

1.2 Freely behaving Ca2+ imaging using microendoscope (Figure is from [108]). (A)
Cartoon diagram of a miniature, integrated microendoscope. (B) Example of
digitally captured fluorescence activity from the brain of a freely behaving mouse.
Scale bar, 123 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Example of the spike synchrony between two neurons (Figure from [52]). The
top and bottom panels are raster plots of spike trains on 120 trials from two
simultaneously-recorded neurons, with synchronous spikes shown as circles.
Here, the observed synchrony is defined using time bins having 5 ms width.
Spiking activity was recorded for 1 second from primary visual cortex in response
to a drifting sinusoidal grating, as reported in [68, 70]. . . . . . . . . . . . . . . 6

2.1 Simulated spike trains and results of model fitting. (A) Simulated spike trains
in response to a fluctuating stimulus and oscillatory drive. (B,C,D) Ground truth
(red) and fitted results (blue) for different terms in the firing-rate probability
model. For each fitted result, we used a parametric bootstrap to determine the
95% confidence band (cyan). (B) Effect of auto-history λ2(t− t∗) on output firing
rate. (C) Effect of stimulus λ1(t) on output firing rate. (D) Oscillatory phase
modulation curve λ3(φ) of firing rate. . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Estimation of LFP phase modulation by spike phase histogram and GLM
methods. (A,B,D,E) Point process regression using the GLM (B,E) yields esti-
mates of the LFP phase modulation with comparable variance but substantially
lower bias than estimates made using the spike phase histogram method (A,D). (C)
Comparison of the MISE between the estimated and true LFP phase modulation
using the spike phase histogram and GLM methods, across different sample sizes.
(F) Comparison of the variance and bias in the LFP phase modulation estimated
by the two methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xi



2.3 LFP phase modulation estimated by the spike phase histogram method is
inherently biased for non-Poisson firing. (A,D) Auto-history effects for Poisson
(A) and non-Poisson (D) firing. (B,C,E,F) Theoretical and simulated estimations
of the LFP phase modulation for Poisson (B,C) and non-Poisson (E,F) firing at
low (B,E) and high (C,F) mean firing rates. Note that, for non-Poisson firing, the
spike phase histogram estimation of the LFP phase modulation introduces a firing
rate-dependent bias. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 LFP phase modulation estimated by the GLM method does not depend on
firing rate. (A,C), In three simulations, we keep λ3(φ) = 1 + 0.4 cos(φ + π)
while varying mean firing rates. The SFC method (A) reports three distinct results,
while the GLM method (C) showed that the LFP phase modulations are the
same. (B, D), Different combinations of firing rate and LFP phase modulation
λ3(φ) = 1 + a · cos(φ+ π) can yield the same SFC (B), while the GLM method
can distinguish the differences in LFP phase modulation (D). For each parameter
set (a,firing rate), we had 200 runs. The shaded area is the 95% confidence band. 27

2.5 Schematic illustration of the contribution of a network-wide oscillation to
synchronous spiking between two neurons. The firing probability of each
neuron is influenced by three factors: stimulus, auto-history and an oscillatory
drive. The oscillatory drive is shared by the two neurons, but each neuron exhibits
a unique phase modulation curve. Spike trains of the two neurons are observed
and synchronized spikes are counted (red circles). . . . . . . . . . . . . . . . . . 29

2.6 Network-wide oscillations can enhance or suppress the predicted levels of
spike synchrony. (A) Dependence of log ζ̂12 on the difference in preferred phases
between two neurons, as computed using models with and without an oscillatory
factor. Purple and cyan arrows indicate two different ∆(φpref )s. (B) Bootstrap-
generated distribution of log ζ̂12 values under the null hypothesis of log ζ12 = 0.
Arrowhead shows the value of log ζ̂12 predicted by the simplified model. Thus,
a significantly larger number of synchronous spikes is observed than predicted
by the model lacking an oscillatory factor (log(ζ̂12) = 0.057± 0.013, p value<
0.0025). (C) Including an oscillatory factor in the model yields an accurate
prediction of the observed number of synchronous spikes (log(ζ̂12) = −0.006±
0.014, p value= 0.6775). (D, E) Same as (B,C) for different preferred phases that
lead to significantly lower synchrony than predicted when an oscillatory factor is
not included in the model (D: log(ζ̂12) = −0.082 ± 0.013, p value< 0.0025; E:
log(ζ̂12) = −0.009± 0.015, p value= 0.2700). (F) Dependence of the power on
number of trials and ζ. The mean firing rate is 25 Hz. The red and green lines
indicate choices of ζ and N for which the power equals 0.8, based on simulation
and theory respectively. (G) Same as (F), but the mean firing rate is 10 Hz. . . . 30

xii



2.7 Shared oscillations contribute to spike synchrony between hippocampal CA1
pyramidal cells in vitro. (A, B) Reconstructed morphologies (left) and raster
plots of spike trains (right) evoked in two CA1 pyramidal cells by an arbitrary
stimulus waveform with a shared oscillatory signal (“Exp. 2"). Red circles show
synchronized spikes between the two neurons. (C) Estimated phase modulation
of the two recorded neurons in response to a shared oscillatory signal simulating
a network-wide oscillation. (D) In the absence of a shared oscillatory signal, the
simplified model (stimulus, or PSTH effects [P] + spike or auto-history effects
[H]) lacking an oscillatory factor accurately predicts the observed number of
synchronous spikes between the two neurons. (E,F) In the presence of a shared
oscillatory signal, the simplified model (P+H) fails to explain the observed num-
ber of synchronous spikes (E) while the full model (stimulus, or PSTH effects
[P] + spike or auto-history effects [H] + an oscillatory factor [O]) containing an
oscillatory factor accurately predicts the observed number of synchronous spikes
(F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8 Shared oscillations contribute to spike synchrony between V4 neurons in
vivo. (A,D) Raster plot of spike trains from two neurons recorded simultaneously.
Red circles show synchronized spikes between the two neurons. (B,E) Raw (blue)
and 4 − 25 Hz filtered (red) surrounding LFP related with each neuron for a
single trial. (C,F) The simplified model failed to explain the observed number of
synchronous spikes (C), while the full model containing an oscillatory factor fully
accounts for the observed number of synchronous spikes. . . . . . . . . . . . . . 34

3.1 Generative autoregessive model for calcium dynamics. Spike train s gets filtered
to produce calcium trace c; here we used p = 2 as order of the AR process. Added
noise yields the observed fluorescence y. (Figure is from [36]). . . . . . . . . . . 38

3.2 The inferred spiking activity from constrained FOOPSI contains false positives.
(A) the deconvolution results. Top: the raw fluorescence (yellow), true calcium
concentration c (red) and the denoised fluorescence trace (blue); Bottom: the true
spiking signal s (red) and the inferred spiking activity (blue). (B) The inferred
spiking signals near the true spike times (lag=0 ms). The red trace is the mean of
all cyan traces (n=29). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Automated identification of ROIs. (A) two example frames with or without spikes
for the selected neurons. (B) The temporal cross-correlation of each pixel with its
nearest neighbors. (C) The correlation image was then filtered with an adaptive
local threshold. Neurons are identified through a series of morphological filters.
(Figure is adapted from [124]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xiii



3.4 Extracting cellular signals from a drawn ROI. (A) Representative fluorescence
image of a microendoscopic data recorded from ventral hippocampus. (B) The
same frame as in (A), but its constant baselines on each pixels are subtracted. The
constant baseline at each pixel is calculated as the median of the fluorescence trace
. (C) Both the top and the bottom panels are the zoomed-in version of the cropped
region in (B). The green area in the bottom panel indicates the selected ROI
of the neuron, while the red area is selected for approximating the background
fluctuation. (D) The red and the green traces show the mean fluorescence signals
within the two selected areas in (C). Here the fluorescences have been mean-
centered. The blue trace is the difference between two traces, which approximates
the temporal signal of the neuron in the selected ROI. . . . . . . . . . . . . . . . 42

3.5 Example results of PCA/ICA analysis. (A) spatial filter of one independent
component (IC). (B) The temporal trace of one example IC. (C) One IC that
contains two neurons. D The extracted signal of the IC shown in C and the true
signals of two neurons in C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 Limitations of the vanilla CNMF in processing microendoscopic data. (A) Several
example frames of the cropped region in (Figure 3.4B). (B,C) The results of
initializing single neuron’s spatial and temporal component using rank-1 NMF
in the vanilla CNMF. (D, E, F) are the results of applying SVD to the raw video
data. (D) The top-6 spatial components. (E) The top-6 temporal components. (F)
Eigenvalues of each component. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Microendoscopic data contain large background signals with rapid fluctuations
due to multiple sources. (A) An example frame of microendoscopic data recorded
in dorsal striatum (see Methods and Materials section for experimental details).
(B) The local “correlation image" [124] computed from the raw video data.
Note that it is difficult to discern neuronal shapes in this image due to the high
background spatial correlation level. (C) The mean-subtracted data within the
cropped area (green) in (A). Two ROIs were selected and coded with different
colors. (D) The mean fluorescence traces of pixels within the two selected ROIs
(magenta and blue) shown in (C) and the difference between the two traces. (E)
Cartoon illustration of various sources of fluorescence signals in microendoscopic
data. “BG” abbreviates “background.” . . . . . . . . . . . . . . . . . . . . . . . 51

xiv



4.2 CNMF-E can accurately separate and recover the background fluctuations in
simulated data. (A) An example frame of simulated microendoscopic data formed
by summing up the fluorescent signals from the multiple sources illustrated in
Figure 4.1E. (B) A zoomed-in version of the circle in (A). The green dot indicates
the pixel of interest. The surrounding black pixels are its neighbors with a
distance of 15 pixels. The red area approximates the size of a typical neuron
in the simulation. (C) Raw fluorescence traces of the selected pixel and some
of its neighbors on the black ring. Note the high correlation. (D) Fluorescence
traces (raw data; true and estimated background; true and initial estimate of
neural signal) from the center pixel as selected in (B). Note that the background
dominates the raw data in this pixel, but nonetheless we can accurately estimate
the background and subtract it away here. Scalebars: 10 seconds. Panels (E-
G) show the cellular signals in the same frame as (A). (E) Ground truth neural
activity. (F) The residual of the raw frame after subtracting the background
estimated with CNMF-E; note the close correspondence with E. (G) Same as (F),
but the background is estimated with rank-1 NMF. A video showing (E-G) for all
frames can be found at S2 Video. (H) The mean correlation coefficient (over all
pixels) between the true background fluctuations and the estimated background
fluctuations. The rank of NMF varies and we run randomly-initialized NMF for 10
times for each rank. The red line is the performance of CNMF-E, which requires
no selection of the NMF rank. (I) The performance of CNMF-E and rank-1 NMF
in recovering the background fluctuations from the data superimposed with an
increasing number of background sources. . . . . . . . . . . . . . . . . . . . . . 56

4.3 CNMF-E accurately initializes individual neurons’ spatial and temporal compo-
nents in simulated data. (A) An example frame of the simulated data. Green
and red squares will correspond to panels (D) and (E) below, respectively. (B)
The temporal mean of the cellular activity in the simulation. (C) The correlation
image computed using the spatially filtered data. (D) An example of initializing
an isolated neuron. Three selected pixels correspond to the center, the periphery,
and the outside of a neuron. The raw traces and the filtered traces are shown
as well. The yellow dashed line is the true neural signal of the selected neuron.
Triangle markers highlight the spike times from the neuron. (E) Same as (D), but
two neurons are spatially overlapping in this example. Note that in both cases
neural activity is clearly visible in the filtered traces, and the initial estimates of
the spatial footprints are already quite accurate (dashed lines are ground truth). (F)
The contours of all initialized neurons on top of the correlation image as shown in
(D). Contour colors represent the rank of neurons’ SNR (SNR decreases from red
to yellow). The blue dots are centers of the true neurons. (G) The spatial and the
temporal cosine similarities between each simulated neuron and its counterpart in
the initialized neurons. (H) The local correlation and the peak-to-noise ratio for
pixels located in the central area of each neuron (blue) and other areas (green).
The red lines are the thresholding boundaries for screening seed pixels in our
initialization step. A video showing the whole initialization step can be found at
S3 Video. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

xv

http://www.columbia.edu/\protect \unhbox \voidb@x \penalty \@M \ {}pz2230/videos/background_comparison.mp4
http://www.columbia.edu/\protect \unhbox \voidb@x \penalty \@M \ {}pz2230/videos/sim_initialization.mp4


4.4 CNMF-E outperforms PCA/ICA analysis in extracting individual neurons’ activity
from simulated data and is robust to low SNR. (A) The results of PCA/ICA,
CNMF, and CNMF-E in recovering the spatial footprints and temporal traces of
three example neurons. The trace colors match the neuron colors shown in the
left. (B) The spatial and the temporal cosine similarities between the ground truth
and the neurons detected using different methods. (C) The pairwise correlations
between the calcium activity traces extracted using different methods. (D-F) The
performances of PCA/ICA and CNMF-E under different noise levels: the number
of missed neurons (D), and the spatial (E) and temporal (F) cosine similarities
between the extracted components and the ground truth. (G) The calcium traces
of one example neuron: the ground truth (black), the PCA/ICA trace (blue), the
CNMF-E trace (red) and the CNMF-E trace without being denoised (cyan). The
similarity values shown in the figure are computed as the cosine similarity between
each trace and the ground truth (black). Two videos showing the demixing results
of the simulated data can be found in S4 Video (SNR reduction factor=1) and S5
Video (SNR reduction factor=6). . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Neurons expressing GCaMP6f recorded in vivo in mouse dorsal striatum area.
(A) An example frame of the raw data and its four components decomposed by
CNMF-E. (B) The mean fluorescence traces of the raw data (black), the estimated
background activity (blue), and the background-subtracted data (red) within
the segmented area (red) in (A). The variance of the black trace is about 2x the
variance of the blue trace and 4x the variance of the red trace. (C) The distributions
of the variance explained by different components over all pixels; note that
estimated background signals dominate the total variance of the signal. (D) The
contour plot of all neurons detected by CNMF-E and PCA/ICA superimposed on
the correlation image. Green areas represent the components that are only detected
by CNMF-E. The components are sorted in decreasing order based on their SNRs
(from red to yellow). (E) The spatial and temporal components of 14 example
neurons that are only detected by CNMF-E. These neurons all correspond to
green areas in (D). (F) The signal-to-noise ratios (SNRs) of all neurons detected
by both methods. Colors match the example traces shown in (G), which shows
the spatial and temporal components of 10 example neurons detected by both
methods. Scalebar: 10 seconds. See S6 Video for the demixing results. . . . . . 64

4.6 Neurons expressing GCaMP6s recorded in vivo in mouse prefrontal cortex. (A-F)
follow similar conventions as in the corresponding panels of Figure 4.5. (G) Three
example neurons that are close to each other and detected by both methods. Yellow
shaded areas highlight the negative ‘spikes’ correlated with nearby activity, and the
cyan shaded area highlights one crosstalk between nearby neurons. Scalebar: 20
seconds. See S7 Video for the demixing results and S8 Video for the comparision
of CNMF-E and PCA/ICA in the zoomed-in area of (G). . . . . . . . . . . . . . 65

xvi

http://www.columbia.edu/\protect \unhbox \voidb@x \penalty \@M \ {}pz2230/videos/sim_snr1_demixing.mp4
http://www.columbia.edu/\protect \unhbox \voidb@x \penalty \@M \ {}pz2230/videos/sim_snr6_demixing.mp4
http://www.columbia.edu/\protect \unhbox \voidb@x \penalty \@M \ {}pz2230/videos/sim_snr6_demixing.mp4
http://www.columbia.edu/\protect \unhbox \voidb@x \penalty \@M \ {}pz2230/videos/striatum_demixing.mp4
http://www.columbia.edu/\protect \unhbox \voidb@x \penalty \@M \ {}pz2230/videos/pfc_demixing.mp4
http://www.columbia.edu/\protect \unhbox \voidb@x \penalty \@M \ {}pz2230/videos/pfc_overlapping.mp4


4.7 Neurons expressing GCaMP6f recorded in vivo in mouse ventral hippocampus.
(A) Contours of all neurons detected by CNMF-E (red) and PCA/ICA method
(green). The grayscale image is the local correlation image of the background-
subtracted video data, with background estimated using CNMF-E. (B) Spatial
components of all neurons detected by CNMF-E. The neurons in the first three
rows are also detected by PCA/ICA, while the neurons in the last row are only de-
tected by CNMF-E. (C) Spatial components of all neurons detected by PCA/ICA;
similar to (B), the neurons in the first three rows are also detected by CNMF-E
and the neurons in the last row are only detected by PCA/ICA method. (D)
Temporal traces of all detected components in (B). ‘Match’ indicates neurons
in top three rows in panel (B); ‘Other’ indicates neurons in the fourth row. (E)
Temporal traces of all components in (C). Scalebars: 20 seconds. See S9 Video
for demixing results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Neurons extracted by CNMF-E show more reproducible responses to footshock
stimuli, with larger signal sizes relative to the across-trial variability, compared
to PCA/ICA. (A-C) Spatial components (A), spatial locations (B) and temporal
components (C) of 12 example neurons detected by both CNMF-E and PCA/ICA.
(D) Calcium responses of all example neurons to footshock stimuli. Colormaps
show trial-by-trial responses of each neuron, extracted by CNMF-E (top, red)
and PCA/ICA (bottom, green), aligned to the footshock time. The solid lines
are medians of neural responses over 11 trials and the shaded areas correpond to
median ±1 median absolute deviation (MAD). Dashed lines indicate the shock
timings. (E) Scatter plot of peak-to-MAD ratios for all response curves in (D). For
each neuron, Peak is corrected by subtracting the mean activity within 4 seconds
prior to stimulus onset and MAD is computed as the mean MAD values over all
timebins shown in (D). The red line shows y = x. Scalebars: 10 seconds. See
S11 Video for demixing results. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Illustration of the initialization procedure. (A) Raw video data and the kernel
for filtering the video data. (B) The spatially high-pass filtered data. (C) The
local correlation image and the peak-to-noise ratio (PNR) image calculated from
the filtered data in (B). (D) The temporal correlation coefficients between the
filtered traces (B) of the selected seed pixel (the red cross) and all other pixels
in the cropped area as shown in (A-C). The red and green contour correspond
to correlation coefficients equal to 0.7 and 0.3 respectively. (E) The estimated
background fluctuation yBG(t) (green) and the initialized temporal trace ĉi(t) of
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Chapter 1

Introduction

Modern electrophysiological and optical recording techniques have significantly improved our
ability to monitor activity of neuronal populations. Nowadays we can easily record high quality
data of huge numbers of neurons under complex behaving states. As such, the data collected in
neuroscience labs are increasing explosively and this field is experiencing an exciting era of big
data. With all these technical advances, investigators can study the brain at the population level
and address questions that could not be addressed from recordings of small numbers of cells.

However, the complexity of the data is also increasing as we collect them from larger pop-
ulations, and it poses serious challenges on computational strategies of analyzing these data.
The tools for analyzing data determine how much insights we can gain from the available data.
Consequently, there is high demand in the neuroscience community for computational tools.
Motivated by real-world problems, in this thesis we will present several novel tools for extracting
meaningful information from the data and propose statistical frameworks for answering specific
scientific questions.

Our work can be divided into two parts according to the data sources: electrophysiology and
calcium imaging. Both of them are targeted at the analysis of neurons in population recordings.
In this chapter, we first give a brief overview of the related experimental techniques for collecting
the data (Section 1.1), then we discuss the statistical challenges in processing the data (Section
1.2). Finally, we will outline the organization of this thesis (Section 1.3).

1.1 Tools for monitoring neural activity

The brains of all species are primarily composed of neurons connected as a network. Neurons
are highly specialized for generating electrical signals in response to chemical and other inputs,
and transmitting these signals to other cells [23]. The electrical signals can be propagated over
remarkably long distances by generating characteristic electrical pulses called action potentials or
spikes. Since the information are represented within these transient neural signals, the study of
the spiking activity is crucial for understanding the neural coding and information transmission.

In general, there are two approaches for measuring the spiking activity: electrophysiological
recording and optical imaging. The former measures the electrical signals directly, while the latter
is an indirect way of monitoring the changes induced by electrical activity. Recent advances in
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these two techniques enable the recording of large population neurons. Such recordings allow
investigators to study the neural system at the population level and address questiones that could
not be addressed from the recordings of small numbers of individual neurons. In the following, we
mainly review the recording tools used in our work. For the optical imaging part, nowadays there
are two main techniques: calcium imaging and voltage imaging. They image the intracellular
calcium concentrations and the membrane voltages respectively. In this thesis, we only focus on
the calcium imaging.

1.1.1 Electrophysiological recording

ported previously: cat single electrode
(Snider et al., 1998), cat array (Samonds et
al., 2006), and monkey single electrode
(Cavanaugh et al., 2002).

We used the following method to isolate
waveforms generated by individual cells.
For each electrode, waveform segments that
exceeded a threshold (periodically adjusted
using a multiple of the rms noise on each
channel) were stored and sorted off-line
with principal components analysis by
waveform shape (Shoham et al., 2003). Af-
ter this preliminary sort, we refined the out-
put by hand with off-line time–amplitude
window discrimination software for each
electrode. All waveforms were sorted in this
manner except for the V2 macaque data,
which were sorted on-line with a dual time–
amplitude window discriminator.

Signal-to-noise ratio
Using this procedure, we analyzed 58 V1
cells from single electrodes in cats, 38 V2
cells from single electrodes in macaques,
269 V1 cells from three microelectrode ar-
rays in cats, and 301 V1 cells from three
microelectrode arrays in macaques. In
Figure 1B, we show waveforms from three
neurons recorded with the microelec-
trode array in macaque V1. These exam-
ples span the quality range we typically
observed with arrays. Given these isolated
single units, we computed signal-to-noise
ratios (SNRs) for collections of wave-
forms recorded in 1 h periods for each of
the four preparations. The SNR is com-
puted as the ratio of the amplitude of the
average waveform to the SD of waveform
noise (Nordhausen et al., 1996; Suner et
al., 2005). That is, if each of k waveforms
has n samples, then the collection of wave-
forms is as follows:

W ! !v1!t1", v1!t2", . . . v1!tn"···
vk!t1", vk!t2", . . . vk!tn"

" ,

with the mean waveform denoted as W! .
The matrix of noise values (deviations
from the mean) is thus as follows:

" ! W # !W!
···

W!
" ,

where the SD" is the SD of the collection of
all entries in ". The SNR is now as follows:

SNR !
max!W! " # min!W! "

2 $ SD"
.

Response properties
Waveforms collected with the microelec-
trode arrays were similar in shape to wave-

forms collected using single electrodes,
and neuronal response properties were
similar as well. To demonstrate this point,
we analyzed neural responses to a variety
of stimuli collected with macaque V1 ar-
ray implants. Orientation tuning curves
were derived from responses to drifting
sinusoidal gratings (Fig. 2A). Most iso-
lated cells showed clear orientation pref-
erence, and orderly shifts in orientation
preference could be seen across the elec-
trode positions in the array. In addition,
we computed STRFs for cells responding
to white-noise stimuli using spike-
triggered averaging (Fig. 2B). STRFs were
found for cells when a contiguous 30 pixel
area of the spike-triggered average ex-
ceeded 3 SDs of the noise average. Of the
cells isolated with this array, 60 – 65% re-
vealed STRFs. Overall, we found that tun-
ing properties were similar to those re-
ported previously for orientation tuning
(Hubel and Wiesel, 1968; Ringach et al.,
2002) and STRFs (Jones and Palmer,
1987).

We compared the distribution of SNRs
across the different animals and method-
ologies (Fig. 3). On a population level,
SNR values for the arrays tended to be
somewhat lower than those from single-

electrode recordings in both macaques
and cats (see Fig. 3 legend for statistics).
One reason for this is that the electrode
depth of the array is fixed after implan-
tation and cannot be adjusted to better
isolate a cell, as is typically done in
single-electrode recordings. Another
possibility is that our array recordings
were confined mostly to layers 2–3 with
the rest in layer 4 (Jermakowicz et al.,
2006), whereas our single-electrode
data included cells sampled throughout
the cortical depth. A direct comparison
of cells recorded in the same layer might
have yielded slightly different results, al-
though there is no reason to suspect it
would systematically bias the SNR val-
ues in either direction. The average
SNRs from cat recordings were some-
what higher than from macaque data.
This may be attributable to a true differ-
ence between species or merely related
to variations in recording setups. De-
spite the disparity in distribution
means, the cells in the different condi-
tions span the same SNR range. That is,
cells with the lowest SNR from arrays
were still within the distribution from
accepted single-electrode recordings us-
ing an on-line dual time–amplitude
window discriminator.

Figure 1. Cyberkinetics microelectrode array and example waveforms. A, The array, closeup, and perspective with a penny. B,
Examples of sorted waveforms and SNRs from three representative channels and one channel of noise.
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Figure 1.1: Cyberkinetics microelectrode array and example waveforms (Figure is from [71]). A,
The array, closeup, and perspective with a penny. B, Examples of sorted waveforms from three
representative channels and one channel of noise.

Because neurons communicate electrically, it is straightforward to observe neural activity by
measuring its membrane potentials using electrodes. A substantial amount of work in neuroscience
were performed with single-electrode intracellular or extracellular recording. High-quality data
can be recorded with this method, but the method itself is limited to small number of cells to be
recorded at a time, which hinders the population analysis of the network. To overcome this issue,
neuroscientists use multielectrode recording systems to measure the extracellular field potentials
with multiple electrodes in parallel. The recorded signal on each electrode superimposes the fast
action potential, synaptic potentials and slow glial potentials within a small field, and altogether
these electrodes enable the simultaneous recording of large populations.

Figure 1.1A shows the Cyberkinetics ‘Utah’ Array (Blackrock Microsystems, Salt Lake City,
Utah), which is a classical microelectrode device allowing the chronic recording of neural signals
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in vivo. This device has 100 silicon electrodes covering a field of 12.96 mm2. Each electrode
could receive signals from multiple neurons, and the spike sorting procedure is used to cluster
their action potentials according to spiking waveforms into putative single units (Figure 1.1B).
Thus we could record the spiking activity of more than one neuron on one electrode.

Besides the fast spiking activity, multielectrode recording also measures the slow fluctuations,
which are believed to represent the synchronized inputs into the observed areas. These fluctuations
are called local field potentials (LFP) and can be extracted by low-pass filtering (cut off at ∼ 300
Hz) the raw signals. LFP has been shown to relate with the network state among population
neurons [73]. From the LFP signal, we can observe specific prominent oscillations under different
conditions and these oscillations have been shown related the cognitive performances [13, 44, 80,
120, 122].

Multielectrode recording enables the observation of both spiking activity and the local field
potentials over a large population simultaneously, which makes it a perfect tool to study the neural
system in the network level. The larger population provides the possibility of examining pairwise
or even higher-order interactions among neurons. By measuring two brain areas simultaneously,
we could also study the information flow between different brain regions. Recent advances in
microtechnology greatly increase the number of electrodes per multielectrode array to over 1, 000
or even 10, 000 [5, 35, 77]. Considering that these techniques provides unprecedented signal
quality that hold reliable assignment of single spikes to putative neurons [56], multielectrode
recording will significantly broaden our capability of studying neural circuits at the population
level.

1.1.2 Calcium imaging
Calcium is an essential intracellular messenger in neurons. When neurons show elevated electrical
activity, especially the spiking activity, the calcium concentration can rise transiently to levels that
are 10 to 100 times higher than the resting state [6]. Accordingly, calcium imaging measures the
neural activity by indirectly observing the changes in the intracellular calcium concentrations via
calcium indicators and optical imaging techniques. It allows the recording of multiple neurons
simultaneously and preserves the spatial location of each neuron. In recent years, calcium imaging
techniques emerged as complementary neural recording approaches over multiple spatial and
temporal scales, facilitating the investigation of dynamic aspects that are difficult to investigate
using electrophysiology. Its development relies on progresses in the development of new calcium
indicators and imaging techniques.

Calcium indicators are fluorescent molecules that change their fluorescence properties when
they bind with Ca2+ ions, and this change of the fluorescence can be monitored using imaging
techniques. Consequently, we are able to infer the neural activity from the optical signals. Faster
response kinetics and improvements in SNR have driven the historical development of calcium
indicators, either as chemical dyes of genetically encoded calcium indicators (GECIs). Recently a
family of protein calcium sensors called GCaMP6 are widely used due to its ultra-sensitive and
stable response to neurons’ electrical activity [18]. In practice, it allows the detection of single
action potentials and long recordings lasting over timescales of weeks. Since it is genetically
encoded protein, GCaMP6 can monitor specific types of neurons, allowing the study of the
selected neuron types in neural circuits.
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Figure 1.2: Freely behaving Ca2+ imaging using microendoscope (Figure is from [108]). (A)
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fluorescence activity from the brain of a freely behaving mouse. Scale bar, 123 µm.

The imaging of calcium indicators usually requires fast video imaging rate (∼ 20 Hz) in
continuous time. For lots of in vivo experiments, 2-photon imaging is the first choice because of its
advantages in high optical sectioning, SNRs and depth penetration compared with other 1-photon
imaging techniques. However, the imaging depth is ultimately limited due to the fluorescence
generated by off-focus excitation light at the surface of the sample [54]. Thus the recording of
deep brain with 2-photon imaging usually needs the removal of the covering tissues mechanically
[28, 88], which heavily constrains the brain regions to be recorded. This limitation can be now
circumvented by using a microendoscope. It implants an optical fiber and a fiber-like GRIN lenses
to relay light to and back from the recording site [64]. Since light is mainly transmitted within the
fiber, microendoscopic approach records only signals from the target regions, allowing monitoring
neural activity in deep areas without depth constraints. When combined with a miniaturized head-
mounted imaging device, the integrated microendoscope enables deep brain imaging of previously
inaccessible neuronal populations in freely behaving animals [42]. This new technique offers
unique advantages and has quickly become a vital method for recording large neural populations
during minimally restrained behavior [108].

Plenties of labs are working on the developments of state-of-the-art calcium sensors and fancy
imaging platforms. Their progresses will definitely lead us to better observations of the brain.
At the same time, they will also bring new demands of computational tools for processing the
generated data.
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1.2 Statistical challenges

Progress in large-scale recording of neuronal activity relies on three critical components: the
experimental tools for collecting the data, methods for identification of individual neurons and
tools for the analysis and interpretation of parallel spiking activity [13]. Now we have great
experimental tools and the development of experimental tools is onging. Armed with these tools,
neuroscience research will be less constrained by the data collection. However, the last two
components determines the way to interpret data and draw scientific conclusions. In this thesis,
we devoted considerable efforts in applying statistical models to solve some practical problems
from the neuroscience community.

1.2.1 Role of oscillations in modulating spike synchrony

Spike train is a sequence of action potentials in a continuous time period. When two spike trains
are observed simultaneously, we might observe synchronized spikes that fire within the same
temporal bin and we call it spike synchrony. The bin size is usually chosen as 5 ms, thus spike
synchrony reflects the temporal correlation between two neurons in a fine time scale. Figure 1.3
shows an example of spike synchrony between two neurons from monkey primary visual cortex.
Multielectrode recording significantly increases the number of neurons being simultaneously
recorded, thus the analysis of pairwise synchrony greatly benefits from this technique. The larger
population also provides the possibility of examining higher-order interactions among neurons.

Spike synchrony may occur by chance, based solely on the neurons’ fluctuating firing patterns,
or it may occur too frequently to be explicable by chance alone. When spike synchrony above
chances levels is present, it may be a signature of a neural computational mechanism essential for
some cognitive process, or it may be an irrelevant byproduct of neural computation. There are
many reports showing that excess spike synchrony is observed and may encode some information
related to some specific tasks [84, 94, 110, 115]. How spike synchrony involves in neural
computation is still an open question, and the understanding of what induces the spike synchrony
is an important step to answer this question.

A number of studies have suggested that synchronous firing of action potentials may indeed
occur in conjunction with oscillations in LFP [24, 38, 45, 89, 111]. This assumption roots from the
observation that spike timing of each spike could be modulated by the phase of the specific band
of LFP oscillations [41, 60, 120, 122, 129, 143]. When the spiking activity of two neurons are
temporally modulated, the chance of seeing synchronized spikes is influenced by the oscillation.
Thus the network-wide oscillation may modulate the spike synchrony through phase modulations.
However, a direct link between oscillatory activity and spike synchrony requires dissociating
the enhanced spike synchrony due to other measured or unmeasured sources. For example, two
neurons are more likely to be synchronized when they have similar receptive fields or tuning
curves [68, 70, 117].

To summarize, we need a method to quantitatively assess the contribution of oscillations to
spike synchrony after taking into account other factors. Such a tool allows future experiments
to measure oscillations and synchrony in a statistical framework in which their contributions to
cognitive and behavioral processes can be accurately quantified.
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Figure 1.3: Example of the spike synchrony between two neurons (Figure from [52]). The top
and bottom panels are raster plots of spike trains on 120 trials from two simultaneously-recorded
neurons, with synchronous spikes shown as circles. Here, the observed synchrony is defined using
time bins having 5 ms width. Spiking activity was recorded for 1 second from primary visual
cortex in response to a drifting sinusoidal grating, as reported in [68, 70].

1.2.2 Source extraction in calcium imaging data

The first step of analyzing calcium imaging data is to identify all individual neurons and demix
their temporal activity. Similar to the ‘spike sorting’ problem in extracellular voltage recordings,
this preprocessing step is critical for all downstream analysis in many experiments. The quality
of the source extraction can highly influence the interpretation of the data. The field has high
demands for computational tools to automatically or semi-automatically process their data with
high fidelity. For most experimental labs, calcium imaging data are generated over 100 GB per
day but these data could not be used immediately before extracting individual neurons from the
video data. The source extraction has been a critical bottleneck for many users.

For a very long time, the step of preprocessing calcium imaging data follows the following
procedure: (1) identify neuron locations manually or automatically; (2) estimate the temporal
activity of each neuron using the mean of the fluorescences over all pixels within that neuron;
(3) given the temporal trace of one neuron, which is a one-dimension vector, apply temporal
deconvolution algorithm to get denoised traces and sparse calcium events [130, 136, 137]. This
procedure is sub-optimal in several aspects. First of all, it does not take the advantage of
spatiotemporal structure in the data, and as a result, neuronal activity are not adequately separated
from their neighbors and the observation noises; Second, these procedure usually require too
much manual interventions and does not scale to the huge numbers of neurons that many groups
are currently recording.
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In recent years, the matrix factorization approach has been widely to used for simultaneously
segmenting cells and estimating their temporal activity. This approach stems from the observation
that spatiotemporal calcium activity can be approximated as product of two matrices: a spatial
matrix that encodes the location of each neuron and a temporal matrix that characterizes the
calcium concentration evolution for each neuron. It has several variations by including different
constraints to the model, such as Independent Component Analysis (PCA/ICA) [90], Nonnegative
Matrix Factorization (NMF) [86], sparse space-time deconvolution (SSTD) [1]) and Constrained
Nonnegative Matrix Factorization (CNMF) [105]). In particular, PCA/ICA seeks spatiotemporal
components that have reduced dependence. It is an inherently linear demixing method and can fail
in the case when no linear demixing matrix exists, which is the case when the neural components
exhibit significant spatial overlaps [105]. Nonlinear methods like NMF, SSTD and CNMF can deal
with overlapping neural sources more effectively, and often outperform PCA/ICA. Empirically,
these methods have shown great advantages in extracting individual neuron’s spatial shape and
temporal traces compared with the conventional methods.

We are especially interested in the source extraction from the microendoscope (see Section
1.1) because this new technique has revolutionized the neuroscience research due to its unique
capability of large-scale cellular recording in freely behaving animals. Now tens of labs have
started using microendoscope to answer scientific questions. However, the whole field is still
lack of the statistical tools for extracting individual neurons’ activity. Previous methods fail badly
because microendoscopic data suffer from high levels of background fluorescence, severe spatial
overlaps between neurons and low signal-to-noise ratios (SNRs).

To be more specific, applying those nonlinear matrix factorization methods to the microendo-
scopic data faces two practical problems: (1) the background in the data is not well modeled in
these methods because they all assume the background is weak and has a simple spatiotemporally
separable structure, but the real background (Figure 1.2B) in microendoscopic data is strong and
complicated. This model mismatch induces large residuals in the estimation of the background,
and the extracted neural activity is consequently contaminated; (2) the procedures of initializing
the model parameters, especially spatial and temporal components of neurons, in these models do
not work well because the weak neural signals are submerged in the noisy background. Since
fitting these methods are non-convex problems, without good initialization, it may lead to low-
quality results or require excessive time for convergent results. PCA/ICA method is currently the
most widely used algorithms in analyzing microendoscopic data. But as we mentioned previously,
this linear demixing method could not solve the overlapping issue efficiently. In practice, people
found that the PCA/ICA results are hard to interpret. For example, neurons’ spatial shapes are not
constrained and span over the whole viewing field. The extracted neuron traces are noisy and do
not follow the dynamics of the calcium indicators.

Therefore, the distinct features in microendoscopic data pose significant challenges in the task
of source extraction. We need a better model for the observed data and an efficient algorithm to
extract neural activity by fitting the model.
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1.3 Contributions and organization of the thesis
The goal of this thesis directly targets the two statistical challenges in Section 1.2. We now
outline the remainder of the thesis and state the main contributions we made in solving those two
challenging problems.

In Chapter 2, we first use point-process framework to establish the statistical link between
single neuron spiking activity and oscillation in the network, and then we provide a method for
establishing the statistical association of spike synchrony with an oscillatory local field potentials.
We demonstrate the value of this technique by numerical simulation together with application to
both in vitro and in vivo neural recordings.

In Chapter 3, we review several computational tools for dealing with two classic problems in
analyzing calcium imaging: spike inference and source extraction. The limitations and drawbacks
of existing methods are discussed as well. Particularly, we thoroughly explained why the current
methods fail in extracting individual neurons’ activity from microendoscopic data, which is our
main interest in this thesis.

In Chapter 4, we describe our new model for extracting neural activity from the microendo-
scopic data, which we call constrained nonnegative matrix factorization for microEndoscopic data
(CNMF-E), and develop a set of algorithm to fit the model. It overcomes the limitations of the
existing methods as discussed in Chapter 3. The key of our method is to model the background
with more realistic constraints . It allows the accurate separation of the background fluctuations
and neuronal signals. Another main contribution we made is developing a novel algorithm to
initialize the matrix factorization problem with the solutions that are close to the converged
solution. We thoroughly discuss the method in detail and validate the model in both simulated
and experimental data. We also compare CNMF-E with existing PCA/ICA analysis.

In Chapter 5, we focus on the spike inference from a single calcium trace, which is also a
subproblem in CNMF-E. We introduces a thresholding step in the deconvolution algorithm by
thresholding the minimum spike sizes. The resulting problem is non-convex, and so we lose
guarantees on finding global optima. We solve this problem based on the online active set method
for inferring spikes (OASIS) [36] and can quickly get good solutions. In both simulations and
experimental data, we showed that our modifications can improve the accuracy of the spike
inference.

In Chapter 6, we summarize the major work described in this dissertation and discuss potential
future work.
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Chapter 2

Statistical link between network oscillation
and neural synchrony

Pairs of active neurons frequently fire action potentials or “spikes" nearly synchronously (i.e.,
within 5 ms of each other). This spike synchrony may occur by chance, based solely on the
neurons’ fluctuating firing patterns, or it may occur too frequently to be explicable by chance
alone. When spike synchrony above chances levels is present, it may subserve computation for a
specific cognitive process, or it could be an irrelevant byproduct of such computation. Either way,
spike synchrony is a feature of neural data that should be explained. A point process regression
framework has been developed previously for this purpose, using generalized linear models
(GLMs). In this framework, the observed number of synchronous spikes is compared to the
number predicted by chance under varying assumptions about the factors that affect each of the
individual neuron’s firing-rate functions. An important possible source of spike synchrony is
network-wide oscillations, which may provide an essential mechanism of network information
flow. To establish the statistical link between spike synchrony and network-wide oscillations,
we have integrated oscillatory field potentials into our point process regression framework. We
first extended a previously-published model of spike-field association and showed that we could
recover phase relationships between oscillatory field potentials and firing rates. We then used this
new framework to demonstrate the statistical relationship between oscillatory field potentials and
spike synchrony in: 1) simulated neurons, 2) in vitro recordings of hippocampal CA1 pyramidal
cells, and 3) in vivo recordings of neocortical V4 neurons. Our results provide a rigorous method
for establishing a statistical link between network oscillations and neural synchrony.

2.1 Introduction

A leading theory of current neuroscience is that synchronous firing of neurons driven by network-
wide oscillations may encode and transmit information within and across brain regions [9, 21,
32, 39, 40, 93, 116, 118, 131]. Supporting this theory, a number of studies have suggested
that synchronous firing of action potentials or “spikes" may indeed occur in conjunction with
oscillations in local field potential (LFP) [24, 38, 45, 89, 111]. However, a missing link in
this theory has been the ability to dissociate enhanced spike synchrony due to network-wide
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oscillations from enhanced spike synchrony that may be due to other measured or unmeasured
sources. Recently, we developed a statistical framework in which the association between spike
synchrony and measured covariates may be assessed [68, 70]. Here we show how this approach
may be applied to describe the relationship between spike synchrony and oscillatory activity.

Using point process regression models, which take the form of generalized linear models
(GLMs), our statistical framework compares the observed number of synchronous spikes within
a small time window (here, 5 ms) to the number predicted by chance, under varying assump-
tions about the factors that affect the firing of each individual neuron [68, 70]. The number of
synchronous spikes predicted “by chance" refers here to the number predicted under conditional
independence after conditioning on the various measured factors that have been hypothesized to
affect individual-neuron spiking. For example, two neurons having fluctuating stimulus-driven
firing rates will produce some number of synchronous spikes even if they are acting indepen-
dently. The point process regression method fits fluctuating firing rate functions for each neuron
separately, then predicts the number of synchronous spikes under conditional independence (i.e.,
after conditioning on these fluctuating firing rates), and compares the prediction to the observed
number of synchronous spikes. In this way, a single factor may be either included or excluded
from the regression model in order to quantify that factor’s ability to explain the observed spike
synchrony.

In this chapter, we consider the contribution of network-wide oscillations by comparing
observed and predicted spike synchrony after conditioning on the phase of an LFP representing
a network-wide oscillation. Thus, we predict spike synchrony with and without inclusion of
LFP phase as an explanatory variable for each neuron separately. To demonstrate that increased
spike synchrony is associated with a network-wide oscillation, we would begin by establishing
that, without considering LFP phase, the observed number of synchronous spikes is greater
than the predicted number by a statistically significant magnitude, after conditioning on both
stimulus-driven firing rates and recent post-spike history effects. This would indicate a failure
of the phase-free model to accurately account for spike synchrony. We would then include the
LFP phase in the model, and if it succeeds in predicting spike synchrony, then we would conclude
that LFP phase can explain the remaining spike synchrony. Furthermore, we could estimate the
proportion of excess synchronous spikes accounted for by the LFP phase. The same procedure
could be used instead to demonstrate the role of network-wide oscillations in suppressing spike
synchrony.

In order to carry out this general procedure, we first need to model an individual neuron’s
spiking probability in terms of LFP phase. We follow [79], which recently described and assessed
point process regression models that include a sinusoidal phase term. We enhance their approach
by weakening the sinusoidal assumption, allowing the phase relationship to be nonparametric as in
[69], and we add to the favorable results of [79] by showing that, in estimating phase relationships,
the point process regression model can reduce bias and mean-squared error in comparison with
the more familiar spike phase histogram approach. Using this point process regression model,
we are then able to quantify the dependence of synchronous spiking on an oscillatory input. We
illustrate the method using simulated neurons, in vitro recordings of hippocampal CA1 pyramidal
cells, and in vivo recordings of neocortical V4 neurons from a behaving monkey.
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2.2 Materials and Methods
The methods used in this work target two main goals:
• At the individual neuron level, we want to quantitatively recover the phase relationship

between oscillatory field potentials and firing rates.
• For a pair of neurons, we need a statistical framework to test the contribution of oscillations

in modulating spike synchrony.
Our approaches are based on the point process framework and the details are described in the
following sections. The data used for validating our methodology are described as well.

2.2.1 Establish the statistical relationship between individual neuron’s spik-
ing activity and oscillation

The neural activity shows remarkable variability, which can be accounted for by factors such as
stimulus, neural connectivity, network states etc. [72, 101, 117]. However, spiking noise may
be large enough to confounded the relationship with aforementioned factors, therefore careful
statistical analysis can be critically important [52]. A statistical model of spike trains is able to
provide a simple and universal formula for the probability density of the spike train in terms of
its instantaneous firing rate function and specify the way of firing rate function depends on the
covariates [67]. In this work, we employ the general point process regression model to reveal
how network-wide oscillation modulates the spiking activity of individual neurons [67]. In the
following, we first explain the point process framework, and then we explore the generalized
linear models used for fitting the instantaneous firing rate in point processes given the spike train
data and related covariates.

Point Process framework

In a continuous time interval (0, T ], a neuron can fire a spike at any discrete time point ui. The
spike train is comprised of a series of spikes{ui} for 1 ≤ i ≤ N , where 0 ≤ u1 < · · · < uN ≤ T .
We consider the spike train as a point process and define its instantaneous firing rate as

λ(t|Ht, Xt) = lim
∆→0

P [N(t+ ∆)−N(t) = 1|Ht, Xt]

∆
. (2.1)

Here N(t) is the total number of spikes prior to time t, Ht is neuron’s own spiking history
prior to time t, and Xt includes all other relevant covariates. When ∆ is small, λ(t|Ht, Xt) ·∆
approximates to the firing probability in the time interval (t, t+ ∆). To quantify how different
factors contribute to firing rate we write λ(t|Ht, Xt) as a function of (Ht, Xt)

λ(t|Ht, Xt) = f(Ht, Xt). (2.2)

We can include different factors into the function f(Ht, Xt) and model the influence of all
variables on the firing probability. For example, the stimulus S(t) is included in Xt when neurons
show selectivity to stimuli. In this work, we are especially interested in phase modulation by
oscillatory signals, thus the phase of the specific oscillation Φ(t) is also included in Xt.
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We divide T into K equally spaced bins by taking the bin width ∆ = T/K. ∆ is small enough
that there is at most 1 spike in each bin, e.g. ∆ = 1 ms. Consequently, the point process of the
spike train may be considered to be approximately a binary time series [67]. Accordingly, the
probability of observing one spike in kth bin is

pk = λ(tk|Htk , Xtk) ·∆, k = 1, 2, · · · , K. (2.3)

The spike train {ui} is represented as a vector Y ∈ RK×1, where yk is the number of spikes in the
kth bin. From the Poisson approximation to the probability of binomial distribution for small pk,
we write the probability of observing yk given {Htk , Xtk} as

p(yk|Htk , Xtk) =
pykk
yk!

e−pk , (2.4)

where tk = k∆. Conditioned on the spiking history Ht and other covariates Xt, observing the
spike count yk in different frames are independent. Therefore, the likelihood of seeing the whole
spike train Y is

P (Y |Ht, Xt) =
K∏
k=1

p(yk|Htk , Xtk) =
K∏
k=1

pykk
yk!

e−pk . (2.5)

Equation (2.3) shows that pk is determined by the {Ht, Xt}. Thus the observation of spiking
activity Y is linked to the related covariates through the likelihood function P (Y |Ht, Xt). The
point process framework allows for the analysis of spiking activity by relating it with simultaneous
effects of multiple covariates and enables the assessment of their relative importance [133], e.g.,
in this work we are interested in the modulations from oscillations.

Generalized Linear Model

Using the point process framework, we can gain better understanding of the neural activity. The
instantaneous firing rate λ(t|Ht, Xt) quantitatively determines the effects of different covariates.
However, λ(t|Ht, Xt) is a very general function and we still need a tractable method to estimate
it. Here we choose to use the generalized linear model (GLM) to model λ(t|Ht, Xt) and then
estimate the parameters with maximum likelihood estimation (MLE).

GLM models log [λ (t|Ht, Xt)] as a linear sum of the specific functions that model the contri-
bution of each covariate independently. In our example, we are studying the contributions from
the stimulus, the auto-history and the oscillatory phase, hence we choose λ(t|Ht, Xt) to have the
following form

log [λ(t|Ht, Xt)] =f1(stimulus) + f2(auto-history) + f3(oscillation) (2.6)

Equation (2.6) models the influences of three covariates on spiking activity with three functions
{fi(·)}. However, the detailed form of each function is not specified. Actually, all these functions
have various formulations for tackling different problems [66, 72, 79, 101, 133]. Here, we describe
our formulations as follows, but it is worth to mention that the other formulations can be used as
well.
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The data we analyze usually have the structure of repeated trials and the stimulus S(t) is
the same for all trials. Instead of modeling f1(stimulus) as a function of S(t), we choose to
model it as f1(t), which is a function of time. This formulation avoids the problem of model
mismatch in accounting the stimulus effect. Hence the stimulus effect is trial-invariant but time-
varying function. f1(t) is closely associated with the peri-stimulus time histogram (PSTH), which
computes the mean of spike counts over multiple trials.

Following the model of the inhomogeneous Markov interval (IMI) processes [66], we assume
the auto-history effect is only dependent on the most recent spike t∗ prior to time t and model
f2(auto-history) as f2(t− t∗). Therefore, the effect of the spiking history is only determined by
the interval since the last spike.

As for the oscillation term f3(oscillation), we ignore the amplitude of the oscillation and only
include the phase of the oscillation Φt because the phase modulation to the spiking activity has
been widely reported [41, 60, 120, 122, 129, 143] and the amplitude is assumed to be stable during
the recording session. f3(φ) reveals the modulation from the oscillation and it is traditionally
approximated with the spike-phase histogram, which is the histogram of all instantaneous phases
when neuron fired spikes [60].

To summarize, our statistical model for the firing probability is

log(λ(t|Ht, Xt)) =f1(t) + f2(t− t∗) + f3(Φt) (2.7)
= log λ1(t) + log λ2(t− t∗) + log λ3(Φt). (2.8)

Here we replace fi(·) with log λi(·) because logi(·) can be easily interpreted: λ1(t) is the stimulus
effect and is comparable with PSTH; λ2(t− t∗) quantifies the post-spike effect. It is similar with,
but not equal to, the histogram of inter-spike intervals (ISIs); and λ3(φ) is related with the phase
modulation curve. Both λ(t|Ht, Xt) and λ1(t) takes the dimension of firing rates, while λ2(t− t∗)
and λ3(φ) are dimensionless because they only model the modulation effects.

Approximate Functions with Spline Basis

In Equation (2.8), we have three functions λ1(t), λ2(t − t∗) and λ3(Φt) to fit. It requires large
number of parameters to model these three functions. However, we can reduce the number of
parameters by assuming these functions are smooth. Then we use cubic splines to approximate
them,

log (λ(t|Ht, Xt)) =
∑
i

αi · ai(t) +
∑
j

βj · bj(t− t∗) +
∑
k

γk · rk(Φt) (2.9)

where {ai(t)} is a B-spline basis set for f1(t) within the range t ∈ (0, T ], {bj(t−u∗t )} is a B-spline
basis set for f2(t− t∗), and {rk(φ)} is the circular spline basis set for f3(Φt). By decomposing
each fi(·) into a linear combination of spline basis functions, we include the smoothness constraint
into the model simultaneously. This approach can significantly reduce the number of parameters
to fit and approximate the true function with high accuracy. The spline knots are simply selected
by letting them equally spaced, or we can also manually select knots to capture the fast changes
in PSTHs, histogram of ISIs and phase modulation curves. Another advanced method is using
Bayesian adaptive regression splines (BARS) to pick knots automatically [26, 138]. Once we
choose the proper knots, the spline basis sets {ai(t)}, {bj(t− t∗)} and {rk(Φt)} are determined.
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We used the open source software FDAfuns [43] to create each B-spline basis sets of {ai(t)} and
{bj(t− t∗)}. While for the circular spline, the basis functions are generated using the formula

rk(φ) =
∞∑
m=1

2

(2πm)4 cos (2πm (φ− φk)) . (2.10)

In numerical implementations, we usually cut the summation at m = 4 because the coefficient
2

(2πm)4
decreases quickly as m increases [69].

Model fitting

We model the contribution of each covariate to the firing probability with one function fi(·)
and approximate it with spline functions. By estimating the weights to all basis functions
Θ = {α, β, γ}, we are able to quantitatively determine the role of each covariate in modulating
the spiking activity.

Here we use the standard maximum likelihood estimation (MLE) to estimate the parameters
in Θ by maximizing the likelihood P (Y |Ht, Xt), or equivalently maximizing the log-likelihood

L = logP (Y |{Ht, Xt}) =
K∑
k=1

[yk · log pk − pk − log yk!] . (2.11)

We can neglect the constant term log yk! in the model fitting. Since the log-likelihood L in
Equation (2.11) is a concave function, we can use any convex optimization algorithm to optimize
Θ. Here we use a procedure of iteratively reweighted least squares (IRLS) algorithm used in
typical GLM implementations. For our problem, IRLS is equivalent to the New-Raphson method.
From Equations (2.3, 2.11 and 2.9), we can rewrite log-likelihood function in its matrix form

L =Y T · log µ− 11×K · µ (2.12)
log µ = [A · α +B · β +R · γ] ∆. (2.13)

Here we have three parameter sets to fit: {α, β, γ}. If we fit all three parameter sets at once, the
dimension space of this GLM model is relative large. To make model fitting efficient, we prefer to
fit each parameter set separately and iterate cyclically. For example, when we fit the parameters
{α}, we hold the parameters {β, γ} constant and rewrite Equation (2.13) as

log µ = V · θ + log µ0
t (2.14)

where θ ∈ {α, β, γ} and V is the corresponding covariate matrix. We fit {α, β, γ} in a sequence
and then iterate the loop until convergence. We also have to place the identifiability restrictions
on {β, γ} to get unique solutions,∫ T

0
exp

[∑
j bj(τ) · βj

]
dτ

T
=1 (2.15)∫ π

−π exp
[∑

k rk (Φ) · γk
]
dΦ

2π
=1. (2.16)
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These two constraints state that both the auto-histories and oscillations modulate the spiking
behavior without changing the mean firing probability. Besides maximizing the log-likelihood, we
also use an l2 penalty to avoid over-fitting. Now the problem becomes minimizing the objective
function

Q = −L+
λ

2
|Θ|2 = −Y T · (V ·Θ + log µ0

t ) + 11×K · exp(V ·Θ + log µ0
t ) +

λ

2
·ΘTΘ. (2.17)

Because the objective function Q is convex, we can iteratively maximize Θ by following the
updating rule

Θi+1 = Θi −H−1 · ∇Q (2.18)

where H is the Hessian of Q and∇Q is the gradient of the function, which are obtained as

∇Q =V T
[
exp(V ·Θ + log µ0

t )− Y
]

+ λΘ (2.19)

H =V T ·W · V + λ (2.20)

where W is a diagonal matrix

Wi,j =


exp (V ·Θ + log µ0

t )i if i = j

0 otherwise.
(2.21)

The algorithm is summarized as Algorithm 1.

Algorithm 1 IRLS method for finding argminΘQ(Θ)

Require: Y, V,Θ0, logµ0
t , λ

1: Q1 ← Q(Θ0)
2: while |Q1 −Q0| ≤ δ do
3: Q0 ← Q1

4: ∇Q← V T
[
exp(V ·Θ0 + logµ0

t )− Y
]

+ λΘ0

5: W ← diag
{

exp(V ·Θ0 + logµ0
t )
}

6: H ← V T ·W · V + λ
7: Θ1 ← Θ0 −H−1 · ∇Q
8: Q1 ← Q(Θ1)
9: Θ0 ← Θ1

10: return Θ∗ = Θ1

2.2.2 Assessing the contribution of oscillations in spike synchrony
We used the conditional dependency to test the role of one covariate in spike synchrony. The
key of this method is that two neurons are conditionally independent given all covariates that
affect their spiking activity. Observing excess or suppressed synchrony indicates the conditional
dependence between two neurons, i.e., some hidden factors that modulate neurons’ activity are
not well modeled. If we can show two neurons with reduced dependence after being conditioned
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on one covariate, then this covariate is very likely to modulate the spike synchrony. The reduction
of the conditional dependence can be used to assess the importance of this modulation.

In the following, we describe the way of evaluating the conditional dependence and the
hypothesis test for the conditional independence. Moreover, we propose a method for power
analysis in hypothesis test.

Evaluate conditional independence with spike synchrony

For a pair of neurons labeled as 1 and 2, their instantaneous firing rates are λ1(t|Ht, Xt) and
λ2(t|Ht, Xt) conditioned on all covariates. We define the joint firing probability of observing
synchronized spikes as

λ12(t|Ht, Xt) = λ1(t|Ht, Xt) · λ2(t|Ht, Xt) · ζ12. (2.22)

Here we used the coefficient ζ12 to evaluate the level of conditional dependence [68]. When these
two neurons are conditionally independent, ζ12 = 1. So given the spike train, we can quantify the
conditional dependence by estimating ζ12 and performs a hypothesis test

H0 : ζ12 = 1. (2.23)

We followed the same approaches proposed by Kass et.al. [68] to estimate ζ12 from the observed
data. We first fit the instantaneous firing rates of two neurons λ̂1(t|Ht, Xt) and λ̂2(t|Ht, Xt). Then
we predict the number of synchronized spikes under the assumption of conditional independence
by assuming ζ12 = 1, as in [68]

Npred =

∫
λ̂1(t|Ht, Xt) · λ̂2(t|Ht, Xt)dt. (2.24)

Given spike trains from these two neurons, the observed number of synchronized spikes Nobs can
be easily computed by counting. If a pair of spikes from two neurons has a time interval smaller
than 5 ms, then the pair is counted as a synchronized spike. According to Equation (2.22) the
synchrony coefficient ζ12 is estimated as the ratio of ζ̂ or log ζ̂ ,

ζ̂12 =
Nobs

Npred

. (2.25)

To summarize our method, we use ζ12 to directly link the spike synchrony between two neurons
with their conditional dependence. From the hypothesis test H0 : ζ12 = 1, we are able to check
whether two neurons are conditionally independent. In practice, we usually use the log of ζ12 and
the hypothesis test is replaced with

H0 : log ζ12 = 0 (2.26)

Bootstrap method for hypothesis test

To test H0, we propose to use a parametric bootstrap method with spike trains generated from the
fitted independence model

λ̂12(t|Ht, Xt) = λ̂1(t|Ht, Xt) · λ̂2(t|Ht, Xt), (2.27)
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which simply requires that we generate two spikes trains independently using λ̂1(t|Ht, Xt) and
λ̂2(t|Ht, Xt). We run simulations G times, and calculate the test statistics log ζ̂

(k)
12 given the kth

simulated data using the same procedure as computing log ζ̂12 from the observed data. When
log ζ̂12 > 0, the neuron pair is likely to be excessively synchronous and the p-value is computed as

p =
number of values k such that log ζ̂

(k)
12 ≥ log ζ̂12

G
. (2.28)

Similarly, we computed the p-value as

p =
number of values k such that log ζ̂

(k)
12 ≤ log ζ̂12

G
. (2.29)

when log ζ̂12 < 0. We summarize the whole procedure of testing conditional dependence between
two neurons in Algorithm 2.

Algorithm 2 Test the conditional independence between two neurons

Require: spike train data Y1 and Y2, phases of the oscillations Φ
(1)
t and Φ2

t , number of bootstrap G
1: λ̂1(t|Ht, Xt)← fit point process model given Y1 and Φ

(1)
t

2: λ̂2(t|Ht, Xt)← fit point process model given Y2 and Φ
(2)
t

3: Nobs ← the synchronized spikes between Y1 and Y2

4: Npred ←
∫
λ̂1(t|Ht, Xt) · λ̂2(t|Ht, Xt)dt

5: log ζ̂12 ← Nobs
Npred

6: n← 0
7: for k = 1 · · ·G do
8: Y

(k)
1 ← simulate spike train given λ̂1(t|Ht, Xt)

9: Y
(k)

2 ← simulate spike train given λ̂2(t|Ht, Xt)

10: λ̂
(k)
1 (t|Ht, Xt)← fit point process model given Y (k)

1 and Φ
(1)
t

11: λ̂
(k)
2 (t|Ht, Xt)← fit point process model given Y (k)

2 and Φ
(2)
t

12: N
(k)
obs ← the synchronized spikes between Y (k)

1 and Y (k)
2

13: N
(k)
pred ←

∫
λ̂1(t|Ht, Xt) · λ̂2(t|Ht, Xt)dt

14: log ζ̂
(k)
12 ← Nobs

Npred

15: if log ζ̂
(k)
12 ≥ log ζ̂12 > 0 then

16: n← n+ 1
17: else if log ζ̂

(k)
12 ≤ log ζ̂12 < 0 then

18: n← n+ 1

19: return p← n
G

Power analysis

Statistical power is the probability of correctly rejecting the null hypothesis when it is false. We
used the GLM model in Equation (2.30) to study power as a function of ζ and N (N being the
number of trials). We simulated N trials of spike train data for each of two neurons, independently,
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using Equation (2.30) with intensity functions λ(1)(t|Ht, Xt) for the first neuron and λ(2)(t|Ht, Xt)
for the second. The synchronous spikes in the resulting spike trains occur with probability
corresponding to ζ = 1 (independence). In order to obtain sets of spike trains for other values of ζ
we removed all the synchronous spikes from the N simulated spike trains and replaced them with
synchronous spikes generated from an intensity function ζ ·λ1(t|Ht, Xt)·λ2(t|Ht, Xt), i.e., for each
time bin of width δ, synchronous spikes occurred with probability ζ ·λ1(t|Ht, Xt) ·λ2(t|Ht, Xt)δ

2.
However, while this is the desired probability of synchronous spikes, it leaves the wrong marginal
probability of spiking for each neuron. To adjust these we consider the spike trains made up of
only the non-synchronous spikes, and we thin these with probabilities p(j)(t) given by

p(j)(t) =
λ(j) (t|Ht, Xt)− ζ · λ(1) (t|Ht, Xt) · λ(2) (t|Ht, Xt) δ

λ(j) (t|Ht, Xt)− λ(1) (t|Ht, Xt) · λ(2) (t|Ht, Xt) δ

for j = 1, 2. Note that when we multiply the numerator and denominator of this expression by
δ we have the ratio of the desired probability of a non-synchronous spike to the probability of a
non-synchronous spike under independence (the latter probability corresponding to the process
we are thinning). After obtaining all N trials we then fitted the model to these simulated spike
trains, found the estimate ζ̂, and applied the hypothesis test using the bootstrap method. This
procedure was carried out for each ζ and N in our simulation.

Because the simulation is computationally time-consuming, for the benefit of any future efforts
along these lines, we also derived a formula to approximate the number of trials needed to get 0.8
power. Suppose we haveN trials of duration T seconds each. The bin size for synchrony detection
is δ. We denote the instantaneous firing rates for two neurons on trial i by λ(1)

t,i and λ(2)
t,i . The

number of synchronized spikes within the tth bin is y(12)
t,i and y(12)

t,i ∼ Poisson
(
ζ · λ(1)

t,i λ
(2)
t,i · δ2

)
,

where ζ is the synchrony coefficient. The total number of observed synchronized spikes given λ(1)
t,i

and λ(2)
t,i is Nobs|λ(1)

t,i , λ
(2)
t,i =

∑N
i=1

∑T/δ
t=1 y

(12)
t,i . Then we compute ζ̂ conditioned on λ(1)

t,i and λ(2)
t,i ,

ζ̂|λ(1)
t,i , λ

(2)
t,i =

Nobs|λ(1)
t,i , λ

(2)
t,i

Npred

=

∑N
i=1

∑T/δ
t=1 y

(12)
t,i∑N

i=1

∑T/δ
t=1 λ

(1)
t,i λ

(2)
t,i · δ2

.

Since y(12)
t,i ∼ Poisson

(
ζ · λ(1)

t,i · λ(2)
t,i δ

2
)

, we can easily get

E
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ζ̂|λ(1)
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t,i

]
=
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[∑N
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∑T/δ
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(12)
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∑N
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=
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=
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.
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Assuming λ(1)
t,i and λ(2)

t,i are independent, we have

E

 N∑
i=1

T/δ∑
t=1

λ
(1)
t,i λ

(2)
t,i δ

2

 =
N∑
i=1

T/δ∑
t=1

E
[
λ

(1)
t,i

]
E
[
λ

(2)
t,i

]
δ2 = NTλ1λ2δ,

where λ1 and λ2 are the mean firing rates of two neurons. Then we have

E
[
ζ̂
]

=E
[
E
[
ζ̂|λ(1)

t,i , λ
(2)
t,i

]]
= ζ

V ar
(
ζ̂
)

=V ar
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≈ log ζ − 1
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(
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= log ζ +O

(
1

NTλ1λ2δζ
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(
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)
.

We next assume that the distribution of log ζ̂ is (approximately) normal, i.e., log ζ̂ ∈ N
(

log ζ, 1
ζ

1
NTλ1λ2δ

)
,

so that to get the power equal to 0.8 with type I error .05 we need

Φ

 x− log ζ√
1
ζ

1
NTλ1λ2δ

 =0.2

Φ

 x− log 1√
1

NTλ1λ2δ

 =0.95,

where x is the threshold of rejecting null hypothesis log ζ = 0. We can then solve for N as the
number of needed trials for detecting excess synchony:

N =

⌈
1

Tλ1λ2δ

(
Φ−1(0.95)− Φ−1(0.2)/

√
ζ

log ζ

)2
⌉
.

2.2.3 Data and preprocessing
Acute slice electrophysiology

Experiments were completed in compliance with the guidelines established by the Institutional
Animal Care and Use Committee of Carnegie Mellon University. Whole-cell patch clamp
recordings of hippocampal CA1 pyramidal cells were performed similar to previously described
methods [12]. Briefly, a postnatal day 16 Thy1-YFP-G mouse [33] was anesthetized with
isoflurane and decapitated into ice-cold oxygenated dissection solution containing (in mM ): 125
NaCl, 25 glucose, 2.5 KCl, 25 NaHCO3, 1.25 NaH2PO4, 3 MgCl2 and 1 CaCl2. Brains were
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rapidly isolated and sagittal slices (310 µm thick) containing the hippocampus were cut using
a vibratome (5000 mz-2; Campden, Lafayette, IN, USA). Slices recovered for ∼ 30 min in
∼ 37C oxygenated Ringer solution that was identical to the dissection solution except for lower
Mg2+ concentrations (1 mM MgCl2) and higher Ca2+ concentrations (2 mM CaCl2). Slices were
then stored in room temperature oxygenated Ringer solution until recording. During recording,
slices were continuously superfused with warmed oxygenated Ringer’s solution (temperature
measured in bath: 32oC). CA1 pyramidal cells were identified by morphology and laminar
position using infrared differential interference contrast microscopy. Whole-cell recordings were
made using electrodes (final electrode resistance: 5− 7 MΩ) filled with (in mM): 120 potassium
gluconate, 2 KCl, 10 Hepes, 10 sodium phosphocreatine, 4 Mg-ATP, 0.3 Na3GTP, 0.2 EGTA, 0.25
Alexa Fluor 594 (Life Technologies, Carlsbad, CA, USA) and 0.2% Neurobiotin (Vector Labs,
Burlingame, CA, USA). The liquid junction potential was 12 − 14 mV and was not corrected
for. Pipette capacitance was carefully neutralized and series resistance was compensated using
the MultiClamp Bridge Balance operation. Data were low-pass filtered at 4 kHz and digitized at
10 kHz using a MultiClamp 700A amplifier (Molecular Devices, Sunnyvale, CA, USA) and an
ITC-18 acquisition board (Instrutech, Mineola, NY, USA) controlled by custom software written
in Igor Pro (WaveMetrics, Lake Oswego, OR, USA). Cell morphology was reconstructed under a
100X oil-immersion objective and analyzed with Neurolucida (MicroBrightField, Inc., Williston,
VT, USA).

V4 neurons

Experimental procedures were approved by the Institutional Animal Care and Use Committee
of the University of Pittsburgh. A separate analysis of these data has been previously reported
([125, 126]).

Subjects: We implanted one, 100-electrode “Utah” array (Blackrock Microsystems) in right
V4 in one adult male rhesus macaque (Macaca mulatta). The basic surgical procedures have been
described previously [123], and were conducted in aseptic conditions under isoflurane anesthesia.
In addition to the microelectrode arrays, the animal was implanted with a titanium head post to
immobilize the head during experiments. We recorded neurons with receptive fields centered
∼ 4◦ from the fovea in the lower-left visual field.

Behavioral task: We trained the subject to maintain fixation on a 0.6◦ blue dot at the center
of a flat-screen cathode ray tube monitor positioned 36 cm from its eyes. The background of the
display was 50% gray. We measured the monitor luminance gamma functions using a photometer
and linearized the relationship between input voltage and output luminance using lookup tables.
The subject was trained to maintain fixation on the central dot for 2 seconds while no other visual
stimulus was presented, at which time the fixation point was moved 11.6◦ in a random direction
and the animal received a liquid reinforcement for making a saccade to the new location.

Microelectrode array recordings: Signals from the microelectrode arrays were band-pass
filtered (0.3 - 7500 Hz), digitized at 30 kHz and amplified by a Grapevine system (Ripple). Signals
crossing a threshold (periodically adjusted using a multiple of the root-mean-squared [RMS] noise
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for each channel) were stored for offline analysis. These waveform segments were sorted using an
automated clustering algorithm [119] followed by manual refinement using custom MATLAB
software [71] (available at http://www.smithlab.net/spikesort.html), taking into account the wave-
form shapes and interspike interval distributions. After sorting, we calculated the signal-to-noise
(SNR) ratio of each candidate unit as the ratio of the average waveform amplitude to the standard
deviation of the waveform noise [71]. Candidates with an SNR below 2.5 were discarded. Signals
were also filtered from 0.3−250 Hz with a digital Butterworth filter and sampled at 1 kHz to
provide LFPs.

LFP preprocessing: We assume that the oscillation modulating spiking activity is explicitly
within the surrounding LFP. The naive way of selecting LFP is using the one recorded at the same
electrode for each neuron. Since spike waveforms might contaminate the LFP spectrum [14, 107],
we computed LFP related to each neuron as the average of LFPs recorded on its neighboring
electrodes. Another way of avoiding spike bleed-through is to choose the LFP on any electrodes
adjacent to the neuron. In Fig. A.2AB, we show that LFPs selected by all three methods are very
similar. We also computed the spike-triggered average (STA) field potential using these three
different methods. Their shapes are almost the same (Fig. A.2 CD). We then bandpass filtered
the LFP using Chebyshev type II filter design with passband 4−25 Hz. After we got the filtered
oscillatory signal (Fig. 2.8BE), we applied the Hilbert transform to estimate the instantaneous
phase for further model fitting [60].

2.3 Results

2.3.1 Point process model for spike trains
We assume that the spiking of each neuron follows a point process and, following [67] (page
592), we write its conditional intensity function as λ(t|Ht, Xt), where Ht represents the spike
history (auto-history), and the covariate Xt represents other external factors. In this work, we let
Xt include the stimulus and the LFP phase, denoted by Xt = (St,Φt). We assume the conditional
intensity takes a multiplicative form, which becomes additive on the log scale:

log λ(t|Ht, Xt) =f1(St) + f2(Ht) + f3(Φt)

= log λ1(t) + log λ2(t− t∗) + log λ3(Φt) (2.30)

where t∗ is the last spike time preceding t.

We use splines to capture stimulus and auto-history effects, and circular splines to capture
LFP phase effects. Our point process model thus takes the form of a standard generalized linear
model (GLM). We also ensure identifiability by imposing a set of restrictions (Equations (2.15)
and (2.16)), which are implemented within a maximum likelihood estimation (MLE) algorithm.
The parametric bootstrap is used for acquiring 95% confidence bands.

To illustrate the ability of the MLE algorithm to recover the model in Equation (2.30), we
simulated 100 spike trains (Fig. 2.1A) with known functions λ1(t), λ2(t−t∗) and λ3(φ). Using the
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Figure 2.1: Simulated spike trains and results of model fitting. (A) Simulated spike trains in
response to a fluctuating stimulus and oscillatory drive. (B,C,D) Ground truth (red) and fitted
results (blue) for different terms in the firing-rate probability model. For each fitted result, we used
a parametric bootstrap to determine the 95% confidence band (cyan). (B) Effect of auto-history
λ2(t− t∗) on output firing rate. (C) Effect of stimulus λ1(t) on output firing rate. (D) Oscillatory
phase modulation curve λ3(φ) of firing rate.

simulated spike trains and phase of the oscillatory drive (representing a network-wide oscillation),
the MLE algorithm accurately fit the underlying spike history (Fig. 2.1B), stimulus (Fig. 2.1C)
and phase modulation (Fig. 2.1D) effects. Our approach can thus accurately recover the statistical
relationships between firing rate and various external factors.

The model in Equation (2.30) is a “full" model including stimulus, auto-history, and an
oscillatory factor. Importantly, we can remove selected factors from the full model (e.g., the LFP
phase modulation) and still fit the spike trains using the same procedure. Indeed, in the following
results, we also fit a simplified model lacking the oscillatory factor,

log λ(t|Ht, Xt) = log λ1(t) + log λ2(t− t∗). (2.31)
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2.3.2 Estimation of LFP phase modulation

Many researchers have reported that firing rate is modulated by the phase of specific network-wide
oscillations in different brain areas, such as monkey V1 [60], rat hippocampus [122], rat pre-
frontal cortex [120], mouse olfactory bulb[41], human pedunculopontine nucleus [129], lamprey
reticulospinal neuron [143], and so on. Almost all of these results [60, 120, 122, 129, 143] used
spike phase histograms to show how firing rate is modulated by the oscillation. The significance
of phase locking can be evaluated using Rayleigh’s Z statistic [120]. The model in Equation (2.30)
offers an alternative method of computing LFP phase modulation.
We simulated N spike trains and estimated LFP phase modulation using two different methods:
1) the classical spike phase histogram, and 2) by fitting λ3(φ) with the point process regression
of model (2.30). The true LFP phase modulation function is defined as λ3(φ). The discrepancy
between the estimated λ̂3(φ) and λ3(φ) is measured by the integrated squared error (ISE):

ISE =

∫ π

−π

[
λ̂3(φ)− λ3(φ)

]2

dφ (2.32)

Using each method, we can derive point-by-point standard errors and 95% confidence bands for
the LFP phase modulation. The mean integrated squared error (MISE) is then defined as:

MISE =
1

n

n∑
i=1

ISEi

=
1

n

n∑
i=1

∫ π

−π

[
λ̂i3(φ)− λ3(φ)

]2

dφ.

Where n is the total number of data sets and i is the index of ith data set. λ̂i3(φ) is computed given
N repeated trials of spike train in ith data set. We can decompose MISE in terms of the sample
mean λ̄3(φ) in the form of:∫ π

−π

{
1

n

n∑
i=1

[
λ̂i3(φ)− λ̄3(φ)

]2

+
[
λ̄3(φ)− λ3(φ)

]2}
dφ

which provides an estimator of variance plus bias squared.

The histogram method is highly dependent on the bin size for smoothing. We picked the
optimal bin size that minimize the MISE. Fig. 2.2C illustrates how the MISEs of the two methods
are dependent on number of trials N . Both methods achieve smaller MISEs when more data are
used, but the spike phase histogram method consistently exhibits a much larger MISE than the
GLM method. Indeed, the spike phase histogram MISE reaches an asymptote for high N that
is much larger than the MISE of the GLM method. In Fig. 2.2F we show the variance and bias
separately for the two methods. These results show that the spike phase histogram method retains
a large bias, explaining the MISE asymptote in Fig. 2.2C. The LFP phase modulation estimated
by the spike phase histogram method additionally exhibits significantly larger variance than the
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Figure 2.2: Estimation of LFP phase modulation by spike phase histogram and GLM meth-
ods. (A,B,D,E) Point process regression using the GLM (B,E) yields estimates of the LFP phase
modulation with comparable variance but substantially lower bias than estimates made using the
spike phase histogram method (A,D). (C) Comparison of the MISE between the estimated and
true LFP phase modulation using the spike phase histogram and GLM methods, across different
sample sizes. (F) Comparison of the variance and bias in the LFP phase modulation estimated by
the two methods.

GLM method for small sample sizes (< 17 trials).

Two additional comments can be made about the shown above (Fig. 2.2). First, when few
trials or samples are available, only the GLM method can provide an accurate estimation of the
LFP phase modulation of a neuron’s firing. Second, for moderately large samples, the error in the
estimation of the LFP phase modulation by the spike phase histogram method arises primarily
from estimation bias. We can explain this second point by considering the definitions of the two
methods. The term λ3(φ) describes how an oscillation changes the firing rate and is independent of
other factors (stimulus, auto-history, etc.). In contrast, the spike phase histogram method provides
the distribution of phases when a spike occurs, denoted as Pdata(φ). Since the generation of a
spike train is influenced by factors other than the oscillation, especially for a non-Poisson process,
Pdata(φ) is conceptually different than λ3(φ). Below, we explore this conceptual difference
further.
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Bias in the estimation of the LFP phase modulation using the spike phase histogram method

To simplify our GLM, let us assume that the stimulus effect is a constant λ1(t) = C and f is the
frequency of the oscillation. Now the firing probability model is:

λ(t|Ht, φt) = C · λ2(t− t∗) · λ3(φt).

Suppose we observe a spike train {uk}. The spike phase histogram method provides an estimate
of the distribution of {φuk},

Pdata(φ) =Pdata(φuk = φ)

=

∫
Pdata(φuk−1

= φ0) · Pdata(φuk = φ|φuk−1
= φ0)dφ0

=

∫
Pdata(φ0) · Pdata(φuk = φ|φuk−1

= φ0)dφ0 (2.33)

where Pdata(φuk = φ|φuk−1
= φ0) is the conditional probability of φuk = φ given the phase of its

previous spike is φ0. This conditional probability can be computed using the distribution of the
waiting times [67] (page 602),

f(t|Ht, φt) = λ(t|Ht, φt) exp

{
−
∫ t

uk−1

λ(u|Hu, φu)du

}
.

If we have a spike at φ following a spike at φ0, then the waiting time should be within the set
W = {∆u : ∆u = φ−φ0

w
+ k

f
,∆u > 0, k = 0, 1, 2, · · · , w = 2πf}. Thus

Pdata(φuk = φ|φuk−1
= φ0) =

1

w

∑
φt=φ,t>uk−1

f(t|Ht, φt)

=
1

w

∑
∆u∈W

f(t = uk−1 + ∆u|Ht, φt) (2.34)

Equation (2.33) shows that Pdata(φ) is an eigenfunction of Pdata(φuk = φ|φuk−1
= φuk−1

). This
is very hard to compute analytically, but we compute it numerically instead. When we discretize
φ and write Pdata(φ) as a vector P , Equation (2.33) can be rewritten as

P = A · P (2.35)

where P ∈ Rm×1, m is the number of bins to discretize φ ∈ [−π, π). and A ∈ Rm×m is the
transition probability

Aij = Pdata(φuk = Pi|φuk−1
= Pj). (2.36)

Thus P is the eigenvector of A and its related eigenvalue is 1. Numerical tools were used to
compute P , which is the discrete version of Pdata(φ). In this way we can theoretically determine
the LFP phase modulation given by the spike phase histogram. This theoretical prediction
accurately predicts the LFP phase modulation estimated from simulated spike trains using the
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Figure 2.3: LFP phase modulation estimated by the spike phase histogram method is inher-
ently biased for non-Poisson firing. (A,D) Auto-history effects for Poisson (A) and non-Poisson
(D) firing. (B,C,E,F) Theoretical and simulated estimations of the LFP phase modulation for
Poisson (B,C) and non-Poisson (E,F) firing at low (B,E) and high (C,F) mean firing rates. Note
that, for non-Poisson firing, the spike phase histogram estimation of the LFP phase modulation
introduces a firing rate-dependent bias.

spike phase histogram method (Fig. 2.3BCEF).

Using this theoretical prediction, we examined how bias emerges in spike phase histogram
estimates of the LFP modulation. We considered Poisson and non-Poisson firing across different
mean firing rates. When a neuron’s firing approximates a Poisson process (i.e., λ2(t) = 1) (Fig.
2.3A), the results of the spike phase histogram match λ3(φ) independent of the mean firing rate
C (Fig. 2.3B,C). Indeed, it can be shown that Pdata(φ) = λ3(φ)

2π
is a solution to Equation (2.33).

Specifically, Equation (2.34) inserted into Equation (2.33) with some basic substitutions yields:

2πPdata(φ) =λ3(φ)

∫ ∞
0

C · λ2(t) · 2πPdata(φ− 2πft)

· exp

{
−
∫ t

0

C · λ2(t− u) · λ3(φ− 2πfu)du

}
dt

(2.37)

When λ2(t) = 1, we replace Pdata(φ) with λ3(φ)
2π

in Equation (2.37). Then the integrand in the

right side is C · λ3(φ− 2πft) · exp
{
−
∫ t

0
C · λ3(φ− 2πfu)du

}
, which is a probability density

function and hence has the integral of 1, making the right side λ3(φ). Thus, λ3(φ) is one solution
of Equation (2.33). These results show that the spike phase histogram estimate of the LFP phase
modulation is accurate for Poisson firing. In contrast, for non-Poisson firing (in which the neuron’s
firing rate is influenced by its firing history) λ2(t) is no longer a constant (Fig. 2.3D). As a result,
estimates of the LFP phase modulation curve diverge from λ3(φ) in a firing rate-dependent manner
(Fig. 2.3E,F). Thus, the GLM method for estimating a neuron’s LFP phase modulation is more
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accurate than the spike phase histogram method for smaller sample sizes (Fig. 2.2) and for
non-Poisson firing (Fig. 2.3).

2.3.3 Comparison with Spike Field Coherence
Spike field coherence (SFC) is commonly used to report interactions between spikes and specific
oscillations in LFP. Lepage et al. [78, 79] showed that SFC is dependent on the expected rate of
spiking, and they proposed to use intensity field coherence, which is a rate-independent measure,
for inference of spike field synchrony. They also used GLMs to estimate spike field association
[79]. In their work, they assumed that the LFP phase modulation is a sinusoidal function with
period of 2π, which might not be accurate enough in some cases [41, 120]. In our model, to
approximate this periodic function we use circular splines [69], which remain easy to fit while
being more flexible than a sinusoidal function.

Figure 2.4: LFP phase modulation estimated by the GLM method does not depend on firing
rate. (A,C), In three simulations, we keep λ3(φ) = 1 + 0.4 cos(φ+ π) while varying mean firing
rates. The SFC method (A) reports three distinct results, while the GLM method (C) showed
that the LFP phase modulations are the same. (B, D), Different combinations of firing rate and
LFP phase modulation λ3(φ) = 1 + a · cos(φ+ π) can yield the same SFC (B), while the GLM
method can distinguish the differences in LFP phase modulation (D). For each parameter set
(a,firing rate), we had 200 runs. The shaded area is the 95% confidence band.

Here, we provide two examples showing that when estimating spike field relationships, the
SFC can be misleading. First, we simulated spike trains with three different mean firing rates,
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then computed SFCs with GNU software Chronux [87]. Fig. 2.4A shows that the three SFCs are
different even though they were generated by the same λ3(φ) = 1 + 0.4 cos(φ+ π). On the other
hand, when we use our model to fit the LFP phase modulation functions, Fig. 2.4C shows that
there is no difference in phase modulation strength in these three cases. Second, we show that two
neurons exhibiting different LFP phase modulations can have the same SFC (Fig. 2.4B) because
they have different firing rates. Again, we can use our model to distinguish these two conditions
by their respective LFP phase modulation curves (Fig. 2.4D).

2.3.4 Synchrony and Oscillatory Phase

We now use point process regression of our GLMs (2.30) and (2.31) to analyze the contribution of
network-wide oscillations to the synchronous spiking of two neurons. We first present numerical
simulation results where ground truth is known and then apply the same technique to experimental
neural recordings.

Simulation results

In the Introduction, we described how GLMs can be used to assess the role of some potentially
relevant factors in modulating spike synchrony. We designed a scenario in which we tested the
contribution of a network-wide oscillation (i.e., an oscillatory LFP) to the number of synchronous
spikes observed. This scenario is illustrated schematically in Fig. 2.5 for two neurons. The stimu-
lus effects (i.e., the tuning) of the two neurons are different, and both neurons’ spiking activities
are influenced by their own recent spike histories. Critically, these two neurons also receive a
common oscillatory signal with phase Φt that modulates their firing rate, but their individual
phase modulation curves are shifted (i.e., they have different preferred phases Φpref ). Because
the preferred phase modulates the average timing of each spike in one oscillatory cycle (in this
example, ∼10 ms), differences in preferred phase lead to a relative shift in spike timing between
the two neurons. The larger this shift, the less synchronized are their spikes. As a result, the
observed number of synchronized spikes is dependent on the difference of preferred phase ∆Φpref .

This simple scenario was used to demonstrate the effectiveness of the procedure, in principle,
and to investigate its statistical power. The assumption that two neurons have different phase
modulation curves has been reported both experimentally [60, 125] and theoretically [109]. Jia et
al. [60] have shown that neurons in area V1 have various preferred phases and the distribution
of the preferred phase can change in response to different stimuli. Richardson [109] computed
analytically the modulation of the oscillatory signal for an exponential integrated-and-fire neuron.
He showed that the modulation is influenced by biophysical properties of the neuron. He also
showed that there is a phase lag between the peak firing rate and the peak of the oscillatory
signal, which corresponds to the preferred phase in λ3(φ), and this phase lag is dependent on
properties of the neuron. Usually the oscillations near two neurons in a small area are very
similar, thus the assumption that two neurons receive a common modulation is reasonable. For
two neurons located far apart (e.g., two brain areas), this assumption should be useful as long as
two oscillations are coherent. This more general case is relevant to hypotheses about mechanisms
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of neural communication [39, 60].

Figure 2.5: Schematic illustration of the contribution of a network-wide oscillation to syn-
chronous spiking between two neurons. The firing probability of each neuron is influenced by
three factors: stimulus, auto-history and an oscillatory drive. The oscillatory drive is shared by
the two neurons, but each neuron exhibits a unique phase modulation curve. Spike trains of the
two neurons are observed and synchronized spikes are counted (red circles).

To demonstrate directly the relationship between an oscillatory LFP and spike synchrony, we
simulated spike trains from two neurons, then fitted models (2.30) and (2.31). For each model we
used the estimator

ζ̂12 =
Observed number of synchronized spikes
Predicted number of synchronized spikes

of its theoretical counterpart ζ12 defined in [70]. Under conditional independence, we have
log ζ12 = 0, while conditional dependence yields either excess synchrony (log ζ12 > 0) or sup-
pressed synchrony (log ζ12 < 0). We tested H0 : log ζ12 = 0 using a parametric bootstrap (see
Section 2.2.2). Results are shown in Fig. 2.6. Using model (2.31) (i.e., without the oscillatory
factor) we found that log ζ̂12 is dependent on ∆Φpref . In other words, the relative phase preference
of the two neurons changed the observed number of synchronized spikes when the contribution of
the oscillatory LFP is disregarded. In contrast, when we included the oscillatory factor according
to Equation (2.30), we found log ζ̂12 to be close to 0 and independent of ∆Φpref . Thus, including
the oscillatory factor in our model removes the apparent conditional dependence of the predicted
spike synchrony on the relative phase preference of the two neurons, and we can conclude that
spike synchrony is associated with the oscillatory phase.

We picked two different values of ∆Φpref (purple and cyan arrows in the Fig. 2.6A) to
demonstrate the described hypothesis test. In the first example, we obtained evidence against the
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null hypothesis of log ζ12 = 0 using the simplified model (Fig. 2.6B). That is, there is evidence
that the two neurons are not conditionally independent given only the stimulus effects and spike
history effects: they exhibit significant levels of excess spike synchrony. Fig. 2.6C shows that
including the oscillatory factor accounts for this excess synchrony. In other words, consideration
of the oscillatory LFP can explain the higher than expected levels of spike synchrony predicted by
the stimulus and spike history effects alone. In turn, lower than expected levels of spike synchrony
predicted by the stimulus and spike history effects alone can be explained by consideration of the
oscillatory LFP in the second example, in which the oscillatory LFP suppresses spike synchrony
(Fig. 2.6D,E).

Figure 2.6: Network-wide oscillations can enhance or suppress the predicted levels of spike
synchrony. (A) Dependence of log ζ̂12 on the difference in preferred phases between two neurons,
as computed using models with and without an oscillatory factor. Purple and cyan arrows indicate
two different ∆(φpref )s. (B) Bootstrap-generated distribution of log ζ̂12 values under the null
hypothesis of log ζ12 = 0. Arrowhead shows the value of log ζ̂12 predicted by the simplified
model. Thus, a significantly larger number of synchronous spikes is observed than predicted
by the model lacking an oscillatory factor (log(ζ̂12) = 0.057 ± 0.013, p value< 0.0025). (C)
Including an oscillatory factor in the model yields an accurate prediction of the observed number
of synchronous spikes (log(ζ̂12) = −0.006 ± 0.014, p value= 0.6775). (D, E) Same as (B,C)
for different preferred phases that lead to significantly lower synchrony than predicted when an
oscillatory factor is not included in the model (D: log(ζ̂12) = −0.082± 0.013, p value< 0.0025;
E: log(ζ̂12) = −0.009 ± 0.015, p value= 0.2700). (F) Dependence of the power on number of
trials and ζ. The mean firing rate is 25 Hz. The red and green lines indicate choices of ζ and N
for which the power equals 0.8, based on simulation and theory respectively. (G) Same as (F), but
the mean firing rate is 10 Hz.

We also investigated the amount of data needed to reliably detect excess synchrony by
generating spike trains with varying numbers of trials, varying values ζ, and two levels of firing
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rate, and then computing the probability of rejecting the null hypothesis (i.e., the statistical power).
Fig. 2.6 F displays the power when we used the same simulation parameters (apart from ζ and
number of trials) as in Fig. 2.6 A-E. A standard target for power in the statistics literature is 0.8,
and we have indicated this level of power with a red line in Fig. 2.6 F. Thus, to attain this high
level of power when ζ = 1.125 we need 70 trials, but when ζ = 1.4 we need only 5 trials. This
number is also highly dependent on the mean firing rate. When we change the firing rate 25 Hz to
10 Hz, we need much more data to detect excess synchrony (Fig. 2.6G). The simulation procedure
is computationally slow, but a fast approximation is given by

N =

⌈
1

Tλ1λ2δ

(
Φ−1(0.95)− Φ−1(0.2)/

√
ζ

log ζ

)2
⌉

where T is the length of one trial, λ1 and λ2 are mean firing rates of two neurons, δ is the bin
size for detecting synchronized spikes. The approximate power from this formula is given by the
green curves in Fig. 2.6F,G.

2.3.5 Applications to Experimental Neural Recordings
To further demonstrate the value of our approach, we next examined the relationship between
an oscillatory signal and spike synchrony in experimental neural recordings from two distinct
preparations: hippocampal CA1 pyramidal cells recorded in vitro and V4 neurons recorded in
vivo.

Hippocampal CA1 pyramidal cells

We first designed an experiment to resemble the scenario proposed in Fig. 2.5 using whole-cell
patch clamp recordings in a controllable acute slice preparation. In this experiment, we recorded
the spiking response of, and spike synchrony between, two CA1 pyramidal cells (Fig. 2.7A,B) in
response to an arbitrary stimulus with and without a shared oscillatory signal. Critically, to directly
test the relationship between the oscillatory signal and the resulting spike synchrony, we limited
potential confounding influences on spike synchrony (e.g., common neuromodulatory influences,
coupling between two neurons) by recording these neurons sequentially in two separate slices.
Each neuron was injected with 100 trials of a 2 s-long 150 pA step current overlaid with a slow
sinusoidal current (2 Hz frequency, 25 pA amplitude) and white noise (σ = 10 pA) to evoke
physiological spike trains with low trial-to-trial reliability. The slow 2 Hz component is the same
for all trials, and it generates visible time-varying fluctuations that are visible in the raster plots in
Fig 2.7A,B, which lead to a time-varying PSTH and get captured by the λ1(t) term in Equation
(2.30). On 50 random trials (“Exp. 2"), an additional sinusoidal current (40 Hz frequency, 15 pA
amplitude) with random initial phase (but identical between the two neurons) was also injected to
simulate a gamma frequency network-wide oscillation. The 40 Hz component is not consistent
over trials due to the varying initial phases (Fig. A.1A), and its effect is, therefore, not captured
by λ1(t). Instead, this 40 Hz modulatory effect gets captured through the term λ3(Φt) in Equation
(2.30).

Thus, in the 50 trials without the simulated network-wide oscillation (“Exp. 1"), each neuron
fired according to the its own stimulus and auto-history effects, generating a certain level of
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largely spontaneous spike synchrony reflecting the neurons’ fluctuating stimulus-driven firing
rates. Using our simplified model (Equation (2.31)), we fit the spike trains from “Exp. 1" and

Figure 2.7: Shared oscillations contribute to spike synchrony between hippocampal CA1
pyramidal cells in vitro. (A, B) Reconstructed morphologies (left) and raster plots of spike
trains (right) evoked in two CA1 pyramidal cells by an arbitrary stimulus waveform with a shared
oscillatory signal (“Exp. 2"). Red circles show synchronized spikes between the two neurons.
(C) Estimated phase modulation of the two recorded neurons in response to a shared oscillatory
signal simulating a network-wide oscillation. (D) In the absence of a shared oscillatory signal, the
simplified model (stimulus, or PSTH effects [P] + spike or auto-history effects [H]) lacking an
oscillatory factor accurately predicts the observed number of synchronous spikes between the two
neurons. (E,F) In the presence of a shared oscillatory signal, the simplified model (P+H) fails to
explain the observed number of synchronous spikes (E) while the full model (stimulus, or PSTH
effects [P] + spike or auto-history effects [H] + an oscillatory factor [O]) containing an oscillatory
factor accurately predicts the observed number of synchronous spikes (F).

predicted the number of synchronous spikes. As expected, the observed and predicted number of
synchronous spikes closely matched (Fig. 2.7D), consistent with the two neurons being condition-
ally independent given the arbitrary stimulus waveform and their own recent spiking histories.
That is, no other factors were necessary to explain the observed number of synchronous spikes.
However, using our simplified model to fit the spike trains from “Exp. 2" (Fig. 2.7A,B), we
observed a significantly greater number of synchronous spikes than could be explained by the
stimulus and the neurons’ spike histories alone (Fig. 2.7E). This conditional dependence between
the two neurons arose because the firing of the two neurons was modulated by the simulated
network-wide oscillation (Fig. 2.7C). Indeed, using our full model (Equation (2.30)) to fit the
spike trains from “Exp. 2" (Fig. A.1 B,C,D), the number of synchronous spikes observed closely
matched the number of synchronous spikes predicted (Fig. 2.7F).

This experiment demonstrates that when two experimentally recorded neurons are not modu-
lated by a shared oscillatory signal, then the simplified model (Equation 2.31) can account for the
observed number of synchronous spikes. However, when two neurons are modulated by a shared
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oscillatory signal (such as an oscillatory LFP, reflecting a network-wide oscillation), then a model
including this oscillatory factor (Equation 2.30) is necessary to account for the observed number
of synchronous spikes. In contrast with our simulation above, the firing of these CA1 neurons is
not described by the GLM in Equation (2.30) exactly. This model mismatch did not restrict the
application of our method.

V4 neurons

In this experiment, spike trains from a pair of neural units in V4 were simultaneously recorded
(Fig. 2.8A,D) with a multi-electrode array during a fixation task in which spontaneous activity
was measured. These data have been analyzed in another paper [125], where they examined the
relationship between individual neuron’s activity and large-scale network state. Here we want
to test whether network-wide oscillation contributes to the excess pairwise synchrony. For each
neuron, we define its surrounding LFP as the average of LFPs recorded at its adjacent electrodes.
The spike-triggered average of LFP for two neurons showed that two neurons are phase locked to
their surrounding field potential (Fig. A.2CD and [125]). We also found that the LFP showed a
prominent slow oscillation (Fig. 2.8B,E). LFP is thought to be the integrated effect of synaptic
and spiking activity [14] near the recording sites. We filtered the LFP on each electrode within
the band 4− 25 Hz and extracted its phase to fit our full model (Equation (2.30)). Using the same
procedure as in the case of the hippocampal CA1 pyramidal cells, we found that a significantly
larger number of synchronous spikes were observed than could be explained by the simplified
model (Fig. 2.8C), while the full model fully explained the spike synchronization observed
between the two neurons (Fig. 2.8F). These results show that for these two neurons in vivo, spike
synchronization is associated with the network-wide oscillation.

2.4 Discussion
In this paper, we have shown how the GLM methods of [68, 70, 78, 79] may be combined in order
to assess the potential contribution of network-wide oscillations to neural synchrony. The novel
approach presented in this study complements existing alternatives [48, 49, 103] by: introducing
models of single neuron firing based on stimulus-related fluctuations as well as a network-wide
oscillatory signal; using those models to make predictions about spike synchronization; and quan-
tifying departures from those predictions in the observed data. We demonstrated the advantages
of this novel approach using both neural simulations and experimental neural recordings in vitro
and in vivo.

In our analyses, we have utilized a repeated-trial structure, which allowed us to estimate
the stimulus effects as a function of time, λ1(t). We note, however, that the same approach
could be applied using a linear response filter [72, 100, 101] or analogous nonlinear methods.
Previous work has shown the close relationship between GLM neurons and integrate-and-fire
neurons [76, 95, 98]. We only considered one band of oscillation in simulation and experimental
examples, but it is straightforward to extend this method to the case of multiple oscillations by
including additional terms in the model of Equation (2.30). Sometimes the firing probability may
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Figure 2.8: Shared oscillations contribute to spike synchrony between V4 neurons in vivo.
(A,D) Raster plot of spike trains from two neurons recorded simultaneously. Red circles show
synchronized spikes between the two neurons. (B,E) Raw (blue) and 4 − 25 Hz filtered (red)
surrounding LFP related with each neuron for a single trial. (C,F) The simplified model failed
to explain the observed number of synchronous spikes (C), while the full model containing an
oscillatory factor fully accounts for the observed number of synchronous spikes.

be related to the amplitude of the oscillation At, or the magnitude of an LFP Bt (cf. [79]). If
so, we can change f3(Φt) to f3(At) or f3(Bt). Overall, the key step of this method is to build
an approximately correct GLM. The specific form of GLM depends on the data and we can
check model performance using time rescaling [11]. We have also included a simulation to show
that even when the model is mis-specified, and therefore less sensitive, it can detect spike-LFP
relationships (Fig. A.3). We have also defined spike synchrony to involve the firing of two neurons
within a few milliseconds of each other (i.e., with zero lag on average). In other contexts, however,
interest may focus on two neurons firing in procession with a consistent positive or negative lag of
many milliseconds. Our approach could be easily applied to such lagged-synchrony cases as well.

In this paper, we consider only pairwise synchrony. By combining our approach with the
procedure proposed by [70], we can also test the role of oscillations in three-way synchrony.
Briefly, we fit all single neuron firing probabilities and then compute the pairwise synchrony coef-
ficients ζ̂ij; we can then use an iterative algorithm to estimate the three-way synchrony coefficient
ζ̂ijk, and to test the null hypothesis of two-way interactions, instead of three-way interaction. In
principle the same steps may be followed for more than three neurons, but simulations in [70]
show that very large data sets would be needed in order to demonstrate higher-order interactions
convincingly in the absence of stronger assumptions about the nature of those interactions.

It has been argued that synchronous firing resulting from network-wide oscillations could
provide an essential mechanism of network information flow, and further serve as a a marker
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distinguishing normal from diseased states (e.g., see [8, 13, 47, 63, 106, 121, 134, 140]). On the
other hand, there has been considerable debate on this subject (see [127] and references therein).
We remain agnostic on this, and importantly, the value of our methods does not depend on the
ultimate outcome of this debate. Instead, we view synchrony, more descriptively, as a feature of
spike train data that needs to be explained. To this end, the framework that we have introduced
here is useful for quantifying the extent to which oscillations, as a feature of neural activity, are
associated with synchronous spiking among neurons. Armed with this method, future experiments
can measure oscillations and synchrony in a statistical framework in which their contributions to
cognitive and behavioral processes can be accurately quantified.
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Chapter 3

Background on calcium imaging data
analysis

Calcium imaging measures the population neurons’ activity simultaneously over the field of view,
which gives a very informative but complex dataset. To draw neuroscientific conclusions, these
data should be transformed from pixel/voxel space to neural space, i.e., detecting all individual
neurons and extracting/demixing each neuron’s fluorescence signal. In addition, it is important to
infer the spiking activity from the raw fluorescence traces. Since these analysis represent the first
stage of f data processing in many experiments, the quality of the results in this step will affect all
downstream analysis. In this chapter, we review several widely used methods addressing these
two problems: source extraction and spike inference. Moreover, I will discuss their applications
and limitations in processing microendoscopic data.

3.1 Spike inference from calcium imaging data

Calcium imaging data consist of time-varying fluorescence intensities, while the desired signals
for neuroscientists in most cases are spiking activity of the observable neurons. Hence it is
important to infer the spiking activity from the fluorescence trace based on the calcium dynamics.
Even in cases where we do not require the exact spiking activity, the intermediate results of the
spike inference provide denoised calcium traces, which are important for demixing fluorescence
signals of overlapped neurons [105].

This nontrivial problem has been addressed with several different approaches, including
template matching [46] and linear deconvolution [55, 141], which are outperformed by sparse non-
negative deconvolution (FOOPSI, [137]) under a simple generative model (linear deconvolution
from noise). FOOPSI requires parameter tuning to achieve a trade-off between the sparsity and
the residual errors. A noise-constrained version of FOOPSI was proposed to avoid choosing
this parameter directly [105]. Based on the same model, some fully Bayesian methods provide
some further improvements [104, 136], but they are more computationally expensive. Supervised
methods trained on simultaneously-recorded electrophysiological and imaging data have also
recently achieved state of the art results, but are more black-box in nature [130].

In this section, we will review the generative linear model first, and then we will present
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Figure 3.1: Generative autoregessive model for calcium dynamics. Spike train s gets filtered to
produce calcium trace c; here we used p = 2 as order of the AR process. Added noise yields the
observed fluorescence y. (Figure is from [36]).

two deconvolution methods for inferring spiking activity based on this model: FOOPSI and
constrained FOOPSI. At the end, we will discuss some problems related to these two methods we
found in real data analysis. Our work toward solving the problems are presented in Chapter 5.

3.1.1 Model for calcium dynamics and spike inference through deconvolu-
tion

We assume we observe the fluorescence signal for T timesteps, and denote by st the number of
spikes that the neuron fired at the t-th timestep, t = 1, ..., T , cf. Figure 3.1. Following [105, 137],
the calcium concentration dynamics c is approximated using a stable autoregressive process of
order p (AR(p)) where p is a small positive integer, usually p = 1 or 2,

ct =

p∑
i=1

γict−i + st. (3.1)

This model can be derived from the simplified biophysical model of the dynamics of calcium
indicators [137]. We can also write (3.1) in its matrix form s = Gc, where the lower triangular
matrix G is defined as:

G =


1 0 0 . . . 0
−γ1 1 0 . . . 0
−γ2 −γ1 1 . . . 0

... . . . . . . . . . ...
0 . . . −γ2 −γ1 1

. (3.2)

The matrix G is banded with bandwidth p for an AR(p) process.
The observed fluorescence y ∈ RT is related to the calcium concentration as [104, 136, 137]:

yt = a ct + b+ εt, εt ∼ N (0, σ2) (3.3)

where a is a non-negative scalar and the noise is assumed to be i.i.d. zero mean Gaussian with
variance σ2. For the remainder we assume a = 1 without loss of generality. The constant baseline
b is assumed to be 0 for simplicity and this assumption can be relaxed easily. The parameters γi
and σ can be estimated from the autocovariance function and the power spectral density (PSD) of
y respectively [105].
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Figure 3.2: The inferred spiking activity from constrained FOOPSI contains false positives. (A)
the deconvolution results. Top: the raw fluorescence (yellow), true calcium concentration c (red)
and the denoised fluorescence trace (blue); Bottom: the true spiking signal s (red) and the inferred
spiking activity (blue). (B) The inferred spiking signals near the true spike times (lag=0 ms). The
red trace is the mean of all cyan traces (n=29).

The goal of calcium deconvolution is to extract an estimate of the neural activity s from
the vector of observations y. As discussed in [105, 137], this leads to a sparse non-negative
deconvolution problem (FOOPSI) for estimating the calcium concentration c, which takes the
form of non-negative LASSO problem:

minimize
c

1
2
‖c− y‖2 + λ‖s‖1 subject to s = Gc ≥ 0 (3.4)

where the `1 penalty enforces the sparsity of the neural activity. The FOOPSI formulation above
contains a troublesome free sparsity parameter λ. A more robust deconvolution approach, named
constrained FOOPSI, eliminates it by inclusion of the residual sum of squares (RSS) as a hard
constraint and not as a penalty term in the above objective function [105]. The expected RSS
satisfies 〈‖c−y‖2〉 = σ2T and by the law of large numbers ‖c−y‖2 ≈ σ2T with high probability,
leading to the constrained problem

minimize
c

‖s‖1 subject to s = Gc ≥ 0 and ‖c− y‖2 ≤ σ2T (3.5)

As noted above, both the noise level σ and AR coefficients γi are estimated from the observed
fluorescence y, thus no parameter tuning is needed for choosing the λ [105].

FOOPSI and constrained FOOPSI constrain the spiking activity to be sparse and non-negative.
By solving either of these two problems, we can get both the denoised calcium trace c and the
spiking signal s. These two optimization problems are convex, thus the global optimums exist
and are achievable with standard optimization methods that computationally scale only linearly
with T [105].

3.1.2 Issues in FOOPSI and constrained FOOPSI
The sparse non-negative deconvolution recovers the neural activity well, but the inferred spiking
activity usually contain many false positives related to large noise or split one spike into multiple
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partial spikes. This can be seen from a simulation study in Figure 3.2, where we deconvolve the
noisy fluorescence trace with constrained FOOPSI. Though the denoised fluorescence trace is
close to the ground truth, the inferred spiking activity show many small spikes (Figure 3.2A).
Figure 3.2B shows the inferred spike counts near the true spike positions. We can see lots of
partial spikes (ŝt < 1) split from intact spikes. These partial spikes hinder the precise estimation
of spike timings. Since these false positives explain the elevated fluorescence in the data, they will
degrade the estimation of accurate spike/event sizes. Although we can threshold the deconvolved
result as a post-processing to remove the false positives, the true spiking signals could not be
improved. On the other hand, choosing the threshold is troublesome.

It is well-known that `1 penalization in FOOPSI results in ‘soft-thresholding’ [30], in which
small values are zeroed out and large values are shifted to lower values (where the size of this
shift is proportional to the penalty λ). Consequently, the inferred spike sizes from FOOPSI or
constrained FOOPSI are usually smaller than the actual values.

3.2 ROI analysis
ROI analysis is a two-step procedure for identifying neurons and extracting their temporal activity
separately. It first segments region of interest (ROI) for each neuron and then takes the spatial
mean of the fluorescence signals over the segmented ROIs as neurons’ fluorescent signal Ft.
People usually use dF/F = Ft−Fb

Fb
trace to describe the relative change of neural activity in

response to stimuli, where Fb is baseline fluorescence.

Smith & Häusser Supplementary Information
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Supplementary Figure 7. Automated identification of regions of interest

(a) In the first of two adjacent frames (at 15.6 frames/s acquisition), the circled neuron appears 
with very low  contrast against the background (Frame 1), but during a spike in the next frame 
the neuron was clearly visible (Frame 2). Therefore, instead of using an average signal to define 
regions of interests, we used the entire spatiotemporal data set. (b) The temporal cross-
correlation of  each pixel with its adjacent neighbors was used to identify putative neurons and 
processes. (c) The local cross-correlation image was then filtered with an adaptive local 
threshold. Finally, a series of  morphological filters were used to define candidate neuron 
locations.
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Supplementary Figure 8. Automated identification of regions of interest 
(a) In the first of two adjacent frames (at 15.6 frames/s acquisition), the circled neuron appears with very low 
contrast against the background (Frame 1), but during a spike in the next frame the neuron was clearly visible 
(Frame 2). Therefore, instead of using an average signal to define regions of interests, we used the entire spatio

-

temporal data set. (b) The temporal cross-correlation of each pixel with its adjacent neighbors was used to identify 
putative neurons and processes. (c) The local cross-correlation image was then filtered with an adaptive local 
threshold. Finally, a series of morphological filters were used to define candidate neuron locations. 
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A B C

Figure 3.3: Automated identification of ROIs. (A) two example frames with or without spikes for
the selected neurons. (B) The temporal cross-correlation of each pixel with its nearest neighbors.
(C) The correlation image was then filtered with an adaptive local threshold. Neurons are identified
through a series of morphological filters. (Figure is adapted from [124]).

In ROI analysis, the main step is the ROI segmentation, which assigns clustered pixels to
individual neurons. It can be done by visually inspecting the data and by manually circling
pixels that have characteristic morphological properties of neurons [108]. This manual method is
labor-intensive and several automatic methods have been proposed. These methods are usually
based on the observation that neurons are spatially localized [65, 96, 124]. The typical procedure
aggregates the activity over time to produce a summary statistics (e.g. the mean, maximum, or
correlation image or a weighted graph representation between the different imaged pixels) that is
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then processed to identify the spatial components [105]. For example, Smith and Häusser segment
neurons by utilizing the local correlation structure [124]. Since pixels within the same neuron
share the same neural activity, the temporal cross-correlations between each pixel and its adjacent
neighbors within a neuron are much higher than those outside of neurons (Figure 3.3AB). They
filter the correlation image with an adaptive local threshold (Figure 3.3C) and define candidate
neuron locations through a series of morphological filters [124].

3.2.1 Process microendoscopic data with ROI analysis
ROI analysis is conceptually simple and it has been used to successfully extract individual neurons’
activity from some microendoscopic data [74, 85]. However, it may not be well suitable or feasible
to process all microendoscopic data due to their inherent data features.

First of all, the extracted temporal trace might be associated with strong background compo-
nents because the background is much larger than the neural activity and has fast fluctuations.
The background signals are mainly from out-of-focus fluorescence and neuropils, and they will
significantly contaminate the cellular signals. As an example, the green trace in Figure 3.4D,
which is the mean fluorescence trace of all pixels within the drawn ROI (Figure 3.4C, green), is so
noisy that we could not see any cellular signals except the background fluctuations. Efforts have
been made to correct this contamination by estimating the background fluctuations within each
ROI [4, 53]. The basic idea is that the neighboring pixels are likely to share the same fluctuation
with the neuron. Hence the mean fluorescence of these pixels provides a rough estimation of the
background activity (Figure 3.4D, red). By subtracting this background signal from the mean
trace of the ROI, we are able to get an approximated extraction of the cellular signal (Figure
3.4D, blue). In practice, there are several ways to select the neighboring pixels for estimating
the background. For example, [4] selects the background pixels by drawing an annular region of
the ROI (Figure 3.4C, red). The selection of the background region is a non-trivial question: if
the area is too close to the neuron, they may share the same cellular signal and the subtraction
step will weaken the actual neural activity; but if the area is too far away from the neuron, the
estimation of the background deviates from the background within the neuron. Furthermore, this
estimation of the background signals might be inaccurate, especially when we have other neurons
near the ROI.

Secondly, drawing ROIs relies on the clear visualization of neurons’ boundaries, which is not
a big problem if neurons have prominent fluorescence signals compared with the surrounding
background. However, most neurons in microendoscopic data are weak and detecting neuron
boundaries is a nontrivial task (See Figure 3.4 AB). Though some automatic ROI detection have
been provided, they are based on some heuristic ideas and need fine-tuned parameters [4].

In addition, the demixing of overlapped neurons’ signals could not be done. Spatial overlap
is a big issue for microendoscopic imaging due to the blurring effects in 1-photon imaging
microscopies. Without demixing cellular signals, it is problematic to use the extracted traces for
downstream analysis directly, especially when we want to study the correlation structures in the
network.

Finally, manually drawing ROIs is extremely labor-intensive and dependent on users’ subjec-
tive judgments. Most existing automatic methods based on local structures fail because the the
fluorescence signals are dominated by the background fluorescence signals locally. Thus ROI
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Figure 3.4: Extracting cellular signals from a drawn ROI. (A) Representative fluorescence image
of a microendoscopic data recorded from ventral hippocampus. (B) The same frame as in (A),
but its constant baselines on each pixels are subtracted. The constant baseline at each pixel is
calculated as the median of the fluorescence trace . (C) Both the top and the bottom panels are
the zoomed-in version of the cropped region in (B). The green area in the bottom panel indicates
the selected ROI of the neuron, while the red area is selected for approximating the background
fluctuation. (D) The red and the green traces show the mean fluorescence signals within the
two selected areas in (C). Here the fluorescences have been mean-centered. The blue trace is
the difference between two traces, which approximates the temporal signal of the neuron in the
selected ROI.
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analysis is best suited for datasets that contain relatively sparse populations of neurons that do not
overlap in space [85, 108].

3.3 Matrix factorization approach
ROI analysis deals with cell segmentation and signal extraction separately. Although effective in
the analysis of single fluorescence traces, it does not take full advantage of the spatiotemporal
structure in the data. The other approach for source extraction is based on a matrix factorization,
which can simultaneously segment cells and estimate changes in fluorescence in the temporal
domain. This approach stems from the observation that spatiotemporal calcium activity can be
approximated as product of two matrices: a spatial matrix that encodes the location of each neuron
and a temporal matrix that characterizes the calcium concentration evolution for each neuron.
By solving a matrix factorization problem given the raw video data, we can get both spatial and
temporal matrix. Consequently, we segment neuron locations and demix their temporal signals
simultaneously.

This general approach was first proposed by Mukamel et al. and known as PCA/ICA analysis
[90]. Basically, it seeks spatiotemporal components that have reduced dependences. PCA/ICA is
also the most widely used method to automatically processing microendoscopic data. In Section
3.3.1, we will describe the regular procedure of running PCA/ICA analysis over microendoscopic
data and discuss the drawbacks of this method.

Based on the same idea, several nonlinear matrix factorization method have been proposed
recently, such as multilevel sparse matrix factorization ([25]), Nonnegative Matrix Factorization
(NMF, [86]), sparse space-time deconvolution (SSTD, [1]) and Constrained Nonnegative Matrix
Factorization (CNMF, [105]). These methods can deal more effectively with overlapping neural
sources and outperforms PCA/ICA. Particularly, CNMF integrates all constraints related with
realistic neurons (e.g., localized spatial structure, calcium dynamics, sparsity in both spatial
footprints and spiking activity, etc.) and provides a general framework for simultaneously
denoising, deconvolving and demixing calcium imaging data. However, none of these methods
have been used in processing microendoscopic data. To our knowledge, there is only one paper
applied CNMF to their data [4], where they compared CNMF with their customized ROI analysis
method and concluded that the two methods performed similarly. Even though, they still used the
extracted signals from their customized algorithms for relaying their scientific conclusions.

Though CNMF itself is a general framework for analyzing calcium imaging data, the current
implementation of CNMF fails in analyzing most microendoscopic data according to our experi-
ence. In Section 3.3.3, we will discuss why the vanilla CNMF does not work. Before that, we will
first review the CNMF framework in Section 3.3.2. We have not tested the other nonlinear matrix
factorization approaches yet [25, 86, 86, 97], but they face the same problems as in the vanilla
CNMF.

3.3.1 PCA/ICA
PCA/ICA analysis performs principal component analysis (PCA) for the purpose of dimensionality
reduction, followed by an independent component analysis (ICA) that seeks the set of independent
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Figure 3.5: Example results of PCA/ICA analysis. (A) spatial filter of one independent component
(IC). (B) The temporal trace of one example IC. (C) One IC that contains two neurons. D The
extracted signal of the IC shown in C and the true signals of two neurons in C.

calcium signal sources [90]. The ICA step makes the assumption that cells’ signals are statis-
tically sparse and mutually independent. Because it seeks independent sources, it outperforms
ROI analysis in the reduction of signal crosstalk. This method can be used to quickly extract
independent cellular signals from large data sets (∼ 1000 neurons) [145].

Although PCA/ICA is better than ROI analysis in both analysis speed and cross-talk reduction,
it is important to notice that this method has limitations that can reduce the accuracy of data
interpretation.

First of all, PCA/ICA is an inherently linear demixing method and can fail when no linear
demixing matrix is available to produce independent outputs, as is often the case when the neural
components exhibit significant spatial overlaps [50, 105].

Second, the results is dependent on the number of pre-specified number of principle com-
ponents (PCs) and independent components (ICs), which are unknown for users. Inappropriate
setting of these numbers may completely change the results. For instance, if the number of ICs is
set to be much larger than the real number of cells, PCA/ICA may separate individual cells into
multiple components [108].

Third, this algorithm does not pose constraints to neuron shapes and activity. As a result,
we found lots of negative pixels or spikes in the data analysis, which correspond to wrong
decomposition of the recorded data. For example, Figure 3.5A shows the spatial filter of an neuron
extracted using PCA/ICA method. Its periphery has negative values because PCA/ICA tries to
reduce its spatial correlation with the neighboring pixels. Similarly, the temporal trace of the
extracted signal also contains large negative peaks to reduce the statistical dependence between
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neurons (Figure 3.5B).
Fourth, PCA/ICA forces the cellular activity to be independent. This may disrupt the correla-

tion structure in neural networks. This method usually merges correlated neurons into one IC.
Figure 3.5CD show the spatial filter and the temporal signal of an extracted IC from one simulated
data. We can clearly see that two neurons are merged into the extracted the spatial filter (Figure
3.5C). They are merged because they share some correlated activity (Figure 3.5D).

Moreover, because this analysis method relies on the identification of statistically independent
signals, it may not be well suited for the analysis of neural ensembles with low activity levels that
do not substantially differ from baseline [90, 105, 108].

Finally, PCA/ICA does not allow manual interventions followed by further iterations. In a
standard procedure of running PCA/ICA analysis, we usually screen the extracted ICs according
to our prior knowledges on neural morphology and calcium dynamics. Since false positives might
include some neural signals, removing them yields inaccurate extraction of neural signal.

Because of these limitations, we need to be very conservative about scientific conclusions
drawn from PCA/ICA results.

3.3.2 CNMF framework
Similar to the PCA/ICA method, CNMF is also a matrix factorization approach to decompose
imaging data. CNMF outperforms PCA/ICA in calcium imaging data analysis by explicitly
modeling the calcium dynamics, the localized spatial structure of neuron shapes, and the non-
negativity of neurons’ spatial and temporal components [105]. It is a general framework for
analyzing calcium imaging data, but it also requires different implementations specialized for
various datasets. Here we review the framework and discuss its vanilla implementation.

The video data we have are observations from the optical field for a total number of T frames.
The recorded data can be represented by a matrix Y ∈ Rd×T

+ , where d is the number of pixels
in the field. Each neuron is characterized by its spatial ‘footprint’ vector ai ∈ Rd

+ and ‘calcium
activity’ ci ∈ RT

+. Here both ai and ci are forced to be nonnegative because of their physical
interpretations. Given ai and ci of one neuron, its spatiotemporal activity is represented as ai · cTi .
The background fluctuation is represented by a matrix B ∈ Rd×T

+ . Suppose the field contains a
total number of K neurons, then the observation is a superposition of all neurons’ spatiotemporal
activity, time-varying background and additive noise:

Y =
K∑
i=1

ai · cTi +B + E = AC +B + E, (3.6)

where A = [a1, . . . ,aK ], C = [c1, . . . , cK ]T . The noise term E ∈ Rd×T is assumed to be
Gaussian and E(t) ∼ N (0,Σ). Σ is a diagonal matrix indicating that the noise is spatially and
temporally uncorrelated.

CNMF also explicitly models the calcium dynamics ci with a stable autoregressive process
(AR) of order p, which takes the same form as 3.1. The parameters in Eq. 3.1 are different for
different neurons, thus the dynamics of each neuron are modeled independently

ci(t) =

p∑
j=1

γ
(i)
j ci(t− j) + si(t), (3.7)
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where si(t) ≥ 0 is the number of spikes that neuron fired at the t-th frame and it is sparse in the
neural systems. The AR coefficients {γ(i)

j } are different for each neuron and they are estimated
from the data. In practice, we usually pick p = 2 and the matrix form for of Eq. (3.7) is

Gi · ci = si, with Gi =


1 0 0 · · · 0

−γ(i)
1 1 0 · · · 0

−γ(i)
2 −γ(i)

1 1 · · · 0
... . . . . . . . . . ...
0 · · · −γ(i)

2 −γ(i)
1 1

 . (3.8)

Estimating the model parametersA,C in model (3.6,3.7) gives us all neurons’ spatial footprints
and their denoised/deconvolved temporal activity. To fit the model, we also have to constrain
the background term to have a simplified structure, otherwise letting B = Y leads to the least
reconstruction error. In the paper of CNMF [105], B is modeled as a rank-1 nonnegative matrix
B = b · f , where b ∈ Rd

+ and f ∈ RT
+. In its application to 2-photon or light-sheet data, this

rank-1 model has been shown sufficient for a relatively small spatial regions and a larger field
usually needs to be divided into small patches [36, 105]. Recently, an alternative approach were
proposed to represent the neuropil in a set of spatially-localized basis function (raised cosines),
which allows the neuropil signal to vary slowly across space [97] and is more effective for larger
spatial field of view (FOV).

3.3.3 Problems of the vanilla CNMF in processing microendoscopic data
The vanilla CNMF is optimized for 2-photon and light-sheet imaging modalities, however it fails
in processing microendoscopic data due to two main issues.

First of all, the background in microendoscopic data is not well modeled using rank-1 NMF.
This model works well when all pixels within the field share the same fluctuation, such as
bleaching, motions in z-direction or neuropil signals. However, besides the common fluctuation
among all pixels, microendoscopic data also have localized background fluorescences resulted
from out-of-focus light and hemodynamics in the blood vessels. These background sources
are much more complicated and we need a higher rank matrix to represent the background
fluctuations. To demonstrate the high-rank feature of the background, we applied singular vector
decomposition (SVD) to the raw video data (Figure 3.6D-F). The top 5 components display the
common fluctuations over large fields (Figure 3.6D), and these fluctuations show rapid time-
varying features (Figure 3.6E). In addition, the eigenvalues corresponding to these background
fluctuation are much larger than the following components that are composed of cellular signals
and background(Figure 3.6F). As a result, they swamp the single-cellular signals of interest.

The other difficulty of applying the vanilla CNMF is the initialization of neurons’ shapes and
activity. Since optimizing variables in CNMF is a non-convex problem, without good initialization,
it may lead to low-quality results or require excessive time for convergent results. The greedy
initialization method has been proposed for the vanilla CNMF [105], but it does not work well
on microendoscopic data due to the rapid fluctuating background. Briefly, this method detects
the neuron center first and crops a small patch surrounding the center (Figure 3.4BC and Figure
3.6A). Then a rank-1 NMF is applied to initialize the spatial footprint and the temporal trace of
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Figure 3.6: Limitations of the vanilla CNMF in processing microendoscopic data. (A) Several
example frames of the cropped region in (Figure 3.4B). (B,C) The results of initializing single
neuron’s spatial and temporal component using rank-1 NMF in the vanilla CNMF. (D, E, F) are
the results of applying SVD to the raw video data. (D) The top-6 spatial components. (E) The
top-6 temporal components. (F) Eigenvalues of each component.

the neuron. This method works well when the cropped patch has simple spatiotemporal structure.
However, the example frames of the cropped patch in Figure 3.6A display complicated structure.
Figure 3.4D is a clear comparison of the background fluctuation (middle) and the neural signal
(bottom), and its obviously that the former has much larger amplitudes and is noisier. When we
run rank-1 NMF to the spatiotemporal activity of the cropped patch, the results mainly reflect the
background fluctuations, instead of the neuron’s spatiotemporal activity(Figure 3.6BC). Thus the
current greedy initialization method fails in extracting neurons’ spatial and temporal components
from the background. In addition, some microendoscopic data show densely-packed neurons or
severe spatial overlapping issue. As a result, each cropped patch could have more than 1 neuron
and the rank-1 NMF might mix these neurons’ signals during the initialization step.

In brief, the large background issue is the main obstacle of applying CNMF to microendoscopic
data. It requires a better formulation of the background model and an efficient algorithm to make
estimations. Furthermore, the magnitude of the background is so large that we could not initialize
neurons’ spatial and temporal components. High density of neurons and the neuronal overlapping
issue also hinder the accurate initialization of model variables.

3.4 Conclusion
In this chapter, we reviewed some widely used tools tackling two important problems (spike
inference and source extraction) in calcium imaging data analysis. For the source extraction part,
we specially discuss their drawbacks or limitations in processing microendoscopic data, which
has unique features compared with the traditional 2-photon imaging data. We devoted a large
chunk of the chapter to reviewing the CNMF framework and discuss why it fails in analyzing
microendoscopic data. We also reviewed two widely used deconvolution methods for inferring
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spiking activity from the noisy fluorescence traces. They are usually used as standalone tools
for post-processing the extracted traces, but they can also be integrated within CNMF to model
calcium dynamics directly and improve the demixing performance.
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Chapter 4

Efficient and accurate extraction of in vivo
calcium signals from microendoscopic
video data

In vivo calcium imaging through microendoscopic lenses enables imaging of previously inac-
cessible neuronal populations deep within the brains of freely moving animals. However, it is
computationally challenging to extract single-neuronal activity from microendoscopic data, be-
cause of the very large background fluctuations and high spatial overlaps intrinsic to this recording
modality. Here, we describe a new matrix factorization approach to accurately separate the back-
ground and then demix and denoise the neuronal signals of interest. We compared the proposed
method against widely-used independent components analysis and constrained nonnegative matrix
factorization approaches. On both simulated and experimental data, our method substantially
improved the quality of extracted cellular signals and detected more well-isolated neural signals,
especially in noisy data regimes. These advances can in turn significantly enhance the statisti-
cal power of downstream analyses, and ultimately improve scientific conclusions derived from
microendoscopic data.

4.1 Introduction

Monitoring the activity of large-scale neuronal ensembles during complex behavioral states is
fundamental to neuroscience research. Continued advances in optical imaging technology are
greatly expanding the size and depth of neuronal populations that can be visualized. Specifically,
in vivo calcium imaging through microendoscopic lenses and the development of miniaturized
microscopes have enabled deep brain imaging of previously inaccessible neuronal populations of
freely moving mice [34, 42, 144]. The technique has been widely used to study the neural circuits
in cortical, subcortical, and deep brain areas, such as hippocampus [15, 114, 145], entorhinal
cortex [74, 128], hypothalamus [58], prefrontal cortex (PFC) [102], premotor cortex [85], dorsal
pons [22], basal forebrain [53], striatum [4, 17, 75], amygdala [142], and other brain regions.

Although microendoscopy has potential applications across numerous neuroscience fields
[144], methods for extracting cellular signals from this data are currently limited and suboptimal.
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Most existing methods are specialized for 2-photon or light-sheet microscopy. However, these
methods are not suitable for analyzing single-photon microendoscopic data because of its distinct
features: specifically, this data typically displays large, blurry background fluctuations due to
fluorescence contributions from neurons outside the focal plane. In Figure 4.1 we use a typical
microendoscopic dataset to illustrate these effects (see S1 Video for raw video). Figure 4.1A
shows an example frame of the selected data, which contains large signals additional to the
neurons visible in the focal plane. These extra fluorescence signals contribute as background that
contaminates the single-neuronal signals of interest. In turn, standard methods based on local
correlations for visualizing cell outlines [124] are not effective here, because the correlations in
the fluorescence of nearby pixels are dominated by background signals (Figure 4.1B). For some
neurons with strong visible signals, we can manually draw regions-of-interest (ROI) (Figure 4.1C).
Following [4, 102], we used the mean fluorescence trace of the surrounding pixels (blue, Figure
4.1D) to roughly estimate this background fluctuation; subtracting it from the raw trace in the
neuron ROI yields a relatively good estimation of neuron signal (red, Figure 4.1D). Figure 4.1D
shows that the background (blue) has much larger variance than the relatively sparse neural signal
(red); moreover, the background signal fluctuates on similar timescales as the single-neuronal
signal, so we can not simply temporally filter the background away after extraction of the mean
signal within the ROI. This large background signal is likely due to a combination of local
fluctuations resulting from out-of-focus fluorescence or neuropil activity, hemodynamics of blood
vessels, and global fluctuations shared more broadly across the field of view (photo-bleaching
effects, drifts in z of the focal plane, etc.), as illustrated schematically in Figure 4.1E.

The existing methods for extracting individual neural activity from microendoscopic data can
be divided into two classes: semi-manual ROI analysis [4, 75, 102] and PCA/ICA analysis [90].
Unfortunately, both approaches have well-known flaws [108]. For example, ROI analysis does
not effectively demix signals of spatially overlapping neurons, and drawing ROIs is laborious for
large population recordings. More importantly, in many cases the background contaminations
are not adequately corrected, and thus the extracted signals are not sufficiently clean enough for
involved downstream analyses. As for PCA/ICA analysis, it is a linear demixing method and
therefore typically fails when the neural components exhibit strong spatial overlaps [105] - as is
the case in the microendoscopic setting.

Recently, constrained nonnegative matrix factorization (CNMF) approaches were proposed to
simultaneously denoise, deconvolve, and demix calcium imaging data [105]. However, current
implementations of the CNMF approach were optimized for 2-photon and light-sheet microscopy,
where the background has a simpler spatiotemporal structure. When applied to microendoscopic
data, CNMF often has poor performance because the background is not modeled sufficiently
accurately [4].

In this chapter, we significantly extend the CNMF framework to obtain a robust approach for
extracting single-neuronal signals from microendoscopic data. Specifically, our extended CNMF
for microendoscopic data (CNMF-E) approach utilizes a more accurate and flexible spatiotemporal
background model that is able to handle the properties of the strong background signal illustrated
in Fig. 4.1, along with new specialized algorithms to initialize and fit the model components. After
a brief description of the model and algorithms, we first use simulated data to illustrate the power
of the new approach. Next, we compare CNMF-E with PCA/ICA analysis comprehensively on
both simulated data and four experimental datasets recorded in different brain areas. The results

50

http://www.columbia.edu/~pz2230/videos/example_microendoscopic_data.mp4


80 um 1200

1400

1600

1800

2000

2200

2400

2600

A Raw data

0.8

0.85

0.9

0.95

1B Correlation image Raw-meanC

center ROI periphery ROI difference

D

E Fluo. signals Neurons

=

Local BG

+

Blood vessel

+

Global BG

+

Figure 4.1: Microendoscopic data contain large background signals with rapid fluctuations due
to multiple sources. (A) An example frame of microendoscopic data recorded in dorsal striatum
(see Methods and Materials section for experimental details). (B) The local “correlation image"
[124] computed from the raw video data. Note that it is difficult to discern neuronal shapes in this
image due to the high background spatial correlation level. (C) The mean-subtracted data within
the cropped area (green) in (A). Two ROIs were selected and coded with different colors. (D)
The mean fluorescence traces of pixels within the two selected ROIs (magenta and blue) shown
in (C) and the difference between the two traces. (E) Cartoon illustration of various sources of
fluorescence signals in microendoscopic data. “BG” abbreviates “background.”

show that CNMF-E outperforms PCA/ICA in terms of detecting more well-isolated neural signals,
extracting higher signal-to-noise ratio (SNR) cellular signals, and obtaining more robust results
in low SNR regimes. Finally, we show that downstream analyses of calcium imaging data can
substantially benefit from these improvements.
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4.2 Model and model fitting

4.2.1 CNMF for microendoscope data (CNMF-E)
The recorded video data can be represented by a matrix Y ∈ Rd×T

+ , where d is the number of
pixels in the field of view and T is the number of frames observed. In our model each neuron i is
characterized by its spatial “footprint” vector ai ∈ Rd

+ characterizing the cell’s shape and location,
and “calcium activity” timeseries ci ∈ RT

+, modeling (up to a multiplicative and additive constant)
cell i’s mean fluorescence signal at each frame. Here, both ai and ci are constrained to be
nonnegative because of their physical interpretations. The background fluctuation is represented
by a matrix B ∈ Rd×T

+ . If the field of view contains a total number of K neurons, then the
observed movie data is modeled as a superposition of all neurons’ spatiotemporal activity, plus
time-varying background and additive noise:

Y =
K∑
i=1

ai · cTi +B + E = AC +B + E, (4.1)

where A = [a1, . . . ,aK ] and C = [c1, . . . , cK ]T . The noise term E ∈ Rd×T is modeled as
Gaussian, E(t) ∼ N (0,Σ). Σ is a diagonal matrix, indicating that the noise is spatially and
temporally uncorrelated.

Estimating the model parameters A,C in model (4.1) gives us all neurons’ spatial footprints
and their denoised temporal activity. This can be achieved by minimizing the residual sum of
squares (RSS), aka the Frobenius norm of the matrix Y − (AC +B),

‖Y − (AC +B)‖2
F , (4.2)

while requiring the model variables A,C and B to follow the desired constraints, discussed below.

Constraints on neuronal spatial footprints A and neural temporal traces C

Each spatial footprint ai should be spatially localized and sparse, since a given neuron will cover
only a small fraction of the field of view, and therefore most elements of ai will be zero. Thus we
need to incorporate spatial locality and sparsity constraints on A [105]. We discuss details further
below.

Similarly, the temporal components ci are highly structured, as they represent the cells’
fluorescence responses to sparse, nonnegative trains of action potentials. Following [105, 137],
we model the calcium dynamics of each neuron ci with a stable autoregressive (AR) process of
order p,

ci(t) =

p∑
j=1

γ
(i)
j ci(t− j) + si(t), (4.3)

where si(t) ≥ 0 is the number of spikes that neuron fired at the t-th frame. (Note that there is
no further noise input into ci(t) beyond the spike signal si(t).) The AR coefficients {γ(i)

j } are
different for each neuron and they are estimated from the data. In practice, we usually pick p = 2,
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Name Description Domain

d number of pixels N+

T number of frames N+

K number of neurons N
Y motion corrected video data Rd×T

+

A spatial footprints of all neurons Rd×K
+

C temporal activities of all neurons RK×T
+

B background activity Rd×T
+

E observation noise Rd×T

W weight matrix to reconstruct B using neighboring pixels Rd×d

b0 constraint baseline for all pixels Rd
+

xi spatial location of the ith pixel N2

σi standard deviation of the noise at pixel xi R+

Table 4.1: Variables used in the CNMF-E model and algorithm. R: real numbers; R+: positive
real numbers; N: natural numbers; N+: positive integers.

thus incorporating both a nonzero rise and decay time of calcium transients in response to a spike;
then Eq. (4.3) can be expressed in matrix form as

Gi · ci = si, with Gi =


1 0 0 · · · 0

−γ(i)
1 1 0 · · · 0

−γ(i)
2 −γ(i)

1 1 · · · 0
... . . . . . . . . . ...
0 · · · −γ(i)

2 −γ(i)
1 1

 . (4.4)

The neural activity si is nonnegative and typically sparse; to enforce sparsity we can penalize
the `0 [59] or `1 [105, 137] norm of si, or limit the minimum size of nonzero spike counts [37].
When the rise time constant is small compared to the timebin width (low imaging frame rate), we
typically use a simpler AR(1) model (with an instantaneous rise following a spike) [105].

Constraints on background activity B

Constraints on the background term B in Eq. (4.1) are essential to the success of CNMF-E, since
clearly, if B is completely unconstrained we could just absorb the observed data Y entirely into
B, which would lead to recovery of no neural activity. At the same time, we need to prevent
the residual of the background term (i.e., B − B̂, where B̂ denotes the estimated spatiotemporal
background) from corrupting the estimated neural signals AC in model (4.1), since subsequently,
the extracted neuronal activity would be mixed with background fluctuations, leading to artificially
high correlations between nearby cells. This problem is even worse in the microendoscopic
context because the background fluctuation usually has significantly larger variance than the
isolated cellular signals of interest (Figure 4.1D), and therefore any small errors in the estimation
of B can severely corrupt the estimated neural signal AC.
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In [105], B is modeled as a rank-1 nonnegative matrix B = b · fT , where b ∈ Rd
+ and

f ∈ RT
+. This model mainly captures the global fluctuations within the field of view (FOV). In

its application to 2-photon or light-sheet data, this rank-1 model has been shown to be sufficient
for relatively small spatial regions; the simple low-rank model does not hold for larger fields of
view, and so we can simply divide large FOVs into smaller patches for largely-parallel processing
[36, 105]. (See [97] for an alternative approach.) However, as we will see below, the local rank-1
model fails in many microendoscopic datasets, where multiple large overlapping background
sources exist even within modestly-sized FOVs.

Thus we propose a new model to constrain the background term B. We first decompose the
background into two terms:

B = Bf +Bc, (4.5)

where Bf represents fluctuating activity and Bc = b0 · 1T models constant baselines (1 ∈ RT

denotes a vector of T ones). To model Bf , we exploit the fact that background sources (largely
due to blurred out-of-focus fluorescence) are empirically much coarser spatially than the average
neuron soma size l. Thus we model Bf at one pixel as a linear combination of its neighboring
pixels’ background activities,

Bf
it =

∑
j∈Ωi

wij ·Bf
jt, ∀t = 1 . . . T, (4.6)

where Ωi = {j | dist(xi,xj) ∈ [ln, ln + 1)} and dist(xi,xj) is the Euclidean distance between
pixel i and j. Thus Ωi only selects the neighboring pixels with a distance of ln from the i-th pixel;
here ln is a parameter that we choose to be greater than l, e.g., ln = 2l.

We can rewrite Eq. (4.6) in matrix form:

Bf = WBf , (4.7)

where Wij = 0 if dist(xi,xj) /∈ [ln, ln + 1).

4.2.2 Fitting the CNMF-E model
Now we can formulate the estimation of all model variables as one optimization problem:

min
A,C,W,b0

‖Y − AC − b0 · 1T −Bf‖2
F (P-All)

s.t. A ≥ 0, A is sparse and local

ci ≥ 0, si ≥ 0, G(i)ci = si, si is sparse ∀i = 1 . . . K

Bf · 1 = 0

Bf = W · (Y − AC − b0 · 1T ) (4.8)
Wij = 0 if dist(xi,xj) /∈ [ln, ln + 1).

In this optimization problem, we do not explicitly describe the sparsity constraints of A and
S = [s1, . . . , sK ]T because they can be customized by users under different assumptions (see
details in Methods and Materials). In addition, the model variable Bf is not optimized explicitly
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but can be estimated as W · (Y − AC − b0 · 1T ), and we optimize W instead. In Eq. (4.8), we
replace Bf in the right-hand side of Eq. (4.7) with (Y − AC − b0 · 1T ). According to Eq. (4.1)
and (4.5), this change ignores the noise term E. Since elements in E are spatially uncorrelated,
W · E contributes as a very small disturbance to our estimated B̂f , which is the left-hand side of
Eq. (4.8).

The problem (P-All) optimizes all variables together and is jointly non-convex, but can be
divided into three simpler subproblems that we solve iteratively.

Estimating A given Ĉ, B̂f , b̂0:

min
A
‖Y − A · Ĉ − b̂0 · 1T − B̂f‖2

F (P-S)

s.t. A ≥ 0, A is sparse and local

Estimating C given B̂f , b̂0, Â:

min
C
‖Y − Â · C − b̂0 · 1T − B̂f‖2

F (P-T)

s.t. ci ≥ 0, si ≥ 0

G(i)ci = si, si is sparse ∀i = 1 . . . K

Estimating Bf , b0 given Â, Ĉ

min
W,b0
‖Y − Â · Ĉ − b0 · 1T −Bf‖2

F (P-B)

s.t. Bf · 1 = 0

Bf = W · (Y − Â · Ĉ − b0 · 1T ).

Wij = 0 if dist(xi,xj) /∈ [ln, ln + 1)

For each of these subproblems, we are able to use well-established algorithms (e.g., solutions for
(P-S) and (P-T) are discussed in [36, 105]) or slight modifications thereof. By iteratively solving
these three subproblems, we obtain tractable updates for all model variables in problem (P-All).
Furthermore, this strategy gives us the flexibility of further potential interventions (either automatic
or semi-manual) in the optimization procedure, e.g., incorporating further prior information on
neurons’ morphology, or merging/splitting/deleting spatial components and detecting missed
neurons from the residuals. These steps can significantly improve the quality of the model fitting;
this is an advantage compared with PCA/ICA, which offers no easy option for incorporation of
stronger prior information or manually-guided improvements on the estimates.

Full details on the algorithms for initializing and then solving these three subproblems are
provided in the Methods and Materials section.

4.3 Results

4.3.1 CNMF-E can reliably estimate large high-rank background fluctua-
tions

We first use simulated data to illustrate the background model in CNMF-E and compare its
performance against the low-rank NMF model used in the basic CNMF approach [105]. We
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Figure 4.2: CNMF-E can accurately separate and recover the background fluctuations in simulated
data. (A) An example frame of simulated microendoscopic data formed by summing up the
fluorescent signals from the multiple sources illustrated in Figure 4.1E. (B) A zoomed-in version
of the circle in (A). The green dot indicates the pixel of interest. The surrounding black pixels
are its neighbors with a distance of 15 pixels. The red area approximates the size of a typical
neuron in the simulation. (C) Raw fluorescence traces of the selected pixel and some of its
neighbors on the black ring. Note the high correlation. (D) Fluorescence traces (raw data; true
and estimated background; true and initial estimate of neural signal) from the center pixel as
selected in (B). Note that the background dominates the raw data in this pixel, but nonetheless
we can accurately estimate the background and subtract it away here. Scalebars: 10 seconds.
Panels (E-G) show the cellular signals in the same frame as (A). (E) Ground truth neural activity.
(F) The residual of the raw frame after subtracting the background estimated with CNMF-E;
note the close correspondence with E. (G) Same as (F), but the background is estimated with
rank-1 NMF. A video showing (E-G) for all frames can be found at S2 Video. (H) The mean
correlation coefficient (over all pixels) between the true background fluctuations and the estimated
background fluctuations. The rank of NMF varies and we run randomly-initialized NMF for 10
times for each rank. The red line is the performance of CNMF-E, which requires no selection of
the NMF rank. (I) The performance of CNMF-E and rank-1 NMF in recovering the background
fluctuations from the data superimposed with an increasing number of background sources.
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generated the observed fluorescence Y by summing up simulated fluorescent signals of multiple
sources as shown in Figure 4.1E plus additive Gaussian white noise (Figure 4.2A).

An example pixel (green dot, Figure 4.2A,B) was selected to illustrate the background model
in CNMF-E (Eq. (4.6)), which assumes that each pixel’s background activity can be reconstructed
using its neighboring pixels’ activities. The selected neighbors form a ring and their distances to
the center pixel are larger than a typical neuron size (Figure 4.2B). Figure 4.2C shows that the
fluorescence traces of the center pixel and its neighbors are highly correlated due to the shared
large background fluctuations. Here for illustrative purposes we fit the background by solving
problem (P-B) directly while assuming ÂĈ = 0. This mistaken assumption should make the
background estimation more challenging (due to true neural components getting absorbed into
the background), but nonetheless in Figure 4.2 we see that the background fluctuation was well
recovered (Figure 4.2D). Subtracting this estimated background from the observed fluorescence
in the center yields a good visualization of the cellular signal (Figure 4.2D). Thus this example
shows that we can reconstruct a complicated background trace while leaving the neural signal
uncontaminated.

For the example frame in Figure 4.2A, the true cellular signals are sparse and weak (Figure
4.2E). When we subtract the estimated background using CNMF-E from the raw data, we obtain a
good recovery of the true signal (Figure 4.2D,F). For comparison, we also estimate the background
activity by applying a rank-1 NMF model as used in basic CNMF; the resulting background-
subtracted image is still severely contaminated by the background (Figure 4.2G). This is easy to
understand: the spatiotemporal background signal in microendoscopic data typically has a rank
higher than one, due to the various signal sources indicated in Figure 4.1E), and therefore a rank-1
NMF background model is insufficient.

A naive approach would be to simply increase the rank of the NMF background model. Figure
4.2H demonstrates that this approach is ineffective: higher-rank NMF does yield generally better
reconstruction performance, but with high variability and low reliability (due to randomness in the
initial conditions of NMF). Eventually as the NMF rank increases many single-neuronal signals
of interest are swallowed up in the estimated background signal (data not shown). In contrast,
CNMF-E recovers the background signal more accurately than any of the high-rank NMF models.

In real data analysis settings, the rank of NMF is an unknown and the selection of its value is
a nontrivial problem. We simulated data sets with different numbers of local background sources
and use a single parameter setting to run CNMF-E for reconstructing the background over multiple
such simulations. Figure 4.2I shows that the performance of CNMF-E does not degrade quickly
as we have more background sources, in contrast to rank-1 NMF. Therefore CNMF-E can recover
the background accurately across a diverse range of background sources, as desired.

4.3.2 CNMF-E accurately initializes single-neuronal spatial and temporal
components

Next we used simulated data to validate our proposed initialization procedure (Figure 4.3A). In
this example we simulated 200 neurons with strong spatial overlaps (Figure 4.3B). One of the first
steps in our initialization procedure is to apply a Gaussian spatial filter to the images to reduce
the (spatially coarser) background and boost the power of neuron-sized objects in the images.
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In Figure 4.3C, we see that the local correlation image [124] computed on the spatially filtered
data provides a good initial visualization of neuron locations; compare to Figure 4.1B, where the
correlation image computed on the raw data was highly corrupted by background signals.

We choose two example ROIs to illustrate how CNMF-E removes the background contamina-
tion and demixes nearby neural signals for accurate initialization of neurons’ shapes and activity.
In the first example, we choose a well-isolated neuron (green box, Figure 4.3A+B). We select
three pixels located in the center, the periphery, and the outside of the neuron and show the
corresponding fluorescence traces in both the raw data and the spatially filtered data (Figure 4.3D).
The raw traces are noisy and highly correlated, but the filtered traces show relatively clean neural
signals. This is because spatial filtering reduces the shared background activity and the remaining
neural signals dominate the filtered data. Similarly, Figure 4.3E is an example showing how
CNMF-E demixes two overlapping neurons. The filtered traces in the centers of the two neurons
still preserve their own temporal activity.

After initializing the neurons’ traces using the spatially filtered data, we initialize our estimate
of their spatial footprints; in this case the initial values already match the simulated ground truth
with high fidelity (Figure 4.3D+E). In this simulated data, CNMF-E successfully identified all 200
neurons and initialized their spatial and temporal components (Figure 4.3F). We then evaluate the
quality of initialization using all neurons’ spatial and temporal similarities with their counterparts
in the ground truth data. Figure 4.3G shows that all initialized neurons have high similarities with
the truth, indicating a good recovery and demixing of all neuron sources.

Thresholds on the minimum local correlation and the minimum peak-to-noise ratio (PNR) for
detecting seed pixels are necessary for defining the initial spatial components. To quantify the
sensitivity of choosing these two thresholds, we plot the local correlations and the PNRs of all
pixels chosen as the local maxima within an area of l

4
× l

4
, where l is the diameter of a typical

neuron, in the correlation image or the PNR image (Figure 4.3H). Pixels are classified into two
classes according to their locations relative to the closest neurons: neurons’ central areas and
outside areas (see Methods and Materials for full details). It is clear that the two classes are
linearly well separated and the thresholds can be chosen within a broad range of values (Figure
4.3H), indicating that the algorithm is robust with respect to these threshold parameters.

4.3.3 CNMF-E recovers the true neural activity and is robust to noise con-
taminations on simulated data

Using the same simulated dataset as in the previous section, we further refine the neuron shapes
(A) and the temporal traces (C) by iteratively fitting the CNMF-E model. We compare the final
results with PCA/ICA analysis [90] and the original CNMF method [105].

After choosing the thresholds for seed pixels (Figure 4.3H), we run CNMF-E in full automatic
mode, without any manual interventions. Two open-source MATLAB packages, CellSort 1 and
ca_source_extraction 2, were used to perform PCA/ICA [90] and basic CNMF [105], respectively.
Since the initialization algorithm in the CNMF fails due to the large contaminations from the
background fluctuations in this setting (recall Figure 4.2), we use the ground truth as its initializa-

1https://github.com/mukamel-lab/CellSort
2https://github.com/epnev/ca_source_extraction
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Figure 4.3: CNMF-E accurately initializes individual neurons’ spatial and temporal components
in simulated data. (A) An example frame of the simulated data. Green and red squares will
correspond to panels (D) and (E) below, respectively. (B) The temporal mean of the cellular
activity in the simulation. (C) The correlation image computed using the spatially filtered data.
(D) An example of initializing an isolated neuron. Three selected pixels correspond to the center,
the periphery, and the outside of a neuron. The raw traces and the filtered traces are shown as well.
The yellow dashed line is the true neural signal of the selected neuron. Triangle markers highlight
the spike times from the neuron. (E) Same as (D), but two neurons are spatially overlapping in
this example. Note that in both cases neural activity is clearly visible in the filtered traces, and
the initial estimates of the spatial footprints are already quite accurate (dashed lines are ground
truth). (F) The contours of all initialized neurons on top of the correlation image as shown in (D).
Contour colors represent the rank of neurons’ SNR (SNR decreases from red to yellow). The blue
dots are centers of the true neurons. (G) The spatial and the temporal cosine similarities between
each simulated neuron and its counterpart in the initialized neurons. (H) The local correlation
and the peak-to-noise ratio for pixels located in the central area of each neuron (blue) and other
areas (green). The red lines are the thresholding boundaries for screening seed pixels in our
initialization step. A video showing the whole initialization step can be found at S3 Video.

tion. As for the rank of the background model in CNMF, we tried all integer values between 1 and
16 and set it as 9 because it has the best performance in matching the ground truth. We emphasize
that including the CNMF approach in this comparison is not fair for the other two approaches,
because it uses the ground truth heavily, while PCA/ICA and CNMF-E are blind to the ground
truth. The purpose here is to show the limitations of basic CNMF in modeling the background
activity in microendoscopic data.

We first pick three closeby neurons from the ground truth (Figure 4.4A, top) and see how
well these neurons’ activities are recovered. PCA/ICA fails to identify one neuron, and for the
other two identified neurons, it recovers temporal traces that are sufficiently noisy that small
calcium transients are submerged in the noise. As for CNMF, the neuron shapes remain more or
less at the initial condition (i.e., the ground truth spatial footprints), but clear contaminations in
the temporal traces are visible. This is because the pure NMF model in CNMF does not model
the true background well and the residuals in the background are mistakenly captured by neural
components. In contrast, on this example, CNMF-E recovers the true neural shapes and neural
activity with high accuracy.

We also compare the number of detected neurons and how well these neurons are detected.
We detected 195 out of 200 neurons using PCA/ICA, while CNMF-E detected all 200 neurons.
We also quantitatively evaluated the performance of source extraction by showing the spatial
and temporal cosine similarities between detected neurons and ground truth (Figure 4.4B). As a
comparison, the neurons detected using PCA/ICA have much lower similarities with the ground
truth (Figure 4.4B). We also note that CNMF results are much worse than CNMF-E, despite the
fact that CNMF is initialized at the ground truth parameter values. Compared with the results
in the initialization step, running the whole pipeline of CNMF-E leads to improvements in both
spatial and temporal similarities.

In many downstream analyses of calcium imaging data, pairwise correlations provide an
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Figure 4.4: CNMF-E outperforms PCA/ICA analysis in extracting individual neurons’ activity
from simulated data and is robust to low SNR. (A) The results of PCA/ICA, CNMF, and CNMF-E
in recovering the spatial footprints and temporal traces of three example neurons. The trace colors
match the neuron colors shown in the left. (B) The spatial and the temporal cosine similarities
between the ground truth and the neurons detected using different methods. (C) The pairwise
correlations between the calcium activity traces extracted using different methods. (D-F) The
performances of PCA/ICA and CNMF-E under different noise levels: the number of missed
neurons (D), and the spatial (E) and temporal (F) cosine similarities between the extracted
components and the ground truth. (G) The calcium traces of one example neuron: the ground
truth (black), the PCA/ICA trace (blue), the CNMF-E trace (red) and the CNMF-E trace without
being denoised (cyan). The similarity values shown in the figure are computed as the cosine
similarity between each trace and the ground truth (black). Two videos showing the demixing
results of the simulated data can be found in S4 Video (SNR reduction factor=1) and S5 Video
(SNR reduction factor=6).

important metric to study coordinated network activity [4, 27, 75, 139]. Since PCA/ICA seeks
statistically independent components, which forces the temporal traces to have near-zero corre-
lation, the correlation structure is badly corrupted in the raw PCA/ICA outputs (Figure 4.4C).
We observed that a large proportion of the independence comes from the noisy baselines in the
extracted traces (data not shown), so we postprocessed the PCA/ICA output by thresholding at
the 3 standard deviation level. This recovers some nonzero correlations, but the true correlation
structure is not recovered accurately (Figure 4.4C). By contrast, the CNMF-E results matched
the ground truth very well due to accurate extraction of individual neurons’ temporal activity
(Figure 4.4C). As for CNMF, the estimated correlations are slightly elevated relative to the true
correlations. This is due to the shared (highly correlated) background fluctuations that corrupt the
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recovered activity of nearby neurons.
Finally, we compare the performance of the different methods under different SNR regimes.

Because of the above inferior results we skip comparisons to the basic CNMF here. Based on the
same simulation parameters as above, we vary the noise level Σ by multiplying it with a SNR
reduction factor. Figure 4.4D shows that CNMF-E detects all neurons over a wide SNR range,
while PCA/ICA fails to detect the majority of neurons when the SNR drops to sufficiently low
levels. Moreover, the detected neurons in CNMF-E preserve high spatial and temporal similarities
with the ground truth (Figure 4.4E-F). This high accuracy of extracting neurons’ temporal activity
benefits from the modeling of the calcium dynamics, which leads to significantly denoised neural
activity. If we skip the temporal denoising step in the algorithm, CNMF-E is less robust to noise,
but still outperforms PCA/ICA significantly (Figure 4.4F). When SNR is low, the improvements
yielded by CNMF-E can be crucial for detecting weak neuron events, as shown in Figure 4.4G.

4.3.4 Application to dorsal striatum data
We now turn to the analysis of large-scale microendoscopic datasets recorded from freely behaving
mice. We run both CNMF-E and PCA/ICA for all datasets and compare their performances in
detail.

We begin by analyzing in vivo calcium imaging data of neurons expressing GCaMP6f in the
mouse dorsal striatum. (Full experimental details and algorithm parameter settings for this and
the following datasets appear in the Methods and Materials section.) CNMF-E extracted 550
putative neural components from this dataset; PCA/ICA extracted 384 components (starting from
700 initial components, and then manually removing independent components whose spatial
filter appeared to consist of random pixels or whose temporal traces had no prominent calcium
events). Figure 4.5A shows how CNMF-E decomposes an example frame into four components:
the constant baselines that are invariant over time, the fluctuating background, the denoised neural
signals, and the residuals. We highlight an example neuron by drawing its ROI to demonstrate the
power of CNMF-E in isolating fluorescence signals of neurons from the background fluctuations.
For the selected neuron, we plot the mean fluorescence trace of the raw data and the estimated
background (Figure 4.5B). These two traces are very similar, indicating that the background
fluctuation dominates the raw data. By subtracting this estimated background component from
the raw data, we acquire a clean trace that represents the neural signal.

To quantify the background effects further, we compute the contribution of each signal
component in explaining the variance in the raw data. For each pixel, we compute the variance
of the raw data first and then compute the variance of the background-subtracted data. Then the
reduced variance is divided by the variance of the raw data, giving the proportion of variance
explained by the background. Figure 4.5C (blue) shows the distribution of the background-
explained variance over all pixels. The background accounts for around 90% of the variance on
average. We further remove the denoised neural signals and compute the variance reduction;
Figure 4.5C shows that neural signals account for less than 10% of the raw signal variance. This
analysis is consistent with our observations that background dominates the fluorescence signal
and extracting high-quality neural signals requires careful background signal removal.

The contours of the spatial footprints inferred by the two approaches (PCA/ICA and CNMF-E)
are depicted in Figure 4.5D, superimposed on the correlation image of the filtered raw data. The
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Figure 4.5: Neurons expressing GCaMP6f recorded in vivo in mouse dorsal striatum area. (A)
An example frame of the raw data and its four components decomposed by CNMF-E. (B) The
mean fluorescence traces of the raw data (black), the estimated background activity (blue), and
the background-subtracted data (red) within the segmented area (red) in (A). The variance of the
black trace is about 2x the variance of the blue trace and 4x the variance of the red trace. (C) The
distributions of the variance explained by different components over all pixels; note that estimated
background signals dominate the total variance of the signal. (D) The contour plot of all neurons
detected by CNMF-E and PCA/ICA superimposed on the correlation image. Green areas represent
the components that are only detected by CNMF-E. The components are sorted in decreasing
order based on their SNRs (from red to yellow). (E) The spatial and temporal components of 14
example neurons that are only detected by CNMF-E. These neurons all correspond to green areas
in (D). (F) The signal-to-noise ratios (SNRs) of all neurons detected by both methods. Colors
match the example traces shown in (G), which shows the spatial and temporal components of 10
example neurons detected by both methods. Scalebar: 10 seconds. See S6 Video for the demixing
results.

indicated area was cropped from Figure 4.5A (left). In this case, all neurons inferred by PCA/ICA
were inferred by CNMF-E as well. However, many components were only detected by CNMF-E
(shown as the green areas in Figure 4.5D). In these plots, we rank the inferred components
according to their SNRs; the color indicates the relative rank (decaying from red to yellow). We
see that the components missed by PCA/ICA have low SNRs (green shaded areas with yellow
contours).

Figure 4.5E shows the spatial and temporal components of 14 example neurons detected
only by CNMF-E. Here (and in the following figures), for illustrative purposes, we show the
calcium traces before the temporal denoising step. For neurons that are inferred by both methods,
CNMF-E shows significant improvements in the SNR of the extracted cellular signals (Figure
4.5F), even before the temporal denoising step is applied. In panel G we randomly select 10
examples and examine their spatial and temporal components. Compared with the CNMF-E
results, PCA/ICA components have much smaller size, often with negative dips surrounding the
neuron (remember that ICA avoids spatial overlaps in order to reduce nearby neurons’ statistical
dependences, leading to some loss of signal strength; see [105] for further discussion). The activity
traces extracted by CNMF-E are visually cleaner than the PCA/ICA traces; this is important for
reliable event detection, particularly in low SNR examples. See [75] for additional examples of
CNMF-E applied to striatal data.

4.3.5 Application to data in prefrontal cortex

We repeat a similar analysis on GCaMP6s data recorded from prefrontal cortex (PFC, Figure
4.6), to quantify the performance of the algorithm in a different brain area with a different
calcium indicator. Again we find that CNMF-E successfully extracts neural signals from a
strong fluctuating background (Figure 4.6A), which contributes a large proportion of the variance
in the raw data (Figure 4.6B). Similarly as with the striatum data, PCA/ICA analysis missed
many components that have very weak signals (35 missed components here). For the matched
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Figure 4.6: Neurons expressing GCaMP6s recorded in vivo in mouse prefrontal cortex. (A-F)
follow similar conventions as in the corresponding panels of Figure 4.5. (G) Three example
neurons that are close to each other and detected by both methods. Yellow shaded areas highlight
the negative ‘spikes’ correlated with nearby activity, and the cyan shaded area highlights one
crosstalk between nearby neurons. Scalebar: 20 seconds. See S7 Video for the demixing results
and S8 Video for the comparision of CNMF-E and PCA/ICA in the zoomed-in area of (G).

neurons, CNMF-E shows strong improvements in the SNRs of the extracted traces (Figure 4.6D).
Consistent with our observation in striatum (Figure 4.5G), the spatial footprints of PCA/ICA
components are shrunk to promote statistical independence between neurons, while the neurons
inferred by CNMF-E have visually reasonable morphologies (Figure 4.5E). Some neurons inferred
by PCA/ICA fail to appropriately split two nearby neurons (Figure 4.6E, cell 10). As for calcium
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traces with high SNRs (Figure 4.6E, cell 1− 6), CNMF-E traces have smaller noise values, which
is important for detecting small calcium transients (Figure 4.6E, cell 4). For traces with low
SNRs (Figure 4.6, cell 7− 10), it is challenging to detect any calcium events from the PCA/ICA
traces due to the large noise variance; CNMF-E is able to visually recover many of these weaker
signals. For those cells missed by PCA/ICA, their traces extracted by CNMF-E have reasonable
morphologies and visible calcium events (Figure 4.6F).

The demixing performance of PCA/ICA analysis can be relatively weak because it is inher-
ently a linear demixing method [105]. Since CNMF-E uses a more suitable nonlinear matrix
factorization method, it has a better capability of demixing spatially overlapping neurons. As an
example, Figure 4.6G shows three closeby neurons identified by both CNMF-E and PCA/ICA
analysis. PCA/ICA forces its obtained filters to be spatially separated to reduce their dependence
(thus reducing the effective signal strength), while CNMF-E allows inferred spatial components
to have large overlaps (Figure 4.6G, left), retaining the full signal power. In the traces extracted
by PCA/ICA, the component labeled in green contains many negative “spikes," which are highly
correlated with the spiking activity of the blue neuron (Figure 4.6G, yellow). In addition, the
green PCA/ICA neuron has significant crosstalk with the red neuron due to the failure of signal
demixing (Figure 4.6G, cyan); the CNMF-E traces shows no comparable negative “spikes" or
crosstalk. See also S8 Video for further details.

4.3.6 Application to ventral hippocampus neurons
In the previous two examples, we analyzed data with densely packed neurons, in which the neuron
sizes are all similar. In the next example, we apply CNMF-E to a dataset with much sparser and
more heterogeneous neural signals. The data used here were recorded from amygdala-projecting
neurons expressing GCaMP6f in ventral hippocampus. In this dataset, some neurons that are
slightly above or below the focal plane were visible with prominent signals, though their spatial
shapes are larger than neurons in the focal plane.

This example is somewhat more challenging due to the large diversity of neuron sizes. It is
possible to set multiple parameters to detect neurons of different sizes (or to e.g. differentially
detect somas versus smaller segments of axons or dendrites passing through the focal plane),
but for illustrative purposes here we use a single neural size parameter to initialize all of the
components. This in turn splits some large neurons into multiple components. Following this
crude initialization step, we ran three iterations of updating the model variables A,C, and B,
together with some manual merge/delete interventions (see Methods and Materials below), leading
to improved source extraction results (see S10 Video for details on the manual merge and delete
interventions performed here). In this example, we detected 22 CNMF-E components and 25
PCA/ICA components. The contours of these inferred neurons are shown in Figure 4.7A. In
total we have 20 components detected by both methods (shown in the first three rows of Figure
4.7B+C); each method detected extra components that are not detected by the other (the last rows
of Figure 4.7B+C). Once again, the PCA/ICA filters contain many negative pixels in an effort to
reduce spatial overlaps; see components 3 and 5 in Figure 4.7A-C, for example. All traces of the
inferred neurons are shown in Figure 4.7D+E. We can see that the CNMF-E traces have much
lower noise level and cleaner neural signals in both high and low SNR settings. Conversely, the
calcium traces of the 5 extra neurons identified by PCA/ICA show noisy signals that are unlikely
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Figure 4.7: Neurons expressing GCaMP6f recorded in vivo in mouse ventral hippocampus. (A)
Contours of all neurons detected by CNMF-E (red) and PCA/ICA method (green). The grayscale
image is the local correlation image of the background-subtracted video data, with background
estimated using CNMF-E. (B) Spatial components of all neurons detected by CNMF-E. The
neurons in the first three rows are also detected by PCA/ICA, while the neurons in the last row are
only detected by CNMF-E. (C) Spatial components of all neurons detected by PCA/ICA; similar
to (B), the neurons in the first three rows are also detected by CNMF-E and the neurons in the last
row are only detected by PCA/ICA method. (D) Temporal traces of all detected components in
(B). ‘Match’ indicates neurons in top three rows in panel (B); ‘Other’ indicates neurons in the
fourth row. (E) Temporal traces of all components in (C). Scalebars: 20 seconds. See S9 Video
for demixing results.

to be neural responses.

4.3.7 Application to footshock responses in the bed nucleus of the stria
terminalis (BNST)

Identifying neurons and extracting their temporal activity is typically just the first step in the
analysis of calcium imaging data; downstream analyses rely heavily on the quality of this initial
source extraction. We showed above that, compared to PCA/ICA, CNMF-E is better at extracting
activity dynamics, especially in regimes where neuronal activities are correlated (c.f. Figure
4.4C). Using in vivo electrophysiological recordings, we previously showed that neurons in the
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Figure 4.8: Neurons extracted by CNMF-E show more reproducible responses to footshock
stimuli, with larger signal sizes relative to the across-trial variability, compared to PCA/ICA.
(A-C) Spatial components (A), spatial locations (B) and temporal components (C) of 12 example
neurons detected by both CNMF-E and PCA/ICA. (D) Calcium responses of all example neurons
to footshock stimuli. Colormaps show trial-by-trial responses of each neuron, extracted by
CNMF-E (top, red) and PCA/ICA (bottom, green), aligned to the footshock time. The solid
lines are medians of neural responses over 11 trials and the shaded areas correpond to median
±1 median absolute deviation (MAD). Dashed lines indicate the shock timings. (E) Scatter plot
of peak-to-MAD ratios for all response curves in (D). For each neuron, Peak is corrected by
subtracting the mean activity within 4 seconds prior to stimulus onset and MAD is computed as
the mean MAD values over all timebins shown in (D). The red line shows y = x. Scalebars: 10
seconds. See S11 Video for demixing results.

bed nucleus of the stria terminalis (BNST) show strong responses to unpredictable footshock
stimuli [57]. We therefore measured calcium dynamics in CaMKII-expressing neurons that were
transfected with the calcium indicator GCaMP6s in the BNST and analyzed the synchronous
activity of multiple neurons in response to unpredictable footshock stimuli. We chose 12 example
neurons that were detected by both CNMF-E and PCA/ICA methods and show their spatial and
temporal components in Figure 4.8A-C. The activity around the onset of the repeated stimuli
are aligned and shown as pseudo-colored images in panel D. The median responses of CNMF-E
neurons display prominent responses to the footshock stimuli compared with the resting state
before stimuli onset. In comparison, the activity dynamics extracted by PCA/ICA have relatively
low SNR, making it more challenging to reliably extract footshock responses. Panel E summarizes
the results of panel D; we see that CNMF-E outputs significantly more easily detectable responses
than does PCA/ICA. This is an example in which downstream analyses of calcium imaging data
can significantly benefit from the improvements in the accuracy of source extraction offered by
CNMF-E.

4.4 Conclusion

Microendoscopic calcium imaging offers unique advantages and has quickly become a critical
method for recording large neural populations during unrestrained behavior. However, previous
methods fail to adequately remove background contaminations when demixing single neuron ac-
tivity from the raw data. Since strong background signals are largely inescapable in the context of
one-photon imaging, insufficient removal of the background could yield problematic conclusions
in downstream analysis. This has presented a severe and well-known bottleneck in the field. We
have delivered a solution for this critical problem, building on the constrained nonnegative matrix
factorization framework introduced in Pnevmatikakis et al. [105] but significantly extending it in
order to more accurately and robustly remove these contaminating background components.

The proposed CNMF-E algorithm can be used in either automatic or semi-automatic mode,
and leads to significant improvements in the accuracy of source extraction compared with previous
methods. In addition, CNMF-E requires very few parameters to be specified, and these parameters
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are easily interpretable and can be selected within a broad range. We demonstrated the power of
CNMF-E using data from a wide diversity of brain areas (subcortical, cortical, and deep brain
areas), SNR regimes, calcium indicators, neuron sizes and densities, and hardware setups. Among
all these examples (and many others not shown here), CNMF-E performs well and improves
significantly on the standard PCA/ICA approach. Further applications of the CNMF-E approach
appear in [16, 29, 61, 62, 75, 81, 82, 83, 91, 92, 112, 113, 132, 135, 142].

We have released our MATLAB implementation of CNMF-E as open-source software
(https://github.com/zhoupc/CNMF_E). We welcome additions or suggestions for mod-
ifications of the code, and hope that the large and growing microendoscopic imaging community
finds CNMF-E to be a helpful tool in furthering neuroscience research.

4.5 Methods and Materials

4.5.1 Algorithms for solving problem (P-S)

We let Ỹ = Y − b̂0 · 1T − B̂f and rewrite problem (P-S) as

min
A
‖Ỹ − A · Ĉ‖2

F (P-S’)

s.t. A ≥ 0, A is local and sparse.

Two algorithms were used to solve problem (P-S’) given different constraints on the sparsity of
A. Here, we briefly describe the formulation of these two algorithms; details can be found in the
referenced papers.

HALS

HALS stands for hierarchical alternating least squares [20]. It is a standard algorithm for nonneg-
ative matrix factorization. Friedrich et al. modified the fastHALS algorithm [19] to estimate the
nonnegative spatial components A, b and the nonnegative temporal activity C,f in CNMF model
Y = A · C + bfT + E by including sparsity and localization constraints [36]. When we remove
the sparsity constraint from problem (P-S’), the new problem is exactly the subproblem of the
modified HALS in [36],

min
A
‖Ỹ − A · Ĉ‖2

F (P-S1)

s.t. A ≥ 0, A(i, k) = 0 ∀ xi /∈ Pk

where Pk denotes the the spatial patch constraining the nonzero pixels of the k-th neurons. The
spatial patches can be determined using the previous estimation of A.
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LARS

In the original CNMF paper, Pnevmatikakis et al. [105] update the sparse matrix Â by minimizing
its `1 norm while constraining the residuals at each pixel to be bounded by the noise variance,

min
A
‖A‖1 (P-S2)

s.t. A ≥ 0,

‖Ỹ (i, :)− A(i, :) · Ĉ‖ ≤ σi
√
T , ∀i = 1 . . . d.

This new optimization problem is equivalent to (P-S’) when we add
∑d

i=1 λi · ‖A(i, :)‖1 to its
objective function ‖Ỹ − A · Ĉ‖2

F for sparseness penalization, where λi ≥ 0. Problem (P-S2) is
large, but we can update each row of A separately. The nonnegative LARS algorithm is used to
solve P-S2 for each pixel [31, 105].

4.5.2 Algorithms for solving problem (P-T)
Similarly as with problem (P-S), we rewrite problem (P-T) as

min
C
‖Ỹ − Â · C‖2

F (P-T’)

s.t. ci ≥ 0, si ≥ 0, G(i) · ci = si, si is sparse ∀i = 1 . . . K.

Problem (P-T) is convex and a global minimum exists. However, it is expensive to solve due to
the large number of constraints. We follow the block coordinate-descent approach used in [105].
For each neuron, we construct a raw trace yi that minimizes the residual of the spatiotemporal
data matrix while fixing other neurons’ spatiotemporal activity,

ŷi = ĉi +
âTi · (Ỹ − Â · Ĉ)

âTi âi
. (4.9)

Then various deconvolution algorithms can be applied to compute the denoised trace ĉi and
deconvolved signal ŝi from ŷi [37, 59, 99, 104, 136, 137]. These algorithms mainly differ in their
constraints on the sparsity of si; see the referenced papers for full details. In CNMF-E, we mainly
use constrained FOOPSI [105] or thresholded OASIS [37].

4.5.3 Estimating background by solving problem (P-B)
Next we discuss our algorithm for estimating the spatiotemporal background signal by solving
problem (P-B) as a linear regression problem given Â and Ĉ. Since Bf · 1 = 0, we can easily
estimate the constant baselines for each pixel as

b̂0 =
1

T
(Y − Â · Ĉ) · 1. (4.10)

Next we replace the b0 in (P-B) with this estimate and rewrite (P-B) as

min
W
‖X −W ·X‖2

F , (P-W)

s.t. Wij = 0 if dist(xi,xj) /∈ [ln, ln + 1),
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where X = Y − Â · Ĉ − b̂01
T . Given the optimized Ŵ , our estimation of the fluctuating

background is B̂f = Ŵ X̃ . The new optimization problem (P-W) can be readily parallelized into
d linear regression problems for each pixel separately. By estimating all row columns of Wi,:, we
are able to obtain the whole background signal as

B̂ = ŴX + b̂01
T . (4.11)

In some cases, X might include large residuals from the inaccurate estimation of the neurons’
spatiotemporal activity AC, e.g., missing neurons in the estimation. These residuals act as outliers
and distort the estimation of B̂f and b0. To overcome this problem, we use robust least squares
regression (RLSR) via hard thresholding to avoid contaminations from the outliers [7]. Before
solving the problem (P-W), we preprocess X by letting

Xit =

{
B−it if Xit ≥ B−it + ζ · σi
Xit else . (4.12)

where B− is the current estimation of the fluctuating background. σi is the standard deviation
of the noise at xi and its value can be estimated using the power spectral density (PSD) method
[105]. As for the first iteration of the model fitting, we set each B−it = 1

|Ωi|
∑

j∈Ωi
X̃jt as the mean

of the X̃jt for all j ∈ Ωi. The thresholding coefficient ζ can be specified by users, though we have
found a fixed default works well across the datasets used here. This preprocessing removes most
calcium transients by replacing those frames with the previously estimated background only. As
a result, it increases the robustness to inaccurate estimation of AC, and in turn leads to a better
extraction of AC in the following iterations.

4.5.4 Initialization of model variables

Since problem (P-All) is not jointly convex in all of its variables, a good initialization of model
variables is crucial for fast convergence and accurate extraction of all neurons’ spatiotemporal
activity. Previous methods assume the background component is relatively weak, allowing us to
initialize Â and Ĉ while ignoring the background or simply initializing it with a constant baseline
over time. However, the noisy background in microendoscopic data fluctuates more strongly than
the neural signals (c.f. Figure 4.5C and Figure 4.6B), which makes previous methods less valid
for the initialization of CNMF-E.

Here we design a new algorithm to initialize Â and Ĉ without estimating B̂. The whole
procedure is illustrated in Figure 4.9 and described in Algorithm 3. The key aim of our algorithm
is to exploit the relative spatial smoothness in the background compared to the single neuronal
signals visible in the focal plane. Thus we can use spatial filtering to reduce the background
in order to estimate single neurons’ temporal activity, and then initialize each neuron’s spatial
footprint given these temporal traces. Once we have Â and Ĉ, it is straightforward to initialize the
constant baseline b0 and the fluctuating background Bf by solving problem (P-B).
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Figure 4.9: Illustration of the initialization procedure. (A) Raw video data and the kernel for
filtering the video data. (B) The spatially high-pass filtered data. (C) The local correlation image
and the peak-to-noise ratio (PNR) image calculated from the filtered data in (B). (D) The temporal
correlation coefficients between the filtered traces (B) of the selected seed pixel (the red cross) and
all other pixels in the cropped area as shown in (A-C). The red and green contour correspond to
correlation coefficients equal to 0.7 and 0.3 respectively. (E) The estimated background fluctuation
yBG(t) (green) and the initialized temporal trace ĉi(t) of the neuron (red). yBG(t) is computed as
the median of the raw fluorescence traces of all pixels (green area) outside of the green contour
shown in (D) and ĉi(t) is computed as the mean of the filtered fluorescence traces of all pixels
inside the red contour. (F) The decomposition of the raw video data within the cropped area. Each
component is a rank-1 matrix and the related temporal traces are estimated in (E). The spatial
components are estimated by regressing the raw video data against these three traces. See S3
Video for an illustration of the initialization procedure.

Spatially filtering the data

We first filter the raw video data with a customized image kernel (Figure 4.9A). The kernel is
generated from a Gaussian filter

h(x) = exp

(
− ‖x‖

2

2(l/4)2

)
. (4.13)

Here we use h(x) to approximate a cell body; the factor of 1/4 in the Gaussian width is chosen to
match a Gaussian shape to a cell of width l. Instead of using h(x) as the filtering kernel directly,
we subtract its spatial mean (computed over a region of width equal to l) and filter the raw data
with h̃(x) = h(x)− h̄(x). The filtered data is denoted as Z ∈ Rd×T (Figure 4.9B). This spatial
filtering step helps accomplish two goals: (1) reducing the background B, so that Z is dominated
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Algorithm 3 Initialize model variables A and C given the raw data
Require: data Y ∈ Rd×T , neuron size l, the minimum local correlation Lmin and the minimum PNR

Pmin for selecting seed pixels
1: h(x) = exp{− ‖x‖2

2(l/4)2
}; . Gaussian kernel approximating a typical neuron

2: h̃(x)← h(x)− h̄(x) ; . kernel for spatial filtering
3: Z ← conv(Y, h(x)); . spatially filter the raw data
4: L(x)← local cross-correlation image of the filtered data Z
5: P (x)← PNR image of the filtered data Z
6: k ← 0 . neuron number
7: while True do
8: if L(x) ≤ Lmin or P (x) ≤ Pmin for all x then
9: break;

10: else
11: k ← k + 1
12: x∗ ← argmaxx(L(x) · P (x)); . select a seed pixel
13: Ωk ← {x|x is in the square box of length (2l + 1) surrounding pixel x∗} . crop a small box

near x∗

14: corr(x,x∗)← corr(z(x, t), z(x∗, t)) for all x ∈ Ωk

15: yBG(t)←
∑

corr(x,x∗)≤0.3 y(x,t)∑
corr(x,x∗)≤0.3 1 for all x ∈ Ωk . estimate the background signal using the raw

data
16: ĉk(t)←

∑
corr(x,x∗)≥0.7 z(x,t)∑

corr(x,x∗)≥0.7 1 for all x ∈ Ωk . estimate neural signal using the filtered data

17: âk, b̂f , b̂0 ← argminak,bf ,b0
‖YΩk

− (ak · ĉTk + bf · yTBG + b0 · 1T ))‖22
18: âk = max(0, âk) . the spatial component of k-th neuron
19: Y ← Y − âk · ĉTk
20: update L(x) and P (x) locally given the new Y

21: A← [a1,a2, . . . ,ak]
22: C ← [c1, c2, . . . , ck]

T

23: return A,C

by neural signals (albeit somewhat spatially distorted) in the focal plane (see Figure 4.9B as an
example); (2) performing a template matching to detect cell bodies similar to the Gaussian kernel.
Consequently, Z has large values near the center of each cell body. (However, note that we can not
simply e.g. apply CNMF to Z, because the spatial components in a factorization of the matrix Z
will typically no longer be nonnegative, and therefore NMF-based approaches can not be applied
directly.) More importantly, the calcium traces near the neuron center in the filtered data preserve
the calcium activity of the corresponding neurons because the filtering step results in a weighted
average of cellular signals surrounding each pixel (Figure 4.9B). Thus the fluorescent traces in
pixels close to neuron centers in Z can be used for initializing the neurons’ temporal activity
directly. These pixels are defined as seed pixels. We next propose a quantitative method to rank
all potential seed pixels.
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Ranking seed pixels

A seed pixel x should have two main features: first, Z(x), which is the filtered trace at pixel x,
should have high peak-to-noise ratio (PNR) because it encodes the calcium concentration ci of
one neuron; second, a seed pixel should have high temporal correlations with its neighboring
pixels (e.g., 4 nearest neighbors) because they share the same ci. We computed two metrics for
each of these two features:

P (x) =
maxt(Z(x, t))

σ(x)
, L(x) =

1

4

∑
dist(x,x′)=1

corr
(
Z(x), Z(x′)

)
. (4.14)

Recall that σ(x) is the standard deviation of the noise at pixel x; the function corr() refers to
Pearson correlation here. In our implementation, we usually threshold Z(x) by 3σ(x) before
computing L(x) to reduce the influence of the background residuals, noise, and spikes from
nearby neurons.

Most pixels can be ignored directly when selecting seed pixels because their local correlations
or PNR values are too small. To avoid unnecessary searches of the pixels, we set thresholds
for both P (x) and L(x), and only pick pixels larger than the thresholds Pmin and Lmin. It is
empirically useful to combine both metrics for screening seed pixels. For example, high PNR
values could result from large noise, but these pixels usually have small L(x) because the noise is
not shared with neighboring pixels. On the other hand, insufficient removal of background during
the spatial filtering leads to high L(x), but the corresponding P (x) are usually small because most
background fluctuations have been removed. So we create another matrix R(x) = P (x) · L(x)
that computes the pixelwise product of P (x) and L(x). We rank all R(x) in a descending order
and choose the pixel x∗ with the largest R(x) for initialization.

Greedy initialization

Our initialization method greedily initializes neurons one by one. Every time we initialize a
neuron, we will remove its initialized spatiotemporal activity from the raw video data and initialize
the next neuron from the residual. For the same neuron, there are several seed pixels that could
be used to initialize it. But once the neuron has been initialized from any of these seed pixels
(and the spatiotemporal residual matrix has been updated by peeling away the corresponding
activity), the remaining seed pixels related to this neuron have lowered PNR and local correlation.
This helps avoid the duplicate initialization of the same neuron. Also, P (x) and L(x) have to be
updated after each neuron is initialized, but since only a small area near the initialized neuron is
affected, we can update these quantities locally to reduce the computational cost. This procedure
is repeated until the specified number of neurons have been initialized or no more candidate seed
pixels exist.

This initialization algorithm can greedily initialize the required number of neurons, but the
subproblem of estimating âi given ĉi still has to deal with the large background activity in the
residual matrix. We developed a simple method to remove this background and accurately
initialize neuron shapes, described next. We first crop a (2l + 1) × (2l + 1) square centered
at x∗ in the field of view (Figure 4.9A-E). Then we compute the temporal correlation between
the filtered traces of pixel x∗ and all other pixels in the patch (Figure 4.9D). We choose those
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pixels with small temporal correlations (e.g., 0.3) as the neighboring pixels that are outside of the
neuron (the green contour in Figure 4.9D). Next, we estimate the background fluctuations as the
median values of these pixels for each frame in the raw data (Figure 4.9E). We also select pixels
that are within the neuron by selecting correlation coefficients larger than 0.7, then ĉi is refined
by computing the mean filtered traces of these pixels (Figure 4.9E). Finally, we regress the raw
fluorescence signal in each pixel onto three sources: the neuron signal (Figure 4.9E), the local
background fluctuation (Figure 4.9F), and a constant baseline. Our initial estimate of âi is given
by the regression weights onto ĉi in Figure 4.9F.

4.5.5 Interventions
We use iterative matrix updates to estimate model variables in CNMF-E. This strategy gives
us the flexibility of integrating prior information on neuron morphology and temporal activity
during the model fitting. The resulting interventions (which can in principle be performed either
automatically or under manual control) can in turn lead to faster convergence and more accurate
source extraction. We integrate 5 interventions in our CNMF-E implementation. Following these
interventions, we usually run one more iteration of matrix updates.

Merge existing components

When a single neuron is split mistakenly into multiple components, a merge step is necessary
to rejoin these components. If we can find all split components, we can superimpose all their
spatiotemporal activities and run rank-1 NMF to obtain the spatial and temporal activity of
the merged neuron. We automatically merge components for which the spatial and temporal
components are correlated above certain thresholds. Our code also provides methods to manually
specify neurons to be merged based on human judgement.

Split extracted components

When highly correlated neurons are mistakenly merged into one component, we need to use
spatial information to split into multiple components according to neurons’ morphology. Our
current implementation of component splitting requires users to manually draw ROIs for splitting
the spatial footprint of the extracted component. Automatic methods for ROI segmentation [2, 96]
could be added as an alternative in future implementations.

Remove false positives

Some extracted components have spatial shapes that do not correspond to real neurons or temporal
traces that do not correspond to neural activity. These components might explain some neural
signals or background activity mistakenly. Our source extraction can benefit from the removal
of these false positives. This can be done by manually examining all extracted components,
or in principle automatically by training a classifier for detecting real neurons. The current
implementation relies on visual inspection to exclude false positives. We also rank neurons based
on their SNRs and set a cutoff to discard all extracted components that fail to meet this cutoff.
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As with the splitting step, removing false positives could also potentially use automated ROI
detection algorithms in the future. See S10 Video for an example involving manual merge and
delete operations.

Pick undetected neurons from the residual

If all neural signals and background are accurately estimated, the residual of the CNMF-E model
Yres = Y − ÂĈ − B̂ should be relatively spatially and temporally uncorrelated. However, the
initialization might miss some neurons due to large background fluctuations and/or high neuron
density. After we estimate the background B̂ and extract a majority of the neurons, those missed
neurons have prominent fluorescent signals left in the residual. To select these undetected neurons
from the residual Yres, we use the same algorithm as for initializing neurons from the raw video
data, but typically now the task is easier because the background has been removed.

Post-process the spatial footprints

Each single neuron has localized spatial shapes and including this prior into the model fitting
of CNMF-E, as suggested in [105], leads to better extraction of neurons spatial footprints. In
the model fitting step, we constrain A to be sparse and localized. These constraints do give us
compact neuron shapes in most cases, but in some cases there are still some visually abnormal
components detected. We include a heuristic automated post-processing step after each iteration of
updating spatial shapes (P-S). For each extracted neuron A(:, k), we first convert it to a 2D image
and perform morphological opening to remove isolated pixels resulting from noise [51]. Next we
label all connected components in the image and create a mask to select the largest component.
All pixels outside of the mask in A(:, i) are set to be 0. This post-processing induces compact
neuron shapes by removing extra pixels and helps avoid mistakenly explaining the fluorescence
signals of the other neurons.

4.5.6 Pipeline, complexity analysis, and running time of CNMF-E
Our framework can be summarized in the following steps:

1. Initialize Â, Ĉ using the proposed initialization procedure.

2. Solve problem (P-B) for updates of b̂0 and B̂f .

3. Iteratively solve problem (P-S) and (P-T) to update Â and Ĉ.

4. If desired, apply interventions to intermediate results.

5. Repeat steps 2, 3, and 4 until the inferred components are stable.
In practice, the estimation of the background B (step 2) often does not vary greatly from iteration
to iteration and so this step usually can be run just once to save time. In practice, we also use
spatial and temporal decimation for improved speed, following [36]. We first run the pipeline
on decimated data to get good initializations, then we up-sample the results Â, Ĉ to the original
resolution and run one iteration of steps (2-3) on the raw data. This strategy improves on
processing the raw data directly because downsampling increases the signal to noise ratio and
eliminates many false positives.
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Name Description Default Values Used in

l size of a typical neuron soma in the FOV 30µm Algorithm 3
ln the distance between each pixel and its neighbors 60µm Problem (P-B)
Pmin the minimum peak-to-noise ratio of seed pixels 10 Algorithm 3
Lmin the minimum local correlation of seed pixels 0.8 Algorithm 3
ζ the ratio between the outlier threshold and the noise 10 Problem (P-B)

Table 4.2: Optional user-specified parameters.

Parameter selection

Table 4.2 shows 5 key parameters used in CNMF-E. All of these parameters have interpretable
meaning and can be easily picked within a broad range. The parameter l controls the size of the
spatial filter in the initialization step and is chosen as the diameter of a typical neuron in the FOV.
As long as l is much smaller than local background sources, the filtered data can be used for
detecting seed pixels and then initializing neural traces. The distance between each seed pixel
and its selected neighbors ln has to be larger than the neuron size l and smaller than the spatial
range of local background sources; in practice, this range is fairly broad. We usually set ln as
2l. To determine the thresholds Pmin and Lmin, we first compute the correlation image and PNR
image and then visually select very weak neurons from these two images. Pmin and Lmin are
determined to ensure that CNMF-E is able to choose seed pixels from these weak neurons. Small
Pmin and Lmin yield more false positive neurons, but they can be removed in the intervention step.
Finally, in practice, our results are not sensitive to the selection of the outlier parameter ζ , thus we
frequently set it as 10.

Complexity analysis

In step 1, the time cost is mainly determined by spatial filtering, resulting in O(dl2T ) time. As
for the initialization of a single neuron given a seed pixel, it is only (O(l2T )). Considering the
fact that the number of neurons is typically much smaller than the number of pixels in this data,
the complexity for step 1 remains O(dl2T ). In step 2, the complexity of estimating b̂0 is O(dT )
and estimating B̂f scales linearly with the number of pixels d. For each pixel, the computational
complexity for estimating Wi,: is O(l2T ). Thus the computational complexity in updating the
background component is O(dl2T ). In step 3, the computational complexities of solving problems
(P-S) and (P-T) have been discussed in previous literature [105] and they scale linearly with pixel
number d and time T , i.e., O(dT ). For the interventions, the one with the largest computational
cost is picking undetected neurons from the residual, which is the same as the initialization
step. Therefore, the computational cost for step 4 is O(dl2T ). To summarize, the complexity for
running CNMF-E is O(dl2T ), i.e. the method scales linearly with both the number of pixels and
the total recording time.

78



Running time

To provide a sense of the running time of the algorithm, we timed the code on the simulation data
shown in Figure 4.4. This dataset is 253× 316 pixels ×2000 frames. PCA/ICA took 485 seconds
to converge, using 250 PCs and 220 ICs. CNMF-E spent 67 seconds for initialization, 48 seconds
for estimating the background, and 29 seconds for updating spatial and temporal components,
resulting in a total of 145 seconds. Since the results already recovered the ground truth, we did not
run more iterations. The analyses were performed on a desktop with Intel Core i7-3770 CPU @
3.40GHz and 12GB RAM running Ubuntu 14.04. Timing per iteration on real data examples was
similar. Our current implementation has not yet been highly optimized for speed. All algorithm
steps can be easily parallelized; in the future we plan to pursue parallel approaches for speeding
up the code.

4.5.7 Simulation experiments
Details of the simulated experiment of Figure 4.2

The field of view was 256 × 256, with 1000 frames. We simulated 50 neurons whose shapes
were simulated as spherical 2-D Gaussian. The neuron centers were drawn uniformly from
the whole FOV and the Gaussian widths σx and σy for each neuron was also randomly drawn
from N

(
l
4
, ( 1

10
l
4
)2
)
, where l = 12 pixels. Spikes were simulated from a Bernoulli process

with probability of spiking per timebin 0.01 and then convolved with a temporal kernel g(t) =
exp(−t/τd) − exp(−t/τr), with fall time τd = 6 timebin and rise time τr = 1 timebin. We
simulated the spatial footprints of local backgrounds as 2-D Gaussian as well, but the mean
Gaussian width is 5 times larger than the neurons’ widths. As for the spatial footprint of the blood
vessel in Figure 4.2A, we simulated a cubic function and then convolved it with a 2-D Gaussian
(Gaussian width=3 pixel). We use a random walk model to simulate the temporal fluctuations
of local background and blood vessel. For the data used in Figure 4.2A-H, there were 23 local
background sources; for Figure 4.2I, we varied the number of background sources.

We used the raw data to estimate the background in CNMF-E without subtracting the neural
signals ÂĈ in problem (P-B). We set ln = 15 pixels and left the remaining parameters at their
default values. The plain NMF was performed using the built-in MATLAB function nnmf, which
utilizes random initialization.

Details of the simulated experiment of Figure 4.3 and Figure 4.4

We used the same simulation settings for both Figure 4.3 and Figure 4.4. The field of view was
253× 316 and the number of frames was 2000. We simulated 200 neurons using the same method
as the simulation in Figure 4.2, but for the background we used the spatiotemporal activity of
the background extracted using CNMF-E from real experimental data (data not shown). The
noise level Σ was also estimated from the data. When we varied the SNR in Figure4.4D-G, we
multiplied Σ with an SNR reduction factor.

We set l = 12 pixels to create the spatial filtering kernel. As for the thresholds used for
determining seed pixels, we varied them for different SNR settings by visually checking the
corresponding local correlation images and PNR images. The selected values were Lmin =
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[0.9, 0.8, 0.8, 0.80.6, 0.6] and Pmin = [30, 10, 10, 10, 8, 6] for different SNR reduction factors
[1, 2, 3, 4, 5, 6]. For PCA/ICA analysis, we set the number of PCs and ICs as 600 and 300
respectively.

4.5.8 In vivo microendoscopic imaging and data analysis
For all experimental data used in this work, we ran both CNMF-E and PCA/ICA. For CNMF-E, we
chose parameters so that we initialized about 10-20% extra components, which were then merged
or deleted (some automatically, some under manual supervision) to obtain the final estimates.
Exact parameter settings are given for each dataset below. For PCA/ICA, the number of ICs were
selected to be slightly larger than our extracted components in CNMF-E (as we found this led to
the best results for this algorithm), and the number of PCs was selected to capture over 90% of
the signal variance. The weight of temporal information in spatiotemporal ICA was set as 0.1.
After obtaining PCA/ICA filters, we again manually removed components that were clearly not
neurons based on neuron morphology.

We computed the SNR of extracted cellular traces to quantitatively compare the performances
of two approaches. For each cellular trace y, we first computed its denoised trace c using the
selected deconvolution algorithm (here, it is thresholded OASIS); then the SNR of y is

SNR =
‖c‖2

2

‖y − c‖2
2

. (4.15)

For PCA/ICA results, the calcium signal y of each IC is the output of its corresponding spatial
filter, while for CNMF-E results, it is the trace before applying temporal deconvolution, i.e., ŷi in
Eq. (4.9).

Dorsal striatum data

Expression of the genetically encoded calcium indicator GCaMP6f in neurons was achieved using
a recombinant adeno-associated virus (AAV) encoding the GCaMP6f protein under transcriptional
control of the synapsin promoter (AAV-Syn-GCaMP6f). This viral vector was packaged (Serotype
1) and stored in undiluted aliquots at a working concentration of > 1012 genomic copies per ml
at −80◦C until intracranial injection. 500µl of AAV1-Syn-GCaMP6f was injected unilaterally
into dorsal striatum (0.6 mm anterior to Bregma, 2.2mm lateral to Bregma, 2.5mm ventral to the
surface of the brain). 1 week post injection, a 1mm gradient index of refraction (GRIN) lens was
implanted into dorsal striatum ∼ 300µm above the center of the viral injection. 3 weeks after the
implantation, the GRIN lens was reversibly coupled to a miniature 1-photon microscope with an
integrated 475nm LED (Inscopix). Using nVistaHD Acquisition software, images were acquired
at 30 frames per second with the LED transmitting 0.1 to 0.2 mW of light while the mouse was
freely moving in an open field arena. Images were down sampled to 10Hz and processed into
TIFFs using Mosaic software. All experimental manipulations were performed in accordance with
protocols approved by the Harvard Standing Committee on Animal Care following guidelines
described in the US NIH Guide for the Care and Use of Laboratory Animals.

The parameters used in running CNMF-E were: l = 15 pixels, ln = 30 pixels, ζ = 10,
Lmin = 0.7, and Pmin = 7. 513 components were initialized from the raw data in the first
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pass before subtracting the background, and then additional components were initialized in a
second pass. For this and the following experiments, the selected algorithm for updating spatial
components was HALS [36] and the method for deconvolving calcium traces was thresholded
OASIS [37]. Since the frame rate was relatively low (10 Hz), we used an AR(1) model for the
temporal traces. We used the same method selection in the following experimental datasets.
We ran all 5 types of interventions both automatically and manually. In the end, we obtained
550 components. As for PCA/ICA analysis, the number of PCs and ICs were 2000 and 700
respectively.

Prefrontal cortex data

Cortical neurons were targeted by administering 2 microinjections of 300 ul of AAV-DJ-CamkIIa-
GCaMP6s (titer: 5.3 x 1012, 1:6 dilution, UNC vector core) into the prefrontal cortex (PFC)
(coordinates relative to bregma; injection 1: +1.5 mm AP, 0.6 mm ML, -2.4 ml DV; injection
2: +2.15 AP, 0.43 mm ML, -2.4 mm DV) of an adult male wild type (WT) mice. Immediately
following the virus injection procedure, a 1 mm diameter GRIN lens implanted 300 um above
the injection site (coordinates relative to bregma: +1.87 mm AP, 0.5 mm ML, -2.1 ml DV). After
sufficient time had been allowed for the virus to express and the tissue to clear underneath the
lens ( 3 weeks), a baseplate was secured to the skull to interface the implanted GRIN lens with a
miniature, integrated microscope (nVista, 473 nm excitation LED, Inscopix) and subsequently
permit the visualization of Ca2+ signals from the PFC of a freely behaving mouse. The activity
of PFC neurons were recorded at 15 Hz over a 10 min period (nVista HD Acquisition Software,
Inscopix) while the test subject freely explored an empty novel chamber. Acquired data was
spatially down sampled by a factor of 2, motion corrected, and temporally down sampled to 5 Hz
(Mosaic Analysis Software, Inscopix). All procedures were approved by the University of North
Carolina Institutional Animal Care and Use Committee (UNC IACUC).

The parameters used in running CNMF-E were: l = 12 pixels, ln = 24 pixels, ζ = 10,
Lmin = 0.65, and Pmin = 10. We first downsampled the data by 2 both spatially and temporally.
Then we applied CNMF-E to the downsampled data. There were 165 components initialized in
the first pass and we obtained 185 components after running the whole CNMF-E pipeline. Then
we up-sampled the results to the original solution and updated CNMF-E variables for one more
iteration. For PCA/ICA, we used 275 PCs and 250 ICs.

Ventral hippocampus data

The calcium indicator GCaMP6f was expressed in ventral hippocampal-amygdala projecting
neurons by injecting a retrograde canine adeno type 2-Cre virus (CAV2-Cre; from Larry Zweifel,
University of Washington) into the basal amydala (coordinates relative to bregma: -1.70 AP,
3.00mm ML, and -4.25mm DV from brain tissue at site), and a Cre-dependent GCaMP6f adeno
associated virus (AAV1-flex-Synapsin-GCaMP6f, UPenn vector core) into ventral CA1 of the
hippocampus (coordinates relative to bregma: -3.16mm AP, 3.50mm ML, and -3.50mm DV from
brain tissue at site). A 0.5mm diameter GRIN lens was then implanted over the vCA1 subregion
and imaging began 3 weeks after surgery to allow for sufficient viral expression. Mice were then
imaged with Inscopix miniaturized microscopes and nVistaHD Acquisition software as described
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above; images were acquired at 15 frames per second while mice explored an anxiogenic Elevated
Plus Maze arena. Videos were motion corrected and spatially downsampled using Mosaic software.
All procedures were performed in accordance with protocols approved by the New York State
Psychiatric Institutional Animal Care and Use Committee following guidelines described in the
US NIH Guide for the Care and Use of Laboratory Animals.

The parameters used in running CNMF-E were: l = 15 pixels, ln = 30 pixels, ζ = 10,
Lmin = 0.85, and Pmin = 15. We first temporally downsampled the data by 2. Then we applied
CNMF-E to the downsampled data. There were 59 components initialized. We merged most of
these components and deleted false positives. In the end, there were 22 components left. The
intermediate results before and after each manual intervention are shown in S10 Video. Then we
up-sampled the results to the original solution and updated CNMF-E for one more iteration (steps
2&3). As for PCA/ICA analysis, the number of PCs and ICs are 100 and 40 respectively.

BNST data with footshock

Calcium indicator GCaMP6s was expressed within CaMKII-expressing neurons in the BNST by
injecting the recombinant adeno-associated virus AAVdj-CaMKII-GCaMP6s (packaged at UNC
Vector Core) into the anterior dorsal portion of BNST (coordinates relative to bregma: 0.10mm AP,
-0.95mm ML, -4.30mm DV). A 0.6 mm diameter GRIN lens was implanted above the injection
site within the BNST. As described above, images were acquired using a detachable miniature
1-photon microscope and nVistaHD Acquisition Software (Inscopix). Images were acquired at
20 frames per second while the animal was freely moving inside a sound-attenuated chamber
equipped with a house light and a white noise generator (Med Associates). Unpredictable foot
shocks were delivered through metal bars in the floor as an aversive stimulus during a 10-min
session. Each unpredictable foot shock was 0.75 mA in intensity and 500 ms in duration on
a variable interval (VI-60). As described above, images were motion corrected, downsampled
and processed into TIFFs using Mosaic Software. These procedures were conducted in adult
C57BL/6J mice (Jackson Laboratories) and in accordance with the Guide for the Care and Use
of Laboratory Animals, as adopted by the NIH, and with approval from the Institutional Animal
Care and Use Committee of the University of North Carolina at Chapel Hill (UNC).

The parameters used in running CNMF-E were: l = 15 pixels, ln = 30 pixels, ζ = 10, Lmin =
0.9, and Pmin = 15. There were 150 components initialized and there were 126 components left
after running the whole pipeline. The number of PCs and ICs in PCA/ICA were 200 and 150,
respectively.

4.5.9 Code availability

All analysis was performed with custom-written MATLAB code. MATLAB implementations of
CNMF-E algorithm can be freely downloaded on https://github.com/zhoupc/CNMF_
E.
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4.6 Supporting information
S1 Video. An example of typical microendoscopic data. The video was recorded in dorsal
striatum; experimental details can be found above.
MP4
S2 Video. Comparison of CNMF-E with rank-1 NMF in estimating background fluctuation
in simulated data. Top left: the simulated fluorescence data in Figure 4.2. Bottom left: the
ground truth of neuron signals in the simulation. Top middle: the estimated background from
the raw video data (top left) using CNMF-E. Bottom middle: the residual of the raw video after
subtracting the background estimated with CNMF-E. Top right and top bottom: same as top
middle and bottom middle, but the background is estimated with rank-1 NMF.
MP4
S3 Video. Initialization procedure for the simulated data in Figure 4.3. Top left: correlation
image of the filtered data. Red dots are centers of initialized neurons. Top middle: candidate seed
pixels (small red dots) for initializing neurons on top of PNR image. The large red dot indicates
the current seed pixel. Top right: the correlation image surrounding the selected seed pixel or the
spatial footprint of the initialized neuron. Bottom: the filtered fluorescence trace at the seed pixel
or the initialized temporal activity (both raw and denoised).
MP4
S4 Video. The results of CNMF-E in demixing simulated data in Figure 4.4 (SNR reduction
factor=1). Top left: the simulated fluorescence data. Bottom left: the estimated background. Top
middle: the residual of the raw video (top left) after subtracting the estimated background (bottom
left). Bottom middle: the denoised neural signals. Top right: the residual of the raw video data
(top right) after subtracting the estimated background (bottom left) and denoised neural signal
(bottom middle). Bottom right: the ground truth of neural signals in simulation.
MP4
S5 Video. The results of CNMF-E in demixing the simulated data in Figure 4.4 (SNR
reduction factor=6). Conventions as in previous video.
MP4
S6 Video. The results of CNMF-E in demixing dorsal striatum data. Top left: the recorded
fluorescence data. Bottom left: the estimated background. Top middle: the residual of the raw
video (top left) after subtracting the estimated background (bottom left). Bottom middle: the
denoised neural signals. Top right: the residual of the raw video data (top right) after subtracting
the estimated background (bottom left) and denoised neural signal (bottom middle). Bottom right:
the denoised neural signals while all neurons’ activity are coded with pseudocolors.
MP4
S7 Video. The results of CNMF-E in demixing PFC data. Conventions as in previous video.
MP4
S8 Video. Comparison of CNMF-E with PCA/ICA in demixing overlapped neurons in
Figure 4.6G. Top left: the recorded fluorescence data. Bottom left: the residual of the raw
video (top left) after subtracting the estimated background using CNMF-E. Top middle and top
right: the spatiotemporal activity and temporal traces of three neurons extracted using CNMF-E.
Bottom middle and bottom right: the spatiotemporal activity and temporal traces of three neurons
extracted using PCA/ICA.
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MP4
S9 Video. The results of CNMF-E in demixing ventral hippocampus data. Conventions as
in S6 Video.
MP4
S10 Video. Extracted spatial and temporal components of CNMF-E at different stages
(ventral hippocampal dataset). After initializing components, we ran matrix updates and
interventions in automatic mode, resulting in 32 components in total. In the next iteration, we
manually deleted 6 components and automatically merged neurons as well. In the last iterations, 4
neurons were merged into 2 neurons with manual verifications. The correlation image in the top
left panel is computed from the background-subtracted data in the final step.
MP4
S11 Video. The results of CNMF-E in demixing BNST data. Conventions as in S6 Video.
MP4
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Chapter 5

Fast and accurate spike inference with
hard shrinkage

In this chapter, we focus on the problem of inferring spikes from a single calcium trace, which is
also a subproblem in CNMF-E. It models the calcium dynamics and can simultaneously denoise
the trace and recover the sparse calcium events. This problem is usually solved using nonnegative
deconvolution method (FOOPSI or Constrained FOOPSI), but the inferred spiking activity contain
lots of small false positives in low-SNR settings. These false positives are problematic in event
detection. We introduce a thresholding step in the deconvolution algorithm to remove small
spikes. The resulting problem is non-convex, so we lose guarantees on finding global optima.
We solve this problem based on the online active set method for inferring spikes (OASIS) [36]
and can quickly get good solutions. In both simulated and experimental data, we show that our
modifications can improve the accuracy of the spike inference.

5.1 Problem
In Chapter 3, we reviewed the data-driven generative model for calcium dynamics and the methods
for extracting spiking activity through sparse non-negative deconvolution, which are formulated
as two optimization problems: FOOPSI (Eq. (3.4)) and Constrained FOOPSI (Eq. (3.5)). To
detect spikes or events, a thresholding step is usually required to post-process the inferred spiking
signals. However, the selection of the threshold is a nontrivial problem. In addition, the values of
true spikes could not be inferred precisely because the elevated fluorescence signals are partially
accounted by those false positives.

In this chapter, we propose a new deconvolution problem to integrate the thresholding step
into the deconvolution problem directly

minimize
c

1
2
‖c− y‖2 subject to s = Gc with st ≥ smin or st = 0. (5.1)

Compared with the FOOPSI problem in Eq. (3.4), this new problem replaces the `1 penalization
with a hard shrinkage to spike sizes, which produces sparse estimations as well. This hard
shrinkage removes a majority of false positives and avoids the fluorescence signals being explained
by them. In addition, the ‘partial spikes’ are less likely to appear due to the hard shrinkage.

85



Consequently, the values of the true spike sizes are accurately inferred in the deconvolution step.
Unlike the `1 penalization in FOOPSI, which eliminates small values and shifts large values to
lower values, the hard shrinkage in Eq. (5.1) avoids the shrinkage of large values, which further
improves the performance of the spike inference.

5.2 Solving the thresholded FOOPSI with OASIS
Since Eq. (5.1) is non-convex, our proposed thresholded FOOPSI is not guaranteed to have global
optimum. Nonetheless, we proposed a simple algorithm that obtains a good local minimum. The
algorithm we used is based on the Online Active Set Method to Infer Spikes (OASIS), which
was originally proposed by Friedrich and Paninski for solving FOOPSI and Constrained FOOPSI
problems [36]. Although these two problems can be solved using generic optimization solvers,
the speed is not fast enough to achieve real-time processing of calcium imaging data. Instead of
simply treating G as an arbitrary matrix, OASIS utilizes the banded structure in G to significantly
reduce the time cost in deconvolution. Moreover, their method allows online analysis processing
of the fluorescence data and the memory cost is O(1).

To solve the lasso problem in FOOPSI, OASIS first rewrite the constraint in Eq. (3.4) as

minimize
c

1

2
‖c− (y − λGT1)‖2 subject to ct ≥

p∑
i=1

γict−i ∀t. (5.2)

This problems shares the similarity with isotonic regression, which fits data by a non-decreasing
piecewise constant function. Formally, the problem is to solve

minimize
x

‖x− y‖2 subject to x1 ≤ . . . ≤ XT . (5.3)

The constraints in problem (5.3) is a generalization of problem (5.2) if p = 1 and γ1 = 1. The
classical exact algorithm for solving problem (5.3) is the pool adjacent violator algorithm (PAVA)
[3]. PAVA can be considered as a dual active set method. Inspired by the PAVA algorithm, Fiedrith
and Paninski developed OASIS for solving the general problem in Eq. (5.2). In the AR(1) case,
OASIS achieves the exact solution. While in the AR(2) case, the method searches for the active
sets greedily and the solution is not guaranteed to be optimum. However, it produces results that
are very close to the global minimum with speed improvement at least an order of magnitude [38].

We proposed an algorithm to solve problem (5.1) by mimicking the the same procedure as
OASIS in solving FOOPSI [36]. Results are not guaranteed to be global minimums, but we get
good local minimums in practice. Here we take the AR(1) process as an example to explain our
modified OASIS algorithm. We first rewrite Eq. (5.1) as

minimize
c

1

2
‖c− y‖2 subject to ct ≥ γct−1 + smin or ct = γct−1 ∀t. (5.4)

We introduce temporary values c′ and initialize them to be the unconstrained least squares
solution, c′ = y. Starting at t = 2 one moves forward until a violation of the constraint
c′τ ≥ γc′τ−1 + smin at some time τ is detected. Updating the two time steps by minimizing
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Algorithm 4 Fast online deconvolution algorithm for AR1 processes with thresholded spike size
Require: data y, decay factor γ, minimum spike size smin

1: initialize active set as A ← {yt, 1, t, 1)t}∀t and let i← 1
2: while i < |A| do . iterate until end
3: while i < |A| and vi+1 ≥ γlivi + smin do i← i+ 1 . move forward
4: if i == |A| then break
5: while i > 0 and vi+1 < γlivi + smin do . track back
6: Ai ←

(
wivi+γ

liwi+1vi+1

wi+γ2liwi+1
, wi + γ2liwi+1, ti, li + li+1

)
7: remove Ai+1

8: i← i− 1

9: i← i+ 1

10: for (v, w, t, l) in A do . construct solution for all t
11: for τ = 0, ..., l − 1 do ct+τ ← γτv

12: return c

1
2
(yτ−1 − c′τ−1)2 + 1

2
(yτ − γc′τ−1)2 yields an updated value c′τ−1. However, this updated value

can violate the constraint c′τ−1 ≥ γc′τ−2 and we need to update c′τ−2 as well, etc., until we have
backtracked some ∆t steps to time t̂ = τ −∆t where the constraint c′

t̂
≥ γc′

t̂−1
+ smin is already

valid. At most one needs to backtrack to the most recent spike, because c′
t̂
> γc′

t̂−1
+ smin at spike

times t̂ (Eq. 3.1). Solving

minimize
c′
t̂

1

2

∆t∑
t=0

(γtc′t̂ − yt+t̂)2 (5.5)

by setting the derivative to zero yields

c′t̂ =

∑∆t
t=0 γ

tyt+t̂∑∆t
t=0 γ

2t
(5.6)

and the next values are updated according to c′
t̂+t

= γtc′
t̂

for t = 1, ...,∆t. Now one moves
forward again until detection of the next violation c′τ ≥ γc′τ−1 + smin, backtracks again to the
most recent spike, etc. Once the end of the time series is reached we have found the optimal
solution and set c = c′.

While this yields a valid algorithm, it frequently updates each value c′t and recalculates the
full sums in equation (5.6) for each step of backtracking. In order to turn it into an efficient
algorithm we introduce pools which are now tuples of the form (vi, wi, ti, li) with value vi, weight
wi, event time ti and pool length li. Here we explicitly track the pool length. Initially there is a
pool (yt, 1, t, 1) for each time step t. During backtracking pools get combined and only the first
value v′i = c′ti is explicitly considered, while the other values are merely defined implicitly via
ct+1 = γct. The constraint ct+1 ≥ γct + smin translates to vi+1 ≥ γlivi + smin as the criterion
determining whether pools need to be combined. The introduced weights allow efficient value
updates whenever pools are merged by avoiding recalculating the sums in equation (5.6). Values
are updated according to

vi ←
wivi + γliwi+1vi+1

wi + γ2liwi+1

(5.7)
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where the denominator is the new weight of the pool and the pool lengths are summed

wi ← wi + γ2liwi+1 (5.8)
li ← li + li+1 (5.9)

Whenever pools i and i+ 1 are merged, former pool i+ 1 is removed and the succeeding pool
indices decreased by 1. The final algorithm is summarized in Algorithm 4. Compared with
the original OASIS algorithm in [36], our proposed algorithm simply modifies the condition of
merging pools from c′τ ≥ γc′τ−1 to c′τ ≥ γc′τ−1 + smin, which puts a hard constraint to the positive
jumps. Analogous to AR(1) process, we directly modify the OASIS algorithm in [36] to solve
threshold FOOPSI for AR(2) process (See Algorithm 5, where we only changes line 6 and 8 by
adding smin term).

Algorithm 5 Fast online deconvolution algorithm for AR2 processes with thresholded spike size
Require: data y, process parameters γ1, γ2, minimum spike size smin, upper bound on inter-spike-interval

ISImax

1: for t = 0, ..., ISImax do . precompute
2: (αt, βt) = (At)†1,:, δt+1 =

∑t
k=0 α

2
k, εt+1 =

∑t
k=0 αkβk

3: let i← 2
4: initialize pools as P = {(vt, ut, tt, lt)} ← {(yt, yt, t, 1)}∀t
5: while i < |P| do . iterate until end
6: while i < |P| and vi+1 ≥ αlivi + βliui−1 + smin do i← i+ 1 . move forward

7: if i == |P| then break
8: while i > 1 and vi+1 < αlivi + βliui−1 + smin do . track back
9: li ← li + li+1

10: vi ←
∑li−1

k=0 αkyti+k−εliui−1

δli
11: ui ← αli−1vi + βli−1ui−1

12: remove Pi+1

13: i← i− 1

14: i← i+ 1

15: for (v, u, t̂, l) in P do . construct solution for all t
16: ct̂ ← v
17: for t = t̂+ 1, ..., t̂+ l − 1 do ct ← γ1ct−1 + γ2ct−2

18: return c

† The elements of the matrix powers At can be efficiently computed using the equivalent expression as difference of
two exponentials well known in the AR / linear systems literature [10]: (At)1,1 = dt+1−rt+1

d−r and (At)1,2 = γ2
dt−rt

d−r ,
with decay variable d = 1

2 (γ1 +
√
γ21 + 4γ2) and rise variable r = 1

2 (γ1 −
√
γ21 + 4γ2).

5.3 Results
We compared our thresholded FOOPSI with constrained FOOPSI with simulated data generated
with both AR(1) process and AR(2) process (Figure 5.1). In the simulation, the spike size is fixed
to be 1. During the deconvolution step, we use the true AR coefficients used in the simulation.
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Fig 5. Thresholding can improve the accuracy of spike inference. (A)
Inferred trace using L1 penalty (L1, blue) and the thresholded OASIS (Thresh., green).
The data (yellow) are simulated with AR(1) model. (B) Inferred spiking activity. (C)
The detected events using thresholded OASIS depend on the selection of smin. The
ground truth is shown in red. (D,E,F), same as (A,B,C), but the data are simulated
with AR(2).

Fig 5 also shows results with a constraint on the minimal spike size for an AR(2) 595

process. Adding the constraint helps when pressed for a binary decision whether to 596

assign a spike or not, yielding visually excellent results. However, with a finite rise time 597

of the calcium response the onset detection is notoriously difficult, because for a low 598

threshold there are a lot of false positives due to noise, whereas for a high threshold, 599

closer to the peak of the calcium kernel, the onset has already occurred earlier. Indeed, 600

the greedy method for an AR(2) process tends to register spikes too late, which is 601

further exacerbated when a threshold on the spike size (smin = 0.5) is introduced, 602

leading to low values of spike similarity (correlation 0.419 ± 0.016) compared to the 603

solution of basis pursuit denoising (Eq 15) (correlation 0.497 ± 0.013). We can 604

incorporate a correction step that whenever a new spike is added, slightly jitters the 605

previous one and calculates the change in the optimization objective in order to 606

determine the optimal placement of the spike. For simplicity and low computational 607

burden, we restrict the consideration of the changing RSS to the pools prior and after 608

the jittered spike, which improves the spike detection (correlation 0.462 ± 0.015) while 609

only marginally increasing computational cost (from 8.65ms to 11.65 ms). Further 610

improvements can be obtained by following up with (O)NNLS. The solution obtained by 611

OASIS with threshold on the minimal spike size and jittering can be used to restrict 612

(O)NNLS to have non-zero values only in close proximity to the spikes of the greedily 613

obtained solution. This processing step increased the performance of spike inference to 614

correlation 0.530 ± 0.010, which is better than the already mentioned one obtained for 615

exactly solving the convex problem (Eq 15). Hence, though imposing a minimal spike 616

size renders the problem non-convex, a tractable approximate solution to this problem 617

can improve over the exact solution of the convex basis pursuit denoising problem. 618

In the AR(2) case the exact solutions (ONNLS with � or ONNLS with support only 619

in the proximity of the thresholded solution) consistently improved over the faster 620

greedy methods, as measured by spike train correlation. The performance was hardly 621

affected by whether the penalized or the thresholded version was chosen. Spike train 622

correlation harshly penalizes spikes that are detected but at an incorrect time, no 623

matter how close; therefore the activity plots and correlation values convey somewhat 624

complementary information about the quality of the inference. We attribute the 625

PLOS 20/25

Figure 5.1: Thresholding improves the accuracy of spike inference. (A) Inferred trace using L1
penalty (L1, blue) and the thresholded OASIS (Thresh., green). The data (yellow) are simulated
with AR(1) model. (B) Inferred spiking activity. (C) The detected events using thresholded
OASIS depend on the selection of smin. The ground truth is shown in red. (D,E,F), same as
(A,B,C), but the data are simulated with AR(2).

Since constrained FOOPSI uses `1 penalty for soft-thresholding the spike size, the large spike
values are lower shifted. Thus the denoised trace using `1 penalty has smaller response when a
spike is fired (Figure 5.1AD). Thresholded FOOPSI only thresholds the weak spikes and the large
values are not affected. As a result, its results better recover the ground truths (Figure 5.1AD).

As we stated in Chapter 3, the deconvolved trace s using `1 penalty typically shows ‘partial
spikes’ in neighboring bins reflecting the uncertainty regarding the exact position of a spike
(Figure 5.1BE). While this information can be useful, one sometimes wants to merely commit to
one event within a time bin instead and get rid of remaining small values in s in favor of putting all
mass into the most likely time bin. Thresholded FOOPSI avoids most ‘partial spikes’ by forcing
their values to be 0. This step helps when pressed for a binary decision whether to assign a spike
or not, yielding visually excellent results (Figure 5.1BE). The inferred value of each spike is close
to the true value 1.

We also examine the dependence of our thresholded FOOPSI on the selection of smin (Figure
5.1CF). We make the inferred s binary to detect spikes in the fluorescence trace. Using small
value of smin produces lots of false spikes because they could not be thresholded out. However, a
large smin could miss some spikes or merge close spikes into 1 spike mistakenly, resulting false
negatives. Thus the selection of smin is troublesome for our thresholded FOOPSI. To do this, we
vary the threshold smin until the RSS ‖c− y‖2 crosses the threshold σ2T . In these two simulated
examples, the resulted smin are close to 0.5, where the ground truth can be well recovered.

We also verified these results on real data, where the electrophysiological data are recorded
simultaneously with the calcium imaging [18]. We model the calcium dynamics with AR(1)
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process and optimize the AR coefficient γ using the method described in [36]. In brief, we run
constrained FOOPSI and slightly adjust the value of γ to reduce the RSS until it converges. We use
the same γ for both constrained FOOPSI and thresholded FOOPSI. Figure 5.2A shows the inferred
traces of two methods. Both traces denoise the raw trace, but the thresholded FOOPSI produces
cleaner results because most false positives are removed during the deconvolution procedure. The
inferred spike train using our thresholded FOOPSI matches the ground truth and has no false
spikes in this example. Similar to the simulation results, constrained FOOPSI splits most spikes
into small ‘partial spikes’, which reduces the size of the actual spikes. The large amplitude noises
adds more false spikes.

5.4 Conclusion
We modified the existing FOOPSI method by replacing its `1 penalty with a hard shrinkage to
the spike sizes. This change allows the removal of most false positives resulted from noise and
‘partial spikes’ divided from actual calcium events. Unlike `1 penalty, which shifts the large
values in s to lower values, thresholded FOOPSI does not affect large-value spikes. Altogether,
thresholded FOOPSI produces sparse spiking signals and accurate denoised traces. We also use
noise constraint to guide us picking the threshold smin.

Although the thresholded FOOPSI is nonconvex and the solution is usually hard to get, we
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found that the recently proposed OASIS algorithm can be easily adapted to solve our problem.
Our algorithm simply modifies the conditions of merging pools in the original OASIS algorithm.
Our solution does not add any more computational cost and allows real-time online analysis of
experimental data. Our solution can always get good results in practice.

The proposed method can be used as a standalone tool for deconvolve calcium traces, but it is
also crucial for running CNMF-E for accurate source extraction. CNMF-E includes the calcium
dynamics into the model and its performance depends on the recovery of neurons’ true signal.
The new deconvolution method proposed in this chapter can improve the results of CNMF-E by
removing the contaminations from false positives.
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Chapter 6

Conclusions and Future work

The goal of our work is to facilitate the analysis of population neurons’ activity. In this thesis I
have presented our contributions in developing methodological frameworks and computational
tools that help neuroscientists analyzing their data. We hope these methods will prove useful for
the community. In this concluding chapter, I review the research contributions of this dissertation,
as well as discuss directions for future research.

6.1 Summary

Historically, neuroscience research has shown heavy dependence on the experimental tools. In
fact, a majority of neuroscience progresses were driven by the advances in techniques of data
recording. Nowadays neuroscience is entering an exciting era in which new technologies, e.g.,
multi-electrode systems and optical imaging, are making it possible to simultaneously record
a large population of neurons. However, without supports of computational methods, these
experimental tools have much less leverage than they are capable of. Generally, the field relies on
computation in two main aspects: first, we need advanced method to extract meaningful signals
from the informative but complex data; second, drawing scientific conclusions from collected data
requires rigorous methodological framework. In this thesis, we made efforts in both aspects by
analyzing electrophysiological data and calcium imaging data.

Spike synchrony is widely reported in neural systems and it may contribute to information
transmission within and across brain regions. Critical to this theory is the potential link between
oscillatory activity and synchronous spiking. In Chapter 2, we described our method for establish-
ing the statistical association of spike synchrony with an oscillatory local field potential. Armed
with this method, future experiments can measure oscillations and synchrony in a statistical
framework in which their contributions to cognitive and behavioral processes can be accurately
quantified.

Microendoscopic calcium imaging offers unique advantages and has quickly become a critical
method for recording large neural populations during unrestrained behavior. However, all previous
methods fail badly in demixing single neuron activity from the raw data. This has presented a
severe and well-known bottleneck in the field. In Chapter 4, we have delivered the first high-
quality solution for this critical problem, building on the CNMF framework but significantly
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extending it with several non-trivial modifications. Multiple labs have switched to use our methods
immediately after comparing against previous approaches. Thus we expect this paper to have a
significant and immediate impact in neuroscience.

It has been a fundamental challenge to infer the sparse spiking activity from the measured
noisy calcium fluorescence traces. Among existing methods, the sparse nonnegative deconvolution
approach based on the generative linear model, which is reviewed in Chapter 3, is widely used
[104, 137]. In Chapter 5, we formulated thresholded FOOPSI to threshold the minimum spike
sizes during the deconvolution approach. It automatically removes false positives and produces
accurate recovery of the true spiking signals. The proposed method is nonconvex, but we provide a
solution by slightly modifying the OASIS algorithm [36]. Our method showed improved accuracy
of the inferred spiking activity.

Our work in Chapter 5 is directly connected with the problem in Chapter 4 because decon-
volving calcium traces can not only infer the spike trains, but also denoise the trace to remove
the contaminations from noise. CNMF-E iteratively updates neurons’ spatial and temporal com-
ponents, thus an accurate estimation of the temporal traces yields better estimation of neurons’
spatial footprints and improves the demixing performance.

In brief, our work in Chapter 2 make contributions by providing a methodological framework
for answering scientific questions like how oscillation is related to spike synchrony; while our
work in Chapter 4 and Chapter 5 helps us better extract individual neurons’ activity, which is
crucial for downstream analysis of calcium imaging data.

6.2 Future work
In the future, I will continue my work in Chapter 4 to make CNMF-E a powerful toolbox for
processing microendoscopic data. We mainly want to work on following, but not restricted to,
directions.

First, we want to make our implementation faster. The most time-consuming part of CNMF-E
is the step of estimating background because we have to solve a linear regression problem pixel by
pixel. For a usual optical field (300× 300 pixels), this requires high computational cost. However,
this can be done in parallel. We are thinking of using multi-core CPU or GPU to boost the speed
of model fitting.

Second, we plan to make our method scalable to big data. Currently the capacity of data to
be analyzed is constrained by the memory size of the computer (∼ 10 GB), while the size of
most data can easily exceed 10 GB. For different users, we need to provide two solutions. The
first group of people only have one computer and they want to get things done for large data
in regardless of the time cost; and the second group of people have clusters and want to use
distributed computing for fast processing of the data. Though the needs are different, the solution
might share the same idea. We plan to divide the optical field into multiple small patches and apply
CNMF-E to a small patch each time. We propose this approach based on the observation that
CNMF-E only requires local information to initialize model variables and fit the model (Chapter
4).

Third, we want to include spatial priors in the model to automatically score the extracted
components, which is important for performing interventions during the model fitting. Currently
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many interventions are still relying on users’ decision. People have shown that a trained convolu-
tion neural network can automatically identify neurons from 2-photon calcium imaging data [2].
Inspired by this work, we plan to included a similar classifier to help us detect false positives and
split neurons according to their morphologies.

Fourth, we want to develop a systematic method for analyzing data recorded across days. The
viewing field of calcium imaging across multiple days are not exactly the same due to translations,
rotation, and focus-dependent magnification changes between sessions [145]. To study the change
of the network, we need to track the same populations and match all neurons across different
sessions. We plan to extend our CNMF-E approach to solve this problem. When solving the
matrix factorization problem (Model (4.1)), we forceA to be shared across different sessions. This
method can inherently solve the problem of cell tracking and it can successfully detect neurons
that are only active in few sessions. More importantly, this method can utilize the advantage of
long-term recording for better estimation of neurons’ spatial footprints.

Finally, we expect to achieve a real-time analysis of microendoscopic data, which is very
important for designing closed-loop experiments. This work will be exciting if we can adaptively
change the experimental design according to the brain states in deep regions.
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Appendix A

Appendix for Chapter Statistical link
between network oscillation and neural
synchrony

A.1 GLM fitting of one CA1 neuron.

Figure A.1: Use point-process model to estimate the modulation of oscillation to the spiking
activity of one CA1 neuron. (A) Input currents for two differnt trials. The slow 2 Hz components
are the same, but the fast 40 Hz oscillatory signals are different due to the varying initial phases.
Both input currents have white noise. (B) Effect of stimulus λ1(t). (C) Effect of auto-history
λ2(t− t∗). (D) Effect of phase modulation λ3(φ) from the oscillatory signal.
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A.2 Spike triggered average of two V4 neurons

Figure A.2: Spike triggered average of two V4 neurons. (A)(B) Three different ways of selecting
the LFP for each neuron: LFP on the same electrode as the neuron detected (red), LFP on one of
the neighboring electrodes (blue), averaged LFP on all neighboring electrodes (green); (C)(D)
spike-triggered average for three different field potentials shown in (A)(B).

A.3 Explaining synchrony when firing rate is modulated by
the amplitude of the oscillation

In this example, the firing rate is modulated by the magnitude of the oscillation Bt = At cos(Φt),
where the amplitude At is time varying and the modulation curve is 1 +Bt = 1 +At cos(Φt). We
want to show that even though the phase-modulation assumption is violated, our method can still
explain partly the role of oscillation in synchrony (Figure A.3).

A.4 Experimental dataset used in this paper

Two datasets used for Fig. 2.7 and Fig. 2.8 were included in S1_Dataset. They were named as
CA1_data and V4_data respectively. Details of data format were described in README file of
each dataset. The data can be downloaded from here.
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Figure A.3: Explaining synchrony when firing rate is modulated by the amplitude of the oscillation.
(A) Amplitude and magnitude of the oscillatory signal; (B) Bootstrap-generated distribution of
log ζ12 values under the null hypothesis of log ζ12. Arrowhead shows the value of log ζ12 predicted
by the simplified model. A significantly larger number of synchronous spikes is observed than
predicted by the model lacking an oscillatory factor. (C) Including an oscillatory factor in the
model yields an accurate prediction of the observed number of synchronous spikes.

A.5 Code
The code developed for this work and the scripts for producing figures can be freely accessed
through this link.
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