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Abstract

Variability is an important aspect of neural systems, both in the brain and in artificial networks.
In the brain, neurons respond differently from trial to trial, even to repeated presentations of the
exact same stimulus and this variability is often correlated across neurons. Previous work has
posited that shared trial-to-trial variability (i.e., correlated neuronal variability) is behaviorally
relevant and could have important implications for computations and information encoding. In
the first three sections of this thesis, I present work to further the understanding of shared
variability in the brain. To better understand the structure of shared variability, we related
pairwise neuronal correlations to population dimensionality reduction methods. To investigate
volitional control of shared variability in non-motor brain areas, we designed a brain computer
interface for prefrontal cortex. Finally, to elucidate sources of variability, we developed a method
called pCCA-FA to partition local (i.e., single brain area) and global (i.e., brain-wide) factors
that contribute to shared variability. Variability also plays an important role in learning, in both
the brain and in artificial neural networks (i.e., deep learning). Data augmentation increases the
size, quality, and variability of datasets for improved training of deep learning models. In the
final section, we empirically evaluated how different augmentation setups perform for different
model architectures for image classification. We introduced a new augmentation, called StyleAug,
which outperforms other state-of-the-art augmentations for training vision transformers (ViTs).

Overall, this dissertation furthers the understanding of variability in both natural and artifi-
cial neural systems. For artificial neural networks, this work highlights that one should consider
different types of training data variability (i.e., augmentations) for different model architectures.
For neuroscience, this work advances the understanding of the structure of shared neuronal
variability, its distinct sources, and to what degree it can be controlled.

2





Acknowledgements

There are many people that I wish to thank for their support and contributions, both direct and
indirect, to this dissertation.

Firstly, I would like to thank my advisors Matthew Smith and Byron Yu. During the early
years of my PhD, they had the patience to show me the ropes of how to analyze data, perform
experiments, and communicate my findings. As I developed, they provided me the freedom to
pursue various ideas that I had, helping me get back on track when those ideas did not work out
or helping me develop them further when they did. Not only were they great mentors, but they
created a warm, fun, and supportive environment for doing a PhD. I would also like to thank my
thesis committee members Rob Kass and Bruno Averbeck for providing feedback on my work,
for challenging me to improve my statistical rigor, and for helping me to view my work from
different perspectives and better understand how it fits into the broader literature.

Thank you to Joao Semedo, Alireza Golestaneh, and Wan-Yi Lin–my co-workers and mentors
during my internship at the Bosch Center for Artificial Intelligence (Chapter 5). They provided
invaluable training in best practices for deep learning and computer vision, and were supportive
and enthusiastic of my various interests and ideas. I would also like to thank Filipe Condessa
and Zico Kolter for their feedback on my work at Bosch.

Thank you to Braden Purcell and Thomas Palmeri–my mentors from my undergraduate
institution Vanderbilt University. They introduced me to the world of academic research and
sparked my interests in computational and systems neuroscience.

Thank you to Pittsburgh’s wonderful scientific communities. For neuroscience, thank you
to the Program in Neural Computation, Center for the Neural Basis of Cognition, Neuroscience
Institute, and SCABBY and Brain Group journal clubs. Thank you to Carnegie Mellon’s world
class Machine Learning Department and community. I have had the privilege to meet, work with,
and learn from some of the most brilliant minds in both neuroscience and machine learning. I
would also like to thank Melissa Stupka and Beck Clark, coordinators for the Program in Neural
Computation, and Diane Stidle, coordinator for the Machine Learning Department, for their
incredible support and timely responses to my many questions.

I am deeply indebted to the many members of the Smith and Yu labs that I have the pleasure
to work with over the years. Thank you to: Katerina Acar, Deepshikha Acharya, William Bishop,
MeeDm Bossard, Benjamin Cowley, Matt Golub, Evren Gokcen, Matt Hall, Jay Hennig, Deepa
Issar, Richard Johnston, Sanjeev Khanna, Chris Ki, Tze Hui Koh, Darby Losey, Megan McDon-
nell, Yuki Minai, Rudina Morina, Asma Motiwala, Emilio Salazar-Gatzimas, Joao Semedo, Joana
Soldado-Magranger, Samantha Schmitt, Adam Snyder, Liz Spencer, Pati Stan, Hillary Wehry,
Ryan Williamson, and Shenghao Wu. I specifically want to thank Samantha Schmitt for training
and guidance in performing animal experiments. I would also like to thank Adam Synder for
mentoring me on my first rotation project in the two groups. This project transformed into a
collaboration with Ben Cowley and Rudina Morina and became my first published manuscript
(Chapter 2). I would also like to thank Ryan Williamson–my peer, collaborator, and co-author
on two projects that are dear to my heart (Chapters 3 and 4). Finally, I would like to thank
Kendra Noneman, Chris Ki, and Megan McDonnell whom I have had the pleasure of mentoring.
Having the chance to mentor these three has been an invaluable learning opportunity for myself,
and one of the most deeply rewarding experiences of doing my PhD.

Thank you to all of the friends who have helped make Pittsburgh my home. You have been a
constant source of support and memories throughout these years–from playing sports, to board
game nights, to nights out on the town. And thank you to my old friends throughout the world
who have been my vacation and adventure buddies, and who I always look forward to chatting
with on Zoom. To all my dear friends, you have helped make the good times better and the bad
times less bad.

4



Finally, I owe everything to my wonderful family. Thank you to our family pets, Aki and
Buddy, for your playfulness and companionship especially during the difficult COVID pandemic.
To my mother and father, thank you for inspiring me, for encouraging me to pursue my interests,
and for being an unwavering source of love and support throughout my life.

5





Contents

1 Introduction 12
1.1 Neuronal variability in the brain . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Variability in artificial neural systems . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 [Structure] Bridging pairwise neuronal correlations and dimensionality re-
duction 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Defining pairwise and population metrics . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Varying population metrics to assess changes in pairwise metrics. . . . . . . . . . 21
2.4 Reporting only a single statistic provides an incomplete description of population

covariability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Case study: V4 neuronal recordings during spatial attention . . . . . . . . . . . . 26
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Math Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A Relationship between correlation, loading similarity, and %sv (one latent
dimension) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B Circular arc in rsc mean versus rsc s.d. plot for one latent dimension and
fixed %sv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

C Relationship between correlation, loading similarity, and %sv (multiple
latent dimensions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

D Increasing dimensionality decreases arc radius . . . . . . . . . . . . . . . . 44
E Properties of loading similarities across different co-fluctuation patterns . 45
F Maximum variance of a unit vector . . . . . . . . . . . . . . . . . . . . . . 47

3 [Control] Stabilizing neuronal activity in prefrontal cortex using a brain
computer interface 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Designing a BCI to stabilize neuronal activity . . . . . . . . . . . . . . . . . . . . 49
3.3 Neurofeedback reduced neuronal distance to the target . . . . . . . . . . . . . . . 51
3.4 Neurofeedback suppresses neuronal drift . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Discussion and future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 [Sources] Local and global sources of coordinated neuronal variability in
prefrontal cortex 58
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Simultaneous bilateral recordings of PFC population activity . . . . . . . . . . . 59
4.3 pCCA-FA partitions across-area and within-area shared variability . . . . . . . . 59
4.4 pCCA-FA successfully recovers ground truth in various settings . . . . . . . . . . 61
4.5 Extracting fast-timescale trial-to-trial variability . . . . . . . . . . . . . . . . . . 62
4.6 Across-hemisphere shared variability is substantial, and often larger than within-

area shared variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.7 Across-hemisphere latent variables predict pupil size . . . . . . . . . . . . . . . . 63

7



4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.9 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 [Data augmentation] How to augment your ViTs? Consistency loss and
StyleAug 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 Augmentation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A Image transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B Jensen-Shannon divergence (JSD) consistency loss . . . . . . . . . . . . . 78

5.4 StyleAug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A ImageNet-1k validation accuracy . . . . . . . . . . . . . . . . . . . . . . . 80
B Robustness to corruptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C Shape bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
D Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusion 86
6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2 Discussion and future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7 Appendix 91
A Appendix for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B Appendix for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
C Appendix for Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8



List of Figures

1 Correlated neuronal variability and changes in it have been widely observed. . . . 12
2 Data augmentation improves training of deep learning models. . . . . . . . . . . . 14
3 How do statistics computed on spike count correlations between pairs of neurons

relate to how the entire population co-fluctuates? . . . . . . . . . . . . . . . . . . 17
4 Intuition about population metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Relationship between population metrics and pairwise metrics. . . . . . . . . . . 21
6 Relative strengths of dimensions affect rsc distributions. . . . . . . . . . . . . . . 24
7 Summary of relationship between pairwise and population metrics. . . . . . . . . 26
8 An observed decrease in rsc mean of macaque V4 neurons during a spatial attention

task corresponds to changes in multiple population metrics. . . . . . . . . . . . . 27
9 Population metrics and information coding. . . . . . . . . . . . . . . . . . . . . . 31
10 Neurofeedback experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
11 Distance decreases during neurofeedback . . . . . . . . . . . . . . . . . . . . . . . 52
12 Neurofeedback suppresses neuronal drift . . . . . . . . . . . . . . . . . . . . . . . 53
13 Trial-to-trial fluctuations and neuronal correlations within vs. across areas. . . . 60
14 The pCCA-FA model partitions global and local shared variability. . . . . . . . . 62
15 pCCA-FA recovers ground truth %sv and dimensionality . . . . . . . . . . . . . . 64
16 Global shared variability is substantial, and often larger than local shared variability 65
17 Global latent variables are predictive of pupil size. . . . . . . . . . . . . . . . . . 66
18 Augmentation setup and JSD consistency loss function. . . . . . . . . . . . . . . 77
19 StyleAug augmentation example . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
20 ImageNet-1k validation accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
21 Robustness to distribution shift: ImageNet-C mean corruption accuracy . . . . . 81
22 Shape bias of ImageNet trained models . . . . . . . . . . . . . . . . . . . . . . . . 82
23 Transfer learning of ImageNet trained models to Pet37 and Resisc45. . . . . . . . 83
1 (Supp Fig) Relationship between pairwise metrics, loading similarity of each latent

dimension, and the relative strengths of each dimension. . . . . . . . . . . . . . . 91
2 (Supp Fig) Eigenvalues and loading similarity by dimension for V4 population

activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3 (Supp Fig) Quantifying the extent to which each population metric contributes to

changes in pairwise metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4 (Supp Fig) Relationship between pairwise and population metrics in V1 popula-

tion responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5 (Supp Fig) Decomposition of the spike count covariance matrix and defining pop-

ulation metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6 (Supp Fig) Characterizing how changes in one population metric can impact the

estimates of another population metric. . . . . . . . . . . . . . . . . . . . . . . . 100
7 (Supp Fig) Relationships between pairwise and population metrics hold for metrics

estimated from Poisson simulated data. . . . . . . . . . . . . . . . . . . . . . . . 103
8 (Supp. Fig.) Mean spike count correlation (rsc) and signal correlation in within-

area and across-hemisphere pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9 (Supp. Fig.) pCCA-FA provided better fits to neural data than alternative models.106
10 (Supp. Fig.) Spurious correlations induced by slow-timescale fluctuations . . . . 108
11 (Supp. Fig.) Estimating slow and fast components. . . . . . . . . . . . . . . . . . 109
12 (Supp. Fig.) The most correlated dimensions in the global subspace also explain

the most variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
13 (Supp. Fig.) Slow-timescale global interactions exist in neural activity. . . . . . . 112
14 (Supp. Fig.) Predicting pupillary evoked response. . . . . . . . . . . . . . . . . . 113

9



15 (Supp. Fig.) Augmentation examples . . . . . . . . . . . . . . . . . . . . . . . . . 116
16 (Supp. Fig.) Example cue-conflict image. . . . . . . . . . . . . . . . . . . . . . . 117

10





1 Introduction

macaque MSTd
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changes in correlated variability

Figure 1: Correlated neuronal variability and changes in it have been widely observed. Four
highlighted experiments in which correlated variability (e.g., rsc mean) has been observed to change:
spatial attention (macaque area V4 [1–3]), perceptual learning (macaque dorsal medial superior temporal
area [4]), locomotion (mouse area V1 [5]), and stimulus drive (rat anterior piriform cortex [6]).

1.1 Neuronal variability in the brain

Neurons often respond differently even to repetitions of the same stimulus or task condition.
These variable neuronal responses can be correlated across neurons from trial to trial, and is
often measured using spike count correlations (rsc, also referred to as noise correlation [7]).
Correlated neuronal variability has been widely observed to change across the conditions of an
experiment. For example, changes in spike count correlation have been observed with changes in
attention [1, 2, 8–13], perceptual learning [4, 14], task difficulty [9], locomotion [5], stimulus drive
[6, 15–19], decisions [20], task context [21], anesthesia [22], adaptation [23], and more (Fig. 1).
Correlation also depend on properties of the neurons themselves, including their physical distance
[17, 24–29], tuning properties [16, 24, 30, 31], time scales of activity [2, 16, 17, 32], and neuron
type [3, 33].

A major reason that neuronal correlations have been the focus of many studies is that could
have important implications for information coding and behavior. Because a neuronal responses
are variable (i.e., “noisy”), it may be difficult to encode stimulus information using just a single
neurons. Pooling across many neurons in a population should average out the noise and allow
for better encoding. However, early work demonstrated that even small noise correlations can
substantially limit the information encoded by a population of neurons [34, 35].

Subsequent work has noted that it is not only the amount or magnitude of these correla-
tions, but importantly whether the noise is additive or multiplicative [36], and the alignment
of noise correlations with signal correlations (i.e., how neurons covary with respect to different
stimuli) [37, 38] that can impact information coding. When the noise and signal are aligned,
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larger noise correlations limit information encoding; but when signal and noise are orthogonal,
the presence of larger noise correlations can actually improve information encoding. Recently,
experimental evidence has suggested the noise covariability can indeed interfere with signal and
reduce information in the neuronal population [39, 40].

An improved understanding of the nature and characteristics of correlated neuronal variabil-
ity will help elucidate how the brain encodes and processes information. In this dissertation, I
present three research directions (summarized below) that advance our understanding of shared
trial-to-trial variability in the brain. First, we bridged between pairwise correlations and di-
mensionality reduction to elucidate the structure of shared variability (Chapter 2). Second, we
designed a brain computer interface (BCI) to investigate to what degree shared neuronal vari-
ability in prefrontal cortex (PFC) can be controlled (Chapter 3). Third, we recorded from PFC
in both hemispheres of the brain and developed a model, called pCCA-FA, to partition the global
and local sources of shared variability (Chapter 4).

Chapter 2 (structure): Bridging pairwise neuronal correlations and dimensionality
reduction.
Two commonly used approaches to study interactions among neurons are spike count correla-
tion, which describes pairs of neurons, and dimensionality reduction, applied to a population of
neurons. Although both approaches have been used to study trial-to-trial neuronal variability
correlated among neurons, they are often used in isolation and have not been directly related. In
this section, we first established concrete mathematical and empirical relationships between pair-
wise correlation and metrics of population-wide covariability based on dimensionality reduction.
Applying these insights to macaque V4 population recordings, we found that the previously
reported decrease in mean pairwise correlation associated with attention stemmed from three
distinct changes in population-wide covariability. Overall, our work builds the intuition and
formalism to bridge between pairwise correlation and population-wide covariability and presents
a cautionary tale about the inferences one can make about population activity by using a single
statistic, whether it be mean pairwise correlation or dimensionality.

Chapter 2 is based on work that is available in a published article:
Umakantha A∗, Cowley BR∗, Morina R∗. Snyder AC, Smith MA†, Yu BM† (2021). Bridging
neuronal correlations and dimensionality reduction. Neuron, 109, 2740–2754.e12. (∗ and † denote
equal contribution). DOI link. Simulation code. Code to compute metrics.

Chapter 3 (control): Stabilizing neuronal activity in prefrontal cortex using a brain
computer interface.
Previous studies have shown that neuronal activity can drift slowly over time, and these slow
drifts are thought to reflect slow changes in internal state (e.g., arousal, impulsivity, or engage-
ment [41, 42]). We sought to assess to what degree these shared neuronal fluctuations were under
volitional control in prefrontal cortex (PFC). We designed a novel brain computer interface (BCI)
paradigm that required subjects to keep PFC neuronal activity close to the activity observed at
the beginning of a session (i.e., the target activity). We showed that subjects were successfully
able to use the BCI to reduce neuronal distance to the target. Furthermore, we found that neu-
ronal activity drifted less on BCI trials than on non-BCI trials, demonstrating volitional control
over PFC neuronal variability.

Chapter 3 is based on work that is part of a working manuscript:
Williamson RC∗, Umakantha A∗, Ki CS∗, Smith MA†, Yu BM†. Stabilizing neuronal activity in
prefrontal cortex using a brain computer interface. (∗ and † denote equal contribution).
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Chapter 4 (sources): Local and global sources of coordinated neuronal variability in
prefrontal cortex.
Previous work has shown that brain-wide signals (e.g., arousal or impulsivity [41]) contribute
to how neurons co-fluctuate. In this section, we explore to what extent neuronal variability is
shared across hemispheres (i.e., global) versus shared only within a brain area in one hemisphere
(i.e., local), and the behavioral correlates of each type of variability. To ask this question, we
simultaneously recorded from prefrontal cortex (PFC) in both hemispheres of the brain during
a working memory task. We developed a probabilistic graphical model, called pCCA-FA, that
allowed us to partition shared variability into across-hemisphere and within-hemisphere com-
ponents. Surprisingly, we found that across-hemisphere shared variability was substantial, and
often larger then within-hemisphere shared variability. Furthermore, the across-hemisphere la-
tent neural activity was predictive of pupil size, which is thought to be associated with global
cognitive phenomena such as arousal or wakefulness. Within-hemisphere latent activity did not
predict pupil size. This suggests that across-hemispheres shared variability reflects global cogni-
tive processes, while within-hemisphere shared variability might reflect local processes.

Chapter 4 is based on work that is part of a working manuscript:
Umakantha A∗, Williamson RC∗, Smith MA†, Yu BM†. Coordinated variability of prefrontal
cortex activity reflects global and local processes. (∗ and † denote equal contribution).

1.2 Variability in artificial neural systems

Chapters 2-4 consider shared variability in natural neural systems (i.e., the brain); variability is
also an important component of modern artificial neural networks (i.e., deep learning). Like in
the brain, internal variability is important for deep learning both as a component of the models

Figure 2: Data augmentation improves training of deep learning models. Six CNNs (ResNet-
18) models with randomly initialized weights were trained on the CIFAR-10 dataset. Three models are
trained on the raw image data without augmentation (no augmentation), while three models are trained
with very basic image augmentations (random crop, random horizontal flip). The training curves for
models trained with augmentation reach a higher level, are more stable, and do not asymptote.
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themselves (e.g., stochastic generative models like variational autoencoders [43]), and also in
regularization techniques when training models (e.g., dropout [44], stochastic depth [45]).

Another important source of variability is external to the deep learning models themselves.
As humans, our brains/neural networks are constantly experiencing the external world, learn-
ing, and updating our beliefs and internal models (i.e., our synaptic weights or “parameters”).
However, deep learning models can only learn the features and relationships in the dataset used
to train them, limiting their robustness and generalization to unseen data. How can we increase
the amount and variability of the training data that deep learning models learn from? One class
of techniques is data augmentation–transformations of training data to increase the size, quality,
and variability of datasets. Data augmentation plays a critical role in the learning of large, ro-
bust, and performant neural network models. (Fig. 2). However, the interaction between which
data augmentation strategies work best for different model architectures is not known. In this
section, we empirically evaluated different data augmentations and strategies for different deep
learning architectures in the image classification task. Inspired by human visual perception, we
also introduced a new data augmentation which outperforms other state-of-the-art augmenta-
tions for one of the model architectures.

Chapter 5 (data augmentation): How to augment your ViTs? Consistency loss and
StyleAug, a random style transfer augmentation
The Vision Transformer (ViT) architecture has recently achieved competitive performance across
a variety of computer vision tasks. One of the motivations behind ViTs is the use of weaker in-
ductive biases, when compared to more traditional convolutional neural networks (CNNs), but
this makes ViTs more difficult to train. They require very large training datasets, heavy reg-
ularization, and strong data augmentations. The data augmentation strategies used to train
ViTs have largely been inherited from CNN training, despite the significant differences between
the two architectures. In this work, we empirically evaluated how different data augmentation
strategies performed on CNNs (e.g., ResNet) versus ViT architectures for image classification.
We introduced a new data augmentation, called StyleAug, which performs style transfer from
a training image to another randomly chosen image in the mini-batch. Combined with a con-
sistency loss, StyleAug improves ViT validation accuracy, robustness to corruptions, shape bias,
and transfer learning performance. We also found that, in addition to the classification loss, us-
ing a consistency loss between multiple augmentations of the same image was especially helpful
when training ViTs.

Chapter 5 is based on work that will be available in an arXiv preprint:
Umakantha A, Semedo JD, Golestaneh SA, Lin WS. How to augment your ViTs? Consistency
loss and StyleAug, a random style transfer augmentation.
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2 [Structure] Bridging pairwise neuronal correlations and dimen-
sionality reduction

The first studies of shared trial-to-trial neuronal variability often measured the Pearson corre-
lation in spike counts between pairs of neurons, and typically only recorded from two or a few
neurons simultaneously at a time. With recent advances in recording technology (e.g., Utah ar-
rays and Neuropixel probes), it is possible to simultaneously record from tens or even hundreds
of neurons. This has allowed the use of statistical techniques such as dimensionality reduction
and graphical models to characterize neuronal population covariance structure. While both pair-
wise correlations and dimensionality reduction have been used to measure shared trial-to-trial
neuronal variability, the relationship between the two has not been characterize. In this chap-
ter, I present our work that bridges between the two perspectives and literatures to further our
understanding of the structure of shared neuronal variability.

2.1 Introduction

Many studies of shared neuronal variability compute the average spike count correlation (rsc,
also known as noise correlation [7]) over pairs of recorded neurons for different experimental
conditions, periods of time, neuron types, etc. A decrease in this mean correlation is commonly
attributed to a reduction in the size (or gain) of shared co-fluctuations [35, 46–49], e.g., a decrease

neurons

neurons

spike count
covariance
matrix

( , )counts/bin

(neuron
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0 25

25

pairwise metrics

1-1

mean
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of pairs
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Figure 3: How do statistics computed on spike count correlations between pairs of neurons
relate to how the entire population co-fluctuates? Pairwise (rsc) and population (dimensionality
reduction) metrics both arise from the same spike count covariance matrix, but the precise relationship
between these two sets of metrics is not known. Top row: Each element of the spike count covariance
matrix corresponds to the covariance across responses to repeated presentations of the same stimulus for
two simultaneously-recorded neurons (e.g., neurons i and j, left inset). Bottom row: Pairwise metrics
(left) typically summarize the distribution of spike count correlation with the mean (rsc mean); in this
work, we propose additionally reporting the standard deviation (rsc s.d.). Population metrics (right) of
the spike count covariance matrix are identified by applying dimensionality reduction to the population
activity (e.g., gray plane depicts a low-dimensional space describing how neurons covary). By under-
standing the relationship between pairwise and population metrics, we can better interpret how changes
in pairwise statistics correspond to changes in population metrics, and vice-versa.
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in the strength of “common shared input” that drives each neuron in the population. However,
other distinct changes at the level of the entire neuronal population can manifest as the same
decrease in mean pairwise correlation. For example, a common input that drives the activity of
all neurons up and down together could be altered to drive some neurons up and other neurons
down. Alternatively, that first common input signal might remain the same, but a second
input signal could be introduced that drives some neurons up and others down. It is difficult
to differentiate these distinct possibilities using a single summary statistic, such as mean spike
count correlation.

Distinguishing among these changes to the population-wide covariability might be possible by
considering additional statistics that measure how the entire population of neurons co-fluctuates
together. In particular, one may use dimensionality reduction to compute statistics that charac-
terize multiple distinct features of population-wide covariability [50]. Dimensionality reduction
has been used to investigate decision-making [51–54], motor control [55, 56], learning [14, 57, 58],
sensory coding [59, 60], spatial attention [13, 46, 49, 61], interactions between brain areas [62–65],
and network models [66–68], among others. As with mean spike count correlation, the statistics
computed from dimensionality reduction can also change with attention [46, 49], stimulus drive
[13, 69, 70], motor output [71], and anesthesia [26]. However, unlike mean spike count correlation
(henceforth referred to as a “pairwise metric”) which averages across pairs of neurons, the statis-
tics computed from dimensionality reduction (henceforth referred to as “population metrics”)
consider the structure of population-wide covariability (Fig. 3). Although dimensionality reduc-
tion is often applied to trial-averaged activity (removing trial-to-trial variability), here we focus
on using dimensionality reduction to study trial-to-trial variability (around the trial-averaged
mean). An example of a commonly reported population metric is dimensionality [46, 56, 66–
68, 70, 72, 73]. Dimensionality is used to assess whether the number of population co-fluctuation
patterns (possibly reflecting the number of common inputs) changes across experimental con-
ditions. Thus, population metrics could help to distinguish among the distinct ways in which
population-wide covariability can change, especially those that lead to the same change in mean
spike count correlation.

Both pairwise and population metrics aim to characterize how neurons covary, and both can
be computed from the same spike count covariance matrix (Fig. 3). Still, studies rarely report
both, and the relationship between the two is not known. In this study, we establish the relation-
ship between pairwise metrics and population metrics both analytically and empirically using
simulations. We find that changes in mean spike count correlation could correspond to several
distinct changes in population metrics including: 1) the strength of shared variability (e.g., the
strength of a common input), 2) whether neurons co-fluctuate together or in opposition (e.g., how
similarly a common input drives each neuron in the population), or 3) the dimensionality (e.g.,
the number of common inputs). Furthermore, we show that a rarely-reported statistic–the stan-
dard deviation of spike count correlation–provides complementary information to the mean spike
count correlation about how a population of neurons co-fluctuates. Applying this understand-
ing to recordings in area V4 of macaque visual cortex, we found that the previously-reported
decrease in mean spike count correlation with attention stems from multiple distinct changes
in population-wide covariability. Overall, our results demonstrate that common ground exists
between the literatures of spike count correlation and dimensionality reduction and provides a
cautionary tale for attempting to draw conclusions about how a population of neurons covaries
using one, or a small number of, statistics. Our framework builds the intuition and formalism to
navigate between the two approaches, allowing for a more interpretable and richer description of
the interactions among neurons.
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Figure 4: Intuition about population metrics. a. Population activity (population raster, where
each row is the spike train for one neuron over time) is characterized by a latent co-fluctuation (blue)
and a co-fluctuation pattern made up of loadings (green squares). Each neuron’s underlying firing rate is
a product of the latent and that neuron’s loading (which may either be positive or negative). One may
also view population activity through the lens of the population activity space (right plot), where each
axis represents the activity of one neuron (n1, n2, n3 represent neuron 1, neuron 2, and neuron 3). In
this space, a co-fluctuation pattern corresponds to an axis whose orientation depends on the pattern’s
loadings (right plot, blue line). b. Population activity with a lower loading similarity than in panel a.
The loadings have both positive and negative values (i.e., dissimilar loadings), leading to neurons that
are anti-correlated (cf. top rows with bottom rows of population raster). Changing the loading similarity
will rotate a pattern’s axis in the population activity space (bottom plot, ‘rotate axis’). c. Population
activity with a lower %sv than in panel a. The strength of co-fluctuation is smaller than that in panel
a. This leads to a lower %sv, as the latent co-fluctuation shows smaller amplitude changes over time.
Changing %sv leads to no changes of the co-fluctuation pattern (bottom plot, axis is same as that in
panel a). d. Population activity with a dimensionality of 2, compared to a dimensinality of 1 in panel
a. Adding a new dimension leads to a new latent (orange line) and a new co-fluctuation pattern (‘new
dimension’). Each neuron’s underlying firing rate is expressed as a weighted combination of the latents,
where the weights correspond the neuron’s loadings in each co-fluctuation pattern. Here, each dimension
corresponds to a distinct subset of neurons (top rows vs. bottom rows); in general, this need not be the
case, as each neuron typically has nonzero weights for both dimensions. In the population activity space
(bottom plot), the activity varies along the two axes (i.e., a 2-d plane) defined by the two co-fluctuation
patterns.

2.2 Defining pairwise and population metrics

We first define the metrics that we will use to summarize 1) the distribution of spike count corre-
lations (i.e., pairwise metrics) and 2) dimensionality reduction of a population covariance matrix
(i.e., population metrics). For pairwise metrics, we consider the mean and standard deviation
(s.d.) of rsc across all pairs of neurons, which summarize the rsc distribution (Fig. 3, bottom left
panel). For population metrics, we consider loading similarity, percent shared variance (abbre-
viated to %sv), and dimensionality (described below). These metrics each describe some aspect
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of population-wide covariability and thus represent natural, multivariate extensions of rsc.
To illustrate these three population metrics, consider the activity of a population of neurons

over time (Fig. 4a, spike rasters). If the activity of all neurons goes up and down together, we
would find the pairwise spike count correlations between all pairs of neurons to be positive. A
more succinct way to characterize this population activity is to identify a single time-varying
latent co-fluctuation that is shared by all neurons (Fig. 4a, blue line). The extent to which
neurons are coupled to this latent co-fluctuation is indicated by a loading for each neuron. In
this example, because the latent co-fluctuation describes each neuron’s activity going up and
down together, the loadings have the same sign (Fig. 4a, green rectangles). We refer to the
latent co-fluctuation’s corresponding set of loadings as a co-fluctuation pattern. A co-fluctuation
pattern can be represented as a direction in the population activity space, where each coordinate
axis corresponds to the activity of one neuron (Fig. 4a, right panel, green direction embedded in
black coordinate axes).

The first population metric is loading similarity, a value between 0 and 1 that describes
to what extent the loadings differ across neurons within a co-fluctuation pattern. A loading
similarity close to 1 indicates that the loadings have the same sign and are of similar magnitude
(Fig. 4a, green squares). A loading similarity close to 0 indicates that many of the loadings
differ, either in magnitude, sign, or both (Fig. 4b, green and pink squares). In this case, some
neurons may have positive loadings and co-fluctuate in the same direction as the latent (Fig. 4b,
top rows of neurons show high firing rates when blue line is high and low firing rates when blue
line is low), while other neurons may have negative loadings and co-fluctuate in opposition to
the latent (Fig. 4b, bottom rows of neurons show low firing rates when blue line is high and high
firing rates when blue line is low). One can view changing the loading similarity as rotating the
direction of a co-fluctuation pattern in population activity space (Fig. 4b, bottom plot).

The second population metric is percent shared variance or %sv, which measures the percent-
age of spike count variance explained by the latent co-fluctuation. This percentage is computed
per neuron, then averaged across all neurons in the population [66]. A %sv close to 100% indi-
cates that the activity of each neuron is tightly coupled to the latent co-fluctuation, with a small
portion of variance that is independent to each neuron (Fig. 4a). A %sv close to 0% indicates
that neurons fluctuate almost independently of each other and their activity weakly adheres to
the time course of the latent co-fluctuation (Fig. 4c). By changing %sv, one does not change
the co-fluctuation pattern in population activity space (Fig. 4, green lines are the same in pan-
els a and c) but rather the strength of the latent co-fluctuation (Fig. 4c, blue line has smaller
amplitude than in panel a).

The third population metric is dimensionality. The variable activity of neurons may de-
pend on multiple common inputs, e.g., top-down signals like attention and arousal [41, 46] or
spontaneous and uninstructed behaviors [74, 75]–and these common inputs may differ in how
they modulate neurons. This may result in two or more dimensions of the population activity
(Fig. 4d, blue and orange latent co-fluctuations). For illustrative purposes, each dimension might
correspond to a single group of tightly-coupled neurons (Fig. 4d, neurons in top rows have non-
zero loadings for pattern 1, whereas neurons in bottom rows have non-zero loadings for pattern
2). However, in general, each neuron can have non-zero loadings for multiple patterns. In this
work, we define dimensionality as the number of co-fluctuation patterns (or dimensions) needed
to explain the shared variability among neurons. We use the term dimension to refer either
to a latent co-fluctuation or its corresponding co-fluctuation pattern, depending on context. In
population activity space, adding a new dimension adds a new axis along which neurons covary
(Fig. 4d, green lines).
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2.3 Varying population metrics to assess changes in pairwise metrics.

Given that both pairwise and population metrics are computed from the same spike count co-
variance matrix (Fig. 3), a relationship should exist between the two. We establish this rela-
tionship by deriving mathematical links and carrying out empirical simulations. In simulations,
we assessed how systematically changing one of the population metrics (e.g., increasing loading
similarity, Fig. 5a), changes the spike count covariance matrix (Fig. 5b), and the corresponding
rsc distribution (Fig. 5c), which we summarized using its mean and standard deviation (Fig. 5d).
The covariance matrix was parameterized in a way that allowed us to create covariance matrices
given a set of population metrics. Thus, our simulation procedure does not simulate neuronal
activity, but rather creates covariance matrices which are consistent with the specified population
metrics.
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Figure 5: Relationship between population metrics and pairwise metrics. Panels a-d describe
the simulation procedure to assess how systematic changes in population metrics lead to changes in
pairwise metrics. a. We first systematically varied one of the population metrics while keeping the others
fixed. For example, we can increase the loading similarity from a low value (left, blue) to a high value
(right, green), while keeping %sv and dimensionality fixed. b. Then, we constructed covariance matrices
corresponding to each value of the population metric in panel a, without generating synthetic data. c. For
each covariance matrix from panel b, we directly computed the correlations (i.e., the rsc distributions).
d. We computed rsc mean and rsc s.d. from the rsc distributions in panel c and then assessed how the
change in a given population metric from panel a changed pairwise metrics. In this case, the increase in
loading similarity increased rsc mean and decreased rsc s.d. (blue dot to green dot). e. Varying loading
similarity with a fixed %sv of 50% and dimensionality of 1. Each dot corresponds to the rsc mean and
rsc s.d. of one simulated covariance matrix with specified population metrics (dots are close together
and appear to form a continuum). The color of each dot corresponds to the loading similarity, where a
value of 1 indicates that all loading weights have the same value. f. Varying %sv. The same setting as in
panel e, except we consider two different values of percent shared variance (50% and 30%). g. Varying
dimensionality (i.e., number of co-fluctuation patterns) while sweeping loading similarity between 0 and
1 and keeping %sv fixed at 50%. In this simulation, the relative strengths of each dimension uniform
across dimensions (i.e., flat eigenspectra).
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Loading similarity has opposing effects on rsc mean and s.d.

We first asked how the loading similarity of a single co-fluctuation pattern (i.e., one dimension)
affected rsc mean and s.d. Intuitively, a high loading similarity indicates that the activity of all
neurons increases and decreases together (Fig. 4a), resulting in values of rsc that are all positive
and similar in value. Thus, rsc mean would be large and positive and rsc s.d. would be close to 0
(Fig. 5e, green dots near horizontal axis). On the other hand, a low loading similarity indicates
that when some neurons increase their activity, others decrease their activity (Fig. 4b). Thus,
rsc values would be both positive (for pairs that change their activity in the same direction)
and negative (for pairs that change their activity in opposition), resulting in large rsc s.d. and
rsc mean close to 0 (Fig. 5e, blue dots near vertical axis). By gradually changing the loading
similarity, we observed an arc-like trajectory in the rsc mean versus rsc s.d. plot (Fig. 5e). In
Math Note A, we derive the analytical relationship between loading similarity and rsc. In Math
Note B, we show mathematically why the rsc mean versus rsc s.d. relationship follows a circular
arc.

Decreasing %sv reduces rsc mean and s.d.

We next asked how %sv, which measures the percentage of each neuron’s variance that is shared
with other neurons in the population, affected rsc mean and s.d. In previous work, the rsc
mean is often interpreted as the amount of shared variability in a population of neurons [7]. In
simulations, we found that rsc mean and %sv were closely linked when loading similarity was
high, but were unrelated when loading similarity was low. For example, when loading similarity
was high and %sv decreased from 50% to 30%, we observed a proportionally-sized decrease in
rsc mean from 0.5 to 0.3 (Fig. 5f, green dots from outer arc to inner arc). On the other hand,
when loading similarity was low and %sv decreased from 50% to 30%, rsc mean changed very
little and remained close to 0 (Fig. 5f, blue dots from outer arc to inner arc). Importantly, this
illustrates that rsc mean and %sv are not the same—it is possible for a population of neurons
with high %sv to have smaller rsc mean than a population with lower %sv (Fig. 5f, blue dots in
outer arc have smaller rsc mean than green dots in inner arc).

To understand this further, we derived the precise mathematical relationship between rsc,
%sv, and the loadings for a pair of neurons (Math Note A):

ρij =
√
φiφj sign(wiwj) (1)

where ρij is the rsc between neurons i and j, φi is the %sv of neuron i (expressed as a proportion),
and wi is the loading of neuron i in the co-fluctuation pattern. Equation (1) shows that ρij
depends on %sv, but is also influenced by loading similarity. If all loadings have the same sign
(i.e., loading similarity is high), then sign(wiwj) is always +1, and ρij =

√
φiφj . In this case,

rsc mean (the average across all ρij) is a good representation of %sv. However, if many loadings
have opposite signs (i.e., low loading similarity), then some sign(wiwj) will be +1 and others
will be -1. Even if %sv (and thus |ρij |) is large, many correlations will have opposite signs,
and averaging over them results in rsc mean close to 0. In this case, rsc mean is not a good
representation of %sv.

More precisely, the %sv corresponds to the magnitude of rsc values (i.e., each |ρij |), as
opposed to the rsc mean. When loading similarity is low and %sv decreases, each |ρij | still
becomes smaller—positive correlations become less positive and negative correlations become less
negative. However, the reduction in %sv is not reflected by rsc mean, but rather by a decrease in
rsc s.d. (Fig. 5f, blue dots from outer arc to inner arc). More generally, by considering both rsc
mean and s.d. together, we observed that reducing the %sv decreased the distance to the origin
in the the rsc mean versus rsc s.d. plot (Fig. 5f, arc for %sv=30% closer to origin than arc for
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%sv=50%). We showed mathematically that the %sv population metric can be estimated using
the distance of pairwise metrics from the origin (Math Note B):

%sv ≈
√

(rsc mean)2 + (rsc s.d.)2

These findings highlight the pitfalls of considering a single statistic (e.g., rsc mean) on its
own and the benefits of considering multiple statistics (e.g., both rsc mean and s.d.) when trying
to draw conclusions about how neurons covary. By considering rsc mean and s.d. together, one
can insight into the loading similarity (Fig. 5e) and the %sv (Fig. 5f ) of a neuronal population.
Thus far, we have only considered the specific case where activity co-fluctuates along a single
dimension in the firing rate space. We next considered how pairwise metrics change in the more
general case where neuronal activity co-fluctuates along multiple dimensions.

Adding more dimensions tends to reduce rsc mean and s.d.

We sought to assess how dimensionality (i.e., the number of co-fluctuation patterns) is related to
pairwise metrics. In simulations, we increased the number of co-fluctuation patterns (compare
Fig. 4a to d ; see Methods), while sweeping loading similarity and fixing the total %sv. We
found that increasing dimensionality tended to reduce rsc mean and s.d. (Fig. 5g, dots for larger
dimensionalities lay closer to the origin than dots for smaller dimensionalities).

It seems counterintuitive that adding a new way in which neurons covary reduces the mag-
nitude of rsc. The intuition is that if multiple distinct (i.e., orthogonal) dimensions exist, then
a neuron pair interacts in opposing ways along different dimensions. For example, consider two
neurons with loadings of the same sign in one co-fluctuation pattern, and opposite sign in the
second pattern. If only the first dimension exists, the two neurons would go up and down to-
gether and be positively correlated. If only the second dimension exists, the two neurons would
co-fluctuate in opposition and be negatively correlated. When both dimensions exist, the posi-
tive correlation from the first dimension and the negative correlation from the second dimension
offset, and the resulting correlation between the neurons would be smaller than if only the first
dimension were present. We formalize the above intuition in Math Note C. We also show ana-
lytically that increasing dimensionality tends to move points closer to the origin in the rsc mean
versus rsc s.d. plot (i.e., decrease rsc mean and s.d.; Math Note D).

An increase in dimensionality does not imply that both rsc mean and rsc s.d. necessarily
decrease. For example, in the case where the first dimension has high loading similarity, adding
more dimensions means it is less likely for rsc s.d. to be 0 (Fig. 5g, compare dot closest to
horizontal axis for ‘1 dim.’ to that for ‘2 dims.’). The intuition is that if the first dimension has
a loading similarity of 1, the loading weights for all neurons are the same and thus rsc values
between all pairs are the same, resulting in rsc s.d. of 0. Adding an orthogonal dimension to this
pattern necessarily means adding a pattern with low loading similarity (Math Note E), making
it less likely for rsc across all pairs to be the same. Therefore, rsc s.d. is unlikely to be 0 for
two dimensions (Fig. 5g, the smallest rsc s.d. for ‘2 dims.’ is around 0.2). Still, in Figure 5g
the dots for ‘2 dims.’ are closer to the origin than the dots for ‘1 dim’, implying that even
if rsc s.d. increases with an increase in dimensionality, the rsc mean must decrease to a larger
extent (Math Note D). As another example, in the case where the first dimension has low loading
similarity, adding a second dimension with high loading similarity would increase rsc mean. The
rsc s.d. would decrease to a larger extent than the increase in rsc mean such that the dot for two
dimensions is closer to the origin than that for one dimension (Math Note D).
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Figure 6: Relative strengths of dimensions affect rsc distributions. With dimensionality of 2,
we systematically varied the relative strengths of the two dimensions with a fixed total %sv of 50%. We
considered two scenarios: 1) one dimension has high loading similarity and the other dimension has low
loading similarity (panel a) and 2) both dimensions have low loading similarity (panel b). Each dot
represents one simulated covariance matrix and rsc distribution. The color of the dots indicate different
relative strengths between the two dimensions, and numbers next to each cloud of dots indicate the
ratio between the relative strength associated with each dimension. For example, in panel a, red dots
correspond to the high loading similarity dimension being 19 times stronger (95:5) than the low loading
similarity dimension. Black dots correspond to the low loading similarity dimension being 19 times
stronger (5:95) than the high loading similarity dimension. In panel b, since both patterns have low
loading similarity, clouds for 80:20 and 95:5 are very similar to clouds for 20:80 and 5:95 respectively and
are thus omitted for clarity. See also Fig S1.

The relative strength of each dimension impacts pairwise metrics.

In the previous simulation (Fig. 5g), we assumed that each dimension explained an equal pro-
portion of the overall shared variance (e.g., for two dimensions, each dimension explained half
of the shared variance; see Methods). However, it is typically the case for recorded neuronal ac-
tivity that some dimensions explain more shared variance than others; in other words, neuronal
activity co-fluctuates more strongly along some patterns than others [49, 57, 66, 67, 71, 73, 76].
We sought to assess the influence of the relative strength of each dimension on pairwise metrics.

We reasoned that stronger dimensions would play a larger role than weaker dimensions in
determining the rsc distribution and pairwise metrics. Extending equation (1) to multiple di-
mensions, we show that the rsc between a pair of neurons can be expressed as the sum of a
contribution from each constituent dimension (Math Note C). The stronger a dimension, the
larger the magnitude of its contribution to rsc, and thus the larger its impact on rsc mean and
s.d.

To test this empirically, we performed a simulation with two dimensions, while systematically
varying the relative strength of each dimension. We considered two scenarios: (1) one dimension
has a pattern with high loading similarity and one dimension has a pattern with low loading
similarity (Fig. 6a), and (2) both dimensions have patterns with low loading similarity (Fig. 6b).
Note that both dimensions cannot have patterns with high loading similarity because they would
not be orthogonal (Math Note E).
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In scenario (1) where one dimension’s pattern has high loading similarity and the other has
low loading similarity, rsc mean and rsc s.d. reflects the loading similarity of the dominant
dimension (Fig. 6a). When the dimension with a high loading similarity pattern dominated, rsc
mean was large and rsc s.d. was small (Fig. 6a, red dots are close to horizontal axis). When
the dimension with a low loading similarity pattern dominated, rsc mean was small and rsc s.d.
was large (Fig. 6a, black dots are close to vertical axis). When the two dimensions were of
equal strength (i.e., neither dimension dominated), rsc mean and rsc s.d. were both intermediate
values (Fig. 6a, light gray dots are between red and black dots). Thus, the dimensions along
which neuronal activity co-fluctuates more strongly have a greater influence on pairwise metrics
(Supplementary Fig. 1).

In scenario (2) where both dimensions have patterns of low loading similarity, rsc mean was
low and rsc s.d. was high (Fig. 6b), similar to when there is one dimension with low loading
similarity (Fig. 5e, blue dots). When we made one dimension stronger than the other, rsc mean
remained low and rsc s.d. remained high (Fig. 6b, light gray dots and black dots are both close
to vertical axis) because both patterns had low loading similarity. However, the radius of the arc
increased (Fig. 6b, black dots farther from the origin than light gray dots), and was close to the
arc that would have been produced with a single dimension (Fig. 5g, ‘1 dim.’). Thus, whereas
changing the number of dimensions causes discrete jumps in the arc radius (Fig. 5g), changing
the relative strength of each dimension allows for rsc mean and rsc s.d. to vary continuously
between the arcs for different dimensionalities. Put another way, changing the relative strength
of each dimension varies the “effective dimensionality” of population activity in a continuous
manner. Neuronal activity for which one dimension dominates another (Fig. 6b, black dots) has
a lower effective dimensionality than when both dimensions have equal strength (Fig. 6b, light
gray dots).

2.4 Reporting only a single statistic provides an incomplete description of
population covariability

Figure 7 summarizes the relationships that we have established between pairwise metrics and
population metrics. Rotating a co-fluctuation pattern from a low loading similarity to a high
loading similarity increases rsc mean and decreases rsc s.d. along an arc (Fig. 7, arrow outside
pink arc). Decreasing %sv decreases both rsc mean and s.d. (Fig. 7, arrow pointing toward
origin), and increasing dimensionality also tends to decrease rsc mean and s.d. (Fig. 7, pink to
yellow shaded regions).

These results provide a cautionary tale that using a single statistic on its own provides an
opaque description of population-wide covariability. For example, a change in rsc mean could
correspond to changes in loading similarity, %sv, dimensionality, or a combination of the three.
Likewise, reporting dimensionality on its own would be incomplete because the role of a dimension
in explaining population-wide covariability depends how much shared variance it explains and the
loading similarity of its co-fluctuation pattern. For example, consider a decrease in dimensionality
by 1. This would have little impact on population-wide covariability if the removed dimension
explains only a small amount of shared variance, whereas it could have a large impact if the
removed dimension explains a large amount of shared variance.

Considering multiple statistics together provides a richer description of population-wide co-
variability. For example, in the case where population activity co-fluctuates along a single di-
mension, rsc mean and rsc s.d. can be used together to approximate %sv (using distance from
the origin) and deduce whether loading similarity is low (rsc s.d. > rsc mean) or high (rsc mean
> rsc s.d.), whereas rsc mean alone would not provide much information about %sv or loading
similarity (cf. Fig. 7). In the next section, we further demonstrate using neuronal recordings
how relating pairwise and population metrics using the framework we have developed (Fig. 7)
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Figure 7: Summary of relationship between pairwise and population metrics. A change
in rsc mean and rsc s.d. may correspond to changes in loading similarity, %sv, dimensionality, or a
combination of the three. Shaded regions indicate the possible rsc mean and rsc s.d. values for different
dimensionalities; increasing dimensionality tends to decrease rsc mean and rsc s.d. (shaded regions for
larger dimensionalities become smaller). Within each shaded region, decreasing %sv decreases both rsc
mean and s.d. radially toward the origin. Finally, rotating co-fluctuation patterns such that the loadings
are more similar (going from low to high loading similarity) results in moving clockwise along an arc
such that rsc mean increases and rsc s.d. decreases. We also note two subtle trends. First, there are
more possibilities for loading similarity to be low than high (Appendix E), suggesting that rsc s.d. will
generally tend to be larger than rsc mean if neuronal activity varied along a randomly chosen co-fluctuation
pattern (shading within each region is darker near the vertical axis than the horizontal axis). Second,
this effect becomes exaggerated for higher-dimensional neuronal activity as many dimensions can have
low loading similarity but only one dimension can have high loading similarity (Appendix E). Thus, it
becomes progressively unlikely for rsc s.d. to be 0 as dimensionality increases (shaded regions for larger
dimensionalities lifted off the horizontal axis).

provides a richer description of how neurons covary than using a single statistic (e.g., rsc mean)
alone.

2.5 Case study: V4 neuronal recordings during spatial attention

When spatial attention is directed to the receptive fields of neurons in area V4 of macaque visual
cortex, rsc mean among those neurons decreases [1–3, 10, 77]. This decrease has often been
attributed to a reduction in shared modulations among the neurons. However, we have shown
both mathematically and in simulations that several distinct changes in population metrics (e.g.,
decrease in loading similarity, decrease in %sv, or an increase in dimensionality) could underlie
this decrease in rsc mean. Here, we sought to assess which aspects of population-wide covariability
underlie, and how each of them contribute to, the overall decrease in rsc mean.

We analyzed activity recorded simultaneously from tens of neurons in macaque V4 while the
animal performed an orientation-change detection task [Fig. 8a; previously reported in 13]. To
probe spatial attention, we cued the animal to the location of the stimulus that was more likely
to change in orientation. As expected, perceptual sensitivity increased for orientation changes
in the cued stimulus location (Fig. 8a inset, red dot above black dot). ‘Attend-in’ trials were
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Figure 8 (previous page): An observed decrease in rsc mean of macaque V4 neurons during a
spatial attention task corresponds to changes in multiple population metrics. a. Experimental
task design. On each trial, monkeys maintained fixation while Gabor stimuli were presented for 400 ms
(with 300-500 ms in between presentations). When one of the stimuli changed orientation, animals were
required to saccade to the changed stimulus to obtain a reward. At the beginning of a block of trials, we
performed an attentional manipulation by cuing animals to the location of the stimulus that was more
likely to change for that block (dashed circle denotes the cued stimulus and was not presented on the
screen). The cued location alternated between blocks. Animals were more likely to detect a change in
stimulus at cued rather than uncued locations (inset in bottom right, p < 0.002 for both animals; data for
monkey 1 is shown). During this task, we recorded activity from V4 neurons whose receptive fields (RFs)
overlapped with one of the stimulus locations. b. rsc mean (left panel) and rsc s.d. (right panel) across
recording sessions for two animals. Black denotes ‘attend-out’ trials (i.e., the cued location was outside
the recorded V4 neurons’ RFs), and red denotes ‘attend-in’ trials (i.e., the cued location was inside the
RFs). Data was pooled across both animals to compute p-values reported in titles for comparison of
attend-out (black) and attend-in (red). For individual animals, rsc mean was lower for attend-in than
attend-out (p < 0.001 for each animal). rsc s.d. was also lower for attend-in than attend-out (p < 0.05 for
monkey 1, and p = 0.148 for monkey 2). c. Population metrics identified across recording sessions for two
animals (same data as in b). Black denotes attend-in trials, red denotes attend-out trials. Data was again
pooled across animals to compute p-values reported in titles for comparing attend-out and attend-in. %sv
was lower for attend-in than attend-out (p < 0.001 for monkey 1 and p < 0.02 for monkey 2). Loading
similarity was lower for attend-in than attend-out (p < 0.001 for monkey 1 and p = 0.162 for monkey
2). Dimensionality was lower for attend-in than attend-out (p = 0.113 for monkey 1 and p = 0.174 for
monkey 2). In panels a-c, dots indicate means and error bars indicate 1 s.e.m., both computed across
recording sessions. d. Summary of the real data results. Attention decreases both rsc mean and rsc s.d.
(black dot to red dot). These decreases in pairwise metrics correspond to a combination of decreases in
%sv, loading similarity, and dimensionality (dashed arrows).

those in which the cued stimulus location was inside the aggregate receptive fields (RFs) of the
recorded V4 neurons, whereas ‘attend-out’ trials were those in which the cued stimulus location
was in the opposite visual hemifield.

For pairwise metrics, rsc mean decreased when attention was directed into the RFs of the V4
neurons (Fig. 8b, left panel), consistent with previous studies [1–3, 10, 13]. We further found that
rsc s.d. was lower for attend-in trials than for attend-out trials, an effect not reported previously
(Fig. 8b, right panel).

The decrease in both rsc mean and rsc s.d. could arise from several different types of distinct
changes in population-wide covariability. To compute the population metrics, we applied factor
analysis (FA) separately to attend-out and attend-in trials (see Methods). FA is the most basic
dimensionality reduction method that characterizes shared variance among neurons [50], and
is consistent with how we created covariance matrices in Figures 5 and 6. We found three
distinct changes in population metrics. First, neuronal activity during attend-in trials had lower
%sv than during attend-out trials (Fig. 8c, left), consistent with previous interpretations that
attention reduces the strength of shared modulations [46, 48, 49, 76]. Second, we also found
lower loading similarity for attend-in trials than attend-out trials for the dominant dimension
(i.e., the dimension that explains the largest proportion of the shared variance; Fig. 8c, middle;
see also Supplementary Fig. 2b). This implies that, with attention, neurons in the population co-
fluctuate in a more heterogeneous manner (i.e., more pairs of neurons co-fluctuate in opposition,
and fewer pairs co-fluctuate together). Third, we found that dimensionality was slightly lower for
attend-in than attend-out trials (Fig. 8c, right). Thus, on average, a smaller number of distinct
shared signals were present when attention was directed into the neurons’ RFs. The small change
in dimensionality is consistent with the relative strength of each dimension (i.e., eigenspectrum
shape) being similar for attend-in and attend-out (Supplementary Fig. 2a). Taken together, this
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collection of observations of both pairwise and population metrics leads to a more refined view
of how attention affects population-wide covariability.

The pairwise (Fig. 8b) and population (Fig. 8c) metrics are computed based on the same
recorded activity and each represents a different view of population activity. The central contri-
bution of our work is to provide a framework by which to understand these two perspectives and
five different metrics in a coherent manner. Using the relationships between pairwise and popu-
lation metrics we have established in the rsc mean versus rsc s.d. space, we can decompose the
decrease in rsc mean and s.d. into: 1) a small decrease in dimensionality (Fig. 8d, small dashed
arrow), 2) a decrease in loading similarity (Fig. 8d, medium dashed arrow), and 3) a substantial
decrease in %sv (Fig. 8d, large dashed arrow). We quantify these contributions in Supplementary
Fig. 3. The rsc mean and s.d. decreased despite the decrease in dimensionality (which alone
would have tended to increase rsc mean and s.d.) because of the larger contributions of loading
similarity and %sv to pairwise metrics in these V4 recordings. We have also applied the same
analysis to population recordings in visual area V1 [78, available on CRCNS.org] and found that,
although rsc mean and s.d. both decreased (like in the V4 recordings), the population metrics
changed in a different way compared to the V4 recordings (Supplementary Fig. 4). Together,
these analyses demonstrate the need for considering both pairwise and population metrics to-
gether when studying correlated variability, with a bridge that allows one to navigate between
the two.

2.6 Discussion

Coordinated variability in the brain has long been linked to the neural computations underlying a
diverse range of functions, including sensory encoding, decision making, attention, learning, and
more. In this study, we sought to relate two major bodies of work investigating the coordinated
activity among neurons: studies that measure spike count correlation between pairs of neurons
(rsc) and studies that use dimensionality reduction to measure population-wide covariability. We
considered three population metrics and established analytically and empirically that: 1) increas-
ing loading similarity corresponds to increasing rsc mean and decreasing rsc s.d., 2) decreasing
percent shared variance (%sv) corresponds to decreasing both rsc mean and s.d., and 3) increas-
ing dimensionality tends to decrease rsc mean and s.d. Applying this understanding to recordings
in macaque V4, we found that the previously-reported decrease in mean spike count correlation
associated with attention stemmed from a decrease in %sv, a decrease in loading similarity, and
decrease in dimensionality. This analysis revealed that attention involves multiple changes in
how neurons interact that are not well captured by a single statistic alone. Overall, our work
demonstrates that common ground exists between the literatures of spike count correlation and
dimensionality reduction approaches, and builds the intuition and formalism to navigate between
them.

Our work also provides a cautionary tale for attempting to summarize population-wide co-
variability using one, or a small number of, statistics. For example, reporting only rsc mean
is incomplete because several distinct changes in population-wide covariability can correspond
to the same change in rsc mean. In a similar vein, reporting only dimensionality is incomplete
because it does not indicate how strongly the neurons covary, nor their co-fluctuation patterns.
For this reason, we recommend reporting several different pairwise and population metrics (e.g.,
the five used in this study along with the eigenspectrum of the shared covariance matrix), as
long as they can be reliably measured from the data available. This not only allows for a deeper
and more complete understanding of how neurons covary, but also it allows one to make tighter
connections to previous literature that uses the same metrics. Future work may seek to re-
visit previous results of correlated neuronal variability that are based on a single statistic (e.g.,
rsc mean), and reinterpret them within a framework that considers multiple perspectives and
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statistics of population-wide covariability, such as that presented here.
There are some situations where it is not feasible to reliably measure population statistics,

such as recording from a small number of neurons in deep brain structures [79, 80], or when
the number of trials is small relative to the number of neurons recorded. In such situations,
the rsc can be measured between pairs of neurons recorded in each session and then averaged
across sessions to obtain the rsc mean. Based on our findings, we recommend that studies which
report rsc mean also report rsc s.d. because the latter provides additional information about
population-wide covariability. For example, in the special case of one latent dimension (typically
not known in advance for real data), measuring rsc mean and rsc s.d. allows one to estimate the
loading similarity and %sv (cf. Fig. 5e-f ). In general, even when there is more than one latent
dimension in the population, rsc s.d. provides value in situating the data in the rsc mean versus
rsc s.d. plot. Changes in rsc mean and s.d. can then inform changes in population metrics based
on the relationships established in this work (cf. Fig. 8d).

The reason that our work, and many previous studies, have focused on trial-to-trial variability
is that it has important implications for information coding. Early work on information-limiting
correlations typically focused on rsc mean [e.g., 1, 7, 34, 35], which reflects the strength of
shared variability among neurons. Recent theoretical work [81, 82, 84] and experimental evi-
dence [14, 41, 85, 86] has shown that it is not only the strength of shared trial-to-trial variability
but also the directions of shared variability relative to stimulus tuning (Fig. 9a) that need to be
considered for information coding. These properties of shared trial-to-trial variability are pre-
cisely what are measured by the population metrics used here. In particular, the %sv measures
how strongly trial-to-trial variability is shared among neurons (Fig. 9b), loading similarity mea-
sures the direction(s) of variability (Fig. 9c), and dimensionality measures how many different
directions of variability exist in the data (Fig. 9d). By considering these three population metrics
together, along with the way in which mean population responses vary across conditions (i.e., the
stimulus-encoding directions), we can more incisively characterize how trial-to-trial variability
impacts information coding than by using rsc mean alone. Understanding how patterns of shared
variability are related to (e.g., align with or are orthogonal to) patterns of stimulus encoding and
downstream readouts will be likely critical for understanding information coding in the brain.

We considered three population metrics — dimensionality, percent shared variance (%sv), and
loading similarity — that summarize the structure of population-wide covariability and are rooted
in well-established concepts in existing literature. First, dimensionality has been used to describe
how neurons covary across conditions [i.e., an analysis of trial-averaged firing rates; 52, 55, 70, 83,
87], as well as how neurons covary from trial to trial [46, 57, 66–68, 72, 73, 88, 89]. We focused on
the latter in our study to connect with the rsc literature, which also seeks to understand the shared
trial-to-trial variability between neurons. To focus on the shared variability among neurons, we
used factor analysis (FA) to measure dimensionality. Another commonly-used dimensionality
reduction method, principal components analysis (PCA), although appropriate for studying trial-
averaged activity, does not distinguish between variability that is shared among neurons and
variability that is independent to each neuron. Second, investigating the loading similarity
has provided insight about whether shared variability among neurons arises from a shared global
factor which drives neurons to increase and decrease their activity together [26, 46, 47, 49, 66, 90]
or whether the co-fluctuations involve a more intricate pattern across the neuronal population
[13, 41, 91]. Third, we have previously reported %sv for area V1 [66], area M1, and network
models [66, 89]. Conceptually, %sv and rsc mean are both designed to capture the strength
of shared variability in a population of neurons. Thus, we might initially think that there
should be a one-to-one correspondence between the two quantities. Indeed, if the population
activity is described by one co-fluctuation pattern with a high loading similarity, there is a direct
relationship between %sv and rsc mean (Fig. 5f ). However, in general, %sv and rsc mean do not
have a one-to-one correspondence between them (Fig. 5f, moderate or low loading similarity).
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Figure 9: Population metrics and information coding. For illustrative purposes, we consider
the responses of two neurons to two different stimuli. a. In “condition 1” (e.g., “attend-out” in our V4
analyses), the two neurons have positively correlated trial-to-trial variability (blue and orange clouds
each have positive correlation) and a stimulus encoding space (black arrow) defined by the span of the
trial-averaged responses (blue and orange dots). Then, we consider how changes in trial-to-trial neuronal
variability (i.e., shapes of the clouds) from one experimental condition to another (e.g., spatial attention)
can influence decoding of the two stimuli. For simplicity, we construct examples in which the stimulus
encoding space remains constant between the two conditions. We illustrate here the changes in population
metrics that we observed in our V4 data (Fig. 8d). b. First, a decrease in percent shared variance (both
clouds are smaller in size) results in more accurate decoding of the population responses to the two stimuli
(the blue and orange ellipses are less overlapping here than in panel a). c. Second, a decrease in the
loading similarity of the strongest dimension (both clouds have been rotated to have negative correlation)
also leads to an improvement in decoding performance. In this case, the improvement stems from the
fact the stimulus encoding space (black arrow) and the strongest dimension of trial-to-trial variability
(negative correlation) are misaligned [81, 82]. d. Third, a decrease in dimensionality (the less dominant
dimension has been squashed for both clouds) could either improve or have no impact on decoding
performance. Here, the dimension that was squashed (negative correlation direction) was orthogonal
to the stimulus encoding dimension (black arrow), leading to no impact on decoding performance. In
general, all else being equal, higher-dimensional trial-to-trial variability [distinct from high-d signal; 83]
is more likely to overlap with stimulus encoding dimensions and thus limit the amount of information
encoded.

We focus here on studying trial-to-trial activity fluctuations that are shared between neu-
rons. Many studies have considered the source of these shared fluctuations in the context of
pairwise correlations [7]. Most commonly, pairwise correlations have been suggested to originate
through common input [34, 35]. However, there are in fact numerous mechanisms that can shape
the trial-by-trial shared variability of neuronal populations, including neuromodulation [92, 93],
coupled inhibition, or distinct patterns of neuronal connectivity [49, 66–68]. These mechanisms
likely produce distinct signatures in population metrics, such as %sv, loading similarity, and
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dimensionality. The framework that we have developed here can be applied to spiking network
models with different underlying mechanisms of shared cortical variability to identify signatures
in population metrics [49, 66–68]. We can then assess whether any of those signatures are present
in neuronal recordings to gain insight into the underlying mechanisms of shared variability in
the brain.

Although pairwise correlation and dimensionality reduction have most commonly been com-
puted based on spike counts, several studies have also computed these metrics on neuronal
activity recorded using other modalities, such as calcium imaging [51, 73, 85, 94]. The rela-
tionships that we established here between pairwise and population metrics are properties of
covariance matrices in general and do not rely on or assume recordings of neuronal spikes. Thus,
the intuition built here can be applied to other recording modalities.

Our work here focused on studying interactions within a single population of neurons. Tech-
nological advances are enabling recordings from multiple distinct populations simultaneously,
including neurons in different brain areas, neurons in different cortical layers, or different neuron
types [e.g., 95, 96]. Studies are dissecting the interactions between these distinct populations
using pairwise correlation [3, 12, 78] and dimensionality reduction [41, 62–65, 89, 97]. As we have
shown here for a single population of neurons, considering a range of metrics from both the pair-
wise correlation and dimensionality reduction perspectives, and understanding how they relate
to one another, will provide rich descriptions of how different neuronal populations interact.

2.7 Methods

Spike count covariance matrix

Both pairwise metrics and population metrics are computed directly from the spike count co-
variance matrix Σ of size n× n for a population of n neurons. Each entry in Σ is the covariance
between the activity of neuron i and neuron j:

Σij = cov(xi, xj) = E[(xi − µi)(xj − µj)] (2)

where xi and xj represent the activity of neurons i and j, respectively, and µi and µj represent
the mean activity of neurons i and j, respectively. The variance of the ith neuron is equal to Σii.

Pairwise metrics

We computed the spike count correlation (rsc) between neurons i and j directly from the spike
count covariance matrix:

ρij =
Σij√
ΣiiΣjj

(3)

We then summarized the distribution of rsc values across all pairs of neurons in the population
with two pairwise metrics: the rsc mean and rsc standard deviation (s.d.).

Population metrics

The metrics we use for characterizing population-wide covariability are based on factor analysis
[FA; 49, 51, 66, 69, 72, 88, 89], a dimensionality reduction method. We chose FA because it is
the most basic dimensionality reduction method that explicitly separates variance that is shared
among neurons from variance that is independent to each neuron. This allows us to relate the
population metrics provided by FA to spike count correlation, which is designed to measure
shared variability between pairs of neurons. One might consider using principal component
analysis (PCA), but it does not distinguish shared variance from independent variance. Thus,

32



FA is more appropriate than PCA for studying the shared variability among a population of
neurons.

Decomposing the spike count covariance matrix
FA decomposes the spike count covariance matrix Σ into a low-rank shared covariance matrix,
which captures the variability shared among neurons in the population, and an independent
variance matrix, which captures the portion of variance of each neuron unexplained by the other
neurons (Supplementary Fig. 5a):

Σ = Σshared + Ψ (4)

where Σshared ∈ Rn×n is the shared covariance matrix for n neurons, and Ψ ∈ Rn×n is a diagonal
matrix containing the independent variance of each neuron. The low-rank shared covariance
matrix can be expressed using the eigendecomposition as (Supplementary Fig. 5a):

Σshared = UΛUT (5)

where U ∈ Rn×d and Λ ∈ Rd×d, with d < n. The rank (i.e., dimensionality) of the shared
covariance matrix, d, indicates the number of latent variables. Each column of U is an eigenvector
and represents a co-fluctuation pattern containing the loading weights of each neuron (i.e., how
much each neuron contributes to that dimension). The matrix Λ is a diagonal matrix where each
diagonal element is an eigenvalue and represents the amount of variance along the corresponding
co-fluctuation pattern (e.g., in Fig. 4 panel a has larger eigenvalue than panel c).

Based on this matrix decomposition, we defined the three metrics that describe the population-
wide covariability:

• Loading similarity: the similarity of loading weights across neurons for a given co-
fluctuation pattern. Scalar value between 0 (the weights are maximally dissimilar, defined
precisely below) and 1 (all weights are the same).

• Percent shared variance (%sv): the percentage of each neuron’s variance that is ex-
plained by other neurons in the population. Percentage between 0% and 100%.

• Dimensionality: the number of dimensions (i.e., co-fluctuation patterns). Integer value.

We give the precise definitions of these population metrics below and in Supplementary Fig. 5b.

Loading similarity
We sought to define loading similarity such that, for a given co-fluctuation pattern, if the weights
for all neurons are the same, we would measure a loading similarity of 1. When the weights are as
different as possible, we would measure a loading similarity of 0. We define the loading similarity
based on the variance across the n weights (for n neurons) in a co-fluctuation pattern uk. The
smallest possible variance is 0; the largest possible variance, for a unit vector uk, is 1/n (Math
Note F). Thus, we define loading similarity for a co-fluctuation pattern uk ∈ Rn as:

loading similarity(uk) = 1− var(uk)

maxvk
var(vk)

= 1− var(uk)

1/n
(6)

where the loading similarity is computed on unit vectors (i.e., uk has a norm of 1). The notation
var(uk) denotes that the variance is being taken across the n elements of the vector uk. The
denominator of equation (6) acts as a normalizing factor, bounding the loading similarity value
between 0 and 1.
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The loading similarity distinguishes between a co-fluctuation pattern along which all neurons
in the population have the same weight in which case they change their activity up and down
together (Fig. 4a; loading similarity of 1), from one in which weights are different and some
neurons increase their activity when others decrease their activity (Fig. 4b; loading similarity
of 0). The loading weights we use here are closely related to ‘population coupling’ [90] and
‘modulator weights’ [46]. For some types of shared fluctuations, these weights are similar across
neurons in a population [i.e., high loading similarity; 46, 49, 90]. For other types of shared
fluctuations, the weights vary substantially across neurons in the population [i.e., low loading
similarity; 41].

We show in Math Note E why, if one dimension has high loading similarity, the other dimen-
sions must have low loading similarity. The reason is that co-fluctuation patterns are defined to
be mutually orthogonal. If one co-fluctuation pattern has all weights close to the same value (i.e.,
high loading similarity), then all other co-fluctuation patterns must have substantial diversity in
their weights (i.e., low loading similarity) to satisfy orthogonality.

Percent shared variance
The percent shared variance (%sv) measures the percentage of each neuron’s spike count variance
that is explained by other neurons in the population [66, 89]. Equivalently, we can think of %sv
in terms of latent co-fluctuations. Because latent co-fluctuations capture the shared variability
among neurons, the %sv measures how much of each neuron’s variance is explained by the latent
co-fluctuations. The activity of neurons may be tightly linked to the latent co-fluctuation (e.g.,
Fig. 4a), in which case a large percentage of each neuron’s variance is shared with other neurons,
or may only be loosely linked to the latent co-fluctuation (e.g., Fig. 4c), in which case a small
percentage of each neuron’s variance is shared with other neurons. Mathematically, we define
the %sv for a neuron i:

%sv for neuron i =
Σshared,ii

Σii
· 100% =

si
si + ψi

· 100% (7)

where si is the ith entry along the diagonal of the shared covariance matrix (Supplementary
Fig. 5a, Σshared), and ψi is the ith entry along the diagonal of the independent covariance matrix
(Supplementary Fig. 5a, Ψ). A %sv of 0% indicates that the neuron does not covary with (i.e.,
is independent of) other neurons in the population, whereas a %sv of 100% indicates that the
neuron’s activity can be entirely accounted for by the activity of other neurons in the population.
To compute %sv for an entire population of neurons, we averaged the %sv of the individual
neurons. All %sv values reported in this study are the %sv for the neuronal population.

Dimensionality
Dimensionality refers to the number of latent co-fluctuations needed to describe population-wide
covariability. For example, the population-wide covariability can be described by one latent co-
fluctuation (Fig. 4a) or by several latent co-fluctuations (Fig. 4d). In the population activity
space, dimensionality corresponds to the number of axes along which the population activity
varies (see Fig. 4d, bottom inset). Mathematically, the dimensionality is the rank of the shared
covariance matrix (i.e., the number of columns in U , Supplementary Fig. 5a).

Creating the spike count covariance matrices with specified population metrics

To relate pairwise and population metrics, we created spike count covariance matrices of the
form in equation (4) with specified population metrics. Importantly, we did not simulate spike
counts, nor fit a factor analysis model to simulated data. Rather, we created covariance matrices
using (4) and computed pairwise correlations directly from the entries of the covariance matrix,
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as shown in (3). Across simulations (Figs. 5 and 6), we simulated with n = 30 neurons and set
independent variances (i.e., diagonal elements of Ψ in equation (4)) to 1.

Specifying co-fluctuation patterns to obtain different loading similarities
Each co-fluctuation pattern uk is a vector with n = 30 entries (one entry per neuron). We
generated a single co-fluctuation pattern by randomly drawing 30 independent samples from a
Gaussian distribution with a mean of 2.5. We choose a nonzero mean so that we could obtain
co-fluctuation patterns with loading similarities close to 1 when drawing from the Gaussian
distribution (i.e., a mean of 0 would have resulted in almost all co-fluctuation patterns having
a loading similarity close to 0). To get a range of loading similarities between 0 and 1, we used
different standard deviations for the Gaussian. For a small standard deviation value, all entries
in the co-fluctuation pattern are close to 2.5, resulting in a high loading similarity. For larger
standard deviations, some loading weights are positive and some negative, with large variability
in their values, resulting in co-fluctuation patterns with low loading similarity. We increased the
Gaussian standard deviation from 0.1 to 5.5 with increments of size 0.1. For each increment,
we generated 50 patterns and normalized them to have unit norm. In total, we created a set of
2,750 random patterns.

The following procedure describes the construction of shared covariance matrices with one
co-fluctuation pattern. We chose a single pattern u1 ∈ R30×1 (i.e., U has only 1 column) from
the set of 2,750. We constructed the shared covariance matrix by computing UΛUT , where Λ
was chosen to achieve a desired percent shared variance (see below). The covariance matrix was
then computed according to equation (4). We created a covariance matrix, yielding a spread of
loading similarities between 0 and 1 (Fig. 5e-f ). In the next section, we describe the procedure
for creating a covariance matrix with more dimensions.

Specifying the percent shared variance
To achieve a given %sv, either the independent variance or the amount of shared variability (i.e.,
the eigenvalues) of each dimension can be adjusted. In the main text, we set the independent
variance of each neuron to Ψi = 1, and changed the total amount of shared variability by
multiplying each eigenvalue (each diagonal element in Λ from equation (5)) by the same constant
value, a. To obtain a specified %sv, we identified a by searching through a large set of possible
values (from 10−4 to 103 with step size 10−3). We allowed for a tolerance of ε = 10−3 between
the desired %sv and the %sv that was achieved after scaling the eigenvalues by a. In other
analyses, we allowed the independent variances to be different across neurons (e.g., drawn from
an exponential distribution), and the relationships between pairwise and population metrics were
qualitatively similar to those in the main text.

Increasing dimensionality
To assess how changing dimensionality affects pairwise metrics, we created covariance matrices
whose shared covariance matrix comprised more than 1 dimension. To create a shared covariance
matrix with d dimensions, we randomly chose d patterns from the set of 2750 we had generated
above (see ‘Specifying co-fluctuation patterns to obtain different loading similarities’). We then
orthogonalized the chosen patterns using the Gram-Schmidt process to obtain d orthonormal
(i.e., orthogonal and unit length) co-fluctuation patterns U ∈ R30×d. We formed the shared
covariance matrix using UΛUT , where Λ ∈ Rd×d is a diagonal matrix containing the eigenvalues
(i.e., the strength of each dimension; see ‘Specifying the relative strengths of each dimension’
below). We repeated this procedure to produce 3,000 sets of d orthonormal patterns (i.e., 3,000
different U matrices), each of which was used to create a shared covariance matrix. The spike
count covariance was computed according to equation (4).

Specifying the relative strengths of each dimension
In simulating shared covariance matrices with more than one dimension, we chose the relative
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strength of each dimension by specifying the eigenspectrum (diagonal elements of Λ in equation
(5)). We worked with three sets of eigenspectra. First, a flat eigenspectrum had eigenvalues that
were all equal (Fig. 5g). Second, for two dimensions, we varied the ratio of the two eigenvalues
between 95:5, 80:20, 50:50, 20:80, and 5:95 (Fig. 6). Third, we considered an eigenspectrum in
which each subsequent eigenvalue falls off according to an exponential function (Supplementary
Fig. 1). Only the relative (and not the absolute) eigenvalues (i.e., the shape of the eigenspectrum)
affect the results, because the eigenspectrum was subsequently scaled to achieve a desired %sv
(see ‘Specifying the values of percent shared variance’).

Analysis of V4 neuronal recordings from a spatial attention task

Electrophysiological recordings
We analyzed data from a visual spatial attention task reported in a previous study [77]. Briefly,
we implanted a 96-electrode “Utah” array (Blackrock Microsystems; Salt Lake City, UT) into
visual cortical area V4 of an adult male rhesus macaque monkey (data from two monkeys were
analyzed; in our study, monkey 1 corresponds to “monkey P” and monkey 2 corresponds to
“monkey W” from [77]). After recording electrode voltages (Ripple Neuro.; Salt Lake City, UT),
we used custom software to perform off-line spike sorting [98, freely available at https://github.
com/smithlabvision/spikesort]. This yielded 93.2 ± 8.9 and 61.9 ± 27.4 candidate units per
session for monkey 1 and 2, respectively. Experiments were approved by the Institutional Animal
Care and Use Committee of the University of Pittsburgh and were performed in accordance
with the United States National Research Council’s Guide for the Care and Use of Laboratory
Animals.

To further ensure the isolation quality of recorded units, we removed units from our analyses
according to the following criteria. First, we removed units with a signal-to-noise ratio of the
spike waveform less than 2.0 [98]. Second, we removed units with overall mean firing rates
less than 1 Hz, as estimates of rsc for these units tends to be poor [7]. Third, we removed
units that had large and sudden changes in activity due to unstable recording conditions. For
this criterion, we divided the recording session into ten equally-sized blocks and for each unit
computed the difference in average firing rate between adjacent blocks. We excluded units
with a change in average firing rate greater than 60% of the maximum firing rate (where the
maximum is taken across the ten equally-sized blocks). Fourth, we removed an electrode from
each pair of electrodes that were likely electrically-coupled. We identified the coupled electrodes
by computing the fraction of threshold crossings that occurred within 100 µs of each other for
each pair of electrodes. We then removed the fewest number of electrodes to ensure this fraction
was less than 0.2 (i.e., pairs with an unusually high number of coincident spikes) for all pairs of
electrodes. Fifth, we removed units that did not sufficiently respond to the visual stimuli used
in the experiment. Evoked spike counts (i.e., a neuron’s response after stimulus presentation)
were taken between 50 ms to 250 ms after stimulus onset, and spontaneous spike counts (i.e.,
a neuron’s response during a blank screen) were taken in a 200 ms window that ended 50 ms
before stimulus onset. For each unit, we computed a sensitivity measure d′ between evoked and
spontaneous activity:

d′ =
µevoked − µspontaneous√
1
2(σ2

evoked + σ2
spontaneous)

for mean spike counts µevoked and µspontaneous and spike count variances σ2
evoked and σ2

spontaneous.
We removed units with d′ < 0.5 from analyses, as these units had spontaneous and evoked
responses that were difficult to distinguish.
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After applying these five criteria, 44.5 ± 11.3 and 18.8 ± 6.7 units per session (mean ±
s.d. over sessions) remained for monkeys 1 and 2, respectively. Although these remaining units
likely contained both single-unit and multi-unit activity, we refer to each unit as a neuron for
simplicity. In this study, we restricted analyses to sessions with at least 10 neurons remaining
after applying the above criterion (23 sessions for monkey 1, and 14 sessions for monkey 2).

Visual stimulus change-detection task
Animals were trained to perform a change-detection task with a spatial attention cue to the
location of the visual stimulus that was more likely to change [13]. In the visual change-detection
task (Fig. 8a), animals fixated a central dot while Gabor stimuli were presented in two locations
on a computer screen. One location was chosen to be within the aggregate receptive fields (RFs)
of the recorded V4 neurons (mapped prior to running the experiment), and the other location was
placed at the mirror symmetric location in the opposite hemifield. Animals maintained fixation
while a sequence of Gabor stimuli were presented. Each drifting Gabor stimulus (oriented at
either 45◦ or 135◦) was presented for 400 ms, followed by a blank screen presented for a random
interval (between 300 and 500 ms). The sequence continued, with a fixed probability for each
presentation, until one of the two stimuli changed orientation when presented (i.e., the ‘target’).
Upon target presentation, animals were required to make a saccade to the target to earn a juice
reward. We manipulated spatial attention in the experiment by cueing the more probable target
location in blocks. At the beginning of each block, the cue was denoted by presenting only
one Gabor stimulus at the more probable target location (90% likely), and requiring animals to
detect orientation changes at this location for 5 trials. Consistent with the results of previous
studies, we found that animals had greater perceptual sensitivity for orientation changes at the
cued (i.e., attended) location than the uncued location (Fig. 8a, inset in the bottom right) and
shorter reaction times [13].

Data processing and computing spike counts
We first separated the trials into two groups: (1) “attend in” trials, for which the cued stimulus
was inside the recorded neurons’ RFs and (2) “attend out” trials, for which the cued stimulus
was outside the RFs. Since the initial orientation of the stimulus at the cued location could be
one of two values (i.e., 45◦ or 135◦), we further divided trials, resulting in a total of 4 groups of
trials per session (attend in & 45◦, attend out & 45◦, attend in & 135◦, attend out & 135◦). Each
combination of cued location and stimulus orientation was treated as an independent sample. The
same neurons were used for each of the 4 groups within each session, ensuring a fair comparison
between the attend-in and attend-out conditions.

We analyzed all stimulus presentations for which the target stimulus did not change. For
each stimulus presentation, we took spike counts in a 200 ms window starting 150 ms after
stimulus onset. For each of the 4 groups, we formed a spike count matrix X ∈ Rn×t, containing
the spike counts of the n recorded neurons for the t trials belonging to that group. These spike
count matrices were then used to compute both the pairwise and population metrics (described
below). For all analyses (Fig. 8), we excluded recording sessions with fewer than 10 neurons.
Additionally, because population metrics depend on the number of trials [66], for each session we
equalized the number of trials across the 4 groups by randomly subsampling from groups with
larger numbers of trials.

Computing pairwise metrics for V4 spike counts
We computed pairwise metrics on each combination of attention state (‘attend in’ and ‘attend
out’) and stimulus orientation. We computed the correlation matrix for X as described above in
‘Pairwise metrics’ and then computed rsc mean and rsc s.d. For each attention state, we averaged
the rsc mean and rsc s.d. over sessions and different stimulus orientations.

Computing population metrics for V4 spike counts
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We fit the parameters of a factor analysis model (see Supplementary Fig. 5a) to each spike
count matrix X (as described above) using the expectation-maximization (EM) algorithm. For
each session, this was performed separately for each attention state and stimulus orientation. Us-
ing the FA parameters, we then computed the three population metrics (Supplementary Fig. 5b).
For dimensionality, we first found the number of dimensions d that maximized the cross-validated
data likelihood. We fit an FA model with d dimensions, and then found the number of dimensions
required to explain 95% of the shared variance, termed dshared [66]. We report dshared because
it tends to be a more reliable estimate of dimensionality than the number of dimensions that
maximizes the cross-validated data likelihood. We computed %sv as described by equation (7).
We report the loading similarity as defined in equation (6) for the co-fluctuation pattern that
explained the most shared variability (i.e., the eigenvector with the largest eigenvalue; see Supp.
Fig. 1 for why the loading similarity of this dimension is most informative), since it contributes
most to describing the population-wide covariability. For ‘attend in’ and ‘attend out’ conditions,
we averaged the population metrics across sessions and stimulus orientations.

Much of our work focuses on systematically changing a single population metric and assessing
changes in pairwise metrics (Fig. 5a-d). When analyzing neuronal recordings, one needs to fit
factor analysis to the recordings in order to estimate the population metrics. When estimating the
population metrics together, it could be the case that changes in one population metric impacts
or biases the estimation of another population metric. We characterized these estimation errors
in Supplementary Fig. 6. Moreover, in Supplementary Fig. 7, we show that our main findings
are the same when estimating population metrics from Poisson simulated data, which resembled
realistic neuronal activity.

Statistics

We employed paired permutations tests for all statistical comparisons of pairwise metrics and
population metrics between ‘attend-in’ and ‘attend-out’ conditions (Fig. 8b-c). First, for a given
metric, we computed its value separately for each stimulus type (i.e., 45◦ or 135◦), condition
(i.e., attend-in or attend-out), and session. We then averaged the difference between attend-in
and attend-out across stimulus types and sessions. To compute a null distribution, we randomly
permuted the pair of attend-in and attend-out labels for each stimulus type and condition com-
bination and recomputed the average difference. We ran 10, 000 permutations to obtain a null
distribution of 10, 000 samples. We computed p-values as the proportion of samples in the null
distribution that were more extreme than the average difference in the data, corresponding to
p < 0.0001 as the highest attainable level of significance in our statistical analyses.

2.8 Math Notes

A Relationship between correlation, loading similarity, and %sv (one latent dimen-
sion)

We establish here the mathematical relationship between rsc, loading similarity, and %sv. This
will provide the formalism for understanding why decreasing %sv decreases both rsc mean and
s.d. (Fig. 5f ), that a high loading similarity corresponds to large rsc mean and low rsc s.d.
(Fig. 5e), and that a low loading similarity corresponds to small rsc mean and large rsc s.d.
(Fig. 5e).

Let n be the number of neurons, and let w be the co-fluctuation pattern (i.e., loading vector
[w1, w2, ..., wn]T ∈ Rn×1), λ ∈ R+ be the strength of the co-fluctuation pattern (i.e., eigenvalue
of the shared covariance matrix), and Ψ ∈ Rn×n be a diagonal matrix specifying the independent
variance of each neuron (ψ1, ψ2, ..., ψn). Then the covariance matrix of the population activity
is (see Methods and Supplementary Fig. 5):
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Σ = Σshared + Ψ = wλwT + Ψ

From this, we observe that Σij = Σshared,ij = λwiwj on the off-diagonal entries (i.e., if i 6= j).
Along the diagonals, Σshared,ii = λw2

i and Σii = λw2
i + ψi. The correlation (i.e., rsc if Σ is a

spike count covariance matrix) between neurons i and j can be written as:

ρij =
Σij√
ΣiiΣjj

=
λwiwj√

(λw2
i + ψi)(λw2

j + ψj)

=

√
λw2

i

λw2
i + ψi

√
λw2

j

λw2
j + ψj

sign(wiwj)

=
√
φiφj sign(wiwj)

(8)

where φi and φj represent the %sv (as proportions) for neurons i and j, respectively, and
sign(wiwj) = +1 if wiwj > 0 or −1 if wiwj < 0. The last line follows from the fact that
%sv is defined in equation (7) as:

φi =
Σshared,ii

Σii
=

λw2
i

λw2
i + ψi

(9)

Equations (8) and (9) provide a basis for understanding the relationships between rsc, %sv, and
loading similarity. The rsc mean and s.d. are computed across all pairs of neurons ρij , for i < j.

For establishing a relationship between pairwise metrics and %sv, consider decreasing the
overall %sv of the population, while keeping the loadings wi fixed. This corresponds to decreasing
λ in equation (9), which implies φi for each neuron decreases, and thus the product

√
φiφj

decreases for all pairs. The magnitude of each ρij decreases (i.e., each ρij moves closer to 0). As
such, decreasing %sv of the population decreases the distance of a point from the origin in the
rsc mean versus rsc s.d. plot, all else being equal (Fig. 5f ).

For establishing a relationship between pairwise metrics and loading similarity, consider two
extreme cases: 1) when loading similarity is 1 (as high as possible) 2) when it is 0 (as low as
possible). We first assume that each neuron has the same independent variance ψi for simplicity,
as we did in Figure 5. A loading similarity of 1 corresponds to each wi = + 1√

n
or each wi = − 1√

n
.

In either case, sign(wiwj) is always +1. Furthermore, φi is the same for every neuron and√
φiφj = %sv (i.e., the %sv of the population, expressed as a proportion) for every pair of

neurons. Thus, all ρij = %sv for all pairs of neurons i and j. In this case, rsc mean = %sv and
rsc s.d. = 0. If the independent variances ψi are different across neurons, we can still get each
sign(wiwj) = +1 and each φi to be the same by setting each wi = +

√
ψi or each wi = −

√
ψi.

This would also result in ρij = %sv for all pairs of neurons i and j, and thus rsc mean = %sv
and rsc s.d. = 0. In this case, the loading similarity is still high (all wi are the same sign; we
can show that load. sim.> 0.5), but not equal to 1.

Now, consider a scenario in which half the loadings are + 1√
n
and the other half are − 1√

n

(and assume again that ψi are the same for every neuron). This is one way to obtain a loading
similarity of 0. In this case, φi are still the same for every neuron, so

√
φiφj = %sv for all pairs.

However, sign(wiwj) = −1 for
(
n
2

)2
= n2

4 pairs, and sign(wiwj) = +1 for 2 ×
(
n/2
2

)
= n2

4 −
n
2

pairs. We can show that rsc mean = −%sv
n−1 and, by using equation (10) from Math Note B below,

rsc s.d. = %sv
√

1− 1
(n−1)2

. Thus, for a large number of neurons n, this case (where loading
similarity=0) corresponds to small negative rsc mean (close to 0), and large rsc s.d. (close to the
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%sv). As an example, for 30 neurons and %sv=50%, this corresponds to rsc mean = -0.0172 and
rsc s.d. = 0.4997.

With this analysis, we have established that for one latent dimension:

• Decreasing %sv decreases the magnitudes of correlations (i.e., each ρij closer to 0). rsc
mean and s.d. both decrease (as seen empirically in Fig. 5f ).

• Starting from a loading similarity near 1, a decrease in loading similarity involves flips in
the signs of some correlations (i.e., some ρij become −ρij). rsc mean decreases but rsc s.d.
increases (as seen empirically in Fig. 5f ).

• Both rsc mean and %sv measure shared variance among neurons, but they are not always
equal. Equations (8) shows that the two quantities are equal if all sign(wiwj) are the same
(i.e., when loading similarity is high). However, in general rsc mean and shared variance
(%sv) are not the same—e.g., when loading similarity is low, or when there are multiple
dimensions (Math Note C).

In this section, we consider the extremes of loading similarity. In the next section, we analyze
how gradual changes in loading similarity affect rsc mean and s.d. for a fixed %sv.

B Circular arc in rsc mean versus rsc s.d. plot for one latent dimension and fixed
%sv

We establish here mathematically that gradually varying the loading similarity for one latent
dimension and fixed %sv results in an arc-like relationship between rsc mean and rsc s.d., and
that the radius of the arc is approximately equal to the %sv (Fig. 5e-f ).

We use the same notation as in Math Note A. Let E[.] and V ar(.) denote the mean and
variance across all neurons or all pairs of neurons, depending on context. In particular, we are
interested in E[ρ] = rsc mean,

√
V ar(ρ) = rsc s.d., where the expectation and variance are

computed across ρij for all pairs of neurons in a given population (i.e., the upper triangle of the
correlation matrix, ρij for i > j).

Let c be the distance of a point (corresponding to one instance of the population activity co-
variance matrix) from the origin in the rsc mean versus rsc s.d. plot (i.e., c =

√
(rsc mean)2 + (rsc s.d.)2).

We want to know whether c is the same for all population activity covariance matrices with one
latent dimension and fixed %sv. This would correspond to point being equidistant from the
origin, and thus a circular arc. We can write c as:

c2 = (rsc mean)2 + (rsc s.d.)2

= E [ρ]2 + V ar (ρ)

= E [ρ]2 + E
[
ρ2
]
− E [ρ]2

= E
[
ρ2
]

Thus, the squared distance (i.e., squared radius) is equal to E
[
ρ2
]
, the mean of ρ2

ij across all
pairs in the population. Let m be the number of pairs (i.e., m =

(
n
2

)
= n(n−1)

2 ). Now, using
equations (8) and (9) derived in Math Note A:
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E
[
ρ2
]

=
1

m

n−1∑
i=1

n∑
j=i+1

ρ2
ij

=
1

m

n−1∑
i=1

n∑
j=i+1

(λw2
i )(λw

2
j )(

λw2
i + ψi

) (
λw2

j + ψj

)
=

1

m

n−1∑
i=1

n∑
j=i+1

φiφj

where φi and φj are the %sv of neurons i and j (expressed as proportions), as defined in Math
Note A. We can show that 2

∑n−1
i=1

∑n
j=i+1 φiφj =

∑n
i=1

∑n
j=1 φiφj −

∑n
i=1 φ

2
i . Intuitively, if

we have a symmetric matrix Φ with entries Φ(i, j) = φiφj , and we want to find the sum of
the off-diagonal elements (2

∑n−1
i=1

∑n
j=i+1 φiφj), then we can take the sum of all elements and

subtract the diagonal elements (
∑n

i=1

∑n
j=1 φiφj −

∑n
i=1 φ

2
i ). Using this equivalence, it follows:

E
[
ρ2
]

=
1

m

n−1∑
i=1

n∑
j=i+1

φiφj

=
1

2m

 n∑
i=1

n∑
j=1

φiφj −
n∑
i=1

φ2
i


=

1

2m

 n∑
i=1

φi

n∑
j=1

φj −
n∑
i=1

φ2
i


=

1

2m

(
n2E [φ]2 −

n∑
i=1

φ2
i

)

=
1

n− 1

(
nE [φ]2 − E

[
φ2
])

=
1

n− 1

(
nE [φ]2 − V ar (φ)− E [φ]2

)
=

1

n− 1

(
(n− 1)E [φ]2 − V ar (φ)

)
= E [φ]2 − 1

n− 1
V ar (φ)

= (%sv)2 − 1

n− 1
V ar (φ) (10)

This provides an equation for the squared radius (i.e., squared distance from the origin) of a
point in the rsc mean versus rsc s.d. plot. In the above derivation, E [φ] and V ar (φ) are taken
across the percent shared variance of each neuron in the population φi. Thus, E [φ] is equal to
our population metric %sv. Now, we will bound V ar (φ), which by definition is greater than or
equal to 0. Since 0 ≤ φi ≤ 1, one instance where the maximum variance occurs is when there
are an equal number of φi = 0 and φi = 1 (and E [φ] = 0.5). Then,
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V ar (φ) =
1

n

n∑
i=1

(φi − 0.5)2

=
1

n

(n
2

(1− 0.5)2 +
n

2
(0− 0.5)2

)
=

1

n
(0.25n)

= 0.25

So 0 ≤ V ar (φ) ≤ 0.25. For a small number of neurons n, the second term is non-negligible.
For example, for a model with 6 neurons and %sv = 50%, the radius of the data points may
vary between 0.4472 and 0.5. As the number of neurons increases, the second terms becomes
negligible, and data points lie approximately along an arc with radius equal to %sv. For example,
for 30 neurons as in our simulations and a %sv of 50%, the radius only varies between 0.4913
and 0.5.

To summarize, equation (10) computes the distance from the origin of a point for a given
population of neurons. For a fixed %sv, V ar (φ) can be the same or differ across many simulation
runs. If V ar (φ) = 0 or is the same across runs, then the points will lie perfectly along an arc,
with radius specified by equation (10). However, if V ar (φ) is different across runs, the distances
of each point from the origin will differ slightly, so they will lie close to, but not exactly along,
an arc.

With this analysis, we have shown that in the case of one latent dimensions:

• A point (i.e., corresponding to a given population of neurons, simulated or real) on the rsc
mean versus rsc s.d. plot has distance from the origin (i.e., radius) less than or equal to
%sv.

• If the %sv for individual neurons (φi) are all the same (see Math Note A), then the radius
equals %sv.

• As the number of neurons increases, the radius becomes asymptotically closer to %sv.

C Relationship between correlation, loading similarity, and %sv (multiple latent
dimensions)

In Math Note A, we established a mathematical relationship between rsc, loading similarity, and
%sv in the case of one latent dimension. Here, we generalize equation (8) to include multiple
dimensions in order to better understand the relationship between rsc and dimensionality. We
demonstrate here that the general relationships between rsc, %sv, and loading similarity for one
latent dimension also hold true for multiple latent dimensions. For multiple latent dimensions,
the relative strengths of each dimension is an important consideration—a stronger dimension
plays a bigger role in determining the rsc distribution. Finally, we consider the relationship
between dimensionality itself and rsc. We will discover below that increasing dimensionality
tends to decrease the magnitude of rsc values.

First, consider the case of two latent dimensions. Again, let n be the number of neurons, let
w be the co-fluctuation pattern (i.e., loading vector [w1, w2, ..., wn]T ∈ Rn×1) with eigenvalue
λw, let v be another pattern orthogonal to w ([v1, v2, ..., vn]T ∈ Rn×1; v ⊥ w), with eigenvalue
λv, and let Ψ ∈ Rn×n be a diagonal matrix specifying the independent variance of each neuron
(ψ1, ψ2, ..., ψn). Then the covariance is Σ = Σshared+ Ψ = Σw + Σv + Ψ = wλww

T +vλvv
T + Ψ.

On the off-diagonals entries (i.e., if i 6= j), Σij = λwwiwj + λvvivj . Along the diagonals,
Σshared,ii = Σw,ii + Σv,ii = λww

2
i + λvv

2
i and Σii = λww

2
i + λvv

2
i + ψi.
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Because the shared covariance matrix Σshared can be expressed as a sum of two component
matrices Σw + Σv, we can express the %sv of neuron i (φi) as

φi =
Σshared,ii

Σii
=

Σw,ii

Σii
+

Σv,ii

Σii

=
λww

2
i

λww2
i + λvv2

i + ψi
+

λvv
2
i

λww2
i + λvv2

i + ψi

= φ
(w)
i + φ

(v)
i

where φ(w)
i is the %sv variance of neuron i explained by dimension w and φ(w)

i is the %sv variance
of neuron i explained by dimension v.

With this decomposition of φi, and following similar steps as in equation (8):

ρij =

√
φ

(w)
i φ

(w)
j sign(wiwj) +

√
φ

(v)
i φ

(v)
j sign(vivj) (11)

where %sv values (φ) are represented as proportions. Equation (11) relates rsc, %sv, and loading
similarity for the case of two latent dimensions. Next, we compare these relationships for one
versus two latent dimensions.

We will show that, for two latent dimensions, the relative strength of each dimension (i.e.,
the ratio λw : λv) is an important consideration. For two latent dimensions, decreasing the
overall %sv by decreasing both φ(w) and φ(v) equally (e.g., λw = λv and both decrease equally)
pushes each ρij closer to 0–rsc mean and s.d. will decrease. This is similar to what happens
for one latent dimension when %sv is decreased. On the other hand, even if the overall %sv is
held constant, but φ(w) increases relative to φ(v) (i.e., increase the strength of w relative to v),
pairwise correlations could change. Each ρij will largely be determined by φ(w) and w—rsc mean
and s.d. will be more similar to what they would be if only w existed (Fig. 6a). In other words,
each ρij for two latent dimensions is the sum of the ρij that would have been produced by each
of the two constituent dimensions on their own. The dimension with larger relative strength λ
will have larger φ; the stronger dimension will play a larger role in determining each value of ρij
and thus the resulting rsc distribution.

Using this logic, we can deduce that increasing the loading similarity of one of the dimensions
would increase rsc mean and decrease rsc s.d. for the same reasons as for one latent dimension
(Math Note A). Doing so for a relatively stronger dimension would result in larger changes in
rsc than doing so for a relatively weaker dimension.

We have shown how having multiple latent dimensions can affect the relationship between rsc,
%sv, and loading similarity. Now, we show that dimensionality itself and rsc are related—larger
dimensionality tends to decrease rsc mean and s.d. To see this, we can generalize equation (11)
for d < n orthogonal latent dimensions u1, . . . ,ud ∈ Rn.

ρij =
d∑

k=1

√
φ

(uk)
i φ

(uk)
j sign(ukiukj )

Considering the sign of one term, ρij could have the same sign for sign(ukiukj ) across all di-
mensions u1, . . . ,ud; in this case, larger dimensionality acts to increase the correlation between
neurons i and j (ρij) above the level corresponding to a single dimension. However, because
the loading vectors u1, . . . ,ud are orthogonal, a pair of neurons i and j is likely to have many
sign(ukiukj ) of opposite sign across dimensions; in this case, larger dimensionality pushes the
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correlation between neurons i and j (ρij) closer to 0. Thus, we would expect the magnitude of
correlations to decrease as more dimensions are added (i.e., a tendency for rsc mean and s.d. to
decrease; Fig. 5g). In the next section, we show this relationship mathematically.

D Increasing dimensionality decreases arc radius

We establish here that increasing dimensionality results in a decrease in the radius of the arc
in the rsc mean versus rsc s.d. plot (Fig. 5g). We extend the math for an arc for one latent
dimension (Math Note B) to multiple latent dimensions. We will refer to the one latent dimension
as the ‘1-d case’ and multiple (k) latent dimensions as the ‘k-d case’.

We use the same notation as in Math Note C. Consider the distance c of a point (corresponding
to one instance of the population activity covariance matrix) from the origin in the rsc mean
versus rsc s.d. plot. From Math Note B, c2 = E[ρ2]. For this 2-d case, the correlation between
neurons i and j is ρij =

Σij√
ΣiiΣjj

=
λwwiwj+λvvivj√

(λww2
i +λvv2i +ψi)(λww2

j+λvv2j +ψj)
. Thus we can write ρ2

ij as:

ρ2
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2(
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j + λvv2
j + ψj

)
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vv
2
i v

2
j(

λww2
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) (
λww2
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)
= φiφj −

λwλv

(
w2
i v

2
j − 2wiwjvivj + w2

j v
2
i

)
(
λww2

i + λvv2
i + ψi

) (
λww2

j + λvv2
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)
= φiφj −

λwλv(wivj − wjvi)2(
λww2

i + λvv2
i + ψi

) (
λww2

j + λvv2
j + ψj

)
where the % shared variance of neuron i in this 2-d case is φi =

Σshared,ii

Σii
=

λww2
i +λvv2i

λww2
i +λvv2i +ψi

.
Then letting m is the number of pairs in the population, and following similar steps to (10)

in Math Note B, we arrive at:

E[ρ2] =
1

m

n−1∑
i=1

n∑
j=i+1

ρ2
ij

= (%sv)2 − 1

n− 1
V ar (φ)− 1

m

n−1∑
i=1

n∑
j=i+1

λwλv(wivj − wjvi)2(
λww2

i + λvv2
i + ψi

) (
λww2

j + λvv2
j + ψj

) (12)

Not including the negative sign in front, note that this final term is non-negative (given that
λw and λv are non-negative, as for any covariance matrix). Thus, comparing the final line in
equation (12) to the final line from equation (10), we observe that the distance of the point
for the 2-d case in the rsc mean versus rsc s.d. plot is necessarily smaller than or equal to the
distance for the corresponding 1-d case.

More generally, for a k-dimensional case we can show that:
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E[ρ2] =(%sv)2 − 1

n− 1
V ar (φ)

− 1

m

∑
w,v
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i=1

n∑
j=i+1

λwλv(wivj − wjvi)2(
λww2

i + λvv2
i + ψi

) (
λww2

j + λvv2
j + ψj

)] (13)

where the sum
∑

w,v is taken over all unique pairs of loading vectors (w, v). Indeed, as more
latent dimensions are subsequently added, the radius of the rsc mean versus rsc s.d. plot decreases
(Fig. 5g). Intuitively, this final term accounts for how population activity covaries along many
different dimensions in the high-d firing rate space. As more orthogonal dimensions are added,
population activity is further pulled in different directions in the high-d space, more interaction
terms come into play, and the magnitude of correlations is further decreased. This tends to
decrease both rsc mean and rsc s.d., explaining why the radius of the arc in the rsc mean versus
rsc s.d. plot tends to decrease as dimensionality increases.

We note that rsc mean and rsc s.d. do not necessarily both need to decrease. For example,
consider a pattern with a loading similarity of 1; loading weights for all neurons would have the
same value, rsc across all pairs would be the same value, and thus rsc s.d. would be 0 (see Math
Note A). When a second pattern of necessarily low loading similarity (see Math Note E) is added,
rsc values across pairs of neurons would differ, and rsc s.d. would be larger than 0. Therefore,
rsc s.d. can increase when going from the 1-d case to the 2-d case. However, the corresponding
decrease in rsc mean would be larger in magnitude than the increase in rsc s.d., resulting in an
overall decrease in arc radius (Fig. 5g, 1 to 2 dimensions, data points closest to the horizontal
axis).

The third term in equation (13) can also help explain variability of the radius (E[ρ2]) across
different random instantiations with the same population metrics (Figs. 5g and 6). Consider a
fixed %sv. For the 1-d case, the radius is determined by the first two terms of the above equa-
tion, and any variability in radius will be caused by different values of V ar(φ) across different
instantiations. For the 2-d case, the third term also plays a factor in determining the radius,
and this term varies across different random instantiations, typically to a larger degree than the
second term for large numbers of neurons n (see Math Note B). Thus, the 2-d and k-d cases
have greater variability in E[ρ2] than 1-d cases (Fig. 5g, Fig. 6). Other subtle factors can affect
the variability of E[ρ2]. For example, variability in E[ρ2] can increase or decrease depending
on the relative strengths of each dimension and their corresponding loading similarities (Fig. 6
and Supplementary Fig. 1). This can be explained by the third component of equation (13), in
particular by the terms involving λw and λv.

E Properties of loading similarities across different co-fluctuation patterns

We asked whether there was a relationship between the loading similarities of different co-
fluctuation patterns in the same model. In our simulations and V4 data analysis, we ensured that
we obtain unique co-fluctuation patterns by constraining dimensions to be orthogonal. Thus, we
might conjecture that if one pattern has high loading similarity (e.g., [1, . . . , 1]), then another
pattern in the same model necessarily has low loading similarity (e.g., [1,−1, 1,−1, . . . ,−1, 1]).
Indeed, this is true because the sum across the loading similarities of each pattern in a model is
at most 1. We show this property of loading similarity here.

Let w and v be vectors representing two co-fluctuation patterns in the same model. We
use the notation w · v to refer to the element-wise product between w and v, resulting in a
vector that is the same size as w and v. Furthermore, we use E[w], V ar(w), and Cov(w)
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as shorthand to refer to computations across the elements of a vector (and not as operations
on a random variable): e.g., E[w] = 1

n

∑n
i=1wi, and Cov[w,v] = E[w · v] − E[w]E[v] =

1
n

∑n
i=1wivi −

(
1
n

∑n
i=1wi

) (
1
n

∑n
i=1 vi

)
. Also, in this section we refer to the loading similarity

of vector w as ls(w) for shorthand.
We first show a constraint on loading similarities for a model with two co-fluctuation patterns

(i.e. loading vectors for each dimension). Let n be the number of neurons and let w,v ∈ Rn
be two loading vectors. As in our simulations and data analysis (see Methods), w and v are
orthogonal unit vectors:

∑n
i=1w

2
i = 1,

∑n
i=1 v

2
i = 1, and

∑n
i=1wivi = 0. Then, using these

constraints,

Cov(w,v) = E[w · v]− E[w]E[v]

=
1

n

n∑
i=1

wivi − E[w]E[v]

= −E[w]E[v]

V ar(w) = E[w ·w]− E[w]2

=
1

n

n∑
i=1

w2
i − E[w]2

=
1

n
− E[w]2

(14)

Because correlation is bounded between -1 and 1, we know that |Cov(w,v)| ≤
√
V ar(w)V ar(v).

It follows that:

Cov2(w,v) ≤ V ar(w)V ar(v)

E[w]2E[v]2 ≤
(

1

n
− E[w]2

)(
1

n
− E[v]2

)
0 ≤ 1

n2
− 1

n

(
E[w]2 + E[v]2

)
nE[w]2 + nE[v]2 ≤ 1

ls(w) + ls(v) ≤ 1

(15)

The last step follows from the definition of loading similarity:

ls(w) ≡ 1− V ar(w)

1/n
= 1−

1
n − E[w]2

1/n
= nE[w]2

The final inequality in equation (15) proves the intuition provided at the beginning of this
section–if ls(w) is large, then ls(v) must be small (at most 1−ls(w)). More strongly, if ls(w) = 1,
then ls(v) = 0.

Generally, for a model with d dimensions and patterns u1, . . . ,ud ∈ Rn, we can show that∑d
i=1 ls(ui) ≤ 1. To see this, we can construct a matrix C with entries cij = Cov(ui,uj) =

−E[ui]E[uj] for i 6= j, and cii = V ar(ui) = 1
n −E[ui]

2 (derived from the constraints in equation
(14)). Note that C ∈ Rd×d, with variances on the diagonal and covariances on off-diagonals, is
a covariance matrix, which implies det(C) ≥ 0. For a 3-d model,

det(C) =
1

n2

(
1− nE[u1]2 − nE[u2]2 − nE[u3]2

)
≥ 0
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which implies ls(u1) + ls(u2) + ls(u3) ≤ 1. In general, for a d-dimensional model (with d ≤ n):

det(C) =
1

nd−1

(
1−

(
d∑
i=1

nE[ui]
2

))
≥ 0

d∑
i=1

ls(ui) ≤ 1

(16)

Equation (16) has several implications:

• If one knows the loading similarities of all dimensions u1, . . . ,ud in a model, then the
maximum possible loading similarity of any new dimension is 1 −

∑d
i=1 ls(ui). It follows

that two dimensions with high loading similarity cannot co-exist in the same model.

• If one dimension has ls = 1, then all other dimensions in the model (or that would be
added to the model) necessarily have ls = 0. Note that there is only one possibility for
a pattern to have ls = 1 (i.e., u = [ 1√

n
, . . . , 1√

n
]T , such that V ar(u) = 0). This implies

that there are many possibilities for a pattern to have ls(u) = 0. More loosely, there are
relatively few ways for a pattern to have high loading similarity, but many more ways for
a pattern to have low loading similarity.

F Maximum variance of a unit vector

We defined loading similarity for a co-fluctuation pattern u (normalized to have norm 1) of n
neurons to be 1− var(u)

1/n , where the variance is computed along the elements of u. This value lies
between 0 and 1 because the maximum variance across the elements of u is 1/n. We now show
this mathematically.

Let u ∈ Rn be a unit vector. Because u is a unit vector,
∑n

i=1 u
2
i = 1. Using these facts:

V ar(u) = E[u2]− E[u]2

=
1

n

n∑
i=1

u2
i − E[u]2

=
1

n
− E[u]2

≤ 1

n

This holds with equality when E[u] = 0 (i.e., when the mean across the elements in a co-
fluctuation pattern is 0). This implies that the smallest loading similarity is 0 (when V ar(u) =
1/n), and the largest loading similarity is 1 (when V ar(u) = 0).
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3 [Control] Stabilizing neuronal activity in prefrontal cortex us-
ing a brain computer interface

The previous chapter bridged between two perspectives that measured the structure of shared
trial-to-trial neuronal variability. One phenomena by which structured shared variability arises is
slow drifts in neuronal population activity, which are thought to reflect slow changes in internal
cognitive state. In this chapter, I present work in which we ask to what degree these slow shared
fluctuations are under volitional control and can be stabilized.

3.1 Introduction

Previous studies have shown that neuronal activity varies slowly and in a coordinated manner
over the course of a single experimental session (i.e., over several hours [41, 46]). The slow changes
in neuronal activity are correlated with slow changes in pupil size [41, 42]. Thus, they are thought
to reflect slow changes in internal states (e.g., arousal) and behaviors such as impulsivity (i.e.,
reaction times and false alarm rates [41]) and engagement (i.e., movement vigor [42]).

Our goal in this work was to test whether animals could volitionally modulate these slow
fluctuations and stabilize neuronal activity over the course of hours (Fig. 10a). To ask this
question, we trained two rhesus macaques to control a BCI that provided visual feedback about
their prefrontal cortex (PFC) population activity. In particular, the size of an on-screen annulus
was linked to the distance of the animal’s neuronal activity from a “target” state. Thus, to
successfully complete the BCI over the course of many trials, animals would need to 1) decrease
their neuronal distance to the target and 2) keep neuronal activity relatively stable over the
course of the session.

3.2 Designing a BCI to stabilize neuronal activity

We first designed a BCI that allowed animals to use PFC neuronal activity to manipulate visual
computer feedback and obtain a reward (Fig. 10b). For visual feedback, we chose to use a cen-
trally located annulus that expanded and contracted in size based on neuronal activity (Fig. 10c,
green circle). The annulus was low-contrast and confined to a small window around the central
fixation dot (2 degrees of eccentricity) to minimize the likelihood that it evoked responses in the
PFC neurons from which we recorded. We defined a small annulus size that collapsed to the size
of the fixation dot as the condition for reward.

For animals to use the BCI, they needed to understand the meaning of the annulus and
associate a small annulus size with reward. We had them perform a memory guided saccade task
during which we temporally linked a small annulus size with an upcoming reward. During this
task, the annulus would gradually shrink to its smallest size immediately prior to presentation
of the “go cue”, after which animals had the opportunity to make a saccade and obtain a juice
reward. On separate sessions after annulus training, we found that reaction times were faster on
trials where the annulus was present than on trials where it was not (data not included here).
This suggested that animals used the shrinking annulus to predict the timing of the go cue, and
were better prepared to respond when the go cue was presented. With these results, we were
confident that animals associated a small annulus with the go cue and an upcoming reward, and
thus thought the small annulus a desirable state.

We next implanted a Utah array in dlPFC (area 8ar) and defined a brain-computer interface
(BCI) by linking neuronal activity to the visual feedback of the annulus (Fig. 10b). Animals
performed 60 calibration trials at the beginning of each BCI session, in which they fixated
a central dot while an annulus gradually collapsed on the fixation dot. We used calibration
neuronal activity (spike counts in 50 ms bins) to define a 4-dimensional latent state space using
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neuronal activity
(e.g., projection of
population activity
onto a 1-D axis)
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Can BCI stabilize
activity over time?

a b

c d

Figure 10: Neurofeedback experiment. a. Illustration of central question. Internal states and
neuronal activity (curved blue line) can drift slowly over time (red arrow) in ways not directly related to
a task at hand (e.g. due to arousal, impulsivity, satiation, etc). If we show these shifts in internal state
to an animal using a Brain Computer Interface (BCI), can they use feedback to stabilize their neuronal
activity over time (green dashed line)? b. Neuronal activity was recorded from “Utah” arrays implanted
in prefrontal cortex in two rhesus macaques. The goal of the animals was to move neuronal activity
(red) to a target window that was defined based on neuronal activity recorded at the beginning of each
recording session. To provide feedback on the position of neuronal activity relative to the target state,
distance between the current neuronal state and the target window was computed and then mapped to
the radius of an annulus (green circle, upper right); a larger annulus corresponded to larger neuronal
distance. To achieve reward, the animal needed to maintain neuronal activity within a predefined reward
window (dashed line) for 400 ms. This reward threshold was defined using activity recorded earlier in
the session in order to achieve reward on 50% of calibration trials c. Timeline of a BCI trial. The animal
fixated a blue central circle centered on a computer monitor with a gray background and a green annulus.
After 400 ms, the annulus provided continuous feedback about distance of neuronal activity from the
target. If the reward criteria was met, the trial ended and the animal was rewarded. If the reward
criteria was not reached within 3.4 seconds of fixation (i.e. 3 seconds of BCI control), the trial ended
and the animal was not rewarded. d. Block structure. Each session started with a calibration block.
Each trial in the block followed the sequence of events described in c except that the annulus shrunk
monotonically until it reached the reward threshold at exactly 3.4 seconds after fixation. Neuronal
activity from this calibration block was used to define the BCI mapping (factor analysis, target location,
and reward threshold) between internal state of PFC activity and the visual feedback presented on the
screen. After the calibration block, the task alternated between 100-trial neurofeedback blocks, with
90 BCI trials and 10 randomly interspersed “sham” trials, and sham blocks with 20 consecutive “sham”
trials. “Sham” trials were used as control, or reference, trials. On “sham” trials, annulus feedback form
previous sessions were replayed without any indication to the animal, meaning that the visual feedback
and internal state of the animal were disassociated on these trials.
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factor analysis. This procedure enabled us to capture important and intuitive dimensions of
neuronal variability while discarding noise. We next defined a target state in the latent space
as the average activity during the 60 calibration trials (Fig. 10b, large black dot in neuron state
space). On BCI trials, neuronal distance from the target was mapped linearly to the size of the
annulus on the screen–the smaller the neuronal distance, the smaller the size of the annulus.
For a BCI trial to be rewarded, the distance of the animal’s neuronal state to the target had to
remain below a threshold (Fig. 10b, dashed line in distance vs. time plot) for 8 consecutive time
bins, or 400 ms. animals therefore needed to make the annulus small to get a reward.

Thus, we designed a novel BCI paradigm in which we used visual feedback (i.e., annulus size)
to show animals how far their neuronal activity was from a target state, defined as the initial
activity at the beginning of the session. To obtain rewards in this BCI paradigm, animals needed
to decrease neuronal distance to the target. Neuronal activity also needed to be relatively stable
and close to the target throughout the session for animals to continue to get rewards during the
experiment.

We used a combination of BCI trials and control trials to test whether animals were using
the visual feedback in our BCI paradigm. After calibration of the BCI system, animals were
given control of the visual feedback and performed BCI trials for a majority of the session.
On BCI trials, animals had 3 seconds to achieve the target state and obtain a juice reward
(Fig. 10c, top); otherwise the trial would end with no reward (Fig. 10c, bottom). The remainder
of trials were controls to assess successful use of the BCI. We term them “sham trials” because we
disassociated the visual feedback (i.e., annulus size) from the internal neuronal state. On sham
trials, we replayed visual feedback from previous sessions where the animal received a reward at
the last possible moment in the trial. We included two types of sham trials: BCI sham and block
sham. BCI sham trials were interspersed among BCI trials but occurred rarely, meaning that
animals would still be trying to control their internal neuronal state, though the feedback on the
screen would not be helpful. BCI sham trials were used to assess to what extent animals were
using moment-to-moment visual feedback to achieve the target. Block sham trials were isolated
in a separate 20-trial block after every 90 BCI trials. Since block sham trials always lasted
the full 3 seconds and were presented consecutively, we presumed that the animals’ engagement
decreased and they no longer tried to keep their internal neuronal state close to the target. Block
sham trials, along with calibration trials, were used to assess chance level BCI performance if
the animals had not been actively modulating neuronal activity.

During the BCI task, trials were organized into two types of blocks. The purpose of the first
“neurofeedback” block type was to encourage the animal to use visual feedback; it consisted of
100 trials, 90 BCI and 10 BCI sham trials. The second “sham” block type was used as a control
and consisted of the 20 sham trials. After the 60 calibration trials were completed, these two
blocks alternated for the remainder of the session (Fig. 10d).

3.3 Neurofeedback reduced neuronal distance to the target

We wanted to know whether animals were able to modulate their neuronal activity on BCI trials
to reach the target state. If this were the case, neuronal activity would be closer to the target
(i.e., smaller distance) on BCI trials than on reference trials where BCI was not used.

We first assessed whether BCI distance to the target had decreased relative to the calibration
trials that were used to define the BCI mapping. On BCI trials, we analyzed the activity on
both corrects (target reached) and misses (target not reached). On calibration trials, we played
neuronal activity through the BCI mapping. For calibration trials that did not reach the target,
we analyzed all timepoints; for calibration trials that did reach the target, we only analyzed
timepoints until the target was achieved. This guaranteed a fair comparison of distance between
calibration and BCI trials. For each session, we computed the average neuronal distance to the
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target on each trial and compared the distribution on BCI trials (Fig. 11a, gray distribution) to
the distribution on calibration trials (Fig. 11a, green distribution). Across sessions and animals,
distance on BCI trials was smaller than distance on calibration trials (Fig. 11b, dots fall below
the equality diagonal).
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Figure 11: Distance decreases during neurofeedback a. Distribution of average distances on BCI
trials (grey) and calibration trials (green) for an example session. Distances on calibration trials were
obtained by playing neuronal activity through the BCI mapping offline. The mean of the each distribution
is indicated by a dashed line of the corresponding color. b. On each session, we compared the mean
BCI distance (y-axis) with the mean calibration distance (x-axis). Dashed black line indicates equality
between the two values. Distance on BCI trials was significantly smaller than distance on calibration
trials. c-d. Same as a-b, but for block sham trials instead of calibration trials. Block sham trials were
presented in alternating blocks with BCI trials throughout the session, but feedback on block sham trials
did not accurately reflect internal state. Thus, comparing BCI and block sham trials controlled for any
changes in spiking statistics that might have occurred over the course of the session. Distance on BCI
trials was significantly smaller than distance on block sham trials.

We next controlled for the possibility that the smaller distance on BCI trials relative to
calibration corresponded to changes in neuronal activity over time. Calibration trials happened
at the beginning of the session, and were only presented for a few minutes. BCI trials happened
after calibration and were presented for the remainder of the session (typically several hours).
Any uncontrolled changes in neuronal state (e.g. slow drift, Cowley et al., 2020) that occurred
over the session might therefore bias our comparison between BCI and calibration. Thus, we
also compared BCI trials (Fig. 11c, gray distribution) to block sham trials (Fig. 11c, green
distribution), which were presented in alternation with “neurofeedback” blocks throughout the
entire session. We played neuronal activity on block sham trials through the BCI and performed
the analysis in the same manner as described above (Fig. 11a-b), and found that average neuronal
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distance to the target was significantly smaller on BCI trials than block sham trials (Fig. 11d,
dots fall below the equality diagonal). Together, these results showed that animals successfully
decreased their neuronal distance to the target state on BCI trials.

3.4 Neurofeedback suppresses neuronal drift

Thus far, we have demonstrated that animals have used neurofeedback via our stabilization
BCI to obtain a reward; they had smaller neuronal distance to the target when using BCI, as
compared to when they were not using BCI. We next asked whether the successful decrease in
neuronal distance on BCI trials also suppressed slow drifts in neuronal activity over time. To test
this, we examined the change in distance over the course of individual blocks. To reduce noise,
we first averaged the distance on trials with the same index across blocks within the same session.
In other words, we took the distance from the first trial in each block and then averaged across
blocks; we then repeated this process for each trial index with both BCI blocks and sham blocks.
We then used linear regression to determine the slope of how neuronal distances changed on
average during a BCI block (Figure 12a). We then aggregated results across sessions and found
that there was no significant change in distance during BCI blocks in both animals (Figure 12,
monkey P in panel b, monkey S in panel c). We next performed the same analysis for sham blocks
and found that distance increased significantly in both animals (Figure 12), example session in
panel d, aggregated slopes in panels e and f ). Taken together, these results show that: 1) slow
drift in PFC neuronal activity existed in our data (i.e., during the sham blocks when neural
distance increased), but 2) neurofeedback via use of the stabilization BCI suppressed slow drift
(i.e., on BCI blocks when neuronal distance did not increase).
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Figure 12: Neurofeedback suppresses neuronal drift. a. Changes in neural distance over the
couse of a BCI block on an example session. We computed the average distance across blocks within each
session for each trial index within the block. We fit a linear regression to measure the within-block change
(i.e., the slope of the regression line) in distance across the block. b. Histogram of regression slopes on
each session for monkey P. Dashed black line indicates 0 and dashed red line indicates the average slope
across sessions. The slope was not significantly different from 0, implying that distance did not change
significantly within BCI blocks. c. Same as b, but for monkey S. Slope was not significantly different
from 0. d-f. Same as in a-c, except for sham blocks. The slopes on sham blocks were significantly positive
for both animals, indicating that neuronal distance to the target increased during sham blocks.
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3.5 Discussion and future directions

In this work, we designed a novel brain computer interface (BCI) for prefrontal cortex (PFC)
with the goal to stabilize neuronal activity over time. To successfully obtain a reward, subjects
had to keep their internal neuronal state (i.e., population firing rate vector) close to a target
state defined at the beginning of each session. We showed that, by using the BCI, subjects: 1)
were successfully able to reduce the distance of their internal neuronal state to the target state,
and 2) suppressed slow neuronal drift.

Slow drift in neural activity has been linked to slow changes in pupil size in previous studies,
which is often thought to reflect arousal and engagement [41, 42]. In our work, we showed
that using the BCI suppressed slow neuronal drift (Fig. 12). We hypothesize that the decrease
in slow drift associated with using our BCI (Fig. 12) might also correspond to a decrease in
the slow fluctuations of pupil size. If true, this would support the interpretation that our BCI
not only stabilizes neuronal activity, but also the animal’s internal cognitive state (i.e., arousal,
engagement, or wakefulness). Future work will test this hypothesis.

How precisely do animals reduce their neuronal distance to the target state on rewarded BCI
trials? There are several strategies that subjects could have used to successfully obtain reward on
BCI trials. For example, they could have kept their internal starting point (i.e., neuronal activity
at the beginning of each trial) close to the target state–a result of control of slow-timescale (on
the order of seconds to minutes) variability over many trials. Alternatively, subjects could have
decreased neuronal variability around the target state within each trial–a result of control of fast-
timescale variability (on the order of several tens or hundreds of milliseconds). Or subjects could
have used a combination of both strategies. Our analyses thus far have shown that, on average,
distance is smaller on BCI trials than on sham trials, providing evidence for strategy 1. Future
work will test strategy 2: whether the within-trial variability of neuronal activity (e.g., spike
count variance, spike count correlations, and population metrics) is different on BCI trials than
sham trials. Answering these questions will elucidate what aspects of PFC neuronal variability
(e.g., fast vs slow timescale, shared vs independent variance) are under volitional control.

3.6 Methods

Task: Overview and motivation

The subject was required to perform two tasks: a calibration task and a brain-computer interface
(BCI) task. The data collected during the calibration task was used to fit the parameters that
were subsequently used during the BCI task to map neural activity to feedback. The calibration
task consisted of 60 trials with sham feedback. Neural activity from the calibration period was
used to train the final BCI mapping of neural activity to annulus size. After calibration, the
subject performed BCI trials in alternating BCI and sham blocks (Fig. 10d). The BCI block
consisted of 90 BCI trials and 10 sham trials. The sham blocks consisted of all sham trials.
The sham trials consist of feedback inconsistent with the current neural state, but were realistic
feedback in that we replayed feedback from a trial in a previous session.

Task: Details

In the calibration task, the subject was required to passively fixate a blue dot at the center of a
grey screen. After fixation, a green annulus appeared on the screen. During the first 20 trials,
the annulus was fixed in size. During the subsequent 60 trials, the annulus moved on the screen
after a 400 ms delay. The movement continued throughout a 2.5 to 3 s wait period, after which
the annulus and the fixation dot were removed from the screen. Near the end of the wait period,
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the annulus converged toward the center, indicating that the trial was about to end. The subject
was rewarded after successfully maintaining fixation through the entire wait period.

The BCI task was identical to the calibration task except that the size of the annulus was
controlled by the recorded neural activity. If the neural activity entered a state associated with a
small annulus, then the trial would end and the subject would be rewarded. To receive a reward,
the annulus needed to remain below a pre-determined threshold for 400 ms. The details of the
calibration algorithm, the mapping of neural activity to the annulus size, and the setting of the
threshold are described in the next section.

During the BCI task, trials were organized into blocks as follows. Each block consisted of a
specific ratio of BCI trials and sham trials. Sham trials were defined as trials in which annulus
size from missed trials from a previous session were played as feedback rather than the true
feedback based on the current neural activity. Since these were missed trials and lasted for the
maximum trial length, all sham trials were of the same duration. The first block consisted of
100 BCI trials. The purpose of this block was to encourage the subject to use the feedback,
since all feedback presented was valid. The second block consisted of 100 trials, of which 90 BCI
trials were valid and 10 trials were sham trials. The third block consisted of 20 sham trials. The
second and third blocks alternated throughout the session after the first block was completed.

BCI calibration

One key decision point in our design was whether we would require the subject to stabilize neural
activity in the full neural space or in a low-dimensional latent subspace. We identified two major
problems with using the full neural space. First, the BCI would be highly sensitive to any array
instability. If a single neuron fired at a low rate during the calibration period and then suddenly
fired at a high rate later in the session, then the BCI feedback would become very difficult to
control. A low-dimensional latent BCI mapping would be more robust to these instabilities.
Second, assuming Poisson-like spiking variability, it can be shown that the optimal strategy in
the full neural space is to reduce the firing rate of all neurons in the population. Intuitively
this is because any neurons that happen to have a large spike count in a given bin will have a
large adverse effect on the BCI performance. Reducing the global firing rate would reduce the
probability of the detrimental high spike count instances. BCI mappings that allow a firing-
rate reducing strategy are also highly subject to large scale array instabilities. For example, an
instability that produces an average drop or rise in firing rate would result in a large increase or
decrease in BCI performance, respectively. In contrast, since a low-dimensional latent consists
of a linear combinations of units across the population, a high spike count for one unit may not
adversely affect the mapping, depending on what the rest of the population is doing. For these
reasons, we decided to require the subject to control neural activity in a factor analysis latent
space [99]. Previous studies have similarly employed linear combinations of neural activity to
address these issues [100, 101].

Calibration was performed as follows. We first performed a light sorting using a neural
network sorter (described in more detail in “Neural network sorter” below) to remove noise (e.g.,
movement artifacts). We next binned spike counts into non-overlapping 50 ms bins beginning
400 ms after fixation to the end of the wait period. We aggregated spike counts across trials
and applied factor analysis (FA; see “Factor analysis” below for details) to the aggregate spike
count matrix to identify a subspace that explained population covariance structure [102–104].
All sessions used either a dimensionality of 4 or 5 for the latent subspace. After fitting FA,
we computed the posterior mean of the latent variables and smoothed the latents using an
exponential smoother with a time constant of 300 ms (i.e., 6 time bins). To determine the
distance threshold that would achieve a reward, we computed the distance of the smoothed
latents from the calibration mean. We then aggregated all distances and computed percentile
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in 0.1 percentile increments. We swept percentile values to determine what percentile threshold
would achieve reward on 50% of the calibration trials. The value of 50% was used to balance
the need to motivate learning with the need to motivate the subject to continue performing the
task. This also helped normalize the subject’s initial BCI performance across sessions.

Factor analysis

As an additional denoising step prior to providing BCI feedback, we projected neural activity
into a low dimensional subspace using factor analaysis, or FA [50, 99]. Factor analysis is defined
as:

x ∼ N (µ,LLT + Ψ) (17)

where x ∈ Rn×1 is a vector of spike counts across the n simultaneously-recorded neurons, µ ∈
Rn×1 is a vector of mean spike counts, L ∈ Rn×m is the loading matrix relating m latent
variables to the neural activity, and Ψ ∈ Rn×n is a diagonal matrix of independent variances
for each neuron. In our BCI, the number of latent variables was always set to either 4 or
5, depending on the session. The model parameters µ, L, and Ψ were estimated using the
expectation-maximization (EM) algorithm.

BCI feedback

To map neural activity to annulus radius, we performed a similar procedure as was done during
calibration. Briefly, we sorted spikes from the previous 50 ms using our neural network sorter,
projected the resulting spike count vector into the calibration-defined factor space, updated
the exponential smoother, and then mapped the smoothed projection to a percentile value.
This percentile value was then mapped to annulus size using a predefined affine transformation.
Annulus feedback was updated every 50 ms.

Neural network sorter

To separate waveforms likely to be caused by neural spiking from waveforms caused by other
electrical artifacts, we developed a neural network classifier that labeled spike waveforms as
“neural” or “noise”. The classifier was trained using array recordings from multiple animals in
which the waveforms had been hand sorted. Classification required very little computation time,
allowing for the classification of hundreds of waveforms in a few milliseconds. We therefore
applied this algorithm, both during training of the BCI mapping, and also online during the BCI
task to help ensure that activity going into the BCI was of neural origin. Details of this neural
network sorter can be found in Issar et al. (2020) [105].
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4 [Sources] Local and global sources of coordinated neuronal vari-
ability in prefrontal cortex

Chapters 2 and 3 focus on neuronal variability within one brain area in one hemisphere of cortex.
However, one might imagine that neuronal variability in one area of cortex may be shared with
another area (e.g., an input or output area), or be due to brain-wide signals that impact many
areas (e.g., arousal, impulsivity). In this work, I present research that utilizes bilateral neuronal
recordings and develops a new method to identify and separate global and local sources of shared
neuronal variability.

4.1 Introduction

Variability in neural activity has been shown to have significant effects on the ability of groups
of neurons to encode information about sensory inputs [37–40, 106], motor outputs [107, 108],
decisions [106, 109, 110], attention [1, 46, 77], and other processes. This is especially true when
variability is shared among neuron in a given population [111]. Most work studying neural vari-
ability has done so in populations of neurons confined to a single brain region. It is therefore
unclear to what extent variability shared among neurons in the local populations previously
studied was also shared with neurons in other brain regions. Here we leverage multi-area record-
ings to separate the study of variability shared among neurons in distant brain regions from
variability shared only among neurons in a single brain region.

Neural activity observed within a brain area may be generated within an area, come from
another area, or may be shared across many areas. For example global shared signals might reflect
large changes in visual input (e.g., luminance shifts), tonic arousal changes [41, 112], spontaneous
behaviors [113], or top-down feedback [114]. On the other hand, local shared signals might reflect
local tuning similarity [115, 116], spatial scales of connectivity [117], or local computations [111].
It is important to be able to separate these local and global scales of shared variability in order
to properly study these distinctive cognitive processes.

The majority of previous work that has focused on interactions between brain areas has
largely utilized imaging [118, 119], local field potential [120], or EEG [121]. A few recent studies
have investigated between-area interactions using spiking activity of tens of neurons in different
areas, typically within the same hemisphere of the brain [41, 77, 122]. However, some research
in monkey motor cortex [63] and ALM/premotor cortex in mice [123], has used spiking activity
to study interactions between neurons in two different hemispheres of the brain. Other work
has investigated across-hemisphere shared variability in V4 neurons during an attention task
[1, 46, 124].

Ideally, neural processes with distinct mechanisms could be studied independently, however
because multiple processes can influence groups of neurons it has not been obvious how to sep-
arate the neural signals that should be attributed to each process. One approach to studying
shared variability is to use dimensionality reduction methods, such as factor analysis (FA), which
allow for the separation of variability attributed to a single neuron from variability shared with
other neurons in a population [99, 102, 104, 125]. However these methods do not provide a
mechanism for separating variability shared among neurons in one population from variability
shared between two distinct populations. Other dimensionality reduction approaches do con-
sider shared interactions between brain areas [122, 126, 127]. One such example is probabilistic
canonical correlation analysis (pCCA), which finds dimensions of maximum correlation to iden-
tify variability that is shared between two distinct brain areas. However this method does not
separate the remaining variability shared among neurons in a single population from indepen-
dent neural variability. Given the inability of these methods to separate shared variability into
across-area and within-area components, another approach is needed to study these two types
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of variability separately.
In this work we developed a novel method called pCCA-FA (i.e., a combination of probabilis-

tic canonical correlation analysis and factor analysis), for separating within-area and across-area
interactions. This method combines the advantages of FA and pCCA into a single probabilistic
framework. We applied this method to bilateral multielectrode array recordings in prefrontal
cortex during a standard visuo-spatial working memory task. We found that many pairs of
neurons across hemispheres have large correlations (both positive and negative). To further par-
tition within-area and across-area sources of shared variability, we developed a new model, called
pCCA-FA, and applied it to our bilateral PFC population recordings. We found that both across-
hemisphere and within-hemisphere interactions represented a large portion of shared variability.
Furthermore, across-hemisphere latent projections predicted pupil size, a signal thought to be
associated with global cognitive phenomena such as arousal or wakefulness. On the other hand,
within-hemisphere latent projections were not predictive of pupil. Taken together, our results
demonstrated that substantial shared variability exists between neuronal populations in different
hemispheres of the brain and that this variability likely reflects global cognitive processes.

4.2 Simultaneous bilateral recordings of PFC population activity

In order to study both the global shared fluctuations across hemispheres of cortex and local
shared fluctuations within a single brain area, we simultaneously recorded population activity
from PFC in both hemispheres while subjects performed a working memory task (Fig. 13a;
insets show rasters from the delay period of an example trial). Inspecting the rasters, we can
observed that there is a shared increase in spiking activity across many neurons in both left and
right PFC at around 600 ms. The key question in this work is: can we identify and partition
the shared trial-to-trial co-fluctuations that are global and present across hemispheres from the
shared co-fluctuations that are local and only present among the neuron in one of the brain areas
(Fig. 13b)?

To answer this question, we first measured the spike count correlation (rsc) distributions for
pairs of neurons within the same PFC and for pairs of neurons across different hemispheres.
There are many pairs of neurons in both the within-area rsc distribution and across-hemisphere
rsc distribution with large magnitude (both positive and negative) and significant correlations
(Fig. 13c). When we asses the mean rsc of these distributions, a commonly-used metric [7], we
found that within-area rsc mean was larger than across-hemisphere rsc mean (Supp. Fig. 8a).
However, rsc mean is a coarse metric that averages across the many large magnitude positive and
negative correlations observed in Fig. 13c [104]. By dissecting rsc further (instead of computing
the mean rsc across the distribution), we found that there is a relationship between the rsc of
a pair of neurons and their signal correlation (i.e., tuning to the target location in the working
memory task; see Methods). This was true for both within-area and across-hemisphere pairs of
neurons (Supp. Fig. 8b).

4.3 pCCA-FA partitions across-area and within-area shared variability

To better characterize the shared fluctuations of neurons within and across areas, we sought a
computational method that would leverage activity across the entire population of recorded neu-
rons to allow us to separate within and across-area shared trial-to-trial variability. One powerful
approach to leveraging the activity of a population of neurons is dimensionality reduction, which
seeks to explain population variability using a relatively small number of latent variables [50].

One commonly used dimensionality reduction method called factor analysis (FA) has been
used to measure within-area shared variability [99, 102–104]. An important feature of FA is
that it separates variability shared among neurons in the population from variability private to
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Figure 13: Trial-to-trial neuronal variability within vs. across areas. a. Recording setup.
We recorded from PFC in both hemispheres using 96-channel Utah arrays while subjects performed a
visual working memory task. Raster plots show spiking activity during the delay period of one example
trial. b. The key question this study aims to answer: can we separate trial-to-trial variability that is
shared among neuron across areas/hemispheres (cyan) from that which is shared among neurons within
the same brain area (magenta)? c. The rsc distributions for within-area pairs (top) and across-area pairs
(bottom) in one example session. There are many pairs of neurons in both distributions with large and
significant correlations (blue real data histogram extends beyond the gray chance distribution). Chance
distributions are generated by computing rsc distributions on data with randomly shuffled trials.

each neuron. However, FA does not partition within and across-hemisphere shared variability.
Another dimensionality reduction method, probabilistic canonical correlation analysis (pCCA)
has been used to find dimensions that have the most correlation between two brain areas [126].
However, pCCA does not partition within-area shared variability from variability independent
to each neuron.

To facilitate the separation of across-area, within-area, and independent neural variability,
we developed a new dimensionality reduction method called pCCA-FA (probabilistic canonical
correlation analysis–factor analysis) to jointly model neural activity in each PFC with: 1) dimen-
sions that capture trial-to-trial variability shared between neurons across areas (Fig. 14a; global,
cyan) and 2) latent variables that are private to each area/hemisphere to capture trial-to-trial
variability shared between neurons within the same area (Fig. 14a; local, magenta). The pCCA-
FA model also accounts for variability that is independent to each individual neuron, which we
term independent variance (Fig. 14a; black).

The pCCA-FA model is defined as a probabilistic graphical model (see Methods). One group
of latent variables (Fig. 14b; z, defined by across-area global dimensions) contribute to shared
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variability in both areas, while another group of latent variables (Fig. 14b; zx, zy, defined by
within-area local dimensions) only contribute to shared variability in their respective brain areas
(area X, or area Y respectively).

Through the lens of covariance matrix estimation and decomposition, pCCA-FA decomposes
the full-rank covariance of the two PFC populations into a sum of 3 matrices: a low-rank across-
area (e.g., global) covariance matrix, a low-rank within-area (e.g., local) covariance matrix, and
a diagonal independent neuron covariance matrix (Fig 14c, top). The within-area covariance
matrix is block diagonal, as it does not explain shared co-fluctuations between neurons across
areas (i.e., it does not contribute to cross-covariance between two brain areas).

Using this decomposition, we investigated the characteristics of shared variability in across-
area and within-area components. To assess the strength of shared variability, we computed the
percent shared variance [%sv, 102, 104]. To do so, for each neuron we compute the amount of
variance explained by a given component divided by the total variance of the neuron (Fig. 14c,
lower left; see Methods). We then report the average %sv across neurons in a brain area. We
also assessed dimensionality by computing dshared [102, 104], which is defined as the number of
dimensions required to explain 95% of the variance in the matrix of interest (Fig. 14c, lower right).
We report dshared and %sv separately for within (local) and across-area (global) components,
and also separately for left and right hemisphere PFC populations.

4.4 pCCA-FA successfully recovers ground truth in various settings

To validate our model, we compared the ability of pCCA-FA to characterize across-hemisphere
dshared and %sv in simulations in which the ground truth was known. We randomly generated
ground-truth pCCA-FA model parameters and simulated data for 30 neurons in each area of two
brain areas from the pCCA-FA generative model (Fig. 14b; see Methods). The global and local
components were designed to have a fixed number of dimensions and percent shared variance
across simulation runs (“ground truth” dshared and %sv). We then fit pCCA-FA to the simulated
data by using 10-fold cross-validation to jointly select the across-area and within-area dimen-
sionalities. We asked how well pCCA-FA was able to recover the ground truth dimensionality
(dshared) and %sv.

We found that pCCA-FA identified both the ground truth global (across-hemisphere) dshared
and %sv reliably with only 300 trials/samples (Fig. 15a left and b left). Importantly, we found
that pCCA-FA required fewer trials than pCCA to recover dshared (300 compared to 600 for
pCCA; Fig. 15a left). Additionally, pCCA always underestimated the global %sv, even with a
large number of trials (Fig. 15b left; see Methods and Supp. Fig. 9). The pCCA-FA method was
also able to correctly identify within-hemisphere dshared and %sv (Fig 15a right and b right).
Note that since pCCA does not model within-hemisphere variability, we could not assess the
ability of this model to identify within-hemisphere dshared and %sv.

In the previous analyses, we fixed the global and local dshared and %sv and asked how many
trials were needed to recover ground truth. We next fixed the number of trials, and asked whether
pCCA-FA could recover the ground truth under various settings of dshared and %sv. We found
that pCCA-FA was able to identify the ground truth dshared and %sv at a variety of ground
truth settings (Fig. 14c), both when global was larger than local and when local was larger than
global. Taken together, these results demonstrate that pCCA-FA is able to identify and properly
partition global (across-hemisphere) and local (within-hemisphere) shared variability, even in
very data-limited settings and across a variety of ground truth settings.
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Figure 14: The pCCA-FA model partitions global and local shared variability. a. Left:
visual representation of how pCCA-FA finds low-dimensional local (within-area) and global (across-area,
or across-hemisphere) subspaces. In this illustration, transparency indicates correspondence between
samples in area X and area Y. Global dimensions are those that are most correlated across areas (i.e.,
projections onto “across” arrow are highly correlated between area X and Y). Local dimensions explain
dimensions of large covariance in neurons within the same area, which are not correlated across areas.
Right: visual representation of how pCCA-FA partitions a neuron’s variance: shared global variability,
shared local variability, and independent private variability components. b. pCCA-FA graphical model.
Global latent variables (z) contribute to variability in both brain areas. Local latent variables (zx, zy) only
contribute to variability in their respective brain area. The distributions that define this graphical model
are available in Methods. c. Top: visual representation of how pCCA-FA partitions a covariance matrix.
The full-rank empirical covariance matrix is decomposed as the sum of a low-rank global covariance,
a low-rank local covariance, and a diagonal private covariance. Bottom: illustration of how important
metrics of fitted pCCA-FA models are computed. We evaluate the strength of shared variability using
%sv and the dimensionality using dshared, for both global and local subspaces.

4.5 Extracting fast-timescale trial-to-trial variability

Previous work has shown that neural activity can covary quickly from moment-to-moment and
trial-to-trial [1, 99], but also more slowly over the course of many trials or the entire session
[41, 42, 46]. Indeed, one might think of neuronal covariability as containing fast trial-to-trial
component riding on top of a slow multi-trial component. Covariance and correlation matrices
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computed directly on raw spike counts reflect both fast and slow co-fluctuations [128].
We separate these two timescales of covariation and study them separately with the as-

sumption that they reflect distinct cognitive processes. Slow timescale co-fluctuations have been
associated with arousal, impulsivity, and engagement [41, 42]. However, caution must be taken
when studying correlations in slow processes due to autocorrelation and limited data. Failure
to due so can result in spurious, large-magnitude correlations (Supp. Fig. 10). To simplify our
analyses in this study, we removed the slow component from the raw spike counts and focus
most analyses on the fast component (though see Supp. Fig. 13). We first identified the slow
component using a moving average of 25 trials on each neuron’s spike counts. We computed the
fast component as the residuals–by subtracting the slow component from the raw spike counts of
each neuron (Supp. Fig. 11). Previous work has shown that these faster-timescale trial-to-trial
co-fluctuations are thought to limit the fidelity of sensory encoding [37–40].

4.6 Across-hemisphere shared variability is substantial, and often larger than
within-area shared variability

We asked to what extent fast trial-to-trial variability is shared across hemispheres vs. within
areas in PFC population activity. We consider spike counts computed in a one second window
at the end of the delay period of each trial, and mean center the counts within each target
condition. We then extract the fast processes for each neuron as described above. We fit pCCA-
FA to these fast neural processes using 10-fold cross-validation to jointly choose dimensionalities
for the three subspaces (across-hemisphere, within left PFC, and within right PFC) and then
compared dshared and %sv for within-area versus across-hemisphere subspaces. We found that
our pCCA-FA model provided better fits to our neural data than alternative approaches and
models that we considered (Supp. Fig. 9).

We found that across-hemisphere (global) dshared and %sv were often of a similar magnitude
or significantly greater than within-area (local) dshared and %sv (Fig 16a-b). Pooled across
subjects, sessions, and left and right hemisphere PFC, both dshared and %sv were significantly
larger for across-hemisphere shared variability than within-area shared variability. This stands in
contrast to the mean pairwise correlation results in Supp. Fig. 8a, in which we found substantially
less mean rsc for across-hemisphere pairs than within-area pairs. Moreover, we found that the
most correlated dimensions across hemispheres also explained the most shared variance (Supp.
Fig. 12), which did not have to be the case as CCA can pick up on dimensions that have high
correlation but low variance.

We also applied pCCA-FA to the slow component of neural activity removed earlier and
compared the amount of the slow activity assigned to the global component to that of a control
chance level. We found that the slow activity had higher canonical correlations in the across-area
component of shared variability than expected by chance, indicating that a significant amount of
the slow activity likely represents global processes (Supp. Fig. 13). Overall, these results show
that a large proportion of trial-to-trial variability is shared across hemispheres of cortex.

4.7 Across-hemisphere latent variables predict pupil size

We next wanted to assess the behavioral relevance of the global across-hemisphere and local
within-area components. One possibility was that the across-hemisphere component is related
to latent variables that modulate activity in many areas. Such variables may be related to a
variety of cognitive processes including arousal, impulsivity, engagement, satiation, and others
[41, 42, 130]. One variable that has previously been used to indirectly measure these processes is
pupil size. Previous work has linked large-scale cognitive processes with neural activity at slow
timescales [41, 42] using pupil diameter as an indirect measure of these processes. Given that
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Figure 15: pCCA-FA recovers ground truth %sv and dimensionality. a. Recovery of ground
truth dimensionality (dshared). We asked how well pCCA-FA and pCCA could recover ground truth.
We swept the number of trials (horizontal axis) to test the models under different data limitations. We
crossvalidated pCCA to select global dimensionality, and crossvalidated pCCA-FA to jointly select global
and local dimensionalities. Left: global dimensionality. pCCA-FA recovers ground truth global dshared
with relatively few (300) trials, and is more efficient that pCCA which requires 600 trials to recover
ground truth. Right: local dimensionality. pCCA-FA is able to recover ground truth local dshared; more
trials are needed here as compared to recovering global dshared because the local %sv (≈ 14%) is smaller
than the global %sv (≈ 24%) in this simulation. pCCA does not have a concept of local dimensionality,
and therefore has no data in this figure. In this and subsequent figures, error bars indicate 1 standard
deviation, computed across 30 separate simulations. (continued on next page...)

this previous work focused on slow processes in a single brain area, it was unclear to what extent
faster-timescale trial-to-trial co-fluctuations in neural activity reflects these same processes. Fur-
ther, it has been assumed that the aspects of neural variability related to pupil are multi-area
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Figure 15 (previous page): (continued from previous page...)

b. Recovery of ground truth %sv. Same simulations and fitting procedures as in a, but now showing
recovery of global %sv in the left panel, and local %sv in the right panel. Left: both pCCA-FA and
pCCA underestimate global %sv with very limited data because dimensionality is underestimated (panel
a). However, there is a small regime (300 trials and 600 trials) where pCCA-FA overestimates global
%sv. This is because, in general, eigenvalues of covariance matrices tend to be overestimated in high-
dimensional regimes where the number of trials (i.e., samples) is small relative to number of neurons (i.e.,
features) [129]. However, estimates of global %sv improve with more trials. On the other hand, pCCA
asymptotes and underestimates global %sv even with increasing data (see Methods and Supp. Fig. 4 for
details on the shortcomings of pCCA). Right: pCCA-FA recovers ground truth local %sv with relatively
few trials. Again, pCCA does not have a way to separate shared local variability and private neuron
variability and therefore has no data in this figure. c. In a and b, we asked how many trial pCCA-FA
needed to recover ground truth for a given setting of global and local shared variability. Here, given a
reason number of trials (1000 trial, 30 neurons per area), we evaluate whether pCCA-FA can recover
ground truth for various settings of global and local shared variability (i.e., %sv and dimensionality).
Left: pCCA-FA can recover ground truth global and local dimensionality across various settings (blue
circles are estimates, black starts are ground truth). Right: pCCA-FA can recover ground truth global
and local %sv across various settings. Stars in left and right panels correspond to the same ground
truth parameter settings, and error bars in estimates indicate 1 standard deviation computed across 30
simulations.
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Figure 16: Global shared variability is substantial, and often larger than local shared vari-
ability. a. dshared for pCCA-FA fits to "faster-timescale" neural activity. Results from each hemisphere
and session is aggregated per monkey. Global (across-hemisphere) dshared is larger than local (within-
area) dshared (pooled p = 0.008386; Sa p = 0.000403, Pe p = 0.317343, Wa p = 0.941009; paired sample
t-test). b. Percent shared variance (%sv) for pCCA-FA fits to neural activity. Global %sv is larger than
local %sv (pooled p = 0.000148; Sa p = 0.000001; Pe p = 0.032285; Wa p = 0.801285; paired sample
t-test). In both a and b , histograms show the difference between local and global metrics.

processes. However, given that previous studies did not record from multiple brain regions, it was
unknown whether this assumption was valid. Here we leveraged our two-hemisphere recording
paradigm coupled with our pCCA-FA model to address these gaps (Fig. 17a).

We computed the global across-hemisphere and local within-area latent variables (see Meth-
ods) and used them to predict pupil size using linear regression. Qualitatively, we found that
prediction of pupil diameter was robust for across-hemisphere latents but absent for within-area
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Figure 17: Global latent variables are predictive of pupil size, which is thought to re-
flect global cognitive phenomena such as arousal and wakefulness. a. Are the global (across-
hemisphere) latents or the local (within-hemisphere) latents extracted from neural recordings in PFC
predictive of pupil size? b. Example of 60 trials and "faster-timescale" fluctuations in pupil size (black).
Prediction of pupil size using "faster-timescale" global latents (cyan) and local latents (magenta). For
this session, global latents predict pupil size (r2 = 0.365) better than local latents predict pupil size
(r2 = 0.044). c. r2 aggregated across sessions for each subject, values are significantly positive for global
latents and close to zero for local (within-area) latents. Gray bars show 95% of the null distribution,
which is computed by taking the latents on session i and predicting pupil on session j, where i 6= j. Global
latents are significantly more predictive of pupil than local latents for all subjects (Sa left p < 10−6; Sa
right p < 10−6; Pe left p = 0.000064; Pe right p = 0.000001; Wa left p = 0.000541; Wa right p = 0.000156;
paired sample t-test). To account for the fact that there can be a different number of latents for global,
local left, and local right on any given session (since we use crossvalidation to select dimensionality on
each session separately), we reran the same analysis, but only used a single latent to predict pupil. For
global, we used the latent with highest correlation; for local, we used the latent that explained the most
shared variance. We found that global latents had higher r2 than local latents (Sa left p < 10−6; Sa right
p < 10−6; Pe left p = 0.00010; Pe right p = 0.000010; Wa left p = 0.000274; Wa right p = 0.000096;
paired sample t-test), consistent with our result in panel c. Thus, the result in c cannot be explained
by the fact that global shared variability was higher dimensional than local shared variability (Fig. 16a).

latents (Fig. 17b). We quantified goodness of fit by measuring the coefficient of determination
(r2) for predictions. We found that the global across-hemisphere latent variables demonstrated
significantly larger ability to predict pupil than did the local within-area latent variables (Fig. 17c;
r2 is significantly higher for global than either local left or local right). Interestingly, we found
that this predicted pupil signal was related to but not synonymous with the pupillary evoked
response on each trial (Supp. Fig. 14). Overall, these results are consistent with shared trial-by-
trial encoding of a global cognitive process across areas and hemispheres of cortex.
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4.8 Discussion

In this work, we utilized simultaneous dual hemisphere recordings to study interactions across
hemispheres of cortex in prefrontal cortex. Using pairwise analyses, we found that correlations
tended to appear to be larger within hemisphere pairs compared to across hemisphere pairs.
However, using a new dimensionality reduction approach that we developed, called pCCA-FA, we
identified across hemisphere components that were larger in magnitude (%sv) and dimensionality
(dshared) than variability shared among neurons within the same hemisphere. We found that
across-hemisphere latent variables were predictive of pupil size, while within-hemisphere latent
variables were not. Taken together, our results suggest that a large portion of shared neuronal
variability in PFC can be explained by across-hemisphere interactions, which are predictive of
signatures of global cognitive phenomena.

Neural variability shared across hemispheres of cortex may arise from a variety of mechanisms.
In our paper, we highlighted the fact that across hemisphere shared variability predicted pupil
diameter. This is consistent with global cognitive modulatory signals like arousal or fatigue
contributing to the observed variability. Another source of across hemisphere shared variability
could be shared information about the external world. For example, work in rodents has shown
that small movements contribute to a large portion of variability in the visual cortex [113].
Further work will be needed to explore to what extent these movement related signals appear
in non-motor regions (like PFC) of non-human primates. A third possible source of across
hemisphere shared variability is direct communication between the hemispheres of PFC. Previous
work has suggested ways that the two hemispheres may work together [63, 115, 123] using these
connections. Further work is needed to understand the extent to which these and other sources
contribute to across hemisphere shared variability.

Pupil diameter has been widely studied as an indirect measure of arousal signals in the brain.
The majority of these studies have involved MRI or EEG signals that allow for a relatively
coarse measurement of neural activity using a wide window [121]. Recent work using implanted
electrodes have identified neural activity that predict pupil diameter in a wide range of brain
areas, including rodent area V1 [113] and macaque area V4 [41]. One question that arises
from this literature is whether the signals that predict pupil diameter in any given brain region
are correlated with analogous signals in other brain areas. Here, we identified signals that
predict pupil diameter and are shared across hemispheres. We found almost no within-hemisphere
interactions that predicted pupil diameter beyond what was shared across hemispheres. Our work
suggests that brain regions and neurotransmitters that modulate pupil and cortical activity likely
do so in a non-specific manner, with many cortical brain regions likely receiving the modulatory
signals.

Although the focus of our study was on variability shared across hemispheres, we also identi-
fied a substantial amount of variability that was shared among neurons of the same hemisphere
but not neurons across hemispheres. The origin of this shared within hemisphere variability is
unclear. There are a number of possible sources that likely contribute to this variability. One
possibility is that there are feedforward or feedback input signals that modulate brain areas in
the two hemispheres separately. For example, Rabinowitz et al. (2015) [46] used recordings of
area V4 during a spatial attention task and identified two latent variables that accounted for
attention-related modulation of neural activity. Their analysis found that each latent variable
described the attention modulation in one hemisphere of V4, and were uncorrelated with one
another. Similar signals (e.g., spatial attention) that could selectively modulate the activity of
many PFC neurons in one hemisphere may account for some of the within hemisphere variability.
Another possible source of shared within-hemisphere variability is constraints on patterns of neu-
ral activity imposed by the cortical circuitry in each hemisphere. Previous studies have shown
that clustering structure in neural network models can lead to shared trial-to-trial fluctuations
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within groups of neurons in a recorded population [102, 103, 131].

4.9 Methods

Surgical preparation

We implanted three adult rhesus macaque monkeys each with two 100-electrode “Utah” arrays
(Blackrock Microsystems, Salt Lake City, UT). Electrode arrays were placed in the prefrontal
cortex anterior to the arcuate sulcus and dorsal to the medial sulcus in both hemispheres. In
a prior procedure, titanium headposts were fixed onto the skull of each subject using titanium
screws. This was done to limit head movement during experiments. Surgeries in each subject
were performed in sterile conditions under general anesthesia using isoflurane. All experimental
procedures were approved by the Institutional Animal Care and Use Committee of the University
of Pittsburgh.

Electrophysiological methods

Signals from the implanted electrodes were band-pass filtered (0.3 - 7500 Hz) and then digitized
at 30,000 Hz before being stored offline for analysis. Waveforms were defined as a 52-sample (1.73
ms) window of the filtered voltage signal triggered by the signal crossing a predefined threshold.
The threshold was defined as a multiple of the root-mean-square of a short snippet of the raw
signal collected at the beginning of the session.

Behavioral Task

Subjects were trained to perform a standard memory-guided saccade task [132]. At the beginning
of each trial, a 0.5 degree blue circle appeared at the center of a gray screen. The subject initiated
fixation within an invisible 2.3 degree diameter window centered on the blue circle and then 200
ms later a white circle appeared in the subjects periphery 12 or 16 degrees from fixation at one of
4, 8, or 16 locations depending on the session. The white circle remained on the screen for either
100, 200, or 400 ms depending on the session after which the white circle was removed from
the screen. The subjects then continued to fixate the blue fixation circle until it disappeared
from the screen (after 1.5 to 3 seconds) indicating for the subject to saccade toward the location
where the white target flash occurred. The subject had 400 ms to initiate fixation, defined by
the eye position leaving a 0.9 degree window centered on the blue fixation circle. After saccade
initiation, the subject had 200 ms to reach the target window, defined by a 2.1 degree radius
window centered on the target location. The subject then needed to maintain fixation within
the target window for 150 ms after which the subject was provided with a liquid reward for a
saccade to the correct location. For a subset of sessions, a dim white target was flashed after
saccade initiation to assist the subject in target acquisition. Trials were pseudo-randomized in
mini-blocks during which the subject was required to correctly complete all target directions
before beginning a new mini-block. While some of the above parameters varied slightly from
session to session or subject to subject, all parameters remained constant within a session.

Preprocessing of neural data

To remove non-neural artifacts from among the saved waveforms, we used a neural network to
classify waveforms as neural or not neural. Details of the method were described previously in
[105]. Briefly, a neural network was trained on human sorted waveforms to distinguish between
waveforms putatively of neural origin and waveforms not of neural origin.

We further removed channels that were likely to contain artifacts. To do this, we first binned
neural activity by counting threshold crossing that occurred between target onset and fixation
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offset. We then removed channels with mean spike count lower than 2 spikes/second and Fano
factor greater than 10.

We also removed channels affected by artifactual cross-talk due to electrical coupling. For
each pair of channels, we flagged spikes as coincident if they occurred within 100 us of each
other. If either neuron in the pair had 20% of its spikes flagged as coincident, we flagged that
pair as having artifactual crosstalk. We then removed the fewest number of channels as possible
to eliminate crosstalk on the array.

After this process the number of remaining units in Monkey P was 79.3 ± 8.3 for right and
78.3 ± 7.8 for left hemisphere, in Monkey W was 24.9 ± 4.1 for right and 85.1 ± 8.0 for left
hemisphere, and in Monkey S was 62.6 ± 9.8 for right and 75.3 ± 13.2 for left hemisphere. For
all analyses in this paper, neural activity was preprocessed as described above and then binned
using a 1 second window at the end of the delay period to compute spike counts.

Removing target information

For analyses of trial-to-trial variability (e.g., rsc and population analyses using pCCA-FA), we
removed target information and analyzed residual spike counts. For fitting the pCCA-FA model,
we simply subtracted the condition mean from spike counts within each condition. When com-
puting rsc, we first z-scored spike counts (mean-subtracted and divided by standard deviation)
within each condition.

Separation of slow and fast components

As we investigated interactions between left and right hemispheres, it soon became apparent
that both hemispheres contained a component that varied slowly over the course of the session
[41]. This was problematic for our analyses because slow processes like the ones we identified
result in non-independent samples, which violates a key assumption in correlation analysis (e.g.,
regression, Pearson correlation, pCCA, or pCCA-FA; Supp. Fig. 10). It was therefore unclear
whether these slow processes actually represented global across-hemisphere signals or whether
their assignment to the global subspace was due to potentially spurious correlations induced
by slow-timescale fluctuations [133]. Therefore, we removed slow components from all neural
and pupillometry data, and focused most analyses in this work on faster-timescale trial-to-trial
variability (Supp. Fig. 11; though see Supp. Fig. 13 for an analysis of slow components). We did
this by computing the slow components using a centered boxcar filter of length 25 trials, computed
after removing target information (as described above). We then subtracted this component
from the raw spike counts or pupil size data to remove slow-timescale correlations that could
have induced spurious correlations. We performed this pre-processing procedure independently
for each neuron, and for pupil size data. All analyses in this study were performed on the residual
faster-timescale component.

Measuring tuning

To study the delay period tuning of neurons to target location, we measured the average spike
count of a neuron to each of the 4, 8, or 16 possible targets during the final one second window
in the delay period. We then fit cosine tuning curves to these mean responses [134].

fθ = b+ (fmax − b) cos(θ − PD)

Where b is baseline, max is the maximum of the tuning curve, and PD is the preferred direction.
We defined modulation depth to be the amount of modulation relative to the baseline: (fmax −
b)/b. To assess significance, we computed a null distribution of modulation depths using a
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permutation test (shuffling the target angle labels), and labeled a neuron as significantly tuned if
the actual modulation depth was larger than 95% of modulation depths in the null distribution
(i.e. p<0.05).

Measuring signal correlation

We defined signal correlation between two neurons as the Pearson correlation between the two
neuron’s average responses to each condition during the delay period. To assess significance, we
generated a null distribution of correlation values by using a permutation test (again shuffling
the target angle labels), and labeled a pair as having significant positive signal correlation if the
actual signal correlation was larger than 99% of the null distribution, and significant negative
signal correlation if the actual signal correlation was smaller than 99% of the null distribution.

Probabilistic Canonical Correlation Analysis - Factor Analysis (pCCA-FA)

We develop a model called pCCA-FA to partition neuronal population structure into a global
(across-area or across-hemisphere) component, a local (within-area) component, and a compo-
nent independent to each neuron. The model is a novel combination of two existing dimension-
ality reduction and latent variable methods, namely probabilistic canonical correlation analysis,
or pCCA [135] (which finds dimensions that maximize correlation between two brain areas) and
factor analysis, or FA [136] (which maximizes covariance between neurons in a given brain area).

The pCCA-FA model (Fig. 14) explains spike counts in area x (x) and area y (y) according
to global latent variables z and local latent variables zx, zy. To fully define the probabilistic
graphical model (Fig. 14b), the priors over the latents and the conditional spike count observation
distributions are:

z ∼ N(0, Id) zx ∼ N(0, Idx) zy ∼ N(0, Idy)

x|z, zx ∼ N(µx +Wxz + Lxzx,Φx)

y|z, zy ∼ N(µy +Wyz + Lyzy,Φy)

(18)

where z ∈ Rd×1 are the d latents shared across-areas, zx ∈ Rdx×1 are the dx latents shared
between neurons in area x, and zy ∈ Rdy×1 are the dy latents shared between neurons in area y.
If we assume that we record nx neurons from area x, then Wx ∈ Rnx×d is the loading matrix for
the global subspace in area x, and Lx ∈ Rnx×dx is the loading matrix for the local subspace and
area x. Φx ∈ Rnx×nx is a diagonal matrix containing the independent variances of each neuron,
and µx ∈ Rnx×1 is a vector of average responses of each neuron in area x. The parameters for
area y are defined analogously.

Following the definitions in Eqn. 18, the marginal distributions for x and y are:

x ∼ N(µx,WxW
T
x + LxL

T
x + Φx)

y ∼ N(µy,WyW
T
y + LyL

T
y + Φy)

(19)

By inspecting the marginal distributions, we observe that pCCA-FA decomposes the covariance of
each area as the sum of a low-rank global component (WxW

T
x ), a low-rank within-area component

(LxLTx ), and a diagonal independent neuron component (Φx).

Fitting pCCA-FA and computing latent variables

For fitting pCCA-FA to data, and computing latent variables, it is helpful to think of pCCA-FA
as a generalized and structured factor analysis model. First, we define a joint vector of neural
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activity in both areas and a joint vector of global and local latent variables:

X̃ :=

[
x
y

]
Z̃ :=

 z
zx
zy


Now, the joint prior distribution of latent variables, and the joint conditional observation distri-
bution of neural activity from Eqn. 18 can be written as:

Z̃ ∼ N(0, Id+dx+dy)

X̃|Z̃ ∼ N(µX̃ + L̃Z̃, Φ̃)
(20)

where d, dx, dy represent the global dimensionality, local dimensionality of area x, and local
dimensionality of area y respectively. The model parameters in Eqn. 20 are:

µX̃ =

[
µx
µy

]
L̃ =

[
Wx Lx 0
Wy 0 Ly

]
Φ̃ =

[
Φx 0
0 Φy

]
where all parameters are exactly the same as those in Eqn. 18. The model definitions in Eqn.

1 and Eqn. 2 are equivalent. The definition in Eqn. 2 makes it easy to see that we can think
of pCCA-FA as a generalized and structured factor analysis model [50, 102, 104]. The structure
in the loading matrix L̃ (i.e., the zeros) ensure that the local latent variables (zx and zy) only
contribute to variability in their respective areas, while global latent variables (z) contribute to
variability in both areas. Based on the definition in Eqn. 20, the marginal is:

X̃ ∼ N(µX̃, L̃L̃
T + Φ̃) (21)

Based on the definitions in Eqns. 20 and 21, we can fit pCCA-FA model parameters to data
using the EM algorithm [137]. This EM algorithm is the same as that for factor analysis, with
the added step of maintaining the structure in L̃ after the M-step parameter updates. When
fitting to data, we jointly chose the dimensionalities for global (d), local area x (dx), and local
area y (dy) subspaces using 10-fold cross-validation.

To obtain the global and local latent variables in pCCA-FA (e.g., for use in predicting pupil
size; Fig. 17), we compute the posterior mean of latent variables:

E
[
Z̃|X̃

]
= L̃T

(
L̃L̃T + Φ̃

)−1 (
X̃− µX̃

)
where the first d entries of E

[
Z̃|X̃

]
are E [z|x,y] (global latents), the next dx entries are E [zx|x]

(local latents for area x), and the final dy entries are E [zy|y] (local latents for area y).

Connection to canonical correlations, CCA, and pCCA

In words, the objective of Canonical Correlation Analysis (CCA) is to find a dimension in area
x, and a dimension in area y, such that when neural activity is projected onto these dimensions,
the Pearson correlation is maximized. Further dimensions can be found by also maximizing cor-
relation, subject to the constraint that new dimensions are uncorrelated with previous dimension
that are found. The correlations along these dimensions are known as canonical correlations (ρ).

CCA also has a probabilistic interpretation [pCCA; 135], defined by the graphical model:

z ∼ N(0, Id)

x|z ∼ N(µx +Wxz + Lxzx,Ψx)

y|z ∼ N(µy +Wyz,Ψy)

(22)
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where d is the number of CCA (global) dimensions, Wx,Wy are loading matrices as in Eqn. 18,
but now Ψx,Ψy, the within-area or "noise" covariance matrices, are full rank. One advantage of
pCCA-FA over pCCA is that it generalizes the within-area noise covariance matrix by modeling
it as low rank plus diagonal (LxLTx + Φx). The means that pCCA-FA has fewer parameters than
pCCA, and is thus more robust and performant in limited data regimes (i.e., able to recover
ground truth with fewer samples; Fig. 15).

It is not straightforward from the graphical model for pCCA (Eqn. 22) to see how pCCA
maximizes correlation. However, it can be shown that pCCA recovers the same dimensions and
subspaces (Wx,Wy) as CCA [135]. Intuitively, this means that the canonical correlations should
be the same as well. Indeed, it can be shown mathematically, that the canonical correlations are
equal to the Pearson correlation between the latent posterior means, defined as:

E[z|x] = W T
x (WxW

T
x + Ψx)−1(x− µx)

E[z|y] = W T
y (WyW

T
y + Ψy)

−1(y − µy)

Analogously, the canonical correlations in the pCCA-FA model can be computed as the Pearson
correlation between latent posterior means:

E[z|x] = W T
x (WxW

T
x + LxL

T
x + Φx)−1(x− µx)

E[z|y] = W T
y (WyW

T
y + LyL

T
y + Φy)

−1(y − µy)

Measuring percent shared variance (%sv) and dimensionality (dshared)

We defined two metrics to characterize the global (across-hemisphere) and local (within-hemisphere)
subspaces: percent shared variance (%sv) and dimensionality (dshared). We used %sv to measure
the amount of shared variance attributed to either global or local subspaces. We used dimension-
ality, measure using dshared [102], to measure the complexity of these interactions. We computed
these metrics similar to how they are for FA [102–104], but modified for the pCCA-FA model
developed in this study.

To assess the amount of each neurons variance that could be explained by global latents, we
computed the global percent shared variance, defined as:

Global %sv for neuron k =
WxkW

T
xk

WxkW
T
k + LxkL

T
xk + Ψk

(23)

where Wxk is the kth row of the global loading matrix for area x, Lxk is the kth row of the local
loading matrix for area x, and Ψxk is the independent variance for the kth neuron in area x.

We similarly defined the local percent shared variance as:

Local %sv for neuron k =
LxkL

T
xk

WxkW
T
k + LxkL

T
xk + Ψk

(24)

We defined global dshared as the minimum number of modes needed to explain 95% of the
global shared covariance matrix WxW

T
x . To do this, we first identified the eigenvalues of WxW

T
x

and sorted them from largest to smallest. Note that these eigenvalues indicate the amount of
variance in WxW

T
x explained by the corresponding eigenvector. We then defined dshared as the

minimum number of eigenvalues needed such that the sum of the eigenvalues explains at least
95% of the sum of all of the eigenvalues. We defined local dshared for each hemisphere using the
procedure described above except that WxW

T
x was replaced with LxLTx .

Here, we have described computation of %sv and dshared for area x; we computed the metrics
analogously for area y.
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Pupil prediction

Pupil prediction for global and local latents was performed using linear regression and assessed by
computing the proportion of variance explained by the predictions. First, mean pupil diameter
for each trial was computed in the same time bin as was used for computing spike counts (i.e., a
1-second bin at the end of the delay period). We normalized pupil size for each session by using
the mean and standard deviation of pupil sizes across the session. Additionally, we removed
slow-timescale fluctuations in pupil size using the same method used for neural activity and
focused analyses on faster-timescale trial-to-trial variability (Supp. Fig. 11).

We then computed the posterior means: for the global latents E [z|x, y] and for the local
latents E [zx|x] and E [zy|y]. Here, z represents global latents, zx and zy represent left and
right hemisphere local latents respectively, and x and y represent left and right hemisphere spike
counts respectively.

We then fit a linear regression model between global latents and pupil size (Fig. 17b global),
and reported the proportion of variance in pupil size explained by the model (i.e., r2; Fig.
17c global). We repeated the same procedure for local left and right hemisphere latents, and
reported local left and right r2 (Fig. 17b-c local). To compute null distributions for pupil
prediction, we used the latents on a given session i and repeated the procedure above, except
using the pupil size on another session j (where i 6= j; trials were truncated in the session with
more trials to ensure equal trial numbers). This resulted in null distributions with 240 samples
for subjects Sa and Pe with 16 sessions, and a null distribution with 90 samples for subject Wa
with 10 session. We report the 95% confidence intervals of this null distribution (Fig. 17c gray
bars). We also test whether global or local latents are more predictive of pupil size using a paired
sample t-test (Fig. 17c).
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5 [Data augmentation] How to augment your ViTs? Consistency
loss and StyleAug

Chapters 2, 3, and 4 focus on understanding neuronal variability in a natural neural system, i.e.,
the primate brain. However, variability also plays a crucial role in modern deep learning and
artificial neural systems. For example, stochasticity plays an important role in regularization
during training (e.g., dropout regularization, stochastic depth) and “internal” model variability
plays an important role in generative modeling (e.g., variational autoencoders, generative adver-
sarial networks). “External” model variability, in the form of the amount and diversity of data
that is used to train a model, is also an important factor in the success of modern deep learning.
As compute power increases and models become larger, there is an increasing need for larger
and more diverse datasets. One way to improve the size, quality, and variability of training data
is to use data augmentation–a term that encompasses a variety of techniques to generate new
training samples from a given training set or distribution. While data augmentation is widely
used, not much is known about how data augmentation strategies interact with the architecture
of the deep learning model that is being trained. In this chapter, I explore the interaction be-
tween commonly-used and state-of-the-art data augmentations and model architectures for the
task of image classification. I also introduce a new data augmentation loosely inspired by human
visual perception, called StyleAug, that improves performance of the vision transformer (ViT),
an architecture that has recently been shown to work very well for computer vision applications.

5.1 Introduction

For nearly a decade, convolution neural networks (CNNs) have been the de-facto deep learning
architecture for a variety of computer vision tasks from image classification to object detection to
segmentation [138–141]. A major reason for their success is due to the inductive biases imposed
by the convolution operation, namely sparse interactions, weight sharing, and translational equiv-
ariance [142]. These inductive biases allow for efficient training of feature representations that are
useful for vision tasks. Despite their widespread adoption, CNNs have room for improvement–
they can be prone to adversarial attacks and perform poorly when there are distribution shifts
(e.g., when images have been corrupted [143]). Other work has shown that CNNs rely on tex-
tures to categorize objects, while humans rely on object shape [144]. This can be problematic
for using CNNs as a model of the human visual system [145].

Taking inspiration from the success of the Transformer architecture in language modeling
[146], Vision Transformers (ViTs) are an alternative architecture that utilize the key mechanism
of multi-head self-attention (as opposed to the key mechanism of convolution in CNNs). ViTs
have recently shown promise for image classification, even outperforming state-of-the-art CNNs
[147, 148]. Follow-up work has shown that ViTs also have other advantages relative to CNNs,
including: 1) increased adversarial robustness [149], 2) increased robustness to corruptions [150],
3) ability to provide pixel-level segmentation using attention maps [150, 151], and 4) smaller
texture bias and greater shape bias [150, 152], making them a good candidate model for human
vision.

Although ViTs have attained competitive performance on vision tasks, they are known to be
more difficult to train than CNNs. In ViTs, only multi-layer perceptron (MLP) layers operate
locally and are translationally equivariant, while the self-attention layers [146] operate globally
[147]. As such, ViTs are thought to have a weaker inductive bias than CNNs, thus requiring more
data, augmentations, and/or regularization than training a similarly-sized CNN [148, 153, 154].
However, the strategies for data augmentation for ViT training have largely been adapted from
the techniques used for CNNs. While these augmentations have worked reasonably well, certain
training and augmentation strategies may be more beneficial for ViTs than for CNNs.
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In this work, we performed a systematic empirical evaluation of data augmentation strategies
on CNNs and ViTs. Importantly, we found that using a consistency loss penalty term between
different augmentations of the same image [143] was especially helpful when training ViTs. We
then introduced a novel data augmentation, called StyleAug, inspired by shape bias in human
visual perception [144]. StyleAug performs neural style transfer from a given image to another
randomly chosen image in the dataset during training. When combined with a consistency loss,
StyleAug improves validation accuracy, robustness to corruptions, shape bias, and transferabil-
ity. For training ViTs, StyleAug outperforms previous state-of-the-art augmentations such as
RandAugment [155] and AugMix [143] across several metrics.

5.2 Related work

ViT training. ViTs have a weaker inductive bias than CNNs. To achieve classification perfor-
mance better than CNNs, Dosovitskiy et al. [147], trained ViTs on very large datasets, either
ImageNet-21k or the proprietary JFT-300M. To train ViTs with limited data and compute re-
sources, Steiner et al. [154] explore data, augmentations, and regularization. They suggest that,
for a fixed dataset size, one should generally prefer data augmentations over extensive regular-
ization. In another study, Touvron et al. [148] trained data-efficient vision transformers using
a combination of various augmentations, regularization strategies, and a novel distillation strat-
egy. For distillation, they create a special "distillation token" in the transformer architecture
that uses a CNN as the teacher network. Their data-efficient image transformer (DeiT) achieves
competitive performance without large datasets (i.e., with only ImageNet-1k).
Data augmentation. Proper data augmentation can increase the size and quality of datasets,
which can help prevent overfitting and greatly improve generalization of deep learning models.
Since ViTs have a weaker inductive bias, they can be prone to overfitting [153], and thus benefit
greatly from many strong augmentations [148].

From another perspective, data augmentation can also help deep learning models learn invari-
ances such as scale (i.e., with cropping) and color. Indeed, the increasingly popular self-supervised
learning methods learn feature representations by becoming invariant to image transformations.
The goal of self-supervised learning is to map different augmentations of the same image to similar
locations in the feature embedding space [151, 156, 157]. Caron et al. [151] show that multi-scale
cropping is an especially useful augmentation for training self-supervised ViTs. Hendrycks et al.
[143] take inspiration from the self-supervised learning literature, and use a Jensen-Shannon con-
sistency loss (between a training image, and two augmentations of the image) in addition to a
classification loss when training CNNs.
Shape vs. texture bias Geirhos et al. [144] used psychophysics experiments to show that
humans make image classification decisions based on object shape, rather than relying on image
texture. Presented with the same images, CNNs made decisions based on image texture. Geirhos
et al. [144] created a new dataset, called Stylized ImageNet, in which they performed style
transfer with ImageNet images as content and images of art as style. Trained on this data,
CNNs showed improved shape bias and lower texture bias, but at the expense of classification
performance. Xu et al. [158] used a random convolution augmentation (to distort textures)
combined with a consistency loss to improve CNN generalization to unseen domains such as
ImageNet-sketch.

5.3 Augmentation strategies

A Image transformations

For training models, we tested several basic and several state-of-the-art augmentations for image
classification. All images first went through Inception-style preprocessing: 1) a resized crop with
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Figure 18: Augmentation setup. (a) Classic augmentation setup. Cross-entropy loss between the
network prediction of the augmented image, f(Aug1), and the true label. (b) Setup with a Jensen-
Shannon (JSD) consistency loss. Cross-entropy loss between prediction of the original image f(Orig),
and an addition of a JSD loss between the three network predictions of each of the original image (f(Orig))
and two augmentations (f(Aug1), f(Aug2)).

a randomly chosen scale in [0.5, 1] and resized to 224×224, and 2) a random horizontal flip with
p = 0.5 (Fig. 18a, ImageNet Image to "Orig"). We used a relatively large cropping scale in this
step to allow for testing of multi-scale cropping augmentations later (see JSD loss below; [151]).

We then performed additional augmentation operation to this image (Fig. 18a, "Orig" to
"Aug 1"). First, we tested basic augmentations such as random cropping, color jittering, and
translation. Second, we tested RandAugment [155], a state-of-the-art augmentation for training
CNNs on ImageNet, and AugMix [143], another state-of-the-art augmentation that improves
CNN robustness to image corruptions. As in the Augmix paper, for both RandAugment and
AugMix, we exclude transformations that overlap with ImageNet-C corruptions to allow for fair
evaluations of model generalization and robustness. Third, we tested our new human perception-
inspired augmentation StyleAug (described in detail below), and StyleAug with random cropping.
Finally, we also tested another augmentation, called Neurofovea (Deza et al., 2021 [159]), inspired
by the human perceptual phenomena of foveation and metamerism [160].

In experiments, we considered the random cropping augmentation as a baseline as it is ef-
fectively the same as only training models with Inception-style preprocessing. Examples of all
augmentations tested, along with further details such as any torchvision transforms used, are
provided in the Appendix and Supp. Fig. 15.
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B Jensen-Shannon divergence (JSD) consistency loss

For the typical training augmentation setup (Fig. 18a), we trained models using a cross-entropy
classification loss (with label smoothing=0.1) between the model predictions (i.e., f(ŷ|xaug1)
posterior distribution over class labels given an image "Aug 1") and the true class label y. We
tested the impact of using a consistency loss to train different model architectures. Following
the AugMix paper [143], we used a Jensen-Shannon divergence (JSD) consistency loss between
an image ("Orig") and two augmentations of the image ("Aug 1" and "Aug 2"). This JSD loss
was applied in addition to a classification loss (Fig. 18b):

L(f(ŷ|xorig), y) + λJSD(f(ŷ|xorig) || f(ŷ|xaug1) || f(ŷ|xaug2)) (25)

We used λ = 12, the value used in AugMix [143]. The JSD loss is computed as follows:

JSD(porig || paug1 || paug2) =
1

3
(KL(porig || M) +KL(paug1 || M) +KL(paug2 || M)) (26)

where KL is the KL divergence, and M = (porig + paug1 + paug2)/3. The JSD loss imposes
a large penalty when the posterior distribution predictions for the three versions of the training
image ("Orig", "Aug 1", and "Aug 2") are very different. Thus, the JSD consistency loss requires
models to learn similar feature representations and output distributions across the different
augmented versions of the same image. This explicitly trains models to become invariant to the
augmentations used.

5.4 StyleAug

Orig Aug 1 Aug 2

Figure 19: StyleAug: neural style transfer from a given image in the batch to another randomly chosen
image in the dataset. "Orig" (left) shows the original image after Inception-style preprocessing; "Aug 1"
(middle) and "Aug 2" (right) show two StyleAug augmentations of "Orig".

Geirhos et al. [144] showed that CNNs trained on ImageNet make classification decision
mainly based on image textures (i.e., they have high texture bias). However, high shape bias
and low texture bias is desirable because models with this property tend to show better gener-
alization and increased robustness [144, 150, 158]. New datasets (i.e., Stylized ImageNet [144])
and augmentations (i.e., random convolutions [158]) have been developed to try to improve CNN
shape bias, robustness, and generalization. However, training with these techniques are expen-
sive and/or do not improve validation accuracy on the original ImageNet dataset. We sought
to develop an augmentation that: 1) is fast and can be used in real-time during training, 2)
improves shape bias, and 3) improves performance on ImageNet.
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Algorithm 1: StyleAug training with Jensen-Shannon (JSD) consistency loss
Input : Model f , classification loss L, training image x and its class label y, two

images sampled randomly from the current mini-batch xrand1, xrand2

1

2 Function StyleAug(x,xstyle,α = 50,β = 50):
3 z = V GGenc(x) // VGG encoder from [161]
4 zstyle = V GGenc(xstyle)
5 zadain = AdaIn(z, zstyle) // adaptive instance normalization
6 xadain = V GGdec(zadain) // VGG decoder from [161]
7 m ∼ Beta(α, β)
8 xaug = m · x+ (1−m) · xadain // mix with original representation
9 return xaug

10

11 xorig = InceptionStylePreprocess(x) // Random crop and horizontal flip
12 xstyle1 = InceptionStylePreprocess(xrand1)
13 xstyle2 = InceptionStylePreprocess(xrand2)
14

15 xaug1 = StyleAug(xorig, xstyle1)
16 xaug2 = StyleAug(xorig, xstyle2) // xaug1 6= xaug2
17

Loss Output: L(f(ŷ|xorig), y) + λJSD(f(ŷ|xorig) || f(ŷ|xaug1) || f(ŷ|xaug2))

We introduce a new data augmentation called StyleAug (Fig. 19). StyleAug performs style
transfer between two images, using one as the content image and another as the style image. The
resulting style-transferred images have the shapes present in the content image and the colors
and textures present in the style image. StyleAug uses a style transfer method that performs
real-time arbitrary style transfer (AdaIn; [161]), which computed fast enough to use for data
augmentation. For the style transfer, we use a training image (whose label is preserved) as the
content image, and another randomly chosen image in the batch as the style image. To ensure
that the training label is preserved, the augmented image is a mix of the original image and
the style-transferred image, where the mixing weight m was drawn from a β(50, 50) distribution
(i.e., most of the time m was close to 0.5, but there was some stochasticity in the amount
of style distortion). In terms of computational resources, training models with StyleAug used
approximately the same amount of time and resources as training models with RandAugment or
AugMix.

StyleAug tended to preserve the shape content of an image but distorted its colors and
textures (e.g., Fig. 19). By combining StyleAug with the JSD consistency loss, we explicitly
trained networks to become invariant to the color, texture, and other distortions/transformations
that were induced by StyleAug. Pseudocode for StyleAug training with the JSD loss is provided
in Algorithm 1.

For both CNNs and ViTs, StyleAug greatly improved shape bias over other augmentations
we tested (Fig. 22). Moreover, for ViTs StyleAug also provided the best ImageNet validation
performance (Fig. 20), mean corruption accuracy on ImageNet-C (Fig. 21, and transfer learning
performance to the Pet37 dataset (Fig. 23a).

5.5 Experiments

For fair comparison, we trained models of similar size: ResNet-50 for CNNs (∼ 25 million pa-
rameters), and ViT-Small with 16x16 patch size for vision transformer (∼ 22 million parameters)
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[153]. All models were trained from random initialization for 100 epochs on ImageNet-1k. We
used the AdamW optimizer with a peak learning rate of 0.001 with linear warmup for 10 epochs
followed by a cosine learning rate decay schedule. For ResNet-50 training, we used a weight
decay of 0.05, a batch size of 512 for typical training (no JSD) and 200 for training with the JSD
consistency loss (since the JSD loss uses ∼ 3× the number of images per batch). ViT-Small/16
required more GPU memory during training, requiring smaller batch sizes of 400 (no JSD) and
150 (JSD). We also used a larger weight decay of 0.3 for ViT-Small/16. We trained models
using 2 GPUs (Nvidia Tesla V100) in parallel for training without the JSD loss, and 4 GPUs for
training with the JSD loss. Basic augmentations (crop, color, translate) required approximately
30-45 minutes per epoch for training, while the other augmentations required approximately
60-75 minutes.

We trained models using the augmentations described in Sections 3 and 4, with and without
a JSD consistency loss, and evaluated their performance on:

1. ImageNet validation accuracy

2. Robustness to corruptions / distribution shift (i.e., accuracy on ImageNet-C [162])

3. Shape bias vs. texture bias on cue-conflict images [144]

4. Transfer learning to: The Oxford-IIIT Pet dataset (pet37, which is a dataset of natural
images [163]) and to resisc45 (a dataset of satellite images [164]).

A ImageNet-1k validation accuracy

To evaluate models’ performance on the ImageNet-1k, we preprocessed validation images by
resizing to 256 pixels, and then taking a 224× 224 center crop. Here, we report the accuracy of
models on the ImageNet-1k validation set. We note that ViT-S validation accuracy was lower
than ResNet-50 performance. This is expected when training on the relatively small ImageNet-1k;
ViT models that outperformed ResNets were trained on larger datasets (ImageNet-21k or JFT-
300M [147]) or used knowledge distillation [148]. Here, we were more interested in comparing
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Figure 20: Validation accuracy of different augmentations on ImageNet-1k.
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the relative performance improvements of using one augmentation strategy over another, and
how that differed between CNNs and ViTs.

Most importantly, we found that using a JSD consistency loss provided a large boost in
accuracy across all augmentations when training ViT-S (Fig. 20 right panel, orange bars all
above green bars). For ResNet-50, using a JSD loss improved accuracy for some augmentations
but resulted in lower accuracy for others (Fig. 20 left panel).

Second, we found that the augmentations that worked best for ResNet-50 were different
from those that worked best for ViT-S. For ViT-S, our proposed augmentation, StyleAug and
StyleAug + crop, have the best accuracy, followed closely by RandAugment and Neurofovea. For
ResNet-50, the state-of-the-art RandAugment and Augmix do best, while accuracy for StyleAug
is lower.

Finally, we note that our cropping + JSD loss augmentation (see Supp. Fig. 15a) is very sim-
ilar to multi-scale cropping used in DINO [151]. Thus, our finding that using a JSD consistency
loss with random cropping supports the finding in the DINO paper that multi-scale cropping in
a self-supervised setting is a very beneficial augmentations for ViTs.

B Robustness to corruptions

We tested the models trained on ImageNet-1k on their robustness to distribution shift (i.e.,
image corruptions). To do so, we evaluated each models’ performance on ImageNet-C [162],
which contains 19 different corruptions across 5 different severity levels each. We report the
mean corruption accuracy as the model’s average accuracy across the 95 datasets present in
ImageNet-C.

For ViT models, we found that training with StyleAug and a JSD consistency loss attained
the highest corruption accuracy, and in fact also outperformed all ResNet-50 models (Fig. 21).
RandAugment and Augmix with a JSD loss had the highest corruption accuracy among ResNet-
50 models. Secondly, we again found that using the JSD consistency loss during training boosted
the corruption accuracy of ViT models by close to 5% in many cases (Fig. 21 right panel, orange
bars above green bars). However, using a JSD loss again provided mixed results in corruption
accuracy for ResNet-50 models (Fig. 21 left panel).
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Figure 21: Mean corruption accuracy of different augmentation strategies on ImageNet-C.
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Figure 22: Shape bias of different augmentation strategies.

We also note that while ImageNet-1k validation accuracy was lower for ViT-S than ResNet-
50, here we found that, for the same models as in Fig. 20, many ViT-S models had higher
corruption accuracy than ResNet-50 models. This supports findings in Naseer et al. [150] that
suggest that vision transformers tend to be more robust than CNNs.

C Shape bias

We tested each models’ shape bias relative to its texture bias. To do so, we evaluate the models
trained on ImageNet-1k on the cue-conflict images from Geirhos et al. [144]. Cue-conflict images
were generated by performing iterative style transfer between two images. Thus, they have an
object shape label (based on the content image) and an texture label (base on the style image;
see Supp. Fig. 16 for an example). The shape bias is defined as the number of correctly classified
shape labels relative to the total number of correctly classified images (either shape or texture)
[144]:

shape bias =
# correct shape labels

# correct shape labels + # correct texture labels
We found that training ViT-S with the JSD consistency loss greatly improved shape bias

(Fig. 22 right panel, orange bars above green bars), and that StyleAug provided the highest
shape bias. Training with the JSD loss also tended to increase shape bias across augmentations
for ResNet-50, and we also found that our proposed StyleAug provided the highest shape bias
for ResNet-50 (Fig. 22 left panel). However, we note that ResNet-50 models had much lower
shape bias than ViT-S models.

D Transfer learning

We tested the transferability of models trained in on ImageNet-1k. To do so, we froze the
backbone weights, replaced the classification heads, and only finetuned the weights of the new
classification heads on Pet37 or Resisc45. For Pet37, we used SGD with momentum, with a
batch size of 512, and learning rate of 0.01 for 10 epochs, followed by a learning rate of 0.003 for

82



cr
op

Ra
nd
Au
g

Au
gM

ix

St
yl
eA
ug

(o
ur
s)

Cr
op

&
St
yl
eA
ug

(o
ur
s)

co
lo
r

tra
ns
la
te

Ne
ur
of
ov
ea

65

70

75

80

85

90

tr
an
sf
er

va
lid

at
io
n

ac
cu

ra
cy

(%
)

ResNet50
Pet37a

No JSD
JSD

cr
op

Ra
nd
Au
g

Au
gM

ix

St
yl
eA
ug

(o
ur
s)

Cr
op

&
St
yl
eA
ug

(o
ur
s)

co
lo
r

tra
ns
la
te

Ne
ur
of
ov
ea

65

70

75

80

85

90

tr
an
sf
er

va
lid

at
io
n

ac
cu

ra
cy

(%
)

ResNet50
Resisc45b
No JSD
JSD

cr
op

Ra
nd
Au
g

Au
gM

ix

St
yl
eA
ug

(o
ur
s)

Cr
op

&
St
yl
eA
ug

(o
ur
s)

co
lo
r

tra
ns
la
te

Ne
ur
of
ov
ea

65

70

75

80

85

90

ViT-S/16
cr
op

Ra
nd
Au
g

Au
gM

ix

St
yl
eA
ug

(o
ur
s)

Cr
op

&
St
yl
eA
ug

(o
ur
s)

co
lo
r

tra
ns
la
te

Ne
ur
of
ov
ea

65

70

75

80

85

90

ViT-S/16

Figure 23: Transfer learning of ImageNet trained models. (a) Validation accuracy on Pet37 after
transfer learning. (b) Validation accuracy on Resisc45 after transfer learning.

10 epochs. We evaluated performance on the test split used in [163]. For Resisc45, we used SGD
with momentum, with a batch size of 512, and learning rate of 0.01 for 10 epochs, 0.003 for 5
epochs, and 0.001 for 5 epochs. Since there is not a standard training / test split, we performed
a single random 80/20 split which was kept constant across training and evaluation of different
models. We did not use any augmentation during transfer learning; we only used augmentations
while training on ImageNet-1k.

For both Pet37 and Resisc45, we found that JSD consistency loss improved transfer learning
for both ResNet-50 and ViT-S models (Fig. 23a-b, orange bars typically above green bars).
For both datasets, we found that ViT-S models transferred better than ResNet-50 models (Fig.
23a-b, bars in right panels higher than those in left panels). For Pet37, StyleAug worked best
again for ViT-S while AugMix worked best for ResNet-50 (Fig. 23a). For the satellite images of
Resisic45, Neurofovea, Augmix, and StyleAug worked well for both ViT-S and ResNet-50 (Fig.
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23b).

5.6 Conclusion

In this work, we systematically evaluated how different commonly-used augmentation strategies
perform on different model architectures. We showed that the data augmentations that work
best for ViTs are different than those that work best for CNNs. Importantly, we found that
using a Jensen-Shannon consistency loss in addition to a classification loss when training ViTs
provided considerable performance improvement in almost all cases. Importantly, although ViT
performance lagged CNN performance on ImageNet-1k, they were generally more robust to
corruptions, had higher shape bias, and were more transferable. We hope that future work will
scrutinize other existing data augmentations and training strategies that have worked well for
CNNs, and consider whether they should be used for other model architectures like ViTs.

We also introduced StyleAug: real-time neural style transfer from a training image to another
randomly chosen image in the dataset. For ViTs, StyleAug outperforms other state-of-the-art
augmentations in accuracy, robustness, transfer learning, and shape bias. We hope that future
research will continue to develop augmentations and training strategies that work well for vision
transformers, even if they might not benefit the previously dominant CNN architecture.
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6 Conclusion

This dissertation presents work that furthers our understanding of variability in both artificial
and natural neural systems (i.e., the brain). For artificial neural networks and deep learning, this
work highlights that one should consider different techniques to increase training data variability
(i.e., data augmentation) for different model architectures (Chapter 5). For systems neuroscience,
this work advances the understanding of the structure of shared neural variability (Chapter 2),
its distinct sources (Chapter 4), and to what degree it can be controlled (Chapter 3).

6.1 Summary of contributions

Structure of shared neural variability [Chapter 2]

Pairwise correlations (Pearson correlation between spike counts) [7] and population metrics com-
puted from dimensionality reduction methods [50] both aim to characterize shared trial-to-trial
neuronal variability. Although they are both computed from the same spike count covariance
matrix, the relationship between the two is not known. We established the relationship be-
tween pairwise and population metrics both analytically (i.e., through mathematical proofs) and
empirically using simulations. Our results demonstrated that changes in the mean pairwise cor-
relation could correspond to one (or several) of a number of changes in population metrics: 1)
the strength of shared variability (%sv), 2) the patterns of shared variability (loading similarity),
and 3) dimensionality (dshared). We showed that the standard deviation of pairwise correlations,
which is rarely reported, provides complementary information to the mean pairwise correlation
about population covariance structure. In recordings of macaque area V4, we found that the
previously-reported decrease in mean pairwise correlation with attention corresponds to multiple
distinct changes in population metrics. Overall, our framework builds the intuition to navigate
between pairwise correlations and dimensionality reduction, allowing for a more interpretable
and richer description of the structure of shared neuronal variability.

Control of shared neural variability [Chapter 3]

Neural activity drifts slowly over time, and the direction of these drifts are often shared among
the neurons in a population. These slow drifts in population activity have been linked to slow
changes in cognitive phenomena such as arousal, impulsivity, and engagement [41, 42, 113]. In
this study, we asked to what degree animals could volitionally modulate these slow co-fluctuations
and stabilize neuronal activity over the course of several hours. We trained two rhesus macaques
to control a novel brain computer interface (BCI) paradigm that provided visual feedback about
their prefrontal cortex population activity. The size of an on-screen annulus was linked to the
distance of the animal’s neuronal activity from a “target” neuronal state that was defined at the
beginning of the session. By using the BCI, animals: 1) were successfully able to reduce the
distance of their internal neuronal state to the target state, and 2) control shared variability to
suppress slow neuronal drifts. Future work will investigate whether this suppression in slow neu-
ronal drifts also corresponded to suppression of slow changes in pupil size and internal cognitive
states (e.g., arousal, impulsivity, or engagement).

Sources of shared neural variability [Chapter 4]

Shared trial-to-trial variability in one area of cortex may be shared with another area (e.g., an
input or output area), or be due to brain-wide signals that impact many areas (e.g., arousal,
impulsivity) [41, 42, 113]. In this work, we utilized simultaneous bilateral prefrontal cortex
(PFC) recordings to study shared variability across hemispheres of cortex vs within a single
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brain area. We developed a new probabilistic graphical model, called pCCA-FA, to identify
and separate global (across-hemisphere) and local (within-area) sources of shared variability. In
our PFC data, we identified across-hemisphere components that were larger in magnitude (%sv)
and dimensionality (dshared) than variability shared among neurons within the same hemisphere.
We found that across-hemisphere latent variables were predictive of pupil size, while within-
hemisphere latent variables were not. Taken together, our results suggest that a large portion
of shared neuronal variability in PFC can be explained by across-hemisphere interactions, and
these across-hemisphere interactions are predictive of signatures of global cognitive phenomena.

Different augmentations for different neural network architectures [Chapter 5]

Variability is an important aspect of modern artificial neural networks and deep learning. Inter-
nal model variability is used in generative models [43, 165] and in regularization during model
training [44, 45]. External variability in terms of training dataset size and diversity is also nec-
essary to train models that are robust and generalizeable. In order to improve training data
variability and quality, data augmentation is used to generate new training samples from a given
dataset or distribution. In this work, we systematically evaluated how different augmentation
strategies perform on different model architectures for image classification. The data augmen-
tations that worked best for vision transformers (ViTs; [147]) were different than those that
worked best for convolutional neural networks (CNNs). We found that using a Jensen-Shannon
consistency loss in addition to a classification loss when training ViTs provided considerable per-
formance improvement in almost all cases. We also introduced a new data augmentation, called
StyleAug: real-time neural style transfer from a training image to another randomly chosen im-
age in the mini-batch. For ViTs, StyleAug outperformed other state-of-the-art augmentations
in accuracy, robustness, transfer learning, and shape bias. We hope that future research will
continue to develop augmentations and training strategies that work well for vision transformers
and other neural network architectures, even if they might not benefit the previously dominant
CNN architecture.

6.2 Discussion and future directions

Shared neuronal variability and information coding

An improved understanding of the characteristics of shared trial-to-trial neuronal variability is
critical to elucidating how the brain encodes and processes information. Previous literature has
noted that correlated variability can impact the amount of information encoded in a neuronal
population. Some of these studies measured trial-to-trial variability using spike count correlations
(rsc; [34, 35]), while others used a high-dimensional approach [37, 38]. In chapter 2, we provided
a framework that related rsc and dimensionality reduction, allowing one to bridge between the
literatures of rsc and dimensionality reduction (and population metrics). By considering the
three population metrics–percent shared variance, loading similarity, and dimensionality–used in
Chapter 2, along with the way in which mean population responses vary across conditions, we
can more incisively characterize how trial-to-trial variability impacts information coding than
by using rsc mean alone. We can use the three population metrics to measure how patterns
of shared variability are related to (e.g., align with or are orthogonal to) patterns of stimulus
encoding and downstream readouts [14, 38, 41].

Some cognitive phenomena such as attention and learning have been shown to change the
properties of shared neuronal variability in the brain [13, 14, 46, 104, 166]. These changes could
impact the amount of information that can be encoded. For example, paying attention to a
location in space may enable a neuronal population to improve encoding fidelity for stimuli in
that location. However, it is not know whether the nature of these changes are global to the
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entire brain, or local to the relevant neuronal population performing the encoding. We hope
that future work will utilize simultaneous multi-area recordings [39] and statistical techniques
like pCCA-FA in Chapter 4 to separate different sources of shared variability and investigate
their potentially distinct impacts on information coding. Moreover, while information-limiting
correlations have begun to be measured empirically [39, 85], little has been shown empirically
about their behavioral impact. We hope that future work will utilize difficult behavioral tasks
(such as fine discrimination) or brain computer interfaces (Chapter 3; [167]) to directly investigate
how information-limiting correlations impact behavioral performance.

Data augmentation for neuroscience

Data augmentation strategies (e.g., those in Chapter 5) are commonly used in deep learning
in a variety of domains and tasks, including computer vision [168], natural language processing
[169, 170], and self-supervised learning [151, 156, 157] among others. However, data augmen-
tation has not often been used for neuroscience applications. This is presumably because of
the much smaller signal to noise ratio in neural data (e.g., due to the variable nature of neu-
ral responses discussed in Chapter 2-4). However, careful development and application of data
augmentation techniques to neural data is potentially a fertile ground for future research. For
brain computer interfaces, augmentation might be used to train predictive models with less data
and greater robustness to instabilities or phenomena such as slow drift discussed in Chapter 3
[41, 42, 171, 172]. For inference, augmentation can be used in addition to or as an alternative
to regularization to train models such as factor analysis (Chapter 2; [99, 102, 104]) or pCCA-FA
(Chapter 4), enabling model fitting with limited data while also preventing overfitting to noise.
Because of the constraints and expenses involved in electrophysiology experiments, developing
data augmentation strategies for neural data will prove invaluable for future systems neuroscience
research.

Intersection of deep learning and neuroscience/perception

Artificial neural networks and deep learning have been hugely successful and are often used
throughout a number of modern applications. Yet, deep learning models are somewhat brittle in
that they are highly specialized to a specific task, are prone to adversarial attacks [173], and can
make errors with even natural and small distribution shifts [162]. On the other hand, as humans
we may not be as good as deep learning models at a highly specialized task, but we are much more
robust and can generalize much more easily. Indeed, recent deep learning research has started to
focus less on training the best model for a single task, and more on training general models that
are good at many tasks (i.e., self-supervised learning; [151, 156, 157]). This was apparent with
our comparison of the recent vision transformer (ViTs [147]) and the older convolution neural
network (CNN) architectures in Chapter 5. Although our ViTs did not outperform CNNs at the
image classification task, they were more robust to distribution shifts, had higher shape bias,
and generalized better to other datasets (i.e., better transfer learning).

Can we take further inspiration from neuroscience and perception to train better deep learn-
ing models? Recent deep learning research has started to do so–the ViT [147] is a new computer
vision architecture loosely inspired by the cognitive phenomena of attention. Additionally, the
increasingly popular domain of self-supervised learning [151, 156, 157, 169, 170] is inspired by the
fact that we as humans are constantly experiencing the external world, learning, and updating
our beliefs and internal models without direct supervision. Self-supervised learning is an unsu-
pervised technique that aims to learn general structure and feature representations in training
data that will be useful for downstream tasks. Models pretrained with self-supervised learn-
ing, and then fine-tuned to a task achieve state of the art performance in both computer vision
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[151, 156, 157] and natural language processing [169, 170]. The secret sauce to the success of
self-supervised learning is massive amounts of data and extensive data augmentation. StyleAug
(Chapter 5) is one such data augmentation technique that was inspired by shape bias in human
vision, and showed excellent performance for the ViT architecture. Future research might focus
on developing augmentation or training techniques that take inspiration from shared trial-to-trial
variability (Chapters 2-4; [174]) or neural phenomena like slow drift (Chapter 3; [41, 42, 174]).
The intersection of neuroscience and deep learning research has an exciting future–both fields
can gain inspiration from the other and benefit from the cross-pollination of ideas.

89





7 Appendix

A Appendix for Chapter 2
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Supplementary Figure 1: Relationship between pairwise metrics, loading similarity of each
latent dimension, and the relative strengths of each dimension. Related to Figure 6.

In Fig. 5e and Math Note A, we considered the relationship between loading similarity and pairwise
metrics when population activity was one dimensional. Here, we asked about the informativeness of load-
ing similarity when population activity varies along multiple dimensions, and the impact of the relative
strengths of each dimension (i.e., the shape of the eigenspectrum of Σshared, which specifies the amount
of shared variance explained by each dimension).

We considered two cases. First, we considered an eigenspectrum that decays quickly, as has been widely
reported in population recordings [49, 57, 66, 67, 71, 73, 76]. In this case, we found that the loading
similarity of the strongest dimension (i.e., dimension with largest eigenvalue) was most informative about
pairwise metrics, while the loading similarities of the other dimensions were less informative. Second,
we considered a flat eigenspectrum. In this case, the loading similarities of each dimension were equally
informative.

a. Loading similarity for a decaying eigenspectrum of the shared covariance matrix (Σshared in Supple-
mentary Fig. 5a). We reproduced the simulation in Fig. 5 for a latent dimensionality of 3 and %sv=50%.
For each 3-d model, we evaluated the rsc mean and s.d., and then plotted the same point in 3 sepa-
rate panels colored by loading similarity of each of the 3 different dimensions. The loading similarity
of strongest dimension (‘Dim 1’) is very informative–high loading similarity implies high rsc mean and
low rsc s.d. (green dots), whereas low loading similarity implies low rsc mean and high rsc s.d. (blue
dots). This is the same relationship as shown in Fig. 5e for the case of one dimension. The loading
similarities of ‘Dim 2’ and ‘Dim 3’ are less informative–in both cases, low loading similarity points (blue
dots) are scattered throughout the arc. The only case when the loading similarity of ‘Dim 2’ or ‘Dim
3’ is informative is when either of them have a high loading similarity (green dots). This is informative
because it implies that ‘Dim 1’ must have low loading similarity (‘Dim 1’ is blue for dots where ‘Dim 3’
is green; see Math Note E), implying low rsc mean and high rsc s.d. (continued on next page...)
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Supplementary Figure 1 (previous page): (continued from previous page...)

b. Same as panel a but for flat eigenspectrum across the three dimensions. In this case, rsc mean will
tend to be small and rsc s.d. will tend to be large because: 1) all three dimensions contribute equally, and
2) it is not possible for all three dimensions to have high loading similarity, while multiple dimensions
can have low loading similarity (Math Note E). However, knowing whether any of the three dimensions
have high loading similarity can provide more specific information about rsc mean and s.d. within this
limited range (green dots tend to have high rsc mean and lower rsc s.d. in each panel).

Because most studies of population neuronal recordings have shown quickly decaying eigenspectra as
in panel a [49, 57, 66, 67, 71, 73, 76], we recommend considering the loading similarity of the strongest
dimension for concision and simplicity (as we do in Fig. 8c; and see eigenspectra in Supplementary Fig. 2).
However, if it happens that the data have an eigenspectrum that decays slowly or has multiple dimensions
that are very strong, then one may benefit by considering the loading similarities of additional dimensions
as well.

This analysis also highlights how the shape of the eigenspectrum influences pairwise metrics. First,
an exponentially-decaying eigenspectrum tended to have a higher rsc mean and s.d. compared to its
corresponding flat eigenspectrum (dots in panel a are farther from origin here than in panel a). This
occurs because, for an exponentially-decaying eigenspectrum, an added dimension explains relatively little
shared variance. Thus, the added dimension tends to result in only a small decrease in rsc mean and s.d.
On the other hand, adding a dimension to the flat eigenspectrum affects rsc mean and s.d. as much as
any other dimension, leading to larger changes (i.e., decreases) in rsc mean and s.d. than in the case of
an exponentially-decaying eigenspectrum.

Second, we observed a greater radial and angular spread for exponentially-decaying eigenspectra (panel
a) compared to flat eigenspectra (panel b). This occurs because, when the eigenspectra are not flat, there
is greater diversity in how the co-fluctuation patterns of different dimensions can contribute to rsc. In
other words, permuting the eigenvectors of three dimensions with equal eigenvalues (i.e., both dimensions
explain the same amount of shared variance) results in the same model and same covariance matrix—
yielding the same values for rsc mean and s.d. However, permuting the eigenvectors of three dimensions
with different eigenvalues will likely result in a different covariance matrix and different values of rsc
mean and s.d. Thus, for non-flat eigenspectra, the greater diversity by which co-fluctuation patterns can
contribute to the shared covariance matrix leads to greater spread in the rsc mean vs s.d. plots. The
mathematical details regarding this observation are provided in Math Note D.

An implication of this analysis is that it is important to report the eigenspectrum shape whenever one
reports dimensionality. Thus, considering both dimensionality and the eigenspectrum curve, instead
of dimensionality alone, will lead to a more complete picture of the structure of population activity.
Inspecting the eigenspectrum will also help determine whether assessing loading similarity in the strongest
dimension is sufficient (panel a), or whether one needs to consider the loading similarities of other
dimensions as well (panel b).
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Supplementary Figure 2: Eigenvalues and loading similarity by dimension for V4 popula-
tion activity. Related to Figure 8.

Although we observed only a modest change in dimensionality with attention (Fig. 8c), our simulations
showed that the relative strength of each dimension (i.e., shape of the shared eigenspectrum) could alter
the “effective dimensionality” of population activity and have large effects on pairwise metrics (Fig. 6a).
Here, we asked whether the relative strengths of each dimension changed with attention. We also con-
sidered the loading similarities across different dimensions.

a. We found that the shape of the eigenspectra was qualitatively similar for ‘attend in’ and ‘attend out’
conditions (red and black curves have similar shape). In both conditions, the eigenvalues of the shared
covariance matrix decayed (dot for each subsequent dimension was below dot for the previous dimension),
indicating that a small number of dimensions were needed to explain the population-wide covariability.

When comparing eigenspectra (i.e., the amount of shared variance explained by each dimension), one also
needs to consider the firing rates under each condition. Mean firing rates tend to be higher for attend-in
than attend-out trials. Higher firing rates typically correspond to higher spike count variance due to the
Poisson-like firing of neurons. All else being equal, the higher mean firing rates imply higher levels of
both shared variance and independent variance [69]. Thus, a direct comparison of the eigenspectra should
be done with caution. Nonetheless, we plotted attend-in and attend-out together to relate our results to
previous reports [49, 76]. Consistent with these studies, we found that attention decreased the strength
of the strongest dimension (red below black dot for dimension index 1), though the magnitude of the
decrease we observed was more consistent with [76] than [49]. Had we been able to equalize the mean
firing rate across the two conditions, we likely would have observed an even greater difference between
attend-in and attend-out. We note that the caveat described here for comparison of eigenspectra (i.e., the
amount of shared variance) does not apply to comparisons of %sv (Fig. 8c) because %sv is normalized
by the overall spike count variance.

(...continued on next page)
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Supplementary Figure 2 (previous page): (...continued from previous page)

The eigenspectra were computed in the following way. We decomposed the V4 spike count covariance
matrix into shared and independent components using factor analysis (see Methods). We then computed
the eigendecomposition of the shared covariance matrix (Supplementary Fig. 5, Σshared = UΛU). We
found that eigenvalues (diagonal of Λ) tended to increase linearly with the number of neurons recorded;
therefore, in order to combine across sessions, we normalized the eigenvalues by dividing by the number
of neurons recorded in each session. After normalizing, we computed the eigenspectrum averaged across
sessions and stimulus orientations. Because the dimensionality identified by cross-validation differed
across sessions, there were a different number of sessions that contributed to each average. We did
not plot mean eigenvalues when there were fewer than 5 sessions to average (i.e., dimensions ≥ 6 for
monkey 1; dimensions ≥ 4 for monkey 2). Error bars indicate standard error. Data points have been
jittered horizontally for visual clarity.

b. Loading similarity for ‘attend-in’ (red) and ‘attend-out’ (black) by dimension. Pooled across monkeys,
the loading similarity for the first (i.e., strongest) dimension was larger for ‘attend-out’ than ‘attend-
in’ (same result as Fig. 8c). We also observed some differences in loading similarity across the other
dimensions in both monkeys. These differences could be important for specific scientific questions (see
Fig. 9, for example). However, as we show in Fig. 6, Supplementary Fig. 1, and Math Note C, the
first dimension plays the largest role in determining the rsc distribution because it explains the greatest
amount of shared variance.
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Supplementary Figure 3: Quantifying the extent to which each population metric con-
tributes to changes in pairwise metrics. Related to Figure 8.

In Fig. 8c, we observed changes in several population metrics with attention in V4 population responses.
However, it was unclear to what degree the change we observed in each population metric contributed
to the overall changes in pairwise metrics (Fig. 8b). In order to quantify this, here we used a population
metric matching procedure to assess how much each individual change in a population metric contributed
to the changes in a pairwise metric. We found that for these V4 data, %sv contributes the most, followed
by loading similarity, and finally dimensionality. We illustrate these results in Fig. 8d (also reproduced
here as panel a for convenience).

a. Reproduction of Fig. 8d to aid the interpretation of panels b and c here. For pairwise metrics, we
observed decreases in both rsc mean and s.d. with attention. For population metrics, we observed de-
creases in %sv, loading similarity, and dimensionality with attention.

b. Contribution of population metrics to changes in rsc mean. For each recording session, we assessed
how allowing all population metrics to vary (“all”) or only a single population metric to vary between
“attend-out” (unatt.) and “attend-in” (att.) influenced rsc mean. The procedure for assessing this is
detailed at the end of the caption (“Details of population metric matching procedure”). When only %sv
or only loading similarity were allowed to vary, rsc mean decreased with attention; when only dimen-
sionality was allowed to vary, rsc mean increased. When all population metrics were allowed to vary, rsc
mean decreased, consistent computations directly from data (Fig. 8b). Results for both monkeys were
consistent; means and standard errors across sessions are shown.

(continued on next page...)
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Supplementary Figure 3 (previous page): (continued from previous page)

c. Contribution of population metrics to changes in rsc s.d. Same format as b. When only %sv was
allowed to vary, rsc s.d. decreased with attention. When only loading similarity was allowed to vary, rsc
s.d. slightly increased (not significant). Also, when only dimensionality could vary, rsc s.d. increased.
When all population metrics were allowed to vary, we found that rsc s.d. decreased with attention,
consistent with our computations from data (Fig. 8b).

These results provide a systematic quantification of the illustration that relates pairwise and population
metrics in V4 (panel a). Based on direction and magnitude of contributions, we conclude that for overall
changes in pairwise metrics in these data: 1) %sv is most important, 2) followed by loading similarity, 3)
followed by dimensionality. More generally, the population metric matching procedure (described below)
provides a framework for assessing how changes in population metrics contribute to changes in pairwise
metrics in recorded neuronal population activity.

Details of population metric matching procedure. Given two factor analysis (FA) models (e.g.,
fitted to two different experimental conditions), we first assess the overall change in pairwise metrics
by computing rsc mean and s.d. directly from the two fitted models (see Methods). In this case, all
three population metrics are allowed to change between the two conditions, and contribute to the overall
observed change in pairwise metrics (labeled “all” in the plots above).

Next, we use population metric matching to assess the contribution of each individual population metric
change to the overall change in pairwise metrics. To do so, we choose one of the two fitted FA models (e.g.,
the model fitted to “attend-out”) and systematically change the model such that one of its population
metrics matches that of the other FA model (e.g., “attend-in”), while the other two population metrics
remain the same. We then assessed the change in pairwise metrics between the base FA model (i.e.,
“attend-out”) and the “matched” FA model (i.e., modified “attend-out” model). This allowed us to assess
the change in pairwise metrics that would have resulted from a change in a single population metric.

For systematically modifying %sv, we scaled the eigenspectrum (see Methods) of the base FA model
in order to match the %sv of the other FA model. For systematically modifying loading similarity, we
replaced the co-fluctuation patterns (U in Supplementary Fig. 5a) in the base FA model (e.g., “attend-
out”) with the co-fluctuation patterns from the other FA model (e.g., “attend-in”). In cases where the
dimensionality of the two models was different, we swapped the top k co-fluctuation patterns, where k
is equal to the smaller dimensionality in the two models. For systematically modifying dimensionality,
we removed dimensions from the base FA model if it had higher dimensionality than the other FA
model, or added dimensions (after orthogonalization) from the other model to the base FA model if it
had lower dimensionality. Because adding or removing dimensions changes the %sv, we then scaled the
eigenspectrum to match the original %sv of the base FA model. These procedures allowed us, using two
FA models fit to real data, to systematically vary one of the population metrics while keeping the other
two the same and assess the contribution to a change in pairwise metrics.

96



spont evoked

0.1

0.2

0.3

rsc mean

p < 0.0001

spont evoked
0.06

0.1

0.14

rsc s.d.

p < 0.0001

colored lines indicate
individual sessions

average across
sessions

a

b

c
spont evoked

0.4

0.6

0.8

loading
similarity

p < 0.0001

spont evoked
10

30

50

percent
shared
variance

p < 0.0001

spont evoked
2

3

4

number of
dimensions

p < 0.01

rsc s.d.

evoked

spont

0
rsc mean

0

0.1

0.1

0.2

0.2

0.09

0.12

0.1 0.2

decrease
loading
similarity

increase
dimensionalitydecrease

percent
shared
var.

Supplementary Figure 4: Relationship between pairwise and population metrics in V1 pop-
ulation responses. Related to Figure 8.

In Fig. 8, we assessed the relationships between pairwise and population metrics in V4 population record-
ings where a decrease in rsc mean with spatial attention had been widely reported [1, 2, 10, 11, 13]. To
demonstrate the applicability of the identified relationships to other brain areas, we applied the same
analysis to population recordings in primary visual cortex (V1). Previous studies have shown that the
rsc mean is lower after stimulus onset (i.e., evoked activity) than before stimulus onset (i.e., spontaneous
activity) in V1 [17, 69]. Here, we analyzed population activity recorded using Utah arrays in V1 (88
to 159 units per session, 112.2 on average) in three macaque monkeys [previously reported in 64, 78,
http://dx.doi.org/10.6080/K0B27SHN]. Two monkeys had two recording sessions each, while the third
monkey had a single recording session, for a total of 5 recording sessions. Animals were presented with
1.28s of oriented gratings (1 of 8 possible orientations) interleaved with 1.5s of a blank screen.

(continued on next page...)
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Supplementary Figure 4 (previous page): (...continued from previous page)

In V1, evoked activity had smaller rsc mean and s.d. than spontaneous activity. We also found that
evoked activity had smaller %sv and loading similarity, but larger dimensionality than spontaneous ac-
tivity. Most changes in pairwise and population metrics between V1 “spontaneous” and “evoked” activity
matched the direction of the changes in V4 “attend-out” and “attend-in”, except for the change in di-
mensionality (cf. panel c and Fig. 8d). Taken together, our analyses of V1 and V4 population activity
demonstrate that similar changes in pairwise metrics need not correspond to precisely the same changes in
population metrics. In this case, measuring population metrics provided insight about the dimensionality
of the population-wide variability that would not have been gleaned from changes in pairwise metrics
alone.

a. The rsc mean was smaller in evoked activity than in spontaneous activity (left panel; p < 0.0001)
[17, 69]. We also found that rsc s.d. was smaller in evoked activity than in spontaneous activity (right
panel; p < 0.0001), which has not been previously reported.

b. Next, we assessed how population metrics changed between evoked and spontaneous V1 activity. Con-
sistent with [69], we found that %sv was smaller for evoked activity than spontaneous activity (left panel;
p < 0.0001). We also found that loading similarity for the dominant dimension was smaller for evoked
activity than spontaneous activity (middle panel; p < 0.0001). Finally, we found that dimensionality
was higher for evoked activity than spontaneous activity (right panel; p < 0.01). This result differed
from a previous study in which dimensionality was lower for evoked activity than spontaneous in neural
recordings from rat gustatory cortex and in a clustered network model [67]. This could be explained by
a difference in sensory modality or the way in which dimensionality was measured.

c. Using the framework we developed to understand the relationships between pairwise and population
metrics, the decrease in both rsc mean and s.d. with evoked V1 activity corresponds to: 1) a decrease
in %sv, 2) a decrease in loading similarity, and 3) an increase in dimensionality. The direction of the
changes in pairwise metrics between spontaneous and evoked activity are the same as those we observed
between “attend-out” and “attend-in” in V4 (Fig. 8b), as are the changes in %sv and loading similarity
population metrics (Fig. 8c). However, the increase in dimensionality from V1 spontaneous to evoked is
in the opposite of what we observed from “attend-out” to “attend-in” in V4 (Fig. 8c, right panel).

Methods. For evoked activity, we computed spike counts for each trial in the time period 160-260 ms
after stimulus onset. For spontaneous activity, we computed spike counts during the blank screen in the
100 ms immediately prior to stimulus onset. We chose to use 100 ms bin sizes to match those used in
[64]. We define spike counts during these two time periods during a trial as a “spont-evoked pair”. Each
recording session consisted of 400 repeats of a spont-evoked pair for each of the 8 oriented stimuli. For
each session, we assessed changes in metrics for each orientation and computed the mean and standard
error of the metric across the 8 orientations (transparent colored data points connected by lines). We
also plot the average across the 5 sessions (thick black line). To compare metrics for spontaneous and
evoked activity, we computed p-values across all 40 datasets (5 sessions, 8 orientations per session) using
a paired t-test.
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Supplementary Figure 5: Decomposition of the spike count covariance matrix and defining
population metrics. a. We use factor analysis to decompose the spike count covariance matrix Σ into
the sum of a low-rank shared covariance matrix Σshared and a diagonal independent variance matrix Ψ.
The ith diagonal entry of Σshared (si) corresponds to the spike count variance that neuron i shares with
other neurons in the population (i.e., shared variance), while the ith diagonal entry of Ψi corresponds
to spike count variance of neuron i that cannot be explained by the other neurons (i.e., independent to
neuron i). We can further decompose Σshared via an eigendecomposition to extract the co-fluctuation
patterns (i.e., the eigenvectors) and the strength of each latent co-fluctuation (i.e., the eigenvalues). b.
The population metrics used in this study are loading similarity, percent shared variance (%sv), and
dimensionality.
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Supplementary Figure 6: Characterizing how changes in one population metric can impact
the estimates of another population metric. Related to Figure 8.

(continued on next page...)
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Supplementary Figure 6 (previous page): (...continued from previous page)

In the main text, we related population metrics to pairwise metrics by systematically changing a single
population metric and measuring the resulting changes in rsc mean and rsc s.d. (Figs. 5. However, in real
neuronal data, multiple population metrics could change together between experimental conditions (e.g.,
see Fig. 8 and Supplementary Fig. 4). When we measure that multiple population metrics changed, it
could be the case that a change in one population metric impacted the estimates of the other population
metrics (e.g., we could have measured a change in multiple population metrics when only one metric
truly changed). This can affect the precision by which we can distinguish population metric changes in
real neuronal data.

Here, we assessed this by systematically changing one population metric while keeping the other two
population metrics constant. We then simulated data and fit factor analysis (FA) to the data to obtain
the population metrics. We examined in turn each of the three population metrics under conditions when
they did not actually change (but one of the other metrics did). If there were no dependencies between
estimates of population metrics, then all the vertical values in panels a-c would be 0. We found that
this was the case for estimates of %sv were under conditions in which the true loading similarity changed
(a). However, estimates of loading similarity and dimensionality were affected by true changes in %sv.
Increasing the number of simulated trials reduced the estimation error caused by true changes in %sv (b,
c). These findings allow us to better interpret changes in population metrics estimated from neuronal
activity.

a. Estimation error in %sv due to changes in loading similarity. “Model 1” and “model 2” had the
same dimensionality (1) and %sv (20%). The only difference between the two models was their loading
similarity. We varied how different the loading similarity was between the two models (horizontal axis),
while assessing how different was the estimated %sv across the two models (vertical axis). We found that
%sv estimates remained unaffected in the presence of true changes in loading similarity (all changes in
%sv are near 0). This was true for both low loading similarities where “model 1” had loading similarity
of 0.05 (blue) and high loading similarities where “model 1” had loading similarity of 0.55 (green). As we
simulated more trials, estimates of %sv became more precise (error bars decrease in size going from left
to right panels). Error bars show means and standard deviations across simulations.

b. Estimation error in loading similarity due to changes in %sv. “Model 1” and “model 2” had the same
dimensionality (1) and loading similarity. The only difference between the two models was their %sv. We
varied how different the %sv was between the two models (horizontal axis), while assessing how different
was the estimated loading similarity between the two models (vertical axis). We found little changes
in estimates of loading similarity when the true loading similarity was low (blue points). However, we
found larger changes in estimates of loading similarity when the true loading similarity was high (green
points). The the size of the change increased with larger true changes in %sv. To understand this, recall
that there are relatively few ways to have high loading similarity (e.g., all loadings must be the same to
have loading similarity of 1), while there are many ways to have low loading similarity (Math Note E).
Thus, high loading similarities are more likely to be underestimated than low loading similarities. This
underestimate tends to be larger when %sv is low than when %sv is high. However, increasing the trial
counts reduced the estimation error of loading similarity (vertical values closer to 0 going from left to
right panels).

(...continued on next page)

101



Supplementary Figure 6 (previous page): (...continued from previous page)

c. Estimation error in dimensionality due to changes in %sv. “Model 1” and “model 2” had the same
dimensionality (5; with eigenspectrum defined as λk = e−0.75k) and loading similarity. The only difference
between the two models was their %sv. We varied how different the %sv was between the two models
(horizontal axis), while assessing how different was the estimated dimensionality (dshared; see Methods)
between the two models (vertical axis). We found changes in the estimates of dimensionality between
“model 1” and “model 2”, and the size of the change increased with larger true changes in %sv. This can
be understood by the fact that dimensions with small eigenvalues can be difficult to recover when fitting
FA to data, particularly when %sv is low. However, increasing the trial counts reduced the estimation
error of dimensionality (vertical values closer to 0 going from left to right panels).

These results have important implications for interpreting estimated changes in population metrics in
real neuronal data. First, because estimation error depends on trial count, one should equalize the
number of trials across conditions in order to make fair comparisons across conditions using population
metrics. Second, when changes in %sv are large and trial counts are small, one may need to be careful in
interpreting estimated changes in loading similarity and dimensionality. For trial count, the key quantity
to consider is the ratio of observed trials to the number of recorded neurons. In the simulations above, we
used 30 neurons–the left column represented a ratio of 5x trials to neurons, the middle column represented
10x, and the right column represented 20x.

In our V4 data (Fig. 8), most sessions had 10 times (or more) the number of trials as the number of
neurons (ratio of trials to neurons: 9.90 ± 0.66 for monkey 1, 27.60 ± 2.68 for monkey 2). We observed
a difference in %sv of ≈3% between “attend-out” and “attend-in”. Based on the results in panels a and
b, the differences we measured in %sv and loading similarity in our V4 data are unlikely to be due to
estimation error. Based on panel c, the small difference we measured in dimensionality in our V4 data
could potentially be explained by a change in %sv, if the only true change between conditions was in %sv
(and not loading similarity or any other aspect of the population activity).
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Supplementary Figure 7: Relationships between pairwise and population metrics hold for
metrics estimated from Poisson simulated data. Related to Figure 5

In our simulations and analytical derivations, we created covariance matrices with specified population
metrics from which we computed pairwise metrics (Fig. 5). However, when assessing population metrics
in neuronal recordings, one needs to fit a factor analysis (FA) model to data. Here, we simulated Poisson
data to assess whether the relationships between pairwise and population metrics were impacted by: 1)
needing to estimate metrics from data, and 2) the mismatch between the linear-Gaussian assumption of
FA and the Poisson-like statistics of neuronal activity. We found that the relationships between pairwise
and population metrics were very similar to those shown in Fig. 5.

a. Estimating loading similarity and %sv. We simulated data from a model with a single co-fluctuation
pattern and Poisson observations (see details at the end of the caption). In the ground truth models, we
varied loading similarity smoothly between 0 and 1 and chose %sv equal to 30% or 50%. We estimated
rsc mean and s.d. from the simulated data. To estimate population metrics, we fit the FA parameters
to the same simulated data. We then plotted estimates of pairwise metrics and colored or labeled points
according to the estimated population metrics (as opposed to the ground truth population metrics used
to generate the data). We found that as estimated loading similarity increased, rsc mean increased and
rsc s.d. decreased (blue to green). We also found that as estimated %sv increased, rsc mean and s.d.
both increased (inner arc with %sv=32.6±1.0% to outer arc with %sv=55.1±3.2%). These results are
consistent with Fig. 5e-f.

b. Same as a, but fixing %sv=50% and varying the dimensionality of the ground truth model, with a flat
eigenspectrum (corresponding to Fig. 5g). We colored points according to estimated dimensionality as
opposed to the ground truth dimensionality. We found that as the estimated dimensionality increased, rsc
mean and s.d. both tended to decrease (purple outer arc with dim=1 to salmon inner arc with dim=5),
consistent with Fig. 5g.

(continued on next page...)

103



Supplementary Figure 7 (previous page): (...continued from previous page)

The results here, based on estimating factor analysis parameters from Poisson simulated data, are qual-
itatively the same as those in the main text (Fig. 5e-g) and analytical derivations (Appendices). This
indicates that the relationships between pairwise and population metrics are robust to: 1) having to
estimate these metrics from data and 2) the Poisson-like variability of neuronal activity.

Simulating from a Poisson observation model. According to FA, the observations x (i.e., spike
counts) have a linear-Gaussian relationship with latent variables z (which represent shared activity among
neurons): z ∼ N(0, I) and x|z ∼ N(Lz + µ,Ψ)). We fit the FA parameters to data simulated from a
Poisson observation model. We generated Poisson spike counts for 30 neurons as follows. For neuron i,
we sample from from xi|z ∼ Poisson(ReLu(Li,:z + µi)), where ReLu indicates a rectified linear unit,
and L ∈ R30×d is the loading matrix with Li,: as the ith row. We set µi = 10 for each neuron, a typical
average firing rate (10 Hz) for neurons across many areas of macaque cortex (assuming a 1 second time
bin). We consider the asymptotic case by simulating many trials for each model (corresponding to a
single dot in panels a and b; see Methods for how model parameters are randomly chosen). We consider
estimation from limited data in Supplementary Fig. 6. We drew 6000 samples (i.e., 6000 trials) of x from
the Poisson observation model. Thus, this procedure generated a data matrix X ∈ R30×6000 of simulated
spike counts, which we then used to estimate pairwise and population metrics.
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-0.02

0

p<10-9

within
area

subject Wa (n=10)
subject Pe (n=16)
subject Sa (n=16)

across
hemispheres

0.02

0.04

m
ea
n
r s
c

ba

Supplementary Figure 8: Relationship between signal and noise correlation (rsc) in within-
area and across-hemisphere pairs. Related to Fig. 1.

Here, we consider the rsc mean, a commonly used metric to summarize the rsc distribution and
characterize pairwise neuronal correlations. We also asked whether rsc (i.e., noise correlation)
was related to signal correlation between pairs of neurons 1) in the same brain area and 2) across
hemispheres.

a. Mean rsc aggregated across sessions for each subject in our data. The rsc mean is significantly
larger for within-hemisphere pairs than across-hemisphere pairs. This might lead one to conclude
that there is shared variability between neurons in the same area, but not across hemispheres.
However, rsc mean is a coarse metric in that it averages across many pairs of neurons and could
therefore be veiling population covariability structure [104]. Error bars indicate standard error
across sessions.

b. Relationship between signal and noise correlation. First, we determined significantly positive
rsc pairs and significantly negative rsc pairs for both within-area and across-hemisphere pairs
of neurons. We then computed the signal correlation for the two groups (positive rsc pairs and
negative rsc pairs). Aggregated across sessions, we found that positive rsc pairs had positive
and significantly higher signal correlations than negative rsc pairs, which had negative signal
correlations. This was true for both within-area pairs and across-hemisphere pairs in all three
subjects (p<0.001). Thus, by using metrics that are finer-grained than rsc mean, we start to see
that that are interesting shared fluctuations among pairs of neurons in different hemispheres.
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Supplementary Figure 9: pCCA-FA provides a better fit to data than alternative models.
Related to Figs. 15 and 16.

We proposed pCCA-FA as a model that allows the partitioning of global and local shared vari-
ability. To do so, pCCA-FA assumes both low-rank global (across-area) interactions and low-rank
local (within-area) interactions. In Fig. 15a-b, we found that pCCA-FA is more data-efficient
than pCCA in recovering ground truth. Thus, it is reasonable to expect that pCCA-FA might
provide better fits to our neural data than alternative models. Here, we detail the assumptions of
alternative models under consideration and compare their performance with pCCA-FA. Overall,
we found that pCCA-FA provided better fits to data (in terms of higher log likelihood) than
alternative models in most cases. In addition to fitting better to neural data, pCCA-FA also
allows for a clean distinction between global and local interactions, providing better scientific in-
terpretability (e.g., computing metrics and inferring latent variables) than the alternative models
that we considered.

a. Probabilistic canonical correlation analysis (pCCA; see Methods) assumes low-rank across-
area interactions and full-rank within-area interactions. We found that pCCA-FA provided better
fits to our data than pCCA in all cases (Fig. 15a-b; Satchel p<0.0001, Pepe p<0.0001, Wakko
p<0.0001; paired sample t-test). This is due to limited trial counts and the subsequent large
estimation errors in estimating the full-rank within-area interactions.

b. We tested simply fitting factor analysis (FA) to each area. This model assumes no global
(across-area) interactions, and low-rank within-area interactions. Note that this model is equiv-
alent to pCCA-FA, when the global dimensionality is fixed to 0. We found that pCCA-FA fit
better in almost all cases, except for a single session in subject Wa (Satchel p<0.0001, Pepe
p<0.0001, Wakko p<0.02; paired sample t-test).
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c. We tested fitting FA jointly to all recorded neurons, without consideration that they are
recorded from different brain hemispheres. In other words, there is no separation of global and
local interactions into different subspaces as in pCCA-FA, but rather they are both capture as
part of a single subspace defined by FA. We found that pCCA-FA provided better fits to data for
subject Sa (red; p<0.0001) and Pe (blue; p<0.0001). Both models fit similarly for subject Wa
(black; p>0.05), who had many neurons in one area ( 60 per session) but few recorded neurons
in the other area ( 20 per session). Subjects Pe and Sa had many neurons in both areas ( 60
to 80). This meant that modeling the cross-covariance (i.e., the interactions between areas) was
less important for subject Wa than it was for subjects Sa and Pe.

d. We tested sequentially fitting FA to each area, and then fitting pCCA to the latents inferred
from FA on each area. This model first captures all low-rank variability in an area (which could
be either local or global), and then finds global interactions that exist within those low-rank
subspaces. This procedure reduces dimensionality first (FA) before fitting pCCA, which can
help prevent the overfitting and poor heldout performance seen in pCCA (panel a). Still, we
found that pCCA-FA fit better for all sessions in subject Sa (red; p<0.0001) and most sessions
in subject Pe (blue; p<0.004). For similar reasons as in c, pCCA-FA and sequential FA+pCCA
provided similar fits to data for subject Wa (black; p>0.05).

Method. For each model, we perform 10-fold cross-validation to choose dimensionalities, and
then assess the held-out log likelihood of our neural data under the model (i.e., the marginal
data likelihoods of observed neural activity). We assess this for each subject (different colors),
and each session (each dot). We compare the difference in log likelihood (∆LL) of pCCA-FA
relative to the alternative model under consideration. Thus, any value above 0 means pCCA-FA
is a better fit to the data than the alternative model.
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Supplementary Figure 10: Slow-timescale (autocorrelated) fluctuations in data could lead
to potentially spurious correlations. Related to Figs. 16 and 17.

a. Two independently drawn Gaussian Processes (GPs) can have non-zero correlations. Since
they are independently drawn samples, they would ideally have a correlation close to 0. How-
ever, given a fixed sample size (500 trials here), two independent GPs with slower timescale
fluctuations (bottom; τ = 50 trials) tend to have larger correlations (rho = 0.358) than two
independent GPs with faster timescale fluctuations (top; τ = 5 trials).

b. If we repeat the procedure in amany times, we can obtain a null distribution of correlations we
would expect to see between two independent GPs, for a given ratio between the GP τ (timescale)
and the GP length. The null distributions have have a mean of 0. However, as the ratio of GP
τ to GP length increases, the width of the null distributions increases. Thus, any given draw of
two completely independent GPs can have a large (either positive or negative) correlation value.
Thus, whenever fluctuations in our data are slow relative to the number of samples (i.e., trials),
we might expect large correlations just by chance–these are often called spurious or nonsense
correlations [133]. This is problematic for correlation analysis, and especially when using CCA,
who’s objective is to maximize correlation. Thus, we preprocess data to remove slow fluctuations
in our data (Supp. Figs. 11 and 13).
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Supplementary Figure 11: Estimating slow and fast components of neural activity and
pupil. Related to Figs. 16 and 17.

a. The slow component (blue) is estimated using a moving average of 25 trials on the raw neural
activity or, as shown here, pupil size (black). This procedure is done separately for each neuron
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spike count data, and for pupil size.

b. The fast component is the residual, i.e., the raw data minus the slow component (red).

c. The slow component captures slow baseline fluctuations in pupil size or neural activity.

d. Limited data and potentially spurious correlations that arise with slow components (Supp.
Fig. 10; [133]). Here, we run control analysis to demonstrate the importance of removing slow
components before fitting pCCA-FA (or performing any correlation analysis for that matter).
To generate a null distribution, we flip the trial order of neural activity in one hemisphere of the
brain. Our assumption is that this flipping breaks any trial-to-trial correspondence and should
thus result in correlations close to 0. Any recovered correlations would be spurious (induced by
slow timescale fluctuations; Supp. Fig. 10). If we perform the flip control on raw neural activity,
and fit pCCA-FA we find that we recover large canonical correlations (top row), indicating that
the global dimensions could be picking up on spurious correlations. However, if we remove the
slow components from neural activity (i.e., use the fast components), and then perform the flip
control and fit pCCA-FA, we recover canonical correlations close to 0. This suggests that fitting
pCCA-FA to the fast components would not be recoving spurious correlations. Therefore, most
analyses in the remainder of the work focuses on the estimated fast component (though see Supp.
Fig. 13 for an analysis of slow components).
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Supplementary Figure 12: The most correlated dimensions in the global subspace also
explain the most variance. Related to Fig. 16.

The global latent variables in pCCA-FA are defined by the dimensions in area x and area y that
are most correlated with one another (as in pCCA and CCA). In contrast to PCA or factor
analysis which find dimensions that maximize variance or covariance respectively, there is no
requirement for how much variability each dimension explains in CCA or pCCA-FA. We found
that the top global dimensions (i.e., the most correlated dimensions across areas) of pCCA-FA
explained the most variance. We computed the % of global shared variance in area x and area
i as:

tr(Wx,iW
T
x,i)

tr(WxWT
x )

, where tr(·) is the trace, Wx is the loading matrix for area x onto the global
subspace, and Wx,i is the ith column of Wx.
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Supplementary Figure 13: Slow-timescale global interactions exist in neural activity. Re-
lated to Fig. 16.

Most of the work in this study focuses on faster-timescale trial-to-trial variability because of diffi-
culties in interpretability that can arise due to spurious correlations in autocorrelated time series
(Supp. Figs. 10 and 11d). However, here we asked whether the slow-timescale autocrrelated
fluctuations are significantly above chance. We fit pCCA-FA to the estimated slow components
of neural activity (Supp. Fig. 11a) and asked whether the estimated canonical correlations (true
ρ) were above those estimated when fitting pCCA-FA to the flip control of the same data (null
ρ). Indeed, we found that the true ρ were above the null ρ (∆ρ true-null > 0) across subjects
for most global dimensions (Sa < 10−6, Pe < 10−6, Wa p = 0.017300; paired sample t-test).
This suggests that slow-timescale global (across-hemisphere) interactions do indeed exist in PFC
neural activity above the chance level.
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Supplementary Figure 14: Pupillary evoked response can be predicted from fast pupil
components and global latents. Related to Fig. 17.

a. Left: example fast and slow components of pupil size, computed as described in Methods and
Supp. Fig. 11. Removing the slow components removes baseline fluctuations in the pupillary
evoked response across the session (Supp. Fig. 11). Right: After removing the slow component,
binning trials by fast pupil value starts to reveal that there is an interaction between the fast
pupil value on each trial and the evoked response amplitude (change in pupil size from 100 ms
pre-target presentation to 100 ms post-target presentation).

b. Per-trial fast pupil values predict the per-trial evoked response. Error bars indicate standard
error computed across sessions. Null distributions are computed from predicting the evoked
response on session i from fast pupil on session j, where i 6= j. Light gray bars indicate 95%
confidence intervals of the null distributions.

c. Prediction of per-trial evoked response the latent variables computed from pCCA-FA. Global
latent activity indeed does predict the evoked response for subjects Sa and Pe, while local latent
activity does not for any subject. Error bars and null distributions are computed analogously as
in panel b.
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C Appendix for Chapter 5

Augmentation examples

Here, we provide examples images of all augmentations that we tested (Supp. Fig. 15). In the
examples, "Orig" represents the image after Inception-style preprocessing (random crop with
a large scale (0.5,1.0) and horizontal flip). "Aug1" represents the augmentation we used for
training when no JSD loss was used. When a JSD loss was used, we trained with the 3 versions
of the displayed image ("Orig", "Aug1", "Aug2"; see Fig. 18, Algorithm 1, and Equation 26).
Where applicable, the PyTorch torchvision transform used for augmentation is described in the
caption.

Orig Aug 1 Aug 2

(a) Cropping augmentation. RandomResizedCrop(scale=(0.25,1.0)).
Orig Aug 1 Aug 2

(b) Translate augmentation. RandomAffine(rotate=0,translate=(0.5,0.5),scale=None,shear=None).
Orig Aug 1 Aug 2

(c) Color augmentation. ColorJitter(brightness=0.4,contrast=0.4,saturation=0.2,hue=0.1).
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Orig Aug 1 Aug 2

(d) AugMix [143]. We used the PyTorch image models (timm; [175]) implementation of AugMix. As in the
original AugMix work, the set of transformations used were mutually exclusive with the transfomations present
in the Imagenet-C dataset [143].

Orig Aug 1 Aug 2

(e) RandAugment [155]. We used the PyTorch image models (timm; [175]) implementation of RandAugment.
We again removed any transformations that overlapped with corruptions in the ImageNet-C dataset [143].

Orig Aug 1 Aug 2

(f) Neurofovea. We adapted the Neurofovea transformation described by Deza et al. [176]. For the foveation
step, we simply mixed the original image and style-transferred noise image using a weighted mask. The original
image received larger weights for points closer to the foveation point with exponentially decaying weights for
farther pixels, with a minimum weight of 0.25. The style-transferred noise image received weights that were 1
minus the weights for the original image. Deza et al. [176] used a more perceptually accurate transformation.
However, the computational cost of that approach made it infeasible as an augmentation strategy.
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Orig Aug 1 Aug 2

(g) StyleAug (ours). The augmentation is detailed in section 4 of the main text.
Orig Aug 1 Aug 2

(h) StyleAug and crop (ours). As above in panel (g), with the additional step of RandomResized-
Crop(scale=(0.25,1.0)).

Supplementary Figure 15: Example augmentations. "Orig" shows an example image after Inception-
style preprocessing. "Aug 1" and "Aug 2" show augmentations applied to "Orig".
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Cue-conflict image example

Example image of the cue conflict experiment dataset generated from [144] using style transfer.
Each image has two "correct" labels, one relating to dominant shape of the image, and one
relating to the dominant texture of an image. In the example image in Supp. Fig. 16, the shape
of the object is a cat and the texture of the image is clocks.

Supplementary Figure 16: Example of a shape vs. texture cue-conflict image [144]. The
shape of the object is a cat and the texture of the image is clocks. The displayed image was generated
by Geirhos et al. [144].
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