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Abstract

Variability is an important aspect of neural systems, both in the brain and in artificial networks.
In the brain, neurons respond differently from trial to trial, even to repeated presentations of the
exact same stimulus and this variability is often correlated across neurons. Previous work has
posited that shared trial-to-trial variability (i.e., correlated neuronal variability) is behaviorally
relevant and could have important implications for computations and information encoding. In
the first three sections of this thesis, I present work to further the understanding of shared
variability in the brain. To better understand the structure of shared variability, we related
pairwise neuronal correlations to population dimensionality reduction methods. To investigate
volitional control of shared variability in non-motor brain areas, we designed a brain computer
interface for prefrontal cortex. Finally, to elucidate sources of variability, we developed a method
called pCCA-FA to partition local (i.e., single brain area) and global (i.e., brain-wide) factors
that contribute to shared variability. Variability also plays an important role in learning, in both
the brain and in artificial neural networks (i.e., deep learning). Data augmentation increases the
size, quality, and variability of datasets for improved training of deep learning models. In the
final section, we empirically evaluated how different augmentation setups perform for different
model architectures for image classification. We introduced a new augmentation, called StyleAug,
which outperforms other state-of-the-art augmentations for training vision transformers (ViTs).

Overall, this dissertation furthers the understanding of variability in both natural and artifi-
cial neural systems. For artificial neural networks, this work highlights that one should consider
different types of training data variability (i.e., augmentations) for different model architectures.
For neuroscience, this work advances the understanding of the structure of shared neuronal
variability, its distinct sources, and to what degree it can be controlled.
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1 Introduction
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Figure 1: Correlated neuronal variability and changes in it have been widely observed. Four
highlighted experiments in which correlated variability (e.g., rsc mean) has been observed to change:
spatial attention (macaque area V4 [1H3]), perceptual learning (macaque dorsal medial superior temporal
area [4]), locomotion (mouse area V1 [5]), and stimulus drive (rat anterior piriform cortex [6]).

1.1 Neuronal variability in the brain

Neurons often respond differently even to repetitions of the same stimulus or task condition.
These variable neuronal responses can be correlated across neurons from trial to trial, and is
often measured using spike count correlations (rg, also referred to as noise correlation [7]).
Correlated neuronal variability has been widely observed to change across the conditions of an
experiment. For example, changes in spike count correlation have been observed with changes in
attention [I} 2, BHI3], perceptual learning [4, 14], task difficulty [9], locomotion [5], stimulus drive
[6, I5H19], decisions [20], task context [21], anesthesia [22], adaptation [23], and more (Fig. [1)).
Correlation also depend on properties of the neurons themselves, including their physical distance
[17) 24H29], tuning properties [16] 24] 30} B1], time scales of activity [2] [16, 17, [32], and neuron
type 3 33].

A major reason that neuronal correlations have been the focus of many studies is that could
have important implications for information coding and behavior. Because a neuronal responses
are variable (i.e., “noisy”), it may be difficult to encode stimulus information using just a single
neurons. Pooling across many neurons in a population should average out the noise and allow
for better encoding. However, early work demonstrated that even small noise correlations can
substantially limit the information encoded by a population of neurons [34} 35].

Subsequent work has noted that it is not only the amount or magnitude of these correla-
tions, but importantly whether the noise is additive or multiplicative [36], and the alignment
of noise correlations with signal correlations (i.e., how neurons covary with respect to different
stimuli) [37, B8] that can impact information coding. When the noise and signal are aligned,
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larger noise correlations limit information encoding; but when signal and noise are orthogonal,
the presence of larger noise correlations can actually improve information encoding. Recently,
experimental evidence has suggested the noise covariability can indeed interfere with signal and
reduce information in the neuronal population [39] [40].

An improved understanding of the nature and characteristics of correlated neuronal variabil-
ity will help elucidate how the brain encodes and processes information. In this dissertation, I
present three research directions (summarized below) that advance our understanding of shared
trial-to-trial variability in the brain. First, we bridged between pairwise correlations and di-
mensionality reduction to elucidate the structure of shared variability (Chapter 2). Second, we
designed a brain computer interface (BCI) to investigate to what degree shared neuronal vari-
ability in prefrontal cortex (PFC) can be controlled (Chapter 3). Third, we recorded from PFC
in both hemispheres of the brain and developed a model, called pCCA-FA| to partition the global
and local sources of shared variability (Chapter 4).

Chapter 2 (structure): Bridging pairwise neuronal correlations and dimensionality
reduction.

Two commonly used approaches to study interactions among neurons are spike count correla-
tion, which describes pairs of neurons, and dimensionality reduction, applied to a population of
neurons. Although both approaches have been used to study trial-to-trial neuronal variability
correlated among neurons, they are often used in isolation and have not been directly related. In
this section, we first established concrete mathematical and empirical relationships between pair-
wise correlation and metrics of population-wide covariability based on dimensionality reduction.
Applying these insights to macaque V4 population recordings, we found that the previously
reported decrease in mean pairwise correlation associated with attention stemmed from three
distinct changes in population-wide covariability. Owverall, our work builds the intuition and
formalism to bridge between pairwise correlation and population-wide covariability and presents
a cautionary tale about the inferences one can make about population activity by using a single
statistic, whether it be mean pairwise correlation or dimensionality.

Chapter 2 is based on work that is available in a published article:

Umakantha A*, Cowley BR*, Morina R*. Snyder AC, Smith MAT, Yu BMf (2021). Bridging
neuronal correlations and dimensionality reduction. Neuron, 109, 2740-2754.e12. (* and t denote
equal contribution). DOI link. Simulation code. |Code to compute metrics.

Chapter 3 (control): Stabilizing neuronal activity in prefrontal cortex using a brain
computer interface.

Previous studies have shown that neuronal activity can drift slowly over time, and these slow
drifts are thought to reflect slow changes in internal state (e.g., arousal, impulsivity, or engage-
ment [41],[42]). We sought to assess to what degree these shared neuronal fluctuations were under
volitional control in prefrontal cortex (PFC). We designed a novel brain computer interface (BCI)
paradigm that required subjects to keep PFC neuronal activity close to the activity observed at
the beginning of a session (i.e., the target activity). We showed that subjects were successfully
able to use the BCI to reduce neuronal distance to the target. Furthermore, we found that neu-
ronal activity drifted less on BCI trials than on non-BCI trials, demonstrating volitional control
over PFC neuronal variability.

Chapter 3 is based on work that is part of a working manuscript:

Williamson RC*, Umakantha A*, Ki CS*, Smith MAT, Yu BMf. Stabilizing neuronal activity in
prefrontal cortex using a brain computer interface. (* and T denote equal contribution).
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Chapter 4 (sources): Local and global sources of coordinated neuronal variability in
prefrontal cortex.

Previous work has shown that brain-wide signals (e.g., arousal or impulsivity [41]) contribute
to how neurons co-fluctuate. In this section, we explore to what extent neuronal variability is
shared across hemispheres (i.e., global) versus shared only within a brain area in one hemisphere
(i.e., local), and the behavioral correlates of each type of variability. To ask this question, we
simultaneously recorded from prefrontal cortex (PFC) in both hemispheres of the brain during
a working memory task. We developed a probabilistic graphical model, called pCCA-FA, that
allowed us to partition shared variability into across-hemisphere and within-hemisphere com-
ponents. Surprisingly, we found that across-hemisphere shared variability was substantial, and
often larger then within-hemisphere shared variability. Furthermore, the across-hemisphere la-
tent neural activity was predictive of pupil size, which is thought to be associated with global
cognitive phenomena such as arousal or wakefulness. Within-hemisphere latent activity did not
predict pupil size. This suggests that across-hemispheres shared variability reflects global cogni-
tive processes, while within-hemisphere shared variability might reflect local processes.

Chapter 4 is based on work that is part of a working manuscript:
Umakantha A*, Williamson RC*, Smith MAT, Yu BM. Coordinated variability of prefrontal

cortex activity reflects global and local processes. (* and T denote equal contribution).

1.2 Variability in artificial neural systems

Chapters 2-4 consider shared variability in natural neural systems (i.e., the brain); variability is
also an important component of modern artificial neural networks (i.e., deep learning). Like in
the brain, internal variability is important for deep learning both as a component of the models

Random crop + horizontal flip

CIFAR-10 validation

validation
accuracy (%)

No augmentation

0 50 100 150 200 250 300

training epoch

Figure 2: Data augmentation improves training of deep learning models. Six CNNs (ResNet-
18) models with randomly initialized weights were trained on the CIFAR-10 dataset. Three models are
trained on the raw image data without augmentation (no augmentation), while three models are trained
with very basic image augmentations (random crop, random horizontal flip). The training curves for
models trained with augmentation reach a higher level, are more stable, and do not asymptote.
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themselves (e.g., stochastic generative models like variational autoencoders [43]), and also in
regularization techniques when training models (e.g., dropout [44], stochastic depth [45]).

Another important source of variability is external to the deep learning models themselves.
As humans, our brains/neural networks are constantly experiencing the external world, learn-
ing, and updating our beliefs and internal models (i.e., our synaptic weights or “parameters”).
However, deep learning models can only learn the features and relationships in the dataset used
to train them, limiting their robustness and generalization to unseen data. How can we increase
the amount and variability of the training data that deep learning models learn from? One class
of techniques is data augmentation—transformations of training data to increase the size, quality,
and variability of datasets. Data augmentation plays a critical role in the learning of large, ro-
bust, and performant neural network models. (Fig. [2]). However, the interaction between which
data augmentation strategies work best for different model architectures is not known. In this
section, we empirically evaluated different data augmentations and strategies for different deep
learning architectures in the image classification task. Inspired by human visual perception, we
also introduced a new data augmentation which outperforms other state-of-the-art augmenta-
tions for one of the model architectures.

Chapter 5 (data augmentation): How to augment your ViTs? Consistency loss and
StyleAug, a random style transfer augmentation

The Vision Transformer (ViT) architecture has recently achieved competitive performance across
a variety of computer vision tasks. One of the motivations behind ViTs is the use of weaker in-
ductive biases, when compared to more traditional convolutional neural networks (CNNs), but
this makes ViTs more difficult to train. They require very large training datasets, heavy reg-
ularization, and strong data augmentations. The data augmentation strategies used to train
ViTs have largely been inherited from CNN training, despite the significant differences between
the two architectures. In this work, we empirically evaluated how different data augmentation
strategies performed on CNNs (e.g., ResNet) versus ViT architectures for image classification.
We introduced a new data augmentation, called StyleAug, which performs style transfer from
a training image to another randomly chosen image in the mini-batch. Combined with a con-
sistency loss, StyleAug improves ViT validation accuracy, robustness to corruptions, shape bias,
and transfer learning performance. We also found that, in addition to the classification loss, us-
ing a consistency loss between multiple augmentations of the same image was especially helpful
when training ViTs.

Chapter 5 is based on work that will be available in an arXiv preprint:

Umakantha A, Semedo JD, Golestaneh SA, Lin WS. How to augment your ViTs? Consistency
loss and StyleAug, a random style transfer augmentation.
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2 [Structure] Bridging pairwise neuronal correlations and dimen-
sionality reduction

The first studies of shared trial-to-trial neuronal variability often measured the Pearson corre-
lation in spike counts between pairs of neurons, and typically only recorded from two or a few
neurons simultaneously at a time. With recent advances in recording technology (e.g., Utah ar-
rays and Neuropixel probes), it is possible to simultaneously record from tens or even hundreds
of neurons. This has allowed the use of statistical techniques such as dimensionality reduction
and graphical models to characterize neuronal population covariance structure. While both pair-
wise correlations and dimensionality reduction have been used to measure shared trial-to-trial
neuronal variability, the relationship between the two has not been characterize. In this chap-
ter, I present our work that bridges between the two perspectives and literatures to further our
understanding of the structure of shared neuronal variability.

2.1 Introduction

Many studies of shared neuronal variability compute the average spike count correlation (7,
also known as noise correlation [7]) over pairs of recorded neurons for different experimental
conditions, periods of time, neuron types, etc. A decrease in this mean correlation is commonly
attributed to a reduction in the size (or gain) of shared co-fluctuations [35], [46H49], e.g., a decrease

25
spike count |
(‘:;Sr‘;;b}") covariance |2
matrix o
a
0 counts/bin 2 u (71J)
(neuron j)
neurons
pairwise metrics population metrics
| S nean
neuron 3
/trial1
..
number (] 0 ® %0 a2
Of pairS M :... Py ..
neuron 2
0

spike count correlation (rsc) neuron 1

Figure 3: How do statistics computed on spike count correlations between pairs of neurons
relate to how the entire population co-fluctuates? Pairwise (rs) and population (dimensionality
reduction) metrics both arise from the same spike count covariance matrix, but the precise relationship
between these two sets of metrics is not known. Top row: Each element of the spike count covariance
matrix corresponds to the covariance across responses to repeated presentations of the same stimulus for
two simultaneously-recorded neurons (e.g., neurons i and j, left inset). Bottom row: Pairwise metrics
(left) typically summarize the distribution of spike count correlation with the mean (rs. mean); in this
work, we propose additionally reporting the standard deviation (rs s.d.). Population metrics (right) of
the spike count covariance matrix are identified by applying dimensionality reduction to the population
activity (e.g., gray plane depicts a low-dimensional space describing how neurons covary). By under-
standing the relationship between pairwise and population metrics, we can better interpret how changes
in pairwise statistics correspond to changes in population metrics, and vice-versa.
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in the strength of “common shared input” that drives each neuron in the population. However,
other distinct changes at the level of the entire neuronal population can manifest as the same
decrease in mean pairwise correlation. For example, a common input that drives the activity of
all neurons up and down together could be altered to drive some neurons up and other neurons
down. Alternatively, that first common input signal might remain the same, but a second
input signal could be introduced that drives some neurons up and others down. It is difficult
to differentiate these distinct possibilities using a single summary statistic, such as mean spike
count correlation.

Distinguishing among these changes to the population-wide covariability might be possible by
considering additional statistics that measure how the entire population of neurons co-fluctuates
together. In particular, one may use dimensionality reduction to compute statistics that charac-
terize multiple distinct features of population-wide covariability [50]. Dimensionality reduction
has been used to investigate decision-making [51H54], motor control [55, 56], learning [14) 57, [58],
sensory coding [59, [60], spatial attention [13], 46, [49] [61], interactions between brain areas [62H65],
and network models [66-68], among others. As with mean spike count correlation, the statistics
computed from dimensionality reduction can also change with attention [46], 49], stimulus drive
[13} [69] [70], motor output [7I], and anesthesia [26]. However, unlike mean spike count correlation
(henceforth referred to as a “pairwise metric”) which averages across pairs of neurons, the statis-
tics computed from dimensionality reduction (henceforth referred to as “population metrics”)
consider the structure of population-wide covariability (Fig. . Although dimensionality reduc-
tion is often applied to trial-averaged activity (removing trial-to-trial variability), here we focus
on using dimensionality reduction to study trial-to-trial variability (around the trial-averaged
mean). An example of a commonly reported population metric is dimensionality [46, 56l 66~
68, [70}, [72] [73]. Dimensionality is used to assess whether the number of population co-fluctuation
patterns (possibly reflecting the number of common inputs) changes across experimental con-
ditions. Thus, population metrics could help to distinguish among the distinct ways in which
population-wide covariability can change, especially those that lead to the same change in mean
spike count correlation.

Both pairwise and population metrics aim to characterize how neurons covary, and both can
be computed from the same spike count covariance matrix (Fig. . Still, studies rarely report
both, and the relationship between the two is not known. In this study, we establish the relation-
ship between pairwise metrics and population metrics both analytically and empirically using
simulations. We find that changes in mean spike count correlation could correspond to several
distinct changes in population metrics including: 1) the strength of shared variability (e.g., the
strength of a common input), 2) whether neurons co-fluctuate together or in opposition (e.g., how
similarly a common input drives each neuron in the population), or 3) the dimensionality (e.g.,
the number of common inputs). Furthermore, we show that a rarely-reported statistic-the stan-
dard deviation of spike count correlation—provides complementary information to the mean spike
count correlation about how a population of neurons co-fluctuates. Applying this understand-
ing to recordings in area V4 of macaque visual cortex, we found that the previously-reported
decrease in mean spike count correlation with attention stems from multiple distinct changes
in population-wide covariability. Overall, our results demonstrate that common ground exists
between the literatures of spike count correlation and dimensionality reduction and provides a
cautionary tale for attempting to draw conclusions about how a population of neurons covaries
using one, or a small number of, statistics. Our framework builds the intuition and formalism to
navigate between the two approaches, allowing for a more interpretable and richer description of
the interactions among neurons.
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Figure 4: Intuition about population metrics. a. Population activity (population raster, where
each row is the spike train for one neuron over time) is characterized by a latent co-fluctuation (blue)
and a co-fluctuation pattern made up of loadings (green squares). Each neuron’s underlying firing rate is
a product of the latent and that neuron’s loading (which may either be positive or negative). One may
also view population activity through the lens of the population activity space (right plot), where each
axis represents the activity of one neuron (ng,ns,ns represent neuron 1, neuron 2, and neuron 3). In
this space, a co-fluctuation pattern corresponds to an axis whose orientation depends on the pattern’s
loadings (right plot, blue line). b. Population activity with a lower loading similarity than in panel a.
The loadings have both positive and negative values (i.e., dissimilar loadings), leading to neurons that
are anti-correlated (cf. top rows with bottom rows of population raster). Changing the loading similarity
will rotate a pattern’s axis in the population activity space (bottom plot, ‘rotate axis’). c¢. Population
activity with a lower %sv than in panel a. The strength of co-fluctuation is smaller than that in panel
a. This leads to a lower %sv, as the latent co-fluctuation shows smaller amplitude changes over time.
Changing %sv leads to no changes of the co-fluctuation pattern (bottom plot, axis is same as that in
panel a). d. Population activity with a dimensionality of 2, compared to a dimensinality of 1 in panel
a. Adding a new dimension leads to a new latent (orange line) and a new co-fluctuation pattern (‘new
dimension’). Each neuron’s underlying firing rate is expressed as a weighted combination of the latents,
where the weights correspond the neuron’s loadings in each co-fluctuation pattern. Here, each dimension
corresponds to a distinct subset of neurons (top rows vs. bottom rows); in general, this need not be the
case, as each neuron typically has nonzero weights for both dimensions. In the population activity space
(bottom plot), the activity varies along the two axes (i.e., a 2-d plane) defined by the two co-fluctuation
patterns.

2.2 Defining pairwise and population metrics

We first define the metrics that we will use to summarize 1) the distribution of spike count corre-
lations (i.e., pairwise metrics) and 2) dimensionality reduction of a population covariance matrix
(i.e., population metrics). For pairwise metrics, we consider the mean and standard deviation
(s.d.) of rg across all pairs of neurons, which summarize the 7y, distribution (Fig. 3, bottom left
panel). For population metrics, we consider loading similarity, percent shared variance (abbre-
viated to %sv), and dimensionality (described below). These metrics each describe some aspect
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of population-wide covariability and thus represent natural, multivariate extensions of rg..

To illustrate these three population metrics, consider the activity of a population of neurons
over time (Fig. a, spike rasters). If the activity of all neurons goes up and down together, we
would find the pairwise spike count correlations between all pairs of neurons to be positive. A
more succinct way to characterize this population activity is to identify a single time-varying
latent co-fluctuation that is shared by all neurons (Fig. a, blue line). The extent to which
neurons are coupled to this latent co-fluctuation is indicated by a loading for each neuron. In
this example, because the latent co-fluctuation describes each neuron’s activity going up and
down together, the loadings have the same sign (Fig. a, green rectangles). We refer to the
latent co-fluctuation’s corresponding set of loadings as a co-fluctuation pattern. A co-fluctuation
pattern can be represented as a direction in the population activity space, where each coordinate
axis corresponds to the activity of one neuron (Fig. a, right panel, green direction embedded in
black coordinate axes).

The first population metric is loading similarity, a value between 0 and 1 that describes
to what extent the loadings differ across neurons within a co-fluctuation pattern. A loading
similarity close to 1 indicates that the loadings have the same sign and are of similar magnitude
(Fig. a, green squares). A loading similarity close to 0 indicates that many of the loadings
differ, either in magnitude, sign, or both (Fig. b, green and pink squares). In this case, some
neurons may have positive loadings and co-fluctuate in the same direction as the latent (Fig. b,
top rows of neurons show high firing rates when blue line is high and low firing rates when blue
line is low), while other neurons may have negative loadings and co-fluctuate in opposition to
the latent (Fig. b, bottom rows of neurons show low firing rates when blue line is high and high
firing rates when blue line is low). One can view changing the loading similarity as rotating the
direction of a co-fluctuation pattern in population activity space (Fig. b, bottom plot).

The second population metric is percent shared variance or %sv, which measures the percent-
age of spike count variance explained by the latent co-fluctuation. This percentage is computed
per neuron, then averaged across all neurons in the population [66]. A %sv close to 100% indi-
cates that the activity of each neuron is tightly coupled to the latent co-fluctuation, with a small
portion of variance that is independent to each neuron (Fig. a). A %sv close to 0% indicates
that neurons fluctuate almost independently of each other and their activity weakly adheres to
the time course of the latent co-fluctuation (Fig. c). By changing %sv, one does not change
the co-fluctuation pattern in population activity space (Fig. 4} green lines are the same in pan-
els a and ¢) but rather the strength of the latent co-fluctuation (Fig. c, blue line has smaller
amplitude than in panel a).

The third population metric is dimensionality. The variable activity of neurons may de-
pend on multiple common inputs, e.g., top-down signals like attention and arousal [41, 46] or
spontaneous and uninstructed behaviors [74] [75]-and these common inputs may differ in how
they modulate neurons. This may result in two or more dimensions of the population activity
(Fig. d, blue and orange latent co-fluctuations). For illustrative purposes, each dimension might
correspond to a single group of tightly-coupled neurons (Fig. d, neurons in top rows have non-
zero loadings for pattern 1, whereas neurons in bottom rows have non-zero loadings for pattern
2). However, in general, each neuron can have non-zero loadings for multiple patterns. In this
work, we define dimensionality as the number of co-fluctuation patterns (or dimensions) needed
to explain the shared variability among neurons. We use the term dimension to refer either
to a latent co-fluctuation or its corresponding co-fluctuation pattern, depending on context. In
population activity space, adding a new dimension adds a new axis along which neurons covary
(Fig. [dld, green lines).
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2.3 Varying population metrics to assess changes in pairwise metrics.

Given that both pairwise and population metrics are computed from the same spike count co-
variance matrix (Fig. |3), a relationship should exist between the two. We establish this rela-
tionship by deriving mathematical links and carrying out empirical simulations. In simulations,
we assessed how systematically changing one of the population metrics (e.g., increasing loading
similarity, Fig. ), changes the spike count covariance matrix (Fig. b), and the corresponding
rec distribution (Fig. plc), which we summarized using its mean and standard deviation (Fig. [5ld).
The covariance matrix was parameterized in a way that allowed us to create covariance matrices
given a set of population metrics. Thus, our simulation procedure does not simulate neuronal
activity, but rather creates covariance matrices which are consistent with the specified population
metrics.
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Figure 5: Relationship between population metrics and pairwise metrics. Panels a-d describe
the simulation procedure to assess how systematic changes in population metrics lead to changes in
pairwise metrics. a. We first systematically varied one of the population metrics while keeping the others
fixed. For example, we can increase the loading similarity from a low value (left, blue) to a high value
(right, green), while keeping %sv and dimensionality fixed. b. Then, we constructed covariance matrices
corresponding to each value of the population metric in panel a, without generating synthetic data. c. For
each covariance matrix from panel b, we directly computed the correlations (i.e., the 7y distributions).
d. We computed rg. mean and r¢. s.d. from the ry. distributions in panel ¢ and then assessed how the
change in a given population metric from panel a changed pairwise metrics. In this case, the increase in
loading similarity increased rs. mean and decreased 74 s.d. (blue dot to green dot). e. Varying loading
similarity with a fixed %sv of 50% and dimensionality of 1. Each dot corresponds to the 7, mean and
rsc s.d. of one simulated covariance matrix with specified population metrics (dots are close together
and appear to form a continuum). The color of each dot corresponds to the loading similarity, where a
value of 1 indicates that all loading weights have the same value. f. Varying %sv. The same setting as in
panel e, except we consider two different values of percent shared variance (50% and 30%). g. Varying
dimensionality (i.e., number of co-fluctuation patterns) while sweeping loading similarity between 0 and
1 and keeping %sv fixed at 50%. In this simulation, the relative strengths of each dimension uniform
across dimensions (i.e., flat eigenspectra).
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Loading similarity has opposing effects on r;c mean and s.d.

We first asked how the loading similarity of a single co-fluctuation pattern (i.e., one dimension)
affected r¢c mean and s.d. Intuitively, a high loading similarity indicates that the activity of all
neurons increases and decreases together (Fig. a), resulting in values of rs. that are all positive
and similar in value. Thus, r¢c mean would be large and positive and r¢. s.d. would be close to 0
(Fig. e, green dots near horizontal axis). On the other hand, a low loading similarity indicates
that when some neurons increase their activity, others decrease their activity (Fig. b). Thus,
rsc values would be both positive (for pairs that change their activity in the same direction)
and negative (for pairs that change their activity in opposition), resulting in large 74 s.d. and
rsc mean close to 0 (Fig. e, blue dots near vertical axis). By gradually changing the loading
similarity, we observed an arc-like trajectory in the rsc mean versus rg s.d. plot (Fig. e). In
Math Note [A] we derive the analytical relationship between loading similarity and rs.. In Math
Note [B], we show mathematically why the rs. mean versus s s.d. relationship follows a circular
arc.

Decreasing %sv reduces rsc mean and s.d.

We next asked how %sv, which measures the percentage of each neuron’s variance that is shared
with other neurons in the population, affected rsc mean and s.d. In previous work, the rg.
mean is often interpreted as the amount of shared variability in a population of neurons [7]. In
simulations, we found that rs. mean and %sv were closely linked when loading similarity was
high, but were unrelated when loading similarity was low. For example, when loading similarity
was high and %sv decreased from 50% to 30%, we observed a proportionally-sized decrease in
rsc mean from 0.5 to 0.3 (Fig. green dots from outer arc to inner arc). On the other hand,
when loading similarity was low and %sv decreased from 50% to 30%, rsc mean changed very
little and remained close to 0 (Fig. blue dots from outer arc to inner arc). Importantly, this
illustrates that rsc mean and %sv are not the same—it is possible for a population of neurons
with high %sv to have smaller ry. mean than a population with lower %sv (Fig. blue dots in
outer arc have smaller r¢. mean than green dots in inner arc).

To understand this further, we derived the precise mathematical relationship between rg,
%sv, and the loadings for a pair of neurons (Math Note |A)):

pij = \/ ¢i¢; sign(wiw;) (1)

where p;; is the rg between neurons i and j, ¢; is the %sv of neuron ¢ (expressed as a proportion),
and w; is the loading of neuron 4 in the co-fluctuation pattern. Equation shows that p;;
depends on %sv, but is also influenced by loading similarity. If all loadings have the same sign
(i.e., loading similarity is high), then sign(w;w;) is always +1, and p;; = \/¢i¢;. In this case,
rsc mean (the average across all p;;) is a good representation of %sv. However, if many loadings
have opposite signs (i.e., low loading similarity), then some sign(w;w;) will be +1 and others
will be -1. Even if %sv (and thus |p;;|) is large, many correlations will have opposite signs,
and averaging over them results in rs. mean close to 0. In this case, rsc mean is not a good
representation of %sv.

More precisely, the %sv corresponds to the magnitude of ry values (i.e., each |p;|), as
opposed to the rg. mean. When loading similarity is low and %sv decreases, each |p;;| still
becomes smaller—positive correlations become less positive and negative correlations become less
negative. However, the reduction in %sv is not reflected by r¢. mean, but rather by a decrease in
rsc s.d. (Fig. blue dots from outer arc to inner arc). More generally, by considering both rg.
mean and s.d. together, we observed that reducing the %sv decreased the distance to the origin
in the the rg. mean versus rg. s.d. plot (Fig. arc for %sv=30% closer to origin than arc for
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%sv=50%). We showed mathematically that the %sv population metric can be estimated using
the distance of pairwise metrics from the origin (Math Note [B)):

%sv = /(rse mean)2? + (rgc s.d.)2

These findings highlight the pitfalls of considering a single statistic (e.g., rsc mean) on its
own and the benefits of considering multiple statistics (e.g., both ¢ mean and s.d.) when trying
to draw conclusions about how neurons covary. By considering s mean and s.d. together, one
can insight into the loading similarity (Fig. e) and the %sv (Fig. ) of a neuronal population.
Thus far, we have only considered the specific case where activity co-fluctuates along a single
dimension in the firing rate space. We next considered how pairwise metrics change in the more
general case where neuronal activity co-fluctuates along multiple dimensions.

Adding more dimensions tends to reduce rsc mean and s.d.

We sought to assess how dimensionality (i.e., the number of co-fluctuation patterns) is related to
pairwise metrics. In simulations, we increased the number of co-fluctuation patterns (compare
Fig. a to d; see Methods), while sweeping loading similarity and fixing the total %sv. We
found that increasing dimensionality tended to reduce 7. mean and s.d. (Fig. , dots for larger
dimensionalities lay closer to the origin than dots for smaller dimensionalities).

It seems counterintuitive that adding a new way in which neurons covary reduces the mag-
nitude of rsc. The intuition is that if multiple distinct (i.e., orthogonal) dimensions exist, then
a neuron pair interacts in opposing ways along different dimensions. For example, consider two
neurons with loadings of the same sign in one co-fluctuation pattern, and opposite sign in the
second pattern. If only the first dimension exists, the two neurons would go up and down to-
gether and be positively correlated. If only the second dimension exists, the two neurons would
co-fluctuate in opposition and be negatively correlated. When both dimensions exist, the posi-
tive correlation from the first dimension and the negative correlation from the second dimension
offset, and the resulting correlation between the neurons would be smaller than if only the first
dimension were present. We formalize the above intuition in Math Note [C] We also show ana-
lytically that increasing dimensionality tends to move points closer to the origin in the g, mean
versus 7s. s.d. plot (i.e., decrease rsc mean and s.d.; Math Note @[)

An increase in dimensionality does not imply that both rs . mean and 7. s.d. necessarily
decrease. For example, in the case where the first dimension has high loading similarity, adding
more dimensions means it is less likely for rs. s.d. to be 0 (Fig. |plg, compare dot closest to
horizontal axis for ‘1 dim.” to that for ‘2 dims.”). The intuition is that if the first dimension has
a loading similarity of 1, the loading weights for all neurons are the same and thus ry. values
between all pairs are the same, resulting in 74, s.d. of 0. Adding an orthogonal dimension to this
pattern necessarily means adding a pattern with low loading similarity (Math Note , making
it less likely for rg. across all pairs to be the same. Therefore, 4 s.d. is unlikely to be 0 for
two dimensions (Fig. [flg, the smallest 7 s.d. for ‘2 dims.” is around 0.2). Still, in Figure
the dots for ‘2 dims.” are closer to the origin than the dots for ‘1 dim’, implying that even
if rsc s.d. increases with an increase in dimensionality, the rsc mean must decrease to a larger
extent (Math Note @ As another example, in the case where the first dimension has low loading
similarity, adding a second dimension with high loading similarity would increase rs. mean. The
rsc S.d. would decrease to a larger extent than the increase in rg. mean such that the dot for two
dimensions is closer to the origin than that for one dimension (Math Note [D).
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Figure 6: Relative strengths of dimensions affect rs. distributions. With dimensionality of 2,
we systematically varied the relative strengths of the two dimensions with a fixed total %sv of 50%. We
considered two scenarios: 1) one dimension has high loading similarity and the other dimension has low
loading similarity (panel a) and 2) both dimensions have low loading similarity (panel b). Each dot
represents one simulated covariance matrix and rg. distribution. The color of the dots indicate different
relative strengths between the two dimensions, and numbers next to each cloud of dots indicate the
ratio between the relative strength associated with each dimension. For example, in panel a, red dots
correspond to the high loading similarity dimension being 19 times stronger (95:5) than the low loading
similarity dimension. Black dots correspond to the low loading similarity dimension being 19 times
stronger (5:95) than the high loading similarity dimension. In panel b, since both patterns have low
loading similarity, clouds for 80:20 and 95:5 are very similar to clouds for 20:80 and 5:95 respectively and
are thus omitted for clarity. See also Fig @

The relative strength of each dimension impacts pairwise metrics.

In the previous simulation (Fig. ), we assumed that each dimension explained an equal pro-
portion of the overall shared variance (e.g., for two dimensions, each dimension explained half
of the shared variance; see Methods). However, it is typically the case for recorded neuronal ac-
tivity that some dimensions explain more shared variance than others; in other words, neuronal
activity co-fluctuates more strongly along some patterns than others [49, [57, [66, 67, [7T], (73] [76].
We sought to assess the influence of the relative strength of each dimension on pairwise metrics.

We reasoned that stronger dimensions would play a larger role than weaker dimensions in
determining the ry. distribution and pairwise metrics. Extending equation to multiple di-
mensions, we show that the rg. between a pair of neurons can be expressed as the sum of a
contribution from each constituent dimension (Math Note . The stronger a dimension, the
larger the magnitude of its contribution to rg, and thus the larger its impact on ry. mean and
s.d.

To test this empirically, we performed a simulation with two dimensions, while systematically
varying the relative strength of each dimension. We considered two scenarios: (1) one dimension
has a pattern with high loading similarity and one dimension has a pattern with low loading
similarity (Fig.[fla), and (2) both dimensions have patterns with low loading similarity (Fig. [6p).
Note that both dimensions cannot have patterns with high loading similarity because they would
not be orthogonal (Math Note [El).
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In scenario (1) where one dimension’s pattern has high loading similarity and the other has
low loading similarity, rsc mean and 74 s.d. reflects the loading similarity of the dominant
dimension (Fig. |§|a). When the dimension with a high loading similarity pattern dominated, 7
mean was large and 7¢ s.d. was small (Fig. |§|a, red dots are close to horizontal axis). When
the dimension with a low loading similarity pattern dominated, rs. mean was small and 7y s.d.
was large (Fig. |§|a, black dots are close to vertical axis). When the two dimensions were of
equal strength (i.e., neither dimension dominated), rsc mean and rs. s.d. were both intermediate
values (Fig. @a, light gray dots are between red and black dots). Thus, the dimensions along
which neuronal activity co-fluctuates more strongly have a greater influence on pairwise metrics
(Supplementary Fig. .

In scenario (2) where both dimensions have patterns of low loading similarity, rs. mean was
low and 7¢ s.d. was high (Fig. @b), similar to when there is one dimension with low loading
similarity (Fig. e, blue dots). When we made one dimension stronger than the other, rs. mean
remained low and 7g. s.d. remained high (Fig. |§|b, light gray dots and black dots are both close
to vertical axis) because both patterns had low loading similarity. However, the radius of the arc
increased (Fig. @b, black dots farther from the origin than light gray dots), and was close to the
arc that would have been produced with a single dimension (Fig. , ‘1 dim.”). Thus, whereas
changing the number of dimensions causes discrete jumps in the arc radius (Fig. ), changing
the relative strength of each dimension allows for r¢ mean and ry. s.d. to vary continuously
between the arcs for different dimensionalities. Put another way, changing the relative strength
of each dimension varies the “effective dimensionality” of population activity in a continuous
manner. Neuronal activity for which one dimension dominates another (Fig. |§|b, black dots) has
a lower effective dimensionality than when both dimensions have equal strength (Fig. @b, light
gray dots).

2.4 Reporting only a single statistic provides an incomplete description of
population covariability

Figure [7] summarizes the relationships that we have established between pairwise metrics and
population metrics. Rotating a co-fluctuation pattern from a low loading similarity to a high
loading similarity increases rs. mean and decreases rg s.d. along an arc (Fig. |7} arrow outside
pink arc). Decreasing %sv decreases both rg. mean and s.d. (Fig. [7} arrow pointing toward
origin), and increasing dimensionality also tends to decrease rs. mean and s.d. (Fig. 7] pink to
yellow shaded regions).

These results provide a cautionary tale that using a single statistic on its own provides an
opaque description of population-wide covariability. For example, a change in ry. mean could
correspond to changes in loading similarity, %sv, dimensionality, or a combination of the three.
Likewise, reporting dimensionality on its own would be incomplete because the role of a dimension
in explaining population-wide covariability depends how much shared variance it explains and the
loading similarity of its co-fluctuation pattern. For example, consider a decrease in dimensionality
by 1. This would have little impact on population-wide covariability if the removed dimension
explains only a small amount of shared variance, whereas it could have a large impact if the
removed dimension explains a large amount of shared variance.

Considering multiple statistics together provides a richer description of population-wide co-
variability. For example, in the case where population activity co-fluctuates along a single di-
mension, rs. mean and g s.d. can be used together to approximate %sv (using distance from
the origin) and deduce whether loading similarity is low (rs. s.d. > r¢ mean) or high (rg. mean
> 1y s.d.), whereas rgc mean alone would not provide much information about %sv or loading
similarity (cf. Fig. . In the next section, we further demonstrate using neuronal recordings
how relating pairwise and population metrics using the framework we have developed (Fig. 7))

25



low loading

similarity
increase
decrease loading
percent shared similarity
variance
I'sc
s.d.
‘ 2-dim. 1-dim.
K—d\m./
increase
dimensionality  high loading
similarity
I'sc mean

Figure 7: Summary of relationship between pairwise and population metrics. A change
in r¢¢ mean and 7. s.d. may correspond to changes in loading similarity, %sv, dimensionality, or a
combination of the three. Shaded regions indicate the possible rsc mean and rg. s.d. values for different
dimensionalities; increasing dimensionality tends to decrease 7y, mean and rs s.d. (shaded regions for
larger dimensionalities become smaller). Within each shaded region, decreasing %sv decreases both 74
mean and s.d. radially toward the origin. Finally, rotating co-fluctuation patterns such that the loadings
are more similar (going from low to high loading similarity) results in moving clockwise along an arc
such that rs. mean increases and rg. s.d. decreases. We also note two subtle trends. First, there are
more possibilities for loading similarity to be low than high (Appendix , suggesting that rg. s.d. will
generally tend to be larger than s, mean if neuronal activity varied along a randomly chosen co-fluctuation
pattern (shading within each region is darker near the vertical axis than the horizontal axis). Second,
this effect becomes exaggerated for higher-dimensional neuronal activity as many dimensions can have
low loading similarity but only one dimension can have high loading similarity (Appendix . Thus, it
becomes progressively unlikely for r. s.d. to be 0 as dimensionality increases (shaded regions for larger
dimensionalities lifted off the horizontal axis).

provides a richer description of how neurons covary than using a single statistic (e.g., rsc mean)
alone.

2.5 Case study: V4 neuronal recordings during spatial attention

When spatial attention is directed to the receptive fields of neurons in area V4 of macaque visual
cortex, rs. mean among those neurons decreases [IH3], (10, [77]. This decrease has often been
attributed to a reduction in shared modulations among the neurons. However, we have shown
both mathematically and in simulations that several distinct changes in population metrics (e.g.,
decrease in loading similarity, decrease in %sv, or an increase in dimensionality) could underlie
this decrease in s mean. Here, we sought to assess which aspects of population-wide covariability
underlie, and how each of them contribute to, the overall decrease in ry. mean.

We analyzed activity recorded simultaneously from tens of neurons in macaque V4 while the
animal performed an orientation-change detection task [Fig. a; previously reported in 13]. To
probe spatial attention, we cued the animal to the location of the stimulus that was more likely
to change in orientation. As expected, perceptual sensitivity increased for orientation changes
in the cued stimulus location (Fig. a inset, red dot above black dot). ‘Attend-in’ trials were
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Figure 8 (previous page): An observed decrease in rs. mean of macaque V4 neurons during a
spatial attention task corresponds to changes in multiple population metrics. a. Experimental
task design. On each trial, monkeys maintained fixation while Gabor stimuli were presented for 400 ms
(with 300-500 ms in between presentations). When one of the stimuli changed orientation, animals were
required to saccade to the changed stimulus to obtain a reward. At the beginning of a block of trials, we
performed an attentional manipulation by cuing animals to the location of the stimulus that was more
likely to change for that block (dashed circle denotes the cued stimulus and was not presented on the
screen). The cued location alternated between blocks. Animals were more likely to detect a change in
stimulus at cued rather than uncued locations (inset in bottom right, p < 0.002 for both animals; data for
monkey 1 is shown). During this task, we recorded activity from V4 neurons whose receptive fields (RFs)
overlapped with one of the stimulus locations. b. rs. mean (left panel) and 7y s.d. (right panel) across
recording sessions for two animals. Black denotes ‘attend-out’ trials (i.e., the cued location was outside
the recorded V4 neurons’ RFs), and red denotes ‘attend-in’ trials (i.e., the cued location was inside the
RFs). Data was pooled across both animals to compute p-values reported in titles for comparison of
attend-out (black) and attend-in (red). For individual animals, rs. mean was lower for attend-in than
attend-out (p < 0.001 for each animal). rs. s.d. was also lower for attend-in than attend-out (p < 0.05 for
monkey 1, and p = 0.148 for monkey 2). c. Population metrics identified across recording sessions for two
animals (same data as in b). Black denotes attend-in trials, red denotes attend-out trials. Data was again
pooled across animals to compute p-values reported in titles for comparing attend-out and attend-in. %sv
was lower for attend-in than attend-out (p < 0.001 for monkey 1 and p < 0.02 for monkey 2). Loading
similarity was lower for attend-in than attend-out (p < 0.001 for monkey 1 and p = 0.162 for monkey
2). Dimensionality was lower for attend-in than attend-out (p = 0.113 for monkey 1 and p = 0.174 for
monkey 2). In panels a-c, dots indicate means and error bars indicate 1 s.e.m., both computed across
recording sessions. d. Summary of the real data results. Attention decreases both ry. mean and 7y s.d.
(black dot to red dot). These decreases in pairwise metrics correspond to a combination of decreases in
%sv, loading similarity, and dimensionality (dashed arrows).

those in which the cued stimulus location was inside the aggregate receptive fields (RFs) of the
recorded V4 neurons, whereas ‘attend-out’ trials were those in which the cued stimulus location
was in the opposite visual hemifield.

For pairwise metrics, rsc mean decreased when attention was directed into the RFs of the V4
neurons (Fig. [8b, left panel), consistent with previous studies [1H3, 10} [13]. We further found that
rse s.d. was lower for attend-in trials than for attend-out trials, an effect not reported previously
(Fig. b, right panel).

The decrease in both rg. mean and 7y s.d. could arise from several different types of distinct
changes in population-wide covariability. To compute the population metrics, we applied factor
analysis (FA) separately to attend-out and attend-in trials (see Methods). FA is the most basic
dimensionality reduction method that characterizes shared variance among neurons [50], and
is consistent with how we created covariance matrices in Figures [f and [ff We found three
distinct changes in population metrics. First, neuronal activity during attend-in trials had lower
%sv than during attend-out trials (Fig. c, left), consistent with previous interpretations that
attention reduces the strength of shared modulations [46], 48, 49, [76]. Second, we also found
lower loading similarity for attend-in trials than attend-out trials for the dominant dimension
(i.e., the dimension that explains the largest proportion of the shared variance; Fig. c, middle;
see also Supplementary Fig. b). This implies that, with attention, neurons in the population co-
fluctuate in a more heterogeneous manner (i.e., more pairs of neurons co-fluctuate in opposition,
and fewer pairs co-fluctuate together). Third, we found that dimensionality was slightly lower for
attend-in than attend-out trials (Fig. c, right). Thus, on average, a smaller number of distinct
shared signals were present when attention was directed into the neurons’ RFs. The small change
in dimensionality is consistent with the relative strength of each dimension (i.e., eigenspectrum
shape) being similar for attend-in and attend-out (Supplementary Fig. a). Taken together, this
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collection of observations of both pairwise and population metrics leads to a more refined view
of how attention affects population-wide covariability.

The pairwise (Fig. [8b) and population (Fig. [8lc) metrics are computed based on the same
recorded activity and each represents a different view of population activity. The central contri-
bution of our work is to provide a framework by which to understand these two perspectives and
five different metrics in a coherent manner. Using the relationships between pairwise and popu-
lation metrics we have established in the rg. mean versus ry. s.d. space, we can decompose the
decrease in rg. mean and s.d. into: 1) a small decrease in dimensionality (Fig. d, small dashed
arrow), 2) a decrease in loading similarity (Fig. [8}d, medium dashed arrow), and 3) a substantial
decrease in %sv (Fig. d, large dashed arrow). We quantify these contributions in Supplementary
Fig. . The 7¢c mean and s.d. decreased despite the decrease in dimensionality (which alone
would have tended to increase r¢. mean and s.d.) because of the larger contributions of loading
similarity and %sv to pairwise metrics in these V4 recordings. We have also applied the same
analysis to population recordings in visual area V1 [78, available on CRCNS.org| and found that,
although g mean and s.d. both decreased (like in the V4 recordings), the population metrics
changed in a different way compared to the V4 recordings (Supplementary Fig. [4). Together,
these analyses demonstrate the need for considering both pairwise and population metrics to-
gether when studying correlated variability, with a bridge that allows one to navigate between
the two.

2.6 Discussion

Coordinated variability in the brain has long been linked to the neural computations underlying a
diverse range of functions, including sensory encoding, decision making, attention, learning, and
more. In this study, we sought to relate two major bodies of work investigating the coordinated
activity among neurons: studies that measure spike count correlation between pairs of neurons
(rsc) and studies that use dimensionality reduction to measure population-wide covariability. We
considered three population metrics and established analytically and empirically that: 1) increas-
ing loading similarity corresponds to increasing rs. mean and decreasing 7y s.d., 2) decreasing
percent shared variance (%sv) corresponds to decreasing both rs. mean and s.d., and 3) increas-
ing dimensionality tends to decrease ryc mean and s.d. Applying this understanding to recordings
in macaque V4, we found that the previously-reported decrease in mean spike count correlation
associated with attention stemmed from a decrease in %sv, a decrease in loading similarity, and
decrease in dimensionality. This analysis revealed that attention involves multiple changes in
how neurons interact that are not well captured by a single statistic alone. Overall, our work
demonstrates that common ground exists between the literatures of spike count correlation and
dimensionality reduction approaches, and builds the intuition and formalism to navigate between
them.

Our work also provides a cautionary tale for attempting to summarize population-wide co-
variability using one, or a small number of, statistics. For example, reporting only rs. mean
is incomplete because several distinct changes in population-wide covariability can correspond
to the same change in rsc mean. In a similar vein, reporting only dimensionality is incomplete
because it does not indicate how strongly the neurons covary, nor their co-fluctuation patterns.
For this reason, we recommend reporting several different pairwise and population metrics (e.g.,
the five used in this study along with the eigenspectrum of the shared covariance matrix), as
long as they can be reliably measured from the data available. This not only allows for a deeper
and more complete understanding of how neurons covary, but also it allows one to make tighter
connections to previous literature that uses the same metrics. Future work may seek to re-
visit previous results of correlated neuronal variability that are based on a single statistic (e.g.,
rsc mean), and reinterpret them within a framework that considers multiple perspectives and
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statistics of population-wide covariability, such as that presented here.

There are some situations where it is not feasible to reliably measure population statistics,
such as recording from a small number of neurons in deep brain structures [79, [80], or when
the number of trials is small relative to the number of neurons recorded. In such situations,
the rsc can be measured between pairs of neurons recorded in each session and then averaged
across sessions to obtain the r¢c mean. Based on our findings, we recommend that studies which
report rs. mean also report 1. s.d. because the latter provides additional information about
population-wide covariability. For example, in the special case of one latent dimension (typically
not known in advance for real data), measuring rs. mean and rg. s.d. allows one to estimate the
loading similarity and %sv (cf. Fig. e— f). In general, even when there is more than one latent
dimension in the population, rg. s.d. provides value in situating the data in the rs. mean versus
rse 8.d. plot. Changes in g mean and s.d. can then inform changes in population metrics based
on the relationships established in this work (cf. Fig. [Bd).

The reason that our work, and many previous studies, have focused on trial-to-trial variability
is that it has important implications for information coding. Early work on information-limiting
correlations typically focused on rg. mean [e.g., [I [7, B4, 35|, which reflects the strength of
shared variability among neurons. Recent theoretical work [81], 82, [84] and experimental evi-
dence [14] 411 85] 86] has shown that it is not only the strength of shared trial-to-trial variability
but also the directions of shared variability relative to stimulus tuning (Fig. |§|a) that need to be
considered for information coding. These properties of shared trial-to-trial variability are pre-
cisely what are measured by the population metrics used here. In particular, the %sv measures
how strongly trial-to-trial variability is shared among neurons (Fig. |§|b), loading similarity mea-
sures the direction(s) of variability (Fig. [Jlc), and dimensionality measures how many different
directions of variability exist in the data (Fig. @d) By considering these three population metrics
together, along with the way in which mean population responses vary across conditions (i.e., the
stimulus-encoding directions), we can more incisively characterize how trial-to-trial variability
impacts information coding than by using rs. mean alone. Understanding how patterns of shared
variability are related to (e.g., align with or are orthogonal to) patterns of stimulus encoding and
downstream readouts will be likely critical for understanding information coding in the brain.

We considered three population metrics — dimensionality, percent shared variance (%sv), and
loading similarity — that summarize the structure of population-wide covariability and are rooted
in well-established concepts in existing literature. First, dimensionality has been used to describe
how neurons covary across conditions [i.e., an analysis of trial-averaged firing rates; 52} 55, [70] [83,
87|, as well as how neurons covary from trial to trial |46} 57, [66H68, [72], [73], [88] [89]. We focused on
the latter in our study to connect with the ry literature, which also seeks to understand the shared
trial-to-trial variability between neurons. To focus on the shared variability among neurons, we
used factor analysis (FA) to measure dimensionality. Another commonly-used dimensionality
reduction method, principal components analysis (PCA), although appropriate for studying trial-
averaged activity, does not distinguish between variability that is shared among neurons and
variability that is independent to each neuron. Second, investigating the loading similarity
has provided insight about whether shared variability among neurons arises from a shared global
factor which drives neurons to increase and decrease their activity together [26], 406, [47) [49, [66], 0]
or whether the co-fluctuations involve a more intricate pattern across the neuronal population
[13, 41, O1]. Third, we have previously reported %sv for area V1 [66], area M1, and network
models [66], [89]. Conceptually, %sv and rs. mean are both designed to capture the strength
of shared variability in a population of neurons. Thus, we might initially think that there
should be a one-to-one correspondence between the two quantities. Indeed, if the population
activity is described by one co-fluctuation pattern with a high loading similarity, there is a direct
relationship between %sv and r¢ mean (Fig. ) However, in general, %sv and rg. mean do not
have a one-to-one correspondence between them (Fig. moderate or low loading similarity).
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Figure 9: Population metrics and information coding. For illustrative purposes, we consider
the responses of two neurons to two different stimuli. a. In “condition 1”7 (e.g., “attend-out” in our V4
analyses), the two neurons have positively correlated trial-to-trial variability (blue and orange clouds
each have positive correlation) and a stimulus encoding space (black arrow) defined by the span of the
trial-averaged responses (blue and orange dots). Then, we consider how changes in trial-to-trial neuronal
variability (i.e., shapes of the clouds) from one experimental condition to another (e.g., spatial attention)
can influence decoding of the two stimuli. For simplicity, we construct examples in which the stimulus
encoding space remains constant between the two conditions. We illustrate here the changes in population
metrics that we observed in our V4 data (Fig. d). b. First, a decrease in percent shared variance (both
clouds are smaller in size) results in more accurate decoding of the population responses to the two stimuli
(the blue and orange ellipses are less overlapping here than in panel a). c. Second, a decrease in the
loading similarity of the strongest dimension (both clouds have been rotated to have negative correlation)
also leads to an improvement in decoding performance. In this case, the improvement stems from the
fact the stimulus encoding space (black arrow) and the strongest dimension of trial-to-trial variability
(negative correlation) are misaligned [81} [82]. d. Third, a decrease in dimensionality (the less dominant
dimension has been squashed for both clouds) could either improve or have no impact on decoding
performance. Here, the dimension that was squashed (negative correlation direction) was orthogonal
to the stimulus encoding dimension (black arrow), leading to no impact on decoding performance. In
general, all else being equal, higher-dimensional trial-to-trial variability [distinct from high-d signal; [83]
is more likely to overlap with stimulus encoding dimensions and thus limit the amount of information
encoded.

We focus here on studying trial-to-trial activity fluctuations that are shared between neu-
rons. Many studies have considered the source of these shared fluctuations in the context of
pairwise correlations [7]. Most commonly, pairwise correlations have been suggested to originate
through common input [34} 35]. However, there are in fact numerous mechanisms that can shape
the trial-by-trial shared variability of neuronal populations, including neuromodulation [92] 93],
coupled inhibition, or distinct patterns of neuronal connectivity [49, [66H68]|. These mechanisms
likely produce distinct signatures in population metrics, such as %sv, loading similarity, and
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dimensionality. The framework that we have developed here can be applied to spiking network
models with different underlying mechanisms of shared cortical variability to identify signatures
in population metrics [49, [66H68|. We can then assess whether any of those signatures are present
in neuronal recordings to gain insight into the underlying mechanisms of shared variability in
the brain.

Although pairwise correlation and dimensionality reduction have most commonly been com-
puted based on spike counts, several studies have also computed these metrics on neuronal
activity recorded using other modalities, such as calcium imaging [51, [73, 85, ©94]. The rela-
tionships that we established here between pairwise and population metrics are properties of
covariance matrices in general and do not rely on or assume recordings of neuronal spikes. Thus,
the intuition built here can be applied to other recording modalities.

Our work here focused on studying interactions within a single population of neurons. Tech-
nological advances are enabling recordings from multiple distinct populations simultaneously,
including neurons in different brain areas, neurons in different cortical layers, or different neuron
types [e.g., 05 06]. Studies are dissecting the interactions between these distinct populations
using pairwise correlation [3] 12, [78] and dimensionality reduction [41] 62H65] 89, 97]. As we have
shown here for a single population of neurons, considering a range of metrics from both the pair-
wise correlation and dimensionality reduction perspectives, and understanding how they relate
to one another, will provide rich descriptions of how different neuronal populations interact.

2.7 Methods
Spike count covariance matrix

Both pairwise metrics and population metrics are computed directly from the spike count co-
variance matrix X of size n X n for a population of n neurons. Each entry in ¥ is the covariance
between the activity of neuron ¢ and neuron j:

Xij = cov(i, x5) = E[(z; — pi)(zj — py)] (2)
where x; and x; represent the activity of neurons i and j, respectively, and ; and p; represent
the mean activity of neurons 7 and j, respectively. The variance of the ith neuron is equal to ;.

Pairwise metrics

We computed the spike count correlation (7g) between neurons ¢ and j directly from the spike
count covariance matrix:

pr; = 2
=
R
We then summarized the distribution of rs values across all pairs of neurons in the population
with two pairwise metrics: the rgc mean and g standard deviation (s.d.).

(3)

Population metrics

The metrics we use for characterizing population-wide covariability are based on factor analysis
[FA; 49, 511, 66] 69, [72), 88, [89], a dimensionality reduction method. We chose FA because it is
the most basic dimensionality reduction method that explicitly separates variance that is shared
among neurons from variance that is independent to each neuron. This allows us to relate the
population metrics provided by FA to spike count correlation, which is designed to measure
shared variability between pairs of neurons. One might consider using principal component
analysis (PCA), but it does not distinguish shared variance from independent variance. Thus,
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FA is more appropriate than PCA for studying the shared variability among a population of
neurons.

Decomposing the spike count covariance matriz

FA decomposes the spike count covariance matrix ¥ into a low-rank shared covariance matrix,
which captures the variability shared among neurons in the population, and an independent
variance matrix, which captures the portion of variance of each neuron unexplained by the other
neurons (Supplementary Fig. [5la):

Y= Zshared + v (4)

where Yghared € R™*" is the shared covariance matrix for n neurons, and ¥ € R™*" is a diagonal
matrix containing the independent variance of each neuron. The low-rank shared covariance
matrix can be expressed using the eigendecomposition as (Supplementary Fig. a):

Zshaured — UAUT (5)

where U € R™? and A € R¥9 with d < n. The rank (i.e., dimensionality) of the shared
covariance matrix, d, indicates the number of latent variables. Each column of U is an eigenvector
and represents a co-fluctuation pattern containing the loading weights of each neuron (i.e., how
much each neuron contributes to that dimension). The matrix A is a diagonal matrix where each
diagonal element is an eigenvalue and represents the amount of variance along the corresponding
co-fluctuation pattern (e.g., in Fig. 4 panel a has larger eigenvalue than panel c).

Based on this matrix decomposition, we defined the three metrics that describe the population-
wide covariability:

e Loading similarity: the similarity of loading weights across neurons for a given co-
fluctuation pattern. Scalar value between 0 (the weights are maximally dissimilar, defined
precisely below) and 1 (all weights are the same).

e Percent shared variance (%sv): the percentage of each neuron’s variance that is ex-
plained by other neurons in the population. Percentage between 0% and 100%.

e Dimensionality: the number of dimensions (i.e., co-fluctuation patterns). Integer value.

We give the precise definitions of these population metrics below and in Supplementary Fig. [Fb.

Loading similarity

We sought to define loading similarity such that, for a given co-fluctuation pattern, if the weights
for all neurons are the same, we would measure a loading similarity of 1. When the weights are as
different as possible, we would measure a loading similarity of 0. We define the loading similarity
based on the variance across the n weights (for n neurons) in a co-fluctuation pattern ux. The
smallest possible variance is 0; the largest possible variance, for a unit vector uy, is 1/n (Math
Note . Thus, we define loading similarity for a co-fluctuation pattern uy, € R” as:

var(uy) ~ var(u)

=1

oading similarity(uy) maxy, var(vi) 1/n ©

where the loading similarity is computed on unit vectors (i.e., ux has a norm of 1). The notation
var(uy) denotes that the variance is being taken across the n elements of the vector uy. The
denominator of equation @ acts as a normalizing factor, bounding the loading similarity value
between 0 and 1.
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The loading similarity distinguishes between a co-fluctuation pattern along which all neurons
in the population have the same weight in which case they change their activity up and down
together (Fig. a; loading similarity of 1), from one in which weights are different and some
neurons increase their activity when others decrease their activity (Fig. b; loading similarity
of 0). The loading weights we use here are closely related to ‘population coupling’ [90] and
‘modulator weights’ [46]. For some types of shared fluctuations, these weights are similar across
neurons in a population [i.e., high loading similarity; 46, 49, 00]. For other types of shared
fluctuations, the weights vary substantially across neurons in the population [i.e., low loading
similarity; [41].

We show in Math Note [E] why, if one dimension has high loading similarity, the other dimen-
sions must have low loading similarity. The reason is that co-fluctuation patterns are defined to
be mutually orthogonal. If one co-fluctuation pattern has all weights close to the same value (i.e.,
high loading similarity), then all other co-fluctuation patterns must have substantial diversity in
their weights (i.e., low loading similarity) to satisfy orthogonality.

Percent shared variance

The percent shared variance (%sv) measures the percentage of each neuron’s spike count variance
that is explained by other neurons in the population [66] 89]. Equivalently, we can think of %sv
in terms of latent co-fluctuations. Because latent co-fluctuations capture the shared variability
among neurons, the %sv measures how much of each neuron’s variance is explained by the latent
co-fluctuations. The activity of neurons may be tightly linked to the latent co-fluctuation (e.g.,
Fig. a), in which case a large percentage of each neuron’s variance is shared with other neurons,
or may only be loosely linked to the latent co-fluctuation (e.g., Fig. c), in which case a small
percentage of each neuron’s variance is shared with other neurons. Mathematically, we define
the %sv for a neuron i:

Zs ared,it 7
%sv for neuron i = % 100% = i 5+ 100% (7)

where s; is the i'" entry along the diagonal of the shared covariance matrix (Supplementary
Fig. a, Yshared ), and v; is the ith entry along the diagonal of the independent covariance matrix
(Supplementary Fig. a, U). A %sv of 0% indicates that the neuron does not covary with (i.e.,
is independent of) other neurons in the population, whereas a %sv of 100% indicates that the
neuron’s activity can be entirely accounted for by the activity of other neurons in the population.
To compute %sv for an entire population of neurons, we averaged the %sv of the individual
neurons. All %sv values reported in this study are the %sv for the neuronal population.

Dimensionality

Dimensionality refers to the number of latent co-fluctuations needed to describe population-wide
covariability. For example, the population-wide covariability can be described by one latent co-
fluctuation (Fig. [lla) or by several latent co-fluctuations (Fig. [lld). In the population activity
space, dimensionality corresponds to the number of axes along which the population activity
varies (see Fig. d, bottom inset). Mathematically, the dimensionality is the rank of the shared
covariance matrix (i.e., the number of columns in U, Supplementary Fig. a).

Creating the spike count covariance matrices with specified population metrics

To relate pairwise and population metrics, we created spike count covariance matrices of the
form in equation with specified population metrics. Importantly, we did not simulate spike
counts, nor fit a factor analysis model to simulated data. Rather, we created covariance matrices
using and computed pairwise correlations directly from the entries of the covariance matrix,
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as shown in . Across simulations (Figs. |5| and @, we simulated with n = 30 neurons and set
independent variances (i.e., diagonal elements of ¥ in equation ) to 1.

Specifying co-fluctuation patterns to obtain different loading similarities

Each co-fluctuation pattern uy is a vector with n = 30 entries (one entry per neuron). We
generated a single co-fluctuation pattern by randomly drawing 30 independent samples from a
Gaussian distribution with a mean of 2.5. We choose a nonzero mean so that we could obtain
co-fluctuation patterns with loading similarities close to 1 when drawing from the Gaussian
distribution (i.e., a mean of 0 would have resulted in almost all co-fluctuation patterns having
a loading similarity close to 0). To get a range of loading similarities between 0 and 1, we used
different standard deviations for the Gaussian. For a small standard deviation value, all entries
in the co-fluctuation pattern are close to 2.5, resulting in a high loading similarity. For larger
standard deviations, some loading weights are positive and some negative, with large variability
in their values, resulting in co-fluctuation patterns with low loading similarity. We increased the
Gaussian standard deviation from 0.1 to 5.5 with increments of size 0.1. For each increment,
we generated 50 patterns and normalized them to have unit norm. In total, we created a set of
2,750 random patterns.

The following procedure describes the construction of shared covariance matrices with one
co-fluctuation pattern. We chose a single pattern uy € R3°%! (i.e., U has only 1 column) from
the set of 2,750. We constructed the shared covariance matrix by computing UAU”, where A
was chosen to achieve a desired percent shared variance (see below). The covariance matrix was
then computed according to equation . We created a covariance matrix, yielding a spread of
loading similarities between 0 and 1 (Fig. e— f). In the next section, we describe the procedure
for creating a covariance matrix with more dimensions.

Specifying the percent shared variance

To achieve a given %sv, either the independent variance or the amount of shared variability (i.e.,
the eigenvalues) of each dimension can be adjusted. In the main text, we set the independent
variance of each neuron to ¥; = 1, and changed the total amount of shared variability by
multiplying each eigenvalue (each diagonal element in A from equation (5))) by the same constant
value, a. To obtain a specified %sv, we identified a by searching through a large set of possible
values (from 10~* to 103 with step size 1072). We allowed for a tolerance of ¢ = 10~2 between
the desired %sv and the %sv that was achieved after scaling the eigenvalues by a. In other
analyses, we allowed the independent variances to be different across neurons (e.g., drawn from
an exponential distribution), and the relationships between pairwise and population metrics were
qualitatively similar to those in the main text.

Increasing dimensionality

To assess how changing dimensionality affects pairwise metrics, we created covariance matrices
whose shared covariance matrix comprised more than 1 dimension. To create a shared covariance
matrix with d dimensions, we randomly chose d patterns from the set of 2750 we had generated
above (see ‘Specifying co-fluctuation patterns to obtain different loading similarities’). We then
orthogonalized the chosen patterns using the Gram-Schmidt process to obtain d orthonormal
(i.e., orthogonal and unit length) co-fluctuation patterns U € R39%¢ We formed the shared
covariance matrix using UAUT, where A € R?*¢ is a diagonal matrix containing the eigenvalues
(i.e., the strength of each dimension; see ‘Specifying the relative strengths of each dimension’
below). We repeated this procedure to produce 3,000 sets of d orthonormal patterns (i.e., 3,000
different U matrices), each of which was used to create a shared covariance matrix. The spike
count covariance was computed according to equation (4)).

Specifying the relative strengths of each dimension
In simulating shared covariance matrices with more than one dimension, we chose the relative
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strength of each dimension by specifying the eigenspectrum (diagonal elements of A in equation
). We worked with three sets of eigenspectra. First, a flat eigenspectrum had eigenvalues that
were all equal (Fig. ) Second, for two dimensions, we varied the ratio of the two eigenvalues
between 95:5, 80:20, 50:50, 20:80, and 5:95 (Fig. @ Third, we considered an eigenspectrum in
which each subsequent eigenvalue falls off according to an exponential function (Supplementary
Fig.[1). Only the relative (and not the absolute) eigenvalues (i.e., the shape of the eigenspectrum)
affect the results, because the eigenspectrum was subsequently scaled to achieve a desired %sv
(see ‘Specifying the values of percent shared variance’).

Analysis of V4 neuronal recordings from a spatial attention task

Electrophystiological recordings

We analyzed data from a visual spatial attention task reported in a previous study [77]. Briefly,
we implanted a 96-electrode “Utah” array (Blackrock Microsystems; Salt Lake City, UT) into
visual cortical area V4 of an adult male rhesus macaque monkey (data from two monkeys were
analyzed; in our study, monkey 1 corresponds to “monkey P” and monkey 2 corresponds to
“monkey W” from [77]). After recording electrode voltages (Ripple Neuro.; Salt Lake City, UT),
we used custom software to perform off-line spike sorting [98, freely available at https://github.
com/smithlabvision/spikesort|. This yielded 93.2 + 8.9 and 61.9 + 27.4 candidate units per
session for monkey 1 and 2, respectively. Experiments were approved by the Institutional Animal
Care and Use Committee of the University of Pittsburgh and were performed in accordance
with the United States National Research Council’s Guide for the Care and Use of Laboratory
Animals.

To further ensure the isolation quality of recorded units, we removed units from our analyses
according to the following criteria. First, we removed units with a signal-to-noise ratio of the
spike waveform less than 2.0 [98]. Second, we removed units with overall mean firing rates
less than 1 Hz, as estimates of rs. for these units tends to be poor [7]. Third, we removed
units that had large and sudden changes in activity due to unstable recording conditions. For
this criterion, we divided the recording session into ten equally-sized blocks and for each unit
computed the difference in average firing rate between adjacent blocks. We excluded units
with a change in average firing rate greater than 60% of the maximum firing rate (where the
maximum is taken across the ten equally-sized blocks). Fourth, we removed an electrode from
each pair of electrodes that were likely electrically-coupled. We identified the coupled electrodes
by computing the fraction of threshold crossings that occurred within 100 us of each other for
each pair of electrodes. We then removed the fewest number of electrodes to ensure this fraction
was less than 0.2 (i.e., pairs with an unusually high number of coincident spikes) for all pairs of
electrodes. Fifth, we removed units that did not sufficiently respond to the visual stimuli used
in the experiment. Evoked spike counts (i.e., a neuron’s response after stimulus presentation)
were taken between 50 ms to 250 ms after stimulus onset, and spontaneous spike counts (i.e.,
a neuron’s response during a blank screen) were taken in a 200 ms window that ended 50 ms
before stimulus onset. For each unit, we computed a sensitivity measure d’ between evoked and
spontaneous activity:

d — Hevoked — Mspontaneous
1.2 2
\/5 (Uevoked + Uspontaneous)

i ) N : . 2 2
for mean spike counts fievoked and fispontaneous and spike count variances o7, .4 and O spontaneous-

We removed units with d < 0.5 from analyses, as these units had spontaneous and evoked
responses that were difficult to distinguish.
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After applying these five criteria, 44.5 £ 11.3 and 18.8 4+ 6.7 units per session (mean =+
s.d. over sessions) remained for monkeys 1 and 2, respectively. Although these remaining units
likely contained both single-unit and multi-unit activity, we refer to each unit as a neuron for
simplicity. In this study, we restricted analyses to sessions with at least 10 neurons remaining
after applying the above criterion (23 sessions for monkey 1, and 14 sessions for monkey 2).

Visual stimulus change-detection task

Animals were trained to perform a change-detection task with a spatial attention cue to the
location of the visual stimulus that was more likely to change [I3]. In the visual change-detection
task (Fig. a), animals fixated a central dot while Gabor stimuli were presented in two locations
on a computer screen. One location was chosen to be within the aggregate receptive fields (RFs)
of the recorded V4 neurons (mapped prior to running the experiment), and the other location was
placed at the mirror symmetric location in the opposite hemifield. Animals maintained fixation
while a sequence of Gabor stimuli were presented. Each drifting Gabor stimulus (oriented at
either 45° or 135°) was presented for 400 ms, followed by a blank screen presented for a random
interval (between 300 and 500 ms). The sequence continued, with a fixed probability for each
presentation, until one of the two stimuli changed orientation when presented (i.e., the ‘target’).
Upon target presentation, animals were required to make a saccade to the target to earn a juice
reward. We manipulated spatial attention in the experiment by cueing the more probable target
location in blocks. At the beginning of each block, the cue was denoted by presenting only
one Gabor stimulus at the more probable target location (90% likely), and requiring animals to
detect orientation changes at this location for 5 trials. Consistent with the results of previous
studies, we found that animals had greater perceptual sensitivity for orientation changes at the
cued (i.e., attended) location than the uncued location (Fig. a, inset in the bottom right) and
shorter reaction times [13].

Data processing and computing spike counts

We first separated the trials into two groups: (1) “attend in” trials, for which the cued stimulus
was inside the recorded neurons’ RFs and (2) “attend out” trials, for which the cued stimulus
was outside the RFs. Since the initial orientation of the stimulus at the cued location could be
one of two values (i.e., 45° or 135°), we further divided trials, resulting in a total of 4 groups of
trials per session (attend in & 45°, attend out & 45°, attend in & 135°, attend out & 135°). Each
combination of cued location and stimulus orientation was treated as an independent sample. The
same neurons were used for each of the 4 groups within each session, ensuring a fair comparison
between the attend-in and attend-out conditions.

We analyzed all stimulus presentations for which the target stimulus did not change. For
each stimulus presentation, we took spike counts in a 200 ms window starting 150 ms after
stimulus onset. For each of the 4 groups, we formed a spike count matrix X € R™*!  containing
the spike counts of the n recorded neurons for the ¢ trials belonging to that group. These spike
count matrices were then used to compute both the pairwise and population metrics (described
below). For all analyses (Fig. , we excluded recording sessions with fewer than 10 neurons.
Additionally, because population metrics depend on the number of trials [66], for each session we
equalized the number of trials across the 4 groups by randomly subsampling from groups with
larger numbers of trials.

Computing pairwise metrics for V4 spike counts

We computed pairwise metrics on each combination of attention state (‘attend in’ and ‘attend
out’) and stimulus orientation. We computed the correlation matrix for X as described above in
‘Pairwise metrics’ and then computed s mean and rg. s.d. For each attention state, we averaged
the r¢c mean and rg. s.d. over sessions and different stimulus orientations.

Computing population metrics for V4 spike counts
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We fit the parameters of a factor analysis model (see Supplementary Fig. a) to each spike
count matrix X (as described above) using the expectation-maximization (EM) algorithm. For
each session, this was performed separately for each attention state and stimulus orientation. Us-
ing the FA parameters, we then computed the three population metrics (Supplementary Fig. b).
For dimensionality, we first found the number of dimensions d that maximized the cross-validated
data likelihood. We fit an FA model with d dimensions, and then found the number of dimensions
required to explain 95% of the shared variance, termed dgpgreq [66]. We report dgpqreq because
it tends to be a more reliable estimate of dimensionality than the number of dimensions that
maximizes the cross-validated data likelihood. We computed %sv as described by equation @
We report the loading similarity as defined in equation @ for the co-fluctuation pattern that
explained the most shared variability (i.e., the eigenvector with the largest eigenvalue; see Supp.
Fig. |1] for why the loading similarity of this dimension is most informative), since it contributes
most to describing the population-wide covariability. For ‘attend in’ and ‘attend out’ conditions,
we averaged the population metrics across sessions and stimulus orientations.

Much of our work focuses on systematically changing a single population metric and assessing
changes in pairwise metrics (Fig. a—d). When analyzing neuronal recordings, one needs to fit
factor analysis to the recordings in order to estimate the population metrics. When estimating the
population metrics together, it could be the case that changes in one population metric impacts
or biases the estimation of another population metric. We characterized these estimation errors
in Supplementary Fig. [l Moreover, in Supplementary Fig. [7] we show that our main findings
are the same when estimating population metrics from Poisson simulated data, which resembled
realistic neuronal activity.

Statistics

We employed paired permutations tests for all statistical comparisons of pairwise metrics and
population metrics between ‘attend-in’ and ‘attend-out’ conditions (Fig. b—c). First, for a given
metric, we computed its value separately for each stimulus type (i.e., 45° or 135°), condition
(i.e., attend-in or attend-out), and session. We then averaged the difference between attend-in
and attend-out across stimulus types and sessions. To compute a null distribution, we randomly
permuted the pair of attend-in and attend-out labels for each stimulus type and condition com-
bination and recomputed the average difference. We ran 10,000 permutations to obtain a null
distribution of 10,000 samples. We computed p-values as the proportion of samples in the null
distribution that were more extreme than the average difference in the data, corresponding to
p < 0.0001 as the highest attainable level of significance in our statistical analyses.

2.8 Math Notes

A Relationship between correlation, loading similarity, and %sv (one latent dimen-
sion)

We establish here the mathematical relationship between rg., loading similarity, and %sv. This
will provide the formalism for understanding why decreasing %sv decreases both 7y mean and
s.d. (Fig. ), that a high loading similarity corresponds to large rsc mean and low 7y s.d.
(Fig. e), and that a low loading similarity corresponds to small rsc mean and large ry s.d.
(Fig. [Fle).

Let n be the number of neurons, and let w be the co-fluctuation pattern (i.e., loading vector
[wy, we, ...,wn]T € R™1) X\ € Ry be the strength of the co-fluctuation pattern (i.e., eigenvalue
of the shared covariance matrix), and ¥ € R™*" be a diagonal matrix specifying the independent
variance of each neuron (¢1,sg,...,%,). Then the covariance matrix of the population activity
is (see Methods and Supplementary Fig. [5):
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Y = Separed + ¥ = wiw! + U

From this, we observe that ¥;; = Mgpared,ij = Aw;w; on the off-diagonal entries (i.e., if i # j).
Along the diagonals, Xnqredii = )\wi? and X¥; = )\wi2 + ;. The correlation (i.e., rg if ¥ is a
spike count covariance matrix) between neurons i and j can be written as:

. Aw;w;
ij
V i g \//\w + ¢i)( )\w +¢J)
= Aw?-i—?ﬂi Awg.wj sign(uwi)

qf)i gbj sign(wiwj)

where ¢; and ¢; represent the %sv (as proportions) for neurons i and j, respectively, and
sign(w;wj) = +1 if wyw; > 0 or —1 if w;w; < 0. The last line follows from the fact that
%sv is defined in equation as:

b hared.ii )\w-2
S V- (9)
22 7 ?

Equations and @[} provide a basis for understanding the relationships between ry., %sv, and
loading similarity. The rs. mean and s.d. are computed across all pairs of neurons p;;, for 7 < j.

For establishing a relationship between pairwise metrics and %sv, consider decreasing the
overall %sv of the population, while keeping the loadings w; fixed. This corresponds to decreasing
A in equation @, which implies ¢; for each neuron decreases, and thus the product |/¢;¢;
decreases for all pairs. The magnitude of each p;; decreases (i.e., each p;; moves closer to 0). As
such, decreasing %sv of the population decreases the distance of a point from the origin in the
rsc ean versus rg s.d. plot, all else being equal (Fig. )

For establishing a relationship between pairwise metrics and loading similarity, consider two
extreme cases: 1) when loading similarity is 1 (as high as possible) 2) when it is 0 (as low as
possible). We first assume that each neuron has the same independent variance 1; for simplicity,

as we did in Figure A loading similarity of 1 corresponds to each w; = —1—% or each w; = —ﬁ.

In either case, sign(w;w;) is always +1. Furthermore, ¢; is the same for every neuron and
oio; = %sv (i.e., the %sv of the population, expressed as a proportion) for every pair of
neurons. Thus, all p;; = %sv for all pairs of neurons 7 and j. In this case, rs mean = %sv and

rse 8.d. = 0. If the independent variances 1; are different across neurons, we can still get each
sign(wiwj) = +1 and each ¢; to be the same by setting each w; = ++/4; or each w; = —+/4);.
This would also result in p;; = %sv for all pairs of neurons ¢ and j, and thus rs; mean = %sv
and rg. s.d. = 0. In this case, the loading similarity is still high (all w; are the same sign; we

can show that load. sim.> 0.5), but not equal to 1.
Now, consider a scenario in which half the loadings are —|—ﬁ and the other half are —ﬁ

(and assume again that ; are the same for every neuron). This is one way to obtain a loading
similarity of 0. In this case, ¢; are still the same for every neuron, so \/¢;¢; = %sv for all pairs.

2 n/2 n2 n

However, sign(wyw;) = —1 for (%) = "= pairs, and sign(w;w;) = —I—l for 2 x (7)) =2 -2
pairs. We can show that rg. mean = %SV and, by using equation (10f) from Math Note Ibelow

1
1- 12

similarity=0) corresponds to small negative ¢, mean (close to 0), and large rg s.d. (close to the

rsc s.d. = %sv Thus, for a large number of neurons n, this case (where loading
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%sv). As an example, for 30 neurons and %sv=50%, this corresponds to rs. mean = -0.0172 and
Tse s.d. = 0.4997.
With this analysis, we have established that for one latent dimension:

e Decreasing %sv decreases the magnitudes of correlations (i.e., each p;; closer to 0). 74
mean and s.d. both decrease (as seen empirically in Fig. )

e Starting from a loading similarity near 1, a decrease in loading similarity involves flips in
the signs of some correlations (i.e., some p;; become —p;;). rsc mean decreases but 7. s.d.
increases (as seen empirically in Fig. )

e Both rg. mean and %sv measure shared variance among neurons, but they are not always
equal. Equations shows that the two quantities are equal if all sign(w;w;) are the same
(i.e., when loading similarity is high). However, in general rs. mean and shared variance
(%sv) are not the same—e.g., when loading similarity is low, or when there are multiple
dimensions (Math Note |C)).

In this section, we consider the extremes of loading similarity. In the next section, we analyze
how gradual changes in loading similarity affect rs. mean and s.d. for a fixed %sv.

B Circular arc in rgc mean versus rg. s.d. plot for one latent dimension and fixed

Y%osv

We establish here mathematically that gradually varying the loading similarity for one latent
dimension and fixed %sv results in an arc-like relationship between r¢. mean and rg s.d., and
that the radius of the arc is approximately equal to the %sv (Fig. e—f).

We use the same notation as in Math Note [A] Let E[.] and Var(.) denote the mean and
variance across all neurons or all pairs of neurons, depending on context. In particular, we are
interested in E[p] = rs mean, y/Var(p) = rs s.d., where the expectation and variance are
computed across p;; for all pairs of neurons in a given population (i.e., the upper triangle of the
correlation matrix, p;; for i > j).

Let ¢ be the distance of a point (corresponding to one instance of the population activity co-
variance matrix) from the origin in the 5. mean versus r¢. s.d. plot (i.e., ¢ = \/(’I“SC mean)? + (rge s.d.)?).
We want to know whether c¢ is the same for all population activity covariance matrices with one
latent dimension and fixed %sv. This would correspond to point being equidistant from the
origin, and thus a circular arc. We can write c as:

? = (rec mean)? + (rg. s.d.)?

= E[p]* + Var (p)
= Ep*+E[p*] - E[p]
= E[p’]

Thus, the squared distance (i.e., squared radius) is equal to E [pQ], the mean of p?j across all

n

h) = @) Now, using

pairs in the population. Let m be the number of pairs (i.e., m = (
equations and @ derived in Math Note
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:EZ Z Gidj

i=1 j=i+1

where ¢; and ¢; are the %sv of neuronb i and j (expressed as proportions), as defined in Math

Note We can show that 277 ZJ i Pty = D Z?:l Gip; — > | ¢7. Intuitively, if
we have a symmetric matrix ® Wlth entries ®(4,j) = ¢;¢;, and we want to find the sum of

the off-diagonal elements (27— S i1 ®i®j), then we can take the sum of all elements and
subtract the diagonal elements (Zzzl D i1 iy — S, ¢7). Using this equivalence, it follows:

1n—1 n
:EZ Z Oi0;

i=1 j=i+1
1
= ;;m Z@

B 1 n | n - n 2
=5 ;@;@ 21¢

— <n2E[¢12 - ;ﬁ)

= (B - B[

= (nB 1o - Var (9) - B (o)

=~ (- VEP - Var (9))

=E ¢ - —Var(¢)

= (Y%osv)? — - i 1Va7' (¢) (10)

This provides an equation for the squared radius (i.e., squared distance from the origin) of a
point in the 7 mean versus 7s. s.d. plot. In the above derivation, E [¢] and Var (¢) are taken
across the percent shared variance of each neuron in the population ¢;. Thus, E [¢] is equal to
our population metric %sv. Now, we will bound Var (¢), which by definition is greater than or
equal to 0. Since 0 < ¢; < 1, one instance where the maximum variance occurs is when there
are an equal number of ¢; = 0 and ¢; = 1 (and E[¢] = 0.5). Then,
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n

Var(¢) = % Z (¢5 — 0.5)°
=1
= (20057 + 0~ 05))

1
=—(0.2

- (0.25n)
=0.25

So 0 < Var(¢) < 0.25. For a small number of neurons n, the second term is non-negligible.
For example, for a model with 6 neurons and %sv = 50%, the radius of the data points may
vary between 0.4472 and 0.5. As the number of neurons increases, the second terms becomes
negligible, and data points lie approximately along an arc with radius equal to %sv. For example,
for 30 neurons as in our simulations and a %sv of 50%, the radius only varies between 0.4913
and 0.5.

To summarize, equation computes the distance from the origin of a point for a given
population of neurons. For a fixed %sv, Var (¢) can be the same or differ across many simulation
runs. If Var (¢) = 0 or is the same across runs, then the points will lie perfectly along an arc,
with radius specified by equation . However, if Var (¢) is different across runs, the distances
of each point from the origin will differ slightly, so they will lie close to, but not exactly along,
an arc.

With this analysis, we have shown that in the case of one latent dimensions:

e A point (i.e., corresponding to a given population of neurons, simulated or real) on the 74
mean versus rg s.d. plot has distance from the origin (i.e., radius) less than or equal to

%sv.

e If the %sv for individual neurons (¢;) are all the same (see Math Note , then the radius
equals %sv.

e As the number of neurons increases, the radius becomes asymptotically closer to %sv.

C Relationship between correlation, loading similarity, and %sv (multiple latent
dimensions)

In Math Note [A] we established a mathematical relationship between ry, loading similarity, and
%sv in the case of one latent dimension. Here, we generalize equation to include multiple
dimensions in order to better understand the relationship between rs. and dimensionality. We
demonstrate here that the general relationships between 7., %sv, and loading similarity for one
latent dimension also hold true for multiple latent dimensions. For multiple latent dimensions,
the relative strengths of each dimension is an important consideration—a stronger dimension
plays a bigger role in determining the ry. distribution. Finally, we consider the relationship
between dimensionality itself and ry.. We will discover below that increasing dimensionality
tends to decrease the magnitude of ry. values.

First, consider the case of two latent dimensions. Again, let n be the number of neurons, let
w be the co-fluctuation pattern (i.e., loading vector [wi,ws, ...,wn]T € R™1) with eigenvalue
Aw, let v be another pattern orthogonal to w ([vy,va, ..., Un]T € R v | w), with eigenvalue
Ay, and let ¥ € R™*™ be a diagonal matrix specifying the independent variance of each neuron
(¢1, %2, ..., ). Then the covariance is ¥ = Spared + ¥ = Sy + 2y + U = wh,w! +vA, v + 0.
On the off-diagonals entries (i.e., if ¢ # j), ¥;; = Apywijw; + Ayvjv;. Along the diagonals,
Ssharedii = Sw,ii + Svii = ApW: + A0? and Ti; = Apw? 4+ A\yv? + ;.
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Because the shared covariance matrix Y pqeq can be expressed as a sum of two component
matrices 2, + X, we can express the %sv of neuron i (¢;) as

b = Eshared,ii o Ew,ii + Ev,ii
;= =
i Y i
2 2
AW} Ay U;

C Aw? A+ A2 + * Aww? + A\pv2 + 9
_ o) 4 g

where ¢§w) is the %sv variance of neuron i explained by dimension w and gbz(-w) is the %sv variance
of neuron i explained by dimension v.
With this decomposition of ¢;, and following similar steps as in equation :

pij = ¢§w)¢§w) sign(w;w;) + 4/ ¢§”)¢§“) sign(v;v;) (11)

where %sv values (¢) are represented as proportions. Equation relates rg., %sv, and loading
similarity for the case of two latent dimensions. Next, we compare these relationships for one
versus two latent dimensions.

We will show that, for two latent dimensions, the relative strength of each dimension (i.e.,
the ratio Ay, : Ay) is an important consideration. For two latent dimensions, decreasing the
overall %sv by decreasing both ¢(*) and ¢(*) equally (e.g., Ay, = A, and both decrease equally)
pushes each p;; closer to 0-rg. mean and s.d. will decrease. This is similar to what happens
for one latent dimension when %sv is decreased. On the other hand, even if the overall %sv is
held constant, but ¢(*) increases relative to ¢(®) (i.e., increase the strength of w relative to v),
pairwise correlations could change. Each p;; will largely be determined by #®) and w—rg mean
and s.d. will be more similar to what they would be if only w existed (Fig. |§|a). In other words,
each p;; for two latent dimensions is the sum of the p;; that would have been produced by each
of the two constituent dimensions on their own. The dimension with larger relative strength A
will have larger ¢; the stronger dimension will play a larger role in determining each value of p;;
and thus the resulting r¢. distribution.

Using this logic, we can deduce that increasing the loading similarity of one of the dimensions
would increase rg. mean and decrease rs. s.d. for the same reasons as for one latent dimension
(Math Note . Doing so for a relatively stronger dimension would result in larger changes in
rsc than doing so for a relatively weaker dimension.

We have shown how having multiple latent dimensions can affect the relationship between rgc,
%sv, and loading similarity. Now, we show that dimensionality itself and rg. are related—larger
dimensionality tends to decrease rgc mean and s.d. To see this, we can generalize equation
for d < n orthogonal latent dimensions uq,...,uq € R".

d
pij = ¢§uk)¢§uk) sign (ug, uk, )
k=1

Considering the sign of one term, p;; could have the same sign for sign(ug,uy,) across all di-
mensions usj, ..., uq; in this case, larger dimensionality acts to increase the correlation between
neurons i and j (p;;) above the level corresponding to a single dimension. However, because
the loading vectors uy,...,uq are orthogonal, a pair of neurons 7 and j is likely to have many
sign(ukiukj) of opposite sign across dimensions; in this case, larger dimensionality pushes the
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correlation between neurons i and j (p;;) closer to 0. Thus, we would expect the magnitude of
correlations to decrease as more dimensions are added (i.e., a tendency for rg. mean and s.d. to
decrease; Fig. 5lg). In the next section, we show this relationship mathematically.

D Increasing dimensionality decreases arc radius

We establish here that increasing dimensionality results in a decrease in the radius of the arc
in the rgc mean versus 7y s.d. plot (Fig. lg). We extend the math for an arc for one latent
dimension (Math Note[B] to multiple latent dimensions. We will refer to the one latent dimension
as the ‘1-d case’ and multiple (k) latent dimensions as the ‘k-d case’.

We use the same notation as in Math N ote Consider the distance c of a point (corresponding
to one instance of the population activity covariance matrix) from the origin in the rg. mean
versus 7g s.d. plot. From Math Note Bl ¢ = E[p?]. For this 2-d case, the correlation between

)\wwiwj +Ay Vi Vj

1] —
VEiZii [ (wwlHreei ) Qww?+dwi+1;)

neurons ¢ and j is p;; = . Thus we can write p2. as:
) 17

()\wwiwj + )\vvﬂ}j)Q
(Aww? + X2 + ;) (Awwf- + A0F +j

)\fuwlzw? + AwA2wiw;vv; + A202p?

2 _
Pij =

v Vg

(MW+%@+%NM@+M@+%

2,2 gy ayin s 2,2
Aw Ay (wi Gl 2ww;viv; + wjvi)

= 9i0; ~ 2 2 2 2
(Aww? + Av? + ;) ()\wwj + Apv5 + %‘)
. ¢¢ _ /\w)\v(w,-vj — wj’l)i)Q
= i
(Mww? + A2+ 1) (Ao + M2 + 05
.. 2 2
where the % shared variance of neuron ¢ in this 2-d case is ¢; = E”gied’” = )\w)‘;g" ;;:::22 et

Then letting m is the number of pairs in the population, and following similar steps to (|10))
in Math Note [B] we arrive at:

n—1 n
E[p?] =%Z >0

i=1 j=i+1
1 Ao (Wiv; — w;iv;)? 12)
= (%sv)? — 1Var(¢)——z e i
n— M ST (Aww? + A2 + 1) ()\wwjz + Ap0F + zpj)

Not including the negative sign in front, note that this final term is non-negative (given that
Aw and A, are non-negative, as for any covariance matrix). Thus, comparing the final line in
equation to the final line from equation , we observe that the distance of the point
for the 2-d case in the rs. mean versus rg s.d. plot is necessarily smaller than or equal to the
distance for the corresponding 1-d case.

More generally, for a k-dimensional case we can show that:
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B[] =(%sv)? — ——Var (9)

_ %Z [nz_:l zn: Awo(wiv; — wjv;)? )]

w,w “i=1 j=i+1 ()\wwl2 + )\DU? =+ ¢z) ()\wwj2 + )\vUJz + %‘

(13)

where the sum Zw’v is taken over all unique pairs of loading vectors (w,v). Indeed, as more
latent dimensions are subsequently added, the radius of the ry. mean versus 7y s.d. plot decreases
(Fig. ) Intuitively, this final term accounts for how population activity covaries along many
different dimensions in the high-d firing rate space. As more orthogonal dimensions are added,
population activity is further pulled in different directions in the high-d space, more interaction
terms come into play, and the magnitude of correlations is further decreased. This tends to
decrease both ry mean and r¢. s.d., explaining why the radius of the arc in the ry. mean versus
rsc S.d. plot tends to decrease as dimensionality increases.

We note that rsc mean and rg. s.d. do not necessarily both need to decrease. For example,
consider a pattern with a loading similarity of 1; loading weights for all neurons would have the
same value, rg. across all pairs would be the same value, and thus rg. s.d. would be 0 (see Math
Note . When a second pattern of necessarily low loading similarity (see Math Note [E]) is added,
rsc values across pairs of neurons would differ, and ry. s.d. would be larger than 0. Therefore,
rse 8.d. can increase when going from the 1-d case to the 2-d case. However, the corresponding
decrease in r¢. mean would be larger in magnitude than the increase in rg. s.d., resulting in an
overall decrease in arc radius (Fig. , 1 to 2 dimensions, data points closest to the horizontal
axis).

The third term in equation can also help explain variability of the radius (E[p?]) across
different random instantiations with the same population metrics (Figs. and @ Consider a
fixed %sv. For the 1-d case, the radius is determined by the first two terms of the above equa-
tion, and any variability in radius will be caused by different values of Var(¢) across different
instantiations. For the 2-d case, the third term also plays a factor in determining the radius,
and this term varies across different random instantiations, typically to a larger degree than the
second term for large numbers of neurons n (see Math Note [B]). Thus, the 2-d and k-d cases
have greater variability in E[p?] than 1-d cases (Fig. , Fig. Other subtle factors can affect
the variability of E[p?]. For example, variability in E[p?] can increase or decrease depending
on the relative strengths of each dimension and their corresponding loading similarities (Fig. |§|
and Supplementary Fig. . This can be explained by the third component of equation (13, in
particular by the terms involving A, and A,.

E Properties of loading similarities across different co-fluctuation patterns

We asked whether there was a relationship between the loading similarities of different co-
fluctuation patterns in the same model. In our simulations and V4 data analysis, we ensured that
we obtain unique co-fluctuation patterns by constraining dimensions to be orthogonal. Thus, we
might conjecture that if one pattern has high loading similarity (e.g., [1,...,1]), then another
pattern in the same model necessarily has low loading similarity (e.g., [1,—1,1,—1,...,—1,1]).
Indeed, this is true because the sum across the loading similarities of each pattern in a model is
at most 1. We show this property of loading similarity here.

Let w and v be vectors representing two co-fluctuation patterns in the same model. We
use the notation w - v to refer to the element-wise product between w and v, resulting in a
vector that is the same size as w and v. Furthermore, we use E[w], Var(w), and Cov(w)
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as shorthand to refer to computations across the elements of a vector (and not as operations
1

on a random variable): e.g., E[w] = -3 w;, and Cov[w,v] = E[w - v] — E[w|E[v] =
LS Jwivy — (2300 w;) (2307, v;). Also, in this section we refer to the loading similarity
of vector w as [s(w) for shorthand.

We first show a constraint on loading similarities for a model with two co-fluctuation patterns
(i.e. loading vectors for each dimension). Let n be the number of neurons and let w,v € R"
be two loading vectors. As in our simulations and data analysis (see Methods), w and v are
orthogonal unit vectors: > i w? = 1, Y% 1 v? =1, and Y7, wiv; = 0. Then, using these
constraints,

Cov(w,v) = E[w - v] — E[W|E|v]

= % Z w;v; — E[w]E[V]

Var(w) = Elw - w] — E[w]? (14)

Because correlation is bounded between -1 and 1, we know that |Cov(w,v)| < \/Var(w)Var(v).
It follows that:

Cov?(w,v) < Var(w)Var(v)
EWPEWF < (5 - B (5 - BWP)
0< 5~ (B + EVP) (15)

nE[w)?> +nE[v]* <1
Is(w) +1s(v) <1

The last step follows from the definition of loading similarity:

—VL(VV)zl—ian[w]2
1/n 1/n

The final inequality in equation proves the intuition provided at the beginning of this
section—if [s(w) is large, then ls(v) must be small (at most 1—Is(w)). More strongly, if Is(w) = 1,
then Is(v) = 0.

Generally, for a model with d dimensions and patterns uj,...,uq € R”, we can show that
Zle Is(u;) < 1. To see this, we can construct a matrix C' with entries ¢;; = Cov(uj,u;) =
—E[w)E[u] for i # j, and ¢;; = Var(u;) = £ — E[u;]? (derived from the constraints in equation
). Note that C' € R4 with variances on the diagonal and covariances on off-diagonals, is
a covariance matrix, which implies det(C') > 0. For a 3-d model,

Is(w)=1

det(C) = % (1 nEw]? - nEus]? — nEfus)?) >0
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which implies [s(u1) + Is(uz) + Is(usz) < 1. In general, for a d-dimensional model (with d < n):

1 d
det(C) = — (1 - <Z nE[ui]2>> >0

) (16)
Z Is(u;) <1
i=1
Equation has several implications:
e [f one knows the loading similarities of all dimensions uj,...,uq in a model, then the

maximum possible loading similarity of any new dimension is 1 — Z?:l Is(uy). It follows
that two dimensions with high loading similarity cannot co-exist in the same model.

e If one dimension has Is = 1, then all other dimensions in the model (or that would be
added to the model) necessarily have ls = 0. Note that there is only one possibility for
a pattern to have Is = 1 (i.e., u = [ﬁ, cee %]T, such that Var(u) = 0). This implies
that there are many possibilities for a pattern to have ls(u) = 0. More loosely, there are
relatively few ways for a pattern to have high loading similarity, but many more ways for
a pattern to have low loading similarity.

F Maximum variance of a unit vector

We defined loading similarity for a co-fluctuation pattern u (normalized to have norm 1) of n

neurons to be 1 — U??%u), where the variance is computed along the elements of u. This value lies

between 0 and 1 because the maximum variance across the elements of u is 1/n. We now show
this mathematically.
Let u € R" be a unit vector. Because u is a unit vector, Y " u? = 1. Using these facts:

Var(u) = E[u?] — E[u)?

1 n
=— Zuf — E[u)?
i=1

n <
1
= = — E[u)?
L pp
1
<=
n
This holds with equality when E[u] = 0 (i.e., when the mean across the elements in a co-

fluctuation pattern is 0). This implies that the smallest loading similarity is 0 (when Var(u) =
1/n), and the largest loading similarity is 1 (when Var(u) = 0).
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3 [Control] Stabilizing neuronal activity in prefrontal cortex us-
ing a brain computer interface

The previous chapter bridged between two perspectives that measured the structure of shared
trial-to-trial neuronal variability. One phenomena by which structured shared variability arises is
slow drifts in neuronal population activity, which are thought to reflect slow changes in internal
cognitive state. In this chapter, I present work in which we ask to what degree these slow shared
fluctuations are under volitional control and can be stabilized.

3.1 Introduction

Previous studies have shown that neuronal activity varies slowly and in a coordinated manner
over the course of a single experimental session (i.e., over several hours [41], 46]). The slow changes
in neuronal activity are correlated with slow changes in pupil size [41} [42]. Thus, they are thought
to reflect slow changes in internal states (e.g., arousal) and behaviors such as impulsivity (i.e.,
reaction times and false alarm rates [41]) and engagement (i.e., movement vigor [42]).

Our goal in this work was to test whether animals could volitionally modulate these slow
fluctuations and stabilize neuronal activity over the course of hours (Fig. [10). To ask this
question, we trained two rhesus macaques to control a BCI that provided visual feedback about
their prefrontal cortex (PFC) population activity. In particular, the size of an on-screen annulus
was linked to the distance of the animal’s neuronal activity from a “target” state. Thus, to
successfully complete the BCI over the course of many trials, animals would need to 1) decrease
their neuronal distance to the target and 2) keep neuronal activity relatively stable over the
course of the session.

3.2 Designing a BCI to stabilize neuronal activity

We first designed a BCI that allowed animals to use PFC neuronal activity to manipulate visual
computer feedback and obtain a reward (Fig. [I0b). For visual feedback, we chose to use a cen-
trally located annulus that expanded and contracted in size based on neuronal activity (Fig. ,
green circle). The annulus was low-contrast and confined to a small window around the central
fixation dot (2 degrees of eccentricity) to minimize the likelihood that it evoked responses in the
PFC neurons from which we recorded. We defined a small annulus size that collapsed to the size
of the fixation dot as the condition for reward.

For animals to use the BCI, they needed to understand the meaning of the annulus and
associate a small annulus size with reward. We had them perform a memory guided saccade task
during which we temporally linked a small annulus size with an upcoming reward. During this
task, the annulus would gradually shrink to its smallest size immediately prior to presentation
of the “go cue”, after which animals had the opportunity to make a saccade and obtain a juice
reward. On separate sessions after annulus training, we found that reaction times were faster on
trials where the annulus was present than on trials where it was not (data not included here).
This suggested that animals used the shrinking annulus to predict the timing of the go cue, and
were better prepared to respond when the go cue was presented. With these results, we were
confident that animals associated a small annulus with the go cue and an upcoming reward, and
thus thought the small annulus a desirable state.

We next implanted a Utah array in dIPFC (area 8ar) and defined a brain-computer interface
(BCI) by linking neuronal activity to the visual feedback of the annulus (Fig. [[0b). Animals
performed 60 calibration trials at the beginning of each BCI session, in which they fixated
a central dot while an annulus gradually collapsed on the fixation dot. We used calibration
neuronal activity (spike counts in 50 ms bins) to define a 4-dimensional latent state space using
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Figure 10: Neurofeedback experiment. a. Illustration of central question. Internal states and
neuronal activity (curved blue line) can drift slowly over time (red arrow) in ways not directly related to
a task at hand (e.g. due to arousal, impulsivity, satiation, etc). If we show these shifts in internal state
to an animal using a Brain Computer Interface (BCI), can they use feedback to stabilize their neuronal
activity over time (green dashed line)? b. Neuronal activity was recorded from “Utah” arrays implanted
in prefrontal cortex in two rhesus macaques. The goal of the animals was to move neuronal activity
(red) to a target window that was defined based on neuronal activity recorded at the beginning of each
recording session. To provide feedback on the position of neuronal activity relative to the target state,
distance between the current neuronal state and the target window was computed and then mapped to
the radius of an annulus (green circle, upper right); a larger annulus corresponded to larger neuronal
distance. To achieve reward, the animal needed to maintain neuronal activity within a predefined reward
window (dashed line) for 400 ms. This reward threshold was defined using activity recorded earlier in
the session in order to achieve reward on 50% of calibration trials ¢. Timeline of a BCI trial. The animal
fixated a blue central circle centered on a computer monitor with a gray background and a green annulus.
After 400 ms, the annulus provided continuous feedback about distance of neuronal activity from the
target. If the reward criteria was met, the trial ended and the animal was rewarded. If the reward
criteria was not reached within 3.4 seconds of fixation (i.e. 3 seconds of BCI control), the trial ended
and the animal was not rewarded. d. Block structure. Each session started with a calibration block.
Each trial in the block followed the sequence of events described in ¢ except that the annulus shrunk
monotonically until it reached the reward threshold at exactly 3.4 seconds after fixation. Neuronal
activity from this calibration block was used to define the BCI mapping (factor analysis, target location,
and reward threshold) between internal state of PFC activity and the visual feedback presented on the
screen. After the calibration block, the task alternated between 100-trial neurofeedback blocks, with
90 BCI trials and 10 randomly interspersed “sham” trials, and sham blocks with 20 consecutive “sham”
trials. “Sham” trials were used as control, or reference, trials. On “sham” trials, annulus feedback form
previous sessions were replayed without any indication to the animal, meaning that the visual feedback
and internal state of the animal were disassociated on these trials.
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factor analysis. This procedure enabled us to capture important and intuitive dimensions of
neuronal variability while discarding noise. We next defined a target state in the latent space
as the average activity during the 60 calibration trials (Fig. , large black dot in neuron state
space). On BCI trials, neuronal distance from the target was mapped linearly to the size of the
annulus on the screen—the smaller the neuronal distance, the smaller the size of the annulus.
For a BCI trial to be rewarded, the distance of the animal’s neuronal state to the target had to
remain below a threshold (Fig. [I0b, dashed line in distance vs. time plot) for 8 consecutive time
bins, or 400 ms. animals therefore needed to make the annulus small to get a reward.

Thus, we designed a novel BCI paradigm in which we used visual feedback (i.e., annulus size)
to show animals how far their neuronal activity was from a target state, defined as the initial
activity at the beginning of the session. To obtain rewards in this BCI paradigm, animals needed
to decrease neuronal distance to the target. Neuronal activity also needed to be relatively stable
and close to the target throughout the session for animals to continue to get rewards during the
experiment.

We used a combination of BCI trials and control trials to test whether animals were using
the visual feedback in our BCI paradigm. After calibration of the BCI system, animals were
given control of the visual feedback and performed BCI trials for a majority of the session.
On BCI trials, animals had 3 seconds to achieve the target state and obtain a juice reward
(Fig. , top); otherwise the trial would end with no reward (Fig. , bottom). The remainder
of trials were controls to assess successful use of the BCI. We term them “sham trials” because we
disassociated the visual feedback (i.e., annulus size) from the internal neuronal state. On sham
trials, we replayed visual feedback from previous sessions where the animal received a reward at
the last possible moment in the trial. We included two types of sham trials: BCI sham and block
sham. BCI sham trials were interspersed among BCI trials but occurred rarely, meaning that
animals would still be trying to control their internal neuronal state, though the feedback on the
screen would not be helpful. BCI sham trials were used to assess to what extent animals were
using moment-to-moment visual feedback to achieve the target. Block sham trials were isolated
in a separate 20-trial block after every 90 BCI trials. Since block sham trials always lasted
the full 3 seconds and were presented consecutively, we presumed that the animals’ engagement
decreased and they no longer tried to keep their internal neuronal state close to the target. Block
sham trials, along with calibration trials, were used to assess chance level BCI performance if
the animals had not been actively modulating neuronal activity.

During the BCI task, trials were organized into two types of blocks. The purpose of the first
“neurofeedback” block type was to encourage the animal to use visual feedback; it consisted of
100 trials, 90 BCI and 10 BCI sham trials. The second “sham” block type was used as a control
and consisted of the 20 sham trials. After the 60 calibration trials were completed, these two
blocks alternated for the remainder of the session (Fig. [L0H).

3.3 Neurofeedback reduced neuronal distance to the target

We wanted to know whether animals were able to modulate their neuronal activity on BCI trials
to reach the target state. If this were the case, neuronal activity would be closer to the target
(i.e., smaller distance) on BCI trials than on reference trials where BCI was not used.

We first assessed whether BCI distance to the target had decreased relative to the calibration
trials that were used to define the BCI mapping. On BCI trials, we analyzed the activity on
both corrects (target reached) and misses (target not reached). On calibration trials, we played
neuronal activity through the BCI mapping. For calibration trials that did not reach the target,
we analyzed all timepoints; for calibration trials that did reach the target, we only analyzed
timepoints until the target was achieved. This guaranteed a fair comparison of distance between
calibration and BCI trials. For each session, we computed the average neuronal distance to the
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target on each trial and compared the distribution on BCI trials (Fig. , gray distribution) to
the distribution on calibration trials (Fig. , green distribution). Across sessions and animals,
distance on BCI trials was smaller than distance on calibration trials (Fig. , dots fall below
the equality diagonal).
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Figure 11: Distance decreases during neurofeedback a. Distribution of average distances on BCI
trials (grey) and calibration trials (green) for an example session. Distances on calibration trials were
obtained by playing neuronal activity through the BCI mapping offline. The mean of the each distribution
is indicated by a dashed line of the corresponding color. b. On each session, we compared the mean
BCI distance (y-axis) with the mean calibration distance (x-axis). Dashed black line indicates equality
between the two values. Distance on BCI trials was significantly smaller than distance on calibration
trials. c-d. Same as a-b, but for block sham trials instead of calibration trials. Block sham trials were
presented in alternating blocks with BCI trials throughout the session, but feedback on block sham trials
did not accurately reflect internal state. Thus, comparing BCI and block sham trials controlled for any
changes in spiking statistics that might have occurred over the course of the session. Distance on BCI
trials was significantly smaller than distance on block sham trials.

We next controlled for the possibility that the smaller distance on BCI trials relative to
calibration corresponded to changes in neuronal activity over time. Calibration trials happened
at the beginning of the session, and were only presented for a few minutes. BCI trials happened
after calibration and were presented for the remainder of the session (typically several hours).
Any uncontrolled changes in neuronal state (e.g. slow drift, Cowley et al., 2020) that occurred
over the session might therefore bias our comparison between BCI and calibration. Thus, we
also compared BCI trials (Fig. , gray distribution) to block sham trials (Fig. , green
distribution), which were presented in alternation with “neurofeedback” blocks throughout the
entire session. We played neuronal activity on block sham trials through the BCI and performed
the analysis in the same manner as described above (Fig. —b), and found that average neuronal

52



distance to the target was significantly smaller on BCI trials than block sham trials (Fig. ,
dots fall below the equality diagonal). Together, these results showed that animals successfully
decreased their neuronal distance to the target state on BCI trials.

3.4 Neurofeedback suppresses neuronal drift

Thus far, we have demonstrated that animals have used neurofeedback via our stabilization
BCI to obtain a reward; they had smaller neuronal distance to the target when using BCI, as
compared to when they were not using BCI. We next asked whether the successful decrease in
neuronal distance on BCI trials also suppressed slow drifts in neuronal activity over time. To test
this, we examined the change in distance over the course of individual blocks. To reduce noise,
we first averaged the distance on trials with the same index across blocks within the same session.
In other words, we took the distance from the first trial in each block and then averaged across
blocks; we then repeated this process for each trial index with both BCI blocks and sham blocks.
We then used linear regression to determine the slope of how neuronal distances changed on
average during a BCI block (Figure ). We then aggregated results across sessions and found
that there was no significant change in distance during BCI blocks in both animals (Figure
monkey P in panel b, monkey S in panel ¢). We next performed the same analysis for sham blocks
and found that distance increased significantly in both animals (Figure , example session in
panel d, aggregated slopes in panels e and f). Taken together, these results show that: 1) slow
drift in PFC neuronal activity existed in our data (i.e., during the sham blocks when neural
distance increased), but 2) neurofeedback via use of the stabilization BCI suppressed slow drift
(i.e., on BCI blocks when neuronal distance did not increase).

example session monkey P monkey S
a 1.45 b 45 ' C 50 m
Ll
40 p=0.42 : p=0.065
1.4 - % :
g i
° 1.35 . 2 % 2 "
2 LA - 8 25 2 % N
BCl 5 tofac . 3 : ;
g ) % o S 20 % 2 I
1.25 M > s = |
i
12 10 10 f
i
115 slope = 6.5e-05 ° H I
0 o f
20 40 60 80 -1 0 1 2 3 4 6x10° 2 0 2 4 6 8
Trial Number Regression Weight (BCI) Regression Weight (BCI) %10
14 10 ' ' 14 f
e [ 0.01 1 1 p=0.021
. 1 1 =0.! =0.
. do P 2
1.35 ® e ! ! 1 1
. . » 1 1 10 1 1
° . D 2 1 1 @ 1 1
S 6 i ' s i '
Block ¢ | .. it v
sham : | = . & & -
(=} - 4 5 6 [
. . . 5 < |
125 = 4 |
2 it
2 |
12 slope = 0.0039 0
: 0 0
5 10 15 20 -1 0 1 2 3 4 5 6x10° 2 0 2 4 6 8
Trial Number Regression Weight (Block Sham) Regression Weight (Block Sham) %103

Figure 12: Neurofeedback suppresses neuronal drift. a. Changes in neural distance over the
couse of a BCI block on an example session. We computed the average distance across blocks within each
session for each trial index within the block. We fit a linear regression to measure the within-block change
(i.e., the slope of the regression line) in distance across the block. b. Histogram of regression slopes on
each session for monkey P. Dashed black line indicates 0 and dashed red line indicates the average slope
across sessions. The slope was not significantly different from 0, implying that distance did not change
significantly within BCI blocks. c. Same as b, but for monkey S. Slope was not significantly different
from 0. d-f. Same as in a-c, except for sham blocks. The slopes on sham blocks were significantly positive
for both animals, indicating that neuronal distance to the target increased during sham blocks.
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3.5 Discussion and future directions

In this work, we designed a novel brain computer interface (BCI) for prefrontal cortex (PFC)
with the goal to stabilize neuronal activity over time. To successfully obtain a reward, subjects
had to keep their internal neuronal state (i.e., population firing rate vector) close to a target
state defined at the beginning of each session. We showed that, by using the BCI, subjects: 1)
were successfully able to reduce the distance of their internal neuronal state to the target state,
and 2) suppressed slow neuronal drift.

Slow drift in neural activity has been linked to slow changes in pupil size in previous studies,
which is often thought to reflect arousal and engagement [41 42]. In our work, we showed
that using the BCI suppressed slow neuronal drift (Fig. . We hypothesize that the decrease
in slow drift associated with using our BCI (Fig. might also correspond to a decrease in
the slow fluctuations of pupil size. If true, this would support the interpretation that our BCI
not only stabilizes neuronal activity, but also the animal’s internal cognitive state (i.e., arousal,
engagement, or wakefulness). Future work will test this hypothesis.

How precisely do animals reduce their neuronal distance to the target state on rewarded BCI
trials? There are several strategies that subjects could have used to successfully obtain reward on
BCI trials. For example, they could have kept their internal starting point (i.e., neuronal activity
at the beginning of each trial) close to the target state—a result of control of slow-timescale (on
the order of seconds to minutes) variability over many trials. Alternatively, subjects could have
decreased neuronal variability around the target state within each trial-a result of control of fast-
timescale variability (on the order of several tens or hundreds of milliseconds). Or subjects could
have used a combination of both strategies. Our analyses thus far have shown that, on average,
distance is smaller on BCI trials than on sham trials, providing evidence for strategy 1. Future
work will test strategy 2: whether the within-trial variability of neuronal activity (e.g., spike
count variance, spike count correlations, and population metrics) is different on BCI trials than
sham trials. Answering these questions will elucidate what aspects of PFC neuronal variability
(e.g., fast vs slow timescale, shared vs independent variance) are under volitional control.

3.6 Methods
Task: Overview and motivation

The subject was required to perform two tasks: a calibration task and a brain-computer interface
(BCI) task. The data collected during the calibration task was used to fit the parameters that
were subsequently used during the BCI task to map neural activity to feedback. The calibration
task consisted of 60 trials with sham feedback. Neural activity from the calibration period was
used to train the final BCI mapping of neural activity to annulus size. After calibration, the
subject performed BCI trials in alternating BCI and sham blocks (Fig. [L0Jd). The BCI block
consisted of 90 BCI trials and 10 sham trials. The sham blocks consisted of all sham trials.
The sham trials consist of feedback inconsistent with the current neural state, but were realistic
feedback in that we replayed feedback from a trial in a previous session.

Task: Details

In the calibration task, the subject was required to passively fixate a blue dot at the center of a
grey screen. After fixation, a green annulus appeared on the screen. During the first 20 trials,
the annulus was fixed in size. During the subsequent 60 trials, the annulus moved on the screen
after a 400 ms delay. The movement continued throughout a 2.5 to 3 s wait period, after which
the annulus and the fixation dot were removed from the screen. Near the end of the wait period,
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the annulus converged toward the center, indicating that the trial was about to end. The subject
was rewarded after successfully maintaining fixation through the entire wait period.

The BCI task was identical to the calibration task except that the size of the annulus was
controlled by the recorded neural activity. If the neural activity entered a state associated with a
small annulus, then the trial would end and the subject would be rewarded. To receive a reward,
the annulus needed to remain below a pre-determined threshold for 400 ms. The details of the
calibration algorithm, the mapping of neural activity to the annulus size, and the setting of the
threshold are described in the next section.

During the BCI task, trials were organized into blocks as follows. Each block consisted of a
specific ratio of BCI trials and sham trials. Sham trials were defined as trials in which annulus
size from missed trials from a previous session were played as feedback rather than the true
feedback based on the current neural activity. Since these were missed trials and lasted for the
maximum trial length, all sham trials were of the same duration. The first block consisted of
100 BCI trials. The purpose of this block was to encourage the subject to use the feedback,
since all feedback presented was valid. The second block consisted of 100 trials, of which 90 BCI
trials were valid and 10 trials were sham trials. The third block consisted of 20 sham trials. The
second and third blocks alternated throughout the session after the first block was completed.

BCI calibration

One key decision point in our design was whether we would require the subject to stabilize neural
activity in the full neural space or in a low-dimensional latent subspace. We identified two major
problems with using the full neural space. First, the BCI would be highly sensitive to any array
instability. If a single neuron fired at a low rate during the calibration period and then suddenly
fired at a high rate later in the session, then the BCI feedback would become very difficult to
control. A low-dimensional latent BCI mapping would be more robust to these instabilities.
Second, assuming Poisson-like spiking variability, it can be shown that the optimal strategy in
the full neural space is to reduce the firing rate of all neurons in the population. Intuitively
this is because any neurons that happen to have a large spike count in a given bin will have a
large adverse effect on the BCI performance. Reducing the global firing rate would reduce the
probability of the detrimental high spike count instances. BCI mappings that allow a firing-
rate reducing strategy are also highly subject to large scale array instabilities. For example, an
instability that produces an average drop or rise in firing rate would result in a large increase or
decrease in BCI performance, respectively. In contrast, since a low-dimensional latent consists
of a linear combinations of units across the population, a high spike count for one unit may not
adversely affect the mapping, depending on what the rest of the population is doing. For these
reasons, we decided to require the subject to control neural activity in a factor analysis latent
space [99]. Previous studies have similarly employed linear combinations of neural activity to
address these issues [100} [10T].

Calibration was performed as follows. We first performed a light sorting using a neural
network sorter (described in more detail in “Neural network sorter” below) to remove noise (e.g.,
movement artifacts). We next binned spike counts into non-overlapping 50 ms bins beginning
400 ms after fixation to the end of the wait period. We aggregated spike counts across trials
and applied factor analysis (FA; see “Factor analysis” below for details) to the aggregate spike
count matrix to identify a subspace that explained population covariance structure [I02HI04].
All sessions used either a dimensionality of 4 or 5 for the latent subspace. After fitting FA,
we computed the posterior mean of the latent variables and smoothed the latents using an
exponential smoother with a time constant of 300 ms (i.e., 6 time bins). To determine the
distance threshold that would achieve a reward, we computed the distance of the smoothed
latents from the calibration mean. We then aggregated all distances and computed percentile
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in 0.1 percentile increments. We swept percentile values to determine what percentile threshold
would achieve reward on 50% of the calibration trials. The value of 50% was used to balance
the need to motivate learning with the need to motivate the subject to continue performing the
task. This also helped normalize the subject’s initial BCI performance across sessions.

Factor analysis

As an additional denoising step prior to providing BCI feedback, we projected neural activity
into a low dimensional subspace using factor analaysis, or FA [50, 99]. Factor analysis is defined
as:

x ~ N(u, LLT + ) (17)

where x € R™*! is a vector of spike counts across the n simultaneously-recorded neurons, p €
R™*! is a vector of mean spike counts, L € R™ ™ is the loading matrix relating m latent
variables to the neural activity, and ¥ € R™*™ is a diagonal matrix of independent variances
for each neuron. In our BCI, the number of latent variables was always set to either 4 or
5, depending on the session. The model parameters p, L, and W were estimated using the
expectation-maximization (EM) algorithm.

BCI feedback

To map neural activity to annulus radius, we performed a similar procedure as was done during
calibration. Briefly, we sorted spikes from the previous 50 ms using our neural network sorter,
projected the resulting spike count vector into the calibration-defined factor space, updated
the exponential smoother, and then mapped the smoothed projection to a percentile value.
This percentile value was then mapped to annulus size using a predefined affine transformation.
Annulus feedback was updated every 50 ms.

Neural network sorter

To separate waveforms likely to be caused by neural spiking from waveforms caused by other
electrical artifacts, we developed a neural network classifier that labeled spike waveforms as
“neural” or “noise”. The classifier was trained using array recordings from multiple animals in
which the waveforms had been hand sorted. Classification required very little computation time,
allowing for the classification of hundreds of waveforms in a few milliseconds. We therefore
applied this algorithm, both during training of the BCI mapping, and also online during the BCI
task to help ensure that activity going into the BCI was of neural origin. Details of this neural
network sorter can be found in Issar et al. (2020) [105].
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4 [Sources] Local and global sources of coordinated neuronal vari-
ability in prefrontal cortex

Chapters 2 and 3 focus on neuronal variability within one brain area in one hemisphere of cortex.
However, one might imagine that neuronal variability in one area of cortex may be shared with
another area (e.g., an input or output area), or be due to brain-wide signals that impact many
areas (e.g., arousal, impulsivity). In this work, I present research that utilizes bilateral neuronal
recordings and develops a new method to identify and separate global and local sources of shared
neuronal variability.

4.1 Introduction

Variability in neural activity has been shown to have significant effects on the ability of groups
of neurons to encode information about sensory inputs [37-40] [106], motor outputs [107, [108],
decisions [106], 109, [110], attention [I} 46l [77], and other processes. This is especially true when
variability is shared among neuron in a given population [I11]. Most work studying neural vari-
ability has done so in populations of neurons confined to a single brain region. It is therefore
unclear to what extent variability shared among neurons in the local populations previously
studied was also shared with neurons in other brain regions. Here we leverage multi-area record-
ings to separate the study of variability shared among neurons in distant brain regions from
variability shared only among neurons in a single brain region.

Neural activity observed within a brain area may be generated within an area, come from
another area, or may be shared across many areas. For example global shared signals might reflect
large changes in visual input (e.g., luminance shifts), tonic arousal changes [41}, [112], spontaneous
behaviors [113], or top-down feedback [I14]. On the other hand, local shared signals might reflect
local tuning similarity [I15) [IT6], spatial scales of connectivity [I17], or local computations [111].
It is important to be able to separate these local and global scales of shared variability in order
to properly study these distinctive cognitive processes.

The majority of previous work that has focused on interactions between brain areas has
largely utilized imaging [118], [119], local field potential [120], or EEG [12I]. A few recent studies
have investigated between-area interactions using spiking activity of tens of neurons in different
areas, typically within the same hemisphere of the brain [41] [77, [122]. However, some research
in monkey motor cortex [63] and ALM /premotor cortex in mice [123], has used spiking activity
to study interactions between neurons in two different hemispheres of the brain. Other work
has investigated across-hemisphere shared variability in V4 neurons during an attention task
[1l, 146, [124].

Ideally, neural processes with distinct mechanisms could be studied independently, however
because multiple processes can influence groups of neurons it has not been obvious how to sep-
arate the neural signals that should be attributed to each process. One approach to studying
shared variability is to use dimensionality reduction methods, such as factor analysis (FA), which
allow for the separation of variability attributed to a single neuron from variability shared with
other neurons in a population [99, [102], 104, 125]. However these methods do not provide a
mechanism for separating variability shared among neurons in one population from variability
shared between two distinct populations. Other dimensionality reduction approaches do con-
sider shared interactions between brain areas [122, 126l 127]. One such example is probabilistic
canonical correlation analysis (pCCA), which finds dimensions of maximum correlation to iden-
tify variability that is shared between two distinct brain areas. However this method does not
separate the remaining variability shared among neurons in a single population from indepen-
dent neural variability. Given the inability of these methods to separate shared variability into
across-area and within-area components, another approach is needed to study these two types
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of variability separately.

In this work we developed a novel method called pCCA-FA (i.e., a combination of probabilis-
tic canonical correlation analysis and factor analysis), for separating within-area and across-area
interactions. This method combines the advantages of FA and pCCA into a single probabilistic
framework. We applied this method to bilateral multielectrode array recordings in prefrontal
cortex during a standard visuo-spatial working memory task. We found that many pairs of
neurons across hemispheres have large correlations (both positive and negative). To further par-
tition within-area and across-area sources of shared variability, we developed a new model, called
pCCA-FA, and applied it to our bilateral PFC population recordings. We found that both across-
hemisphere and within-hemisphere interactions represented a large portion of shared variability.
Furthermore, across-hemisphere latent projections predicted pupil size, a signal thought to be
associated with global cognitive phenomena such as arousal or wakefulness. On the other hand,
within-hemisphere latent projections were not predictive of pupil. Taken together, our results
demonstrated that substantial shared variability exists between neuronal populations in different
hemispheres of the brain and that this variability likely reflects global cognitive processes.

4.2 Simultaneous bilateral recordings of PFC population activity

In order to study both the global shared fluctuations across hemispheres of cortex and local
shared fluctuations within a single brain area, we simultaneously recorded population activity
from PFC in both hemispheres while subjects performed a working memory task (Fig. [13ja;
insets show rasters from the delay period of an example trial). Inspecting the rasters, we can
observed that there is a shared increase in spiking activity across many neurons in both left and
right PFC at around 600 ms. The key question in this work is: can we identify and partition
the shared trial-to-trial co-fluctuations that are global and present across hemispheres from the
shared co-fluctuations that are local and only present among the neuron in one of the brain areas
(Fig. [13p)?

To answer this question, we first measured the spike count correlation (rs.) distributions for
pairs of neurons within the same PFC and for pairs of neurons across different hemispheres.
There are many pairs of neurons in both the within-area rg. distribution and across-hemisphere
rsc distribution with large magnitude (both positive and negative) and significant correlations
(Fig. [13lc). When we asses the mean 7. of these distributions, a commonly-used metric 7], we
found that within-area rs. mean was larger than across-hemisphere 74, mean (Supp. Fig. a).
However, r¢ mean is a coarse metric that averages across the many large magnitude positive and
negative correlations observed in Fig. [L3[c [104]. By dissecting rs. further (instead of computing
the mean rs. across the distribution), we found that there is a relationship between the rs. of
a pair of neurons and their signal correlation (i.e., tuning to the target location in the working
memory task; see Methods). This was true for both within-area and across-hemisphere pairs of

neurons (Supp. Fig. b).

4.3 pCCA-FA partitions across-area and within-area shared variability

To better characterize the shared fluctuations of neurons within and across areas, we sought a
computational method that would leverage activity across the entire population of recorded neu-
rons to allow us to separate within and across-area shared trial-to-trial variability. One powerful
approach to leveraging the activity of a population of neurons is dimensionality reduction, which
seeks to explain population variability using a relatively small number of latent variables [50].
One commonly used dimensionality reduction method called factor analysis (FA) has been
used to measure within-area shared variability [99, 102HI04]. An important feature of FA is
that it separates variability shared among neurons in the population from variability private to
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Figure 13: Trial-to-trial neuronal variability within vs. across areas. a. Recording setup.
We recorded from PFC in both hemispheres using 96-channel Utah arrays while subjects performed a
visual working memory task. Raster plots show spiking activity during the delay period of one example
trial. b. The key question this study aims to answer: can we separate trial-to-trial variability that is
shared among neuron across areas/hemispheres (cyan) from that which is shared among neurons within
the same brain area (magenta)? c. The ry. distributions for within-area pairs (top) and across-area pairs
(bottom) in one example session. There are many pairs of neurons in both distributions with large and
significant correlations (blue real data histogram extends beyond the gray chance distribution). Chance
distributions are generated by computing 7. distributions on data with randomly shuffled trials.

each neuron. However, FA does not partition within and across-hemisphere shared variability.
Another dimensionality reduction method, probabilistic canonical correlation analysis (pCCA)
has been used to find dimensions that have the most correlation between two brain areas [126].
However, pCCA does not partition within-area shared variability from variability independent
to each neuron.

To facilitate the separation of across-area, within-area, and independent neural variability,
we developed a new dimensionality reduction method called pCCA-FA (probabilistic canonical
correlation analysis—factor analysis) to jointly model neural activity in each PFC with: 1) dimen-
sions that capture trial-to-trial variability shared between neurons across areas (Fig. a; global,
cyan) and 2) latent variables that are private to each area/hemisphere to capture trial-to-trial
variability shared between neurons within the same area (Fig. a; local, magenta). The pCCA-
FA model also accounts for variability that is independent to each individual neuron, which we
term independent variance (Fig. [14a; black).

The pCCA-FA model is defined as a probabilistic graphical model (see Methods). One group
of latent variables (Fig. b; z, defined by across-area global dimensions) contribute to shared
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variability in both areas, while another group of latent variables (Fig. b; Zz, 2y, defined by
within-area local dimensions) only contribute to shared variability in their respective brain areas
(area X, or area Y respectively).

Through the lens of covariance matrix estimation and decomposition, pCCA-FA decomposes
the full-rank covariance of the two PFC populations into a sum of 3 matrices: a low-rank across-
area (e.g., global) covariance matrix, a low-rank within-area (e.g., local) covariance matrix, and
a diagonal independent neuron covariance matrix (Fig c, top). The within-area covariance
matrix is block diagonal, as it does not explain shared co-fluctuations between neurons across
areas (i.e., it does not contribute to cross-covariance between two brain areas).

Using this decomposition, we investigated the characteristics of shared variability in across-
area and within-area components. To assess the strength of shared variability, we computed the
percent shared variance [%sv, 102, [104]. To do so, for each neuron we compute the amount of
variance explained by a given component divided by the total variance of the neuron (Fig. (14,
lower left; see Methods). We then report the average %sv across neurons in a brain area. We
also assessed dimensionality by computing dgpareq [102) [104], which is defined as the number of
dimensions required to explain 95% of the variance in the matrix of interest (Fig. c, lower right).
We report dgpareq and %sv separately for within (local) and across-area (global) components,
and also separately for left and right hemisphere PFC populations.

4.4 pCCA-FA successfully recovers ground truth in various settings

To validate our model, we compared the ability of pCCA-FA to characterize across-hemisphere
dshareq and %sv in simulations in which the ground truth was known. We randomly generated
ground-truth pCCA-FA model parameters and simulated data for 30 neurons in each area of two
brain areas from the pCCA-FA generative model (Fig. b; see Methods). The global and local
components were designed to have a fixed number of dimensions and percent shared variance
across simulation runs (“ground truth” dgpgreq and %sv). We then fit pCCA-FA to the simulated
data by using 10-fold cross-validation to jointly select the across-area and within-area dimen-
sionalities. We asked how well pCCA-FA was able to recover the ground truth dimensionality
(dshared) and %SV.

We found that pCCA-FA identified both the ground truth global (across-hemisphere) dgpared
and %sv reliably with only 300 trials/samples (Fig. a left and b left). Importantly, we found
that pCCA-FA required fewer trials than pCCA to recover dgpgreq (300 compared to 600 for
pCCA,; Fig. a left). Additionally, pCCA always underestimated the global %sv, even with a
large number of trials (Fig. b left; see Methods and Supp. Fig. E[) The pCCA-FA method was
also able to correctly identify within-hemisphere dgpqreq and %sv (Fig a right and b right).
Note that since pCCA does not model within-hemisphere variability, we could not assess the
ability of this model to identify within-hemisphere dgj4req and %sv.

In the previous analyses, we fixed the global and local dgpreq and %sv and asked how many
trials were needed to recover ground truth. We next fixed the number of trials, and asked whether
pCCA-FA could recover the ground truth under various settings of dspareq and %sv. We found
that pCCA-FA was able to identify the ground truth dg,qreq and %sv at a variety of ground
truth settings (Fig. [14lc), both when global was larger than local and when local was larger than
global. Taken together, these results demonstrate that pCCA-FA is able to identify and properly
partition global (across-hemisphere) and local (within-hemisphere) shared variability, even in
very data-limited settings and across a variety of ground truth settings.
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Figure 14: The pCCA-FA model partitions global and local shared variability. a. Left:
visual representation of how pCCA-FA finds low-dimensional local (within-area) and global (across-area,
or across-hemisphere) subspaces. In this illustration, transparency indicates correspondence between
samples in area X and area Y. Global dimensions are those that are most correlated across areas (i.e.,
projections onto “across” arrow are highly correlated between area X and Y). Local dimensions explain
dimensions of large covariance in neurons within the same area, which are not correlated across areas.
Right: visual representation of how pCCA-FA partitions a neuron’s variance: shared global variability,
shared local variability, and independent private variability components. b. pCCA-FA graphical model.
Global latent variables (z) contribute to variability in both brain areas. Local latent variables (z,, z,) only
contribute to variability in their respective brain area. The distributions that define this graphical model
are available in Methods. c¢. Top: visual representation of how pCCA-FA partitions a covariance matrix.
The full-rank empirical covariance matrix is decomposed as the sum of a low-rank global covariance,
a low-rank local covariance, and a diagonal private covariance. Bottom: illustration of how important
metrics of fitted pCCA-FA models are computed. We evaluate the strength of shared variability using
%sv and the dimensionality using dgspqreq, for both global and local subspaces.

4.5 Extracting fast-timescale trial-to-trial variability

Previous work has shown that neural activity can covary quickly from moment-to-moment and
trial-to-trial [T, @9], but also more slowly over the course of many trials or the entire session
[41] [42, 146]. Indeed, one might think of neuronal covariability as containing fast trial-to-trial
component riding on top of a slow multi-trial component. Covariance and correlation matrices
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computed directly on raw spike counts reflect both fast and slow co-fluctuations [12§].

We separate these two timescales of covariation and study them separately with the as-
sumption that they reflect distinct cognitive processes. Slow timescale co-fluctuations have been
associated with arousal, impulsivity, and engagement [41) 42]. However, caution must be taken
when studying correlations in slow processes due to autocorrelation and limited data. Failure
to due so can result in spurious, large-magnitude correlations (Supp. Fig. . To simplify our
analyses in this study, we removed the slow component from the raw spike counts and focus
most analyses on the fast component (though see Supp. Fig. . We first identified the slow
component using a moving average of 25 trials on each neuron’s spike counts. We computed the
fast component as the residuals—by subtracting the slow component from the raw spike counts of
each neuron (Supp. Fig. . Previous work has shown that these faster-timescale trial-to-trial
co-fluctuations are thought to limit the fidelity of sensory encoding [37H40)].

4.6 Across-hemisphere shared variability is substantial, and often larger than
within-area shared variability

We asked to what extent fast trial-to-trial variability is shared across hemispheres vs. within
areas in PFC population activity. We consider spike counts computed in a one second window
at the end of the delay period of each trial, and mean center the counts within each target
condition. We then extract the fast processes for each neuron as described above. We fit pCCA-
FA to these fast neural processes using 10-fold cross-validation to jointly choose dimensionalities
for the three subspaces (across-hemisphere, within left PFC, and within right PFC) and then
compared dgpereq and %sv for within-area versus across-hemisphere subspaces. We found that
our pCCA-FA model provided better fits to our neural data than alternative approaches and
models that we considered (Supp. Fig. E[)

We found that across-hemisphere (global) dgpareq and %sv were often of a similar magnitude
or significantly greater than within-area (local) dgpqreq and %sv (Fig a—b). Pooled across
subjects, sessions, and left and right hemisphere PFC, both dgpereq and %sv were significantly
larger for across-hemisphere shared variability than within-area shared variability. This stands in
contrast to the mean pairwise correlation results in Supp. Fig.[8la, in which we found substantially
less mean rg. for across-hemisphere pairs than within-area pairs. Moreover, we found that the
most correlated dimensions across hemispheres also explained the most shared variance (Supp.
Fig. , which did not have to be the case as CCA can pick up on dimensions that have high
correlation but low variance.

We also applied pCCA-FA to the slow component of neural activity removed earlier and
compared the amount of the slow activity assigned to the global component to that of a control
chance level. We found that the slow activity had higher canonical correlations in the across-area
component of shared variability than expected by chance, indicating that a significant amount of
the slow activity likely represents global processes (Supp. Fig. . Overall, these results show
that a large proportion of trial-to-trial variability is shared across hemispheres of cortex.

4.7 Across-hemisphere latent variables predict pupil size

We next wanted to assess the behavioral relevance of the global across-hemisphere and local
within-area components. One possibility was that the across-hemisphere component is related
to latent variables that modulate activity in many areas. Such variables may be related to a
variety of cognitive processes including arousal, impulsivity, engagement, satiation, and others
[411 421 [130]. One variable that has previously been used to indirectly measure these processes is
pupil size. Previous work has linked large-scale cognitive processes with neural activity at slow
timescales [41, [42] using pupil diameter as an indirect measure of these processes. Given that
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Figure 15: pCCA-FA recovers ground truth %sv and dimensionality. a. Recovery of ground
truth dimensionality (dspared). We asked how well pCCA-FA and pCCA could recover ground truth.
We swept the number of trials (horizontal axis) to test the models under different data limitations. We
crossvalidated pCCA to select global dimensionality, and crossvalidated pCCA-FA to jointly select global
and local dimensionalities. Left: global dimensionality. pCCA-FA recovers ground truth global dgpareq
with relatively few (300) trials, and is more efficient that pCCA which requires 600 trials to recover
ground truth. Right: local dimensionality. pCCA-FA is able to recover ground truth local dgspgreq; more
trials are needed here as compared to recovering global dspareq because the local %sv (= 14%) is smaller
than the global %sv (& 24%) in this simulation. pCCA does not have a concept of local dimensionality,
and therefore has no data in this figure. In this and subsequent figures, error bars indicate 1 standard
deviation, computed across 30 separate simulations. (continued on next page...)

this previous work focused on slow processes in a single brain area, it was unclear to what extent
faster-timescale trial-to-trial co-fluctuations in neural activity reflects these same processes. Fur-
ther, it has been assumed that the aspects of neural variability related to pupil are multi-area
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Figure 15 (previous page): (continued from previous page...)

b. Recovery of ground truth %sv. Same simulations and fitting procedures as in a, but now showing
recovery of global %sv in the left panel, and local %sv in the right panel. Left: both pCCA-FA and
pCCA underestimate global %sv with very limited data because dimensionality is underestimated (panel
a). However, there is a small regime (300 trials and 600 trials) where pCCA-FA overestimates global
%sv. This is because, in general, eigenvalues of covariance matrices tend to be overestimated in high-
dimensional regimes where the number of trials (i.e., samples) is small relative to number of neurouns (i.e.,
features) [129]. However, estimates of global %sv improve with more trials. On the other hand, pCCA
asymptotes and underestimates global %sv even with increasing data (see Methods and Supp. Fig. 4 for
details on the shortcomings of pCCA). Right: pCCA-FA recovers ground truth local %sv with relatively
few trials. Again, pCCA does not have a way to separate shared local variability and private neuron
variability and therefore has no data in this figure. c¢. In a and b, we asked how many trial pCCA-FA
needed to recover ground truth for a given setting of global and local shared variability. Here, given a
reason number of trials (1000 trial, 30 neurons per area), we evaluate whether pCCA-FA can recover
ground truth for various settings of global and local shared variability (i.e., %sv and dimensionality).
Left: pCCA-FA can recover ground truth global and local dimensionality across various settings (blue
circles are estimates, black starts are ground truth). Right: pCCA-FA can recover ground truth global
and local %sv across various settings. Stars in left and right panels correspond to the same ground
truth parameter settings, and error bars in estimates indicate 1 standard deviation computed across 30
simulations.
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Figure 16: Global shared variability is substantial, and often larger than local shared vari-
ability. a. dsnereq for pCCA-FA fits to "faster-timescale" neural activity. Results from each hemisphere
and session is aggregated per monkey. Global (across-hemisphere) dspqreq is larger than local (within-
area) dspared (pooled p = 0.008386; Sa p = 0.000403, Pe p = 0.317343, Wa p = 0.941009; paired sample
t-test). b. Percent shared variance (%sv) for pCCA-FA fits to neural activity. Global %sv is larger than
local %sv (pooled p = 0.000148; Sa p = 0.000001; Pe p = 0.032285; Wa p = 0.801285; paired sample
t-test). In both a and b , histograms show the difference between local and global metrics.

processes. However, given that previous studies did not record from multiple brain regions, it was
unknown whether this assumption was valid. Here we leveraged our two-hemisphere recording
paradigm coupled with our pCCA-FA model to address these gaps (Fig. [17a).

We computed the global across-hemisphere and local within-area latent variables (see Meth-
ods) and used them to predict pupil size using linear regression. Qualitatively, we found that
prediction of pupil diameter was robust for across-hemisphere latents but absent for within-area
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Figure 17: Global latent variables are predictive of pupil size, which is thought to re-
flect global cognitive phenomena such as arousal and wakefulness. a. Are the global (across-
hemisphere) latents or the local (within-hemisphere) latents extracted from neural recordings in PFC
predictive of pupil size? b. Example of 60 trials and "faster-timescale" fluctuations in pupil size (black).
Prediction of pupil size using "faster-timescale" global latents (cyan) and local latents (magenta). For
this session, global latents predict pupil size (> = 0.365) better than local latents predict pupil size
(r? = 0.044). c. r? aggregated across sessions for each subject, values are significantly positive for global
latents and close to zero for local (within-area) latents. Gray bars show 95% of the null distribution,
which is computed by taking the latents on session ¢ and predicting pupil on session j, where ¢ # j. Global
latents are significantly more predictive of pupil than local latents for all subjects (Sa left p < 107¢; Sa
right p < 1076; Pe left p = 0.000064; Pe right p = 0.000001; Wa left p = 0.000541; Wa, right p = 0.000156;
paired sample t-test). To account for the fact that there can be a different number of latents for global,
local left, and local right on any given session (since we use crossvalidation to select dimensionality on
each session separately), we reran the same analysis, but only used a single latent to predict pupil. For
global, we used the latent with highest correlation; for local, we used the latent that explained the most
shared variance. We found that global latents had higher r? than local latents (Sa left p < 10~°; Sa right
p < 1076; Pe left p = 0.00010; Pe right p = 0.000010; Wa left p = 0.000274; Wa right p = 0.000096;
paired sample t-test), consistent with our result in panel c¢. Thus, the result in ¢ cannot be explained
by the fact that global shared variability was higher dimensional than local shared variability (Fig. )

latents (Fig. b). We quantified goodness of fit by measuring the coefficient of determination
(r2) for predictions. We found that the global across-hemisphere latent variables demonstrated
significantly larger ability to predict pupil than did the local within-area latent variables (Fig.|17|c;
72 is significantly higher for global than either local left or local right). Interestingly, we found
that this predicted pupil signal was related to but not synonymous with the pupillary evoked
response on each trial (Supp. Fig. . Overall, these results are consistent with shared trial-by-

trial encoding of a global cognitive process across areas and hemispheres of cortex.
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4.8 Discussion

In this work, we utilized simultaneous dual hemisphere recordings to study interactions across
hemispheres of cortex in prefrontal cortex. Using pairwise analyses, we found that correlations
tended to appear to be larger within hemisphere pairs compared to across hemisphere pairs.
However, using a new dimensionality reduction approach that we developed, called pCCA-FA, we
identified across hemisphere components that were larger in magnitude (%sv) and dimensionality
(dshareq) than variability shared among neurons within the same hemisphere. We found that
across-hemisphere latent variables were predictive of pupil size, while within-hemisphere latent
variables were not. Taken together, our results suggest that a large portion of shared neuronal
variability in PFC can be explained by across-hemisphere interactions, which are predictive of
signatures of global cognitive phenomena.

Neural variability shared across hemispheres of cortex may arise from a variety of mechanisms.
In our paper, we highlighted the fact that across hemisphere shared variability predicted pupil
diameter. This is consistent with global cognitive modulatory signals like arousal or fatigue
contributing to the observed variability. Another source of across hemisphere shared variability
could be shared information about the external world. For example, work in rodents has shown
that small movements contribute to a large portion of variability in the visual cortex [113].
Further work will be needed to explore to what extent these movement related signals appear
in non-motor regions (like PFC) of non-human primates. A third possible source of across
hemisphere shared variability is direct communication between the hemispheres of PFC. Previous
work has suggested ways that the two hemispheres may work together [63], [115] 123] using these
connections. Further work is needed to understand the extent to which these and other sources
contribute to across hemisphere shared variability.

Pupil diameter has been widely studied as an indirect measure of arousal signals in the brain.
The majority of these studies have involved MRI or EEG signals that allow for a relatively
coarse measurement of neural activity using a wide window [12I]. Recent work using implanted
electrodes have identified neural activity that predict pupil diameter in a wide range of brain
areas, including rodent area V1 [II3] and macaque area V4 [4I]. One question that arises
from this literature is whether the signals that predict pupil diameter in any given brain region
are correlated with analogous signals in other brain areas. Here, we identified signals that
predict pupil diameter and are shared across hemispheres. We found almost no within-hemisphere
interactions that predicted pupil diameter beyond what was shared across hemispheres. Our work
suggests that brain regions and neurotransmitters that modulate pupil and cortical activity likely
do so in a non-specific manner, with many cortical brain regions likely receiving the modulatory
signals.

Although the focus of our study was on variability shared across hemispheres, we also identi-
fied a substantial amount of variability that was shared among neurons of the same hemisphere
but not neurons across hemispheres. The origin of this shared within hemisphere variability is
unclear. There are a number of possible sources that likely contribute to this variability. One
possibility is that there are feedforward or feedback input signals that modulate brain areas in
the two hemispheres separately. For example, Rabinowitz et al. (2015) [46] used recordings of
area V4 during a spatial attention task and identified two latent variables that accounted for
attention-related modulation of neural activity. Their analysis found that each latent variable
described the attention modulation in one hemisphere of V4, and were uncorrelated with one
another. Similar signals (e.g., spatial attention) that could selectively modulate the activity of
many PFC neurons in one hemisphere may account for some of the within hemisphere variability.
Another possible source of shared within-hemisphere variability is constraints on patterns of neu-
ral activity imposed by the cortical circuitry in each hemisphere. Previous studies have shown
that clustering structure in neural network models can lead to shared trial-to-trial fluctuations
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within groups of neurons in a recorded population [102] 103, [13T].

4.9 Methods
Surgical preparation

We implanted three adult rhesus macaque monkeys each with two 100-electrode “Utah” arrays
(Blackrock Microsystems, Salt Lake City, UT). Electrode arrays were placed in the prefrontal
cortex anterior to the arcuate sulcus and dorsal to the medial sulcus in both hemispheres. In
a prior procedure, titanium headposts were fixed onto the skull of each subject using titanium
screws. This was done to limit head movement during experiments. Surgeries in each subject
were performed in sterile conditions under general anesthesia using isoflurane. All experimental
procedures were approved by the Institutional Animal Care and Use Committee of the University
of Pittsburgh.

Electrophysiological methods

Signals from the implanted electrodes were band-pass filtered (0.3 - 7500 Hz) and then digitized
at 30,000 Hz before being stored offline for analysis. Waveforms were defined as a 52-sample (1.73
ms) window of the filtered voltage signal triggered by the signal crossing a predefined threshold.
The threshold was defined as a multiple of the root-mean-square of a short snippet of the raw
signal collected at the beginning of the session.

Behavioral Task

Subjects were trained to perform a standard memory-guided saccade task [132]. At the beginning
of each trial, a 0.5 degree blue circle appeared at the center of a gray screen. The subject initiated
fixation within an invisible 2.3 degree diameter window centered on the blue circle and then 200
ms later a white circle appeared in the subjects periphery 12 or 16 degrees from fixation at one of
4, 8, or 16 locations depending on the session. The white circle remained on the screen for either
100, 200, or 400 ms depending on the session after which the white circle was removed from
the screen. The subjects then continued to fixate the blue fixation circle until it disappeared
from the screen (after 1.5 to 3 seconds) indicating for the subject to saccade toward the location
where the white target flash occurred. The subject had 400 ms to initiate fixation, defined by
the eye position leaving a 0.9 degree window centered on the blue fixation circle. After saccade
initiation, the subject had 200 ms to reach the target window, defined by a 2.1 degree radius
window centered on the target location. The subject then needed to maintain fixation within
the target window for 150 ms after which the subject was provided with a liquid reward for a
saccade to the correct location. For a subset of sessions, a dim white target was flashed after
saccade initiation to assist the subject in target acquisition. Trials were pseudo-randomized in
mini-blocks during which the subject was required to correctly complete all target directions
before beginning a new mini-block. While some of the above parameters varied slightly from
session to session or subject to subject, all parameters remained constant within a session.

Preprocessing of neural data

To remove non-neural artifacts from among the saved waveforms, we used a neural network to
classify waveforms as neural or not neural. Details of the method were described previously in
[105]. Briefly, a neural network was trained on human sorted waveforms to distinguish between
waveforms putatively of neural origin and waveforms not of neural origin.

We further removed channels that were likely to contain artifacts. To do this, we first binned
neural activity by counting threshold crossing that occurred between target onset and fixation
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offset. We then removed channels with mean spike count lower than 2 spikes/second and Fano
factor greater than 10.

We also removed channels affected by artifactual cross-talk due to electrical coupling. For
each pair of channels, we flagged spikes as coincident if they occurred within 100 us of each
other. If either neuron in the pair had 20% of its spikes flagged as coincident, we flagged that
pair as having artifactual crosstalk. We then removed the fewest number of channels as possible
to eliminate crosstalk on the array.

After this process the number of remaining units in Monkey P was 79.3 4+ 8.3 for right and
78.3 £ 7.8 for left hemisphere, in Monkey W was 24.9 £ 4.1 for right and 85.1 & 8.0 for left
hemisphere, and in Monkey S was 62.6 + 9.8 for right and 75.3 4+ 13.2 for left hemisphere. For
all analyses in this paper, neural activity was preprocessed as described above and then binned
using a 1 second window at the end of the delay period to compute spike counts.

Removing target information

For analyses of trial-to-trial variability (e.g., rs. and population analyses using pCCA-FA), we
removed target information and analyzed residual spike counts. For fitting the pCCA-FA model,
we simply subtracted the condition mean from spike counts within each condition. When com-
puting 4., we first z-scored spike counts (mean-subtracted and divided by standard deviation)
within each condition.

Separation of slow and fast components

As we investigated interactions between left and right hemispheres, it soon became apparent
that both hemispheres contained a component that varied slowly over the course of the session
[41]. This was problematic for our analyses because slow processes like the ones we identified
result in non-independent samples, which violates a key assumption in correlation analysis (e.g.,
regression, Pearson correlation, pCCA, or pCCA-FA; Supp. Fig. . It was therefore unclear
whether these slow processes actually represented global across-hemisphere signals or whether
their assignment to the global subspace was due to potentially spurious correlations induced
by slow-timescale fluctuations [133]. Therefore, we removed slow components from all neural
and pupillometry data, and focused most analyses in this work on faster-timescale trial-to-trial
variability (Supp. Fig. though see Supp. Fig. [13|for an analysis of slow components). We did
this by computing the slow components using a centered boxcar filter of length 25 trials, computed
after removing target information (as described above). We then subtracted this component
from the raw spike counts or pupil size data to remove slow-timescale correlations that could
have induced spurious correlations. We performed this pre-processing procedure independently
for each neuron, and for pupil size data. All analyses in this study were performed on the residual
faster-timescale component.

Measuring tuning

To study the delay period tuning of neurons to target location, we measured the average spike
count of a neuron to each of the 4, 8 or 16 possible targets during the final one second window
in the delay period. We then fit cosine tuning curves to these mean responses [134].

fo =b+ (fmax — b) cos(f — PD)

Where b is baseline, max is the maximum of the tuning curve, and PD is the preferred direction.
We defined modulation depth to be the amount of modulation relative to the baseline: (fiax —
b)/b. To assess significance, we computed a null distribution of modulation depths using a
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permutation test (shuffling the target angle labels), and labeled a neuron as significantly tuned if
the actual modulation depth was larger than 95% of modulation depths in the null distribution
(i.e. p<0.05).

Measuring signal correlation

We defined signal correlation between two neurons as the Pearson correlation between the two
neuron’s average responses to each condition during the delay period. To assess significance, we
generated a null distribution of correlation values by using a permutation test (again shuffling
the target angle labels), and labeled a pair as having significant positive signal correlation if the
actual signal correlation was larger than 99% of the null distribution, and significant negative
signal correlation if the actual signal correlation was smaller than 99% of the null distribution.

Probabilistic Canonical Correlation Analysis - Factor Analysis (pCCA-FA)

We develop a model called pCCA-FA to partition neuronal population structure into a global
(across-area or across-hemisphere) component, a local (within-area) component, and a compo-
nent independent to each neuron. The model is a novel combination of two existing dimension-
ality reduction and latent variable methods, namely probabilistic canonical correlation analysis,
or pCCA [I35] (which finds dimensions that maximize correlation between two brain areas) and
factor analysis, or FA [136] (which maximizes covariance between neurons in a given brain area).

The pCCA-FA model (Fig. explains spike counts in area x (x) and area y (y) according
to global latent variables z and local latent variables zx,z,. To fully define the probabilistic
graphical model (Fig. b), the priors over the latents and the conditional spike count observation
distributions are:

z~ N(0,15) zx~ N(0,1q,) zy~ N(0,1Ig,)
X|z,zx ~ N(ux + Wpz + L,zx, P,) (18)
|2z, 2y ~ N(py + Wyz + Lyzy, D)

where z € R?*! are the d latents shared across-areas, zx € R%*1 are the d, latents shared
between neurons in area x, and z, € R%*1 are the d, latents shared between neurons in area y.
If we assume that we record n, neurons from area x, then W, € R"**¢ is the loading matrix for
the global subspace in area x, and L, € R™**% is the loading matrix for the local subspace and
area x. ¢, € R" X" ig 3 diagonal matrix containing the independent variances of each neuron,
and pu, € R™X1 is a vector of average responses of each neuron in area x. The parameters for
area y are defined analogously.
Following the definitions in Eqn. [I8] the marginal distributions for x and y are:

X ~ N(pg, W WE + L, LT + ®,)

(19)
y ~ N(py, W,W,) + L,LT + @)

By inspecting the marginal distributions, we observe that pCCA-FA decomposes the covariance of
each area as the sum of a low-rank global component (W, W), a low-rank within-area component
(L,LY), and a diagonal independent neuron component (®,).

Fitting pCCA-FA and computing latent variables

For fitting pCCA-FA to data, and computing latent variables, it is helpful to think of pCCA-FA
as a generalized and structured factor analysis model. First, we define a joint vector of neural
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activity in both areas and a joint vector of global and local latent variables:

_ _ Z
X = {X} Z:= |z«
y

Now, the joint prior distribution of latent variables, and the joint conditional observation distri-
bution of neural activity from Eqn. can be written as:

2~ N0 avdra,) (20)

X|Z ~ N(pug + LZ,®)
where d,d;,d, represent the global dimensionality, local dimensionality of area x, and local
dimensionality of area y respectively. The model parameters in Eqn. are:

_~_:ux ~_Wx L:v 0 ~_(I):v 0
HX_[“Y] L_{Wy 0 Ly} (I)_[O o,

where all parameters are exactly the same as those in Eqn. [18, The model definitions in Eqn.
1 and Eqn. 2 are equivalent. The definition in Eqn. 2 makes it easy to see that we can think
of pCCA-FA as a generalized and structured factor analysis model [50L 102, 1T04]. The structure
in the loading matrix L (i.e., the zeros) ensure that the local latent variables (zx and zy) only

contribute to variability in their respective areas, while global latent variables (z) contribute to
variability in both areas. Based on the definition in Eqn. 20| the marginal is:

X ~ N(ug, LLT + @) (21)

Based on the definitions in Eqns. and we can fit pCCA-FA model parameters to data
using the EM algorithm [I37]. This EM algorithm is the same as that for factor analysis, with
the added step of maintaining the structure in L after the M-step parameter updates. When
fitting to data, we jointly chose the dimensionalities for global (d), local area x (d;), and local
area y (dy) subspaces using 10-fold cross-validation.

To obtain the global and local latent variables in pCCA-FA (e.g., for use in predicting pupil
size; Fig. , we compute the posterior mean of latent variables:

B(ZX] =" (L7 +#) (X ug)

where the first d entries of F [ZDZ} are F [z|x,y] (global latents), the next d, entries are F [zx|x]

(local latents for area x), and the final d, entries are E [zy|y] (local latents for area y).

Connection to canonical correlations, CCA, and pCCA

In words, the objective of Canonical Correlation Analysis (CCA) is to find a dimension in area
x, and a dimension in area y, such that when neural activity is projected onto these dimensions,
the Pearson correlation is maximized. Further dimensions can be found by also maximizing cor-
relation, subject to the constraint that new dimensions are uncorrelated with previous dimension
that are found. The correlations along these dimensions are known as canonical correlations (p).
CCA also has a probabilistic interpretation [pCCA;[135], defined by the graphical model:

z ~ N(0,1,)
X‘Z ~ N(,fo + sz + L;EZX) \IICC) (22)
y|z ~ N(uy + Wyz, V)
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where d is the number of CCA (global) dimensions, W, W,, are loading matrices as in Eqn.
but now ¥,, ¥, the within-area or "noise" covariance matrices, are full rank. One advantage of
pCCA-FA over pCCA is that it generalizes the within-area noise covariance matrix by modeling
it as low rank plus diagonal (L,LL + ®,). The means that pCCA-FA has fewer parameters than
pCCA, and is thus more robust and performant in limited data regimes (i.e., able to recover
ground truth with fewer samples; Fig. .

It is not straightforward from the graphical model for pCCA (Eqn. to see how pCCA
maximizes correlation. However, it can be shown that pCCA recovers the same dimensions and
subspaces (W,, Wy) as CCA [135]. Intuitively, this means that the canonical correlations should
be the same as well. Indeed, it can be shown mathematically, that the canonical correlations are
equal to the Pearson correlation between the latent posterior means, defined as:

Elz|x] = WE(W:UW:UT + ‘Ilz)_l(x — fix)
Elzly] = Wg(WyWyT + \I/y>_l(y - My)

Analogously, the canonical correlations in the pCCA-FA model can be computed as the Pearson
correlation between latent posterior means:

Elz|x] = WE(WIWE + L:cLZ; + )7 (x — pix)
Elzly] = Wf(Wny + Lng + (I)y)_l(y — Hy)

Measuring percent shared variance (%sv) and dimensionality (dspared)

We defined two metrics to characterize the global (across-hemisphere) and local (within-hemisphere)
subspaces: percent shared variance (%sv) and dimensionality (dspareq). We used %sv to measure
the amount of shared variance attributed to either global or local subspaces. We used dimension-
ality, measure using dgpqreq [102], to measure the complexity of these interactions. We computed
these metrics similar to how they are for FA [102H104], but modified for the pCCA-FA model
developed in this study.

To assess the amount of each neurons variance that could be explained by global latents, we
computed the global percent shared variance, defined as:

WaWZ

Global %sv for neuron k =
WoWE + Ly LT, + 0y,

(23)

where Wy, is the k" row of the global loading matrix for area x, Ly, is the k" row of the local
loading matrix for area x, and W, is the independent variance for the k** neuron in area x.
We similarly defined the local percent shared variance as:

Lkagk
WoWiE + Ly LT, + 0y,

Local %sv for neuron k = (24)

We defined global dgpgreq @s the minimum number of modes needed to explain 95% of the
global shared covariance matrix W, W.. To do this, we first identified the eigenvalues of W, W71
and sorted them from largest to smallest. Note that these eigenvalues indicate the amount of
variance in WxWxT explained by the corresponding eigenvector. We then defined dgpqreq as the
minimum number of eigenvalues needed such that the sum of the eigenvalues explains at least
95% of the sum of all of the eigenvalues. We defined local dgpqreq for each hemisphere using the
procedure described above except that W, W, was replaced with L,LT.

Here, we have described computation of %sv and dgpereq for area x; we computed the metrics
analogously for area y.
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Pupil prediction

Pupil prediction for global and local latents was performed using linear regression and assessed by
computing the proportion of variance explained by the predictions. First, mean pupil diameter
for each trial was computed in the same time bin as was used for computing spike counts (i.e., a
1-second bin at the end of the delay period). We normalized pupil size for each session by using
the mean and standard deviation of pupil sizes across the session. Additionally, we removed
slow-timescale fluctuations in pupil size using the same method used for neural activity and
focused analyses on faster-timescale trial-to-trial variability (Supp. Fig. [L1)).

We then computed the posterior means: for the global latents E [z|x,y] and for the local
latents E' [z;|z] and E[zy]y]. Here, z represents global latents, z, and z, represent left and
right hemisphere local latents respectively, and x and y represent left and right hemisphere spike
counts respectively.

We then fit a linear regression model between global latents and pupil size (Fig. b global),
and reported the proportion of variance in pupil size explained by the model (i.e., r%; Fig.
c global). We repeated the same procedure for local left and right hemisphere latents, and
reported local left and right r? (Fig. [17jp-c local). To compute null distributions for pupil
prediction, we used the latents on a given session ¢ and repeated the procedure above, except
using the pupil size on another session j (where i # j; trials were truncated in the session with
more trials to ensure equal trial numbers). This resulted in null distributions with 240 samples
for subjects Sa and Pe with 16 sessions, and a null distribution with 90 samples for subject Wa
with 10 session. We report the 95% confidence intervals of this null distribution (Fig. [17lc gray
bars). We also test whether global or local latents are more predictive of pupil size using a paired
sample t-test (Fig. |17lc).
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5 |Data augmentation] How to augment your ViTs? Consistency
loss and StyleAug

Chapters 2, 3, and 4 focus on understanding neuronal variability in a natural neural system, i.e.,
the primate brain. However, variability also plays a crucial role in modern deep learning and
artificial neural systems. For example, stochasticity plays an important role in regularization
during training (e.g., dropout regularization, stochastic depth) and “internal” model variability
plays an important role in generative modeling (e.g., variational autoencoders, generative adver-
sarial networks). “External” model variability, in the form of the amount and diversity of data
that is used to train a model, is also an important factor in the success of modern deep learning.
As compute power increases and models become larger, there is an increasing need for larger
and more diverse datasets. One way to improve the size, quality, and variability of training data
is to use data augmentation—a term that encompasses a variety of techniques to generate new
training samples from a given training set or distribution. While data augmentation is widely
used, not much is known about how data augmentation strategies interact with the architecture
of the deep learning model that is being trained. In this chapter, I explore the interaction be-
tween commonly-used and state-of-the-art data augmentations and model architectures for the
task of image classification. I also introduce a new data augmentation loosely inspired by human
visual perception, called StyleAug, that improves performance of the vision transformer (ViT),
an architecture that has recently been shown to work very well for computer vision applications.

5.1 Introduction

For nearly a decade, convolution neural networks (CNNs) have been the de-facto deep learning
architecture for a variety of computer vision tasks from image classification to object detection to
segmentation [I38-141]. A major reason for their success is due to the inductive biases imposed
by the convolution operation, namely sparse interactions, weight sharing, and translational equiv-
ariance [I42]. These inductive biases allow for efficient training of feature representations that are
useful for vision tasks. Despite their widespread adoption, CNNs have room for improvement—
they can be prone to adversarial attacks and perform poorly when there are distribution shifts
(e.g., when images have been corrupted [143]). Other work has shown that CNNs rely on tex-
tures to categorize objects, while humans rely on object shape [144]. This can be problematic
for using CNNs as a model of the human visual system [145].

Taking inspiration from the success of the Transformer architecture in language modeling
[146], Vision Transformers (ViTs) are an alternative architecture that utilize the key mechanism
of multi-head self-attention (as opposed to the key mechanism of convolution in CNNs). ViTs
have recently shown promise for image classification, even outperforming state-of-the-art CNNs
[147) [148]. Follow-up work has shown that ViTs also have other advantages relative to CNNs,
including: 1) increased adversarial robustness [149], 2) increased robustness to corruptions [150],
3) ability to provide pixel-level segmentation using attention maps [150} 151], and 4) smaller
texture bias and greater shape bias [I50], [152], making them a good candidate model for human
vision.

Although ViTs have attained competitive performance on vision tasks, they are known to be
more difficult to train than CNNs. In ViTs, only multi-layer perceptron (MLP) layers operate
locally and are translationally equivariant, while the self-attention layers [146] operate globally
[147]. As such, ViTs are thought to have a weaker inductive bias than CNNs, thus requiring more
data, augmentations, and/or regularization than training a similarly-sized CNN [148] [153] [154].
However, the strategies for data augmentation for ViT training have largely been adapted from
the techniques used for CNNs. While these augmentations have worked reasonably well, certain
training and augmentation strategies may be more beneficial for ViTs than for CNNs.
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In this work, we performed a systematic empirical evaluation of data augmentation strategies
on CNNs and ViTs. Importantly, we found that using a consistency loss penalty term between
different augmentations of the same image [143] was especially helpful when training ViTs. We
then introduced a novel data augmentation, called StyleAug, inspired by shape bias in human
visual perception [144]. StyleAug performs neural style transfer from a given image to another
randomly chosen image in the dataset during training. When combined with a consistency loss,
StyleAug improves validation accuracy, robustness to corruptions, shape bias, and transferabil-
ity. For training ViTs, StyleAug outperforms previous state-of-the-art augmentations such as
RandAugment [155] and AugMix [143] across several metrics.

5.2 Related work

ViT training. ViTs have a weaker inductive bias than CNNs. To achieve classification perfor-
mance better than CNNs, Dosovitskiy et al. [147], trained ViTs on very large datasets, either
ImageNet-21k or the proprietary JFT-300M. To train ViTs with limited data and compute re-
sources, Steiner et al. [I54] explore data, augmentations, and regularization. They suggest that,
for a fixed dataset size, one should generally prefer data augmentations over extensive regular-
ization. In another study, Touvron et al. [148] trained data-efficient vision transformers using
a combination of various augmentations, regularization strategies, and a novel distillation strat-
egy. For distillation, they create a special "distillation token" in the transformer architecture
that uses a CNN as the teacher network. Their data-efficient image transformer (DeiT') achieves
competitive performance without large datasets (i.e., with only ImageNet-1k).

Data augmentation. Proper data augmentation can increase the size and quality of datasets,
which can help prevent overfitting and greatly improve generalization of deep learning models.
Since ViTs have a weaker inductive bias, they can be prone to overfitting [153], and thus benefit
greatly from many strong augmentations [148].

From another perspective, data augmentation can also help deep learning models learn invari-

ances such as scale (i.e., with cropping) and color. Indeed, the increasingly popular self-supervised
learning methods learn feature representations by becoming invariant to image transformations.
The goal of self-supervised learning is to map different augmentations of the same image to similar
locations in the feature embedding space [I51], [156], [157]. Caron et al. [I5I] show that multi-scale
cropping is an especially useful augmentation for training self-supervised ViTs. Hendrycks et al.
[143] take inspiration from the self-supervised learning literature, and use a Jensen-Shannon con-
sistency loss (between a training image, and two augmentations of the image) in addition to a
classification loss when training CNNs.
Shape vs. texture bias Geirhos et al. [144] used psychophysics experiments to show that
humans make image classification decisions based on object shape, rather than relying on image
texture. Presented with the same images, CNNs made decisions based on image texture. Geirhos
et al. [144] created a new dataset, called Stylized ImageNet, in which they performed style
transfer with ImageNet images as content and images of art as style. Trained on this data,
CNNs showed improved shape bias and lower texture bias, but at the expense of classification
performance. Xu et al. [I58] used a random convolution augmentation (to distort textures)
combined with a consistency loss to improve CNN generalization to unseen domains such as
ImageNet-sketch.

5.3 Augmentation strategies
A Image transformations

For training models, we tested several basic and several state-of-the-art augmentations for image
classification. All images first went through Inception-style preprocessing: 1) a resized crop with
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ImageNet preprocessing Original operations

Image Random crop & (“Orig”)
horizontal flip

Inception-style Augmentation u

Loss = CE(f(Augl), label)

“Aug 1 ”

Inception-style
ImageNet preprocessing . Original Augmentation

Image Random crop & (“Orig”) operations
horizontal flip

“Aug 2” |
Loss = CE(f(Orig), |label) + 2 JSD(f(Orig) | | f(Augl) | | f(Aug2)) .

Figure 18: Augmentation setup. (a) Classic augmentation setup. Cross-entropy loss between the
network prediction of the augmented image, f(Augl), and the true label. (b) Setup with a Jensen-
Shannon (JSD) consistency loss. Cross-entropy loss between prediction of the original image f(Orig),
and an addition of a JSD loss between the three network predictions of each of the original image (f(Orig))
and two augmentations (f(Augl), f(Aug2)).

a randomly chosen scale in [0.5, 1] and resized to 224 x 224, and 2) a random horizontal flip with
p = 0.5 (Fig. , ImageNet Image to "Orig"). We used a relatively large cropping scale in this
step to allow for testing of multi-scale cropping augmentations later (see JSD loss below; [I51]).

We then performed additional augmentation operation to this image (Fig. [18a, "Orig" to
"Aug 1"). First, we tested basic augmentations such as random cropping, color jittering, and
translation. Second, we tested RandAugment [I55], a state-of-the-art augmentation for training
CNNs on ImageNet, and AugMix [143], another state-of-the-art augmentation that improves
CNN robustness to image corruptions. As in the Augmix paper, for both RandAugment and
AugMix, we exclude transformations that overlap with ImageNet-C corruptions to allow for fair
evaluations of model generalization and robustness. Third, we tested our new human perception-
inspired augmentation StyleAug (described in detail below), and StyleAug with random cropping.
Finally, we also tested another augmentation, called Neurofovea (Deza et al., 2021 [159]), inspired
by the human perceptual phenomena of foveation and metamerism [160].

In experiments, we considered the random cropping augmentation as a baseline as it is ef-
fectively the same as only training models with Inception-st