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Not all those who wander are lost.





ABSTRACT

Understanding how our brains process information while we interact with the real world is

a central objective for neuroscience. However, most important neuroscientific discoveries have

come from studying brain activity that was recorded while people performed tightly controlled

laboratory experiments, which leaves us with open questions about how those findings relate to

the brain in the real world. Recent advances in technology have made it possible to record the

natural environment, behavior, and brain activity simultaneously and at scale, making it possi-

ble to study the brain in the real world. However, realizing the potential of these advances for

scientific discovery requires confronting two intertwined questions: Can we even model the un-

controlled variability that arises in the real world? And if we can, then can we learn anything

about the brain by doing so? This thesis attempts to answer these questions in the context of face

perception during natural social interactions. It introduces methods that address the engineer-

ing and analytical challenges necessary to harness large datasets and transform the uncontrolled

variability in real world behavior from a challenge into an asset that enables scientific discovery.
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CHAPTER 1

INTRODUCTION

Understanding how the brain processes information as we interact with the real world is a

central objective for neuroscience. Observing the brain in the real world is an intuitive though

challenging way to approach this goal. Some of the earliest neuroscientific studies made such

observations by mapping brain lesions to deficits in function (1, 2, 3, 4). Despite their inherent

limitations, lesion based studies helped describe some of the earliest functional maps of the hu-

man brain and remain an important tool for neuroscientific inquiry (5, 6).

Psychophysics took a different approach to study human cognition, seeking a more granular

understanding with highly controlled laboratory experiments designed to test specific hypothe-

ses, one at a time. Measuring behavior in these experiments enabled researchers to make infer-

ences about neural representations i.e., what we can and cannot do reveals the nature of infor-

mation representation somewhere in our brain (7, 8, 9, 10). Subsequent advances in technology

enabled recording brain activity during experiments (11), connecting behavior to the underlying

neural substrate and giving rise to the modern neuroscience experiment (11, 12, 13, 14).

Much of our knowledge about human cognition comes from laboratory experiments. How-

ever, the ecological validity of that knowledge is an open question because of the stark differences

between laboratory and the real world. Growing evidence shows that ecological approaches

evoke different responses from the brain compared to controlled experiments (15, 16, 17, 18, 19)
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underscoring the importance of studying the brain in the real world to gain new insights that

might not be obtained from controlled experiments. Even among skeptics, studying the brain

in the real world is important, at least to validate experimental findings and determine how they

generalize. Despite a growing number of calls to action (18, 20, 21, 22, 23, 24, 25) emphasizing

the importance of real world neuroscience, the number of actual research efforts studying the

human brain in the real world has remained fairly small (26, 27, 28, 29, 30). A big reason for

this is the three major challenges that must be addressed to realize the promise of real world

neuroscience.

The first major challenge is to record the natural environment, behavior, and brain activity

simultaneously and with high fidelity. Obtaining rich large scale multi modal recordings requires

multiple devices that must work together in synchrony with each other. This can be a signif-

icant practical challenge due to heterogeneity of the data streams being recorded and varying

tolerances of hardware devices. The exact specifications of the engineering problems that arise

also varies based on the aspect of cognition being investigated. For instance, investigating the

neural correlates of visual cognition requires recording where participants look and what they

see using mobile eye-tracking, but participant mobility is not essential. In contrast, participant

mobility and movement tracking is critical for studying navigation in the real world (31), but

tracking eye-movements may be unnecessary. The complexity of this challenge is also visible

in literature, where separate methods papers (30, 31) tend to precede actual scientific results (26).

The second major challenge is to develop analysis approaches that can model the uncon-

trolled variability of natural behavior in the real world effectively. This challenge arises because

two features of controlled experiments around which analysis is organized are absent during nat-

ural behavior. The first is the absence of control over the timing, presentation, and the nature of

stimuli - which is replaced by the uncontrolled variability of natural environments. The second
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is the absence of control over what participants do and when, in the form of task instructions -

which is replaced by unscripted natural behavior. A practical advantage of studying natural be-

havior is the smaller burden on participants compared to controlled experiments, which makes it

easier to collect a larger volume of data. However, realizing the benefit of large scale recordings

requires analytical frameworks that can model the uncontrolled variability of natural behavior.

The third major challenge is for analytical approaches to provide an interpretable under-

standing of neural representations underlying cognition. Addressing this challenge is important

both for real world neuroscience and for experimental studies. Early neuroscientific experiments

found interpretability by profiling neural tuning in simple geometric spaces where stimuli were

parameterized and hypotheses about neural tuning could be tested (32). Advances in technol-

ogy enriched stimuli at the cost of interpretable parameterization, and analysis frameworks like

Representational Similarity Analysis (RSA)(33) advanced distance matrices as an approach to

parameterizing stimuli and brain activity to fill the gap. Deep neural networks have emerged as

an attractive and scalable alternative to parameterize and relate stimuli to the brain (34) because

they can represent different computational hypotheses based on their architecture, optimization

objectives, and diet of training data (35, 36). These approaches enable analysis of large neuro-

scientific datasets, but the insights they provide are often limited to a “score” which is hard to

compare/compete between different models on a scoreboard (37). A big reason for this is that the

geometry of neural network’s parameter spaces is inaccessible or hard to interpret. One approach

to fill this gap is with methods that can identify or learn shared tuning spaces in which aspects

of brain activity and stimuli are strongly related, and whose underlying assumptions ensure the

geometry of tuning spaces is interpretable. This idea is represented in both traditional Statistics

and contemporary Machine Learning/Artificial Intelligence, but instantiating it in neuroscience

requires careful consideration of variables relevant for each cognitive domain, particularly when

modeling the uncontrolled variability of natural behavior in the real world.
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This thesis engages with these challenges by studying the brain during natural behavior in the

real world and in controlled experiments, with a focus on face perception. Chapter 2 investigates

the relationship between face viewpoint and identity using intracranial brain recordings from

humans doing controlled experiments. It introduces an interpretable mixture model approach to

learning representational spaces from neural data, which is then used to compare and compete

data driven and literature based hypotheses about face viewpoint representations. Chapter 3 shifts

the focus to studying the brain during unscripted social interactions in the real world. Specifi-

cally, it addresses engineering and technical challenges to establish a paradigm for studying the

neural basis of social behavior in the real world in humans using intracranial brain recordings

collected in an inpatient environment where participants interact with friends, family, clinicians,

and researchers. Chapter 4 uses this paradigm to investigate face perception. Specifically, it

establishes an analytical framework (and general principles that underpin it) for modeling the

uncontrolled variability of the real word, demonstrates the robustness of this approach for face

processing, and demonstrates that interpretable tuning spaces can be learned from data. This

thesis concludes by using this framework to test hypotheses about the neural representation for

facial expressions observed during unscripted social interactions in the real world.

LIST OF PUBLICATIONS

• Chapter 2 - “Temporal Dynamics of Face Viewpoint and Identity Representations in Hu-

man Ventral Temporal Cortex”, In Prep.

• Chapter 3 - “A New Paradigm for Investigating Real-World Social Behavior and its Neural

Underpinnings”, Behavior Research Methods, 2022.

• Chapter 4 - “Reconstructing the neural code for real world face perception”, In Prep.

• Chapter 4 - “Reconstructing the neural code for face perception in the real world”, U.S.

Provisional Patent 63/565,173 , filed March 14, 2024.
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CHAPTER 2

THE NEURAL CODE FOR FACE

VIEWPOINT AND IDENTITY

2.1 INTRODUCTION

An influential cognitive model of face processing (38) suggests face viewpoint centric rep-

resentations arise from a structural encoding scheme and precede the rise of identity representa-

tions. Experimental studies in human (39) and non-human primates (40) suggest that these rep-

resentations arise alongside each other in face areas in ventral temporal cortex (VTC), and how

they relate changes as visual information advances from posterior to anterior regions. Specifi-

cally, identity representations are thought to be dependent upon face viewpoint in posterior VTC,

evolving to partial (mirror) invariance, before they completely disentangle into a viewpoint in-

variant identity representation in anterior VTC. Non-human primate studies (40) posit that feed-

forward propagation is sufficient to account for the temporal dynamics of these representations,

but the temporal dynamics of these representations in humans remain unclear because of the

limited temporal resolution of imaging studies (39, 41). Human studies with high resolution

intracranial recordings have illuminated temporal dynamics underlying different facets of face

perception (42, 43), suggesting they may do the same for face viewpoint and identity represen-

tations in humans.
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This chapter investigates representational dynamics of face viewpoint and their relationship

with identity using intracranial EEG recordings from face processing areas in the ventral tem-

poral cortex. Intracranial EEG recordings were collected from 75 face selective electrodes in 18

subjects, located in the face processing network in human ventral temporal cortex, while they

viewed faces at different viewpoints in a gender discrimination task. Multivariate Temporal Pat-

tern Analysis (MTPA) was performed on data from these electrodes to relate neural activity with

respect to face viewpoint and identity. A novel mixture model approach for representational

analysis is developed, revealing new characteristics in the neural representation for face view-

point and capturing qualitative observations from existing literature. Representational Similarity

Analysis (RSA) against a biologically plausible deep learning model of face processing concurs

with representational analysis using the new method. The results show previously unreported

characteristics in the face viewpoint representations. Identity decoding in a subset of 7 subjects

reveals that the representational hierarchy associated with the identity code (viewpoint depen-

dence→ mirror invariance→ viewpoint invariant). The relationship between identity and face

viewpoint representations is examined and reveals the mirror symmetric face viewpoint repre-

sentation (with weak mirror confusion) as a correlate of the identity code. Notably, we find the

idea of purely feedforward propagation of visual information from posterior to anterior face ar-

eas does not account for the observed dynamics of face viewpoint and identity representations in

human VTC, where different representation may rise and dissipate over time in the same cortical

location.

2.2 MATERIALS AND METHODS

2.2.1 DATA

Intracranial EEG recordings were collected from 18 human subjects (11 males, 7 females).

Each subject participated in 2 experiments as part of this study. Experiment 1 was a functional
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localizer experiment (a one back task) with images of faces (50% males), bodies (50% males),

words, hammers, houses, and phase scrambled faces were used as visual stimuli. Experiment 2

was a face perception experiment (gender discrimination). Face stimuli with 5 distinct viewpoints

(either Left Away, Right Tilt, Straight or Right Away, Left Tilt, Straight) with 50% male and

50% female faces, were taken from the Karolinska Directed Emotional Faces (KDEF) stimulus

database (44). Three variants of the stimulus set existed for Experiment 2. Variant 1 included 40

individuals (50% male) each with 5 facial expressions and 3 distinct face viewpoints (either Left

Away, Right Tilt, Straight or Right Away, Left Tilt, Straight). The 600 unique images were each

shown once for a total of 600 trials. Variant 2 included 8 individuals (50% male) each with all 5

facial expressions and 5 face viewpoints. The 200 unique images were shown 3 times each for a

total of 600 trials. Variant 3 included 4 individuals (50% male) with all 5 face viewpoints and a

neutral expression.

2.2.2 MULTIVARIATE TEMPORAL PATTERN ANALYSIS

Multivariate methods were used instead of traditional univariate statistics because of their su-

perior sensitivity (42, 45, 46, 47). In this study, Multivariate Temporal Pattern Analysis (MTPA)

decoders were used to estimate the coding of different stimulus conditions in recorded neural ac-

tivity from individual electrodes. MTPA estimates decoding accuracy at a given timepoint with

classifiers that use recorded neural activity as input features, within a time window (100 ms wide

in this study) which follows the timepoint. The time course of decoding accuracy for a trial is

estimated by sliding the time window over the duration of neural activity for the trial. We also

utilized more granular performance measures in addition to decoding accuracy, to gain insight

into the neural representation where relevant. The first of these were confusion matrices, which

were estimated for each MTPA time step. The second granular metric was d′, derived from the

confusion matrices and calculated as Z(true positive rate) – Z(false positive rate), where Z is the

inverse of the Gaussian cumulative distribution function. d′ was used because it is an unbiased
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Figure 2.1: Pairwise Identity Classification problem examples for a single identity pair. The analysis
iterates over all identity pairs as well as iterates over face viewpoints so that all face viewpoints serve
as a test set. (a) Viewpoint Dependent Pairwise Identity Classification at the Away Right Viewpoint.
(b) Mirror Invariant Identity Classification Tested on the Away Left Viewpoint. (c) Viewpoint Invari-
ant Identity Classification trained on Away Right Viewpoint and tested on all viewpoints except Away
Left (sidestepping the mirror invariance code).

measure of effect size and one that takes into account both the true positive and false positive

rates. It also has the advantage that it is an effect size measure that has similar interpretation

as Cohen’s d (48, 49) while also being applicable to multivariate classification. Previous stud-

ies have demonstrated that both the low-frequency and the high frequency neural activity, i.e.,

Evoked Response Potentials (ERP) and Evoked Response Broadband (ERPP), contribute to the

coding of facial information (42, 47, 50), therefore, both ERP and ERBB signals in the time

window are combined as input features for the MTPA classifier. For each electrode, permutation

tests with FDR corrections were used to assess statistical significance and control for multiple

comparisons inherent in MTPA. Mixed effects analysis to account for subject, electrode level

variability in estimating the standard error for population averaged classification accuracy over

time was implemented using a hierarchical bootstrap procedure (51) that is a non-parametric ap-

proach capable of capturing linear and non-linear effects and providing a more conservative view

of variability compared to linear (or non-linear) mixed effects analysis models.

MTPA is utilized in two contexts in this chapter. The first is 5 way decoding of face view-

point. The second is pairwise identity decoding for the different identity classification problems

enumerated in Fig. 2.1.
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CONFUSION MATRIX MIXTURE MODEL

A mixture model approach is developed for data driven representational analysis. The deriva-

tion, algorithm, bootstrap procedures to estimate variability in model parameters, construction

of a perfectly ‘saturated’ model to assess quality of fits in terms of variance explained and neu-

roscientifically meaningful interpretation of model parameters are detailed as follows.

Figure 2.2: (a) Data : Each sample (x ∈ ZD×D
≥ ) is a matrix where each entry is a whole number.

These samples represent un-normalized confusion matrices generated from a D category clas-
sification problem, with D = 5 categories representing 5 different face viewpoints in this case.∑D

i=1 xij is the number of trials for the jth true category of face viewpoint and
∑D

i=1

∑D
j=1 xij is

the total number of trials in the confusion matrix sample x. (b) Parameters : A normalized con-
fusion matrix where each entry pij represents the probability of a trial from the jth category being
classified as the ith category. We observe that pij ∈ [0, 1] ∀ i, j and use pj = [p1j, p2j, ..., pDj] as
shorthand for the multinomial random variable pj that represents each column.

Consider a data set X : [x1,x2, . . . ,xN ] of N of un-normalized confusion matrices (Fig.

2.2.a) generated as part of the 5–way face viewpoint classification problem. A single sample

from this dataset, xn ∈ ZD×D
≥ , ∀ n ∈ [1, N ] is visualized in Fig.2.2.a. Such data set can be

fit to templates which are parameterized as normalized confusion matrices, with each true cat-

egory modeled as a D outcome multinomial random variable and considered a column of the
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template as shown in Fig. 2.2.b. This implies that pj =
∑D

i=1 pij = 1 ∀ j ∈ [1, D], where

pij ∈ [0, 1] ∀ i, j ∈ [1, D]. The multinomial random variables that form each column are con-

sidered independent as a result of the experimental conditions under consideration (i.e. modeling

confusion matrices). Under this parameterization, the likelihood f(xn, pj) of a multinomial

random variable representing a single column, with a single sample (xn) can be written as

f(xn, pj) =
(
∑D

i=1 x
n
ij)!∏D

i=1(x
n
ij!)

D∏
i=1

p
xn
ij

ij (2.1)

Next, recalling that multinomial random variables for each column (‘True Category’) are in-

dependent we can write down the likelihood f(xn, p) for a sample (xn) against a parameterized

confusion matrix as

f(xn,p) =
D∏
j=1

f(xn, pj) =
D∏
j=1

[
(
∑D

i=1 x
n
ij)!∏D

i=1(x
n
ij!)

D∏
i=1

p
xn
ij

ij

]
(2.2)

and extend to estimate the likelihood for the entire dataset f(X,p)

f(X,p) =
N∏

n=1

f(xn,p) =
N∏

n=1

D∏
j=1

f(xn, pj) =
N∏

n=1

D∏
j=1

[
(
∑D

i=1 x
n
ij)!∏D

i=1(x
n
ij!)

D∏
i=1

p
xn
ij

ij

]
(2.3)

Maximizing the likelihood in Eq. 2.3 (and/or its log) would give us the optimal parameters

to fit the data against a single template. With a joint distribution and a likelihood function that

can be maximized to obtain parameters that best fit the data, it is natural to consider the scenario,

where the population of confusion matrices in a data set corresponds to multiple distinct latent

factors/confusion matrix templates, present in the data in different proportions. Using Eq 2.3 as

a building block, we define a K component mixture model with a prior π = [π1, . . . , πK ] and
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P (z = k) = πk, such that 0 ≤ πk ≤ 1 ;
∑K

k=1 πk = 1. We extend the notation such that p for the

kth component is denoted as pk and pij for the kth component will be denoted as pijk. Finally,

using Θ = {[pk, πk] ∀ k ∈ [1, K]} as shorthand for the parameter set, we can write down the

likelihood (conditioned on Θ) as

P (X|Θ) =
K∑
k=1

f(X,pk)πk =
K∑
k=1

πk

N∏
n=1

D∏
j=1

f(xn, pkj ) =
K∑
k=1

πk

N∏
n=1

D∏
j=1

[
(
∑D

i=1 x
n
ij)!∏D

i=1(x
n
ij!)

D∏
i=1

p
xn
ij

ijk

]
(2.4)

ALGORITHM: An Expectation–Maximization (EM) procedure (Algorithm 1) is used to esti-

mate model parameters that maximize a mixture model’s overall likelihood (Eq. 2.4) for a given

data set. Since the EM procedure is not guaranteed to reach a global minima, we estimate param-

eters for 25 different initializations when learning a model and pick the model which converges

to the highest likelihood among them.

Algorithm 1 Expectation Maximization algorithm to estimate mixture model parameters
1: Initialize θ randomly, rel tol = 1, last likelihood=0
2: while rel tol> 1e− 9 do
3: # Expectation Step (hold parameters fixed)
4: for each sample ‘n’ ∈ [1, N ] do
5: for each component ‘k’ ∈ [1, K] do
6: wnk ← f(xn,pk)πk∑K

l=1 πlf(xn,pl))

7: # Maximization Step (hold posteriors wnk fixed) and estimate model parameters
8: for each component ‘k’ ∈ [1, K] do
9: πk ←

∑N
n=1 wnk∑K

l=1

∑N
n=1 wnl

10: for i ∈ [1, D] do
11: for j ∈ [1, D] do
12: pijk ←

∑N
n=1 wnkx

n
ij∑N

n=1

∑D
i=1 wnkx

n
ij

13: rel tol← last likelihood - Eq 2.4
14: last likelihood← Eq 2.4

MODEL SELECTION: Selecting the appropriate number of components for a mixture model

is an empirical problem. In this study, we used 5 fold cross validation to evaluate log likelihoods
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(Eq. 2.4) for models with up to 10 components, in a similar way as MTPA with each fold serving

as the test set once. The average test log likelihood across the 5 folds was examined to choose the

optimal number of model components based on the 1 standard error rule (52), which posits that

the smallest/simplest model with an average test score within 1 standard error of the model with

the optimal test score should be chosen. This rule favors smaller models i.e. fewer components.

SATURATED MIXTURE MODEL: In order to assess a mixture model’s fit to the data, what

portion of variance in the data the models capture. To address this issue, model loglikelihoods

are normalized between a 1 component (average confusion matrix) model (serving as the floor)

and a ‘saturated’ model (serving as the ceiling). The ‘saturated’ model is constructed to grant a

parameter for each dimension of each sample confusion matrix. The model is handcrafted with

7575 components corresponding to 7575 confusion matrices in the data, and each components’

parameters are normalized versions of the sample confusion matrix i.e., the model is handcrafted

to fit the data perfectly.

INTERPRETING CORTICO-TEMPORAL DYNAMICS FROM POSTERIOR PROBABILITIES:

The constrained multinomial mixture model does not confer it with any notion of time or aware-

ness of which electrode a data sample corresponds to. As a result, the representations it learns

are not anchored in any way to these variables. However, since the knowledge of these variables

exists outside the model, the model output (posterior probability predictions) can be rearranged

as a #of Electrodes × # of MTPA time points × # of components tensor. Visualizing these time

series for each component as population averages (weighted or otherwise) over all electrodes

reveals how the face viewpoint representation evolves over time across the population of Ventral

Temporal Electrodes used in this study.

We also visualize a cortical probability map of the learned face viewpoint representation

using weighted Kernel Density Estimation, where posterior probabilities from the mixture model,

12



for each electrode (e) at each MTPA timepoint (t) serve as weights. A gaussian kernel (Euclidean

distance) with a bandwidth of 5 mm was used under the assumption that volume conduction was

the appropriate underlying model for signal propagation. The density function is estimated for

each model component (k) at each MTPA timepoint (t) as follows, and normalizing it across

components allows us to visualize how the face viewpoint representation changes over cortical

space and time for all model components.

f̂kt(x) =
1

Eh

E∑
e=1

we
ktΦ

(
x− xe

h

)
, where h = 5 mm,Φ(x) =

1√
2π

e
−x2

2 , where x is an MNI location

(2.5)

ESTIMATION OF REPRESENTATIONAL VARIABILITY: We estimate the variability, specifi-

cally the standard error of model parameters using confusion matrices from the MTPA bootstrap

described earlier (see Estimation of variability in classification results). We repeat the same

learning procedure described in Algorithm 1 for each of the re-sampled data sets, which corre-

sponds to running a non-parametric bootstrap in the context of mixture models.

Bootstrapping mixture models is accompanied by the ‘label switching problem’, where due

to random initialization of mixture components the learned components may be in a different

order for each bootstrap run. Correcting this and remapping components to ensure that they are

in the same order is necessary to estimate the variability of learned parameters for each compo-

nent (and its prior probability) correctly. To address the label switching problem, we align the

components learned from each bootstrap run’s data against the baseline model using Hellinger

Distance (Eq. 2.6), which is an f-divergence measure that quantifies the distance between two
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discrete distributions and is defined as follows for mixture components shown in Fig. 2.2.b

dHellinger(k1, k2) =
1√
2
×

√√√√ D∑
i=1

D∑
j=1

(√
pijk1 −

√
pijk2

)2
, where k1, k2 ∈ [1, K] (2.6)

For each bootstrap model, a K × K distance matrix dHellinger is calculated between the

baseline mixture model (indexed by k1) and the bootstrap mixture model (indexed by k2). The

mapping procedure shown in Algorithm 2 is used to assign each component of the baseline

mixture model to the ‘closest’ component of the bootstrap mixture model, while ensuring a 1 to

1 mapping between baseline and bootstrap mixture model components.

Algorithm 2 Mapping procedure to map baseline and bootstrap mixture model components
1: Initialize minmaps as None
2: for k1 ∈ [1, K] do
3: min distances = dHellinger(k1, :)
4: Initialize match = False, index = 0
5: while match is False do
6: if min distances[index] in minmaps then
7: index = index + 1
8: else
9: minmaps[k1] = min distances[index]

10: match=True

Once all the bootstrap mixture models are aligned to the baseline mixture model, we estimate

the standard deviation for each model parameter across the bootstrap models, which corresponds

to the standard error for those parameters in the baseline model.

STRUCTURED COMPONENT TEMPLATES IN MIXTURE MODELS: In addition to a purely

data driven approach to learning representational structure, we defined templates with a reduced

number of free parameters in a manner which constrained their structure. The structural con-

straints were motivated by results about the representational structure of face viewpoint from

existing studies in both primates and humans. These structured templates included a linear angle

code and a mirror symmetric code. There were uniform/strict and relaxed versions of each. A

14



fixed template with no free parameters (i.e. noise) was also defined. The EM procedure defined

in Algorithm 1 applies with minor modifications to steps 10,11,12. For the Noise template (Fig.

2.7.a), Steps 10,11 and 12 from Algorithm 1 are simply skipped and for the remaining templates

in Fig. 2.7.b,c,d,e, they are substituted with the steps in Algorithm’s 3,5,6,4 respectively.

Algorithm 3 Linear Angle Parameter Estimate

θ ←
∑N

n=1

∑D
i=1 wnkx

n
ii∑N

n=1

∑D
i=1

∑D
j=1 wnkx

n
ij

θ′ ← 1−θ
4

Algorithm 4 Mirror Symmetric Relaxed Parameter Estimate

θ1 ←
∑N

n=1 wnk(x
n
11+xn

15+xn
51+xn

55)∑N
n=1

∑D
j=1

∑D
i=1 wnkx

n
ij

θ2 ←
∑N

n=1 wnk(x
n
22+xn

24+xn
42+xn

44)∑N
n=1

∑D
j=1

∑D
i=1 wnkx

n
ij

θ3 ←
∑N

n=1 wnkx
n
33∑N

n=1

∑D
j=1

∑D
i=1 wnkx

n
ij

θ′1 ← 1−2θ1
3

θ′2 ← 1−2θ2
3

θ′3 ← 1−2θ3
4

Algorithm 5 Linear Angle Relaxed Parameter Estimate

for j ∈ [1, D] do
θj ←

∑N
n=1 wnkx

n
jj∑N

n=1

∑D
i=1 wnkx

n
ij

θ′j ←
1−θj
4

Algorithm 6 Mirror Symmetric Parameter Estimate

θ ←
∑N

n=1

∑D
i=1 wnk(x

n
ii+xn

D−ii+1)∑N
n=1

∑D
i=1

∑D
j=1 wnkx

n
ij

θ′ ← 1−2θ
3

;
θ′′ ← 1−2θ

4
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2.3 RESULTS

2.3.1 FACE SELECTIVE ELECTRODES

Figure 2.3: Face Selectivity: 75 electrodes characterized as face selective (57/18 in Left/Right
hemisphere of which 41/12 were posterior to MNI Y coordinate = -45) based on (a) Anatomical
constraints that restrict them to the mid-fusiform sulcus (MFS), or the fusiform, obitotemporal and
parahippocampal gyri, or in the sulci adjacent to the fusiform gyrus. (b) Greater signal strength (ERP)
for electrodes in response to faces as compared to other object categories from the localizer experi-
ment (representative example). (c) Greater statistical specificity/sensitivity (d′) for faces as compared
to other object categories for electrodes from Multivariate Temporal Pattern Analysis (MTPA) (see
Methods for details) of neural activity from the localizer experiment (representative example).

A three fold criterion was used to identify face selective electrodes using data from a localizer

experiment. The first part was anatomical constraints that limited analysis to electrodes in ventral
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temporal cortex (Fig. 2.3.a). The second was the relative strength of response to face vs. non-

face stimuli (Fig. 2.3.b). The third was statistically significant face sensitivity (Fig. 2.3.c).

These criteria identified 75 face selective electrodes from 19 subjects for analysis, with 57/18 in

Left/Right Hemispheres of which 41/12 lay posterior to MNI Y coordinate = -45. The imbalance

in hemispheric sampling reflects an imbalance in implanted electrodes in the subject population.

2.3.2 THE NEURAL CODE FOR FACE VIEWPOINT

FACE VIEWPOINT CLASSIFICATION

Neural decoders with Linear Discriminant Analysis (LDA) classifiers were trained to pre-

dict face viewpoint, using combining the ERP and ERBB activity over a 100 ms sliding time

window as input and classification accuracy (and d′) versus time trends curves were estimated

for each face selective electrode using 5 fold cross validation and Multivariate Temporal Pattern

Analysis (MTPA). 70 out of the 75 electrodes exhibited statistically significant classification ac-

curacy (Fig.2.4.a), and≈86% of all electrodes were significant 170 - 260 ms after stimulus onset

(Fig.2.4.b). Population averaged classification accuracy (Fig.2.4.c) revealed a single peak at 220

ms.

Population averaged d′ for each face viewpoint offered a finer grained view of discriminabil-

ity underlying classification accuracy (Fig. 2.4.d). Peak discriminability and discriminability ver-

sus time differed by face viewpoint, but in a mirror symmetric manner (e.g., similar peaks/time

courses partial side profiles (Tilt/45◦). Front facing profiles exhibited the strongest discriminabil-

ity curves, followed by side (Away/90◦) profiles. Notably, partial side profiles (Tilt/45◦) exhib-

ited the weakest peak discriminability. We refer to this effect as ‘anchoring’, where extreme face

viewpoints are strongly encoded in neural activity, with relatively weaker encoding for interme-

diate viewpoints. A hemispheric bias effect (53) was also observed for discriminability of face

viewpoint in the population averages for each hemisphere.

17



Figure 2.4: Face Viewpoint Classification: (a) Cortical distribution of statistically significant
(p<0.05 in blue) electrodes (70 of 75) for face for face viewpoint classification. (b) Percentage of
electrodes that are statistically significant over time. (c) Population averaged classification accuracy
(chance = 0.2) ± standard error (shaded band) vs. time. (d) Population averaged d′ ± standard error
(shaded band) vs. time for each face viewpoint.
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THE FACE VIEWPOINT REPRESENTATION

Figure 2.5: Population and time window (20 ms) averaged confusion matrices from face viewpoint
classification starting from stimulus onset (top row left most confusion matrix) to the end of trial
(bottom row right most confusion matrix) 1000 ms later, with each row depicting a 200 ms interval.
Cells closer to chance (0.2) are depicted in paler/whitish hues. Cells with predictions significantly
above and chance are depicted with redder and bluer hues respectively.

Confusion matrices estimated during face viewpoint classification reflect the neural represen-

tation of face viewpoint as seen by classifiers. A confusion matrix time series is estimated for

each electrode during MTPA. A population averaged time series of confusion matrices (Fig. 2.5)

suggests a mirror symmetric representation is part of the face viewpoint code, but visualizing

averages is a coarse approach, limited in its ability to reveal representational diversity that may

underlie the average.

In order to reveal the underlying representational structure for face viewpoint in the neural

code, a novel mixture model that uses confusion matrices as mixture components was developed

(See Appendix A for details) and we performed representational analysis using three different
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approaches. The first approach used a purely data driven mixture model. The second approach

used structured templates motivated by prevailing hypotheses about face viewpoint representa-

tions, constraining the degrees of freedom in the mixture model. The third approach involved

representational similarity analysis (33), comparing neural representations of face viewpoint with

a recent biologically plausible computational model of face processing implemented as a deep

learning network (54).

Figure 2.6: Data driven neural representation of face viewpoint: (a) mean (black line)± standard
error (gray band) depicting percentage of variance explained vs. # of components (K ∈ [1, 10]) by
mixture models in cross validation based model selection. The average confusion matrix (K=1) serves
as the baseline (0%) and a perfect ‘saturated’ model (See Appendix A for details) constructed to assess
goodness of fit serves as the ceiling (100%). The optimal model size (K=4; marked by ‘x’) is chosen
by applying the 1 SE rule (52) to the best fit model (K=10; marked by ‘o’) and it captures 61%
of the variance on this scale. (b) Mixture model components are displayed in descending order of
prior probabilities ± standard error (on top for each component) for the optimal (K=4) model. The
standard error for each component’s parameters (i.e., individual cells in each 5 x 5 component) is
< 0.02 across all parameters and components. (c) The time course (± standard error) of population
averaged posterior probabilities for each model component with grey vertical line at 220 ms denoting
time of peak classification accuracy (per Fig. 2.4.c). (d) Cortical heat maps with the probability of
each model component (except π1, the additive inverse of the visible heatmaps) 220 ms after stimulus
onset. See Supplementary Video visualizing temporal dynamics of cortical heat maps.

DATA DRIVEN FACE VIEWPOINT REPRESENTATIONS Model selection was performed by

training mixture models varying in size (K ∈ [1, 10] components) using 5 fold cross validation,

paired with the 1 SE model selection rule (52) that favors parsimonious models. Model fits were
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evaluated by normalizing test loglikelihoods on a scale with the K = 1 component model as

the baseline (0%) and a perfect ‘oracle’ model constructed to assess goodness of fit serves as the

ceiling (100%) (See Appendix A for details). The optimal (K = 4 components) model captures

≈61% additional variance (relative to the baseline K = 1 component model/average confusion

matrix) on this scale (Fig. 2.6.a).

The 4 component data driven model revealed a vivid representational structure. Notably,

a null component reflecting (π1 in Fig.2.6.b) the absence of face viewpoint information for

all viewpoints was the most dominant component in the mixture (π1 = 0.7326 ± 0.0594).

‘Anchoring’ i.e., strong coding at front facing and side (Away/90◦) profiles and weak coding

for partial side (Tilt/45◦) profiles, was a common feature across the remaining components

(π2–π4). Unambiguous characterization of these components (π2–π4) as linear angle or mir-

ror symmetric was challenging from visual inspection. The second most prevalent component’s

(π2 = 0.1711±0.0482) structure exhibited qualitative similarities to a linear angle code with ‘an-

choring’ (π2 in Fig.2.6.b), although the anti-diagonal elements for the side profiles (Away/90◦)

prevent ruling out a mirror symmetric code. The structure of the remaining two components

(π3, π4 in Fig.2.6.b) exhibited qualitative similarities to a mirror symmetric viewpoint (i.e., con-

fusion between left and right profiles) with ‘anchoring’. In these mirror symmetric components,

mirror confusion at the anti-diagonal appeared weaker than correct classification along the diag-

onal. π3 and π4 were contrasted from one another by the strength of coding, and appeared to be

scaled versions of one another, with the relatively more abundant mirror symmetric component

(π3 = 0.0673 ± 0.0106) exhibiting relatively weaker coding (diagonal) and mirror symmetry

(anti-diagonal) in comparison to the least abundant component (π4 = 0.029± 0.0044).

Posterior probabilities for confusion matrices from each electrode, organized by time and av-

eraged across the electrode population visualized temporal dynamics, and the relative strength of
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different representational components in the electrode population over time (Fig. 2.6.c). Spatio-

temporal heatmaps (Fig.2.6.d and supplementary video) for π2–π4 incorporating posterior prob-

abilities of different components for each electrode revealed different face viewpoint representa-

tions can rise and fall over time in sampled regions of ventral temporal cortex.

Figure 2.7: Structurally constrained, minimally parameterized representational templates:
Confusion matrix templates corresponding to specific hypotheses about the face viewpoint code in-
cluding (a) Null (b) A linear angle code (c) A relaxed linear angle code (referred to as ‘LR’), where
the specificity of individual face viewpoints varies. (d) A mirror symmetric face viewpoint code (re-
ferred to as ‘MS’) (e) A relaxed mirror symmetric face viewpoint code (referred to as ‘MSR’), where
the mirror symmetric specificity of different face viewpoint profiles (away, tilt, straight facing) varies.
(f) A symmetrically relaxed mirror symmetric viewpoint code (referred to as ‘MSRS’), where the
mirror symmetric specificity of away and tilt profiles is identical, independent of direction (left/right).
(g) A symmetrically relaxed mirror symmetric viewpoint code allowing unequal mirror confusion
confusion (referred to as ‘MSRA’), where the mirror symmetric specificity of away and tilt profiles is
identical, independent of direction (left/right) and the diagonal/anti-diagonal parameters can differ.

HYPOTHESIS DRIVEN FACE VIEWPOINT REPRESENTATIONS Structurally constrained and

minimally parameterized templates were developed to capture canonical linear angle, mirror

symmetric face viewpoint and null representations. Additional relaxed versions of canonical

representations were developed based on phenomena (e.g., ‘anchoring’, hemispheric bias, and
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Figure 2.8: Hypothesis driven face viewpoint representation: (a) mean (bars) ± standard error
(black line) depicting percentage of variance explained for the models that contain 2 - 7 components,
with unique structured templates shown in Fig. 2.7 serving as components (and the ‘Null’ compo-
nent mandated). The average confusion matrix serves as the baseline (0%) and a perfect ‘saturated’
model (See Appendix A for details) constructed to assess goodness of fit serves as the ceiling (100%).
The text on top of each bar enumerates the structured templates present in the best model and (i.e.,
combination of 2,3,4,5,6 and 7 templates that provides the best fit for each model size) and the num-
ber of free parameters they add up to. A clear knee in additional variance explained is visible for
the best 3 component model which contains the Linear Relaxed (‘LR’) and Mirror Symmetric IV
(‘MSRA’), that emerge as the most essential out of the 7 structured templates and account for 40% of
additional explained variance in the data (b) Mixture model components in descending order of prior
probabilities (± standard error; shown on top for each component) for the optimal (denoted by * in
(a)) 3 component mixture model which features a ‘Null’, ‘Linear Relaxed’ and ’Mirror Symmetric
IV’ component (which allows for weaker mirror confusion, but forces symmetry across left and right
viewpoints). The standard error for each component’s parameters (i.e., individual cells in each 5 x
5 component) is < 0.02 across all parameters and components. (c) The time course (± standard er-
ror) of population averaged posterior probabilities for each model component. (d) Cortical heat maps
showing the probability of each model component over cortical regions sampled as part of this study
at a single MTPA timepoint 120 ms after stimulus onset (moment of peak classification accuracy per
Fig. 2.4.b) (see Appendix A for details). See Supplementary Video visualizing the temporal dynamics
of these heat maps during stimulus presentation.
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weaker mirror confusion) observed in the population average time series and data driven models

(Fig. 2.5,2.6). As a starting point for model selection, a 7 component mixture model with one

template of each type (a total of 7) was evaluated using 5 fold cross validation. The template

which contributed the least was identified and removed (with the exception of the null compo-

nent) to arrive at the best 6 component model, and subsequently, the best 5, 4, 3 and 2 component

models. The best 3 component model was the optimal choice (Fig. 2.8.a), explaining ≈40% ad-

ditional variance, a noticeable improvement over≈33% in the best 2 component model, whereas

models with additional components offered little improvement (<41%) over the best 3 compo-

nent model.

The best 3 component model featured relaxed versions of a linear angle and mirror symmet-

ric representation. ‘Anchoring’ emerged as an essential property of the linear angle represen-

tation, and weaker mirror confusion as an essential property of the mirror symmetric represen-

tation (Fig. 2.8.b). Within the model, the ’linear relaxed’ component was dominant (πLR =

0.2389 ± 0.0108) compared to the ‘mirror symmetric’ template with weaker mirror confusion

(πMSRA = 0.0905± 0.011).

Posterior probabilities for confusion matrices from each electrode, organized by time and av-

eraged across the electrode population visualized temporal dynamics, and the relative strength of

different representational components in the electrode population over time (Fig. 2.8.c). Corre-

spondence between the time courses of posterior probabilities was also observed between the best

3 component model and the data driven model. πMSRA mirrored the combined time courses of π3

and π4 (mirror symmetric components with weaker mirror confusion in the data driven model),

whereas πLR mirrored π1, supporting an ’anchored’ linear angle code as the latter’s essential rep-

resentational structure. Spatio-temporal heatmaps (Fig.2.8.d and supplementary video) for πLR

and πMSRA incorporating posterior probabilities of different components for each electrode also
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revealed qualitative similarities in the spatio-temporal dynamics of both models.

Figure 2.9: (a) Representational Similarity Matrices for EIG’s putative Linear and Mirror Symmetric
Layers, for stimulus images from Variant 3 of the face perception experiment using ’correlation’
distance (represented by the color bar) (b) Population averaged Correlation ± standard error (shaded
bands) between EIG and Neural representational similarity matrices vs. time.

REPRESENTATIONAL SIMILARITY ANALYSIS BETWEEN A COMPUTATIONAL MODEL FOR

FACE VIEWPOINT AND NEURAL ACTIVITY Representational Similarity Analysis (RSA) was

carried out to compare neural activity and a computational model called the Efficient Inverse

Graphics (EIG) Network (54). The EIG network is a deep learning model whose architecture is

constrained to match the face patch system of non-human primates, and trained to reconstruct

faces from images by predicting the coefficients of a linear face model (55). The EIG’s network

activations has shown strong correspondence with face viewpoint and identity representations in

single unit recordings from non-human primates (40). Here, representational similarity matrices

were computed using correlation distance for time windowed neural activity for each electrode,

and the Efficient Inverse Graphics (EIG) Network’s putative linear angle and mirror symmetric

layers using stimulus images from Variant 3 of the face perception experiment. The representa-

tional similarity matrix corresponding to the EIG network’s putative linear angle layer lacked the

‘anchoring’ effect observed in neural data reflected in preceding representational analyses. The

representational similarity matrix for the EIG network’s putative mirror symmetric layer revealed

an ‘anchored’ mirror symmetric representation with weaker mirror confusion, qualitatively sim-
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ilar to the mirror symmetric components (π3, π4 in Fig. 2.6.b, πMSRA in Fig. 2.8.b) in the data

driven and template based mixture models.

Population averages of correlation versus time trends between neural and EIG representa-

tional similarity matrices for face viewpoint estimated using MTPA for each face selective elec-

trode revealed early peaks (Fig. 2.9.b) for both EIG layers. Notably, the correlation between the

‘anchored’ mirror symmetric layer and neural data achieved a higher peak relative to the putative

linear angle layer. This represents a reversal of the relative dominance of the linear angle code

(over the mirror symmetric code) in its ‘anchored’ forms in preceding representational analysis

using mixture models.

2.3.3 THE NEURAL CODE FOR IDENTITY

Neural decoders with Linear Discriminant Analysis (LDA) classifiers were trained to predict

identity for each within-gender identity pair, combining the ERP and ERBB activity over a 100

ms sliding time window as input and classification accuracy versus time trends curves averaged

across identity pairs and face viewpoints were estimated for each face selective electrode using

5 fold cross validation and Multivariate Temporal Pattern Analysis (MTPA). For each electrode,

permutation tests with FDR corrections were used to assess statistical significance and control

for multiple comparisons inherent in MTPA. Identity classification analysis was undertaken for

47 electrodes from subjects who performed Variant 3 of Experiment #2 only, to ensure that for

each identity pair, there were sufficient trials train classifiers. 12 of 47 eligible electrodes (≈

25%) were statistically significant for viewpoint dependent identity classification (Fig. 2.10.a),

5 of 47 electrodes (≈ 10%) for mirror invariant identity classification (Fig. 2.10.b) and 14 of 47

electrodes (≈ 30%) for viewpoint invariant identity classification (Fig. 2.10.c).

Classification accuracy versus time curves (Fig. 2.10.d) averaged across the statistically sig-

26



Figure 2.10: Cortical locations of electrodes that show statistically significant (p<0.05) identity
decoding in a (a) Viewpoint Dependent context (b) Mirror Invariant context (c) Viewpoint Invariant
context. (d) The number of electrodes which achieve statistically significant identity decoding (at
any point in time) Viewpoint Dependent, Mirror Invariant, and Viewpoint Invariant identity decoding.
(e) Percentage of statistically significant electrode population (quantified in d) exceeding statistical
significance (p<0.05, FDR corrected) over time (smoothed over 50 ms) for Viewpoint Dependent,
Mirror Invariant, and Viewpoint Invariant identity decoding.
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nificant electrode population suggests (supported by Fig. 2.10.e) that statistically significant

electrodes for viewpoint dependent and mirror invariant identity classification may be statisti-

cally significant at similar time frames to each other, whereas electrodes that achieve statistical

significance for viewpoint invariant identity classification do so at different time frames.

2.3.4 FACE VIEWPOINT AND IDENTITY

Figure 2.11: Posterior probabilities of Face Viewpoint Representations for non-null components
(πLR and πMSRA) of the best 3 component structured mixture model in Fig. 2.8.b, averaged over
Significant and Non Significant Identity Classifying Electrode Populations for (a,d) Viewpoint De-
pendent Identity Classification. (b,e) Mirror Invariant Identity Classification. (c,f) Viewpoint Invari-
ant Classification.

Time courses of face viewpoint representations from the data driven model were averaged

for statistically significant and non-significant electrode sub-populations for Viewpoint Depen-

dent, Mirror Invariant and Viewpoint Invariant Identity Classification (Fig. 2.11). For each

type of identity classification, the statistically significant electrodes exhibited a distinct temporal

signature in the face viewpoint space, relative to the non-significant electrodes. In statistically

significant electrodes subpopulations, the ‘anchored’ linear angle representation dips early, mak-

ing room for the ‘anchored’ mirror symmetric components peak. The ‘anchored’ linear angle

representation exhibits its peak later (≈300-500 ms after stimulus onset) as the mirror symmet-
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ric representation decays into ‘anchored’ linear angle representation (see supplementary video).

This is a sharp contrast to the non-significant electrode population where those components ex-

hibit temporal signatures similar to each other and aligned with the population average (Fig.

2.8.c). This observation that a substantial weak mirror confusion component in the face view-

point representation is distinctly correlated with the neural code for face identity.

2.4 DISCUSSION

This study combines a novel mixture model framework for latent representational analysis

with high resolution (iEEG) recordings of brain activity from 19 subjects to study face view-

point and identity representations in the human face processing network. The results reveal

previously unreported aspects of the face viewpoint and identity representations, accompanied

by a fine grained view of their neurodynamics, and elucidate how face viewpoint and identity

representations relate. These insights establish the novel method’s efficacy in identifying a la-

tent representational basis from a population of neural similarity matrices under different (purely

data driven, hypothesis constrained and purely hypothesis driven) analytical settings, which un-

derscores its promise as a tool for latent representational analysis beyond the neuroscientific

questions explored here.

2.4.1 FACE VIEWPOINT AND IDENTITY: REPRESENTATION AND NEU-

RODYNAMICS

The latent representational basis for face viewpoint estimated from neural data has several

characteristics that validate the mixture model framework’s efficacy. One such observation is the

emergence of a dominant ‘null’ representational component which reflects the absence of face

viewpoint information in portions of brain activity evoked by faces. Reorganizing model pos-

terior probabilities by unknown external covariates such as time and electrode reveals temporal
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dynamics for face viewpoint representations that are consistent with classification time courses.

Lastly, the hemispheric bias effect (53) in the structure of estimated representational components

reflects the imbalanced hemispheric sampling of the electrode population.

Representational analysis for face viewpoint spanning data driven, hypothesis constrained and

hypothesis driven settings all converge to similar conclusions and add novel insights to the broad

consensus about face viewpoint representations in literature. Specifically, the model reveals

weaker mirror confusion (i.e., there is a statistically significant difference between viewpoint

coding and mirror confusion) in partially (mirror) symmetric representations that has not been

reported previously. Similarly, previously unreported ‘anchoring’ effects emerge for the view-

point dependent representation, showing consistency with partially (mirror) invariant represen-

tations for which ‘anchoring’ has been reported (40, 56). Notably, the population level repre-

sentational findings (i.e., ‘anchoring’, weaker mirror confusion) find some support at the single-

unit level (32) and correlate with face viewpoint aftereffects reported by psychophysical studies

(57, 58, 59, 60), which support the idea of a multichannel coding scheme for face viewpoint.

The neurodynamics of face viewpoint representations across the face processing network are

visualized at high spatial and temporal resolution by fusing model predictions with external co-

variates (time, electrode, and cortical location). They reveal an ’anchored’ viewpoint dependent

representation as an early baseline response, which gives way to an ‘anchored’ mirror symmetric

representation over most of the sampled areas of the face processing network, that decays back to

the early baseline response eventually dissipating to a null representation. These findings present

a contrast to existing results from human imaging (39, 61) that suggest similar compartmental-

ization of face viewpoint as observed in non-human primates (40) and are supported by spatially

coarser results from human scalp EEG studies (56). These findings also offer potential resolution

existing debates about viewpoint dependence (41, 62) or mirror symmetry (39, 61) being the de
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facto representation in the fusiform, which has roots in methodological considerations (62) that

do not arise in iEEG analysis using MTPA. By offering a potential resolution to the ”either or”

ambiguity about the fusiform and showing a lack of purely spatial compartmentalization for face

viewpoint representations, the neurodynamics for face viewpoint representations suggest the that

the information processing hierarchy (for face viewpoint) in the face processing network spans

cortical space and time.

Identity decoding reveals statistically significant decoding for viewpoint dependent, mirror in-

variant and viewpoint invariant identity representations across the face processing network, with

multiple identity representations arising in the same electrode in several instances. These findings

present a similar lack of spatial compartmentalization along a posterior-anterior gradient as ob-

served for face viewpoint, contrasting with existing results (39, 40, 61). Temporal dynamics offer

a contrasting picture for different identity representations, with electrodes significant for view-

point dependent and mirror invariant identity classification achieving significance early (<300

ms), whereas statistical significance for viewpoint invariant electrodes is distributed over time in

an early (<300 ms) and late (>500 ms) window. These observations suggest that feedforward

propagation alone does not explain information processing for identity in the face processing

network.

Lastly, independent of the type of identity representation (viewpoint dependent, mirror invariant

or viewpoint invariant), the face viewpoint representations for electrodes that exhibit statisti-

cally significant identity decoding reveals a distinctly stronger mirror symmetric face viewpoint

representation (which dissipates by 500 ms) relative to the non-significant electrode population.
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2.4.2 LATENT REPRESENTATIONAL ANALYSIS USING CONFUSION MA-

TRIX MIXTURE MODELS

The mixture model framework expands the possibilities for latent representational analysis

within the RSA framework. It’s use confers several conceptual and functional advantages but

requires care toward operational considerations.

CONCEPTUAL ADVANTAGES

Conceptual advantages emerge from the use of confusion matrices as a representational primitive

and the inherent linear structure of mixture models. Confusion matrices capture neural represen-

tations for decoded stimulus parameters, as seen by the underlying classifier through the lens of

a distance measure. Depending upon the classifier, confusion matrices can subsume traditional

distance measures used in RSA (e.g., correlation, cosine, or mahalanobis), but they can also

capture representations extracted from patterns of neural activity by non-parametric classifiers

(e.g., k Nearest Neighbors or Decision Trees) that have nebulous relationships with established

distance measures. This broad, information focused reach of confusion matrices makes them a

compelling representational primitive to support the RSA framework’s own broad scope. Indeed,

the RSA framework recognizes this promise by admitting confusion matrices as representational

primitives (33). However, prior efforts have not realized this promise fully, possibly due to a lack

of statistical tools for second latent representational analysis (63, 64). Next, modelling confusion

matrices as a collection of multinomial random variables incorporates a natural noise model for

the distribution of errors in discrete outcomes (corresponding to distinct stimuli), relative to the

gaussian noise assumptions inherent in existing regression based approaches. Lastly, mixture

probabilities (for models) and posterior probabilities (for samples) in a linear model provide a

normalized and intuitive interpretation about the importance of different components in the latent

representational basis at different scales (i.e., samples, population).
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FUNCTIONAL ADVANTAGES

Functional advantages arise from the framework’s versatility in supporting multiple analytical

settings, and fusion of model predictions and external covariates (e.g., time, electrode and corti-

cal location in this study) to obtain neuroscientifically meaningful interpretation (neurodynamics

in the present study) beyond the structure of the model itself.

Purely data driven estimation of a latent representational basis lets the data speak for itself with-

out being constrained by existing (model derived or researcher defined) representational hypothe-

ses. Such data driven exploration can enable development of new representational hypotheses

where none exist, or support the refinement and validation of existing hypotheses (as shown

here). The development of new hypothesis constrained templates (Fig. 2.7.d,e,f,g) for face view-

point in this study capture previously unreported representational characteristics revealed by data

driven analysis serves as an example of fruitful interplay between data driven and hypothesis con-

strained analyses supported by the framework. Computational models, such as encoding models

are a compelling way to explore information processing in the neural substrate, particularly when

experiments are challenging or impossible to conduct. Given the large search space of possible

computational models, validating model behavior and representations against neural ground truth

becomes an important prerequisite to gaining insights from them, and may also guide their devel-

opment. The hypothesis driven analytical setting of the statistical framework supports validating

model representations against neural data with import of a fixed (i.e., non-parameterized) latent

representational basis that may be obtained from computational models. Combining hypothesis

driven analysis with representational results from data driven and hypothesis constrained anal-

yses, as shown here, reveals insights about agreement (EIGMS) or divergence between models

and neural representations (lack of ‘anchoring’ in the EIGLIN.). Usage of the framework for face

viewpoint analysis demonstrates convergence toward a set of complementary representational

results that combine the framework’s capabilities (analytical flexibility, fusion with external co-
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variates) to converge to robust insights.

OPERATIONAL CONSIDERATIONS

MODEL SIZE AND MODEL SELECTION Data driven modeling induces a natural bias toward

larger models for better fits. Model selection criteria such as cross validated model selection

(combined with the 1 standard error rule) (52) balance the tradeoff between model size and qual-

ity of fit, in favor of parsimony. The use of hypothesis constrained templates whose parameters

are estimated in a data driven manner introduces a distinct challenge in the model selection pro-

cedures, which can be addressed by adding a simple combinatorial step into the model selection

process (i.e., which combination of templates is the best in a 2 component model?). The combi-

natorial aspect of the problem can be quite challenging, particularly if the number of hypothesis

templates available is non-trivial, and our approach (see Methods for exact details) constrains the

combinatorial complexity by constraining the search space in a systematic manner (i.e., one a

hypothesis template is removed from a large model because it fares poorly in terms of explaining

the data compared to other options, it does not get considered again). Lastly, we add flexibility

and introduce a search space using the dilution approach for externally imported hypotheses,

since they may struggle to fit the data in cases of variable SNR in the neural activity. All three

approaches for all three analytical settings are aligned with cross-validated model selection, but

with slight variations for customization to unique considerations that arise in each analytical

setting. The model selection approach is also flexible in terms of the measures used and cross-

validated fits can easily be substituted with the Akaike Information Criterion (AIC) (65) or the

Bayesian Information Criterion (BIC) (66), if desired.

MIXED EFFECTS ANALYSIS FOR REPRESENTATIONAL RESULTS The assessment of vari-

ability for results, within individuals, a group of individuals or across groups is an important step

toward generalizing neuroscientific findings emerging from any analysis, including representa-

tional analysis. Mixed effects analysis, using linear or non-linear models is a frequently used
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approach. However, non-parametric procedures such as the simple bootstrap or a hierarchical

bootstrap (67, 68, 69) enable model free assessment of variability with the advantage of account-

ing for linear and non-linear effects, conservative estimates of variability as compared to model

based methods for mixed effects analysis (51). The results presented here demonstrate the use of

a hierarchical bootstrap approach for representational analysis to account for variability arising

from subject, electrode and trial level effects on representational results.

SAMPLE COMPLEXITY The number of parameters estimated for a K component model with

D categories in a purely data driven model scales as O(KD2). The number of samples required

to estimate model parameters reliably increases with the number of parameters to be estimated.

Sample complexity manifests as two considerations in the context of representational analysis

in the context of the mixture model. The first is to have a sufficient number of confusion ma-

trices in the data set. The second is to have a sufficient number of instances (trials) in the cells

of confusion matrices being used for modeling. Sample complexity is subject to the true na-

ture of the distribution from which samples come. For example, if the underlying rank of the

high dimensional data is low and then fewer samples may be sufficient to estimate mixture pa-

rameters. However, in practice it may not be possible to make or verify such assumptions, and

sample complexity remains an important consideration for the use of these models. The use

of structurally constrained and minimally parameterized templates has the potential to mitigate

sample complexity challenges for representational analysis of small datasets. With well framed

representational hypotheses, models with fewer parameters may offer meaningful and reliable

representational insights.
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CHAPTER 3

A NEW PARADIGM FOR INVESTIGATING

REAL WORLD SOCIAL BEHAVIOR AND ITS

NEURAL UNDERPINNINGS

Eye tracking and other behavioral measurements collected from patient-participants in their

hospital rooms afford a unique opportunity to study immersive natural behavior for basic and

clinical translational research. We describe an immersive social and behavioral paradigm im-

plemented in patients undergoing evaluation for surgical treatment of epilepsy, with electrodes

implanted in the brain to determine the source of their seizures. Our studies entail collecting eye

tracking with other behavioral and psychophysiological measurements from patient-participants

during unscripted behavior, including social interactions with clinical staff, friends and family,

in the hospital room. This approach affords a unique opportunity to study the neurobiology

of natural social behavior, though it requires carefully addressing distinct logistical, technical,

and ethical challenges. Collecting neurophysiological data synchronized to behavioral and psy-

chophysiological measures helps us to study the relationship between behavior and physiology.

Combining across these rich data sources while participants eat, read, converse with friends and

family, etc., enables clinical-translational research aimed at understanding the participants’ disor-

ders and clinician-patient interactions, as well as basic research into natural, real-world behavior.
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We discuss data acquisition, quality control, annotation, and analysis pipelines that are required

for our studies. We also discuss the clinical, logistical, and ethical and privacy considerations

critical to working in the hospital setting.

3.1 INTRODUCTION

Real-world behaviors such as social interactions are traditionally studied using simplified

laboratory conditions in order to control for inherent natural complexities. Real-world environ-

ments offer the opportunity to study behavior, and its physiological correlates, in ecologically

valid settings. Technological advances in recent decades have enabled us to capture and ana-

lyze critical behavioral and physiological variables in real time, over long periods of time, with

greater fidelity than ever before (31, 70, 71, 72) to enable modeling real-world variability and

complexity through large datasets using modern computational methodology. Doing so in real-

world environments allows us to convert real-world complexities from problems to assets, which

can prove transformative for understanding natural behavior and its relationship to physiology

(15, 16, 18, 19).

The inpatient hospital environment is a distinctive real-world setting for investigating the re-

lationship between behavior and physiology. It features monitoring of physiological data (elec-

trocardiograms, electromyograms, heart rate, blood pressure, neural recordings, etc.) as part of

standard care that can be augmented with behavioral monitoring (eye–tracking, egocentric video

and audio recording, etc.). It also offers the opportunity to observe the relationship between

behavior, perception, and physiology before, during, and after clinical events relevant to the pa-

tients’ pathology. From a clinical perspective, a deeper grasp of the relationship between behav-

ior and physiology accompanying clinical events has broad implications for diagnostics and our

understanding of physiological-behavioral relationships in clinical disorders (73, 74, 75). In ad-

dition, the hospital setting provides the opportunity to capture key caregiver–patient interactions,
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whose salience for patients in such an environment cannot be overstated (76, 77). Modeling these

interactions has deep implications in terms of understanding joint clinical decision-making, clin-

ical information transfer, patient outcomes, patient satisfaction and the informed consent process

in ways that cannot be replicated in controlled lab environments (78, 79, 80, 81, 82). From a

basic science perspective, the inpatient hospital environment also offers a compelling immersive

environment to advance basic knowledge by studying natural behavior, such as interactions with

friends and family, clinicians, eating, reading etc., in patients that have simultaneous behavioral,

physiological and psychophysiological monitoring (83).

Real-world behavior encompasses a multitude of physiological and behavioral processes un-

folding at different timescales, which are affected by ‘change events’ in the environment itself

(84). This makes them challenging to study. Successfully studying the relationship between

behavior and physiology in such settings requires extracting meaningful insights from data that

are rich, complex and heterogeneous in nature and varied in time. Inpatient hospital settings are

subject to these considerations, as well as the additional complexity of hospital environments

where unpredictable and potentially adverse events may unfold for patients. In addition, they

give rise to ethical considerations that include patient privacy and well-being (and potentially the

privacy of others), and the confidentiality of clinical information and doctor–patient interactions

(85).

This paper presents methodology for collecting behavioral and physiological data in epilepsy

patients who undergo extra–operative invasive monitoring for seizure localization. Patients are

implanted with intracranial electrodes (superficial, depth or a combination of both) and then are

admitted to the Epilepsy Monitoring Unit (EMU) for 1–2 weeks for clinical identification of

the epileptogenic zone and for functional mapping. This clinical setting presents a unique op-

portunity to capture behavioral data (eye–tracking using eye–tracking glasses, audio, and video
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recordings) synchronized with neural activity recorded by intracranial electrodes implanted in

the patient’s brain, during real-world social interactions with friends, family, clinicians and re-

searchers. We discuss the privacy and ethical considerations that arise in this paradigm and how

they can be addressed, as well as logistical challenges such as fitting seizure prone patients, who

have significant head bandaging protecting their implantation sites, with eye–tracking glasses to

collect data in a safe and robust manner. Finally, we describe data preprocessing and data fusion

pipelines that can be used to construct a high-quality multimodal data set that blends real-world

social behavior and neural activity, allowing us to study the neural correlates of real-world social

and affective perception in the human brain.

3.2 MATERIALS & METHODS

3.2.1 PARTICIPANTS

A total of 6 patients (4 men, 2 women) underwent surgical placement of subdural electro-

corticographic electrodes (ECoG) or stereoelectroencephalography (SEEG) depth electrodes as

standard of care for epileptogenic zone localization. Together ECoG and SEEG are referred to

here as iEEG. The ages of the participants ranged from 22 to 64 years old (mean = 37 years, SD

= 13.47 years). No ictal events were observed during experimental sessions.

3.2.2 INFORMED CONSENT

All participants provided written informed consent in accordance with the University of Pitts-

burgh Institutional Review Board. The informed consent protocols were developed in consulta-

tion with a bioethicist (Dr. Lisa Parker) and approved by the Institutional Review Board of the

University of Pittsburgh. Audio and video of personal interactions were recorded during exper-

imental sessions. Our protocol incorporated several measures to ensure privacy considerations

and concerns could be addressed based on the preferences of individual participants. First, the
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timing of recording sessions was chosen based on clinical condition and participant preference,

to ensure that they were comfortable with recording of their interactions with the visitors present

(and/or expected to be present). Second, all visitors present in the room were notified about the

nature of the experiment at the beginning of each recording session and given the opportunity to

avoid participation. Third, a notification was posted at the entrance of the patient room informing

any entrants that an experiment was being conducted where they might be recorded so that they

could avoid entering if they chose to. It is notable that there are no reasonable expectations of

privacy other than for the patient, and this work was considered to meet the criteria for waiver of

informed consent for everyone other than the participants themselves. Finally, at the end of each

experimental recording, participants were polled to confirm their consent with the recording be-

ing used for research purposes, and offered the option to have specific portions (e.g., a personal

conversation) or the entire recording deleted if they wished. Thus, explicit “ongoing consent”

was acquired through written informed consent at the beginning and end of each session; pro-

viding participants the opportunity both affirm their willingness to participate and to consider

the content of the recordings before giving final consent. None of our participants thus far have

asked to have recordings partially or fully deleted after the recording session was complete.

3.2.3 ELECTRODE LOCALIZATION

Coregistration of grid electrodes and electrode strips was adapted from the method of (86).

Electrode contacts were segmented from high-resolution postoperative CT scans of participants

coregistered with anatomical MRI scans before neurosurgery and electrode implantation. The

Hermes method accounts for shifts in electrode location due to the deformation of the cortex by

utilizing reconstructions of the cortical surface with FreeSurferTM software and co-registering

these reconstructions with a high-resolution postoperative CT scan. All electrodes were local-

ized with Brainstorm software (87) using postoperative MRI coregistered with preoperative MRI

images.
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3.2.4 DATA ACQUISITION

Multimodal behavioral data (audio, egocentric video, and eye–tracking) as well as neural ac-

tivity from up to 256 iEEG contacts can be recorded simultaneously during unscripted free view-

ing sessions in which participants wore eye–tracking glasses while they interacted with friends

and family visiting them, clinicians and hospital staff responsible for their care, and members

of the research team. In addition, participants also engaged in other activities like eating meals,

reading, and watching television. The type and duration of activities varied across different

recording sessions. The timing and duration of recording sessions were determined based on

clinical condition, participant preference and to coincide with the presence of visitors in the hos-

pital room, where possible.

Behavioral data were captured by fitting each participant with SensoMotoric Instrument’s

(SMI) ETG 2 Eye Tracking Glasses (Fig. 3.1.a,c). An outward facing egocentric camera recorded

video of the scene viewed by participants at a resolution of 1280 x 960 pixels at 24 frames per

second (Fig. 3.1.b). Two inward facing eye–tracking cameras recorded eye position at 60 Hz

(Fig. 3.1.c,d). Audio was recorded at 16 KHz (256 Kbps) using a microphone embedded in the

glasses. SMI’s iView ETG server application, running on a laptop received and stored streaming

data for all three modalities from the eye–tracking glasses by way of a USB2.0 wired connection.

The iView ETG software also served as an interface for researchers to calibrate the eye-tracking

glasses to each participant with a 3 point calibration procedure that enabled the accurate map-

ping of eye–tracking data to specific ‘gaze’ locations on video frames, and to initiate and stop

the recording of behavioral data.

Electrophysiological activity (Field Potentials) can be recorded from up to 256 iEEG elec-

trodes at a sampling rate of 1 KHz using a Ripple Neuro’s Grapevine Neural Interface Processor

(NIP) (Fig. 3.2). Common reference and ground electrodes were placed subdurally at a location
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Figure 3.1: a) A participant in the UPMC Epilepsy Monitoring Unit implanted with iEEG elec-
trodes, secured with bandaging, and fitted with SensoMotoric Instrument’s (SMI) ETG 2 Eye
Tracking Glasses that have been modified with an ergonomic Velcro strap. b) An over the shoul-
der view of the participant and the visual scene during an interaction with a researcher. c) Front
(top) and Back (bottom) view of the SMI ETG 2 Eye Tracking Glasses with the egocentric video
camera (green circle) and inward facing eye–tracking cameras (red ellipses). d) A snapshot of
the participant’s view (top) through the SMI ETG 2 Eye Tracking Glasses corresponding to panel
b), and their eye movement (bottom) captured by the inward facing eye–tracking cameras.
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distant from any recording electrodes, with contacts oriented toward the dura.

A MATLABTM script, running on the same laptop as the SMI iView ETG Server software,

broadcasts numbered triggers every 10 seconds, injecting them simultaneously into the neural

data stream via a Measurement Computing USB-204 data acquisition (DAQ) device connected to

the NIP’s digital port and into eye–tracking event stream via SMI’s iView ETG server application

via a sub millisecond latency local loop back network connection using UDP packets (Fig. 3.2).

These triggers were used to align and fuse the heterogeneously sampled data streams after the

experiment, during the Data Fusion stage (see below for details).

BEST PRACTICES FOR BEHAVIORAL RECORDING

In each recording session, neural activity recording was initiated followed by simultaneous

initiation of recording of eye–tracking, egocentric video, and audio recording via the SMI ETG

2 Eye Tracking Glasses using the SMI iView ETG Software Server. Once the recording of all

modalities was underway, the MATLABTM script was initiated to generate and transmit triggers.

At the end of each recording session, the tear down sequence followed the reverse order: 1) the

MATLABTM script was terminated, marking the end of the recording, 2) the SMI iView ETG

Software Server recording was halted, 3) the neural data recording stream was stopped on the

NIP. Excess data from prior to the first numbered trigger and after the last numbered trigger were

discarded for all modalities.

Shift in the placement of the eye–tracking glasses is possible if the participant inadvertently

touches or moves them during a recording session. Such disruption can introduce systematic

error(s) in eye gaze data captured after the disruption(s), although errors can be mitigated with

gaze correction (see Data Preprocessing for details). The potential for such an event increases

with the duration of a recording session. To minimize the risk of such error(s), we first instruct
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Figure 3.2: A system diagram of the experimental setup for the collection of synchronized be-
havioral (egocentric video, eye–tracking and audio) and physiological (iEEG recordings) from
participants during real world social interactions. The green, red and blue lines represent ego-
centric video (1280x960 pixels; 24 fps), eye–tracking (60 Hz), and audio (16 KHz). Digital
Triggers, represented by black lines, are inserted in the eye–tracking and iEEG recordings via
a sub millisecond local loopback UDP connection and a DAQ respectively. iEEG recordings
from up to 256 electrodes (visualized in MRI) are digitized at 1 KHz and combined with digital
triggers using Ripple Neuro’s Grapevine Neural Interface Processor (NIP) are transmitted and
stored on a computer.
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participants to avoid touching or nudging the glasses during a recording session to avoid disrupt-

ing the eye–tracking calibration completed at the beginning of the recording session. Second, we

strive to reduce such errors by limiting an individual recording session to one hour and including

a short break for participants. During this interlude, the recording is terminated, and participants

are offered the opportunity to remove the eye tracking glasses before initiation of the next ses-

sion. The interlude serves two purposes: 1. it gives the participant a break from wearing the

eye–tracking glasses, helping to alleviate fatigue and discomfort; 2. initiating a new recording

allows the research team to re-secure and re-calibrate the eye–tracking glasses, renewing the ac-

curate mapping of gaze to the egocentric video. Although we prefer ≈1 hour recordings as a

best practice, maintaining this practice depends upon participants’ preference and the number

visitors. In some cases, recording sessions may be longer.

3.2.5 ERGONOMIC MODIFICATIONS TO EYE TRACKING GLASSES

Standard clinical care following iEEG implantation involves the application of a bulky gauze

head dressing. This bandaging is applied around the head to protect the operative sites where the

iEEG electrodes are secured with bolts. The dressing also includes a chin wrap to provide fur-

ther support in preventing dislodgement of the iEEG electrodes by securing the connector wires

that carry electrical activity to clinical and/or research recording systems like the Ripple Neuro

Grapevine NIP. In our studies, the bandaging typically covered the participants’ ears, rendering

the temples on the eye-tracking glasses unusable. To overcome this challenge, we modified the

structure of the eye-tracking glasses, removing the temples and substituting them with an ad-

justable elastic band. We attached the elastic band to the frame of the eye-tracking glasses using

Velcro patches sown at each end. The modification permitted secure placement of the glasses on

the face of a participant, with the elastic band carefully stretched over the head dressing to avoid

disturbing the operative sites (Fig 3.1.c). To reduce any pressure the eye-tracking glasses placed

on the participants’ faces as a result of the elastic band alteration, we further modified the glasses
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by adding strips of adhesive backed craft foam to the nose bridge and upper rims of the frame.

These ergonomic solutions enabled correct, robust, and comfortable placement of eye-tracking

glasses for each participant with flexibility to adjust to individual bandaging and electrode place-

ment configurations. As an added measure to minimize the possibility of movement for eye-

tracking glasses during recording sessions, the USB cable connecting the eye-tracking glasses to

the laptop was secured to the participants’ hospital gowns near the shoulder with a large safety

pin to prevent the weight of the remaining length of cable from pulling on and displacing the

glasses during a recording session. Sufficient slack was left in the cable segment between the

glasses and the fixation point on the participants’ gowns to allow for free head movement while

preventing the secured cable segment from pulling on and potentially displacing the eye tracking

glasses.

3.2.6 DATA PREPROCESSING

The behavioral (eye-tracking, video, audio) and physiological (neural) data streams captured

during a real-world vision recording were preprocessed as follows before Data Fusion was initi-

ated.

EYE-TRACKING

The eye-tracking data stream is composed of time series data sampled at 60 Hz, where each

sample (referred to as an eye-tracking trace) contains a recording timestamp, an eye gaze loca-

tion (X,Y coordinates in the space of egocentric video) and is labeled by the SMI iView ETG

platform as belonging to a fixation, a saccade or a blink. Consecutive eye-tracking traces with

the same label (fixation, saccade, or blink) are interpreted as belonging to a single eye-tracking

‘event’ of that type, whose duration is the difference in recording timestamps of the last and first

eye-tracking traces in the block of consecutive traces with the same label (fixation, saccade or

blink).

47



As an example, a set of 36 eye-tracking traces (amounting to 0.6 second of recorded activity),

where the first 18 are labeled as fixation, the next 3 labeled as saccade, followed by the final 15

labeled as fixation, would be interpreted as a fixation event ≈300 ms long (18 samples at 60

Hz), followed by a saccade event ≈50 ms long (3 samples at 60 Hz) followed by a fixation event

≈250 ms (15 samples at 60 Hz).

We developed custom Python scripts that parse eye-tracking traces and construct logs of eye-

tracking events for each recording session. In addition to the duration of each eye-tracking event,

the median gaze location (median is used for robustness to outliers) was logged for each fixation

event and the start/end gaze locations were captured for each saccade event. Blink traces are

denoted by a loss of eye-tracking (i.e. absence of gaze location) and as a result only the duration

of blink events was tracked in the consolidated eye-tracking event logs.

Preprocessing of eye-tracking data also incorporates the detection and correction of system-

atic errors in gaze angle estimation that can be induced by the movement of eye-tracking glasses

during recording sessions (e.g., if a participant inadvertently touches and moves the glasses due

to fatigue), which disrupts the calibration of eye–tracking glasses (see Data Acquisition for de-

tails). Such issues were detected by manually viewing all experimental recordings using SMI’s

BeGaze application, which renders eye-gaze, audio and egocentric video together. The disrup-

tion of calibration for eye gaze tracking is visually detectable when viewing egocentric video

overlaid with eye-tracking and audio because visual behavior is altered such that the gaze data

fails to make sense consistently after loss of eye-gaze calibration (e.g., the subject is scrolling

through a phone or reading a book or watching tv or talking to someone, but the gaze loca-

tion is visibly shifted away from the obvious target). These issues were corrected using the SMI

BeGaze application, which allows researchers to apply a manual correction (i.e., an offset) to eye
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gaze at any time point in a recording, which applies to all eye gaze data following the corrected

time point. The corrections were verified by reviewing the video that followed the correction,

to ensure that corrected eye gaze data made sense consistently. Corrections to eye-tracking data

preceded preprocessing in such cases.

VIDEO

Recordings of egocentric (head-centered) videos offer a broad range of visual stimuli, includ-

ing objects, people and faces. Since the video recordings come from a camera mounted on the

same glasses as the eye tracker they provide an egocentric view, i.e. the recorded videos capture

the scene corresponding to where the participant is facing and the perspective moves as the par-

ticipant’s head moves. As a broad research goal, we wanted to know what objects were present

in the recorded scenes. Our primary object’s of interest were visitors’ faces and bodies, given

the objective of examining social interactions. We processed videos to identify the location of

faces and body parts of people in the video recordings. As a secondary objective, we were also

interested in identifying other non-face and non-body objects. Finally, for all face locations, we

extracted several higher-level measures about human visual behaviors, including head pose (in-

cluding orientation and position of the head), eye gaze (e.g., toward vs away from the observer)

and facial expressions.

To automatically identify faces, people, and other objects, we used a computer vision al-

gorithm - YOLO v3 (88) for object detection on each video frame. The algorithm identified

bounding boxes and labels for each object present in a video frame, including faces and peo-

ple. A total of 1,449,098 video frames were processed this way. While there has been great

progress in computer vision for automated object detection in the last decade, it is not perfect.

For example, algorithms such as YOLO v3 are trained on image data sets which contain a prede-

termined list of object categories, that may not include many objects that are present in a clinical
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setting. In addition, objects belonging to the predetermined list of object categories may also be

mis-detected (false positives or false negatives). Since the annotations were supposed to serve

as ground truth for analysis of neural data, their accuracy was essential and we implemented

a second stage of annotation based on human judgement, to confirm the quality of automated

object detection and correct mis-detection. To avoid the time intensive prospect of manually an-

notating all video frames in the second stage, we annotated the first video frame corresponding

to each fixation, because fixations are typically brief (a few hundred milliseconds), defined by

the lack of significant eye movement, and thus it is reasonable to assume that participants look

at the same location/object in a relatively unchanging scene during a fixation. We identified the

video frame corresponding to the beginning of each fixation using video timestamps present in

eye-tracking traces. Human annotators provided coordinates of bounding boxes for each face,

or person present in video frames for a total of 125,996 frames as part of the second stage of

annotation.

Finally, we used the OpenFace software (89), a facial behavior analysis toolkit using com-

puter vision technology, to extract additional high-level information for face regions. For each

face region, OpenFace provides information about (1) the position of 64 facial landmarks includ-

ing eye, nose and mouth positions, (2) head orientation and position, (3) eye gaze direction and

(4) facial expression information encoded following the Facial Action Coding System standard

(90).

AUDIO

Audio recordings from a microphone embedded in the eye–tracking glasses capture sound

from the participant’s perspective. The clarity of recorded audio is influenced by the loudness of

sounds and the distance of the source from the participant. Since our objective involves examin-

ing social interactions, speech detection and speaker identification are ”events” of interest.
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To detect time segments with speech in the audio recording and to diarize the audio (i.e.

to determine who spoke when) we use state of the art deep learning speech detection (91) and

speaker identification (92) pipelines available as part of an open source toolbox (93). Even these

state-of-the-art models have unacceptably high error rates (particularly for diarization) for them

to provide useful annotations as labels in analysis of behavior-physiology relationships. In order

to overcome this hurdle, we configured these models to be highly sensitive (leading to higher

false positives, but very few false negatives) and then manually reviewed model predicted time

segments for speech and speaker identification, to identify and correct false positives. Outside

of parameters that control the sensitivity of the deep learning models, the efficacy of speech de-

tection and diarization is influenced by the loudness of the speakers themselves, as well as their

distance from the participant (i.e., the microphone). This means that the participant’s speech is

the most reliably detected, while the quality of speech detection (and therefore speaker identifi-

cation) for other speakers may vary. As a result, we chose to collapse audio diarization into two

categories during manual review, the participant and speakers other than the participant. Seg-

ments with concurrent speech from the participant and other speakers were labeled as participant

speech.

INTRACRANIAL RECORDINGS

Response potentials and broadband high frequency activity (BHA) were extracted from the

raw iEEG recordings for statistical analysis using MATLABTM. Response potentials were ex-

tracted using a fourth order Butterworth bandpass ([0.2 Hz, 115 Hz]) filter to remove slow linear

drift and high-frequency noise, followed by line noise removal using a fourth order Butterworth

bandstop ([55 Hz, 65 Hz]) filter.

BHA extraction involved two steps. First, the raw signal was filtered using a fourth order
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Butterworth bandpass ([1 Hz, 200 Hz]) filter followed by line noise removal using notch filters at

60, 120 and 180 Hz to obtain local field potentials. Next, Power spectrum density (PSD) between

70–150 Hz was calculated for the local field potentials with a bin size of 2 Hz and a time-step

size of 10 ms using Hann tapers. For each electrode, the average PSD across the entire recording

was used to estimate a baseline mean and variance of the PSD for each frequency bin. The PSD

was then z-scored using these baseline measurements for each frequency bin at each electrode.

Finally, BHA is estimated by averaging the z-scored PSD across all frequency bins (excluding

the line noise frequency bin at 120 Hz).

iEEG recordings were subjected to several criteria for inclusion in the study. Any recordings

with ictal (seizure) events were not included in the study. Artifact rejection heuristics were

implemented to avoid potential distortion of statistical analyses due to active interictal (between

seizure) or outliers. Specifically, we evaluated the filtered iEEG data against three criteria that

are applied to each sample i.e., each time point in iEEG recordings, which corresponds to 1ms

of neural activity. These criteria were applied to the filtered iEEG signal for each electrode,

as well as the averaged (across all electrodes) iEEG signal. The first criterion labels a sample

as ‘bad’ if it exceeds 350 µV in amplitude. The second criterion labels a sample as bad if the

maximum amplitude exceeds 5 standard deviations above/below the mean. The third criterion

labels a sample as bad if consecutive samples (1 ms apart at a 1000 Hz sampling rate) change by

25 µV or more. For the averaged iEEG signal, any sample satisfying any of these three rejection

criteria is labeled as bad. Further, if more than 10 electrode contacts (out of a typical 128) satisfy

the bad sample criterion for a particular sample, it is labeled as a bad sample. Less than 10%

of the samples in experimental recordings were labeled as bad samples. All data types were

dropped from analysis for fixations that contained bad samples.
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Figure 3.3: Fused multimodal data set from a real world vision recording: The audio wave-
form is shown on top, with gray, pink and brown segments denoting silence, participant speech
and speech from other speakers. Response potentials and broadband high frequency activity
heat maps from a 124 iEEG electrode montage are shown below the annotated audio. Vertical
black lines demarcate fixations and saccades, which are marked underneath the audio and neural
time series with orange and blue braces respectively. The bottom row shows video frames cor-
responding to each fixation event, with an orange ‘+’ denoting eye gaze location and bounding
boxes identifying the location of different objects, including persons and faces.
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3.2.7 DATA FUSION

Precise fusion of heterogeneous behavioral (eye-tracking, egocentric video and audio) and

physiological (neural) data streams is essential for constructing a multimodal data set to answer

our questions about the neural correlates of real-world vision. In our approach, eye-tracking pro-

vides the reference modality against which video/audio, psychophysiological, and neurophysi-

ological (neural activity) data streams are aligned in time (Fig 3.3). Each eye-tracking event is

mapped to a corresponding egocentric video frame. For fixation events, we combine eye gaze

location with bounding box locations/sizes from annotations for the egocentric video frame to

determine what object (face or non-face) the participant is fixating upon. Each eye-tracking event

is mapped to an auditory time segment and labeled as belonging to a speech or silence segment,

with additional labeling for speaker identity in the case of a speech segment. Finally, neural

recordings are also aligned in time to eye-tracking events based on the temporal offset of eye-

tracking events and neural data, from trigger events which are injected in both data streams at 10

second intervals during recording sessions.

The quality of multimodal data sets assembled by the data fusion process described above

is reliant on the quality of the heterogeneously sampled behavioral, psychophysiological, and

physiological data streams fed into the data fusion process. Acquisitional variability, if present

and left undetected, can severely degrade the quality of fused data sets by introducing alignment

issues, and dropped video frames and/or recording offsets are common. Our methodology in-

cludes cross-verification procedures that guard against such issues with careful examination of

the raw data streams for each modality. These procedures assume that the raw data captured for

any modality contains accurate and sufficient timing information to diagnose and correct such

issues. As long as hardware/software systems in use meet this basic assumption about raw data

capture, the cross-verification approach we describe should scale. Below, we detail two specific

issues that arose in our recordings using SMI ETG 2 Eye Tracking Glasses and illustrate how we
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addressed them to ensure data quality in the fused data set.

SAMPLING RATE VARIABILITY

Variability in sampling rates is observed in engineered systems and can arise due to a variety

of reasons ranging from temperature dependent variation in the frequencies of crystal oscillators

that drive digital clock signals to propagation delays in circuit boards and circuitry running at

different clock rates. If a fixed sampling rate is assumed, then these variations can accumulate

as sampling drift over time and potentially lead to significant timing offsets over long periods

of operation. These phenomena are addressed in engineered systems in various ways including

using clocks far faster than the sampling rates desired and frequent resetting/calibration to mini-

mize drift accumulation.

Here, we describe our approach to detect and remove such issues from the final multimodal

data set that results from our data fusion procedures. We evaluated variability in the sampling

rate of eye–tracking traces based on their timestamps. Since audio, video and neural data are

anchored to eye–tracking events, minor sampling variability for eye–tracking does not introduce

any error as long as other data streams can be aligned to eye–tracking correctly. We evaluated

the timing and mapping of all other modalities (audio, egocentric video and neural data) against

eye–tracking. Specifically, we found the need to address sampling rate variability that arose in

the egocentric video stream, so it could be reliably mapped to eye–tracking data.

The inter-frame interval for the video stream can vary systematically by small amounts from

the rated 41.66 ms (24 fps) for a recording session. These deviations can be a source of error in

the mapping of eye–tracking traces to video frames unless they are addressed during data fusion.

A critical marker of this problem is an inconsistency between the number of frames present in

the video and the number of video frames estimated from eye–tracking traces using Eq 3.1. It
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is important to note that this variability is not always accounted for in manufacturer software or

documentation. The solution to this issue is relatively simple because the eye–tracking traces

include a ‘Video Time’ column which has millisecond resolution. Instead of assuming a fixed

frame rate as Eq 3.1 does

Video Frame Number︸ ︷︷ ︸
in .avi file

= Video Time in seconds︸ ︷︷ ︸
from eye-tracking traces

× 24 frames per second (3.1)

We estimated video frame numbers corresponding to each eye-tracking trace using the ‘Video

Time’ in them as follows

Algorithm 7 Sampling rate variability resistant mapping of video frames to eye-tracking traces
1: Initialize trace counter = 0, frame num = 0, video time = 0, et traces (from file)
2: while trace counter<N do
3: frame num += round

[
(et traces[trace counter].video time - video time) × 24

]
4: video time = et traces[trace counter].video time
5: et traces[trace counter].video frame = frame num
6: trace counter = trace counter + 1

ADDRESSING DATA GAPS OR CORRUPTION FROM BEHAVIORAL MODALITIES

Loss or corruption of data during media recordings on embedded devices is demonstrable,

and is a potential source of error for a fused multimodal data set that relies on precise alignment

of multiple heterogeneously sampled modalities. As a result, our data fusion process pays close

attention to identifying and characterizing such issues and addressing them to ensure data in-

tegrity. Here, we qualitatively describe different classes of issues observed in our data and how

we address them to ensure data quality.

We observed missing frames in the egocentric video stream. Specifically, after correcting for

sampling rate variability, we observed residual discrepancies between the number of frames that

were expected per the video timestamps in the eye-tracking logs and the number of actual frames

present in the video files from recordings. By evaluating timestamps for each frame in the ‘.avi’
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files using OpenCV (94), we found that the lost frames were at the beginning of the video stream

(i.e., the first K frames of an N frame video are missing) frames. We confirm this diagnosis

with an additional form of verification, which used low level audio and video processing tools to

manually blend audio and video streams with and without a correction for missing frames and

visually verifying the absence of lip-audio synchronization issues in the resulting video. Finally,

we obtained an additional point of manual verification by visualizing the ostensibly lost frames

(decoders discard frames they deem corrupt when parsing a file, but they are present in the files)

from the video file on a frame by frame basis, confirming that they are corrupted/garbled. The

specific pattern of error (first K frames missing) observed with our experimental equipment (SMI

ETG 2 Eye Tracking Glasses) may not replicate with other hardware, though given engineering

constraints, other errors may arise instead. As an example, other eye-tracking glasses may have

frame loss/corruption intermittently during a recording instead of at the beginning. However, our

observations suggest that such issues may exist with other eye-tracking devices and data fusion

pipelines should incorporate verification stages that can identify and correct such issues, with a

preference for multiple modes of verification that are consistent with each other.

Blinks are a natural part of visual behavior and the eye-tracking records denote them as such.

Since eye–tracking is lost during blinks, there is usually no information about gaze, pupil dila-

tion etc. available for blink events. We see blinks interspersed among fixations and saccades,

and they are typically a few hundred milliseconds long. However, we observed longer periods

lasting several seconds in multiple recordings. To understand this phenomenon better, we viewed

the videos for periods where this happened, with gaze information overlaid using SMI’s BeGaze

software. We found these anomalous blinks to be masking a real phenomenon, where the partic-

ipant may be looking out the corner of their eye, which takes their eye-gaze outside of the field

of vision of the egocentric camera or upon occasion, potentially taking their pupils outside of

the field of vision of the eye–tracking camera. Since the system cannot accurately capture visual

57



behavior as it relates to the video in these conditions, it labels those periods as blinks. These

scenarios are easy to spot during manual inspection because the eye-gaze location before and

after the blink tends to be near the periphery of the video frame. These conditions are not a sig-

nificant challenge for data quality, because they can be easily dropped from analysis. However,

awareness of their existence is meaningful for data fusion pipelines.

3.3 RESULTS

Figure 3.4: A snapshot of fused multimodal (audio, egocentric video, eye-tracking and
iEEG): On the left, an annotated audio snippet (top) and video frame (bottom) visualizes the
world through the participant’s eyes and ears as they interact with friends and family visiting
them during a recording session. Speech/silence and speaker diarization labels color the audio
signal on top. The annotated video frame below depicts the participant’s eye gaze location with
orange ‘+’ marker with colored bounding boxes identifying the location and sizes of different
objects detected by computer vision models and verified by human annotators. The panel on
the right visualizes 1 second of neural activity across 124 iEEG electrodes, corresponding to the
video frame/audio on the left, with response potentials on top and broadband activity at the bot-
tom (see Supplemental Video for a dynamic version of this figure).

We collected iEEG recordings from patients in the Epilepsy Monitoring Unit (EMU) who

wore SMI ETG 2 Eye Tracking Glasses as they went about their day interacting with friends

and family visiting them as well as members of the clinical team. We used computer vision
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models to identify objects, faces and persons (bodies) in videos of the visual scenes in front of

the participants during these sessions. Similarly, we used speech processing models to identify

speech intervals and diarize the audio recorded from the internal microphone in the SMI ETG

2 Eye Tracking Glasses. All annotations from computer vision and speech processing models

were validated and corrected, if necessary, by human annotators to ensure data quality. Here, we

show that fused multimodal datasets (see Fig 3.4 for a snapshot; see Supplemental Video for a

dynamic version) which include annotated audio, eye-tracking, annotated video, and iEEG, can

be developed using this process. Such datasets can help advance visual neuroscience research

beyond traditional experimental paradigms and explore the neural correlates of real-world social

vision.

3.3.1 BEHAVIORAL DATA

We collected data from 6 participants across 11 different free viewing recording sessions

which ranged from 41 - 143 minutes long and added up to a total of 16 hours and 48 minutes.

Social contexts differed across recording sessions and sometimes within a recording session,

in terms of the number of individuals present, the number of interactions they had with the

participant and the nature of those interactions.

VISUAL BEHAVIOR

SMI Eye Tracking glasses captured visual behavior, categorizing each moment’s sample as

belonging to a saccade, fixation, or blink. Visual behavior varied depending upon the social

context during recording sessions. Saccades usually accounted for 10 - 15% of the recording du-

ration (Fig 3.5.a), even though they account for nearly half the events (after accounting for blinks

and occasional loss of eye-tracking) (Fig 3.5.b) as a result of the saccade–fixation–saccade struc-

ture of the active sensing cycle, a contrast highlighted by the skew in the distribution of saccade

durations and fixation durations (Fig 3.5.c). Saccades and fixations are not perfectly balanced
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Figure 3.5: Summary of dataset spanning visual behavior and the auditory environment:
a) The duration of each recording session (with multiple sessions for each participant) broken
down by time spent in different visual behaviors (saccades, fixations and blinks). b) Similar to
a), but counting distinct events for each visual behavior instead of time. c) Saccade and fixation
duration distributions for each recording session. d) The fraction of time fixations were on faces
and non-face objects for each recording session. e) Fixation duration distributions for face and
non-face targets for each recording session. f) The fraction of each recording session broken
down by time spent in silence and speech. g) The fraction of each recording session broken
down by speech from the participant and other speakers.
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due to the loss of eye-tracking from blinks and other reasons (e.g., noisy conditions, participants

closing their eyes for brief periods or looking out of the corner of their eye during the recording

sessions).

We identify fixation targets by combining gaze location from eye-tracking with bounding

boxes from the video frame corresponding to each fixation. We categorize fixations as face and

non-face fixations, reflecting our focus on the social aspects of real-world vision. The social

context during a recording session has a natural influence on the distribution of fixation targets.

We found that participants fixated on faces less than 30 - 40% of the total time spent fixating

during a recording session (Fig 3.5.d), even in the most social situations (e.g., EMU room full

of multiple family and friends, with active conversations). The distribution of fixation durations

for the two fixation categories showed that face fixations tend to be a little bit longer (Fig 3.5.e),

indicating that even during the most social situations with familiar people, we look at the faces

of people around us infrequently but when we do look at them we tend to hold them in our gaze

a little longer.

AUDITORY CONTEXT

The SMI ETG 2 Eye Tracking glasses also recorded audio using an in-built microphone. We

used deep learning models (93) to do auditory scene analysis, augmenting it with manual an-

notation to ensure high reliability. Once again, depending upon the social context during each

recording session, we observed varying levels of verbal discourse (Fig 3.5.f). We observed that

speech could be detected from both the participant and others in the room, but the participant

was reliably comprehensible due to their proximity to the microphone, whereas the volume and

comprehensibility of the voices of other speakers would vary based on how close they were to the

participant, making source identification more challenging even for manual annotation. To avoid

potential confusion during manual annotation, we restricted speech diarization during supple-
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mental manual annotation/verification to classifying speech as originating from the participant

or other persons in the room. We found that the participant’s own verbal behavior varied across

recording sessions, with comparable speech in the room, across recording sessions, even for the

same participant (Fig 3.5.g).

BEHAVIORAL ANNOTATION: RELIABILITY AND ITS COST

Egocentric Video

Automated software driven annotation of video frames is straightforward and fast, but accom-

panied by a trade-off between speed and accuracy. The speed of automated annotation depends

upon the algorithms used for object detection. YOLO v3 (88) is a popular algorithm for object

annotation (detection), performing at a rate of 45 fps on a NVIDIA K40 Graphics Processing

Unit (GPU), or 5 fps on a standard CPU. This means annotating an hour of video takes 32 min-

utes with a GPU, or close to 5 hours with a CPU.

The accuracy of annotation algorithms is not high. We measured the quality of the automated

annotations by comparing the automated annotations from software with human annotations for

all sessions. We found that software-driven annotation only achieved an average of 69.5% In-

tersection over Union score (a measurement for evaluating object detection algorithms, higher

the better, with a threshold of 100%). This means that the overlap ratio between the software’s

bounding boxes and the human annotators’ bounding boxes was only 69.5%, suggesting the ac-

curacy of automated software-driven annotation may be limited.

Although human annotators produce higher-quality annotations, the process is time and

labor-intensive. Human annotators annotated 125,996 frames out of 16 hours and 48 minutes

of videos. The total time spent on annotating 125,996 frames was 104 hours, with an average of

6.19 hours for an experienced human annotator to annotate an hour of video.
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For quality control, 3% of frames from two sessions (sessions from S5:#1 and S6:#4) were

randomly sampled and verified by a second annotator. The overlap ratio between the first an-

notator’s bounding boxes and the second annotators’ bounding boxes was 97.3% and 97.4%

respectively for the two sampled sessions. This process underscored the significantly higher

quality of human annotation over the automated software-driven annotation.

Speech Detection and Diarization

Automated speech detection and speaker identification were computationally efficient, with an

hour’s audio being processed within 1 - 2 minutes. Manual verification and correction of mis-

detection was done with manual annotator’s listening to the audio, and correcting false nega-

tives/missed speech and false positives/speech labeled as silent and required an hour of man-

ual effort for each hour of audio recording. Comparisons of automated speech detection with

manually verified/corrected speech intervals for the first 10 minutes of each recording session

revealed mis-detection (speech classified as silence or vice versa) for ≈ 4% of the annotated

audio. Manual annotation for speaker identification involved collapsing the automated speaker

diarization labels into two categories, ‘participant speech’ and ‘other speech’. Speech segments

where the participant and other individuals were speaking concurrently were labeled as ‘partici-

pant speech’. Manual annotators listened to the full length of the recording assigning new labels

to each speech segment manually, which took 75 minutes for each hour of speech.

DATA FUSION ISSUES: DETECTED AND CORRECTED

Next, we show some results which motivate careful evaluation of the raw data for each modal-

ity before data fusion of heterogeneously sampled data streams from an experimental recording

is attempted. Specifically, we describe and quantify alignment issues between eye-tracking and

video data collected using SMI ETG 2 Eye Tracking glasses, that were identified and corrected

63



Figure 3.6: The potential effects of video frame corruption and video frame rate variability
on the accuracy of data fusion: Visualization of timing error for each recording session in-
troduced in the alignment of eye–tracking events and corresponding egocentric video frames in
the case a) Corrupted frames at the beginning of each video file are not detected and corrected
in the eye–tracking to video frame alignment procedure. This is a fixed error that affects all
eye-tracking events in a session. b) The procedure to map frames to eye–tracking traces does
not address small variations in frame rate (i.e., Eq. 3.1 instead of Algorithm 1). This is a time
varying error which accumulates over the duration of a recording (scatter points indicate the fi-
nal accumulated error at the end of each recording session) and its rate of accumulation (slope of
shaded lines in the background) depends upon the magnitude of the deviation in video frame rate
is from 24 fps. We observe deviations as small as 1 frame (41.67 ms) over a 49 minute recording
for S6:#4 and as large as 432 frames (18 seconds) over a 2 hour recording for S4:#1.
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(see Methods for details) during data fusion. We found two issues in the video stream, which

would lead to misalignment between eye-tracking traces and the video frame they correspond to.

The first issue was related to corrupted and unrecoverable egocentric video frames at the be-

ginning of each recording (see Methods for details). The duration of egocentric video lost as

a result of this issue varied by recording, and ranged from the first 0 ms - 625 ms (Fig 3.6.a).

In a video with the first N frames corrupted, this issue would lead to incorrect mapping of eye-

tracking traces to a video frame N+1 frames later than the egocentric video frame they corre-

sponded to, which could lead to errors in annotation of fixations (e.g., as face or non-face fixa-

tion) across the entire video. After correction, the only impact of this issue is that eye-tracking

traces/neural data for the first few frames that are corrupted and discarded cannot be used for

analysis, which is a very minor loss.

The second issue was related to variability in the average frame rate for egocentric video

recorded from each session. We observed that for different sessions, the average frame rate of

the recorded video was slightly above or below 24 frames per second. Eye-tracking traces are

mapped to video frames using a ‘Video Time’ variable embedded in them. Estimating the video

frame number corresponding to an eye-tracking trace using Eq. 3.1 which assumed a frame rate

of 24 fps that was slightly higher or lower than the real frame rate of the video. The discrepancy

led to an error between the estimated frame and the real frame corresponding to eye-tracking

traces, which accumulated as the video recording progressed (Fig 3.6.b) and became visible with

the eye-tracking traces mapping to far fewer/greater frames than were present in the video at the

end of the recording. This problem was avoided by using the procedure defined in Algorithm

7, which is robust to these small variations in frame rate (see Methods for details). Both these

problems co-occurred and addressing them as described in the Methods section gave us perfect

consistency between the number of frames estimated in the eye-tracking traces and the number
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of frames present in the egocentric video. Lastly, we also evaluated audio and neural activity for

similar alignment inconsistencies with the eye–tracking logs and found no issues with alignment.

3.3.2 NEURAL CORRELATES OF REAL-WORLD SOCIAL VISION

The number and cortical locations of intracranial EEG electrodes from which neural data

were recorded varied by participant with a total of 686 cortical locations distributed across the

temporal, parietal, occipital, frontal and cingulate areas of participants (Fig 3.7.a, b).

Finally, we aligned neural activity recorded from intracranial EEG electrodes to the com-

posite behavioral (eye-tracking + visual behavior + auditory context) log using digital triggers

embedded in the neural and the eye-tracking data streams. This final step allows identification

and extraction of neural activity corresponding to individual eye-tracking events (saccades, fixa-

tions, and blinks).

Our analysis of real-world vision is anchored to fixations, and Fig 3.7.c visualizes average

Fixation Response Potentials (FRPs) and Fixation Related Broadband High Frequency Activity

(FRBHA) for face and non-face fixations from several of the 686 intracranial EEG electrodes for

which real-world vision data were collected. Typical aspects of the FRP (e.g. enhanced N170

for faces, particularly in ventral temporal cortex locations) and FRBHA (42, 43, 98, 99, 100) are

well represented for electrodes from multiple lobes suggesting the alignment of neural activity

and eye–tracking events is robust and provides a key ”proof-of-principle” for this real-world

paradigm, similar to that provided by recent studies in macaque monkeys engaged in free viewing

of natural scenes (101).
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Figure 3.7: a) Cortical distribution of the 686 intracranial EEG electrodes from 6 participants
over different lobes across the Left and Right Hemispheres per the Desikan Killiany atlas (95). b)
Per participant electrode distribution across different cortical regions c) Visualization of locations
of electrodes from all participants on an inflated cortical surface with ventral, lateral (left and
right), posterior and anterior views. Average fixation locked neural activity from electrodes
sampled across all participants and recording sessions. The colors of the boxes correspond to
the lobe of the cortical location being sampled and the outlines denote the neural signal that is
visualized (solid lines denote Fixation Response Potentials (uV) and dashed lines denote Fixation
Response Broadband Activity (a.u.)). The average fixation locked response to ≈1000 fixations
of face (red) and non-face objects (black) each is shown for each cortical location. One notable
result is that differences in the neural response between face and non-face fixations appear prior
to fixation onset, suggesting predictive activity/”pre-saccadic preview”(96, 97)
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3.4 DISCUSSION

We investigated the feasibility of combining neural recordings from iEEG electrodes with

eye-tracking, video and audio recordings collected using eye-tracking glasses and annotated us-

ing computer vision and speech models to generate robustly fused multi-modal data sets from

unscripted recording sessions in an inpatient hospital environment. Fusion of visual behavior

with neurophysiological recordings enables investigation of the neural correlates of real-world

social vision and affective perception. Summary views of the data highlight the heterogeneity

that emerges in uncontrolled behavior in ecologically valid settings, and underscore the need for

care when trying to assess generalizability of observed effects across individuals. A natural ap-

proach to address these challenges is to define summary variables or learn then using data driven

approaches like multiset canonical correlation analysis (102). The efficacy of our methodology

is validated in the context of real-world social vision by fixation locked neural activity (FRPs and

FRBHA) for face and non-face fixations from ventral temporal electrodes, which show category

selective neural signatures that are also observed in traditional visual neuroscience experiments.

Our initial findings also point to several potential opportunities for the enrichment of behav-

ioral and physiological data collection as well questions of significant interest for clinical and

translational research.

3.4.1 ENRICHING BEHAVIORAL MONITORING

HIGHER FIDELITY CAPTURE OF VISUAL BEHAVIOR

From analyzing the data sets presented here, three natural opportunities to improve the cap-

ture of visual behavior are apparent. The first entails higher fidelity data acquisition for behav-

ioral data streams that we already capture. The eye-tracking glasses used in this study feature

a single head-centered perspective (egocentric) video camera operating at 24 frames per second

with a resolution of 1280 x 960 pixels capturing a 60◦ (horizontal) by 46◦ (vertical) region of the
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field of vision, with 2 eye-tracking cameras operating at 60 Hz. Increasing the spatial resolution

of the video camera in pixels, improving the temporal resolution of both eye-tracking and video

and capturing a larger fraction of the field of vision can aid in better tracking of visual behavior

over a more complete portion of the field of the vision. The second opportunity requires adding

a new data modality (head position) using an Inertial Measurement Unit (IMU), that can provide

tracking for the physical frame of reference corresponding to each video frame. The third op-

portunity involves considering the addition of depth perception information for eye-gaze, which

may potentially be supported by the addition of a second egocentric camera or LIDAR (103).

A review of available research grade hardware (104) provides an account of the capabilities of

several research grade devices, which can be evaluated for their suitability with respect to each

of these possibilities.

AURAL SCENE CAPTURE

Analysis and annotation of the auditory scene recorded using the in-built microphone embed-

ded in the eye-tracking glasses reveals the potential advantages of capturing the aural scene as

well as the limitations of having a single microphone physically attached to the patient. The po-

tential addition of high definition microphone arrays in the room can enable a complete record-

ing the auditory scene, including the capture and source localization of all sound, including

speech. In the context of social behavior, such an enriched capture offers the opportunity to

go beyond speech and speaker detection and into speech recognition, and its conversion to text

(105, 106, 107) thereby allowing the use of language models that could add an additional behav-

ior modality for semantic and sentiment analysis (108).

FROM MONITORING VISUAL BEHAVIOR TO VISUAL MONITORING OF BEHAVIOR

Heavily monitored inpatient hospital environments like an EMU are typically equipped with

cameras that allow clinical care teams to monitor patient behavior. The same video streams
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also capture the physical behavior of other individuals (e.g., doctors, nurses, family) who are

present. These video streams hold the potential to add two additional behavioral modalities to

the multi-modal data set we have described. The first modality is affective behavior, for the

patient and other individuals present, extracted using facial analysis tools like OpenFace (89).

The second modality is physical behavior using tools like OpenPose (109) and DeepLabCut

(110, 111, 112, 113, 114), which may enable us to explore the relationship between physiology

and behavioral phenomena like interpersonal synchrony (115).

3.4.2 ENRICHING PHYSIOLOGICAL MONITORING

As part of standard care, inpatient hospital environments feature the monitoring of a wide

variety of physiological data like EKGs, EMGs, heart rate, pupillometry, blood pressure, neural

recordings, pulse oximeter readings, saliva samples, urine samples as well as clinical events. A

richer physiological data set than the one presented here – one that contains a greater number of

the physiological modalities – can combine powerfully with behavioral markers to allow pursuit

of highly relevant clinical and translational research questions.

As an example, attention and arousal are thought to be modulated by the locus coeruleus-

noradrenergic (LC-NE) system. Pupil size (116, 117, 118) in absence of lighting change and

heart rate (119) are both considered proxies for locus coeruleus (LC) activity. A data set that

fuses EKG and pupillometry with human intracranial EEG along with visual behavior recorded

during real–world social interactions, such as those between patient-participants and clinicians,

can enable investigation of the neural correlates of arousal and attention in ecologically valid and

clinically salient settings.
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3.4.3 ETHICAL CONSIDERATIONS

Ethical considerations presented by research involving video and audio recording of real-

world behavior in a clinical environment include issues of privacy protection, data sharing and

publication of findings, and challenges of obtaining informed consent (120, 121). Studies involv-

ing such recording affect the privacy of not only participants, but also the visitors, clinicians, and

researchers with whom they interact. We believed, and the institutional review board concurred,

that with regard to those interacting with participants, this study met the criteria for waiver of

informed consent, because obtaining consent was impracticable and the study presented only

minimal risks to visitors and others interacting with participants. Instead, a notice was placed

on the door of patient rooms to alert anyone entering the room that video and audio recordings

would be acquired. Visitors could opt-out by not visiting, or by requesting that their visit not

be one of the interactions recorded (perhaps by rescheduling the visit). Clinicians were not able

to opt-out of entering and being recorded, as they were required to provide standard care; how-

ever, they were informed in advance that the study was being conducted and could raise concerns

about their presence and interactions being recorded. These concerns are addressed on a case-by-

case basis. (One can imagine, for example, that for reasons of personal safety a clinician might

not want her employment location to be made public through future publication/presentation of

study findings.) Moreover, the faces of those interacting with participants are to be obscured in

all tapes/photos that are either shared or published.

The risks to participant privacy were more substantial, and were simultaneously compounded

and mitigated by the clinical environment. In comparison to home environments, inpatient set-

tings afford a lower expectation of privacy, with hospital staff coming and going, rooms often

left open to the hallway, and, in some cases, rooms being under video and audio monitoring for

reasons of clinical care. Patients generally trade-off their privacy for the prospect of clinical ben-

efit. Nevertheless, the study involved greater reduction in privacy and for reasons that afforded
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no direct benefit to the participants themselves.

Participants were asked to give informed consent to study participation, including the video

and audio recording, collection of physiological data, data sharing, and publication of study find-

ings. Study procedures — putting on, calibrating and wearing the eye-tracking glasses — served

to remind participants that their behavior was being recorded. At the end of each recording ses-

sion, patient-participants were asked to consider the events that happened and explicitly consent

to the recording being used for research purposes. In addition, separate consent/release was ac-

quired for use of the video and audio recordings in figures for publications or in presentations.

This is especially important because the study took place in a particular clinical setting, and thus

for participants who are identifiable in the recordings, publication/presentation of findings would

reveal health-related information about them—namely that they were in an Epilepsy Monitoring

Unit.

The question of data sharing for recordings that are inherently not de-identifiable is an addi-

tional issue to consider. Processed data (annotations with identifiable information removed, for

example audio diarization and generic aspects of the computer vision annotations) could likely

be shared openly as long as substantial care was taken to assure de-identification. Sharing raw

data is a bigger challenge and would require additional layers of consent such as consent proce-

dures used when creating public behavioral databases, though even with this level of protection

care must be taken given the potential sensitive nature of the recordings in a clinical environ-

ment. Thus, at most, well curated snippets of raw data may be publicly shareable, and sharing

of raw data would likely have to be done under IRB approval at both institutions with a data use

agreement.

In this study, we sought to study natural real-world social interactions and thus avoided
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recording doctor-patient interactions or clinical events. For studies that seek to understand

doctor-patient interactions or clinical events, these protections and privacy concerns become even

more acute and participants should be reminded when acquiring both pre- and post- session con-

sent that the video/audio recordings will include sensitive clinical information.

3.4.4 IMPLICATIONS FOR CLINICAL AND TRANSLATIONAL RESEARCH

Real-world social interactions in an inpatient hospital setting include caregiver–patient in-

teractions (81, 82, 122), which include interactions with neurosurgeons and epileptologists in

the case of patients in the EMU. Capturing physiological and behavioral data corresponding to

these interactions offers a unique opportunity to understand how clinical decision making in

these dyadic interactions is affected by different circumstances based on factors like the severity

of clinical issues involved, the presence of family, the patient’s mental health. A deeper un-

derstanding of the relationship between patient physiology and behavior that accompanies clini-

cally important interactions has profound implications for clinical practice, patient outcomes and

patient satisfaction (123). Lastly, the described workflow can be applied to better understand

seizure semiology, which is the keystone for seizure localization and directly related to optimal

post-operative results in curative epilepsy surgery.

3.4.5 NEURAL BASIS OF REAL-WORLD BEHAVIOR

Ecological validity is essential to the investigation of social behavior in the real world. The

experimental paradigm we describe here is part of an emerging effort to address this chal-

lenge (15, 31, 124, 125, 126). Laboratory psychology and neuroscience allows for tightly con-

trolled experiments that are crucial for the advancement of knowledge and many aspects of

what is discovered in these tightly controlled experiments have external validity (127). How-

ever, an ecological approach often yields results that differ from those of laboratory experiments

(15, 16, 17, 18, 19). For example, recent studies have shown that eye gaze patterns for static
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faces or even movie faces are very different from those observed during actual face-to-face in-

teractions (128, 129, 130, 131, 132, 133) and real world settings have been shown to activate

broader brain networks than do artificial conditions (126, 134, 135). Moreover, the “naturalistic

intensity” (134) of an interaction with one’s loved ones or a doctor or a threatening stranger is a

key element of real-world experience that cannot be fully captured in a laboratory. Basic aspects

of the organization of the “social brain” (136) are unlikely to change in real-world environments,

for example regions of the brain that show face selectivity in the lab (98, 137, 138) remain face

selective in natural conditions (Fig. 3.7), as expected given that disruption to these regions cause

real-world face processing abnormalities (139, 140, 141). However, important aspects of how

these regions code and process social information are likely to reflect real-world processes that

differ from the laboratory environment. At a minimum, it is important to validate laboratory find-

ings in real world settings to determine the generalizability of models derived from controlled

experiments (127).

The complexity of studies in the real-world is that there is enormous uncontrolled variability

in natural environments. However, modern computational studies, such as those in artificial intel-

ligence and computer vision, show that real-world variability can be well-modeled with sufficient

data. Our paradigm is designed to enable real-world neuroscience by facilitating the collection

and processing of large datasets combining behavior, physiology, and neural recordings that can

be analyzed using modern computational techniques to test hypotheses about social behavior and

its neural bases in natural environments.

The movement towards studying the neural basis of real-world behavior has also been seen

in recent studies with non-human subjects, enabled by the potential of telemetric recordings that

allow for neural activity to be recorded during natural behavior (142, 143, 144). Parallel studies

of natural neuroscience in non-human primates has the potential to allow for a deeper under-
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standing of the cellular-to-systems mechanisms for basic pan-specific aspects of social behavior

and cognition. Advances in computer vision provide the opportunity to annotate nonhuman an-

imal behavior and in relation to details of a natural environment (113) just as they do in human

studies. Recent work has also demonstrated that restraint free, real-world eye tracking is also

possible in non-human primates (145, 146). Thus, the approach described in this work could be

adapted to parallel studies in non-human primates, leveraging the higher resolution methods that

are possible to use in nonhuman primates, to allow a cellular-to-systems understanding of the

neural basis of real-world cognition and perception.

3.5 CONCLUSION

We view the approach outlined above as part of an ongoing paradigm shift in approach to-

wards studying real-world behavior and cognition and their neural underpinnings. Real-world

“naturalistic intensity” and ecological validity is particularly important for studying social inter-

actions and their neural correlates. Our current methodology augments eye-tracking and behav-

ioral monitoring in experimental recording sessions in the EMU with neurophysiological moni-

toring. Extending behavioral monitoring to unscripted and more real-world contexts can enable

the collection of multi-modal data sets that are large enough for cutting edge machine learning

techniques like deep learning to be pressed into service to learn relationships between behavior

and physiology. Combined behavioral and physiological data can be used both for studying ba-

sic cognitive phenomenon and can also be used to find markers that are predictive for clinically

significant events like seizures, cardiac events, respiratory events, and others.
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CHAPTER 4

RECONSTRUCTING THE NEURAL CODE

FOR REAL WORLD FACE PERCEPTION

A central goal for neuroscience is to understand how our brains process information in real

life, such as faces during natural social interactions. We harnessed multi-electrode intracranial

recordings from hours of unscripted interactions participants had with friends, family, etc. Videos

of faces being viewed could be reconstructed from brain activity alone and vice versa, which

emphasized the importance of the social-vision pathway to natural face perception. Sharper

neural tuning was revealed for the type of facial expression over its intensity. There was greater

sensitivity for subtle differences from a person’s resting expression than from strong expressions

– a Weber’s law for facial expressions. These results suggest that oval-shaped neural tuning for

the kind and intensity of facial expressions reflects the neural code for real-world face processing.

4.1 INTRODUCTION

How does your brain code your daughter’s facial expressions and movements while playing

snakes and ladders together? This question illustrates a central goal of neuroscience – we seek

to understand how the brain processes information during natural behavior in the real world. We

study face perception to understand how our brains process the identity, expressions, and fa-

cial movements on people’s faces during natural social interactions in the real world. Important
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discoveries, such as the existence of an extended face processing network and aspects of how

it codes for faces, have come from laboratory paradigms that monitor brain activity while par-

ticipants view faces on a screen under tight experimental constraints (147, 148, 149, 150, 151,

152, 153, 154, 155, 156, 157). However, the fundamental question of how our brains process

the expressions and movements of real faces during natural, unscripted interactions with people

remains unanswered. Addressing this central neuroscientific goal requires the answer to two

intertwined questions: Can we model the unconstrained variability of faces during free, natural

social interactions in the real world? And, if so, how can we understand the underlying neural

representation by testing hypotheses about the neural code for facial expressions and movement

during real-world interactions?

Here, we harnessed simultaneous mobile eye-tracking and intracranial recordings from five

human participants undergoing clinical monitoring for seizure localization for 1-2 weeks. This

environment afforded a rare opportunity to study their brain during hours of natural interactions

with friends, family, clinicians, and researchers. Patients who chose to participate in this re-

search wore eye-tracking glasses (Fig. 4.1A) that recorded both their field of view (Fig. 4.1B)

with an outward facing world camera and where they looked in this scene with inward facing

eye-tracking cameras. Computer vision was used to detect faces in the video from the world

camera and combined with eye-tracking to determine when patients looked at faces (Movie 1).

Brain activity recorded from intracranial electrodes (Fig. 4.1C) was aligned with eye-movements

(fixation-locked brain activity) (Fig. 4.1D) to probe the neural signatures of faces. The pose, eye-

gaze, shape, texture, expressions, and movement of each face were parameterized using face AI

models that create an interpretable, linear space representing faces. (Fig. 4.1E).

A defining aspect of the modeling approach is a jointly learned neuro-perceptual space (Fig.

4.2A) where each axis of the space corresponds to aspects of brain activity and sets of dynamic
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Figure 4.1: Simultaneously recorded brain activity and unscripted natural interactions (A)
Participants implanted with intracranial electrodes wore eye-tracking glasses that captured their field
of view with a world camera (black circle) and where they looked with inward facing eye-tracking
cameras (orange rectangles) that tracked their eye-gaze (orange dashed line). (B) Eye-tracking was
combined with computer vision annotations of world video to determine when participants looked
at faces and who they looked at. In this example frame, the participant was looking (orange cross)
at their daughter’s face (see Movie 1 for a real time view). (C) Intracranial electrodes implanted for
clinical treatment in 5 participants (681 electrodes total) captured brain activity from Temporal (195
electrodes), Parietal (244 electrodes), Occipital (90 electrodes), Cingulate (41 electrodes), and Frontal
(207 electrodes) areas. (D) Intracranial EEG recordings were aligned in time (black arrow) with eye
movement (saccades and fixations) and world video annotations in (B) and preprocessed to obtain
Response Potentials and Broadband High Frequency Activity (BHA) for all 681 electrodes. (E) Real
faces recorded in world video were parameterized so they could be reconstructed with high fidelity,
using face AI models that estimated the pose, eye gaze, identity, expression, and texture of each face
in a linear face model, and a linear dynamical system that tracked facial motion.
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Figure 4.2: Learning and Inference in a Neuro-Perceptual space: (A) A computational model
was trained to identify aspects of brain activity (orange dots) and sets of facial features (magenta
dots) that were highly correlated. (B) Held out Fixation Locked brain activity was projected into the
neuro-perceptual space (orange dot) and projected out to the face space to predict a video of fixated
face. Reversing this process predicted brain activity from a face trajectory (magenta dot) in the neuro-
perceptual space.
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facial features that are strongly correlated with each other. Moving in this neuro-perceptual space

corresponds to both a parametric change in brain activity and complementary parametric changes

in the perceptual features that corresponded to that brain activity. Neural tuning curves are de-

fined as the relationship between parametric changes in the percept and corresponding parametric

changes in brain activity (158, 159); thus, the neuro-perceptual space is a tuning space. Learning

a linear neuro-perceptual space provides straightforward interpretability of the geometry of the

data manifold – if the data occupy a linear subspace, there is a simple linear relationship between

parametric differences in the face and parametric difference in brain activity; if the data occupy

a non-linear manifold, the geometry of this manifold can be probed to unravel aspects of faces

that the brain is more or less sensitive to.

4.2 RESULTS

We first tested the robustness of this approach to model face perception during natural social

interactions by reconstructing faces, including their motion and expression, from brain activity

alone and vice versa. Specifically, to reconstruct a face participants viewed, its correspond-

ing fixation locked brain activity was projected into the model’s neuro-perceptual space. This

neuro-perceptual representation was then projected out to a face space and the predicted face

was visualized (Fig. 4.2B), then this process was reversed to create a movie of the predicted

brain activity based on face information alone. We then examined the tuning geometry to un-

ravel the neural representation of real-world facial expressions and face motion.

Across all participants, qualitatively accurate movies of the faces that participants viewed

could be made using brain activity alone. For example, Fig. 4.3A and Movie 2 show the face of

Participant #1’s daughter while they played snakes and ladders. Fig. 4.3C and Movie 3 show ad-

ditional reconstructed faces from other participants’ interactions with friends and family as well

as clinicians and researchers. To quantify reconstruction quality, we assessed pairwise classifica-

81

https://drive.google.com/open?id=1MpiQFprqCugDemC6FlkVqmA6qZIt_Iwo&usp=drive_fs
https://drive.google.com/open?id=1MqsKA3zxtmDbeG6V0aYIauadkmUnlrtx&usp=drive_fs


Figure 4.3: (A) Face reconstruction: An example face during a fixation (left), its face model rep-
resentation (middle), and the face reconstructed using brain activity alone (right) for Participant #1’s
daughter while playing snakes and ladders (see Movie 2). (B) Top level Statistics: Pairwise classi-
fication accuracy (see Methods for details) was significantly (p<0.05 with permutation tests) above
chance (50%) for all patients (black), not only between identities (gray), but also between instances
of an individual’s face (brown). (C) Additional face reconstructions: Faces of multiple individuals
were reconstructed for each participant and faces of researchers and clinicians present in recording
sessions for different participants could be reconstructed from each participant’s brain activity. See
Movie 3 for these and additional reconstructions from all participants. The original faces are not
shown for some individuals who were either unreachable or declined consent to use their faces in
print. In those cases, the face model representation for those individuals is rotated by a random matrix
to obscure their identity.
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tion accuracy by determining if the face reconstruction movie was more like the actual face from

that fixation compared to other face fixations. Significant reconstruction accuracy (Fig. 4.3B)

was observed in each participant; including for the case where the pairs of fixations being com-

pared were restricted to different instances of the same individual’s face (within identity recon-

struction of dynamic facial expressions). The qualitative accuracy of individual reconstructions

and quantitative statistics demonstrate that this paradigm and analytical framework is suitable for

modeling the unconstrained variability of real world faces during free, natural social interactions.

However, realizing the potential of this approach for neuroscientific discovery requires inverting

this reconstruction, i.e., reconstructing brain activity from dynamic faces.

Fixation locked brain activity was reconstructed significantly across several cortical areas,

including traditional face areas such as the fusiform in ventral temporal cortex. Notably, the

most robust reconstructions of brain activity came from electrodes in areas around the temporal-

parietal junction which correspond to the recently proposed third visual stream (156), posited

to be a social-vision pathway. These observations were replicated in both hemispheres across

different participants (Fig. 4.4A, Movie 4, Table in Fig. 4.6). The temporal dynamics of robustly

reconstructed brain activity for electrodes in face areas included but were not limited to the N170

response. The reconstructed brain activity emphasized the putative social vision pathway as crit-

ical for face processing in the real world.

The above reconstructions (Fig. 4.3 and 4.4A) demonstrate both the robustness of the ap-

proach and the spatiotemporal patterns of brain activity that correspond to real world face per-

ception. The neural code for dynamic facial expressions during real-world interactions can be

further unraveled by examining aspects of the model itself. The reconstructions of faces from

brain activity and vice versa were based on a neuro-perceptual space learned jointly from brain

activity and faces. Moving along the axes of the neuro-perceptual space enables data-driven
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Figure 4.4: (A) Reconstructed neurodynamics: Significantly (p<0.05 with permutation tests) re-
constructed Fixation Locked brain activity for all electrodes that model’s make predictions for, visu-
alized for all participants over the fixation duration (see Methods for details). Movie 4 depicts the
underlying neurodynamics of this figure over all participants, and Movie 5 does the same separately
for each participant. (B) Neuro-Perceptual space: Each axis specifies linear mappings between fa-
cial features and aspects of brain activity that are significantly correlated with each other. A step
along any axis in this space changes both the predicted neurodynamics and the predicted face. The
visualization depicts the predicted face trajectory and neurodynamics at the negative and positive ends
of two dimensions for Participants #2 and #4. The canonical components visualized here are visibly
sensitive to expression and motion (x-axis), as well as pose (y-axis). Movie 6 and Movie 7 visualize
these dimensions.
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discovery of how particular aspects of neural activity correspond to particular aspects of the

perceptual input. For example, neuro-perceptual spaces across participants revealed dimensions

sensitive to facial pose (Fig. 4.4B, Movie 6), expression and motion (Fig. 4.4B, Movie 7) and

these example movies also show what aspects of the neural activity are different for parametric

differences in the face. Mapping how parametric differences in stimuli such as faces correspond

to parametric differences in neural activity is how we measure neural tuning and thus, neuro-

perceptual spaces are tuning spaces, and the geometry of the data manifold embedded in these

tuning spaces can be used to test hypotheses that reveal the neural code for faces.

We deployed these methods to investigate how our brains code for variations on someone’s

face during natural social interactions. We hypothesized that our brains code the facial expres-

sions for a person as deviations from their resting face (which acts as a kind of “norm” expression

for a person). To operationalize this, we first recentered the face space for each individual per-

son participants saw by estimating the resting face and treating it as the origin of the space of a

person’s facial expressions. This recentering effectively removes face identity from the model,

allowing us to examine how facial expressions are coded independent of whose face is making the

expressions. Reconstruction accuracy remained significant even with identity removed. In two

of our participants, there were sufficient fixations on multiple faces that we were able to show

that we can train a model on one set of peoples’ facial expressions and accurately predict the

neural response for a different set of peoples’ facial expressions and movements (cross-identity

facial expression reconstruction; see supplementary results); i.e., given sufficient data, if we train

a model only on “Mark’s” facial expressions and movements, that model still accurately predicts

“Sally’s” facial expressions from brain activity and vice versa despite the fact that the model was

not trained with any instances of seeing Sally’s face. These results validated the robustness of

recentering the face space to remove identity to test hypotheses about the coding of face infor-

mation during real-world interactions.
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Figure 4.5: Neural population tuning for facial expressions (A) Hypothesis - our ability to tell
facial expressions apart is greater for differences in expression (tangential distances) than differences
in their intensity (radial distances). (B) Neural population tuning was sharper (steeper slope) for
differences in expression relative to differences in the intensity of expressions (see Fig. S3 for all
participants). (C) Behavior in a controlled face discrimination experiment was consistent with (B),
showing greater accuracy for discrimination between expression type vs. intensity. (D) Hypothesis -
our ability to distinguish expressions between faces close to each other is higher when the expression
intensity (deviation from the resting face) is lower. (E) Neural sensitivity (error of neural prediction)
for facial expression increased with the intensity of expressions (see Fig. S4 for all participants). (F)
Behavioral responses were consistent with (E), showing decreasing sensitivity for facial expressions
as expression intensity increased. (G) Neural population tuning for facial expressions of a person
emerges as an oval shaped function (A - C), in which perceptual error i.e., tuning width grows based
on distance from the resting facial expression of a person (D – F).
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Next, we hypothesized that for the same sized visual changes, the brain would be more sensi-

tive to differences in the kind of expression fixated upon than the intensity of the expression (Fig.

4.5A). In other words, we hypothesized that our brains need to be more sensitive to what kind

of smile a person is making – a happy smile vs a sympathetic smile – compared to the intensity

of the smile – a happy smile vs a slightly happier smile for example. The results supported this

hypothesis for all subjects with sharper neural tuning for differences in expression (tangential

distances) compared to differences in the intensity of expression (radial distances) (Fig. 4.5B).

This finding was also validated behaviorally with a psychophysical experiment (Fig. 4.5C).

Finally, we hypothesized that the brain would be differentially sensitive to the same sized

change in a face expression based on how close or far the expression was from the resting ex-

pression (Fig. 4.5D). In other words, we hypothesized that our brains should be more sensitive to

the difference between a neutral expression and a coy smile compared to the difference between

a large smile and a slightly larger smile, as an example. Indeed, the error in neural predictions

increased (Fig. 4.5E) with the intensity of expressions (distance of fixated faces from the resting

face) for all participants. This phenomenon was also validated behaviorally with a psychophysi-

cal experiment (Fig. 4.5F). The finding emerges as an analog (for facial expression) of Weber’s

law, which states that “the size of perceptible changes in stimulus intensity is proportional to the

intensity of pre-existing stimulus” – another example of Weber’s law is that we can easily tell the

difference between a 1 and 2 pound weight but find it much harder to tell the difference between

a 101 and 102 pound weight.

Taken together, these results demonstrate the neural code for facial expressions on a person’s

face during real-world interactions is defined by oval shaped tuning (Fig. 4.5G). The ovals are

oriented toward the resting expression (norm) due to lesser sensitivity to differences along the
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radial axis and greater sensitivity to differences tangential to this axis. The size of the ovals, i.e.,

the width of underlying tuning curves in the neural population, increase with distance from the

resting expression.

4.3 DISCUSSION

In this study, we introduced an approach to model the uncontrolled variability of dynamic

faces and brain activity by reconstructing them from each other during natural, unscripted in-

teractions between participants and friends, family, researchers, etc. We used computer vision

and a dynamical systems model to parameterize facial features, expressions, and motion, and a

bidirectional model that reconstructed faces and brain activity from each other. We successfully

reconstructed videos of faces being viewed during natural interactions based on neural activ-

ity alone, demonstrating the robustness of this approach. Reconstructed brain activity revealed

the putative social-vision pathway (156) as important for face perception in real life, alongside

traditional face areas in the ventral temporal cortex, and highlighted the importance of neural

dynamics outside the N170 response. A central feature of the model was its jointly learned

neuro-perceptual space which revealed the tuning of neural populations to facial features and

enabled testing hypotheses about the neural code for dynamic facial expressions. We used this

analytical framework to test hypotheses about a norm or resting expression centered code for

facial expressions within a person’s face. The results supported oval shaped tuning and revealed

an analog of Weber’s law for facial expressions in the process, which was subsequently tested

and confirmed with a behavioral experiment that tested face perception.

The neural code for differences of facial expressions is relatively unknown compared to other

aspects such as identity, where distinct coding schemes have been reported. Natural interactions

like those recorded here offered a unique opportunity to address this gap in knowledge by prob-

ing natural variation in facial expressions. The results presented here supported the idea of a
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norm-based neural code in which expressions on a person’s face are coded as deviations from

their resting facial expression (norm). Notably though, they do not rule out other possibilities

such as a mixed axis-based and norm-based code because different hypotheses were not com-

peted against each other. If anything, the results support a mixed code, because norm-based

tuning was observed in a model whose basic structure was axis-based. An important aspect of

neural population tuning that emerged was differences in neural sensitivity to changes in the type

and intensity of expressions, and a decreasing sensitivity to facial expressions that were further

away from the resting facial expression, which revealed an analog of the Weber’s law for facial

expressions. Taken together, these results portray neural tuning for people’s facial expressions

as oval shaped, where the ovals are pointed toward their resting facial expressions and get larger

upon moving further away from the resting expression.

Real-world neuroscience has the potential to reveal novel observations that can be probed

further in lab-based experiments and test how lab-based findings are implemented during natural

behavior (160). Advances in technology enable recording natural behavior at high fidelity but

using them to unravel brain-behavior relationships in the real world requires overcoming engi-

neering and analytical challenges that are distinct for each aspect of cognition (26, 27, 28, 29).

This study illustrates some of the key features for success in using uncontrolled real world

recordings to understand the neural code are: appropriate behavioral events (fixations in this

study), parameterization of stimuli or behavior being related to brain activity (projecting the

faces into a parameterized face space), collection of large datasets that transform uncontrolled

real-world variability from a challenge into an asset (hours of data), and statistical frameworks

that robustly reveal the neural underpinnings of perception and behavior (the jointly learned

neuro-perceptual space). These themes are also relevant for animal studies that are pushing the

boundaries of brain recordings during natural behavior, driven by a rising interest in neuroethol-

ogy (160, 161, 162, 163, 164, 165).
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The jointly learned neuro-perceptual spaces in this study demonstrated robust reconstruction

of dynamic facial expressions based on neural activity alone and vice versa (Fig. 3 and 4A). This

jointly learned space facilitated both a data driven examination of neural tuning (Fig. 4B) as well

as probing of the data manifold in these spaces, which allowed for the testing of specific hypothe-

ses about the neural code (Fig. 5A, 5D). Examining the geometry of the data manifold generated

novel hypotheses - the oval shaped tuning for facial expressions with larger ovals further away

from the resting expression (Fig. 5G), that were tested using controlled experiments (Fig. 5C,

5F). Taken together, these neuro-perceptual spaces can reveal a picture of neural population tun-

ing to natural stimuli in real-world settings, in much the same way studies in controlled settings

have revealed tuning to aspects of vision (166), movement (167), navigation (168, 169, 170), etc.

Understanding neural tuning for representations in real-world settings can not only provide eco-

logically valid substantiation of models developed in control experiments, but also generate new

hypotheses that can be tested in controlled experiments. The modeling framework’s capability

to predict brain activity based on stimuli also has implications for brain-computer interfaces for

vision restoration.

4.4 MATERIALS AND METHODS

4.4.1 PARTICIPANTS

A total of five patients (three men, two women) underwent surgical placement of stereoelec-

troencephalography (intracranial EEG - iEEG) depth electrodes as standard of care for epilepto-

genic zone localization. The ages of the participants ranged from 22 to 64 years old (mean = 37

years, SD = 13.47 years). No ictal events were observed during experimental sessions.
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4.4.2 INFORMED CONSENT

All participants provided written informed consent in accordance with the University of Pitts-

burgh Institutional Review Board. The informed consent protocols were developed in consulta-

tion with a bioethicist (Dr. Lisa Parker) and approved by the Institutional Review Board of the

University of Pittsburgh. Audio and video of personal interactions were recorded during exper-

imental sessions. Our protocol incorporated several measures to ensure privacy considerations

and concerns could be addressed based on the preferences of individual participants. First, the

timing of recording sessions was chosen based on clinical condition and participant preference,

to ensure that they were comfortable with recording of their interactions with the visitors present

(and/or expected to be present). Second, all visitors present in the room were notified about the

nature of the experiment at the beginning of each recording session and given the opportunity

to avoid participation. Third, a notification was posted at the entrance of the patient room in-

forming any entrants that an experiment was being conducted where they might be recorded so

that they could avoid entering if they chose to. Finally, at the end of each experimental record-

ing, participants were polled to confirm their consent with the recording being used for research

purposes and offered the option to have specific portions (e.g., a personal conversation) or the

entire recording deleted if they wished. Thus, explicit “ongoing consent” was acquired through

written informed consent at the beginning and end of each session; providing participants the

opportunity both affirm their willingness to participate and to consider the content of the record-

ings before giving final consent. None of our participants thus far have asked to have recordings

partially or fully deleted after the recording session was complete.

It is notable that there are no reasonable expectations of privacy other than for the patient,

and this work was considered to meet the criteria for waiver of informed consent for everyone

other than the participants themselves. Regardless, separate media releases were sought from

individuals present in the video recordings to use their faces in publications. Some individuals
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were either unreachable or declined consent to use their faces in print. In those cases, the original

faces are not shown and the face model representation for those individuals is rotated by a random

matrix to obscure their identity.

4.4.3 ELECTRODE LOCALIZATION

Electrodes were localized with Brainstorm software using high-resolution postoperative CT

scans of participants that were co-registered with preoperative MRI images using FreeSurferTM.

4.4.4 DATA ACQUISITION

Multimodal behavioral data (egocentric video, and eye-tracking) as well as neural activity

from 96-220 iEEG contacts were recorded simultaneously during unscripted free viewing ses-

sions in which participants wore eye-tracking glasses while they interacted with friends and

family visiting them, clinicians, and hospital staff responsible for their care, and members of the

research team. The timing and duration of recording sessions were determined based on clini-

cal condition, participant preference and to coincide with the presence of visitors in the hospital

room, where possible.

Behavioral data were captured by fitting each participant with SensoMotoric Instrument’s

(SMI) ETG 2 Eye Tracking Glasses. An outward facing egocentric camera recorded video of

the scene viewed by participants at a resolution of 1280 x 960 pixels at 24 frames per second.

Two inward facing eye-tracking cameras recorded eye position at 60 Hz. SMI’s iView ETG

server application, running on a laptop received and stored streaming data for all modalities from

the eye-tracking glasses by way of a USB2.0 wired connection. The iView ETG software also

served as an interface for researchers to calibrate the eye-tracking glasses to each participant

with a three-point calibration procedure that enabled the accurate mapping of eye-tracking data
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to specific ‘gaze’ locations on video frames, and to initiate and stop the recording of behavioral

data.

Electrophysiological activity (field potentials) was recorded from up to 220 iEEG electrodes

at a sampling rate of 1 kHz using a Ripple Neuro’s Grapevine Neural Interface Processor (NIP).

4.4.5 DATA SYNCHRONIZATION

A MATLAB R⃝ script, running on the same laptop as the SMI iView ETG Server software,

broadcasted numbered triggers every 10 s, injecting them simultaneously into the neural data

stream via a Measurement Computing USB-204 data acquisition (DAQ) device connected to the

NIP’s digital port and into the eye-tracking event stream via SMI’s iView ETG server application

via a sub-millisecond latency local loop back network connection using UDP packets. These

triggers were used to align and fuse the heterogeneously sampled data streams after the experi-

ment, during the Data Fusion stage.

In each recording session, neural activity recording was initiated, followed by simultaneous

initiation of recording of eye-tracking and egocentric video via the SMI ETG 2 Eye Tracking

Glasses using the SMI iView ETG Software Server. Once the recording of all modalities was

underway, the MATLAB R⃝ script was initiated to generate and transmit triggers. At the end of

each recording session, the tear down sequence followed the reverse order: 1) the MATLAB R⃝

script was terminated, marking the end of the recording, 2) the SMI iView ETG Software Server

recording was halted, 3) the neural data recording stream was stopped on the NIP. Excess data

from prior to the first numbered trigger and after the last numbered trigger were discarded for all

modalities.
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4.4.6 MINIMIZING EYE-TRACKING ERROR AND PARTICIPANT FATIGUE

Shift in the placement of the eye-tracking glasses is possible if the participant inadvertently

touches or moves them during a recording session. Such disruption can introduce systematic

error(s) in eye gaze data captured after the disruption(s), although errors can be mitigated with

gaze correction (see Data Preprocessing for details). The potential for such an event increases

with the duration of a recording session. To minimize the risk of such error(s), we first instructed

participants to avoid touching or nudging the glasses during a recording session to avoid disrupt-

ing the eye-tracking calibration completed at the beginning of the recording session. Second,

we strove to reduce such errors by limiting an individual recording session to 1 h and including

a short break for participants. During this interlude, the recording was terminated, and partici-

pants are offered the opportunity to remove the eye tracking glasses before initiation of the next

session. The interlude served two purposes: 1) it gave the participant a break from wearing the

eye-tracking glasses, helping to alleviate fatigue and discomfort; 2) initiating a new recording

allowed the research team to re-secure and re-calibrate the eye-tracking glasses, renewing the

accurate mapping of gaze to the egocentric video. Although we prefer ≈ 1 h recordings as a

best practice, maintaining this practice depended upon participants’ preference and the number

visitors. In some cases, recording sessions were longer.

4.4.7 ERGONOMIC MODIFICATIONS

Standard clinical care following iEEG implantation involves the application of a bulky gauze

head dressing. This bandaging was applied around the head to protect the operative sites where

the iEEG electrodes were secured with bolts. The dressing also included a chin wrap to provide

further support in preventing dislodgement of the iEEG electrodes by securing the connector

wires that carry electrical activity to clinical and/or research recording systems like the Ripple

Neuro Grapevine NIP. The bandaging typically covered the participants’ ears, rendering the tem-

ples on the eye-tracking glasses unusable. To overcome this challenge, we modified the structure
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of the eye-tracking glasses, removing the temples and substituting them with an adjustable elastic

band. We attached the elastic band to the frame of the eye-tracking glasses using Velcro patches

sown at each end. The modification permitted secure placement of the glasses on the face of a

participant, with the elastic band carefully stretched over the head dressing to avoid disturbing

the operative sites. To reduce any pressure the eye-tracking glasses placed on the participants’

faces as a result of the elastic band alteration, we further modified the glasses by adding strips

of adhesive backed craft foam to the nose bridge and upper rims of the frame. These ergonomic

solutions enabled correct, robust, and comfortable placement of eye-tracking glasses for each

participant with flexibility to adjust to individual bandaging and electrode placement configura-

tions. As an added measure to minimize the possibility of movement for eye-tracking glasses

during recording sessions, the USB cable connecting the eye-tracking glasses to the laptop was

secured to the participants’ hospital gowns near the shoulder with a large safety pin to prevent

the weight of the remaining length of cable from pulling on and displacing the glasses during

a recording session. Sufficient slack was left in the cable segment between the glasses and the

fixation point on the participants’ gowns to allow for free head movement while preventing the

secured cable segment from pulling on and potentially displacing the eye-tracking glasses.

4.4.8 BEHAVIORAL EXPERIMENT

A behavioral psychophysics experiment approved by the University of Pittsburgh’s Institu-

tional Review Board was conducted in a cohort of 8 participants (four men, four women) who

were students and staff at the University of Pittsburgh. The ages of the participants ranged from

18 to 34 years old (mean = 26, SD = 5).

The behavioral paradigm required participants to determine whether two faces, shown one

after the other, were the same or different. Each face was presented for 1 second. The inter-

stimulus interval between faces was randomized, ranging from 500ms - 1100ms. Participants

95



were required to make a choice (“the faces were the same”, “the faces were different”) for each

trial to advance through the experiment. A single run of the experiment comprised of 228 trials.

The two faces presented in each trial featured one with a target expression at a specific intensity

(the base face), and another face which was a radial or tangential perturbation to this base face.

Radial perturbations could increase or decrease the intensity of the expression by a given step size

in the face model space, but not change the expression itself. Tangential perturbations changed

the expression (up or down an orthogonal direction) but did not affect the intensity of the original

expression. The stimulus set consisted of 10 intensities for each expression i.e., there were 10

base faces for each expression which were presented alongside their 2 radial and 2 tangential

perturbations. This added up to 40 trials for each expression i.e., 4 trials for each of the 10

expression intensity levels. Both radial and tangential perturbations were of the same step size

in the face space. The stimulus set featured 6 different expressions of which 3 were canonical

expressions (joy, fear, disgust), and 3 were randomly generated expressions. The maximum

allowable expression intensity was the same across all expressions, and limited to ensure that

presented faces were not aversive. All the faces presented in this paradigm were generated from

a 3D morphable face model with a principal component space in which the canonical expressions

(joy, disgust, fear, anger, surprise, sadness) were known. The paradigm featured sham trials in

which the same face was shown twice, which accounted for 20% of the number of normal trials.

4.4.9 DATA PREPROCESSING

The physiological (neural) and behavioral (eye-tracking, video, audio) data streams captured

during a real-world vision recording were preprocessed as follows before Data Fusion was initi-

ated.
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INTRACRANIAL RECORDINGS

Response potentials and broadband high frequency activity (BHA) were extracted from the

raw iEEG recordings for statistical analysis using MATLAB. Response potentials were extracted

using a fourth-order Butterworth bandpass ([0.2 Hz, 115 Hz]) filter to remove slow linear drift

and high-frequency noise, followed by line noise removal using a fourth-order Butterworth band

stop ([55 Hz, 65 Hz]) filter. BHA extraction involved two steps. First, the raw signal was filtered

using a fourth-order Butterworth bandpass ([1 Hz, 200 Hz]) filter followed by line noise removal

using notch filters at 60, 120, and 180 Hz to obtain local field potentials. Next, power spectrum

density (PSD) between 70 and 150 Hz was calculated for the local field potentials with a bin

size of 2 Hz and a time-step size of 10 ms using Hann tapers. For each electrode, the average

PSD across the entire recording was used to estimate a baseline mean and variance of the PSD

for each frequency bin. The PSD was then z-scored using these baseline measurements for

each frequency bin at each electrode. Finally, BHA is estimated by averaging the z-scored PSD

across all frequency bins (excluding the line noise frequency bin at 120 Hz). iEEG recordings

were subjected to several criteria for inclusion in the study. Any recordings with ictal (seizure)

events were not included in the study. Artifact rejection heuristics were implemented to avoid

potential distortion of statistical analyses due to active interictal (between seizure) or outliers.

Specifically, we evaluated the filtered iEEG data against three criteria that are applied to each

sample i.e., each time point in iEEG recordings, which corresponds to 1 ms of neural activity.

These criteria were applied to the filtered iEEG signal for each electrode, as well as the averaged

(across all electrodes) iEEG signal. The first criterion labels a sample as ‘bad’ if it exceeds

350 µV in amplitude. The second criterion labels a sample as bad if the maximum amplitude

exceeds 5 standard deviations above/below the mean. The third criterion labels a sample as bad

if consecutive samples (1 ms apart at a 1000 Hz sampling rate) change by 25 µV or more. For

the averaged iEEG signal, any sample satisfying any of these three rejection criteria is labeled

as bad. Further, if more than ten electrode contacts (out of a typical 128) satisfy the bad sample
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criterion for a particular sample, it is labeled as a bad sample. Less than 10% of the samples in

experimental recordings were labeled as bad samples. All data types were dropped from analysis

for fixations that contained bad samples.

EYE-TRACKING

The eye-tracking data stream is composed of time series data sampled at 60 Hz, where each

sample (referred to as an eye tracking trace) contains a recording timestamp, an eye gaze location

(X,Y coordinates in the space of egocentric video) and is labeled by the SMI iView ETG platform

as belonging to a fixation, a saccade or a blink. Consecutive eye-tracking traces with the same

label (fixation, saccade, or blink) are interpreted as belonging to a single eye-tracking ‘event’

of that type, whose duration is the difference in recording timestamps of the last and first eye-

tracking traces in the block of consecutive traces with the same label (fixation, saccade, or blink).

As an example, a set of 60 eye-tracking traces (amounting to 1 s of recorded activity), where the

first 30 are labeled as fixation, the next 12 labeled as saccade, followed by the final 18 labeled

as fixation, would be interpreted as a fixation event ≈ 500 ms long (30 samples at 60 Hz),

followed by a saccade event ≈ 200 ms long (12 samples at 60 Hz) followed by a fixation event

≈ 300 ms (18 samples at 60 Hz). We developed custom Python scripts that parse eye-tracking

traces and construct logs of eye-tracking events for each recording session. In addition to the

duration of each eye-tracking event, the median gaze location (median is used for robustness

to outliers) was logged for each fixation event and the start/ end gaze locations were captured

for each saccade event. Blink traces are denoted by a loss of eye-tracking (i.e., absence of

gaze location) and as a result only the duration of blink events was tracked in the consolidated

eye-tracking event logs. Preprocessing of eye-tracking data also incorporates the detection and

correction of systematic errors in gaze angle estimation that can be induced by the movement

of eye-tracking glasses during recording sessions (e.g., if a participant inadvertently touches and

moves the glasses due to fatigue), which disrupts the calibration of eye-tracking glasses (see
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Data Acquisition for details). Such issues were detected by manually viewing all experimental

recordings using SMI’s BeGaze application, which renders eye-gaze, audio, and egocentric video

together. The disruption of calibration for eye gaze tracking is visually detectable when viewing

egocentric video overlaid with eye-tracking and audio because visual behavior is altered such that

the gaze data fails to make sense consistently after loss of eye-gaze calibration (e.g., the subject

is scrolling through a phone or reading a book or watching tv or talking to someone, but the

gaze location is visibly shifted away from the obvious target). These issues were corrected using

the SMI BeGaze application, which allows researchers to apply a manual correction (i.e., an

offset) to eye gaze at any time point in a recording, which applies to all eye gaze data following

the corrected time point. The corrections were verified by reviewing the video that followed

the correction, to ensure that corrected eye gaze data made sense consistently. Corrections to

eye-tracking data preceded preprocessing in such cases.

FACE DETECTION

Egocentric (head-centered) video recordings included a range of visual stimuli present in

the room, including objects, people, and faces. We processed egocentric video recordings to

detect faces, the primary object of interest in this study. Deep Learning based computer vision

models (171, 172) developed for large-scale face detection and recognition applications were

used to detect faces present in each video frame of egocentric video recordings. Manual review of

egocentric videos with bounding boxes that annotated identifying detected faces showed model

performance was robust to the variability of conditions present in the egocentric video recordings.

Failure to detect a face was extremely rare, usually involving heavy occlusion, extremely poor

lighting, or both. Cumulatively 761,510 faces were detected and labeled (see Face Identification

below) across 1,136,208 frames of video corresponding to nearly 11 hours of recordings, which

required≈40 hours on a single NVIDIA 1080TI GPU. In addition to face detection, these models

also generate a 512-dimensional embedding in a face space that can be used to train classifiers to
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identify different individuals present in the video recordings.

FACE IDENTIFICATION

A neural network was trained to perform identity classification on faces detected across all

video recordings for each patient. The network architecture featured two densely connected

layers (128 ReLU units each) that were subjected to a 50% dropout rate to avoid overfitting.

512-dimensional embeddings generated by face detection models were used to predict identity.

To prepare data for model training, identity labels were assigned manually to all faces present in

a subset of video frames which corresponded to the beginning of each fixation. The annotation

typically required 2 hours of effort to annotate a 1 hour video recording. Depending upon what

participants did during a recording session, faces could also be detected on television screens,

mobile phone screens, magazines, and even arise from false positives (<1%) none of which were

in scope for this study. These extraneous faces arose in training data and were given a catch all

identity label (“other”) that separated them reliably from the faces of real people in the room.

Models were trained using 5-fold cross-validation and high accuracy (<0.1% misclassification)

and class balanced accuracy (since people were present in the recording for different amounts of

time) were observed on held out data.

The trained identity classification networks for each patient were then used to label all the

faces detected in each video frame of all their recording sessions. A final manual review of the

fully annotated video was performed to ensure undesirable and unforeseen issues did not arise

e.g., mislabeling sparsely present individuals as “other”.

FACE PARAMETERIZATION

Each face detected in egocentric video recordings is represented in a linear face model that

represents a 3D structure for them. Recent advances have enabled robust estimation and high-
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fidelity reconstruction of 3D faces from monocular images that capture a 2D view of the original

face. Face AI models that perform such reconstructions estimate the pose, shape, texture, ex-

pression of faces present in 2D images while accounting for extraneous factors such as camera

position and lighting parameters, in a way that aligns important facial landmarks, facial appear-

ance, and minimizes pixel level loss for the reconstructed face compared against the original 2D

face image.

Here, we parameterized faces in each frame of egocentric video recordings to obtain the pose

(θ ∈ R3) as well as their shape (s ∈ R80), texture (t ∈ R80), and expression (e ∈ R64) in a gen-

erative 3D face model (173, 174) using Deep 3D Face (175). Separately, we obtained estimates

for eye-gaze (g ∈ R2) for faces in each frame of egocentric video recordings using a state of the

art neural network (176). Combining these results in a 229-dimensional representation for each

face in each video frame of the egocentric video recordings.

FACE DYNAMICS MODEL

A state space model was trained to identify a low dimensional latent space where trajec-

tories representing the dynamics of parameterized faces could be embedded and recovered to

reconstruct the original 229-dimensional representation reliably. Pose and eye-gaze were low di-

mensional variables whose dynamics were tracked separately i.e., they are not embedded in the

state space. Thus, the state space model represented R224 dimensional inputs spanning shape,

texture, and expression in a latent space (x ∈ R30). The model structure described below follows

smooth linear dynamics (A), linear coordinate transformations into the latent space (B), and a

linear read out (C) of the latent variables back into to the original R224 face representation.
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For each participant, these models were trained and validated on face trajectories from un-

fixated faces that were not used in analysis. Validation also included a qualitative component,

where researchers reviewed face videos reconstructed from latent representations for held out

data, alongside the original faces which were not embedded in the model. The models were

eventually used to generate trajectory embeddings for fixated faces that were used in analysis

against brain activity.

RESTING FACE ESTIMATION

The resting facial expression for each individual present in egocentric video recordings was

estimated using parameterized representations of un-fixated faces that were not used in analysis.

The resting facial expressions were then subtracted from all fixated faces that were used in anal-

ysis against brain activity.

The first step in estimating resting facial expression was to regress out the effects of pose on

face parameters. This was done by training a multiple regression model to predict the value of

face shape, texture and expression parameters based on pose. Removing values predicted by the

regression model provided a pose corrected parameterization for each fixated face. Subsequently,

the average pose corrected shape, texture, and expression for each person in the recordings were
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computed as the resting facial appearance and expression.

4.4.10 DATA ANALYSIS

Precise alignment of the heterogeneous behavioral (eye-tracking), environmental (egocentric

video) and physiological (neural) data streams is essential for robust analysis, and this is achieved

by using eye-tracking as a reference modality against which video and intracranial recordings are

aligned in time as described in (30). All analysis in this study is anchored to behavioral events

(fixations) and each fixation is mapped to corresponding egocentric video frames corresponding

to it as well as brain activity (FLP and FLBHA).

DATA PREPARATION

Fixations are determined to be on a face if the eye-gaze at the beginning of a fixation is on a

person’s face in the corresponding egocentric video frame. This is operationalized by determin-

ing if eye-gaze coordinates fall within a face bounding box identified by computer vision models

(171, 172). Face fixations are filtered to ensure that they are 300ms or longer. Next, they are

filtered to ensure that no fixation contains brain activity that has been characterized as having

bad samples. Next, face parameters for the fixated person are retrieved for all the egocentric

video frames corresponding to the face fixation, and fixations where this is not possible for any

reason filtered out (e.g., because the face was not detected due to being occluded by obstacles

like another person crossing them).

The fixations that satisfy these data quality criteria are then assembled into a dataset (X,Y),

where X ∈ Rp represents face trajectories in the face dynamics model and Y ∈ Rq represents

fixation locked brain activity (FRP and FRBHA) for all intracranial electrodes implanted in a

participants brain. The dimensionality p of the face trajectories corresponds to collecting the pose

(θ ∈ R3), eye gaze (g ∈ R2), and latent face trajectories x ∈ R30 for 7 frames (corresponding
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to ≈300 ms), which results in p = 7 × (3 + 2 + 30) = 245 for basic face reconstruction and

p = 7× (2 + 30) = 224 for the dataset to study facial expressions as deviations from the resting

face. The dimensionality q of brain activity depends upon the number of electrodes (E) which

differ for each patient-participant. For 300 ms, Fixation Response Potentials (FRPs) sampled at 1

KHz correspond to 300 dimensions for each electrode and Fixation Broadband High Frequency

Activity (FRBHA) sampled at 100 Hz corresponds to 30 dimensions for each electrode, which

results in q = E × (300+ 30). Participants in this study were implanted with anywhere between

96 to 220 electrodes which corresponds to q ∈ R31680−72600. The number of fixations ranges

from N ≈ 102 − 103 across different participants which means that N << p, q.

COMPUTATIONAL MODEL

Canonical correlation analysis (177) seeks to model the covariability between two multi-

variate datasets (X ∈ Rp, Y ∈ Rq) as a small number of strongly correlated latent variables

(Canonical Components), to understand the relationship between them. It may also be described

as a type of latent multi-view representational learning when viewed through a contemporary

machine learning lens. In low dimensional data rich settings where N > p, q, CCA can be im-

plemented using a Singular Value Decomposition (SVD) on Σ
− 1

2
Y YΣY XΣ

− 1
2

XX (177). However, this

approach does not scale to high dimensions where N << p, q due to challenges with invert-

ing ΣXX , ΣY Y . Different approaches have been proposed over the years (178, 179, 180, 181)

primarily for applications in gene analysis, including those anchored around the idea of sparse

canonical vectors and recent developments (181, 182) in this direction make fewer simplifying

assumptions than earlier approaches (180).

Here, Sparse CCA is implemented by an iterative penalized least squares algorithm (182)

which uses regularized regressions in an alternating manner to estimate canonical vectors for (X

and Y ), one canonical component at a time. Given a centered dataset X ∈ RN×p,Y ∈ RN×q
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with sample covariances Σ̂XX = 1
N
XTX , Σ̂Y Y = 1

N
Y TY , Σ̂Y X = 1

N
Y TX , where the first k−1

pairs of canonical vectors (ŵl
brain, ŵ

l
face) ∀ l ∈ (1, k − 1) have been estimated, the kth canonical

vectors (ŵk
brain, ŵ

k
face) are estimated by solving

(ŵk
brain, ŵ

k
face) = argmin

wk
brain,w

k
face

1

2N

N∑
i=1

(
Y T
i wk

brain −XT
i w

k
face

)2
+

wk
brain

(∑
l<k

ρ̂lΣ̂Y Y ŵ
l
brainŵ

l
faceΣ̂XX

)
+

PY (w
k
brain) + PX(w

k
face)

s.t. wk
brainΣ̂Y Yw

k
brain = 1, wk

faceΣ̂XXw
k
face = 1 (4.2)

where PY (w
k
brain) and PX(w

k
face) are regularization functions that may reflect the type of penal-

ization in effect (e.g., group lasso, trend filtering). Here, we choose elastic penalties (Equation

4.3 that combine sparse feature selection with a smooth distribution of weights over the selected

features. It is notable that although the optimization problem is nonlinear in nature, the model

structure itself is linear.

P (w, λ, α) = λ

(
α||w||1 +

(1− α)

2
||w||22

)
(4.3)

The optimization problem in Equation 4.2 is solved using Algorithm 8 outlined in (182)
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Algorithm 8 Iterative Penalized Least Squares

1: Initialize (ŵk
brain, ŵ

k
face) as first singular vectors of Σ̂Y X −

∑k−1
l=1 ρ̂lŵ

l
brainŵ

l T
face

2: Initialize Rk − 1 = diag(ŵ1
brainΣ̂Y Xŵ

1
face, ..., ŵ

k−1
brainΣ̂Y Xŵ

k−1
face)

3: Initialize Ω1 = In, Ωk = In−YW k−1
brainRk−1W

k−1
faceX

T/n, where In is a n×n identity matrix.

4: while (ŵk
brain, ŵ

k
face) not converged do

5: Set Ỹk = ΩT
k Y ŵk

brain

6: Compute w̆k
face = argmin

wk
face

1
2n
||Ỹk −Xwk

face||22 + PX(w
k
face, αface, λface)

7: ŵk
face =

[
w̆k T

faceΣ̂XXw̆
k
face

]− 1
2 × w̆k

face

8: Set X̃k = ΩT
kXŵk

face

9: Compute w̆k
brain = argmin

wk
brain

1
2n
||X̃k − Y wk

brain||22 + PY (w
k
brain, αbrain, λbrain)

10: ŵk
brain =

[
w̆k T

brainΣ̂Y Y w̆
k
brain

]− 1
2 × w̆k

brain

11: Output ŵk
brain, ŵk

face upon convergence.

TRAINING

Training data were demeaned and scaled to unit variance prior to model training. Models

were trained with 5-fold cross-validation, which allowed each sample (fixation) to be in the test

set once. The use of an elastic penalty function required choosing two parameters for each canon-

ical component for each of the 5 models trained in this way. The first parameter was the regu-

larization penalty (λbrain, λface) and the second parameter was the elastic penalty (αbrain,αface).

Both were identified during an additional 5-fold cross-validation procedure within the training

data i.e., an additional inner cross-validation loop. An distinct relationship between α and λ (for

brain activity and facial features) emerged during hyperparameter selection, where the amount of

L1 penalty they collectively enforced (α× λ) remained identical i.e., increasing α led to a lower
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optimal λ and decreasing α led to a higher optimal λ such that their product i.e., the L1 penalty,

remained nearly constant. Such perturbations did not affect model performance in terms of statis-

tics used to quantify model performance (see Inference section below for details) or in terms of

the scientific conclusions drawn from examining model structure and the geometry of the data

manifold in the neuro-perceptual space. These observations were therefore interpreted as a prop-

erty of the data rather than the algorithm, and used to optimize the model training procedure by

choosing a low value of α = 0.1 (which was fixed) and λ was the only hyper parameter being

optimized. The choice of α ensured the L2 penalty term, weighed as 1
2
(1 − α) provided greater

smoothing across the aspects of brain activity and facial features that were selected by the model.

In terms of model selection, canonical components which exhibited statistically significant

correlation during the inner cross-validation loop were preserved and those that did not had their

weights zeroed out. Models estimated up to 20 canonical components during training but the

number of canonical vector pairs that survived cross-validation did not exceed 10 in any case.

This approach of estimating a larger model ensured that no useful relationships were missed.

The canonical space is also referred to as the neuro-perceptual space since it is jointly learned

from brain activity and face trajectories.

INFERENCE

Inferences were drawn in three ways to assess model performance quantitatively and qual-

itatively. Brain activity (Yi) and face trajectories (Xi) for held out fixations were first centered

according to the mean and variances estimated from training data, and then projected into the

neuro-perceptual space per Eq. 4.4.

Y CC
i = Yi ×WK

brain

XCC
i = Xi ×WK

face (4.4)
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Neuro-perceptual representations of brain activity were used to predict face trajectories, and vice

versa as described by Eq. 4.5.

X̂i = Y CC
i ×W † K

face

Ŷi = XCC
i ×W † K

brain (4.5)

where † represents the pseudoinverse of a sparse low rank projection matrix.

First, top level statistics were computed to assess model performance. Specifically, pairwise

classification accuracy was computed for each held out fixation (i) by comparing the distance

between the neuro-perceptual representation of its face trajectory (XCC
i ) and brain activity (Y CC

i )

against distances with all other held out fixations (j ̸= i). If the former distance was smaller, the

comparison was counted as accurate classification. The distances were weighted by the singular

values (D) obtained during Step #1 of Algorithm 8. The average across all comparisons (j ̸= i)

was defined as the classification accuracy of each fixation. This metric was calculated separately

for each held out fixation and then averaged across all fixations as described by Eq. 4.6.

Accuracy =
1

N

N∑
i

1

N − 1

N∑
j

j ̸=i

I||D(XCC
i −Y CC

i )||2<||D(XCC
i −Y CC

j )||2 (4.6)

The classification accuracy can be estimated in by comparing the neuro-perceptual face rep-

resentation of a fixation (XCC
i ) with the neuro-perceptual brain activity representation of all

other fixations (Y CC
j ) as described in Eq. 4.6 i.e., ||XCC

i − Y CC
j ||2 or by comparing the neuro-

perceptual brain representation (Y CC
i ) of a fixation with the neuro-perceptual face representation

of all other fixations (XCC
j ), which changes Equation 4.6 to use I||D(XCC

i −Y CC
i )||2<||D(XCC

j −Y CC
i )||2 .

In practice, either of these variations resulted in similar top level statistics. Statistical significance

thresholds for these statistics were estimated using permutation tests (see below for details).
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Second, predicted brain activity was correlated with original neural activity (z-scored) for

all electrodes across all time points for FRPs and FRBHA to determine how well the model

predicted neurodynamics. Statistical significance thresholds for the correlations were estimated

using permutation tests (see below for details).

Lastly, face trajectories predicted by brain activity were visualized as face videos alongside

the original face and its face AI representation to qualitatively validate how neurally predicted

faces looked compared to the original as shown in Fig. 4.3. Such face visualizations also helped

visualize neural tuning by showing how movement along different dimensions of the neuro-

perceptual space affected face appearance, dynamics, and predicted brain activity shown in Fig.

4.4B.

PERMUTATION TESTS

Permutation tests were implemented to estimate the statistical significance thresholds for top

level statistics (pairwise classification accuracies) and reconstructed brain activity. Permutation

tests with 1000 permutations were conducted separately for each participant. Three different fla-

vors of permutation tests were implemented and results were consistent across them. In the first

type of permutation test, the pairing between fixation locked brain activity and facial features

was broken i.e., brain activity associated with a face fixation was permuted and assigned to a

different face fixation. In the second type of permutation tests, fixation locked brain activity fixa-

tions that were not on faces at all was paired with facial features. In the third type of permutation

test, brain activity was sampled randomly, breaking its anchoring to fixations, and facial features

were randomly selected (from faces that were not fixated upon).

A Statistical significance threshold (p<0.05) for pairwise classification accuracies was calcu-

lated from a null distribution of those statistics estimated from 1000 permutations. Similarly, sta-
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tistical significance thresholds (p<0.05) for correlations between actual and reconstructed brain

activity were determined from a null distribution of those correlations estimated from 1000 per-

mutations.

Finally, face predictions from the second flavor or permutation tests were also rendered to

qualitatively assess what happens to the predicted faces when spurious brain activity is injected

into the model. Visualization of faces predicted by permutation tests appeared close to the origin

of the model with expressions and motions that resembled noise around the origin i.e., the mean

face of the model. Geometrically, this suggested that non-face fixation locked brain activity

disappeared into the null space of the model. Being a face model means its unavoidable that

these models produce “a” face, but the predicted faces lack discriminable identity, expressions,

and dynamics.

PROBING POPULATION TUNING IN THE NEURO-PERCEPTUAL LATENT SPACE

A step in the model’s neuro-perceptual space changes the predicted face trajectory and the

predicted pattern of brain activity. The step sizes of these changes are linearly dependent on the

step size in the neuro-perceptual latent space. This coupling enables studying the tuning of neu-

ral populations by testing hypotheses and by exploring how the data manifold of brain activity

and stimuli (face trajectories) relate.

A norm-based coding hypothesis for facial expressions was tested predicated on the assump-

tion that facial expressions are coded as deviations from the resting face of each individual. If

true, differences in neural tuning for the intensity of an expression (the radial aspect) compared

to neural tuning for the type of expression (tangential aspect) would be observed. If the null hy-

pothesis (no norm-based tuning) held, neural tuning would be the same for both. This hypothesis

was tested in the neuro-perceptual latent space by computing radial and tangential distances be-
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tween fixation pairs on the face trajectory manifold, validating they correlated significantly with

pairwise distances on the neural manifold, and comparing fits (slopes) of radial and tangential

distances to neural distances. Fixation pairs with ω > 90◦ were ignored to ensure each fixation

pair was only considered once. To be conservative, only fixation pairs on the same person and

within a φ < 45◦ cone of each other were included in this analysis. The radial and tangential

distances between fixation pairs on the face trajectory manifold were calculated as follows

ω = cos−1 (r̄1 − r̄2) ◦ r̄1
||r̄1 − r̄2||2 × ||r̄1||2

(4.7)

radial = ||r̄1 − r̄2|| × cos (ω) (4.8)

tangential = ||r̄1 − r̄2|| × sin (ω) (4.9)

Separately, the relationship between the data manifolds for brain activity and stimuli in the

neuro-perceptual latent space. Specifically, the distance between the face and neural representa-

tion for each fixation was related to the intensity of expression (size of deviation away from the

norm face) using Euclidean distances.

ANALYSIS OF BEHAVIORAL DATA

Participant responses were tallied against ground truth to determine response accuracy. Since

there were no sham trials i.e., the faces were always different, this amounted to counting the

number of trials where the participant response was “the faces were different” and dividing them

by the total number of trials in consideration. Before being subject to this basic arithmetic,

the trials were partitioned in two ways to compare the accuracy of behavioral responses. The

first partition was between trials where the two faces were radially separated vs those that were

tangentially separated. The second partition only featured trials where the faces were radially

separated and tracked the accuracy of behavioral responses in those trials as a function of the

expression intensity i.e., distance from the norm/origin.
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4.5 SUPPLEMENTARY RESULTS

4.5.1 CROSS IDENTITY FACIAL EXPRESSION RECONSTRUCTION

Recordings from two participants featured sufficient fixations (>200) on an individual to

attempt to decode their facial expressions using a model trained on the facial expressions and

movements of other individuals. Data from the first participant’s recordings featured enough

fixations on two individuals, both of which exhibited significant top level statistics (56% with 463

samples and 58% with 687 samples respectively; p<0.05). Data from the second participant’s

recordings featured enough fixations on four individuals, three of which exhibited significant

top level statistics (56% with 279 samples, 54% with 599 samples, 57.7% with 251 samples;

p<0.05) while the fourth did not (51.9% with 855 samples).

4.5.2 CORTICAL DISTRIBUTION OF SIGNIFICANTLY RECONSTRUCTED

ELECTRODES ACROSS PARTICIPANTS

112



Figure 4.6: This table details the distribution of electrodes across cortical areas for each par-
ticipant, and the number of electrodes in each area where some portion of brain activity was
reconstructed significantly (p<0.05; permutation test) for each participant. The highlighted ar-
eas are those where brain activity is reconstructed consistently across multiple participant and
they include areas corresponding to the social vision pathway, in addition to traditional areas in
ventral temporal cortex involved in object recognition.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

The history of neuroscientific progress is interwoven with that of technological progress;

shaped by its limitations and accelerated by its advancement. Recent progress in miniaturiz-

ing sensing technology into wearable forms have enabled the simultaneous recording of natural

environments, our behavior within them, and brain activity with high resolution. Advances in

Machine Learning/AI promise that rich real world recordings can be characterized scalably and

accurately for neuroscientists to model the relationship between our brains, behavior, and what

happens in the real world. However, realizing these promises for neuroscientific discovery re-

quires addressing engineering, analytical, bioethics and privacy challenge that arise in studying

the brain during natural behavior in the real world.

Chapter 3 of this thesis explored how we can address the engineering, technical, bioethics

and privacy challenges particular to studying social behavior in the real world. An important

issue addressed in this work was the discovery and correction of subtle synchronization prob-

lems that can derail the fusion of simultaneous recordings of the environment, behavior, and

brain which degrade data quality and prevent meaningful data analysis. Another important is-

sue concerned effective use of Machine Learning/AI models to parameterize real world behavior

with high fidelity to create accurate ground truth representations i.e., detecting faces, their ex-

pressions, speech, what was said. Their training on highly sanitized datasets resulted in brittle

performance on noisy real world datasets like those collected here. The need for accurate ground
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truth representations in these datasets made it untenable to use model predictions directly. To

address these issues, Chapter 3 operationalized a human in the loop approach where annotators

verified and corrected model annotation of real world recordings to obtain accurate ground truth

representations for analysis. It also outlined best practices and scalability considerations (human

and computational costs) for the proposed approach. Subsequent work in Chapter 4 improved

the durability and scalability of the annotation approach for faces, reducing the human effort re-

quired by combining newer computer vision models with custom developed models to track face

dynamics and identity. Lastly, Chapter 3 outlined best practices with respect to the bioethical and

privacy considerations, operationalizing the idea of ongoing consent that empowers participants

to determine how recordings of their natural behavior are used for scientific research.

Chapter 4 outlined an analytical framework to model the uncontrolled variability of natural

behavior in the real world. Although the focus of the analysis was on faces, the framework’s

conceptual elements were generic and can be adapted to other cognitive domains. The main ele-

ments of the framework were 1) Identifying appropriate behavioral events to which analysis can

be anchored (eye-gaze fixations in the case of vision), 2) Rich parameterization of stimuli and/or

behavior being analyzed (projecting faces into a parameterized face space in this instance), 3)

The collection of large datasets that transform uncontrolled real world variability from a chal-

lenge into an asset (hours of recordings of unscripted social interactions), and 4) The use of

statistical models that robustly reveal the neural underpinnings of perception and behavior (a

jointly learned neuro-perceptual space). This analytical framework has the potential to benefit

real world neuroscience efforts in other domains of cognition, and potentially even studies of

natural behavior in animal models.

Highly fidelity reconstruction of stimuli and brain activity from each other was an underlying

theme for modeling faces in Chapter 4. Stimuli (faces) were parameterized richly so that highly
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salient and subtle aspects of faces i.e., big smiles or small frowns, could be reconstructed with

high fidelity. Models optimized to reconstruct this rich parameterization could therefore reveal

which salient and subtle aspects of faces the brain cared about the most. The qualitative accuracy

of reconstructed faces and quantitative strength of top level statistics validated the robustness of

the analytical framework and robust reconstructions of brain activity revealed the neural substrate

underlying face perception in the real world, highlighting the critical role and neurodynamics of

the recently proposed social vision pathway (156). Taken together, these observations affirmed

that it is indeed possible to model the uncontrolled variability of the real world robustly.

The robustness of modeling results was a necessary condition for scientific discovery, but

not sufficient. Interpretability was a critical consideration that influenced modeling choices in

Chapter 4. A central feature of the modeling approach was its ability to jointly learn a space in

which aspects of brain activity and sets of facial features are highly correlated. Movement in this

”neuro-perceptual” space represented parametric changes in both brain activity and facial fea-

tures, and this coupling established it as a population tuning space learned from data (158, 159).

Notably, the linearity of the model structure and other elements of the modeling pipeline (face

model) lent interpretability to the data manifold in this space. Non-linearities that emerged in

the data manifold reflected differences in the brain’s sensitivity to different aspects of faces and

testing hypotheses about its geometry could reveal neural tuning, providing a foundation for neu-

roscientific discovery.

How do our brains code for facial expressions during social interactions? This is a compelling

neuroscientific question because the neural code for differences of facial expressions is relatively

unknown compared to other aspects such as identity, where distinct coding schemes have been

reported (148, 149). Experimental inquiry into facial expressions has also been far from eco-

logical validity, relying on posed canonical expressions that caricaturize the diversity of facial
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expressions in real life into a few categories. Moreover, there is mounting experimental evidence

that introducing different elements of ecological validity for faces (e.g., static vs dynamic or real

vs movie faces) changes both brain and behavior (126, 128, 129, 130, 131, 132, 133, 134, 135).

In this landscape, the analytical framework described earlier combined with recordings of natural

interactions provided a unique opportunity to probe how our brains code for facial expressions.

Chapter 4 operationalized this opportunity by removing face identity, centering each expres-

sion on an individual’s face against their resting facial shape and expression. This transformation

related robustly to brain activity, validating the idea of a norm-based code for facial expressions.

Subsequent testing of hypotheses about the geometry of this code was undertaken by analyzing

the data manifold in the model’s neuro-perceptual space. This exercise revealed two important

aspects of neural population tuning for facial expressions. The first was that neural sensitivity

is different for changes in the type and intensity of expressions. The second was that neural

sensitivity to facial expressions decreases as expressions get more intense, which is an analog

of Weber’s law for facial expressions. As a recap, the definition of Weber’s law states that “the

size of perceptible changes in stimulus intensity is proportional to the intensity of pre-existing

stimulus” – an example of Weber’s law is that we can easily tell the difference between a 1

and 2 pound weight but find it much harder to tell the difference between a 101 and 102 pound

weight. Taken together, these results portrayed neural tuning for people’s facial expressions as

oval shaped, where the ovals are pointed toward their resting facial expressions and get larger

upon moving further away from the resting expression. Subsequently, these validity of these

findings was probed and asserted with a controlled experiment.

In addition to their relevance for face perception, an attractive aspect of these findings was

how they came out, progressing from real world observations to experimental validation, resem-

bling how discoveries in fields such as Physics typically progress. Such progressions are not
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unknown in neuroscience, but they are atypical because technological obstacles have historically

inhibited studying the brain in the real world in the past. As an instance of this virtuous progres-

sion, I hope this work will encourage the adoption of real world approaches in human studies

across different cognitive domains, and in animal studies where there is a growing interest in

computational approaches to studying ethology.

There are several avenues for future work which can break down into two main categories.

The first involves using the analytical framework presented in this thesis to explore neuroscien-

tific questions during natural behavior. The second involves advances methodology in terms of

solving engineering problems and developing algorithms to scale real world neuroscience.

In the first category, an obvious extension is incorporate the reconstruction of bodies (pose,

shape, dynamics) into the reconstruction paradigm. This effort is easy to operationalize because

models that can parameterize bodies with high fidelity are readily available (183, 184, 185, 186).

Expanding the scope of social interactions to include audition is another opportunity that can be

explored with appropriate parameterization (187, 188, 189). Voices are the auditory analog of

faces, and appropriate parameterization of voices during speech in social interactions can open

the door to studying investigating the neural representations underlying voices during natural

interactions. A natural question that arises from the findings of Chapter 4 is whether our brain’s

code for people’s voices in a norm-based manner. Another potential expansion of scope would

be to include the behavior of participants themselves such as their faces, gestures, and speech.

Doing so requires extensions to the real world paradigm to record the participants themselves.

The EMU environments already capture such recordings, but ensuring that is done with sufficient

resolution and synchronizing them with existing behavioral recordings involves additional effort.

The parameterization of such recordings can be achieved in the same way as it is for world video

recordings, but identifying appropriate behavioral events and quanta to anchor analysis against
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requires careful consideration because the scope expands beyond the participants visual behavior

(eye-movements).

The Epilepsy Monitoring Unit environment also offers the opportunity to study the brain

during other (not necessarily social) behaviors such as eating. Little is known about the neural

representations of food and what we do know comes from experimental studies (190, 191). A

1-2 week stay in the EMU involves up to≈ 40 meals being consumed by participants, presenting

an opportunity to capture their brain activity and behavior as they eat. However, doing so means

their behavior must be recorded during all meal times, which is a logistical challenge due to the

burden of wearing mobile eye-tracking glasses at all times OR trying to set up an experiment at

each meal time. Addressing this challenge effectively requires approaches to record the behavior

and the environment without the burden of a wearable device.

The category of methodological advances breaks down into engineering problems to scale

real world neuroscience and algorithm development to improve our ability to model brain behav-

ior relationships in the real world.

Improvements in engineering methodologies may scale real world neuroscience in a variety

of ways, each with its own benefits. For instance, scaling the recording of real world visual

behavior and the environment to days instead of hours can allow collecting an order of magni-

tude more data, but requires substituting wearable mobile eye-tracking with a less burdensome

non-wearable system. Alternatively, collecting human single unit brain activity during natural

behavior can sharpen the resolution at which we understand neural tuning using the same ap-

proaches here, but operationalizing the real world vision paradigm at centers which collect such

data presents a logistical and engineering challenge. Finally, a third approach is to deploy the

approaches described in this thesis with non-invasive brain imaging e.g., scalp EEG. Doing so
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requires addressing limitations in the resolution of these techniques, but has the potential to scale

real world studies to a much higher number of participants and enable greater mobility.

Lastly, the continuing development of analytical approaches and algorithms to facilitate real

world neuroscientific studies is essential and foundational work for future progress. One im-

portant opportunity is the incorporation of dynamics into mutually supervised models that learn

interpretable neuro-cognitive spaces. A second opportunity involves incorporating non-linear

coordinate transformations into models with care toward maintaining the interpretability of their

geometry. Finally, a third is to consider the bidirectionality of models that are learned with large

amounts of data as a potential avenue for BCI applications to drive neuromodulation, such as for

a visual BCI.
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