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Abstract

Machine learning (ML) is increasingly being used to support decision-making in critical
settings, where predictions have potentially grave implications over human lives. Examples
include healthcare, hiring, child welfare, and the criminal justice system. In this thesis,
I study the risks and opportunities of machine learning in high-stakes settings. In the
first chapter I focus on opportunities of ML to support experts’ decisions when dealing
with high-resolution multivariate data, a type of data that is particularly hard for humans
to interpret. I propose methodology to discover latent complex multivariate correlation
structures and illustrate its use in two different domains: (1) identification of radioactive
threats in nuclear physics, and (2) prediction of neurological recovery of comatose patients
in healthcare. In the second chapter, focused on algorithmic fairness, I demonstrate how
societal biases encoded in historical data may be reproduced and amplified by ML models,
and introduce a new algorithm to mitigate biases without assuming access to protected
attributes. Finally, in the third chapter I characterize challenges that arise from the limi-
tations of available labels in decision support contexts–such as the selective labels problem
and omitted payoff bias–and propose methodology to estimate and leverage human consis-
tency to improve algorithmic recommendations and human-machine complementarity.
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Introduction

In recent years, the use of machine learning to assist experts in high-stakes decision making
has increased sharply. In this thesis, I study the risks and opportunities of machine learning
in such high-stakes contexts.

Chapter 1 focuses on learning from high-resolution multivariate data, a type of data
that experts often encounter and that is particularly hard for humans to parse. For ex-
ample, physicians routinely make use of time-series collected via bedside monitoring to
inform medical decisions. I propose novel methodology to learn from this type of data
and show how it can be of use in two high-stakes settings: nuclear physics and health-
care. The proposed methodology, termed Canonical Autocorrelation Analysis, discovers
multiple-to-multiple correlations within a set of features. Moreover, I also propose Canon-
ical Autocorrelation Embeddings, a method for embedding sets of data points onto a space
in which they are characterized in terms of their latent complex correlation structures,
and where a proposed distance metric enables the comparison of such structures. This
methodology is particularly fitting to tasks where each individual or object of study has
a batch of data points associated to it, as in for instance patients for whom several vital
signs or other health related parameters are recorded over time.

The discovered correlations can be used for anomaly detection, as in the case of radi-
ation threat detection. In this domain, the proposed methodology enables the characteri-
zation of patterns of correlations between subsets of bins of gamma-ray spectra known to
represent benign background radiation. Once such characterization is obtained, it is then
possible to flag spectral measurements that do not follow the same patterns of correla-
tions as anomalies potentially reflective of the presence of radiation threats. The resulting
spectral anomaly detection technique performs substantially better than an unsupervised
alternative prevalent in the domain, while providing valuable additional insights for threat
analysis.

In addition, Canonical Autocorrelation Embeddings can also be used for classification.
In this thesis, I apply the proposed methodology to characterize patterns of brain activity
of comatose survivors of cardiac arrest, aiming to predict whether they would have a pos-
itive neurological recovery. Clinicians routinely face the ethically and emotionally charged
decision of whether to continue life support for such patients or not. Both scenarios have
potentially grave implications on patients and their close ones, so regardless of whether
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Introduction 2

they believe they have enough information, clinicians are often forced to make a predic-
tion. The empirical results show that we can identify with high confidence a substantial
number of patients who are likely to have a good neurological outcome. Providing this
information to support clinical decisions could motivate the continuation of life-sustaining
therapies for patients whose data suggest it to be the right choice.

The positive results shown in Chapter 1 highlight the opportunities that machine learn-
ing presents to assist expert decision-making. However, there are several risks associated
to the use of machine learning for decision support. In Chapter 2, I focus on how standard
ML methods may reproduce and amplify societal biases, and propose a new algorithm to
mitigate biases without assuming access to protected attributes.

A domain in which the use of ML is increasingly popular–and in which unfair practices
can lead to particularly negative consequences–is that of online recruiting and automated
hiring. Through a large-scale study of gender bias in occupation classification, this thesis
studies the potential allocation harms that can result from the use of predictive models in
automated recruiting. A new dataset of over 400,000 online biographies written in third
person was collected and made publicly available. This dataset was then used to study
the biases present in algorithms trained to predict a person’s occupation from their online
biography. Several algorithms and semantic representations were explored, ranging from
a bag-of-words representation as input for a logistic regression, to a word embedding as
input for a deep recurrent neural network. The empirical results show that differences
in true positive rates between genders are correlated with existing gender imbalances in
occupations, even when explicit gender indicators such as gender pronouns were “scrubbed”
from the text. Moreover, this work provides a theoretical demonstration that whenever
there is a positive correlation between differences in true positive rates across groups and
previous group imbalances, imbalances will be compounded. That means that if a group is
underrepresented in a certain occupation, it will be further underrepresented amongst the
individuals who are correctly predicted to be in that occupation. This effect can be related
to compounding injustices—an existing notion of indirect discrimination in the political
philosophy literature that holds that it is a general moral duty to refrain from taking
actions that would harm people when those actions are informed by, and would compound,
prior injustices suffered by those people [1]. This work has important practical relevance
at a time when automated recruiting is becoming widespread and companies are grappling
with the consequences of these technologies1.

Moreover, even before a supervised learning task is defined (such as predicting a per-
son’s occupation), the choice of how to represent the data may itself lead to representational
harms. Bias in word embeddings has received considerable attention in the past years, but
until recently its study depended on querying for specific biases, such as determined re-

1 Amazon scrapped a secret AI recruitment tool that showed bias against women:
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-
tool-that-showed-bias-against-women-idUSKCN1MK08G
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lationships or pre-defined protected groups. The second part of Chapter 2 proposes an
algorithm to automatically enumerate biases in word embeddings. The algorithm is highly
unsupervised–it does not even require the sensitive features to be pre-specified. This is de-
sirable because: (a) many forms of discrimination–such as racial discrimination–are linked
to social constructs that may vary depending on the context, rather than to categories
with fixed definitions; and (b) it makes it easier to identify biases against intersectional
groups, which depend on combinations of sensitive features. The utility of the approach
is demonstrated on publicly available word embeddings, and the output is evaluated using
crowdsourcing. Through its application, a large number of offensive associations related to
sensitive features such as race, religion and gender were found on widely used embeddings,
including a supposedly “debiased” embedding. A crowd-sourcing evaluation shows that
this associations aligned with societal stereotypes.

Characterizing the risks of using ML for decision support may help (i) inform policy, and
(ii) frame novel research to tackle these challenges. The last section of Chapter 2 proposes
one of the first methodologies to reduce bias in predictive models without requiring access
to protected attributes. The underlying intuition of the proposed method is to “fight bias
with bias”, leveraging the biases discovered in word embeddings to mitigate compounding
imbalance effects in classification. The biases found in Section 2.2 are used to mitigate
the bias characterized in Section 2.1. Specifically, the method penalizes correlations be-
tween the predicted probability of an individual’s true class in a classification task and a
word embedding of their name. The results demonstrate that this strategy significantly
reduces gaps in true positive rates across race and gender groups, thereby mitigating the
compounding imbalances effect observed in our earlier work. By design, name information
is only present during training, which means that no private information is required during
deployment, and that gains extend to individuals for whom protected attributes may be
poorly proxied by their name.

Finally, even if data does not encode societal biases, the sensitive task of developing
decision support tools is complicated by several factors, many of which stem from the
nature of the labels available for training predictive models. Chapter 3 focuses on the
limits of learning from observed outcomes to train decision-support systems, and proposes
methodology to overcome this. There are two central challenges this chapter focuses on:
omitted payoff bias and the selective labels problem. First, it is often the case that experts
care about constructs that are not well captured in the available labels. This leads to
omitted payoff bias, where there is a disconnect between the prediction loss function and
the true payoff function. Second, these tools are often constructed and validated on data
that is the result of historical human decisions. In such settings we commonly observe
labels only for certain decisions–a phenomenon known as the selective labels problem [2]–,
and the decisions themselves may have affected the observed outcomes. These issues limit
the validity and utility of predictive models learned from the data using standard methods.

To overcome these challenges, Chapter 3 introduces methodology to leverage informa-
tion contained in the historical human decisions, a rich but messy source of information.
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Drawing inspiration from the literature on crowd-sourcing and wisdom of the crowds, the
aim is to tackle some of the limits of learning from observed outcomes alone by also learning
from consistency amongst experts. However, while in crowd-sourcing the same instance
is assessed by multiple people, in the settings considered here each instance observed in
the historical data is assessed by a single expert, such as a physician or a judge. This
Chapter proposes an influence-function-based method to estimate human consistency in
this setting. Under the assumption that human consistency is indicative of correctness,
this human knowledge can then be incorporated into a model trained to predict observed
labels through label amalgamation, an approach introduced in this Chapter. Through
semi-synthetic experiments, it is shown how the proposed approach successfully incor-
porates human knowledge in different decision-making scenarios. Empirical experiments
conducted on data from a child abuse hotline setting indicate that the proposed methodol-
ogy successfully incorporates human knowledge, increasing recall for cases whose risk is not
well captured in the available labels. Finally, for domains where it cannot be assumed that
consistency is indicative of correctness, this Chapter introduces an influence-driven second
opinion recommender algorithm, which identifies which expert is most likely to provide an
alternative opinion for a given case.



Chapter 1

Learning from multivariate
high-resolution data

Chapter partially based on:
M. De-Arteaga, J. Chen, P. Huggins, J. Elmer, G. Clermont, A. Dubrawski, Pre-
dicting Neurological Recovery with Canonical Autocorrelation Embeddings, PLoS
ONE, 2019.

Introduction

In many domains experts are routinely tasked with interpreting high-resolution multivari-
ate data as part of their decision-making process. Examples include physicians who track
multiple vital signs of patients in intensive care units, and security experts who moni-
tor gamma-ray spectra in order to identify potential radioactive threats. This Chapter
presents Canonical Autocorrelation Analysis (CAA), a method for automated discovery
of multiple-to-multiple correlation structures within a set of features. Through the intro-
duction of a distance metric between CAA correlation structures it is possible to obtain
a feature space embedding–termed Canonical Autocorrelation Embeddings (CAE)–where
each individual/object is represented by the set of its multivariate correlation structures.
This methodology is particularly fitting to tasks where each individual or object of study
has a batch of data points associated to it, e.g., patients for whom several vital signs or
other physiological measures are recorded over time. Using the proposed feature space
embedding, traditional machine learning algorithms that rely on distance metrics, such
as nonparametric clustering and k-nearest neighbors (k-nn), can be applied straightfor-
wardly to leverage similarities or dissimilarities of correlation structures characteristic to
individuals.

5
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The first part of this Chapter introduces CAA and its application for anomaly detection,
and illustrates its use in the context of radiation threat detection in nuclear physics. The
second part introduces CAE and its use for supervised learning, demonstrating its use for
predicting neruological recovery of comatose survivors of cardiac arrest. The relevance of
the two application domains explored in this Chapter is explained below.

Nuclear physics Ever since the invention of nuclear weapons, radiation threat detection
has been a security priority around the globe. Even though the total number of weapons
has declined since the Cold War, a continued investment in nuclear arsenal has increased
the destruction capacity of existing warheads, thus the threats that characterized the Cold
War are still a main concern for the international community [3]. Furthermore, a vast
number of such weapons are tactical nuclear weapons, characterized by their incapability
to inflict strategically decisive damage to the military or economy of the target, a trait that
has kept them out of current nuclear arms control arrangements. Many of them are kept
under dubious security standards, as is the case of many that are stored in remote, hard-to-
defend locations. These small and portable warheads, although incapable of devastating
a country’s economy in a single blow, would cause large-scale harms if used. Robbery
of stolen fissile material that can be used to build radiological devices, commonly known
as “dirty bombs”, is also a concern for governments [4]. This problem reached its peak
after the collapse of the Soviet Union, when the risk of people who are unaware of the
dangers of radioactive material getting hold of it was illustrated by the case of a man
who died of radiation sickness after storing material stolen from a nuclear waste facility
in a kitchen cabinet [5]. Such risks are still present; in 2015 international alerts were
triggered after a container full of medical isotopes was stolen in Mexico, where two years
earlier thieves accidentally got hold of a container with radioactive material used in medical
equipment [6]. Even though the destruction capacity of such devices cannot be compared
to that of a nuclear warhead [4], they could expose thousands of people to dangerous levels
of radiation [7].

Thus, effectively monitoring borders to prevent smuggling of radioactive threats, as
well as monitoring the interior for signatures of possible threats, are crucial needs for
many countries. This, however, is not an easy task. Radioactive materials are typically
shielded, and the shielding can be engineered to make detection harder. In addition, faint
sources of potentially harmful radiation can be hard to detect in scenes where intensity
and spectral characteristics of benign background radiation vary significantly, as is the case
in human-made environments. An additional challenge comes from the fact that different
types of threats follow different spectral patterns, and even if templates of some common
threat types are available, relying on supervised analysis of field data is risky. Supervised
detectors may fail to detect threats that were not present in the training data, or which
were shielded in a particularly unexpected fashion. Therefore, efforts have been made to
develop unsupervised methods that successfully detect threats without relying on source
templates.
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Applying CAA for radiation threat detection enables us to characterize harmless radia-
tion with a structure of correlations spanning sets of energy bins. Once this characterization
is established, it can be used for spectral anomaly detection, as threats can be expected
to deviate from the correlations characterizing harmless ambience. The experiments show
that the ability of CAA to identify parsimonious subsets of features and later use it to
model background radiation variability makes it more robust at threat detection than one
of the most popular unsupervised methods used in the domain: a Principal Component
Analysis (PCA) spectral anomaly detection method that considers all dimensions of spectra
in linear combinations corresponding to subsequent principal components [8].

Healthcare In the healthcare domain, characterizing the current state of a patient
through correlation structures can make it possible to leverage potentially under-appreciated
forms of information, such as the interdependencies and interactions between different parts
of the human body. The utility of CAE in this domain is demonstrated by focusing on
the specific example of predicting neurological outcomes for comatose survivors of cardiac
arrest based on electroencephalographic (EEG) measurements.

Cardiac arrest is the most common cause of death in high-income nations [9]. In the
United States alone, over 350.000 people suffer a sudden out-of-hospital cardiac arrest each
year [10]. Despite advances in care, only a minority of patients that survive to hospital
admission after cardiac arrest are discharged alive, and even fewer enjoy a favorable neu-
rological recovery [10, 11]. Among non-survivors, the most common proximate cause of
death is withdrawal of life-sustaining therapy based on perceived poor neurological progno-
sis [11, 12]. This decision may be motivated by the rarity of favorable neurological recovery,
the emotional difficulty for families faced with even a few days of critical care of a comatose
loved one, and fear of survival with severe disability.

Unfortunately, accurate neurological prognostication after cardiac arrest is challenging,
particularly in the first 3 to 5 days after initial resuscitation [13]. Modalities to facilitate
early prognosis of recovery have been explored [14, 15, 16], in an attempt to augment
medical knowledge and provide decision support systems to inform physicians as they
continually reassess whether to continue or withdraw life-sustaining therapy. However,
current methods are inadequate. Life-sustaining therapy is still often withdrawn before
prognosis is certain as a result of “therapeutic nihilism” that may undermine otherwise
effective post-arrest critical care that could have resulted in good recovery [17, 11, 18, 19].
At the same time, patients with brain injury that will ultimately be deemed irrecoverable
are often still supported for days while providers gather prognostic data.

Improving care and making better decisions requires more predictive power and a better
understanding of the brain early after cardiac arrest. Although many modalities may
inform neurological prognostication in these patients [20], of particular interest is the rich
EEG data that may be obtained. Qualitatively, some EEG patterns such as seizures
suggest severe brain injury [21]. Quantitatively, patterns with strong correlations between
channels or over time, such as burst suppression with identical bursts, are suggestive of non-
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survivable injury [22, 23]. Research indicates that there are EEG signals that can improve
prediction accuracy [15, 24, 23]. Within EEG signals, as in many biological systems,
entropy is a marker of information content [25]. By contrast, strong spatial or temporal
correlations are an ominous predictor of severe brain injury [22, 23, 15]. Figure 1.1 shows an
example of an EEG of a post-arrest patient with mild brain injury who goes on to enjoy a
favorable recovery and an example of an EEG of a patient with severe brain injury, for which
correlations across channels are very strong. However, in some cases these correlations may
be subtle and complex, making them unapparent to physicians that qualitatively interpret
an EEG recording. Motivated by this, our goal is to characterize patients in terms of
their multivariate, non-linear structures of correlation and use the resulting featurization
to predict their neurological outcome.

A proof of concept is presented to illustrate the potential utility of CAE by applying it
to characterize electroencephalographic recordings from 80 comatose survivors of cardiac
arrest, aiming to identify patients who will survive to hospital discharge with favorable
functional recovery. The results show that with very low probability of making a Type 1
error, it is possible to identify 32.5% of patients who are likely to have a good neurological
outcome, some of whom have otherwise unfavorable clinical characteristics. Importantly,
some of these had 5% predicted chance of favorable recovery based on initial illness sever-
ity measures alone. Providing this information to support clinical decision-making could
motivate the continuation of life-sustaining therapies for these patients.

Figure 1.1: Left: EEG of a post-arrest patient who goes on to recover. Right: EEG of
a patient with poor neurological prognosis. Strong correlations across channels suggest
severe brain injury.
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1.1 Related work

Canonical Correlation Analysis (CCA) is a statistical method first introduced by [26],
useful for exploring relationships between two sets of variables. It is used in machine
learning, with applications to medicine, biology and finance, e.g., [27, 28, 29, 30]. Sparse
CCA, an `1 variant of CCA, was proposed by [30, 31]. This method adds constraints to
guarantee sparse solutions, which limits the number of features being correlated. Given two
matrices X ∈ Rn×p and Y ∈ Rn×q, CCA aims to find linear combinations of their columns
that maximize the correlation between them. Usually, X and Y are two disjoint matrix
representations for one set of objects, so that each matrix is using a strictly different set of
variables to describe them. Assuming X and Y have been standardized, the constrained
optimization problem is shown in Eq. 1.1. When c1 and c2 are small, solutions will be
sparse and thus only a few features are correlated.

maxu,vu
TXTY v

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2

for 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1

(1.1)

The extension of Sparse CCA for discovery of multivariate correlations within a single
set of features to study brain imaging has been previously explored in [27, 28]. Using
the notion of autocorrelation, the authors attempt to find underlying components of func-
tional magnetic resonance imaging (fMRI) and EEG, respectively, that have maximum
autocorrelation. The types of data used in these works are ordered, both temporally and
spatially. To find temporal autocorrelations, X is defined as the original data matrix and
Y is constructed as a translated version of X, such that Yt = Xt+1.

Canonical Autocorrelation Analysis (CAA), the methodology introduced in this Chap-
ter, is a generalized approach to discovering multiple-to-multiple correlations within a set
of features. Figure 1.2 illustrates the different use cases of Sparse CCA and CAA. The pro-
posed formulation of CAA also allows for the user to select sets within which correlations
are forbidden, which is useful when trivial correlations should be avoided.

Other methods for finding sparse representations of data comprised in a single matrix
include the well-known Sparse Principal Component Analysis (Sparse PCA). While CAA
resembles Sparse PCA in the sense that it finds sparse representations of data contained in
one matrix, Sparse PCA maximizes retained variance of data in one-dimensional projec-
tions, while CAA finds two-dimensional projections where correlation across two subsets
of features is maximized. CAA specifically seeks projections composed by pairs of strongly
correlated linear combinations of features, enabling discovery of hidden characteristic cor-
relations in data, which cannot be easily found with other methods such as Sparse PCA.
Appendix A.2 explores the difference between the two methods in more detail and from a
theoretical perspective.

Extraction of informative projections has been tackled in the past [32, 33]. The work
presented in this Chapter differs from the existing methodology in two primary ways. First,
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Figure 1.2: Comparison between scenarios where Sparse CCA and CAA can be used.
(Left) Sparse CCA set up: X and Y are two matrices where the rows correspond to the
same items but the columns represent separate sets of variables. Sparse CCA finds sparse
multiple-to-multiple linear correlations between subsets of the features in matrix X and
subsets of features in matrix Y . (Right) CAA set up: In cases where there is no natural
or intuitive division of the features into two sets, a possible division represented by the
dotted line is no longer given. Instead, all features are part of one matrix X. CAA finds
multiple-to-multiple correlations between subsets of features in this matrix.

each of CAA projection axes is defined by a linear combination of features, rather than
a single feature, which helps discover complex structures if they exist. Secondly, rather
than finding projections where classes are well-separated, the proposed methodology is
unsupervised and it is aimed at characterizing objects or individuals that have a batch
of data points associated to them, yielding an embedding where standard machine learn-
ing methodologies can be used with minor modifications. In that sense, the extracted
projections are different both in their form and in their purpose.

The comparison of correlation structures and principal components has been explored
in the literature for decades. Most prominently, [34] discusses comparison of principal
components between groups. To do so, they propose a metric inspired by the concept of
congruence coefficient [35], which is nothing but the cosine of the angle between the two
p-dimensional vectors. Also related is [36], where a metric between covariance matrices is
proposed. The notion of a distance metric between canonical autocorrelation structures
differs from these in that CAA finds a factorization of the correlation matrix where each
portion of the correlation matrix is expressed as the outer product of a pair of orthonormal
vectors, which define a bi-dimensional space in which the projected data follows a linear
correlation. Section 1.3.4 discusses the proposed metric.
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1.2 Data

1.2.1 Nuclear physics

Radiation is often characterized using gamma-ray spectra, which are typically represented
as vectors of photon counts registered by the sensor at subsequent discrete and disjoint
intervals of energy. These vectors, called in the application domain the energy spectra,
become data points for analysis. In this Chapter, 128 energy bins are used, thus each data
point is a vector in R128.

There are two types of data used in this research: harmless background and threat-
infected background.

• Harmless background Over a period of five consecutive days a truck drove around
downtown Sacramento, California, with a double 4x16” NaI planar detector on its
back. The data contains approximately 70,000 one-second observations collected
enroute, that reflect background radiation as well as any nuisance sources.

• Threat-injected background Synthetic threat injections done at the Lawrence Liver-
more National Laboratory. Simulated data mimics 15 types of sources. For each
source, a data set of 10,000 observations is created by embedding synthetic threat
signatures in harmless background data.

Once the model is trained using this data, it can be used on data collected by mobile
detectors of radiation threat.

1.2.2 Prediction of neurological recovery

The data used in this study is derived from 451 comatose survivors of cardiac arrest treated
at a single academic medical center between 2010 and 2015 [15, 37]. For each patient,
quantitative EEG (qEEG) summary measures at one-per-second resolution are available
for continuous EEG recordings averaging about 36 hours per patient. These qEEG features
were calculated using FDA-approved clinical software (Persyst(R) Version 12, Persyst De-
velopment Corp, Prescott AZ), using standard signal processing engines. The total number
of qEEG features is 66 and include seizure probability, amplitude-integrated EEG for the
left and right hemisphere, spike detections, and suppression ratio, among other features
that doctors have identified as clinically useful. The raw EEG data were not available.
The full list of features can be found in Appendix A.7.

The data makes it known whether a patient survived to hospital discharge. For those
who lived, it is known whether they experienced a functionally favorable recovery as mea-
sured by one of two standard outcome scales: the Cerebral Performance Category and a
modified Rankin Scale. For those who died, the proximate cause of death is available.
Figure 1.3 shows this information in detail. As it is discussed in more detail in Section 1.4,
the data used in our experiments corresponds to the 80 patients who survived hospital
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discharge and who were monitored for at least 36 hours, 40 of whom had a positive neuro-
logical recovery and 40 who did not.

Figure 1.3: Patient labels. Survival and outcome (Left), and cause of death (Right).

1.3 Methodology

1.3.1 Canonical Autocorrelation Analysis

The goal of Canonical Autocorrelation Analysis (CAA) is to find multivariate sparse corre-
lations within a single set of variables, yielding multiple bi-dimensional projections where
each axis corresponds to a linear combination of a subset of the features and the projected
data follows a linear trend. In the Sparse CCA framework, this could be understood as
having identical matrices X and Y . Applying Sparse CCA when X = Y results in solu-
tions u = v, corresponding to Sparse PCA solutions for X [31]. This issue is tackled by
introducing a penalty for overlapping feature support. The resulting optimization problem
for CAA is shown in Eq. 1.2.

maxu,vu
TXTXv

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2

m∑
i=1

|uivi| = 0

for 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1

(1.2)

Understanding this as a new generalization of the PMD decomposition [31], the solution
for CAA is analogous to that of other PMD-based approximations, although necessary
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adjustments have to be made to account for the additional constraint. Note that in the
CAA optimization problem seen in Eq. 1.2, the equality constraint can be seen as a weighted
L1 penalty when either u or v are fixed. Replacing the equality constraint by an inequality
constraint gives a biconvex problem, while resulting in the same solution. Therefore, it can
be solved through alternate convex search [38], as shown in Algorithm 1.

Algorithm 1: CAA via alternate convex search

Initialize v s.t. ||v||2 = 1;
repeat

u← arg max
u

uTXTXv

s.t. ||u||22 ≤ 1, ||u||1 ≤ c1,
∑m

i=1 |ui||vi| = 0
v ← arg max

v
uTXTXv

s.t. ||v||22 ≤ 1, ||v||1 ≤ c1,
∑m

i=1 |ui||vi| = 0

until u, v converge;
d← uTXTXv;

At each iteration, the resulting convex problem can be solved through the Karush-
Kuhn-Tucker (KKT) conditions. The pseudo-code for solving the convex problems at each
iteration of the alternate convex search is provided in Algorithm 2, where it is solved for u
without loss of generality. For a detailed derivation see Appendix A.1.

Algorithm 2: CAA alternate convex search iteration via KKT conditions

λ1 = max
i

|(XTXv)i|
|vi|

;

if || SΦ(vλ1,0)(X
TXv)

||SΦ(vλ1,0)(X
TXv)||22

||1 ≤ c1 then

return u =
SΦ(vλ1,0)(X

TXv)

||SΦ(vλ1,0)(X
TXv)||22

else

Binary search to find λ2 s.t. || SΦ(vλ1,λ2)(X
TXv)

||SΦ(vλ1,λ2)(X
TXv)||22

||1 = c1;

return u =
SΦ(vλ1,λ2)(X

TXv)

||SΦ(vλ1,λ2)(X
TXv)||22

To find multiple pairs of CAA canonical vectors, Algorithm 1 can be repeated iteratively,
replacing XTX with a matrix from which the already found correlations are removed, as
shown in Eq. 1.3.

XTX − d(uvT + vuT ) (1.3)
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1.3.2 CAA-based anomaly detection

How can the outcome of CAA be used once it has been applied to a matrix X? CAA
produces several multiple-to-multiple linear correlation patterns. If the only goal is that of
characterizing and understanding the data, one can analyze the coefficients in the canonical
projections to understand which correlations are characteristic in a certain data set. Such
projections can also be used as the basis of an anomaly detection method, introduced
below.

CAA can be applied to a set (X ∈ Rn×m) of data points that are assumed to not be
anomalous. The result will be k ≤ m pairs of canonical vectors, where the ith pair is
refered to as (u(i), v(i)), for i = 1, ..., k. Each of these vector pairs maps the data into a new

bi-dimensional space, where the x-axis corresponds to u(i)tXt and the y-axis corresponds to
Xv(i). The projection of the data onto the ith canonical space is defined as in Equation 1.4.

Xproj
i = (u(i)tXt, Xv(i)) (1.4)

The top canonical projections yield representations in which the training data shows a
strong diagonal tendency if the underlying correlations indeed exist.The resulting distribu-
tion can be characterized by fitting a parametric density model (e.g. bivariate Gaussian)
or using a non-parametric density model (e.g. kernel density estimation),

Xproj
i ∼ Fi(θi) (1.5)

This yields a characterization of the non-anomalous data points by:{
Canonical vectors (u(i), v(i)) for i = 1, ..., k
Distributions Fi parameterized by θi for i = 1, ..., k

Given a new data point x, it can be projected onto the k canonical projections and a
score of anomalousness can be computed for each projection using the likelihood (Equation
1.6).

si(x) = P(x|θi) (1.6)

Finally, a cumulative single score can be computed using an aggregation metric M(·),
where the choice of this metric depends on the particular application (e.g., minimum or
product), as shown in Equation 1.7.

S(x) = M{i=1:k}(si(x)) (1.7)

For the experiments in this Chapter, it is assumed that the training data follows a
bivariate Gaussian in each of the canonical projections, i.e,
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Xproj
i ∼ N (µi,Σi). (1.8)

Therefore, the data set can be characterized by Equation 1.9.

{
(u(i), v(i)) for i = 1, ..., k k ≤ n
(µi,Σi) for i = 1, ..., k

(1.9)

Each i yields a characterization of the training data that involves multiple features. A
new data point x can be simultaneously mapped onto all k canonical spaces, and given
the assumption of a bivariate Gaussian, a Mahalanobis distance metric can be used as an
equivalent to the likelihood. Therefore, our score si(x) is given by

si(x) = DMi(x
proj
i )

where xproji = (u(i)TxT , xv(i))

DMi(x
proj
i ) =

√
(xproji − µi)Σ−1

i (xproji − µi)

(1.10)

Note DMi(·) is the Mahalanobis distance from xproji to N(µi, σi), where x is the current
observation.

If the new data point follows the same correlation patterns as the training data, all
of the Mahalanobis distances computed for it should be small. It can be expected that a
data point that is anomalous in the CAA sense would not match that behavior. It will
likely fail to follow one or multiple of these characterizations, which will result in one or
multiple large Mahalanobis distances. To marginalize the resulting distribution of scores
into a total score S(x), one conceivable option is maximization, as in Equation 1.11.

S(x) = max
i=1,...,k

DMi(x
proj) (1.11)

Maximization is only one of many possible ways to aggregate scores from multiple CAA
projections. This approach has proved to be effective in the threat detection application
because it is typically sufficient for a gamma-ray spectrum measurement to substantially
deviate from the expectation in only a few energy bins to warrant attention. However, in
other applications alternative forms of S(x) may be more relevant and effective.

The threat detection threshold is calibrated following [39], by assuming a particular
rate of nuisance positives in training data (2-5%).

1.3.3 Non-linear and forbidden correlations

When looking for latent structures of correlation in data, it may often be useful to consider
non-linear relationships. Stemming from Weierstrass approximation theorem [40], the most
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straightforward way of doing so is by extending the feature space with subsequent powers
of the original features. This increases the potential power of expression of the resulting
models, but using it directly with the current formulation of CAA would likely result in
each feature being trivially correlated with its own exponential transformations. Similar
useless effects could be expected if the available data contains features that are already
known to be mutually correlated by design. For example, in the data considered in this
project, several features correspond to basic statistics of the amplitude integrated EEG.

To overcome those limitations, the optimization problem is modified to extend the
concept of disjoint support to sets of features. Assuming each feature xi has a subset Si
of associated indices of other features that should not be included as correlates of xi, the
resulting optimization problem follows Eq. 1.12.

maxu,vu
TXTXv

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2

m∑
i=1

∑
j∈Si

|uivi| = 0

for 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1

(1.12)

The new constraint for disjoint support can still be understood as a weighted-L1 penalty
at each iteration of the biconvex optimization algorithm. Hence, the problem can still be
solved in the way presented in Section 1.3.1, with the only difference that the parameters
of the soft-thresholding operator will change.

1.3.4 Canonical Autocorrelation Embeddings

CAA enables the discovery of bi-dimensional projections where the data closely follows a
linear distribution. Each axis of these projections corresponds to a linear combination of
the original features, and their respective coefficients are represented in a pair of vectors
u, v ∈ Rm. Each pair u, v constitutes a CAA canonical space, and each CAA model may
consist of one or more such canonical spaces.

Since the correlations discovered by CAA are defined by pairs of vectors in Rm, it is
possible to measure the distance between two CAA canonical spaces in terms of Euler
angles defining the rotation from one pair of axes to the other. Given that measuring
the angle between two vectors is equivalent to measuring the arc between them, and that
||u(i)||2 = ||v(i)||2 = 1 ∀i, the distance between two CAA canonical spaces C1 and C2 can
be defined as shown in Eq. 1.13. Note that the minimum is simply used to find the best
(the smallest angle) of two possible ways of aligning arbitrary C1 and C2.

d(C1, C2) = min(||u1 − u2||2 + ||v1 − v2||2 , ||u1 − v2||2 + ||v1 − u2||2) (1.13)
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It is easy to show that this metric satisfies the necessary conditions for a well-defined
distance (see Appendix A.3 for the proof). Moreover, if two CAA canonical spaces represent
the same correlation structure, the vectors defining them must be equal. This stems from
the fact that such correlation structure would take the form of a matrix Co ∈ Rm×m,
therefore, Eq 1.14 can be seen as a system of linear equations with at most one solution.

Co = uvT (1.14)

Even though Eq. 1.13 provides a distance metric that captures desired characteristics,
this is not the only nor necessarily the best such metric, and it is appropriate to continue
exploring alternatives. Appendix A.4 contains a short discussion of why the “principal
angles”, one of the metrics most commonly used to measure distance between subspaces
and which naturally comes to mind in this setting, is not well-suited for our current task.

1.3.5 Classification and K-Nearest Correlations

Having formulated a distance metric between pairs of CAA canonical spaces enables the use
of a range of distance-based machine learning algorithms, such as k-means or hierarchical
clustering or k-nn, to leverage similarities among correlation structures present in data.
One complexity that arises while doing so is that each subset of data being compared may
be represented by more than one CAA canonical space, and therefore more than one point
in the embedding.

This setting can be incorporated into the k-nn framework by calculating the class
probability for each correlation structure through the votes of their k nearest neighbors,
and then aggregating over all correlations associated to an object using log-odds, as shown
in Eq. 1.15, where np,i,j denotes the class label of the jth neighbor of the ith correlation of
patient p.

qi =

∑k
j=1 np,i,j

k

ŷp = log(

mp∏
i=1

qi
1− qi

)

(1.15)

However, it is likely that some type of correlation structures will be common to both
classes, while others are discriminative. To reduce noise and allow for those discriminative
correlations to lead the decision, a threshold t is incorporated, so that log-odds are only
calculated over those correlation structures with a class probability that is discriminative
enough, as shown in Eq. 1.16. Incorporating this threshold also enhances interpretability
of the comparisons, as it reduces the number of structures that are used for making a pre-
diction, making it easier for practitioners to understand which correlations appear relevant
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for the task at hand. The parameters k, indicating the number of neighbors, and t can be
tuned through cross-validation.

ŷp = log(

mp∏
i=1

I(|qi−0.5|>t)
qi

1− qi
) (1.16)

1.4 Results and Analysis

1.4.1 Nuclear physics

Synthetic data

The first experiment aims to illustrate how known correlations can be successfully retrieved
by CAA.

(a) Synthetic correlation (b) Retrieved correlation

Figure 1.4: Comparison between a synthetic correlation pattern and the correlation pattern
retrieved by CAA. Equations have the form of kiX[, i] + kjX[, j], where X[, i], X[, j] are
the ith and jth columns of X and ki, kj are the linear combination coefficients.

A Gaussian bivariate distribution is generated with an assumed mean and covariance,
and 200 data points are sampled from it. A matrix X of dimensions 200 × 20 is created
such that there exist sparse vectors u, v, each with two non-zero components, for which
(uTXT , Xv) correspond to the previously generated Gaussian. Next, 70% of data is used
to train a CAA model and the rest is used for testing. Figure 1.4a contains a scatter plot
of the data sampled from the Gaussian, where the axes indicate the linear combinations
of columns of X that map the original data onto the Gaussian. Figure 1.4b shows the



Learning from multivariate high-resolution data 19

projection of both training and testing data onto the space determined by the first pair
of canonical vectors retrieved by CAA, where the equations on the axes correspond to
the correlation they establish. Note that the method is able to successfully identify the
existing multiple-to-multiple linear correlation, even though the features are not grouped
identically as in the original design.

Nuclear physics

The radiation data used in our experiments is featurized into 128 disjoint energy bins, and
reflects photon counts obtained from gamma-ray spectrometer measurements. There are
20,000 records available for harmless background data, and 10,000 records for each of 15
types of threat-injected data, to simulate various radiological threats.

As it was previously explained, PCA-based spectral anomaly detection assumes that
the top few principal components represent the expected envelope of background variation,
and uses the residual after removing these top components as a spectral anomaly score. In
the case of CAA, multiple-to-multiple combinations of energy bins that are well correlated
provide a characterization model for background radiation. This model can be used as the
basis of the anomaly detection method described in Section 1.3.2, which identifies threats
when radiation spectra depart from the expected patterns of correlation.

Figure 1.5: Projection of background radiation and threat-injected background radiation
measurements onto space determined by one pair of CAA canonical vectors. The equations
indicate the multiple-to-multiple linear correlation that defines this projection. Data point
labeled with black x corresponds to the individual threat case analyzed in Figure 1.6.
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For evaluation purposes, the CAA-based anomaly detector is compared to the PCA-
based anomaly detector, a widely used approach in the domain. The PCA-based spectral
anomaly detector, based on [41], works by calculating the magnitude of the residual after
a background-subtracting projection. The background-subtracting is a strict projection
onto the subspace spanned by the top few principal components of the covariance matrix.
An alternative way of finding this projection is by a dilation modified projection where
the correlation (not covariance) matrix is used to learn the low dimensional projection and
then appropriate scaling of the measurement dimensions is performed before projection
and scaled back after the projection. In any case, the transformation computes the esti-
mated background contribution to a radiation measurement, assuming that the top few
principal components represent expected typical background variation. After projection,
the magnitude of the residual essentially provides the PCA-based spectral anomaly score,
as it should be negligibly low for spectra consistent with training data distributions. Ap-
pendix A.5 contains the PCA spectral anomaly detector algorithm. Additionally, a Sparse
PCA anomaly detector was designed and implemented for comparison. The algorithm is
analogous to the PCA alternative, with some minor modifications that enable the exchange
of PCA for Sparse PCA in the pipeline. The algorithm is described in detail in Appendix
A.6.

All three models were trained using 10,000 background records, and the resulting mod-
els were evaluated on 15 types of radiation threats. Each of the 15 test sets contained
10,000 samples of injected data corresponding to a particular threat type, combined with
the remaining 10,000 background records. Three performance comparison metrics were
used: area under the ROC curve (AUC), recall at a fixed low false discovery rate, and false
discovery rate at a fixed recall rate of 50%. Figure 1.7 and Tables 1.1 and 1.2 summarize
the results, and Appendix A.8 contains ROC curves for all 15 threat types used in the ex-
periments, with the false positive rate axis in logarithmic scale to enhance view at low false
positive rates, where most applications tend to reside. For ten of these fifteen threats CAA
performs significantly better than PCA and Sparse PCA according to all three performance
metrics, and only for one type of threat is another method significantly better than CAA
according to all metrics. This is threat type A, where PCA performs best, which can be
potentially explained by the fact that sparsity is apparently not very useful in this case
and a larger number of bins is necessary to detect this particular type of threat. When the
algorithms are applied to all threats combined into a single batch, CAA is by far better
than the other two competitors.

Figure 1.5 shows an example of the mapping onto the space determined by a pair of
CAA canonical vectors (u, v). The data points corresponding to background radiation, as
well as those corresponding to a particular threat, are mapped onto this projection. This
particular pair (u, v) is used most often to score the data points belonging to this particular
type of threat (listed as type “L” in table labels), meaning the one where the maximum
Mahalanobis distance to the Gaussian characterizing background radiation is found most
often, as defined in Equation 1.17.



Learning from multivariate high-resolution data 21

(u, v) = arg max
ui,vi

DMi((u
T
i x

T , xvi))|ki=1 (1.17)

As Figure 1.5 shows, in this example the threat-injected data distribution visibly di-
verges from the test set distribution of benign data. For this threat type, CAA model
achieves the AUC of 0.995, while PCA-based detector has the AUC of 0.821.

Th A B C D E F G H I J K L M N O all
cor. .72 .79 .79 .81 .87 .87 .88 .88 .88 .91 .92 .92 .94 .94 .96 NA

caa 7 4∗ 4∗ 14∗ 7∗ 7∗ 2 15∗ 100 14∗ 87∗ 14 20∗ 13∗ 5 21∗

pca 59∗ 1 1 1 2 2 1 3 100 7 8 13 2 1 4 14
Spca 6 1 1 2 3 3 1 4 100 5 9 6 2 2 6 10

Table 1.1: Performance of CAA, PCA and Sparse PCA in terms of recall rate (given in
%) at fixed false discovery rate of 0.01. Radiation threat types are ordered according to
the strength of the correlation between mean background spectrum and threat template.
Asterisks mark cases when the winning method performs significantly better than the
second-best.

Th A B C D E F G H I J K L M N O all
cor. .72 .79 .79 .81 .87 .87 .88 .88 .88 .91 .92 .92 .94 .94 .96 NA

caa 11 21∗ 21∗ 6∗ 13∗ 13∗ 41 6∗ 0 7∗ 0∗ 7∗ 4∗ 7∗ 18 8∗

pca 1∗ 43 39 33 42 41 53 33 0 23 12 15 28 32 42 27
Spca 14 46 49 34 27 27 43 20 0 17 9 15 36 35 16∗ 23

Table 1.2: Performance of CAA, PCA and Sparse PCA in terms of false discovery rate
(given in %) at a fixed recall of 50%. Radiation threat types are ordered according to
the strength of the correlation between mean background spectrum and threat template.
Asterisks mark cases when the winning method performs significantly better than the
second-best.

In addition to its good empirical performance, the proposed method yields readily
interpretable outputs. When a spectral measurement is identified as a possible threat, the
energy bins on which it fails to follow background patterns can be pointed out. This has
two main advantages: first, when analyzing an individual data point the user knows which
energy bins the algorithm used to make its decision, for easy adjudication of the results
(Figure 1.6b). Secondly, when applied to a batch of data associated to a particular threat
type, it is possible to identify the bins on which the threat’s appearance systematically
differs from the background behavior, providing the way to characterize this type of threat
(1.6a).
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(a) Threat batch: Heat map indicates the frequencies with which bins are used by CAA to flag
one particular threat type, together with mean background spectra and spectral template for that
threat.

(b) Adjudication of an individual measurement: Radiation spectrum the method correctly labels
as inclusive of threat signatures compared to background radiation distribution. Colored bins were
used to flag measurement as anomalous, corresponding to the support of the CAA canonical vectors
that define the projection where the maximum Mahalanobis distance to the baseline distribution was
found. This corresponds to CAA projection shown in Figure 1.5, where this individual measurement
is labeled with a black x.

Figure 1.6: Visualization of energy bins that are used to label gamma-ray measurements
as likely inclusive of threats.

Figure 1.6 shows the frequency with which energy bins are used to identify anomalies.
The top plot shows the usage frequency of bins for a threat-infused data batch associated
to the threat type used in Figure 1.5. The bottom plot shows an example of a radiation
spectrum the method correctly labels as representative of a threat, mean of the background
radiation spectra used for training, and colors the energy bins that were used to label the
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Figure 1.7: AUC and confidence intervals for CAA, PCA and Sparse PCA applied to
detecting radiation threats of various types. Radiation threat types are ordered according
to correlation between mean background spectrum and threat template spectrum. The
right-most column shows performance when all threat types are combined in one batch.

data as anomalous. This individual threat measurement is labeled with a black x in Figure
1.5. It is interesting to see that even though the method is fully unsupervised, such bins
correspond to spikes in the injected threat template.

1.4.2 Prediction of neurological recovery

The principal goal in this domain is to help improve care given to comatose survivors of
cardiac arrest through a decision support system that can boost the accuracy and timeliness
of clinical prognosis. To do so, Canonical Autocorrelation Embeddings is proposed as a new
way of characterizing patients through their latent multivariate structures of correlation,
and of using the resulting featurization of data as a way to build predictive models.

The first fundamental decision to make is what data and labels to use for training.
As it can be seen in Figure 1.3, the main cause of death for patients in our data set
is the withdrawal of life-sustaining therapy due to perceived poor neurological prognosis.
However, as mentioned in Section 1.1, it is possible that in some cases treatment might
be withdrawn too early. Including this data in the training would risk introducing bias,
as the model could learn and replicate the mistakes clinicians may be making, leading to
a self-fulfilling prophecy. Considering this and the fact that our goal is to predict positive
neurological outcome rather than survival alone, the model is trained using only those
patients who lived, making our target label whether they had a good or a poor neurological
outcome.

For each patient, their entire EEG record is available, with lengths varying from less
than an hour to more than a week. In the present experiment, those patients with at least
36 hours of EEG data are considered. When focusing the study on patients who survived
till hospital discharge and who were monitored for at least 36 hours, the resulting dataset
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Figure 1.8: Diagram illustrating CAA patient characterization using EEG features as input
data.

is composed of 80 patients, 40 of whom had a positive neurological recovery and 40 who
did not. CAA is used to characterize a two hour epoch between hours 34 and 36. The
specific question the proposed model answers is: can the correlations present during this
epoch predict whether the patient will have a good neurological outcome? The reason why
only two hours are considered is because it can be expected that the state of the patient
fluctuates during their stay, and the resulting variance could obfuscate important patterns
of correlation, if observed for prolonged periods of time. Identifying trends over time, or
inferring meta-correlation structures that describe these temporal trends, is an important
subject of future work beyond the scope of current analysis. Figure 1.8 illustrates the
process of characterization of multiple patients’ EEG data with CAA.

In order to avoid spurious results, only CAA canonical projections that yield corre-
lations with R2 > 0.25 are considered. Moreover, to ensure that only reasonably close
neighbors are used for matching, connections are pruned by only considering distances
smaller than

√
2, a threshold that corresponds to a 90◦ rotation over one axis. Using the

resulting pruned distance matrix, k-nearest neighbor algorithm among CAA embeddings
is applied. Empirical results obtained through 10-fold cross-validation, with tuning pa-
rameters k and t in an internal 10-fold cross-validation loop within each training fold, are
presented in Figures 1.9, 1.10, 1.11, 1.12.

A logistic regression with lasso regularization [42] is also considered to predict recovery
36 hours after admission. Given that logistic regression is not suited for sets, but rather
takes as input individual data points, two avenues are explored. The first approach takes
the last data point after 36 hours of monitoring, that is, the recording at one time step.
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Figure 1.9: ROC curves showing performance of CAA Embeddings, logistic regression on
sets, logistic regression on points, k-nn on sets and k-nn on points.

For the remainder of the Chapter, this approach is termed logistic regression on points. In
the second approach, quartiles for each input feature are calculated over two hours pre-
ceding the 36-hour mark, and provided as features to the logistic regression model. This
approach is refered to as logistic regression on sets. The choice of the lasso regularization
parameter λ is made through 10-fold cross-validation. The results are included in Fig-
ures 1.9, 1.10, 1.11, 1.12. Furthermore, to be able to better assess the role of the CAA
Embeddings, results from a direct application of k-nn algorithm using Euclidean distance
and taking the same inputs as the logistic regression models are also included, and referred
to as k-nn on points and k-nn on sets, respectively.

These results show that the proposed methodology has predictive power, and the com-
parison to k-nn using Euclidean distance on points and set-aggregated features highlights
the role of CAA Embeddings. The performance of CAE at low false positive rates is par-
ticularly promising, with a true positive rate of 0.25 and corresponding 95% confidence
interval [0.125, 0.46] at a false positive rate lower than 0.03. This means that with very low
probability of making a Type I error, it is possible to confidently identify at least 12.5% of
the patients who will go on to have a positive neurological recovery.

The clinical utility of a prognostic tool in our example application would be determined
to a lesser extent by its overall discriminatory power, but more so by its ability to confi-
dently identify patients with essentially either nil or a substantial possibility of recovery.
Thus, while in our experiment logistic regression shows an overall better discriminatory
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Figure 1.10: ROC curves with 95% confidence intervals. Left: CAA Embeddings, AUC =
0.71 with 95% confidence interval of [0.6, 0.82]. Right: Logistic regression on sets, AUC =
0.81 with 95% confidence interval of [0.71, 0.91].

Figure 1.11: ROC curve with 95% confidence intervals displaying false positive rate in x-
axis and true positive rate in y-axis, with x-axis in log-scale to emphasize area of low-false
positive rate. Left: CAA Embeddings. Right: Logistic regressing on sets.

power than CAE, which can be observed by comparing the Area Under the ROC Curve
(AUC), it is important to observe the performance at low false positive rates and low false
negative rates, given that these are the operational ranges of the models that would be
used in practice. The ROC curves with the x-axes in logarithmic scales to emphasize the
low false positive and low false negative rates are shown in Figure 1.11 and Figure 1.12,
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Figure 1.12: ROC curves with 95% confidence intervals displaying false negative rate in x-
axis and true negative rate in y-axis, with x-axis in log-scale to emphasize area of low-false
negative rate. Left: CAA Embeddings. Right: Logistic regressing on sets.

respectively. The performance of CAE at low false positive rates is promising, while the
performance of logistic regression at both low false positives and low false negative rates is
not significantly better than random. The proposed CAE model can identify with high con-
fidence a substantial number of patients who will likely go on to have a good neurological
outcome.

Even though consensus guidelines advocate maintaining life-sustaining therapies for at
least 72 hours after cardiac arrest [18, 19], the burden associated to continuing life-support
for patients who will not have a positive neurological recovery still often leads clinicians to
withdraw treatment earlier [11]. Hence, the ability to identify with high confidence patients
that will likely recover with a good outcome has the potential to save lives. Figure 1.10
shows that the proposed methodology can identify 25% of the patients that will recover
with little chance of making such determination in error. And even if the lower bound
of the confidence interval is considered, that would correspond to 12.5% of patients that
go on to recover. In order to maximize overall performance in addition to optimizing the
performance at low false positive rates, an ensemble model including CAE and logistic
regression could be used to draw benefits from both of its components: high recall at
low false positive rates of CAE, and overall good separability between outcome classes of
logistic regression.

It is hard to evaluate the immediate medical impact of these findings in the absence of
clinical context. To appropriately estimate the potential impact of such a decision support
system in terms of lives saved, it is necessary to compare against physicians’ assessments
to guarantee that the predictions made with the proposed approach are non-redundant
to what doctors already know. Each patient in our dataset is classified by Pittsburgh
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Cardiac Arrest Category, a 4-level, validated prognostic indicator assigned in the first six
hours of their stay [43]. This classification indicates whether the patient is awake with
mild brain injury (category i), in a mild to moderately deep coma with good cardiac and
pulmonary function (category ii), in a mild to moderately deep coma without evidence
of severe brain injury but poor cardiac and pulmonary activity (category iii), or deeply
comatose with loss of some brainstem reflexes (category iv). While patients in category i
have an associated probability of survival of 80%, and 60% probability of having a positive
neurological recovery, patients in category iv have an associated survival probability of
10%, and only 5% of having a positive neurological outcome. At a false positive rate lower
than 0.03, the proposed methodology correctly identified a category iv patient who later
went on to have a positive recovery. This constitutes a preliminary indication that the
patterns of correlations in neurological activity measured with EEG, that are found to be
indicative of positive recovery, constitute novel findings and have the potential to improve
reliability of prognostication.

From the ROC curves in Figures 1.11 and 1.12, it can be seen that it is easier for
the model to determine if patients will have a positive neurological recovery than if they
will not. However, this observation should be taken with a grain of salt, and it cannot
be concluded that the correlation structures in EEG signals are more useful to predict
positive than negative outcomes. The available labeled data encodes positive/negative
outcomes, but these are not limited to just neurological activity. A patient could have
a positive neurological recovery but have other medical complications that might limit
function and thus would result in a bad outcome label. Meanwhile, the positive recovery
label is potentially much more homogeneous and is sure to indicate positive neurological
recovery (as well as positive recovery in other areas). The fact that some patients who had
positive neurological recovery could be labeled as having a bad outcome might be adding
noise, and it is possible that a cleaner dataset would increase predictive power for those
patients who will not go on to have a good neurological outcome.

A limitation of the presented approach is that the analysis is done for a two hour
interval after 34 hours of monitoring. Taking into account the results presented in the
literature [15], the power of the model could be enhanced by incorporating trajectory
modeling. While our model captures correlations observed within an interval of time,
and in that sense it goes beyond a purely stationary approach, leveraging the sequential
structures in data and using all data collected during a patients’ stay, has the potential of
further improving performance. Methodologically, this calls for the development of models
for trajectory modeling of multivariate correlation structures. This could also encompass
further exploration of additional distance metrics that could incorporate other types of
information. By leveraging more information, such an approach would have the potential
of providing earlier and more specific predictions.

An additional direction for performance enhancement comes from the fact that our
characterization of brain activity with CAA is motivated by the importance clinicians place
on correlations. However, the correlations they know to be informative are across raw EGG
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channel measurements, and it is likely that at the current level of data aggregation, a big
portion of the information may be to some extent obfuscated. This does not constitute
a risk in terms of the validity of the results presented in this Chapter, but it means that
if correlations are informative even at this level of aggregation, further promising results
may be expected from characterizing correlations in raw EEG signals. In addition to the
potentially improved predictive power, such models could lead to biological insights that
may not be easily derived with the current approach.

Another limitation of the present model (as well as other relevant approaches) is the
selective labels problem [2]. Selective labels is a common yet understudied problem that
often arises in decision support, whenever historical decision-making blinds us to the true
outcome for certain instances. In the case of predicting neurological recovery, the true
outcome is only observed when the clinicians decide to extend life sustaining therapy,
while there is no available counterfactual for what would have happened in those cases
where life sustaining therapy is withdrawn early. Currently, humans are not always certain
of their decision to withdraw life support; therefore, assuming that any case in which
doctors decided to stop life-sustenance is an example of a patient with negative neurological
outcome might lead to a self-fulfilling prophecy. At the same time, when the predictive
model is trained by only considering those cases where the true outcome is observed–that
is when life-sustaining therapies were extended and it is possible to observe if the patient
had a positive neurological recovery or not–there is a chance our model will not perform
well when deployed on the entire population. Currently, this model may only be used to
make predictions for the portion of the population for whom life sustaining therapy is being
extended. If patients for whom treatment was stopped early are significantly different from
those for whom it was not, which is very likely the case, our model could systematically
misdiagnose that group if used for the entire population. Chapter 3 discusses the selective
labels problem in more detail and introduces novel methodology to tackle this challenge.



Chapter 2

Algorithmic fairness

2.1 Compounding injustices in allocation harms

Section based on:
M. De-Arteaga, A. Romanov, H. Wallach, J. Chayes, C. Borgs, A. Chouldechova,
S. Geyik, K. Kenthapadi, A. Kalai. Bias in Bios: A Case Study of Semantic Repre-
sentation Bias in a High-Stakes Setting, In Proceedings of the ACM Conference on
Fairness, Accountability, and Transparency (FAT*), 2019.

When considering the deployment of automated decision-making systems, it is impor-
tant to acknowledge the increasingly active role these systems play in shaping our future.
Far from being passive players that consume information, automated decision-making sys-
tems are participating actors: their predictions today affect the world we live in tomorrow.
In particular, they determine many aspects of how we experience the world, from the news
we read and the products we shop for to the job postings we see. The increased prevalence
of machine learning has therefore been accompanied by a growing concern regarding the
circumstances and mechanisms by which such systems may reproduce and augment the
various forms of discrimination and injustices that are present in today’s society.

One domain in which the use of machine learning is growing in popularity—and in
which unfair practices can lead to particularly negative consequences—is that of online
recruiting and automated hiring. Maintaining an online professional presence has become
increasingly important for people’s careers, and this information is often used as input to
automated decision-making systems that advertise open positions and recruit candidates
for jobs and other professional opportunities. In order to perform these tasks, a system must
be able to accurately assess people’s current occupations, skills, interests, and “potential.”
However, even the simplest of these tasks—determining someone’s current occupation—

30
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can be non-trivial. Although this information may be provided in a structured form on
some professional networking platforms, this is not always the case. As a result, recruiters
often browse candidates’ websites in an attempt to manually determine their current occu-
pations. Machine learning promises to reduce this burden; however, as we will explain in
this Section, occupation classification is susceptible to gender bias, stemming from existing
gender imbalances in occupations.

To study gender bias in occupation classification, we created a new dataset of hundreds
of thousands of online biographies, written in English, from the Common Crawl corpus.
Because biographies are typically written in the third person by their subjects (or people
familiar with their subjects) and because pronouns are gendered in English, we were able
to extract (likely) self-identified binary gender from the biographies. We note, though, that
this binary model is a simplification that fails to capture important aspects of gender and
erases people who do not fit within its assumptions.

Using this dataset, we predicted people’s occupations by performing multi-class clas-
sification using three different semantic representations: bag-of-words, word embeddings,
and deep recurrent neural networks. For each representation, we considered two scenarios:
(1) where explicit gender indicators are available to the classifier, (2) where explicit gender
indicators are “scrubbed” to promote fairness or to comply with regulations or laws. We
define explicit gender indicators to be information, such as first names and gendered pro-
nouns, that make it possible to determine gender. We note that the practice of “scrubbing”
explicit gender indicators and other sensitive attributes is not unique to machine learning,
and is often used as a way to mitigate the effects of implicit and explicit bias on decisions
made by humans. For example, gender diversity in orchestras was significantly improved
by the introduction of “blind” auditions, where candidates play behind a curtain [44].

To quantify gender bias, we compute the true positive rate (TPR) gender gap—i.e., the
difference in TPRs between genders—for each occupation. The TPR for a given gender and
occupation is defined as the proportion of people with that gender and occupation that are
correctly predicted as having that occupation. We also compute the correlation between
these TPR gender gaps and existing gender imbalances in occupations, and show how this
may compound these imbalances; we connect this finding with an existing notion of indirect
discrimination in political philosophy. We show that “scrubbing” explicit gender indicators
reduces the TPR gender gaps, while maintaining overall classifier accuracy. However, we
also show that significant TPR gender gaps remain in the absence of explicit gender indi-
cators, and that these gaps are correlated with existing gender imbalances. For orchestra
auditions, the sounds made by candidates’ shoes mean that a curtain is not sufficient to
make an audition “blind.” It is therefore common practice to additionally roll out a carpet
or to ask candidates to remove their shoes [44]. By analogy, “scrubbing” explicit gender
indicators is like introducing a curtain—the sounds made by the candidates’ shoes remain.

This Section has two main takeaways: First, “scrubbing” explicit gender indicators is
not sufficient to remove gender bias from an occupation classifier. Second, even in the ab-
sence of such indicators, TPR gender gaps are correlated with existing gender imbalances
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in occupations; occupation classifiers may therefore compound existing gender imbalances.
Although we focus on gender bias, we note that other biases, such as those involving race
or socioeconomic status, may also be present in occupation classification or in other tasks
related to online recruiting and automated hiring. We structure our analysis so as to inform
discussions about these biases as well.

2.1.1 Related work

Recent work has studied the ways in which stereotypes and other human biases may be re-
flected in semantic representations such as word embeddings [45, 46, 47]. Natural language
processing researchers have also studied gender bias in coreference resolution [48, 49], show-
ing that systems perform better when linking a gender pronoun to an occupation in which
that gender is overrepresented than to an occupation in which it is underrepresented. Gen-
der bias has also been studied in YouTube’s autocaptioning [50], where researchers found
a higher word error rate for female speakers. In the context of language identification,
researchers have also investigated racial bias, showing that African-American English is
often misclassified as non-English [51]. Finally, machine learning methods for identifying
toxic comments exhibit disproportionately high false positive rates for words like gay and
homosexual [52].

In the context of structured data, there have been extensive discussions about proxy
behavior that may occur when sensitive attributes are not explicitly available but can
be determined from other attributes [53, 54, 55]. Related discussions have focused on
the phenomenon of differential subgroup validity [56], where the choice of attributes may
disadvantage groups for whom the chosen attributes are not equally predictive of the target
label [57]. Barocas and Selbst [54] discussed these issues in the context of automated hiring;
Kim [58] explained how data-driven decisions that systematically bias people’s access to
opportunities relate to existing antidiscrimination legislation, identifying voids that may
need to be filled to account for potential risks stemming from automated decision-making
systems. Researchers have also discussed making available sensitive attributes as a means
to improve fairness [59], as well as various ways to use these attributes [60, 53]. Finally,
although this Section does not directly consider ranking scenarios, fairness in ranking is
particularly relevant to discussions about gender bias in online recruiting and automated
hiring [61, 62, 63, 64, 65].

We quantify gender bias by computing the TPR gender gap—i.e., the difference in
TPRs between genders—for each occupation. This notion of bias is closely related to the
equality of opportunity fairness metric of Hardt et al. [66]. We choose to focus on TPR
gender gaps because they enable us to study the ways in which gender imbalances may be
compounded; in turn, we relate this to compounding injustices [1]—an existing notion of
indirect discrimination in political philosophy that holds that it is a general moral duty to
refrain from taking actions that would harm people when those actions are informed by,
and would compound, prior injustices suffered by those people. We show that the TPR
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gender gaps are correlated with existing gender imbalances in occupations. As a result,
occupation classifiers compound injustices when existing gender imbalances are attributable
to historical discrimination.

This work is also closely related to research on gender bias in hiring [67, 68, 69, 70].
In particular, Bertrand and Mullainathan [71] conducted an experiment in which they
responded to help-wanted ads using fictitious resumes, varying names so as to signal gender
and race, while keeping everything else the same. They were therefore able to measure the
effect of (inferred) gender and race on the likelihood of being called for an interview.
Similarly, we study the effect of explicit gender indicators on occupation classification.

Computational linguistics researchers have explored the use of lexical and syntactic
features to infer authors’ genders [72, 73]. Given that our dataset consists of online biogra-
phies, our research is also related to research on differences between the ways that men and
women represent themselves. In the context of online professional presences, Altenburger
et al. [74] analyzed self-promotion in LinkedIn, finding that women are more modest than
men in expressing accomplishments and are less likely to use free-form fields. Researchers
have also studied differences in volubility between men and women [75], showing that
women’s fear of being highly voluble is justified by the fact that both men and women
negatively evaluate highly voluble women. Moving beyond self-representation, Niven and
Zilber [76] analyzed congressional websites and found that differences between the ways
that the media portray men and women in Congress cannot be explained by differences
between the ways that they portray themselves. Meanwhile, Smith et al. [77] analyzed
attributes used to describe men and women in performance evaluations, showing that
negative attributes are more often used to describe women than men. This research on
representation by others relates to our work because we cannot be sure that the online
biographies in our dataset were actually written by their subjects.

2.1.2 Data collection process

To study gender bias in occupation classification, we created a new dataset using the Com-
mon Crawl. Specifically, we identified online biographies, written in English, by filtering
for lines that began with a name-like pattern (i.e., a sequence of two capitalized words)
followed by the string “is a(n) (xxx) title,” where title is an occupation from the BLS
Standard Occupation Classification system.1 We identified the twenty-eight most frequent
occupations based on their appearance in a small subset of the Common Crawl. In a
few cases, we merged occupations. For example, we created the occupation professor by
merging occupations that consist of professor and a modifier, such as economics professor.
Having identified the most frequent occupations, we processed WET2 files from sixteen
distinct crawls from 2014 to 2018, extracting online biographies corresponding to those oc-

1 https://www.bls.gov/soc/
2 WET is a special file format containing cleaned text extracted from webpages.

https://www.bls.gov/soc/
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cupations only. Finally, we performed de-duplication by treating biographies as duplicates
if they had the same first name, last name, and occupation, and either no middle name
was present or one middle name was a prefix of the other. The resulting dataset consists
of 397,340 biographies spanning twenty-eight different occupations. Of these occupations,
professor is the most frequent, with 118,400 biographies, while rapper is the least frequent,
with 1,406 biographies (see Figure 2.1). The longest biography is 194 tokens, while the
shortest is eighteen; the median biography length is seventy-two tokens. We note that the
demographics of online biographies’ subjects differ from those of the overall workforce, and
that our dataset does not contain all biographies on the Internet; however, neither of these
factors is likely to undermine our findings.
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Figure 2.1: Distribution of the number of biographies for the twenty-eight different occu-
pations, shown on a log scale.

Because some occupations have a high gender imbalance, our validation and test-
ing splits must be large enough that every gender and occupation are sufficiently rep-
resented. We therefore used stratified-by-occupation splits, with 65% of the biographies
(258,370) designated for training, 10% (39,635 biographies) designated for validation, and
25% (99,335 biographies) designated for testing.

A complete implementation that reproduces the dataset can be found in the source
code available at http://aka.ms/biasbios.

http://aka.ms/biasbios
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2.1.3 Methodology

We used our dataset to predict people’s occupations, taken from the first sentence of their
biographies as described in the previous section, given the remainder of their biographies.
For example, consider the hypothetical biography Nancy Lee is a registered nurse. She
graduated from Lehigh University, with honours in 1998. Nancy has years of experience in
weight loss surgery, patient support, education, and diabetes. The goal is to predict nurse
from She graduated from Lehigh University, with honours in 1998. Nancy has years of
experience in weight loss surgery, patient support, education, and diabetes.

We used three different semantic representations of varying complexity: bag-of-words
(BOW), word embeddings (WE), and deep recurrent neural networks (DNN). When using
the BOW and WE representations, we used a one-versus-all logistic regression as the occu-
pation classifier; to construct the DNN representation, we started with word embeddings
as input and then trained a DNN to predict occupations in an end-to-end fashion. For each
representation, we considered two scenarios: (1) where explicit gender indicators—e.g., first
names and pronouns—are available to the classifier, (2) where explicit gender indicators are
“scrubbed.” For example, these scenarios correspond to predicting the occupation nurse
from the text [She] graduated from Lehigh University, with honours in 1998. [Nancy] has
years of experience in weight loss surgery, patient support, education, and diabetes, with
and without the bracketed words.

Semantic representations

Bag-of-words The BOW representation encodes the ith biography as a sparse vector
xBOW
i . Each element of this vector corresponds to a word type in the vocabulary, equal to

1 if the biography contains a token of this type and 0 otherwise. Despite recent successes
of using more complex semantic representations for document classification, the BOW
representation provides a good baseline and is still widely used, especially in scenarios
where interpretability is important. To predict occupations, we trained a one-versus-all
logistic regression with L2 regularization using our dataset’s training split represented
using the BOW representation.

Word embeddings The WE representation encodes the ith biography as a vector xWE
i ,

obtained by averaging the fastText word embeddings [78, 79] for the word types present
in that biography.3 The WE representation is surprisingly effective at capturing non-trivial
semantic information [80]. To predict occupations, we trained a one-versus-all logistic re-
gression with L2 regularization using our dataset’s training split represented using the WE
representation.

3 We note that the fastText word embeddings were trained using the Common Crawl, albeit using a different
subset than the one we used to create our dataset.



Algorithmic fairness 36

Deep recurrent neural networks To construct the DNN representation, we started
with the fastText word embeddings as input and then trained a DNN to predict occu-
pations in an end-to-end fashion. We used an architecture similar to that of Yang et al.
[81], but with just one bi-directional recurrent neural network at the level of words and
with gated recurrent units (GRUs) [82] instead of long short-term memory units; this model
uses an attention mechanism—an integral part of modern neural network architectures [83].
Our choice of architecture was motivated by a desire to use a relatively simple model that
would be easy to interpret.

Formally, given the ith biography represented as a sequence of tokens w1
i , . . . , w

T
i , we

start by replacing each token wti with the fastText word embedding for that word type to
yield e1

i , . . . , e
T
i . The DNN then uses a GRU to process the biography in both forward and

reverse directions and concatenates the corresponding hidden states from both directions
to re-represent the tth token as follows:

−→
hti =

−−−→
GRU(eti, h

t−1
i ) (2.1)

←−
hti =

←−−−
GRU(eti, h

t+1
i ) (2.2)

hti = [
←−
hti ;
−→
hti ]. (2.3)

Next, the DNN projects each hidden state hti to the attention dimension ka via a fully
connected layer with weights Wa and ba, and transforms the result into an unnormalized
scalar uti via a vector wa:

ûti = tanh (Wa h
t
i + ba) (2.4)

uti = wᵀ
aû

t
i. (2.5)

Each scalar is then normalized to yield an attention weight:

αti =
exp (uti)∑T
t′=1 exp (ut

′
i )
. (2.6)

Finally, we obtain the DNN representation via a weighted sum:

xDNN
i =

T∑
t=1

αti h
t
i. (2.7)

The DNN makes predictions as follows:

ŷi = softmax(W0 x
DNN
i + b0), (2.8)

where ŷi is the predicted occupation for the ith biography.
We trained the DNN using our dataset’s training split and a standard cross-entropy

loss applied to the output of the last layer.
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Explicit gender indicators

For each semantic representation, we considered two scenarios. In the first scenario, the
representation included all word types, meaning that explicit gender indicators are avail-
able to the occupation classifier. In the second scenario, we “scrubbed” explicit gender
indicators prior to creating the representation, meaning that these indicators are not avail-
able to the occupation classifier. Specifically, we deleted the subject’s first name, along
with the words he, she, her, his, him, hers, himself, herself, mr, mrs, and ms from each
biography.

2.1.4 Analysis and results

In this section, we analyze the potential allocation harms that can result from semantic
representation bias. To do this, we study the performance of the occupation classifier for
each semantic representation, with and without explicit gender indicators, as described
in the previous section. The classifiers’ overall accuracies are shown in Figure 2.2. We
start by analyzing gender bias for the scenario in which the semantic representations in-
clude all word types, including explicit gender indicators. We then analyze gender bias
in the scenario in which explicit gender indicators are “scrubbed,” and use the DNN’s
per-token attention weights to understand proxy behavior that occurs in the absence of
explicit gender indicators.
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Figure 2.2: Occupation classifier accuracy for each semantic representation, with and with-
out explicit gender indicators.
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With explicit gender indicators

True positive rate gender gap For each semantic representation, we quantify gender
bias by using our dataset’s testing split to calculate the occupation classifier’s TPR gender
gap—i.e., the difference in TPRs between binary genders g and ∼g—for each occupation
y:

TPRg,y = P [Ŷ = y |G = g, Y = y] (2.9)

Gapg,y = TPRg,y − TPR∼g,y, (2.10)

where Ŷ and Y are random variables representing the predicted and target labels (i.e.,
occupations) for a biography and G is a random variable representing the binary gender of
the biography’s subject.

Defining the percentage of people with gender g in occupation y as πg,y = P [G =
g |Y = y], Figure 2.3 shows Gapfemale,y versus πfemale,y for each occupation y for the BOW
representation with explicit gender indicators; Figure 2.4 depicts the same information for
all three representations, with and without explicit gender indicators.

Compounding imbalance We define the gender imbalance of occupation y as
πg,y
π∼g,y

;

gender g is underrepresented if
πg,y
π∼g,y

< 1 or, equivalently, if πg,y < 0.5. The gender
imbalance is compounded if the underrepresented gender has a lower TPR than the over-
represented gender—e.g., if Gapg,y < 0 and g is underrepresented.

Theorem 1. If πg,y < 0.5 and Gapg,y < 0, then

P [G = g |Y = Ŷ = y] < πg,y. (2.11)

Proof. Via Bayes theorem,

P [G = g |Y = Ŷ = y] =
πg,y TPRg,y

P [Ŷ = y |Y = y]
. (2.12)

If πg,y < π∼g,y and TPRg,y < TPR∼g,y, then

P [G = g |Y = Ŷ = y]

P [G = ∼g |Y = Ŷ = y]
=

πg,y TPRg,y

π∼g,y TPR∼g,y
<

πg,y
π∼g,y

, (2.13)

so the gender imbalance for the true positives in occupation y is larger than the initial
gender imbalance in that occupation.

As explained in Section 2.1.1, if the initial gender imbalance is due to prior injustices,
an occupation classifier will compound these injustices, which may correspond to indirect
discrimination [1].



Algorithmic fairness 39

0.2 0.4 0.6 0.8
% FEMALE

−0.4

−0.2

0.0

0.2

0.4
TP

R 
GE

ND
ER

 G
AP

professor

physician

attorneyphotographer

journalist

nurse

psychologist

teacher

dentist

surgeon

architect

painter

model

poet

filmmaker

software_engineer

accountant

composer

dietitian

comedian

chiropractor

pastor

paralegal

yoga_teacher

dj

interior_designer

personal_trainer

rapper

Figure 2.3: Gapfemale,y versus πfemale,y for each occupation y for the BOW representation
with explicit gender indicators.
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representations, with and without explicit gender indicators. Correlation coefficients:
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It is clear from Figure 2.3 that there are few occupations with an equal percentage of
men and women—i.e., almost all occupations have a gender imbalance—and that for that
for occupations in which women (conversely men) are underrepresented, Gapfemale,y < 0
(conversely Gapmale,y < 0). In other words, there is a positive correlation between the TPR
gender gap for an occupation y and the gender imbalance in that occupation. (Figure 2.4
illustrates that this is also the case for the WE and DNN representations.) As a result, if the
occupation classifier for the BOW representation were used to recruit candidates for jobs
in occupation y, it would compound the gender imbalance by a factor of

TPRg,y
TPR∼g,y

, where g

is the underrepresented gender. For example, 14.6% of the surgeons in our dataset’s testing
split are women—i.e., πfemale,surgeon < 0.5. The classifier for the BOW representation is
able to correctly predict that 71% of male surgeons and 54.5% of female surgeons are
indeed surgeons—i.e., Gapfemale,surgeon < 0. Consequently, only 11.6% of the true positives
are women, so the gender imbalance is compounded.

Counterfactuals To isolate the effects of explicit gender indicators on the representa-
tions’ occupation classifiers, we examined differences between the classifiers’ predictions on
our dataset’s testing split as described above and their predictions on our dataset’s test-
ing split with first names removed and other explicit gender indicators (see Section 2.1.3)
swapped for their complements, keeping everything else the same. This analysis is similar
in spirit to the experiment of Bertrand and Mullainathan [71], in which they responded
to help-wanted ads using fictitious resumes in order to measure the effect of gender and
race on the likelihood of being called for an interview. By analyzing the counterfactuals
obtained by swapping gender indicators, we can answer the question, “Which occupation
would this classifier predict if this biography had used indicators corresponding to the other
gender.” This question is interesting because we would expect an occupation classifier to
predict the same occupation for a man and a woman with identical biographies. We note
that this question is not the same as the question, “Which occupation would this classifier
predict if this biography’s subject were the other gender.” Although the latter question is
arguably more interesting, it cannot be answered without additionally changing all other
factors that are correlated with gender [84].

For the BOW representation, we find that the classifier’s predictions for 5.5% of the
biographies in our testing split change when their gender indicators are swapped; for the
WE and DNN representations, these percentages are 12.2% and 4.6%, respectively. To
better understand the effects of explicit gender indicators on the classifiers’ predictions,
we consider pairs of occupations. Specifically, for each gender g and pair of occupations
(y1, y2), we identify the set of biographies that are incorrectly predicted as having occupa-
tion y1 with their original gender indicators, but correctly predicted as having occupation
y2 when their gender indicators are swapped:

Sg,(y1,y2) = {xRi : ŷi = y1, ŷ
(g↔∼g)
i = y2, yi = y2}, (2.14)
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where xRi is the ith biography, yi is the target label (i.e., occupation) for that biography,

ŷi is the predicted label for that biography with its original gender indicators, and ŷ
(g↔∼g)
i

is the predicted label for that biography when its gender indicators are swapped. For
example, Sfemale,(nurse,surgeon) is the set of biographies for female surgeons who are incor-
rectly predicted as nurses, but correctly predicted as surgeons when their biographies use
male indicators. We also identify the total set of biographies Sg,y2 that are only correctly
predicted as having occupation y2 when their gender indicators are swapped, and then
calculate the percentage of these biographies for which the predicted label changes from
y1 to y2:

Πg,(y1,y2) =
|Sg,(y1,y2)|
|Sg,y2 | × 100%. (2.15)

Tables 2.1 and 2.2 list, for the BOW representation, the five pairs of occupations with
the largest values of Πg,(y1,y2). For example, 7.1% of male paralegals whose occupations are
only correctly predicted when their gender indicators are swapped are incorrectly predicted
as attorneys when their biographies use male indicators. Similarly, 14.7% of female rappers
whose occupations are only correctly predicted when their gender indicators are swapped
are incorrectly predicted as models when their biographies use female indicators.

Without explicit gender indicators

Remaining gender information If there are no differences between the ways that men
and women in occupation y represent themselves in their biographies other than explicit
gender indicators, then “scrubbing” these indicators should be sufficient to remove all
information about gender from the biographies—i.e.,

P [X̃R = x̃R |G = g, Y = y] = P [X̃R = x̃R |G = ∼g, Y = y], (2.16)

where X̃R is a random variable representing a biography without explicit gender indicators,
G is a random variable representing the binary gender of the biography’s subject, and Y
is a random variable representing the biography’s target label (i.e., occupation). In turn,
this would mean that the TPRs for genders g and ∼g are identical:

TPRg,y = P [Ŷ = y |G = g, Y = y] (2.17)

= P [Ŷ = y |G = ∼g, Y = y] (2.18)

= TPR∼g,y, (2.19)

where Ŷ = f(X̃R) is a random variable representing the predicted label (i.e., occupation)
for X̃R. Moreover, it would also mean that

P [G = g | X̃R = x̃R, Y = y] = P [G = ∼g | X̃R = x̃R, Y = y], (2.20)
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Table 2.1: Pairs of occupations with the largest values of Πmale,(y1,y2)—i.e., the percentage
of men’s biographies that are only correctly predicted as y2 when their indicators are
swapped for which the predicted label changes from y1.

y1 y2 Πmale,(y1,y2)

attorney paralegal 7.1%
architect interior designer 4.7%
professor dietitian 4.3%
photographer interior designer 3.5%
teacher yoga teacher 3.3%

Table 2.2: Pairs of occupations with the largest values of Πfemale,(y1,y2)—i.e., the percentage
of women’s biographies that are only correctly predicted as y2 when their indicators are
swapped for which the predicted label changes from y1.

y1 y2 Πfemale,(y1,y2)

model rapper 14.7%
teacher pastor 8.5%
professor software engineer 6.5%
professor surgeon 4.8%
physician surgeon 3.8%

making it impossible to predict the gender of a “scrubbed” biography’s subject belonging
to occupation y better than random.

In order to determine whether “scrubbing” explicit gender indicators is sufficient to
remove all information about gender, we used a balanced subsample of our dataset to pre-
dict people’s gender. We created a subsampled training split by first discarding from our
dataset’s training split all occupations for which there were not at least 1, 000 biographies
for each gender. For each of the remaining twenty-one occupations, we then subsampled
1, 000 biographies for each gender to yield 42, 000 biographies, balanced by occupation and
gender. To create a subsampled validation split, we first identified the occupation and gen-
der from those represented in the subsampled training split with the smallest number of
biographies in our dataset’s validation split. Then, we subsampled that number of biogra-
phies from our dataset’s validation split for each of the twenty-one occupations represented
in the subsampled training split and each gender. We created a subsampled testing split
similarly. When using the BOW and WE representations, we used a logistic regression
with L2 regularization as the gender classifier; to construct the DNN representation, we
started with word embeddings as input and then trained a DNN to predict gender in an
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end-to-end fashion, similar to the methodology described in Section 2.1.3.
Using the subsampled testing split, we find that the gender classifier for the BOW

representation has an accuracy of 65.5%, while the DNN representation has an accuracy
of 68.2%. These accuracies are higher than 50%, so “scrubbing” explicit gender indicators
is not sufficient to remove all information about gender. This finding is reinforced by the
scatterplot in Figure 2.5, which shows log frequency versus correlation with G = female for
each word type in the vocabulary. It is clear from this scatterplot that deleting all words
that are correlated with gender would not be feasible.
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Figure 2.5: Scatterplot of log frequency versus correlation with G = female for each word
type in the vocabulary.

True positive rate gender gap and compounding imbalance For each semantic
representation, we again quantify gender bias by using our (original) dataset’s testing split
to calculate the occupation classifier’s TPR gender gap for each occupation. Figure 2.4
shows Gapfemale,y versus πfemale,y for each occupation y for all three representations, with
and without explicit gender indicators. “Scrubbing” explicit gender indicators reduces the
TPR gender gaps, while the classifiers’ accuracies (shown in Figure 2.2) remain roughly
the same; however, for some occupations, Gapfemale,y is still very large. Moreover, because
there is still a positive correlation between the TPR gender gap for an occupation y and
the gender imbalance in that occupation, “scrubbing” explicit gender indicators will not
prevent the classifiers from compounding gender imbalances.

We note that compounding imbalances are especially problematic if people repeat-
edly encounter such classifiers—i.e., if an occupation classifier’s predictions determine the
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data used by subsequent occupation classifiers. Who is offered a job today will affect the
gender (im)balance in that occupation in the future. If a classifier compounds existing
gender imbalances, then the underrepresented gender will, over time, become even further
underrepresented—a phenomenon sometimes referred to as the “leaky pipeline.”

To illustrate this phenomenon, we performed simulations using the DNN representation
in which the candidate pool at time t+1 is defined by the true positives at time t. Defining

the percentage of people with gender g in occupation y at time t as π
(t)
g,y, we fit a linear

regression to the TPR gender gaps for different values of π
(t)
g,y:

Ĝap
(t)

g,y = π(t)
g,y β1 + β0. (2.21)

Using this regression model, we are then able to calculate the percentage of people with
gender g in occupation y at time t+ 1:

π(t+1)
g,y =

π
(t)
g,y TPR

(t)
g,y

π
(t)
∼g,y (TPR

(t)
g,y + Gap

(t)
g,y) + π

(t)
g,y TPR

(t)
g,y

. (2.22)

Figure 2.6 shows π
(t)
g,y for t = 0, . . . , 10; each subplot corresponds to a different initial

gender imbalance. Over time, the gender imbalances compound. We note that there are

many different TPR pairs TPR
(t)
g,y and TPR

(t)
∼g,y that can result in a given TPR gender

gap Gap
(t)
g,y. For example, a TPR gender gap of −0.2 might correspond to 0.6 − 0.8 or to

0.7− 0.9. Moreover, different TPR pairs will result in different percentages of people with
gender g in occupation y at time t + 1. The bands in Figure 2.6 therefore reflect these
differences.
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Figure 2.6: Simulations of compounding imbalances using the DNN representation. Each

subplot corresponds to a different initial gender imbalance and shows π
(t)
g,y for t = 0, . . . , 10.

Attention to gender The DNN’s per-token attention weights allow us to understand
proxy behavior that occurs in the absence of explicit gender indicators. The attention
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william henry gates iii ( born october 28 , 1955 ) is an american business magnate , investor
, author , philanthropist , humanitarian , and principal founder of microsoft corporation .
during his career at microsoft , gates held the positions of chairman , ceo and chief software
architect , while also being the largest individual shareholder until may 2014 . in 1975 ,
gates and paul allen launched microsoft , which became the world 's largest pc software
company . gates led the company as chief executive officer until stepping down in january
2000 , but he remained as chairman and created the position of chief software architect for
himself . in june 2006 , gates announced that he would be transitioning from full-time work
at microsoft to part-time work and full-time work at the bill & melinda gates foundation ,
which was established in 2000 .

Figure 2.7: Visualization of the DNN’s per-token attention weights. Predicted label (i.e.,
occupation): software engineer.

weights indicate which tokens are most predictive. For example, Figure 2.7 depicts the per-
token attention weights from the occupation classifier for the DNN representation when
predicting Bill Gates’ occupation from an excerpt of his biography on Wikipedia; the
larger the weight, the stronger the color. The attention weights for the words software and
architect are very large, and the DNN predicts software engineer.

In order to understand proxy behavior that occurs in the absence of explicit gender
indicators, we first used the subsampled testing split, described above, to obtain per-token
attention weights from the gender classifier for the DNN representation. We then used
these weights to find “proxy candidates”—i.e., the words that are most predictive of gen-
der in the absence of explicit gender indicators. Specifically, we computed the sum of the
per-token attention weights for each word type, and then selected the types with the largest
sums as “proxy candidates.” Across multiple runs, we found that the words women, hus-
band, mother, woman, and female (ordered by decreasing total attention) were consistently
“proxy candidates.”

For each “proxy candidate,” we then used our dataset’s testing split, with and without
explicit gender indicators, to create histograms of the per-token attention weights from
the occupation classifier for the DNN representation. These histograms represent the
extent to which that “proxy candidate” is predictive of occupation, with and without
gender indicators. By comparing the histograms for each “proxy candidate,” we are able
to identify words that are used as proxies for gender in the absence of explicit gender
indicators: if there is a big difference between the histograms, then the “proxy candidate”
is likely a proxy. Figure 2.8 shows per-occupation histograms for the word women, with
(left) and without (right) explicit gender indicators. It is clear that in the absence of
explicit gender indicators, the classifier has larger attention weights for the word women
for all occupations. We see similar behavior for the other “proxy candidates,” suggesting
that the classifier uses proxies for gender in the absence of explicit gender indicators.

The occupations in Figure 2.8 are ordered by TPR gender gap from negative to positive.
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Figure 2.8: Per-occupation histograms of the per-token attention weights from the DNN
representation’s occupation classifier for the word women, with (left) and without (right)
explicit gender indicators; occupations are ordered by TPR gender gap.

For occupations in the middle, where there are small or no TPR gender gaps, the classifier
still has non-zero attention weights for the word women. This means that using gender
information does not necessarily lead to a TPR gender gap. We also note that it’s possible
that the classifier is using gender information to differentiate between occupations with
very different gender imbalances that are otherwise similar, such as physician and surgeon.

2.1.5 Discussion

This Section presents a large-scale study of gender bias in occupation classification using
a new dataset of hundreds of thousands of online biographies collected for this research
and made publicly available. The results show that there are significant TPR gender gaps
when using three different semantic representations: bag-of-words, word embeddings, and
deep recurrent neural networks. Additionally, theoretical results prove that the correlation
between these TPR gender gaps and existing gender imbalances in occupations compounds
leads to a compounding imbalance effect. Via simulations, it is shown that compounding
imbalances are especially problematic if people repeatedly encounter occupation classifiers
because the underrepresented gender will become even further underrepresented.

Recently, Dwork and Ilvento [85] showed that fairness does not hold under composition,
meaning that if two classifiers are individually fair according to some fairness metric, then
the sequential use of these classifiers will not necessarily be fair according the same metric.
One interpretation of our finding regarding compounding imbalances is that unfairness
holds under composition. Understanding why this is the case, especially given that fairness
does not hold under composition, is an interesting direction for future work.

It is worth highlighting that in the experiments the TPR gender gaps are reduced
by “scrubbing” explicit gender indicators, while the classifiers’ overall accuracies remain
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roughly the same. This constitutes an empirical example where there is little tradeoff be-
tween promoting fairness—in this case by “scrubbing” explicit gender indicators—and per-
formance. This also constitutes an empirical example where fairness is improved by “scrub-
bing” sensitive attributes, contrary to other examples in the literature [86]. That said, in
the absence of explicit gender indicators, the results show that (1) it is still possible to pre-
dict the gender of a biography’s subject better than random, even when controlling for occu-
pation; (2) significant TPR gender gaps remain for some occupations; (3) there is still a pos-
itive correlation between the TPR gender gap for an occupation and the gender imbalance
in that occupation, so existing gender imbalances may be compounded. These findings indi-
cate that there are differences between men’s and women’s online biographies other than ex-
plicit gender indicators. These differences may be due to the ways that men and women rep-
resent themselves or due to men and women having different specializations within an occu-
pation. These findings emphasize both the risks of using machine learning in a high-stakes
setting and the difficulty of trying to promote fairness by “scrubbing” sensitive attributes.
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2.2 What are the biases in my word embedding?

Section based on:
N.Swinger∗, M. De-Arteaga∗, N.Heffernan, M.Leiserson, A. Kalai. What are the
Biases in my Word Embedding?, In Proceedings of the AAAI/ACM Conference on
Artificial Intelligence, Ethics, and Society (AIES), 2019.

This Section considers the problem of Unsupervised Bias Enumeration (UBE): discover-
ing biases automatically from an unlabeled data representation. There are multiple reasons
why such an algorithm is useful. First, social scientists can use it as a tool to study human
bias, as data analysis is increasingly common in social studies of human biases [47, 87].
Second, finding bias is a natural step in “debiasing” representations [88]. Finally, it can
help in avoiding systems that perpetuate these biases: problematic biases can raise red flags
for engineers, who can choose to not use a representation or watch out for certain biases
in downstream applications, while little or no bias can be a useful green light indicating
that a representation is usable. While deciding which biases are problematic is ultimately
application specific, UBE may be useful in a “fair ML” pipeline.

We design a UBE algorithm for word embeddings, which are commonly used repre-
sentations of tokens (e.g. words and phrases) that have been found to contain harmful
bias [88]. Researchers linking these biases to human biases proposed the Word Embed-
ding Association Test (WEAT) [89]. The WEAT draws its inspiration from the Implicit
Association Test (IAT), a widely-used approach to measure human bias [90]. An IAT
T = (X1, A1, X2, A2) compares two sets of target tokens X1 and X2, such as female vs.
male names, and a pair of opposing sets of attribute tokens A1 and A2, such as workplace
vs. family-themed words. Average differences in a person’s response times when asked to
link tokens that have anti-stereotypical vs. stereotypical relationships have been shown to
indicate the strength of association between concepts. Analogously, the WEAT uses vector
similarity across pairs of tokens in the sets to measure association strength. As in the case
of the IAT, the inputs for a WEAT are sets of tokens T predefined by researchers.

Our UBE algorithm takes as input a word embedding and a list of target tokens, and
outputs numerous tests T1, T2, . . . , that are found to be statistically significant by a method
we introduce for bounding false discovery rates. A crowdsourcing study of tests generated
on three publicly-available word embeddings and a list of names from the Social Security
Administration confirms that the biases enumerated are largely consistent with human
stereotypes. The generated tests capture racial, gender, religious, and age biases, among
others. Table 2.3 shows the name/word associations output by our algorithm that were
rated most offensive by crowd workers.

Creating such tests automatically has several advantages. First, it is not feasible to
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Word2Vec trained on Google news fastText trained on the Web GloVe trained on the Web
w2v F8 w2v F11 w2v F6 fast F10 fast F7 fast F5 glove F8 glove F7 glove F5
illegal immigrant aggravated robbery subcontinent n***** jihad s****** turban cartel pornstar
drug trafficking aggravated assault tribesmen f***** militants maid saree undocumented hottie
deported felonious assault miscreants dreads caliphate busty hijab culpable nubile

Table 1: Terms associated with name groups (see Tables 3 and 6 for name groups w2v F8, etc.) generated from three popular
pre-trained word embeddings that were rated by crowd workers as both most offensive and aligned with societal biases. These
associations do not reflect the personal beliefs of the crowd workers or authors of this paper. See Appendix A for a discussion of
the bleep-censored words.

Our UBE algorithm takes as input a word embedding and a list of target tokens, and outputs numerous tests T1, T2, . . . , that
are found to be statistically significant by a method we introduce for bounding false discovery rates. A crowdsourcing study of
tests generated on three publicly-available word embeddings and a list of names from the Social Security Administration confirms
that the biases enumerated are largely consistent with human stereotypes. The generated tests capture racial, gender, religious,
and age biases, among others. Table 1 shows the name/word associations output by our algorithm that were rated most offensive
by crowd workers.

Creating such tests automatically has several advantages. First, it is not feasible to manually author all possible tests of
interest. Domain experts normally create such tests, and it is unreasonable to expect them to cover all possible groups, especially
if they do not know which groups are represented in their data. For example, a domain expert based on the United States may
not think of testing for caste discrimination, hence biases that an embedding may have against certain Indian last names may go
unnoticed. Finally, if a word embedding reveals no biases, this is evidence for lack of bias. We test this by running our UBE
algorithm on the supposedly debiased embedding of Bolukbasi et al. (2016).

Our approach for UBE leverages two geometric properties of word embeddings, which we call the parallel and cluster
properties. The well-known parallel property indicates that differences between two similar token pairs, such as Mary�John and
Queen�King, are often nearly parallel vectors. This suggests that among tokens in a similar topic or category, those parallel to
name differences may represent biases, as was found by Bolukbasi et al. (2016) and Caliskan, Bryson, and Narayanan (2017). The
cluster property, which we were previously unaware of, indicates that the (normalized) vectors of names and words cluster into
semantically meaningful groups. For names, the clusters capture social structures such as gender, religion, and others. For words,
clusters of words include word categories on topics such as food, education, occupations, and sports. We use these properties to
design a UBE algorithm that outputs WEATs.

Technical challenges arise around any procedure for enumerating biases. First, the combinatorial explosion of comparisons
among multiple groups parallels issues in human IAT studies as aptly described by Bluemke and Friese (2008): “The evaluation of
multiple target concepts such as social groups within a multi-ethnic nation (e.g. White vs. Asian Americans, White vs. African
Americans, African vs. Asian Americans; Devos and Banaji, 2005) requires numerous pairwise comparisons for a complete
picture”. We alleviate this problem, paralleling that work on human IATs, by generalizing the WEAT to n groups for arbitrary
n. The second problem, for any UBE algorithm, is determining statistical significance to account for multiple hypothesis testing.
To do this, we introduce a novel rotational null hypothesis specific to word embeddings. Third, we provide a human evaluation
of the biases, contending with the difficulty that many people are unfamiliar with some groups of names.

Beyond word embeddings and IATs, related work in other subjects is worth mention. First, a body of work studies fairness
properties of classification and regression algorithms (e.g. Dwork et al., 2012; Kearns et al., 2017). While our work does not
concern supervised learning, it is within this work that we find one of our main motivations–the importance of accounting for
intersectionality when studying algorithmic biases. In particular, Buolamwini and Gebru (2018) demonstrate accuracy dispari-
ties in image classification highlighting the fact that the magnitude of biases against an intersectional group may go unnoticed
when only evaluating for each protected feature independently. Finally, while a significant portion of the empirical research on
algorithmic fairness has focused on the societal biases that are most pressing in the countries where the majority of researchers
currently conducting the work are based, the literature also contains examples of biases that may be of particular importance in
other parts of the world (Shankar et al., 2017; Hoque et al., 2017). UBE can aspire to be useful in multiple contexts, and enable
the discovery of biases in a way that relies less on enumeration by domain experts.

Table 2.3: Terms associated with name groups (see Tables 2.5 and A.1 for name groups
w2v F8, etc.) generated from three popular pre-trained word embeddings that were
rated by crowd workers as both most offensive and aligned with societal biases. These
associations do not reflect the personal beliefs of the crowd workers or authors of this
work. See Appendix A.11 for a discussion of the bleep-censored words.

manually author all possible tests of interest. Domain experts normally create such tests,
and it is unreasonable to expect them to cover all possible groups, especially if they do
not know which groups are represented in their data. For example, a domain expert based
on the United States may not think of testing for caste discrimination, hence biases that
an embedding may have against certain Indian last names may go unnoticed. Finally, if a
word embedding reveals no biases, this is evidence for lack of bias. We test this by running
our UBE algorithm on the supposedly debiased embedding of [88].

Our approach for UBE leverages two geometric properties of word embeddings, which
we call the parallel and cluster properties. The well-known parallel property indicates
that differences between two similar token pairs, such as Mary−John and Queen−King,
are often nearly parallel vectors. This suggests that among tokens in a similar topic or
category, those parallel to name differences may represent biases, as was found by [88]
and [89]. The cluster property, which we were previously unaware of, indicates that the
(normalized) vectors of names and words cluster into semantically meaningful groups. For
names, the clusters capture social structures such as gender, religion, and others. For words,
clusters of words include word categories on topics such as food, education, occupations,
and sports. We use these properties to design a UBE algorithm that outputs WEATs.

Technical challenges arise around any procedure for enumerating biases. First, the
combinatorial explosion of comparisons among multiple groups parallels issues in human
IAT studies as aptly described by [91]: “The evaluation of multiple target concepts such
as social groups within a multi-ethnic nation [e.g. White vs. Asian Americans, White vs.
African Americans, African vs. Asian Americans; 92] requires numerous pairwise compar-
isons for a complete picture”. We alleviate this problem, paralleling that work on human
IATs, by generalizing the WEAT to n groups for arbitrary n. The second problem, for any
UBE algorithm, is determining statistical significance to account for multiple hypothesis
testing. To do this, we introduce a novel rotational null hypothesis specific to word embed-
dings. Third, we provide a human evaluation of the biases, contending with the difficulty
that many people are unfamiliar with some groups of names.

Beyond word embeddings and IATs, related work in other subjects is worth mention.
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First, a body of work studies fairness properties of classification and regression algorithms
[e.g. 93, 94]. While our work does not concern supervised learning, it is within this work
that we find one of our main motivations–the importance of accounting for intersectionality
when studying algorithmic biases. In particular, Buolamwini and Gebru [95] demonstrate
accuracy disparities in image classification highlighting the fact that the magnitude of biases
against an intersectional group may go unnoticed when only evaluating for each protected
feature independently. Finally, while a significant portion of the empirical research on
algorithmic fairness has focused on the societal biases that are most pressing in the countries
where the majority of researchers currently conducting the work are based, the literature
also contains examples of biases that may be of particular importance in other parts of the
world [96, 97]. UBE can aspire to be useful in multiple contexts, and enable the discovery
of biases in a way that relies less on enumeration by domain experts.

2.2.1 Definitions

A d-dimensional word embedding consists of a set of tokens W with a nonzero vector
w ∈ Rd associated with each token w ∈ W. Vectors are displayed in boldface. As is
standard, we refer to the similarity between tokens v and w by the cosine of their vector
angle, cos(v,w). We write v = v/|v| to be the vector normalized to unit-length associated
with any vector v ∈ Rd (or 0 if v = 0). This enables us to conveniently write the similarity
between tokens v and w as an inner product, cos(v,w) = v ·w. For token set S, we write
S =

∑
v∈S v/|S| so that S ·T = meanv∈S,w∈Tv ·w is the mean similarity between pairs of

tokens in sets S, T . We denote the set difference between S and T by S \T , and we denote
the first n whole numbers by [n] = {1, 2, . . . , n}.

2.2.2 Generalizing Word Embedding Association Tests

We assume that there is a given set of possible targets X and attributes A. Henceforth,
since in our evaluation all targets are names and all attributes are lower-case words (or
phrases), we refer to targets as names and attributes as words. Nonetheless, in principle,
the algorithm can be run on any sets of target and attribute tokens. [89] define a WEAT
statistic for two equal-sized groups of names X1, X2 ⊆ X and words A1, A2 ⊆ A which can
be conveniently written in our notation as,

s(X1, A1, X2, A2)
def
=

∑
x∈X1

x−
∑
x∈X2

x

 · (A1 −A2).

In studies of human biases, the combinatorial explosion in groups can be avoided by
teasing apart Single-Category IATs which assess associations one group at a time [e.g.
98, 99, 91]. In word embeddings, we define a simple generalization for n ≥ 1, nonempty
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groups X1, . . . , Xn of arbitrary sizes and words A1, . . . , An, as follows:

g(X1, A1, . . . , Xn, An)
def
=

n∑
i=1

(Xi − µ) · (Ai −A)

where µ
def
=

{
X for n = 1,∑

iXi/n for n ≥ 2.

Note that g is symmetric with respect to ordering and weights groups equally regardless
of size. The definition differs for n = 1, otherwise g ≡ 0.

The following three properties motivate this as a “natural” generalization of WEAT to
one or more groups.

Lemma 1. For any X1, X2 ⊆ X of equal sizes |X1| = |X2| and any nonempty A1, A2 ⊆ A,

s(X1, A1, X2, A2) = 2|X1| g(X1, A1, X2, A2)

Lemma 2. For any nonempty sets X ⊂ X , A ⊂ A, let their complements sets Xc = X \X
and Ac = A \A. Then,

g(X,A) = 2g(X,A,X ,A) = 2
|Xc|
|X |
|Ac|
|A| g(X,A,Xc, Ac)

Lemma 3. For any n > 1 and nonempty X1, X2, . . . , Xn ⊆ X and A1, A2, . . . , An ⊆ A,

g(X1, A1, . . . , Xn, An) =
∑
i∈[n]

g(Xi, Ai)−
∑
i,j∈[n]

g(Xi, Aj)

n

Lemma 1 explains why we call it a generalization: for n = 2 and equal-sized name sets,
the values are proportional with a factor that only depends on the set size. More generally,
g can accommodate unequal set sizes and n 6= 2.

Lemma 2 shows that for n = 1 group, the definition is proportional the WEAT with
the two groups X vs. all names X and words A vs. A. Equivalently, it is proportional to
the WEAT between X and A and their compliments.

Finally, Lemma 3 gives a decomposition of a WEAT into n2 single-group WEATs
g(Xi, Aj). In particular, the value of a single multi-group WEAT reflects a combination of
the n association strengths between Xi and Ai, and n2 disassociation strengths between
Xi and Aj . As discussed on the literature on IATs, a large effect could reflect a strong
association between X1 and A1 or X2 and A2, a strong disassociation between X1 and A2

or X2 and A1, or some combination of these factors. Proofs are deferred to Appendix A.12.
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name meaning default

WE word embedding w2v

X set of names SSA
n number of target groups 12
m number of categories 64
M number of frequent lower-case words 30,000
t number of words per WEAT 3
α false discovery rate 0.05

Table 2.4: Inputs to the UBE algorithm.

2.2.3 Unsupervised Bias Enumeration algorithm

The inputs to our UBE algorithm are shown in Table 2.4. The output is m WEATs, each
with n groups with associated sets of words and statistical confidences (p-values) in [0, 1].
Each WEAT has words from a single category, but several of the m WEATs may yield no
significant associations.

At a high level, the algorithm follows a simple structure. It selects n disjoint groups
of names X1, . . . , Xn ⊂ X , and m disjoint categories of lower-case words A1, . . . ,Am. All
WEATs share the same n name groups, and each WEAT has words from a single category
Aj , with t words associated to each Xi. Thus the WEATs can be conveniently visualized
in a tabular structure.

For convenience, we normalize all word embedding vectors to be unit length. Note that
we only compute cosines between them, and the cosine is simply the inner product for unit
vectors. We now detail the algorithm’s steps.

Step 1: Cleaning names and defining groups

We begin with a set of names4 X , e.g., frequent first names from a database. Since word
embeddings do not differentiate between words that have the same spelling but different
meanings, we first “clean” the given names to remove names such as “May” and “Virginia”,
whose embeddings are more reflective of other uses, such as a month or verb and a US
state. Our cleaning procedure, detailed in Appendix C, is similar to that of [89].

We then use K-means++ clustering [from scikit-learn, 100, with default parameters]
to cluster the normalized word vectors of the names, yielding groups X1 ∪ . . . ∪Xn = X .
Finally, we define µ =

∑
iXi/n.

4 While the set of names is an input to our system, they could also be extracted from the embedding itself.



Algorithmic fairness 53

Step 2: Defining word categories

To define categories, we cluster the most frequent M lower-case tokens in the word embed-
ding into m clusters using K-means++, yielding clusters of categories A1, . . . ,Am. The
constant M is chosen to cover as many recognizable words as possible without introduc-
ing too many unrecognizable tokens. As we shall see, categories capture concepts such as
occupations, food-related words, and so forth.

Step 3: Selecting words Aij ⊂ Aj
A test Tj = (X1, A1j , . . . , Xn, Anj) is chosen with disjoint Aij ⊂ Aj , each of size t = |Aij |.
To ensure disjointness,5 Aj is first partitioned into n “Voronoi” sets Vij ⊆ Aj consisting of
the words whose embedding is closest to each corresponding center Xi, i.e.,

Vij =

{
w ∈ Aj | i = arg max

i′∈[n]
w ·Xi′

}
It then outputs Aij defined as the t words maximizing the following:

max
w∈Vij

(Xi − µ) · (w −Aj)

The more computationally-demanding step is to compute, using Monte Carlo sampling,
the n p-values for Tj , as described next.

Step 4: Computing p-values and ordering

To test whether the associations we find are larger than one would find if there was no
relationship between the names Xi and words A, we consider the following “rotational
null hypothesis”: the words in the embedding are generated through some process in
which the alignment between names and words is random. This is formalized by imagining
that a random rotation was applied (multiplying by a uniformly Haar random orthogonal
matrix U) to the word embeddings but not to the name embeddings.

Specifically, to compute p-value pij for each (Xi, Aij), we first compute a score σij =
(Xi−µ) ·(Aij−A). We then compute R = 10, 000 uniformly random orthogonal rotations
U1, . . . , UR ∈ Rd×d, drawn according to the Haar measure. For each rotation, we simulate
running our algorithm as if the name embeddings were transformed by U (while the word
embeddings remain as is). For each rotation Ur, the sets Aijr chosen to maximize (XiUr−
µUr)·(w−Aj), and the corresponding Vijr and the resulting σijr are computed. Finally, pij
is the fraction of rotations for which the score σijr ≥ σij (plus an add-1 penalty standard
for Monte Carlo p-values).

5 If multiplicities are desired, the Voronoi sets Vij could be omitted, optimizing Aij ⊂ Aj directly.
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Furthermore, since the algorithm outputs many (hundreds) of name/word biases, the
Benjamini-Hochberg [1995] procedure is used to determine a critical p-value that guarantees
an α bound on the rate of false discoveries. Finally, to choose an output ordering on
significant tests, the m tests are then sorted by the total scores σij over the pairs determined
significant.

2.2.4 Evaluation

To illustrate the performance of the proposed system in discovering associations, we use a
database of first names provided by the Social Security Administration (SSA), which con-
tains number of births per year by sex (F/M) [102]. Preprocessing details are in Appendix
C.

We use three publicly available word embeddings, each with d = 300 dimensions and
millions of words: w2v, released in 2013 and trained on approximately 100 billion words
from Google News [103], fast, trained on 600 billion words from the Web [79], and glove,
also trained on the Web using the GloVe algorithm [104].

While it is possible to display the three words in each Aij , the hundreds or thousands
of names in each Xi cannot be displayed in the output of the algorithm. Instead, we
use a simple greedy heuristic to give five “illustrative” names for each group, which are
displayed in the tables in this Section and in our crowdsourcing experiments. The k + 1st

name shown is chosen, given the first k names, so as to maximize the average similarity of
the first k + 1 names to that of the entire set Xi. Hence, the first name is the one whose
normalized vector is most central (closest to the cluster mean), the second name is the one
which when averaged with the first is as central as possible, and so forth.

The WEATs can be evaluated in terms of the quality of the name groups and also their
associations with words. A priori, it was not clear whether clustering name embeddings
would yield any name groups or word categories of interest. For all three embeddings we
find that the clustering captures latent groups defined in terms of race, age, and gender (we
only have binary gender statistics), as illustrated in Table 2.5 for n = 12 clusters. While
even a few clusters suffice to capture some demographic differences, more clusters yield
much more fine-grained distinctions. For example, with n = 12 one cluster is of evidently
Israeli names (see column I of table 2.5), which one might not consider predefining a priori
since they are a small minority in the U.S. Table A.1 in the Appendix shows demographic
composition of clustering for other embeddings. Note that, although we do not have
religious statistics for the names, several of the words in the generated associations are
religious in nature, suggesting religious biases as well.

Table A.2 in the appendix shows the biases found in the “debiased” w2v embedding
of [88]. While the name clusters still exhibit strong binary gender differences, many fewer
statistically significant associations were generated for the most gender-polarized clusters.
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w2v F1 w2v F2 w2v F3 w2v F4 w2v F5 w2v F6 w2v F7 w2v F8 w2v F9 w2v F10 w2v F11 w2v F12

Amanda Janice Marquisha Mia Kayla Kamal Daniela Miguel Yael Randall Dashaun Keith
Renee Jeanette Latisha Keva Carsyn Nailah Lucien Deisy Moses Dashiell Jamell Gabe

Lynnea Lenna Tyrique Hillary Aislynn Kya Marko Violeta Michal Randell Marlon Alfred
Zoe Mattie Marygrace Penelope Cj Maryam Emelie Emilio Shai Jordan Davonta Shane

Erika Marylynn Takiyah Savanna Kaylei Rohan Antonia Yareli Yehudis Chace Demetrius Stan
+581 +840 +692 +558 +890 +312 +391 +577 +120 +432 +393 +494

98% F 98% F 89% F 85% F 78% F 65% F 59% F 56% F 40% F 27% F 5% F 4% F
1983 1968 1978 1982 1993 1991 1985 1986 1989 1981 1984 1976

4% B 8% B 48% B 10% B 2% B 7% B 4% B 2% B 5% B 10% B 32% B 6% B
4% H 4% H 3% H 9% H 1% H 4% H 9% H 70% H 10% H 3% H 5% H 3% H
3% A 3% A 1% A 11% A 1% A 32% A 4% A 8% A 5% A 4% A 3% A 5% A

89% W 84% W 47% W 69% W 95% W 56% W 83% W 21% W 79% W 83% W 59% W 86% W

Table 3: Illustrative first names (greedily chosen) for n = 12 groups on the w2v embedding. Demographic statistics (computed
a posteriori) are also shown though were not used in generation, including percentage female (at birth), mean year of birth, and
percentage Black, Hispanic, Asian/Pacific Islander, and White.

Emb. # significant % accurate % offensive
w2v 235 72% 35%
fast 160 80% 38%
glove 442 48% 24%

Table 4: Summary statistics for the WEATs generated using the three embeddings (n = 12, m = 64). The total number of
significant name/word associations, the fraction with which the crowd’s choice of name group agreed with that of the generated
WEAT (accuracy) among the top-12 WEATs, and the fraction rated as offensive.

which names group. A bonus was given for ratings that agreed with most other worker’s ratings, incentivizing workers to provide
answers that they felt corresponded to widely held stereotypes.

This design was chosen over a simpler one in which WEATs are shown to individuals who are asked whether or not these
are stereotypical. The latter design might support confirmation bias as people may interpret words in such a way that confirms
whatever stereotypes they are being asked about. For instance, someone may be able to justify associating the color red with
almost any group, a posteriori.

Note that the task presented to the workers involved fine-grained distinctions: for each of the top-12 WEATs, at least 18
workers would each be asked to match the significant c  12 word triples to the c name groups (each identified by five names
each). For example, workers faced the triple of “registered nurse, homemaker, chairwoman” with c = 8 groups of names, half of
which were majority female, and the most commonly chosen group matched the one generated: “Janice, Jeanette, Lenna, Mattie,
Marylynn.” Across the top-12 WEATs over the three embeddings, the mean number of choices c was 8.1, yet the most commonly
chosen group (plurality) agreed with the generated group 65% of the time (see Table 4). This is significantly more than one would
expect from chance. The top-12 WEATs generated for w2v are shown in Table 5.

One challenge faced in this process was that, in pilot experiments, a significant fraction of the workers were not familiar
with many of the names. To address this challenge, we first administered a qualification exam (common in crowdsourcing) in
which each worker was shown 36 random names, 3 from each group, and was offered a bonus for each name they could correctly
identify the group from which it was chosen. Only workers whose accuracy was greater than 1/2 (which happened 37% of the
time) evaluated the WEATs. Accuracy greater than 50% on a 12-way classification indicates that the groups of names were
meaningful and interpretable to many workers.

Finally, we asked 13-15 workers to rate associations on a scale of 1-7 of political incorrectness, with 7 being “politically
incorrect, possibly very offensive” and 1 being “politically correct, inoffensive, or just random.” Only those biases for which the
most commonly chosen group matched the association identified by the UBE algorithm were included in this experiment. The
mean ratings are shown in Table 4 and the terms present in associations deemed most offensive are presented in Table 1.

Table 2.5: Illustrative first names (greedily chosen) for n = 12 groups on the w2v embed-
ding. Demographic statistics (computed a posteriori) are also shown though were not used
in generation, including percentage female (at birth), mean year of birth, and percentage
Black, Hispanic, Asian/Pacific Islander, and White.

Emb. # significant % accurate % offensive

w2v 235 72% 35%
fast 160 80% 38%
glove 442 48% 24%

Table 2.6: Summary statistics for the WEATs generated using the three embeddings
(n = 12, m = 64). The total number of significant name/word associations, the fraction
with which the crowd’s choice of name group agreed with that of the generated WEAT
(accuracy) among the top-12 WEATs, and the fraction rated as offensive.
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w2v F1 w2v F2 w2v F3 w2v F4 w2v F5 w2v F6 w2v F7 w2v F8 w2v F9 w2v F11 w2v F12

cookbook, sweet saffron, mozzarella, tortillas, kosher, fried beef,
baking, potatoes, halal, foie gras, salsa, hummus, chicken, beer,
baked goods macaroni, sweets caviar tequila bagel crawfish, hams

green beans grams
herself, husband, aunt, hubby, twin sister, elder brother, bereaved, younger buddy,
hers, homebound, niece, socialite, girls, dowry, immigrated, brother, boyhood,
moms grandkids grandmother cuddle classmate refugee camp emigrated twin brother, fatherhood

mentally
r********

hostess, registered supermodel, helper, shopkeeper, translator, cab driver, pitchman,
cheer- nurse, beauty queen, getter, villager, interpreter, jailer, retired,
leader, homemaker, stripper snowboarder cricketer smuggler schoolboy pundit
dietitian chairwoman

log cabin, front porch, racecourse, picnic tables, locality, prefecture, synagogues, apartment
library, carport, plush, bleachers, mosque, chalet, constructions, complex,
fairgrounds duplex tenements concession slum sauna hilltop barbershop,

stand nightclub
parish, pastor, goddess, fatwa, monastery, rosary, rabbis,
church, baptized, celestial, mosques, papal, parish priest, synagogue,
pastoral mourners mystical martyrs convent patron saint biblical

volleyball, athletic leading hooker, sophomore, leftarm cornerback,
gymnast, director, rebounder, footy, junior, spinner, tailback,
setter winningest played stud freshman dayers, wide receiver

coach, sparingly, leg spinner
officiating incoming

freshman
sorority, volunteer, guidance seventh lecturers, bilingual, incoming fulltime,
gymnastics, volunteering, counselor, grader, institutes, permanent freshmen, professional,
majoring secretarial prekinder- eighth grade, syllabus residency, schoolyard, apprentice-

garten, seniors occupations recruiting ship
graduate
civil rights, subcontinent, xenophobia, leftist, disengage- blacks,
poverty tribesmen, anarchist, drug ment, segregation,
stricken, miscreants oligarchs traffickers, intifada, lynching
nonviolent undocumented settlers

tiara, knitting, brown eyes, girly, brown hair, sari, dreadlocks, mullet,
blonde, sewing, cream colo..., feminine, pair, turban, shoulderpads, gear,
sparkly beaded wore flirty skates hijab waistband helmet

dirhams, rubles, pesos, shekels,
lakhs, kronor, remittances, settlements,
rupees roulette gross re- corpus

ceipts
grandjury child chargesheet, absentia, illegal aggravated
indicted, endangerment, absconding, tax evasion, immigrant, robbery,
degree vehicular interrogation falsification drug aggravated
murder, homicide, trafficking, assault,
violating unlawful deported felonious
probation possession assault

volunteers, caseworkers, beauties, setters, mediapersons, recruits,
crafters, evacuees, celebs, helpers, office reps,
baby attendants paparazzi captains bearers, sheriffs
boomers newsmen

Table 5: The top-12 WEATs output by our UBE algorithm on the w2v embedding. Columns represent name groups Xi from
Table 3, rows represent categories Aj (e.g., a cluster of food-related words). Orange indicate associations where the crowd’s most
commonly chosen name group agrees with that of the generated WEAT. No significant biases generated for w2v F10.
Table 2.7: The top-12 WEATs output by our UBE algorithm on the w2v embedding.
Columns represent name groups Xi from Table 2.5, rows represent categories Aj (e.g.,
a cluster of food-related words). Orange indicate associations where the crowd’s most
commonly chosen name group agrees with that of the generated WEAT. No significant
biases generated for w2v F10.
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Crowdsourcing evaluation

We solicited ratings on the biases generated by the algorithm from US-based crowd workers
on Amazon’s Mechanical Turk6 platform. The aim is to identify whether the biases found
by our UBE algorithm are consistent with (problematic) biases held by society at large.
To this end, we asked about society’s stereotypes, not personal beliefs.

We evaluated the top 12 WEATs generated by our UBE algorithm for the three embed-
dings, considering n = 12 first name groups. Our approach was simple: after familiarizing
participants with the 12 groups, we showed the (statistically significant) words and name
groups of a WEAT and asked them to identify which words would, stereotypically, be most
associated with which names group. A bonus was given for ratings that agreed with most
other worker’s ratings, incentivizing workers to provide answers that they felt corresponded
to widely held stereotypes.

This design was chosen over a simpler one in which WEATs are shown to individuals
who are asked whether or not these are stereotypical. The latter design might support
confirmation bias as people may interpret words in such a way that confirms whatever
stereotypes they are being asked about. For instance, someone may be able to justify
associating the color red with almost any group, a posteriori.

Note that the task presented to the workers involved fine-grained distinctions: for each
of the top-12 WEATs, at least 18 workers would each be asked to match the significant
c ≤ 12 word triples to the c name groups (each identified by five names each). For ex-
ample, workers faced the triple of “registered nurse, homemaker, chairwoman” with c = 8
groups of names, half of which were majority female, and the most commonly chosen group
matched the one generated: “Janice, Jeanette, Lenna, Mattie, Marylynn.” Across the top-
12 WEATs over the three embeddings, the mean number of choices c was 8.1, yet the most
commonly chosen group (plurality) agreed with the generated group 65% of the time (see
Table 2.6). This is significantly more than one would expect from chance. The top-12
WEATs generated for w2v are shown in Table 2.7.

One challenge faced in this process was that, in pilot experiments, a significant fraction
of the workers were not familiar with many of the names. To address this challenge, we
first administered a qualification exam (common in crowdsourcing) in which each worker
was shown 36 random names, 3 from each group, and was offered a bonus for each name
they could correctly identify the group from which it was chosen. Only workers whose
accuracy was greater than 1/2 (which happened 37% of the time) evaluated the WEATs.
Accuracy greater than 50% on a 12-way classification indicates that the groups of names
were meaningful and interpretable to many workers.

Finally, we asked 13-15 workers to rate associations on a scale of 1-7 of political incor-
rectness, with 7 being “politically incorrect, possibly very offensive” and 1 being “politically
correct, inoffensive, or just random.” Only those biases for which the most commonly cho-

6 http://mturk.com

http://mturk.com
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sen group matched the association identified by the UBE algorithm were included in this
experiment. The mean ratings are shown in Table 2.6 and the terms present in associations
deemed most offensive are presented in Table 2.3.

2.2.5 Potential indirect biases and proxies

Naively, one may think that removing names from a dataset will remove all problematic
associations. However, as suggested by [88], indirect biases are likely to remain. For
example, consider the w2v word embedding, in which hostess is closer to volleyball than to
cornerback, while cab driver is closer to cornerback than to volleyball. These associations,
taken from columns F1 and F11 of Table 2.7, might serve as a proxy for gender and/or
race. For instance, if someone is applying for a job and their profile includes college sports
words, such associations encoded in the embedding may lead to racial or gender biases in
cases in which there is no professional basis for these associations. In contrast, volunteer
being closer to volunteers than recruits may represent a definitional similarity more than a
proxy, if we consider proxies to be associations that mainly have predictive power due to
their correlation with a protected attribute. While defining proxies is beyond the scope of
this work, we do say that Aij , Ai′j , Aij′ , Ai′j′ is a potential indirect bias if,

(Aij −Ai′j) · (Aij′ −Ai′j′) > 0. (2.23)

One way to interpret this definition is that if the embedding were to match the pair of
word sets {Aij , Ai′j} to the pair of word sets {Aij′ , Ai′j′}, it would align with the way
in which they were generated. For example, does the embedding predict that hostess-cab
driver better fits volleyball-cornerback or cornerback-volleyball (but this question is asked
with sets of t = 3 words)? Downstream, this would mean that a replacing a the word
cornerback with volleyball on a profile would make it closer to hostess than cab driver

We consider all possible fourtuples of significant associations, such that 1 ≤ i < i′ ≤ n
and 1 ≤ j < j′ ≤ m. In the case of w2v, 99% of 2,713 significant fourtuples lead to potential
indirect biases according to eq. (2.23). This statistic is of 98% of 1,125 fourtuples and 97%
of 1,796 fourtuples for the fast and glove embeddings, respectively. Hence, while names
allow us to capture biases in the embedding, removing names is unlikely to be sufficient to
debias the embedding.

2.2.6 Limitations

Absent clusters show the limitations of our approach and data. For example, even for large
n, no clusters represent demographically significant Asian-American groups. However, if
instead of names we use surnames [U.S. Census, 105], a cluster “Yu, Tamashiro, Heng,
Feng, Nakamura, +393” emerges, which is largely Asian according to Census data (see
Table A.3 in the Appendix). This distinction may reflect naming practices among Asian
Americans [106]. Similarly, our approach may miss biases against small minorities or other
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groups whose names are not significantly differentiated. For example, it is not immediately
clear to what extent this methodology can capture biases against individuals whose gender
identity is non-binary, although interestingly terms associated with transgender individuals
were generated and rated as significant and consistent with human biases.

2.2.7 Discussion

This Section introduces the problem of Unsupervised Bias Enumeration (UBE). It pro-
poses a UBE algorithm that outputs Word Embedding Association Tests, and evaluates
it via crowdsourcing. Unlike humans, where implicit tests are necessary to elicit socially
unacceptable biases in a straightforward fashion, word embeddings can be directly probed
to output hundreds of biases of varying natures, including numerous offensive and socially
unacceptable biases. The racist and sexist associations exposed in publicly available word
embeddings raise questions about their widespread use. An important open question is
how to reduce these biases. In the next Section we take one step towards answering this
question.
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2.3 What’s in a name? Reducing bias without assuming
access to protected attributes

Section based on:
A. Romanov, M. De-Arteaga, H. Wallach, J. Chayes, C. Borgs, A. Chouldechova,
S. Geyik, K. Kenthapadi, A. Rumshisky, A. Kalai. What’s in a Name? Reducing
Bias in Bios Without Assuming Access to Protected Attributes, In Proceedings of
the Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL), 2019.

When the performance of a machine learning system differs substantially for different
groups of people, a number of concerns arise [54, 58]. First and foremost, there is a
risk that the deployment of such a method may harm already marginalized groups and
widen existing inequalities. Chapter 2.1 highlights this concern in the context of online
recruiting and automated hiring. Recall that the results show that when predicting an
individual’s occupation from their online biography, if occupation-specific gender gaps in
true positive rates are correlated with existing gender imbalances in those occupations,
then those imbalances will be compounded over time—a phenomenon sometimes referred
to as the “leaky pipeline.” Second, the correlations that lead to performance differences
between groups are often irrelevant. For example, while an occupation classifier should
predict a higher probability of software engineer if an individual’s biography mentions
coding experience, there is no good reason for it to predict a lower probability of software
engineer if the biography also mentions softball.

Prompted by such concerns about bias in machine learning systems, there is a growing
body of work on fairness in machine learning. Some of the foundational papers in this area
highlighted the limitations of trying to mitigate bias using methods that are “unaware” of
protected attributes such as race, gender, or age [e.g., 93]. As a result, subsequent work
has primarily focused on introducing fairness constraints, defined in terms of protected
attributes, that reduce incentives to rely on undesirable correlations [e.g., 66, 107]. This
approach is particularly useful if similar performance can be achieved by slightly different
means—i.e., fairness constraints may aid in model selection if there are many near-optima.

In practice, though, any approach that relies on protected attributes may stand at
odds with anti-discrimination law, which limits the use of protected attributes in domains
such as employment and education, even for the purpose of mitigating bias. And, in other

“What’s in a name? That which we call a rose by any other name would smell as sweet.” – William Shakespeare,
Romeo and Juliet.
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domains, protected attributes are often not available [108]. Moreover, even when they
are, it is usually desirable to simultaneously consider multiple protected attributes, as
well as their intersections. For example, Buolamwini [109] showed that commercial gender
classifiers have higher error rates for women with darker skin tones than for either women
or people with darker skin tones overall.

We propose a method for reducing bias in machine learning classifiers without relying on
protected attributes. In the context of occupation classification, this method discourages
a classifier from learning a correlation between the predicted probability of an individual’s
occupation and a word embedding of their name. Intuitively, the probability of an individ-
ual’s occupation should not depend on their name—nor on any protected attributes that
may be inferred from it. We present two variations of the method—i.e., two loss func-
tions that enforce this constraint—and show that they simultaneously reduce both race
and gender biases with little reduction in classifier accuracy. Although we are motivated
by the need to mitigate bias in online recruiting and automated hiring, this method can
be applied in any domain where individuals’ names are available at training time.

Instead of relying on protected attributes, the proposed method leverages the societal
biases that are encoded in word embeddings [45, 46]. In particular, we build on the work
presented on Section 2.2, which shows that word embeddings of names typically reflect the
societal biases that are associated with those names, including race, gender, and age biases,
as well encoding information about other factors that influence naming practices such as
nationality and religion. By using word embeddings of names as a tool for mitigating
bias, the approach is conceptually simple and empirically powerful. Much like the “proxy
fairness” approach of Gupta et al. [110], it is applicable when protected attributes are
not available; however, it additionally eliminates the need to specify which biases are to
be mitigated, and allows simultaneous mitigation of multiple biases, including those that
relate to group intersections. Moreover, under the proposed approach it is only necessary
to have access to proxy information (i.e., names) at training time and not at deployment
time, which avoids disparate treatment concerns and extends fairness gains to individuals
with ambiguous names. For example, a method that explicitly or implicitly infers protected
attributes from names at deployment time may fail to correctly infer that an individual
named Alex is female and, in turn, fail to mitigate gender bias for her. Methodologically,
our work is also similar to that of Zafar et al. [111], which promotes fairness by requiring
that the covariance between a protected attribute and a data point’s distance from a
classifier’s decision boundary is smaller than some constant. However, unlike our method,
it requires access to protected attributes, and does not facilitate simultaneous mitigation
of multiple biases.

2.3.1 Method

The proposed methodology discourages an occupation classifier from learning a correlation
between the predicted probability of an individual’s occupation and a word embedding of
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their name. This section presents two variations of the method—i.e., two penalties that
can be added to an arbitrary loss function and used when training any classifier.

We assume that each data point corresponds to an individual, with a label indicating
that individual’s occupation. We also assume access to the names of the individuals rep-
resented in the training set. The first variation, which we call Cluster Constrained Loss
(CluCL), uses k-means to cluster word embeddings of the names in the training set. Then,
for each pair of clusters, it minimizes between-cluster disparities in the predicted probabil-
ities of the true labels for the data points that correspond to the names in the clusters. In
contrast, the second variation minimizes the covariance between the predicted probability
of an individual’s occupation and a word embedding of their name. Because this variation
minimizes the covariance directly, we call it Covariance Constrained Loss (CoCL). The
most salient difference between these variations is that CluCL only minimizes disparities
between the latent groups captured by the clusters. For example, if the clusters correspond
only to gender, then CluCL is only capable of mitigating gender bias. However, given a
sufficiently large number of clusters, CluCL is able to simultaneously mitigate multiple
biases, including those that relate to group intersections. For both variations, individual’s
names are not used as input to the classifier itself; they appear only in the loss function
used when training the classifier. The resulting trained classifier can therefore be deployed
without access to individuals’ names.

Formulation

We define xi = {x1
i , . . . , x

M
i } to be a data point, yi to be its corresponding (true) label, and

nfi and nli to be the first and last name of the corresponding individual. The classification
task is then to (correctly) predict the label for each data point:

pi = H(xi) (2.24)

ŷi = arg max
1≤j≤|C|

pi[j], (2.25)

where H(·) is the classifier, C is the set of possible classes, pi ∈ R|C| is the output of the
classifier for data point xi—e.g., pi[j] is the predicted probability of xi belonging to class
j—and ŷi is the predicted label for xi. We define pyi to be the predicted probability of
yi—i.e., the true label for xi.

The conventional way to train such a classifier is to minimize some loss function L,
such as the cross-entropy loss function. We propose to add an additional penalty to this
loss function:

Ltotal = L+ λ · LCL, (2.26)

where LCL is either LCluCL or LCoCL (defined in Sections 2.3.1 and 2.3.1, respectively),
and λ is a hyperparameter that determines the strength of the penalty. This loss function
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is only used during training, and plays no role in the resulting trained classifier. Moreover,
it can be used in any standard setup for training a classifier—e.g., training a deep neural
network using mini-batches and the Adam optimization algorithm [112].

Cluster Constrained Loss

This variation represents each first name nfi and last name nli as a pair of low-dimensional
vectors using a set of pretrained word embeddings E. These are then combined to form a
single vector:

nei =
1

2

(
E[nfi ] + E[nli]

)
. (2.27)

Using k-means [113], CluCL then clusters the resulting embeddings into k clusters, yielding
a cluster assignment ki for each name (and corresponding data point). Next, for each class
c ∈ C, CluCL computes the following average pairwise difference between clusters:

lc =
1

k(k − 1)
×

k∑
u,v=1

 1

Nc,u

∑
i:yi=c,
ki=u

pyi −
1

Nc,v

∑
i:yi=c,
ki=v

pyi


2

, (2.28)

where u and v are clusters and Nc,u is the number of data points in cluster u for which
yi = c. CluCL considers each class individually because different classes will likely have
different numbers of training data points and different disparities. Finally, CluCL computes
the average of l1, . . . l|C| to yield

LCluCL =
1

|C|
∑
c∈C

lc. (2.29)

Covariance Constrained Loss

This variation minimizes the covariance between the predicted probability of a data point’s
label and the corresponding individual’s name. Like CluCL, CoCL represents each name
as a single vector nei and considers each class individually:

lc = Ei:yi=c
[(
pyi − µcp

)
· (nei − µcn)

]
, (2.30)

where µcp = Ei:yi=c [pyi ] and µcn = Ei:yi=c [nei ]. Finally, CoCL computes the following average:

LCoCL =
1

|C|
∑
c∈C
‖lc‖,

where ‖ · ‖ is the `2 norm.
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2.3.2 Evaluation

One of the strengths of the proposed method is its ability to simultaneously mitigate mul-
tiple biases without access to protected attributes; however, this strength also poses a
challenge for evaluation. We are unable to quantify this ability without access to these
attributes. To facilitate evaluation, we focus on race and gender biases only because race
and gender attributes are more readily available than attributes corresponding to other
biases. We further conceptualize both race and gender to be binary (“white/non-white”
and “male/female”) but note that these conceptualizations are unrealistic, reductive sim-
plifications that fail to capture many aspects of race and gender, and erase anyone who
does not fit within their assumptions. We emphasize that we use race and gender attributes
only for evaluation—they do not play a role in our method.

Datasets

We use two datasets to evaluate the proposed method: the adult income dataset from the
UCI Machine Learning Repository [114], where the task is to predict whether an individual
earns more than $50k per year (i.e., whether their occupation is “high status”), and the
dataset of online biographies described in Section 2.1, where the task is to predict an
individual’s occupation from the text of their online biography.

Each data point in the Adult dataset consists of a set of binary, categorical, and con-
tinuous attributes, including race and gender. We preprocess these attributes to more
easily allow us to understand the classifier’s decisions. Specifically, we normalize contin-
uous attributes to be in the range [0, 1] and we convert categorical attributes into binary
indicator variables. Because the data points do not have names associated with them,
we generate synthetic first names using the race and gender attributes. First, we use the
dataset of Tzioumis [115] to identify “white” and “non-white” names. For each name, if
the proportion of “white” people with that name is higher than 0.5, we deem the name
to be “white;” otherwise, we deem it to be “non-white.”7 Next, we use Social Security
Administration data about baby names [2018] to identify “male” and “female” names. For
each name, if the proportion of boys with that name is higher than 0.5, we deem the name
to be “male;” otherwise, we deem it to be “female.”8 We then take the intersection of these
two sets of names to yield a single set of names that is partitioned into four non-overlapping
categories by (binary) race and gender. Finally, we generate a synthetic first name for each
data point by sampling a name from the relevant category.

Each data point in the Bios dataset consists of the text of an individual’s biography,
written in the third person. We represent each biography as a vector of length V , where

7 For 90% of the names, the proportion of “white” people with that name is greater than 0.7 or less than 0.3, so
there is a clear distinction between “white” and “non-white” names.

8 For 98% of the names, the proportion of boys with that name is greater than 0.7 or less than 0.3, so there is an
even clearer distinction between “male” and “female” names.
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V is the size of the vocabulary. Each element corresponds to a single word type and is
equal to 1 if the biography contains that type (and 0 otherwise). We limit the size of the
vocabulary by discarding the 10% most common word types, as well as any word types
that occur fewer than twenty times. Unlike the Adult dataset, each data point has a name
associated with it. And, because biographies are typically written in the third person and
because pronouns are gendered in English, we can extract (likely) self-identified gender. We
infer race for each data point by sampling from a Bernoulli distribution with probability
equal to the average of the probability that an individual with that first name is “white”
(from the dataset of Tzioumis [115], using a threshold of 0.5, as described above) and the
probability that an individual with that last name is “white” (from the dataset of Comenetz
[105], also using a threshold of 0.5).9 Finally, as in Section 2.1, we consider two versions
of the Bios dataset: one where first names and pronouns are available to the classifier and
one where they are “scrubbed.”

Throughout the evaluation, we use the fastText word embeddings, pretrained on Com-
mon Crawl data [116], to represent names.

Classifier and loss function

Our method can be used with any classifier, including deep neural networks such as re-
current neural networks and convolutional neural networks. However, because the focus of
this work is mitigating bias, not maximizing classifier accuracy, we use a single-layer neural
network:

hi = Wh · xi + bh

pi = softmax(hi)

where Wh ∈ R|C|×M and bh ∈ R|C| are the weights. This structure allows us to examine
individual elements of the matrix Wh in order to understand the classifier’s decisions for
any dataset.

Both the Adult dataset and the Bios dataset have a strong class imbalance. We there-
fore use a weighted cross-entropy loss as L, with weights set to the values proposed by King
and Zeng [117].

Quantifying bias

To quantify race bias and gender bias, we follow the same approach used in Section 2.1 and
compute the true positive rate (TPR) race gap and the TPR gender gap—i.e., the differ-
ences in the TPRs between races and between genders, respectively—for each occupation.

9 We note that, in general, an individual’s race or gender should be directly reported by the individual in question;
inferring race or gender can be both inaccurate and reductive.
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The TPR race gap for occupation c is defined as follows:

TPRr,c = P
[
Ŷ = c |R = r, Y = c

]
(2.31)

Gapr,c = TPRr,c − TPR∼r,c, (2.32)

where r and ∼r are binary races, Ŷ and Y are random variables representing the pre-
dicted and true occupations for an individual, and R is a random variable representing
that individual’s race. Similarly, the TPR gender gap for occupation c is

TPRg,c = P
[
Ŷ = c |G = g, Y = c

]
(2.33)

Gapg,c = TPRg,c − TPR∼g,c, (2.34)

where g and ∼g are binary genders and G is a random variable representing an individual’s
gender.

To obtain a single score that quantifies race bias, thus facilitating comparisons, we
calculate the root mean square of the per-occupation TPR race gaps:

GapRMS
r =

√
1

|C|
∑
c∈C

Gap2
r,c. (2.35)

We obtain a single score that quantifies gender bias similarly. The motivation for using
the root mean square instead of an average is that larger values have a larger effect and we
are more interested in mitigating larger biases. Finally, to facilitate worst-case analyses,
we calculate the maximum TPR race gap and the maximum TPR gender gap.

We again emphasize that race and gender attributes are used only for evaluating our
method.
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Figure 2.9: Number of data points (from the Bios dataset) in each cluster that correspond
to each race and gender.
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2.3.3 Results

We first demonstrate that word embeddings of names encode information about race and
gender. We then present the main results, before examining individual elements of the
matrix Wh in order to better understand our method.

Word embeddings of names as proxies

We cluster the names associated with the data points in the Bios dataset, represented as
word embeddings, to verify that such embeddings indeed capture information about race
and gender. We perform k-means clustering (using the k-means++ algorithm) with k = 12
clusters, and then plot the number of data points in each cluster that correspond to each
(inferred) race and gender. Figures 2.9a and 2.9b depict these numbers, respectively.

Clusters 1, 2, 4, 7, 8, and 12 contain mostly “white” names, while clusters 3, 5, and
9 contain mostly “non-white names.” Similarly, clusters 4 and 8 contain mostly “female”
names, while cluster 2 contains mostly “male” names. The other clusters are more balanced
by race and gender. Manual inspection of the clusters reveals that cluster 9 contains
mostly Asian names, while cluster 8 indeed contains mostly “female” names. The names
in cluster 2 are mostly “white” and “male,” while the names in cluster 4 are mostly “white”
and “female.” This suggests that the clusters are capturing at least some intersections.
Together these results demonstrate that word embeddings of names do indeed encode at
least some information about race and gender, even when first and last names are combined
into a single embedding vector.

Adult dataset

Method λ Balanced TPR GapRMS
g GapRMS

r Gapmax
g Gapmax

r

None 0 0.795 0.299 0.120 0.303 0.148

CluCL 1 0.788 0.278 0.121 0.297 0.145
CluCL 2 0.793 0.259 0.085 0.282 0.114

CoCL 1 0.794 0.215 0.091 0.251 0.119
CoCL 2 0.790 0.163 0.080 0.201 0.109

Table 2.8: Results for the Adult dataset. Balanced TPR (i.e., per-occupation TPR, aver-
aged over occupations), gender bias quantified as GapRMS

g , race bias quantified as GapRMS
r ,

maximum TPR gender gap, and maximum TPR race gap for different values of hyperpa-
rameter λ. Results are averaged over four runs with different random seeds.

The results for the Adult dataset are shown in Table 2.8. The task is to predict whether
an individual earns more than $50k per year (i.e., whether their occupation is “high sta-
tus”). Because the dataset has a strong class imbalance, we report the balanced TPR—i.e.,
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Figure 2.10: Gender bias quantified as GapRMS
g (left) and race bias quantified as GapRMS

r

(right) versus balanced TPR for the CoCL variation of our method with different values of
hyperparameter λ (a larger dot means a larger value of λ) for the Adult dataset. Results
are averaged over four runs with different random seeds.

we compute the per-class TPR and then average over the classes. We experiment with dif-
ferent values of the hyperparameter λ. When λ = 0, the method is equivalent to using the
conventional weighted cross-entropy loss function. Larger values of λ increase the strength
of the penalty, but may lead to a less accurate classifier. Using λ = 0 leads to significant
gender bias: the maximum TPR gender gap is 0.303. This means that the TPR is 30%
higher for men than for women. We emphasize that this does not mean that the classifier
is more likely to predict that a man earns more than $50k per year, but means that the
classifier is more likely to correctly predict that a man earns more than $50k per year.
Both variations of our method significantly reduce race and gender biases. With CluCL,
the root mean square TPR race gap is reduced from 0.12 to 0.085, while the root mean
square TPR gender gap is reduced from 0.299 to 0.25. These reductions in bias result in
less than one percent decrease in the balanced TPR (79.5% is decreased to 79.3%). With
CoCL, the race and gender biases are further reduced: the root mean square TPR race
gap is reduced to 0.08, while the root mean square TPR gender gap is reduced to 0.163,
with 0.5% decrease in the balanced TPR.

We emphasize that although the proposed method significantly reduces race and gen-
der biases, neither variation can completely eliminate them. In order to understand how
different values of hyperparameter λ influence the reduction in race and gender biases, we
perform additional experiments using CoCL where we vary λ from 0 to 10. Figure 2.10
depicts these results. Larger values of λ indeed reduce race and gender biases; however, to
achieve a root mean square TPR gender gap of zero means reducing the balanced TPR to
50%, which is unacceptably low. That said, there are a wide range of values of λ that sig-



Algorithmic fairness 69

Method λ Balanced TPR GapRMS
g GapRMS

r Gapmax
g Gapmax

r

None 0 0.788 0.173 0.051 0.511 0.121

CluCL 1 0.784 0.168 0.048 0.494 0.120
CluCL 2 0.781 0.165 0.047 0.486 0.114

CoCL 1 0.785 0.168 0.048 0.507 0.109
CoCL 2 0.779 0.169 0.048 0.512 0.116

Table 2.9: Results for the original Bios dataset. Balanced TPR (i.e., per-occupation TPR,
averaged over occupations), gender bias quantified as GapRMS

g , race bias quantified as

GapRMS
r , maximum TPR gender gap, and maximum TPR race gap for different values of

hyperparameter λ. Results are averaged over four runs with different random seeds.

Method λ Balanced TPR GapRMS
g GapRMS

r Gapmax
g Gapmax

r

None 0 0.785 0.111 0.049 0.385 0.123

CluCL 1 0.782 0.107 0.048 0.383 0.112
CluCL 2 0.778 0.112 0.046 0.395 0.107

CoCL 1 0.780 0.109 0.047 0.388 0.117
CoCL 2 0.775 0.108 0.046 0.387 0.109

Table 2.10: Results for the “scrubbed” Bios dataset. Balanced TPR (i.e., per-occupation
TPR, averaged over occupations), gender bias quantified as GapRMS

g , race bias quantified

as GapRMS
r , maximum TPR gender gap, and maximum TPR race gap for different values

of hyperparameter λ. Again, results are averaged over four runs.

nificantly reduce race and gender biases, while maintaining an acceptable balanced TPR.
For example, λ = 6 results in a root mean square TPR race gap of 0.038 and a root mean
square TPR gender gap of 0.046, with only a 7.3% decrease in the balanced TPR.

Bios dataset

The results of the evaluation using the original and “scrubbed” (i.e., names and pronouns
are “scrubbed”) versions of the Bios dataset are shown in Tables 2.9 and 2.10, respectively.
The task is to predict an individual’s occupation from the text of their online biography.
Because the dataset has a strong class imbalance, we again report the balanced TPR.
CluCL and CoCL reduce race and gender biases for both versions of the dataset. For
the original version, CluCL reduces the root mean square TPR gender gap from 0.173 to
0.165 and the maximum TPR gender gap by 2.5%. Race bias is also reduced, though to
a lesser extent. These reductions reduce the balanced TPR by 0.7%. For the “scrubbed”
version, the reductions in race and gender biases are even smaller, likely because most of the
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Figure 2.11: Classifier weight values for several attributes for the conventional weighted
cross-entropy loss function (i.e., λ = 0) and for CoCL with λ = 2. Results are averaged
over four runs with different random seeds.

information about race and gender has been removed by “scrubbing” names and pronouns.
We hypothesize that these smaller reductions in race and gender biases, compared to the
Adult dataset, are because the Adult dataset has fewer attributes and classes than the Bios
dataset, and contains explicit race and gender information, making the task of reducing
biases much simpler. We also note that each biography in the Bios dataset is represented as
a vector of length V , where V is over 11,000. This means that the corresponding classifier
has a very large number of weights, and there is a strong overfitting effect. Because this
overfitting effect increases with λ, we suspect it explains why CluCL has a larger root
mean square TPR gender gap when λ = 2 than when λ = 1. Indeed, the root mean square
TPR gender gap for the training set is 0.05 when λ = 2. Using dropout and `2 weight
regularization lessened this effect, but did not eliminate it entirely.

Understanding the method

The proposed method mitigates bias by making training-time adjustments to the classifier’s
weights that minimize the correlation between the predicted probability of an individual’s
occupation and a word embedding of their name. Because of our choice of classifier (a single-
layer neural network, as described in Section 2.3.2), we can examine individual elements
of the matrix Wh to understand the effect of our method on the classifier’s decisions.
Figure 2.11a depicts the values of several weights for the conventional weighted cross-
entropy loss function (i.e., λ = 0) and for CoCL with λ = 2 for the Adult dataset. When λ =
0, the attributes “sex Female” and “sex Male” have large negative and positive weights,
respectively. This means that the classifier is more likely to predict that a man earns more
than $50k per year. With CoCL, these weights are much closer to zero. Similarly, the
weights for the race attributes are also closer to zero. We note that the weight for the
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attribute “age” is also reduced, suggesting that CoCL may have mitigated some form of
age bias.

Figure 2.11b depicts the values of several weights specific to the occupation “surgeon”
for the conventional weighted cross-entropy loss function (i.e., λ = 0) and for CoCL with
λ = 2 for the original version of the Bios dataset. When λ = 0, the attributes “she” and
“her” have large negative weights, while the attribute “he” has a positive weight. This
means that the classifier is less likely to predict that a biography that contains the words
“she” or “her” belongs to a surgeon. With CoCL, these magnitudes of these weights are
reduced, though these reductions are not as significant as the reductions shown for the
Adult dataset.

2.3.4 Discussion

This Section proposes a method for reducing bias in machine learning classifiers without
relying on protected attributes. In contrast to previous work, this method eliminates the
need to specify which biases are to be mitigated, and allows simultaneous mitigation of mul-
tiple biases, including those that relate to group intersections. The proposed methodology
leverages the societal biases that are encoded in word embeddings of names. Specifically, it
discourages an occupation classifier from learning a correlation between the predicted prob-
ability of an individual’s occupation and a word embedding of their name. Two variations
of the method are presented and evaluated using a large-scale dataset of online biographies.
Results show that both variations simultaneously reduce race and gender biases, with al-
most no reduction in the classifier’s overall true positive rate. The method is conceptually
simple and empirically powerful, and can be used with any classifier, including deep neural
networks.



Chapter 3

Limits of available labels and
leveraging human consistency

3.1 Introduction

In many domains, humans are routinely tasked with making predictions to inform deci-
sions their job requires them to make. Examples are judges who predict the likelihood
of recidivism when determining bail, doctors who predict the likelihood of neurological
recovery of comatose patients when deciding whether to extend life support, and recruiters
who evaluate the likelihood of a candidate succeeding at a job when hiring. Increasingly,
machine learning is being used to aid humans in those predictions. While research has
shown that machine learning and actuarial models are better at making predictions than
humans [118, 119, 120], the available data frequently presents challenges that limit what
can be learned from observed outcomes alone, undermining a model’s performance and
leading to deceivingly optimistic evaluation metrics.

In this work, we propose using human consistency as a source of information for what
cannot be learned from observational data alone. Human consistency has long been used as
a source of information. Popularized by Cohen’s Kappa Coefficient [121, 122], inter-rater
agreement is considered an indicator of reliability [123, 124]. In order to leverage such
consistency, we first propose a way of estimating it in cases where a single decision-maker
observes each sample. While existing methodology to estimate consistency requires that
multiple humans label each case, historical data of high-stakes decisions made by domain
experts (e.g. judges, physicians and social workers) usually contains a single human’s
assessment for each case. The proposed method to identify consistency in these settings
works as follows: A predictive model fh is used to predict the human decisions, and
influence functions are used to estimate each expert’s influence on a prediction. This
yields a metric of robustness for the model’s predictions of human decisions by identifying
whether a prediction is driven by the historical decisions of multiple experts, or by those
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of a single or very few experts. For cases in which the model’s predictions indicate high
certainty–measured in terms of calibrated probability–, this metric allows us to identify
consistency across decision makers.

Furthermore, we propose a label amalgamation strategy to incorporate human knowl-
edge into a model. In applications for which consistency is believed to stem from expertise,
the approach allows us to obtain labels for censored cases, and to learn from experts in
instances in which they are consistent and at odds with the observed label, while learning
from observational data elsewhere. Our approach brings the construct we optimize for
closer to the construct that humans care about, without incorporating individual biases,
errors, or noise.

Section 3.2 we present related work, in Section 3.3 we describe challenges of algorithmic
decision support. In Section 3.4 we introduce the methodology to estimate consistency via
influence functions and the label amalgamation approach. In Section 3.5 we present and
analyze the results, both on semi-synthetic data in which we consider different scenarios
of decision making, and on real data from child maltreatment hotline screenings.

3.2 Related work

Our work draws inspiration from extensive literature that uses inter-rater agreement met-
rics as an indicator of reliability [121, 122, 123, 124]. Such metrics have been popular in
applied psychology literature for decades, and have recently been popularized in computer
science through the crowdsourcing literature [125, 126]. With the emergence of an online
workforce as an inexpensive source of data labeling, metrics of agreement have been very
useful to aggregate and assess the quality of crowd-sourced labels. Unlike in crowdsourcing,
in this work we aim to learn from domain experts making high-stakes decisions. Obtaining
labels is time consuming in such a setting– data is often sensitive, and qualified labelers
are scarce– so we cannot collect multiple assessments for each case and must find ways to
leverage the historical decisions available. The proposed approach allows us to estimate
consistency across experts from historical data. Here, a note must be made regarding con-
sistency. Experts’ consistency–or the lack thereof–has been a subject of study for a long
time [127, 128], with results indicating that experts tend to exhibit low overall consistency.
We highlight that we are not assuming experts will display overall consistency, but rather
that we are leveraging experts’ consistency when it is displayed for subsets of cases.

Most closely related to our work is [129, 2], where modeling of human decisions is used
to improve evaluation of predictive models in the presence of the selective labels problem
and unobservables. While [129, 2] improve validation by leveraging heterogeneity of human
decisions, our focus is instead on improving training by leveraging homogeneity. Their work
proposes a way of evaluating a model meant to assist bail decisions, trained on observed
outcomes of recidivism, by making use of the fact that there are more and less lenient
judges. This allows the authors to compare the performance of detaining everyone a strict
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judge would detain, vs. detaining everyone a lenient judge would detain, and matching
the detention rate of the strict judge based on who the algorithm predicts to be at highest
risk of recidivism. The authors focus are those cases for which humans disagree in their
assessment. Instead, we focus on cases for which all humans agree in their assessment, by
proposing methodology to identify such cases and incorporating this knowledge into the
training of a predictive model.

In terms of the discussion of the risks of the selective labels problem, our work dif-
fers from [129, 2] in that by focusing on the portion of cases where there is agreement,
we concentrate on the violation of the positivity assumption. Meanwhile, they focus on
the simultaneous presence of both selective labels and unobservables, but do not consider
the violation of the positivity assumption that stems from homogeneity across human
decisions. The selective labels problem is a special case of sample selection bias, which
concerns learning in a setting where training and test data are drawn from different distri-
butions [130, 131]. Statistics and quantitative methods literature on missing data has also
addressed this problem [132, 133]. However, in addition to assuming conditional ignora-
bility, which fails in the presence of unobservables, a common assumption to the different
approaches that have been presented to tackle sample selection bias is positivity, which
assumes that every individual has a non-zero probability of being part of the training sam-
ple, i.e., P (di = 1|xi) > 0 ∀i = 1, .., n, where di refers to xi being selected for the sample.
As we will discuss, this assumption is easily violated under the selective labels problem.
The fairness-related risks of learning from censored data are explored in [134].

The risks of omitted payoff bias are briefly described in [129, 135]; we add to this work
by proposing ways of mitigating this problem. Also related, the concepts of an observed
space and a construct space are formalized in [136]. While their focus is on features rather
than outcomes, the notion that what we observe does not always capture what we care
about is at the heart of omitted payoff bias.

Bringing machine learning models closer to experts’ knowledge has been explored in the
past. In particular, researchers have proposed ways of doing so by prioritizing features that
are more credible [137]. Our work also shares similarities with the literature on learning to
defer [138, 139], which seeks to combine human and algorithmic decision making. However,
existing techniques in this realm rely on the algorithm’s ability to self-assess its performance
and confidence, and are therefore not directly applicable. We do note, however, that a
framework for learning to defer using the criteria presented in this research would be a
plausible complement to the proposed methodology.

Finally, a core piece of related work is the literature on influence functions. The lo-
cal influence method enables the estimation of the influence of minor perturbations of
a model over a certain functional [140]. This fundamental work in the field of robust
statistics has been widely applied in the literature of semi-parametric and nonparametric
estimation [141], and causal inference [142, 143, 144]. It has also been used in machine
learning to derive estimators for information theoretic quantities [145] and as a way to
explain black-box predictions and generate adversarial attacks [146]. To the best of our
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knowledge, ours is the first work that proposes the use of influence functions to estimate
consistency amongst decision-makers.

3.3 Challenges of algorithmic decision support

In the remainder of this Chapter we assume the data available for learning has the form
(X,D, Y ), where X corresponds to a set of available covariates, D is an observed human
decision that attempts to predict a construct Y c that is not easily or directly observable,
and Y is the observed outcome that proxies for Y c and is used to train a model. We assume
that Y is only observed for one of the values of D, and D = 1 whenever humans predict
Y c = 1. The diagram in Figure 3.1 illustrates the assumed decision and data generation
process. In some instances, humans may have access to an additional set of covariates Z
that are unobserved in the data and cannot be used for training.

For example, in the child welfare context, X are available covariates of historical in-
formation of the children and adults involved in a call, D is a call-worker’s decision to
screen-in a call for investigation, Y c is whether the child is at risk, and Y is whether the
investigation leads to out-of-home placement of the child (foster care), which is observed
when D = 1. Meanwhile, in the bail context X is historical information of a defendant,
Y c corresponds to the risk of societal harm, D is the decision to detain, and Y is rearrest,
observed when D = 0. Note that while in the child welfare context a human prediction of
high-risk leads to an investigation that allows us to observe Y , in the bail context a human
prediction of high-risk leads to a detention that does not allow us to observe Y . Our goal
is to obtain a model that as accurately as possible predicts Yc. Below, we describe
the selective labels problem and omitted payoff bias in more detail.

Figure 3.1: Diagram illustrating experts’ decisions and the data generation process of the
observed outcomes. The question mark illustrates that observed labels are censored by the
human decision.
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Selective labels problem Human decisions D often determine whether Y is observed.
In this setting, if machine learning algorithms are trained using the observed outcomes, the
resulting models are not answering the question “given an individual xi, is situation Y likely
to occur?”, but rather, “given an individual xi for whom a human predicts that situation Y
is likely to occur, is situation Y indeed likely to occur?”. Thus, rather than estimating the
probability P (Y = 1|X), the learning algorithms estimate P (Y |X,D = a), where a denotes
the decision under which we observe Y . Strategies such as inverse probability weighting are
frequently used in such settings to correct for sampling bias in the data. However, in many
decision support contexts, such corrective strategies are not available for two reasons. (1)
Humans may be making use of unobservables Z that are predictive of Y [129], meaning
that Y 6⊥ D | X; and (2) humans may display consistency that violates the positivity
assumption, which assumes a non-negligible probability of observing the outcome for all x.

For example, in the task of predicting neurological recovery of comatose patients, one
can think of building a model using data from a hospital where the human decision makers
are the best in their field, for use in medical centers that lack such expertise. This model
might be constructed to predict the likelihood of neurological recovery. However, the
outcome would be censored in cases where the physicians withdrew life support on the
basis of their assessment that a “good outcome” is unlikely. In such cases it would be
desirable to incorporate the certainty of those human decisions in the model. The proposed
approach aims to do exactly this.

Omitted payoff bias This type of bias can have different origins. First, there can be
unobserved treatment effects, as the human decision may constitute a form of intervention.
Without knowing the effect of the intervention, there is a missing component of a known
payoff function. For example, a social worker’s visit to a home may itself reduce the risk
a child is exposed to. Second, there can be mismeasured outcomes linked to issues of con-
struct validity. Often, the humans’ objective accounts for factors that are not observed, in
which case the prediction loss function is misaligned with the true payoff function, which
depends on components not being captured by the loss. This is particularly common in
public policy settings where the objective depends on social welfare, which is frequently
challenging to estimate from observed outcomes alone. For example, in the child welfare
context the goal is to screen-in for investigation all cases that involve a child at risk. How-
ever, not all types of risk lead to out-of-home placement, which is the objective optimized
for in current deployment setups [147]. Solely optimizing for out-of-home placement may
fail to screen in cases in which services are offered as a result of the investigation and the
well-being of the child and the family improves. Examples of possible relationships between
Y and Y c under omitted payoff bias as shown in Figure 3.2. By incorporating experts’
knowledge into a predictive model, we aim to attenuate the effects of omitted payoff bias.



Limits of available labels and leveraging human consistency 77

(a) Y is a proxy that has perfect precision
but not perfect recall of Y c.

(b) Y is a proxy that neither has perfect pre-
cision nor perfect recall of Y c.

Figure 3.2: Examples of possible relationships between Y and Y c under omitted payoff
bias.

3.4 Methodology

3.4.1 Expert consistency estimation via influence functions

There are two main challenges that make the use of human consistency in decision sup-
port systems non-trivial. First, it is often the case that a single human expert assesses
each sample, and therefore agreeability cannot be measured directly in available data with
traditional inter-rater agreeability metrics. Second, many times there is a non-random
assignment of experts to cases, and therefore predictive models of human decisions may be
able to predict decisions with high confidence, but such confidence does not necessarily im-
ply consistency across humans. We propose to use influence functions to estimate experts’
influence over a prediction of human decisions, which serves as a metric of robustness of a
given prediction when we shift the importance of individual experts.

Influence of a single decision-maker

Let fh(x) = P̂ (D = 1|x) be a predictive model of the human decisions. Influence functions
allow us to estimate the effect on an individual prediction fh(x) of performing a small
perturbation of our training data by shifting it ε in a direction w, where w refers to the
weight given to the training points. Given a decision-maker h, let wh ∈ Rm be defined as:

whi =

{
1 + ε for hi == h

1 for hi 6= h
, (3.1)

where whi denotes to the ith entry of the weight vector wh, and hi denotes the human
that observed sample xi and made decision di. Perturbations of the model in direction wh
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correspond to assuming we up-weight the importance of decision-maker h. The influence
function Iup,fh(wh,xtest) estimates the influence on the predicted probability fh(xtest) of
perturbing the training set by wh, and can be derived in analogous fashion to the way [146]
derives the influence function on the loss of perturbing a single point. We can define the
influence function in terms of ε, as specified in Equation 3.2, where the empirical risk
minimizer is θ̂ := argminθ∈Θ

∑n
i=1 L(xi, di, θ), and the empirical risk minimizer after the

training data has been perturbed by wh is θ̂wh := argminθ∈Θ

∑n
i=1whiL(xi, di, θ), where

L(xi, di, θ) is the loss function and θ ∈ Rp are the model parameters.

Iup,fh(wh,xtest) :=
∂P (ytest|xtest,θ̂wh )

∂ε

∣∣∣∣
ε=0

= ∇θP (ytest|xtest, θ̂wh)T
∂θ̂wh
∂ε

∣∣∣∣
ε=0

(3.2)

∂θ̂wh
∂ε can be expressed as θ̂wh = argminθ∈ΘR(θ) + 1

nh

∑
i∈Jh εL(xi, di, θ), where Jh is the

set of cases observed by expert h, nh = |Jh|, and R(θ) is the empirical risk R(θ) :=
1
n

∑n
i=1 L(xi, di, θ). From the first order condition we obtain that:

0 = ∇θR(θ̂wh) +
1

nh

∑
i∈Jh

ε∇θL(xi, di, θ̂wh) (3.3)

As ε→ 0, θ̂wh → θ̂, so the Taylor expansion centered around θ̂, defining ∆wh = θ̂wh−θ̂,
yields:

0 = ∇θR(θ̂)+
1

nh

∑
i∈Jh

ε∇θL(xi, di, θ̂)+[∇2
θR(θ̂)+

1

nJ

∑
i∈Jh

ε∇2
θL(xi, di, θ̂)]∆wh+h.o.t. (3.4)

Solving for ∆wh and making use of the fact that θ̂ minimizes R(θ) hence ∇θR(θ̂) = 0, we
obtain:

∆wh ≈ −[∇2
θR(θ̂) +

1

n

∑
i∈Jh

ε∇2
θL(xi, di, θ̂)]

−1[
1

nh

∑
i∈Jh

ε∇θL(xi, di, θ̂)]. (3.5)

Let A = ∇2
θR(θ̂), B = 1

nh

∑
i∈Jh ∇

2
θL(xi, di, θ̂), C = 1

nh

∑
i∈Jh ∇θL(xi, di, θ̂). Then,

∆wh ≈ −[A+ εB]−1εC = −(I + εA−1B)−1A−1εC = −[
∑∞

n=0(−1)nεn(A−1B)n]A−1εC
= −(I − εA−1B)A−1εC + h.o.t. = −εA−1C + h.o.t.

⇒ ∆wh ≈ −[∇2
θR(θ̂)]−1[ 1

nh

∑
i∈Jh ∇θL(xi, di, θ̂)]ε

(3.6)
Since ∆wh = θ̂wh − θ̂, and θ̂ does not depend on ε, we get that

∂θ̂wh
∂ε

=
∂∆wh

∂ε
= −[∇2

θR(θ̂)]−1[
1

nh

∑
i∈Jh

∇θL(xi, di, θ̂)]. (3.7)
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Replacing this in Equation 3.2 yields

Iup,fh(wh, xtest) = −∇θP (ytest|xtest, θ̂)T [∇2
θR(θ̂)]−1[

1

nh

∑
i∈Jh

∇θL(xi, di, θ̂)]. (3.8)

Now, the influence is fully defined in terms of θ, instead of ε, and can be easily calculated.
Note that the most computationally intensive component is the Hessian of the empirical
risk, which is O(np2 + p3), but approaches to compute it efficiently for complex models
have been proposed [146].

Logistic regression influence function For our experiments we will use logistic re-
gression models. Logistic regression models happen to perform comparably to more com-
plex models on the problems we consider. The gradient of the predicted probability is
∇θfh(xi) = ∇θσ(θ̂Txi) = σ(θ̂Txi)(1− σ(θ̂Txi))xi, where σ is the sigmoid function σ(x) =

1
1+exp(−x) . The hessian of the empirical risk can be written as∇2

θR(θ̂) = Xdiag i[
1
nσ(θTxi)(1−

σ(θTxi))]X
T .

Estimating consistency

Once the influence of each expert is estimated, it can be determined whether a model’s
confidence in the prediction of human decisions is robust to perturbations over the weight
given to experts. For a given data point x, we can analyze the distribution over the
influence functions Iup,fh(wh, xtest), ∀h. Considering the sorted influence of humans over
a prediction, the following two metrics are useful to construct a notion of consistency.

Center of mass The first moment, or center of mass of influence, allows us to mea-
sure if the influence is spread across experts or if very few experts have a disproportion-
ate influence. Let k be the number of experts, and s(x) be a sorted vector of abso-
lute influence of each decision maker over fh(x), sorted in decreasing order, such that

s(x) = sort([|Iup,fh(wh, x)| for h = 1, 2, ....k]). The center of mass m1(x, fh) =
∑
i i·si(x)∑
i si(x) ,

where si(x) is the ith entry of s(x), indicates that the bm1c experts with the most influence
have as much influence as the rest, where b·c is the floor function.

Aligned influence The center of mass allows us to capture the concentration of in-
fluence, but does not take into account the direction. The second metric m2(x, fh) shows

if there are opposing influences. m2(x, fh) =

max
( ∑
i:si(x)>0

si(x),
∑

i:si(x)<0

si(x)

)
∑
i si(x) indicates the

portion of influence going in the direction of most influence. If all experts influence the
prediction in the same direction, then m2 = 1, while if the magnitudes of the influence in
both the positive and negative directions are equal, then m2 = 0.5.

Maximum influence This metric is equal to the maximum influence over a given
prediction, m3(x, fh) = max(s(x)). In cases where the maximum influence is negligible it
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means that no matter how the weight given to experts is perturbed, the prediction would
remain unchanged.

3.4.2 Label amalgamation

Figure 3.3 contains a toy example of the label amalgamation approach. In this setting, we
assume that there are roughly three clusters of points, and humans are good at making
decisions in two of those clusters, while being uncertain in one of them, as shown in
Figure 3.3(b). The human decisions censor the data, meaning that the label Y is only
observed for cases where humans predict the label to be (+). Moreover, there is a mismatch
between Y and Y c as a result of omitted payoff bias.

Recall fh denotes a predictive model of the human decisions, and let , fy(x) = P (Y =
1|x, D = a) be a predictive model of the observed outcome, where a ∈ {0, 1} depends on the
application domain and denotes the decision under which we observe Y . If linear models
fh and fy are learned from the data, these would have the form fh = α1X1 + α2X2, and
fy = −β1X1, where α1, α2, β1 ∈ R+. The goal of the label amalgamation is to learn from
humans in the settings where they are consistent and from observed data elsewhere. As
displayed in Figure 3.3(d), doing this enables us to recover the true relationship fA = ζ2X2,
where fA denotes the model learned via label amalgamation, and ζ ∈ R+.

X1

X 2

True labels (Yc)

(a)

X1

X 2

Human decisions (D)

(b)

X1

X 2

Observed labels (Yobs)

(c)

X1

X 2

Amalgamated labels (Y)

(d)

Figure 3.3: Toy example illustrating how the label amalgamation works.(a) True labels Y c.
(b) Human decisions D. (c) Observed outcomes Y . (d) Amalgamated labels Y A. Selective
labels problem prevents us from seeing the outcome whenever the human makes the decision
(-), and omitted payoff bias leads to the observed outcome not always corresponding to
the true label. Label amalgamation allows us to learn the correct relationship for the true
labels.

We define the amalgamated label Y A as the label that incorporates experts’ knowledge
in cases where the model of human decisions displays high confidence and high consistency.

Let A be the amalgamation set, one way of defining this set is:

A = {xi ∈ X : |fh(xi)−Di| < δ,m1(xi, fh) > γ1,m2(xi, fh) > γ2}, (3.9)
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Y D fh m1(xi, fh) > γ1 m2(xi, fh) > γ2 Y A

1 0 0.02 Yes Yes 0
1 0 0.01 Yes No 1
0 1 0.65 Yes No 0
0 1 0.97 Yes Yes 1
1 1 0.98 Yes Yes 1

Table 3.1: Example of label amalgamation, for δ = 0.05. Boxed rows highlight cases for
which the amalgamated label is different to the observed label.

where fh,m1,m2 are estimated via cross-validation, and δ, γ1, γ2 are parameters. Im-
portantly, fh must correspond to a calibrated probability. The amalgamated label Y A is
then defined as:

Y Ai =

{
Di if xi ∈ A
Yi if xi /∈ A (3.10)

Note that when Y A 6= Y it may be because Y was missing due to the selective labels
problem, or because the observed label is counter to the decision humans consistently make,
which indicates that there may be an omitted payoff bias. The new amalgamated label
can be used to train a model that incorporates experts’ knowledge. Table 3.1 shows an
example of how label amalgamation works. We refer to the model trained to predict Y A

as fA.
In general, assume you have an amalgamation set A and any label amalgamation pro-

cess that amalgamates labels for this set and learns from observed outcomes elsewhere.
Label amalgamation will improve performance with respect to Y c whenever Y A is a better
approximation to Y c in this set than Y . More formally,

Theorem 2. Given Y, Y c, Y A, such that Y A = Y if ¬A, if P (Y c = Y A|A) ≥ P (Y c = Y |A)
then E(|Y c − Y A||X) ≤ E(|Y c − Y ||X).

Proof.

E(|Y c − Y A||X) = E(|Y c − Y A|1A|X) + E(|Y c − Y A|1¬A|X) (3.11)

= E(|Y c − Y A|1A|X) + E(|Y c − Y |1¬A|X) (3.12)

≤ E(|Y c − Y |1A|X) + E(|Y c − Y |1¬A|X) (3.13)

= E(|Y c − Y |1A|X) + E(|Y c − Y |1¬A|X) (3.14)

= E(|Y c − Y ||X) (3.15)
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In particular, when Y A = D in A, if consistency is indicative of correctness and it is
perfectly estimated, then P (Y c = D|A), which means that E(|Y c − Y A|1A|X) = 0 and
the above result will always hold, with the strict inequality holding true if A 6= ∅.

3.4.3 Robustness to model misspecification

Naturally, modeling choices will impact our ability to accurately predict human decisions.
This means that if we assume a model that does not match the true functional form of
the human decisions, then we may fail to identify cases in which humans are consistent.
For example, imagine we are trying to predict whether doctors will prescribe a test or
not. Assume the ground truth to be that all doctors prescribe a test whenever a patient
has persistent cough and suffers from asthma. If we choose to model this decision with a
decision tree of depth one, it will appear as if humans never agree, which is not true. This
illustrates why the proposed methodology to estimate consistency has strict limitations
regarding its ability to infer lack of agreement. Note that in this work we do not make any
conclusions regarding disagreement. Instead, we identify consistency for subsets of cases,
and make no determination regarding all other cases.

Therefore, the relevant question is: can model misspecification undermine our conclu-
sions regarding consistency? In other words, for the subset of cases for which we infer
humans are consistent, is this conclusion dependant on the model specification? The an-
swer is no. If P̂ is very high or very low, this allows us to infer information about the true
probability, P .

Assume P̂ is a calibrated probability, and defineHS = {Di | i ∈ S, P̂ (D = 1|Xi) > 1−ε}.
If S corresponds to a set of datapoints not used during training of the algorithm that
yields P̂, we can then obtain a confidence interval for the true probability P , as shown in
Equation 3.16.

CI(P (D = 1|X) > 1− ε; C) ∼
(
DHS − z∗

σ√
n
,DHS + z∗

σ√
n

)
, (3.16)

where DHS and σ are the mean and standard deviation of HS , respectively; n = |HS |;
and z∗ = Φ−1(1− α

2 ), for α = 1−C
2 .

Note that if P̂ is a calibrated probability and the distribution of the training set is
representative of the distribution of S, then DHS = 1 − ε. Under this assumptions, if
HS is large enough, this will yield a tight confidence interval. For example, if n = 1000,
CI(P (D = 1|X) > 1− ε; 99%) ∼ (1− ε−0.018, 1− ε+0.018). When the confidence interval
is calculated empirically, no assumptions about the calibration of P̂ or the distribution of
S are required.
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3.5 Applications

3.5.1 Learning under omitted payoff bias in prediction of child maltreat-
ment risk

Semi-synthetic data generation

Before showing our results on real data, we construct semi-synthetic datasets to simulate
the challenges described in Section 3.3 and illustrate how the proposed approach works
under simple settings of decision making.

Let X be a subset of the features of the real-world child welfare data, where we remove
those features that have low-variance (Var[Xi] < p(1−p), for p = 0.9), greedily remove those
with strong pairwise correlations (Pearson correlation coefficient > 0.5), and introduce an
intercept term. This yields a dataset X ∈ R46544×217 that is standardized to be centered
with unit variance. Unless stated otherwise, we assume the samples-to-experts assignment
is that of the real data, where the number of experts is k = 32. Semi-synthetic labels
Y, Y c, D are modeled as follows:

• Y: Let β◦ be the learned coefficients of a logistic regression with L1 penalty fitted to
predict out-of-home placement in the observed data. We sample coefficients β such
that βi ∼ N(β◦i , 1). The label Y is then sampled according to a logistic regression
with coefficients β, such that Y ∼ Binomial( 1

1+exp (−XTβ)
).

• Yc: To model omitted payoff bias, we let Y c = Y ∨ Y blind, where ∨ denotes the
inclusive disjunction, such that Y c = 1 if Y = 1 and/or Y blind = 1. This corresponds
to setting (b) in Figure 3.2. For simplicity, we let Y blind = 1(Xj 6= 1), where Xj is
one of the covariates. In the experiments presented, |Xj 6= 1| = 16, 519. Details can
be found in Appendix ??.

• D: Let βd be the learned coefficients of a logistic regression with L1 penalty fitted to
predict Y c. We assume each human h makes decisions according to a logistic regres-
sion model with coefficients βh, whose relationship to βd is modified to simulate the
different scenarios described below. Dh = 1[XTβh+ε > 0], where ε ∼ Logistic(0, 0.5).

I Uninformative humans For each expert h, resample all non-zero coefficients,
such that βdi ∼ U(−1, 1). This breaks all relationships with Y c and all relation-
ships across humans.

II Oracle humans Let βh = βd, ∀h = 1, . . . , 32. This assumes all humans have
access to the true model.

III Oracle humans and unobserved covariates Let βh = βd, ∀h = 1, . . . , 32.
In addition, assume that the 5 covariates with the largest associated coefficients
in βd are unavailable to the machine (note that these will also be unavailable
when modeling the human decisions fh).
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IV Oracle humans, except for one biased human Assume all samples-to-
experts assignments remain the same, except for one (new) expert who sees all
cases for which a binary feature Xb = 1, where |Xb = 1| = 7, 045. Assume that
this expert overestimates risk for the population Xb by assigning a coefficient
βhb = 2 maxj(βdj ).

Predictive models and label amalgamation In our experiments, we use 75%-25%
train-test splits. Within the training set, we use 3-fold cross-validation to perform the label
amalgamation and obtain amalgamated labels Y A for the entire training set. We use an L1

logistic regression to model the human decisions for each partition within cross-validation
folds, where we tune the L1 penalty parameter by incrementing it until the condition
number of the Hessian of the empirical risk is low, indicating that the Hessian is well
defined. This is necessary because calculating the influence function requires the inversion
of this Hessian. We denote this model as fAh to differentiate it from fh, a model trained on
the entire training set that we will compare against fA. We ensure fAh yields a calibrated
probability using Platt’s scaling, and perform label amalgamation using parameters δ =
0.05, γ1 = 4.0, γ2 = 0.8. The choice of γ1, γ2 is informed by the empirical distribution
of consistency metrics when humans all use the same model and are therefore trivially
consistent with each other, and discussed in detail in Appendix ??.

We then train fy, fh and fA as L2 logistic regression models with target labels Y , D
and Y A, respectively. While fh and fA are trained on the entire training set, fy is only
trained on the subset where D = 1, simulating the selective labels problem. Note that in
general fAh and fh may or may not be the same model, even though both predict the same
target label. In the present setting, fAh is a more constrained model to enable the inversion
of the Hessian.

Influence and consistency of decision-makers In setting I, there are no cases where
|fAh −Di| < δ, for δ = 0.05. This is what we would expect; if each human is making use of
a different model for making decisions, a logistic regression trained to predict all decisions
will not have a good performance. As a result, no labels are augmented in this setting.

Meanwhile, comparing the influence of individual decision-makers for settings II and IV
provides interesting insights. Intuitively, a good way to think about the influence of a deci-
sion maker over the predicted probability is: how sharply and in what direction would the
predicted probability change if the importance given to decision-maker h was up-weighted
by ε. The first stark difference that arises is reflected in the magnitude of the influences.
As described in Section 3.5.1, we calculate the influence of each decision-maker over each
prediction for all points in the training set, via cross-validation in this set. Figure 3.4
displays histograms of the influences for setting II and IV. When all decision-makers use
the same model for making decisions, the influences are tightly concentrated around zero
and no decision-maker has a very large influence over any prediction. Meanwhile, if one
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decision-maker overestimates risk for a group, the influence of an individual over one of
the model’s prediction may be much larger.

(a) Setting II. (b) Setting IV.

Figure 3.4: Histogram of influences Iup,fh(wh,x), for all decision makers h, and x in the
training set, with y-axis in log-scale. In setting II all decision-makers use the same model,
so the influences are tightly concentrated around zero and no decision-maker has a very
large influence over any prediction. Meanwhile, under setting IV there is a decision-maker
the overestimates risk for a group, so the influence of an individual over one of the model’s
prediction may be much larger.

When looking at the influence of the biased decision-maker over the different points, a
stark contrast emerges. For those members of the disadvantaged group, this decision-maker
has an influence in the positive direction–increasing the weight given to this decision-maker
would increase the predicted probability for members of this group. Meanwhile, for those
who are not members of the disadvantaged group, it has an influence in the negative
direction. Figure 3.5 shows the breakdown of the influence over this two populations.

For each data point, we can compare the influence across decision-makers. Figure 3.6
shows scatterplots for the sorted influence for x = argminxm2(x, fh) under setting II and
IV. This is the point where there is the least aligned influence across decision-makers. In
setting IV the case displaying the minimum aligned influence across decision-makers shows
much more drastic discrepancies than in setting II.

Evaluation For each scenario of human decision-making, we evaluate the performance
of fy, fh and fA with respect to the construct label Y c, but also show what the (incorrect)
“naive” evaluation looks like, in which the model is evaluated only on the subset of samples
for which we observe the label (D=1), and is evaluated with respect to observed label Y .
This is generally the only evaluation possible from observed data, but as shown in Figure 3.7
it may distort the performance estimates of the different methods, and in particular it is
prone to overestimate the performance of fy.
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(a) All cases except disadvantaged group. (b) Disadvantaged group.

Figure 3.5: Histograms of influence Iup,fh(wh,x), for the biased decision maker h in setting
IV, with y-axis in log-scale. If importance of this decision-maker was increased, predicted
probabilities for members of disadvantaged group would increase, while decreasing for all
others.

Figure 3.7 shows performance in terms of Area under the ROC Curve (AUC) across
all four settings of decision-making. In setting I, where humans are uninformative, fA is
not affected by this and defaults to fy. When the human decisions constitute an oracle
(II), fA improves substantially in comparison to fy, which is also the case in the presence
of unobservables (III). Naturally, in cases where humans constitute an oracle, learning
from humans alone–or not automating anything–would be the gold standard, and these
settings are only considered to illustrate the behavior in simple cases. The performance
of fh, however, can be easily derailed by a single biased decision-maker. Setting IV shows
that the performance of fh in such a setting drops more sharply than that of fA. Most
interestingly, it is important in this setting to evaluate the performance of the models on
the group for which one decision maker overestimates the risk. Table ?? shows the screen-
in rate and true positive rate (TPR) for the three models in the top 25% highest-risk
cases. Scenario IV is particularly interesting because it highlights that under non-random
assignment of samples-to-experts fh is susceptible to the bias of a single human, whereas
fA is able to incorporate expert knowledge in a robust fashion, not learning that bias.

Child maltreatment hotline screenings

The Allegheny County child maltreatment hotline receives over 15,000 calls a year, and call
workers are tasked with deciding which cases should be screened-in for further investiga-
tion. Efforts to increase the availability of historical information about children and adults
involved in a call have been accompanied by an interest in the use of risk assessment tools to
aid call workers in identifying high-risk cases. Allegheny County has already implemented
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(a) Setting II. (b) Setting IV.

Figure 3.6: Scatterplots of influence Iup,fh(wh,x), for x = argminxm2(x, fh). In the x-
axis, the decision-makers are sorted according to the magnitude of the influence for this
particular datapoint. In setting IV the case displaying the minimum aligned influence
across decision-makers shows more drastic discrepancies than in setting II.

one such system [147], which predicts probability of out-of-home placement. The selective
labels problem arises because the result of an investigation is only observed for calls that
are screened in. Omitted payoff bias is also a concern, as there may be treatment effects
of the visitation, as well as indicators of risk that are not well captured in out-of-home
placement. Finally, unobservables are present since the information communicated in the
call is not used by the risk assessment model, which is instead trained only on data avail-
able in administrative records. The data used in our experiments corresponds to 46, 544
referrals (i.e. calls) between 2010 and 2014. This subset includes the first call associated
to each child in this period of time, during which no risk assessment model was deployed.
Over 800 variables are available which include information regarding demographics, behav-
ioral health, and past interactions with county prison and public welfare for all adults and
children associated to a referral. We perform the same feature selection described in 3.5.1
yielding 217 features. The observed label Y records whether out-of-home placement is
observed in the 730 days following a call. We estimate models fh, fy, fA using the same
experimental setup and parameters described in Section 3.5.1.

In the present setting, we do not have ground truth Y c to evaluate performance. How-
ever, when a social worker investigates a case there are other outcomes that are recorded
and that are not used by the predictive model of out-of-home placement, fy. Investigators
record if the claims in a call are substantiated and if services are offered to the family.
One of the most pressing concerns of optimizing for out-of-home placement alone would be
if it fails to identify high-risk cases for which less aggressive interventions (e.g. services)
change the outcome and improve the well-being of a child. Therefore, we evaluate if the
label amalgamation incorporates human knowledge that makes it easier to identify these
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Figure 3.7: Mean±std AUC over 20 runs of 75 − 25% train-test splits. Each setting (I-
IV) represents a different scenario of human decisions. For each scenario, performance
for the different models is shown: fh trained on human decisions, fy trained on observed
outcomes, fA trained on amalgamated labels. Grey markers indicate ’naive’ evaluation,
evaluated only on the samples for which Y is observed (D = 1). Arrows indicate the change
between the naive evaluation and the correct evaluation with respect to Y c. The results
demonstrate that label amalgamation is not misguided by uninformative humans (I), while
successfully incorporating human knowledge when informative (II-IV).

cases. We do so by measuring precision and recall of the highest scored screened in cases
per model. Note that we only consider screened-in cases as we are blind to the outcomes
of all others due to selective labels.

Figure 3.8 shows both precision and recall in the top 25% highest scores for the outcome
Y (out-of-home placement) and additional outcomes that are not observed by the models
(substantiation and services). Note that–due to the selective labels problem–recall is only
useful in relative terms, since the absolute number may be over-estimated if not all cases
are captured in the denominator. Precision does not have issues of this sort. As seen
in Figure 3.8, there are cases whose risk does not seem to be captured by out-of-home
placement, as indicated by the high rates of substantiation and services offered. This can
be seen by the fact that recall and precision of humans is substantially higher for these
labels. fA successfully incorporates this human knowledge, considerably improving recall
and precision of cases that are substantiated and to which services are offered, while still
having a higher recall of out-of-home placement than fh.

One concern of label amalgamation in this setting would be if widespread stereotypes
held by call workers are incorporated into the model. In particular, it would be worrying
if racial disparities arise. However, when looking at the prevalence of non-white fami-
lies/children in the top 25% highest scored screen-ins, we find that fy, fh and fA lead to
similar screen-in rates, which also correspond to the overall proportion of non-white fam-
ilies. The results are shown in Table 3.2. This provides preliminary indication that label
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(a) Precision in top 25% highest scored screen-in
cases.

(b) Recall in top 25% highest scored screen-in
cases.

Figure 3.8: Precision and recall on child maltreatment risk assessment for top 25% highest
scored screened-in cases by model. Error bars show mean±std over 100 runs of 75− 25%
train-test splits. Results show that (1) there are elements of risk that are not captured
by the model trained to predict out-of-home placement label fy, but are optimized for by
humans, and (2) label amalgamation improves recall and precision for these cases, while
having a better performance on out-of-home-placement than a model trained on human
decisions alone.

amalgamation in this setting would not exacerbate nor mitigate racial biases. We note,
however, that this is only one of many ethical concerns that arise, some of which cannot
be evaluated through statistical tests alone and instead require a careful analysis of the
sociotechnical context in which the system is embedded. As such, this evaluation does not
constitute a recommendation that the proposed approach should be deployed in the child
welfare context. We expand this discussion in Section ??.

Model Screen-in rate

fh 0.594± 0.013
fY 0.594± 0.013
fA 0.589± 0.015

Overall 0.585± 0.007

Table 3.2: Screen-in rate for non-white children if threshold for screen-in is set to top 25%
highest risk cases. This result provides preliminary indication that label amalgamation
does not introduce racial biases.
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3.5.2 Selective labels problem in prediction of neurological recovery of
comatose patients

As discussed in Chapter 1, developing machine learning methodologies to assist physicians
tasked with deciding whether to extend life-sustaining therapies of comatose survivors of
cardiac arrest has the potential to save lives. Identifying complex patterns in qEEG record-
ings and other sources of clinical data could motivate the continuation of life-sustaining
therapies for patients who do not exhibit previously known markers of good prognosis.
However, the nature of the data available to train such models presents several challenges.
One of the core challenges, relevant to the present Chapter, is the selective labels problem.
Neurological outcomes are only observed for patients who are kept on life sustaining ther-
apies, while there is no counterfactual available for patients who are withdrawn from life
sustaining therapies.

Many machine learning approaches have been proposed to assist experts in predicting
the probability of recovery [148, 15, 149], such as the one described in Chapter 1. For any
of these approaches, it must be decided what data is used to train the model. One option is
to assume that the physicians always made the correct choices, and therefore their decisions
should be used as labels. This could be reasonable if we knew that physicians only choose
to withdraw life-sustaining therapies when there is exhaustive evidence showing that the
patient will not recover. However, that is not the case. This decision has a high degree of
uncertainty associated to it, and is the result of a complex interaction between the family’s
and patient’s previously expressed will, the physician’s clinical assessment and individual
physician’s idiosyncrasies.

Alternatively, a model can be trained using only those cases for whom life sustaining
therapies are continued. This has the advantage of only relying on observed outcomes,
but has the problem of not being trained on a representative distribution of patients. If it
can be assumed that there are no unobservables, and that all cases have a non-negligible
probability of having life-sustaining therapies continued, the shift in the distribution can
be accounted for via sample selection bias correction methodologies, such as inverse sam-
pling weighting. It is known that unobservables influence this decision, since this is not
exclusively a clinical decision but rather a sociomedical decision that also depends on the
will of the family and the patient. In this section, the first question tackled is whether the
positivity assumption is violated, meaning whether consistency in the decision to withdraw
life sustaining therapies for subsets of patients leads to systematic blindness for subsets of
the population. If this is the case, it means that learning from observed outcomes alone
and extrapolating to the entire population requires strong assumptions about the model
specification.
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Data

Since 2010, comatose survivors of cardiac arrest admitted at an academic medical center
had electroencephalography (EEG) measures brain activity continuously monitored. The
data used in this Section has the same origin as the data used in Chapter 1, but corresponds
to a longer period of time. While Chapter 1 uses data collected between 2010 and 2015,
this Section considers data between 2010 and 2019. In addition to quantitative EEG
(qEEG) summary measures at one-per-second resolution, static features such as test results,
responsiveness metrics, are available.

EEG data collection and processing At the hospital, electrodes for EEG collection
are adhered in standard positions, according to the 10-20 International System of elec-
trode placement (10–20 system (EEG)), and data are typically recorded at 256Hz from 22
electrodes. Features are then extracted from these waveform data using FDA-approved
clinical software (Persyst(R) Version 12, Persyst Development Corp, Prescott AZ). Part
of this processing includes artifact detection and rejection. These artifacts include both
physiological artifacts, such as electromyographic (EMG) artifact from muscle activity and
shivering, and non-physiological artifacts, such as 60Hz interference from ambient alter-
nating current electrical devices. The feature categories extracted from the EEG signal are
listed in Table 3.3, and include many features known to be predictive of brain injury. For
example, rythmicity measures can help predict poor prognosis as very rhythmic activity is
often a sign of brain dysfunction. Similarly, asymmetry indices that summarize regional
variations in EEG signal compared to the rest of the brain can be helpful, as certain type
of asymmetries–such as “posterior dominant rythm”–are characteristic of healthy brains,
while other types of assymetries may indicate brain injury. The resulting dataset contains
6036 timeseries per patient, where each timeseries corresponds to one of the features listed
in Table 3.3, was made available for this research.

As a next step of featurization, basic statistics are computed for each feature over the
time window of the first two hours of EEG monitoring for each patient, which corresponds
to the first 7200 points of each time-series, as the data is collected at per-second resolution.
The statistics computed are minimum, maximum, mean, median and standard deviation.
This yields 30,180 features per patient. To avoid making assumptions of the nature of
missing data, which is likely not missing at random, we drop all features for which there
are missing values, yielding 8,914 features.

Demographics and static clinical features In addition to EEG features, 215 features
corresponding to demographics and clinical information are available. Of these, we consider
27 features that physicians working with these patients deem as relevant for the task at
hand. These include age, gender, features concerning potentially relevant clinical history,
features collected via CT scans if performed, etiology of the cardiac arrest, and Pittsburgh
Cardiac Arrest Category assigned to the patient by the treating physician in the first hours
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Number of features Measurement category

3 Artifact Intensity
24 Electrode Signal Quality
3 Seizure Probability
1,560 FFT (Fast Fourier Transformation) Spectrogram
195 aEEG
39 Peak Envelope, 0 - 25 Hz
3,783 Rhythmicity Spectrogram
12 Asymmetry EASI/REASI
170 Relative Asymmetry Spectrogram
15 Spikes
39 Suppression ratio
190 aEEG+ (0.16 - 25Hz) (LFF 1 sec, HFF 25 Hz, custom (off))

Table 3.3: Quantitative EEG (qEEG) features.

upon admission. This last feature, already discussed in Chapter 1, is a 4-level ordinal illness
severity score that summarizes the physician’s assessment of the patient’s status.

Observed decisions and outcomes For each patient, it is observed whether life-
sustaining therapies are withdrawn, and whether this decision is made for neurological
or non-neurological reasons. For patients for whom life-sustaining therapies are not with-
drawn, it is observed whether they suffer from brain death or not. Among patients who sur-
vive, there is very high variability on brain function recovered, and some patients continue
to require intensive care. Discharge destination provides information about the patient’s
disposition, as the patient may be discharged to care facilities or be discharged home if they
require less care. Patients are considered to have a positive outcome when they have been
discharged home, although it should be noted that this is not a perfect proxy as this could
also be influenced by family support and financial resources available for at-home care.
Disposition and survival are therefore combined to summarize if recovery was positive or
negative. Figure 3.9 shows the pipeline of the different decisions and outcomes observed.

Physician on-call At any given time, there is a physician on-call. This physician is
responsible for making decisions concerning patients, including the decision to withdraw
life-sustaining therapies. This yields the same setup that has been considered throughout
this Chapter, in which the decision of a single expert is observed for each case. However,
decisions to extend life-sustaining therapies are less easily assigned to a physician, as this is
a decision that should be continuously reassessed. Guidelines stipulate that life-sustaining
therapies should be extended for at least 72 hours. Therefore, choosing to extend life-
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1

EEG + clinical/demographic data

Physician: withdraw life-sustaining therapies? 

Non-withdrawal
47%

Withdrawal
52%

Positive recovery
46%

Negative recovery
54%

Unobservables

Figure 3.9: Pipeline of decision and outcomes observed, with percentage of data that falls
into each category.

sustaining therapies at that threshold carries particular significance and could influence
future decisions. Therefore, we leverage this to determine the physician-to-patient map-
ping, as specified in Equation 3.17, where h(t) denotes the physician on-call at time ti, where
ti is the time after admission for patient xi. Note that patients who are not withdrawn
and take less than 72 hours to be awake and follow commands do not have a physician
assigned, as no decision was made for them.

h(xi) =

 h(ti=final) if di = withdrawn
None elif hours to awake < 72

h(ti=72) elif di = non-withdrawn

(3.17)

In the 10 year period during which the data was collected, 20 physicians had shifts
during which they were responsible for making decisions regarding the continuation of life-
sustaining therapies. Figure 3.10 shows the count of decisions attributed to each physician.

Population 2,518 survivors of cardiac arrest were admitted to the hospital after resusci-
tation. This number is reduced to 1,810 when excluding patients who were withdrawn for
non-neurological reasons and those who died from rearrest. These patients are excluded
as (1) the cause of death for this group of patients is not neurological, (2) rearrest often
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Figure 3.10: Number of decisions attributed to each physician, following the criteria spec-
ified in 3.17.

happens soon after admission so this group of patients are rarely part of the population
for whom physicians need to decide whether to extend life sustaining therapies. Not all
patients have EEG recordings available, Of the remaining patients, 930 had EEG data
available for two hours upon the moment when monitoring began. This is the population
considered in this research.

Systematic blindness in prediction of neurological recovery

To analyze whether consistency in human decisions leads to systematic blindness due to
the selective labels problem, a predictive model of the human decisions fh is used. Then,
the (calibrated) predicted probabilities and the True Negative Rate (TNR) at low False
Positive Rate (FPR) are analyzed, where a positive label corresponds to the decision to
extend life sustaining therapies.

The calibrated probability of continuation of life sustaining therapies indicates the
probability that an outcome will be observed for a given case. The positivity assumption
requires that P (D = 1|x) > ε, ∀x, so calculating P (D = 1|x) allows us to test this
assumption. Moreover, while the dataset contains all admissions of comatose survivors of
cardiac arrest over a period of 10 years in a large hospital, the dataset is relatively small,
with around 2,000 points. For this reason, ε must be large enough to allow for significant
inference. Another way to think about this is in terms of TNR at low FPR. If the FPR is
fixed at 2%, what is the recall? A high recall at low FPR indicates that there is a portion
of cases that can be correctly identified as withdrawn from life-sustaining therapies. The
FPR incurred provides a sense of how many cases of this set would actually have a label
observed.
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Featurization and predictive models The combination of EEG and static features
yields a total of 8,941 features. While the number of patients in the dataset is large
considering that each data point corresponds to EEG recordings of a comatose survivor of
cardiac arrest, 930 data points is relatively small from a statistical perspective. Feature
dimensionality is reduced by applying Principal Component Analysis (PCA) and keeping
the top k components so that 98% of the variance is explained. It is possible to keep
this much variance while significantly reducing dimentionality given that there is a lot of
redundancy and strong correlation across many features. The final dataset used in the
experiments contains 157 features per patient.

Four different predictive models are considered: a logistic regression with an L1 penalty,
a logistic regression with an L2 penalty, a neural network with strong regularization and a
neural network with weak regularization. The neural network considered is a single-layer
perceptron with a logistic sigmoid activation function and n layers, where n corresponds to
the number of features, i.e. n = 157. A constrained version with regularization α = 0.0001
is considered, as well as a weakly constrained version with α = 0.1. This second version is
considered because rather than being concerned with overall performance, we are concerned
with correctly approximating human decisions in some subsets of high-consistency, for
which reducing regularization could be helpful. Experiments were conducted using a 75%-
25% random train-test partition, parameter tuning was performed using a 5-fold cross-
validation inside the training set, and confidence bounds on the ROC curves are obtained
using Wilson score interval. Figure 3.11 shows the reverse ROC curve of all four models
when trained to predict the decision to withdraw life-sustaining therapies.

The results shown in Figure 3.11 and Table 3.4 highlight the fact that there is a subset
of cases for which it can be predicted with high probability that life-sustaining therapies
will be withdrawn. In particular, Table 3.4 shows that using a logistic regression with L1

penalty it is possible to identify at least 19% of withdrawals while only incurring in 2% false
negatives. This means that there is a portion of cases that have a very low probability of
having life-sustaining therapies extended, and therefore it is extremely unlikely to observe
a “true label” of neurological recovery for them. Moreover, given that the size of the data
is relatively small, this further constrains the possibility to make inference from observed

Model (fh) TNR @ 0.02 FNR

Logit L1 .23± 0.04
Logit L2 .23± 0.05
Neural net (α = 0.1) .18± 0.03
Neural net reg. (α = 0.0001) .10± 0.03

Table 3.4: TNR at fixed 2% FNR across models trained to predict physicians’ decisions to
withdraw life-sustaining therapies, fh.
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Figure 3.11: Reverse ROC curves of models trained to predict physicians’ decisions to
withdraw life-sustaining therapies (fh) evaluated on test set. Performance at low false
negative rate indicates there is a portion of cases that are consistently withdrawn from
life-sustaining therapies.

outcomes of patients who are likely to be withdrawn. For example, in our data 2% false
negatives corresponds to 9 patients.

Moving forward we will use the logistic regression with L1 penalty to model fh. Fig-
ure 3.12 shows the calibration plot and histogram of predicted probabilities for this classi-
fier.

Prediction of neurological recovery under different assumptions

In the absence of observed outcomes for all patients, training a predictive model of neu-
rological recovery requires assumptions about the data generating process. Often, these
assumptions are implicit. A common implicit assumption in this domain–and in clinical
settings in general–is that models trained on the subset of the population for whom there
are observed outcomes will generalize to the rest of the population. This is an underlying
assumption whenever a method is trained only on the portion of cases for which there are
observed outcomes. In this Section we leverage the label amalgamation approach proposed
in Section 3.4 to explore how predictions differ if we train from observed outcomes alone
vs. from amalgamated outcomes. That is equivalent to making different assumptions. In
the former, it is assumed that the model learned from observed outcomes will generalize to
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Figure 3.12: Calibration and predicted probabilities of L1 logistic regression fh. Good
calibration (left) shows that predicted probabilities fh also indicate the probability that
an outcome will be observed. Histogram (right) shows that there are cases with very low
probability of having their label observed.

the entire population–this has implicit assumptions about the nature of the missing data
and/or the correctness of the model specification. Meanwhile, label amalgamation assumes
that estimated consistency across experts is indicative of correctness.

Assuming that estimated consistency across experts is indicative of correctness is rea-
sonable given that there is substantial clinical knowledge that informs physicians’ decisions.
However, there is a risk of incorporating self-fulfilling prophecies. Therefore, we propose
label amalgamation as a way to test how robust the predictions of a model learned from ob-
served outcomes alone are to this hypothesis, rather than as a replacement of the predictive
model. If a prediction of very high probability of recovery drops substantially when label
amalgamation is performed, it is possible that the initial prediction was an extrapolation
to an unseen portion of the feature space and should be taken with a grain of salt.

For consistency and simplicity, we use an L1 logistic regression to model fy–the pre-
dicted probability of the observed outcome (neurological recovery). Figure 3.13 shows the
ROC curve of this model and Figure 3.14 shows a scatter plot displaying fy in the x-axis
and fh in the y-axis. The y-axis shows the physicians’ believes, while also showing the
probability that an outcome was observed for similar cases. The color in the legend indi-
cates whether an outcome was observed and what the outcome was. Those cases in the
bottom of the plot are almost always withdrawn from life-sustaining therapies. Therefore
the estimated probability of recovery obtained via fy corresponds to an extrapolation.

Label amalgamation The amalgamation set A is defined as indicated in Equation 3.18.
This is almost identical as the way this set was defined in the previous application but also
amalgamates points for which the maximum influence is negligible. The parameters are
set empirically to γ1 = 2, γ2 = 0.8, γ3 = 0.005. These values were chosen considering the
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Figure 3.13: ROC curve of models trained to predict probability of positive recovery using
observed outcomes (fy) evaluated on test set.

meaning of each metric and the fact that there is a total of 15 physicians whose decisions are
recorded in the data, only 10 of which observe more than 10 cases each. A value of γ1 = 2
means that at least two physicians need to have as much influence as the rest, γ2 = 0.7
means that at least 70% of the influence should be in the same direction, and γ3 = 0.005
allows us to include cases that are robust to perturbations over the weight assigned to
physicians because giving more weight to any physician would have a negligible impact
of the prediction. Finally, δ is set to δ = 0.1. This value is higher than in the previous
application because given this data is smaller a case needs to have a higher probability of
having a label observed in order to enable meaningful inference.

A = {xi ∈ X : |fh(xi)−Di| < δ, (m1(xi, fh) > γ1,m2(xi, fh) > γ2) ∨m3(xi, fh) < γ3)}
(3.18)

Figure 3.15 shows the cases that are amalgamated. As in the previous application
and as explained in the methodology section, for the purpose of amalgamation fh(xi) is
estimated via cross validation (3-fold) performed inside the training set, with the L1 penalty
parameter chosen via a grid search to ensure the Hessian is invertible (if it is not, a higher
penalty is enforced). The maximum value of the grid search is chosen in a transductive
manner via cross-validation in the training set. This figure shows how accounting for
consistency across experts limits the amalgamated set, since many points that have very
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Figure 3.14: Scatter plot displaying test set predictions fy in the x-axis and fh in the
y-axis. The y-axis shows the physicians’ believes, while also showing the probability that
an outcome was observed for similar cases. The legend shows whether the outcome for that
case was not observed (withdrawn), and if it was observed it shows what the outcome was
(bad/good outcome). Shapes in the legend show the ca type assigned to the patient, where
ca type = 0 indicates a missing value. The lower region of the plot shows that cases with
very low probability of continuation of life-sustaining therapies have a very high variance
in the estimated probability of recovery, which can be either a result of (1) physicians being
consistently wrong in the decision to withdraw life-sustaining therapies, or (2) the model
fy incorrectly extrapolating to an unseen portion of the feature space.

high-probability of withdrawal still exhibit disagreement among experts.
When amalgamation is performed a model fA can be trained using the amalgamated

set A. The resulting test set predictions are shown in Figure 3.16. The shift in predicted
probabilities between fy and fA can be see in Figure 3.17. While some predictions shift
substantially, some remain relatively the same. This provides a way to test the robustness
of the predictions of fy under the assumption that human consistency is indicative of
correctness.

Influence-driven second opinion recommendation

The influence function approach can be used to augment physicians’ knowledge in differ-
ent ways. It can be used to augment the information accompanying a prediction of the
probability of neurological recovery, as shown above. It can also be used to suggest who
to ask for a second opinion, as will be shown below.
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Figure 3.15: Scatter plot displaying fy in the x-axis and fh in the y-axis (equivalent as
Figure 3.14) for the training set, where fh is estimated via cross-validation in this set
to enable meaningful amalgamation. Legend indicates if the point has estimated high
consistency and is chosen for amalgamation or not. Among those selected for amalgamation
the legend indicates if the case was withdrawn. It can be seen that all cases with estimated
consistency in decision to withdraw were indeed withdrawn.

In this Chapter it has been shown that (1) partial consistency in historical expert
decisions leads to systematic blindness that cannot be addressed through existing sample
selection correction methodology, (2) such consistency exists in historical decisions to with-
draw life-sustaining therapies–this is a real problem and not simply an edge-case that in
theory could arise, (3) learning from data that suffers from this bias requires assumptions,
and different assumptions can lead to vastly different predictions. Moreover, in prediction
of neurological recovery–as in many other high-stakes tasks–none of the assumptions con-
sidered under the different hypothesis can be expected to hold true, and incorrect models
could have fatal consequences. That raises the question: what should the algorithm do
with the portion of cases that lack enough observed outcomes to learn from? We propose
to use machine learning to recommend which physician to ask for a second opinion.

The use of machine learning to decide when to ask for a second opinion has been ex-
plored by [150]. Here, we propose a method to decide who to ask for a second opinion.
Influence functions allow us to identify physician(s) whose influence on the estimated prob-
ability opposes the general consensus on withdrawal. This means that while patterns in
the historical data indicate that a patient is very likely to be withdrawn, patterns on the
decisions made by a particular physician deviate from this.
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Figure 3.16: Scatter plot displaying test set predictions fA in the x-axis and fh in the y-
axis. The legend shows whether the outcome for that case was not observed (withdrawn),
and if it was observed it shows what the outcome was (bad/good outcome). Shapes in the
legend show the ca type assigned to the patient, where ca type = 0 indicates a missing
value. When compared to Figure 3.14 it can be seen that under amalgamation points shift
towards the diagonal. Interestingly, the case that remains an outlier in the bottom right
belongs to category 3, meaning the patient was in a mild to moderately deep coma, as
opposed to category 4 which corresponds to a deep coma.

In general, the second opinion on the algorithmic prediction can be selected as shown in
Equation 3.19, where τdecision is the decision threshold. As it can be noted in the equation,
it is possible for there to be no second opinion recommended, if no expert influences the
prediction in an opposing direction.

hask(xi) =

{
argminh({Iup,fh(wh,xi) : Iup,fh(wh, x) < 0}) if fh(xi) > τdecision
argmaxh({Iup,fh(wh,xi) : Iup,fh(wh, x) > 0}) if fh(xi) < τdecision

(3.19)
When providing second opinions for high probability withdrawals, the second opinion

would be requested from the expert with the largest influence in the positive direction, as
indicated in Equation 3.19. This corresponds to the physician who, if given more weight,
would steer the prediction away from a high probability of withdrawal. Naturally, the
magnitude of the influence matters, and if negligibly small influences want to be discarded,
it is possible to change the threshold defining the set in Equation 3.19 from 0 to γ3 (or
a similar value). This would effectively constraint second opinions to those who have a
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Figure 3.17: Scatter plot displaying the shift in test set predictions between fy and fA in
the x-axis, and fh in the y-axis. It can be seen that some predictions remain relatively
unchanged, while others experience significant shifts. Predictions that experience a big
shift under amalgamation should be taken with a grain of salt, as the prediction fy may
be the result of an extrapolation to an unseen region of the feature space.

sufficiently large opposing influence.

Semi-synthetic validation What is a desirable behavior of the proposed second opinion
recommender algorithm? The algorithm should be able to identify experts who would
provide a different perspective. To validate this, we construct semi-synthetic data in which
we have ground truth for whether a physician would indeed be more likely to recommend
extending life-sustaining therapies (or any other decision that is under consideration).

Let X be the set of features used throughout this Section. To reduce the noise and
increase the strength of the signal, we use bootstrapping to double the size of the data, so
that there are 1,860 data points. We standardize the data to be centered and with unit
variance.

As in the previous semi-synthetic data created in this Chapter, let β◦ be the learned
coefficients of a logistic regression with L1 penalty fitted to predict the observed decision
to extend life-sustaining therapies. The L1 penalty is enforced to simplify the synthetic
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Group (i) P (D = 1|gi = 1) P (D = 1|gi = 1, hi = 1)

g0 0.36 0.54
g1 0.45 0.64
g2 0.43 0.62
g3 0.42 0.61
g4 0.41 0.51

Table 3.5: Rates of D = 1 for each group, comparing overall rates and rates for physician
that estimates a higher probability of recovery for that group. The semi-synthetic data is
modeled such that each physician hi estimates a higher probability of recovery for members
of group gi.

data, as we drop all features with a corresponding zero coefficient, keeping a dataset X ∈
R1860×32. We then sample coefficients β such that βi ∼ N(β◦i , 1).

We then assume that each patient belongs to one of five groups {g0, g1, g2, g3, g4}, which
we assign randomly, and represent the membership to each group as boolean features.
We simulate that there are five physicians, {h0, h1, h2, h3, h4}, and that the assignment of
cases-to-physicians is random. Consistent with the real-world case, we assume that we only
observe the assessment of a single physician per case. Finally, we simulate the decisions by
modeling each physician’s decisions hi according to a logistic regression with coefficients
βhi . We assume that βhi are identical to β except for the coefficients that concern synthetic
group membership, which are equal to -1 except for the group i, to which we assign the
coefficient max(β).

The decisions are then Dh = 1[XTβh + ε > 0], where ε ∼ Logistic(0, 0.5). This means
that we are assuming all experts make decisions according to logistic regression models
that are identical except that for each physician hi there is a group gi for whom they
systematically estimate a higher probability of recovery. Table 3.5 shows the rate at which
each physician extends life sustaining therapies for each group (P (D = 1|gi = 1, hi = 1))
vs. the overall rate for that group (P (D = 1|gi = 1)). As it can be seen in the Table, for
each i physician hi extends life sustaining therapies for group gi more than the average.

For evaluation, we perform three-fold cross validation to estimate Iup,fh(wh,xi) for all
xi, using an L2 logistic regression to model fh. Figure 3.18 shows the results of who would
be recommended by the algorithm for a second opinion, , for the subset of patients who
have a predicted probability of withdrawal of life-sustaining therapies greater than 50%.
The recommendation is given as specified in Equation 3.19, for τdecision = 0.5. As desired,
for each group gi the physician who is more likely to extend life-sustaining therapies (hi)
is the one that is most often recommended by the algorithm.
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Figure 3.18: Results of who would be recommended by the algorithm for a second opinion,
for the subset of patients who have a predicted probability of withdrawal of life-sustaining
therapies greater than 50%. As desired, for each group gi the physician who is more likely
to extend life-sustaining therapies (hi) is the one that is most often recommended by the
algorithm.

Second opinion recommendations in predictions of neurological recovery Now
that the methodology has been validated in semi-synthetic data, we move to see what the
recommendations would look like in the real-world data, where we do not have ground
truth for what the second opinions would be.

For consistency with the first part of this Section, we use the exact same models and
data partitions. Table 3.6 presents a summary of basic statistics for each physician, in-
cluding number of decisions assigned to each physician, percentage of cases for which they
extend life sustaining therapies, and the mean and standard deviation of the influence over
the cases in the set {x : fh(x) < 0.1}, where fh(x) is calculated via cross-validation in
the training set. The Pearson correlation coefficient between the average influence and the
rate at which physicians extend life sustaining therapies is −0.059, which shows that the
influence is not merely capturing whether the physician is on average more likely to extend
life sustaining therapies.

Figure 3.19 shows examples of cases that are predicted to be withdrawn with high
likelihood (fh(x) < 0.1) and for which there is a suggested second opinion. Physicians
with the largest positive influence would be asked for their opinion, as they influence the
predicted probability away from the estimated (low) probability of extending life-sustaining
therapies. However, not all cases have a suggested second opinion, since there are instances
where no physician has a non-negligible influence, as shown in Figure 3.20a. The intuition
behind these cases is that perturbations of the training data shifting the importance given
to each physician would not change the predicted probability. Similarly, there are cases
where all non-negligible influence is negative, meaning that there are perturbations that
would make the predicted probability of non-withdrawal even lower, but there are no
perturbations that would make it higher, as seen in the example in Figure 3.20.
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h count rate extend mean infl. std infl.

h5 127 0.37 0.0039 0.0282
h11 115 0.41 0.0035 0.0344
h0 91 0.45 -0.0096 0.0440
h10 70 0.50 0.0070 0.0205
h6 55 0.24 0.0042 0.0203
h9 55 0.25 0.0013 0.0180
h15 18 0.28 0.0053 0.0212
h1 13 0.31 0.0019 0.0105
h3 13 0.38 0.0032 0.0139
h7 11 0.27 0.0001 0.0082
h8 3 0.67 -0.0003 0.0017
h2 2 0.50 -0.0014 0.0180
h12 1 0.00 -0.0002 0.0009
h13 1 1.00 -0.0003 0.0021
h4 1 0.00 0.0000 0.0008

Table 3.6: Summary of basic statistics for each physician, including number of decisions
assigned to each physician, percentage of cases for which they extend life sustaining ther-
apies, and the mean and standard deviation of the influence over the cases in the set
{x : fh(x) < 0.1}, where fh(x) is calculated via cross-validation in the training set.

Naturally, the next question that arises is: for how many cases would there be a recom-
mended second opinion? Figure3.21 shows a scatterplot of the influence of all physicians
for each point in the set {x : fh(x) < 0.1}, for x in the training set and fh(x) estimated
via cross-validation. The set of physicians considered is restricted to the 10 physicians who
observe more than 10 cases, since the influence of the others may not be too sensitive to
outliers. The x-axis corresponds to the data points, ordered according to the variance in
the influence. While some cases have very low variance, for most cases there is at least one
physician who, if given more weight, would increase the predicted probability of extend-
ing life-sustaining therapies. Physicians with positive influence are candidates for being
consulted for a second opinion.

Another important question to ask is: who is recommended for a second opinion? If
there is a single physician that is always recommended by the algorithm, this would not
be useful in practice, as it would overburden this person and would always be recommend-
ing the same perspective. Figure 3.22a shows the frequency with which each physician
would be consulted for a second opinion, according to the proposed methodology. More-
over, Figure 3.22a shows the rate at which the physicians extend life-sustaining therapies.
The comparison between these two plots shows that the second opinion is not simply
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Figure 3.19: Examples of distribution of influence for cases that are predicted to be with-
drawn with high likelihood (fh(x) < 0.1) and for which there is a suggested second opinion.
Physicians with the largest positive influence would be asked for their opinion, as they in-
fluence the predicted probability away from the estimated (low) probability of extending
life-sustaining therapies.

capturing who is more likely to extend life-sustaining therapies. For example, physician
h6 is frequently recommended for a second opinion, even though their overall rate of non-
withdrawal is quite low. This highlights an attribute of the influence-driven second opinion:
unlike summary statistics of the overall behavior, the influence-driven approach provides
recommendations for individual cases.

Finally, analyzing the distribution of the influence for each physician can tell us about
their behavior with respect to the rest of their colleagues and, even more so, to the predic-
tions made by the algorithm. Figure 3.23 shows the influence of each physician for the set
{x : fh(x) < 0.1}, for x in the training set, for fh(x) estimated via cross-validation. For
each physician, the datapoints were ordered according to the magnitude of the influence.
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Figure 3.20: Examples of distribution of influence for cases without suggested second
opinions. In (a) all physicians have virtually null influence, and in (b) no physician has a
non-negligible influence on the predicted probability in the positive direction.

As it can be seen in the Figure, the distribution of influence is similar across physicians,
with a large concentration around 0 and tails of varying lengths. However, there are physi-
cians, e.g. h6, for whom the influence skews towards the positive direction, while others,
e.g. h0, skew towards a higher frequency of negative influences. Additionally, it can be
seen how some, e.g. h7 rarely have a non-negligible influence.
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Figure 3.21: Influence of physicians for each case in the set {x : fh(x) < 0.1}, for x in the
training set and fh(x) estimated via cross-validation. X-axis corresponds to cases, ordered
by the variance in the influence. While some cases have very low variance, for many cases
there is at least one physician who, if given more weight, would increase the predicted
probability of extending life-sustaining therapies. Physicians with positive influence are
candidates for being consulted for a second opinion.
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Figure 3.22: (a) Frequency with which each physician would be consulted for a second
opinion, according to the proposed methodology, and (b) rates at which each physician
extends life-sustaining therapies. On (a) it can be observed that different physicians would
be recommended for second opinions, and the comparison between both plots shows that
the second opinion is not simple capturing who is more likely to extend life-sustaining
therapies.
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Figure 3.23: Influence of each physician for the set {x : fh(x) < 0.1}, for x in the training
set, for fh(x) estimated via cross-validation. X-axis corresponds to ordered index according
to magnitude of influence, per physician. While the distribution of influence is similar across
physicians, some (e.g. h6) skew towards a positive influence, whereas others (e.g. h0) skew
towards a negative influence, and some (e.g. h7) have influence very close to zero for most
cases.



Chapter 4

Conclusions

4.1 Summary of contributions

4.1.1 Methodological contributions

Unraveling complex structures to inform decisions Chapter 1 introduces Canon-
ical Autocorrelation Analysis (CAA), a method for automated discovery of multiple-
to-multiple correlation structures within a set of features. This method, which builds on
sparse Canonical Correlation Analysis (CCA) and Principal Component Analysis (PCA),
can be useful when looking for hidden parsimonious structures in data, each involving only
a small subset of all features. The utility of CAA for anomaly detection is demonstrated
in Chapter 1, which also introduces a distance metric between CAA correlation structures
in Section 1.3.4, enabling us to obtain a feature space embedding termed Canonical Au-
tocorrelation Embeddings (CAE). In this embedding, each individual/object is repre-
sented by the set of its multivariate correlation structures. This methodology is particularly
fitting to supervised learning tasks where each individual or object of study has a batch
of data points associated to it, as in for instance patients for whom several vital signs or
other health related parameters are recorded over time.

Exposing and penalizing structures that may bias decisions Chapter 2 intro-
duces algorithmic fairness methodology for discovering and mitigating biases. Section 2.2
introduces an Unsupervised Bias Enumeration Algorithm (UBE) for word embed-
dings. The associations are identified by geometric patterns in word embeddings that run
parallel between people’s names and common lower-case tokens. The algorithm is highly
unsupervised as it does not require the sensitive features to be pre-specified. This is desir-
able because: (a) many forms of discrimination–such as racial discrimination–are linked to
social constructs that may vary depending on the context, rather than to categories with
fixed definitions; and (b) it makes it easier to identify biases against intersectional groups,
which depend on combinations of sensitive features. The application of this algorithm ex-
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poses a large number of offensive associations related to sensitive features such as race and
gender on publicly available embeddings, including a supposedly ”debiased” embedding.
Section 2.2 proposes one of the first methodologies to reduce bias in predictive models
without requiring access to protected attributes. This method leverages the societal
biases that are encoded in word embeddings, eliminating the need for access to protected
attributes. Crucially, it only requires access to individuals’ names at training time and
not at deployment time. Two variations of the proposed method are evaluated using a
semi-synthetic as well as a large-scale dataset of online biographies. The results show that
both variations can simultaneously reduce race and gender biases.

Leveraging structures in humans’ historical decisions Drawing inspiration from
the literature on crowd-sourcing and wisdom of the crowds, Chapter 3 proposes methodol-
ogy to tackle some of the limits of learning from observed outcomes alone by also learning
from consistency amongst experts. However, while in crowd-sourcing the same instance
is assessed by multiple people, in historical data of experts’ decisions it is often the case
that each instance is assessed by a single expert, such as a physician or a judge. I pro-
pose an influence-function-based method to estimate human consistency. The
proposed method identifies cases for which the human decisions can be predicted with high
confidence and for which the prediction is influenced by the historical decisions of several
experts. Under the assumption that human consistency is indicative of correctness, this
human knowledge can then be incorporated into a model trained to predict observed labels
through a proposed label amalgamation approach. When it cannot be assumed that
expert consistency is indicative of correctness, influence functions can be used to answer
the question “who should the expert ask for a second opinion”. Chapter 3 closes with a
proposed approach for influence-driven second opinion recommendation .

4.1.2 Domain-specific contributions

Nuclear physics In Chapter 1 the proposed CAA method is applied to perform anomaly
detection to identify potential nuclear threats. The results show that this method can help
detect sources of radiation embedded in noisy background by finding multi-energy-bin
combinations that reflect correlations between subsets of bins characteristic to background
gamma-ray spectra. We show that such characterization of multiple-to-multiple bin corre-
lations can be used as a powerful alternative to popular spectral anomaly detection methods
which represent a null-space of expected background variance using linear combinations of
photon counts observed in all energy bins. CAA’s ability to focus on the most informative
subsets of bins allows it to more effectively characterize background radiation variability,
enabling higher threat sensitivity at lower false detection rates, when compared to the
standard PCA-based approach.
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Automated recruiting Chapter 2.1 presents a large-scale study of gender bias in au-
tomated recruiting. Maintaining an online professional presence has become increasingly
important for people’s careers, and this information is often used as input to automated
decision-making systems that advertise open positions and recruit candidates for jobs and
other professional opportunities. In order to perform these tasks, a system must be able to
accurately assess candidate’s current occupations, skills, interests, and “potential.” How-
ever, even the simplest of these tasks–determining someone’s current occupation–can be
non-trivial. The results in Chapter 2.1 show that occupation classification is susceptible
to gender bias, stemming from existing gender imbalances in occupations, and that remov-
ing explicit gender indicators ( e.g. gender pronouns) is not enough to remove this bias.
Additionally, the theoretical results show that whenever differences in true positive rates
are correlated with pre-existing imbalances–as shown to happen in the large-scale study
conducted in this thesis–, the imbalances will be compounded.

Child welfare Efforts to increase the availability of historical information about children
and adults involved in calls received at the child abuse and maltreatment hotline have
been accompanied by an interest in the use of risk assessment tools to aid call workers
in identifying high-risk cases. Chapter 3 studies the risk of learning under omitted payoff
bias in this context. The empirical results indicate that there are elements of risk that
are optimized for by call workers but that are not wholly captured in the target label
optimized for in currently deployed models, which could lead the risk assessment tool
to underestimate risk for some cases. The proposed label amalgamation methodology
successfully incorporates some of this information, bringing the construct optimized by
the algorithm closer to the construct that call workers care about. This result highlights
the importance of considering the construct validity of the target optimized for by the
algorithm and proposes a path forward.

Prediction of neurological recovery of comatose patients Chapter 1 present a
proof of concept to illustrate the potential utility of CAE by applying it to characterize
electroencephalographic recordings from 80 comatose survivors of cardiac arrest, aiming to
identify patients who will survive to hospital discharge with favorable functional recovery.
The results show that at a low false positive rate the approach is able to identify a significant
subset of patients who are likely to have a good neurological outcome, some of whom have
otherwise unfavorable clinical characteristics. Importantly, some of these patients had
5% predicted chance of favorable recovery based on initial illness severity measures alone.
This proof of concept shows that leveraging multivariate correlation structures present in
the EEG data could help unravel patterns that are indicative of a positive prognosis and
motivate the continuation of life-sustaining therapies for these patients. However, there are
limitations to the straight-forward application of machine learning to predict neurological
recovery. Chapter 3 uses EEG data collected over 10 years at a medical hospital to show
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that there exist a subset of patients who are consistently withdrawn from life-sustaining
therapies, which means that there is a subpopulation for whom there is no information
available of what would have happened if life-sustaining therapies had been continued.
This Chapter also introduces methodology and provides empirical evidence to show how
predictions vary when learning from observed outcomes alone and when also learning from
consistent decisions historically made by physicians. Finally, the Chapter closes proposing
an approach to use machine learning to recommend physicians who to ask for a second
opinion when deciding if life-sustaining therapies should be extended.

4.2 Broader impact

Machine learning as a tool to increase usability of complex data As Chapter 1
shows, machine learning provides an opportunity to support experts’ decisions by summa-
rizing and discovering signals contained in complex sources of data. While experts usually
have access to this data and routinely make use of it, the raw data is often hard for them
to parse, leading to and under-utilization of information. For example, bedside monitoring
continuously records multiple timeseries data of patients, but physicians can only con-
sume and interpret a portion of it. Similar situations arise when analysts are interpreting
spectral measurements in an effort to detect potential radioactive threats, as discussed in
Chapter 1, or when call workers are provided with hundreds of features of historical in-
formation concerning a call received at the child abuse hotline, as discussed in Chapter 3.
The methodology proposed in Chapter 1, and the empirical results shown, contribute to a
growing body of literature on algorithmic-assisted decision making in high-stakes settings.

Algorithms, compounding injustices, and “leaky pipelines” Chapter 2.1 shows
that whenever gaps in true positive rates are correlated with previous class imbalances, the
imbalances will be compounded. I relate this effect to compounding injustices—an existing
notion of indirect discrimination in the political philosophy literature that holds that it is
a general moral duty to refrain from taking actions that would harm people when those
actions are informed by, and would compound, prior injustices suffered by those people [1].
If a classifier compounds existing imbalances (e.g. gender imbalances in occupations), then
the underrepresented will become even further underrepresented over time–a phenomenon
sometimes referred to as the “leaky pipeline.” This result has important practical relevance
at a time when algorithmic decision support is increasingly adopted by organizations, many
of which are simultaneously trying to improve diversity and inclusivity of their workplaces
and products.

Algorithmic fairness: beyond fixed and known protected attributes Most method-
ologies to mitigate algorithmic bias require access to protected features. However, those
deploying ML technologies often lack access to such features, and their use in certain do-
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mains may constitute disparate treatment under some legislations. For example, under
Title VII employers can be found liable for employment discrimination if membership in
a protected class is part of the input features of a model used to classify employees or
potential hires, since this could constitute disparate treatment [151]. Moreover, discrimi-
nation is linked to complex social constructs that interact with each other, vary depending
on the context, and cannot be reduced to binary encodings. Chapter 2 introduces some
of the first methodologies to enumerate and mitigate biases without access to protected
attributes. The proposed work can inform the design and deployment of methods that
better suits the reality of operational and societal contexts.

Optimizing for constructs that matter: beyond observed labels In most public
policy settings, humans are optimizing for complex constructs that are not easily quantifi-
able, such as social welfare. Chapter 3 studies this in the context of child welfare, where
call workers are concerned with assessing whether a child is at risk of adverse outcomes,
while deployed models estimate the probability of out-of-home placement, an imperfect
proxy for risk. A similar situation arises in criminal justice, where risk assessment mod-
els meant to assist judges in bail decisions estimate the probability of recidivism, while
judges are concerned with more complex constructs. This is illustrated by the fact that
while youth is predictive of a higher risk of recidivism, it is also considered by judges as
a mitigator, as it implies a lower level of culpability [152]. As a result, predictive models
trained on quantifiable proxies of these outcomes may appear effective according to eval-
uation metrics, but deviate from what experts care about during deployment. Chapter 3
characterizes this disconnect and proposes ways to mitigate it. This work informs the po-
tential risks of deploying algorithmic tools in sensitive policy domains, and gives a first step
towards bridging the gap between what the algorithm optimizes and what the experts–and
society–care about.
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Appendix

A.1 Solution of CAA optimization problem via KKT condi-
tions

Without loss of generality, assuming v is fixed and we are optimizing for u, the optimization
problem in Lagrangian form can be written as formulated in Eq. A.1.

min
u
−uTXTXv +

m∑
i=1

(λ1||vi||1 + λ2)||ui||1

+λ3||u||22 − λ2c1 − λ3

for 0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 10 ≤ λ1, 0 ≤ λ2, 0 ≤ λ3

(A.1)

The KKT conditions are:

• Stationarity: 0 ∈ −XTXv + 2λ3u+ Γ

for Γi = (λ2 + λ1|vi|)sgn(ui) ∀i = 1, ...,m

• Complementary slackness:

λ1
∑m

i=1 |ui||vi| = 0; λ2(||u||21 − c1) = 0; λ3(||u||22 − 1) = 0

• Primal feasibility:
∑m

i=1 |ui||vi| ≤ 0; ||u||21 − c1 ≤ 0; ||u||22 − 1 ≤ 0

• Dual feasibility: 0 ≤ λi, i = 1, 2, 3

From complementary slackness and primal feasibility, either λ3 = 0 and ||u||2 ≤ 1, or
λ3 > 0 and ||u||2 = 1. Assuming λ3 > 0 and solving the stationarity condition, we obtain
that for i = 1, ...,m, Eq. A.2 holds, where Sλ(x) is the soft-thresholding operator.

2λ3ui = S(λ1|vi|+λ2)((X
TXv)i) (A.2)

From complementary slackness, λ3 must be such that ||u||2 = 1, therefore, Eq. A.3 is
obtained.

130
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u =
SΦ(v)(X

TXv)

||SΦ(v)(XTXv)||22
(A.3)

Φ(v, λ1, λ2) : Rm −→ Rm
vi −→ λ1|vi|+ λ2

Additionally, λ1 must be such that
∑m

i=1 |ui||vi| = 0, which will be guaranteed by

setting λ1 = max
i

|(XTXv)i|
|vi|

. Finally, either λ2 = 0 results in a feasible solution, or λ2 is

chosen such that ||u||1 = c1, which can be done through a binary search.

A.2 Relationship between CAA and Sparse PCA

As mentioned in Section 1.1, CAA and Sparse PCA have fundamentally different objectives,
but given that Sparse CCA applied to identical matrices (X = Y ) results in Sparse PCA
components, it is worth taking a look at the details of how CAA and Sparse PCA differ.
While Sparse PCA finds one-dimensional projections of data that maximize variance of
data, CAA finds two-dimensional projections where correlation between the two sets is
maximized. Furthermore, it is easy to see how the variables retrieved by CAA differ from
those retrieved by Sparse PCA. As previously mentioned, applying Sparse CCA to matrices
X = Y results in Sparse PCA solutions u = v [31]. Therefore, Sparse PCA can be written
as

maxu,vu
TXTXv

||u||22 ≤ 1, ||v||22 ≤ 1 ||u||1 ≤ c1, ||v||1 ≤ c2

(A.4)

In the following, we analyze how the objective values retrieved by CAA (Eq. 1.2) and
Sparse PCA (Eq. A.4) differ.

• Sparse PCA optimal criterion value retrieved:

uTXTXu = (
∑

i∈P uiXi)
T (
∑

j∈P ujXj)

=
∑
i∈P

∑
j∈P

uiujX
T
i Xj

for P = {i|ui 6= 0}

• CAA optimal criterion value retrieved:
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luTXTXv − λutv = (
∑
i∈P1

uiXi)
T (
∑
i∈P2

viXi)− λuT v (A.5)

for P1 = {i|ui 6= 0}, P2 = {i|vi 6= 0} (A.6)

(A.7)

Accounting for the constraint that the vectors u, v in the solution are orthogonal, we
can rewrite this as:

(
∑
i∈P1

uiXi)
T (
∑
j∈P2

vjXj) s.t. P1 ∩ P2 = ∅

= (
∑
i∈P1

∑
j∈P2

uivjX
T
i Xj) s.t. P1 ∩ P2 = ∅.

Notice that in the case of Sparse PCA, all interactions between variables in the subset
P are considered, while CAA only considers interactions across two disjoint groups. There-
fore, there are two types of interactions Sparse PCA considers that CAA does not: the
variance of each variable and correlation/covariance between variables in the same subset.
Note the first one is only relevant for Sparse PCA when using the covariance matrix, but
the second is relevant both when Sparse PCA is applied to the correlation matrix or to
the covariance matrix. As a result, CAA and Sparse PCA optimize different objectives,
retrieving vectors that involve different subsets of features, and such subsets correspond to
different types of structures in data.

A.3 Proof: CAA distance metric

In this section we prove that the metric defined to measure the distance between CAA
canonical spaces satisfies the necessary conditions to be a well-defined distance.

d(C1, C2) = min(||u1 − u2||2 + ||v1 − v2||2 , ||u1 − v2||2 + ||v1 − u2||2) (A.8)

• Non-negativity: stems directly from the non-negativity of the `2 norm, together with
the fact that the set of non-negative real numbers is closed under the summation and
minimum operations.
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• Identity:

0 = min(||u1 − u2||2 + ||v1 − v2||2 , ||u1 − v2||2 + ||v1 − u2||2)

⇔ 0 = ||u1 − u2||2 + ||v1 − v2||2 ∨ 0 = ||u1 − v2||2 + ||v1 − u2||2
⇔ (0 = ||u1 − u2||2 ∧ 0 = ||v1 − v2||2)

∨ (0 = ||u1 − v2||2 ∧ 0 = ||v1 − u2||2)

⇔ (u1 = u2 ∧ v1 = v2)

∨ (u1 = v2 ∧ v1 = u2)

Given that we are dealing with these as non-ordered pairs, d(C1, C2) = 0⇔ C1 = C2.

• Symmetry: Stems directly from the fact that we define C1 and C2 as non-ordered
pairs, hence the definition of the distance for each is exactly the same.

• Triangle inequality: The triangle inequality comes as a result of the triangle inequality
of the `2 norm. We want to show that

d(C1, C3) ≤ d(C1, C2) + d(C2, C3)

d(C1, C3) ≤ ||u1 − u3||2 + ||v1 − v3||2
= ||u1 − u3 + u2 − u2||2 + ||v1 − v3 + v2 − v2||2

≤ ||u1 − u2||2 + ||u2 − u3||2 + ||v1 − v2||2 + ||v2 − v3||2
= ||u1 − u2||2 + ||v1 − v2||2 + ||u2 − u3||2 + ||v2 − v3||2

Through an analogous process,

d(C1, C3) ≤ ||u1 − u3 + v2 − v2||2 + ||v1 − v3 + u2 − u2||2
≤ ||u1 − v2||2 + ||v1 − u2||2 + ||v2 − u3||2 + ||u2 − v3||2

Additionally, the following is also true:

d(C1, C3) ≤ ||u1 − v3||2 + ||v1 − u3||2

Therefore, through analogous reasoning, we derive the following two sets of inequal-
ities:
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d(C1, C3) ≤ ||u1 − v3 + u2 − u2||2 + ||v1 − u3 + v2 − v2||2
≤ ||u1 − u2||2 + ||v1 − v2||2 + ||u2 − v3||2 + ||v2 − u3||2

d(C1, C3) ≤ ||u1 − v3 + v2 − v2||2 + ||v1 − u3 + u2 − u2||2
≤ ||u1 − v2||2 + ||v1 − u2||2 + ||v2 − v3||2 + ||u2 − u3||2

The four inequalities we have derived span the four possible cases for d(C1, C2) +
d(C2, C3), which concludes our proof.

A.4 Principal angles and CAA

Although principal angles might initially seem like a good alternative to measure distances
between CAA canonical spaces, note that this is not a viable option. Even though each pair
of vectors defining a CAA canonical space constitute an orthonormal basis of a subspace,
two orthogonal basis defining the same subspace do not represent the same correlation
structure. This can be derived from the fact that, as shown in Section 1.3.4, two different
pairs of vectors cannot represent the same correlation structure. It is also easy to under-
stand why this would not be the case with a simple counterexample in R3. Consider the
following two pairs of vectors:{

u1 = (1, 0, 0)
v1 = (0, 1, 0)

{
u2 = ( 1√

2
, 1√

2
, 0)

v2 = ( 1√
2
,− 1√

2
, 0)

Even though they are both orthonormal bases of the same subspace, u1v
T
1 6= u2v

T
2 .

A.5 PCA spectral anomaly detector

The PCA spectral anomaly detector used for comparison purposes in this paper is fre-
quently used in the radiation threat detection domain, and the description provided in this
abstract can also be found in [8]. The algorithm first filters the energy data and performs
smoothing via a 10s rolling window. It then computes the special covariance matrix shown
in Equation A.9, where we assume the background data is a matrix X ∈ Rn×q. This
covariance matrix retains 0.01 of the mean, instead of fully centering the data.
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Σ =
XXT

q
− 0.99mmT

mj =
n∑
i=1

Xi,j

(A.9)

The correlation matrix C = AΣA is later calculated, where A is the design matrix

A = diag(
1

diag(Σ + 1)
)

Finally, the Singular Value Decomposition is performed on the correlation matrix and
the basis matrix T is created as

T = Iq −A−1UPCU
T
PCA

where UPC contains the top principal component eigenvectors. Finally, the residuals
can be obtained as σ =|| TXT

test ||2.

A.6 Sparse PCA spectral anomaly detector

Even though Sparse PCA is not generally used in the radiation threat detection domain,
a Sparse PCA spectral anomaly detector was designed and implemented for comparison
purposes in this paper. As in the case of the PCA-based approach, the algorithm first filters
the energy data and performs smoothing via a 10s rolling window. It then normalizes the
data to have mean of 0.01 the original mean and and Euclidean length of each column
equal to 1, where each column corresponds to a variable.

Top sparse principal components, USpc, are extracted using the algorithm in [153],
which is itself based on the formulation done in [154].

The basis matrix T is created as

T = Iq − USpcUTSpc
Given a new data set Xtest, it is first normalized using the mean and Euclidean length

of the training data, and then residuals are obtained as σ =|| TXT
test ||2.
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A.7 EEG features

EEG features.
Below is the complete list of the EEG features available and used in Chapter 1.

Feature Details

Artifact Intensity Muscle
Artifact Intensity Chew
Artifact Intensity V-Eye
Artifact Intensity L-Eye
Artifact Detector (Signal quality -Electrode 1)
Artifact Detector (Signal quality -Electrode 2)
Artifact Detector (Signal quality -Electrode 3)
Artifact Detector (Signal quality -Electrode 4)
Artifact Detector (Signal quality -Electrode 5)
Artifact Detector (Signal quality -Electrode 6)
Artifact Detector (Signal quality -Electrode 7)
Artifact Detector (Signal quality -Electrode 8)
Artifact Detector (Signal quality -Electrode 9)
Artifact Detector (Signal quality -Electrode 10)
Artifact Detector (Signal quality -Electrode 11)
Artifact Detector (Signal quality -Electrode 12)
Artifact Detector (Signal quality -Electrode 13)
Artifact Detector (Signal quality -Electrode 14)
Artifact Detector (Signal quality -Electrode 15)
Artifact Detector (Signal quality -Electrode 16)
Artifact Detector (Signal quality -Electrode 17)
Artifact Detector (Signal quality -Electrode 18)
Seizure Probability
aEEG, Left Hemisphere Max
aEEG, Left Hemisphere Min
aEEG, Left Hemisphere Median
aEEG, Left Hemisphere Q75%
aEEG, Left Hemisphere Q25%
aEEG, Right Hemisphere Max
aEEG, Right Hemisphere Min
aEEG, Right Hemisphere Median
aEEG, Right Hemisphere Q75%
aEEG, Right Hemisphere Q25%
aEEG+(filt)(LFF0.16sec,HFF(off), aEEG2-20 512), L Max
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aEEG+(filt)(LFF0.16sec,HFF(off),aEEG2-20 512), L Min
aEEG+(filt)(LFF0.16sec,HFF(off),aEEG2-20 512), L Median
aEEG+(filt)(LFF0.16sec,HFF(off),aEEG2-20 512), L Q75%
aEEG+(filt)(LFF0.16sec,HFF(off),aEEG2-20 512), L Q25%
aEEG+(filt)(LFF0.16sec,HFF(off),aEEG2-20 512), R Max
aEEG+(filt)(LFF0.16sec,HFF(off),aEEG2-20 512), R Min
aEEG+(filt)(LFF0.16sec,HFF(off),aEEG2-20 512), R Median
aEEG+(filt)(LFF0.16sec,HFF(off),aEEG2-20 512), R Q75%
aEEG+(filt)(LFF0.16sec,HFF(off),aEEG2-20 512), R Q25%
PeakEnvelope, 1 - 20 Hz, Left Hemisphere
PeakEnvelope, 1 - 20 Hz, Right Hemisphere
Spike Detections
Suppression Ratio, Left Hemisphere
Suppression Ratio, Right Hemisphere
FFT Power, 1 - 4 Hz, Left Hemisphere
FFT Power, 1 - 4 Hz, Right Hemisphere
FFT Power, 4 - 8 Hz, Left Hemisphere
FFT Power, 4 - 8 Hz, Right Hemisphere
FFT Power, 8 - 13 Hz, Left Hemisphere
FFT Power, 8 - 13 Hz, Right Hemisphere
FFT Power, 13 - 20 Hz, Left Hemisphere
FFT Power, 13 - 20 Hz, Right Hemisphere
FFT Alpha/Delta, 8-13/1-4 Hz, Left Hemisphere
FFT Alpha/Delta, 8-13/1-4 Hz, Right Hemisphere
Rhythmicity Spectrogram, Left Hemisphere 1-4Hz
Rhythmicity Spectrogram, Left Hemisphere 4-8Hz
Rhythmicity Spectrogram, Left Hemisphere 8-13Hz
Rhythmicity Spectrogram, Left Hemisphere 13-20Hz
Rhythmicity Spectrogram, Right Hemisphere 1-4Hz
Rhythmicity Spectrogram, Right Hemisphere 4-8Hz
Rhythmicity Spectrogram, Right Hemisphere 8-13Hz
Rhythmicity Spectrogram, Right Hemisphere 13-20Hz

A.8 Radiation threat detection: ROC curves

Receiver operating characteristic (ROC) curves for all 15 types of threats for which CAA
was tested are shown below. All PCA, Sparse PCA and CAA were trained using benign
background radiation, and the resulting model was evaluated on similar background data
inclusive of signatures of 15 different types of threats. In the ROC curves, the false positive
rate axis is shown in logarithmic scale, to enhance view at low false positive rates.
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(a) Threat A (b) Threat B (c) Threat C

(d) Threat D (e) Threat E (f) Threat F

(g) Threat G (h) Threat H (i) Threat I

(j) Threat J (k) Threat K (l) Threat L

(m) Threat M (n) Threat N (o) Threat O
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A.9 True positive rate gender gaps across representations

Figure A.2 shows TPR gender gaps for BOW trained without gender indicators. Fig-
ures A.3 and A.4 show the results for WE, with and without gender indicators, respec-
tively. Figures A.5 and A.6 show the results for DNN, with and without gender indicators,
respectively.

A.10 Attention to gender

A.10.1 Attention to gender proxies

Figure A.7 shows the aggregated attention of the DNN model to words “wife” and “hus-
band”. As with the word “women”, the model trained without gender indicators places
more attention on these words. Notice, however, that the shift in attention weights, while it
exists, is smaller than for the word “women”, which is consistent with the lower aggregate
attention in the gender prediction model.

A.10.2 Attention to gender indicators

Figure A.8 shows the attention of the model, trained with and without gender indicators,
on the word “she” during the prediction of the occupation based on biographies with gender
indicators. One may expect that in the latter case the model would not attend to this word
as it has not seen it during the training. However, the results indicate quite the opposite. In
fact, the model puts much more attention to it. This can be attributed to the use of word
embeddings, which enables the model to learn about words even if it has not explicitly seen
them. Interestingly, when exposed to the word “she” during prediction, the model seems
to receive a stronger gender signal than it has seen during training, and pays a significant
amount of attention to it.

A.11 Offensive Stereotypes and Derogatory Terms

The authors consulted with colleagues whether to display the offensive terms and stereo-
types that emerged from the embedding using our algorithms. First, regarding derogatory
terms, people we consulted found the explicit inclusion of some of these terms offensive.
We are also sensitive to the fact that, even in investigating them, we are ourselves using
them. The terms we bleep-censor in the tables include slurs regarding race, homosexuality,
transgender, and mental ability [155]. In particular, these include three variants on “the n
word” [156], shemale, faggot, twink, mentally retarded, and rednecks. It is not obvious that
such slurs would be generated given common naming conventions. Nonetheless, many of
these terms were in groups of words that matched stereotypes indicated by crowd workers.
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Of course, the associations of words and groups are also offensive, but unfortunately,
it is impossible to convey the nature of these associations without presenting the words in
the tables associated with the groups. In an attempt to soften the effect, we use group
letters rather than illustrative names or summary statistics in our tables. While this
decreases the transparency, it gives the reader a choice about whether or not to examine
the associated names. Some colleagues were taken aback by an initial draft, in which names
and associations were displayed in the same table, and it was noted that it that may be
especially offensive to individuals whose name appeared on top of a column of offensive
stereotypes. For the names, we restrict our selection of names to those that had at least
1,000 occurrences in the data so that the name would not be uniquely identified with any
individual.

In addition, we considered withholding the entire tables and merely presenting the
rating statistics. However, we decided that, given that our concern in the analysis is un-
covering that such troubling associations are being made by these tools, it was important to
be clear and unflinching about what we found, and not risk obscuring the very phenomenon
in our explanation.

A.12 Proofs of Lemmas

Proof of Lemma 1. For n = 2, using our X notation and their assumption |X1| = |X2|,
simple algebra shows that,

(X1 −X2) · (A1 −A2) =
1

|X1|
s(X1, A1, X2, A2).

Since µ = (X1 +X2)/2, we have that X1 − µ = (X1 −X2)/2 = −(X2 − µ), and:

g(X1, A1, X2, A2) = (X1 − µ) · (A1 −A) + (X2 − µ) · (A2 −A)

=
X1 −X2

2
·
(
A1 −A− (A2 −A)

)
=

1

2
(X1 −X2) · (A1 −A2),

which when combined with the previous equality establishes the first equation in Lemma
1.

Proof of Lemma 2. Since we have shown that (X1−X2) · (A1−A2) = 2g(X1, A1, X2, A2)
above, we immediately have that g(X,A) = 2g(X,A,X ,A). Moreover, simple algebra

shows that g(X,A,X ,A) and g(X,A,Xc, Ac) are proportional because X−X = |Xc|
|X | (X−

Xc) and similarly A−A = |Ac|
|A| (A−Ac).

Proof of Lemma 3. Follows simply from the definition of g and µ for n ≥ 2 and n = 1.
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A.13 Preprocessing names and words for Chapter 2

A.13.1 Preprocessing first names from SSA dataset

The SSA dataset [102] has partial coverage for earlier years and includes all names with
at least 5 births, we use only years 1938-2017 and select only the names that appeared at
least 1,000 times, which cover more than 99% of the data by population. From this data,
we extract the fraction of female and male births for each name as well as the mean year
of birth. Of course, we select only the names appearing in the embedding.

Note that the mean of the fraction of females among our names is significantly greater
than 50%, even though the US population is nearly balanced in binary gender demograph-
ics. The subtle reason is there is greater variability in female names in the data, whereas
the most common names are more often male. That is, the data have fewer predomi-
nantly male first names in total with more people being given those names on average.
Since we are including each name only once, this increases the female representation in the
population.1

A.13.2 Preprocessing last names from U.S. Census

A dataset of last names is made publicly available by the Census Bureau of the United
States and contains last names occurring at least 100 times in the 2010 census [105], broken
down by percentage of race, including White, Black, Hispanic, Asian and Pacific Islander,
and Native American. Again we filter for names that appear at least 1,000 times and apply
the binary classification procedure described in Section 2.2.3 to clean the data.

A.13.3 “Cleaning” names

[89] apply a simple procedure in which they remove the 20% of words whose mean similarity
to the other names is smallest. We apply a similar but slightly more sophisticated procedure
by training an linear Support Vector Machine [scikit-learn’s LinearSVC, 100, with default
parameters] to distinguish the input names from an equal number of non-names chosen
randomly from the most frequent 50,000 words in the embedding. We then remove the
20% of names with smallest margin in the direction identified by the linear classifier.

Figure A.9 illustrates the effect of cleaning the last names and shows that the names
that tend to be removed are those that violate Zipf’s law.

1 We performed similar experiments on a sample of names drawn according to the population and, while the names
are gender balanced, the clusters exhibit less diversity and most often simply are split by gender and age – one
can even have an entire cluster solely consisting of people named Michael.
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A.13.4 Preprocessing words

To identify the most frequent M words in the embedding, we first restrict to tokens that
consist only of the 26 lower-case English letters or spaces for embeddings that contain
phrases. We also omit lower-case tokens when the upper-case version of the token is more
frequent. For instance, the lower-case token “john” is removed because “John” is more
frequent.

A.14 Biases in different lists/embeddings

Table A.1 shows the names from other embeddings. Table A.2 shows the biases found in
the “debiased” w2v embedding of [88], while Table A.3 show last-name biases generated
from the w2v embeddings.
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fast F1 fast F2 fast F3 fast F4 fast F5 fast F6 fast F7 fast F8 fast F9 fast F10 fast F11 fast F12

Nakesha Carolyn Tamara Lillian Alejandra Katelyn Ahmed Landon Stephan Marquell Greg Gerardo
Keisha Nichole Emi Lucinda Maricella Jayda Shanti Keenan Nahum Antwan Willie Renato

Kandyce Mel Isabella Velda Ona Shalyn Mariyah Skye Sabastian Dakari Edward Pedro
Kamilah Tawnya Karina Antoinette Fabiola Jaylyn Siddharth Courtland Philippe Pernell Jefferey Genaro

Rachal Deirdre Joli Flossie Sulema Evie Yasmin Luke Jarek Jarred Russ Matteo
+702 +821 +622 +478 +400 +851 +288 +576 +312 +440 +474 +234

98% F 98% F 97% F 96% F 93% F 90% F 64% F 22% F 9% F 6% F 4% F 2% F
1980 1972 1987 1972 1984 1993 1992 1991 1987 1984 1973 1987

29% B 4% B 5% B 14% B 2% B 3% B 6% B 5% B 6% B 34% B 8% B 1% B
3% H 2% H 9% H 9% H 64% H 2% H 4% H 1% H 9% H 3% H 3% H 65% H
1% A 2% A 6% A 6% A 8% A 2% A 33% A 3% A 4% A 2% A 5% A 7% A

66% W 91% W 80% W 71% W 25% W 93% W 56% W 90% W 80% W 61% W 84% W 27% W

glove F1 glove F2 glove F3 glove F4 glove F5 glove F6 glove F7 glove F8 glove F9 glove F10 glove F11 glove F12

Elsie Brenda Claudia Patrica Kylee Laticia Alejandra Amina Eldridge Damion Kevin Gustavo
Carlotta Katie Tiara Caren Shaye Jayci Epifanio Yair Tad Ronney Ernest Etienne

Elizabeth Janette Lena Mikala Tayla Shalanda Monalisa Rani Godfrey Winford Haley Lorenzo
Dovie Liza Melina Cherise Latasha Kalynn Eulalia Danial Asa Tavaris Matt Emil

Gladys Debra Sasha Lorine Jessi Noelani Alicea Safa Renard Tylor Gilbert Roberto
+263 +396 +359 +889 +520 +1270 +395 +396 +434 +627 +429 +218

99% F 98% F 95% F 94% F 89% F 83% F 68% F 58% F 18% F 11% F 7% F 6% F
1972 1974 1987 1973 1987 1978 1985 1989 1979 1982 1979 1987

15% B 4% B 6% B 7% B 9% B 14% B 1% B 5% B 13% B 11% B 7% B 3% B
11% H 3% H 12% H 3% H 3% H 28% H 67% H 4% H 3% H 2% H 3% H 41% H
6% A 3% A 7% A 2% A 3% A 2% A 9% A 22% A 4% A 2% A 4% A 6% A

68% W 89% W 73% W 88% W 85% W 55% W 22% W 68% W 80% W 84% W 85% W 50% W

deb. F1 deb. F2 deb. F3 deb. F4 deb. F5 deb. F6 deb. F7 deb. F8 deb. F9 deb. F10 deb. F11 deb. F12

Denise Kayla Evelyn Marquisha Zoe Kamal Nicolas Luis Michal Shaneka Randall Brian
Audrey Lynae Marquetta Madalynn Nana Nailah Carmella Deisy Astrid Dondre Scarlett Ernie

Maryalice Gabe Gaylen Celene Crystal Kalan Adrien Alexandro Ezra Laquanda Windell Matthew
Sonja Tayla Gaye Nyasia Georgiana Aisha Stefania Elsa Armen Tavon Corrin Kenny

Glenna Staci Eula Lanora Sariyah Rony Raphael Eliazar Juliane Tanesha Coley Wayne
+714 +845 +506 +819 +512 +334 +322 +538 +282 +688 +407 +313

99% F 81% F 80% F 78% F 71% F 62% F 59% F 56% F 54% F 49% F 29% F 5% F
1971 1989 1969 1984 1984 1991 1984 1986 1987 1983 1982 1974
4% B 4% B 17% B 5% B 10% B 6% B 6% B 1% B 2% B 49% B 9% B 5% B
3% H 3% H 6% H 3% H 9% H 5% H 16% H 72% H 6% H 3% H 3% H 3% H
3% A 2% A 4% A 3% A 11% A 32% A 5% A 8% A 3% A 2% A 4% A 5% A

89% W 91% W 72% W 89% W 70% W 56% W 73% W 18% W 88% W 45% W 83% W 87% W

w2v L1 w2v L2 w2v L3 w2v L4 w2v L5 w2v L6 w2v L7 w2v L8 w2v L9 w2v L10 w2v L11 w2v L12

Moser Stein Boyer Romano Murphy Cantrell Gauthier Burgess Gaines Lal Mendez Yu
Persson Zucker Lasher Klimas Nagle Wooddell Medeiros Willson Derouen Haddad Aguillon Tamashiro

Pagel Avakian Sawin Pecoraro Igoe Maness Lafrance Hatton Gaskins Mensah Aispuro Heng
Runkel Sobel Stoudt Arnone Crosbie Newcomb Lounsbury Mutch Aubrey Vora Forero Feng
Wagner Tepper Mcintire Morreale Dillon Greathouse Renard Patten Rodgers Omer Jurado Nakamura

+3035 +775 +3013 +1416 +665 +2444 +756 +2818 +1779 +423 +1913 +393

1% B 2% B 3% B 1% B 4% B 8% B 8% B 12% B 34% B 15% B 1% B 1% B
2% H 3% H 2% H 6% H 3% H 2% H 4% H 3% H 3% H 7% H 80% H 3% H
1% A 1% A 1% A 1% A 1% A 1% A 1% A 1% A 1% A 28% A 5% A 79% A

94% W 93% W 92% W 91% W 90% W 86% W 85% W 81% W 60% W 46% W 12% W 11% W

Table 6: The first name clusters from the fast, glove and debiased embeddings, followed by last name clusters from the
w2v embedding. Demographic statistics (computed a posteriori) are also shown though were not used in generation, including
percentage female (at birth), mean year of birth, and percentage Black, Hispanic, Asian/Pacific Islander, and White.

Table A.1: The first name clusters from the fast, glove and debiased embeddings, fol-
lowed by last name clusters from the w2v embedding. Demographic statistics (computed a
posteriori) are also shown though were not used in generation, including percentage female
(at birth), mean year of birth, and percentage Black, Hispanic, Asian/Pacific Islander, and
White.
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deb. F1 deb. F2 deb. F3 deb. F4 deb. F5 deb. F6 deb. F7 deb. F8 deb. F9 deb. F10

professor eighth grader, lifelong granddaughter, bloke, shopkeeper, mobster, translator, mathematician, cousin,
emeritus, seventh resident, grandson, chap, villager, chef, interpreter, physicist, jailer,
registered grader, postmaster, daughter hubby elder brother restaurateur notary researcher roommate
nurse, sixth grader homemaker
adjunct
professor
volunteering, seniors, grandparents, graduated, bedtime, expatriate, undocumented, blacks,
homebound, eighth grade, aunts, grandchildren, marital, hostels, farmworkers, academically,
nurse boys elderly siblings bisexual postgraduate bilingual mentally
practitioner r********

medley, bluegrass, trombone, artiste, maestro, flamenco, avant garde, rapper,
solo, bandleader, percussionist, verse, accordion, tango, violinist, gospel,
trio banjo clarinet remix operas vibes techno hip hop
volleyball, bass fishing, wearing racecourse, cricket, peloton, luge, basketball,
softball, rodeo, helmet, footy, badminton, anti doping, biathlon, sprints,
roping deer hunting horseback footballing cricketing gondola chess lifting

riding, weights
snorkeling

rural, westbound, foreshore, slum, seaside, barangays, settlements,
fairgrounds, southbound, tenements, headquarter, boutiques, squatters, prefecture,
tract eastbound tourist minarets countryside plazas inhabitants

attraction
supper, macaroni, halal, pizzeria, tortillas, kosher,
barbecue, green beans, sweets, mozzarella, salsa, vodka,
chili pancakes hummus pasta tequila bagel

dirhams, euros, peso, supervisory
emirate, francs, reais, board,
riyals vintages nationalized zloty,

ruble
pastor, baptized, mystical, fatwa, nuns, rabbis,
church, sisters, witch, mosque, papal, synagogue,
parish brothers afterlife martyrs monastery commune

captains, caretakers, cousins, punters, mediapersons, rappers,
bridesmaids, grandmothers, helpers, blokes, office recruits,
grads superinten- friends celebs bearers, officers

dents shopkeepers
clan, subcontinent, leftist, rightist, civil rights,
overthrow, rulers, indigenous disengage- segregation,
starvation tribals peoples, ment, racial

peasants oligarchs
rupees, pesos, shekels,
dinars, remittances, rubles,
crores cooperatives kronor

convicted child chargesheet, absentia, aggravated
felon, endangerment, absconding, annulment, robbery,
felony unlawful petitioner penitentiary aggravated
convictions, possession, assault,
probate vehicular felonious

homicide assault

Table 7: The top-12 WEATs output by our UBE algorithm on the “debiased” w2v embedding of Bolukbasi et al. (2016), again
with n = 12. Despite being debiased, demographic statistics (again computed a posteriori) reveal names still cluster by gender,
but the extreme gender clusters have many fewer statistically significant associations. For instance, the most male groups deb. F11
and deb. F12 are not shown because no significant associations were generated.

Table A.2: The top-12 WEATs output by our UBE algorithm on the “debiased” w2v

embedding of [88], again with n = 12. Despite being debiased, demographic statistics
(again computed a posteriori) reveal names still cluster by gender, but the extreme gender
clusters have many fewer statistically significant associations. For instance, the most male
groups deb. F11 and deb. F12 are not shown because no significant associations were
generated.
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w2v L1 w2v L2 w2v L3 w2v L4 w2v L5 w2v L6 w2v L7 w2v L8 w2v L9 w2v L10 w2v L11 w2v L12

potato kosher, pumpkin, mozzarella, pint, pecans, maple cider, fried sweets, tortillas, noodles,
salad, bagel, brownies, pasta, whiskey, grits, syrup, lager, chicken, saffron, salsa, dumplings,
pretzels, hummus donuts deli cheddar watermelon syrup, malt crawfish, mango tequila soy sauce
chocolate foie gras sweet
cake potatoes
concentra- disengage- unionists, province, antisocial blacks, non drug hyun,
tion ment, sectarian, separatist, behavior, segrega- governmen- traffick- bian,
camp, neocons, pedophiles sover- cricket, tion, tal, ers, motherland
extermina- intifada eignty asylum civil miscreants, leftist,
tion, seekers rights encroach- undocu-
postwar ments mented

co founder, assessor, restaura- solicitor, jailer, schoolboy, cheer- shopkeeper, translator, villager,
venture wildlife teur, selector, rancher, barrister, leader, aspirant, smuggler, vice,
capitalist, biologist, plumber, handicap- appraiser chap bailiff, taxi inter- housewife
psycho- secretary fire- per recruiter driver preter
therapist treasurer fighter
synagogues, log cabin, pizzeria, pubs, fair- rink, disused, locality, prefecture,
skyscraper, zoning borough, racecourse, grounds, cottage, derelict, slum, guesthouse,
studio ordinance, firehouse western acre tract, chalet leisure hostel metropolis

barn suburbs concession
stand

authors, crafters, mobsters, gardai, sheriffs, skaters, blokes, mediaper- migrant
hedgefund hobbyists, restaura- lads, folks, premiers, household- sons, workers,
managers, racers teurs, foot- appraisers mushers ers, newsmen, maids,
creators captains ballers solicitors office civil

bearers servants
rabbis, papal, archdio- denomina- vicar, pulpit, fatwa, rosary, commune,
synagogue, pontiff, cese, tion, creation- preaching, fasting, parish monks,
biblical convent clerical, pastor, ism, preach sufferings priest, temples

diocese church tradition- patron
alists saint

shekels, mill levy, millage, unfair rupees, pesos, baht,
settle- assessed payday dismissal, lakhs, remit- overseas,
ments, valuation, lenders, atten- dirhams tances, income
nonprofit tax appropria- dances, indigent earners

abatement tions takings
pollster, commis- ridings, desegrega- panchayat, barangay, plenary
liberal, sioners, selectmen, tion, candida- immigra- session,
moderates countywide, byelection uncommit- ture, tion landslide,

statewide ted, localities reform, multira-
voter congress- cial
registra- woman
tion

insider felonious sheriff, impaired affray, aggravated absconding, illegal
trading, assault, meth lab, driving, bailiffs, robbery, charge- immigrant,
attorneys, drug jailers criminal aggravated racially sheet, drug
lawsuit parapher- negligence, burglary charged, com- traffick-

nalia, peniten- probation plainant ing,
criminal tiary violation deadly
mischief weapon

loonie, sharemar- load peso, cross
francs, ket, shedding, reais, strait,
takeovers credit microfi- national- yuan,

crunch, nance, ization ringgit
gilts rupee

walleye, transat- crappie, shad, mangroves, sardines, mainland,
lakes, lantic, bass barrier jetty, tuna, seaweed,
aquarium iceberg, fishing, islands, kite archipel- island

flotilla boat ramp grouper ago
feedlot, cornfield, mowing, agro, farmwork- bamboo,
barley, pumpkins, deer saplings, ers, cassava,
wheat alfalfa hunting, livelihood coca, palm oil

pasture sugarcane

Table 8: The top-12 WEATs output by our UBE algorithm on the w2v embedding for last names. The corresponding name
groups are presented in Table 6.
Table A.3: The top-12 WEATs output by our UBE algorithm on the w2v embedding for
last names. The corresponding name groups are presented in Table A.1.



Appendix 146

0.2 0.4 0.6 0.8
% FEMALE

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

TP
R 

GE
ND

ER
 G

AP

professor

physician

attorneyphotographer
journalist

nursepsychologist

teacher

dentist

surgeon

architect painter

model

poet

filmmaker

software_engineer

accountant
composer

dietitian

comedian
chiropractor

pastor

paralegal

yoga_teacher

dj

interior_designer

personal_trainer

rapper

Figure A.2: Gender gap per occupation vs. % females in occupation for BOW trained
without gender indicators.
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Figure A.3: Gender gap per occupation vs. % females in occupation for WE trained with
gender indicators.



Appendix 148

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
% FEMALE

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

TP
R 

GE
ND

ER
 G

AP

professor
photographer

teacher

journalist

attorney

poet
psychologist

model

architect

composer

physician

filmmaker dentist

accountant

nurse

painter

surgeon

comedian

software_engineer

dietitian

pastor

personal_trainer

dj

rapper

yoga_teacher

chiropractor

interior_designer

magician

paralegal
message_therapistlandscape_architect

real_estate_broker

acupuncturist

Figure A.4: Gender gap per occupation vs. % females in occupation for WE trained
without gender indicators.
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Figure A.5: Gender gap per occupation vs. % females in occupation for DNN trained with
gender indicators.
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Figure A.6: Gender gap per occupation vs. % females in occupation for DNN trained
without gender indicators.
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(a) Aggregated attention to word “wife”

(b) Aggregated attention to word “husband”

Figure A.7: Aggregated attention of DNN to words “wife” (A.7a) and “husband” (A.7b).
In the left, results when model trained with gender indicators. In the right, results when
model trained without gender indicators.

Figure A.8: Aggregated attention of DNN to word “she”. In the left, results when model
trained with gender indicators. In the right, results when model trained without gender
indicators.



Appendix 152

Figure A.9: A plot of log-probability (y-axis) vs. word embedding index (x-axis) for the
last name data and the word2vec word embedding. Orange points represent last names we
keep and blue points are outliers we remove. As expected from Zipf’s law, the probabilities
and frequencies exhibit a power-law relationship. Names removed from the data by our
classifier, displayed in red, are typically words that have other more common uses than as
last names.
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