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Abstract

The application of AI and machine learning to complex scientific problems is becoming
increasingly widespread across various fields. A key challenge of scientific inference is to
derive parameter constraints that are both valid — meaning they include the true parameter
regardless of its (unknown) value at a specified confidence level, even in finite samples —
and precise — meaning they are as small as possible given the data-generating process.
However, standard machine learning approaches often fail to ensure that these properties
hold, thereby limiting the reliability of downstream scientific conclusions. In this dissertation,
we introduce several novel techniques to leverage regression, classification, and generative
models to construct confidence sets with strong statistical guarantees. The methods we
develop allow one to derive confidence sets that are simultaneously (1) valid across the entire
parameter space and in finite samples, (2) robust to prior probability shifts, (3) as precise as
possible when prior knowledge aligns with the target distribution, and (4) computationally
efficient. By bridging modern machine learning with classical statistical tools, we provide
a principled path towards integrating AI into scientific inference and discovery pipelines,
enabling advancements in fields such as astronomy, high-energy physics, biology, and beyond.
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Waldo test statistic τ̂Waldo in Equation (3.4). Center (green): For a calibration
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parameter space Θ via a quantile regression of pτWaldo on θ. Bottom: Given
an observation D, Neyman inversion converts the tests (which compare test
statistics with critical values) into a confidence region for θ. Right (red): For
a validation set T 2, we provide an independent assessment of the conditional
validity of constructed confidence regions by computing coverage diagnostics
across the entire parameter space. See Section 3.3.2 and Algorithm 3.1 for details. 32

3.2 Property I: Waldo guarantees conditional coverage across Θ, regardless
of the specified prior. Prior: θ „ N p0, 2q. Likelihood: D | θ „ N pθ, 1q.
Left: median of upper/lower bounds of constructed parameter regions. Right:
empirical coverage computed numerically using 100,000 samples for each θ over
a fine grid in Θ (i.e., not using coverage diagnostics). . . . . . . . . . . . . . . . 38
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power. Power curves computed by recording the number of times a wrong value
of θ is correctly outside the confidence set over 1,000 repetitions. Likelihood:
D „ N p40, 1q. Left: Wald and Waldo are equivalent when θ „ Up35, 45q . Right:
Waldo has higher power when θ „ N p40, 1q. . . . . . . . . . . . . . . . . . . . . 39
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coverage (Ppθ P RpDq | θq P r0.95 ˘ 0.03s). Prior: θ „ N p0, 0.1 ¨ Iq. Likelihood:
D | θ „ N pθ, 0.1 ¨ Iq. In both cases, we used normalizing flows to estimate the posterior. 40

3.5 Waldo converts posterior distributions into confidence regions with correct
conditional coverage and high power. Left Panel - Top: Examples of 95% credible
regions (blue) from posteriors estimated with normalizing flows and a Gaussian N p0, 2 ¨Iq

prior (gray) for different values of the true unknown parameter θ˚ (red star). Right
Panel - Top: Credible regions have conditional coverage close to the nominal level only
in a neighborhood of the prior, and severely undercover everywhere else. Left Panel
- Bottom: Corresponding 95% Waldo confidence sets (green), derived from the same
posterior estimates used for the top row. Right Panel - Bottom: Conditional coverage
for Waldo confidence sets achieves the nominal 1-α level everywhere, where α “ 0.05. 41

3.6 Waldo guarantees the nominal coverage level, and yields smaller confidence
intervals (more precise estimates of muon energy) with the higher-granularity
(“full”) calorimeter data. Left: Energy deposited by a θ « 3.2 TeV muon entering
a calorimeter with 32 ˆ 32 ˆ 50 cells. Center: Waldo (blue, orange, red in the right
two panels) guarantees nominal coverage (68.3%), while 1σ prediction intervals (green)
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on average wider than the corresponding confidence sets, using the same data. . . . . 42
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4.1 The likelihood-free inference setting. Panel A: With a forward model, we can
make predictions on data X given parameters θ. The inverse problem is to infer the
parameters θ of a model given observed data X. Panel B: In likelihood-free inference
(LFI), the likelihood ppX | θq is intractable. We consider two LFI scenarios, where
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parameter (indicated by a red star) lies in the tail of the prior πpθq. (Right) The actual
chance (coverage probability, y-axis) that the two HPD sets contain the true parameter
value can be far less than what the nominal coverage of 95% and 68%, respectively,
suggest, for a wide range of different θ-values (x-axis). Panel B: (Left) Recalibration —
our approach effectively transforms the posterior to a p-value function, which we then
slice to obtain valid (“Frequentist-Bayes”; FreB) confidence sets. (Right) The actual
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reliably reconstruct gamma-ray showers from unfamiliar sources. Panel A:
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as in Panel A, Top): the 90% HPD set (purple) is overconfident and biased (actual
coverage is 78%), while the 90% FreB set (green) provides valid and informative uncertainty. 50
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age-metallicity relationships implied by two Galactic models. The red curves indicate
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4.5 FreB is robust to label bias in observational studies. Panel A: Kiel
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Label Bias”), and where the labeled and unlabeled target data have the same
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Introduction

Recent advancements in artificial intelligence have opened unprecedented opportunities
across scientific disciplines, empowering researchers to analyze natural phenomena in greater
depth by leveraging complex, large-scale datasets spanning multiple modalities. In many
science applications, the key challenge is often to test currently accepted theoretical models
by designing experiments that can help in proving, disproving, or enriching our understand-
ing of the physical laws governing our universe. This has been the case in recent years, for
example, with the discovery of the Higgs Boson (Aad et al., 2012b; Chatrchyan et al., 2012),
the AI-drive detection of gravitational waves (Huerta et al., 2021) and the development of
the first deep learning model able to accurately predict the three-dimensional structure of
proteins Jumper et al. (2021).

As an integral part of these efforts, scientific inference often focuses on using data to
infer key parameters that govern complex data-generating processes. This data usually
comes in the form of a labeled set tpθi, XiquBi“1 collected either i) from a mechanistic model
(i.e., a simulator) that implicitly encodes the likelihood function Lpθ;Xq (e.g., Agostinelli
et al. (2003); Song et al. (2023)), or more generally from a statistical model that cannot
be evaluated (see, e.g., Davison et al. (2012)); or ii) from observational studies where
labels can be measured with high precision at least for a subset of the data (see, e.g.,
Laroche and Speagle (2024)). In both cases, Fθ : θ ÞÑ X is an implicit map representing the
intractable likelihood function, which defines the “causal” relationship between parameters
and observable data. Scientists often have a deep knowledge of Fθ, reason why obtain-
ing high-fidelity simulations as in i) can be relatively easy, although Lpθ;Xq cannot be
evaluated or is not available in closed form. Likelihood-Free Inference (LFI) deals with
the hard associated inverse problem: given a new set of observations D “ txobs1 , . . . , xobsn u

from the same distribution, the goal is to infer the parameter of interest θ‹ that generated
D. See Figure 1.2 for a depiction of the typical LFI setup. While at first sight this
setting might not look so dissimilar from a standard statistical inference problem, in reality
it carries at least two major differences. First, as we mentioned, the likelihood is not
available analytically, hence standard statistical techniques such as maximum likelihood
estimation or Bayesian inference cannot be used out of the box. Second, standard statistical
inference is usually concerned with inferring a single global parameter θ‹ from a sample
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Figure 1.1: AI is increasingly being used across several fields of science to improve our under-
standing of natural phenomena. Some of the most notable examples come from high-energy physics
(left panel: event recorded at the CMS detector at the LHC in Geneva), biology (central panel: example of
a protein structure prediction from AlphaFold), and astronomy and astrophysics (right panel: illustration
of gravitational waves.)

of size n. Throughout this thesis, instead, we will deal with the more general problem
of inferring several different parameter values θ‹

j , j “ 1, . . . , J , each of which generated a
separate set of observations Dj , j “ 1, . . . , J , each of size n. As such, the (mis-)alignment
between the target marginal distribution pobspθq and the source marginal distribution πpθq

will also play a key role in addition to the likelihood Lpθ;Xq, as we will see in all the chapters.

The most well-known approach to LFI has traditionally been Approximate Bayesian Com-
putation (ABC; Beaumont et al. (2002); Rubin (1984); Sunnåker et al. (2013)). Loosely
speaking, ABC estimates the posterior distribution ppθ | xobsq by retaining parameters
associated with simulations that are close enough to the observation xobs, where the distance
is defined relative to a 1-dimensional summary statistic. More recently, the vast majority of
research in LFI has been focusing on how to leverage machine learning (ML) algorithms to
directly estimate key inferential quantities, such as

1. parameters θ in a prediction setting, as in Ho et al. (2019); Kieseler et al. (2022);
Gerber and Nychka (2021);

2. posterior distributions ppθ | xobsq via neural density estimators and generative models,
as in Papamakarios and Murray (2016); Lueckmann et al. (2017); Greenberg et al.
(2019); Wildberger et al. (2024); Corso et al. (2023);

3. likelihoods Lpθ;Xq and likelihood ratios Lpθ1;Xq{Lpθ2;Xq, as in Izbicki et al. (2014);
Cranmer et al. (2015); Durkan et al. (2020b); Thomas et al. (2021); Walchessen et al.
(2023).

These approaches can handle complex, unstructured and high-dimensional data thanks to
the expressive power of neural network architectures, and can approximate complicated
distributions without resorting to explicit dimensionality reduction and pre-determined
summary statistics as in ABC. In addition, some of them are also amortized, meaning that
the training phase happens only once and the models can then be evaluated on an arbitrary
number of different observations. This last property is especially important in modern
large-scale data settings, such as those arising from recent telescope surveys (Pontoppidan
et al., 2022).
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Figure 1.2: Likelihood-Free Inference setup: given a collection of data pairs tpθi, XiquBi“1 „ ppX |

θqπpθq from a mechanistic model that implicitly encodes the intractable likelihood Lpθ;Xq, LFI aims to
infer the true θ‹ that generated a new xobs „ ppX | θqpobspθq.

Nonetheless, all of these LFI methods fail to address a key challenge of scientific in-
ference: providing constraints for parameters of interest that are both valid — meaning
they include the true parameter regardless of its (unknown) value at a specified confidence
level, even in finite samples — and precise — meaning they are as small as possible given
the data-generating process. For example, as it was clearly shown by Hermans et al. (2021)
through an extensive empirical analysis, all modern neural density estimators and variants
of ABC can yield overconfident and biased posteriors, thereby making them unfit to draw
reliable scientific conclusions. On one hand, this problem is caused by the reliance of ML
algorithms on training data: the set tpθi, XiquBi“1 is collected by sampling in regions of
the parameter space dictated by a (working) prior distribution θ „ πpθq. If πpθq is not
consistent with pobspθq, meaning that it places most of its mass far from θ‹, then it will
introduce a possibly harmful bias. On the other hand, the advances in these methods are
mainly driven from a machine learning perspective, which causes a discrepancy between the
ML evaluation criteria — targeting the exactness of an approximation — and the scien-
tific evaluation criteria — which should instead target trustworthy uncertainty quantification.

In this thesis, we propose several advances to fill these gaps by developing LFI procedures
to construct confidence sets that are simultaneously

1. Valid across the entire parameter space and in finite samples (in fact, even if n “ 1);

2. Robust to prior probability shifts — i.e., validity is guaranteed under mis-specification
of the prior with respect to the target distribution over θ;

3. As precise as possible when prior knowledge aligns with the target distribution;

4. Computationally efficient and scalable to high-dimensional data and parameter spaces,
without compromising amortization.

More specifically, we will show how to leverage arbitrary machine learning models, such as
regression, classification and generative models, to obtain confidence sets Rpxobsq such that,
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1.1. Summary of Contributions

for α P p0, 1q,
PX|θ

`

θ P Rpxobsq
˘

“ 1 ´ α, @θ P Θ (1.1)

and the expected size of this set Er|Rpxobsq|s is small in some suitable sense. In what
follows, we will assume that the (intractable) likelihood model Lpθ;Xq, which defines
the data-generating process, is well-specified and does not change between the training
and inference stages1. On the other hand, we explicitly allow for the prior to be mis-specified.

We provide algorithms, modular frameworks and theoretical guarantees that aim at equipping
recent advancements in the AI literature with sound statistical properties. By bridging
modern machine learning with classical statistical inference tools, we effectively provide a
principled path towards integrating AI into scientific discovery, enabling advancements in
fields such as astronomy, high-energy physics, biology, and beyond.

1.1 Summary of Contributions

Chapter 2. Background: Likelihood-Free Frequentist Inference We begin by
introducing the LF2I framework, which proposes an amortized procedure to implement
the Neyman construction of confidence sets via likelihood-based test statistics and critical
values based on quantile regression. In addition, we also discuss a independent diagnostics
procedure which allows to check the empirical coverage of any parameter region across the
entire parameter space.

Chapter 2 is based on Dalmasso*, Masserano*, Zhao, Izbicki, and Lee (2024), which
appeared on the Electronic Journal of Statistics, Vol. 18, No. 2.

Chapter 3. Confidence Sets from Prediction Algorithms and Posterior Estima-
tors Starting from the framework introduced in Chapter 2, we enhance it to leverage
state-of-the-art prediction algorithms and posterior estimators via a surrogate of the Wald
test statistic. By doing so, we are able to tackle complex scientific questions such as inferring
the energy of a subatomic particle using convolutional neural networks on 3D data.

Chapter 3 is based on Masserano, Dorigo, Izbicki, Kuusela, and Lee (2023), which appeared
at the 26th International Conference on Artificial Intelligence and Statistics (AISTATS).

Chapter 4. Optimal Confidence Sets from Generative Models In Chapter 3
we showed empirically that our confidence sets from posterior estimators exhibit validity
across the parameter space without being conservative when the prior distribution is aligned
with the target distribution over θ. Here, we first introduce an alternative method to do
Neyman inversion by estimating p-values that are amortized across parameters, data and
confidence levels altogether. In this way, practitioners can construct confidence sets that are
simultaneously valid at all levels α without having to retrain a calibration model for each.
Second, we prove that our confidence sets — if constructed by using the estimated posterior

1We will relax this assumption in Chapter 5.
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1.1. Summary of Contributions

distribution as a test statistic for Neyman inversion — are in fact optimal, i.e. they achieve
the smallest possible size on average with respect to the marginal distribution on the data
induced by the prior distribution. We demonstrate the potential of these Frequentist-Bayes
sets on three challenging case studies of practical relevance.

Chapter 4 is based on Masserano*, Carzon*, Shen*, Herling Ribeiro*, Dorigo, Doro,
Speagle, Izbicki, and Lee (2025), which is currently in submission to a major scientific
journal.

Chapter 5. Inference under Nuisance Parameters and Generalized Label Shift
We then relax the assumption of a well-specified likelihood model by considering a more
general setup that reflects a richer mechanistic model: θ “ pY, νq Ñ X, where ν P N are
continuous or discrete nuisance parameters that are not of direct interest but critically
influence the data-generating process. These nuisance parameters are available at the
training stage, but are not observed at the inference stage when estimating Y from xobs.
We refer to a shift that simultaneously affects Y and ν as generalized label shift (GLS),
and assume that ptrainpX | Y, νq “ pobspX | Y, νq. Within this setting, we propose a new
method for robust uncertainty quantification that casts classification as a hypothesis testing
problem under nuisance parameters. The key idea is to estimate the classifier’s receiver
operating characteristic (ROC) across the entire nuisance parameter space, which allows us
to devise cutoffs that are invariant under GLS. Our method endows a pretrained classifier
with domain adaptation capabilities and returns valid prediction sets while retaining high
power.

Chapter 5 is based on Masserano*, Shen*, Doro, Dorigo, Izbicki, and Lee (2024), which
appeared at the 41st International Conference on Machine Learning (ICML).

Chapter 6. The lf2i Package A central goal of this thesis is to provide methods
that are not only methodologically or theoretically appealing, but that are also easy to
use in practice, so that domain scientists can benefit from them during their investiga-
tions. As such, we devoted a crucial effort into developing and maintaining a friendly
Python package that provides scalable implementations of all the methods presented in this
thesis. In this Chapter, we briefly review the main structure and contributions of this package.

Chapter 6 is based on Masserano (2023), which is available as an open source Python
package on PyPI and GitHub at https://github.com/lee-group-cmu/lf2i.

Chapter 7. Extensions and Future Work We conclude by discussing a few method-
ological extensions and novel applications that we have been working on and that will set
the ground for future explorations.

Chapter 7 is partially based on Carzon, Masserano, Ghosh, Whiteson, Izbicki, and Lee
(2025), which is currently in submission to a major physics journal.
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2

Background: Likelihood-Free Frequentist Inference

2.1 Introduction

Hypothesis testing and uncertainty quantification are the hallmarks of scientific inference.
Methods that achieve good statistical performance (e.g., high power) often rely on being able
to explicitly evaluate a likelihood function, which relates parameters of the data-generating
process to observed data. However, in many areas of science and engineering, complex
phenomena are modeled by forward simulators that implicitly define a likelihood function.
For example,1 given input parameters θ from some parameter space Θ, a stochastic model
Fθ may encode the interaction of atoms or elementary particles, or the transport of radiation
through the atmosphere or through matter in the Universe by combining deterministic
dynamics with random fluctuations and measurement errors, to produce synthetic data X.

Simulation-based inference with an intractable likelihood is commonly referred to as
likelihood-free inference (LFI). The most well-known approach to LFI is Approximate
Bayesian Computation (ABC; see Beaumont (2010); Marin et al. (2012); Sisson et al. (2018);
Sunnåker et al. (2013) for reviews). These methods use simulations sufficiently close to the
observed data D “

␣

xobs1 , . . . , xobsn

(

to infer the underlying parameters, or more precisely,
the posterior distribution ppθ | Dq. Recently, the arsenal of LFI methods has been expanded
with new machine learning algorithms that instead use the output from simulators as training
data. The objective here is to learn a “surrogate model” or approximation of the likelihood
ppD | θq or posterior ppθ | Dq. The surrogate model, rather than the simulations themselves,
is then used for inference. Machine-learning (ML) based methods have revolutionized LFI in
terms of the complexity and dimensionality of the problems that can be tackled (see Cranmer
et al. (2020) for a recent review). Nevertheless, neither ABC nor ML-based LFI approaches
guarantee confidence sets with frequentist coverage, which are crucial to ensure reliability of
downstream scientific conclusions. Suppose that we have a high-fidelity simulator Fθ, which

1Notation. Let Fθ represent the stochastic forward model for a sample point X P X Ď Rp at parameter
θ P Θ Ď Rd. We refer to Fθ as a “simulator”, as the assumption is that we can sample data from the model.
We denote i.i.d.“observable” data from Fθ by D “ tX1, . . . , Xnu, and the actually observed or measured data
by D “

␣

xobs
1 , . . . , xobs

n

(

. The likelihood function is defined as LpD; θq “
śn

i“1 ppxobs
i | θq, where pp¨ | θq is the

density of Fθ with respect to a fixed dominating measure ν, which could be the Lebesgue measure.
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2.1. Introduction

implicitly encodes the likelihood, and that we observe data D of finite sample size n. We
address two open challenges in LFI:

i) The first challenge is finding practical procedures for constructing a p1 ´ αq confidence
set RpDq with nominal coverage2

PD|θ pθ P RpDqq “ 1 ´ α, (2.1)

where α P p0, 1q, regardless of the true value of the unknown parameter θ P Θ and of the num-
ber of observations n. Monte Carlo and bootstrap procedures are computationally infeasible
for continuous parameter spaces Θ, and large-sample theory does not apply when, e.g., n “ 1.
The latter n “ 1 scenario is very common in, e.g., large astronomical surveys where each
object (e.g., galaxy or star) has a different parameter value θ and may only be measured once.

ii) The second challenge is finding practical and interpretable procedures to check that the
empirical coverage of the constructed sets RpDq is indeed close to (and no smaller than)
1 ´ α for any θ P Θ (again, without resorting to costly Monte Carlo simulations at fixed
parameter settings on a fine grid in parameter space Θ (Cousins, 2018, Section 13)). Local
validity across the entire parameter space is essential for reliable scientific inference because
the scientist does not actually know what the true value of θ is for the object of interest.

Novelty and significance. In this chapter, we introduce a fully modular statistical frame-
work that addresses both problems above. We refer to the general approach as likelihood-free
frequentist inference (LF2I)3. LF2I is fully nonparametric and targets modern scientific ap-
plications, involving, e.g, high-dimensional data of different modalities, intractable likelihood
models, and/or small sample sizes. Section 2.7.1 describes how LF2I is related to other work
in this area.

At the heart of LF2I is the Neyman construction of confidence sets, albeit applied to
a setting where the test statistic’s distribution is unknown. Frequentist confidence sets and
their equivalence to hypothesis tests have a long history in statistics (Fisher, 1925; Neyman,
1935a, 1937a). While classical statistical procedures have significantly impacted fields like
high-energy physics (see Section 2.7.1), most simulator-based methods lack theoretical
guarantees for confidence sets beyond low-dimensional data and large-sample assumptions
(Feldman and Cousins, 1998). Implementing the Neyman construction for LFI is challenging
not only because one cannot evaluate the likelihood, but also because one needs to test null
hypotheses across the entire parameter space. While Monte Carlo and bootstrap methods
estimate critical values and p-values from a batch of simulations at each null value θ0 (MacK-
innon, 2009; Ventura, 2010), they become computationally infeasible for high-dimensional
parameters. As a result, practical implementations might rely on parametric assumptions
or asymptotic theory (Neyman and Pearson, 1928; Wilks, 1938). For instance, it is often
assumed that the likelihood-ratio (LR) statistic follows a χ2 distribution, but this does not
hold for irregular models or small sample sizes Algeri et al. (2019); Kieseler et al. (2022); Ho
et al. (2021). This work seeks to quickly and accurately estimate critical values and coverage

2We use the notation PD|θp¨q to emphasize the fact that D is random, but θ is fixed.
3Code is available as a Python package at https://github.com/lee-group-cmu/lf2i.
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across the parameter space without knowing the test statistic distribution or relying on
large-sample approximations.

The key insight behind LF2I is that the main quantities of interest in frequentist sta-
tistical inference — test statistics, critical values, p-values and coverage of the confidence
set — are distribution functions indexed by the (unknown) parameter θ, which generally
vary smoothly over the parameter space Θ. As a result, one can leverage machine learning
methods and data simulated in the neighborhood of a parameter to improve estimates of
quantities of interest with fewer total simulations. Figure 2.1 illustrates the general LF2I in-
ference machinery, which is composed of three modular branches with separate functionalities:

i) The test statistic branch (Figure 2.1 center and Section 2.3.2) uses a simulated set
T to estimate a test statistic λpD; θ0q for testing H0,θ0 : θ “ θ0 versus H1,θ0 : θ ‰ θ0.
We study the theoretical and empirical performance of LF2I confidence sets derived from
likelihood-based test statistics learned via the odds function OpX; θq of Equation (2.7).

ii) The calibration branch (Figure 2.1 left and Section 2.3.3) uses a left-out set T 1 to
estimate critical values Cθ0 for every level-α test of H0,θ0 via quantile regression of the
estimated test statistic λpD; θ0q on θ0 P Θ. Once we have estimated the quantile function
pCθ0 indexed by θ0, we can directly construct Neyman confidence sets

pRαpDq :“
!

θ P Θ : λpD; θq ě pCθ,α

)

(2.2)

that have approximate p1 ´ αq finite-n coverage for every value of θ P Θ. LF2I with critical
values is amortized, meaning that once trained it can be evaluated on an arbitrary number
of observations D. Alternatively, we can estimate p-values ppD; θ0q for every test at θ “ θ0
with observed data D.

iii) The diagnostics branch (Figure 2.1 right and Section 2.3.4) uses a validation set T 2

to assess the empirical coverage PD|θpθ P pRpDqq of the constructed confidence sets pRpDq

across the parameter space by regressing the indicator variable W :“ 1pλpD; θq ě pCθq on
θ. The diagnostics branch is not part of the inference procedure itself. Its purpose is to
provide an independent assessment of local (instance-wise) coverage of the final constructed
confidence sets.

The LF2I approach was first introduced in a conference proceeding Dalmasso et al. (2020).
This preliminary version — ACORE (Approximate Computation via Odds Ratio Estimation)
— uses a test statistic that maximizes odds over the parameter space. In this chapter, we
analyze the statistical and computational properties of LF2I, while also introducing a new
test statistic — the Bayesian Frequentist Factor (BFF) — which is the Bayes Factor (Jeffreys,
1935, 1961) treated as a frequentist test statistic. We show that the validity of LF2I only
depends on calibration, whereas its power depends on the test statistic’s definition and its
estimation quality. In addition to new theoretical results in Section 2.4, we compare LF2I
with approaches using Monte Carlo methods or Wilks’ theorem (Section 2.6.1), and we
illustrate how our diagnostics can help scientists in choosing the best tool to handle nuisance
parameters (Section 2.6.2). Finally, we construct confidence sets given a high-dimensional
particle physics simulation where ABC approaches are neither computationally feasible nor
valid (Section 2.6.3).
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Figure 2.1: The three-branch fully modular framework for likelihood-free frequentist inference
(LF2I). Center branch: Draw a sample T of size B from the simulator to estimate an arbitrary test
statistic λpD; θq. Here we show how to do so by estimating the likelihood via the odds function OpX; θq.
Left branch: Draw a second sample T 1 of size B1 to estimate the critical values Cθ or p-values ppD; θq

for all θ P Θ. Left ` Center: Once data D are observed, we can construct confidence sets pRpDq with
finite-n validity according to Equation (2.12). Right branch: The LF2I diagnostics branch independently
checks whether the coverage PD|θpθ P pRpDqq of the confidence set is indeed correct across the entire
parameter space.

2.2 Statistical Inference in a Traditional Setting

We now review the Neyman construction of confidence sets and the definitions of likelihood
ratio and Bayes factor, before moving on to the details of the LF2I framework and its two
instances, ACORE and BFF.

Equivalence of tests and confidence sets. A classical approach to constructing a
confidence set for an unknown parameter θ P Θ is to invert a series of hypothesis tests
(Neyman, 1937a). Suppose that for each possible value θ0 P Θ, there exists a level-α test δθ0
of

H0,θ0 : θ “ θ0 versus H1,θ0 : θ ‰ θ0. (2.3)

That is, a test δθ0 where the type-I error (the probability of erroneously rejecting a true null
hypothesis H0,θ0) is no larger than α. For observed data D “ D, let RpDq be the set of all
parameter values θ0 P Θ for which the test δθ0 does not reject H0,θ0 . Then, by construction,
the random set RpDq satisfies

PD|θ pθ P RpDqq ě 1 ´ α @θ P Θ,
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which makes it a p1 ´ αq confidence set for θ. Similarly, we can define tests with a desired
significance level by inverting a confidence set with a certain coverage.

Likelihood ratio test. A general form of hypothesis tests that often leads to high power
is the likelihood ratio test (LRT). Consider testing

H0 : θ P Θ0 versus H1 : θ P Θ1, (2.4)

where Θ1 “ ΘzΘ0. For the likelihood ratio (LR) statistic,

LRpD; Θ0q “ log
supθPΘ0

LpD; θq

supθPΘ LpD; θq
, (2.5)

the LRT of the hypotheses in Equation (2.4) rejects H0 when LRpD; Θ0q ă C for some
constant C. Figure 2.2 illustrates the construction of confidence sets for θ from the level-
α likelihood ratio tests of Equation (2.3). The critical value for each such test δθ0 is
Cθ0 “ sup

␣

C : PD|θ0 pLRpD; θ0q ă Cq ď α
(

.

Bayes factor. Let π be a probability measure over the parameter space Θ. The Bayes
factor (Jeffreys, 1935, 1961) for comparing the hypothesis H0 : θ P Θ0 to its complement,
the alternative H1, is the ratio of the marginal likelihood of the two hypotheses:

BFpD; Θ0q ”
PpD | H0q

PpD | H1q
“

ş

Θ0
LpD; θqdπ0pθq

ş

Θ1
LpD; θqdπ1pθq

, (2.6)

where π0 and π1 are the restrictions of π to the parameter regions Θ0 and Θ1 “ Θc
0,

respectively. The Bayes factor is often used as a Bayesian alternative to significance testing,
as it quantifies the change in the odds in favor of H0 when going from the prior to the
posterior: PpH0|Dq

PpH1|Dq
“ BFpD; Θ0q

PpH0q

PpH1q
.

2.3 Likelihood-Free Frequentist Inference via Odds
Estimation

In the typical LFI setting, we cannot directly evaluate the likelihood ratio LRpD; Θ0q or
even the likelihood LpD; θq. In this work, we describe a version of LF2I that is based on
odds estimation. We assume that we have access to (i) a forward simulator Fθ to draw
observable data, ii a reference distribution G that does not depend on θ, with larger support
than Fθ for all θ P Θ, and (iii) a probabilistic classifier to discriminate samples from Fθ and
G.

2.3.1 Estimating an Odds Function across the Parameter Space

We start by generating a labeled sample T “ tpθi, Xi, YiquBi“1 to compare data from Fθ with
data from the reference distribution G. Here, θ „ πΘ (a proposal distribution over Θ), the
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Figure 2.2: Neyman construction of confidence sets by inverting hypothesis tests. Left: For each
θ0 P Θ, we find the critical value Cθ0 that rejects the null hypothesis H0,θ0 at level α; that is, Cθ0 is the
α-quantile of the distribution of the test statistic under the null (a likelihood ratio LRpD; θ0q in this case).
Right: The horizontal solid lines represent acceptance regions for each θ0 P Θ. Suppose we observe data
D. The confidence set for θ (red vertical solid line) consists of all θ0-values for which the observed test
statistic LRpD; θ0q (black curve) falls in the acceptance region.

“label” Y „ Bernoullippq, X | pθ, Y “ 1q „ Fθ and X | pθ, Y “ 0q „ G. We then define the
odds at θ and fixed x as

Opx; θq :“
PpY “ 1 | θ, xq

PpY “ 0 | θ, xq
. (2.7)

One way of interpreting Opx; θq is to regard it as a measure of the chance that x was
generated from Fθ rather than from G. That is, a large odds Opx; θq reflects the fact that it
is plausible that x was generated from Fθ (instead of G). We call G a “reference distribution”
as we are comparing Fθ for different θ with this distribution. Equation (2.7) is equivalent to
the likelihood ppx | θq up to a normalization constant, as shown in Dalmasso et al. (2020,
Proposition 3.1). The odds function OpX; θq with θ P Θ as a parameter can be estimated
with a probabilistic classifier, such as a neural network with a softmax layer, suitable for the
data at hand. Algorithm A.1 in Appendix A.1 summarizes our procedure for simulating a
labeled sample T . For all experiments in this chapter, we use p “ 1{2 and G “ FX , where
FX is the (empirical) marginal distribution of Fθ with respect to πΘ.

2.3.2 Test Statistics based on Odds

For testingH0,Θ0 : θ P Θ0 versus all alternativesH1,Θ0 : θ R Θ0, we consider two test statistics:
ACORE and BFF. Both statistics are based on OpX; θq, but whereas ACORE eliminates the
parameter θ by maximization, BFF averages over the parameter space.
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ACORE by Maximization

The ACORE statistic (Dalmasso et al., 2020) for testing Equation (2.3) is given by

ΛpD; Θ0q :“ log
supθPΘ0

śn
i“1OpXi; θq

supθPΘ

śn
i“1OpXi; θq

“ sup
θ0PΘ0

inf
θ1PΘ

n
ÿ

i“1

log pORpXi; θ0, θ1qq , (2.8)

where the odds ratio
ORpx; θ0, θ1q :“

Opx; θ0q

Opx; θ1q
(2.9)

at θ0, θ1 P Θ measures the plausibility that a fixed x was generated from θ0 rather than θ1.
We use pΛpD; Θ0q to denote the ACORE statistic based on T and estimated odds pOpX; θ0q.
When pOpX; θ0q is well-estimated for every θ and X, pΛpD; Θ0q is the same as the LRpD; Θ0q

in Equation (2.5) (Dalmasso et al., 2020, Proposition 3.1).

BFF by Averaging

Because the ACORE statistics in Equation (2.8) involves taking the supremum (or infimum)
over Θ, it may not be practical in high dimensions. Hence, in this work, we propose an
alternative statistic for testing (2.3) based on averaged odds:

τpD; Θ0q :“

ş

Θ0

śn
i“1OpXi; θ0qdπ0pθq

ş

Θc
0

śn
i“1OpXi; θqdπ1pθq

, (2.10)

where π0 and π1 are the restrictions of the proposal distribution π to the parameter regions
Θ0 and Θc

0, respectively. Let pτpD; Θ0q denote estimates based on T and pOpθ0;xq. If the
probabilities learned by the classifier are well estimated, then the estimated averaged odds
statistic pτpD; Θ0q is exactly the Bayes factor:

Proposition 2.1 (Fisher consistency).

Assume that, for every θ P Θ, G dominates ν. If pPpY “ 1 | θ, xq “ PpY “ 1 | θ, xq for every
θ and x, then pτpD; Θ0q is the Bayes factor BFpD; Θ0q.

In this chapter, we are using the Bayes factor as a frequentist test statistic. Hence, our term
Bayes Frequentist Factor (BFF) statistic for τ and pτ .

2.3.3 Fast Construction of Neyman Confidence Sets

Instead of a costly MC or bootstrap hypothesis test of H0 : θ “ θ0 at each θ0 on a fine grid
(see, e.g., MacKinnon (2009) and Ventura (2010)), we draw only one sample T 1 of size B1.
We then estimate either the critical value Cθ0 via quantile regression (Section 2.3.3), or the
p-value ppD; θ0q via probabilistic classification (Section 2.3.3), for all θ0 P Θ simultaneously.
In Supplementary Material H4, we outline a practical strategy to choose the number of
simulations B1 and the learning algorithm.

4Available at https://lucamasserano.github.io/data/LF2I_supplementary_material.pdf.
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Algorithm 2.1 Estimate critical values Cθ0 for a level-α test of H0,θ0 : θ “ θ0 vs. H1,θ0 :
θ ‰ θ0 for all θ0 P Θ simultaneously
Input: simulator Fθ; number of simulations B1; πΘ (fixed proposal distribution over the parameter
space); test statistic λ; quantile regression estimator; level α P p0, 1q

Output: estimated critical values pCθ0 for all θ0 P Θ

1: Set T 1 Ð H

2: for i in t1, . . . , B1u do
3: Draw parameter θi „ πΘ

4: Draw sample Xi,1, . . . , Xi,n
iid
„ Fθi

5: Compute test statistic λi Ð λppXi,1, . . . , Xi,nq; θiq
6: T 1 Ð T 1 Y tpθi, λiqu

7: Use T 1 to learn the conditional quantile function pCθ :“ pF´1
λ|θ pα | θq via quantile regression of λ

on θ
8: return pCθ0

The Critical Value via Quantile Regression

Algorithm 2.1 describes how to use quantile regression (e.g., Meinshausen (2006); Koenker
et al. (2017)) to estimate the critical value Cθ0 for the level-α test of Equation (2.3) as a
function of θ0 P Θ. To test a composite null hypothesis H0 : θ P Θ0 versus H1 : θ P Θ1, we
use the cutoff pCΘ0

:“ infθPΘ0
pCθ. Although the calibration procedure was originally proposed

for ACORE, the same scheme leads to a valid test (control of type-I error as the number of
simulations B1 Ñ 8) for any test statistic λ (Theorem A.4). Remarkably, this holds even if
the test statistic is not well estimated. Note that in practice, we observe that the number
of simulations B1 needed to achieve correct coverage is usually much lower relative to B,
the number of simulations needed to estimate the test statistic. In addition, Algorithm 2.1
does not rely on the observed data D and is therefore amortized, meaning that once the test
statistic and critical values have been estimated, we can compute confidence sets for any
new datapoint without the need to retrain the model.

The P-Value via Probabilistic Classification

If the data D are observed beforehand, then given any test statistic λ we can alternatively
compute p-values for each hypothesis H0,θ0 : θ “ θ0, that is,

ppD; θ0q :“ PD|θ0 pλpD; θ0q ă λpD; θ0qq . (2.11)

The p-value ppD; θ0q can be used to test hypothesis and create confidence sets for any desired
level α. As detailed in Algorithm A.3, we can estimate it simultaneously for all θ P Θ by
drawing a training sample T 1 “ tpZ1, θ1q, . . . , pZB1 , θB1qu and using the random variable
Z :“ 1 pλpD; θq ă λpD; θqq as a label for each θ. To test the composite null hypothesis
H0 : θ P Θ0 versus H1 : θ P Θ1, we use

p̂pD; Θ0q :“ sup
θPΘ0

p̂pD; θq.

Note that there is a key computational difference between estimating p-values versus
estimating critical values. The p-value is a function of both θ and the observed sample
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2.3. Likelihood-Free Frequentist Inference via Odds Estimation

Algorithm 2.2 Estimate empirical coverage PD|θpθ P pRpDqq, for all θ P Θ.
Input: simulator Fθ; number of simulations B2; πΘ (fixed proposal distribution over parameter
space); test statistic λ; level α; critical values pCθ; probabilistic classifier
Output: estimated coverage pPD|θpθ P pRpDqq for all θ P Θ

1: Set T 2 Ð H

2: for i in t1, . . . , B2u do
3: Draw parameter θi „ πΘ

4: Draw sample Di :“ tXi,1, . . . , Xi,nu
iid
„ Fθi

5: Compute test statistic λi Ð λpDi; θiq
6: Compute indicator variable Wi Ð 1

´

λi ě pCθi

¯

7: T 2 Ð T 2 Y tpθi,Wiqu

8: Use T 2 to learn pPD|θpθ P pRpDqq across Θ by regressing W on θ
9: return pPD|θpθ P pRpDqq

D itself. As a result, Algorithm A.3 has to be repeated for each observed D, making the
computation of p-values non-amortized. In Chapter 4, we will see how to generalize this
method to allow for seamless amortization with respect to both D and α.

Amortized Confidence Sets

Finally, we construct an approximate confidence region for θ by taking the set

pRpDq “

!

θ P Θ : λpD; θq ě Ĉθ

)

, (2.12)

or, alternatively,
pRpDq “ tθ P Θ : p̂pD; θq ą αu . (2.13)

See Algorithm A.4 in Appendix A.3 for details. As shown in Dalmasso et al. (2020, Theorem
3.3), the random set pRpDq has nominal p1 ´ αq coverage as B1 Ñ 8 regardless of the
observed sample size n. As noted in Section 2.3.3, the confidence set in Equation (2.12) is
fully amortized, meaning that once we have λpD; θq and pCθ as a function of θ P Θ, we can
perform inference on new data without retraining.

2.3.4 Diagnostics: Checking Coverage across the Parameter Space

The LF2I framework has a separate module (“Diagnostics” in Figure 2.1) for evaluating
“local” goodness-of-fit in different regions of the parameter space Θ. This estimates the
coverage probability PD|θpθ P pRpDqq of confidence sets pRpDq across the parameter space via
probabilistic classification. As detailed in Algorithm 2.2, we first generate a set of size B2

from the simulator: T 2 “ tpθ1,D1q, . . . , pθB2 ,DB2qu. Then, for each sample Di, we check
whether or not the test statistic λi is larger than the estimated critical value pCθi (the output
from Algorithm 2.1). This is equivalent to computing a binary variable Wi for whether
or not the “true” value θi falls within the confidence set pRpDiq of Equation (2.12). Recall
that the computations of the test statistic and the critical value are amortized, meaning
that we do not retrain algorithms to estimate these two quantities. The final step is to
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estimate empirical coverage as a function of θ by using W as a label for each θ. This
estimation requires a new fit, but after training the probabilistic classifier, we can evaluate
the estimated coverage anywhere in parameter space Θ.

This diagnostic procedure locates regions in parameter space where estimated confidence
sets might under- or over-cover; see Figures 2.3, 2.4 and 2.6 for examples. Note that standard
goodness-of-fit techniques for conditional densities (Cook et al., 2006b; Bordoloi et al., 2010;
Talts et al., 2018; Schmidt et al., 2020) only check for marginal coverage over Θ.

2.4 Theoretical Guarantees

We now prove consistency of the critical value and p-value estimation methods (Algorithms 2.1
and A.3, respectively) and provide theoretical guarantees for the power of BFF. We refer the
reader to Appendix A.4 for a proof for finite Θ that the power of ACORE converges to the
power of LRT as B grows (Theorem A.1).

In this section, PD,T 1|θ denotes the probability integrated over both D „ Fθ and T 1,
whereas PD|θ denotes integration over D „ Fθ only. For notational ease, we do not explicitly
state again (inside the parentheses of the same expression) that we condition on θ.

2.4.1 Critical Value Estimation

We start by showing that our procedure for choosing critical values leads to valid hypothesis
tests (that is, tests that control the type-I error probability), as long as the number of
simulations B1 in Algorithm 2.1 is sufficiently large. We assume that the null hypothesis is
simple, that is, Θ0 “ tθ0u — which is the relevant setting for the Neyman construction of
confidence sets in the absence of nuisance parameters. See Theorem A.4 in Appendix A.6
for results for composite null hypotheses.

We assume that the quantile regression estimator described in Section 2.3.3 is consistent in
the following sense:

Assumption 2.2 (Uniform consistency). Let F p¨ | θq be the cumulative distribution function
of the test statistic λpD; θ0q conditional on θ, where D „ Fθ. Let pFB1p¨ | θq be the estimated
distribution function indexed by θ, implied by a quantile regression with a sample T 1 of B1

simulations D „ Fθ. Assume that the quantile regression estimator is such that

sup
λPR

|F̂B1pλ | θ0q ´ F pλ | θ0q|
P

ÝÝÝÝÝÑ
B1ÝÑ8

0.

Assumption 2.2 holds, for instance, for quantile regression forests (Meinshausen, 2006).
Next, we show that Algorithm 2.1 yields a valid hypothesis test as B1 Ñ 8.

Theorem 2.3. Let CB1 P R be the critical value of the test based on an absolutely continuous
statistic λpD; θ0q chosen according to Algorithm 2.1 for a fixed α P p0, 1q. If the quantile
estimator satisfies Assumption 2.2, then for every θ0, θ P Θ

PD|θ0,CB1
pλpD; θ0q ď CB1q

a.s.
ÝÝÝÝÝÑ
B1ÝÑ8

α,
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where PD|θ0,CB1
denotes the probability integrated over D „ Fθ0 and conditional on the

random variable CB1.

If the convergence rate of the quantile regression estimator is known (Assumption 2.4),
Theorem 2.5 provides a finite-B1 guarantee on how far the type-I error of the test will be
from the nominal level.

Assumption 2.4 (Convergence rate of the quantile regression estimator). Using the notation
of Assumption 2.2, assume that the quantile regression estimator is such that

sup
λPR

|F̂B1pλ | θ0q ´ F pλ | θ0q| “ OP

ˆˆ

1

B1

˙r˙

for some r ą 0.

Theorem 2.5. With the notation and assumptions of Theorem 2.3, and if Assumption 2.4
also holds, then

|PD|θ0,CB1
pλpD; θ0q ď CB1q ´ α| “ OP

ˆˆ

1

B1

˙r˙

.

2.4.2 P-Value Estimation

Next we show that the p-value estimation method described in Section 2.3.3 is consistent.
The results shown here apply to any test statistic λ. That is, these results are not restricted
to ACORE nor BFF. We assume consistency in the sup norm of the regression method used to
estimate the p-values:

Assumption 2.6 (Uniform consistency). The regression estimator used in Equation (2.11)
is such that

sup
θPΘ0

|pEB1rZ | θs ´ ErZ | θs|
a.s.

ÝÝÝÝÝÑ
B1ÝÑ8

0.

Examples of estimators that satisfy Assumption 2.6 include Bierens (1983); Hardle et al.
(1984); Liero (1989); Girard et al. (2014).
The next theorem shows that the p-values obtained according to Algorithm A.3 converge to
the true p-values. Moreover, the power of the tests obtained using the estimated p-values
converges to the power one would obtain if the true p-values could be computed.

Theorem 2.7. Under Assumption 2.6 and if ppD; Θ0q is an absolutely continuous random
variable then,for every θ P Θ

pppD; Θ0q
a.s.

ÝÝÝÝÝÑ
B1ÝÑ8

ppD; Θ0q

and
PD,T 1|θpp̂pD; Θ0q ď αq ÝÝÝÝÝÑ

B1ÝÑ8
PD|θpppD; Θ0q ď αq.

The next corollary shows that as B1 ÝÑ 8, the tests obtained using the p-values from
Algorithm A.3 have size α.
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Corollary 2.8. Under Assumption 2.6 and if Fθ is continuous for every θ P Θ and ppD; Θ0q

is an absolutely continuous random variable, then

sup
θPΘ0

PD,T 1|θpp̂pD; Θ0q ď αq ÝÝÝÝÝÑ
B1ÝÑ8

α.

Under stronger assumptions on the regression method, it is also possible to derive rates of
convergence for the estimated p-values.

Assumption 2.9 (Convergence rate of the regression estimator). The regression estimator
is such that

sup
θPΘ0

|pErZ | θs ´ ErZ | θs| “ OP

ˆˆ

1

B1

˙r˙

.

for some r ą 0.

Examples of regression estimators that satisfy Assumption 2.9 can be found in Stone (1982);
Hardle et al. (1984); Donoho (1994); Yang et al. (2017).

Theorem 2.10. Under Assumption 2.9,

|ppD; Θ0q ´ p̂pD; Θ0q| “ OP

ˆˆ

1

B1

˙r˙

.

2.4.3 Power of BFF

In this section, we provide convergence rates for BFF and show that its power relates to the
integrated squared error

LppO,Oq :“

ż

´

Ôpx; θq ´ Opx; θq

¯2
dGpxqdπpθq, (2.14)

which measures how well we are able to estimate the odds function. We assume that we
are testing a simple hypothesis H0,θ0 : θ “ θ0, where θ0 is fixed, and that Gpxq is the
marginal distribution of X „ FθpXq with respect to πpθq. We also assume that x contains
all observations; that is, X “ D. In this case, the denominator of the average odds is

ż

Θ
Opx, θqdπpθq “

ż

Θ1

p ¨ ppx | θq

p1 ´ pqgpxq
dπpθq

“
p

1 ´ p

ż

Θ

ppx | θq
ş

Θ ppx | θqdπpθq
dπpθq “

p

1 ´ p
,

(2.15)

where g is the density of G with respect to ν and therefore there is no need to estimate the
denominator in Equation (2.10). We also assume that the odds and estimated odds are both
bounded away from zero and infinity:

Assumption 2.11 (Bounded odds and estimated odds). There exists 0 ă m,M ă 8 such
that for every θ P Θ and x P X , m ď Opx; θq, pOpx; θq ď M .

Finally, we assume that the CDF of the power function of the test based on the BFF statistic
τ in Equation (2.10) is smooth in a Lipschitz sense:
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Assumption 2.12 (Smooth power function). For every θ0 P Θ, the cumulative distribution
function of τpD; θ0q, Fτ , is Lipschitz with constant CL, i.e., for every x1, x2 P R, |Fτ px1q ´

Fτ px2q| ď CL|x1 ´ x2|.

With these assumptions, we can relate the odds loss with the probability that the outcome
of BFF is different from the outcome of the test based on the Bayes factor:

Theorem 2.13. For fixed c P R, let ϕτ ;θ0pDq “ 1 pτpD; θ0q ă cq and ϕ
pτB ;θ0pDq “ 1ppτBpD; θ0q

ă cq be the testing procedures for testing H0,θ0 : θ “ θ0 based on τ and pτB, respectively.
Under Assumptions 2.11-2.12, for every 0 ă ϵ ă 1 and θ P Θ,

ż

PD|θ,T pϕτ ;θ0pDq ‰ ϕ
pτB ;θ0pDqqdπpθ0q ď

2MCL ¨

b

LppO,Oq

ϵ
` ϵ,

where T denotes the realized training sample T and PD|θ,T is the probability measure
integrated over the observable data D „ Fθ, but conditional on the train sample used to
create the test statistic.

Theorem 2.13 demonstrates that, on average (over θ0 „ π), the probability that hypothesis
tests based on the BFF statistic versus the Bayes factor lead to different conclusions is
bounded by the integrated odds loss. This result is valuable because the integrated odds
loss is easy to estimate in practice, and hence provides us with a practically useful metric.
For instance, the integrated odds loss can serve as a natural criterion for selecting the “best”
statistical model out of a set of candidate models with different classifiers, for tuning model
hyperparameters, and for evaluating model fit.

Next, we provide rates of convergence of the test based on BFF to the test based on
the Bayes factor. We assume that the chosen probabilistic classifier has the following rate of
convergence:

Assumption 2.14 (Convergence rate of the probabilistic classifier). The probabilistic
classifier trained with T , pPpY “ 1 | x, θq is such that

ET

„
ż

´

pPpY “ 1 | x, θq ´ PpY “ 1 | x, θq

¯2
dHpx, θq

ȷ

“ O
´

B´κ{pκ`d`pq
¯

,

for some κ, d, p ą 0, where Hpx, θq is a measure over X ˆ Θ.

Typically, κ relates to the smoothness of P, while d and p relate to the number of covariates
of the classifier — in our case, the number of parameters plus the number of features. In
Supplementary Material I, we provide some examples where Assumption 2.14 holds. We
also assume that the density of the product measure Gˆ π is bounded away from infinity.

Assumption 2.15 (Bounded density). Hpx, θq dominates H 1 :“ Gˆ π, and the density of
H 1 with respect to H, denoted by h1, is such that there exists γ ą 0 with h1px, θq ă γ, @x P

X , θ P Θ.

If the probabilistic classifier has the convergence rate given by Assumption 2.14, then the
average probability that hypothesis tests based on the BFF statistic versus the Bayes factor
goes to zero has the rate given by the following theorem.
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Theorem 2.16. Let ϕτ ;θ0pDq and ϕ
pτB ;θ0pDq be as in Theorem 2.13. Under Assumptions

2.11-2.15, there exists K 1 ą 0 such that, for any θ P Θ,
ż

PD,T |θpϕτ ;θ0pDq ‰ ϕ
pτB ;θ0pDqqdπpθ0q ď K 1B´κ{p4pκ`d`pqq.

Corollary 2.17. Under Assumptions 2.11-2.15, there exists K 1 ą 0 such that, for any
θ P Θ,

ż

PD,T |θpϕpτB ;θ0pDq “ 1qdθ0 ě

ż

PD,T |θpϕτ ;θ0pDq “ 1qdθ0 ´K 1B´κ{p4pκ`d`pqq.

Corollary 2.17 tells us that the average power of the BFF test is close to the average power of
the exact Bayes factor test. This result also implies that BFF converges to the most powerful
test in the Neyman-Person setting, where the Bayes factor test is equivalent to the LRT.

2.5 Handling Nuisance Parameters

In most applications, we only have a small number of parameters that are of primary
interest. The other parameters in the model are usually referred to as nuisance parameters.
In this setting, we decompose the parameter space as Θ “ M ˆ N , where M contains the
parameters of interest, and N contains nuisance parameters. Our goal is to construct a con-
fidence set for µ P M. To guarantee frequentist coverage by Neyman’s inversion technique,
however, one needs to test null hypotheses of the form H0,µ : µ “ µ0 by comparing the test
statistics to the cutoffs pCµ0 :“ infνPN pCpµ0,νq (Section 2.3.3). That is, one needs to control
the type-I error at each µ0 for all possible values of the nuisance parameters. Computing
such infimum can be numerically unwieldy, especially if the number of nuisance parameters
is large (van den Boom et al., 2020; Zhu et al., 2020). Below we propose approximate
schemes for handling nuisance parameters.

In ACORE, we use a hybrid resampling or “likelihood profiling” method (Chuang and Lai,
2000; Feldman, 2000; Sen et al., 2009) to circumvent unwieldy numerical calculations as well
as to reduce computational cost. For each µ (on a fine grid over M), we first compute the
“profiled” value

pνµ “ argmax
νPN

n
ź

i“1

pO
`

xobsi ; pµ, νq
˘

,

which (because of the odds estimation) is an approximation of the maximum likelihood
estimate of ν at the parameter value µ for observed data D. By definition, the estimated
ACORE test statistic for the hypothesis H0,µ0 : µ “ µ0 is exactly given by pΛpD;µ0q “

pΛpD; pµ0, pνµ0qq. However, rather than comparing this statistic to pCµ0 , we use the hybrid
cutoff

pC 1
µ0 :“ pF´1

pΛpD;µ0q

ˇ

ˇpµ0,pνµ0q
pα | µ0, pνµ0q , (2.16)

where pF´1 is obtained via a quantile regression as in Algorithm 2.1, but using a training
sample T 1 generated at fixed pνµ0 (that is, we run Algorithm 2.1 with the proposal distribution
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π1ppµ, νqq 9 πpµq ˆ δ
pνµpνq, where δ

pνµpνq is a point mass distribution at pνµ). Alternatively,
one can compute the p-value

p̂pD;µ0q :“ pE
”

1
´

pΛ pD;µ0q ă pΛ pD;µ0q

¯

| µ0, pνµ0

ı

(2.17)

via probabilistic classification as in Algorithm A.3, but with T 1 simulated at fixed pνµ0 (that
is, we run Algorithm A.3 with the proposal distribution π1ppµ, νqq9πpµq ˆ δ

pνµpνq. Hybrid
methods do not always control α, but they are often a good approximation that leads to
robust results (Aad et al., 2012a; Qian et al., 2016). We refer to ACORE approaches based on
Equation 2.16 or Equation 2.17 as “h-ACORE” approaches.

In contrast to ACORE, the BFF test statistic averages (rather than maximizes) over nui-
sance parameters. Hence, instead of adopting a hybrid resampling scheme to handle nuisance
parameters, we approximate p-values and critical values, in what we refer to as “h-BFF”, by
using the marginal model of the data D at a parameter of interest µ:

rLpD;µq “

ż

νPN
LpD; θq dπpνq.

We implement such a scheme by first drawing the train sample T 1 from the entire parameter
space Θ “ M ˆ N , and then applying quantile regression (or probabilistic classification)
using µ only. Algorithm A.5 details our construction of ACORE and BFF confidence sets when
calibrating critical values under the presence of nuisance parameter (construction via p-value
estimation is analogous). In Section 2.6.2, we demonstrate how our diagnostics branch can
shed light on whether or not the final results have adequate frequentist coverage.

2.6 Experiments

We analyze the empirical performance of the LF2I framework under different problem settings:
unknown null distribution of (known) test statistic (Section 2.6.1); nuisance parameters
(Section 2.6.2); intractable likelihood and high-dimensional data (Section 2.6.3). We use the
cross-entropy loss (Equation (A.7)) when estimating the odds function in Equation (2.7)
and the empirical coverage probability as in Section 2.3.4 via probabilistic classification.
Moreover, we use the pinball loss (Koenker et al., 2017) when estimating critical values as in
Section 2.3.3 via quantile regression.

2.6.1 Gaussian Mixture Model: Unknown Null Distribution

A common practice in LFI is to first estimate the likelihood and then assume that the
LR statistic is approximately χ2 distributed according to Wilks’ theorem (Drton, 2009).
However, in settings with small sample sizes or irregular statistical models, such approaches
may lead to confidence sets with incorrect coverage; it is often difficult to identify exactly
when that happens, and then know how to recalibrate the confidence sets. (See Algeri et al.
(2019) for a discussion of all conditions needed for Wilks’ theorem to apply, which are often
not realized in practice.)
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Figure 2.3: GMM with unknown null distribution. Each panel shows the estimated coverage across
the parameter space of 90% confidence sets for θ. Rows represent experiments with different observed
sample sizes: n “ 10, 100, 1000 (top, center, bottom). Columns represent three different approaches.
Left: “LR with Monte Carlo samples” achieves nominal coverage everywhere but is computationally
expensive, especially in higher dimensions. Center: “Chi-square LRT” clearly under-covers, i.e. confidence
sets are not valid even for large n, other than at θ “ 0 where the mixture collapses to one Gaussian.
Right: “LR with Cθ0 via quantile regression” returns finite-sample confidence sets with the nominal
coverage of 90% for all values of θ, but using a total of 1000 simulations, instead of a MC sample of
1000 simulations at each grid point.

The Gaussian mixture model (GMM) is a classical example where the LR statistic is known
but its null distribution is unknown in finite samples. Indeed, the development of valid
statistical methods for GMM is an active area of research (Redner, 1981; McLachlan, 1987;
Dacunha-Castelle and Gassiat, 1997; Chen and Li, 2009; Wasserman et al., 2020). Here we
consider a one-dimensional Normal mixture with unknown mean but known unit variance:

X „ 0.5N pθ, 1q ` 0.5N p´θ, 1q,

where the parameter of interest θ P Θ “ r0, 5s. In this example, the LRT statistic is not
estimated but computed exactly. The goal is to analyze three different approaches for
estimating the critical value Cθ0 of a level-α LRT of the hypothesis test H0,θ0 : θ “ θ0, for
different θ0 P Θ, in a setting where we have removed potential effects of estimation errors in
the test statistic:
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• “LR with Monte Carlo samples”, where we draw 1000 simulations at each point θ0 on a
fine grid over Θ and take Cθ0 to be the 1 ´ α quantile of the distribution of the LR
statistic, computed using the MC samples at each fixed θ0. This approach is often just
referred to as MC hypothesis testing.

• “Chi-square LRT”, where we assume that ´2LRpD; θ0q „ χ2
1, and hence take ´2Cθ0 to

be the same as the upper α quantile of a χ2
1 distribution.

• “LR with Cθ0 via quantile regression”, where we estimate Cθ0 via quantile regression
(Algorithm 2.1) based on a total of B1 “ 1000 simulations of size n sampled uniformly
on Θ.

We then construct confidence sets by inverting the hypothesis tests, and finally assess their
conditional coverage with the diagnostic branch of the LF2I framework (Algorithm 2.2 with
B2 “ 1000).

Figure 2.3 shows LF2I diagnostics for the three different approaches when the observed
sample size (i.e., the number of observations from each unknown θ) is n “ 10, 100, 1000.
Confidence sets from “Chi-square LRT” are clearly not valid at any n, which shows that
Wilks’ theorem does not apply in this setting. The only exception arises when n is large
enough and θ approaches 0, in which case the mixture reduces to a unimodal Gaussian whose
LR statistic has a known limiting distribution (see bottom center panel of Figure 2.3). On
the other hand, “LR with Cθ0 via quantile regression” returns valid finite-sample confidence
sets with conditional coverage equivalent to “LR with Monte Carlo samples”. A key difference
between the LF2I and MC methods is that the LF2I results are based on 1000 samples in
total, whereas the MC results are based on 1000 MC samples at each θ0 on a grid. The
latter approach quickly becomes intractable in higher parameter dimensions and larger scales.

In Appendix A.5, we show that critical values are clearly non-constant across the pa-
rameter space, which also provides insight as to why assumptions of a pivotal test statistic
(e.g., a χ2-distributed test statistic asymptotically, or calibration based on a single point
in the parameter space Warne et al. (2024)) do not yield correct coverage. Supplementary
Material J gives details on the specific quantile regressor (for Algorithm 2.1) and probabilis-
tic classifier (for Algorithm 2.2) used in Figure 2.3, and presents extensions of the above
experiments to confidence sets via p-value estimation and asymmetric mixtures.

2.6.2 Poisson Counting Experiment: Nuisance Parameters and
Diagnostics

Hybrid methods, which maximize or marginalize over nuisance parameters, do not always
control the type-I error of statistical tests. For small sample sizes, there is no theorem as
to whether profiling or marginalization of nuisance parameters will give better frequentist
coverage for the parameter of interest (Cousins, 2018, Section 12.5.1). In addition, most
practitioners consider a thorough check of frequentist coverage to be impractical (Cousins,
2018, Section 13). In this example, we apply the hybrid schemes from Section 2.5 to a
high-energy physics (HEP) counting experiment (Lyons, 2008; Cowan et al., 2011b; Cowan,
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Figure 2.4: Poisson counting experiment with nuisance parameters. The diagnostics branch provides
guidance as to which LFI approach to use for the problem at hand by pinpointing regions of the parameter
space Θ where inference is unreliable. The panels show empirical coverage as a function of both µ, the
parameter of interest, and ν, the nuisance parameter. Nominal coverage is 90%. Left: h-ACORE, which
uses profiled likelihoods, is overly conservative in terms of actual coverage (« 96%) across Θ. Center:
h-BFF, which marginalizes over ν, under-covers in several regions (red crosses). Right: ACORE χ2

1, which
uses cutoffs from the chi-square distribution, has almost no constraining power, yielding empirical coverage
close to 100% everywhere.

2012; Cousins et al., 2008; Heinrich, 2022) with nuisance parameters, which is a simplified
version of a real particle physics experiment where the true likelihood function is not known.
We illustrate how our diagnostics can guide the analyst and provide insight into which
method to choose for the problem at hand.

Consider a “Poisson counting experiment” where particle collision events are counted
under the presence of both an uncertain background process and a (new) signal process.
The goal is to estimate the signal strength. To avoid identifiability issues, the background
rate is estimated separately by counting the number of events in a control region where
the signal is believed to be absent. Hence, the observable data X “ pNb, Nsq contain two
measurements, where Nb „ Poissonpντbq is the number of events in the control region, and
Ns „ Poissonpνb ` µsq is the number of events in the signal region. Our parameter of
interest is the signal strength µ, whereas the scaling factor for the background ν is a nuisance
parameter. The hyper-parameters s and b indicate the nominally expected counts from
signal and backgrounds, and τ describes the relationship in measurement time between the
two processes. We treat the three hyper-parameters as known with values s “ 15, b “ 70,
τ “ 1, respectively. The hyper-parameters move the model away from the Gaussian limiting
regime and make the relationship between data and parameters more complicated Heinrich
(2022).

We compare the hybrid methods h-ACORE and h-BFF with ACORE χ2
1 (which uses cut-

offs from the chi-square distribution). We learn the odds using a QDA classifier with
B “ 100,000 and estimate critical values for the hybrid methods via quantile gradient
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Figure 2.5: Constraining power. Relative
size of the confidence sets constructed in Sec-
tion 2.6.2. ACORE χ2

1 and h-ACORE yield the
widest intervals (they are indeed overly conser-
vative according to Figure 2.4). h-BFF provides
tighter confidence sets, but their size cannot be
trusted when the method under-covers. LF2I
diagnostics can identify the parameter regions
where the approach is not valid (red crosses in
Figure 2.4). The dark-orange histogram reports
h-BFF results after removing those points.

boosted trees with B1 “ 10,000. We evaluate the different methods on a separate set of size
B2 “ 1000 by estimating coverage and measuring the length of confidence sets for each of
the simulated samples.

Figure 2.4 shows the estimated coverage as a function of both µ and ν. Confidence
sets are considered to be valid when they achieve the nominal coverage level regardless
of the true value of both the parameter of interest and the nuisance parameters. Both
h-ACORE and ACORE χ2

1 are overly conservative across the whole parameter space, while
h-BFF under-covers in regions of high signal strength and low background. These results
are consistent with the length of the corresponding confidence sets shown in Figure 2.5:
h-ACORE and ACORE χ2

1 are overly conservative, with the former being almost uninformative
for the majority of evaluation samples. On the other side, while h-BFF seems to provide
tighter parameter constraints, their length can be trusted only in regions where the method
has coverage at least equal to the nominal level. Our LF2I diagnostic branch can pinpoint
the regions of the parameter space where inference is reliable or not.

2.6.3 Muon Energy Estimation: Intractable and High-Dimensional
Likelihood

We now showcase LF2I on a high-energy physics application with intractable likelihood
and very high-dimensional data. The goal is to estimate the energy of muons using a
high-granularity calorimeter in a particle collider experiment. Muons are subatomic particles
that have proven to be excellent probes of new physical phenomena: their detection and
measurement has enabled several crucial discoveries in the last few decades, including the
discovery of the Higgs boson Augustin et al. (1974); Herb et al. (1977); Collaboration et al.
(1995); Aad et al. (2012b); Chatrchyan et al. (2012). Traditionally, the energy of a muon
is determined from the curvature of its trajectory in a magnetic field, but curvature-based
measurements have proven to be insufficiently precise at high energies. Recently, muon
energy measurements based on their radiative losses in a dense, finely segmented calorimeter
(Figure 2.6, left) have been shown to be a feasible alternative Kieseler et al. (2022); Dorigo
et al. (2022).
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Figure 2.6: Muon energy estimation. LF2I guarantees nominal coverage and yields smaller confidence
intervals relative to SMC-ABC. Left: Data point example of a muon with incoming energy θ « 3.2 TeV
entering a calorimeter with 32 ˆ 32 ˆ 50 cells. Center: LF2I (blue, orange, red in the right two panels)
achieves coverage at the nominal level (68.3%), whereas SMC-ABC (green and purple) is consistently
over-covering across the parameter space. Right: Median lengths of constructed intervals. While being
extremely computationally intensive, SMC-ABC has also the least constraining power regardless of the
data set used. SMC-ABC on the full calorimeter data is not reported as it was computationally infeasible
to run.

In this application, the dimensionality of one data point x (a 3D image) is of the or-
der of « 50,000 and the observed sample size is n “ 1 (as each unique data point is the
output of one experiment with a specific parameter of interest θ). In total, we have available
886,716 3D “image” inputs x with corresponding scalar muon energies θ. The data are
obtained by accurately mimicking particle showers with GEANT4 (Agostinelli et al., 2003), a
high-fidelity simulator that has been calibrated for decades and is trusted to incorporate all
the dynamics of the Standard Model of particle physics. The data are available at Kieseler
et al. (2021).

The scientific goal of this experiment is to quantify whether a high-granularity calorimeter
would better constrain the energy of a muon (that is, lead to smaller confidence sets) than, for
example, a detector that only measures the total energy of the incoming particle. To answer
this question, we consider nested versions of the same energy measurement, where the inputs
to our algorithms are of increasing dimensionality: (i) a 1D input which is equal to the sum
over all the cells of the calorimeter (for each muon with deposited energy E ą 0.1 GeV); (ii)
28 custom features extracted from the spatial and energy information of the calorimeter cells
(see Kieseler et al. (2022)); and (iii) the full calorimeter measurement, x P R51,200. We then
construct LF2I confidence sets for each data point using BFF. On the full calorimeter data,
we learn the odds function through a convolutional neural network classifier derived from the
regressor proposed in Kieseler et al. (2022), and estimate critical values via quantile gradient
boosted trees. For the 1D and 28D data sets, we instead learn odds through a gradient
boosting classifier. In both cases, we use approximately 83% of the data to learn the odds
function (B “ 738,930) and 14% to estimate critical values (B1 “ 123,155). For comparison,
we also include results from SMC-ABC (Sisson et al., 2007), a popular LFI algorithm from the
Approximate Bayesian Computation literature. To provide a fair assessment of the results,
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SMC-ABC uses all the simulations that LF2I exploits separately (i.e., B`B1 “ 862,085). The
remaining data points (B2 “ 24,631) are used for validation and diagnostics of both methods.

Figure 2.6 (center) shows that LF2I with the BFF test statistic achieves the nominal
level of coverage (68.3%) regardless of the data set used. This is consistent with Theorem 2.3:
as long as the quantile regression is well estimated, LF2I confidence sets are guaranteed to be
valid at the nominal p1´αq level regardless of how well the test statistic is estimated. On the
other hand, SMC-ABC is overly conservative with credible intervals that strongly over-cover
across the whole parameter space. As to constraining power (interval length), Figure 2.6
(right) shows that SMC-ABC credible intervals are significantly wider than LF2I confidence
sets for both the 1D and 28D data sets (running SMC-ABC on the 51,200-dimensional full
calorimeter data was computationally infeasible, and we were not able to report the results).
Finally, note how the amount of information in the data directly influences the size of LF2I
confidence sets: going from the 1D data set to the full calorimeter leads to noticeably smaller
confidence intervals, and hence higher constraining power.

Remark on validity and computational cost SMC-ABC does not have the right
coverage, because the goal of ABC is to construct Bayesian credible regions and not valid
confidence sets; see, e.g., Hermans et al. (2021) for other examples of SMC-ABC under-
or over-covering. Furthermore, note that (i) LF2I is amortized: once training is done,
confidence sets can be efficiently computed on an arbitrary number of observations without
having to retrain the algorithms; and (ii) there is no need for a prior dimension reduction
of the data (that is, we can directly input the three-dimensional image). Specifically, LF2I
required approximately 10 and 5 CPU minutes on an AMD’s EPYC 7763 machine to train
the odds classifier and the quantile regressor respectively, and less than a second to obtain
confidence intervals all at once for all observations (in this example, unique 24,631 “test”
muons) regardless of their dimensionality. In contrast, SMC-ABC required approximately 1
CPU hour for each observation even for the lower-dimensional 1D and 28D data sets.

2.7 Conclusions and Discussion

Validity. Our proposed LF2I methodology leads to frequentist confidence sets and hy-
pothesis tests with finite-sample guarantees (when there are no nuisance parameters). Any
existing or new test statistic – that is, not only estimates of the LR or BF statistics – can be
plugged into our framework to create tests that control type I error. The implicit assumption
is that the null distribution of the test statistic varies smoothly in parameter space. If that
condition holds, then we can efficiently leverage quantile regression methods to construct
valid confidence sets by a Neyman inversion of simple hypothesis tests, without having to
rely on asymptotic results.

Nuisance parameters and diagnostics. For small sample sizes, no theorem guarantees
whether profiling or marginalizing nuisance parameters will provide better frequentist
coverage for the parameter of interest (Cousins, 2018, Section 12.5.1). It is generally believed
that hybrid resampling methods return approximately valid confidence sets, but that a
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rigorous check of validity is infeasible when the true solution is not known. Our diagnostic
branch presents practical tools for assessing empirical coverage across the entire parameter
space (including nuisance parameters). After seeing the results, one can decide which method
is most appropriate for the application at hand. For example, in the Poisson counting
experiment of Section 2.6.2, LF2I diagnostics revealed that h-BFF (which averages the
estimated odds over nuisance parameters) returned smaller confidence intervals, but at the
cost of under-covering in some regions of the parameter space.

Power. Statistical power is the hardest property to achieve in practice in LFI. This is
the area where we foresee that most statistical and computational advances will take place.
As shown theoretically in Theorem 2.13 and empirically in Supplementary Material K, the
power (or size) of LF2I confidence sets depends not only on the theoretical properties of
the (exact) test statistics, but is also influenced by how precisely we are able to estimate
it. In the case of ACORE and BFF, the latter can be divided in (i) how well we are able
to estimate the likelihood or odds function (a statistical estimation error), and (ii) how
accurate are the integration or maximization procedures we use (a purely numerical error);
see Supplementary Material H for a more precise breakdown of the sources of error in LF2I
confidence sets, particularly for ACORE and BFF. Machine learning offers exciting possibilities
on both fronts. For example, with regards to (i), Brehmer et al. (2020) offers compelling
evidence that one can can dramatically improve estimates of the likelihood ppx | θq for θ P Θ,
or the likelihood ratio ppx | θ1, θ2q for θ1, θ2 P Θ, by a “mining gold” approach that extracts
additional information from the simulator about the latent process. Future work could
incorporate such an approach into the LF2I framework, with the calibration and diagnostic
branches as separate modules.

Other test statistics. Our work presents also another new direction for LF2I: So far
frequentist LFI methods have been estimating either likelihoods or likelihood ratios, and
then often relying on asymptotic properties of the LR statistic. We note that there are
settings where it may be easier to either estimate the posterior ppθ | xq rather than the
likelihood ppx | θq, or alternatively to obtain point estimates for parameters directly via
predictions algorithms. Because the LF2I framework is agnostic to which algorithms we use
to construct the test statistic itself, we can potentially leverage methods that estimate the
conditional mean Erθ | xs and variance Vrθ | xs to construct frequentist confidence sets and
hypothesis tests for θ with finite-sample guarantees. For example, Masserano et al. (2023)
— whose content we cover in Chapter 3 — uses T “

pErθ|xs´θ0q2

Vrθ|xs
, which in some scenarios

corresponds to the Wald statistic for testing H0,θ0 : θ “ θ0 against H1,θ0 : θ ‰ θ0 Wald
(1943), as an attractive alternative to get LF2I confidence sets from prediction algorithms
and posterior estimators.

See Appendices A-F for proofs and details on the algorithms, and refer to the sepa-
rate Supplementary Material file5 for additional experiments and results referenced in the
main text.

5Available at https://lucamasserano.github.io/data/LF2I_supplementary_material.pdf.

27

https://lucamasserano.github.io/data/LF2I_supplementary_material.pdf


2.7. Conclusions and Discussion

2.7.1 Related Work

Classical statistical inference in high-energy physics (HEP) LF2I is inspired by
pioneering work in HEP that adopted classical hypothesis tests and Neyman confidence sets
for the discovery of new physics (Feldman and Cousins, 1998; Cowan et al., 2011b; Aad
et al., 2012a; Chatrchyan et al., 2012; Cranmer, 2015). Our work grew from the discussion in
HEP regarding theory and practice, and open problems such as how to efficiently construct
Neyman confidence sets for general settings (Cowan et al., 2011b), how to assess coverage
across the parameter space without costly Monte Carlo simulations (Cousins, 2018), and
how to choose hybrid techniques in practice (Cousins, 2006). This paper proposes a general
approach to solve the above-mentioned open problems with a modular framework that can
be adapted to fit the data at hand.

Universal inference. Recently, Wasserman et al. (2020) proposed a “universal” inference
test statistic for constructing valid confidence sets and hypothesis tests with finite-sample
guarantees without regularity conditions. The assumptions are that the likelihood LpD; θq

is known and that one can compute the maximum likelihood estimator (MLE). Our LF2I
framework does not require a tractable likelihood, but it assumes that we have regression
methods that can estimate the chosen test statistic and its critical values. In tractable
likelihood settings where both universal inference and LF2I apply, the LF2I approach leads
to more powerful tests than universal inference (see, e.g., Figure 11 in Supplementary
Material).

Simulation-based calibration of Bayesian posterior distributions. In Bayesian
inference, the posterior distribution πpθ | xq is fundamental for quantifying uncertainty
about the parameter θ given the data x. Recent methods have been developed to assess the
quality of estimated posterior distributions; that is, assessing whether an estimate pπpθ | xq

is consistent with the posterior distribution πpθ | xq implied by the assumed prior and
likelihood (Dey et al., 2021; Zhao et al., 2021; Dey et al., 2022; Linhart et al., 2023; Lemos
et al., 2023). The calibration in LF2I is fundamentally different: Even if posteriors are
calibrated in the sense that pπpθ | xq “ πpθ | xq for every x and θ, confidence sets derived
from it will not necessarily have the correct empirical coverage (according to Equation (2.1)).
LF2I is agnostic to the choice of the test statistic (for instance, whether the test statistic is
formed from likelihoods or posteriors (Masserano et al., 2023)), and provides guarantees of
how well we are able to constrain the true parameters of interest regardless of the choice of
the prior or proposal distribution πpθq.

Likelihood-free inference via machine learning. Recent LFI methods have been using
simulators output as training data to learn surrogate models for inference; see Cranmer et al.
(2020) for a review. These techniques use synthetic data simulated across the parameter
space to directly estimate key quantities, such as:

1. posteriors ppθ | xq (Blum and François, 2010; Marin et al., 2016; Papamakarios and
Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019; Chen and Gutmann,
2019; Izbicki et al., 2019; Radev et al., 2020);
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2. likelihoods ppx | θq (Wood, 2010; Meeds and Welling, 2014; Wilkinson, 2014; Gutmann
and Corander, 2016; Fasiolo et al., 2018; Lueckmann et al., 2019; Papamakarios et al.,
2019; Picchini et al., 2020; Järvenpää et al., 2021); or

3. density ratios, such as the likelihood-to-marginal ratio ppx | θq{ppxq (Izbicki et al.,
2014; Thomas et al., 2021; Hermans et al., 2020; Durkan et al., 2020b),6 the likelihood
ratio ppx | θ1q{ppx | θ2q for θ1, θ2 P Θ (Cranmer et al., 2015; Brehmer et al., 2020) or
the profile-likelihood ratio (Heinrich, 2022).7

Recently, there have also been works that directly predict parameters θ of intractable
models using neural networks Gerber and Nychka (2021); Lenzi et al. (2021) (that is, they
do not estimate posteriors, likelihoods or density ratios). In addition, new methods such
as normalizing flows (Papamakarios et al., 2021) and other neural density estimators are
revolutionizing LFI in terms of sample efficiency and capacity, and will continue to do so.

Nonetheless, although the goal of LFI is inference on the unknown parameters θ, it remains
an open question whether a given LFI algorithm produces reliable measures of uncertainty,
as current methods lack guarantees of local (instance-wise) validity and power for a finite
number of observations. They also have no practical diagnostics to assess local coverage
across the parameter space. Our framework can be used in combination with any LFI
approach that relies on a test statistic (such as the LRT) to provide both local coverage and
diagnostics. Finally, thanks to the modular structure of LF2I, the diagnostic branch can
be used separately to evaluate whether other approaches (like ABC and posterior methods
that return credible regions) have good frequentist coverage, and in cases where they do not,
LF2I can identify regions of the parameter space of over- or under-confidence.

6In 2014, Izbicki et al. approximate likelihoods for high-dimensional data (such as 2D images) via density
ratios (Izbicki et al., 2014, Equation 3) and kernel methods, building on Izbicki’s PhD thesis work on spectral
series approaches to high-dimensional nonparametric inference. The kernel approximate likelihood approach was
later superseded by neural SBI approaches.

7ACORE and BFF are based on estimating the odds OpX; θq at θ P Θ (Equation (2.7)); this is a “likelihood-to-
marginal ratio” approach, which estimates a one-parameter function as in the original paper by Izbicki et al.
(2014). The likelihood ratio ORpX; θ0, θ1q at θ0, θ1 P Θ (Equation (2.9)) is then computed from the odds
function, without the need for an extra estimation step.
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3

Confidence Sets from Prediction Algorithms and
Posterior Estimators

3.1 Introduction

The vast majority of modern machine learning targets prediction problems, with algorithms
such as Deep Neural Networks (DNNs) being particularly successful with point predictions
of a target variable Y P R when the input vectors x P X represent complex high-dimensional
data. In many science applications, however, one is often interested in the “inverse” problem
of estimating the internal parameters of a data-generating process with reliable measures
of uncertainty. The parameters of interest, which we denote by θ, are then not directly
observed but are the “causes” of the observed data x.

In order to make inference on internal parameters, one needs a statistical model that relates
the (unknown) parameters to the observed data. In science and engineering, simulations
are often used to model the behavior of complex systems in lieu of an analytical likelihood,
when the latter is too complicated to be evaluated explicitly. Let D :“ pX1, . . . , Xnq denote
observable data, where the “sample size” n refers to the number of observations at a fixed
configuration of the parameters θ. Likelihood-free inference (LFI), which is a form of
simulator-based inference (SBI; Cranmer et al. (2020)), refers to parameter estimation in a
setting where the likelihood function Lpθ;Dq :“ ppD | θq itself is intractable, but the scientist,
in lieu of an explicit likelihood, has access to a simulator that can generate D given any θ P Θ.

LFI has undergone a revolution in terms of the complexity of problems that can be
tackled, both because of faster and more realistic simulators that can generate a large
number of examples T “ tpθi,DiquBi“1, and because of more powerful AI techniques that can
learn various quantities of interest from these simulations. DNNs — such as convolutional
neural networks (CNNs) (LeCun et al., 1995) — are now used in many domain sciences to di-
rectly predict internal parameters of interest in statistical models, especially in settings where
X represents images or other high-dimensional data. Recent examples include estimating
the energy (θ) of muons that radiate photons when traversing a finely segmented calorimeter
(X) (Kieseler et al., 2022); estimating the mass of a galaxy cluster (θ) from velocities and
projected radial distances (X) for a particular line-of-sight of the observer relative to the
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galaxy cluster (Ho et al., 2019); and estimating the range and noise-to-signal covariance
parameters (θ) of spatial Gaussian processes from spatial fields or variograms (X) (Gerber
and Nychka, 2021). In parallel, modern neural density estimators, such as normalizing
flows, are becoming increasingly popular for uncertainty quantification, especially when both
parameters θ and observations X are high-dimensional. Recent examples include Boyda
et al. (2021); Mishra-Sharma and Cranmer (2022); Lueckmann et al. (2021).

Purely predictive approaches are known to suffer from prediction bias in inverse prob-
lems, as the point prediction — e.g., Erθ | xs under squared error loss — is generally different
from the true (unknown) parameter θ. Concrete examples include Dorigo et al. (2022); Ho
et al. (2019); Kiel et al. (2019), where attempts are made to correct for the observed bias
post-hoc. At the same time, many posterior estimation methods are known to be overly
confident, meaning that they yield confidence sets with empirical coverage lower than the
desired nominal level (Hermans et al., 2021), hence leading to potentially misleading results.
At the heart of the matter is the fact that both predictive and posterior approaches in
SBI rely heavily on how the values of θ in the training set T are sampled. For reliable
inference, however, the coverage guarantees of the confidence sets should be independent of
the choice of prior πθ, thereby allowing the user to design priors that can lead to tighter, but
guaranteed to be valid, confidence sets. In this chapter, we present a solution without relying
on large-sample theory or computationally intensive Monte Carlo sampling.

Waldo is a new LFI procedure that can leverage any prediction algorithm or neural posterior
estimator to construct confidence regions for θ with correct conditional coverage; that is,
sets RpDq satisfying

PD|θpθ P RpDqq “ 1 ´ α, @θ P Θ, (3.1)

regardless of the size n of the observed sample, where p1 ´ αq P p0, 1q is a prespecified
confidence level. Note that this is the same definition we gave in Equation (2.1) in Chapter 2.
Correct conditional coverage implies correct marginal coverage, Ppθ P RpDqq “ 1 ´ α, but
the former is a stronger requirement that checks that the confidence set is calibrated no
matter what the true parameter is, whereas marginal coverage only requires the set to be
calibrated on average over the parameter space Θ. Waldo reframes the Wald test (Wald,
1943) and leverages existing prediction or posterior algorithms to first compute a test statis-
tic (Equation (3.4)) based on estimates of the conditional mean Erθ | Ds and conditional
variance Vrθ | Ds. It then uses a recent approach (Dalmasso* et al., 2024) to the Neyman
construction (Neyman, 1937b), which estimates critical values via quantile regression and
converts hypothesis tests into a confidence region with finite-n conditional coverage. Waldo
also includes an independent diagnostics module to check that the constructed confidence
sets achieve the correct nominal level of empirical coverage across the parameter space,
analogously to what we introduce in Section 2.3.4. Section 3.3.2 describes our methodology
in detail, and Figure 3.1 summarizes its different components.

Waldo embraces the best sides of both the Bayesian and frequentist perspectives to statistical
inference by providing confidence sets that (i) can effectively exploit available domain-specific
knowledge, further constraining parameters when the prior is consistent with the data, and
(ii) are guaranteed to have the nominal conditional coverage even in finite samples as long
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Figure 3.1: Schematic diagram of Waldo. Left (blue): For a training set T , we estimate
the conditional mean Erθ | Ds and variance Vrθ | Ds using a prediction algorithm (e.g., DNN)
or posterior estimator (e.g., normalizing flows). This gives us the Waldo test statistic τ̂Waldo
in Equation (3.4). Center (green): For a calibration set T 1, we estimate critical values pCθ0,α
for all tests H0 : θ “ θ0 across the parameter space Θ via a quantile regression of pτWaldo on θ.
Bottom: Given an observation D, Neyman inversion converts the tests (which compare test
statistics with critical values) into a confidence region for θ. Right (red): For a validation set
T 2, we provide an independent assessment of the conditional validity of constructed confidence
regions by computing coverage diagnostics across the entire parameter space. See Section 3.3.2
and Algorithm 3.1 for details.

as the quantile regressor is well estimated, regardless of the correctness of the prior. Waldo
is also amortized, meaning that once the procedure has been trained, it can be evaluated
on any number of observations. We lay out the statistical and computational properties
of Waldo, providing synthetic examples with analytical solutions to verify and support
our claims (see Section 3.3.3 and Section 3.3.4). We then show its effectiveness on two
complex applications, which confirm the results we obtained on the synthetic examples:
the first one (Section 3.4.1) uses an established benchmark in SBI and leverages posterior
distributions to construct valid confidence sets regardless of the prior distribution. The
second application (Section 3.4.2) deals with a current problem in high-energy physics:
inferring the energy of muons from a particle detector exploiting predictions from a custom
CNN and an innovative source of information, i.e., the pattern of energy deposits left by
muons in a finely segmented calorimeter. The results we obtain for this problem, which are
closely connected to those presented in Section 2.6.3, are of scientific interest by themselves,
as a rigorous estimate of the uncertainty around estimated muon energies is essential in the
search of new physics. A ready-to-use and flexible implementation of Waldo is available at
https://github.com/lee-group-cmu/lf2i.
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Notation We refer to parameters of interest as θ P Θ Ă Rd and to a sample of size n of
observable input data as D “ pX1, . . . , Xnq, with xi P X Ă Rp and possibly d ‰ p. Note
that n is distinct from B,B1 and B2, i.e., the number of simulations required at different
steps of our method. We distinguish between observable data and actual observations by
denoting the latter as D “ pxobs1 , . . . , xobsn q. We refer to confidence regions as RpDq. The
terms “set”, “region” and (when p “ 1) “interval” are used interchangeably.

3.2 Related Work

There exist many approaches for calibrating predictive distributions ppy | xq to achieve
marginal or conditional validity in “forward” x Ñ y problems; examples include conformal
inference (Vovk et al., 2005a; Lei et al., 2018; Chernozhukov et al., 2021) and the calibration
procedures of Bordoloi et al. (2010); Dey et al. (2022). In the Bayesian inference domain,
such calibration procedures correspond to ensuring that an estimate p̂pθ | xq of the posterior
ppθ | xq indeed corresponds to the true posterior implied by the prior that was used. This
chapter, on the other hand, deals with the question of constructing confidence sets with
correct conditional coverage for internal unknown parameters θ in so-called “inverse problems”
(recall Equation (3.1)), which is not the same as achieving conditional coverage for prediction
sets, or recalibrating posteriors.

Similarly, existing approaches for deep learning uncertainty quantification (see Gawlikowski
et al. (2021) for a recent review), such as Monte Carlo drop out (Gal and Ghahramani,
2016) and conformal inference DNNs (Papadopoulos et al., 2007; Angelopoulos et al., 2023b),
construct prediction sets instead of confidence sets. Before Waldo, there has been no
straightforward way to obtain confidence sets from point predictions or estimated posteriors
obtained from deep neural networks and other predictive ML algorithms.

For example, various domain science applications have developed post-hoc corrections
to predictive or posterior inferences to reduce observed biases and to improve the calibration
of uncertainties. Such corrections are common in areas ranging from particle physics (Dorigo
et al., 2022) to cosmology (Ho et al., 2019) and remote sensing (Kiel et al., 2019). Usually
the goal of the corrections is to reduce the impact of the prior specification, but in con-
trast to Waldo, post-hoc correction approaches do not provide formal coverage guarantees.
Similarly, in some settings, priors can be designed so that credible regions achieve correct
conditional coverage (Bayarri and Berger, 2004; Berger, 2006; Kass and Wasserman, 1996;
Scricciolo, 1999; Datta and Sweeting, 2005). However, this technique requires knowledge of
the likelihood function (which is not available in LFI). Moreover, such prior distributions
often do not encode actual prior information, a limitation that is not present in Waldo.

Finally, posterior inferences do not control conditional coverage even for correctly specified
priors (Patil et al., 2022). Waldo addresses this problem using Neyman inversion via an
efficient regression-based approach proposed in Dalmasso* et al. (2024), which we covered in
Chapter 2. In the latter, however, we construct likelihood-based test statistics (the Bayes
factor or likelihood ratio) which require an extra numerical integration or optimization step
that can lead to a loss of power of the resulting confidence sets. Waldo, on the other hand,
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directly leverages flexible prediction algorithms and posterior estimators to construct valid
and potentially more precise finite-n confidence sets.

3.3 Methodology

Waldo leverages a regression-based approach to the Neyman construction, reframing the
Wald test to use the output of common LFI prediction algorithms and posterior estimators.
After outlining its statistical foundations, we describe our procedure and its properties using
synthetic examples.

3.3.1 Foundational Tools from Classical Statistics

Neyman construction. A key ingredient of Waldo is the equivalence between hypothesis
tests and confidence sets, which was formalized by Neyman (1937b). The basic idea is to
invert a series of level-α hypothesis tests of the form

H0 : θ “ θ0 vs. H1 : θ ‰ θ0, (3.2)

for all θ0 P Θ. After observing a sample D, one constructs a confidence region RpDq for θ
by taking all θ0 values that were not rejected by the series of tests above. By design, the
set RpDq satisfies Equation (3.1), i.e., it has the correct 1 ´ α coverage across the entire
parameter space Θ. Albeit simple, the Neyman construction requires one to control the
type-I error for every θ P Θ. It is therefore hard to implement in practice within an LFI
setting, without resorting to large-n approximations like Wilks’ theorem (Wilks, 1938), or to
Monte Carlo approaches, which become computationally prohibitive as the dimensionality
of the parameter space increases (Cousins (2018); see also Section 3.3.4).

Wald test. Since any test that controls the type-I error at level α can be used for the
Neyman construction, we base Waldo on the classical Wald test (Wald, 1943), which is
uniformly most powerful in many settings (Ghosh, 1991; Lehmann et al., 2005). The Wald
test measures the agreement of the data with the null hypothesis for θ, and it has the
following form for d “ 1:

τWaldpD; θ0q :“
ppθMLE ´ θ0q2

VppθMLEq
, (3.3)

where pθMLE is the maximum-likelihood estimator of θ and pVppθMLEq can be any consistent
estimator of its variance. However, in our setting, we do not have access to the likelihood
and we cannot resort to assumptions on the distribution of τWaldpD; θ0q, nor to asymptotic
regimes, which makes it difficult to directly compute the Wald test statistic.

3.3.2 Confidence Sets from Predictions and Posteriors

From Wald to Waldo. Waldo reframes the Wald test by replacing pθMLE and its variance
with quantities that are easily computable with prediction algorithms or posterior estimators
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commonly used in LFI. We define the Waldo test statistic for parameters of arbitrary
dimensionality d as

τWaldopD; θ0q “ pErθ | Ds ´ θ0qTVrθ | Ds´1pErθ | Ds ´ θ0q, (3.4)

where Erθ | Ds and Vrθ | Ds are, respectively, the conditional mean and covariance matrix of
θ given D. The connection to the Wald test follows from the asymptotic behavior of Bayes
estimators (e.g., Chao (1970); Ghosh and Ramamoorthi (2003); Ghosh et al. (1982); Li et al.
(2020)):

Erθ | Ds ´ pθMLE “ Oppn´1{2q and Vrθ | Ds ´
1

n
H´1ppθMLEq “ Oppn´1q,

where H´1ppθMLEq is the negative inverse Fisher information matrix evaluated at pθMLE. The
above result implies that Waldo would enjoy the same asymptotic properties typical of
the Wald test, making it a pivotal test statistic. On the other hand, this does not mean
that Wald and Waldo will give the same results for small n: indeed, in Section 3.3.3 and
Appendix B.1.2, we demonstrate that Waldo can benefit from a prior over θ that is consistent
with the data to achieve smaller confidence sets, whereas the Wald test statistic only depends
on the likelihood.

Likelihood-Free Frequentist Inference (LF2I). Waldo expands on the LF2I framework
formalized in Dalmasso* et al. (2024) — see Chapter 2 — which proposed a fast construction
of Neyman confidence sets using quantile regression to bypass large-sample approximations
or expensive Monte-Carlo simulations. In its original formulation, the LF2I machinery
includes three modular procedures which, respectively, (i) estimate a likelihood-based test
statistic via odds ratios, (ii) estimate critical values Cθ,α via quantile regression, and (iii)
check that the constructed confidence sets achieve the desired coverage level for all θ P Θ.
Each module is based on an independent dataset sampled from a high-fidelity simulator
Fθ. Waldo replaces (i) and instead uses posteriors or predictions to compute τWaldo as in
Equation (3.4). We break down the construction of a confidence set (including diagnostics)
in the following steps, as outlined in Figure 3.1 and Algorithm 3.1:

(i) Estimate the test statistic via prediction algorithms or neural posterior
estimators. Use the dataset T “ tpθi,DiquBi“1, where θ can be drawn from any prior
distribution πθ, to estimate Erθ | Ds and Vrθ | Ds. This can be done by choosing between
two methods: if using a prediction algorithm, we can leverage the fact that they approximate
the conditional mean of the outcome variable given the inputs D, when minimizing the
squared error loss (lines 4-6 in Algorithm 3.1). Conversely, if using modern neural posterior
estimators (such as normalizing flows (Papamakarios et al., 2021)), we can approximate
Erθ | Ds and Vrθ | Ds via Monte Carlo sampling from the estimated posterior distribution
(lines 16-18 in Algorithm 3.1);

(ii) Estimate critical values via quantile regression. Estimate Cθ,α :“ F´1
pτWaldo

p1´α | θq

by learning the conditional p1 ´ αq-quantile of pτWaldopD; θq using quantile regression over
a calibration set T 1 “ tpθi,DiquB

1

i“1, where θ is drawn from a distribution with density
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Algorithm 3.1 Confidence set for θ via Waldo
Input: Datasets T , T 1, T 2; observed sample D; prediction algorithm or posterior estimator;
quantile regressor; grid of parameter values ΘNgrid ; desired coverage level 1 ´ α

Output: Confidence set pRD

1: // Estimate building blocks of test statistic
2: Draw T “ tpθi,Diu

B
i“1

3: if prediction algorithm then
4: Estimate Erθ | Ds on T under squared error loss
5: Compute tzi :“ pθi ´ Erθ | Disq

2uBi“1

6: Estimate Vrθ | Ds “ Erz | Ds under squared error loss
7: else if posterior estimator then
8: Estimate posterior distribution ppθ | Dq on T

9: // Estimate critical values
10: Simulate T 1 “ tpθi,DiquB

1

i“1

11: if prediction algorithm then
12: Predict tpErθ | Dis, pVrθ | Disu

B1

i“1

13: else if posterior estimator then
14: for each D that appears in T 1 do
15: Draw Np̂ samples from p̂pθ | Dq

16: pErθ | Ds «

ř

i θi
Np̂

17: pVrθ | Ds «

ř

ipθi´
pErθ|Dsqpθi´pErθ|DsqT

Np̂´1

18: Compute tpτWaldopDi; θiquB
1

i“1

19: Estimate critical values Cθ,α via quantile regression of pτWaldopD; θq on θ

20: // Neyman inversion
21: if prediction algorithm then
22: Predict pErθ | Ds and pVrθ | Ds

23: else if posterior estimator then
24: Draw Np̂ samples from p̂pθ | Dq

25: pErθ | Ds «

ř

i θi
Np̂

26: pVrθ | Ds «

ř

ipθi´
pErθ|Dsqpθi´pErθ|DsqT

Np̂´1

27: Predict pCθ0,α @θ0 P Θgrid

28: Initialize pRpDq Ð H

29: for θ0 P Θgrid do
30: if pτWaldopD; θ0q ď pCθ0;α then
31: pRpDq Ð pRpDq Y tθ0u

32: return confidence set pRpDq
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rθ ą 0,@θ P Θ to allow for effective calibration across the entire parameter space;

(i) ` (ii) Neyman inversion. Once D is observed, evaluate pτWaldopD; θ0q and pCθ0;α over a
fine grid of parameters θ0 P Θ, and retain all θ0 for which the corresponding test does not
reject the null:

pRpDq “ tθ0 P Θ : pτWaldopD; θ0q ď pCθ0,αu. (3.5)

As we showed in Section 2.4, step (ii) leads to valid level-α hypothesis tests as long as
the quantile regressor is well estimated, which then implies that pRpDq satisfies conditional
coverage (Equation (3.1)) at level 1´α, regardless of the true value of θ and of the size n of
the observed sample D;

(iii) Coverage diagnostics. To check that the constructed confidence sets indeed achieve
the desired level of conditional coverage, we leverage the diagnostics procedure introduced
in Dalmasso* et al. (2024) and covered in Section 2.3.4. In detail: simulate a set T 2 “

tpθi,DiquB
2

i“1 and construct a confidence region for each Di P T 2. Then model 1tθi P RpDiqu

as a function of θi adopting a suitable probabilistic classification method. By definition,
this will estimate Er1tθ P RpDu|θs “ Prθ P RpDq|θs across the whole parameter space. Note
that this module is completely independent from (i) and (ii). As such, it can be used to
to check the empirical conditional coverage of any uncertainty estimate, as illustrated in
Section 3.3.4 for Neyman confidence sets where critical values are estimated via Monte Carlo
sampling, in Section 3.4.1 for posterior credible regions, and in Section 3.4.2 for prediction
sets from the output of a CNN.

3.3.3 Statistical Properties: Coverage and Power

We now show that the coverage guarantees of Waldo are independent from the prior
distribution, which can also be chosen to increase power. We do so through univariate
Gaussian examples with analytically computable solutions. Since d “ 1, we use simple
prediction algorithms to estimate Erθ | Ds and Vrθ | Ds. See Appendix B.2.1 for details.

Property I: Waldo guarantees conditional coverage across Θ, regardless of the
specified prior. Scientists sometimes have domain-specific knowledge that can guide
inference through the elicitation of a prior distribution over the parameters of interest. The
goal is to introduce a bias to help quantifying the uncertainty, but if the prior happens to be
at odds with the data, then this bias can be harmful and cause posteriors to be overconfident
and smaller than they should be (Hermans et al., 2021). Ideally, we would want the coverage
guarantees of any estimated parameter region to be preserved under this bias. In this
example, we assume θ „ N p0, 2q, D | θ „ N pθ, 1q. As Figure 3.2 shows, confidence sets for
θ (left panel) constructed through Neyman inversion of a series of Wald tests guarantee
the correct conditional coverage (right panel), since Wald tests are only influenced by the
likelihood. Conversely, prediction sets (Erθ | Ds ˘ zα{2

a

Vrθ | Ds) are influenced by the prior
through the bias induced in the point predictions, which increases with the distance from
the prior mean and results in strong under-coverage. Waldo exploits the same inputs of
prediction sets (Erθ | Ds and Vrθ | Ds), but corrects this problem by calibrating the critical
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Figure 3.2: Property I: Waldo guarantees conditional coverage across Θ, regardless of the
specified prior. Prior: θ „ N p0, 2q. Likelihood: D | θ „ N pθ, 1q. Left: median of upper/lower
bounds of constructed parameter regions. Right: empirical coverage computed numerically using
100,000 samples for each θ over a fine grid in Θ (i.e., not using coverage diagnostics).

values via quantile regression, hence guaranteeing conditional coverage. Note that we only
use a single observation (n “ 1) for each confidence set.

Property II: Waldo exploits prior information and achieves higher statistical
power. When the prior is correctly specified, we would like to leverage the induced bias to
increase the power of the inverted tests and produce tighter constraints on the parameters,
while retaining conditional coverage. Here we simulate data from a unique “true” Gaussian
likelihood D | θ „ N pθ “ 40, 1q, and investigate the effect that the informativeness of the
prior has on the power of the resulting tests. As Figure 3.3 shows, Waldo and Wald coincide
when the prior is uninformative (θ „ Up35, 45q; left panel), but the former has higher power
when the prior is instead correctly specified (θ „ N p40, 1q; right panel), thereby leading to
smaller confidence sets. In Chapter 4, we will make this property more rigorous by proving
that a class of posterior-based confidence sets is provably optimal (i.e., as precise as possible)
with respect to the prior distribution.

3.3.4 Computational Properties

Scaling with high-dimensional parameters. As mentioned in Section 3.3.2, Waldo
exploits a dataset sampled over Θ to estimate critical values via quantile regression and
guarantee coverage across the whole parameter space1. While this might seem a daunting
requirement, the only alternative to guarantee conditional coverage is to resort to Monte

1Technically, we only need to sample from a distribution that places mass on all Θ.
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Figure 3.3: Property II: Waldo exploits prior information and achieves higher power. Power
curves computed by recording the number of times a wrong value of θ is correctly outside the
confidence set over 1,000 repetitions. Likelihood: D „ N p40, 1q. Left: Wald and Waldo are
equivalent when θ „ Up35, 45q . Right: Waldo has higher power when θ „ N p40, 1q.

Carlo approaches that sample many times at each θ P Θ. As Figure 3.4 shows, Waldo
requires several orders of magnitude less simulations to achieve the correct calibration. This
is true already when d “ 1, and is even more evident when d “ 10.

Quality of models. Waldo relies on two estimation procedures ((i) and (ii) below) to
construct the confidence set itself. The accuracy of the results relies on the estimation
quality of these models and on the number of simulations B and B1 that are available. In
addition, there is a diagnostics procedure (iii) to estimate the conditional coverage of the
final confidence sets, as a separate check that Equation (3.1) indeed holds.

(i) Test statistic. The quality of prediction algorithms and posterior estimators is positively
correlated with the power of the resulting tests. As the precision in the estimates of Erθ | Ds

and Vrθ | Ds decreases, the variance of the test statistics increases, which implies more
conservative critical values and larger confidence regions. A good prior distribution will
clearly help in achieving more precise estimates in regions of interest in the parameter space.

(ii) Critical values. As we proved in Section 2.4, conditional coverage is achieved as long as
the quantile regressor is well estimated. In practice, we observe that little hyper-parameter
optimization is needed and that the number of simulations required to achieve well-calibrated
critical values is usually a small fraction of those needed for the test statistic.

(iii) Diagnostics. The quality of the probabilistic classifier used to check the empirical

39



3.4. Experiments

d = 1

d = 10

Figure 3.4: Quantile regression (QR) is orders of magnitude more efficient than Monte Carlo
(MC) in terms of the number of simulations B1 required to achieve correct coverage. Each panel
shows the fraction of samples (out of 1,000 total) for which the selected method to estimate critical values
achieves approximately correct coverage (Ppθ P RpDq | θq P r0.95 ˘ 0.03s). Prior: θ „ N p0, 0.1 ¨ Iq.
Likelihood: D | θ „ N pθ, 0.1 ¨ Iq. In both cases, we used normalizing flows to estimate the posterior.

coverage probability affects only the reliability of the diagnostics. Note that this module
is completely independent of the others, and we can check its quality by inspecting the
cross-entropy loss, and the standard errors and confidence bands on the estimates that
common statistical packages provide (e.g., MGCV (Wood, 2015) in R).

3.4 Experiments

We assess the performance of Waldo on two challenging experiments. In the first example
(Section 3.4.1), we show how to use a posterior distribution estimated via normalizing flows
to compute valid confidence regions, and how prior information can improve precision. The
second example (Section 3.4.2) tackles a complex particle energy reconstruction problem in
high-energy physics: we leverage predictions from a custom convolutional neural network
(CNN) to construct confidence intervals with correct coverage and high power.

3.4.1 Confidence Sets from Neural Posteriors

This inference task was introduced in Sisson et al. (2007) and has become a standard
benchmark in the SBI literature (Clarté et al., 2021; Toni et al., 2009; Simola et al., 2021;
Lueckmann et al., 2021). It consists of estimating the (common) mean of the components of
a two-dimensional Gaussian mixture, with one component having much broader covariance:
D | θ „ 1

2N pθ, Iq ` 1
2N pθ, 0.01 ¨ Iq, where θ P R2 and n “ 12. We estimate ppθ | Dq using

a Neural Posterior Estimator (NPE) based on masked autoregressive flows (Papamakarios
et al., 2017) as implemented by the nflows library (Durkan et al., 2020a) through the SBI

2Waldo works for an observed sample of any size, but we had to use n “ 1 because the SBI Python library
we used to estimate the posterior does not yet support larger sample sizes for NPE.
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Figure 3.5: Waldo converts posterior distributions into confidence regions with correct conditional
coverage and high power. Left Panel - Top: Examples of 95% credible regions (blue) from posteriors
estimated with normalizing flows and a Gaussian N p0, 2 ¨ Iq prior (gray) for different values of the true
unknown parameter θ˚ (red star). Right Panel - Top: Credible regions have conditional coverage close
to the nominal level only in a neighborhood of the prior, and severely undercover everywhere else. Left
Panel - Bottom: Corresponding 95% Waldo confidence sets (green), derived from the same posterior
estimates used for the top row. Right Panel - Bottom: Conditional coverage for Waldo confidence sets
achieves the nominal 1-α level everywhere, where α “ 0.05.

package (Tejero-Cantero et al., 2020), and report results obtained with two different priors:
θ „ N p0, 2 ¨Iq and θ „ Upr´10, 10s2q (the latter in Appendix B.1.2). We estimate the critical
values with a 2-layer feedforward neural network minimizing the quantile loss. Simulated
datasets used for training are of the following sizes: B “ 100,000, B1 “ 30,000 when using
a Gaussian prior. Conditional mean and variance were approximated with 50,000 Monte
Carlo samples from the learned neural posterior.

The first four panels on the left of Figure 3.5 show examples of 95% credible regions
(top) and Waldo confidence sets (bottom) obtained from the same posterior distribution,
when the true parameter is far from the prior. If the data is at odds with the prior, then
the induced bias leads to credible regions that severely undercover across the parameter
space, as it is shown at the top of the rightmost panel, where the coverage probability for
credible regions reaches values as low as 0-10%. Waldo can correct for this bias and output
larger confidence sets which account for the added uncertainty, thereby leading to correct
conditional coverage everywhere (bottom of rightmost panel). This is the same behavior
seen in the first example of Section 3.3.3, although for a more complex setting and for a
posterior estimator.
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Figure 3.6: Waldo guarantees the nominal coverage level, and yields smaller confidence intervals
(more precise estimates of muon energy) with the higher-granularity (“full”) calorimeter data.
Left: Energy deposited by a θ « 3.2 TeV muon entering a calorimeter with 32 ˆ 32 ˆ 50 cells. Center:
Waldo (blue, orange, red in the right two panels) guarantees nominal coverage (68.3%), while 1σ
prediction intervals (green) under- or over-cover in different regions of Θ. Right: Median lengths of
constructed intervals: shorter intervals imply higher precision in the estimates. Prediction sets are on
average wider than the corresponding confidence sets, using the same data.

Conversely, when the prior is consistent with the data (Figure 3.5, right two panels
of “Parameter Regions”), Waldo is not overly conservative and leverages the additional
information to tighten the constraints on the parameters, closely tracking the size of the
posterior credible region. In Appendix B.1.2, we also show that, over many independent
observations, the average size of Waldo confidence sets is indeed smaller when using an
informative prior than when using a Uniform over Θ. These results closely mimic those
seen in the second example of Section 3.3.3. In Chapter 4, we will make this property more
rigorous by proving that a class of posterior-based confidence sets is provably optimal (i.e.,
as precise as possible) with respect to the prior distribution.

3.4.2 Confidence Sets for Muon Energies using CNN Predictions

We now discuss the performance of Waldo on an application of interest to fundamental
research: estimating the energy of muons at a future particle collider. Muons are a heav-
ier replica of electrons; they are produced in sub-nuclear reactions involving electroweak
interactions. Muons are also excellent probes of new phenomena: in fact, their detection
and measurement has been key to several crucial discoveries in the past decades, including
the Higgs boson (Augustin et al., 1974; Herb et al., 1977; Collaboration et al., 1995; Aad
et al., 2012b; Chatrchyan et al., 2012). Traditionally, the energy of a muon is determined
from the curvature of its trajectory in a magnetic field, but at energies above a few TeV
these methods breaks down as trajectories become indistinguishable from straight paths
even within the strongest practically achievable fields. Searching for viable alternatives, it
has been observed (Kieseler et al., 2022; Dorigo et al., 2022) that both the pattern and the
magnitude of small radiative energy losses that muons withstand in traversing dense and
finely segmented calorimeters can be used to infer the incident muon energy, leveraging the
capacity of modern deep learning architectures. Nonetheless, the above work also clearly
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showed that predictions of θ suffered from a strong bias, mainly due to the high nonlinearity
of the response at very high energies. Motivated by this problem, we pose two questions: (i)
Can we construct confidence sets with correct coverage of the true energy of muons using
the information contained in the pattern and magnitude of radiative deposits in a dense
calorimeter? (ii) Is it possible to extract additional information from finer segmentations
of the calorimeter to allow for tighter constraints (i.e., smaller confidence sets with correct
coverage) on muon energy estimates? Quantifying the latter would allow scientists to
optimize their detector designs, since manufacturing very small calorimeter cells is expensive.

We collected 886,716 3D input “images” X and scalar muon energies θ obtained through
GEANT4 (Agostinelli et al., 2003), a high-fidelity stochastic simulator. See Figure 3.6 (left
panel) for an illustration of one simulated Xi for a particular θi. The data are available
at Kieseler et al. (2021). As the interest is on constraining muon energies as much as
possible while guaranteeing conditional coverage, we use three versions of the same dataset
with increasing dimensionality: a 1D input equal to the sum over all calorimeter cells with
deposited energy E ą 0.1 GeV, for each muon; 28 custom features extracted from the spatial
and energy information of the calorimeter cells (see Kieseler et al. (2022)); and the full
calorimeter measurements (Xi P R51,200q. For the first two datasets, we estimate Erθ | Ds

and Vrθ | Ds via gradient boosted trees as implemented in XGBoost(Chen and Guestrin,
2016). For the full calorimeter data, we rely on the CNN developed by Kieseler et al.
(2022). We use quantile gradient boosted trees for quantile regression, as implemented in
scikit-learn (Pedregosa et al., 2011).

Answering (i) affirmatively, Figure 3.6 (center) shows that confidence sets constructed
with Waldo achieve exact conditional coverage (68.3%) regardless of the dataset used. The
corresponding 1σ prediction intervals (Erθ | Ds ˘

a

Vrθ | Ds) using full calorimeter data,
instead, exhibit over- or under-coverage in different regions over Θ, which in the latter
case means that prediction sets contain the true value with much lower probability than
anticipated. As for question (ii), we make two observations (see Figure 3.6; right panel):
First, using the raw higher-dimensional energy deposits with Waldo allows to reduce the
uncertainty around muon energies. Second, confidence sets constructed with Waldo are even
shorter than the corresponding prediction intervals, while also guaranteeing conditional
coverage.

3.5 Conclusions and Discussion

In this Chapter, we presented Waldo, a novel method to construct confidence sets with
correct finite-n conditional coverage by leveraging prediction algorithms and posterior esti-
mators for inverse problems. Waldo relies on a regression-based Neyman construction, which
requires orders of magnitude fewer simulations than traditional Monte Carlo approaches
to be well calibrated across the parameter space (see Section 3.3.4). Nonetheless, our
method still needs a simulator that is both high-fidelity — to draw inferences that reflect
the true data-generating process — and fast — to simulate sufficiently large training sets
to accurately learn the key quantities of Waldo: the test statistics, the critical values, and
the coverage diagnostics, as discussed in Section 3.3.4. Waldo disentangles the coverage
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guarantees of the confidence region from the choice of the prior distribution. To increase
power, one may be able to leverage domain-specific knowledge (see Sections 3.3.3 and 3.4.1),
or take advantage of the internal structure of the simulator (Brehmer et al., 2020), with
the guarantee that the confidence sets always contain the true parameter with the desired
proability. One could also adaptively simulate more data in specific regions of interest in the
parameter space. Active learning strategies, and a more formal treatment of the relation
between power and priors, are promising areas for future studies.

Domain sciences, especially the physical sciences, routinely seek to constrain parameters of
interest using both theoretical (or simulation) models and experimental data. Waldo provides
reliable constraints that can be used to deduce trustworthy scientific conclusions when other
uncertainty quantification methods are either unavailable, unreliable or inefficient.
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4

Optimal Confidence Sets from Generative Models

4.1 Introduction and Problem Setting

Modern science relies on complex models of physical, biological and chemical phenomena.
Yet, inferring internal parameters of a scientific model from observed data when the likelihood
is intractable remains a major statistical challenge. This inverse inference task — where
the likelihood is only implicitly encoded by a simulator or, alternatively, by labeled data1

from auxiliary measurements — lies at the heart of many pressing questions across the
natural sciences. In high-energy physics, for instance, the ATLAS and CMS experiments
at the Large Hadron Collider have used the extremely complex outcome of proton-proton
collisions to accurately measure parameters of the Standard Model (Glashow, 1959; Salam,
1959; Cabibbo, 1963; Weinberg, 1967), as well as to constrain its possible extensions, such
as supersymmetry (see, e.g., ATLAS Collaboration, 2024). In astronomy, space telescopes
like Gaia are used to infer stellar properties from low-resolution spectra, often with the aid
of auxiliary high-resolution surveys Collaboration et al. (2016). In environmental science,
complex Earth system models (e.g., UKESM; Sellar et al. 2019) are used to constrain the
parameters of multiple physical processes for, e.g., land surface, atmosphere, ocean and ice
sheet dynamics simultaneously.

Traditionally, statistical inference is based on evaluating likelihood functions that model the
probability ppX | θq of observing data X for different parameter values — i.e. instances —
of θ. However, this approach becomes infeasible for modern scientific problems involving
next-generation precision data. Likelihoods are often intractable, either due to the com-
plexity of the data-generating process — frequently involving simulation-based processes or
complicated integrals on large latent spaces — or due to prohibitive computational costs
when evaluating them on massive data. To address these challenges, the scientific community
has adopted a new class of inference methods, here referred to as neural likelihood-free
inference (NLFI; see, e.g., Cranmer et al. (2020); Lueckmann et al. (2021)). The most
popular NLFI approaches in astronomy, biology, and environmental sciences completely
bypass likelihood computations, and instead rely on AI-based generative models — such as

1In what follows, we use the term labels to indicate the values of parameters (not necessarily discrete)
associated with different objects; e.g., stellar labels for the properties of different stars (age, mass, etc.).
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Figure 4.1: The likelihood-free inference setting. Panel A: With a forward model, we can make
predictions on data X given parameters θ. The inverse problem is to infer the parameters θ of a model
given observed data X. Panel B: In likelihood-free inference (LFI), the likelihood ppX | θq is intractable.
We consider two LFI scenarios, where the likelihood is implicitly encoded either by (i) a simulator (the
inverse problem is then known as simulator-based inference or SBI; brown), or by (ii) labeled data from
observational studies (we refer to the latter inverse problem as “LFI beyond SBI”, green).

normalizing flows, diffusion models, and flow matching — to estimate posterior distributions
πpθ|Xq.2 These flexible posterior-based methods are attractive because they avoid the
need for computationally tractable likelihoods, and they scale to massive data sets with
the accuracy of traditional methods and several orders of magnitude faster inference; see,
e.g., Wang et al. 2023 and Sainsbury-Dale et al. 2024 for examples with ultra-fast neural
Bayesian inference with James Webb Space Telescope survey data and irregularly spaced
remote sensing ocean data. However, despite the promise of neural inference methods, a
fundamental question remains:

How can we make trustworthy inferences in inverse problems with posteriors
learned via generative models?

In forward problems, where the goal is to predict observable data X for fixed θ, generative
models often perform well: their predictions can be validated against held-out data from
the implicit likelihood, and the quality of the predictions can be directly assessed. Inverse
problems are more challenging: internal parameters (such as, for example, the age and
distance of a galaxy) are inferred from data (the output of the forward model), rather than
caused by data. As we shall see, this distinction turns out to make a key difference in
ensuring reliable scientific inference. To draw conclusions that adhere to the rigor of the
scientific method, scientists need to reliably constrain unknown parameters given the data
they can collect with valid measures of uncertainties: We say that a 100p1 ´ αq% confidence
region RpXq for θ is valid if there is at least a 100p1 ´ αq% chance that the region contains
the true value of θ, no matter what that unknown value is. For these regions to be useful in
parameter estimation, we also need them to have high constraining power; that is, to be small.

2The “posterior” distribution πpθ|Xq can be interpreted as the uncertainty in our knowledge of θ a posteriori
(after the fact) of observing data X. In this chapter, we will use the terms “posteriors” and “priors” beyond the
traditional subjective Bayesian view (Gelman et al., 2013) to also apply to probabilities that can be indirectly
determined by the observed population of physical entities, such as stars, galaxies, and so on.
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Figure 4.2: Our proposed approach to valid scientific inference. Panel A: (Left) The typical
workflow for inferring parameters with neural density estimators is to first learn the posterior, pπpθ|Xq, from
train data. Then, for new observed data Xobs, one slices pπpθ|Xobsq to compute a highest-posterior density
(HPD) set. The purple and pink intervals at the bottom depict 95% and 68% HPD sets, respectively, for
an observation whose true parameter (indicated by a red star) lies in the tail of the prior πpθq. (Right)
The actual chance (coverage probability, y-axis) that the two HPD sets contain the true parameter value
can be far less than what the nominal coverage of 95% and 68%, respectively, suggest, for a wide range
of different θ-values (x-axis). Panel B: (Left) Recalibration — our approach effectively transforms the
posterior to a p-value function, which we then slice to obtain valid (“Frequentist-Bayes”; FreB) confidence
sets. (Right) The actual chance (coverage probability, y-axis) that FreB sets contain the true parameter
value is indeed close to the desired coverage probability for every instance of θ (x-axis).

Validity guarantees are critical in exact sciences. In high-energy physics, billions of dollars
and thousands of person-years are devoted to ensuring that confidence statements about the
existence of newly discovered subatomic particles or the values of fundamental constants
are statistically valid. Yet, even with perfectly estimated posterior and ideal modeling
conditions, standard credible intervals can fail in two key ways:

1. Local coverage. Even if a 90% credible region covers the true parameter 90%
of the time on average (over the entire population of labeled objects), it provides
no guarantees for individual instances. Scientists often need to constrain specific
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parameters (e.g., determine the properties of a specific star, galaxy, event), and local
coverage failures can lead to misleading conclusions.

2. Robustness to label or prior probability shift. In practice, labeled train data
rarely reflect the parameter distribution of target data. Selection bias, observational
limitations and different sampling strategies all lead to shifts between the training
distribution πpθq (effectively the “working” prior) and the distribution ptargetpθq of the
target population. Similarly, different theories of natural phenomena — which in turn
elicit (working) prior distributions — can lead to discrepancies, or tension, in the
estimates of key physical parameters. These mismatches limit the usability of credible
regions. Label/prior probability shift is challenging because a domain scientist rarely
knows the true distribution ptargetpθq, even when the likelihood ppX|θq is perfectly
known. She can base her sampling strategy and choice of πpθq on existing knowledge
of the underlying physical phenomenon, but this does not guarantee that πpθq is close
to ptargetpθq, especially if the target represents a new physical source not yet observed.

These limitations highlight a core vulnerability of posterior-based inference: its lack of
uncertainty estimates with frequentist coverage for individual objects, and its reliance on
training priors that may not match the target data.

A framework for trustworthy scientific inference with biased training data. To
overcome these limitations, we propose a new framework for constraining parameters that
retains the advantages of neural posteriors while satisfying strict coverage guarantees. Our
method transforms posteriors into statistically valid Frequentist-Bayes (FreB) confidence
sets. These regions are calibrated to contain the true parameter with the desired probability
regardless of the true (unknown) value of θ and across all levels α. The procedure works as
follows: for a given posterior estimate pπpθ|Xq, we learn a monotonic transformation of the
posterior, using labeled calibration data (from a simulator or cross-matched catalogs). This
transformation is effectively a p-value function: rather than slicing the posterior distribution
at the required level to obtain a p1 ´ αq100% credible set of high posterior density, we slice
the p-value function at the nominal level(s) α to construct confidence sets with desired
local frequentist coverage. Crucially, the procedure is amortized — no additional training is
needed at deployment, allowing for efficient inference for massive unlabeled data sets. This
approach to constraining parameters offers several key advantages:

1. It provides reliable inference with limited observations, including the tradition-
ally challenging case of just a single observation per object (that is, a sample size of
n “ 1).

2. It guarantees parameter constraints with local validity (that is, confidence sets with
stated coverage probability for every parameter value), regardless of how the training
data are collected, as long as the number of training examples is large enough and the
(underlying) likelihood is the same for training and target data.

3. It achieves optimal precision (that is, small confidence sets) when prior knowledge
aligns well with the target data.
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Finally, we provide means to verify that the number of simulations in (2) is large enough to
ensure that the results are trustworthy.

Outline and significance. The approach we propose — transforming neural posteriors
to confidence sets with local frequentist guarantees — bridges simulation-based inference,
classical statistics, and modern machine learning. It enables domain experts to perform
principled inference using state-of-the-art generative models, even in settings with intractable
likelihoods and label shift caused by selection or prior biases. By doing so, we provide a
principled path towards reliable AI-driven scientific discovery, enabling advancements in
fields such as astronomy, high-energy physics, biology, remote sensing, and beyond. In
Section 4.2, we illustrate the practical value of the approach in three case studies from
physical applications3:

I. Reconstructing gamma-ray showers from different astrophysical sources with ground-
based detectors.

II. Inferring properties of Milky Way stars from spectra using different galaxy models.

III. Inferring stellar parameters with partially labeled data from cross-matched astronomical
catalogs (“LFI beyond SBI”).

Each case study addresses a specific statistical challenge (see Table 4.1 for more details).
Finally, Section 4.3 and Figures 4.1 and 4.2 outline the practical implementation and
assumptions behind our method, clarifying the details of our protocol for trustworthy
scientific inference under intractable likelihoods.

4.2 Results

4.2.1 Case Study I: Reconstructing Gamma-Ray-Induced Air Showers
with Ground-Based Detector Arrays

This case study illustrates how our framework enables the reliable identification and re-
construction of previously unknown physical sources — phenomena that would likely be
missed or misinterpreted using standard generative models applied naively as inferential tools.

In astroparticle physics, high-energy gamma rays and cosmic rays yield crucial information
on violent phenomena that take place in the cosmos. Unlike protons or light nuclei, which
are deflected by cosmic magnetic fields, gamma rays travel in straight paths, allowing precise
localization of their astrophysical sources. An important line of research is therefore the
reconstruction of particle showers induced by such messengers in the atmosphere. Ground-
based detector arrays (see the figure in the first row of Table 4.1) are commonly used to study
these events by detecting the secondary particles reaching the ground (Chadwick, 2021).
We consider the problem of estimating the parameter vector θ “ pE,Z,Aq — representing
the energy (E), zenith angle (Z), and azimuthal angle (A) of the incoming gamma ray —
from data X that include the identity (electrons, photons, etc.), count rate and density, and

3Code is avaliable at https://github.com/lee-group-cmu/vsi.
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Figure 4.3: Posterior-based methods lack local coverage guarantees and thus fail to reliably
reconstruct gamma-ray showers from unfamiliar sources. Panel A: (Top) Distribution of three
gamma-ray sources in energy and zenith angle. An example gamma-ray event/shower at high energies is
indicated by a red marker. (Bottom) Detector data for example event, showing arrival times at different
locations. Panel B: (Top) Estimated local coverage of 90% HPD sets of individual events (averaged
over azimuth) reveals undercoverage, especially at higher energies. (Bottom) Distribution of coverage
across events from each gamma-ray source; coverage drops when training and target sources are different.
Panel C: (Top) Local coverage of 90% FreB sets instead shows uniform validity across the parameter
space. (Bottom) Coverage distribution per gamma-ray source confirms consistent validity regardless of
source. Panel D: Comparison for a high-energy event from the Crab Nebula (for the same example event
as in Panel A, Top): the 90% HPD set (purple) is overconfident and biased (actual coverage is 78%),
while the 90% FreB set (green) provides valid and informative uncertainty.

various properties (e.g., energy, direction) of secondary particles detected on the ground.
While the energy of gamma rays is typically distributed according to a target spectral shape
(typically modeled as a power law or log-parabola) within the energy range of interest, the
azimuth and zenith angles change over time, following the target’s trajectory across the sky
(see Appendix C.5 for more details). We assume the training set is drawn from sources resem-
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bling the Crab Nebula4, while test observations may originate from two benchmark sources:
one mimicking Markarian 421 (Mrk421) — a well-studied blazar and among the brightest
known gamma-ray sources (Abdo and Others, 2011) — and another resembling a potential
Dark Matter signal, such as that expected from dark matter annihilation near the Galactic
Center (Doro et al., 2024; Cirelli et al., 2024). All events are simulated using Corsika
(Heck et al., 1998) with an idealized detector that perfectly records all particles on the ground.

We estimate the posterior distribution πpθ|Xq via flow matching (Wildberger et al., 2024;
Lipman et al., 2022) and construct HPD sets and FreB sets, both at the 90% confidence
level. As detailed in Figure 4.3, we observe the following:

• HPD sets can mis-characterize unfamiliar gamma-ray sources due to the lack of local
coverage and are only approximately valid when the true source parameters are similar
to the Crab Nebula, from which the training set was constructed (Figure 4.3, Panel B).
On the other hand, FreB sets ensure validity across all astrophysical sources for each
value of the parameters (Figure 4.3, Panel C).

• FreB sets enable reliable reconstruction of gamma rays from unknown astrophysical
sources by correctly quantifying the uncertainty around the truth. On the other hand,
HPD sets tend to be biased and over-confident for (unknown) parameter values that
were under-represented in the training set (Figure 4.3, Panel D).

4.2.2 Case Study II: Inferring Properties of Milky Way Stars in
Simulation-Based Inference

Our framework resolves the paradox of conflicting scientific conclusions caused by differing
models of nature. In this case study, two competing descriptions of our Milky Way galaxy are
shown to be at odds when tasked with assigning labels to a newly discovered stellar object
along the pℓ, bq “ p70˝, 30˝q line of sight. Inferring the properties of stars like this one from
observational data is of crucial importance — in the current era of massive surveys equipped
with next-generation instrumentation, notable discoveries are made regularly (Koposov et al.,
2024), and they help drive our understanding of the structure and evolution of the Milky
Way and the universe beyond.

We compare two galactic models, each reflecting different beliefs about the Milky Way:

• Model H asserts that the metallicity range on observed stellar objects from the Milky
Way’s halo underrepresents the true diversity of halo stars.

• Model D diminishes the contribution of the halo, instead emphasizing objects typically
found within the galactic disk.

These models differ notably in their implied age-metallicity relationships, as depicted in
Figure 4.4, Panel A, Left. Consequently, each model induces a distinct prior distribution on
key stellar parameters θ. These include the gravitational constant, g; effective temperature,

4The Crab Nebula is a pulsar-wind nebula emitting the brightest and stable TeV signal in the northern
hemisphere sky, for the past 970 years.
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Figure 4.4: FreB resolves tension between differing galactic models. Panel A: (Left) The age-
metallicity relationships implied by two Galactic models. The red curves indicate conditional means of
metallicity given age. Panel A: (Right) Surface-level priors induced by the galactic models along line of
sight p70˝, 30˝q. Log gravitational constant (log g), effective temperature (Teff), and surface metallicity
(rFe{Hssurf) are shown. The true label for a typical object is marked in red, unseen at inference time.
Panel B: Tension between Models H and D’s posteriors at X „ ppX|θq. Solid contours for each show
90% credible regions of high posterior density, marginalized. The HPD regions feature 0% conditional
coverage. Panel C: 90% FreB sets for θ for Models H and D. Each subplot shows cross-sections of the
FreB sets at the true label. Conditional coverage for each FreB set is close to the nominal 90% level.
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Teffective; surface metallicity, rFe{Hssurface; and luminosity L.5 The priors, seen in Panel A,
Right, are derived according to stellar evolution theories using brutus (Speagle et al., 2025),
an open-source Python package tailored for fast stellar characterization. We then simulate
measurements X „ ppX | θq that replicate spectral observations from the 2MASS (Skrutskie
et al., 2006) and PS (Bolden and Kervin, 2010) surveys.

A posterior-based approach produces contradictory results between our models. We estimate
neural posteriors with Masked Autoregressive Flows (Greenberg et al., 2019; Tejero-Cantero
et al., 2020) and show their stark disagreement — with each other, and with the truth —
in Figure 4.4, Panel B. For example, under Model D, π̂Dpθ | Xq significantly overestimates
rFe{Hssurface due to its metal-rich prior. Even Model H’s posterior fails diagnostic tests,
never covering all parameters at once (Panel B legend). In contrast, our FreB sets resolve
this paradox by reconciling discrepancies between models while ensuring validity for any θ.
Figure 4.4, Panel C displays cross-sections of the FreB sets which show simultaneous coverage
for all parameters. Moreover, their compactness demonstrates their superior constraining
power, particularly when some parameters can be independently constrained. Appendix C.3
provides further insights into FreB sets’ statistical power when good prior information is
available.

4.2.3 Case Study III: Inferring Stellar Parameters from Cross-Matched
Astronomical Catalogs (“LFI Beyond SBI”)

Our framework can handle observational studies with selection bias in the labels. In this
section, we illustrate that as long as we have some labeled examples that sample the
underlying likelihood for different parameter values, then we can achieve approximately valid
confidence sets. In addition, with training data that are sampled with the same distribution
as the unlabeled data — which may not be achievable in practice — the constraining power
would increase.

Selection bias is a prevalent issue in astronomical surveys, as observations are often made
deliberately and are not collected uniformly or randomly (Wang et al., 2023; Tak et al.,
2024). Such intentional data collection inherently introduces biases: the training distri-
bution, denoted πpθq, often deviates significantly from the underlying true distribution of
parameters, ptargetpθq. This selection bias is compounded when astronomers cross-match
two or more survey catalogs to obtain high-quality and multi-wavelength data for making
inferences about physical parameters, which are then used in down-stream astrophysical
studies (Laroche and Speagle, 2024). As large-scale surveys like APOGEE (Majewski et al.,
2017) and Gaia(Gaia Collaboration et al., 2023), and soon LSST (Ivezić et al., 2019), collect
massive amounts of spectroscopic data, it is becoming increasingly important to develop and
deploy estimation methods that are both scalable and trustworthy. For example, estimates
of stellar labels — stellar properties (e.g., log g and Teff) and elemental abundances (e.g.,
Fe{H) — are used in studies aimed at answering fundamental questions in astrophysics,
from modeling stellar evolution (Minchev et al., 2018) and galaxy formation (Lagarde et al.,

5Refer to Table C.2 in Appendix C.6 for the true values of these parameters as well as the values of some
intrinsic properties of the simulated star.
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Figure 4.5: FreB is robust to label bias in observational studies. Panel A: Kiel diagrams
displaying the training distribution of stellar gravities log g against the corresponding effective
temperatures Teff) for two data settings, where the labeled data are biased towards the asymptotic
giant branch stars (left, “AGB Label Bias”), and where the labeled and unlabeled target data have
the same distribution (center, “No Label Bias”). (Right) An example spectrum for a Sun-like
star, for which the true label marked in red is unknown. Panel B: (Left) 90% HPD sets under
the two selection settings, with the HPD set under the AGB selection bias not including the true
label (red). (Right) Local coverage plot of 90% HPD sets in the held-out main sequence (MS)
parameter space, showing under-coverage for all labels. Panel C: (Left) 90% FreB sets under
the two selection settings, with the FreB set under both settings covering the true (red) label,
but with higher constraining power with well-aligned training data. (Right) Local coverage plot
of 90% FreB sets in the held-out main sequence (MS) parameter space, showing nearly nominal
coverage for all labels.
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2021) to characterizing stellar winds to understand the mass loss of stars (Carpenter et al.,
1999).

Using stars from a Gaia/APOGEE cross-match, we estimate a parameter θ “ plog g, Teff, F e{Hq

of stellar labels from data X consisting of 110 Gaia BP/RP spectra coefficients. We perform
this estimation task in two settings:

• No label bias: The prior πpθq aligns well with the true distribution ptargetpθq.

• Label bias: The prior πpθq is biased, specifically skewed towards AGB stars, differing
significantly from ptargetpθq, which predominantly consists of MS stars.

We estimate the posterior distribution πpθ | Xq with Masked Autoregressive Flows (Green-
berg et al., 2019; Tejero-Cantero et al., 2020) and construct HPD and FreB sets at the 90%
confidence level in both selection bias settings (see Appendix C.7 for details). As detailed in
Figure 4.5, we observe the following:

• FreB sets ensure valid local coverage even under selection bias, unlike traditional
highest posterior density sets, which are overconfident and exhibit poor coverage under
these conditions.

• FreB sets provide high constraining power when the training distribution closely
matches the true target distribution.

4.3 Methods

This chapter proposes a new framework for reliable scientific inference under intractable
likelihoods, which bridges classical (frequentist) statistics (Neyman, 1935b, 1937b) with
state-of-the-art generative models and Bayesian inference.

4.3.1 Experimental Set-Up

Our key assumption is that labeled and unlabeled data stem from the same data-generating
process and hence the same likelihood ppX | θq. However, the data could be sampled
differently over the parameter space to reflect prior, observational, or experimental biases.
The labeled data is then further categorized into a “universal set” (defined over the entire
parameter space of interest) and a “train set” (which may be different for each use case).
More specifically, we assume there are three distinct sets from the same likelihood:

• a labeled “universal” set,

Tuniv “ tpθ1
1, X

1
1q . . . pθ1

B1 , X 1
B1qu „ rpθqppX|θq,

where the reference distribution rpθq covers the entire parameter space Θ of interest
(this set could for example represent broad data from different sources);
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• a labeled train set for learning the neural density estimator pπpθ|Xq for the problem at
hand,

Ttrain “ tpθ1, X1q . . . pθB, XBqu „ πpθqppX|θq,

where πpθq could be the same as rpθq, or it could be a distribution that reflects prior
or selection biases (as in Case Studies II and III);

• an unlabeled target data set

Ttarget “

!

pθ˚
1 , X

target
1 q . . . pθ˚

N , X
target
N q

)

„ ptargetpθqppX|θq,

where neither the true parameters θ˚
1 , . . . , θ

˚
N nor the distribution ptargetpθq are known

to the scientist.6

Our goal is to construct a confidence region CpXq for θ that has correct frequentist coverage;
that is, PX|θpθ P CpXq | θq ě 1 ´ α for every θ. Since the conditional distribution X | θ is
assumed to be the same across all the sets described above, we have the result that if CpXq

ensures valid coverage for the universal set, then it will also do so for the target data.

4.3.2 A Protocol for Valid Scientific Inference

Our proposed Frequentist-Bayes procedure mirrors the style of HPD level sets HcpXq “

tθ : pπpθ|Xq ą cu in Bayesian inference, while providing frequentist coverage properties for
every θ P Θ, regardless of πpθq and the number of events per parameter. The main steps,
with details described in the Supplementary Material C.2, are as follows:

1. Learn the posterior distribution: From training data Ttrain, learn the posterior
distribution πpθ|Xq with, for example, a neural density estimator. The estimated
posterior π̂pθ|Xq, or a related function, is treated as a frequentist test statistic λpX; θq.
This statistic assigns a score λpX; θ0q that measures the degree to which a parameter
value θ0 is plausible given that X is observed. Examples of other posterior-based
scores include the Bayes Frequentist Factor (BFF; Dalmasso* et al. (2024)) and the
Waldo test statistics (Masserano et al., 2023).

2. Transform the posterior into p-values: From the universal set Tuniv, learn a
family of monotonic transformations F p¨; θq of the test statistic λ (Algorithm C.1
and Equation C.5). These functions are effectively “amortized p-values” that allow
the construction of confidence sets at all miscoverage levels α simultaneously; see
Figures 4.2B, 4.3D, 4.4C, 4.5 and 4.6B for some examples. Alternatively, if one is only
interested in confidence sets at a prespecified level α (as in Section 4.2), then directly
estimate “critical values" for λ, F´1pα; θq, at fixed α (Algorithm 2.1).

6From a classical statistics perspective, these parameters are perhaps best understood as “latent variables”.
Although each parameter θ˚

i is fixed and not random for each object i, we define a marginal distribution for θ
that represents its prevalence in the target population. In addition, in some applications we only observe each
target object once (that is, the sample size n “ 1 for each parameter), whereas other applications allow for
multiple observations (n ą 1).
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3. Construct confidence sets: Finally, compute Frequentist-Bayes sets BαpXq by
taking level sets of a transformation of π̂pθ|Xq:

BαpXq “ tθ P Θ | F pπ̂pθ|Xq; θq ą αu “
␣

θ P Θ | π̂pθ|Xq ą F´1pα; θq
(

.

This computation is “amortized” with respect to X in the sense that once we have
learned the posterior distribution (Step 1) and the monotonic transformation (Step
2), no further training is needed for new X: we can just evaluate the confidence set
BαpXq.

4. Check local coverage of constructed confidence sets: After building confidence
sets, check that the actual coverage probability PX|θpθ P B̂αpXqq for data X generated
at θ is indeed the same as the nominal value p1 ´ αq, for every θ in the parameter
space. This check is not part of the construction of confidence sets per se, but provides
the scientist with an independent diagnostic tool to assess her final results. See
Algorithm 2.2 for an efficient way to compute such diagnostics. Figure 4.3 (Panels
B and C, top) illustrates how these diagnostics can help domain scientists identify
regions of the parameter space where the confidence sets might under- or over-cover,
even when parameter distribution of the target source is unknown.

In Supplementary Materials, we prove the following key properties of our framework:

• Correct local coverage across the parameter space: The Frequentist-Bayes
confidence procedure achieves p1 ´ αq coverage for all parameter values regardless of
the prior distribution (when the universal set used for recalibration is large enough);
see Figure 4.6 (Panel B, right).

See Appendix C.2.2 for theoretical results: specifically, Theorem 2.7 for guaran-
tees on validity of the p-value approach as the number of simulations B1 in the
universal set increases, Theorem 2.10 for convergence rates, and Theorems 2.3 and 2.5
for the corresponding results under the critical value approach.

• Efficiency with well-specified priors: When the prior matches the target distri-
bution, Frequentist-Bayes sets are optimal, with a smaller average size than other
confidence sets with the same coverage properties; see Figure 4.6 (Panel B, left and
center). This result is also consistent with our observations in Case Study III (see
Section 4.2.3).

See Theorem C.13 in Appendix C.3 for a formal proof that, among all valid confidence
sets, Frequentist-Bayes sets BαpXq are those with the smallest average size; that is,
informally, BαpXq “ argminAPA EppX|θqπpθq r|ApXq|s, where |ApXq| is the size of a set
A and the expectation is taken over the distribution of the training data.

4.4 Conclusions

Neural posterior inference can lead to misleading scientific conclusions, even with an all-
knowing simulator or perfectly labeled data. We presented a general amortized framework for
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Figure 4.6: FreB sets are simultaneously robust against misaligned priors and small in size for
well-aligned priors. Synthetic two-dimensional example where the task is to infer the location θ of a
mixture of two Gaussians with different covariances, X „ 1

2N pθ, σ2
1Iq ` 1

2N pθ, σ2
2Iq, using a posterior

learned with a Flow Matching generative model trained with a localized prior, πpθq “ N p0, 2q. Panel A:
95% and 68% HPD sets for two scenarios where the prior is misaligned (left) versus well-aligned (center)
with the true θ. (Right) Local coverage plot of 95% HPD sets shows that the actual coverage of these
sets can be very far from the nominal 95% level, when the truth is further away from the center where the
prior is concentrated. Panel B: Corresponding FreB sets obtained from the same posterior estimated via
the same generative model as in Panel A. For all instances of θ and for all levels of α, domain scientists
are guaranteed to achieve the desired coverage level, here illustrated for the 95% case in the right plot.
That is, FreB sets are robust against misaligned priors. Moreover, the size of FreB sets is smaller for
well-aligned priors (compare center plot with the left plot).

transforming estimated posteriors into statistically valid Frequentist-Bayes (FreB) confidence
sets. FreB sets contain the true parameters with the desired probability regardless of what
the true parameter values are, as long as the train and target data arise from the same
likelihood. However, if the domain scientist has good prior knowledge and is able to collect
training data from a distribution aligned with the target data, then FreB sets become smaller
than procedures that do not use prior distributions.

Our method applies broadly across several fields of science and equips researchers with a
principled tool for leveraging generative AI for inverse problems in high-stakes contexts, from
discovering new particles to tracking climate-driven environmental changes. Future work
with FreB could explore pretraining large AI models to first learn likelihoods from multiple
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sources, and then (in, e.g., a data fusion scenario) tune instrument priors for specific use
cases to better constrain the main parameters of interest.
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4.4. Conclusions

Scientific Inference Challenges Addressed in this Chapter

# Inference Challenge Case Study

I

Enable reliable identification
and reconstruction of
previously unknown
physical sources

Reconstructing gamma-ray showers
from ground-based detectors with SBI

II

Resolve the paradox of
conflicting scientific

conclusions due to differing
models of nature

Inferring properties of
Milky Way stars with SBI

III
Ensure trustworthy inference
in the presence of selection
bias in observational studies

Inferring stellar parameters from cross-matched
astronomical catalogs (“LFI beyond SBI”)

Table 4.1: Scientific inference challenges addressed in this chapter. Each case study
in Sections 4.2.1, 4.2.2 and 4.2.3 (with the set-up listed in the right column) illustrates a
unique scientific challenge, which we resolve with our proposed approach. Right Column, I:
Ground-based detector array for measuring atmospheric cosmic-ray showers (proposed SWGO
experiment; Abreu et al. 2019). II: Two differing models of the galaxy, simulated using Brutus
(Speagle et al., 2025). III: Galactic map displaying the stars included in a cross-match between
Gaia Data Release 3 (Gaia Collaboration et al., 2023) and APOGEE Data Release 17 (Majewski
et al., 2017).
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5

Inference under Nuisance Parameters and
Generalized Label Shift

5.1 Introduction

Problem Set-up. Likelihood-free inference refers to settings where the likelihood function
Lpx; θq — associated with a “theory” or model of the data-generating process — is intractable,
but one is able to simulate relatively large data sets T “ tpθ1, X1q, . . . , pθB, XBqu „

ptrainpθqLpx; θq. These mechanistic models (or simulators) implicitly define the “causal”
model θ Ñ X that encodes our knowledge of how internal parameters determine observable
data, and are widely used in several domains of science.

While the likelihood Lpx; θq stays the same under the assumed theory, the prior over
parameters ptrainpθq is chosen by design and can be different from the true target dis-
tribution ptargetpθq, thereby causing a potentially harmful bias when inferring θ given a
new observation xtarget. If the unknown parameter of interest is a categorical variable
Y P Y “ t0, 1, . . . ,Ku and the causal mechanistic model remains the same — that is,
ptrainpX | Y q “ ptargetpX | Y q — the difference in the joint distribution of pθ,Xq between
train and target data is referred to as prior probability shift or label shift (Quinonero-
Candela et al., 2008; Vaz et al., 2019; Polo et al., 2023; Storkey et al., 2009; Fawcett and
Flach, 2005; Moreno-Torres et al., 2012). We refer to this setting as standard label shift (SLS).

In this paper, we consider a more general setup that reflects a richer mechanistic model:
θ “ pY, νq Ñ X, where ν P N are continuous or discrete nuisance parameters that are
not of direct interest but critically influence the data-generating process. These nuisance
parameters are available at the training stage, but are not observed at the inference stage
when estimating Y from xtarget. We refer to a shift that simultaneously affects Y and ν as
generalized label shift (GLS), and assume that ptrainpX | Y, νq “ ptargetpX | Y, νq. Within this
setting, our goal is not just to do binary classification per se (that is, providing a 0 versus
1 response), but rather to do trustworthy uncertainty quantification for the classification
output, even under GLS.
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Figure 5.1: Synthetic Example. Left (no GLS): Standard prediction sets Rαpxq (red)
guarantee marginal coverage at the nominal level. Nuisance-aware prediction sets (NAPS γ “ 0;
blue) are also marginally valid, but the “universality” of conditional validity across the entire
nuisance parameter space comes at the price of more conservative prediction sets and lower
power. Right (with GLS): Standard prediction sets are no longer valid and undercover for all
α levels (red curve is below the black bisector), while NAPS are still valid. Furthermore, we
can increase power while maintaining validity (NAPS γ ą 0; green) by constructing p1 ´ γq

confidence sets of the nuisance parameter ν and deriving less conservative cutoffs given an
observation. Here γ “ α ˆ 0.01.

Scientific Motivation. Nuisance parameters can be seen as a way of accounting for model
misspecifications. Statistical models are indeed rarely accurate in capturing the complexity
of physical phenomena. To account for “known unknowns”, such as calibration errors in
the measuring device or inaccuracies and approximations in the theory, scientists usually
resort to enlarging the mechanistic model with additional parameters that are not of direct
relevance, but yet have to be considered during inference in order to make reliable statements
about the parameters of interest. These additional parameters are commonly referred to as
nuisance parameters (Kitching et al., 2009; Dorigo and de Castro, 2020; Pouget et al., 2013;
HEP ML Community, 2025): they are necessary to achieve more faithful models of reality,
but make correct inference much more challenging.

62



5.1. Introduction

Statistical Challenges. We introduce a simplified example (see Section 5.5.1 for details)
to illustrate the challenges of classification under the presence of nuisance parameters.
Suppose Y “ 1 represents a class with cases of interest (e.g., the presence of a medical
condition) and Y “ 0 a class with cases of no interest. We have good knowledge of the
probability density function (PDF) of Y “ 1, f1pxq, but the shape of the distribution of
Y “ 0 is largely unknown. To accommodate different scenarios, we resort to a nuisance-
parameterized PDF f0px; νq. Our goal is to discriminate between negative Y “ 0 and
positive Y “ 1 cases based on potentially high-dimensional data x P X and to provide valid
measures of uncertainties on the true label Y under the presence of a nuisance parameter ν.
However, directly classifying xtarget based on PtrainpY “ 1 | Xq and a cutoff C derived from
T “ tpYi, XiquBi“1 would lead to invalid uncertainty quantification. Indeed, under GLS (or
even SLS), standard prediction sets (defined as in, e.g., Equation (5.10)) do not guarantee
marginal validity:

PtargetpY P RαpXqq ě 1 ´ α,

where Y and X are random and α P p0, 1q is a pre-specified miscoverage level. Various solu-
tions have been proposed for the SLS setting (see references in Section 5.2), whereas GLS is
still a largely unexplored area in the machine learning literature. The key open challenge is to
design general-purpose inference algorithms that can guarantee valid measures of uncertainty
for all Y and ν while providing high constraining power on Y (that is, smaller prediction sets).

Returning to our simplified experiment, Figure 5.1 (top left) illustrates how standard
prediction sets Rαpxq are marginally valid when the train and target distributions are the
same, while under GLS prediction sets are no longer valid even marginally (top right). Our
nuisance-aware prediction sets (NAPS, γ “ 0 in Figure 5.1), on the other hand, are valid in
both settings. In addition, we can increase the constraining power (NAPS, γ ą 0) once we
observe data without the need to re-train the classifier, effectively endowing our method
with domain adaptation capabilities.

Approach and Contributions. We categorize our main contributions as follows:

i) TPR and FPR across N . By casting classification under GLS as a hypothesis testing
problem with nuisance parameters, we propose a method to estimate the TPR and FPR
curves across the nuisance parameter space via monotone regression. This allows us to
compute the entire receiver-operating-characteristic (ROC) of the classifier for all ν P N
(Section 5.3.2 and Algorithm D.1).

ii) Nuisance-aware prediction sets (NAPS). Rather than providing a point pre-
diction based on an estimate of PtrainpY “ 1 | Xq, we derive selection criteria that are valid
under GLS and construct a set-valued classifier H : x ÞÑ tH, 0, 1, t0, 1uu which guarantees
that the true label is included in the set with probability at least p1 ´ αq, regardless of the
true class y and of the value of the nuisance parameters ν. That is, the prediction sets
HαpXq guarantee conditional validity under GLS (Theorem 5.6):

PtargetpY P HαpXq | y, νq ě 1 ´ α, @y P Y, ν P N . (5.1)
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Standard point classifiers (e.g., the Bayes classifier; Appendix D.5) and prediction sets based
on PtrainpY “ 1 | Xq are not conditionally valid across the nuisance parameter space, and
hence are also not valid marginally under GLS. On the other hand, our algorithm returns
valid NAPS for all levels α P p0, 1q simultaneously given any new observation xtarget without
having to retrain the classifier. This also yields marginal validity under GLS (Theorem 5.6).
Our results do not rely on asymptotic theory with the number of observations n Ñ 8. We
only assume to have a sufficient number of simulations B to train and calibrate the classifier.

iii) NAPS with higher power. We show how one can further increase power while
maintaining validity by constraining nuisance parameters given an observed xtarget through
p1 ´ γq confidence sets of the nuisance parameters ν, where γ is a small pre-defined error
level. This effectively allows to derive data-dependent cutoffs that decrease the average size
of prediction sets given a specific observation.

We demonstrate our method using data from two high-fidelity scientific simulators: scDe-
sign3 (Song et al., 2023) which generates realistic single-cell RNA-sequencing data, and COR-
SIKA (Heck et al., 1998) which models the interactions of primary cosmic rays with the Earth’s
atmosphere. A flexible implementation of NAPS is available at https://github.com/lee-
group-cmu/lf2i.

5.2 Related Work

To the best of our knowledge, this is the first work that estimates ROC curves across the
entire parameter space Θ “ Y ˆ N . To construct frequentist confidence sets, we base our
results directly on the class probability PtrainpY “ 1 | Xq, rather than using a surrogate
likelihood or likelihood ratio (see for example references in Cranmer et al. (2020)). The idea
of improving power of NAPS with γ ą 0 is similar to Berger and Boos (1994), and close
in spirit to likelihood profiling, with the key difference that profiling does not guarantee
validity (even for a large number of simulations B and under no GLS), and also requires
an approximation of the likelihood and the maximum likelihood estimate of ν. The ROC
calibration framework of Section 5.3.2 is related to Zhao et al. (2021) and Dey et al. (2022),
which use monotone regression to estimate the CDF of probability integral transforms for
calibrating posterior probabilities, but not for constructing valid prediction sets under GLS.
When the prior distribution over y in the target data is known, PtrainpY “ 1 | Xq can be
easily recalibrated to match PtargetpY “ 1 | Xq under SLS (Saerens et al., 2002; Lipton
et al., 2018). However, this is not possible under GLS since ν is unknown at inference
time. Moreover, our approach does not assume such a known prior. The construction
of set-valued classifiers of Section 5.3.4 is inspired by Sadinle et al. (2019); Dalmasso*
et al. (2024); Masserano et al. (2023). There are also connections to conformal prediction:
Conformal methods are widely used because they ensure prediction sets with marginal
coverage when data are exchangeable (Papadopoulos et al., 2002; Vovk et al., 2005b; Lei
et al., 2018). However, conformal methods need adjustments under distributional shift when
data are no longer exchangeable. Such adjustments need to be tailored for the type of
shift at hand (Tibshirani et al., 2019). For instance, label shift can be addressed through
label-conditional conformal prediction (Vovk et al., 2014, 2016; Sadinle et al., 2019), which
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guarantees coverage conditional on the label y (Podkopaev and Ramdas, 2021, Section 2.2)
under SLS, but not under the presence of nuisance parameters and GLS. Finally, our work
directly addresses the existing gap in methods for constructing reliable simulator-based
inference algorithms with valid uncertainty quantification guarantees (Hermans et al., 2021).
Our work is also inspired by the vast literature in high-energy physics on hypothesis testing
and nuisance-parameterized machine-learning methods (Feldman and Cousins, 1998; Cousins,
2006; Sen et al., 2009; Chuang and Lai, 1998; Louppe et al., 2017; Cowan et al., 2011a),
which also includes the so-called “mining gold” idea of leveraging hidden information on
latent variables in an all-knowing simulator (Brehmer et al., 2020).

5.3 Methodology

For simplicity, we will restrict our discussion to Y P t0, 1u.

5.3.1 Classification as Hypothesis Testing

We reformulate the binary classification problem as a composite-versus-composite hypothesis
test:

H0,y : θ P Θ0 versus H1,y : θ P Θ1, (5.2)

where Θ0 “ tyu ˆ N , Θ1 “ tyuc ˆ N . We define

τypxq “
PtrainpY “ y | xq PtrainpY ‰ yq

PtrainpY ‰ y | xq PtrainpY “ yq
(5.3)

as our test statistic, which is equivalent to the Bayes factor for the test in Equation (5.2);
see Appendix D.1 for a derivation. Alternatively, one can define the test statistic as the
probabilistic classifier PtrainpY “ y | xq itself. Both quantities (which are related via a
monotonic transformation) can be estimated directly from a pre-trained classifier based
on TB. That is, there is no need for an extra step to, e.g., learn the likelihood function
Lpx;Y, νq or the associated likelihood ratio statistic from simulated data as done in Cranmer
et al. (2020), Rizvi et al. (2023), and references therein.

We denote the estimate of τy by pτy and reject the null H0,y for small values of pτy. For
example, if the null represents y “ 0, then a “positive” case (y “ 1) in binary classification
would correspond to small values of pτ0, or equivalently, large values of the probabilistic
classifier pPtrainpY “ 1 | xq “ 1 ´ pPtrainpY “ 0 | xq. In this work, we define cutoffs for pτy so
that prediction sets are approximately valid under nuisance parameters and GLS.

5.3.2 The Rejection Probability Across the Entire Parameter Space

To choose the optimal cutoff to reject H0,y and construct valid prediction sets, we need to
know how the classifier performs for different values of the nuisance parameters ν. The first
step is to compute the following quantity:
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Definition 5.1 (Rejection probability). Let λ be any test statistic, e.g, the estimated Bayes
factor, λ “ pτy. The rejection probability of λ is defined as

WλpC; y, νq :“ Ptarget pλpXq ď C | y, νq , (5.4)

where y P t0, 1u, ν P N , and C P R.

For fixed ν and null H0,0 : Y “ 0, the receiver operating characteristic (ROC) relates the
true positive rate

TPRpC; νq :“ W
pτ0pC; 1, νq

to the false positive rate
FPRpC; νq :“ W

pτ0pC; 0, νq,

while varying the cutoff C. Figure 5.3 shows examples of some ROC curves at different
values of ν when the null represents the negative class y “ 0, for the setting of Section 5.5.3.

A key insight behind our method is that the rejection probability (Equation (5.4)) is
invariant under GLS even if estimated from ptrain; in other words, it is always the same
for train and target data (Lemma 5.3). As a result, our ROC curves reliably measure
the performance of the classifier under nuisance parameters. In practice, we can estimate
WλpC; y, νq for all y and ν simultaneously using regression with a monotonic constraint in
C. The whole procedure is amortized with respect to the target data, meaning that both
the base classifier and the rejection probability are estimated only once, after which they
can be evaluated on an arbitrary number of observations.

5.3.3 Selecting the Optimal Cutoff under GLS

Once we know the classifier’s rejection probability function, we can apply it in various ways.
All our choices are robust against GLS.

Controlling FPR or TPR. Based on WλpC; y, νq, we can find the cutoff C for a new
test point that either controls type-I error (FPR), or guarantees a minimum recall (TPR), or
maximizes some other metric of choice that depends on both FPR and TPR. For example,
FPR control at some pre-specified level α P r0, 1s and ν0 P N implies Cα “ FPR´1pα; ν0q,
and TPR control at some minimum recall α implies rCα “ TPR´1pα; ν0q. To control
FPR or TPR uniformly over ν, one can instead choose Cα “ infνPN FPR´1pα; νq, and
rCα “ supνPN TPR´1pα; νq, respectively. Although robust under GLS, such cutoffs can be
overly conservative.

Controlling FPR or TPR, but with more power. An alternative approach, which is
still valid for any ν and can increase power, is to restrict the search over nuisance parameters
to a smaller region of N . For this approach, we first construct a confidence set Spx; γq for ν
and fixed y P t0, 1u at a pre-specified p1 ´ γq level (Definition 5.4). This allows to choose a
data-dependent cutoff such that

C˚
αpxq “ inf

νPSpx;γq
tFPR´1pβ; νqu,
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Algorithm 5.1 Nuisance-aware prediction sets

Input: training set T “ tpYi, XiquBi“1; calibration set T 1 “ tpY 1
i , ν

1
i, X

1
iquB

1

i“1; observation x;
test statistic λ “ τy; mis-coverage levels α P r0, 1s and γ P r0, αs.
Output: Prediction set Hαpxq such that Equation (5.1) holds.

1: // Training
2: Estimate PtrainpY “ y | Xq via a probabilistic classifier
3: // Calibration
4: Estimate WτypC; y, νq :“ Ptarget pτypXq ď C | y, νq as detailed in Algorithm D.1 by

i. Computing the test statistic pτypxq as in Equation (5.3) for all X P T 1;

ii. Constructing the augmented calibration set T 2;

iii. Estimating the rejection probability function W
pτypC; y, νq from T 2 via monotone

regression.

5: // Inference
6: for y P t0, 1u do
7: Compute pτypxq as in Equation (5.3)
8: if γ “ 0 then
9: C˚

α,ypxq Ð infνPN txW´1
pτy

pα; y, νqu

10: else
11: Constrain nuisances by constructing a level-γ confidence set Sypx; γq for ν
12: C˚

α,ypxq Ð infνPSypx;γqt
xW´1

pτy
pα ´ γ; y, νqu

13: Hpx;αq Ð
␣

y P t0, 1u | pτypxq ą C˚
α,ypxq

(

14: return Prediction set Hpx;αq for Y

where β “ α ´ γ, where the minimization is over the restricted set Spx; γq Ď N . In
practice, Spx; γq can be either obtained from auxiliary measurements that are available at
inference time, or from a separate pre-trained model that returns valid confidence sets on
ν from data x. Lemma 5.5 demonstrates that this cutoff guarantees a maximum type-I
error equal to α (FPR control) for any ν P N . Similarly, for TPR control, choosing
rC˚
αpxq “ supνPSpx;γq TPR

´1pβ; νq with β “ α ` γ guarantees a minimum recall of at least α.
The special case of γ “ 0 (and β “ α) corresponds to Spx; γq “ N ; that is, no constraints
on the nuisance parameters. Finally, note that hybrid cut-offs FPR´1pβ; pνq and TPR´1pβ; pνq

based on a point prediction pνpxq of the nuisance parameters (such as the posterior mean)
would not lead to valid uncertainty quantification under GLS (see Figure D.12 in Appendix).

5.3.4 Constructing Robust Set-Valued Classifiers

Rather than just returning a single label 0{1 for each observation x like the standard Bayes
classifier (Appendix D.5), our method yields prediction sets from a set-valued classifier.

Definition 5.2 (Nuisance-aware prediction set). A nuisance-aware prediction set (NAPS)
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is the set returned from a set-valued classifier H : x ÞÑ tH, 0, 1, t0, 1uu with

Hpx;αq “
␣

y P t0, 1u | pτypxq ą C˚
α,ypxq

(

, (5.5)

where
C˚
α,ypxq “ inf

νPSypx;γq
tW´1

pτy
pβ; y, νqu, (5.6)

is the rejection cutoff, β “ α ´ γ and Sypx; γq is a p1 ´ γq confidence set for ν defined by
Equation (5.7).

This classifier guarantees user-defined levels of coverage 1 ´ α (the probability that the
true label is included in the set), no matter what the true class y and the nuisance parameters
ν are (Theorem 5.6). The resulting prediction sets contain all labels that were not rejected
by the corresponding hypothesis test. Ambiguous sets can arise in two cases: i) When both
null hypotheses are rejected, we obtain an empty set. However, empty sets only arise at
very low confidence levels (high values of α), which is typically not considered an interesting
regime; ii) When both null hypotheses are accepted, we obtain a prediction set that includes
both 0 and 1. This latter type of ambiguity reflects the uncertainty of the classifier, which
typically grows at higher confidence levels (low values of α). A low-quality classifier will often
report an “I-don’t-know answer” for ambiguous instances if forced to guarantee a certain
confidence level, rather than returning a 0{1 answer that has a high chance of being incorrect.

While γ “ 0 can be the default choice for NAPS, choosing a small γ ą 0 often leads
to higher power (see Section 5.5). Finally, note that while our set-valued classifier targets
conditional coverage under GLS according to Equation (5.1), as a by-product we also achieve
prediction sets with marginal coverage under GLS (see Theorem 5.6).

Algorithm 5.1 includes a step-by-step description of the entire procedure for constructing
nuisance-aware prediction sets.

5.4 Theoretical Results

Proofs for this section can be found in Appendix D.2.

5.4.1 Validity and Robustness to GLS

Lemma 5.3 (Invariance of the Rejection Probability to GLS). Under GLS, the rejection
probability (Definition 5.1) of any test statistic λ is invariant to GLS, that is

WλpC; y, νq “ Ptarget pλpXq ď C | y, νq

“ Ptrain pλpXq ď C | y, νq .

Nuisance-Aware Cutoffs

Definition 5.4 (Confidence set for nuisance parameters). The random set Sypx; γq is a
valid p1 ´ γq level confidence set for ν at fixed y P t0, 1u, if

Ptarget pν P SypX; γq | y, νq ě 1 ´ γ, @ν P N , (5.7)
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for some pre-specified value γ P r0, 1s.

The following theorem shows that nuisance-aware cutoffs control FPR and TPR at the
specified level.

Theorem 5.5 (Nuisance-aware cutoffs for FPR/TPR control). Choose a threshold α P r0, 1s

and γ P r0, αs. Let Sypx; γq be a valid p1´γq confidence set for ν at fixed y P t0, 1u according
to Definition 5.4. Let λpXq be any test statistic that measures how plausible it is that X was
generated from H0,y. Define the nuisance-aware rejection cutoff to be

C˚
α,ypxq “ inf

νPSypx;γq
tW´1

λ pβ; y, νqu, (5.8)

where β “ α´ γ, and W is the rejection probability in Definition 5.1. Then, for all ν P N ,
we have FPR control (maximum type-I error probability for H0,y):

Ptarget
`

λpXq ď C˚
α,ypXq | y, ν

˘

ď α (5.9)

Similarly, if
rC˚
α,ypxq “ sup

νPS1´ypx;γq

tW´1
λ pβ; 1 ´ y, νqu,

with β “ α ` γ, then for all ν P N , we have TPR control (minimum recall for H0,y):

Ptarget

´

λpXq ď rC˚
α,ypXq | 1 ´ y, ν

¯

ě α.

Properties of the Nuisance-Aware Prediction Set

The nuisance-aware prediction set (Definition 5.2) is both conditionally and marginally valid
with respect to both y and ν under GLS.

Theorem 5.6. Let Hpx;αq be the nuisance-aware prediction set of Definition 5.2. Under
GLS, for every y P t0, 1u and ν P N

PtargetpY P HpX;αq | y, νq ě 1 ´ α.

Moreover,
PtargetpY P HpX;αqq ě 1 ´ α.

5.5 Experiments

5.5.1 Synthetic Example

Consider a simplified setting where we are certain about the data-generating process of
Y “ 1 cases of interest, but not about that of Y “ 0 cases. We assume

ppxi | Yi “ 1q “
exi

e´ 1

ppxi | Yi “ 0, νiq “
νie

´νixi

1 ´ e´νi
,

where ν P r1, 10s is a nuisance parameter, which enlarges the model for Y “ 0 to reflect our
uncertainty of how cases of no direct interest might manifest themselves.
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Before Data Collection. Before having specific knowledge about target data and
experimental conditions, we decide to draw ν from a uniform reference distribution ptrainpνq “

Uniformp1, 10q (here PtrainpY “ 1q “ PtargetpY “ 1q “ 0.5 is fixed). We then pre-train a
classifier1 and compute the class posterior PtrainpY “ 1 | xq, and construct p1´αq prediction
sets

Rαpxq :“ ty : PtrainpY “ y | xq ą C˚
αu (5.10)

with cutoffs
C˚
α s.t. Ptrain pPtrainpY “ y | Xq ď C˚

αq “ α,

for a pre-specified miscoverage level α. These are the oracle prediction sets that minimize
ambiguity (i.e., average size) subject to having the correct total coverage according the
Theorem 1 from Sadinle et al. (2019). We will henceforth refer to them as “standard
prediction sets” to distinguish them from the oracle class-conditional prediction sets from
Sadinle et al. (2019) and NAPS.

Setting 1: No GLS. When train and target data have the same distributions, the
prediction sets RαpXq have guaranteed marginal coverage

PtrainpY P RαpXqq “ 1 ´ α

at the nominal p1 ´ αq level by construction (red curve overlapping black bisector in
Figure 5.1, top left), although they might still undercover in specific regions of the nuisance
parameter space (see Figure D.12 in Appendix D.9). NAPS with γ “ 0 are instead both
marginally valid (blue curve, top left) and conditionally valid (Theorem 5.6). The latter
“universality” can cause overly conservative prediction sets and a loss of power (defined as
the probability of rejecting H0,y : Y “ y when Y ‰ y); see bottom left panel.

Setting 2: With GLS. Suppose now that we apply the pre-trained classifier to a
target distribution with a different distribution over the nuisance parameters, namely
ptargetpνq “ N p4, 0.1q ‰ ptrainpνq. The top right panel of Figure 5.1 shows that the prediction
sets RαpXq are no longer valid even marginally (red curve below bisector), whereas NAPS
are still valid. Moreover, we can achieve higher power by constraining the optimization to
a high-confidence set of the nuisance parameter (compare green with blue NAPS curves).
In summary: our proposed method can leverage the original PtrainpY “ 1 | xq classifier to
provide prediction sets that are both valid and precise for any distribution ppy, νq as long as
x | y, ν stays the same. Additional results for other prediction set methods and NAPS with
γ ą 0 are available in Appendix D.9.

5.5.2 Single-Cell RNA Sequencing

RNA sequencing, or RNA-Seq, is a vital technique in genetics and genomics research that
has revolutionized our understanding of gene expression. Many RNA-seq experiments involve
extracting RNA from target cells and examining counts of specific genes. While the natural

1In this simplified example we can actually compute everything semi-analytically.
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Figure 5.2: Coverage under different batch protocols ν for the RNA-Seq example. Each
marker represents the proportion of samples in the test set whose true label was included in
the constructed prediction sets. Nuisance-aware prediction sets (NAPS γ “ 0; blue) are valid
regardless of the protocol, which is unknown at inference time. All other methods for prediction
sets with marginal coverage (red), class-conditional coverage (pink), and conformal adaptive
prediction sets (gold) undercover for at least two batch protocols.

variation in gene counts between different types of cells is interesting to researchers, the
observed gene counts depend also on the precise steps of the sequencing process. For example,
the exact chemicals, equipment, room temperature and lab technician can greatly influence
the final measurements, in addition to the cell type. In practice, these so-called “batch
effects” are often unmeasured confounders whose exact value is unknown at the inference
stage. Thus, analysis of experimental gene counts must take them into account in order to
conduct reliable scientific analysis. In what follows, we define a “batch protocol” to be a

71



5.5. Experiments

particular set of these conditions common to a batch of cells.

We use data from the recently proposed scDesign3 simulator (Song et al., 2023), with
reference data taken from the PBMC Systematic Comparative Analysis (Ding et al., 2019).
We consider two cell types (CD4+ T-cells and Cytotoxic T-cells) and a subset of 100 random
genes. The reference data contains counts from two separate experiments, which will serve as
the basis of our simulated batch protocols. We use the two original experimental conditions
as well as two artificial perturbations derived from them to generate four possible batch
protocols. Following our terminology, this corresponds to a discrete nuisance parameter
with four groups. We consider the setup of a classifier trained on data from all four possible
protocols and tested on different xtarget whose true protocol value is unknown (in addition to
the cell type). In total, we have available 80,000 samples which we divide into train (60%),
calibration (35%) and test (5%) sets. Our goal is to infer the cell’s type from the observed
gene count under the presence of the unknown nuisance parameter.

We compare our method with three baselines: (i) standard prediction sets for which
cutoffs are computed from PpY | Xq (Sadinle et al., 2019, Theorem 1); (ii) class-conditional
prediction sets with cutoffs derived separately from each PpY “ i | Xq, i P t0, 1u (Sadinle
et al., 2019); and (iii) conformal adaptive prediction sets (APS; Romano et al. (2020)).
Figure 5.2 shows that nuisance-aware prediction sets (NAPS) are valid regardless of the
protocol, which is unknown at inference time. On the other hand, all of the other prediction
sets from the analyzed baselines undercover for at least two protocols. Nuisance-aware
cutoffs need to control type-I error for every single value of the nuisance parameter, including
the hardest case. Here, Protocol 1 (top left) appears to be the most difficult to classify
correctly. Finally, we note that while conformal APS approximately achieves coverage for
p1 ´ αq « 1, this comes at the expense of uninformative prediction sets that contain both
labels for all xtarget. NAPS, on the other hand, is able to maintain high power (see Figure D.5
in Appendix D.7). Additional results and details on the base classifier, the model used to
estimate the rejection probability function, and the baselines adopted for comparison can be
found in Appendix D.7.

5.5.3 Atmospheric Cosmic-Ray Showers

High-energy cosmic rays, both charged and neutral, are extremely informative probes of
astrophysical sources in our galaxy and beyond. Gamma rays (which constitute the vast
majority of neutral cosmics) reach the Earth atmosphere from specific directions that
coincide with the location of the originating source in the sky. On the other hand, charged
cosmic rays (hadrons) arrive from non-informative directions as they get deflected by galactic
magnetic fields while travelling. An important step in analyzing gamma-ray sources is
to separate gamma-induced showers (G) from the very large background (ą 1000 : 1) of
hadron-induced showers (H) using ground-based detector arrays that collect particles x from
secondary showers (Dorigo et al. (2023, 2025); see top left of Figure 5.4 for an illustration).
G/H separation is a challenging rare-event detection problem, where the true distribution of
both the shower type Y and the shower parameters ν might be misspecified in simulated
data. Our goal is to infer the cosmic ray identity Y from ground measurements X while
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accounting for additional shower parameters: energy E, azimuth angle A and zenith angle
Z. Together, these form a nuisance parameter vector ν “ pE,A,Zq. We construct a data
set of 99,850 samples simulated from CORSIKA (Heck et al., 1998) divided into train (45%),
calibration (45%) and test (10%) sets. Figure 5.3 (left) shows several ROC curves as a
function of different energy values, demonstrating a clear dependency of the classification
problem on this shower parameter.

Figure 5.5 summarizes our results as a function of the confidence level p1´αq for different
classification metrics. These are computed within true and within predicted gamma rays
for two different bins whose border is the median energy level. Nuisance-aware prediction
sets (NAPS with γ “ 0) achieve high precision and low false discovery rates but slightly
under-perform relative to the standard Bayes classifier (Appendix D.5) for lower energy
values (left column in Figure 5.5), specifically at low confidence levels. This behaviour
originates from the complexity of the data: at lower energies it is indeed much harder to
distinguish gamma rays from hadrons (see bottom left panel of Figure 5.4).

By constructing p1 ´ γq confidence sets for ν (see the right panel of Figure 5.4 for an
example), we are able to outperform the standard Bayes classifier at all confidence levels
(NAPS with γ ą 0). This result is explained by the bottom panel in Figure 5.5: NAPS
predicts a single label only when it is relatively certain about it, and otherwise outputs an

Figure 5.3: Dependence of the ROC on the energy of the cosmic-ray shower. Left:
Receiver operating characteristic evaluated according to our method at different energy values
(shades of blue). By estimating the entire ROC, we can control FPR or TPR at specified
confidence levels for all ν P N , which is not possible with the “marginal” ROC curve (red).
Right: Diagnostic P-P plot evaluated at four bins over energy for nuisance-aware ROC (shades
of blue) and ROC that ignores nuisances (shades of red). To check if Ptarget pλpXq ď C | y, νq

is well estimated, we plot PIT values against a Uniformp0, 1q distribution (dashed bisector; see
Appendix D.4 for details). This is clearly not the case if one ignores nuisance parameters.
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Figure 5.4: Constraining the cosmic ray shower parameters. Top left: Illustration of the
Southern Wide-field Gamma-ray Observatory (SWGO; Abreu et al. (2019); image credit: Richard
White) array of detectors with an incoming gamma ray (red). Bottom Left: Test statistic under
y0 “ 0 (hadron) as a function of energy. At high energies, the class-conditional test statistics
are well separated, implying that it is easier to distinguish gamma showers (red) from hadron
showers (gold). Right: Confidence set for ν at different p1 ´ γq confidence levels obtained via
the framework of Masserano et al. (2023). The true value of ν is the black star.

ambiguous prediction set that contains both labels. Nonetheless, for this example, NAPS
with γ “ 0 is able to achieve a higher number of true positives and lower number of false
negatives relative to the Bayes classifier. Additional results and details on the models used
can be found in Appendix D.6.

5.6 Conclusion and Discussion

The introduction of nuisance parameters complicates the effectiveness and reliability of
machine learning models in tasks such as classification. This paper introduces a new method
for handling prior probability shift of both label and nuisance parameters in likelihood-free
inference when a high-fidelity mechanistic model is available. We demonstrate a new
technique for estimating the ROC across the entire parameter space for binary classification
problems. We also show how to construct set-valued classifiers that have a guaranteed user-
specified probability p1 ´ αq of including the true label (parameter of interest), for all levels
α P r0, 1s simultaneously, without having to retrain the model for every α. These set-valued
classifiers are valid, no matter what the true label and unknown nuisance parameters are.
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Figure 5.5: Classification metrics within true and within predicted Gamma rays (y “ 1).
Results are binned according to whether the shower energy is below (left) or above (right) the
median value. Top panel: Nuisance-aware prediction sets (NAPS γ “ 0; blue) achieve high
precision and low false discovery rates (FDR), especially at high confidence levels. In addition,
by constraining the nuisance parameters ν “ pE,A,Zq, we can increase performance (NAPS
γ ą 0; green) with uniformly better results relative to the standard Bayes classifier (black dashed
line). Bottom panel: Our set-valued classifier makes explicit its level of uncertainty on the
label y by returning ambiguous prediction sets (bottom row) for hard-to-classify xtarget. Even so,
NAPS with γ ą 0 is able to achieve a higher number of true positives and lower number of false
negatives relative to the Bayes classifier. Here γ “ α ˆ 0.3.
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Finally, we demonstrate how to increase power while maintaining validity by constraining
nuisance parameters.

Extensions and Limitations. Our approach can be extended to standard classification
problems where the training data does not come from a simulator, as long as (i) the nuisance
parameters ν in the data-generating process have been identified and are available at training
time, and (ii) we can reliably estimate the rejection probability function across the entire
parameter space as in Section 5.3.2. We recommend checking the latter with diagnostic P-P
plots (see Appendix D.4, and Figure 5.3 (right) for an example).

NAPS directly extends to multiclass as one-vs-one problems, since we can estimate one-vs-
one ROC curves for each ν P N . The computational cost for K classes would increase by a
factor of

`

K
2

˘

. However, an extension to multiclass as one-vs-rest problems is non-trivial,
because estimating ROC curves requires knowledge of the distribution of labels Y on the
target set for every nuisance parameter ν. Without such knowledge, the ROC curves would
not be invariant to GLS.

NAPS achieves validity under GLS. However, in the absence of a shift, this results in
reduced power compared to standard prediction sets (Equation (5.10)). Although we can
recover some of this power by constraining nuisance parameters (i.e. setting γ ą 0), the
cutoffs need to be computed for each test point, which can be computationally expensive,
especially for high-dimensional ν. Furthermore, setting γ ą 0 is not guaranteed to increase
power relative to γ “ 0: Since rejection probability inversion is performed at level α ´ γ,
power might decrease when optimizing the NAPS cutoff over the (1 ´ γ) confidence set for
ν (see Equation (5.8)). This can occur if the (1 ´ γ) confidence sets are too large, or when
the distribution of ν is skewed toward certain regions (Figure D.13). For further discussion,
refer to Appendix D.9.4.

Finally, we note that NAPS may sometimes result in empty prediction sets, though this
is uncommon when p1 ´ αq is large. Future adaptations could incorporate strategies from
Sadinle et al. (2019) to mitigate this issue.
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The lf2i package

A central goal of this thesis is to provide methods that are not only methodologically or
theoretically appealing, but that are also easy to use in practice, so that domain scientists
can benefit from them during their investigations. As such, we devoted a crucial effort into
developing and maintaining a friendly Python package that provides scalable implementations
of all the methods presented in this thesis. In this Chapter, we briefly review the main
structure and contributions of this package1.

6.1 Description of the Main Components

The central objective of the lf2i package is to provide an easy-to-use Python implementation
of the methods and algorithms we developed in this thesis. In addition, as a long term
trajectory of this effort, we would like lf2i to become the standard software reference
for likelihood-free inference methods that bridge modern machine learning with sound
frequentist guarantees, which we believe to be highly desirable in scientific inference settings.

A significant challenge in designing lf2i lied in accommodating different data, simula-
tors, machine learning algorithms, test statistics, calibration methods, and in general varying
degrees of flexibility within our inferential framework. As such, we tried to strike a balance
between customization and ease of use, while also building an infrastructure that could
potentially leverage the continuously evolving space of software packages implementing
recent advancements at the intersection of machine learning and SBI/LFI. Below we describe
each component that is summarized in Figure 6.1.

Data. The space of simulators across different domains of science is vast and complex,
therefore we limited ourselves to providing a minimal infrastructure for practitioners to
adapt their simulators so that they abide the data structures required by our inferential
methods with the least possible effort. In addition, we made sure that one can directly

1These efforts started from an initial code-base provided by Dalmasso et al. (2020). From this starting point,
we derived the implementation of ACORE and of critical values via quantile regression. The structure, utilities
and other components of the lf2i package are otherwise entirely novel.

77



6.1. Description of the Main Components

Data Test Statistics Calibration Diagnostics

• Provide utilities to 
construct complex 
simulators…


• …or to directly use 
pre-simulated or 
observational data

• Likelihood-based:

- ACORE

- BFF


• Posterior- and 
prediction-based:


- Waldo

- Posterior

- PPR


• Other: exact test 
statistics such as 
LRT and BF


• Utilities to 
implement arbitrary 
test statistics

• Amortized critical 
values via quantile 
regression


• Amortized P-values 
via probabilistic 
classification


• Various parametric 
and nonparametric 
models supported


• Utilities to train, 
optimize and 
evaluate models

• Estimate local 
coverage via 
probabilistic 
classification


• Support any type of 
parameter region


• Various parametric 
and nonparametric 
classifiers supported


• Utilities to train, 
optimize and 
evaluate models

Other Methods

• HPD credible sets 
from generative 
models


• Simple prediction 
sets from regression 
models 

Analysis

• Visualize parameter 
regions of any 
dimension via 
concave hull 
algorithms


• Utilities to plot local 
coverage 
diagnostics across 
the parameter space

Figure 6.1: Main components of the lf2i package.

feed pre-simulated or observational data without necessarily requiring the specification of a
simulator.

Test statistics. All test statistics share a common object-oriented structure. One
can decide whether to train the underlying estimator (e.g., a regression, classification or
generative model) from within each test statistics, or do it separately and then pass the
trained estimator to the class constructor. We find the latter method fits better into the
scope of lf2i, therefore we plan to deprecate the former (training the estimator within the
class) soon. The central component is the evaluation of the test statistics, which proceeds
separately for the construction of confidence sets with respect to calibration and diagnostics,
so that we can fully exploit parallelization via joblib (Joblib Development Team, 2020) and
vectorization over the appropriate dimensions. We support several test statistics that we
developed over the years: some are likelihood-based, such as ACORE and BFF which leverage
odds estimation; some are based on predictions and posteriors, such as Waldo; some are
instead entirely based on posteriors (especially those obtained from generative models),
such as Posterior and PPR (the prior-posterior ratio). Finally, since our framework is
not necessarily based on test statistics estimated via machine learning tools, we plan to
release “exact” test statistics like the standard likelihood-ratio test and Bayes Factor, since
some practitioner might still find them useful in conjunction with our amortized calibration
methods.

Calibration. This module mainly supports two calibration methods that are relevant
to construct confidence sets via Neyman inversion: critical values via quantile regression
and p-values via monotone probabilistic classification. In both cases, we limit ourselves to
implement a dispatcher that trains and evaluates an appropriate calibration model, allowing
the user to choose among different machine learning and statistical methods. For p-values
estimation, we also implement a few ad-hoc utilities to augment the calibration dataset to
re-sample the test statistics, so that the resulting estimates are also amortized with respect
to the confidence level 1 ´ α.
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While not present in Figure 6.1, the natural step after both the test statistic and the
calibration method have been learned is to apply the Neyman inversion of hypothesis tests
across the entire parameter space. This entails checking for which values of θ the test
statistic is in the acceptance region, and retaining those values to form the confidence set. An
important portion of this process is the definition of an evaluation grid over the parameter
space that indexes the tests to be inverted. We foresee this to be a crucial components that
should ideally be automatized and released soon.

Diagnostics. This component implements the independent diagnostic procedure described
in Section 2.3.4 by i) computing indicators that signal whether a specific true parameter
value is included or not in a parameter region, and ii) training a probabilistic classifier to
estimate local coverage across the parameter space. This tools has proven to be very useful
in practice because it allows to identify regions where either the calibration procedure is
failing or the domain scientist needs to collect more data to provide more reliable results.
Note that here we used the general term “parameter regions” because this module explicitly
allows to check the local empirical coverage for arbitrary sets, whether they are confidence
sets constructed with our methods, credible regions from posterior distributions, prediction
sets, and more.

Other methods. This module aims at being a collection of alternative methods to
construct parameter regions and to provide comparisons. It currently implements an efficient
method to compute high-posterior density credible regions of any dimension from neural
density estimators, and it also provide a simple function to compute gaussian-like prediction
sets. In the future, we foresee this module to potentially accommodate additional methods
such as conformal inference, when their implementation is not sufficiently easy to use from
other packages.

Analysis. Finally, this module implements several utilities to analyze and visualize results.
Providing an exhaustive visualization module is beyond the scope of the package, especially
given the numerous customizations that are often needed in practice to obtain figures of
publishable quality. This said, we tried to at least provide a minimal amount of structure
to plot local coverage diagnostics across the parameter space, and to visualize parameter
regions of any dimension. The latter task required the use of specialized libraries that
implement concave hull algorithms (e.g., alphashape (Bellock, 2021)) to plot contours of
regions of arbitrary shape.

6.2 Related Software

Recently, most of the advancements in LFI have been driven by the development of new
machine learning methods, most of which have also been influenced by innovations in
deep learning and generative models. In parallel, several packages that implement neural
network-based SBI algorithms have emerged, such as SBI (Tejero-Cantero et al., 2020),
BayesFlow (Radev et al., 2023b), sbijax (Dirmeier et al., 2024) and Swyft (undark lab,
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2023). Our package — lf2i — is complementary to these efforts. We do not aim to provide
the same functionalities, but rather to leverage those packages and their implementations of
modern deep learning methods for SBI to estimate better and more flexible test statistics,
with which we can then construct confidence sets with sounds statistical guarantees.
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Extensions and Future Work

We conclude by discussing a few methodological extensions and novel applications that we
have been working on and that will set the ground for future explorations.

7.1 Anytime-Valid Sequential Likelihood-Free Inference

Our discussion so far has revolved around the problem of constructing confidence sets in
LFI settings leveraging machine learning models trained on a pre-determined number of
simulations. Consider now a setting where, given a fixed xobs and an implicit likelihood
model Fθ from which we can simulate pairs pθ,Xq, we would like to learn a neural density
estimator sϕ : X ÞÑ qψ such that qψ « πpθ | xobsq. An approach is to proceed sequentially
over several rounds, using the last posterior estimate to adaptively choose where to query
Fθ and obtain more informative simulations. See Algorithm 7.1 for a sketch of the steps
involved. Several methods have been proposed for this setting (e.g., Lueckmann et al. (2017);
Papamakarios and Murray (2016); Greenberg et al. (2019)), but none of them provides
theoretical guarantees on the coverage and size of the credible regions obtained from the
resulting estimated posterior distributions, nor on the optimality (if any) of the updates on
the proposal used to sample θ at each round. In addition, it is usually nearly impossible to
apply modern diagnostics to these algorithms, as it would require to re-train them for each
different xobs.

To fill this gap, an interesting are for future work would entail the development of a
method that ensures anytime validity (similarly to Equation (2.1) but for sequential settings)
while providing meaningful (i.e., tight) constraints on θ. Part of the motivation behind this
direction is the need to improve sample efficiency in settings where obtaining more data
can be expensive. More specifically, taking inspiration from the literature on sequential
testing and game-theoretic statistics (e.g., Grünwald et al. (2020); Neiswanger and Ramdas
(2021); Waudby-Smith and Ramdas (2020, 2024)), we started by considering the following:
let p0pθq “ πpθq be the prior distribution and p̂rpθ | xobsq be the estimated posterior after
having simulated pX1, . . . , Xrq in r sequential rounds, and define the prior-posterior ratio to

81



7.1. Anytime-Valid Sequential Likelihood-Free Inference

Algorithm 7.1 Sequential Neural Posterior Estimation
Input: observation xobs, simulator Fθ, prior πpθq, simulations per round N , rounds R, neural
network sϕ
Output: q̂ψ“sϕ

1: Set p̃1 Ð πpθq

2: for r in t1, . . . , Ru do
3: for j in t1, . . . , Nu do
4: Sample θr,j „ p̃rpθq

5: Simulate Xr,j „ Fθr,j

6: ϕr`1 Ð argminϕ L [some loss ensuring that the estimate is close to ppθ | xobsq and not to
p̃pθ | xobsq]

7: ψr`1 Ð sϕr`1pxobsq
8: p̃r`1 Ð qψr`1

pθq

9: return qψR
pθq

be
τrpxobs; θq :“

p0pθq

p̂rpθ | xobsq
. (7.1)

Note that Equation (7.1) is equivalent to the the inverse of the Bayes factor, and is in fact
an alternative way of computing the test statistic proposed earlier in Section 2.3. Following
Waudby-Smith and Ramdas (2020), it should be the case that the sequence pτrpxobs; θ

‹qqRr“1

is a non-negative martingale with respect to pFrqRr“1, i.e. the filtration induced by the
sequence of simulations pX1, . . . , XRq. Furthermore, from Ville’s inequality (Ville, 1939)

Rrpxobsq “ tθ P Θ : τrpX; θq ă 1{αu (7.2)

forms a p1 ´ αq confidence sequence for θ‹, i.e. P pDr : θ‹ R Rrpxobsqq ď α.
To quickly test this idea, we setup a simple toy experiment where we train a sequential
neural posterior estimator on data simulated in rounds from X „ Betap30¨θ

1´θ , 30q with a
θ „ Unifp0, 1q prior at r “ 0. The goal is to estimate the mean of the Beta distribution, for
which we generate a fixed observation xobs „ Betap10, 30q, implying θ‹ “ 1{4. Figure 7.1
compares HPD regions from the estimated posterior and confidence sets computed according
to Equation (7.2), at each round. While HPD regions roughly concentrate around θ‹ as
more simulations are sampled, confidence sets seem extremely conservative (only the lower
bound is marginally improving over rounds).

One important difference of this approach relative to the previous sections is that here
the confidence sets are constructed using a single common cutoff (i.e., 1{α) for all the null
hypotheses tested for Neyman inversion. While this guarantees validity, it is known to
lead to conservative estimates in several settings. A possible promising direction is to look
at the literature that re-frames testing as the game of a gambler that bets sequentially
to increase its capital. Loosely speaking, one can construct a capital process for each
null hypothesis and reject the null when the capital is greater than some threshold. This
framework allows to obtain parameter constraints that are both anytime-valid and powerful
(see, e.g., Waudby-Smith and Ramdas (2024); Ramdas and Wang (2024)). The feasibility
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Figure 7.1: Confidence sequences and credible regions for the mean of a Betap10, 30q distribution.
HPD sets correctly concentrate around the true parameter as the posterior estimates improve from
additional training data. Confidence sequences achieve validity, but remain very conservative.

of leveraging these tools relies on their transferability to LFI settings, where little-to-no
assumptions can usually be made on the distribution that generates the data, since the
likelihood is by definition intractable. Another interesting area to attack this problem is the
literature on the well-known best-arm identification problem for multi-armed bandits (see,
e.g., Jamieson and Nowak (2014); Kuchibhotla and Zheng (2020)): re-framing the task of
actively choosing where to sample in the parameter space to increase sample efficiency as
that of selecting the arm with the highest reward might yield a procedure with important
optimality properties. Finally, another promising approach to actively decide where to
sample in the parameter space is to leverage influence functions, specifically the practical
results derived by Koh and Liang (2017). In this work, the authors show how to compute
influence functions for black-box predictors to analyze the effect that perturbations on the
input data have on the loss and on the model predictions at a certain test point. In our
context, this could provide a powerful tool to design “friendly”1 perturbations of the inputs
(for us, the parameters) that would lead to a maximal decrease of the loss, thereby guiding
sampling across the parameter space to a prior distribution that is “optimal” to infer the
unknown θ‹.

7.2 LF2I for Data Assimilation

In terms of sample efficiency, the calibration methods introduced in Chapters 2 and 4 scale
exponentially better with the dimensionality of the parameter space relative to Monte Carlo
methods, when applied in the context of the Neyman inversion. Nonetheless, with very
high-dimensional parameter spaces the curse of dimensionality is inevitable. One setting that
opens the way to new areas of investigation is the application of LF2I-related methods to
data assimilation and inference on the latent states of a dynamical system. By construction,
these latent states have an inherent structure determined by the stochastic process that
defines the system itself. How do we actively exploit this structure to achieve type-I error

1As opposed to adversarial.
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control in very high-dimensional parameter spaces and construct confidence sets for latent
states? A possible solution is to use nonlinear dimension reduction methods and apply
quantile regression and Neyman inversion in this space. For example, this could be achieved
by learning a geometric graph neural network over the latent space. A precise formalization
and solution of this problem is left to future work.

7.3 Improving on the LRT by Leveraging Prior
Distributions in Particle Physics

This section presents an extension and application of some of the results in Chapters 2-4. In
particle physics, experiments rely on sophisticated statistical methods to extract physics
information from data. Searches for new physics phenomena and measurement of standard
model parameters are typically performed as composite hypothesis tests in a frequentist
framework using the generalized likelihood ratio test (LRT). Across experiments, the reach
and precision of these studies are often limited by the amount of data that can be collected.
A procedure that could improve the power of the statistical technique itself around the
parameter space that is being tested would benefit experiments spanning collider physics,
neutrino physics, dark matter searches and beyond.

The Neyman-Person lemma guarantees that the LRT is the most powerful test statis-
tic for simple hypothesis tests; however, this does not extend to composite hypothesis tests.
Here we leverage the Bayes Factor as a frequentist test statistic to provide particle physi-
cists with the ability to assign more statistical power in relevant regions of the hypothesis
space, at the cost of giving up statistical power in less interesting parts of the parameter space.

One of the main results is summarized in Figure 7.2. When scientific knowledge is well
aligned with the truth via a prior distribution, a significant improvement in constraining
power can be achieved. In this work, we also plan to demonstrate that a significant im-
provement in sensitivity can be achieved under various scenarios using the HiggsML collider
physics dataset simulated by the ATLAS experiment (Adam-Bourdarios et al., 2014).
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Figure 7.2: Median 68.3% confidence interval length for LRT (red) and for BF (solid blue
curve) with a truncated normal prior distribution (dashed blue curve). Observations are
sampled from different values of µ to show the gain of power around the prior and the loss of
power far from it.
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A

Additional Results for Chapter 2

A.1 Estimating Odds

Algorithm A.1 shows how to create the training set T for estimating odds. Out of the total
number of simulations B, a proportion p is generated by the stochastic forward simulator
Fθ at different parameter values θ, while the rest is sampled from a reference distribution G.
Note that G can be any distribution that dominates Fθ. If G is the marginal distribution
Fx and n “ 1, then computations for BFF are simplified because its denominator equals one.
Algorithm A.2 shows how to sample from the marginal distribution Fx. In practice, if the
data is pre-simulated, one can sample from the (empirical) marginal using permutations to
break the relationship between θ and X for X „ G “ Fx.

Algorithm A.1 Generate a labeled sample of size B for estimating odds
Input: simulator Fθ; reference distribution G; proposal distribution πΘ over parameter space;
number of simulations B; parameter p of Bernoulli distribution
Output: labeled training sample T

1: Set T Ð H

2: for i in t1, ..., Bu do
3: Draw parameter value θi „ πΘ
4: Draw Yi „ Bernoullippq

5: if Yi ““ 1 then
6: Draw sample Xi „ Fθi
7: else
8: Draw sample Xi „ G

9: T Ð T Y pθi, Xi, Yiq

10: return T “ tθi, Xi, Yiu
B
i“1

A.2 Estimating p-values

Given observed data D and a test statistic λ, we can compute p-values ppD; θ0q :“
PD|θ0 pλpD; θ0q ă λpD; θ0qq for each hypothesis H0,θ0 : θ “ θ0. Algorithm A.3 describes
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Algorithm A.2 Sample from the marginal distribution G “ FX
Input: simulator Fθ; proposal distribution πΘ over parameter space
Output: sample Xi from the marginal distribution FX

1: Draw parameter value θi „ πΘ
2: Draw sample Xi „ Fθi
3: return Xi

how to estimate such p-values for all θ0 P Θ simultaneously.

A.3 Constructing Confidence Sets

Algorithm A.4 details the construction of LF2I confidence sets with ACORE and BFF as defined
in Section 2.3 (the algorithm based on p-value estimation is analogous). Algorithm A.5
details the construction of the (hybrid) ACORE and BFF confidence sets defined in Section 2.5
for the general setting with nuisance parameters. Note that the first chunk on estimating
the odds and the last chunk with Neyman inversion are the same for ACORE and BFF.
Furthermore, the test statistics are the same whether or not there are nuisance parameters.

A.4 Theoretical Guarantees of Power for ACORE with
Calibrated Critical Values

Next, we show for finite Θ that as long as the probabilistic classifier is consistent and the
critical values are well estimated (which holds for large enough B1 according to Theorem A.4),
the power of the ACORE test converges to the power of the LRT as B grows.

Algorithm A.3 Estimate p-values ppD; θ0q given observed data D for a level-α test of
H0,θ0 : θ “ θ0 vs. H1,θ0 : θ ‰ θ0, for all θ0 P Θ simultaneously.
Input: observed data D; simulator Fθ; number of simulations B1; πΘ (fixed proposal distribution
over the parameter space Θ); test statistic λ; probabilistic classifier
Output: estimated p-value pppD; θq for all θ “ θ0 P Θ

1: Set T 1 Ð H

2: for i in t1, . . . , B1u do
3: Draw parameter θi „ πΘ

4: Draw sample Xi,1, . . . , Xi,n
iid
„ Fθi

5: Compute test statistic λi Ð λppXi,1, . . . , Xi,nq; θiq
6: Compute indicator Zi Ð 1 pλi ă λpD; θiqq

7: T 1 Ð T 1 Y tpθi, Ziqu

8: Use T 1 to learn the p-value function p̂pD; θq using Z as the label for each θ
9: return p̂pD; θ0q
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Algorithm A.4 Construct p1 ´ αq confidence set for θ (no nuisance parameters)
Input: simulator Fθ; proposal distribution π over Θ; parameter p of Bernoulli; number of
simulations B (test statistic); number of simulations B1 (critical values); probabilistic classifier;
observations D “ txobsi uni“1; level α P p0, 1q; size of evaluation grid over parameter space ngrid; test
statistic λ (ACORE or BFF)
Output: θ evaluation points in confidence set pRpDq

1: // Estimate odds
2: Generate labeled sample T according to Algorithm A.1
3: Learn pPpY “ 1 | θ,Xq on T with a probabilistic classifier, for all θ P Θ and X P X
4: Let the estimated odds pOpX; θq Ð

pPpY“1|θ,Xq

pPpY“0|θ,Xq

5:
6: // Compute critical values for ACORE or BFF
7: if λ == ACORE then
8: Let λpD; θq Ð pΛpD; θq be the ACORE statistic (Equation (2.8)) with estimated odds
9: else if λ == BFF then
10: Let λpD; θq Ð pτpD; θq be the BFF statistic (Equation (2.10)) with estimated odds
11: Learn critical values pCθ according to Algorithm 2.1
12:
13: // Confidence sets for θ via Neyman inversion
14: Initialize confidence set pRpDq Ð H

15: Let LΘ be a lattice over Θ with ngrid elements
16: for θ0 P LΘ do
17: if λpD; θ0q ě pCθ0 then
18: pRpDq Ð pRpDq Y tθ0u

19: return confidence set pRpDq

Theorem A.1. For each C P R, let pϕB,CpDq be the test based on the ACORE statistic pΛB
with critical value C1 for a number of simulations B in Algorithm A.1. Moreover, let ϕCpDq

be the likelihood ratio test with critical value C. If, for every θ P Θ, the probabilistic classifier
is such that

pPpY “ 1 | θ,Xq
P

ÝÝÝÝÑ
BÝÑ8

PpY “ 1 | θ,Xq,

where |Θ| ă 8, and pCB is chosen such that pCB
D

ÝÝÝÝÑ
BÝÑ8

C for a given C P R, then, for every

θ P Θ,
PD,T |θ

´

pϕ
B,pCB

pDq “ 1
¯

ÝÝÝÝÑ
BÝÑ8

PDmidθ pϕCpDq “ 1q .

Proof. Because pPpY “ 1 | θ,Xq
P

ÝÝÝÝÑ
BÝÑ8

PpY “ 1 | θ,Xq, it follows directly from the

properties of convergence in probability that for every θ0, θ1 P Θ

n
ÿ

i“1

log
´

yORpXobs
i ; θ0, θ1q

¯

P
ÝÝÝÝÑ
BÝÑ8

n
ÿ

i“1

log
`

ORpXobs
i ; θ0, θ1q

˘

.

1That is, pϕB,CpDq “ 1 ðñ pΛBpD; Θ0q ă C.
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Algorithm A.5 Construct confidence set for µ with (approximate) coverage 1 ´ α under
the presence of nuisance parameters
Input: simulator Fθ; proposal distribution π over Θ “ M ˆ N ; parameter p of Bernoulli; number of
simulations B (test statistic); number of simulations B1 (critical values); probabilistic classifier;
observations D “ txobsi uni“1; level α P p0, 1q; size of evaluation grid over parameter space, ngrid; test
statistic λ (ACORE or BFF)
Output: µ evaluation points in confidence set pRpDq

1: // Estimate odds
2: Generate labeled sample T according to Algorithm A.1
3: Learn pPpY “ 1 | θ,Xq on T with a probabilistic classifier, @ θ “ pµ, νq P Θ, X P X
4: Let the estimated odds pOpX; θq Ð

pPpY“1|θ,Xq

pPpY“0|θ,Xq

5:
6: // Compute (hybrid) critical values for h-ACORE or h-BFF
7: if λ == ACORE then
8: Let pνµ Ð argmaxνPN

śn
i“1

pOpxobsi ; pµ, νqq for every µ
9: Let λpD;µq Ð pΛ pD; pµ, pνµqq be ACORE (Equation (2.8)) with estimated odds
10: Generate T 1 as in Algorithm 2.1 using the proposal π1ppµ, νqq 9 πpµq ˆ δ

pνµpνq

11: Learn pCµ “ pF´1
λpD;µq|pµ,pνµq

pαq for every µ as in Algorithm 2.1 using T 1

12: else if λ == BFF then
13: Let πN pνq be the restriction of proposal distribution π over N
14: Let λpD;µq Ð pτpD;µq be the BFF statistic (Equation (2.10)) with estimated odds
15: Learn pCµ “ pF´1

λpD;µq|pµq
pαq for every µ (no ν) as in Algorithm 2.1

16:
17: // Confidence sets for µ via Neyman inversion
18: Initialize confidence set pRpDq Ð H

19: Let LM be a lattice over M with ngrid elements
20: for µ0 P LM do
21: if λpD;µ0q ě pCµ0 then
22: pRpDq Ð pRpDq Y tµ0u

23: return confidence set pRpDq

The continuous mapping theorem implies that

pΛBpD; Θ0q
P

ÝÝÝÝÑ
BÝÑ8

sup
θ0PΘ0

inf
θ1PΘ

n
ÿ

i“1

log
`

ORpXobs
i ; θ0, θ1q

˘

,

and therefore pΛBpD; Θ0q converges in distribution to supθ0PΘ0
infθ1PΘ

řn
i“1

log
`

ORpXobs
i ; θ0, θ1q

˘

. Now, from Slutsky’s theorem,

pΛBpD; Θ0q ´ pCB
D

ÝÝÝÝÑ
BÝÑ8

sup
θ0PΘ0

inf
θ1PΘ

n
ÿ

i“1

log
`

ORpXobs
i ; θ0, θ1q

˘

´ C.
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It follows that

PD,T |θ

´

pϕ
B,pCB

pDq “ 1
¯

“ PD,T |θ

´

Λ̂BpD; Θ0q ´ pCB ď 0
¯

ÝÝÝÝÑ
BÝÑ8

PD|θ

´

sup
θ0PΘ0

inf
θ1PΘ

n
ÿ

i“1

log
`

ORpXobs
i ; θ0, θ1q

˘

´ C ď 0
¯

“ PD|θ pϕCpDq “ 1q ,

where the last equality follows from Proposition 2.1.

A.5 Analysis of Critical Values for Experiments 2.6.1 and
2.6.2

In this section we visualize how critical values vary across the parameter space Θ for the
experiments of Sections 2.6.1 and 2.6.2. Figure A.1 compares critical values for the exact
LRT of the Gaussian Mixture Model (GMM) example, where the distribution of the test
statistic is unknown, using three different methods:

i) The first approach is to compute cutoffs via Monte Carlo (MC) simulations at fixed
values of θ. These critical values can be considered the “ground truth”, since for this
one-dimensional example we were able to use a high-resolution grid and large batches at
each grid point. Unfortunately, MC quickly becomes infeasible if the dimensionality of the
parameter space increases. In addition, a scientist cannot adopt MC samples in practical
settings, where one only has access to a pre-determined data set and not to the simulator itself.

ii) The second approach is to assume that the cutoff is (asymptotically) constant across the
parameter space. Here we have computed cutoffs assuming that Wilks’ theorem holds and
that the limiting distribution is a χ2-distribution, which is not the case. Indeed, the bottom
central panel of Figure 2.3 shows that the χ2-approximation achieves correct coverage only
when θ “ 0 (i.e., when the GMM collapses to one Gaussian).

iii) The third approach is to compute the critical values of the (known) test statistic
via quantile regression (QR). With a very small calibration set (0.1% of the total simulations
used for the MC approach), QR is able to approximate the quantile surface and achieve
nominal coverage for all values of θ (see Figure 2.3).

Figure A.2 shows similar results for the HEP example of Section 2.6.2; here we visualize
the the critical values of h-ACORE (estimated via LF2I) as a function of the parameter of
interest µ and the nuisance parameter ν. Again, we see evidence that the quantile surface is
far from being constant, and that the test statistic is not pivotal. Hence, there is a need for
a quantile regression that adapts to the varying distribution of the test statistic.
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Figure A.1: Comparison of critical values obtained via Monte Carlo, the Chi-Square asymptotic
assumption of Wilks’ Theorem, and LF2I Quantile Regression, for the GMM example of Section 2.6.1.

Figure A.2: Critical values of h-ACORE estimated via quantile regression as a function of the
parameter of interest µ and the nuisance parameter ν, for the example of Section 2.6.2. The figures show
the same 2D surface from two different angles.
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A.6 Additional Proofs

Proof of Proposition 2.1. Because the measure ν dominates Fθ, G also dominates Fθ. Let
fpx | θq be the density of Fθ with respect to G. By Bayes rule,

Opx; θq :“
PpY “ 1 | θ, xq

PpY “ 0 | θ, xq
“
fpx | θqp

p1 ´ pq
.

If pPpY “ 1 | θ, xq “ PpY “ 1 | θ, xq, then pOpx; θ0q “ Opx; θ0q. Therefore,

pτpD; Θ0q :“

ş

Θ0

śn
i“1

pOpXobs
i ; θqdπ0pθq

ş

Θ1

śn
i“1

pOpXobs
i ; θqdπ1pθq

“

ş

Θ0

śn
i“1OpXobs

i ; θqdπ0pθq
ş

Θ1

śn
i“1OpXobs

i ; θqdπ1pθq

“

ş

Θ0

śn
i“1

fpXobs
i |θqp

p1´pq
dπ0pθq

ş

Θ1

śn
i“1

fpXobs
i |θqp

p1´pq
dπ1pθq

“

ş

Θ0

śn
i“1 fpXobs

i | θqdπ0pθq
ş

Θ1

śn
i“1 fpXobs

i | θqdπ1pθq

Moreover, the chain rule implies that fpx | θq “ ppx | θqhpxq, where hpxq :“ dν
dGpxq. It

follows that

pτpD; Θ0q “

ş

Θ0

śn
i“1 fpXobs

i | θqdπ0pθq
ş

Θ1

śn
i“1 fpXobs

i | θqdπ1pθq

“

ş

Θ0

śn
i“1 ppXobs

i | θqhpXobs
i qdπ0pθq

ş

Θ1

śn
i“1 ppXobs

i | θqhpXobs
i qdπ1pθq

“

ş

Θ0

śn
i“1 ppXobs

i | θqdπ0pθq
ş

Θ1

śn
i“1 ppXobs

i | θqdπ1pθq

“

ş

Θ0
LpD; θqdπ0pθq

ş

Θ1
LpD; θqdπ1pθq

“ BFpD; Θ0q.

Proof of Theorem 2.3. By definition, for all fixed cB1 , PD|θ0,CB1
pλpD; θ0q ď cB1q “ F pcB1 |

θ0q. It follows that the random variable PD|θ0,CB1
pλpD; θ0q ď CB1q “ F pCB1 | θ0q. Moreover,

by construction, α “ pFB1pCB1 | θ0q. It follows that

|PD|θ0,CB1
pλpD; θ0q ď CB1q ´ α| “ |F pCB1 | θ0q ´ α|

“ |F pCB1 | θ0q ´ pFB1pCB1 | θ0q|

ď sup
λPR

|F pλ | θ0q ´ pFB1pλ | θ0q|
P

ÝÝÝÝÝÑ
B1ÝÑ8

0.
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The result follows from the fact that convergence in probability to a constant implies almost
sure convergence.

Proof of Theorem 2.5. The proof follows from applying the convergence rate to the last
equation in the proof of Theorem 2.3.

Assumption A.2 (Uniform consistency in θ and λ). Let pFB1p¨ | θq be the estimated
cumulative distribution function of the test statistic λpD; Θ0q conditional on θ based on
a sample T 1 with size B1 implied by the quantile regression, and let F p¨ | θq be its true
distribution given θ. Assume that the quantile regression estimator is such that

sup
θPΘ0,λPR

|pFB1pλ | θq ´ F pλ | θq|
P

ÝÝÝÝÝÑ
B1ÝÑ8

0.

This assumption holds, for instance, for quantile regression forests (Meinshausen, 2006)
under additional assumptions (see Proposition A.3).

Proposition A.3. If, for every θ P Θ0, the quantile regression estimator is such that

sup
λPR

|pFB1pλ | θq ´ F pλ | θq|
P

ÝÝÝÝÝÑ
B1ÝÑ8

0 (A.1)

and either

• |Θ| ă 8 or,

• Θ is a compact subset of Rd, and the function gB1pθq “ suptPR | pFB1pt | θq ´ F pt | θq|

is almost surely continuous in θ and strictly decreasing in B1,

then Assumption A.2 holds.

Proof. If |Θ| ă 8, the union bound and Equation A.1 imply that

sup
θPΘ0

sup
λPR

|pFB1pλ|θq ´ F pλ|θq|
P

ÝÝÝÝÝÑ
B1ÝÑ8

0. (A.2)

Similarly, by Dini’s theorem, Equation A.2 also holds if Θ is a compact subset of Rd, and
the function gB1pθq is continuous in θ and strictly decreasing in B1.

Theorem A.4. Let CB1 P R be the critical value of the test based on a absolutely continuous
statistic λpD; Θ0q chosen according to Algorithm 2.1 for a fixed α P p0, 1q. If the quantile
estimator satisfies Assumption A.2, then

CB1
P

ÝÝÝÝÝÑ
B1ÝÑ8

C˚,

where C˚ is such that
sup
θPΘ0

PD|θpλpD; Θ0q ď C˚q “ α.
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Proof. Assumption A.2 implies that

sup
θPΘ0

|pF´1
B1 pα | θq ´ F´1pα | θq|

P
ÝÝÝÝÝÑ
B1ÝÑ8

0.

The result then follows from the fact that

0 ď |CB1 ´ C˚| “ | sup
θPΘ0

pF´1
B1 pα | θq ´ sup

θPΘ0

F´1pα | θq|

ď sup
θPΘ0

|pF´1
B1 pα | θq ´ F´1pα | θq|,

and thus
|CB1 ´ C˚|

P
ÝÝÝÝÝÑ
B1ÝÑ8

0.

Lemma A.5. Let g1, g2, . . . be a sequence of random functions such that gi : Z ÝÑ R, and
let Z be a random quantity defined over Z, independent of the random functions. Assume
that gpZq is absolutely continuous with respect to the Lebesgue measure. If, for every z P Z,

gmpzq
a.s.

ÝÝÝÝÝÑ
mÝÑ8

gpzq,

then
gmpZq

L
ÝÝÝÝÝÑ
mÝÑ8

gpZq.

Proof. Fix y P R and let Ay “ tz P Z : gpzq ‰ yu. Notice that PpZ P Ayq “ 1. Moreover,
almost sure convergence of gmpzq implies its convergence in distribution. It follows that for
every z P Ay,

lim
m

Ppgmpzq ď yq “ P pgpzq ď yq . (A.3)

Now, using Equation (A.3) and Lebesgue’s dominated convergence theorem, notice that

lim
m

PpgmpZq ă yq “ lim
m

ż

Z
PpgmpZq ă y | Z “ zqdPZpzq

“

ż

Z
lim
m

PpgmpZq ă y | Z “ zqdPZpzq “

ż

Az

lim
m

Ppgmpzq ă yqdPZpzq

“

ż

Az

Ppgpzq ă yqdPZpzq “

ż

Z
PpgpZq ă y | Z “ zqdPZpzq

“ PpgpZq ă yq,

which concludes the proof.

Proof of Theorem 2.7. Assumption 2.6 implies that, for every D,

0 ď |p̂pD; Θ0q ´ ppD; Θ0q| “ | sup
θPΘ0

p̂pD; θq ´ sup
θPΘ0

ppD; θq|

ď sup
θPΘ0

|p̂pD; θq ´ ppD; θq|
a.s.

ÝÝÝÝÝÑ
B1ÝÑ8

0,
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and therefore p̂pD; Θ0q converges almost surely to ppD; Θ0q. It follows from Lemma A.5
that p̂pD; Θ0q converges in distribution to ppD; Θ0q. We then conclude that

PD,T 1|θpp̂pD; Θ0q ď αq “ Fp̂pD;Θ0q|θpαq ÝÝÝÝÝÑ
B1ÝÑ8

FppD;Θ0q|θpαq “ PD|θpppD; Θ0q ď αq,

where FZ denotes the cumulative distribution function of the random variable Z.

Proof of Corollary 2.8. Fix θ P Θ. Because Fθ is continuous, the definition of ppD; θq implies
that its distribution is uniform under the null. Thus PD|θ pppD; θq ď αq “ α. Theorem 2.7
therefore implies that

PD,T 1|θpp̂pD; θq ď αq ÝÝÝÝÝÑ
B1ÝÑ8

PD|θ pppD; θq ď αq “ α. (A.4)

Now, for any θ P Θ0, uniformity of the p-value implies that

PD|θpppD; Θ0q ď αq “ PD|θ

ˆ

sup
θ0PΘ0

ppD; θ0q ď α

˙

ď PD|θ pppD; θq ď αq “ α.

Conclude from Theorem 2.7 that

PD,T 1|θpp̂pD; Θ0q ď αq ÝÝÝÝÝÑ
B1ÝÑ8

PD|θpppD; Θ0q ď αq ď α. (A.5)

The conclusion follows from putting together Equations (A.4) and (A.5).

Proof of Theorem 2.10.

|p̂pD; Θ0q ´ ppD; Θ0q| “ | sup
θPΘ0

p̂pD; θq ´ sup
θPΘ0

ppD; θq|

ď sup
θPΘ0

|p̂pD; θq ´ ppD; θq|

“ OP

ˆˆ

1

B1

˙r˙

,

where the last line follows from Assumption 2.9

Lemma A.6. Under Assumption 2.11, for every θ, θ0 P Θ

E2
D|θ,T r|τpD; θ0q ´ pτBpD; θ0q|s ď M2

ż

pOpx; θ0q ´ pOpx; θ0qq2dGpxq.

Proof. For every θ P Θ,

E2
D|θ,T r|τpD; θ0q ´ pτBpD; θ0q|s “

ˆ
ż

|τpD; θ0q ´ pτBpD; θ0q| dF px | θq

˙2

“

ˆ
ż

|Opx; θ0q ´ pOpx; θ0q| dF px | θq

˙2

“

ˆ
ż

|Opx; θ0q ´ pOpx; θ0q|Opx; θqdGpxq

˙2

ď

ˆ
ż

pOpx; θ0q ´ pOpx; θ0q2dGpxq

˙ˆ
ż

O2px; θqdGpxq

˙

,
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where the last inequality follows from Cauchy-Schwarz. Assumption 2.11 implies that
ż

O2px; θqdGpxq ď M2,

from which we conclude that

E2
D|θ,T r|τpD; θ0q ´ pτBpD; θ0q|s ď M2

ż

pOpx; θ0q ´ pOpx; θ0qq2dGpxq.

Lemma A.7. For fixed c P R, let ϕτ ;θ0pDq “ 1 pτpD; θ0q ă cq and ϕ
pτB ;θ0pDq “ 1ppτBpD; θ0q

ă cq be the testing procedures for testing H0,θ0 : θ “ θ0 obtained using τ and pτB. Under
Assumptions 2.11-2.12, for every 0 ă ϵ ă 1,

PD|θ,T pϕτ ;θ0pDq ‰ ϕ
pτB ;θ0pDqq ď

2MCL ¨

b

ş

pOpx; θ0q ´ pOpx; θ0qq2dGpxq

ϵ
` ϵ.

Proof of Lemma A.7. It follows from Markov’s inequality and Lemma A.6 that with proba-
bility at least 1 ´ ϵ, D is such that

|τpD; θ0q ´ pτpD; θ0q| ď
M ¨

b

ş

pOpx; θ0q ´ pOpx; θ0qq2dGpxq

ϵ
. (A.6)

Now we upper bound PD|θ,T pϕτ ;θ0pDq ‰ ϕ
pτ ;θ0pDqq. Define A as the event that Equation (A.6)

happens and let hpθ0q :“
ş

pOpx; θ0q ´ pOpx; θ0qq2dGpxq. Then:

PD|θ,T pϕτ ;θ0pDq ‰ ϕ
pτ ;θ0pDqq ď PD|θ,T pϕτ ;θ0pDq ‰ ϕ

pτ ;θ0pDq, Aq ` PθpAcq
ď PD|θ,T p1 pτpD; θ0q ă cq ‰ 1 ppτpD; θ0q ă cq , Aq ` ϵ

ď PD|θ,T

˜

c´
M

a

hpθ0q

ϵ
ă τpD; θ0q ă c`

M
a

hpθ0q

ϵ

¸

` ϵ.

Assumption 2.12 then implies that

PD|θ,T pϕτ ;θ0pDq ‰ ϕ
pτ ;θ0pDqq ď

K 1 ¨
a

hpθ0q

ϵ
` ϵ

where K1 “ 2MCL, which concludes the proof.

Proof of Theorem 2.13. Follows directly from Lemma A.7 and Jensen’s inequality.

Lemma A.8. Under Assumptions 2.11-2.15, there exists C ą 0 such that

ET
”

LppO,Oq

ı

ď CB´κ{ppκ`d`pqq.
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Proof. Let p̂ “ pPpY “ 1 | x, θq and p “ PpY “ 1 | x, θq be the probabilistic classifier and
true classification function, respectively, on the training sample T . Let hpyq “

y
1´y for

0 ă y ă 1. A Taylor expansion of h implies that

phpp̂q ´ hppqq
2

“ phppq `R1pp̂q ´ hppqq
2

“ R1pp̂q2,

where R1pp̂q “ h1pξqpp̂ ´ pq for some ξ between p and p̂. Also note that due to Assump-
tion 2.11,

Da ą 0 s.t. p, p̂ ą a, @x P X , θ P Θ.

Thus,

ET

„
ĳ

phpp̂q ´ hppqq
2 dGpxqdπpθq

ȷ

“ ET

„
ĳ

1

p1 ´ ξq4
pp̂´ pq

2 dGpxqdπpθq

ȷ

ď
1

p1 ´ aq4
ET

„
ĳ

pp̂´ pq
2 dGpxqdπpθq

ȷ

“
1

p1 ´ aq4
ET

„
ż

´

pPpY “ 1 | x, θq ´ PpY “ 1 | x, θq

¯2
h1px, θqdHpx, θq

ȷ

ď
γ

p1 ´ aq4
ET

„
ż

´

pPpY “ 1 | x, θq ´ PpY “ 1 | x, θq

¯2
dHpx, θq

ȷ

“ O
´

B´κ{pκ`d`pq
¯

.

Proof of Theorem 2.16. It follows from Theorem 2.13 that
ż

PD,T |θpϕτ ;θ0pDq ‰ ϕ
pτB ;θ0pDqqdπpθ0q “ ET

„
ż

PD|θ,T pϕτ ;θ0pDq ‰ ϕ
pτB ;θ0pDqqdπpθ0q

ȷ

ď

2MCL ¨ ET

„

b

LppO,Oq

ȷ

ϵ
` ϵ

ď

2MCL ¨

c

ET
”

LppO,Oq

ı

ϵ
` ϵ,

where the last step follows from Jensen’s inequality. It follows from this and Lemma A.8
that

ż

PD,T |θpϕτ ;θ0pDq ‰ ϕ
pτB ;θ0pDqqdπpθ0q ď

KB´κ{p2pκ`d`pqq

ϵ
` ϵ,

where K “ 2MCL
?
C. Notice that taking ϵ˚ “

?
KB´κ{p4pκ`d`pqq optimizes the bound and

gives the result.

Proof of Corollary 2.17. The result follows from noticing that

PD,T |θpϕpτB ;θ0pDq “ 1q ě PD,T |θpϕτ ;θ0pDq “ 1q ´ PD,T |θpϕτ ;θ0pDq ‰ ϕ
pτB ;θ0pDqq,
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and therefore
ż

PD,T |θpϕpτB ;θ0pDq “ 1qdθ0 ě

ż

PD,T |θpϕτ ;θ0pDq “ 1qdθ0 ´

ż

PD,T |θpϕτ ;θ0pDq ‰ ϕ
pτB ;θ0pDqqdθ0

ě

ż

PD,T |θpϕτ ;θ0pDq “ 1qdθ0 ´K 1B´κ{p4pκ`d`pqq,

where the last inequality follows from Theorem 2.16.

A.7 Loss Functions

In this work, we use the cross-entropy loss to train probabilistic classifiers. Consider a
sample point tθ, x, yu generated according to Algorithm A.1. Let p be a Bernoullipyq

distribution, and q be a Bernoulli
´

pPpY “ 1 | θ, xq

¯

“ Bernoulli
´

pOpx;θq

1`pOpx;θq

¯

distribution.
The cross-entropy between p and q is given by

LCEppO; tθ, x, yuq “ ´y log

˜

pOpx; θq

1 ` pOpx; θq

¸

´ p1 ´ yq log

˜

1

1 ` pOpx; θq

¸

“ ´y log
´

pOpx; θq

¯

` log
´

1 ` pOpx; θq

¯

. (A.7)

For every x and θ, the expected cross-entropy ErLCEppO; tθ, x, yuqs is minimized by pOpx; θq “

Opx; θq. If the probabilistic classifier attains the minimum of the cross-entropy loss, then
the estimated ACORE statistic pΛpD; Θ0q will be equal to the likelihood ratio statistic in
Equation (2.5), as shown in Dalmasso et al. (2020). Similarly, as stated in Proposition 2.1,
at the minimum, the estimated BFF statistic pτpD; Θ0q is equal to the Bayes factor in
Equation (2.6).
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B

Additional Results for Chapter 3

B.1 Additional Experiments

B.1.1 Property III: Estimating the Conditional Variance Matters

We complete the exposition of the statistical properties of Waldo (Section 3.3.3) by
demonstrating the importance of estimating the conditional variance in the test statis-
tic τWaldo. Recall that in principle any test statistic defined in an LFI setting could be
used for our framework. One could then define a simpler “unstandardized” test statistic
τWaldo-novarpD; θ0q “ pErθ | Ds ´ θ0qT pErθ | Ds ´ θ0q which does not require estimation of
Vrθ | Ds. It turns out that estimating Vrθ | Ds and using τWaldo is actually of crucial
importance, as it leads to confidence regions of smaller or equal expected size, especially

Figure B.1: Property III: Estimating the conditional variance matters. Left: Power curves
at 95% confidence level when the true Pareto shape θ˚ “ 5, implying a very skewed data
distribution. Right: Test statistics and critical values as a function of θ. In this example, we set
n “ 10.
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Figure B.2: a) When the prior is uninformative, Waldo can still correct for possible approximation
errors in the estimated posterior. b)-c) When the prior is consistent with the data, Waldo
tightens the confidence sets, improving the precision with respect to the case using a Uniform
prior. a) and b) Posterior credible regions and Waldo confidence sets using different priors. c) Average
area of credible regions and Waldo confidence sets across 100 independent samples, reported as the
percentage of points retained among those in the evaluation grid.

in settings where the conditional variance varies significantly as a function of θ. Consider,
for example, the problem of estimating the shape of a Pareto distribution with fixed scale
xmin “ 1 and true unknown shape θ˚ “ 5, which yields a strongly right-skewed data distri-
bution. Figure B.1 shows that τWaldo has much higher power than τWaldo-novar for inferring θ.
Dividing by the conditional variance effectively stabilizes the test statistic and makes its
distribution over D pivotal, i.e., independent of θ. This implies that the critical values will
be relatively constant over θ (see top right panel for Waldo), which yields tighter parameter
regions due to the curvature of the test statistic.

B.1.2 Confidence Sets from Neural Posteriors: Two-Dimensional
Gaussian Mixture

The results of Figure 3.5 in Chapter 3 showed that Waldo is able to leverage an estimated
posterior to construct conditionally valid confidence regions, even when the prior is at odds
with the data. On the other side, when no prior information is available, it is common to
sample θ according to a uniform distribution over the parameter space. In this case, we
observe that confidence sets and posterior credible regions largely overlap. Nonetheless, if
the latter happen to suffer from approximation errors, as is common for neural posteriors in
high dimensions, this could hinder the statistical reliability of the estimated region. Waldo
can correct even for this problem and guarantee conditional coverage, as we can see from
panel a) in Figure B.2.

Figure B.3 shows the output of the diagnostics procedure when using a uniform prior
to train the posterior estimator (compare with Figure 3.5, right column, in Chapter 3, which
used a Gaussian prior). We achieve correct conditional coverage for Waldo but not for
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Figure B.3: Coverage diagnostics for Gaussian mixture model example with uniform prior. We
achieve correct conditional coverage for Waldo (left) but not for credible regions (right) even though the
prior is is uniform, due to estimation and approximation errors, which Waldo can correct via recalibration.

credible regions even though the prior is is uniform, due to estimation and approximation
errors in the posterior, which Waldo can correct using quantile regression to calibrate the
test statistics.

B.1.3 Confidence Sets for Muon Energies using CNN Predictions

Figure B.4 compares confidence sets and prediction sets for the full calorimeter data, showing
clearly the bias in the prediction sets and the correction applied by Waldo. These results
explain the observed patterns in Figure 3.6 in Chapter 3: prediction sets are centered
around the point prediction, which is downward biased at high energies, mainly due to the
nonlinearity of the response at high energies.

B.2 Details on Models, Training, and Computational
Resources

B.2.1 Synthetic Examples for Statistical Properties

See Section 3.3.3 in Chapter 3 and Appendix B.1.1 for descriptions of the experiments.
For Property I and Property II, we used the implementation of local linear regression
available in Seabold and Perktold (2010) to estimate conditional mean and conditional
variance within a prediction setting, with B “ 20,000. For Property III, instead, we
used a simple feedforward neural network with one hidden layer and B “ 50,000. In all
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Figure B.4: Confidence and prediction sets for the muon energy reconstruction experiment.
Boxplots of the upper and lower bounds of prediction sets (green) versus Waldo confidence sets (red) for
full the calorimeter data, all divided in 19 bins over true energy. We clearly see the bias occurring in the
prediction sets (especially at high energies) and the correction applied by Waldo.

cases, for quantile regression we used quantile gradient boosted trees as implemented in
scikit-learn (Pedregosa et al., 2011), with B1 “ 20,000 for Property I and Property
II, and B1 “ 50,000 for Property III. All models were trained on a MacBook Pro M1Pro
(CPU only).

B.2.2 Synthetic Example for Computational Properties

See Section 3.3.4 in Chapter 3 for a description of the experiment. To compute the test
statistic τWaldo, we approximated conditional mean and conditional variance through a
posterior distribution estimated via normalizing flows (Tejero-Cantero et al., 2020), with
B “ 20,000 for d “ 1 and B “ 200,000 for d “ 10. To construct the confidence sets, critical
values were then estimated both via quantile regression using quantile gradient boosted trees
as implemented in scikit-learn (Pedregosa et al., 2011) with varying values of B1, and via
Monte Carlo by simulating many times for each θ and retaining the p1 ´ αq quantile of the
computed test statistics. The evaluation set was made of 1,000 samples over Θ “ r´1, 1sd.
To make the comparison fair, if quantile regression used B1 “ 50,000, then Monte Carlo had
access to 50 simulations for each of the 1,000 samples in the evaluation set. The estimated
coverage probability for both methods was then estimated using the implementation of
Generalized Additive Models (GAMs) with thin plate splines available in the MGCV package
(Wood, 2015) of R, with B2 “ 30,000.
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B.2.3 Confidence Sets from Neural Posteriors: Two-Dimensional
Gaussian Mixture

See Section 3.4.1 in Chapter 3 and Appendix B.1.2 for descriptions of the experiments and
details on the algorithms and sample sizes used. Training was done on a MacBook Pro
M1Pro (CPU only); it took approximately 15-20 minutes to train the posterior estimator,
and an additional «2 minutes for the quantile neural network to estimate the critical values.
Note that the latter step requires computing the conditional mean, the conditional variance
and the Waldo statistic over all sample points in T 1. The posterior was sampled multiple
times for each X P T 1 to approximate Epθ | Xq and Vpθ | Xq via Monte Carlo; this procedure
took a total of «45 minutes (but could potentially be optimized through vectorizations in
the future).

B.2.4 Confidence Sets for Muon Energies using CNN Predictions

See Section 3.4.2 and Appendix B.1.3 for descriptions of the experiment and details on the
algorithms and sample sizes used. We collected 886,716 simulated muons in total; roughly
200,000 muons were used to estimate the critical values, « 24,000 muons to construct the
final confidence sets and diagnostics, and the rest was used to estimate the conditional
mean and variance via the custom 3D CNN from Kieseler et al. (2022). Training the
latter CNN took approximately 20 hours for the conditional mean and another 20 hours
for the conditional variance, using an NVIDIA V100 GPU on an Azure cloud computing
machine. Estimating the critical values via quantile gradient boosted trees in scikit-learn
(Pedregosa et al., 2011) took approximately 2 minutes.
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C

Additional Results for Chapter 4

C.1 Relation to Other Methodology

Classical statistical inference and approximate likelihood methods. Our approach
builds on the classical construction of confidence sets via inversion of hypothesis tests,
which dates back to Neyman’s seminal work (Neyman, 1935b). While this method has a
long-standing tradition in scientific inference, it initially required tractable likelihoods and
closed-form critical values, limiting its applicability. More recent advancements, especially
within high-energy physics (HEP), have extended the Neyman construction to likelihood-free
inference (LFI) scenarios (Feldman and Cousins, 1998; Cowan et al., 2011b; Cranmer, 2015;
Schafer and Stark, 2009). These pioneering efforts highlighted critical open problems, such
as efficiently constructing Neyman confidence sets in general settings, evaluating coverage
without prohibitive computational costs, and effectively implementing hybrid statistical
techniques (Cousins, 2006, 2018). Building upon these foundations, several recent machine-
learning-based techniques approximate the likelihood-ratio test (LRT) statistic and rely on
asymptotic χ2 cutoffs to form confidence sets (Cranmer et al., 2015). While these approaches
have shown promising performance in fields like HEP, they struggle with small-sample sizes
or irregularities introduced by complex likelihoods (Algeri et al., 2019) and the use of neural
density estimators.

To overcome these limitations, Dalmasso et al. (2020) developed ACORE, a method that
estimates LRT cutoffs directly without resorting to asymptotic approximations, improving
performance in limited-data scenarios. Subsequently, Dalmasso* et al. (2024) proposed
LF2I, a flexible framework generalizing Neyman’s inversion for likelihood-free inference and
suitable for any test statistic, thereby opening the way for the usage of a wide array of
machine learning methods to obtain confidence sets with frequentist guarantees. Within
this framework, they introduced BFF, which leverages the Bayes Factor as a frequentist test
statistic. In contrast, this chapter exploits highest-posterior-density regions derived directly
from estimates of posterior distributions: not only this allows to take advantage of recent
advancements in the AI literature that are now popular in LFI, but it also enables domain
scientists to construct valid and optimal (i.e., as small as possible under suitable conditions;
cfr. Section C.3) confidence sets. More traditional techniques in the LFI literature that are
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based on posterior estimates usually fall under Approximate Bayesian Computation (ABC)
methods. While they have been very popular in different scientific fields — see for example
Beaumont and Rannala (2004), Beaumont (2010) and Sunnåker et al. (2013) — they do not
guarantee validity nor optimality of the resulting credible regions.

Bayesian SBI and Conformal Inference Recent advancements in SBI have primarily
come from cross-pollination with the machine learning literature Cranmer et al. (2020);
Bürkner et al. (2025). Several works have proposed learning algorithms that leverage novel
neural density estimators such as normalizing flows (e.g., Papamakarios and Murray 2016;
Lueckmann et al. 2017; Greenberg et al. 2019; Miller et al. 2021; Radev et al. 2023a),
diffusion models (e.g., Geffner et al. 2022; Sharrock et al. 2022; Linhart et al. 2023), flow
matching (e.g., Wildberger et al. 2024; Holzschuh and Thuerey 2024) and consistency
models (e.g., Schmitt et al. 2024). These methods are enabling a revolution in the inference
capabilities available to domain scientists, but unfortunately they are not equipped with
the necessary statistical guarantees required by the rigor of the scientific method, as it
has been shown by Hermans et al. (2021) and Dalmasso* et al. (2024). The work of
Delaunoy et al. (2022) successfully alleviates this issue by enforcing a balancing condition
that yields more conservative posteriors, resulting in highest-posterior-density regions with
approximate expected coverage. Nonetheless, a posterior estimator that largely under-covers
in some regions of the parameter space and largely over-covers in other regions would still
be considered valid under this notion of marginal coverage. Our work targets the stronger
notion of validity defined in Equation (1.1), which ensures (conditional) coverage point-wise
across the entire parameter space.

Besides SBI-specific techniques, conformal methods have also become extremely popu-
lar in the machine learning community and beyond. Although conformal methods were
originally developed for predictive problems, they can also enhance the marginal coverage
properties of approximate Bayesian methods (see, e.g., Baragatti et al. 2024 and Patel
et al. 2023). However, they do not guarantee frequentist (conditional) coverage across all
parameter values.

Inference based on predictions: WALDO and Prediction-Powered Inference Several
studies have employed predictions methods on simulated datasets for inference on real obser-
vations, often without incorporating the necessary corrections to ensure valid uncertainty
quantification (e.g., Dorigo et al. (2022); Gerber and Nychka (2021); Ho et al. (2021)).
To address this issue, Masserano et al. (2023) introduced WALDO, a method that can take
predictions from any machine learning algorithm and transform them into confidence sets
with frequentist guarantees. Our approach differs in that we estimate the full posterior
distribution from simulated data rather than just point predictions, allowing us to derive
confidence sets that are typically smaller and more accurate than those obtained through
WALDO, particularly in cases where the posterior is multimodal or asymmetric.

Prediction-powered inference (Angelopoulos et al., 2023a) has also emerged as a promising
framework that leverages both labeled training data pX1, Y1q, . . . , pXn, Ynq and additional
unlabeled covariates Xn`1, . . . , Xn`m to enhance inference. However, this approach funda-
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mentally differs from our setting, as its primary goal is to infer global parameters character-
izing the data-generating process of the entire set, rather than constructing confidence sets
for individual instances.

Bridging Bayesian and frequentist approaches. The interplay between Bayesian and
frequentist methodologies has been explored in various contexts. Good (1992) proposed
using the Bayes Factor as a frequentist test statistic, but only in scenarios where likelihoods
are tractable. Similarly, Pratt (1961), Yu and Hoff (2018) and Hoff (2023) showed that,
when the likelihood is available, confidence sets derived from posterior distributions tend
to be more efficient (in terms of expected volume) than those based purely on likelihood
ratios. Our work extends these results to LFI settings, where likelihoods are intractable and
confidence sets are constructed from posterior estimates obtained via generative models.

In addition, Wasserman (2011) and Fong and Holmes (2021) showed that conformal
inference can be applied to Bayesian models to construct prediction sets with valid frequen-
tist coverage. Concretely, in that setting, one models the Bayesian predictive distribution
Yn`1 | xn`1, pxn, ynq, . . . , px1, y1q starting from a statistical model for Y | θ,X. However, as
already mentioned in the previous paragraph, conformal methods only guarantee marginal
coverage over θ, which does not imply valid confidence sets for every parameter value. As a
result, conformal procedures that exhibit sever under-coverage in some regions and strong
over-coverage in others might still satisfy conformal guarantees, but would fail within our
setting. In contrast, our method provides confidence sets that maintain validity point-wise
across the entire parameter space, offering stronger guarantees for inference in scientific
settings where one has to ensure the reliability of conclusions regardless of the specific source
that generated an observation.

C.2 Constructing Confidence Procedures with Frequentist
Coverage

Notation and problem set-up. Our assumption (well borne by the fundamental science
use cases that we target) is that labeled data encode the same physical process as target
data. Hence, we also assume that the likelihood function Lpθ;xq “ ppx | θq with θ P Θ and
x P X , which describes the data-generating process, is the same for train and target data.
We refer to the label distribution πpθq on the train data as our prior distribution. The
reference distribution rpθq on the universal set is a distribution that dominates the prior
distribution, r " π. The prior πpθq can be different from the label distribution pobspθq of the
target data, as well as different from the reference distribution rpθq of the universal set. See
Section 4.3.1 for our experimental set-up.

Now let ppxq :“
ş

Lpθ;xqπpθqdθ be the marginal probability density function of X on
train data. Our posterior distribution is then defined as πpθ | xq :“ Lpθ;xqπpθq{ppxq; that is,
the posterior is the conditional density of θ given x on train data.
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Definition C.1 (Confidence procedure). Let A denote the space of all measurable sets,
A Ď X ˆ Θ. A confidence procedure is a set C in the space A defined as

tpx, θq : px, θq P Cu.

For fixed x, we define the confidence set or θ-section as

Cpxq “ tθ : px, θq P Cu.

For fixed θ, we define the acceptance region or x-section as

Cθ “ tx : px, θq P Cu.

A p1 ´ αq confidence procedure is valid if, for every θ P Θ and every miscoverage level
0 ď α ď 1,

PX|θ pθ P CpXqq ě 1 ´ α.

C.2.1 Fast Construction of Confidence Procedures from Posterior
Estimates

Let pπpθ | Xq be a posterior approximation based on the train data

Ttrain “ tpθ1, X1q . . . pθB, XBqu „ πpθqLpθ;xq.

Once we have pπpθ | Xq, it is straightforward to construct Bayesian credible regions for fixed
x by computing high-posterior density (HPD) level sets

Hcpxq :“ tθ : pπpθ | xq ą cu , (C.1)

where
ş

Hcpxq
pπpθ | xqdθ “ 1 ´ α. These HPD sets however do not result in a valid confidence

procedure (according to Definition C.1) for train or target data.1

In this chapter, we propose a new approach that constructs confidence procedures that
mirror the style of HPD level sets in Bayesian inference, while providing frequentist coverage
properties for every θ P Θ, regardless of πpθq. We apply a monotonic transformation gθ to
the posterior, so that the level sets Bαpxq “ tθ : hpx; θq ą αu, where hpx; θq :“ gθppπpθ | xqq

control the type-I error at level α for any θ P Θ and 0 ă α ă 1. In Section C.2.1, we outline
the construction of one such procedure that estimates hpx; θq from the universal set

Tuniv “ tpθ1
1, X

1
1q . . . pθ1

B1 , X 1
B1qu „ rpθqLpθ;xq,

where the likelihood Lpx; θq is the same as for the train data, and r " π.

1In addition, in terms of average or marginal coverage, HPD sets are by construction only valid for the
train distribution:

ş

Θ
PX|θ pθ P HpXqqπpθqdθ “

ş

Θ

´

ş

Hθ
ppx | θqdx

¯

πpθqdθ “
ş

X

´

ş

Hpxq
πpθ | xqdθ

¯

ppxqdx «

ş

X

´

ş

Hpxq
pπpθ | xqdθ

¯

ppxqdx “ 1 ´ α, where Hθ is the x-section of a HPD confidence procedure with 1 ´ α

credible sets Hpxq at every x P X .
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FreB Set

𝒯

Valid Scientific Inference

Hypothesis

Testing

𝒯 𝒯

Observation

Diagnostics

Prior

Coverage 
Diagnostics 

Nature 

or


Nature Model

Amortized 

P-Values or 

Critical Values
Posterior 
Estimate

Recalibrate

train univ diagn

Figure C.1: The three-branch modular framework for valid scientific inference with neural density
estimators (NDE). Left branch: Leverage a NDE to learn the posterior distribution πpθ | Xq from
a labeled training set T . Center branch: From a universal labeled set T 1, learn amortized p-values
to allow amortization for all miscoverage levels. Alternatively, learn critical values at a fixed level α.
Left ` Center: Given a new datapoint x, construct Frequentist-Bayes sets by taking level sets of the
amortized p-value function, or by retaining all the values of θ for which pπpθ | Xq is larger than the
corresponding critical value. Right branch: The coverage diagnostics branch independently checks
whether the instance-wise coverage PX|θpθ P BαpXqq of the confidence set is indeed correct across the
entire parameter space.

In Section C.2.1, we show how confidence procedures can be constructed for all levels
of miscoverage α simultaneously from an estimate of gθ. Our procedure can be seen as a
generalization of confidence distributions (Schweder and Hjort, 2002; Xie and Singh, 2013;
Nadarajah et al., 2015; Cui and Xie, 2023; Thornton and Xie, 2024) from one-dimensional to
multidimensional parameter spaces Θ. However, for many practical applications, researchers
are only interested in constructing valid and precise confidence procedures for a fixed
prespecified miscoverage level α. In the latter case, one can reduce the complexity of the
numerical estimation problem via an α-level quantile regression of the test statistic on θ, as
shown in Chapter 2.

Rejection Probability Across the Entire Parameter Space

At the heart of our construction is the relationship between frequentist confidence sets CpXq

and acceptance regions Cθ0 for tests of H0,θ0 : θ “ θ0 at all θ0 P Θ. Below we define the
rejection probability function W for an arbitrary test statistic λ that rejects H0,θ0 for small
values of the test statistic λ.

Definition C.2 (Rejection Probability). Let λ be any test statistic; such as the estimated
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posterior, λpX; θ0q “ pπpθ0 | Xq. The rejection probability of the test H0,θ0 is defined as

Wλpt; θ, θ0q :“ PX|θ pλpX; θ0q ď tq , (C.2)

where θ, θ0 P Θ and t P R.

We can learn the rejection probability function using a monotone regression that enforces the
rejection probability to be a nondecreasing function of t. The computation is straightforward
when θ “ θ0. In this chapter, we propose a fast procedure for estimating the cumulative
distribution function

Fλpt; θ0q :“ Wλpt; θ0, θ0q “ PX|θ0 pλpX; θ0q ď tq (C.3)

of the test statistic λ as a function of the cut-off t and the parameter value θ0 P Θ. For each
point i (i “ 1, . . . , B1) in the universal set Tuniv “ tpθ1

1, X
1
1q . . . pθ1

B1 , X 1
B1qu „ rpθqLpx; θq, we

draw a sample of cutoffs K according to the empirical distribution of the test statistic λ.
Then, we regress the indicator variable

Yi,j :“ 1
`

λpX 1
i; θ

1
iq ď tj

˘

(C.4)

on θ1
i and ti,j (“ tj) using the “augmented” calibration sample rTuniv “ tpθ1

i, ti,j , Yi,jqui,j , for
i “ 1, . . . , B1 and j “ 1, . . . ,K, where K is our augmentation factor. See Algorithm C.1 for
more details.

Amortized P-Values for Constructing Confidence Procedures

For any test statistic λ and null hypothesis H0,θ0 : θ “ θ0, we can define a new test statistic
h via a monotonic transformation,

hpX; θ0q :“ FλpλpX; θ0q; θ0q,

“ PX|θ0 pλpX; θ0q ă λpx; θ0qq , (C.5)

Algorithm C.1 Learning the Rejection Probability Function
Input: test statistic λ; calibration data Tuniv “ tpθ1

1, X
1
1q, . . . , pθ1

B1 , X 1
B1 qu; re-sampled cutoffs

G “ tt1, . . . , tKu; evaluation points V Ă Θ

Output: Estimate of rejection probability Fλpt; θq when θ “ θ0, for all t P G and θ P V

1: // Learn rejection probability from augmented calibration data rTuniv
2: Set rTuniv Ð H

3: for i in t1, ..., B1u do
4: for j in t1, ...,Ku do
5: Compute Yi,j Ð 1 pλpX 1

i; θ
1
iq ď tjq

6: Let rTuniv Ð rTuniv Y tpθ1
i, tj , Yi,jqu

7: Estimate Fλpt; θq :“ PX|θ pλpX; θq ď tq from rTuniv via a regression of Y on θ and t, which
is monotonic in t.

8: return estimated rejection probabilities pFλpt; θq, for t P G, θ P V
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and then a corresponding family of confidence sets of θ by taking level sets,

BαpXq “ tθ0 P Θ | hpX; θ0q ą αu ,

where 0 ď α ď 1. The following theorem shows that Fλ in Equation (C.3) is the only
monotonic transformation that controls type-I errors; that is, it makes hpX; θ0q a valid
p-value with level sets BαpXq that are confidence sets with frequentist level-α coverage.

Theorem C.3. Let λpx; θq be any test statistic. For every fixed θ P Θ, let gθ : R ÝÑ R be a
monotonic transformation of λpx; θq. Then

PX|θ pgθpλpX; θqq ą αq “ 1 ´ α for every α P p0, 1q and θ P Θ

if, and only if, gθpλpx; θqq “ Fλpλpx; θq; θq.

Proof. ñ direction: Fix θ and let gθ be any monotonic transformation for λ as stated in the
theorem. Then

PX|θ pgθpλpX; θqq ą αq “ 1 ´ α, @α P p0, 1q

ðñ PX|θ

`

λpX; θq ą g´1
θ pαq

˘

“ 1 ´ α, @α P p0, 1q

ðñ PX|θ

`

λpX; θq ď g´1
θ pαq

˘

“ α, @α P p0, 1q

ðñ Fλpg´1
θ pαq; θq “ α, @α P p0, 1q

ðñ g´1
θ pαq “ F´1

λ pα; θq, @α P p0, 1q

ðñ gθpλpx; θqq “ Fλpλpx; θq; θq, @x P X .

ð direction: Let gθpλpx; θqq “ Fλpλpx; θq; θq. Notice that

PX|θ pgθpλpX; θqq ą αq “ PX|θ pFλpλpX; θq; θq ą αq

“ PX|θ

`

λpX; θq ą F´1
λ pα; θq

˘

“ 1 ´ PX|θ

`

λpX; θq ď F´1
λ pα; θq

˘

“ 1 ´ FλpF´1
λ pα; θq; θq

“ 1 ´ α.

From Amortized P-Values to Confidence Procedures at all Levels α
Simultaneously

Algorithm C.1 offers a means to computing p-values phpx; θ0q :“ pFλpλpx; θ0q; θ0q and the
entire family of confidence sets pBαpxq :“

!

θ P Θ | phpx; θ0q ą α
)

, which is fully amortized
with respect to observed data x P X , the parameter θ0 P Θ, and the miscoverage level
0 ď α ď 1. That is, once we have the test statistic λpx; θ0q and the rejection probability
pF pt; θ0q as a function of all t P R and θ0 P Θ (via Algorithm C.1), we can perform inference
for new data without retraining for all miscoverage levels α simultaneously.
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Alternative Construction of Confidence Procedures at a Fixed Prespecified
Level α

For many practical applications, researchers are only interested in constructing valid and
precise confidence procedures with

pBαpxq :“
!

θ P Θ | pFλ pλpx; θq; θq ą α
)

“

!

θ P Θ | λpx; θq ą pF´1
λ pα; θq

)

(C.6)

for some pre-specified miscoverage level α P p0, 1q. In such cases, we only need to estimate
the critical values tθ0 :“ F´1

λ pα; θ0q for a fixed level-α test of H0 : θ “ θ0, @θ0 P Θ. We refer
the reader to Chapter 2 for more details on this method.

C.2.2 Validity of Frequentist Bayes Procedure

P-Value Estimation

The method of estimating the p-value described in Section C.2.1 is consistent. Below we
adapt the general LF2I results of Chapter 2 which hold in general, even for fully amortized
procedures (Algorithm C.1). The proofs are equivalent.

Assumption C.4 (Uniform consistency). The regression estimator used in Algorithm C.1
is such that

sup
θ,t

| ÊB1rY | θ, ts ´ ErY | θ, ts|
a.s.

ÝÝÝÝÝÑ
B1ÝÑ8

0.

If Θ is continuous and the Lebesgue measure dominates r, then the estimators described,
e.g., in Bierens (1983); Hardle et al. (1984); Liero (1989); Girard et al. (2014) satisfy this
assumption.

Theorem C.5. Fix θ0 P Θ. Under Assumption C.4 and if hpX; θ0q is an absolutely
continuous random variable then, for every θ P Θ,

phpX; θ0q
a.s.

ÝÝÝÝÝÑ
B1ÝÑ8

hpX; θ0q

and
PX,Tuniv|θ

´

ĥ pX; θ0q ď α
¯

B1ÝÑ8
ÝÝÝÝÝÑ PX|θphpX; θ0q ď αq.

In particular,
PX,Tuniv|θ0

´

ĥ pX; θ0q ď α
¯

B1ÝÑ8
ÝÝÝÝÝÑ α.

Assumption C.6 (Convergence rate of the regression estimator). The regression estimator
is such that

sup
θ,t

| ÊrZ | θ, ts ´ ErZ | θ, ts| “ OP

ˆˆ

1

B1

˙r˙

.

for some r ą 0.
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Examples of regression estimators that satisfy Assumption C.6 when Θ is continuous and the
Lebesgue measure dominates r can be found in Stone (1982); Hardle et al. (1984); Donoho
(1994); Yang et al. (2017).

Theorem C.7. Under Assumption C.6,

|ĥpX; θ0q ´ hpX; θ0q| “ OP

ˆˆ

1

B1

˙r˙

.

Proof of Theorem C.7. The result follows directly from Assumption C.6 and the fact that
phpx; θ0q :“ pFλpλpx; θ0q; θ0q “ pE rZ | θ0, λpx; θ0qs .

Critical Value Estimation

Our procedure for choosing critical values leads to valid hypothesis tests (that is, tests that
control the type-I error probability), as long as the number of simulations B1 in Algorithm 2.1
is sufficiently large. See Dalmasso* et al. (2024, Sec. 4.1) Chapter 2 for details.

Assumption C.8 (Uniform consistency). Let F̂B1pλ; θq be the estimated distribution function
of the test statistics λ indexed by θ, implied by Algorithm 2.1. Assume that the quantile
regression estimator is such that

sup
λPR

|F̂B1pλ; θ0q ´ F pλ; θ0q|
P

ÝÝÝÝÝÑ
B1ÝÑ8

0.

Assumption C.8 holds, for instance, for quantile regression forests (Meinshausen, 2006).
Next, we show that Algorithm 2.1 yields a valid hypothesis test as B1 Ñ 8.

Theorem C.9. Let CB1 “ F̂B1pα; θ0q. If the quantile estimator satisfies Assumption C.8,
then, for every θ0 P Θ,

PX|θ0,CB1
pλpX; θ0q ď CB1q

a.s.
ÝÝÝÝÝÑ
B1ÝÑ8

α,

where PX|θ0,CB1
denotes the probability integrated over X „ ppx | θ0q and conditional on the

random variable CB1.

If the convergence rate of the quantile regression estimator is known (Assumption C.10),
Theorem C.11 provides a finite-B1 guarantee on how far the type-I error of the test will be
from the nominal level.

Assumption C.10 (Convergence rate of the quantile regression estimator). Using the
notation of Assumption C.8, assume that the quantile regression estimator is such that

sup
λPR

|F̂B1pλ; θ0q ´ F pλ; θ0q| “ OP

ˆˆ

1

B1

˙r˙

for some r ą 0.

Theorem C.11. With the notation and assumptions of Theorem C.9, and if Assumption C.10
also holds, then,

|PX|θ0,CB1
pλpX; θ0q ď CB1q ´ α| “ OP

ˆˆ

1

B1

˙r˙

.
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C.3 Power of Frequentist Bayes Procedure

Consider a confidence procedure B P Θ ˆ X with θ-sections at fixed x P X and α P p0, 1q

defined by

Bαpxq “ tθ P Θ | hpx; θq ą αu , (C.7)

where hpx; θq is the p-value (Equation C.5) for the test statistic λpx; θq “ πpθ | xq. In
Appendix C.2.2, we show that B is a valid confidence procedure on both train and target
data, regardless of the choice of prior πpθq, satisfying PX|θpθ P BαpXqq “ 1 ´ α, @θ P Θ. In
this section, we show that Bαpxq has a small expected size

E p|BαpXq|q :“

ż

X

˜

ż

Bαpxq

dθ

¸

ppxqdx

with respect to the marginal distribution ppxq “
ş

Lpθ;xqπpθqdθ. Different versions of this
theorem have appeared in e.g. Pratt (1961); Yu and Hoff (2018); Hoff (2023) for continuous
Θ, as well as Sadinle et al. (2019) when Θ is finite.

In other words, if the design prior π is “well-specified” and places a high mass around
the true parameter value θ for the target data according to πpθq “ pobspθq, then the frequen-
tist Bayes sets Bαpxq will not only achieve nominal coverage across the parameter space Θ;
they will also on average be smaller than any other valid confidence sets with respect to the
marginal distribution ppxq of the train data, which is defined by the prior πpθq. However,
if the prior is different from the (unknown) label distribution or “true prior” pobspθq of the
target data, then frequentist Bayes sets will not have optimal average constraining power
with respect to pobspxq.

Lemma C.12 (Neyman-Pearson Lemma). Let µpzq and νpzq be nonnegative functions in
L1. Fix α P p0, 1q, and assume that there exists t such that the set A˚ “ tz : µpzq{νpzq ě tu
satisfies µpA˚q “ 1 ´ α. Then A˚ is the solution to the following optimization problem:

min
A

ż

A
νpzqdz subject to

ż

A
µpzqdz ě 1 ´ α.

Theorem C.13. Let A denote the space of all measurable sets A Ď Θ ˆ X , and let
Apxq “ tθ : pθ, xq P Au be the θ-section of A, and let |ApXq| “

ş

ApXq
dθ be the size of ApXq.

Let A˚ be the solution to the following minimization problem:

min
APA

E r|ApXq|s subject to PX|θpθ P ApXqq ě 1 ´ α, @θ P Θ,

where the expectation is taken with respect to the marginal distribution ppxq “
ş

ppx | θqπpθqdθ.
Then, A˚pxq “ Bαpxq (Equation C.7).

Proof. Let Aθ “ tx : pθ, xq P Au be the x-section of A. Notice that the optimization problem
is equivalent to

min
APA

ż

«

ż

Apxq

1dθ

ff

ppxqdx subject to
ż

Aθ

ppx | θqdx ě 1 ´ α @θ P Θ,
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which is further equivalent to

min
APA

ż
„
ż

Aθ

ppxqdx
ȷ

dθ subject to
ż

Aθ

ppx | θqdx ě 1 ´ α @θ P Θ,

which is equivalent to a point-wise optimization problem for any given θ:

min
Aθ

ż

Aθ

ppxqdx subject to
ż

Aθ

ppx | θqdx ě 1 ´ α.

Lemma C.12 implies that the optimal solution is

A˚
θ “ tx : ppx | θq{ppxq ě tθu,

where tθ satisfies PX|θpθ P A˚pXqq “ 1 ´ α. The optimal set is then (using the fact that
ppx | θq{ppxq “ πpθ | xq{πpθq)

A˚ “ tpθ, xq : πpθ | xq{πpθq ě tθu,

or, equivalently,
A˚ “ tpθ, xq : πpθ | xq ě t1θu,

where t1θ “ tθπpθq.

C.4 Details on Synthetic Examples of Section 4.1

C.4.1 Synthetic Example of Figure 4.2

The synthetic example of Figure 4.2 (Panels C and D) leverages a simple setting to showcase
the main components of our framework for trustworthy scientific inference. We assume that
all data is generated from an (unknown) Gaussian likelihood ppX | θq “ N pθ, 1q and proceed
as follows:

1. We construct a training set Ttrain “ tpθi, XiquBi“1 „ ppX | θqπpθq with B “ 100,000 and
πpθq “ N p0, 1q to learn π̂pθ | Xq through a generative model. For this example, we
use a simple masked autoregressive flow (Papamakarios and Murray, 2016; Lueckmann
et al., 2017) as implemented in the SBI library (Tejero-Cantero et al., 2020), using
default hyper-parameters;

2. We construct a “universal” calibration set Tuniv “ tpθi, XiquB
1

i“1 „ ppX | θqrpθq with
B1 “ 50,000 and rpθq “ Up´10, 10q to learn a monotonic transformation F̂ pπ̂pθ |

xq; θq of the estimated posterior. Here, we estimate an amortized p-value function
PX|θ pπ̂pθ | Xq ă π̂pθ0 | xqq according to Algorithm C.1 by setting the number of
resampled cutoffs to K “ 10 and leveraging a tree-based gradient-boosted probabilistic
classifier as implemented in the CatBoost library (Prokhorenkova et al., 2018). We
only optimize the number of trees and the maximum depth, which are finally set to
1000 and 9, respectively;
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3. We generate xtarget „ ppX | θ‹ “ 4q and construct an HPD set according to Equa-
tion C.1 and a FreB set as shown in Section 4.3.2 and Section C.2.1. Note that we
only observe a single sample to infer θ‹, i.e., n “ 1;

4. Finally, we check instance-wise coverage as detailed in Chapter 2 by first generating
a diagnostic set Tdiagn “ tpθi, XiquB

2

i“1 „ ppX | θqrpθq with B2 “ 50,000 and rpθq “

Upp´10, 10qq and then learning a probabilistic classifier via a univariate Generalized
Additive Model (GAM) with thin plate splines as implemented in the MGCV library in
R Wood (2015).

C.4.2 Synthetic Example of Figure 4.6

The synthetic example of Figure 4.6 showcases the main properties of our framework — i.e.,
reliability (in the form of correct coverage) and precision (in the form of optimal constraining
power) — for an inference task that was introduced in Sisson et al. (2007) and has become
a standard benchmark in the SBI literature (Clarté et al., 2021; Toni et al., 2009; Simola
et al., 2021; Lueckmann et al., 2021). It consists of estimating the (common) mean of
the components of a two-dimensional Gaussian mixture, with one component having much
broader covariance: X | θ „ 1

2N pθ, Iq ` 1
2N pθ, 0.01 ¨ Iq, where θ P R2 and n “ 1. We proceed

as follows:

1. We construct a training set Ttrain “ tpθi, XiquBi“1 „ ppX | θqπpθq with B “ 50,000 and
πpθq “ N p0, 2Iq to learn π̂pθ | Xq through a generative model. For this example, we use
a flow matching posterior estimator, whose idea was first introduced in (Lipman et al.,
2022) and then adapted for simulation-based inference settings in (Wildberger et al.,
2024). We leverage the implementation available in the SBI library (Tejero-Cantero
et al., 2020), using default hyper-parameters;

2. We construct a “universal” calibration set Tuniv “ tpθi, XiquB
1

i“1 „ ppX | θqrpθq with
B1 “ 30,000 and rpθq “ Upr´10, 10s ˆ r´10, 10sq to learn a monotonic transformation
F̂ pπ̂pθ | xq; θq of the estimated posterior. Here, we again estimate an amortized
p-value function PX|θ pπ̂pθ | Xq ă π̂pθ0 | xqq according to Algorithm C.1 by setting the
number of resampled cutoffs to K “ 10 and leveraging a tree-based gradient-boosted
probabilistic classifier as implemented in the CatBoost library (Prokhorenkova et al.,
2018). We only optimize the number of trees and the maximum depth, which are
finally set to 1000 and 9, respectively;

3. We then generate two observations to represent poor alignment with the prior distri-
bution — x1,target „ ppX | θ‹ “ r8.5,´8.5sq and x2,target „ ppX | θ‹ “ r´8.5,´8.5sq

— and one observation to represent good alignment with the prior distribution —
x3,target „ ppX | θ‹ “ r0, 0sq — for which we again construct HPD sets according to
Equation C.1 and FreB sets as shown in Section 4.3.2 and Section C.2.1. As in the
previous example, we only observe a single sample to infer θ‹, i.e., n “ 1;

4. We check instance-wise coverage as detailed in Chapter 2 by first generating a
diagnostic set Tdiagn “ tpθi, XiquB

2

i“1 „ ppX | θqrpθq with B2 “ 20,000 and rpθq “

Upr´10, 10s ˆ r´10, 10sq and then learning a probabilistic classifier via a bivariate
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Generalized Additive Model (GAM) with thin plate splines as implemented in the
MGCV library in R Wood (2015).

C.5 Supplement for Case Study I

C.5.1 Experimental Setup

Training and target data sets for this case study have been created as a proof-of-concept.
We base the parameter distributions of the simulated air showers on the following three
gamma-ray sources:

• Crab Nebula: A pulsar-wind nebula emitting the brightest and stable TeV signal in
the northern hemisphere sky, for the past 970 years.

• Markarian 421 (Mrk421): A blazar located about 397 million light years from
earth. Blazars and other active galactic nuclei emit intense electromagnetic radiation,
facilitating the discovery of otherwise faint distant galaxies (Abdo and Others, 2011).

• Dark Matter (DM) Annihilation: Similar to matter-antimatter annihilation, some
theories of dark matter propose an annihilation mechanism for dark matter particles,
which emit gamma rays following a certain energy spectrum (Jueid et al., 2021).
Gamma-ray measurements from regions of space thought to contain dark matter (e.g.
around galaxies) can put these theories to the test.

Note that Mrk421 is a point source much like the Crab Nebula, but the DM Annihilation
source is a theorized mechanism that could happen anywhere in the cosmos. As such, we
treat DM as a diffuse source of gamma ray events that hit the Earth from all directions. We
only consider the zenith component of the point source trajectories, azimuth distributed
uniformly, for direct comparison between sources. The zenith distribution along the Crab
and Mrk421 trajectories relative to the zenith distribution in the pre-simulated CORSIKA
data is used to assign weights to individual gamma ray events. All trajectory calculations are
performed using astropy (Astropy Collaboration and Astropy Project Contributors, 2022).
Each source’s theoretical energy spectrum assign weights to individual gamma ray events
in the pre-simulated set. For the Crab, we use the log-parabola fit proposed by Aleksić
et al. (2015). For Mrk421, we perform a custom fit to observational data that accounts for
attenuation of gamma-ray flux due to extragalactic background light (EBL). For the DM
source, we use gammapy (Donath and Others, 2023) to generate the dark-matter annihilation
spectrum for very heavy DM particles (100 TeV). We do not attenuate this spectrum using
EBL. Most cosmic rays observed from Earth are actually hadrons (specifically protons).
Because hadrons also produce an atmospheric shower observable by ground detectors, a
preliminary step in reconstructing gamma-ray events from ground detector data is to first
determine if an observed shower is a gamma ray or a hadron. We do not perform this initial
classification step in this case study and focus only on the reconstruction of gamma ray
events, and we refer the reader to existing approaches to this initial classification such as
Alfaro et al. (2022).
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C.5.2 Data

Our data set consists of a large number of labeled gamma-ray events pEi, Zi, Ai, xiq. For
each event i:

1. Ei is the energy of the original gamma ray in GeV

2. Zi is the zenith angle, defined as the angle that the gamma ray’s source makes with
the vertical. A source directly overhead would have a zenith angle of 0.

3. Ai is the azimuthal angle, defined as the angle between the source and the true north,
measured clockwise. For example, a source directly east of the observer would have
azimuthal angle of 90 degrees

4. xi is the data collected by ground detectors by the resulting atmospheric shower

Our data come from the CORSIKA (Heck et al., 1998) simulator. We make three splits
from the data:

1. Training set (B “ 1,072,821) used to train our posterior estimator ppθi | xiq

2. Universal set (B1 “ 98,765) used to train our FreB quantile regression

3. Diagnostic set (B2 “ 42,270) used to evaluate the performance of our confidence set
procedures

For observed detector data xi, we assume full ground coverage in a 4km x 4km square,
where each detector is 2m x 2m. For a given shower, we assume that each detector is
capable of recording the identity and timing of every secondary particle that passes through
it. The number of secondary particles per shower can range from less than 10 for low-energy
gamma rays to up to 100 million for very high-energy gamma rays. Figure C.2 shows an
example of the data recorded for a single gamma ray air shower. Although many types
of secondary particles may appear in an atmospheric shower, we consider only two broad
groups (photons/electrons/positrons versus everything else) for ease of analysis.

We remove all gamma-ray events in all data splits where less than 10 ground detectors
recorded secondary particle hits. We weight our filtered training data to resemble the Crab
Nebula in terms of its energy spectrum Aleksić et al. (2015). We also weight the training
data to resemble a fixed reference distribution in zenith. This reference distribution is a
combination of a uniform distribution over the sphere and atmospheric effects at high zenith
angles. We assume that ppxi | θiq exhibits azimuthal symmetry.

We place our observer at 19 degrees north. This latitude corresponds to the current
location of the operational HAWC observatory (Abeysekara et al., 2023) and provides a
better view of the Crab Nebula versus the proposed SWGO site in the southern hemisphere.
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Figure C.2: Example features collected for a single gamma-ray event. For each detector
(represented by the pixels in each figure), we plot three measurements of the induced atmospheric
shower. (Left) Average arrival time of secondary shower particles. (Center) Number of
detections of “main” shower particles (photons, electrons, and positrons). (Right) Number of
detections of “secondary” shower particles (muons, all other possible shower particles).

C.5.3 Details on Training

We train a Flow Matching Posterior Estimator (Wildberger et al., 2024), a diffusion-based
model with training-based acceleration, to obtain an estimate of the posterior p̂pθi | xiq. We
use the sbi Python package v0.23.2 (Tejero-Cantero et al., 2020) to implement the flow
matching model. We use the default model architecture in sbi, but use a custom context
model to convert our high- dimensional xi into a low-dimensional context vector:s

1. xi has initial shape 3x2000x2000

2. Max pooling for timing channel and Average pooling for counts channels with kernel
size/stride of 20

3. 2D Convolution with max pooling and batch normalization

4. 2D Convolution with max pooling and batch normalization

5. Flatting and fully connected layer to a fixed sized context vector

Additional hyperparameters can be found on the sbi GitHub repository and our GitHub
repository (https://github.com/lee-group-cmu/vsi). We use default training parameters
from the sbi Python package.

C.6 Supplement for Case Study II

C.6.1 Experimental Set-Up

A galactic model is a representation of the galaxy as a mixture of three components, the
“thick disk,” “thin disk,” and “stellar halo.” These components represent fields of stellar
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rFe{Hs Halo Mean rFe{Hs Halo Std. Dev. rFe{Hs|Age Ctr. rFe{Hs|Age Scale
Model H -2.25 0.5 0.0 0.4
Model D -0.6 0.2 -0.72 0.58

Table C.1: Galactic model parameters

Teff [103K] log g [cgs] rFe{Hs [dex] rFe{Hssurf [dex] L [Ld]
7.13 2.85 -2.80 -2.76 7.87

Dist. [kpc] Mini [Md] Age [Gyr] EEP
0.842 1.30 2.48 696

Table C.2: True stellar parameters for the displayed star in Section 4.2.2

objects which comprise the majority of the galaxy’s stellar objects. Lines of sight along
different galactic coordinates slice through these components in different proportions. In
this case study, we identify stars along the pℓ, bq “ p70˝, 30˝q (in Galactic coordinates) line
of sight because it amply includes both disk and halo components. We further identify a
few sources which one may plausibly measure and for which one may like to conduct inference.

To obtain Model H, we decrease the default mean and increase the default variance
of the age distribution in the galactic halo component from Brutus. To obtain Model
D, we increase the mean of the conditional metallicity-given-age distribution according to
Table C.1. These hyperparameters affect the Brutus model which is encoded as a collection
of PDFs which can be evaluated directly. See (Speagle et al., 2025, Section 2.4) for further
details on the Brutus prior. The true parameters of the star displayed in Figure 4.4 are
given in Table C.2.

C.6.2 Data

Brutus is an open-source Python package designed to quickly estimate stellar properties,
distances, and reddening based on photometric and astrometric data Speagle et al. (2025). It
operates using grids of stellar models within a Bayesian framework that incorporates Galactic
models, enabling efficient parameter estimation. Brutus accepts photometric and astrometric
data as inputs, and it outputs derived stellar properties, including 3D positions, effective
temperatures, distances, and extinction values. It uses empirical corrections for better
accuracy and can rapidly process large datasets, making it suitable for studies requiring
quick stellar parameter recovery.

Our dataset consists of a large number of labeled stellar objects drawn from a prior
over the log-scale gravitational constant (log g), effective object temperature (Teffective),
surface metallicity (rFe{Hssurface), luminosity (L), distance (d), dust extinction (AV ), and
differential extinction (RV ). The parameters of interest of the model are

θ “ plog g, Teffective, rFe{hssurface, Lq P R5.
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Note that we treat AV , RV , and d as nuisance parameters, i.e. unavailable for inference in
this setting. To report our inference on θ, d is included along with θ in posterior estimation
as it is known to be strongly informative of the expected measurements whereas AV and
RV are ignored.

The estimated filtered spectra for those objects are then hypothetically obtained under the
Two Micron All-Sky Survey (2MASS) J , H, and KS filters (Skrutskie et al., 2006) and the
Panoramic Survey Telescopic And Rapid Response System (PS) ‘grizy’ filters (Bolden and
Kervin, 2010). Our likelihood processes the raw magnitudes mi of these filtered spectra with
noiseless and noisy components. First, the magnitudes mi for the eight photometric bands
are estimated noiselessly,

mi :“ fipθq ` µpdq `AV ¨ pRipθq `RV ¨R1
ipθqq,

where µpdq “ 5 logpd{10q is the distance modulus in parsecs (pc) and f , R, and R1 are
deterministic functions available in the Brutus library parameterizing spectral generation
and reddening. Then some random noise is added on the flux scale,

Fi „ N
ˆ

exp

ˆ

´
2

5
mi

˙

, 0.2

˙

.

The final noised magnitudes Mi “ ´5
2 logpFiq are normalized and the normalized measure-

ments together with the raw magnitude norm give the final measurements,

x “ pM̃1, M̃2, . . . , M̃8,Mq P R9,

where M is such that M̃i “ Mi{M .

C.6.3 Details on Training

We train a posterior estimator π̂pθ | xq using a normalizing flow model with the masked
autoregressive flow (Papamakarios and Murray, 2016; Lueckmann et al., 2017) architecture
as implemented in the SBI library (Tejero-Cantero et al., 2020) with 50 hidden features over
5 hidden layers. Quantile regression for calibration of the FreB method was implemented
using Python’s CatBoost library (Prokhorenkova et al., 2018). We used B “ 500,000 for
training, B1 “ 500,000 for calibration, and B2 “ 25,000 for evaluation.

C.6.4 Additional Results

For completeness, we show an additional illustrative example in Figure C.3.

C.7 Supplement for Case Study III

C.7.1 Data

Our data consists of a set of 202,970 Gaia XP spectra (Gaia Collaboration et al., 2023)
cross-matched with APOGEE (Majewski et al., 2017) derived stellar labels that have been
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Teff [103K] log g [cgs] rFe{Hs [dex] rFe{Hssurf [dex] L [Ld]
4.74 3.61 0.25 0.30 1.66

Dist. [kpc] Mini [Md] Age [Gyr] EEP
1.63 1.05 1.12 478

Table C.3: True stellar parameters for the additional example star in Section C.6.4

−3.0−1.5 0.0

[Fe/H] [dex]

3
6

9
1
2

A
g
e

[G
y
r
]

Model H

−3.0−1.5 0.0

[Fe/H] [dex]

3
6

9
1
2

A
g
e

[G
y
r
]

Model D

481216

Teff [103 K]
0

2
4

6

lo
g

g
[c

g
s
]

−4.5 −3.0 −1.5 0.0 1.5

[Fe/H]surf [dex]

0
2

4
6

lo
g

g
[c

g
s
]

−4.5 −3.0 −1.5 0.0 1.5

[Fe/H]surf [dex]

5
1
0

1
5T

e
ff

[1
0
3

K
]

3.244.85.6

Teff [103 K]

0
2

4
6

lo
g

g
[c

g
s
]

−4.5 −3.0 −1.5 0.0 1.5

[Fe/H]surf [dex]

0
2

4
6

lo
g

g
[c

g
s
]

−4.5 −3.0 −1.5 0.0 1.5

[Fe/H]surf [dex]
4

5
6T
e
ff

[1
0
3

K
]

3.244.85.6

Teff [103 K]

−
2

0
2

4

lo
g

L
[L
�

]

0246

log g [cgs]

−
2

0
2

4

lo
g

L
[L
�

]

−4.5 −3.0 −1.5 0.0 1.5

[Fe/H]surf [dex]

−
2

0
2

4

lo
g

L
[L
�

]

3.244.85.6

Teff [103 K]

0
2

4
6

lo
g

g
[c

g
s
]

−4.5 −3.0 −1.5 0.0 1.5

[Fe/H]surf [dex]

0
2

4
6

lo
g

g
[c

g
s
]

−4.5 −3.0 −1.5 0.0 1.5

[Fe/H]surf [dex]

4
5

6T
e
ff

[1
0
3

K
]

3.244.85.6

Teff [103 K]

−
2

0
2

4

lo
g

L
[L
�

]

0246

log g [cgs]

−
2

0
2

4

lo
g

L
[L
�

]

−4.5 −3.0 −1.5 0.0 1.5

[Fe/H]surf [dex]

−
2

0
2

4

lo
g

L
[L
�

]

Galactic Models Induced Model Priors

Model Posteriors and 90% HPD Sets (2D Marginals)

90% FreB Sets (2D Cross-sections)

A

B

C

B
E

F
O

R
E

A
F

T
E

R

πH (θ) πD(θ) Θ θ

π̂H(θ|x)

90% HPD for Model H: Coverage = 40%

π̂D(θ|x)

90% HPD for Model D: Coverage = 3%

θ

90% FreB for Model H: Coverage = 92% 90% FreB for Model D: Coverage = 86% θ

Figure C.3: See caption of Figure 4.4.
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observed across the Milky Way galaxy (see Table 4.1, row III). The stellar labels refer to
stellar properties like effective temperature (Teff), surface gravity (log g), and metallicity
(Fe{H)—all of which were derived from the high-resolution APOGEE spectra.

This cross-match between the two catalogs was originally compiled by Laroche and Speagle
(2024) to train a scatter variational auto-encoder that was used to generate XP spectra. The
"full" cross-match catalog contained 502,311 stars, but after implementing filters to ensure a
high signal-to-noise ratio for reliable labels for training, we were left with the "good" labels
set of 202,970 stars. These filter ranges for signal-to-noise ratios and measurement errors
were placed on measurements including Teff, log g, metallicity, and BP ´RP (see Laroche
and Speagle (2024) for details).

No PPS
Train Calibration Diagnostics

GB-stars 85001 (83.8%) 51001 (83.8%) 838 (83.8%)
MS-stars 16484 (16.2%) 9890 (16.2%) 162 (16.2%)
Total 101485 60891 1000

PPS MS-dominated
Train Calibration Diagnostics

GB-stars 0 51001 (83.8%) 1000
MS-stars 16484 9890 (16.2%) 0
Total 16484 60891 1000

PPS GB-dominated
Train Calibration Diagnostics

GB-stars 85001 51001 (83.8%) 0
MS-stars 0 9890 (16.2%) 1000
Total 85001 60891 1000
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D

Additional Results for Chapter 5

D.1 The Bayes Factor as a Frequentist Test Statistic

In this work, we treat the Bayes factor as a frequentist test statistic, similar to the Bayes
Frequentist Factor (BFF) method in Dalmasso* et al. (2024). Consider the composite-versus-
composite hypothesis test:

H0,y : θ P Θ0 versus H1,y : θ P Θ1 (D.1)

where Θ0 “ tyu ˆ N , Θ1 “ tyuc ˆ N , and y P t0, 1u. The Bayes factor of the test is defined
as

τypxq :“
P1px | H0,yq

P1px | H1,yq
“

ş

N Lpx; y, νq p1pν | yq dν
ş

N Lpx; 1 ´ y, νq p1pν | 1 ´ yq dν

By Bayes theorem,

τypxq “

ş

N
p1py,ν|xq

p1py,νq
p1pν | yq dν

ş

N
p1p1´y,ν|xq

p1p1´y,νq
p1pν | 1 ´ yq dν

“

ş

N
p1py,ν|xq

P1pY “yq
dν

ş

N
p1p1´y,ν|xq

P1pY “1´yq
dν

“
P1pY “ y | xq P1pY “ 1 ´ yq

P1pY “ 1 ´ y | xq P1pY “ yq
. (D.2)

However, unlike BFF, we are not estimating the likelihood or odds from simulated data, but
instead directly evaluate a pretrained classifier P1pY “ y | xq.

D.2 Proofs

For simplicity in notation, we will henceforth omit the “train” and “target” subscripts in
P. The symbol P1 will represent the training distribution, while P will denote the target
distribution.

Proof of Lemma 5.3. This follows from the fact that WλpC; y, νq only depends on the
conditional randomness of X | y, ν, which, under GLS, is the same on both train and target
data.
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Proof of Theorem 5.5. Notice that

PpλpXq ď C˚
α,ypXq | y, νq “ PpλpXq ď C˚

α,ypXq, ν P SypX; γq | y, νq

` PpλpXq ď C˚
α,ypXq, ν R SypX; γq | y, νq

ď PpλpXq ď W´1
λ pβ; y, νq | y, νq ` Ppν R SypX; γq | y, νq

ď β ` γ “ α,

which proves the first part of the result. Similarly,

PpλpXq ě rC˚
α,ypXq | 1 ´ y, νq “ PpλpXq ě rC˚

α,y, ν P S1´ypX; γq | 1 ´ y, νq

` PpλpXq ě rC˚
α,y, ν R S1´ypX; γq | 1 ´ y, νq

ď PpλpXq ě W´1
λ pβ; 1 ´ y, νq | 1 ´ y, νq

` Ppν R S1´ypX; γq | 1 ´ y, νq

ď 1 ´ β ` γ “ 1 ´ α,

and therefore
PpλpXq ď rC˚

α,ypXq | 1 ´ y, νq ě α,

which concludes the proof.

Proof of Theorem 5.6. By construction

PpY P HpX;αq | y, νq “ P
`

pτypXq ą C˚
α,ypXq | y, ν

˘

“ 1 ´ P
`

pτypXq ď C˚
α,ypXq | y, ν

˘

ě 1 ´ α,

where the last inequality follows from Lemma 5.5. This proves the first statement of the
theorem. To prove the second statement, notice that

PpY P HpX;αqq “

ż

PpY P HpX;αq | y, νqdµpy, νq

ě

ż

p1 ´ αqdµpy, νq

“ 1 ´ α,

where µpy, νq denotes the measure on pY, νq on the target set.

D.3 Estimating the Rejection Probability Function

We learn WλpC; y, νq using a monotone regression that enforces the rejection probability
to be a non-decreasing function of C. For each point i “ 1, . . . , B1 in the calibration set
T 1 “ tpY1, ν1, X1q, . . . , pYB1 , νB1 , XB1qu drawn from ptrainpθqLpx; θq where θ “ pY, νq, we
sample a set of K cutoffs according to the empirical distribution of the test statistic λ. Then,
we regress the random variable

Zi,j :“ 1 pλpXiq ď Cjq (D.3)

on Yi, νi and Ci,j (“ Cj) using the “augmented” calibration set T 2 “ tpYi, νi, Ci,j , Zi,jqui,j ,
for i “ 1, . . . , B1 and j “ 1, . . . ,K, where K is the augmentation factor. See Algorithm D.1
for details.

145



D.4. Diagnostics of Estimated ROC Curves

Algorithm D.1 Learning the Rejection Probability Function
Input: test statistic λ; calibration data T 1 “ tpY1, ν1, X1q, . . . , pYB1 , νB1 , XB1qu; sampled
cutoffs G “ tC1, . . . , CKu

Output: Estimate of rejection probability WλpC; y, νq for all C P G, y P t0, 1u and ν P N
1: // Learn rejection probability from augmented calibration data T 2

2: Set T 2 Ð H

3: for i in t1, ..., B1u do
4: for j in t1, ...,Ku do
5: Compute Yi,j Ð 1 pλpXiq ď Cjq
6: Let T 2 Ð T 2 Y tpYi, νi, Cj , Zi,jqu

7: Estimate WλpC; y, νq :“ Py,ν pλpXq ď Cq from T 2 via a regression of Z on Y , ν and C,
which is monotonic in C.

8: return Estimated rejection probabilities xWλpC; y, νq, for C P G, y P t0, 1u and ν P N

D.4 Diagnostics of Estimated ROC Curves

Here we describe how to evaluate goodness-of-fit of an estimate of the rejection probability
function. This is inspired by methods that use the Probability Integral Transform (PIT) to
assess conditional density estimators (Cook et al., 2006a; Freeman et al., 2017; Izbicki et al.,
2017; D’Isanto and Polsterer, 2018).

If WλpC; y, νq “ Ptarget pλpXq ď C | y, νq “ FλpXq|y,νpCq is well estimated, then the ran-
dom variableWλpλpX 1q; y, νq „ Uniformp0, 1q, where X 1 is drawn from the simulator using
py, νq as parameters. This suggests we assess the performance of our estimator of W ,
xW , via a P-P plot comparing xW pλpX1q;Y1, ν1q, . . . ,xW pλpXBq;YB, νBq to a Uniformp0, 1q

distribution, where pλpX1q;Y1, ν1q, . . . , pλpXBq;YB, νBq denote an evaluation sample drawn
from the simulator. The distribution of these statistics can however be uniform even if xW is
not a good estimate (Zhao et al., 2021, Theorem 1). Here, we avoid this problem by dividing
the parameter space Θ into bins and constructing separate distribution plots for samples
within each bin.

D.5 The Standard Bayes Classifier

Lemma D.1 (Bayes classifier). Let h : X Ñ t0, 1u be a classification rule. Define the
weighted loss

W “ c11t1upY q 1t0uphpXqq ` c01t0upY q 1t1uphpXqq, (D.4)

where ck is the cost of mis-classifying a Y “ k observation, for k “ 0, 1. The Bayes (that is,
optimal) classifier that minimizes the error rate EtargetpW q averaged over both X and Y is
given by

h˚pxq “

$

’

&

’

%

1 if PtargetpY “ 1 | xq ą α˚,

0 if PtargetpY “ 1 | xq ă α˚,

arbitrary if PtargetpY “ 1 | xq “ α˚,

(D.5)
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where α˚ :“ c0
c0`c1

.

Remark D.2 (Balanced accuracy). If there is no shift between the train and target sets, a
common choice for the loss (Equation (D.4)) is c1 “ 1{PtrainpY “ 1q and c0 “ 1{PtrainpY “ 0q.
This yields the balanced error rate

EtrainpW q “ PtrainphpXq “ 0 | Y “ 1q ` PtrainphpXq “ 1 | Y “ 0q

and the cut-off α˚ “ PtrainpY “ 1q for the Bayes classifier (Equation (D.5)).

Remark D.3 (Bayes classifier under GLS). Under GLS, there is no monotonic rela-
tionship between Ptarget pY “ 1 | xq and Ptrain pY “ 1 | xq. Thus, it is not possible to use
Ptrain pY “ 1 | xq to recover Ptarget pY “ 1 | xq using standard label shift corrections (Saerens
et al., 2002; Lipton et al., 2018).

Remark D.4 (Bayes classifier under the presence of nuisance parameters but no GLS). If
there is no GLS, Ptrain pY “ 1 | xq “ Ptarget pY “ 1 | xq. However, without a nuisance-aware
cutoff, the Bayes classifier is usually calibrated to control type-I error marginally over ν.
NAPS instead controls this error for all ν P N .

D.6 Additional Results and Details on Cosmic Ray
Experiment

D.6.1 Experimental Set-Up with Ground-Based Detector Arrays

The data used in this paper are generated via the CORSIKA cosmic ray simulator (Heck
et al., 1998). CORSIKA is a Monte Carlo simulation program that models the interactions of
primary cosmic rays with the Earth’s atmosphere. Given values of the parameters µ,E,Z,A,
which define the primary cosmic ray identity, energy, zenith and azimuth angle, respectively,
CORSIKA outputs the identities, momenta, positions, and arrival times of all secondary
particles generated in the atmospheric shower, that eventually reach the ground and that
are mostly muons, electrons and photons at gamma-ray energies with minor abundance of
heavier particles.

The measured data x in our analysis does not incorporate the full shower footprint, as this
level of information cannot be captured in any realistic scenario. Instead, we simulate a
simple 6 ˆ 6 detector grid, where each detector covers a 2 ˆ 2 m2 area, with 48 m detector
spacing. Information for a secondary particle of a particular shower footprint is incorporated
into the analysis only if that secondary particle lands within the area of a detector. See
Figure D.1 (right) for a simplified representation of the detector grid.

We assume 100% detector efficiency and that all secondary particles types are detectable.
We also assume that showers always originate at the center of the detector grid. Finally, we
assume that both the zenith and azimuth angles Z and A are known due to the relative
ease with which they can be estimate from observed footprint data. Thus, our only nuisance
parameter for inference on µ is the energy E of the cosmic ray.
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Figure D.1: Left: Artistic representation of the SWGO array. The inlay shows the individual
detector unit. Right: Although we have access to all secondary particles in our simulated cosmic
ray showers, we only include the particles that hit our simulated detector setup (blue rectangles)
in the analysis. This layout pictured here is an illustrative example.

The data used to estimate the test statistic are drawn according to the following
distribution (which may be different from that of actual astrophysical sources):

1. Gamma ray to Hadron ratio 1 : 1 (whereas actual observed ratios are in the range
1 : 1,000 – 1 : 100,000)

2. Energy between 100 TeV and 10 PeV, with probability density proportional to E´1

for gamma rays and E´2 for hadrons (with standard astrophysical sources closer to
between ´2 : ´4)

3. Zenith uniformly distributed between 0 and 65 degrees

4. Azimuth uniformly distributed between ´180 and 180 degrees

To derive xi, we first define four secondary particle groups: photons (neutral); electrons
and positrons; muons (charged); and all other secondary particle types. Then for each
simulated detector, we record the count of particles in each group that hit the detector.
This results in a vector of length 4 ¨ 36 “ 144 for each primary cosmic ray that represents
the detector data. We construct xi by concatenating the detector data with Zi and Ai.

For the calibration and test sets, we use the same reference distribution.

D.6.2 Details on the algorithms used in Section 5.5.3

We used gradient boosted probabilistic classifiers as implemented in CatBoost (Prokhorenkova
et al., 2018) to estimate both PpY | Xq and WλpC; y, νq. For the latter, CatBoost allows to
easily enforce monotonicity constraints on the features, which we used on C. To compute
cutoffs, we used the brentq routine (Brent, 2013) to calculate the inverse and the differential
evolution global optimization algorithm (Storn and Price, 1997) to find the infimum. Both
are implemented in SciPy (Virtanen et al., 2020). To obtain confidence sets for ν, we
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Figure D.2: Classification metrics within predicted Hadrons (ypred “ 0). Results are binned
according to whether the shower energy is below (left) or above (right) the median value.
Nuisance-aware prediction sets (NAPS γ “ 0; blue) achieve high precision and low false discovery
rates (FDR), especially at high confidence levels. In addition, by constraining the nuisance
parameters ν “ pE,A,Zq, we see performance (NAPS γ ą 0; green) increase in the lower energy
bin but with a corresponding tradeoff in the higher energy bins. Both approaches yield better
results relative to the oracle Bayes classifier (black dashed line).

used the method developed by Masserano et al. (2023) with a masked autoregressive flow
(Papamakarios et al., 2017) since it guarantees that the constructed region contains the true
value of ν at the desired confidence level for all ν P N .

D.6.3 Additional Results

Figures D.2 and D.3 mirror the results for Figure 5.5, focusing on cosmic rays predicted to
be hadrons and true hadron cosmic rays repectively. Identifying hadrons is of lesser scientific
value than identifying gamma rays, so the results here are presented mainly for reference.

D.7 Additional Results and Details on the RNA
Sequencing experiment

D.7.1 Data Simulation Procedure

The scDesign3 simulator for RNA-Seq constructs a new simulated dataset through the
following steps

1. The user chooses a model type (e.g. linear with Gaussian noise) and specification to
model the relationship between cell gene counts and cell features.

2. scDesign3 estimates model parameters on the reference data.

3. The user supplies a matrix of all features of all cells in for the new simulated data.
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Figure D.3: Classification metrics within true Hadrons (y “ 0). Results are binned according
to whether the shower energy is below (left) or above (right) the median value. Our set-valued
classifier makes explicit its level of uncertainty on the label y by returning ambiguous prediction
sets (bottom row) for hard-to-classify xtarget. Even so, NAPS with γ ą 0 is able to achieve a
comparable number true negatives in the higher energy bins and lower number of false positives
in both energy bins relative to the Bayes classifier. Here γ “ α ˆ 0.3

4. scDesign3 outputs the gene counts for these cells by sampling from the estimated
model.

In our paper, we use a negative binomial GLM with cell type and batch protocol indicator
as the only features:

logErXi,j | Yj , Bjs “ αi ` βiYj ` γiBj ,

where

1. Xi,j are the observed counts for gene i for cell j

2. Yj P t0, 1u is the cell type for cell j, CD4+ T-cells (Y = 1) or Cytotoxic T-cells (Y =
0)

3. Bj is which of the 4 protocols was used to process cell j, with a separate model
coefficient for each protocol excluding the baseline (represented by the vector γi P R3)

We also restrict our analysis to 100 genes chosen randomly from the approximately 6000
genes in the reference dataset. Although each gene count receives its own set of model
parameters, new gene counts are generated in a way that captures the correlation between
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gene counts in the reference data. See (Song et al., 2023) for more details.

The reference data used in our analysis contains two experimental protocols. One is
used as a baseline to derive pαi. The second is used to fit the first entry of each pγi, denoted
pγi,1. The last two entries pγi,2 and pγi,3 are constructed in this way:

1. Each pγi,2 is sampled with replacement from tpγi,1 : |pγi,1| ă medianpt|pγj,1|, j P r100suqu

2. Each pγi,3 is sampled with replacement from tpγi,1 : |pγi,1| ě medianpt|pγj,1|, j P r100suqu

These last two batch protocols are meant to emulate a weak and stronger batch effect
respectively than the different between the two original experimental protocols, while keeping
realistic estimates for the effects on gene counts.

D.7.2 Details on the algorithms used in Section 5.5.2

We used gradient boosting probabilistic classifiers as implemented in CatBoost (Prokhorenkova
et al., 2018) to estimate both PpY | Xq and WλpC; y, νq. For the latter, CatBoost allows to
easily enforce monotonicity constraints on the features, which we used on C. To compute
cutoffs, we used the brentq routine (Brent, 2013) to calculate the inverse and the differential
evolution global optimization algorithm (Storn and Price, 1997) to find the infimum. Both
are implemented in SciPy (Virtanen et al., 2020). The three baselines against which we
compare NAPS were computed from the same base probabilistic classifier (also used for
NAPS). After training it, we calibrated it on the same set used for NAPS via isotonic
regression, but only for the baselines (our method has a separate calibration procedure as
described in Section 5.3. Then we computed cutoffs as described in Sadinle et al. (2019);
Romano et al. (2020).

D.7.3 Additional Results

Taking CD4+ T-cells (Y = 1) to be the positive class, Figures D.4, D.5, D.6, D.7 show various
performance metrics for four prediction set methodologies: standard prediction sets (Sadinle
et al., 2019, Theorem 1), class-conditional prediction sets (Sadinle et al., 2019), conformal
adaptive prediction sets (APS; Romano et al. (2020)), and NAPS with γ “ 0. For many of
the metrics like precision and NPV, each method achieves very good performance (perhaps
due to the ease of the underlying inference problem). For TPR, we see that each method
has differing strength for each of the protocols. We also notice that at very high levels of
confidence, conformal APS starts outputting t0, 1u for every observation, leading to a sharp
drop in performance across all metrics.

D.8 Computational Analysis: Training and Inference Times

Table D.1 reports training and inference times for NAPS under the Single-Cell RNA
Sequencing (Section 5.5.2) and Atmospheric Cosmic-Ray Showers (Section 5.5.3) experiments.
Dataset sizes are the proportions included in the training, calibration and inference sets out of
the total number of simulations indicated in Sections 5.5.2 and Section 5.5.3. For calibration,
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Figure D.4: Classification metrics within predicted positive class: Precision (top) and
FDR (bottom) for observations predicted to be CD4+ T-cells (i.e. prediction set output is t1u),
additionally separated by protocol (columns). Metrics are shown for nuisance-aware prediction
sets (NAPS γ “ 0; blue), standard prediction sets (red), class-conditional prediction sets (pink),
and conformal adaptive prediction sets (APS) (gold). At high levels of confidence, conformal
APS outputs t0, 1u for all points in the test set; the corresponding metrics that require the
prediction set to have one element have been set to their worst-case value.
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Figure D.5: Classification metrics within true positive class: TPR (top), FNR (middle) and
proportion of ambiguous sets (bottom) for true CD4+ T-cells, additionally separated by protocol
(columns). Metrics are shown for Nuisance-aware prediction sets (NAPS γ “ 0; blue), standard
prediction sets (red), class-conditional prediction sets (pink), and conformal adaptive prediction
sets (APS) (gold). At high levels of confidence, conformal APS outputs t0, 1u for all points in
the test set; the corresponding metrics that require the prediction set to have one element have
been set to their worst-case value.

we report the time needed to estimate ROC curves from the augmented calibration set,
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Figure D.6: Classification metrics within predicted negative class: NPV (top) and False
Omission Rate (bottom) for observations predicted to be Cytotoxic T-cells (i.e. prediction set
output is t0u), additionally separated by protocol (columns). Metrics are shown for Nuisance-
aware prediction sets (NAPS γ “ 0; blue), standard prediction sets (red), class-conditional
prediction sets (pink), and conformal adaptive prediction sets (APS) (gold). At high levels of
confidence, conformal APS outputs t0, 1u for all points in the test set; the corresponding metrics
that require the prediction set to have one element have been set to their worst-case value.
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Figure D.7: Classification metrics within true negative class: TNR (top), FPR (middle) and
proportion of ambiguous sets (bottom) for true Cytotoxic T-cells, additionally separated by
protocol (columns). Metrics are shown for Nuisance-aware prediction sets (NAPS γ “ 0; blue),
standard prediction sets (red), class-conditional prediction sets (pink), and conformal adaptive
prediction sets (APS) (gold). At high levels of confidence, conformal APS outputs t0, 1u for
all points in the test set; the corresponding metrics that require the prediction set to have one
element have been set to their worst-case value.

including “re-calibration” of the estimated rejection probabilities via isotonic regression.
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Table D.1: Training and inference times for NAPS for the experiments of Sections 5.5.2 and 5.5.3.

Experiment Dataset Size Training Calibration Inference (γ “ 0) Inference (γ ą 0)

RNA-Seq 0.6, 0.35, 0.5 6 minutes 30 minutes 1 second /
Cosmic Rays 0.45, 0.45, 0.1 8 minutes 65 minutes 6 seconds 4 seconds per-obs

For NAPS with γ ą 0 (only performed in Section 5.5.3), inference times are measured
per-observation (on average) since cutoffs are data-dependent and need to be computed
for each x. For NAPS with γ “ 0, we report the total time needed to compute cutoffs, as
they can then be applied to any new observation x (i.e., they are amortized with respect
to observations). Once this is done, constructing the prediction sets takes only a few
milliseconds. All times are computed for inference at a single level α. Classifier training and
the calibration procedure only need to be estimated once (here we report times that include
five-fold cross-validation). All computations were performed on a MacBook Pro M1Pro with
16 GB of RAM.

D.9 Synthetic Example: Deep Dive

D.9.1 Impact of the Nuisance Parameter

As mentioned in the main text, we consider a process that generates events pYi, Xiq, where
Yi P t0, 1u determines the type or label of the event, and Xi P r0, 1s is the sole feature of the
event. The distribution of events is defined as follows:

1. PpYi “ 0q “ PpYi “ 1q “ 1{2

2. Conditional density for Y “ 1: ppxi | Yi “ 1q “
exi

e´ 1

3. Conditional density for Y “ 0: ppxi | Yi “ 0, νiq “
νie

´νixi

1 ´ e´νi
,

where ν is an additional nuisance parameter that influences the density of X for Y “ 0
events. νi is assumed to be drawn from some distribution independently for each Y “ 0
event. We are interested in inferring Y given observed X and unobserved ν. Figure D.8
shows how the presence of the nuisance parameter affects this inference task.

The top left of Figure D.8 demonstrates how the shape of the density of X for Y “ 0 events
can vary dramatically depending on the value of ν. Assuming any prior of ν can yield a
density of X that does not depend on ν, but it may not closely resemble the conditional
densities of X given ν for all values of ν. The top right panel shows how this variation in the
shape of the densities subsequently affects the behavior of the posterior probabilities of Y
given X and ν. Again, we can derive a posterior that does not depend on ν, with the same
caveat as before. We also observe that the posterior probabilities are always monotonic in x,
therefore any classifier or prediction set that uses cutoffs on posterior probabilities can be
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equivalently defined using cutoffs on x directly. The bottom left figure shows how the ROC
for the Bayes Classifier (i.e. directly using the posterior probabilities to classify events) can
vary under fixed ν or a prior on ν. These ROC curves demonstrate why ignoring nuisance
parameters can yield biased or otherwise unreliable results. Every fixed value of ν as well
as every prior on ν yields a completely different relationship between FPR and TPR. The
bottom right figure shows that if our goal is valid FPR control for our inference task, we
must take the nuisance parameter into account. Because the ultimate FPR for any cutoff
depends on the value of ν for each observation, the selection of an cutoff that controls FPR
must properly account for the influence of the nuisance parameter.

D.9.2 Additional Results

Figures D.9, D.10, and D.11 show additional results from the synthetic examples for both
standard prediction sets and class-specific prediction sets used in the cosmic ray application.
All prediction sets are formed under the training prior ν „ Uniformp1, 10q, which is the
same prior used to compute metrics under the “No GLS” setting. “With GLS” changes the
target prior to ν „ N p4, 0.1q without modifying the training prior. Coverage for Y “ 1
events, power for Y “ 0 events (defined as Pp1 R Prediction Set | Y “ 0q), and precision for
t0u outputs do not vary significantly across methodologies due to the fact that ppxi | Yi “ 1q

does not depend on the distribution of νi. As seen in the text, our methods achieve
validity regardless of the presence of GLS. We also achieve higher precision than standard or
class-specific prediction sets, although we do sacrifice power compared to those methods.
However, careful selection of γ in the NAPS framework can help increase power without
losing validity.

D.9.3 ν-Conditional Coverage and validity under GLS

Figure D.12 below explores coverage of different prediction set methods conditional on Y
and ν, under the training prior ν „ Uniformp0, 1q. We compare 4 methods:

1. Standard prediction sets that target marginal coverage only

2. Class-conditional prediction sets that target coverage conditional on Y

3. Class-conditional prediction sets that additionally use the posterior mean pνpxq “
ş

N ν ppν | xqdν as an point estimate of ν to evaluate the posterior. Specifically,
P pY “ 1 | X, ν “ pνpXqq is used instead of P pY “ 1 | Xq, where the latter integrates
over the prior on ν

4. NAPS with γ “ 0

Method 3 is added as a possible alternative to forming confidence sets on ν within the NAPS
framework. The figure shows that, although standard and class-conditional prediction sets
achieve marginal and class-conditional validity respectively, they do not maintain validity
when conditioning on all values of ν. This is the fundamental reason that these methods do
not achieve validity under GLS. Whereas, NAPS achieves validity conditional on both Y
and ν, resulting in robustness to GLS. We note that method 3 achieves neither marginal
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Figure D.8: Impacts of Nuisance Parameters on the Inference Task Top Left: Conditional
densities ppx | Y, νq for various values of Y and ν according to the problem setup. The marginal
density ppx | Y “ 0q shown in red is induced by a Uniformp1, 10q prior on ν. Top Right:
Posterior probability P pY “ 1 | X, νq as a function of X for different values of the nuisance
parameter ν. The marginal posterior P pY “ 1 | Xq is shown in red for a Uniformp1, 10q prior
on ν. Bottom Left: ROC curves for the Bayes Classifier holding ν fixed (blue, orange, and
green curves) and for a Uniformp1, 10q prior on ν (red). Y “ 1 is taken to be the positive
class. Bottom Right: Under the classification rule that pyi “ 1 if xi ą x˚, this figure shows
how the FPR of that classifier will vary with ν. Each curve represents a different cut x˚ for the
classification rule.

nor class-conditional validity, indicating that even well-formed point estimates of ν are
insufficient to reach nominal coverage levels.

D.9.4 When does γ ą 0 for NAPS increase power?

The γ parameter for NAPS gives us the option to first form a confidence set for ν on a new
observation x before optimizing the cutoffs for our test statistic (see Section 5.4). Because
the test statistic is monotonic in the posterior probabilities, we can derive cutoffs on x
directly based on the confidence set for ν. Specifically, we can simplify the procedure in
Lemma 5.5 to the following

x0pν;α, γq “ x s.t. PpX ě x | Y “ 0, νq “ α ´ γ
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Figure D.9: Actual vs Nominal Coverage for Several Prediction Set Methods: We compare
the actual coverage of standard prediction sets (red), class-specific prediction sets (pink), and
NAPS under different γ values under no GLS (left) and with GLS (right). We show marginal
coverage (top), and conditional coverage for Y “ 0 events (middle) and Y “ 1 events (bottom)

x˚
0pαq “ sup

νPS0px;γq

x0pν, αq

x˚
1pαq “ x s.t. PpX ď x | Y “ 1q “ α,

where S0px; γq is a 1 ´ γ confidence set on ν given Y “ 0. Then, our prediction set becomes
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Figure D.10: Power vs Nominal Coverage for Several Prediction Set Methods: We compare
the power of standard prediction sets (red), class-specific prediction sets (pink), and NAPS under
different γ values under no GLS (left) and with GLS (right). Power for Y “ 0 events (bottom)
is defined as Pp1 R Prediction Set | Y “ 0q and vice versa for Y “ 1 (middle). Marginal power
(top) is the sum of these two power metrics weighted by PpY “ 1q.

0 P Hpx;αq if x ă x˚
0pαq

1 P Hpx;αq if x ą x˚
1pαq.

We note that x˚
1pαq does not depend on our choice of γ, so we focus on x˚

0pαq. We also
note that lower values of x˚

0pαq result in higher power of the final NAPS. Figure D.13 below
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Figure D.11: Precision vs Nominal Coverage for Several Prediction Set Methods: We
compare the precision of standard prediction sets (red), class-specific prediction sets (pink), and
NAPS under different γ values under no GLS (left) and with GLS (right). We define precision for
prediction set “ t0u as PpY “ 0 | prediction set “ t0uq and vice versa for prediction set “ t1u

outputs. Events where prediction set “ t0, 1u or prediction set “ H are not considered here.

shows how the choice of γ can affect the power of the resulting NAPS.

The left panel demonstrates the tradeoff inherent in selection a value of γ. Fixing ν
and α, x0pν;α, γq is increasing in γ (illustrated by the green curve being always higher than
the blue curve), so the cutoff at every ν will always be higher (and power subsequently
lower). However, constraining ν to S0px; γq may avoid optimizing over regions of ν where
x0pν;α, γq is relatively high (i.e. small values of ν). In the synthetic example, the most
power is gained when S0 constrains ν to a region where ν is much larger than 1 (the value
of ν that yields x˚

0pαq when γ “ 0). This is illustrated by the fact that S0px2; γ “ 0.0025q

yields a x˚
0pαq value (green star) much lower than the value obtained when γ “ 0 (blue star).

However, setting γ ą 0 can sometimes result in power loss if S0 contains small values of
ν. This is illustrated by the fact that S0px1; γ “ 0.0025q yields an even higher x˚

0pαq value
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Figure D.12: Marginal, Class-conditional, and ν-conditional Coverage of Several Prediction
Set Methods: We examine marginal coverage under the training prior on ν (top), Y “ 0
conditional coverage (middle) and Y “ 1 conditional coverage (bottom) for standard prediction
sets (red, top right only), class-conditional prediction sets (pink, middle left and bottom left),
class-conditional prediction sets with estimated ν (dark red, middle column), and NAPS (blue,
right column). In each figure, we also show coverage when additionally conditioning on certain
values of ν (dotted and dashed lines)

(red star) than the case when γ “ 0. The right panel shows that, in our simple synthetic
example, there is a relatively clear optimal value for γ which is non-zero.

In general, the distribution of the nuisance parameter(s) and the efficiency of the con-
fidence sets on those NPs will determine which value of γ is optimal. If most data points
have nuisance parameter values in “favorable” regions of the NP space, then it may be worth
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Figure D.13: Effect of γ on NAPS Power. Left: We show how the optimization of x0pν;α, γq

depends on γ and S0px; γq. The two curves show the relationship between x0pν;α, γq and ν
under two values of γ. When γ “ 0, we must optimize over the entire space of ν to derive
x˚
0pαq (or equivalently, S0px; γ “ 0q “ r1, 10s for all x. This leads to a x˚

0pαq value indicated by
the blue star. When γ “ 0.0025, we consider two hypothetical confidence sets S0px1; γq and
S0px2; γq for ν, indicated by the two pairs of green dotted lines. In each case, we only optimize
x0pν;α, γq over the values of ν in the confidence set; however, to maintain coverage at 1 ´ α,
optimization is done over the green curve instead of the blue curve. Optimization over S0px1; γq

yields x˚
0pαq indicated by the red star, while optimization over S0px2; γq yields x˚

0pαq indicated
by the green star. Right: When S0px; γq is taken to be the pγ{2, 1 ´ γ{2q quantiles of the
truncated N p4, 0.1q distribution for all x, we can derive a relationship between x˚

0pαq and γ. In
this case, the calibrated cutoff is minimized at γ « 0.001.

setting γ ą 0 to form confidence sets. In other cases, letting γ “ 0 may be the optimal
choice.

D.9.5 Performance of NAPS under SLS

In the synthetic example, we assumed that the distribution of labels PpY “ 1q was the same
for the training and target data. However, the distribution of ν is not the same, which leads
to ptrainpx | Y q ‰ ptargetpx | Y q, since

ppx | Y “ yq “

ż

ppx | Y “ y, νqπpν | Y “ yq dν

and we explicitly allow for a change in πpν | Y “ yq under GLS. This setup is essentially
the reverse of the Standard Label Shift (SLS) setup. Under SLS, we would assume that
PtrainpY “ 1q ‰ PtrainpY “ 1q, but that ptrainpx | Y q “ ptargetpx | Y q, which is most directly
achieved when the distribution of ν does not change between the training and target data.
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Figure D.14: Comparison of NAPS and Class-Conditional Prediction Sets under Standard
Label Shift: We plot the test set marginal coverage (top row) and marginal power (bottom
row, defined as Ptargetp1 ´ Y R Prediction setq). We compare NAPS (blue) to Class-Conditional
PS (pink). This comparison is done for several levels of SLS (columns), where we shift the
distribution Y in the evaluation set from PtrainpY “ 1q “ 0.5. The distribution of the nuisance
parameter ν is the same for training versus target data; that is, we have an SLS setting.

We have shown that class-conditional prediction sets (designed to maintain coverage under
SLS) do not maintain coverage under GLS due to the violation of the assumption that
ptrainpx | Y q “ ptargetpx | Y q. In this section, we explore how NAPS performs in the SLS
setting relative to class-conditional prediction sets. We expect NAPS coverage guarantees
to hold, with a decrease in power due to NAPS enforcing nominal coverage at every point
in the nuisance parameter space. Figure D.14 shows the results of our experiments under SLS.

In all SLS scenarios we tested, NAPS over-covers and achieves lower levels of power
compared to class-conditional prediction sets, demonstrating the theoretical tradeoff de-
scribed above. Looking at coverage, we see that as PtargetpY “ 1q increases, the level of
overcoverage for NAPS decreases. This is expected, since the nuisance parameter ν only
affects the distribution of features for Y “ 0 events and causes NAPS to exclude 0 from the
prediction set less often. Unsurprisingly, class-conditional prediction sets exactly achieve
nominal coverage under every SLS scenario.

Looking at power, we note that class-conditional prediction sets achieve similar (but
not identical) power across all SLS scenarios. Power for NAPS appears to decrease as
PtargetpY “ 1q increases. This is a consequence of the same fact that ν only affects Y “ 0
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events; because NAPS will exclude 0 from its prediction sets less often, it will suffer a
performance loss when there are relatively more Y “ 1 events in the data. In this particular
case, NAPS appears to perform best relative to class-conditional prediction sets when
PtargetpY “ 1q is low, but results may vary in other settings where the relationship between
the nuisance parameter(s) and labels may be more complex. However, we do not expect
NAPS to outperform class-conditional prediction sets (or any method developed for SLS)
under SLS-only scenarios.
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