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Abstract
A fundamental task in many online time series se�ings is to estimate

the �nalized value of a signal that will only be fully observed at a later time.
�e goal in nowcasting is to produce such estimates using contemporane-
ous information; this di�ers from the task of forecasting, which learns from
past data to predict future values. In this thesis, we study sensor fusion
(SF), a sequential nowcasting framework derived from a process-agnostic
Kalman �lter (KF), and detail two (mathematically equivalent) reformula-
tions: �rst to the standard KF itself via an augmented measurement space,
and then to an equality-constrained regression problem. We leverage these
equivalences to port several established ideas (e.g., regularization schemes)
in regression to dynamical systems.

In se�ings where only convolved outcomes of the signal can be ob-
served, several new challenges arise: (i) deconvolution to infer the latent
state, (ii) subsequent uncertainty propagation through SF, and (iii) recon-
volution frameworks to evaluate performance. Towards solving these chal-
lenges, we introduce new methodology to perform and evaluate real-time
nowcasting by deconvolution with specialized regularization techniques,
which can prepend the SF framework. We motivate our work throughout
by applications to track disease activity of in�uenza and COVID-19 in the
United States.
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Chapter 1

Introduction

1.1 Motivation
Nowcasting is the task of predicting the �nalized value of a not-yet-fully-observed
signal close to the present time. Di�erently to the more common task of forecasting,
which seeks to infer the future from historical data, nowcasting aims to predict the
present (or very recent past) through contemporaneous data. Recently, nowcasting
approaches have grown in popularity as technological advances in digital surveillance
infrastructure have enabled the collection of massive data in near-real-time. Such data
allows us to make timely predictions, or nowcasts, of slow-measured but fast-changing
signals, which have shown to be especially valuable in sectors of economics [e.g., Choi
and Varian [2012], Curme et al. [2014], Preis et al. [2010]] and health [e.g., Brooks
[2020], Farrow [2016], Ginsberg et al. [2009], Jahja et al. [2019], McIver and Brownstein
[2014], Yang et al. [2015]].

From the very outset, our contributions were, and are, motivated by problems
in predictive epidemiology. We are particularly focused on studying approaches to
model disease spread in real-time. Models of this form, which necessarily perform
nowcasting, are central to informing the public health response in a myriad of ways,
including: creating early warning systems of potential surges; enabling proactive
resource allocation; informing the timing and severity of intervention measures; and
raising situational awareness among the broader public. �ese actions, in turn, can aid
in curtailing the spread and intensity of infection levels, and ultimately diminish the
population impact of a disease.

To give some background, epidemiologic models for disease spread generally fall
into two camps: mechanistic and/or statistical. Mechanistic models, broadly speaking,
are grounded in biological processes of spread, and directly integrate disease transmis-

1



Chapter 1. Introduction 2

sion dynamics. A prominent example is the compartmental SIR model [Kermack and
McKendrick, 1927], which de�nes a system of di�erential equations that describe the
�ow of individuals between stages of disease susceptibility, infection, and recovery.
�ere are many variations of SIR—a few common ones are SIS, SIRS, SEIRS—which
introduce various compartment con�gurations (see Hethcote [2000] for an overview).
Traditional mechanistic models are characterized by a handful of model parameters
and are informed only by data on the disease incidence itself; this dependence on a
single data stream makes such approaches widely applicable to many se�ings, but can
lead to issues when reports are noisy, delayed, or otherwise unreliable.

Several recent mechanistic approaches move beyond this, and incorporate addi-
tional side information, e.g., Brooks [2020], Shaman and Kandula [2015], Yang et al.
[2014], and show improvements in predictive accuracy for their se�ings. Generally,
such methods also overlap with the la�er camp of statistical approaches. Statistical
models are empirically grounded and assimilate data with li�le (or no) formal knowl-
edge of disease dynamics. In the most minimally informed case, statistical models treat
the problem as a time series task, which draws solutions from classical regression to
recurrent neural networks [e.g., Aiken et al. [2021], Brooks et al. [2015], Farrow [2016],
Jahja et al. [2019], McIver and Brownstein [2014], Santillana et al. [2016], Viboud et al.
[2014], Wu et al. [2018], Yang et al. [2015], Yuan et al. [2013]].

Such models have grown popular among the epidemiological now– and forecasting
community, which have trended towards incorporating auxiliary covariate data into
statistical (or mixed mechanistic-statistical) approaches. �is shi� is, in large part,
due to the increasingly commonplace availability of digital surveillance data. While
traditional epidemiologic surveillance data typically arrives a�er a waiting period (for
example, the standard measure for seasonal in�uenza levels is �rst released a�er a 1
week delay), digital surveillance data correlated to the disease are available in (virtually)
real-time, and carry information ahead of o�cial reports. �ese data streams originate
from various sources, roughly categorized by internet (e.g., web search volume for
symptoms, relevant social media mentions, online surveys for self-reported cases),
electronic health records (e.g., volume of insurance claims, rates of related doctor
visits), consumer behavior (e.g., purchasing trends of medication or medical devices),
among others.

Digital surveillance data, while a huge win towards re�ecting current disease levels,
is not perfect. Many (though not all) common data sources are subject to regular
revision and back�ll, where, due to the arrival of delayed information, the initial value
is updated several times over the future. Critically, retrospective studies to evaluate
a nowcasting model must be careful to train on versioned data, that is, the model
should only access the version of preliminary data that was available at the time of
prediction, and not the �nalized values recorded a�er. When training on �nalized data,
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models can be overcon�dent in their ability to produce accurate predictions for the
true future (this is observed in McDonald et al. [2021]). Adjusting models to deal with
provisional surveillance data—from both traditional and digital sources—is central to
providing accurate real-time nowcasts (for instance, Brooks et al. [2018a] demonstrates
the importance of this in the context of in�uenza).

1.2 Overview of contributions
Driven by these motivations, our thesis work builds on sensor fusion, a two-step
statistical nowcasting framework pioneered by Farrow [2016]. Sensor fusion �rst
models the auxiliary data inputs to produce sensors (eponymous to the title) of the target
signal, which are subsequently combined (or “fused”) to generate a �nal prediction.
Figure 1.1 depicts this process in a more formal way, where sensor fusion is applied
to produce a current-time prediction of a one-step-delayed signal. In a conceptual
vein, the ideology underlying sensor fusion is much the same as in ensemble learning,
wherein a diverse set of base learners, each contributing complementary information,
are assimilated to produce more accurate and robust predictions. Indeed, we consider
sensor fusion as an ensemble adapted for online se�ings, where the base learners
are the sensor models, and the assimilation step is a constrained regression problem
(whose exact form is studied in Chapter 2).

In following chapters, we propose extensions of the basic sensor fusion framework,
broadly grouped in two parts, as follows:

• In the �rst part, we study the estimator used in the fusion step, and detail
several mathematical equivalences between it, the Kalman �lter, and regression.
Importantly, these reformulations allow us to propose various extensions to the
original sensor fusion framework, which can be used to improve modeling of
noisy digital surveillance data. We then demonstrate this framework in one of
our main applications: seasonal in�uenza nowcasting, and show that it a�ains
state-of-the-art performance in real se�ings.

• Next, we describe how sensor fusion can be applied to estimate infections, which
are an inherently latent signal that requires a additional, non-trivial modeling step
prior to sensor fusion. Speci�cally, this extra step is to perform deconvolution to
recover infections from observed case reports, assuming a convolutional rela-
tionship where each infection onset is eventually reported a�er some stochastic
delay. Here, our main application is to nowcast symptomatic COVID-19 infec-
tions, and we describe, implement, and carry out extensive experiments for a
non-mechanistic deconvolution framework. We then propose, implement, and
show results for a reconvolution approach to perform distributional evaluation.
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3/26/22, 1:17 PM sf

1/1

Training data for th sensor

Step 1: Sensor Modeling Step 2: Fusion

Sensor 
Fusion

Historical training data

Figure 1.1: Overview of the basic sensor fusion framework. At prediction time t, the goal is
to estimate the state xt, using d contemporaneous data sources, denoted ut1, . . . , utd. Step
1 produces the latest sensors zt1, . . . , ztd, as the outputs of trained sensor models f1, . . . , fd.
�e individual sensor models are trained to predict past states using past observations
from their corresponding data source. �e sensors (intermediate state estimates), along
with historical sensors modeled at past prediction times, are fused in Step 2, to produce a
�nal prediction x̂t.

At each step, our work has been guided by real data. In particular, we demonstrate
that our contributions create practical and implementable systems to nowcast in�uenza
and COVID-19 disease activity (corresponding to the two parts, respectively). Below,
we provide an overview and summary of these developments over the three following
chapters, where the �rst chapter corresponds to the �rst part, and the second and third
chapters cover the second part.

Chapter 2 Kalman Filter, Sensor Fusion, and Constrained Regression

�is work was done in collaboration with David Farrow, Roni Rosenfeld, and
Ryan Tibshirani, and contains content that appears in Jahja, Farrow, Rosenfeld,
and Tibshirani [2019]. David Farrow motivated the original idea, which was
then built on by Ryan Tibshirani and myself, and further developed in joint
meetings with Roni Rosenfeld. I handled implementation of the ideas, adapting
tools and code originally built by David Farrow and Logan Brooks.

Within this chapter we investigate a form of sensor fusion (which we distinguish
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here as KF-SF) derived from the classic Kalman �lter [Kalman, 1960], an longstanding
algorithm for sequential estimation in linear dynamical systems. KF-SF is the result
of a reformulated KF with in�nite process noise (corresponding to the process model
evolving states forward), which essentially places a �at prior on the state dynamics.
�is reformulation (which we again note is not our novel contribution, see, e.g., [Brown
and Hwang, 2012, Farrow, 2016]) is particularly useful in se�ings where the process
model is unknown or known to be misspeci�ed, leading to poor quality estimates
[He�es, 1966]. However, KF-SF has otherwise been considered as a limiting case of the
Kalman �lter.

In this work we describe two new and interesting equivalences between KF-SF, the
Kalman �lter, and regression. First, we show that the Kalman �lter can be viewed as a
special case of KF-SF when we augment the measurement space; this is a somewhat
surprising result, as previous derivations of KF-SF have always mentioned it as a special
case of Kalman �lter (one without the in�uence of a process model). �is augmentation
is quite useful; we can reintroduce state estimates from a candidate (or many candidate)
process models, and fold in state dynamics without explicit dependence. Our second
equivalence connects KF-SF (and hence the Kalman �lter) to regression, and states
that—given access to past state observations—KF-SF can be rewri�en as a regression
problem with equality constraints. �is result opens the door for many extensions in
Kalman �lter methods by transferring established techniques in regression literature.
To start, we describe extensions for regularization and gradient boosting.

Finally, we implement and evaluate KF-SF applied to in�uenza nowcasting in the
United States, giving various interpretations of the constrained regression problem
along the way, and show that this approach achieves state-of-the-art performance.
�ese experiments build on the operational nowcasting system founded in Farrow
[2016] using digital surveillance data and tools provided by the Carnegie Mellon Delphi
Research Group [Farrow et al., 2015].

Chapter 3 Nowcasting Convolved Signals

�is work was done in collaboration with Andrew Chin and Ryan Tibshirani,
and contains content that appears in Jahja, Chin, and Tibshirani [2022]. �e
methodology was developed by Ryan Tibshirani and myself, and we thank
Logan Brooks and Robert Tibshirani for helpful feedback. Andrew Chin and I
implemented the ideas and experiments.

�is chapter is dedicated to a deconvolution framework for nowcasting a hidden
signal when given measurements of its convolved outcomes. Motivated by the COVID-
19 pandemic, our underlying goal is to track incidence of COVID-19 infections, rather
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than observed cases or deaths (which do not re�ect current disease spread). To give
a backdrop to our approach: infections are commonly inferred through case reports,
wherein an infected individual undergoes a period of symptom onset, testing, and
processing, before their infection is published as recorded case. (Of course, there are
quali�cations at each stage, e.g., asymptomatic or untested infections; we provide a
discussion of these important issues in a section of this chapter.) �e time interval be-
tween symptom onset to publication is referred to as the reporting delay, and, given the
distribution of this reporting delay, we can deconvolve case reports to infer infections.

Before describing the components of our framework, we remark that the Kalman
�lter can be (and traditionally is) applied to problems where the target state is always
unobserved. However, in our particular se�ing we have special access to a direct
byproduct of our target (case reports), and moreover, we have a model for the re-
lationship between the two. In this sense, we can consider our signal as partially
observed through convolved outcomes. Our approach uses this extra information to
its advantage, and performs a three step process:

1. using public line list data, estimate the symptom-onset-to-report delay distribu-
tion;

2. perform deconvolution on case reports using the estimated delay distribution to
get initial infection estimates;

3. apply a sensor fusion layer, which creates and assimilates sensors as in Chapter 2,
but which are trained to predict estimated past infections, ultimately yielding
the �nal infection estimates.

At each step, we provide and evaluate various solutions. In the initial step, we
describe an adjusted procedure for estimating the (time-varying) reporting delay
distribution in real-time. �is adjustment is necessary due to data truncation, where
the most recently onset infections have yet to be recorded in the line list dataset.
Our solution performs an iterative adjustment similar in spirit to the Kaplan-Meier
estimator [Kaplan and Meier, 1958], an established technique in survival analysis.

�e bulk of our contributions are prompted by the subsequent deconvolution step.
Deconvolution is a core topic in signal processing literature, and the direct solution
is notoriously known to be ill-posed in the presence of noise or misspeci�cation
[Oppenheim and Verghese, 2017]. Given the limitations of real-world data, it is virtually
impossible to guarantee the stability of the reported case signal, or exact estimation
of reporting delay distribution. Moreover, real-time deconvolution is subject to the
right truncation e�ect, which refers to the lack of future case information needed to
fully infer the most recent infections falling on the right boundary (where the axis
is time). To address both issues, we pose deconvolution as an optimization problem,
and develop three forms of regularization to address instability. In stepwise fashion,
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we work through each regularization term, and demonstrate their utility towards
improving nowcast performance.

Lastly, in Step 3 we return to sensor fusion, and train various digital surveillance
sensors onto the estimated infections. �ese are subsequently fused to update the
infection estimates across all past; that is, we leverage auxiliary information to improve
estimation of our target infection signal both for present and historical values (which
can help us assess the stability of our deconvolution method across time). Aside
from this di�erence, the estimated infections are in essence treated as observed, and
the sensor fusion framework described previously (depicted in Figure 1.1) can be
applied, as-is. Notably, our work shows that sensor fusion, in addition to reducing
latency in predictions, can be used to mitigate right truncation e�ects, and contributes
signi�cantly towards stabilizing the most recent estimates.

�roughout this work, we evaluate the performance of our methods against “�nal-
ized” infections, which is a ground truth signal found by regularized deconvolution
long a�er potential revisions or right truncation e�ects can occur. However, evaluating
our contributions against an observable signal is critical to understanding the �delity
of our nowcasts. �is is the focus of our work in the next chapter.

Chapter 4 A Reconvolution Approach for Evaluation

�is work was done in collaboration with Daniel McDonald, James Sharpnack,
and Ryan Tibshirani. While all authors contributed towards the methodology,
the �nal version used ideas proposed by Ryan Tibshirani and Daniel McDonald.
Daniel McDonald and I implemented the ideas and experiments.

�is chapter serves as a sequel to the previous Chapter 3, and studies a reconvolu-
tion framework to evaluate the nowcasts by propagating the deconvolution solution
forwards and measuring the error to future outcomes. Importantly, this work adds a
distributional layer, which is central to validating the stability and trustworthiness of
our nowcasts. Continuing in the COVID-19 se�ing, we propose a three step framework
to generate distributional case forecasts from the estimated infection solutions, as
follows:

1. generate perturbed samples of the infection solutions through a Monte Carlo
deconvolution procedure;

2. apply partial reconvolution to propagate each sampled infection curve forward
to an point estimate of future cases;

3. add appropriate residual noise to each case estimate to form a �nal density
forecast.
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We summarize each step in turn. First, we introduce stochasticity into the infection
estimates (which would otherwise be considered �xed and known), by reconvolving
the infection estimates forwards, adding training residual noise, and resolving the
deconvolution problem. We repeat this procedure many times, and the resulting col-
lection of infection solutions are considered to be draws from the solution distribution.
To be straightforward, this procedure does not capture the uncertainty of our estimates,
but rather their stability, which is still an important quantity to measure. In following
experiments, we show that injecting stochasticity at this step is helpful to produce
realistic forecast trajectories.

In the next step, we apply partial reconvolution, a technique to push forward
infection estimates into an estimate of future cases without imposing any parametric
structure or further assumptions apart from a locally constant reporting delay distri-
bution. �e need for partial reconvolution (over the standard “full” reconvolution) is
due to missing estimates of infections in the future, which are necessary to calculate
future cases. Partial reconvolution bypasses additional modeling of the infection (or
case) curve, and propagates forward any available infection estimates with upweighted
probability mass such that the full probability mass is carried forward. A�er passing
our infection estimates through partial reconvolution, we have in hand a set of point
case forecast trajectories.

In the third and �nal step, we construct a distribution for each forecast time
by repeatedly adding sampled residual noise to the case forecasts. Importantly, to
avoid overcon�dent forecast distributions, we construct the residual distribution using
historical predictions, made out-of-sample. �is procedure inherently assumes that the
current nowcast task will have similar error as past nowcast tasks, but this can be a
serious limitation in se�ings where the underlying target is highly non-stationary. We
describe various extensions to create more sophisticated residual banks; for example,
a weighting scheme, where higher sampling weights are assigned to residuals that
come from nowcast tasks where the historical case signal exhibits similar behavior to
current cases. �ere are many avenues towards identifying similar tasks, and we leave
future study and implementation of these approaches as an open direction.

With this framework, we evaluate and compare the COVID-19 nowcasts made by
three deconvolution methods, and �nd evidence supporting our original �ndings in
Chapter 3 (which, recall, performed point evaluation to a �nalized infection estimate).
�is is an encouraging result for both our deconvolution and reconvolution frameworks.
Lastly, we provide a discussion on alternative approaches for evaluation that do not
rely on reconvolution.



Chapter 2

Kalman Filter, Sensor Fusion, and
Constrained Regression

�is work was done in collaboration with David Farrow, Roni Rosenfeld,
and Ryan Tibshirani, and contains content that appears in:

Maria Jahja, David C. Farrow, Roni Rosenfeld, and Ryan J. Tibshirani.
Kalman Filter, Sensor Fusion, and Constrained Regression: Equiva-
lences and Insights. In: Advances in Neural Information Processing
Systems, pages 13187–13196, 2019.

Python code for this work is available at:
http://github.com/mariajahja/kf-sf-flu-nowcasting.

2.1 Preliminaries
Let xt ∈ Rk, t = 1, 2, 3, . . . denote states and zt ∈ Rd, t = 1, 2, 3, . . . denote measure-
ments evolving according to the time-invariant linear dynamical system:

xt = Fxt−1 + δt, (2.1)
zt = Hxt + εt. (2.2)

We assume the noise terms δt, εt have mean zero and covariances Q ∈ Rk×k and
R ∈ Rd×d, respectively, for all t. Also, we assume that the initial state x0 and all
noise terms are mutually independent. We call (2.1) the process model and (2.2) the
measurement model.

9

http://github.com/mariajahja/kf-sf-flu-nowcasting
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2.1.1 Kalman filter (KF)
�e Kalman �lter (KF) [Kalman, 1960] is a method for sequential estimation in the
model (2.1), (2.2). Given past estimates x̂1, . . . , x̂t and measurements z1, . . . , zt+1, we
form an estimate x̂t+1 of the state xt+1 via

x̄t+1 = Fx̂t, (2.3)
x̂t+1 = x̄t+1 +Kt+1(zt+1 −Hx̄t+1), (2.4)

where Kt+1 ∈ Rk×d is called the Kalman gain (at time t + 1). It is itself updated
sequentially, via

P̄t+1 = FPtF
T +Q, (2.5)

Kt+1 = P̄t+1H
T (HP̄t+1H

T +R)−1, (2.6)
Pt+1 = (I −Kt+1H)P̄t+1. (2.7)

where Pt+1 ∈ Rk×k denotes the state error covariance (at time t+ 1). �e step (2.3) is
o�en called the predict step: we form an intermediate estimate x̄t+1 of the state based
on the process model and our estimate at the previous time point. �e step (2.4) is
o�en called the update step: we update our estimate x̂t+1 based on the measurement
model and the measurement zt+1.

Under the data model (2.1), (2.2) and the conditions on the noise stated above,
the Kalman �lter a�ains the optimal mean squared error E‖x̂t − xt‖22 among all
linear unbiased �lters, at each t = 1, 2, 3, . . .. When the initial state x0 and all noise
terms are Gaussian, the Kalman �lter estimates exactly reduce to the Bayes estimates
x̂t = E(xt|z1, . . . , zt), t = 1, 2, 3, . . .. Numerous important extensions have been
proposed, e.g., the ensemble Kalman �lter (EnKF) [Evensen, 1994, Houtekamer and
Mitchell, 1998], which approximates the noise process covariance Q by a sample
covariance in an ensemble of state predictions, as well as the extended Kalman �lter
(EKF) [Smith et al., 1962] and unscented Kalman �lter (UKF) [Julier and Uhlmann,
1997], which both allow for nonlinearities in the process model. Particle �ltering
(PF) [Gordon et al., 1993] has more recently become a popular approach for modeling
complex dynamics. PF adaptively approximates the posterior distribution, and in doing
so, avoids the linear and Gaussian assumptions inherent to the KF. �is �exibility
comes at the cost of a greater computational burden.

2.1.2 Sensor fusion (SF)
If we let the noise covariance in the process model diverge to in�nity, Q → ∞ (To
make this unambiguous, we may take, say, Q = aI and let a→∞.) then the Kalman
�lter estimate in (2.3), (2.4) simpli�es to

x̂t+1 = (HTR−1H)−1HTR−1zt+1. (2.8)
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�is can be veri�ed by rewriting the Kalman gain asKt+1 = (P̄−1t+1 +HTR−1H)−1HTR−1,
and observing that P̄−1t+1 → 0 as Q→∞. Alternatively, we can verify this by special-
izing to the case of Gaussian noise: as tr(Q)→∞, we approach a �at prior, and the
Kalman �lter (Bayes estimator) just maximizes the likelihood of zt+1|xt+1. From the
measurement model (2.2) (assuming Gaussian noise), this is a weighted regression of
zt+1 on the measurement map H , precisely as in (2.8).

We will call (2.8) the sensor fusion (SF) estimate (at time t+ 1). We note that “sensor
fusion” is typically used as a generic term, similar to “data assimilation”; we use it to
speci�cally describe the estimate in (2.8) to distinguish it from the KF. �is is useful
when we describe the equivalences in Sections 2.2 and 2.3. In this se�ing, we will also
refer to the measurements as sensors.

Summary of contributions
As de�ned, sensor fusion is a special case of the Kalman �lter when there is in�nite
process noise; said di�erently, it is a special case of the Kalman �lter when there is
no process model at all. �us, looking at (2.8), the state dynamics have apparently
been completely lost. Perhaps surprisingly, as we will show shortly, these dynamics
can be exactly recovered by augmenting the measurement vector zt+1 with the KF
intermediate prediction x̄t+1 = Fx̂t in (2.3) (and adjusting the map H and covariance
R appropriately). We summarize this and our other contributions:

1. We show in Section 2.2 that, if we take the KF intermediate prediction x̄t+1 in
(2.3), append it to the measurement vector zt+1, and perform SF (2.8) (with an
appropriately adjusted H,R), then the result is exactly the KF estimate (2.4).

2. We show in Section 2.3 that, if we are in a problem se�ing in which past states
are observed (at some lag, which is the case in the �u nowcasting application),
and we replace the noise covariance R from the measurement model by the
empirical covariance on past data, then the sensor fusion estimate (2.8) can
be wri�en as B̂T zt+1, where B̂ ∈ Rd×k is a matrix of coe�cients that solves a
regression problem of the states on the measurements (using past data), subject
to the equality constraint HT B̂ = I .

3. We demonstrate the e�ectiveness of our new regression formulation of SF in
Section 2.6 by describing an application of this methodology to nowcasting the
incidence of weekly �u in the US. �is achieves state-of-the art performance in
this problem.

4. Later, in Section 5.2, we detail some extensions of the regression formulation of
SF; they do not have direct equivalences to SF (or the KF), but are intuitive and
extend dynamical systems modeling in new directions (e.g., using `1 penalization
to perform a kind of process model selection).
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2.1.3 Related work
�e Kalman �lter and its extensions, as previously referenced (EnKF, EKF, UKF), are the
de facto standard in state estimation and tracking problems; the literature surrounding
them is enormous and we cannot give a thorough treatment. Various authors have
pointed out the simple fact that maximum likelihood estimate in (2.8), which we call
sensor fusion, is the limit of the KF as the noise covariance in the process model
approaches in�nity (see, e.g., Chapter 5.9 of Brown and Hwang [2012]). We have
not, however, seen any authors note that this static model can recover the KF by
augmenting the measurement vector with the KF intermediate prediction (�eorem 1).

Along the lines of our second equivalence (�eorem 2), there is older work in the
statistical calibration literature that studies the relationships between the regressions
of y on x and x on y (for multivariate x, y, see Brown [1982]). �is is somewhat related
to our result, since we show that a backwards or indirect approach, which models
zt+1|xt+1, is actually equivalent to a forwards or direct approach, which predicts xt+1

from zt+1 via regression. However, the details are quite di�erent.

Finally, our SF methodology in the �u nowcasting application blends together
individual predictors in a way that resembles linear stacking [Breiman, 1996, Wolpert,
1992]. In fact, one implication of our choice of measurement map H in the �u now-
casting problem, as well as the constraints in our regression formulation of SF, is that
all regression weights must sum to 1, which is the standard in linear stacking as well.
However, the equality constraints in our regression formulation are quite a bit more
complex, and re�ect aspects of the sensor hierarchy that linear stacking would not.

2.2 Equivalence between KF and SF
As already discussed, the sensor fusion estimate (2.8) is a limiting case of the Kalman
�lter (2.3), (2.4), and initially, it seems, one rather limited in scope: there is e�ectively
no process model (as we have sent the process variance to in�nity). However, as
we show next, the KF is actually itself a special case of SF, when we augment the
measurement vector by the KF intermediate predictions, and appropriately adjust the
measurement map H and noise covariance R. �e proof is elementary, a consequence
of the Woodbury matrix and related manipulations. It is given in A.1 of the appendix.

�eorem 1. At each time t = 0, 1, 2, . . ., suppose we augment our measurement vector
by de�ning z̃t+1 = (zt+1, x̄t+1) ∈ Rd+k, where x̄t+1 = Fx̂t is the KF intermediate pre-
diction at time t+ 1. Suppose that we also augment our measurement map by de�ning
H̃ ∈ R(d+k)×k to be the rowwise concatenation of H and the identity matrix I ∈ Rk×k.
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Furthermore, suppose we de�ne an augmented measurement noise covariance

R̃t+1 =

[
R 0
0 P̄t+1

]
, (2.9)

where P̄t+1 is the KF intermediate error covariance at time t+1(as in (2.5)). �en applying
SF to the augmented system produces an estimate at t+ 1 that equals the KF estimate,

(H̃T R̃−1t+1H̃)−1H̃T R̃−1t+1z̃t+1 = x̄t+1 +Kt+1(zt+1 −Hx̄t+1), (2.10)

where Kt+1 is the Kalman gain at t+ 1 (as in (2.6)).

We give several remarks.

Remark 1. We can think of the last state estimate x̂t in the theorem (which is prop-
agated forward via x̄t+1 = Fx̂t) as the previous output from SF itself, when applied
to the appropriate augmented system. More precisely, by induction, �eorem 1 says
that iteratively applying SF to z̃t+1, H̃, R̃t+1 across times t = 0, 1, 2, . . ., where each
x̄t+1 = Fx̂t is the intermediate prediction using the last SF estimate x̂t, produces a
sequence x̂t+1, t = 0, 1, 2, . . . that matches the state estimates from the KF.

Remark 2. �e result in �eorem 1 can be seen from a Bayesian perspective, as was
pointed out by an anonymous reviewer of the work. When the initial state x0 and all
noise terms in (2.1), (2.2) are Gaussian, recall the KF reduces to the Bayes estimator.
Here the posterior is the product of a Gaussian likelihood and Gaussian prior, and is
thus itself Gaussian. (�e proof of this standard fact uses similar arguments to the proof
of �eorem 1.) Meanwhile, in augmented SF, we can view the Gaussian likelihood
being maximized as the product of the Gaussian density of zt+1 and that of x̄t+1. �is
matches the posterior used by the KF, where the density of x̄t+1 plays the role of the
prior in the KF. �erefore in each case, we are de�ning our estimate to be the mean of
the same Gaussian distribution.

Remark 3. �e equivalence between SF and KF can be extended beyond the case
of linear process and linear measurement models. Given a nonlinear process map f
and a nonlinear process model h, suppose we de�ne x̄t+1 = f(x̂t), Ft+1 = Df(x̂t) (the
Jacobian of f at x̂t), and Ht+1 = Dh(x̄t+1) (the Jacobian of h at x̄t+1). Suppose we
de�ne the augmented measurement vector as

z̃t+1 =
(
zt+1 +Ht+1x̄t+1 − h(x̄t+1), x̄t+1

)
, (2.11)

where we have o�set the measurement zt+1 by the residual Ht+1x̄t+1 − h(x̄t+1) from
linearization. Suppose, as in the theorem, we de�ne the augmented measurement
map H̃t+1 ∈ R(d+k)×k to be the rowwise concatenation of Ht+1 and I ∈ Rk×k, and
de�ne R̃t+1 ∈ R(d+k)×(d+k) as in (2.9), for P̄t+1 as in (2.5), but with Ft+1, Ht+1 in place
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of F,H . In A.2, we prove that

(H̃T
t+1R̃

−1
t+1H̃t+1)

−1H̃T
t+1R̃

−1
t+1z̃t+1 = x̄t+1 +Kt+1

(
zt+1 − h(x̄t+1)

)
, (2.12)

where Kt+1 is as in (2.6), but with Ft+1, Ht+1 in place of F,H . �e right-hand side
above is precisely the extended KF (EKF). �e le�-hand side is what we might call
extended SF (ESF).

2.3 Equivalence between SF and regression
Suppose that in our linear dynamical system, at each time t, we observe the measure-
ment zt, make a prediction x̂t for xt, then later observe the state xt itself. We may
assume without a loss of generality that we observe the full past states xi, i = 1, . . . , t
(if this is not the case, and we observe only some subset of the past, then the only
changes to make in what follows are notational). �is setup indeed describes the
in�uenza nowcasting problem, which is one of our central motivating examples.

Assuming the measurement noise covariance R is unknown, we may use

R̂t+1 =
1

t

t∑
i=1

(zi −Hxi)(zi −Hxi)T , (2.13)

the empirical (uncentered) covariance based on past data, as an estimate. Under this
choice, it turns out that sensor fusion (2.8) is exactly equivalent to a regression of states
on measurements, subject to certain equality constraints. �e proof is elementary, but
requires detailed arguments. It is provided in A.3 of the appendix.

�eorem 2. Let R̂t+1 be as in (2.13) (assumed to be invertible). Consider the SF prediction
at time t+ 1, with R̂t+1 in place of R. Denote this by x̂t+1 = B̂T zt+1, where

B̂T = (HT R̂−1t+1H)−1HT R̂−1t+1

(andHT R̂−1t+1H is assumed invertible). Each column of B̂, denoted b̂j ∈ Rd, j = 1, . . . , k,
solves

minimize
bj∈Rd

t∑
i=1

(xij − bTj zi)2

subject to HT bj = ej,

(2.14)

where ej ∈ Rd is the jth standard basis vector (all 0s except for a 1 in the jth component).

As discussed earlier, the interpretation of (HT R̂−1t+1H)−1HT R̂−1t+1zt+1 as the coef-
�cients from regressing zt+1(the response) onto H (the covariates) is more or less
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immediate. Interpreting the same quantity as B̂T zt+1 = (b̂T1 zt+1, . . . , b̂
T
k zt+1), the pre-

dictions from historically regressing xi, i = 1, . . . , t (the response) onto zi, i = 1, . . . , t
(the covariates), however, is much less obvious. �e la�er is a forwards or direct regres-
sion approach to predicting xt+1, whereas SF was originally de�ned via the backwards
or indirect perspective inherent to the measurement model (2.2).

2.4 Nowcasting influenza activity in the US
To return to our motivating example, we now describe the background and setup
for the in�uenza (or �u) nowcasting problem. �e state variable of interest is the
weekly percentage of weighted in�uenza-like illness (wILI), a measure of �u incidence
provided by the Centers for Disease Control and Prevention (CDC), in each of the
k = 51 US states (including DC). Because it takes time for the CDC to collect and
compile this data, they release wILI values with a 1 week delay. Meanwhile, various
proxies for the �u (i.e., data sources that are potentially correlated with �u incidence)
are available in real time, e.g., web search volume for �u-related terms, site tra�c
metrics for �u-related pages, pharmaceutical sales for �u-related products, etc. We can
hence train (using historical data) sensors to predict wILI, one from each data source,
and plug them into sensor fusion (2.8) in order to “nowcast” the current �u incidence
(that would otherwise remain unknown for another week).

Such a sensor fusion system for �u nowcasting, using d = 308 sensors (�u proxies),
is described in Chapter 4 of Farrow [2016]. �is is more than just a hypothetical
system; it is fully operational, and run by the Carnegie Mellon DELPHI group to
provide real-time nowcasts of �u incidence every week, in all US states, plus select
regions, cities, and territories. (See https://delphi.midas.cs.cmu.edu). In addition to the
surveillance sensors described above (search volume for �u terms, site tra�c metrics
for �u pages, etc.), the measurement vector in this nowcasting system also uses a sensor
that is trained to make predictions of wILI using a seasonal autoregression with 3 lags
(SAR3). From the KF-SF equivalence established in Section 2.2, we can think of this
SAR3 sensor as serving the role of something like a process model, in the underlying
dynamical system.

While wILI itself is available at the US state level, the data source used to train
each sensor may only be available at coarser geographic resolution. �us, importantly,
each sensor outputs a prediction at a di�erent geographic resolution (which re�ects
the resolution of its corresponding data source). As an example, the number of visits
to �u-related CDC pages are available for each US state separately; so for each US
state, we train a separate sensor to predict wILI from CDC site tra�c. However, counts
for Wikipedia page visits are only available nationally; so we train just one sensor to
predict national wILI from Wikipedia page visits.

https://delphi.midas.cs.cmu.edu
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Figure 2.1: Simpli�ed version of the �u
nowcasting problem, with k = 5 states
and d = 8 sensors. We have a 3-level
hierarchy, where x1, x2, x3 are part of
the �rst region and x4, x5 are part of the
second. �e national level is at the root.
As for the sensors, we have one at each
state, one at each region, and one at the
national level. Assuming all states have
equal populations, the sensor map H is

H =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1/3

1/3
1/3 0 0

0 0 0 1/2
1/2

1/5
1/5

1/5
1/5

1/5


.

Assuming unbiasedness of all the sensors, we construct the map H in (2.2) so that
its rows re�ect the geography of the sensors. For example, if a sensor is trained on
data that is available at the ith US state, then its associated row in H is

(0, . . . 1
↑
i

, . . . 0);

and if a sensor is trained on data from the aggregate of the �rst 3 US states, then its
associated row is

(w1, w2, w3, 0, . . . 0),

for weights w1, w2, w3 > 0 such that w1 + w2 + w3 = 1, based on relative state
populations; and so on. Figure 2.1 illustrates the setup in a simple example.

2.5 Interpreting the constraints
At a high-level, the constraints in (2.14) encode information about the measurement
model (2.2). �ey also provide some kind of implicit regularization. Interestingly, as
we will see in the experiment discussed shortly, this can still be useful when used in
addition to more typical (explicit) regularization.
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How can we interpret these constraints? We give three interpretations, the �rst
one speci�c to the �u forecasting se�ing, and the next two general.

Flu interpretation

In the �u nowcasting problem, recall, the map H has rows that sum to 1, and they
re�ect the geographic level at which the corresponding sensors were trained (see
Section 2.4). �e constraints HT bj = ej , j = 1, . . . , k can be seen in this case as a
mechanism that accounts for the geographical hierachy underlying the sensors. As a
concrete example, consider the simpli�ed setup in Figure 2.1, and j = 3. �e constraint
HT b3 = e3 reads:

b31 + 1/3 b36 + 1/5 b38 = 0,

b32 + 1/3 b36 + 1/5 b38 = 0,

b33 + 1/3 b36 + 1/5 b38 = 1,

b34 + 1/3 b37 + 1/5 b38 = 0,

b35 + 1/3 b37 + 1/5 b38 = 0.

�e third line can be interpreted as follows: an increase of 1 unit in sensor z3, 1/3 units
in z6, and 1/5 units in z8, holding all other sensors �xed, should lead to an increase in
1 unit of our prediction for x3. �is is a natural consequence of the hierarchy in the
sensor model (2.2), visualized in Figure 2.1. �e �rst line can be read as: an increase
of 1 unit in sensor z1, 1/3 units in z6, and 1/5 in z8, with all others �xed, should not
change our prediction for x3. �is is also natural, following from the hierachy (i.e.,
such a change must have been propogated by x1). �e other lines are similar.

Invariance interpretation

�e SF prediction (at time t+ 1) is x̂t+1 = B̂T zt+1. To denoise (i.e., estimate the mean
of) the measurement zt+1, based on the model (2.2), we could use ẑt+1 = Hx̂t+1. Given
the denoised ẑt+1, we could then re�t our state prediction via x̃t+1 = B̂T ẑt+1. But due
to the constraintHT B̂ = I (a compact way of expressingHT b̂j = ej , for j = 1, . . . , k),
it holds that x̃t+1 = B̂THx̂t+1 = x̂t+1. �is is a kind of invariance property. In other
words, we can go from estimating states, to re��ing measurements, to re��ing states,
etc., and in this process, our state estimates will not change.

Generative interpretation

Assume t ≥ k, and �x an arbitrary j = 1, . . . , k as well as bj ∈ Rk. �e constraint
HT bj = ej implies, by taking an inner product on both sides with xi, i = 1, . . . , k,

(Hxi)
T bj = xij, i = 1, . . . , k.
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If we assume xi, i = 1, . . . , k are linearly independent, then the above linear equalities
are not only implied by HT bj = ej , they are actually equivalent to it. Invoking the
model (2.2), we may rewrite the constraint HT bj = ej as

E(bTj zi|xi) = xij, i = 1, . . . , k. (2.15)

In the context of problem (2.14), this is a statement about a generative model for the
data (as zi|xi describes the distribution of the covariates conditional on the response).
�e representation in (2.15) shows that (2.14) constrains the regression estimator to
have the correct conditional predictions, on average, on the data we have already seen
(xi, zi), i = 1, . . . , k. (Note here we did not have to use the �rst k time points; any past
k time points would su�ce.)

2.6 Influenza nowcasting experiments

2.6.1 Setup
We examine the performance of our methods for nowcasting (one-week-ahead predic-
tion of) wILI across 5 �u seasons, from 2013 to 2018 (total of 140 weeks). As described
earlier, we have k = 51 states and d = 308 measurements. At week t+ 1, we derive an
estimate x̂t+1 of the current wILI in the 51 US states, based on sensors zt+1 (each sensor
being the output of an algorithm trained to predict wILI at a di�erent geographic
resolution from a given data source), and past wILI and sensor data.

We consider 7 methods for computing the nowcast x̂t+1: (i) SF, or equivalently,
constrained regression (2.14); (ii) SF as in (2.14), but with an additional ridge (squared
`2) penalty (equivalently, SF with covariance shrinkage); (iii) SF as in (2.14), but with
an additional lasso (`1) penalty; (iv/v) regression as in (2.14), but without constraints,
and using a ridge/lasso penalty; (vi) random forests (RF) [Breiman, 2001], trained on
all of the sensors; (vii) RF, but trained on all of the underlying data sources used to �t
the sensors.

At prediction week t + 1, we use the last 3 years (weeks t − 155 through t) as
the training set for all 7 methods. We do not implement unpenalized regression (as
in (2.14), but without constraints), as it is not well-de�ned (156 observations and
308 covariates). We point out that SF is still well-de�ned, due of the constraint in
(2.14): a nonunique solution only occurs when the (random) null space of the covariate
matrix has a nontrivial intersection with the null space of HT , which essentially never
happens. All ridge and lasso tuning parameters are chosen by optimizing one-week-
ahead prediction error over the latest 10 weeks of data (akin to cross-validation, but
for a time series context like ours).
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Figure 2.2: Top row, from le� to right: data sources, sensors, and nowcasts are compared to the
underlying wILI values for Pennsylvania during �u season 2017-18. For visualization purposes, the
sources are scaled to �t the range of wILI. On the rightmost plot, we display nowcasts using select
methods. Bo�om row: MAEs (full colors) and MADs (light colors) of nowcasts over 5 �u seasons
from 2013-14 to 2017-18.

Real-data missingness

Unfortunately, sensors are observed at not only varying geographic resolutions, but
also varying temporal resolutions (since their underlying data sources are), and miss-
ing values occur. In our experiments, we choose to compute predictions using the
regression perspective, and apply a simple mean imputation approach (using only past
sensor data), before ��ing all models.

2.6.2 Results and interpretations
�e bo�om row of Figure 2.2 displays the mean absolute errors (MAEs) from one-
week-ahead predictions by the 7 methods considered, averaged over the 51 US states,
for each of the 5 seasons. Also displayed are the mean absolute deviations (MADs), in
light colors. We see that SF with ridge regularization is generally the most accurate
over the 5 seasons, SF with lasso regularization is a close second, and SF without any
regularization is the worst. �us, clearly, explicit regularization helps. Importantly,
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we also see that the constraints in the regression problem (2.14) (which come from
its connection to SF) play a key role: in each season, SF with ridge regularization
outperforms ridge regression, and SF with lasso regularization outperforms the lasso.
�erefore, the constraints provide additional (bene�cial) implicit regularization.

RF trained on sensors performs somewhat competitively. RF trained on sources is
more variable (in some seasons, much worse than RF on sensors). �is observation
indicates that training the sensors is an important step for nowcasting accuracy, as this
can be seen as a form of denoising, and suggests a view of all the methods we consider
here (except RF on sources) as prediction assimilators (rather than data assimilators).
Finally, the top row Figure 2.2 visualizes the nowcasts for Pennsylvania in the 2017-18
season. We can see that SF, RF (on sensors), and even ridge regression are noticeably
more volatile than SF with ridge regularization.

2.7 Discussion
In this work, we studied connections between the Kalman �lter, sensor fusion, and
regression. We derived equivalences between the �rst two and la�er two, and discussed
various interpretations and implications of our results. We studied the application of
our work to nowcasting the weekly in�uenza levels in the US. We remark that the
equivalences described in this chapter are deterministic, in that they do not require the
modeling assumptions (2.1), (2.2), or any modeling assumptions whatsoever. Further-
more, even though their proofs are elementary (they are purely linear algebraic) and
the se�ing is a classical one (linear dynamical systems), these equivalences are—as far
as we can tell—new results. �ey may have implications beyond what is explored in
this work.

For example, the regression formulation of SF may still be a useful perspective for
problems in which past states are fully unobserved (this being the case in most KF
applications). In such problems, we may consider using smoothed estimates of past
states, obtained by running a backward version of the KF forward recursions (2.3)–(2.7)
(see, e.g., Chapter 7 of Anderson and Moore [1979]), for the purposes of the regression
formulation.

As another example, the SF view of the KF may be a useful formulation for the
purposes of estimating the covariances R,Q, or the maps F,H , or all of them; in this
paper, we assume that F,H,R,Q are known (except for in the regression formula-
tion of SF, in which R is unknown but past states are available); in general, there
are well-developed methods for estimating F,H,R,Q such as subspace identi�cation
algorithms (see, e.g., Overshee and Moor [1996]), and it may be interesting to see if
the SF perspective o�ers any advantages here.
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We provide several modi�cations of the basic SF formulation (leaving details to A.4)
and show that these also equivalences in the regression perspective: namely, shrinking
the empirical covariance in (2.13) towards the identity is equivalent to adding a ridge
(squared `2) penalty to the criterion in (2.14); and also, adding a null sensor at each
state (one that always outputs 0) is equivalent to removing the constraints in (2.14).
�e la�er equivalence here provides indirect but fairly compelling evidence that the
constraints in the regression formulation (2.14) play an important role (under the
model (2.2)): it says that removing them is equivalent to including meaningless null
sensors, which intuitively should worsen its predictions.

Future directions of this work are given in Section 5.2 of our Discussion chapter,
and there we introduce various extensions of the regression formulation that do not
have clear equivalences in the KF perspective. Namely, we detail modi�cations of
the regression problem to allow for distributional nowcasting, and gradient boosting
approaches to simultaneously improve the sensors and assimilate them.



Chapter 3

Nowcasting Convolved Signals

�is work was done in collaboration with Andrew Chin and Ryan Tibshirani,
and contains content that appears in:

Maria Jahja, Andrew Chin, and Ryan J. Tibshirani. Real-Time Estima-
tion of COVID-19 Infections: Deconvolution and Sensor Fusion. To
appear: Statistical Science, 2022.

R and Python code for this work is available at: https://github.com/cmu-delphi/
stat-sci-nowcast.

3.1 Introduction
In this chapter, we study nowcasting in a se�ing where we have only access to the
convolved outcomes yt ∈ Rk of latent (and never observed) states xt ∈ Rk, t =
1, 2, 3, . . .. As before, zt ∈ Rd, t = 1, 2, 3, . . . denote the observed sensors measuring
the latent state.

As previously mentioned, KF is o�en applied in problems where the state is always
unobserved (indeed, it was originally devised for this se�ing), and the process model
(2.1) is applied to evolve estimates of the past state (and subsequently corrected via
(2.2)). Using an extension of our sensor fusion (SF) approach where we estimate
past states (say, the Kalman smoothing approach outlined in Section 2.7), we could
simply designate the outcomes yt as yet another sensor (with a lagged relationship),
and append it to the measurement vector zt. However, doing so would overlook the
informative structure of the convolutional relationship between states xt and outcomes
yt. In our work, we choose to distinguish yt from zt, and instead directly employ
deconvolution to �rst recover the entire sequence of past states x̂t, t = 1, 2, 3, . . ..

22

https://github.com/cmu-delphi/stat-sci-nowcast
https://github.com/cmu-delphi/stat-sci-nowcast
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�e advantages are two-fold. First, we are able to easily incorporate specialized
techniques to improve the volatility of estimates on the right boundary (corresponding
to the most recent state values). �is volatility is due to a data truncation issue, o�en
called right truncation, which occurs in real-time nowcasting. Right truncation (which
we describe in detail shortly) poses a critical challenge in producing stable nowcasts,
and many of our contributions in this work are motivated by it. �e second advantage is
that we now have the past state estimates in hand, without introducing additional state
modeling, and can immediately apply the SF framework as before without modi�cation.

In what follows, we will ground our proposed methods around the goal of estimating
newly onset COVID-19 infections. Infection incidence, to be clear, is a completely
latent time series, emi�ing only observed outcomes captured in published case reports.
As for our sensors, they are nearly identical to the surveillance sensors described
previously in Section 2.4, but are indicators of COVID-19 disease activity rather than
in�uenza. In addition to the extra complications of the latent state, we also focus on
estimating daily infections in real-time, and lay out a framework for an operational
nowcasting system that is forced to cope with all the challenges of disease tracking
using provisional data that can be heavily revised, or occasionally delayed.

Performing real-time nowcasting not only a�ects the way we carry out our ex-
periments (both model training and evaluation), it also leads us to develop novel
methodology to deal with the issue of right truncation (highlighted in Figure 3.1 by the
blue region) mentioned earlier. For example, in order to estimate the delay distribution
that convolves infection symptom onset to case report, we develop a Kaplan-Meier-like
procedure to deal with a form of right censoring that occurs in our real-time data
stream. We also develop new regularization methods to stabilize the most recent
estimates at nowcast time for the optimization problem that we solve in real-time
deconvolution.

We organize the rest of this chapter as follows. In the following Section 3.2, we
provide background and motivation for our work towards COVID-19 nowcasting. We
give an overview of related work in Section 3.3. In Section 3.4, we cover the available
data sources and infrastructure, and other preliminary details about the problem
setup. Formalization of the convolutional model and retrospective construction of
the convolution delay distribution are described in Section 3.5. In Section 3.6, we will
cover the core issues in real-time estimation, and detail the substantive portion of
our methodological contributions. �e sensor fusion layer is covered in Section 3.7.
Section 3.8 contains extensive evaluations—comparing nowcasts made in real-time to
those made retrospectively (using “�nalized” data that would have only been available
much later), and the correlation of these nowcasts to COVID-19 hospitalization rates;
in this section we also introduce a simple post hoc smoothing method. We conclude in
Section 3.9 with a discussion and outline a few directions for future work.
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3.2 COVID-19 background and motivation
Accurate, real-time estimates of incident infections play a critical role in informing
the public health response to the spread of a disease through a population. However,
o�cial metrics on disease activity published by traditional public health surveillance
systems in the United States do not in fact re�ect activity in real-time, as they su�er
from some degree of latency due to the way their reporting pipelines are set up and
implemented.

With addressing the latency in traditional public health reporting a part of the
motivation, the last decade has seen a rise in the development of digital surveillance
streams in public health. Search and social media trends have constituted much of the
focus [e.g., Brownstein et al., 2009, Ginsberg et al., 2009, Kass-Hout and Alhinnawi, 2013,
Paul and Dredze, 2017, Salathé et al., 2012]. More broadly, auxiliary surveillance streams
that operate outside of traditional public health surveillance, like online surveys,
medical device logs, or electronic medical records, have also received signi�cant
a�ention [e.g., Ackley et al., 2020, Carlson et al., 2013, Charu et al., 2017, Kass-Hout
and Zhang, 2011, Leuba et al., 2020, Radin et al., 2020, Santillana et al., 2016, Smolinski
et al., 2015, Viboud et al., 2014, Yang et al., 2019].

Auxiliary surveillance can improve not only on the timeliness but also on the
accuracy and robustness of traditional public health reporting. Auxiliary data streams
have therefore become an integral part of modern systems for disease nowcasting
[e.g., Brooks, 2020, Farrow, 2016, Jahja et al., 2019, McIver and Brownstein, 2014,
Santillana et al., 2015, Yang et al., 2015], which, put broadly, are used to estimate the
contemporaneous value of a signal that will only be fully observed at a later date, using
partial or noisy data.

3.2.1 Surveillance during the pandemic
During the COVID-19 pandemic, public health surveillance has produced, on one hand,
some of the most detailed public health data that the U.S. has ever seen, such as daily,
county-level data on reported COVID-19 cases and deaths. It has also, on the other
hand, painted an imperfect picture of situational awareness, which created a number
of downstream challenges for the public health response. See, e.g., Rosenfeld and
Tibshirani [2021] and references therein for an overview of the issues. In this work,
we identify a few issues surrounding COVID-19 case reporting in particular, propose
methodology to address them, and implement and evaluate this proposal over eight
months of pandemic data.

To give some background, in the early days of the pandemic, a handful of non-
gonvermental groups such as JHU CSSE [Dong et al., 2020] (and also the COVID
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Tracking Project, the New York Times, and USAFacts) became known as the most
trustworthy sources for aggregate public health reporting data on COVID-19 in the
U.S. �ey were founded around the idea of scraping COVID-19 data published daily
on dashboards that are run by local public health authorities (such as state and county
departments of public health), which, at the time, provided more accurate and timely
data than federal health authorities (probably due to unrecoverable failures at one or
more points along the reporting pipeline). In fact, not only in the early days of the
pandemic, but throughout, the data published by these groups has been invaluable for
decision-makers, modelers, journalists, and the general public; for example, data from
JHU CSSE remains the gold standard for COVID-19 case and death forecast evaluation
in the COVID-19 Forecast Hub [Reich Lab, 2020], a community-driven repository of
forecasts that serves as the o�cial source for forecasting communications by the U.S.
CDC.

Turning our focus now to case reporting, JHU scrapes cumulative case numbers
that are published daily on local health authority dashboards, and subsequently derives
a notion of case incidence based on day-to-day di�erences in cumulative counts. Note
that, by construction, this de�nition of incidence re�ects the number of new COVID-19
cases that are reported (to the public) on any given day. Of course, this is not the same
as the number of new cases by date tested, specimen collection date, or symptom
onset date. Any of the la�er options would be more informative (increasingly so) as a
de�nition of incidence; revamping our surveillance systems so that they can directly
provide these and other aggregates of interest to the public health response is a critical
task for future public health crises.

�e reality of the current pandemic: alignment by report date is the only option
available, given the data published broadly on local health authority dashboards, hence
collected and aggregated by data scrapers. JHU publishes the number of new COVID-19
case reports per U.S. county, daily, at a 1-day lag. However, since report dates can
lag behind symptom onset dates by many days (a typical lag is around 5-10, but lags
can be up to 30 days or more; see Figure 3.3), this is actually giving us a glimpse into
COVID activity in the recent past, rather than the present.

Importantly, the CDC publishes a de-identi�ed patient-level data set (“line list”)
on COVID-19 infections [Centers for Disease Control and Prevention, COVID-19
Response, 2020a], which provides a symptom onset date column. In principle, this
should allow us to construct a notion of case incidence that is aligned by symptom
onset date, but this is not possible in practice, due to two barriers. First, the CDC only
publishes updates to the line list monthly (due to the complexity of managing this
data set). Second, and more problematically, this line list is fraught with missingness,
extending well beyond missingness in the symptom onset column: the total number of
COVID-19 cases according to this line list (whether the symptom onset date is observed



Chapter 3. Nowcasting Convolved Signals 26

or not) is far less than the total number of cases from JHU (e.g., in early September
2021, the CDC line list reports about 30 million total versus about 40 million from
JHU), and some states (such as Texas) appear to missing nearly all of their cases in the
line list altogether (see Figure 3.2).

3.2.2 Confounding
Estimates of COVID infections obtained by deconvolving reported cases will generally
underestimate the true number of infections, because many infections are undetected
or untested, and as such, do not appear later on in case reports. If we wanted to
estimate the true number of symptomatic infections from case reports, then we would
need to have some sense of the fraction of symptomatic infections that go untested.
Of course, this only gets more complicated if we extend our consideration to both
symptomatic and asymptomatic infections.

Other authors, e.g., Chitwood et al. [2021], have taken the ambitious step of propos-
ing and implementing frameworks with parameters that account for such confounding.
However, adjustments for case ascertainment and asymptomatic infections generally
rely, at least to some nontrivial extent, on model assumptions (typically, mechanistic
ones) that are di�cult to substantiate.

We take a di�erent perspective and pose the problem as one of real-time deconvo-
lution only. We seek to answer the question:

Can we estimate—in real-time—the number of new symptomatic COVID-19
infections that will eventually appear in case reports?

Hence, by construction, confounding is not a problem that we even a�empt to
reconcile (because the target we track, infections that eventually show up in case
reports, simply inherits any confounding that would be present in the case reporting
stream in the �rst place).

Our approach can be seen as one that runs in parallel (rather than in contradiction)
to an approach that explicitly models and removes the e�ects of confounding in
case reporting. We focus on addressing the deconvolution problem as carefully as
possible, with a concern for real-time estimation, and an eye toward using auxiliary
signals to improve accuracy and robustness. Estimates of parameters that account for
confounding (that comes from other work focused on these aspects) could certainly be
applied to our deconvolution estimates post hoc in order to adjust them appropriately;
we revisit this idea in the discussion.

Lastly, under an assumption that the confounding acts as a multiplicative bias
that changes slowly over time, our real-time infection rate estimates—themselves
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subject to confounding, as explained above—can be post-processed to derive real-time
approximately unconfounded estimates of Rt, the instantaneous reproductive number,
an o�-used epidemic parameter.

3.3 Related work
In the computational epidemiology literature, the term “nowcasting” has been applied
to a variety of related but distinct estimation problems. Broadly speaking, what these
problems have in common is that they are about real-time estimation of some quantity,
based on partial or noisy data. �ey di�er in what is being estimated, and whether this
quantity will eventually be fully observed (a�er enough time has passed) or whether
it is latent. Examples in the former non-latent se�ing, which span applications in
in�uenza, dengue, and COVID-19, include Brooks [2020], Farrow [2016], Hawryluk
et al. [2021], Jahja et al. [2019], McGough et al. [2020], Yang et al. [2015].

�e latent se�ing exhibits another degree of diversity within itself. In our work, we
target symptomatic COVID-19 infections, which, to be perfectly clear, is a latent time
series. Another example along similar lines is Goldstein et al. [2009], who estimate
in�uenza infection incidence via Bayesian deconvolution of mortality data. Mean-
while, other authors might view inferring latent infections as just a stepping stone
toward ultimately estimating the instantaneous reproductive number Rt. Important
contributions to the methodology on real-time estimation of Rt include: Be�encourt
and Ribeiro [2008], who use a local approximation to the SIR model, and Cori et al.
[2013], �ompson et al. [2019], who use a discretization of the renewal equation within
a Bayesian framework. For a thorough review and comparison of these methods, see
Gostic et al. [2020]. �e la�er paper also discusses in some detail the importance of
properly modeling the delay between infection onset and case report, and the issue of
right truncation, which, as we will see, are central issues in our work as well.

�e aforementioned methods have been applied and extended to build systems
for real-time Rt nowcasting during the COVID-19 pandemic by Abbo� et al. [2020],
Chitwood et al. [2021], Systrom et al. [2020]. A key di�erence between these approaches
and ours is that they infer infections through forward-�lling: loosely speaking, they
convolve forward a candidate estimate of infections, obtain feedback by comparing
the result to measured cases, and iterate to re�ne estimates. �is can be e�ective given
accurate prior knowledge, but of course it can be hard to judge the accuracy of prior
knowledge in practice. We take a more �exible approach and estimate infections via
direct deconvolution. Our approach is nonparametric, but is still fairly simple and
computationally e�cient. We also focus on fusing in auxiliary sources of information
in order to improve real-time accuracy and robustness. We remark that, if estimates of
Rt were desired, then these could certainly be inferred as a by-product of our infection
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nowcasts.

Finally, deconvolution has been extensively studied for many years in many �elds,
notably signal and image processing, where deconvolution is sometimes called de-
blurring. As an inverse problem, deconvolution is ill-posed in se�ings in which the
convolution operator is not known exactly or observations are made with noise [Op-
penheim and Verghese, 2017]. Approaches to overcome this traditionally involve
regularization, as in the classical Wiener deconvolution [Wiener, 1964], which stabi-
lizes the inversion using an estimated signal-to-noise ratio. Alternative approaches
employ familiar regularization techniques such as `1 and `2 penalities [Debeye and
Van Riel, 1990, Taylor et al., 1979]. Most related to our work is deconvolution using
total variation regularization, �rst proposed by Rudin and Osher [1994], and now a
central tool in signal and image processing.

3.4 Preliminaries
In what follows, we develop a framework for estimating the daily symptomatic COVID-
19 infection rate (where by “rate” we mean a count per 100,000 people, the standard
units in epidemiology), concentrating on infections that will eventually result in a
reported COVID-19 case. To be clear on nomenclature: for convenience, we will o�en
abbreviate “symptomatic infection” by “infection” (and so, terms like “infection onset”
and “infection rate” should be implicitly interpreted as symptomatic). To estimate
infection rates, we deconvolve reported case rates with an estimated symptom-onset-to-
case-report delay distribution. In the following experiments, we use the case data from
JHU CSSE [Dong et al., 2020], and to infer the delay distribution, we use a de-identi�ed
line list on patient-level infections from the CDC [Centers for Disease Control and
Prevention, COVID-19 Response, 2020a].

3.4.1 Auxiliary indicators
A�er deconvolution, we improve our infection rate estimates by incorporating a
number of contemporaneous signals that track COVID activity—we will also refer
to these as indicators—which are publicly available through Delphi’s COVIDcast API
[Reinhart et al., 2021]. �e �ve indicators that we consider, described below, provide
auxiliary information on COVID-19 outside of traditional public heath reporting. Here
and throughout, we abbreviate COVID-like illness by CLI.

1. Change Healthcare COVID (CHNG-COVID): �e percentage of outpatient visits
that have con�rmed COVID-19 diagnostic codes, based on de-identi�ed Change
Healthcare medical claims data.

2. Change Healthcare CLI (CHNG-CLI): �e percentage of outpatient visits that
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have COVID-like diagnostic codes, based on the same data.
3. Doctor Visits CLI (DV-CLI): �e same de�nition as CHNG-CLI, but applied to

de-identi�ed medical claims data from other health systems partners.
4. COVID Trends and Impact Survey CLI in the community (CTIS-CLIIC): �e

estimated percentage of people reporting illness in their household or local
community, based on Delphi’s COVID Trends and Impact Survey (CTIS), in
partnership with Facebook.

5. Google searches for anosmia and ageusia (Google-AA): A measure of volume
for Google queries related to anosmia or ageusia (loss of smell or taste), from
Google’s COVID-19 Search Trends data set.

Roughly speaking, we study these particular indicators (ordered roughly from “late”
to “early”) because conceptually they re�ect data measurements that would be made
at some period of time in between infection onset and case report to a public health
authority, and therefore would be relevant in inferring latent infection rates. More
information on these indicators and their underlying data sources is given in Reinhart
et al. [2021]. For more information on CTIS in particular, see Salomon et al. [2021]; and
for a study of how these and similar indicators can improve COVID-19 forecasting,
see McDonald et al. [2021].

Sensor fusion layer

For each of the auxiliary indicators described above, we train a model to estimate latent
infection rates from indicator values, using historical data (described in Section 3.7.1).
At each nowcast date, we then use such a model to estimate the latent infection rate
from the current indicator value, which gives a total of �ve estimates (one from each
of the �ve models), along with a sixth estimate coming from an autoregressive model
trained on historical estimated infection rates. We will refer these six contemporaneous
estimates as sensors.

In this chapter, we consider (as described in Section 3.7.3) various methods for
combining these estimates into a single estimate of the infection rate, among which
contain the Kalman �lter-based SF described in the Chapter 2. We will call this class
of methods sensor fusion methods, as broadly speaking, sensor fusion is a form of
ensembling, which is ubiquitous in in predictive modeling in statistics and machine
learning, as it can o�en help improve both accuracy and robustness. In our particular
application, the sensors themselves are constructed from data streams operating outside
of traditional public health reporting, which itself contributes an additional important
angle in terms of robustness.

An illustration is given in Figure 3.1, where sensor fusion improves accuracy and
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Figure 3.1: Illustration of estimating latent infections from reported cases. �e dashed red
line displays infection rates estimated “naively” in real-time, by directly deconvolving
case data up through early February 2021, while the solid black line display infection
rates estimated using �nalized data from roughly four months a�erwards. �e blue
region on the right-hand side highlights a period in which the real-time estimate deviates
substantially from the �nalized one, due to the fact that we are lacking su�cient (future)
case observations needed to perform a “full” deconvolution. �e green triangles represent
real-time nowcasts made by sensor fusion, which reduces the volatility of the real-time
estimate and tracks the �nalized estimate nicely. Lastly, the (scaled) reporting delay
distribution estimated at the midpoint of November 2020 is drawn in purple, with the
median reporting delay (8 days) marked as a do�ed gray line.

robustness of our estimates of new infections for the most recent 10 days (where
deconvolution is particularly challenging).

3.4.2 Problem setup
Estimation period

For every day t in between October 1, 2020 and June 1, 2021 inclusive (243 days in total),
we estimate the symptomatic infection rate at day t− k, using only data that would
have been as of time t, which in this context we call the nowcast date. Estimation of the
latent infection rate at time t− k (for positive k) is technically a backcast, though we
will not be careful to distinguish this notationally from nowcasting, and will generally
refer to this as nowcasting at lag k. We produce estimates for each k = 1, . . . , 10, a
total of 10 targets per nowcast date t.
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When we say above that nowcasts are made using data that would have been
available as of a given nowcast date t, we mean that we adhere not to only the real-
time availability (latency) of signals at t, but also the version of the data published
at t—simply put, imagine that we “rewind” the clock to time t and query the API
to receive the data that would have been returned then. �is is possible becausse
the COVIDcast API records and provides access to all historical versions of data, as
described in Reinhart et al. [2021]. As epidemic data is o�en subject to revision, if we
train and evaluate models on “�nalized” data (that would have been available only at a
much later time point) then this can lead to inaccurate conclusions about real-time
model performance; see, e.g., McDonald et al. [2021].

Further, it is worth noting that reported case data from JHU is available at a 1-day
lag, and we assume that there is at least another 1-day lag between symptom onset and
case report (explained in Section 3.5.2). Hence through real-time deconvolution alone
we would be able to make nowcasts at a 2-day lag at the earliest. Making nowcasts at
a 1-day lag is possible with sensor fusion, using auxiliary signals with 1-day latency
(explained in Section 3.7). In this sense, sensor fusion is able to improve not only
accuracy, but also latency, and buys us 1 extra day.

Geographic scope

We produce nowcasts at the county resolution, but for computational purposes, we
restrict our a�ention to the 200 U.S. counties with the highest population. We addition-
ally produce estimates for each of the 50 U.S. states. (Some of the methodology that
we use for sensor fusion requires a geographical hierarchy, thus using the remaining
≈ 3000 U.S. counties we aggregate these within each state to create “rest-of-state”
jurisdictions, and make estimates for these as well, for the purposes or maintaining
such a hierachy.)

Evaluation period

We evaluate all nowcasts made in between October 1, 2020 and June 1, 2021 inclusive
(243 days in total) and at each of the 250 locations in consideration (50 states and the
200 largest counties) against latent infection rate estimates obtained by deconvolving
the case rate data available as of August 30, 2021. We will refer to the la�er as �nalized
infection rate estimates (as opposed to real-time ones); details are given in Section 3.5.3.

3.5 Retrospective deconvolution
In this section, we study and �t a convolutional model between infections and reported
cases. We adopt a retrospective angle here and do not concern ourselves with data
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availability or versioning issues; this is covered in the next section.

3.5.1 Convolutional model
For simplicity, we introduce the convolutional model in just a single location. We
denote by yt the number of new cases that are reported at time t, and by xt the number
of new infections that have onset at time t. Our jumping-o� point is the following
model:

E[yt |xs, s ≤ t] =
t∑

s=1

πt(s)xs, (3.1)

where for each s ≤ t,

πt(s) = P
(
case report at t | infection onset at s

)
. (3.2)

We refer to the probabilities above as delay probabilities at time t, and the entire
sequence (πt(s) : s ≤ t), as the delay distribution at time t.

�e justi�cation for (3.1), (3.2) is elementary: to count yt, we enumerate all infec-
tions that ever occurred in the past:

yt =
t∑

s=1

xs∑
i=1

1{the ith infection at s gets reported at t}.

Taking a conditional expectation on both sides above, and using linearity, delivers (3.1),
(3.2).

In the next subsections, we will describe how to estimate the probabilities πt(s) in
(3.2), and how to use this alongside the observed case reports yt in order to estimate
the latent infections in (3.1).

3.5.2 Estimating the delay distribution
At the outset, we place the following assumptions on the delay distribution in order
to make its estimation (using the CDC line list data, to be described shortly) more
tractable.

Assumption 1. Infections are always reported within d = 45 days; that is, πt(s) = 0
whenever s < t− d.

Assumption 2. �e probability of zero delay is zero; that is, πt(t) = 0.

Assumption 3. �e delay distribution is geographically invariant (it is the same for
any location).
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Assumption 1 is innocuous. �e vast majority of pairs of recorded infection dates
and report dates in the CDC line list data fall within d = 45 days of one another.
Assumption 2 is perhaps less innocuous but still fairly minor, and it is a consequence
of the fact that a delay of zero (infection date equal to report date) has been used
inconsistently in the CDC line list: this could mean a true delay of zero, or it could be
a code for missingness.

Assumption 3 is the most noteworthy and troublesome. We do not believe it
to be true that di�erent locations actually have identical pa�erns of delay between
infections and case reports; conversely, we expect there to be a considerable amount of
variability between locations in this regard. While we do allow the delay distribution
to change over time (see Figure 3.3 for evidence for the importance of this), we consider
Assumption 3 to be a weakness of our work. However, the data is simply not there in
the CDC line list to warrant location-speci�c estimation of the delay distribution (see
Figure 3.2), thus we resort to estimating a nation-wide delay distribution.

Meanwhile, it is worth pointing out that be�er (location-speci�c) estimates of
the delay distribution could be simply plugged into our deconvolution methodology
(detailed in Section 3.5.3) to yield be�er estimates of latent infections. �is would
carry over to all of the real-time methodology for deconvolution and sensor fusion (in
Section 3.6) as well. In other words, a strength of our methodology is that it can treat
the delay distribution as an input, and a user (say, a local health o�cial) can replace
the default nation-wide delay distribution with a more-informed local one in order to
get more-informed local estimates.

In light of Assumptions 1 and 2, we change our notation henceforth, and rewrite
(3.1), (3.2) as:

E[yt |xs, s ≤ t] =
d∑

k=1

pt(k)xt−k, (3.3)

where for k = 1, . . . , d,

pt(k) = P
(
case report at t | onset at t− k

)
. (3.4)

CDC line list

�e CDC provides de-identi�ed patient-level surveillance data on COVID-19 in both
public and restricted forms [Centers for Disease Control and Prevention, COVID-19
Response, 2020a,b]. �e restricted one is made available under a data use agreement.
�e public line list contains the same patient-level records as the restricted one, but
it has geographic details withheld. (�ere is another publicly available that contains
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geographic details, but withholds temporal details). We use the public data set1 for
estimating the delay distribution, since missingness compels us to make nation-wide
(rather than location-speci�c) estimates.

It is worth noting that the line list is itself provisional and subject to revision. Fur-
thermore, the CDC only publishes updates to the line list monthly. In our experiments,
for simplicity, we use a single version of the CDC line list—released on September
9, 2021—to construct all delay distributions. Nonetheless, in our real-time nowcast-
ing experiments, we restrict our access to data in this line list that would have been
available at each nowcast date t (rows whose report date to the CDC is at most t) to
construct delay distribution estimates at t. �is is highly nontrivial, due to bias induced
by truncation of data a�er t (see Section 3.6.2).

Missing values

�e CDC line list (both public and restricted data sets) is subject to a high degree of
missingness. Such missingness manifests itself in a variety of ways. For the public line
list published on September 9, 2021:

• it has 29,851,450 rows, compared to 39,365,080 cumulative cases reported by JHU
CSSE on September 9, 2021;

• 8.64% of rows are missing the case report date (the cdc report dt column);
• 53.6% of rows are missing the symptom onset date (the onset dt column);
• of all rows in which symptom onset date is present, the case report date is also

present, but when a report date is missing in practice it sometimes gets �lled in
with the onset date, clouding the interpretation of a zero delay.2

Due to the last point, we exclude zero in the construction of all delay distribution
estimates, in what follows.

�e restricted line list is no be�er with respect to such missingness, exhibiting
nearly exactly the same pa�erns as those described above. It does additionally provide
geographic details, which allows us to examine how missingness is dispersed across
di�erent locations. Figure 3.2 displays results to this end, using the restricted line
list released on October 12, 2021. �e top panel shows that there is a high degree
of missingness in complete case counts (those with both onset date and report date
observed) in most states, o�en well over 50%, and moreover, missingness is far from
uniform at random: e.g., Texas has barely any of its cases present in the line list. �e
la�er observation is why we resort to estimating nation-wide delay distributions, in

1�e CDC does not take responsibility for the scienti�c validity or accuracy of methodology, results,
statistical analyses, or conclusions presented.

2Con�rmed by personal communication with the CDC.
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Figure 3.2: Top row: cumulative case count per state on June 1, 2021, as reported by JHU
CSSE, compared to the complete case count (where both onset date and report date are
observed) per state up through the same date, in the CDC restricted line list. Most states
have less than 50% of the cases appear in complete form in the line list, and some (e.g.,
Texas) have almost none at all. Bo�om row: proportion of complete cases with zero delay
per state in the same line list data. �ere is very wide variation between these proportions.

what follows.

�e bo�om panel in the �gure shows that there is also a high degree of heterogeneity
in the fraction of complete cases with zero delay (between onset date and report
date) across states. Some states (e.g., California) have zero delays for nearly all of
their complete cases, while others (e.g., Delaware) have zero delays for none of their
complete cases, suggesting that the practice of se�ing a missing report date equal
to the associated onset date is highly inconsistent between states. �is only further
corroborates the decision to exclude zero delays from the data set when estimating the
delay distribution.
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Algorithm 3.1: Delay distribution estimation, retrospective
Input: Time t, support size d, window size w = 2d, line list D with onset

dates ai and report dates bi.
Output: Estimated delay probabilities p̂t(1), . . . , p̂t(d).
Find all pairs in D with onset dates within a recent time window:
It = {i : ai ∈ (t− w, t]}.

Compute the empirical distribution of lags 1, . . . , d among these pairs:

p̄t(k) =
|{i ∈ It : bi − ai = k}|∑d
`=1 |{i ∈ It : bi − ai = `}|

, k = 1, . . . , d.

Fit a gamma density to p̄t(1), . . . , p̄t(d) using the method of moments
(matching the mean and variance).

Discretize this gamma density to the support set {1, . . . , d}, call the result
p̂t(1), . . . , p̂t(d), and return these probabilities.

Delay distribution estimation

From the public line list, we estimate the delay distribution at each time t, namely
the probabilities in (3.4) for k = 1, . . . , d, using the empirical distribution of all lags,
excluding zero, between complete onset and report dates, for all onset dates falling
in [t − 2d + 1, t]. �en, we �t a gamma density to the empirical distribution by the
method of moments, and discretize the resulting density over the support {1, . . . , d}.
For concreteness, this procedure is described in Algorithm 3.1.

We use only “recent” pairs of onset and report dates at time t (whose onset date
lies in [t− 2d+ 1, t]) in order to adapt to the nonstationarity in reporting delays over
time. �e top panel in Figure 3.3 plots quantiles of the estimated delay distribution
from Algorithm 3.1, as t ranges from June 1, 2020 to June 1, 2021. We see sharp drops
in all quantiles during the �rst half of this period, and then a more gradual decline
over time. �e bo�om panel in the �gure gives a qualitative sense of how the delay
distribution estimates change in shape over time.

3.5.3 Defining ground truth
Given the estimated delay distributions over time from the previous subsection, we
now describe how to estimate latent infections in the model (3.3). In short, we will
solve one large optimization problem to perform deconvolution. To de�ne the best
possible retrospective estimates of latent infections over the period October 1, 2020
to June 1, 2021, which we will treat as ground truth in what follows (in the sense
that they will be the point of comparison for all of our real-time estimates), we will
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Figure 3.3: Le�: quantiles of the estimated delay distribution returned by Algorithm 3.1 at
the levels 50%, 75%, and 95%, as t varies from June 1, 2020 to June 1, 2021. Right: estimated
delay distributions overlaid for three nowcast dates within the same time interval.

perform deconvolution over a wider time period than the previously speci�ed one in
order to avoid any bias issues at the boundaries (where there is insu�cient data for
accurate deconvolution; more details are provided in the next section): our retrospective
deconvolution runs from May 1, 2020 to August 28, 2021, a period we denote by T ,
and uses case data published on August 30, 2021.

For location `, denote by y`,t and x`,t the number of new cases reported and number
of new infections that onset at time t, respectively, per 100,000 people. Note that
y`,t, x`,t obey (3.3), (3.4), because we have just rescaled the underlying counts here by
a constant (in order to put them on the scale of rates), and recall, we assume that all
locations have the same delay distribution (Assumption 3).

Given the delay distribution estimates from Algorithm 3.1, p̂t = (p̂t(1), . . . , p̂t(d))
for t ∈ T , we estimate the full vector x` = (x`,t)t∈T of latent infection rates across
time, separately for each location `, by solving the problem:

minimize
x`

∑
t∈T

(
y`,t −

d∑
k=1

p̂t(k)x`,t−k

)2

+ λ‖D(4)x`‖1, (3.5)

where D(4) is a matrix such that D(4)v gives all 4th-order di�erences of a vector v,
and ‖ · ‖1 is the `1 norm. Problem (3.5) could be called a trend-�ltering-regularized
least squares deconvolution problem. We solve it (as well as all related optimization
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problems in this work) numerically with an adaption of the ADMM algorithm of
Ramdas and Tibshirani [2016], detailed in Appendix B.1.

�e solution x̂` in problem (3.5) takes the form of a cubic piecewise polynomial
(discrete spline) with adaptively chosen knots [Tibshirani, 2014, 2020]. �e tuning
parameter λ ≥ 0 controls its complexity, and we choose it using 3-fold cross-validation:
we hold out every third value from training, and impute it by the average of the
neighboring trained estimates; to compute the validation error, we reconvolve the full
vector of imputed infections and measure against observed cases.

3.6 Real-time deconvolution
Real-time deconvolution refers to the the task of deconvolving case reports observed
up until time t to estimate latent infections up until t, repeatedly, as t marches over the
period of interest. We are particularly focused on estimating recent latent infections—
nowcasting at a k-day lag, which means estimating at t the latent infection rate at
time t− k. (To clarify notation, k denotes the number of days prior to our nowcast
time, not the dimension of the state xt; as introduced in (3.1), the state corresponds to
a single location, and its value at any point in time is a scalar quantity.)

Compared to retrospective deconvolution, real-time deconvolution di�ers in two
important ways. �e �rst is that we are forced to work with provisional case data,
subject to revision at times in the future, as discussed earlier in Section 3.4.2. All of
our experiments in what follows use properly-versioned data that would have been
available as of the nowcast date. We use the notation y(t)`,s to re�ect the reported case
rate in location ` at time s as of time t. Reported case data from JHU is available at a
1-day lag and therefore, as of time t, we only observe y(t)`,s up through s = t− 1 (we
use analogous superscript notation for all auxiliary signals and estimates). �is means
we can only produce deconvolution estimates x̂(t)`,s up through s = t − 2 (recall we
exclude zero delays, in Assumption 2).

�e second issue of note, in real-time deconvolution, is right truncation: in now-
casting at lag k, where k is small (compared to d), we are only able to carry out a
“partial” deconvolution, as much of the needed information would come from case
reports occurring in the future, past time the nowcast date t. Figure 3.4 gives an illus-
tration. �us, if we simply performed real-time deconvolution by solving the problem
analogous to (3.5), using data that would have been available at time t,

minimize
x
(t)
`

∑
s<t

(
y
(t)
`,s −

d∑
k=1

p̂(t)s (k)x
(t)
`,s−k

)2

+ λ
∥∥D(4)x

(t)
`

∥∥
1
, (3.6)

then we would �nd that the solution x̂(t)` = (x̂
(t)
`,s : s < t) has highly volatile compo-
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Figure 3.4: Illustration of right truncation with a delay distribution of length 3 (which
is taken to be stationary for simplicity). At the nowcast time t, some “part” of the latent
signal xt will appear in yt+1, yt+2; likewise, some “part” of xt−1 will appear in yt+1.

nents for s close to t.

�e problem does not stop there; the truncation of data a�er the nowcast time t
also a�ects estimation of the delay distribution itself. Most rows in the line list with an
onset date of s = t− k, for small k, will only have a report date (and thus not appear
in the line list) until a�er time t. �is means that the estimate p̂(t)s of ps given by the
empirical distribution of all available line list data, with report date less than t, will
be biased toward smaller lag values (i.e., it will place too li�le weight on larger lag
values).

In the next two subsections, we work through each of these truncation issues
in turn, by incorporating extra regularization around the right boundary into the
criterion in (3.6), and estimating the delay distribution from truncated data using a
Kaplan-Meier-like approach.

3.6.1 Incorporating extra regularization
We consider two forms of extra regularization to dampen the variability of trend
�ltering estimates toward the right boundary.

Natural trend filtering

A natural cubic spline places additional regularity on top of the cubic spline, by
maintaining that the function be linear beyond the le� and right boundary points of
the underlying domain. Natural trend �ltering proceeds in a similar vein, but operating
in the space of discrete splines; see Tibshirani [2020]. Transporting this idea over to
our real-time deconvolution problem (3.6), and applying it to the right boundary only,
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Figure 3.5: Comparison of boundary behavior for real-time deconvolution in New York,
displayed for a sample of di�erent nowcast dates (where each colored curve traces out
the deconvolution estimates for a di�erent nowcast date). �e black dashed line indicates
�nalized infections, estimated roughly three months a�er June 1, 2021.

gives:

minimize
x
(t)
`

∑
s<t

(
y
(t)
`,s −

d∑
k=1

p̂(t)s (k)x
(t)
`,s−k

)2

+ λ
∥∥D(4)x

(t)
`

∥∥
1

subject to x
(`)
t − 2x

(`)
t−1 + x

(`)
t−2 = 0.

(3.7)

�e le� and middle panels of Figure 3.5 demonstrate the improvement that the
additional constraints in (3.7) can have on the boundary estimates, particularly during
periods of dynamic change in the underlying case trajectories.

Tapered smoothing �e right truncation phenomenon is not a binary one and
there is increasingly less and less information available for deconvolution as we move
the time index s up toward the nowcast date t. �erefore, we design a second penalty
to add to the criterion in (3.7) to gradually increase the amount of regularization
accordingly:

minimize
x
(t)
`

∑
s<t

(
y
(t)
`,s −

d∑
k=1

p̂(t)s (k)x
(t)
`,s−k

)2

+ λ
∥∥D(4)x

(t)
`

∥∥
1

+ γ
∥∥W (t)D(1)x

(t)
`

∥∥2
2

subject to x
(`)
t − 2x

(`)
t−1 + x

(`)
t−2 = 0,

(3.8)
whereD(1)v gives the �rst-order di�erences of a vector v, andW (t) is a diagonal matrix
that is supported on the last d diagonal entries, these being (in reverse order, starting
with the last entry):

1√
F̂

(t)
t−1(k)

, k = 1, . . . , d,
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Figure 3.6: E�ect of the tapered smoothing penalty, as we vary the corresponding tuning
parameter γ, for a single real-time deconvolution example with on nowcast date February
1, 2021. �e gray region highlights the components on which the tapered smoothing
penalty acts.

where F̂ (t)
t−1 is the cumulative distribution function (CDF) corresponding to the esti-

mated delay distribution p̂(t)t−1 at the most recent time t − 1. �e parameter γ ≥ 0
controls the strength of the additional “tapered” penalty in (3.8), and we tune λ, γ with
a two-stage cross-validation procedure:

1. �x γ = 0, and tune λ using 3-fold cross-validation, as before;
2. �x λ at the value in Step 1, and tune γ using 7-fold forward-validation: for
s = t − 2, . . . , t − 8, we solve the deconvolution problem with a working
nowcast date of s, linearly extrapolate to impute an estimate at s+ 1, and then
we reconvolve the solution vector along with this imputed point and measure
error against observed cases at time s + 1; the validation error is obtained by
averaging these errors over the iterations s = t− 2, . . . , t− 8.

Figure 3.6 displays the e�ect of varying γ on the solution in (3.8), for a particular
deconvolution example, to give a qualitative sense of the role of the tapered penalty.
Furthermore, the right panel in Figure 3.5 demonstrates the bene�t this penalty can
provide in nowcasting.

Lastly, and importantly, Figure 3.7 quanti�es the improvement o�ered by the
additional regularization mechanisms, in terms of mean absolute error (MAE) measured
against �nalized infections in nowcasting at a k-day lag, for each k = 2, . . . , 10. �is is
averaged over all locations and every 10th nowcast date in the evaluation set. We see
a considerable improvement in both the natural trend �ltering and tapered smoothing
modi�cations, with the biggest improvement occurring when the two are combined as
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Figure 3.7: Comparing regularization approaches by MAE for nowcasting (the shaded
bands here and henceforth, in all MAE �gures, correspond to 95% bootstrap con�dence
intervals.) Both approaches for additional regularization give a huge improvement on
trend �ltering. �e biggest improvement comes from combining the two approaches.

in (3.8), and hence we stick with this framework in what follows.

3.6.2 Adjusting the delay distribution for truncation
Now we propose an iterative adjustment to the empirical distribution of truncated
line list data in order to overcome the truncation bias. To develop intuition, we �rst
describe the problem using a simple abstraction, formulate a general solution, and then
we translate this back over to our particular se�ing.

KM-adjustment under truncation

Suppose p is a distribution that is supported on {1, . . . , d}, and we observe independent
random draws that we can partition into two sets: D1 and D2, where D2 contains
draws from p and D1 contains draws from p conditional on the random variable lying
in [1, v1], for a �xed v1 ∈ {1, . . . , d}. Denote by p̂D the empirical distribution based on
a data set D. Clearly p̂D2 is unbiased for p, but p̂D1 is generally biased (it always places
zero mass above v1), and thus the pooled estimate p̂D1∪D2 would be biased as well.
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To build a more informed estimate based on the pooled sample, the intuition is as
follows. First, observe that the only way we can estimate p(k) for k > v1 is by using
D2. �en, this gives an estimate of S(v1) =

∑
k>v1

p(k), the survival function of p at
v1, and we can estimate p(k) for k ≤ v1, denoting V ∼ p, by observing that

p(k) = P(V = k |V ≤ v1)(1− S(v1)).

where we estimate P(Z = k|V ≤ v1) using the empirical distribution over the set
D1 ∪ D2 ∩ [1, v1]. In other words, we construct our distribution estimate p̄ using two
steps:

1. de�ne p̄(k) = p̂D2(k) for k > v1, and also S̄(v1) =
∑

k>v1
p̄(k);

2. de�ne p̄(k) = p̂D0(k)(1− S̄(v1)) for k ≤ v1, where we letD0 = D1∪D2∩ [1, v1].

We can readily generalize the above to a se�ing in which we observe N data sets,
with varying levels of truncation:

Di contains draws V ∼ p |V ≤ vi, i = 1, . . . , N, (3.9)

where 1 ≤ v1 < · · · < vN = d, and we set v0 = 0 for notational simplicity. To
construct an estimate of p based on all the samples, we proceed iteratively as before:
�rst we estimate p(k) for k > vN−1 based on the data in DN , then we estimate p(k)
for k ∈ (vN−2, vN−1] based on data inDN−1 ∪D2 ∩ [1, vN−1], and so on. Algorithm 3.2
spells out the procedure in full.

�e algorithm just derived may be seen as Kaplan-Meier-like, in the sense that it is
motivated by the decomposition

p(k) = P(V = k |V ≤ vi)(1− S(vi)), k ∈ (vi−1, vi].

We use an unbiased plug-in estimate for each term in the product above based on
the appropriate data. �e Kaplan-Meier estimator has a similar plug-in foundation
[Kaplan and Meier, 1958], so we refer to our approach as the KM-adjusted estimator of
the distribution under truncation.

Application to CDC line list

Porting the last idea over to the CDC line list, we can use it to estimate the delay
distribution at time s using the line list as of time t. Note that if s < t − d then we
can still use Algorithm 3.1, as there is no truncation issue whatsoever. However, if
s ≥ t− d, then we would need to apply the KM-adjusted estimator, because we would
be using the rows in the line list whose onset date is at or shortly before s, but are only
able to see those whose report date is at most t− 1 (thus would have been available at
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Algorithm 3.2: Distribution estimation under sequential truncation
Input: Data sets and truncation limits Di and vi, for 1, . . . , N , as in (3.9).
Output: Estimated probabilities p̄(1), . . . , p̄(d).
Initialize S̄(d) = 0.
for i = N, . . . , 1 do

Set D0 =
⋃N
j=iDj ∩ [1, vi].

Compute p̄(k), for k ∈ (vi−1, vi] based on the empirical distribution of data
in D0 and an estimate of the survival function at vi:

p̄(k) = p̂D0(k)(1− S̄(vi)), k ∈ (vi−1, vi].

Compute an estimate of the survival function at vi−1:

S̄(vi−1) = S̄(vi) +
∑

k∈(vi−1,vi]

p̄(k).

end
Return p̄(1), . . . , p̄(d).

time t). A�er making this adjustment to the empirical distribution, we apply gamma
smoothing as before. �is is detailed in Algorithm 3.3.

Figure 3.8 compares the KM-adjusted and naive estimates of the delay distribution,
Algorithm 3.3 versus Algorithm 3.1 applied directly to D(t), the line list available at
each nowcast date t. In terms of `1 distance, measured to the �nalized delay distribution
estimate computed retrospectively (based on the full untruncated line list), and averaged
over all nowcast dates in the evaluation period, we see that the KM-adjustment greatly
improves the accuracy at all lags k = 2, . . . , 10 (where k = t − s, the di�erence
between the nowcast and working onset dates).

3.6.3 Shortening the deconvolution window
Lastly, we investigate shortening the window used in the regularized deconvolution
problem (3.8) so that we use only a window length of w days before t:

minimize
x
(t)
`

∑
s∈[t−w,t)

(
y
(t)
`,s −

d∑
k=1

p̂(t)s (k)x
(t)
`,s−k

)2

+ λ
∥∥D(4)x

(t)
`

∥∥
1

+ γ
∥∥W (t)D(1)x

(t)
`

∥∥2
2

subject to x
(`)
t − 2x

(`)
t−1 + x

(`)
t−2 = 0,

(3.10)
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Algorithm 3.3: Delay distribution estimation in real-time
Input: Nowcast time t, working onset time s, support size d, window size

w = 2d, truncated line list D(t) with onset dates ai and report dates bi
such that bi < t.

Output: Estimated delay probabilities p̂(t)s (1), . . . , p̂
(t)
s (d).

if s < t− d then
Return probability estimates from Algorithm 3.1 (se�ing t = s and
D = D(t) in the notation of that algorithm).

end
Set N = d− (t− s) + 2.
for i = 1, . . . , N − 1 do

De�ne

Di = {bi − ai : ai = s− i+ 1}
vi = t− s+ i− 2.

end
De�ne DN = {bi − ai : ai ∈ (s− w, t− d)} and vN = d.
Use Algorithm 3.2 (applied to Di, vi, i = 1, . . . , N ) to compute probability
estimates p̄t(1), . . . , p̄t(d).

Fit a gamma density to p̄t(1), . . . , p̄t(d) using the method of moments
(matching the mean and variance).

Discretize this gamma density to the support set {1, . . . , d}, call the result
p̂t(1), . . . , p̂t(d), and return these probabilities.

As we are mainly interested in the components of the solution x̂(t)s for s close to t,
shortening the training window is computationally advantageous and should not
change the behavior of the solution very much for s close to t.

Figure 3.9 compares (3.10) withw = 2d,w = 4d, and “all-past”, which is the original
problem (3.8), in terms of mean absolute error (MAE) measured against �nalized
infections in nowcasting at a k-day lag, for each k = 2, . . . , 10. �is is averaged over
all locations and every 10th nowcasting date in the evaluation set. �e performance
is basically identical for window lengths 2d and 4d, and though all-past may appear
to have the slightest advantage, this does not warrant the extra computation, hence
in what follows we stick to (3.10) with a window length w = 2d as our real-time
deconvolution estimator.
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Figure 3.8: Le�: estimated delay distributions overlaid for all nowcast dates in the month
of November 2020, when s = t− 1 (working onset date one day before the nowcast date).
Right: mean `1 distance to �nalized estimate of the delay distribution, as a function of
the lag k = t− s.

3.7 Leveraging auxiliary signals
�e indicators enumerated in Section 3.4 have displayed impressive correlations to
reported COVID-19 cases [Reinhart et al., 2021], and moreover, demonstrated an ability
to improve the accuracy of case forecasting and hotspot prediction models [McDonald
et al., 2021]. In this section, we describe how to use each indicator to build a real-time
sensor that estimates the latent infection rate, and how to fuse such estimates together
into a single nowcast.

3.7.1 Sensor models
At each prediction time t, for each location `, and for each of the �ve indicators
(abbreviated CHNG-COVID, CHNG-CLI, DV-CLI, CTIS-CLIIC, and Google-AA), we
will train a model to predict in real-time latent infections from indicator values. Let
x̂
(t)
`,s denote the solution at time s in problem (3.10), which represents our best estimate

of the latent infection rate at time s as of time t from deconvolution of case rates alone.

We use ui,(t)`,s to denote the value of indicator i at time s and location `, as of time
t. We �t a simple linear model to predict latent infections from indicator values by
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Figure 3.9: Comparing window lengths used in regularized deconvolution by MAE for
nowcasting. �e performance is very similar throughout.

solving

minimize
β0,β1

t−k̃i∑
s=t−d

w(t)
s

(
x̂
(t)
`,s − β0 − β1u

i,(t)
`,s

)2
, (3.11)

which is a weighted linear regression over the time period [t − d, t − k̃i], where
k̃i = max{ki, 2} and ki denotes the lag at which indicator i is available. �is is:

• ki = 1 for CTIS-CLIIC and Google-AA3; and
• ki = 4 for the claims-based indicators, due to heavy revision or “back�ll” over

the �rst several days in the underlying claims data a�er an outpatient visit date
[Reinhart et al., 2021].

Notice that, as de�ned, k̃i is the lag at which both the deconvolution estimate of
infection rate and auxiliary signal i are available, which is the data we need to �t the
linear sensor model (response and covariate data, respectively).

3Our treatment of Google-AA is di�erent from the rest. Google’s team did not start publishing this
signal until September 2020, and the historical latency of this signal was sporadic, but was o�en longer
than 1 week. However, unlike (say) the claims-based signals, revisions are never made a�er initial
publication, and the latency of the signal is not an unavoidable property of the data type, and therefore
we use �nalized signal values, with a 1-day lag, in our analysis.
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�e observation weights in (3.11) are given by

w
(t)
t−k = Ŝ

(t)
t−1(k − 1), k = 1, . . . , d.

Here Ŝ(t)
t−1 is the survival function of p̂(t)t−1, the estimated delay distribution from the most

recent time point t−1. We de�ne Ŝ(t)
t−1(1) = 1, corresponding to the exclusion of 0-day

delays. �is scheme upweights the more recent estimates (responses in the regression)
of latent infections as they contain more timely information for nowcasting (assuming
that the right-truncation bias has been e�ectively mitigated in the deconvolution step).

Given the solution β̂
i,(t)
`,0 , β̂

i,(t)
`,1 in (3.11), we then de�ne a sensor—to reiterate, a

sensor is just a prediction from the ��ed linear model—based on indicator i, for time s
and location `, as of time t, as:

z
i,(t)
`,s = β̂

i,(t)
`,0 + β̂

i,(t)
`,1 u

i,(t)
`,s . (3.12)

�is sensor is available up until s = t−ki. For the CTIS-CLIIC and Google-AA sensors,
the lag is ki = 1, smaller than the inherent lag of 2 in the deconvolution estimate.

In brief, each sensor model takes a certain indicator and transforms it—using a
location-speci�c and time-varying mapping—to the scale of local infection rates. While
this mapping is simple (based on linear regression), it is also highly nontrivial, as it
inherently accounts for geographic biases and nonstationarity.

Finally, in addition to de�ning sensors based on (3.11), (3.12) for each of the �ve
auxiliary sensors, we also de�ne a sixth sensor based on a 3rd order autoregressive
model trained on x̂(t)` = (x̂

(t)
`,s : s < t). It is constructed exactly as in (3.11), (3.12) (same

weights and same training window). Henceforth we abbreviate it AR(3).

3.7.2 Sensor missingness
To be clear (3.11), (3.12) are to be implicitly understood as performed over observed
(non-missing) indicator values. If an indicator value is missing at a particular location
and time, then we drop it from the training set in (3.11), and do not produce a cor-
responding sensor value in (3.12). For a summary of missingness in the sensors, see
Figure 3.10.

In general, an indicator will be missing when there is insu�cient underlying data
(from surveys, medical claims, etc.) to form a reliable signal value at a given location and
time. However, the situation is di�erent for the Google-AA indicator: here missingness
occurs because the COVID-19 search trends data set is released a�er using a di�erential
privacy layer [Bavadekar et al., 2020], and a missing value means that the level of
noise added for privacy protection is high compared to the search count. �erefore we
impute missing Google-AA signal values by zeros in our analysis; we do this unless the
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Figure 3.10: Proportion of observed (non-missing) sensor values over the evaluation
period from October 1, 2020 to June 1, 2021, and over all locations, as a function of lag
k = 1, . . . , 10. (NTF refers to the real-time deconvolution estimator, and simple average
refers to the sensor fusion method that averages all available sensors.) �e bo�om two rows
re�ect the intersection of location-time pairs for which all data—deconvolution estimates
and sensors—are available for that given lag, with and without including the Google-AA
sensor, since this sensor has a large amount of individual missingness. Each intersection
at each given lag k is restricted to data whose latency is not greater than k. For example,
the bo�om le�most cell computes the porportions of locations and dates at which AR(3),
CTIS-CLIIC, and the simple average are concurrently available.

Google-AA signal was missing for a particular location and all times in the evaluation
period, in which case we leave it as missing for this location entirely.

3.7.3 Sensor fusion
Sensor fusion, in its broader de�nition, refers to the process of assimilating data sources,
each of which ideally contains complementary information, in order to produce more
accurate estimates or predictions. Sensor fusion falls into the general class of ensemble
methods, and the sensors constructed in the previous section can be thought of as base
learners, to be subsequently combined.

We consider the following �ve ensemble methods. In each case, we describe how
to form the estimate at time s and location ` as of time t. �ough not explicitly stated,
it is to be implicitly understood that all sensor values are as of time t as well.

1. Simple average: the average of available sensors at time s and location `.
2. Simple regression: the prediction from a linear regression model at time s and

location `, �t to available sensors over the training period at location `.
3. Ridge: the prediction from a ridge regression model at time s and location `, �t
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to available sensors over the training period and over locations j such that j, `
lie in the same U.S. state (including the state sensor itself).

4. Lasso: same as in the last item, but using the lasso instead of ridge regression.
5. KF-SF: the Kalman-�lter-inspired method for sensor fusion from Farrow [2016],

Jahja et al. [2019] and detailed in Section 2.1.2, with covariance shrinkage, and
operating on the geographical hierarchy within each U.S. state.

Methods 2–5 are trained on the most recent 2d time points, and 3–5 are tuned using 7-
fold forward validation, where we allow them to choose a lag-speci�c tuning parameter.
Methods 1–2 are “simple” in the sense that for nowcasting at a location ` they use
sensors from ` only. Methods 3–5 are more sophisticated in that they pool information
across locations within the same state.

�e KF-SF method requires a proper geographical hierarchy and thus we create
“rest-of-state” jurisdictions by aggregating the remaining counties (outside of the top
200 counties nationally) within each state, and to run KF-SF, we create an AR(3) sensor
at these rest-of-state locations (since one sensor at each location is su�cient). It is
worth noting that, as shown in Jahja et al. [2019], KF-SF bears a close connection to
ridge in Model 4: it is in fact equivalent to a modi�ed ridge optimization problem that
imposes additional linear constraints.

3.8 Evaluation
We now evaluate nowcasting performance over all locations and all but every 10th
nowcasting date in our evaluation period from October 1, 2020 to June 1, 2021. (We
do this because it gives us a “pure” test set, since every 10th nowcasting date was
already used to choose the real-time deconvolution methodology in Section 3.6.) As
before, we compare to �nalized estimates of infection rates computed via retrospective
deconvolution, as in Section 3.5.

For the purposes of making fair comparisons, in every analysis (�gure) that we
present, we only aggregate over the intersection of nowcasts dates and locations at
which the particular estimates under consideration—coming from real-time deconvolu-
tion, individual sensor models, or sensor fusion—are all available. Abiding by this rule
leads us to examine several di�erent ways of stratifying results, as the full intersection
is fairly sparse (see the second-to-last row in Figure 3.10). In particular, we consider
the following two dimensions used to de�ne strata:

• inclusion of Google-AA or not;
• inclusion of all claims-based sensors (CHNG-CLI, CHNG-COVID, and DV-CLI)

or not.
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To be explicit, when we say we do not “include” certain sensors, it means both that
we ignore results from their individual sensor models (in computing the common
intersection of available nowcast dates and locations), and also that we exclude them
in running the sensor fusion methods.

In the following subsections, we �rst examine the performance of individual sensor
models and a certain sensor fusion method (the simple average) compared to real-time
deconvolution, and then examine the relative performance of the di�erent sensor
fusion methods.

3.8.1 Performance of sensors and sensor fusion
We begin by comparing the MAE of nowcasts from natural trend �ltering (NTF) using
tapered smoothing, as in (3.10) (the real-time deconvolution estimator chosen based
on the analysis in Section 3.6) to those from individual sensor models and the simple
average sensor fusion method. Despite its simplicity, the simple average appears to
be the best-performing sensor fusion method overall (details in the next subsection),
and so we stick with it as the de facto sensor fusion method in this subsection. �e
results here do not include Google-AA; results including Google-AA are shown in
Appendix B.2.

Figure 3.11 displays the MAE from various methods as a function of lag k. �e le�
and right panels do not and do include the claims-based sensors, respectively. In either
case, we see that up until lag 6, all sensors outperform the real-time deconvolution
estimate from NTF. �e simple average of all sensors improves accuracy even further,
and achieves the best MAE for all lags up through lag 6. We recall that NTF (with
tapered smoothing) itself already provides a huge increase in accuracy over the more
naive method for real-time deconvolution given by applying trend �ltering without
extra boundary regularization (Figure 3.7). At lag 7, the NTF estimate catches up to
about equal accuracy, and then surpasses sensor fusion and all sensors in accuracy at
lag 8 and onward. An interpretation for this: right truncation ceases to be a signi�cant
problem past lag 7, and thus we are be�er o� performing deconvolution directly in
order to estimate infections more than a week into the past.

Figure 3.12 displays the empirical distributions of ranks of nowcast errors coming
from each method, computed with respect to each other, over common nowcast tasks
(de�ned by a location-date-lag triplet). For example, in a particular nowcast task, we
assign a rank of 1 to the method with the smallest absolute error for that nowcast task.
�e le� panel again excludes claims-based signals, and the right panel includes them.
�e striking feature in either panel, particularly the bo�om panel, is that the simple
average has a highly distinctive distribution of ranks—it is rarely the best method,
but never the worst. While this is not particularly surprising (averaging random
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Figure 3.11: Comparing NTF to individual sensor models and the simple average sensor
fusion method by MAE for nowcasting. �e le� panel excludes the claims-based sensors,
whereas the right includes them. For lags smaller than 7, all methods improve upon NTF
(with tapered smoothing), with simple average being the best among them.

variables tends to be variance-reducing, as long as the variables are not too correlated),
it also points to a key property of sensor fusion—a certain kind of robustness, beyond
accuracy.

3.8.2 Relative performance of sensor fusion methods
We now compare the various sensor fusion methods to each other. �e results here do
not include claims-based signals; results including claims-based signals are shown in
Appendix B.2. Figure 3.13 displays the MAE of the various sensor fusion estimates, but
divided up into three panels, de�ned by averaging over small, medium, and large states
(the �gure caption provides more details). Recall that for the lasso, ridge, and KF-SF
approaches, a model in a particular county is �t using the sensors from other counties
in the same state. Larger states have more pooling of information across locations
and present a greater potential for gains in accuracy. We see that the simple average
method is typically the best sensor fusion method at each lag, but for medium and
large states, KF-SF catches up with it and is just about as accurate.

Figure 3.14 displays the relative ranking of sensor fusion methods. �e simple
average and KF-SF methods appear the most favorable (o�en the best, and less so
the worst), followed by lasso, then ridge, and lastly simple regression (most o�en the
worst).



Chapter 3. Nowcasting Convolved Signals 53

1 2 3 4 5 6 7
Rank

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

NTF (tapered)
AR(3)
CTIS-CLIIC
CHNG-CLI
CHNG-COVID
DV-CLI
Simple average

1 2 3 4
Rank

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

NTF (tapered)
AR(3)
CTIS-CLIIC
Simple average

Figure 3.12: Comparing NTF to individual sensor models and the simple average sensor
fusion method by relative ranks over common nowcast tasks. �e le� panel excludes all
claims-based sensors and considers lags 1–5, whereas the right panel includes them and
considers lags 4–9 (the �rst 5 lags at which all methods are available, in either case). �e
simple average exhibits striking consistency: it is rarely the best, but also never the worst.

3.8.3 Post hoc smoothing
As we saw, sensor fusion provides a real-time improvement on pure deconvolution
up until about a 7-day lag, and past that point, the deconvolution estimates appear
stable enough that sensor fusion becomes unnecessary. While the quantative bene�t
of sensor fusion for small lags is clear, sensor fusion is also lacking in the following
qualitative aspect: its estimates do not always appear visually smooth across time (this
is because the sensors themselves need not be smooth over time, and furthermore,
sensor fusion may end up using a di�erent subset of sensors at each lag, creating
additional jaggedness).

We employ a simple technique to simultaneously impose smoothness on the �nal
sensor fusion trajectory (by trajectory, we mean the sequence of estimates over time)
and incorporate the stable NTF estimates at larger lags. �ere are two steps, as follows:

1. Concatenate together the sensor fusion estimates and NTF estimates, where we
take the sensor fusion values for lags smaller than 6, and NTF estimates for lags
greater than 8. For the three values at k = 6, 7, 8, we take the average estimate
from both methods.

2. Perform smoothing on the concatenated trajectory; we apply a simple quadratic
trend �ltering layer [Tibshirani, 2014], where the weights at “joining” points
k = 6, 7, 8 are doubled. To be clear, the trend �lering problem here simply
performs local smoothing on the signal, and not regularized deconvolution.
We �x the value of the smoothing parameter to a small value relative to the
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Figure 3.13: Comparing sensor fusion methods by boxenplots of nowcasting errors (each
box conveys the level 25%, 50%, and 75% quantiles of the absolute error distribution. )
�e three panels average over small (containing less than 5 locations), medium (between
5 and 14 locations), and large (more than 15 locations) states. Simple average performs
generally the best throughout, but KF-SF catches up for medium and large states.

magnitude of the infection rate.

We refer to this method as smoothed sensor fusion, as it retains all bene�ts from
sensor fusion (namely improved accuracy at the right boundary and be�er latency)
while maintaining the stability of the NTF approach as right truncation diminishes
over time. Figure 3.15 visualizes the resulting curve, in green, where the red squares
correspond to the three joining points. �e jagged blue curve corresponds to the origi-
nal sensor fusion estimate, which are visually di�cult to reconcile. For completeness,
we evaluate the mean absolute error of the smoothed sensor fusion estimates (see
Figure B.5 in the appendix), and show that post hoc smoothing does not cost anything
in terms of accuracy: it achieves the best performance over NTF and the original sensor
fusion method. In later experiments, we use the smoothed sensor fusion trajectory as
a replacement for our �nal estimates at time t.

3.8.4 Correlation to hospitalizations
�e epidemiological modeling community considers hospitalization forecasting as one
of its more important problems, as hospitalizations contribute a direct, quanti�able
stress on health care systems. Accurate forecasts aid these systems in anticipating
and preparing for surges and declines in admissions (e.g., through proactive resource
allocation). A growing criticism of case reporting signals is that they are not leading
indicators of hospital admissions; that is, the current number of reported cases are not
necessarily indicative of future hospitalizations [Reich, 2021].

We can observe this in Figure 3.16, which plots the correlation of real-time case rates
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Figure 3.14: Comparing sensor fusion methods by relative ranks over common nowcast
tasks, and considering only lags 1–5. �e simple average and KF-SF methods consistently
perform in the top half, while simple regression is most o�en the worst.

to (eventually observed) hospitalizations over the 50 US states across an evaluation
period of October 1, 2020 to May 1, 2021 (212 days). Using the COVIDcast API [Reinhart
et al., 2021], on each day, and for each location, we compute the correlation of �nalized
hospitalization incidence rates (count per 100,000 people) over the past 45 days to both
the case reporting rate and estimated infection rate.

�e vertical orange line marks the highest correlation a�ained with the case re-
porting rate, which is at lag 0 (where cases neither lead nor lag hospitalizations). In
this sense, we can view case reporting rates as a signal that is almost contemporaneous
to hospitalizations.

Notably, we see in the same �gure that our infection estimates (corresponding to
the blue line), are a leading indicator of hospitalization, and can a�ain nearly as good
correlation at its peak 11 days lagged. �is is a striking result, as we have taken case
reports and meaningfully recovered an infection signal that is a useful predictor of
future hospitalizations. To give another interpretation of Figure 3.16, we see that our
infection estimates can provide information just as indicative to hospitalizations as
case reports 6 to 7 days earlier (as the case correlation lagged 5 days is close to the
highest infection correlation).

We turn now to comparing smoothed sensor fusion and NTF infection estimates.
To determine if the addition of auxiliary signals is helpful, we take the estimates
at each nowcast time at a �xed k over our evaluation period. We then compute a
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Figure 3.15: Illustration of post hoc smoothing on infection nowcasts for New York as of
December 1, 2020. �e green points align closely with the NTF (tapered) estimates for large
lags k > 8, and the sensor fusion estimates for small lags k < 6. �e “joining” points at
lags k = 6, 7, 8 are plo�ed by red squares, and fall in the middle of the NTF and sensor
fusion curves.

single correlation to �nalized daily hospitalization incidence in that same period, and
compute the average over the 50 US states. �e result is shown in Figure 3.17, where
each panel corresponds to k (the latency of the nowcast estimate). In the �rst row, we
see that at k = 2 where both SF and NTF produce nowcasts, that SF has much be�er
correlation over SF throughout. �is is excellent news towards the use of sensors
in improving the most recent nowcasts. As k increases, we notice the two infection
curves becoming similar, and that at k = 10 the curves are essentially identical. �is
is unsurprising, as we saw previously that sensors provided the most information at
small k, and decreased in utility for further away nowcasts. Furthermore, we note
that the SF estimates a�er k > 8 were replaced with estimates from NTF, and thus we
expect no meaningful di�erence at these lags.

3.9 Discussion
In this work, we proposed, implemented, and evaluated a framework for real-time
estimation of new symptomatic COVID-19 infections from case reports. At time t,
in order to nowcast the infection rate at time t − k (for small values of k, such as
k = 1, 2, . . .), the main steps are to:

1. estimate a symptom-onset-to-case-report delay distribution using the most recent
data available in a line list provided by the CDC;

2. perform regularized deconvolution on the most recent case data available from
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Figure 3.16: Lagged and leading correlations of observed case reports and infection now-
casts (from smoothed sensor fusion), both available in real-time, to �nalized hospitalization
averaged over October 1, 2020 to May 1, 2021. �e correlation is taken over a rolling
window of d = 45 days, and compared to con�rmed hospitalization admission rates
pulled as of February 1, 2022. Both case and hospitalization signals are averaged over the
past 7 days, which remove any spurious day-of-week artifacts. �e highest correlations are
marked by the dashed vertical lines, which indicate that case reports are best correlated
with hospitalizations at 0 lag, whereas infections obtain the best correlation when lagged
11 days.

JHU CSSE;
3. update models to track recent infection rates from various auxiliary signals

(based on COVID-related data from medical insurance claims, online surveys,
and Google searches), and fuse together the predictions from these models in
order to stabilize recent estimates of infection rates.

In each step, we proposed methodological advances that improved the accuracy of our
nowcasts, when measured against �nalized infection rate estimates obtained by retro-
spective deconvolution (using data that would have only been available months later).
While using auxiliary signals (step 3) did help in terms of accuracy and robustness, the
additional regularization devices that we incorporated into real-time deconvolution
(step 2) ended up providing the biggest bene�t to accuracy.

To reiterate, we purposely de�ned our target of estimation to be symptomatic
infections that would eventually show up in public health reports, allowing us to
focus on developing and testing tools for real-time deconvolution and sensor fusion,
with minimal assumptions (e.g., without a mechanistic model for disease spread).
Estimating the number of true symptomatic infections at any point in time—whether
or not they will appear in case reports—is of course a much harder problem. However,
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Figure 3.17: Lagged and leading correlations of observed case reports and infection
nowcasts to �nalized hospitalization over October 1, 2020 to May 1, 2021. Each panel
computes a single correlation for each of the 50 US states, using the estimate produced k
days before each nowcast date in the evaluation period (a vector of length 212). �e case
report and �nalized hospitalization signals are as described in Figure 3.16.

our methodology may be seen as a contribution toward solving this larger problem in
real-time; moreover, some simple post hoc corrections could be applied to our real-time
estimates in order to adjust for confounding. For example, if a`,t is the fraction of
untested symptomatic infections in location ` at at time t, which (say) is estimated
from external data sources, then we could just multiply each element p̂(t)`,s of the delay
distribution used in (3.10) by b`,t = 1/(1− a`,t) in order to estimate all symptomatic
infections from case reports. Due to the way we have set up the deconvolution problem
(cross-validating over optimal choices of tuning parameters), this would be essentially
equivalent to post-multiplying the nowcast x̂(t)`,s we already produce by b`,t.

An important avenue for evaluating our methodology (beyond evaluating against
�nalized infection rate estimates or �nalized hospitalization rates, as we do in this
work), would be to reconvolve our real-time nowcasts of infection rates forward in
time in order to predict future case rates, and evaluate these predictions against �nal-
ized case reporting data. Making and evaluating point predictions would be relatively
straightforward, however, distributional forecasts are currently the standard in epidemi-
ological forecasting (and also in COVID-19 forecasting), and adding a distributional
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layer to our nowcasts (and propagating this through the convolution operator) requires
substantial new developments. To this end, we investigate a reconvolution framework
for distributional evaluation in the next chapter.



Chapter 4

A Reconvolution Approach for
Evaluation

�is work was done in collaboration with Daniel McDonald, James Sharp-
nack, and Ryan Tibshirani.

4.1 Introduction
In this chapter, we turn our a�ention to a reconvolution framework to evaluate now-
casts made through deconvolution. �e following work comes as a natural sequel to
Chapter 3, and we accordingly lay out our approach in the context of nowcasting the
rate of newly onset COVID-19 infections.

We emphasize again that our motivation behind infection nowcasting is to produce
accurate, real-time estimates of disease spread in order to inform the public health
response during an ongoing epidemic. �e trustworthiness of our estimates then, is
paramount, and we seek to answer the question:

How well can we trust our infection estimates made in real-time?

�ough this question underlies the entirety of our work in this chapter, it is broadly
stated, and one can imagine numerous avenues to an answer. We dedicate this chapter
to a reconvolution approach, where the latent state estimates are propagated onto the
scale of an observable signal, namely, the �nalized case incidence rates.

Given estimates of newly onset infection rates and reporting delay probabilities,
we reconvolve (and to be clear, by “reconvolve” we simply mean to convolve the
estimates—originally found by deconvolution—forward) infections to form predictions

60
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of the eventually-observed case rates. At a nowcast time t, we can easily recover
point nowcasts of case rates up till t, as we have in hand all the necessary information
from past infections that will eventually turn up in case reports. We say that these
estimates come through a full reconvolution, where “full” refers to the completeness
of information used to calculate the outcome. Calculating error (using, say, mean
absolute error) to the true observed case rate is akin to examining the ��ed residuals
of a model; as we have trained on the case reports themselves, examining these errors
can be seen as a measure of the goodness of �t found by our deconvolution method.

But are these infection nowcasts informative? To answer this question we turn
to out-of-sample errors, and view evaluation as a forecasting task: how well can the
infection estimates predict future cases? If our infection estimates are accurate, then
by the convolutional relationship (3.1), each infection will eventually be re�ected in
a case report published later in the future. In following sections, we lay out partial
reconvolution, a technique to propagate forward the infection estimates without im-
posing any parametric structure or assumptions apart from a locally constant delay
distribution. As a counterpart to “full” reconvolution, the term “partial” indicates that
only some fraction of the observed information is available to carry out the convolution.
Partial reconvolution bypasses additional modeling done on either the infection or
case reporting curve, and allows us to focus exclusively on understanding the amount
of information captured in our nowcast solution.

In this work, we also move away from point predictions and propose sampling-
based methods to generate distributional forecasts. Distributional forecasts are cur-
rently the standard in epidemiological forecasting, and aside from being useful when
assessing the quality of our nowcasts, contain strictly more information (over point
estimates) that is helpful for nuanced decision-making. �antifying the uncertainty
around the nowcasts is critical for guiding local health o�cials, who necessarily weigh
many factors before enacting policy action. To this end, we lay out residual-based
approaches to introduce stochasticity in both the deconvolution solution and simulated
case forecast, which leads us to a be�er understanding of the stability and uncertainty
surrounding our infection nowcasts. �is, in turn, allows us to be�er answer our
question of interest.

�is chapter is organized as follows. In Section 4.2, we discuss our dimensions of
evaluation, and cover relevant material needed to ground future sections. Section 4.3
provides an overview of related work. In Section 4.4, we describe a Monte Carlo
approach to produce samples of perturbed infection solutions, and introduce partial
reconvolution. A residual sampling approach for distributional forecasting around the
reconvolved estimates is given in Section 4.5. Section 4.6 is the experimental section,
which covers various evaluations and interpretations of our deconvolution estimates.
We conclude in Section 4.7 with a discussion.
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4.2 Preliminaries
In this preliminary section, we give an overview of the dimensions we will evaluate
the nowcasts over; these dimensions align with the partiality of information (i.e. the
amount of observed components) used in the calculation of an infection or case estimate.
We note that, as in previous work, we will o�en write “symptomatic infections” as
just “infections”, where “infections” should also be be taken as shorthand for the
symptomatic infection rate, for covenience (the issues surrounding asymptomatic
infections is described in Section 3.2.2). Following this, we give a short recapitulation
of the relevant deconvolution material, and outline the problem setup that motivates
our proposed framework.

4.2.1 Dimensions of evaluation
In this work, we will stratify evaluation by two dimensions:

1. as a function of the lag k, where k = t − s is the number of days away an
estimate for time s is from the nowcast time t;

2. as a function of the forecasting ahead i, where i = 1, 2, 3, . . . is the number of
days ahead of an estimate for time s.

To motivate the �rst dimension, recall that in real-time nowcasting, we are subject
to right truncation, the issue where outcomes from recent infections will only be
revealed in the not-yet-observed case reports. Right truncation forces us to perform a
“partial” deconvolution to estimate infections towards the right boundary, and infer
the future contribution from case reports (see Figure 3.1 for a visualization, where the
blue region highlights the issue). �is implies that our most recent estimates, which
are the most important for decision-makers, are generally the least reliable. To observe
this trend, and to identify which models be�er mitigate this e�ect, we will bucket our
errors over the lag k, which indexes the degree of right truncation for an estimate. In
this notation, a nowcast with large k is largely una�ected (as it has observed a good
amount of information), whereas a nowcast at small k, has inferred a great amount of
its value.

�e second dimension arises from the forecasting problem needed to perform
evaluation, and has a sort of symmetry to the former dimension. Rather than missing
case information, a reconvolved estimate is missing infection values needed to perform
“full” reconvolution. To characterize this dimension, we group errors over the ahead i,
where a case estimate for time s+ i (regardless of the nowcast time t, t > s) only has
access to the infection estimates up until time s. Clearly, forecasts made at large aheads
i must extrapolate further, and can be less reliable. To illustrate the most challenging
case, given a maximum reporting delay of d days, the reconvolved estimate for the
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ahead s+ d has observed only one infection value—the infections that onset at time s,
which have the potential to be reported d days later.

To summarize: we wish to understand how much we can trust nowcasts, and—as
shown by our previous experiments—nowcasts made further back in the past are more
stable and accurate to �nalized infections estimates. �is forms the basis for evaluating
over the �rst dimension indexed by k. Any �xed k-day back infection nowcast will
result in a case outcome in the future. We index this future path with the ahead i, our
second dimension. To simplify our evaluations, we will pay a�ention to nowcasts with
lag k = 10 or smaller (corresponding to the 10 most recent estimates), and calculate
the sum of their error over all possible aheads i = 1, 2, 3, . . .. We then provide analyses
that �x the lag k, and show error as a function of i, which provides an alternative view
of our results.

4.2.2 Review of COVID-19 setup
We now review the infection nowcasting setup, and solidify notation for our framework
described shortly. For notational simplicity, we concern ourselves only for a single
location. For a day t, let xt denote the rate of newly onset infections and yt the rate of
newly reported cases, where for completeness we de�ne “rate” as the count per 100,000
people (henceforth, we will simplify our writing by referring to xt as “infections” and
yt as “cases”, with all the quali�ers described previously).

We begin by reintroducing the following convolutional model:

E[yt |x1, . . . , xs, s ≤ t] =
t∑

s=1

πt(s)xs, (4.1)

where πt(s) represents the probability of a case reported at t given infection onset at s.
For each nowcast time t, we obtain the case rate reports at times s < t from JHU CSSE
[Dong, Du, and Gardner, 2020].

Recall that we estimate the distribution of the delay probabilities πt = (πt(s) : s ≤
t) using data from a de-identi�ed patient-level surveillance line list dataset provided
by the CDC [Centers for Disease Control and Prevention, COVID-19 Response, 2020a].
Given the realities of limited data availability (discussed in Section 3.5.2), we make three
assumptions when estimating the delay distribution, reproduced here. First, we assume
that an infection, once onset, is always reported within the following d = 45 days.
Second, we assume that the infection will never be reported at a zero day delay; taken
in combination with the �rst assumption, we can shorten and denote the sequence of
delay probability estimates as pt(j), j = 1, . . . , d, where

pt(j) = P
(
case report at t | onset at t− j

)
. (4.2)
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Our third assumption is that the delay probabilities are geographically-invariant, and
in our experiments we use a nation-wide estimate across locations. �is is a concerning
assumption that arises out of data limitations, where there simply is not su�cient
data to construct geographic-speci�c estimates. While we provide further reasoning
and details regarding these assumptions in Section 3.5.2, we wish to reiterate that
we do not think the third assumption to be a weakness of our methodology, as any
candidate delay distribution (say, for a particular location where more data is available)
can simply be plugged into the framework. Finally, we remind the reader that we
employ a Kaplan-Meier-like algorithm (see Alg. 3.2) to generate the delay distribution
estimates, which is one of our contributions to alleviate data censoring e�ects in
real-time nowcasting.

As the previous chapter covered deconvolution in depth, we only mention here
that we produce the initial infection estimates x̂1, . . . , x̂t−2 by solving a regularized
deconvolution problem (3.10) applied on case reports y1, . . . , yt−1. In our experiments,
we use versioned data, meaning that at time t, we only use data that was available at
time t (this is also why we address data censoring in delay distribution estimation).
Case reports from JHU CSSE are published on a 1-day lag, meaning the latest case
observation available is yt−1. However, by virtue of our third delay assumption (no
infections are reported on the same day as onset), our latest deconvolution estimate
has lag k = 2.

Our �nal major contribution towards deconvolution is sensor fusion, wherein
we combine together contemporaneous auxiliary information to improve upon our
deconvolution estimates. In the previous chapter, we describe the background and
modeling of these various data sensors (also referred to as indicators, as they indicate
COVID-19 activity) in great detail (see, in particular, Sections 3.4 and 3.7 for a review).
We highlight that sensor fusion allows us to gain an additional day’s estimate and
produce nowcasts at only a 1 day latency in total (to be clear, our latest estimate is
x̂t−1). �is additional estimate is produced by fusing data sensors available at a 1-day
lag; Figure 3.10 visualizes the availability of these signals as a function of latency, and
we incorporate the CTIS-CLIIC and AR(3) signals for lag k = 1. As a �nal step, we
apply post hoc smoothing as in Section 3.8.3, to produce our �nal infection nowcasts
x̂s, s < t.

Notation

In following sections we will simplify our equations by introducing notation for a
convolution matrix P , which has rows corresponding to the delay distribution ps,
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s < t, such that for a vector x

(Px)s =
d∑
j=1

ps(j)xs−j.

Here, we leave the dimensions of P and x ambiguous, but it should always be clear
from the problem context. �is convolution formulation allows us to keep consistent
notation across problems with di�erent underlying dimensions.

In the previous chapter, we used superscripts to denote the version of an estimate
or observation, for example, x̂(t)s denotes an estimate of incident infection rates on
date s generated as of time t. In this section, and in following sections, we will omit
these superscripts for notational simplicity (again providing clari�cation in text, if
needed), but will occasionally emphasize versioned data through superscripts when
appropriate.

4.2.3 Defining ground truth
In past evaluations we assessed our nowcasts to a “�nalized” infection value, calculated
by solving the deconvolution problem (3.5) with data issued several months a�er our
�nal nowcast date. �is waiting period allowed us to produce estimates that were
not subject to the two critical issues present in real-time nowcasting (discussed in
Section 3.6): provisional releases, where data is subject to revision over future time,
and right truncation, described previously.

As we now turn to assessing nowcasts by cases, we again �nd two issues of note.
First, while right truncation no longer poses a problem (at time t, we have estimated all
infections needed to produce a case prediction at t), we must of course wait the span
of the forecast horizon before our desired case data is available. Moreover, this data is
still provisional, and may undergo revisions as delayed reports arrive, or are corrected.
�erefore, we are still constrained to wait some period of time before making our
evaluations.

�e second issue is of a di�erent nature; the current case signal we have been using
(incidence rate of newly onset case reports) contains “day-of-week” e�ects, which refers
to the phenomena where a signal exhibits systematic di�erences as a function of the
day of the week. As an example in our context, case report collection may be delayed
on weekends, and only published on the subsequent Monday, causing an arti�cal spike
in incidence. Adjusting for day-of-week e�ects e�ects is a common problem in time
series modeling (and in epidemiological se�ings where one models reporting streams,
e.g., Reinhart et al. [2021], Rumack [2020]), and can require sophisticated modeling
techniques. To make the issue even worse, day-of-week e�ects appear to vary by
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Figure 4.1: Comparison of real-time case incidence rates to �nalized 7-day average case
incidence rates in New York, over a sample of 6 nowcast times. Each vertical dashed
line indicates one of the nowcast times t, and corresponds to the case data pulled as of
t, illustrated by the preceding colored line with markers. �e solid black line indicates
�nalized 7-day trailing average case incidence rates used as ground truth, queried roughly
three months a�er June 1, 2021.

location in our se�ing, and solving this problem entails individual tuning for each
geography. We consider using a simpler approach, at the cost of introducing a small
amount of latency.

We de�ne as our ground truth the reported 7-day trailing average case incidence
rate ȳt, queried at a time much later than t when data revisions are exceedingly rare
(In practice, we use the version of data issued on August 30, 2021, three months a�er
our �nal nowcast date). To be clear, ȳt averages over the daily case incidence rates
yt−6 . . . , yt also issued in the far future. Aside from addressing the issues just described,
using the trailing average has the advantage of mitigating any remaining data artifacts
that are permanently recorded (for example, the arrival of sudden batch of reports
stemming from a change in case de�nition); such artifacts are in essence “averaged
out”. For simplicity, and for consistent notation, we will consider the averaged case
observation ȳs as a (day-of-week adjusted) realization of the true case rate ys.

Figure 4.1 overlays both the original and averaged case signal for a sample of
nowcast times in New York. Clearly, the real-time unaveraged signal exhibits cyclical
day-of-week pa�erns, which is especially noticeable in the earlier nowcast times. We
also notice that towards the end of March 2021 there is an anomalous jump in reported
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(Px)s+i | x1, . . . , xs

• Partial reconvolution

• Models for xs+i |x1, . . . , xs,
followed by full convolution
(e.g., Sequential Monte Carlo)

ys+i | (Px)s+i

• Historical residual sampling

• Conditional quantile models

Figure 4.2: Overview of considered approaches for the reconvolution problem.

cases; the e�ect of this spike is so�ened in the averaged signal.

4.2.4 Problem setup
Ultimately, we would like to estimate the probability of observing the true case rate
ys+i from a forecast density f constructed from the infection estimates x̂1, . . . , x̂s. To
be clear about our various indices, we vary s across a range of recent lags k = t−s, and
forecasting aheads i = 1, 2, . . . , d, where (given our �rst delay distribution assumption)
s+ d is the �nal day that an infection onset at time s could be reported.

We organize our framework into three steps. At time t, using infections up until
time s, and for an ahead i, we will:

1. generate draws of x1, . . . , xs (which we henceforth refer to as the solution
distribution), by a Monte Carlo procedure on the deconvolution method;

2. apply partial reconvolution on each draw to propagate the sampled infections to
cases, denoted by the (point) trajectory (Px)s+i;

3. add appropriate residual noise to each trajectory to simulate ys+i, and estimate
the conditional density f(ys+i | (Px)s+i).

To give a brief overview, step 1 introduces stochasticity into our infection esti-
mates, which otherwise would be treated as �xed, by perturbing the case inputs and
resolving the deconvolution problem. To be straightforward, this procedure helps
us understand the stability of our deconvolution solution, but does not necessarily
capture the uncertainty around our estimates. Nonetheless, following experiments
show that introducing stochasticity here can be helpful in adding �exibility to resulting
case forecasts, leading to a richer evaluation.

In step 2, we take the resulting infection draws and apply partial reconvolution to
push infections forwards to cases. We remark that any point prediction method can
be applied here, e.g., ��ing an autoregressive model on an infection curve, iteratively
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forecasting forward, then performing a full convolution. We take an alternative av-
enue, and push forward the infection estimates by introducing additional rows to the
convolution matrix P (corresponding to future time points), and renormalizing the
delay probabilities in the appended rows such that the full probability mass is carried
forward. We explain the details in Section 4.4.2.

Lastly, in step 3 we de�ne a distribution at each forecast time by repeatedly adding
test residual samples to the case forecasts. Assuming that the current nowcast task
will have similar error as past nowcast tasks, we draw the samples from the empirical
distribution of historical reconvolution residuals. In following experiments, the collec-
tion of residuals is stored over all available past, but future improvements could be
made by various schemes to curate a bank of relevant residuals. One simple approach
is to upweight the most recent residuals in time, which assumes that the most recent
past be�er matches the short-term future; another more sophisticated approach could
upweight on residuals where the historical case (or infection) curve exhibits a similar
trend as the current case (infection) curve. We call the la�er idea curve alignment (as
opposed to the �rst approach of time alignment), and revisit this idea in Section 4.5.

In Figure 4.2, we provide an simple overview of considered approaches, which
roughly groups together approaches for steps 1 and 2 on the le� panel, and step 3 on
the right. �ere are several possibilities to mix-and-match approaches between the
panels; in what follows, we implement partial reconvolution followed by historical
residual sampling, as just described. In the discussion section, we provide some details
for the alternative ideas, which we leave as an open direction.

Before moving on to methodological details, we give a brief summary of our
experimental setup for evaluation below.

Experimental setup

Using infection nowcasts made over October 1, 2020 to June 1, 2021, inclusive (a total
period of 244 days), we run our framework, described shortly, over the evaluation
period of January 1, 2021 to June 1, 2021, inclusive (a period of 151 days). We use
the duration between October 1, 2020 to December 31, 2020 as a “burn-in” period
to construct the empirical residual bank, used in Section 4.5. In all our experiments,
we average the nowcast scores over all locations and every 5th nowcasting date in
our evaluation period. (For the same reason that we evaluated our deconvolution
methodology over every 10th nowcasting date, we do this to avoid over��ing to a
particular methodology, and create a “pure” test set for our �nal run-through.) We
will evaluate nowcasts produced at the state resolution, noting that our methods
can be applied directly to the county (or any desired) resolution. In the interest of
computational e�ciency, we restrict ourselves to the 50 U.S. states.
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Scoring metric

�e forecast score is calculated by the estimated log probability

log f(ys+i |x1, . . . xs),

where ys+i is the true (7-day averaged) case value, and f the estimated forecast density
for time s + i. We will refer to this as the log score of the estimate, as is common in
forecasting literature. Recalling our two dimensions of evaluation, we produce two
types of analyses:

1. When evaluating along the lag k = 1, . . . , 10, we sum the log score across all
forecasting aheads i = 1, . . . , d.

2. When evaluating as a function of the ahead i, we simply �x a single value of k,
and produce independent results for several values of k.

�e log score returns negative values for inputs smaller than 1; as we work with
probabilities, the best score is 0, and larger values imply be�er nowcasting performance.

4.3 Related work
In predictive epidemiology, distributional forecasting and evaluation has become stan-
dard practice, even instituting common sets of metrics (e.g., binned log scores or ranked
probability scores) when developing methodology [Bracher et al., 2021]. Generally,
these metrics are applied in non-latent se�ings, such as in�uenza or COVID-19 case
prediction, where the target signal is eventually observed (we note here that the litera-
ture here is vast, and point to several examples in the context of the aforementioned
diseases: Brooks [2020], Brooks et al. [2018b], Cramer et al. [2021], Farrow [2016],
McDonald et al. [2021]).

In large part, related epidemiological models that infer latent infections do so in
tandem with the instantaneous reproductive number Rt, a key epidemic parameter,
and typically perform model evaluation on estimates of Rt [e.g., Abbo� et al. [2020],
Abry et al. [2020], Be�encourt and Ribeiro [2008], Chitwood et al. [2021], Cori et al.
[2013], Gostic et al. [2020], Pascal et al. [2021], �ompson et al. [2019]]. As Rt itself
is unobserved, evaluations tend to rely on simulation studies where the exact data
generating process is known. Compared to infections, when applied to real data Rt

can be easier to visually align over plots of case incidence. In this form of evaluation
the cooccurrence of trends is used to provide evidence towards model performance.

Work that performs deconvolution to directly infer infections, as we do, subse-
quently reconstruct the reproductive number, and draw comparisons to cases [e.g.,
Abry et al. [2020], Goldstein et al. [2009]]. In this approach, simulated data is also
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applied to be�er understand model performance. To the best of our knowledge, a
distributional framework directly propagating infections to case reports has not been
proposed, and our contributions that follow are novel.

4.4 Reconvolution to observables, Px

4.4.1 Monte Carlo deconvolution
We begin by introducing a simple Monte Carlo approach to produce samples of the
infection estimates, where each sample can be thought of as a draw from the so-
lution distribution of x̂s, s < t. To create stochasticity, we will repeatedly resolve
perturbed versions of the deconvolution problem (3.10), where the perturbations are
found through the residuals of our infection estimates. To be precise, at time t, we
calculate and store the residuals

rs = ys − (P̂ x̂)s, (4.3)

s ≤ t, where ys are the latest issued case rate for time s, and P̂ x̂ the full vector
of reconvolved infections using the estimated convolution matrix P̂ and infection
nowcasts x̂, all at the latest version issued as of t. Here, we leave the choice of the
range of s, which determines how far back to calculate residuals, open to the modeler,
as it is problem and time dependent and could be tuned in operationalization. (In
practice, we take the starting point of s to be t− 2d, which corresponds to the length
of the deconvolution window discussed in Section 3.6.3.) We store these residuals in
an unordered and symmetric set, which we refer to as a residual “bank”.

As our aim is construct samples around our original deconvolution estimate x̂s, we
center our residual distribution to have mean zero through symmeterization. To this
end, we conceptually consider these residuals as unsigned, and in practical implemen-
tation we simply a�ach a duplicate residual value with the opposite sign. Now, with
our residual bank and initial deconvolution estimates x̂s, s < t in hand, we outline the
simulation of a single draw:

1. Perform full reconvolution on x̂s, s < t, to obtain (P̂ x̂)s, s ≤ t. Notice we are
able to calculate (Px̂)t (as implied in (4.3)) as we have estimated all possible
infections that would be reported at time t. �is is a consequence of our third
delay distribution assumption: no infection onset on day t will be reported on
day t. �is extra point is necessary to recover x̂t−1 later on in step 3.

2. For each available s ≤ t, draw a residual r̃ at random from the residual bank,
with replacement, and perturb the reconvolution estimate:

ỹs = (Px̂)s + r̃. (4.4)
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�e sequence of ỹs acts as our perturbed case observation over time.
3. Re-solve the deconvolution problem (3.10) on ỹs, s ≤ t, to produce a simulated

infection curve x̃s, s < t. For computational purposes, we solve (3.10) using
the best values of the regularization parameters λ, γ found by cross-validation
in the initial deconvolution. We note that varying the amount of smoothness
chosen by regularization can produce more diverse samples, and can be done in
situations where the solving cost is cheap.

To generate more draws, we can simply repeat steps 2–3. as many times as desired
using the same residual bank and output of step 1. �is whole procedure is concisely
outlined in Algorithm 4.1. Before we provide an illustration, we introduce one �nal
tuning parameter in our method.

Scaling the residual bank

Aside from varying the parameters of the deconvolution method itself (say, over
various regularization strengths), we can control the amount of diversity in our solution
distribution by rescaling the residuals. We control this using a constant multiplier
ν ≥ 0 on the residual values, where, at large values ν pushes the sampled estimates
further away from the original solution. On the other hand, if ν = 0 then our resulting
solution distribution is a point mass at each s < t.

�e e�ect of ν, along with the entire procedure notated in Algorithm 4.1, is illus-
trated in Figure 4.3. In the top panel, we plot quantile bands (at the 10% and 90% level)
of the resulting ỹ samples; this corresponds to line 5 in Algorithm 4.1. We observe
that at ν = 2, the quantile bands just cover the overlaid case points, which were the
original input used to produce the initial infection nowcasts. At ν < 2, the resulting
band is tighter than the original case observations, and at ν > 2, the bands show a
wider distribution. In the bo�om panel, we plot the corresponding quantiles (again at
10% and 90% levels) of the re-solved infection solutions using the perturbed cases. At
no added noise ν = 0, the single line is the unperturbed infection solution.

Notice that the quantile bands around the perturbed case estimates are a constant
width across time; this is by construction, as we sample uniformly from a symmetrical
residual bank. However, the quantiles bands around the perturbed infection solutions
are not uniform, where towards the right boundary we observe a gradual widening.
As mentioned previously, it is important to note that this is not a re�ection of the
uncertainty around the right boundary, but rather the instability of the solution.

We discuss the choice of ν later on in our evaluation, as this decision can be
informed by the historical forecasting error, for which we need two other components:
a method to propagate the infection samples forward into the future, and a method to
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Algorithm 4.1: Monte Carlo deconvolution
Input: Time t, deconvolution algorithm A, observed cases ys, s < t, delay

probabilities p̂s = (p̂s(1), . . . p̂s(d)), s ≤ t, residual noise multiplier
ν > 0, number of draws B > 0.

Output: Simulated draws of deconvolution solutions x̃(b)s , s < t, b = 1, . . . , B.
1 Solve A using delay probabilties p̂ and ys to obtain the initial solution x̂s, s < t.
2 Reconvolve infections to obtain (P̂ x̂)s =

∑d
j=1 p̂s(j)x̂s−j , s ≤ t.

3 Compute symmetric residual bank as in (4.3).
4 for b = 1, . . . , B do
5 Sample a residual r̃ from the residual bank, with replacement, and add to

the reconvolution estimate:

ỹ(b)s = (P̂ x̂)s + νr̃

for s ≤ t.
6 Re-solve A with p̂ on ỹ(b)s , s ≤ t to obtain the perturbed solution x̃(b)s , s < t.
7 end
8 Return samples x̃(b)s , s < t, b = 1, . . . , B.

add uncertainty about the forecasted estimates. We now describe an avenue for the
�rst component.

4.4.2 Partial reconvolution
In this section, we discuss partial reconvolution, our approach to push forward infection
estimates into an estimate of future cases. To provide some motivation, consider the
convolution model for a case report i days ahead of of a time s < t:

E[ys+i |x1, . . . , xs] =
d∑
j=1

p(j)xs+i−j, (4.5)

where p(j) denotes the (assumed) time-invariant delay probabilities for the future
report date. Here, for simplicity, we introduce one �nal assumption on the delay
distribution: beginning at time t, the true delay probabilities πt(j) are stationary
for the foreseeable future. Hence, in practice we set p(j) = p̂

(t)
t (j), j = 1, . . . , d

corresponding to the latest estimated delay distribution, for any report date a�er t.
(In this work, we focus on providing an evaluation framework without introducing
side models for the delay probabilities. While we do not believe the delay probabilities
to be stationary over the future, we point out that this extra assumption is not a
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Figure 4.3: Illustration of the e�ect of scaling the residual bank over values of the noise
multiplier ν as in Algorithm 4.1. Top row: Perturbed case inputs to the deconvolution
problem (3.10), where the yellow points represent the initial case rates available in real-
time. �e colored bands capture the 10% and 90% level quantiles corresponding to varying
values of ν. Bo�om row: �antiles at the 10% and 90% level of the corresponding perturbed
estimates found by deconvolution on the perturbed case samples from the top panel. Both
panels are generated using the latest data for New York as of February 5, 2021.



Chapter 4. A Reconvolution Approach for Evaluation 74

weak point of our framework: a supplementary model can be proposed to evolve the
delay distribution estimates forward, and these estimates can be simply plugged in the
following methodology.)

Returning to our convolutional model (4.5), we note that, given infections up until
time s, we are missing the estimates xs+i−j for all i > j. To be clear, we are missing
estimates of infections onset a�er time s that would have been reported at the future
time s + i; this implies we are missing exactly i − 1 future estimates necessary to
calculate ŷs+i.

Can we carry out reconvolution by summing over only the infection estimates
already at hand? We take the following approach: consider compensating for the
missing case mass (the product of a missing infection estimate and its corresponding
delay probability p(j)) by renormalizing the remaining delay probabilities to sum to 1.
�en, applying convolution using the adjusted delay weights and summing only over
the observed infection estimates, we can estimate the future case rate as:

(Px̂)s+i =

∑d
j=i p(j)x̂s+i−k∑d

j=i p(j)
, (4.6)

We refer to the solution of (4.6) as the partial reconvolution estimate. (As an implemen-
tational note, the convolution matrix P can be simply be appended with an additional
row, corresponding to the renormalized delay probabilities for s+ i.) From another
perspective, partial reconvolution can be viewed as a variation on zero-padded con-
volution, where, a�er adding zeros to the boundary, we renormalize the convolution
�lter (our delay probabilities) at each step to ensure that the total mass is moved across.
�is additional step prevents underestimation for the extrapolated estimates.

4.5 Introducing uncertainty in y | Px
We now turn to the second half of our framework: incorporating uncertainty into our
case forecast. As discussed previously, we will investigate and evaluate a residual based
method, where the residual distribution comes from the errors of historical nowcasts.

As we saw in Section 4.4.2, we can apply partial reconvolution to produce a point
forecast of estimated case rates, and by applying partial reconvolution to each simulated
infection solution found by Algorithm 4.1, we have in hand a collection of forecasted
case rate curves. Importantly, we point out that this collection of curves has introduced
stochasticity into infections xs, s < t but we have not yet incorporated stochasticity
into cases ys+i, i = 1, 2, . . . , d, which we refer to as the forecast path. In this section,
we now introduce uncertainty into the forecast path, to produce a distribution for each
ŷs+i, i = 1, 2, . . . , d, via residual sampling.
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At time t, for evaluating a nowcast at lag k, we calculate and store the residuals at
all previous nowcast times t′ < t, given by

r(t
′,t)

s = ȳ(t)s − (Px(t
′))s, (4.7)

s ≤ t′, where we reintroduce superscripts to denote the date the data or estimate was
issued; we emphasize here that we always calculate the residual error to the most
recent issue of case reports.

Given this residual “bank”, and the point samples of reconvolved infections (Px̃)s,
our �nal estimate is obtained by drawing a residual r̂ at random from the residual
bank, which increments the �nal reconvolution estimate

ŷs+i = (Px̃)s+i + r̂. (4.8)

We repeat this procedure over all infection samples (where sampling is done with
replacement), and over all aheads i = 1, . . . , d. We provide several remarks on this
approach below.

Remark 1. Di�erently to the residual calculation in (4.3), (4.7) calculates error to ȳ(t)s ,
the 7-day trailing average cases for time s as described in our discussion of ground
truth. In Monte Carlo deconvolution, our goal was to generate a perturbed case
sample similar to our original case input, y(t)s . Here, we wish to construct a residual
distribution aligned with our ground truth signal, ȳ(t)s . One consequence of this change
(as implicated by Figure 4.1) is that the distribution of these residuals will be narrower,
and hence, produce tighter forecast bands (which are more meaningful for evaluation).
Ideally, this residual distribution will have bias-correcting properties, which we remark
on next.

Remark 2. We consider these residuals as signed, and hence we do not perform
symmeterization on the residual distribution. Our reasoning follows along a similar
vein as the previous remark: our goal is to form a density around our estimate of
the truth, rather than around the infection solution as before. �is distribution can
have helpful bias, for example, if the residual bank was positively biased (meaning we
underestimate the true case rate the majority of the historical past), then by repeated
resampling, our forecasted distribution will be pushed upwards in a corrective manner.
Of course, this approach assumes that the near future will behave similarly to the past,
which is certainly not true near the peaks and dips of an epidemic.

Remark 3. To accompany remark 2, we note that we can “tune” the range of time
points over which to calculate the residual bank. �is can be parametrized by the range
of past times t′ we search over; if t′ is close to the present time t, then we have assumed
that the recent past matches the recent future. �ere are numerous variations of this,
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e.g., choosing t′ such that the distance between recent case trends is small. �is can
be represented as d(t′, t) = D([yt′−l, yt′ ], [yt−l, yt]), where we use brackets to denote a
sequence of cases with length l, andD represents an appropriate distance metric (some
immediate choices are Euclidean distance or cosine similarity). One can then assign
sampling weights proportional to the distance, for instance, wt′ = exp(−γd(t′, t)), and
tune over various levels of γ > 0. Moreover, we note that this scheme can be applied
across geographies to increase the size of the search history, which can lead to a highly
customized residual distribution. Lastly, we point out that this weighting scheme can
mitigate the previous concern in Remark 2 by identifying sequences of history where
epidemic change-points have occurred.

Remark 4. Our �nal remark is on a second re�nement to the residual bank con-
struction. Notice that we add residuals to the partial reconvolution estimate, where,
depending on the ahead i, has varying levels of uncertainty. Rather than sampling
from historical “full reconvolution” residuals, we could sample from the set of partial
reconvolution residuals calculated over past nowcast tasks (so we have some observa-
tions of the �nalized ground truth) with matching i. Similar to remark 3, this can be
enacted more generally as a weighting scheme, where for the forecast s+ i, weights are
given by wt′,i = |

∑d
j=i ps′+i(j)−

∑d
j=i p(j)|, where s′ = t′ − k. �is metric measures

the (absolute) di�erence between the observed probability mass used to produce the
current forecast at s+ i, and the observed probability mass for the historical forecast
at s′ + i.

Ultimately, our goal is to obtain residuals from the historical nowcast tasks most
similar to the current task. �e basic sampling framework is formalized in Algorithm 4.2,
where more sophisticated approaches (such as those detailed in remarks 3 and 4), can
be swapped in at the �rst line.

4.6 Evaluation
We apply our reconvolution framework to evaluate three deconvolution methods
provided in Chapter 3:

• trend �ltering deconvolution (3.6);
• natural trend �ltering deconvolution with a tapered penalty (3.10);
• sensor fusion deconvolution, which averages digital surveillance sensors as ex-

plained in Section 3.7.3, with the additional smoothing step given in Section 3.8.3.

We split our evaluation in two subsections, where the �rst subsection revisits the
initial step of Monte Carlo deconvolution, and examines its utility by studying how
performance across values of the residual multiplier ν. Here, we evaluate over the
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Figure 4.4: �antiles (level 10% and 90%) of the case forecast path across noise levels ν,
using data as of February 5, 2021 (the nowcast date), at a k = 1 day lag. �e black dashed
line indicates the cut-o� for observed data, which ends one day behind the nowcast time.
�e yellow points are the �nalized 7-day trailing average case curve observed several
months a�er the nowcast date. �ese forecasts are the simulated estimates from applying
Algorithm 4.2 on the samples displayed in bo�om panel of Figure 4.3.

“training” evaluation period which runs on every 5th nowcasting date. �is provides
a cleaner “test” set for the following subsection, where we �x ν, and evaluate the
deconvolution approaches using the larger test set, which runs over the full evaluation
period, except for the aforementioned training dates.

4.6.1 Results of Monte Carlo deconvolution
To investigate the utility of introducing stochasticity at the level of infections, we
evaluate the performance of the case forecasts made by deconvolution over six values
of the scaling multiplier ν = 0, . . . , 5. Our baseline is at ν = 0, where no stochasticity
is introduced, and the infection estimate at any time has a point mass distribution at
the original solution.

We �rst give the results for sensor fusion, which we consider as our “best” decon-
volution method. Figure 4.5 plots the log score over the various levels of ν. �e le�
panel plots the total summed log score as a function of the lag k (days back from the
nowcast time t) summed over all forecast aheads i = 1, . . . , i. �e best performance
(highest curve) is given by ν = 2. �is conclusion aligns with the panel on the right,
which plots the average log score as a function of ν over all values of (k, i). �e worse
performance is given at ν = 0. �ese �ndings are intuitive; adding no noise essentially
treats our infection solution as �xed and known, and is in this sense, overcon�dent.
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Algorithm 4.2: Stochastic forecasts via residual sampling
Input: Time t, working onset time s, support size d, deconvolution samples

x̃
(b)
s , s < t, b = 1, . . . , B, observed 7-day average cases ȳs, s < t, delay

probabilities p̂ = (p̂s(1), . . . , p̂s(d)), s ≤ t.
Output: Simulated draws of the forecasted ŷs+i, i = 1, . . . , d.

1 Compute residual bank as in (4.7), using ȳs for t′ < t.
2 for b = 1, . . . , B do
3 Apply partial reconvolution as in (4.6) to x̃(b)s , s < t, to obtain (Px̃(b))s+i,

i = 1, . . . , d.
4 Sample a residual r̃ from the residual bank, with replacement, and add to

the partial reconvolution estimate:

ŷ
(b)
s+i = (Px̃(b))s+1 + r̃,

for i = 1, . . . , d.
5 end
6 Return case forecast samples ŷ(b)s+i, i = 1, . . . , d, b = 1, . . . , B.

Adding a large amount of noise creates indecisive estimates, as the bands range over
almost all feasible case values. �is is visualized by Figure 4.4, where ν = 5 (roughly)
covers the interval [0, 125).

Figure 4.6 displays the log score as a function of the forecast ahead i, for two
�xed values of lag k = {1, 10}, corresponding to the 1-day-back nowcast and the
10-day-back nowcast. At short aheads i < 4, adding no noise ν = 0 performs the best,
but is quickly outstripped at larger aheads. We see that even at the furthest ahead
i = d, using the largest noise level ν = 5 does not outperform more moderate levels of
noise. Both �ndings are not particularly surprising, as short term partial reconvolution
is likely to perform well without introduced noise, but can quickly grow overcon�dent.
On the other hand, using large levels of noise is unnecessary at for immediate forecasts,
but is eventually helpful (up to a point).

We perform the same experiment on the other two considered deconvolution
methods: trend �ltering and natural trend �ltering with tapered penalties. For the
la�er method, the result and interpretation is nearly identical to smoothed sensor
fusion, with the best performance given at ν = 2. However, for trend �ltering we see
that the best value is given at no added noise ν = 0. �is interesting result points to
the noisiness and instability already present in the original trend �ltering solution, as
no level of added noise was helpful in improving forecasting performance. Analogous
plots to Figures 4.5 and 4.6 for both these methods are provided in Appendix C.
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Figure 4.5: Performance of smoothed sensor fusion over values of the residual multiplier
ν. Le�: Mean total log probability score summed over all aheads i = 1, . . . , d, where
the x-axis varies over values of the lag k = t − s. Larger values of lag k have be�er
performance, as they have access to more complete information. Multiplying with noise
level ν = 2 has the best performance overall, matching with the results in Figure 4.5,
while zero perturbation has the worst performance. Right: Mean log probability score as a
function of the noise level ν. All positive values of ν improve on the pointwise approach
ν = 0, where no perturbation is applied. �e best performance is found at ν = 2. For
both plots, and all subsequent �gures in this chapter, the surrounding bands indicate 95%
bootstrap con�dence intervals.

In general, the value of ν could (and should) be tuned over time, as historical
nowcasts gradually observe the ground truth and can be evaluated. For the purposes
of retrospective evaluation in the next subsection, we simply �x the value of ν = 2
for the sensor fusion and natural trend �ltering (tapered) methods, and ν = 0 for the
trend �ltering method, which were the best performing for each method respectively.

4.6.2 Performance of deconvolution methods
We now evaluate the performance of the three deconvolution methods over every date
in our evaluation period from January 1, 2021 to June 1, 2021, excluding every 5th
nowcasting date which was used to �x ν.

Figure 4.7 shows the results as a function of the lag k, where we can immediately
observe a huge improvement that natural trend �ltering and sensor fusion make on
the original trend �ltering deconvolution method. �is is a comforting result that
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Figure 4.6: Performance of smoothed sensor fusion over values of the residual noise
multiplied ν. Le�: Mean log probability score as a function of forecast aheads i = 1, . . . , d,
where we �x the lag k = 1, corresponding to the score for the most recent nowcast x̂t−1.
Right: �e same as the le�, but at �xed lag k = 10. In both panels, applying zero
perturbation with noise level ν = 0 performs best for the immediate short-term forecasts.
For longer aheads, approximately i > 5, introducing noise is bene�cial.

a�rms many of our conclusions in the previous chapter. However, between the former
two methods the di�erence is statistically negligible, and surprisingly, natural trend
�ltering appears to have slightly be�er scores. To a certain extent, the result may be
explained by the post hoc smoothing applied on the sensor fusion estimates, which
recall “joins” together the initial sensor fusion estimates at small values of k with the
natural trend �ltering estimates at large k. Hence, in large part the estimates across
both methods are near identical, and the aggregate scoring metric (summed over all
forecasting aheads i = 1, . . . , d) shown here cannot capture any di�erences. Of course,
the obvious exception is at k = 1, where sensor fusion is the only method that makes
nowcasts with a 1-day lag; here, the di�erence in score between k = 1 and k = 2
appears to appropriately re�ect the additional di�culty in producing a more recent
nowcast.

We turn then to Figure 4.8, which compares the three methods over the forecast
ahead i, at �xed lags k = {2, 10}. In both panels, we again observe the vast perfor-
mance di�erence between trend �ltering and the two improved methods throughout.
Interestingly, we can observe that sensor fusion outperforms tapered natural trend
�ltering at small values of i. On the le� panel, there is no overlap in the 95% boot-
strapped con�dence intervals, indicating that sensor fusion outperforms natural trend



Chapter 4. A Reconvolution Approach for Evaluation 81

�ltering up to roughly i = 10. For i ∈ [11, 40], natural trend �ltering produces be�er
distributional forecasts over sensor fusion, which explains the result seen in the �rst
Figure 4.7.

To be�er understand the performance as a function of i, we calculate the average
di�erence in log score summed up over various “max ahead” i. To be clear, we calculate
for each i = 1, . . . , d

i∑
j=1

log(p̂SF
s+j)− log(p̂NTF

s+j),

where p̂s+j is the estimated probability of observing the true case rate at s+ j from
the forecast density created by each method. �e log di�erence is averaged across
all locations and evaluation times, at each lag k. �e result is given in Figure 4.9,
where each line corresponds to a value of i. We see that the mean log di�erence is
positive until roughly i = 20, indicating that the more immediate forecasts from sensor
fusion outperform natural trend �ltering, whereas the reverse is true for long-horizon
forecasts.

To be straightforward, estimates made a�er k = 7 are nearly identical for smoothed
sensor fusion and natural trend �ltering, yet we see clear performance di�erences at
various levels of i. In particular, for very large i, partial reconvolution produces case
forecasts that are nearly identical to the most recent infection estimates (in the most
extreme case, the estimate for ŷs+d is simply x̂s). �is produces forecast densities that
are not capturing the true case rate, and we consider investigation and improvements
here as an immediate next step in future work.

4.7 Discussion
In this chapter, we proposed and implemented a reconvolution framework to evaluate
three deconvolution methods described in Chapter 3. �is distributional framework
can be summarized by three components:

1. a Monte Carlo deconvolution procedure to produce draws of infection solutions;
2. a partial reconvolution technique to propagate sampled infection solutions for-

ward to cases with minimal modeling assumptions;
3. a residual sampling approach to form distributional forecasts around each case

estimate.

�e results from applying our framework on COVID-19 infection nowcasts align
well with our previous �ndings, and provides further evidence towards our method-
ological contributions developed in the deconvolution chapter. Alongside our proposed
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Figure 4.7: Distributional evaluation of deconvolution estimates as a function of the lag
k = t− s.

methods, we described various extensions and open directions of our work, which
can be explored to improve future evaluation. To �nish, we revisit some of these open
directions, and introduce others.

First, we note that our discussion of introducing stochasticity into our infection
model (as in the �rst component) naturally lends itself to a discussion of sequential
Monte Carlo and particle �lter approaches [Doucet et al., 2001]. �is class of nonlinear
algorithms is popular and well-studied, and we can apply it to our se�ing to gener-
ate distributions across the entire infection trajectory. We further consider particle
smoothers [Doucet and Johansen, 2009], which allow information to �ow backwards
from later observations to previous estimates, and can been seen as an analogue to
��ing one deconvolution step across all observed history. �e challenge here is in
specifying good models for the transition and observation distributions, which we
leave as an open direction.

Next, we point out that there are many avenues to propagate infections to cases
beyond partial reconvolution (component 2). For a simple alternative, we could apply
a time series model to predict infections in the future, and then apply reconvolution.
A more complicated approach could be to construct an optimization problem similar
in spirit to that which we proposed for deconvolution. Yet another approach could be
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Figure 4.8: Distributional evaluation of deconvolution estimates as a function of the
forecast aheads i = 1, . . . , d. �e le� panel gives the result for �xed lag k = 2, and the
right panel for �xed lag k = 10.

to implement Markov chain sampling that evolves infections forward. In any of these
cases, such models must be implemented cautiously to avoid introducing any bias that
could contaminate honest evaluation of the original nowcaster.

Finally, we remarked on various improvements to construct the residual bank used
in the third component. We emphasize here that such improvements are the immediate
next steps in improving the framework, as this component is critical to introducing
proper measures of uncertainty to our estimates. Toward this end, we provided several
concrete directions in Section 4.5.
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Chapter 5

Discussion

5.1 Summary and remarks
In this thesis, we described, implemented, and evaluated frameworks for nowcasting
with sensor fusion. At each step, we demonstrated the utility of our contributions to
produce timely predictions of disease spread, namely for tracking in�uenza and COVID-
19. We group our contributions into two parts. In the �rst part, we built on an existing
Kalman-�lter-based sensor fusion framework in the in�uenza se�ing [Farrow, 2016],
and described a mathematical equivalence of the estimator to the original Kalman �lter
and an unusual regression problem. �is equivalence leads in a promising direction in
adopting long-studied regression techniques (such as regularization) for dynamical
system modeling (and possibly vice versa).

In the second part, we sought to estimate COVID-19 infections through decon-
volving observed case reports. We described an optimization problem to perform
deconvolution, and introduced various forms of regularization to mitigate the right
truncation e�ect which a�ects the stability of the most recent nowcasts. In this work
we also proposed an adjusted estimator (again to deal with real-time data limitations)
to estimate the reporting delay distribution which convolves infections to cases. As
our last methodological contribution, we proposed several ensembling approaches to
perform sensor fusion, and showed that this additional layer contributes signi�cantly
towards the stability of our estimates.

We evaluated the utility of these algorithms in three ways: �rst, we made com-
parisons to �nalized infection signal, which is not subject to any real-time estimation
biases. Second, we performed a correlation analysis to demonstrate that the real-
time infection estimates are an informative predictor of hospitalization rates, and can
a�ain correlations comparable to case reporting signals, but with nearly a week’s

85
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improvement in latency.

In our last evaluation step, we proposed a reconvolution framework that propagates
infections forward into a case forecast, and in tandem, introduces a distributional layer.
�e resulting probabilistic forecasts were validated against �nalized case reports, and
we showed that the results are intuitive and promising. We gave algorithms for each
step of the framework: Monte Carlo deconvolution to inject stochasticity into our
infection solutions, partial reconvolution to move infections to case estimates, and
residual sampling to stimulate case density forecasts. We �nished by describing several
open directions to improve the evaluation process.

We can also characterize the two parts of our thesis by the observedness of the
target state. �at is, in the �rst part we studied the case where we eventually get access
to past state observations, whereas the la�er part was motivated by the case where the
state is always hidden, but we observe outcomes with an known convolutional model.
Naturally, it follows that the next se�ing to consider is the fully hidden case.

In the context of Chapter 2, where we described the equivalences between Kalman
�lters, sensor fusion, and constrained regression, we discussed past state estimation
through the Kalman �lter (which traditionally operates in the fully hidden case),
in order to use the regression formulation. We remark on another perspective and
open direction. Recalling that the equivalence between sensor fusion and constrained
regression relied on an empirical measurement noise covariance, we can draw from
longstanding Kalman �ltering techniques (e.g., Mehra [1970], Mohamed and Schwarz
[1999]) to produce an estimate of the noise covariance, which can be subsequently
used to derive past state estimates. It would be interesting to study what, if any, useful
relationship arises when it replaces the observed state in the constrained regression. If
an (even approximate) equivalence is found, it can be used to strengthen �eorem 2 and
provide a comprehensive regression approach to the Kalman �lter, for any situation,
observed or latent.

Lastly, we �nish by describe some concrete future directions for sensor fusion
methodology.

5.2 Future directions

Quantile sensor fusion
�e Kalman �lter produces a distributional estimate through the state covariance P̂t.
However, in se�ings where Gaussian assumptions may not hold, we can leverage the
regression perspective (2.14), to �exibly estimate quantiles of the target state. �antile
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sensor fusion solves the following minimization problem

minimize
bj∈Rd

t∑
i=1

`τ (xij − bTj zi)

subject to HT bj = ej,

(5.1)

where `τ is the tilted pinball loss for given quantile level τ , `τ (a) = a (τ − 1{a < 0})
and 1 is the indicator function. Several promising experiments (in the context of
in�uenza nowcasting) of a median sensor fusion estimate to the original (mean) estimate
shows that applying a quantile loss stabilizes estimates. Furthermore, these experiments
show be�er coverage using the empirically constructed distribution when compared
to its Gaussian counterpart. We lastly point out that these quantiles can be estimated
jointly (with all accompanying extensions, e.g., non-crossing constraints).

Transferring regularization techniques
A natural extension of sensor fusion in its regression form (2.14) is to include a regu-
larization term in the criterion:

minimize
bj∈Rd

1

t

t∑
i=1

(xij − bTj zi)2 + λjPj(bj)

subject to HT bj = ej,

where λj > 0 is regularization parameter, and Pj is a penalty function. A ridge
(squared `2) penalty, where λjPj(bj) = ((1− α)/α)

∑d
`=1 b

2
j` has direct equivalence to

the basic SF form (2.8), when the empirical noise covariance (2.13) is shrunken towards
the identity. We provide the proof and details in Appendix A.4.

On the other hand, a lasso (`1) penalty, where Pj(bj) =
∑d

`=1 |bj`| similarly im-
proves sensor fusion, but has no obvious equivalence in the original SF form (2.8).
�is can be seen as a contribution from the regression approach, as it presents one
solution to the problem of variable selection in SF (and hence, KF). Variable selection
is a long-standing and well-studied topic in regression literature (and `1 regularization
[Tibshirani, 1996], a popular solution), whereas measurement selection for the Kalman
�lter is, to the best of our knowledge, a relatively open problem. We give a synthetic
example of performing process model selection (where we append various candidate
process models to the measurement vector), detailed in Appendix A.4.
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Joint learning and gradient boosting
Recall that sensorization independently transforms data sources ui ∈ Rd, i = 1, ..., t
at each time point. Joint training can be done by extending (2.14) as

minimize
bj∈Rd, j=1,...,d

f∈F

1

t

d∑
j=1

t∑
i=1

(
xij − bTj f(ui)

)2
+ λPj(f)

subject to HT bj = ej, j = 1, . . . , k.

(5.2)

where Fj is a space of functions from Rd to Rd (e.g., diagonal linear maps) and Pj
is a regularization function to be speci�ed by the modeler. �e key in (5.2) is that
we are simultaneously learning the sensors and fusing them. However, solving this
minimization is di�cult, as even in the linear map case the problem is nonconvex. We
propose a more tractable alternative, using a training scheme inspired by gradient
boosting [Friedman, 2001]. We call this approach joint learning, which proceeds
iteratively, and cycles between state prediction and sensor ��ing. �is algorithm is
formalized in Algorithm 5.1.

Relatedly, we propose a second gradient-boosting-inspired approach, which we
di�erentiate by the name sensor boosting. Sensor boosting, detailed in Algorithm 5.2,
takes a di�erent tack. To motivate this approach, recall that sensors, as the outputs of
predictive models trained for the same target, are by construction highly correlated.
Here, we boost at the level of individual sensors by repeated selecting (say, cyclically)
sensors and training the sensor model on the residual signal from the previous fusion
step. In essence, this approach tries to decorrelate a sensor against the others, in such a
manner that incorporates the le�over signal a�er sensor fusion. �is approach assumes
that the sensor models fi are invertible, in the sense that we can recover ui ≈ f−1i (xi)
(a de-sensorization of state back to data source). Experiments of this approach applied
in the in�uenza se�ing have produced encouraging results.
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Algorithm 5.1: Joint training of sensor ��ing and fusion
Input: For each j = 1, ..., d, base learners Aj , data sources uij over all history

i = 1, 2, . . . , t, measurement map H , number of boosting iterations B,
small �xed learning rate η > 0.

Output: Predicted state x̂t+1.
Initialize x(0)i = 0, i = 1, . . . , t.
for b = 1, . . . , B do

for j = 1, . . . , d do
Let y(b−1)ij = (Hx(b−1))ij , for i = 1, . . . , t− 1.
Run Aj with responses {yij − y(b−1)ij }t−1i=1 and covariates {uij}t−1i=1, to
produce f̄ (b)

j .
De�ne intermediate sensors z(b)ij = f̄

(b)
j (uij), for i = 1, . . . , t.

end
for j = 1, . . . , k do

Run SF as in (2.14) (possibly with regularization) with responses
{xij − x(b−1)ij }t−1i=1 and covariates {z(b)i }t−1i=1, to produce b̂j .

De�ne intermediate state �ts x̄(b)ij = b̂Tj z
(b)
i , for i = 1, . . . , t.

Update total state �ts x(b)ij = x
(b−1)
ij + ηx̄

(b)
ij , for i = 1, . . . , t.

end
end
Return x̂t+1 = x

(B)
t+1.



Chapter 5. Discussion 90

Algorithm 5.2: Sensor boosting
Input: For each j = 1, ..., d, base learners Aj , data sources uij over all history

i = 1, 2, . . . , t, measurement map H , small �xed learning rate η > 0.
Output: Predicted state x̂t+1.
Initialize x(0)i = 0, i = 1, . . . , t.
for j = 1, . . . , d do

Run Aj with responses {yij}t−1i=1 and covariates {uij}t−1i=1 to produce f̄ (0)
j .

De�ne initial sensors z(0)ij = f̄
(0)
j (uij) for i = 1, . . . , t.

end
Run SF as in (2.14) (possibly with regularization) with responses {xij}ti=1 and
covariates {z(0)i }ti=1, to produce b̂j .

De�ne initial state �ts x̄(0)ij = b̂Tj z
(0)
i , for i = 1, . . . , t.

for b = 1, . . . , B do
Select the `th sensor. Selection can proceed cyclically, through random
choice, or by a chosen criteria (for example,
` = argmax`

∑t−1
i=1(z

(b−1)
i` − xi`)2).

De�ne the intermediate de-sensorized source ūi` = (f̄
(b−1)
` )−1 (xi`), for

i = 1, . . . , t.
Run A` with responses {yi`}t−1i=1 with covariates {ui` − ūi`}t−1i=1 to produce
f̄
(b)
` .

Update the sensor values z(b)i` = z
(b−1)
i` + ηf̄

(b)
` (ui` − ūi`) for i = 1, . . . , t.

Run SF as in (2.14) (possibly with regularization) with responses {xij}ti=1

and covariates {z(b)i }ti=1, to produce b̂j .
Update the total state �ts x(b)ij = b̂Tj z

(b)
i , for i = 1, . . . , t.

end
Return x̂t+1 = x

(B)
t+1.



Appendix A

Proofs and Additional Details for
KF-SF

A.1 Proof of Theorem 1
We can write the sensor fusion update as

P̃t+1 = (H̃T R̃−1t+1H̃)−1

x̂t+1 = P̃t+1H̃
T R̃−1t+1z̃t+1,

where
P̃t+1 = (HTR−1H + P̄−1t+1)

−1.

By the Woodbury matrix identity, (A+UCV −1) = A−1−A−1U(C−1+V A−1U)−1V A−1,
with A = P̄−1t+1 in our case, we get

P̃t+1 = P̄t+1 − P̄t+1H
T (R +HP̄t+1H

T )−1HP̄t+1

= (I − P̄t+1H
T (R +HP̄t+1H

T )−1H)P̄t+1

= (I −Kt+1H)P̄t+1, (A.1)

where recall, the Kalman gain Kt+1 is de�ned in (2.6).

Now let us we rewrite the Kalman gain as

Kt+1 = P̄t+1H
T (R +HP̄t+1H

T )−1

= P̄t+1H
TR−1(I +HP̄t+1H

TR−1)−1,

so that
Kt+1(I +HP̄t+1H

TR−1) = P̄t+1H
TR−1,
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and a�er rearranging,

Kt+1 = (I −Kt+1H)P̄t+1H
TR−1. (A.2)

Pu�ing (A.1) and (A.2) together, we get

P̃t+1H̃
T R̃−1t+1z̃t+1 = (I −Kt+1H)P̄t+1(H

TR−1zt+1 + P̄−1t+1x̄t+1)

= (I −Kt+1H)P̄t+1H
TR−1zt+1 + (I −Kt+1H)x̄t+1

= Kt+1zt+1 + (I −Kt+1H)x̄t+1

= x̄t+1 +Kt+1(zt+1 −Hx̄t+1),

which is exactly the Kalman �lter prediction, completing the proof.

A.2 Derivation of (2.12)
We �rst make the EKF estimate precise. Let

Ft+1 = Df(x̂t), (A.3)
Ht+1 = Dh(x̄t+1), (A.4)

and de�ne

x̄t+1 = Ft+1x̂t, (A.5)
x̂t+1 = x̄t+1 +Kt+1

(
zt+1 − h(x̄t+1)

)
, (A.6)

where Kt+1 ∈ Rk×d is de�ned via

P̄t+1 = Ft+1PtF
T
t+1 +Q, (A.7)

Kt+1 = P̄t+1H
T
t+1(Ht+1P̄t+1H

T
t+1 +R)−1, (A.8)

Pt+1 = (I −Kt+1Ht+1)P̄t+1, (A.9)

Note that (A.7)–(A.9) are exactly the same as (2.5)–(2.7), with Ft+1, Ht+1 replacing
F,H , respectively. Moreover, (A.5), (A.6) are nearly the same as (2.3), (2.4), with again
Ft+1, Ht+1 replacing F,H , except that the residual in (A.6) is zt+1 − h(x̄t+1), and not
zt+1 −Ht+1x̄t+1, as would be analogous from (2.4).

Next, we make what we called the extended SF (ESF) estimate precise. Let z̃t+1 ∈ Rd+k

be as in (2.11), let H̃t+1 ∈ R(d+k)×k be the rowwise concatentation of Ht+1 and I ∈
Rk×k, and R̃t+1 be as in (2.9). Here, Ft+1, Ht+1, P̄t+1 are as de�ned in (A.3), (A.4), (A.7),
respectively. �e ESF estimate is

x̂t+1 = (H̃T R̃−1t+1H̃)−1H̃T R̃−1t+1z̃t+1. (A.10)
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To see that (A.10) and (A.6) are equal, note that by following the proof of �eorem
1 directly, with Ft+1, Ht+1 in place of F,H , we get

(H̃T
t+1R̃

−1
t+1H̃t+1)

−1H̃T
t+1R̃

−1
t+1z̃t+1 = x̄t+1 +Kt+1(zt+1 −Ht+1x̄t+1).

Adding and subtracting Kt+1h(x̄t+1) to the right-hand side gives

(H̃T
t+1R̃

−1
t+1H̃t+1)

−1H̃T
t+1R̃

−1
t+1(zt+1, x̄t+1)

= x̄t+1 +Kt+1

(
zt+1 − h(x̄t+1)

)
+Kt+1(h(x̄t+1 −Ht+1x̄t+1)

= x̄t+1 +Kt+1

(
zt+1 − h(x̄t+1)

)
+ (I −Kt+1Ht+1)P̄t+1H

T
t+1R

−1(h(x̄t+1 −Ht+1x̄t+1)

= x̄t+1 +Kt+1

(
zt+1 − h(x̄t+1)

)
+ P̃t+1H

T
t+1R

−1(h(x̄t+1 −Ht+1x̄t+1),

where in the second line we used (A.2), and in the third we used (A.1). Rearranging
gives

(H̃T
t+1R̃

−1
t+1H̃t+1)

−1H̃T
t+1R̃

−1
t+1

(
zt+1+Ht+1x̄t+1−h(x̄t+1), x̄t+1

)
= x̄t+1+Kt+1

(
zt+1−h(x̄t+1)

)
,

which is precisely the desired conclusion, in (2.12).

A.3 Proof of Theorem 2
Let us denote X ∈ Rt×k and Z ∈ Rt×d the matrices of states and sensors, respectively,
for the �rst t time points. �at is, X has rows xi ∈ Rk, i = 1, . . . , t and Z has
rows zi ∈ Rd, i = 1, . . . , t. Fix any j = 1, . . . , k. Let âj ∈ Rd be the jth column
of R̂−1t+1H(HT R̂−1t+1H)−1, and let b̂j ∈ Rd be the solution of (2.14), equivalently, the
solution of

minimize
bj∈Rd

‖Xj − Zbj‖22

subject to HT bj = ej,
(A.11)

where Xj denotes the jth column of X . We will show that âj = b̂j .

�e Lagrangian of problem (A.11) is

L(bj, uj) = ‖Xj − Zbj‖22 + uTj (HT bj − ej),

for a dual variable (Lagrange multiplier) uj ∈ Rk. Taking the gradient of the Lagrangian
and se�ing it equal to zero at an optimal pair (b̂j, ûj) gives

0 = ZT (Zb̂j −Xj) +Hûj,

and rearranging gives

b̂j = (ZTZ)−1(ZTXj −Hûj). (A.12)
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�e dual solution ûj can be determined by plugging (A.12) into the equality constraint
HT b̂j = ej , but for our purposes, the explicit dual solution is unimportant.

We will now show that b̂j = R̂−1t+1Hβ̂j for some β̂j ∈ Rk. Write

R̂t+1 =
1

t
(Z −XHT )T (Z −XHT ) + (1− α)I

=
1

t
(ZTZ −HXTZ − ZTXHT +HXTXHT ).

�en

R̂t+1b̂j =
1

t
(ZTZb̂j −HXTZb̂j − ZTXHT b̂j +HXTXHT b̂j)

=
1

t
(ZTXj −Hûj −HXTZb̂j − ZTXj +HXTXj)

= H
(XTXj − ûj −XTZb̂j

t

)
︸ ︷︷ ︸

β̂j

,

as desired, where in the second line we have used (A.12) and the constraint HT b̂j = ej .

Observe that âj = R̂−1t+1Hα̂j for some α̂j ∈ Rk, in particular, for α̂j de�ned to be
the jth column of (HT R̂−1t+1H)−1. Further,

ej = HT âj = HT b̂j

the constraint on âj holding by direct veri�cation, and the constraint on b̂j holding by
construction in (A.11). �at is,

HT R̂−1t+1Hα̂j = HT R̂−1t+1Hβ̂j,

and sinceHT R̂−1t+1H is invertible, this leads to α̂j = β̂j , and �nally âj = b̂j , completing
the proof.

A.4 Further SF-regression equivalences

A.4.1 More regularization: covariance shrinkage
Covariance shrinkage—which broadly refers to the technique of adding a well-conditioned
matrix to a covariance estimate to provide stability and regularity—is widely used and
well-studied in modern multivariate statistics, data mining, and machine learning. As
such, it would be natural to replace the empirical covariance matrix estimate (2.13) for
the measurement noise covariance by

R̂t+1 =
α

t

t∑
i=1

(zi −Hxi)(zi −Hxi)T + (1− α)I, (A.13)
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for a parameter α ∈ [0, 1]. For sensor fusion in the �u nowcasting problem, this is
considered (in some form) in Farrow [2016], and leads to signi�cant improvements in
nowcasting accuracy.

Our next result shows that when we use shrinkage as in (A.13) to estimate the
measurement noise covariance in SF, this is equivalent to adding a ridge penalty in the
regression formulation.

Corollary 1. Let R̂t+1 be as in (A.13), for some value α ∈ [0, 1]. Consider the SF
prediction at time t + 1, with R̂t+1 in place of R, denoted x̂t+1 = B̂T zt+1. �en each
column of B̂, denoted b̂j ∈ Rd, j = 1, . . . , k, solves

minimize
bj∈Rd

1

t

t∑
i=1

(xij − bTj zi)2 +
(1− α)

α
‖bj‖22

subject to HT bj = ej.

Proof. As before, let X ∈ Rt×k and Z ∈ Rt×d denote the matrix of states and sensors,
respectively, over the �rst t time points. We can write R̂t+1 in (A.13)

α

t
(Z −XHT )T (Z −XHT ) + (1− α)I =

1

t
(Z̃ − X̃HT )T (Z̃ − X̃HT ),

where Z̃ ∈ R(t+d)×d is the rowwise concatenation of
√
α/tZ and

√
1− α/tI , and

X̃ ∈ R(t+k)×k is the rowwise concatenation of
√
α/tX and 0 ∈ Rk×k (the matrix of all

0s). Applying �eorem 2 to X̃, Z̃ , expanding the criterion in the regression problem,
and then multiplying the criterion by 1/α, gives the result.

A.4.2 Less regularization: zero padding
In the opposite direction, we now show that we can modify SF and obtain an equivalent
regression formulation with less regularization, speci�cally, without constraints.

Corollary 2. At each t = 1, 2, 3, . . ., suppose we augment our measurement vector
by introducing k measurements that are identically zero, denoted z̃t = (zt, 0) ∈ Rd+k.
Suppose that we augment our measurement map accordingly, de�ning H̃ ∈ R(d+k)×k

to be the rowwise concatention of H and the identity I ∈ Rk×k. Consider running
SF on this augmented system, using the empirical covariance to estimate R, and let
x̂t+1 = B̂T zt+1 denote the SF prediction at time t+ 1. �en each column of B̂, denoted
b̂j ∈ Rd, j = 1, . . . , k, solves

minimize
bj∈Rd

t∑
i=1

(xij − bTj zi)2.
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Proof. Applying �eorem 2 to the augmented system gives the equivalent regression
problem

minimize
bj∈Rd, aj∈Rk

t∑
i=1

(xij − bTj zi − aTj 0)2

subject to HT bj + aj = ej.

�e constraint is satis�ed with aj = ej −HT bj . But aj has no e�ect on the criterion,
so the constraint can be removed.

Remark 5. �e analogous equivalence holds for covariance shrinkage and ridge
regression. �at is, in Corollary 2, if instead of the empirical covariance, we use α
times the empirical covariance plus (1 − α)I , then SF on the augmented system is
equivalent to unconstrained ridge, at tuning parameter (1− α)/α.

A.5 Example of process model selection
Here we give a simple empirical example of process model selection using the regression
formulation of SF. We initialized x0 = 1, and generated data according to

xt = 0.5xt−1 + 0.05 sin(0.126t) + δt,

zt = Hxt + εt,

for t = 1, . . . , 200. Here H ∈ R4×1 is simply the column vector of all 1s, and the noise
is drawn as δt ∼ N(0, 0.01), εt ∼ N(0, I), independently, over t = 1, . . . , 150.

�e prediction setup is as follows. At each time t+ 1, when making a prediction of
xt+1, we observe all past states xi, i = 1, . . . , t and all measurements zi, i = 1, . . . , t+1.
We �t 5 di�erent candidate process models to past state data:

1. linear autoregression;
2. quadratic autoregression;
3. spline regression on time;
4. sine regression on time;
5. cosine regression on time.

To be clear, models 1 and 2 regress xi on xi−1 and x2i−1, respectively, over i = 1, . . . , t.
Models 3–5 regress xi on a spline, sine, and cosine transformation of i, respectively,
over i = 1, . . . , t. �e sine and cosine transformations are given the true frequency.
�e spline is a cubic smoothing spline (with a knot at every data point) and its tuning
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parameter is chosen by cross-validation (using only the past data). A�er being �t, we
use each of the candidate process models 1–5 to make a prediction of xt+1, given zt+1.
We take this as its ouput.

For t = 151, . . . , 200, we de�ne z̃t ∈ R9 to be the measurement vector zt ∈ R4

augmented with the outputs of the 5 candidate process models as described above
(the burn-in period of 150 time points ensures that the candidate process models have
enough training data to make reasonable predictions). Figure A.1 shows the outputs
from these models over the last 50 time points.
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Figure A.1: Simple process model selection example: outputs from 5 candidate process
models, over the last 50 time points.

Finally, in the last 50 time points, to get an assimilated prediction of x̂t+1 at each
time t + 1, we solve the constrained regression problem with a lasso penalty, using
cross-validation to select λ (again, using only past data). Further, we penalize only
the coe�cients of the candidate process models (not the pure measurements). Table
A.1 shows the median of the coe�cients over the last 50 time points (in this table, the
coe�cients for the pure measurement sensors are aggregated as one). We see that the
lasso tends to select the linear and sine sensors, as expected (because these two make
up the true dynamical model), and places a small weight on the spline sensor (which is
�exible, and can mimic the contribution of the sine sensor).
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Linear �adratic Spline Sine Cosine Measurements

Median

Coe�cient
0.643 0.000 0.094 0.189 0.000 0.0175

Table A.1: Simple process model selection example: median regression coe�cients for the sensors,
over the last 50 time points.



Appendix B

Supplementary Deconvolution
Material

B.1 ADMM for solving deconvolution problems
Here we give details on the ADMM approach used to solve the regularized least squares
deconvolution problems in Sections 3.5 and 3.6. We �rst focus on problem (3.5), and
then we discuss the modi�cations needed when incorporating extra regularization for
real-time deconvolution as in (3.10). To simplify notation, we will henceforth drop
the subscript dependnece of all quantities on the location `, as well as the superscript
dependence on the nowcast date t for the real-time problems.

We also use P̂ to denote the (Toeplitz) convolution matrix with rows determined
by p̂s, s < t, i.e., such that for any vector x (of appropriate dimension)

(P̂ x)s =
d∑

k=1

p̂kxs−k.

(We leave the dimensions of P̂ and x here purposely ambiguous, which should always
be clear from the context anyway; this allows us to borrow similar notation across
problems with di�erent underlying dimensions.) �us we can rewrite (3.5) as

minimize
x

‖y − P̂ x‖22 + λ‖D(4)x‖1.

To apply ADMM, we must introduce auxiliary variables, and as in Ramdas and Tibshi-
rani [2016], we use the following “specialized” decomposition (which improves the

99



Appendix B. Supplementary Deconvolution Material 100

convergence speed):
minimize

x
‖y − P̂ x‖22 + λ‖D(1)α‖1

subject to α = D(3)x,

where we used the recursive nature of the di�erence operators, writing the 4th-order
operator as a product of the 1subject to- and 3rd-order operators: D(4) = D(1)D(3).
�e above problem gives rise to the augmented Lagrangian:

L(x, α, u) = ‖y − P̂ x‖22 + λ‖D(1)α‖1 + ρ‖α−D(3)x+ u‖22 − ρ‖u‖22,

which corresponds to following ADMM updates, writing D = D(3) for brevity:
x← (P̂ T P̂ + ρDTD)−1

(
P̂ Ty + ρDT (α + u)

)
α← argmin

z
‖Dx− u− z‖22 +

λ

ρ
‖D(1)α‖1

u← u+ α−Dx.

�e α-update here requires solving a 1-dimensional fused lasso problem, which can be
done in linear-time with the dynamic programming approach of Johnson [2013]. �e
x-update is more expensive than in pure trend �ltering (with no convolution operator)
but owing to the bandedness of P̂ (and D, though the bandwidth d of P̂ dominates), it
can still be solved in O(nd) operations. Further, in this and all applications of ADMM,
we follow the recommendation of Ramdas and Tibshirani [2016] and set the Lagrangian
parameter equal to the tuning parameter, ρ = λ.

As for the two extensions presented in (3.10), the natural trend �ltering constraints
can be be enforced by introducing a linear interpolant matrix as described in Section 11.2
of Tibshirani [2020]. �is e�ectively replaces the convolution matrix P̂ and the 3rd
di�erence operator D, in the ADMM steps above, by P̃ and D̃, respectively, which are
given by right multiplying P and D by the interpolant matrix.

Moreover, the additional tapered smoothing term can be pushed into the augmented
Lagrangian, and only alters the x-update, now becoming:

x← (P̃ T P̃ + γMTM + ρD̃)−1
(
P̃ Ty + ρD̃T (α + u)

)
,

where M is the matrix W (t)D(1) in the tapered penalty in (3.10) times the linear
interpolant matrix.

B.2 Additional evaluation results
Figures B.1 and B.2 are analogous to Figures 3.11 and 3.12, but with the inclusion of the
Google-AA sensor. Similarly, Figures B.3 and B.4 are the counterparts to Figures 3.13
and 3.14, but with the inclusion of claims-based sensors.
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Figure B.1: As in Figure 3.11, but including Google-AA.
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Figure B.2: As in Figure 3.12, but including Google-AA.
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Figure B.3: As in Figure 3.13, but including claims-based signals.
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Figure B.4: As in Figure 3.14, but including claims-based signals.
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Figure B.5: As in Figure 3.11, but comparing post hoc smoothed sensor fusion to the
original sensor fusion and NTF methods. Smoothed sensor fusion method achieves the
best performance.



Appendix C

Additional Reconvolution Results

Figures C.1 and C.2 are analogous to Figure 4.5, but using trend �ltering and natural
trend �ltering (tapered), deconvolution methods, respectively. Similarly, Figures C.3
and C.4 are analogous to Figure 4.6, but with the di�erent deconvolution methods.
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Figure C.1: As in Figure 4.5, but for trend �ltering deconvolution.
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Figure C.2: As in Figure 4.5, but for natural trend �ltering deconvolution with a tapered
penalty.
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Figure C.3: As in Figure 4.6, but for trend �ltering deconvolution with k = 2, 10. �e le�
panel is �xed at k = 2, which is the �rst lag available for this method.
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Figure C.4: As in Figure 4.6, but for natural trend �ltering deconvolution with a tapered
penalty with k = 2, 10. �e le� panel is �xed at k = 2, which is the �rst lag available
for this method.
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