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Abstract

The brain is in large part a complex network of interacting populations of neurons, whose coordinated activity
underlies our ability to perform various cognitive and motor tasks. These neuron populations interact through
the ensemble effects of sequences of action potentials, referred to as spike trains, from the member neurons. A
population may be defined anatomically, based on the physical location of the neurons in the brain, which can be
directly observed in experimentally recorded neural data. A population may also be defined functionally, based on
the homogenous spiking patterns of the member neurons. These functional populations are typically unobserved
in experimentally collected data and must be inferred from the spike train activity of the individual neurons. Re-
gardless of definition, an understanding of the functional connections, that is, the statistical dependencies between
these neuron populations, is crucial in understanding how different parts of the brain communicate and function
together to perform its various functions. The need for such an understanding necessitates the development of
methods to enable this understanding, which forms the motivation for the work done in this thesis.
The primary challenges involved in this objective can be broadly described as follows: 1. Identifying the inter-
acting populations among a set of spiking neurons, and 2: Quantifying the functional connections between these
interacting populations. In this thesis, we develop models and methodologies to identify these interacting popula-
tions, and to infer the functional connections among them.
In Part I, we develop a Bayesian hierarchical modeling framework to infer the functional connections between
interacting populations of neurons using time-dependent features of ensemble neural activity. We apply our model
to electrophysiological data recorded from the visual brain areas of multiple subjects, during visual experiments.
Our method is able to reveal consistencies in the activity patterns of several brain regions across subjects.
In Part II, we develop a more general modeling framework, which addresses the two primary challenges outlined
previously. In this framework, our objective is formulated as a probabilistic graphical model that defines a joint
distribution over our observed data. The nodes and edges are unobserved and must be inferred from the observed
data. We apply our modeling framework to experimentally recorded data from the visual cortex of a mouse, where
the nodes of the graphical model represent the interacting populations, and the edges represent the functional con-
nection between these populations. We discuss the interpretations of our findings on this data.
Finally, we conclude by discussing the future extensions of this work, and how it can be applied in various research
domains.
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Chapter 1

Introduction

The brain’s ability to perform cognitive and motor tasks is driven by the coordinated activity of interconnected
regions, which consist of sub-populations of neurons that communicate through sequences of action potentials,
known as spike trains. Spike trains encode information about sensory stimuli, motor commands, and cognitive
processes, and the temporal patterns of these spike trains are crucial for understanding how the brain processes
information [Aljadeff et al., 2016, Reich, 1997]. The ensemble spiking activity of these neurons across multiple
populations drives interactions between brain regions [Abbott and Dayan, 1999, Averbeck et al., 2006, Cohen
and Kohn, 2011, Nirenberg and Latham, 2003, Shadlen and Newsome, 1998, Zohary et al., 1994], although this
population activity is subject to Poisson-like variation, which can easily obscure the functional connections, that
is, the statistical dependencies between them, when analyzing data [Chen et al., 2022]. Further considerations
include inhomogeneity of the neuron firing patterns within a population, time-varying dynamics, and trial-to-trial
variations under the same experimental conditions [Behseta et al., 2009, Cohen and Kohn, 2011, Jia et al., 2020,
Lee et al., 2010, Ventura et al., 2005]. We must, therefore, rely on statistical techniques that account for the vari-
ous sources of variability, in order to uncover these dependencies from neural population spiking data [Kass et al.,
2023]. An important statistical tool in modeling a sequence of discrete random events is the point process, a mod-
eling framework that assumes in theory, that at most one random event can occur at any given point in continuous
space or time, with the probability of each random event given by a firing rate function [Kass et al., 2014, 2023].
This framework has a long and exhaustive history of applications for modeling spike trains, where it is applied to
spiking data recorded in small discrete time bins, such that at most one spike can occur in each bin, resulting in a
discrete binary time series [Brillinger, 1988, Brown et al., 2004, Kass and Ventura, 2001, Kass et al., 2005, Pillow
et al., 2008, Truccolo et al., 2005]. Concurrently, electrophysiological recording techniques have improved dra-
matically, including most notably, Neuropixels probes [Jun et al., 2017, Steinmetz et al., 2018, 2021], which can
simultaneously record spike trains from hundreds of neurons in multiple cortical regions, to millisecond precision,
a scale and resolution not previously possible [Jia et al., 2022, Siegle et al., 2021]. Analysis techniques applied
to such vast datasets should run efficiently and scale well with the size of the dataset. This thesis will develop
two models to analyze populations of spiking neurons recorded from Neuropixels, with the goal of understanding
functional connectivity as defined by fine time-scale timing and coupling relationships between different brain
areas. In addition, we should that our models are able to run quickly on large datasets, compared to alternatives,
while delivering robust results. We will apply our methods to data from areas of interest in the visual cortex of
mice, under varying visual stimulus conditions, during a passive visual task.

The onset of a sensory stimulus in the sensory cortex elicits transient bursts of activity in neural populations,
which are presumed to convey information about the stimulus to downstream populations [Manita et al., 2015,
Sachidhanandam et al., 2013]. The timing of the synchronized activity peaks is highly variable across intercon-
nected brain regions, and across subpopulations of neurons defined by stimulus-specific neural response profiles,
but their relative timing across regions may be less variable, especially for regions that are strongly functionally
coupled [Chen et al., 2022, Olarinre et al.]. The standard method for measuring the timing of these peaks is to
compute a peri-stimulus time histogram (PSTH), which averages the evoked response across trials, but this ignores
trial-to-trial variability in peak times, effectively discarding useful information that might give insights into the
propagation of spikes through cortical areas. In Chapter 2, we outline a hierarchical Bayesian modeling frame-
work able to obtain precise estimates of population burst times on a trial-by-trial basis, and reveal correlations
in the timing of evoked population bursts across visual areas following the onset of stimulus, by accounting for
various sources of variability. This framework is simple enough to be used by most practitioners and easily scales
to large amounts of data while maintaining a reasonable runtime. Using our approach, we examine the relative
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timing of population bursts in large-scale recordings of spiking activity from six cortical visual areas and one
visual thalamic nucleus in thirteen experimental subjects, to identify variations in peak times and region-to-region
coupling relationships. While this framework produces good results, it and previous work in this direction, require
pre-screening steps to account for the observed diversity in stimulus-dependent population response profiles, a
consequence of inhomogeneity in neuron responses both within and across stimulus conditions. Pre-screening is
thus aimed at filtering out the stimulus-dependent neuron populations that are deemed "not relevant" to functional
coupling across brain regions. This heavily depends on a definition of a functionally relevant population as having
a dual peaked response to a given stimulus. However, we often observe populations with both single-peaked and
dual-peaked responses, all of which may be relevant to functional connectivity. The filtering done by the previous
methods tends to eliminate large populations of potentially relevant neurons by applying a very narrow definition
of a functionally relevant population. In Chapter 3, we develop a broad modeling framework for inferring func-
tional connectivity that addresses this limitation by modeling all distinct neuron populations using a Probabilistic
graphical model, where the various nodes represent the diversity of neuron populations, and the edges represent
the interactions between the populations. Using this framework, we are able to model functional connectivity
between multiple populations more broadly. Using synthetic data, we demonstrate the ability of our framework
to perform model selection by automatically learning the true number of neuron populations present in a large
dataset, as well as the interactions between the populations. This eliminates the need to pre-define a functionally
relevant population, and thus to prescreen for them, as the model accounts for these automatically.
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Chapter 2

Relative timing and coupling of neural
population bursts in large-scale recordings
from multiple neuron populations

This section is based on the preprint [Olarinre et al.], which is currently under revision for the Journal of Neuro-
science. It builds on earlier work [Chen et al., 2022]

This work focuses on our efforts to design a simple and scalable method for probabilistic modeling for neuron
population spiking data and to determine the strength of the functional association between different visual areas
in the visual cortex of mice. The conventional tool for comparing neural activity across brain regions involves
aggregating data across trials, producing a Peri-Stimulus Time Histogram (PSTH). These, however, obscure any
information about trial-to-trial variability/covariability, which is a useful proxy for functional association [Aver-
beck et al., 2006, Ben-Shaul et al., 2001, Bondy et al., 2018, Brody, 1999, Cohen and Kohn, 2011, Lee et al.,
2016, Ventura et al., 2005]. Typical attempts at quantifying these trial-to-trial variations make use of spike counts
in relatively wide time windows of the population PSTH (where the data is aggregated across neurons in a popula-
tion rather than across trials). This, however, also obscures the functional association at fast time scales [Averbeck
et al., 2006, Bondy et al., 2018, Cohen and Kohn, 2011, Gu et al., 2011, Smith and Kohn, 2008, Smith and Som-
mer, 2013, Vinci et al., 2016]. Here, we apply a method to the PSTHs to identify these fast timescale variations.
We obtain strong results on the correlation in the times at which spiking neural populations reach their peak ac-
tivity, a feature of the population firing rate profile. We also obtain the order in which these peaks are attained for
different areas. In [Chen et al., 2022], we conduct this analysis on 3 visual areas in a single mouse, with repetition
in a second mouse, and in [Olarinre et al.], we extend this analysis to 7 areas in 13 mice, enabling conclusions
about the degree to which different connectivity patterns vary across mice. In addition, we both simplified the
procedure and greatly decreased the computation time.

2.1 Background and motivation
Within tens of milliseconds after the onset of a sensory stimulus, spikes are conveyed from the periphery and
evoke a transient burst of activity across large populations of neurons in the thalamus and cortex. Responses to
stimulus onset in sensory cortex often include two activity peaks, with the earlier peak reflecting the feed-forward
propagation of spikes from the periphery, while the second peak (occurring 100-200 ms later) likely reflects
feedback from other cortical areas [Manita et al., 2015, Sachidhanandam et al., 2013]. The standard method for
measuring the timing of these peaks is to compute a peri-stimulus time histogram (PSTH), which averages the
evoked response across trials, but this ignores trial-to-trial variability in peak times, effectively discarding useful
information that might give insights into the propagation of spikes through cortical areas [Chen et al., 2022].

Modern electrophysiological recording techniques, such as Neuropixels probes [Jun et al., 2017, Steinmetz
et al., 2021], have enabled simultaneous recordings of spike trains from hundreds of neurons in multiple cortical
regions, making it possible to observe the timing of evoked responses in greater detail than was previously possible
[Jia et al., 2022, Siegle et al., 2021]. The Allen Brain Observatory Neuropixels Visual Coding Dataset [Allen
Institute MindScope Program, 2019], an open dataset consisting of electrophysiological recordings from multiple
cortical and thalamic visual areas in parallel, is a prime example of what can achieved with these probes (Figure
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2.1A-C). The cortical areas recorded in this dataset display a stereotypical dual-peaked response to the onset
of a full-field drifting grating stimulus, with the average timing of the first peaks consistent with their relative
hierarchical ordering determined by anatomy (Figure 2.1D) [D’Souza et al., 2022, Harris et al., 2019, Siegle et al.,
2021]. As each peak results from the synchronous firing of many neurons in a given region, we refer to these
peaks as "population bursts." As noted by [Kass et al., 2023], assuming that behaviorally relevant information is
transmitted across parts of the brain through such transient bursts of activity in neural populations, their timing on
a trial-by-trial basis should reveal coordinated activity.

We followed [Chen et al., 2022] by focusing on the time at which each population firing rate reaches its
maximum value (“peak timing”) because, by definition, many spikes occur around the time of the maximal value,
so it should be well determined, statistically. Chen et al. [Chen et al., 2022] noticed that the simple (“näive”)
method of determining peak timing, namely smoothing the population PSTH and finding the time of its maximal
value, in fact, produced poor estimates, and they identified three sources of difficulty. First, for any given condition,
only a subset of neurons responded similarly to produce the two-peak population profile, while the other neurons
effectively diluted the signal by issuing irrelevant noisy spike times. Second, the shape of the peak was condition-
specific; the usual population PSTH, as shown in Figure 2.1, is a blurred average across conditions. Third, the
Poisson-like noise in the spike trains (which is typical in many brain areas of behaving mammals), from a limited
number of condition-relevant neurons, contributed substantially to the inaccuracy in peak timing estimates derived
from smoothed population PSTHs. We devised an analytical strategy to overcome these problems, and the new
method is much simpler and more computationally efficient than that proposed by Chen et al..

Not only do excessively noisy estimates of timing make it difficult to establish sequential activity across areas,
they can also greatly decrease correlations of the timing across two areas, such as V1 and LM. This phenomenon
is well known and easy to prove mathematically [Kass et al., 2014, Section 12.4.4]. It is also intuitive: if two
measurements tend to move up and down together but independent noise is added to them, the extent to which
they move together will be thrown off by the noise, and their correlation will thus be diminished. In the statistics
literature, an improved correlation estimate (often discussed under the heading of “errors in variables”), is typically
called a “correction for attenuation” [Kass et al., 2014, Section 12,4.4 and references therein]. To be clear, our
corrections for attenuation aim to do a better job of estimating the results that would have been obtained had the
entire condition-relevant population of neurons been recorded. Figure 2.6 provides an illustration for areas V1 and
LM, based on the method we describe here.

Chen et al. solved the three problems listed above by developing a comprehensive Bayesian hierarchical
model, called the Interacting Population Rate Function (IPFR) model. Simulation studies showed their method
could obtain accurate estimates of individual trial population burst times and their trial-to-trial correlations across
areas. Because it included, together, all elements of the problem, the IPFR model was rather complicated, and for
large data sets could take an excessively long time to run in standard computing environments. As an alternative,
we developed a simplified version by solving each of the three problems, separately, in a 3-step procedure. We
demonstrate that the new procedure can replicate, with good accuracy, the results of the previous method while
having an 85 to 90% reduction in compute time. We then use the new procedure to examine the relative timing
and coupling of population bursts across thirteen mice and to infer the mouse-to-mouse variation in these timing
and coupling relationships.

Materials and Methods

Experimental Setup
In this work, we analyzed the publicly available Allen Brain Observatory Visual Coding Neuropixels Dataset
[Allen Institute MindScope Program, 2019], which includes spike trains and local field potential recordings from
the mouse visual system. In each experiment, six Neuropixels probes were targeted to six areas of visual cortex
(Figure 2.1A-C), which were identified via functional retinotopic mapping before the experiment. Spike trains
from between 40 and 100 neurons from each area were recorded simultaneously from each subject (after applying
standard thresholds to spiking sorting quality metrics, see [Siegle et al., 2021] for details). Thirty mice were
head-fixed and passively presented with visual stimuli, which included natural movies, full-field flashes, Gabor
patches, and drifting gratings. Here, we focused on drifting gratings because they included many repeated trials
for each condition, the trials are relatively long (3 s each), and they drive strong responses in visual cortex. The
drifting gratings have 40 conditions that result from combining eight grating orientations (0°, 45°, 90°, 135°,180°,
225°, 270°, 315°) and five temporal frequencies (1, 2, 4, 8, 15 Hz). Each condition is repeated 15 times. Each
trial lasts for 3 s, with 2 s stimulus and 1 s blank screen, with all conditions randomly interleaved. We analyzed
spike trains from the lateral geniculate nucleus (LGN), the thalamic region that receives inputs from the retina and
sends outputs to cortex, and six cortical areas: primary visual cortex (V1), which is the primary target of LGN, and
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Figure 2.1: Electrophysiological recordings from seven visual areas in a publicly available dataset. A, Illus-
tration of a Neuropixels probe used to detect extracellular spiking activity across hundreds of neurons in parallel.
B, Schematic of the recording configuration. Mice are head-fixed and free to run on a spinning wheel, while
passively exposed to visual stimuli. Six Neuropixels probes are targeted to the visual cortex. C, In each recording
session, probes pass through six visual cortical regions (AL, anterolateral visual area; LM, lateromedial visual
area; RL, rostrolateral visual area; V1, primary visual cortex; AM, anteromedial visual area; PM, posteromedial
visual area) and one thalamic visual region (LGN, lateral geniculate nucleus). D, Overall population response
to the onset of a drifting grating stimulus. The population response here is obtained by smoothing PSTHs across
neurons and trials for each area. Note the two prominent peaks, which likely result from feedforward and feedback
signal propagation, respectively. Arrows indicate the time at (and thus order in) which the firing rate in each area’s
population reaches its maximal value.

is at the bottom of the visual hierarchy, as well as the rostrolateral (RL); lateromedial (LM); anterolateral (AL);
anteromedial (AM); and posteromedial (PM) visual areas, with the last two residing at the top of the anatomically
defined visual hierarchy [D’Souza et al., 2022, Harris et al., 2019].

Model Overview and statistical analysis
A high-level sketch of the IPFR model for a single area, under a single stimulus condition, is shown in the left
diagrams of Figures 2.2 and 2.3, and details can be found in [Chen et al., 2022]. The three steps of our new
procedure correspond to the three problems identified in the introduction. We label these steps (1) interacting
population selection, (2) initial peak time and standard error estimation, and (3) peak time denoising using and
trial-to-trial correlation. Schematic summaries of this procedure are shown in Figures 2.2 and 2.3.

In step (1) we extracted the subset of the population in each area that responds to a particular condition, which
we call the interacting population. As we were interested in the time from stimulus onset at which the intensity
function reaches its peak, we filtered out neurons that showed no change in firing rate, or a decrease in firing rate,
in response to the stimulus. Then we selected, for each condition, the neurons with a clear peak in the stimulus
response profile. We accomplished this selection by fitting a firing rate function to the PSTH for each recorded
neuron, and for each stimulus condition, across trials. A neuron’s condition-specific PSTH was obtained by first
binning the spike train in each trial into 1 ms bins, and then summing these binned spikes trains across all the
condition’s trials. The firing rate function is modeled non-parametrically using a Poisson Generalized Additive
Model (GAM) with a spline basis (Figure 2.4), which is fit to the neuron’s PSTH using maximum likelihood [Kass
et al., 2014, Chapter 19].
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Figure 2.2: Comparison between the IPFR model and our three stage model for a single stimulus condition.
A, The IPFR model. The population spike train on a single trial is driven by its population firing rate, which
combines a time-varying firing-rate template with trial-varying features. Only a subset of neurons recorded within
the brain area will be used, and this subpopulation is determined by a population membership probability. This is
all captured by a single model, with all variables and parameters jointly inferred. B, In our model, the estimation
procedure is divided into three sequential stages.

pop

local-1

Feature covariance

Features

Population
intensity function

Population
spike train

Neuron membership

Membership probability

Population template

pop

pop

local-2

α

θ

βM

Subset preselection

Peak timing & s.e.
estimation (   ,   )α

Hyper-parameters for θ 

Mean peak time
for condition c

Denoised
peak time

s.e. of peak time
estimates

Naive peak time
estimates

Figure 2.3: Plate diagram of our simplified multi-step procedure for estimating the timing of population
bursts. Left: Original IPFR model from [Chen et al., 2022]. Right: Simplified model, which divides the estimation
task into 3 steps. We are able to obtain comparable results with substantially reduced computation time.

We observed strong orientation tuning in the response profiles of individual neurons, consistent with previous
recordings from visual cortex. Examples are shown for three neurons in Figure 2.4. Exploratory analysis revealed
that the initial population burst occurs between 30 ms and 160 ms from stimulus onset, and so filtering for the
evoked responses typical of an interacting population is done within this window. The filtering criteria for each
neuron’s firing rate function within the burst window are as follows:

(i) average firing rate is in the top 60% among neurons in the same visual area;
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(ii) must have a concave critical point;

(iii) must have maximum slope in the top 60% among neurons in the same visual area; and

(iv) the increase from baseline to peak firing rate in the top 60% among neurons in the same visual area.
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Figure 2.4: Selection criteria illustrated for three example neurons. Left: Spike rasters of three different
neurons to eight directions of the 1 Hz drifting grating stimulus. Right: PSTH and fitted firing rate function for
the 225 degree stimulus condition. A, The neuron passes the selection criteria due to its high firing rate and peak
in its stimulus response profile. B, The neuron fails the selection criteria due to its low firing rate. C, This neuron
fails because its PSTH lacks a peak (defined as a concave critical point).

These filtering criteria can be easily automated and applied to all mice. Intuitively, they select the neurons
within each visual area with a strong, peaked response to a stimulus. The conditions for a strong peaked response
were determined from exploratory analysis on a single, randomly selected mouse, to be a high average firing rate
(across time) in the peak response time window, a concave peak, and a sharp and noticeable increase in firing rate
from its baseline in the peak response window. The presence of these features together is a strong indicator of a
peaked response, although the concavity and the increase from baseline matter to a greater extent than the absolute
firing rate. The thresholds were determined empirically for each peak separately from an exploratory analysis of
data from one mouse (ID 756029989) and validated on a second mouse (ID 760345702) before extending the
analysis to the full Allen dataset.

After filtering, we rejected data from any condition in each of the 7 visual areas with an interacting population
of less than 10 neurons available for the next stage of the analysis. Following the subset pre-selection step, the
resulting data set for each visual area consists of only those neurons that contribute to population activity given
each stimulus condition.
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In step (2), the population PSTH on a given trial for a particular area is obtained by summing binned spikes
trains across neurons. The population firing rate function is estimated in the same manner as with individual
neurons (using a Poisson Generalized Additive Model with a spline basis), and the time of maximal firing rate,
which is a naive estimate of the "peak time", is obtained from the population firing rate function as the time at
which the maximum of this function occurs; its estimation uncertainty is obtained by bootstrap resampling from
the population of neurons. As an object of statistical estimation, the peak burst time has the advantage of having,
by definition, a relatively large number of spikes occurring near that time.

In step (3), the naive peak times and uncertainties obtained in step (2), which are represented as yc,r and α2
c,r

respectively, are inserted into a simple Bayesian hierarchical model, shown visually in figure 2.3 and specified as
follows, for trial r under condition c:

yc,r|qc,r ∼ N (qc,r, diag(α
2
c,r))

qc,r|θc, diag(σc), R ∼ N (θc, diag(σc) ∗R ∗ diag(σc))

θc ∼ N (Mc, diag(β
2
c ))

[σc]i ∼ Half-Cauchy(1)

R ∼ LKJ(1)

The components of the vectors correspond to the visual areas, indexed by a in figure 2.3. Here, yc,r is a vector
of peak time estimates (found in step (2)), which are assumed independent and identically distributed given qc,r.
The components of the vector α2

c,r (again found in step (2)) are squared standard errors of the peak time estimates.
The components of the vector qc,r are denoised peak times (expected values of the components of yc,r) while θc
are mean denoised peak times (the expected values across trials) and σc are the corresponding standard deviations,
for condition c.

To complete the hierarchical model we adopt prior probability distributions that are commonly used because of
their good statistical behavior. We place a half-Cauchy distribution on the standard deviation, with scale parameter
1 [Gelman, 2006, Polson and Scott, 2012]. The symbol R denotes the matrix of cross-area correlations in the peak-
1 times. For its prior we use a probability distribution over the space of (flattened) vectors of product-moment
correlations that composes R. This is called the Lewandowski-Kurowicka-Joe (LKJ) distribution [Lewandowski
et al., 2009], and is the recommended prior distribution over correlation matrices in popular Bayesian inference
software STAN [Stan Development Team, 2024]. This distribution corresponds to one over the manifold of d
dimensional positive definite symmetric matrices with unit diagonals and off diagonals between -1 and 1. Note
that this manifold has a complex, non-Euclidean geometry because of the constraints imposed by symmetry, unit
diagonal, and positive definiteness. A sampling algorithm proposed in [Lewandowski et al., 2009] can generate
samples from this manifold, and therefore defines a probability density function over the manifold. The density
for a correlation matrix sampled according to this algorithm is proportional to the determinant of the matrix raised
to a certain power, which is defined by a free parameter. When this power is 0, the probability density corresponds
to a uniform distribution over this manifold. The matrix Σpop

c in the right-hand side of Figure 2.3 can be expressed
as diag(σc) ∗R ∗ diag(σc), and is the cross area covariance matrix for the peak times qc,r. The symbols Mc and
βc are the mean and variance hyper-parameters for the prior on θc. We estimate both using maximum likelihood,
in a similar way as yc,r and αc,r, by summing binned spike trains across both neurons and trials corresponding to
stimulus condition c, for each area. This closely approximates fully Bayesian posterior inference, as described in
the conditionally independent hierarchical model (CIHM) framework [?], also referred to as parametric empirical
Bayes (PEB). We use the Rstan package with Hamiltonian Monte Carlo [Stan Development Team, 2024] to obtain
posterior samples and then posterior means and variances for qc,r, θc, σc and R, r = 1, ..., R, c = 1, ..., C. In
addition, we use the posterior mean peak times θ̂a,c and posterior variances δ̂2a,c to compute, for each area a,
estimates of the mean peak time across conditions, θ̄a. We do this using a weighted mean as the differing degrees
of variances in the peak time estimates across areas makes the simple arithmetic mean a higher variance estimator.
We do not use the usual formula for a weighted mean (e.g., page 193 of [Kass et al., 2014]) because θ̄a involves
two sources of variance, the posterior variances δ̂2a,c of the condition-dependent estimates and the variance of those
estimates across conditions. Thus, the formula we need appears in equation (16.37) on page 461 of [Kass et al.,
2014]. We use the following simple iterative algorithm to estimate the appropriate weighted mean and its variance
(the maximum likelihood estimate of these two quantities) by alternating between the two, while conditioning on
the current value of the other:

• Initialize
wc,0 =

1

C
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• For k = 1 till convergence, repeat

θ̄a,k =

C∑
c=1

wc,k−1 θ̂a,c

sd2θ̄a,k =

C∑
c=1

wc,k−1 (θ̂a,c − θ̄a,k)
2

wc,k =

(
δ̂2a,c + sd2

θ̄a,k

)−1

C∑
c=1

(
δ̂2a,c + sd2

θ̄a,k

)−1

where sd2
θ̄a

is an estimate of the variance in the peak times of area a, across stimulus conditions c =

1, . . . , C, around their weighted mean θ̄a.

We compute the squared standard error of the weighted mean, se2
θ̄a

as

se2θ̄a =
1

C∑
c=1

(
δ̂2a,c + sd2

θ̄a

)−1
.

We follow these steps for each mouse to get the weighted means and variances, for all areas. Based on these, for
each area, we then aggregate across all mice using the ordinary weighted mean and its standard error; we also
compute the standard deviation across mice. We do this analysis for the first and second peaks separately.

Data and code availability
The code for our model is available on GitHub. The data from the Allen Brain Observatory Neuropixels Visual
Coding dataset can be accessed via the AllenSDK, the DANDI Archive, and through AWS Registry of Open Data.

Results
In order to establish the estimation accuracy of our model, we first conducted simulations using data generated by
the IPFR model. We demonstrate that our three-step method is nearly as accurate as the IPFR model while having
greatly reduced computation time.

We then apply our method to data from the Allen Brain Observatory Neuropixels Visual Coding dataset, with
the goal of examining mouse-to-mouse variation in relative lead–lag timing and coupling (trial-to-trial correlation)
relationships among the different visual areas based on peak 1 and peak 2 timing. Previous studies have shown a
temporal ordering in the feedforward propagation of spikes through the visual cortex, with evoked spikes appearing
in higher visual areas having longer delays after stimulus onset [Glickfeld and Olsen, 2017, Schmolesky et al.,
1998, Siegle et al., 2021]. We expected such an ordering to be reflected in the ordering of peak 1 times across the
different areas. Furthermore, any ordering that is functionally relevant should be consistent across subjects, even
though the absolute peak times may be subject to a variety of sources of variation having little or no functional
relevance. Because feedback propagation has been less well studied, it is unclear what to have expected about the
ordering of peak 2 population activity, as peak 2 timing most likely depends on top-down signals coming from
other brain regions, as well as the animal’s internal state.

In addition to the relative ordering in the peak times across the visual areas, our methods can be used to learn
about functional associations between visual areas through marginal and partial trial-to-trial correlations in peak
times between pairs of areas. For example, neuroanatomical studies of the mouse thalamocortical pathway have
shown there are almost no direct anatomical projections from LGN to higher visual areas [Antonini et al., 1999],
which implies communication between the LGN and the higher-order visual areas is mediated through V1. We
would therefore expect any marginal correlations between LGN and higher-order areas to be reduced substantially
after accounting for the activity of V1, using partial correlation. We report results using these tools.
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Performance in estimating ground truth values using simulated data
To compare our proposed model to the IPFR model, we conducted a simulation study using the latter model as the
ground truth. Our simulation consisted of two hypothetical brain regions a1 and a2, with the number of neurons in
each area given by N1 and N2 areas, respectively. We specified a stimulus condition s, with proportions pa1

and
pa2

of the neurons in the corresponding region belonging to the single peaked response population for s, and the
complementary sets of neurons in each region belonging to the flat response population. Given these conditions,
as well as the pre-defined peaked and flat response population firing rate templates for each region, we sampled
the individual neuron spike trains using a Poisson point process. For a given area, each neuron spike train depends
on the neuron’s population membership (which follows a categorical distribution), and corresponding population
firing rate template. In addition, each trial of the peaked response population firing activity depends on a trial-
varying peak time, which follows a bivariate Gaussian distribution (corresponding to each the two regions), with a
pre-specified mean µ, variances σ1 and σ2 and correlation ρ. We incorporated the trial peak time into the peaked
response population firing rate function using time warping. Details of the generative model can be found in
[Chen et al., 2022]. We sampled the neuron spike trains in both areas for R trials, and then fit the IPFR model and
our three-step model to the resulting data. We also estimated peak times from a Gaussian kernel applied to the
population PSTH (we referred to this previously as a naive estimate of the peak times), with bandwidth selected
using cross-validation. We repeated this process of simulating and fitting data across 60 repititions, for each of
several configurations of ρ, R and lag (= µ2 − µ1). We fixed N1, N2, σ1, σ2, pa1 , pa2 at the values 100, 100,
1, 1, 0.8, 0.8, respectively. For each repetition we estimated the parameters of the Gaussian distribution of peak
times using each method (for the näive method we estimated correlations from the Pearson correlations of the
näive peak time estimates), and then computed the mean and standard error across repetitions. Figure 2.5 shows
the fitted firing rate function for each candidate model to area a1’s population PSTH in a single trial of an example
simulated dataset, shown for visual comparison.
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Figure 2.5: Fitted firing rate function for each candidate model to the population PSTH in a single trial of an
example simulated dataset. For one of the datasets with correlation ρ = 0.8 and number of neurons N1 = 100,
we show the fitted firing rate function on a single trial, using each method described above. The IPFR and the
3-step method both use a GAM with a log link function to fit the intensity function. However, the 3-step method
first filters out those neurons that do not participate in the population burst response, as detailed in the Model
Overview and Statistical Analysis section above. Note that the IPFR (green trace) was used as the ground truth to
generate the datasets.

The IPFR and the 3-step method both use a GAM with a log link function to fit the intensity function. However,
the 3-step method first filters out those neurons that do not participate in the population burst response, as detailed
in the Model Overview and Statistical Analysis section above. Tables 2.1 and 2.2 show the outputs, summarized
across 60 simulated datasets, for each candidate model. In Table 2.1, the lag times estimates produced by the kernel
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smoother are on par with the other two methods. However, the standard error bars are about twice as large as those
obtained from the 3 step method, as the kernel smoother is a much noisier estimator of the lag times. Taking the
kernel smoother, (which is commonly used in practice to model a firing rate function) as the reference model,
Table 2.2 shows the percentage reduction in estimation error obtained from each method when estimating trial to
trial correlation. While our method does not have as much of an improvement over the kernel method as the IPFR
model on data simulated from the IPFR model, it still considerably improves over the reference, demonstrating
the ability of our method to denoise the trial peak times and to more accurately estimate the correlations.

Parameters Model avg. estimate (s.e)

lag IPFR model 3-step method Kern smooth

8 8 (0.08) 8 (0.1) 7.9 (0.26)
0 0 (0.07) 0 (0.11) 0.02 (0.21)

Table 2.1: Lag recovery (in milli seconds) from three methods from data simulated from the IPFR model.
In two hypothetical brain areas, and for one stimulus condition, we simulated neuron spiking data, using the IPFR
model as the ground truth, for different average lag in peak time between the two areas. We kept ρ, R, σ1, σ2,
N1, N2, pa1

and pa2
fixed at 0.8, 60, 1, 1, 100, 100, 0.8 and 0.8 respectively. We applied the three methods to

recover the ground truth lags, and computed the mean estimate for each method across 60 repetitions, as well as
the simulation standard errors, shown in parenthesis. We note that in our simulated datasets, the kernel smoother
itself produces a decent estimate of the lag time, but has standard errors that are twice as large as the other two
methods.

Parameters Model avg. estimate (s.e) % error reduction

ρ R IPFR model 3-step method Kern smooth IPFR model 3-step method

0.8 60 0.79 (0.05) 0.78 (0.08) 0.32 (0.11) 98 96
0.2 60 0.19 (0.1) 0.18 (0.12) 0.08 (0.19) 92 83
0.8 30 0.79 (0.07) 0.75 (0.16) 0.27 (0.19) 98 91

Table 2.2: Correlation recovery from three methods from data simulated from the IPFR model. Same
procedure as in Table 2.1, but here we used different combinations of trial-to-trial correlations ρ, and number
of trials R, with lag, σ1, σ2, N1, N2, pa1 and pa2 held fixed at 8ms, 1, 1, 100, 100, 0.8 and 0.8 respectively.
We applied our three step method, the IPFR model, and a naïve model based on kernel-smoothed population
intensities, to 60 simulated datasets, to recover the ground truth correlations. We compute the mean estimate for
each method across repetitions and the simulation standard errors, shown in parenthesis. We also computed the
percentage reduction in the estimation error from the naïve kernel smoother achieved by both ours and the IPFR
model.

In order to demonstrate the improvement in runtime between the IPFR and the 3-step method, we ran additional
simulation studies on the previously described models. First, we report the difference in runtime of both models
for number of simulated areas = 2, 4, 6, and 8. For each value, we specify Ni = 100 neurons in each area. The
results are summarized in Table 2.3. Increasing up the number of areas also increases up the number of neurons to
be assigned to a peaked or flat response population, as well as the size of the covariance matrix being estimated.
We used a randomly chosen mean vector and covariance matrix for the trial peak time distribution, and we used
a peaked response population proportion of pi = 0.8 for each area. From the results in Table 2.3, we observe
between 88 and 90% reduction in the runtime of the 3-step method over the IPFR. We also separately investigate
the relative runtimes of both models as we vary the number of stimulus conditions, which also varies the number
of trials. Table 2.4 summarizes our results for number of stimulus conditions = 1, 5 and 10. Fixing the number of
areas at 2, and the number of neurons per area at 100, we useRs = 60 trials for each stimulus condition sk. Under
this configuration, the population membership of the jth neuron in area ai now also depends on the stimulus
condition sk being considered. We set the proportion of peaked response neurons pi,s = 0.8 for each area ai and
stimulus conditions sk, and the peak time trial to trial correlation and variance as ρ = 0.8 and σ = 1 respectively.
In both scaling experiments, we generated 4000 samples of each variable of interest. We obtained between an 85
and 90% reduction in runtime with the 3-step method over the IPFR for problems of the same size. We note that
the simulated datasets used in this study are quite small (a single stimulus condition in the area scaling experiment,
two areas in the stimulus condition scaling experiment) compared to interesting real-world datasets (5 to 10 areas
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and 10s of stimulus conditions on multiple mice), and thus the model time complexity becomes progressively
more important on the scales of real-world data.

Model avg. runtime in mins (s.e)

# Areas IPFR model 3-step method % runtime reduction

2 192 (11.3) 23 (4.3) 88
4 278 (14.7) 31 (3.9) 89
6 349 (12.3) 35 (4.7) 90
8 406 (15.8) 44 (3.6) 88

Table 2.3: Runtime comparison between the IPFR and the 3-step method with varying number of areas. We
simulated neuron spiking data, using the IPFR model as the ground truth, for A = 2, 4, 6, and 8 areas, each with
100 neurons. We had s = 1 stimulus condition, with R = 60 trials. We used a randomly chosen mean vector and
covariance matrix for the Gaussian trial peak time distribution. The proportion of neurons in each area belonging
to the peaked response population was fixed at 0.8. We applied the IPFR and the 3-step method to 10 simulated
datasets, running the algorithm for 4000 iterations in each instance. We measured the average runtime in both
models, as well as their standard errors across repetitions, shown in parenthesis. We also computed the percentage
reduction in runtime obtained by the 3-step method over the IPFR.

Model avg. runtime in mins (s.e)

# Stimulus conditions IPFR model 3-step method % runtime reduction

1 184 (10.3) 21 (5.3) 89
5 221 (10.8) 31 (5.9) 86

10 307 (9.2) 45 (6.2) 85

Table 2.4: Runtime comparison between the IPFR and the 3-step method with varying number of stimulus
conditions. Similarly to table 2.3, we simulated neuron spiking data, using the IPFR model as the ground truth,
for s = 1, 5 and 10 stimulus conditions, each with 60 trials, for A = 2 areas with a 100 neurons in each. The
trial-to-trial correlations ρ, lag, σ1 and σ2 were held fixed at 0.8, 8ms, 1 and 1 respectively. The proportion of
neurons in each area belonging to the peaked response population was fixed at 0.8 for all stimulus conditions. We
applied the IPFR and the 3-step method to 10 simulated datasets, running the algorithm for 4000 iterations in each
instance. We measured the average runtime in both models, as well as their standard errors across repetitions,
shown in parenthesis. We also computed the percentage reduction in runtime obtained by the 3-step method over
the IPFR.

Illustration with real data
We chose one example subject, and two visual areas V1 and LM, to demonstrate the method’s correction for
attenuation of correlation, and the extent to which this is facilitated by both the sub-population selection and
the denoising. Results are shown in Figure 2.6. We estimated the Pearson correlation coefficient for the trial-
by-trial peak 1 times in three cases. First (panel A), peak times were obtained by applying a kernel smoother
on each trial to the PSTH based on the full population (without the interacting population selection step). The
correlation was .06. Second (panel B), we applied the kernel smoother to the PSTH after selecting the interacting
population. The correlation increased to 0.2. Third (panel C), the peak times were obtained as posterior means
from the Bayesian hierarchical model, according to the complete three-step approach. The correlation obtained
further increased substantially to 0.8. The results from our simulation studies suggest that the correlation value of
0.8 were likely attenuated to 0.06 in the näive estimates shown in panel A. See [Behseta et al., 2009] for further
depictions of attenuation of correlation in milti-trial spike count data. This example case illustrates the importance
of the denoising step in our procedure.

Analysis of data from multiple mice
To understand the functional ordering present in feedforward signal propagation in the visual cortex, we applied
our method to data from thirteen mice from the Allen dataset, estimating the average trial-by-trial peak times in
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Figure 2.6: Denoising of peak 1 times for regions V1 and LM in an example mouse. A: Plot of Estimated peak
1 times using a kernel smoother applied to the condition-specific PSTH based on the full populations of recorded
neurons. B: Plot of estimated peak 1 times after interacting sub-population selection. C: Plot of estimated peak 1
times after applying the full three-step method.

each of seven areas. We then computed the standard deviations of the peak time across mice for each area. Figure
2.7 shows the weighted means, standard errors, and standard deviations for peak (1 and 2) times across mice.

While the ordering of Peak 1 times in Figure 2.7 is consistent with previous results [Siegle et al., 2021],
that figure can not indicate the extent to which such timing is or is not consistent across subjects. We examine
consistency next.
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Figure 2.7: Weighted means, standard errors, and standard deviations across mice for peak 1 time and peak
2 time. The shorter horizontal bar (top) represents the standard errors, and the longer bars (bottom) represent the
standard deviations, panel A peak 1 (13 mice), panel B peak 2 (11 mice). The ordering in peak 1 times largely
disappears in peak 2 times, except that areas AM and PM appear to have somewhat later peak 2 times.

Consistency in ordering of peak times. Despite subject-to-subject variability in actual peak time values, Figure
2.8 shows some consistency in the ordering of peak times across mice. The figure also displays some inconsisten-
cies. For peak 1, across all mice, we observe LGN preceding V1, which precedes higher-order visual areas. For
all mice we also observe peak 1 time in both AM and RL preceding PM. However, apart from these relationships,
the relative peak 1 timing among higher-order visual areas is specific to each mouse. For peak 2, for all mice
LGN and V1 both precede AM and PM, and again RL precedes PM, but all other orderings are inconsistent. For
example, LGN precedes V1 sometimes, but not uniformly across mice, and V1 precedes higher-order areas other
than AM and PM sometimes, but not for all mice. Again, as with Peak 1, the relative timing among higher-order
areas apart from RL and PM is inconsistent.

Peak time correlations among the cortical areas tend to be stronger than those between cortical areas and
LGN. We obtained the trial-to-trial correlations in peak times between pairs of areas from the entries of the
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Figure 2.8: Mouse-to-mouse variability in the time of the initial peak response relative to a reference region.
In panels A and B, we show Peak 1 and peak 2 (respectively) time estimates for LGN, AM and PM, relative to
the corresponding peak time estimate for V1, for the same set of thirteen mice. Panels C and D show the peak 1
and peak 2 times estimates for V1, RL, LM and AL, relative to the corresponding peak time estimate for LM. In
all cases, 1 standard error bar is also shown for the peak time estimates, although many are small enough to be
obscured by the region label. We observe a consistent ordering across mice in the peak 1 times of LGN, V1, AM
and PM in A, suggesting a functionally relevant pathway. We don’t observe the same consistency in the peak 2
times for these areas in B, although we see LGN and V1 consistently reach their second peak before AM and PM.
Among the regions V1, RL, LM and AL, we see that for peak 1 in C, V1 tends to reach its peak before the other
three, although there appears to be no clear ordering among the three. There is no discernable pattern in the peak
2 times among this set of regions in D.

matrix R described in the modeling section, and aggregated them across mice for both peaks using a weighted
mean, where weighting is done using the standard error for each mouse. (As previously stated, this is a lower
variance estimator than the simple arithmetic mean.; see the discussion in [Kass et al., 2014, Chapter 8].) As
shown in Figure 2.9, the cortico-thalamic correlations tended to be lower on average than the correlations among
the cortical areas, although this was more striking for peak 1 than for peak 2.

We also computed the mouse-to-mouse standard deviations of these correlations in each case. Figure 2.10
shows that the correlations between LGN and the cortical areas generally appear more variable across mice than
correlations among cortical areas.

Correlations between thalamic and early cortical areas show the largest percentage changes after condi-
tioning on V1. Given the neuroanatomy of the mouse thalamocortical pathway, we sought to quantify the in-
volvement of V1 in the interactions between pairs of areas. We computed the partial correlations between the peak
times for each pair of visual areas, conditioned on V1, and compared this to the original (marginal) correlation
for the pair. Specifically, we computed the percentage decrease from marginal correlation to partical correlation
for each pair of areas, where the partial correlation conditioned on V1. As seen in Figure 2.11, for both peaks,
the pair AM–PM has the least decrease in correlation given V1, which is expected given that they are farthest
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Figure 2.9: Trial-to-trial correlations in the peak times between pairs of areas. Each panel shows the weighted
mean correlations of peak times between pairs of areas, across N = 13 mice, with their one standard error bars.
Each row in each panel shows the correlations between a single visual area and all other areas. We observe in A,
that the correlations in peak 1 times among the cortical areas tend to be stronger than those between cortical areas
and LGN. We observe this to a lesser degree in B, along with the fact that peak 2 correlations tend to be stronger
than their corresponding peak 1 correlations.
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Figure 2.10: Standard deviations across mice of pairwise correlations between peak times. Each entry in the
heat map represents one standard deviation of the pairwise correlations in peak times between the corresponding
pair of regions. the color corresponds to the magnitude of the standard deviation. The figure reveals that the peak
1 correlations tend to be more variable across mice than the peak 2 correlations.

areas from V1 in the visual hierarchy, and there are no expected projections between this region pair through V1
[Harris et al., 2019, Siegle et al., 2021]. Among the cortical regions, according to the results for peak 1, the further
downstream the region is from V1, the smaller the drop in its correlations with other regions after conditioning
on V1. The biggest drops in correlations are seen in the correlations of LGN and the cortical areas, suggesting
strong mediation of these interactions by V1. In particular, the correlation of LGN with RL for peak 1, goes from
a positive to a negative correlation after conditioning on V1 (the decrease in correlation is greater than 100%).
For peak 2 there are similar large decreases for pairs involving LGN, but the combination of feedback projection
with the inconsistent timing results in Figure 2.8 (especially for LGN and V1) suggests the reversal of correlation
between LGN and each of AM, AL, and PM after conditioning on V1 may be due to bidirectional connections
between V1 and AM, AL, and PM.
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Figure 2.11: Percentage decrease in the in correlations between pairs of areas after conditioning on V1. Each
labeled point shows the percentage decrease in the peak time correlations for the region pair consisting of the text
label region and the corresponding region on the x-axis. For example, after conditioning on V1, the correlation
between between the peak 1 times in LGN and AL decreased by about 38%. The standard errors in all cases are
< 10%. The previously positive correlation between LGN and RL in peak 1, and between LGN and AM, AL and
PM in peak 2 became negative after conditioning V1 (the decrease in correlation is greater than 100%).

Discussion
Studies of sequential timing of activity across brain areas have generally relied on data aggregated across trials. We
aimed to develop, assess, and illustrate a relatively simple and computationally efficient method for identifying
precise trial-by-trial sequential timing in population activity across areas. Motivated by results of [Chen et al.,
2022], we created a straightforward 3-step procedure and found it was nearly as accurate as the more complicated
methodology in [Chen et al., 2022] while running about 10 times faster, which enabled our comparative analysis
of data from multiple subjects. This powerful method is accessible to the many neuroscientists who could apply it
to recordings from large populations of spiking neurons.

Our examination of the variability in sequential timing relationships across 13 mice in the Allen Brain Obser-
vatory Visual Coding Neuropixels dataset [Allen Institute MindScope Program, 2019] produced results that are
consistent with known anatomy and physiology, while also highlighting the distinction between pathways that
are consistent across subjects versus those that are idiosyncratic. In the feedforward case of peak 1, for example,
while LGN activity always precedes V1 acticity which always precedes activity in higher-order visual areas, most
of the timing relationships among those higher-order visual areas are subject dependent. In the case of peak 2,
which involves feedforward, feedback, and inputs from other areas, the relative timing of LGN and V1 is subject
dependent.

We note that the subject-to-subject variability we observed may be attributed primarily to differences in animal
physiology, differences in the experimental setup used in data collection, or to a combination of both these and
other factors. Although inconsistencies across mice remain to be explained in greater detail, the results that were
nearly the same across mice are compatible with existing notions of a functionally relevant hierarchical visual
pathway for feedforward signal propagation. One interesting set of results that await further exploration involves
LGN: the correlations in peak time between LGN and the cortical areas are weaker, on average, and more variable
across mice, than those among the visual cortical regions themselves. A potential explanation is that targeting
Neuropixels probes to deep brain structures such as LGN, based solely on a map of the visual cortex, is prone to
inaccurate placement, resulting in poor representation of relevant LGN neural populations and increased variability
across mice. Similarly, partial correlations after conditioning on populations that are incompletely sampled by
electrodes must be interpreted carefully. The contrast of the substantial decrease in correlation between LM and
AM, after conditioning on V1, versus the small decrease in correlation between PM and AM may seem consistent
with notions of visual hierarchy. On the other hand, the modest decrease in correlation between LGN and PM,
after conditioning on V1 might be due to the many paths from V1 to PM (which could create variation in timing, as
seen in the reduced correlation of V1 with PM compared to other areas) or it could be that key projection neurons
may not have been sampled.

To the extent that the substantial mouse-to-mouse variability in functional connectivity observed across partic-

24



ular visual areas may have physiological sources, they could be genetic, developmental, or experiential factors (or
combinations of these). Future studies could explore these distinctions, for example, by comparing response tim-
ing in different mouse lines or mice with different types of visual exposure (e.g. dark-reared). Such investigations
would be especially useful if combined with causal manipulations.

We have demonstrated the usefulness of this method in estimating peak times and their trial-to-trial correla-
tions for spike train data. Although it is notoriously difficult to tease out informative trial-to-trial fluctuations in
continuous data such as EEGs, Klein et al. [Klein et al., 2021] decomposed local field potentials (LFPs) into
current source densities (CSDs) on a trial-by-trial basis from which they demonstrated cross-population frequency
coupling that was not apparent from the original LFPs. A variant of the methodology developed here might, in a
similar vein, be useful for establishing timing relationships from CSDs. On the other hand, our analysis of bursts
in temporally evolving firing rate functions takes advantage of the substantial information about the timing of
their maxima; by definition, that is where the most spikes occur. We also strengthened covariation relationships
by confining attention to a single, homogeneous sub-population of neurons in each area. By instead examining
multiple sub-populations, future work could investigate the diversity of functional interactions across areas.
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Part 2

A generalized approach to inferring
Functional Connections
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Chapter 3

Learning latent graphs from noisy
time-series data

This is a collaborative work with Neil Spencer and Robert Kass. We plan to submit this work to ICML.

Neural functions arise from the interactions between brain networks, where each node in the network is a sub-
population of synchronously firing neurons, which form the "functional units" of communication within the brain
[Bassett and Sporns, 2017, Bressler and Menon, 2010, Buzsaki and Draguhn, 2004, Sporns et al., 2004]. How-
ever, these functional units are not directly observed in neural recordings. For example, using neurophysiological
recording devices, we are only able to directly observe the activity of individual neurons within the brain, with no
direct visibility of the synchronous activity within, and interactions between, neuron populations. To understand
the way in which these functional units communicate, both within and across anatomically mapped brain regions,
we require a method to identify the functional units, as well as to quantify the degree of interactions between
these units. Furthermore, modern electrophysiological recording devices are able to record from a large number
of neurons across multiple brain regions in multiple trials of a single experiment [Jun et al., 2017, Siegle et al.,
2021, Steinmetz et al., 2021]. We, therefore also require a method that is able to analyze data from multiple ex-
periments at scale. In this chapter, we present a modeling framework capable of accomplishing both these goals.
We demonstrate the features of the model using simulated data and apply our model to experimental data from the
Allen Brain Observatory to study functional connectivity in the visual cortex of mice.

3.1 Introduction

3.1.1 Problem statement and motivation
The work outlined in this section is motivated by the limitations of our previous work. While the IPFR and
three-step interacting population models previously described produced reasonable connectivity results at small
timescales from simulated data, they are able to fit only a subset of the data typically collected in real world
neuroscience experiments, as they require the presence of specific bursting patterns in neuron populations. They
therefore make use of pre-screening steps to account for the observed diversity in stimulus-dependent population
response profiles, a consequence of inhomogeneity in neuron responses both within and across stimulus condi-
tions. Furthermore, they justify the prescreening by making strong assumptions about the response profile of a
functionally relevant population, which necessitates filtering out neuron populations that do not conform to these
assumptions. The outlined limitation can be understood by considering the neuron response profiles depicted in
Figure 3.1. The figure shows 3 examples of the neuron firing patterns found in a typical dataset of spiking neurons.
Both the IPFR and the 3 step model prescreening procedures will filter out populations 1 and 2, as they do not
display the expected dual peak bursting response that the model expects for a functionally relevant population,
despite the fact that the first two populations clearly display a peaked response. Therefore, these prescreening
procedures tend to filter out potentially relevant populations of neurons.

Given that multiple population activity is observed in neural recording, we aimed to develop a method to identify
homogenous neuron populations, and their interactions, from the observed spiking activity of a collection of neu-
rons. Any suitable model must therefore include the following components: 1. The ability to cluster neurons into
homogenous populations based on their observed patterns, and 2. The ability to infer the functional interactions

27



Figure 3.1: The figure shows the population response profile for three neuron populations in a single region of the
visual cortex. We see here that only the third population exhibits a characteristic dual peaked response to stimulus.
the first 2 populations do, however, show a peaked response, which may be relevant to functional interactions. It
would therefore be useful to consider these populations when determining the functional interactions between
regions in the brain.

given these populations. In this chapter, we apply a probabilistic graphical modeling framework that combines
these two components to infer the dependencies between spiking neurons across functional units. Our framework
formalizes this problem as learning the nodes and edges of a probabilistic graph, where the nodes represent the
populations of homogenous neurons, and the edges represent the interaction between the populations. We specify
a probabilistic graphical model to describe the joint distribution between the interaction populations represented
by the nodes. We apply time series clustering to identify the nodes in the model and the edges are inferred from
the graphical model. This framework is illustrated in Figure 3.2.

An added source of complexity comes from the fact that the observed data within a population are misaligned
in time, making direct clustering ineffective. We address this problem by incorporating a time-warping function
during clustering, whose parameters are learned in the model fitting process.

This joint probability distribution, which we refer to as the Mixture of Dependent Poisson Point Processes
(MDoP3), is depicted in detail in Figure 3.5. We apply a mixture of time series clustering technique to iden-
tify the interacting populations, which we define as the interactions between the corresponding firing rate cluster
centers, which correspond to the nodes in Figure 3.2. We also incorporate latent variables representing the neuron
population membership, as well as neuron-specific and trial-specific latent firing rate features. The formulation of
the mixture of time series framework as a latent variable model facilitates fitting the parameters of the resulting
joint likelihood using the Expectation Maximization (EM) algorithm [Dempster et al., 1977]. The optimization
problem, when learned using a gradient descent algorithm, also lends itself to the parallel computation of vector
operations implemented in frameworks like PyTorch or TensorFlow. These frameworks take advantage of GPU
parallelization for much faster inference than is possible with the MCMC methods used previously. The increased
processing speed reduces computation bottlenecks, and in turn, promotes scaling the model to larger datasets. It
also enables iteration by practitioners by cutting down the time it takes to fit a model.

3.1.2 Related work
Prior work has attempted to address the question of understanding functional connections between brain areas.
However, these have been done at the level of the anatomical brain region. For example, Chen et al. [2022]
developed a model to study the functional dependencies between functional units with a characteristic stimulus
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Figure 3.2: The figure shows a conceptual depiction of our modeling framework. Each node in the probabilistic
graph, labeled P − i − j represents a homogenous population or cluster of the neurons in the object denoted as
Y. In our application, the i in P − i − j represents an anatomically mapped brain region, and the j represents a
homogenous subpopulation, or cluster, within the brain regions. We refer to these homogenous subpopulations
as "functional units". The bidirectional arrows represent the dependencies between the nodes, which we model
as correlations, with red indicating a positive correlation, and blue representing a negative correlation. The graph
therefore describes the joint distribution of our observed data Y and the latent interacting populations P.

response profile. The prior work in this thesis itself is aimed at providing a method to answer this question that
is scalable and easy for practitioners to implement. It is, however, also primarily limited to studying cross-area
functional dependencies and relies on a characteristic functional unit of neurons to measure these dependencies.
Bullmore and Sporns [2009] analyzed functional networks with binary edges using graph theoretic measures of
network topology. However, they defined the network nodes either anatomically or based on electrodes, which
may or may not correspond to individual functional units. Smith et al. [2011] and Biswal et al. [2010] both
looked at correlations in BOLD FMRI for various Regions of Interest, but this modality is unable to discover the
connectivity patterns over fast time scales. Methods for model-based time series clustering, which can identify
functional units in the brain, have also been suggested. Lin et al. [2019] suggests a Bayesian approach to clustering
neuron spike trains using a mixture of state space models. Humphries [2011] proposed a method for detecting
communities among a set of spiking neurons by running a clustering algorithm over a predefined similarity spike
train similarity matrix, such as the van Rossum distance [van Rossum, 2001] and the Victor-Purpura distance
[Victor and Purpura, 1996]. Houghton and Sen [2008] and Sotomayor-Gómez et al. [2023] both proposed an
extension to the aforementioned distance metrics that allows them to scale to large multi-neuron datasets. The
contents of this chapter incorporates both clustering of neuron spike trains and identifying functional connectivity,
while delivering fast and efficient computation that scales to large datasets. Specifically, our framework is able
to separate out the functional units within each brain region, while explicitly accounting for cross-trial temporal
variations in the neuronal spiking profile, making this much more robust than previous time series clustering
models. Prior methods have been limited to quantifying functional interaction across anatomical brain regions.
Using our proposed method, we are able to identify the strength of the functional interactions, if present, between
functional units, both within a single brain region and across brain regions. In addition, our method is highly
optimized, and therefore applicable to large datasets, and highly configurable to suit a wide variety of experimental
settings.
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3.2 Methods and materials

3.2.1 Model
Let k be the index of a neuron, and let l be the index of a homogenous neuron sub-population, otherwise called a
functional unit, and sk = {s1, . . . , sNk

} be the observed neuron spike times for the Nk observed spikes of neuron
k. Then, the event times sequence sk is modeled according to a Poisson point process with the joint pdf given as:

fSk
(sk) = exp

(
−
∫ T

0

λk(t)dt

) Nk∏
i=1

λk(si)

Where λk(t) is the intensity function for neuron k on the interval (0, T ]. In our model, λk(t) takes the following
functional form:

λk(t) = exp
(
dk + τl(t)

)
(3.1)

where ∫ T

0

λk(t)dt =

∫ T

0

exp
(
dk + τl(t)

)
dt = exp(dk)

∫ T

0

exp
(
τl(t)

)
dt = Ek (3.2)

dk is the log mean spike count on the interval (0, T ], τl is the log of the population intensity function for the
homogenous subpopulation l to which k belongs, exp(dk) = Ek is the mean spike count for the neuron k on the
interval (0, T ], and by definition in equation 3.2,

∫ T

0
exp

(
τl(t)

)
dt = 1.

Returning to equation 3.1, and letting exp
(
τl(t)

)
= pl(t), we have that

λk(t) = Ek pl(t) (3.3)

and so

fSk
(sk) = exp

(
−
∫ T

0

Ek pl(t)dt

) Nk∏
i=1

Ek pl(si) =
ENk

k e−Ek

Nk!
Nk!

Nk∏
i=1

pl(si)

The point process joint distribution decomposes into a Poisson distribution over the number of spikes, and a
density over the time of the spikes. The Nk! term denotes the number of ways to order the spikes {s1, . . . , sNk

}.
The discrete-time analog can be expressed in the following way: Yk = [y1, . . . , yT ] ∈ RT , is the observed binary
spike train vector for neuron k for T time bins. The discrete-time joint distribution is given as

fYk
(Yk) =

E
∑

t yt

k e−Ek∑
t yt!

∑
t

yt!

T∏
t=1

pyt

l,t

The full derivation for the discrete-time point process is given in appendix A.
In order to satisfy the constraint on (the discrete analog of) pl(t) in eqn 3.3,

∑
t pl,t = 1, we normalize pl,t using

the following parametrization:

pl,t =
exp(βl,t)∑
t exp(βl,t)

We also include a prior distribution over the mean spike count Ek, by assuming Ek ∼ Gamma(αl, θl). The
choice of the Gamma prior is motivated by the fact that if Y |λ ∼ Poisson(λ) and λ ∼ Gamma(α, θ) then
Y ∼ NB

(
α, θ

1+θ

)
This means that inferring the subpopulation intensity functions in this model corresponds to

doing negative binomial regression on the population PSTH of all the neurons in the corresponding functional
unit. This makes this model well-suited to deal with overdispersed data.

3.2.2 Time-Warping
One of the stated goals of our model is to enable inference about the functional interactions between functional
subpopulations within and across brain regions. In the previous chapter, we approach this problem by assuming
that behaviorally relevant information is transmitted across parts of the brain through transient bursts of activity
in the subpopulations of neurons relevant to a given stimulus. In this framework, the timing of these bursts, as
measured by the timing of their peaks on a trial-by-trial basis, should reveal coordinated activity. To capture this
coordinated activity, we decompose the peak bursting time for a given subpopulation into the following:
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1. The average population peak burst time across all trials and all stimulus conditions, which we denote as τ∗

2. The average peak burst time across all trials within a stimulus condition, which we denote as τc

3. The peak burst time on a given trial of stimulus condition c, which we denote as τrc

Given this, we define the following offset variables: qc = τc − τ∗, src = τrc − τc, that is, the stimulus conditions
and trial peak burst time shift, respectively. As we are interested, in the shifts on a trial-by-trial basis, we model
the coordinated activity across functional units as a correlation between these trial-to-trial shifts. In particular, we
model src ∼ N(0,Σ), where each dimension of src contains the peak time offset for a functional subpopulation.
The peak time offsets are incorporated into the population intensity functions pl,t by time-warping pl,t using a
piecewise linear function ϕ(t, src , qc) [Williams et al., 2020]. ϕ(t, src , qc) is parametrized by landmarks τl and
τr, which respectively define the left and right boundaries of the time-warping window. Time warping therefore
aligns the observed population spike trains on each trial of each stimulus with the population intensity function
pl,t at their peaks. We define the time warping function ϕ(t, src , qc) in the following way:

ϕ(t, src , qc) =


t, 0 ≤ t < τl

ϕ1(t) = (t− τl)
τ∗−τl

(τ∗+src+qc)−τl
+ τl, τl ≤ t < τ∗ + src + qc

ϕ2(t) = (t− (τ∗ + src + qc))
τr−τ∗

τr−(τ∗+src+qc)
+ τ∗, τ∗ + src + qc ≤ t < τr

t, τr ≤ t < T

In our application, the function operates by taking as input a time point t in discrete time, as well as a stim-
ulus and config offset src , qc, and returning as output a new time point ϕ(t, src , qc) in continuous time. The
value of the function pl,t is then updated to pl,ϕ(t,src ,qc) by linearly interpolating between the closest time pinots
ti ≤ ϕ(t, src , qc) and ti+1 ≥ ϕ(t, src , qc). Figure 3.3 provides a visual illustration of the action of the time-
warping function on the population intensity near the peak times.

Figure 3.3: Visual illustration of the action of the time warping function on the population intensity near the peak
times. The function operates by taking as input a time point t, and then returning as output a new time point ϕ(t).
The intensity function is then given as βl

(
ϕ(t)

)
warped function would correspond to at time t.

In order to ensure that the trial peak times remain bounded within the time-warping window [τl, τr], we use a
piecewise linear scaling function, shown in Figure 3.4, to constrain the peak times. We also penalize the magni-
tude of the stimulus configuration-specific offset, qc, as well as the variances of the trial offsets, sr, which also
encourages small peak offset times.
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Figure 3.4: We used a piecewise linear squashing function over a broad range to constrain the trial peak time
offsets within the time-warping window. We chose a linear squashing function because we are interested in linear
trial to trial correlations of the trial peak time offsets.

3.2.3 Inference
The complete likelihood is given by

P
(
{tk,r,t}K,R,T , {Ekc}K , {gkc}K , {src}R; Φ

)
=∏

c

[∏
kc

∏
rc

∏
t

(
1

yk,r,t!
λ(Ekc

, gkc
, src , t)

yk,r,t exp
(
− λ(Ekc

, gkc
, src , t)

))
∏
kc

(
P
(
Ekc |gkc

))∏
kc

(
P
(
gkc |πa

))∏
rc

(
P
(
src
))]

(3.4)

P
(
Ekc |gkc = l

)
= Gamma(αl, θl)

P
(
gkc

|πa
)
= Categorical(πa), π = [π1, . . . , πA] ∈ RL

P
(
sr
)
= N (0, Σs)

P
(
qc
)
= ∥qc∥22 (Ridge penalty)

P
(
Σs

)
= ∥Σ−1

s ∥1 − ∥diag(Σ−1
s )∥1 (Sparsity prior/penalty)

P (βl) =

∥∥∥∥ ddtβl
∥∥∥∥2
2

(Roughness prior/penalty)

Where

• Φ represents the parameters of the joint likelihood

• λ is the conditional intensity function

• Ek is the trial firing rate for the kth neuron

• gk is the membership for the kth neuron. It indicates which population the neuron belongs to
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• βl = [βl,1, . . . , βl,T ] represents the latent intensity function for the lth neuron population. It defines the
behavior of a corresponding population of neurons over the time interval [0, T ]

• src is the population peak time offset from the overall average on rth trial of condition c (trial-specific
feature)

• qc is the peak time offset from the overall average peak time of the neuron population for stimulus condition
c (condition-specific feature)

• Σs is the covariance matrix for the trial-to-trial peak time offsets

As was previously discussed, the model has a clustering component, which uses a mixture model (in this case, a
mixture of Poisson processes) to identify the functional units within a set of neuron spike trains. The connectivity
component is incorporated through the peak time shifts in the bursting behavior of the functional units. The full
covariance structure of these peak times is parametrized by Σs. The stimulus condition and trial peak time shifts
(src and qc) are incorporated into the latent intensity functions pl,t by time-warping, as described in subsection
3.2.2. Figure 3.5 shows a plate diagram of the specified probabilistic graphical model, as well as a description of
the parameters. The observed data are the neuron spike trains ya,c,k,r, observed for neuron k in area a on trial
r for stimulus configuration c. A neuron’s spike train ya,c,k,r depends on its functional unit membership, which
is determined by the latent variable ga,c,k ∈ {1, . . . , L}. The members of a functional unit share a normalized
population firing rate function βa,l in area a. This is combined with the neuron’s mean spike count over the course
of each trial Ea,c,k, the peak offsets qa,c for condition c in area a, and the covarying trial peak times, sa,c,r for trial
r, to determine the neuron’s specific intensity function. The neuron population membership and neuron firing rate
latent variables depend on the following generative distribution parameters: The categorical population member-
ship probability (πa,l) and the gamma firing rate parameters (αa,l, θa,l), respectively.

Figure 3.5: Graphical display of the Mixture of Dependent Poisson Point Processes (MDoP3). The observed
data are the neuron spike trains ya,c,k,r, observed for neuron k in area a on trial r for stimulus configuration
c. A neuron’s spike train ya,c,k,r depends on its intensity function, which is determined by its membership,
ga,c,k ∈ {1, . . . , L} to one of L template population firing rates βa,l in area a. This is combined with the neuron’s
firing rating rate over the course of each trial Ea,c,k, the peak offsets qa,c for condition c in area a, and the value
of the covarying features sa,c,r for trial r, to determine the neuron’s intensity function.

While direct Maximum Likelihood Estimation (MLE) is possible, computing the derivatives of the log-likelihood
with respect to the parameters leads to a complicated expression that is analytically intractable, thus requiring
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all parameters to be estimated numerically. On the other hand, a fully Bayesian approach for a model and for
datasets of this size will require a significant amount of compute time to fit [Olarinre et al.]. We therefore opt
for Expectation Maximization (EM) [Dempster et al., 1977] as our inference algorithm. As with direct MLE, the
first step is to compute a marginal likelihood over the latent variables, which are the subpopulation membership
for each neuron, the average spike count for each neuron over a single trial, and the peak burst times for a single
trial (gk, Ek, and Src respectively in equation 3.4). However, instead of maximizing the log marginal probability,
as is done in direct MLE, EM maximizes a surrogate objective, the marginal log probability, where the marginal-
ization is over the posterior distribution of the latent variables. The algorithm operates by iterating between an E
step, where the posterior distributions of the latent variables are computed while keeping the current parameter
estimates fixed, and an M step, where the marginal log probability over the previously computed posterior distri-
bution is maximized over the likelihood parameters while keeping the posterior parameters fixed. We repeat these
iterations until convergence. The EM objective is lower bound to the MLE objective, and under mild regularity
conditions, will converge to the value of the true objective at the MLE estimates [McLachlan et al., 2004].

E-Step: Following EM convention, we derive the E step by computing the posterior density of the latent vari-
ables as follows: Let Z represent the set of latent variables, which are the average spike count for a neuron {Ek},
the neuron subpopulation membership {gk} and the trial peak burst time offsets {src}. Let D represent the spike
train data {tkc,rc}, Kc and Rc represent the number of neurons and trials respectively in condition c, and Φ
represent the distribution parameters, we have the following expression for posterior density:

P (Z|D;Φ) =∏
c

P
(
{Ekc}Kc , {gkc}Kc , {src}Rc

∣∣{tkc,rc}Kc,Rc

)
=

∏
c

[∏
kc

P
(
Ekc

∣∣gkc , {src , tkc,rc}Rc

)∏
kc

P
(
gkc

∣∣{src , tkc,rc}Rc

)∏
rc

P
(
src
∣∣{tkc,rc}Kc

)]
with the individual posterior expressions given by

P
(
Ekc

∣∣gkc
, {tkc,rc}Rc

, . . .
)
=
P
(
{tkc,rc}Rc |Ekc , gkc , . . .

)
P
(
Ekc |gkc

)
EEkc |gkc

[P ({tkc,rc}Rc |Ekc , gkc , . . . )]

=
(
Rc + θl

)∑
r,t yk,r,t+αl

E
(
∑

r,t yk,r,t+αl)−1

kc

Γ(
∑

r,t yk,r,t + αl)
exp

(
− Ekc

(Rc + θl)
)

which is the pdf of Gamma
(∑

r,t yk,r,t + αl, Rc + θl

)
, and

P
(
gkc

∣∣{tkc,rc}Rc
, . . .

)
=

EEkc |gkc
[P ({tkc,rc}Rc |Ekc , gkc , . . . )] P (gkc)

Egkc

[
EEkc |gkc

[P ({tkc,rc}Rc |Ekc , gkc , . . . )]
]

=
pkc,l∏

rc

∏
t yk,r,t!

θαl

l

∏∑
r,t yk,r,t

i=1 (αl + i− 1)(
Rc + θl

)∑
r,t yk,r,t+αl

πl

[∑
l

pkc,l∏
rc

∏
t yk,r,t!

θαl

l

∏∑
r,t yk,r,t

i=1 (αl + i− 1)(
Rc + θl

)∑
r,t yk,r,t+αl

πl

]−1

which is a probability density over possible functional unit membership. The detailed derivations for these poste-
riors are included in appendix B. The posterior for the peak time offset terms src terms are analytically intractable,
but we can approximate them using a Gaussian family for the posterior distribution of these latent variables. In
addition, the marginal log-likelihood over this term is also analytically intractable. To address these, we apply
stochastic variational inference techniques [Blei et al., 2017, Jordan et al., 1999] to jointly learn the likelihood
parameters as well as the variational posterior parameters. Under the stochastic variational inference variant of
the EM algorithm, the parameters of the variational Gaussian posterior are also maximized in each M step of the
algorithm, as opposed to keeping them fixed in the M step as with classical EM.

M-step: For the M step of the algorithm, we compute the expected log-likelihood for the joint distribution model
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as follows: ∑
c

∑
kc

∑
rc

∑
t

EEkc ,gkc ,src |{tkc,rc}Kc,Rc
logP

(
{tkc,rc}|λ(Ekc , gkc , src , t)

)
+

∑
c

∑
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EEkc ,gkc ,src |{tkc,rc}Kc,Rc
logP

(
Ekc

|gkc

)
+

∑
c

∑
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EEkc ,gkc ,src |{tkc,rc}Kc,Rc
logP

(
gkc

)
+

∑
c

∑
rc

Esrc |{tkc,rc}Kc,Rc
log

P
(
src
)

Q
(
src
)

We include the full derivation in the appendix B. After dropping all the terms that are constant in the required
parameters, as well as the terms which have closed form solutions, we obtain the following expression as the
objective we are maximizing:

L =
1

N

∑
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∑
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∑
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∑
l

∑
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(n)
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∑
d
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log σ+2
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− µrc
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)2)])

wherewkc,l is the membership probability of neuron kc to functional unit l. As previously mentioned, we alternate
between the E step and the M step, taking a single gradient step in each iteration of the M step until convergence.

3.2.4 Initialization
As with mixture models in general, the MDoP3 suffers from inherent non-identifiability of the mixture compo-
nent parameters, making the objective multimodal and therefore non-convex, having multiple local optima (see
Murphy [2012] section 11.3). The starting point is, therefore, important in determining which solution the EM
algorithm converges to, with better quality initialization leading to better solutions. To increase the probability
of converging to a good local maximum, we ran the algorithm multiple times, and over a variety of initialization
techniques. To obtain the best outcomes, we initialized the parameters as follows:

Neuron Memberships, (gkc
) and Population Intensity Functions (βl):

We compare 4 possible methods of initializing the functional unit intensity function, as well as the neuron mem-
berships.

1. Method of moments (MOM) with random noise: We initialize every population intensity function within
each area to the population PSTH for the entire area. We then add Poisson noise to each intensity function to
introduce differences among them. As mentioned previously, running the algorithm from multiple starting
locations increases its chances of finding a good local maximum, and the random noise enables multiple
starts from different starting points across multiple runs of the algorithm. The neurons in each area are given
uniform weight (probabilities) for each intensity function.

2. Dynamic time-warping (DTW) clustering: We apply the dynamic time-warping clustering algorithm [Be-
mdt, 1994, Wang et al., 2018] to the neuron PSTHs in each area. The algorithm operates similarly to k
means clustering, where a random initial centroid is selected, and the neurons in each region are iteratively
assigned to a centroid. It differs from K means in that the distance metric used is the dynamic time warping
distance matric. Using this, we obtain in initial value for the population intensity functions, as well as an
initial neuron assignment.

3. Fully random initialization: The population intensity function for each functional unit, as well as the initial
neuron assignments, are chosen randomly.
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4. Zero initialization: The population intensity function is initialized to zero, and the neurons in each area are
given uniform weight for each intensity function.

For each of these methods, Figure 3.6 shows the distribution of log-likelihoods for 20 random initializations (in the
case of MOM, DTW, and random initialization). We see that the method of moments and dynamic time-warping
initializations generally do better than the zero and random initializations. In general, the model seems to be fairly
robust to the choice of initialization given enough training time.

Figure 3.6: The figure compares the log-likelihood obtained by the various methods of initialization of the pop-
ulation intensity function and the neuron membership described earlier. They are Method Of Moments (MOM),
Dynamic Time Warping (DTW), Zero initialization and fully random initialization. For each method, we initial-
ized our desired parameters over 20 random initializations. We ran the zero and fully random initializations for
40,000 gradient steps. The zero initialization involves no randomness, and so only has one entry. We ran the
MOM and DTW for 10,000 gradient steps, as they appeared to converge much faster than the other two methods
of initialization. Results show that the fully random initialization tends to perform worse than the other three, but
the model is fairly robust to the choice of initialization, although MOM and DTW tend to converge faster than
zero and random initializations

Negative Binomial parameters dispersion (α) and rate (θ) parameter:
Having initialized the populations belonging to the various functional units, we then initialize the parameters of the
observed spike count distribution, α and θ, using the method of moments. For each functional unit, we compute
the sample average spike count, as well as their sample variance, and initialize the dispersion and rate parameters
as follows:

α̂init =
X̄2

V − X̄
, θ̂init =

α̂init

X̄

Stimulus configuration peak burst time offsets (qc), trial peak burst time offsets (src ), and trial peak burst
time offsets covariance (Σs):
We initialize both the stimulus configuration and trial peak offsets to zeros. We initialize the trial offset covariance
matrix to a diagonal matrix, where the diagonal entries are determined by the width of the time-warping window.

This initialization strategy produces good results on the simulated data. When applied to real data, we use multiple
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random restarts, and evaluate the log likelihood function for the different initializations, in order to avoid local
minima.

3.2.5 Software Implementation
As part of the work done in this thesis, we implemented the previously described model in Python. Considering
that the model was developed to be applied to large datasets consisting of thousands of neurons, we implemented
the model to minimize the runtime required to process such large datasets. We were able to greatly reduce the
model’s runtime by:

• Leveraging PyTorch for GPU Acceleration: We implemented the model using PyTorch, so as to take
advantage of its efficient tensor operations and automatic differentiation capabilities on both CPUs and
GPUs. Offloading computationally intensive tasks, such as gradient calculations and matrix operations, to
a GPU resulted in significant performance gains.

• Vectorized Operations: We vectorized all core computations, so as to exploit PyTorch’s highly optimized
backend for tensor operations. This ensured that the model performed efficiently by avoiding explicit Python
loops.

• Sparse Matrix Optimization: We made use of sparse representations for operations involving spike trains
and precision matrices, minimizing memory usage and computational overhead. PyTorch’s support for
sparse tensors was particularly useful in this context.

• Profiling and Optimization: Our implementation was extensively profiled using tools such as PyTorch’s
Profiler and NVIDIA Nsight Systems. Identified bottlenecks were optimized to ensure efficient usage of
computational resources. For example, we replaced computationally expensive for-loops with optimized
library functions.

• Logging and Checkpointing: We created detailed plots and logs at intervals throughout the training pro-
cess. This facilitated an in-depth view of the model performance and mode of operation, not only at the end
of the training process but throughout the process. It also proved indispensable for debugging. Furthermore,
we also saved snapshots of the model at intervals, allowing for continued training, or probing of the model
at any point during the training process.

• Parallel Processing: We utilized Python’s multiprocessing library to parallelize parts of the model fitting
process, particularly the logging, checkpointing, and other non-core computations.

• Automatic Differentiation: To compute gradients required for the M step of the EM algorithm efficiently,
we leveraged PyTorch’s automatic differentiation.

• Customizable Model Configuration: The implementation includes options to tune hyperparameters, select
initialization strategies, and adjust the number of functional units (L) dynamically, based on the dataset’s
size and complexity.

Our model implementation is well suited for large datasets and can run in a practical timeframe while maintaining
numerical stability and accuracy. For example, our model is able to the same three areas analyzed in [Chen
et al., 2022], using the IPFR, and obtained similar results. However, where the IPFR takes ten hours to fit the
three areas, MDoP3 took 20 minutes on GPU for the same dataset. The source code and documentation for this
implementation are publicly available at the repository: https://github.com/Tolani-O/MDoP3.

3.3 Results

3.3.1 Model performance on simulated data
In order to verify the ability of the model to recover the desired parameters, we simulated, according to the
model described above, data for A = 3 brain areas, with C = 40 stimulus conditions with R = 15 trials for each
stimulus condition. For each area, we simulated neuron spike trains of length T = 200, for all neurons and trials,
using predefined population intensity functions, each representing a distinct homogeneous population of neurons.
Different numbers of unique functions were used in each area: 1, 2, and 3 unique functions in the corresponding
area. The predefined population intensity functions used in our simulations, as well as the functions recovered
by the model are shown in Figure 3.7. We fit the model to 50 simulated datasets as described above. Figure 3.8,
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shows the log-likelihood trajectories for each simulation during training, as the model estimates converge to the
ground truth parameters. Each trajectory is vertically shifted by its true log-likelihood. The vertical shift translates
all trajectories to have a ground truth at 0. The grey traces correspond to the individual simulations, and the black
trace represents the average of all the trajectories.

Figure 3.7: The MDoP3 model is able to identify the minimum number of factors needed to fit a particular dataset,
and it discards the rest. In this figure, each column represents a different simulated region. A: The ground truth
functional unit intensity functions used to simulate the data. The second and third regions (labeled 1 and 2) have 1
and 2, respectively, pairs of redundant factors. B: The model is able to recover the ground truth factors, and only
utilizes the number it needs to avoid redundancy. The exception is when there is data from a constant intensity
function, in which case the model assigns no cost for redundancy. B also shows the 95% confidence interval for
the population intensity functions recovered by the model.

Figure 3.8: Training trajectories for the log-likelihood, evaluated over 50 data simulations, vertically shifted by its
true log-likelihood. The vertical shift translates all trajectories to have a ground truth (population) log-likelihood
at 0, depicted by the orange horizontal line. The time courses for simulations are represented by the gray traces,
the average time course is represented by the black trace. The x-axis shows the number of gradient steps taken
(inner iterations) across all EM iterations.
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3.3.2 Robustness
We investigate the robustness of the model by fitting it under a variety of assumptions with respect to data gen-
eration. As previously mentioned, the model is robust to over-specification of the number of functional units to
discover, as it can automatically identify how many functional units are needed for the problem and fit that many
(assuming distinct functional unit firing rate profiles). Furthermore, we tested the ability of the model to recover
the ground truth parameters under the following assumptions:

• Overspecification to the number of functional units to be learned

• Overdispersion/underdispersion of data

• Varying levels of sparsity on the peak time offsets precision matrix

Overspecification to the number of functional units to be learned: We have shown in Figure 3.7 that the
MDoP3 model is able to accomplish model selection by determining the minimum number of functional units
needed to fit a given dataset, even when the number of functional units is different for each region. This sub-
stitutes the requirement to pre-specify the exact number of clusters you expect to learn with the more relaxed
requirement of specifying the maximum number of clusters you might expect to learn, barring any computational
constraints, and mitigates the concern for underspecification. As, one might expect, the effect of underspecifi-
cation of the number of functional units is learning population firing rate functions that combine two or more
populations. This is illustrated in Figure C.1.

Overdispersion of data: As mentioned in section 3.2.1, our specified model assumes a Negative Binomial dis-
tribution of the population PSTH. It is therefore well suited to cases where the variance of the counts are higher
than the mean. We verified this assumption on the datasets to which we applied this model (the Allen Institute
Observatory dataset), and we indeed observed that in all areas of all mice, the average population spike count on
trial is in fact less than the variance of the counts. In Figure 3.9, we show the ratio of the variance to the mean
number of spikes per trial in all areas in an example mouse. We see here that the values are all positive, which
validates our assumptions. Although the model will also fit the data in the under-dispersed scenario, it is not able
to consistently recover the ground truth parameters used in simulations to generate the data.

Figure 3.9: Ratio of the variance to mean of the spike count distribution in each area for a single mouse in the
Allen Institute dataset. All values are greater than 1 (with some many times greater than 1) indicating that, within
each region, the spike counts are overdispersed

Varying levels of sparsity on the peak time offsets precision matrix: As stated in section 3.2.2, the strength
of functional connectivity (edge) between pairs of functional units (nodes) is quantified using the trial to trial
correlations in peak burst times among the functional units. Assuming these peak times across all functional units
are described by a multivariate Gaussian random variable, our model learns the inverse covariance or precision
matrix for this joint distribution. We therefore investigate the ability of the model to recover the ground truth
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precision matrix under different assumptions about the conditional independence between functional units, that
is, assuming varying degrees of sparsity in the Gaussian precision matrix. The results of this investigation are
shown in Figure 3.10. We assumed 20%, 60% and 80% sparsity, and in each case, we generated 20 random
precision matrixes (by generating a dense matrix and randomly zeroing out a percentage of the entries). We
correspondingly generated 20 random spike train datasets, and fit our model to each one. We logged the mean
square error (MSE) trajectories of the learned precision matrix and the ground truth matrix for each, and finally
computed their pointwise standard errors, shown in the figure. We see that under each sparsity assumption, the
mean square errors converge to zero, demonstrating that the model learns an approximation to the true matrix.

Figure 3.10: Mean Squared Error (MSE) between the model recovered precision matrix and the ground truth
precision for 3 different degrees of sparsity in the precision matrix. Sparcity in the precision matrix denotes
conditional independence between the functional units (nodes). For each percent sparsity, we randomly generated
20 precision matrices, while keeping track of the MSE trajectory over the course of training. We then averaged
the MSE trajectories for the 20 datasets, as well as the pointwise standard errors. We see here that in each case,
the MSE approaches zero. Exact convergence to zero requires large amounts of data, and our simulation was on
the scale of the experimentally collected data (see 2.1). We anticipate closer to 60% sparsity in our application,
since not every functional unit is conditionally correlated with every other unit.

3.3.3 Performance on real data
As stated earlier, we developed this method with the aim of applying it to real data, in order to infer the functional
units within each brain area, as well as the strength of the interactions between them. The model is able to identify
connections between functional units with a diversity of firing rate response profiles, by contrast to prior methods,
such as the IPFR and 3-step method, which are only able to identify connections between specific functional units.
The model is also able to run very fast on large amounts of data. We applied our method to the Allen Institute
Brain Observatory dataset described in section 2.1. The dataset contains recordings from multiple brain areas
of mice presented with a variety of visual stimuli. Specifically, we analyzed data for 40 configurations of the
drifting gratings stimulus, from six recorded cortical visual areas (V1, LM RL, AL, AM, PM), and one thalamic
nucleus (LGd). The output from fitting this model is shown Figure C.2. Figure 3.11 shows the population intensity
functions that were learned for 3 visual areas: V1, LM and AL. We find some of these intensity functions exhibit
the double-peaked bursting response we expect from neurons reacting to visual stimulus, while others exhibit a
single peaked response, or no bursting response at all. The functional subpopulations also have some degree of
marginal correlations between them, as seen in Figure 3.12A. The partial correlation matrix is, however, much
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more sparse (Figure 3.12B), indicating that some functional units are conditionally independent, given the other
units. We observe from this figure that the functional interaction in region AL (VISal, first column) is primarily
due to the first and third functional units, in LM (VISL, second column) is primarily due to the second and fifth
functional units, and in V1 (VISp, third column) is primarily due to the third, fourth and fifth functional units.

Figure 3.11: The figure shows the population intensity functions learned by the MDoP3, along with their 95%
confidence interval. We observe the characteristic stimulus-evoked dual peaked response in several of the learned
populations.

Effects of time warping

As mentioned in section 3.2.2, time warping is required to align the observed population spike trains across
trials. It is also the means by which we learn the covariance structure of the trial-to-trial peak time shifts for the
population intensity function of each function unit. Figure 3.15 shows the time-warping function, across each trial
(left figure) and the distribution of the peak burst times across trials (right figure). We see here that the marginal
distribution of the trial peak times is well approximated by a Gaussian distribution. In addition, figure 3.13 shows
the difference between the population PSTH without time warping, and with time warping. We see here that when
the spike trains are summed up across trials without first aligning the trial, the peak bursting behavior is attenuated
by the noise from trial-to-trial peak shifts. By contrast, When the time warping functions are applied before
summing, we see the peak burst times clearly visible, which matches up with the learned population intensify
function. Finally, figure 3.14 shows an example of the model output when we do not account for the trial-to-trial
peak time shifts. We observe the broad bursting behavior, which occurs due to the attempt of the model to account
for the peak time shifts in the intensity functions.
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A B

Figure 3.12: The figure shows the marginal and full partial correlations between the functional peak burst times
of five functional units, denoted by each pixel, across each of three anatomical brain regions, denoted by each
square (AL, LM and V1 respectively), for two burst peaks, denoted by each quadrant. In both matrices, the
top left quadrant shows the correlations between the first peaks of all functional units across areas, the top right
quadrant shows the correlations of the first and second peaks of the functional units across brain areas, and the
bottom right quadrant shows the correlations between the second peaks of the functional units across the three
areas. We observe that both peaks tend to have a positive correlation with themselves, and a negative correlation
with the other peak. A The marginal correlations between both peaks of the functional units. B The partial
correlations between both peaks of the functional units. The partial correlation matrix is, however, much more
sparse, indicating that some functional units are conditionally independent, given the other units. We observe from
this figure that the functional interaction in region AL (VISal, first column) is primarily due to the first and third
functional units, in LM (VISL, second column) is primarily due to the second and fifth functional units, and in V1
(VISp, third column) is primarily due to the third, fourth and fifth functional units.

Figure 3.13: Aligning effect of time warping in fitting the population intensity functions to the spiking neuron data.
In both figures, we see the model-fitted firing rate functions (blue trace) and the trial-averaged population PSTHs
(orange trace). In A, we show the data as a trial averaged population PSTH, obtained without the trial-by-trial
alignment from time warping. It is clearly misaligned with the firing rate function. In B, the PSTH is computed by
first aligning the population PSTHs over the trials, and then averaging. In this case, the PSTH and the firing rate
function are aligned. The model learns the peak time offsets for each trial, and accounts for these offsets using the
time-warping function. Figure 3.14 shows an example of the learned population intensity functions when we do
not account for the temporal misalignment.
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Figure 3.14: The figure shows an example of the learned population intensity functions when we do not account
for the temporal misalignment. As a result, the intensity function itself has to account for the misalignment,
leading to the flat-topped peak on many of the intensity functions.

Figure 3.15: A: For each region (columns) and each functional unit (rows), we show the piecewise linear time
warping function for all trials (grey traces). B: The peak time offsets for each individual trial, for the area,
functional unit and peak shown in the subplot title. The distribution of the trial-to-trial peak offsets is well approx-
imated by a Gaussian.
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3.4 Discussion
In this chapter, we presented a framework for learning latent functional units, as well as their interactions, from
noisy neural time-series data. Our proposed model, the Mixture of Dependent Poisson Point Processes (MDoP3),
integrates a clustering mechanism for identifying functional units and a probabilistic graphical model to infer their
interactions, while accounting for trial-to-trial variability in the population stimulus-response behavior using a
time-warping function. We tested our model on simulated data, and thus demonstrated that our model is able to
recover the ground truth parameters of the simulated datasets, up to permutations of the mixture model compo-
nents ions. We also showed that our model is robust to choices of initial starting points, the sparsity structure of
the trial peak time precision matrix, and to overspecification of the number of functional units to search for, which
we highlight as a strength of the model. The model is optimized for speed and scalability. In this work, we were
able to fit the model to a dataset consisting of hundreds of neurons recorded from 7 brain regions, over 15 trials of
40 stimulus presentations. Finally, we applied the MDoP3 model to the Allen Brain Observatory dataset and were
able to obtain functional units that exhibited the response and connectivity patterns consistent with those observed
in Chen et al. [2022], as well as others not observed by the previous work.

The goal of this work is to advance the study of functional connectivity in computational neuroscience by provid-
ing a unified and scalable framework for identifying interacting brain regions, together with their interactions. We
accomplish this using a probabilistic framework that identifies the brain areas and captures their interactions and
implementing this using modern computational frameworks that enable scaling to large datasets.
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Part 3

Conclusion
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Chapter 4

Conclusion

The work in the thesis is aimed at advancing our understanding of the functional connections between neuron
populations, with a specific focus on interactions at fine temporal scales, while keeping the accompanying compu-
tational costs to a minimum. To this end, we advanced two key methods to estimate these functional connections
using statistical models: a 3-step method for estimating functional connections, and a novel probabilistic graphical
modeling framework, called the Mixture of Dependent Poisson Point Processes (MDoP3). This work addressed
critical challenges in analyzing large-scale neuronal datasets, including noise, data variability, and computational
efficiency. The findings underscore the utility of these approaches in revealing functional relationships within and
across populations of neurons in the brain. Some key contributions of this thesis are:

Scalable and efficient models for functional connectivity: Both the 3-step method and the MDoP3 provide
tools to obtain robust estimates of connectivity between brain regions, as measured by correlations in stimulus
response latencies. The 3-step method is fast to implement and simple to understand. The MDoP3 is more com-
prehensive and flexible, to suit a wide range of use cases. Furthermore, it makes use of time-warping techniques
to align neuronal spiking data in order to better capture the inherent variability and inter-regional dependencies in
neuronal population bursts. Both methods can be scaled to large datasets to obtain results in a reasonable time-
frame.
Understanding temporal Dynamics and Connectivity: By applying the 3-step modeling framework to ex-
perimentally recorded data, we uncovered consistent patterns in neuronal activity across experimental subjects,
highlighting a possible functionally relevant pathway for visual signal processing. This method also unveiled pat-
terns of connectivity between anatomical regions within the visual cortex, as well as between the cortex and the
thalamus. This provides a basis for understanding connectivity in the cortex, as well as for answering scientific
questions about the relevant functional processes taking place in the brain. The MDoP3 model was able to reveal
connections between multiple neuron populations, both within and across brain regions.

In sum, this thesis meets a significant need in the analysis of neuronal population interactions, leveraging use-
ful tools to decode complex temporal dynamics. The resulting insights have far-reaching implications, offering
tools and perspectives that advance both theoretical and applied neuroscience. In so doing, this work furthers
ongoing exploration into the intricacies of neural activity.
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Appendix A

Discrete time Poisson point process
distribution

Spike train data is recorded in discrete time, at about 1 kHz. They may be analyzed at this resolution, or down-
sampled by binning. We use a discrete-time approximation of the continuous-time model in our analysis, resulting
in the following formulation: ∫ T

0

λk(t)dt = lim
∆t→0

T∑
t′=0

λk(t
′)∆t

Where ∆t is the size of each time bin, typically about 1 millisecond. For such small values of ∆t, the following
approximation holds: ∫ T

0

λk(t)dt ≈
T∑

t′=0

λk(t
′)∆t =

T∑
t′=0

λk,t′∆t = Ek

T∑
t′=0

exp(τl,t′)∆t (A.1)

The unit integral constraint on exp(τl), which implies that
∫ T

0
exp

(
τl(t)

)
dt = lim∆t→0

∑T
t′=0 exp(τl,t′)∆t = 1

is satisfied by assuming that

exp(τl,t′) =
exp(βl,t′)

∆t
∑

t′ exp(βl,t′)

Substituting this back into A.1, for a single time step t′, we obtain the discretized neuron intensity function as

λk,t′ = Ek exp(τl,t′)∆t = Ek
exp(βl,t′)∑
t′ exp(βl,t′)

= Ekpl,t′

The discretized Poisson process joint pdf for an observed spike train Y = [y1, . . . , yT ], where we assume each
bin may contain more than 1 event, is expressed as (we suppress the functional unit index l for brevity):

f(y1, . . . , yT ) =
∏
t

1

yt!
λyt

k,t′ exp(−λk,t′)

=
∏
t

1

yt!
(Ept)
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= E
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t yt
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t yte−E(∑
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)
!
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)
!∏
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(∏
t

pyt

t

)

Which for binary time series, has the interpretation of sampling the total number of events from a Poisson distri-
bution, and then sampling the location of the events from a multinomial.
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Appendix B

Derivation of the E and M steps of the EM
algorithm

E Step:

Deriving the posterior for the latent variables involves the following steps:∏
c
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Note that the full marginal distribution E{src}

[∏
kc

Egkc

[
EEkc |gkc

[P ({tkc,rc}Rc
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, gkc
, . . . )]

]]
is analytically

intractable. We therefore resort to using a variational approximation to the posterior, using the Gaussian family
of distributions Q(src). Even so, we still cannot compute the expected log-likelihood analytically, and thus we
need to resort to sampling in order to compute Monte Carlo (empirical) expectations. We make an assumption
that can be considered a combination of a mean-field assumption on the conditional distributions of Ekc

and gkc

(so that they are independent of the latent variables src ), and hard EM on the conditional distributions (so they are
instead dependent on the posterior mean/mode of the latent variables src ). We do this by replacing βl,src ,qc,t with
βl,µrc ,qc,t

.
We need to evaluate the terms:
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Note that, similar to the case of the Poisson point process corresponding to sampling the number of spikes from
a Poisson, and then sampling the bin locations from a multinomial, the marginal likelihood of the spike trains
across Rc trials, given a factor and condition corresponds to sampling the number of spike counts

∑
r,t yk,r,t from

a Negative Binomial, and then sampling the bin locations from a multinomial.
The Negative Binomial has parameters r = α, and p = θ

Rc+θ . It therefore has mean
µNB = Rcα

θ = RcµΓ

and variance
VNB = µNB

p = µNB ∗ Rc+θ
θ = Rcα(Rc+θ)

θ2 .
The variance can also be expressed as
VNB = µNB + µNB

Rc

θ = µNB + (RcσΓ)
2.

We can see from here that VNB ≥ µNB, VNB → µNB as σΓ → 0
Given this, we don’t expect the model to handle underdispersion well. Since the method of moments initialization
for θ depends on the difference between the empirical variance and the expectation being positive, we might not
be able to do method of moments for smaller values of σΓ, for which is the difference might be negative.
The marginal over the factor membership is then given as:
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Putting these all together, we have
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Note that this is a gamma distribution.
Next, we have
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For the peak time latent variable, we have the expression
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M Step:
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We can derive the ELBO as:
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Note that for EM with exact posteriors, the posterior depends on fixed values of the model parameters, and does
not factor into the maximization step. For the posterior term of the trial peak time, since we are using a variational
posterior, so we keep that posterior term. We are left with the following objective∑
c

∑
kc

∑
rc

∑
t

EEkc ,gkc ,src |{tkc,rc}Kc,Rc
logP
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)
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∑
c

∑
kc

EEkc ,gkc ,src |{tkc,rc}Kc,Rc
logP

(
Ekc

|gkc

)

+
∑
c

∑
kc

EEkc ,gkc ,src |{tkc,rc}Kc,Rc
logP

(
gkc

)
+
∑
c

∑
rc

Esrc |{tkc,rc}Kc,Rc
log

P
(
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)

Q
(
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Where the last term is −Dkl(Q∥P ), the "Reverse" KL divergence. Evaluating this term by term, we have:

EEkc |{tkc,rc}Rc ,gkc ,...;θ
− logP

(
{tkc,rc}|λ(Ekc

, gkc
, src , t)

)
=∫

Ekc

[
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]
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∫
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∑
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We can integrate the terms individually as follows:

yk,r,tEEkc |{tkc,rc}Rc ,gkc ,...
[logEkc ] = yk,r,t

[
ψ
(∑

r,t

yk,r,t + αl

)
− log

(
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)]
Where ψ(·) is the digamma function. The second term is constant in Ekc

and so is just

EEkc |{tkc,rc}Rc ,gkc ,...
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(
βl,src ,qc,t−log
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And for the third term, we have
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∑
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Putting this all together, and dropping terms constant in the parameters, we have:
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We can then integrate all terms with respect to P (gkc
) as follows:
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We can then integrate all terms with respect to P (src) as follows:

EEkc ,gkc ,src |{tkc,rc}Rc,Kc
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That concludes the likelihood term. We can now evaluate the first entropy term as:

EEkc |gkc ,{tkc,rc}Rc ;θ
− logP

(
Ekc

|gkc

)
=∫

Ekc

log

[
θαl

l

Γ(αl)
Eαl−1

kc
exp(−Ekc

θl)

]
P (Ekc

|gkc
, {src , tkc,rc}Rc

) dEkc
=∫

Ekc

[
αl log θl − log Γ(αl) + (αl − 1) logEkc

− Ekc
θl

]
P (Ekc

|gkc
, {src , tkc,rc}Rc

) dEkc
=

Beginning with the inner integral, we have∫
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Integrating each term in turn gives:
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We can then integrate all terms with respect to P (gkc
) as follows:
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Due to the mean field assumption, this term is independent of P (src). That concludes the first entropy term. We
can now evaluate the second entropy term with respect to P (gkc

) as:

Egkc |{tkc,rc}Rc ;θ
− logP

(
gkc

)
=
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That concludes the second entropy term. We can now evaluate the KL term as:
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That concludes the KL term. Letting
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For the Poisson point process, the intensity function is by definition a measure of the average spike count over
an interval (i.e. the Poisson mean). In this model, we have decomposed the neuron’s intensity function λk(t) =
Ek exp

(
βl(t)

)
as it’s neuron specific average spike count Ek and the cluster specific locations of the spikes

(shared across neurons in the cluster) exp
(
βl(t)

)
. This parametrization implies that

∫
λk(t) = Ek and thus∫
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(
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)
= 1, i.e. the latent factor cluster centers are unit norm. We Put these all together to get the ELBO
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After collecting like terms and dropping terms constant in the parameters, we have
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We note here that the maximizer of this objective with respect to θ+l is given by
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In addition, using the Lagrangian, we have
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We get the final expression by plugging πl ∀ l back into the constraint, which gives λ =
∑

c kc,a. We can interpret
this as the sum of fractional assignments of neurons to factor l divided by the total number of neurons, i.e. the
average proportion of assignments to factor l. Since these parameters have closed-form maximums, we do not
need to maximize over them in the ELBO, and we thus have:
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There are times when no neuron is assigned to a particular factor, and this causes issues with the code. If no
neuron is assigned to a factor l, then θl = 0 and πl = 0, and no gradients can propagate back from θl to αl,
thereby stunting the learning. Also, when no neuron is assigned to a particular factor, we cannot learn anything
about that factor from data, and end up entirely depending on the prior (in this case the penalty). I get around
this by a trick that amounts to moving one neuron from the factor with the highest number of neurons on to the
factor with no neuron. That way there is always some learning for every factor and its corresponding α through
all iterations.
Note that
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Thus
wkc,l = softmaxl(U)

We define the time warping function ϕ(t) in the following way:

ϕ(t) =


t, 0 ≤ t < τl

(t− τl)
τ∗−τl

(τ∗+src+qc)−τl
+ τl, τl ≤ t < τ∗ + src + qc

(t− (τ∗ + src + qc))
τr−τ∗

τr−(τ∗+src+qc)
+ τ∗, τ∗ + src + qc ≤ t < τr

t, τr ≤ t < T
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Where τl and τr correspond to the left and right landmarks, and τ∗ is the average peak time across all trials and con-
ditions. This corresponds to a piece-wise linear function. Note that the time-warping function is parametrized by
the landmarks, and we impose the constraint that the shifted peak times are within the time warping window.This
constraint is enforced using the a rescaled sigmoid function, commonly called the tan hyperbolic function. The
average peak time is also contained within the landmark window, using a thresholding function. If we define the
thresholded average peak time as τ̃∗, and the constrained trial peak time as ν = ν(τ∗ + src + qc), then the time
warping function is

ϕ(t) =


t, 0 ≤ t < τl

(t− τl)
τ̃∗−τl
ν−τl

+ τl, τl ≤ t < ν

(t− ν) τ̃
∗−τr
ν−τr

+ τ̃∗, ν ≤ t < τr

t, τr ≤ t < T

We iteratively maximize the ELBO over these parameters {α, β,Σ,q}, each time recomputing the weigh matri-
ces from the current maximizes.
Because of the dependence of both the E step and M step on θl, and the dependence of θl on the outputs of both
steps, we must update θl after each step. The algorithm this looks like:
Initialize theta and alpha, then each iteration looks like:
E step update given alpha and theta, theta update given E step update (and alpha), M step update given E step
update and theta update, theta update given E step and M step alpha update.
Essentially, the theta variable requires both an E step and an M step update.
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Appendix C

Underspecification of the number of
functional units

Figure C.1: The figure shows the effect of underspecification of the number of functional units on the learned
population intensity functions. The single peak. The ground truth is shown in figure 3.7B (in the third column).
When too few functional units are used, the model combines the most similar functional units. In this case, the
constant firing rate intensity functions are combined, and the bursting intensity functions are combined.
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Figure C.2: The figure shows the output obtained by running our model on 7 areas in the Allen Institute Dataset (6
cortical visual areas and one thalamic nucleus.) We include this to demonstrate the ability of our model to scale to
very large datasets, as to handle overspecification of the number of functionalunits to fit. We specify 8 functional
units, but in most cases, the model only fit 5.
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