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Abstract
Memory retrieval is fundamental in our daily experiences, whether it is

to recognize a friend, to decide what to order from a menu or to navigate on
the street. The process of memory retrieval, however, is latent and embed-
ded among other cognitive processes such as perceptual encoding, decision
making, and motor response. To track precisely when memory retrieval takes
place, my research isolates individual cognitive processes from observed neu-
ral signal, by modeling the psychological activity in subjects’ minds as a se-
quence of latent stages.

With precise timing of when memory retrieval occurs, I then examine
where in the brain there is greater activity during the moment of memory re-
trieval. Developing a method that aligns neural recordings across subjects, and
with better spatial resolution of an ECoG dataset, I provide a detailed mapping
of the contributions of individual brain regions in a working memory task.

To further understand why memories are retrieved the way they are, I com-
pare how well different cognitive mechanisms achieve the computational goal
of a memory task. Principle of rationality posits that human cognition should
adapt optimally to the task demands in the environment through learning and
evolution. The more optimal cognitive mechanisms are more favorable to be
used by human cognition. In a semantic fluency task, I demonstrate that an
alternative memory search mechanism derived from reinforcement learning
outperforms existing cognitive mechanisms both in their performance over
simulations and in accounting for human behavioral data.

As a whole, my thesis work provides an integrated theory of human mem-
ory retrieval by uncovering its temporal dynamics, neural correlates, and un-
derlying computational goal.



iv



Acknowledgments
I am indebted to lots of people during the course my PhD. I cannot overstate how grateful I am to my
advisor, John Anderson. I would not have found my course in studying human memory if I did not
join his lab. In the past six years, he guided me not only on research projects but also on the way of
doing research, which will have a lasting impact on my future academic career. I learned from him
to associate rewards internally with the progressing of the work itself, how to get closer to the ground
truth in science even in the absence of it, and the difficult balance to both follow our intuition and
to abandon it in face of evidence. I also greatly thank my co-advisor Robert Kass, who genuinely
cares about the personal well-being and growth of his students, and constantly guides us with a wealth
of patience and experience. When I became over-focused on my projects, he reminded me of the
importance in communicating research and always challenged me to consider the broader impact of
the work. I also thank the rest of the thesis committee Leila Wehbe and Ken Norman for their valuable
feedback and encouragement. Their questions and comments throughout the process were valuable to
me in shaping the direction of the thesis.

The work presented in this document is the result of many fruitful collaborations. My foundations
in associative memory were built up through four collaborative projects with Jelmer Borst. Marieke
van Vugt has shaped my understanding in intracranial EEG data; it is also an inspiration to me the
way she integrates her passion in Buddhism and dance into her research. I would also like to thank
Matthew Walsh, for teaching me to collect EEG data, and getting me grounded in experimental work
in addition to computational modeling. I also thank Ven Popov, with whom we push our discussions
in class towards two exciting collaborative projects; and Marc Coutanche for his valuable guidance in
these projects.

I would like to also thank Charles Kemp, Tom Mitchell, Lynn Reder, Valerie Ventura, Roy Maxion
for their advice on teaching and research communication. Special thanks also go to Nicholas Cheadle
and Clive Newstead in Eberly Teaching Center and Alex H at Global Communication Center for their
constant help on my talks, classes, and writing.

I greatly appreciate the wonderful administrative support at CMU, Melissa Stupka at CNBC, Re-
becca Finkel at Psychology, Diane Stidle at Machine Learning who always goes extra miles, and Judy
van Rheenen at OIE for her advice and support during my most stressful visa times.

My PhD at CMU would not be complete without the help I have from outside CMU. I am extremely
grateful for the wonderful people at Women in MathPsych, Pernille Hemmer, Marieke van Vugt, Leslie
Blaha, Amy Criss, and Jennifer Trueblood, each and every of them has given me valuable career advice
and influenced my decisions during job search. I also greatly thank Ken Norman, Mike Kahana, Tom
Griffiths, Lynn Lohnas, Richard Shiffrin, Mike Jones, Jacob Feldman, the interaction with whom not
only helped better frame my thesis in the past year, but also led to continuous discussions that is
shaping my ongoing research trajectory.

A very special gratitude goes out to organizers and friends I met at MIT Brains, Minds & Machines

v



summer school. It was a turning point during my graduate school, when I truly see the importance of
research interaction and being exposed to different trains of thought.

I am also very grateful for the internship opportunity at Facebook Oculus, where I got to appreciate
how applications are not distractions but testbeds of theoretical work. I learned a great deal from my
mentors James Hillis, Tanya Jonker and friends I met there: Lisa, Bas, Michael, Arun, Grace, Christof
and Frank.

I am grateful for the stimulating discussions and peer support from my friends in neuroscience
and psychology: Charles, Aria, Tina, Jayanth, Yuanning, Ven, Caitlin, Aryn, Jungaa, Jon, Dan, Jaeah,
Roderick, Pierre, Elliot, Juliet, Robert; and from computer science and statistics: Ying, Yifei, Mariya,
Lisa, Fan, Xun, Yuxiang, Su, Natalie, Zongge, Heejong, Yu, Lingxue, Mingda, Jining, Shashank,
Sangwon, Bryan, Yufei. I would also like to thank Dimitry, Yan, Yuan, Koichiro, Michael, Yu, for
the sleepless nights we were working together before course deadlines and the ping-pong breaks; Jisu,
Kevin, Peter, Alex for being in a team of puzzle solving; Maya, Carmen and Santiago for bringing me
back to dancing. Special thanks go to Aria, Charles and Marie who support me during the most down
times in this journey, and my best friends Ye, Shujun, Menglu who are always a phone call away.

Last but not the least, I owe everything to my parents who support me unconditionally on anything
I pursue, and my partner Nicolás who taught me to slow down and savor in this fast-moving world.

vi



Contents

1 Introduction 1
1.1 Temporal dynamics of memory retrieval . . . . . . . . . . . . . . . . . . 2
1.2 Neural correlates of memory retrieval . . . . . . . . . . . . . . . . . . . 4
1.3 A rational analysis of memory retrieval during semantic search . . . . . . 5

2 Temporal dynamics of memory retrieval in associative memory 8
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Associative Recognition . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 HSMM-MVPA applied to an EEG data of Associative Recogni-

tion Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Motivation and Overview of Current Experiment . . . . . . . . . 14

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 EEG recording and analysis . . . . . . . . . . . . . . . . . . . . 17
2.2.5 HSMM-MVPA applied to EEG . . . . . . . . . . . . . . . . . . 18

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Behavioral Results . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 ERP Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Identifying the Stage Durations and the Bump Profiles in HSMM-

MVPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 Averaged Electrode Activity Anchored by Model Events . . . . . 28
2.3.5 Using the Neuroimaging Analysis to Inform the Task Model . . . 28
2.3.6 Model Fitting Procedure . . . . . . . . . . . . . . . . . . . . . . 31
2.3.7 Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.1 A Model of Associative Recognition . . . . . . . . . . . . . . . . 33

vii



2.4.2 Comparing ERP Components and HSMM-MVPA bumps of As-
sociative Recognition . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.3 The Path Forward: HSMM-MVPA . . . . . . . . . . . . . . . . . 36

3 Spatial dynamics of memory retrieval in working memory 38
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 The first challenge: trial-to-trial variability in the timing of cogni-
tive processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.2 The second challenge: isolate the retrieval process from the dis-
covered stages . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.3 The third challenge: identify the neural correlates associated with
the retrieval process . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Experimental paradigm . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Scalp EEG recordings in Experiment 1 . . . . . . . . . . . . . . 44
3.2.4 ECoG and depth electrode recordings in Experiment 2 . . . . . . 45
3.2.5 Alignment in the Common Representational Space . . . . . . . . 45
3.2.6 HSMM-MVPA . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.7 Brain synchrony analysis . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Behavioral analyses (Figure 3.3) . . . . . . . . . . . . . . . . . . 51
3.3.2 Consistency in CCA dimensions across two experiments . . . . . 52
3.3.3 Identification of the stage durations and the bump profiles in HSMM-

MVPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.4 Stage durations by condition with EEG . . . . . . . . . . . . . . 56
3.3.5 Stage-locked brain activity by condition with ECoG . . . . . . . 57
3.3.6 Phase synchrony between medial temporal lobe and cortical areas 59

3.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1 Isolation of a retrieval process prior to the decision-making . . . . 63
3.4.2 Duration of the Retrieval stage and the Decision stage . . . . . . 63
3.4.3 Role of frontal cortex and MTL during the Decision stage . . . . 65

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 A rational account of human semantic search 68
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Simulate the semantic fluency task . . . . . . . . . . . . . . . . . 71

viii



4.2.2 The first switching mechanism: marginal value theorem . . . . . 72
4.2.3 The second switching mechanism: non-strategic switching . . . . 73
4.2.4 The third switching mechanism: reinforcement learning based on

local patch quality . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.5 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.6 Predict switches over human behavioral data . . . . . . . . . . . 75

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1 Performance in achieving the task goal . . . . . . . . . . . . . . 79
4.3.2 Evidence over human behavioral data . . . . . . . . . . . . . . . 81

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.1 Assumptions underlying the marginal value theorem . . . . . . . 83
4.4.2 Plausibility of the proposed switching mechanism base on local

patch quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4.3 Further implications . . . . . . . . . . . . . . . . . . . . . . . . 85

ix



Chapter 1

Introduction

Memory retrieval is fundamental in our daily experiences, whether it is to recognize a

friend, to decide what to order from a menu or to navigate on the street. The process of

memory retrieval, however, is latent and embedded among other cognitive processes such

as perceptual encoding, decision making, and motor response.

To track precisely when memory retrieval takes place, the challenge is to isolate the

brief period of memory retrieval from other cognitive processes. Neural data such as EEG

provides information in addition to behavioral data for tracking the cognitive processes.

Conventional approaches in EEG literature, using event-related potentials (Luck, 2014),

align the EEG signal to experimental events like stimulus onset or response commission

and average the signal across trials. Under the assumption that there is no variability of

event timing across multiple trials, the procedure of averaging can obscure the underlying

neural signal (Luck, Woodman, & Vogel, 2000b). To account for the trial-to-trial variabil-

ity, the first line of my thesis work provides a novel method that is capable of isolating

individual cognitive processes by decomposing the task into a sequence of latent states

(J. R. Anderson, Zhang, Borst, & Walsh, 2016a; Zhang, Walsh, & Anderson, 2017, 2018).

Once we know when memory retrieval takes place at the level of individual trials, we

can locate better where in the brain it takes place around these timings. To achieve a better

spatial resolution, my thesis work examines the ECoG activity, which gives finer spatial

resolution in the cortical regions, and make it possible to examine subcortical activity

such as that of medial temporal lobe (MTL), which plays an important role in (working)

memory tasks (Ranganath, 2006; van Vugt, Schulze-Bonhage, Litt, Brandt, & Kahana,
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2010). Combining the HSMM-MVPA method to recover the timing of memory retrieval,

and a method to pool data across subject (Zhang, Walsh, & Anderson, 2017), a detailed

mapping of brain regions are provided in a visual working memory task (Zhang, van Vugt,

Borst, & Anderson, 2018).

Neural evidence of when and where memory retrieval takes place informs us about

what the underlying cognitive mechanisms are. To further understand why memories are

retrieved the way they are, I study a task of human memory search, where participants

are asked to retrieve as many items as possible from a category in a fixed amount of time.

Observed responses tend to be clustered semantically. A strategic search process under

the marginal value theorem has been proposed, but it gives non-distinguishable patterns

over human behavioral data compared with a non-strategic process. In the current work, I

propose a rational analysis of the problem by examining what would be an optimal patch-

switching policy under the framework of reinforcement learning. Built upon the random

walk model and features of the local semantic patch, the resulted switching mechanism is

more optimal than the marginal value theorem and better accounts for single-trial human

behavioral data. These results provide theoretical justification of cognitive mechanisms

used in human memory research, and shed light on how a rational account of the task

can generate alternative hypotheses about human cognitive mechanism in the same task

(Zhang & Anderson, 2018).

1.1 Temporal dynamics of memory retrieval

A longstanding interest in cognitive science is to identify the number and durations of dif-

ferent information processing stages involved in task performance (Donders, 1969). The

challenge is to identify the number of stages, measure their durations, and understand

how different experimental factors affect those durations. Sternberg (1969) proposed the

additive factor method to deal with these challenges. The method entails the following

assumptions: (1) time between a stimulus and response is occupied by a stream of succes-

sive processing stages, (2) each stage begins after the preceding stage ends, (3) different

experimental factors affect the durations of different stages, and (4) the effects of different

values of an experimental factor can be seen in overall RTs. While latency has the advan-
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tage of an obvious relationship to the durations of underlying stages, it does not provide a

direct measure of the individual stages but only of their cumulative time.

Multiple experimental factors can affect the duration and interacts at the same stage

(McClelland, 1979). In addition, one experimental factor can affect the durations of mul-

tiple stages, and its impact on the duration of each stage cannot be easily identified. Worse

yet, if a factor increases the duration of one stage while decreasing the duration of another,

different levels of the factor may produce near-equivalent overall RTs. The cumulative

nature of RTs limits conclusions that can be made about the effects of an experimental

factor on the durations of individual processing stages.

To evaluate the consequence of such limitations, we examine a case where an experi-

mental factor is hypothesized to impact two processing stages in an associative recognition

task in opposing ways. The factor (i.e., probe similarity) is the degree of match between

the three words of a triple presented to participants (i.e., probe) and the words in a previ-

ously studied triple. Participants were asked to decide if they had studied the triple before.

Our theory of associative recognition predicts that similarity of the probe to a studied triple

will decrease the duration of a retrieval stage while increasing the duration of a comparison

stage. Consequently, the theory predicts small effects of similarity on overall RTs despite

its larger effects on the durations of individual processing stages.

To overcome such limitations, we develope a non RT-based method that uses neu-

roimaging data gathered using EEG. The method involves applying hidden semi-Markov

models and multivariate pattern analysis (HSMM- MVPA) to the EEG data to identify

latent processing stages (J. R. Anderson & Fincham, 2014; J. R. Anderson et al., 2016a;

J. R. Anderson, Zhang, Borst, & Walsh, 2016b). This is achieved by explicitly modeling

the trial-to-trial variability of ERP components that would otherwise be distorted or lost

in the average waveforms. The captured ERPs signify changes in the information process-

ing and mark the transition from one processing stage to the next processing stage. We

apply this HSMM-MVPA method to test our theory of how probe similarity affects asso-

ciative recognition. In doing so, we advance understanding of associative recognition and

demonstrate the utility of using the HSMM-MVPA method.
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1.2 Neural correlates of memory retrieval

With EEG data in the previous study, we can map HSMM-MVPA stages to individual

cognitive processes and identify when memory retrieval takes place, but poor spatial res-

olution in EEG limits our ability to determine how different brain regions are engaged

during these periods. To achieve a better spatial resolution, in the next study, we look into

the ECoG activity during the periods of interest. ECoG recordings from epileptic patients

not only give finer spatial resolution in the cortical regions, but also make it possible to

examine subcortical activity such as that of medial temporal lobe (MTL), which plays an

important role in (working) memory tasks (Ranganath, 2006; van Vugt et al., 2010). Re-

cent studies show that MTL is not uniquely involved in long-term memory, but also critical

to short-term memory even when the retention period is as short as 2-10s (Hannula, Tranel,

& Cohen, 2006; Holdstock, Gutnikov, Gaffan, & Mayes, 2000; Holdstock, Shaw, & Ag-

gleton, 1995; Owen, Sahakian, Semple, Polkey, & Robbins, 1995; van Vugt et al., 2010).

To further evaluate the role of MTL in short-term memory, we focus on a visual working

memory task from a published dataset (van Vugt, Sekuler, Wilson, & Kahana, 2013). In

each trial, participants first studied a list of faces, then, after a short delay, they were cued

with a probe face and asked to judge if it had been among the just-studied faces (i.e., a

Sternberg task).

Information can be preserved in working memory across a short delay without active

maintenance (Lewis-Peacock, Drysdale, Oberauer, & Postle, 2012; Owen et al., 1995).

Our interest is in the process by which this information is later retrieved. There are two

questions asked in the current study. First, what is the time course of this retrieval process;

second, what are the neural correlates during the identified time course of this retrieval

process. The answer to the first question can be addressed similarly to the previous EEG

study applying the HSMM-MVPA method. Note that knowing when memory retrieval

takes place can lead to better identification of where in the brain it takes place. This is

because there is trial-to-trial variability of the time courses of the retrieval process. Pre-

vious studies have focused on time windows of fixed length locked to the motor response

as a way to locate when memory retrieval takes place. This approximation can attenuate

effects that can be otherwise uncovered if we know exactly when memory retrieval takes

place on a single trial basis.
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There are two additional challenges when applying the HSMM-MVPA method to

ECoG data, compared with the previous study when applying the same method to EEG

data. First, the number of subjects in ECoG data is small given the limited opportuni-

ties in collecting such data among patient population. This has an impact on the analysis

power when identifying how stage durations vary across different experimental conditions.

This analysis is critical because it provides evidence on how latent stages identified in the

HSMM-MVPA method map to specific cognitive processes including memory retrieval.

To overcome the limitation of having too few subjects in the ECoG dataset, current study

also analyzes a regular scalp EEG dataset of the same visual working memory experiment.

Second, recording sites in ECoG data vary across subjects in both numbers and locations,

we need a method of subject alignment before pooling data from different subjects. Multi-

set canonical correlation analysis (M-CCA) is used for this purpose to transform electrode

activity in each subject to a common neural representational space, where the inter-subject

correlations of the transformed data are maximized across subjects. We have previously

demonstrated the reliability of M-CCA in aligning subjects in MEG data (Zhang, Walsh,

& Anderson, 2017). In the current work, we apply M-CCA to align both ECoG and EEG

data from individual subjects. This allows us to compare the obtained common dimen-

sions and the HSMM-MVPA results across two experiments in two different measurement

modalities.

1.3 A rational analysis of memory retrieval during se-

mantic search

A central paradigm to study human memory search is the semantic fluency task, where

participants are asked to retrieve as many items as possible from a category (e.g. animals)

in a fixed period. It is observed that responses tend to be clustered semantically (e.g.

”cat”’ follows ”dog”) (Hills, Jones, & Todd, 2012). Evidence over human behavioral data

shows that marginal value theorem accounts for how our minds decide to switch from one

cluster/patch to the next (Hills et al., 2012). Under this mechanism, people make strate-

gic decisions to search the semantic space, similar to how animals optimally forage in a

patchy spatial environment: one forages locally in one food patch, then switches to a new
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patch when the resources in the current patch are depleted. It was observed that partici-

pants leave a patch in memory search when current rate of finding items is near the average

rate for the entire task (Hills et al., 2012), consistent with what the marginal value theo-

rem predicts in optimal foraging (Charnov, 1976). Recent work, however, demonstrated

that similar behavioral patterns (i.e. that are consistent with the marginal value theorem)

can e merge using a random walk simulation on a semantic network generated by human

word-association experiments (Abbott, Austerweil, & Griffiths, 2015). The random walk

model moves from one patch to another stochastically, without basing its decision on the

information about the current patch. The fact that a strategic switching mechanism and a

non-strategic switching mechanism predict similar temporal profiles around the switches

poses challenges in understanding the exact cognition mechanism used by humans.

The goal of the current work is to further examine whether humans use the marginal

value theorem during memory search. To provide more evidence in the comparison across

alternative mechanisms, we consider the abstract computational problem posed by search-

ing a semantic memory network and explore what would be an optimal strategy in this

task (i.e. which strategy can generate the most items in a semantic fluency task). This

approach is based on the principle of rationality, which explains human behavior as an

optimal solution to the computational problems posed by our environment (J. Anderson,

1990; J. R. Anderson & Milson, 1989); see also bounded rationality in (Simon, 1978)

and ecological rationality in (Todd & Gigerenzer, 2007)). Examining which cognitive

mechanism better solves the computational problem gives additional justification on why

it should be used by humans.

The principle of rationality can be applied not only to compare existing cognitive

mechanisms, i.e. the marginal value theorem versus the stochastic random walk, but also

to propose new hypothesis of alternative mechanisms. This is especially the case when ex-

isting mechanisms are not optimal for the given task. The marginal value theorem decides

whether to switch by comparing an instantaneous reward to an overall average rewards;

it is optimal under a set of conditions, including the assumption that local but not global

resources are depleted during the course of the search (Charnov, 1976). This assumption

does not hold in the semantic fluency task, as humans can re-enter the same patches, and

they are depleted over time as more items are recalled. To perform well in this task re-
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quires a decision policy that takes into account such dynamics in the environment. We

propose an alternative mechanism based on reinforcement learning that directly optimizes

performance under this specific task environment. In addition to comparing performance

of different mechanisms in simulations, we also test how well they account patterns in the

human behavioral data.

As a whole, my research addresses key aspects of the memory retrieval process by

uncovering its temporal dynamics, neural correlates, and underlying computational goal.

In the remaining thesis, they are organized as Chapter 2, Chapter 3 and Chapter 4 respec-

tively. The last chapter consists of work proposed during the thesis proposal.
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Chapter 2

Temporal dynamics of memory retrieval
in associative memory

In this study, we investigated the information processing stages underlying associative

recognition. We recorded EEG data while participants performed a task that involved de-

ciding whether a probe word triple matched any previously studied triple. We varied the

similarity between probes and studied triples. According to a model of associative recogni-

tion developed in the Adaptive Control of Thought-Rational cognitive architecture, probe

similarity affects the duration of the retrieval stage: Retrieval is fastest when the probe is

similar to a studied triple. This effect may be obscured, however, by the duration of the

comparison stage, which is fastest when the probe is not similar to the retrieved triple.

Owing to the opposing effects of probe similarity on retrieval and comparison, overall RTs

provide little information about each stage’s duration. As such, we evaluated the model

using a novel approach that decomposes the EEG signal into a sequence of latent states

and provides information about the durations of the underlying information processing

stages. The approach uses a hidden semi-Markov model to identify brief sinusoidal peaks

(called bumps) that mark the onsets of distinct cognitive stages. The analysis confirmed

that probe type has opposite effects on retrieval and comparison stages.
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2.1 Background

A longstanding interest in cognitive science is to identify the number and durations of dif-

ferent information processing stages involved in task performance (Donders, 1969, trans-

lation). The challenge is to identify the number of stages, measure their durations, and

understand how different experimental factors affect those durations. Sternberg (1969)

proposed the additive-factor method to deal with these challenges. The method entails the

following assumptions: (1) time between a stimulus and response is occupied by a stream

of successive processing stages; (2) each stage begins after the preceding stage ends; (3)

different experimental factors affect the durations of different stages; and (4) the effects of

different values of an experimental factor can be seen in overall reaction times. A limita-

tion of the additive-factor method is that if one experimental factor affects the durations of

multiple stages, its impact on the duration of each stage cannot be easily identified. Worse

yet, if a factor increases the duration of one stage while decreasing the duration of another,

different levels of the factor may produce near-equivalent overall reaction times. The cu-

mulative nature of reaction times limits conclusions that can be made about the effects of

an experimental factor on the durations of individual processing stages.

In this paper, we examine a case where an experimental factor is hypothesized to im-

pact two processing stages in an associative recognition task in opposing ways. The factor

(i.e. probe similarity) is the degree of match between the three words of a triple presented

to participants (i.e. probe), and the words in a previously studied triple. Participants were

asked to decide if they had studied the triple before. As described below, our theory of

associative recognition predicts that similarity of the probe to a studied triple will decrease

the duration of a retrieval stage while increasing the duration of a comparison stage. Con-

sequently, the theory predicts small effects of similarity on overall reaction times despite

its larger effects on the durations of individual processing stages.

To overcome limitations of overall RT, we apply a non RT-based method that uses

neuroimaging data gathered using electroencephalography (EEG). The method involves

applying hidden-semi Markov models and multivariate pattern analysis (HSMM-MVPA)

to the EEG data to identify latent processing stages (Anderson, Zhang, Walsh, & Borst,

2016; Anderson & Fincham, 2014a,b). Information about the number and durations of

processing stages based on the EEG can be used to evaluate the predictions of an existing
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theory, or to guide the development of a new theory. We use the HSMM-MVPA method

to test our theory of how probe similarity affects associative recognition. In doing so, we

advance understanding of associative recognition and demonstrate the utility of using the

HSMM-MVPA method.

2.1.1 Associative Recognition

Associative recognition involves judging whether two or more items were previously en-

countered together. For example, participants in our experiment decided whether three

words in a triple had been studied together. According to one class of recall-to-reject

models, such judgments would be made by retrieving a studied item from memory, and

comparing it to the probe to determine whether they match (Anderson & Reder, 1999;

Malmberg, 2008; Rotello & Heit, 2000; Rotello, Macmillan, & Van Tassel, 2000). One

example of a recall-to-reject model is the process-level account based on Adaptive Con-

trol of Thought Rational (ACT-R; Anderson, 2007). The ACT-R model consists of four

general processing stages (Anderson et al., 2016; Borst, Schneider, Walsh, & Anderson;

2013; Schneider & Anderson, 2012): encoding the word in the probe, retrieving a related

memory, comparing the retrieved item to the probe, and responding.

According to the ACT-R’s theory of declarative memory (Anderson, 2007), the time to

retrieve a memory is an inverse function of its activation Ai:

Ti = Fe−Ai (2.1)

where F is a latency scaling parameter. The activation of an item is a sum of the item’s

inherent strength and its strength of associations with items present in the current context:

Ai = Bi +
∑
j∈C

WjSji (2.2)

where Bi is its base-level activation, C is the context defined as the set of retrieval

cues,Wj is the attentional weight assigned to each cue j, and Sji is the strength of the
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association between each cue j and item i. During associative recognition, words in the

probe act as cues for retrieving a studied associate. The strength of association Sji can

be understood as the probability that cue j predicts item i. Sji is expressed in ACT-R’s

associative strength equation:

Sji = S − ln(fanj) (2.3)

S is a cue’s maximum associative strength, and fanj is the number of associates of

cue j. In our experiment, we manipulated fan by varying the number of triples in which

certain words appeared; the more triples a word appeared in, the less effective the word

was as a retrieval cue. Many behavioral experiments have confirmed that RTs become

longer as the number of associates, or fan, of a probe increases (e.g., Pirolli & Anderson,

1985; Anderson, 1974; for reviews, see Anderson, 2007; Anderson & Reder, 1999).

During associative recognition, ACT-R rejects foils (i.e. non-studied associates) by

retrieving the closest matching studied associate, and determining that it does not perfectly

match the probe. The retrieved associates in our experiment share one or more words with

the probe. The time to retrieve the closest non-matching associate to a foil will be longer

than the time to retrieve the matching associate to a target (i.e. a studied associate). This

is because activation from the words in the foil spreads to different memories, whereas

activation from the words in a target converges on a single memory. In other words, the

number of sources spreading activation to the retrieved associate is greater for targets than

for foils. This prediction, though straightforward, is difficult to test. The durations of

other, non-retrieval related processes may also vary, obscuring the effects of number of

sources of spreading activation. In particular, the duration of the subsequent comparison

stage in the retrieve-to-reject model may be longer when the retrieved item is similar to

the probe.

Neuroimaging studies provide additional evidence for ACT-R’s activation and associa-

tive strength equations. In two such studies (Danker, Gunn, & Anderson, 2008; Sohn, et

al., 2005), participants memorized word triples. They were then shown a set of probes

and asked to decide whether they had studied the probes. The associative fans of words

that made up the triples varied (Fan 1, 2, and 3). Consistent with behavioral studies, RTs
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increased with associative fan. Additionally, the fMRI BOLD (Blood-oxygen-level depen-

dent) response in the left prefrontal cortex, which is postulate to reflect ACT-R’s retrieval

module, increased with associative fan. This supports the idea that the most demanding

retrievals engaged the left prefrontal cortex for the longest, producing the greatest BOLD

response. Danker (2010) further found that foils produced greater LIPFC BOLD response,

consistent with the proposal that they have the longest retrievals. While these results are

consistent with the ACT-R theory of associative recognition, they cannot be strongly tied

to a retrieval stage because of fMRI’s low temporal resolution. EEG, unlike fMRI, has

millisecond resolution, making it an attractive alternative for studying brief cognitive pro-

cesses like those involved in associate recognition. EEG experiments of recognition mem-

ory have mainly focused on two ERP components: an early frontocentral negativity called

the FN400 (Curran, 2000; Walsh, Paynter, Zhang, & Reder, 2016), and a later posterior

positivity called the parietal old/new effect (Curran, 2000; Duzel, Yonelinas, Mangus,

Heinze, & Tulving, 1997). These components have typically been interpreted in the con-

text of dual-process theories of recollection memory (Diana, Reder, Arndt, & Park, 2006;

Rugg & Curran, 2007; Yonelinas, 2002). The FN400 is thought to reflect a familiarity

process that provides information about whether an item has been seen before, but does

not involve retrieval of contextual information (Curran, 2000). The parietal old/new effect

corresponds to a recollection process and does involve retrieval of contextual information.

Given their role in recognition memory, one would think that these components would be

informative with respect to models of associative recognition. This is especially true of

the parietal old/new effect, which involves the retrieval of associative information. How-

ever, the conventional approach to isolating ERP components requires aligning the EEG

signal to experiment events like stimulus onset or response commission, and averaging the

signal across trials to create ERPs. However, differences in the onset latencies of com-

ponents between trials and conditions can obscure or create the illusion of differences in

ERP component amplitudes (Luck, 2005). This is especially problematic of components

that are only weakly locked to overt experiment events.
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2.1.2 HSMM-MVPA applied to an EEG data of Associative Recogni-
tion Task

To cope with the trial-by-trial variability in the onset latencies of ERP components, we

developed a novel method that involves applying hidden semi-Markov models and multi-

variate pattern analysis (HSMM-MVPA) to EEG data (Anderson et al., 2016). Transitions

from one cognitive stage to the next are signified by the onsets of bumps that summate

with ongoing sinusoidal noise in the EEG signal. The bumps have finite durations, ampli-

tudes, and topographical distributions. The postulation that processing stages are signaled

by such bumps is consistent with theories of ERP generation in EEG data (Makeig et al.,

2002; Yeung, Bogacz, Holroyd, & Cohen, 2004). Using HSMM-MVPA, it is possible to

recover the number, timing, and topographical distributions of bumps that maximize the

likelihood of the EEG data.

We previously applied HSMM-MVPA to an EEG study of associative recognition that

manipulated fan and probe type (Anderson et al., 2016). Participants saw targets made up

of two words previously studied together and foils made up of two words previously stud-

ied in separate pairs. Figure 2.1 shows the swimlane representation of the ACT-R retrieve-

to-reject model for targets and foils in that experiment, with module activities initiated

by production rules. To elaborate how the EEG signal is mapped to different processing

stages within the framework of the ACT-R theory, a production evokes a change in neural

processing, which produces a phasic response characterized by a bump in the EEG signal.

The HSMM-MVPA method identifies both the distinctive scalp profiles and the variable

latencies of such bumps in the single-trial EEG. Two early bumps marked the encoding of

the word pair, and a third bump marked the retrieval onset. Following a variable period,

a fourth bump marked the completion of retrieval and the start of comparison. A final,

fifth bump marked completion of comparing the retrieved and target word pairs with a be-

havioral response. Several of these bumps related to ERP components evoked in standard

recognition memory paradigms. In particular, during the time surrounding the fifth bump,

voltages were more positive over the posterior scalp for targets than foils, corresponding

to the parietal old/new effect.
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2.1.3 Motivation and Overview of Current Experiment

Our model of associative recognition places the effect of probe type in the retrieval stage.

However, the results from other studies suggest that the effects of probe type may extend

to the comparison stage in a different and conflicting way. The more similar the retrieved

item is to the probe, the longer the comparison process will be. Studies of perceptual

decision making consistently show strong effects of foil similarity in response latency (for

a review, see Farell, 1985). Foils that share more features with targets are rejected more

slowly. Likewise, King and Anderson (1976) found an effect of foil similarity on response

latencies in associative recognition.

According to ACT-R’s activation equations, overlapping foils will result in greater ac-

tivation for the retrieved memory and, consequently, shorter retrieval times. The finding

that responses were slower for overlapping foils indicates that the effect of probe similarity

extends beyond the retrieval stage. We suspect that similarity also influences the compar-

ison stage. Interestingly, and problematically for measures of overall RT, the similarity of

the probe to a studied item in memory may reduce the duration of the retrieval stage and

increase the duration of the comparison stage. If we can isolate these stage durations using

the HSMM-MVPA method, we can test two strong predictions about the effects of probe

similarity:

i. Reflecting the effect of activation of the retrieved memory, the duration of the re-

trieval stage should decrease with the degree of match (i.e. probe similarity) between the

probe and the studied pairs.

ii. Reflecting the number of comparisons needed to detect a mismatch between the

retrieved memory and the probe, the duration of the comparison stage should increase

with the degree of match between the probe and the studied pairs.

To test these predictions, we conducted an experiment with a study phase and a test

phase. In the study phase, participants learned 24 word triples. In half of the triples,

both the person and location had one associate (Fan 1), and in half of the triples, both the

person and location had two associates (Fan 2). All verbs had three associates. In the test

phase, during which EEG was recorded, participants completed an associative recognition

task where they distinguished between word triples they had studied (targets) and those

they had not (dissimilar foils, similar 1 foils, and similar 2 foils). By using word triples
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Figure 2.1: Swimlane representation of the ACT-R retrieve-to-reject model for targets and
foils, with the scalp profiles identified from the HSMM-MVPA method.

instead of word pairs, we could examine the effects of multiple levels of probe similarity

on the durations of the retrieval and comparison stages with the use of the HSMM-MVPA

(Anderson et al., 2016).

2.2 Methods

2.2.1 Participants

20 individuals from the Carnegie Mellon University community participated in a single

three-hour session for monetary compensation (14 men and 6 women, ages range from 19

to 35). All but one were right-handed. None reported a history of neurological impairment.

One subject with less than 30% artifact-free EEG recording was excluded, leaving a total

of 19 subjects.

2.2.2 Materials

Participants memorized word triples comprised of a person, a verb, and a location, short-

ened as “P-V-L” (e.g. Musician – Walk – Factory). The triples were created from lists

of 18 people, 8 verbs and 18 locations (Appendix I.). Word length was 4 to 8 letters for

people, 4 to 5 letters for verbs, and 4 to 7 letters for locations. Each participant memorized

a list of 24 randomly generated word triples during the study phase of the experiment.

Foils were created by combining a person, verb, and location that had been studied in

different triples from one another. Words were only swapped with other words that had

the same number of associates in order to preserve the fan manipulation (e.g., Fan 2 foils
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were created using people and locations from other studied Fan 2 triples). There were

three types of foils (Table 1): (1) dissimiliar foils – None of the words in the triple had

been studied together; (2) similar 1 foils – P-L had been studied together, but P-V and

P-L had not; and (3) similar 2 foils – P-V and V-L had been studied together, but P-L had

not. In total, participants were tested on 72 word triples (24 targets, 24 dissimiliar foils,

12 similar 1 foils, and 12 similar 2 foils). Half were Fan 1 and half were Fan 2 (Table 1).

Foils were constructed such that every Fan 1 Person and Location appeared equally often,

every Fan 2 Person and Location appeared equally often, and every Verb appeared equally

often. Appendix II contains an example of 24 studies triples (targets) and a set of foils.

In addition to manipulating probe type and associative fan, we varied the vertical or-

dering of the words on the screen during the test phase. Half of the triples appeared in the

studied order (P-V-L), and half appeared in a shuffled order (i.e. P-L-V; L-P-V; L-V-P; V-

P-L; or V-L-P). Participants were instructed to decide whether the words had been studied

together regardless of the ordering.

recorded, participants completed an associative recog-
nition task where they distinguished between word tri-
ples they had studied (targets) and those they had not
(dissimilar foils, similar 1 foils, and similar 2 foils). By
using word triples instead of word pairs, we could
examine the effects of multiple levels of probe similarity
on the durations of the retrieval and comparison stages
with the use of the HSMM-MVPA (Anderson et al., 2016).

METHODS
Participants

Twenty individuals from the Carnegie Mellon University
community participated in a single 3-hr session for mon-
etary compensation (14 men and 6 women, ages range
from 19 to 35 years). All but one were right-handed.
None reported a history of neurological impairment.
One participant with less than 30% artifact-free EEG
recording was excluded, leaving a total of 19 participants.

Materials

Participants memorized word triples composed of a per-
son, a verb, and a location, shortened as “P-V-L” (e.g.,
Musician-Walk-Factory). The triples were created from
lists of 18 people, 8 verbs, and 18 locations (Appendix I).
Word length was four to eight letters for people, four to
five letters for verbs, and four to seven letters for loca-
tions. Each participant memorized a list of 24 randomly
generated word triples during the study phase of the
experiment.
Foils were created by combining a person, verb, and

location that had been studied in different triples from
one another. Words were only swapped with other words
that had the same number of associates to preserve the
fan manipulation (e.g., Fan 2 foils were created using
people and locations from other studied Fan 2 triples).
There were three types of foils (Table 1): (1) dissimilar
foils—none of the words in the triple had been studied
together; (2) similar 1 foils—P-L had been studied
together, but P-V and P-L had not; and (3) similar 2
foils—P-V and V-L had been studied together, but P-L
had not. In total, participants were tested on 72 word
triples (24 targets, 24 dissimilar foils, 12 similar 1 foils,

and 12 similar 2 foils). Half were Fan 1, and half were
Fan 2 (Table 1). Foils were constructed such that every
Fan 1 Person and Location appeared equally often,
every Fan 2 Person and Location appeared equally often,
and every Verb appeared equally often. Appendix II con-
tains an example of 24 studies triples (targets) and a set
of foils.

In addition to manipulating probe type and associative
fan, we varied the vertical ordering of the words on the
screen during the test phase. Half of the triples appeared
in the studied order (P-V-L), and half appeared in a shuf-
fled order (i.e., P-L-V, L-P-V, L-V-P, V-P-L, or V-L-P). Partic-
ipants were instructed to decide whether the words had
been studied together regardless of the ordering.

Procedure

The experiment began with a study phase where partici-
pants learned a list of 24 word triples. When a triple was
presented for the first time, it appeared at the center of
the screen for 8000 msec. Participants were instructed to
read and memorize the triple. After all triples appeared
once, participants advanced into the dropout portion of
the study phase. In each trial, two of the three words in a
triple appeared, and participants were required to re-
call and type the omitted word. There was no time limit
to respond. If the response was incorrect, the correct
answer was displayed for 4000 msec, and if the answer
was correct, the word CORRECT appeared for 4000 msec.
If a triple elicited an error, it was repeated again after all
other triples had appeared. A block of trials ended when
all triples had elicited a correct response. The dropout
portion consisted of three blocks of trials. A different
word from each triple was omitted during each block.

In the subsequent test phase, participants completed
an associative recognition task where they distinguished
between word triples they had studied and those they
had not. Each trial began with a centrally presented fixa-
tion cross for a variable duration (sampled uniformly
from 400 to 600 msec). Next, a probe word triple appeared
vertically on the screen. Participants responded with a key
press to indicate whether or not the triple had been stud-
ied. To respond “yes,” they pressed the J key with the right
index finger, and to respond “no,” they pressed the K key
with the right middle finger.

Table 1. Probe Types, Item Matches, and Probe Counts for Fan 1 and Fan 2 Triples

Probe Type Person-Verb Match? Person-Location Match? Verb-Location Match? Fan 1 Fan 2

Target Yes Yes Yes 12 12

Dissimilar No No No 12 12

Similar 1 No Yes No 6 6

Similar 2 Yes No Yes 6 6

Zhang, Walsh, and Anderson 355

2.2.3 Procedure

The experiment began with a study phase where participants learned a list of 24 word

triples. When a triple was presented for the first time, it appeared at the center of the

screen for 8000 ms. Participants were instructed to read and memorize the triple. After all

triples appeared once, participants advanced into the drop-out portion of the study phase.

In each trial, two of the three words in a triple appeared and participants were required to

recall and type the omitted word. There was no time limit to respond. If the response was

incorrect, the correct answer was displayed for 4000 ms, and if the answer was correct, the

word CORRECT appeared for 4000 ms. If a triple elicited an error, it was repeated again

after all other triples had appeared. A block of trials ended when all triples had elicited a
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correct response. The drop-out portion consisted of three blocks of trials. A different word

from each triple was omitted during each block. In the subsequent test phase, participants

completed an associative recognition task where they distinguished between word triples

they had studied and those they had not. Each trial began with a centrally presented fixation

cross for a variable duration (sampled uniformly from 400 to 600 ms). Next, a probe word

triple appeared vertically on the screen. Participants responded with a key press to indicate

whether or not the triple had been studied. To respond “yes”, they pressed the J key with

the right index finger, and to respond “no”, they pressed the K key with the right middle

finger.

Participants were instructed to respond as quickly and accurately as possible. This was

reinforced with a bonus point system. 100 points were deducted for every incorrect re-

sponse, and 100-50*Time points were awarded for every correct response (if negative, the

participant was given 0). Time was in seconds. After the participant responded, feedback

appeared on the screen for 1000 ms. If the answer was incorrect, the word INCORRECT

appeared along with the correct answer and the amount of points deducted. If the answer

was correct, the word CORRECT appeared along with the amount of points awarded. Par-

ticipants completed a total of 12 blocks of 72 trials. Each of the 72 word triples appeared

once per test block.

2.2.4 EEG recording and analysis

Stimuli appeared on a 60 Hz LCD monitor set 60 cm from participants. The EEG was

recorded from 128 Ag-AgCl sintered electrodes (10-20 system) using a Biosemi Active

II System (BioSemi, Amsterdam, Netherlands). The EEG was re-referenced online to

the combined common mode sense (CMS) and driven right leg (DRL) circuit. Electrodes

were also placed on the right and left mastoids. Scalp recordings were algebraically re-

referenced offline to the average of the right and left mastoids. The EEG and EOG signals

were filtered with a bandpass of .1 to 70.0 Hz and were digitized at 512 Hz. The EEG

recording was decomposed into independent components using the EEGLAB FastICA

algorithm (Delorme & Makeig, 2004). Components associated with eye blinks were auto-

matically identified and projected out of the EEG recording. Epochs of 1100 ms (including

a 100 ms baseline) were then extracted from the continuous recording and corrected over
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the prestimulus interval. Epochs containing voltages above +100 µV or below -100 µV

were excluded (< 4% epochs).

EEG data were analyzed from trials with correct responses. Data were averaged across

contiguous electrodes to create four regions: a left anterior/superior (LAS) region (FFC3h,

F3, F1, FFC5h, FFC1h, FC3, and FC1), a right anterior/superior (RAS) region (FFC2h,

F2, F4, FFC4h, FFC6h, FC2, and FC4), a left posterior/superior (LPS) region (CP3, CP1,

CPP5h, CPP3h, CPP1h, P3, and P1), and a right posterior/superior (RPS) region (CP2,

CP4, CPP2h, CPP4h, CPP6h, P2, and P4). We analyzed data from these regions during

an early time window (300 to 500 ms) corresponding to the FN400, and a later time win-

dow (600 to 1000 ms) corresponding to the parietal old/new effect. Data from each time

window were entered into a 4 (probe type) x 2 (fan) x 2 (laterality) x 2 (anterior/superior)

repeated measures ANOVAs. For all analyses involving probe type (the only factor with

more than two levels), we adjusted the p values using the Greenhouse-Geisser correction.

We also analyzed response-locked waveforms which were baseline corrected using the

100 ms pre-stimulus interval before the triple appeared.

2.2.5 HSMM-MVPA applied to EEG

In our HSMM, we explicitly model the variability of endogenous ERP components that

would otherwise be distorted or lost in the average waveforms. The HSMM-MVPA

method identifies brief, distinctive profiles of scalp activity (i.e. bumps) with variable

latencies in the single-trial EEG (Anderson et al., 2016). A bump is modeled as a half-sine

multidimensional peak across the scalp that signifies a significant change in the informa-

tion processing, followed by a flat period where the mean of the ongoing sinusoidal noise

is 0. Our HSMM models the durations of the flats as gamma distributions.

Two steps of dimensionality reduction were carried out to simplify the analysis and

make the computations more efficient and tractable. First, the data was down-sampled to

100 Hz (i.e., 10-ms samples). Second, to deal with the highly inter-correlated nature of

the EEG sensors and to reduce the dimensionality of the signal, spatial PCA (i.e., across

electrodes) was performed to generate orthogonal PCA dimensions. The first 10 PCA

components were retained. These accounted for 69.2% of the variance in the signal. The

PCA components were z-scored for each trial. As a result, the data for the analysis con-
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sisted of 10 orthogonal PCA components sampled every 10 ms and with constant mean

and variability across trials. Five samples (50 ms) beyond the response were also included

in the analysis to ensure that the bump signifying the motor response was fully modeled,

in the case that it occurred at the moment of trial completion. We only considered data

from correct trials .

As described in more detail in our previous application of the HSMM-MVPA method

(Anderson et al., 2016), several assumptions about the temporal structure of the signal are

made to facilitate the analysis. First, the bumps were given a 50 ms width (i.e., 5 samples)

with a half-sine shape. Such narrow bumps promote precision in the identification of stage

boundaries, even if the bumps may actually be somewhat wider than 50 ms. Second, the

analysis assumes that bumps do not overlap. Third, the flat durations are modeled as a

gamma distribution with a fixed shape parameter 2 and a free scale parameter estimated

to fit the data. See Anderson et al. (2016) for a detailed discussion of these assumptions,

and tests of the robustness of the method against violations of each. Bumps in the HSMM

are intended to account for the portion of the EEG signal corresponding to task-related

processing; that is, variability arising from stimulus processing, memory retrieval and

decision making, and response commission. Other sources of variability in the EEG signal

that are not accounted for by bumps in the HSMM include noise from muscle movement,

ambient electrical activity in the recording environment, stochasticity in neural responses

to the same or related events, and additional neural processes unrelated to the task that take

place in a non-stimulus locked fashion.

An n bump HSMM requires estimating n + 1 stage distributions to describe the du-

rations of the flats plus the n 5-sample bumps for each PCA component. A different

magnitude is estimated for each of the n bumps along each PCA dimension. A bump ex-

tends temporally across 5 samples (50 ms) and is multiplied by weights of 0.309, 0.809,

1.000, 0.809, and 0.309 (i.e., a 10 Hz half sin wave). The best model fit of such HSMMs

is given by maximizing the summed log likelihood of the bumps and flats across all trials.

For each trial, this log likelihood can be decomposed into two parts: the likelihood of the

EEG data given that the bumps are centered at each time point, and the likelihoods that

the bumps are centered at those time points given the gamma distributions that constrain

their locations. In other words, the HSMM must select bump locations within a trial to
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maximize the correspondence between the observed and the estimated EEG signal, while

selecting relatively consistent flat durations across trials to maximize their fit to the gamma

distributions. The estimation process has to consider all possible combinations of bump

locations and this is what is efficiently calculated by the dynamic programming associated

with hidden semi-Markov models (Yu, 2010).

The HSMM methods also return the probabilities of each bump occurring at each time

point on a trial-by-trial basis. These probabilities can be used to calculate the most likely

location of each bump in a trial, which is the sum of the time points in the trial multiplied

by the corresponding probability that the bump occurred at that time. Mean stage durations

for a particular subject can then be calculated as the average time between bumps across

all trials within that subject.

2.3 Results

2.3.1 Behavioral Results

During the study phase, the number of times a triple was presented during each block

before being correctly completed can be used to assess rate of learning (Table 2). With

a repeated-measures ANOVA with fan and block as factors, mean frequency decreased

across blocks, F(2, 36) = 30.382, p < .001. The frequency was higher for Fan 2 triples

versus Fan 1 triples, F(1, 18) = 13.500, p < .001. The overall effect of fan decreased

slightly across block, with an interaction between block and fan, F(2, 36) = 3.322, p < .05.

By the third block, participants tended to respond correctly on their first attempt.

An n bump HSMM requires estimating n + 1 stage
distributions to describe the durations of the flats plus
the n five-sample bumps for each PCA component. A dif-
ferent magnitude is estimated for each of the n bumps
along each PCA dimension. A bump extends temporally
across five samples (50 msec) and is multiplied by
weights of 0.309, 0.809, 1.000, 0.809, and 0.309 (i.e., a
10-Hz half sin wave). The best model fit of such HSMMs
is given by maximizing the summed log likelihood of
the bumps and flats across all trials. For each trial, this
log likelihood can be decomposed into two parts: the
likelihood of the EEG data given that the bumps are
centered at each time point, and the likelihoods that
the bumps are centered at those time points given the
gamma distributions that constrain their locations. In
other words, the HSMM must select bump locations
within a trial to maximize the correspondence between
the observed and the estimated EEG signal, while select-
ing relatively consistent flat durations across trials to
maximize their fit to the gamma distributions. The esti-
mation process has to consider all possible combinations
of bump locations, and this is what is efficiently calcu-
lated by the dynamic programming associated with HSMMs
(Yu, 2010).
The HSMM methods also return the probabilities of

each bump occurring at each time point on a trial-by-trial
basis. These probabilities can be used to calculate the
most likely location of each bump in a trial, which is
the sum of the time points in the trial multiplied by the
corresponding probability that the bump occurred at that
time. Mean stage durations for a particular individual can
then be calculated as the average time between bumps
across all trials within that individual.

RESULTS
Behavioral Results

During the study phase, the number of times a triple was
presented during each block before being correctly com-
pleted can be used to assess rate of learning (Table 2).2

With a repeated-measures ANOVA with Fan and Block as
factors, mean frequency decreased across blocks, F(2,
36) = 30.382, p < .001. The frequency was higher for
Fan 2 triples versus Fan 1 triples, F(1, 18) = 13.500, p <
.001. The overall effect of Fan decreased slightly across
block, with an interaction between Block and Fan, F(2,
36) = 3.322, p < .05. By the third block, participants
tended to respond correctly on their first attempt.

During the test phase, data were trimmed by excluding
trials with RTs shorter than 40 msec or longer than 3 sec
(4% of all trials). The mean correct RTs and error rates
appear in Table 3. RT and error rate were submitted to
a repeated-measures ANOVA with Fan and Probe type
as factors. RT was longer and error rate was higher for
Fan 2 triples versus Fan 1 triples, reflecting a main effect
of Fan on RT, F(1, 18) = 7.066, p < .001, and error rate,
F(1, 18) = 29.561, p < .001. RT and error rate both
varied with Probe type (F(3, 54) = 18.571, p < .001 and
F(3, 54) = 11.965, p < .001, respectively). Responses to
dissimilar foils were fastest and most accurate. The effect
of Fan on performance was greatest for targets, reflecting
an interaction between fan and probe type on RT, F(3,
54) = 5.683, p < .01, and error rate, F(3, 54) = 28.654,
p < .01.

ERP Results

Stimulus Locked: 300–500 msec

Figure 2 shows ERPs from the four regions based on
probe type and fan. We first analyzed the data from all
four regions during 300–500 msec, the typical time win-
dow of the FN400 (Stróżak, Abedzadeh, & Curran, 2016;
Mollison & Curran, 2012; Speer & Curran, 2007). Consis-
tent with the impression conveyed by the figures, there
were no significant main effects or interactions involving
the experimental factors during this window (Table 4).

Stimulus Locked: 600–1000 msec

We then analyzed the data from all four regions during
600 to 1000 msec, the typical time window of the parietal
old/new effect. Waveforms appeared more positive for
targets, reflecting a main effect of Probe (Table 4). The
main effect of Fan was not significant nor was the inter-
action between Probe type and Fan. The topographical
distribution of the Probe type effect is shown in Figure 3.

Response Locked: −50 to 50 msec

Effects not otherwise observable in stimulus-locked
waveforms can sometimes be seen in response-locked

Table 2. Mean Frequency of Triples with SEMs in Parenthesis

Block 1 Block 2 Block 3

Fan 1 2.34 (0.23) 1.58 (0.11) 1.25 (0.07)

Fan 2 2.66 (0.25) 1.62 (0.09) 1.39 (0.09)

Table 3. Mean RT (in sec) and Error Rates (as a %) with SEMs
in Parenthesis

Probe Type

RT Error Rate

Fan 1 Fan 2 Fan 1 Fan 2

Target 1.26 (0.05) 1.42 (0.07) 13.3 (2.0) 27.9 (3.2)

Dissimilar 1.24 (0.06) 1.36 (0.07) 2.7 (0.1) 6.4 (1.2)

Similar 1 1.30 (0.06) 1.38 (0.08) 13.1 (2.7) 8.8 (1.4)

Similar 2 1.34 (0.06) 1.42 (0.07) 14.4 (2.2) 15.9 (1.8)
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During the test phase, data were trimmed by excluding trials with RTs shorter than 40

ms or longer than 3 sec (4% of all trials). The mean correct RTs and error rates appear in

Table 3. RT and error rate were submitted to a repeated-measures ANOVA with fan and
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probe type as factors. RT was longer and error rate was higher for Fan 2 triples versus

Fan 1 triples, reflecting a main effect of fan on RT, F(1, 18) = 7.066, p < .001, and error

rate, F(1, 18) = 29.561, p < .001. RT and error rate both varied with probe type (F(3,

54) = 18.571, p < .001 and F(3, 54) = 11.965, p < .001, respectively). Responses to

dissimilar foils were fastest and most accurate. The effect of fan on performance was

greatest for targets, reflecting an interaction between fan and probe type on RT, F(3, 54) =

5.683, p < .01, and error rate, F(3, 54) = 28.654, p < .01.

An n bump HSMM requires estimating n + 1 stage
distributions to describe the durations of the flats plus
the n five-sample bumps for each PCA component. A dif-
ferent magnitude is estimated for each of the n bumps
along each PCA dimension. A bump extends temporally
across five samples (50 msec) and is multiplied by
weights of 0.309, 0.809, 1.000, 0.809, and 0.309 (i.e., a
10-Hz half sin wave). The best model fit of such HSMMs
is given by maximizing the summed log likelihood of
the bumps and flats across all trials. For each trial, this
log likelihood can be decomposed into two parts: the
likelihood of the EEG data given that the bumps are
centered at each time point, and the likelihoods that
the bumps are centered at those time points given the
gamma distributions that constrain their locations. In
other words, the HSMM must select bump locations
within a trial to maximize the correspondence between
the observed and the estimated EEG signal, while select-
ing relatively consistent flat durations across trials to
maximize their fit to the gamma distributions. The esti-
mation process has to consider all possible combinations
of bump locations, and this is what is efficiently calcu-
lated by the dynamic programming associated with HSMMs
(Yu, 2010).
The HSMM methods also return the probabilities of

each bump occurring at each time point on a trial-by-trial
basis. These probabilities can be used to calculate the
most likely location of each bump in a trial, which is
the sum of the time points in the trial multiplied by the
corresponding probability that the bump occurred at that
time. Mean stage durations for a particular individual can
then be calculated as the average time between bumps
across all trials within that individual.

RESULTS
Behavioral Results

During the study phase, the number of times a triple was
presented during each block before being correctly com-
pleted can be used to assess rate of learning (Table 2).2

With a repeated-measures ANOVA with Fan and Block as
factors, mean frequency decreased across blocks, F(2,
36) = 30.382, p < .001. The frequency was higher for
Fan 2 triples versus Fan 1 triples, F(1, 18) = 13.500, p <
.001. The overall effect of Fan decreased slightly across
block, with an interaction between Block and Fan, F(2,
36) = 3.322, p < .05. By the third block, participants
tended to respond correctly on their first attempt.

During the test phase, data were trimmed by excluding
trials with RTs shorter than 40 msec or longer than 3 sec
(4% of all trials). The mean correct RTs and error rates
appear in Table 3. RT and error rate were submitted to
a repeated-measures ANOVA with Fan and Probe type
as factors. RT was longer and error rate was higher for
Fan 2 triples versus Fan 1 triples, reflecting a main effect
of Fan on RT, F(1, 18) = 7.066, p < .001, and error rate,
F(1, 18) = 29.561, p < .001. RT and error rate both
varied with Probe type (F(3, 54) = 18.571, p < .001 and
F(3, 54) = 11.965, p < .001, respectively). Responses to
dissimilar foils were fastest and most accurate. The effect
of Fan on performance was greatest for targets, reflecting
an interaction between fan and probe type on RT, F(3,
54) = 5.683, p < .01, and error rate, F(3, 54) = 28.654,
p < .01.

ERP Results

Stimulus Locked: 300–500 msec

Figure 2 shows ERPs from the four regions based on
probe type and fan. We first analyzed the data from all
four regions during 300–500 msec, the typical time win-
dow of the FN400 (Stróżak, Abedzadeh, & Curran, 2016;
Mollison & Curran, 2012; Speer & Curran, 2007). Consis-
tent with the impression conveyed by the figures, there
were no significant main effects or interactions involving
the experimental factors during this window (Table 4).

Stimulus Locked: 600–1000 msec

We then analyzed the data from all four regions during
600 to 1000 msec, the typical time window of the parietal
old/new effect. Waveforms appeared more positive for
targets, reflecting a main effect of Probe (Table 4). The
main effect of Fan was not significant nor was the inter-
action between Probe type and Fan. The topographical
distribution of the Probe type effect is shown in Figure 3.

Response Locked: −50 to 50 msec

Effects not otherwise observable in stimulus-locked
waveforms can sometimes be seen in response-locked

Table 2. Mean Frequency of Triples with SEMs in Parenthesis

Block 1 Block 2 Block 3

Fan 1 2.34 (0.23) 1.58 (0.11) 1.25 (0.07)

Fan 2 2.66 (0.25) 1.62 (0.09) 1.39 (0.09)

Table 3. Mean RT (in sec) and Error Rates (as a %) with SEMs
in Parenthesis

Probe Type

RT Error Rate

Fan 1 Fan 2 Fan 1 Fan 2

Target 1.26 (0.05) 1.42 (0.07) 13.3 (2.0) 27.9 (3.2)

Dissimilar 1.24 (0.06) 1.36 (0.07) 2.7 (0.1) 6.4 (1.2)

Similar 1 1.30 (0.06) 1.38 (0.08) 13.1 (2.7) 8.8 (1.4)

Similar 2 1.34 (0.06) 1.42 (0.07) 14.4 (2.2) 15.9 (1.8)
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2.3.2 ERP Results

Stimulus Locked: 300 to 500 ms. Figure 2.2 shows ERPs from the four regions based on

probe type and fan. We first analyzed the data from all four regions during 300 to 500 ms,

the typical time window of the FN400 (Strozak, Abedzadeh, & Curran, 2016; Mollison

& Curran, 2012; Speer & Curran, 2007). Consistent with the impression conveyed by the

figures, there were no significant main effects or interactions involving the experimental

factors during this window (Table 4).

Stimulus Locked: 600 to 1000 ms. We then analyzed the data from all four regions

during 600 to 1000 ms, the typical time window of the parietal old/new effect. Waveforms

appeared more positive for targets, reflecting a main effect of probe (Table 4). The main

effect of fan was not significant, nor was the interaction between probe type and fan. The

topographical distribution of the probe type effect is shown in Figure 2.3 .

Response Locked: -50 to 50 ms. Effects not otherwise observable in stimulus-locked

waveforms can sometimes be seen in response-locked waveforms (Figure 2.4 ). A clear
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effect of probe type along with an effect of fan emerged surrounding the response from

-50 to 50 ms. This was reflected in main effects of fan and probe (Table 4). The effect of

fan was smallest for targets, reflecting an interaction between fan and probe. Waveforms

were most positive for fan 1 triples, and for targets. Figure 2.5 shows the topographical

distribution.

waveforms (Figure 4). A clear effect of Probe type along
with an effect of Fan emerged surrounding the response
from −50 to 50 msec. This was reflected in main effects
of Fan and Probe (Table 4). The effect of Fan was
smallest for targets, reflecting an interaction between
Fan and Probe. Waveforms were most positive for fan
1 triples and for targets. Figure 5 shows the topograph-
ical distribution.

In summary, we did not observe an FN400 in the
stimulus-locked data. The time course, direction, and
topographical distribution of the Probe effect in the
stimulus-locked data are consistent with the parietal
old/new effect. The Probe effect was also evident in the
response-locked data, which is not surprising given that
responses occurred shortly after the time window used
to measure the parietal old/new effect. Finally, an effect
of Fan only appeared in the response-locked data. These
results are consistent with our earlier study of paired
associate recognition (Anderson et al., 2016). Now we

turn from the traditional analysis of averaging over trials
to an HSMM-MVPA analysis that parses each trial into its
stages.

Identifying the Stage Durations and the
Bump Profiles in HSMM-MVPA

HSMM-MVPA identifies bumps in the ongoing EEG signal
related to significant changes in information processing.
In this study, the number of stages in HSMM was decided
jointly based on the EEG data and our theoretical under-
standing of the task model developed in ACT-R. Using
a procedure of leave-one-out cross-validation (LOOCV;
details in Anderson et al., 2006), we confirmed that an
HSMM with four bumps outperformed any model with
fewer bumps. When we included more than four bumps,
the HSMM placed the additional bumps adjacent to one
another to capture a sustained positivity in the EEG pre-
ceding the response, as also observed by Anderson et al.

Figure 2. Stimulus locked waveforms from the four regions. Line colors correspond to target probes (black), dissimilar foils (red), similar 1 foils
(blue), and similar 2 foils (red).

Table 4. 4 (Probe) by 2 (Fan) Repeated Measures ANOVAs for Mean Voltages during Stimulus and Response Locked Intervals

Stimulus Locked
300 to 500 msec

Stimulus Locked
600 to 1000 msec

Response Locked
−50 to 50 msec

Probe: F(3, 54) 0.715, ns 8.626, p < .001 5.826, p < .01

Fan: F(1, 18) 0.375, ns 2.348, ns 7.531, p < .05

Probe × Fan: F(3, 54) 0.947, ns 0.757, ns 4.678, p < .01

Probe × Anterior/Posterior: F(3, 54) 0.456, ns 0.159, ns 4.430, p < .05

Probe × Laterality: F(3, 54) 1.361, ns 2.117, ns 3.862, p < .05

Fan × Anterior/Posterior: F(1, 18) 1.452, ns 0.757, ns 1.554, ns

Fan × Laterality: F(1, 18) 0.001, ns 0.179, ns 0.735, ns
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In summary, we did not observe an FN400 in the stimulus-locked data. The time

course, direction, and topographical distribution of the probe effect in the stimulus-locked

data are consistent with the parietal old/new effect. The probe effect was also evident in the

response-locked data, which is not surprising given that responses occurred shortly after

the time window used to measure the parietal old/new effect. Finally, an effect of fan only

appeared in the response-locked data. These results are consistent with our earlier study

of paired associate recognition (Anderson et al., 2016). Now we turn from the traditional

analysis of averaging over trials to an HSMM-MVPA analysis that parses each trial into

its stages.

2.3.3 Identifying the Stage Durations and the Bump Profiles in HSMM-
MVPA

HSMM-MVPA identifies bumps in the ongoing EEG signal related to significant changes

in information processing. In this study, the number of stages in HSMM was decided

jointly based on the EEG data and our theoretical understanding of the task model devel-

oped in ACT-R. Using LOOCV we confirmed that an HSMM with 4 bumps outperformed

any model with fewer bumps. When we included more than four bumps, the HSMM
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Figure 2.2: Stimulus locked waveforms from the four regions. Line colors correspond to
target probes (black), dissimilar foils (red), similar 1 foils (blue), and similar 2 foils (red).

Figure 2.3: Mean voltage over scalp from 600 to 1000 ms after stimulus onset.
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Figure 2.4: Response locked waveforms from the four regions. Line colors correspond to
target probes (black), dissimiliar foils (red), similar 1 foils (blue), and similar 2 foils (red).

Figure 2.5: Mean voltage over scalp from -50 to 50 ms with respect to response.
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placed the additional bumps adjacent to one another to capture a sustained positivity in

the EEG preceding the response, as also observed by Anderson et al. (2016). Given the

absence of a theoretical motivation for including more stages in the computational model,

we stuck with the 4-bump model. Further, given that the current task involved associative

recognition, as did the task reported in Anderson et al. (2016), their identification of stages

motivated us to adopt a similar model here.

Based on the ACT-R model of the task, we obtained a total of four bumps and five

stages in processing: 1. Pre-attention stage: The time from stimulus onset to the first

bump reflecting the time for the visual signal to reach the brain and be attended to; 2.

Encoding stage: The time from the first to the second bump reflecting the time to encode

the stimulus; 3. Retrieval stage: The time from the second to the third bump reflecting the

time to retrieve a memory for comparison; 4. Comparison stage: The time from the third

to the fourth bump reflecting the comparison of the memory with the probe; 5. Response

stage: The time from the fourth bump to the response reflecting response execution.

Figure 2.6 illustrates the durations of the five processing stages and the scalp topolo-

gies of the four bumps identified using the HSMM-MVPA method. Each of the bumps

is modeled as a 50 ms half-sine multidimensional peak that can be projected back to the

scalp given the known PCA projection weights. The Pre-attention, Encoding, and Re-

sponse stages were relatively brief compared to the Retrieval and Comparison stages. The

bump profiles and durations are similar to those in Anderson et al. (2016), with the excep-

tion of the comparison stage, which is considerably longer here. The longer comparison

stage reflects the greater number of words that participants needed to compare and the

demanding similarity manipulation used in this experiment.

Response times varied by condition (Table 3). These differences in response latency

must show up in the durations of some of the stages. To determine which stages were

affected by the experiment manipulations, we fit HSMMs with different stage durations to

each condition. That is, we estimated scale parameters for the gamma-2 distributions of

each stage separately for the different conditions while constraining the bump magnitudes

to be the same. To focus on the effects of probe type, we restricted the effect of fan to the

Retrieval stage (Stage 3) and investigated which stages were impacted by probe type. To

do so we created an HSMM where the durations of all stages were allowed to vary with
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probe, but only the duration of the third stage was allowed to vary with fan. Figure 2.7

shows the resulting estimated stage durations. We computed the mean stage durations

for each subject as a function of probe type, and submitted them to a 4 (probe) repeated-

measures ANOVA separately for each stage. Consistent with the impression conveyed

by Figure 2.7 , the effect of probe type was significant during the third stage, F(3, 54) =

13.070, p < .0001, and the fourth stage, F(3, 54) = 21.720, p < .0001. We subsequently

performed a 4 (probe) x 2 (stages three or four) repeated-measures ANOVA. The main

effect of probe was significant, F(3, 54) = 7.489, p < .001, but the effect of stage was not,

F(1, 18) = 3.949, p < .1. Most importantly, these two factors interacted, F(3, 54) = 48.417,

p < .0001, owing to the opposing effects of probe on the durations of Stages 3 and 4.

The duration of Stage 3 was shortest for targets, and comparable for the three foil

types. This is consistent with the prediction of the ACT-R model that retrieval time will be

the shortest for targets, since the retrieved triple always receives two sources of spreading

activation (Eq. 1 and Eq. 2). However, the ACT-R model also predicts the slowest retrieval

time for dissimiliar foils (which receive one source of spreading activation), followed by

similar 1 foils and similar 2 foils. Probe similarity also affected Stage 4. In contrast to

the Stage 3, durations were longest for targets and similar 2 foils, followed by similar 1

foils, and finally by dissimilar foils. This is consistent with a model in which comparison

terminates once a mismatch is detected.

Averaging across associative fan and probe type, response times decreases from the

first to the second half of the experiment (1374 versus 1277 ms, t(18) = 3.19, p < .01).

The ACT-R model predicts that practice should not affect the speed of encoding or motor

planning, but rather the time to retrieve items from memory. Specifically, base-level acti-

vation (Bi in Eq. 2) increases with the number of repetitions. We compared the inferred

stage durations from the first and second halves of the experiment in the HSMM. The re-

sults were partially in line with the model’s predictions: the duration of the retrieval stage

deceased from 527 to 498 ms, t(18) = 4.994, p < .05, but the duration of the comparison

stage also decreased from 588 to 529 ms, t(18) = 13.219, p < .01.
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Figure 2.6: Mean electrode activity reconstructed for the four bumps by projecting the
bump magnitudes back to the PCA weights (top). Mean durations of five stages interleaved
by four 50-ms bumps (bottom).

Figure 2.7: Condition-specific stage durations when localizing the effect of fan to Stage 3,
and allowing probe type to vary across all stages.
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2.3.4 Averaged Electrode Activity Anchored by Model Events

In standard ERP analyses, the EEG signal is anchored to observable events such as the

presentation of a stimulus. The bumps obtained from the HSMM signal latent points of

change. These events can be used, along with observable events, to align the EEG data.

We anchored the EEG data from each trial according to stimulus onset, response, and

the maximum likelihood locations of each of the four bumps during that trial. We then

expanded or contracted the resulting five intervals in every trial of a condition to have

durations equal to those specified by HSMM. In this way, the stimulus, the locations of the

four bumps and the response are aligned across all trials in a condition. In the resulting

displays (Figure 2.8 and 2.9), conditions with longer response times stretch further forward

in the stimulus-locked waveforms.

In Figure 2.8 and 2.9, substantial differences among conditions are seen before and

during the fourth bump over the parietal region. We performed a 4 (probe type) x 2 (fan)

x 2 (flat/bump) repeated measures ANOVA using mean amplitude over the flat preceding

the fourth bump and peak amplitude of the fourth bump. There is a significant interaction

of the three factors (F(3,54)=6.072, p = .002). Then we performed separately a 4 (probe

type) x 2 (fan) repeated measures ANOVA using mean amplitude over the flat or peak

amplitude of the fourth bump. The main effect of probe was significant both during the

preceding flat (F(3,54)=12.568, p < .001) and during the fourth bump (F(3,54)=6.593,

p = 0.002), reflecting the greater positivity for targets versus foils. The main effect of

fan on the peak amplitude of the fourth bump was also significant (F(1,18)=11.446, p =

0.003), owing to the greater positivity for Fan 1 triples versus Fan 2 triples.

2.3.5 Using the Neuroimaging Analysis to Inform the Task Model

Our model’s retrieve-to-reject strategy consists of four stages: (1) Encoding–Randomly

select two of the words to encode; (2) Retrieval–Retrieve a triple from memory that most

closely matches the two encoded words; (3) Comparison–Compare the encoded and re-

trieved triples to determine whether any word differs; (4) Response–Press K (“not stud-

ied”) if any word differs, and press J (“studied”) otherwise. Response times equal the

cumulative duration of the four stages. This can be represented as:
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Figure 2.8: Average EEG data after warping every trial so that the maximum likelihood
locations of the bumps correspond to the average locations for that condition. Data are
shown in four regions (LAS, RPS, LPS, and RPS) for each fan condition.

Figure 2.9: Average EEG data after warping every trial so that the maximum likelihood
locations of the bumps correspond to the average locations for that condition. Data are
shown in four regions (LAS, RPS, LPS, and RPS) for each probe condition.
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RTi = SharedT ime+RetrievalT imei + ComparisonT imei (2.4)

Shared Time includes the durations of the encoding and response stages. These en-

compass the time for the signal to reach the brain, the time to encode the words, and the

time to program and perform a motor response.

Retrieval Time is computed from the set of equations that make up ACT-R’s theory

of declarative memory, and that are described in the introduction. In this task, retrieval

time depends on the number of cues (i.e. encoded words) that spread activation to the

retrieved triple (Eq 2.1). The number of sources of activation in targets always equaled

two because all possible pairs of encoded words (P-V, P-L, or V-L) occurred together in

a studied triple. The number of sources of activation for the retrieved triple in dissimiliar

foils always equaled one because no two of the words occurred together in a studied triple.

The number of sources for similar 1 foils equaled 1 with 66% (P-V or V-L encoded) and 2

with 33% (P-L encoded). Lastly, the number of sources for similar 2 foils equaled 1 with

33% (P-L encoded) and 2 with 66% (P-V or V-L encoded).

Retrieval Time also depended on the number of associates, or fan, of the encoded words

in the probe (Eq 2.3). Person and location always had the same fan as one another (1 or 2),

which varied by triple. Verb always had a fan of 3. Based on the spread of activation (Eq

2.2), and the degree of match (i.e. probe similarity) between current context and the re-

trieved triple (Eq 2.1), we computed activation for all combinations of two encoded words

for the four probe types and the two fan conditions. Retrieval time for a condition was

calculated as the average expected retrieval duration for all combinations of two encoded

words (P-V, P-L or V-L encoded).

Comparison Time depended on the number of encoded words that matched words in

the retrieved triple. We modeled the comparison stage as a serial process in which partic-

ipant first compared the two encoded words to the corresponding words in the retrieved

triple. If either word differed, the comparison process ended. If neither word differed, the

participant compared the third word. The third word could conceivably be encoded before

or during the final comparison.

The probability of comparing the third word varied by probe type. Targets always re-
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Figure 2.10: Observed response times (bars), and cumulative duration of model’s shared
time (red squares), retrieval time (blue squares), and comparison time (black squares).

quired comparing the third word because the first two words always matched the retrieved

triple. Dissimilar foils never required the final comparison because the first two words

never both matched the retrieved triple. Similar 1 foils required the final comparison 33%

of the time (P-L initially encoded). Lastly, similar 2 foils required the final comparison

66% of the time (P-V or V-L initially encoded). Time to compare the third word (Final

Comparison) was treated as a free parameter. Overall comparison time for a condition was

calculated as the sum of a Comparison Intercept parameter, which was the same across

conditions and accounted for the duration of comparing the first two words, and the Final

Comparison weighted according to the probability that the final word was compared in

each condition.

2.3.6 Model Fitting Procedure

The ACT-R model contained a total of four free parameters: Shared Time, F (latency scale

for mapping activation onto retrieval time), Final Comparison, and Comparison Intercept.

Maximum associative strength S (Eq 2.3) was set to a default value of 1.5 , and attentional

weight W (Eq 2.2) was set to 1/2 because context was defined by the two encoded words.

We estimated the free model parameters to maximize the correspondence between the

durations of the model stages (i.e. Retrieval and Comparison) and the stages inferred from

the HSMM using a simplex optimization algorithm. This is in contrast to the standard

approach to parameter estimation which involves finding parameter values that maximize

the correspondence between the model’s output and the observed overall RTs. By isolating
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the durations of the retrieval and comparison stages using the neuroimaging data, it is

possible better estimate F (which only affects the retrieval stage) and Final Comparison

(which only affects the comparison stage).

2.3.7 Model Results

The latency scalar parameter (F) was estimated to maximize the correspondence between

the duration of the model’s retrieval stage and the duration of the third stage in the HSMM-

MVPA analysis. For the best fitting value of F (Table 5), the model accounted for the

different durations of third stage across the 8 conditions formed by fan and probe, as shown

in Figure 2.7 (r = 0.88, MSE = .005). The Final Comparison and Comparison Intercept

parameters were estimated to maximize the correspondence between the duration of the

model’s comparison stage and the fourth stage in the HSMM-MVPA analysis. For the best

fitting values (Table 5), the model accounted for the different durations of the fourth stage

across the 8 conditions formed by fan and probe, as shown in Figure 2.7 (r = 0.94, MSE =

.001).

third word because the first two words always matched
the retrieved triple. Dissimilar foils never required the
final comparison because the first two words never both
matched the retrieved triple. Similar 1 foils required the
final comparison 33% of the time (P-L initially encoded).
Lastly, similar 2 foils required the final comparison 66% of
the time (P-V or V-L initially encoded). Time to com-
pare the third word (Final Comparison) was treated as
a free parameter. Overall comparison time for a condi-
tion was calculated as the sum of a Comparison Intercept
parameter, which was the same across conditions and
accounted for the duration of comparing the first two
words, and the Final Comparison weighted according
to the probability that the final word was compared in
each condition.

Model Fitting Procedure

The ACT-Rmodel contained a total of four free parameters:
Shared Time, F (latency scale for mapping activation onto
retrieval time), Final Comparison, and Comparison
Intercept. Maximum associative strength (S, Equation 3)
was set to a default value of 1.5,4 and attentional weight
(W, Equation 2) was set to 1/2 because context was de-
fined by the two encoded words.
We estimated the free model parameters to maximize

the correspondence between the durations of the model
stages (i.e., Retrieval and Comparison) and the stages
inferred from the HSMM using a simplex optimization
algorithm. This is in contrast to the standard approach
to parameter estimation, which involves finding param-
eter values that maximize the correspondence between
the model’s output and the observed overall RTs. By
isolating the durations of the retrieval and comparison
stages using the neuroimaging data, it is possible better
estimate F (which only affects the retrieval stage) and
Final Comparison (which only affects the comparison
stage).

Model Results

The latency scalar parameter (F) was estimated to maxi-
mize the correspondence between the duration of the
model’s retrieval stage and the duration of the third
stage in the HSMM-MVPA analysis. For the best fitting
value of F (Table 5), the model accounted for the differ-

ent durations of third stage across the eight conditions
formed by fan and probe, as shown in Figure 7 (r = .88,
MSE = .005).

The Final Comparison and Comparison Intercept
parameters were estimated to maximize the correspon-
dence between the duration of the model’s comparison
stage and the fourth stage in the HSMM-MVPA analysis.
For the best fitting values (Table 5), the model accounted
for the different durations of the fourth stage across the
eight conditions formed by fan and probe, as shown in
Figure 7 (r = .94, MSE = .001).

Using the parameter estimates from the neuroimaging
data (Table 5), we calculated the three durations in Equa-
tion 4 (Shared Time, Retrieval Time, and Comparison
Time) to generate model behavioral RTs. The correspon-
dence between the model’s overall RTs and the observed
RTs was fairly high (r= .81,MSE= .001). As illustrated in
Figure 10, fan only affected the duration of the model’s
retrieval stage. Alternatively, probe type affected the
duration of the model’s retrieval and comparison stages
in opposite ways (Retrieval Stage: Target = 382 msec,
Similar 2 = 453 msec, Similar 1 = 445 msec, Dissimilar =
515msec; Comparison Stage: Target= 550msec, Similar 2=
522 msec, Similar 1 = 494 msec, Dissimilar = 465 msec).
Owing to the strong negative correlation between the
durations of the retrieval and comparison stages (r2 =
−.86), the net effect of probe type on overall RT was small
(Figure 10).

DISCUSSION

We conducted a study of associative recognition in which
participants decided whether a probe made up of three
words matched any previously studied triple. We varied
the associative fan of words in the probes, as well as
the degree of similarity between probes and studied
triples. Our HSMM-MVPA method revealed that probe

Figure 10. Observed RTs (bars) and cumulative duration of model’s
shared time (red squares), retrieval time (blue squares), and comparison
time (black squares).

Table 5. Model Parameter Estimates

Parameter Name Estimate

Shared Time 430 msec

F 905 msec

Final Comparison 85 msec

Comparison Intercept 465 msec

Zhang, Walsh, and Anderson 363
Using the parameter estimates from the neuroimaging data (Table 5), we calculated

the three durations in Eq. 4 (Shared Time, Retrieval Time, and Comparison Time) to gen-

erate model behavioral response times. The correspondence between the model’s overall

RTs and the observed RTs was fairly high (r = .81, MSE = .001). As illustrated in Fig-

ure 2.10, fan only affected the duration of the model’s retrieval stage. Alternatively, probe

type affected the duration of the model’s retrieval and comparison stages in opposite ways

(Retrieval Stage: Target = 382 ms, Similar 2 = 453 ms, Similar 1 = 445 ms, Dissimiliar

= 515 ms; Comparison Stage: Target = 550 ms, Similar 2 = 522 ms, Similar 1 = 494 ms,
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Dissimiliar = 465 ms). Owing to the strong negative correlation between the durations of

the retrieval and comparison stages (r2 = −0.86) the net effect of probe type on overall

RT was a small (Figure 2.10).

2.4 Discussions

We conducted a study of associative recognition in which participants decided whether a

probe made up of three words matched any previously studied triple. We varied the asso-

ciative fan of words in the probes, as well as the degree of similarity between probes and

studied triples. Our HSMM-MVPA method revealed that probe similarity substantially

affected the durations of both the retrieval stage and the comparison stage. The retrieval

stage was shortest when probes were more similar to a studied triple, whereas the compar-

ison stage was longest when probes were more similar to a studied triple. The opposing

ways in which probe similarity impacted retrieval and comparison stages explained why

this factor had only a modest effect on overall RT; for instance, response times were nearly

identical for similar 1 foils and targets, yet the durations of the retrieval and comparison

stages clearly differed.

2.4.1 A Model of Associative Recognition

The results from the HSMM-MVPA analysis were largely consistent with the ACT-R

model of associative recognition. The model predicts that when a studied triple shares

more words with a probe, the triple will be retrieved more quickly because of the greater

number of sources spreading activation to it (Eq 2.2). Alternatively, the model predicts that

when a probe has more words in common with a studied triple, serial comparison of the

words in the probe and in the retrieved triple will take longer. This is because more words

on average must be compared before detecting a difference. By isolating the durations of

the retrieval and comparison stages using HSMM-MVPA, we were able to measure the

effect of probe similarity on retrieval latency. Targets were retrieved more quickly than

foils as predicted from the ACT-R model.

The results from the retrieval stage were not perfectly consistent with the model, how-

ever. The model predicts that dissimilar foils, which share only one word with any studied
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triple, will lead to slower retrievals than similar 1 or similar 2 foils, which share two words

with some studied triple. In contrast, the HSMM-MVPA indicated that the duration of the

retrieval stage was the same for all foils. This could reflect a simplifying assumption in our

instantiation of the ACT-R model. Predictions based on (Eq 2.2) correspond to the case

of noiseless activation during retrieval. In its complete instantiation, the ACT-R cognitive

architecture adds continuously varying, logistically distributed noise to activation values.

Because many studied triples overlap with a dissimilar foil (six triples averaged over fan

for dissimilar foils versus one or two triples for the other foil types), the retrieved associate

will be the most active of a larger set of candidates. As a consequence, the retrieved triple

in the case of dissimilar foils will on average have a larger, positive noise term added to its

activation value.

The HSMM-MVPA showed that the comparison stage was shortest for dissimilar foils,

and was longest for similar 2 foils and targets. This result relates to a classic finding from

the “same”–“different” perceptual judgment task (Sternberg, 1969). The more attributes

two visual stimuli share, the longer it takes for people to determine that they differ (Farell,

1985). This is consistent with a serial comparison process, as instantiated in our ACT-R

model of associative recognition. Interestingly, in the “same”–”different” task, match-

ing stimuli produce faster responses than predicted by simple linear extrapolation of the

number of comparisons required (Nickerson, 1967). As shown by the HSMM-MVPA, the

duration of the comparison stage in our task increased with the number of comparisons for

foils, but was equivalent for targets and similar 2 foils even though targets required more

comparisons. To account for the differential effects of number of comparisons on “same”

versus “different” judgments, some models assume that “same” judgments are based on a

parallel holistic process rather than a serial analytical process (Farrell, 1985). The ACT-R

model does not currently include a holistic comparison process, and so predicts a slightly

longer comparison stage for targets.

2.4.2 Comparing ERP Components and HSMM-MVPA bumps of As-
sociative Recognition

EEG studies of recognition memory reveal two ERP components, the FN400 and the pari-

etal old/new effect. In many studies of recognition memory, participants view probes and
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are asked to decide whether they previously studied the probe. Some of the probes per-

fectly match a studied item (“targets”), some are entirely novel (“dissimiliar lures”), and

some merely resemble a studied item (“similar lures”). The FN400 is typically more neg-

ative for dissimilar lures than for targets or similar lures, suggesting that it is sensitive to

item familiarity. The parietal old/new effect, on the other hand, is more positive for targets

than for dissimilar or similar lures, indicating that it is sensitive to the retrieval of perfect

matches (for a review, see Rugg & Curran, 2007).

Given that associative recognition involves remembering details about what an item

appeared with, we expected that participants would display the standard parietal old/new

effect. Indeed, as in previous studies of associative recognition (Diana, Van den Boom,

Yonelinas, & Ranganath, 2011; Donaldson & Rugg, 1998), targets produced a late poste-

rior positivity during the fourth flat that extended to the last bump, whereas foils did not.

In the ACT-R model, the stage coinciding with the parietal old/new effect involves pro-

cessing of the memory trace after its retrieval. We previously suggested that the amplitude

of the sustained response reflected the different activations of the retrieved memories in

the various conditions (Anderson et al., 2016). Activation is greater for targets than foils,

and for Fan 1 triples than for Fan 2 triples. Consistent with this view, voltages over the

parietal scalp were greater for Fan 1 triples than for Fan 2 triples in the moments preceding

a response.

All of the words in the test phase of our experiment appeared earlier during the study

phase. As such, it was unclear whether participants would display an FN400 for foils

versus targets. Some studies of associative recognition show that the novelty of the associ-

ation between probe items can produce an FN400 (Speer & Curran, 2007), while others do

not (Anderson et al., 2016; Ecker et al., 2007). These discrepancies may relate to whether

the individual elements in an associate are represented as a single unit. Conditions that

favor unitization in paired associate learning may yield a distinct FN400 for re-arranged

pairs relative to studied pairs (Ecker et al., 2007). These conditions include repeated study

(Speer & Curran, 2007), semantically meaningful pairs (e.g. traffic-jam; Rhodes & Don-

aldson, 2007), and elaborative encoding (Rhodes & Donaldson, 2008). The conditions in

our experiment did not promote unitization: participants learned triples (rather than pairs),

they studied triples as few as four times, and the words in triples were unrelated.
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All regions show activity related to each of the four bumps. The topographical dis-

tribution and time course of the bumps are largely consistent with those described in our

previous application of the HSMM-MVPA method to a paired associate recognition task

(Anderson et al., 2016). The first bump likely corresponds to the N1, given its early time

course, its anterior distribution, and its insensitivity to the fan and probe type manipu-

lations. This component is typically interpreted as an index of visual attention (Luck,

Woodman, & Vogel, 2000). The intermediate time course and anterior distribution of the

second bump are consistent with the P2 (Van Petten et al., 1991).

The third bump may relate to the N2 (c.f. Anderson et al, 2016), a frontocentral neg-

ativity caused by response conflict (Yeung, 2004). The N2 typically appears somewhat

earlier in ERP waveforms. However, most studies of the N2 involve decisions far simpler

than associative recognition. As the third bump in the ACT-R model initiates the compar-

ison stage, it follows that this bump occurs at the moment of maximum response conflict

within the trial. The late and variable latencies of the third bump may obscure the N2 in

the conventional ERP waveforms of our study and in other studies of recognition memory.

Finally, the time course, direction, and topographical distribution of the fourth bump are

consistent with the parietal old/new effect. As in our previous experiment (Anderson et

al., 2016), this bump was sensitive to perfect matches, and had higher amplitude for Fan 1

triples than for Fan 2 triples.

2.4.3 The Path Forward: HSMM-MVPA

HSMM-MVPA can be used to guide the development of new theories by providing a

direct measure of the durations of information processing stages to make inferences about

the effects of experimental factors. RT-based methods have also been used. However, if an

experimental factor affects the durations of multiple stages, its impact on each cannot be

directly observed from overall RTs. Rather, one must specify a model of how the factor(s)

affect each stage, calculate the expected durations of all stages, and compare the summed

stage durations to overall RTs. A discrepancy between expected and observed RTs does

not indicate which stages and factors were modeled incorrectly. More problematically, the

absence of a discrepancy does not exclude the possibility that the model over-predicted

the duration of one stage, and under-predicted the duration of another. By isolating each
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stage’s duration, the HSMM method overcomes these limitations of RT-based methods.

HSMM-MVPA can be used for a second, related purpose; to obtain more accurate pa-

rameter estimates for a process model. An advantage of linking cognitive models to neural

data would be the sheer wealth of additional information that neural data can provide in

comparison with behavioral data (see a review of different linking approaches: Hollan-

der, Forstmann, & Brown, 2016). The HSMM-MVPA method provides individual stage

durations instead of the sum of them (i.e. RT) to better constrain model fitting. For exam-

ple, the ACT-R retrieval latency scalar (F) only affects the duration of the retrieval stage,

whereas Final Comparison only affects the duration of the comparison stage. Because

both parameters modulate the effects of probe type, changes in F can be partially offset by

changes in Final Comparison time to produce similar overall RTs. By estimating model

parameters based on the stage durations in the HSMM-MVPA, no such parameter com-

pensation occurs. Another example is the estimation of Comparison Intercept, which is

not affected by fan or probe type. Without information about the duration of the compar-

ison stage from the HSMM-MVPA, it would not be possible to estimate the Comparison

Intercept separately from other processes (e.g. encoding and responding) that are also not

affected by the experimental factors. Beyond just a common intercept, Figure 2.7 illus-

trates that the method can break this time out into periods of pre-stimulus attention (stage

1), encoding (stage 2), and responding (stage 5).
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Chapter 3

Spatial dynamics of memory retrieval in
working memory

In this study, we investigated the time course and neural correlates of the retrieval process

underlying visual working memory. We made use of a rare dataset in which the same task

was recorded using both scalp electroencephalography (EEG) and Electrocorticography

(ECoG), respectively. This allowed us to examine with great spatial and temporal detail

how the retrieval process works, and in particular how the medial temporal lobe (MTL)

is involved. In each trial, participants judged whether a probe face had been among a set

of recently studied faces. With a method that combines hidden semi-Markov models and

multivariate pattern analysis, the neural signal was decomposed into a sequence of latent

cognitive stages with information about their durations on a trial-by-trial basis. Analyzed

separately, EEG and ECoG data yielded converging results on discovered stages and their

interpretation, which reflected 1) a brief pre-attention stage, 2) encoding the stimulus, 3)

retrieving the studied set, and 4) making a decision. Combining these stages with the

high spatial resolution of ECoG suggested that activity in the temporal cortex reflected

item familiarity in the retrieval stage; and that once retrieval is complete, there is active

maintenance of the studied face set in the decision stage in the MTL. During this same

period, the frontal cortex guides the decision by means of theta coupling with the MTL.

These observations generalize previous findings on the role of MTL theta from long-term

memory tasks to short-term memory tasks.
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3.1 Background

Information can be preserved in working memory across a short delay without active main-

tenance (Ericsson and Kintsch, 1995; Lewis-Peacock, Drysdale, Oberauer, & Postle, 2012;

Oberauer, 2002). Our interest is in the process by which this information is later retrieved.

This can take place either through an attention-based process that refocuses and refreshes

the memory traces (Lewis-Peacock at al., 2012; Souza, Rerko, & Oberauer, 2015), or

a cue-driven process that is very similar to cue-based retrieval from long-term memory

(Nairne, 2002). The objective of this study to map the time course and neural correlates

of this retrieval process. We focus on a visual working memory task from a published

dataset (van Vugt, Sekuler, Wilson, & Kahana, 2013). Two experiments using the same

task were carried out using scalp electroencephalography (EEG) and electrocorticography

(ECoG), which allows us to harness the complementary strengths of these two recording

methods. In each trial, participants first studied a list of faces, then, after a short delay, they

were cued with a probe face and asked to judge if it had been among the just-studied faces

(i.e., a Sternberg task). To create a detailed mapping of the time course of the retrieval

process, we modeled the trial-to-trial variability of this process with a novel method that

combines hidden semi-Markov models with multivariate pattern analysis (HSMM-MVPA;

e.g., Anderson et al., 2016), which we applied to both EEG and ECoG datasets. To cre-

ate a detailed mapping of the neural correlates we relied on the ECoG dataset, which has

superior spatial resolution. In the rest of this introduction, we will describe three main

challenges to isolate the working memory retrieval process in space and in time, and our

approaches to tackle these challenges. In the method section, we will provide the technical

details of these approaches.

3.1.1 The first challenge: trial-to-trial variability in the timing of cog-
nitive processes

We focus on the period of the working memory task where participates are asked to judge

whether the presented probe is one of the recently studied faces. Each trial analyzed starts

with encoding a probe face and ends with a motor response (the period marked as ”probe”

in Figure 3.1 ), but the intermediate cognitive processes (including the retrieval process)
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Figure 3.1: Trial structure of the Sternberg task. This figure illustrates the sequence and
timing of events in a trial with a set size of 3. Adopted from (Van Vugt et al., 2013) with
permission.

can vary greatly from trial to trial given the self-paced nature of the task. Event-related

potentials (ERP) are commonly used in EEG literature to identify the occurrence of impor-

tant cognitive events by averaging stimulus-locked or response-locked signal across trials.

However, cognitive events that are further away from stimulus or response will have higher

trial-to-trial temporal variability and are often distorted or lost in the averaged waveforms

(Luck, 2014). Therefore, in order to isolate the full range of cognitive processes in the

visual working memory task, we need to apply a method that can capture the trial-to-trial

variability in when they occur.

In the past, we have combined hidden semi-Markov models and multivariate pattern

analysis (i.e. HSMM-MVPA) to decompose the neural signal (i.e. EEG, MEG) into a

sequence of latent stages (Anderson, Zhang, Borst, & Walsh, 2016; Borst & Anderson,

2015; Zhang, Walsh, & Anderson, 2017). This approach assumes that transitions from

one processing stage to the next are accompanied by a significant change in the infor-

mation processing and therefore in the underlying neural signal. HSMM-MVPA shares

the same notion as the microstate analysis developed by Lehmann and colleagues, which

is to extract a sequence of non-overlapping mental states from neural data during a spe-

cific task (Lehmann, 1987; Pascual-Marqui, Michel, & Lehmann, 1995). In addition, the

HSMM-MVPA method also captures the trial-to-trial variability of the durations in each

state. This is in contrast to the microstate analysis that was applied to average ERP data

(Pascual-Marqui et al., 1995).

The HSMM-MVPA model identifies brief, distinctive profiles of scalp activity (i.e.,
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bumps) with variable latencies in single trial EEG data. A bump is modeled as a half-sine

multidimensional peak across the scalp that signifies a significant change in the informa-

tion processing. This assumption is inspired by two theories of ERP generation (Yeung,

Bogacz, Holroyd, & Cohen, 2004; Makeig et al., 2002; Shah et al., 2004; Basar, 1980).

According to the classical theory, significant cognitive events generate bursts of activity in

discrete brain regions (Shah et al., 2004). Therefore, the EEG signal can be described as

a sum of sinusoidal peaks and ongoing neural signal of uncorrelated sinusoidal variation.

According to the second theory of ERP generation, the synchronized oscillation theory,

significant cognitive events reset the phase of the oscillation at a certain frequency (Basar,

1980). Under both theories, averaging neural signal across trials will reveal the peaks as

averaged ERP waveforms that we see, and the ERP waveforms are indistinguishable be-

tween the two theories under simulated datasets (Yeung, Bogacz, Holroyd, Nieuwenhuis,

& Cohen, 2007).

In the current work, we will apply this method to both the EEG and ECoG datasets to

identify and isolate the cognitive processes in our visual working memory task. Details on

parameter estimation and model fitting can be found in the Method section.

3.1.2 The second challenge: isolate the retrieval process from the dis-
covered stages

The HSMM-MVPA method gives a sequence of latent stages that correspond to different

cognitive processes. We are particularly interested in when the retrieval process takes

place. In order to isolate this retrieval process among the set of stages uncovered by

HSMM-MVPA, we need to find the mapping between the obtained model stages and the

series of cognitive processes thought to be involved in our task. Extending an existing stage

model based on an HSMM-MVPA analysis of a Sternberg task involving digits (Anderson

et al., 2016), we expect to find the following five stages of processing:

1) Pre-attention: the time for the visual signal to reach the brain and to be attended to;

2) Encoding: encode the probe presented; 3) Retrieval: reactivate face(s) from the studied

memory set; 4) Decision: compare and decide if the probe face is part of the reactivated

set; 5) Motor response: press a key that reflects the decision.

To confirm this mapping for the current task, we will also examine how stage dura-
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tions vary given the manipulation of different experimental factors. If a particular stage

corresponds to a given cognitive process, the way that different experimental factors alter

the duration of this stage should be consistent with our knowledge of the corresponding

cognitive process. We use regular scalp EEG with normal populations to identify such

condition effects, because there is more power associated with larger number of subjects.

3.1.3 The third challenge: identify the neural correlates associated
with the retrieval process

Processing stages obtained in the HSMM-MVPA method provide us with the fine tempo-

ral resolution of when the retrieval process takes place on single trials. We can further

examine which brain regions are activated during these discovered periods in a combined

spatio-temporal analysis. With EEG data, we can identify the mapping from HSMM-

MVPA stages to individual cognitive processes with high temporal precision, but poor

spatial resolution limits our ability to determine how different brain regions are engaged

during these periods. To achieve a better spatial resolution, we look into the ECoG activity

during the periods of interest. ECoG recordings from epileptic patients not only give finer

spatial resolution in the cortical regions, but also make it possible to examine subcortical

activity such as that of MTL, which plays an important role in visual (working) memory

tasks (van Vugt, Schulze-Bonhage, Litt, Brandt, & Kahana, 2010; Ranganath, 2006). Be-

cause recording sites in ECoG data vary across subjects in both numbers and locations, we

need a method of subject alignment before pooling data from different subjects. Multi-set

canonical correlation analysis (M-CCA) is used for this purpose to transform electrode

activity in each subject to a common neural representational space, where the inter-subject

correlations of the transformed data are maximized across subjects. We have previously

demonstrated the reliability of M-CCA in aligning subjects in MEG data (Zhang, Borst,

Kass, & Anderson, 2017). In the current work, we will apply M-CCA to align ECoG data

from individual subjects; we will also apply M-CCA to the EEG data, which allows us

to compare the obtained common dimensions and the HSMM-MVPA results across two

experiments in two different measurement modalities.
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3.2 Methods

3.2.1 Experimental paradigm

Participants completed a Sternberg task: Following the appearance of a fixation stimulus,

participants viewed a short series of faces in sequence (Figure 3.1 ). After a retention

interval, a probe item appeared and participants indicated with a key press whether the

probe was a member of the just presented set (target) or not (foil). After each trial, par-

ticipants were given accuracy feedback. Figure 3.1 illustrates the sequence and timing of

trial events in the original report of the data used in this study (van Vugt et al., 2013). 16

synthetic faces, which varied along four perceptual dimensions, were used as stimuli (Wil-

son, Loffler, & Wilkinson, 2002). A multidimensional scaling (MDS) study was carried

out on 23 participants to characterize the psychological perceived similarities among these

synthetic faces (see van Vugt et al., 2013; Kahana & Bennett, 1994, for details). There-

fore, we can characterize the overall similarity between a probe and the just studied set as

the average similarity between the probe and each face on the set (i.e., set similarity). We

define two levels of set similarity among the foils (i.e., low-sim and high-sim), dividing

foils into two groups with equal numbers of trials. In the datasets we will use, there are

two versions of the visual working memory task, adapted to the cognitive capacities of

the respective subject populations. One was administered to healthy undergraduates while

their EEG was recorded (Experiment 1), while the other was adapted to epileptic patients

from who ECoG was recorded (Experiment 2). The two experiments differed in the num-

ber of faces participants viewed in the studied set before a probe in each series (set size).

In Experiment 1, set size could be two, three or four; in Experiment 2, set size could be

one, two or three (adapted to the capacity of the patients). Sets were constructed so that

items could not be repeated on successive sets, and targets were equally likely to match a

study item from each serial position. Incorrect trials and trials with RTs shorter than 400

ms or longer than 4000 ms were removed from the analysis.

3.2.2 Participants

In Experiment 1, 29 adults (ages 20–32) were recruited from the University of Pennsyl-

vania student community. Informed consent was obtained from all participants. Each
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participant completed two sessions, with each session involving ten blocks of 30 trials.

Participants with mean accuracy lower than 60 % or with mean RT longer than 4s were

excluded. All 29 participants were retained for further analysis. Participants in Experiment

2 were 16 neurosurgical patients being treated for medically refractory epilepsy and were

monitored with arrays of subdural and/or depth electrodes. Patients were recruited from

Brigham and Women’s Hospital in Boston, the Hospital of the University of Pennsylvania

in Philadelphia, and Universitts Klinikum Freiburg in Germany. Informed consent was

obtained from all participants. Under the same accuracy and RT criteria as Experiment 1,

12 out of 16 patients were retained for further analysis. Each patient completed different

number of trials for the experiment (µ = 202, SEM = 41), depending on their availability

and willingness to participate in the experiments.

3.2.3 Scalp EEG recordings in Experiment 1

Scalp EEG signals were recorded using a 129-channel EGI Inc. system, with an AC-

coupled, high-input-impedance amplifier (200 MΩ, Net Amps, Electrical Geodesics, Inc.,

Eugene, OR). The sampling rate was 500 Hz, and data were recorded with a 0.1–250

Hz bandpass filter. Individual channels were adjusted until impedances were below 50

kΩ. EEG signals were filtered with a bandpass of 0.1 to 70.0 Hz, and then decomposed

into independent components using the EEGLAB FastICA algorithm (Delorme & Makeig,

2004). Components associated with eye blinks were automatically identified and projected

out of the EEG recording. Epochs (from probe presentation to motor response in each trial)

were then extracted from the continuous recording. Epochs containing voltages above

+100 µV or below -100 µV were excluded. Data were down-sampled to 100Hz before

further analysis. More details of the experiment can be found in the original report of the

EEG data (van Vugt et al., 2013).
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visual (working) memory tasks (Van Vugt et al., 2010; Ranganath, 2006).
Because recording sites in ECoG data vary across subjects in both
numbers and locations, we need a method of subject alignment before
pooling data from different subjects. Multi-set canonical correlation
analysis (M-CCA) is used for this purpose to transform electrode activity
in each subject to a common neural representational space, where the
inter-subject correlations of the transformed data are maximized across
subjects. We have previously demonstrated the reliability of M-CCA in
aligning subjects in MEG data (Zhang et al., 2017a). In the current work,
we will apply M-CCA to align ECoG data from individual subjects; we will
also apply M-CCA to the EEG data, which allows us to compare the ob-
tained common dimensions and the HSMM-MVPA results across two
experiments in two different measurement modalities.

Methods

Experimental paradigm

Participants completed a Sternberg task: Following the appearance of
a fixation stimulus, participants viewed a short series of faces in sequence
(Fig. 1). After a retention interval, a probe item appeared and partici-
pants indicated with a key press whether the probe was a member of the
just presented set (target) or not (foil). After each trial, participants were
given accuracy feedback. Fig. 1 illustrates the sequence and timing of
trial events in the original report of the data used in this study (Van Vugt
et al., 2013). 16 synthetic faces, which varied along four perceptual di-
mensions, were used as stimuli (Wilson et al., 2002). A multidimensional
scaling (MDS) study was carried out on 23 participants to characterize
the psychological perceived similarities among these synthetic faces (see
Van Vugt et al., 2013; Kahana and Bennett, 1994, for details). Therefore,
we can characterize the overall similarity between a probe and the just
studied set as the average similarity between the probe and each face on
the set (i.e., set similarity). We define two levels of set similarity among
the foils (i.e., low-sim and high-sim), dividing foils into two groups with
equal numbers of trials.

In the datasets we will use, there are two versions of the visual
working memory task, adapted to the cognitive capacities of the
respective subject populations. One was administered to healthy un-
dergraduates while their EEG was recorded (Experiment 1), while the
other was adapted to epileptic patients from who ECoG was recorded
(Experiment 2). The two experiments differed in the number of faces
participants viewed in the studied set before a probe in each series (set
size). In Experiment 1, set size could be two, three or four; in Experiment
2, set size could be one, two or three (adapted to the capacity of the
patients). Sets were constructed so that items could not be repeated on
successive sets, and targets were equally likely to match a study item
from each serial position. Incorrect trials and trials with RTs shorter than
400 ms or longer than 4000 ms were removed from the analysis.

Participants

In Experiment 1, 29 adults (ages 20–32) were recruited from the
University of Pennsylvania student community. Informed consent was
obtained from all participants. Each participant completed two sessions,
with each session involving ten blocks of 30 trials. Participants with
mean accuracy lower than 60% or with mean RT longer than 4s were
excluded. All 29 participants were retained for further analysis.

Participants in Experiment 2 were 16 neurosurgical patients being
treated for medically refractory epilepsy and were monitored with arrays
of subdural and/or depth electrodes. Patients were recruited from Brig-
ham and Women's Hospital in Boston, the Hospital of the University of
Pennsylvania in Philadelphia, and Universit€ats Klinikum Freiburg in
Germany. Informed consent was obtained from all participants. Under
the same accuracy and RT criteria as Experiment 1, 12 out of 16 patients
were retained for further analysis. Each patient completed different
number of trials for the experiment (μ¼ 202, SEM¼ 41), depending on

their availability and willingness to participate in the experiments.

Scalp EEG recordings in experiment 1

Scalp EEG signals were recorded using a 129-channel EGI Inc. system,
with an AC-coupled, high-input-impedance amplifier (200MΩ, Net
Amps, Electrical Geodesics, Inc., Eugene, OR). The sampling rate was
500Hz, and data were recorded with a 0.1–250Hz bandpass filter. In-
dividual channels were adjusted until impedances were below 50 kΩ.
EEG signals were filtered with a bandpass of 0.1–70.0 Hz, and then
decomposed into independent components using the EEGLAB FastICA
algorithm (Delorme and Makeig, 2004). Components associated with eye
blinks were automatically identified and projected out of the EEG
recording. Epochs (from probe presentation to motor response in each
trial) were then extracted from the continuous recording. Epochs con-
taining voltages above þ100 μV or below #100 μV were excluded. Data
were down-sampled to 100Hz before further analysis. More details of the
experiment can be found in the original report of the EEG data (Van Vugt
et al., 2013).

ECoG and depth electrode recordings in experiment 2

The local field potential was amplified and digitally recorded at
sampling rates between 250 and 1024 Hz,2 and bandpass-filtered be-
tween 0.1 and 100 Hz. Data were subsequently notch-filtered with a
Butterworth filter with zero phase distortion to eliminate line noise. For
all participants, the locations of implanted electrodes were determined
by means of co-registered postoperative computed tomographies and
preoperative magnetic resonance imaging (MRI) or from postoperative
MRIs by an indirect stereotactic technique and converted into MNI
(Montreal Neurological Institute) coordinates. Localization of depth
electrode contacts in the medial temporal lobe (MTL) was done manually
through clinician's inspection of the postoperative MRIs, which includes
areas in hippocampus and parahippocampal gyrus. Analysis was done in
five pre-defined regions of interest (ROIs; see Table 1), and data were
down-sampled to 100Hz. More details of the experiment can be found in
the original reports of the ECoG data (Van Vugt et al., 2013; Van Vugt
et al., 2010).

Multi-set canonical correlation analysis (M-CCA)

While it is common practice to assume that the sensors for different
subjects in EEG recordings correspond, recording sites in ECoG data vary
from subject to subject in both number and locations since localization is
driven solely by clinical considerations. Therefore, in Experiment 2, a
method of subject alignment is required before pooling data from all
subjects together. Previously, we have found success in aligning subjects
with multi-set canonical correlations analysis (M-CCA) using only func-
tional information of the neural data in MEG datasets (Zhang et al.,
2017a). This method is used to find the optimal transformation for each
subject from electrode activity to a common neural representational
space, where the inter-subject correlations of the transformed data are

Table 1
Number of patients and electrodes in each of the five ROIs.

Numbers Electrodes Patients

Temporal Cortex 269 12
Medial Temporal Lobe 69 10
Frontal Cortex 161 9
Parietal Cortex 93 9
Occipital Cortex 22 7

2 The sampling rates vary greatly as a result of different protocols used in
three different hospitals where ECoG data were collected.

Q. Zhang et al. NeuroImage 174 (2018) 472–484
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3.2.4 ECoG and depth electrode recordings in Experiment 2

The local field potential was amplified and digitally recorded at sampling rates between

250 and 1024 Hz , and bandpass-filtered between 0.1 and 100 Hz. Data were subsequently

notch-filtered with a Butterworth filter with zero phase distortion to eliminate line noise.

For all participants, the locations of implanted electrodes were determined by means of

co-registered postoperative computed tomographies and preoperative magnetic resonance

imaging (MRI) or from postoperative MRIs by an indirect stereotactic technique and con-

verted into MNI (Montreal Neurological Institute) coordinates. Localization of depth elec-

trode contacts in the medial temporal lobe (MTL) was done manually through clinician’s

inspection of the postoperative MRIs, which includes areas in hippocampus and parahip-

pocampal gyrus. Analysis was done in five pre-defined regions of interest (ROIs; see Table

1), and data were down-sampled to 100Hz. More details of the experiment can be found

in the original reports of the ECoG data (van Vugt et al., 2013; van Vugt et al., 2010).

3.2.5 Alignment in the Common Representational Space

While it is common practice to assume that the sensors for different subjects in EEG

recordings correspond, recording sites in ECoG data vary from subject to subject in both

number and locations since localization is driven solely by clinical considerations. There-

fore, in Experiment 2, a method of subject alignment is required before pooling data from

all subjects together. Previously, we have found success in aligning subjects with multi-set

canonical correlations analysis (M-CCA) using only functional information of the neural

data in MEG datasets (Zhang et al., 2017). This method is used to find the optimal trans-
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formation for each subject from electrode activity to a common neural representational

space, where the inter-subject correlations of the transformed data are maximized across

subjects.

Application of M-CCA
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Figure 3.2: This figure illustrates application of M-CCA to 12 subjects. Sk is the averaged data
(across all trials for each condition) from sensor data for subject k, each with 120 time points; Xk

has 10 PCA components for subject k, each with 120 time points; Yk has 5 CCA components, each
with 120 time points; W1,W2, . . . ,W12 are PCA weights obtained for each subject independently;
and H1, H2, . . . ,H12 are CCA weights obtained jointly from all subjects by maximizing all of the
inter-subject correlations.

This section describes the pipeline to apply M-CCA to EEG and ECoG datasets. We

start by pre-processing the sensor data for each subject. To overcome noise in the sensor

data of individual trials, multiple trials are averaged to obtain a highly reliable representa-

tion of the change in sensor activity, which is similar to obtaining event-related potential

waveforms in the EEG literature (Picton et al., 2000). When trials have a fixed trial length,
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this averaging procedure is straightforward. However, trials are quite variable in their du-

ration, and temporal alignment is lost when a time sample is further away from stimulus

presentation or response emission. Samples locked to response emission in Experiment 2

also have poor temporal alignment, as there is potential delay in response timing given the

condition of neurosurgical patients. Therefore, we only use samples from the first 600 ms

(60 samples given the sampling rate of 100Hz) of a trial when applying M-CCA in Exper-

iment 2. This averaging process is repeated for the target and foil conditions separately,

as we potentially have different latent components for different conditions after averaging.

This gives rise to 120 samples (60 samples x 2 conditions) per subject as the input S of

M-CCA shown in Figure 3.2.

To reduce dimensionality and remove subject-specific noise, the next step after obtain-

ing Sk is to perform spatial PCA. M-CCA is then applied to the top 10 PCA components

from each subject instead of directly to the sensor data Sk. This results in 12 matrices

of dimension 120 × 60, which are the inputs Xk to the M-CCA analysis for subjects

k = 1, 2, . . . , 12. As is illustrated in Figure 3.2, Wk are the PCA weights for subject

k which are obtained independently for each subject. Hk are the CCA weights for sub-

ject k which are obtained jointly from all subjects resulting in common CCA dimensions

Yk = XkHk. Subject data do not align in either the sensor space or the PCA space, with Sk
and Xk processed for each subject independently. Rather, subject data align in the com-

mon representational space after M-CCA, with Yk maximally correlated across subjects.

Once Wk and Hs are obtained, we can go back to full-time-course data of individual

trials and transform them from representation in electrodes to representation in CCA di-

mensions. The top 5 CCA dimensions are retained for each subject. M-CCA was also

applied to the EEG dataset in Experiment 1 using the exact same procedure, allowing us

to better compare the two experiments.

Mathematical details of M-CCA

This section discusses the mathematical details of how Hk for subjects k = 1, 2, . . . , 18

are obtained, so that after the transformation Yk = XkHk, the new representation of data

Yk is more correlated across subjects than Xk is.

We first illustrate the simplest case where we look for correspondence over datasets
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from two subjects instead of many subjects. Let X1 ∈ RT×m1 and X2 ∈ RT×m2 be PCA

components from two subjects, with the same number of time points T , and PCA dimen-

sions m1 and m2, respectively (T = 1600, m1 = m2 = 50 in our case). Each PCA

component stored in X1 and X2 has mean 0. The objective in canonical correlation analy-

sis (CCA) is to find two vectors h1 ∈ Rm1×1 and h2 ∈ Rm2×1 such that after the projection

y1 = X1h1 and y2 = X2h2, y1 and y2 are maximally correlated. This is equivalent to:

arg max
h1,h2

ρ =
yT1 y2
‖y1‖‖y2‖

=
hT1R12h2√

hT1R11h1hT2R22h2
= hT1R12h2, where Rij = XT

i Xj.

There are N solutions, h(i) = (h1, h2) ∈ Rm1×1 × Rm2×1, obtained collectively in a

generalized eigenvalue problem with i = 1, . . . , N , subject to the constraints hT1R11h1 =

hT2R22h2 = 1 (Borga, 1998). This results in N dimensions (each referred as a CCA com-

ponent) in the common representational space with the transformed data Y1 = [y
(1)
1 , y

(2)
1 , . . . , y

(N)
1 ]

and Y2 = [y
(1)
2 , y

(2)
2 , . . . , y

(N)
2 ]. The value of N does not exceed the smaller of m1 and m2.

The resulting CCA components in the common representational space are ranked in a de-

creasing order of between-subject correlations. The earlier CCA components are the more

important ones and the later components can be removed. In other words, canonical cor-

relation analysis finds the shared low-dimensional representation of data from different

subjects.

M-CCA is an extension of CCA which considers more than 2 subjects. The objective

is similar to before, but now it needs to maximize the correlations between every pair

of subjects (i.e. inter-subject correlations) simultaneously. Let Xk ∈ RT×mk with k =

1, . . . ,M be datasets from M subjects (M > 2), each with mean 0 for all columns. The

objective in M-CCA is to findM vectors hk ∈ Rmk×1, where k = 1, . . . ,M , such that after

the projection yk = Xkhk, the canonical variates yk are maximally pairwise-correlated.

The objective function to maximize is formulated as:

arg max
h1,...,hM

ρ =
1

M(M − 1)

M∑
k,l=1,k 6=l

yTk yl

=
1

M(M − 1)

M∑
k,l=1,k 6=l

hTkRklhl,
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where Rkl = XT
k Xl, and 1

M

∑M
k=1 h

T
kRkkhk = 1. The solution is given by solving a

generalized eigenvalue problem (?). This formulation is not an exact maximization but

an approximation of the pairwise correlations, given the complexity of the problem when

M > 2. It is equivalent to the Maximum Variance (MAXVAR) generalization of CCA

proposed by Kettenring (1971). See the proof of this equivalence in (Vı́a, Santamarı́a, &

Pérez, 2005). Other ways of formulating the objective function in M-CCA yield similar

results (Li, Eichele, Calhoun, & Adali, 2011).

3.2.6 HSMM-MVPA

The HSMM-MVPA method explicitly models the variability of endogenous ERP com-

ponents that would otherwise be distorted or lost in the average waveforms. Previous

applications of the HSMM-MVPA method to EEG data were effective in recovering the

durations of the underlying processing stages (e.g., recollection, decision) and showed

predictable changes with experimental factors in an associative recognition task for word

pairs and a Sternberg task (Anderson et al., 2016; Zhang, Walsh, & Anderson, 2017). The

HSMM-MVPA model identifies brief, distinctive profiles of scalp activity (i.e., bumps)

with variable latencies in the single trial EEG data. A bump is modeled as a half-sine

multidimensional peak across the scalp that signifies a significant change in the informa-

tion processing, followed by a flat period where the signal appears as ongoing sinusoidal

noise around a mean of 0. HSMM-MVPA models the durations of the flats as gamma

distributions. The HSMM-MVPA method was applied to the first 5 CCA components,

separately over two experiments. The CCA components were z-scored for each trial. As

a result, the data for the analysis consisted of 5 orthogonal CCA components in each ex-

periment, sampled every 10 ms and with constant mean and variability across trials. Only

correct trials are considered in the analyses presented below. As described in more de-

tail in our previous application of the HSMM-MVPA method (Anderson et al., 2016), a

n-bump HSMM requires estimating n + 1 stage distributions to describe the durations of

the flats plus the n 5-sample bumps for each CCA component. A different magnitude is

estimated for each of the n bumps along each CCA dimension. A bump extends tempo-

rally across 5 samples (50 ms) and is multiplied by weights of 0.309, 0.809, 1.000, 0.809,

and 0.309 (i.e., a 10-Hz half sine wave). The best model fit of such HSMMs is given
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by maximizing the summed log likelihood of the bumps and flats across all trials. For

each trial, this log likelihood reflects the combination of two factors: the likelihood of the

EEG data given that the bumps are centered at each time point, and the likelihoods that

the bumps are centered at those time points given the gamma distributions that constrain

their locations. In other words, the HSMM must select bump locations within a trial to

maximize the correspondence between the observed and the estimated EEG/ECoG signal,

while selecting relatively consistent flat durations across trials to maximize their fit to the

gamma distributions.

3.2.7 Brain synchrony analysis

Quantification of phase synchrony between two neural signals was done by means of a

phase locking value (PLV). PLV measures the consistency in the phase difference at a

frequency of interest between two recording sites across multiple trials at the correspond-

ing time points (Lachaux, Rodriguez, Martinerie, & Varela, 1999). Phases for single-trial

neural signal at different brain regions were measured using Hilbert transform (Tass et al.,

1998; Lachaux et al., 1999). It is equivalent to an alternative method by using convolution

with a complex wavelet, as demonstrated in a direct comparison study (Le Van Quyen et

al., 2001). If the phase difference between signals from two recording sites is very similar

from trial to trial at the corresponding time point, then it is considered that at that particular

time point, the two brain sites are well synchronized in phase with PLV close to 1; if the

phase difference is very variable across trials, PLV is close to 0. Calculation of phase lock-

ing values requires establishing corresponding time points across multiple trials. Typically

one assumes that samples correspond when they are at the same delay from the stimulus.

This assumption is only approximately correct given the trial-to-trial variability of where

the same cognitive event occurs. Alternatively, one can assume that samples correspond

when they at the same offset from the same bump in the HSMM-MVPA analysis (Portoles,

Borst, & Van Vugt, 2018). In this way, phase locking value calculates how synchronized

two brain sites are around the cognitive event signified by a particular bump. In this ex-

periment, we are interested in the synchronization between the MTL and cortical regions

around when retrieval completes. Following the procedure outlined by Lachaux (1999),

we bandpass-filtered ECoG signal with finite impulse response (i.e., theta: 4-9 Hz, alpha:
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Figure 3.3: Accuracy (a-c) and RT (d-f) of EEG and ECoG data as a function of probe
type, set similarity and set size. SEMs are shown in the error bars with between-subjects
variance removed (Loftus and Masson, 1994).

9-15 Hz, and beta: 15-30 Hz) and extracted instantaneous phases using Hilbert transform.

Then we focused on the 100-ms time period right before and the 100-ms time period

right after the bump that signifies completion of retrieval, and compared the phase locking

values averaged within each period to examine changes upon transitioning of cognitive

processing stages. This procedure was done for each subject separately, and repeated for

every combination of electrode pairs, with one electrode from the MTL and one from the

cortical region.

3.3 Results

3.3.1 Behavioral analyses (Figure 3.3)

Probe type. Participants are faster and more accurate when the presented probe is a target

than a foil. The effect is significant in Experiment 1, as revealed by a repeated measures

ANOVA (accuracy: F(1,28) = 17.5, p < .001; RT: F(1,28) = 28.6, p < .001) but not in
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Figure 3.4: First 5 CCA components obtained over EEG data in Experiment 1 (top row)
and over ECoG data in Experiment 2 (bottom row). 60 samples correspond to 600 ms
of stimulus-locked data in target condition. Corresponding CCAs are highlighted in the
same color, with their absolute correlations noted in the legend. CCAs in EEG with large
negative correlations with CCAs in ECoG have been flipped, so that all signs are positive.

Experiment 2 (accuracy: F(1,11) = 0.04, p = .84; RT: F(1,11) = .08, p = .78.

Set similarity. There is an effect of set similarity on both RT and accuracy in Experi-

ment 1, as revealed by a repeated measures ANOVA (accuracy: F(1,28) = 34.8, p¡.001; RT:

F(1,28) = 4.83, p < .05). In Experiment 2, set size has an significant effect on accuracy

but not on RT (accuracy: F(1,11) = 43.7, p < .001; RT: F(1,11) = .078, p = .77).

Set size. There is a significant effect of set size on both RT and accuracy in Experiment

1, as revealed by a repeated measures ANOVA (accuracy: F(2,56) = 28.0, p¡.001; RT:

F(2,56) = 27.8, p < .001). In Experiment 2, set size had a significant effect on accuracy

but not on RT (accuracy: F(2,22) = 25.4, p < .001; RT: F(2,22) = .08, p = .92.

3.3.2 Consistency in CCA dimensions across two experiments

Before pooling data across different ECoG subjects, we first identified dimensions that

correspond across subjects by applying the M-CCA method. M-CCA serves to transform

the data for each subject from the number of recording sites into a reduced number (5 in

our case) of common dimensions (i.e., CCA components) shared across subjects. Two M-

CCAs were applied to the two experiments independently. We then compare the temporal

dynamics of the top 5 CCAs from the two experiments. Being recorded from the same
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task, the two experiments are expected to share similar CCAs.

Although the recording sites from individual subjects in ECoG data were quite varied,

the M-CCA obtained common dimensions of variation. Moreover, Figure 3.4 shows that

the top 5 CCA components are comparable to the top 5 CCAs obtained from the EEG

dataset – only the order is different. We matched each CCA component in ECoG with the

one in EEG that had the highest absolute correlation (value noted in the legend; matching

indicated with colors). There appears to be a one-to-one mapping from the 5 CCAs in

ECoG to the 5 CCAs in EEG, with their corresponding correlations of time courses ranging

from 0.4 to 0.87.

3.3.3 Identification of the stage durations and the bump profiles in
HSMM-MVPA

First, the number of stages in the HSMM-MVPA was determined. Two HSMM-MVPAs

were applied to the top 5 CCAs of the two experiments independently. HSMM-MVPA

identifies bumps in the ongoing EEG signal related to significant changes in information

processing. In this study, the number of stages in HSMM was decided on the basis of

between-experiment predictions. Model parameters of the stage distributions were ob-

tained from the 29 subjects in Experiment 1, and used to calculate the likelihood for each

of the 12 subjects in Experiment 2 while re-estimating the bump magnitudes; and vice

versa. We prefer a more parsimonious model with fewer bumps: we only select a model

with m+1 bumps over that with m bumps if there is improvement in model likelihood over

a significant proportion of the total number of subjects. A 3-bump model is significantly

(p < .0001; two-tailed sign test) better than a 2-bump model in 34 out of 41 subjects

(specifically, 24 of 29 in Exp 1 and 10 of 12 in Exp 2). A 4-bump model is significantly

(p = .01; two-tailed sign test) better than a 3-bump model in 29 out of 41 subjects (specifi-

cally, 19 of 29 in Exp 1 and 10 of 12 in Exp 2), but a 5-bump model is only better (p = 1.0;

two-tailed sign test) than a 4-bump model in 21 (17 in Exp 1 and 4 in Exp 2) out of 41

subjects. Therefore, the 4-bump model is the preferred solution.

Second, we compared consistency in HSMM-MVPA results across two experiments.

Two 4-bump HSMMs were applied to the top 5 CCAs of the two experiments indepen-

dently. We then compared bump magnitudes and stage durations of the resulting two
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Figure 3.5: Representation of the 4 bumps in the top two CCA dimensions in the ob-
tained HSMMs for both EEG and ECoG data (a). Durations of the five processing stages
identified using the HSMM-MVPA method for both EEG and ECoG data (b).

models. Despite that two HSMMs were applied to EEG and ECoG separately, there is

considerable consistency in bump magnitudes with the correlation of the 20 values (5

CCAs x 4 bumps/CCA) being 0.62. Figure 3.5a further demonstrates this consistency

by comparing representations of the 4 bumps in the top two CCA dimensions across two

experiments, which are highly similar.

Next, we interpreted the recovered stages and mapped them to corresponding cognitive

processes. Figure 3.5b shows the stage durations of the two HSMMs. Consistent across

the two experiments are three briefer periods at the beginning of the trial followed by

two longer periods towards the end. ECoG subjects, who have overall longer RTs, are

markedly slower in the last stage. Figure 3.6a shows the reconstructed scalp profiles of

the four bumps in Experiment 1 (EEG), which were created by averaging the observed

voltages at the time of the maximum-likelihood samples for each bump and during each

trial. The scalp profiles are plotted against the five stage durations.

Guided by the process model of Anderson et al. (2016), which decomposed the recog-

nition memory task into a encoding process, a retrieval process, a decision process, and

a motor response process, we can interpret the HSMM-MVPA stages as follows: In both

latency and topographical distribution, the first bump resembles the N1, which is typically

interpreted as an index of visual attention (Luck, Woodman, & Vogel, 2000). Therefore,
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Figure 6. (a). HSMM stages labeled with corresponding cognitive processes, interleaved by four 
reconstructed bumps for EEG data. Mean EEG electrode activity of the reconstructed bumps 
were obtained by averaging the observed voltages at the time of the maximum-likelihood 
samples for each bump and during each trial. Electrode voltages have been normalized for each 
trial. (b-d). Duration of Stage 4 (Retrieval stage) and Stage 5 (Decision stage) in EEG as a 
function of probe type, set similarity and set size. SEMs are shown in the error bars with 
between-subjects variance removed (Loftus et al., 1994). 
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Figure 3.6: (a). HSMM stages labeled with corresponding cognitive processes, inter-
leaved by four reconstructed bumps for EEG data. Mean EEG electrode activity of the
reconstructed bumps were obtained by averaging the observed voltages at the time of the
maximum-likelihood samples for each bump and during each trial. Electrode voltages
have been normalized for each trial. (b-d). Duration of Stage 4 (Retrieval stage) and Stage
5 (Decision stage) in EEG as a function of probe type, set similarity and set size. SEMs
are shown in the error bars with between-subjects variance removed (Loftus et al., 1994).
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we interpret the first stage is a pre-attention stage before actual encoding takes place. It

is then followed by two brief encoding stages associated with the second and the third

bumps that show a posterior positivity. We believe these two bumps mark the encoding of

the probe face similar to a pair of encoding bumps identified in a word recognition task

(Anderson et al., 2016). Given its stage duration (i.e. around 200 ms) and the process

model, Stage 4 is identified as the Retrieval stage. This is consistent with the frontal-

central distribution of the fourth bump. Of the 5 stages, the last stage is not likely to be

a motor response stage given its long duration of around 600 ms. It is more likely that

this stage represents the combination of the decision and motor response stage and that we

failed to detect a bump separating the decision and motor stages. The interpretations of

the five stages as labeled in Figure 3.6a will be further verified in the following sections by

examining the effect of different experimental factors (probe type/set similarity/set size)

on the durations and brain activity associated with each stage.

3.3.4 Stage durations by condition with EEG

RTs varied by condition for EEG subjects in Experiment 1. These differences must show

up in the durations of some of the stages. To determine which stages were affected by the

experimental manipulations and examine if these effects are consistent with our interpre-

tation of the stages, we fit HSMMs with different stage durations to each condition. That

is, we estimated parameters for the gamma distributions of each stage separately for the

different conditions while constraining the bump magnitudes to be the same. The HSMM

methods return the probabilities of each bump occurring at each time point on a trial-by-

trial basis. These probabilities can be used to calculate the most likely location of each

bump in a trial. Mean stage durations for a particular subject can then be calculated as

the average time between bumps across all trials within that subject. Figure 3.6b-d shows

the resulting mean time durations across all EEG subjects for Stage 4 and Stage 5. We

submitted them to a repeated-measures ANOVA for each condition (probe type/set simi-

larity/set size) and for each stage. The stage durations do not differ between conditions for

the first three stages. Consistent to the impression conveyed in the figure, there is an effect

of probe type in Stage 4 - the Retrieval stage (F(1,28) = 29.210; p < .001) and in Stage 5

- the Decision stage (F(1,28) = 14.013; p = 0.001). There is also effect of set similarity in
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Figure 7. Time periods (over sliding window of 100 ms) over stage-locked average activity (top 
row) and stimulus/response-locked average activity (bottom row) where there are significant 
differences for different probe types, set similarity and set sizes in ECoG data, adjusted for 
multiple comparisons with Bonferroni correction. The dotted lines mark average positions of 
four bumps in the stage-locked activity (top row), and separation between stimulus-locked 
activity and response-locked activity (bottom row).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Time periods (over sliding window of 100 ms) over stage-locked average
activity (top row) and stimulus/response-locked average activity (bottom row) where there
are significant differences for different probe types, set similarity and set sizes in ECoG
data, adjusted for multiple comparisons with Bonferroni correction. The dotted lines mark
average positions of four bumps in the stage-locked activity (top row), and separation
between stimulus-locked activity and response-locked activity (bottom row).

the Retrieval stage (F(1,28) = 6.227; p = .019) and the Decision stage (F(1,28) = 14.943;

p = 0.001). There is effect of set size in the Decision stage (F(2,56) = 29.923; p < 0.001)

but not in the Retrieval stage (F(2,56) = 1.260; p = .29). To summarize, the Retrieval stage

is shorter for targets than for foils, consistent with the idea that it is easier to retrieve the

memory set given a member of that set. In addition, the Retrieval stage is faster when the

similarity between foil and memorized items is high. The duration of the Decision stage

is affected by all three experimental factors: probe type, set similarity and set size.

3.3.5 Stage-locked brain activity by condition with ECoG

We exploit the spatial resolution of the ECoG data to examine where the differences in

brain activity across different conditions occur. In event-related potential (ERP) analyses,

the neural signal is anchored to observable events such as the presentation of a stimu-

lus. The bumps obtained from the HSMM signal latent points of change in information

processing. These events can be used, along with observable events, to align the neural
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data. We anchored ECoG data from each trial according to stimulus onset, response, and

the maximum likelihood locations of each of the four bumps during that trial. We then

expanded or contracted the resulting five intervals in every trial to have durations equal

to mean durations specified by HSMM-MVPA. In this way, the stimulus, the locations

of the four bumps, and the response are aligned across all trials. Over such stage-locked

data, we can examine where and when different conditions lead to different patterns of

brain activity. Figure 3.7 (top row) highlights time periods and brain regions where there

are significant differences of stage-locked brain activity between any two conditions us-

ing paired t-tests over a sliding window of 100 ms (dashed line represents average bump

positions). Multiple comparisons across regions and time windows were corrected with

the Bonferroni correction. The bottom row in Figure 3.7 is a comparison using traditional

ERP analysis with 600-ms stimulus-locked and 600-ms response-locked data (separated

by the dashed line).

In the stage-locked brain activity, we observe more positivity for targets than foils in

the temporal cortex before the Retrieval stage completes. The temporal cortex has previ-

ously been associated with face familiarity (Gainotti, 2007) and is known to be instrumen-

tal in determining stimulus familiarity (e.g., Borst, Ghuman, & Anderson, 2016; Diana,

Yonelinas, & Ranganath, 2007; Henson, Shallice, & Dolan, 2005; Gonsalves, Kahn, Cur-

ran, Norman, & Wagner, 2005; Rugg & Yonelinas, 2003). During the Decision stage,

when the items are in active maintenance, targets are associated with more positive de-

flections than foils in the frontal cortex, which is known to be involved in post-retrieval

monitoring and maintenance (e.g., Achim & Lepage, 2005; Borst et al., 2016; Mitchell,

Johnson, Raye, & Greene, 2004; Rugg et al., 2003). Similar patterns in the frontal cortex

also show up in different levels of set similarity among foils, where a higher set similarity

corresponds to more positive ECoG amplitudes. During the same period in the Decision

stage, there is an ordered effect of set size in MTL, with set size 1 being the most positive.

This observation extends what we know about the MTL in maintaining items in working

memory. Increasing working memory load (set size) was associated with elevated nega-

tivity of evoked response potentials of hippocampus during the delay period (Axmacher

et al., 2007). In our study, this pattern also extends to the period after memory retrieval

(Bump 4), when the retrieved face(s) need to be actively maintained during the Decision
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stage.

Comparison with the traditional ERP analysis demonstrates the power of the HSMM-

MVPA method in modeling cognitive events on a trial-by-trial basis. In the ERP analysis,

we observe more positivity for targets than foils in the temporal cortex before the Retrieval

stage completes, similar to the stage-locked activity with the HSMM-MVPA method. Such

consistency is attributed to low trial-to-trial variability when data are closely time-locked

to the stimulus. However, when moving further away from the stimulus, in contrast to the

stage-locked brain activity, there are no significant effects across conditions in the frontal

cortex. There is a significant effect of set size across conditions in the MTL in the Decision

stage, but this difference is not ordered by the set size.

3.3.6 Phase synchrony between medial temporal lobe and cortical ar-
eas

ECoG data provides the unique opportunity to study the properties of oscillations in sub-

cortical regions such as the MTL. In this section, we examine the synchrony between MTL

and different cortical regions during the retrieval process.

Brain synchrony measures the relation between the temporal structures of the brain

signals, and is considered as an important mechanism for integrating activity from across

distributed brain areas into coherent perception and behavior (Varela, Lachaux, Rodriguez,

& Martinerie, 2001; Fries, 2009; Fell & Axmacher, 2011). Simultaneous recordings in the

hippocampus and prefrontal regions in animal studies have revealed synchronized theta

oscillations during working memory tasks (Siapas, Lubenov, & Wilson, 2005). To ex-

amine whether those also occur in humans around the memory retrieval stage, we focus

on phase synchrony between MTL and different cortical areas in the current experiment.

Specifically, we examine if there is any transient change in phase synchrony upon comple-

tion of memory retrieval (i.e. when transitioning from the Retrieval stage to the Decision

stage; cf. Portoles et al., 2018).

We measured synchrony with phase locking values (Lachaux et al, 1999). Figure 3.8a

plots the phase locking values between MTL and 4 cortical regions in different frequency

bands. We compared synchronization during two distinct periods (each of a 100 ms du-

ration) across all trials: 1) samples right before the completion of the Retrieval stage; 2)
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samples right after completion of the Retrieval stage (i.e. the onset of the Decision stage).

Synchrony for a particular cortical electrode was averaged across phase locking values

calculated with each of the MTL electrodes of the same subject. Electrodes in a cortical

region from different subjects were then pooled together to obtain the standard error of the

means shown in the figure. We were able to include 7 out of 12 subjects with more than 2

MTL electrodes in this analysis. Comparing the period right before and right after when

the retrieval completes, there is increased theta phase synchrony between MTL and frontal

recording sites (34 out of 47 electrodes; p = .003, binomial test). This increase is specific

to theta band, and is not significant to alpha band (19 out of 47 electrodes; p = .24 => .05,

binomial test) or beta band (22 out of 47 electrodes; p = .77 > .05, binomial test). We

also observed increased phase synchrony between MTL and recording sites in the tempo-

ral cortex in the theta band (125 out of 190 electrodes; p < .0001, binomial test), but not

in alpha band (105 out of 190 electrodes; p = .17 > .05, binomial test) or beta band (101

out of 190 electrodes; p = .42 > .05, binomial test). There is no significant theta coupling

between MTL with either the occipital cortex (22 out of 55 electrodes; p = .18 > .05,

binomial test) or the parietal cortex (10 out of 18 electrodes; p = .81 > .05, binomial

test).

To further test if the theta coupling with MTL is significant on the level of individual

electrodes, we built surrogate data by randomly shuffling the two time periods examined

(i.e. before and after retrieval completes), and calculated the resulting phase locking val-

ues. This procedure is repeated 1000 iterations for between each pair of electrodes ex-

amined, and its corresponding increase in theta coupling with MTL is only considered

significant if the amount of increase is larger than 95% of the times in the surrogate data.

In total, there are 40 out of 190 electrodes in the temporal cortex that demonstrate sig-

nificant increase in theta coupling with MTL, and 16 out of 47 electrodes in the frontal

cortex. Figure 3.8b shows that, despite that the 16 frontal electrodes are from 5 out of

the 7 subjects examined, there is considerable across-subject consistency in their locations

(after being mapped to a common brain).
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Figure 8. (a). Phase synchrony in theta, alpha and beta bands between MTL and cortical regions 
in 100-ms periods before and after retrieval completes. Synchrony for a particular cortical 
electrode is averaged across phase locking values calculated with each of the MTL electrodes of 
the same subject. Cortical electrodes across 7 subjects are then pooled together to obtain the 
standard error of the means. (b). Frontal electrodes with significant increase in phase-locking 
values with MLT in the theta band during the 100-ms after retrieval compared with before (red 
marker). The remaining non-significant frontal electrodes are in blue. 
 
 
 
 
 
 
 
 
 
 
  

Before After

A
ve

ra
ge

 P
LV

0.08

0.1

0.12

0.14

0.16

0.18

Temporal
Theta
Alpha
Beta

Before After

A
ve

ra
ge

 P
LV

0.06

0.08

0.1

0.12

0.14
Frontal

Before After

A
ve

ra
ge

 P
LV

0.06

0.08

0.1

0.12

0.14

Occipital

Before After

A
ve

ra
ge

 P
LV

0.06

0.08

0.1

0.12

0.14

Parietal

Figure 3.8: (a). Phase synchrony in theta, alpha and beta bands between MTL and cortical
regions in 100-ms periods before and after retrieval completes. Synchrony for a partic-
ular cortical electrode is averaged across phase locking values calculated with each of
the MTL electrodes of the same subject. Cortical electrodes across 7 subjects are then
pooled together to obtain the standard error of the means. (b). Frontal electrodes with
significant increase in phase-locking values with MLT in the theta band during the 100-ms
after retrieval compared with before (red marker). The remaining non-significant frontal
electrodes are in blue.
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completes), and calculated the resulting phase locking values. This pro-
cedure is repeated 1000 iterations for between each pair of electrodes
examined, and its corresponding increase in theta coupling with MTL is
only considered significant if the amount of increase is larger than 95% of
the times in the surrogate data. In total, there are 40 out of 190 electrodes
in the temporal cortex that demonstrate significant increase in theta
coupling with MTL, and 16 out of 47 electrodes in the frontal cortex. Fig
8b shows that, despite that the 16 frontal electrodes are from 5 out of the
7 subjects examined, there is considerable across-subject consistency in
their locations (after being mapped to a common brain).

General discussion

In this study, we provided a detailed mapping of the time course and
neural correlates of the retrieval process underlying visual working
memory. Detailed mapping of the time course was achieved by capturing
the trial-to-trial variability of different cognitive processes using the
HSMM-MVPA method, instead of examining averaged neural activity
across trials locked to observable events in traditional ERP analysis.
HSMM-MVPA decomposed each trial into a sequence of latent stages. By
examining how the duration of the HSMM-MVPA stages differed between
task conditions, combined with our knowledge of a process model, we
found evidence for the existence of the following cognitive stages in the
visual working memory task: After a brief period for the visual signal to
reach the brain (i.e. pre-attention), participants first encode the probe
face (i.e. encoding), then retrieve faces from the memorized set (i.e.
retrieval), and lastly, compare the retrieved set of faces with the probe to
make a decision (i.e. decision). Once a detailed temporal mapping of the
task was achieved with HSMM-MVPA, fine spatial resolution in ECoG
was used to examine the neural correlates associated with each identified
cognitive stage. Main effects centered around the transition from the
Retrieval stage to the Decision stage (after completion of retrieval). These
effects are summarized in Table 2 and will be discussed in the following
sections.

Isolation of a retrieval process prior to the decision-making

It has been widely assumed that retention of information in the
working memory relies on maintenance of an active memory trace
(Fuster and Alexander, 1971). However, the maintained information can
be fragile if attention is temporally directed away or if the information is
not amenable to rehearsal (Jeneson and Squire, 2011). In that case,
memory can be preserved across a short delay without active mainte-
nance (Lewis-Peacock et al., 2012), and retrieved later.

In this study, we were able to identify such a retrieval process, with
EEG and ECoG data yielding converging results on a Retrieval stage
isolated from the Decision stage. In the Retrieval stage, we observed
more positivity for targets than foils in the temporal cortex, reflecting a
fast and automatic process that does not require item details (Clark and
Gronlund, 1996; Raaijmakers and Shiffrin, 1992). Once retrieval is
complete, in the decision stage, we observed evidence of active main-
tenance of the just-retrieved items, with an effect of set size in MTL
similar to that in Axmacher et al. (2007), and an effect of probe type in
the frontal cortex in supporting post-retrieval monitoring (e.g., Achim
and Lepage, 2005; Borst et al., 2016; Mitchell et al., 2004; Rugg and
Yonelinas, 2003). This provides support for cue-based retrieval theories
of working memory.

Duration of the retrieval stage and the decision stage

How the duration of a particular cognitive stage changes across
different experimental conditions provides important information on the
nature of the underlying process. Typically, the effect of an experiment
factor on a particular stage is reflected in the overall reaction times (RTs).
However, given that RT only provides a cumulative measure of all the
cognitive stages involved in a particular trial, there is not enough

information in RT alone to isolate the effect of a particular experimental
factor when there is more than one cognitive stage affected. In this study,
we applied the HSMM-MVPA method to obtain durations of individual
cognitive stages, and identified effects in stage durations when both the
Retrieval stage and the Decision stage vary across conditions.

In particular, we observed from the EEG data that the duration of the
Retrieval stage depends on both probe type and set similarity. When the
probe is one of the previously memorized faces (i.e., targets), retrieval is
faster than when the probe is a foil because it is easier to reactivate the
memory set given a member of that set. In addition, retrieval speed also
depends on the set similarity. According to the ACT-R theory, greater
similarity between foil and memorized item will result in greater acti-
vation for the retrieved item, and consequently shorter retrieval time
(Anderson et al., 1998). The Retrieval stage does not depend on set size,
which is comparable to the Sternberg task analyzed in Anderson et al.
(2016).

The duration of the Decision stage is affected by all three factors:
probe type, set similarity and set size. There are two possible mecha-
nisms underlying the Decision stage: One possibility is that there is a
serial comparison procedure where the probe is compared with each of
the items in the retrieved set to find a match. The other possibility is
that there is an evidence-accumulation procedure where a decision is
driven by the strength of the overall similarity between the probe and
the retrieved set of items—basically the summed similarity discussed in
Van Vugt et al. (2013), van Vugt et al. (2009), Kahana and Sekuler
(2002) and Examplar-Based Random Walk models in Nosofsky et al.
(2011).

A serial self-terminating decision process would be consistent with
the data: Targets will yield a faster Decision stage due to earlier termi-
nation once a match is found (Fig. 6b). In foils, higher set similarity slows
down each comparison thus giving rise to a longer total Decision time
(Fig. 6c). Larger set size corresponds to a larger number of comparisons,
and therefore a longer Decision stage (Fig. 6d). A 2 (probe type) x 3 (set
size) repeated-measures ANOVA shows significant effect of interaction
between probe type and set size (F(2,56)¼ 4.68, p¼ 0.01). This is also
consistent with the assumption that the serial comparison is self-termi-
nating because the difference between targets and foils increases with set
size.

If the Decision stage involves evidence accumulation, that would also
be consistent with the data: Low similarity will lead to faster responses in
correct foils (Nosofsky et al., 2011; Ratcliff, 1978; Bogacz et al., 2006).
The effect of set size on the duration of the Decision stage can also be
explained by set similarity, as a smaller set size corresponds to higher set
similarity which leads to faster response in correct targets. In addition,
smaller set size also increases average memory strength with briefer time
lags, which gives rise to faster decision time under the evidence accu-
mulation account (Nosofsky et al., 2011). Under either mechanism, the
observation that increased set similarity speeds up the Retrieval stage
while slowing down the Decision stage is consistent with an earlier study

Table 2
A summary of identified effects on the duration and the brain activity across
different processing stages.

Retrieval Stage Decision Stage

Duration i Probe type
ii Set similarity ↓

i Probe type
ii Set size ↑
iii Set similarity ↑

Temporal Cortex i Probe type i Synchrony with MTL
MTL i Set size ↓

ii Synchrony with frontal cortex
iii Synchrony with temporal cortex

Frontal Cortex i Probe type
ii Set similarity ↑
iii Synchrony with MTL

↑ indicates more positivity or longer duration; ↓ indicates the opposite.

Q. Zhang et al. NeuroImage 174 (2018) 472–484

481

3.4 Discussions

In this study, we provided a detailed mapping of the time course and neural correlates of the

retrieval process underlying visual working memory. Detailed mapping of the time course

was achieved by capturing the trial-to-trial variability of different cognitive processes using

the HSMM-MVPA method, instead of examining averaged neural activity across trials

locked to observable events in traditional ERP analysis. HSMM-MVPA decomposed each

trial into a sequence of latent stages. By examining how the duration of the HSMM-

MVPA stages differed between task conditions, combined with our knowledge of a process

model, we found evidence for the existence of the following cognitive stages in the visual

working memory task: After a brief period for the visual signal to reach the brain (i.e.

pre-attention), participants first encode the probe face (i.e. encoding), then retrieve faces

from the memorized set (i.e. retrieval), and lastly, compare the retrieved set of faces with

the probe to make a decision (i.e. decision). Once a detailed temporal mapping of the task

was achieved with HSMM-MVPA, fine spatial resolution in ECoG was used to examine

the neural correlates associated with each identified cognitive stage. Main effects centered

around the transition from the Retrieval stage to the Decision stage (after completion of
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retrieval). These effects are summarized in Table 2 and will be discussed in the following

sections.

3.4.1 Isolation of a retrieval process prior to the decision-making

It has been widely assumed that retention of information in the working memory relies

on maintenance of an active memory trace (Fuster and Alexander, 1971). However, the

maintained information can be fragile if attention is temporally directed away or if the

information is not amenable to rehearsal (Jeneson & Squire, 2011). In that case, memory

can be preserved across a short delay without active maintenance (Lewis-Peacock et al.,

2012), and retrieved later.

In this study, we were able to identify such a retrieval process, with EEG and ECoG

data yielding converging results on a Retrieval stage isolated from the Decision stage.

In the Retrieval stage, we observed more positivity for targets than foils in the temporal

cortex, reflecting a fast and automatic process that does not require item details (Clark

& Gronlund, 1996; Raaijmakers & Shiffrin, 1992). Once retrieval is complete, in the

decision stage, we observed evidence of active maintenance of the just-retrieved items,

with an effect of set size in MTL similar to that in Axmacher et al. (2007), and an effect

of probe type in the frontal cortex in supporting post-retrieval monitoring (e.g., Achim &

Lepage, 2005; Borst et al., 2016; Mitchell, Johnson, Raye, & Greene, 2004; Rugg et al.,

2003). This provides support for cue-based retrieval theories of working memory.

3.4.2 Duration of the Retrieval stage and the Decision stage

How the duration of a particular cognitive stage changes across different experimental

conditions provides important information on the nature of the underlying process. Typ-

ically, the effect of an experiment factor on a particular stage is reflected in the overall

reaction times (RTs). However, given that RT only provides a cumulative measure of all

the cognitive stages involved in a particular trial, there is not enough information in RT

alone to isolate the effect of a particular experimental factor when there is more than one

cognitive stage affected. In this study, we applied the HSMM-MVPA method to obtain du-

rations of individual cognitive stages, and identified effects in stage durations when both
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the Retrieval stage and the Decision stage vary across conditions.

In particular, we observed from the EEG data that the duration of the Retrieval stage

depends on both probe type and set similarity. When the probe is one of the previously

memorized faces (i.e., targets), retrieval is faster than when the probe is a foil because

it is easier to reactivate the memory set given a member of that set. In addition, retrieval

speed also depends on the set similarity. According to the ACT-R theory, greater similarity

between foil and memorized item will result in greater activation for the retrieved item, and

consequently shorter retrieval time (Anderson, 2007). The Retrieval stage does not depend

on set size, which is comparable to the Sternberg task analyzed in Anderson et al. (2016).

The duration of the Decision stage is affected by all three factors: probe type, set

similarity and set size. There are two possible mechanisms underlying the Decision stage:

One possibility is that there is a serial comparison procedure where the probe is compared

with each of the items in the retrieved set to find a match. The other possibility is that there

is an evidence-accumulation procedure where a decision is driven by the strength of the

overall similarity between the probe and the retrieved set of items – basically the summed

similarity discussed in van Vugt et al. (2013), van Vugt et al. (2009), Kahana and Sekuler

(2002) and Examplar-Based Random Walk models in Nosofsky et al. (2011).

A serial self-terminating decision process would be consistent with the data: Targets

will yield a faster Decision stage due to earlier termination once a match is found (Figure

3.6b). In foils, higher set similarity slows down each comparison thus giving rise to a

longer total Decision time (Figure 3.6c). Larger set size corresponds to a larger number

of comparisons, and therefore a longer Decision stage (Figure 3.6d). A 2 (probe type) x 3

(set size) repeated-measures ANOVA shows significant effect of interaction between probe

type and set size (F(2,56) = 4.68, p = 0.01). This is also consistent with the assumption

that the serial comparison is self-terminating because the difference between targets and

foils increases with set size.

If the Decision stage involves evidence accumulation, that would also be consistent

with the data: Low similarity will lead to faster responses in correct foils (Nosofsky et

al., 2011; Ratcliff, 1978; Bogacz, Brown, Moehlis, Holmes, &Cohen, 2006). The effect

of set size on the duration of the Decision stage can also be explained by set similarity,

as a smaller set size corresponds to higher set similarity which leads to faster response
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in correct targets. In addition, smaller set size also increases average memory strength

with briefer time lags, which gives rise to faster decision time under the evidence accu-

mulation account (Nosofsky et al., 2011). Under either mechanism, the observation that

increased set similarity speeds up the Retrieval stage while slowing down the Decision

stage is consistent with an earlier study with an associative recognition task (Zhang et al.,

2017).

3.4.3 Role of frontal cortex and MTL during the Decision stage

fMRI studies have identified that the MTL and prefrontal cortex support the general re-

trieval process of working memory tasks (Bledowski et al., 2006; ztekin, McElree, Staresina,

& Davachi, 2009). However, given the low temporal resolution of fMRI, isolation of de-

tailed processing stages such as the retrieval stage and the decision stage is difficult (but

see Borst & Anderson, 2013, 2017, for an application of model-based fMRI analysis that

attempts to tease apart working memory updating and retrieval). In contrast, the high tem-

poral resolution of applying the HSMM-MVPA method to EEG and ECoG data enables us

to divide the working memory task into a sequence of stages. In particular, retrieval of the

studied face set marks the transition to a period of active maintenance of items, where in-

formation in the retrieved set is compared with the probe before a decision is made (Figure

3.6a). The active maintenance is supported by MTL, where we observed more negativity

when the set size is large. Negativity in hippocampal activity has been associated with

increasing workload (i.e., set size) in visual working memory task during the delay period,

when there is active maintenance of items right after they are encoded (Axmacher, 2007).

With the finer temporal resolution of HSMM-MVPA, the current experiment extended this

result to the decision period of a working memory task after the items are just retrieved.

During the Decision stage, we also observed more positive activity in frontal cortex for

targets than foils (comparable to the process described in Borst et al., 2016). In working

memory tasks, there is debate concerning whether the involvement of prefrontal cortex

contributes to the maintenance of items or the selection of an item from memory to guide

a response (Curtis & D’Esposito, 2003; Rowe, 2000). Our experiment supports the latter,

with an effect for target/foil but not for different set sizes in frontal cortex. This inter-

pretation is consistent with the process during the Decision stage, where an item needs to
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be selected to match with the probe. When there is a match (i.e., targets), a more posi-

tive response is triggered in the frontal cortex compared with that of non-matches or foils.

An alternative mechanism for the Decision stage could be that instead of selecting and

comparing each item in the retrieved face set against the probe, the frontal cortex guides

the decision in an evidence-accumulation procedure driven by the similarity between the

probe and the entire retrieved face set (i.e., set similarity; Nosofsky et al., 2011). This lat-

ter account is supported by more positivity in frontal cortex for high-similarity trials than

for low-similarity trials, in addition to more positivity for targets than for foils.

We also found evidence that the frontal cortex guides the decision by means of theta

coupling with the MTL once retrieval has been completed. Previously, it has been sug-

gested that 4–9Hz theta power in the hippocampus is associated with encoding and re-

trieval of episodic memories (Lega, Jacobs, & Kahana, 2011). Functional coupling be-

tween prefrontal cortex and medial temporal cortex is considered one of the key con-

nections in the neural circuitry underlying working memory tasks, with theta oscillations

proposed to mediate this interaction (Mitchell, McNaughton, Flanagan, & Kirk, 2008; An-

derson, Rajagovindan, Ghacibeh, Meador, & Ding, 2009). This is supported by multiple

animal studies that demonstrate phase-locking in the theta band between prefrontal cor-

tex and hippocampus (Siapas et al., 2005; Hyman, 2010; for a review see Colgin, 2011).

In human studies, PFC-hippocampal coupling, both structural (Cohen, 2011) and func-

tional (Campo at al., 2011), has been shown to correlate with individual differences in

task performance. However, PFC-hippocampal communication through theta oscillations

in human working memory tasks has not been directly observed, though it is shown to be

important in free recall and associative recognition memory tasks (Anderson et al., 2009).

The observation of frontal-MTL theta coupling generalizes the role of MTL theta from

retrieval in episodic memory to retrieval of previous items in working memory. This is

consistent with recent studies that MTL is not uniquely involved in long-term memory,

but also critical to short-term memory even when the retention period is as short as 2-10s

(Holdstock, Shaw, & Aggleton, 1995; Owen, Sahakian, Semple, Polkey, & Robbins, 1995;

Holdstock, Gutnikov, Gaffan, &Mayes, 2000; Aggleton, Shaw, & Gaffan, 1992; Hannula,

Tranel, & Cohen, 2006, van Vugt et al., 2010).

There are several limitations to our research. First, the analysis of cortical-subcortical

66



interaction was limited by the number and locations of recording sites in each ECoG sub-

ject. Therefore, only pairs of electrodes were examined at one time and pooled across

all subjects in the end. Second, the HSMM-MVPA method successfully isolated different

cognitive processing stages, but it did not provide enough evidence to distinguish whether

the decision stage undergoes a serial comparison process or an evidence accumulation pro-

cess. It would take more experimental studies with targeted manipulations to make this

distinction in the future.

3.5 Conclusion

In this study, we extended a previous account of the visual working memory task using a

summed-similarity model (van Vugt et al., 2013) to one that comprises multiple sequential

cognitive stages. Combining the temporal resolution of the EEG data, the spatial resolu-

tion of the ECoG data, and the application of the HSMM-MVPA method, we were able

to identify the time duration and brain activity associated with these stages. In contrast to

traditional ERP analyses which only models the effects that are closely locked to the begin-

ning and the end of a trial, the HSMM-MVPA method applied to both experiments isolated

a Retrieval stage where memorized items were re-activated, followed by a Decision stage.

In contrast to examining only the overall RT, the HSMM-MVPA method applied to EEG

data revealed how durations of the Retrieval stage and the Decision stage vary across dif-

ferent experimental conditions. Combined with fine spatial resolution of ECoG data, it

was identified that frontal cortex and MTL play a key role in response selection and item

maintenance respectively. The effect of set size observed in MTL generalizes its role in

actively maintaining items from the delay period in working memory tasks to the decision

period once items are re-activated. The theta coupling between frontal cortex and the MTL

generalizes previous findings that were considered unique to long-term memory tasks to

working memory tasks. In addition, they provide support for a cue-based retrieval account

of visual working memory.
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Chapter 4

A rational account of human semantic
search

A central paradigm to study human memory search is the semantic fluency task, where par-

ticipants are asked to retrieve as many items as possible from a category in a fixed amount

of time. Observed responses tend to be clustered semantically. To understand when the

mind decides to stop exploiting the current patch and to start exploring the next, a strategic

memory search process using the marginal value theorem has been proposed, similar to

optimal foraging in a spatial environment. Later, however, it has been shown that behavior

patterns consistent with the marginal value theorem can also emerge from a random walk

over a semantic network, without any strategic switch. The fact that a strategic switching

mechanism and a non-strategic switching mechanism give rise to similar behavioral pat-

terns poses challenges in understanding the exact cognitive mechanism used by humans.

In the current work, in addition to comparing existing mechanisms over observed human

data, we propose a rational analysis of the problem by examining what would be an op-

timal patch-switching policy under the framework of reinforcement learning. Built upon

the random walk model and features of the local semantic patch, the resulted switching

mechanism under reinforcement learning performs better than the marginal value theorem

and gives a better fit to single-trial human behavioral data. Our results provide theoreti-

cal justification of switching mechanisms used in human memory research, and shed light

on how a rational account of the task can generate alternative hypotheses about human
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cognitive mechanism in the same task.

4.1 Introduction

How do we recall items on a shopping list? Performing a daily task like this requires

searching through our memories. There is rich dynamics in during the memory search

when we move from recalling one item to the next. Uncovering the underlying cognitive

mechanism is important for better understanding of how knowledge and information are

represented in our memory, and the processes that we use to efficiently navigate through

them.

A central paradigm to study human memory search is the semantic fluency task, where

participants are asked to retrieve as many items as possible from a category (e.g. animals)

in a fixed time period. It is observed that responses tend to be clustered semantically (e.g.

“cat”’ follows “dog”) (Hills et al., 2012). Evidence over human behavioral data shows

that the marginal value theorem accounts for how our minds decide to switch from one

cluster/patch to the next (Hills et al., 2012). Under this mechanism, people make strate-

gic decisions to search the semantic space, similar to how animals optimally forage in a

patchy spatial environment: one forages locally in one food patch, then switches to a new

patch when the resources in the current patch is depleted. It was observed that participants

leave a patch in memory search when current rate of finding items is near the average rate

for the entire task (Hills et al., 2012), consistent with what the marginal value theorem

predicts in optimal foraging (Charnov, 1976). Recent work, however, demonstrated that

similar behavioral patterns, that are consistent with the marginal value theorem, can also

emerge from a random walk simulation on a semantic network generated by human word-

association experiments (Abbott et al., 2015). The random walk model moves from one

patch to another stochastically, without basing its decision on the information about the

current patch. The fact that a strategic switching mechanism and a non-strategic switch-

ing mechanism predict similar temporal profiles around the switches poses challenges in

understanding the exact cognition mechanism used by humans.

The complication in the literature motivates us to further examine if humans use the

marginal value theorem during the memory search. To provide more evidence in the com-

69



parison across alternative mechanisms, in addition to examining human data, we will also

consider the abstract computational problem posed by searching the memory and explore

what would be an optimal mechanism in this task (i.e. which mechanism can generate the

most items in a semantic fluency task). This approach is based on the principle of rational-

ity, which explain human behavior as an optimal solution to the computational problems

posed by our environment (J. Anderson, 1990; J. R. Anderson & Milson, 1989); see also

bounded rationality in (Simon, 1978), resource-rational analysis in (Griffiths, Lieder, &

Goodman, 2015) and ecological rationality in (Todd & Gigerenzer, 2007)). Examining

which cognitive mechanism best solves the computational problem gives additional justi-

fication on why it should be used by humans.

The principle of rationality can be applied not only to compare existing cognitive

mechanisms, i.e. the marginal value theorem versus the non-strategic random walk, but

also to propose new hypothesis of alternative mechanisms. This is especially the case

when existing mechanisms are not optimal for the given task. Marginal value theorem

decides whether to switch by comparing an instantaneous reward to an overall average

rewards; it is optimal under a set of conditions, including the assumption that local but

not global resources are depleted during the course of the search (Charnov, 1976). This

assumption does not hold in the semantic fluency task, as humans can re-enter the same

patches, and they are depleted over time as more items are recalled. To perform well in

this task requires a decision policy that takes into account such dynamics in the environ-

ment. We propose an alternative mechanism based on reinforcement learning that directly

optimizes performance under this specific task environment. We will apply temporal-

differencing algorithm during reinforcement learning, as there is considerable neural and

behavioral support for TD learning in humans and other animals (Houk & Adams, 1995;

Montague, Dayan, & Sejnowski, 1996; Niv, 2009; O’Doherty, Dayan, Friston, Critch-

ley, & Dolan, 2003). In contrast to the marginal value theorem that relies on estimat-

ing the immediate reward, TD learning is capable of capturing non-immediate values of

switching/non-switching in sequentially encountered time steps. Instead of considering

the value of switching as unknown and approximating it as the overall average reward

rate in the marginal value theorem, TD learns the value of switching directly, similarly to

learning the value of non-switching (Sutton, 1988). To assume minimally the amount of
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information humans can access, the policy obtained from reinforcement learning utilizes

only information from immediate neighbors of current location in the semantic network.

The principle of rationality would predict that the cognitive mechanism that has an

advantage in achieving better task performance is also more likely to be used by human

cognition. Therefore, once we compare performance of different mechanisms in simula-

tions, we will test if the switching mechanism with better performance in the semantic

fluency task will also account for patch switches in the human behavioral data better.

The remaining paper is organized as below. We will first describe the random walk

model that is used to simulate the semantic fluency task. We will then describe alterna-

tive switching mechanisms, and how to optimize task performance under each switching

mechanism. Then we will evaluate them by comparing both their relative performances in

simulations and their fit to human behavioral data. We will show that the proposed mech-

anism with reinforcement learning based on local patch quality outperforms the marginal

value theorem in how well it achieves the computational goal of the task, and in its fit to

single-trial human behavioral data.

4.2 Methods

In this section, we will first describe how to simulate the semantic fluency task under

different switching mechanisms, closely following the procedure used in Abbott et al.

(2015). Then we will discuss how to optimize task performance under each switching

mechanism. Lastly, we will describe methods to compare different switching mechanisms

over human behavioral data.

4.2.1 Simulate the semantic fluency task

The random walk considered by (Abbott et al., 2015) operates over a semantic network

with 5018 words (165 of them are animal names) (Nelson, McEvoy, & Schreiber, 2004).

This semantic network is obtained from human behavior database in a word-association

task, where more than 6,000 participants responded with the first word that came into their

mind when cued with another word. The weight of the edge from word A to word B is the

proportion of participants that responded B when cued with A. Following closely the pro-
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Figure 4.1: An example of random walk without jumping back to “animal” node. It always
starts from the node “animal” as the initial cue. The numbers mark the sequence of nodes
visited. A response is generated only when the visited node is both an animal and has
not been visited before. In this example, the sequence of responses generated are: “dog”,
“cat”, “owl’, “duck”.

cedure described in (Abbott et al., 2015), a random walk starts from the node “animal” as

the initial cue, and generates a behavioral response every time it visits an animal name for

the first time. At every time step, it goes from current node to the next node under two op-

tions. Under the first option, it transits from the current node Xi to the next node Xj with

the probability being the edge weight: P (Xj|Xi) = w(Xi, Xj). Walking to the neigh-

boring nodes is equivalent to locally exploiting the resources. Figure 4.1 demonstrates an

example of random walk under the first option. Under the second option, it jumps back to

the node “animal” and continues the random walk from there. Opportunity to switch away

from the current node allows for exploring animals at other parts of the semantic network.

The three different switching mechanisms we will compare specify three different policies

in deciding whether to switch at each time step.

4.2.2 The first switching mechanism: marginal value theorem

The first switching mechanism is based on the marginal value theorem, which is an impor-

tant model that characterizes optimal foraging behavior in the literature of animal foraging

(Charnov, 1976). It is based on the assumption that local resources are monotonically de-

pleted during foraging. Under this environment, animals seek to maximize the gain per

unit time. Marginal value theorem describes that the optimal foraging policy is to leave

a patch when the instantaneous rate (i.e. marginal value) of gain is equal to the long-

term average intake under the current environment. When it transfers to memory search,
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the marginal value theorem predicts that individuals should leave the current patch and

switch to another when the gain falls below the expected benefits of searching elsewhere

in memory (see more details in Hills et al. (2012)). Given fixed reward per retrieved item,

the current switching mechanism describes that one should leave a patch once the instan-

taneous time cost (i.e. time cost of the just-retrieved item) exceeds the average time cost

under the environment. Equivalently, given fixed cost per time step, a different formulation

of the marginal value theorem describes that one should leave a patch once the instanta-

neous gain estimated from the local semantic patch falls below the global average gain

under the environment.

Assume that we do not know the global average of the task in advance. To optimize

the task performance under this switching mechanism, we will explore a range of time

thresholds, and select the one that demonstrates the best task performance.

4.2.3 The second switching mechanism: non-strategic switching

The second switching mechanism describes a scenario where switching patches takes

place in a random and non-strategic way (Abbott et al., 2015). At each time step, there

is a fixed probability p that the random walk jumps back to the start node “animal”; the

other times under probability (1 − p), it transits from the current node to the next node,

with a probability equal to the edge weight. To optimize the task performance under this

switching mechanism, we will explore a range of values p, and select the one that gives

the best task performance.

4.2.4 The third switching mechanism: reinforcement learning based
on local patch quality

In the current work, we propose a third switching mechanism based on the local patch

quality, described by local statistics around the currently visited node in the random walk.

It is unclear how the information of various local statistics of the currently visited

node converts to a switch/not-switch decision. To optimize the task performance under

this switching mechanism, we obtain this mapping under reinforcement learning. We con-

sider that a random walk agent interacts with the environment in a sequence of actions,
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observations and rewards. At each time step, the agent selects an action at from a bi-

nary set A = {0, 1}, which represents whether to switch or not. The entire semantic

graph that the random walk operates on is not visible to the agent. Instead, we make

minimal assumptions of the information accessed by the agent by exposing it only to the

information of its nearest k neighbors. There can be three types of information associ-

ated with each neighbor node, including 1) the edge weight w ∈ R, 2) whether it is a

non-visited animal node I = {0, 1}, and 3) how many times it has already been visited

n ∈ Z≥0. These information are concatenated as the state information for the model

S = {w1, w2, . . . , wk, I1, I2, . . . , Ik, n1, n2, . . . , nk}.

One simulated trial is considered as one episode, which terminates when the time is

up. As in Abbott et al. (2015), the time limit is set to be 2000 steps, which corresponds

to performance level of the agent at the same scale as the human experiments (Hills et al.,

2012). At each time step t, the agent receives a reward rt = {0, 1}, with 1 representing an

animal name is successfully generated and 0 otherwise.

The goal of the agent is to find the switching mechanism that selects switch/not-switch

in a fashion that maximizes cumulative future reward (discounted by a factor of γ per time

step). This rule can be obtained from the optimal action-value function:

Q∗(s, a) = max
π

E[rt + γrt+1 + γ2rt+2 + ...|st = s, at = a, π]

which is the maximum sum of rewards rt achievable by a behavior policy π = P (a|s),

after making an observation s and taking an action a. Q∗(s, a) obeys the Bellman equation:

Q∗(s, a) = E[r + γmax
a′

Q∗(s′, a′)|s, a]

where s′ at the next time step is known for all possible actions a′. Using the Bellman

equation as an iterative update, i.e. Qi+1(s, a) = E[r+γmaxa′ Qi(s
′, a′)|s, a], it will con-

verge to the optimal action-value function Qi → Q∗ as i → ∞ (Sutton & Barto, 1998).

To allow the representation to emerge flexibly from experience, we use a deep neural net-

work to approximate the action-value function Q(s, a; θ) ≈ Q∗(s, a). This results in a

deep Q-Network (DQN) with weights represented by θ (Mnih et al., 2015). It is trained

by adjusting the parameters θi at iteration i to reduce the mean-squared error in the bell-
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man equation. We then use the Q-learning algorithm to update weights by optimizing the

loss function with stochastic gradient descent Watkins and Dayan (1992). The behavior

distribution during training uses a ε-greedy strategy, with follows greedy strategy with

probability (1-ε) and selects a random action with probability ε. The value of ε represents

the amount of exploration, and is set to decrease gradually and reaches 0 at the end of the

training. To model the switching mechanism with a simple heuristics, we adopt a small

neural network architecture composed of two hidden layers with ten and five hidden units

respectively.

To summarize, the obtained DQN describes the third switching mechanism. At each

time step, the action to take is the one with larger Q-network value given the local patch

quality. The resulting policy is not guaranteed to be optimal for the semantic fluency task,

given that the full state of the environment is not available to the agent. However, we are

interested in a policy that has the potential to outperform the marginal value theorem.

4.2.5 Experimental data

We focus on a semantic fluency task from a public dataset Hills et al. (2012). There were

141 participants in this experiment at Indiana University, Bloomington. With a time limit

of three minutes, participants were asked to type in as many items as possible for the given

category “animal”. There were 373 unique animals produced by these 141 participants in

the experiment. More details about the experiment can be found in the original report in

Hills et al. (2012).

4.2.6 Predict switches over human behavioral data

Next, we will compare which switching mechanism accounts for human behavioral data

better. Human participants give responses whenever they think of an animal name; how-

ever, they do not give the full path of the random walk. In other words, human memory

search is an initial-visiting emitting (INVITE) random walk (Jun, Zhu, Rogers, Yang, &

Yuan, 2015), with animaml labels generated only when the node is visited for the first time.

Given a behavioral response of a just-retrieved item, the dependent variable Y is whether

there is a switch until the next response. The independent variable is a score X obtained
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differently for each switching mechanism, characterizing information only concerning the

previous response. The goal is to examine which switching mechanism can better predict

the switch. We add a softmax decision noise to the switching mechanism (J. D. Cohen,

McClure, & Yu, 2007; Mehlhorn et al., 2015):

p(Y = 1) = f(β0 + β1X)

where f(x) = 1
1+e−x is the logistic function. β0 allows for a bias term in each switching

mechanism. Larger β1 values give more deterministic behavioral under the decision rule.

Y is approximated with pre-defined animal categories, similar to the approach in Hills et

al. (2012). Below outlines how X is obtained differently for each switching mechanism.

Under marginal value theorem, X is the experimental time cost of the just-retrieved

item. Under the reinforcement learning framework, X is the probability that there is not a

switch before retrieving the next animal, calculated as below:

Consider a random walk on a set of states S with an initial distribution π and transition

matrix T , where Tij is the probability of going from state i to state j. A surfer starts from

an initial state drawn from π and outputs an animal state whenever visiting it for the first

time. The naive method to compute the likelihood of starting from i and ending at j is

intractable given that there can be an infinite number of trajectories in between. Jun et al.

(2015) introduces a method to compute INVITE likelihood by considering the process of

the initial-visit emitting random walk into a series of absorbing random walks (Jun et al.,

2015) In absorbing random walks, transition matrix T can be written in a canonical form

below:

T =

(
Q R

0 I

)
where Q is the transition between transient states, R the transition from non-absorbing

states to absorbing states. The transition matrix from absorbing states to transient states is

always 0, and the transition matrix from absorbing states to absorbing states is always I.

Under absorbing random walks, an essential tool of fundamental matrix can be applied:

Theorem. (Doyle & Snell, 2000) The fundamental matrix of the Markov chain is

N = (I − Q)−1. Ni,k is the expected number of times that a chain visits state k before

absorption when starting from i. Furthermore, define B = (I − Q)−1R. Then, Bij is the
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probability of a chain starting from the transient state i being absorbed by the absorbing

state j. In other words, Bi· is the absorption distribution of a chain starting from i.

Jun et al. (2015) applies the fundamental matrix by considering any two overt behav-

ioral responses from the human behavioral data as a starting state and an ending state of

an absorbing Markov chain; as a result, Bij is the probability of generating item j given

the previous response i. In the current work, we need to consider the additional possibility

of the random walk making a switch before generating the next item. We therefore set up

the absorbing Markov chain differently: the absorbing states include both the remaining

animal items, as that in (Jun et al., 2015), and additionally, items that are identified as

switching points by the RL model. The absorbing Markov chain terminates either when

it walks to a non-visited animal item without encountering a switch (with probability P1,

which X is set equal to), or encountering a switch before reaching a non-visited animal

item (with probability P2). We have P1 + P2 = 1, as the absorbing Markov chain will

eventually terminate in one of the absorbing states. The rest of the nodes in the network

are transient states, over which the random walk can keep visiting. Given what animal

names have already been recalled, each pair of adjacent responses is considered a differ-

ent absorbing Markov chain, with their unique set of absorbing states and transient states.

Under this formulation, we can obtain: X = P1 =
∑

j∈S Bij , where transient state i is the

just-retrieved item, and S is the set of absorbing states that are non-visited animal items

among the neighbors of i.

4.3 Results

The first section is the simulation results that detail how performance under each mecha-

nism varies across parameter settings, and how the best model under different switching

mechanisms compare to each other. According to rational analysis, the switching mecha-

nism that gives the best performance is more likely to be used by human participants. The

second section further tests this hypothesis and examines how well different switching

mechanisms predict switches in human behavioral data.
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Figure 4.2: Simulation results of different switching mechanisms, measured as the number
of animal names recalled in one trial. (a) Marginal value theorem with instantaneous time
cost estimated as time steps passed since retrieving the last item, over 100 simulations,
allowing for early stopping or not. Thresholds used in each decision is stochastic drawn
from a normal distribution, with time threshold as the mean µ, examined under differ-
ent values of standard deviations σ. (b) Random walk model under different switching
probability p, over 100 runs. (c) Deep reinforcement learning model that takes different
sources of input from the local patch quality (edge weights connecting current node to the
neighbor node , the neighbor node being a non-visited animal or not, how many times the
neighbor node has been visited), under increasing number of neighbor nodes considered,
each over 10 runs of Q-learning algorithm. Learning curves of the best model over 10
runs of Q-learning algorithm, smoothed by averaging a sliding window of 100 episodes,
for the reinforcement learning model that uses neural network (based on combining S1
and S2 for 10 neighbor nodes) to approximate the Q-function and one that uses a linear
function (d). Parameters for the best models are µ = 20, σ = 10 for MVT, p = 0.1 for
RW, and the neural network model that combines S1 and S2 of 10 neighbor nodes for RL.
Hyper-parameters used in the DQN under the reinforcement learning model: learning rate
0.01, number of episodes 2000, γ = 0.95, εmax = 1, εmin = 0.0001, εdecay = 0.998. All
error bars are standard error of the mean.
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Figure 4.3: A comparison of the best models under each switching mechanism, over 100
simulations. Parameters for the best models are µ = 20, σ = 10 for MVT, p = 0.1 for
RW, and the neural network model that combines S1 and S2 of 10 neighbor nodes for RL.
Hyper-parameters used in the DQN under the reinforcement learning model: learning rate
0.01, number of episodes 2000, γ = 0.95, εmax = 1, εmin = 0.0001, εdecay = 0.998. All
error bars are standard error of the mean.

4.3.1 Performance in achieving the task goal

Figure 4.2 describes the simulation results of different switching mechanisms. Under a

rational analysis, we compare which mechanism is more optimal in the memory search

task, measured as the number of animal items recalled given a fixed number of time steps.

Figure 4.2a shows how performance under the marginal value theorem varies as a

function of the time threshold used. MVT makes a switch based on how many time steps

it has been since the last retrieval. This evaluation only takes place when a new item is

just retrieved (i.e. no early stop), or at every single time step. A stochastic component

is added by considering the time threshold drawn from a normal distribution at each time

step of decision. Adding a stochastic component can be potentially beneficial when the

environment itself is noisy. MVT performs better when evaluation takes place at every

time step. The best MVT model corresponds to a time threshold of 20 with standard

deviation of 10.

Figure 4.2b shows how performance under the non-strategic switching mechanism

with a random walk model varies as a function of probability of switching (p) at a given

time step. Performance when p is 0 corresponds to a random walk model without any
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switches, whereas performance when p is 1 never leaves the starting node ”animal”, lead-

ing to a number of zero animal names generated. The model reaches its best performance

when p is 0.1.

Figure 4.2c and Figure 4.2d examines the factors that affect the performance of the

reinforcement learning model. In Figure 4.2c, three sources of information are considered

to characterize the neighborhood of the current node. The first source of information (S1)

is the edge weight connecting the current node to a neighbor node. The second source

of information (S2) is whether a neighbor node is a yet-to-be-visited animal name. The

third source of information (S3) is a count of how many times a neighbor node has been

visited. Figure 4.2c also examines the performance as a function of k nearest neighbors

considered. One can observe that the first two sources of information but not the third

gives performance that is better than the best model under non-strategic switching (i.e.

32.63). We therefore constrain further analysis to utilize only the first two sources of

information, S1 and S2. Performance increases by the number of neighbor nodes for S2

but less for S1. A number of 10 is considered sufficient for further analysis, as it appears

to be the smallest set of neighbors necessary to produce performance better than the other

switching mechanisms. Figure 4.2d is a model that contains both S1 and S2 of 10 neighbor

nodes. We run the Q-learning algorithm 10 times, and plot the training curve of the best

model out of the 10 runs. This same procedure is repeated twice, approximating the Q-

function with either a two-hidden-layer (10 nodes and 5 nodes) neural network or one that

uses a linear function. The model performs better when a neural network is used, which

will be referred to as the best RL model during subsequent analyses.

Figure 4.3 is a comparison across the best model under different switching mecha-

nisms, each simulated in 100 episodes, representing 100 trials. The RL model, based on

local patch quality, outperforms other switching mechanisms in the semantic fluency task.

Note that the difference between the marginal value theorem and the RL model does not

merely lie in the information utilized. An equivalent formulation of the marginal value

theorem, based on instantaneous reward estimated from local patch quality instead of in-

stantaneous time cost, gives the best performance of 22.83 items over a range of thresholds

used. The instantaneous reward is the expected reward at the current time step, derived

from the same set of information utilized in the RL model, S1 and S2.
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4.3.2 Evidence over human behavioral data

In this section, the goal is to examine which switching mechanism can better predict if

there is a switch before the next response, given information associated with the previous

response. We add a softmax decision noise to the switching mechanism in a logistic re-

gression. Figure 4.4a plots the instantaneous time cost, as the regressor in the logistics

regression, for switches and non-switches in human data. The switches in the human be-

havioral data are identified from pre-defined categories (Troyer, Moscovitch, & Winocur,

1997). Figure 4.4b-c plots the non-switching probability used to predict switches with RL,

for switches and non-switches in human data. As illustrated in Figure 4.4e, given the just-

retrieved response i, one can calculate the probability of reaching the next animal name j

before reaching a switching point defined by the RL model (P1). When the non-switching

probability is not zero, Figure 4.4b plots their corresponding log likelihood. Distribu-

tion of the non-switching probability for non-switches in Figure 4.4b is more skewed to

the right compared with that of the switches. Similarly, when non-switching probability is

zero (this happens when the previous response is one of the switching points defined in RL

policy), Figure 4.4c shows that there is higher proportion of switches than non-switches.

We formally test these differences in examining how well it can predict switches in a lo-

gistic regression. Using the non-switching probability in RL as a regressor, it returns a

significant coefficient of -1.06210 (p < .0001). This fit is better than that of a logistic

regression model using instantaneous time cost in MVT as a regressor (∆BIC = 50.69).

There is strong evidence to favor the RL model than MVT with log of the Bayes fac-

tor being 25.34 (Kass & Raftery, 1995), approximated from ∆BIC (Wagenmakers, 2007).

Figure 4.4d further plots the difference in the log likelihood of the RL model and the MVT

model at the level of individual subjects. There are 95 out of 141 subjects that favor RL

model, compared with 46 out of 141 subjects that favor MVT.

4.4 Discussion

In a semantic fluency task, we compared existing mechanisms and proposed new mech-

anism that give rise to patterns of semantically clustered responses. The contribution of

this work is twofold. First, we directly compare how optimal each switching mechanism
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Figure 4.4: Predict switches over human behavioral data. (a) Instantaneous time cost used
to predict switches with MVT, for switches and non-switches in human data. (b) Log of
non-switching probability used to predict switches with RL, for switches and non-switches
in human data, when the non-switching probability is non-zero. (c) Count of switches and
non-switches in human data, when the non-switching probability is zero. (d) Likelihood
difference in a logistic regression model between RL and MVT for each subject, sorted by
the amount of difference. (e) Non-switching probability (P1) in RL is obtained from an
absorbing Markov chain that starts at the transient state i, the just-recalled item, and ends
at an absorbing state either being a non-visited animal item or a switching point defined by
the RL model. P1 is the probability for the absorbing chain to end at any of the non-visited
animal names. P2 is the probability for the absorbing chain to end at any of the switching
points.
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is in simulations in a rational analysis. Second, instead of comparing different switching

mechanisms over averaged patterns of human behavioral data, we examine how well they

account for switches in single-trial human behavioral data. According to rational analysis

(J. Anderson, 1990; J. R. Anderson & Milson, 1989), human cognition optimally solves the

problems it faces; therefore, the cognitive mechanism that has an advantage in achieving

better task performance is more likely to be used by human. Our results over simulations

and human behavioral data provided such evidence: the proposed switching mechanism

derived under a framework of reinforcement learning outperformed the marginal value

theorem, both in how well it achieves the computational goal of the task, and in its fit over

the human behavioral data. Below we will discuss assumptions underlying the marginal

value theorem, and the plausibility of representation and learning mechanism underlying

the proposed switching mechanism. Lastly, we will discuss further implication of the work

and its connection to related literature of memory search.

4.4.1 Assumptions underlying the marginal value theorem

Decision in the marginal value theorem is based on comparing the instantaneous reward

of staying with a threshold that measures overall environmental richness. First, it assumes

that local resources are monotonically depleted during foraging. However, in the semantic

fluency task, the instantaneous reward can vary from moment to moment. In contrast, the

RL model does not base its decision on the instantaneous reward, and is capable of cap-

turing accumulated rewards including sequentially encountered time steps. The marginal

value theorem also assumes that the value of switching is unchanged throughout the task.

This holds in cases where one enters a new patch of resources after each switch. However,

in the semantic fluency task, humans can re-enter the same patches that are depleted over

time as more items are recalled. Therefore, to perform well in this task, it requires a learn-

ing mechanism that takes into consideration of such characteristics in the environment:

the RL model learns the value of switching directly, instead of considering the value of

switching as unknown and approximating it as a constant value. To assume minimally the

amount of information humans can access, the policy obtained from reinforcement learn-

ing utilizes only information from immediate neighbors of current location in the semantic

network. This is similar to human foraging tasks in non-memory domains, where partic-
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ipants are sensitive to the absence and presence of the resources locally (Hills, Kalff, &

Wiener, 2013; Kalff, Hills, & Wiener, 2010).

Using a reinforcement learning framework that maximizes the cumulative rewards, we

explored the set of information that can most effectively characterize local patch quality,

and the policy that best describes how local patch quality maps to a switch/non-switch

decision. The reinforcement learning model based on local patch quality (i.e. edge weight,

whether being a non-visited animal) outperformed the marginal value theorem in terms of

the total number of responses generated in simulations, and in accounting for switches in

the human behavioral data.

4.4.2 Plausibility of the proposed switching mechanism base on local
patch quality

One may wonder if the human mind is capable of obtaining the representation like that in

the deep Q-network. We will discuss in turn three components associated with the deep

Q-network obtained under reinforcement learning.

The first component is the temporal differencing that learning Q-network is based on.

In the literature of human reinforcement learning, there has been neural evidence of tem-

poral differencing identified, suggesting that human are capable of using temporal differ-

encing to learn from sparse future rewards (Houk & Adams, 1995; Montague et al., 1996;

Niv, 2009; O’Doherty et al., 2003).

The second component is the neural network that represents Q-function. We use a neu-

ral network instead of other specified structures, as it allows for a flexible and non-linear

representation of the policy to emerge from experiences and learning. Similar approaches

are used in connectionist models of semantic learning and language acquisition (Elman,

1990; McClelland et al., 2010; Rohde & Plaut, 1999). It is possible that there exists other

presentation of the Q-function that is simpler than the deep Q-network obtained currently.

Our main goal here is to demonstrate the existence of such mapping from local patch qual-

ity to switch/non-switch decisions that outperforms the marginal value theorem. Better

fits over human behavioral data under RL further support the idea that the obtained deep

Q-network captures realistic features of the local patch quality that are important during

the memory search.
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The third component is the input data, including both the amount of training experi-

ences and the information utilized in the model. First, we assume that human have been

exposed to a large amount of experiences of similar memory search tasks. The Q-network

that is eventually obtained through this exposure can be a simple heuristics used in mem-

ory search in general. Second, the proposed mechanism does not assume access to the

entire semantic graph at once, but only the neighbors of the currently visited node. This

is equivalent to a memory search right after recalling item“dog”, one is searching the next

item based on information associated with “dog”. One should be able to access the edge

weights connecting to the neighbor nodes: in fact, the edge weights of the semantic net-

work were generated from large-scale human data as probabilities of recalling one item

given the previous item (Nelson et al., 2004). One should also be able to access whether a

node has been visited before, as people are good at censoring already generated responses

(Hills et al., 2012).

4.4.3 Further implications

In the current work, we investigated the cognitive mechanisms that give rise to the switch-

ing behavior during human memory search. Particularly, the decision to continue engaging

with a current option versus switching to a new one falls into a larger class of problems

that has a rich theoretical and experimental history in ecology and human decision-making

(Charnov, 1976; Cuthill, Kacelnik, Krebs, Haccou, & Iwasa, 1990; McNickle & Cahill,

2009). While the marginal value theorem holds over a range of animal and human foraging

tasks, we show that in situations when optimality of the marginal value theorem are not

guaranteed due to the conditions in the task environment, it is outperformed by a model

based on local patch quality under reinforcement learning.

Related literature in free recall examines various heuristics to approximate the prob-

ability of search termination, including the total time spent (Davelaar, Yu, Harbison,

Hussey, & Dougherty, 2013), proportion of items left to be recalled (Kragel, Morton,

& Polyn, 2015), time since last recall (Rundus, 1973), and number of retrieval failures

(Harbison, Dougherty, Davelaar, & Fayyad, 2009; J. G. Raaijmakers & Shiffrin, 1980).

Evaluating search termination for episodic memories is closely related to evaluating patch

switch for semantic memories. Approaches in deriving switching mechanism in the cur-
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rent semantic fluency task can potentially be extended to evaluating search termination

over episodic memories.
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Appendix I.

probe items can produce an FN400 (Bader, Mecklinger,
Hoppstädter,&Meyer,2010;Speer&Curran,2007),whereas
others do not (Anderson et al., 2016; Ecker, Zimmer,
Groh-Bordin, & Mecklinger, 2007). These discrepancies
may relate to whether the individual elements in an associ-
ate are represented as a single unit. Conditions that favor
unitization in paired associate learning may yield a distinct
FN400 for rearranged pairs relative to studied pairs (Ecker
et al., 2007). These conditions include repeated study
(Speer & Curran, 2007), semantically meaningful pairs
(e.g., traffic-jam; Rhodes & Donaldson, 2007), and elabora-
tive encoding (Rhodes & Donaldson, 2008). The condi-
tions in our experiment did not promote unitization:
Participants learned triples (rather than pairs), they studied
triples as few as four times, and the words in triples were
unrelated.
All regions show activity related to each of the four

bumps. The topographical distribution and time course
of the bumps are largely consistent with those described
in our previous application of the HSMM-MVPA method
to a paired associate recognition task (Anderson et al.,
2016). The first bump likely corresponds to the N1, given
its early time course, its anterior distribution, and its
insensitivity to the fan and probe type manipulations.
This component is typically interpreted as an index of
visual attention (Luck, Woodman, & Vogel, 2000). The
intermediate time course and anterior distribution of
the second bump are consistent with the P2 (Van Petten,
Kutas, Kluender, Mitchiner, & McIsaac, 1991).
The third bump may relate to the N2 (cf. Anderson

et al., 2016), a frontocentral negativity caused by re-
sponse conflict (Yeung, Botvinick, & Cohen, 2004). The
N2 typically appears somewhat earlier in ERP waveforms.
However, most studies of the N2 involve decisions far
simpler than associative recognition. As the third bump
in the ACT-R model initiates the comparison stage, it fol-
lows that this bump occurs at the moment of maximum
response conflict within the trial. The late and variable
latencies of the third bump may obscure the N2 in the
conventional ERP waveforms of our study and in other
studies of recognition memory. Finally, the time course,
direction, and topographical distribution of the fourth
bump are consistent with the parietal old/new effect. As
in our previous experiment (Anderson et al., 2016), this
bump was sensitive to perfect matches and had higher
amplitude for Fan 1 triples than for Fan 2 triples.

The Path Forward: HSMM-MVPA

HSMM-MVPA can be used to guide the development of
new theories by providing a direct measure of the dura-
tions of information processing stages to make infer-
ences about the effects of experimental factors. RT-based
methods have also been used. However, if an experi-
mental factor affects the durations of multiple stages, its
impact on each cannot be directly observed from overall
RTs. Rather, one must specify a model of how the factor(s)

affect each stage, calculate the expected durations of
all stages, and compare the summed stage durations to
overall RTs. A discrepancy between expected and ob-
served RTs does not indicate which stages and factors
were modeled incorrectly. More problematically, the ab-
sence of a discrepancy does not exclude the possibility
that the model overpredicted the duration of one stage
and underpredicted the duration of another. By isolating
each stage’s duration, the HSMM method overcomes
these limitations of RT-based methods.

HSMM-MVPA can be used for a second, related purpose:
to obtain more accurate parameter estimates for a pro-
cess model. An advantage of linking cognitive models to
neural data would be the sheer wealth of additional
information that neural data can provide in comparison
with behavioral data (see a review of different linking
approaches, de Hollander, Forstmann, & Brown, 2016).
The HSMM-MVPA method provides individual stage du-
rations instead of the sum of them (i.e., RT) to better
constrain model fitting. For example, the ACT-R retrieval
latency scalar (F ) only affects the duration of the retrieval
stage, whereas Final Comparison only affects the dura-
tion of the comparison stage. Because both parameters
modulate the effects of probe type, changes in F can be
partially offset by changes in Final Comparison time to
produce similar overall RTs. By estimating model param-
eters based on the stage durations in the HSMM-MVPA,
no such parameter compensation occurs. Another ex-
ample is the estimation of Comparison Intercept, which
is not affected by fan or probe type. Without information
about the duration of the comparison stage from the
HSMM-MVPA, it would not be possible to estimate the
Comparison Intercept separately from other processes
(e.g., encoding and responding) that are also not affected
by the experimental factors. Beyond just a common inter-
cept, Figure 7 illustrates that the method can break this
time out into periods of prestimulus attention (Stage 1),
encoding (Stage 2), and responding (Stage 5).

Table A1. People, Verbs, and Locations Used to Create Triples

Person (18) Verb (8) Location (18)

actor coach paint airport attic

cowboy dancer work bank barn

chef engineer walk factory garage

farmer musician talk hotel kitchen

maid judge sing castle library

pilot queen laugh museum office

lawyer sheriff sleep church prison

soldier teacher drink stadium studio

tourist doctor - temple theatre
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