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Preface

0.1 Explanation of Format

A living version of this document will be made available on arxiv, SSRN, or
michaelspece.com.

There is a single running counter for displayed math; but the counters appear
with a prefix, as in (Id1.1) meaning the first counted display in Chapter 1, which
happens to be an identity. In contrast, definition and result environments of
different types (lemmas, theorems, etc.) each have their own counters.

0.1.1 Style

Articles are omitted from proper names. Punctuation is usually placed outside
of quotes. I use the abbreviation “iff” for ”if and only if”. Semi-colons, in
addition to their usual function of separating two sentences, may delimit a list
of lists, where the inner lists are delimited by commas. The introductory section
of a chapter is given a heading title iff it is cross-referenced.
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3

 Electronic copy available at: https://ssrn.com/abstract=2958435 

michaelspece.com


life, including Xiaoyun Yang, Jingxiong Wang, Runqi Wang, David Hao, and
Andrew Kositsky.

4

 Electronic copy available at: https://ssrn.com/abstract=2958435 



Chapter 1

Competitive Analysis

Statistical machines learn from regularity in data and are often designed for sta-
tionary or even independent and identically distributed (IID) processes. How-
ever, in most real-world applications it is not known how well the data process or
non-trivial transformations thereof conform to theoretical assumptions. More-
over, this is impossible to learn when past data may be misleading or otherwise
unrepresentative of the future. An adversarial data process, on the other hand,
is not subject to probabilistic constraints; instead an adversary can deterministi-
cally attempt to mislead or otherwise confuse the machine. Of course designing
for an adversary has its own limitation: that of being pessimistic. Despite the
disparity between IIDness and adversarialism, for a given application, it may
not be known which will better approximate the data. Fortunately, as shown
in several supervised settings in Chapter 2, learning from data that is gener-
ated by an adaptive adversary is not much harder (statistically) than if it were
generated by a static distribution. More precisely, the minimax regret values
differ by a constant factor. In that case, a machine optimally designed for an
adversary is necessarily competitive with any other, even when the data process
is IID.

This idea of being competitive in the worst-case (and therefore all cases)
arises in other problems such as regret or excess risk minimization. The next
section defines competitive difference and prescribes analysis thereon as a way
of characterizing how well (not necessarily quantified) uncertainty can be dealt
with. In each of several examples that follow, an algorithm or set of play-
ers must cope with incomplete information about the problem or game it is
trying to address, such as what is the optimal assumption or decision. This
incompleteness impedes an unambiguous objective; the competitive difference
provides clarity by furnishing a (fully specified) objective on the basis of which
an optimal decision can be formulated.
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1.1 Competitive Difference

Given (C1) a loss function ` : A × D → R, in which A can be interpreted as
a space of algorithms or actions and D the set of possible data distributions,
(C2) a set of benchmarks B ⊆ A, and (C3) a constant C ≥ 1, the worst-case
competitive difference of a ∈ A is

CDa := sup
d∈D

E
[
`(a, d)− C inf

a∗∈B
`(a∗, d)

]
,

assuming the expectation exists. B can be interpreted as the potential optimal
decisions that a decision maker is unsure about.

Similarly, the minimax competitive difference is

CD := inf
a∈A

CDa. (Id1.1)

In addition to this common language, the following general inequality will
be useful: For all a ∈ A,

CDa ≤ sup
d∈D

E
[
`(a, d)− C inf

a∗∈B,d∗∈D
`(a∗, d∗)

]
. (A1.2)

So that this bound is non-trivial, it is helpful to assume infa∗∈B,d∗∈D `(a∗, d∗) >
−∞.

The central prescription of competitive analysis is the following. CD mea-
sures to what extent the problem’s uncertainty can be tamed. If the competitive
difference of a problem (algorithm, respectively) is sufficiently small, then the
problem (algorithm) is said to be feasible (competitive). What constitutes
sufficiently small is made precise in the examples and Section 1.6.1. In case of
infeasibility, one would be advised to re-specify the problem (perhaps less am-
bitiously or supplemented with additional prior information or computational
resources) so that it is feasible. The remainder of this dissertation is devoted to
feasibility of given problems rather than problem specification (within a given
application domain or environment, for example), though the former could pro-
vide a menu of feasible options or inspiration for the latter.

1.2 Regret

Regret, defined as a competitive difference by Table 1.1, is the learning objective
function that is adopted in this dissertation’s study of unknown regularity. It
admits an (asymptotic) concept of feasiblity (known as learnability) that is
attainable against an adversary yet can provide strong guarantees when the
data is regular. For the adversarial case, the parameters1 defining regret as CD
are given in the table.

1Parameter here is used in the generic mathematical sense of a variable or term specifying
a problem. When parameter is to be understood in the statistical sense of being a random
variable capable of estimation, it will be qualified as a statistical parameter.
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Table 1.1: Regret

Parameter Special Form

D X T

A Y∪
T−1
t=0 X

t

B ∪y∈Y
[
{y}∪

T−1
t=0 X

t
]

C 1

`
∑T
t=1 `0(at, dt)

D is sequential data from some space X of some length T ∈ N+, A is the set
of online algorithms thereon with respect to a set of possible Y-valued outputs,
B is the strict subset thereof that produce the same output each period, C is
unity, and ` is a cumulative loss given the sequences of inputs at and outputs
dt. Identifying CD with Reg in the context of regret analysis,

RegT (a, d) =

T∑
t=1

`0(at, dt)− inf
a∗∗∈B

T∑
t=1

`0(a∗∗,t, dt),

where there is no expectation because the data is adversarial. Learnability is
an o(T ) bound on the regret.

A connection between regret and “competitive” analysis was apparently rec-
ognized in [58, 59]. After presenting additional examples, more will be said
about this connection (in Section 1.4.1).

1.3 Unknown Regularity

The previous section merely considered the adversarial case. Data might alter-
natively be independent and identically distributed. If it is not known which is
the case, one can nest these regrets inside a competitive difference that thereby
considers both possibilities:

Parameter Special Form

D {IID, adversarial}

A as before

B A

C arbitrarily large

` worst-case regret

7

 Electronic copy available at: https://ssrn.com/abstract=2958435 



Feasibility is an upper bound of 0 on the competitive difference over all pos-
sible horizons T . Lower bounds under independent and identically-distributed
data that match upper ones under adversarial data imply feasiblity, via Ap-
proximation A1.2. As already alluded to, this is often the case: See Sections
2.5 and 2.7 for a discussion of this matching, and note further the lower and
upper bounds discussed therein apply under both independent and identically-
distributed and adversarial data. In summary, low-regret algorithms are com-
petitive under unknown regularity.

Taking, as the more primitive objective, expected cumulative loss

LumT (a, d) := E
T∑
t=1

`0(at, dt)

(Lum is a portmanteau of loss, cumulative) rather than regret

RegT (a, d) = E

(
T∑
t=1

`0(at, dt)− inf
a∗∗∈B

T∑
t=1

`0(a∗∗,t, dt)

)
,

one obtains asymptotic optimality by adopting an algorithm designed for low
regret on adversarial data, even when the data is IID, as follows.

Theorem 1 (Asymptotic Minimax Optimality with Error Bound). Let B be
as in Section 1.2 and suppose

(C4) E infa∗∈B
∑T
t=1 `0(a∗,t, dt) > −∞ and LumT (a, d) <∞ for all a ∈ A and

d that is IID,

(C5) a ∈ A is competitive with respect to the unknown regularity regime and
constant C,

(C6) supd′ IID LumT (a∗, d
′) ≥ supd′ IID E infa∗∗∈B

∑T
t=1 `0(a∗∗,t, d

′
t)+C

′ supd′ IID RegT (a∗, d
′)

for some C ′ ≥ 0, and

(C7) infa∗∈A supd∗ IID LumT (a∗, d∗) ≥ 0.

Then

sup
a∗∈A

supd IID LumT (a, d)

supd′ IID LumT (a∗, d)
≤ 1 +

(C − C ′) infa∗∈A supd IID RegT (a∗, d)

supd IID E infa∗∗∈B
∑T
t=1 `0(a∗∗,t, dt)

.

Proof. For all a, a∗ ∈ A and IID d, d′,

LumT (a, d)

LumT (a∗, d′)
≤ LumT (a, d)

supd′ IID E infa∗∗∈B
∑T
t=1 `0(a∗∗,t, d′t) + C ′ supd′ IID RegT (a∗, d′)
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Now adding and subtracting the denominator in the numerator; and ultimately
imposing competitiveness on a,

= 1 +
LumT (a, d)− supd′ IID E infa∗∗∈B

∑T
t=1 `0(a∗∗,t, d

′
t)− C ′ supd′ IID RegT (a∗, d

′)

supd′ IID E infa∗∗∈B
∑T
t=1 `0(a∗∗,t, d′t) + C ′ supd′ IID RegT (a∗, d′)

(Id1.3)

≤ 1 +
LumT (a, d)− E infa∗∗∈B

∑T
t=1 `0(a∗∗,t, dt)− C ′ supd′ IID RegT (a∗, d

′)

supd′ IID E infa∗∗∈B
∑T
t=1 `0(a∗∗,t, d′t)

C ′ ≥ 0

= 1 +
RegT (a, d)− C ′ supd′ IID RegT (a∗, d

′)

supd′ IID E infa∗∗∈B
∑T
t=1 `0(a∗∗,t, d′t)

= 1 +
RegT (a, d)− C supd′ IID RegT (a∗, d

′) + (C − C ′) supd′ IID RegT (a∗, d
′)

supd′ IID E infa∗∗∈B
∑T
t=1 `0(a∗∗,t, d′t)

≤ 1 +
(C − C ′) supd′ IID RegT (a∗, d

′)

supd′ IID E infa∗∗∈B
∑T
t=1 `0(a∗∗,t, d′t)

Competitiveness.

Remark: This result highlights the constant C establishing competitiveness
and shows its influence not only on regret but cumulative loss. In particular,
when C ′ = 1, the exact equality of minimax regrets between the two regularity
regimes would ensure exact optimality with respect to cumulative loss.

1.4 Constant Factor Approximations and Com-
petitive Ratios

The examples of this section come from computer science, in which “competi-
tive” in the worst-case sense was first coined ([41, 11]). Both the terms “factor”
and “ratio” allude to the following fact.

Proposition 1. Suppose a ∈ A, (C8) for all d ∈ D, `(a, d) is integrable, and
(C9) infa∗∈B,d∗∈D `(a∗, d∗) > 0. Then

CDa ≤ 0

iff

sup
d∈D

E `(a, d)

E infa∗∈B `(a∗, d)
≤ C.

Proof. supd∈D
E `(a,d)

E infa∗∈B `(a∗,d) ≤ C iff

sup
d∈D

[
E `(a, d)

E infa∗∈B `(a∗, d)
− C

]
= sup
d∈D

E `(a, d)− C E infa∗∈B `(a∗, d)

E infa∗∈B `(a∗, d)
≤ 0

9
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iff, for all d ∈ D, E `(a, d) − C E infa∗∈B `(a∗, d) ≤ 0 iff 0 ≥ supd∈D E `(a, d) −
C E infa∗∈B `(a∗, d) = CDa. The second iff is by Condition (C9). The last iff is
by Condition (C8).

The problem’s data D may be various aspects of the problem or observations.
As for unknown regularity, C is chosen so that the competitive difference is
bounded above by 0 and feasiblity corresponds to the existence of such a C.

“Constant factor approximation” connotes a setting where the algorithms of
A are faster or otherwise less complex than those of B. For example, A might be
polynomial time algorithms for the traveling salesmen problem, approximations
which have been successfully studied since at least [49]. In addition to studies
of computational complexity, this type of comparison arises in statistics. See,
for example, Equation 16 of [27].

“Competitive ratio” connotes a narrower setting where D, A, and B are
as for regret; ` is amortized (cumulative) computational time complexity (sim-
ilar to the case of regret, but interpreted more narrowly). One may further
allow randomized algorithms and differentiate between data that is generated
obliviously or adversarially; in the latter case, the sequence of data can adapt
to previous outputs of the algorithm. (Though it is only against randomized
algorithms that outputs are not already known in advance to Nature.)

For a recent perspective on the use of this ratio as a performance measure, see
[11]. Of the two competitive differences of this section, only the “ratio” one will
be treated further, via the following example, whose application of worst-case
analysis to list ordering was novel, contrasting with the expected performance
analyses beginning nearly two decades earlier.

In [8, 9], the problem is to dynamically order a growing list for faster access
(lower computational cost), where accessing the ith item is assumed to cost i
and re-ordering the list is free. That cost structure corresponds to a system
for low latency response to infrequent (non-burst) queries. Nonetheless, the
problem’s essence is not limited to data structure design, but more general
ordering problems with applications to robotics ([53]).

[8, 9] compare the cumulative access times to that of the best full static list
and shows that the ratio is bounded by 2 for certain deterministic algorithms.
While a comparison between these two classes appears haphazard at first glance
and indeed the authors themselves recognize the “fundamental” difference in
a growing versus complete list, the former’s cost can be readily bounded in
terms of the latter’s as follows. Let N be the final number of list items and
c(list, query) be the cost of querying query given ordered list list. Require
the algorithm to output lists with all N items. The original setting corresponds
to removing those items which have yet to be queried. Let remt(list) be the
list obtained by such removal. The claimed bound can now be precisely stated
as, for all sequences of queries and t ∈ {1, · · · , T}, c(remt(list), query) ≤
c(list, query) (for all lists and queries). The next section shows that it is not
only possible to get ratio bounds for this new fixed list size setting, but also
regret bounds that imply ratio ones.
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1.4.1 Relationship to Regret

Given they both concern online problems, it is not uncommon to see both regret
and competitive ratios used in the same work—see for example [53] (which
contained constant factor approximations to boot). Of course the framework
here links the two concepts explicitly. A more intimate connection between
regret and the competitive ratio is the following. Under learnability and an
easily checked condition, there is a competitive ratio bound.

Proposition 2. Suppose learnability and

(C10) for all d ∈ X∞, 0 < infa∗∈B `(a∗, d1:T ) = Ω(T ).

Then there exists C > 1 such that

inf
a∈A

sup
d∈XT

(
`(a, d)− C inf

a∗∈B
`(a∗, d)

)
≤ 0.

Proof. Learnability implies there exists a real-valued function f such that

inf
a∈A

sup
d∈XT

(
`(a, d)− C inf

a∗∈B
`(a∗, d)

)
≤ f(T ) = o(T ).

One can take

C := 1 + sup
t

f(t)

infa∗∈B,d∈X t `(a∗, d)
.

Because list access costs at least 1 every period (satisfying Condition (C10))
but is bounded by N (satisfying learnability, for expected regret, via a ran-
domized experts algorithm, such as sampling with probabilities given by Hedge
(see the proof of Theorem 7), treating the N ! possible list orderings as the ex-
perts/actions), Proposition 2 applies to the list ordering problem. Using the
trivial lower bound of 1 leaves a dependence on the list size, however. A variant
of Proposition 2 with weaker conditions admitting a lower bound that is increas-
ing in N could probably give stronger results and whether list size dependence
is essential at all could probably be resolved with the techniques of Chapter 2,
which is devoted to lower bounds.

1.5 Oracle Relations

An oracle2 relation, often presented as an inequality, has hitherto been an in-
formal idea3 based on “ideal risk” ([28, 12]), though a special case of an oracle
relation, excess risk, has a precise definition that is a batch analog of regret,

2Not to be confused with oracle machine.
3Apparently presumed to be easily grasped in context. However, for non-experts, an easy

grasp is unlikely to be the case.
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including C := 0 and the same definition of feasibility.4 In the Bayesian setting,
that is when there is a prior on the potential truth, the ideal risk is the Bayes
risk and its excess as a function of the data is also referred to as conditional
regret ([30]). Because the data is delivered in a batch, ` is the risk E `0(aT , dT )
corresponding to an instantaneous loss `0(aT , dT ) and D could be of the form
X T , as before, or alternatively taken to be unordered rather than sequential
data, correspondingly A estimators that are functions of unordered data. Here
B := A is a reasonable choice because risk is a less ambitious objective than
cumulative loss as used in regret, where the expectation appears outside of the
infimum. Incorporating a more general difference operator than minus (that
is with a C > 1) seems to provide a formalization of oracle relation that is
adequate for applications beyond excess risk.

1.6 Extensions

This section generalizes the notion of competitive difference to more directly
model ratios, such as those of Sections 1.4 and 1.3–1.5, among other applications.

Given Condition (C1), (C11) sets of benchmark outcomes B : A×D → 2A×D,
and (C12) a difference operator ∆ : R × R → R, the (generalized) minimax
competitive difference is

∆

(
`(as, ds), inf

(a∗,d∗)∈B(as,ds)
`(a∗, d∗))

)
.

This definition enjoys more symmetry in the actions and data than in Iden-
tity Id1.1. The difference operator is what can directly handle ratios, in addition
to the arithmetic difference. Similarly, the (generalized) worst-case competi-
tive difference of a ∈ A is

CDa := E sup
d∈D

∆

(
`(a, d), inf

(a∗,d∗)∈B(a,d)
`(a∗, d∗)

)
.

One recovers the competitive difference of Section 1.1 by taking B to be of
the form BA × {d} for some BA ⊆ A; and the difference operator of the form

∆(A,B) 7→ A− CB,

for some C ≥ 1.
The following inequality generalizes Approximation A1.2. Suppose

1. for every value of its first argument, ∆ is non-increasing in its second on
Ran `

2. for some B∗ : A×D → 2A×D and all a ∈ A, d ∈ D,

B∗(a, d) ⊆ (⊇)B(a, d),

respectively,

4This notion of excess risk is not to be confused with the epidemiological concept of the
same name.
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then, for all a ∈ A,

CDa ≥ (≤) sup
d∈D

∆

(
`(a, d), inf

(a∗,d∗)∈B∗(a,d)
`(a∗, d∗)

)
, (A1.4)

respectively.

1.6.1 Parameterized Problems

The following notion more precisely formalizes feasibility from Section 1.1 for
problems where D or ` is parametrized by a T ∈ N+ (for example, DT := X T
or `T the worst-case regret for horizon T ). Let

CDT (a) := sup
d∈DT

∆

(
`T (a, d), inf

a∗∈B(a,d)
`T (a∗)

)
and CDT := infa∈A CDT (a). For a given subset S of “satisfactory perfor-
mances” (“small” losses) in R∞, the problem is feasible if and only if (CDT )

∞
T=1 ∈

S. Those algorithms a for which

(CDT (a))
∞
T=1 ∈ S

are competitive.
Feasibility could be cast in terms of a binary-valued difference operator

∆meta(a, d1, d2, · · · ) := I[∆(`T (a,dT ),infa∗∈B(a,d) `T (a∗))]
∞
T=1
∈S ,

where dT ∈ DT for all T ∈ N+. If DT := X T and Nature should be oblivious
to T , instead

∆meta(a, d) := I[∆(`T (a,d1:T ),infa∗∈B(a,d) `T (a∗))]
∞
T=1
∈S ,

in which d ∈ X∞.
For (i) the two examples of Section 1.4 and (ii) unknown regularity (1.3), S

is the negative orthant. For regret and excess risk, S are those functions which
approach the negative orthant.

1.6.2 Admissibility

For every a ∈ A, let `(a, ·) denote the map d 7→ `(a, d); an (arbitrary) a∗ ∈ A is
admissible iff `(a∗, ·) is a maximal element of {`(a, ·) : a ∈ A} with respect to
the Pareto order.

Admissibility is an attractive property and thereby a useful primitive con-
cept. However, it has limitations when considered in isolation. One, admissi-
bility may be unattainable, analytically difficult, or computationally infeasible.
Orthogonally to one, admissibility may lead to non-unique solutions with (a
priori) potentially vastly different loss profiles. A reasonable compromise (if not
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plagued with the same limitations) then is to be merely competitive but against
all admissible actions in the sense of a bound on

inf
a∈A

sup
d∈D

∆

(
E `(a, d), inf

a∗∈Aadmissible

E `(a∗, d)

)
. (Id1.5)

Bounding Identity Id1.5 by a competitive difference (under a suitable choice
of benchmarks) may provide an escape from the difficulties of a more direct
analysis of admissibility. For instance, regret, excess risk, constant factor ap-
proximation, and competitive ratio all implicitly provide approximate admissi-
bility by bounding Identity Id1.5. Each of these concepts has been arguably
more fruitful than admissibility, especially in the modern literature.

1.6.3 Competitive Difference under a Solution Concept

In a strategic form game, the losses (or payoffs) of the players are specified and
a solution of the game is a set of predicted strategies for the players. Certain
solution concepts such as Nash equilibrium restricts the possible solutions but
does not guarantee uniqueness or that the solution is communally desirable. Re
the latter, given a communal loss function ` for two players with action sets
A and D, respectively, competitive analysis can be used to characterize the
sub-optimality of a given solution as follows.

Given Conditions (C1)–(C12) and (C13) a solution as, ds ∈ A × D, the
(variant of) competitive difference is

∆

(
`(as, ds), inf

(a∗,d∗)∈B(as,ds)
`(a∗, d∗))

)
.

Re which solution to select, one may consider two extremes among the pos-
sibilities: anarchy, the worst case with respect to the communal loss function,
and stability, the best case.

Now to recover the prices of anarchy and stability take (i) ∆ as division; (ii)
the solutions as anarchy and stability, respectively, under the concept of Nash
equilibrium and given player loss functions `1 : A×D and `2 : A×D; and (iii)
B as identically A×D.

A designer or law maker would seek a system that aligns self interest with
that of the community, by ensuring low prices of stability and anarchy. Feasibil-
ity thus corresponds to a price “close to 1” ([47]). In the context of given game
solutions, feasibility purely depends on the game rather than the strategies, as
there is no longer a concept of worst-case competitive difference.

A generalization of competitive difference to n players for all n > 2 is
straight-forward and omitted.

1.7 Chapter Review

Worst-case analysis is a form of preparation, in the wake or anticipation of
uncertainty that is difficult to quantify. Competitive differences quickly and
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succinctly unifies several major concepts, from various fields, namely (i) con-
stant factor approximations and competitive ratios from computer science, (ii)
regret from machine learning, and (iii) oracle relations, including excess risk,
from statistics. Generalizing further—from the minimax perspective to solution
concepts—additionally recovers the prices of stability and anarchy from game
theory. The general prescription in Section 1.1 provides a systematic method-
ology for helping to deal with uncertainty, particularly incomplete information,
since minimizing the competitive difference furnishes an objective. It also pro-
vides a concise language for describing the effects of incomplete information on
(not purely Bayesian)5 learning, as seen in Section 1.3. Under the perspective
of competitive analysis, the theoretical insights of Chapter 2 can be seen as the
application of a coherent methodology.

In more general terms, specification of an unknown reality is one of the
fundamental challenges of science. Given multiple possible realities or worlds,
one can attempt to be competitive in all of them.

5The purely Bayesian approach is to presume, or enforce through subjective information,
complete specification of a problem. In other words, incompletely specified problems do not
exist in a Bayesian world. That is not to say one cannot apply Bayesian principles to certain
aspects of an incompletely specified problem. Indeed, Bayesian principles can co-exist with
those in a world of competitive differences.
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Chapter 2

Regret Bounds

2.1 Introduction

This chapter develops machinery for non-asymptotic, high-dimensional lower
regret bounds with application to learning via expert advice under metric loss,
that is a distance function between estimates and truth ([21]).

Consider, for example, a problem with T periods in which every period each
of N experts1 proffers advice and Nature assigns a loss function that is convex
and bounded over the expert advice. [13, 15] shows the worst-case regret is, to
within a constant factor,

√
T logN as T,N →∞ (in that order, under absolute

loss). That rate is grossly inaccurate in high enough dimensions N � T . Indeed,
by boundedness one immediately obtains the (asymptotically equivalent) upper
bound O

(
min

{
T,
√
T logN

})
. Though a priori this still might be inaccurate

(in particular, for logN ≈ T ), it turns out that the non-asymptotic minimax
rate is the same, even when the expert advice and loss functions are constrained
to be IID, as shown by Theorem 4 of the section (2.4) on applications.

Re the underlying machinery, a single set of sufficient conditions (described
by Corollary 5) applies in an abstract setting that encompasses not only ex-
perts with absolute loss, but metric loss; moreover, these conditions seem flexi-
ble enough to precisely account for the problem’s complexity, obtaining optimal
bounds in the convex case (Sections 2.5 and 2.7). As for the relevance of metric
loss, it allows for data to be elements of an arbitrary real vector space (the pre-
dictor function is assumed to be linear so does not quite generalize to arbitrary
metric spaces), including a space of functional data.

Beyond experts, because of their elegant properties (high generality achieved
concisely), a particular class of abstract vector spaces—Banach ones—have re-
ceived recent attention, with applications to online linear or convex optimiza-
tion (for example, [56, 55, 6, 23]). A setup considered herein (Section 2.4.2)
once again (i) ventures beyond Banach spaces, to give a brief but still elegant

1Experts can be human decision-makers, computer emulations or imitations thereof, mod-
els, or actions.
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treatment of online linear optimization (which is sufficient to generate lower

bounds for convex optimization), and (ii) derives a non-asymptotic ω
(√

T
)

lower bound.
The machinery applied to experts can be re-used for linear optimization,

helping to show how closely related these problems are. The lower bounds share

the form O
(√

T min
{

log κ, (log κ)
α√

T
})

, where κ and T are the problem’s

complexity and horizon, respectively, and α ≥ 0 is also problem dependent. In

particular, each bound is Ω
(√

T
)

and non-asymptotic in the problem’s dimen-

sion.
The remainder of this paper is organized as follows. The next section spec-

ifies the general format of the learning problems to be considered. Section 2.3
abstracts the max regret as an extreme value and derives general minimax regret
bounds (under the previously mentioned sufficient conditions), which are applied
in Section 2.4 to examples. Section 2.5 considers matching upper bounds, while
Section 2.6 summarizes a key computational issue.

2.2 Problem Setup: A Sequential Game

The sequential nature of the decision problem is tracked through co-ordinates,
using the following notation.

Definition 1 (Co-Ordinates). Superscripts on set elements denote time indices.

Learning is an alternating-turn game between Learner and Nature appear-
ing in Game 1. All sets are assumed non-empty.

Given: T ∈ Z+; sets X , Y, Z; F ⊆ ZX ; d : Z × Y → R
for t = 1, · · · , T do

1. Nature reveals xt ∈ X

2. The learner reveals f t ∈ F

3. Nature privately decides vt ∈ Y

4. yt := Uvt is publicly revealed

end
Game 1: Prediction

Though this is set up as a prediction problem, it subsumes online linear
optimization, as shown in Section 2.4.2.
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2.2.1 Player Strategies

Each decision f t is (implicitly) a map from the history of observations

(x1, y1), · · · , (xt−1, yt−1), xt

(to F ).
The following constraint on Nature is assumed:

(C2) ((xt, yt))Tt=1 are IID and there exists a countable set that almost
surely contains (x1, y1).

Whenever f t, x, or y appears, it is to be implicitly assumed it is a strategy
as just described, unless explicitly defined otherwise.

2.2.2 Objective

Let

RT (f, x, y) :=

T∑
t=1

d
(
f t(xt), yt

)
− inf
f∗∈F

T∑
t=1

d
(
f t∗(x

t), yt
)
.

Learner’s objective is its expected regret or cumulative loss in excess of the
best decision’s performance,

RegT (f, x, y) := ERT (f, x, y) (Id2.1)

(assuming the expectation exists), in the worst case:

RWCT (f) := sup
x,y

RegT (f, x, y) . (Id2.2)

The value of Game 1 is

ValT := inf
f

RWCT (f) .

Extending Reg to all maps z from the history of observations to Z, let zt be
its image in the tth period and

RegT (z, x, y) := ERT (f, x, y) . (Id2.3)

RWC and Val can be extended analogously. Denote the new value by ValT ,
where the underline signifies it is potentially smaller:

ValT ≥ ValT .
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2.3 Lower Bounds

2.3.1 Approximation of Sums

As the cumulative loss is a sum, it is useful to have general methods for approx-
imating sums. In the following, let (Lt) denote a sequence of random variables,
that is:

Definition 2 (Random Variable). Consistent with Condition (C2), a random
variable is a real-valued function for which there exists a countable set to which
the function maps almost surely.

This countability restriction simplifies the analysis by helping skirt issues of
measurability and allowing one to define expectation in terms of series rather
than a suprema over them. It is more a choice of presentation than a means to
achieving stronger results.

Definition 3 (Centeredness). A random variable is centered iff its expectation
is 0.

Theorem 2 (Marcinkiewicz-Zygmund). Suppose (Lt)t∈Z+
are independent and

each Lt is centered. Then

E

∣∣∣∣∣
T∑
t=1

Lt

∣∣∣∣∣ ≥ 1√
2
E

√√√√ T∑
t=1

L2
t .

Proof. See [31].

Definition 4 (Essential Supremum). For every random variable L, let ‖L‖∞
be its essential supremum, that is inf{C : |L| ≤ C almost surely}.

Proposition 3 (Expectation of Square Root). Suppose P(L ≥ 0) = 1 and
P(L = 0) < 1. Then ‖L‖∞ > 0 and

E
√
L ≥ EL√

‖L‖∞

Proof. If L is not almost surely zero, by countable additivity, there exists a finite
upper bound on |L| that holds with positive probability, giving ‖L‖∞ > 0.

‖L‖1 = E
(√

L
)2

Non-negativity

≤
∥∥∥√L∥∥∥

∞

∥∥∥√L∥∥∥
1

1

∞
+

1

1
= 1,Hölder

=
√
‖L‖∞ E

√
L.
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Corollary 1. Suppose the conditions of Theorem 2 and that L1 is not almost
surely 0. Then ‖L1‖∞ > 0 and

E

∣∣∣∣∣
T∑
t=1

Lt

∣∣∣∣∣ ≥ Var(L1)√
2‖L1‖∞

√
T .

Proof.

E

∣∣∣∣∣
T∑
t=1

Lt

∣∣∣∣∣
≥ 1√

2
E

√√√√ T∑
t=1

L2
t Theorem 2

≥ T EL2
1√

2T‖L1‖∞
Proposition 3

=
Var(L1)√
2‖L1‖∞

√
T L1 centered.

2.3.2 Max in Two Dimensions

In order to account for the maximum’s dependence on N , it is useful to establish
initial conditions at N = 2.

Lemma 1 (Symmetrization). Let (Lk)∞k=1 be random variables. Then, for
N > 1,

Emax {L1, · · · , LN} ≥
1

2
E|L1 − L2|.

Proof. For N > 1,

Emax {L1, · · · , LN} ≥ Emax {L1, L2} .

L1 and L2 are implicitly integrable (having a well defined expectation that
is not ±∞).

Emax {L1, L2}

=
1

2
E (L1 + L2 + max {L1 − L2, L2 − L1}) . (Id2.4)

When L1, L2 are centered, Identity Id2.4 simplifies to

1

2
Emax {L1 − L2, L2 − L1} =

1

2
E|L1 − L2|.
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Remark: L1 − L2 is symmetric when L1 and L2 are IID.

Theorem 3 (Max’s Growth for Bounded Random Variables). Suppose each
random variable of (Ln,t)n,t∈Z+

is centered, and that

(C3) L1,1 does not almost surely equal L2,1, and

(C4) ((Ln,t)n∈Z+)t∈Z are IID (over t).

Then, for all N > 1,

E max
n∈{1,··· ,N}

T∑
t=1

Ln,t ≥
Var(L1,1 − L2,1)

2
√

2‖L1,1 − L2,1‖∞

√
T .

Proof. Because N > 1, by Lemma 1,

E max
n∈{1,··· ,N}

T∑
t=1

Ln,t ≥
1

2
E

∣∣∣∣∣
T∑
t=1

L1,t −
T∑
t=1

L2,t

∣∣∣∣∣ (A2.5)

=
1

2
E

∣∣∣∣∣
T∑
t=1

dt

∣∣∣∣∣,
in which dt := L1,t − L2,t.

It remains to lower bound E
∣∣∣∑T

t=1 dt

∣∣∣. (dt) obeys the conditions of Theo-

rem 2 and d1 is not almost surely 0. By Corollary 1,

E

∣∣∣∣∣
T∑
t=1

dt

∣∣∣∣∣ ≥ Var(d1)√
2‖d1‖∞

√
T .

Remark: L1,1 −L2,1, as appears in Theorem 3, even under dependence, may
be a known distribution from which to derive its variance (and maximum mag-
nitude).

Proposition 4. Suppose L1, L2 are independent and EL2 = 0. Then

E|L1 + L2| ≥ E|L1|. (A2.6)

Proof.

E ( |L1 + L2||L1 ≥ 0) ≥ E (L1 + L2|L1 ≥ 0)

= E ( |L1||L1 ≥ 0) + EL2.
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Similarly, albeit more complicatedly,

E ( |L1 + L2||L1 < 0)

=P(L2 < 0)E (−L1 − L2|L1 < 0, L2 < 0)

+P(L2 ≥ 0)E ( ||L1| − |L2|||L1 < 0, L2 ≥ 0)

≥P(L2 < 0)E (−L1 − L2|L1 < 0, L2 < 0)

+P(L2 ≥ 0)E ( |L1| − |L2||L1 < 0, L2 ≥ 0)

=E ( |L1||L1 < 0) + P(L2 < 0)E (−L2|L2 < 0)

+P(L2 ≥ 0)E (−L2|L2 ≥ 0)

=E ( |L1||L1 < 0)− EL2.

Therefore,

E|L1 + L2|
≥E|L1|+ (P(L1 ≥ 0)− P(L1 < 0))EL2.

Lemma 2 (Monotonicity). Suppose (Lk,t)
2,∞
1,1 are centered and obey Condition

(C4). Then

Emax

{
T∑
t=1

L1,t,

T∑
t=1

L2,t

}
is non-decreasing as a function of T .

Proof. For all k ∈ {1, 2}, let Sk,T :=
∑T+1
t=1 L1,t.

By Lemma 1,

Emax

{
T+1∑
t=1

L1,t,

T+1∑
t=1

L2,t

}
= Emax {L1,T+1 + S1,T , L2,T+1 + S2,T }

=
1

2
E|S1,T − S2,T + L1,T+1 − L2,T+1|

=
1

2
E|∆S + ∆L|, (Id2.7)

in which ∆S := S1,T − S2,T and ∆L := L1,T+1 − L2,T+1 are independent and
centered; whereas,

Emax

{
T∑
t=1

L1,t,

T∑
t=1

L2,t

}
=

1

2
E|∆S|.

Invoking Proposition 4 concludes.
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2.3.3 Max in High Dimensions

It remains to account for the maximum’s dependence on κ, which either has a
(i) bounded or (ii) unbounded growth for a fixed horizon T . In case (i), there is
hope for a lower bound of the separable form f(κ)g(T ). Bounded growth make
this impossible (except for situations where f is bounded). The remainder of
this section is devoted to determining potentially non-separable decompositions.

An idea for simplifying the max of a sum is the following.

Lemma 3 (Tempered Super-Additivity for Two Terms). Suppose D is a set;

B ⊆ {β : ∃α0 : (α0, β) ∈ D}

and, for all β ∈ B, Aβ ⊆ {α : (α, β) ∈ D} are non-empty;

(C5) a : D → R; b : D → R; and

(C6) there exist α∗ : β ∈ B 7→ α∗(β) ∈ Aβ and β∗ ∈ B such that, for all
β ∈ B,

(α∗(β), β) ∈ D
a(α∗(β), β) ≥ sup

α∈Aβ
a(α, β)

b(α∗(β∗), β∗) ≥ sup
β∈B

b(α∗(β), β).

Then

sup
(α,β)∈D

[a(α, β) + b(α, β)] ≥ sup
α∈Aβ∗

a(α, β∗) + sup
β∈B

b(α∗(β), β).

Proof. Because a supremum is at least as great as any particular point and
(α∗(β∗), β∗) ∈ D,

sup
(α,β)∈D

a(α, β) + b(α, β) ≥ a(α∗(β∗), β∗) + b(α∗(β∗), β∗)

≥ sup
α∈Aβ∗

a(α, β∗) + sup
β∈B

b(α∗(β), β),

by Condition (C6).

The following corollary shows one way by which the foregoing idea applies
to product spaces.

Corollary 2 (Tempered Super-Additivity Specialized to a Product Space).
Suppose

(C7) {A,B} are finite, non-empty sets; and
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Condition (C5) with D := A×B. Then, for all α∗ mapping β ∈ B to a branch
of argmaxα∈A a(α, β) and β∗ ∈ argmaxβ∈B b(α∗(β), β),

max
(α,β)∈D

[a(α, β) + b(α, β)] ≥ max
α∈A

a(α, β∗) + max
β∈B

b(α∗(β), β)

≥ min
β∈B

max
α∈A

a(α, β) + min
α∈A

max
β∈B

b(α, β).

Proof. In Lemma 3, one can takeAβ , B, α∗, β∗ to be, respectively, theA,B, α∗, β∗
of this corollary.

Corollary 3 (Tempered Super-Additivity). Suppose

(C8) {Ai}Ki=1 are finite, non-empty sets;

and, for all i ∈ {1, · · · ,K}, ai : ×Ki=1Ai → R. Then

max
α∈×Ki=1Ai

K∑
i=1

ai(α) ≥
K∑
i=1

min
α−k∈×i6=kAi

max
αk∈AK

a(α). (A2.8)

As to obtaining product spaces, it suffices to extend a function, and use the
following observation.

Proposition 5. Suppose {Ai}i∈{1,··· ,K} are nonempty sets, D ⊆ ×Ki=1Ai, ι :
×Ki=1Ai → D is an injection, and a×Ki=1 Ai :→ R. Then

sup
α∈D

a(α) ≥ sup
α′∈×Ki=1Ai

a (ι(α′)) .

More work needs to be done when considering expected maxima, because
one would like the minima in sum decomposition Approximation A2.8 to appear
outside the expectation.

Definition 5 (Distributions). ∼ means distributed as, ⊥ (statistically) inde-
pendent.

The following two propositions follow directly from definitions.

Proposition 6 (Replacement). If a ∼ b and f is a deterministic function, then
E f(a) = E f(b).

Proposition 7 (Identical Distributions). If a ⊥ b, a ⊥ c, and b ∼ c, then
(a, b) ∼ (a, c).

Lemma 4 (Mean Version). Suppose

(C9) D is a set;

(C10) A := {α : ∃β0 : (α, β0) ∈ D} and B := {β : ∃α0 : (α0, β) ∈ D} are non-
empty;

(C11) Ω is a sample space;
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(C12) a, b are independent random functions such that for all ω ∈ Ω, aω, bω :
D → R;

(C13) sup(α,β)∈D a(α, β) + b(α, β) is integrable; and

(C14) there exist measurable α∗ : RD → A and β∗ : RD × RD → B such that,
for all β ∈ B,

(αa∗, β) ∈ D
a(αa∗, β) = sup

α:(α,β)∈D
a(α, β)

b(αa∗, β
a,b
∗ ) = sup

β∈B
b(αa∗, β)

a ⊥ βa,b∗ .

Then

E sup
(α,β)∈D

a(α, β) + b(α, β) ≥ inf
β∈B

E sup
α:(α,β)∈D

a(α, β) + inf
α∈A

E sup
β:(α,β)∈D

b(α, β).

Proof. By Lemma 3 (integrability ensures the expectation exists and distributes
with inequality in the designated direction),

E sup
(α,β)∈D

a(α, β) + b(α, β) ≥ E sup
α:(α,β)∈D

a(α, βa,b∗ ) + E sup
β∈B

b(αa∗, β).

By Condition (C14), there exists βb ∼ βa,b∗ . By Proposition 7, (a, βa,b∗ ) ∼
(a, βb). Then

E sup
α:(α,βa,b∗ )∈D

a(α, βa,b∗ ) = E sup
α:(α,βb)∈D

a(α, βb) Proposition 6

= E
b
E
a

sup
α:(α,β)∈D

a(α, β) a ⊥ b

≥ inf
β∈B

E
a

sup
α:(α,β)∈D

a(α, β)

= inf
β∈B

E sup
α:(α,β)∈D

a(α, β).

Similarly (but more simply because α∗ depends only on a),

E sup
β∈B

b(αa∗, β) = E
a
E
b

sup
β∈B

b(αa∗, β) a ⊥ b

≥ inf
α∈A

E
b

sup
β:(α,β)∈D

b(α, β)

= inf
α∈A

E sup
β:(α,β)∈D

b(α, β).

Corollary 4 (Mean Version for Product Spaces). Suppose Condition (C7),
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(C15) Condition (C12) with D := A×B;

(C16) for all α, α′ ∈ A and β ∈ B,

b(α, β) ∼ b(α′, β),

and Condition (C13). Then

E sup
(α,β)∈D

a(α, β) + b(α, β) ≥ inf
β∈B

E sup
α:(α,β)∈D

a(α, β) + inf
α∈A

E sup
β:(α,β)∈D

b(α, β).

Proof. In Lemma 4, one can take Aβ , B to be the A,B of this corollary, αa∗(β)

a branch of argmaxα∈A a(α, β), and βa,b∗ ∈ argmaxβ∈B b(α
a
∗(β), β). Then, by

Condition (C16), a ⊥ βa,b∗ .

Lemma 5 (Recurrence Lower Bound). For all a, b ∈ Z, let [a, b] ((a, b]) denote
the discrete interval {a, a + 1, · · · , b} ({a + 1, · · · , b}, respectively). Suppose
Condition (C4) and

(C17) for all i, j ∈ [1, N ], k ∈ {i, j}, and T0 ∈ [1, T − 1],

P

(
T∑

t=T0+1

Lk,t = min
k∗∈{i,j}

T∑
t=T0+1

Lk∗,t

)
≥ 1/2.

For all N ⊆ [1, N ], let

MN ,T := Emax
n∈N

T∑
t=1

Ln,t. (Id2.9)

Let ι : [1, dN/2e]× {0, 1} → [1, N ]. Then, for N > 1 and T0 ∈ [0, T ],

M[1,N ],T ≥ min
j∈{0,1}

Mι([1,dN/2e]×{j}),T0
+ min
i∈[1,dN/2e]{0,1}

Mι((i(0),0)∪(i(1),1)),T−T0
.

(A2.10)

Suppose also N = 2k for some k ∈ Z+. Then there exists a re-ordering, say
σ, such that for

Mσ
N ,T := Emax

n∈N

T∑
t=1

Lσ(n),t,

M[1,N ],kT ≥
k∑
t=1

min
i∈[1,N/2t],

j∈(N/2t,N/2t−1]

Mσ
{i,j},T . (A2.11)
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Proof.

max
k∈[1,N ]

Lk1:T ≥ max
k∈[1,dN/2e]×{0,1}

L
ι(k)
1:T

= max
k∈[1,dN/2e]×{0,1}

(
L
ι(k)
1:T0

+ L
ι(k)
T0.T

)
. (A2.12)

By Corollary 2 with b(k) := L
ι(k)
T0.T

and B := {0, 1}, Approximation A2.12 is
lower bounded by

max
α∈A

a(α, β∗) + max
β∈B

b(α∗(β), β) = max
i∈[1,dN/2e]

L
ι(i,j∗)
1:T0

+ max
j∈{0,1}

L
ι(i∗(j),j)
T0.T

,

where i∗ is a branch of argmaxi∈[1,dN/2e] L
ι(i,·)
1:T0

as a function of j and

j∗ ∈ argmax
j∈{0,1}

L
ι(i∗(j),j)
T0.T

can otherwise be random.
Therefore,

M[1,N ],T ≥ E max
i∈[1,dN/2e]

L
ι(i,j∗)
1:T0

+ E max
j∈{0,1}

L
ι(i∗(j),j)
T0.T

.

By Condition (C17), conditioned on i∗, 0 ∈ argmaxj∈{0,1} L
ι(i∗(j),j)
T0.T

with
at least probability 1/2, and similarly for 1. Thus, j∗ can be given a distri-
bution that endows 0 with probability 1/2. Furthermore, by Condition (C4),

conditioned on i∗, argmaxj∈{0,1} L
ι(i∗(j),j)
T0.T

is independent of L1:T0
. Then

E max
i∈[1,dN/2e]

L
ι(i,j∗)
1:T0

=EE
(

max
i∈[1,dN/2e]

L
ι(i,j∗)
1:T0

∣∣∣∣ i∗, L1:T0

)
=E

(
1

2
max

i∈[1,dN/2e]
L
ι(i,0)
1:T0

+
1

2
max

i∈[1,dN/2e]
L
ι(i,1)
1:T0

)
=

1

2

(
E max
i∈[1,dN/2e]

L
ι(i,0)
1:T0

+ E max
i∈[1,dN/2e]

L
ι(i,1)
1:T0

)
≥ min
j∈{0,1}

Mι([1,dN/2e]×{j}),T0
.

As for the second term of Approximation A2.10,

E max
j∈{0,1}

L
ι(i∗(j),j)
T0.T

=EE
(

max
j∈{0,1}

L
ι(i∗(j),j)
T0.T

∣∣∣∣ i∗)
≥ min
i∈[1,dN/2e]{0,1}

E
(

max
j∈{0,1}

L
ι(i∗(j),j)
T0.T

∣∣∣∣ i∗ = i

)
= min
i∈[1,dN/2e]{0,1}

E
(

max
j∈{0,1}

L
ι(i(j),j)
T0.T

∣∣∣∣ i∗ = i

)
= min
i∈[1,dN/2e]{0,1}

E max
j∈{0,1}

L
ι(i(j),j)
T0.T

, (A2.13)
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because of independence (via Condition (C4)) of i∗ and LT0.T . By Approxima-
tion A2.13,

E max
j∈{0,1}

L
ι(i∗(j),j)
T0.T

≥ min
i∈[1,dN/2e]{0,1}

E max
j∈{0,1}

L
ι(i(j),j)
T0.T

= min
i∈[1,dN/2e]{0,1}

E max
j∈{0,1}

L
ι(i(j),j)
1:T−T0

,

because Lt are distributed identically over time. Therefore, Approximation A2.10
holds.

Now let k ∈ Z+, N = 2k, and the horizon be kT in place of T , with the
latter replacing T0.

Under an appropriate ordering σk−1,

Mσ1

[1,2k−1],(k−1)T
= min

N∈
{

[1,2k−1],
(2k−1,2k]

}Mσ1

N ,(k−1)T .

If σj obeys

M
σj
[1,2k−1],(k−1)T

= min

N∈
{

[1,2k−1],
(2k−1,2k]

}Mσj
N ,(k−1)T

...

M
σj
[1,2j ],jT = min

N∈
{

[1,2j],
(2j ,2j+1]

}Mσj
N ,jT ,

then there exists σj−1 obeying σj−1(i) = σj(i) for i > 2j and

M
σj−1

[1,2k−1],(k−1)T
= min

N∈
{

[1,2k−1],
(2k−1,2k]

}Mσj−1

N ,(k−1)T

...

M
σj−1

[1,2j−1],(j−1)T = min

N∈
{

[1,2j−1],
(2j−1,2j]

}Mσj−1

N ,(j−1)T .

Therefore, by induction, there exists σ1 such that

Mσ1

[1,2k−1],(k−1)T
= min

N∈
{

[1,2k−1],
(2k−1,2k]

}Mσ1

N ,(k−1)T

...

Mσ1

{1,2},T = min
N∈{{1,2},{3,4}}

Mσ1

N ,T .
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By the assumption of identical distributions (Condition (C4)), Condition (C17)
applies equally well to each epoch [1, T ], (T, 2T ], · · · , ((k−1)T, kT ], not only to
the last one. Therefore, the reasoning establishing Approximation A2.10 applies
to each epoch. Thus, for every j ∈ {2, · · · , k},

Mσ1

[1,N/2k−j ],jT

=Mσ1

[1,2j ],jT

≥ min

N∈
{

[1,2j−1],
(2j−1,2j]

}Mσ1

N ,T0
+ min

i∈[1,2j−1],

i′∈(2j−1,2j]

Mσ1

{i,i′},jT−T0

= min

N∈
{

[1,2j−1],
(2j−1,2j]

}Mσ1

N ,(j−1)T + min
i∈[1,2j−1],

i′∈(2j−1,2j]

Mσ1

{i,i′},T ,

having taken T0 := (j − 1)T . Therefore,

Mσ1

[1,2j ],jT

≥ min

N∈
{

[1,2j−1],
(2j−1,2j]

}Mσ1

N ,(j−1)T + min
i∈[1,2j−1],

i′∈(2j−1,2j]

Mσ1

{i,i′},T

=Mσ1

[1,2j−1],(j−1)T + min
i∈[1,2j−1],

i′∈(2j−1,2j]

Mσ1

{i,i′},T ,

by construction of σ1. By induction, Approximation A2.11 holds.

In the following, separability of dimension and time in the lower bound
occurs at certain scales.

Lemma 6 (Quantized Dimension-Dependent Bound). Suppose the conditions
of Theorem 3 and (C17). Then, for all integers K ≥ 1,

M{1,··· ,2K},KT ≥ K
Var(L1,1 − L2,1)

4
√

2b

√
T , (A2.14)

in which M{1,··· ,2K},KT is defined by Identity Id2.9.

Proof. By Lemma 5, to show Approximation A2.14, it suffices to show

min
card(N )=2

MN ,T ≥
Var(L1,1 − L2,1)

4
√

2b

√
T ,

which is the content of Theorem 3.

2.3.4 Game Value Bounds

Once again, consider Game 1.
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Proposition 8 (Commutation Lower Bound). Suppose there exists x, y such
that inff∗∈F E d

(
f∗(x

1), y1
)
<∞.

ValT ≥ sup
x,y

[
T inf
f∗∈F

Ed
(
f∗(x

1), y1
)
− E inf

f∗∈F

T∑
t=1

d
(
f∗(x

t), yt
)]
.

Proof. The finiteness assumption ensures the expectation is additive.
For every x, y, f t0 ∈ F, t ∈ {1, · · · , T};

Ed
(
f t0(xt), yt

)
≥ inf
f∗∈F

Ed
(
f∗(x

t), yt
)

= inf
f∗∈F

Ed
(
f∗(x

1), y1
)
.

Hence,

E
T∑
t=1

d
(
f t0(xt), yt

)
≥ T inf

f∗∈F
E d
(
f∗(x

1), y1
)
.

Definition 6 (Set of Minimizers). Given Nature’s strategy x, y, let Fopt ⊆ F
denote the set of minimizers attaining

inf
f∗∈F

Ed
(
f∗(x

1), y1
)
.

Regret can be written as a transformation of a single sum of differences. It
turns out this sum can be bounded by one where the terms are centered, for
which the following notation is useful.

Definition 7 (Centered Difference). For all x, y and f∗ ∈ Fopt, dt(f∗, x, y) :=
E[d
(
f∗(x

1), y1
)
]− d(f∗(x

t), yt) and

DT (f∗) :=

T∑
t=1

dt(f∗, x, y).

Lemma 7 (Sum of Centered Differences Lower Bound). Suppose x and y are
such that

(C18) there exists f∗ ∈ Fopt such that d
(
f∗(x

t), y1
)

is integrable.

Then, for all non-empty F∗ ⊆ Fopt and T ∈ Z+,

ValT ≥ inf
ft

ERT (f, x, y) ≥ E sup
f∗∈F∗

DT (f∗). (A2.15)

If, further,

(C19) inff∗∈F Ed
(
f∗(x

1), y1
)
≤ inff∗∈ZX Ed

(
f∗(x

1), y1
)
,
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then
ValT ≥ E sup

f∗∈F∗
DT (f∗).

Proof. Suppose the lemma’s conditions and let C := inff∗∈F∗ Ed
(
f∗(x

t)1, y1
)
.

By Condition (C18) and Proposition 8 (regardless of x and y),

ValT ≥ E

[
TC − inf

f∗∈F

T∑
t=1

d
(
f∗(x

t), yt
)]

≥ E

[
TC − inf

f∗∈F∗

T∑
t=1

d
(
f∗(x

t), yt
)]

Condition (C20), Approximation A1.4.

(A2.16)

By Definition 6, for all f t ∈ F∗,

C = E d
(
f1(x1), y1

)
. (Id2.17)

Plugging Identity Id2.17 into Approximation A2.16,

ValT ≥ E sup
ft∈F∗

T∑
t=1

[E d
(
f1(x1), y1

)
− d
(
f t(xt), yt

)
].

Low Dimensionality

Remark 1. Under the conditions of Lemma 7, given any two distinct points
f t1, f

t
2 ∈ Fopt, Theorem 3 can be applied with

F∗ := {f t1, f t2}
L1,t := E[d

(
f t1(x1), y1

)
]− d

(
f t1(x1), y1

)
L2,1 := E[d

(
f t2(x1), y1

)
]− d

(
f t2(x1

1), y1
)
,

provided Condition (C3) is satisfied. Indeed, then L1,t and L2,t are centered
(integrable by Condition (C18)) and obey Condition (C4). Note two such points
may exist even when X ⊆ R, as with the upcoming online linear optimization
problem in Section 2.4.2.

High Dimensionality

Given the choice of a space denoted F∗, let κ be its cardinality. To consider
dimensionality effects, it turns out that it suffices to derive lower bounds that
depend on κ for a space subject to the conditions of Corollary 5. In applications,
these are intended to be proved with the aid of Lemma 5 (whose lower bounds are
of a form similar to Approximation A2.18). This proof technique is illustrated
in the next corollary.
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Definition 8 (Support). For a X-valued random variate x, let supp(x) :=
∩A⊆X:P(x∈A)=1A.

Corollary 5 (Value Lower Bound). Suppose the conditions of Lemma 7;

(C20) F∗ ⊆ Fopt;

(C21) κ <∞; and

(C22) g : Z+ × Z+ → Z+, h : Z+ × Z+ → R, and w∗, w
′
∗ are such that for all

T ∈ Z+,

E sup
ft∈F∗

DT (f∗, x, y) ≥ h (κ, T )E max
w∈{f∗,f ′∗}

Dg(κ,T )(f
t). (A2.18)

Then, for all T ∈ Z+,

ValT ≥ Ch (κ, T )
√
g (κ, T ), (A2.19)

in which

C :=
Var
(
d
(
f∗(x

1), y1
)
− d
(
f ′∗(x

1), y1
))

4
√

2b
(Id2.20)

b := sup
ft∈{f∗,f ′∗},x∗∈supp(x),y∗∈supp(y)

|d(f (x∗) , y∗)|,

in which supp denotes the smallest set containing its argument almost surely.2

Proof. Given the stated conditions, by Lemma 7, it suffices to show

E max
f∗∈{f∗,f ′∗}

T∑
t=1

dt(f∗, x, y) ≥ C
√
T ,

which follows from Theorem 3, where the necessary bounds do not depend on t
due to Condition (C2).

Corollary 6 (Value Lower Bound for Bounded Growth). Suppose Conditions
(C18), (C20), (C21), and

(C23) for all t ∈ Z+ and f, f ′, f ′′ ∈ F∗ such that f ′′ ∈ {f, f ′},

P
(
DT (f ′′)−Dt (f ′′) = min

k∈{f,f ′}
DT (k)−Dt(k)

)
≥ 1/2.

Then, for all T ∈ Z+,

ValT ≥ C̃ min
{
T,
√
T log2 (κ)

}
,

2Recall Condition (C2).
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in which

C̃ :=
min Var

(
d
(
f∗(x

1), y1
)
− d
(
f ′∗(x

1), y1
))

8 log2(3) sup f∈F∗,
x∈X,y∈Y

|d(f (xt) , y)|
, (Id2.21)

where the minimum is over distinct f∗, f
′
∗ ∈ F∗. If, further, Condition (C19)

holds, then, for all T ∈ Z+,

ValT ≥ C̃ min
{
T,
√
T log2 (κ)

}
,

Proof. Indexing the elements of F∗ by {1, · · · , κ}, and applying Lemma 7,
bounds the value by M{1,··· ,κ},T as defined by Identity Id2.9, with the defi-
nitions given by Remark 1.

Condition (C23) satisfies (C17).
Let all logarithms that appear be base 2 and K := min{log κ, T}. By

Lemma 5 and monotonicity (Lemma 2), for all κ, T ∈ Z+,

M{1,··· ,κ},T ≥ bKc min
card(N )=2

MN ,b TK c

≥ CbKc

√⌊
T

K

⌋
, (A2.22)

by Corollary 5, with

g(κ, T ) =

⌊
T

K

⌋
h(κ, T ) = bKc

{f∗, f ′∗} = argmin
card(N )=2

MN ,b TK c.

The two factors C and bKc
√⌊

T
K

⌋
of Approximation A2.22 will be bounded

in turn.

C ≥ min
f∗,f ′∗∈F∗

Var
(
d
(
f∗(x

1), y1
)
− d
(
f ′∗(x

1), y1
))

4
√

2b

b ≤ sup
f∗∈F∗,x∈X,y∈Y

|d
(
f∗(x

t), y
)
|.
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where a max would make sense for F∗,N by Condition (C21).

bKc

√⌊
T

K

⌋

≥ min

{
log κ

log 3
, T

}√
max

{⌊
T

log κ

⌋
, 1

}

= min

{
log κ

log 3
, T

}
max

{
1,

√⌊
T

log κ

⌋}

≥ min

{
log κ

log 3
, T

}
max

{
1,

√
T

2 log κ

}

≥ min

{
log κ

log 3

√
T

2 log κ
, T

}

= min

{ √
log κ√

2 log 3

√
T , T

}
≥ 1√

2 log 3
min

{√
T log κ, T

}
.

4
√

2
√

2 = 8.

2.4 Choice of F∗

For applications to experts and online linear optimization, for a given dimen-
sionality, it suffices to take F∗ as the vertices of F (when F can be regarded as
a linear space).

2.4.1 Experts

(C24) For a given dimensionality N , Game 1 recovers the experts setting
via X := ZN and F becoming the set of N coordinate projections
on X.

This is essentially the setting of [15] (see its p. 7), with special cases in [13]3

(absolute loss) and [47] (linear loss). [32] generalizes certain aspects of the latter
(allowing F to depend on time)—see its p. 4. One recovers a special case of
the experts setting here by fixing its Nt, C(i, t) by N, i, respectively, for all
i ∈ {1, · · · , N}. The case where randomized decisions are allowed is considered
in [3].

The following results are meant to help check the conditions of Corollary 6.

3Which interestingly uses “`” to denote the horizon.
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Proposition 9 (Symmetric Extreme). Suppose L1 − L2 is symmetrically dis-
tributed. Then

P(L1 = min {L1, L2}) ≥
1

2
.

Proof.

P(L1 = min {L1, L2}) = P(L1 ≤ L2)

= 1− P(L1 > L2).

1 = P(L1 < L2) + P(L1 = L2) + P(L1 > L2)

= 2P(L1 > L2) + P(L1 = L2),

by symmetry. Hence,

P(L1 > L2) ≤ 1

2
.

Proposition 10 (Exchangeability of Identical Distributions). Suppose L1 and
L2 are identically distributed and that each has a support of no more than two
real numbers. Then they are exchangeable.

Proof. If the support is a singleton, then the result is trivial. Suppose the
support is two points x1, x2.

Because P(L1 = x1) = P(L2 = x1),

P(L1 = x1, L2 = x1) + P(L1 = x1, L2 = x2)

= P(L1 = x1, L2 = x1) + P(L1 = x2, L2 = x1),

which is equivalent to

P(L1 = x1, L2 = x2) = P(L1 = x2, L2 = x1).

The following is relevant to the satisfaction of Condition (C23).

Corollary 7. If, for every t ∈ {1, · · · , T}, L1,t and L2,t are identically dis-
tributed on two distinct real numbers, then

P

(
T∑
t=1

L1,t = min

{
T∑
t=1

L1,t,

T∑
t=1

L2,t

})
≥ 1

2
.

Proof. Proposition 10 provides exchangeability of each pair of tth terms in the
sums, so exchanging all of them shows the sums themselves are exchangeable.
Exchangeability implies symmetry. Proposition 9 concludes.
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Lemma 8. Suppose Condition (C24) and

(C25) there exists z, z′ ∈ Z, y0 ∈ Y , and strategy y such that (i) y0 has mass,
(ii)

Ed(z, y) = Ed(z′, y) ≤ inf
z∗∈Z

Ed(z, y),

and (iii) for all z′′ ∈ {z, z′}, E|d(z′′, y)| <∞.

Then, letting the components of x be uniformly distributed on {z, z′} and F∗ :=
F , Conditions (C18)–(C21) and (C23) are satisfied.

Proof. Condition (C24) guarantees (C20) and (C21).
Condition (C25) and the restriction of x to {z, z′}N guarantees Conditions

(C18)–(C20).
By Corollary 7, Condition (C24) and the construction of x to be uniform

together satisfy (C23).

Lemma 9. Suppose (C26) there exist distinct y0, y
′
0 ∈ Z ∩ Y , and (C27) d is

a metric on Z ∪ Y . Then Condition (C25) holds with y uniformly distributed
over {y0, y

′
0} independently of x, z := y0, and z′ := y′0.

Proof. There exists y uniformly distributed over {y0, y
′
0}. Then

inf
z∈Z

Ed(z, y) = inf
z∈Z

1

2
[d(z, y0) + d(z, y′0)]

= inf
z∈Z

1

2
[d(y0, z) + d(z, y′0)] Symmetry

≥ inf
z∈Z

1

2
d(y0, y

′
0) Triangle

=
1

2
d(y0, y

′
0)

=
1

2
(d(y0, y

′
0) + d(y0, y0)) (Id2.23)

=
1

2
(d(y0, y

′
0) + d(y′0, y

′
0)) , (Id2.24)

where Identities Id2.23 and Id2.24 are equal to, respectively, Ed(y0, y) and
E d(y′0, y).

Proposition 11 (Variance Concerning Losses). Let x, y, z be uniformly and
independently distributed on {y0, y

′
0} and d a metric. Then

Var(d(x, z)− d(y, z)) =
d(y0, y

′
0)

2
.
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Proof. Let B ∼ Bernoulli(1/2).

Var(d(x, z)− d(y, z))

= EVar(d(x, z)− d(y, z)| z) + Var(E (d(x, z)− d(y, z)| z))
= 2EVar(d(x, z)| z)

= 2 d(y0, y
′
0)

2
Var(B)

=
d(y0, y

′
0)

2

2
.

Consequently, one has the following.

Theorem 4 (Value Lower Bound). Suppose Conditions (C24) and (C26)–
(C27). Then, for all T ∈ Z+,

ValT ≥
d(y0, y

′
0)

16 log2 3
min

{
T,
√
T log2N

}
.

Proof. By Lemma 9, Condition (C25) holds with z := y0 and z′ := y′0.
Given the satisfaction of Conditions (C24) and (C25), by Lemma 8, the

conditions of Corollary 6 ((C18), (C20), (C21), and (C23)) are satisfied.
Re what the latter result says,

C̃N =
mini 6=j Var

(
d
(
x1
i , y

1
)
− d
(
x1
j , y

1
))

8 log 3 sup i∗∈{1,··· ,N},
x∈X,y∈Y

|d(xi∗ , y)|
.

Let the components of x be independent so that

min
i 6=j

Var
(
d
(
x1
i , y

1
)
− d
(
x1
j , y

1
))

= Var
(
d
(
x1

1, y
1
)
− d
(
x1

2, y
1
))

=
d(y0, y

′
0)

2
,

by Proposition 11.

For the setting of [13] and [15]’s Theorem 3.7, one can take, in Theorem 4,
Y = R, d as absolute loss, y0 = 0, and y′0 = 1. Though the resulting con-
stant 1

16 log2 3 is worse than the asymptotically optimal 1√
2 log2(e)

, it applies

non-asymptotically and in high dimensions. Moreover, this paper’s theory is
not designed to obtain optimal constants, but rather to be general and simple
relative to its generality; obtaining the optimal constant requires more special-
ized techniques.
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2.4.2 Online Linear Optimization with Box Constraints

Corollary 6 recovers, as follows, the minimax behavior of online linear optimiza-
tion ([1]).4

To model linear loss, one can take X to be a singleton or disavow its presence
and let d(f t, y) := y(f t).

Lemma 10 (Conditions Satisfaction). Suppose

(C28) N ∈ Z+, F := [−1, 1]
N

, F∗ := {−1, 1}N , d is the dot product,

and that there exist distinct x0, x
′
0 ∈ X of opposite signs. Then there exists

xt whose co-ordinates are identically distributed on {y0, y
′
0} so that E y1

1 = 0,
satisfying Conditions (C18), (C20), (C21), and (C23).

Proof. Re the prescription of y, given any two elements of opposite sign, one
can construct a distribution on them having mean 0. The construction of y
to have zero expectation guarantees (i) for all w ∈ F , −∞ < Ew · y1 =(∑N

k=1 wk

)
E y1

1 = 0 <∞, satisfying Condition (C18); and (ii) (C23).

Condition (C28) guarantees (C20) and (C21).

Proposition 12 (Variance Concerning Losses). Suppose y0, y
′
0 ∈ R are non-

zero and have opposite signs. Let x be distributed on {y0, y
′
0} so that Ex = 0.

Then

Var(x) = −y0y
′
0

Proof. Let p = P(x = y0). py0 + (1 − p)y′0 = 0 implies p =
−y′0
y0−y′0

and 1 − p =
y0

y0−y′0
.

Var(x) =
1

y0 − y′0

(
−y′0y2

0 + y0y
′
0
2
)

=
y0y
′
0

y0 − y′0
(−y0 + y′0)

= −y0y
′
0.

Theorem 5 (Value Lower Bound). Suppose the conditions of Lemma 10. Then,
for all T ∈ Z+,

ValT ≥
−y0y

′
0√

2 max {|y0|, |y′0|}
N
√
T . (A2.25)

4More generally, constrained online linear optimization is known to exhibit
√
T behavior

([6, 56, 61]; and footnote 3 of [34]). In contrast, see [57] re unconstrained optimization.
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Proof. Adopting the x of Lemma 10,

E sup
w∈F∗

T∑
t=1

E[d
(
wx1, y1

)
]− d

(
wxt, yt

)
=E sup

w∈{−1,1}N

T∑
t=1

0− wxt

=E sup
w∈{−1,1}N

w

T∑
t=1

−xt

=E sup
w∈{−1,1}N

N∑
n=1

wn

T∑
t=1

−xtn

=E
N∑
n=1

sup
wn∈{−1,1}

wn

T∑
t=1

−xtn

=N E sup
w1∈{−1,1}

w1

T∑
t=1

−xt1, (Id2.26)

because the components of x are identically distributed. Continuing with Iden-
tity Id2.26,

N E sup
w1∈{−1,1}

w1

T∑
t=1

−xt1

=N E sup
w∈{−1,1}1

T∑
t=1

0− wxt1

=N E max
w∈{−1,1}1

T∑
t=1

E[d
(
wx1

1, y
1
)
]− d

(
wxt1, y

t
)
.

Note, by Condition (C28), κ = 2N . Thus, Condition (C22) is satisfied with

h (κ, T ) ≡ log2 (κ)

g (κ, T ) ≡ T
f∗ = (1, 0, · · · , 0)

f ′∗ = (−1, 0, · · · , 0).

By Corollary 5,

C =
Var
(
d
(
f∗x

1, y1
)
− d
(
f ′∗x

1, y1
))

4
√

2 sup w∈{f∗,f ′∗},
x∗∈supp(x),y∗∈supp(y)

|d(wx∗, y∗)|

=
Var
(
2x1

1

)
4
√

2 max {|x0|, |x′0|}
.
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Var
(
2x1

1

)
= −4x′0x0,

by Proposition 12, yielding Approximation A2.25.

Infinite Dimensions

The following is a special case of Game 1 and a form of online linear optimization.

Given: T ∈ Z+, vector space X , X ⊆ X , W ⊆ X ∗
for t = 1, · · · , T do

1. Learner decides w ∈W

2. Nature generates xt ∈ X

3. Learner loses (wx)t

end
Game 2: Select from Dual

Theorem 6 (Value under Measure Constraints). Suppose X is a subset of RU
whose elements are integrable including constant functions y0 > 0 and y′0 < 0,
ΣU is a σ-algebra on U , C ≥ 0, and

W :=

 x 7→
∫
x(u)dµ(u) :

µ signed measure on ΣU ∧
∫
d|µ| = C

 .

Then

ValT ≥
−y0y

′
0√

2 max {|y0|, |y′0|}
C
√
T . (A2.27)

Proof. Letting each xt be identically distributed on {x0, x
′
0} so that Ex1 = 0,
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then

E sup
w∈W∗

T∑
t=1

E[d
(

(wx)t
1
, y1
)

]− d
(

(wx)t
t
, yt
)

=E sup
w∈W∗

T∑
t=1

0− (wx)t
t

=E sup
wW∗

w

T∑
t=1

−xt

=E sup∫
|µ|=C

∫ [ T∑
t=1

−xt(u)

]
dµ(u)

=E sup∫
|µ|=C

∫ [ T∑
t=1

−xt
]
dµ(u) xt constant

=C E

∣∣∣∣∣
T∑
t=1

−xt
∣∣∣∣∣

≥ C
Var
(
x1
)

√
2‖x1‖∞

√
T Corollary 1

=C
−x0x

′
0√

2 max {|x0|, |x′0|}
√
T Proposition 12.

Lemma 7 concludes.

Remark: Theorem 6 generalizes Theorem 5.

Remark: Under additional assumptions, W is the “Riesz representation” of
those continuous linear functionals whose operator norm is C.

2.5 Upper Bounds

In designing algorithms, it is usually sufficient to consider the following variant
of Game 1, where the Learner decides its prediction function based solely on
the past and not current features. This allows the generation turns of the game
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to be compressed into a single step:

Given: T ∈ Z+; vector space X ; sets X ⊆ X , Y , W ⊆ X ∗;
d : X × Y → R

for t = 1, · · · , T do

1. Learner decides w ∈W

2. Nature generates (x, y)t ∈ X × Y

3. Learner loses d(wx, y)
t

end
Game 3: Single Generation Step

In proving an upper bound for an adversarial process, one may begin by
fixing a deterministic x, y, an element w∗ ∈ W , and formulating an algorithm
for w. In that way, the regret becomes a deterministic sum

T∑
t=1

d(wx, y)
t − d

(
w∗ · xt, yt

)
(Id2.28)

whose terms have a memory only through w.
The foregoing sum can be abstracted in the form

T∑
t=1

[ft(w
t)− ft(w∗)] =

T∑
t=1

gt(w
t, wt+1).

The addition of wt+1 provides an avenue to bounding each term by those of the
form hT (w∗, w) − hT (w∗, w

t+1) + cT (w∗), so that the presence of w telescopes
away, and with it, memory (except for a fixed number, 2, of terms). That bound

ft(w
t)− ft(w∗) ≤ hT (w∗, w)− hT (w∗, w

t+1) + cT (w∗),

can be interpreted as approximating a difference between (i) wt and w∗ with
that of (ii) the former term and wt+1; cT (w∗) is then an (approximate) error.

How might finding such a bound be easier than the original problem? By
restricting wt+1 to be of the form Φ(w, ft), the problem can be further abstracted
as determining h, c, and Φ so that

f(w)− f(w∗) ≤ hT (w∗, w)− hT (w∗,Φ(w, f)) + cT (w∗); (A2.29)

for all f ∈ F , w, w∗ ∈ W for some function class F . For fixed T , there are no
more processes.

cT (w∗) := sup
f∈F,w∈W

[f(w)− hT (w∗, w) + hT (w∗,Φ(w, f))− f(w∗)]

is the optimal solution for cT . Solving the inequality may be even more straight-
forward if Φ is given and hT is designed to minimize supw∗ cT (w∗). To accommo-
date more algorithms, the inequality could be generalized to allow the variables
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such as Φ and cT to be processes, and if their dependence on time is simple,
solving the inequality could remain tractable.

If Approximation A2.29 holds, then for all sequences f1, · · · , fT ∈ F ,

inf
w1

sup
w∗

T∑
t=1

ft(w
t)− ft(w∗) ≤ inf

w1

sup
w∗

[
TcT (w∗)− hT (w∗, w

T+1) + hT (w∗, w
1)
]

≤ sup
w∗

(
TcT (w∗) + sup

w1,w2∈W
[hT (w∗, w1)− hT (w∗, w2)]

)
.

(A2.30)

The following condition on f allows linearization of f(w)−f(w∗), by its very
definition.

Definition 9 (Sub-gradient). Suppose W is a subset of a vector space W (not
necessarily a dual space). A sub-gradient ∇ of f ∈ RW is an element of

(W∗)W such that, for all w0, w ∈W ,

∇f(w0)(w − w0) ≤ f(w)− f(w0),

(equivalently,
∇f(w0)(w0 − w) ≥ f(w0)− f(w).)

A sub-gradient of f exists iff f is sub-differentiable.

2.5.1 Experts

In this section, adopt the following generalized notion of regret:

RegT (w, x, y) := E

[
T∑
t=1

d(wx, y)
t − inf

w∗∈W∗

T∑
t=1

d
(
w∗ · xt, yt

)]
, (Id2.31)

for some W∗ ⊆W , that is, the constraint set for the infimum is now a parameter.
This may or may not coincide with the notion of W∗ as a carefully chosen subset
of Wopt (used in the context of lower bounds). If infw∗∈W∗

∑T
t=1 d(w∗ · xt, yt) <

∞, Identity Id2.31 is equal to

E sup
w∗∈W∗

[
T∑
t=1

d(wx, y)
t −

T∑
t=1

d
(
w∗ · xt, yt

)]

=E sup
w∗∈W∗

[
T∑
t=1

d(wx, y)
t − d

(
w∗ · xt, yt

)]
.

Theorem 7 (Value Upper Bound). Suppose Condition (C24), d is convex in
its first argument (for all values of its second), and non-negative. Then, for all
N,T ∈ Z+, the following value bound holds.

ValT ≤ sup
x∗∈X,y∗∈Y

d(x∗, y∗) min
{√

T ,
√

ln(N)/2
}√

T .
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Proof. One can normalize d without affecting its convexity and then apply
Corollary 2.2 of [15].

To prove that corollary, fix an arbitrary sequence of (X × Y )T and adopt
Hedge with an appropriate learning rate.

For all n ∈ {1, · · · , N}, t ∈ {1, · · · , T}, and given sequence y1, · · · , yT ∈
Y , let `tn := d(xn, y)

t
and LumT

n :=
∑T
t=1 `

t
n. Hedge mixes expert i with a

normalization of the weight wtn:

wtn = e−ηLumt−1
n ,

in which η > 0 is the learning rate. η =
√

8 ln(N)/T suffices.
The proof is then simply an application of convexity followed by Hoeffding’s

lemma.

Corollary 8 (Competitiveness). Suppose Conditions (C24), (C26)–(C27), that
d is convex in its first argument, and that d(y0, y

′
0) = supx∗∈X,y∗∈Y d(x∗, y∗).

Then, for all N,T ∈ Z+,

CDT ≤ 16 log 3.

Proof. Recalling this generalized notion of regret applies to the lower bound of
the previous section, by Theorems 4 and 7,

supx∗∈X,y∗∈Y d(x∗, y∗) min
{√

T ,
√

ln(N)/2
}√

T

d(y0,y′0)
16 log 3 min

{
T,
√
T logN

}
= 16 log 3

supx∗∈X,y∗∈Y d(x∗, y∗) min
{√

T ,
√

ln(N)/2
}√

T

d(y0, y′0) min
{
T,
√
T logN

}
= 16 log 3

supx∗∈X,y∗∈Y d(x∗, y∗) min
{√

T ,
√

ln(N)/2
}

d(y0, y′0) min
{√

T ,
√

logN
}

= 16 log 3
supx∗∈X,y∗∈Y d(x∗, y∗) min

{√
T ,
√

logN/(2 log e)
}

d(y0, y′0) min
{√

T ,
√

logN
}

≤ 16 log 3
supx∗∈X,y∗∈Y d(x∗, y∗) min

{√
T ,
√

logN
}

d(y0, y′0) min
{√

T ,
√

logN
}

= 16 log 3
supx∗∈X,y∗∈Y d(x∗, y∗)

d(y0, y′0)

= 16 log 3.
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2.5.2 Online Linear Optimization with Box Constraints

Consider Game 2. Note X can be regarded as a subset of W ∗.

Proposition 13 (All Elements of X are Sub-Differentiable). ∇ : x 7→ (w 7→
wx) is a sub-gradient.

Proof. As defined, for all w0, w ∈W ,

∇w0x(w − w0) = (w − w0)x = wx− w0x.

Using sub-gradients, it is relatively simple to obtain upper bounds in the
finite-dimensional case.

Theorem 8 (Upper Value Bound). Suppose the conditions of Lemma 10 and
|y| ≤ max {|y0|, |y′0|} for all y ∈ Y . Then, for all N,T ∈ Z+,

ValN,T ≤
(

2 + max
{
y2

0 , y
′
0
2
})

N
√
T .

Proof. In the context of [61], WN plays the role of F , and, as required in
that paper, is bounded, closed, and non-empty. maxw,w′∈WN

‖w − w′‖2 =

‖(2, · · · , 2)‖2 = 2
√
N and maxx∈XN ,w∈WN

‖∇x(w)‖2 = max {|y0|, |y′0|}
√
N .

Thus, by Theorem 1 of [61],

ValN,T ≤

(
2
√
N
)2√

T

2
+

(√
T − 1

2

)(
max {|y0|, |y′0|}

√
N
)2

.

Corollary 9 (Competitiveness). Suppose the conditions of Theorem 8 and
that |y0| = 1 = |y′0|. Then, for all N,T ∈ Z+,

CDN,T ≤
3√
2
.

Proof. By Theorems 5 and 8,

CDN,T ≤

(
2 + max

{
y2

0 , y
′
0
2
})

N
√
T

−y0y′0√
2 max{|y0|,|y′0|}

N
√
T

≤ 3√
2
.
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2.6 Computation

Algorithms that achieve the upper bounds of the previous section—Hedge and
gradient descent—can be considered linear time in both N and T . That de-
pendence on the horizon is essentially optimal against adversarial data, yet
sub-linearity in the horizon is possible for learning IID data. Consequently,
being statistically competitive comes at a computational cost.

2.7 Conclusion

In the most general finite-dimensional case considered herein, the lower bounds
are of the form in Approximation A2.19, where κ is a measure of a problem’s
complexity; and, specifically for the examples, C is independent of κ and

h (κ, T )
√
g (κ, T )

simplifies to bounds of the form

O
(√

T min
{

log κ, (log κ)
α
√
T
})

,

where α ∈ {0, 1} is problem dependent.
The examples were proven constructively in that they prescribed IID strate-

gies (which apply to both the IID and adversarial regimes) for Nature. In certain
(convex) cases, the bounds are optimal. For example, in Lemma 9, when the
metric is a norm and X,Y are each bounded, descent methods provide a match-
ing upper bound, even when the data is adversarial. The non-convex case is less
understood and worth further inquiry. Optimal constants for competitiveness
(Corollaries 8 and 9) is an open question.
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Chapter 3

A Case Study:
Macroeconomic Forecasting

In time series analysis, considerable effort may be put into transforming the
data to make it appear more stationary. In macroeconomics, for example, data
is typically de-trended and de-seasonalized. Moreover, observables are subject
to different transformations from one another, usually on an ad hoc basis. From
the perspective of Chapter 2, at best, there may be modestly faster learning. At
worst, stationarity might not be achieved and the assumption of it may thwart
learning at all.

An alternative ensemble approach is to train the model on different subsets
of data, accepting that some data may be too stale or irregular to be of use to
the model. Moreover, the ensemble weights can be trained in accordance with
the theory of Chapter 2.

A standard assumption in empirical economics is stationarity, either of (trans-
formed) observables, for instance in autoregressive models [60, 10] or, of model
variables, for instance in state space models [20]. Stationarity assures all avail-
able data is representative of what is to come in the future. However, if one
näıvely applies an estimator designed for stationarity to data generated by a
non-stationary process, then unrepresentative data may be detrimental to the
performance of the estimator.

A problem common to existing approaches to non-stationarity is their lack
of adaptability, particularly to frequent changes in the data generating process.
I therefore propose simultaneously learning multiple estimation problems that
collectively aim to capture the possible nature of the data generating process,
including multiple parametric models, the possibility of drift rather than a lim-
ited number of breaks, and a data generating process that does not conform
to existing distributional models of break point processes (or is otherwise mis-
specified). This guarantee is the sense in which the mixture is optimal.

The dynamic stochastic general equilibrium (DSGE) U.S. macroeconomy
model of [52] (hereafter SW) presents an ideal case study. SW is the first DSGE
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model to be observed to be competitive with Bayesian vector autoregression [29],
and it did so for the U.S. macroeconomy. Now it is an off-the-shelf standard
model and one that is extensible to newer models, such as [25]. Of the cited
papers, four are based on SW. Thus, SW is a natural case study of DSGE fore-
casting. Moreover, its application to post-WWII data for which it was designed
is plagued with the problems of FOT selection. SW found the first ten years
of their data to be “unrepresentative” and were therefore burdened with coping
with this purportedly unrepresentative time frame. Yet, representativeness or
lack thereof was not explicitly defined in the paper, nor was their an explanation
of how the first-ten-years cutoff was selected, as opposed to another, possibly
similar, cutoff. Ultimately, SW discarded the first ten years, restricting the time
span of analysis despite initially aiming to analyze all post-WWII data.

Though the mixture automatically handles the entire data set whereas the
pure recursive estimator requires manual data deletion, there are other consid-
erations in choosing an estimator, such as parsimony and interpretability of the
underlying model upon which the design and guarantees of the estimator are
based, statistical-parameter stability, goodness of fit, out of sample performance
(such as regret or generalizability) over the entire data set, and out of sample
performance post an in-sample-selected FOT. In the interest of time, this docu-
ment considers only out of sample performance1, namely squared l2-norm error
(loss function) of one-step (quarter)-ahead, point forecasts (prediction task).
Out of sample performance is of more transparent significance to model evalua-
tion and to practitioners than the other considerations, and is relatively easy to
measure. SW can be used to simulate forecast trajectories of the seven observ-
ables on which it is estimated—quarterly GDP, consumption, investment, hours
worked, wages, prices, and a short-term interest rate—from which a one-step-
ahead distributional forecast can be read off, and the mean taken as the point
forecast. As expected, given the absence of manual guidance of the recursive
estimator’s FOT, the mixture outperforms it. Moreover, this outperformance is
dramatic (Figure 3.1); and the mixture even outperforms the recursive estimator
estimated from the SW-in-sample-determined FOT (Figure 3.2).

3.1 Case Study: Recursive DSGE Estimation

The components of the mixture estimator, as well as the estimators used in SW,
are recursive estimators of a single DSGE model or DSGE for short. DSGEs
not only models the macro behavior of an economy (whose internal workings are
highly complex and not fully knowable), it models the equilibrium behavior of
intertemporally profit and utility maximizing agents that determine this macro
behavior. To make the model tractable, the economy is reduced to one with a
few eternal agents and goods. Each agent is representative of a segment of
the economy, for instance assuming the segment is made up of a set of homo-

1Out of sample performance is based on a prediction task and a loss function.
2The Great Moderation, a period of relatively low sample variance in observables, is taken

to begin in 1984, as in SW; and is chosen to end at the beginning of the Financial Crisis.
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Figure 3.1: Effect of Mixing: The mixture’s reduction of average forecast er-
ror, relative to the recursive estimator estimated from the beginning of the data
set, plotted over time. The reduction steadies during the Great Moderation2,
before dipping slightly to a final reduction of 12%.

geneous agents. In SW, these agents are homogeneous final and intermediate
goods producers, homogeneous households or consumers who like consuming
and dislike working, a representative labor union that seeks higher wages, ho-
mogeneous labor packers who purchase the right to labor services and sell it
to intermediate goods producers, a central government, and a central bank or
monetary authority that sets the interest rate in response to changes in inflation
and output.

The various goods are analogously grouped according to type, such as con-
sumables and production inputs, and aggregated. In the SW DSGE model,
the aggregator functions used are .

The solution of a DSGE gives rise to forward looking rational expectation
equations, which are transformed into Markovian backward looking evolution
and observation equations.3 Without a source of random variation (so-called
schoks) in the model, the observables would have to obey a deterministic rela-
tionship (a so-called stochastic singularity) that is unlikely to be borne out in
the data (in fact, if the data were to behave as prescribed by a DSGE, it would
almost surely not behave in the stochastically singular manner prescribed by
replacing shocks with deterministic functions). In particular, the DSGE equa-
tions must contain at least as many shocks as observables. In SW, the model
has seven shocks (to go along with its seven observables)—shocks to productiv-
ity, the cost of investing in the latest technology, the risk aversion of consumers,
wages, prices, government spending (and thus borrowing or tax collection), and
the interest rate. Each shock is driven by its own vector autoregression mov-

3In SW, the model equations are log linearized.
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Figure 3.2: No performance loss in using mixture. The bar set for the
mixture whose training sets include the unrepresentative data was to perform
nearly as well as the recursive estimator with FOT 1957. In fact, the mixture
outperforms the recursive estimator over the time span used in SW, and beyond.
The performance metric is out of sample forecasting squared error.

ing average model with white noise innovations. In particular, the model is
stationary.

The equations include real valued statistical parameters, representing as-
pects of the economy that must be estimated. In particular, SW is of the New
Keynsianism or Neoclassical Synthesis family of models, which incorporate eco-
nomic “frictions” in an otherwise idealized economy, such as sticky prices and
wages, and adjustment costs in investment. As static values, the statistical
parameters are in particular assumed to not depend on interventions in the
economy.

The statistical parameters are endowed with a prior, herein taken from SW.
The likelihood is estimated via a Kalman filter, initialized with one year of
data. The mode of a model is estimated via optimization of the posterior kernel.
The posterior mode for forecasting was previously used in [29] for around 300
estimations performed over two months, which they considered prohibitive for
re-running their experiments. Here we must grapple with approximately 1900
estimations per sample path of data. Recursive estimation is implemented in
the dynare Matlab/Octave package [2].

3.1.1 Data

The SW observables are based on quarterly GDP, consumption, investment,
hours worked, wages, prices, and a short-term interest rate from 1947 – 2004.
Eight time series are used to obtain the seven observables (with respect to
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which the DSGE models and mixture are estimated): real GDP, personal con-
sumption expenditures, fixed private investment, nonfarm total weekly hours,
nonfarm real hourly wages, the GDP deflator, the federal funds rate, and civilian
population. GDP defines boundaries of an economy geographically as opposed
to by citzenship as in gross national income (GNI). Geography is a physically a
more concrete, static criterion, is easier to account for, and consequently GDP
measurements will tend to be more meaningful and accurate. Consumption
and fixed private investment allows one to distinguish the decision problems of
households and producers, which measures a trade off between consumption now
and having something better to consume in the future. Fixed private investment
(FPI) is of particular importance to the producers’ decision problem because it
has long-term effects. Consumption and hours worked are complements. Hours
worked serves as a productivity input, and because of the representative agent
assumption, implicitly captures unemployment. Wages reflect the competition
between labor and production for shares of profit. Inflation is used to obtain
real dollar values, and is included in the model to account for the fact agents
may not just think in terms of real dollars but also nominal dollars. The federal
funds rate serves as a riskless discount factor of payoffs in the next quarter.
Population affects economic activity and growth, but because it is not part of
the model, it is figuratively and literally divided out of the data

The latest revisions are used. Much of the data can be automatically ac-
quired via the FRED API. Otherwise the data can be acquired from the BEA,
BLS, or from the SW online data appendix. The civilian population is based
on the BLS LNS10000000 series of civilian noninstitutional population; 1976 –
2013 were acquired directly from the BLS, while years prior were obtained from
the SW appendix.

Transformations

In the hopes of improving the performance of the recursive estimator and inline
with SW, the data is transformed to approximate a data set representative of a
stationary process with time homogeneous statistical parameters. The transfor-
mations are not prescribed by the model, but guidance is given in SW. Except
for the interest rate, the series used are seasonally adjusted. All but the interest
rate are log transformed. GDP is first expresed per capita, log differenced, and
finally expressed as a percent. Consumption and investment are likewise trans-
formed after first being deflated by the GDP deflator. Wages as reported by the
BLS are already averaged over persons (employees). The wages are then GDP
deflated, log differenced, and expressed as a percent. To obtain inflation, the
GDP deflator is log differenced and expressed as a percent. Hours per capita
are adjusted by the employment to population ratio (per [16]), log transformed,
and then expressed as a percent. Unlike previous series, transformed hours is
not differenced. Hence, to obtain a unitless measure, the initial value of the
transformed hours is subtracted from the series. The federal funds rate, which
is already expressed as a percent, is simply divided by four.

To ensure that differencing is done on only the data deemed “representative”
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by SW and so that exactly ten years pass from the beginning of the differenced
data set, the SW in-sample-selected era is taken to begin in 1957Q2. (Aside
from the issue about differencing, the removal of data is a transformation of the
data.)

3.2 Growing Mixture Estimators

If a DSGE were correctly specified, then an optimal estimator would give equal
weight to all available data, or, in other words, from the FOT that coincides
with the beginning of available data. However, given the complexity of DSGE
modeling, it is impractical for a DSGE to be strictly correctly specified. In
particular, the (transformed) data may be non-stationary. SW offered no formal
guidelines for moving the FOT forward, or, by how much, despite it requiring
removal of over 10% of their data and restricting their time span of analysis
by over 10%. Such drastic changes raise questions about their necessity—for
instance, even if the time span of analysis should have been moved forward, why
is the initial segment of data so much less representative or informative than
the prior? As a starting point for analyzing multiple FOTs, consider evaluating
the performance of a FOT t0 ≤ T0 given a prediction or estimation task that
begins with period T0 and ends with period T . A natural performance measure
is that of the performance of the recursive estimator with FOT t0, for the given
task (over the period T0 to T ).

To make things simple, assume that an estimator makes an estimation or
prediction yt ∈ Y entering each period t, subsequently suffering loss `(xt, yt) on
the following observation xt ∈ X , as it would for one-step-ahead forecasting.
Hence, an estimator recieves immediate, complete feedback. Its performance is
then

∑T
t=T0

`(xt, yt). The in-sample optimal FOT t0 is the one whose sequence

of forecasts y∗1 , · · · , y∗T∗ has the minimum
∑T
t=T0

`(xt, y
∗
t ). If one can perform

as well as or better than recursive estimator with FOT t∗, then one is doing
as well as one could hope for in handling multiple FOTs (at least with respect
to the proposed performance measure). The objective of the mixture estimator
over different FOTs is therefore to provably approximately achieve or perform
better than this in sample optimal forecast error. The recursive estimator with
FOT t∗ can thus be said to be the “rival” to the mixture estimator.

However, like the statistical parameters of the recursive estimators, the mix-
ture weights are trained with data that precedes the current period. Hence, the
rival is not known to the mixture estimator while its weights are being trained.
Each candidate FOT corresponds to a potential rival or, in language more famil-
iar to those familiar with no regret learning, an expert. When a new potential
rival enters the ensemble, it is said to be born or awakened, and a new epoch
is said to begin. For a period on or subsequent to its birth, a potential rival
is said to be awake. The first observation time used by a potential rival is its
birth period. Because the number of first observations (and thus the number
of potential rivals to the mixture) grows linearly in the number of observations,
only a subset of first observations (and thus potential rivals) is considered.
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Given a horizon T , the τth epoch’s regret is

T∑
t=tτ

`(xt, yt)− min
e∈{1,··· ,τ}

T∑
t=tτ

`(xt, y
e
t )

in which ` is the loss suffered as a function of the realization and prediction, xt
and yt respectively are the former and latter in period t, yet is the prediction
of the recursive estimator with first observation te, e ∈ {1, · · · , τ} =: Eτ , tτ

is the beginning of τth epoch, and argmin
e∈Eτ

T∑
t=tτ

`(xt, y
e
t ) is the τth epoch rival.

By bounding a particular epoch’s regret, one can account for the number of
periods the mixture had full access to Eτ . Moreover, simultaneously bounding
the epochs’ regrets is sufficient (and, because it is not known which epoch will
be closest to binding, necessary) to bound the underperformance of the mixture
relative to each rival its considers. If the optimal first observations do not change
too rapidly, then the simultaneous bound is sufficient to bound the mixture’s
underperformance of a recursive estimator with a FOT determined by in sample
analysis.

For simplicity, in the implementation there is but a single epoch length that
determines the spacings between possible first observations. In the absence of
other considerations, we somewhat arbitrarily chose five years for the epoch
length. Though limited, a new possible first observation every five years is more
flexible than a single first observation for what is over a half century of data.

3.2.1 Algorithm

The mixture weights are learned according to recursive multiplicative weight
training (Algorithm 1)4. Given an online learning problem specified by a real-
ization space X , a convex subset of a vector space over the reals or prediction
space Y, a loss function ` : X × Y → R, and a finite number of experts N ;
the algorithm is parameterized by a ρ > 0 and an ε ∈ (0, 1/2); smaller ρ and
larger ε result in a faster learning rate, at the expense of a higher likelihood of
overfitting.

Algorithm 1 (Multiplicative Weight Training)
Given: X , Y, `, N
Parameters: ρ, ε
Input: (x1

t , · · · , xNt ) ∈ XN , (y1
t , · · · , yNt ) ∈ YN , (w1

t , · · · , wNt ) ∈ ∆N−1

Output: For i ∈ {1, · · · , N}

wit+1 := (1− ε)`(x
i
t,y

i
t)/ρwit

4This form of multiplicative of weight training is slightly different than that of [4], which

sets wit+1 := (1 + ε)`(x
i
t,y

i
t)/ρwit if `(xit, y

i
t) < 0 (and is the same as Algorithm 1 otherwise).

It has the advantages of a simpler, more intuitive representation; path independence of the
realized losses; and invariance under constant shifts of the loss function.
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wit+1 :=
wit+1

N∑
j=1

wjt+1

yt+1 :=

N∑
j=1

wjt+1y
j
t+1

If the elements of Y are represented by an ordered basis, the mixture forecast
of Algorithm 1 can be succinctly written as the matrix product [y1

t , · · · , yNt ]wt.

3.2.2 Guarantees

The epochs’ regrets can be simultaneously bounded via a dynamic programming
approach—in each epoch, the learner merely tries to bound that epoch’s regret.
Because the number of potential rivals or experts is fixed, this is merely no
regret learning. Therefore, the dynamic programming approach can be regarded
as a meta-algorithm that takes as an input a regret minimization algorithm
parameterized by the number of experts. Under mild assumptions, a regret
minimization algorithm for N experts can guarantee

T∑
t=1

`(xt, yt)− max
e∈{1,··· ,n}

T∑
t=1

`(xt, y
e
t ) ≤ 4ρ ln(N)

√
T

in which ρ is assumed to bound the loss. In particular, multiplicative weight
training realizes this bound.

No regret learning guarantees that as time goes on, the expert’s performance
approaches or exceeds the performance of the best expert. Merely assuming
bounded losses, one obtains a sublinear bound on the regret. (Bounded losses
corresponds to an economy not indefinitely collapsing or growing at a super-
exponential rate.) The bound is distribution agnostic, in particular about the
nature of the stationarity or lack thereof, and therefore applies to tracking the
optimal FOT process without knowledge about its distribution.

The assumptions for the estimation of the mixture weights are weaker than
the assumptions used for the recursive estimator, which is what makes no regret
learning feasible in a non-stationary and possibly adversarial (minimax) setting.
To ensure learnability in the form of all epochs’ regrets growing sublinearly and
to similarly control the quadratic computational complexity of computing the
ensemble estimations, it is necessary to expand the epoch lengths for longer
horizons (otherwise the epochs’ regrets will grow logarithmically).
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3.3 Re-estimation over Time, Forecasting, and
the Loss Function

Once a DSGE is estimated, it furnishes a distributional forecast via simulation.
Taking the mean thereof yields a point forecast, which will be taken as the
estimator’s forecast. Dealing with point forecasts rather than distributional
forecasts skirts the issue of proper scoring.

If Y and X are subsets of the same normed vector space, then the loss ` can
be expressed as a function of the norm of the difference between its arguments.
For SW, Y = R7×1 = X and ` is squared l2 norm error5. The periods or steps
are quarters and T is 266.

The filtered variables, model statistical parameters, and mixture weights are
updated every period. When there is no data from which to estimate a posterior
kernel (for each model, the quarter which represents its future first observation),
the prior can be used as the estimate. However, if there is also no data upon
which to apply the Kalman filter, then the forecast is based on the prior of the
steady state. Because the steady states of some observables in the measurement
equations are with respect to differenced data as opposed to the levels that are
being forecast, the forecasting is begun in the second period of the data set.

3.4 Discussion

The simultaneous regret bounds guarantee convergence at a rate that could be
inadequate for the horizons economists consider. On the other hand, the bound
is pessimistic in that it is loose and assumes a perfect adversary. Therefore, it is
necessary to assess the mixture’s empirical performance before any conclusions
can be drawn about whether it is a stronger estimator than a pure recursive
estimator, and, if so, by how much. To wit, the mixture reduces the cumulative
loss of the recursive estimator by 12%, as already shown in Figure 3.1.

Correctly specifying a model for a particular era, and in particular selecting
the correct first observation, is impractical. No regret learning is a promis-
ing approach for averaging (mixing) among first observations, as opposed to
selecting a single one. Estimation of the mixture weights does not require piece-
wise or pseudo stationarity or an explicit accounting of concept drift or change
points, making it robust to misspecification. Robust estimators are particularly
important for complex models of complex phenomena, which are harder to es-
timate and less likely to satisfy standard assumptions, and practitioners, whose
decisions can affect millions of risk averse or vulnerable persons. Empirically,
a mixture improves prediction accuracy of the SW DSGE model by 12%. Im-
portant virtues of the DSGE approach are the interpretability of its statistical
parameters, and its ability to capture uncertainty. Mixing DSGEs preserves
these attributes.

5Squared error is popular for its mathematical simplicity and its accounting of variance.
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Experts need not be based on FOTs. For instance, for contexts in which
a rolling window of fixed length (or, more concisely, a fixed memory) is used,
the experts could use different memories rather than different FOTs. If it is
unclear which of a recursive window or a rolling window is more likely to be
optimal, the experts could encompass both or even more general combinations
of windows. Finally, if the optimal window switches among candidate windows,
no regret with respect to experts who switch among windows is possible, based
on the switching experts idea from [36], and implemented in [51].

The success of no regret learning suggests further inquiry into estimators
that are robust to model misspecification. For instance, regardless of the am-
bition to develop or faith in stationary models [51], if non-stationary methods
dramatically improve the performance of macroeconomic modeling, then they
are the de facto state of the art. Indeed, this work demonstrates the utility of
non-stationary methods in the analysis of economic data and its complentar-
ity to traditional methods. While the theory here emphasized guarantees for
non-stationary data, guarantees for stationary data are likewise of interest.

3.5 Appendix: Implementation Validation

To validate the estimation of the models, the parameter mode estimates were
checked to be finite, real numbers and forecasts generated by the cumulative es-
timations are compared to the forecasts of SW and alternative methods. Check-
ing parameter estimates identified five superfluous model statistical parameters
from the original SW model file.

To validate the proper ordering, and more generally assignment, of models
to their temporal position in predicting the next quarter, the cumulative and
mixture estimators are applied to shifted versions of the data. One would ex-
pect that a shift backward one quarter would improve predictive performance,
and further shifts in either direction would degrade performance monotonically,
whether or not the mixture is estimated on the original or transformed data.

To validate the fixed shares algorithm, it was applied to two sets of trans-
formed predictions for which the behavior of the algorithm is known and then
that behavior confirmed. Firstly, such that all but the first model receives the
minimum weight. Secondly, such that the predictions are the same and thus the
weights gravitate toward 1 over the number of awake models.

3.6 Appendix: Data Plots
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Figure 3.3: Market value of all officially recognized final goods and services in
a given quarter. Source: Bureau of Economic Analysis (BEA).
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Figure 3.4: Non-farm average hours worked. Source: BLS.
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Figure 3.5: Consumer expenditures excluding fixed residential investments.
Source: BEA.
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Figure 3.6: Expenditures on reusable production facilities. Source: BEA.

58

 Electronic copy available at: https://ssrn.com/abstract=2958435 



50 55 60 65 70 75 80 85 90 95 00 05 10

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Year

L
o
g
 R

a
ti
o

Figure 3.7: Non-farm wages. Source: Bureau Labor Statistics (BLS).
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Figure 3.8: Deflator by which to divide to obtain real values. Source: BEA.
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Figure 3.9: Approximately riskless interest rate. Source: Federal Reserve Board.
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Chapter 4

Conclusion

Chapter 2 was the main (technical) contribution and focus of this thesis. The
other examples of Chapter 1 therefore were presented in only enough detail
and context, mostly with historical references, to help motivate competitive
analysis as a framework for handling incomplete information and thereby a lens
through which to view Chapter 2 and future research. Empirical implications
were explored in Chapter 3.

4.1 Other Relevant Literature

In Chapter 2, I reviewed the asymptotic lower bound of O
(√

T lnN
)

([14, 15]).

I provided a non-asymptotic bound of O
(

min
{
T,
√
T lnN

})
, relying on the

novelty of Lemma 5. An analogous recurrence bound for adversarial data is
given in [15]. For the sum over a independent and identically-distributed vector
process, the usual approach to approximating an extreme sum value is Gaussian
approximation, either the entire distribution ([18, 19]) or its moments ([14, 15]).
Note this Gaussian approximation need not have a limiting extreme value ([18]).
If the sums themselves have a non-Gaussian approximation one could try to
exploit that. One might also approximate an extreme via a limiting distribution,
when it is guaranteed by the max central limit theorem ([44]). Finally one may
compare two different extremes without a full characterization of what either is
([26]). All these techniques are overkill for obtaining growth information on the
first moment, and are not known to have validity in as high dimensions. Indeed,
if the max sum mean is treated as the object of study, there is a well known
matching upper bound for sub-Gaussians for N = O(eT ), which is of more

general applicability than the required N = O
(
eT

1/5
)

of [26]. The “parametric

rate” ([46]), that is the rate for Berry-Esseen, allows at best N = O
(
eT

1/2
)

;

thus, when one wants a Gaussian approximation of the entire distribution in
the Kolmogorov distance, that is the highest dimensionality one could hope
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for. ([46, 7] come arbitrarily close to reaching this restricted order, in the form

N = O
(
eT

1/2−ε
)

for some ε > 0). This eT
1/2

restriction can also be seen in

more abstract, non-Gaussian settings (for example, Proposition 4.1(b) of ([43])).
In some settings, stronger restrictions are believed necessary ([19, 17]).

4.1.1 Literature on Other Multiple Regularity-Settings

[5] considers both adversarial and independent and identically-distributed data
in the bandit setting. [15, 40] consider online Bayesian algorithms.

Bounds that Scale in the Regularity

One theoretical innovation not covered at length within this dissertation are
(adaptive) bounds that scale in regularity measures of the realized data itself,
rather than the generating process. A simple example is an algorithm that need
not know by what constant an aspect of the learning problem is bounded, as
with the gradient descent algorithm used in Theorem 8, whose performance
depends on the gradients’ magnitudes observed.

Other forms of regularity for which adaptive bounds are available include
small losses ([15]), predictability ([48]), curvature ([39]), and low rank ([35])

The algorithm covered in the next section also enjoys adaptive bounds.

Regime Detection

Though in general it is impossible to learn that data is not adversarial, it is
possible to learn that it is not perfectly predictable. The FlipFlop algorithm of
([24]) is in the spirit of regime detection in that it switches its behavior according
to past data, first presuming that bounded regret is possible. In contrast to the
work here, this paper does not treat the high-dimensional setting and (probably
necessarily) requires more complicated algorithms than ones merely trying to
achieve low regret. [22] also modifies its behavior according to what it perceives
to be the regime, but for online convex optimization.

Regret Lower Bounds in the IID Setting

Often lower bounds are proven in the independent and identically-distributed
setting out of analytical convenience rather than as an end separate to an ad-
versarial lower bound. This proof technique occurs in, for example, [14, 15, 58,
59, 61, 6, 56].

4.1.2 Luckiness Principle

The informal luckiness principle ([33]) states that a learner should allow itself
the opportunity to be lucky. Given possible states of Nature that afford such
opportunities, the luckiness principle could be formalized and operationalized
by the learner seeking to be competitive when D contains those states. This
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principle could perhaps be further captured by supplementing worst-case anal-
yses with best-case ones. An idea similar to the principle is be “optimistic”
([48]).

4.1.3 Online-to-Batch Conversion

Online-to-batch conversion relates the online setting considered in this disser-
tation to more classical batch learning. A low-regret algorithm is run on the
data and its predictions or hypotheses are combined to form a prediction or
hypothesis that generalizes. For instance, [50] considers combinations via (i)
randomization and (ii) averaging. These combinations enjoy an expected gen-
eralization bound under independent and identically-distributed data that de-
pends on the cumulative loss of the online algorithm. In contrast, generalization
guarantees based on a single, terminal instantaneous loss do not exist against
an adversary. Nonetheless one could hope to provide simultaneous guarantees
of generalizablity under independent and identically-distributed data and low
regret under adversarially generated data. Since online-to-batch conversion is
designed specifically for batch learning, I pose the question and leave open
whether the combinations used in the literature are sub-optimal for obtaining
simultaneous online guarantees.

4.2 Future Work

One could hope given the connections among problems in Chapter 1 that there
would be results of common applicability. Proposition 2 and the discussion
following are steps in that direction. This line of work can be pursued further,
though another issue that must be addressed is how that particular list sorting
problem to which the theorem applies relates to the modern literature.

Though this dissertation is suggestive of the merits (and computational lim-
itations) of competitive algorithms (as summarized in the next section), its
implications do not necessarily generalize to the many important settings not
explicitly considered. A viable albeit extensive research program is the compet-
itive analyses of the extension to unknown regularity of every existing online
learning setting in the literature that has not yet been analyzed so, or at least
for which no lower bounds under IIDness are known. The next sub-section dis-
cusses one avenue of generalizing to new settings. Also of interest is studying
the theoretical properties of certain heuristic techniques, such as product of ex-
perts ([37, 38]) and other methods from deep learning, in the online adversarial
setting.

4.2.1 Unbounded Case

Chapter 2 was based on boundedness, beginning with Proposition 3.
The following is an unbounded analog and generalization of that proposition

to begin an extension to the unbounded case.
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Proposition 14 (Expectation of Square Root: Unbounded Case). Suppose
P(L ≥ 0) = 1 and P(L = 0) < 1. Then ‖L‖∞ > 0 and, for all C ≥ 0,

E
√
L ≥ P(L ≤ C)E (L|L ≤ C)√

C
+
√
C P(L > C).

The following is an analog of Corollary 1.

Proposition 15. Suppose the conditions of Theorem 2 and that L1 is not
almost surely 0. Then ‖L1‖∞ > 0 and, for all C ≥ 0,

E

∣∣∣∣∣
T∑
t=1

Lt

∣∣∣∣∣ ≥ P
(∑T

t=1 L
2
t ≥ C

)
√

2

√
C.

Proof.

E

∣∣∣∣∣
T∑
t=1

Lt

∣∣∣∣∣
≥ 1√

2
E

√√√√ T∑
t=1

L2
t Theorem 2

≥ 1√
2
P

(
T∑
t=1

L2
t ≥ C

)
√
C Markov.

Corollary 1 helped prove the
√
T lower bounds in Chapter 2, and Proposi-

tion 15 suggests the necessary techniques extend to the unbounded case. Fur-
ther generalizations to acquire the necessary machinery for proving a generalized
value lower bound is future work.

4.2.2 Upper Bounds

A rationale for focusing on lower bounds was given in Section 2.1. Nonetheless,
to establish, competitiveness for infinite-dimensional online linear optimization,
an upper bound is necessary (and one that matches Theorem 6 would suffice).

It would be nice to have matching upper bounds even in the non-convex case
for experts under metric loss, in some sense giving a comprehensive solution to
that problem. This is conceivable iff Learner is allowed to randomize. If there is
such a matching with the main assumption be metric loss, then I would expect
a geometric characterization.

One can stay in the deterministic decision framework and allow randomiza-
tion by regarding the instantaneous loss as an expectation over decisions. (The
resulting notion of regret might be called pseudo-regret, since it results in an
expectation inside the infimum.) Doing so would simplify the analysis and be a
reasonable first step.
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4.2.3 Empirical Studies

Based on empirical forecasting tests, low-regret learning appears to help cope
with non-stationarity. Nonetheless, a more persuasive case for the popular use of
Chapter 3’s methodology could be made if it offered state-of-the-art performance
for DSGE estimation. This could only be ascertained with a more up-to-date
literature review and might require implementing a newer DSGE model than
SW, if only as a basis of comparison.

On the other hand, recent work on DSGEs for the U.S. macroeconomy seem
to be focused on accounting for the Great Recession ([42, 45]). The resulting
models may perform better on historical data but (i) would not seem to address
the underlying issue of macroeconomists’ fallibility in constructing predictive
models and (ii) would introduce the possibility of over-fitting or at least their
performance not generalizing. Testing estimation methodologies, ones that are
based on statistical, machine learning and data science principles rather than
any particular problem to which they are applied, would give a less biased
evaluation of relative predictive performance. It may be preferable these tests
are performed with an old economic model so that it can be tested on data
that succeeded its creation. This perspective was not adopted in Chapter 3 but
might be in future work.

4.2.4 Probability Charges

Even when a measurable space is countable, there can be dramatic differences in
the behavior of so-called probability charges and standard probabilities ([54]). A
charge replaces the axiom of countably additivity with the finite kind and thus
need only behave like a probability on finite and co-finite sets. One theoretical
curiosity is whether the additional freedom afforded to Nature in the use of
charges could increase a competitive difference such as minimax regret (or other
learning objective value).

4.3 Lessons Learned

Competitive analysis can be used to design algorithms or systems to be adaptive
or otherwise competitive. That this analysis does not require statistical uncer-
tainty quantification or other full problem specification lends itself to being more
robust than methods which require a fully specified model or unique solution.1

For learning under unknown regularity, competitiveness (i) corresponds to being
protected against adversarial data yet doing commensurately better on regular
data and (ii) is achievable. Namely, there exist competitive algorithms for (a)
learning expert ensembles under metric loss and (b) online convex optimization.
Ultimately, the adoption and deployment of competitive analysis and algorithms
lead to better performance, as illustrated in macroeconomic forecasting. The

1Regularization is also known to address the latter, and when used in conjunction with
competitive analysis, the former.
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only apparent caveat is computation. If an algorithm with sublinear complexity
in the horizon is required, it may be necessary to design for more regular data.
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