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“If we really saw the Universe, maybe we would understand it.”

Jorge Luis Borges



Carnegie Mellon University

Statistical Astrophysics: From Extrasolar Planets to the Large-scale Structure of
the Universe

by Collin A. Politsch

Abstract

Modern astronomical surveys compile massive catalogs of images, light curves, and spectra that
allow us to study the Universe from the relatively local (e.g. stars and extrasolar planets) to
the extremely remote (e.g. quasars and the cosmic microwave background). As the magnitude
of these catalogs continues to grow exponentially, the presence of statisticians and computer
scientists working at the interface of astronomy and astrophysics becomes increasingly essential
to the advancement of the field. In this dissertation, we study a variety of astrophysical problems
of a statistical nature.

In Chapters 2 and 3, we introduce trend filtering (Tibshirani, 2014) into the astronomical
literature and demonstrate its broad utility by discussing how it can contribute to a variety of
spectroscopic and time-domain studies. The astronomical observations we discuss are (1) the
Lyman-α forest absorptions in the spectra of high redshift quasars; (2) the broader spectroscopic
signatures of quasars, galaxies, and stars; (3) stellar light curves with planetary transits; (4)
light curves of eclipsing binary star systems; and (5) supernova light curves. We study the
Lyman-α forest in the greatest detail — using trend filtering to map the large-scale structure
of the intergalactic medium along one-dimensional quasar-observer sightlines. The remaining
studies share broad themes of: (1) estimating observable parameters of light curves and spectra;
and (2) constructing observational spectral/light-curve templates.

In Chapters 4 and 5, we continue our Lyman-α absorption spectroscopy analysis of the intergalactic
medium by utilizing the full redshift z & 2.1 quasar catalog compiled by the Baryon Oscillation
Spectroscopic Survey (Dawson et al., 2013) to reconstruct a 47 h−3 Gpc3 three-dimensional
large-scale structure map of the high redshift intergalactic medium — the largest volume map
of the Universe to date — from the dense collection of one-dimensional quasar sightlines. We
accompany the map with rigorous statistical error quantification and compile an extensive
census of candidates for never-before-seen galaxy protoclusters and cosmic voids. The statistical
reconstruction requires minimal assumptions on the underlying matter density field and is
specifically optimized to recover three-dimensional structures lying between the one-dimensional
sightlines backlit by quasars.
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Chapter 1

Introduction

“We live on a hunk of rock and metal that circles a humdrum star that is one of 400 billion other

stars that make up the Milky Way Galaxy, which is one of billions of other galaxies which make

up a universe. . . ”

Carl Sagan

The title of this dissertation, Statistical Astrophysics: From Extrasolar Planets to the Large-scale

Structure of the Universe, serves to illustrate the full scale of astrostatistical problems we study in

this dissertation, with extrasolar planets being the smallest scale phenomenon and the large-scale

structure of the Universe (as revealed by the intergalactic medium) being the grandest cosmic

stage. The astrophysical phenomena discussed in this dissertation that tacitly lie between these

two titular extremes are: stars, eclipsing binary star systems, supernovae, galaxies, and quasars.

We give a brief introduction below regarding the specific statistical problem we address for each

phenomenon and we provide an outline for how our work is organized throughout this document.

1
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Starting on the smallest scale (relatively speaking), extrasolar planets in our neighborhood of the

Milky Way Galaxy can be detected by studying the apparent brightness of their host stars over

time (i.e. the stellar light curve). In fortuitous circumstances, the orbit of an extrasolar planet

may happen to pass directly in front of the line of sight between its host star and an observer

on Earth. In such circumstances, the planet can be detected via a periodic dip in the apparent

brightness of the star caused by the planetary eclipse event. This approach to detecting extrasolar

planets — called the transit method — is currently the most effective method for detecting planets

outside the Solar System [3]. And while the probability that a planet eclipses its host star from

the vantage point of Earth is very small for any given planetary system, the massive catalogs of

stellar light curves compiled by the CoRoT [4], Kepler [5, 6], and TESS [7] missions have enabled

the detection of over 4,000 confirmed extrasolar planets to date, with several thousand more

unconfirmed candidates. Furthermore, by studying the observable parameters of these stellar

light curves with planetary transits (in particular, the planetary orbital period, the transit depth,

the transit duration, and the ingress/egress duration), physical parameters of the system such as

the radius of the planet, the semi-major axis, and the eccentricity and inclination of the orbit can

be calculated. In this dissertation, we propose a novel method for nonparametrically estimating

the transit depth and the transit duration given a phase-folded light curve of a planetary transit

event. Our method may also be able to produce faithful estimates of the ingress/egress duration

but further vetting is required in order to assert that claim definitively.

Just above extrasolar planets on the cosmic scale come stars. The diversity of stars observed within

our galaxy is significant. Stars are categorized into one of seven main spectral classes — ranging

from the coolest (M stars) to the hottest (O stars) — and then are further subcategorized based

on their luminosity. Given a pair of stars with the same temperature, the luminosity subclass

then differentiates between their sizes (e.g. subdwarfs, main-sequence stars, giants, supergiants).

On the next level of the cosmic hierarchy, galaxies and quasars similarly exhibit rich intra-class
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physical diversity — for example, differing morphologies and relative chemical compositions.

Given an observed non-transient light source in the sky, the most powerful observational tool

for determining its first order class — e.g. star, galaxy, or quasar — as well as its redshift (a

monotonic function of its radial distance) and all subsequent hierarchical subclassifications is the

coadded electromagnetic spectrum of the object, which encodes the intensities of the observed

light across a continuous spectrum of wavelengths. The spectrum serves as a signature of the

object from which we can decode these classifications, subclassifications, and redshifts from the

relative strengths, widths, and shifts of known emission and absorption lines. In the modern

age of massive astronomical surveys, it is essential to be able to carry out this process in a fully

automated fashion. In order to do so we require large libraries of spectral templates that span

the physical diversity of each object class so we can provide our statistical machine learning

algorithms with a frame of reference from which they can learn how to classify celestial objects

and their redshifts from their observational spectra. In this dissertation, we provide a flexible

and efficient approach for compiling such spectral template libraries from observational spectra.

Stars may also be observed in pairs that orbit one another, which is referred to as a binary star

system (for example, recall in Star Wars the Tatoo system that hosts Luke’s home planet of

Tatooine). Similar to the transit method for detecting and characterizing extrasolar planets,

binary star systems can be identified by periodic dips in their light curves if we are fortunate

enough for the stars to eclipse one another from our vantage point on Earth. In such cases, the

system is referred to as an eclipsing binary (EB) star system. An EB light curve is characterized

by periodic dips in the observed brightness that correspond to the eclipse events along the line of

sight to an observer. In particular, there are two eclipses per orbital period — a primary and a

secondary eclipse. The primary eclipse occurs when the hotter star is eclipsed by the cooler star

and produces a comparatively deep dip in the observed brightness of the system. Conversely,

the secondary eclipse occurs when the cooler star is eclipsed by the hotter star and produces a
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comparatively shallow dip in the observed brightness. Depending on the effective temperature

ratio and orbital period of the EB, the dips may range from very narrow and abrupt to very wide

and smooth. Analogous to the transit method for extrasolar planets, physical parameters of an

EB system (e.g. the temperature ratio, sum of fractional radii, photometric mass ratio, radial and

tangential components of the eccentricity, fillout factor, and inclination) can be learned from the

observable parameters of the light curve (e.g. the eclipse widths, depths, and separations). The

current state-of-the-art procedure for learning these physical parameters consists of the following

steps: (1) determine the orbital period of the binary system via a Fourier analysis of the observed

light curve; (2) phase-fold the light curve with respect to the estimated orbital period; (3) denoise

the phase-folded light curve and evaluate the denoised estimate on a regular grid in the phase

space; (4) input the denoised phase-folded EB light curve into an artificial neural network (ANN)

trained on a rigorous physical model to produce estimates for the physical parameters of the EB

system [8]. In this dissertation, we propose a novel approach for denoising the phase-folded light

curves of EB systems (the third step in the procedure above) that significantly improves upon

the method currently utilized by the Kepler EB pipeline [9]. Our approach significantly reduces

the statistical bias of the denoised phase-folded light curve estimate, which in turn reduces the

systematic bias in the data that is provided to the ANN. If implemented in modern EB pipelines,

we are confident our approach will significantly improve the accuracy of the estimated physical

parameters of observed EB star systems.

A supernova (SN) is the death of a star that manifests as a catastrophic explosion producing

a transient luminosity that, at maximum, can be comparable to an entire galaxy. SNe show

light-curve variations on various time scales, with the initial core collapse occurring in a matter

of seconds, the ascension to maximum light occurring over weeks or months, and the subsequent

slow decay occurring over years. Type classifications and subclassifications of SNe are made

based on both their light curves and their spectra. Analogous to our above discussion regarding
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coadded spectral templates, fully automated SN classifications are enabled by compiling light-

curve/spectral template libraries that span the full diversity of SNe within each class/subclass,

as well as studying the observable parameters of the SN light curve (e.g. the maximum apparent

brightness, the time of maximum, and the decline rate). In this dissertation, we provide a

novel approach for constructing these light-curve/spectral templates from observational data and

nonparametrically estimating the observable parameters of SN light curves. The improvement

yielded by our approach primarily corresponds to cases where the observed SN has an especially

high peak brightness and a fast decline rate. This behavior is particularly characteristic of the

Type Ia SN class [10].

Finally, we devote the majority of this dissertation to the study of the largest scale astrophysical

phenomenon — the intergalactic medium. The intergalactic medium (IGM) is a highly dilute

gaseous medium that permeates the overwhelming volume of intergalactic space and contains

a majority of the baryonic matter in the Universe. This ubiquitous gas is too diffuse to be

directly observed in emission, but its presence is traced by absorptions in the light of luminous

background sources — most notably, quasars, whose extreme luminosities enable studies of the

IGM at vast radial distances. As light travels from a distant quasar along its path to Earth, the

IGM leaves an absorption signature in the light, marking the atomic elements that are present in

the intergalactic gas the light passes through [11]. This signature collectively reveals the presence

of diffuse primordial hydrogen and helium residue in intergalactic space left over from the Big

Bang, as well as a variety of metals occasionally ejected from galaxies by particularly forceful

supernovae explosions [12]. However, the bulk of the IGM is composed of electrically neutral

hydrogen (H I) gas, which marks its presence by absorbing light at the Lyman-α wavelength

(1215.67 Å). Due to the constant doppler shifting of extragalactic radiation caused by the

expansion of the Universe, Lyman-α absorptions are stretched over a series of wavelengths called

the Lyman-α forest, which effectively provides a full one-dimensional map of the intergalactic H I
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density distribution along the quasar-observer line of sight. For many years the one-dimensional

analysis of Lyman-α forest spectra has enabled spatial analyses of the cosmological matter density

distribution [e.g. 13–16], and more recently the denser sampling of observed quasar sightlines has

enabled coherent measurements of large-scale structure across sightlines [e.g. 17–20]. The fact

that structure can be measured across sightlines means that spatial statistical methods can be

used to reconstruct full three-dimensional maps of the matter density distribution from closely

sampled sets of quasar sightlines — a problem commonly known as Lyman-α forest tomography

or intergalactic medium tomography. However, without the development of scalable statistical

methods for handling the massive catalogs of quasar spectra collected by modern sky surveys,

three-dimensional mapping via the Lyman-α forest has to this point been limited to simulated

data sets and very small observational volumes [21–25]. In this dissertation, we present a 47 h−3

Gpc3 Lyman-α absorption large-scale structure map of the intergalactic medium — the largest

volume map of the Universe to date — which we reconstructed using a sample of approximately

160,000 quasar sightlines collected by the SDSS-III Baryon Oscillation Spectroscopic Survey

[2, 26, 27]. In additional to the optimized map itself, we provide rigorous statistical inference

that allows us to provide an extensive census of high significance candidates for never-before-seen

galaxy protoclusters and cosmic voids embedded in the reconstructed absorption field. In total,

this spatial analysis of intergalactic medium required approximately 3 million CPU hours of

memory-heavy computations, for which we gratefully thank Yale University for the use of their

YCRC high performance computing infrastructure.

The layout of this dissertation is as follows. In Chapter 2, we provide a detailed introduction

of trend filtering [1, 28] into the astronomical literature. In Chapter 3, we detail our novel

contributions to the various areas of one-dimensional time-domain astronomy and astronomical

spectroscopy itemized above, which are powered by the application of trend filtering to astro-

nomical observations. In Chapter 4, we describe our early investigations toward reconstructing a
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large-scale map of the intergalactic medium via the Lyman-α forest. Finally, in Chapter 5, we

detail our final Lyman-α absorption large-scale structure map of the intergalactic medium.





Chapter 2

Trend Filtering: A Modern Statistical Tool for

Time-Domain Astronomy and Astronomical

Spectroscopy

This chapter is based on our paper Trend Filtering – I: A Modern Statistical Tool for Time-

Domain Astronomy and Astronomical Spectroscopy [29], which was published in Monthly Notices

of the Royal Astronomical Society and was the first to introduce trend filtering [1, 28] into the

astronomical literature.

The problem of denoising a one-dimensional signal possessing varying degrees of smoothness is

ubiquitous in time-domain astronomy and astronomical spectroscopy. For example, in the time

domain, an astronomical object may exhibit a smoothly varying intensity that is occasionally

interrupted by abrupt dips or spikes. Likewise, in the spectroscopic setting, a noiseless spectrum

typically contains intervals of relative smoothness mixed with localized higher frequency com-

ponents such as emission peaks and absorption lines. In this work, we present trend filtering

[1], a modern nonparametric statistical tool that yields significant improvements in this broad

problem space of denoising spatially heterogeneous signals. When the underlying signal is spatially

8
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heterogeneous, trend filtering is superior to any statistical estimator that is a linear combina-

tion of the observed data — including kernel smoothers, LOESS, smoothing splines, Gaussian

process regression, and many other popular methods. Furthermore, the trend filtering estimate

can be computed with practical and scalable efficiency via a specialized convex optimization

algorithm [30], e.g. handling sample sizes of n & 107 within a few minutes. In a companion paper

[31] (Chapter 3), we explicitly demonstrate the broad utility of trend filtering to observational

astronomy by carrying out a diverse set of spectroscopic and time-domain analyses.

2.1 Introduction

Many astronomical observations produce one-dimensional data with unknown or varying degrees

of smoothness. These include data from time-domain astronomy, where transient events such

as supernovae can show light-curve variations on timescales ranging from seconds to years

[e.g., 32, 33]. Similarly, in astronomical spectroscopy, with wavelength (or frequency) as the

independent variable, sharp absorption or emission-line features can be present alongside smoothly

varying black-body or other continuum radiation [see, e.g., 11]. In each of these general settings,

we observe a signal plus noise and would like to denoise the signal as accurately as possible.

Indeed the set of statistical tools available for addressing this general problem is quite vast.

Commonly used nonparametric regression methods include kernel smoothers [e.g., 34, 35], local

polynomial regression [LOESS; e.g., 36, 37], splines [e.g., 38–40], Gaussian process regression

[e.g., 41–43], and wavelet decompositions [e.g., 44–46]. A rich and elegant statistical literature

exists on the theoretical and practical achievements of these methods [see, e.g., 47–49, for general

references]. However, when the underlying signal is spatially heterogeneous, i.e. exhibits varying

degrees of smoothness, the power of classical statistical literature is quite limited. Kernels, LOESS,

smoothing splines, and Gaussian process regression belong to a broad family of nonparametric
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methods called linear smoothers, which has been shown to be uniformly suboptimal for estimating

spatially heterogeneous signals [50–52]. The common limitation of these methods is that they are

not locally adaptive; i.e., by construction, they do not adapt to local degrees of smoothness in a

signal. In particular, continuing with the example of a smoothly varying signal with occasional

sharp features, a linear smoother will tend to oversmooth the sharp features and/or overfit the

smooth regions in its effort to optimally balance statistical bias and variance. Considerable

effort has been made to address this problem by locally varying the hyperparameter(s) of a

linear smoother. For example, locally varying the kernel bandwidth [e.g., 53–57] irregularly

varying spline knot locations [e.g., 58–60], and constructing non-stationary covariance functions

for Gaussian process regression [e.g., 61–63]. However, since hyperparameters typically need to be

estimated from the data, such exponential increases in the hyperparameter complexity severely

limit the practicality of choosing the hyperparameters in a fully data-driven, generalizable, and

computationally efficient fashion. Wavelet decompositions offer an elegant solution to the problem

of estimating spatially heterogeneous signals, providing both statistical optimality [e.g., 52, 64]

and only requiring data-driven tuning of a single (scalar) hyperparameter. Wavelets, however,

possess the practical limitation of requiring a stringent analysis setting, e.g. equally-spaced inputs

and sample size equal to a power of two, among other provisions; and when these conditions

are violated, the optimality guarantees are void. So, seemingly at an impasse, the motivating

question for this work is can we have the best of both worlds? More precisely, is there a statistical

tool that simultaneously possesses the following properties:

1. Statistical optimality for estimating spatially heterogeneous signals

2. Practical analysis assumptions; for example, not limited to equally-spaced inputs

3. Practical and scalable computational speed
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4. A one-dimensional hyperparameter space, with automatic data-driven methods for selection

In this chapter we introduce trend filtering [1], a statistical method that is new to the astronomical

literature and provides a strong affirmative answer to this question.

The layout of this chapter is as follows. In Section 2.2 we provide both theoretical and empirical

evidence of the superiority of trend filtering for estimating spatially heterogeneous signals

compared to classical statistical methods. In Section 2.3 we introduce trend filtering, including a

general overview of the estimator’s machinery, its connection to spline methods, automatic

methods for choosing the hyperparameter, uncertainty quantification, generalizations, and

recommended software implementations in various programming languages. In Chapter 3,

we directly illustrate the broad utility of trend filtering to astronomy by carrying out a diverse

set of spectroscopic and time-domain analyses.

2.2 Classical statistical methods and their limitations

We begin this section by providing background and motivation for the nonparametric approach to

estimating (or denoising) signals. We then discuss statistical optimality for estimating spatially

heterogeneous signals, with an emphasis on providing evidence for the claim that trend filtering

is broadly superior to classical statistical methods in this setting. Finally, we end this section

by illustrating this superiority with a direct empirical comparison of trend filtering and several

popular classical methods on simulated observations of a spatially heterogeneous signal.
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2.2.1 Nonparametric regression

Suppose we observe noisy measurements of a response variable of interest (e.g., flux, magnitude,

photon counts) according to the data generating process (DGP)

f(ti) = f0(ti) + εi, i = 1, . . . , n (2.1)

where f0(ti) is the signal at input ti (e.g., a time or wavelength) and εi is the noise at ti that

contaminates the signal, giving rise to the observation f(ti). Let t1, . . . , tn ∈ (a, b) denote the

observed input interval and E[εi] = 0 (where we use E[·] to denote mathematical expectation).

Here, the general statistical problem is to estimate (or denoise) the underlying signal f0 from the

observations as accurately as possible. In the nonparametric setting, we refrain from making

strong a priori assumptions about f0 that could lead to significant modeling bias, e.g. assuming

a power law or a light-curve/spectral template fit. Mathematically, a nonparametric approach is

defined through the deliberately weak assumption f0 ∈ F (i.e. the signal belongs to the function

class F) where F is infinite-dimensional. In other words, the assumed class of all possible signals

F cannot be spanned by a finite number of parameters. Contrast this to the assumption that

the signal follows a pth degree power law, i.e. f0 ∈ FPL where

FPL =

{
f0 : f0(t) = β0 +

p∑
j=1

βjt
j

}
, (2.2)

a class that is spanned by p + 1 parameters. Similarly, given a set of p spectral/light-curve

templates b1(t), . . . , bp(t), the usual template-fitting assumption is that f0 ∈ FTEMP where

FTEMP =

{
f0 : f0(t) = β0 +

p∑
j=1

βjbj((t− s)/v)

}
(2.3)
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and s and v are horizontal shift and stretch hyperparameters, respectively. Both equations (2.2)

and (2.3) represent very stringent assumptions about the underlying signal f0. If the signal

is anything other than exactly a power law in t — a highly unlikely occurrence — nontrivial

statistical bias will arise by modeling it as such. Likewise, if a class of signals has a rich physical

diversity [e.g., Type Ia supernova light curves, 10] that is not sufficiently spanned by the library

of templates used in modeling, then statistical biases will arise. Depending on the size of the

imbalance between class diversity and the completeness of the template basis, the biases could

be significant. Moreover, these biases are rarely tracked by uncertainty quantification. To be

clear, this is not a uniform criticism of template-fitting. For example, templates are exceptionally

powerful tools for object classification and redshift estimation [e.g., 65, 66]. Furthermore, much

of our discussion in Chapter 3 centers around utilizing the flexible nonparametric nature of

trend filtering to construct more complete spectral/light-curve template libraries for various

observational objects and transient events.

Let f̂0 be any statistical estimator for the signal f0, derived from the noisy observations in

equation (2.1). Further, let pt(t) denote the probability density function (pdf) that specifies the

sampling distribution of the inputs on the interval (a, b), and let σ2(t) = Var(ε(t)) denote the

noise level at input t. In order to assess the accuracy of the estimator it is common to consider

the mean-squared prediction error (MSPE):

R(f̂0) = E
[
(f̂0 − f)2

]
(2.4)

= E
[
(f̂0 − f0)2

]
+ σ2 (2.5)

=

∫ b

a

(
Bias2(f̂0(t)) + Var(f̂0(t))

)
· pt(t)dt+ σ2, (2.6)
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where

Bias(f̂0(t)) = E[f̂0(t)]− f0(t) (2.7)

Var(f̂0(t)) = E
(
f̂0(t)− E[f̂0(t)]

)2
(2.8)

σ2 =

∫ b

a
σ2(t) · pt(t)dt. (2.9)

The equality in equation (2.6) is commonly referred to as the bias-variance decomposition.

The first term is the squared bias of the estimator f̂0 (integrated over the input interval)

and intuitively measures how appropriate the chosen statistical estimator is for modeling the

observed phenomenon. The second term is the variance of the estimator that measures how

stable or sensitive the estimator is to the observed data. And the third term is the irreducible

error — the minimum prediction error we cannot hope to improve upon. The bias-variance

decomposition therefore illustrates that an optimal estimator is one that combines appropriate

modeling assumptions (low bias) with high stability (low variance).

2.2.1.1 Statistical optimality (minimax theory)

In this section, we briefly discuss a mathematical framework for evaluating the performance of

statistical methods over nonparametric signal classes in order to demonstrate that the superiority

of trend filtering is a highly general result. Ignoring the irreducible error, the problem of

minimizing the MSPE of a statistical estimator can be equivalently stated as a minimization

of the first term in equation (2.5) — the mean-squared estimation error (MSEE). In practice,

low bias is attained by only making very weak assumptions about what the underlying signal

may look like, e.g. f0 has k continuous derivatives. An ideal statistical estimator for estimating
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signals in such a class (call it F) may then be defined as

inf
f̂0

(
sup
f0∈F

E
[
(f̂0 − f0)2

])
. (2.10)

That is, we would like our statistical estimator to be the minimizer (infimum) of the worst-case

(supremum) MSEE over the signal class F . This is rarely a mathematically tractable problem

for any practical signal class F . A more tractable approach is to consider how the worst-case

MSEE behaves as a function of the sample size n. A reasonable baseline metric for a statistical

estimator is to require that it satisfies

sup
f0∈F

E
[
(f̂0 − f0)2

]
→ 0 (2.11)

as n → ∞. That is, for any signal f0 ∈ F , when a large amount of data is available, f̂0 gets

arbitrarily close to the true signal. In any practical situation, this is not true for parametric

models because the bias component of the decomposition never vanishes. This, however, is a

widely-held — perhaps, defining — property of nonparametric methods. Therefore, in order

to distinguish optimality among nonparametric estimators, we require a stronger metric. In

particular, we study how quickly the worst-case error goes to zero as more data is observed. This is

the core idea of a rich area of statistical literature called minimax theory [see, e.g., 48, 67, 68]. For

many infinite-dimensional classes of signals, theoretical lower-bounds exist on the rate at which

the MSEE of any statistical estimator can approach zero. Therefore, if a statistical estimator

is shown to achieve that rate, it can be considered optimal for estimating that class of signals.

Formally, letting g(n) be the rate at which the MSEE of the theoretically optimal estimator

in equation (2.10) goes to zero (a monotonically decreasing function in n), we would like our

estimator f̂0 to satisfy

sup
f0∈F

E
[
(f̂0 − f0)2

]
= O(g(n)), (2.12)
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where we use O(·) to denote big O notation. If this is shown to be true, we say the estimator

achieves the minimax rate over the signal class F . Loosely speaking, we are stating that a

minimax optimal estimator is an estimator that learns the signal from the data just as quickly as

the theoretical gold standard estimator in equation (2.10).

2.2.1.2 Spatially heterogeneous signals

Thus far we have only specified that the signal underlying most one-dimensional astronomical

observations should be assumed to belong to a class F that is infinite-dimensional (i.e. non-

parametric). Further, in Section 2.2.1.1 we introduced the standard metric used to measure the

performance of a statistical estimator over an infinite-dimensional class of signals. Recalling

the discussion in the abstract and Section 2.1, trend filtering provides significant advances for

estimating signals that exhibit varying degrees of smoothness across the input domain. We

restate this definition below.

Definition. A spatially heterogeneous signal is a signal that exhibits varying degrees of

smoothness in different regions of its input domain.

Example. A smooth light curve with abrupt transient events.

Example. An electromagnetic spectrum with smooth continuum radiation and sharp

absorption/emission-line features.

To complement the above definition we may also loosely define a spatially homogeneous signal as

a signal that is either smooth or wiggly1 across its input domain, but not both. As “smoothness”

can be quantified in various ways these definitions are intentionally mathematically imprecise. A
1This is, in fact, a technical term used in the statistical literature.
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class that is commonly considered in the statistical literature is the L2 Sobolev class:

F2,k(C1) :=

{
f0 :

∫ b

a
f

(k)
0 (t)2dt < C1

}
, C1 > 0, k ∈ N. (2.13)

That is, an L2 Sobolev class is a class of all signals such that the integral of the square (the “L2

norm”) of the kth derivative of each signal is less than some constant C1. Statistical optimality

in the sense of Section 2.2.1.1 for estimating signals in these classes (and some other closely

related ones) is widely held among statistical methods in the classical toolkit; for example, kernel

smoothers [69, 70], LOESS [71, 72], and smoothing splines [73]. However, a seminal result by

[50, 51] showed that a statistical estimator can be minimax optimal over signal classes of the

form (2.13) and still perform quite poorly on other signals. In particular, the authors showed

that, when considering the broader L1 Sobolev class

F1,k(C2) :=

{
f0 :

∫ b

a

∣∣f (k)
0 (t)

∣∣dt < C2

}
, C2 > 0, k ∈ N, (2.14)

all linear smoothers2 — including kernels, LOESS, smoothing splines, Gaussian process regression,

and many other methods — are strictly suboptimal. The key difference between these two types

of classes is that L2 Sobolev classes are rich in spatially homogeneous signals but not spatially

heterogeneous signals, while L1 Sobolev classes3 are rich in both [see, e.g., 52].

The intuition of this result is that linear smoothers cannot optimally recover signals that exhibit

varying degrees of smoothness across their input domain because they operate as if the signal

possesses a fixed degree of smoothness. For example, this intuition is perhaps most clear when

considering a kernel smoother with a fixed bandwidth. The result of [50, 51] therefore implies
2A linear smoother is a statistical estimator that is a linear combination of the observed data. Many popular

statistical estimators, although often motivated from seemingly disparate premises, can be shown to fall under
this definition. See, e.g., [48] for more details.

3The L1 Sobolev class is often generalized to a nearly equivalent but slightly larger class — namely, signals
with derivatives of bounded total variation. See [1] for the generalized definition.
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that, in order to achieve statistical optimality for estimating spatially heterogeneous signals, a

statistical estimator must be nonlinear (more specifically, it must be locally adaptive). [1] showed

that trend filtering is minimax optimal for estimating signals in L1 Sobolev classes. Since L2

Sobolev classes are contained within L1 Sobolev classes, this result also guarantees that trend

filtering is also minimax optimal for estimating signals in L2 Sobolev classes. Wavelets share this

property, but require restrictive assumptions on the sampling of the data [64].

How large is this performance gap? The collective results of [1, 50, 51] reveal that the performance

gap between trend filtering and linear smoothers when estimating spatially heterogeneous signals

is significant. For example, when k = 0, the minimax rate over L1 Sobolev classes (which trend

filtering achieves) is n−2/3, but linear smoothers cannot achieve better than n−1/2. To put this

in perspective, this result says that the trend filtering estimator, training on n data points,

learns these signals with varying smoothness as quickly as a linear smoother training on n4/3

data points. As we demonstrate in the next section, this gap in theoretical optimality has clear

practical consequences.

In order to minimize the pervasion of technical statistical jargon, henceforth we simply refer to

a statistical estimator that achieves the minimax rate over L2 Sobolev classes as statistically

optimal for estimating spatially homogeneous signals, and we refer to a statistical estimator that

achieves the minimax rate over L1 Sobolev classes as statistically optimal for estimating spatially

heterogeneous signals. As previously mentioned, the latter implies the former, but not vice versa.

2.2.2 Empirical comparison

In this section we analyze noisy observations of a simulated spatially heterogeneous signal in

order to compare the empirical performance of trend filtering and several classical statistical

methods — namely, LOESS, smoothing splines, and Gaussian process regression. The mock
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observations are simulated on an unequally-spaced grid t1, . . . , tn ∼ Unif(0, 1) according to the

data generating process

f(ti) = f0(ti) + εi (2.15)

with

f0(ti) = 6
3∑

k=1

(ti − 0.5)k + 2.5
4∑
j=1

(−1)jφj(ti), (2.16)

where φj(t), j = 1, . . . , 4 are compactly-supported radial basis functions distributed throughout

the input space and εi ∼ N(0, 0.1252). We therefore construct the signal f0 to have a smoothly

varying global trend with four sharp localized features — two dips and two spikes. The signal

and noisy observations are shown in the top panel of Figure 2.1.

In order to facilitate the comparison of methods we utilize a metric for the total statistical

complexity (i.e. total wiggliness) of an estimator known as the effective degrees of freedom [see,

e.g., 74]. Formally, the effective degrees of freedom of an estimator f̂0 is defined as

df(f̂0) = σ −2
n∑
i=1

Cov(f̂0(ti), f(ti)) (2.17)

where σ2 is defined in equation (2.9). In Figure 2.1 we fix all estimators to have 55 effective

degrees of freedom. This exercise provides insight into how each estimator relatively distributes

its complexity across the input domain. In the second panel we see that the trend filtering

estimate has sufficiently recovered the underlying signal, including both the smoothness of the

global trend and the abruptness of the localized features. All three of the linear smoothers, on

the other hand, severely oversmooth the localized peaks and dips. Gaussian process regression

also exhibits some undesirable oscillatory features that do not correspond to any real trend in

the signal. In order to better recover the localized features the linear smoothers require a more

complex fit, i.e. smaller LOESS kernel bandwidth, smaller smoothing spline penalization, and
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Figure 2.1: Comparison of statistical methods on data simulated from a spatially heterogeneous signal. Each
statistical estimator is fixed to have 55 effective degrees of freedom in order to facilitate a direct comparison. The
trend filtering estimator is able to sufficiently distribute its effective degrees of freedom such that it simultaneously
recovers the smoothness of the global trend, as well as the abrupt localized features. The LOESS, smoothing spline,
and Gaussian process regression each estimates the smooth global trend reasonably well here, but significantly
oversmooths the sharp peaks and dips. Here, we utilize quadratic trend filtering (see Section 2.3.2).
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Figure 2.2: (Continued): Comparison of statistical methods on data simulated from a spatially heterogeneous
signal. Here, each of the linear smoothers (i.e. the LOESS, smoothing spline, and Gaussian process regression)
is fixed at 192 effective degrees of freedom — the complexity necessary for each estimator to recover the sharp
localized features approximately as well as the trend filtering estimator with 55 effective degrees of freedom. While
the linear smoothers now estimate the four abrupt features well, each severely overfits the data in the other regions
of the input domain.



Trend Filtering in Astronomy 22

smaller Gaussian process noise-signal variance. In Figure 2.2 we show the same comparison, but

we grant the linear smoothers more complexity. Specifically, in order to recover the sharp features

comparably with the trend filtering estimator with 55 effective degrees of freedom, the linear

smoothers require 192 effective degrees of freedom — approximately 3.5 times the complexity.

As a result, although they now adequately recover the peaks and dips, each linear smoother

severely overfits the data in the other regions of the input domain, resulting in many spurious

fluctuations.

As discussed in Section 2.2.1.2, the suboptimality of LOESS, smoothing splines, and Gaussian

process regression illustrated in this example is an inherent limitation of the broad linear

smoother family of statistical estimators. Linear smoothers are adequate tools for estimating

signals that exhibit approximately the same degree of smoothness throughout their input domain.

However, when a signal is expected to exhibit varying degrees of smoothness across its domain, a

locally-adaptive statistical estimator is needed.

2.3 Trend filtering

Trend filtering, in its original form, was independently proposed in the computer vision literature

[75] and the applied mathematics literature [76], and has recently been further developed in the

statistical and machine learning literature, most notably with [1, 28, 30, 77]. This work is in no

way related to the work of [78], which goes by a similar name. At a high level, trend filtering is

closely related to two familiar nonparametric regression methods: variable-knot regression splines

and smoothing splines. We elaborate on these relationships below.
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2.3.1 Closely-related methods

Splines have long played a central role in estimating complex signals [see, e.g., 79, 80, for general

references]. Formally, a kth order spline is a piecewise polynomial (i.e. piecewise power law) of

degree k that is continuous and has k − 1 continuous derivatives at the knots. As their names

suggest, variable-knot regression splines and smoothing splines center around fitting splines to

observational data. Recall from equation (2.1) the observational data generating process (DGP)

f(ti) = f0(ti) + εi, t1, . . . , tn ∈ (a, b), (2.18)

where f(ti) is a noisy measurement of the signal f0(ti), and E[εi] = 0. Given a set of knots

κ1, . . . , κp ∈ (a, b), the space of all kth order splines on the interval (a, b) with knots at κ1, . . . , κp

can be parametrized via a basis representation

m(t) =
∑
j

βjηj(t), (2.19)

where {ηj} is typically the truncated power basis or B-spline basis. A suitable estimator for the

signal f0 may then be

f̂0(t) =
∑
j

β̂jηj(t), (2.20)

where the β̂j are the ordinary least-squares (OLS) estimates of the basis coefficients. This is

called a regression spline. The question of course remains where to place the knots.

2.3.1.1 Variable-knot regression splines

The variable-knot (or free-knot) regression spline approach is to consider all regression spline

estimators with knots at a subset of the observed inputs, i.e. {κ1, . . . , κp} ⊂ {t1, . . . , tn} for all

possible p. Formally, the variable-knot regression spline estimator is the solution to the following
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constrained least-squares minimization problem:

min
{βj}

n∑
i=1

(
f(ti)−

∑
j

βjηj(ti)

)2

s.t.
∑
j≥k+2

1{βj 6= 0} = p

p ≥ 0

(2.21)

where p ≥ 0 is the number of knots in the spline and 1(·) is the indicator function satisfying

1{βj 6= 0} =


1 βj 6= 0,

0 βj = 0.

(2.22)

Furthermore, note that the equality constraint on the basis coefficients excludes those of the

“first” k+ 1 basis functions that span the space of global polynomials and only counts the number

of active basis functions that produce knots. The variable-knot regression spline optimization

is therefore a problem of finding the best subset of knots for the regression spline estimator.

Due to the sparsity of the coefficient constraint, the variable-knot regression spline estimator

allows for highly locally-adaptive behavior for estimating signals that exhibit varying degrees

of smoothness. However, the problem itself cannot be solved in polynomial time, requiring an

exhaustive combinatorial search over all ∼2n feasible models. It is common to utilize stepwise

procedures based on iterative addition and deletion of knots in the active set, but these partial

searches over the feasible set inherently provide no guarantee of finding the optimal global solution

to the problem in equation (2.21).

In order to make the connection to trend filtering more explicit it is helpful to reformulate the

constrained minimization problem in equation (2.21) into the following penalized unconstrained
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minimization problem:

min
{βj}

n∑
i=1

(
f(ti)−

∑
j

βjηj(ti)

)2

+ γ
∑
j≥k+2

1(βj 6= 0), (2.23)

where γ > 0 is a hyperparameter that determines the number of knots in the spline and the sum

of indicator functions serves as a smoothness “penalty” on the ordinary least-squares minimization.

Penalized regression is a popular area of statistical methodology [see, e.g., 49], in which the cost

functional (i.e. the quantity to be minimized) quantifies a tradeoff between the training error of

the estimator (here, the squared residuals) and the statistical complexity of the estimator (here,

the number of knots in the spline). In particular, (2.23) is known as an `0-penalized least-squares

regression because of the penalty’s connection to the mathematical `0 vector quasi-norm.

2.3.1.2 Smoothing splines

Smoothing splines counteract the computational issue faced by variable-knot regression splines

by simply placing knots at all of the observed inputs t1, . . . , tn and regularizing the smoothness

of the fitted spline. For example, letting G be the space of all cubic natural splines with knots at

t1, . . . , tn, the cubic smoothing spline is the solution to the optimization problem

min
m∈G

n∑
i=1

(
f(ti)−m(ti)

)2
+ γ

∫ b

a

(
m′′(t)

)2
dt, (2.24)

where m′′ is the second derivative of m and γ > 0 tunes the amount of regularization. Letting

η1, . . . , ηn be a basis for cubic natural splines with knots at the observed inputs, the optimization

in equation (2.24) can be equivalently stated as a minimization over the basis coefficients:

min
{βj}

n∑
i=1

(
f(ti)−

∑
j

βjηj(ti)

)2

+ γ
n∑

j,k=1

βjβkωjk (2.25)
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where

ωjk =

∫ b

a
η′′j (t)η′′k(t)dt. (2.26)

The cost functional in equation (2.25) is differentiable and leads to a linear system with a special

sparse structure (i.e. bandedness), which yields a solution that can both be found in closed-form

and computed very quickly — in O(n) elementary operations. This particular choice of cost

functional, however, produces an estimator that is a linear combination of the observations —

a linear smoother. Therefore, as discussed and demonstrated in Section 2.2, smoothing splines

are suboptimal for estimating spatially heterogeneous signals. Equation (2.25) is known as an

`2-penalized least-squares regression because of the penalty’s connection to the mathematical `2

vector-norm.

2.3.2 Definition

Trend filtering can be viewed as a blending of the strengths of variable-knot regression splines

(local adaptivity and interpretability) and the strengths of smoothing splines (simplicity and

speed). Mathematically, this is achieved by choosing an appropriate set of basis functions and

penalizing the least-squares problem with an `1 norm on the basis coefficients (sum of absolute

values), instead of the `0 norm of variable-knot regression splines (sum of indicator functions) or

the `2 norm of smoothing splines (sum of squares).

This section is primarily summarized from [1] and [81]. Let the inputs be ordered with respect to

the index, i.e. t1 < · · · < tn. For the sake of simplicity, we consider the case when the inputs

t1, . . . , tn ∈ (a, b) are equally spaced with ∆t = ti+1 − ti. See the aforementioned papers for the

generalized definition of trend filtering to unequally spaced inputs.

For any given integer k ≥ 0, the kth order trend filtering estimate is a piecewise polynomial of

degree k with knots automatically selected at a sparse subset of the observed inputs t1, . . . , tn.
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In Figure 2.3, we provide an example of a trend-filtered data set for orders k = 0, 1, 2, and 3.

Specifically, the panels of the figure respectively display piecewise constant, piecewise linear,

piecewise quadratic, and piecewise cubic fits to the data with the automatically-selected knots

indicated by the tick marks on the horizontal axes. Constant trend filtering is equivalent to

total variation denoising [82], as well as special forms of the fused lasso of [83] and the variable

fusion estimator of [84]. Linear trend filtering was independently proposed by [75] and [76].

Higher-order polynomial trend filtering (k ≥ 2) was developed by [28] and [1]. In the Figure 2.3

example, the quadratic and cubic trend filtering estimates are nearly visually indistinguishable,

and this is true in general. Although, as we see here, trend filtering estimates of different orders

typically select different sets of knots.

Like the spline methods discussed in Section 2.3.1, for any order k ≥ 0, the trend filtering

estimator has a basis representation

m(t) =
n∑
j=1

βjhj(t), (2.27)

but, here, the trend filtering basis {h1, . . . , hn} is the falling factorial basis, which is defined as

hj(t) =


∏j−1
i=1 (t− ti) j ≤ k + 1,

∏j−1
i=1 (t− tj−k−1+i) · 1{t ≥ tj−1} j ≥ k + 2.

(2.28)

Like the truncated power basis, the first k + 1 basis functions span the space of global kth order

polynomials and the rest of the basis adds the piecewise polynomial structure. However, the

knot-producing basis functions of the falling factorial basis hj , j ≥ k+2 have small discontinuities

in their jth order derivatives at the knots for all j = 1, . . . , k − 1, and therefore for orders k ≥ 2

the trend filtering estimate is close to, but not quite a spline. The discontinuities are small

enough, however, that the trend filtering estimate defined through the falling factorial basis
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Figure 2.3: Piecewise polynomials with adaptively-chosen knots produced by trend filtering. From
top to bottom, we show trend filtering estimates of orders k = 0, 1, 2 and 3, which take the form of
piecewise constant, piecewise linear, piecewise quadratic, and piecewise cubic polynomials, respectively.
The adaptively-chosen knots of each piecewise polynomial are indicated by the tick marks along the
horizontal axes. The constant trend filtering estimate is discontinuous at the knots, but we interpolate
here for visual purposes. The data set is taken from the Lyman-α forest of a mock quasar spectrum [85],
sampled in logarithmic-angstrom space. We study this phenomenon in detail in Chapter 3.
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representation is visually indistinguishable from the analogous spline produced by the truncated

power basis [see 1, 81]. The advantage of utilizing the falling factorial basis in this context

instead of the truncated power basis (or the B-spline basis) comes in the form of significant

computational speedups, as we detail below.

Analogous to the continuous smoothing spline problem (2.24), we let Hk be the space of all

functions spanned by the kth order falling factorial basis, and pose the trend filtering problem as

a least-squares minimization with a derivative-based penalty on the fitted function. In particular,

the kth order trend filtering estimator is the solution to the problem

min
m∈Hk

n∑
i=1

(
f(ti)−m(ti)

)2
+ γ · TV(m(k)), (2.29)

where m(k) is the kth derivative of m, TV(m(k)) is the total variation of m(k), and γ > 0 is

the model hyperparameter that controls the smoothness of the fit. When m(k) is differentiable

everywhere in its domain, the penalty term simplifies to

TV(m(k)) =

∫ b

a
|m(k+1)(t)|dt. (2.30)

Avoiding the technical generalized definition of total variation [see, e.g., 1], we can simply think of

TV(·) as a generalized L1 norm4 for our piecewise polynomials that possess small discontinuities

in the derivatives. Again referring back to the smoothing spline problem in equation (2.24),

definitions (2.29) and (2.30) reveal that trend filtering can be thought of as an L1 analog of the

(L2-penalized) smoothing spline problem. Moreover, note that unlike smoothing splines, trend

filtering can produce piecewise polynomials of all orders k ≥ 0.
4We use the upper-case notation Lp, p = 1, 2 for the p-norm of a continuous function, and `p, p = 0, 1, 2 for

the p-norm of a vector.
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Replacing m with its basis representation, i.e. m(t) =
∑

j βjhj(t), yields the equivalent finite-

dimensional minimization problem5:

min
{βj}

n∑
i=1

(
f(ti)−

n∑
j=1

βjhj(ti)

)2

+ γ · k! ·∆tk
n∑

j=k+2

|βj |. (2.31)

The terms k! and ∆tk are constants and can therefore be ignored by absorbing them into

the hyperparameter γ. Visual inspection of equation (2.31) reveals that trend filtering is also

analogous to the variable-knot regression spline problem (2.21) — namely, by replacing the `0

norm on the basis coefficients with an `1 norm. The advantage here is that the problem is

now strictly convex and can be efficiently solved by various convex optimization algorithms.

Furthermore, the `1 penalty still yields a sparse solution (i.e. many βj = 0), which provides

the automatic knot-selection property. Letting β̂1, . . . , β̂n denote the solution to (2.31) for a

particular choice of γ > 0, the trend filtering estimate is then given by

f̂0(t; γ) =
n∑
j=1

β̂jhj(t), (2.32)

with the automatically-selected knots corresponding to the basis functions with β̂j 6= 0, j ≥ k+ 1.

The advantage of utilizing the falling factorial basis is found by reparametrizing the problem (2.31)

into an optimization over the fitted values m(t1), . . . ,m(tn). The problem then reduces to

min
{m(ti)}

n∑
i=1

(
f(ti)−m(ti)

)2
+ γ

n−k−1∑
i=1

|∆(k+1)m(ti)| ·∆t (2.33)

where ∆(k+1)m(ti) can be viewed as a discrete approximation of the (k + 1)st derivative of m at

ti. For k = 0 the discrete derivatives are

∆(1)m(ti) =
m(ti+1)−m(ti)

∆t
, (2.34)

5This may be recognized as a lasso regression [86], with the features being the falling factorial basis functions.
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and then can be defined recursively for k ≥ 1:

∆(k+1)m(ti) =
∆(k)m(ti+1)−∆(k)m(ti)

∆t
. (2.35)

The penalty term in equation (2.33) can be viewed as a Riemann-like discrete approximation

of the integral in equation (2.30). Because of the choice of basis, the problem has reduced to

a simple generalized lasso problem [28, 87] with an identity predictor matrix and a banded6

penalty matrix. This special structure allows the solution to be found in nearly linear time,

i.e. O(n) elementary operations. In this work we utilize the specialized alternating direction

method of multipliers (ADMM) algorithm of [30]. This algorithm has a linear complexity per

iteration, so the overall complexity is O(nr) where r is the number of iterations necessary to

converge to the solution. In the worst case scenario r ∼ n1/2, so the worst-case overall complexity

is O(n1.5). The practical computational speed further illustrates the value of trend filtering to

astronomy, as it is readily compatible with the large-scale analysis of one-dimensional data sets

that has become increasingly ubiquitous in large sky surveys. We show a comparison in Table 2.1

of the computational costs associated with trend filtering and other popular one-dimensional

nonparametric methods.

Given the trend filtering fitted values obtained by the optimization in equation (2.33) the full

continuous-time representation of the trend filtering estimate follows by inverting the parametriza-

tion back to the basis function coefficients and plugging them into the basis representation in

equation (2.32).
6A banded matrix only contains nonzero elements in the main diagonal and zero or more diagonals on either

side.
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Method Computational
Complexity

Hyperparameters
to estimate

Locally-adaptive
Wavelets O(n) 1
Trend filtering O(n1.5) 1
Variable-knot regression splines O(n ·

(
n
p

)
) 1

Non-adaptive

Uniform-knot regression splines O(n) 1
Smoothing splines O(n) 1
Kernel smoothers O(n2) 1
LOESS O(n2) 1
Gaussian process regression O(n3) 3+

Table 2.1: Comparison of computational costs associated with popular one-dimensional
nonparametric regression methods. The computational complexity column states the dependence
on the sample size n of the number of elementary operations necessary to obtain the fitted
values of each estimator (i.e. the estimator evaluated at the observed inputs). For trend filtering,
the O(n1.5) complexity represents the worst-case complexity of the [30] convex optimization
algorithm. In most practical settings the actual complexity of this algorithm is close to O(n).
Variable-knot regression splines require a (nonconvex) exhaustive combinatorial search over
the set of possible knots and the complexity therefore includes a binomial coefficient term(
n
p

)
= n!/(n!(n − p)!), where p is the number of knots in the spline. The remaining methods

are explicitly solvable and the stated complexity represents the cost of an exact calculation.
The O(n) complexity of wavelets relies on restrictive sampling assumptions (e.g., equally-spaced
inputs, sample size equal to a power of two). The stated computational complexity of all methods
represents the cost of a single model fit and does not include the cost of hyperparameter tuning.
Gaussian process regression suffers from the most additional overhead in this regard because
of the (often) large number of hyperparameters used to parametrize the covariance function
(e.g., shape, range, marginal variance, noise variance). Each of the non-adaptive methods (linear
smoothers) can be made to be locally adaptive (e.g., by locally varying the hyperparameters of
the model), but at the expense of greatly increasing the dimensionality of the hyperparameter
space to be searched over.

2.3.3 Extension to heteroskedastic weighting

Thus far we have considered the simple case where the observations are treated as equally-weighted

in the cost functional (2.33). Recall from equation (2.18) the observational data generating

process and define σ2
i = Var(εi) to be the noise level — the (typically heteroskedastic) uncertainty

in the measurements that arises from instrumental errors and removal of systematic effects. When

estimates for σ2
i , i = 1, . . . , n accompany the observations, as they often do, they can be used to

weight the observations to yield a more efficient statistical estimator (i.e. smaller mean-squared

error). The error-weighted trend filtering estimator is the solution to the following minimization
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Language Recommended implementation

R github.com/glmgen
C github.com/glmgen
Python cvxpy.org
Matlab http://stanford.edu/~boyd/l1_tf
Julia github.com/JuliaStats/Lasso.jl

Table 2.2: Recommended implementations for trend filtering in various program-
ming languages. See Section 2.3.4 for details. We provide supplementary R code at
github.com/capolitsch/trendfilteringSupp for selecting the hyperparameter via minimiza-
tion of Stein’s unbiased risk estimate (see Section 2.3.5) and various bootstrap methods for
uncertainty quantification (see Section 2.3.6). Our implementations are built on top of the
glmgen R package of [88].

problem:

min
{m(ti)}

n∑
i=1

(
f(ti)−m(ti)

)2
wi + γ

n−k−1∑
i=1

|∆(k+1)m(ti)| ·∆t, (2.36)

where the optimal choice of weights is wi = σ−2
i , i = 1, . . . , n. Much of the publically available

software for trend filtering allows for a heteroskedastic weighting scheme (see Section 2.3.4).

2.3.4 Software

Trend filtering software is available online across various platforms. For the specialized ADMM

algorithm of [30] that we utilize in this work, implementations are available in R and C [88], as

well as Julia [89]. Matlab and Python implementations are available for the primal-dual interior

point method of [76], but only for equally-weighted linear trend filtering [90, 91]. We provide links

to our recommended implementations in Table 2.2. Note that in all software implementations

the trend filtering hyperparameter is called λ instead of γ, which we use here to avoid ambiguity

with the notation for wavelength in our spectroscopic analyses throughout this thesis.

https://github.com/glmgen/glmgen
https://github.com/glmgen/glmgen
https://www.cvxpy.org/examples/applications/l1_trend_filter.html
http://stanford.edu/~boyd/l1_tf
http://github.com/JuliaStats/Lasso.jl
http://github.com/capolitsch/trendfilteringSupp
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2.3.5 Choosing the hyperparameter

The choice of the piecewise polynomial order k generally has minimal effect on the performance

of the trend filtering estimator in terms of mean-squared error and therefore can be treated as an

a priori aesthetic choice based on how much smoothness is desired or believed to be present. For

example, we use k = 2 (quadratic trend filtering) throughout our analyses in Chapter 3 so that

the fitted curves are smooth, i.e. differentiable everywhere.

Given the choice of k, the hyperparameter γ > 0 is used to tune the complexity (i.e. the wiggliness)

of the trend filtering estimate by weighting the tradeoff between the complexity of the estimate

and the size of the squared residuals. Obtaining an accurate estimate is therefore intrinsically

tied to finding an optimal choice of γ. The selection of γ is typically done by minimizing an

estimate of the mean-squared prediction error (MSPE) of the trend filtering estimator. Here,

there are two different notions of error to consider, namely, fixed-input error and random-input

error. As the names suggest, the distinction between which type of error to consider is made

based on how the inputs are sampled. As a general rule-of-thumb, we recommend optimizing

with respect to fixed-input error when the inputs are regularly-sampled and optimizing with

respect to random-input error on irregularly-sampled data.

Recall the DGP stated in equation (2.18) and let it be denoted by Q so that EQ[·] is the

mathematical expectation with respect to the randomness of the DGP. Further, let σ2
i = Var(εi).

The fixed-input MSPE is given by

R(γ) =
1

n

n∑
i=1

EQ
[(
f(ti)− f̂0(ti; γ)

)2 ∣∣∣ t1, . . . , tn] (2.37)

=
1

n

n∑
i=1

(
EQ
[(
f0(ti)− f̂0(ti; γ)

)2 ∣∣∣ t1, . . . , tn]+ σ2
i

)
(2.38)
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and the random-input MSPE is given by

R̃(γ) = EQ
[(
f(t)− f̂0(t; γ)

)2]
, (2.39)

where, in the latter, t is considered to be a random component of the DGP with a marginal

probability density pt(t) supported on the observed input interval. In each case, the theoretically

optimal choice of γ is defined as the minimizer of the respective choice of error. Empirically, we

estimate the theoretically optimal choice of γ by minimizing an estimate of (2.37) or (2.39). For

fixed-input error we recommend Stein’s unbiased risk estimate [SURE; 92, 93] and for random-

input error we recommend K-fold cross validation with K = 10. We elaborate on SURE here

and refer the reader to [94] for K-fold cross validation.

The SURE formula provides an unbiased estimate of the fixed-input MSPE of a statistical

estimator:

R̂0(γ) =
1

n

n∑
i=1

(
f(ti)− f̂0(ti; γ)

)2
+

2σ2df(f̂0)

n
, (2.40)

where σ2 = n−1
∑n

i=1 σ
2
i and df(f̂0) is defined in equation (2.17). A formula for the effective

degrees of freedom of the trend filtering estimator is available via the generalized lasso results of

[95]; namely,

df(f̂0) = E[number of knots in f̂0] + k + 1. (2.41)

We then obtain our hyperparameter estimate γ̂ by minimizing the following plug-in estimate for

(2.40):

R̂(γ) =
1

n

n∑
i=1

(
f(ti)− f̂0(ti; γ)

)2
+

2σ̂
2
d̂f(f̂0)

n
, (2.42)

where d̂f is the estimate for the effective degrees of freedom that is obtained by replacing the
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expectation in equation (2.41) with the observed number of knots, and σ̂
2
is an estimate of σ2.

If a reliable estimate of σ2 is not available a priori, a data-driven estimate can be constructed

[see, e.g., 48]. We provide a supplementary R package on the corresponding author’s GitHub

page7 for implementing SURE with trend filtering. The package is built on top of the glmgen R

package of [88], which already includes an implementation of K-fold cross validation.

Because of the existence of the degrees of freedom expression (2.41), trend filtering is also

compatible with reduced chi-squared model assessment and comparison procedures under a

Gaussian noise assumption [96, 97].

2.3.6 Uncertainty quantification

2.3.6.1 Frequentist

Frequentist uncertainty quantification for trend filtering follows by studying the sampling distri-

bution of the estimator that arises from the randomness of the observational data generating

process (DGP). In particular, most of the uncertainty in the estimates is captured by studying the

variability of the estimator with respect to the DGP. We advise three different bootstrap methods

[98] for estimating the variability of the trend filtering estimator, with each method corresponding

to a distinct analysis setting. Here, we emphasize the terminology variability — as opposed to

the variance of the trend filtering estimator — since, by construction, as a nonlinear function of

the observed data, the trend filtering estimator has a non-Gaussian sampling distribution even

when the observational noise is Gaussian. For that reason, each of our recommended bootstrap

approaches is based on computing sample quantiles (instead of pairing standard errors with

Gaussian quantiles).
7https://github.com/capolitsch/trendfilteringSupp

https://github.com/capolitsch/trendfilteringSupp
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We restate the assumed DGP here for clarity:

f(ti) = f0(ti) + εi, t1, . . . , tn ∈ (a, b) (2.43)

where E[εi] = 0. We make the further assumption that the errors ε1, . . . , εn are independent8.

The three distinct settings we consider are:

S1. The inputs are irregularly sampled

S2. The inputs are regularly sampled and the noise distribution is known

S3. The inputs are regularly sampled and the noise distribution is unknown

The corresponding bootstrap methods are detailed in Algorithm 1 [nonparametric bootstrap; 98],

Algorithm 2 [parametric bootstrap; 100], and Algorithm 3 [wild bootstrap; 101–103], respectively.

We include implementations of each of these algorithms in the R package on our GitHub page.

Algorithm 1 Nonparametric bootstrap for random-input uncertainty quantification

Require: Training Data (t1, f(t1)), . . . , (tn, f(tn)), hyperparameters γ and k, prediction input
grid t′1, . . . , t′m

1: for all b in 1 : B do
2: Define a bootstrap sample of size n by resampling the observed pairs with replacement:

(t∗1, f
∗
b (t∗1)), . . . , (t∗n, f

∗
b (t∗n))

3: Let f̂∗b (t′1), . . . , f̂∗b (t′m) denote the trend filtering estimate fit on the bootstrap sample and
evaluated on the prediction grid t′1, . . . , t′m

4: end for
Output: The full trend filtering bootstrap ensemble {f̂∗b (t′i)}i=1,...,m

b=1,...,B

Given the full trend filtering bootstrap ensemble provided by the relevant bootstrap algorithm,

for any α ∈ (0, 1), a (1− α) · 100% quantile-based pointwise variability band is given by

V1−α(t′i) =
(
f̂∗α/2(t′i), f̂

∗
1−α/2(t′i)

)
, i = 1, . . . ,m (2.44)

8If nontrivial autocorrelation exists in the noise then a block bootstrap [99] will yield a better approximation
of the trend filtering variability than the bootstrap implementations we discuss.
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Algorithm 2 Parametric bootstrap for fixed-input uncertainty quantification (when noise distribution
εi ∼ Qi is known a priori)

Require: Training Data (t1, f(t1)), . . . , (tn, f(tn)), hyperparameters γ and k, assumed noise
distribution εi ∼ Qi, prediction input grid t′1, . . . , t′m

1: Compute the trend filtering point estimate at the observed inputs:

(t1, f̂0(t1)), . . . , (tn, f̂0(tn))

2: for all b in 1 : B do
3: Define a bootstrap sample by sampling from the assumed noise distribution:

f∗b (ti) = f̂0(ti) + ε∗i where ε∗i ∼ Qi, i = 1, . . . , n

4: Let f∗b (t′1), . . . , f∗b (t′m) denote the trend filtering estimate fit on the bootstrap sample and
evaluated on the prediction grid t′1, . . . , t′m

5: end for
Output: The full trend filtering bootstrap ensemble {f̂∗b (t′i)}i=1,...,m

b=1,...,B

Algorithm 3 Wild bootstrap for fixed-input uncertainty quantification (when noise distribution is not
known a priori)

Require: Training Data (t1, f(t1)), . . . , (tn, f(tn)), hyperparameters γ and k, prediction input
grid t′1, . . . , t′m

1: Compute the trend filtering point estimate at the observed inputs:

(t1, f̂0(t1)), . . . , (tn, f̂0(tn))

2: Let ε̂i = f(ti)− f̂0(ti), i = 1, . . . , n denote the residuals
3: for all i do
4: Define a bootstrap sample by sampling from the following distribution:

f∗b (ti) = f̂0(ti) + u∗i i = 1, . . . , n

where

u∗i =

{
ε̂i(1 +

√
5)/2 with probability (1 +

√
5)/(2

√
5)

ε̂i(1−
√

5)/2 with probability (
√

5− 1)/(2
√

5)

5: Let f∗b (t′1), . . . , f∗b (t′m) denote the trend filtering estimate fit on the bootstrap sample and
evaluated on the prediction grid t′1, . . . , t′m

6: end for
Output: The full trend filtering bootstrap ensemble {f̂∗b (t′i)}i=1,...,m

b=1,...,B
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where

f̂∗β(t′i) = inf
g

{
g :

1

B

B∑
b=1

1
{
f̂∗b (t′i) ≤ g

}
≥ β

}
, β ∈ (0, 1). (2.45)

Analogously, bootstrap sampling distributions and variability intervals for observable parameters

of the signal may be studied by deriving a bootstrap parameter estimate from each trend filtering

estimate within the bootstrap ensemble. For example, in Chapter 3 we examine the bootstrap

sampling distributions of several observable light-curve parameters of exoplanet transits and

supernovae.

2.3.6.2 Bayesian

There is a well-studied connection between `1-penalized least-squares regression and a Bayesian

framework [see, e.g., 86, 104, 105]. A discussion specific to trend filtering can be found in [106].

2.3.7 Relaxed trend filtering

We are indebted to Ryan Tibshirani for a private conversation that motivated the discussion in

this section. Trend filtering can be generalized to allow for greater flexibility through a technique

that we call relaxed trend filtering9. Although the traditional trend filtering estimator is already

highly flexible, there are certain settings in which the relaxed trend filtering estimator provides

nontrivial improvements. In our experience, these typically correspond to settings where the

optimally-tuned trend filtering estimator selects very few knots. For example, we use relaxed

trend filtering in Chapter 3 to model the detrended, phase-folded light curve of a Kepler star

with a planetary transit event [5, 6, 108].

The relaxed trend filtering estimate is defined through a two-stage sequential procedure in which

the first stage amounts to computing the traditional trend filtering estimate discussed in Section
9We choose this term because the generalization of trend filtering to relaxed trend filtering is analogous to the

generalization of the lasso [86] to the relaxed lasso [107].
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2.3.2. Recall the trend filtering minimization problem in equation (2.31). For any given order

k ∈ {0, 1, 2, . . . } and hyperparameter γ > 0, let us amend our notation so that

f̂ TF
0 (t) =

n∑
j=1

β̂ TF
j hj(t) (2.46)

denotes the basis representation of the traditional trend filtering estimate. Further, define the

index set

Kγ =
{

1 ≤ j ≤ n | β̂ TF
j 6= 0

}
(2.47)

that includes the indices of the non-zero falling factorial basis coefficients for the given choice of

γ. Now let β̂ OLS
j , j ∈ Kγ , denote the solution to the ordinary least-squares (OLS) minimization

problem

min
{βj}

n∑
i=1

(
f(ti)−

∑
j∈Kγ

βjhj(ti)

)2

, (2.48)

and define the corresponding OLS estimate as

f̂ OLS
0 (t) =

∑
j∈Kγ

β̂ OLS
j hj(t). (2.49)

That is, the OLS estimate (2.49) uses trend filtering to find the knots in the piecewise polynomial,

but then uses ordinary least-squares to estimate the reduced set of basis coefficients. The relaxed

trend filtering estimate is then defined as a weighted average of the traditional trend filtering

estimate and the corresponding OLS estimate:

f̂ RTF
0 (t) = φf̂ TF

0 (t) + (1− φ)f̂ OLS
0 (t), (2.50)

for some choice of relaxation hyperparameter φ ∈ [0, 1]. Relaxed trend filtering is therefore a

generalization of trend filtering in the sense that the case φ = 1 returns the traditional trend
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filtering estimate.

In principle, it is preferable to jointly optimize the trend filtering hyperparameter γ and the

relaxation hyperparameter φ, e.g. via cross validation. However, it often suffices to choose γ and

φ sequentially, which in turn adds minimal computational cost on top of the traditional trend

filtering procedure. Because of the trivial proximity of the falling factorial basis to the truncated

power basis [established in 1, 81], it is sufficient to let f̂ OLS
0 be the kth order regression spline

with knots at the input locations selected by the trend filtering estimator. In heteroskedastic

settings, as discussed in Section 2.3.3, a piecewise polynomial or regression spline fit by weighted

least-squares should be used in place of the OLS estimate (2.49).

2.4 Concluding remarks

The analysis of one-dimensional data arising from signals possessing varying degrees of smoothness

is central to a wide variety of problems in time-domain astronomy and astronomical spectroscopy.

Trend filtering is a modern statistical tool that provides a unique combination of (1) statistical

optimality for estimating spatially heterogeneous signals; (2) natural flexibility for handling

practical analysis settings (general sampling designs, heteroskedastic noise distributions, etc.);

(3) practical computational speed that scales to massive data sets; and (4) a single model

hyperparameter that can be chosen via automatic data-driven methods.

Software for trend filtering is freely available online across various platforms and we provide links

to our recommendations in Table 2.3.4. Additionally, we make supplementary R code available on

the corresponding author’s GitHub page10 for: (1) selecting the trend filtering hyperparameter by

minimizing Stein’s unbiased risk estimate (see Section 2.3.5); and (2) various bootstrap methods

for trend filtering uncertainty quantification (see Section 2.3.6).
10https://github.com/capolitsch/trendfilteringSupp

https://github.com/capolitsch/trendfilteringSupp
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In Chapter 3 we explicitly demonstrate the broad utility of trend filtering to astronomy by

carrying out a diverse set of spectroscopic and time-domain analyses.





Chapter 3

Trend Filtering: Denoising Astronomical Signals with

Varying Degrees of Smoothness

This chapter is based on our paper Trend Filtering – II: Denoising Astronomical Signals with

Varying Degrees of Smoothness [31], which was published in Monthly Notices of the Royal

Astronomical Society.

Trend filtering — first introduced into the astronomical literature in our companion paper [29]

(Chapter 2) — is a state-of-the-art statistical tool for denoising one-dimensional signals that

possess varying degrees of smoothness. In this chapter, we demonstrate the broad utility of

trend filtering to observational astronomy by discussing how it can contribute to a variety of

spectroscopic and time-domain studies. The observations we discuss are (1) the Lyman-α forest

of quasar spectra; (2) more general spectroscopy of quasars, galaxies, and stars; (3) stellar light

curves with planetary transits; (4) eclipsing binary light curves; and (5) supernova light curves.

We study the Lyman-α forest in the greatest detail — using trend filtering to map the large-scale

structure of the intergalactic medium along quasar-observer lines of sight. The remaining studies

share broad themes of: (1) estimating observable parameters of light curves and spectra; and (2)

43
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constructing observational spectral/light-curve templates. We also briefly discuss the utility of

trend filtering as a tool for one-dimensional data reduction and compression.

3.1 Introduction

Many astronomical analyses can be described by the following problem setup. Suppose we collect

noisy measurements of an observable quantity (e.g., flux, magnitude, photon counts) according

to the data generating process

f(ti) = f0(ti) + εi, i = 1, . . . , n, (3.1)

where t1, . . . , tn is an arbitrarily-spaced grid of one-dimensional inputs (e.g., times or wavelengths),

εi is mean zero noise, and f0 is a signal that may exhibit varying degrees of smoothness across

the input domain (e.g., a smooth signal with abrupt dips/spikes). Given the observed data

sample, we then attempt to estimate (or denoise) the underlying signal f0 from the observations

by applying appropriate statistical methods. In [29] (Chapter 2), we introduced trend filtering

[1, 28] into the astronomical literature. When the underlying signal is spatially heterogeneous,

i.e. possesses varying degrees of smoothness, trend filtering is superior to popular statistical

methods such as Gaussian process regression, smoothing splines, kernels, LOESS, and many

others [1, 50, 51]. Furthermore, the trend filtering estimate can be computed via a highly efficient

and scalable convex optimization algorithm [30] and only requires data-driven selection of a

single scalar hyperparameter. In this chapter, we directly demonstrate the broad utility of trend

filtering to observational astronomy by using it to carry out a diverse set of spectroscopic and

time-domain analyses.
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The outline of this chapter is as follows. In Section 3.2, we use trend filtering to study the Lyman-

α forest of quasar spectra — a series of absorption features that can be used as a tracer of the

matter density distribution of the intergalactic medium along quasar-observer lines of sight. We

choose to study this application in depth and then illustrate the breadth of trend filtering’s utility

through our discussions in Section 3.3. The applications we discuss in Section 3.3 can be grouped

into two broad (and often intertwined) categories: (1) deriving estimates of observable parameters

from trend-filtered observations; and (2) using trend filtering to construct spectral/light-curve

templates of astronomical objects/events. In Section 3.3.1, we discuss constructing spectral

template libraries for astronomical objects by trend filtering coadded spectroscopic observations.

We illustrate our approach on quasar, galaxy, and stellar spectra from the Sloan Digital Sky

Survey [27, 109]. Emission-line parameters can also be robustly estimated by fitting radial basis

functions (e.g., Gaussians) to trend-filtered estimates near emission lines. In Section 3.3.2, we

use relaxed trend filtering to model the detrended, phase-folded light curve of a Kepler stellar

system with a transiting exoplanet. We derive estimates and full uncertainty distributions for

the transit depth and total transit duration. In Section 3.3.3, we use trend filtering to denoise a

detrended, phase-folded Kepler light curve of an eclipsing binary (EB) system. We illustrate

that trend filtering provides significant improvements upon the popular polyfit method of [8]

that is used to model Kepler EB light curves and derive observable parameters. In Section 3.3.4,

we discuss using trend filtering to construct light-curve templates of supernova (SN) explosions.

We illustrate this approach on a SN light curve obtained from the Open Supernova Catalog

[110]. Furthermore, we derive estimates and full uncertainty distributions for a set of observable

parameters — namely, the maximum apparent magnitude, the time of maximum, and the decline

rate. Finally, in Section 3.3.5, we briefly discuss a different, non-data-analysis application of

trend filtering. Specifically, we discuss the use of trend filtering as a tool for fast and flexible

one-dimensional data reduction and compression. The flexibility of the trend filtering estimator,
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paired with its efficient speed and storage capabilities, make it a potentially powerful tool to

include in large-scale (one-dimensional) astronomical data reduction and storage pipelines.

We utilize the [88] glmgen R implementation of the [30] trend filtering optimization algorithm in

this work. See Chapter 2 for implementations in other programming languages.

3.2 Main Application: Quasar Lyman-α Forest

The Lyman-α (Lyα) forest is the name given to the absorption features seen in quasar spectra

which are caused by neutral hydrogen (H I) in the intergalactic medium between a quasar and an

observer. When emitted from an accretion disk close to the central black hole, the light from the

quasar has a relatively smooth spectrum — a continuum — caused by the summed black-body

emission of gas with different temperatures at different disk radii [111]. Emission lines are also

seen, and their intensities and line ratios supply information on the physical conditions in the line

emitting gas. At least twenty broad emission lines, broadened by high velocities and temperatures

can be measured in a single active galactic nucleus, along with a similar number of narrow lines

from colder gas [112]. The emitted spectrum therefore already consists of a superposition of

components with varying degrees of smoothness. The Lyα forest arises when this spectrum is

further processed with the addition of absorption lines. Light moving towards the observer is

redshifted into resonance with the Lyα transition of H I, and the strength of absorption features

is dictated by the densities of intergalactic material along the line of sight [113]. The smoothness

of the absorption lines varies depending on the gas pressure, and thermal doppler broadening

[114, 115]. Sharper absorption features, metal lines, are also caused by other intergalactic species,

such as C IV, O VI , and Mg II [116, 117]. The usefulness of the Lyα forest as a cosmological

probe [e.g., 118] stems from its relationship to the matter density field in the Universe, effectively

mapping out structure along each quasar-observer line of sight [e.g., 23, 119]. In order to extract
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this information from noisy spectra and separate it from other components, it is useful to have a

method that can deal with the complexities outlined above, i.e. one that can naturally adapt to

varying degrees of smoothness without extensive tuning.

The relative fluctuations in the Lyα forest transmitted flux fraction are of primary interest since

they possess a monotonic relationship with the relative distribution of the absorbing H I. We

utilize trend filtering to first denoise the spatially heterogeneous flux signal in an observed Lyα

forest. Estimates for the fluctuations in transmitted flux due to absorbing H I are then typically

produced by coupling the denoised Lyα forest with estimates for the quasar continuum and

the cosmic mean transmitted flux in the Lyα forest. We take an alternative approach: directly

estimating the mean flux level — defined as the product of the continuum and cosmic mean

transmitted flux — as in [35]. The mean flux level is a very smooth, spatially homogeneous

function within the truncated Lyα forest restframe. It is therefore appropriate to use a linear

smoother (see Section 2.2.1) for this stage of estimation. Specifically, we use local polynomial

regression [LOESS 120–122]. In this section, we illustrate these methods on a mock quasar Lyα

forest from [85] and a real quasar Lyα forest from the Baryon Oscillation Spectroscopic Survey

Data Release 12 [BOSS DR12; 27] of the Sloan Digital Sky Survey III [SDSS-III; 26, 123].

Historically, Lyα forest analyses have typically utilized kernel smoothers [e.g., 35, 124], wavelets

[e.g., 45], or Gaussian processes [e.g., 125].

3.2.1 Notation

Suppose we observe a quasar located at redshift z = z0. Ignoring systematic effects such as sky

contamination and interstellar extinction for the moment, the observational DGP of the Lyα
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forest can be assumed to follow the model

f(λ) = f0(λ) + ε(λ), λ ∈ Λ(z0), (3.2)

= F (λ) · C(λ) ·
(
1 + δF (λ)

)
+ ε(λ), (3.3)

where f(λ) is the observed flux at wavelength λ, f0(λ) is the flux signal, ε(λ) is zero mean

white Gaussian noise, Λ(z0) = (λLyβ, λLyα) · (1 + z0) is the redshifted Lyα forest, C(λ) is the

flux of the unabsorbed quasar continuum, F (λ) = f0(λ)/C(λ) is the transmitted flux fraction,

F (λ) = E[F (λ)] is the mean transmitted flux fraction (over the sky) in the Lyα forest at redshift

z = λ/λLyα − 1, and

δF (λ) = F (λ)/F (λ)− 1 (3.4)

is the fluctuation about the mean Lyα transmitted flux at redshift z = λ/λLyα − 1. Here, δF

is the quantity we are primarily interested in estimating since δF ∝ δ−1
H I at each fixed redshift,

where δH I is the density of H I (a latent variable). The estimation of the flux signal f0 is viewed

as an ancillary step.

Although, in principle, it is preferable to study the full spectral range Λ(z0) we have found that,

in the nonparametric setting, estimating the quasar continuum near the localized Lyα and Lyβ

emission peaks at the boundaries of the Lyα forest reduces the estimation accuracy in the interior

of Λ(z0). Therefore, in this work we limit our analysis to the truncated Lyα forest range

Λ(z0) = (1045 Å , 1195 Å) · (1 + z0). (3.5)

We simplify notation in this work by changing the input space of the functions introduced above

by merely altering the input variable. For example, with respect to δF , we maintain the notation

δF (·) for all inputs λ, ν, z, ζ, while it is understood that a proper change of input spaces has
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Input Definition Range (quasar at z = z0)

λ Observed wavelength Λ(z0)

ν Rest wavelength Λrest(z0) = Λ(z0)/(1 + z0)

z Redshift Π(z0) = Λ(z0)/λLyα − 1

ζ Log-wavelength (scaled) Z(z0) = 104 · log10(Λ(z0))

Table 3.1: Various input spaces utilized for the Lyα forest analysis. Notation of functions is
held constant, e.g. δF (·), and an alteration of the input variable implicitly indicates a change of
input spaces. Logarithmic wavelengths are scaled for numerical stability of the trend filtering
optimization algorithm.

taken place. The various input spaces are defined in Table 3.1.

3.2.2 Trend filtering the observed flux

We use quadratic trend filtering [1, 28] to estimate the flux signal f0 of the observational model

(5.1). In both BOSS DR12 and the [85] mock catalog, the quasar spectra are sampled on

equally-spaced grids in logarithmic wavelength space with ∆ log10(λi) = 10−4 dex (in logarithmic

angstroms). Furthermore, flux measurement variances are provided by the BOSS pipeline [66],

accounting for the statistical uncertainty introduced by photon noise, CCD read noise, and

sky-subtraction error. We correct the BOSS spectrum for interstellar extinction with the [126]

extinction law and the [127] dust map.

We fit the trend filtering estimator on the equally-spaced logarithmic grid and tune the complexity

by minimizing Stein’s unbiased risk estimate (SURE) of the fixed-input mean-squared error

(see Chapter 2). More precisely, we fit the trend filtering estimator in the input space Z(z0) =

104 · log10(Λ(z0)), as defined in Table 3.1, where we add the scaling to unit spacing for numerical

stability of the trend filtering convex optimization.
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3.2.3 Nonparametric continuum estimation

We utilize a modified [35] approach to propagate the trend filtering estimate for the flux signal

f0 from Section 3.2.2 into an estimate for the fluctuation field δF along a line of sight to an

observed quasar. Namely, given the trend filtering estimate f̂0, we directly estimate the smooth

mean flux level defined as the product m = F · C and then define the δF estimates via the

transformation δ̂F := f̂0/m̂ − 1. We carry out the estimation of m via a wide-kernel LOESS

smooth of the trend filtering estimate, with the specific bandwidth of the kernel selected by

optimizing over a large sample of mock spectra (detailed in Section 3.2.4). We find that regressing

on the fitted values of the trend filtering estimate — instead of the observational DGP (5.1)

— significantly improves the accuracy and robustness of the δF estimates. We carry out the

LOESS estimation in the Lyα restframe Λrest(z0) (see Table 3.1) in order to remove the effect

of redshifting on the smoothness of m. The LOESS estimation of m is a fully nonparametric

procedure and provides a reduction in bias over popular parametric approaches such as low-order

power laws [128, 129] and principal components analyses [66, 130–134]. The sole assumption of

our LOESS approach is that, in the restframe, the mean flux level m always has a fixed degree of

smoothness, defined by an optimal fixed kernel bandwidth. There is of course a bias-variance

tradeoff here; namely, the decreased bias comes with a modest increase in variance compared to

a parametric power law or low-dimensional principal components model. Our decision in favor of

the LOESS approach directly reflects our stance that low bias is preferable to low variance in this

context since statistical uncertainty due to estimator variability is tracked by our uncertainty

quantification (Section 3.2.6), while uncertainty due to modeling bias is not easily quantifiable.

Therefore, we can be more confident that significant fluctuations in the estimated δF field are in

fact real, and not due to statistical bias in the quasar continuum estimate.
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To be explicit, the LOESS estimator for m is a regression on the data set

{(νi, f̂0(νi; γ̂)}ni=1, νi ∈ Λrest(z0), (3.6)

which can be viewed as arising from the DGP

f̂0(νi; γ̂) = m(νi) + ρi, (3.7)

where f̂0 is the trend filtering estimate fixed at the minimum SURE hyperparameter γ̂, ei =

f̂0(νi; γ̂) − f0(νi) are the errors of the trend filtering estimate, and ρi = m(νi) · δF (νi) + ei

are autocorrelated fluctuations about zero. The LOESS estimator is the natural extension of

kernel regression [135, 136] to higher-order local polynomials. Given a kernel function K(·) with

bandwidth h > 0, for each i = 1, . . . , n, the LOESS estimator is obtained by minimizing

n∑
j=1

(
f̂0(νj ; γ̂)− φνi(νj ;β0, . . . , βd)

)2
K

(
|νj − νi|

h

)
, (3.8)

and letting m̂(νi) = β̂0, where φνi(· ;β0, . . . , βd) is a dth order polynomial centered at νi.

Specifically, we utilize the local linear regression estimator (LLR; d = 1) and the Epanechnikov

kernel [137]

K(t) =
3

4
(1− t2)1{|t| < 1}. (3.9)

The LLR estimator is described in full detail by Algorithm 4. Given the trend filtering estimate

f̂0 and the LLR estimate m̂, the δF estimates are then defined as

δ̂F (zi; γ̂) =
f̂0(zi; γ̂)

m̂(zi)
− 1, z1, . . . , zn ∈ Π(z0), (3.10)

where we deliberately express m̂ as “hyperparameter-less” since γ has already been fixed at
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the minimum SURE value γ̂ and we provide the optimal LOESS bandwidth value h0 = 74 Å—

optimized over the large mock sample. Here, we have also done a change of variables to redshift

space — our desired input domain for studying the H I density fluctuations in the IGM.

Algorithm 4 LOESS (local linear) estimator for mean flux level

Require: Training Data {(νi, f̂0(νi; γ̂))}ni=1, Bandwidth h0 = 74 Å
1: for all i do
2: Let β̂0, β̂1 minimize the locally weighted sum of squares

n∑
j=1

(
f̂0(νj ; γ̂)− β0 − β1(νj − νi)

)2
·K

(
|νj − νi|
h0

)
.

3: Let m̂(νi) = β̂0(νi).
4: end for
Output: {m̂(νi)}ni=1

Although h0 is chosen to directly optimize δ̂F accuracy, an estimate for the quasar continuum

C(·) arises intrinsically:

Ĉ(νi) = F (νi)
−1 · m̂(νi), νi ∈ Λrest(z0), (3.11)

where precise estimates of F follow from a rich literature [e.g., 14, 133, 138–141]. The δF estimates

could then be equivalently restated as

δ̂F (zi; γ̂) =
F̂ (zi; γ̂)

F (zi)
− 1, z1, . . . , zn ∈ Π(z0), (3.12)

where

F̂ (zi; γ̂) = f̂0(zi; γ̂)/Ĉ(zi). (3.13)

3.2.4 Calibrating continuum smoothness

We utilize a sample of 124,709 mock quasar spectra from the [85] catalog to optimize the

bandwidth of the LOESS estimator for the mean flux level that intrinsically removes the effect of



Astronomical Applications of Trend Filtering 53

Figure 3.1: Top: Distribution of mock quasar redshifts (data reduction detailed in Sec-
tion 3.2.5). We utilize this sample of 124,709 quasars to calibrate the optimal nonparametric
continuum smoothness. Bottom: Mean absolute deviation error curve for selecting the optimal
kernel bandwidth for the LOESS (local linear) estimator of the mean flux level, averaged over
the 124,709 spectra in the mock sample. The optimal choice of bandwidth is h0 = 74 Å.

the quasar continuum. Our mock data reduction is detailed in the Section 3.2.5 and the redshift

distribution of the quasars is shown in the top panel of Figure 3.1.
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For each mock quasar Lyα forest with DGP Qj , j = 1, . . . , 124,709, we first compute the trend

filtering hyperparameter value that minimizes the true fixed-input mean-squared prediction error

γj0 = argmin
γ>0

1

n

n∑
i=1

EQj
[(
f(ζi)− f̂0(ζi; γ)

)2 ∣∣∣ ζ1, . . . , ζn

]
. (3.14)

Then, given the trend filtering restframe fitted values {(νi, f̂0(νi; γ
j
0)}ni=1, we fit a LOESS

estimator with bandwidth h and define the error (as a function of h) of the resulting δF estimator

as the fixed-input mean absolute deviation (MAD) error

Rj(h) =
1

n

∑
i

EQj
[∣∣δF (νi)− δ̂F (νi; γ

j
0, h)

∣∣ ∣∣∣ ν1, . . . , νn

]
, (3.15)

where EQj denotes the mathematical expectation over the randomness arising from the observa-

tional DGP Qj . Because we can repeatedly sample from each mock quasar DGP, the expectations

in equations (3.14) and (3.15) can be computed to an arbitrary precision. Here, we utilize 300

realizations of each DGP to approximate the mathematical expectations.

We then define the optimal choice of h as the minimizer of the summed error over the full sample

of m =124,709 mock quasar spectra:

h0 = argmin
h>0

m∑
j=1

Rj(h). (3.16)

The aggregate error curve is shown in the bottom panel of Figure 3.1, yielding an optimal value of

h0 = 74 Å. We find that defining R(h) as the conditional MAD error — instead of the conditional

MSE — provides an essential boost in robustness that keeps the error from being dominated

by a very small proportion of worst-case estimates. More complex choices of bandwidth, e.g.

variable bandwidths that depend on the S/N ratio of the trend filtering estimator, the restframe

pixel spacing, and/or the redshift of the quasar, do not significantly improve upon the h0 = 74
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Å restframe fixed bandwidth.

3.2.5 Mock quasar Lyman-α forest reduction

The [85] mock quasar catalog is designed to mimic the observational data generating processes of

the quasar spectra released in Data Release 11 of the Baryon Oscillation Spectroscopic Survey

[27]. We pool the first three realizations of the mock catalog, i.e. M3_0_3/000, M3_0_3/001,

and M3_0_3/002 and remove all damped Lyα systems (DLAs), Lyman-limit systems (LLS), and

broad absorption line quasars (BALs). We assume no metal absorption in the Lyα forest and

correct estimation and subtraction of the sky. We mask all pixels with and_mask 6= 0 or or_mask

6= 0. Finally, we retain only the spectra with ≥ 500 pixels in the truncated Lyα forest and those

with a fixed-input-optimal trend filtering hyperparameter satisfying γ0 < 5.25. Spectra with

γ0 ≥ 5.25 correspond to the very lowest S/N ratio observations, where the trend filtering estimate

typically reduces to a global power law fit (zero knots). The final mock sample contains 124,709

quasar spectra.

3.2.6 Uncertainty quantification

Given the assumed noise model εi ∼ N(0, σ2
i ), i = 1, . . . , n provided by the BOSS pipeline [66],

we can construct a pointwise variability band for δ̂F via an augmentation of the parametric

bootstrap outlined in Algorithm 2 of Chapter 2. Specifically, given the parametric bootstrap

ensemble of trend filtering estimates provided by the parametric bootstrap algorithm, we fit the

mean flux level of each with the LOESS estimator detailed in Algorithm 4, and then define the

δ̂F bootstrap ensemble

δ̂∗F,b(zi) =
f̂∗b (zi)

m̂∗b(zi)
− 1, i = 1, . . . , n, b = 1, . . . , B, (3.17)
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where, for each b = 1, . . . , B, m̂∗b is the LOESS estimate fit to the data set
{

(νi, f̂
∗
b (νi))

}n
i=1

. Note

that refitting the LOESS estimator on each bootstrap realization allows us to track the extra

variability introduced into the δF estimates by the uncertainty in the continuum estimate. A

(1− α) · 100% quantile-based pointwise variability band for δ̂F is then given by

V1−α(zi) =
(
δ̂∗F,α/2(zi), δ̂

∗
F,1−α/2(zi)

)
, i = 1, . . . , n. (3.18)

where

δ̂∗F,β(zi) = inf
g

{
g :

1

B

B∑
b=1

1
{
δ̂∗F,b(zi) ≤ g

}
≥ β

}
, (3.19)

for any β ∈ (0, 1).

In particular, given a quasar at redshift z = z0 with wavelength inputs {λi}ni=1, λi ∈ Λ(z0), let

V
f̂0(λi)

(α) =
(
f̂∗λi(α/2), f̂∗λi(1− α/2)

)
, i = 1, . . . , n (3.20)

denote the 1− α pointwise variability band of f̂0, with the bounds given by the α/2 and 1− α/2

quantiles of the parametric bootstrap ensemble from Algorithm 2.

Although the bootstrap does not provide finite sample coverage guarantees, we are able to study

the coverage properties of the bands in equations (3.20) and (3.18) empirically on the mock

sample of 124,709 quasar spectra. Let Qj , j = 1, . . . , 124,709 denote the DGPs of the mock

quasar Lyα forests. For any α ∈ (0, 1), define the proportion coverage of the bands in equations

(3.20) and (3.18) to be

coveragejf0(α) =
1

n

n∑
i=1

PQj
(
f0(λi) ∈ V

f̂0(λi)
(α)
)
, (3.21)
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and

coveragejδF (α) =
1

n

n∑
i=1

PQj
(
δF (zi) ∈ V

δ̂F (zi)
(α)
)
, (3.22)

respectively, where PQj denotes the probability over the randomness of the DGP Qj . We utilize

300 realizations from each DGP to compute (3.21) and (3.22) and then define the average

empirical coverages over the mock sample as

coveragef0(α) =
1

m

m∑
j=1

coveragejf0(α), (3.23)

and

coverageδF (α) =
1

m

m∑
j=1

coveragejδF (α). (3.24)

Table 3.2 displays the results for various values of α. In particular, the bootstrap inner-percentile

width is given by 1− α.

3.2.7 Results

A mock quasar spectrum from [85] and a real quasar spectrum from the Baryon Oscillation

Spectroscopic Survey [BOSS; 27] are displayed in Figure 3.2, with the results of our Lyα forest

analysis overlaid. Starting with the top panel, the quadratic trend filtering estimate is fit on

the equally-spaced observations in logarithmic wavelength space and then transformed to the

restframe wavelength space, where the LOESS estimate for the mean flux level — the product

of the continuum and cosmic mean Lyα absorption — is then fit to the trend filtering fitted

values. The δF estimates are then computed according to (3.10) and displayed in redshift space

in the second panel, where they closely track the true δF defined by (3.4). Furthermore, the

95% bootstrap variability band defined in (3.18) can be seen to almost fully cover the true δF

signal. The estimated δF can be interpreted as an inversely proportional proxy for the deviations
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f̂0 δ̂F

Bootstrap
percentile
width

Empirical
coverage

Bootstrap
percentile
width

Empirical
coverage

0.50 0.426 0.50 0.346
0.55 0.471 0.55 0.384
0.60 0.517 0.60 0.424
0.65 0.564 0.65 0.466
0.70 0.612 0.70 0.510
0.75 0.663 0.75 0.556
0.80 0.715 0.80 0.607
0.85 0.771 0.85 0.664
0.90 0.831 0.90 0.732
0.91 0.844 0.91 0.747
0.92 0.857 0.92 0.764
0.93 0.871 0.93 0.782
0.94 0.884 0.94 0.800
0.95 0.898 0.95 0.819
0.96 0.912 0.96 0.838
0.97 0.926 0.97 0.858
0.98 0.942 0.98 0.880
0.99 0.960 0.99 0.908

Table 3.2: Empirical coverages of parametric bootstrap variability bands of various widths
(Algorithm 2), averaged over the sample of 124,709 mock quasar Lyα forests. The left column
displays the average empirical coverage of the variability bands of the flux signal estimator f̂0
and the right columns displays the same for the δF estimator δ̂F = f̂0/m̂− 1, where m̂ is the
LOESS estimate for the mean flux level. See Section 3.2.6 for more details.

from the mean H I density in the intervening intergalactic medium at each redshift — with

negative values of δF corresponding to (epoch-relative) over-densities of H I and positive values

corresponding to under-densities.

The third and fourth panels are the analogous plots for a BOSS quasar spectrum Lyα forest

(Data Release 12, Plate = 6487, MJD = 56362, Fiber = 647). The quasar is located in the

Northern Galactic Cap at (RA, Dec, z) ≈ (196.680◦, 31.078◦, 2.560).
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Figure 3.2: Results of Lyα forest analysis. Top panel: Lyα forest of a mock quasar spectrum [85] in the restframe,
with the quadratic trend filtering estimate shown in orange and the LOESS (local linear) estimate for the mean flux
level shown in blue. Second panel: The redshift-space fluctuations in the Lyα transmitted flux fraction, with our
estimate superposed. The fluctuations inversely trace the relative under- and over-densities of H I in the intervening
intergalactic medium between Earth and the quasar. Third and Fourth panels: Analogous plots for a real quasar
Lyα forest from the twelfth data release of the Baryon Oscillation Spectroscopic Survey [27, ; Plate = 6487, MJD =
56362, Fiber = 647]. The quasar is located at (RA, Dec, z) ≈ (196.680◦, 31.078◦, 2.560).
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3.3 Further Applications

The analysis of signals possessing varying degrees of smoothness permeates many areas of

astronomy. In this section, we discuss a variety of further applications for which trend filtering

may find use. For the sake of brevity, we discuss these applications in less detail than the

Lyα forest analysis in Section 3.2. Naturally, we expect trend filtering may find many uses in

astronomy beyond those we explicitly discuss.

3.3.1 Spectral template generation and estimation of emission-line parame-

ters

Automated spectral classification and redshift estimation pipelines require rich template libraries

that span the full space of physical objects in the targeted set in order to achieve high statistical

accuracy. In this section, we discuss using trend filtering to construct spectral templates from

observational spectra. We describe the procedure here for generating a single spectral template

from a well-sampled observed spectrum. Suppose we observe coadded flux measurements of a

targeted source at wavelengths λ1, . . . , λn ∈ Λ according to the data generating process

f(λi) = f0(λi) + εi, (3.25)

where the observations have been corrected for systematic effects (e.g., sky subtraction, interstellar

extinction, etc.) and the εi are mean-zero errors that arise from instrumental uncertainty and

systematic miscalibrations. After removal of potentially problematic pixels (e.g., near bright

sky lines), let f̂0(λ), λ ∈ Λ denote the trend filtering estimate fit to the observations. Given a

confident object classification and redshift estimate z0 (e.g., determined by visual inspection), we



Astronomical Applications of Trend Filtering 61

then define the restframe spectral template

b(λrest) = f̂0(λ/(z0 + 1)), λrest ∈ Λ/(z0 + 1), (3.26)

and store it in the respective object template library.

In Figure 3.3, we show three optical coadded spectra from the twelfth data release of the Baryon

Oscillation Spectroscopic Survey [BOSS DR12; 27] of the Sloan Digital Sky Survey III [SDSS-

III; 26, 123]. The figure is zoomed to a subinterval of the optical range for visual clarity and

the spectra are easily identifiable as a quasar, a galaxy, and a star, respectively. We fit an

error-weighted quadratic trend filtering estimate to each spectrum in the logarithmic-angstrom

wavelength space in which the BOSS spectra are gridded, and tune the hyperparameter to

minimize Stein’s unbiased risk estimate (see Section 2.3.5). The trend filtering estimates give

good results, adequately adapting to even the strongest emission and absorption features in each

spectrum.

As in the BOSS spectroscopic pipeline [66], after a spectral classification and redshift measurement

have been precisely determined, emission-line parameter estimates can then be obtained by fitting

Gaussian radial basis functions to the emission lines of the spectrum “best fit” — nonlinearly

optimizing the amplitudes, centroids, and widths. We propose that the trend filtering estimate of

a spectrum be used as the “best fit” for this type of procedure, e.g. instead of the low-dimensional

principal components models currently used by the BOSS pipeline. The relative magnitudes of

the emission-line parameter estimates can then be used to determine object subclassifications.

3.3.2 Exoplanet transit modeling

In this section we discuss the use of trend filtering for modeling the photometric time series of an

extrasolar planet transiting its host star. Given a phase-folded stellar light curve, corrected for
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Figure 3.3: Optical coadded spectra collected by the Baryon Oscillation Spectroscopic Survey [27] of the Sloan
Digital Sky Survey III [26, 123]. From top to bottom, a quasar (DR12, Plate = 7140, MJD = 56569, Fiber = 58)
located at (RA, Dec, z) ≈ (349.737◦, 33.414◦, 2.399), a galaxy (DR12, Plate = 7140, MJD = 56569, Fiber = 68)
located at (RA, Dec, z) ≈ (349.374◦, 33.617◦, 0.138), and a star (DR12, Plate = 4055, MJD = 55359, Fiber = 84)
located at (RA, Dec, z) ≈ (236.834◦, 0.680◦, 0.000). We fit a quadratic trend filtering estimate to each spectrum in
the logarithmic wavelength space in which the observations are equally spaced, and optimize the hyperparameter
by minimizing Stein’s unbiased risk estimate. Given confidently determined redshifts (e.g., determined by visual
inspection), the trend filtering estimate for each object can be scaled to the restframe and stored as a spectral
template. Furthermore, emission-line parameter estimates for a spectrum can be obtained by fitting Gaussian radial
basis functions to the emission lines of the trend filtering estimate.
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stellar variability and spacecraft motion systematics, trend filtering can be used to automatically

produce fully nonparametric estimates and uncertainties for the transit depth and total transit

duration.

We demonstrate our approach on long-cadence photometric observations of Kepler-10 [KOI-72,

KIC 11904151; 5]. Kepler-10 is confirmed to host at least two exoplanets: Kepler-10b [KOI-72

b, KIC 11904151 b; 142] and Kepler-10c [KOI-72 c, KIC 11904151 c; 108]. Each planet was

first detected via the transit method — a measurable periodic dimming in the photometry

caused by the planet crossing in front of the host star. Here, we use trend filtering to estimate

a nonparametric transit model for Kepler-10c and derive depth and duration measurements.

The results of our analysis are displayed in Figure 3.4. The top panel displays a sample of the

Kepler-10 long-cadence (30-min. increment), quarter-stitched, median detrended, relative flux

light curve processed by the Kepler pipeline [143], which we accessed from the NASA Exoplanet

Archive [144]. The observed transit events of Kepler-10c are indicated by the vertical dashed

lines. The middle panel displays the light curve (with 1σ error bars) after phase-folding with

respect to the ∼45.29 day orbital period of Kepler-10c and zooming in on the transit event. We

fit a relaxed quadratic trend filtering estimate (see Section 2.3.7) to the phased data, weighted

by the measurement variances provided by the Kepler pipeline and tuned by sequential K-fold

cross validation. The optimal relaxation hyperparameter is φ̂ = 0.14, indicating that relaxation

significantly improves the traditional trend filtering estimate in this setting. In particular, we

find that relaxation allows the estimate to faithfully capture the sharp transitions corresponding

to the beginning of the ingress phase and the end of the egress phase. The relaxed trend filtering

estimate is overlaid on the phase-folded light curve, along with 95% variability bands. Estimates

for the transit depth and total transit duration follow immediately from the relaxed trend filtering

estimate, as detailed below. The estimated inception and termination of the transit event are

indicated by the vertical dashed lines in the middle panel. The nonparametric bootstrap sampling
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Figure 3.4: Kepler-10c transit light curve analysis. Top: Long-cadence (30-min.), quarter-stitched, median
detrended, relative flux light curve (LC_DETREND) of the confirmed exoplanet host Kepler-10 [KOI-072, KIC
11904151; 142], processed by the Kepler pipeline [143] and obtained from the NASA Exoplanet Archive [144].
Vertical lines indicate the observed transit events of the system’s second confirmed planet Kepler-10c [KOI-072 c,
KIC 11904151 c; 108]. Middle: Phase-folded transit light curve for Kepler-10c (∼45.29 day orbital period) with 1σ
error bars. The error-weighted relaxed trend filtering estimate, optimized by sequential K-fold cross validation, is
superposed with 95% variability bands. The estimated inception and termination of the transit event are indicated
by the vertical dashed lines. The estimated transit depth and total transit duration are δ̂ = 488.292 ppm and
T̂ = 6.927 hours, respectively. Bottom: Bootstrap sampling distributions of the transit depth and transit duration
estimates.
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distributions (see Algorithm 2) of the transit depth and total transit duration measurements

are displayed in the bottom panel. Our point estimates for the transit depth and total transit

duration for Kepler-10c are δ̂ = 488.292 ppm and T̂ = 6.927 hours, respectively.

The knot-selection property of trend filtering is particularly appealing in this setting because

it provides interpretation as to where the transit event begins and ends. Specifically, we define

our estimate of the inception of the transit event T̂0 as the leftmost knot selected by the trend

filtering estimator and we define our estimate of the termination of the transit event T̂1 as the

rightmost knot1. The total transit duration estimate then follows as T̂ = T̂1 − T̂0. Naturally, we

define our transit depth estimate δ̂ to be the minimum of the relaxed trend filtering estimate.

It is thus far unclear to us whether trend filtering can also reliably detect the end of the ingress and

beginning of the egress phases — e.g. via knot selection or examining changes in the estimated

derivatives — and therefore also provide nonparametric ingress/egress duration measurements.

We recommend pairing trend filtering with the traditional analytical transit model search [e.g.,

145] for these particular measurements. That is, given the transit depth and total transit duration

measurements provided by trend filtering, an analytical planet model can be fit over a parameter

space that is constrained by the trend filtering parameter measurements. Coupling the two

methods in this way therefore also provides significant computational speedups over a traditional

single-stage analytical model search since it greatly reduces the dimensionality of the parameter

space to be searched over. Furthermore, the relaxed trend filtering estimate may provide a

benchmark χ2 statistic for the constrained analytical model comparison.

A dedicated paper on this application of trend filtering is forthcoming.
1Note that the boundary points of the input space are not considered knots.
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3.3.3 Eclipsing binary modeling

In this section we discuss how trend filtering can further improve the work of the Kepler Eclipsing

Binary working group, specifically in regard to the Eclipsing Binaries via Artificial Intelligence

(EBAI) pipeline used to characterize Kepler eclipsing binary stars via their phase-folded light

curves [8, 9, 146, 147]. The EBAI pipeline utilizes an artificial neural network (ANN) to estimate

a set of physical parameters for each binary pair (the temperature ratio, sum of fractional radii,

photometric mass ratio, radial and tangential components of the eccentricity, fillout factor, and

inclination) from the observables of the phase-folded light curve (e.g., the eclipse widths, depths,

and separations). [8] outline the EBAI light curve pre-processing algorithm, which they call

polyfit, that provides the crucial step of taking a noisy, irregularly-spaced, phase-folded light

curve (detrended for spacecraft motion and normalized by the median flux) and outputting a

denoised and gridded phase-folded light curve, which is then fed to the ANN. We propose that

trend filtering be used for this pre-processing step instead of the polyfit algorithm for the

reasons detailed below.

An eclipsing binary (EB) light curve is characterized by periodic dips in the observed brightness

that correspond to eclipse events along the line of sight to an observer. In particular, there

are two eclipses per orbital period — a primary and a secondary eclipse. The primary eclipse

occurs when the hotter star is eclipsed by the cooler star and produces a comparatively deep

dip in observed brightness. Analogously, the secondary eclipse occurs when the cooler star is

eclipsed by the hotter star and produces a comparatively shallow dip in the observed brightness.

Depending on the effective temperature ratio and orbital period of the EB, the dips may range

from very narrow and abrupt to very wide and smooth. In Figure 3.5, we display a detrended,

median-normalized, long-cadence (30 min. increment) light curve of a Kepler EB [KIC 6048106;

5, 9], with the primary eclipses and secondary eclipses designated by dashed red and blue lines,
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Figure 3.5: Long-cadence (30-min. increment), detrended, median-normalized light curve of a
Kepler eclipsing binary system [KIC 6048106; 5, 9]. The vertical red lines mark the primary
eclipses (the eclipses of the hotter star) and the vertical blue lines mark the secondary eclipses
(the eclipses of the cooler star). KIC 6048106 has an orbital period of ∼1.559 days.

respectively. The orbital period of KIC 6048106 is ∼1.559 days.

After phase-folding with respect to the estimated EB orbital period and centering the primary

eclipse at Phase = 0, the purpose of the EBAI light-curve pre-processing step is to faithfully

extract the signal of the phase-folded light curve and evaluate it on a regular grid so that it can

then be input into the EBAI ANN. We show a comparison of the polyfit algorithm of [8] and

our trend filtering approach in Figure 3.6 on the phase-folded KIC 6048106 light curve. We choose

a relatively high S/N light curve here in order to elucidate the significant statistical bias that

underlies polyfit. The polyfit algorithm fits a piecewise quadratic polynomial by weighted

least-squares with four knots selected by a randomized computational search over the phase space.

The piecewise quadratic polynomial is forced to be continuous, but no smoothness constraints are

placed on the derivatives of the estimate at the knots. Recalling our discussion in Section 2.3.1,

this overly-stringent modeling assumption leads to significant statistical bias in the light-curve

estimate. The bias is particularly apparent by examining the residuals of the polyfit estimate,

which we display below the light curve. Moreover, recalling our discussion of variable-knot

regression splines in Section 2.3.1.1, a randomized partial search over the space of feasible knots

inherently provides no guarantee of finding a global solution — leaving the algorithm susceptible
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to extreme failure scenarios. We display a quadratic trend filtering estimate of the KIC 6048106

phase-folded light curve in the bottom panel of Figure 3.6, with the hyperparameter chosen

by K-fold cross validation. The trend filtering estimate accurately recovers the signal of the

light curve (clearly apparent here by examining a high S/N ratio light curve) and produces a

desirable random residual scatter about zero. Since the statistical bias introduced by the polyfit

pre-processing stage propagates through to the EBAI ANN as systematic bias in the input data,

we are confident that the use of trend filtering will in turn improve the error rate of the EBAI

ANN output-parameter estimates.

3.3.4 Supernova light-curve template generation and estimation of observ-

able parameters

In this section we demonstrate the use of trend filtering for generating light-curve templates

of supernova (SN) events and estimating observable parameters. We illustrate our approach

on SN 2016coi [ASASSN-16fp; 148] by constructing a B-band light-curve template from the

well-sampled observations of [149] and [150] and deriving nonparametric estimates and full

uncertainty distributions for the maximum apparent brightness, the time of maximum, and the

decline rate parameter ∆m15(B) introduced by [151]. The improvement yielded by trend filtering

as a tool for SN light-curve template generation, compared to, for example, the SNooPy cubic

smoothing spline approach of the Carnegie Supernova Project [CSP; 39, 152, 153] primarily

corresponds to light curves with an especially bright peak magnitude and fast decline rate. In

such cases, trend filtering is better able to recover the abruptness of the peak, the initial sharp

decline, and the subsequent slow decay. This behavior is particularly characteristic of Type

Ia SNe [e.g., 10]. In cases where the peak is not particularly prominent, trend filtering and

cubic smoothing splines produce nearly identical estimates. Our procedure for generating the

SN light-curve templates requires reasonably well-sampled observations (in particular, with the
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Figure 3.6: Comparison of the polyfit algorithm of [8] and our trend filtering approach for denoising phase-folded
eclipsing binary light curves. The light curve shown in this example comes from the Kepler eclipsing binary system
KIC 6048106 [5, 9]. Top: The polyfit algorithm fits a piecewise quadratic polynomial by weighted least-squares
with four knots selected by a randomized search over the phase space. The estimate is constrained to be continuous
but no constraints are enforced on the derivatives at the knots. The overly-stringent assumed model leads to
significant statistical bias, which is readily apparent by examining the autocorrelation in the residuals. Bottom:
Trend filtering is sufficiently flexible to accurately denoise the diverse set of signals observed in phase-folded eclipsing
binary light curves. Here, the goodness-of-fit is clear by the random, mean-zero residual scatter.
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initial observation occurring before maximum light). The resulting template libraries can then

be used to classify SNe with partially-sampled light curves and derive parameter estimates [e.g.,

154].

The SN light-curve template generation procedure is analogous to the spectral template generation

procedure discussed in Section 3.3.1, so we discuss it in less formal detail here. Naturally, the

same procedure can also be implemented for generating fixed-time spectral templates of SN

events. Given a well-sampled light curve, corrected for systematic effects (e.g., K-corrections and

interstellar reddening), we propose the use of quadratic trend filtering to generate a “best fit” to

the observations. Given a confident type classification, the trend filtering estimate can then be

stored as a light-curve template in the respective library.

We show a B-band light curve for SN 2016coi [ASASSN-16fp; 148] in the top panel of Figure 3.7.

The light curve is an aggregation of observations collected by [149] and [150], which we accessed

from the Open Supernova Catalog [110]. SN 2016coi was discovered on May 27, 2016 (UT 2016-

05-27.55) by the All Sky Automated Survey for SuperNovae [ASAS-SN; 155] in the galaxy UGC

11868 at redshift z ≈ 0.0036. The classification of SN 2016coi currently remains intermediate

between Type Ib and Type Ic [150, 156–158]. We fit a quadratic trend filtering estimate to the

observations, weighted by measurement uncertainties and with the hyperparameter selected by

K-fold cross validation. The trend filtering estimate, along with 95% nonparametric bootstrap

variability bands, is overlaid in the top panel of the figure. In the bottom panels we show the

univariate nonparametric bootstrap sampling distributions for the estimates of the maximum

apparent magnitude, the time of maximum, and the decline rate — defined as the relative

change in the B-magnitude light curve from maximum light to the magnitude 15 days after the

maximum [151]. We also show a bivariate bootstrap sampling distribution for maximum apparent

magnitude versus decline rate. The bimodality in the bootstrap sampling distributions arises
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Figure 3.7: SN light-curve analysis (SN 2016coi). Top: B-band photometry of the supernova SN 2016coi
[ASASSN-16 fp; 148] discovered on May 27, 2016 by the All Sky Automated Survey for SuperNovae [ASAS-SN;
155] in the galaxy UGC 11868 at redshift z ≈ 0.0036. We fit a quadratic trend filtering estimate, tuned by
K-fold cross validation, and overlay 95% nonparametric bootstrap variability bands. Bottom: Univariate/bivariate
nonparametric bootstrap sampling distributions of the observable parameter estimates derived from the trend
filtering light-curve estimate. The bimodality in the bootstrap parameter distributions arises from systematic
discrepancies between the observations of the two separate observers [149, 150].
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from systematic discrepancies between the two separate sets of B-band observations that form

the light curve [149, 150].

3.3.5 Data reduction and compression

Although the primary focus of this chapter is the use of trend filtering as a tool for astronomical

data analysis, it also possesses potential utility for large-scale reduction and compression of

one-dimensional data sets. This owes to several factors: its speed, scalability, flexibility, and

representation as a sum of basis functions with a sparse coefficient vector.

Given a one-dimensional set of n observations (t1, f(t1)), . . . , (tn, f(tn)) ∈ (a, b) × R, trend

filtering can quickly provide a flexible, lower-dimensional approximation of the data where the

dimensionality is controlled by the choice of the hyperparameter γ. In this context γ is a subjective

choice that specifies the amount of (lossy) compression desired—unrelated to the discussion in

Section 2.3.5. For any given choice of γ, let p be the number of knots selected by the trend

filtering estimator. The corresponding continuous-time representation of this lower-dimensional

approximation is fully encoded by the knot locations and the sparse basis vector with p+ k + 1

nonzero entries, which can be stored efficiently. The falling factorial basis then serves as the

“dictionary” from which the continuous-time representation can be losslessly recovered. Gridded

uncertainty measurements for the reduced observations can also be computed and stored, though

not in a sparse format, via the methods discussed in Section 2.3.6.

3.4 Concluding remarks

In order to illustrate the broad utility of trend filtering to astronomy, we demonstrated its promis-

ing performance on a wide variety of problems across time-domain astronomy and astronomical

spectroscopy. We studied the Lyman-α forest of quasar spectra with the most depth — using
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trend filtering to map the relative distribution of neutral hydrogen in the high redshift intergalactic

medium along quasar-observer lines of sight. Furthermore, we discussed how trend filtering can

be used to (1) generate galaxy, quasar, and stellar spectral templates and estimate emission-line

parameters; (2) produce nonparametric models for exoplanet transit events in phase-folded

stellar light curves, providing estimates for the transit depth and total duration; (3) improve

upon the polyfit algorithm utilized by the Kepler Eclipsing Binary via Artificial Intelligence

(EBAI) pipeline for denoising phase-folded eclipsing binary light curves (as a preliminary step to

estimating the physical parameters); (4) generate supernova light-curve templates and produce

nonparametric estimates of the maximum apparent magnitude, the time of maximum, and the

decline rate; (5) quickly and efficiently compress large collections of one-dimensional data sets.

Naturally, we expect trend filtering will find uses in astronomy beyond those that we explicitly

discussed.





Chapter 4

Three-dimensional cosmography of the high redshift

Universe using intergalactic absorption: Early

Investigations

This chapter is based on my Advanced Data Analysis (ADA) / Data Analysis Project (DAP)

report titled Exploring the Intergalactic Medium and my thesis proposal titled Multi-resolution

Regression, Divide and Conquer Risk Estimation, and the Large-scale Universe, which were

submitted in Spring 2016 and Spring 2017, respectively, in accordance with the requirements of

the joint Doctor of Philosophy degree in Statistics and Machine Learning at Carnegie Mellon

University. This chapter also includes material from our article Mapping the Large-Scale Universe

through Intergalactic Silhouettes [159], which was published in CHANCE.

In this chapter we discuss spatial statistical methods for reconstructing the three-dimensional

matter density distribution of the intergalactic medium using the Lyman-α forest absorptions

observed in closely-sampled sightlines of high redshift quasars — a problem that is commonly

referred to as Lyman-α forest tomography. This work may therefore be viewed as an extension of

the problem discussed in Chapter 3.2, where we detailed a novel approach for reconstructing the

74
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matter density distribution of the intergalactic medium along one-dimensional quasar sightlines.

This chapter also serves as a precursor to Chapter 5, which details our more recent work on this

topic.

4.1 The Lyman-α forest

A majority of the baryonic matter in the Universe takes the form of a highly dilute gaseous

medium that permeates the overwhelming volume of intergalactic space. Dubbed the intergalactic

medium [IGM; 160], this ubiquitous gas is too diffuse to be directly observed in emission, but its

presence is traced by absorptions in the light of luminous background sources — most notably,

quasars. Quasars are distant, extremely luminous cosmological objects powered by supermassive

black holes [161]. The immense gravity of these black holes and the friction of the matter

falling inward result in an outpouring of thermal radiation from outside the event horizon that

shines anywhere between 10 and 10,000 times brighter than the entire Milky Way. This thermal

radiation spans the electromagnetic spectrum and allows cosmologists to study the IGM by

analyzing the absorption patterns in the observed spectra left by the chemical elements present

in intergalactic space. As light travels from a distant quasar along its path to Earth, the IGM

leaves an absorption signature in the light, marking the atomic elements that are present in the

intervening intergalactic gas at each point along the light’s path [11]. This signature collectively

reveals the presence of diffuse primordial hydrogen and helium residue in intergalactic space

left over from the Big Bang, as well as a variety of metals occasionally ejected from galaxies by

particularly forceful supernovae explosions [12]. However, the bulk of the IGM is composed of

electrically neutral hydrogen (H I) gas, which marks its presence by absorbing a very specific

wavelength of light: the so-called Lyman-α (Lyα) wavelength (1215.67 Å). A Lyα absorption

occurs when a photon at the Lyα wavelength hits a H I atom in the gaseous IGM, is absorbed,
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and sends the electron from the neutral ground state (n = 1) to the first excited state (n = 2),

whence the photon is then reemitted in a random direction in three-dimensional space. This

scattering of photons results in a decrease in the flux of the quasar continuum (the emitted

radiation) at the Lyα spectral line, where flux is a measure of the amount of energy traversing

a two-dimensional surface per unit time per unit area. Mathematically, the observed flux at

wavelength λ is defined as

f(λ) =
∂2Qe(λ)

∂t∂A
, (4.1)

where Qe(λ) is the radiant energy received at wavelength λ, t is time, and A is the two-dimensional

surface area traversed by the radiation, e.g. the collecting area of a telescope. Because electrically

neutral hydrogen constitutes the bulk of the baryonic composition of the IGM, the Lyα forest —

the series of absorptions originating from the Lyα transition — is therefore the richest source of

observational data for cosmologists to study the large-scale structure of the IGM [113, 162–164].

The original detection of the Lyα forest dates back to 1970 [163], but scientific studies of the

forest did not mature until the early 1990s with the advent of high-resolution spectrometers —

an instrument that connects to a telescope and splits the observed radiation into a continuous

spectrum that shows the intensity at each wavelength. In particular, the commissioning of the

High Resolution Echelle Spectrometer [HIRES; 165–167] on the Keck telescope in Mauna Kea,

Hawaii marked the beginning of the golden age of Lyα forest cosmology.

Figure 4.1 shows a simulated electromagnetic spectrum of a quasar ∼10.9 billion lightyears from

Earth [85]. The orange dashed curve shows the quasar continuum — the intensity of the light at

each wavelength when it was emitted from the quasar — and the black (wiggly) curve shows the

intensity of the light when observed from Earth. The decrease in the intensity of the quasar’s light

in this region of the electromagnetic spectrum is due to intergalactic H I gas partially absorbing

and scattering the light passing through it. This phenomenon is analogous to observing a distant
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Figure 4.1: Simulated electromagnetic spectrum of a quasar ∼10.9 billion lightyears from
Earth [85]. The orange dashed curve shows the intensity of light at each wavelength at the time
that it was first emitted by the quasar and the solid black curve shows the spectrum as observed
from Earth, after H I gas absorption in the intergalactic medium. The Lyα absorptions appear
over a series of wavelengths because of the constant doppler-shifting of lightwaves traversing
intergalactic space caused by the expansion of the Universe — leading to the so-called Lyman-α
forest.

lighthouse through a patchy cloud of fog. That is, when seen through a dense patch, the light is

dim. When seen through a relatively thin patch, the light is bright. The intergalactic “fog” in

this case is too diffuse to be directly observed, but studying its matter density distribution is

fortuitously made possible by analyzing the fraction of light that is absorbed along its line of

sight to Earth. The fraction of absorbed light is nonlinearly related to the H I density — the

latent (i.e. unobservable) quantity of interest, but the relation is monotonic which allows the

absorption fraction to serve as a suitable proxy for the H I density. In practice, the intensity of the

unabsorbed light originally emitted from the quasar (orange curve) is not known, and accurately

estimating this curve represents a crucial step in any statistical analysis of the Lyα forest. The

literature on this topic is extensive and includes a wide variety of approaches. These include

principal components analyses over a set of candidate functional shapes (i.e. spectral templates)

[66, 130–134], interpolation of observed regions deemed to have minimal absorption [168], methods

based on low-order polynomials [128, 129], functional regression [169], and nonparametric smooths

of the observed spectrum subsequently scaled to match the cosmic mean absorption fraction

[31, 35] — with the latter being our own work discussed in Section 3.2.3.
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As previously stated, H I gas absorbs at a fixed wavelength of 1215.67 Å. Figure 4.1 should

therefore provoke a couple questions. Why do the absorptions appear at a series of wavelengths?

And, why are those wavelengths significantly longer than 1215.67 Å? The answer to both questions

is that the Universe is expanding. When the Universe began with the Big Bang ∼13.8 billion years

ago, the fabric of space began an outward expansion and has continued to expand ever since that

moment. This expansion leads to a fascinating phenomenon known as redshift. Namely, when

light travels through intergalactic space the expansion of the space it is traveling through actually

causes the light itself to be continuously doppler-shifted to longer wavelengths. For a (fixed)

absorption line such as Lyα, the consequence is that a forest of absorptions becomes inscribed in

the light’s spectrum in a similar manner to how a seismograph operates. Although the pen of the

seismograph is stationary, the paper continuously moves underneath it, recording the amplitude

of the pen’s oscillations as a one-dimensional curve. Here, redshift is the mechanism that moves

the paper. And the resulting forest effectively provides a one-dimensional map of the H I density

along the path from Earth to the quasar (provided one can produce an accurate estimate of the

quasar continuum), with longer wavelengths corresponding to the H I density at more distant

points along the path. Given a spectrum of an extragalactic object, the redshift of the object is

defined as the relative scale factor by which the emitted light has been stretched by the moment

of observation

z = λobs/λemit − 1, (4.2)

and is proportional to the radial distance of the object (see Figure 4.2). In practice, the redshift of

extragalactic objects can be inferred by identifying prominent emission lines in the observational

spectrum. For example, if the Lyα emission peak of an observed quasar appears at wavelength

λobs, the redshift of the quasar is given by

z = λLyα/λLyα − 1, (4.3)
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Figure 4.2: Top: Illustration of the celestial sphere and redshift as a radial coordinate. The
redshift of an extragalactic source is nonlinearly, but monotonically related to the radial comoving
distance of the source. Celestial coordinate systems are inherently spherical, with observations
of redshift surveys recorded in some parametrization of the three-dimensional geometric space
S2×R+. We utilize the equatorial coordinate system throughout this thesis. Bottom: Redshift-
distance relation under the modern cosmological model (with Planck CMB parameters [170]).
Here, comoving distance is the distance between two objects at the present cosmological time
and is given in units of h−1 megaparsecs (Mpc) where h = H0/(100 km s−1 Mpc−1) with
Hubble constant H0. The effect of redshift increases at greater radial separations because of the
increasing recession velocity of objects due to the expansion of the Universe.
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where λLyα = 1215.67 Å is the restframe Lyα wavelength.

Another important observational phenomenon arises due to the vast distances quasars can be

observed at and the finite speed at which their light travels to us. Namely, the light we observe

from quasars is actually extremely old, with its age being directly related to the distance it

traversed on its path to Earth. For example, an observed spectrum of a quasar 10.9 billion

lightyears from Earth — such as that displayed in Figure 4.1 — is in fact a signature of what

that quasar looked like 10.9 billion years ago — 6.4 billion years before the Earth even formed.

Mapping the matter distribution of the IGM via Lyα absorptions in the spectra of distant quasars

is therefore akin to charting how our adolescent Universe evolved into its present-day form.

Large-scale cosmological hydrodynamical simulations provide illustrations of the Universe’s large-

scale structure [171–174], both via its point process matter distribution (galaxies and quasars)

and its continuous intergalactic medium matter distribution. Both processes arise as a result of

gravity and dark energy acting on the primordial matter fluctuations left over from the nearly

perfect, scale-invariant Gaussianity of the Big Bang temperature fluctuations, as revealed by

the Cosmic Microwave Background radiation [CMB; 170, 175–180]. The mutual gravitational

forces of the matter have subsequently pulled the Universe’s large-scale structure into a highly

non-uniform weblike distribution — appropriately dubbed the cosmic web. Dark matter — matter

that thus far only reveals its presence by way of its gravitational force — is also a central acting

force in the modern Big Bang cosmological model [ΛCDM; 181, 182] and possesses a weblike

distribution closely tracing the baryonic matter distribution [183, 184].

4.2 Lyman-α forest tomography

The past decade of Lyα forest observational cosmology has progressed to a point where it is

now, in principle, possible to use the aggregate of currently available Lyα forest sightlines to
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statistically reconstruct a continuous large-scale structure map of the IGM in all three dimensions

— a problem commonly known as Lyman-α forest tomography [21–25]. Mapping the IGM in

three dimensions can be viewed as an extension of charting the locations of the galaxies and

quasars that the IGM envelopes, in the sense that the discrete distribution of galaxies and quasars

and the continuous distribution of intergalactic gas together provide a complete picture of how

baryonic matter is distributed throughout the Universe. Scientifically, a large-scale IGM map

will allow for testing of cosmological models in an entirely new regime of both scale and age of

the Universe, potentially leading to a more refined constraints on the parameters that define

the ΛCDM cosmological model. Moreover, because the H I gas traces the total distribution of

gravitating matter on large scales, a large-scale map of the IGM will allow us to locate many

never-before-seen objects such as galaxy protoclusters and cosmic voids [185].

Certainly, the greatest challenge in this sort of spatial modeling — as is the case in the majority of

statistical analyses — is not in producing the point estimate itself, but rather accompanying the

point estimate with reliable statistical inference procedures. For any given predicted structure in

the map — e.g. a galaxy protocluster or a cosmic void — what is the probability that the structure

indeed exists? Is there enough signal in the map to detect significant cross-correlations with the

anisotropies of the CMB [186], from which the IGM evolved? Does the established inference

adequately account for the uncertainty introduced by the sequential observational pipeline of

analyses the data have already undergone? All of these are exceedingly difficult questions that

rely on the development of rigorous statistical inference. Our initial investigations in this chapter

are light on statistical inference, but our more recent work on this topic — discussed in Chapter 5

— is accompanied with significantly more statistical rigor.

At the time this thesis work was carried out, the most prolific Lyα quasar catalog to date was

compiled by the Baryon Oscillation Spectroscopic Survey [BOSS; 2], which operated from 2008 to

2014 within the third phase of the Sloan Digital Sky Survey [SDSS-III; 26, 109]. During that time
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BOSS measured the spectra of 194, 240 high redshift (z & 2.1) quasars in two large contiguous

regions in the Northern and Southern Galactic Caps. In both this chapter and the next, we utilize

the BOSS Lyα quasar catalog (discussed further in the section below) to produce our large-scale

structure map of the IGM. Beyond the groundbreaking work of the BOSS collaboration, the

rapid influx of Lyα data is assured to continue into the foreseeable future. The next generation

of the BOSS collaboration, the extended BOSS survey [eBOSS; 187, 188] began gathering data

immediately following the completion of the SDSS-III phase, and is preparing its final data

release at the time of this writing. eBOSS, however, primarily focused on adding low-z non-Lyα

quasars to complement the catalog of Lyα quasars observed by its predecessor, and therefore

would not significantly improve our high redshift intergalactic medium map. The Dark Energy

Spectroscopic Instrument [DESI; 189] Survey conducted on the Mayall 4-meter telescope at Kitt

Peak National Observatory in Arizona very briefly began its 5-year data collection in March of

this year before being put on hiatus due to the COVID-19 pandemic. DESI will measure spectra

for approximately 700,000 Lyα (z & 2.1) quasars over a sky area of 14,000 square degrees (50

quasars per square degree). The COSMOS Lyman-α Mapping And Tomography Observations

[CLAMATO; 24] survey using the Low Resolution Imaging Spectrograph (LRIS) on the Keck-I

telescope at Mauna Kea, Hawaii is actively collecting spectra of bright star-forming galaxies over

comparatively smaller regions than BOSS, eBOSS, and DESI, but with a much more densely

populated target selection on the sky, allowing for higher resolution mappings. Moreover, though

not a Lyα survey, the Square Kilometer Array [SKA; 190, 191] has begun construction on the

world’s largest radio telescope, with which it will pioneer the collection of observational data

from the so-called Dark Ages, using a different region of the electromagnetic spectrum — the

21 cm radio emission. Mapping this completely uncharted epoch will utilize the same variety

of statistical methods developed for Lyα forest tomography. See, for example [192, 193], for

discussions on 21 cm tomography.
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4.3 The Baryon Oscillation Spectroscopic Survey

The Baryon Oscillation Spectroscopic Survey [BOSS; 2] operated from 2008 to 2014 within the

third phase of the Sloan Digital Sky Survey [SDSS-III; 27] and was designed to measure the scale

of baryon acoustic oscillations [BAOs; 194] — a feature imprinted on matter clustering by acoustic

waves that propagate through the primordial plasma in the pre-recombination Universe — at a

variety of redshifts, allowing for constraints on the ΛCDM model and a path to understanding dark

energy [195]. At low redshifts (z < 0.7), BOSS utilized the point process distribution of luminous

galaxies [galaxy clustering; 196–218] to measure the BAO scale and constrain cosmological

parameters. Quasars can be observed at higher redshifts because of their extreme luminosity,

which the BOSS collaboration exploited to study redshift 2.15 < z < 3.5 cosmological matter

distribution, measuring the BAO scale and constraining cosmological parameters through both

the point process distribution of observed quasars [quasar clustering; 219, 220] and their Lyα

forest absorption [13, 15, 18, 19, 221, 222], as well as cross-correlations of the various matter

tracers [223–226].

The spatial distribution of the galaxies and quasars observed by BOSS is shown in Figure 4.3,

with galaxies shown in black and quasars shown in red. In order for the ultraviolet Lyα forest

absorptions in the quasar spectra to be observed by ground-based spectrographs such as those

used by the BOSS, the Lyα wavelength must be redshifted by a factor of & 3 since most ultraviolet

light is absorbed in Earth’s atmosphere. In particular, the spectra of z & 2.1 quasars in the

BOSS catalog provide useful observations for analyzing the intergalactic medium via the Lyα

forest and we therefore refer to them as Lyα quasars. The consequence of this lower bound on

obtaining Lyα forest observations from the ground-based spectrographs is that the 0 < z . 2

intergalactic medium is currently inaccessible to us, and our three-dimensional reconstruction

is therefore limited to redshifts z & 2. An upper bound on three-dimensional reconstruction of
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Figure 4.3: Earth-centric map of the galaxies (black) and quasars (red) observed by the Baryon
Oscillation Spectroscopic Survey [BOSS; 27], in a right ascension-comoving distance projection.
Only redshift z & 2.1 quasars are suitable for Lyα forest analyses since the forest is still in the
ultraviolet range at lower redshifts and therefore inaccessible to ground-based telescopes.
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the intergalactic medium also arises at higher redshifts as quasars become increasingly faint and

difficult to detect. In this chapter we pursue a reconstruction over the redshift range 1.95 ≤ z ≤ 3.

In Chapter 5, we revise this range to 1.98 ≤ z ≤ 3.15.

In Figure 4.4, we show the Earth-centric spatial distribution of BOSS Lyα quasars within a 5◦

declination window along the celestial equator (declination δ = 0◦) and in Figure 4.5 we show the

full three-dimensional distribution of Lyα quasars observed by BOSS. The BOSS footprint (i.e.

sky coverage) is primarily focused on two contiguous regions of the sky (shown in Figure 4.6),

with the principal criterion for selecting these regions being to minimize attenuation due to

interstellar dust (within the Milky Way). The BOSS catalog constitutes a coverage of 10,400

deg2 (approximately 25% of the sky).

As discussed in Section 3.2, each quasar Lyα forest provides a dense series of observations lying

along a one-dimensional sightline that is foreground to the quasar. In Figure 4.7, we show

again the BOSS Lyα quasars along the celestial equator, now with their foreground sightlines

superposed. In Figure 4.8 we show a three-dimensional rendering of a small sample of Lyα

sightlines centered at equatorial coordinates (α, δ) = (0◦, 0◦), with the Cartesian coordinate axes

given in units of h−1 Mpc, where h = H0/(100 km s−1 Mpc−1) and H0 is the Hubble constant.

The goal of Lyα forest tomography is to construct a three-dimensional spatial model that takes

in these line of sight observations and reconstructs the full three-dimensional absorption field.

Prior to three-dimensional modeling the sightline observations must first be propagated to the

flux contrast scale that directly traces the H I gas density, which we discuss in the section below.

4.4 Transforming spectra to flux contrast

Three-dimensional reconstruction of Lyα forest absorption fields relies crucially on the preliminary

step of estimating the latent unabsorbed continuum of each coadded quasar Lyα forest and
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Figure 4.4: RA-redshift distribution of the BOSS quasars at sufficiently high redshifts for Lyα
forest analysis — i.e. Lyα quasars. Here, we show all Lyα quasars along the celestial equator
(declination δ = 0◦) plus or minus 2.5◦, with the scale being linear in comoving distance. The
quasars are primarily located in two contiguous regions on the celestial sphere — one in the
Northern Galactic Cap (top) and one in the Southern Galactic Cap (bottom).
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Figure 4.5: Three-dimensional distribution of BOSS Lyα quasars. The Lyα forest is not
accessible to ground-based telescopes at redshifts 0 ≤ z . 1.92 due to atmospheric opacity to
ultraviolet wavelengths, therefore producing a spherical void in the volume over which we can
study the intergalactic medium. The density of observed quasars also degrades on the high
redshift end as they become increasingly faint to observers on Earth.

Figure 4.6: Sky distribution of BOSS Lyα quasars, shown in equatorial coordinates. The total
footprint is 10,400 deg2 (∼25% sky coverage) and the total number of distinct z ≥ 2.1 quasars is
208,360 (∼20 per sq. degree).
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Figure 4.7: Collection of BOSS Lyα sightlines observed along the celestial equator. The
sightlines terminate at z ∼ 1.92 on the low redshift end due to the opacity of Earth’s atmosphere
to ultraviolet wavelengths. On the high redshift end the sightlines becomes too sparse to allow
for three-dimensional reconstruction of the full absorption field.

the broader procedure for transforming the raw flux observations to the Lyα flux contrast

scale that traces the density fluctuations of H I gas in the intergalactic medium. Our work on

three-dimensional absorption field reconstruction in this chapter predated our published work on

modeling one-dimensional Lyα forest absorption fields in Chapter 2, so the procedure we use

here for transforming the spectra to the flux contrast scale is a more primitive approach. In

Chapter 5, which details our most recent work on three-dimensional mapping the intergalactic
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Figure 4.8: Sample of Lyα forest sightlines centered at equatorial coordinates (α, δ) = (0◦, 0◦),
with Cartesian axes (in comoving h−1 Mpc). The goal of Lyα forest tomography is to reconstruct
the full three-dimensional Lyα absorption field by smoothing the sample of one-dimensional
sightlines.

medium, we make use of the one-dimensional pipeline detailed in Chapter 3.

Suppose we observe a BOSS Lyα quasar located at redshift z = z0. The observational data

generating process (DGP) of the quasar flux in the Lyα forest can be assumed to follow the

model

f(λi) = f0(λi) + εi, λi ∈ Λ(z0), (4.4)

= F (λi) · C(λi) ·
(
1 + δF (λi)

)
+ εi, (4.5)

where f(λi) is the coadded flux at wavelength λi, f0(·) is the flux signal, {εi}ni=1 are uncor-

related Gaussian measurement errors attributable to photon noise, CCD readout noise, and

sky-subtraction error (assumed E[εi] = 0 and Var(εi) = σ2
i ), {λi}ni=1 form an equally spaced
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wavelength grid in log-space with ∆ log10(λi) = 10−4 dex log-Angstroms, z0 is the redshift

of the quasar, C(·) is the flux of the unabsorbed quasar continuum, F (·) = f0(·)/C(·) is the

transmitted flux fraction, F (λi) = E[F (λi)] is the mean Lyα transmitted flux fraction at redshift

zi = λi/λLyα − 1, and δF (λi) = F (λi)/F (λi) − 1 is the transmitted flux contrast at redshift

zi = λi/λLyα− 1. The flux contrast δF inversely traces H I density fluctuations in the intervening

intergalactic medium and, by definition, is mean zero across the sky at each fixed redshift, with

negative contrasts corresponding to H I densities above the cosmic mean and positive contrasts

corresponding to H I densities below the cosmic mean.

Here we estimate the mean flux level m(λ) = F (λ) · C(λ) by fitting a smooth local polynomial

regression [LOESS; 120–122] directly to the pixels in the observed wavelength frame, weighting

the pixels by the inverse measurement variance provided by the BOSS spectroscopic pipeline [66].

For each Lyα sightline, we then define the flux contrast estimates to be

δ̂F (λi) =
f(λi)

m(λi)
− 1− bias, i = 1, . . . , n, (4.6)

wherem(·) is the LOESS estimate with bandwidth 300 Å fit to the flux observations f(λ1), . . . , f(λn)

and bias = 0.071291 is a scalar bias term that we utilize here so the aggregated set of flux contrast

estimates empirically match the theoretical mean zero property of the defined flux contrast. Here,

the 300 Å bandwidth is a purely heuristic choice we made based on what seemed to visually

produce reasonable estimates of the mean flux level over a large sample of quasar sightlines.

Recall we take a much more data-driven approach in Chapter 3. The LOESS estimation of the

mean flux level in the Lyα forest is illustrated in Figure 4.9.

Unlike our more recent work, here we do not track the additional statistical uncertainty introduced

into the flux contrast estimates by the stochastic transformation involving the mean flux estimator.

Given the measurement uncertainties on the observational scale σ2
i , we simply take the LOESS
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Figure 4.9: Top: Observed Lyα forest of a BOSS quasar located at RA = 12.02527, Dec =
−1.05598, z = 2.5338 ± 0.00013. Bottom: Pixelization of the Lyα forest with a low order
LOESS estimate of the mean flux level — the product of the quasar continuum and the mean
Lyman-α flux transmission at each redshift. The flux contrast estimates are then defined as
δ̂F (λ) := f(λ)/m(λ)− 1− bias, where f(·) is the observed flux, m(·) is the low order LOESS
smooth, and bias = 0.071291 is a scalar bias term that scales the aggregated sample of flux
contrast estimates to be mean zero.

estimate of the mean flux level to be fixed, yielding measurement variance estimates of

V̂ar(δ̂F (λi)) = σ2
i /m̂

2(λi), i = 1, . . . , n, (4.7)

on the transformed scale. Figure 4.10 shows the first two moments of the aggregated sample

of flux contrast estimates. In the left panel, the binned estimates can indeed be seen to be

approximately mean zero at all redshifts as desired. In the left panel, the mean standard error of

the propagated estimates is approximately monotonically decreasing as a function of redshift due

to the greater observational uncertainty at near-ultraviolet wavelengths.

Figure 4.11 illustrates the relative abundance of Lyα observations in our sample as a function of
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Figure 4.10: Left: Binned averages of the flux contrast estimates in our sample vs. redshift.
Here we include the subtraction of the estimated scalar bias term. The flux contrast, by
definition, is mean zero at all redshifts, which are estimates are in reasonable agreement with
here. Right: Mean standard error of the flux contrast estimates in our sample vs. redshift. The
uncertainty in the estimates increases at low redshifts where the Lyα wavelengths are still in the
near-ultraviolet.
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Figure 4.11: Left: The mean transverse sightline separation (in h−1 Mpc) of BOSS Lyα
quasars as a function of redshift. This quantity is the primary constraint on the effective spatial
resolution at which we are able to reconstruct the three-dimensional density field of the IGM
across sightlines. The mean transverse sightline separation is effectively identical for the two
contiguous regions that constitute the 10,400 deg2 footprint. Right: Distribution of BOSS
Lyα pixels as a function of redshift. In this chapter we limit our spatial reconstruction of the
intergalactic medium to the redshift range 1.95 < z < 3 due to the sparsity of observed quasars
at higher redshifts.
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redshift. In the left panel we show the mean transverse sightline separation1 in comoving h−1

Mpc. This quantity serves as the primary constraint on the effective comoving spatial resolution

on any reconstruction of the full three-dimensional absorption field because we cannot expect

to recover structure on scales that are not suitably sampled in the transverse direction. The

overall mean transverse sightline separation is approximately identical for the two contiguous

regions in the BOSS footprint. However, Stripe 82 — a 220 deg2 region in the Southern Galactic

Cap along the celestial equator (declination δ ≈ 0◦) — was repeatedly targeted to achieve higher

source densities than the rest of the BOSS footprint. This 220 deg2 region could therefore be

mapped at higher spatial resolution than the rest of the sky coverage, but we do not pursue

this here. The right panel of Figure 4.11 shows the redshift-wise distribution of the aggregated

three-dimensional sample of flux contrast pixels. The sample becomes increasingly sparse at

redshifts z > 3, so here we limit our focus to the redshift range 1.95 < z < 3 when producing the

three-dimensional reconstruction.

4.5 Methods

In this section we investigate two methods for reconstructing a three-dimensional map of the

intergalactic medium from the aggregated set of BOSS Lyα absorptions detailed above. The first

method is a multi-resolution Gaussian random field (GRF) model capable of scaling to relatively

large (n ≈ 300, 000) spatial data sets [227]. The second is local polynomial regression [120], an

approach that [25] recently proposed for Lyα forest tomography. In Section 4.6, we evaluate the

performance of each method by attempting to recover the full three-dimensional absorption field

of a large hydrodynamical cosmological simulation from a sparse set of quasars sightlines. The

density of the sightlines is varied in order to mimic the heterogeneous density of the BOSS Lyα

sightlines and we make a comparative assessment — both quantitative and qualitative — at each
1The perpendicular separation of the sightlines measured in terms of comoving arc length.
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sightline density. We deem the performance of the multi-resolution GRF model to be superior,

and we therefore proceed with this model for the reconstruction of the real IGM in Section 4.7.

Our three-dimensional models utilize Euclidean distances, which can be computed using the

spectroscopic redshifts of the quasars and the assumed ΛCDM cosmological model. Specifically,

for each Lyα flux contrast measurement observed at coordinates (αi, δi, zi), we compute the

comoving Cartesian coordinates xi = (x1
i , x

2
i , x

3
i ) according to the following equations:

x1
i = DC · sin(90◦ − δi) · cos(αi) (4.8)

x2
i = DC · sin(90◦ − δi) · sin(αi) (4.9)

x3
i = DC · cos(90◦ − δi) (4.10)

where the comoving distances are given by

DC = DH

∫ zi

0

dz′√
Ωm(1 + z′)3 + Ωk(1 + z′)2 + ΩΛ

(4.11)

with DH = 3000 h−1 Mpc and the assumed cosmological parameters Ωm = 0.3, Ωk = 0, ΩΛ = 0.7,

and h = H0/(100 km s−1 Mpc−1).

4.5.1 Linear smoothers

In this section we briefly discuss the broad linear smoother class of regression estimators. This

serves as a fitting preface to our discussion of the LOESS estimator and the multi-resolution

GRF model because, although they are motivated from seemingly disparate premises, they both

belong to this common class. Recall the usual nonparametric regression setup where we observe
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n pairs (xi, f(xi)), i = 1, . . . , n, according to the data generating process

f(xi) = f0(xi) + εi, x1, . . . , xn ∈ S ⊂ Rd, (4.12)

where f(xi) is a noisy measurement of a signal f0(xi), E[εi] = 0, and Var(εi) <∞. A statistical

estimator f̂0 of the signal f0 is a linear smoother if, for any x ∈ S, we can write

f̂0(x) =
n∑
i=1

`i(x)f(xi) (4.13)

= `(x)T f (4.14)

for some weight vector `(x)T = (`1(x), . . . , `n(x)). That is, in words, linear smoothers are linear

combinations of the observed data — not to be confused with linear regression, where we assume

f̂0(x) = β0 + xTβ. Here, the weight vector may depend on the observed inputs x1, . . . , xn, the

location of the prediction x, and potentially a priori measurement variances σ2
i = Var(εi), but not

the observations f(x1), . . . , f(xn). Typically, it is desirable that the weight vector sums to one

so constant signals are preserved. While nonparametric linear smoothers do not assume a rigid

parametric form for the signal itself, each possesses a set of one or more hyperparameters — or

smoothing parameters — that tune the flexibility of the estimated signal, e.g. kernel bandwidth,

smoothing spline penalty coefficient, Gaussian process covariance parameters.

Kernel smoothing is directly motivated by the idea of taking locally-weighted averages of the

observations. Given a smoothing kernel K satisfying

∫
K(x)dt = 0,

∫
xK(x)dt = 0, 0 <

∫
x2K(x)dt <∞, (4.15)
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the Nadaraya-Watson kernel regression estimator [135, 136] is defined via the weight vector

`kernel(x) =

(
K
(
|x−x1|
h

)
w1∑n

j=1K
(
|x−xj |
h

)
wj
, . . . ,

K
(
|x−xn|
h

)
wn∑n

j=1K
(
|x−xj |
h

)
wj

)T
(4.16)

for some choice of kernel bandwidth h > 0. The bandwidth is the model hyperparameter that

controls the smoothness of the fit and is typically chosen via an automatic, data-driven method

such as K-fold cross validation [49] or minimization of Stein’s unbiased risk estimate [228]. The

kernel itself is traditionally fixed before fitting and not altered in model validation. Common

choices for the kernel include the Epanechnikov, tricube, and Gaussian kernels. [72] showed that

the Epanechnikov kernel is the optimal choice in a minimax sense (see Section 2.2.1.1).

The definition of kernel smoothers includes several familiar statistical estimators as special cases.

For example, a sliding-mean regression is a kernel smoother with a rectangular (boxcar) kernel.

Similarly, k-nearest neighbors is also a kernel smoother with a rectangular kernel, but with a

design-adaptive bandwidth. Inverse distance weighting [IDW; 229] is a kernel smoother with the

kernel being an inverse polynomial function of the Euclidean distance, modified to force the fit to

interpolate through the observed data.

Kernel smoothing is unique among nonparametric linear smoothers in that it is explicitly

motivated by the idea of taking locally-weighted averages of the data. The linearity of the other

methods arises inadvertently in some sense. The weight vector of a linear smoother is therefore

often referred to as the effective kernel (or equivalent kernel).

4.5.2 Local polynomial regression

Local polynomial regression (also known as locally weighted scatterplot smoothing, or LOESS;

[120]) is the natural extension of kernel smoothing to higher-order local polynomials. For

simplicity, let us first assume the dimension of the feature space is d = 1. Given a smoothing
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kernel K(·) with bandwidth h > 0, the LOESS estimate at input x is obtained by minimizing

n∑
i=1

(
f(xi)− φx(xi;β0, . . . , βp)

)2
wi ·K

(
|xi − x|

h

)
, (4.17)

where φx(xi;β0, . . . , βp) = β0 + β1(xi − x) + · · · + βd(xi − x)p/p! is a pth degree polynomial

centered at x and wi = σ̂−2
i (if such estimates are available). The LOESS estimate at input x is

then given by f̂0(x) = β̂0. Setting p = 0 returns the kernel smoothing estimator.

More succinctly, the LOESS estimator is characterized by the effective kernel

`LOESS(x) = eT1 (ΦT
xWxΦx)−1ΦT

xWx (4.18)

where eT1 = (1, 0, . . . , 0),

Wx = diag

(
w1 ·K

(
|x1 − x|

h

)
, . . . , wn ·K

(
|xn − x|

h

))
, (4.19)

and

Φx =



1 x1 − x · · · (x1−x)p

p!

1 x2 − x · · · (x2−x)p

p!

...
...

. . .
...

1 xn − x · · · (xn−x)p

p!


. (4.20)

The order p of the local polynomial is typically fixed a priori and thus, like kernel smoothing,

the kernel bandwidth is the lone hyperparameter that must be estimated for LOESS.

[230] and [121] showed that the local linear regression estimator (p = 1) eliminates the boundary

bias of the kernel smoothing estimator. Taking p > 1 further reduces the bias of the estimator

(e.g, near spikes and dips), but at the cost of increased variance throughout the input domain.
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[230] and [121] showed the univariate LOESS estimator is minimax over L2 Sobolev classes and

[231] extended the results to multivariate feature spaces.

The multivariate LOESS estimator naturally arises by replacing the univariate `2 norm |x− xi|

with the d-dimensional `2 norm ‖x− xi‖2 and utilizing multivariate polynomials for the basis

functions. One should typically scale the features before fitting a multivariate LOESS model but

this is not necessary here since we are working with spatial covariates.

The computational complexity of an exact LOESS regression (evaluated at the observed inputs)

is O(n2) regardless of the compactness of the kernel because of the n distances that need to be

computed for each local polynomial. However, the computational complexity can be improved

to O(n log n) by using k-d trees [232] or other space-partitioning data structures [e.g., 122] to

quickly find an approximate set of nearest neighbors for each local polynomial fit. In this section

we utilize the locfit R package [122].

4.5.3 Multi-resolution Gaussian random field regression

In this section we outline the multi-resolution Gaussian random field (GRF) model proposed by

[227], which incorporates significant elements from fixed-rank kriging [233, 234] and stochastic

partial differential equations literature [235–237].

4.5.3.1 Gaussian random field regression

Here we first briefly describe the generic setup of Gaussian random field regression. Recall the

assumed observational data generating process

f(x) = f0(x) + ε(x) (4.21)
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In Gaussian random field regression we assume the underlying signal f0 is itself stochastic — in

particular, a realization of a Gaussian random field. Typically, the assumption is

f0(x) ∼ GP(µ(x), k(x, x′)) (4.22)

where µ(x) is a constant, linear, or very smooth mean function, k(x, x′) is the covariance function

of the GRF, and ε is a white Gaussian noise process. The spatial covariance function is often

assumed to be isotropic and defined by a small set of hyperparameters which can be estimated

via maximum likelihood. A common choice for the covariance is the Gaussian (i.e. squared

exponential) covariance

k(x, x′) = ρ · exp

(
− ‖x− x

′‖22
γ

)
, (4.23)

where γ is a range hyperparameter and ρ controls the marginal variance of the field. Given the

observed data and estimated hyperparameter vector η, the point estimate of the GRF model is

given by the mean of the posterior distribution

E[f0(x)|f, η] = kTx (K +W−1)−1f, (4.24)

where kx =
(
k(x, x1), . . . , k(x, xn)

)T , Kij = Cov(f0(xi), f0(xj)), W is diagonal with elements

Wii = σ−2
i , and f is the vector of observations. Thus GRF regression is a linear smoother with

effective kernel

`GRF(x) = kTx (K +W−1)−1 (4.25)

In general, the computational complexity of computing the GRF point estimate is O(n3).
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4.5.3.2 Multi-resolution GRF model

Let (x1, δ̂F (x1)), . . . , (xn, δ̂F (xn)) denote the flux contrast estimates defined in equation (4.6),

with the Cartesian spatial coordinates given by equations (4.8)-(4.11). We assume the flux

contrast estimates arise according to the data generating process

δ̂F (xi) = g0(xi) + εi (4.26)

where g0 is a realization of a smooth Gaussian random field (GRF) g and ε1, . . . , εn are independent

mean zero measurement errors. Since the flux contrast has mean zero we let g be a mean zero GRF.

We expect the IGM to have multiple scales of structure so we let g be a sum of L independent

GRFs g1, . . . , gL with marginal variances ρα1, . . . , ραL,

g(x) =
L∑
`=1

g`(x), (4.27)

where α1, . . . , αL > 0 sum to one and ρ > 0. This representation allows g to adapt to the complex

multi-scale dependence that we expect to see in the structure of the intergalactic medium. As in

fixed-rank kriging, each individual GRF g` is then defined through a basis expansion

g`(x) =

p∑̀
j=1

φ`,j(x)β`,j , (4.28)

where φ`,j , j = 1, . . . , p`, is a sequence of compactly supported radial basis functions organized

on regular three-dimensional lattices of increasing resolution and β` is a vector of coefficients

such that

β` ∼MN(0, ρΣ`), ` = 1, . . . , L. (4.29)
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Thus, the model for g is constructed as a sum of fixed basis functions coupled with stochastic

coefficients. These two key elements of the model are further detailed in the sections below.

4.5.3.3 Radial basis functions

Each level of resolution in the multi-resolution GRF model is provided by a sequence of compactly

supported radial basis functions (RBFs) organized on a regular lattice in three-dimensional

Euclidean space. The node spacing of the lattices is given by

δ` = 2−(`−1)δ1, ` = 1, . . . , L, (4.30)

where δ1 and L are taken as hyperparameters of the model. At each level ` = 1, . . . , L, the RBFs

are given by a real-valued radial function

φ`,j(x) = φ

(
‖x− u`,j‖2

θ`

)
, j = 1, . . . , p`, (4.31)

where u`,1, . . . , u`,p` ∈ R3 are the nodes of the lattice and θ` is a scaling parameter to adjust the

amount of overlap in the RBFs at each level. In particular, we let φ be the three-dimensional

Wendland polynomimal [238] given by

φ(x) =


(1− x)6(35x2 + 18x+ 3)/3 0 ≤ x ≤ 1,

0 otherwise.

(4.32)

and, following [227], we fix θ` to be 2.5 times the node spacing at level l so the RBFs have a

sufficient amount of overlap to avoid artifacts in the covariance function from the organization

of the RBFs on a lattice. Moreover, we add five extra layers of nodes beyond the edges of each
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lattice to mitigate edge effects, which is particularly important for our distributed approximation

algorithm discussed below.

4.5.3.4 Gaussian Markov random fields

To simplify notation we combine equations (4.27) and (4.28) so

g(x) =

p∑
j=1

βjφj(x), (4.33)

where we have combined the multi-resolution coefficients into a single vector β and the multi-

resolution bases into a single basis {φj}pj=1. From equation (4.29) we have

β ∼MN(0, ρΣ), (4.34)

for some matrix Σ.

The foundation of the computational efficiency of this spatial model is the enforcement of sparsity

in matrix computations in a way that does not sacrifice covariance models with many degrees

of freedom and multi-scale correlations. In addition to the use of basis functions with compact

support, this is accomplished by directly computing the precision matrix 1
ρΣ−1 of the basis

coefficients instead of the covariance matrix ρΣ and restricting Σ−1 to be sparse. This approach

allows for the use of efficient sparse matrix algorithms and still permits Σ to be dense. Specifically,

we first assume that coefficients between levels are independent, which gives the precision matrix
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a convenient block diagonal structure

1

ρ
Σ−1 =

1

ρ



1
α1

Σ−1
1 0 · · · 0

0 1
α2

Σ−1
2 · · · 0

...
...

. . .
...

0 0 0 1
αL

Σ−1
L


. (4.35)

We then model the distribution of the basis coefficients at each level of resolution as a Gaussian

Markov random field (GMRF) organized on the nodes of each lattice. The Markov property

of each GMRF can be described by an undirected graph. In particular, given the set of lattice

nodes V` at level ` we define an edge set E` such that

(
Σ−1
`

)
i,j

= 0 if {i, j} /∈ E`. (4.36)

We assume the special case that each β` follows a first-order spatial autoregression with respect

to the nodes of the lattice at level `. Specifically, this means that for every i = 1, . . . , p` the

off-diagonal nonzero elements of the ith row of Σ−1
` correspond to the first and second order

neighbors of node i. Given an autoregression matrix B` for level `, we construct the distribution

of β` according to β` = B−1
` e, where e ∼ N(0, ρI). Following [237], we let

Bi,j =



6 + κ2 i = j,

−1 {i, j} ∈ E` and i 6= j,

0 otherwise,

(4.37)
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where κ ≥ 0. It follows that β` ∼ N(0, ρB−1B−T ). Moreover, the covariance matrix of the full

coefficient basis is given by

ρΣ = ρ



α1B
−1
1 B−T1 0 · · · 0

0 α2B
−1
2 B−T2 · · · 0

...
...

. . .
...

0 0 0 αLB
−1
L B−TL


. (4.38)

4.5.3.5 Hyperparameters

Based on the introduced model setup, g is a mean zero Gaussian random field with covariance

function

Cov
(
g(x), g(x′)

)
=

m∑
j=1

m∑
k=1

ρΣj,kφj(x)φk(x
′). (4.39)

We assume ε = (ε1, . . . , εn) are independent with

ε ∼MN(0, σ2W ) (4.40)

and Cov(β, ε) = 0. Here, W is diagonal with elements proportional to the estimated measure-

ment variances of the flux contrast estimates and σ2 is a hyperparameter of the measurement

error distribution. Now letting Φ be the regression matrix with Φi,j = φj(xi) we can rewrite

equation (4.26) in matrix vector notation

δ̂F = Φβ + ε, (4.41)

where δ̂F is the vector of flux contrast estimates lying along quasar sightlines. Thus, the assumed

observational model is

δ̂F ∼MN(0, ρΠ), (4.42)
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where Π = (ΦΣΦT + λW ) and λ = σ2

ρ . Here, λ is the “noise-to-signal ratio” and is used as a

reparametrization of σ2 to tune the smoothness of the maps. From equation (4.42) we have the

likelihood

L(ρ,Σ, λ | δ̂F ) =
1

(2π)n/2|ρΠ|1/2
e−

1
2
δ̂TF (ρΠ)−1δ̂F (4.43)

and log likelihood

`(ρ,Σ, λ | δ̂F ) = −1

2
δ̂TF (ρΠ)−1δ̂F −

1

2
log |ρΠ| − n

2
log(2π). (4.44)

In principle, we can use equation (4.44) to compute maximum likelihood estimates (MLEs) for the

full set of hyperparameters: ρ, λ, and all hyperparameters that define Σ. Nevertheless, such an

approach is not computationally feasible — that is, we did not have the computational resources

at the time this was carried out. In particular, we can simplify computations by specifying the

covariance Σ and focusing on MLEs for λ and ρ. The precision matrix Σ−1 is determined by the

scale parameter κ and a smoothness parameter ν, which dictates the relative variances of the

levels according to αl ∼ el·ν — thereby reducing the dimensionality of the hyperparameter space.

The predicted map is relatively insensitive to the choice of κ and ν so we follow the practice of

fixing these parameters and optimizing λ and ρ2. Details are provided below.

Lattice parameters

From the left panel of Figure 4.11 we see that the minimum mean sightline separation over all

redshifts is approximately 12.5 h−1 Mpc for both the Northern and Southern Galactic Caps and

occurs at z ∼ 2.1. We therefore fix the finest level of basis functions to have a node spacing

of 12.5 h−1 Mpc so the multi-resolution model has sufficient complexity to model structure at

the scale of the mean sightline separation, but not so much that it will overfit the sightlines.
2Again, this was for lack of available computing power at the time of writing
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Moreover we add three coarser levels with node spacings of 25, 50, and 100 h−1 Mpc to allow for

larger scale correlations in the reconstructed absorption field.

Given the significantly higher density of sightlines in Stripe 82, the mapping of this region could

benefit from a finer level of basis functions than that which we use here. Nevertheless, here we

focus on optimizing the map with respect to the full 10,400 deg2 footprint. We could potentially

follow up with a separate higher resolution map of Stripe 82, with the hyperparameters optimized

specifically to the 220 deg2 Stripe 82 coverage.

κ and {αl}4l=1

The precision matrix Σ−1 is determined by the scale parameter κ and a smoothness parameter ν,

which specifies the relative variances of the levels according to αl ∼ el·ν . The predicted map is

relatively insensitive to the choice of κ and ν so we follow the practice of fixing these parameters

and optimizing λ and ρ.

λ and ρ

Let Σ̂ denote the covariance matrix determined by the hyperparameter choices outlined above.

Substituting Σ̂ into (4.44), we first maximize (4.44) over ρ analytically, yielding

ρ̂ = δ̂TFΠ−1δ̂F /n. (4.45)

This estimate is then substituted back into (4.44) to give a profile log likelihood,

`(ρ̂, Σ̂, λ | δ̂F ) = −1

2
δ̂TF (ρ̂Π)−1δ̂F −

1

2
log |ρ̂Π| − n

2
log(2π), (4.46)

which depends only on λ. The maximum likelihood estimate for λ is then computed via an

iterative optimization, specifically a combination of golden section search and successive parabolic
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interpolation [239].

Another significant computational cost arises in computing the determinant of Π when evaluating

the likelihood (4.44). Sylvester’s determinant theorem [240] provides the useful identity

|Π| = λn−m|Γ|
|Σ−1||W−1|

. (4.47)

Since Γ, Σ−1, and W−1 are all sparse the determinants of each can then be computed efficiently

from the product of the diagonal elements of the corresponding Cholesky decompositions.

4.5.3.6 Divide and conquer maximum likelihood estimation

The evaluation of equations (4.45) and (4.46) can be done much more efficiently by using the

sparse matrix decompositions and matrix identities outlined above. Nevertheless, the matrices

associated with a problem of this scale are too large to fit in memory on modern high-performance

computing machines and we therefore must adapt our optimization of λ to a distributed (“divide

and conquer”) framework. Specifically, we partition the 10,400 deg2 BOSS footprint into equal-

area HEALPix pixels (shown in Figure 4.12), compute a “local-MLE” on each subset, and then

produce a single global hyperparameter estimate for λ by studying the distribution of the local

MLEs. The HEALPix pixelization of the BOSS footprint creates 768 subsets in total, each with

an approximate sky area of 3.66 deg2.

Here we describe the procedure for computing the global hyperparameter estimate λ̂. Let

S1, . . . , S768 be a partition of the targeted volume for three-dimensional reconstruction of the

IGM induced by the HEALPix pixelization of the sky. Now define each local data set as

Dj =
{

(xi, δ̂F (xi)) : xi ∈ Sj
}
, (4.48)
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Figure 4.12: Partition of the BOSS footprint into 768 equal-area HEALPix subsets, which
we utilize to produce an estimate for the model hyperparameter λ in a distributed fashion.
Specifically, we compute a local maximum likelihood estimate of λ for each HEALPix subset
and then produce a global estimate by taking the mode of a kernel density estimate fit to the
local MLEs. Each HEALPix subset has area ∼3.66 deg2.

where nj = |Dj |. Let λ̂j be the local-MLE obtained by optimizing the profile log likelihood (4.46)

of the subsample Dj . By definition, λ > 0 so we estimate the distribution of the local-MLEs with

a truncated and scaled kernel density estimate

p̂(λ) =


(∫∞

0 p̃(λ)dλ
)−1
· p̃(λ) λ ≥ 0

0 λ < 0

(4.49)

where

p̃(λ) =
1∑768
i=1 ni

768∑
j=1

nj
h
K

(
‖λ− λ̂j‖2

h

)
. (4.50)

We select h by 10-fold cross validation and define the global parameter estimate to be the mode

λ̂ = argmax
λ

p̂(λ). (4.51)

Since the profile log likelihood of each subsample is a smooth function of λ, λ̂ will be nearly



Three-dimensional intergalactic cosmography: Early Investigations 109

Figure 4.13: Kernel density estimate of the distributed sample of 768 local maximum likelihood
estimates. We take the global parameter estimate to be the mode of the KDE λ̂ ≈ 0.747.

optimal for any subset Sj with MLE λ̂j lying in a neighborhood of λ̂. Figure 4.13 shows the

kernel density estimate p̂(λ) of the local-MLE distribution. The divide and conquer approach for

computing λ̂ is summarized in the algorithm table below.

Algorithm 5 Divide and conquer estimation of λ

Require: D1, . . . ,D768, Σ̂
1: for all j do
2: Compute λ̂j via optimization of the profile log likelihood for Dj
3: end for
4: Let

p̂(λ) =


(∫∞

0 p̃(λ)dλ
)−1
· p̃(λ) λ ≥ 0

0 λ < 0
(4.52)

where

p̃(λ) =
1∑768
i=1 ni

300∑
j=1

nj
h
K

(
‖λ− λ̂j‖2

h

)
(4.53)

and h is chosen by 10-fold cross validation
5: Define λ̂ = argmaxλ p̂(λ)
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4.5.3.7 Point estimate

For the point estimate of the three-dimensional absorption field, we consider the conditional

distribution of the basis coefficients given the data and basis covariance. Fixing the covariance

hyperparameters at their true values, it follows that

(β, δ̂F ) |
{
λ, ρ,Σ

}
∼MN

(
0, ρ

 Σ ΣΦT

ΦΣ Π


)
. (4.54)

By basic normal theory, the conditional distribution of β given the flux contrast vector δ̂F and

all covariance parameters is

β |
{
δ̂F , λ, ρ,Σ

}
∼MN(β0, ρΣ− ρΣΦTΠ−1ΦΣ). (4.55)

The minimum squared-error basis vector is then given by the posterior mean

β0 = ΣΦTΠ−1δ̂F . (4.56)

The true covariance parameters are not known in practice so we replace them with the maximum

likelihood estimates and take the point estimate of the three-dimensional absorption field to be

ĝ0(x) = ΦT
x β̂, (4.57)
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where

Φx = (φ1(x), . . . , φm(x)), (4.58)

β̂ = Σ̂ΦT Π̂−1δ̂F , (4.59)

Π̂ = (ΦΣ̂ΦT + λ̂W ). (4.60)

Therefore, the multi-resolution GRF model is a linear smoother with effective kernel

`GRF (x) = ΦT
x Σ̂ΦT Π̂−1. (4.61)

The calculations in equations (4.45), (4.46), and (4.59) involve the inverse of Π, which is very

large and dense. We can, however, avoid explicitly computing Π−1 by computing the vector

Π−1δ̂F directly. Applying the Sherman-Morrison-Woodbury formula [241], we have

Π−1 =
(

ΦΣ̂ΦT + λW
)−1

(4.62)

= W−1 − (W−1Φ)Γ−1(W−1Φ)T (4.63)

where

Γ = ΦTW−1Φ + λΣ̂−1. (4.64)

By construction, Φ, W−1, and Σ̂−1 are all sparse so Γ is also sparse. Furthermore, Γ is positive

definite since it is a sum of positive definite matrices. Therefore, we can utilize the sparse

Cholesky decomposition of Γ to solve the linear system

Γv = (W−1Φ)T δ̂F (4.65)
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and it follows that

Π−1y = W−1δ̂F −W−1Φv. (4.66)

4.5.3.8 Distributed approximation of the point estimate

As with the evaluation of the likelihood, the size of the matrices associated with the calculation

of the point estimate is too large to fit in memory and therefore must also be adapted to a

distributed framework. We use a similar approach to the divide and conquer maximum likelihood

estimation. Specifically, we partition the volume into contiguous three-dimensional subsets,

compute a “sub-map” reconstruction on each, and combine them into a mosaic map. The only

necessary provision is that sufficiently large margins are included when fitting each submap to

avoid visible discontinuity artifacts at the seams of the partition. We partition the volume into

(400 h−1 Mpc)3 cubes and include all observations within (200
√

3 + 125) h−1 Mpc of the center of

each cube when producing each local map. Altogether, the mosaic map comprises 932 submaps

in the Northern Galactic Cap and 422 submaps in the Southern Galactic Cap.

4.5.3.9 Simulation from the posterior

The multi-resolution GRF model has an analytical Gaussian posterior distribution, however it is

much more computationally efficient to approximate the posterior standard errors via Monte

Carlo simulation instead of the analytical calculation. In particular, holding the covariance

hyperparameters fixed, we can generate an ensemble of three-dimensional models g∗1, . . . , g∗B using

the Monte Carlo algorithm detailed in Algorithm 6. The estimated pointwise standard errors of

the posterior distribution then follow as

ŝe(ĝ(x)) =

√√√√ 1

B

B∑
j=1

(
g∗j (x)− ĝ(x)

)2
, (4.67)
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from which we obtain the approximate pointwise 1− α credible interval

ĝ(x)± zα/2ŝe(ĝ(x)). (4.68)

The algorithm for computing ŝe(ĝ(x)) (shown below) involves a simple trick based on the linear

statistics for the multivariate normal to generate draws from the conditional distribution.

Algorithm 6 Monte Carlo confidence intervals

Require: ĝ(x), Φ, W , Σ̂−1, ρ̂, σ̂2, λ̂
1: Compute the sparse Cholesky decomp. ρ̂Σ̂−1 = BTB
2: for j in 1 : B do
3: Solve Bβ∗j = e where e ∼MN(0, I)

4: y∗j ← Φβ∗j + ε∗ where ε∗ ∼MN(0, σ̂2W )

5: β̂∗j ← Σ̂ΦT Π̂−1y∗j
6: g∗j (x)← ĝ(x) + Φx(β∗j − β̂∗j )
7: end for

8: ŝe(ĝ(x)) =

√√√√ 1

B

B∑
j=1

(
g∗j (x)− ĝ(x)

)2

9: C(x) =
(
ĝ(x)− zα/2ŝe(ĝ(x)), ĝ(x) + zα/2ŝe(ĝ(x))

)
10: return C(x)

4.6 Comparison of methods on a cosmological simulation

In this section we briefly compare the performance of the three-dimensional LOESS estimator

and the multi-resolution GRF model on a hydrodynamical cosmological simulation of a Lyα

absorption field so that we may choose one model to proceed with for analyzing the BOSS

data. The simulation (shown in Figure 4.14) constitutes a cubic volume of (400 h−1 Mpc)3 and

is output at redshift z = 2 with a voxel resolution of 11.7 h−3 Mpc3 / voxel (1763 voxels in

total). The cosmological parameters of the simulation were h = 0.702, Ωm = 0.275, ΩΛ = 0.725,

Ωb = 0.046, spectral index ns = 0.968, and amplitude of mass fluctuations, σ8 = 0.82. See [25]

for more details regarding the development of the simulation.
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Figure 4.14: Cosmological hydrodynamical simulation of a (400 h−1 Mpc)3 Lyα absorption
field. We use this simulation to evaluate the performance of our statistical methods in this
chapter. See [25] for details regarding the parameters of the simulation.

In order to mimic the heterogeneous Lyα quasar sightline density of the BOSS Lyα catalog, we

attempt to reconstruct the simulation cube at three different sightline densities — sampling sets

of 100, 300, and 500 sightlines uniformly over the X-Y plane of the cube. The coordinates of

each sample of sightlines are shown in Figure 4.15.

Figure 4.16 shows the results of a 10-fold cross validation optimization of the kernel bandwidth for

the LOESS estimator. The estimated risk curve appears troublingly flat, with optimal bandwidths

(denoted in red) that severely oversmooth the absorption field. We provide a brief explanation

for why this occurs below. In order to mitigate this issue we apply what we call a “reverse 1-SE

rule” to choose the bandwidth, which selects the smallest bandwidth for which the estimated risk
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Figure 4.15: X-Y coordinates of the sample of one-dimensional sightlines used for each
three-dimensional reconstruction.

is within one standard of the minimum risk. These reverse 1-SE bandwidths are shown in blue.

For the multi-resolution GRF model we show the results of the maximum likelihood optimization

of the hyperparameter λ in Figure 4.17. Recall the definition λ = σ2/ρ, so this is indeed a

one-dimensional optimization, but is shown in the original two-parameter parametrization (where

ρ has an analytical optimum given σ2).
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Figure 4.16: K-fold cross validation curve for 100, 500 LOS samples. The minimum CV risk
bandwidth is designated in red while the reverse 1-SE bandwidth is shown in blue.

The point estimate maps for each three-dimensional model are displayed in Figure 4.18 and the two-

point correlation function of each reconstruction is shown in Figure 4.19. Qualitatively speaking,

the maximum-likelihood-optimized GRF model seems to produce a reasonable reconstruction of

the large-scale structure of the simulation cube, while even the use of the reverse 1-SE bandwidth

for the LOESS estimator only recovers structure on the ∼100 h−1 Mpc scale. Figure 4.20 shows

the LOESS fit at a fixed Cartesian coordinate Z plus or minus one standard error. We omit the

analogous plots for the GRF model here due to the computational expense of the Monte Carlo
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Figure 4.17: Maximum likelihood optimization over covariance parameters. The optimal
pair for each sample of LOS is designated in red. Note: What’s actually going on here is a
one-dimensional optimization of λ = σ2/ρ, which suffices since the log-likelihood only depends
on σ2 and ρ through λ.

standard errors.

The flatness of the LOESS cross validation curves arises due to the fact that most of the variation

in the absorption field is below the scale on which we can reconstruct the field from the density of

observed sightlines. An analogous issue arises when evaluating the performance of each absorption

field reconstruction with the mean integrated squared error (MISE) with respect to the full

resolution signal of the field (shown in Table 4.1). In terms of MISE, the models appear to

perform equally poorly across all sightline samples because the small-scale variation of the field

dominates the squared error. It is not clear how much the multi-resolution GRF model suffers

from an analogous model validation issue as the LOESS estimator. That is, the assumption

that the flux contrast observations are a realization of a multi-resolution GRF with structure on

≥ 12.5 h−1 Mpc scales and an error distribution that is white Gaussian noise is very seriously

violated because there is highly correlated structure on < 12.5 h−1 Mpc scales. The GRF itself
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Figure 4.18: Predicted maps constructed by LOESS (left) and the GRF model (right) using
the 100, 300, and 500 LOS samples, respectively.
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Figure 4.19: Autocorrelation functions of the LOESS and GRF density field reconstructions
on 100, 300, and 500 LOS samples.

LOS sample LOESS GRF model

100 0.05489 0.05460
300 0.05470 0.05421
500 0.05454 0.05400

Table 4.1: Mean integrated squared errors of each three-dimensional model fit on each of the
three line of sight samples. There is very little disparity between the performance of each method
across all samples because the majority of the variation in the Lyα absorption field is below the
scale of the mean transverse sightline separation, and therefore below the scale on which we can
hope to reconstruct the signal. Squared-error with respect to the full resolution data is therefore
not a suitable metric from which to gauge the performance of the reconstruction.

therefore suffers from severe model misspecification, which calls into question the maximum

likelihood model validation procedure. At this point in time, these points served as valuable

lessons learned — all of which we provide solutions for in our analysis in Chapter 5.
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(a) 100 LOS

(b) 300 LOS

(c) 500 LOS

Figure 4.20: Slices of the LOESS-reconstructed simulation cube utilizing various LOS sample
sizes (a) the 100 LOS sample, (b) the 300 LOS sample, and (c) the 500 LOS sample. The
standard errors for the GRF model were not calculated here because of computational cost.

4.7 Application to BOSS Lyα quasar catalog

In this section we display the results of the multi-resolution GRF reconstruction of the 44.3

h−1 Gpc3 volume sampled by the BOSS Lyα quasar sightlines over our selected redshift range.
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Figure 4.21: Footprint of the BOSS Lyα quasars used for the three-dimensional Lyα absorption
field reconstruction in this chapter, shown in equatorial coordinates. The total footprint is 10,300
deg2 (∼25% sky coverage) and the total number quasar sightlines is 168, 953.

The map covers approximately 10,300 square degrees of the sky and spans the redshift range

1.95 < z < 3. This map represents our first attempt at reconstructing the large-scale intergalactic

medium over the unprecedented volumes made possible by the full BOSS Lyα quasar catalog. Our

more recent work on this topic is detailed in Chapter 5. The map detailed in this chapter was never

submitted for publication due to our dissatisfaction with flaws in the statistical modeling — both

the three-dimensional modeling and the one-dimensional pipeline that propagates the observed

spectra to the flux contrast scale. Going forward, we therefore proceeded with constructing our

own one-dimensional modeling pipeline (Chapters 2 and 3), before ultimately returning to the

problem of three-dimensional reconstruction (Chapter 5).

In total, the final sample we used to construct the map in this chapter consists of 168, 953 quasar

sightlines. This number accounts for the removal of spectra with no Lyman-α data in the range

1.95 < z < 3, broad absorption line quasars, and quasars outside of the ∼10,300 deg2 densely

sampled sky area. The footprint of the reduced sample is shown in Figure 5.2. Altogether,
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Figure 4.22: Two-dimensional sky map cross section of the reconstructed three-dimensional
Lyα absorption field at redshift z = 2.1. The map has a sky coverage of approximately 10,300
deg2 (∼25% sky coverage) and has a volume of 44.4 h−1 Gpc3. This map represents our first
attempt at reconstructing the large-scale intergalactic medium over the unprecedented volume
made possible by the full BOSS Lyα quasar catalog. Our more recent work is detailed in
Chapter 5.

this represents a ∼25% sky coverage. The sampling design of the data as a function of redshift

is highly heterogeneous, as the collective data set is densest at z ∼ 2.1 and sharply declines

at both lower and higher redshifts. Additionally, although to a much lesser extent, there is

sampling heterogeneity on the two-dimensional sky. In particular, the high density of spectra in

Stripe 82 can be seen in the Southern Galactic Cap at declination δ ∼ 0◦. The most significant

heterogeneity is of course a byproduct of the sightline sampling, with observations along an

individual sightline having an average separation of ∼600 h−1 kpc and the average separation

between sightlines being anywhere between ∼ 12.5 h−1 Mpc and ∼ 32.5 h−1 Mpc, depending

on the redshift. We display two-dimensional sky map cross sections of the reconstructed Lyα
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absorption field at a variety of redshifts in Figures 4.22–4.25.
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Figure 4.23: Two-dimensional sky map cross sections (continued).
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Figure 4.24: Two-dimensional sky map cross sections (continued).
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Figure 4.25: Two-dimensional sky map cross sections (continued).





Chapter 5

Three-dimensional cosmography of the high redshift

Universe using intergalactic absorption: Mature

Investigation

This chapter is based on our manuscript draft currently titled Three-dimensional cosmography of

the high redshift Universe using intergalactic absorption, which was approved as a pre-submission

inquiry at Nature in the spring of 2020 and will be submitted in full upon completion during the

summer of 2020.

5.1 Introduction

The Lyman-α forest — a dense series of H I absorptions seen in the spectra of high redshift quasars

— provides a unique cosmological probe of the large-scale structure of the redshift z & 2 Universe

[113, 163]. The density of observed quasars across the sky has recently risen to a level that, in

principle, allows for a large-scale three-dimensional reconstruction of the full foreground matter

density distribution transected by background quasar radiation [17–20]. However, until now, such

a reconstruction has not been possible without the development of suitable statistical methods.

127
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Using a sample of approximately 160,000 quasar sightlines collected by the SDSS-III Baryon

Oscillation Spectroscopic Survey [2, 26, 27], here we present a 47 h−3 Gpc3 Lyman-α absorption

large-scale structure map, accompanied by rigorous error quantification and an extensive census

of candidates for galaxy protoclusters and cosmic voids. The statistical reconstruction requires

minimal assumptions on the underlying matter density field and is specifically optimized to

recover three-dimensional structures lying between the one-dimensional sightlines backlit by

quasars. The map covers approximately 25 percent of the sky and spans the redshift range

1.98 ≤ z ≤ 3.15, allowing for studies of the cosmological matter distribution over unprecedented

volumes.

As ultraviolet radiation from a quasar propagates through intergalactic space, photons at the

Lyman-α (Lyα) wavelength of 1215.67 Å are scattered commensurate with the density of H

I in the gaseous intergalactic medium (IGM). This realization was first reached with simple

linear-theory models and later observed in numerical simulations [171, 242]. The gas causing

forest absorption is pressure supported on small scales (∼100 kpc), but on the & 10 Mpc scales

studied in this work thermal pressure is negligible and the IGM traces the dark matter distribution

with high accuracy [183, 184]. Winds from galaxies affect only a small fraction of the volume

of intergalactic gas, and in simulations have been shown not to significantly disrupt the close

overall relationship between forest absorption and matter density. By using the forest to map out

structure in the Universe, we will therefore be tracing out the total distribution of gravitating

matter.

The Lyα forest is now one of the standard cosmological probes used to measure the large-scale

structure of the Universe and constrain cosmological parameters. Current and future sky surveys

have significant elements devoted to the Lyα forest, and the number of quasars with suitably

measured spectra has grown to over half a million [2, 189, 243]. The one-dimensional analysis of

Lyα forest spectra, including the flux probablity distribution [13] and power spectrum [14–16],
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provided some of the first cosmological results. As the number of surveyed sightlines has increased,

the denser sampling has enabled three-dimensional clustering to be measured, first on . 100 h−1

Mpc scales [17], and then for measurements of baryon acoustic oscillations [BAOs; 18–20].

The fact that structure can be measured across sightlines means that interpolation techniques

can be used to convert sets of one-dimensional sightlines into three-dimensional maps. The use

of multiple Lyα forest sightlines to make three-dimensional maps of the IGM was pioneered

by [21], in which the authors used N -body simulations of the IGM to demonstrate that the

full three-dimensional Lyα absorption field can in principle be recovered given a dense set of

quasar sightlines. In that case, extremely dense sampling was considered, and the motivation

was to recover the predicted structure of the IGM over small volumes (∼30,000 Mpc3). [22]

continued this theoretical work, using a Wiener interpolation applied to simulations to showed

that filamentary structure can, in principle, be recovered given enough spectra. [244] explored

the observational requirements in detail and [245] showed that galaxy protoclusters — large-scale

overdensities that will evolve into galaxy clusters at lower redshifts [185] — can be recovered

with high fidelity from such reconstructed maps. [25] demonstrated a different, nonparametric

map-making technique — local polynomial smoothing — applying it to simulations and showing

that it enables an investigation of the topology of the structure of the Universe from the Lyα

forest at these previously unaccessible redshifts.

The first published observational three-dimensional map of the IGM from the Lyα forest was

made by [23]. Those authors used star-forming galaxies instead of quasars as background spectra

to achieve an extremely high (megaparsec scale) resolution, over a sky area of 70 square arcmin.

In the present paper, we will focus on mapping a sky area approximately 1.5× 105 larger, but

with resolution of the order of ∼17.5 Mpc. The BOSS DR12 quasar Lyα dataset that we use

was primarily designed for BAO measurement, and so covers appropriately large volumes. As no

other current surveys of tracers with a higher space density than quasars exist that cover large
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fractions of the sky at these (z > 2) redshifts, three-dimensional Lyα forest spectra offer a way

to make the highest fidelity maps of these large comoving volumes. Such maps can enable us

to explore the topology and clustering of the intergalactic medium, and by extension the dark

matter structure which underlies it. We can also identify galaxy protoclusters and cosmic voids

that have not been mapped before, and so for the first time carry out the type of science at

higher redshifts that has been the domain of large galaxy surveys at redshifts z < 1.

5.2 Methods

5.2.1 First data reduction

First we report the BOSS quasar spectra that are entirely discarded from our sample and then

we discuss the masking of individual pixels. We discard all spectra of quasars that are &15 deg

(150 h−1 Mpc at z = 1.98) outside the two contiguous regions of the sky targeted for mapping,

where we retain the buffer to aid in reducing statistical boundary effects in the three-dimensional

reconstruction near the edges of the targeted footprint. We remove all damped Lyα systems,

Lyman-limit systems, and broad absorption line quasars. With respect to the SDSS spectral

warning bitmask (ZWARNING1), we retain only the spectra with the bitmask integer equal to 0

or 16, indicating spectra with either no known issues or those only flagged as MANY_OUTLIERS,

which is almost always indicative of a high signal-to-noise spectrum and no actual error. Finally,

we retain only the spectra with zerr < 0.005, i.e. those for which the spectroscopic redshift of

the quasar has been estimated to high precision by the BOSS spectroscopic pipeline [66].

Within each individual quasar spectrum, we consider a truncated restframe Lyα forest Λrest =

(1045 Å, 1195 Å) in order to remove the Lyα and Lyβ emission peaks from the window, which

allows for higher precision nonparametric estimation of the unabsorbed quasar continua [31].
1https://www.sdss.org/dr12/algorithms/bitmasks/#ZWARNING

https://www.sdss.org/dr12/algorithms/bitmasks/#ZWARNING
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Therefore, we mask all pixels with λrest /∈ Λrest. In regard to the SDSS pixel warning bitmask

(SPPIXMASK2) we mask all pixels that have been flagged as potentially problematic in all exposures

(and_mask 6= 0) or in any single exposure (or_mask 6= 0) or those declared altogether untrustworthy

(ivar = 0). Finally, we mask pixels within 1.5× 10−4 dex (in units of log base 10 Angstroms) of

the strong sky lines documented in the data release 12 sky mask3,4. For the ∆ log10(λ) = 10−4

dex pixel spacing of the SDSS and BOSS spectrographs [109], this corresponds to 1.5 spectral

pixels masked on either side of each bright sky line. The reduced set of quasar Lyα forests

are individually processed to the flux contrast scale with the procedure detailed below before

undergoing an additional reduction that yields the sample ultimately used for three-dimensional

modeling.

5.2.2 Transforming spectra to flux contrast

Three-dimensional reconstruction of Lyα forest absorption fields relies crucially on the ability to

first accurately estimate the unabsorbed continuum of each coadded quasar Lyα forest and the

broader procedure for transforming the raw flux observations to the Lyα flux contrast scale that

traces H I density fluctuations. Furthermore, accurate statistical uncertainties at the stage of

three-dimensional reconstruction necessarily must account for the added uncertainty introduced

by the stochastic transformation to Lyα flux contrast. Our approach to processing the individual

quasar spectra is described in detail in our previous work [29, 31] (Chapters 2 and 3), so we

summarize it briefly here.

Given a BOSS spectrum of a quasar spectroscopically confirmed at redshift z = z0, let Λ(z0) =

(λLyβ, λLyα) · (1 + z0) denote the redshifted Lyα forest interval that is truncated at the advent

of the Lyβ forest. After correcting for extinction systematics [126, 127], the observational data
2https://www.sdss.org/dr12/algorithms/bitmasks/#SPPIXMASK
3https://github.com/igmhub/picca/blob/master/etc/dr12-sky-mask.txt
4https://trac.sdss3.org/wiki/BOSS/LyaForestsurvey/SkyMask

https://www.sdss.org/dr12/algorithms/bitmasks/#SPPIXMASK
https://github.com/igmhub/picca/blob/master/etc/dr12-sky-mask.txt
https://trac.sdss3.org/wiki/BOSS/LyaForestsurvey/SkyMask
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generating process (DGP) of the quasar flux in the Lyα forest can be assumed to follow the

model

f(λi) = f0(λi) + εi, λi ∈ Λ(z0), (5.1)

= F (λi) · C(λi) ·
(
1 + δF (λi)

)
+ εi, (5.2)

where f(λi) is the coadded flux at wavelength λi, f0(·) is the flux signal, {εi}ni=1 are uncor-

related Gaussian measurement errors attributable to photon noise, CCD readout noise, and

sky-subtraction error (assumed E[εi] = 0 and Var(εi) = σ2
i ), {λi}ni=1 form an equally spaced

wavelength grid in log-space with ∆ log10(λi) = 10−4 dex log-Angstroms, z0 is the redshift

of the quasar, C(·) is the flux of the unabsorbed quasar continuum, F (·) = f0(·)/C(·) is the

transmitted flux fraction, F (λi) = E[F (λi)] is the mean Lyα transmitted flux fraction at redshift

zi = λi/λLyα − 1, and δF (λi) = F (λi)/F (λi) − 1 is the transmitted flux contrast at redshift

zi = λi/λLyα− 1. The flux contrast δF inversely traces H I density fluctuations in the intervening

intergalactic medium and, by definition, is mean zero across the sky at each fixed redshift, with

negative contrasts corresponding to H I densities above the cosmic mean and positive contrasts

corresponding to H I densities below the cosmic mean.

We use trend filtering [1] to estimate the flux signal f0 in each coadded quasar spectrum and local

polynomial regression (LOESS) to estimate the smooth mean flux level m(λi) = F (λi) · C(λi).

We then define the Lyα flux contrast estimates along each quasar sightline as

δ̂F (zi) =
f̂0(zi)

m̂(zi)
− 1, zi = λi/λLyα − 1, (5.3)

where f̂0 is the trend filtering estimate of f0 and m̂ is the LOESS estimate of m. We refer

the reader to our previous work for details on the tuning of the model hyperparameters. An

example of this transformation of the forest to the flux contrast scale is shown in Figure 5.1. Both
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trend filtering and LOESS are nonparametric statistical methods that allow for highly flexible

estimators of f0 and m, respectively. In addition to the advantages discussed in previous work,

defining our flux contrast estimates along the sightlines as in equation (5.3) before pooling the

sightlines for a three-dimensional analysis yields two key benefits. First, denoising the observed

spectra via trend filtering prior to normalizing with respect to the estimated mean flux level keeps

the width of the δ̂F sampling distribution significantly narrower than if we simply defined the

flux contrast estimator as a normalization of the noisy observational spectrum. This specification

is particularly important to make optimal use of the large number of faint z & 2.1 quasar spectra

collected by BOSS (i.e. when the mean flux level m is near zero), and in turn leads to a more

precise three-dimensional absorption field reconstruction and a higher accompanying signal-to-

noise ratio. Second, our use of the nonparametric LOESS estimator of the Lyα forest mean

flux level m, instead of commonly used parametric estimators based on low-dimensional linear

combinations of quasar spectral templates, significantly reduces the statistical bias of the intrinsic

quasar continuum estimator. Statistical biases in the quasar continuum estimator are highly

undesirable in this setting because they propagate as systematic biases into the data used for

three-dimensional reconstruction. Therefore, by prioritizing low bias in the continuum estimator

we can be more confident that significant deviations from the cosmic mean in the reconstructed

three-dimensional absorption field — in particular, our candidates for galaxy protoclusters and

voids — are real fluctuations in the density field, and not due to systematic biases originating

from misspecification of the quasar continuum models. Furthermore, the nonparametric flexibility

of the LOESS estimator also provides robustness to potential errors in the extinction corrections,

which could otherwise introduce systematic biases into the reconstruction in the same way as

biased continuum models.

The assumed Gaussian error distribution of the observational Lyα forest DGP, complete with

the estimated measurement variances {σ̂2
i }ni=1 provided by the BOSS spectroscopic pipeline [66],
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Figure 5.1: Top: Lyman-α forest of a quasar spectrum (in the restframe) from the twelfth
data release of the Baryon Oscillation Spectroscopic Survey ([27]; Plate = 6487, MJD = 56362,
Fiber = 647). The quasar is located at (RA, Dec, z) ≈ (196.680◦, 31.078◦, 2.560). A trend
filtering estimate for the flux signal and a local linear regression estimate for the mean flux level
are overlaid. Bottom: The estimated relative fluctuations in the Lyman-α transmitted flux
fraction, due to the presence of absorbing neutral hydrogen in the intergalactic medium (shown
in redshift space). A 95% variability band constructed from the parametric bootstrap procedure
is superposed.

can then be sampled and propagated forward to determine the sampling distributions of the

sightline flux contrast estimators in equation (5.3) and therefore obtain the uncertainty of the

measurements on the transformed scale. We approximate the observational DGP of each coadded

quasar spectrum with a parametric bootstrap [246] with samples drawn independently from the

Gaussian distribution

f∗(λi) ∼ N(f̂0(λi), σ̂
2
i ), i = 1, . . . , n. (5.4)

As discussed in the sections below, this parametric bootstrap approximation of each Lyα forest

DGP is central to both our construction of an optimal pixel-weighting scheme for fitting the

three-dimensional model and our further propagation of uncertainty through to the final stage
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of three-dimensional reconstruction, thereby providing error estimates for the reconstructed

absorption field that account for all statistical uncertainties in the full modeling pipeline.

Along one-dimensional quasar sightlines the resolution of the SDSS and BOSS twin spectrographs

allows for studies of the intervening Lyα absorption field down to ∼1 h−1 Mpc scales — well

below the scale on which three-dimensional reconstruction over large volumes is currently possible.

It is therefore useful to formally define a decomposition of the underlying absorption field into

two orthogonal signals

δF (α, δ, z) = δLF (α, δ, z) + δSF (α, δ, z), (5.5)

where δLF is the large-scale structure of the Lyα absorption field δF — indexed here by angular

equatorial coordinates (α, δ) and redshift z — and δSF is the small-scale structure of δF . More

precisely, let r⊥(z) be the comoving mean transverse sightline separation at redshift z, restricted

to the set of unique background quasars in the sample and marginalized over the sky. We

define δLF (α, δ, z) to contain all frequencies of the Fourier series of δF (assumed to vary spatially)

that are above the sky-averaged transverse scale r⊥(z) and we define δSF (α, δ, z) to contain the

frequencies that are below r⊥(z). We can approximately regard δLF as the large-scale absorption

field structure that is recoverable across sightlines given the density of background quasars across

the sky. For this reason, we will denote our three-dimensional model δ̂LF . For the sake of validating

the three-dimensional model, which we discuss below, it is useful to first define a one-dimensional

estimate of δLF along each quasar sightline. Specifically, letting δ̂F (z) be the continuous-time

representation of the sightline Lyα flux contrast estimate defined in equation (5.3), we construct

an estimate of δLF along each sightline by computing a sliding-window wavelet transform of δ̂F (z)

and hard-thresholding the levels of the wavelet decomposition at each z that produce power at

higher frequencies than r⊥(z) (in h−1 Mpc). We denote this one-dimensional estimate δ̃LF in

order to distinguish it from the three-dimensional reconstruction itself.
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5.2.3 Second data reduction

Here we apply one further reduction to the processed set of spectra before proceeding with

three-dimensional modeling. We discard all spectra for which at any point the estimated mean

flux level m̂ becomes nonpositive, as well as any spectrum for which the flux signal estimate

{f̂0(zi)}ni=1, reduced to a sliding-window resolution of r⊥(zi), contains ten or more nonpositive

individual pixels. We mask all pixels outside of the targeted redshift range 1.98 ≤ z ≤ 3.15

plus a 150 h−1 Mpc buffer on each side. Finally, for any individual pixel with V̂ar
−1

(δ̂F ) > 150,

as estimated via the parametric bootstrap procedure, we threshold the inverse variance to be

exactly 150 to prevent a small fraction of the data set from having excessive leverage on the

three-dimensional model.

Altogether, our sample used for three-dimensional reconstruction includes 159,581 spectra from

142,696 distinct quasars, totaling over 72 million processed Lyα flux contrast pixels and consti-

tuting densities of ∼15.4 sightlines/deg2 and ∼13.8 quasars/deg2 over the 10,332 deg2 sky area

targeted for mapping. The primary observational limitation on the effective spatial resolution

of the three-dimensional map is the local transverse sightline separation of distinct background

quasars. This quantity varies significantly as a function of redshift, both as quasars become

increasingly faint on the high redshift end and as ultraviolet Lyα wavelengths become atmospher-

ically opaque on the low redshift end. The sightline density of our sample peaks at z ∼ 2.16,

with a mean transverse separation of r⊥(2.16) = 10.7 h−1 Mpc, compared to r⊥(1.98) = 12.2 h−1

Mpc and r⊥(3.15) = 31.7 h−1 Mpc at the extremes of our selected redshift range. At each fixed

redshift, the sampling density of background quasars is approximately uniform across the sky with

the primary exception being Stripe 82 — a 220 deg2 region along the celestial equator (declination

δ ≈ 0◦) in the Southern Galactic Cap that was repeatedly targeted to achieve higher source

densities than the rest of the BOSS footprint. The mean comoving sightline density of Stripe



Three-dimensional intergalactic cosmography: Mature Investigation 137

Figure 5.2: Footprint of the BOSS Lyα quasars used for the three-dimensional Lyα absorption
field reconstruction in this chapter, shown in equatorial coordinates. Altogether, our sample
used for three-dimensional reconstruction includes 159,581 spectra from 142,696 distinct quasars,
constituting densities of ∼15.4 sightlines/deg2 and ∼13.8 quasars/deg2 over the 10,332 deg2 sky
area targeted for mapping.

82 quasars in our sample peaks at r⊥(2.24) = 7.2 h−1 Mpc. The redshift distributions of the

aggregated set of processed Lyα flux contrast pixels and the mean sightline separation of unique

quasars in the final sample are shown in Figure 5.3. As detailed below, our three-dimensional

absorption field reconstruction adapts to the local variations in the sightline density so the

underlying absorption field is reconstructed at the highest spatial resolution allowed by the local

density of background quasars.

5.2.4 Three-dimensional absorption field reconstruction

Given the collection of processed Lyα flux contrast measurements lying along sightlines, here

we detail a novel and scalable nonparametric statistical technique for reconstructing the full

three-dimensional Lyα forest absorption field — a problem often referred to as Lyman-α forest

tomography or intergalactic medium tomography. We assume a spatially flat Λ-Cold Dark Matter
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Figure 5.3: Top: Redshift distribution of the ∼72 million Lyα flux contrast pixels in our
sample used for three-dimensional reconstruction of the 47 h−3 Gpc3 absorption field over the
redshift range 1.98 < z < 3.15. Bottom: Comoving mean transverse sightline separation of the
unique set of quasars in our sample used for three-dimensional reconstruction. This quantity is
the primary constraint on the effective spatial resolution at which we are able to reconstruct
the three-dimensional density field of the IGM across sightlines, and the resolution of the map
therefore varies significantly across redshifts.
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[170] (ΛCDM) cosmological model with parameters Ωm = 0.315, ΩΛ = 0.685, and h = 0.674.

As we detail below, our three-dimensional model – a spatially-penalized kernel ridge regression

(SKRR) on a multi-resolution set of basis functions – provides a number of statistical and

computational advantages over the Wiener filtering approach that has been popularized for Lyα

tomographic mapping on hydrodynamical simulations and small observational volumes [21–24].

The advantages of our proposed methodology fall into three main categories:

1. Nonparametric/data-driven modeling. We require no prior distributional assumptions

on the underlying Lyα absorption field. Instead, we focus on directly learning the spatial

dependence that is most predictive of the absorption structure lying in between the sightlines

backlit by quasars. Furthermore, we make no simplifying assumptions on the sampling

design of the observations (e.g. treating sightlines as parallel).

2. Uncertainty quantification. By further extending the parametric bootstrap procedure

introduced in our previous work, we are able to provide rigorous estimates of the total

statistical uncertainty in the reconstructed three-dimensional Lyα absorption field. In total,

we produce 50 bootstrap realizations of the full 47 h−1 Gpc3 map, with the variation in

the bootstrap distribution accounting for the inherent observational uncertainty in the

quasar spectra and all subsequent statistical uncertainties introduced by the pipeline of

analyses used to reconstruct the full three-dimensional absorption field. This total statistical

uncertainty — which we find to be in close agreement with a Gaussian — will allow for

rigorous statistical error bounds on all future analyses of the map and in particular, here

we utilize it to compile a census of high-significance candidates for high redshift galaxy

protoclusters and cosmic voids.

3. Computational efficiency. We develop a parallelized approximation algorithm dis-

tributed over the spatial domain and enforce sparsity in the matrices central to computing
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each local absorption field reconstruction in a way that allows us to carry out a spatial

analysis of this magnitude, while also not compromising the complex spatial dependence

needed to faithfully reconstruct the full absorption field down to the scale of the transverse

quasar sightline separation. The computational efficiency and scalability provided by these

two components in tandem is the central ingredient that allows us to: (i) reconstruct a

three-dimensional Lyα forest absorption field over an unprecedented 47 h−1 Gpc3 volume;

(ii) optimize the accuracy of the reconstruction over a large number of hyperparameter

combinations; and (iii) quantify the total statistical uncertainty of the reconstruction by

producing 50 bootstrap reconstructions of the full absorption field.

The large-scale structure in Lyα forest absorption fields, which we have denoted δLF , can be

viewed as a spatial process with multiple scales of structure evolved from scale-invariant density

fluctuations in the early Universe convolved with the multi-scale baryon acoustic oscillation (BAO)

signature imprinted by pre-recombination acoustic waves [194]. It is therefore appropriate to

regard reconstruction of three-dimensional Lyα absorption fields as a problem of multi-resolution

analysis. Our three-dimensional SKRR model makes use of Euclidean distances; therefore, using

the comoving radial distances computed under the assumed ΛCDM cosmological model, we

convert the n ≈ 7.2 × 107 sightline flux contrast measurements defined in equation (5.3) to

three-dimensional Cartesian coordinates through the usual spherical-to-Cartesian coordinate

transformation. We consider a model space given by a multi-resolution basis expansion in

three-dimensional Euclidean space

δLF (x) =
∑
`,j

β`,jφ`,j(x), x ∈ R3, (5.6)

where {φ`,j}`=1,...,d
j=1,...,m`

is a multi-resolution set of compactly-supported radial basis functions

(RBFs) organized on regular grids and β`,j are the basis coefficients that, given the choice of
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basis, parametrize the three-dimensional model. We fix the finest level of RBFs to have a node

separation just below the scale of the mean transverse quasar sightline separation, so the model

possesses sufficient resolution to recover the large-scale absorption field δLF across sightlines but

will not overadapt to the small-scale structure δSF that can be seen along each densely-sampled

sightline. Each coarser level of the multi-resolution basis is then constructed by dyadically

increasing the node separation of the previous level, and we let the total number of levels in the

basis be a tunable hyperparameter of the model. At each level of resolution ` = 1, . . . , d, we

construct the RBFs via a real-valued radial function

φ`,j(x) = φ

(
‖x− u`,j‖2

θ`

)
, j = 1, . . . ,m`, (5.7)

where u`,1, . . . , u`,m` ∈ R3 are the nodes of the RBFs organized on a regular three-dimensional

grid, ‖ · ‖2 is the Euclidean `2 norm, and θ` is a scaling parameter to adjust the amount of overlap

in the RBFs at each level. For φ(·) we adopt the compactly-supported Wendland polynomial

[238]

φ(y) =


(1− y)6 · (35y2 + 18y + 3))/3 0 ≤ y < 1

0 otherwise,

(5.8)

and, following literature on multi-resolution fixed rank kriging [227], we let the scale parameter

θ` of each RBF be equal to 2.5 times the node spacing at its respective basis level, which ensures

that the reconstruction resembles a continuous multi-resolution field with no visible artifacts

from the finite basis. A one-dimensional example of the multi-resolution Wendland basis is shown

in Figure 5.4.

Given the multi-resolution linear model introduced in equation (5.6), the problem of reconstructing

the three-dimensional Lyα forest absorption field reduces to a problem of jointly optimizing the

number of multi-resolution levels in the basis and the corresponding set of basis coefficients. Here,
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Figure 5.4: One-dimensional example of the multi-resolution Wendland basis used by the
SKRR model. The three-level basis shown here corresponds to the optimized SKRR model on
the redshift bin z1 = [1.98, 2.64).

we pose that for Lyα forest tomography, an optimal reconstruction should be taken to mean one

that recovers the underlying absorption field structure as accurately as possible in between the

one-dimensional sightlines probed by background quasars. We therefore approach the problem as

one of optimizing the out-of-sample predictive accuracy of the model on held-out background

quasars. In order to simplify notation, let {φ1, . . . , φm} denote our multi-resolution basis with

m =
∑d

`=1m`, and let β ∈ Rm be the corresponding vector of basis coefficients. Holding the

multi-resolution basis fixed, the optimization that determines the basis coefficients of our SKRR
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model can be concisely stated as a generalized ridge regression minimization problem

β̂ = argmin
β∈Rm

(δ̂F − Φβ)TW (δ̂F − Φβ) + ‖Dβ‖22, (5.9)

where δ̂F ∈ Rn is a vector of the aggregated flux contrast estimates defined in equation (5.3),

Φ ∈ Rn×m with Φij = φj(xi) is the regression matrix with respect to the basis, W is a diagonal

pixel-weighting matrix with elements

W−1
ii = E[(δ̂F (xi)− δLF (xi))

2], i = 1, . . . , n (5.10)

estimated by parametric bootstrapping the quantity (δ̂F − δ̃LF )2 along each sightline, and D ∈

Rm×m is a structured penalty matrix that enforces spatial dependence among the basis coefficients

at each level of resolution. The cost functional in equation (5.9) therefore states that the SKRR

solution balances a tradeoff between minimizing the weighted sum of squared error with respect

to the Lyα flux contrast estimates lying along observed sightlines and enforcing smoothness in the

full three-dimensional reconstruction as prescribed by the generalized ridge penalty matrix D. We

construct the penalty matrix to be block diagonal with blocks D` ∈ Rm`×m` , ` = 1, . . . , d, where

each block D` determines the spatial dependence of the basis coefficients at the corresponding

level of resolution and the relative contribution of that level of resolution to the total model.

Specifically, we define each block of the penalty matrix as

D` =
√
γ`(∆` + α`I), γ` ≥ 0, α` > 0, (5.11)

where ∆` ∈ Rm`×m` is a sparse three-dimensional fusion penalty that enforces spatial dependence

among neighboring basis coefficients, I is the identity matrix that corresponds to the traditional

pure-ridge shrinkage of the basis coefficients, α` is a range hyperparameter that determines the
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range of the spatial dependence at level `, and γ` is a penalty hyperparameter that determines

the relative contribution of level ` to the total model. More explicitly, at each level `, the fusion

penalty is defined as

∆`ij =



6 i = j,

−1 j ∈ Ni,

0 otherwise,

(5.12)

where Ni is the set of indices of the basis nodes at level ` that are first-order neighbors of the

node u`,i. The decomposition of the spatial penalty follows as

‖Dβ‖22 = γ`

( d∑
`=1

βT` ∆2
`β` + 2α`β

T
` ∆`β` + α2

`β
T
` β`

)
, (5.13)

where the first term consists of second-order differences between neighboring basis coefficients,

the second term consists of first-order differences between neighboring basis coefficients, and the

third term is the traditional pure-ridge sum-of-squared coefficients. We find the optimal spatial

penalty to be consistent with a scale-invariant range hyperparameter α` ≡ α, which in turn is

helpful in reducing the dimensionality of the model hyperparameter space. Therefore, in total,

the model possesses d+ 2 free hyperparameters that allow the model to learn a highly complex

spatial dependence. We discuss the validation of these hyperparameters in a dedicated section

below.

We have thoroughly tested the optimality of the `2 (squared) norm in this setting as the

penalization functional. The use of the `2 norm is favorable in this setting because the matter

density distribution on the & 10 h−1 Mpc scales studied in this work is spatially homogeneous

(i.e. the smoothness is relatively uniform). As the density of background quasars continues to

increase with future sky surveys and it becomes feasible to recover high-density filaments over

large volumes in Lyα absorption fields, an `1 norm on the spatial penalty — corresponding to a
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generalized lasso regression [28] — will provide an essential boost in spatial adaptivity. It will,

however, require significantly greater computational expense.

The cost functional in equation (5.9) is strictly convex and differentiable everywhere so, for any

fixed set of hyperparameters, the solution follows as

β̂ = (ΦTWΦ +DTD)−1ΦTWδ̂F (5.14)

and is unique. By construction, ΦTWΦ and DTD are very sparse and symmetric positive definite

so the solution can be computed very efficiently by utilizing a sparse Cholesky decomposition of

G = ΦTWΦ +DTD and specialized algorithms for the sparse matrix multiplications. Returning

the basis coefficients to their original indexing, the SKRR three-dimensional reconstruction

follows as

δ̂LF (x) =
∑
`,j

β̂`,jφ`,j(x). (5.15)

A two-dimensional example of the isotropic multi-resolution Mercer kernel of the SKRR estimator

is shown in Figure 5.5 (with three levels of resolution).

An analysis of the effective smoothing kernel demonstrates that the SKRR model instrinsically

adapts to both the local density of sightlines and the local signal-to-noise ratio of the pixels.

It is useful, however, to provide additional design-adaptive flexibility to address the severe

heterogeneity of background quasars as a function of redshift. Therefore, we partition the volume

into three disjoint redshift bins z1 = [1.98, 2.64), z2 = [2.64, 2.96), z3 = [2.96, 3.15], and optimize

the RBF spacing and model hyperparameters separately in each bin.
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Figure 5.5: Two-dimensional example of the isotropic Mercer kernel induced by the SKRR
model, with contours of the Mercer kernel shown for the central spatial location (x1, x2) =
(108, 108). The contours of each level of resolution in the Mercer kernel show the pairwise degree
of similarity that is encouraged between each pair of points in the spatial reconstruction. A
separate set of hyperparameters then controls the relative contribution of each level of spatial
smoothness. The three-level Mercer kernel shown here corresponds to the optimized SKRR
model on the redshift bin z1 = [1.98, 2.64).
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5.2.5 Distributed computing

The calculation of the SKRR solution is dominated by the O(m3) time complexity and O(m2)

memory complexity of the Cholesky decomposition of G. Our enforcement of extreme sparsity

in the calculations allows problems on the order of m ≈ 3.0× 105 to be solved efficiently on a

single processor of a high-performance computing infrastructure. However, reconstruction of

the full 47 h−1 Gpc3 absorption field at the scale of the mean transverse sightline separation

implies a total basis size of 4.0 × 107 . m . 5.0 × 107. Therefore, in order to make the

full reconstruction, hyperparameter validation, and uncertainty quantification computationally

feasible, it is necessary to scale the SKRR estimator horizontally (i.e. over multiple machines)

into a large-scale distributed system. Here, we develop a distributed approximation algorithm

that allows us to adapt the SKRR model to the multi-machine setting, while maintaining close

proximity to the computationally-infeasible global solution. This distributed algorithm operates

locally by exploiting the trivial spatial dependence of the absorption field on > 250 h−1 Mpc scales.

Let F ⊂ S2 be the 10,332 deg2 footprint targeted for mapping and let Cj = F × zj , j ∈ {1, 2, 3},

be a partition of the 47 h−1 Gpc3 volume into the three redshift bins over which the model

hyperparameters are independently optimized. For each j ∈ {1, 2, 3}, let Bj,1, . . . , Bj,rj ⊂ R3 be

a disjoint set of cubes in R3 such that

Cj ⊂
rj⋃
k=1

Bj,k, (5.16)

and for each cube Bj,k, let B̃j,k be an augmented cube with a 250 h−1 Mpc buffer region added

in each direction along the Cartesian coordinate axes. For each cube, we define a local absorption

field reconstruction δ̂L,j,kF (x; ηj), x ∈ B̃j,k by fitting the SKRR estimator with hyperparameter
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vector ηj = (dj , αj , γj,1, . . . , γj,d) on the local basis

Bj,k =
{
φ`,j : u`,j ∈ B̃j,k

}
(5.17)

and the local set of observations

Dj,k =
{(
xi, δ̂F (xi)

)
: xi ∈ B̃j,k

}
. (5.18)

The distributed-SKRR three-dimensional reconstruction of the full absorption field then follows

as the piecewise estimator

δ̂
L‖
F (x) =

3∑
j=1

rj∑
k=1

1(x ∈ Aj,k) · δ̂L,j,kF (x; ηj), x ∈ C, (5.19)

where Aj,k = Bj,k ∩ Cj and C = C1 ∪ C2 ∪ C3.

In total we utilize 1, 664 local models and construct the spatial partition so that each local

model has a computationally-manageable m ≈ 3.0 × 105 basis functions. The use of buffer

regions of 250 h−1 Mpc around each local model ensures that the distributed piecewise estimator

closely approximates a continuous three-dimensional field with smooth low order derivatives.

Although the use of buffer regions enables a close approximation of a continuous field, very small

discontinuities can be visually resolved at some of the seams of the partition when examining the

distributed reconstruction at the highest pixel resolution. Therefore, we post-process the final

distributed-SKRR reconstruction with a Epanechnikov smoothing kernel with a bandwidth of

ζ = 12 h−1 Mpc, which we find to be sufficient to remove the small discontinuities while also not

degrading the highest resolution structure recovered in the map.

The total computational expense of the analysis presented in this work was approximately

3.0× 106 CPU hours – carried out a large array of machines, with each machine configured with
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∼200 GB of memory. The model validation and bootstrap uncertainty quantification of the

three-dimensional absorption field reconstruction account for nearly all of the computational

expense.

5.2.6 Model validation

In accordance with our objective to optimize the spatial dependence of the three-dimensional

reconstruction to maximize predictive accuracy in between observed sightlines, we optimize all

hyperparameters of the SKRR model by holding out 15% of the background quasars, training

on the remaining 85%, and validating the accuracy of the three-dimensional reconstruction

on the held-out set of one-dimensional absorption field skewers. Recall the one-dimensional

estimate δ̃LF of large-scale Lyα flux contrast, which we defined by degrading the high-resolution

one-dimensional absorption field to match the scale of the transverse sightline separation. Let

δ̃LFi , i = 1, . . . , n′ be the aggregated set of δ̃LF pixels over all sightlines in the validation set and let

δ̂
L‖
Fi
, i = 1, . . . , n′ be the set of validation set predictions given by the distributed-SKRR model

with hyperparameter vector η = (d, α, γ1, . . . , γd). We utilize the Kendall tau ranking distance

to measure how far the SKRR model is from reproducing the discretized ordering of the flux

contrast measurements corresponding to the unseen 15% of quasars in the validation set. In

particular, letting ρ(·) be the sample rank operator, for any given hyperparameter vector η the

Kendall tau ranking distance is given by

R(η) = |D1 ∪ D2| (5.20)

= |D1|+ |D2| (5.21)
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where

D1 =
{

(i, j)i<j : ρ(δ̂
L‖
Fi

) < ρ(δ̂
L‖
Fj

) ∩ ρ(δ̃LFi) > ρ(δ̃LFj )
}

(5.22)

D2 =
{

(i, j)i<j : ρ(δ̂
L‖
Fi

) > ρ(δ̂
L‖
Fj

) ∩ ρ(δ̃LFi) < ρ(δ̃LFj )
}
. (5.23)

Optimizing the three-dimensional model with respect to the Kendall tau ranking distance therefore

favors hyperparameter combinations that reproduce the ordering of the discretized large-scale

absorption field in between the observed quasar sightlines — i.e. relative overdensities and

underdensities in the large-scale absorption field are accurately predicted as such.

5.2.7 Uncertainty quantification

The total statistical uncertainty in the three-dimensional map can be quantified by studying the

sampling distribution of the distributed-SKRR estimator, starting with the inherent observa-

tional uncertainty in the quasar spectra and propagating it through the subsequent stochastic

transformation to Lyα flux contrast and finally to the stage of three-dimensional reconstruction.

We utilize an extended version of the parametric bootstrap procedure described in our previous

work [29, 31] (Chapter 3). Each of the 50 bootstrap reconstructions of the full 47 h−1 Gpc3 Lyα

absorption field is constructed as follows:

1. Construct a bootstrap sample of observational quasar spectra f∗1 , . . . , f∗q , q = 159, 581

according to the parametric bootstrap Gaussian DGP in equation (5.4).

2. Define the Lyα flux contrast estimates along each sightline as in equation (5.3) using the

trend filtering estimate of flux signal and the LOESS estimate of mean flux level fit to each

spectrum in the bootstrap sample.
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3. Pool the sightline flux contrast estimates and compute the bootstrap three-dimensional

reconstruction δ̂L‖∗F (x) via the distributed-SKRR model defined in equation (5.19).

The sampling distribution of the distributed-SKRR estimator does not directly inherit the

Gaussianity of the observational error distributions of the quasar spectra because our intermediate

transformation to the flux contrast scale is nonlinear. Nevertheless, a quantile-quantile analysis

of the bootstrap sampling distribution reveals that the total statistical uncertainty in the three-

dimensional reconstruction remains consistent with a Gaussian distribution to high significance.

All publicly available data products of the three-dimensional absorption field reconstruction

(Section 5.4) are accompanied by the pointwise standard error estimates computed through this

bootstrap procedure.

5.3 Results

In this section we display various visualizations of our 47 h−1 Gpc3 reconstruction of the IGM

and document the number of candidates we have detected for galaxy protoclusters and cosmic

voids. We define a candidate for a galaxy protocluster to be a statistically significant (at an

n-σ level) contiguous overdensity in the reconstructed absorption field. Analogously, we define

a candidate for a cosmic void to be a statistically significant contiguous underdensity in the

reconstructed absorption field. Here, contiguity is defined through a three-dimensional friends-of-

friends algorithm over the volume of the map on a (1 h−1 Mpc)3/voxel Cartesian grid in which a

voxel is compared with its 26 neighboring voxels that share a face, edge, or corner. Please refer

to our upcoming paper for more details and a deeper discussion of the results.
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Figure 5.6: Earth-centric map of the observed large-scale matter distribution of the Universe
out to 4481 h−1 comoving Mpc. The 47 h−3 Gpc3 Lyα forest absorption field reconstructed
in this work spans the redshift range 1.98 ≤ z ≤ 3.15 (3560 h−1 Mpc < d‖ < 4481 h−1 Mpc)
and provides a continuous high redshift complement to the cosmological matter distribution
traced by galaxies and non-Lyα quasars at low redshifts (black dots). Pictured here is a 113◦
field-of-view in the Northern Galactic Cap (top) at a celestial declination of δ = 40◦ and a 87.5◦
field-of-view in the Southern Galactic Cap (bottom) along the celestial equator (δ = 0◦). The
effective spatial resolution of the reconstructed Lyα absorption field progressively degrades at
the high redshift end due to sparser observations of background quasars, but remains well below
the scale of baryon acoustic oscillations.
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Figure 5.7: Cross-sectional sky map of the reconstructed three-dimensional Lyman-α absorption
field. Shown here is the large-scale matter density distribution of the Universe at redshift z = 2.10
(3677 h−1 comoving Mpc from Earth), with equatorial coordinates in a Mollweide projection.
At this epoch, the Universe was approximately 3.12 billion years old. The full 47 h−3 Gpc3
comoving volume mapped in this work possesses a footprint of 10,332 deg2 (∼25% sky coverage)
at all redshifts 1.98 ≤ z ≤ 3.15, split between two contiguous regions of the sky — a 7,474 deg2
region in the Northern Galactic Cap (left) and a 2,858 deg2 region in the Southern Galactic
Cap (right). Coherent structure is detected at multiple scales of resolution, with the smallest
recoverable structure lower bounded by the sky-marginalized transverse sightline separation r⊥(z)
of the set of background quasars used for the three-dimensional reconstruction (e.g. for z = 2.10,
r⊥ ≈ 11.1 h−1 Mpc). Two-dimensional sky maps and 1σ Gaussian uncertainties are made
publicly available (see Section 5.4) for every 0.01 unit in the redshift interval 1.98 ≤ z ≤ 3.15 in
a HEALPix pixelization with Nside = 2048 (1.7 arcmin pixel resolution).
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Figure 5.8: (Continued:) Cross-sectional sky maps of the reconstructed three-dimensional
Lyman-α absorption field. Top: Redshift z = 2.00 (3580 h−1 comoving Mpc from Earth;
Universe at age t = 3.27 billion years). Bottom: Redshift z = 2.20 (3769 h−1 comoving Mpc
from Earth; Universe at age t = 2.98 billion years).
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Figure 5.9: (Continued:) Cross-sectional sky maps of the reconstructed three-dimensional
Lyman-α absorption field. Top: Redshift z = 2.30 (3858 h−1 comoving Mpc from Earth;
Universe at age t = 2.85 billion years). Bottom: Redshift z = 2.40 (3943 h−1 comoving Mpc
from Earth; Universe at age t = 2.72 billion years).
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Figure 5.10: (Continued:) Cross-sectional sky maps of the reconstructed three-dimensional
Lyman-α absorption field. Top: Redshift z = 2.50 (4024 h−1 comoving Mpc from Earth;
Universe at age t = 2.61 billion years). Bottom: Redshift z = 2.60 (4102 h−1 comoving Mpc
from Earth; Universe at age t = 2.50 billion years).
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Figure 5.11: (Continued:) Cross-sectional sky maps of the reconstructed three-dimensional
Lyman-α absorption field. Top: Redshift z = 2.70 (4177 h−1 comoving Mpc from Earth;
Universe at age t = 2.40 billion years). Bottom: Redshift z = 2.80 (4249 h−1 comoving Mpc
from Earth; Universe at age t = 2.31 billion years).
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Figure 5.12: (Continued:) Cross-sectional sky maps of the reconstructed three-dimensional
Lyman-α absorption field. Top: Redshift z = 2.90 (4318 h−1 comoving Mpc from Earth;
Universe at age t = 2.22 billion years). Bottom: Redshift z = 3.00 (4385 h−1 comoving Mpc
from Earth; Universe at age t = 2.14 billion years).
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Figure 5.13: (Continued:) Cross-sectional sky maps of the reconstructed three-dimensional
Lyman-α absorption field. Redshift z = 3.10 (4450 h−1 comoving Mpc from Earth; Universe at
age t = 2.06 billion years).
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Figure 5.14: Gnomonic projections of a (18.75 deg)2 slice of the reconstructed Lyα absorption
field at various redshifts. The square slice is centered at equatorial coordinates (α, δ) = (135◦, 15◦)
(in the Northern Galactic Cap). Meridians and parallels are overlaid at 5◦ intervals.
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Figure 5.15: (Continued:) Gnomonic projections of a (18.75 deg)2 slice of the reconstructed
Lyα absorption field at various redshifts. The square slice is centered at equatorial coordinates
(α, δ) = (135◦, 15◦) (in the Northern Galactic Cap). Meridians and parallels are overlaid at 5◦
intervals.
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Figure 5.16: (Continued:) Gnomonic projections of a (18.75 deg)2 slice of the reconstructed
Lyα absorption field at various redshifts. The square slice is centered at equatorial coordinates
(α, δ) = (135◦, 15◦) (in the Northern Galactic Cap). Meridians and parallels are overlaid at 5◦
intervals.
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Figure 5.17: Three-dimensional reconstruction of the intergalactic medium matter density
distribution, as traced by Lyα forest absorption in the spectra of background quasars. The (400
h−1 Mpc)3 comoving volume pictured here, which is centered at redshift z ∼ 2.3, constitutes
∼ 0.1% of the total cosmological volume mapped in this work. On the & 10 h−1 Mpc scales
mapped in this work, the dimensionless Lyα flux contrast (coloured by the sample quantiles)
directly traces the distribution of gaseous H I in the intergalactic medium and, by extension, the
total distribution of gravitating cosmological matter, with positive flux contrasts corresponding
to underdensities and negative flux contrasts corresponding to overdensities.

Significance level
3σ 4σ 5σ 6σ 7σ 8σ

Galaxy protoclusters 115,156 86,220 54,300 29,868 17,608 10,896
Cosmic voids 108,676 79,436 53,776 32,504 20,840 12,984

Table 5.1: Cosmic census of candidates for high redshift galaxy protoclusters and cosmic voids
in the absorption field reconstruction, detected at increasing levels of statistical significance. We
define galaxy protocluster and cosmic void candidates to be statistically significant contiguous
overdensities and underdensities, respectively, as determined by a three-dimensional friends-of-
friends algorithm over the volume of the map on a (1 h−1 Mpc)3/voxel Cartesian grid. Shown
here are estimates for the total numbers expected across the full 47 h−3 Gpc3 volume, which
we produced by taking the total number of candidates detected in the Southern Galactic Cap
(∼25% of the total volume) and multiplying by four. We are still waiting for the friends-of-friends
clustering algorithm to complete in the Northern Galactic Cap.
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Figure 5.18: Statistically significant overdensities (red) and underdensities (blue) in the (400
h−1 Mpc)3 cubic volume shown in Figure 5.17. Here, the overdensities and underdensities are
significant at the 6σ level. We catalog each contiguous overdensity as a candidate for a galaxy
protocluster and each contiguous underdensity as a candidate for a cosmic void.
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Figure 5.19: The estimated standard errors of the reconstructed Lyα absorption field at redshift
z = 2.50 (in an orthographic projection), with the Northern Galactic Cap sky coverage shown
on top and Southern Galactic Cap on bottom. The pointwise standard errors are computed
from a sample of 50 bootstrap reconstructions of the full absorption field. We find the bootstrap
distribution to be consistent with a Gaussian to high significance.
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Figure 5.20: Orthographic projection of the redshift z = 2.00 candidates for galaxy protoclusters
(red) and cosmic voids (blue) detected at a 4σ significance level, with the Northern Galactic
Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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Figure 5.21: (Continued:) Orthographic projection of the redshift z = 2.10 candidates for
galaxy protoclusters (red) and cosmic voids (blue) detected at a 4σ significance level, with the
Northern Galactic Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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Figure 5.22: (Continued:) Orthographic projection of the redshift z = 2.20 candidates for
galaxy protoclusters (red) and cosmic voids (blue) detected at the 4σ significance level, with the
Northern Galactic Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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Figure 5.23: (Continued:) Orthographic projection of the redshift z = 2.30 candidates for
galaxy protoclusters (red) and cosmic voids (blue) detected at a 4σ significance level, with the
Northern Galactic Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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Figure 5.24: (Continued:) Orthographic projection of the redshift z = 2.40 candidates for
galaxy protoclusters (red) and cosmic voids (blue) detected at a 4σ significance level, with the
Northern Galactic Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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Figure 5.25: (Continued:) Orthographic projection of the redshift z = 2.50 candidates for
galaxy protoclusters (red) and cosmic voids (blue) detected at a 4σ significance level, with the
Northern Galactic Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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Figure 5.26: (Continued:) Orthographic projection of the redshift z = 2.60 candidates for
galaxy protoclusters (red) and cosmic voids (blue) detected at a 4σ significance level, with the
Northern Galactic Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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Figure 5.27: (Continued:) Orthographic projection of the redshift z = 2.70 candidates for
galaxy protoclusters (red) and cosmic voids (blue) detected at a 4σ significance level, with the
Northern Galactic Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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Figure 5.28: (Continued:) Orthographic projection of the redshift z = 2.80 candidates for
galaxy protoclusters (red) and cosmic voids (blue) detected at a 4σ significance level, with the
Northern Galactic Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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Figure 5.29: (Continued:) Orthographic projection of the redshift z = 2.90 candidates for
galaxy protoclusters (red) and cosmic voids (blue) detected at a 4σ significance level, with the
Northern Galactic Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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Figure 5.30: (Continued:) Orthographic projection of the redshift z = 3.00 candidates for
galaxy protoclusters (red) and cosmic voids (blue) detected at a 4σ significance level, with the
Northern Galactic Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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Figure 5.31: (Continued:) Orthographic projection of the redshift z = 3.10 candidates for
galaxy protoclusters (red) and cosmic voids (blue) detected at a 4σ significance level, with the
Northern Galactic Cap sky coverage shown on top and Southern Galactic Cap on bottom.
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5.4 Data availability

All products of this work, including the Lyα absorption map, the associated standard error

measurements, and the catalog of candidates for galaxy protoclusters and cosmic voids will

be made publicly available at the webpage http://stat.cmu.edu/Lyman-alpha-cosmos-map.

Two-dimensional HEALPix sky maps are available for download in FITS format at a 1.8 arcmin

resolution (Nside = 2048) and the full 47 h−3 Gpc3 absorption field can be queried through a

SQL database on a regular Cartesian grid up to a (1 h−1 Mpc)/voxel resolution.

http://stat.cmu.edu/Lyman-alpha-cosmos-map
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