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Abstract

Anomaly detection (AD) algorithms are widely used for data-driven decision sup-
port in domains where quantifying risk is critical, such as identifying fraudulent
healthcare providers in public health insurance, consumer lending, and detecting
aberrant patterns in human electroencephalography (EEG) records. However, AD
in decision support is challenging due to the multitude of data modalities (e.g. time-
series, or structural data) and data scale, unavailability of ground truth labels for
learning and evaluation, and difficulty in yielding human interpretable results for
domain-specific problems. This thesis proposes to address the challenges and build
intelligent detection systems with the following desirable properties: unsupervised,
explainable, scalable, and equitable. Throughout, we propose novel AD algorithms
that enable better decision support by addressing domain-specific key challenges
such as including domain or expert knowledge, mitigating bias that may adversely
affect minority groups, and handling aberrant behavior involving a group of actors.
We present applications in public healthcare fraud, and health monitoring.
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Chapter 1

Introduction

In this thesis, I study the challenges and opportunities in data-driven decision sup-
port for high-stakes domains (e.g. public healthcare and well-being, clinical deci-
sion support, finance). In particular, the thesis focuses on development of Unsu-
pervised and Explainable Anomaly Detection (AD) techniques to empower human
decision making. Unsupervised AD techniques identify rare events, and observa-
tions that deviate from underlying data distribution characterizing normal behavior.
AD finds applications in domains where quantifying risk is critical, such as identify-
ing fraudulent healthcare providers in public health insurance (Shekhar, Leder-Luis,
and Akoglu, 2023), and detecting aberrant patterns in human electroencephalogra-
phy (EEG) records (Lee, Shekhar, Faloutsos, Hutson, and Iasemidis, 2021). How-
ever, AD in decision support is challenging due to multitude of data modalities (e.g.
time-series, or structural data) and data scale, unavailability of ground truth labels
for learning and evaluation, and difficulty in yielding human interpretable results
for domain specific problems. As such, the thesis objective is to build intelligent de-
tection systems with the following desirable properties that aid in decision support.
1. Unsupervised detection waives the need for laborious labeling by human experts.

2. Explainable tools are user-friendly and assist a human expert in investigation, ver-
ification and decision making.

3. Equitable detection avoids unjust impact on marginalized groups, since AD as-
is can cause unjust flagging of societal minorities (w.r.t. race, sex, etc.) because
of their standing as statistical minorities, when minority status does not indicate
riskiness.

To this overarching goal, thesis work is broken down to algorithms with contri-
butions mostly in anomaly detection, explainable ML, and real-world data mining
applications in decision support.

Thesis Outline

(A) Algorithms

Chapter 2, based on (Shekhar and Akoglu, 2018), proposes a novel approach for
anomaly detection that leverages privileged information to improve the accuracy of
unsupervised learning methods. Suppose that our goal is to estimate riskiness of
a surgery in three weeks after it is performed based on the information x available
before the surgery. Classical detectors use x to learn rules to flag risky patients. How-
ever, for patients who had surgery before, there is information about procedures and
complications during surgery, or in one or two weeks after surgery, and so on. Avail-
ability of such case specific knowledge is fairly common, which are ignored by tradi-
tional detectors. Since this kind of domain knowledge is available only for learning,
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and is not available for the new data points (patients prior to surgery), it is called
Privileged Information (PI). The work analyzes how domain knowledge augmenta-
tion can benefit anomaly detection, not only when PI is unavailable at test time (as
in traditional setup) but also when PI is strategically and willingly avoided at test
time. Information that incurs overhead on resources (cost/storage/battery/etc.),
run-time computation, or vulnerability could be designated as PI enabling resource-
frugal, early, and preventive detection. We show how to incorporate PI into ensem-
ble based detectors and propose SPI, which constructs frames/fragments of knowl-
edge (specifically, density estimates) in the privileged space and transfers them to
the anomaly scoring space through “imitation” functions that use only the partial
information available for test examples.

Chapter 3, based on (Shekhar, Shah, and Akoglu, 2021), proposes a framework
for detecting anomalies in a dataset while simultaneously ensuring fairness towards
different subgroups within the dataset. Anomaly detectors are designed exactly to
spot rare, statistical minority samples in the data with the hope that outlierness re-
flects riskiness. For a minority (as defined by race/ethnicity/sex/age/etc.) group,
sample size is by definition small, which puts them at odds with AD algorithms.
However, when minority status (e.g. Asian) does not reflect positive-class member-
ship (e.g. fraud), AD produces unjust outcomes, by overly flagging the instances
from the minority groups as outliers1. This conflation of statistical and societal mi-
norities can further become an ethical matter. We discuss sources of bias in AD and
its implications for minority groups, and which notions of fairness are suitable for
AD that could mitigate the bias in traditional AD. One of the key challeges in fair
AD is the absence of ground truth labels for evaluation. We address the challenges
of fair AD and design FairOD targeting fairness criteria for AD including statistical
parity, treatment parity and equality of opportunity.

Chapter 4, based on (Lee, Shekhar, Faloutsos, Hutson, and Iasemidis, 2021), pro-
poses a novel, generalized framework GEN2OUT to spot and rank generalized anoma-
lies to assist domain experts in decision making e.g. to draw attention of a clinician
to strange brain activities in multivariate EEG recordings of an epileptic patient. We
characterize generalized (point and group) anomalies that may arise in multivariate
time series data, for example, in EEG recording during pre-ictal, ictal, and post-
ictal phases as seizures arrive as bursts of spatio-temporal activities. The chapter
designed an algorithm to assign and compare scores to isolated spikes and groups
of spikes, allowing to detect for suspicious events of potential interest to domain
expert.

(B) Applications

Chapter 5, based on (Shekhar, Leder-Luis, and Akoglu, 2023), develops new tools
to detect health care overbilling or fraud. The US federal government spends more
than a trillion dollars per year on health care, largely provided by private third par-
ties and reimbursed by the government. A major concern in this system is over-
billing, waste and fraud by providers, who face incentives to misreport on their
claims in order to receive higher payments. We develop an ensemble based unsu-
pervised multi-view detector that uses massive Medicare claims data with differ-
ent modalities – including patient medical history, provider coding patterns, and
provider spending – to detect anomalous behavior consistent with fraud. We com-
bine evidence from multiple unsupervised outlier detection algorithms that use dif-
ferent types of global and local analysis – estimating a hospital’s impact on patient

1Throughout the thesis words anomaly and outlier are used interchangeably.
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expenditure, identifying few ICD codes that a hospital uses differently than the
norm, and comparing a hospital’s distribution over DRGs to its peers – using which
we create a final ranking of suspiciousness.

Chapter 6, based on (Shekhar, Eswaran, Hooi, Elmer, Faloutsos, and Akoglu,
2023), proposed a framework that can assist in early prediction of health outcomes.
In the healthcare domain, characterizing the state of a patient in ICU can assist in
prediction of health outcomes for the patient, and allow the hospital to redistribute
their resources to in-need patients, and potentially achieve better health outcomes
overall within the same amount of time. A critical factor in play is the accuracy of
such predictions, since incorrectly predicting unfavorable health outcome (e.g with-
drawal of life-sustaining therapies) could hinder equitable decision making in the
ICU, and may also expose hospitals to very costly lawsuits. We collaborated with
a clinician to understand the problem setting better, and to design a solution that
is useful to experts for decision making. To that end, the chapter introduces BEN-
EFITTER that unifies earliness and accuracy–competing goals since observing more
data can achieve better predictive accuracy– through a cost/benefit framework, and
jointly optimizes for the prediction accuracy and earliness. Though the event de-
tection task is supervised due to the nature of the underlying application data, the
focus is on effectiveness, and interpretability. Ultimately, we do not propose an au-
tonomous algorithm, rather we provide experts with information that is both more
accurate and more timely than currently possible, assisting them in decision making.





5

Part I

Algorithms
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Chapter 2

Knowledge-Augmented Anomaly
Detection

Chapter based on: Shubhranshu Shekhar and Leman Akoglu (2018). “Incorpo-
rating privileged information to unsupervised anomaly detection”. In: Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD
2018. Springer, pp. 87–104.

2.1 Introduction

Outlier detection in point-cloud data has been studied extensively (Aggarwal, 2013).
In this work we consider a unique setting with a much sparser literature: the prob-
lem of augmenting privileged information into unsupervised anomaly detection.
Simply put, privileged information (PI) is additional data/knowledge/information
that is available only at the learning/model building phase for (subset of) training
examples, which however is unavailable for (future) test examples.

The LUPI framework. Learning Using Privileged Information (LUPI) has been
pioneered by Vapnik et al. first in the context of SVMs (Vapnik and Vashist, 2009;
Vapnik and Izmailov, 2015) (PI-incorporated SVM is named SVM+), later general-
ized to neural networks (Vapnik and Izmailov, 2017). The setup involves an In-
telligent (or non-trivial) Teacher at learning phase, who provides the Student with
privileged information (like explanations, metaphors, etc.), denoted x∗i , about each
training example xi, i = 1 . . . n. The key point in this paradigm is that privileged in-
formation is not available at the test phase (when Student operates without guidance of
Teacher). Therefore, the goal is to build models (in our case, detectors) that can lever-
age/incorporate such additional information but yet, not depend on the availability of
PI at test time.

Example: The additional information x∗i ’s belong to space X∗ which is, generally
speaking, different from space X. In other words, the feature spaces of vectors x∗i ’s
and xi’s do not overlap. As an example, consider the task of identifying cancerous
biopsy images. Here the images are in pixel space X. Suppose that there is an Intelli-
gent Teacher that can recognize patterns in such images relevant to cancer. Looking
at a biopsy image, Teacher can provide a description like “Aggressive proliferation
of A-cells into B-cells” or “Absence of any dynamic”. Note that such descriptions
are in a specialized language space X∗, different from pixel space X. Further, they
would be available only for a set of examples and not when the model is to operate
autonomously in the future.

LUPI’s advantages: LUPI has been shown to (i) improve rate of convergence for
learning, i.e., require asymptotically fewer examples to learn (Vapnik and Vashist,
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2009), as well as (ii) improve accuracy, when one can learn a model in space X∗

that is not much worse than the best model in space X (i.e., PI is intelligent/non-
trivial) (Vapnik and Izmailov, 2017). Motivated by these advantages, LUPI has been
applied to a number of problems from action recognition (Niu, Li, and Xu, 2016)
to risk modeling (Ribeiro, Silva, Chen, Vieira, and Neves, 2012) (expanded in §2.5).
However, the focus of all such work has mainly been on supervised learning.

LUPI for anomaly detection. The only (perhaps straightforward) extension of
LUPI to unsupervised anomaly detection has been introduced recently, generaliz-
ing SVM+ to the One-Class SVM (namely OC-SVM+) (Burnaev and Smolyakov,
2016) for malware and bot detection. The issue is that OC-SVM is not a reliable
detector since it assumes that normal points can be separated from origin in a sin-
gle hyperball—experiments on numerous benchmark datasets with ground truth by
Emmott et al. that compared popular anomaly detection algorithms find that OC-
SVM ranks at the bottom (Table 1, pg. 4 (Emmott, Das, Dietterich, Fern, and Wong,
2013a); also see our results in §2.4). We note that the top performer in (Emmott, Das,
Dietterich, Fern, and Wong, 2013a) is the Isolation Forest (iForest) algorithm (Liu,
Ting, and Zhou, 2008a), an ensemble of randomized trees.

Our contributions: Motivated by LUPI’s potential value to learning and the scarcity
in the literature of its generalization to anomaly detection, we propose a new tech-
nique called SPI (pronounced ‘spy’), for Spotting anomalies with Privileged Infor-
mation. Our work bridges the gap (for the first time) between LUPI and unsupervised
ensemble based anomaly detection that is considered state-of-the-art (Emmott, Das, Di-
etterich, Fern, and Wong, 2013a). We summarize our main contributions as follows.

• Study of LUPI for anomaly detection: We analyze how LUPI can benefit
anomaly detection, not only when PI is truly unavailable at test time (as in
traditional setup) but also when PI is strategically and willingly avoided at
test time. We argue that data/information that incurs overhead on resources
($$$/storage/battery/etc.), timeliness, or vulnerability, if designated as PI, can
enable resource-frugal, early, and preventive detection (expanded in §3.2).

• PI-incorporated detection algorithm: We show how to incorporate PI into en-
semble based detectors and propose SPI, which constructs frames/fragments
of knowledge (specifically, density estimates) in the privileged space (X∗) and
transfers them to the anomaly scoring space (X) through “imitation” functions
that use only the partial information available for test examples. To the best
of our knowledge, ours is the first attempt to leveraging PI for improving the
state-of-the-art ensemble methods for anomaly detection within an unsupervised
LUPI framework. Moreover, while SPI augments PI within the tree-ensemble
detector iForest (Liu, Ting, and Zhou, 2008a), our solution can easily be applied
to any other ensemble based detector (§2.3).

• Applications: Besides extensive simulation experiments, we employ SPI on
three real-world case studies where PI respectively captures (i) expert knowl-
edge, (ii) computationally-expensive features, and (iii) “historical future” data,
which demonstrate the benefits that PI can unlock for anomaly detection in
terms of accuracy, speed, and detection latency (§2.4).

2.2 Motivation: How can LUPI benefit anomaly detection?

The implications of the LUPI paradigm for anomaly detection is particularly excit-
ing. Here, we discuss a number of detection scenarios and demonstrate that LUPI
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unlocks advantages for anomaly detection problems in multiple aspects.
In the original LUPI framework (Vapnik and Vashist, 2009), privileged informa-

tion (hereafter PI) is defined as data that is available only at training stage for train-
ing examples but unavailable at test time for test examples. Several anomaly detec-
tion scenarios admit this definition directly. Interestingly, PI can also be specified
as strategically “unavailable” for anomaly detection. That is, one can willingly avoid
using certain data at test time (while incorporating such data into detection models
at train phase1) in order to achieve resource efficiency, speed, and robustness. We
organize detection scenarios into two with PI as (truly) Unavailable vs. Strategic,
and elaborate with examples below. Table 2.1 gives a summary.

TABLE 2.1: Types of data used in anomaly detection with various overhead on resources
($$$, storage, battery, etc.), timeliness, and/or risk, if used as privileged information can enable

resource-frugal, early, as well as preventive detection.

Properties vs.
Type of Privileged Info

Unavailable
vs. Strategic

need
Resources

cause
Delay

incur
Risk

1. “historical future” data U n/a n/a n/a
2. after-the-fact data U n/a n/a n/a
3. advanced technical data U n/a n/a n/a
4. restricted-access data U, S ✓

5. expert knowledge U, S ✓ ✓

6. compute-heavy data S ✓ ✓

7. unsafe-to-collect data S ✓ ✓

8. easy-target-to-tamper data S ✓

2.2.1 Unavailable PI

This setting includes typical scenarios, where PI is (truly) unknown for test exam-
ples.

1. “historical future” data: When training an anomaly detection model with of-
fline/historical data that is over time (e.g., temporal features), one may use values
both before and after time t while creating an example for each t. Such data is PI; not
available when the model is deployed to operate in real-time.

2. after-the-fact data: In malware detection, the goal is to detect before it gets hold
of and harms the system. One may have historical data for some (training) exam-
ples from past exposures, including measurements of system variables (number of
disk/port read/writes, CPU usage, etc.). Such after-the-exposure measurements can
be incorporated as PI.

3. advanced technical data: This includes scenarios where some (training) examples
are well-understood but those to be detected are simply unknown. For example, the
expected behavior of various types of apps on a system may be common domain
knowledge that can be converted to PI, but such knowledge may not (yet) be avail-
able for new-coming apps.

2.2.2 Strategic PI

Strategic scenarios involve PI that can in principle be acquired but is willingly avoided
at test time to achieve gains in resources, time, or risk.

1Note that training phase in anomaly detection does not involve the use of any labels.



10 Chapter 2. Knowledge-Augmented Anomaly Detection

4. restricted-access data: One may want to build models that do not assume access
to private data or intellectual property at test time, such as source code (for apps or
executables), even if they could be acquired through resources. Such information can
also be truly unavailable, e.g. encrypted within the software.

5. expert knowledge: Annotations about some training examples may be available
from experts, which are truly unavailable at test time. One could also strategically
choose to avoid expert involvement at test time, which (a) may be costly to obtain
and/or (b) cause significant delay, especially for real-time detection.

6. compute-heavy data: One may strategically choose not to rely on features that
are computationally expensive to obtain, especially in real-time detection, but rather
use such data as PI (which can be extracted offline at training phase). Such features
not only cause delay but also require compute resources (which e.g., may drain bat-
teries in detecting malware apps on cellphones).

7. unsafe-to-collect data: This involves cases where collecting PI at test time is un-
safe/dangerous. For example, the slower a drone moves to capture high-resolution
(privileged) images for surveillance, not only it causes delay but more importantly,
the more susceptible it becomes to be taken down.

8. easy-target-to-tamper data: Finally, one may want to avoid relying on features
that are easy for adversaries to tamper with. Examples to those features include self-
reported data (like age, location, etc.). Such data may be available reliably for some
training examples and can be used as PI.

In short, by strategically designating PI one can achieve resource, timeliness, and
robustness gains for various anomaly detection tasks. Designating features that need
resources as PI→ allow resource-frugal (“lazy”) detection; features that cause delay
as PI→ allow early/speedy detection; and designating features that incur vulnera-
bility as PI→ allow preventive and more robust detection.

In this subsection, we laid out a long list of scenarios that make LUPI-based
learning particularly attractive for anomaly detection. In our experiments (§2.4) we
demonstrate its premise for scenarios 1., 5. and 6. above using three real world
datasets, while leaving others as what we believe interesting future investigations.

2.3 Privileged Info-Augmented Anomaly Detection

2.3.1 The Learning Setting

Formally, the input for the anomaly detection model at learning phase are tuples of
the form

D = {(x1, x∗1 ), (x2, x∗2 ), . . . , (xn, x∗n)} ,

where xi = (x1
i , . . . , xd

i ) ∈ X and x∗i = (x∗1i , . . . , x∗p
i ) ∈ X∗. Note that this is an

unsupervised learning setting where label information, i.e., yi’s are not available.
The privileged information is represented as a feature vector x∗ ∈ Rp that is in space
X∗, which is additional to and different from the feature space X in which the primary
information is represented as a feature vector x ∈ Rd.

The important distinction from the traditional anomaly detection setting is that
the input to the (trained) detector at testing phase are feature vectors

{xn+1, xn+2, . . . , xn+m} .

That is, the (future) test examples do not carry any privileged information. The
anomaly detection model is to score the incoming/test examples and make decisions
solely based on the primary features x ∈ X.
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In this text, we refer to space X∗ as the privileged space and to X as the decision
space. Here, a key assumption is that the information in the privileged space is in-
telligent/nontrivial, that is, it allows to create models f ∗(x∗) that detect anomalies
with vectors x∗ corresponding to vectors x with higher accuracy than models f (x).
As a result, the main question that arises which we address in this work is: “how can
one use the knowledge of the information in space X∗ to improve the performance
of the desired model f (x) in space X?”

In what follows, we present a first-cut attempt to the problem that is a natural
knowledge transfer between the two feature spaces (called FT for feature transfer).
We then lay out the shortcomings of such an attempt, and present our proposed
solution SPI. We compare to FT (and other baselines) in experiments.

2.3.2 First Attempt: Incorporating PI by Transfer of Features

A natural attempt to learning under privileged information that is unavailable for
test examples is to treat the task as a missing data problem. Then, typical techniques for
data imputation can be employed where missing (privileged) features are replaced
with their predictions from the available (primary) features.

In this scheme, one simply maps vectors x ∈ X into vectors x∗ ∈ X∗ and then
builds a detector model in the transformed space. The goal is to find the trans-
formation of vectors x = (x1, . . . , xd) into vectors ϕ(x) = (ϕ1(x), . . . , ϕp(x)) that
minimizes the expected risk given as

R(ϕ) =
p

∑
j=1

min
ϕj

∫
(x∗j − ϕj(x))2 p(x∗j, x)dx∗jdx , (2.1)

where p(x∗j, x) is the joint probability of coordinate x∗j and vector x, and functions
ϕj(x) are defined by p regressors.

Here, one could construct approximations to functions ϕj(x), j = {1, . . . , p} by
solving p regression estimation problems based on the training examples

(x1, x∗j
1 ), . . . , (xn, x∗j

n ), j = 1, . . . , p ,

where xi’s are input to each regression ϕj and the jth coordinate of the corresponding

vector x∗i , i.e. x∗j
i ’s are treated as the output, by minimizing the regularized empirical

loss functional

R(ϕj) = min
ϕj

n

∑
i=1

(x∗j
i − ϕj(xi))

2 + λjpenalty(ϕj), j = 1, . . . , p . (2.2)

Having estimated the transfer functions ϕ̂j’s (using linear or non-linear regres-
sion techniques), one can then learn any desired anomaly detector f (ϕ̂(x)) using
the training examples, which concludes the learning phase. Note that the detector
does not require access to privileged features x∗ and can be employed solely on pri-
mary features x of the test examples i = n + 1, . . . , m.

2.3.3 Proposed SPI: Incorporating PI by Transfer of Decisions

Treating PI as missing data and predicting x∗ from x could be a difficult task, when
privileged features are complex and high dimensional (i.e., p is large). Provided
f ∗(x∗) is an accurate detection model, a more direct goal would be to mimic its de-
cisions—the scores that f ∗ assigns to the training examples. Mapping data between
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TABLE 2.2: Three building blocks of knowledge representation in artificial intelligence, in
context of SVM-LUPI for classification (Vapnik and Izmailov, 2015) and SPI for anomaly

detection [this chapter].

SVM-LUPI SPI (Proposed)

1. Fundamental elements of knowledge support vectors isolation trees
2. Frames (fragments) of the knowledge kernel functions tree anomaly scores
3. Structural connections of the frames weighted sum weighted sum (by L2R)

two spaces, as compared to decisions, would be attempting to solve a more general
problem, that is likely harder and unnecessarily wasteful.

The general idea behind transferring decisions/knowledge (instead of data) is to
identify a small number of elements in the privileged space X∗ that well-approximate
the function f ∗(x∗), and then try to transfer them to the decision space—through the
approximation of those elements in space X. This is the knowledge transfer mecha-
nism in LUPI by Vapnik and Izmailov, 2015. They illustrated this mechanism for the
(supervised) SVM classifier. We generalize this concept to unsupervised anomaly
detection.

The knowledge transfer mechanism uses three building blocks of knowledge
representation in AI, as listed in Table 2.2. We first review this concept for SVMs,
followed by our proposed SPI. While SPI is clearly different in terms of the task it
is addressing as well as in its approach, as we will show, it is inspired by and builds
on the same fundamental mechanism.

Knowledge transfer for SVM:

The fundamental elements of knowledge in the SVM classifier are the support vectors.
In this scheme, one constructs two SVMs; one in X space and another in X∗ space.
Without loss of generality, let x1, . . . , xt be the support vectors of SVM solution in
space X and x∗1 , . . . , x∗t∗ be the support vectors of SVM solution in space X∗, where t
and t∗ are the respective number of support vectors.

The decision rule f ∗ in space X∗ (which one aims to mimic) has the form

f ∗(x∗) =
t∗

∑
k=1

ykα∗k K∗(x∗k , x∗) + b∗ , (2.3)

where K∗(x∗k , x∗) is the kernel function of similarity between support vector x∗k and
vector x∗ ∈ X∗, also referred as the frames (or fragments) of knowledge. Eq. (2.3)
depicts the structural connection of these fragments, which is a weighted sum with
learned weights α∗k ’s.

The goal is to approximate each fragment of knowledge K∗(x∗k , x∗), k = 1, . . . , t∗

in X∗ using the fragments of knowledge in X; i.e., the t kernel functions K(x1, x), . . . , K(xt, x)
of the SVM trained in X. To this end, one maps t-dimensional vectors

z = (K(x1, x), . . . , K(xt, x)) ∈ Z

into t∗-dimensional vectors

z∗ = (K∗(x∗1 , x∗), . . . , K∗(x∗t∗ , x∗)) ∈ Z∗

through t∗ regression estimation problems. That is, the goal is to find regressors
ϕ1(z), . . . , ϕt∗(z) in X such that
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FIGURE 2.1: Anomaly detection with PI illustrated. FT maps data between spaces (§2.3.2)
whereas SPI (and “light” version SPI-LITE) mimic decisions (§2.3.3).

ϕk(zi) ≈ K∗(x∗k , x∗i ), k = 1, . . . , t∗ (2.4)

for all training examples i = 1, . . . , n. For each k = 1, . . . , t∗, one can construct the
approximation to function ϕk by training a regression on the data

{(z1, K∗(x∗k , x∗1 )), . . . , (zn, K∗(x∗k , x∗n))}, k = 1, . . . , t∗ ,

where we regress vectors zi’s onto scalar output K∗(x∗k , x∗i )’s to obtain ϕ̂k.
For the prediction of a test example x, one can then replace each K∗(x∗k , x∗) in

Eq. (2.3) (which requires privileged features x∗) with ϕ̂k(z) (which mimics it, using
only the primary features x—to be exact, by first transforming x into z through the
frames K(xj, x), j = 1, . . . , t in the X space).

Knowledge transfer for SPI:

In contrast to mapping of features from space X to space X∗, knowledge transfer
of decisions maps space Z to Z∗ in which fragments of knowledge are represented.
Next, we show how to generalize these ideas to anomaly detection with no label
supervision. Figure 2.1 shows an overview.

To this end, we utilize a state-of-the-art ensemble technique for anomaly detec-
tion, called Isolation Forest (Liu, Ting, and Zhou, 2008a) (hereafters IF, for short),
which builds a set of extremely randomized trees. In essence, each tree approximates
density in a random feature subspace and anomalousness of a point is quantified by
the sum of such partial estimates across all trees.

In this setting, one can think of the individual trees in the ensemble to constitute
the fundamental elements and the partial density estimates (i.e., individual anomaly
scores from trees) to constitute the fragments of knowledge, where the structural con-
nection of the fragments is achieved by an unweighted sum.

Similar to the scheme with SVMs, we construct two IFs; one in X space and an-
other in X∗ space. Let T = T1, . . . , Tt denote the trees in the ensemble in X and
T ∗ = T∗1 , . . . , T∗t∗ the trees in the ensemble in X∗, where t and t∗ are the respec-
tive number of trees (prespecified by the user, typically a few 100s). Further, let
S∗(T∗k , x∗) denote the anomaly score estimated by tree T∗k for a given x∗ (the lower
the more anomalous; refer to (Liu, Ting, and Zhou, 2008a) for details of the scoring).
S(Tk, x) is defined similarly. Then, the anomaly score s∗ for a point x∗ in space X∗

(which we aim to mimic) is written as

s∗(x∗) =
t∗

∑
k=1

S∗(T∗k , x∗) , (2.5)
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Algorithm 1 SPI-TRAIN: Incorporating PI to Unsupervised Anomaly Detector

Input: training examples {(x1, x∗1 ), . . . , (xn, x∗n)}
Output: detection model (ensemble-of-trees) T in X space; regressors ϕ̂k’s, k =

1, . . . , t∗; β (or γ for kernelized L2R)
1: Learn t∗ isolation trees T ∗ = {T∗1 , . . . , T∗t∗} on x∗i ’s i = 1, . . . , n
2: Learn t isolation trees T = {T1, . . . , Tt} on xi’s i = 1, . . . , n
3: Construct leaf score vectors zi’s, i = 1, . . . , n, based on T
4: for each k = 1, . . . , t∗ do
5: Learn regressor ϕ̂k of zi’s onto S∗(T∗k , x∗i )’s
6: Obtain β by optimizing C in (2.9) (or γ for kernelized Cψ)
7: end for

which is analogous to Eq. (2.3). To mimic/approximate each fragment of knowledge
S∗(T∗k , x∗), k = 1, . . . , t∗ in X∗ using the fragments of knowledge in X; i.e., the t
scores for x: S(T1, x), . . . , S(Tt, x) of the IF trained in X, we estimate t∗ regressors
ϕ1(z), . . . , ϕt∗(z) in X such that

ϕk(zi) ≈ S∗(T∗k , x∗i ), k = 1, . . . , t∗ (2.6)

for all training examples i = 1, . . . , n, where zi = (S(T1, xi), . . . , S(Tt, xi)). Simply
put, each ϕ̂k is an approximate mapping of all the t scores from the ensemble T in
X to an individual score (fragment of knowledge) by tree T∗k of the ensemble T ∗ in
X∗. In practice, we learn a mapping from the leaves rather than the trees of T for a
more granular mapping. Specifically, we construct vectors zi = (z′i1, . . . , z′it) where
each z′ik is a size ℓk vector in which the value at index leaf(Tk, xi) is set to S(Tk, xi)
and other entries to zero. Here, ℓk denotes the number of leaves in tree Tk and leaf(·)
returns the index of the leaf that xi falls into in the corresponding tree (note that xi
belongs to exactly one leaf of any tree, since the trees partition the feature space).

SPI-LITE: A “light” version. We note that instead of mimicking each individ-
ual fragment of knowledge S∗(T∗k , x∗)’s, one could also directly mimic the “final
decision” s∗(x∗). To this end, we also introduce SPI-LITE, which estimates a single
regressor ϕ(zi) ≈ s∗(x∗i ) for i = 1, . . . , n (also see Figure 2.1). We compare SPI and
SPI-LITE empirically in §2.4.

Learning to Rank (L2R) like in X∗ : An important challenge in learning to
accurately mimic the scores s∗’s in Eq. (2.5) is to make sure that the regressors ϕk’s are
very accurate in their approximations in Eq. (2.6). Even then, it is hard to guarantee
that the final ranking of points by ∑t∗

k=1 ϕ̂k(zi) would reflect their ranking by s∗(x∗i ).
Our ultimate goal, after all, is to mimic the ranking of the ensemble in X∗ space since
anomaly detection is a ranking problem at its heart.

Algorithm 2 SPI-TEST: PI-Augmented Unsupervised Anomaly Detection

Input: test examples {xn+1, . . . , xn+m}; T , ϕ̂k’s k = 1, . . . , t∗, β (or γ if kernelized)
Output: estimated anomaly scores {sn+1, . . . , sn+m} for all test examples

1: for each test example xe, e = n + 1, . . . , n + m do
2: Construct leaf score vector ze = (z′e1, . . . , z′et) where entry in each z′ek for index

leaf(Tk, xe) is set to S(Tk, xe) and to 0 o.w., for k = 1, . . . , t
3: Construct ϕe = (ϕ̂1(ze), . . . , ϕ̂t∗(ze))
4: Estimate anomaly score as se = βϕT

e (or se = ∑n
l=1 γlK(ϕl , ϕe) if kernelized)

5: end for
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To this end, we set up an additional pairwise learning to rank objective as fol-
lows. Let us denote by ϕi = (ϕ̂1(zi), . . . , ϕ̂t∗(zi)) the t∗-dimensional vector of esti-
mated knowledge fragments for each training example i. For each pair of training
examples, we create a tuple of the form ((ϕi, ϕj), p∗ij) where

p∗ij = P(s∗i < s∗j ) = σ(−(s∗i − s∗j )) , (2.7)

which is the probability that i is ranked ahead of j by anomalousness in X∗ space
(recall that lower s∗ is more anomalous), where σ(v) = 1/(1 + e−v) is the sigmoid
function. Notice that the larger the gap between the anomaly scores of i and j, the
larger this probability gets (i.e., more surely i ranks above j).

Given the training pair tuples above, our goal of learning-to-rank is to estimate
β ∈ Rt∗ , such that

pij = σ(∆ij) = σ(βϕT
i − βϕT

j ) = σ(−ŝ∗i + ŝ∗j )) ≈ p∗ij, ∀i, j ∈ {1, . . . , n} . (2.8)

We then utilize the cross entropy as our cost function over all (i, j) pairs, as

min
β

C = ∑
(i,j)
−p∗ij log(pij)− (1− p∗ij) log(1− pij) = ∑

(i,j)
−p∗ij∆ij + log(1 + e∆ij) (2.9)

where p∗ij’s are given as input to the learning as specified in Eq. (2.7) and pij is
denoted in Eq. (2.8) and is parameterized by β that is to be estimated.

The objective function in (2.9) is convex and can be solved via a gradient-based
optimization, where dC

dfi = ∑(i,j)(pij − p∗ij)(ϕi − ϕj) (details omitted for brevity).
More importantly, in case the linear mapping s∗i ≈ βϕT

i is not sufficiently accurate to
capture the desired pairwise rankings, the objective can be kernelized to learn a non-
linear mapping that is likely more accurate. The idea is to write βψ = ∑n

l=1 γlψ(ϕl)
(in the transformed space) as a weighted linear combination of (transformed) train-
ing examples, for feature transformation function ψ(·) and parameter vector γ ∈ Rn

to be estimated. Then, ∆ij in objective (2.9) in the transformed space can be written
as

∆ij =
n

∑
l=1

γl [ψ(ϕl)ψ(ϕi)
T − ψ(ϕl)ψ(ϕj)

T] =
n

∑
l=1

γl [K(ϕl , ϕi)− K(ϕl , ϕj)]. (2.10)

The kernelized objective, denoted Cψ, can also be solved through gradient-based
optimization where we can show partial derivatives (w.r.t. each γl) to be equal to
∂Cψ

∂γl
= ∑(i,j)(pij − p∗ij)[K(ϕl , ϕi)− K(ϕl , ϕj)]. Given the estimated γl’s, prediction of

score is done by ∑n
l=1 γlK(ϕl , ϕe) for any (test) example e.

The SPI Algorithm:

We outline the steps of SPI for both training and testing (i.e., detection) in Algo.
1 and Algo. 2, respectively. Note that the test-time detection no longer relies on
the availability of privileged features for the test examples, but yet be able to lever-
age/incorporate them through its training.

2.4 Experiments

We design experiments to evaluate our methods in two different settings:
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1. Benchmark Evaluation: We show the effectiveness of augmenting PI (see Ta-
ble 2.3) on 17 publicly available benchmark datasets.2

2. Real-world Use Cases: We conduct experiments on LingSpam3 and BotOrNot4

datasets to show that (i) domain-expert knowledge as PI improves spam de-
tection, (ii) compute-expensive PI enables fast detection at test time, and (iii)
“historical future” PI allows early detection of bots.

Baselines

We compare both SPI and SPI-LITE to the following baselines:

1. IF(X-only): Isolation Forest (Liu, Ting, and Zhou, 2008a) serves as a simple
baseline that operates solely in decision space X. PI is not used neither for
modeling nor detection.

2. OC-SVM+ (PI-incorporated): OC+ for short, is an extension of (unsuper-
vised) One-Class SVM that incorporates PI as introduced in (Burnaev and
Smolyakov, 2016).

3. FT(PI-incorporated): This is the direct feature transfer method that incorpo-
rates PI by learning a mapping X → X∗ as we introduced in §2.3.2.

* IF* (X∗-only): IF that operates in X∗ space. We report performance by IF* only
for reference, since PI is unavailable at test time.

2.4.1 Benchmark Evaluation

The benchmark datasets do not have an explicit PI representation. Therefore, in our
experiments we introduce PI as explained below.

Generating privileged representation.

For each dataset, we introduce PI by perturbing normal observations. We desig-
nate a small random fraction (= 0.1) of n normal data points as anomalies. Then,
we randomly select a subset of p attributes and add zero-mean Gaussian noise to
the designated anomalies along the selected subset of attributes with matching vari-
ances of the selected features. The p selected features represent PI since anomalies
stand-out in this subspace due to added noise, while the rest of the d attributes repre-
sent X space. Using normal observations allows us to control for features that could
be used as PI. Thus we discard the actual anomalies from these datasets where PI is
unknown.

We construct 4 versions per dataset with varying fraction γ of perturbed fea-
tures (PI) retained in X∗ space. In particular, each set has γp features in X∗, and
(1− γ)p + d features in X for γ ∈ {0.9, 0.7, 0.5, 0.3}.

2http://agents.fel.cvut.cz/stegodata/Loda.zip
3http://csmining.org/index.php/ling-spam-datasets.html
4https://botometer.iuni.iu.edu/bot-repository/datasets/caverlee-2011/caverlee-2011.zip

http://agents.fel.cvut.cz/stegodata/Loda.zip
http://csmining.org/index.php/ling-spam-datasets.html
https://botometer.iuni.iu.edu/bot-repository/datasets/caverlee-2011/caverlee-2011.zip
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TABLE 2.3: Mean Average Precision (MAP) on benchmark datasets (avg’ed over 5 runs)
for γ = 0.7. Numbers in parentheses indicate rank of each algorithm on each dataset. IF*

(for reference only) reports MAP in the X∗ space.

Datasets p+d n IF OC+ FT SPI-LITE SPI IF*

breast-cancer 30 357 0.1279 (4) 0.0935 (6) 0.0974 (5) 0.4574 (3) 0.5746 (2) 0.6773 (1)
ionosphere 33 225 0.0519 (4) 0.2914 (1) 0.0590 (3) 0.0512 (5) 0.0470 (6) 0.0905 (2)
letter-recognition 617 4197 0.0889 (6) 0.1473 (4) 0.0908 (5) 0.3799 (3) 0.6413 (2) 0.9662 (1)
multiple-features 649 1200 0.1609 (5) 0.1271 (6) 0.2044 (4) 0.6589 (3) 0.8548 (2) 1.0000 (1)
wall-following-robot 24 2923 0.1946 (5) 0.2172 (4) 0.1848 (6) 0.4331 (3) 0.5987 (2) 0.7538 (1)
cardiotocography 27 1831 0.2669 (5) 0.6107 (4) 0.2552 (6) 0.6609 (3) 0.6946 (2) 0.8081 (1)
isolet 617 4497 0.1533 (5) 0.1561 (4) 0.1303 (6) 0.5084 (3) 0.7124 (2) 0.9691 (1)
libras 90 216 0.1368 (5) 0.4479 (4) 0.0585 (6) 0.5175 (3) 0.6806 (2) 1.0000 (1)
parkinsons 22 147 0.0701 (6) 0.0964 (4) 0.0714 (5) 0.1556 (3) 0.1976 (1) 0.1778 (2)
statlog-satimage 36 3594 0.2108 (6) 0.5347 (5) 0.5804 (4) 0.9167 (3) 0.9480 (2) 0.9942 (1)
gisette 4971 3500 0.1231 (4) 0.0814 (6) 0.0977 (5) 0.5593 (3) 0.8769 (2) 0.9997 (1)
waveform-1 21 3304 0.1322 (4) 0.1481 (3) 0.0841 (6) 0.1234 (5) 0.1556 (2) 0.4877 (1)
madelon 500 1300 0.7562 (5) 0.1167 (6) 0.9973 (2) 0.9233 (4) 0.9925 (3) 1.0000 (1)
synthetic-control 60 400 0.3207 (6) 0.7889 (4) 0.6870 (5) 0.8103 (3) 0.8539 (2) 0.9889 (1)
waveform-2 21 3304 0.1271 (5) 0.2828 (2) 0.1014 (6) 0.1778 (3) 0.1772 (4) 0.2944 (1)
statlog-vehicle 18 629 0.1137 (6) 0.3146 (5) 0.6326 (4) 0.6561 (3) 0.7336 (2) 1.0000 (1)
statlog-segment 18 1320 0.1250 (6) 0.2323 (4) 0.1868 (5) 0.3304 (3) 0.3875 (2) 0.7399 (1)

(Average Rank) (5.11) (4.23) (4.88) (3.29) (2.35) (1.11)

Results

We report the results on perturbed datasets with γ = 0.75 as fraction of features
retained in space X∗. Table 2.3 reports mean Average Precision (area under the
precision-recall curve) against 17 datasets for different methods. The results are av-
eraged across 5 independent runs on stratified train-test splits.

1 2 3 4 5 6

iF*

SPI

SPI-l oc+

FT

iF

CD

FIGURE 2.2: Average rank of algorithms (w.r.t.
MAP) and comparison by the Nemenyi test.
Groups of methods not significantly different
(at p-val = 0.05) are connected with horizon-
tal lines. CD depicts critical distance required
to reject equivalence. Note that SPI is signifi-

cantly better than the baselines.

Our SPI outperforms competition in
detection performance in most of the
datasets. To compare the methods sta-
tistically, we use the non-parametric
Friedman test (Demšar, 2006) based on
the average ranks. Table 2.3 reports the
ranks (in parentheses) on each dataset
as well as the average ranks. With
p-value = 2.16 × 10−11, we reject the
null hypothesis that all the methods are
equivalent using Friedman test. We
proceed with Nemenyi post-hoc test to
compare the algorithms pairwise and
to find out the ones that differ signifi-
cantly. The test identifies performance
of two algorithms to be significantly different if their average ranks differ by at least
the “critical difference” (CD). In our case, comparing 6 methods on 17 datasets at
significance level α = 0.05, CD = 1.82.

Results of the post-hoc test are summarized through a graphical representation
in Figure 2.2. We find that SPI is significantly better than all the baselines. We
also notice that SPI has no significant difference from IF* which uses PI at test time,

5The results with γ ∈ {0.9, 0.5, 0.3} are similar and reported in the supplementary material available at http:
//www.andrew.cmu.edu/user/shubhras/SPI

http://www.andrew.cmu.edu/user/shubhras/SPI
http://www.andrew.cmu.edu/user/shubhras/SPI
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demonstrating its effectiveness in augmenting PI. While all the baselines are compa-
rable to SPI-LITE, its average rank is better (also see last row in Table 2.3), followed
by other PI-incorporated detectors, and lastly IF with no PI.

Average Precision (AP) is a widely-accepted metric to quantify overall perfor-
mance of ranking methods like anomaly detectors. We also report average rank of
the algorithms against other popular metrics including AUC of ROC curve, NDCG@10
and PRECISION@10 in Figure 2.3. Notice that the results are consistent across mea-
sures, SPI and SPI-LITE performing among the best.
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(D) PRECISION@10

FIGURE 2.3: SPI and SPI-LITE outperform competition w.r.t. different evaluation metrics.
Average rank (bars) across benchmark datasets. IF* shown for reference.

2.4.2 Real-world Use Cases

Data description. LingSpam dataset3 consists of 2412 non-spam and 481 spam
email messages from a linguistics mailing-list. We evaluate two use cases (1) domain-
expert knowledge as PI and (2) compute-expensive PI on LingSpam.

BotOrNot dataset4 is collected from Twitter during December 30, 2009 to August
2, 2010. It contains 22,223 content polluters (bots) and 19,276 legitimate users, along
with their number of followings over time and tweets. For our experiments, we
select accounts with age less than 10 days (for early detection task) at the beginning
of dataset collection. The subset contains 901 legitimate (human) accounts and 4535
bots. We create 10 sets containing all the legitimate and a random 10% sample of
the bots. We evaluate use case (3) “historical future” as PI and report the results
averaged over these sets.

Case 1: Domain-expert Knowledge as PI for Email Spam Detection.

X∗ space: The Linguistic Inquiry and Word Count (LIWC) software6 is a widely
used text analysis tool in social sciences. It uses a manually-curated keyword dictio-
nary to categorize text into 90 psycholinguistic classes. Construction of LIWC dictio-
nary relies exclusively on human experts which is a slow and evolving process. For
the LingSpam dataset, we use the percentage of word counts in each class (assigned
by LIWC software) as the privileged features. X space: The bag-of-word model is
widely used as feature representation in text analysis. As such, we use the term fre-
quencies for our email corpus as the primary features.

Figure 2.4 shows the detection performance7 of algorithms in ROC curves (aver-
aged over 15 independent runs on stratified train-test splits). We find that IF, which
does not leverage PI but operates solely in X space, is significantly worse than most
PI-incorporated methods. OC-SVM+ is nearly as poor as IF despite using PI—this
is potentially due to OC-SVM being a poor anomaly detector in the first place, as
shown in (Emmott, Das, Dietterich, Fern, and Wong, 2013a) and as we argued in

6https://liwc.wpengine.com/
7See supplementary material quantifying the performance of methods against other ranking metrics

https://liwc.wpengine.com/
http://www.andrew.cmu.edu/user/shubhras/SPI
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FIGURE 2.4: Detection performance on Case 1: using expert knowledge as PI. Legend
depicts the AUC values. PI-incorporated detectors (except OC-SVM+) outperform non-

PI IF and achieve similar performance to IF*.

§6.1. All knowledge transfer methods, SPI, SPI-LITE, and FT, perform similarly on
this case study, and are as good as IF*, directly using X∗.

Case 2: Compute-Expensive Features as PI for Email Spam Detection.

X∗ space: Beyond bag-of-words, one can use syntactic features to capture stylistic
differences between spam and non-spam emails. To this end, we extract features
from the parse trees of emails using the StanfordParser8. The parser provides the
taxonomy (tree) of Part-of-Speech (PoS) tags for each sentence, based on which we
construct (i) PoS bi-gram frequencies, and (ii) quantitative features (width, height,
and horizontal/vertical imbalance) of the parse tree.

On average, StanfordParser requires 66 seconds9 to parse and extract features
from a single raw email in LingSpam. Since the features are computationally de-
manding, we incorporate those as PI to facilitate faster detection at test time.

X space: We use the term frequencies as the primary features as in Case 1.
Figure 2.5 (a) shows the detection performance7 of methods in terms of AUC un-

der ROC. We find that IF*using (privileged) syntactic features achieves lower AUC
of ∼0.65 as compared to ∼0.83 using (privileged) LIWC features in Case 1. Accord-
ingly, all methods perform relatively lower, suggesting that the syntactic features are
less informative of spam than psycholinguistic ones. Nonetheless, we observe that
the performance ordering remains consistent, where IF ranks at the bottom and SPI
and SPI-LITE get closest to IF*.

Figure 2.5 (b) shows the comparison of wall-clock time required by each detector
to compute the anomaly scores at test time for varying fraction of test data. On
average, SPI achieves 5500× speed-up over IF* that employs the parser at test time.
This is a considerable improvement of response time for comparable accuracy. Also
notice the inset plot showing the AUC vs. total test time, where our proposed SPI
and SPI-LITE are closest to the ideal point at the top left.

Case 3: “Historical Future” as PI for Twitter Bot Detection.

We use temporal data from the activity and network evolution of an account to cap-
ture behavioral differences between a human and a bot. We construct temporal fea-
tures including volume, rate-of-change, and lag-autocorrelations of the number of

8https://nlp.stanford.edu/software/lex-parser.shtml
9Using a single thread on 2.2 GHz Intel Core i7 CPU with 8 cores and 16GB RAM

https://nlp.stanford.edu/software/lex-parser.shtml
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FIGURE 2.5: Comparison of detectors on Case 2: using computationally-expensive fea-
tures as PI. (a) detection performance, legend depicts AUC values; and (b) wall-clock time
required (in seconds, note the logarithmic scale) vs. test data size [inset plot on top right:

AUC vs. time (methods depicted with symbols)].

followings. We also extract temporal features from text such as count of tweets,
links, hash-tags and mentions.

X∗ space: All the temporal features within ft days in the future (relative to de-
tection at time t) constitute privileged features. Such future values would not be
available at any test time point but can be found in historical data.

X space: Temporal features within ht days in the past as well as static user fea-
tures (from screen name and profile description) constitute primary features.

Figure 2.6 (a) reports the detection performance of algorithms in terms of ROC
curves (averaged over 10 sets) at time t = 2 days after the data collection started; for
ht = 2, ft = 7.10 The findings are similar to other cases: SPI and SPI-LITE outper-
form the competing methods in terms of AUC and OC-SVM+ performs similar to
non-PI IF; demonstrating that knowledge transfer based methods are more suitable
for real-world use cases.

Figure 2.6 (b) compares the detection performance of SPI and IF over time; for
detection at t = {0, 1, 2, 3, 4}. As time passes, historical data grows as ht = {0, 1, 2, 3, 4}
where “historical future” data is fixed at ft = 7 for PI-incorporated methods. Notice
that at time t = 1, SPI achieves similar detection performance to IF’s performance
at t = 2 that uses more historical data of 2 days. As such, SPI enables 24 hours early
detection as compared to non-PI IF for the same accuracy. Notice that with the in-
crease in historical data, the performances of both methods improve, as expected. At
the same time, that of SPI improves faster, ultimately reaching a higher saturation
level, specifically ∼7% higher relative to IF. Moreover, SPI gets close to IF*’s level in
just around 3 days.

2.5 Related Work

We review the history of LUPI, follow up and related work on learning with side/hidden
information, as well as LUPI-based anomaly detection.

Learning Under Privileged Information: The LUPI paradigm is introduced by
Vapnik and Vashist, 2009 as the SVM+ method, where, Teacher provides Student
not only with (training) examples but also explanations, comparisons, metaphors,
etc. which accelerate the learning process. Roughly speaking, PI adjusts Student’s
concept of similarity between training examples and reduces the amount of data
required for learning. Lapin et al. Lapin, Hein, and Schiele, 2014 showed that

10Same conclusions can be drawn for ft ∈ {1, 3, 5, 7} (see supplementary material).

http://www.andrew.cmu.edu/user/shubhras/SPI
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learning with PI is a particular instance of importance weighting in SVMs. Another
such mechanism was introduced more recently by Vapnik and Izmailov, 2015, where
knowledge is transferred from the space of PI to the space where the decision func-
tion is built. The general idea is to specify a small number of fundamental concepts
of knowledge in the privileged space and then try to transfer them; i.e., construct ad-
ditional features in decision space via e.g., regression techniques in decision space.
Importantly, the knowledge transfer mechanism is not restricted to SVMs, but gen-
eralizes, e.g. to neural networks (Vapnik and Izmailov, 2017).

LUPI has been applied to a number of different settings including clustering
(Feyereisl and Aickelin, 2012; Marcacini, Domingues, Hruschka, and Rezende, 2014),
metric learning (Fouad, Tino, Raychaudhury, and Schneider, 2013), learning to rank
(Sharmanska, Quadrianto, and Lampert, 2013), malware and bot detection (Burnaev
and Smolyakov, 2016; Celik, McDaniel, Izmailov, Papernot, and Swami, 2016), risk
modeling (Ribeiro, Silva, Chen, Vieira, and Neves, 2012), as well as recognizing ob-
jects (Sharmanska, Quadrianto, and Lampert, 2014), actions and events (Niu, Li, and
Xu, 2016).

Learning with Side/Hidden Information: Several other work, particularly in com-
puter vision (Chen, Liu, and Lyu, 2012; Wang and Ji, 2015), propose methods to
learn with data that is unavailable at test time referred as side and hidden informa-
tion (e.g., text descriptions or tags for general images, facial expression annotations
for face images, etc.). In addition, Jonschkowski, Höfer, and Brock, 2015 describe
various patterns of learning with side information. All of these work focus on su-
pervised learning problems.

LUPI-based Anomaly Detection: With the exception of One-Class SVM (OC-
SVM+) (Burnaev and Smolyakov, 2016), which is a direct extension of Vapnik’s (su-
pervised) SVM+, the LUPI framework has been utilized only for supervised learning
problems. While anomaly detection has been studied extensively (Aggarwal, 2013),
we are unaware of any work other than (Burnaev and Smolyakov, 2016) leveraging
privileged information for unsupervised anomaly detection. As we argued in §3.2
and empirically demonstrated through benchmark experiments (Emmott, Das, Di-
etterich, Fern, and Wong, 2013a), OC-SVM+ is not an effective solution to anomaly
detection. Motivated by this along with the premises of the LUPI paradigm, we
are the first to design a new technique that ties LUPI with unsupervised tree-based
ensemble methods, which are considered state-of-the-art for anomaly detection.
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Chapter 3

Fairness-aware Outlier Detection

Chapter based on: Shubhranshu Shekhar, Neil Shah, and Leman Akoglu (2021).
“Fairod: Fairness-aware outlier detection”. In: Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society, pp. 210–220.

3.1 Introduction

Fairness in machine learning (ML) has received a surge of attention in the recent
years. The community has largely focused on designing different notions of fairness
(Barocas, Hardt, and Narayanan, 2017; Corbett-Davies and Goel, 2018a; Verma and
Rubin, 2018) mainly tailored towards supervised ML problems (Hardt, Price, and
Srebro, 2016; Zafar, Valera, Gomez Rodriguez, and Gummadi, 2017; Goel, Yaghini,
and Faltings, 2018). However, perhaps surprisingly, fairness in the context of out-
lier detection (OD) is vastly understudied. OD is critical for numerous applications
in security (Gogoi, Bhattacharyya, Borah, and Kalita, 2011; Zavrak and İskefiyeli,
2020; Zhang and Zulkernine, 2006), finance (Van Vlasselaer et al., 2015; Lee et al.,
2020; Johnson and Khoshgoftaar, 2019), healthcare (Luo and Gallagher, 2010; Bosc,
Heitz, Armspach, Namer, Gounot, and Rumbach, 2003) etc. and is widely used for
detection of rare positive-class instances.

Outlier detection for “policing”: In such critical systems, OD is often used to
flag instances that reflect riskiness, which are then “policed” (or audited) by human
experts. For example, law enforcement agencies might employ automated surveil-
lance systems in public spaces to spot suspicious individuals based on visual char-
acteristics, who are subsequently stopped and frisked. Alternatively, in the finan-
cial domain, analysts can police fraudulent-looking claims, and corporate trust and
safety employees can police bad actors on social networks.

Group sample size disparity yields unfair OD: Importantly, outlier detectors
are designed exactly to spot rare, statistical minority samples1 with the hope that
outlierness reflects riskiness, which prompts their bias against societal minorities (as
defined by race/ethnicity/sex/age/etc.) as well, since minority group sample size
is by definition small.

However, when minority status (e.g. Hispanic) does not reflect positive-class
membership (e.g. fraud), OD produces unjust outcomes, by overly flagging the in-
stances from the minority groups as outliers. This conflation of statistical and soci-
etal minorities can become an ethical matter.

Unfair OD leads to disparate impact: What would happen downstream if we
did not strive for fairness-aware OD given the existence of societal minorities? OD

1In this work, the words sample, instance, and observation are used interchangeably throughout
text.
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“policed” (i.e. flagged) comparatively more.

models’ inability to distinguish societal minorities (as induced by so-called protected
variables (PVs)), from statistical minorities, contributes to the likelihood of minor-
ity group members being flagged as outliers (see Fig. 3.1). This is further exac-
erbated by proxy variables which partially-redundantly encode (i.e. correlate with)
the PV(s), by increasing the number of subspaces in which minorities stand out. The
result is overpolicing due to over-representation of minorities in OD outcomes. Note
that overpolicing the minority group also implies underpolicing the majority group
given limited policing capacity and constraints.

Overpolicing can also feed back into a system when the policed outliers are used
as labels in downstream supervised tasks. Alarmingly, this initially skewed sam-
ple (due to unfair OD), may be amplified through a feedback loop via predicting
policing where more outliers are identified in more heavily policed groups. Given
that OD’s use in societal applications has direct bearing on social well-being, ensur-
ing that OD-based outcomes are non-discriminatory is pivotal. This demands the
design of fairness-aware OD models, which our work aims to address.

Prior research and challenges: Abundant work on algorithm fairness has fo-
cused on supervised ML tasks (Beutel et al., 2019; Hardt, Price, and Srebro, 2016;
Zafar, Valera, Gomez Rodriguez, and Gummadi, 2017). Numerous notions of fair-
ness (Barocas, Hardt, and Narayanan, 2017; Verma and Rubin, 2018) have been
explored in such contexts, each with their own challenges in achieving equitable de-
cisions (Corbett-Davies and Goel, 2018a). In contrast, there is little to no work on
addressing fairness in unsupervised OD. Incorporating fairness into OD is challeng-
ing, in the face of (1) many possibly-incompatible notions of fairness and, (2) the
absence of ground-truth outlier labels.

The two works tackling2 unfairness in the OD literature are by P and Abraham,
2020 which proposes an ad-hoc procedure to introduce fairness specifically to the
LOF algorithm (Breunig, Kriegel, Ng, and Sander, 2000), and Zhang and Davidson,
2020 (concurrent to our work) which proposes an adversarial training based deep
SVDD detector. Amongst other issues (see Sec. 3.5), the approach proposed in (P
and Abraham, 2020) invites disparate treatment, necessitating explicit use of PV at
decision time, leading to taste-based discrimination (Corbett-Davies and Goel, 2018b)
that is unlawful in several critical applications. On the other hand, the approach
in (Zhang and Davidson, 2020) has several drawbacks (see Sec. 3.5), and in light

2Davidson and Ravi, 2020 aims to quantify fairness of OD model outcomes post hoc, which thus has
a different scope.
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FIGURE 3.2: Fairness (statistical parity) vs. GroupFidelity (group-level rank preservation)
of baselines and our proposed FAIROD (red cross), (left) averaged across 6 datasets, and
(right) on individual datasets. FAIROD outperforms existing solutions (tending towards
ideal), achieving fairness while preserving group fidelity from the BASE detector. See Sec.

6.5 for more details.

of unavailable implementation, we include a similar baseline called ARL that we
compare against our proposed method.

Alternatively, one could re-purpose existing fair representation learning tech-
niques (Zemel, Wu, Swersky, Pitassi, and Dwork, 2013; Edwards and Storkey, 2015;
Beutel, Chen, Zhao, and Chi, 2017) as well as data preprocessing strategies (Kamiran
and Calders, 2012; Feldman, Friedler, Moeller, Scheidegger, and Venkatasubrama-
nian, 2015) for subsequent fair OD. However, as we show in Sec. 6.5 and discuss
in Sec. 3.5, isolating representation learning from the detection task is suboptimal,
largely (needlessly) sacrificing detection performance for fairness.

Our contributions: Our work strives to design a fairness-aware OD model to
achieve equitable policing across groups and avoid an unjust conflation of statistical
and societal minorities. We summarize our main contributions as follows:

1. Desiderata & Problem Definition for Fair Outlier Detection: We identify 5
properties characterizing detection quality and fairness in OD as desiderata
for fairness-aware detectors. We discuss their justifiability and achievabil-
ity, based on which we formally define the (unsupervised) fairness-aware OD
problem (Sec. 3.2).

2. Fairness Criteria & New, Fairness-Aware OD Model: We introduce well-
motivated fairness criteria and give mathematical objectives that can be op-
timized to obey the desiderata. These criteria are universal, in that they can
be embedded into the objective of any end-to-end OD model. We propose
FAIROD, a new detector which directly incorporates the prescribed criteria
into its training. Notably, FAIROD (1) aims to equalize flag rates across groups,
achieving group fairness via statistical parity, while (2) striving to flag truly
high-risk samples within each group, and (3) avoiding disparate treatment.
(Sec. 3.3)

3. Effectiveness on Real-world Data: We apply FAIROD on several real-world
and synthetic datasets with diverse applications such as credit risk assessment
and hate speech detection. Experiments demonstrate FAIROD’s effectiveness
in achieving both fairness goals (Fig. 3.2) as well as accurate detection (Fig. 3.6,
Sec. 6.5), significantly outperforming alternative solutions.
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3.2 Desiderata for Fair Outlier Detection

Notation

We are given N samples (also, observations or instances) X = {Xi}N
i=1 ⊆ Rd as the

input for OD where Xi ∈ Rd denotes the feature representation for observation i.
Each observation is additionally associated with a binary3 protected (also, sensitive)
variable, PV = {PVi}N

i=1, where PVi ∈ {a, b} identifies two groups – the majority
(PVi = a) group and the minority (PVi = b) group. We use Y = {Yi}N

i=1, Yi ∈ {0, 1},
to denote the unobserved ground-truth binary labels for the observations where, for
exposition, Yi = 1 denotes an outlier (positive outcome) and Yi = 0 denotes an in-
lier (negative outcome). We use O : X 7→ {0, 1} to denote the predicted outcome
of an outlier detector, and s : X 7→ R to capture the corresponding numerical out-
lier score as the estimate of the outlierness. Thus, O(Xi), s(Xi) respectively indicate
predicted outlier label and outlier score for sample Xi. We use O = {O(Xi)}N

i=1 and
S = {s(Xi)}N

i=1 to denote the set of all predicted labels and scores from a given
model without loss of generality. Note that we can derive O(Xi) from a simple
thresholding of s(Xi). We routinely drop i-subscripts to refer to properties of a sin-
gle sample without loss of generality. We denote the group base rate (or prevalence)
of outlierness as bra = P(Y = 1|PV = a) for the majority group. Finally, we let
f ra = P(O = 1|PV = a) depict the flag rate of the detector for the majority group.
Similar definitions extend to the minority group with PV = b.

Having presented the problem setup and notation, we state our fair OD problem
(informally) as follows.

Informal Problem 1 (Fair Outlier Detection). Given samples X and protected variable
values PV , estimate outlier scores S and assign outlier labels O, such that

(i) assigned labels and scores are “fair” w.r.t. the PV, and
(ii) higher scores correspond to higher riskiness encoded by the underlying (unobserved)
Y .

How can we design a fairness-aware OD model that is not biased against minority
groups? What constitutes a “fair” outcome in OD, that is, what would characterize
fairness-aware OD? What specific notions of fairness are most applicable to OD?

To approach the problem and address these motivating questions, we first pro-
pose a list of desired properties that an ideal fairness-aware detector should satisfy,
followed by our proposed solution, FAIROD.

3.2.1 Proposed Desiderata

D1. Detection effectiveness: We require an OD model to be accurate at detection,
such that the scores assigned to the instances by OD are well-correlated with the
ground-truth outlier labels. Specifically, OD benefits the policing effort only when
the detection rate (also, precision) is strictly larger than the base rate (also, preva-
lence), that is,

P(Y = 1 | O = 1) > P(Y = 1) . (3.1)

This condition ensures that any policing effort concerted through the employment of
an OD model is able to achieve a strictly larger precision (LHS) as compared to random
sampling, where policing via the latter would simply yield a precision that is equal to

3For simplicity of presentation, we consider a single, binary protected variable (PV). We discuss
extensions to multi-valued PV and multi-attribute PVs in Appendix A.2.
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the prevalence of outliers in the population (RHS) in expectation. Note that our first
condition in (3.1) is related to detection performance, and specifically, the usefulness
of OD itself for policing applications.

How-to: We can indirectly control for detection effectiveness via careful feature
engineering. Assuming domain experts assist in feature design, it would be reason-
able to expect a better-than-random detector that satisfies Eq. (3.1).

Next, we present fairness-related conditions for OD.

D2. Treatment parity: OD should exhibit non-disparate treatment that explicitly
avoid the use of PV for producing a decision. In particular, OD decisions should
obey

P(O = 1 | X) = P(O = 1 | X, PV = v), ∀v . (3.2)

In words, the probability that the detector outputs an outlier label O for a given
feature vector X remains unchanged even upon observing the value of the PV. In
many settings (e.g. employment), explicit PV use is unlawful at inference.

How-to: We can build an OD model using a disparate learning process (Lipton,
McAuley, and Chouldechova, 2018) that uses PV only during the model training
phase, but does not require access to PV for producing a decision, hence satisfying
treatment parity.

Treatment parity ensures that OD decisions are effectively “blindfolded” to the
PV. However, this notion of fairness alone is not sufficient to ensure equitable polic-
ing across groups; namely, removing the PV from scope may still allow discrimina-
tory OD results for the minority group (e.g., African American) due to the presence
of several other features (e.g., zipcode) that (partially-)redundantly encode the PV.
Consequently, by default, OD will use the PV indirectly, through access to those cor-
related proxy features. Therefore, additional conditions follow.

D3. Statistical parity (SP): One would expect the OD outcomes to be independent
of group membership, i.e. O ⊥⊥ PV. In the context of OD, this notion of fairness
(also, demographic parity, group fairness, or independence) aims to enforce that the
outlier flag rates are independent of PV and equal across the groups as induced by
PV.

Formally, an OD model satisfies statistical parity under a distribution over (X, PV)
where PV ∈ {a, b} if

f ra = f rb or equivalently,
P(O = 1|PV = a) = P(O = 1|PV = b) .

(3.3)

SP implies that the fraction of minority (majority) members in the flagged set is the
same as the fraction of minority (majority) in the overall population. Equivalently,
one can show

f ra = f rb (SP) ⇐⇒ P(PV = a|O = 1) = P(PV = a)
and P(PV = b|O = 1) = P(PV = b) . (3.4)

The motivation for SP derives from luck egalitarianism (Knight, 2009) – a family
of egalitarian theories of distributive justice that aim to counteract the distributive
effects of “brute luck”. By redistributing equality to those who suffer through no
fault of their own choosing, mediated via race, gender, etc., it aims to counterbal-
ance the manifestations of such “luck”. Correspondingly, SP ensures equal flag rates
across PV groups, eliminating such group-membership bias. Therefore, it merits
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incorporation in OD since OD results are used for policing or auditing by human
experts in downstream applications.

How-to: We could enforce SP during OD model learning by comparing the dis-
tributions of the predicted outlier labels O amongst groups, and update the model
to ensure that these output distributions match across groups.

SP, however, is not sufficient to ensure both equitable and accurate outcomes as it
permits so-called “laziness” (Barocas, Hardt, and Narayanan, 2017). Being an unsu-
pervised quantity that is agnostic to the ground-truth labels Y , SP could be satisfied
while producing decisions that are arbitrarily inaccurate for any or all of the groups.
In fact, an extreme scenario would be random sampling; where we select a certain
fraction of the given population uniformly at random and flag all the sampled in-
stances as outliers. As evident via Eq. (3.4), this entirely random procedure would
achieve SP (!). The outcomes could be worse – that is, not only inaccurate (put differ-
ently, as accurate as random) but also unfair for only some group(s) – when OD flags
mostly the true outliers from one group while flagging randomly selected instances
from the other group(s), leading to discrimination despite SP. Therefore, additional
criteria is required to explicitly penalize “laziness,” aiming to not only flag equal frac-
tions of instances across groups but also those true outlier instances from both groups.

D4. Group fidelity (also, Equality of Opportunity): It is desirable that the true out-
liers are equally likely to be assigned higher scores, and in turn flagged, regardless
of their membership to any group as induced by PV. We refer to this notion of
fairness as group fidelity, which steers OD outcomes toward being faithful to the
ground-truth outlier labels equally across groups, obeying the condition

P(O = 1|Y = 1, PV = a) = P(O = 1|Y = 1, PV = b) . (3.5)

Mathematically, this condition is equivalent to the so-called Equality of Opportu-
nity4 in the supervised fair ML literature, and is a special case of Separation (Verma
and Rubin, 2018; Hardt, Price, and Srebro, 2016). In either case, it requires that
all PV-induced groups experience the same true positive rate. Consequently, it pe-
nalizes “laziness” by ensuring that the true-outlier instances are ranked above (i.e.,
receive higher outlier scores than) the inliers within each group.

The key caveat here is that (3.5) is a supervised quantity that requires access to
the ground-truth labels Y , which are explicitly unavailable for the unsupervised OD
task. What is more, various impossibility results have shown that certain fairness
criteria, including SP and Separation, are mutually exclusive or incompatible (Baro-
cas, Hardt, and Narayanan, 2017), implying that simultaneously satisfying both of
these conditions (exactly) is not possible.

How-to: The unsupervised OD task does not have access to Y , therefore, group
fidelity cannot be enforced directly. Instead, we propose to enforce group-level rank
preservation that maintains fidelity to within-group ranking from the BASE model,
where BASE is a fairness-agnostic OD model. Our intuition is that rank preservation
acts as a proxy for group fidelity, or more broadly Separation, via our assumption
that within-group ranking in the BASE model is accurate and top-ranked instances
within each group encode the highest risk samples within each group.

Specifically, let πBASE represent the ranking of instances based on BASE OD scores,
and let πBASE

PV=a and πBASE
PV=b denote the group-level ranked lists for majority and mi-

nority groups, respectively. Then, the rank preservation is satisfied when πBASE
PV=v =

4Opportunity, because positive-class assignment by a supervised model in many fair ML problems
is often associated with a positive outcome, such as being hired or approved a loan.
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πPV=v; ∀v ∈ {a, b} where πPV=v is the ranking of group-v instances based on out-
lier scores from our proposed OD model. Group rank preservation aims to address
the “laziness” issue that can manifest while ensuring SP; we aim to not lose the
within-group detection prowess of the original detector while maintaining fairness.
Moreover, since we are using only a proxy for Separation, the mutual exclusiveness
of SP and Separation may no longer hold, though we have not established this math-
ematically.

D5. Base rate preservation: The flagged outliers from OD results are often au-
dited and then used as human-labeled data for supervised detection (as discussed
in previous section) which can introduce bias through a feedback loop. Therefore, it
is desirable that group-level base rates within the flagged population is reflective of
the group-level base rates in the overall population, so as to not introduce group bias
of outlier incidence downstream. In particular, we expect OD outcomes to ideally
obey

P(Y = 1|O = 1, PV = a) = bra , and (3.6)
P(Y = 1|O = 1, PV = b) = brb . (3.7)

Note that group-level base rate within the flagged population (LHS) is mathemati-
cally equivalent to group-level precision in OD outcomes, and as such, is also a su-
pervised quantity which suffers the same caveat as in D4, regarding unavailability
of Y .

How-to: As noted, Y is not available to an unsupervised OD task. Importantly,
provided an OD model satisfies D1 and D3, we show that it cannot simultaneously
also satisfy D5, i.e. per-group equal base rate in OD results (flagged observations)
and in the overall population.

Claim 1. Detection effectiveness: P(Y = 1|O = 1) > P(Y = 1) and SP: P(O = 1|PV =
a) = P(O = 1|PV = b) jointly imply that P(Y = 1|O = 1, PV = v) > P(Y = 1|PV =
v), ∃v.

Proof. We prove the claim in Appendix A.1.1.

Claim 1 shows an incompatibility and states that, provided D1 and D3 are sat-
isfied, the base rate in the flagged population cannot be equal to (but rather, is an
overestimate of) that in the overall population for at least one of the groups. As such,
base rates in OD outcomes cannot be reflective of their true values. Instead, one may
hope for the preservation of the ratio of the base rates (i.e. it is not impossible). As
such, a relaxed notion of D5 is to preserve proportional base rates across groups in
the OD results, that is,

P(Y = 1|O = 1, PV = a)
P(Y = 1|O = 1, PV = b)

=
P(Y = 1|PV = a)
P(Y = 1|PV = b)

. (3.8)

Note that ratio preservation still cannot be explicitly enforced as (3.8) is also label-
dependent. Finally we show in Claim 2 that, provided D1, D3 and Eq. (3.8) are all
satisfied, then it entails that the base rate in OD outcomes is an overestimation of the
true group-level base rate for every group.

Claim 2. Detection effectiveness: P(Y = 1|O = 1) > P(Y = 1), SP: P(O = 1|PV =

a) = P(O = 1|PV = b), and Eq. (3.8): P(Y=1|O=1,PV=a)
P(Y=1|O=1,PV=b) = P(Y=1|PV=a)

P(Y=1|PV=b) jointly imply
P(Y = 1|PV = v, O = 1)>P(Y = 1|PV = v), ∀v.
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Proof. We prove the claim in Appendix A.1.2.

Claim 1 and Claim 2 indicate that if we have both (i) better-than-random pre-
cision (D1) and (ii) SP (D3), interpreting the base rates in OD outcomes for down-
stream learning tasks would not be meaningful, as they would not be reflective of
true population base rates. Due to both these incompatibility results, and also feasi-
bility issues given the lack of Y , we leave base rate preservation – despite it being a
desirable property – out of consideration.

3.2.2 Problem Definition

Based on the definitions and enforceable desiderata, our fairness-aware OD problem
is formally defined as follows:

Problem 1 (Fairness-Aware Outlier Detection). Given samples X and protected variable
values PV , estimate outlier scores S and assign outlier labels O, to achieve

(i) P(Y = 1|O = 1) > P(Y = 1) ,
[Detection effectiveness]

(ii) P(O | X, PV = v) = P(O | X), ∀v ∈ {a, b} ,
[Treatment parity]

(iii) P(O = 1|PV = a) = P(O = 1|PV = b) ,
[Statistical parity]

(iv) πBASE
PV=v = πPV=v , ∀v ∈ {a, b}, where BASE is a fairness-agnostic detector. [Group

fidelity proxy]

Given a dataset along with PV values, the goal is to design an OD model that
builds on an existing BASE OD model and satisfies the criteria (i)–(iv), following the
proposed desiderata D1 – D4.

3.2.3 Caveats of a Simple Approach

A simple yet naïve fairness-aware OD approach to address Problem 1 can be de-
signed as follows:

1. Obtain ranked lists πBASE
PV=a and πBASE

PV=b from BASE, and

2. Flag top instances as outliers from each ranked list at equal fraction such that
P(O = 1|PV = a) = P(O = 1|PV = b), PV ∈ {a, b}

This approach fully satisfies (iii) and (iv) in Problem 1 by design, as well as (i) given
suitable features. However, it explicitly suffers from disparate treatment.

3.3 Fairness-aware Outlier Detection

In this section, we describe our proposed FAIROD – an unsupervised, fairness-
aware, end-to-end OD model that embeds our proposed learnable (i.e. optimiz-
able) fairness constraints into an existing BASE OD model. The key features of our
model are that FAIROD aims for equal flag rates across groups (statistical parity),
and encourages correct top group ranking (group fidelity), while not requiring PV
for decision-making on new samples (non-disparate treatment). As such, it aims to
target the proposed desiderata D1 – D4 as described in Sec. 3.2.
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3.3.1 Base Framework

Our proposed OD model instantiates a deep-autoencoder (AE) framework for the
base outlier detection task. However, we remark that the fairness regularization cri-
teria introduced by FAIROD can be plugged into any end-to-end optimizable anomaly
detector, such as one-class support vector machines (Schölkopf, Platt, Shawe-Taylor,
Smola, and Williamson, 2001), deep anomaly detector (Chalapathy, Menon, and
Chawla, 2018), variational AE for OD (An and Cho, 2015), and deep one-class clas-
sifiers (Ruff et al., 2018). Our choice of AE as the BASE OD model stems from the
fact that AE-inspired methods have been shown to be state-of-the-art outlier detec-
tors (Chen, Sathe, Aggarwal, and Turaga, 2017; Ma, Zhang, Cao, and Guo, 2013;
Zhou and Paffenroth, 2017) and that our fairness-aware loss criteria can be opti-
mized in conjunction with the objectives of such models. The main goal of FAIROD
is to incorporate our proposed notions of fairness into an end-to-end OD model,
irrespective of the choice of the BASE model family.

AE consists of two main components: an encoder GE : X ∈ Rd 7→ Z ∈ Rm and
a decoder GD : Z ∈ Rm 7→ X ∈ Rd. GE(X) encodes the input X to a hidden vector
(also, code) Z that preserves the important aspects of the input. Then, GD(Z) aims
to generate X′, a reconstruction of the input from the hidden vector Z. Overall, the
AE can be written as G = GD ◦ GE, such that G(X) = GD (GE (X)). For a given AE
based framework, the outlier score for X is computed using the reconstruction error
as

s(X) = ∥X− G(X)∥2
2 . (3.9)

Outliers tend to exhibit large reconstruction errors because they do not conform
to to the patterns in the data as coded by an auto-encoder, hence the use of recon-
struction errors as outlier scores (Aggarwal, 2015; Pang, Shen, Cao, and Hengel,
2020; Shah, Beutel, Gallagher, and Faloutsos, 2014). This scoring function is general
in that it applies to many reconstruction-based OD models, which have different
parameterizations of the reconstruction function G. We show in the following how
FAIROD regularizes the reconstruction loss from BASE through fairness constraints
that are conjointly optimized during the training process. The BASE OD model opti-
mizes the following

LBASE =
N

∑
i=1
∥Xi − G(Xi)∥2

2 (3.10)

and we denote its outlier scoring function as sBASE(·).

3.3.2 Fairness-aware Loss Function

We begin with designing a loss function for our OD model that optimizes for achiev-
ing SP and group fidelity by introducing regularization to the BASE objective crite-
rion. Specifically, FAIROD minimizes the following loss:

L = α LBASE︸ ︷︷ ︸
Reconstruction

+ (1− α) LSP︸︷︷︸
Statistical Parity

+ γ LGF︸︷︷︸
Group Fidelity

(3.11)

where α ∈ (0, 1) and γ > 0 are hyperparameters which govern the balance between
different fairness criteria and reconstruction quality in the loss function.
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The first term in Eq. (3.11) is the objective for learning the reconstruction (based
on BASE model family) as given in Eq. (3.10), which quantifies the goodness of the
encoding Z via the squared error between the original input and its reconstruction
generated from Z. The second component in Eq. (3.11) corresponds to regularization
introduced to enforce the fairness notion of independence, or statistical parity (SP)
as given in Eq. (3.4). Specifically, the term seeks to minimize the absolute correlation
between the outlier scores S (used for producing predicted labels O) and protected
variable values PV . LSP is given as

LSP =

∣∣∣∣∣
(

∑N
i=1 s(Xi)− µs

) (
∑N

i=1 PVi − µPV
)

σs σPV

∣∣∣∣∣ (3.12)

where µs = 1
N ∑N

i=1 s(Xi), σs = 1
N ∑N

i=1(s(Xi)− µs)2, µPV = 1
N ∑N

i=1 PVi, and σPV =
1
N ∑N

i=1(PVi − µPV)
2.

We adapt this absolute correlation loss from (Beutel et al., 2019), which proposed
its use in a supervised setting with the goal of enforcing statistical parity. As Beutel
et al., 2019 mentions, while minimizing this loss does not guarantee independence,
it performs empirically quite well and offers stable training. We observe the same in
practice; it leads to minimal associations between OD outcomes and the protected
variable (see details in Sec. 6.5).

Finally, the third component of Eq. (3.11) emphasizes that FAIROD should main-
tain fidelity to within-group rankings from the BASE model (penalizing “laziness”).
We set up a listwise learning-to-rank objective in order to enforce group fidelity.
Our goal is to train FAIROD such that it reflects the within-group rankings based on
sBASE(·) from BASE. To that end, we employ a listwise ranking loss criterion that is
based on the well-known Discounted Cumulative Gain (DCG) (Järvelin and Kekäläi-
nen, 2002) measure, often used to assess ranking quality in information retrieval
tasks such as search. For a given ranked list, DCG is defined as

DCG = ∑
r

2relr − 1
log2(1 + r)

where relr depicts the relevance of the item ranked at the rth position. In our setting,
we use the outlier score sBASE(X) of an instance X to reflect its relevance since we
aim to mimic the group-level ranking by BASE. As such, DCG per group can be
re-written as

DCGPV=v = ∑
Xi∈XPV=v

2sBASE(Xi) − 1
log2

(
1 + ∑Xk∈XPV=v

1[s(Xi) ≤ s(Xk)]
)

where XPV=a and XPV=b would respectively denote the set of observations from ma-
jority and minority groups, and s(X) is the estimated outlier score from our FAIROD
model under training.

A key challenge with DCG is that it is not differentiable, as it involves ranking
(sorting). Specifically, the sum term in the denominator uses the (non-smooth) in-
dicator function 1(·) to obtain the position of instance i as ranked by the estimated
outlier scores. We circumvent this challenge by replacing the indicator function by
the (smooth) sigmoid approximation, following (Qin, Liu, and Li, 2010). Then, the
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group fidelity loss component LGF is given as

LGF = ∑
v∈{a,b}

(
1− ∑

Xi∈XPV=v

2sBASE(Xi) − 1
DNM

)
(3.13)

DNM = log2

(
1 + ∑

Xk∈XPV=v

sigm(s(Xk)− s(Xi))
)
· IDCGPV=v ,

sigm(x) = exp(−cx)
1+exp(−cx) is the sigmoid function where c > 0 is the scaling con-

stant, and, IDCGPV=v = ∑|XPV=v|
j=1 ((2sBASE(Xj) − 1)/log2(1 + j)) is the ideal (hence I),

i.e. largest DCG value attainable for the respective group. Note that IDCG can be
computed per group apriori to model training via BASE outlier scores alone, and
serves as a normalizing constant in Eq. (3.13).

Note that having trained our model, scoring instances does not require access
to the value of their PV, as PV is only used in Eq. (3.12) and (3.13) for training
purposes. At test time, the anomaly score of a given instance X is computed simply
via Eq. (3.9). Thus, FAIROD also fulfills the desiderata on treatment parity.

TABLE 3.1: Summary statistics of real-world and synthetic datasets used for evaluation.
Dataset N d PV PV = b |XPV=a|/|XPV=b| % outliers Labels

Adult 25262 11 gender female 4 5 {income ≤ 50K, income > 50K}
Credit 24593 1549 age age ≤ 25 4 5 {paid, delinquent}
Tweets 3982 10000 racial dialect African-American 4 5 {normal, abusive}
Ads 1682 1558 simulated 1 4 5 {non-ad, ad}

Synth1 2400 2 simulated 1 4 5 {0, 1}
Synth2 2400 2 simulated 1 4 5 {0, 1}

Optimization and Hyperparameter Tuning

We optimize the parameters of FAIROD by minimizing the loss function given in
Eq. (3.11) by using the built-in Adam optimizer (Kingma and Ba, 2014) implemented
in PyTorch.

FAIROD comes with two tunable hyperparameters, α and γ. We define a grid
for these and pick the configuration that achieves the best balance between SP and
our proxy quantity for group fidelity (based on group-level ranking preservation).
Note that both of these quantities are unsupervised (i.e., do not require access to
ground-truth labels), therefore, FAIROD model selection can be done in a completely
unsupervised fashion. We provide further details about hyperparameter selection in
Sec. 6.5.

Generalizing to Multi-valued and Multiple Protected Attributes

FAIROD generalizes beyond binary PV, and easily applies to settings with multi-
valued and multiple-protected attributes. We provide the details in Appendix A.2.

3.4 Experiments

Our proposed FAIROD is evaluated through extensive experiments on a set of syn-
thetic datasets as well as diverse real-world datasets. In this section, we present
dataset description and the experimental setup, followed by key evaluation ques-
tions and results.
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FIGURE 3.3: Synthetic datasets. See Sec. 3.4.1 for the details of the data generating process.

3.4.1 Dataset Description

Table 3.1 gives an overview of the datasets used in evaluation. A brief summary fol-
lows, with details on generative process of synthetic data and detailed descriptions.

Synthetic

We illustrate the efficacy of FAIROD on two synthetic datasets, Synth1 and Synth2.
These datasets present scenarios that mimic real-world settings, where we may have
features that are uncorrelated with the outcome labels but partially correlated with
the PV, or features which are correlated both to outcome labels and PV.

• Synth1: In Synth1, we simulate a 2-dimensional dataset comprised of samples
X = [x1, x2] where x1 is correlated with the protected variable PV, but does not
offer any predictive value with respect to ground-truth outlier labels Y , while
x2 is correlated with these labels Y (see Fig. A.1a). We draw 2400 samples, of
which PV = a (majority) for 2000 points, and PV = b (minority) for 400 points.
120 (5%) of these points are outliers. x1 differs in terms of shifted means, but
equal variances, for both majority and minority groups. x2 is distributed simi-
larly for both majority and minority groups, drawn from a normal distribution
for outliers, and an exponential for inliers. The detailed generative process for
the data is below (left), and Fig. A.1a shows a visual.

• Synth2: In Synth2, we again simulate a 2-dimensional dataset comprised of
samples X = [x1, x2] where x1, x2 are partially correlated with both the pro-
tected variable PV as well as ground-truth outlier labels Y (see Fig. A.1b). We
draw 2400 samples, of which PV = a (majority) for 2000 points, and PV = b
(minority) for 400 points. 120 (5%) of these points are outliers. For inliers, both
x1, x2 are normally distributed, and differ across majority and minority groups
only in terms of shifted means, but equal variances. Outliers are drawn from a
product distribution of an exponential and linearly transformed Bernoulli dis-
tribution (product taken for symmetry). The detailed generative process for
the data is below, and Fig. A.1b shows a visual.
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Synth1

Simulate samples X = [x1, x2] by...
PV ∼ Bernoulli(4/5)

Y ∼ Bernoulli(1/20)

x1 ∼


Normal(−1, 1.44) if Y = 0, PV = 1 [a, majority; inlier]
Normal(1, 1.44) if Y = 0, PV = 0 [b, minority; inlier]
2× Exponential(1)(1− 2× Bernoulli(1/2)) if Y = 1 [outlier]

x2 ∼


Normal(−1, 1) if Y = 0, PV = 1 [a, majority; inlier]
Normal(1, 1) if Y = 0, PV = 0 [b, minority; inlier]
2× Exponential(1)(1− 2× Bernoulli(1/2)) if Y = 1 [outlier]

Synth2

Simulate samples X = [x1, x2] by...
PV ∼ Bernoulli(4/5)

Y ∼ Bernoulli(1/20)

x1 ∼
{

Normal(180, 10) if PV = 1 [a, majority]
Normal(150, 10) if PV = 0 [b, minority]

x2 ∼
{

Normal(10, 3) if Y = 1 [outlier]
Exponential(1) if Y = 0 [inlier]

Real-world

We experiment on 4 real-world datasets from diverse domains that have various
types of PV: specifically gender, age, and race (see Table 3.1). Detailed descriptions
are as follows.

• Adult (Lichman et al., 2013) (Adult). The dataset is extracted from the 1994
Census database where each data point represents a person. The dataset records
income level of an individual along with features encoding personal information on
education, profession, investment and family. In our experiments, gender ∈ {male,
female} is used as the protected variable where female represents minority group and
high earning individuals who exceed an annual income of 50,000 i.e. annual income
> 50, 000 are assigned as outliers (Y = 1). We further downsample female to achieve
a male to female sample size ratio of 4:1 and ensure that percentage of outliers remains
the same (at 5%) across groups induced by the protected variable.

• Credit-defaults (Lichman et al., 2013) (Credit). This is a risk management
dataset from the financial domain that is based on Taiwan’s credit card clients’ de-
fault cases. The data records information of credit card customers including their
payment status, demographic factors, credit data, historical bill and payments. Cus-
tomer age is used as the protected variable where age > 25 indicates the majority
group and age ≤ 25 indicates the minority group. We assign individuals with delin-
quent payment status as outliers (Y = 1). The age > 25 to age ≤ 25 imbalance ratio is
4:1 and contains 5% outliers across groups induced by the protected variable.

• Abusive Tweets (Blodgett, Green, and O’Connor, 2016) (Tweets). The dataset
is a collection of Tweets along with annotations indicating whether a tweet is abusive
or not. The data are not annotated with any protected variable by default; therefore,
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to assign protected variable to each Tweet, we employ the following process: We pre-
dict the racial dialect — African-American or Mainstream — of the tweets in the corpus
using the language model proposed by (Blodgett, Green, and O’Connor, 2016). The
dialect is assigned to a Tweet only when the prediction probability is greater than
0.7, and then the predicted racial dialect is used as protected variable where African-
American dialect represents the minority group. In this setting, abusive tweets are
labeled as outliers (Y = 1) for the task of flagging abusive content on Twitter. The
group sample size ratio of racial dialect = African-American to racial dialect = Main-
stream is set to 4:1. We further sample data points to ensure equal percentage (5%) of
outliers across dialect groups.

• Internet ads (Lichman et al., 2013) (Ads). This is a collection of possible ad-
vertisements on web-pages. The features characterize each ad by encoding phrases
occurring in the ad URL, anchor text, alt text, and encoding geometry of the ad im-
age. We assign observations with class label ad as outliers (Y = 1) and downsample
the data to get an outlier rate of 5%. There exists no demographic information avail-
able, therefore we simulate a binary protected variable by randomly assigning each
observation to one of two values (i.e. groups) ∈ {0, 1} such that the group sample
size ratio is 4:1.

3.4.2 Baselines

We compare FAIROD to two classes of baselines: (i) a fairness-agnostic base detec-
tor that aims to solely optimize for detection performance, and (ii) preprocessing
methods that aim to correct for bias in the underlying distribution and generate a
dataset obfuscating the PV.
Base detector model:

• BASE: A deep anomaly detector that employs an autoencoder neural network.
The reconstruction error of the autoencoder is used as the anomaly score. BASE

omits the protected variable from model training.
Preprocessing based methods:

• RW (Kamiran and Calders, 2012): A preprocessing approach that assigns weights
to observations in each group differently to counterbalance the under-representation
of minority samples.

• DIR (Feldman, Friedler, Moeller, Scheidegger, and Venkatasubramanian, 2015)
A preprocessing approach that edits feature values such that protected vari-
ables can not be predicted based on other features in order to increase group
fairness. It uses repair_level as a hyperparameter, where 0 indicates no repair,
and the larger the value gets, the more obfuscation is enforced.

• LFR: This baseline is based on Zemel, Wu, Swersky, Pitassi, and Dwork, 2013
that aims to find a latent representation of the data while obfuscating informa-
tion about protected variables. In our implementation, we omit the classifica-
tion loss component during representation learning. It uses two hyperparam-
eters – Az to control for SP, and Ax to control for the quality of representation.

• ARL: This is based on Beutel, Chen, Zhao, and Chi, 2017 that finds new la-
tent representations by employing an adversarial training process to remove
information about the protected variables. In our implementation, we use re-
construction error in place of the classification loss. ARL uses λ to control for
the trade-off between accuracy (in our implementation, reconstruction quality)
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and obfuscating protected variable. This baseline optimizes an objective simi-
lar to that proposed in (Zhang and Davidson, 2020) which substitutes SVDD
loss for reconstruction loss.

The OD task proceeds the preprocessing, where we employ the BASE detector on
the modified data transformed or learned by each of the preprocessing based base-
lines. We do not compare to the LOF-based fair detector in (P and Abraham, 2020)
as it exhibits disparate treatment and is inapplicable in settings that we consider.

Hyperparameters

We choose the hyperparameters of FAIROD from α ∈ {0.01, 0.5, 0.9}×γ ∈ {0.01, 0.1, 1.0}
by evaluating the Pareto curve for fairness and group fidelity criteria. The BASE and
FAIROD methods both use an auto-encoder with two hidden layers. We fix the num-
ber of hidden nodes in each layer to 2 if d ≤ 100, and 8 otherwise. The representation
learning methods LFR and ARL use the model configurations as proposed by their
authors. The hyperparameter grid for the preprocessing baselines are set as follows:
repair_level ∈ {0.0001, 0.001, 0.01, 0.1, 1.0} for DIR, Az ∈ {0.0001, 0.001, 0.01, 0.1, 0.9}
and Ax = 1 − Az for LFR, and λ ∈ {0.0001, 0.001, 0.01, 0.1, 0.9} for ARL. We pick
the best model for the preprocessing baselines using Fairness as they only optimize
for statistical parity. The best BASE model is selected based on reconstruction error
through cross validation upon multiple runs with random seeds.

3.4.3 Evaluation

We design experiments to answer the following questions:
• [Q1] Fairness: How well does FAIROD (a) achieve fairness as compared to the

baselines, and (b) retain the within-group ranking from BASE?
• [Q2] Fairness-accuracy trade-off: How accurately are the outliers detected by

FAIROD as compared to fairness-agnostic BASE detector?
• [Q3] Ablation study: How do different elements of FAIROD influence group

fidelity and detector fairness?

Evaluation Measures

Fairness

Fairness is measured in terms of statistical parity. We use flag-rate ratio r = P(O=1|PV=a)
P(O=1|PV=b)

which measures the statistical fairness of a detector based on the predicted outcome
where P(O = 1|PV = a) is the flag-rate of the majority group and P(O = 1|PV = b)
is the flag-rate of the minority group. We define Fairness = min(r, 1/r) ∈ [0, 1]. For a
maximally fair detector, Fairness = 1 as r = 1.

GroupFidelity

We use the Harmonic Mean (HM) of per-group NDCG to measure how well the
group ranking of BASE detector is preserved in the fairness-aware detectors. HM
between two scalars p and q is defined as 1/( 1

p + 1
q ). We use HM to report Group-

Fidelity since it is (more) sensitive to lower values (than e.g. arithmetic mean); as
such, it takes large values when both of its arguments have large values. We define
GroupFidelity = HM(NDCGPV=a, NDCGPV=b), where
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NDCGPV=a =
|XPV=a|

∑
i=1

2sBASE(Xi) − 1

log2(1 + ∑|XPV=a|
k=1 1(s(Xi) ≤ s(Xk))) · IDCG

,

|XPV=a| is the number of instances in group with PV = a, 1(cond) is the indicator
function that evaluates to 1 if cond is true and 0 otherwise, s(Xi) is the predicted
score of the fairness-aware detector, sBASE(Xi) is the outlier score from BASE detector

and IDCG = ∑|XPV=a|
j=1

2sBASE(Xj)−1
log2(j+1) . GroupFidelity ≈ 1 indicates that group ranking from

the BASE detector is well preserved.

Top-k Rank Agreement

We also measure how well the final ranking of the method aligns with the purely
performance-driven BASE detector, as BASE optimizes only for reconstruction error.
We compute top-k rank agreement as the Jaccard set similarity between the top-k
observations as ranked by two methods. Let πBASE

[1:k] denote the top-k of the ranked

list based on outlier scores sBASE(Xi)’s, and πdetector
[1:k] be the top-k of the ranked list

for competing methods where detector∈{RW, DIR, LFR, ARL, FAIROD }. Then the
measure is given as Top-k Rank Agreement = |πBASE

[1:k] ∩ πdetector
[1:k] |/|πBASE

[1:k] ∪ πdetector
[1:k] |

AUC-ratio and AP-ratio

Finally, we consider supervised parity measures based on ground-truth labels, de-
fined as the ratio of ROC AUC and Average Precision (AP) performances across
groups; AUC-ratio = AUCPV=a/AUCPV=b and AP-ratio = APPV=a/APPV=b.

[Q1] Fairness

In Fig. 3.2 (presented in Introduction), FAIROD is compared against BASE, as well
as all the preprocessing baselines across datasets. The methods are evaluated using
the best configuration of each method on each dataset. The best hyperparameters
for FAIROD are the ones for which GroupFidelity and Fairness5 are closest to the “ideal”
point as indicated in Fig. 3.2.

In Fig. 3.2 (left), the average of Fairness and GroupFidelity for each method over
datasets is reported. FAIROD achieves 9× and 5× improvement in Fairness as com-
pared to BASE method and the nearest competitor, respectively. For FAIROD, Fairness
is very close to 1, while at the same time the group ranking from the BASE detector is
well preserved where GroupFidelity also approaches 1. FAIROD dominates the base-
lines (see Fig. 3.2 (right)) as it is on the Pareto frontier of GroupFidelity and Fairness.
Here, each point on the plot represents an evaluated dataset. Notice that FAIROD
preserves the group ranking while achieving SP consistently across datasets.

Fig. 3.4 reports Top-k Rank Agreement (computed at top-5% of ranked lists) of each
method evaluated across datasets. The agreement measures the degree of align-
ment of the ranked results by a method with the fairness-agnostic BASE detector. In
Fig. 3.4 (left), as averaged over datasets, FAIROD achieves better rank agreement as
compared to the competitors. In Fig. 3.4 (right), FAIROD approaches ideal statistical
parity across datasets while achieving better rank agreement with the BASE detector.
Note that FAIROD does not strive for a perfect Top-k Rank Agreement (=1) with BASE,

5Note that we can do model selection in this manner without access to any labels, since both are
unsupervised measures.
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FIGURE 3.4: (left) FAIROD achieves the best Top-k Rank Agreement compared to the
competitors (BASE is shown for reference) in addition to the best overall Fairness, across

datasets on average, and (right) measures are shown on individual datasets.

since BASE is shown to fall short with respect to our desired fairness criteria. Our
purpose in illustrating it is to show that the ranked list by FAIROD is not drastically
different from BASE, which simply aims for detection performance.

Next we evaluate the competing methods against supervised (label-aware) fair-
ness metrics. Note that FAIROD does not (by design) optimize for these supervised
fairness measures. Fig. 3.5a evaluates the methods against Fairness and label-aware
parity criterion – specifically, group AP-ratio (ideal AP-ratio is 1). FAIROD approaches
ideal Fairness as well as ideal AP-ratio across all datasets. FAIROD outperforms the
competitors on the averaged metrics over datasets (Fig. 3.5a (left)) and across indi-
vidual datasets (Fig. 3.5a (right)). In contrast, the preprocessing baselines are up to
∼5× worse than FAIROD over AP-ratio measure across datasets. Fig. 3.5b reports
evaluation of methods against Fairness and another label-aware parity measure –
specifically, group AUC-ratio (ideal AUC-ratio = 1). As shown in Fig. 3.5b (left), FAIROD
outperforms all the baselines in expectation as averaged over all datasets. Further,
in Fig. 3.5b (right), FAIROD consistently approaches ideal AUC-ratio across datasets,
while the preprocessing baselines are up to ∼1.9× worse comparatively.

We note that impressively, FAIROD approaches parity across different super-
vised fairness measures despite not being able to optimize for label-aware criteria
explicitly.

[Q2] Fairness-accuracy trade-off

In the presence of ground-truth outlier labels, the performance of a detector could be
measured using a ranking accuracy metric such as area under the ROC curve (ROC
AUC).

In Fig. 3.6, we compare the AUC performance of FAIROD to that of BASE detector
for all datasets. Notice that each of the symbols (i.e. datasets) is slightly below the
diagonal line indicating that FAIROD achieves equal or sometimes even better (!)
detection performance as compared to BASE. The explanation is that since FAIROD
enforces SP and does not allow “laziness", it addresses the issue of falsely or unjustly
flagged minority samples by BASE, thereby, improving detection performance.
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FIGURE 3.5: FAIROD outperforms all competitors on averaged label-aware parity metrics
over datasets (left) and for individual datasets (right): we report Fairness against (a) Group

AP-ratio and (b) Group AUC-ratio.
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FIGURE 3.6: ROCAUC of FAIROD vs. BASE: FAIROD matches the performance of BASE
detector, while enforcing fairness criteria (maintaining good performance with fairness).

From Fig. 3.6, we conclude that FAIROD does not trade-off detection perfor-
mance much, and in some cases it even improves performance by eliminating false
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FIGURE 3.7: FAIROD compared to its variants FAIROD-L and FAIROD-C across datasets,
to evaluate the effect of different regularization components. FAIROD-L achieves compa-
rable Fairness to FAIROD while compromising GroupFidelity. FAIROD-C improves Fairness

as compared to BASE, but is ill-suited to optimizing for GroupFidelity.

positives from the minority group, as compared to the performance-driven, fairness-
agnostic BASE detector.

[Q3] Ablation study

Finally, we evaluate the effect of various components in the design of FAIROD’s
objective. Specifically, we compare to the results of two relaxed variants of FAIROD,
namely FAIROD-L and FAIROD-C, described as follows.

• FAIROD-L: We retain only the SP-based regularization term from FAIROD ob-
jective along with the reconstruction error. This relaxation of FAIROD is par-
tially based on the method proposed in Beutel et al., 2019, which minimizes
the correlation between model prediction and group membership to the PV.
In FAIROD-L, the reconstruction error term substitutes the classification loss
used in the optimization criteria in Beutel et al., 2019. Note that FAIROD-L
concerns itself with only group fairness to attain SP which may suffer from
“laziness” (hence, FAIROD-L) (see Sec. 3.2).

• FAIROD-C: Instead of training with NDCG-based group fidelity regulariza-
tion, FAIROD-C utilizes a simpler regularization, aiming to minimize the cor-
relation (hence, FAIROD-C) of the outlier scores per-group with the corre-
sponding scores from BASE detector. Thus, FAIROD-C attempts to maintain
group fidelity over the entire ranking within a group, in contrast to FAIROD’s
NDCG-based regularization which emphasizes the quality of the ranking at
the top. Specifically, FAIROD-C substitutes LGF in Eq. (3.11) with the follow-
ing.

LGF = − ∑
v∈{a,b}

∣∣∣∣ (∑Xi∈XPV=v
s(Xi)−µs

) (
∑Xi∈XPV=v

sBASE(Xi)−µsBASE

)
σs σsBASE

∣∣∣∣
where v ∈ {a, b}, and µsBASE , σsBASE are defined similar to µs, σs respectively.

Fig. 3.7 presents the comparison of FAIROD and its variants. In Fig. 3.7 (left), we
report the evaluation against GroupFidelity and Fairness averaged over datasets, and
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in Fig. 3.7 (right), the metrics are reported for each individual dataset. FAIROD-L
approaches SP and achieves comparable Fairness to FAIROD except on one dataset
as shown in Fig. 3.7 (right). This results in lower Fairness compared to FAIROD
when averaged over datasets as shown in Fig. 3.7 (left). However, FAIROD-L suf-
fers with respect to GroupFidelity as compared to FAIROD. This is because FAIROD-L
may randomly flag instances to achieve SP since it does not include any group rank-
ing criterion in its objective. On the other hand, FAIROD-C improves Fairness when
compared to BASE, while under-performing on the majority of datasets compared to
FAIROD across metrics. Since FAIROD-C tries to preserve group-level ranking, it
trades-off on Fairness as measured against FAIROD-L. We also observe that FAIROD
outperforms FAIROD-C on all datasets, which suggests that preserving the entire
group-level rankings may be a harder task than preserving top of the rankings; it is
also a needlessly ill-suited one since what matters for outlier detection is the top of
the ranking.

3.5 Related Work

A majority of work on algorithmic fairness focuses on supervised learning problems.
We refer to Barocas, Hardt, and Narayanan, 2019; Mehrabi, Morstatter, Saxena, Ler-
man, and Galstyan, 2019 for an excellent overview. We organize related work in
three sub-areas related to fairness in outlier detection, fairness-aware representation
learning, and data de-biasing strategies.
Outlier Detection and Fairness Outlier detection (OD) is a well-studied problem
in the literature (Aggarwal, 2015; Gupta, Gao, Aggarwal, and Han, 2013; Chan-
dola, Banerjee, and Kumar, 2009), and finds numerous applications in high-stakes
domains like health-care (Luo and Gallagher, 2010), security (Gogoi, Bhattacharyya,
Borah, and Kalita, 2011), and finance (Phua, Lee, Smith, and Gayler, 2010). How-
ever, only a few studies focus on OD’s fairness aspects. P and Abraham, 2020 pro-
pose a detector called FairLOF that applies an ad-hoc procedure to introduce fairness
specifically to the LOF algorithm (Breunig, Kriegel, Ng, and Sander, 2000). This ap-
proach suffers from several drawbacks: (i) it mandates disparate treatment, which
may be at times infeasible/unlawful, e.g. in domains like housing or employment,
(ii) only prioritizes SP, which as we discussed in Sec. 3.2, can permit “laziness,”
(iii) it is heuristic, and cannot be concretely optimized end-to-end. Concurrent to
our work, Zhang and Davidson, 2020 introduce a deep SVDD based detector em-
ploying adversarial training to obfuscate protected group membership, similar to
our ARL baseline. This approach also has issues: (i) it only considers SP, and (ii) it
suffers from well-known instability due to adversarial training (Kodali, Abernethy,
Hays, and Kira, 2017; Madras, Creager, Pitassi, and Zemel, 2018; Cevora, 2020). A
related work by Davidson and Ravi, 2020 focuses on quantifying the fairness of an
OD model’s outcomes after detection, which thus has a different scope.
Fairness-aware Representation Learning Several works aim to map input sam-
ples to an embedding space, where the representations are indistinguishable across
groups (Zemel, Wu, Swersky, Pitassi, and Dwork, 2013; Louizos, Swersky, Li, Welling,
and Zemel, 2015). Most recently, adversarial training has been used to obfuscate
PV association in representations while preserving accurate classification (Edwards
and Storkey, 2015; Beutel, Chen, Zhao, and Chi, 2017; Madras, Creager, Pitassi, and
Zemel, 2018; Adel, Valera, Ghahramani, and Weller, 2019; Zhang, Lemoine, and
Mitchell, 2018). Most of these methods are supervised. Substituting classification
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or label-aware loss terms with unsupervised reconstruction loss can plausibly ex-
tend such methods to OD (by using masked representations as inputs to a detector).
However, a common shortcoming is that statistical parity (SP) is employed as the
primary fairness criterion in these methods, e.g. in fair principal component analy-
sis (Olfat and Aswani, 2019) and fair variational autoencoder (Louizos, Swersky, Li,
Welling, and Zemel, 2015). To summarize, fair representation learning techniques
exhibit two key drawbacks for unsupervised OD: (i) they only employ SP, which
may be prone to “laziness", and (ii) isolating embedding from detection makes em-
bedding oblivious to the task itself, and therefore can yield poor detection perfor-
mance (as shown in experiments in Sec. 6.5).
Strategies for Data De-Biasing Some of the popular de-biasing methods (Kamiran
and Calders, 2012; Krasanakis, Spyromitros-Xioufis, Papadopoulos, and Kompat-
siaris, 2018) draw from topics in learning with imbalanced data (He and Garcia,
2009) that employ under- or over-sampling or point-wise weighting of the instances
based on the class label proportions to obtain balanced data. These methods apply
preprocessing to the data in a manner that is agnostic to the subsequent or down-
stream task and consider only the fairness notion of SP, which is prone to “laziness.”
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Chapter 4

Detecting and Ranking
Generalized Anomalies

Chapter based on: Meng-Chieh Lee, Shubhranshu Shekhar, Christos Faloutsos,
T Noah Hutson, and Leon Iasemidis (2021). “Gen2Out: Detecting and ranking
generalized anomalies”. In: 2021 IEEE International Conference on Big Data (Big
Data). IEEE, pp. 801–811

4.1 Introduction

How would we spot and rank single-point- as well as group-anomalies? How can
we draw attention of the clinician to strange brain activities in multivariate EEG
recordings of an epileptic patient? How could we design an anomaly score function,
so that it assigns intuitive scores to both point-, as well as group-anomalies? Our
goal is to design a principled and fast anomaly detection algorithm for a given cloud
of m-dimensional point-cloud data that provides a unified view as well as a scoring
function for each generalized anomaly. This has numerous applications (intrusion
detection in computer networks, automobile traffic analysis, outlier1 detection in
a collection of feature vectors from, say, medical images, or twitter users, or DNA
strings, and more).

Our motivating application is seizure detection in EEG recordings. Specifically,
we want to spot those parts of the brain, and those time-ticks, that a seizure hap-
pened. Epilepsy is a neurodegenerative disease that affects 1− 2% of the world’s
population and is characterized by recurrent seizures that intermittently disrupt the
normal function of the brain through paroxysmal electrical discharges (Shorvon,
2009). At least 30% of patients with medically refractory epilepsy are resistant to
the mainstay treatment by anti-epileptic drugs (AEDs). These patients may bene-
fit from surgical therapy. A significant challenge of this therapy is identification of
the region of the brain where seizures are originating, that is, the epileptogenic fo-
cus (Krishnan et al., 2015; Vlachos, Krishnan, Treiman, Tsakalis, Kugiumtzis, and
Iasemidis, 2016). This region is then surgically either resected or electrically stimu-
lated over time to control upcoming seizures long prior to their occurrence (Tsakalis
and Iasemidis, 2006; Chakravarthy, Sabesan, Tsakalis, and Iasemidis, 2009; Hutson,
Pizarro, Pati, and Iasemidis, 2018). Accurate identification of the epileptogenic focus
is therefore of high significance for the treatment of epilepsy.

As suggested by the application domain, to achieve better outcomes for patients,
it is critical to direct attention of the clinician to the anomalous time periods in the

1We use outlier and anomaly interchangeably in this work.
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Correctly detected seizures

(A) EEG data

(B) Heatmap of http data (C) Detected group-anomalies

FIGURE 4.1: (a) GEN2OUT matches ground truth. Brain scan of the patient with elec-
trode positions (top row), and detected groups shown in color red, that matches the
ground truth seizure locations. (b) Heatmap of http intrusion detection dataset (c)
GEN2OUT correctly spots group (DDoS) attacks in the intrusion detection dataset, marked

GA1, GA2 and GA3.

brain activity in order of their suspiciousness. The problem is two-fold: (a) detec-
tion, as well as (b) ranking of generalized anomalies. We want a scoring function
for generalized anomalies, such that in the EEG/epilepsy setting it would score the
groups which may correspond to anomalous periods e.g. seizure and draw attention
to most anomalous time periods; thus aiding a domain expert in decision making.
As we show in Section 4.3.1, we propose some intuitive axioms, that a generalized
anomaly detector should obey.

Informal Problem 1 (Doubly-general anomaly problem).

• Given a point-cloud dataset from an application setting,

• find the point-anomalies and group-anomalies, and

• rank them in suspiciousness order.

Generality of approach: In most machine learning (ML) algorithms, we operate on
clouds of points (after embedding, after auto-encoding etc). For example, time series
is transformed into some form of m−dimensional cloud (Blázquez-García, Conde,
Mori, and Lozano, 2021) for further analysis; in images, numerical features are gen-
erated for learning tasks e.g. Imagenet (Krizhevsky, Sutskever, and Hinton, 2012).
Thus, the proposed approach can be applied to diverse real data including point
cloud, time-series and image data.

Figure 6.1 illustrates the effectiveness of our method – GEN2OUT detects group-
anomalies that correspond to seizure period in the patient; and, detects DoS/DDoS
attack as group-anomalies.

We propose GEN2OUT, which has the following properties:
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TABLE 4.1: GEN2OUT matches all the specs. Qualitative comparison of GEN2OUT against
top competitors showing that every competitor misses one or more features.

Property
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Obeys Axioms (see §4.3.1) ? ? ? ? ✓

Discover point anomalies ✓ ✓ ✓ ✓

Rank point anomalies ✓ ✓ ✓ ✓

Discover group anomalies ? ✓

Rank group anomalies ✓ ✓ ✓ ✓ ✓

Jointly rank point- and group- anomalies ✓

Scalable ✓ ? ✓ ? ✓ ? ? ✓

• Principled and Sound: We identify five axioms (see Section §4.3.1) and show
that the proposed GEN2OUT obeys them, in contrast to top competitors.

• Doubly-general: GEN2OUT is doubly general. First dimension of generaliza-
tion is size of anomalies – detecting point- and group-anomalies. Second di-
mension of generalization is scoring and ranking of generalized anomalies–
both point- and group-anomalies.

• Scalable: Linear on the input size (see Figure 4.10).

• Effectiveness: Applied on real-world data (see Figure 6.1 and 4.7), GEN2OUT

wins in most cases over benchmark datasets for point anomaly detection. For
group anomaly detection, GEN2OUT has no competitors as they need group
structure information, and it agrees with ground truth on seizure detection.

4.2 Background and Related Work

Anomaly detection is a well-studied problem. Recent works (Boukerche, Zheng,
and Alfandi, 2020; Chandola, Banerjee, and Kumar, 2009; Aggarwal, 2015; Gupta,
Gao, Aggarwal, and Han, 2013; Toth and Chawla, 2018) provide a detailed review of
many methods for anomaly and outlier detection. As shown in Table 4.1, GEN2OUT

is the only method that matches the specs. Here, we review anomaly detection meth-
ods for point- and -group- anomalies.
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Point Anomaly Detection. Model-based and density-based methods for outlier de-
tection are quite popular for point cloud data. Principal component analysis (PCA)
based detectors (Shyu, 2003) assume that the data follows a multi-variate normal
distribution. Local outlier factor (LOF) (Breunig, Kriegel, Ng, and Sander, 2000)
flags instances that lie in low-density regions. Clustering based methods (He, Xu,
and Deng, 2003) score instances or small clusters by their distance to large clusters.
However, these methods suffer from too many false positives as they are not opti-
mized for detection (Liu, Ting, and Zhou, 2012). Recently, a surge of focus has been
on ensemble-based detectors that have been shown to outperform base detectors and
are considered state-of-the-art for outlier detection (Emmott, Das, Dietterich, Fern,
and Wong, 2013b). Isolation forest (Liu, Ting, and Zhou, 2008b) (IF), a state-of-the-
art ensemble technique, builds a set of randomized trees that allows approximating
the density of instances in a random feature subspace. Emmott, Das, Dietterich,
Fern, and Wong, 2013b show that IF significantly outperforms other detectors such
as LOF. IF (Liu, Ting, and Zhou, 2008b) shows that LOF has a high computation
complexity (quadratic) and does not scale for large datasets. After that two more
methods LODA (Pevnỳ, 2016) and Random Cut Forests (RRCF) (Guha, Mishra,
Roy, and Schrijvers, 2016) have been proposed as state-of-the-art methods. LODA
is projection-based histogram ensemble that works well in many real settings. RRCF
improve upon IF and use a data sketch that preserves pairwise distances.

Group Anomaly Detection. Numerous methods have been proposed for group
anomaly detection (Muandet and Schölkopf, 2013; Chalapathy, Toth, and Chawla,
2018; Xiong, Póczos, Schneider, Connolly, and VanderPlas, 2011; Yu, He, and Liu,
2015). Earlier approaches (Muandet and Schölkopf, 2013; Chalapathy, Toth, and
Chawla, 2018; Xiong, Póczos, Schneider, Connolly, and VanderPlas, 2011) require
the group memberships of the points known apriori, while Yu, He, and Liu, 2015 re-
quires information on pairwise relations among data points. Moreover, these meth-
ods focus only on scoring group-anomalies, and ignore point-anomalies unlike our
method. GEN2OUT detects and ranks anomalous points and groups, without requir-
ing additional information on group structure of the dataset. As mentioned above,
Table 4.1 summarizes comparison of GEN2OUT against state-of-the-art point- and
group- anomaly detection methods. As such none of the methods has all the fea-
tures of Table 4.1 .

Fractals and multifractals: In order to stress test our method, we use self-similar
(fractals) clouds of points. We created the fractal images (Sierpinski triangle, biased
line and ‘fern’ etc.), using the method and the code from Barnsley and Sloan, 1988.
We used the ‘uniform’ version (that is, for the Sierpinski triangle, all the miniature
versions have the same weight of 1/3), also generated the ‘biased’ version of triangle
using weights (0.6, 0.3, 0.1), and ‘biased line’ with bias b = 0.8 using weights (0.8,
0.2) that is b of the data points go to the first half of the line, and in this half, b of the
data points go to first quarter of the line, and so on recursively (this, informally, is
the 80-20 law).

4.3 Proposed Axioms and Insights

In this section, we explain our proposed axioms in detail and give the insights. It
is worth noting that these axioms are proposed to examine whether an anomaly
detector is provided with the ability to compare the scores across datasets. The as-
sumption is that, there are two different datasets with the same application setting.
Although some of the axioms seem to be popular in single dataset setting, they are
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FIGURE 4.2: Illustration of Axioms
not considered and even ever mentioned by other studies when there is more than
one dataset. The observed insights are critical and penetrate this research. These
greatly inspire us on selecting the core part of our anomaly detector.

4.3.1 Proposed Axioms

We propose five axioms an ideal anomaly detector should follow: producing higher
anomaly scores when an instance is farther away from data kernel (distance aware),
or lies in low density locality (density, radius and group aware), and not aligned with
majority of data (angle aware (Kriegel, Schubert, and Zimek, 2008)). In the following,
let a ∈ Rm and b ∈ Rm be m−dimensional anomalies in point cloud datasets Sa
and Sb respectively. Additionally, suppose that normal observations are distributed
uniformly in a disc in the datasets as shown in Figure 4.2 and s(.) is the generalized
anomaly score function.

Axiom 1 (Distance Aware). All else being equal, the farther point from the normal
observations is more anomalous.

Sa − {a} = Sb − {b},
dist(a, Sa) > dist(b, Sb)

}
=⇒ s(a) > s(b)

Axiom 2 (Density Aware). All else being equal, denser the cluster of points, more
anomalous the outlier.

dist(a, Sa) = dist(b, Sb),
density(Sa) > density(Sb)

}
=⇒ s(a) > s(b)

Axiom 3 (Radius Aware). All else being equal, for a given number of observations,
smaller the radius of the cluster of points, more anomalous the outlier.

|Sa| = |Sb|,
dist(a, Sa) = dist(b, Sb),
radius(Sa) < radius(Sb)

 =⇒ s(a) > s(b)
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Ideal

FIGURE 4.3: GEN2OUT wins (in color blue) as the estimated depth is close to 45o line. IF
estimates the same depth for each dataset with #samples=1M.

Axiom 4 (Angle Aware). All else being equal, smaller the angle of a point with
respect to cluster of observation, more anomalous the outlier.

|Sa| = |Sb|,
density(Sa) = density(Sb),
radius(Sa) = radius(Sb),
angle(a, Sa) < angle(b, Sb)

 =⇒ s(a) > s(b)

Axiom 5 (Group-size Aware). All else being equal, the least populous group, the
more anomalous it is.

Let ga ⊂ Sa, gb ⊂ Sb are the groups.

|ga| < |gb|
|Sa − ga| = |Sb − gb|,
density(Sa) = density(Sb),
radius(Sa) = radius(Sb),

 =⇒ s(ga) > s(gb)

Justification for Axioms Axiom A1 is self explanatory as shown in Figure 4.2a. The
outlier point (shown in color red) in the left dataset (Figure 4.2a) being farther from
the normal observations should be more anomalous.

Consider the case of social networks. A node reachable via k hops from a close
friends group should be more anomalous compared to reachable via k hops from
a colleagues group. Figure 4.2b illustrates Axiom A2 where the outlier in the left
dataset should be more anomalous.

As shown in Figure 4.2c, for the same number of observations, the larger radius
cluster would have a larger distance among points. Therefore, the outlier in the left
dataset with smaller radius should be more anomalous.

The farther points would tend to form a smaller angle with the cluster of obser-
vations (see Figure 4.2d) and should be more anomalous in the left dataset.

The group ga = {a} consisting of one point Figure 4.2e is intuitively more
anomalous compared to group gb = {b, b′} containing more data points. For ex-
ample, if gb has 1000 points, it is not an anomaly anymore.

4.3.2 Insights

In this section, we are given the observations X = {x1, . . . , xn} where xi ∈ Rm (see
Table 4.2 for symbol definitions) for the anomaly detection. Our goal is to design
an anomaly detector that obeys the axioms proposed in §4.3.1. The intuition for
the selection of basic model is that, according to the five axioms in Figure 4.2, point
‘a’ in the first dataset should always have higher probability to be separated out
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TABLE 4.2: Table of symbols.

Symbol Definition

X = {xi} point cloud dataset where xi ∈ Rm for i ∈ 1, 2, . . . n
s(.) anomaly score function for an outlier detector

h(q) path length estimate for instance q as it traverses
a depth limited ATOMICTREE

E[h(q)] path length averaged over the ensemble
H(n) depth estimation function for an ATOMICTREE

containing n observations
dlimit depth limit of a ATOMICTREE

comparing the point ‘b’ in the second dataset. ATOMICTREE has the properties which
are very close to our demand. Here, we consider a randomized tree ATOMICTREE

data structure with the following properties – (i) Each node in the tree is either leaf
node, or an internal node with two children, (ii) internal nodes store an attribute-
value pair and dictate tree traversal. Given X = {x1, . . . , xn}, ATOMICTREE is grown
through recursive division of X by randomly selecting an attribute and a split value
until all the leaf nodes contain exactly one instance (hence the name ATOMICTREE) of
observations assuming that observations are distinct. We randomly generate more
than one tree to build a forest, to reduce the variance and detect outliers in subspaces.

We make a number of interesting observations while empirically investigating
the process of tree growth for a variety of data distributions including multi-fractals.
In Figure 4.4, we report depth (height) distribution of randomized trees averaged
over 100 trees. We sample a number of points (|X| ∈ {210, 211, 212, 220}; m = 2) from
each data distribution (shown in Figure 4.4 (a), (b), (c), (d), (i), (j), (k), (l)) and plot
their corresponding depth (height) distribution (shown in Figure 4.4 (e), (f), (g), (h),
(m), (n), (o), (p)). Notice that the number of points (2x; x ∈ {6, 7, . . . }) in the tree
grows linearly with the average depth for any given dataset. In Figure 4.3, we plot
the predicted depth for each of the distributions against the actual depth of the tree
for those distributions shown in Figure 4.4 by fitting to this linear trend. We present
the following lemma based on the observations and draw the following insights.

Insight 1 (Power Depth Property (PDP)). The growth of the tree depth with the logarithm
counts of observations is linear irrespective of the data distribution.

Justification for PDP property: In our attempt to explain PDP property, we study
the expected depth computation for datasets with known distributions. However,
in general, it is difficult. Let us consider biased line dataset with a bias factor b. Here
we study a related setting: random points, but with fixed cuts. We refer to this
model as ‘fixed-cut’ tree FIXEDCUTTREE. For this case, we can show that the PDP
property holds, and the slope grows as the ‘bias’ factor b grows. Then, the depth of
FIXEDCUTTREE for a biased fractal line (data in Fig. 4.4d) obeys the following lemma.

Lemma 1 (Expected Depth of FIXEDCUTTREE). The expected tree depth H(n, b) for a
biased line with a bias factor b containing n ≥ 2 data points is given as:

H(n, b) =
n

∑
k=0

[(n
k

)
bk(1− b)n−k×

( k
n

H(k, b) +
n− k

n
H(n− k, b) + 1

)]
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FIGURE 4.4: Illustrating depth distribution for several diverse datasets (including
Gaussian, Uniform, multifractals).

Proof. Let H(k, b) be the depth of FIXEDCUTTREE with k observations constructed us-
ing Xk ⊆ X. Since FIXEDCUTTREE is grown via recursive partitioning on a randomly
chosen attribute-value, therefore, for a biased line, b = probability of a point going to
left node i.e. the point less than chosen attribute-value. Let k be the number of points
partitioned onto the left node, then n− k points go to right node. Define B(n, k, b) =
(n

k)b
n(1− b)n−k the Binomial probability for a fixed k. Let f (n, k, b) be the estimate

of the depth when k observations are in left node, then f (n, k, b) =
( k

n H(k, b) +
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n−k
n H(n − k, b) + 1

)
as each random partition increases depth by 1. Therefore, the

expected depth of the tree is given as H(n, b) = ∑n
k=0 f (n, k, b)B(n, k, b). ■

We denote H(n, b) = H(n) for b = 1/2. A tree with one data point would have
a depth of one i.e. H(1, b) = 1 = H(1); and H(0, b) = 0 = H(0). In Figure 4.5, we
show the effect of bias on the the (analytical) depth computed using H(n, b). Notice
that increase in bias – indicating deviation from uniformity – increases depth which
matches intuition.
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FIGURE 4.5: Depth (H(n, b)) vs. Dataset size: slope increases with increase in bias for a
biased line data

Corollary 1. For bias 1− b, H(n, 1− b) follow the results for H(n, b).

Following the PDP property, the depth estimation function is given as

H(n) ≈ w0 + w1log2(n) (4.1)

where w0 and w1 are parameters that we estimate for each data distribution, and n
is the number of instances in the dataset.

Insight 2. The slope of the linear fit varies significantly depending on the dataset distribu-
tion.

For example, the slope for Uniform Line (see Fig. 4.4g) is 1.38, while for a Uni-
form Square (see Fig. 4.4p) is 1.66. These insights lead to the following lemma.

Lemma 2. GEN2OUT includes IF as a special case.

Proof. In Eq. 4.1, setting w0 = 2× 0.57− (2(n− 1)/n) and w1 = 2× loge(2) yields
the average path length function used in IF. Here, 0.57 is the Euler’s constant, and
loge(2) accounts for the difference in log bases. ■

Drawing from these insights, next we present the details of our proposed anomaly
detector algorithm.

4.4 Proposed Method

For ease of exposition, we describe the algorithm in two steps – GEN2OUT0 for point
anomalies, and then GEN2OUT for generalized anomalies.
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TABLE 4.3: GEN2OUT wins as it obeys all the axioms a generalized anomaly detector
should follow. We compare the methods statistically, by conducting two-sample t-test
based on scores obtained for points a, b. A positive difference in score indicates that the
detector follows that axiom (see Figure 4.2). indicates that the detector follows the ax-

iom, indicates that the detector does not obey the axiom.

LODA RRCF IF GEN2OUT

Statistic p-value Statistic p-value Statistic p-value Statistic p-value
A1: Distance Axiom 0 1 3.6 0.002** 2.1 0.054 11.4 1.2e-9***
A2: Density Axiom 7e15 2e-275*** -0.14 0.89 -10 8.6e-9*** 25.2 1.7e-15***
A3: Radius Axiom 0 1 6.4 4.8e-6*** 11.9 5.9e-10*** 21.3 3.4e-14***
A4: Angle Axiom 6.6 3.2e-6*** 17.5 9.6e-13*** -0.2 0.83 53.7 2.5e-21***
A5: Group Axiom -14.7 1.8e-11*** 1.1 0.27 0.95 0.35 28.2 2.6e-16***

Our goal is to design a principled, universal anomaly detector that allows for
score comparison across point-cloud datasets, and we present the proposed GEN2OUT.
Motivated by our epilepsy application, we aim to apply it to draw attention to
anomalous periods in a multivariate time series data, and to point to variables that
characterize the flagged anomalous period. We are given T = {Ti}, i = 1, 2, . . . a
set of multivariate time series. Each time series T ∈ T consists of signal measure-
ments xt = (xt1, . . . , xtM) across M variables (electrode channels in seizure data) at
each time step t = 1, 2, ..., T. To find anomalous patterns that occur in multivari-
ate time series T , we divide time-series data T into subsequence Sj according to
the sliding window size K. We characterize each univariate series of length K with
several features such that each univariate series becomes a m-dimensional point. In
particular, each univariate series in the multivariate time series is summarized by
a set of features extracted from its statistical properties such as first four moments,
and each subsequence Sj is transformed into a point cloud data matrix Xj ∈ RM×m.
We then apply GEN2OUT (details to follow next) to each data matrix Xj and record
the anomalousness of each (electrode channel) variable ∈ 1, . . . , M for each period
of time (window size K). The key property of GEN2OUT is that it obeys the axioms
that an ideal detector should follow enabling us to reason about the anomalousness
of each time period and the anomalousness of each variable within a time period
by comparing their respective anomaly scores. Therefore, each time period is now
represented by an anomaly score vector through which we can draw attention of the
domain experts to anomalous time periods.

4.4.1 Point anomalies – GEN2OUT0

Given the observations X = {x1, . . . , xM} where xi ∈ Rm, GEN2OUT0’s goal is to
detect and assign anomaly score to outlier points. GEN2OUT0 uses an ensemble of
depth-limited randomized tree ATOMICTREE (§4.3.2) that recursively partition in-
stances in X.

Definition 1 (Depth Limited ATOMICTREE). An ATOMICTREE that is constructed by
recursively partitioning the given set of observations X until a depth limit dlimit is reached
or the leaf nodes contain exactly one instance.

As evidenced in prior works, the random trees induce shorter path lengths (num-
ber of steps from root node to leaf node while traversing the tree) for anomalous
observations since the instances that deviate from other observations are likely to be
partitioned early. Therefore, a shorter average path length from the ensemble would
likely indicate an anomalous observation. Anomaly detection is essentially a rank-
ing task where the rank of an instance indicates its relative degree of anomalousness.
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Data: A data matrix X, number of ATOMICTREE estimators numTrees,
ATOMICTREE depth limit dlimit

Result: w0, w1 of depth estimation function H(·) and ATOMICTREE ensemble
1 Initialize Y and Z;
/* Estimating the function H(·) */

2 for i = n1, n1 + 1, . . . ; // a small n1 e.g. 10
3 do
4 Draw Xs ⊂ X s.t. |Xs| = 2i ;
5 Fs ← CONSTRUCT-ATOMICTREE (Xs, ∞);
6 Z ← Z∪ average depth of Fs containing observations Xs;
7 Y ← Y ∪ i;
8 end
9 H(.)← Fit linear regression Y and Z;

10 w0, w1 ← coefficients(H(.));
/* Construct the ensemble of atomicTree */

11 for t = 1 to numTrees do
12 ensemble← ensemble ∪ CONSTRUCT-ATOMICTREE (X, dlimit);
13 end
14 return w0, w1, ensemble

Algorithm 1: GEN2OUT0-FIT

We next design anomaly score function for our algorithm to facilitate ranking of ob-
servations.
Proposed Anomaly Score. We construct anomaly score using the path length h(q)

Data: A data matrix X,dlimit, currDepth:0
Result: ATOMICTREE

1 Initialize ATOMICTREE;
2 if dlimit ≤ currDepth or |X| ≤ 1 then
3 return a leaf node of size |X|
4 else
5 pick an attribute at random from X;
6 pick an attribute value at random;
7 Xl ← set of points on the left (<) of the chosen attribute-value pair;
8 Xr ← set of points on the right (≥) of the chosen attribute-value pair;
9 left← CONSTRUCT-ATOMICTREE (Xl ,dlimit, currDepth + 1);

10 right← CONSTRUCT-ATOMICTREE (Xr,dlimit, currDepth + 1)
11 return an internal node with {left, right, {chosen attribute-value

pair}}
12 end

Algorithm 2: CONSTRUCT-ATOMICTREE

for each instance q ∈ Rm as it traverses a depth limited ATOMICTREE. The path
length for q is h(q) = h0 + H(lbusy) if lbusy > 1; otherwise h(q) = h0 where h0 is the
number of edges q traverses from root node to leaf node that contains lbusy points in
a depth limited ATOMICTREE. When lbusy > 1, we estimate the expected depth from
the leaf node using H(lbusy) (uses Eq. 4.1). We normalize h(q) by the average tree
height H(n) (height of ATOMICTREE containing n observations) for the depth limited
ATOMICTREE ensemble to produce an anomaly score s(q, n) for a given observation
q. Referring to the PDP insights we presented in Section §4.3.2, we estimate the data
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dependent H(·) using Eq. 4.1 since the tree depth grows linearly with the number of
observations (in log2) in the tree (see Figure 4.4). The slope of the linearity is char-
acterized by underlying data distribution; each distribution follows a linear growth.
The score function is

s(q, n) = 2−
E[h(q)]
H(n) (4.2)

where E[h(q)] is the average path length of observation q in the ATOMICTREE en-
semble, n is number of data points used to construct each ATOMICTREE, and H(n) is
the function for estimating depth of the tree given in Eq. 4.1.

GEN2OUT0 Parameter Fitting. GEN2OUT is a depth limited ATOMICTREE ensemble.
The algorithm for fitting GEN2OUT0 parameters is provided in Algorithms 1 and 2.

Data: A data matrix X, ATOMICTREE ensemble
Result: Anomaly scores scores for observations in X

1 Initialize depths;
2 Initialize scores;
3 Initialize lbusy;
4 n← numSamplesInatomicTree;
5 for x ∈ X do
6 depths← depths ∪ compute path-lengths for x (see §4.4.1);
7 lbusy← lbusy∪ compute number of samples in leaf where traversal of x

terminated ;
8 end
9 for depth ∈ depths, l ∈ lbusy do

10 h =depth+H(l);

11 s = 2
−h

H(n) ;
12 scores← scores ∪ s;
13 end
14 return scores;

Algorithm 3: GEN2OUT0-Scoring

GEN2OUT0 Scoring. To assign anomaly scores to the instances in a data matrix X,
the expected path length E(h(q)) for each instance q ∈ X. E(h(q)) is estimated by av-
eraging the path length after tree traversal through each ATOMICTREE in GEN2OUT

ensemble. We outline the steps to assign anomaly score to a data point using GEN2OUT0
in Algorithm 3.

4.4.2 Full algorithm – GEN2OUT

GEN2OUT0 can spot point-anomalies. How can design an algorithm that can spot
both point- as well as group-anomalies, simultaneously?

The main insight is to exploit the less-appreciated ability of sampling to drop out-
liers, with high probability. How can we use this property to spot group-anomalies,
of size, say ng (in a population of n data points)? The idea is that, with a sampling
rate of ng/n, a point a of the group will probably be stripped of its cohorts, and thus
behave like a point-anomaly, exhibiting a high anomaly score. For dis-ambiguation
versus the sampling of GEN2OUT0, we will refer to this sampling process as ‘qualifi-
cation’, and to the corresponding rate as qr= qualification rate.
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Initialize n← |X|;
/* Step 0: Fit a sequence of GEN2OUT0 */

1 for qr ∈ {1, 1/2, 1/4, · · · } do
2 Draw Xs ⊂ X s.t. |Xs| = n× qr;
3 GEN2OUT0-ensembles← GEN2OUT0-ensembles ∪ GEN2OUT0-FIT (Xs , .,

.);
4 end
/* Step 1: create X-RAY plot */

5 for e ∈ GEN2OUT0-ensembles do
/* generate score for specific qualification rate */

6 scores← scores ∪ GEN2OUT0-Scoring(X, e);
7 end
/* Step 2: Apex extraction */
/* max score and qualification rate for each point across

qualified datasets */
8 max_scores, max_qr← arg max(scores) ;
/* select points with max score above threshold */

9 candidate-points← X[max_scores ≥ threshold];
/* Step 3: Outlier grouping */

10 for r ∈ unique(max_qr) do
11 candidate-points_r ; // candidate points at this qualification

rate
/* identify more than one group per qualification rate */

12 clusters← cluster candidate-points_r;
13 end

/* Step 4: Compute iso-curves */
14 for cl ∈ clusters do

/* points similar to outlier at (score=1, qr=1) is more
anomalous */

15 iso_scores← 2−ManhattanDistance([ log2 max_qr(a)
10 +1,max_score(a)],[1,1])
2 ∀a ∈ cl;

16 end
/* Step 5: Scoring */

17 assign scores← median(iso_scores(cl)) ∀cl ∈ clusters

Algorithm 4: GEN2OUT

In more detail, to determine whether point a belongs to a group-anomaly, we
compute its (GEN2OUT0) score s(a, qr) for several qualification rates qr; when the
score peaks (say, at rate ng/n) then ng is roughly the size of the group-anomaly (=
micro-cluster) that a belongs to. Some definitions:

Definition 2 (X-RAY-line). For a given data point a, the X-RAY line is the function
(score(a, qr) vs qr).

Definition 3 (X-RAY plot). For a cloud of n points, the X-RAY plot is the 2-d plot of all the
n X-RAY-lines (one for each data point)

See Figure 4.6b for an example.

Definition 4 (APEX). Apex of point a is the point (score, qr) with the highest anomaly
score.
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(A) Synthetic data
heatmap

(B) Step 1: X-RAY plot (C) Step 2: Apex ex-
traction

(D) Step 3: Outlier
grouping

(E) Step 4: Anomaly iso-
curves

(F) Step 5: Scoring

FIGURE 4.6: GEN2OUT works. Illustration of GEN2OUT on synthetic dataset

See Figure 4.6c for an example.
Algorithm 4 describes the steps of the proposed GEN2OUT. In summary, we find

the X-RAY plot (Step 1) and then find the apex point for every data point a (Step 2);
keep the ones with high apex and then cluster the corresponding data points (Step
3); and then assign scores to the each group (Step 4 and Step 5).

Figure 4.6 illustrates the steps in GEN2OUT on a synthetic dataset that has two
anomalous groups along with several point anomalies.

Figure 4.6b finds the X-RAY plot and Figure 4.6c shows the apex with the red
threshold line. We find two groups after applying clustering (dbscan (Schubert,
Sander, Ester, Kriegel, and Xu, 2017) in our implementation) shown in color red,
and blue in Figure 4.6d. Then we compute the similarity of points in X-RAY plot
representation in each cluster to the theoretically most anomalous point at score= 1,
qr= 1 (see iso curves in Figure 4.6e), and then assign generalized anomaly score
using the median of the similarity scores as shown in Figure 4.6f. GEN2OUT cor-
rectly assigns higher score to GA1 (blue cluster in Figure 4.6f) which contains 1000
points as compared to GA2 (red cluster in Figure 4.6f) containing 2000 points (also
see Axiom A5). For ease of visualization, we do not show point-anomalies in this
plot.

4.5 Experiments

We evaluate our method through extensive experiments on a set of datasets from
real world use-cases. We now provide dataset details and the experimental setup,
followed by the experimental results.

4.5.1 Dataset Description

• Epilepsy Dataset. We analyzed intracranial electroencephalographic (EEG) sig-
nals recorded at the Epilepsy Monitoring Unit of a large public university from one
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TABLE 4.4: Benchmark datasets summary.

Datasets #Samples Dimension % Outliers
Size < 3000

arrhythmia 452 274 14.6%
cardio 1831 21 9.6%
glass 214 9 4.2%
ionosphere 351 33 35.9%
letter 1600 32 6.3%
lympho 148 18 4.1%
pima 768 8 34.9%
vertebral 240 6 12.5%
vowels 1456 12 3.4%
wbc 378 30 5.6%
breastw 683 9 35%
wine 129 13 7.8%

Size ≥ 3000
mnist 7603 100 9.2%
musk 3062 166 3.2%
optdigits 5216 64 2.9%
pendigits 6870 16 2.3%
satellite 6435 36 31.6%
satimage-2 5803 36 1.2%
shuttle 49097 9 7.2%
annthyroid 7200 6 7.4%
cover 286048 10 0.96%
http 567498 3 0.39%
mammography 11183 6 2.3%
smtp 95156 3 0.032%
speech 3686 400 1.7%
thyroid 3772 6 2.5%

patient with refractory epilepsy. Electrodes were stereotactically placed in the brain
and EEG signals were then recorded across 122 electrode contacts at a sampling rate
of 2KHz with focal region in the right temporal lobe.

• Benchmark Datasets. Our benchmark set consist of 4 real-world outlier de-
tection datasets from ODDS repository (Rayana, 2016). The datasets cover diverse
application domains and have diverse range dimensionality and outlier percent-
age (summarized in Table 4.4). The ODDS datasets provide ground truth outliers
that we use for the quantitative evaluation of the methods.

4.5.2 Point Anomalies

We compare GEN2OUT0 to the following state-of-the-art ensemble baselines.
1. IF: Isolation Forest (Liu, Ting, and Zhou, 2008b) uses an ensemble of random-

ized trees to flag anomalies.
2. LODA: Lightweight on-line detector of anomalies (Pevnỳ, 2016) is a projection

based histogram ensemble.
3. RRCF: Robust Random Cut Forest (Guha, Mishra, Roy, and Schrijvers, 2016)

are tree ensembles that use sketch based anomaly detector.
To evaluate the effectiveness, we compare GEN2OUT0 to state-of-the-art ensem-

ble baselines on a set of real-world point-cloud benchmark outlier detection datasets.
We use average precision (AP) and receiver operating characteristic (ROC) scores as
our evaluation metrics. We plot the scores (AP and ROC score) for each competing
method on all the benchmark datasets in Figure 4.7.
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(A) Dataset size < 3000.
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(B) Dataset size ≥ 3000 where RRCF doesn’t scale.

FIGURE 4.7: GEN2OUT0 wins. We plot average precision (AP) and area under the ROC
curve for GEN2OUT0 against the same metric of the competitors (none of which obey all
our axioms). Points representing benchmark datasets are below the line for the majority

of datasets.

If the points are below the 45 degree line where each point represents a dataset
listed in Table 4.4, then it indicates that GEN2OUT0 outperforms the competition in
those datasets. As shown in Figure 4.7, for both the evaluation metrics, GEN2OUT0
beats or at least ties with all baselines on majority of the datasets (see Figure 4.1c).
The quantitative evaluation demonstrates that GEN2OUT0 is superior to its competi-
tors in terms of evaluation performance as well as obeys all the proposed axioms
while none of the competition obeys the axioms.

4.5.3 Group Anomalies

We evaluate the effectiveness of GEN2OUT on real-world intrusion dataset that has
attributes describing duration of attack, source and destination bytes. Note that
we do not include group anomaly detection methods for comparison as they re-
quire group structure information, hence do not apply to our setting. Figure 4.8a
shows source bytes plotted against destination bytes for the points. Figures 4.8b –
4.8f shows the X-RAY plot with scores trajectory, APEX with candidate points above
the threshold (set at mean + 3 standard deviation of scores in full dataset), identi-
fied groups and the generalized anomaly score for each detected group. GEN2OUT

matches ground truth as it detects the three anomalous groups as shown in Fig-
ure 4.8d. In short GEN2OUT is able to detect groups that correspond to distributed-
denial-of-service attack.

4.5.4 Scalability

To quantify the scalability, we empirically vary the number of observations in the
chosen dataset and plot against the wall-clock running time (on 3.2 GHz 36 core CPU
with 256 GB RAM) for the methods. First we compare GEN2OUT0 against the com-
petitors in Figure 4.10a for point-anomalies. The running time curve of GEN2OUT0
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(A) Data heatmap (B) X-RAY plot (C) Apex extraction

(D) Outlier grouping (E) Anomaly iso-curves (F) Scoring

FIGURE 4.8: GEN2OUT detects DDoS attacks on intrusion detection http dataset

(A) Heatmap of tSNE rep-
resentation of data

(B) X-RAY plot (C) Apex extraction

(D) Outlier grouping (E) Anomaly iso-curves (F) Scoring

FIGURE 4.9: GEN2OUT works on real-world EEG data. Assigns highest anomaly score to
group anomaly GA2 that corresponds to seizures as we show in Figure 4.1a.
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FIGURE 4.10: (a) GEN2OUT0 is fast and scalable: Evaluation on benchmark datasets
show that GEN2OUT (in red) scales linearly (eventual slope=1 in log-log scales). Note
that none of the competitors obeys the axioms, and RRCF is significantly slower. (b)

GEN2OUT is fast and scalable, linear in size of input.

(A) Data heatmap (B) X-Ray plot

FIGURE 4.11: GEN2OUT works. It correctly flags no anomalies in the optdigits dataset

is parallel to the running time curve of IF, which shows that GEN2OUT0 does not in-
crease time complexity except adding a small constant overhead for estimating the
depth function H(.). The running time of RRCF is much higher than others even
after implementing the trees in parallel. Note that only GEN2OUT0 obeys the ax-
ioms. For generalized anomalies, Figure 4.10b reports the wall-clock running time
of GEN2OUT as we vary the data size. Notice that GEN2OUT scales linearly with
input size. Importantly, competitors do not apply as they require additional infor-
mation.

4.6 GEN2OUT at Work

4.6.1 No False Alarms.

When applied to datasets containing only normal groups that are relatively equal in
size, GEN2OUT correctly identifies them as normal groups i.e. does not flag any set
of points as anomalous group. To illustrate this phenomenon, we apply GEN2OUT

to optdigits dataset which contains the feature representation of numerical digits.
To better visualize the dataset, we embed the points in two dimensional space

using tSNE (Maaten and Hinton, 2008) as shown in Figure 4.11a. It is a balanced
dataset, where we have equal number of points for each digit, hence no group is
present. X-RAY plot (Figure 4.11b) shows that all the score trajectories are below 0.5
(scores close to 1 are anomalous) with mean score at 0.36 in full dataset. Hence, we
do not find group and correctly so.
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4.6.2 Attention Routing in Medicine.

We apply GEN2OUT on EEG recordings for the epileptic patient (PT1) – PT1 suffered
through onset of two seizures in our recording clips; our motivating application.
We extract four simple statistical measures from the subsequences of the time series
features, namely mean, variance, skewness and kurtosis, by sliding a thirty minute
window with two minutes overlap. Figure 4.9a shows 2−dimensional tSNE repre-
sentation of the data.

We then compute the generalized anomaly scores over time (within each win-
dow) for each detected group. Since the scores generated by GEN2OUT are com-
parable, we draw attention to the most anomalous time point, where the seizures
occurred as the detected groups correspond to seizure time period. The steps of
GEN2OUT are illustrated in Figure 4.9 when applied to multi-variate EEG data. Note
that we find, several groups as shown in Figure 4.9. Of the detected groups, the
group receiving highest score (GA2) is plotted over the raw voltage recordings over
time for the patient. The group corresponds to the ground truth seizure duration
(see Figure 4.1a). These time points that we direct attention to would assist the do-
main expert (in this case a clinician) in decision making by alleviating cognitive load
of examining all time points.
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Chapter 5

Public Health Care Fraud Detection

Chapter based on: Shubhranshu Shekhar, Jetson Leder-Luis, and Leman Akoglu
(2023). Unsupervised Machine Learning for Explainable Health Care Fraud Detection.
Tech. rep. National Bureau of Economic Research

5.1 Introduction

Fraud in health care is hard to detect. Insurers face information asymmetries, where
physicians and patients both know more about the health care delivered than the in-
surer responsible for paying for that care. Health care providers such as doctors and
hospitals face incentives to maximize their reimbursements from health insurance
companies, and insurers must largely rely on documentation from providers them-
selves. This asymmetric information leads to circumstances where unscrupulous
providers can choose to commit fraud.

The scale of health care spending means that even small amounts of fraud can be
very expensive. Estimated US health care spending in 2019 was $3.81 Trillion (NHE
Fact Sheet, 2021), almost as high as the GDP of Germany, the 4th largest in the world.
National health care spending in the US is expected to grow at an average annual
rate of 5.4%1, from 2019 to 2028, outpacing US GDP at 4.3%. Efforts to detect and
root out fraud are paramount for limiting the growth of wasteful spending.

These issues are compounded in the federal health care programs, where the
government is the insurer. The US federal government spends over a trillion dollars
per year on health insurance, largely paid to private firms, and fraud detection is
challenging due to the sheer volume of claims being processed. The largest of these
programs is Medicare, the federal health insurance program for people of age 65
and older and the disabled. With more than $800 Billion spent on Medicare in 2019,
even small shares of waste and abuse lead to large losses, which are ultimately paid
for by taxpayers and reduce the capacity of the government to fund valuable social
programs. The US Government Accountability Office (GAO) estimates Medicare im-
proper payments, a measure of mistaken or inappropriately documented spending,
in 2019 at $46.2 Billion (U.S. Government Accountability Office, 2020). This prob-
lem has gained the attention of Medicare administrators faced with the challenge
of detecting and deterring waste and fraud to ensure the program stays financially
solvent (U.S. Department of Health and Human Services, 2022).

The nature of health care fraud provides insights into how it can be detected.
Healthcare providers face incentives to manipulate billing to increase profits. Yet, in
general, patients see multiple providers, and there are many providers in the system

1The growth was a striking 36.0% in 2020 in response to the COVID-19 pandemic.



68 Chapter 5. Public Health Care Fraud Detection

that do not commit fraud. Therefore, fraud detection does not rely on the verifica-
tion of any particular claim, but rather detecting provider-level patterns of care that
appear anomalous when considering patient characteristics, medical history, and
patterns of behavior by regular non-fraudulent providers.

In this work, we develop new tools to detect health care overbilling or fraud. We
build a machine learning (ML) framework to discover patterns and detect anoma-
lous providers using large-scale Medicare claims data. Our method focuses on in-
patient hospitalization, the largest category of spending and the highest-intensity
health care provided by Medicare, which cost the US government $147 Billion in
2021. The proposed approach identifies anomalous providers based on their billing
patterns, using patient-level data including medical history, demographics, and ge-
ography. We employ our method to identify anomalous patterns among providers
and rank them in order of their suspiciousness without using any supervision, that is,
not relying on any a priori labeled training data. Moreover, our approach is equipped
with explanations to the suspiciousness of the flagged providers, enabling end users
like auditors to use our results to guide further investigation.

Our approach is an ensemble method, utilizing three novel unsupervised detec-
tion algorithms that uncover aberrant patterns in care across different data modali-
ties. The first component of the ensemble focuses on providers2 with large observed
expenditures conditioned on patient characteristics and medical history. We use a
regression-based analysis to identify providers with large fixed effects that corre-
spond to high spending per patient even controlling for observable medical history
and location of the patient. The second component focuses on coding behavior of
claims, uncovering rare ICD-10 medical coding patterns employed by providers,
which is indicative of manipulation of specific codes a patient is tagged with in or-
der to garner higher reimbursements. The third component is peer based, focusing
on identifying aberrant hospital billing code (DRG) patterns among a related group
of hospitals, where the group of hospitals share similar patient populations and dis-
tributions of types of care.

We assemble the evidence from these three detection methods together to rank
providers based on suspiciousness. We utilize instant-runoff voting (Franceschini,
Maisano, and Mastrogiacomo, 2022) to reach an aggregate ranking for the suspi-
ciousness of providers. This method follows an iterative procedure to rank the hos-
pital that is most suspicious based on the “vote” across different detectors in each
round.

We validate our approach quantitatively with ground-truth data from the De-
partment of Justice (DOJ). Using a corpus of thousands of DOJ press releases about
fraud, we tag providers identified as fraudulent and merge these data to compare
with our ranking. While only 1 in 20 hospitals nationwide are named in the DOJ
Press releases, our ranking substantially improves detection over random sampling:
the top 50 providers identified by our method contain 21 providers named in the
same DOJ corpus, that an 8-fold lift in detection rate. We note that providers ranked
high by our method but not listed by the DOJ are not necessarily false positives;
rather, enforcement by the DOJ reflects a combination of opportunity to enforce and
capacity constraints, and hence only provides partial ground-truth. The DOJ valida-
tion is a form of positive-unlabeled data (Bekker and Davis, 2020), and the overlap
with our method is therefore a lower-bound of the amount of fraud successfully
detected.

2In this work, the words provider and hospital are used interchangeably. While providers can refer
to any health care service provider, we specifically study hospitals.
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In summary, our proposed approach provides scalable and explainable tools to
detecting fraud and abuse in health care systems. Our method does not rely on
any supervision or data labeling labor, and thus can be readily employed on mas-
sive unlabeled data. As the detectors utilize different data modalities and modeling
approaches, the explanations also provide different perspective and reasoning into
suspicious behavior. This makes our proposed approach useful in practice, as audi-
tors would be presented with multiple pieces of evidence that support a case and can
aid with further investigation. While our analysis focuses on hospitals, this method
could be readily adapted for use in detecting overbilling in outpatient claims, doc-
tor’s office visits, or other areas of potentially fraudulent care.

We foresee that our method could be particularly effective at auditing of health
care providers and guiding future enforcement. While the data set on which we
build our method is from Medicare, we anticipate our methods will prove valuable
to private insurers as well, who face nearly identical challenges in eliminating fraud
from private health insurance systems. As our ranking provides a significant lift
in detection rate than one would achieve by random sampling, it can be used to
target and prioritize auditing. While our explanations cannot provide legal-standard
evidence of bad behavior by providers, they can help sense-making and be used
as starting points that guide deeper investigation. Overall, we anticipate that our
proposed solution will have value for policymakers, auditors, and enforcers in the
health care domain at large.

This chapter proceeds as follows. We describe the background and institutions
regarding Medicare payment, health care fraud, and fraud enforcement in Section 6.3,
followed by a description of Medicare data in Section 5.3. Then, we present our de-
tection and explanation methodologies, with an overview in Section 6.4. Section 5.5
presents the global expenditure regression-based OD model; Section 5.6 presents the
local ICD subspace based OD model; and Section 5.7 presents the local/contextual
peer-based excess cost OD model. Section 5.8 reports the ensemble model detec-
tion results and multi-view explanations on several case studies. Finally, Section 5.9
provides a post-analysis toward characterizing hospitals with high estimated suspi-
ciousness. We conclude with discussion and takeaways in Section 5.10.

5.2 Background

In this section, we discuss the institutional details of Medicare fraud. First, we de-
scribe the Medicare payment system for inpatient hospitalization, which creates in-
centives for fraud. Second, we discuss the various types of Medicare fraud and the
ways in which it is enforced. While many of the institutional details about Medi-
care claims and enforcement are specific to the federal system, the general nature
of health care billing is consistent across both publicly funded and private-payer
systems.

5.2.1 Medicare Payment System

Medicare uses a prospective payment system (PPS) for inpatient hospitalization,
where providers are paid a fixed amount for each patient’s stay, regardless of stay
length or cost. Patients are coded with diagnoses and procedure codes based on the
International Classification of Diseases (ICD) system, and then based on this coding,
each inpatient stay is classified into one Medicare Severity Diagnosis Related Group
(DRG). Each DRG is associated with a certain fixed amount per stay, with possible
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small adjustments (Medpac, 2021). The fixed payment for each DRG is based on the
average costs of treating patients under that DRG code nationwide and it is updated
annually.

The PPS incentivizes providers to keep the healthcare costs down (Ellis and
McGuire, 1986) since the provider’s profit is the difference between the fixed DRG
payment and the treatment cost. This is in contrast to a reimbursement-based sys-
tem, where providers would face incentive to incur higher costs for higher reim-
bursement. However, the PPS may lead to hospitals trying to avoid treating high-
cost patients. To address such issues, PPS adjusts the DRG payment (Medpac, 2021)
to include provider specific factors such as provider’s wage index (geographic fac-
tor), patient case-mix to account for patient-population specific treatment cost, teach-
ing and research expenditure, disproportionate share of low-income patients, and
number of unusually costly outlier cases.

5.2.2 Health Care Fraud

Hospitals face incentives to miscode patients; when done intentionally or recklessly,
this can qualify as fraud. Because the patient’s ICD coding dictates their DRG and
ultimately the hospital reimbursement amount, hospital coding decisions directly
affect hospital profits.

Fraud in inpatient hospitalization takes many forms. One well-studied form is
upcoding, where hospitals miscode patients to higher severity levels of care in order
to receive higher reimbursement (Dafny, 2005; Silverman and Skinner, 2004; Becker,
Kessler, and McClellan, 2005). A second common issue is lack of medical necessity,
where a patient’s health conditions do not qualify them for that care (Howard, 2020).
Moreover, there is a variety of conduct that can also qualify as health care fraud, such
as providing compensation to providers for referring patients, which qualifies as a
kickback.

In this work, we are largely agnostic to which type of fraud hospitals commit,
and instead focus on payment levels. In general, fraud is of greatest concern when
it results in wasteful spending. Our method detects hospitals whose anomalous
conduct results in higher payments, which is valuable for detecting hospitals where
additional auditing is of highest marginal value.

5.2.3 Health Care Anti-Fraud Enforcement

The US government undertakes a number of initiatives to detect and deter waste,
fraud and abuse in federally-funded health care spending. Our method, which relies
solely on claims data, is complementary to existing methodologies. Private insur-
ers face similar challenges and also work to detect, investigate and enforce against
fraudulent providers, although they lack the full weight of the federal investigatory
system.

Federal law prohibits Medicare fraud and provides avenues by which fraud can
be addressed through criminal and civil enforcement. The federal health care fraud
statute provides criminal penalties for those who commit health care fraud, and
this enforcement is compounded by criminal enforcement under the anti-kickback
statute, as well as the wire fraud and racketeering statutes. Criminal Medicare fraud
is prosecuted by the Department of Justice. For a deeper treatment of criminal Medi-
care fraud, see Eliason, League, Leder-Luis, McDevitt, and Roberts, 2021.

Civil enforcement for Medicare fraud operates through the False Claims Act,
which provides an avenue for whistleblowers to come forward with information
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about fraud and receive compensation. Whistleblowers file their own cases in fed-
eral civil court, and the DOJ has an option to support these cases. Leder-Luis, 2020
and Howard, 2020 provide more information about the False Claims Act and show
that these whistleblowers provide high deterrence effects.

In addition to litigation, administrators use a variety of policy tools to limit
health care waste, fraud and abuse. The Office of the Inspector General of Health
and Human Services undertakes administrative actions against firms that overbill
Medicare. Medicare also has a variety of auditing programs that seek to detect un-
necessary or unjustified spending; see Shi, 2022 for a description of the Recovery
Audit Contractors program. Finally, Medicare uses regulations to target unnecessary
spending, such as prior authorization requirements. Some of these regulations com-
bat fraud while others combat waste; see Brot-Goldberg, Burn, Layton, and Vabson,
2022 and Eliason, League, Leder-Luis, McDevitt, and Roberts, 2021 for a discussion
of these regulations.

In addition to the enforcement actions listed above, Medicare and private insur-
ers undertake some data-driven investigatory work in order to detect fraud. These
efforts have received little attention in academic work. Medicare claims proces-
sors work with contractors called Unified Program Integrity Coordinators (UPICs) (Norid-
ian Healthcare Solutions, 2022) to audit and detect aberrant payments. In addition,
Medicare uses a private-public partnership model through the Healthcare Fraud
Prevention Partnership to share data between the federal government and private
insurers to detect health care fraud with patterns similar across a variety of types of
care and different health insurance programs (Healthcare Fraud Prevention Partner-
ship, 2022). When fraud is identified through these data-driven efforts, investigators
can refer those cases to the DOJ for civil or criminal prosecution.

We curate a list of hospitals that have been subject to DOJ actions at both the
criminal and civil level, used for quantitative evaluation of our method. While there
are many ways in which hospitals could have been investigated or sanctioned, be-
ing named in a DOJ press release validates that the hospital was likely committing
behavior that rose to the level of criminal or civil fraud, which represents a true
positive. A disclaimer, on the other hand, is that the hospitals subjected to DOJ ac-
tions likely constitute only a partial list of all fraudulent hospitals, as other unknown
fraud and waste may have gone undetected, which represents a false negative.

5.2.4 Related Methodological Work

In addition to the economic studies listed above that discuss health care fraud, sev-
eral data-centric approaches have been explored in the context of Medicare fraud.
We refer the reader to Bauder, Khoshgoftaar, and Seliya, 2017; Kumaraswamy, Markey,
Ekin, Barner, and Rascati, 2022; Joudaki et al., 2015 for detailed survey on different
methods.

In early work, Rosenberg, Fryback, and Katz, 2000 study upcoding within the
claims data. They estimate the probability that a claim has incorrect DRG code,
which they further use to identify claims to investigate and audit. Brunt, 2011 study
upcoding in the physician office visits data, where they estimate the likelihood of
a disease code selected for an office visit. They study the payment differential in
the selected code and code used in the data to understand the upcoding practices.
fang2017detecting find evidence of provider overbilling using inappropriately high
number of hours worked to identify outliers.

Recently, Chandola, Sukumar, and Schryver, 2013; Suresh, De Traversay, Golla-
mudi, Pathria, and Tyler, 2014 introduce methods for provider profile comparison
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to spot possible misuses or fraud. These works focus on introducing methods and
features to represent hospital profiles for comparison, however, do not present any
conclusive results. On the other hand, Bauder and Khoshgoftaar, 2018a; Bauder
and Khoshgoftaar, 2018b; Herland, Khoshgoftaar, and Bauder, 2018; Bauder and
Khoshgoftaar, 2017 utilize publicly available excluded providers to learn models for
detection of fraudulent providers. However these approaches rely on availability
of human labeled information on fraudulent information, which is often incomplete
and hard to obtain for massive Medicare data.

In contrast to earlier methods, unsupervised and explainable methods for the
problem, which are more practical in the real world, have received limited atten-
tion. Luo and Gallagher, 2010 compare DRG distributions of hospitals providing
services for hip replacements and heart health to differences in coding. The under-
lying assumption is that most hospitals will have similar distribution conditioned
on the treatment provided. Recently, Ekin, Lakomski, and Musal, 2019 learn joint
distribution of medical procedures and providers using outpatient data. The joint
distribution is used to identify provider anomalies based on procedure code and us-
age frequency by the provider. Most of the work uses only a fraction of massive
Medicare data, and often do not incorporate an explanation of results that could be
useful to investigators. Our method builds upon these existing studies to provide
a precise and explainable detection method that does not rely upon the existence of
labeled data.

5.3 Data Description

This study combines data from a variety of sources to detect anomalous provider
spending behavior in Medicare and compare it to ground-truth labeling of providers
that have faced anti-fraud enforcement.

Our analysis of provider behavior uses a large-scale dataset of Medicare claims.
Data were accessed through a data use agreement with the Centers for Medicare
and Medicaid Services, facilitated by the Research Data Assistant Center (ResDAC)
and the National Bureau of Economic Research (NBER). These hundreds of millions
of observations contain extensive data about each hospitalization and patient in the
Medicare system, providing an ideal corpus with which to study hospital behavior.

We consider patients hospitalized in 2017, and we use data from 2012 through
2016 to construct the patients’ medical history. For these years, we use 100% of sam-
ples of Fee-For-Service institutional Medicare data, including inpatient and outpa-
tient claims, and beneficiary 3 information including demographic information and
chronic condition indicators from the Chronic Conditions Warehouse. To further
understand a beneficiary’s medicare history, we use 20% of samples of carrier files,
which describe physician office visits.4

Table 5.1 describes the sample of inpatient hospitalization claims from 2017. We
observe 11.2 million claims from 6.6 million beneficiaries representing 7,661 different
providers. Medicare spent in total $131 billion on inpatient care in 2017, out of $710
billion total reported Medicare spending.

Table 5.2 describes our sample used to construct patient medical history from
2012 through 2016. We observe nearly a hundred million physician office visits and

3Patient refers to a person receiving health care; beneficiary refers to a person covered by health
insurance. Here, they are used interchangeably, as all of our data come from patients who are Medicare
beneficiaries.

420% samples are the largest available for physician office visits.
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TABLE 5.1: Inpatient data statistics from year 2017

Spending

Medicare total expenditure(Statista, 2022) $710 billion
Medicare inpatient expenditure $131 billion

Beneficiaries

Number of inpatient beneficiaries 6.6 million
Number of inpatient claims 11.2 million

Providers

Number of providers 7,661

TABLE 5.2: Scale of data from year 2012 to 2016 used to build medical history of patients
who are 70 years or older in the inpatient claims from year 2017. The number in each cell

is in millions.

2012 2013 2014 2015 2016

Physician visits 94.7 100.2 102.8 107.7 114.2
Outpatient visits 81.5 87.3 90.9 96.8 104.3
Inpatient visits 4.0 4.2 4.4 5.1 5.8

another hundred million outpatient visits per year, as well as millions of inpatient
visits per year. Appendix B.1 provides additional details about the cleaning and use
of the Medicare data.

To understand provider characteristics, we use the Medicare Provider-of-Service
files, which contain details on providers such as certification number, name, the type
of Medicare services that it provides, and type of ownership (private or public). We
can identify patients across files using their unique beneficiary identifiers, and we
identify providers by their identifiers such as the National Provider Identification
(NPI) or CMS Certification Number (CCN). Further, we separately identify Aca-
demic Medical Centers based on their membership to Council of Teaching Hospi-
tals (AAMC, 2022). These providers engage in academic research, which could lead
them to be ranked as anomalous due to the differences in their claim patterns from
other hospitals.

The federal Department of Justice (DOJ) publishes press releases when fraud is
identified in order to inform the press and the public as well as deter future fraudu-
lent behavior. To evaluate our automated detection of suspicious providers, we uti-
lize these press releases related to Medicare from the DOJ. To that end, we scraped
from the DOJ website thousands of press releases that contain the word ‘Medicare’.
Each press release corresponds to a case that the Department of Justice was involved
with, often at the time of settlement. Using partial name matching, we tag the hos-
pitals that appear in this corpus. As the DOJ lacks both the capacity and the in-
formation to prosecute all Medicare fraud, the press releases provide only a partial
list of providers that have engaged in fraudulent behavior. We can consider this a
form of positive-unlabeled data: while we can identify firms that have been named
in a press release as having likely committed fraud, firms that are not named are
not necessarily above suspicion. Appendix B.2 provides additional details about the
collection and cleaning of the DOJ corpus.
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FIGURE 5.1: Multi-view anomaly detection on different Medicare data modalities – D1,
D2, and D3. Model (a): Global detector based on fixed effects regression model. The coef-
ficient of a hospital is an indicator of excess cost of care at the hospital. Model (b): Local
(in ICD codes) detector in the very high dimensional ICD code frequency representation
of hospitals. It explains anomalies based on feature importance, i.e. with respect to spe-
cific ICD codes. (c): Local and contextual (peer-based) detector based on comparing DRG
frequency distributions. It provides a contrastive explanation in terms of excess cost of

treatment when compared to peers.

5.4 Method Overview

The Medicare dataset comprises diverse data modalities, which provides an oppor-
tunity for modeling the fraud detection problem in various ways. For example, a
provider can be represented by the DRG (billing) codes associated with its claims,
the frequency of ICD (diagnosis and procedure) codes used in its claims, or by the
characteristics of the patient populations that it serves. Each modality presents us
with a specific perspective of the data. These different modalities then allow us
to learn comprehensive provider behavior which reveal information that cannot be
completely uncovered based on only one aspect of the data, since each representa-
tion may contain information that is not reflected in others.

In this work, our goal is to estimate a suspiciousness score based on which we
rank providers such that anomalous ones are ranked at the top, which may be due
to their fraudulent practices. To utilize our different data modalities, we propose an
unsupervised multi-view anomaly detection approach, suitable for the underlying
multi-modal data. Each view (or base detector) presents itself as a different model
of the anomalies, operating on a different data representation. As such, each can
be seen as providing evidence that corresponds to a particular reason for detection.
The explanation provided by each detector provides a unique perspective into sus-
picious behavior. Collectively, the evidence from these base detectors, i.e. across
modalities, can be assembled systematically into an ensemble detection method.

Ensemble methods utilize multiple base detectors, where under certain accuracy
and diversity conditions, they are to obtain better performance than the constituent
base detector alone and produce more robust results (Aggarwal and Sathe, 2017).
Diversity is an important property of ensemble methods, which ensures that the
base detectors make independent errors that cancel out when aggregated. There-
fore, various approaches have been proposed toward promoting ensemble diversity
(Kuncheva and Whitaker, 2003; Nam, Yoon, Lee, and Lee, 2021). In essence, our
approach utilizes the diversity of the underlying data representations to induce di-
versity in the ensemble.
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Figure 5.1 shows the different Medicare data modalities we consider and provide
a high level description of the corresponding base outlier detection (OD) model that
utilizes it. The first model (a) is set up as a global regression onto cost per beneficiary
(target variable) from data (denoted D1 on the figure) reflecting a beneficiary’s med-
ical history and the hospitals that they visited. The second OD model (b) performs
outlier detection among hospitals as represented by the frequency of ICD codes used
in their claims (denoted D2). Anomalous coding may be associated with only a few
ICD codes (i.e. features) at a time, rather than all. Therefore, the second model is a
feature subspace detector, finding outliers locally in subsets of features. Finally, the
third OD model (c) performs contextual detection, identifying hospitals that behave
differently from their peers. Behavior is captured by the frequency distribution of
the DRG codes assigned to each hospital’s claims (denoted D3). Here, we recognize
the heterogeneity among hospitals and compare a hospital’s behavior locally, i.e. in
the context of its peers with similar characteristics.

In addition to detection, our proposed models can provide explanations for their
flagged anomalies. This is especially important in the absence of any ground-truth
labels in practice, aiding sense-making, verification and decision making (such as
whether to conduct additional investigation or to audit). By capitalization on differ-
ent data representations, our method leads to different explanations with each OD
model, enabling a multi-view reasoning. Specifically, in Figure 5.1, the regression
coefficient associated with a hospital in our first OD model (a) would be a direct
indicator of excess spending at the hospital. The second OD model (b) quantifies
feature (i.e. ICD code) importance, and can explain each flagged anomalous hos-
pital based on the specific ICD codes that they use differently in their claims. The
last OD model (c) provides contrastive explanations, through comparing DRG fre-
quencies of a hospital to those of their peers. As the DRG code of a claim dictates
cost, differences in the DRG coding distribution can be directly translated to excess
cost of treatment. Importantly, the explanation can pinpoint which DRGs are most
contributing to large excess cost of a hospital, facilitating auditing.

To arrive at a final anomalous ranking based on different modalities, we combine
the rankings from individual detectors such that it captures the agreement among
them. In effect, the ensemble approach allows us to gather evidence from multiple
models, each leveraging a different data modality. Further, it can be “unrolled” to
provide explanations to each flagged anomaly by each detector in the ensemble.
Overall, such a multi-view detection and explanation approach takes advantage of
corroborating evidences across modalities, and provides a multi-view perspective
toward reasoning about suspicious behavior.

The following three sections are organized to present the details of our detection
models, in terms of data set up, detection methodology and explanation.

5.5 Expenditure-Based Detection with Massive Fixed-Effect
Regression

The goal of a provider-level analysis of expenditure is to understand which providers
are associated with high spending on a beneficiary’s hospitalization. The incentive
of providers who commit fraud is to receive higher reimbursement, and so unex-
plained high expenditure is potentially suspicious. Our design detects high expen-
ditures that are unexplained by a patient’s medical history, which could reflect un-
necessary or excessive billing. While any individual patient may receive entirely
necessary high levels of care – for example, in response to a severe accident – when
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a provider’s patient population consistently shows expensive, unexplained high ex-
penditure, this may be indicative of fraud or waste.

Our design considers expenditure as a function of a patient’s medical history.
We collect each beneficiary’s medical history, using claims from physicians office
visits, hospital outpatient visits, and hospital inpatient visits over a five-year period
before the target year. The outcome or target variable is the base claim amount per
beneficiary per provider in the current year.

5.5.1 Data Setup

Base payment amount.

For our analysis, we use the base payment amount computed from the Medicare
inpatient claims. As explained in Section 6.3, the Medicare Prospective Payment
System adjusts the claim payment amount to include expenses due to provider vari-
ables such as patient mix, disproportionate share of low-income patients, outlier
cases, and expenditure on education and research. These factors are generally exter-
nal to the provider’s coding choice and should be excluded from analysis. Therefore,
to understand provider behavior with respect to inpatient encoding, we rely on the
base payment amount. The base payment amount is calculated by subtracting the
reported adjustment amount from the total claim amount. While payments are also
adjusted by provider location through a geographically indexed wage, we do not
control for provider wage index adjustments, because the geographical factor will
be picked up when controlling for patient location in our regression.

Figure 5.2a shows the box plot of average total claim amount per provider in
the inpatient claims data (year 2017) for the top 50 DRGs, sorted by the mean of the
box plot. Notice that there is large variation in the average claim amounts for each
DRG. This variance across providers is reduced when the box plot instead uses the
average base payment amount as shown in Figure 5.2b. However, there remains
some variance across providers even when considering the base payment amount.

Patient representation.

We represent each patient by their medical history and their covariates including
location.

We consider patients from 2017 who had an inpatient hospitalization claim and
are at least 70 years old. Because Medicare is available for individuals aged 65 and
older, we include patients aged 70 years or above to ensure we observe a full 5-year
history. We construct the medical history based on a patient’s provider visits in the
previous five years (2012 - 2016). We filter and join patients data from physician vis-
its, outpatient visits, and inpatient hospitalizations in the previous five years. Each
patient visit, to a physician or inpatient facility, is assigned codes based on the ICD
diagnosis and treatment codes. Thus, for a patient, we collect all the unique codes
that were assigned in any of the visits along with their counts.

In addition to the treatment codes, we include the chronic conditions that require
regular care, associated with each patient as reported in 2016, the year before the cur-
rent year. We do not include 2017 chronic conditions as those may be outcomes of the
code that the hospitalizations report. Including the 2016 chronic condition of a pa-
tient helps understand any comorbidities that may arise due to their medical history
and ongoing chronic condition, accounting for the increase in treatment expense.
Chronic conditions include diseases such as diabetes, breast cancer, or Alzheimer’s
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(B) Box plot of average base payment amount for DRG across providers from inpatient claims

FIGURE 5.2: We plot the distribution of total claim and base payment amount across
providers from inpatient claims in the year 2017. (a) Distribution of average total claim
amount per provider for the top 50 DRGs sorted on the mean of the box plot. There is
large variation in the average claim amount for each DRG. (b) Box plot of the average base
payment amount across providers for top 50 DRGs sorted on mean of the box plot. The

variance across providers is lower for the base payment amount.

disease. Our data provide a comprehensive view of the past treatments received
by a patient, and reflects on their health. Further, to account for variation due to a
patient’s choice of provider, as well as geographic differences in hospital reimburse-
ment rates, we include the patient’s location, represented by the first three digits of
their zip code.

5.5.2 Detection Model

To estimate expected treatment expense for a patient, we employ a fixed-effects re-
gression model with the outcome or target variable as the total base payment, and
the features being the aforementioned patient representation (medical history and
location).

We then include as regressors variables corresponding to the count of hospital-
izations for that patient at each provider. The coefficients of the provider variables
from this regression give the provider fixed effects – in per hospitalization terms–
that we use to rank providers.

Note that, because we are interested in capturing the provider-level dependency
of cost, we do not include treatment codes from the current year’s hospitalization.
The codes of the current year’s hospitalization reflect the hospital’s coding decision,
which can be an element in its fraud or overbilling behavior. We address those in
Section 5.6. Instead, the providers are added to the model to account for treatment
expenses in the current year that are not reflected by the patient’s medical profile;
see Figure 5.1(a).

Regression model specification for expenditure.

Given (i) patient representation X ∈ RN×M for N patients, each with a M-dimensional
representation of historical medical profile based on the last five years (2012–2016),



78 Chapter 5. Public Health Care Fraud Detection

and (ii) the total base payment Y in year 2017; the specification for expected treat-
ment expenditure prediction is as follows.

Yi = β0 + Xi β + ∑
j

αj Hj,i + ϵi , (5.1)

where Yi is the total base payment expense for a patient i in 2017; Xi is the patient
representation for i, β depict regression coefficients associated with patient medical
profiles and locations, Hj,i is associated with an inpatient Medicare provider j which
contains total count of visits to j if patient i visited the provider and 0 otherwise, and
αj’s depict the provider fixed effect regression coefficients.

Anomaly scoring.

In the expenditure-based regression, a coefficient αj can be interpreted as the excess
treatment cost due to provider j that cannot be captured by patients’ medical profile
and location. As such, we can associate the magnitude and sign of this coefficient
with the excess spending by a provider, and designate it as its anomaly score.

5.5.3 Model Explanation

The regression model’s provider ranking in order of anomalousness is easily ex-
plainable through the coefficient values. Specifically, each αj used for scoring and
ranking has the direct interpretation as the excess expenditure on treatment for a pa-
tient when visiting the provider j. Therefore, the fixed effects model directly quanti-
fies the excess dollar amount impact of a particular provider, which can be used by
an auditor or investigator when deciding which hospitals to investigate.

5.5.4 Evaluation

Figure 5.3 shows the estimated fixed effects, i.e. the αj coefficients, for providers
from our expected expenditure model. The providers with large fixed effects are
ranked at the top and flagged as being of suspiciously expensive. In auditing, it
is often the case that auditors have a limited budget (time and other resources) for
processing red-flags and taking action. Thus, our method allows for targeting of
audits towards the most suspicious providers, which corresponds to the highest un-
explained spending.

0 10000 20000 30000 40000 50000 60000
Provider coefficients

FIGURE 5.3: Distribution of the excess cost of treatment, that is, of αj’s in Eq. (5.1) per
provider j. The providers with large excess cost (coefficient) are ranked at the top for

audit.

To evaluate the effectiveness of our provider ranking, we use the partial list of
known fraudulent providers based on the DOJ press releases described in Section
5.2.3, and we compare our suspicious providers to known fraudulent providers.
We quantitatively evaluate the targeting of fraudulent providers using two rank-
ing quality metrics, namely a Precision-Recall (PR) curve, and a Lift curve. The PR
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curve depicts the positive predictive value (precision) on the y-axis versus the true
positive rate (recall) on the x-axis. In audit scenarios with limited budget, a high pre-
cision at the top of the ranked list would be useful. Similarly, lift curve measures the
targeting effectiveness on y-axis when compared to a random baseline as we move
along varying fractions of the ranking on x-axis.

Figure 5.4 reports the PR and Lift curves for our fixed effects model, and com-
pares its performance against two simple intuitive baselines. The baseline methods
rank the providers based on average total claim amount and average base payment
amount, respectively. Note that our fixed effects model is comparatively more effec-
tive at targeting fraudulent hospitals, with relatively higher precision and lift at the
top positions.
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FIGURE 5.4: We report (a) Precision-Recall curve (AP: Average Precision denotes area-
under-curve) and (b) Lift curve for provider ranking produced by fixed effects coeffi-
cients against two simple baselines: ranking of providers based on (1) average total claim
amount and (2) average base payment amount. Dashed horizontal line ‘Base’ depicts the
random ranking. Notice that top of the ranking is comparatively better as evidenced by
higher precision and lift when recall and top data fraction are low. This is particularly
helpful for auditors who would typically process only top ranked providers under lim-

ited budget.

Figure 5.5 reports the result of a two-sample test on the fixed effect coefficients
as estimated by our model for providers in the DOJ corpus versus the rest of the
providers. Notice that the DOJ providers typically have larger fixed effects as com-
pared to others, and their distribution is significantly different as the test rejects the
null that the two sets of coefficients are drawn from the same distribution, with
p < 0.001. We remark that the reported performance is conservative and only the
lower limit on our model’s targeting ability, since many top ranked providers that
are not part of DOJ ground truth may still have been involved in suspicious behavior.
We report more qualitative results, and provide case studies through explanations
into such flagged providers in Section 5.8.2, after accounting for the evidence from
other models in our ensemble.

5.6 ICD Coding-Based Detection with Subspace Analysis

International Classification of Disease (ICD) codes are used by health care providers
to characterize a patient’s medical condition and treatment. The US uses ICD-10
codes, which were developed by the World Health Organization and can be used to
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FIGURE 5.5: Comparison of fixed effect coefficients for providers facing anti-fraud law-
suits (known fraudulent entities or outliers) versus the rest of the providers (normal enti-
ties). A two-sample test rejects the null hypothesis, implying significantly different distri-

butions statistically.

designate the universe of medical issues and procedures. ICD codes encode provider
assessment of a patient based on their reason of visit to the hospital and their medi-
cal conditions, and primarily reflect the diagnoses and applied procedures for treat-
ment. For Medicare billing, the assigned ICD codes are then used as input to a
“grouper” software used by hospital billers that assigns a diagnostic code (DRG)
based on the provider findings as indicated by the assigned ICD codes. As dis-
cussed above, in the Medicare PPS, the DRG code determines the reimbursement
level. Consequently, ICD coding presents opportunities for miscoding, as providers
may try to achieve a more expensive DRG code to obtain higher reimbursement.
Therefore, the objective of our ICD coding based analysis is to understand provider
coding practices that could reveal the coding patterns applied by providers engag-
ing in fraudulent behavior.

5.6.1 Data Setup

Provider representation.

We use inpatient claims from the year 2017 to understand how providers assign
ICD codes to each claim, and represent providers through their reported ICD codes,
including diagnostic and procedure codes. This representation captures the coding
practices of a provider.

Importantly, since providers have a choice of ICD codes, we also account for ICD
code substitutability, where a slightly similar ICD code could be used instead to yield
higher reimbursements. To capture code substitutability, we estimate the semantic
similarity of the description of each code within each chapter of the ICD code hierar-
chy. Here, the description of each ICD code is constructed by concatenating its text
description to the description of its ancestor codes within the ICD hierarchy. Then,
pairwise Jaccard distance is computed between the descriptions of the codes and the
provider representation is updated using the ICD code similarity.

For example, the description of ICD code J45.20 under chapter X is constructed
by concatenating the descriptions of J00-J99 chapter, J40-J47 block, J45, and then the
ICD code J45.20 resulting in the description given as “Diseases of the respiratory
system – Chronic lower respiratory diseases – Asthma – Mild intermittent asthma
uncomplicated. This representation ensures that codes with similar positions in the
ICD hierarchy have somewhat similar text descriptions and are therefore near each
other in Jaccard distance.
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Specifically, let X ICD ∈ RNH×MH be the matrix representation of NH providers in
terms of MH-dimensional ICD codes in which the entries depict the total code usage
count by provider, and J ∈ RMH×MH be the ICD substitutability matrix consisting of
pairwise Jaccard similarities. Then, the provider representation X ICDsim ∈ RNH×MH

after incorporating the code substitutability is given as X ICDsim = X ICD × J, which
re-distributes each code’s frequency to substitutable ICD codes that are not directly
reported in the claims data.

We note that X ICDsim is very high dimensional (> 40, 000 features). However,
anomalous coding of a claim is likely covert and associate with only a few ICD codes.
Therefore, we employ a feature subspace based detector for finding outliers locally
among subsets of ICD codes. Figure 5.1(b) shows this setup.

5.6.2 Detection Model

We employ a suite of subspace outlier detectors on the high dimensional provider
representation X ICDsim to find providers deviating from the majority coding practices
within certain ICD subspaces. As we are interested in ICD subspaces that are rele-
vant for a variety of aberrant provider practices, we utilize an ensemble of subspace
detection methods that are effective on high dimensional data. In the same spirit
as with our overall approach, the ensemble allows us to examine multiple diverse
subspaces as each subspace detection method implements a different methodology
for exploring candidate subspaces. In particular, our subspace ensemble uses five
different state-of-the-art methods that we describe briefly below.

Subspace outlier detection.

While we represent a hospital in the high dimensional ICD space, the abnormal or
aberrant behavior may be reflected only in a small, locally relevant subset of codes
as pertains to stealthy behavior. Each OD algorithm in the ensemble explores local
subspaces differently to provide evidence from diverse subsets. To that end, our OD
model consists of the following subspace detectors:

(i) Subspace Outlier Degree (SOD) (Kriegel, Kröger, Schubert, and Zimek, 2009)
locally examines each point (hospital) in the data. For each data point, it com-
putes reference points through shared nearest neighbors. The subspace is then
characterized by dimensions with low variance, lower than a provided thresh-
old, within the identified reference set. It records the deviation of each data
point from the hyperplane spanned by the mean of the identified subspace,
where outliers have larger deviation.

(ii) Isolation Forest (IF) (Liu, Ting, and Zhou, 2008b) builds a collection of ran-
domized trees that approximate the density of data points in a random feature
subspace characterized by paths in what are called “isolation trees”. Each iso-
lation tree is constructed by recursively partitioning data using a randomly
chosen point in a randomly selected dimension, until the leaf of the tree con-
tains a single data point. Shorter paths in a tree indicate sparse regions as fewer
partitions lead to leaf nodes, and points belonging to each leaf at lower depth
indicate outlierness in the subspace characterized by the tree path.

(iii) Robust Random Cut Forest (RRCF) (Guha, Mishra, Roy, and Schrijvers, 2016),
like IF, also constructs an ensemble of randomized trees by recursively parti-
tioning the data. It computes the model complexity of each tree as the sum
of the bits required to store the depths of each point in the tree. An outlier is
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defined as a point which increases the model complexity significantly when
added to the tree.

(iv) Lightweight on-line detector (LODA) (Pevnỳ, 2016) constructs a collection of
histograms on random 1-dimensional projections of the data. Each data point
is then associated with the negative log-likelihood based on each histogram,
and data points are ranked based on their average likelihood across the 1-D
histograms.

(v) RS Hash (RSHASH) (Sathe and Aggarwal, 2016), like LODA, is also an ensem-
ble of histograms; however, it constructs a collection of grid-based histograms
in randomly chosen subspaces, and grid sizes vary based on varying sample
sizes of data. Each data point is then scored by the number of sampled points
sharing the same bin in the histogram. A sparsely populated bin is indicative
of outlierness.

We apply the above methods to X ICDsim , the ICD representation of providers, and
identify the providers that behave abnormally in various subspaces as explored by
the algorithms.

Anomaly scoring.

Each subspace algorithm assigns an anomaly score to each provider. The scores have
different scale and semantics (path length, likelihood, etc.), and thus are not directly
comparable across the methods. Therefore, we aggregate the ranking of providers
based on individual scoring of each subspace method. We use the instant-runoff
voting technique (details in Section 5.8) for rank aggregation from different subspace
algorithms, and provide the final ranking of hospitals by anomalousness across all
subspaces.

5.6.3 Model Explanation

We explain the ranking of a subspace detector using Shapley Additive Explanation
values (SHAP values), introduced in Lundberg and Lee, 2017 and Lundberg et al.,
2020. SHAP values estimate feature importance by approximating the effect of re-
moving each feature from the model as the average of differences between the pre-
dictions of a model trained with and without the respective feature. We regress the
anomaly scores from a subspace detector onto the ICD representation of providers,
and then estimate the SHAP values under the regression model. The feature contri-
butions for each observation find the most important codes that affect the anomaly
score significantly. This helps us find ICD codes that are contributors to a provider
being ranked as an outlier.

Further, we provide dollar amount characterization of important features (ICD
codes). Each ICD code is mapped to the most frequent DRG code assigned for the
given ICD code within the inpatient claims. Since DRG codes are determinants of
the payment for care, through this most-frequent DRG mapping, we associate dollar
amount of reimbursement to ICD codes. This lends itself to understanding the dollar
amount impact of an important ICD code for an anomalous provider as explained
by SHAP feature importance values.

5.6.4 Evaluation

Figure 5.6 reports the performance of our subspace OD model in terms of the PR and
Lift curves, using the DOJ ground truth. The subspace model ranking is at least 2×
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(A) Precision-recall curve (B) Lift curve

FIGURE 5.6: We report (a) Precision-Recall curve and (b) Lift curve for provider ranking
produced by our ICD-10 subspace outlier detector ensemble against two simple baselines
that rank the providers based on (1) average total claim amount and (2) average base

payment amount. Dashed horizontal line ‘Base’ depicts the random ranking.

better at targeting fraudulent providers compared to our two baselines, respectively
based on total claim payment and base payment amounts. Our method substantially
outperforms random auditing or even detection based strictly on payment amounts.

5.7 Expenditure-Based Detection with Peer Analysis

Our third model is based on peer-based excess spending detection and examines
the coding decisions of hospitals as compared to similar “peer” hospitals that treat
similar populations. In short, we identify hospitals who are exposed to the same
patient population but manage to assign more expensive DRG billing codes.

The objective of the peer-based analysis is uncovering the local patterns of spend-
ing behavior among a related group of providers called peers, and identifying providers
deviating from the group’s expected behavior. We utilize the inpatient claims to cre-
ate a profile for each provider under two complementing data modalities, based on:
(1) type of services provided by the hospital, and (2) the patients’ chronic condition
profiles served by a hospital. We then find groups of related providers based on the
similarity of their provider profile representation.

To identify a locally aberrant behavior, each provider is represented in terms of
its DRG frequency distribution, which determines spending. Then, the DRG repre-
sentation of a given provider is compared to the summary DRG distribution of their
peers. Figure 5.1(c) visualizes this setup. The providers are then ranked in order of
their deviation from group behavior in terms of DRG-based spending.

5.7.1 Data Setup

Provider representation.

We construct hospital profiles to capture the nature of services provided, the char-
acteristics of patient population served, and encoding practices that drive spending
for treatment.

Provider profile – Type of services. We first examine a provider’s inpatient claims
data to understand the type of services provided. Because the DRG codes assigned
by providers may be manipulated to accomplish higher reimbursement, we must
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not represent providers by the exact DRGs they use; instead, we consider the provider’s
distribution into major diagnostic categories (MDC) (ResDac, 2022). Each MDC cor-
responds typically to one major body system (circulatory, digestive, etc), and can be
associated with a set of medical specialties; each MDC contains a large set of po-
tential DRGs. Therefore, characterizing providers by MDC allows us to consider
providers that treat patients with similar types of medical needs, but without rely-
ing on the exact DRG codes assigned. For each provider, we record the normalized
count of each MDC code in the inpatient claims data in the current year.

Provider profile – Patient population. We create another profile based on patient
population characteristics served by a provider. The underlying motivation for this
profile is that two providers should be similar if they serve patients with similar
medical conditions. To characterize the patient population at a broad level, we
use the underlying chronic conditions of the patients. The chronic conditions flag
whether a patient has received a previous set of services related to a chronic condi-
tion such as diabetes or ischemic heart disease. As a provider’s representation, we
record the normalized count of the chronic conditions of all the patients treated at
the provider.

Provider profile – Spending for care. The spending amount in each claim is directly
tied to the assigned DRG code. To capture the DRG encoding practices of a provider,
we represent each provider using the normalized counts of DRG codes from its inpa-
tient claims. The DRG frequency representation allows us to compare and contrast
the spending between a hospital and its peers that provide similar services or serve
similar patients.

5.7.2 Detection Model

Peer identification.

We create peer groups of hospitals that share similarities in the type of services pro-
vided or the patient population served.

Let vj denote the representation for provider j; either based on the type of ser-
vices profile using MDC codes or based on the patient population profile using
chronic conditions of patients. We note that the provider representations are fre-
quency distributions, as they depict normalized counts. Therefore, to measure the
similarity between two providers j and k, we use the Hellinger distance for probabil-
ity distributions, which is an upper bound on the total variation distance (Bar-Yossef,
Jayram, Kumar, and Sivakumar, 2004), given as

djk =
1√
2
· ∥√vj −

√
vk∥2 (5.2)

We examine the distribution of pairwise similarity values to decide on a threshold τ
to include only the most similar providers in a provider’s peer group.

For each provider j, the providers with similarity to j above τ constitute j’s peers,
denoted Pj. Notice that the peers are specified for each provider separately, rather
than using any clustering algorithm. This allows us to create compact peer groups of
varying sizes. We note that fixing the peer group size would be a subpar alternative,
since j’s group may then include distant providers as peers, skewing the representa-
tive summary statistics of the group that j is compared to.
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Anomaly scoring.

In the Medicare PPS, the reimbursement amount for treatment is directly based on
the assigned DRG code to a claim. Therefore, for anomaly scoring, we utilize the
provider representations over DRG codes from the inpatient claims, which consist of
the normalized counts of the DRG codes used by a provider. In short, this detection
mechanism assumes that providers who treat similar patient populations, or provide
care for similar illnesses and injuries, should have similar DRG distributions.

For each provider, we have identified a group of providers (peers) with similar
characteristics—type of services provided and patient population served—based on
which we create a peer group summary in terms of distribution over DRG codes.
The summary distribution is created by incorporating DRG frequencies from all the
peers, weighted by their similarity to the provider under consideration. Let vDRG

j be
the DRG distribution for provider j with nj claims, and qDRG

j be the summary DRG
distribution based on provider j’s peers, defined as follows.

qDRG
j = 1

Z ∑k∈Pj
nk × (1− djk)× vDRG

k where Pj = { k | (1− djk) ≥ τ } and Z = ∑k∈Pj
nk × (1− djk) (5.3)

Next we tie the DRG usage frequencies to average dollar amount spending by Medi-
care, as the former dictates the latter. Cost(c) denotes the average base price of DRG
code c computed from the inpatient claims data from the year 2017. Then, the excess
spending for treatment per claim on average for provider j is given as follows:

ExcessSpendingj = ∑
c∈DRGs

Cost(c) × (vDRG
j, index(c) − qDRG

j, index(c)) (5.4)

where vDRG
j, index(c) is the frequency corresponding to DRG code c in the DRG represen-

tation vDRG
j for provider j, and qDRG

j, index(c) denotes that for DRG code c in the peer

group summary representation qDRG
j . In short, this amount computes how much

more a provider spends because they use a different set of DRG codes than their
peers, based on the average price of those DRGs.

The calculated ExcessSpending amount is the anomaly score based on which the
providers are ranked, as it depicts the average spending discrepancy for a provider
when compared to peers of the given provider. Since we create two different peer
groupings – one based on services provided, and another based on patients served –
we obtain two rankings, later combined through instant-runoff voting (Section 5.8).

5.7.3 Model Explanation

The peer based OD model’s anomaly score is the estimated excess spending, which
is directly interpretable as the extra dollar amount a provider charges on each claim
on average as compared to what would be expected from other similar providers.
Further explanation can be provided for a top-ranked provider by contrasting their
frequency distribution over DRG codes against their peers. This allows auditors to
have a contrastive understanding of DRG codes used by similar providers, and to
pinpoint to specific DRGs with large frequency discrepancies. Direct usage com-
parison of individual DRGs could point to specific codes that contribute most to
the overall spending at a provider, and guide a deeper investigation of the claims
associated with those specific DRG codes.
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FIGURE 5.7: Distribution of pairwise similarities between provider representations. A
provider and its peer hospital pair has similarity >= 0.8.

5.7.4 Evaluation

Figure 5.7 shows the distribution of pairwise similarities between hospitals, and
mark the similarity threshold at τ = 0.8 which is used in our implementation for
identifying peers. We exclude providers from our analysis that have less than five
peers for the chosen threshold, as the estimation of excess spending could be noisy
for these providers due to small peer group. Providers with large excess spending
are ranked at the top and are identified as suspicious.

We use the DOJ corpus to evaluate our ranking of the providers based on excess
spending. Figure 5.8 reports the PR and Lift curves for our peer analysis. The rank-
ing is also compared to the two baselines, respectively ranking providers by average
total claim amount and average base payment amount. Although the peer-based
ranking performance is comparable to these simple baselines, we remark that it is
the lower bound on the performance. Furthermore, besides a mere ranking and un-
like these simple baselines, our model can provide a nuanced explanation through
DRG code frequency discrepancies, providing auditors with reasoning for potential
factors driving the high spending. Finally, our model fundamentally identifies ex-
pensive hospitals as compared to their peers, which may be of interest to auditors
interested in waste that may not rise to the level of fraud detected by the DOJ.

Through case studies in Section 5.8, we report further qualitative results and
provide peer-based explanations and insights into top flagged providers after ag-
gregating evidences from different OD models.

5.8 Aggregate Provider Ranking

Each outlier detection model presented above is a component of our ensemble method
that considers a different data modality and creates a ranked list of providers based
on the evidence examined individually. This ensemble method is designed to han-
dle multi-view Medicare data, where different features of the data can be used to
evaluate different aspects of suspiciousness. The goal of the ensemble is a single
suspiciousness ranking for all providers.

To arrive at the final ranking for auditing, we merge multiple rank lists into a
single ranking using instant-runoff voting (IRV). Our goal is to present the aggregate
ranking that is most representative of the component models. IRV combines results
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(A) Precision-recall curve (B) Lift curve

FIGURE 5.8: We report the performance of ranking based on excess spending amount
compared to the peers, where peers are identified via similarity based on MDC distribu-

tions and patient chronic conditions.

across rankings in a way that best reflects the information contained across multiple
models (Franceschini, Maisano, and Mastrogiacomo, 2022).

The rank aggregation proceeds in an iterative manner, where each round utilizes
the IRV procedure to find a “winner” (in our case, most suspicious hospital). In each
round, votes are counted for each component ranking’s first choice, and a hospital
with a majority of votes is then ranked at top in our aggregate ranking. The rank lists
across models are updated to drop the selected hospital in this round, and the IRV
procedure is repeated with updated rank lists in the subsequent rounds to arrive at
an aggregate ranking.

In our implementation, we aggregate 8 different rankings across our 3 OD mod-
els; one from the regression model, five from different subspace OD algorithms, and
two from the peer-based model utilizing two separate similarity measures. Next,
we show the effectiveness of our final aggregate ranking for identifying fraudulent
hospitals in the Medicare system through quantitative and qualitative evaluations.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Combined ensemble AP = 0.2468
Provider payment amount AP = 0.1127
Provider base payment AP = 0.1127
Base

(A) Precision-recall curve

0.0 0.2 0.4 0.6 0.8 1.0
Data Fraction

0

2

4

6

8

10

Co
m

bi
ne

d 
en

se
m

bl
e 

de
te

ct
or

 L
ift Combined ensemble detector: Lift

Provider payment amount: Lift
Provider base payment: Lift
Base

(B) Lift curve

FIGURE 5.9: We report the performance of the final ranking of providers as aggregated
from 8 rankings based on 3 different OD models. Note that aggregated ranking improves
over the ranking by individual constituent experts. The proposed ensemble is on average

4× better than the random targeting of providers for auditing.
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5.8.1 Quantitative Evaluation

Figure 5.9 shows the evaluation of our aggregate ranking of hospitals using a PR
curve and a Lift curve. The aggregate ranking is compared to intuitive baselines
that rank hospitals based on their average reimbursements, or random auditing.
Our aggregate ranking is able to target fraudulent providers on average twice as
better when compared to the baseline ranking—note the area-under-curve, or aver-
age precision (AP) values on legend Figure 5.9(a).

While only 1 in 20 hospitals are named in the DOJ Press releases, the top 50
hospitals identified by our aggregate ranking contain 21 providers named in the
DOJ corpus. That is an 8-fold lift in detection rate considering the evaluation at
top 50 hospitals, with an average of 4-fold lift over random/by-chance targeting
across varying data fractions as seen in Figure 5.9(b). Importantly, our ground-truth
consists only of providers named in the DOJ corpus, while there may be others with
yet unidentified fraudulent practices – and therefore, our list can be used to find
other hospitals not yet identified as fraudulent.

5.8.2 Qualitative Explanation: Case Studies

In this section, we present an analysis of our multi-view detectors, highlighting some
of the salient aspects for the fraud detection task. In particular, we discuss how
our multi-view detectors can be used to explain the aberrant patterns employed by
top ranked flagged hospitals by highlighting parts of data from different views that
contributed most to the ranking, which can assist in the process of auditing or deeper
investigation.

We examine two top ranked providers from the aggregate ranking (1) the provider
at rank 1 that is also named in the DOJ corpus, and (2) the highest-ranked provider
which is not in our ground truth (at rank 5, as ranks 1–4 all are part of DOJ ground
truth). In the following two case studies, we show how different models contribute
evidence toward a better understanding of how each provider stands out.

Case 1: Flagged hospital named in DOJ corpus

Our aggregate ranking finds the Cleveland Clinic as the most suspicious hospital
under our metrics. Here we present evidence from our 3 Outlier Detection models,
where this provider is ranked at #1 by the subspace OD model, ranked at #17 by the
peer-based model, and ranked at #27 by our regression-based model.

Notably, the Cleveland clinic settled with the DOJ in the years 2015 and 2021 for
$1.74 million (cleveland2015settlement) and $21 million (cleveland2021settlement)5

respectively. The evidence from our models do not directly match the reason for
DOJ settlements; put differently, our exact explanations have not been validated ex-
ternally by litigation. Moreover, our data do not provide evidence of fraud by the
Cleveland Clinic, nor do they substantiate claims from lawsuits against the Clinic.
The existence of previous lawsuits by the DOJ against the Clinic validate that this
is a provider with past bad behavior, and our metric indicates that this provider
engaged in anomalous behavior that can be detected by our algorithm and merits
deeper investigation.

Our regression model estimates the excess expenditure on treatment for a patient
when visiting the Cleveland Clinic to be $29,844.33, which is almost 3× the average

5This 2021 enforcement was against Akron General Health System, which was acquired by the
Cleveland Clinic foundation in 2015.
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(A) Top flagged provider that is named in DOJ (B) Top flagged provider that is not in DOJ

FIGURE 5.10: ICD codes contributing to suspiciousness of top ranked providers based on
SHAP values

expenditure (≈$10K) as shown in Figure 5.3. This does not, by itself, indicate that the
Cleveland Clinic engaged in bad behavior, as this may reflect that it performs more
specialized medical procedures, although our regression accounts for the patient’s
recent medical history.

One potential concern is that the hospital highlighted in this example, the Cleve-
land Clinic, as particular aberrant is a unique hospital that serves a particularly sick
patient pool, and that therefore, the results are driven by selection of patients into
different hospitals, as opposed to the effect of being treated at that hospital on ex-
penditure. We argue this is not the case. Indeed, the two closest peer hospitals to
the Cleveland Clinic are New York Presbyterian and Beth Israel Deaconess, both of
which are similarly prestigious hospitals involved in specialty care. Therefore, we
expect that the results reflect actual divergent coding patterns by the most suspicious
providers, rather than detecting hospitals that are engaged in specialty treatment.

Figure 5.10a plots the most important ICD codes that contribute to the anomaly
score of the provider from the subspace OD model, based on SHAP values. The top
ICD code “T782XXD” is described as “Anaphylactic shock, unspecified, subsequent
encounter” which falls under the ancestor “T78” with the description: “Adverse
effects, not elsewhere classified”6. As such, T78 appears to be a catch-all classifica-
tion for adverse effects for injuries, poisoning, and other consequences of external
causes for visit. Moreover, the code T782XXD is considered exempt from reporting
whether the condition is present on admission (POA) to an inpatient facility. The
next ICD code “T783XXD" is under the same ancestor, T78, and is also considered
exempt from reporting if POA. Similarly, the description of code “M12862” allows
non-specific reasons to be used for encoding as the given description is: “Other spe-
cific arthropathies, not elsewhere classified, left knee”.

We next examine the reimbursement amounts related to these ICD codes, based
on their mapping to the DRG they are most frequently associated with. The distribu-
tion of the amounts across all ICD codes is given in Figure 5.11. The codes T782XXD
and T783XXD can be mapped to two DRG codes: 949 (Aftercare with cc/mcc) and
950 (Aftercare without cc/mcc).7 The reimbursement amount for DRG code 949 is
about 25% more compared to DRG code 950, where T782XXD is reported most fre-
quently against DRG code 949. Further, within the ICD-10 hierarchy, codes T782XXD

6ICD codes are available for lookup through ICD10Data. This code is available online at: https:
//www.icd10data.com/ICD10CM/Codes/S00-T88/T66-T78/T78-

7Here, ‘cc’ and ‘mcc’ stand for Complication or Comorbidity and Major Complication or Comor-
bidity, respectively.

https://www.icd10data.com/ICD10CM/Codes/S00-T88/T66-T78/T78-
https://www.icd10data.com/ICD10CM/Codes/S00-T88/T66-T78/T78-
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FIGURE 5.11: Distribution of ICD reimbursement amount obtained after mapping ICD
code to most frequent DRG code in the inpatient claims data in year 2017. The me-
dian reimbursement amount is $6,650.88, and the 90-percentile reimbursement amount

is $16,401.04.

and T783XXD are the most expensive and get at least 50% more reimbursement than
any other sibling or parent code. Notably, 6 out of top 10 ICD codes contributing to
anomaly score (as shown in Figure 5.10) have reimbursement amounts that are more
than 50th percentile among all ICD codes, while 3 of them associate with DRG codes
with amount above the 90th percentile (see Figure 5.11). All these factors explain,
through specific ICD codes, associated DRGs and dollar amounts, the reasoning be-
hind why a flagged provider stands out. This evidence provides starting points for
further investigation.

In the peer-based model, the provider is flagged through the peer relation of
providers with respect to their MDC representation. Figure 5.12 shows the MDC
distribution of the Cleveland Clinic and its nearest peer provider. Notice that in
terms of facilities and services provided as encoded by their MDC, the two hospitals
are quite similar. We compare the DRG representation of the Cleveland Clinic to the
summary DRG representation of all its peer hospitals over the top 50 DRG codes that
are selected based on their contribution to excess spending (see Eq. 5.3 for excess
spending estimate). As shown in Figure 5.13, Cleveland Clinic uses certain DRG
codes more frequently than its peers as indicated by the summary distribution—
starting with 219, 220, as well as 309, 310, 330. DRG codes 219 and 220 belong to
“Cardiac Valve and Other Major Cardiothoracic Procedures” with reimbursement
amount in top 4 most expensive within MDC 05. DRG codes 309, 310 are described
as “Cardiac Arrhythmia and Conduction Disorders”, and DRG code 330 is described
as “Major small and large bowel procedures with cc”. Note that the description of
codes 309, 310 and 330 is specific to a particular condition, while the description for
219–220 allows for ambiguity. Ambiguity may provide opportunities for miscoding
to reach for higher reimbursement.

In summary, all three outlier detection models point to evidence from different
views of the claims data that makes the top ranked hospital stand out from others,
both in terms of local and global analysis. These pieces of evidence explain the
ranking by shedding light into certain coding practices that a provider engages in,
and may be utilized in further audit processes.
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(A) Provider (B) Nearest peer

FIGURE 5.12: Provider (named in DOJ) and its nearest peer represented in terms of MDC
codes indicating provider facilities and services provided.

(A) Provider (named in DOJ) DRG representation for MDC 05

(B) Summary DRG distribution of its peers for MDC 05

FIGURE 5.13: Comparing the DRG distribution of provider (named in DOJ) to the sum-
mary distribution created from its peer hospitals.

Case 2: Flagged hospital not in DOJ corpus

We now turn to a hospital which is flagged as suspicious by our metric but was
never named in a DOJ press release.

In the aggregate ranking, AdventHealth Orlando hospital is ranked at #5 in order
of suspiciousness. All 4 hospitals higher in the ranking were named in the DOJ
corpus, motivating this case study. This provider is ranked at #5 by the subspace
OD model, and ranked at #35 by the peers-based model.

It is important to note that our model does not provide evidence of fraud, nor do
we claim that AdventHealth Orlando has committed any fraud. Rather, our ranking
of hospital suspiciousness can be used to guide further investigation and audits,
and we use this case study to examine how our explainable model can help direct
investigatory resources toward the exact claims that make a provider different from
its peers.

Figure 5.10b presents the bar plot of the top 10 ICD codes by importance for the
provider, based on SHAP values for the anomaly ranking from our subspace OD
model. Note that 5 out of these top 10 ICD codes fall under ICD-10 chapter “S00-
T88 Injury, poisoning and certain other consequences of external causes”. The ICD
code T270XXA is most frequently mapped to DRG code 205 which is described as
“Other respiratory system diagnoses with mcc”. The 3rd ranked ICD code “I70268”
is described as “Atherosclerosis of native arteries of extremities with gangrene, other
extremity”. Based on the descriptions of these top ICD codes, a common thread
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(A) Provider (B) Nearest peer

FIGURE 5.14: Provider (not in DOJ corpus) and its nearest peer represented in terms of
patient population served

appears to be that the codes leave room for ambiguity—due to the catch-all word
‘other’ in their descriptions. Further, 7 out of 10 ICD codes have reimbursement
amount larger than the 50th percentile, and 4 out of 10 have reimbursements larger
than 90th-percentile reimbursements across all ICD codes (recall Figure 5.11 for the
ICD price distribution).

(A) Provider (not named in DOJ) DRG representation.

(B) Summary DRG distribution of its peers

FIGURE 5.15: Comparing the DRG distribution of provider (not named in DOJ) to the
summary distribution created from its peer hospitals.

Next we present evidence from the peer-based OD model, though the provider
is not top ranked in this model. Figure 5.14 shows the provider and its nearest peer
hospital that serve similar patient populations, represented in terms of chronic con-
ditions of the patients. We note the almost identical distributions of chronic condi-
tions for the provider and its nearest peer hospital. We compare the DRG distribu-
tion of the provider to the summary DRG distribution of its peers.

Figure 5.15 shows the distribution over the top 50 DRG codes, where the provider’s
distribution deviated from the summary distribution the most weighted by DRG re-
imbursement amount (see Eq. 5.3). We find that excess expenditure is almost entirely
driven by two DRG codes, namely 291 (heart failure and shock with mcc) and 470
(major joint replacement or reattachment of lower extremity without mcc) with re-
imbursement costs larger than the 50th-percentile among DRG codes.

Similar to the earlier case, our models pinpoint specific ICD and DRG codes that
can help jump-start further investigation, while highlighting dollar amount discrep-
ancies that provide perspective with respect to monetary value.
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5.9 Characterizing Outlier Providers

In this section, we examine the covariates of hospitals to understand the factors that
characterize an outlier hospital as detected by our model. The covariates used in the
analysis depict various hospital characteristics such as hospital rating, number of
unique patients served, ownership type, location, and length of stay for an inpatient
visit. These features are derived from publicly available information for all Medicare
hospitals and importantly are not included in the data used for detection.

Understanding the factors that drive outlier provider behavior is crucial for im-
proving the health care sector. Extensive policy reforms seek to shape the structure
of the health care market, increasing regulations on providers deemed to be harmful
or inefficient. By characterizing the nature of hospitals deemed suspicious by our
metrics, we hope to contribute to the ongoing literature that evaluates how various
interventions – for example, those targeting for-profit care – can affect fraudulent
behavior.

(A) Hospital rating (scale 1 to 5) (B) Hospital ownership type:
Private, Govt, Non-profit

(C) Hospital location

FIGURE 5.16: Comparison of distributions over categorical covariates for Outlier hospitals
and All hospitals

FIGURE 5.17: Comparison of distributions over ‘State’ for Outlier hospitals and All hos-
pitals

Figure 5.16 shows the normalized histograms for categorical covariates – hospital
rating, ownership type, location type – for the providers. We compare the distribu-
tions for the top 5% of suspicious providers in aggregate outlier ranking with those
over all the providers. The idea is that, assuming fraud is rare, an investigator with
limited resources would examine only the top portion of the ranked providers.

We observe in Figure 5.16a that histograms for Hospital Overall Rating largely
overlap, indicating that outlier hospitals and all the hospitals are sampled from a
similar underlying distribution, i.e. hospital rating is not a strong predictor of out-
lier status. On the other hand, Figures 5.16b and 5.16c show that our top ranked
fraudulent providers are more likely to be private (for-profit) urban hospitals, and
less likely to be non-urban, government-owned or nonprofit hospitals. This obser-
vation agrees with the literature on for-profit care, which has found distortions from
this ownership structure (Gupta, Howell, Yannelis, and Gupta, 2021).
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Figure 5.17 compares the distributions over states where a hospital is located.
Outlier providers are more likely to be from states Florida, New York, Illinois, and
Massachusetts, and less likely to be from Texas and Georgia. This is also corrobo-
rated by the DOJ cases, where about 15% of the named hospitals are based in Florida.

(A) average Length of Stay (aLOS) (B) #Unique patients served

FIGURE 5.18: Comparison of distributions over numeric covariates for Outlier hospitals
and All hospitals

Figure 5.18 compares the distributions across average length of stay and num-
ber of unique patients served. Ranked outlier hospitals keep inpatients longer as
compared to other hospitals. This could be to justify the usage of costlier DRGs,
or driven by ranked outlier hospitals receiving sicker patients; however, our met-
rics control for patient health characteristics. Additionally, top ranked fraudulent
providers serve more unique patients on average. Since a large fraction of our top
ranked providers are also named by the DOJ, it may indicate that a greater num-
ber of unique patients may provide more opportunity for perturbations in diagnosis
coding resulting in higher reimbursements, or it could reflect the fact that our out-
liers are largely urban hospitals.

5.10 Discussion

The unsupervised ensemble method introduced in this work provides a new data-
driven approach to identifying health care fraud using massive claims data. Our
approach uses different data modalities – including patient medical history, provider
coding patterns, and provider spending – to detect anomalous behavior consistent
with fraud and abuse. Besides detection, the methodology offers interpretability,
where qualitative case studies of our results based on model-specific explanations
pinpoint specific ICD and DRG codes associated with excess spending at a provider.
Finally, our method allows us to characterize the types of providers most likely to
be ranked as suspicious, which may be useful for guiding anti-fraud policy more
broadly.

Our method substantially outperforms baseline algorithms. We combine evi-
dence from multiple unsupervised outlier detection algorithms that use different
types of global and local analysis to create a final ranking of suspiciousness. While
only 1 in 20 hospitals are named in our ground truth data as fraudulent, 21 of our
top ranked 50 hospitals are in the same corpus, achieving an 8-fold improvement in
detection rate.

Our data come from Medicare, the largest federal health care program, and we
validate our method quantitatively using Department of Justice (DOJ) press releases
that name hospitals. Medicare spends over a hundred billion dollars per year on
hospitalizations, and the federal government has limited enforcement capacity. We
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believe our findings are per se interesting, because they help pinpoint fraud by pri-
vate firms against the government in a way that could be used to improve public
spending.

Our method has natural extensions beyond Medicare and beyond hospitaliza-
tions. We believe that the same method will prove useful in detecting fraud against
private insurers, who face many of the same issues. Private insurers spend hundreds
of billions of dollars per year on reimbursing care, and even small shares of fraud can
be very expensive. Our detection algorithm can be used to guide auditing by iden-
tifying which providers are committing the most egregious behavior. Because our
method explains which patterns drive the detection, it can facilitate auditing once a
provider is selected by allowing an investigator to focus on certain billing codes and
types of care. Our method also has a natural extension to Medicaid, the federal-state
partnered low-income subsidy program, which spends an additional $400 Billion
per year on health care. With health care spending at 19.7% of US GDP Centers for
Medicare & Medicaid Services, 2022, tools for detecting health care fraud can find
wide-ranging use.
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Chapter 6

Early Prediction of Health
Outcomes

Chapter based on: Shubhranshu Shekhar, Dhivya Eswaran, Bryan Hooi, Jonathan
Elmer, Christos Faloutsos, and Leman Akoglu (2023). “Benefit-aware early pre-
diction of health outcomes on multivariate eeg time series”. In: Journal of Biomed-
ical Informatics 139, p. 104296.

6.1 Introduction

Early decision making is critical in a variety of application domains. In medicine,
earliness in prediction of health outcomes for patients in ICU (intensive care unit)
allows the hospital to redistribute their resources (e.g., ICU bed-time, physician
time, etc.) to in-need patients, and potentially achieve better health outcomes over-
all within the same amount of time, which is also a goal of value-based health-
care (Gray, 2017). Of course, another critical factor in play is the accuracy of such pre-
dictions. Hastily but incorrectly predicting unfavorable health outcome (e.g with-
drawal of life-sustaining therapies) could hinder equitable decision making in the
ICU, and may also expose hospitals to very costly lawsuits.

Clinical Problem Setting Consider resuscitated patients who generally survive
to ICU admission in comatose state. For the first several days, it is hard to distin-
guish patients who will awaken, leading to favorable recovery, from others. Current
clinical tests can not ascertain recovery for the initial 24− 48 hours. Therefore, many
patients receive aggressive care, however, later learned to have no chance of recov-
ery. As a result, families face tremendous financial and emotional burden with no
benefit to patients from such treatments. Early and accurate prognostication in ICU
could save lives, allow resource redistribution, avoid long and difficult care, and
provide families respite from prolonged uncertainty. A clinician considers patient
history, demographics, family support etc. in addition to large amounts of real-time
sensor information for taking a decision. Our work is motivated by this real-world
application that would help in alleviating the information overload on clinicians and
aid them in early and accurate decision making in ICU.

Our Approach. As suggested by the application, the real-time prediction prob-
lem necessitates modeling of two competing goals: earliness and accuracy—competing
since observing for a longer time, while cuts back from earliness, provides more in-
formation (i.e., data) that can help achieve better predictive accuracy. Besides the
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FIGURE 6.1: BENEFITTER wins: Note that BENEFITTER (in red) is on the Pareto front (Lo-
tov, Bushenkov, and Kamenev, 2013) of accuracy-vs.-tardiness trade-off on ECG dataset.
Each point represents evaluation of a method for a setting of hyper-parameters controlling

the trade-off.

earliness-accuracy trade-off, the prediction of health outcomes on electroencephalog-
raphy (EEG) recordings of ICU patients brings additional challenges. A large num-
ber (107) of EEG signal measurements are collected from multiple electrodes consti-
tuting high dimensional multivariate time series (our data is 900 GB on disk). More-
over, the series in data can be of various lengths because patients might not survive
or be discharged after varying length of stay at the ICU.

To this end, we directly integrate a cost/benefit framework to our proposed solu-
tion, BENEFITTER, toward jointly optimizing prediction accuracy and earliness. We
do not tackle an explicit multi-objective optimization but rather directly model a uni-
fied target that infuses those goals. BENEFITTER addresses the additional challenges
such as handling (i) multi-variate and (ii) variable-length signals (i.e., time series),
(iii) space-efficient modeling, (iv) scalable training, and (v) constant-time prediction.

We summarize our contributions as follows.
• Novel, cost-aware problem formulation: We propose BENEFITTER, which in-

fuses the incurred savings/gains S(t) from an early prediction at time t, as well
as the cost M from each misclassification into a unified target called benefit
= S(t)−M. Unifying these two quantities allows us to directly estimate a sin-
gle target, i.e., benefit, and importantly dictates BENEFITTER exactly when to
output a prediction: whenever estimated benefit becomes positive.

• Efficiency and speed: The training time for BENEFITTER is linear in the num-
ber of input sequences, and it can operate under a streaming setting to up-
date its decision based on incoming observations. Unlike existing work that
train a collection of prediction models for each t = 1, 2, . . . (Dachraoui, Bondu,
and Cornuéjols, 2015; Tavenard and Malinowski, 2016; Mori, Mendiburu, Das-
gupta, and Lozano, 2017), BENEFITTER employs a single model for each possi-
ble outcome, resulting in much greater space-efficiency.

• Multi-variate and multi-length time-series: Due to hundreds of measure-
ments from EEG signals collected from patients with variable length stays at
the ICU, BENEFITTER is designed to handle multiple time sequences, of vary-
ing length, which is a more general setting.

• Effectiveness on real-world data: We apply BENEFITTER on real-world (a)
multi-variate health care data (our main motivating application for this work
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is predicting survival/death of cardiac-arrest patients based on their EEG mea-
surements at the ICU), and (b) other 11 benchmark datasets pertaining to var-
ious early prediction tasks. On ICU application, BENEFITTER can make de-
cisions with up to 2× early (time-savings) as compared to competitors while
achieving equal or better performance on accuracy metrics. Similarly, on bench-
mark datasets, BENEFITTER provides the best spectrum for trading-off accu-
racy and earliness (e.g. see Figure 6.1).

6.2 Data and Problem Setting

6.2.1 Data Description

Our use case data are obtained from 725 comatose patients who are resuscitated
from cardiac arrest and underwent post-arrest EEG monitoring at a single academic
medical center between years 2010–2018.

The raw EEG data are recorded at 256 Hz from 22 scalp electrodes; 11 electrodes
in each hemisphere of the brain placed according to 10–20 International System of
Electrode Placement (Morley, Hill, and Kaditis, 2016). The raw data is then used
to collect quantitative EEG (qEEG) features (LaRoche and Haider, 2018) at an in-
terval of ten seconds that amounts to about 900 GB of disk space for 725 patients.
For our experiments, we selected 107 qEEG signals that physicians find informative
from the electrode measurements corresponding to different brain regions. The 107-
dimensional qEEG measurements from different electrodes on both left and right
hemisphere, including the amplitude-integrated EEG (aEEG), burst suppression ra-
tio (SR), asymmetry, and rhythmicity, form our multivariate time-series for analysis.
We also record qEEG for each hemisphere as average of qEEG features from 11 elec-
trodes on the given hemisphere.

As part of preprocessing, we normalize the qEEG features in a range [0, 1]. The
EEG data contains artifacts caused due to variety of informative (e.g. the patient
wakes up) or arbitrary (e.g. device unplugged/unavailability of devices) reason.
This results in missing values, abnormally high or zero measurements. We filter out
the zero measurements, typically, appearing towards the end of each sequence as
well as abnormally high signal values at the beginning of each time series from the
patient records. The zero measurements towards the end appear because of the dis-
connection. Similarly, abnormally high readings at the start appear when a patient
is being plugged for measurements. The missing values are imputed through linear
interpolation.

In this dataset, 225 patients (≈ 31%) out of total 725 patients survived i.e. woke
up from coma. Since the length of stay in ICU depends on each individual patient,
the dataset contains EEG records of length 24–96 hours. To extensively evaluate our
proposed approach, we create 3 versions of the dataset by median sampling (Jus-
tusson, 1981) the sequences at one hour, 30 minutes and 10 minutes intervals (as
summarized in §6.5, Table 6.4).

6.2.2 Notation

A multi-variate time-series dataset is denoted as X = {(Xi, li)}n
i=1, consisting of ob-

servations and labels for n instances. Each instance i has a label li ∈ {1, . . . C} where
C is the number of labels or classes.1 For example, each possible health outcome at

1We use the terms label and class interchangeably throughout the chapter.
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the ICU is depicted by a class label as survival or death. The sequence of observations
is given by Xi = {Xi1, . . . , Xit, . . . , XiLi} for Li equi-distant time ticks. Here, Li is the
length of time-series i and varies from one instance to another in the general case. It
is noteworthy that our proposed BENEFITTER can effectively handle variable-length
series in a dataset, whereas most existing early prediction techniques are limited to
fixed length time-series, where Li = L for all i ∈ [n]. Each observation Xit ∈ Rd is a
vector of d real-valued measurements, where d is the number of variables or signals.
We denote Xi’s observations from the start until time tick t by Xi[1:t].

6.2.3 Problem Statement

Early classification of time series seeks to generate a prediction for input sequence
X based on X[1:t] such that t is small and X[1:t] contains enough information for an
accurate prediction. Formally,

Problem 2 (Early classification). Given a set of labeled multivariate time series X =
{(Xi, li)}n

i=1, learn a function Fθ(·) which assigns label l̂ to a given time series X[1:t] i.e.
Fθ(X[1:t]) 7→ l̂ such that t is small.

Challenges The challenges in early classification are two-fold: domain-specific and
task-specific, discussed as follows.

• Domain-specific: Data preprocessing is non-trivial since raw EEG data includes
various biological and environmental artifacts. Observations arrive incrementally
across multiple signals where the characteristics that are indicative of class labels
may occur at different times across signals which makes it difficult to find a decision
time to output a label. Moreover, each time series instance can be of different length
due to varying length of stay of patients at the ICU which requires careful handling.

• Task-specific: Accuracy and earliness of prediction are competing objectives
(as noted above) since observing for a longer time, while cuts back from earliness,
provides more signals that is likely to yield better predictive performance.

In this work, we propose BENEFITTER (see §6.4) that addresses all the aforemen-
tioned challenges.

6.3 Background and Related Work

Time series data has been well-studied in the literature for event detection (Weiss
and Hirsh, 1998), anomaly detection (Keogh, Lin, Fu, and Herle, 2006), similarity
search (Yeh et al., 2018), visualization (Gao, Li, Li, Lin, and Rangwala, 2017) and
more. A comprehensive treatment is provided in (Ralanamahatana, Lin, Gunopu-
los, Keogh, Vlachos, and Das, 2005). Traditional techniques for time series classifi-
cation rely on observing whole time series before prediction of its class label. Tra-
ditional time series classification draws from a large number of different techniques
including near neighbor similarity, interval and phase based feature extraction, re-
curring short-pattern mining, signal processing, and more recently deep learning
based models (Bagnall, Lines, Bostrom, Large, and Keogh, 2017; Susto, Cenedese,
and Terzi, 2018; Li, Bissyande, Klein, and Traon, 2016; Ismail Fawaz, Forestier, We-
ber, Idoumghar, and Muller, 2019). Here, we only survey work most relevant to early
time-series classification.
Early Classification. The initial mention of early classification of time-series dates back
to early 2000s (Rodríguez, Alonso, and Boström, 2001; Bregón, Simón, Rodríguez,
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Alonso, Pulido, and Moro, 2005) where the authors consider the value in classify-
ing prefixes of time sequences. However, it was formulated as a concrete learning
problem only recently (Xing, Pei, Dong, and Yu, 2008; Xing, Pei, and Philip, 2012).
Xing, Pei, Dong, and Yu, 2008 mine a set of sequential classification rules and formu-
late an early-prediction utility measure to select the features and rules to be used in
early classification. Later they extend their work to a nearest-neighbor based time-
series classifier approach to wait until a certain level of confidence is reached before
outputting a decision (Xing, Pei, and Philip, 2012). Parrish, Anderson, Gupta, and
Hsiao, 2013 delay the decision until a reliability measure indicates that the deci-
sion based on the prefix of time-series is likely to match that based on the whole
time-series. Xing, Pei, Yu, and Wang, 2011 advocate the use of interpretable features
called shapelets (Ye and Keogh, 2009) which have a high discriminatory power as
well as occur earlier in the time-series. Ghalwash and Obradovic, 2012 extend this
work to incorporate a notion of uncertainty associated with the decision. Hatami
and Chira, 2013 train an ensemble of classifiers along with an agreement index be-
tween the individual classifiers such that a decision is made when the agreement
index exceeds a certain threshold. As such, none of these methods explicitly opti-
mize for the trade-off between earliness and accuracy.

Dachraoui, Bondu, and Cornuéjols, 2015 propose to address this limitation and
introduce an adaptive and non-myopic approach which outputs a label when the
projected cost of delaying the decision until a later time is higher than the cur-
rent cost of early classification. The projected cost is computed from a clustering of
training data coupled with nearest neighbor matching. Tavenard and Malinowski,
2016 improve upon Dachraoui, Bondu, and Cornuéjols, 2015 by eliminating the need
for data clustering by formulating the decision to delay or not to delay as a classi-
fication problem. Mori, Mendiburu, Dasgupta, and Lozano, 2017 take a two-step
approach; where in the first step classifiers are learned to maximize accuracy, and
in the second step, an explicit cost function based on accuracy and earliness is used
to define a stopping rule for outputting a decision. Schäfer and Leser, 2020, instead,
utilize reliability of predicted label as stopping rule for outputting a decision. How-
ever, these methods require a classification-only phase followed by optimizing for
trade-off between earliness and accuracy. Recently, Hartvigsen, Sen, Kong, and Run-
densteiner, 2019 employ recurrent neural network (RNN) based discriminator for
classification paired with a reinforcement learning task to learn halting policy. The
closest in spirit to our work is the recently proposed end-to-end learning framework
for early classification (Rußwurm, Lefèvre, Courty, Emonet, Körner, and Tavenard,
2019) that employs RNNs. They use a cost function similar to (Mori, Mendiburu,
Dasgupta, and Lozano, 2017) in a fine-tuning framework to learn a classifier and a
stopping rule based on RNN embeddings for partial sequences.

Our proposed BENEFITTER is a substantial improvement over all the above prior
work on early classification of time series along a number of fronts, as summarized
in Table 6.1. BENEFITTER jointly optimizes for earliness and accuracy using a cost-
aware benefit function. It seamlessly handles multi-variate and varying-length
time-series and moreover, leads to explainable early predictions, which is important
in high-stakes domains like health care.
Value-based Healthcare Value-based healthcare focuses on maximizing the benefits of
provided care. This can be achieved by distributing resources to ensure in-need pa-
tients receive care at the right time (Gray, 2017; Bae, 2015). Resource allocation is
particularly important in the context of limited provisions (e.g. occupancy rate in
life-sustaining therapies) for meeting the medical demand. Prior works (Lee and
Porter, 2013; Traoré, Zacharewicz, Duboz, and Zeigler, 2019; Hillary, Justin, Bharat,
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TABLE 6.1: Qualitative comparison with prior work. ‘?’ means that the respective
method, even though does not exhibit the corresponding property originally, can possibly

be extended to handle it.
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Jointly optimize earliness & accuracy ✓ ✓ ✓
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Multivariate ✓ ✓ ✓ ✓

Constant decision time ✓ ✓ ✓
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Explainable model ✓ ✓ ✓ ✓

Explainable hyper-parameter ✓

Cost aware ✓ ✓ ✓
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and Jitendra, 2016) consider healthcare value in resource allocation from policy per-
spective. Our proposed BENEFITTER complements the value-based healthcare, and
in this work, through benefit function, our framework provides clinicians with
tools to assist in decision making that aims to achieve better health outcomes overall
with limited hospital resources.

6.4 BENEFITTER: Proposed Method

6.4.1 Modeling Benefit

How should an early prediction system trade-off accuracy vs. earliness? In many
real-world settings, there is natural misclassification cost, denoted M, associated
with an inaccurate prediction and certain savings, denoted S(t), obtained from early
decision-making. We propose to construct a single variable called benefit which
captures the overall value (savings minus cost) of outputting a certain decision (i.e.,
label) at a certain time t, given as

benefit = S(t)−M (6.1)

We directly incorporate benefit into our model and leverage it in deciding when to
output a decision; when the estimate is positive.

Outcome vs. Type Classification

There are two subtly different problem settings that arise in time-series classification
that are worth distinguishing between.

• Outcome classification: Here, the labels of time-series encode the observed out-
come at the end of the monitoring period of each instance. Our motivating examples
from predictive health care and system maintenance fall into this category. Typi-
cally, there are two outcomes: favorable (e.g., survival or no- f ailure) and unfavorable
(e.g., death or catastrophic- f ailure); and we are interested in knowing when an un-
favorable outcome is anticipated. In such cases, predicting an early favorable out-
come does not incur any change in course of action, and hence does not lead to any
discernible savings or costs. For example, in our ICU application, a model predict-
ing survive (as opposed to death) simply suggests to the physicians that the patient
would survive provided they continue with their regular procedures of treatment. That
is because l = survive labels we observe in the data are at the end of the observed
period only after all regular course of action have been conducted. In contrast, l = death
instances have died despite the treatments.

In outcome classification, predicting the favorable class simply corresponds to
the ‘default state’ and therefore we model benefit and actively make predictions
only for the unfavorable class.

• Type classification: Here, the time-series labels capture the underlying process
that gives rise to the sequence of observations. In other words, the class labels are
prior to the time-series observations. The standard time-series early classification
benchmark datasets fall into this category. Examples include predicting the type of
a bird from audio recordings or the type of a flying insect (e.g., a mosquito) from
their wingbeat frequencies (Batista, Keogh, Mafra-Neto, and Rowton, 2011). Here,
prediction of any label for a time-series at a given time has an associated cost in case
of misclassification (e.g., inaccurate density estimates of birds/mosquitoes) as well
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TABLE 6.2: Benefit model for ICU outcome prediction.

Predicted l̂i

A
ct

ua
ll

i survival death
survival 0 (Li − t)s−M

death 0 (Li − t)s
as potential savings for earliness (e.g., battery life of sensors). In type classification,
we separately model benefit for each class.

Benefit Modeling for Outcome Classification

Consider the 2-class problem that arises in predictive health care of ICU patients and
predictive maintenance of systems. Without loss of generality, let us denote by l = 0
the survival class where the patient is discharged alive from the ICU at the end of
their stay; and let l = 1 denote the death class where the patient is deceased.

As discussed previously, l = 0 corresponds to the ‘default state’ in which regular
operations are continued. Therefore, predicting survival would not incur any time
savings or misclassification cost. In contrast, predicting death would suggest the
clinician to intervene to optimize quality of life for the patient. In case of an accurate
prediction, say at time t, earliness would bring savings (e.g., ICU bed-time), denoted
S(t). Here we use a linear function of time for savings on accurately predicting
death for a patient i at time t, specifically

S(t) = (Li − t)s (6.2)

where s denotes the value of savings per unit time.2 On the other hand, an
inaccurate death flag at t, while comes with the same savings, would also incur a
misclassification cost M (e.g., a lawsuit).

All in all, the benefit model for the ICU scenario is given as in Table 6.2, reflect-
ing the relative savings minus the misclassification cost for each decision at time
t on time-series instance i. As we will detail later in §6.4.3, the main idea behind
BENEFITTER is to learn a single regressor model for the death class, estimating the
corresponding benefit at each time tick t.
Specifying s and M. Here, we make the following two remarks. First, unit-time
savings s and misclassification cost M are value estimates that are dictated by the
specific application. For our ICU case, for example, we could use s = $4, 000 value
per unit ICU time, and M = $500, 000 expected cost per lawsuit. Note that s and
M are domain-specific explainable quantities. Second, the benefit model is most
likely to differ from application to application. For example in predictive system
maintenance, savings and cost would have different semantics, assuming that early
prediction of failure implies a renewal of all equipment. In that case, an early and
accurate failure prediction would incur savings from costs of a complete system halt,
but also loss of equipment lifetime value due to early replacement plus the replace-
ment costs. On the other hand, early but inaccurate prediction (i.e., a false alarm)
would simply incur unnecessary replacement costs plus the loss of equipment life-
time value due to early replacement.

Our goal is to set up a general prediction framework that explicitly models
benefit based on incurred savings and costs associated with individual decisions,
whereas the scope of specifying those savings and costs are left to the practitioner.

2Note that BENEFITTER is flexible enough to accommodate any other function of time, including
nonlinear ones, as the savings function S(t).
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We argue that each real-world task should strive to explicitly model benefit, where
earliness and accuracy of predictions translate to real-world value. In cases where
the prediction task is isolated from its real-world use (e.g., benchmark datasets), one
could set both s = M = 1 for unit savings per unit time earliness and unit misclas-
sification cost per incorrect decision. In those cases where M is not tied to a specific
real-world value, it can be used as a “knob” (i.e., hyperparameter) for trading off ac-
curacy with earliness; where, fixing s = 1, a larger M nudges BENEFITTER to avoid
misclassifications toward higher accuracy at the expense of delayed predictions and
vice versa.

Benefit Modeling for Type Classification

Compared to outcome prediction where observations give rise to the labels, in type
classification problems the labels give rise to the observations. Without a default
class, predictions come with associated savings and cost for each class.

TABLE 6.3: Benefit model for general two-class type prediction.

Predicted l̂i

A
ct

ua
ll

i type-1 type-2
type-1 (Li − t)s (Li − t)s−M12

type-2 (Li − t)s−M21 (Li − t)s

Consider the 2-class setting of predicting an insect’s type from wingbeat frequen-
cies. An example benefit model is illustrated in Table 6.3, s capturing the value of
battery-life savings per unit time and M depicting the cost of misclassifying one in-
sect as the other. Note that in general, misclassification cost need not be symmetric
among the classes.

For type classification problems, we train a total of C benefit prediction mod-
els, one for each class. Since misclassification costs are already incorporated into
benefit, we train each (regression) model independently which allows for full par-
allelism.

6.4.2 Online Decision-making using Benefit

Next we present how to employ BENEFITTER in decision making in real time. Sup-
pose we have trained our model that produces benefit estimates per class for a new
time-series instance in an online fashion. How and when should we output predic-
tions?

Thanks to our benefit modeling, the decision-making is quite natural and intu-
itive: BENEFITTER makes a prediction only when the estimated benefit becomes
positive for a certain class and outputs the label of that class as its prediction i.e. for
our ICU scenario the predicted label l̂ is given as

l̂ =

{
unfavorable, if benefit > 0
favorable, i.e. no action, otherwise.

For illustration, in Fig. 6.2 we show benefit estimates over time for an input series
where t = 15 corresponds to decision time.

Note that in some cases BENEFITTER may restrain from making any prediction
for the entire duration L of a test instance, that is when estimated benefit never



106 Chapter 6. Early Prediction of Health Outcomes

goes above zero. For outcome classification tasks, such a case is simply registered
as default-class prediction and its prediction time is recorded as L. For the ICU
scenario, a non-prediction is where no death flag is raised, suggesting survival and
regular course of action. For type classification tasks, in contrast, a non-prediction
suggests “waiting for more data” which, at the end of the observation period, simply
implies insufficient evidence for any class. We refer to those as un-classified test
instances. Note that BENEFITTER is different from existing prediction models that
always produce a prediction, where un-classified instances may be of independent
interest to domain experts in the form of outliers, noisy instances, etc.

Decision Time

FIGURE 6.2: Benefit estimate over time for a patient from EEG dataset with true l = 1 (i.e.
death). We show two out of all 107 signals used by BENEFITTER: amplitude of EEG (aEEG)

and suppression ratio (i.e. fraction of flat EEG epochs).

6.4.3 Predicting Benefit

For each time-series i, we aim to predict the benefit at every time tick t, denoted as
bit. Consider the outcome classification problem, where we are to train one regressor
model for the non-default class, say no− survival. For each training series i for which
li = 0 (i.e., default class), benefit of predicting death at t is bit = (Li − t)s − M.
Similarly for training series for which li = 1 (i.e., death), bit = (Li − t)s. (See Table
6.2.) To this end, we create training samples of the form

{
(Xi[1:t], bit)

}Li

t=1 per instance
i. Note that the problem becomes a regression task. For type classification problems,
we train a separate regression model per class with the corresponding bit values.
(See Table 6.3.)
Model. We set up the task of benefit prediction as a sequence regression problem.
We require BENEFITTER to ingest multi-variate and variable-length input to estimate
benefit. We investigate the use of Long Short Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), a variant of recurrent neural networks (RNN), for the se-
quence (time-series) regression since their recursive formulation allows LSTMs to
handle multi-variate variable-length inputs naturally. The recurrent formulation of
LSTMs is useful for BENEFITTER to enable real-time predictions when new observa-
tions arrive one at a time.
Attention. The recurrent networks usually find it hard to focus on to relevant infor-
mation in long input sequences. For example, an EEG pattern in the beginning of a
sequence may contain useful information about the patient’s outcome, however the
lossy representation of LSTM would forget it. This issue is mostly encountered in
longer input sequences (Luong, Pham, and Manning, 2015). The underlying idea of
attention (Vaswani et al., 2017) is to learn a context that captures the relevant infor-
mation from the parts of the sequence to help predict the target. For a sequence of
length L, given the hidden state ht from LSTM and the context vector c, the attention
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TABLE 6.4: Summary of the datasets used in this work.

Dataset Train Test Classes Length Dimension

EEG-ICU Hour 507 218 2 24–96 107
EEG-ICU 30 Min 507 218 2 48–192 107
EEG-ICU 10 Min 507 218 2 144–576 107

ECG200 100 100 2 96 1
ItalyPowerDemand 67 1029 2 24 1

GunPoint 50 150 2 150 1
TwoLeadECG 23 1139 2 82 1

Wafer 1000 6062 2 152 1
ECGFiveDays 23 861 2 136 1

MoteStrain 20 1252 2 84 1
Coffee 28 28 2 286 1

Yoga 300 3000 2 426 1
SonyAIBO 20 601 2 70 1

Endomondo 99754 42751 2 450 2

step in BENEFITTER combines the information from both vectors to produce a final
attention based hidden state as described below:

αt =
exp

(
cL · ht

)
∑t exp

(
cL · ht

) ; c =
L

∑
t=1

αtht (6.3)

hattn = σ(Wa[concat(c, cL)]) (6.4)

where cL is the memory state of the cell at the last time step L, ht is the hidden state
output of the LSTM at time t, hattn is the attention based hidden state, σ(·) is the non-
linear transformation, and Wa is the parameter. Intuitively, the attention weights αt
allows the model to learn to focus on specific parts of the input sequence for the task
of regression. The benefit prediction is given by a single layer neural network such
that b̂L = hattnw + w0 where w and w0 are parameters of the linear layer.

BENEFITTER is used in real life decision making, where the attention mechanism
could help an expert by highlighting the relevant information that guided the model
to output a decision. We present model implementation details and list of tunable
parameters in §6.5.

6.5 Experiments

We evaluate our method through extensive experiments on a set of benchmark
datasets and on a set of datasets from real-world use cases. We next provide the
details of the datasets and the experimental setup, followed by results.

6.5.1 Dataset Description

We apply BENEFITTER on our EEG-ICU datasets (see §6.2.1), and on 11 public bench-
mark datasets from diverse domains with varying dimensionality, length, and scale.
Table 6.4 provides a summary of the datasets used in evaluation. Note that EEG-
ICU datasets are variable-length, but benchmarks often used in the literature are
not. Detailed description of public datasets are as follows.
• Benchmark Datasets. Our benchmark datasets consist of 10 two-class time-series
classification datasets from the UCR repository Chen et al., 2015. The datasets cover
diverse domains and have diverse range of series length. The UCR archive provides
the train/test split for each of these datasets, which we retain in our experiments.
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• Endomondo Dataset. Endomondo is a social fitness app that tracks numerous fit-
ness attributes of the users. We use the web-scale Endomondo dataset Ni, Muhlstein,
and McAuley, 2019 (See Table 6.4) for the early activity prediction task. The data
includes various measurements such as heart rate, altitude and speed, along with
contextual data such as user id and activity type. For the task of early activity pre-
diction, we use heart rate and altitude signals for early prediction of the type of
activity, specifically biking vs. running. (Note that we leave out signals like speed
and its derivatives which make the classification task too easy.)

6.5.2 Experimental Setup

Baselines. We compare BENEFITTER to the following six early time-series classifi-
cation methods (also see Table 6.1), which broadly belong to one of the two types
– Machine Learning (ML) (Mitchell and Mitchell, 1997) based and Deep Learning
(DL) (LeCun, Bengio, and Hinton, 2015) based methods. ML based methods:

1. ECTS: Early Classification on Time Series (Xing, Pei, and Philip, 2012) uses
minimum prediction length (MPL) and makes predictions if the MPL of the top
nearest neighbor (1-NN) is greater than the length of the test series.

2. EDSC: Early Distinctive Shapelet Classification (Xing, Pei, Yu, and Wang, 2011)
extracts local shapelets for classification that are ranked based on the utility
score incorporating earliness and accuracy. Multivariate extention of EDSC
(M-EDSC) (Ghalwash and Obradovic, 2012) provides a utility function that
can incorporate multi-dimensional series.

3. C-ECTS: Cost-aware ECTS (Dachraoui, Bondu, and Cornuéjols, 2015; Tavenard
and Malinowski, 2016) trades-off between a misclassification cost and a cost of
delaying the prediction, and estimates future expected cost at each time step
to determine the optimal time instant to classify an incoming time series.

4. RelClass: Reliable Classification (Parrish, Anderson, Gupta, and Hsiao, 2013)
uses a reliability measure to estimate the probability that the assigned label
given incomplete data (at time step t) would be same as the label assigned
given the complete data.

DL based methods:
5. E2EL: End-to-end Learning for Early Classification of Time Series (Rußwurm,

Lefèvre, Courty, Emonet, Körner, and Tavenard, 2019) optimizes a joint cost
function based on accuracy and earliness, and provides a framework to esti-
mate a stopping probability based on the cost function.

6. EARLIEST: EARLIEST (Hartvigsen, Sen, Kong, and Rundensteiner, 2019) is a re-
inforcement learning based method that learns halting policy while optimizing
for classification accuracy. It also optimizes a joint function that incorporates
objectives for earliness and accuracy.

Hardware. Experiments are run on stock Linux server with 1024 GB RAM, 96
cores 2.10 GHz Intel Xeon CPU.

Model Training Details

We define the outcome prediction problem as a regression task on the benefit, as
presented in §6.4. The training examples represent the sequences observed up to
time t along with their corresponding expected benefit at time t. We then split
the training examples (as mentioned in Table 6.4) to use 90% of the sequences
for training the RNN model and remaining 10% for validation. We select our
model parameters based on the evaluation on validation set. We have two sets of
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hyper-parameters: one corresponding to our benefit formulation that are s and
M, and the other for the RNN model. The hyper-parameter grid for the RNN
model includes the dimension of the hidden representation ∈ {16, 32} and the
learning rate η ∈ {0.01, 0.001}. For BENEFITTER, we fix s at 1 and vary M/s
for model selection. The hyper-parameter grid for our benefit formulation is
M/s ∈ {0.5, 1.0, 1.5, 2.0} ×max({Li}n

i=1), where Li is the length of training series
i. For the general multi-class problem we tune for an additional hyper-parameter ∆
to predict the class label. We set ∆ ∈ {0.4, 0.5, 0.6, 0.7} of the maximum difference
between the expected benefit for the two-class labels for a given training series.
BENEFITTER outputs a decision when the predicted benefit is positive and at least
∆ higher compared to the predicted benefit of other labels.

For the learning task, we use the mean squared error loss function and Adam
optimizer Kingma and Ba, 2014 for learning the parameters. The loss corresponding
to class l is given by

J =
1

|Ntrain| ∑
bl∈Bl

Li

∑
t=1

(b̂itl − bitl)
2

where |Ntrain| is the number of total count of time steps for all the sequences in the
training set, Li is the length of each sequence, and Bl denotes the expected benefit
for the class l. We use Keras and Pytorch to implement our models.

6.5.3 Evaluation

We design our experiments to answer the following questions:

[Q1] Effectiveness: How effective is BENEFITTER at early prediction on time se-
ries compared to the baselines? What is the trade-off with respect to accuracy and
earliness? How does the accuracy–earliness trade-off varies with respect to model
parameters?

[Q2] Efficiency: How does the running-time of BENEFITTER scale w.r.t. the number
of training instances? How fast is the online response time of BENEFITTER?

[Q3] Discoveries: Does BENEFITTER lead to interesting discoveries on real-world
case studies?

[Q1] Effectiveness

We compare BENEFITTER to baselines on (1) patient outcome prediction, the main
task that inspired our benefit formulation, (2) the activity prediction task on a
web-scale dataset, as well as (3) the set of 10 two-class time-series classification
datasets. The datasets for the first two tasks are multi-dimensional and variable-
length that many of the baselines can not handle. Thus we compare BENEFITTER

with E2EL and M-EDSC baselines that can work with such time-series sequences.
Comparison with M-EDSC is limited to the smaller one-hour EEG dataset since
it does not scale to larger datasets. In order to compare BENEFITTER to all other
baselines, we conduct experiments on ten benchmark time-series datasets.
Patient Outcome Prediction. We compare BENEFITTER with the baseline E2EL on
two competing criteria: performance (e.g. precision, accuracy) and earliness (tardi-
ness – lower is better) of the decision. We report precision, recall, F1 score, accuracy,
tardiness and the total benefit using each method when applied to the test set. EEG
dataset is a high dimensional variable-length dataset for which most of the baselines
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are not applicable. In our experiments, we set the misclassification cost for each of
the dataset variants as follows – M/s = 100 for dataset variant sampled at an hour,
M/s = 200 for dataset sampled at 30 minutes, and M/s = 600 for dataset sampled
at 10 minutes – based on average daily cost of ICU care and the lawsuit cost. For
the baseline methods, we report the best results for the earliness-accuracy trade-off
parameters. For the baseline methods, we select the best value of accuracy and ear-
liness based on their Euclidean distance to ideal accuracy = 1 and ideal tardiness
= 0.

Table 6.5 reports the evaluation against different performance metrics. Note that
predicting ‘default state’ for a patient does not change the behavior of the system.
However, predicting death (unfavorable outcome) may suggest clinician to intervene
with alternative care. In such a decision setting, it is critical for the classifier to ex-
hibit high precision. Our results indicate that BENEFITTER achieves a significantly
higher precision (according to the micro-sign test (Yang, Liu, et al., 1999)) when com-
pared to the baselines. On the other hand, a comparatively lower tardiness indicates
that BENEFITTER requires conspicuously less number of observations on average to
output a decision (no statistical test conducted for tardiness). We also compare the
total benefit accrued for each method on the test set where BENEFITTER outper-
forms the competition. The results are consistent across the three datasets of varying
granularity from hourly sampled data to 10 minute sampled data.

TABLE 6.5: Effectiveness of BENEFITTER on EEG datasets. * indicates significance at p-
value ≤ 0.05 based on the micro-sign test (Yang, Liu, et al., 1999) for the performance

metrics. No statistical test conducted for tardiness and total benefit.
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EEG Hour
E2EL 0.70 0.68 0.69 0.79 1.0 -2600

M-EDSC 0.69 0.65 0.67 0.78 0.52 2497
BENEFITTER 0.80* 0.68 0.73* 0.83* 0.64 2737

EEG 30Min
E2El 0.64 0.67 0.65 0.78 1.0 -4800

BENEFITTER 0.68* 0.66 0.67* 0.79 0.63 5962

EEG 10Min
E2EL 0.73 0.69 0.71 0.82 0.86 -736

BENEFITTER 0.76* 0.69 0.72 0.83 0.48 18722

For hourly sampled set, we also compare our method to multivariate EDSC base-
line (for the 30 min and 10 min EEG dataset M-EDSC does not scale ). Though
M-EDSC provides better earliness trade-off compared to other two methods, the
precision of the outcomes is lowest which is not desirable in this decision setup. In
Table 6.5, we indicate the significant results using * that is based on the comparison
between BENEFITTER and E2EL.
Benchmark Prediction Tasks. To jointly evaluate the accuracy and earliness (tardi-
ness – lower is better), we plot accuracy against the tardiness to compare the Pareto
frontier for each of the competing methods over 10 different benchmark datasets. In
Fig. 6.1 and Fig. 6.3, we show the accuracy and tardiness trade-off for 10 benchmark
UCR datasets. Each point on the plot represents the model evaluation for a choice
of trade-off parameters reported in Table 6.6. Note that BENEFITTER dominates the
frontiers of all the baselines in accuracy vs tardiness on five of the datasets. More-
over, our method appears on the Pareto frontier for four out of the remaining five
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for at least one set of parameters.

TABLE 6.6: Earliness and accuracy trade-off parameters for each of the methods.

Method Model Training Hyper-parameters

ECTS support ∈ {0.1, 0.2, 0.4, 0.8}
EDSC Chebyshev parameter ∈ {2.5, 3.0, 3.5}

C-ECTS delay cost ∈ {0.0005, 0.001, 0.005, 0.01}
RelClass reliability ∈ 0.001, 0.1, 0.5, 0.9

E2EL earliness trade-off α ∈ {0.6, 0.7, 0.8, 0.9}
EARLIEST earliness trade-off λ ∈ {0.0, 0.05, 0.1, 0.15}

BENEFITTER M/s ∈ {0.5, 1.0, 1.5, 2.0} ×max(series length); for benchmark datsets

To further assess the methods, we report quantitative results in Table 6.7 in terms
of accuracy at a given tolerance of tardiness. We define an acceptable level of toler-
ance ∈ {0.50, 0.75} to indicate how much an application domain is indifferent to
delay in decision up to the indicated level. For example a tolerance of 0.50 indicates
that the evaluation of the decisions is done at t = 0.50× L, L is the maximum length
of sequence, and any decision made up to t = 0.50× L are considered for evaluation.
In Fig. 6.3, we fix the x-axis at a particular tolerance and report the best accuracy to
the left of the fixed tolerance in Table 6.7. The reported tolerance level indicates the
average tolerance across the test time-series sequences. BENEFITTER outperforms
the competition seven times out of ten for a tolerance level = 0.50 indicating that
our method achieves best performance using only the half of observations. The re-
maining three times our method is second best among all the competing methods.
Similarly for tolerance = 0.75, BENEFITTER is among the top two methods nine out
of ten times.
Endomondo Activity Prediction. We run the experiments on full Endomondo
dataset (a large scale dataset) to compare BENEFITTER with baselines E2EL and
EARLIEST (other baselines do not scale) for one set of earliness-accuracy trade-off
parameters. We, first, compare the three methods on a sampled dataset – with 1000
time series instances – evaluated for a choice of trade-off parameters. We select the
parameters that yields a performance closest to ideal indicated. With the selected
parameters, comparison of three methods on large-scale Endomondo activity
prediction dataset are reported in Table 6.7 (last row). We report the accuracy of
the three methods by fixing their tardiness at ≤ 0.5. Notice that the methods are
comparable in terms of the prediction performance while using less than half the
length of a sequence for outputting a decision.

The quantitative results suggest a way to choose the best classifier for a specified
tolerance level for an application. In critical domains such as medical, or predictive
maintenance a lower tolerance would be preferred to save cost. In such domains,
BENEFITTER provides a clear choice for early decision making based on the bench-
mark dataset evaluation.

[Q2] Efficiency

Fig. 6.4 shows the scalability of BENEFITTER with the number of training time-series
and number of observations per time series at test time. We use ECG200 dataset
from UCR benchmark to report results on runtime.
Linear training time: We create ten datasets from the ECG200 dataset by retaining
a fraction ∈ {0.1, 0.2, . . . , 1.0} of total number of training instances. For a fixed set
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FIGURE 6.3: Comparison of methods based on accuracy versus tardiness trade-off for
benchmark prediction tasks (Sec. §6.5.3).

of parameters, we train our model individually for each of the created datasets, and
record train time for five independent runs. The average wall-clock running time
is reported against the fraction of training sequences in Fig. 6.4 (left). The standard
deviation is around the average wall-clock time is indicated by vertical bar in the
plot. The points in the plot align in a straight line indicating that BENEFITTER scales
linearly with number of sequences.
Constant test time: We now evaluate BENEFITTER runtime by varying the number
of observations over time. For this experiment, we retain the hidden state of an
input test sequence up to time (t − 1). When a new observation at time t arrives,
we update the hidden state of the RNN cell using the new observation and compute
the predicted benefit based on updated state. Fig. 6.4 (right) plots the wall-clock
time against each new observation, and the density estimate is shown on the right.
The time is averaged over test set examples. The plot indicates that we get real-time
decision in constant time.

The efficiency of our model makes it suitable for deployment for real time pre-
diction tasks.

[Q3] Discoveries

In this section, we present an analysis of BENEFITTER highlighting some of the
salient aspects of our proposed framework on ICU patient outcome task. In par-
ticular, we discuss how our method explains the benefit prediction by highlighting
the parts of inputs that contributed most for the prediction, and how our benefit
formulation assists with model evaluation.
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TABLE 6.7: BENEFITTER wins most of the times. Accuracy on benchmark datasets against
mean tardiness ∈ {0.5, 0.75}. Bold represents best accuracy within a given tardiness tol-
erance, and the underline represents the next best accuracy. ‘-’ indicates that on average
method requires more observations than the given tardiness tolerance. ‘✗’ specifies non-
applicability of a method on the dataset, and ‘DNS’ shows that a method does not scale for

the dataset.

Dataset

Tardiness
ECTS

EDSC
C-ECTS

RelClass
E2EL

EARLIEST

BENEFITTER

(≤)

ECG200 0.50 - 0.84 0.83 0.88 0.87 0.66 0.91

0.75 - 0.84 0.83 0.89 0.87 0.76 0.91

ItalyPower 0.50 - - 0.78 0.85 0.89 0.71 0.93

0.75 - 0.85 0.94 0.95 0.89 0.71 0.93

GunPoint 0.50 - 0.95 0.80 - 0.93 0.78 0.97

0.75 0.91 0.95 0.84 0.91 0.96 0.78 0.97

TwoLeadECG 0.50 - 0.88 0.89 - 0.79 0.73 0.98

0.75 0.73 0.89 0.94 0.73 0.86 0.73 0.98

Wafer 0.50 - 0.99 0.96 1.0 0.99 0.99 0.99

0.75 1.0 0.99 0.96 1.0 0.99 0.99 0.99

ECGFiveDays 0.50 - - 0.59 0.57 0.64 0.57 0.87

0.75 0.72 0.95 0.59 0.77 0.77 0.57 0.87

MoteStrain 0.50 - 0.8 0.85 - - 0.67 0.85

0.75 - 0.8 0.85 - - 0.67 0.85

Coffee 0.50 - - 0.98 0.89 0.53 0.85 0.93

0.75 - 0.75 0.98 0.89 0.53 0.85 0.93

Yoga 0.50 - 0.71 0.64 - 0.79 0.65 0.76

0.75 - 0.71 0.64 - 0.79 0.65 0.76

SonyAIBO 0.50 - 0.80 0.81 0.81 0.92 0.81 0.92

0.75 0.69 0.80 0.81 0.81 0.92 0.81 0.92

Endomondo 0.50 ✗ DNS ✗ ✗ 0.68 0.66 0.66
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FIGURE 6.4: (left) BENEFITTER scales linearly with the number of time-series, and (right)
provides constant-time decision.

Explaining Benefit Estimation Our method utilizes the attention mechanism (see
§6.4) in the RNN network for benefit regression. The model calculates weights cor-
responding to each hidden state ht. These weights can indicate which of the time
dimensions model focuses on to estimate the benefit for the current input series. In
Fig. 6.5, we plot two dimensions of the input time series from EEG dataset. These
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FIGURE 6.5: Input test sequence with corresponding attention weights evaluated at t =
0, . . . , 23. Model decision at t = 4.

dimensions correspond to amplitude of the EEG and suppression ratio when mea-
sured in left hemisphere of the brain. The input sequence is taken from the hourly
sampled dataset. Note that there are sharp rise and fall in the aEEG signal from
t = 1 to t = 5, and from t = 5 to t = 13. Similarly, we notice sharp changes in
SR signal around t = 4. The model outputs the attention weights corresponding to
each time-dimension of all the inputs (107 dimensional EEG) shown in Fig. 6.5 as a
heatmap (dark colors indicate lower weights, lighter colors indicate higher weights).
BENEFITTER outputs a decision at t = 4, however we evaluate the model at further
time steps. Note that the each row of heat map represents evaluation of input at
t = 0, . . . , 23. For each evaluation, we obtain a weight signifying the importance of
a time dimension which are plotted as heatmap. X-axis of heat map corresponds to
time dimension, and y-axis of the heatmap corresponds to the evaluation time step
of the input. Observe that the attention places higher weights towards the beginning
of the time series where we observe the crests and troughs of in aEEG signal, and
abrupt changes in SR signal.

To achieve better outcomes for patients, it is critical to direct attention of the
clinician to the time periods with aberrant brain activity. The visualization of im-
portance weights is useful in critical applications where each decision involves a
high cost, and particularly helpful in drawing attention of the clinician to impor-
tant time steps. The advantages to these heatmap visualization are two-fold – (i)
it directs the attention of the clinician to time periods in the EEG signals that lead
to outcome prediction, and thereby reducing information load on the clinician, and
(ii) it allows validation of the predicted outcome where the clinician can cross-check
the highlighted time periods; such transparency into model output builds trust, and
the feedback may also be used to improve the model. Thus, the estimated benefit
along with the visualization of importance weights can assist an expert better for
any intervention.
Assisting with Model Evaluation In the clinical setting with comatose patients,
there is a natural cost associated with an inaccurate prediction and savings obtained
from knowing the labels early. The benefit modeling captures the overall value of
outputting a decision. Though, we use this value for learning a regression model,
the benefit formulation could be used as an evaluation metric to asses the quality
of a predictive model. If we know the domain specific unit-time savings s and mis-
classification cost M, we can then evaluate a model performance for that particular
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value of s and M. Table 6.8 reports evaluation of BENEFITTER for various values
of M/s with model trained using the same values of M/s. We notice that with in-
creasing M/s we improve the precision of the model, however increased M/s also
results in higher penalty for any misclassification. For our model trained on hourly
sampled EEG data, we observe that values above M/s = 300, results in overall neg-
ative benefit averaged over test data. Assuming unit-time savings s = $4000, we
can tolerate lawsuit costs up to $1.2million for M/s = 300. Similarly, any model can
be evaluated to assess its usefulness using our benefit formulation as an evaluation
measure in critical domains.

TABLE 6.8: Taining and evaluation of BENEFITTER for M/s = {100, 200, 300, 400} on EEG
hourly sampled data.

M/s Precision Recall F1 score Accuracy Tardiness Benefit

100 0.80 0.68 0.73 0.83 0.64 2737
200 0.80 0.67 0.71 0.82 0.68 1032
300 0.82 0.67 0.74 0.84 0.68 156
400 0.82 0.69 0.75 0.84 0.70 -1326
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Chapter 7

Conclusions and Future Directions

7.1 Summary of Contributions

7.1.1 Methodological Contributions

In Chapter 2, we introduced SPI, a new ensemble approach that leverages priv-
ileged information (data available only for training examples) for unsupervised
anomaly detection. Our work builds on the LUPI paradigm, and to the best of our
knowledge, is the first attempt to incorporating PI to improve the state-of-the-art
ensemble detectors. We validated the effectiveness of our method on both bench-
mark datasets as well as three real-world case studies. We showed that SPI, and
proposed lightweight SPI-LITE consistently outperform the baselines. Our case
studies leveraged a variety of privileged information—“historical future”, complex
features, expert knowledge—and verified that SPI can unlock multiple benefits for
anomaly detection in terms of detection latency, speed, as well as accuracy.

Chapter 3 studies fairness in the context of outlier detection. Although fairness
in machine learning has become increasingly prominent in recent years, fairness
in the context of unsupervised outlier detection has received comparatively little
study. OD is an integral data-driven task in a variety of domains including finance,
healthcare and security, where it is used to inform and prioritize auditing measures.
Without careful attention, OD as-is can cause unjust flagging of societal minorities
(w.r.t. race, sex, etc.) because of their standing as statistical minorities, when minority
status does not indicate positive-class membership (crime, fraud, etc.). This unjust
flagging can propagate to downstream supervised classifiers and further exacerbate
the issues. Our work tackles the problem of fairness-aware outlier detection. Specif-
ically, we first introduce guiding desiderata for, and concrete formalization of the
fair OD problem. We then present FAIROD, a fairness-aware, principled end-to-end
detector which addresses the problem, and satisfies several appealing properties:
(i) detection effectiveness: it is effective, and maintains high detection accuracy, (ii)
treatment parity: it does not suffer disparate treatment at decision time, (iii) statistical
parity: it maintains group fairness across minority and majority groups, and (iv)
group fidelity: it emphasizing flagging of truly high-risk samples within each group,
aiming to curb detector “laziness”. Finally, we show empirical results across diverse
real and synthetic datasets, demonstrating that our approach achieves fairness goals
while providing accurate detection, significantly outperforming unsupervised fair
representation learning and data de-biasing based baselines.

Chapter 4 presented GEN2OUT – a principled and generalized anomaly detection
algorithm that can detect point as well as clustered anomalies. We first design and
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introduce guiding axioms that a generalized detector should satisfy. Then, we pro-
posed GEN2OUT which has the following desirable properties: (i) Principled and
Sound: we propose five axioms that GEN2OUT obeys them, in contrast to top com-
petitors; (ii) Doubly-general: propose doubly general – simultaneously detects point
and group anomalies – GEN2OUT. It does not require information on group struc-
ture, and ranks detected groups of varying sizes in order of their anomalousness; (iii)
Scalability: linear on the input size; requires minutes on 1M dataset on a stock ma-
chine; (iv) Effectiveness: applied on real-world data, GEN2OUT wins in most cases
over 27 benchmark datasets for point anomaly detection, and agrees with ground
truth on seizure detection as well as group detection tasks.

7.1.2 Applications in Decision Support

Chapter 5 introduces a an unsupervised ensemble method to identify health care
fraud using massive claims data. Our approach uses different data modalities –
including patient medical history, provider coding patterns, and provider spending
– to detect anomalous behavior consistent with fraud and abuse. We combine
evidence from multiple unsupervised outlier detection algorithms that use different
types of global and local analysis to create a final ranking of suspiciousness. Besides
detection, the methodology offers interpretability, where qualitative case studies of
our results based on model-specific explanations pinpoint specific ICD and DRG
codes associated with excess spending at a provider. Finally, our method allows us
to characterize the types of providers most likely to be ranked as suspicious, which
may be useful for guiding anti-fraud policy more broadly.

In Chapter 6, we consider benefit-aware early prediction of health outcomes for
ICU patients and proposed BENEFITTER that is designed to effectively handle multi-
variate and variable-length signals such as EEG recordings. We made multiple con-
tributions. Novel, cost-aware problem formulation: BENEFITTER infuses the in-
curred savings from an early prediction as well as the cost from misclassification
into a unified target called benefit. Unifying these two quantities allows us to di-
rectly estimate a single target, i.e., benefit, and importantly dictates BENEFITTER

exactly when to output a prediction: whenever estimated benefit becomes positive.
Efficiency and speed: The training time for BENEFITTER is linear in the number of
input sequences, and it can operate under a streaming setting to update its decision
based on incoming observations. Multi-variate and multi-length time-series: BENE-
FITTER is designed to handle multiple time sequences, of varying length, suitable for
various domains including health care. Effectiveness on real-world data: We applied
BENEFITTER in early prediction of health outcomes on ICU-EEG data where BENE-
FITTER provides up to 2× time-savings as compared to competitors while achieving
equal or better accuracy. BENEFITTER also outperformed or tied with top competi-
tors on other real-world benchmarks.

7.2 Future Directions

The thesis has laid foundations for unsupervised, explainable, and equitable AD,
and provided domain specific applications of machine learning as a tool to assist
in decision making. This has shepherded way for some important future directions
that further empower data -driven decision support.
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Human-centered anomaly detection

Currently the thesis mostly focuses on explanations to aid users in decision making,
which is crucial for settings in which outliers need to be audited by human analysts.
However, the explanations do not take human analysts into account for develop-
ment of the anomaly detection system. An important aspect in decision support
systems is to understand the challenges human experts may encounter in using OD
systems in real-life scenarios. A close collaboration with human auditors or inves-
tigators who use the OD systems to investigate and validate the flagged anomalies
could inform the design for better OD systems. Understanding human perspectives
(needs and concerns) can enable building anomaly detection systems that optimize
for detection accuracy and ease of use by human experts. Therefore, I am excited to
explore human centered OD beyond explanations.

Anomaly detection in presence of an adversary

Anomaly detection finds applications in several crucial domains e.g. health, finance
etc. as discussed in the thesis. However, the algorithms introduced herein mostly
focus on ranking instances in order of their anomalousness assuming the observed
data are clean. These detection methods can be vulnerable to deliberate manipula-
tions by adversaries. For example, adversaries might intentionally design fraudu-
lent transactions to resemble legitimate ones, attempting to bypass fraud detection
systems. The potential research direction focuses on enhancing anomaly detection
methods to be robust against adversarial attacks. The objective is to develop novel
techniques that can accurately identify anomalies in data while being resilient to in-
tentional perturbations introduced by malicious adversaries to deceive the system.

Applications

Fraud and waste in public healthcare: Chapter 5 focused on inpatient hospitals, how-
ever, there are numerous entities involved in providing care to patients. An interest-
ing and promising direction is to understand the relations between different entities
e.g. hospitals, and home health service provider, through shared patients, physi-
cians or medical equipment providers. The data presents itself as a heterogeneous
graph, where small and dense communities (group anomalies) could be of particu-
lar interest as they may uncover collusion among entities, contributing to fraud and
waste in healthcare spending.
Healthcare Informatics: The thesis presented tools to work with EEG data. There is
however further need to understand how underlying dynamics of the brain signals
evolve before anomalous events such as seizures. There are several promising direc-
tions for with respect to understanding neurodynamics of EEG: are there early mark-
ers in the signal that indicate onset of seizures? Are there signal idiosyncrasies re-
flected that lead to awakening of comatose patients? I will consider spatio-temporal
analysis of EEG signals that could enable early decision assistance by locating elec-
trodes (corresponding to a region in the brain) of interest for events such as seizures,
and other abnormalities in patients.
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Appendix A

Appendix: Fairness-aware
Anomaly Detection

A.1 Proofs

A.1.1 Proof of Claim 1

Proof. We want OD to exhibit detection effectiveness i.e. P(Y = 1|O = 1) > P(Y =
1).

Now, P(Y = 1|O = 1) =P(PV = a|O = 1)·
P(Y = 1|PV = a, O = 1)+
P(PV = b|O = 1)·
P(Y = 1|PV = b, O = 1)

Given SP, we have

P(O = 1|PV = a) = P(O = 1|PV = b)
=⇒ P(PV = a|O = 1) = P(PV = a), and

P(PV = b|O = 1) = P(PV = b)

Therefore, we have

Now, P(Y = 1|O = 1) =P(PV = a)·
P(Y = 1|PV = a, O = 1)+
P(PV = b)·
P(Y = 1|PV = b, O = 1)

(A.1)

Now,

P(Y = 1) =P(PV = a) · P(Y = 1|PV = a)+
P(PV = b) · P(Y = 1|PV = b)



126 Appendix A. Appendix: Fairness-aware Anomaly Detection

Therefore, if we want P(Y = 1|O = 1) > P(Y = 1), then

P(PV = a) · P(Y = 1|PV = a, O = 1)+
P(PV = b) · P(Y = 1|PV = b, O = 1)

>

P(PV = a) · P(Y = 1|PV = a)+
P(PV = b) · P(Y = 1|PV = b)

(A.2)

=⇒ ∃v ∈ {a, b} s.t. P(Y = 1|PV = v, O = 1)
>

P(Y = 1|PV = v)

A.1.2 Proof of Claim 2

Proof. Without loss of generality, assume that P(Y = 1|PV = a, O = 1) > P(Y =
1|PV = a) i.e. ( i.e. P(Y = 1|PV = a, O = 1) = K · P(Y = 1|PV = a); K > 1), and let
P(Y=1|PV=a)
P(Y=1|PV=b) =

P(Y=1|PV=a,O=1)
P(Y=1|PV=b,O=1) =

1
r then

Case 1: When P(Y = 1|PV = b, O = 1) < P(Y = 1|PV = b)

P(Y = 1|PV = b, O = 1) < P(Y = 1|PV = b)
=⇒ P(Y = 1|PV = b, O = 1) < r · P(Y = 1|PV = a)
=⇒ P(Y = 1|PV = b, O = 1) < r · P(Y = 1|PV = a, O = 1),

[∵ P(Y = 1|PV = a, O = 1) > P(Y = 1|PV = a)]
This contradicts our assumption that P(Y = 1|PV = b, O = 1) = r · P(Y =

1|PV = a, O = 1), therefore it must be that P(Y = 1|PV = b, O = 1) ≥ P(Y =
1|PV = b).

Case 2: When P(Y = 1|PV = b, O = 1) = P(Y = 1|PV = b)

P(Y = 1|PV = b, O = 1) = P(Y = 1|PV = b)
=⇒ P(Y = 1|PV = b, O = 1) = r · P(Y = 1|PV = a)
=⇒ P(Y = 1|PV = b, O = 1) < r · P(Y = 1|PV = a, O = 1),

[∵ P(Y = 1|PV = a, O = 1) > P(Y = 1|PV = a)]
This contradicts our assumption that P(Y = 1|PV = b, O = 1) = r · P(Y =

1|PV = a, O = 1), therefore it must be that P(Y = 1|PV = b, O = 1) > P(Y =
1|PV = b).

Case 3: When P(Y = 1|PV = b, O = 1) > P(Y = 1|PV = b) i.e. (P(Y = 1|PV =
b, O = 1) = L · P(Y = 1|PV = b); L > 1)
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Now, we know that,

P(Y = 1|PV = a) · P(Y = 1|PV = b, O = 1)
= P(Y = 1|PV = b) · P(Y = 1|PV = a, O = 1)

=⇒ P(Y = 1|PV = a) · P(Y = 1|PV = b, O = 1)
= P(Y = 1|PV = b) · K · P(Y = 1|PV = a)

=⇒ P(Y = 1|PV = b, O = 1) = K · P(Y = 1|PV = b)
=⇒ P(Y = 1|PV = b, O = 1) > P(Y = 1|PV = b)

And, for ratio to be preserved, it must be that L = K.
Hence, enforcing preservation of ratios implies base-rates in flagged observa-

tions are larger than their counterparts in the population.

A.2 Generalizing to Multi-valued and Multiple Protected
Attributes

Multi-valued PV. BENEFITTER generalizes beyond binary PV, and easily applies
to settings with multi-valued, specifically categorical PV such as race. Recall that
LSP and LGF are the loss components that depend on PV. For a categorical PV,
LGF in Eq. (3.13) would simply remain the same, where the outer sum goes over
all unique values of the PV. For LSP, one could one-hot-encode (OHE) the PV into
multiple variables and minimize the correlation of outlier scores with each variable
additively. That is, an outer sum would be added to Eq. (3.12) that goes over the
new OHE variables encoding the categorical PV.

Multiple PVs. BENEFITTER can handle multiple different PVs simultaneously, such
as race and gender, since the loss components Eq. (3.12) and Eq. (3.13) can be used
additively for each PV. However, the caveat to additive loss is that it would only
enforce fairness with respect to each individual PV, and yet may not exhibit fair-
ness for the joint distribution of protected variables Kearns, Neel, Roth, and Wu,
2018. Even when additive extension may not be ideal, we avoid modeling multi-
ple protected variables as a single PV that induces groups based on values from
the cross-product of available values across all PVs. This is because partitioning of
the data based on cross-product may yield many small groups, which could cause
instability in learning and poor generalization.

A.3 Data Description

Synthetic data

We illustrate the effectiveness of BENEFITTER on two synthetic datasets, namely
Synth1 and Synth2 (as illustrated in Fig. A.1). These datasets are constructed to
present scenarios that mimic real-world settings, where we may have features which
are uncorrelated with respect to outcome labels but partially correlated with PV, or
features which are correlated both to outcome labels and PV.
• Synth1: In Synth1, we simulate a 2-dimensional dataset comprised of samples

X = [x1, x2] where x1 is correlated with the protected variable PV, but does not
offer any predictive value with respect to ground-truth outlier labels Y , while x2
is correlated with these labels Y (see Fig. A.1a). We draw 2400 samples, of which
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FIGURE A.1: Synthetic datasets. See Appendix A.3 for the details of the data generating
process.

PV = a (majority) for 2000 points, and PV = b (minority) for 400 points. 120
(5%) of these points are outliers. x1 differs in terms of shifted means, but equal
variances, for both majority and minority groups. x2 is distributed similarly for
both majority and minority groups, drawn from a normal distribution for outliers,
and an exponential for inliers. The detailed generative process for the data is
below (left), and Fig. A.1a shows a visual.

• Synth2: In Synth2, we again simulate a 2-dimensional dataset comprised of sam-
ples X = [x1, x2] where x1, x2 are partially correlated with both the protected vari-
able PV as well as ground-truth outlier labels Y (see Fig. A.1b). We draw 2400
samples, of which PV = a (majority) for 2000 points, and PV = b (minority) for
400 points. 120 (5%) of these points are outliers. For inliers, both x1, x2 are nor-
mally distributed, and differ across majority and minority groups only in terms
of shifted means, but equal variances. Outliers are drawn from a product distri-
bution of an exponential and linearly transformed Bernoulli distribution (product
taken for symmetry). The detailed generative process for the data is below (right),
and Fig. A.1b shows a visual.

Synth1

Simulate samples X = [x1, x2] by...
PV ∼ Bernoulli(4/5)

Y ∼ Bernoulli(1/20)

x1 ∼


Normal(−1, 1.44) if Y = 0, PV = 1 [a, majority; inlier]
Normal(1, 1.44) if Y = 0, PV = 0 [b, minority; inlier]
2× Exponential(1)(1− 2× Bernoulli(1/2)) if Y = 1 [outlier]

x2 ∼


Normal(−1, 1) if Y = 0, PV = 1 [a, majority; inlier]
Normal(1, 1) if Y = 0, PV = 0 [b, minority; inlier]
2× Exponential(1)(1− 2× Bernoulli(1/2)) if Y = 1 [outlier]
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Synth2

Simulate samples X = [x1, x2] by...
PV ∼ Bernoulli(4/5)

Y ∼ Bernoulli(1/20)

x1 ∼
{

Normal(180, 10) if PV = 1 [a, majority]
Normal(150, 10) if PV = 0 [b, minority]

x2 ∼
{

Normal(10, 3) if Y = 1 [outlier]
Exponential(1) if Y = 0 [inlier]

Real-world data

We conduct experiments on 4 real-world datasets and select them from diverse do-
mains that have different types of (binary) protected variables, specifically gender,
age, and race. Detailed descriptions are as follows.

• Adult Lichman et al., 2013 (Adult). The dataset is extracted from the 1994
Census database where each data point represents a person. The dataset records
income level of an individual along with features encoding personal information on
education, profession, investment and family. In our experiments, gender ∈ {male,
female} is used as the protected variable where female represents minority group and
high earning individuals who exceed an annual income of 50,000 i.e. annual income
> 50, 000 are assigned as outliers (Y = 1). We further downsample female to achieve
a male to female sample size ratio of 4:1 and ensure that percentage of outliers remains
the same (at 5%) across groups induced by the protected variable.

• Credit-defaults Lichman et al., 2013 (Credit). This is a risk management
dataset from the financial domain that is based on Taiwan’s credit card clients’ de-
fault cases. The data records information of credit card customers including their
payment status, demographic factors, credit data, historical bill and payments. Cus-
tomer age is used as the protected variable where age > 25 indicates the majority
group and age ≤ 25 indicates the minority group. We assign individuals with delin-
quent payment status as outliers (Y = 1). The age > 25 to age ≤ 25 imbalance ratio is
4:1 and contains 5% outliers across groups induced by the protected variable.

• Abusive Tweets Blodgett, Green, and O’Connor, 2016 (Tweets). The dataset is
a collection of Tweets along with annotations indicating whether a tweet is abusive
or not. The data are not annotated with any protected variable by default; therefore,
to assign protected variable to each Tweet, we employ the following process: We
predict the racial dialect — African-American or Mainstream — of the tweets in the
corpus using the language model proposed by Blodgett, Green, and O’Connor,
2016. The dialect is assigned to a Tweet only when the prediction probability is
greater than 0.7, and then the predicted racial dialect is used as protected variable
where African-American dialect represents the minority group. In this setting, abusive
tweets are labeled as outliers (Y = 1) for the task of flagging abusive content on
Twitter. The group sample size ratio of racial dialect = African-American to racial
dialect = Mainstream is set to 4:1. We further sample data points to ensure equal
percentage (5%) of outliers across dialect groups.
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TABLE A.1: Evaluation measures are reported for the competing methods on the datasets
presented in Appendix A.3.

(A) Synth1
Flag-rate GroupFidelity AUC AP

Method PV = a PV = b PV = a PV = b PV = a PV = b PV = a PV = b

BASE 0.0262 0.1282 1.0 1.0 0.9594 0.9168 0.8819 0.5849
RW 0.033 0.135 0.9299 0.9309 0.9794 0.9168 0.8819 0.5849
DIR 0.0445 0.0775 0.3953 0.9281 0.9742 0.9138 0.8814 0.7529
LFR 0.0330 0.1350 0.9299 0.9309 0.9794 0.9168 0.8819 0.5849
ARL 0.0520 0.0400 0.9136 0.3955 0.9786 0.5565 0.886 0.1842

BENEFITTER 0.0500 0.0500 0.9639 0.9671 0.9666 0.9634 0.8166 0.7557

FAIROD-L 0.0495 0.0525 0.9149 0.9295 0.9017 0.8714 0.599 0.5214
FAIROD-C 0.0480 0.0600 0.8929 0.9082 0.9499 0.9284 0.7542 0.6501

(B) Synth2
Flag-rate GroupFidelity AUC AP

Method PV = a PV = b PV = a PV = b PV = a PV = b PV = a PV = b

BASE 0.0361 0.0811 1.0 1.0 0.6153 0.5464 0.273 0.2335
RW 0.0205 0.1975 0.9242 0.6313 0.7544 0.5586 0.3973 0.2064
DIR 0.0465 0.0675 0.4224 0.9164 0.7892 0.7089 0.3921 0.317
LFR 0.0205 0.1975 0.9242 0.6313 0.7544 0.5586 0.3973 0.2064
ARL 0.0520 0.0400 0.1801 0.1386 0.9786 0.5165 0.886 0.1842

BENEFITTER 0.0500 0.0500 0.9339 0.9201 0.6357 0.6419 0.2726 0.2918

FAIROD-L 0.0500 0.0500 0.8984 0.8843 0.6385 0.6472 0.2742 0.2838
FAIROD-C 0.0450 0.0750 0.8997 0.9095 0.5957 0.5419 0.2665 0.2339

(C) Adult
Flag-rate GroupFidelity AUC AP

Method PV = a PV = b PV = a PV = b PV = a PV = b PV = a PV = b

BASE 0.0358 0.0433 1.0 1.0 0.6344 0.6449 0.1105 0.0898
RW 0.0515 0.0391 0.8399 0.8479 0.6323 0.6351 0.1303 0.1141
DIR 0.0515 0.0391 0.9299 0.9309 0.6323 0.6351 0.1303 0.1141
LFR 0.0515 0.0391 0.8099 0.8099 0.6323 0.6351 0.1303 0.1141
ARL 0.0507 0.0444 0.9147 0.5765 0.5951 0.6009 0.0987 0.0848

BENEFITTER 0.0497 0.0511 0.9646 0.9616 0.6374 0.6404 0.1085 0.0912

FAIROD-L 0.0513 0.0403 0.9178 0.9005 0.6425 0.6312 0.1213 0.1048
FAIROD-C 0.0527 0.0302 0.8119 0.7877 0.6533 0.6229 0.1872 0.1435

(D) Credit
Flag-rate GroupFidelity AUC AP

Method PV = a PV = b PV = a PV = b PV = a PV = b PV = a PV = b

BASE 0.0445 0.064 1.0 1.0 0.7376 0.7512 0.1938 0.1582
RW 0.0467 0.06627 0.8399 0.8409 0.7376 0.7512 0.1938 0.1582
DIR 0.0467 0.06627 0.6899 0.6809 0.7376 0.7512 0.1938 0.1582
LFR 0.0467 0.06627 0.7299 0.7309 0.7376 0.7512 0.1938 0.1582
ARL 0.0471 0.0645 0.5533 0.6118 0.7242 0.7263 0.1396 0.1054

BENEFITTER 0.0468 0.066 0.9235 0.9421 0.7368 0.7494 0.2134 0.1725

FAIROD-L 0.0475 0.062 0.7147 0.6564 0.7276 0.7394 0.1246 0.1025
FAIROD-C 0.0467 0.0662 0.7871 0.8029 0.7327 0.7484 0.1333 0.1091

(E) Tweets
Flag-rate GroupFidelity AUC AP

Method PV = a PV = b PV = a PV = b PV = a PV = b PV = a PV = b

BASE 0.0369 0.1015 1.0 1.0 0.5739 0.5476 0.061 0.0539
RW 0.0479 0.0571 0.2882 0.3312 0.5583 0.582 0.0466 0.0334
DIR 0.0494 0.0507 0.388 0.4178 0.5552 0.5307 0.0454 0.0345
LFR 0.0479 0.0571 0.4082 0.4422 0.5583 0.582 0.0466 0.0334
ARL 0.0482 0.0558 0.5432 0.5762 0.4912 0.5146 0.0504 0.0442

BENEFITTER 0.0488 0.0532 0.9668 0.9671 0.569 0.5699 0.0617 0.0617

FAIROD-L 0.0331 0.1167 0.9137 0.8986 0.5091 0.4237 0.0574 0.0425
FAIROD-C 0.0501 0.0488 0.6753 0.6903 0.5592 0.5891 0.0627 0.1002

(F) Ads
Flag-rate GroupFidelity AUC AP

Method PV = a PV = b PV = a PV = b PV = a PV = b PV = a PV = b

BASE 0.0286 0.0318 1.0 1.0 0.7077 0.7234 0.2555 0.2124
RW 0.0491 0.0523 0.8236 0.7813 0.7286 0.7672 0.4227 0.5183
DIR 0.0491 0.0523 0.6236 0.5813 0.7286 0.7672 0.4296 0.5253
LFR 0.0491 0.0523 0.7236 0.6813 0.7286 0.7672 0.4257 0.5253
ARL 0.0499 0.0500 0.5028 0.2181 0.6572 0.6487 0.0885 0.0525

BENEFITTER 0.0499 0.0500 0.9698 0.9699 0.7179 0.7216 0.2592 0.2163

FAIROD-L 0.0683 0.0588 0.5551 0.8684 0.7179 0.7345 0.0005 0.0005
FAIROD-C 0.0499 0.0500 0.6611 0.6966 0.7007 0.7251 0.2636 0.2455

• Internet ads Lichman et al., 2013 (Ads). This is a collection of possible adver-
tisements on web-pages. The features characterize each ad by encoding phrases
occurring in the ad URL, anchor text, alt text, and encoding geometry of the ad
image. We assign observations with class label ad as outliers (Y = 1) and downsam-
ple the data to get an outlier rate of 5%. There exists no demographic information
available, therefore we simulate a binary protected variable by randomly assigning
each observation to one of two values (i.e. groups) ∈ {0, 1} such that the group
sample size ratio is 4:1.

A.4 Hyperparameters

We choose the hyperparameters of BENEFITTER from α ∈ {0.01, 0.5, 0.9} × γ ∈
{0.01, 0.1, 1.0} by evaluating the Pareto curve for fairness and group fidelity crite-
ria. The BASE and BENEFITTER methods both use an auto-encoder with two hidden
layers. We fix the number of hidden nodes in each layer to 2 if d ≤ 100, and 8
otherwise. The representation learning methods LFR and ARL use the model con-
figurations as proposed by their authors. The hyperparameter grid for the pre-
processing baselines are set as follows: repair_level ∈ {0.0001, 0.001, 0.01, 0.1, 1.0}
for DIR, Az ∈ {0.0001, 0.001, 0.01, 0.1, 0.9} and Ax = 1 − Az for LFR, and λ ∈
{0.0001, 0.001, 0.01, 0.1, 0.9} for ARL. We pick the best model for the preprocessing
baselines using Fairness as they only optimize for statistical parity. The best BASE

model is selected based on reconstruction error through cross validation upon mul-
tiple runs with different random seeds.
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A.5 Supplemental Results

In this section, we report Flag-rate, GroupFidelity, AUC and AP (see Table A.1) for the
competing methods on a set of datasets (see Appendix A.3) w.r.t groups induced
by PV = v; v ∈ {a, b} to supplement the experimental results presented in
Sec. 6.5. Notice that in most cases (see Table A.1a through Table A.1f), BENEFITTER

outperforms the BASE model on label-aware parity metrics (AUC-ratio, AP-ratio) and,
furthermore, outperforms BASE on at least one of the performance metrics (e.g. AUC,
AP); fairness need not imply worse OD performance.



132 Appendix A. Appendix: Fairness-aware Anomaly Detection



133

Appendix B

Appendix: Medicare Data
Processing

B.1 Data Preprocessing

Our analysis of provider behavior uses data from each hospitalization and patient
in the Medicare system. We consider patients hospitalized in 2017, and we use data
from 2012 through 2016 to construct the patients’ medical history.

B.1.1 Processing inpatient hospitalizations

We use 100% of samples of Fee-For-Service inpatient claims file from the Medicare
data. Annual files contain beneficiary hospitalization details including provider, as-
signed DRG, assigned ICD codes, and payment reimbursement details including
total payment amount, disproportionate payment, education payment, and outlier
amount. The raw data is filtered to include claims where the total payment is greater
than individual components. For example, if a claim has higher disproportion-
ate payment compared to total payment amount, we exclude such a claim record
from our data. These claims may indicate corrupted or noisy data recording. Next,
to meet cell-size suppression requirement under our data agreement, we exclude
providers along with their claim records, who served 10 or fewer beneficiaries in
2017. We then create lists of unique providers and beneficiaries from the filtered
data, which we utilize for merging with other Medicare files.

B.1.2 Provider profile

First, we merge the filtered data with the master beneficiary summary files which
contain beneficiary enrollment information including the beneficiary’s address, de-
mographics, and chronic conditions. Next, the data are merged with a DRG to MDC
mapping.

We then create three types of provider representations. First, we collect the
counts for each unique ICD code used by a given provider, creating a representa-
tion in terms of ICD codes used. This is a very high dimensional representation,
where we apply our subspace based methods.

Next, for each provider, the counts of unique MDC codes are recorded. Since,
each MDC typically corresponds to a part of the body, the MDC representation of
providers gives a summary distribution in terms of the type of care they provide.
Further, we collect counts of chronic conditions for each provider, which represents
the distribution of patient population being served by a provider.

We also create the distribution over DRG codes for each provider by collecting
the counts of unique DRG codes used by providers. This representation allows us
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to understand the spending pattern of a provider, since under the PPS system, the
DRG code is directly tied to spending amount in each claim.

B.1.3 Beneficiary medical profile

In order to create a beneficiary’s medical profile, we stitch through the patient’s
health care claims across different touchpoints in the Medicare system over the 5
years preceding the 2017 hospitalization (2012 – 2016). Specifically, for these years,
we use 100% of samples of Fee-For-Service inpatient and outpatient claims, and 20%
of samples of carrier files, which describe physician office visits. 20% is the largest
available size of carrier files.

Given the volume of the datasets, we first filter the patient’s visits across datasets
based on the unique beneficiary list created from inpatient hospitalizations in year
2017. For each type of visit i.e. physician, outpatient, inpatient, we find unique
diagnosis codes across five years. Next, for a given beneficiary, we collect the counts
over the last five years for each of the unique diagnosis codes. We also include
chronic conditions from the year 2016 and the patient’s zip code from the master
beneficiary summary file. Thus, a beneficiary is represented in terms of assigned
codes from past visits, chronic conditions and zip code.

B.2 DOJ Corpus

We scrape and download press releases containing the word ‘Medicare’ from the
central DOJ and the Offices of the United States Attorneys (USAO), which reflect
local DOJ branches. The base URLs used in scraping for the DOJ and USAO are
https://www.justice.gov/news?keys=medicare and https://www.justice.gov/
usao/pressreleases?keys=medicare1 respectively.

Next, we obtain the list of inpatient hospitals in the Medicare system from
‘Medicare Inpatient Hospitals – by Geography and Service’ dataset available
from the Centers for Medicare and Medicaid Services at https://data.cms.
gov/provider-summary-by-type-of-service/medicare-inpatient-hospitals/
medicare-inpatient-hospitals-by-geography-and-service. This contains the
information on providers including name, CCN (hospital ID), city, and state.

To find providers that are named in DOJ or USAO press releases, we first run
a named entity recognizer2 to obtain the names of all organizations from the press
releases. We then run an exact name matching scan for each hospital in the list
of Medicare inpatient providers in the recognized organizations from the press re-
leases. Matched hospitals are then recorded as our ground truth. Next, we also run
a partial name matching. We obtain tokens for each inpatient hospital in Medicare
after dropping the word “hospital” in their name. Then we find organizations from
scraped press releases that contain the tokens for Medicare hospitals. Since, we are
matching tokens, multiple organizations match for a given Medicare hospital. We
manually filter the multiple match and validate the match. The ground truth is aug-
mented with our validated matches, which forms our DOJ corpus for evaluation.

1Webpages were accessed on accessed Mar 21, 2022.
2We used off-the-shelf entity recognizer Spacy available at https://spacy.io/api/

entityrecognizer

https://www.justice.gov/news?keys=medicare
https://www.justice.gov/usao/pressreleases?keys=medicare
https://www.justice.gov/usao/pressreleases?keys=medicare
https://data.cms.gov/provider-summary-by-type-of-service/medicare-inpatient-hospitals/medicare-inpatient-hospitals-by-geography-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-inpatient-hospitals/medicare-inpatient-hospitals-by-geography-and-service
https://data.cms.gov/provider-summary-by-type-of-service/medicare-inpatient-hospitals/medicare-inpatient-hospitals-by-geography-and-service
https://spacy.io/api/entityrecognizer
https://spacy.io/api/entityrecognizer
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