
Towards More Powerful Graph
Representation Learning

Lingxiao Zhao
July 23, 2024

Doctoral Dissertation
Submitted in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy in Machine Learning and Public Policy

Heinz College & Machine Learning Department

Carnegie Mellon University (CMU)

Pittsburgh, PA

Thesis Committee
Leman Akoglu CMU (Co-chair)

Aarti Singh CMU (Co-chair)

Andrej Risteski CMU

Neil Shah Snap Inc.

Copyright ©2024 Lingxiao Zhao

iii

Abstract

Graphs have been widely used in real-world to represent relations, and many data
are naturally represented in graphs like social networks, protein structures, molecules,
and transactions. Different from images and texts that have specific natural order
of their components, graphs are unordered and permutation invariant, which intro-
duce significant difficulties to learning good representations. Graph neural networks
(GNNs) are proposed and consistently improved for graph representation learning.
This thesis works on both node-level and graph-level representations and proposes
solutions towards more powerful representation learning, with the goal of achieving
foundation model on graphs.

In Part 1, I focus on node-level graph representation learning and tackle a critical
issue known as “representation oversmoothing”. To further understand the strengths
of Graph Convolutional Networks (GCNs), we explore the relationship between neural
networks and Principal Component Analysis (PCA). Our investigation reveals that
the solution for Graph-regularized PCA aligns with the formulation of a single graph
convolutional layer.

In Part 2, I delve into graph-level representation learning. Unike Multilayer Per-
ceptrons (MLPs), which are universal function approximators for tabular data, GNNs
have limited expressivity. I explore two directions to boost GNN’s expressivity: using
rooted subgraphs to achieve better local structure awareness; and exploring unordered
higher order interactions to achieve comparable expressivity to their ordered counter-
parts but also gain great scalability for practical usage.

In Part 3, I focus on generative models for graphs. Unlike discriminative mod-
els, which require labels to learn task-dependent representations, generative models
excel at unsupervised representation learning. However, graph generation presents
unique challenges due to its unordered nature, which demands an approach that is
independent of any specific ordering. To address this, I first examine diffusion models
applied to categorical data, and propose to simplify and unify existing discrete-time
and continuous-time discrete diffusion. Based on the unified discrete diffusion, I pro-
pose a partial-order-based diffusion model that combines autoregressive approach with
diffusion model for graph generation. This method builds the foundation of generative
pretraining on graphs.

In the last Part, I explore application of graph representation learning. Specifically,
I work on graph-level anomaly detection (GLAD) which has many influential appli-
cations. As GLAD is rarely explored, I build a strong GNN based baseline “OCGIN”,
an evaluation platform with datasets and many non-GNN baselines. I also discover
and study an issue called “performance flip”. Later I design a specific model for de-
tecting PwC’s suspicious accounting transactions that requires handling attributed
multi-graphs with metadata, which can effectively detect expert-guided anomalies.

v

Acknowledgements
First and foremost, I wish to extend my heartfelt thanks to my PhD advisor, Le-
man Akoglu, for her indispensable support. Without Leman, embarking on my PhD
journey, let alone completing it, would have been inconceivable. As a master student
transitioning from power systems to machine learning, it was Leman who advised
and supported me when I almost gave up, instilling in me the confidence to pursue a
PhD. Moreover, the freedom, encouragement, and unwavering support she provided
throughout my doctoral studies have been critical in my development as an indepen-
dent researcher. I am incredibly fortunate to have had the opportunity to delve into
research problems that genuinely interest me. Also, I would like to thank my another
co-advisor Aarti Singh, for her guidance, feedback, and support at Machine Learning
Department. I also want to thank my committee members, Neil Shah and Andrej
Risteski, for their valuable input and suggestions.

Secondly, I want to thank many of my mentors, Neil Shah, Haggai Maron, Pierre
Liang, David Choi, Siheng Chen, and Christos Faloutsos, for their selfless support,
assistance, and guidance, and without whom this thesis cannot be possible. I am so
lucky to meet them at the path of my growth. I am especially grateful to Neil, who
has advised me tirelessly through any difficulties along the way.

Besides, I thank Michelle Wirtz, Diane Stidle, Lori Geraci and Adrienne Mccorkle,
for their prompt assistance and support throughout the duration of the program.

To my collaborators, Xuan Wu, Saurabh Sawlani, Tuan Le, Konstantinos Sotiropou-
los, Jaemin Yoo, Xueying Ding, Jeremy Lee, Derek Lim, Joshua Robinson, Wei Jin,
Jiliang Tang, Jiong Zhu, Yujun Yan, Danai Koutra, Yue Zhao, Shubhranshu Shekhar,
Louis Härtel, for their input, collaboration, and support. Without them many of
works cannot be finished.

To my friends and cohort, for their companionship and shared experiences in
courses, activities, and the lovely but suffering journey.

Last but not the least, to my parents, and my families for their unconditional
love, endless encouragement, and selfless dedication. Their sacrifices are the root
of my achievements. Also, to my cats Mushu and Mulan, for their company and
emotional support.

In the end, the PhD journey is long and filled with many ups and downs, achieve-
ments and failures, confusions and explorations, in research, life, and family. Looking
back, I’m not sure if I could pass through this again, but I’m glad I had these unre-
strained years for unrestricted study, pursuing intrinsic research that follows my heart
and interests, loving without hesitation, and failing without fear. To myself, and wish
I can continue pursue my passion for research and can love boldly with all my heart.

vii

Contents

Abstract iii

Acknowledgements v

0 Introduction 1

I Node-level Representation Learning 5

1 Oversmoothing in GNNs 7
1.1 Introduction . 7
1.2 Related Work . 8
1.3 Understanding Oversmoothing . 9

1.3.1 The Oversmoothing Problem 9
1.3.2 Studying Oversmoothing with SGC 10

1.4 Tackling Oversmoothing . 11
1.4.1 Proposed PairNorm . 11
1.4.2 A Case Where Deeper GNNs are Beneficial 14

1.5 Experiments . 14
1.5.1 Experiment Setup . 14
1.5.2 Experiment Results . 15

1.6 Conclusion . 16

2 GNN and Graph-Regularized PCA 19
2.1 Introduction . 19
2.2 Related Work . 20
2.3 Graph Convolution and GPCA . 21

2.3.1 Graph Convolution . 21
2.3.2 Graph-regularized PCA (GPCA) 22
2.3.3 Connection between GCN and GPCA 23
2.3.4 Connection between PPNP and GPCA 23
2.3.5 Supervised GPCA . 23
2.3.6 Approximation and Complexity Analysis 24

2.4 GPCAnet: A Stacking GPCA Model 25
2.4.1 GPCAnet . 25
2.4.2 GPCAnet-initialization for GCN 26

2.5 Experiments . 27
2.5.1 Experimental Setup . 27
2.5.2 Q1: Performance of (Unsupervised) GPCA and GPCAnet . . 28
2.5.3 Q2: Unsupervised vs. Semi-supervised GPCA 30
2.5.4 Q3: GPCAnet-initialization for GCN 31

2.6 Conclusion . 32

viii

II Graph-level Representation Learning 33

3 Using Subgraphs to Boost Expressivity 35
3.1 Introduction . 35
3.2 Related Work . 37
3.3 General Framework and Theory . 38

3.3.1 From Stars to Subgraphs . 39
3.3.2 Theory: Expressiveness Analysis 40

3.4 Concrete Realization . 43
3.5 Improving Scalability: SubgraphDrop 45

3.5.1 Subgraph Sampling Strategies 46
3.5.2 Training with SubgraphDrop 46

3.6 Experiments . 47
3.6.1 Empirical Verification of Expressiveness 48
3.6.2 Comparing with SOTA and Generality 49
3.6.3 Scaling up by Subsampling . 49
3.6.4 Ablation Study . 50

3.7 Conclusion . 52

4 Using Unordered High Order Interactions 53
4.1 Introduction . 53
4.2 Related Work . 55
4.3 A practical progressively-expressive isomorphism test: (k, c)()-SetWL 56

4.3.1 Preliminaries: the k-Weisfeiler-Leman (k-WL) Graph Isomor-
phism Test . 56

4.3.2 From k-WL to k-MultisetWL: Removing Ordering 57
4.3.3 From k-MultisetWL to k()-SetWL: Removing Repetition 58
4.3.4 From k()-SetWL to (k, c)()-SetWL: Accounting for Sparsity 59
4.3.5 Complexity Analysis . 60
4.3.6 Set version of k-FWL . 60

4.4 A practical progressively-expressive GNN: (k, c)()-SetGNN 61
4.4.1 From (k, c)()-SetWL to (k, c)()-SetGNN 61
4.4.2 Bidirectional Sequential Message Passing 62
4.4.3 Improving Supernode Initialization 62

4.5 Experiments . 63
4.5.1 Setup . 63
4.5.2 Results . 64
4.5.3 Computational requirements . 65

4.6 Conclusion . 66

III Generative Model on Graphs 67

5 Improving and Unifying Discrete Denoising Diffusion 69
5.1 Introduction . 69
5.2 Discrete-time Discrete Diffusion . 70

5.2.1 Graphical Model View of Diffusion Models 70
5.2.2 the Forward Diffusion Process 71
5.2.3 Form of q(xt�1|xt,x0) . 72
5.2.4 Parameterization of p✓(xt�1|xt) 74
5.2.5 Loss Function Derivation . 75

ix

5.2.6 Simplifying Loss Further for Easier Opt. 75
5.2.7 Reparameterization Form for Sampling 77

5.3 Continuous-time Discrete Diffusion . 77
5.3.1 Background: Continuous-Time Markov Chain 78
5.3.2 Forward and Backward CTMCs 78
5.3.3 Simplification of Continuous-time Negative VLB 80

Term 1 . 83
Term 2 . 83
All Terms . 85

5.3.4 Backward Sampling & Unification 86
5.3.5 Shared MCMC Derivation . 87

The MCMC Sampling Corrector 87
5.4 Experiments . 89

5.4.1 Datasets and Metrics . 89
Lakh Piano Dataset Details . 89
Pre-training VQGAN . 90

5.4.2 Baselines. 90
5.4.3 Training Details. 90

USD3 Lakh Pianoroll Training Details. 90
USD3 VQCIFAR10 Training Details. 91

5.4.4 Music Generation . 92
Music Generation Eval Metrics 92
Results. 93

5.4.5 Image Generation . 94
Metrics. 94
Results. 94
Ablation results using MCMC sampling 95

5.5 Conclusion . 96

6 Permutation-Invariant Autoregressive Diffusion on Graphs 97
6.1 Introduction . 97
6.2 Related Work . 98
6.3 Autoregressive Denoising Diffusion . 99

6.3.1 Discrete Denoising Diffusion on Graphs 99
6.3.2 Autoregressive Graph Generation 102
6.3.3 Impossibility of Equivariant Graph Transformation 104
6.3.4 Pard: Autoregressive Denoising Diffusion 106

6.4 Architecture Improvement . 108
6.4.1 Efficient and Expressive Higher-order Transformer 108
6.4.2 Parallel Training with Causal Transformer 109

6.5 Experiments . 110
6.5.1 Molecular Graph Generation 110
6.5.2 Generic Graph Generation . 111

6.6 Conclusion . 112

IV Application: Graph-level Anomaly Detection 113

7 Graph-level Anomaly Detection: Baselines and Issues 115
7.1 GLAD Problem & Outlier Baselines 118

7.1.1 Graph-Level Outlier Detection 118

x

7.1.2 Graph-level Outlier Detection Models 118
Two-Stage Graph Outlier Detection 119
End-to-End Deep Graph Outlier Detection 121

7.2 Using Classification Datasets for Outlier Model Evaluation: Issues . . 122
7.2.1 Peculiar Observations . 122

Peculiar Observation 1: Performance Flip. 123
Peculiar Observation 2: Invariance to Down-sampling Rate. . . 124
Peculiar Observation 3: Growing Performance Gap with Prop-

agation (propagation based methods only). 125
7.2.2 Hypothesis on Driving Mechanisms 126
7.2.3 Measures for Analysis . 128
7.2.4 A deeper analysis on embedding sparsity issue 129

7.3 Empirical Analysis . 131
7.3.1 Experiment Setup . 131
7.3.2 Measurement study: when performance flip occurs 133

Analysis on full data. 133
Analysis upon down-sampling. 135

7.3.3 Measurement study: when performance flip does not occur . . . 136
7.3.4 Performance study: All GLOD methods 137

A1: Performance flip occurs across all methods. 138
A2: Dataset semantics play a role in performance flip. 140
A3: Both embedding method and outlier detector affect perfor-

mance flip. 140
A4: End-to-end method can partially capture distribution of

majority. 140
Three key questions for GLOD 141

7.4 Conclusion . 141
7.4.1 Summary . 141
7.4.2 Discussion . 142
7.4.3 Future work . 143

8 Anomaly Detection of Attributed Multi-graphs with Metadata 145
8.1 Introduction . 145
8.2 Related Work . 147
8.3 Preliminaries . 148
8.4 ADAMM: Anomaly Detection of Multi-graphs with Metadata 149

8.4.1 Data Representation . 149
8.4.2 A Unified Neural Network Architecture 150

Graph-level Embedding . 150
A Unifying Embedding Space for Graph and Metadata 151

8.4.3 Anomaly Detection Loss . 152
8.4.4 Model Selection . 153

8.5 Experiments . 153
8.5.1 Experimental Setup . 153
8.5.2 Detection Results . 157
8.5.3 Case Studies . 159

8.6 Conclusion . 160

xi

V Conclusion 161

9 Summary and Future Directions 163
9.1 Summary . 163
9.2 Future directions . 164

9.2.1 Left problems in GNNs . 164
9.2.2 New problems in the intersection of LLMs and GNNs 165

Bibliography 167

xiii

List of Figures

1.1 SGC’s performance (dashed lines) with increasing graph convolutions
(K) on Cora dataset (train/val/test split is 3%/10%/87%). For each
K, we train SGC in 500 epochs, save the model with the best vali-
dation accuracy, and report all measures based on the saved model.
Measures row-diff and col-diff are computed based on the final layer
representation of the saved model. 10

1.2 Illustration of PairNorm, comprising centering and rescaling steps. . 13
1.3 (best in color) Performance comparison of the original (dashed) vs.

PairNorm-enhanced (solid) GCN and GAT models with increasing
layers on Cora. 13

1.4 (best in color) Comparison of ‘vanilla’ vs. PairNorm-enhanced SGC,
GCN, and GAT performance on Cora for p = 1. Green diamond sym-
bols depict the layer at which validation accuracy peaks. PairNorm

boosts overall performance by enabling more robust deep GNNs. . . . 14

2.1 GPCAnet performance (avg. over 5 seeds) with varying number of
layers (L) and ↵ on Cora. Increasing L has similar effect as increasing
↵. Results also hold for the other datasets. 30

2.2 Comparison between Xavier-init. and GPCAnet-init. in terms of test
accuracy robustness over 100 seeds on Arxiv. GPCAnet-init. enables
robust training especially at larger depth. 31

3.1 Shown: one GNN-AK+ layer. For each layer, GNN-AK+ first extracts n
(# nodes) rooted subgraphs, and convolves all subgraphs with a base
GNN as kernel, producing multiple rich subgraph-node embeddings of
the form Emb(i | Sub[j]) (node i’s embedding when applying a GNN
kernel on subgraph j). From these, we extract and concatenate three
encodings for a given node j: (i) centroid Emb(j | Sub[j]), (ii) subgraphP

i
Emb(i | Sub[j]), and (iii) context

P
i
Emb(j | Sub[i]). GNN-AK+ re-

peats the process for L layers, then sums all resulting node embeddings
to compute the final graph embedding. As a weaker version, GNN-AK
only contains encodings (i) and (ii). 36

3.2 Two 4-regular graphs that cannot be distinguished by 1-WL. Colored
edges are the difference between two graphs. Two 1-hop egonets are
visualized while all other rooted egonets are ignored as they are same
across graph A and graph B. 39

3.3 Two non-isomorphic strongly regular graphs that cannot be distin-
guished by 3-WL. 42

xiv

3.4 GNN-AK(+)-S with SubgraphDrop used in training. GNN-AK(+)-S first
extracts subgraphs and subsamples m⌧|V| subgraphs to cover each
node at least R times with multiple strategies. The base GNN is ap-
plied to compute all intermediate node embeddings in selected sub-
graphs. Context encodings are scaled to match evaluation. Subgraph
and centroid encodings initially only exist for root nodes of selected
subgraphs, and are propagated to estimate those of other nodes. 45

4.1 Main steps of (k, c)()-SetGNN. Given a graph and (k, c), we build
the (k, c)-bipartite super-graph (in middle) containing sets with up to k
nodes and c connected components in the induced subgraph, on which
a base GNN assigns initial “colors”. Bidirectional bipartite GNN lay-
ers with frw.-bckw. message passing learn set embeddings, pooled into
graph embedding. The size of super-graph, and accordingly its expres-
siveness, grows progressively with increasing k and c. The 2-bipartite
message passing generalizes normal GNN, edge GNN, and line graph
(see Appendix. A12 in [Zha+22b]). 54

4.2 (k, c)()-SetGNN
⇤’s footprint scales practically with both k and c in

memory (a) and running time (b) – results on ZINC-12K. 66

5.1 Graphical model view . 70
5.2 Example image samples generated by USD3⇤ as trained on VQCI-

FAR10. Most images are easy to recognize as being from one of the 10
classes in CIFAR10. 95

6.1 Example case where the equivariant graph transformation from G[B1:i]
to G[B1:i+1] is impossible. 105

6.2 Pard integrates the autoregressive method with diffusion modeling.
(top) Pard decomposes the joint probability into a series of block-wise
enlargements, where each block’s conditional distribution is captured
with a shared discrete diffusion (bottom). 106

6.3 The Architecture of the PPGN-Transformer Block. In (b) and (c)
we provide illustrations of how edge and node features are processed
through Transformer and PPGN blocks. 109

7.1 Sparsification in WL subtree kernel: Pairwise similarity of graphs (from
DD dataset) decreases with increasing number of iterations (left to right).120

7.2 Sparsification in PK: Pairwise similarity of graphs (from DD dataset)
decreases with increasing number of iterations (left to right). 120

7.3 Performance is invariant to downsampling rate on DD, PRO-
TEINS, and NCI1 for WL+LOF. Similar behavior is observed for meth-
ods and datasets when performance flip is occur. 125

7.4 Performance gap between two variants tends to grow with
increasing number of propagations (i.e. iterations) of WL (subse-
quently paired with LOF), significantly on DD, PROTEINS, and NCI1.
Similar behavior is observed for other propagation based methods and
datasets. 125

7.5 Pairwise similarities among all graphs in DD dataset (graphs grouped
by class) based on WL subtree kernel over increasing iterations (left to
right). 126

xv

7.6 Non-isomorphism is induced (a) between two unlabeled Petersen graphs
by flipping node labels assymmetrically, and (b) between two labeled
Petersen graphs by degree-preserving edge rewiring. 129

7.7 Distance between two k-regular graphs (k = 5, n = 50) as a function
of (left, Case 1) number of node labels flipped, and (right, Case 2)
number of edge pairs rewired. Each curve is averaged over 100 rounds
to remove randomness. 130

7.8 Distance between two k-regular graphs (n = 50) as a function of k for
(left, Case 1) when m = 5 node labels are flipped, and for (right, Case
2) when r = 10 edge pairs are rewired. Each curve is averaged over 100
rounds to remove randomness. 130

7.9 (Top row) Pairwise similarity matrix for all graphs in full DD dataset,
based on WL subtree kernel over increasing iterations (left to right).
(Second row) 2-d MDS visualization based on the similarity matrix.
(Third row) Distribution of NN-Radius for all graphs in each class.
(Last row) Distribution of NN-Disagreement% for all graphs in each
class. 134

7.10 Quantitative measures of density disparity and overlapping support on
DD for (a) PK and (b) OCGIN for increasing graph propagation (left
to right). 135

7.11 NN-Disagreement% distribution of outliers (top row: class 1 is down-
sampled and bottom row: class 0 is down-sampled, in red) and inliers
(vice versa, in blue) over WL iterations (left to right) on DD. 136

7.12 NN-Disagreement% distribution of outliers (top rows: when class 1 is
down-sampled and bottom rows: when class 0 is down-sampled, in red)
and inliers (vice versa, in blue) over WL iterations (left to right) on (a)
PROTEINS and (b) NCI1. 137

7.13 (Top row) Pairwise similarity matrix for all graphs in full IMDB-BINARY
dataset, based on WL subtree kernel over increasing iterations (left to
right). (Second row) 2-d MDS visualization based on the similarity
matrix. (Third row) Distribution of NN-Radius for all graphs in each
class. (Last row) Distribution of NN-Disagreement% for all graphs in
each class. 138

7.14 NN-Disagreement% distribution of outliers (top row: class 1 is down-
sampled and bottom row: class 0 is down-sampled, in red) and in-
liers (vice versa, in blue) over WL iterations (left to right) on IMDB-
BINARY. 139

8.1 Modeling complex data. (left) E.g. from accounting: a journal entry’s
attributed multi-graph (multiple transactions between two accounts),
with edge directions (credit/debit), edge features (e.g. $ amount), and
node features (account type; e.g. equity, savings, etc.) plus aux. meta-
features (approver, entry date, etc.); (right) E.g. from communica-
tion networks: a daily activity multi-graph (multiple e-mails between
two company employees), with edge directions (to/from), edge features
(e.g. text embedding) and node features (role in the company.) plus
aux. meta-features (division, day, etc.). 146

xvi

8.2 A workflow overview of the ADAMM architecture. Given two-pronged
input (in blue), i.e. attributed multi-graph and metadata, ADAMM first
processes the former by 1○ learning a multi-set representation of the
multi-edges, and 2○ flattening the resulting graph via GNN into node
representations that are pooled into a graph-level embedding. Then, 3○
graph-level embed. and meta-features are projected, 4○ followed with
a joint embedding learning. Finally, 5○ the output layer employs an
unsupervised regularized multi-centroid anomaly loss where soft assign-
ments are learned via a membership estimation network (MEN). It is
notable that ADAMM provides a unified multi-modal framework where
parameters of all the modules (in green) are estimated end-to-end. . . 151

8.3 Model selection for ADAMM over all models with different hyper-parameter
configurations. The model selected consistently performs better than
random picking, i.e. average/expected performance over all models. . 158

8.4 Analyzing detected accounting anomalies. (Left) Anomaly scores (vs
journal ID) of all 39, 011 entries in the SH dataset. (Right) Two example
graphs, A and B, that are identified as anomalous by ADAMM in SH. 160

xvii

List of Tables

1.1 Dataset statistics. 15
1.2 Comparison of ‘vanilla’ vs. PairNorm-enhanced SGC performance in

Cora, Citeseer, Pubmed, and CoauthorCS for SSNC-MV problem, with
missing rate ranging from 0% to 100%. Showing test accuracy at #L
(K in Eq. 1.4) layers, at which model achieves best validation accuracy. 16

1.3 Comparison of ‘vanilla’ and (PairNorm-si/ residual)-enhanced GCN
performance on Cora, Citeseer, Pubmed, and CoauthorCS for SSNC-MV
problem, with 0% and 100% feature missing rate. t represents the
skip-step of residual connection. 16

1.4 Comparison of ‘vanilla’ and (PairNorm-si/ residual)-enhanced GAT
performance on Cora, Citeseer, Pubmed, and CoauthorCS for SSNC-MV
problem, with 0% and 100% feature missing rate. t represents the
skip-step of residual connection. 17

2.1 Statistics of used datasets. 27
2.2 Hyperparameters pool for each dataset, includes learning rate (LR),

weight decay (WD), number of layers (#Layers), hidden size, dropout,
↵, and �. For Arxiv and Products, weight decay is set as 0 because
the dataset is large and no overfit happened. Same reason for choosing
smaller dropout rate for them. 28

2.3 Performance of unsupervised GPCA (� = 0) for varying ↵ w.r.t. mean
test accuracy and standard deviation (in parentheses). GPCA (best ↵)
selects ↵ 2 {1, 5, 10, 20, 50} based on validation, whereas GPCA with
specific ↵ uses the specified fixed ↵. 29

2.4 Comparison btwn. unsupervised GPCA (� = 0), GPCAnet, and
existing (supervised) SOTA GNNs on 5 datasets, w.r.t. mean test ac-
curacy and standard deviation (in parentheses) over 5 different seeds.
Those marked with ⇤ are reported values at the OGB-leaderboard333.
Highest mean performance is in bold and the second highest is underlined.
. 29

2.5 Comparison btwn. Supervised (S-)GPCA (�>0) and Unsupervised (U-
)GPCA (�=0), w.r.t. mean test accuracy and standard deviation (in
parentheses) over 5 different seeds. Also shown (bottom row) is the per-
formance by the best method in Table 2.4. Highest mean performance
is highlighted in bold. 30

2.6 Test set performance of GCN with Xaiver- versus GPCAnet-initialization,
w.r.t. varying number of layers (L) across all datasets. Each reported
value is based on the best selected configuration on validation data.
GPCAnet-init. enables higher performance that is also stable with
increasing depth. 31

3.1 Dataset statistics. 47

xviii

3.2 Simulation dataset performance: GNN-AK(+) boosts base GNN across
tasks, empirically verifying expressiveness lift. (ACC: accuracy, MAE:
mean absolute error, OOM: out of memory) 48

3.3 PPGN-AK expressiveness on SR25. 49
3.4 Real-world dataset performance: GNN-AK+ achieves SOTA performance

for ZINC-12K, CIFAR10, and PATTERN. (OOM: out of memory, �:
missing values from literature) . 49

3.5 Results on TU Datasets. First section contains methods of graph ker-
nels, second section has GNNs, and third is the method in [Bod+21a].
The top two are highlighted by First, Second, Third. 50

3.6 Resource analysis of SubgraphDrop. 50
3.7 Effect of various k-egonet size. 50
3.8 Effect of various encodings . 50
3.9 Study GNN-AK without context encoding (Ctx) and without distance-

to-centroid (D2C). Base model is 1-layer GIN for all methods. 51
3.10 Study the effect of base model’s number of layers while keeping total

number of layers in GNN-AK fixed. Different effect is observed for GNN-
AK and GNN-AK without D2C. 51

4.1 Dataset statistics. 63
4.2 Simulation data performances. For (k, c)()-SetGNN

⇤, (k, c) values
that achieve reported performance in parenthesis. (ACC: accuracy,
MA[S]E: mean abs.[sq.] error) . 64

4.3 Train and Test performances on substructure counting tasks by varying
k and c. Notice the orders of magnitude drop in Test MAE between
bolded entries per task. 65

4.4 Train and Test performances of (k, c)()-SetGNN
⇤ on regressing graph

properties by varying k and c. 65
4.5 SetGNN⇤ achieves SOTA on ZINC-12K. 65
4.6 (k, c)()-SetGNN

⇤ performances on ZINC-12K by varying (k,c). Test
MAE at lowest Val. MAE, and lowest Test MAE. 66

4.7 (k, c)()-SetGNN
⇤ performances on QM9 by varying (k,c). Test

MAE at lowest Val. MAE, and lowest Test MAE. All variances are
0.002 and thus omitted. 66

5.1 Conditional music gen. quality (3 samples avg.) on Piano w.r.t. n-
gram Hellinger, n-gram Prop. of Out., and Diverse Edit Dist. Also,
Train-to-Test Ratio for 3-gram Prop. of Out. on Piano-P quantifies
“parroting”. First & Second shown in color. 93

5.2 Metrics comparing different loss combinations and different model sizes
for Lakh Pianoroll. For each of n-gram Hellinger Distance (ng.-Hellinger)
and Proportion of Outliers (ng.-Prop. Outlier) metrics, we show mean
± std with respect to 3 generated samples. We use USD3-VLB to denote
an additional variant of our model that only uses the exact VLB loss in
training. "Small" refers to the backbone transformer model that has 6
Layers, 8 Attention Heads, Input Dimension of 128 and MLP dimension
of 1024. The top two are highlighted by First, Second. 94

5.3 Image gen. quality w.r.t. Inception Score (IS) and the Frechet Incep-
tion Dist. (FID) over 50,000 samples unconditionally generated and
decoded by VQGAN, as compared against original CIFAR10 training
images. First & Second shown in color. 94

xix

5.4 The GPU-memory, running time and number of network parameters in
all methods.USD3 is easier to train and incurs the least GPU memory
in both discrete- and continuous- time diffusions. 95

5.5 Image gen. quality w.r.t. Inception Score (IS) and the Frechet In-
ception Dist. (FID) over 5,000 samples unconditionally generated by
USD3⇤ in discrete-time case. MCMC corrector is conducted for the last
10,20 timesteps over 100 sampling steps. 96

5.6 Image gen. quality w.r.t. Inception Score (IS) and the Frechet In-
ception Dist. (FID) over 5,000 samples generated by USD3-CE in
continuous-time case. MCMC corrector is conducted for the last 10,20
timesteps over 100 sampling steps. 96

6.1 Generation quality on QM9 with explicit hydrogens. 110
6.2 Generation quality on ZINC250k. 111
6.3 Generation quality on MOSES. The top three methods use hard-coded

rules, hence we do not highlight them. 111
6.4 Generation quality on generic graphs. All metrics are based on generated-

to-test set MMD distances, the lower the better. Top performance is
in bold, and Runner-up is underlined. 112

7.1 Average ROC-AUC performance (and standard deviation) of 3 different
graph embedding based methods for graph outlier detection using 4
binary graph classification datasets. Each dataset has 2 down-sampled
variants, where outliers are created by down-sampling one of two classes
(class 0 or class 1) with rate= 0.1, averaged over 10 different down-
samplings. Performance flip observed on DD, PROTEINS, and
NCI1 for all 3 models, where ROC-AUC is significantly larger
on one variant than the other. ROC-AUC values less than 0.5 are
shown in bold as they indicate worse-than-random performance. . . 123

7.2 Dataset class semantics. 131
7.3 Dataset summary statistics. 132
7.4 Average ROC-AUC (over 10 random seeds) of 5 different graph em-

bedding methods and 3 different outlier detectors over 5 “X&Non-X ”
type datasets. Each dataset has 2 down-sampled variants. ‘DC’ stands
for down-sampled class, which is also outlier class. Cells colored with
Red, Green, Yellow represent: performance of both variants are worse
than random, both variants are better than random, and performance
flip scenario, respectively. Performance flip is widely observed. Among
all cases, 67.3% have performance gap� 0.2, 52.7% cases have perfor-
mance gap� 0.3, 30.9% have performance gap� 0.4. (G2V=Graph2Vec)139

7.5 Same configuration as Table 7.4, this time over 5 “X&Y ” type datasets.
FGSD cannot run over REDDIT datasets. Performance flip is not ob-
served for IMDB dataset across all methods. OCGIN has performance
above random across all datasets. Performance flip is still widely ob-
served for other methods. Among all cases, 30.6% have performance
gap� 0.2, 22.4% cases have performance gap � 0.3, 12.2% have per-
formance gap� 0.4.(G2V=Graph2Vec) 139

8.1 Dataset Summary Statistics . 154

xx

8.2 Anomaly Detection Results for all methods across all datasets based on
AUROC. For baseline methods we run the experiments over a grid of
hyperparameters and report the average performance, along with the
std. dev. ADAMM employs a model selection criterion and outputs a
unique ranking. Last row reports significance test results, where (**)
and (***) denote that ADAMM is significantly better than baselines
w.r.t. the Wilcoxon Signed Rank Test at p = 0.05 and p = 0.01,
respectively. 155

8.3 Hyperparameter Configurations . 156
8.4 Anomaly Detection Results for all methods across all datasets based

on AUPRC (Area Under Precision-Recall Curve). For baselines, av-
erage performance across hyperparameters along with the std. dev. is
reported. ADAMM outputs a unique ranking based on a model selec-
tion criterion. Last row reports significance test results, where (**) and
(***) denote that ADAMM is significantly better than baselines w.r.t.
the Wilcoxon Signed Rank Test at p = 0.05 and p = 0.01, respectively. 158

8.5 Ablation Study Results - Comparing ADAMM against its three variants:
(i) ADAMM without Metadata Fusion, (ii) ADAMM without DeepSet
& (iii) ADAMM with One-Class DeepSVDD loss (OCDL) 159

1

Chapter 0

Introduction

My fascination with graphs began during my undergraduate studies, where I fre-
quently employed graph algorithms in mathematical modeling contests and studied
circuits and power systems (my bachelor major) with graphs as their abstractions
for analysis. At the beginning of my PhD in 2018, the field of graph neural networks
(GNNs) was emerging, with pioneering work [KW17] in 2016 showcasing their promis-
ing potential in node classification and regression tasks. This, along with my passion
for graphs, naturally led me to choose the area of GNNs as the start of my PhD
journey, which involves designing new neural networks for processing graph struc-
tures. Unconsciously and inevitably, I have dedicated all my enthusiasm to this field,
making graphs and GNNs central to my research journey. Fortunately, my passion,
knowledge, understanding, and achievements have grown alongside the field itself, as
I’ve witnessed GNNs evolve from a nascent field to a mature area of study.

This thesis addresses several fundamental challenges and advancements in GNNs
as the field progresses towards maturity, encompassing theory, diverse applications
and domains. Graphs are abstract elements used to model relationships or structures
across various domains and problems. For example, social networks are represented
as graphs to capture relationships or activities among individuals, where the main
concerns are node-level problems such as individual behavior. In recommendation
systems, graphs abstract users and products as nodes and user-product engagements
as edges, with the main focus on predicting engagements (edge-level problems). Addi-
tionally, graphs can represent molecules, with atoms as nodes and chemical bonds as
edges, where the primary concern is understanding molecule properties (graph-level
tasks). Due to the diversity of tasks, domains, complications, and levels of abstrac-
tion, fully developing the field is akin to the blind men describing an elephant; it
requires many stages of growth and understanding.

The field begins with node-level problems, which are also the focus of the Part I of
the thesis. At early stage, graph network approaches like GCN [KW17] have started
to outperform traditional propagation algorithms like lable propagation [ZGL03] and
neural graph embedding approaches like DeepWalk [PARS14]. In the meantime, as the
esteemed ResNet [He+16] clears the difficulty of training deep networks and demon-
strates that making networks deeper enlarges model capacity and outperforms widen
them, researchers explore deepening GNNs to further improve the performance in han-
dling complex graph structures. However, counter-intuitive phenomenons are widely
observed: increasing the number of layers in GNNs often leads to unimproved or even
diminished performance. To address and explain the observation, [LHW18] proposes
a hypothesis called "oversmoothing". This hypothesis suggests that the repeated mes-
sage passing or graph convolutional layers can cause nodes’ representations to become
indistinguishable, thereby reducing performance when too many layers are stacked.
Chapter 1 delves deeply into the oversmoothing hypothesis, presenting assumptions,

2 Chapter 0. Introduction

metrics, and controlled experiments designed to quantify oversmoothing and its im-
pact on performance in semi-supervised node classification tasks. Our comprehensive
studies and evaluations demonstrate that both forms of oversmoothing, column-wise
oversmoothing where all features become identical and row-wise oversmoothing where
all nodes converge to a uniform representation, happen with the addition of more
layers. As a follow up, the first normalization layer in GNNs, PairNorm, that nor-
malizes the total pairwise distances among representations is presented to eliminate
the shortcoming of deepening graph networks. Another intriguing problem is to fig-
uring out the root of the effectiveness of graph convolutions on node-level problems,
after which we can further improve model designs to achieve performance boost. In-
terestingly, we have found that while oversmoothing is harmful to node embeddings,
proper amount of smoothing contributes to the success of graph convolution for node-
level tassk. In Chapter 2, we studies the connection between graph convolution and
graph-regularized PCA. Specifically, we establish a mathematical connection between
the form of graph convolution and the close-form solution of graph-regularized PCA.
The connection highlights that the effective smoothing or graph convolution power
derives from the graph-based Laplacian regularization term. Moreover, increasing the
depth of GCNs is analogous to enhancing the coefficient of the Laplacian regularization
term. Building on these connections, one can analyze the limitations of GCNs through
the lens of Laplacian regularization. For instance, my collaborators have delved into
the homophily and heterophily issues in GNNs for node-level tasks [Zhu+20]. The
heterophily issue of GNNs can be explained by the limitation of the Laplacian reg-
ularization, as its effectiveness is determined by how well the graph structure aligns
with task labels. While node-level problems are the most widely studied problems in
GNNs, there are still some theoretical questions not fully addressed. For example, the
learning of node-level tasks is essentially a non-i.i.d. based learning, as all nodes are
influenced by each other in the graph, where many theories from i.i.d. setting cannot
be directly applied.

As the field advances, graph-level problems such as graph property prediction tasks
have gained popularity. In these scenarios, a collection of graphs is presented, either
with or without associated properties, and all graphs are assumed to be independently
and identically distributed (i.i.d.). The Part II focuses on graph-level tasks. Given
that each input is a graph, our goal is to develop powerful GNNs capable of modeling
any function on graphs. Multi-Layer Perceptrons (MLPs), which are simple yet well-
known, serve as universal function approximators for functions on high-dimensional
vectors given enough depth and width. Back in early 2019, Chen et al. [Che+19a]
proved that being a universal function approximator for functions on graphs is equiv-
alent to being capable of solving the graph isomorphism test problem. Consequently,
the expressiveness of GNNs has since been measured by their ability to solve the graph
isomorphism test problem. However, as the graph isomorphism test is not known to
be solvable in polynomial time [For96], GNNs cannot be universal function approx-
imators for graph functions either, which dramatically distinguishes from MLPs on
vector functions. In fact, [Xu+19] proves that the popular message-passing-based
GNNs have limited expressiveness upper bounded by the first-order Weisfeiler-Leman
algorithm (1-WL). This means that GNNs cannot distinguish graphs that the 1-WL
algorithm fails to differentiate. As a consequence, GNNs cannot count the number
of triangles and cycles that is important for many real-world problems. Improving
the expressiveness of GNNs towards universal function approximators for function
on graphs become the vital bottleneck for the field to advance. In Chapter 3, I
explore the explicit usage of subgraphs to boost model expressiveness. Observing
that typical GNNs, which aggregate only local first-hop information, are limited in

Chapter 0. Introduction 3

discriminating non-isomorphic graphs, for the first time, I propose to generalize the
star-like aggregation to subgraph aggregation. The insight results in GNNAsKernel
[Zha+22c], a general framework with theoretical guarantee in expressiveness that en-
hances any GNN by convolving subgraphs with base GNN as kernel. This framework,
incorporating both intra- and inter-subgraph interactions, has significantly improved
performance across various graph task benchmarks with up to 60% error reduction.
The direction of using subgraphs to enhance GNN expressiveness has since been a
significant research direction, followed by many in the field. For example, Zhang
et al. [Zha+23a] has proved that all subgraph GNNs with message passing base
GNN have expressiveness upper bounded by 3-WL. Subgraph GNNs substantially
enhance the expressiveness of existing GNN models, yet they are still constrained
by the 3-WL test’s upper bound. Moreover, the pursuit of increased expressiveness
may not always be justifiable, as it can lead to considerable computational cost and
possibly weaker generalization. There’s a growing need in the community for GNNs
that combine high expressiveness without limit and adjustable expressiveness. This
approach would allow for a systematic evaluation of expressiveness’s impact on real-
world problems. In Chapter 4, I work on developing GNNs that are both practically
efficient and progressively expressive, backed by theoretical guarantees. Recognizing
the high expressiveness of higher-order interactions, my focus is on overcoming their
primary limitation: the exponential computational cost associated with considering
all k-order tuples. In [Zha+22b], I investigated the approach of minimizing the num-
ber of higher-order entities by focusing on sets instead of tuples. The shift from tuples
to sets means disregarding the information embedded in the order and repetition of
elements. Although this strategy significantly decreases the number of entities in-
volved, assessing its theoretical impact on expressiveness is challenging. By applying
theory from first-order logic and game theory, I demonstrate that, while there is a
reduction in expressivity, a k-order set-based GNN still maintains expressivity that
is not less powerful than a (k-1)-order tuple-based GNN. A new higher-order model,
(k, c)-SetGNN, is developed based on the set version of higher-order WL. This work
has achieved new state-of-the-art performance in many benchmarks with previously
not achievable order k=10, significantly expands the possibility of higher order GNNs.

In addition to designing more expressive model architectures, developing unsuper-
vised learning paradigms adapted to graphs is increasingly important to unlock the
rich information inside the abundant amount of unlabeled data. Generative modeling,
one of the most promising unsupervised learning approaches, has already revolution-
ized many areas such as language modeling and computer vision [Ope23], with ground-
breaking models like GPT-4 and Claude 3 being widely used by hundreds of millions
and adopted in various applications. Generative model essentially captures the full
information of the training dataset, as with a perfectly trained generative model you
can recover the training dataset with sampling from the model. Nevertheless, de-
veloping effective generative models for graph data remains challenging, given the
unique characteristics of graphs such as permutation invariance and rich higher-order
structural information. In Part III, we explore designing permutation-invariant gen-
erative model for graphs. The major difference between graphs and sequences, such
as languages and image patches, is that graphs lack a natural ordering for their ele-
ments (nodes and edges). Any permutation of nodes and edges does not change the
graph, making autoregressive approaches used for sequences less effective for graphs
without compromising their generalization to arbitrary orderings. Recently, diffusion
models, such as the one proposed by [HJA20], have gained increasing attention in
the graph domain. These models are capable of modeling exchangeable probabilities,
ensuring that the learned probability remains invariant to changes in the ordering of

4 Chapter 0. Introduction

elements, under certain conditions. Nevertheless, graphs are essentially discrete ob-
jects where many sophisticatedly developed continuous-state diffusion models cannot
be applied. Hence in Chapter 5, I first make several improvements to the current
discrete-sate diffusion models to make it more effective and easy-to-use for graphs.
Specifically, I developed a series of mathematical simplifications for both discrete-time
and continuous-time discrete diffusion models, achieving exact and faster sampling for
both. I also created a straightforward yet precise formulation for the variational lower
bound, enhancing the training speed significantly. Our approach allows both forward
and backward probabilities to accommodate any noise distribution, even for complex
multi-element objects. Most importantly, the designed diffusion model provides a sin-
gle set of forward and backward procedures that unifies discrete- and continuous-time
discrete diffusion. With the effective discrete diffusion model developed, in chapter
6 I explore the possibility of combining autoregressive approach and diffusion model
together to harness the effectiveness and efficiency of both while eliminating their
shortcomings. Specifically, while the autoregressive approach struggles with general-
izing to arbitrary orderings, the diffusion model often requires thousands of denoising
steps. This significantly slows down both training and generation due to the diffi-
culty of directly modeling the joint distribution of all edges and nodes. Recognizing
that nodes in a graph, unlike elements in a set, have a partial order based on their
connections, I explore breaking down the joint distribution into a series of simpler
conditional distributions. This decomposition follows a blockwise autoregressive pat-
tern, where each conditional distribution represents a simpler subset of nodes and
edges. Crucially, to maintain permutation invariance in probability modeling, diffu-
sion models are employed for each conditional distribution. These models provide
the necessary symmetry breaking, vital for accurately predicting new connections in
a block of structurally equivalent nodes. Furthermore, I also develop parallel training
based on causal principles, akin to a causal transformer. This approach trains all
blocks simultaneously, greatly enhances efficiency and usage.

In addition to fundamental model and methodology improvements, I have also
worked on applying these models in practical scenarios, shown in the last Part IV.
Specifically, I have focused on applying graph neural networks for structural-based
anomaly detection. In Chapter 7, I developed the first GNN based method for graph-
level anomaly detection (GLAD), established a comprehensive testbed with extensive
baselines, and analyzed key issues in GLAD [ZA23]. Recognizing the challenges in
hyperparameter setting for the unsupervised nature of GLAD, I further enhanced the
method by incorporating automatic model selection and a more effective loss function
through MMD pooling [Zha+22d]. Furthermore, in Chapter 8, we expand the GLAD
model to process directed, multi-edge graphs, which are commonly found in financial
systems. As a real-world study, we have applied our method to PwC’s accounting
dataset, with the goal of identifying fraud bookkeeping journals containing inaccurate
transaction records.

To summarize, this thesis encloses my research explorations on various questions
that I considered important for the field as it progresses toward maturity, varying
from fundamental problems such as oversmoothing, expressiveness to models, learning
methodologies, and applications. I am fortunate to have worked on questions that
interest me the most without any restriction , and have the opportunity to grow
alongside the field.

5

Part I

Node-level Representation
Learning

7

Chapter 1

Oversmoothing in GNNs

Chapter based on: Lingxiao Zhao and Leman Akoglu. “PairNorm Tackling Over-
smoothing in {GNN}s”. In: International Conference on Learning Representa-
tions. 2020. url: https://openreview.net/forum?id=rkecl1rtwB.

1.1 Introduction

Graph neural networks (GNNs) is a family of neural networks that can learn from
graph structured data. Starting with the success of GCN [KW17] on achieving state-
of-the-art performance on semi-supervised classification, several variants of GNNs
have been developed for this task; including GraphSAGE [HYL17], GAT [Vel+18],
SGC [Wu+19], and GMNN [QBT19] to name a few most recent ones.

A key issue with GNNs is their depth limitations. It has been observed that deeply
stacking the layers often results in significant drops in performance for GNNs, such
as GCN and GAT, even beyond just a few (2–4) layers. This drop is associated with
a number of factors; including the vanishing gradients in back-propagation, overfit-
ting due to the increasing number of parameters, as well as the phenomenon called
oversmoothing. [LHW18] was the first to call attention to the oversmoothing prob-
lem. Having shown that the graph convolution is a type of Laplacian smoothing, they
proved that after repeatedly applying Laplacian smoothing many times, the features
of the nodes in the (connected) graph would converge to similar values—the issue
coined as “oversmoothing”. In effect, oversmoothing hurts classification performance
by causing the node representations to be indistinguishable across different classes.
Later, several others have alluded to the same problem [Xu+18; KBG19; Ron+19;
Li+19a].

In this work, we address the oversmoothing problem in deep GNNs. Specifically,
we propose (to the best of our knowledge) the first normalization layer for GNNs
that is applied in-between intermediate layers during training. Our normalization
has the effect of preventing the output features of distant nodes to be too similar or
indistinguishable, while at the same time allowing those of connected nodes in the
same cluster become more similar. We summarize our main contributions as follows.

In this work, we address the oversmoothing problem in deep GNNs. Specifically,
we propose (to the best of our knowledge) the first normalization layer for GNNs
that is applied in-between intermediate layers during training. Our normalization
has the effect of preventing the output features of distant nodes to be too similar or
indistinguishable, while at the same time allowing those of connected nodes in the
same cluster become more similar. We summarize our main contributions as follows.

https://openreview.net/forum?id=rkecl1rtwB

8 Chapter 1. Oversmoothing in GNNs

• Normalization to Tackle Oversmoothing in GNNs: We introduce a nor-
malization scheme, called PairNorm, that makes GNNs significantly more ro-
bust to oversmoothing and as a result enables the training of deeper models
without sacrificing performance. Our proposed scheme capitalizes on the under-
standing that most GNNs perform a special form of Laplacian smoothing, which
makes node features more similar to one another. The key idea is to ensure that
the total pairwise feature distances remains a constant across layers, which in
turn leads to distant pairs having less similar features, preventing feature mixing
across clusters.

• Speed and Generality: PairNorm is very straightforward to implement and
introduces no additional parameters. It is simply applied to the output features
of each layer (except the last one) consisting of simple operations, in particular
centering and scaling, that are linear in the input size. Being a simple normaliza-
tion step between layers, PairNorm is not specific to any particular GNN but
rather applies broadly. In this work we use PairNorm to tackle oversmoothing
for the GCN, GAT, and SGC models.

• Use Case for Deeper GNNs: While PairNorm prevents performance from
dropping significantly with increasing number of layers, it does not necessarily
yield increased performance in absolute terms. We find that this is because shal-
low architectures with no more than 2–4 layers is sufficient for the often-used
benchmark datasets in the literature. In response, we motivate a real-world sce-
nario wherein a notable portion of the nodes have no feature vectors. In such
settings, nodes benefit from a larger range (i.e., neighborhood, hence a deeper
GNN) to “recover” effective feature representations. Through extensive experi-
ments, we show that GNNs employing our PairNorm significantly outperform
the ‘vanilla’ GNNs when deeper models are beneficial to the classification task.

1.2 Related Work

Oversmoothing in GNNs: [LHW18] was the first to call attention to the over-
smoothing problem. They proposed propagation-based co-training to introduce more
labels into the training of the GNN, which helps increase its range (i.e., size of the
neighborhood used). [Xu+18] introduced Jumping Knowledge Networks, which em-
ploy skip connections for multi-hop message passing and also enable different neigh-
borhood ranges. [KBG19] proposed a propagation scheme based on personalized
Pagerank that ensures locality (via teleports) which in turn prevents oversmoothing.
[Li+19a] built on ideas from ResNet to use residual as well as dense connections to
train deep GCNs. DropEdge [Ron+19] proposed to alleviate oversmoothing through
message passing reduction via removing a certain fraction of edges at random from
the input graph. Finally, [Fey19] proposed Just-Jump, a scheme that prevents new
representations from being “washed out” by selectively aggregating those of neighbors’
from all previous layers. These are all specialized solutions that introduce additional
parameters and/or a different network architecture.

Normalization Schemes for Deep-NNs: There exist various normalization
schemes proposed for deep neural networks, including batch normalization [IS15],
weight normalization [SK16], layer normalization [BKH16], and so on. Conceptually
these have substantially different goals (e.g., reducing training time), and were not
proposed for graph neural networks nor the oversmoothing problem therein. Important
difference to note is that larger depth in regular neural-nets does not translate to more
hops of propagation on a graph structure.

1.3. Understanding Oversmoothing 9

1.3 Understanding Oversmoothing

In this work, we consider the semi-supervised node classification (SSNC) problem on
a graph. In the general setting, a graph G = (V, E ,X) is given in which each node
i 2 V is associated with a feature vector xi 2 Rd where X = [x1, . . . ,xn]T denotes the
feature matrix, and a subset Vl ⇢ V of the nodes are labeled, i.e. yi 2 {1, . . . , c} for
each i 2 Vl where c is the number of classes. Let A 2 Rn⇥n be the adjacency matrix
and D = diag(deg1, . . . , degn) 2 Rn⇥n be the degree matrix of G. Let Ã = A + I

and D̃ = D+ I denote the augmented adjacency and degree matrices with added self-
loops on all nodes, respectively. Let Ãsym = D̃

�1/2
ÃD̃

�1/2 and Ãrw = D̃
�1

Ã denote
symmetrically and nonsymmetrically normalized adjacency matrices with self-loops.

The task is to learn a hypothesis that predicts yi from xi that generalizes to the
unlabeled nodes Vu = V\Vl. In Section 1.4.2, we introduce a variant of this setting
where only a subset F ⇢ V of the nodes have feature vectors and the rest are missing.

1.3.1 The Oversmoothing Problem

Although GNNs like GCN and GAT achieve state-of-the-art results in a variety of
graph-based tasks, these models are not very well-understood, especially why they
work for the SSNC problem where only a small amount of training data is available.
The success appears to be limited to shallow GNNs, where the performance gradually
decreases with the increasing number of layers. This decrease is often attributed to
three contributing factors: (1) overfitting due to increasing number of parameters, (2)
difficulty of training due to vanishing gradients, and (3) oversmoothing due to many
graph convolutions.

Among these, perhaps the least understood one is oversmoothing, which indeed
lacks a formal definition. In their analysis of GCN’s working mechanism, [LHW18]
showed that the graph convolution of GCN is a special form of Laplacian smoothing.
The standard form being (I � �I)X + �ÃrwX, the graph convolution lets � = 1 and
uses the symmetrically normalized Laplacian to obtain X̃ = ÃsymX, where the new
features x̃ of a node is the weighted average of its own and its neighbors’ features.
This smoothing allows the node representations within the same cluster become more
similar, and in turn helps improve SSNC performance under the cluster assumption
[CSZ06]. However when GCN goes deep, the performance can suffer from oversmooth-
ing where node representations from different clusters become mixed up. Let us refer
to this issue of node representations becoming too similar as node-wise oversmoothing.

Another way of thinking about oversmoothing is as follows. Repeatedly applying
Laplacian smoothing too many times would drive node features to a stationary point,
washing away all the information from these features. Let x·j 2 Rn denote the j-th
column of X. Then, for any x·j 2 Rn:

lim
k!1

Ã
k

symx·j = ⇡j and
⇡j

k⇡jk1
= ⇡ , (1.1)

where the normalized solution ⇡ 2 Rn satisfies ⇡i =
p
degiP

i

p
degi

for all i 2 [n]. Notice
that ⇡ is independent of the values x·j of the input feature and is only a function of
the graph structure (i.e., degree). In other words, (Laplacian) oversmoothing washes
away the signal from all the features, making them indistinguishable. We will refer to
this viewpoint as feature-wise oversmoothing.

To this end we propose two measures, row-diff and col-diff, to quantify these two
types of oversmoothing. Let H

(k) 2 Rn⇥d be the representation matrix after k graph
convolutions, i.e. H

(k) = Ã
k
symX. Let h

(k)
i
2 Rd be the i-th row of H

(k) and h
(k)
·i
2 Rn

10 Chapter 1. Oversmoothing in GNNs

be the i-th column of H(k). Then we define row-diff(H(k)) and col-diff(H(k)) as follows.

row-diff(H(k)) =
1

n2

X

i,j2[n]

���h(k)
i
� h

(k)
j

���
2

(1.2)

col-diff(H(k)) =
1

d2

X

i,j2[d]

���h(k)
·i

/kh(k)
·i
k1 � h

(k)
·j

/kh(k)
·j
k1
���
2

(1.3)

The row-diff measure is the average of all pairwise distances between the node fea-
tures (i.e., rows of the representation matrix) and quantifies node-wise oversmoothing,
whereas col-diff is the average of pairwise distances between (L1-normalized1) columns
of the representation matrix and quantifies feature-wise oversmoothing.

1.3.2 Studying Oversmoothing with SGC

Although oversmoothing can be a cause of performance drop with increasing number
of layers in GCN, adding more layers also leads to more parameters (due to learned
linear projections W

(k) at each layer k) which magnify the potential of overfitting.
Furthermore, deeper models also make the training harder as backpropagation suffers
from vanishing gradients.

In order to decouple the effect of oversmoothing from these other two factors, we
study the oversmoothing problem using the SGC model [Wu+19]. (Results on other
GNNs are presented in §1.5.) SGC is simplified from GCN by removing all projection
parameters of graph convolution layers and all nonlinear activations between layers.
The estimation of SGC is simply written as:

bY = softmax(ÃK

sym X W) (1.4)

where K is the number of graph convolutions, and W 2 Rd⇥c denote the learnable
parameters of a logistic regression classifier.

Note that SGC has a fixed number of parameters that does not depend on the
number of graph convolutions (i.e. layers). In effect, it is guarded against the influence
of overfitting and vanishing gradient problem with more layers. This leaves us only
with oversmoothing as a possible cause of performance degradation with increasing
K. Interestingly, the simplicity of SGC does not seem to be a sacrifice; it has been
observed that it achieves similar or better accuracy in various relational classification
tasks [Wu+19].

Figure 1.1: SGC’s performance (dashed lines) with increasing graph convolutions (K)
on Cora dataset (train/val/test split is 3%/10%/87%). For each K, we train SGC in 500
epochs, save the model with the best validation accuracy, and report all measures based
on the saved model. Measures row-diff and col-diff are computed based on the final layer

representation of the saved model.

1We normalize each column j as the Laplacian smoothing stationary point ⇡j is not scale-free.
See Eq. (1.1).

1.4. Tackling Oversmoothing 11

Dashed lines in Figure 1.1 illustrate the performance of SGC on the Cora dataset
as we increase the number of layers (K). The training (cross-entropy) loss mono-
tonically increases with larger K, potentially because graph convolution mixes node
representations with their neighbors’ and makes them less distinguishable (training
becomes harder). On the other hand, graph convolutions (i.e., smoothing) improve
generalization ability, reducing the gap between training and validation/test loss up
to K = 4, after which (over)smoothing begins to hurt performance. The row-diff
and col-diff both continue decreasing monotonically with K, providing supporting
evidence for oversmoothing.

1.4 Tackling Oversmoothing

1.4.1 Proposed PairNorm

We start by establishing a connection between graph convolution and an optimization
problem, that is graph-regularized least squares (GRLS), as shown by [NM19]. Let
X̄ 2 Rn⇥d be a new node representation matrix, with x̄i 2 Rd depicting the i-th row
of X̄. Then the GRLS problem is given as

min
X̄

X

i2V

kx̄i � xik2D̃ +
X

(i,j)2E

kx̄i � x̄jk22 (1.5)

where kzik2D̃ = z
T

i
D̃zi. The first term can be seen as total degree-weighted least

squares. The second is a graph-regularization term that measures the variation of the
new features over the graph structure. The goal of the optimization problem can be
stated as estimating new “denoised” features x̄i’s that are not too far off of the input
features xi’s and are smooth over the graph structure.

The GRLS problem has a closed form solution X̄ = (2I � Ãrw)�1
X, for which

ÃrwX is the first-order Taylor approximation, that is ÃrwX ⇡ X̄. By exchanging Ãrw
with Ãsym we obtain the same form as the graph convolution, i.e., X̃ = ÃsymX ⇡ X̄.
As such, graph convolution can be viewed as an approximate solution of (1.5), where it
minimizes the variation over the graph structure while keeping the new representations
close to the original.

The optimization problem in (1.5) facilitates a closer look to the oversmoothing
problem of graph convolution. Ideally, we want to obtain smoothing over nodes within
the same cluster, however avoid smoothing over nodes from different clusters. The
objective in (1.5) dictates only the first goal via the graph-regularization term. It is
thus prone to oversmoothing when convolutions are applied repeatedly. To circumvent
the issue and fulfill both goals simultaneously, we can add a negative term such as the
sum of distances between disconnected pairs as follows.

min
X̄

X

i2V

kx̄i � xik2D̃ +
X

(i,j)2E

kx̄i � x̄jk22 � �
X

(i,j)/2E

kx̄i � x̄jk22 (1.6)

where � is a balancing scalar to account for different volume and importance of the
two goals.2 By deriving the closed-form solution of (1.6) and approximating it with
first-order Taylor expansion, one can get a revised graph convolution operator with
hyperparameter �. In this paper, we take a different route. Instead of a completely
new graph convolution operator, we propose a general and efficient “patch”, called
PairNorm, that can be applied to any form of graph convolution having the potential
of oversmoothing.

2There exist other variants of (1.6) that achieve similar goals, and we leave the space for future
exploration.

12 Chapter 1. Oversmoothing in GNNs

Let X̃ (the output of graph convolution) and Ẋ respectively be the input and
output of PairNorm. Observing that the output of graph convolution X̃ = ÃsymX

only achieves the first goal, PairNorm serves as a normalization layer that works on
X̃ to achieve the second goal of keeping disconnected pair representations farther off.
Specifically, PairNorm normalizes X̃ such that the total pairwise squared distance
TPSD(Ẋ) :=

P
i,j2[n] kẋi � ẋjk22 is the same as TPSD(X). That is,

X

(i,j)2E

kẋi � ẋjk22 +
X

(i,j)/2E

kẋi � ẋjk22 =
X

(i,j)2E

kxi � xjk22 +
X

(i,j)/2E

kxi � xjk22 .

(1.7)

By keeping the total pairwise squared distance unchanged, the term
P

(i,j)/2E kẋi�ẋjk22
is guaranteed to be at least as large as the original value

P
(i,j)/2E kxi�xjk22 since the

other term
P

(i,j)2E kẋi � ẋjk22 ⇡
P

(i,j)2E kx̃i � x̃jk22 is shrunk through the graph
convolution.

In practice, instead of always tracking the original value TPSD(X), we can main-
tain a constant TPSD value C across all layers, where C is a hyperparameter that
could be tuned per dataset.

To normalize X̃ to constant TPSD, we need to first compute TPSD(X̃). Directly
computing TPSD involves n2 pairwise distances that is O(n2d), which can be time
consuming for large datasets. Equivalently, normalization can be done via a two-step
approach where TPSD is rewritten as

TPSD(X̃) =
X

i,j2[n]

kx̃i � x̃jk22 = 2n2

✓
1

n

nX

i=1

kx̃ik22 � k
1

n

nX

i=1

x̃ik22
◆

. (1.8)

Proof.

TPSD(X̃) =
X

i,j2[n]

kx̃i � x̃jk22 =
X

i,j2[n]

(x̃i � x̃j)
T (x̃i � x̃j)

=
X

i,j2[n]

(x̃T

i x̃i + x̃
T

j x̃j � 2x̃T

i x̃j)

= 2n
X

i2[n]

x̃
T

i x̃i � 2
X

i,j2[n]

x̃
T

i x̃j

= 2n
X

i2[n]

kx̃ik22 � 21T
X̃X̃

T
1

= 2n
X

i2[n]

kx̃ik22 � 2k1T
X̃k22

= 2n2

✓
1

n

nX

i=1

kx̃ik22 � k
1

n

nX

i=1

x̃ik22
◆

. (1.9)

The first term (ignoring the scale 2n2) in Eq. (1.8) represents the mean squared
length of node representations, and the second term depicts the squared length of the
mean of node representations. To simplify the computation of (1.8), we subtract the
row-wise mean from each x̃i, i.e., x̃c

i
= x̃i� 1

n

P
n

i
x̃i where x̃

c

i
denotes the centered rep-

resentation. Note that this shifting does not affect the TPSD, and furthermore drives
the term k 1

n

P
n

i=1 x̃ik22 to zero, where computing TPSD(X̃) boils down to calculating
the squared Frobenius norm of X̃

c and overall takes O(nd). That is,
TPSD(X̃) = TPSD(X̃c) = 2nkX̃ck2F . (1.10)

1.4. Tackling Oversmoothing 13

In summary, our proposed PairNorm (with input X̃ and output Ẋ) can be written
as a two-step, center-and-scale, normalization procedure:

x̃
c

i = x̃i �
1

n

nX

i=1

x̃i (Center) (1.11)

ẋi = s · x̃
c

iq
1
n

P
n

i=1 kx̃c

i
k22

= s
p
n · x̃

c

iq
kX̃ck2

F

(Scale) (1.12)

After scaling the data remains centered, that is, k
P

n

i=1 ẋik22 = 0. In Eq. (1.12), s is
a hyperparameter that determines C. Specifically,

TPSD(Ẋ) = 2nkẊk2F = 2n
X

i

ks· x̃
c

iq
1
n

P
i
kx̃c

i
k22
k22 = 2n

s2

1
n

P
i
kx̃c

i
k22

X

i

kx̃c

ik22 = 2n2s2

(1.13)
Then, Ẋ := PairNorm(X̃) has row-wise mean 0 (i.e., is centered) and constant total
pairwise squared distance C = 2n2s2. An illustration of PairNorm is given in Figure
1.2. The output of PairNorm is input to the next convolution layer.

graph conv center

PairNorm

rescale
X X̃

c
X̃ Ẋ

Figure 1.2: Illustration of PairNorm, comprising centering and rescaling steps.

Figure 1.3: (best in color) Performance com-
parison of the original (dashed) vs. PairNorm-
enhanced (solid) GCN and GAT models with in-

creasing layers on Cora.

We also derive a variant of
PairNorm by replacing

P
n

i=1 kx̃c

i
k22

in Eq. (1.12) with nkx̃c

i
k22, such

that the scaling step computes ẋi =

s · x̃c

i

kx̃c

i
k2

. We call it PairNorm-si

(for scale individually), which im-
poses more restriction on node rep-
resentations, such that all have the
same L2-norm s. In practice we
found that both PairNorm and
PairNorm-si work well for SGC,
whereas PairNorm-si provides better and more stable results for GCN and GAT.
The reason why GCN and GAT require stricter normalization may be because they
have more parameters and are more prone to overfitting. In all experiments, we
employ PairNorm for SGC and PairNorm-si for both GCN and GAT.

PairNorm is effective and efficient in solving the oversmoothing problem of
GNNs. As a general normalization layer, it can be used for any GNN. Solid lines
in Figure 1.1 present the performance of SGC on Cora with increasing number of lay-
ers, where we employ PairNorm after each graph convolution layer, as compared to
‘vanilla’ versions. Similarly, Figure 1.3 is for GCN and GAT (PairNorm is applied
after the activation of each graph convolution). Note that the performance decay with
PairNorm-at-work is much slower.

While PairNorm enables deeper models that are more robust to oversmoothing, it
may seem odd that the overall test accuracy does not improve. In fact, the benchmark
graph datasets often used in the literature require no more than 4 layers, after which
performance decays (even if slowly). In the next section, we present a realistic use
case setting for which deeper models are more likely to provide higher performance,
where the benefit of PairNorm becomes apparent.

14 Chapter 1. Oversmoothing in GNNs

1.4.2 A Case Where Deeper GNNs are Beneficial

In general, oversmoothing gets increasingly more severe as the number of layers goes
up. A task would benefit from employing PairNorm more if it required a large
number of layers to achieve its best performance. To this effect we study the “missing
feature setting”, where a subset of the nodes lack feature vectors. Let M ✓ Vu be
the set where 8m 2M,xm = ;, i.e., all of their features are missing. We denote with
p = |M|/|Vu| the missing fraction. We call this variant of the task as semi-supervised
node classification with missing vectors (SSNC-MV). Intuitively, one would require
a larger number of propagation steps (hence, a deeper GNN) to be able to “recover”
effective feature representations for these nodes.

SSNC-MV is a general and realistic problem that finds several applications in the
real world. For example, the credit lending problem of identifying low- vs. high-risk
customers (nodes) can be modeled as SSNC-MV where a large fraction of nodes do
not exhibit any meaningful features (e.g., due to low-volume activity). In fact, many
graph-based classification tasks with the cold-start issue (entity with no history) can
be cast into SSNC-MV. To our knowledge, this is the first work to study the SSNC-MV
problem using GNN models.

Figure 1.4 presents the performance of SGC, GCN, and GAT models on Cora with
increasing number of layers, where we remove feature vectors from all the unlabeled
nodes, i.e. p = 1. The models with PairNorm achieve a higher test accuracy
compared to those without, which they typically reach at a larger number of layers.

Figure 1.4: (best in color) Comparison of ‘vanilla’ vs. PairNorm-enhanced SGC, GCN,
and GAT performance on Cora for p = 1. Green diamond symbols depict the layer at
which validation accuracy peaks. PairNorm boosts overall performance by enabling more

robust deep GNNs.

1.5 Experiments

In section 1.4 we have shown the robustness of PairNorm-enhanced models against
increasing number of layers in SSNC problem. In this section we design extensive
experiments to evaluate the effectiveness of PairNorm under the SSNC-MV setting,
over SGC, GCN and GAT models.

1.5.1 Experiment Setup

Datasets. We use 4 well-known benchmark datasets in GNN domain: Cora, Citeseer,
Pubmed [Sen+08], and CoauthorCS [Shc+18]. Their statistics are reported in Table 1.1.
For Cora, Citeseer and Pubmed, we use the same dataset splits as [KW17], where all
nodes outside train and validation are used as test set. For CoauthorCS, we randomly
split all nodes into train/val/test as 3%/10%/87%, and keep the same split for all
experiments.

1.5. Experiments 15

Table 1.1: Dataset statistics.

Name #Nodes #Edges #Features #Classes Label Rate

Cora 2708 5429 1433 7 0.052
Citeseer 3327 4732 3703 6 0.036
Pubmed 19717 44338 500 3 0.003
CoauthorCS 18333 81894 6805 15 0.030

Models. We use three different GNN models as our base model: SGC [Wu+19],
GCN [KW17], and GAT [Vel+18]. We compare our PairNorm with residual con-
nection method [He+16] over base models (except SGC since there is no “residual
connected” SGC), as we surprisingly find it can slow down oversmoothing and benefit
SSNC-MV problem. Similar to us, residual connection is a general technique that can
be applied to any model without changing its architecture. We focus on the compari-
son between the base models and PairNorm-enhanced models, rather than achieving
the state of the art performance for SSNC and SSNC-MV. There exist a few other
work addressing oversmoothing [KBG19; LHW18; Ron+19; Xu+18] however they de-
sign specialized architectures and not simple “patch” procedures like PairNorm that
can be applied on top of any GNN.

Hyperparameters. We search hyperparameter s of PairNorm in {0.1, 1, 10, 50, 100}
over validation set for SGC, while keeping it fixed at s = 1 for both GCN and GAT
due to resource limitations. We set the #hidden units of GCN and GAT (#atten-
tion heads is set to 1) to 32 and 64 respectively for all datasets. Dropout with rate
0.6 and L2 regularization with penalty 5 · 10�4 are applied to GCN and GAT. For
SGC, we vary number of layers in {1, 2, . . . 10, 15, . . . , 60} and for GCN and GAT in
{2, 4, . . . , 12, 15, 20, . . . , 30}.

Configurations. For PairNorm-enhanced models, we apply PairNorm after
each graph convolution layer (i.e., after activation if any) in the base model. For
residual-connected models with t skip steps, we connect the output of l-th layer to
(l + t)-th, that is, H

(l+t)
new = H

(l+t) + H
(l) where H

(l) denotes the output of l-th
graph convolution (after activation). For the SSNC-MV setting, we randomly erase
p fraction of the feature vectors from nodes in validation and test sets (for which
we input vector 0 2 Rd), whereas all training (labeled) nodes keep their original
features (See 1.4.2). We run each experiment within 1000 epochs 5 times and report
the average performance. We mainly use a single GTX-1080ti GPU, with some SGC
experiments ran on an Intel i7-8700k CPU.

1.5.2 Experiment Results

We first show the global performance gain of applying PairNorm to SGC for SSNC-
MV under varying feature missing rates as shown in Table 1.2. PairNorm-enhanced
SGC performs similar or better over 0% missing, while it significantly outperforms
vanilla SGC for most other settings, especially for larger missing rates. #L denotes
the best number of layers for the model that yields the largest average validation
accuracy (over 5 runs), for which we report the average test accuracy (Acc). Notice
the larger #L values for SGC-PN compared to vanilla SGC, which shows the power
of PairNorm for enabling “deep” SGC models by effectively tackling oversmoothing.

Similar to [Wu+19] who showed that the simple SGC model achieves comparable
or better performance as other GNNs for various tasks, we found PairNorm-enhanced
SGC to follow the same trend when compared with PairNorm-enhanced GCN and

16 Chapter 1. Oversmoothing in GNNs

GAT, for all SSNC-MV settings. Due to its simplicity and extreme efficiency, we
believe PairNorm-enhanced SGC sets a strong baseline for the SSNC-MV problem.
Table 1.2: Comparison of ‘vanilla’ vs. PairNorm-enhanced SGC performance in Cora,
Citeseer, Pubmed, and CoauthorCS for SSNC-MV problem, with missing rate ranging from
0% to 100%. Showing test accuracy at #L (K in Eq. 1.4) layers, at which model achieves

best validation accuracy.

Missing Percentage 0% 20% 40% 60% 80% 100%
Dataset Method Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L

Cora SGC 0.815 4 0.806 5 0.786 3 0.742 4 0.733 3 0.423 15
SGC-PN 0.811 7 0.799 7 0.797 7 0.783 20 0.780 25 0.745 40

Citeseer SGC 0.689 10 0.684 6 0.668 8 0.657 9 0.565 8 0.290 2
SGC-PN 0.706 3 0.695 3 0.653 4 0.641 5 0.590 50 0.486 50

Pubmed SGC 0.754 1 0.748 1 0.723 4 0.746 2 0.659 3 0.399 35
SGC-PN 0.782 9 0.781 7 0.778 60 0.782 7 0.772 60 0.719 40

CoauthorCS SGC 0.914 1 0.898 2 0.877 2 0.824 2 0.751 4 0.318 2
SGC-PN 0.915 2 0.909 2 0.899 3 0.891 4 0.880 8 0.860 20

We next employ PairNorm-si for GCN and GAT under the same setting, compar-
ing it with the residual (skip) connections technique. Results are shown in Table 1.3
and Table 1.4 respectively for GCN and GAT. Due to space and resource limitations,
we only show results for 0% and 100% missing rate scenarios. We observe similar trend
for GCN and GAT: (1) vanilla model suffers from performance drop under SSNC-MV
with increasing missing rate; (2) both residual connections and PairNorm-si enable
deeper models and improve performance (note the larger #L and Acc); (3) GCN-PN
and GAT-PN achieve performance that is comparable or better than just using skips;
(4) performance can be further improved (albeit slightly) by using skips along with
PairNorm-si.3

Table 1.3: Comparison of ‘vanilla’ and (PairNorm-si/ residual)-enhanced GCN perfor-
mance on Cora, Citeseer, Pubmed, and CoauthorCS for SSNC-MV problem, with 0% and

100% feature missing rate. t represents the skip-step of residual connection.

Dataset Cora Citeseer Pubmed CoauthorCS
Missing(%) 0% 100% 0% 100% 0% 100% 0% 100%
Method Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L

GCN 0.821 2 0.582 2 0.695 2 0.313 2 0.779 2 0.449 2 0.877 2 0.452 4

GCN-PN 0.790 2 0.731 10 0.660 2 0.498 8 0.780 30 0.745 25 0.910 2 0.846 12
GCN-t1 0.822 2 0.721 15 0.696 2 0.441 12 0.780 2 0.656 25 0.898 2 0.727 12
GCN-t1-PN 0.780 2 0.724 30 0.648 2 0.465 10 0.756 15 0.690 12 0.898 2 0.830 20
GCN-t2 0.820 2 0.722 10 0.691 2 0.432 20 0.779 2 0.645 20 0.882 4 0.630 20
GCN-t2-PN 0.785 4 0.740 30 0.650 2 0.508 12 0.770 15 0.725 30 0.911 2 0.839 20

1.6 Conclusion

We investigated the oversmoothing problem in GNNs and proposed PairNorm, a
novel normalization layer that boosts the robustness of deep GNNs against over-
smoothing. PairNorm is fast to compute, requires no change in network architecture
nor any extra parameters, and can be applied to any GNN. Experiments on real-world

3Notice a slight performance drop when PairNorm is applied at 0% rate. For this setting, and the datasets
we have, shallow networks are sufficient and smoothing through only a few (2-4) layers improves generalization
ability for the SSNC problem (recall Figure 1.1 solid lines). PairNorm has a small reversing effect in these
scenarios, hence the small performance drop.

1.6. Conclusion 17
Table 1.4: Comparison of ‘vanilla’ and (PairNorm-si/ residual)-enhanced GAT perfor-
mance on Cora, Citeseer, Pubmed, and CoauthorCS for SSNC-MV problem, with 0% and

100% feature missing rate. t represents the skip-step of residual connection.

Dataset Cora Citeseer Pubmed CoauthorCS
Missing(%) 0% 100% 0% 100% 0% 100% 0% 100%
Method Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L Acc #L

GAT 0.823 2 0.653 4 0.693 2 0.428 4 0.774 6 0.631 4 0.892 4 0.737 4

GAT-PN 0.787 2 0.718 6 0.670 2 0.483 4 0.774 12 0.714 10 0.916 2 0.843 8
GAT-t1 0.822 2 0.706 8 0.693 2 0.461 6 0.769 4 0.698 8 0.899 4 0.842 10
GAT-t1-PN 0.787 2 0.710 10 0.658 6 0.500 10 0.757 4 0.684 12 0.911 2 0.844 20
GAT-t2 0.820 2 0.691 8 s0.692 2 0.461 6 0.774 8 0.702 8 0.895 4 0.803 6
GAT-t2-PN 0.788 4 0.738 12 0.672 4 0.517 10 0.776 15 0.704 12 0.917 2 0.855 30

classification tasks showed the effectiveness of PairNorm, where it provides perfor-
mance gains when the task benefits from more layers. Future work will explore other
use cases of deeper GNNs that could further showcase PairNorm’s advantages.

19

Chapter 2

GNN and Graph-Regularized PCA

Chapter based on: Lingxiao Zhao and Leman Akoglu. “Connecting graph convo-
lutional networks and graph-regularized pca”. In: arXiv preprint arXiv:2006.12294
(2020).

2.1 Introduction

Graph neural networks (GNNs) are neural networks designed for the graph domain.
Since the breakthrough of GCN [KW17], which notably improved performance on the
semi-supervised node classification problem, many GNN variants have been proposed;
including GAT [Vel+18], GraphSAGE [HYL17], DGI [Vel+19], GIN [Xu+19], PPNP
and APPNP [KBG19], to name a few.

Despite the empirical successes of GNNs in both node-level and graph-level tasks,
they remain not well understood due to limited systematic and theoretical analysis
of GNNs. For example, researchers have found that GNNs, unlike their non-graph
counterparts, suffer from performance degradation with increasing depth, their ex-
pressive power decaying exponentially in number of layers [OS20]. Such behavior is
only partially explained by the oversmoothing phenomenon [LHW18; ZA20b]. An-
other surprising observation shows that a Simplified Graph Convolution model, named
SGC [Wu+19], can achieve similar performance to various more complex GNNs on a
variety of node classification tasks. Moreover, a simple baseline that does not utilize
the graph structure altogether performs similar to state-of-the-art GNNs on graph
classification tasks [Err+20]. These observations call attention to studies for a better
understanding of GNNs [NM19; Mor+19; Xu+19; OS20; Lou20b; SR20]. (See Sec.
1.2 for more on understanding GNNs.)

Toward a systematic analysis and better understanding of GNNs, we establish a
connection between the graph convolution operator of GCN (and PPNP) and Graph-
regularized PCA (GPCA) [ZZ12], and show the similarity between GCN and stacking
GPCA. This connection provides a deeper understanding of GCN’s power and limita-
tion. Empirically, we also find that GPCA performance matches that of many GNN
baselines on benchmark semi-supervised node classification tasks. We argue that the
simple GPCA should be a strong baseline in future. What is more, the unsupervised
stacking GPCA can be viewed as “unsupervised GCN” and provides a straightforward,
yet systematic way to initialize GCN training. We summarize our contributions as
follows:

• Connection between Graph Convolution and GPCA: We establish the
connection between the graph convolution operator of GCN (also PPNP) and the
closed-form solution of graph-regularized PCA (GPCA) formulation. We demonstrate
that a simple graph-regularized PCA paired with 1- or 2-layer MLP can achieve similar

20 Chapter 2. GNN and Graph-Regularized PCA

or even better results than state-of-the-art GNN baselines over several benchmark
datasets. We further extend GPCA to (semi-)supervised setting which can generate
embeddings using information of labels, which yields better performance on 3 out of
5 datasets. The outstanding performance of simple GPCA supports that the prowess
of GCN on node classification task comes from graph based regularization. This
motivates the study and design of other graph regularization techniques in the future.

• GPCAnet: New Stacking GPCA model: Capitalizing on the connection
between GPCA and graph convolution, we design a new GNN model called GP-

CAnet shaped by (1) stacking multiple GPCA layers and nonlinear transformations,
and (2) fine-tuning end-to-end via supervised training. GPCAnet is a generalized
GCN model with adjustable hyperparameters that control the strength of graph reg-
ularization of each layer. We show that with stronger regularization, we can train
GPCAnet with fewer (1–3) layers and achieve comparable performance to much
deeper GCNs.

• First initialization strategy for GNNs: Capitalizing on the connection
between GCN and GPCAnet, we design a new strategy to initialize GCN training
based on stacking GPCA, outperforming the popular Xaiver initialization [GB10].
We show that the GPCAnet-initialization is extremely effective for training deeper
GCNs, that significantly improves the convergence speed, performance, and robust-
ness. Notably, GPCAnet-initialization is general-purpose and also applies to other
GNNs. To our knowledge, it is the first initialization method specifically designed for
GNNs.

2.2 Related Work

Understanding GNNs. Our work concerns learning on a single graph, hence we
limit discussion of related work to node-level GNNs. GCN’s graph convolution is
originally motivated from the approximation of graph filters in graph signal process-
ing [KW17]. [NM19] show that graph convolution only performs low-pass filtering
on original feature vectors, and also state a connection between graph filtering and
Laplacian regularized least squares. Motivated by the oversmoothing phenomenon
of graph convolution, [OS20] theoretically prove that GCN can only preserve infor-
mation of node degrees and connected components when the number of layers goes
to infinity, under some conditions of GCN weights. Recently several papers revis-
ited the connection of graph convolution to graph-regularized optimization problem
[Li+19b; Ma+20; PSH21; ZA20b; Zhu+21], which is originally discussed in graph
signal processing [Shu+13]. More specifically, both [Ma+20] and [Zhu+21] relate
graph-regularization optimization to several GNNs such as GCN [KW17], APPNP
[KBG19], and GAT [Vel+18]. However, all previous work study these connections
while ignoring the learnable parameters, which are essential for high-performance deep
learning. Our work differs from these by establishing a stronger and closer connection
to graph-regularized PCA that also takes learnable parameters into account.

Graph-regularized PCA. PCA and its variants are standard linear dimensional-
ity reduction approaches. Several work extend PCA to graph-structured data, such as
Graph-Laplacian PCA [Jia+13] and Manifold-regularized Matrix Factorization [ZZ12].
For other variants, see [Sha+16].

Stacking Models and Deep Learning. The connection between CNN and
stacking PCA has been explored in PCANet [Cha+15], which demonstrated that the
(unsupervised) simple stacking PCA works as well as supervised CNN over a large
variety of vision tasks. The original PCANet is shallow and does not have nonlinear

2.3. Graph Convolution and GPCA 21

transformations, while PCANet+ [LTT17] overcomes these limitations and pushes the
architecture much deeper. The idea of layerwise stacking for feature extraction is not
new and was empirically observed to exhibit better representation ability in terms of
classification. For a comprehensive review, we refer to [BCV13].

Initialization. Traditionally, neural networks (NNs) were initialized with random
weights generated from Gaussian distribution with zero mean and a small standard
deviation [KSH12]. As training deeper NNs became extremely difficult due to vanish-
ing gradient and activation functions, [GB10] provided a specific weight initialization
formula, named Xavier initialization, based on variance analysis without considering
activation function. Xavier initialization is widely used for any type of NN even to-
day, and it is the main initialization strategy used for GNNs. Later, [He+15] adapted
Xavier initialization to ReLU activation by considering a multiplier. Taking another
direction, [SMG13] analyzed the dynamics of training deep NNs and proposed ran-
dom orthonormal initialization. [MM15] further improved orthonormal initialization
for batch normalization [IS15]. Different from these data-independent approaches,
others [Krä+16; Seu+17; Wag+13] have employed data-dependent techniques, like
PCA, to initialize deep NNs. Although initialization has been widely studied for gen-
eral NNs, no specific initialization has been proposed for GNNs. In this work, we
propose a data-driven initialization technique (based on GPCA), specific to GNNs for
the first time.

2.3 Graph Convolution and GPCA

2.3.1 Graph Convolution

Consider a node-attributed input graph G = (V,E,X) with |V | = n nodes and
|E| = m edges, where X 2 Rn⇥d denotes the node feature matrix with d features.
Broadly, graph convolution operation convolves the features (or representations) over
the graph structure.

GCN. Similar to other neural networks stacked with repeated layers, GCN con-
tains multiple graph convolution layers each of which is followed by a nonlinear ac-
tivation. Let H(l) be the l-th hidden layer representation, then, each GCN layer
performs

H(l+1) = �(ÃsymH(l)W (l)) (2.1)

where Ãsym = D̃�
1
2 (A+I)D̃�

1
2 denotes the n⇥n symmetrically normalized adjacency

matrix with self-loops, D̃ is the diagonal degree matrix where D̃ii = 1+
P

n

j=1Aij , W (l)

depicts the l-th layer parameters (to be learned), and � is the nonlinear activation
function. Formally, graph convolution is parameterized with W and maps an input
X to a new representation Z as

Z = ÃsymXW . (2.2)
PPNP. For PPNP [KBG19], the features are first transformed by an MLP before

convolving over the graph. Formally, the operation is revised as

Z = µ
⇣
I � (1� µ)Ãsym

⌘
�1

MLPW (X) =
⇣
I + ↵L̃

⌘
�1

MLPW (X) (2.3)

where we replace µ with ↵ = (1 � µ)/µ, L̃ := I � Ãsym denotes the normalized
graph Laplacian, and W depicts the learnable MLP parameters. As matrix inverse
is expensive, an approximate version called APPNP that employs the power method
[GV89] is often used in practice.

22 Chapter 2. GNN and Graph-Regularized PCA

2.3.2 Graph-regularized PCA (GPCA)

As stated by [BCV13], “Although depth is an important part of the story, many other
priors are interesting and can be conveniently captured when the problem is cast as
one of learning a representation.” GPCA is one such representation learning technique
with a graph-based prior.

Standard PCA learns k-dimensional projections Z 2 Rn⇥k of feature matrix X 2
Rn⇥d, aiming to minimize the reconstruction error

kX � ZW T k2F , (2.4)
subject to W 2 Rd⇥k being an orthonormal basis. GPCA extends this formalism
to graph-structured data by additionally assuming either smoothing bases [Jia+13]
or smoothing projections [ZZ12] over the graph. In this work we consider the latter
case where low-dimensional projections are smooth over the input graph G, where
L̃ = I � Ãsym denotes its normalized Laplacian matrix. The objective formulation of
GPCA is then given as

min
Z,W

kX � ZW T k2F + ↵Tr(ZT L̃Z) s.t. W TW = I (2.5)

where ↵ is a hyperparameter that balances reconstruction error and the variation of
the projections over the graph. Note that the first part of Eq. (2.5), along with the
constraint, corresponds to the objective of the original PCA, while the second part is
a graph regularization term that aims to “smooth” the learned representations Z over
the graph structure. As such, GPCA becomes the standard PCA when ↵ = 0.

Similar to PCA, the problem (2.5) is non-convex but has a closed-form solution
[ZZ12]. Surprisingly, as we show, it has a close connection with the graph convolution
formulation in Eq. (2.2). In the following, we give the GPCA solution and then detail
its connection to graph convolution.

Theorem 2.3.1. GPCA with formulation shown in (2.5) has the optimal solution
(Z⇤,W ⇤) following

Z⇤ = (I + ↵L̃)�1XW ⇤ , and W ⇤ = (w1,w2, ...,wk) (2.6)

where w1, ...,wk are the eigenvectors of XT (I + ↵L̃)�1X corresponding to the largest
k eigenvalues.

Proof. We give the proof in two steps.
Step 1: For a fixed W , Solve optimal Z⇤ as a function of W : When fixing W

as constant, the problem becomes quadratic and convex. There is a unique solution,
given by first-order optimal condition. Let ` denote the objective function as given in
Eq. (2.5). Its gradient can be calculated as

@`

@Z
= 2(I + ↵L̃)Z � 2XW . (2.7)

Setting Eq. (2.7) to 0 leads to the solution Z⇤ = (I + ↵L̃)�1XW .
Step 2: Replace Z with Z⇤, Solve optimal W ⇤: Substituting Z in objective ` with

Z⇤ = (I + ↵L̃)�1XW , we reduce the optimization to

min
W,WTW=I

kX�(I+↵L̃)�1XWW T k2F + ↵Tr
⇥
W TXT (I+↵L̃)�1L̃(I+↵L̃)�1XW

⇤
.

(2.8)

2.3. Graph Convolution and GPCA 23

For this part only, let M = (I + ↵L̃)�1 to simplify notation. We can show that
Eq. (2.8) is equivalent to

min
W,WTW=I

Tr(XXT + MXWW TWW TXTM)

� 2 Tr(MXWW TXT) + ↵Tr(W TXTML̃MXW) (2.9)

Using the cyclic property of (Tr)ace (and plugging (I + ↵L̃)�1 for M back), we can
write it as

max
W,WTW=I

Tr
⇥
W TXT (I + ↵L̃)�1XW

⇤
. (2.10)

Based on the spectral theorem of PSD matrices, the optimal solution W ⇤ of problem
Eq. (2.10) is the combination of eigenvectors, associated with the largest c eigenvalues
of the graph-revised covariance matrix XT (I + ↵L̃)�1X.

2.3.3 Connection between GCN and GPCA

Let �↵ := I + ↵L̃. The normalized Laplacian matrix L̃ has absolute eigenvalues
bounded by 1, thus, all its positive powers have bounded operator norm. When ↵  1,
��1
↵ can be decomposed into Taylor series as (I+↵L̃)�1 = I�↵L̃+. . .+(�↵)tL̃t+. . ..

The first-order truncated form (i.e. approximation) of the series is
(I + ↵L̃)�1 ⇡ I � ↵L̃ = (1� ↵)I + ↵Ãsym . (2.11)

When ↵ = 1, the first-order approximation of Z⇤ in Theorem 2.3.1 follows
Z⇤ ⇡ ÃsymXW ⇤ . (2.12)

The (approximate) solution to GPCA in Eq. (2.12) matches the form of graph con-
volution operation in Eq. (2.2), with W ⇤ plugged in as the eigenvectors of the matrix
XT��1

↵ X. In other words, there exists some parameter W ⇤ with which GCN becomes
the first-order approximation of GPCA.

To reiterate, a key contribution of this work is to show that the graph convolution
operation in GCN can be viewed as the first-order approximation of GPCA with ↵ = 1
with a learnable W . Put differently, the first-order approximation of (unsupervised)
GPCA with ↵ = 1 can be viewed as a graph convolution with a fixed, data-driven W .
In other words, Notably, for ↵ < 1, Eq. (2.11) shows the connection between GPCA
and graph convolution equipped with 1-step (scaled) residual connection.

2.3.4 Connection between PPNP and GPCA

Replacing the MLP in Eq. (2.3) with a single linear layer without activation results

in Z =
⇣
I + ↵L̃

⌘
�1

XW , which has exactly the same formulation as the solution
Z⇤ in Theorem 2.3.1 Eq. (2.6). The connection states that the graph convolution in
PPNP can be viewed as the GPCA solution with a learnable W . Interestingly, the
empirical performance improvement of PPNP over GCN (see Table 2 in [KBG19]) may
be explained through these connections that they have to GPCA; where PPNP relates
to the exact solution of GPCA while GCN is related to its (first-order) approximation.

2.3.5 Supervised GPCA

The standard GPCA problem in (2.5) is unsupervised. Motiviated from LDA [BG98]
and PLS [GK86], in this section we show how to extend it to the supervised setting,
by learning embeddings that not only (1) provide good reconstruction and (2) vary
smoothly over the graph structure, but also (3) highly correlate with the response

24 Chapter 2. GNN and Graph-Regularized PCA

variable(s). For simplicity of presentation, let z 2 Rd be a 1-d embedding and Y
denote the response matrix (in the general case of multiple responses). We write the
additional, i.e. (3)rd objective above, as1

max
z

⇥
corr(Y, z)

⇤
T
⇥
corr(Y, z)

⇤
var(z) ⌘ max

z
z
TY Y T

z (2.13)

The form of Eq. (2.13) and the variance-maximizing term var(z) are for mathematical
convenience. Despite agnostic to labels, including var(z) is intuitive since an implicit
objective of data projection (embedding) is to ensure that inherent variation in data
is captured as much as possible. In general, we would aim to maximize the trace of
ZTY Y TZ for multi-dimensional embeddings.

Interpretation. For semi-supervised node classification with c classes, let L ⇢ V
denote the set of labeled nodes. For this task, Y 2 {0, 1}n⇥c would encode the node
labels where the v-th row of Y , denoted Yv, depicts the one-hot encoded label for each
v 2 L. For u 2 V \L with unknown labels, Yu = 0, set as the c-dimensional all-zero
vector. Then, (Y Y T)ij is simply equal to 1 when nodes i and j share the same label,
and otherwise 0 (either because they have different labels or labels are unknown).
This term simply enforces the representations Zi and Zj of two same-labeled nodes to
be similar. In a sense, Y Y T adds “ghost” edges between the same-label nodes, further
guiding the smoothness of their representations over this extended graph structure.
We remark that earlier work [Gal+08] has heuristically introduced edges between
same-label nodes to enhance a given graph for the node classification task. In this
work, we have derived the theoretical underpinning for this strategy.

Supervised formulation. We have shown that requiring the embeddings to cor-
relate with the known labels can be interpreted as additional smoothing over “ghost”
edges between the same-label nodes in the graph. As such, we extend the GPCA
problem in (2.5) to the (semi-)supervised setting as

min
Z,W

kX � ZW T k2F + ↵Tr(ZT L̃sprZ) s.t. W TW = I ; (2.14)

where L̃spr = I � Ãspr , Ãspr = (1� �)Ãsym + �D�
1
2 (Y Y T)D�

1
2 (2.15)

In Eq. Eq. (2.15), � is an additional hyperparameter for trading-off the graph-based
regularization (i.e. smoothing) due to the actual input graph edges versus the ones
introduced through Y Y T between the nodes of the same label, and D is the diagonal
matrix with Dii =

P
n

j=1(Y Y T)ij .

Theorem 2.3.2. Supervised GPCA, as shown in (2.14) has the optimal solution
(Z⇤,W ⇤) following

Z⇤ = (I + ↵L̃spr)
�1XW ⇤ , and W ⇤ = (w1,w2, ...,wk) (2.16)

where w1, . . . ,wk are the top eigenvectors of the matrix XT (I + ↵L̃spr)�1X, equiva-
lently XT

�
(1 + ↵)I �

⇥
↵(1� �)Ãsym + ↵�D�

1
2Y Y TD�

1
2
⇤�

�1
X, corresponding to the

largest k eigenvalues.

Proof. The proof is similar to that of Theorem 2.3.1.

2.3.6 Approximation and Complexity Analysis

According to formulations in Theorems 2.3.1 and 2.3.2, obtaining Z⇤2Rn⇥k and
W ⇤2Rd⇥k requires two demanding computations (1) the inverse of �↵ = (I + ↵L) 2
Rn⇥n, or in the supervised case �↵ = (I + ↵L̃spr); and (2) top k eigenvectors of the

1For the optimization to be well-posed, constraints on z are required, omitted for simplicity of
presentation.

2.4. GPCAnet: A Stacking GPCA Model 25

matrix XT��1
↵ X 2 Rd⇥d. Eigen-decomposition takes O(d3) [PC99], which is scalable

as d is usually small. Computing matrix inverse, on the other hand, can take O(n3)
and require O(n2) memory, which would be infeasible for very large graphs.

To reduce computation and memory complexity, we instead approximately com-
pute F := ��1

↵ X, which is a common term for both Z⇤ and W ⇤. We can equivalently
write

(I + ↵L)F = X =) F + ↵F = ↵PF + X =) F =
↵

1 + ↵
PF +

1

1 + ↵
X

for P = Ãsym in the unsupervised case and P = (1 � �)Ãsym + �D�
1
2 (Y Y T)D�

1
2

when supervised.
Then, we can iteratively (with total T iterations) use the power method [GV89]

to compute F as

F (t+1) ↵

1 + ↵
PF (t) +

1

1 + ↵
X (2.17)

where t 2 {0, ..., T} depicts the iteration and F (0) 2 Rn⇥d is initialized as X (or
randomly). For the supervised case, PF (t) is computed through a series of (from right
to left) matrix-matrix products. This avoids the explicit construction of matrix Y Y T

in memory. Overall, solving for F takes O(T (m + n)d) where m is the number of
edges in the graph. The supervised case has an additional term O(Td|L|c) with c
being the number of classes and |L|  n be the number of labeled nodes, which can
also be upper-bounded by O(T (m + n)d) when treating c as constant.

Having solved for F , we perform the matrix-matrix product Z⇤ = FW ⇤ in O(ndk)
and then the eigen-decomposition of XTF in O(d3 + nd2) = O(nd2) (for n � d).
Assuming O(d) = O(k), overall complexity for computing the 1-layer GPCA is given
as O(Tmd+Tnd+nd2), which is linear in the number of nodes and edges. Note that
empirically we found 5  T  10 to be sufficient.

2.4 GPCAnet: A Stacking GPCA Model

2.4.1 GPCAnet

Thus far, we drew a connection between the geometrically motivated, manifold-based
GPCA and the graph convolution operation of deep NN based GCN. Next we leverage
this connection to design a new model called GPCAnet that takes advantage of the
relative strengths of each paradigm; namely, GPCA’s ability to capture data variation
and structure, and GCN’s ability to capture multiple levels of abstraction (i.e. high-
level concepts) through stacked layers and non-linearity.

In a nustshell, GPCAnet is a stacking of multiple (unsupervised or supervised)
GPCA layers and nonlinear transformations, which shares the same architecture as
a multi-layer GCN. It consists of two main stages: (1) Pre-training, which initial-
izes the layer-wise parameters through closed-form GPCA solutions, and (2) End-
to-end-training, which refines these parameters through end-to-end gradient-based
minimization of a global supervised loss criterion at the output layer.

We remark that GPCAnet is not the same as GCN, as each layer uses the for-
mulation in Thm.s 2.3.1 and 2.3.2 (with approximation shown in Sec. 2.3.6). In fact,
when ↵ = 1 and � = 0, GPCAnet is the GCN model initialized with GPCAnet-
initialization, which we discuss more in Sec. 2.4.2. In other words, GPCAnet is a
generalized GCN model with additional hyperparameters, ↵ and �, controlling the
strength of graph regularization based on the existing or “ghost” edges, respectively.

26 Chapter 2. GNN and Graph-Regularized PCA

Algorithm 1 GPCAnet Forward Pass and Pre-training
1: Input: graph G = (V,E,X), GPCA hyper-parameter(s) ↵ (and � if supervised, � = 0

otherwise), #layers L, hidden layer sizes {d1, . . . , dL}, activation function �(·), #approx-
imation steps T

2: Output: pre-set layer-wise parameters {W (1), . . . ,W (L)}
3: Initialize H(0) := X
4: for l = 1 to L do

5: Center H(l�1) by subtracting mean of row vectors
6: F � H(l�1)

7: for t = 1 to T do

8: PF � (1� �)ÃsymF + �D� 1
2 (Y Y T)D� 1

2F
9: F � ↵

1+↵PF + 1
1+↵H

(l�1)

10: end for

11: W (l) � top dl eigenvectors of H(l�1)T
F

12: H(l) � �(FW (l))
13: end for

Forward Pass and Pre-training stage. During pre-training, weights of the
l-th layer, denoted as W (l) 2 Rdl�1⇥dl , are pre-set (i.e. initialized) as the leading dl
eigenvectors of the matrix H(l�1)T��1

↵ H(l�1),2 where H(l�1) is the representation as
output by the (l � 1)-th layer (with H(0) := X), and �↵ can be the unsupervised
(I + ↵L) or the supervised (I + ↵L̃spr). The pre-training stage takes a single forward
pass. Algo. 1 shows both forward pass during end-to-end-training and the pre-training
procedure, where line 11 in blue is a step used only for pre-training.

Additional treatment for ReLU: Nonlinear transformations like ReLU improves
model capacity, however at pre-training stage, it causes information loss as all neg-
ative values are truncated to 0. This hinders the advantage of using the leading dl
eigenvectors to initialize the weights so as to convey maximum variance (i.e. infor-
mation) to the next layers. To address this issue, we instead use the leading dl/2

eigenvectors {wi}dl/2i=1 and their negatives {�wi}dl/2i=1 to initialize W (l). Empirically we
observe this always improves performance when using ReLU activation.

End-to-end training stage. Pre-training can be seen as an information-
preserving initialization, as compared to an uninformative random initialization, after
which we refine the layer-wise parameters via gradient-based optimization w.r.t. a
supervised loss criterion at the output layer. Specifically for semi-supervised node
classification, we perform an end-to-end training w.r.t. the cross-entropy loss on the
labeled nodes. All parameters are updated jointly through backpropagation during
this stage, with forward computation shown in Algo.1 (excluding line 11).

2.4.2 GPCAnet-initialization for GCN

When we set ↵ = 1, � = 0, and approximate the matrix inverse (I + ↵L)�1 via first-
order truncated Taylor expansion as shown in Eq. Eq. (2.11) , GPCAnet has the
same architecture with GCN. As such, we can use the pre-training stage of GPCAnet

to initialize GCN with only minor modification. Specifically, we replace lines 6 through
10 in Algo. 1 with the following single line:

F � ÃsymH(l�1) (2.18)

2If d(l) is greater than the number of eigenvectors, all eigenvectors are used, with additional vectors
generated from random projection of eigenvectors.

2.5. Experiments 27

The modified initialization is for GCN and is driven by the mathematical connection
between GPCAnet and GCN that we established. We expect that adapting it for
other GNNs is also possible although we do not pursue this direction here.

2.5 Experiments

In this section we design extensive experiments to answer the following questions.
(Q1) How does the simple, unsupervised and shallow GPCA compare to its multi-layer
extension GPCAnet, as well as to existing GNNs? (Q2) How does our extended,
semi-supervised GPCA compare to the original, unsupervised GPCA? (Q3) Does
GPCAnet-initialization improve GCN accuracy and robustness?

2.5.1 Experimental Setup

Datasets. We focus on semi-supervised node classification (SSNC) and use 5 bench-
mark datasets: First three, Cora, CiteSeer, PubMed [Sen+08], are relatively small
(2K to 10K nodes) but widely-used citation graphs. For these we use the data splits
in [KW17]. The others, Arxiv and Products, are newest and much larger (100K
to 2000K) node classification benchmarks from Open Graph Benchmark [Hu+20b],
for which we use the official data splits. Data statistics can be found in Table 2.1.

Table 2.1: Statistics of used datasets.

Dataset #Nodes #Edges #Features #Classes Train/Val./Test

Cora 2,708 5,429 1,433 7 5.2%/18.5%/36.9%
CiteSeer 3,327 4,732 3,703 6 3.6%/15%/30%
PubMed 19,717 44,338 500 3 0.3%/2.5%/5%
Arxiv 169,343 1,166,243 128 40 54%/18%/28%
Products 2,449,029 61,859,140 100 47 8%/2%/90%

Baselines. We compare (unsupervised & semi-supervised) GPCA and GP-

CAnet to state-of-the-art (SOTA) GNNs, including GCN [KW17], APPNP [KBG19],
GAT [Vel+18], and GraphSAGE (G-SAGE) [HYL17].

Model configuration and training. For each dataset, we define a separate
pool of values for the hyperparameters (HPs): learning rate, weight decay, number
of layers, hidden size, dropout rate, and regularization trade-off terms ↵,�. For fair
comparison, all models share the same HP pools during training.

We setup hyperparameters pool for each dataset, presented in Table 2.2. All
methods use the same pool. The only exception is GPCA, as GPCA is just a 1-layer
shallow model which can be trained with lager learning rate; we use 0.1 learning rate
for it on all datasets.

Models are trained on every configuration across HP pools and picked based on
validation performance. We use the Adam optimizer for all models. Learning rate is
first manually tuned for each dataset to achieve stable training, and the same learning
rate is fixed for all models—we empirically observed that learning rate is sensitive to
datasets but insensitive to models. For GPCA and GPCAnet, number of power
iterations in Eq. (2.17) is always set to 5. All experiments use the maximum training
epoch as 1000 and repeat 5 times. We mainly use a single GTX-1080ti GPU for small
datasets Cora, CiteSeer, and PubMed. RTX-3090 GPU is used for Arxiv and
Products.

28 Chapter 2. GNN and Graph-Regularized PCA

Table 2.2: Hyperparameters pool for each dataset, includes learning rate (LR), weight
decay (WD), number of layers (#Layers), hidden size, dropout, ↵, and �. For Arxiv and
Products, weight decay is set as 0 because the dataset is large and no overfit happened.

Same reason for choosing smaller dropout rate for them.

Dataset LR WD #Layers Hidden

Cora 0.001 [0.0005, 0.005, 0.05] [2, 3, 5, 10, 15] [128, 256]
CiteSeer 0.001 [0.0005, 0.005, 0.05] [2, 3, 5, 10, 15] [128, 256]
PubMed 0.001 [0.0005, 0.005, 0.05] [2, 3, 5, 10, 15] [128, 256]
Arxiv 0.005 0 [2, 3, 5, 10, 15] [128, 256]
Products 0.001 0 [2, 3, 5, 10, 15] [128, 256]

Dataset Dropout ↵ �

Cora [0, 0.5] [1, 5, 10, 20, 50] [0, 0.1, 0.2]
CiteSeer [0, 0.5] [1, 5, 10, 20, 50] [0, 0.1, 0.2]
PubMed [0, 0.5] [1, 5, 10, 20, 50] [0, 0.1, 0.2]
Arxiv [0, 0.2] [1, 5, 10, 20, 50] 0
Products [0, 0.1] [1, 5, 10, 20, 50] 0

Mini-batch training. As nodes are not independent, GNN is mostly trained in
full-batch under semi-supervised setting. We use full-batch training for all datasets
except Products, which is too large to fit into GPU memory during training. Clus-
terGCN [Chi+19], a subgraph based mini-batch training algorithm, is used to train
GCN and GPCAnet. For evaluation, we still use full-batch since a single forward pass
can be conducted without memory issues. Initialization is also employed in full-batch.

Fair evaluation. Instead of picking the hyperparameter configurations manually,
reported (test) performance is based on the best configuration selected using validation
performance, where all models leverage the same hyperparameter pools. Further, each
configuration from the pool is conducted 5 times to reduce randomness.

2.5.2 Q1: Performance of (Unsupervised) GPCA and GPCAnet

GPCA. Having proved the mathematical connection between GPCA, GCN, and
PPNP, we expect unsupervised GPCA (� = 0) to generate comparable representa-
tions. We perform GPCA with different ↵ 2 {1, 5, 10, 20, 50} to obtain node repre-
sentations and pass those to a 1- or 2-layer MLP. We compare to GCN, APPNP, as
well as other GNNs; GAT and G-SAGE.

The performance results are given in Table 2.4. Due to the scale of the largest
two datasets, Arxiv and Products, we list the reported performance at OGB-
leaderboard3 (depicted by ⇤) for G-SAGE on both datasets, and that of (Cluster-)GAT
on Products.

We find that the simple 1-layer GPCA paired with MLP performs consistently
better than the multi-layer GCN model across all 5 datasets. GPCA’s performance
is also comparable to or better than other SOTA GNNs. This is quite notable, given
that GPCA is not only shallow but also unsupervised, whereas all other baselines
are trained end-to-end, and with the exception of APPNP, they exhibit a multi-
layer architecture. By carefully looking at the performance of GPCA with varying
↵ (in Table 2.3), we find that different datasets have different best selected ↵⇤ (in
Table 2.4 top to bottom: ↵⇤ = {50, 5, 10, 20, 20}) but in general a relatively larger ↵
(compared to graph convolution of GCN that is equivalent to ↵ = 1) is preferable for

3https://ogb.stanford.edu/docs/leader_nodeprop/

https://ogb.stanford.edu/docs/leader_nodeprop/

2.5. Experiments 29

Table 2.3: Performance of unsupervised GPCA (� = 0) for varying ↵ w.r.t. mean test ac-
curacy and standard deviation (in parentheses). GPCA (best ↵) selects ↵ 2 {1, 5, 10, 20, 50}

based on validation, whereas GPCA with specific ↵ uses the specified fixed ↵.

Cora CiteSeer PubMed Arxiv Products

GPCA (best ↵) 81.10 71.80 78.78 71.86 79.23
(0.00) (0.75) (0.36) (0.18) (0.14)

GPCA-↵=1
72.57 70.90 76.92 65.47 73.65
(0.79) (0.58) (0.30) (0.26) (0.07)

GPCA-↵=5
80.95 71.80 79.40 70.69 78.66
(0.17) (0.75) (0.29) (0.11) (0.09)

GPCA-↵=10
82.23 71.65 78.78 71.37 79.24

(0.58) (0.53) (0.36) (0.09) (0.09)

GPCA-↵=20
82.05 72.15 78.15 71.86 79.23
(0.54) (0.47) (0.50) (0.18) (0.14)

GPCA-↵=50
81.10 71.50 78.00 71.48 78.92
(0.00) (0.32) (0.19) (0.15 (0.10)

all datasets. Larger ↵ implies stronger graph-regularization on the representations.
The outstanding performance of the simple GPCA empirically confirms that the power
of GNNs on the SSNC problem is mainly driven by graph regularization.

Table 2.4: Comparison btwn. unsupervised GPCA (� = 0), GPCAnet, and existing
(supervised) SOTA GNNs on 5 datasets, w.r.t. mean test accuracy and standard devia-
tion (in parentheses) over 5 different seeds. Those marked with ⇤ are reported values at
the OGB-leaderboard3. Highest mean performance is in bold and the second highest is

underlined.

GPCA GPCAnet GCN APPNP GAT G-SAGE

Cora 81.10 (0.00) 80.64 (0.33) 80.62 (0.90) 81.35 (0.18) 79.27 (0.50) 81.48 (0.83)
CiteSeer 71.80 (0.75) 71.36 (0.21) 71.25 (0.05) 70.33 (0.75) 69.65 (0.59) 71.20 (0.92)
PubMed 78.78 (0.36) 78.52 (0.17) 78.42 (0.25) 78.95 (0.36) 78.23 (0.54) 77.78 (0.29)
Arxiv 71.86 (0.18) 72.20 (0.15) 70.64 (0.17) 70.55 (0.27) 71.11 (0.11) 71.49⇤(0.27)
Products 79.23 (0.14) 80.05 (0.29) 77.90 (0.33) 77.96 (0.34) 79.23⇤(0.78) 78.29⇤(0.16)

GPCAnet. Compared to the 1-layer GPCA, GPCAnet has a deeper architec-
ture along with nonlinear activation function. Moreover, it employs hyperparameter
↵ at every layer to control the degree of graph regularization. As each graph con-
volution has fixed level of graph regularization, one may hypothesize that increasing
the number of layers (L) corresponds to increasing the degree of graph regularization.
We empirically test this hypothesis using GPCAnet, by varying both L (2 to 10)
and ↵ (0.1 to 10) to show their connection (hidden size is fixed as 128). The result
is shown in Figure 2.1. The diagonal pattern (in dark blue) empirically suggests that
increasing the number of layers has the same effect as increasing graph regularization
via ↵.

The corresponding interaction between ↵ and number of layers suggests that we
can train a GPCAnet with fewer number of layers yet achieve similar regularization
by increasing ↵. Such a shallow model that in fact behaves like a deep one has the
advantage of less memory requirement and faster training due to fewer parameters.

30 Chapter 2. GNN and Graph-Regularized PCA

Figure 2.1: GPCAnet performance (avg. over 5 seeds) with varying number of layers
(L) and ↵ on Cora. Increasing L has similar effect as increasing ↵. Results also hold for

the other datasets.

To this end, we train 1–3-layer GPCAnet with varying ↵, and select the best ↵
and number of layers using validation set. We report test set performance in Table
2.4. We do not observe much improvement by GPCAnet over other models on
smaller datasets Cora, CiteSeer, PubMed, but notable gains on the larger Arxiv

and Products. As such, GPCAnet enables shallow model training via tunable
hyperparameter ↵, achieving comparable or better performance.

2.5.3 Q2: Unsupervised vs. Semi-supervised GPCA

Table 2.5: Comparison btwn. Supervised (S-)GPCA (�>0)
and Unsupervised (U-)GPCA (�=0), w.r.t. mean test accu-
racy and standard deviation (in parentheses) over 5 different
seeds. Also shown (bottom row) is the performance by the
best method in Table 2.4. Highest mean performance is high-

lighted in bold.

Cora CiteSeer PubMed

U-GPCA 81.10 (0.00) 71.80 (0.75) 78.78 (0.36)

S-GPCA (all �>0) 81.17 (0.27) 73.20 (0.71) 79.40 (0.69)

S-GPCA �=0.1 81.17 (0.27) 72.07 (0.37) 79.40 (0.69)
S-GPCA �=0.2 81.90 (0.00) 73.20 (0.71) 78.73 (0.59)

Table 2.4 best 81.48 (0.83) 71.80 (0.75) 78.95 (0.36)

The representations gen-
erated by unsupervised GPCA
does not use any label infor-
mation from training data.
In this work, we have ex-
tended GPCA to (semi-
)supervised setting with an
additional HP, namely � 2
[0, 1] that trades-off graph
regularization due to the ac-
tual input graph edges ver-
sus the “ghost” ones added
through Y Y T . Overfitting
can hurt performance when
� is too large or when there

is a distribution shift between the training and test sets. For Arxiv and Products,
we empirically observe that � > 0 always degrades performance, possibly because
of the distribution difference between the training and test sets as described in OGB
[Hu+20b]. Therefore we only study the effect of � on Cora, CiteSeer and PubMed.
The pool for � > 0 is {0.1, 0.2}.

Results are shown in Table 2.5, where (all �>0) depicts the selected configuration
for which S-GPCA achieves highest validation accuracy. The performance of the best
method in Table 2.4, respectively of G-SAGE, (unsupervised) GPCA, and APPNP,
is also shown for comparison. Notably, supervised GPCA provides a slight gain over

2.5. Experiments 31
Table 2.6: Test set performance of GCN with Xaiver- versus GPCAnet-initialization,
w.r.t. varying number of layers (L) across all datasets. Each reported value is based on the
best selected configuration on validation data. GPCAnet-init. enables higher performance

that is also stable with increasing depth.

Dataset L=2 L=3 L=5 L=10 L=15

Cora Xaiver-init 80.62 80.62 79.40 76.37 66.07
Cora GPCAnet-init 81.67 79.50 80.90 79.82 78.00

CiteSeer Xaiver-init 71.25 70.15 71.10 61.90 57.40
CiteSeer GPCAnet-init 71.27 69.27 70.15 68.67 67.87

PubMed Xaiver-init 78.42 77.90 77.07 77.00 45.80
PubMed GPCAnet-init 78.05 77.25 78.07 77.80 78.03

Arxiv Xaiver-init 69.61 70.64 70.33 68.32 61.68
Arxiv GPCAnet-init 69.76 70.72 70.52 69.77 66.28

Products Xaiver-init 77.90 78.65 78.08 76.27 74.70
Products GPCAnet-init 78.13 78.71 78.22 77.47 75.90

unsupervised GPCA across all 3 datasets, which also improves over the competing
baseline methods.

2.5.4 Q3: GPCAnet-initialization for GCN

Finally, we evaluate the effectiveness of GPCAnet-initialization for GCN in terms
of performance and robustness under different model sizes, i.e. number of layers L or
number of training parameters. For comparison, Xavier initialization [GB10] is also
used to initialize GCN.

We report the test set performance (averaged over 5 seeds) of the GCN model
using both initializations in Table 2.6. The results show that GPCAnet-initialization
tends to outperform the widely-used Xavier initialization. The improvement grows
with increasing number of layers, which is significant at large depths. Notably, GCN
with GPCAnet-initialization exhibits stable performance across all layers.

Figure 2.2: Comparison between Xavier-init. and
GPCAnet-init. in terms of test accuracy robustness over
100 seeds on Arxiv. GPCAnet-init. enables robust train-

ing especially at larger depth.

Besides study the mean
performance, we further
study whether GPCAnet-
initialization improves the
training robustness, by re-
ducing performance varia-
tion across different seeds.
To this end, we first choose
the best configuration for
each initialization method
based on validation perfor-
mance, and train the GCN
model with the chosen configuration using 100 random seeds.

In Figure 2.2 we present the histogram of test set accuracy over 100 runs with dif-
ferent seeds for Arxiv. (For results on other datasets, see Appendix. A6 in [ZA20a].)
For both 2-layer and 15-layer GCN, GPCAnet-initialization not only outperforms
Xavier-initialization w.r.t. average performance, but also in terms of robustness,
achieving much lower performance variation and few bad outliers, especially for deeper
GCN. As such, it acts as a strong data-driven prior, facilitating the training of numer-
ous parameters across many layers by identifying a promising region of the parameter
space from which supervised fine-tuning is initiated.

32 Chapter 2. GNN and Graph-Regularized PCA

2.6 Conclusion

In this work we have (1) discovered a mathematical connection between GPCA and
graph convolution of GCN and PPNP; (2) extended GPCA to the (semi-)supervised
setting; (3) proposed GPCAnet, by stacking GPCA and nonlinear activation, which
is a generalized GCN model with an additional hyperparameter to control the degree of
graph regularization, and (4) introduced the GPCAnet-initialization based on the es-
tablished connection. Accordingly, we designed extensive experiments demonstrating
that (i) the unsupervised shallow GPCA achieves comparable or better performance
than GCN, APPNP, as well as other modern GNNs which suggests that graph convo-
lution’s power is mainly driven by graph regularization; (ii) semi-supervised GPCA
helps improve performance and should be a powerful yet simple baseline in future
research; (iii) GPCAnet enables the training of shallow models with competitive
performance via increasing the degree of graph regularization at each layer, with re-
duced memory and training time cost; and finally (iv) GPCAnet-initialization acts
as a strong data-driven prior for GCN training, enabling robust performance. Our
methodological contributions (3) & 4) above) capitalize on the discovery of our the-
oretical findings (1) & 2)), shedding new light toward a better understanding and
design of GNNs.

33

Part II

Graph-level Representation
Learning

35

Chapter 3

Using Subgraphs to Boost
Expressivity

Chapter based on: Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. “From
Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness”. In:
International Conference on Learning Representations. 2022. url: https://
openreview.net/forum?id=Mspk_WYKoEH.

3.1 Introduction

Graphs are permutation invariant, combinatorial structures used to represent rela-
tional data, with wide applications ranging from drug discovery, social network analy-
sis, image analysis to bioinformatics [Duv+15; Fan+19; Shi+19; Wu+20b]. In recent
years, Graph Neural Networks (GNNs) have rapidly surpassed traditional methods like
heuristically defined features and graph kernels to become the dominant approach for
graph ML tasks.

Message Passing Neural Networks (MPNNs) [Gil+17] are the most common type
of GNNs owing to their intuitiveness, effectiveness and efficiency. They follow a recur-
sive aggregation mechanism where each node aggregates information from its imme-
diate neighbors repeatedly. However, unlike simple multi-layer feedforward networks
(MLPs) which are universal approximators of continuous functions [HSW89], MPNNs
cannot approximate all permutation-invariant graph functions [Mar+19b]. In fact,
their expressiveness is upper bounded by the first order Weisfeiler-Leman (1-WL)
isomorphism test [Xu+19]. Importantly, researchers have shown that such 1-WL
equivalent GNNs are not expressive, or powerful, enough to capture basic structural
concepts, i.e., counting motifs such as cycles or triangles [Zhe+20; Arv+20] that are
shown to be informative for bio- and chemo-informatics [Elt+19].

The weakness of MPNNs urges researchers to design more expressive GNNs, which
are able to discriminate graphs from an isomorphism test perspective; [Che+19a] prove
the equivalence between such tests and universal permutation invariant function ap-
proximation, which theoretically justifies it. As k-WL is strictly more expressive than
1-WL, many works [Mor+19; MRM20] try to incorporate k-WL in the design of more
powerful GNNs, while others approach k-WL expressiveness indirectly from matrix
invariant operations [Mar+19a; Mar+19b; KP19] and matrix language perspectives
[Bal+21]. However, they require O(k)-order tensors to achieve k-WL expressiveness,
and thus are not scalable or feasible for application on large, practical graphs. Be-
sides, the bias-variance tradeoff between complexity and generalization [Nea+18] and
the fact that almost all graphs (i.e. O(2(n2)) graphs on n vertices, [BES80]) can be
distinguished by 1-WL challenge the necessity of developing such extremely expressive

https://openreview.net/forum?id=Mspk_WYKoEH
https://openreview.net/forum?id=Mspk_WYKoEH

36 Chapter 3. Using Subgraphs to Boost Expressivity

4
2

5

6

7

8

3
1

2

1

4
2

31

5

6

7

4
8

Extract
Subgraphs for

every node

Base GNN

Base GNN

Base GNN

Base GNN

Subgraph 1

Subgraph 2

Subgraph 7

Subgraph 8

Emb(1|Subgraph 1)
Emb(2|Subgraph 1)

Emb(1|Subgraph 2)
Emb(2|Subgraph 2)
Emb(3|Subgraph 2)
Emb(4|Subgraph 2)

Emb(5|Subgraph 7)
Emb(6|Subgraph 7)
Emb(7|Subgraph 7)

Emb(4|Subgraph 8)
Emb(8|Subgraph 8)

Emb(1|Subgraph 1) SUM {Emb(i|Subgraph 1)} SUM {Emb(1|Subgraph i)}

Emb(2|Subgraph 2) SUM {Emb(i|Subgraph 2)} SUM {Emb(2|Subgraph i)}

Emb(7|Subgraph 7) SUM {Emb(i|Subgraph 7)} SUM {Emb(7|Subgraph i)}

Emb(8|Subgraph 8) SUM {Emb(i|Subgraph 8)} SUM {Emb(8|Subgraph i)}

Emb(j|Subgraph j) SUM {Emb(i|Subgraph j)} SUM {Emb(j|Subgraph i)}

Centroid
Encoding

Subgraph
Encoding

Context
Encoding

Node j's
embedding

1

2

7

8

 Extract subgraphs Convolve subgraphs Aggregate embeddings from subgraphs to new node embedding

Figure 3.1: Shown: one GNN-AK+ layer. For each layer, GNN-AK+ first extracts n (#
nodes) rooted subgraphs, and convolves all subgraphs with a base GNN as kernel, producing
multiple rich subgraph-node embeddings of the form Emb(i | Sub[j]) (node i’s embedding
when applying a GNN kernel on subgraph j). From these, we extract and concatenate three
encodings for a given node j: (i) centroid Emb(j | Sub[j]), (ii) subgraph

P
i Emb(i | Sub[j]),

and (iii) context
P

i Emb(j | Sub[i]). GNN-AK+ repeats the process for L layers, then sums
all resulting node embeddings to compute the final graph embedding. As a weaker version,

GNN-AK only contains encodings (i) and (ii).

models. In a complementary line of work, [Lou20b] sheds light on developing more
powerful GNNs while maintaining linear scalability, finding that MPNNs can be uni-
versal approximators provided that nodes are sufficiently distinguishable. Relatedly,
several works propose to add features to make nodes more distinguishable, such as
identifiers [Lou20b], subgraph counts [Bou+20], distance encoding [Li+20], and ran-
dom features [SYK21; Abb+21]. However, these methods either focus on handcrafted
features which lose the premise of automatic learning, or create permutation sensitive
features that hurt generalization.

Present Work. Our work stands between the two regimes of extremely expressive
but unscalable k-order GNNs, and the limited expressiveness yet high scalability of
MPNNs. Specifically, we propose a general framework that serves as a “wrapper” to
uplift any GNN.

We observe that MPNNs’ local neighbor aggregation follows a star pattern, where
the representation of a node is characterized by applying an injective aggregator func-
tion as an encoder to the star subgraph (comprised of the central node and edges to
neighbors). We propose a design which naturally generalizes from encoding the star
to encoding a more flexibly defined subgraph, and we replace the standard injective
aggregator with a GNN: in short, we characterize the new representation of a node by
using a GNN to encode a locally induced encompassing subgraph, as shown in Fig.3.1.
This uplifts GNN as a base model in effect by applying it on each subgraph instead of
the whole input graph. This generalization is close to Convolutional Neural Networks
(CNN) in computer vision: like the CNN that convolves image patches with a kernel
to compute new pixel embeddings, our designed wrapper convolves subgraphs with
a GNN to generate new node embeddings. Hence, we name our approach GNN-AK
(GNN As Kernel). We show theoretically that GNN-AK is strictly more powerful than
1&2-WL with any MPNN as base model, and is not less powerful than 3-WL with
PPGN [Mar+19a] used. We also give sufficient conditions under which GNN-AK can
successfully distinguish two non-isomorphic graphs. Given this increase in expressive
power, we discuss careful implementation strategies for GNN-AK, which allow us to
carefully leverage multiple modalities of information from subgraph encoding, and
resulting in an empirically more expressive version GNN-AK+. As a result, GNN-AK
and GNN-AK+ induce a constant factor overhead in memory. To amplify our method’s
practicality, we further develop a subgraph sampling strategy inspired by Dropout

3.2. Related Work 37

[Sri+14] to drastically reduce this overhead (1-3⇥ in practice) without hurting perfor-
mance. We conduct extensive experiments on 4 simulation datasets and 5 well-known
real-world graph classification & regression benchmarks [Dwi+20; Hu+20b], to show
significant and consistent practical benefits of our approach across different MPNNs
and datasets. Specifically, GNN-AK+ sets new state-of-the-art performance on ZINC,
CIFAR10, and PATTERN – for example, on ZINC we see a relative error reduction
of 60.3%, 50.5%, and 39.4% for base model being GCN [KW17], GIN [Xu+19], and
(a variant of) PNA [Cor+20] respectively.

To summarize, our contributions are listed as follows:
• A General GNN-AK Framework. We propose GNN-AK (and enhanced GNN-

AK+), a general framework which uplifts any GNN by encoding local subgraph
structure with a GNN.

• Theoretical Findings. We show that GNN-AK’s expressiveness is strictly better
than 1&2-WL, and is not less powerful than 3-WL. We analyze sufficient conditions
for successful discrimination.

• Effective and Efficient Realization. We present effective implementations for
GNN-AK and GNN-AK+ to fully exploit all node embeddings within a subgraph. We
design efficient online subgraph sampling to mitigate memory and runtime overhead
while maintaining performance.

• Experimental Results. We show strong empirical results, demonstrating both
expressivity improvements as well as practical performance gains where we achieve
new state-of-the-art performance on several graph-level benchmarks.
Our implementation is easy-to-use, and directly accepts any GNN from PyG [FL19]

for plug-and-play use. See code at https://github.com/GNNAsKernel/GNNAsKernel.

3.2 Related Work

Exploiting subgraph information in GNNs is not new; in fact, k-WL considers all
k node subgraphs. [MOB18; Lee+19] exploit motif information within aggregation,
and others [Bou+20; Bar+21] augment MPNN features with handcrafted subgraph
based features. MixHop [AEH+19] directly aggregates k-hop information by using
adjacency matrix powers, ignoring neighbor connections. Towards a meta-learning
goal, G-meta [HZ20] applies GNNs on rooted subgraphs around each node to help
transferring ability. Tahmasebi and Jegelka [TJ20] only theoretically justifies subgraph
convolution with GNN by showing its ability in counting substructures. Zhengdao,
Lei, Soledad, and Bruna [Zhe+20] also represent a node by encoding its local subgraph,
however using non-scalable relational pooling. k-hop GNN [NDV20] uses k-egonet in a
specially designed way: it encodes a rooted subgraph via sequentially passing messages
from k-th hops in the subgraph to k � 1 hops, until it reaches the root node, and use
the root node as encoding of the subgraph. Ego-GNNs [SVH21] computes a context
encoding with SGC [Wu+19] as the subgraph encoder, and only be studied on node-
level tasks. Both k-hop GNN and Ego-GNNs can be viewed as a special case of GNN-
AK. [You+21] designs ID-GNNs which inject node identity during message passing
with the help of k-egonet, with k being the number of layers of GNN [HYL17]. Unlike
GNN-AK which uses rooted subgraphs, [FYW20; TZK21; Bod+21a] design GNNs to
use certain subgraph patterns (like cycles and paths) in message passing, however
their preprocessing requires solving the subgraph isomorphism problem. [CMR21]
explores reconstructing a graph from its subgraphs. A contemporary work [ZL21]
also encodes rooted subgraphs with a base GNN but it essentially views a graph
as a bag of subgraphs while GNN-AK modifies the 1-WL color refinement and has

https://github.com/GNNAsKernel/GNNAsKernel

38 Chapter 3. Using Subgraphs to Boost Expressivity

many iterations. Viewing graph as a bag of subgraphs is also explored in another
contemporary work [Bev+22]. To summarize, our work differs by (i) proposing a
general subgraph encoding framework motivated from theoretical Subgraph-1-WL for
uplifting GNNs, and (ii) addressing scalability issues involved with using subgraphs,
which poses significant challenges for subgraph-based methods in practice.

Improving Expressiveness of GNNs: Several works other than those men-
tioned in Sec.1.1 tackle expressive GNNs. Murphy, Srinivasan, Rao, and Ribeiro
[Mur+19] achieve universality by summing permutation-sensitive functions across a
combinatorial number of permutations, limiting feasibility. Dasoulas, Dos Santos,
Scaman, and Virmaux [Das+20] adds node indicators to make them distinguishable,
but at the cost of an invariant model, while Vignac, Loukas, and Frossard [VLF20]
further addresses the invariance problem, but at the cost of quadratic time complex-
ity. Corso, Cavalleri, Beaini, Liò, and Veličković [Cor+20] generalizes MPNN’s default
sum aggregator, but is still limited by 1-WL. Beani, Passaro, Létourneau, Hamilton,
Corso, and Lió [Bea+21] generalizes spatial and spectral aggregation with >1-WL
expressiveness, but using expensive eigendecomposition. Recently, [Bod+21b] intro-
duce MPNNs over simplicial complexes that shares similar expressiveness as GNN-AK.
[Yin+21] studies transformer with above 1-WL expressiveness. [AL21] surveys GNN
expressiveness work.

Connections to CNN and k-WL: GNN-AK has a similar convolutional structure
as CNN, and in fact historically many spatial GNNs are inspired by CNN; see Wu, Pan,
Chen, Long, Zhang, and Philip [Wu+20b] for a detailed survey. The non-Euclidean
nature of graphs makes such generalizations non-trivial. MoNet [Mon+17] introduces
pseudo-coordinates for nodes, while PatchySAN [NAK16] learns to order and truncate
neighboring nodes for convolution purposes. However, both methods aim to mimic
the formulation of the CNN without admitting the inherent difference between graphs
and images. In contrast, GNN-AK, generalizes CNN to graphs with a base GNN kernel,
similar to how a CNN kernel encodes image patches. GNN-AK also shares connections
with two variants of k-WL test algorithms: depth-k 1-dim WL [CFI92; Wei76] and
deep WL [Arv+20]. The former recursively applies 1-WL to all size-k subgraphs,
with slightly weaker expressiveness than k-WL, and the latter reduces the number of
such subgraphs for the k-WL test. Instead of working on all O(nk) size-k subgraphs,
we keep linear scalability by only applying 1-WL-equivalent MPNNs to O(n) rooted
subgraphs.

3.3 General Framework and Theory

We first introduce our setting and formalisms. Let G = (V, E) be a graph with node
features xi 2 Rd, 8i 2 V . We consider graph-level problems where the goal is to
classify/regress a target yG by learning a graph-level representation hG. Let Nk(v)
be the set of nodes in the k-hop egonet rooted at node v. N (v) = N1(v)\v denotes
the immediate neighbors of node v. For S ✓ V , let G[S] be the induced subgraph:
G[S] = (S, {(i, j) 2 E|i 2 S, j 2 S}). Then G[Nk(v)] denotes the k-hop egonet
rooted at node v. We also define Star(v) = (N1(v), {(v, j) 2 E|j 2 N (v)}) be the
induced star-like subgraph around v. We use {·} denotes multiset, i.e. set that allows
repetition.

Before presenting GNN-AK, we highlight the insights in designing GNN-AK and
driving the expressiveness boost. Insight 1: Generalizing star to subgraph. In
MPNNs, every node aggregates information from its immediate neighbors following
a star pattern. Consequently, MPNNs fail to distinguish any non-isomorphic regular

3.3. General Framework and Theory 39

1 2 3

4 5

6 7

8 9 10

1 2 3

4 5

6 7

8 9 10

1 2

4

6

8

1 2

4

8

7

A

1

4
7

8
9

1

4

6

8 9

BA's Subgraph 1 A's Subgraph 8 B's Subgraph 8B's Subgraph 1

Figure 3.2: Two 4-regular graphs that cannot be distinguished by 1-WL. Colored edges
are the difference between two graphs. Two 1-hop egonets are visualized while all other

rooted egonets are ignored as they are same across graph A and graph B.

graphs where all stars are the same, since all nodes have the same degree. Even simply
generalizing star to the induced, 1-hop egonet considers connections among neighbors,
enabling distinguishing regular graphs. Insight 2: Divide and conquer. When two
graphs are non-isomorphic, there exists a subgraph where this difference is captured
(see Figure 3.2). Although a fixed-expressiveness GNN may not distinguish the two
original graphs, it may distinguish the two smaller subgraphs, given that the required
expressiveness for successful discrimination is proportional to graph size [Lou20a]. As
such, GNN-AK divides the harder problem of encoding the whole graph to smaller and
easier problems of encoding its subgraphs, and “conquers” the encoding with the base
GNN.

3.3.1 From Stars to Subgraphs
We first take a close look at MPNNs, identifying their limitations and expressive-
ness bottleneck. MPNNs repeatedly update each node’s embedding by aggregating
embeddings from their neighbors a fixed number of times (layers) and computing a
graph-level embedding hG by global pooling. Let h

(l)
v denote the l-th layer embedding

of node v. Then, MPNNs compute hG by

h
(l+1)
v = �(l)

✓
h

(l)
v , f (l)

⇣�
h

(l)
u |u 2 N (v)

 ⌘◆
l = 0, ..., L� 1

hG = POOL({h(L)
v |v 2 V}) (3.1)

where h
(0)
i

= xi is the original features, L is the number of layers, and �(l) and f (l)

are the l-th layer update and aggregation functions. �(l), f (l) and POOL vary among
different MPNNs and influence their expressiveness and performance. MPNNs achieve
maximum expressiveness (1-WL) when all three functions are injective [Xu+19].

MPNNs’ expressiveness upper bound follows from its close relation to the 1-WL
isomorphism test [Mor+19]. Similar to MPNNs which repeatedly aggregate self and
neighbor representations, at t-th iteration, for each node v, 1-WL test aggregates the
node’s own label (or color) c(t)v and its neighbors’ labels {c(t)u |u 2 N (v)}, and hashes
this multi-set of labels

n
c(t)v , {c(t)u |u 2 N (v)}

o
into a new, compressed label c(t+1)

v .

1-WL outputs the set of all node labels
�
c(T)
v |v 2 V

as G’s fingerprint, and decides

two graphs to be non-isomorphic as soon as their fingerprints differ.
The hash process in 1-WL outputs a new label c(t+1)

v that uniquely characterizes
the star graph Star(v) around v, i.e. two nodes u, v are assigned different compressed
labels only if Star(u) and Star(v) differ. Hence, it is easy to see that when two
non-isomorphic unlabeled (i.e., all nodes have the same label) d-regular graphs have
the same number of nodes, 1-WL cannot distinguish them. This failure limits the
expressiveness of 1-WL, but also identifies its bottleneck: the star is not distinguishing

40 Chapter 3. Using Subgraphs to Boost Expressivity

enough. Instead, we propose to generalize the star Star(v) to subgraphs, such as
the egonet G[N1(v)] and more generally k-hop egonet G[Nk(v)]. This results in an
improved version of 1-WL which we call Subgraph-1-WL. Formally,

Definition 3.3.1 (Subgraph-1-WL). Subgraph-1-WL generalizes the 1-WL graph
isomorphism test algorithm by replacing color refinement (at iteration t) by c(t+1)

v =

HASH(Star(t)(v)) with c(t+1)
v = HASH(G(t)[Nk(v)]), 8v 2 V where HASH(·) is an

injective function on graphs.
Note that an injective hash function for star graphs is equivalent to that for multi-

sets, which is easy to derive [Zah+17]. In contrast, Subgraph-1-WL must hash a
general subgraph , where an injective hash function for graphs is non-trivial (as hard
as graph isomorphism). Thus, we derive a variant called Subgraph-1-WL⇤ by using
a weaker choice for HASH(·) – specifically, 1-WL. Effectively, we nest 1-WL inside
Subgraph-1-WL. Formally,

Definition 3.3.2 (Subgraph-1-WL⇤). Subgraph-1-WL⇤ is a less expressive variant
of Subgraph-1-WL where c(t+1)

v = 1-WL(G(t)[Nk(v)]).
We further transfer Subgraph-1-WL to neural networks, resulting in GNN-AK whose

expressiveness is upper bounded by Subgraph-1-WL. The natural transformation with
maximum expressiveness is to replace the hash function with a universal subgraph
encoder of G[Nk(v)], which is non-trivial as it implies solving the challenging graph
isomorphism problem in the worst case. Analogous to using 1-WL as a weaker choice
for HASH(·) inside Subgraph-1-WL⇤, we can use use any GNN (most practically,
MPNN) as an encoder for subgraph G[Nk(v)]. Let G(l)[Nk(v)] = G[Nk(v)|H(l)] be
the attributed subgraph with hidden features H

(l) at the l-th layer. Then, GNN-AK
computes hG by

h
(l+1)
v = GNN(l)

⇣
G(l)[Nk(v)]

⌘
l = 0, ..., L� 1 ; hG = POOL({h(L)

v |v 2 V}) (3.2)

Notice that GNN-AK acts as a “wrapper” for any base GNN (mainly MPNN). This
uplifts its expressiveness as well as practical performance as we demonstrate in the
following sections.

3.3.2 Theory: Expressiveness Analysis

We next theoretically study the expressiveness of GNN-AK, by investigating the ex-
pressiveness of Subgraph-1-WL. We first establish that GNN-AK and Subgraph-1-WL
have the same expressiveness under certain conditions. A GNN is able to distinguish
two graphs if its embeddings for two graphs are not identical. A GNN is said to have
the same expressiveness as a graph isomorphism test when for any two graphs the
GNN outputs different embeddings if and only if (iff) the isomorphism test deems
them non-isomorphic.

Theorem 3.3.3. When the base model is an MPNN with sufficient number of lay-
ers and injective �, f and POOL functions shown in Eq. (3.1), and MPNN-AK has
an injective POOL function shown in Eq. (3.2), then MPNN-AK is as powerful as
Subgraph-1-WL⇤.

Proof. [Xu+19] proved that with sufficient number of layers and all injective functions,
MPNN is as powerful as 1-WL. Then Eq. (3.2) outputs different vectors for two
graphs iff Subgraph-1-WL⇤ encodes different labels with c(t+1)

v = 1-WL(G(t)[Nk(v)]).
With POOL in Eq. (3.2) also to be injective, MPNN-AK outputs different vectors iff
Subgraph-1-WL⇤ outputs different fingerprints for two graphs. Then MPNN-AK is as
powerful as Subgraph-1-WL⇤.

3.3. General Framework and Theory 41

A more general version of Theorem 3.3.3 is that GNN-AK is as powerful as Subgraph-
1-WL iff base GNN of GNN-AK is as powerful as the HASH function of Subgraph-1-WL
in distinguishing subgraphs, following the same proof logic. The Theorem implies that
we can characterize expressiveness of GNN-AK through studying Subgraph-1-WL and
Subgraph-1-WL⇤.

Theorem 3.3.4. Subgraph-1-WL⇤ is strictly more powerful than 1&2-WL1.

Proof. We first prove that if two graphs are identified as isomorphic by Subgraph-
1-WL⇤, they are also determined as isomorphic by 1-WL. Then we present a pair
of non-isomorphic graphs that can be distinguished by Subgraph-1-WL⇤ but not by
1-WL. Together these two imply that Subgraph-1-WL⇤ is strictly more powerful than
1-WL. Comparing with 2-WL can be concluded from the fact that 1-WL and 2-WL are
equivalent in expressiveness [Mar+19a]. In the proof we use 1-hop egonet subgraphs
for Subgraph-1-WL⇤.

Assume graphs G and H have the same number of nodes (otherwise easily deter-
mined as non-isomorphic) and are two non-isomorphic graphs but Subgraph-1-WL⇤

determines them as isomorphic. Then for any iteration t, set
n

1-WL(G(t)[N1(v)])|v 2

VG

o
is the same as set

n
1-WL(H(t)[N1(v)])|v 2 VH

o
. Then there existing an or-

dering of nodes vG1 , ..., v
G
n and vH1 , ..., vH

N
with N = |VG| = |VH |, such that for any

node order i = 1, ..., N , 1-WL(G(t)[N1(vGi)]) = 1-WL(H(t)[N1(vHi)]). This implies
that structure G[N1(vGi)] and H[N1(vHi)] are not distinguishable by 1-WL. Hence
Star(vG

i
) and Star(vH

i
) are hashed to the same label otherwise the 1-WL that in-

cludes the hashed result of Star(vG
i

) and Star(vH
i

) can also distinguish G[N1(vGi)] and
H[N1(vHi)]. Then for any iteration t and any node with order i, HASH

⇣
Star(vG

(t)

i
)
⌘

=

HASH
⇣
Star(vH

(t)

i
)
⌘

implies that 1-WL fails in distinguishing G and H. In fact
if we replace the 1-WL hashing function in Subgraph-1-WL⇤ to a stronger version
HASH

⇣�
HASH(Star(vG

(t)
)), 1-WL(G(t)[N1(v)])

 ⌘
, this directly implies the above state-

ment.
In Figure 3.2, two 4-regular graphs are presented that cannot be distinguished by

1-WL but can be distinguished by Subgraph-1-WL⇤. We visualize the 1-hop egonets
that are structurally different among graphs A and B. It’s easy to see that A’s
egonet A[N1(1)] and B’s egonet B[N1(1)] can be distinguished by 1-WL, as degree
distribution is not the same. Hence, A and B can be distinguished by Subgraph-1-
WL⇤.

A direct corollary from Theorem 3.3.3&3.3.4 is as follows, which is empirically
verified in Table 3.2.

Corollary 3.3.5. When MPNN is 1-WL expressive, MPNN-AK is strictly more pow-
erful than 1&2-WL.

Theorem 3.3.6. When HASH(·) is 3-WL expressive, Subgraph-1-WL is no less pow-
erful than 3-WL, that is, it can discriminate some graphs for which 3-WL fails.

Proof. We prove by showing a pair of 3-WL failed non-isomorphic graphs can be
distinguished by Subgraph-1-WL (see definition of “no less powerful” in [Zhe+20]: we
call A is no/not less powerful than B if there exists a pair of non-isomorphic graphs
that cannot be distinguished by B but can be distinguished by A.), assuming HASH(·)

11-WL and 2-WL are known to be equally powerful, see [AL21] and [Mar+19a].

42 Chapter 3. Using Subgraphs to Boost Expressivity

16

15

14

13

2
1

3

4

5

6

7

8

12

11

910

16

15

14

13

2
1

3

4

5

6

7

8

12

11

9
10

4

1

3

2

5

9

13

3

1

5

15

7

9

11

A B

A's subgraph B's subgraph

Figure 3.3: Two non-isomorphic strongly regular graphs that cannot be distinguished by
3-WL.

is 3-WL discriminative. Figure 3.3 shows two strongly regular graphs that can not be
distinguished by 3-WL (any strongly regular graphs are not distinguishable by 3-WL
[Arv+20]), along with their 1-hop egonet rooted subgraphs. Notice that all 1-hop
egonet rooted subgraphs in A (also in B) are the same, resulting that Subgraph-1-
WL can successfully distinguish A and B if HASH can distinguish the showed two
1-hop egonets. Now we prove that 3-WL can distinguish these two subgraphs. 3-WL
constructs a coloring of 3-tuples of all vertices in a graph, and uses the histogram of
colors of all k-tuples as fingerprint of the graph. Then, different 3-tuples correspond
to different colors or bins in the histogram. As a triangle is a unique type of 3-tuple,
at iteration 0 of 3-WL, the histogram of all 3-tuples counts the number of triangles
in the graph. Notice that A’s subgraph has 2 ⇥

�4
3

�
= 8 triangles, and B’s subgraph

contains 6 triangles. This implies that even at iteration 0, 3-WL can distinguish
these two subgraphs. Hence, when HASH(·) is 3-WL expressive, Subgraph-1-WL can
distinguish A and B. Therefore there exists a pair of 3-WL failed non-isomorphic
graphs that can be distinguished by Subgraph-1-WL.

A direct corollary from Theorem 3.3.3&3.3.6 is as follows, which is empirically
verified in Table 3.2.

Corollary 3.3.7. PPGN-AK can distinguish some 3-WL-failed non-isomorphic graphs.

Theorem 3.3.8. For any k � 3, there exists a pair of k-WL-failed graphs that cannot
be distinguished by Subgraph-1-WL even with injective HASH(·) when t-hop egonets
are used with t  4.

Theorem 3.3.8 is proven (see Appendix A.5 in [Zha+22c]) by observing that with
limited t all rooted subgraphs of two non-isomorphic graphs from CFI(k) family
[CFI92] are isomorphic, i.e. local rooted subgraph is not enough to capture the “global"
difference. This opens a future direction of generalizing rooted subgraph to general
subgraph (as in k-WL) while keeping number of subgraphs in O(|V|).
Proposition 1 (sufficient conditions). For two non-isomorphic graphs G,H, Subgraph-
1-WL with k-egonet can successfully distinguish them if: 1) for any node reordering
vG1 , ..., v

G

|VG|
and vH1 , ..., vH

|VH |
, 9i 2 [1,max(|VG|, |VH |)] that G[Nk(vGi)] and H[Nk(vHi)]

are non-isomorphic2; and 2) HASH(·) is discriminative enough that HASH(G[Nk(vGi)]) 6=
HASH(H[Nk(vHi)]).

2When |VG| < |VH | , 8i 2 {|VG|, |VG|+ 1, ..., |VH |}, let G[Nk(v
G

i)] denote an empty subgraph.

3.4. Concrete Realization 43

Proof. The proof is by contradiction. Let G and H be two non-isomorphic graphs and
|VG| = |VH | (if graph sizes are different then Subgraph-1-WL can trivially distinguish
them). Now suppose that Prop. 1 is incorrect, i.e. Subgraph-1-WL cannot distinguish
G and H even provided that the two conditions (1) and (2) are satisfied. Then, for any
iteration of Subgraph-1-WL, G and H would have the same histogram of subgraph
colors. Now we focus on iteration 0. Formally, let color cG

v,i
= HASH(G[Nk(vGi)])

and cH
v,i

= HASH(H[Nk(vHi)]) for a node order v (vG
i

maps index i to a node in G).
According to Condition (1): for any node reordering vG1 , ..., v

G

NG
and vH1 , ..., vH

NH
, 9i 2

[1,max(NG, NH)] that G[Nk(vGi)] and H[Nk(vGi)] are non-isomorphic, then we know
that 9i that G[Nk(vGi)] and H[Nk(vHi)] are non-isomorphic, hence cG

v,i
6= cH

v,i
since

by Condition (2) HASH can distinguish these two subgraphs. However as two graphs
have the same histogram of subgraph colors, there must be a j 6= i such that cG

v,i
= cH

v,j

and cG
v,j

= cH
v,i

. Then we can create a new node order m by swapping vG
i

and vG
j

,
resulting cG

m,i
= cH

m,i
and cG

m,j
= cH

m,j
. This process can be repeated until having a new

node order w such that 8i 2 1, ..., |VG|, cGw,i
= cH

w,i
. As HASH is discriminative enough

according to Condition (2), this implies 8i 2 1, ..., |VG|, G[Nk(wG

i
)] and H[Nk(wH

i
)]

are isomorphic, which contradicts with Condition (1). Thus, Prop. 1 must be true.

This implies subgraph size should be large enough to capture difference, but not
larger which requires more expressive base model [Lou20b]. We empirically verify
Prop. 1 in Table 3.3.

3.4 Concrete Realization

We first realize GNN-AK with two type of encodings, and then present an empirically
more expressive version, GNN-AK+, with (i) an additional context encoding, and (ii) a
subgraph pooling design to incorporate distance-to-centroid, readily computed during
subgraph extraction. Next, we discuss a random-walk based rooted subgraph extrac-
tion for graphs with small diameter to reduce memory footprint of k-hop egonets. We
conclude this section with time and space complexity analysis.

Notation. Let G = (V, E) be the graph with N = |V|, G(l)[Nk(v)] be the k-hop
egonet rooted at node v 2 V in which h

(l)
u denotes node u’s hidden representation for

u 2 Nk(v) at the l-th layer of GNN-AK. To simplify notation, we use Sub(l)[v] instead
of G(l)[Nk(v)] to indicate the the attribute-enriched induced subgraph for v. We
consider all intermediate node embeddings across rooted subgraphs. Specifically, let
Emb(i | Sub(l)[j]) denote node i’s embedding when applying base GNN(l) on Sub(l)[j];
we consider node embeddings for every j 2 V and every i 2 Sub(l)[j]. Note that
the base GNN can have multiple convolutional layers, and Emb refers to the node
embeddings at the last layer before global pooling POOLGNN that generates subgraph-
level encoding.

Realization of GNN-AK. We can formally rewrite Eq. (3.2) as

h
(l+1)|Subgraph
v = GNN(l)

⇣
Sub(l)[v]

⌘
:= POOLGNN(l)

⇣�
Emb(i | Sub(l)[v]) | i 2 Nk(v)

 ⌘

(3.3)

We refer to the encoding of the rooted subgraph Sub(l)[v] in Eq. (3.3) as the sub-
graph encoding. Typical choices of POOLGNN(l) are SUM and MEAN. As each rooted
subgraph has a root node, POOLGNN(l) can additionally be realized to differentiate
the root node by self-concatenating its own representation, resulting in the following

44 Chapter 3. Using Subgraphs to Boost Expressivity

realization as each layer of GNN-AK:

h
(l+1)
v = FUSE

⇣
h

(l+1)|Centroid
v , h

(l+1)|Subgraph
v

⌘
where h

(l+1)|Centroid
v := Emb(v | Sub(l+1)[v])

(3.4)

where FUSE is concatenation or sum, and h
(l)|Centroid
v is referred to as the centroid

encoding. The realization of GNN-AK in Eq.3.4 closely follows the theory in Sec.3.3.
Realization of GNN-AK+. We further develop GNN-AK+, which is more expres-

sive than GNN-AK, based on two observations. First, we observe that Eq.3.4 does
not fully exploit all information inside the rich intermediate embeddings generated for
Eq.3.4, and propose an additional context encoding.

h
(l+1)|Context
v := POOLContext

⇣�
Emb(v | Sub(l)[j]) | 8j s.t. v 2 Nk(j)

 ⌘
(3.5)

Different from subgraph and centroid encodings, the context encoding captures views
of node v from different subgraph contexts, or points-of-view. Second, GNN-AK ex-
tracts the rooted subgraph for every node with efficient k-hop propagation (complexity
O(k|E|)), along which the distance-to-centroid (D2C)3 within each subgraph is read-
ily recorded at no additional cost and can be used to augment node features; [Li+20]
shows this theoretically improves expressiveness. Therefore, we propose to uses the
D2C by default in two ways in GNN-AK+: (i) augmenting hidden representation h

(l)
v

by concatenating it with the encoding of D2C; (ii) using it to gate the subgraph and
context encodings before POOLSubgraph and POOLContext, with the intuition that
embeddings of nodes far from v contribute differently from those close to v.

To formalize the gate mechanism guided by D2C, let d
(l)
i|j

be the encoding of
distance from node i to j at l-th layer4. Applying gating changes Eq. (3.5) to

h
(l+1)|Context
gated,v := POOLContext

⇣�
Sigmoid(d(l)

v|j)� Emb(v | Sub(l)[j]) | 8j s.t. v 2 Nk(j)
 ⌘

(3.6)

where � denotes element-wise multiplication. Similar changes apply to Eq. (3.3) to
get h

(l)|Subgraph
gated,v .

Formally, each layer of GNN-AK+ is defined as

h
(l+1)
v = FUSE

⇣
d

(l+1)
i|j , h

(l+1)|Centroid
v , h

(l+1)|Subgraph
gated,v , h

(l+1)|Context
gated,v

⌘
(3.7)

where FUSE is concatenation or sum. We illustrate in Figure 3.1 the l-th layer of
GNN-AK(+).
Proposition 2. GNN-AK+ is at least as powerful as GNN-AK.

Proof. When a pair of non-isomorphic graphs G and H cannot be distinguished by
GNN-AK+, for any layer l, the histogram of h(l))v in G and H in Eq. 3.7 should be
the same. Which implies that for any layer l, the histogram of h(l))v in G and H in
Eq. 3.4 should be the same. Then GNN-AK cannot distinguish G and H. So for any
pair of non-isomorphic graphs, GNN-AK cannot distinguish them if GNN-AK+ cannot
distinguish them. Thus GNN-AK+ is more powerful than GNN-AK.

3We record D2C value for every node in every subgraph, and the value is categorical instead of
continuous.

4The categorical D2C does not change across layers, but is encoded with different parameters in
each layer.

3.5. Improving Scalability: SubgraphDrop 45

Beyond k-egonet Subgraphs. The k-hop egonet (or k-egonet) is a natural
choice in our framework, but can be too large when the input graph’s diameter is
small, as in social networks [Kle00], or when the graph is dense. To limit subgraph
size, we also design a random-walk based subgraph extractor. Specifically, to extract
a subgraph rooted at node v, we perform a fixed-length random walk starting at v,
resulting in visited nodes Nrw(v) and their induced subgraph G[Nrw(v)]. In prac-
tice, we use adaptive random walks as in Grover and Leskovec [GL16]. To reduce
randomness, we use multiple truncated random walks and union the visited nodes
as Nrw(v). Moreover, we employ online subgraph extraction during training that re-
extracts subgraphs at every epoch, which further alleviates the effect of randomness
via regularization.

Complexity Analysis. Assuming k-egonets as rooted subgraphs, and an MPNN
as base model. For each graph G = (V, E), the subgraph extraction takes O(k|E|)
runtime complexity, and outputs |V| subgraphs, which collectively can be represented
as a union graph G[= (V[, E[) with |V| disconnected components, where |V[| =P

v2V
|Nk(v)| and |E[| =

P
v2V

|EG[Nk(v)]|. GNN-AK(+) can be viewed as applying
base GNN on the union graph. Assuming base GNN has O(|V| + |E|) runtime and
memory complexity, GNN-AK(+) has O(|V[| + |E[|) runtime and memory cost. For
rooted subgraphs of size s, GNN-AK(+) induces an O(s) factor overhead over the base
model.

3.5 Improving Scalability: SubgraphDrop

The complexity analysis reveals that GNN-AK(+) introduce a constant factor overhead
(subgraph size) in runtime and memory over the base GNN. Subgraph size can be
naturally reduced by choosing smaller k for k-egonet, or by ranking and truncating
visited nodes in a random walk setting. However limiting to very small subgraphs
tends to hurt performance as we empirically show in Table 3.7. Here, we present a
different subsampling-based approach that carefully selects only a subset of the |V|
rooted subgraphs. Further more, inspired from Dropout [Sri+14], we only drop sub-
graphs during training while still use all subgraphs when evaluation. Novel strategies
are designed specifically for three type of encodings to eliminate the estimation bias
between training and evaluation. We name it SubgraphDrop for dropping subgraphs
during training. SubgraphDrop significantly reduces memory overhead while keeping
performance nearly the same as training with all subgraphs. We first present subgraph
sampling strategies, then introduce the designs of aligning training and evaluation.
Fig. 3.4 provides a pictorial illustration.

4
2

5

6

7

8

3
1

Select
subgraphs to

cover the whole
graphs

4
2

5

6

7

8

3
1

2

1
Base GNN

Subgraph 1

Emb(1|Subgraph 1)
Emb(2|Subgraph 1)

4
2

5

8

3

Base GNN

Subgraph 4

Emb(2|Subgraph 4)
Emb(3|Subgraph 4)
Emb(4|Subgraph 4)
Emb(5|Subgraph 4)
Emb(8|Subgraph 4)

5

6

7
Base GNN

Subgraph 7

Emb(5|Subgraph 7)
Emb(6|Subgraph 7)
Emb(7|Subgraph 7)

SUM {Emb(1|Subgraph i)} x scale1

Random
Selection

Farthest
Sampling

Minimum Set
Cover 4

2
5

6

7

8

3
1

1 1

1

4

7

1
1

Emb(1|Subgraph 1) SUM {Emb(i|Subgraph 1)}

4 4Emb(4|Subgraph 4) SUM {Emb(i|Subgraph 4)}

7 7Emb(7|Subgraph 7) SUM {Emb(i|Subgraph 7)}

2
2

3
3 4 5 6 7

4 5 6 7

Emb(1|Subgraph 1) SUM {Emb(i|Subgraph 1)}

Emb(4|Subgraph 4)

Emb(7|Subgraph 7)

SUM {Emb(4|Subgraph i)} x scale4

SUM {Emb(7|Subgraph i)} x scale7

SUM {Emb(2|Subgraph i)} x scale2

SUM {Emb(3|Subgraph i)} x scale3

SUM {Emb(5|Subgraph i)} x scale5

SUM {Emb(6|Subgraph i)} x scale6

SUM {Emb(i|Subgraph 4)}

SUM {Emb(i|Subgraph 7)}

Emb(2|Subgraph 2) SUM {Emb(i|Subgraph 2)}

Emb(3|Subgraph 3) SUM {Emb(i|Subgraph 3)}

Emb(5|Subgraph 5) SUM {Emb(i|Subgraph 5)}

Emb(6|Subgraph 6) SUM {Emb(i|Subgraph 6)}

1

4

7

2

3

5

6

Extract amd sample subgraphs Propagate subgraph &
centroid encodings

Scale
context
encodings

8

8

SUM {Emb(8|Subgraph i)} x scale6 Emb(6|Subgraph 8) SUM {Emb(i|Subgraph 8)}8

scale_i =

Figure 3.4: GNN-AK(+)-S with SubgraphDrop used in training. GNN-AK(+)-S first ex-
tracts subgraphs and subsamples m⌧|V| subgraphs to cover each node at least R times
with multiple strategies. The base GNN is applied to compute all intermediate node embed-
dings in selected subgraphs. Context encodings are scaled to match evaluation. Subgraph
and centroid encodings initially only exist for root nodes of selected subgraphs, and are

propagated to estimate those of other nodes.

46 Chapter 3. Using Subgraphs to Boost Expressivity

3.5.1 Subgraph Sampling Strategies

Intuitively, if u, v are directly connected in G, subgraphs G[Nk(u)] and G[Nk(v)]
share a large overlap and may contain redundancy. With this intuition, we aim to
sample only m⌧|V| minimally redundant subgraphs to reduce memory overhead. We
propose three fast sampling strategies that select subgraphs to evenly cover the whole
graph, where each node is covered by ⇡R (redundancy factor) selected subgraphs;
R is a hyperparameter used as a sampling stopping condition. Then, GNN-AK(+)-S
(with Sampling) has roughly R times the overhead of base model (R3 in practice).
We remark that our subsampling strategies are randomized and fast, which are both
desired characteristics for an online Dropout-like sampling in training.
• Random sampling selects subgraphs randomly until every node is covered �R

times.
• Farthest sampling selects subgraphs iteratively, starting at a random one and

greedily selecting each subsequent one whose root node is farthest w.r.t. shortest
path distance from those of already selected subgraphs, until every node is covered
�R times.

• Min-set-cover sampling initially selects a subgraph randomly, and follows the
greedy minimum set cover algorithm to iteratively select the subgraph containing
the maximum number of uncovered nodes, until every node is covered �R times.

3.5.2 Training with SubgraphDrop

Although dropping redundant subgraphs greatly reduces overhead, it still loses infor-
mation. Thus, as in Dropout [Sri+14], we only “drop” subgraphs during training while
still using all of them during evaluation. Randomness in sampling strategies enforces
that selected subgraphs differ across training epochs, preserving most information due
to amortization. On the other hand, it makes it difficult for the three encodings during
training to align with full-mode evaluation. Next, we propose an alignment procedure
for each type of encoding.

Subgraph and Centroid Encoding in Training. Let S ✓ V be the set of
root nodes of the selected subgraphs. When sampling during training, subgraph and
centroid encoding can only be computed for nodes v 2 S, following Eq. (3.3) and Eq.
(3.4), resulting incomplete subgraph encodings {h(l)|Subgraph

v |v 2 S} and centroid en-
codings {h(l)|Centroid

v |v 2 S}. To estimate uncomputed encodings of u 2 V \S, we pro-
pose to propagate encodings from S to V\S. Formally, let kmax = maxu2V\S Dist(u,S)
where Dist(u,S)=minv2S ShortestPathDistance(u, v). Then we partition U = V \ S
into {U1, ...,Ukmax

} with Ud = {u 2 U|Dist(u,S) = d}. We propose to spread vector
encodings of S out iteratively, i.e. compute vectors of Ud from Ud�1. Formally, we
have

h
(l)|Subgraph
u = Mean

�
{h(l)|Subgraph

v |v 2 Ud�1, (u, v) 2 E}
�

for d = 1, 2 . . . kmax, 8u 2 Ud,
(3.8)

h
(l)|Centroid
u = Mean

�
{h(l)|Centroid

v |v 2 Ud�1, (u, v) 2 E}
�

for d = 1, 2 . . . kmax, 8u 2 Ud,
(3.9)

Context Encoding in Training. Following Eq. (3.5), context encodings can
be computed for every node v 2 V as each node is covered at least R times during
training with SubgraphDrop. However when POOLContext is SUM(·), the scale of
h
(l)|Context
v is smaller than the one in full-mode evaluation. Thus, we scale the context

3.6. Experiments 47

encodings up to align with full-mode evaluation. Formally,

h
(l)|Context
v =

|{j 2 V|Nk(j) 3 v}|
|{j 2 S|Nk(j) 3 v}| ⇥ SUM

⇣�
Emb(v | Sub(l)[j]) | 8j 2 S s.t. v 2 Nk(j)

 ⌘

(3.10)

When POOLContext is MEAN(·), the context encoding is computed without any
modification.

3.6 Experiments

In this section we (1) empirically verify the expressiveness benefit of GNN-AK(+) on 4
simulation datasets; (2) show GNN-AK(+) boosts practical performance significantly on
5 real-world datasets; (3) demonstrate the effectiveness of SubgraphDrop; (4) conduct
ablation studies of concrete designs. We mainly report the performance of GNN-AK+,
while still keep the performance of GNN-AK with GIN as base model for reference, as
it is fully explained by our theory.

Table 3.1: Dataset statistics.

Dataset Task Semantic # Cls./Tasks # Graphs Ave. # NodesAve. # Edges

EXP Distinguish 1-WL failed graphs 2 1200 44.4 110.2
SR25 Distinguish 3-WL failed graphs 15 15 25 300

CountingSub.Regress num. of substructures 4 1500 / 1000 / 2500 18.8 62.6
GraphProp. Regress global graph properties 3 5120 / 640 / 1280 19.5 101.1

ZINC-12K Regress molecular property 1 10000 / 1000 / 1000 23.1 49.8
CIFAR10 10-class classification 10 45000 / 5000 / 10000 117.6 1129.8
PATTERN Recognize certain subgraphs 2 10000 / 2000 / 2000 118.9 6079.8

MolHIV 1-way binary classification 1 32901 / 4113 / 4113 25.5 54.1
MolPCBA 128-way binary classification 128 350343 / 43793 / 43793 25.6 55.4

MUTAG Recognize mutagenic compounds 2 188 17.93 19.79
PTC-MR Classify chemical compounds 2 344 14.29 14.69
PROTEINS Classify Enzyme & Non-enzyme 2 1113 39.06 72.82
NCI1 Classify molecular 2 4110 29.87 32.30
IMDB-B Classify movie 2 1000 19.77 96.53
RDT-B Classify reddit thread 2 2000 429.63 497.75

Simulation Datasets: 1) EXP [Abb+21] contains 600 pairs of 1&2-WL failed
graphs that are splited into two classes where each graph of a pair is assigned to two
different classes. 2) SR25 [Bal+21] has 15 strongly regular graphs (3-WL failed) with
25 nodes each. SR25 is translated to a 15 way classification problem with the goal
of mapping each graph into a different class. 3) Substructure counting (i.e. triangle,
tailed triangle, star and 4-cycle) problems on random graph dataset [Zhe+20]. 4)
Graph property regression (i.e. connectedness, diameter, radius) tasks on random
graph dataset [Cor+20]. All simulation datasets are used to empirically verify the
expressiveness of GNN-AK(+). Large Real-world Datasets: ZINC-12K, CIFAR10,
PATTER from Benchmarking GNNs [Dwi+20] and MolHIV, and MolPCBA from
Open Graph Benchmark [Hu+20b]. Small Real-world Datasets: MUTAG, PTC,
PROTEINS, NCI1, IMDB, and REDDIT from TUDatset [Mor+20]. See Table 3.1
for all dataset statistics.

Baselines. We use GCN [KW17], GIN [Xu+19], PNA⇤ 5 [Cor+20], and 3-WL
powerful PPGN [Mar+19a] directly, which also server as base model of GNN-AK to

5PNA⇤ is a variant of PNA that changes from using degree to scale embeddings to encoding
degree and concatenate to node embeddings. This eliminates the need of computing average degree
of datasets in PNA.

48 Chapter 3. Using Subgraphs to Boost Expressivity

see its general uplift effect. GatedGCN [Dwi+20], DGN [Bea+21], PNA [Cor+20],
GSN[Bou+20], HIMP [FYW20], and CIN [Bod+21a] are referenced directly from
literature for real-world datasets comparison.

Hyperparameter and model configuration. To reduce the search space, we
search hyperparameters in a two-phase approach: First, we search common ones (hid-
den size from [64, 128], number of layers L from [2,4,5,6], (sub)graph pooling from
[SUM, MEAN] for each dataset using GIN based on validation performance, and fix
it for any other GNN and GNN-AK(+). While hyperparameters may not be optimal
for other GNN models, the evaluation is fair as there is no benefit for GNN-AK(+).
Next, we search GNN-AK(+) exclusive ones (encoding types) over validation set using
GIN-AK(+) and keep them fixed for other GNN-AK(+). We use a 1-layer base model
for GNN-AK(+), with exceptions that we tune number of layers of base model (while
keeping total number of layers fixed) for GNN-AK in simulation datasets (presented in
Table 3.2). We use 3-hop egonets for GNN-AK(+), with exceptions that CIFAR10 uses
2-hop egonet due to memory constraint; PATTERN and RDT-B use random walk
based subgraph with walk length=10 and repeat times=5 as their graphs are dense.
For GNN-AK(+)-S, R = 3 is set as default. We use farthest sampling for molecular
datasets ZINC, MolHIV, and MolPCBA; to speed up further, random sampling is
used for CIFAR10 whose graphs are k-NN graphs; min-set-cover sampling is used for
PATTERN to adapt random walk based subgraph. We use Batch Normalization and
ReLU activation in all models. For optimization we use Adam with learning rate
0.001 and weight decay 0. All experiments are repeated 3 times to calculate mean
and standard derivation. All experiments are conducted on RTX-A6000 GPUs.

3.6.1 Empirical Verification of Expressiveness

Table 3.2: Simulation dataset performance: GNN-AK(+) boosts base GNN across tasks,

empirically verifying expressiveness lift. (ACC: accuracy, MAE: mean absolute error, OOM:
out of memory)

Method EXP
(ACC)

SR25
(ACC)

Counting Substructures (MAE) Graph Properties (log10(MAE))
Triangle Tailed Tri. Star 4-Cycle IsConnected Diameter Radius

GCN 50% 6.67% 0.4186 0.3248 0.1798 0.2822 -1.7057 -2.4705 -3.9316
GCN-AK+ 100% 6.67% 0.0137 0.0134 0.0174 0.0183 -2.6705 -3.9102 -5.1136

GIN 50% 6.67% 0.3569 0.2373 0.0224 0.2185 -1.9239 -3.3079 -4.7584
GIN-AK 100% 6.67% 0.0934 0.0751 0.0168 0.0726 -1.9934 -3.7573 -5.0100
GIN-AK+ 100% 6.67% 0.0123 0.0112 0.0150 0.0126 -2.7513 -3.9687 -5.1846

PNA⇤ 50% 6.67% 0.3532 0.2648 0.1278 0.2430 -1.9395 -3.4382 -4.9470
PNA⇤-AK+ 100% 6.67% 0.0118 0.0138 0.0166 0.0132 -2.6189 -3.9011 -5.2026

PPGN 100% 6.67% 0.0089 0.0096 0.0148 0.0090 -1.9804 -3.6147 -5.0878
PPGN-AK+ 100% 100% OOM OOM OOM OOM OOM OOM OOM

Table 3.2 presents the results on simulation datasets. To save space we present
GNN-AK+ with different base models but only one one version of GNN-AK: GIN-AK.
All GNN-AK(+) variants perform perfectly on EXP, while only PPGN alone do so
previously. Moreover, PPGN-AK+ reaches perfect accuracy on SR25, while PPGN
fails. Similarly, GNN-AK(+) consistently boosts all MPNNs for substructure and graph
property prediction (PPGN-AK+ is OOM as it is quadratic in input size).

In Table 3.3 we look into PPGN-AK’s performance on SR25 as a function of k-
egonets (k2[1, 2]), as well as the number of PPGN (inner) layers and (outer) iterations
for PPGN-AK. We find that at least 2 inner layers is needed with 1-egonet subgraphs
to achieve top performance. With 2-egonets more inner layers helps, although perfor-
mance is sub-par, attributed to PPGN’s disability to distinguish larger (sub)graphs,
aligning with Proposition 1 (Sec. 3.3.2).

3.6. Experiments 49

Table 3.3: PPGN-AK expressiveness on SR25.

Base PPGN’s #L 1-hop egonet 2-hop egonet
PPGN-AK’s #L 1 2 3 1 2 3

1 26.67% 100% 100% 26.67% 26.67% 46.67%
2 33.33% 100% 100% 26.67% 26.67% 53.33%
3 26.67% 100% 100% 33.33% 26.67% 53.33%

3.6.2 Comparing with SOTA and Generality

Having studied expressiveness tasks, we turn to performance on real-world datasets, as
shown in Table 3.4. We observe similar performance lifts across all datasets and base
GNNs (we omit PPGN due to scalability), demonstrating our framework’s generality.
Remarkably, GNN-AK+ sets new SOTA performance for several benchmarks – ZINC,
CIFAR10, and PATTERN – with a relative error reduction of 60.3%, 50.5%, and
39.4% for base model being GCN, GIN, and PNA⇤ respectively.

Table 3.4: Real-world dataset performance: GNN-AK+
achieves SOTA performance for

ZINC-12K, CIFAR10, and PATTERN. (OOM: out of memory, �: missing values from
literature)

Method ZINC-12K (MAE) CIFAR10 (ACC) PATTERN (ACC) MolHIV (ROC) MolPCBA (AP)

GatedGCN 0.363 ± 0.009 69.37 ± 0.48 84.480 ± 0.122 � �

HIMP 0.151 ± 0.006 � � 0.7880 ± 0.0082 �

PNA 0.188 ± 0.004 70.47 ± 0.72 86.567 ± 0.075 0.7905 ± 0.0132 0.2838 ± 0.0035
DGN 0.168 ± 0.003 72.84 ± 0.42 86.680 ± 0.034 0.7970 ± 0.0097 0.2885 ± 0.0030
GSN 0.115 ± 0.012 � � 0.7799 ± 0.0100 �

CIN 0.079 ± 0.006 � � 0.8094 ± 0.0057 �

GCN 0.321 ± 0.009 58.39 ± 0.73 85.602 ± 0.046 0.7422 ± 0.0175 0.2385 ± 0.0019
GCN-AK+ 0.127 ± 0.004 72.70 ± 0.29 86.887 ± 0.009 0.7928 ± 0.0101 0.2846 ± 0.0002

GIN 0.163 ± 0.004 59.82 ± 0.33 85.732 ± 0.023 0.7881 ± 0.0119 0.2682 ± 0.0006
GIN-AK 0.094 ± 0.005 67.51 ± 0.21 86.803 ± 0.044 0.7829 ± 0.0121 0.2740 ± 0.0032
GIN-AK+ 0.080 ± 0.001 72.19 ± 0.13 86.850 ± 0.057 0.7961 ± 0.0119 0.2930 ± 0.0044
PNA⇤ 0.140 ± 0.006 73.11 ± 0.11 85.441 ± 0.009 0.7905 ± 0.0102 0.2737 ± 0.0009
PNA⇤-AK+ 0.085 ± 0.003 OOM OOM 0.7880 ± 0.0153 0.2885 ± 0.0006

GCN-AK+-S 0.127 ± 0.001 71.93 ± 0.47 86.805 ± 0.046 0.7825 ± 0.0098 0.2840 ± 0.0036
GIN-AK+-S 0.083 ± 0.001 72.39 ± 0.38 86.811 ± 0.013 0.7822 ± 0.0075 0.2916 ± 0.0029
PNA⇤-AK+-S 0.082 ± 0.000 74.79 ± 0.18 86.676 ± 0.022 0.7821 ± 0.0143 0.2880 ± 0.0012

We also report additional results on several smaller datasets from TUDataset
[Mor+20], with their statistics reported in last block of Table 3.1. The training setting
and evaluation procedure follows [Xu+19] exactly, where we perform 10-fold cross-
validation and report the average and standard deviation of validation accuracy across
the 10 folds within the cross-validation. We take results of existing baselines directly
from [Bod+21a] with their method labeled as CIN, for references to all baselines see
[Bod+21a]. The result is shown in Table 3.5.

We mark that the performance of GIN-AK+ over IMDB-B is not improved because
each graph in the dataset is an egonet, hence all nodes have the same rooted subgraph
– the whole graph. The performance of MUTAG and PTC is very unstable, given
these datasets are too small: 188 and 344, respectively, and the evaluation method is
based on average 10 validation curves over 10 folds.

3.6.3 Scaling up by Subsampling

In some cases, GNN-AK (+)’s overhead leads to OOM, especially for complex models
like PNA⇤ that are resource-demanding. Sampling with SubgraphDrop enables train-
ing using practical resources. Notably, GNN-AK+-S models, shown at the end of Table

50 Chapter 3. Using Subgraphs to Boost Expressivity

Table 3.5: Results on TU Datasets. First section contains methods of graph kernels, sec-
ond section has GNNs, and third is the method in [Bod+21a]. The top two are highlighted

by First, Second, Third.

Dataset MUTAG PTC PROTEINS NCI1 IMDB-B RDT-B

RWK 79.2±2.1 55.9±0.3 59.6±0.1 >3 days N/A N/A
GK (k = 3) 81.4±1.7 55.7±0.5 71.4±0.31 62.5±0.3 N/A N/A
PK 76.0±2.7 59.5±2.4 73.7±0.7 82.5±0.5 N/A N/A
WL kernel 90.4±5.7 59.9±4.3 75.0±3.1 86.0±1.8 73.8±3.9 81.0±3.1

DCNN N/A N/A 61.3±1.6 56.6±1.0 49.1±1.4 N/A
DGCNN 85.8±1.8 58.6±2.5 75.5±0.9 74.4±0.5 70.0±0.9 N/A
IGN 83.9±13.0 58.5±6.9 76.6±5.5 74.3±2.7 72.0±5.5 N/A
GIN 89.4±5.6 64.6±7.0 76.2±2.8 82.7±1.7 75.1±5.1 92.4±2.5

PPGNs 9 0.6±8.7 66.2±6.6 77.2±4.7 83.2±1.1 73.0±5.8 N/A
Natural GN 89.4±1.6 66.8±1.7 71.7±1.0 82.4±1.3 73.5±2.0 N/A
GSN 92.2 ± 7.5 68.2 ± 7.2 76.6 ± 5.0 83.5 ± 2.0 77.8 ± 3.3 N/A
SIN N/A N/A 76.4 ± 3.3 82.7 ± 2.1 75.6 ± 3.2 92.2 ± 1.0
CIN 92.7 ± 6.1 68.2 ± 5.6 77.0 ± 4.3 83.6 ± 1.4 75.6 ± 3.7 92.4 ± 2.1

GIN-AK+
91.3 ± 7.0 67.7 ± 8.8 77.1 ± 5.7 85.0 ± 2.0 75.0 ± 4.2 94.8 ± 0.8

3.4, do not compromise and can even improve performance as compared to their
non-sampled counterpart, in alignment with Dropout’s benefits [Sri+14]. Next we
evaluate resource-savings, specifically on ZINC-12K and CIFAR10. Table 3.6 shows
that GIN-AK+-S with varying R provides an effective handle to trade off resources with
performance. Importantly, the rate in which performance decays with smaller R is
much lower than the rates at which runtime and memory decrease.

Table 3.6: Resource analysis of SubgraphDrop.

Dataset GIN-AK+-S
GIN-AK+ GIN

R=1 R=2 R=3 R=4 R=5

ZINC-12K
MAE 0.1216 0.0929 0.0846 0.0852 0.0854 0.0806 0.1630
Runtime (S/Epoch) 10.8 11.2 12.0 12.4 12.5 9.4 6.0
Memory (MB) 392 811 1392 1722 1861 1911 124

CIFAR10
ACC 71.68 72.07 72.39 72.20 72.32 72.19 59.82
Runtime (S/Epoch) 80.7 89.1 100.5 110.9 119.7 241.1 55.0
Memory (MB) 2576 4578 6359 8716 10805 30296 801

3.6.4 Ablation Study

We present ablation results on various structural components of GNN-AK. Table 3.7
shows the performance of GIN-AK for varying size egonets with k. We find that larger
subgraphs tend to yield improvement, although runtime-performance trade-off may
vary by dataset. Notably, simply 1-egonets are enough for CIFAR10 to uplift perfor-
mance of the base GIN considerably.

Table 3.7: Effect of various k-
egonet size.

k of GIN-AK+ ZINC-12K CIFAR10

GIN 0.163 ± 0.004 59.82 ± 0.33

k = 1 0.147 ± 0.006 71.37 ± 0.28
k = 2 0.120 ± 0.005 72.19 ± 0.13
k = 3 0.080 ± 0.001 OOM

Table 3.8: Effect of various encodings

Ablation of GIN-AK+ ZINC-12K CIFAR10

Full 0.080 ± 0.001 72.19 ± 0.13

w/o Subgraph encoding 0.086 ± 0.001 67.76 ± 0.29
w/o Centroid encoding 0.084 ± 0.003 72.20 ± 0.96
w/o Context encoding 0.088 ± 0.003 69.25 ± 0.30
w/o Distance-to-Centroid 0.085 ± 0.001 71.91 ± 0.22

Next Table 3.8 illustrates the added benefit of various node encodings. Compared
to the full design, eliminating any of the subgraph, centroid, or context encodings (Eq.s
(3.3)–(3.5)) yields notably inferior results. Encoding without distance awareness is

3.6. Experiments 51

also subpar. These justify the design choices in our framework and verify the practical
benefits of our design.

As GNN-AK+ is not directly explained by Subgraph-1-WL⇤ (though D2C is sup-
ported by Subgraph-1-WL, by strengthening HASH), we conduct additional ablation
studies over GNN-AK+ with different combinations of removing context encoding and
D2C, shown in Table 3.9. Note that all experiments in Table 3.9 are using a 1-layer
base GIN model. We summarize the observations as follows.
• For real-world datasets (ZINC-12K, CIFAR10), We observe that the largest perfor-

mance improvement over base model comes from wrapping base GNN with Eq.3.2
(the performance of GIN-AK), while adding context encoding and D2C monotoni-
cally improves performance of GNN-AK+.

• For substructure counting and graph property regression tasks, we observe D2C sig-
nificantly increases the performance of GIN-AK+ w/o Ctx (supported by the theory
of Subgraph-1-WL where the HASH is required to be injective). Specifically, the
cost-free D2C feature enhances the expressiveness of the base 1-layer GIN model
(similar to the benefit of distance encoding shown in [Li+20]), resulting in a more
expressive GNN-AK+, which lies between Subgraph-1-WL and Subgraph-1-WL⇤. We
leave the exact theoretical analysis of D2C’s expressiveness benefit in future work.
Notice that GIN-AK improves the performance over the base model but not in a
large margin, we next show this is due to the insufficiency of the number of layers
of base GIN.

Table 3.9: Study GNN-AK without context encoding (Ctx) and without distance-to-
centroid (D2C). Base model is 1-layer GIN for all methods.

Method ZINC-12K
(MAE)

CIFAR10
(ACC)

EXP
(ACC)

SR25
(ACC)

Counting Substructures (MAE) Graph Properties (log10(MAE))

Triangle Tailed Tri. Star 4-Cycle IsConnected Diameter Radius

GIN 0.163 59.82 50% 6.67% 0.3569 0.2373 0.0224 0.2185 -1.9239 -3.3079 -4.7584

GIN-AK 0.094 67.51 100% 6.67% 0.2311 0.1805 0.0207 0.1911 -1.9574 -3.6925 -5.0574

GIN-AK+ w/o Ctx 0.088 69.25 100% 6.67% 0.0130 0.0108 0.0177 0.0131 -2.7083 -3.9257 -5.2784
GIN-AK+ w/o D2C 0.085 71.91 100% 6.67% 0.1746 0.1449 0.0193 0.1467 -2.0521 -3.6980 -5.0984

GIN-AK+ 0.080 72.19 100% 6.67% 0.0123 0.0112 0.0150 0.0126 -2.7513 -3.9687 -5.1846

Table 3.10: Study the effect of base model’s number of layers while keeping total number
of layers in GNN-AK fixed. Different effect is observed for GNN-AK and GNN-AK without

D2C.

Method GIN-AK’s
#Layers

Base GIN’s
#Layers

Counting Substructures (MAE) Graph Properties (log10(MAE))

Triangle Tailed Tri. Star 4-Cycle IsConnected Diameter Radius

GIN 0 6 0.3569 0.2373 0.0224 0.2185 -1.9239 -3.3079 -4.7584

GIN-AK 6 1 0.2311 0.1805 0.0207 0.1911 -1.9574 -3.6925 -5.0574
3 2 0.1556 0.1275 0.0172 0.1419 -1.9134 -3.7573 -5.0100
2 3 0.1064 0.0819 0.0168 0.1071 -1.9259 -3.7243 -4.9257
1 6 0.0934 0.0751 0.0216 0.0726 -1.9916 -3.6555 -4.9249

GIN-AK+ w/o D2C

6 1 0.1746 0.1449 0.0193 0.1467 -2.0521 -3.6980 -5.0984
3 2 0.1244 0.1052 0.0219 0.1121 -2.1538 -3.7305 -4.9250
2 3 0.1021 0.0830 0.0162 0.0986 -2.2268 -3.7585 -5.1044
1 6 0.0885 0.0696 0.0174 0.0668 -2.0541 -3.6834 -4.8428

GIN-AK+ with D2C

6 1 0.0123 0.0112 0.0150 0.0126 -2.7513 -3.9687 -5.1846
3 2 0.0116 0.0100 0.0168 0.0122 -2.6827 -3.8407 -5.1034
2 3 0.0119 0.0102 0.0146 0.0127 -2.6197 -3.8745 -5.1177
1 6 0.0131 0.0123 0.0174 0.0162 -2.5938 -3.7978 -5.0492

According to Prop. 1, the base model must be discriminative enough such that
HASH(G[Nk(vGi)]) 6= HASH(H[Nk(vHi)]), for Subgraph-1-WL with k-egonet to enjoy
expressiveness benefits. In addition to using D2C to increase the expressiveness of

52 Chapter 3. Using Subgraphs to Boost Expressivity

base model, another way is to practically increase the number of layers of the base
model (akin to increasing the number of iterations of 1-WL, as in the definition of
Subgraph-1-WL⇤). We study the effect of base model’s number of layers in GNN-AK+,
with and without D2C in Table 3.10.
• Firstly, GNN-AK+ with D2C is insensitive to the depth of base model, with 1-layer

base model being enough to achieve great performance in counting substructures
and the best performance in regressing graph properties. We hypothesize that
D2C-enhanced 1-layer GIN base model is discriminative enough for subgraphs in the
dataset, and without expressiveness bottleneck of base model, increasing GNN-AK+’s
depth benefits expressiveness, akin to increasing iterations of Subgraph-1-WL. Be-
sides, unlike counting substructure that needs local information within subgraphs,
regressing graph properties needs the graph’s global information which can only be
accessed with increasing GNN-AK+’s (outer) depth.

• Secondly, GNN-AK(+) without D2C suffers from a trade-off between the base model’s
expressiveness (depth of base model) and the number of GNN-AK(+) layers (outer
depth), which is clearly observed in regressing graph properties. We hypothesize
that without D2C the 1-layer GIN base model is not discriminative enough for
subgraphs in the dataset, and with this bottleneck of base model, GNN-AK(+) cannot
benefit from increasing the outer depth. Hence the number of layers of the base
model are important for the expressiveness of GNN-AK(+) when D2C is not used.

3.7 Conclusion

Our work introduces a new, general-purpose framework called GNN-As-Kernel (GNN-
AK) to uplift the expressiveness of any GNN, with the key idea of employing a base
GNN as a kernel on induced subgraphs of the input graph, generalizing from the
star-pattern aggregation of classical MPNNs. Our approach provides an expressive-
ness and performance boost, while retaining practical scalability of MPNNs—a highly
sought-after middle ground between the two regimes of scalable yet less-expressive
MPNNs and high-expressive yet practically infeasible and poorly-generalizing k-order
designs. We theoretically studied the expressiveness of GNN-AK, provided a concrete
design and the more powerful GNN-AK+, introducing SubgraphDrop for shrinking run-
time and memory footprint. Extensive experiments on both simulated and real-world
benchmark datasets empirically justified that GNN-AK(+) (i) uplifts base GNN ex-
pressiveness for multiple base GNN choices (e.g. over 1&2-WL for MPNNs, and over
3-WL for PPGN), (ii) which translates to performance gains with SOTA results on
graph-level benchmarks, (iii) while retaining scalability to practical graphs.

53

Chapter 4

Using Unordered High Order
Interactions

Chapter based on: Lingxiao Zhao, Louis Härtel, Neil Shah, and Leman Akoglu.
“A Practical, Progressively-Expressive GNN”. in: 36th Conference on Neural In-
formation Processing Systems. 2022. url: https://openreview.net/forum?
id=WBv9Z6qpA8x.

4.1 Introduction

In recent years, graph neural networks (GNNs) have gained considerable attention
[Wu+20a; Wu+20b] for their ability to tackle various node-level [KW17; Vel+18],
link-level [Zha+20; San+21] and graph-level [Bod+21a; Mar+19a] learning tasks,
given their ability to learn rich representations for complex graph-structured data.
The common template for designing GNNs follows the message passing paradigm;
these so-called message-passing neural networks (MPNNs) are built by stacking layers
which encompass feature transformation and aggregation operations over the input
graph [Ma+20; Gil+17]. Despite their advantages, MPNNs have several limitations
including oversmoothing [ZA20b; Che+20a; OS20], oversquashing [AY21; Top+21],
inability to distinguish node identities [You+21] and positions [YYL19], and expressive
power [Xu+19].

Since Xu et al.’s [Xu+19] seminal work showed that MPNNs are at most as pow-
erful as the first-order Weisfeiler-Leman (1-WL) test in the graph isomorphism (GI)
testing framework, there have been several follow-up works on improving the under-
standing of GNN expressiveness [Arv+20; Che+20b]. In response, the community
proposed many GNN models to overcome such limitations [Sat20; AL21; Zha+22c].
Several of these aim to design powerful higher-order GNNs which are increasingly ex-
pressive [Mor+19; Mar+19c; KP19; Bod+21a] by inspiration from the k-WL hierarchy
[She+11].

A key limitation of such higher-order models that reach beyond 1-WL is their poor
scalability; in fact, these models can only be applied to small graphs with small k in
practice [Mar+19a; Mar+19c; Mor+19] due to combinatorial growth in complexity.
On the other hand lies an open question on whether practical graph learning tasks
indeed need such complex, and extremely expressive GNN models. Historically, Babai
et al. [BES80] showed that almost all graphs on n nodes can be distinguished by 1-
WL. In other contexts like node classification, researchers have encountered superior
generalization performance with graph-augmented multi-layer perceptron (GA-MLP)
models [Ros+20; KBG19] compared to MPNNs, despite the former being strictly less
expressive than the latter [CCB20]. Considering that increased model complexity has

https://openreview.net/forum?id=WBv9Z6qpA8x
https://openreview.net/forum?id=WBv9Z6qpA8x

54 Chapter 4. Using Unordered High Order Interactions

1
2

4
3

5

1

2

3

4

5

12

13

14

15

23

24

25

34

35

45

123

124

125

134

135

145

234

235

245

345

Input Graph
1-sets

2-sets 3-sets
c=1 sets

c=2 sets

c=3 sets

super-edges in (3, >=1) super-graph

super-edges in (3, >=2) super-graph

super-edges only in (3, 3) super-graph

3-Bipartite Super-graph

1

1
2

Extract ≤3 Sets Subgraphs

...
...

1 5

4
3

5

1
4 5

...
...

GNN

GNN

GNN

GNN

GNN

...
...

...
...

1

12

15

345

145

...
...

...
...

Init Set "Color"

Build Super-graph

Bidirectional M
essage Passing

Bidirectional M
essage Passing

All
3(≤)-Sets

Colors
(Emb.)

Pooling

Graph Emb.

Backward
Forward

k-Bipartite GNN on
Super-graph

Figure 4.1: Main steps of (k, c)()-SetGNN. Given a graph and (k, c), we build the
(k, c)-bipartite super-graph (in middle) containing sets with up to k nodes and c connected
components in the induced subgraph, on which a base GNN assigns initial “colors”. Bidirec-
tional bipartite GNN layers with frw.-bckw. message passing learn set embeddings, pooled
into graph embedding. The size of super-graph, and accordingly its expressiveness, grows
progressively with increasing k and c. The 2-bipartite message passing generalizes normal

GNN, edge GNN, and line graph (see Appendix. A12 in [Zha+22b]).

negative implications in terms of overfitting and generalization [Haw04], it is worth re-
evaluating continued efforts to pursue maximally expressive GNNs in practice. Ideally,
one could study these models’ generalization performance on various real-world tasks
by increasing k (expressiveness) in the k-WL hierarchy. Yet, given the impracticality
of this too-coarse “ruler” of expressiveness, which becomes infeasible beyond k>3,
one desires a more fine-grained “ruler”, that is, a new hierarchy whose expressiveness
grows more gradually. Such a hierarchy could enable us to gradually build more
expressive models which admit improved scaling, and avoid unnecessary leaps in model
complexity for tasks which do not require them, guarding against overfitting.

Present Work. In this paper, we propose such a hierarchy, and an associated
practical progressively-expressive GNN model, called (k, c)()-SetGNN, whose ex-
pressiveness can be modulated through k and c. In a nutshell, we take inspiration
from k-WL, yet achieve practicality through three design ideas which simplify key
bottlenecks of scaling k-WL: First, we move away from k-tuples of the original k-WL
to k-multisets (unordered), and then to k()-sets. We demonstrate that these steps
drastically reduce the number nodes in the k-WL graph while retaining significant
expressiveness. (Sec.s 4.3.2�4.3.3) Second, by considering the underlying sparsity
of an input graph, we reduce scope to k, c()-sets that consist of k nodes whose
induced subgraph is comprised of ck connected components. This also yields mas-
sive reduction in the number of nodes while improving practicality; i.e. small values of
c on sparse graphs can allow one to increase k well beyond 3 in practice. (Sec. 4.3.4)
Third, we design a super-graph architecture that consists of a sequence of k�1 bipar-
tite graphs over which we learn embeddings for our k, c()-sets, using bidirectional
message passing. These embeddings can be pooled to yield a final graph embedding..
(Sec.s 4.4.1�4.4.2) We also speed up initializing “colors” for the k, c()-sets, for c > 1,
substantially reducing computation and memory. (Sec. 4.4.3) Fig. 4.1 overviews of
our proposed framework. Experimentally, our (k, c)()-SetGNN outperforms exist-
ing state-of-the-art GNNs on simulated expressiveness as well as real-world graph-level
tasks, achieving new bests on substructure counting and ZINC-12K, respectively. We
show that generalization performance reflects increasing expressiveness by k and c.
Our proposed scalable designs allow us to train models with e.g. k=10 or c=3 with

4.2. Related Work 55

practical running time and memory requirements.

4.2 Related Work

MPNN limitations. Given the understanding that MPNNs have expressiveness
upper-bounded by 1-WL [Xu+19], several researchers investigated what else MPNNs
cannot learn. To this end, Chen et al. [Che+20b] showed that MPNNs cannot count
induced connected substructures of 3 or more nodes, while along with [Che+20b],
Arvind et al. [Arv+20] showed that MPNNs can only count star-shaped patterns.
Loukas [Lou20b] further proved several results regarding decision problems on graphs
(e.g. subgraph verification, cycle detection), finding that MPNNs cannot solve these
problems unless strict conditions of depth and width are met. Moreover, Garg et
al. [GJJ20] showed that many standard MPNNs cannot compute properties such as
longest or shortest cycles, diameters or existence of cliques.

Improving expressivity. Several works aim to improve expressiveness limita-
tions of MPNNs. One approach is to inject features into the MPNN aggregation,
motivated by Loukas [Lou20b] who showed that MPNNs can be universal approxi-
mators when nodes are sufficiently distinguishable. Sato et al. [SYK21] show that
injecting random features can better enable MPNNs to solve problems like minimum
dominating set and maximum matching. You et al. [You+21] inject cycle counts as
node features, motivated by the limitation of MPNNs not being able to count cycles.
Others proposed utilizing subgraph isomorphism counting to empower MPNNs with
substructure information they cannot learn [Bou+20; Bod+21a]. Earlier work by
You et al. [YYL19] adds positional features to distinguish node which naïve MPNN
embeddings would not. Recently, several works also propose utilizing subgraph ag-
gregation; Zhang et al. [ZL21], Zhao et al. [Zha+22c] and Bevilacqua et al. [Bev+22]
propose subgraph variants of the WL test which are no less powerful than 3-WL. Re-
cently a following up work [Fra+22] shows that rooted subgraph based extension with
1-WL as kernel is bounded by 3-WL. The community is yet exploring several distinct
avenues in overcoming limitations: Murphy et al. [Mur+19] propose a relational pool-
ing mechanism which sums over all permutations of a permutation-sensitive function
to achieve above-1-WL expressiveness. Balcilar et al. [Bal+21] generalizes spatial
and spectral MPNNs and shows that instances of spectral MPNNs are more powerful
than 1-WL. Azizian et al. [AL21] and Geerts et al. [GR22] unify expressivity and
approximation ability results for existing GNNs.

k-WL-inspired GNNs. The k-WL test captures higher-order interactions in
graph data by considering all k-tuples, i.e., size k ordered multisets defined over the
set of nodes. While highly expressive, it does not scale to practical graphs beyond
a very small k (k = 3 pushes the practical limit even for small graphs). However,
several works propose designs which can achieve k-WL in theory and strive to make
them practical. Maron et al. [Mar+19c] proposes a general class of invariant graph
networks k-IGNs having exact k-WL expressivity [Gee20], while being not scalable.
Morris et al. have several work on k-WL and its variants like k-LWL [MKM17], k-
GNN [Mor+19], and �-k-WL-GNN [MRM20]. Both k-LWL and k-GNN use a variant
of k-WL that only considers k-sets and are strictly weaker than k-WL but much more
practical. In our paper we claim that k()-sets should be used with additional designs
to keep the best expressivity while remaining practical. The �-k-WL-GNN works with
k-tuples but sparsifies the connections among tuples by considering locality. Qian
et al. [Qia+22] extends the k-tuple to subgraph network but has same scalability
bottleneck as k-WL. A recent concurrent work SpeqNet [Mor+22] proposes to reduce

56 Chapter 4. Using Unordered High Order Interactions

number of tuples by restricting the number of connected components of tuples’ induced
subgraphs. The idea is independently explored in our paper in Sec.4.3.4. All four
variants proposed by Morris et al. do not have realizations beyond k > 3 in their
experiments while we manage to reach k = 10. Interestingly, a recent work [Kim+22]
links graph transformer with k-IGN that having better (or equal) expressivity, however
is still not scalable.

4.3 A practical progressively-expressive isomorphism test:

(k, c)()-SetWL

We first motivate our method (k, c)()-SetGNN from the GI testing perspective by
introducing (k, c)()-SetWL. We first introduce notation and background of k-WL
(Sec. 4.3.1). Next, we show how to increase the practicality of k-WL without reducing
much of its expressivity, by removing node ordering (Sec. 4.3.2), node repetitions
(Sec. 4.3.3), and leveraging graph sparsity (Sec. 4.3.4). We then give the complexity
analysis (Sec. 4.3.5). We close the section with extending the idea to k-FWL which
is as expressive as (k+1)-WL (Sec. 4.3.6). All proofs can be found in Appendix of
[Zha+22b].

Notation: Let G = (V (G), E(G), lG) be an undirected, colored graph with nodes
V (G), edges E(G), and a color-labeling function lG : V (G)! C where C = {c1, ..., cd}
denotes a set of d distinct colors. Let [n] = {1, 2, 3, ..., n}. Let (·) denote a tuple
(ordered multiset), {{·}} denote a multiset (set which allows repetition), and {·} denote
a set. We define �!v = (v1, ..., vk) as a k-tuple, ṽ = {{v1, ..., vk}} as a k-multiset, and v̂ =
{v1, ..., vk} as a k-set. Let �!v [x/i] = (v1, ..., vi�1, x, vi+1, ..., vk) denote replacing the
i-th element in �!v with x, and analogously for ṽ[x/i] and v̂[x/i] (assume mutlisets and
sets are represented with the canonical ordering). When vi 2 V (G), let G[�!v], G[ṽ],
G[v̂] denote the induced subgraph on G with nodes inside�!v , ṽ, v̂ respectively (keeping
repetitions). An isomorphism between two graphs G and G0 is a bijective mapping p :
V (G) ! V (G0) which satisfies 8u, v 2 V (G), (u, v) 2 E(G) () (p(u), p(v)) 2 E(G0)
and 8u 2 V (G), lG(u) = lG0(p(u)). Two graphs G,G0 are isomorphic if there exists an
isomorphism between them, which we denote as G ⇠= G0.

4.3.1 Preliminaries: the k-Weisfeiler-Leman (k-WL) Graph Isomor-
phism Test

The 1-dimensional Weisfeiler-Leman (1-WL) test, also known as color refinement
[RC77] algorithm, is a widely celebrated approach to (approximately) test GI. Al-
though extremely fast and effective for most graphs (1-WL can provide canonical
forms for all but n�1/7 fraction of n-vertex graphs [BES80]), it fails to distinguish
members of many important graph families, such as regular graphs. The more pow-
erful k-WL algorithm first appeared in [Wei76], and extends coloring of vertices (or
1-tuples) to that of k-tuples. k-WL is progressively expressive with increasing k, and
can distinguish any finite set of graphs given a sufficiently large k. k-WL has many
interesting connections to logic, games, and linear equations [CFI92; GO15]. Another
variant of k-WL is called k-FWL (Folklore WL), such that (k + 1)-WL is equally
expressive as k-FWL [CFI92; Gro21]. Our work focuses on k-WL.

k-WL iteratively recolors all nk k-tuples defined on a graph G with n nodes. At it-
eration 0, each k-tuple �!v = (v1, ..., vk) 2 V (G)k is initialized with a color as its atomic
type atk(G,�!v). Assume G has d colors, then atk(G,�!v) 2 {0, 1}2(

k

2)+kd is an or-
dered vector encoding. The first

�
k

2

�
entries indicate whether vi = vj , 8i, j, 1i<jk,

4.3. A practical progressively-expressive isomorphism test: (k, c)()-SetWL 57

which is the node repetition information. The second
�
k

2

�
entries indicate whether

(vi, vj) 2 E(G). The last kd entries one-hot encode the initial color of vi, 8i, 1  i  k.
Importantly, atk(G,�!v) = atk(G0,

�!
v0) if and only if vi 7! v0

i
is an isomorphism from

G[�!v] to G0[
�!
v0]. Let wl(t)

k
(G,�!v) denote the color of k-tuple �!v on graph G at t-th

iteration of k-WL, where colors are initialized with wl(0)
k

(G,�!v) = atk(G,�!v).
At the t-th iteration, k-WL updates the color of each �!v 2 V (G)k according to

wl
(t+1)
k

(G,
�!v)=HASH

⇣
wl

(t)
k

(G,
�!v),

nn
wl

(t)
k

(G,
�!v [x/1])

���x2V (G)

oo
,...,

nn
wl

(t)
k

(G,
�!v [x/k])

���x2V (G)

oo⌘

(4.1)

Let gwl(t)
k

(G) denote the encoding of G at t-th iteration of k-WL. Then,

gwl(t)k (G) = HASH
✓⇢⇢

wl(t)k (G,�!v)
����!v 2 V (G)k

��◆
(4.2)

Two k-tuples �!v and �!u are connected by an edge if |{i 2 [k]|vi = ui}| = k � 1,
or informally if they share (k�1) entries. Then, k-WL defines a super-graph Sk-wl(G)
with its nodes being all k-tuples in G, and edges defined as above. Eq. (4.1) defines
the rule of color refinement on Sk-wl(G). Intuitively, k-WL is akin to (but more pow-
erful as it orders subgroups of neighbors) running 1-WL algorithm on the supergraph
Sk-wl(G). As t!1, the color wl(t+1)

k
(G,�!v) converges to a stable value, denoted as

wl(1)
k

(G,�!v) and the corresponding stable graph color denoted as gwl(1)
k

(G). For two
non-isomorphic graphs G,G0, k-WL can successfully distinguish them if gwl(1)

k
(G) 6=

gwl(1)
k

(G0). The expressivity of wl(t)
k

can be exactly characterized by first-order
logic with counting quantifiers. Let C

t

k
denote all first-order formulas with at most

k variables and t-depth counting quantifiers, then wl(t)
k

(G,�!v) = wl(t)
k

(G0,
�!
v0) ()

8� 2 C
t

k
,�(G,�!v) = �(G0,

�!
v0). Additionally, there is a t-step bijective pebble game

that are equivalent to t-iteration k-WL in expressivity. See Appendix in [Zha+22b]
for the pebble game characterization of k-WL.

Despite its power, k-WL uses all nk tuples and has O(knk) complexity at each
iteration.

4.3.2 From k-WL to k-MultisetWL: Removing Ordering

Our first proposed adaptation to k-WL is to remove ordering in each k-tuple, i.e.
changing k-tuples to k-multisets. This greatly reduces the number of supernodes to
consider by O(k!) times.

Let ṽ = {{v1, ..., vk}} be the corresponding multiset of tuple �!v = (v1, ..., vk).
We introduce a canonical order function on G, oG : V (G)! [n], and a corresponding
indexing function o�1

G
(ṽ, i), which returns the i-th element of v1, ..., vk sorted according

to oG. Let mwl(t)
k

(G, ṽ) denote the color of the k-multiset ṽ at t-th iteration of k-
MultisetWL, formally defined next.

At t = 0, we initialize the color of ṽ as mwl(0)
k

(G, ṽ) = HASH
�
{{atk(G, p(ṽ))|p 2

perm[k]}}
�

where perm[k]1 denotes the set of all permutation mappings of k elements.
It can be shown that mwl(0)

k
(G, ṽ) = mwl(0)

k
(G0, ṽ0) if and only if G[ṽ] and G0[ṽ0]

are isomorphic.
1This function should also consider repeated elements; we omit this for clarity of presentation.

58 Chapter 4. Using Unordered High Order Interactions

At t-th iteration, k-MultisetWL updates the color of every k-multiset by

mwl(t+1)
k (G, ṽ) = HASH

✓
mwl(t)k (G, ṽ),

⇢⇢
{{mwl(t)k (G, ṽ[x/o�1

G (ṽ, 1)])
��x 2 V (G)}}, (4.3)

...,{{mwl(t)k (G, ṽ[x/o�1
G (ṽ, k)])

��x 2 V (G)}}
��◆

Where ṽ[x/o�1
G

(ṽ, i)]) denotes replacing the i-th (ordered by oG) element of the multi-
set with x 2 V (G). Let Sk-mwl(G) denote the super-graph defined by k-MultisetWL.
Similar to Eq. (4.2), the graph level encoding is gmwl(t)

k
(G) = HASH({{mwl(t)

k

�
G, ṽ

���8ṽ 2
V (Sk-mwl(G))}}

�
.

Interestingly, although k-MultisetWL has significantly fewer number of node
groups than k-WL, we show it is no less powerful than k-1-WL in terms of distin-
guishing graphs, while being upper bounded by k-WL in distingushing both node
groups and graphs.

Theorem 4.3.1. Let k � 1 and wl(t)
k

(G, ṽ) := {{wl(t)
k

(G, p(ṽ))|p 2 perm[k]}}. For
all t 2 N and all graphs G,G0: k-MultisetWL is upper bounded by k-WL in dis-
tinguishing multisets G, ṽ and G0, ṽ0 at t-th iteration, i.e. wl(t)

k
(G, ṽ) = wl(t)

k
(G0, ṽ0)

=) mwl(t)
k

(G, ṽ) = mwl(t)
k

(G0, ṽ0).

Theorem 4.3.2. k-MultisetWL is no less powerful than (k-1)-WL in distinguishing
graphs: for any k � 3 there exists graphs that can be distinguished by k-MultisetWL

but not by (k-1)-WL.

Theorem 4.3.2 is proved by using a variant of a series of CFI [CFI92] graphs which
cannot be distinguished by k-WL. This theorem shows that k-MultisetWL is in-
deed very powerful and finding counter examples of k-WL distinguishable graphs that
cannot be distinguished by k-MultisetWL is very hard. Hence we conjecture that k-
MultisetWL may have the same expressivity as k-WL in distinguishing undirected
graphs. Additionally, the theorem also implies that k-MultisetWL is strictly more
powerful than (k � 1)-MultisetWL.

We next give a pebble game characterization of k-MultisetWL, which is named
doubly bijective k-pebble game presented in Appendix of [Zha+22b]. The game is
used in the proof of Theorem 4.3.2.

Theorem 4.3.3. k-MultisetWL has the same expressivity as the doubly bijective
k-pebble game.

4.3.3 From k-MultisetWL to k()-SetWL: Removing Repetition

Next, we propose further removing repetition inside any k-multiset, i.e. transforming
k-multisets to k()-sets. We assume elements of k-multiset ṽ and k()-set v̂ in
G are sorted based on the ordering function oG, and omit oG for clarity. Let s(·)
transform a multiset to set by removing repeats, and let r(·) return a tuple with the
number of repeats for each distinct element in a multiset. Specifically, let v̂ = s(ṽ)
and n̂ = r(ṽ), then m := |v̂| = |n̂| 2 [k] denotes the number of distinct elements
in k-multiset ṽ, and 8i 2 [m], v̂i is the i-th distinct element with n̂i repetitions.
Clearly there is an injective mapping between ṽ and (v̂, n̂); let f be the inverse
mapping such that ṽ = f(s(ṽ), r(ṽ)). Equivalently, each m-set v̂ can be mapped
with a multiset of k-multisets: v̂ $ {{ṽ = f(v̂, n̂) |

P
m

i=1 n̂i = k, 8i n̂i � 1}}. Based
on this relationship, we extend the connection among k-multisets to k()-sets: given
m1,m2 2 [k], a m1-set v̂ is connected to a m2-set û if and only if 9n̂v, n̂u, f(v̂, n̂v) is

4.3. A practical progressively-expressive isomorphism test: (k, c)()-SetWL 59

connected with f(û, n̂u) in k-MultisetWL. Let Sk-swl(G) denote the defined super-
graph on G by k()-SetWL. It can be shown that this is equivalent to either (1)
(|m1 �m2| = 1) ^ (|v̂ \ û| = min(m1,m2)) or (2) (m1 = m2) ^ (|v̂ \ û| = m1 � 1)
is true. Notice that Sk-swl(G) contains a sequence of k�1 bipartite graphs with each
reflecting the connections among the (m�1)-sets and the m-sets. It also contains k�1
subgraphs, i.e. the connections among the m-sets for m = 2, ..., k. Later on we will
show that these k�1 subgraphs can be ignored without affecting k()-SetWL.

Let swl(t)
k

(G, v̂) denote the color of m-set v̂ at t-th iteration of k()-SetWL.
Now we formally define k()-SetWL. At t = 0, we initialize the color of a m-set v̂
(m 2 [k]) as:

swl(0)k (G, v̂) = HASH
�
{{mwl(0)k (G, f(v̂, n̂))

�� n̂1 + ... + n̂m = k, 8i n̂i � 1}}
�

(4.4)

Clearly swl(0)
k

(G, v̂) = swl(0)
k

(G0, v̂0) if and only if G[v̂] and G0[v̂0] are isomorphic.
At t-th iteration, k()-SetWL updates the color of every m-set v̂ by

swl(t+1)
k

(G, v̂) = HASH
✓
swl(t)

k
(G, v̂), {{swl(t)

k
(G, v̂ [{x}) | x 2 V (G) \ v̂}}, {{swl(t)

k
(G, v̂ \ x) | x 2 v̂}},

⇢⇢
{{swl(t)

k
(G, v̂[x/o�1

G
(v̂, 1)]) | x 2 V (G) \ v̂}}, ..., {{swl(t)

k
(G, v̂[x/o�1

G
(v̂,m)]) | x 2 V (G) \ v̂}}

��◆

(4.5)

Notice that when m = 1 and m = k, the third and second part of the hashing input
is an empty multiset, respectively. Similar to Eq. (4.2), we formulate the graph level
encoding as gswl(t)

k
(G) = HASH({{swl(t)

k

�
G, v̂

� �� 8v̂ 2 V (Sk-swl(G))}}
�
.

To characterize the relationship of their expressivity, we first extend k-MultisetWL

on sets by defining the color of a m-set v̂ on k-MultisetWL as mwl(t)
k

(G, v̂) :=

{{mwl(t)
k

(G, f(v̂, n̂))
�� Pm

i=1 v̂i = k, 8i n̂i � 1}}. We prove that k-MultisetWL is
at least as expressive as k()-SetWL in terms of separating node sets and graphs.

Theorem 4.3.4. Let k � 1, then 8t 2 N and all graphs G,G0: mwl(t)
k

(G, v̂) =

mwl(t)
k

(G0, v̂0) =) swl(t)
k

(G, v̂) = swl(t)
k

(G0, v̂0).

We also conjecture that k-MultisetWL and k()-SetWL could be equally ex-
pressive, and leave it to future work. As a single m-set corresponds to

�
k�1
m�1

�
k-

multisets, moving from k-MultisetWL to k()-SetWL further reduces the compu-
tational cost greatly.

4.3.4 From k()-SetWL to (k, c)()-SetWL: Accounting for Sparsity

Notice that for two arbitrary graphs G and G0 with equal number of nodes, the
number of k()-sets and the connections among all k()-sets in k()-SetWL are
exactly the same, regardless of whether they are dense or sparse. We next pro-
pose to account for the sparsity of a graph G to further reduce the complexity of
k()-SetWL. As the graph structure is encoded inside every m-set, when the graph
becomes sparser, there would be more sparse m-sets with a potentially large num-
ber of disconnected components. Based on the hypothesis that the induced subgraph
over a set (of nodes) with fewer disconnected components naturally contains more
structural information, we propose to restrict the k()-sets to be (k, c)()-sets: all
sets with at most k nodes and at most c connected components in its induced sub-
graph. Let Sk,c-swl(G) denote the super-graph defined by (k, c)()-SetWL, then
Sk,c-swl(G) = Sk-swl(G)[{v̂|#components(G[v̂])  c}], which is the induced subgraph
on the super-graph defined by k()-SetWL. Fortunately, Sk,c-swl(G) can be efficiently

60 Chapter 4. Using Unordered High Order Interactions

and recursively constructed based on S(k�1,c)-swl(G), and the construction algorithm
is inside the Appendix of [Zha+22b]. (k, c)()-SetWL can be defined similarly to
k()-SetWL (Eq. (4.4) and Eq. (4.5)), however while removing all colors of sets that
do not exist on Sk,c-swl(G).

(k, c)()-SetWL is progressively expressive with increasing k and c, and when
c = k, (k, c)()-SetWL becomes the same as k()-SetWL, as all k()-sets are then
considered. Let swl(t)

k,c
(G, v̂) denote the color of a (k, c)()-set v̂ on t-th iteration of

(k, c)()-SetWL, then gswl(t)
k,c

(G) = HASH({{swl(t)
k,c

�
G, v̂

���8v̂ 2 Sk,c-swl(G)
�
}}.

Theorem 4.3.5. Let k � 1, then 8t 2 N and all graphs G,G0:
(1) when 1  c1 < c2  k, if G,G0 cannot be distinguished by (k, c2)()-SetWL,

they cannot be distinguished by (k, c1)()-SetWL

(2) when k1 < k2, 8c  k1, if G,G0 cannot be distinguished by (k2, c)()-SetWL,
they cannot be distinguished by (k1, c)()-SetWL

4.3.5 Complexity Analysis

All color refinement algorithms described above run on a super-graph; thus, their com-
plexity at each iteration is linear to the number of supernodes and number of edges
of the super-graph. Instead of using bigO notation that ignores constant factors, we
compare the exact number of supernodes and edges. Let G be the input graph with n
nodes and average degree d. For k-WL, there are nk supernodes and each has n⇤k num-
ber of neighbors, hence Sk-wl(G) has nk supernodes and knk+1/2 edges. For m 2 [k],
there are

�
n

m

�
m-sets and each connects to m number of (m � 1)-sets. So Sk-swl hasP

k

i=1

�
n

i

�

�
n

k

�
n�k+1
n�2k+1 supernodes and

P
k

i=2 i
�
n

i

�
= n

P
k�1
i=1

�
n�1
i

�
 n

�
n�1
k�1

�
n�k+1
n�2k+2

edges (derivation in Appendix). Here we ignore edges within m-sets for any m 2 [k]
as they can be reconstructed from the bipartite connections among (m� 1)-sets and
m-sets, described in detail in Sec. 4.4.1. Consider e.g., n = 30, k = 5; we get
|V (Sk-wl(G))|
|V (Sk-swl(G))| = 139, |E(Sk-wl(G))|

|E(Sk-swl(G))| = 2182. Directly analyzing the savings by restricting
number of components is not possible without assuming a graph family. In Sec. 4.5.3
we measured the scalability for (k, c)()-SetGNN with different number of compo-
nents directly on sparse graphs, where (k, c)()-SetWL shares similar scalability.

4.3.6 Set version of k-FWL

k-FWL is a stronger GI algorithm and it has the same expressivity as k+1-WL [Gro21],
in this section we also demonstrate how to extend the set to k-FWL to get k()-

SetFWL. Let fwl(t)
k

(G,�!v) denote the color of k-tuple �!v at t-th iteration of k-FWL.
Then k-FWL is initialized the same as the k-WL, i.e. fwl(0)

k
(G,�!v) = wl(0)

k
(G,�!v).

At t-th iteration, k-FWL updates colors with

fwl
(t+1)
k

(G,
�!v)=HASH

⇣
fwl

(t)
k

(G,
�!v),

nn�
fwl

(t)
k

(G,
�!v [x/1]),...,fwl

(t)
k

(G,
�!v [x/k])

����x2V (G)

oo⌘
(4.6)

Let sfwl(t)
k

(G, v̂) denote the color of m-set v̂ at t-th iteration of k()-SetFWL.
Then at t-th iteration it updates with

sfwl
(t+1)
k

(G,v̂)=HASH
⇣
sfwl

(t)
k

(G,v̂),

nn��
sfwl

(t)
k

(G,v̂[x/1]),...,sfwl
(t)
k

(G,v̂[x/m])
 ���x2V (G)

oo⌘

(4.7)
The k()-SetFWL should have better expressivity than k()-SetWL. We show in
the next section that k()-SetWL can be further improved with less computation
through an intermediate step while this is nontrivial for k()-SetFWL. We leave it
to future work of studying k()-SetFWL.

4.4. A practical progressively-expressive GNN: (k, c)()-SetGNN 61

4.4 A practical progressively-expressive GNN: (k, c)()-
SetGNN

In this section we transform (k, c)()-SetWL to a GNN model by replacing the HASH
function in Eq. (4.5) with a combination of MLP and DeepSet [Zah+17], given they are
universal function approximators for vectors and sets, respectively [HSW89; Zah+17].
After the transformation, we propose two additional improvements (Sec. 4.4.2 and
Sec. 4.4.3) to further improve scalability. We work on vector-attributed graphs. Let
G = (V (G), E(G), X) be an undirected graph with node features xi 2 Rd, 8i 2 V (G).
Proofs of all theorems in this section can be found in Appendix of [Zha+22b].

4.4.1 From (k, c)()-SetWL to (k, c)()-SetGNN

(k, c)()-SetWL defines a super-graph Sk,c-swl, which aligns with Eq. (4.5). We first
rewrite Eq. (4.5) to reflect its connection to Sk,c-swl. For a supernode v̂ in Sk,c-swl,
let NG

left(v̂) = {û | û 2 Sk,c-swl, û $ v̂ and |û| = |v̂| � 1}, and NG

right(v̂) = {û | û 2
Sk,c-swl, û$ v̂ and |û| = |v̂|+1}. Then we can rewrite Eq. (4.5) for (k, c)()-SetWL

as
swl(t+1)

k,c
(G, v̂) =

✓
swl(t)

k,c
(G, v̂), swl

(t+ 1
2)

k,c
(G, v̂), {{swl(t)

k,c
(G, û) | û 2 NG

left(v̂)}},

{{swl
(t+ 1

2)
k,c

(G, û) | û 2 NG

left(v̂)}}
◆

(4.8)

where swl
(t+ 1

2)
k,c

(G, v̂) := {{swl(t)
k,c

(G, û) | û 2 NG

right(v̂)}}. Notice that we omit HASH
and apply it implicitly. Eq. (4.8) essentially splits the computation of Eq. (4.5) into
two steps and avoids repeated computation via caching the explicit t+1

2 step. It also
implies that the connection among m-sets for any m 2 [k] can be reconstructed from
the bipartite graph among m-sets and (m� 1)-sets.

Next we formulate (k, c)()-SetGNN formally. Let h(t)(v̂) 2 Rdt denote the
vector representation of supernode v̂ on the t-th iteration of (k, c)()-SetGNN. For
any input graph G, it initializes representations of supernodes by

h(0)(v̂) = BaseGNN(G[v̂]) (4.9)
where the BaseGNN can be any GNN model. Theoretically the BaseGNN should
be chosen to encode non-isomorphic induced subgraphs distinctly, mimicking HASH.
Based on empirical tests of several GNNs on all (11,117) possible 8-node non-isomorphic
graphs [Bal+21], and given GIN [Xu+19] is simple and fast with nearly 100% separa-
tion rate, we use GIN as our BaseGNN in experiments. Notice that we also concate-
nate an encoding of |v̂| to the initial representation h(0)(v̂) 2.

(k, c)()-SetGNN iteratively updates representations of all supernodes by

h
(t+1

2
)
(v̂) =

X

û2NG
right(v̂)

MLP(t+ 1
2)(h(t)(û)) (4.10)

h(t+1)(v̂) = MLP(t)
⇣
h(t)(v̂), h(t+ 1

2)(v̂),
X

û2NG
left(v̂)

MLP(t)
A

(h(t)(û)),
X

û2NG
left(v̂)

MLP(t)
B

(h(t+ 1
2)(û))

⌘

(4.11)

Then after T iterations, we compute the graph level encoding as
h(T)(G) = POOL({{h(T)(v̂) | v̂ 2 V (Sk,c-swl)}}) (4.12)

2We view the size of v̂ discrete/categorical and pass it to an embedding layer to get encoding.

62 Chapter 4. Using Unordered High Order Interactions

where POOL can be chosen as summation. We visualize the steps in Figure 4.1. Under
mild conditions, (k, c)()-SetGNN has the same expressivity as (k, c)()-SetWL.

Theorem 4.4.1. When (i) BaseGNN can distinguish any non-isomorhpic graphs with
at most k nodes, (ii) all MLPs have sufficient depth and width, and (iii) POOL is an
injective function, then for any t 2 N, t-layer (k, c)()-SetGNN is as expressive as
(k, c)()-SetWL at the t-th iteration.

The following facts can be derived easily from Theorem 4.3.5 and Theorem 4.4.1.

Corollary 4.4.2. (k, c)()-SetGNN is progressively-expressive with increasing k and
c, that is,
(1) when c1 > c2, (k, c1)()-SetGNN is more expressive than (k, c2)()-SetGNN,

and
(2) when k1 > k2, (k1, c)()-SetGNN is more expressive than (k2, c)()-SetGNN.

4.4.2 Bidirectional Sequential Message Passing

The t-th layer of (k, c)()-SetGNN (Eq. (4.10) and Eq. (4.11)) are essentially propa-
gating information back and forth on the super-graph Sk,c-swl(G), which is a sequence
of k�1 bipartite graphs (see the middle of Figure 4.1), in parallel for all supernodes.
We propose to change it to bidirectional blockwise sequential message passing, which
we call (k, c)()-SetGNN

⇤, defined as follows.

m = k � 1 to 1, 8m-set v̂, h(t+ 1
2)(v̂) = MLP(t)

m,1

⇣
h(t)(v̂),

X

û2NG
right(v̂)

MLP(t)
m,2(h

(t+ 1
2)(û))

⌘
(4.13)

m = 2 to k, 8m-set v̂, h(t+1)(v̂) = MLP(t+ 1
2)

m,1

⇣
h(t+ 1

2)(v̂),
X

û2NG
left(v̂)

MLP(t+ 1
2)

m,2 (h(t+1)(û))
⌘

(4.14)

Notice that (k, c)()-SetGNN
⇤ has lower memory usage, as (k, c)()-SetGNN

load the complete supergraph (k�1 bipartites) while (k, c)()-SetGNN
⇤ loads 1

out of k�1 bipartites at a time, which is beneficial for limited-size GPUs. What
is more, for a small, finite t it is even more expressive than (k, c)()-SetGNN. We
provide both implementation of parallel and sequential message passing in the official
github repository, while only report the performance of (k, c)()-SetGNN

⇤ given its
efficiency and better expressivity.

Theorem 4.4.3. For any t 2 N, the t-layer (k, c)()-SetGNN
⇤ is more expressive

than the t-layer (k, c)()-SetGNN. As limt!1, (k, c)()-SetGNN is as expressive
as (k, c)()-SetGNN

⇤.

4.4.3 Improving Supernode Initialization

Next we describe how to improve the supernode initialization (Eq. (4.9)) and ex-
tensively reduce computational and memory overhead for c > 1 without losing any
expressivity. We achieve this by the fact that a graph with c components can be
viewed as a set of c connected components. Formally,

Theorem 4.4.4. Let G be a graph with c connected components C1, ..., Cc, and G0 be
a graph also with c connected components C 0

1, ..., C
0
c, then G and G0 are isomorphic if

and only if 9p : [c]! [c], s.t. 8i 2 [c], Ci and C 0

p(i) are isomorphic.
The theorem implies that we only need to apply Eq. (4.9) to all supernodes with

a single component, and for any c-components v̂ with components û1, ..., ûc, we can
get the encoding by h(0)(v̂) = DeepSet({h(0)(û1), ..., h(0)(ûc)}) without passing its

4.5. Experiments 63

induced subgraph to BaseGNN. This eliminates the heavy computation of passing a
large number of induced subgraphs. We give the algorithm of building connection
between v̂ to its single components in Appendix of [Zha+22b].

4.5 Experiments

We design experiments to answer the following questions. Q1. Performance: How
does (k, c)()-SetGNN

⇤ compare to SOTA expressive GNNs? Q2. Varying k
and c: How does the progressively increasing expressiveness reflect on generalization
performance? Q3. Computational requirements: Is (k, c)()-SetGNN feasible
on practical graphs w.r.t. running time and memory usage?

4.5.1 Setup

Datasets. To inspect the expressive power, we use four different types of simulation
datasets: 1) EXP [Abb+21] contains 600 pairs of 1&2-WL failed graphs which we
split into two where graphs in each pair is assigned to two different classes; 2) SR25
[Bal+21] has 15 strongly regular graphs (3-WL failed) with 25 nodes each, which we
transform to a 15-way classification task; 3) Substructure counting (i.e. triangle, tailed
triangle, star and 4-cycle) tasks on random graph dataset [Che+20b]; 4) Graph prop-
erty regression (i.e. connectedness, diameter, radius) tasks on random graph dataset
[Cor+20]. We also evaluate performance on two real world graph learning tasks: 5)
ZINC-12K [Dwi+20], and 6) QM9 [Wu+18] for molecular property regression. See
Table 4.1 for detailed dataset statistics.

Table 4.1: Dataset statistics.

Dataset Task # Cls./Tasks # Graphs Avg. # Nodes # Edges

EXP [Abb+21] Distinguish 1-WL failed graphs 2 1200 44.4 110.2
SR25 [Bal+21] Distinguish 3-WL failed graphs 15 15 25 300

CountingSub. [Che+20b] Regress num. of substructures 4 1500 / 1000 / 2500 18.8 62.6
GraphProp. [Cor+20] Regress global graph properties 3 5120 / 640 / 1280 19.5 101.1

ZINC-12K [Dwi+20] Regress molecular property 1 10000 / 1000 / 1000 23.1 49.8
QM9 [Wu+18] Regress molecular properties 193 130831 18.0 37.3

Baselines. We use GCN [KW17], GIN [Xu+19], PNA⇤ [Cor+20], PPGN [Mar+19a],
PF-GNN [DDL22], and GNN-AK [Zha+22c] as baselines on the simulation datasets.
On ZINC-12K we also reference CIN [Bod+21a] directly from literature. Most base-
lines results are taken from [Zha+22c]. Finally, we compare to GINE [Hu+20a] on
QM9.

Hyperparameter and model configurations. Due to limited time and re-
source, we highly restrict the hyperparameters and fix most of hyperparameters the
same across all models and baselines to ensure a fair comparison. This means the per-
formance of (k, c)()-SetGNN

⇤ reported in the paper is not the best performance
given that we didn’t tune much hyperparameters. Nevertheless the performance still
reflects the theory and designs proposed in the paper, and we postpone studying the
SOTA performance of (k, c)()-SetGNN

⇤ to future work. To be clear, we fix batch
size to 128, the hidden size to 128, the number of layers of Base GNN to 4, and
the number of layers of (k, c)()-SetGNN

⇤ (the number of iterations of (k, c)()-
SetWL) to be 2 (we will do ablation study over it later). This hyperparameters
configuration is used for all datasets. We have run the baseline GINE over many

3We use the version of the dataset from PyG [FL19], and it contains 19 tasks.

64 Chapter 4. Using Unordered High Order Interactions

Table 4.2: Simulation data performances. For (k, c)()-SetGNN⇤, (k, c) values that
achieve reported performance in parenthesis. (ACC: accuracy, MA[S]E: mean abs.[sq.]

error)

Method EXP
(ACC)

SR25
(ACC)

Counting Substructures (MAE) Graph Properties (log10(MSE))

Triangle Tailed Tri. Star 4-Cycle IsConnected Diameter Radius

GCN 50% 6.67% 0.4186 0.3248 0.1798 0.2822 -1.7057 -2.4705 -3.9316
GIN 50% 6.67% 0.3569 0.2373 0.0224 0.2185 -1.9239 -3.3079 -4.7584
PNA⇤ 50% 6.67% 0.3532 0.2648 0.1278 0.2430 -1.9395 -3.4382 -4.9470
PPGN 100% 6.67% 0.0089 0.0096 0.0148 0.0090 -1.9804 -3.6147 -5.0878
GIN-AK+

100% 6.67% 0.0123 0.0112 0.0150 0.0126 -2.7513 -3.9687 -5.1846
PNA⇤-AK+

100% 6.67% 0.0118 0.0138 0.0166 0.0132 -2.6189 -3.9011 -5.2026

(k, c)() 100% 100% 0.0073 0.0075 0.0134 0.0075 -5.4667 -4.0800 -5.1603
(�3, �2) (�4, �1) (3, 2) (4, 1) (3, 2) (4, 1) (4, 2) (4, 1) (2, 2)

datasets, and we tune the number of layers from [4,6] and keep other hyperparame-
ters the same as (k, c)()-SetGNN

⇤. For all other baselines, we took the performance
reported in [Zha+22c].

For all datasets except QM9, we follow the same configuration used in [Zha+22c].
For QM9, we use the dataset from PyG and conduct regression over all 19 targets
simultaneously. To balance the scale of each target, we preprocess the dataset by stan-
dardizing every target to a Gaussian distribution with mean 0 and standard derivation
1. The dataset is randomly split with ratio 80%/10%/10% to train/validation/test
sets (with a fixed random state so that all runs and models use the same split). For ev-
ery graph in QM9, it contains 3d positional coordinates for all nodes, and we use them
to augment edge features by using the absolute difference between the coordinates of
two nodes on an edge for all models. Notice that our goal is not to achieve SOTA
performance on QM9 but mainly to verify our theory and effectiveness of designs.

We use Batch Normalization and ReLU activation in all models. We use Adam
optimizer with learning rate 0.001 in all experiments for optimization. We repeat all
experiments three times (for random initialization) to calculate mean and standard
derivation. All experiments are conducted on V100 and RTX-A6000 GPUs.

4.5.2 Results

Theorem 4.3.2 shows that k-MultisetWL is able to distinguish CFI(k) graphs. It
also holds for k()-SetWL as the proof doesn’t use repetitions. We implemented
the construction of CFI(k) graphs for any k. Empirically we found that (k, c)()-
SetGNN

⇤ is able to distinguish CFI(k) for k = 3, 4, 5 (k>6 out of memory). This
empirically verifies its theoretical expressivity.

Table 4.2 shows the performance results on all the simulation datasets. The low ex-
pressive models such as GCN, GIN and PNA⇤ underperform on EXP and SR25, while
3-WL equivalent PPGN excels only on EXP. Notably, (k, c)()-SetGNN

⇤ achieves
100% discriminating power with any k larger than 2 and 3, and any c larger than 1 and
0, resp. for EXP and SR25. (k, c)()-SetGNN

⇤ also outperforms the baselines on all
substructure counting tasks, as well as on two out of three graph property prediction
tasks (except Radius) with significant gap, for relatively small values of k and c.

In Table 4.3, we show the train and test MAEs on substructure counting tasks
for individual values of k and c. As expected, performances improve for increasing k
when c is fixed, and vice versa. It is notable that orders of magnitude improvements
on test error occur moving from k=2 to 3 for the triangle tasks as well as the star
task, while a similarly large magnitude drop is obtained at k=4 for the 4-cycle task,
which is expected as triangle and 4-cycle have 3 and 4 nodes respectively. Similar
observations hold for graph property tasks as well. (See Table 4.4.)

4.5. Experiments 65

Table 4.3: Train and Test performances on substructure counting tasks by varying k and
c. Notice the orders of magnitude drop in Test MAE between bolded entries per task.

Counting Substructures (MAE)

Triangle Tailed Tri. Star 4-Cycle

k c Train Test Train Test Train Test Train Test

2 1 0.9941 ± 0.2623 1.1409 ± 0.1224 1.1506 ± 0.2542 0.8695 ± 0.0781 1.5348 ± 2.0697 2.3454 ± 0.8198 1.2159 ± 0.0292 0.8361 ± 0.1171
3 1 0.0311 ± 0.0025 0.0088 ± 0.0001 0.0303 ± 0.0108 0.0085 ± 0.0018 0.0559 ± 0.0019 0.0151 ± 0.0006 0.1351 ± 0.0058 0.1893 ± 0.0030
4 1 0.0321 ± 0.0008 0.0151 ± 0.0074 0.0307 ± 0.0085 0.0075 ± 0.0012 0.0687 ± 0.0104 0.0339 ± 0.0009 0.0349 ± 0.0007 0.0075 ± 0.0002
5 1 0.0302 ± 0.0070 0.0208 ± 0.0042 0.0553 ± 0.0009 0.0189 ± 0.0024 0.0565 ± 0.0078 0.0263 ± 0.0023 0.0377 ± 0.0057 0.0175 ± 0.0036
6 1 0.0344 ± 0.0024 0.0247 ± 0.0085 0.0357 ± 0.0017 0.0171 ± 0.0000 0.0560 ± 0.0000 0.0168 ± 0.0022 0.0356 ± 0.0014 0.0163 ± 0.0064
2 2 0.3452 ± 0.0329 0.4029 ± 0.0053 0.2723 ± 0.0157 0.2898 ± 0.0055 0.0466 ± 0.0025 0.0242 ± 0.0006 0.2369 ± 0.0123 0.2512 ± 0.0029
3 2 0.0234 ± 0.0030 0.0073 ± 0.0009 0.0296 ± 0.0074 0.0100 ± 0.0009 0.0640 ± 0.0003 0.0134 ± 0.0006 0.0484 ± 0.0135 0.0194 ± 0.0065
4 2 0.0587 ± 0.0356 0.0131 ± 0.0010 0.0438 ± 0.0140 0.0094 ± 0.0002 0.0488 ± 0.0008 0.0209 ± 0.0063 0.0464 ± 0.0037 0.0110 ± 0.0020

Table 4.4: Train and Test performances of (k, c)()-SetGNN⇤ on regressing graph prop-
erties by varying k and c.

Regressing Graph Properties (log10(MSE))

Is Connected Diameter Radius

k c Train Test Train Test Train Test

2 1 -4.2266 ± 0.1222 -2.9577 ± 0.1295 -4.0347 ± 0.0468 -3.6322 ± 0.0458 -4.4690 ± 0.0348 -4.9436 ± 0.0277
3 1 -4.2360 ± 0.1854 -3.4631 ± 0.6392 -4.0228 ± 0.1256 -3.7885 ± 0.0589 -4.4762 ± 0.1176 -5.0245 ± 0.0881
4 1 -4.7776 ± 0.0386 -4.9941 ± 0.0913 -4.1396 ± 0.0442 -4.0122 ± 0.0071 -4.2837 ± 0.5880 -4.1528 ± 0.9383
2 2 -4.6623 ± 0.3170 -4.7848 ± 0.3150 -4.0802 ± 0.1654 -3.8962 ± 0.0124 -4.5362 ± 0.2012 -5.1603 ± 0.0610
3 2 -4.2601 ± 0.3192 -4.4547 ± 1.1715 -4.3235 ± 0.3050 -3.9905 ± 0.0799 -4.6766 ± 0.1797 -4.9836 ± 0.0658
4 2 -4.8489 ± 0.1354 -5.4667 ± 0.2125 -4.5033 ± 0.1610 -3.9495 ± 0.3202 -4.4130 ± 0.2686 -4.1432 ± 0.4405

In addition to simulation datasets, we evaluate our (k, c)()-SetGNN
⇤ on real-

world data; Table 4.5 shows our performance on ZINC-12K. Our method achieves a
new state-of-the-art performance, with a mean absolute error (MAE) of 0.0750, using
k=5 and c=2.

Table 4.5: SetGNN⇤

achieves SOTA on ZINC-
12K.

Method MAE

GatedGCN 0.363 ± 0.009
GCN 0.321 ± 0.009
PNA 0.188 ± 0.004
DGN 0.168 ± 0.003
GIN 0.163 ± 0.004
GINE 0.157 ± 0.004
HIMP 0.151 ± 0.006
PNA⇤ 0.140 ± 0.006
GSN 0.115 ± 0.012
PF-GNN 0.122 ± 0.010
GIN-AK+ 0.080 ± 0.001
CIN 0.079 ± 0.006

(k, c)() 0.0750 ± 0.0027

In Table 4.6 we show the test and validation MAE along
with training loss for varying k and c for ZINC-12K. For
a fixed c, validation MAE and training loss both follow a
first decaying and later increasing trend with increasing k,
potentially owing to the difficulty in fitting with too many
sets (i.e. supernodes) and edges in the super-graph.

Similar results are shown for QM9 in Table 4.7. For
comparison we also show GINE performances using both
4 and 6 layers, both of which are significantly lower than
(k, c)()-SetGNN

⇤.

4.5.3 Computational requirements

We next investigate how increasing k and c change the
computational footprint of (k, c)()-SetGNN

⇤ in practice.
Fig. 4.2 shows that increasing these parameters expectedly increases both memory
consumption (in MB in (a)) as well as runtime (in seconds per epoch in (b)). Notably,
since larger k and c increases our model’s expressivity, we observe that suitable choices
for k and c allow us to practically realize these increasingly expressive models on com-
modity hardware. With conservative values of c (e.g. c=1), we are able to consider
passing messages between sets of k (e.g. 10) nodes far larger than k-WL-style higher
order models can achieve (3).

66 Chapter 4. Using Unordered High Order Interactions

Table 4.6: (k, c)()-SetGNN⇤ perfor-
mances on ZINC-12K by varying (k,c).
Test MAE at lowest Val. MAE, and low-

est Test MAE.

k c Train loss Val. MAE Test MAE

2 1 0.1381 ± 0.0240 0.2429 ± 0.0071 0.2345 ± 0.0131
3 1 0.1172 ± 0.0063 0.2298 ± 0.0060 0.2252 ± 0.0030
4 1 0.0693 ± 0.0111 0.1645 ± 0.0052 0.1636 ± 0.0052
5 1 0.0643 ± 0.0019 0.1593 ± 0.0051 0.1447 ± 0.0013
6 1 0.0519 ± 0.0064 0.0994 ± 0.0093 0.0843 ± 0.0048
7 1 0.0543 ± 0.0048 0.0965 ± 0.0061 0.0747 ± 0.0022
8 1 0.0564 ± 0.0152 0.0961 ± 0.0043 0.0732 ± 0.0037
9 1 0.0817 ± 0.0274 0.0909 ± 0.0094 0.0824 ± 0.0056
10 1 0.0894 ± 0.0266 0.1060 ± 0.0157 0.0950 ± 0.0102

2 2 0.1783 ± 0.0602 0.2913 ± 0.0102 0.2948 ± 0.0210
3 2 0.0640 ± 0.0072 0.1668 ± 0.0078 0.1391 ± 0.0102
4 2 0.0499 ± 0.0043 0.1029 ± 0.0033 0.0836 ± 0.0010
5 2 0.0483 ± 0.0017 0.0899 ± 0.0056 0.0750 ± 0.0027
6 2 0.0530 ± 0.0064 0.0927 ± 0.0050 0.0737 ± 0.0006
7 2 0.0547 ± 0.0036 0.0984 ± 0.0047 0.0784 ± 0.0043

3 3 0.0798 ± 0.0062 0.1881 ± 0.0076 0.1722 ± 0.0086
4 3 0.0565 ± 0.0059 0.1121 ± 0.0066 0.0869 ± 0.0026
5 3 0.0671 ± 0.0156 0.1091 ± 0.0097 0.0920 ± 0.0054

Table 4.7: (k, c)()-SetGNN⇤ perfor-
mances on QM9 by varying (k,c). Test

MAE at lowest Val. MAE, and lowest
Test MAE. All variances are 0.002 and

thus omitted.

k c Train loss Val. MAE Test MAE

2 1 0.0376 ± 0.0005 0.0387 ± 0.0007 0.0389 ± 0.0008
3 1 0.0308 ± 0.0010 0.0386 ± 0.0017 0.0379 ± 0.0010
4 1 0.0338 ± 0.0003 0.0371 ± 0.0005 0.0370 ± 0.0006
5 1 0.0299 ± 0.0017 0.0343 ± 0.0008 0.0341 ± 0.0009
6 1 0.0226 ± 0.0004 0.0296 ± 0.0007 0.0293 ± 0.0007
7 1 0.0208 ± 0.0005 0.0289 ± 0.0007 0.0269 ± 0.0003

2 2 0.0367 ± 0.0007 0.0398 ± 0.0004 0.0398 ± 0.0004
3 2 0.0282 ± 0.0013 0.0358 ± 0.0009 0.0356 ± 0.0007
4 2 0.0219 ± 0.0004 0.0280 ± 0.0008 0.0278 ± 0.0008
5 2 0.0175 ± 0.0003 0.0267± 0.0005 0.0251± 0.0006

3 3 0.0391 ± 0.0107 0.0428 ± 0.0057 0.0425 ± 0.0052
4 3 0.0219 ± 0.0011 0.0301 ± 0.0010 0.0286 ± 0.0004

GINE (L=4) 0.0507 ± 0.0014 0.0478 ± 0.0003 0.0479 ± 0.0004
GINE (L=6) 0.0440 ± 0.0009 0.0440 ± 0.0009 0.0451 ± 0.0009

(a) Memory usage (b) Training time

Figure 4.2: (k, c)()-SetGNN⇤’s footprint scales practically with both k and c in mem-
ory (a) and running time (b) – results on ZINC-12K.

4.6 Conclusion

Our work is motivated by the impracticality of higher-order GNN models based on
the k-WL hierarchy, which make it challenging to study how much expressiveness
real-world tasks truly necessitate. To this end, we proposed (k, c)()-SetWL, a more
practical and progressively-expressive hierarchy with theoretical connections to k-WL
and drastically lowered complexity. We also designed and implemented a practical
model (k, c)()-SetGNN(⇤), expressiveness of which is gradually increased by larger k
and c. Our model achieves strong performance, including several new best results on
graph-level tasks like ZINC-12K and expressiveness-relevant tasks like substructure
counting, while being practically trainable on commodity hardware.

67

Part III

Generative Model on Graphs

69

Chapter 5

Improving and Unifying Discrete
Denoising Diffusion

Chapter is based on Lingxiao Zhao, Xueying Ding, Lijun Yu, and Leman Akoglu.
“Improving and Unifying Discrete&Continuous-time Discrete Denoising Diffu-
sion”. In: arXiv preprint arXiv:2402.03701 (2024). This chapter builds the
foundation for the next chapter.

5.1 Introduction

Deep generative models have taken the world by storm, capturing complex data dis-
tributions and producing realistic data, from human-like text [Bro+20; Li+22; Ope23]
and natural looking images [DN21; Ram+22; Zha+23b] to novel compounds like
molecules and drugs [KC18; LPL21] and video synthesis [Ho+22]. Denoising diffusion
models [HJA20], a powerful class of generative models, are trained through a forward
diffusion process that gradually adds noise to the training samples, and a backward
process that denoises these diffusion trajectories. New data are then generated by
sampling from the noise distribution and employing the trained model for recursive
denoising.

Discrete diffusion for categorical data has two modeling paradigms: discrete-time
and continuous-time. The former discretizes time such that backward denoising is
learned only at pre-specified time points. This limits generation, which can “jump
back” through these fixed points only. In contrast, continuous-time diffusion allows a
path through any point in range, and often yields higher sample quality.

Current literature on discrete-time discrete diffusion is relatively established, while
only recently Campbell, Benton, De Bortoli, Rainforth, Deligiannidis, and Doucet
[Cam+22] introduced the first continuous-time discrete diffusion framework. While
groundbreaking, their their loss requires multiple evaluations at each time step dur-
ing training. Moreover, the exact sampling through their learned backward process
is extremely tedious for multi-dimensional variables. Due to mathematically compli-
cated and computationally demanding formulations, Campbell, Benton, De Bortoli,
Rainforth, Deligiannidis, and Doucet [Cam+22] propose nontrivial approximations for
tractability with unknown errors.

In this paper, we present a series of mathematical simplifications of the varia-
tional lower bound (VLB) loss while keeping exactness, which enable more accurate
and easy-to-optimize training for discrete-time and continuous-time discrete diffu-
sion. In addition, we establish a simpler reformulation of the backward denoising
probability that enables exact and accelerated sampling for both discrete-time and
continuous-time discrete diffusion. Importantly, our simplified reformulations lead us

70 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

(a) Latent graphical model for diffusion (b) Generalize (a) to multi-element object

Figure 5.1: Graphical model view

to an elegant unification of the two modeling paradigms; in particular, demonstrating
that they share the same forward and backward procedures. The unification is not
only mathematically elegant but also practically instrumental where the same source
code can be used by both models up to a single alteration in the loss function during
training. Further, our simplified analytical formulations allow both forward and now
also backward probabilities to accommodate any noise distribution. This flexibility
is particularly attractive for multi-element objects where each element can exhibit a
different noise distribution. We summarize our main contributions as follows.

• Loss Simplifications: We derive simplified but exact VLB calculations for
both discrete&continuous-time discrete diffusion—enabling more accurate and
easy-to-optimize training that leads to SOTA performance.

• Mathematical Unification: Through a simplified reformulation of backward
denoising, this is the first work to unify discrete-&continuous-time discrete dif-
fusion—enabling flexibility and speed-up in generation as well as training with
various noise distributions.

• Extensive Evaluation: We propose a Unified and Simplified Discrete Denoising
Diffusion model called USD3 that outperforms both discrete-&continuous-time
SOTA models on established datasets.

5.2 Discrete-time Discrete Diffusion

Notation: Let x0 ⇠ pdata(x0) be the random variable of observed data with un-
derlying distribution pdata(x0). Let xt ⇠ q(xt) be the latent variable at time t of a
single-element object, like a pixel of an image or a node/edge of a graph, with maxi-
mum time T . Let xt|s ⇠ q(xt|xs) be the conditional random variable. We model the
forward diffusion process independently for each element of the object, while the back-
ward denoising process is modeled jointly for all elements of the object. For simplicity
and clarity of presentation, we first assume that the object only has 1 element and
extend to multi-element object later. Let x

1:D
0 denote the object with D elements,

and x
i
t be the i-th element of latent object at time t. We assume all random variables

take categorical values from {1, 2, ...,K}. Let ek 2 {0, 1}K be the one-hot encoding of
category k. For a random variable x, we use x denoting its one-hot encoded sample
where x 2 {e1, ..., eK}. Also, we interchangeably use q(xt|xs), q(xt = xt|xs = xs),
and qt|s(xt|xs) when no ambiguity is introduced. Let h·, ·i denote inner product. All
vectors are column-wise vectors.

5.2.1 Graphical Model View of Diffusion Models

Diffusion models can be represented by latent variable graphical models (see Fig. 5.1).
We can write the joint probability as p✓(x0:T) := p✓(x0,x1, ...,xT) = p✓(xT)

Q
T

t=1 p✓(xt�1|xt)
using the Markov condition. Parameters ✓ are learned by maximizing the loglikehood

5.2. Discrete-time Discrete Diffusion 71

of the observed variable x0: log p✓(x0) = log
R
p✓(x0:T)dx1:T . However the marginal-

ization is intractable, and instead the following variational lower bound (VLB) is
used.

log p✓(x0) = log

Z
q(x1:T |x0)

p✓(x0:T)

q(x1:T |x0)
dx1:T (5.1)

� Eq(x1:T |x0)

⇥
log p✓(x0:T)

⇤
� Eq(x1:T |x0)

⇥
log q(x1:T)]; . (5.2)

The above inequality holds for any conditional probability q(x1:T |x0) and finding the
best q(x1:T |x0) to tighten the bound is the inference problem in graphical models (i.e.
E step in EM algorithm). Exact inference is intractable, thus q(x1:T |x0) in diffusion
models is fixed or chosen specifically to simplify the learning objective. To simplify
Eq. (5.1) further, it is important to assume q(x1:T |x0) is decomposable. The typical
assumption is that q(x1:T |x0) =

Q
T

t=1 q(xt|xt�1) [HJA20], which we also adopt in
this paper. Others that have been explored include q(x1:T |x0) =

Q
T

t=1 q(xt|xt�1,x0)
[SME21].

Assuming q(x1:T |x0) =
Q

T

t=1 q(xt|xt�1), Eq. (5.1) can be simplified as
Eq(x1|x0)

⇥
log p✓(x0|x1)

⇤
| {z }

�L1(✓)

�DKL
�
q(xT |x0)||p✓(xT)

�
| {z }

Lprior

�
TX

t=2

Eq(xt|x0)

⇥
DKL

�
q(xt�1|xt,x0)||p✓(xt�1|xt

�⇤
| {z }

Lt(✓)

,
(5.3)

where Lprior ⇡ 0, since p✓(xT) ⇡ q(xT |x0) is designed as a fixed noise distribution
that is easy to sample from. (See Appx. of [Zha+24b] for derivation.) To compute
Eq. (5.3), we need to formalize distributions (i) q(xt|x0) and (ii) q(xt�1|xt,x0), as well
as (iii) the parameterization of p✓(xt�1|xt). We specify these respectively in §5.2.2,
§5.2.3, and §5.2.4.

After reviewing the forward process for discrete diffusion (§5.2.2), here we con-
tribute a series of analytical simplifications for various components (§5.2.3, §5.2.4) of
the VLB, providing exact closed-form formulation in §5.2.5, as well as an approximated
loss for easier optimization in §5.2.6. Further, we present fast backward sampling in
§5.2.7, and the extension to multi-element case can be find in [Zha+24b].

5.2.2 the Forward Diffusion Process

We assume each discrete random variable xt has a categorical distribution, i.e. xt ⇠
Cat(xt;p) with p 2 [0, 1]K and 1

>p = 1 . One can verify that p(xt = xt) = x>
t p,

or simply p(xt) = x>
t p. As shown in [Hoo+21; Aus+21], the forward process with

discrete variables q(xt|xt�1) can be represented as a transition matrix Qt 2 [0, 1]K⇥K

such that [Qt]ij = q(xt = ej |xt�1 = ei). Then, we can write the distribution explicitly
as

q(xt|xt�1) = Cat(xt;Q
>

t xt�1) . (5.4)
Given transition matrices Q1, ..., QT , we can get the t-step marginal distribution con-
ditioning on s-step (t > s) as

q(xt|xs) = Cat(xt;Q
>

t|sxs),with Qt|s = Qs+1...Qt . (5.5)
The s-step posterior distribution conditioning on x0 and t-step can be derived as

q(xs|xt,x0) =
q(xt|xs)q(xs|x0)

q(xt|x0)
= Cat(xs;

Qt|sxt �Q
>

s x0

x>
t
Q

>

t x0

). 8t > s (5.6)

72 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

The above formulations are valid (see derivation in Appx. of [Zha+24b]) for any
transition matrices Q1, ..., QT , which however should be chosen such that every row of
Qt = Qt|0 converge to the same known stationary distribution when t becomes large
(i.e. at T). Let the known stationary distribution be m0 ⇠ Cat(m0;m). Then, the
constraint can be stated as

lim
t!T

Qt = 1m> . (5.7)

In addition, this paper focuses on nominal data where categories are unordered and
only equality comparison is defined. Hence, no ordering prior except checking equality
should be used to define each transition matrix Qt

1. To achieve the desired con-
vergence on nominal data while keeping the flexibility of choosing any categorical
stationary distribution m0 ⇠ Cat(m0;m), we define Qt as

Qt = ↵tI + (1� ↵t)1m
> , (5.8)

where ↵t 2 [0, 1]. This results in the accumulated transition matrix Qt|s being equal
to

Qt|s = ↵t|sI + (1� ↵t|s)1m
> 8t > s , (5.9)

where ↵t|s =
Q

t

i=s+1 ↵i. Note that ↵t = ↵t|0 = ↵t|s↵s. We achieve Eq. (5.7) by
picking ↵t such that limt!T ↵t = 0.

5.2.3 Form of q(xt�1|xt,x0)

The formulation in Eq. (5.8) can be used to simplify q(xt�1|xt,x0). We provide a
general formulation of q(xs|xt,x0) for any s, t with 0 < s < t  T , which will be
useful for unifying with continuous-time diffusion. One can recover q(xt�1|xt,x0) by
setting s as t�1.

Proposition 5.2.1. For both discrete- and continuous-time discrete diffusion, we can
write the conditional distribution as

q(xs|xt,x0) =

8
>>><

>>>:

Cat
⇣
xs; (1� �t|s) · xt + �t|s ·m

⌘
when xt = x0

Cat
⇣
xs; (1� µt|s) · x0 + µt|s↵t|s · xt

+µt|s(1� ↵t|s) ·m
⌘

when xt 6= x0

(5.10)

where �t|s and µt|s are defined as

�t|s =
(1� ↵s)(1� ↵t|s)hm,xti
↵t + (1� ↵t)hm,xti

, µt|s =
1� ↵s

1� ↵t

. (5.11)

We remark that the above formulation is a generalization of the result shown in
[Zhe+23].

Proof. First, let us define Qt|s = Qs+1...Qt. Note that Qt|0 = Qt and Qt|t�1 = Qt.
Accordingly, we can derive the following two equalities.

q(xt|xs) = Cat(xt;Q
>

t|sxs) (5.12)

1Mathematically, this means 8k, j, q(xt|xt�1 = ej ,xt 6= {ej , ek}) = q(xt|xt�1 = ek,xt 6=
{ej , ek}).

5.2. Discrete-time Discrete Diffusion 73

q(xs|xt,x0) =
q(xt|xs)q(xs|x0)

q(xt|x0)
=

Cat(xt;Q
>

t|sxs)Cat(xs;Q
>

s x0)

Cat(xt;Q
>

t x0)

=
x
>
s Qt|sxt · x>

s Q
>

s x0

x
>
t
Q

>

t x0

= x
>

s

Qt|sxt �Q
>

s x0

x
>
t
Q

>

t x0

= Cat(xs;
Qt|sxt �Q

>

s x0

x
>
t
Q

>

t x0

)

(5.13)

Using the formulation of Qt in Eq. (5.8), Qt|s can be written as

Qt|s = ↵t|sI + (1� ↵t|s)1m
> (5.14)

where ↵t|s =
Q

t

i=s+1 ↵i. Note that ↵t = ↵t|s↵s.
Next, we can simplify Eq. (5.6) using the above formulations as

Qt|sxt �Q
>

s x0

x
>
t
Q

>

t x0

=

�
↵t|sxt + (1� ↵t|s)hm,xti1

�
�
�
↵sx0 + (1� ↵s)m

�

↵thxt,x0i+ (1� ↵t)hm,xti

=
↵txt � x0 + (↵s � ↵t)hm,xtix0 + (↵t|s � ↵t)xt �m + (1� ↵s)(1� ↵t|s)hm,xtim

↵thxt,x0i+ (1� ↵t)hm,xti
(5.15)

We can simplify the above equation further by considering two cases: (1) xt = x0 and
(2) xt 6= x0.

(Case 1) When xt = x0, using the fact that both xt and x0 are one-hot encoded,
we observe

Eq. (5.15) =
↵txt + (↵s � ↵t)hm,xtixt + (↵t|s � ↵t)hm,xtixt + (1� ↵s)(1� ↵t|s)hm,xtim

↵t + (1� ↵t)hm,xti

=
↵t + (↵t|s + ↵s � 2↵t)hm,xti

↵t + (1� ↵t)hm,xti
xt +

(1� ↵s)(1� ↵t|s)hm,xti
↵t + (1� ↵t)hm,xti

m

= (1� �t|s) · xt + �t|s ·m , (5.16)
where �t|s is defined as

�t|s =
(1� ↵s)(1� ↵t|s)hm,xti
↵t + (1� ↵t)hm,xti

. (5.17)

(Case 2) When xt 6= x0, we can similarly derive

Eq. (5.15) =
(↵s � ↵t)hm,xtix0 + (↵t|s � ↵t)hm,xtixt + (1� ↵s)(1� ↵t|s)hm,xtim

(1� ↵t)hm,xti

=
↵s � ↵t

1� ↵t

x0 +
1� ↵s

1� ↵t

↵t|sxt +
1� ↵s

1� ↵t

(1� ↵t|s)m

= (1� µt|s) · x0 + µt|s↵t|s · xt + µt|s(1� ↵t|s) ·m , (5.18)
where µt|s is defined as

µt|s =
1� ↵s

1� ↵t

(5.19)

Combining the results from both cases together, we can write q(xs|xt,x0) in the
following form.

q(xs|xt,x0) =

8
<

:
Cat

⇣
xs; (1� �t|s) · xt + �t|s ·m

⌘
when xt = x0

Cat
⇣
xs; (1� µt|s) · x0 + µt|s↵t|s · xt + µt|s(1� ↵t|s) ·m

⌘
when xt 6= x0

(5.20)

74 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

5.2.4 Parameterization of p✓(xt�1|xt)

The literature has explored three different parameterizations of p✓(xt�1|xt): (1) pa-
rameterizing p✓(xt�1|xt) directly; (2) parameterizing p✓(x0|xt) with f✓

t such that
p✓(x0|xt) = Cat(x0; f✓

t (xt)) and letting p✓(xt�1|xt) = q(xt�1|xt, f✓
t (xt)); and (3)

parameterizing p✓(x0|xt) with f✓
t and then marginalizing q(xt�1,x0|xt) such that

p✓(xt�1|xt) =
P

x0
q(xt�1|xt,x0)p✓(x0|xt).

Method (1) does not reuse any known distribution from the forward process, and
hence is less effective in practice. Method (2) has been widely used for continuous
diffusion models as in [HJA20] and [SME21], and some discrete diffusion models like
in [Hoo+21] and [Zhe+23]. It avoids marginalization and works efficiently and effec-
tively for continuous diffusion. However for discrete diffusion, as shown in Eq. (5.10),
sample x0 determines which categorical distribution should be used, which cannot be
determined without the true x0. Some heuristics have been proposed in [Zhe+23],
however those can have a large gap to the true q(xt�1|xt), leading to an inaccurate
sampling process.

Method (3) has been proposed in [Aus+21] by directly marginalizing out x0, which
introduces additional computational cost in both loss function computation and sam-
pling process as the formulation of p✓(xt�1|xt) has not been simplified to a closed-form
distribution. In this paper, as one of our key contributions, we show that method (3)
parameterization can be simplified to a clean formulation of categorical distribution.
This not only simplifies and accelerates sampling greatly, but also leads to a clean
formulation of the negative VLB loss. As before, we work with a more general distri-
bution p✓(xs|xt), 0 < s < t  T for any s, t.

Proposition 5.2.2. The parameterization of p✓(xs|xt) can be simplified for any 0 <
s < t  T as

p✓(xs|xt) = Cat

⇣
xs; (1� µt|s) · f✓

t (xt) + (µt|s↵t|s + �✓
t|s) · xt + (µt|s(1� ↵t|s)� �✓

t|s) ·m
⌘

(5.21)

where �✓
t|s

is affected by f✓
t (xt) and is defined as

�✓
t|s = (µt|s � �t|s � µt|s↵t|s)hf✓

t (xt),xti . (5.22)

Notice that f✓
t (xt) is a parameterized neural network with softmax normalization

at the last layer such that 1
T f✓

t (xt) = 1. As we show next, the above formulation
simplifies the negative VLB loss computation greatly (§5.2.5), further motivates an ap-
proximated loss that is much easier to optimize (§5.2.6), and accelerates the sampling
process through reparameterization (§5.2.7).

Proof. We first provide the formulation as follows.

p✓(xs|xt) =
X

x0

q(xs|xt,x0)p✓(x0|xt) (5.23)

Using q(xs|xt,x0) in Eq. (5.10) and p✓(x0|xt) = Cat(x0; f✓
t (xt)), we can expand it as

5.2. Discrete-time Discrete Diffusion 75

p✓(xs|xt) = q(xs|xt,xt)p✓(xt|xt) +
X

x 6=xt

q(xs|xt,x)p✓(x|xt)

=x
>

s

⇣
(1� �t|s)xt + �t|sm

⌘
x
>

t f
✓

t (xt)

+
X

x 6=xt

x
T

s

⇣
(1� µt|s)x + µt|s↵t|sxt + µt|s(1� ↵t|s)m

⌘
x
>f✓

t (xt)

=x
>

s

h�
(1� �t|s)xt + �t|sm

�
x
>

t f
✓

t (xt) + (1� µt|s)(
X

x 6=xt

xx
>)f✓

t (xt)

+ (µt|s↵t|sxt + µt|s(1� ↵t|s)m)(
X

x 6=xt

x)>f✓

t (xt)
i

=x
>

s

h�
(1� �t|s)xt + �t|sm

�
x
>

t f
✓

t (xt) + (1� µt|s)(I � xtx
>

t)f✓

t (xt)

+ (µt|s↵t|sxt + µt|s(1� ↵t|s)m)(1� xt)
>f✓

t (xt)
i

=x
>

s

h
(1� �t|s)x

>

t f
✓

t (xt)xt + �t|sx
>

t f
✓

t (xt)m + (1� µt|s)(f
✓

t (xt)� x
>

t f
✓

t (xt)xt)

+ (µt|s↵t|sxt + µt|s(1� ↵t|s)m)(1� x
T

t f
✓

t (xt))
i

=x
>

s

h
(1� µt|s) · f✓

t (xt) +
⇣
(µt|s � �t|s � µt|s↵t|s)x

>

t f
✓

t (xt) + µt|s↵t|s

⌘
· xt

+
⇣
� (µt|s � �t|s � µt|s↵t|s)x

>

t f
✓

t (xt) + µt|s(1� ↵t|s)
⌘
·m
i

= Cat
⇣
xs; (1� µt|s) · f✓

t (xt) + (µt|s↵t|s + �✓
t|s

) · xt + (µt|s(1� ↵t|s)� �✓
t|s

) ·m
⌘

(5.24)

5.2.5 Loss Function Derivation

With q(xt�1|xt,x0) in Eq. (5.10) and p✓(xt�1|xt) in Eq. (5.21), the Lt(✓) term in
Eq. (5.3) can be written as

Eq(xt|x0)

h
�xt,x0DKL

�
q(xt�1|xt = x0)kp✓(xt�1|xt)

�

+(1� �xt,x0)DKL
�
q(xt�1|xt 6= x0)kp✓(xt�1|xt)

�i
,

(5.25)

where �xt,x0 denotes the Kronecker delta of xt and x0. q(xt�1|xt = x0) and
q(xt�1|xt 6= x0) represent the first and second categorical distribution in Eq. (5.10),
respectively.

Apart from negative VLB, another commonly employed auxiliary loss is the cross-
entropy (CE) loss between q(xt|x0) and p✓(x0|xt), which measures the reconstruction
quality.

LCE

t (✓) := Eq(xt|x0)[� log p✓(x0|xt)] (5.26)
Notice that both Eq. (5.26) and the negative VLB in Eq. (5.25) share the same

global minima with p✓(x0|xt) being the true posterior q(x0|xt). However they have
different optimization landscape; and thus under limited data and network capacity,
which loss would be easier to minimize is unknown [TB07; DCO20].

5.2.6 Simplifying Loss Further for Easier Opt.

While Eq. (5.25) is the exact negative VLB loss, in practice we find it harder to
minimize than LCE

t . In this section, we first derive a much simpler, approximated

76 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

loss by observing a relation between q(xs|xt,x0) and p✓(xt|x0). Recent successes in
continuous diffusion models [HJA20; Kar+22] show that the coefficient of each loss
term at different time steps should be revised to be invariant to noise scheduling for
easier optimization. We show that coefficient simplification and LCE

t are both valuable
for optimizing a general negative VLB where only partial time steps are observed. We
combine all designs to derive the final approximated loss, denoted as L̃t.

Proposition 5.2.3. For any 0 < s < t  T , with x0 known,
4p✓(xs|xt,x0) := p✓(xs|xt)� q(xs|xt,x0) = (5.27)

(1� µt|s)[f
✓

t (xt)� x0 + �t|shf✓

t (xt)� x0,xti(xt �m)] ,

where
�t|s =

(1� ↵̄s)↵̄t|s

↵̄t + (1� ↵̄t)hxt,mi
. (5.28)

Proposition 5.2.3 shows that the distribution difference between p✓(xs|xt) and
q(xs|xt,x0) has a closed-form formulation. (See Appx. of [Zha+24b] for the proof.)
With this formulation, we can apply the Taylor expansion (up to second order) to
approximate the KL divergence directly

DKL
�
q(xs|xt,x0)kp✓(xs|xt)

�
⇡
X

xs

|4p✓(xs|xt,x0)|2
q(xs|xt,x0)

(5.29)

The above formulation along with Proposition 3 are valid for any 0 < s < t  T ,
which is much general than the term used in Eq. (5.3) that only considers s = t� 1.
We next show that minimizing divergence between q and p✓ at any s and t is also valid,
as it is inside a general negative VLB with partial time steps. The initial version of the
VLB is derived under the assumption that observations are made at every time step.
Its backward denoising process is designed to advance by a single time step during
each generation step for best generation quality. Let us consider a more general case
where only partial time steps are observed in the forward process, then, minimizing
its negative VLB can help improve generation quality with fewer steps. Assuming
only xs and xt are observed, where 0 < s < t  T , a derivation analogous to that of
Eq. (5.3) can show that
log p✓(x0) � �DKL[q(xt|x0)kp✓(xt)] + Eq(xs|x0)[log p✓(x0|xs)]�DKL[q(xs|xt,x0)kp✓(xs|xt)],

(5.30)
where the first divergence term between the prior and posterior quantifies the

quality of the backward denoising process from T to t. The second term represents
the CE loss, LCE

s , which influences the generation quality from time s to time 0. The
final term is given by Eq. (5.29), and contributes to the generation process from t to
s.

This generalized formulation of the VLB highlights the significance of the CE loss
and the alignment between q(xs|xs,x0) and p✓(xs|xt) at any observed times s and
t. While CE loss does not have a coefficient that depends on noise schedules and
time, changing s and t or noise schedule (which determines ↵̄t) during training will
greatly impact the scale of the term in Eq. (5.29). By rendering the loss scaling term
independent of time and the noise schedule, the minimization of this adjusted loss
concurrently leads to the minimization of the original loss in Eq. (5.29) for any given
s and t. Hence, by removing the sensitive scale (1�µt|s)

2

q(xs|xt,x0)
in Eq. (5.29), we reformulate

the loss as
L2
t := kf✓

t (xt)� x0 + �t|shf✓

t (xt)� x0,xti(xt �m)k22, (5.31)

where we can further clip �t|s to min(1,�t|s) for minimal scaling influence. It is
important to note that while we have modified the coefficient to be invariant to the

5.3. Continuous-time Discrete Diffusion 77

noise schedule and time s to effectively minimize Eq. (5.29) at any t and s, a similar
approach to coefficient revision has been previously explored in [HJA20; Kar+22],
primarily to facilitate an easier optimization by achieving a balance of terms in the
loss function. Overall, we have the final approximated loss

L̃t(✓) = L2
t (✓) + LCE

t (✓) . (5.32)
We find that in practice this loss is much easier to optimize than the original exact
negative VLB on harder tasks.

5.2.7 Reparameterization Form for Sampling

In practice, we need to sample xt|0 ⇠ q(xt|x0) for training and xs|t ⇠ p✓(xs|xt) for
generation (backward denoising). In what follows, we provide the reparameterization
form for these to facilitate fast sampling. Given q(xt|x0) = Cat(xt;↵tx0 +(1�↵t)m)
and p✓(xs|xt) as in Eq. (5.21), we can rewrite the corresponding variables as

xt|0 = �1,bt
x0 + (1� �1,bt

)m0, where bt ⇠ Bernoulli(↵t) (5.33)

xs|t = �1,bs|t x̃0|t + �2,bs|txt + �3,bs|tm0, (5.34)

where x̃0|t ⇠ Cat(f✓
t (xt)) and bs|t ⇠ Cat(·; [1�µt|s, µt|s↵t|s+�✓

t|s
, µt|s(1�↵t|s)��✓t|s]).

Eq. (5.33) and Eq. (5.34) essentially show that the sampling process can be divided
into two steps: first, sample the branch indicator bt (or bs|t), and then sample from the
categorical distribution of that branch, i.e. xt, m0, or x̃0|t. Moreover, the three terms
in Eq. (5.34) highlight that the denoising step of generating xs from xt essentially
draws samples via three levers: (1) use the predicted sample x0 from the trained
network f✓

t (xt) directly, (2) keep it unchanged as xt, or (3) roll it back to noise m0,
offering an intuitive understanding.

5.3 Continuous-time Discrete Diffusion

Despite being simple, discrete-time diffusion limits the generation process as we can
only “jump back” through fixed time points. Recent works generalize continuous-
state diffusion models to continuous-time [Son+21].. This generalization enables great
flexibility in backward generation as one can “jump back” through any time in [0, T]
to the target distribution, often with improved sample quality.

Nevertheless, generalizing discrete-state diffusion model from discrete-time to continuous-
time is nontrivial, as the score-matching based technique [Son+21] in continuous-state
models requires the score function rx log pt(x) to be available. This function, how-
ever, is evidently non-existent for discrete distributions. Recently, Campbell, Ben-
ton, De Bortoli, Rainforth, Deligiannidis, and Doucet [Cam+22] presented the first
continuous-time diffusion model for discrete data. It formulates the forward process
through a Continuous Time Markov Chain (CTMC) and aims at learning a reverse
CTMC that matches the marginal distribution with the forward CTMC at any time
t. While being theoretically solid, the formulation in [Cam+22] has two problems:
(1) the negative VLB loss of matching the forward and backward CTMCs is analyt-
ically complicated and hard to implement; and (2) the exact sampling through the
learned backward CTMC is unrealistic. Campbell, Benton, De Bortoli, Rainforth,
Deligiannidis, and Doucet [Cam+22] propose approximate solutions, which however,
trade off computational tractability with unknown errors and sample quality. SDDM
[Sun+23] takes a different approach with ratio matching [Hyv07; Lyu09], which is the

78 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

generalization of score matching to discrete data. However, it needs a specific network
architecture and is not applicable to other models.

In this paper, we build on the CTMC formulation in Campbell, Benton, De Bor-
toli, Rainforth, Deligiannidis, and Doucet [Cam+22], and show that the loss can be
analytically simplified for nominal data. This simplification also inspires an improved
MCMC corrector with closed-form formulation. For problem (2), we argue that the
difficulty arises from using the learned transition rate matrix for the backward CTMC,
where the sampling probability p✓(xs|xt) is hard to compute using the transition rate
matrix. Instead, capitalizing on the realization that this reverse transition rate matrix
is computed based on the learned p✓(x0|xt), we propose to compute p✓(xs|xt) through
p✓(x0|xt) without using the transition rate matrix. This avoids the approximation er-
ror and greatly simplifies the generation process.

Remarkably, with the new formulation of generation, we show that the continuous-
time and discrete-time diffusion models can be unified together, with exactly the
same forward diffusion and now also backward generation process. Moreover, we
demonstrate that this unification offers mutual benefits: the continuous-time diffusion
can leverage the swift and precise sampling formulation derived from the discrete-time
case (as detailed in §5.2.7), while the discrete-time diffusion can utilize the MCMC
corrector from the continuous-time scenario.

5.3.1 Background: Continuous-Time Markov Chain

CTMC generalizes Markov chain from discrete- to continuous-time via the Markov
property: xt1 ?? xt3 | xt2 , 8t1 < t2 < t3. Anderson [And12] provides an introduction
to time-homogeneous CTMC. It can be derived from discrete-time Markov chain by
increasing the number of time stamps N to infinite while keeping the total time T
fixed. Specifically, we can define 4t = T

N
, ti = i4t, and a discrete-time Markov chain

characterized by transition probability q(xti
|xti�1) and transition matrix Qti

with
[Qti

]jk = q(xti
= ek|xti�1 = ej). By setting N to infinite, the transition probability

q(xti
|xti�1) converges to 0, hence is not suitable for describing CTMC. Instead, CTMC

is fully characterized by its transition rate rt(y|x), s.t.

rt(y|x) = lim
4t!0

qt|t�4t(y|x)� �x,y
4t

. (5.35)

As the name suggests, rt(y|x) measures the change rate of the transition prob-
ability of moving from state x to state y at time t in the direction of the process.
The corresponding transition rate matrix Rt with [Rt]ij = rt(ej |ei) fully determines
the underlying stochastic process. A CTMC’s transition probabilities satisfy the Kol-
mogorov equations [Kol31], which have unique solution. As Rindos, Woolet, Viniotis,
and Trivedi [Rin+95] stated, when Rt1 and Rt2 commute (i.e. Rt1Rt2 = Rt2Rt1) for
any t1, t2, the transition probability matrix can be written as

Qt|s = exp
⇣Z t

s

Rada
⌘
, (5.36)

where exp(M) :=
P

1

k=0
M

k

k! . The commutative property of Rt can be achieved by
choosing Rt = �(t)Rb where Rb 2 RK⇥K is a time-independent base rate matrix.

5.3.2 Forward and Backward CTMCs

Forward CTMC. Two properties are needed for modeling the forward process of
adding noise with a CTMC: P1) the process can converge to an easy-to-sample sta-
tionary distribution at final time T ; and P2) the conditional marginal distribution

5.3. Continuous-time Discrete Diffusion 79

q(xt|x0) can be obtained analytically for efficient training. As given in Eq. (5.36), P2)
can be achieved by choosing commutative transition rate matrices with Rt = �(t)Rb.

We next show that property P1), i.e. limt!T Qt|0 = QT |0 = 1m> for some
stationary distribution m, can be achieved by choosing Rb = 1m> � I, which is a
valid transition rate matrix with the property (�Rb)2 = (�Rb).

Proof.

Qt|s = exp(�t|sRb) = I +
1X

k=1

(��t|s)
k(�Rb)k

k!
= I � (

1X

k=1

(��t|s)
k

k!
)Rb

= I � (e��
t|s � 1)Rb = e��

t|sI + (1� e��
t|s)1m> (5.37)

Then we have
Qt|s = exp(�t|sRb) = e��

t|sI + (1� e��
t|s)1m>. (5.38)

? Unified forward process. Eq. (5.38) will have exactly the same formula-
tion as the transition matrix of the discrete-time case in Eq. (5.9), if we set ↵t|s =

exp(��t|s) = exp(�
R
t

s
�(a)da). Thus, this formulation unifies the forward processes of

adding noise for both discrete- and continuous-time discrete diffusion. With limt!T ↵t|0 =

0, or equivalently limt!T

R
T

0 �(a)da = 1, we achieve the goal QT |0 = 1m>. We use
↵t|s directly in the following sections, i.e. Eq. (5.9). To summarize, for the forward
CTMC

Rt = �(t)(1m> � I) , and

Qt|s = ↵t|sI + (1� ↵t|s)1m
> . (5.39)

We can further get vector-form forward rate
rt(x|·) = Rtx = �(t)

�
hx,mi1� x

�
,

rt(·|x) = R>

t x = �(t)
�
m� x

�
. (5.40)

Backward CTMC. To generate samples from the target distribution, we have to
reverse the process of the forward CTMC. Let brt be the transition rate of the backward
CTMC with corresponding matrix bRt. When the forward and backward CTMCs are
matched exactly, theoretically the forward and backward CTMCs have the following
relationship (see Campbell, Benton, De Bortoli, Rainforth, Deligiannidis, and Doucet
[Cam+22]’s Proposition 1):

brt(x|y) = rt(y|x)
qt(x)

qt(y)
, 8x 6= y . (5.41)

However, the marginal distributions qt(x) and qt(y) are intractable analytically, hence
we cannot derive the backward CTMC directly from Eq. (5.41). Instead, Campbell,
Benton, De Bortoli, Rainforth, Deligiannidis, and Doucet [Cam+22] parameterize the
transition rate br✓t , by observing that qt(x)

qt(y)
=
P

x0

qt|0(x|x0)
qt|0(y|x0)

q0|t(x0|y)2, as follows

br✓t (x|y) = rt(y|x)
X

x0

qt|0(x|x0)

qt|0(y|x0)
p✓0|t(x0|y). (5.42)

Then, br✓t is obtained by learning the parameters ✓ to minimize the continuous-time
negative VLB introduced next.

2As qt(x) =
X

x0

qt|0(x|x0)qdata(x0) and qt(x) =
qt|0(x|x̃0)qdata(x̃0)

q0|t(x̃0|x)
.

80 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

Negative VLB. Similar to the discrete-time case, the backward CTMC can be
learned by maximizing the VLB for data log-likelihood. Computing VLB for CTMC
is nontrivial, and fortunately Campbell, Benton, De Bortoli, Rainforth, Deligiannidis,
and Doucet [Cam+22] has derived (see their Proposition 2) that the negative VLB
can be formulated as

T Et⇠Uni(0,T)
x⇠q(xt|x0)

hX

z 6=x

br✓t (z|x)�
X

z 6=x

rt(z|x) log br✓t (x|z)
i
. (5.43)

However, Campbell, Benton, De Bortoli, Rainforth, Deligiannidis, and Doucet
[Cam+22]’s original design did not simplify the negative VLB with the parameteri-
zation of br✓t in Eq. (5.42), making the implementation nontrivial and inefficient. In
this section, we show that their formulation can be greatly simplified to a closed-form
evaluation.

Before the simplification of Eq. (5.43), we introduce g✓t (x|y) such that br✓t (x|y) =
rt(y|x)g✓t (x|y), with

g✓t (x|y) :=
X

x0

qt|0(x|x0)

qt|0(y|x0)
p✓0|t(x0|y) ⇡ qt(x)

qt(y)
, (5.44)

which is the estimator of the marginal probability ratio.

Proposition 5.3.1. The vector form parameterization of g✓t (x|y) can be simplified
analytically as:

g✓t (·|y) =
h�

1�
↵t|0hf✓

t (y),yi
↵t|0 + (1� ↵t|0)hy,mi

�
m +

↵t|0

1� ↵t|0
f✓

t (y)
i
� 1� y

hy,mi + y (5.45)

The proof and its extension to multi-element case g✓,d
t

(·|y1:D) can be found in
Appendix of [Zha+24b].

5.3.3 Simplification of Continuous-time Negative VLB

As the derivation is much harder in multi-element case, we work on it directly and
single-element can be induced as a special case. Given x1:D, let x\d represent x1:D\d,
i.e. the object without d-th element. Before diving into the loss, we first need to
generalize the definition of transition rate of forward and backward CTMC to multi-
element case. We present the result below.

r1:Dt (z1:D|x1:D) =
DX

d=1

rdt (z
d|xd)�x\d,z\d

br✓,1:D
t

(z1:D|x1:D) =
DX

d=1

rdt (x
d|zd)g✓,d

t
(zd|x1:D) · �x\d,z\d

where �x,y is the Kronecker delta, r1:Dt is the forward transition rate and br✓,1:D
t

is the
backward transition rate parameterization. As we assume the forward processes are
independent for different elements, rdt represents the transition rate of the forward
CTMC process at the d-th element.

Proof. In this section, we show how to extend transition rates, and and the ratio g✓t ,
into multi-element case. We let x\d represent x1:D\d, i.e. the object without d-th
element, for simplicity.

Forward Transition Rates: First, the transition rates for forward sampling has
a specific decomposition formulation in multi-element case as proven by [Cam+22],
thus, we summarize the result as follows. The key assumption for CTMC is that at a

5.3. Continuous-time Discrete Diffusion 81

single time, only one dimension can change.

r1:Dt (y1:D|x1:D) =
DX

d=1

rdt (y
d|xd)�x\d,y\d (5.46)

where �x\d,y\d is the Kronecker delta and it is 1 if and only if x\d = y\d. As we
also assume that all dimension processes are indepedent, rdt denotes the transition
rate of the CTMC process at d-th element/dimension.

Backward Transition Rates: Now let us work on r̂1:Dt (y1:D|x1:D). Notice that
as the backward process is also a CTMC, it also satisfies that only one dimension can
change at a time. We summarize two equivalent formulations as follows.

r̂1:Dt (y1:D|x1:D) =
DX

d=1

rdt (x
d|yd)�x\d,y\d

X

xd

0

qt|0(y
d|xd

0)

qt|0(xd|xd

0)
q0|t(x

d

0|x1:D) (5.47)

r̂1:Dt (y1:D|x1:D) =
DX

d=1

rdt (x
d|yd)�x\d,y\d

P
xd

0

qt|0(xd|xd

0)

qt|0(yd|xd

0)
q0|t(x

d

0|y1:D)
(5.48)

Notice that these two formulations should be equivalent. In practice, we use the
first formulation to parameterize the reverse transition rate in learning.

Proof.

qt(y1:D)

qt(x1:D)
=
X

x1:D
0

qt|0(y
1:D|x1:D

0)

qt|0(x1:D|x1:D
0)

q0|t(x
1:D
0 |x1:D) =

X

x1:D
0

q0|t(x
1:D
0 |x1:D)

DY

d=1

qt|0(y
d|xd

0)

qt|0(xd|xd

0)

(5.49)
X

x
\d
0

q0|t(x
1:D
0 |x1:D) =

X

x
\d
0

q0|t(x
d

0|x1:D)q0|t(x
\d

0 |x1:D,xd

0) = q0|t(x
d

0|x1:D) (5.50)

(Case 1)

r̂1:Dt (y1:D|x1:D) = r1:Dt (x1:D|y1:D)
qt(y1:D)

qt(x1:D)

=
⇣ DX

d=1

rdt (x
d|yd)�x\d,y\d

⌘⇣X

x1:D
0

q0|t(x
1:D
0 |x1:D)

DY

d=1

qt|0(y
d|xd

0)

qt|0(xd|xd

0)

⌘

=
DX

d=1

X

x1:D
0

rdt (x
d|yd)�x\d,y\dq0|t(x

1:D
0 |x1:D)

qt|0(y
d|xd

0)

qt|0(xd|xd

0)

=
DX

d=1

rdt (x
d|yd)�x\d,y\d

X

xd

0

qt|0(y
d|xd

0)

qt|0(xd|xd

0)

X

x
\d
0

q0|t(x
1:D
0 |x1:D)

=
DX

d=1

rdt (x
d|yd)�x\d,y\d

X

xd

0

qt|0(y
d|xd

0)

qt|0(xd|xd

0)
q0|t(x

d

0|x1:D) (5.51)

82 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

(Case 2)

r̂1:Dt (y1:D|x1:D) = r1:Dt (x1:D|y1:D)/
qt(x1:D)

qt(y1:D)

=
DX

d=1

rdt (x
d|yd)�x\d,y\d

P
x1:D
0

q0|t(x
1:D
0 |y1:D)

Q
D

i=1
qt|0(xi|xi

0)

qt|0(yi|xi

0)

=
DX

d=1

rdt (x
d|yd)�x\d,y\d

P
x1:D
0

q0|t(x
1:D
0 |y1:D)

qt|0(xd|xd

0)

qt|0(yd|xd

0)

=
DX

d=1

rdt (x
d|yd)�x\d,y\d

P
xd

0

qt|0(xd|xd

0)

qt|0(yd|xd

0)
q0|t(x

d

0|y1:D)
(5.52)

Ratio: We now define an estimator g✓,d
t

(xd|y1:D) as follows.

g✓,d
t

(xd|y1:D) : =
X

xd

0

qt|0(x
d|xd

0)

qt|0(yd|xd

0)
p✓0|t(x

d

0|y1:D) ⇡
X

xd

0

qt|0(x
d|xd

0)

qt|0(yd|xd

0)
q0|t(x

d

0|y1:D) =
qt(xd|y\d)

qt(yd|y\d)

(5.53)

g✓t (x
1:D|y1:D) : =

DY

d=1

g✓,d
t

(xd|y1:D) =
X

x1:D
0

qt|0(x
1:D|x1:D

0)

qt|0(y1:D|x1:D
0)

p✓0|t(x
1:D
0 |y1:D) ⇡ qt(x1:D)

qt(y1:D)

(5.54)

We can extend the vector formulation Eq. (5.45) in Proposition 4 to g✓,d
t

(xd|y1:D):

g✓,d
t

(·|x1:D) =
1

hxd,mdi

h�
1�

↵t|0hf✓,d

t
(x1:D),xdi

↵t|0 + (1� ↵t|0)hxd,mdi
�
md +

↵t|0

1� ↵t|0
f✓,d

t
(x1:D)

i
� (1� xd) + xd

(5.55)

Then, we can derive two approximators for transition rate r̂1:Dt (y1:D|x1:D) as fol-
lows.

[r̂✓,1:D
t

]1(y1:D|x1:D) :=
DX

d=1

rdt (x
d|yd)g✓,d

t
(yd|x1:D) · �x\d,y\d ⇡ Eq. (5.47) (5.56)

[r̂✓,1:D
t

]2(y1:D|x1:D) :=
DX

d=1

rdt (x
d|yd)

g✓,d
t

(xd|y1:D)
· �x\d,y\d ⇡ Eq. (5.48) (5.57)

Proposition 5.3.2. The negative VLB in Eq. (5.43) in multi-element case can be
simplified as

T E t⇠Uni(0,T)

x1:D⇠qt|0(x
1:D
0)

z1:D⇠St(x
1:D)

h DX

d=1

rdt (x
d|·)>g✓,d

t
(·|x1:D)� 1

MSt(z1:D|x1:D
0)

DX

d=1

1>[qt|0(·|xd

0)� rdt (z
d|·)� log g✓,d

t
(·|z1:D)]

qt|0(zd|xd

0)

i

(5.58)

where St(z1:D|x1:D) is any unnormalized distribution (see Eq. (5.67)) of sampling
the auxiliary variable z1:D from x1:D. The auxiliary variable is introduced to avoid
multiple passes of the model for computing the second term of Eq. (5.43). MSt

is a
normalization scalar (see Eq. (5.81)) that only depends on St, z1:D, and x1:D

0 .

5.3. Continuous-time Discrete Diffusion 83

Proof. As forward process is defined in Eq. (5.39), in multi-element case we can easily
get

rdt (x
d|·) = Rd

tx
d = �(t)

�
hxd,mdi1� xd

�
(5.59)

rdt (·|xd) = (Rd

t)
>xd = �(t)

�
md � xd

�
(5.60)

The rdt (x|·) and rdt (·|x) are essentially the x-th column and row of the transition rate
matrix Rd

t .
In Mult-element case, the negative VLB loss in Eq. (5.43) can be written as

T Et⇠Uni(0,T)
x1:D

⇠qt|0

h X

z1:D 6=x1:D

r̂✓,1:D
t

(z1:D|x1:D)�
X

z1:D 6=x1:D

r1:Dt (z1:D|x1:D) log r̂✓,1:D
t

(x1:D|z1:D)
i

(5.61)
As there are two terms, let’s work on each term separately.

Term 1

Based on the formulation of r1:Dt and r̂✓,1:D
t

, we can rewrite the first term as

Term1 = T Et,x1:D

X

z1:D 6=x1:D

r̂✓,1:D
t

(z1:D|x1:D) (5.62)

= T Et,x1:D

X

z1:D 6=x1:D

DX

d=1

rdt (x
d|zd)g✓,d

t
(zd|x1:D) · �x\d,z\d (5.63)

= T Et,x1:D

h DX

d=1

X

zd 6=xd

rdt (x
d|zd)g✓,d

t
(zd|x1:D)

i
(5.64)

= T Et,x1:D

h DX

d=1

rdt (x
d|·)>g✓,d

t
(·|x1:D)

i
+ const. (5.65)

= T Et⇠Uni.(0,T)
x1:D

⇠qt|0

�(t)
DX

d=1

hxd,mdi
h
1
>g✓,d

t
(·|x1:D)

i
+ const. (5.66)

Term 2

As the evaluation of r̂✓t (·|x) for any x requires a single forward pass of the parameter-
ized network p✓0|t(·|x), the second term within the expectation of Eq. (5.43) requires
multiple passes of the model. This complexity is even greatly amplified in cases
with multi-element objects. Campbell, Benton, De Bortoli, Rainforth, Deligianni-
dis, and Doucet [Cam+22] avoids the multiple passes by changing the expectation
variable through importance sampling. We take a similar approach to simplify the
second term. Differently, Campbell, Benton, De Bortoli, Rainforth, Deligiannidis, and
Doucet [Cam+22] uses a specific sampling distribution (same as the forward transi-
tion rate) to introduce the auxiliary variable for changing the expectation variable,
we generalize it to use a general sampling process St defined below.

Let y1:D be the new variable upon which the exchanged expectation is based, and
assume that y1:D is sampled from an unnormalized joint distribution St(y1:D|x1:D).
We restrict St(y1:D|x1:D) to be a unnormalized probability that is nonzero if and
only if y1:D and x1:D are different at a single element. Formally, we can write the

84 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

unnormalized distribution as

St(y
1:D|x1:D) = (1� �y1:D,x1:D)

DX

d=1

Sd

t (y
d|xd)�y\d,x\d

with normalizer St(x
1:D) =

X

y1:D

St(y
1:D|x1:D) =

DX

d=1

X

yd 6=xd

Sd

t (y
d|xd) (5.67)

where Sd
t (y

d|xd) is any unnormalized probability at dimension d.
Now for the second term, we have

T Et,x1:D

X

z1:D 6=x1:D

rt(z
1:D|x1:D) log r̂✓t (x

1:D|z1:D) (5.68)

= T Et,x1:D

X

z1:D 6=x1:D

St(z1:D|x1:D)

S(x1:D)
· St(x1:D)

St(z1:D|x1:D)
· rt(z1:D|x1:D) log r̂✓t (x

1:D|z1:D)

(5.69)

= T E
t,x1:D

z1:D
⇠St

h St(x1:D)

St(z1:D|x1:D)
· rt(z1:D|x1:D) log r̂✓t (x

1:D|z1:D)
i

(As St samples z1:D 6= x1:D)

(5.70)

= T E
t,z1:D

⇠St

X

x1:D

h
qSt

(x1:D|x1:D
0 , z1:D) · St(x1:D)

St(z1:D|x1:D)
· rt(z1:D|x1:D) log r̂✓t (x

1:D|z1:D)
i

(5.71)

where qSt
(x1:D|x1:D

0 , z1:D) is the conditional posterior distribution such that (for clear-
ity we replace x1:D, z1:D with x1:D

t , z1:D
t respectively, as they are variables at time

t)

qSt
(x1:D

t |x1:D
0 , z1:D

t) =
qSt

(x1:D
t , z1:D

t |x1:D
0)P

y1:D
t

qSt
(y1:D

t
, z1:D

t
|x1:D

0)
(5.72)

=
qt|0(x

1:D
t |x1:D

0) · St(z1:D
t |x1:D

t)/St(x1:D
t)

P
y1:D
y

qt|0(x1:D|x1:D
0) · St(z1:D

t
|y1:D

t
)/St(y1:D

t
)

(5.73)

=
(1� �zt,xt

)
P

D

d=1 �z\d
t

,x
\d
t

Sd
t (z

d
t |xd

t)/St(x1:D
t) · qt|0(xd

t � z
\d

t
|x1:D

0)
P

y1:D
t

⇥
(1� �zt,yt

)
P

D

d=1 �z\d
t

,y
\d
t

Sd
t
(zd

t
|yd

t
)/St(y1:D

t
) · qt|0(yd

t
� z\d

t
|x1:D

0)
⇤ (5.74)

=
(1� �zt,xt

)
P

D

d=1 �z\d
t

,x
\d
t

S
d

t
(zd

t
|xd

t
)

St(x1:D
t

)
· qt|0(x

d

t
|xd

0)

qt|0(z
d

t
|xd

0)

P
y1:D
t

⇥
(1� �zt,yt

)
P

D

d=1 �z\d
t

,y
\d
t

S
d

t
(zd

t
|yd

t
)

St(y1:D
t

)
· qt|0(y

d

t
|xd

0)

qt|0(z
d

t
|xd

0)

⇤ (5.75)

=
(1� �zt,xt

)
P

D

d=1 �z\d
t

,x
\d
t

S
d

t
(zd

t
|xd

t
)

St(x1:D
t

)
· qt|0(x

d

t
|xd

0)

qt|0(z
d

t
|xd

0)

P
D

d=1

P
yd

t
6=zd

S
d

t
(zd

t
|yd

t
)

St(yd

t
�z

\d
t

)
· qt|0(y

d

t
|xd

0)

qt|0(z
d

t
|xd

0)

(5.76)

5.3. Continuous-time Discrete Diffusion 85

Now taking the formulation of qSt
back into Term 2, we further simplify Term 2

as

T E
t,z1:D

⇠St

P
x1:D

h
(1� �z,x)

P
D

d=1 �z\d,x\d
S
d

t
(zd

|xd)
St(z1:D|x1:D)

· qt|0(x
d
|xd

0)

qt|0(zd|xd

0)
· rt(z1:D|x1:D) log r̂✓t (x

1:D|z1:D)
i

P
D

d=1

P
yd 6=zd

S
d

t
(zd|yd)

St(yd�z\d)
· qt|0(yd|xd

0)

qt|0(zd|xd

0)

(5.77)

= E
t,z1:D

⇠St

P
D

d=1

P
xd 6=zd

S
d

t
(zd

|xd)
St(z1:D|xd�z\d)

· qt|0(x
d
|xd

0)

qt|0(zd|xd

0)
· rt(z1:D|xd � z\d) log r̂✓t (x

d � z\d|z1:D)

P
D

d=1

P
yd 6=zd

S
d

t
(zd|yd)

St(yd�z\d)
· qt|0(yd|xd

0)

qt|0(zd|xd

0)

(5.78)

= E
t,z1:D

⇠St

P
D

d=1

P
xd 6=zd

qt|0(x
d
|xd

0)

qt|0(zd|xd

0)
· rdt (zd|xd) · log rdt (z

d|xd)g✓,d
t

(xd|z1:D)

P
D

d=1

P
yd 6=zd

qt|0(yd|xd

0)

qt|0(zd|xd

0)
· S

d

t
(zd|yd)

St(yd�z\d)

(5.79)

= E
t,z1:D

⇠St

P
D

d=1

P
xd 6=zd

qt|0(x
d
|xd

0)

qt|0(zd|xd

0)
· rdt (zd|xd) · log g✓,d

t
(xd|z1:D)

P
D

d=1

P
yd 6=zd

qt|0(yd|xd

0)

qt|0(zd|xd

0)
· S

d

t
(zd|yd)

St(yd�z\d)

+ const. (5.80)

The above equation further shows that the sampling distribution St for adding ex-
changing variable z1:D only affect a weighting term of the loss computation. Let us
define the scalar weighting term as

MSt
(z1:D|x1:D

0) :=
DX

d=1

X

yd 6=zd

qt|0(y
d|xd

0)

qt|0(zd|xd

0)
· Sd

t (z
d|yd)

St(yd � z\d)
(5.81)

With this definition, the Term 2 can be further rewrited as

E
t,z1:D

⇠St

h 1

MSt
(z1:D|x1:D

0)

DX

d=1

1

qt|0(zd|xd

0)

X

xd 6=zd

qt|0(x
d|xd

0) · rdt (zd|xd) · log g✓,d
t

(xd|z1:D)
i

(5.82)

= E
t,z1:D

⇠St

h 1

MSt
(z1:D|x1:D

0)

DX

d=1

1
>[qt|0(·|xd

0)� rdt (z
d|·)� log g✓,d

t
(·|z1:D)]

qt|0(zd|xd

0)

i
+ const.

(5.83)

= E
t,z1:D

⇠St

h �(t)

MSt
(z1:D|x1:D

0)

DX

d=1

hzd,mdi
qt|0(zd|xd

0)
1
>[qt|0(·|xd

0)� log g✓,d
t

(·|z1:D)] + const.
i

(5.84)

All Terms

Combine term 1 and term 2 together, we can write the negative VLB loss as

T Et⇠Uni(0,T)
x1:D

⇠qt|0

h X

z1:D 6=x1:D

r̂✓,1:D
t

(z1:D|x1:D)�
X

z1:D 6=x1:D

r1:Dt (z1:D|x1:D) log r̂✓,1:D
t

(x1:D|z1:D)
i

= T E t⇠Uni(0,T)
x1:D

⇠qt|0(x
1:D
0)

z1:D
⇠St(x1:D)

h DX

d=1

rdt (x
d|·)>g✓,d

t
(·|x1:D)�

1

MSt
(z1:D|x1:D

0)

DX

d=1

1
>[qt|0(·|xd

0)� rdt (z
d|·)� log g✓,d

t
(·|z1:D)]

qt|0(zd|xd

0)

i
+ const. (5.85)

86 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

This formulation simplifies and generalizes the result in Campbell, Benton, De
Bortoli, Rainforth, Deligiannidis, and Doucet [Cam+22], such that any St can be
used for introducing the auxiliary expectation variable z1:D. Importantly, Eq. (5.58)
shows that changing St only affects a scalar weighting term. Computing the loss
requires two passes of the model for z1:D and x1:D separately. Choosing St carefully
such that z1:D and x1:D have the same distribution can avoid the second pass of the
model, which we leave to future work.

5.3.4 Backward Sampling & Unification

Algorithm 2 USD3 Unified Training: Red: discrete-time step, and blue: continuous-
time step.
1: Input: A stationary distribution m, samples ⇠ pdata, weight factor �, max time

T
2: repeat
3: Draw x0 ⇠ pdata(x0)
4: Draw t ⇠ Uniform(0, ..., T) or t ⇠ Uniform(0, 1)
5: Compute ↵t from noise scheduler
6: Draw m

1:D
0 ⇠ Cat(m1:D

0 ;m)
7: x

1:D
t|0 = �1:D

1,b1:D
t

� x
1:D
0 + (1� �1:D

1,b1:D
t

)�m
1:D
0 where bt ⇠ Bernoulli(↵t)

8: Compute f✓
t (x1:D

t) as parameterization of p✓(x1:D
0 |x1:D

t)
9: Take gradient descent step on r✓{Lt(✓) + �LCE

t (✓)} (from Eq. (5.25) +
Eq. (5.26))

10: or r✓{LCTMC
t (✓) + �LCE

t (✓)} (from Eq. (5.43) + Eq. (5.26))
11: until convergence

Algorithm 3 USD3 Unified Sampling
1: Input: A stationary distribution m, {ti}ni=0 s.t. 0 = t0 < t1 < ... < tn = T ,

learned f✓
ti
.

2: MCMC Input: use_MCMC, step size 4n, total steps N .
3: Set x

1:D
n ⇠ Cat(x1:D

n ;m)
4: for i 2 {n, ..., 0} do
5: Compute f✓

ti
(x1:D

i
) and p✓(x1:D

i�1|x1:D
i

) from Eq. (5.21)
6: Draw x

1:D
i�1 ⇠ Cat(x1:D

i�1; p✓(x
1:D
i�1|x1:D

i
))

7: If use_MCMC:
8: x

1:D
i�1 MCMC_Corrector(ti,x1:D

i�1,4n, f✓
ti
, N) (Algo. 4)

9: return x0

Campbell, Benton, De Bortoli, Rainforth, Deligiannidis, and Doucet [Cam+22]
proposes to use the learned transition rate br✓t of the backward CTMC to sample
reversely for the target distribution pdata(x0). However, different from the forward
CTMC where all elements are sampled independently, the backward CTMC processes
for all elements are coupled together and do not have the closed-form transition prob-
ability derived from the learned transition rate. Direct and exact sampling from
a CTMC uses the algorithm by Gillespie [Gil77], which is extremely inefficient for
multi-element objects. Instead of exact sampling, Campbell, Benton, De Bortoli,
Rainforth, Deligiannidis, and Doucet [Cam+22] proposes to use tau-leaping [Gil01]

5.3. Continuous-time Discrete Diffusion 87

that approximately samples all transitions occurring from time t to t � ⌧ , assuming
R1:D

t fixed during the time period. However, it 1) introduces unknown errors that
needs additional correction process; 2) can only accept at most 1 alteration for each
element from t to t � ⌧ on categorical data, which requires small enough ⌧ , hence
potentially too many backward steps.

We propose to avoid the costly sampling from using the transition rate of the back-
ward CTMC. We first observe that the estimated transition rate br✓t is essentially de-
rived from the estimated p✓0|t(x0|xt). Hence using br✓t is equivalent to using p✓0|t(x0|xt) in
an indirect way. We realize that the transition probability qs|t(xs|xt) can be computed
easily from p✓0|t(x0|xt) directly, as shown in Eq. (5.21). With the help of Eq. (5.21), we
can sample x0 or equivalently x0|T through sampling xtn�1|tn

, ...,xt1|t2
,xt0|t1

sequen-
tially, with any {ti}ni=0 that satisfies 0=t0 < t1 < ... < tn=T . Although Eq. (5.21)
is derived for discrete-time case, it applies directly in continuous-time case, thanks
to the unification of the forward process for discrete- and continuous-time diffusion
(§5.3.2). Hence, discrete-time and continuous-time diffusion also have the same uni-
fied backward generation process.
? Unified Discrete Diffusion. All in all, through a series of mathematical

simplifications, we have shown that both discrete&continuous-time discrete diffusion
share (1) the same forward diffusion process; (2) the same parameterization for learn-
ing p✓0|t; and (3) the same backward denoising process. In light of our reformulations,
we propose USD3, a novel Unified and Simplified Discrete Denoising Diffusion model.
Notably, USD3 utilizes the same source code for both discrete- and continuous-time,
up to a single alteration in the loss function during training, and a shared sample
generation process (resp. Algo. 2 and 3).

5.3.5 Shared MCMC Derivation

Campbell, Benton, De Bortoli, Rainforth, Deligiannidis, and Doucet [Cam+22] show
that the MCMC for discrete data can be done by a predictor step to simulate br✓t and a
corrector step using rt +br✓t . We extend this result with improved derivation and show
that, thanks to the parameterized forms in Eq. (5.46), both discrete- and continuous-
time discrete diffusion can leverage the same transition probability calculation (see
Eq. (5.91)), leading to a shared MCMC scheme.

The MCMC Sampling Corrector

[Son+21] introduced a predictor-corrector step to further improve the quality of gener-
ated data based on score-based Markov Chain Monte Carlo (MCMC) for continuous-
time diffusion over continuous distribution. [Cam+22] showed that there is a similar
MCMC based corrector that can be used for CTMC to improve reverse sampling at
any time t. Although we use different reverse sampling than [Cam+22], the similar
corrector step can also be developed to improve the quality of reverse sampling intro-
dued in §5.3.4. In this section, we derive the corrector formally and simplify it based
the multi-element formulations summarized in Eq. (5.91).

Formally, at any time t, [Cam+22] proved that a time-homogeneous CTMC with
transition rate being ct := rt + r̂t has its stationary distribution being qt(x1:D

t). To
avoid ambiguity, we use n 2 [0,+1) as the time variable for that CTMC with station-
ary distribution qt(x1:D

t). Then for any sample z1:D
t generated from reverse sampling

process at time t, we can push it closer to the target marginal distribution qt(x1:D
t) by

sampling from the corrector CTMC with initial value being z1:D
t , named as z1:D

t,n=0. Let

88 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

N be the maximum time allocated in the corrector CTMC, then after the corrector
step z1:D

t,n=N
is used to replace the original z1:D

t .
We now introduce how to sampling from the CTMC. Let4n be the time incremen-

tal for each sampling step of the corrector CTMC. Solving the Kolmogorov forward
equation of this time-homogeneous CTMC can derive the transition probability at
any time n as

8n and 4n, pn+4n|n(y1:D|x1:D) = exp(4n · C1:D
t)[x1:D,y1:D] (5.86)

Where Ct is the transition rate matrix of the corrector CTMC, and exp(4n · C1:D
t)

is the transition probability matrix at time n. Notice that this matrix exponential
does not have analytical formulation. Instead, we propose to control 4n to be small
enough such that

exp(4n · C1:D
t) ⇡ I +4n · C1:D

t (5.87)
Then taking it back we can obtain
pn+4n|n(y1:D|x1:D) ⇡ �x1:D,y1:D +4n · c1:Dt (y1:D|x1:D)

= �x1:D,y1:D +4n
DX

d=1

h
rdt (y

d|xd) + rdt (x
d|yd) · gdt (yd|x1:D)

i
�x\d,y\d

(5.88)
Instead of sampling all elements jointly, we propose to sample each element of

the object independently from their individual marginal distribution, which can be
analytically formulated as

pn+4n|n(yd|x1:D) =
X

y\d

pn+4n|n(y1:D|x1:D)

= 4n
h
rdt (y

d|xd) + rdt (x
d|yd) · gdt (yd|x1:D)

i
if yd 6= xd

= 4n(yd)>
h
rdt (·|xd) + rdt (x

d|·)� gdt (·|x1:D)
i

if yd 6= xd

= 4n�(t)(yd)>
h
md � xd +

�
hxd,mdi1� xd

�
� gdt (·|x1:D)

i
if yd 6= xd

= 4n�(t)(yd)>
h
md + hxd,mdigdt (·|x1:D)

i
if yd 6= xd

⇡ 4n�(t)(yd)>
h
md + hxd,mdig✓,d

t
(·|x1:D)

i
if yd 6= xd (5.89)

Now we define the notation p4n(·|x1:D) to derive the distributional form of pn+4n|n(yd|x1:D).

p✓,d
4n

(·|x1:D) := 4n�(t)
h�

2�
↵t|0hf✓,d

t
(x1:D),xdi

↵t|0 + (1� ↵t|0)hxd,mdi
�
md +

↵t|0

1� ↵t|0
f✓,d

t
(x1:D)

i
� (1� xd)

(5.90)
With the above notation, the sampling probability can be further simplified as

pn+4n|n(yd|x1:D) = Cat
⇣
yd; p✓,d

4n
(·|x1:D) +

�
1� 1

>p✓,d
4n

(·|x1:D)
�
xd

⌘
(5.91)

Notice that 4n should be set small enough such that 1
>p✓,d

4n
(·|x1:D)  1. This

condition can be used to derive 4n dynamically. In practice, we can also easily clip
the scale of p✓,d

4n
(·|x1:D) to 1 when 1

>p✓,d
4n

(·|x1:D) > 1 to prevent illness condition.

Intuitively, 1 � 1
>p✓,d

4n
(·|x1:D) defines the keeping rate of the d-th element during

correction step, and it should be larger with increasing t and n during the reverse
sampling and correction period.

5.4. Experiments 89

Algorithm 4 The MCMC correcting algorithm at time t

Input: The sample at time t from reverse sampling, z1:D
t ; step size 4n; learned

f✓
t ; total steps N .

Initialize x1:D
t,0 z1:D

t

for i from 1 to N do
Compute p✓,d

4n
(·|x1:D

t,i�1) from Eq. (5.90);

8d, Draw xd

t,i
⇠ Cat

⇣
· ; p✓,d

4n
(·|x1:D

t,i�1) +
�
1� 1

>p✓,d
4n

(·|x1:D
t,i�1)

�
xd

t,i�1

⌘

end for
Output: the improved (corrected) sample x1:D

t,N

5.4 Experiments

Discrete diffusion as a field is in its infancy with no established guidelines on model
training. All prior work optimize a combined VLB and cross-entropy (CE) loss with
a fixed weight, without deeper investigation. In this work we not only improve VLB
loss mathematically, but also empirically explore an extensive testbed of training
regimes for discrete diffusion—including various loss combinations, both discrete- and
continuous-time training, as well as varying model sizes—toward a deeper understand-
ing of which yield tractable optimization and higher generation quality. USD3 is a
hybrid of our simplified exact VLB and CE, and USD3⇤ refers to its approximation
with further simplifications (§5.2.6 and §5.3.3). USD3-CE and USD3-VLB are variants,
resp. with CE or VLB loss only.

5.4.1 Datasets and Metrics

Lakh Piano Dataset Details

The Lakh pianoroll dataset contains 6, 000 training and 973 evaluating piano se-
quences, with each music sequence spanning a length of 256 in total. Each music
note in the sequence can take on a value of the 128 music notes plus 1 additional
class meaning an empty note. The music note orderings are scrambled into the same
random order as described in [Cam+22] such that the ordinal structure of the music
notes are destroyed.

For evaluation, the first 32 notes of the 967 evaluation sequences are given to
the model, while the model is asked to generate the resting 224 notes. Upon an
analysis of the training and evaluation music sequences, we find that a total of 124
evaluation samples can be found with at least one matching training samples that have
the same 32 dimensions. We separate out these samples and call the set Piano-P.
Among Piano-P, 20 samples can be found to contain the same first 32 notes with
2 samples from the training sequences, three of them contain the same first 32 notes
with 4 training samples each, one of them shares the same with 6 training samples,
and one shares the same with 8 training samples. If the same 32 notes appear both
in the training samples and as quests for the model to provide the inferences, the
model is likely to directly memorizing the remaining 224 notes from the training set,
and "parroting" music sequences according to the training samples. The rest 843
evaluation samples that do not have matching training samples are constituent of
Piano.

90 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

Pre-training VQGAN

To generate images in a categorical discrete latent space, we follow the implemen-
tation of VQGAN [ERO20] in MaskGIT [Cha+22]. Specifically, we use the same
VQGAN setting as mentioned in [Sun+23]. VQGAN is a variant of Vector Quantized
Variational Autoencoder (VQ-VAE) [OVK18]. In our setup for CIFAR10, a VQGAN
encodes an image of shape H ⇥W ⇥ 3 to (H4 ⇥

W

4) tokens with vocabulary size of
512. For the encoder, we use three convolutional blocks, with filter sizes of 64,128 and
256, and an average pooling between each blocks. For each block, it consists of two
residual blocks. After an image is encoded, the output is mapped to a token index
with a codebook of 512 ⇥ 256. For VQGAN loss objective, the additional GAN loss
and perceptual loss are added with weight 0.1. To train a general VQGAN model
that allows us to embed CIFAR10 images without overfitting, we apply data augmen-
tation (random flipping and cropping) to the 64 ⇥ 64 version of ImageNet dataset
[Den+09], and train for 90 epochs. The VQGAN is trained with Adam optimizer
(�1 = 0, �2 = 0.99), and the learning rate is linearly warmup to the peak of 1e�4 and
then drops with cosine decay.

After VQGAN is trained, we freeze the VQGAN and apply encoder to the CI-
FAR10 images to create 8 ⇥ 8 latent codes. The latent codes then flattened to a
vector of size 64 as the input of the diffusion model. Before we evaluate our diffusion
methods, we will feed the generated latent codes back to the VQGAN decoder to re-
construct a sample in the image spaces. We test the effectivenss of VQGAN by trying
to reconstruct the CIFAR10 dataset. The reconstruction gives a FID of 7.68 and IS
of 10.42, using the Inception V3 Model 3.

5.4.2 Baselines.

We compare USD3 and variants to three latest SOTA discrete diffusion models in
the literature: D3PM [Aus+21] (discrete-time), and ⌧ -LDR [Cam+22] and SDDM
[Sun+23] (continuous-time).

5.4.3 Training Details.

Thanks to unification, we can evaluate both discrete- and continuous-time models
with both cosine and constant noise schedulers at ease. In USD3, we combine VLB
and CE with weight 0.001 for the latter, following prior literature. For USD3⇤, we
combine VLB with CE weight 1.0. As architecture, we parameterize f✓

t (xt) with a
sequence transformer model. By varying its depths and widths, we study the impact
of model size.

USD3 Lakh Pianoroll Training Details.

For the backbone sequence transformer structure, we adopt a similar transformer
model as utilized by in ⌧ -LDR-0 [Cam+22]. The sequence transformer is composed of
several encoder blocks, where for each internal block, time is fed into the block through
a FiLM layer and added to the input. The result is then fed into a multi-headed self-
attention layer and fully connected layer. We use RELU for activation. At the output
of self-attention layer and fully-connected layer, a dropout of 0.1 is applied. After
obtaining the final embedding of each token, we feed that into a 1-block ResNet to
obtain the predicted logits. In comparison with other baseline metrics, the transformer
contains 6 encoder blocks, each containing 16 attention heads, input dimension of 1024

3https://github.com/openai/consistency_models/tree/main/evaluations

https://github.com/openai/consistency_models/tree/main/evaluations

5.4. Experiments 91

and MLP dimension of 4096. In ablation study, we also test our methods on a smaller
architecture that contains 6 encoder blocks, each containing 8 attention heads, with
input dimension of 128 and MLP dimension of 1024.

For training the pianoroll dataset, we use a batch size of 64, a learning rate of
5e�4, with a warmup of first 25 epochs. We adopt a constant learning rate decay
scheduler, decaying the learning rate by half after every 500 epochs. The final result
is given over 3000 epochs. We run our results with 2 A6000 GPUs. In discrete-
time diffusion, we sample 1000 number of timesteps, fixing a cosine scheduler with
↵ = 0.008, In continuous-time diffusion, we sample time t between [0, 1] and apply
a constant scheduler with rate equals 0.007. We maintain an exponential moving
average of parameters with decay factor 0.9999. We clip the gradient norm at a norm
value of 1.0.

Baseline Training Details.
For D3PM and ⌧-LDR-0, for fair comparison, we use the same architecture,

diffusion scheme and training scheme. For calculating the loss of both methods, we
follow the previous literature and give 0.001 to CE loss, and 1 to the VLB loss.

For SDDM, since it adopts a different architecture, directly utilizing SDDM with
our experiment configurations is not feasible. Instead, we use the experiment configu-
rations as given in the paper: the backbone structure is a hollow transformer [Sun+23].
Each transformer block has 6 layers with embedding size of 256, 8 attention heads
and hidden dimension of 2048. The batch size is 64 and number of training steps is 2
million. The weight decay is set to 1e�6. The learning rate is at constant 1e�3. For
diffusion, SDDM adopts the constant noise scheduler with a uniform rate constant of
0.04.

USD3 VQCIFAR10 Training Details.

For image generation task, we parameterize f✓
t (xt) with the same sequence transformer

as mentioned before. The model is a 12 layer transformer, where each layer has 16
attention heads, input embedding of 768 and a hidden layer size of 3072 for the
MLPs. We use ReLU for activation. At the output of each internal block, a dropout
of 0.1 is applied. The time is input into the network through FiLM layers before the
self attention block. We use a learning rate of 5e�4, with warmup of 50000 steps,
and a cosine learning rate decay scheduler, to train 2 million steps. In discrete-time
diffusion, all the USD3 and its variants use the same cosine noise scheduler with
↵ = 0.008. For continuous-time diffusion, USD3-CE and USD3⇤ apply the cosine
noise scheduler with ↵ = 0.008. We find that USD3 is extremely hard to optimize
due to the scale differences of coefficient �(t), so we provide USD3⇤ which clips the
�(t) = max(1,�(t)). USD3 utilizes a constant noise scheduler with 0.007, to match
the scheduler in ⌧ -LDR-0 and SDDM. We maintain an exponential moving average of
parameters with decay factor 0.9999. We clip the gradient norm at a norm value of
1.0.

Baseline Training Details.
For ⌧-LDR-0 and D3PM, we again use the same transformer architecture and

same training scheme. We apply a hybrid loss with cross entropy as a directly super-
vision, added with 0.001 CE loss. The ⌧ -LDR-0 uses a constant rate noise scheduler
of 0.007, while D3PM uses cosine scheduler with ↵ = 0.008. We train all models in
parallel on 2 A6000 GPUs.

For SDDM, the model uses a masked modeling, where backbone neural network
is BERT-based, with 12 layers of transformers. Each layer has 12 attention heads,
embedding size of 768 and hidden layer size of 3072 for MLPs. After obtaining the

92 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

final embedding of each token, the output is fed that into a 2-block ResNet to acquire
the predicted logits. For diffusion, SDDM uses a constant uniform rate of 0.007 as the
noise scheduler in the forward process. In [Sun+23], the number of training step is set
to 700, 000, where the learning rate is warmed up to 1e�4 during the first 3% steps,
and then decays to 0 in a linear schedule. We extended the training to 2m steps, but
did not observe improved performance.

5.4.4 Music Generation

We evaluate monophonic music generation on Piano, the cleaned Lakh pianoroll
dataset [Raf16; Don+17], containing 6, 000 training and 973 evaluation (or test) se-
quences of 256 notes each. Here we perform conditional generation; given the first 32
notes, the models are required to generate the rest 224 notes.

Interestingly, we find that some (124) evaluation sequences share the same first 32
notes as one or more training sequences. Such repetition gives us a unique opportunity
to investigate what-we-call “parroting”—the phenomenon that models are simply re-
playing the exact training data during generation. To that end we create Piano-P,
a subset consisting only of these 124 evaluation sequences paired with their first-32-
note-matching training sequences.

Music Generation Eval Metrics

In evaluation of the conditional music generation task, we apply the following metrics
to measure generation quality:

• 1-gram Hellinger Distance (↓) and 1-gram Proportion of Outliers (↓): for these
two metrics, we following the same evaluation as described in [Cam+22] and
[Che23].

• {2, 3}-gram Hellinger Distance (↓) and {2, 3}-gram Proportion of Outliers (↓):
similar to n-gram models, we first convert the music sequences into tuples of
neighboring nodes. Then for Hellinger Distance, we compute the distance of
the empirical probabilities of conditional generated samples to the ground truth
samples. The empirical probabilities are constructed based on the histograms of
the neighboring tuples, with bins being all possible {2, 3}-gram nodes. Similarly,
for the Proportion of Outliers, we count the fractions of newly appeared tuples
that are not seen in the training samples. With these metrics, we are able
to capture the sequence information instead of just measuring the single node
distributions.

• Diverse Edit Distance (↑): which accounts for the creativity/novelty of generated
samples across multiple generation runs. For the conditionally generated music
samples given the same first 32 notes, we calculate the edit distance, which is
the minimum number of single-character edits (insertions, deletions, or substi-
tutions) required to change one music sequence into the other, between each two
of the generation samples. The mean and standard deviation are obtained for all
edit distances between pairs. The higher the diverse edit distance, the further
apart the music sequences are and more creativity are enforced in the genera-
tion process. However, there is also a trade-off between diverse edit distance
and other accuracy measurements when the model processes large uncertainty
about the underlying distribution.

5.4. Experiments 93

Table 5.1: Conditional music gen. quality (3 samples avg.) on Piano w.r.t. n-gram
Hellinger, n-gram Prop. of Out., and Diverse Edit Dist. Also, Train-to-Test Ratio for
3-gram Prop. of Out. on Piano-P quantifies “parroting”. First & Second shown in color.

n-gram Hellinger(↓) n-gram Prop. of Out.(↓) Div. Edit 3g-Prop.
Method 1gram 2gram 3gram 1gram 2gram 3gram Dist. (↑) Ratio(↑)

D
is

cr
et

e-
ti

m
e D3PM 0.398 0.530 0.591 0.120 0.253 0.379 0.295 2.221

USD3-CE 0.375 0.483 0.574 0.107 0.209 0.303 0.047 2.888
USD3-VLB 0.379 0.464 0.542 0.117 0.184 0.273 0.082 2.863
USD3 0.377 0.469 0.552 0.107 0.186 0.286 0.064 3.083
USD3⇤ 0.375 0.470 0.555 0.110 0.191 0.283 0.066 2.959

C
on

ti
nu

ou
s-

ti
m

e SDDM 0.375 0.485 0.577 0.110 0.205 0.340 0.060 2.901
⌧ -LDR-0 0.379 0.481 0.571 0.114 0.207 0.320 0.050 2.965

USD3-CE 0.373 0.483 0.577 0.115 0.221 0.346 0.043 2.637
USD3-VLB 0.376 0.470 0.552 0.111 0.191 0.291 0.066 2.805
USD3 0.371 0.479 0.575 0.111 0.207 0.322 0.051 3.082
USD3⇤ 0.375 0.465 0.548 0.114 0.190 0.285 0.078 2.867

• Train-to-Test Ratios (↑) for {1, 2, 3}-gram Hellinger as well as Proportion of
Outliers, which compare the weighted distance of a generated sample to its
evaluation (test) vs. training sequence that share the same first 32 notes. We
evaluate the ratios only for Piano-P. Denote the evaluation ground truth set
in Piano-P as tr , the corresponding set of training samples as ts, and condi-
tionally generated samples as gs. For the selected distance metrics dist() (from
n-gram Hellinger or n-gram Proportion of Outliers), we calculate the ratio as:

1
dist(tr,gs)+dist(ts,gs) ⇤

dist(tr,gs)
dist(ts,gs) . Such ratio measures quantify the extent of “parrot-

ing” in Piano-P. The larger the ratio, the more equally distant the generated
examples is from its training and evaluating set, and the less "parroting" occurs
by simply memorizing all training sequences. We apply an additional coefficient
to the ratio such that it will also penalize the models that provide unrealistic
examples that do not conform both training and evaluation distributions.

Results.

Table 5.1 shows that USD3 and its variants perform better than the baseline methods
across metrics. An exception is D3PM’s Diverse Edit Distance, which trades-off high
novelty with low generation quality. USD3-CE, while performing well w.r.t. 1-gram
metrics, does not compete with USD3-VLB and USD3 w.r.t. {2,3}-gram metrics, which
indicates that CE only loss captures the least sequential information. Models with
combined losses, USD3 and USD3⇤, achieve higher Train-to-Test ratio than pure CE
or VLB based ones, suggesting that the combination of two losses can alleviate over-
fitting, i.e. “parroting” the training data. While continuous-time baselines outperform
the discrete-time baseline D3PM, we find discrete-time USD3 models to perform bet-
ter than continuous-time counterparts except w.r.t. 1-gram Hellinger. This may be
due to task complexity not warranting the harder optimization with the latter models
that require denoising any timestep.

We also report evaluation results for different model sizes in Table 5.2. This abla-
tion study shows that CE loss is also preferred in combination with VLB, especially
for smaller network structures, since VLB is harder to optimize alone.

94 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

Table 5.2: Metrics comparing different loss combinations and different model sizes for
Lakh Pianoroll. For each of n-gram Hellinger Distance (ng.-Hellinger) and Proportion of
Outliers (ng.-Prop. Outlier) metrics, we show mean ± std with respect to 3 generated
samples. We use USD3-VLB to denote an additional variant of our model that only uses
the exact VLB loss in training. "Small" refers to the backbone transformer model that has
6 Layers, 8 Attention Heads, Input Dimension of 128 and MLP dimension of 1024. The

top two are highlighted by First, Second.

Method 1g.-Hellinger(↓) 2g.-Hellinger(↓) 3g.-Hellinger(↓) 1g.-Prop.Outlier(↓) 2g.-Prop.Outlier(↓) 3g.-Prop.Outlier(↓) Edit Distance(↑)

D
is

cr
et

e-
ti

m
e USD3-CE-Small 0.3984±0.0006 0.4902 ±0.0004 0.5785±0.0004 0.1158±0.0002 0.1899±0.0006 0.3142±0.0005 0.1301±0.0613

USD3-Small 0.4011±0.0014 0.4902±0.0009 0.5707±0.0008 0.1215± 0.0007 0.1866±0.0006 0.3006±0.0013 0.1292±0.0623
USD3-VLB-Small 0.4115±0.0001 0.4954± 0.0001 0.5738±0.0005 0.1203±0.0006 0.1958±0.0009 0.3036±0.0010 0.2137±0.0843

USD3-CE 0.3754±0.0007 0.4835±0.0009 0.5741±0.0008 0.1079±0.0002 0.2099±0.0005 0.3034±0.0007 0.0472±0.0465
USD3 0.3770±0.0011 0.4693±0.0015 0.5525±0.0015 0.1077±0.0006 0.1861±0.0011 0.2861±0.0013 0.0648±0.0459
USD3-VLB 0.3790±0.0009 0.4640±0.0010 0.5427±0.0009 0.1174±0.0007 0.1845±0.0010 0.2734±0.0011 0.0828±0.0567

C
on

ti
nu

ou
s-

ti
m

e USD3-CE-Small 0.4208±0.0170 0.5196±0.0078 0.6072±0.0005 0.1355±0.0147 0.2276±0.0007 0.3431±0.0181 0.2358±0.0619
USD3-Small 0.4239±0.0012 0.5083±0.0011 0.5852±0.0011 0.1403±0.0007 0.2070±0.0008 0.2943±0.0016 0.2468±0.0907
USD3-VLB-Small 0.4435±0.0012 0.5295±0.0011 0.6070±0.0009 0.1562±0.0014 0.2269±0.0013 0.3168±0.0013 0.2809±0.0866

USD3-CE 0.3734±0.0002 0.4837±0.0003 0.5776±0.0003 0.1158±0.0004 0.2218±0.0003 0.3461±0.0005 0.0434±0.0357
USD3 0.3712±0.0005 0.4794±0.0010 0.5752±0.0012 0.1112±0.0002 0.2074±0.0009 0.3225±0.0016 0.0516±0.0348
USD3-VLB 0.3769±0.0007 0.4702±0.0010 0.5527±0.0012 0.1118±0.0009 0.1915±0.0010 0.2912±0.0014 0.0661±0.0478

Table 5.3: Image gen. quality w.r.t. Inception Score (IS) and the Frechet Inception
Dist. (FID) over 50,000 samples unconditionally generated and decoded by VQGAN, as

compared against original CIFAR10 training images. First & Second shown in color.

Method IS (↑) FID (↓) Method IS (↑) FID (↓)

D
is

cr
et

e-
ti

m
e D3PM 8.13 18.08

C
on

ti
nu

ou
s-

ti
m

e SDDM 8.72 14.17
⌧ -LDR 8.37 17.61

USD3-CE 9.02 12.64 USD3-CE 9.23 11.97
USD3⇤ 9.27 12.07 USD3⇤ 8.59 15.87
USD3 8.85 13.25 USD3 8.78 13.63

VQGAN Recons. (upper limit) 10.42 7.68

5.4.5 Image Generation

CIFAR10 contains 50, 000 training images in continuous values, which we convert to
vectors from 64 ⇥ 512-dimensional quantization hash-code space with a pre-trained
VQGAN [ERO20]. This conversion allows us to (1) evaluate our methods on nominal
data by breaking the neighboring orders in the image space, and (2) select a closed-
form stationary distribution m.

Metrics.

After feeding the generated samples through the VQGAN decoder to obtain repre-
sentations from the discretized space, we measure the Inception Score (IS) (↑) and
Frechet Inception Distance (FID) (↓) against the original CIFAR10 dataset. Note
that our training set, which are discretized images from VQGAN, achieves IS=10.42
and FID=7.68, which are optimistic limits for generation.

Results.

Table 5.3 shows that our proposed approaches outperform existing baselines. Discrete-
time D3PM falls short for the harder image generation task, whereas our simplified
discrete-time loss boosts quality significantly. In continuous-time, ⌧ -LDR with a simi-
lar loss to USD3 falls short due to its complicated generation process, whereas SDDM
is most competitive among the baselines, although requires substantial compute re-
sources while being limited to a specialized model architecture. USD3-CE achieves

5.4. Experiments 95

Table 5.4: The GPU-memory, running time and number of network parameters in all
methods.USD3 is easier to train and incurs the least GPU memory in both discrete- and

continuous- time diffusions.

Method Num. Parameters Memory Runtime Method Num. Parameters Memory Runtime

D
is

cr
et

e-
ti

m
e D3PM ⇠ 102,700,000 15669MiB 93 hrs

C
on

ti
nu

ou
s-

ti
m

e SDDM ⇠ 12,350,000 85528MiB 96 hrs
USD3-CE ⇠ 102,700,000 9735MiB 83 hrs ⌧ -LDR-0 ⇠ 102,700,000 15669 MiB 129 hrs
USD3⇤ ⇠ 102,700,000 9735MiB 82 hrs USD3-CE ⇠ 102,700,000 15703MiB 93 hrs
USD3 ⇠ 102,700,000 9735MiB 90 hrs USD3⇤ ⇠ 102,700,000 15703MiB 91 hrs

USD3 ⇠ 102,700,000 15703MiB 101 hrs

competitive IS and FID scores, which validates our finding (recall Eq. (5.30)) that CE
loss is essential for diffusion loss minimization.

We provide memory and runtimes of models in Table 5.4, example images gener-
ated by USD3 in Fig. 5.2.

Figure 5.2: Example image samples generated by USD3⇤ as trained on VQCIFAR10.
Most images are easy to recognize as being from one of the 10 classes in CIFAR10.

Ablation results using MCMC sampling

To demonstrate the effectiveness of MCMC corrector steps, we take the top performing
methods in discrete and continuous time diffusion models (for discrete time, USD3⇤,
and for continuous time USD3-CE) and show improved quality metrics over generated
images after MCMC corrector is applied. Due to extensive time required for MCMC
corrector step, we could only conduct evaluation over 5, 000 images, and thus the
results are not comparable to the main VQCIFAR10 result in Table 5.3. We set the
number of generation steps to be 100 and use MCMC corrector on the last 10, 20
generation timesteps, respectively.

From the results shown in Table 5.5 and Table 5.6, we can see that MCMC cor-
rector can significantly improve the quality of the generated samples. Specifically, for
discrete-time generation, IS is showing a significant improvement than the sampling
process without the MCMC corrector. For continuous-time case, both IS and FID
scores are improving from the baseline (without MCMC).

96 Chapter 5. Improving and Unifying Discrete Denoising Diffusion

Table 5.5: Image gen. quality w.r.t. In-
ception Score (IS) and the Frechet Incep-
tion Dist. (FID) over 5,000 samples uncon-
ditionally generated by USD3⇤ in discrete-
time case. MCMC corrector is conducted
for the last 10,20 timesteps over 100 sam-

pling steps.

MCMC Configuration IS (↑) FID (↓)

Without MCMC 9.01 19.79

�n = 0.001, N = 2, Start Steps:10 9.28 18.46
�n = 0.001, N = 2, Start Steps:20 9.59 18.36
�n = 0.005, N = 2, Start Steps:10 9.43 18.26
�n = 0.005, N = 2, Start Steps:20 9.43 20.37
�n = 0.001, N = 5, Start Steps:10 9.29 18.02
�n = 0.001, N = 5, Start Steps:20 9.47 18.56
�n = 0.002, N = 5, Start Steps:10 9.35 18.18
�n = 0.002, N = 5, Start Steps:20 9.48 20.37

Table 5.6: Image gen. quality w.r.t. In-
ception Score (IS) and the Frechet Incep-
tion Dist. (FID) over 5,000 samples gener-
ated by USD3-CE in continuous-time case.
MCMC corrector is conducted for the last
10,20 timesteps over 100 sampling steps.

MCMC Configuration IS (↑) FID (↓)

Without MCMC 8.98 19.19

�n = 0.001, N = 2, Start Steps:10 9.12 17.62
�n = 0.001, N = 2, Start Steps:20 9.23 17.35
�n = 0.005, N = 2, Start Steps:10 9.01 17.71
�n = 0.005, N = 2, Start Steps:20 9.23 17.58
�n = 0.001, N = 5, Start Steps:10 9.03 17.26
�n = 0.001, N = 5, Start Steps:20 9.00 17.42
�n = 0.002, N = 5, Start Steps:10 9.16 17.98
�n = 0.002, N = 5, Start Steps:20 8.97 17.83

5.5 Conclusion

This work introduced two fundamental contributions for both discrete-time and continuous-
time diffusion for categorical data. First, we presented extensive mathematical simpli-
fications for the loss functions, including exact closed-form derivations as well as novel
easy-to-optimize approximations. Second, we established a mathematical unification
of the backward denoising processes of discrete-time and continuous-time diffusion, en-
abling faster generation and flexible training with varying noise schedules. Equipped
with these advances in both training (thanks to simpler loss computation) and gener-
ation (thanks to flexible sampling), our proposed approach USD3 for discrete diffusion
achieved state-of-the-art performance on established datasets across a suite of gener-
ation quality metrics.

97

Chapter 6

Permutation-Invariant
Autoregressive Diffusion on Graphs

This chapter is based on Lingxiao Zhao, Xueying Ding, and Leman Akoglu. “Pard:
Permutation-Invariant Autoregressive Diffusion for Graph Generation”. In: arXiv
preprint arXiv:2402.03687 (2024)

6.1 Introduction

Graphs provide a powerful abstraction for representing relational information in many
domains, including social networks, biological and molecular structures, recommender
systems, and networks of various infrastructures such as computers, roads, etc. Ac-
cordingly, generative models of graphs that learn the underlying graph distribution
from data find applications in network science [Bon+20], drug discovery [LZL18;
Ton+21], protein design [AH18; Tri+21], and various use-cases for Internet of Things
[De+22]. Also, they serve as a prerequisite for building a generative foundation model
[Bom+21] for graphs.

Despite significant progress in generative models for images and language, graph
generation is uniquely challenged by its inherent combinatorial nature. Specifically:
1) Graphs are naturally high-dimensional and discrete with varying sizes, contrasting
with the continuous space and fixed-size advancements that cannot be directly applied
here; 2) Being permutation-invariant objects, graphs require modeling an exchange-
able probability distribution, where permutations of nodes and edges do not alter
the graph’s probability; 3) The rich substructures in graphs necessitate an expres-
sive model capable of capturing higher-order motifs and interactions. Several graph
generative models have been proposed to address (part of) these challenges, based
on various techniques like autoregression [You+18; Lia+19], VAEs [SK18], GANs
[DCK18], flow-based methods [Shi+20], and denoising diffusion [Niu+20; Vig+23].
Among these, autoregressive models and diffusion models stand out with superior per-
formance, thus significant popularity. However, current autoregressive models, while
efficient, are sensitive to order with non-exchangeable probabilities; whereas diffusion
models, though promising, are less efficient, requiring thousands of denoising steps
and extra features to achieve high generation quality.

In this paper, we introduce Pard (leopard in Ancient Greek), the first Permutation-
invariant AutoRegressive Diffusion model that combines the efficiency of autoregres-
sive methods and the quality of diffusion models together, while retaining the property
of exchangeable probability. Instead of generating an entire graph directly, we explore
the direction of generating through block-wise graph enlargement. Graph enlargement

98 Chapter 6. Permutation-Invariant Autoregressive Diffusion on Graphs

offers a fine-grained control over graph generation, which can be particularly advan-
tageous for real-world applications that require local revisions to generate graphs.
Moreover, it essentially decomposes the joint distribution of the graph into a series of
simpler conditional distributions, thereby leveraging the data efficiency characteristic
of autoregressive modeling. We also argue that graphs, unlike sets, inherently exhibit
a unique partial order among nodes, naturally facilitating the decomposition of the
joint distribution. Thanks to this unique partial order, Pard’s block-wise sequence is
permutation-equivariant.

To model the conditional distribution of nodes and edges in a block, we first
show that the corresponding graph transformation cannot be solved directly with
any equivariant network no matter how powerful it is. However, through a diffusion
process that injects noise, a permutation equivariant network can progressively denoise
to realize targeted graph transformations. This approach is inspired by the annealing
process where energy is initially heightened before achieving a stable state, akin to
the process of tempering iron. Our analytical findings serve as the foundation for the
design of our proposed Pard that combines autoregressive approach with local block-
wise discrete denoising diffusion. Using a diffusion model with equivariant networks
ensures that each block’s conditional distribution is exchangeable. Coupled with the
permutation-invariant sequence of blocks, this renders the entire process permutation
invariant and the joint distribution exchangeable.

Within Pard, we further propose several architectural improvements. First, to
achieve 2-FWL expressivity with improved memory efficiency, we propose a higher-
order graph transformer that integrates the transformer framework with PPGN [Mar+19a],
while utilizing a significantly reduced representation size for edges. Second, to ensure
training efficiency without substantial overhead compared to the original diffusion
model, we design a GPT-like causal mechanism to support parallel training of all
blocks with shared representations. These extensions are generalizable and can lay
the groundwork for a higher-order GPT.

Pard achieves new SOTA performance on many molecular and non-molecular
datasets without any extra features, significantly outperforming DiGress [Vig+23].
Thanks to efficient architecture and parallel training, Pard scales to large datasets like
MOSES [Pol+20] with 1.9M graphs. Finally, not only Pard can serve as a generative
foundation model for graphs in the future, its autoregressive parallel mechanism can
further be combined with language models for language-graph generative pretraining,
planting seeds for high-potential future work.

6.2 Related Work

Autoregressive (AR) Models for Graph Generation. AR models create graphs
step-by-step, adding nodes and edges sequentially. This method acknowledges graphs’
discrete nature but faces a key challenge as there is no inherent order in graph genera-
tion. To address this, various strategies have been proposed to simplify orderings and
approximate the marginalization over permutations; i.e. p(G) =

P
⇡2P(G) p(G,⇡). Li,

Vinyals, Dyer, Pascanu, and Battaglia [Li+18] propose using random or determinis-
tic empirical orderings. GraphRNN [You+18] aligns permutations with breadth-first-
search (BFS) ordering, with a many-to-one mapping. GRAN [Lia+19] offers marginal-
ization over a family of canonical node orderings, including node degree descending,
DFS/BFS tree rooted at the largest degree node, and k-core ordering. GraphGEN

6.3. Autoregressive Denoising Diffusion 99

[GJR20] uses a single canonical node ordering, but does not guarantee the same canon-
ical ordering during generation. Chen, Han, Hu, Ruiz, and Liu [Che+21] avoid defin-
ing ad-hoc orderings by modeling the conditional probability of orderings, p(⇡|G),
with a trainable AR model, estimating marginalized probabilities during training to
enhance both the generative model and the ordering probability model.

Diffusion Models for Graph Generation. EDP-GNN [Niu+20] is the first
work that adapts score matching [SE19] to graph generation, by viewing graphs as
matrices with continuous values. GDSS [JLH22] generalizes EDP-GNN by adapting
SDE-based diffusion [Son+21] and considers node and edge features. Yan, Liang,
Song, Liao, and Wang [Yan+23] argues that learning exchangeable probability with
equivariant networks is hard, hence proposes permutation-sensitive SwinGNN with
continuous-state score matching. Previous works apply continuous-state diffusion to
graph generation, ignoring the natural discreteness of graphs. DiGress [Vig+23] is
the first to apply discrete-state diffusion [Aus+21; Hoo+21] to graph generation and
achieves significant improvement. However, DiGress relies on many additional struc-
tural and domain-specific features. GraphArm [Kon+23] applies Autoregressive Dif-
fusion Model (ADM) [Hoo+22a] to graph generation, where exactly one node and its
adjacent edges decay to the absorbing states at each forward step based on a random
node order. Similar to AR models, GraphArm is permutation sensitive.

We remark that although both are termed “autoregressive diffusion”, it is impor-
tant to distinguish that Pard is not equivalent to ADM. The term “autoregressive
diffusion” in our context refers to the integration of autoregressive methods with diffu-
sion models. In contrast, ADM represents a specific type of discrete denoising diffusion
where exactly one dimension decays to an absorbing state at a time in the forward dif-
fusion process. See Fan et al. [Fan+23] for a comprehensive survey of recent diffusion
models on graphs.

6.3 Autoregressive Denoising Diffusion

We first introduce setting and notations. We focus on graphs with categorical features.
Let G = (V, E) be a labeled graph with maximum Kv and Ke distinct node and edge
labels respectively. Let vi 2 {0, 1}Kv , 8i 2 |V| be the one-hot encoding of node i’s
label. Let ei,j 2 {0, 1}Ke , 8i, j 2 |V| be the one-hot encoding of the label for the edge
between node i and j. We also represent “absence of edge” as a type of edge label,
hence |E| = |V|⇥ |V|. Let V 2 {0, 1}|V|⇥Kv and E 2 {0, 1}|V|⇥|V|⇥Ke be the collection
of one-hot encodings of all nodes and edges. To describe probability, let x be a random
variable with its sampled value x. In diffusion process, noises are injected from t=0
to t=T with T being the maximum time step. Let x0 ⇠ pdata(x0) be the random
variable of observed data with underlying distribution pdata(x0), xt ⇠ q(xt) be the
random variable at time t, and let xt|s ⇠ q(xt|xs) be the conditional random variable.
Also, we interchangeably use q(xt|xs), q(xt=xt|xs=xs), and qt|s(xt|xs) when there is
no ambiguity. We model the forward diffusion process independently for each node
and edge of the graph, while the backward denoising process is modeled jointly for all
nodes and edges. All vectors are column-wise vectors. Let h·, ·i denote inner product.

6.3.1 Discrete Denoising Diffusion on Graphs

Denoising Diffusion is first developed by Sohl-Dickstein, Weiss, Maheswaranathan,
and Ganguli [SD+15] and later improved by Ho, Jain, and Abbeel [HJA20]. It is
further generalized to discrete-state case by Hoogeboom, Nielsen, Jaini, Forré, and
Welling [Hoo+21] and Austin, Johnson, Ho, Tarlow, and Berg [Aus+21]. Taking a

100 Chapter 6. Permutation-Invariant Autoregressive Diffusion on Graphs

graph G0 as example, diffusion model defines a forward diffusion process to gradually
inject noise to all nodes and edges independently until all reach a non-informative state
GT . Then, a denoising network is trained to reconstruct G0 from the noisy sample
Gt at each time step, by optimizing a Variational Lower Bound (VLB) for log p✓(G0).
Specifically, the forward process is defined as a Markov chain with q(Gt|Gt�1), 8t 2
[1, T], and the backward denoising process is parameterized with another Markov
chain p✓(Gt�1|Gt), 8t 2 [1, T]. Note that while the forward process is independently
applied to all elements, the backward process is coupled together with conditional
independence assumption. Formally,

q(Gt|Gt�1) =

|V|Y

i

q(vi

t|vi

t�1)

|V|Y

i,j

q(ei,j
t
|ei,j

t�1) (6.1)

p✓(Gt�1|Gt) =

|V|Y

i

p✓(v
i

t�1|Gt)

|V|Y

i,j

p✓(e
i,j

t�1|Gt) . (6.2)

The VLB lower bound can be written as

log p✓(G0) = log

Z
q(G1:T |G0)

p✓(G0:T)

q(G1:T |G0)
dG1:T

�Eq(G1|G0)

⇥
log p✓(G0|G1)

⇤
�DKL

�
q(GT |G0)||p✓(GT)

�

�
TX

t=2

Eq(Gt|G0)

⇥
DKL

�
q(Gt�1|Gt,G0)||p✓(Gt�1|Gt

�⇤
| {z }

Lt(✓)

,

(6.3)

Proof.

log

Z
q(G1:T |G0)

p✓(G0:T)

q(G1:T |G0)
dG1:T � Eq(G1:T |G0)

⇥
log p✓(G0:T)� log q(G1:T |G0)

⇤

(6.4)

= Eq(G1:T |G0)

⇥
log p✓(G0:T) +

TX

t=1

log
p✓(Gt�1|Gt)

q(Gt|Gt�1)

⇤

= Eq(G1:T |x0)

⇥
log p✓(GT) + log

p✓(G0|G1)

q(G1|G0)
+

TX

t=2

log
p✓(Gt�1|Gt)

q(Gt|Gt�1,G0)

⇤

= Eq(G1:T |G0)

⇥
log p✓(GT) + log

p✓(G0|G1)

q(G1|G0)
+

TX

t=2

log

p✓(Gt�1|Gt)

q(Gt�1|Gt,G0)
· q(Gt�1|G0)

q(Gt|G0)

!
⇤

= Eq(G1:T |G0)

⇥
log p✓(GT) + log

p✓(G0|G1)

q(G1|G0)
+ log

q(G1|G0)

q(GT |G0)
+

TX

t=2

log
p✓(Gt�1|Gt)

q(Gt�1|Gt,G0)

⇤

= Eq(G1:T |G0)

⇥
log p✓(G0|G1) + log

p✓(GT)

q(GT |G0)
�

TX

t=2

log
q(Gt�1|Gt,G0)

p✓(Gt�1|Gt)

⇤

= Eq(G1|G0)

⇥
log p✓(G0|G1)

⇤
| {z }

�L1(✓)

�
TX

t=2

Eq(Gt|G0)

⇥
DKL

�
q(Gt�1|Gt,G0)||p✓(Gt�1|Gt

�⇤
| {z }

Lt(✓)

�const.

(6.5)
Using Eq. (6.2), the first term can simplified as

Eq(G1|G0)[
X

i

log p✓(v
i

0|G1) +
X

i,j

log p✓(e
i,j

0 |G1)] , (6.6)

6.3. Autoregressive Denoising Diffusion 101

and similarly, the t-th step loss Lt(✓) is

Eq(Gt|G0)

⇥X

i

KL
�
q(vi

t�1|vi

t,v
i

0) || p✓(vi

t�1|Gt

�
+

X

i,j

KL
�
q(ei,j

t�1|e
i,j

t
, ei,j0) || p✓(ei,jt�1|Gt

�⇤
(6.7)

where the second term is ⇡ 0, since p✓(GT) ⇡ q(GT |G0) is designed as a fixed
noise distribution that is easy to sample from. To compute Eq. (6.3), we need to
formalize the distributions (i) q(Gt|G0) and (ii) q(Gt�1|Gt,G0), as well as (iii) the
parameterization of p✓(Gt�1|Gt).

DiGress [Vig+23] applies D3PM’s [Aus+21] to define these three terms. Since all
elements in the forward process are independent as shown in Eq. (6.1), one can verify
that the two terms q(Gt|G0) and q(Gt�1|Gt,G0) are in the form of a product of inde-
pendent distributions on each element. For simplicity, we introduce the formulation for
a single element x, with x being v

i or e
i,j . We assume each discrete random variable xt

has a categorical distribution, i.e. xt ⇠ Cat(xt;p) with p 2 [0, 1]K and 1
>p = 1 . One

can verify that p(xt = xt) = x>
t p, or simply p(xt) = x>

t p. As shown in Hoogeboom,
Nielsen, Jaini, Forré, and Welling [Hoo+21] and Austin, Johnson, Ho, Tarlow, and
Berg [Aus+21], the forward process with discrete variables q(xt|xt�1) can be repre-
sented as a transition matrix Qt 2 [0, 1]K⇥K such that [Qt]ij = q(xt = ej |xt�1 = ei).
Then, we can write the distribution explicitly as

q(xt|xt�1) = Cat(xt;Q
>

t xt�1) . (6.8)
Given transition matrices Q1, ..., QT , we can get

(i) q(xt|x0) = Cat(xt;Q
>

t x0),with Qt = Q1...Qt , (6.9)
and the (t�1)-step posterior distribution as

(ii) q(xt�1|xt,x0) = Cat(xt�1;
Qtxt �Q

>

t�1x0

x>
t
Q

>

t x0

) . (6.10)

Proof. First, define Qt|s = Qs+1...Qt. Note that Qt|0 = Qt and Qt|t�1 = Qt. Accord-
ingly, we can derive the following two equalities.

q(xt|xt�1) = Cat(xt;Q
>

t xt�1) (6.11)

q(xt�1|xt,x0) =
q(xt|xt�1)q(xt�1|x0)

q(xt|x0)
=

Cat(xt;Q>
t xt�1)Cat(xt�1;Q

>

t�1x0)

Cat(xt;Q
>

t x0)

=
x
>

t�1Qtxt · x>

t�1Q
>

t�1x0

x
>
t
Q

>

t x0

= x
>

t�1
Qtxt �Q

>

t�1x0

x
>
t
Q

>

t x0

= Cat(xt�1;
Qtxt �Q

>

t�1x0

x
>
t
Q

>

t x0

)

(6.12)

We have the option to specify node- or edge-specific quantities, Qv,i

t
and Qe,i,j

t
,

respectively, or allow all nodes and edges to share a common Qv
t and Qe

t . Leveraging
Eq. (6.9) and Eq. (6.10), we can precisely determine q(vi

t|vi

0) and q(vi

t�1|vi
t,v

i

0) for
every node, and a similar approach can be applied for the edges. To ensure simplicity

102 Chapter 6. Permutation-Invariant Autoregressive Diffusion on Graphs

and a non-informative q(GT |G0), we choose
Qt = ↵tI + (1� ↵t)1m

> (6.13)
for all nodes and edges, where ↵t 2 [0, 1], and m is the probability of a uniform

distribution (1/Kv for nodes and 1/Ke for edges). Note that DiGress [Vig+23] chooses
m as the marginal distribution of nodes and edges.

As p(xt�1|xt) =
P

x0
q(xt�1|xt,x0)p(x0|xt) , the parameterization of p✓(Gt�1|Gt)

can use the relationship, with

(iii) p✓(xt�1|Gt) =
X

x0

q(xt�1|xt,x0)p✓(x0|Gt) (6.14)

where x can be any v
i or e

i,j . With Eq. (6.14), we can parameterize p✓(x0|G) directly
with a neural network, and compute the negative VLB loss in Eq. (6.3) exactly, using
Eq.s (6.9), (6.10) and (6.14). In addition, the cross entropy loss between q(xt|x0) and
p✓(x0|Gt) that quantifies reconstruction quality is often employed as an auxiliary loss
as

LCE

t (✓) = �Eq(Gt|G0)

hX

i

log p✓(v
i

0|Gt) +
X

i,j

log p✓(e
i,j

0 |Gt)
i
. (6.15)

In fact, DiGress solely uses LCE
t (✓) to train their diffusion model. In this paper, we

adapt a hybrid loss [Aus+21], i.e. Lt(✓) + �LCE
t (✓) with � = 0.1, as we found it to

help reduce overfitting. To generate a graph from p✓(G0), a pure noise graph is first
sampled from p✓(GT) and gradually denoised using the learned p✓(Gt�1|Gt) from step
T to 0.

A significant advantage of diffusion models is their ability to achieve exchangeable
probability in combination with permutation equivariant networks under certain con-
ditions [Xu+22]. DiGress is the first work that applies discrete denoising diffusion to
graph generation, and achieves significant improvement over previous continuous-state
based diffusion. However, given the inherently high-dimensional nature of graphs and
their complex internal dependencies, modeling the joint distribution of all nodes and
edges directly presents significant challenges. DiGress requires thousands of denoising
steps to accurately capture the original dependencies. Moreover, DiGress relies on
many supplementary features, such as cycle counts and eigenvectors, to effectively
break symmetries among structural equivalences to achieve high performance.

6.3.2 Autoregressive Graph Generation
Order is important for AR models. Unlike diffusion models that aim to capture
the joint distribution directly, AR models decompose the joint probability into a
product of simpler conditional probabilities based on an order. This makes AR models
inherently suitable for ordinal data, where a natural order exists, such as in natural
languages and images.

Order Sensitivity. Early works of graph generation contain many AR models
like GraphRNN [You+18] and GRAN [Lia+19] based on non-deterministic heuristic
node orders like BFS/DFS and k-core ordering. Despite being permutation sensitive,
AR models achieve SOTA performance on small simulated structures like grid and
lobster graphs. However, permutation invariance is necessary for estimating an accu-
rate likelihood probability of a graph, and can benefit large-size datasets for better
generalization.

Let ⇡ denote an ordering of nodes. To make AR order-insensitive, there are two
directions: (1) Modeling the joint probability p(G,⇡) and then marginalizing ⇡, (2)
Finding a unique canonical order ⇡⇤(G) for any graph G such that p(⇡|G) = 1 if ⇡ =
⇡⇤(G) and 0 otherwise. In direction (1), directly integrating out ⇡ is prohibitive as the

6.3. Autoregressive Denoising Diffusion 103

number of permutations is factorial in the graph size. Several studies [Li+18; Che+21;
Lia+19] have investigated the use of subsets of either random or canonical orderings.
This approach aims to simplify the process, but it results in approximate integrals with
indeterminate errors. Moreover, it escalates computational expense due to the need for
data augmentation involving these subsets of orderings. In direction (2), identifying a
universal canonical order for all graphs is referred to as graph canonicalization. This
task is recognized to be at least as challenging as the Graph Isomorphism problem,
which is classified as NP-intermediate. Goyal, Jain, and Ranu [GJR20] explores using
minimum DFS code to construct canonical labels for a specific dataset with non-
polynomial time complexity. However, the canonicalization is specific to each training
dataset with the randomness derived from DFS. This results in the canonical order
being ⇡(G|TrainSet) instead of ⇡(G), which exhibits the generalization issue.

The Existence of Partial Order. While finding a unique order for all nodes
of a graph is NP-intermediate, we argue that finding a unique partial order, where
certain nodes and edges are with the same rank, is achievable. For example, a trivial
partial order is simply all nodes and edges having the same rank. Nevertheless, a
graph is not the same as a set (a set is just a graph with empty E), where all elements
are essentially unordered with equivalent rank. That is because a non-empty graph
contains edges between nodes, and these edges give different structural properties to
nodes. Notice that some nodes or edges have the same structural property as they are
structurally equivalent. We can view each structural property as a color, and rank all
unique colors within the graph to define the partial order over nodes, which we call a
structural partial order. The structural partial order defines a sequence of blocks such
that all nodes within a block have the same rank (ı.e. color).

Let � : V ! [1, ..., |S|] be the function that assigns rank to nodes based on their
structural properties. When S ✓ V , we use G[S] to denote the induced subgraph on
the subset S. There are many ways to assign rank to structural colors, however we
would like the resulting partial order to satisfy certain constraints. Most importantly,
we want

8r 2 [1, ..., |S|], G[�(V)  r] is a connected graph. (6.16)
The connectivity requirement is to ensure a more accurate representation of real-

world graph generation processes, where most real-world dynamic graphs are enlarged
with newcoming nodes being connected at any time. Then, one can sequentially
remove all nodes with the lowest degree to maintain this connectivity and establish a
partial order. However, as degree only reflects information of the first-hop neighbor
structure, many nodes share the same degree, leading to only a few distinct blocks,
not significantly different from a trivial, single-block approach.

To ensure connectivity while reducing rank collision, we consider larger hops to
define a weighted degree. Consider a maximum of Kh hops. For any node v 2 V, the
number of neighbors at each hop of v can be easily obtained as [d1(v), ..., dKh

(v)].
We then define the weighted degree as

wKh
(v) =

KhX

k=1

dk(v)⇥ |V|Kh�k (6.17)

Eq. (6.17) is fast to compute, and ensures that 1) nodes have the same rank if and
only if they have the same number of neighbors up to Kh hops; and 2) lower-hop de-
grees are weighted higher such that nodes with smaller lower-hop degree have smaller
wKh

. With wKh
defined, we give the structural partial order in Algo. 5. It is impor-

tant to note that for any G, its structural partial order is unique, deterministic, and

104 Chapter 6. Permutation-Invariant Autoregressive Diffusion on Graphs

Algorithm 5 Structural Partial Order �

1: Input: Graph G, maximum hops Kh.
2: Init: G0 = G, i = 0, � with �(v) = 0 8v.
3: while Gi is not ; do
4: Compute wKh

(v), 8v 2 V(Gi), using Eq. (6.17).
5: Find all nodes L with wKh

= minv2V(G)wKh
(v).

6: Let �(v) = i 8v 2 L.
7: Gi+1 Gi[V(G) \ L]; i i + 1.
8: end while
9: Output: � i� �

permutation equivariant. Formally, let P be any permutation operator, then
�(P ?G) = P ? �(G) (6.18)

Autoregressive Blockwise Generation. The structural partial order � of G
in Algo. 5 with output in range [1,KB] divides the nodes V(G) into KB blocks
[B1, ...,BKB

] in order. Let B1:i := [i
j=1Bj be the union of the first i blocks. Pard

decomposes the joint probability of a graph G into

p✓(G) =
KBY

i=1

p✓
⇣
G[B1:i] \G[B1:i�1]

��� G[B1:i�1]
⌘

(6.19)

where G[B1:0] is defined as the empty graph, and G[B1:i] \G[B1:i�1] denotes the set of
nodes and edges that are present in G[B1:i] but not in G[B1:i�1]. As each conditional
probability only contains a subset of edges and nodes, and having access to all previous
blocks, this conditional probability is significantly easier to model than the whole joint
probability. Given the permutation equivariant property Eq. (6.18) of Bi, it is easy to
verify that p✓(G) is exchangeable with permutation-invariant probability for any G if
and only if all conditional probabilities are exchangeable.

6.3.3 Impossibility of Equivariant Graph Transformation

With Eq. (6.19), we need to parameterize the conditional probability p✓
⇣
G[B1:i] \

G[B1:i�1]
��� G[B1:i�1]

⌘
to be permutation-invariant. This can be achieved by letting

the conditional probability be
p✓
⇣
|Bi|

��� G[B1:i�1]
⌘ Y

x2G[B1:i]\
G[B1:i�1]

p✓
⇣
x

��� G[B1:i�1] [;[B1:i]
⌘

(6.20)

where x is any node and edge in G[B1:i] \ G[B1:i�1], ; denotes an empty graph,
hence G[B1:i�1] [;[B1:i] depicts augmenting G[B1:i�1] with empty (or virtual) nodes
and edges to the same size as G[B1:i]. With the augmented graph, we can parameterize
p✓
�
x
�� G[B1:i�1] [;[B1:i]

�
for any node and edge x with a permutation equivariant

network to achieve the required permutation invariance. For simplicity, let G
⇥
B1:i�1,

|Bi|
⇤

:= G[B1:i�1] [;[B1:i].
The Flaw in Equivariant Modeling. Although the parameterization in

Eq. (6.20) along with an equivariant network makes the conditional probability in
Eq. (6.19) become permutation-invariant, we have found that the equivariant graph
transformation p✓(x | G

⇥
B1:i�1, |Bi|

⇤
) cannot be achieved in general for any permuta-

tion equivariant network, no matter how powerful it is (!) The underlying cause is the
symmetry of structural equivalence, which is also a problem in link prediction [SR20;
Zha+21]. Formally, let A(G) be the adjacency matrix representation of G (ignoring

6.3. Autoregressive Denoising Diffusion 105

labels) based on G’s default node order, then an automorphism � of G satisfies
A(G) = A(� ?G) (6.21)

where � ?G represents a reordering of nodes of G based on the mapping �. Then the
automorphism group Aut(G) is

Aut(G) = {� 2 P|V| | A(G) = A(� ?G)} (6.22)
where Pn denotes all permutation mappings for size n. That is, Aut(G) contains

all automorphisms of G. For a node i of G, the orbit that contains node i is defined
as

o(i) = {�(i) | 8� 2 Aut(G)} . (6.23)
In words, the orbit o(i) contains all nodes that are structurally equivalent to node i

in G. We say that two edges (i, j) and (u, v) are structurally equivalent if 9� 2 Aut(G),
such that �(i) = u and �(j) = v.

Theorem 6.3.1. Any structurally equivalent nodes and edges have the same repre-
sentation for any equivariant network.

1

2

4

3

5

6

1

2

4

3

1

2

4

3

5

6

Figure 6.1: Example case where the equivariant graph transformation from G[B1:i] to
G[B1:i+1] is impossible.

Proof. We prove this for node case. For structurally equivalent edges, the analysis is
the same. Assume node i and node j are structually equivalent, then we can find an
automorphism � 2 Aut(G) such that �(i) = j. For any permutation P 2 P|G| and an
equivariant network f , we have

f(P ?G) = P ? f(G) (6.24)
Replace P with �, and using the fact that � ?G = G. We can get

f(G) = f(� ?G) = � ? f(G) (6.25)
Hence, we get f(G)i = f(G)j , that is two nodes i and j have the same represen-

tation.

Theorem 6.3.1 indicates that no matter how powerful the equivariant network
is, any structually equivalent elements have the same representation. Based on this
theorem, we can easily show that there are many “bottleneck” cases where the targeted
graph transformation cannot be achieved. Figure 6.1 shows a case where G[B1:] is a
4-cycle, and the next target block contains two additional nodes, each with a single
edge connecting to one of the nodes of G[B1:]. It is easy to see that nodes 1–4 are
all structurally equivalent, and so are nodes 5, 6 in the augmented case (middle).
Hence, edges in {(5, i)|8i 2 [1, 4]} are structurally equivalent (also {(6, i)|8i 2 [1, 4]}).
Similarly, 8i 2 [1, 4], edge (5, i) and (6, i) are structurally equivalent. Combining all
cases, edges in {(j, i)|8i 2 [1, 4], j 2 {5, 6}} are structurally equivalent. Theorem 6.3.1

106 Chapter 6. Permutation-Invariant Autoregressive Diffusion on Graphs

states that all these edges would have the same prediction with any equivariant model,
hence making the target G[B1:i+1] not achievable.

The Magic of Annealing/Randomness. In Figure 6.1 we showed that a graph
with many automorphisms cannot be transformed to a target graph with fewer auto-
morphisms. We hypothesize that a graph with lower “energy” is hard to be transformed
to a graph with higher “energy” with equivariant networks. There exist some defini-
tions and discussion of graph energy [GLZ09; Bal04] based on symmetry and eigen-
information to measure graph complexity, where graphs with more symmetries have
lower energy. The theoretical characterization of the conditions for successful graph
transformation is a valuable direction, which we leave for future work to investigate.

Based on the above hypothesis, to achieve a successful transformation of a graph
into a target graph, it is necessary to increase its energy. Since graphs with fewer
symmetries exhibit higher energy levels, our approach involves introducing random
noise to both nodes and edges. Our approach of elevating the energy level, followed
by its reduction to attain desired target properties, mirrors the annealing process.

Diffusion. This further motivates us to use denoising diffusion to model
p✓(x | G

⇥
B1:i�1, |Bi|

⇤
): it naturally injects noise in the forward process, and its back-

ward denoising process is the same as annealing. What is more, we can achieve the
permutation-invariant property for p✓

⇣
G[B1:i]\G[B1:i�1]

��� G[B1:i�1]
⌘
, based on Propo-

sition 1 in [Xu+22]. Finally, as we have analyzed, this yields p✓(G) in Eq. (6.19) to
be permutation-invariant.

6.3.4 Pard: Autoregressive Denoising Diffusion

1

2

4

3

1

2

4

3

5

6

1

2

4

3

5

6

1

2

4

3

5

6
8

1

2

4

3

5

6
8

77

9

Autoregressive Block-wise Generation

Local Denoising Diffusion

1

2

4

3

5

6

1

2

4

3

5

6

1

2

4

3

5

6

Figure 6.2: Pard integrates the autoregressive method with diffusion modeling. (top)
Pard decomposes the joint probability into a series of block-wise enlargements, where each

block’s conditional distribution is captured with a shared discrete diffusion (bottom).

To summarize, we present Pard, the first permutation-invariant autoregressive
diffusion model that integrates AR with denoising diffusion. Pard relies on a unique,
permutation equivariant structural partial order � (Algo. 5) to decompose the
joint graph probability to the product of simpler conditional probabilities, based on
Eq. (6.19). Each block’s conditional probability is modeled with the product of a
conditional block size probability and a conditional block enlargement probability as

6.3. Autoregressive Denoising Diffusion 107

in Eq. (6.20), where the conditional block enlargement probability for every block is a
shared discrete denoising diffusion model as described in §6.3.1. Figure 6.2 illustrates
Pard’s two parts : block-wise AR and local denoising diffusion at each AR step.

Notice that there are two tasks in Eq. (6.20); one for predicting the next block’s
size, and the other for predicting the next block’s nodes and edges with diffusion.
These two tasks can be trained together with a single network, although for better
performance we use two different networks. For each block’s diffusion model, we set
the maximum time steps to 40 without much tuning.

Training and Inference Algorithm. We provide the training and inference
algorithms for Pard. Specifically, Algo. 6 is used to train each next block’s size
prediction model; Algo. 7 is used to train the shared diffusion for block conditional
probabilities; and Algo. 8 presents the generation steps.

Algorithm 6 Train blocksize distribution p✓
�
|Bi|

�� G[B1:i�1]
�

1: Input: G, maximum hop Kh, a network f✓ that takes a graph as input and output
graph wise prediction.

2: Get structural partial order function � of G from Algo.5.
3: Using � to get the sequence of node blocks [B1, ...,BKB

] for G.
4: Minimize

P
KB

i=1 CrossEntropy(f✓(G[Bi]), |Bi+1|), with |BKB+1| = 0

Algorithm 7 Train denoising diffusion for distribution p✓
⇣
G[B1:i] \

G[B1:i�1]
��� G[B1:i�1] [;[B1:i]

⌘

1: Input: G, max time T, maximum hop Kh, a network f✓ that inputs a graph and
outputs nodes and edges predictions.

2: Get structural partial order function � of G from Algo.5.
3: Using � to get the sequence of node blocks [B1, ...,BKB

] for G.
4: Sample t ⇠ U(1, ..., T)
5: for i = 1, ...,KB do
6: M indice mask of G[B1:i] \G[B1:i�1]
7: Sample a noise graph G̃[B1:i] from qt|0(G[B1:i]) according to Eq. (6.9)
8: G̃[B1:i] M � G̃[B1:i] + (1�M)�G[B1:i]
9: X f✓(G̃[B1:i])�M

10: Y G[B1:i]�M
11: li Lt(X,Y) + 0.1 ⇤ LCE

t (X,Y), using Lt in Eq. (5.3) and LCE
t in Eq. (6.15).

12: end for
13: Minimize

P
KB

i=1 li. (The for loop can be parallelized.)

108 Chapter 6. Permutation-Invariant Autoregressive Diffusion on Graphs

Algorithm 8 Generation
1: Input: blocksize model g', diffusion model f✓; first blocksize distribution from

TrainSet.
2: G ;; i 1
3: Sample n from the first block’s size distribution.
4: while n > 0 do
5: Add a new block Bi with n nodes into G
6: M indice mask of G[B1:i] \G[B1:i�1]
7: G̃ For nodes and edges within M , sample from noise mn and me.
8: for j = 1 : T do
9: p f✓(G̃)

10: S Sample according to p
11: G̃ M � S + (1�M)� G̃
12: end for
13: G G̃
14: n Sample from g'(G)
15: i i + 1
16: end while
17: Return: G

6.4 Architecture Improvement

Pard is a general framework that can be combined with any equivariant network.
Nevertheless, we would like an equivariant network with enough expressiveness to
process symmetries inside the generated blocks for modeling the next block’s con-
ditional probability. While there are many expressive GNNs like subgraph GNNs
[Bev+22; Zha+22c] and higher-order GNNs [ZSA22; Mor+22], PPGN [Mar+19a] is
still a natural choice that models edge (2-tuple) representations directly with 3-WL
expressivity and O(n3) complexity in graph size. However, PPGN’s memory cost is
relatively high for many datasets.

6.4.1 Efficient and Expressive Higher-order Transformer

To enhance the memory efficiency of Probabilistic Graph Neural Networks (PPGN)
while maintaining the expressiveness equivalent to the 3-Weisfeiler-Lehman (3-WL)
test, we introduce a hybrid approach that integrates Graph Transformers with PPGN.
Graph Transformers operate on nodes as the fundamental units of representation, of-
fering better scalability and reduced memory consumption compared to PPGN, while
utilizing edges as their primary representation units and therefore incur significantly
higher memory requirements. However, the expressiveness of Graph Transformers
(without position encoding) is limited to the 1-WL test [Cai+23]. By combining
these two models, we can drastically decrease the size of edge representations while
allocating larger hidden sizes to nodes. This synergistic approach not only substan-
tially lowers the memory footprint but also enhances overall performance, leveraging
the strengths of both architectures to achieve a balance between expressivity and effi-
ciency. We provide the detailed design in Fig. 6.3. Note that we use GRIT [Ma+23]
as the transformer block.

6.4. Architecture Improvement 109

BN BN

MSA

FFNFFN

BN

FFN

⨁ ⨁

⨁
<latexit sha1_base64="I477YrWoFYwEauWLbY0/zyNSNbA=">AAACBHicbVC7TsNAEDzzDOFloExjESFRRTbiVUbQUAaJPKTEWOfLOTnl7LPu1iiR5YKGX6GhACFaPoKOv+GcuICEkVYazexqd8ePOVNg29/G0vLK6tp6aaO8ubW9s2vu7beUSCShTSK4kB0fK8pZRJvAgNNOLCkOfU7b/ug699sPVComojuYxNQN8SBiASMYtOSZlV6IYegH6TjzUpbdpz2gY0hFAlnmmVW7Zk9hLRKnIFVUoOGZX72+IElIIyAcK9V17BjcFEtghNOs3EsUjTEZ4QHtahrhkCo3nT6RWUda6VuBkLoisKbq74kUh0pNQl935iereS8X//O6CQSXbsqiOAEakdmiIOEWCCtPxOozSQnwiSaYSKZvtcgQS0xA51bWITjzLy+S1knNOa+d3Z5W61dFHCVUQYfoGDnoAtXRDWqgJiLoET2jV/RmPBkvxrvxMWtdMoqZA/QHxucP20uZiA==</latexit>

x
out
i

<latexit sha1_base64="zkvmPTMFrI3bu9DeJ+f30pIxcYs=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4Kon4WhbduKxgH9DEMJlO2qGTBzM30hICbvwVNy4UcetPuPNvnLZZaOuBgcM59zL3HD8RXIFlfRsLi0vLK6ultfL6xubWtrmz21RxKilr0FjEsu0TxQSPWAM4CNZOJCOhL1jLH1yP/dYDk4rH0R2MEuaGpBfxgFMCWvLMfSck0PeDbJh7Gc/vMwfYEDIe5blnVqyqNQGeJ3ZBKqhA3TO/nG5M05BFQAVRqmNbCbgZkcCpYHnZSRVLCB2QHutoGpGQKTebZMjxkVa6OIilfhHgifp7IyOhUqPQ15Pji9WsNxb/8zopBJeuDpSkwCI6/ShIBYYYjwvBXS4ZBTHShFDJ9a2Y9okkFHRtZV2CPRt5njRPqvZ59ez2tFK7KuoooQN0iI6RjS5QDd2gOmogih7RM3pFb8aT8WK8Gx/T0QWj2NlDf2B8/gDnJJj9</latexit>

x
in
i

<latexit sha1_base64="LLNs4mbt0Y5jiMcfN8o29U2ackw=">AAACBXicbVC7SgNBFJ2NrxhfUUstFoNgIWFXfJVBG8sI5gHJGmYnd5Mxsw9m7oph2cbGX7GxUMTWf7Dzb5wkW2jigYHDOfcy9xw3ElyhZX0bubn5hcWl/HJhZXVtfaO4uVVXYSwZ1FgoQtl0qQLBA6ghRwHNSAL1XQENd3A58hv3IBUPgxscRuD4tBdwjzOKWuoUd9s+xb7rJZB2En54l94mbYQHTHiQpp1iySpbY5izxM5IiWSodopf7W7IYh8CZIIq1bKtCJ2ESuRMQFpoxwoiyga0By1NA+qDcpJxitTc10rX9EKpX4DmWP29kVBfqaHv6snRzWraG4n/ea0YvXNHB4pihIBNPvJiYWJojioxu1wCQzHUhDLJ9a0m61NJGeriCroEezryLKkfle3T8sn1calykdWRJztkjxwQm5yRCrkiVVIjjDySZ/JK3own48V4Nz4mozkj29kmf2B8/gAJnZmU</latexit>

e
in
i,j

<latexit sha1_base64="nQlwyP1mpmjRWzL3doV4JaCajo4=">AAACBnicbVDJSgNBEO2JW4xb1KMIg0HwIGFG3I5BLx4jmAWSMfR0apI2PQvdNWIY5uTFX/HiQRGvfoM3/8ZOMgdNfFDweK+KqnpuJLhCy/o2cnPzC4tL+eXCyura+kZxc6uuwlgyqLFQhLLpUgWCB1BDjgKakQTquwIa7uBy5DfuQSoeBjc4jMDxaS/gHmcUtdQp7rZ9in3XSyDtJPzwLr1N2ggPmIQxpmmnWLLK1hjmLLEzUiIZqp3iV7sbstiHAJmgSrVsK0InoRI5E5AW2rGCiLIB7UFL04D6oJxk/EZq7mula3qh1BWgOVZ/TyTUV2rou7pzdLSa9kbif14rRu/cSXgQxQgBmyzyYmFiaI4yMbtcAkMx1IQyyfWtJutTSRnq5Ao6BHv65VlSPyrbp+WT6+NS5SKLI092yB45IDY5IxVyRaqkRhh5JM/klbwZT8aL8W58TFpzRjazTf7A+PwB/jyaHw==</latexit>

e
out
i,j

BN

FFNFFN

FFN

BN

FFN

⊙

⨁

⨁

<latexit sha1_base64="LLNs4mbt0Y5jiMcfN8o29U2ackw=">AAACBXicbVC7SgNBFJ2NrxhfUUstFoNgIWFXfJVBG8sI5gHJGmYnd5Mxsw9m7oph2cbGX7GxUMTWf7Dzb5wkW2jigYHDOfcy9xw3ElyhZX0bubn5hcWl/HJhZXVtfaO4uVVXYSwZ1FgoQtl0qQLBA6ghRwHNSAL1XQENd3A58hv3IBUPgxscRuD4tBdwjzOKWuoUd9s+xb7rJZB2En54l94mbYQHTHiQpp1iySpbY5izxM5IiWSodopf7W7IYh8CZIIq1bKtCJ2ESuRMQFpoxwoiyga0By1NA+qDcpJxitTc10rX9EKpX4DmWP29kVBfqaHv6snRzWraG4n/ea0YvXNHB4pihIBNPvJiYWJojioxu1wCQzHUhDLJ9a0m61NJGeriCroEezryLKkfle3T8sn1calykdWRJztkjxwQm5yRCrkiVVIjjDySZ/JK3own48V4Nz4mozkj29kmf2B8/gAJnZmU</latexit>

e
in
i,j

<latexit sha1_base64="nQlwyP1mpmjRWzL3doV4JaCajo4=">AAACBnicbVDJSgNBEO2JW4xb1KMIg0HwIGFG3I5BLx4jmAWSMfR0apI2PQvdNWIY5uTFX/HiQRGvfoM3/8ZOMgdNfFDweK+KqnpuJLhCy/o2cnPzC4tL+eXCyura+kZxc6uuwlgyqLFQhLLpUgWCB1BDjgKakQTquwIa7uBy5DfuQSoeBjc4jMDxaS/gHmcUtdQp7rZ9in3XSyDtJPzwLr1N2ggPmIQxpmmnWLLK1hjmLLEzUiIZqp3iV7sbstiHAJmgSrVsK0InoRI5E5AW2rGCiLIB7UFL04D6oJxk/EZq7mula3qh1BWgOVZ/TyTUV2rou7pzdLSa9kbif14rRu/cSXgQxQgBmyzyYmFiaI4yMbtcAkMx1IQyyfWtJutTSRnq5Ao6BHv65VlSPyrbp+WT6+NS5SKLI092yB45IDY5IxVyRaqkRhh5JM/klbwZT8aL8W58TFpzRjazTf7A+PwB/jyaHw==</latexit>

e
out
i,j

<latexit sha1_base64="HuY0iNshJhWJdu6ajF+cFI5XOmE=">AAACH3icbVDLSgMxFM3UV62vqks3wSLopswUrC61LnSlFVot1FLupHdsaCYZkoxQin/ixl9x40IRcde/MX0stHogcDjnXG7uCRPBjfX9oZeZm19YXMou51ZW19Y38ptbN0almmGdKaF0IwSDgkusW24FNhKNEIcCb8Pe2ci/fUBtuJI120+wFcO95BFnYJ3Uzpf34YDWukivXAqEoKeadblFZlONVEW0Wj2/pDUN0kRKx6hpRSjWa+cLftEfg/4lwZQUyBTVdv7rrqNYGqO0TIAxzcBPbGsA2nIm8DF3lxpMgPXgHpuOSojRtAbj+x7pnlM61O13T1o6Vn9ODCA2ph+HLhmD7ZpZbyT+5zVTGx23BlwmqUXJJouiVFCr6Kgs2uHaNSH6jgDT3P2Vsi5oYNZVmnMlBLMn/yU3pWJQLh5elwonlWkdWbJDdsk+CcgROSEXpErqhJEn8kLeyLv37L16H97nJJrxpjPb5Be84Tf7kaHC</latexit>

(a) The Overall Architecture of PPGN Transformer Block
<latexit sha1_base64="F7K3pkjW12h98l/Me0D/uvV52+o=">AAAB/nicbVDLSgNBEOz1GeNrVTx5GQxCvITdgI9jiBePEfKCZAmzk0kyZGZ2mZkVwhLwV7x4UMSr3+HNv3GS7EETCxqKqm66u8KYM20879tZW9/Y3NrO7eR39/YPDt2j46aOEkVog0Q8Uu0Qa8qZpA3DDKftWFEsQk5b4fhu5rceqdIsknUziWkg8FCyASPYWKnnnhbDS1RXWOpBpARVqMojMu65Ba/kzYFWiZ+RAmSo9dyvbj8iiaDSEI617vhebIIUK8MIp9N8N9E0xmSMh7RjqcSC6iCdnz9FF1bpI7vfljRorv6eSLHQeiJC2ymwGellbyb+53USM7gNUibjxFBJFosGCUcmQrMsUJ8pSgyfWIKJYvZWREZYYWJsYnkbgr/88ipplkv+denqoVyoVLM4cnAG51AEH26gAvdQgwYQSOEZXuHNeXJenHfnY9G65mQzJ/AHzucPHDWU9g==</latexit>

(b) Transformer Block
<latexit sha1_base64="KjU5GwzSPQrU+xQYMdK8A9oxO1Q=">AAAB9XicbVDLSsNAFL2pr1pfVZduBotQNyUp+FiWutCVRLAPaGOZTCft0EkmzEyUEvofblwo4tZ/ceffOG2z0NYDFw7n3Mu99/gxZ0rb9reVW1ldW9/Ibxa2tnd294r7B00lEklogwguZNvHinIW0YZmmtN2LCkOfU5b/uhq6rceqVRMRPd6HFMvxIOIBYxgbaSHMjlFrnt9i+pckFGvWLIr9gxomTgZKUEGt1f86vYFSUIaacKxUh3HjrWXYqkZ4XRS6CaKxpiM8IB2DI1wSJWXzq6eoBOj9FEgpKlIo5n6eyLFoVLj0DedIdZDtehNxf+8TqKDSy9lUZxoGpH5oiDhSAs0jQD1maRE87EhmEhmbkVkiCUm2gRVMCE4iy8vk2a14pxXzu6qpVo9iyMPR3AMZXDgAmpwAy40gICEZ3iFN+vJerHerY95a87KZg7hD6zPH1jikSI=</latexit>

(c) PPGN Block

Transformer
Block

PPGN
Block

<latexit sha1_base64="I477YrWoFYwEauWLbY0/zyNSNbA=">AAACBHicbVC7TsNAEDzzDOFloExjESFRRTbiVUbQUAaJPKTEWOfLOTnl7LPu1iiR5YKGX6GhACFaPoKOv+GcuICEkVYazexqd8ePOVNg29/G0vLK6tp6aaO8ubW9s2vu7beUSCShTSK4kB0fK8pZRJvAgNNOLCkOfU7b/ug699sPVComojuYxNQN8SBiASMYtOSZlV6IYegH6TjzUpbdpz2gY0hFAlnmmVW7Zk9hLRKnIFVUoOGZX72+IElIIyAcK9V17BjcFEtghNOs3EsUjTEZ4QHtahrhkCo3nT6RWUda6VuBkLoisKbq74kUh0pNQl935iereS8X//O6CQSXbsqiOAEakdmiIOEWCCtPxOozSQnwiSaYSKZvtcgQS0xA51bWITjzLy+S1knNOa+d3Z5W61dFHCVUQYfoGDnoAtXRDWqgJiLoET2jV/RmPBkvxrvxMWtdMoqZA/QHxucP20uZiA==</latexit>

x
out
i

<latexit sha1_base64="LLNs4mbt0Y5jiMcfN8o29U2ackw=">AAACBXicbVC7SgNBFJ2NrxhfUUstFoNgIWFXfJVBG8sI5gHJGmYnd5Mxsw9m7oph2cbGX7GxUMTWf7Dzb5wkW2jigYHDOfcy9xw3ElyhZX0bubn5hcWl/HJhZXVtfaO4uVVXYSwZ1FgoQtl0qQLBA6ghRwHNSAL1XQENd3A58hv3IBUPgxscRuD4tBdwjzOKWuoUd9s+xb7rJZB2En54l94mbYQHTHiQpp1iySpbY5izxM5IiWSodopf7W7IYh8CZIIq1bKtCJ2ESuRMQFpoxwoiyga0By1NA+qDcpJxitTc10rX9EKpX4DmWP29kVBfqaHv6snRzWraG4n/ea0YvXNHB4pihIBNPvJiYWJojioxu1wCQzHUhDLJ9a0m61NJGeriCroEezryLKkfle3T8sn1calykdWRJztkjxwQm5yRCrkiVVIjjDySZ/JK3own48V4Nz4mozkj29kmf2B8/gAJnZmU</latexit>

e
in
i,j

<latexit sha1_base64="zkvmPTMFrI3bu9DeJ+f30pIxcYs=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4Kon4WhbduKxgH9DEMJlO2qGTBzM30hICbvwVNy4UcetPuPNvnLZZaOuBgcM59zL3HD8RXIFlfRsLi0vLK6ultfL6xubWtrmz21RxKilr0FjEsu0TxQSPWAM4CNZOJCOhL1jLH1yP/dYDk4rH0R2MEuaGpBfxgFMCWvLMfSck0PeDbJh7Gc/vMwfYEDIe5blnVqyqNQGeJ3ZBKqhA3TO/nG5M05BFQAVRqmNbCbgZkcCpYHnZSRVLCB2QHutoGpGQKTebZMjxkVa6OIilfhHgifp7IyOhUqPQ15Pji9WsNxb/8zopBJeuDpSkwCI6/ShIBYYYjwvBXS4ZBTHShFDJ9a2Y9okkFHRtZV2CPRt5njRPqvZ59ez2tFK7KuoooQN0iI6RjS5QDd2gOmogih7RM3pFb8aT8WK8Gx/T0QWj2NlDf2B8/gDnJJj9</latexit>

x
in
i

<latexit sha1_base64="nQlwyP1mpmjRWzL3doV4JaCajo4=">AAACBnicbVDJSgNBEO2JW4xb1KMIg0HwIGFG3I5BLx4jmAWSMfR0apI2PQvdNWIY5uTFX/HiQRGvfoM3/8ZOMgdNfFDweK+KqnpuJLhCy/o2cnPzC4tL+eXCyura+kZxc6uuwlgyqLFQhLLpUgWCB1BDjgKakQTquwIa7uBy5DfuQSoeBjc4jMDxaS/gHmcUtdQp7rZ9in3XSyDtJPzwLr1N2ggPmIQxpmmnWLLK1hjmLLEzUiIZqp3iV7sbstiHAJmgSrVsK0InoRI5E5AW2rGCiLIB7UFL04D6oJxk/EZq7mula3qh1BWgOVZ/TyTUV2rou7pzdLSa9kbif14rRu/cSXgQxQgBmyzyYmFiaI4yMbtcAkMx1IQyyfWtJutTSRnq5Ao6BHv65VlSPyrbp+WT6+NS5SKLI092yB45IDY5IxVyRaqkRhh5JM/klbwZT8aL8W58TFpzRjazTf7A+PwB/jyaHw==</latexit>

e
out
i,j

<latexit sha1_base64="nQlwyP1mpmjRWzL3doV4JaCajo4=">AAACBnicbVDJSgNBEO2JW4xb1KMIg0HwIGFG3I5BLx4jmAWSMfR0apI2PQvdNWIY5uTFX/HiQRGvfoM3/8ZOMgdNfFDweK+KqnpuJLhCy/o2cnPzC4tL+eXCyura+kZxc6uuwlgyqLFQhLLpUgWCB1BDjgKakQTquwIa7uBy5DfuQSoeBjc4jMDxaS/gHmcUtdQp7rZ9in3XSyDtJPzwLr1N2ggPmIQxpmmnWLLK1hjmLLEzUiIZqp3iV7sbstiHAJmgSrVsK0InoRI5E5AW2rGCiLIB7UFL04D6oJxk/EZq7mula3qh1BWgOVZ/TyTUV2rou7pzdLSa9kbif14rRu/cSXgQxQgBmyzyYmFiaI4yMbtcAkMx1IQyyfWtJutTSRnq5Ao6BHv65VlSPyrbp+WT6+NS5SKLI092yB45IDY5IxVyRaqkRhh5JM/klbwZT8aL8W58TFpzRjazTf7A+PwB/jyaHw==</latexit>

e
out
i,j

<latexit sha1_base64="I477YrWoFYwEauWLbY0/zyNSNbA=">AAACBHicbVC7TsNAEDzzDOFloExjESFRRTbiVUbQUAaJPKTEWOfLOTnl7LPu1iiR5YKGX6GhACFaPoKOv+GcuICEkVYazexqd8ePOVNg29/G0vLK6tp6aaO8ubW9s2vu7beUSCShTSK4kB0fK8pZRJvAgNNOLCkOfU7b/ug699sPVComojuYxNQN8SBiASMYtOSZlV6IYegH6TjzUpbdpz2gY0hFAlnmmVW7Zk9hLRKnIFVUoOGZX72+IElIIyAcK9V17BjcFEtghNOs3EsUjTEZ4QHtahrhkCo3nT6RWUda6VuBkLoisKbq74kUh0pNQl935iereS8X//O6CQSXbsqiOAEakdmiIOEWCCtPxOozSQnwiSaYSKZvtcgQS0xA51bWITjzLy+S1knNOa+d3Z5W61dFHCVUQYfoGDnoAtXRDWqgJiLoET2jV/RmPBkvxrvxMWtdMoqZA/QHxucP20uZiA==</latexit>

x
out
i

Figure 6.3: The Architecture of the PPGN-Transformer Block. In (b) and (c) we provide
illustrations of how edge and node features are processed through Transformer and PPGN

blocks.

6.4.2 Parallel Training with Causal Transformer

As shown in Eq. (6.19), for a graph G, there are KB conditional probabilities
p✓
⇣
G[B1:i] \ G[B1:i�1]

��� G[B1:i�1]
⌘

being modeled by a shared diffusion model f✓.

By default, these KB number of inputs {G[B1:i�1]}KB

i=1 are viewed as separate graphs
and the network passing f✓(G[B1:i�1]) for different i 2 [1,KB] are not shared. This
leads to a scalability issue; in effect enlarging the dataset by roughly KB times and
resulting in KB times longer training.

To minimize computational overhead, it is crucial to enable parallel training of all
the KB conditional probabilities, and allow these processes to share representations,
through which we can pass the full graph G to the network f✓ only once and obtain
all KB conditional probabilities. This is also a key advantage of transformers over
RNNs. Transformers (GPTs) can train all next-token predictions simultaneously with
representation sharing through causal masking, whereas RNNs must train sequentially.
However, the default causal masking of GPTs is not applicable to our architecture as
it contains both Transformer and PPGN.

To ensure representation sharing without risking information leakage, we first as-
sign a “block ID” to every node and edge within graph G. Specifically, for every node
and edge in G[B1:i] \ G[B1:i�1], we assign the ID equal to i. To prevent information
leakage effectively, it is crucial that any node and edge labeled with ID i are restricted
to communicate only with other nodes and edges whose ID is  i. Let A,B 2 Rn⇥n,
and x 2 Rn. There are mainly two non-elementwise operations in Transformer and
PPGN that have the risk of leakage: the attention-vector product operation Ax of
Transformer, and the matrix-matrix product operation AB of PPGN. (We ignore the
d dimension of A and x as it does not affect the information leakage.)

Let M 2 {0, 1}n⇥n be a mask matrix, such that Mi,j = 1 if block_ID(i) �
block_ID(j) else 0. One can verify that

(A�M)x

(A�M)B + A(B �M>)� (A�M)(B �M>)
(6.26)

generalize Ax and AB respectively and safely bypass information leakage. We
use these operations in our network and enable representation sharing, along with
parallel training of all KB blocks for denoising diffusion as well as next block size
prediction. In practice, these offer more than 10⇥ speed-up, and the parallel training
allows Pard to scale to large datasets like MOSES [Pol+20].

110 Chapter 6. Permutation-Invariant Autoregressive Diffusion on Graphs

Table 6.1: Generation quality on QM9 with explicit hydrogens.

Model Valid. " Uni. " Atom." Mol. "

Dataset (optimal) 97.8 100 98.5 87.0

ConGress 86.7 98.4 97.2 69.5
DiGress (uniform) 89.8 97.8 97.3 70.5
DiGress (marginal) 92.3 97.9 97.3 66.8
DiGress (marg. + feat.) 95.4 97.6 98.1 79.8

Pard (no feat.) 97.5 95.8 98.4 86.1

6.5 Experiments

We evaluate Pard on 7 diverse benchmark datasets with varying sizes and structural
properties, including both molecular (§6.5.1) and non-molecular/generic (§6.5.2) graph
generation. A summary of the datasets is shown in Table 1.1.

6.5.1 Molecular Graph Generation

Datasets. We experiment with three different molecular datasets used across the
graph generation literature: (1) QM9 [Ram+14] (2) ZINC250k [Irw+12], and (3)
MOSES [Pol+20] that contains more than 1.9 million graphs. We use a 80%-20%
train and test split, and among the train data we split additional 20% as validation.
For QM9 and ZINC250k, we generate 10,000 molecules for stand-alone evaluation,
and on MOSES we generate 25,000 molecules.

Baselines. The literature has not been consistent in evaluating molecule gen-
eration on well-adopted benchmark datasets and metrics. Among baselines, DiGress
[Vig+23] stands out as the most competitive. We also compare to a list of many other
baselines, where we report their performance values as sourced from the literature.

Metrics. The literature has adopted a number of different evaluation metrics that
are not consistent across datasets. Most common ones include Validity (") (fraction of
valid molecules without valency correction), Uniqueness (") (frac. of valid molecules
that are unique), and Novelty (") (frac. of valid molecules that are not included in
the training set).

For QM9, following earlier work [Vig+23], we report additional evaluations w.r.t.
Atom Stability (") and Molecule Stability ("), as defined by [Hoo+22b], whereas Nov-
elty is not reported since QM9 contains small molecules that meet specific constraints,
and generating novel molecules does not mean the network has accurately learned the
data distribution.

On ZINC250k and MOSES, we also measure the Fréchet ChemNet Distance
(FCD) (#) between the generated and the training samples, which is based on the
embedding learned by ChemNet [Li+18]. For MOSES, there are three additional
measures: Filter (") score is the fraction of molecules passing the same filters as the
test set, SNN (") evaluates nearest neighbor similarity using Tanimoto Distance, and
Scaffold similarity (") analyzes the occurrence of Bemis-Murcko scaffolds [Pol+20].

Results. Table 6.1 shows generation evaluation results on QM9, where the
baseline results are sourced from [Vig+23]. Pard outperforms DiGress and variants
that do not use any auxiliary features, in terms of Atom Stability and especially
Validity and Molecule Stability, with slightly lower Uniqueness. What is notable is
that Pard, without using any extra features, achieves a similar performance gap
against DiGress that uses specialized extra features.

6.5. Experiments 111

Table 6.2 shows Pard’s performance on ZINC250k, with baseline results carried
over from [Kon+23] and [Yan+23]. Pard achieves the best Uniqueness, stands out in
FCD alongside SwinGNN [Yan+23], and is the runner-up w.r.t. Validity.

Table 6.2: Generation quality on ZINC250k.

Model Validity " FCD # Uni. " Model Size

EDP-GNN 82.97 16.74 99.79 0.09M
GraphEBM 5.29 35.47 98.79 -
SPECTRE 90.20 18.44 67.05 -
GDSS 97.01 14.66 99.64 0.37M
GraphArm 88.23 16.26 99.46 -
DiGress 91.02 23.06 81.23 18.43M
SwinGNN-L 90.68 1.99 99.73 35.91M

Pard 95.23 1.98 99.99 4.1M

Finally, Table 6.3 shows generation quality of Pard on the largest dataset
MOSES. We mainly compare with DiGress and its variant ConGress, which has
been the only general-purpose generative model in the literature that is not based on
molecular fragments or SMILES strings. All baseline performances are sourced from
[Vig+23].

Table 6.3: Generation quality on MOSES. The top three methods use hard-coded rules,
hence we do not highlight them.

Model Val. ↑ Uni. ↑ Novel. ↑ Filters ↑ FCD ↓ SNN ↑ Scaf. ↑

VAE 97.7 99.8 69.5 99.7 0.57 0.58 5.9
JT-VAE 100 100 99.9 97.8 1.00 0.53 10.0
GraphINVENT 96.4 99.8 - 95.0 1.22 0.54 12.7

ConGress 83.4 99.9 96.4 94.8 1.48 0.50 16.4

DiGress 85.7 100 95.0 97.1 1.19 0.52 14.8

Pard 86.8 100 78.2 99.0 1.00 0.56 2.2

While the specialized models, excluding Pard and DiGress, have hard-coded rules
to ensure high Validity, Pard outperforms those on several other metrics including
FCD and SNN, and achives competitive performance on others. Again, it is notable
here that Pard, without relying on any auxiliary features, achieves similarly compet-
itive results as with DiGress which utilizes extra features.

6.5.2 Generic Graph Generation

Datasets. We use four generic graph datasets with various structure and semantic:
(1) Community-small [You+18], (2) Caveman [You18], (3) Cora [Sen+08], and
(4) Breast [GM+11]. We split each dataset into 80%-20% train-test, and randomly
sample 20% of training graphs for validation. We generate the same number of samples
as the test set.

Baselines. We mainly compare against the latest general-purpose GraphArm
[Kon+23], which reported DiGress [Vig+23] and GDSS [JLH22] as top two most
competitive, along with several other baselines.

Metrics. As with prior work [You+18], we measure generation quality using the
maximum mean discrepancy (MMD) as a distribution distance between the generated
graphs and the test graphs (#), as pertain to distributions of (i) Degree, (ii) Clustering
coefficient, and (iii) occurrence count of all Orbits with 4 nodes.

112 Chapter 6. Permutation-Invariant Autoregressive Diffusion on Graphs

Table 6.4: Generation quality on generic graphs. All metrics are based on generated-to-
test set MMD distances, the lower the better. Top performance is in bold, and Runner-up

is underlined.

Community-small Caveman Cora Breast

Model Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit Deg. Clus. Orbit

GraphRNN 0.080 0.120 0.040 0.371 1.035 0.033 1.689 0.608 0.308 0.103 0.138 0.005
GRAN 0.060 0.110 0.050 0.043 0.130 0.018 0.125 0.272 0.127 0.073 0.413 0.010
EDP-GNN 0.053 0.144 0.026 0.032 0.168 0.030 0.093 0.269 0.062 0.131 0.038 0.019
GDSS 0.045 0.086 0.007 0.019 0.048 0.006 0.160 0.376 0.187 0.113 0.020 0.003
GraphArm 0.034 0.082 0.004 0.039 0.028 0.018 0.273 0.138 0.105 0.036 0.041 0.002
DiGress 0.047 0.041 0.026 0.019 0.040 0.003 0.044 0.042 0.223 0.152 0.024 0.008

Pard 0.023 0.071 0.012 0.002 0.047 0.00003 0.0003 0.003 0.0097 0.044 0.024 0.0003

Results. Table 6.4 provides the generation results of Pard against the baselines
as sourced from [Kon+23]. Pard shows outstanding performance achieving SOTA or
close runner-up results, while none of the baselines shows as consistent performance
across datasets and metrics.

6.6 Conclusion

We presented Pard, the first permutation-invariant autoregressive diffusion model.
Pard decomposes the joint probability of a graph autoregressively into product of
several block conditional probabilities relying on a unique and permutation equivariant
structural partial order. All conditional probabilities are then modeled with a shared
discrete diffusion. Pard can be trained in parallel on all blocks, and efficiently scales
to millions of graphs. Pard achieves SOTA performance on molecular and non-
molecular datasets without using any extra features. We expect Pard to serve as a
cornerstone for generative foundation modeling on graphs.

113

Part IV

Application: Graph-level Anomaly
Detection

115

Chapter 7

Graph-level Anomaly Detection:
Baselines and Issues

Chapter based on: Lingxiao Zhao and Leman Akoglu. “On using classification
datasets to evaluate graph outlier detection: Peculiar observations and new in-
sights”. In: Big Data 11.3 (2023), pp. 151–180.

Outlier detection is a critical task that finds numerous applications in healthcare,
security, finance, etc. [Agg15]. Simply put, the task is to identify observations that
notably stand out within large collections of data so as to “arouse suspicions that
[they were] generated by a different mechanism” [Haw80]. One of the key challenges
of outlier detection is that it poses an unsupervised learning problem. Due to the
rare nature of outlier instances, combined with the laborious manual (i.e., human)
labeling, access to benchmark datasets with sufficiently many labeled ground-truth
outliers is limited.

Motivation. Lack of labeled benchmark datasets for outlier detection is not
only a challenge for learning, but also for the evaluation of outlier models. Even if
one designs unsupervised models for the detection task, ground-truth labels that truly
reflect the nature of outliers in a domain is essential for the reliable error estimation of
various models. Thereby, the scarcity of representative labeled outliers in real-world
datasets has motivated a couple of strategies for building benchmark datasets, mainly
for evaluation.

One strategy is to inject realistic yet synthetic outliers into real-world datasets
via simulation. For example, in fraud detection applications, one could simulate ac-
tivities that reflect malicious schemes known to domain experts in order to obtain
positive (i.e., anomalous) observations. Emmott et al. [Emm+13; Emm+15] present
a systematic in-depth study on this subject. This approach is typically criticized for
a couple of reasons. First, the simulated outliers are limited to the known anomalous
behaviors and may not comprehensively reflect the outliers in the wild. Second, this
type of approach may create an environment fertile to “leakage”, where the outliers
may be simulated in a biased way that aligns with how the detection model under
evaluation works.

An alternative strategy to artificial outlier injection is to repurpose classification
datasets so as to work with only real-world samples. (See [Cam+16] and citations
therein.) A common practice is to use binary classification datasets, where samples
from one of the classes (typically the one with the larger number of samples) is treated
as the ‘inlier’ samples, and the other class is down-sampled (to a desired rate) to con-
stitute the ‘outlier’ samples. This procedure conforms with the notion of outlierness as
characterized by Hawkins [Haw80], in that the outliers are drawn from a data distri-
bution (i.e., class) that is different from that generating the inliers. In their in-depth

116 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

evaluation of unsupervised outlier detection models, Campos et al. [Cam+16] mainly
adopt this strategy.

This paper. In this study we scrutinize this latter strategy, and pose the follow-
ing questions: Should one use classification datasets for evaluating outlier detection
models? What issues should one be aware of in designing benchmark datasets in this
manner? Specifically, we study this issue in the context of outlier detection in graph
databases, where given a collection of graphs, the task is to identify the outlier graphs
that stand out. Graph data is widespread in finance, health care, cybersecurity, fault
monitoring, etc. where the outlier detection task finds a long list of applications such
as identifying rare transaction graphs [NLA20], command flow graphs [MMA16], and
human poses [Mar+20], fake news [Mon+19], traffic events [Har+16], buggy software
[Liu+05], money laundering [Web+19], and so on.

Before delving into details, we start by illustrating the intriguing “performance
flip” issue empirically. Table 7.1 (See Sec. 7.2.1) shows the ROC-AUC performances
of three graph embedding based outlier detectors based on four binary graph classifica-
tion datasets (Additional results on more datasets, and using more graph embedding
methods is available in Tables 7.4&7.5). Each dataset has two variants, each corre-
sponding to one of the classes down-sampled as outlier. The difference in performances
between the two variants is striking, consistently across models on most (although not
all) datasets.

Related work. To the best of our knowledge, the performance flip issue has
not been identified by any prior work on outlier mining, with the exception of work
by Swersky et al. [Swe+16] which document similar ROC-AUC flip behavior on
several datasets, however the authors have not recognized explicitly. Campos et al.
[Cam+16] state that “random downsampling often leads to great variation in the
nature of the outliers produced” and that “observations based on downsampling can
vary considerably from sample to sample”, based on which they repeat their down-
sampling procedure 10 times per dataset “to mitigate the impact of randomization”.
This, however, points to an orthogonal issue as it pertains to down-sampling after
deciding (i.e. fixing) which class to down-sample. Repurposing classification datasets
for evaluation of clustering has been questioned by Färber et al. [Fär+10], which
alludes to the potential misalignment between the semantics of data clusters and class
labels. Our study points to an issue orthogonal to semantics.

Contributions. Through extensive analysis, our study aims to (1) illustrate
the issues with using graph classification datasets for creating outlier benchmarks for
model evaluation, (2) identify the leading factors behind these issues, (3) propose con-
crete measures to quantify these factors and explain their possible driving mechanisms
with a focus on propagation-based graph embedding methods, (4) analyze the root of
the issue from three different perspectives (data, graph embedding method, assump-
tion of outlier detector) and call community’s attention to three important questions
regarding (i) fair evaluation, (ii) model selection, and (iii) suitability of graph em-
bedding method, and last but not the least (5) open source all methods and datasets
used in our study (https://github.com/LingxiaoShawn/GLOD-Issues), to enable
the community to use in their “GLOD” tasks and also to facilitate further investiga-
tion into the issues raised through our study. We summarize our main contributions
as follows.

• Study of Deep Graph-level Outlier Detection: We start with the design
and evaluation of two different categories of models for outlier detection in graph
databases; namely, (1) two-stage models—pipelining unsupervised graph-level
representation learning with off-the-shelf point-cloud outlier detectors, and (2)

https://github.com/LingxiaoShawn/GLOD-Issues

Chapter 7. Graph-level Anomaly Detection: Baselines and Issues 117

end-to-end models—learning representations simultaneously with optimizing an
anomaly detection objective, such as one-class classification or reconstruction
loss. (Sec. 7.1)

• “Performance Flip” Issue with Using Classification Datasets for Eval-
uation: To evaluate the aforementioned graph outlier models, we construct
labeled benchmark datasets by repurposing binary graph classification datasets.
Notably, we down-sample those datasets in both “directions”, that is, we create
two benchmark variants per classification dataset, respectively down-sampling
one or the other class samples to constitute the outlier graphs. Surprisingly,
we find that most models, while achieving high detection performance on one
variant, fail considerably on the other. That is, we identify the intriguing issue
of what we call “performance flip” depending on which class has been down-
sampled. (Sec. 7.2.1)

• Driving Factors behind “Performance Flip”: We find that the issue
stems from the (mis)alignment between the inlier/outlier distributions created
by graph embedding techniques and key underlying assumptions of the detec-
tion models. While one scenario creates a dense inlier distribution surrounded
with dispersed outliers (‘easy’ task), the other creates a sparse inlier distribution
that has overlapping support with a small set of outliers with relatively higher
density (‘hard’ task). Since most models assume the former scenario in their
formalism, they ‘do well’ on the respective ‘easy’ task.

With an in-depth study over propagation based graph embedding methods,
we identify two key leading factors behind the observed “performance flip” issue,
particularly (1) density disparity ; where the density of graph embeddings differ
considerably between two classes, and (2) overlapping support ; where the distri-
butions of graph embeddings from the two classes exhibit overlapping support in
the representation space. Moreover, we point out two contributing factors: (a)
initial disparity between within-class sample similarities, and (b) amplification of
this disparity by graph propagation – called sparsification – which is a property
of some graph embedding models (Sec 7.2.2). We design quantitative metrics
to concretely measure those factors (Sec. 7.2.3), and analyze the sparsification
property via controlled simulations on k-regular graphs (Sec. 7.2.4). Finally, we
present a detailed empirical study on real-world datasets (Sec. 7.3). We also
present additional results on more datasets, using other detector and embedding
methods in Sec. 7.3.4. Several additional observations are summarized which
deepen our understanding of performance flip.

• Insights for Graph-Level Outlier Detection and Beyond: The per-
formance flip issue is also observed for various other embedding methods and
outlier detectors beyond propagation based methods, but which version of the
downsample has higher ROC-AUC varies. The persistence of performance flip,
but inconsistence of which version achieves higher ROC-AUC, raise several im-
portant problems to tackle GLOD: (1) as the performance flip is widely observed
for all embedding methods, simply averaging performance among two versions of
downsample seem problematic, as one version often has worse-than-random per-
formance; (2) given the challenge of model selection for unsupervised methods,
choosing which method to use is not only hard but also becomes risky as one
may suffer from the worse-than-random performance; (3) as embedding meth-
ods play a large impact on outcomes, a better solution may involve designing an
unsupervised graph embedding method that can generate clustered embeddings

118 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

for different classes, which appears to be a hard problem for unsupervised tasks
like outlier detection.

We also argue that issues we identify may extend beyond outlier detection,
with possible implications on graph classification and clustering. Given the
popularity of graph neural networks (GNNs), we point out that almost all GNN
models employ a message-passing based propagation mechanism, as such, they
also have the potential of suffering from sparsification. Specifically, this can
cause severe overfitting for graph classification when the number of labeled sam-
ples is small. It can also adversely affect graph-level clustering tasks that aim
to identify dense regions in the (representation) space. (Sec. 7.4)

7.1 GLAD Problem & Outlier Baselines

In this paper we focus on the graph-level outlier detection problem. The intriguing
“performance flip” issue we observe arises from repurposing binary graph classification
datasets for outlier detection evaluation. As far as we know, there is limited work
studying the graph-level outlier detection problem, where the goal is to discover graphs
with rare, unusual patterns which can be distinguished from the majority of graphs
in a database. We call attention to the problem as it applies to many important real-
world tasks from diverse domains such as drug discovery, money laundering, molecular
synthesis, rare human pose detection [Mar+20], fake news detection [Mon+19], traffic
events detection [Har+16], and buggy software detection [Liu+05].

7.1.1 Graph-Level Outlier Detection

Let G = (V, E ,X) be an attributed or labeled graph with V and E depicting its vertex
set and edge set, where each node i 2 V is associated with a feature vector xi 2 Rd

and X = [x1, . . . ,xn]T denotes the feature matrix, n = |V| being the total number
of nodes. For labeled graphs, each node feature vector xi 2 Rd is a one-hot encoded
vector with d being the total number of unique (discrete) node labels.

Definition 7.1.1 (Graph-Level Outlier Detection Problem (GLOD)). Given a graph
database G = {G1, . . . , GN} containing N labeled or attributed graphs, find the graphs
that differ significantly from the majority of graphs in G.

The above problem is a general statement for graph-level outlier detection. In the
real-world how one defines rareness or the degree of difference to the majority may be
critical and may change depending on the application.

7.1.2 Graph-level Outlier Detection Models

Although there is no specifically designed method existing for GLOD, several meth-
ods for solving graph classification can be easily modified for tackling the problem.
In this paper we mainly focus on three propagation based methods that can be cat-
egorized as two types: two-stage versus end-to-end. For the purposes of this paper,
we find these three methods to be sufficiently illustrative of the issues we discover.
Notice that we focus on studying propagation based methods because all
message-passing based GNNs belong to this category, which are the most
promising and popular models for graph representation learning. In addi-
tional experiments presented in Sec. 7.3.4, we also show results for two additional

7.1. GLAD Problem & Outlier Baselines 119

unsupervised graph embedding methods to demonstrate the persistence of the per-
formance flip issue, namely Graph2Vec [Nar+17] and FGSD [VZ17]. Graph2Vec gen-
erates graph-level embeddings via Word2Vec by viewing motifs as “words” and the
graph as a “document”. FGSD embeds a graph as a histogram of all node spectral
distances without using information of node labels. To avoid distraction from the
carefully-studied propagation based methods, we omit their details and refer readers
to the original papers ([Nar+17; VZ17]).

Two-Stage Graph Outlier Detection

Two-stage graph outlier detection approaches first transform graphs into graph embed-
dings or similarities between graphs by using unsupervised graph embedding methods
(such as graph2vec [Nar+17] and FGSD [VZ17]) or graph kernels (such as feiler-Leman
kernel [She+11] and propagation kernel [Neu+16]). Then traditional outlier detectors
such as Isolation Forest [LTZ08], Local Outlier Factor (LOF [Bre+00]), and one-class
SVM (OCSVM) [MY01] can be used to detect outliers in the embedding (vector)
space. These approaches are easy to use and do not require much hyperparameter
tuning, which makes them relatively stable for an unsupervised task like outlier de-
tection. Nevertheless, two-stage methods may suffer from suboptimal solution as the
feature extractor and outlier detector are independent. Moreover, most unsupervised
graph feature extractors produce “hand-crafted” features that are deterministic with-
out much room to improve, which further restrict the capacity of two-stage methods.

To illustrate the performance flip issue, we focus on graph kernel based two-stage
approaches with two well-known outlier detectors used downstream: OCSVM and
LOF. A graph kernel defines a kernel function K that outputs a similarity between
two graphs. Formally it can be written as

K(G,G0) = h�(G),�(G0)iH (7.1)
where H is a RKHS and h·, ·i is the dot product in H. The mapping �(G) transforms
graph G to an embedding vector in H, which in our case contains counts of atomic
subgraph patterns. Specifically we use the Weisfeiler-Leman subtree kernel and the
propagation kernel, described as follows.
Weisfeiler-Leman Subtree Kernel. Inspired by Weisfeiler-Leman (WL) test of
graph isomorphism [WL68] (a.k.a. the color-refinement algorithm), WL subtree kernel
[She+11] processes a labeled graph by iteratively re-labeling each vertex with a new
label compressed from a multiset label consisting of the vertex’s original label and the
sorted labels of its neighbors. This procedure repeats for L iterations for all graphs
and outputs L re-labeled graphs {G1, ...,GL} for every graph G. One can easily show
that each vertex in Gl at l iterations represents the subtree of the original vertex with
depth l. WL subtree kernel compares two graphs by simply counting the number of
co-occurrences of labels in both graphs at each iteration. The similarity score of two
graphs is the summation of similarities across iterations. Formally, one can write it
as

KWL(G,G0) =
LX

l=0

h�WL(Gl),�WL(G0

l
)i (7.2)

where G0 represents the original input graph, and �WL counts the frequency of all
labels in the input graph by a vector with length equal to the number of unique labels.

Sparsification. Next we highlight a key property of the WL subtree kernel that
is closely related to the performance flip issue we discover. Substructure-based graph
kernels consider each substructure as a separate feature to compare among graphs.
The total number of distinct substructures grows exponentially in the diameter of the

120 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

substructures, which leads to the sparsity problem — that only a limited number of
substructures would be shared among graphs. This property has also been referred
to as diagonal dominance [YV15; Nar+16] — wherein each individual graph would
mostly be similar only to itself but not much to any other graph. Being based on sub-
structures, WL subtree kernel distinguishes each k-hop subgraph as a separate feature
(re-labeled as a different label), as such, its feature space tends to grow exponentially
in the number of iterations. The sparsification property of WL kernel is visualized in
Fig. 7.1, where the diagonal dominance and diminishing similarity among graphs are
observed clearly.

Figure 7.1: Sparsification in WL subtree kernel: Pairwise similarity of graphs (from DD
dataset) decreases with increasing number of iterations (left to right).

Propagation Kernel. Propagation kernel (PK) [Neu+16] is inspired from the idea
of propagating label information among nodes over the graph structure such as label
propagation algorithm [ZG02] for semi-supervised node classification and can be used
for both attributed graphs and one-hot encoded labeled graphs. For each graph G =
(V, E ,X), let X0 = X denote the original feature matrix. Then PK generates a
new feature matrix at each iteration by propagating the feature matrix using the
transition matrix T = D�1A (where A is the adjacency matrix and D is the diagonal
degree matrix) of the graph. Formally, Xl+1 = TXl. Similar to WL subtree kernel,
PK compares two graphs at each iteration. The similarity between two graphs is
measured based on propagated features through binning. Formally we can write the
kernel as

KPK(G,G0) =
LX

l=0

h�PK(XG

l
),�PK(XG

0

l
)i (7.3)

where �PK(·) denotes the hash function that maps a given set of (feature) vectors into
bins. To preserve locality and keep efficiency, locally sensitive hashing (LSH) [GIM99]
is used for the binning.

Sparsification. The propagation kernel also exhibits the aforementioned sparsity
problem, increasingly for larger number of iterations. Compared to WL subtree ker-
nel that generates new features via re-labeling (a hard transformation), propagation
kernel generates new features via multiplying by the transition matrix (a soft trans-
formation). Thus, the feature space grows much slower for PK. As illustrated in Fig.
7.2, the diagonal dominance continues to hold but the sparsification occurs at a lower
rate than WL subtree kernel (cf. Fig. 7.1).

Figure 7.2: Sparsification in PK: Pairwise similarity of graphs (from DD dataset) de-
creases with increasing number of iterations (left to right).

7.1. GLAD Problem & Outlier Baselines 121

End-to-End Deep Graph Outlier Detection

Deep learning methods have been used for outlier detection recently to enhance au-
tomatic feature learning for high-dimensional and structured data such as images.
Recently graph neural network (GNN) has achieved great success in graph-structured
data, and several works have successfully applied GNNs to node-level outlier detection
on a single graph, such as OCGNN [Wan+20] and DOMINANT [Din+19]. However
there is no deep model proposed for graph-level outlier detection.

Here we present a GNN model adapted from graph classification, and leverage
a one-class classification objective function to address graph-level outlier detection.
Compared with the widely used Graph Convolution Network (GCN) [KW17] model,
Graph Isomorphism Network (GIN) [Xu+19] has been shown to be as powerful as the
WL test of graph isomorphism, as such, we design a GIN based graph-level outlier
detector. Note that an earlier GNN model called DGCNN [Zha+18] has discussed its
connection to WL subtree kernel and propagation kernel. GIN builds on the ideas
of DGCNN, and as a result also shares connection to these graph kernels. As we
will present the issues we have discovered based on those graph kernels, we have also
empirically verified that similar issues are observed for the GIN based model. In the
following, we present our GIN based graph-level outlier detector, which is trained
end-to-end through one-class classification loss.

Let h(l)v be the l-th layer representation of node v in the GIN model. GIN updates
node representations at each layer by

h(l)v = MLP(l)
⇣
(1 + ✏(l)) · h(l�1)

v +
X

u2N (v)

h(l�1)
u

⌘
(7.4)

where MLP denotes a multi-layer perceptron (we use 2 layer) and N (v) denotes the
direct neighbors of node v. Note that the summation operation around neighbor
vectors can cause numerical explosion over iterations, thus batch normalization is
applied between each GIN layer to prevent it.

After L layers, GIN generates the graph-level representation (i.e. graph embed-
ding) using a readout function as follows.

hG = CONCAT
⇣

READOUT({h(l)v |v 2 G}) | l = 0, 1, . . . , L
⌘
. (7.5)

While the original paper [Xu+19] proposed summation for the READOUT function
to preserve maximum capacity, we use averaging (i.e. mean pooling) to account for
different graph sizes in the database.

To build one-class classification into the GIN model, we borrow the idea from
DeepSVDD [Ruf+18]. Specifically, we optimize the one-class deep SVDD objective at
the output layer of the GIN model as

min
W

1

N

NX

i=1

kGIN(Gi;W)� ck2 +
�

2

LX

l=1

kW lk2F (7.6)

where W l denotes the parameter of GIN at the l-th layer, W = {W 1, ...,W l}, and c

is the center of the hypersphere in the representation space that is obtained as the
average of all graph representations upon initializing GIN model. Note that the second
term corresponds to weight decay of deep models. As mentioned in [Ruf+18], deep
one-class classification suffers from feature collapse, where the trained model maps all
input instances to the (constant) c. We employ the regularizations proposed therein
to prevent this problem. After model training, the distance to center is used as the
outlier score for each graph.

122 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

7.2 Using Classification Datasets for Outlier Model Eval-

uation: Issues

In this section we present in more detail the peculiar “performance flip” issue and
related observations. Empirically we have observed that the issue is widely existing
in many two-stage methods (see Table 7.4&7.5) and GNN models (we have evaluated
a number of GNN model variants for GLOD in developing new algorithms, although
we only present OCGIN.) on lots of datasets. Thus, having a clear understanding of
this issue becomes critical for effectively and fairly evaluating detection models and
consequently, being able to design better detectors and new models for GLOD.

In the following, we present the peculiar observations in detail (Sec. 7.2.1), state
our hypothesis on the driving mechanisms behind these observations (Sec. 7.2.2), and
introduce qualitative and quantitative measures for our empirical analysis (Sec. 7.2.3).
In Sec. 7.3 we provide a measurement study using the measures proposed in Sec. 7.2.3
for propagation based methods to verify our hypothesis, as the underlying mechanism
is consistent and easier to analyze. Also the close connection between GNN models
and propagation based graph kernels [Zha+18] strengthens the importance of studying
propagation methods. For the other two-stage methods, based on Graph2Vec and
FGSD, we provide comprehensive performance evaluation and dicuss its implications.
We omit the measurement study, however, as it is harder to analyze their underlying
mechanisms.

7.2.1 Peculiar Observations

Graph classification is a widely studied problem with many public datasets available.
As graph-level outlier detection is rarely studied with no available dataset, repurpos-
ing the graph classification datasets by downsampling one class as outlier can easily
provide outlier detection tasks based on real-world samples. For binary classification
dataset, there are two ways to down-sample (either down-sample the first class or the
other class) to create two variants of outlier detection datasets. In this section, for
the first time, we report several unexpected behaviors on various datasets created in
this manner, with fixed downsampling rate 0.1. We split these binary classification
datasets into two types: “X&Y” type and “X&Non-X” type. “X&Non-X” refers to
datasets with one class representing a category (call it X) and the other class repre-
senting samples from any other categories other than X. “X&Y” type datasets have
two classes specifically associated with two different real-world categories X and Y
respectively.

Setup. We conducted GLOD task over 10 datasets (5 “X&Y” and 5 ‘X&Non-X”)
using a total of 11 GLOD detectors. See Sec.7.3.1 for the detailed description, sum-
mary statistics of the datasets, and model configurations, and see Table 7.4 and Table
7.5 for comprehensive results. We summarize peculiar observations across datasets
and GLOD detectors. We also give as examples to illustrate our observations on 4
datasets (DD, PROTEINS, NCI1, and IMDB, where IMDB is “X&Y” type and all
others are “X&Non-X” type, with performance flip and related issues observed for the
first 3 datasets but not for IMDB.), using 3 propagation based detectors (WL+LOF,
PK+LOF, and OCGIN) due to space limitation.

7.2. Using Classification Datasets for Outlier Model Evaluation: Issues 123

Table 7.1: Average ROC-AUC performance (and standard deviation) of 3 different graph
embedding based methods for graph outlier detection using 4 binary graph classification
datasets. Each dataset has 2 down-sampled variants, where outliers are created by down-
sampling one of two classes (class 0 or class 1) with rate= 0.1, averaged over 10 different
down-samplings. Performance flip observed on DD, PROTEINS, and NCI1 for all 3
models, where ROC-AUC is significantly larger on one variant than the other.

ROC-AUC values less than 0.5 are shown in bold as they indicate worse-than-random
performance.

Dataset Outlier Cls OCGIN WL+LOF PK+LOF

DD 0 0.327 (0.023) 0.186 (0.024) 0.194 (0.027)
1 0.720 (0.035) 0.815 (0.020) 0.824 (0.021)

PROTEINS 0 0.370 (0.037) 0.276 (0.021) 0.389 (0.054)
1 0.681 (0.028) 0.664 (0.024) 0.557 (0.041)

NCI1 0 0.643 (0.030) 0.730 (0.012) 0.678 (0.019)
1 0.467 (0.028) 0.349 (0.022) 0.366 (0.027)

IMDB 0 0.643 (0.039) 0.603 (0.038) 0.624 (0.030)
1 0.508 (0.049) 0.651 (0.022) 0.581 (0.042)

Peculiar Observation 1: Performance Flip.

The main observation we make in this work is that for any given outlier detect-
ing models, the performances of detecting outlier appear to depend sig-
nificantly on which class is down-sampled, resulting a large performance
gap between two down-sampled variants.. Table 7.1 shows the ROC-AUC on 4
datasets with their 2 variants at down-sampling rate 0.1 for 3 outlier detecting models.
Results for other datasets and models are available at Table 7.4 and Table 7.5, with
performance flip scenarios marked yellow.

Observation 1.1 (Performance Gap). A large ROC-AUC gap is widely observed
between the two different down-sampled variants of most datasets, consistently across
all models.

Strikingly, not only the methods perform well on one variant and poorly on the
other, but their performance is simply worse than random (!) in the latter case – since
random ordering would achieve an ROC AUC of 0.5 in expectation. Perhaps more
intriguingly:

Observation 1.2 (AUCs sum approximately to 1). The sum of the two ROC-AUC
values on the two variants of each dataset is approximately equal to 1, consistently
across all models.

To understand this better, recall the probabilistic interpretation of the ROC-AUC:
it is the probability of correctly ranking a random positive instance (i.e. outlier)
above a random negative instance (i.e. inlier). Then these two observations together,
which we refer to as the “performance flip” issue, suggest a revised statement: the
models always consider the graphs from one fixed class to be more outlier
than those from the other, irrespective of which one is down-sampled. In
other words, it is not that the down-sampled class has impact on the performance, in
contrast, the ranking by the models is agnostic to this so-called “ground-truth” but
rather has a pre-determined bias toward one (fixed) class. Notice that this happens
to be class 0 on DD and PROTEINS and class 1 on NCI1 for the three detectors.

124 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

Observation 1.3 (Performance flip is more severe for “X&Non-X” datasets). For
“X&Non-X” type datasets, the performance flip occurs more often and more severely
(more often having larger performance gap) compared to “X&Y” type datasets.

In Table 7.1, the 3 datasets with performance flip are all “X&Non-X” datasets
while IMDB is “X&Y” type. Furthermore, full results in Table 7.4 and Table 7.5 also
support that performance flip occurs more often and performance gap is larger in
distribution (e.g., at rate 67.3% vs. 30.6% for performance gap � 0.2) on “X&Non-X”
datasets than “X&Y” datasets.

Observation 1.4 (Correlation between performance and class semantics). For prop-
agation based methods, down-sampling “Non-X” class as outlier in“X&Non-X” dataset
always achieves high performance. However it is not always true for other methods.

By definition “X” class refers to a category of instances that likely exhibit char-
acteristic patterns of the class, while the “Non-X” class contains many patterns out
of the “X” class. By aligning the performance result (Table 7.4) with class semantics
shown in Table 7.2, we find clearly that all propagation based methods achieve high
performance for down-sampling “Non-X”. This supports our following analysis over
propagation based methods, where we find that these methods have larger sparsifica-
tion rate for more diverse classes.

We conclude with four remarks. First, note that although the ranking of models
by performance differs from dataset to dataset, the performance-flip and AUCs-sum-
approximately-to-1 behaviors are consistent across models. Second, the issue does not
appear to be universal as it does not arise on IMDB (cf. Table 7.1), where all models
are better than random on both variants. Third, when performance flip is observed,
which version of the downsample achieving high performance depends on both the
embedding method as well as the downstream outlier detector, that is the performance
gap can be reversed when using different type of graph embedding. Last, learning-
based end-to-end model has the ability of capturing majority class distribution to a
certain degree with performance flip not occurring for all “X&Y” type datasets, which
points out a potentially promising direction to overcome performance flip.

Peculiar Observation 2: Invariance to Down-sampling Rate.

When down-sampling one class as outlier with a certain down-sampling rate, we would
conjecture that a lower rate would make the outlier detection task easier as the density
of outliers becomes lower. Fig. 7.3 shows the detection ROC-AUC of WL+LOF
(with L = 5 iterations) for various down-sampling rates, from 0.05 to 0.85, on both
variants of all datasets. The conjecture appears to hold only for IMDB – on which
performance flip is not observed. In contrast, the performance is strikingly flat on
DD, PROTEINS, and NCI1. Similar results hold for PK+LOF and OCGIN on these
three datasets (See Sec. 7.3). More broadly, the observation holds for all methods
and datasets when performance flip is observed (see additional result in our project
webpage https://github.com/LingxiaoShawn/GLOD-Issues).

Observation 2 (Invariance to down-sampling rate). Performance flip issue is not an
artifact of the down-sampling rate, in fact, ROC-AUC appears to be invariant to the
rate.

This observation is in agreement with Observation 1.2 (AUCs-sum-approximately-
to-1). The probabilistic interpretation of ROC-AUC is regarding any two random
positive-negative instances, irrespective of the total number of instances from those
groups.

https://github.com/LingxiaoShawn/GLOD-Issues

7.2. Using Classification Datasets for Outlier Model Evaluation: Issues 125

(a) DD (b) PROTEINS (c) NCI1 (d) IMDB

Figure 7.3: Performance is invariant to downsampling rate on DD, PROTEINS,
and NCI1 for WL+LOF. Similar behavior is observed for methods and datasets when

performance flip is occur.

Peculiar Observation 3: Growing Performance Gap with Propagation
(propagation based methods only).

Observation 2 is mainly related to a property of the dataset generation. On the other
hand, a key property of the outlier models we employ in this work is the number of
iterations (for WL and PK) or the number of layers (for GIN), earlier denoted with L
(See Sec. 7.1.2), both of which correspond to propagations over the graph. Here we
look at how the performance behaves under varying L.

Fig. 7.4 shows the performance of WL+LOF on all datasets for two variants for L
increased from 1 through 11. Results are qualitatively similar for PK+LOF, however
OCGIN behaves differently (See Sec. 7.3).

(a) DD (b) PROTEINS (c) NCI1 (d) IMDB

Figure 7.4: Performance gap between two variants tends to grow with increas-

ing number of propagations (i.e. iterations) of WL (subsequently paired with LOF),
significantly on DD, PROTEINS, and NCI1. Similar behavior is observed for other propa-

gation based methods and datasets.

Observation 3 (Growing gap with propagation). The difference in ROC-AUC per-
formances on two different down-sampled variants of a classification dataset tends to
grow with increasing number of graph propagations for WL- and PK-based outlier
models. For OCGIN there exists no obvious growth.

The growth is significant particularly on DD, PROTEINS, and NCI1 for which the
performance flip occurs. It is interesting that this behavior is mainly associated with
two-stage propagation models and not with our end-to-end model. We can reason
about the two-stage models based on the sparsification property that both exhibit.
(In contrast, OCGIN is optimized where it is harder to reason about how the learning
of its many parameters affects performance.) Recall that sparsification, as discussed in
Sec. 7.1.2, implies that the kernel distance between two graphs tends to increase with
number of WL and PK iterations. Combined with Observation 1.4 we hypothesize
that sparsification issue with increasing propagations is significant more noticeable
for “Non-X” class (one with diverse patterns) and down-sampling this class as outlier
results in an easier task where outliers are sparse and dispersed in the embedding
space.

126 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

Figure 7.5: Pairwise similarities among all graphs in DD dataset (graphs grouped by
class) based on WL subtree kernel over increasing iterations (left to right).

7.2.2 Hypothesis on Driving Mechanisms

Next we aim to build an understanding of the leading factors behind the unusual
observations we have presented. As the underlying mechanism of propagation based
methods is consistent and easier to analyze, we present our hypothesis and under-
standing based on propagation based methods. However the main argument of two
factors (density disparity and overlapping support of graph embedding space) holds
true for other non-propagation based methods as well. To that end, we focus on
investigating pairwise similarities – either produced by the graph kernel or the dot
product between graph embeddings – normalized in range [0, 1]. We consider all-pairs
similarities among all graphs before down-sampling. These convey important infor-
mation about the density of and the distance between the graphs across classes in the
graph embedding space, which many downstream outlier detectors rely on, including
the two – LOF and OCSVM – we have used.

Fig. 7.5 shows the pairwise similarities among all graphs as well as how those
change with increasing number of graph propagations (i.e. iterations) based on the
WL subtree kernel on DD dataset where 0 represents enzyme and 1 represents non-
enzyme. (Similar plots for PK and OCGIN can (will) be found in https://github.
com/LingxiaoShawn/GLOD-Issues1) The pairwise similarities are block-wise grouped
based on the true class label. We emphasize two factors:

1. Diagonal, block-wise (intra-class) similarities: Clearly sparsification arises for
both classes, where the graphs within the same class become more and more
dissimilar to one another as the number of iterations increases. What is even
more important to note is that the speed at which sparsification occurs is different
for the two classes. As shown in Fig. 7.5 for DD, distribution of graphs in class
1 sparsifies much faster than that for class 0, leading to a disparity between
class-level densities. Although less apparent from the first subfigure, density
disparity exists even after a single iteration. The initial disparity difference
aligns with the class semantic meaning where class 0 represents enzyme and
is more compact (denser) than class 1. Increasing number of iterations only
amplifies this disparity.

2. Off-diagonal (inter-class) similarities: Pairwise similarities among graphs
within the sparser class (in Fig. 7.5, class 1 for DD) are lower than inter-
class similarities on average. Put differently, graphs within the sparser class
tend to look more similar to graphs in the other class than among themselves.
This suggests that the class-level distributions of graphs in the embedding space
have overlapping support.

1Our study involves an in-depth study of three different graph outlier detection models. Due to
limited space for figures, we include additional or corresponding figures in the Appendix section of
our arXiv submission [ZA23].

https://github.com/LingxiaoShawn/GLOD-Issues
https://github.com/LingxiaoShawn/GLOD-Issues

7.2. Using Classification Datasets for Outlier Model Evaluation: Issues 127

Based on the above, we conjecture the following conditions as the leading factors
behind our peculiar “performance flip” and related observations:

• (Growing) Density Disparity. Density of outliers in the feature space is
often inversely correlated with the difficulty of identifying them. That is, the
more spread out and apart from inliers are the outliers, the easier the detection
task gets. This suggests that designating as outliers the graphs from the class
with sparser graph embeddings (or the class that sparsifies faster) would induce
a relatively easier task, as compared to graphs from the other class with higher
embedding density. What is more, graph propagation would contribute to a
growing disparity between task difficulties, as density disparity grows with more
propagation. For propagation based graph embedding methods the class density
over embedding space aligns with the diversity of patterns in the original graph
space, but this does not always hold for other graph embedding methods.

• Overlapping Support. Density disparity alone is not a sufficient condition to
explain the performance disparity (or flip) issue. Two sets of graph embeddings
that are fully separable in the feature space would both induce an ‘easy’ task,
no matter how different their within-set (i.e. class) densities are. Unsupervised
graph representation learning methods, however, do not necessarily have the
ability (at least explicitly) to embed graphs from the same class closeby while
maintaining inter-class separability. On the contrary, they tend to generate
mixed embeddings that have a common/overlapping support among classes.

We conclude by forming the following hypothesis on the driving mechanisms be-
hind “performance flip” and related observations. Provided graph embedding methods
employed for outlier detection induce both density disparity as well as overlapping sup-
port, one down-sampling scenario creates a dense inlier distribution surrounded with
dispersed outliers (‘easy’ task), whereas the other creates a sparse inlier distribution
that has overlapping support with a small set of outliers with relatively higher density
(‘hard’ task). Since most models assume the former scenario in their formalism, they
‘do well’ on the respective ‘easy’ task, and poorly on the other (Observation 1.1).
More broadly, therefore, the performance flip issue stems from the (mis)alignment
of embedding (i.e. inlier/outlier) distributions with the underlying assumptions of
the detection models. As the embedding space is produced by graph embedding
methods, which class has denser embeddings relies on the specific graph embedding
method and may not align with semantic meaning of class labels. However when the
original dataset has one class with clearly more diverse patterns (like “Non-X” class
in “X&Non-X” datasets), the propagation based methods in general produce sparser
embedding space for the semantically-more-diverse class (Observation 1.4 and Obser-
vation 1.3). When performance flip happens, perhaps more disturbingly, the models
tend to always consider the graphs from the sparser class to be more outlying than
the graphs from the other, denser class – no matter which one is down-sampled and
at what rate (Observation 2). That is, their probability of ranking a sparser-class
instance above a denser-class instance remains almost the same, which leads to the
observed AUCs-sum-approximately-to-1 behavior (Observation 1.2) and consequently,
the worse-than-random performance when the denser class is down-sampled. The is-
sue is exacerbated with more graph propagation as it leads to a growing disparity of
densities and respective task difficulties (Observation 3).

128 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

7.2.3 Measures for Analysis

In the previous section we pointed out overlapping support and (growing) density
disparity to be two key factors leading to the observed unusual behaviors. Here we
introduce concrete measures to quantify these two factors.

1. Qualitative visualization of overlapping support and growing density
disparity: Pairwise similarities do not directly reflect how points (i.e. graphs)
are distributed in the representation space. We use multi-dimensional scaling
(MDS) to map the graph embeddings into 2-dimensions (MDS mapping aims to
preserve the relative pairwise similarities) wherein points from different classes
are colored differently. Overlapping support can be validated visually from the
mixing of two colors. On the other hand, the growing density disparity can be
supported by the varying spread of points across classes and the rate at which
this spread changes for each class across MDS visualizations corresponding to
increasing propagation by a detector.

We remark that the MDS visualizations provide only qualitative evidence, as the
mixing of colors and the varying spread of points could also be attributed to MDS
error, i.e. could simply be artifacts; due to the space in which the pairwise similarities
are to be preserved is constrained to only 2 dimensions for visualization purposes.
Therefore, we also analyze quantitative measures of these factors described as follows.

2. Quantitative measure of density disparity: The distance between any two
graphs from the sparse class would be larger. Therefore, we use the so-called
NN-Radius to quantify the degree of density.

Definition 7.2.1. NN-Radius is the distance (or 1�similarity as normalized
in range [0, 1]) to the k-th2 nearest neighbor (NN) of a graph in the embedding
space.

A larger radius corresponds to lower local density. The distribution of the NN-
radii of the graphs from each class measures the density of the class. A more
left-shifted distribution would imply a denser class.

3. Quantitative measure of overlapping support: In the absence of over-
lap, assuming graphs from different classes are linearly well-separated in the
embedding space (forming two disjoint clusters), we would expect the nearest
neighbors of each graph to be from the same class. Therefore, we use the so-
called NN-Disagreement% as the degree of overlap.

Definition 7.2.2. NN-Disagreement% is the percentage of graphs from the op-
posite class within the NN-Radius of a graph.

We then study the distribution of NN-impurities of the graphs from each class.
A left- or right-shifted distribution would respectively show whether a class is
more likely to be surrounded by its own members (i.e. well-clustered, dense) or
not (i.e. dispersed, sparse).

2In the paper we report results for k = 20 and note that the take-aways are not sensitive to this
choice.

7.2. Using Classification Datasets for Outlier Model Evaluation: Issues 129

7.2.4 A deeper analysis on embedding sparsity issue

In this section we perform various simulations to better understand the disparity in
sparsification rates between two classes, that is how one sparsifies faster than the other
(See e.g. Fig. 7.5). We use WL subtree kernel for the simulations as these do not
require any parameter training and hence are easier to analyze. The simulations are
designed to show: (1) Even a small difference between two graphs can be amplified by
propagation, leading to sparsification; and (2) Various factors, including differences in
label distribution and topology, contributes to differences in the rate of sparsification
between two classes.

We consider simulations on k-regular graphs where each node has exactly k number
of neighbors, i.e. the same degree. (Unlabeled) k-regular graphs are among the
class of graphs on which 1-dimensional WL (1-WL) isomorphism test [WL68] fails to
reject non-isomorphism. That is, 1-WL test cannot distinguish two structurally non-
isomorphic k-regular graphs. In practice, node/edge labels or attributes may help
diminish such difficulty by breaking the symmetry [Li+20]. This is exactly the route
we take to induce asymmetry in a controlled fashion (from low to high). Specifically,
we design two cases:

• Case 1: We start with two identical (k, n) regular graphs (n nodes, all with
degree=k), where all nodes are labeled A. Then, we flip the labels of m ran-
domly chosen nodes in each graph to B. As such, the graphs are structurally iso-
morphic, whereas B-labeled nodes are ensured to induce assymetry (and hence
non-isomorphism) between the graphs.

• Case 2: We start with two identical (k, n) regular graphs, where the nodes
are labeled with two different labels, A or B. To induce non-isomorphism, we
perform degree-preserving rewiring between r randomly chosen edge pairs in one
of the graphs.

Our goal is to start from a place where WL distance is zero (i.e. identical graphs)
and to study the effect of increasing m or r on the distance growth. Fig. 7.6(a)
illustrates Case 1 on two so-called Petersen graphs (k = 3, n = 10) where m = 1
node’s label in each graph is flipped from gray (label A) to red (label B), inducing
non-isomorphism. Case 2 is illustrated in (b) where we rewire r = 1 edge pair in one
graph (right) to create a graph that is non-isomorphic to the other (left) graph.

(a) non-isomorphism by node labeling (b) non-isomorphism by edge rewiring

Figure 7.6: Non-isomorphism is induced (a) between two unlabeled Petersen graphs
by flipping node labels assymmetrically, and (b) between two labeled Petersen graphs by

degree-preserving edge rewiring.

Without the perturbations (label flipping in Case 1, and rewiring in Case 2), WL
distance between the two graphs would be equal to zero in both cases, irrespective of
number of iterations. Just a small change, as shown in Fig. 7.6, “jump-starts” WL
where the distance between the graphs starts growing with increasing WL iterations.

130 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

In Fig. 7.7 (a) and (b) we show how graph distance changes with increasing
WL iterations as a function of number of node labels flipped in Case 1 and number
of edge pairs rewired in Case 2, respectively. Notice that even after a relatively
small perturbation on otherwise non-distinguishable graphs, their distance grows over
iterations. The bigger the amount of perturbation (i.e. the difference between two
graphs), the larger the distances as reflected by WL, and also the larger the growth
rate (note the increasing gap between curves).

Figure 7.7: Distance between two k-regular graphs (k = 5, n = 50) as a function of (left,
Case 1) number of node labels flipped, and (right, Case 2) number of edge pairs rewired.

Each curve is averaged over 100 rounds to remove randomness.

The distance growth is also a consequence of graph topology. Fig. 7.8(a) shows
graph distance over WL iterations on k-regular graphs with varying k, when number
of label flips is fixed to m = 5 in Case 1. Similarly, Fig. 7.8(b) shows the same when
the number of edge rewirings is fixed to r = 10 in Case 2. In both cases the graph
distances are larger for increasing k across iterations. These show that the effect on
distance of the same (even a small) amount of perturbation on two graphs varies
depending on the topology.

Figure 7.8: Distance between two k-regular graphs (n = 50) as a function of k for (left,
Case 1) when m = 5 node labels are flipped, and for (right, Case 2) when r = 10 edge pairs

are rewired. Each curve is averaged over 100 rounds to remove randomness.

All in all, sparsification is evident from our simulations – i.e. distances grow
over iterations, or graph propagations. The growth rate of sparsification is sensitive
to various factors (difference in label distribution, difference in topology, etc.). It is
unlikely that real-world classes would consist of graphs with exactly the same variation
for all factors. Therefore, it is not a freak occurrence that on average the distance
between two graphs in one class sparsifies at a different rate than between those in
another class. In fact, it is the opposite — it would be quite a coincidence for graphs
from two different classes to sparsify at exactly the same rate. As a result, class-level

7.3. Empirical Analysis 131

density disparity as discussed in Sec. 7.2.2 appears to be an inevitable consequence
of using these types of representation learning techniques.

7.3 Empirical Analysis

To reiterate, we hypothesize that the performance flip issue occurs when samples
from different classes have large enough density disparity and overlapping support.
Provided those two conditions hold, outlier models tend to rank the class with sparser
graph embedding above the denser class no matter which class is down-sampled at
what rate. In this section, we present further measurement and quantitative analysis
based on measures in Sec. 7.2.3 to support our hypothesis. Notice that we mainly
provide measurement study for propagation based methods, due to their importance
and easy-to-study mechanism. Sec. 7.3.1 introduce the setup in detail regarding
datasets and model configurations. Sec. 7.3.2 and Sec. 7.3.3 contain measurement
study of propagation based methods for one dataset with performance flip (DD) and
the other without (IMDB), results for other datasets will be available at https:
//github.com/LingxiaoShawn/GLOD-Issues. Sec. 7.3.4 provides a comprehensive
performance study for 10 datasets and 11 detection models.

7.3.1 Experiment Setup

Table 7.2: Dataset class semantics.

Dataset Domain Class Labels Class Semantic

DD [DD03] Protein structure 0 Enzymes
1 Non-enzymes

PROTEINS [Bor+05] Protein structure 0 Enzymes
1 Non-enzymes

NCI1 [WWK08] Molecular (drug) 0 Inactive for anti-HIV
1 Active for anti-HIV

IMDB-BINARY [YV15] Actors’ 0 Movie genre: Action
collaboration network 1 Movie genre: Romance

Mutagenicity [KMB05] Molecular 0 Mutagens
1 Not mutagens

AIDS [RB08] Molecular 0 Active against HIV
1 Inactive against HIV

ENZYMES [Sch+04] Protein structure 0⇠5 Different type of enzymes

REDDIT-5K [YV15] Discussion thread 0⇠4
5 type of subreddits: worldnews,

videos, AdviceAnimals,
aww and mildlyinteresting

Datasets. We use 10 real-world binary labeled graph classification datasets
where 4 of them are derived from 2 multi-class classification datasets (ENZYMES and
REDDIT-5K) by picking 2 classes out. These 10 datasets come from three domains:
molecular chemistry, social networks, and bioinformatics. IMDB and REDDIT-5K
are from social network domain, that contain unlabeled graphs, for which we create
label by using their node degrees. We report their dataset statistics in Table 7.3.
We also provide detailed class semantics for every class in each dataset in Table 7.2.
Based on their class semantics we divide 10 datasets into 2 groups as mentioned in

https://github.com/LingxiaoShawn/GLOD-Issues
https://github.com/LingxiaoShawn/GLOD-Issues

132 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

Table 7.3: Dataset summary statistics.

Dataset Class #Graphs #Node Labels Avg. #Nodes Avg. #Edges Avg. Degree

DD 0 691 89 355.2 1806.6 5.04
1 487 89 183.7 898.8 4.88

PROTEINS 0 663 3 50 188.1 3.79
1 450 3 22.9 83.1 3.64

NCI1 0 2053 37 25.65 55.3 2.15
1 2057 37 34.07 73.9 2.17

IMDB 0 500 - 20.1 193.5 9.1
1 500 - 19.4 192.5 8.6

Mutagenicity 0 2401 14 29.3 60.5 2.1
1 1936 14 31.4 62.7 2.0

AIDS 0 400 38 37.6 80.5 2.13
1 1600 38 10.2 20.3 1.98

ENZYMES 0 100 3 36.2 132.7 3.84
1 100 3 29.9 113.7 3.79
2 100 3 28.9 111.2 3.86
3 100 3 38.2 148.8 3.99

REDDIT-5K 0 1000 - 799.4 2035.5 2.52
1 1000 - 852.1 1940.4 2.23
2 1000 - 374.1 856.5 2.24
3 1000 - 249.6 534.0 2.11
4 1000 - 267.0 581.7 2.14

Sec.7.3.1: “X&Y” type (datasets in Table 7.5) and “X&Non-X” type (datasets in Table
7.4). “X&Non-X” datasets contain one compact class “X” and the other broader class
containing samples not in “X”, while “X&Y” datasets contain two compact/regular
classes. We remark that even in “X&Non-X” type dataset one may hardly decide on
the natural, semantic outlier class – e.g. in AIDS one can argue that being active
against HIV should be outlier as it is rare and semantically important, yet one can
also argue that in the context of developing new drugs for treating AIDS, detect-
ing ineffective drug should be the outlier detection task. This suggests that in some
cases repurposing graph classification datasets by down-sampling either class can be
considered meaningful.
Model configuration of propagation based methods: We provide both per-
formance study and measurement study for propagation based methods: two-stage
models WL+LOF/OCSVM and PK+LOF/OCSVM 3, as well as end-to-end deep-one-
class model OCGIN. We study the behavior of these models under different number
of propagations; specifically WL and PK iterations range from 1 to 11, and OCGIN
embeddings are extracted from layers 0 (i.e. input node vectors) through 5. For WL
we specifically use WL subtree kernel. PK has a bin-width hyperparameter for hash
function �PK (See Eq. 7.3), which is set to 0.1. Note that smaller bin-width leads
to faster sparsification with a more severe performance flip. We use two different
types of downstream outlier detectors: LOF (density-based) and OCSVM (one-class
based). The LOF outlier detector is setup with default parameters (k =20 number of
neighbors, and leaf size 30) from scikit-learn [Ped+11]. For OCSVM we use kernel-
based SVM with the kernel output from graph kernels, and setup contamination factor
nu = 0.1.

3PK and WL implementation use [Sig+20].

7.3. Empirical Analysis 133

For OCGIN we use the default GIN implementation from [Xu+19], where we re-
move bias terms at all layers to prevent feature collapse [Ruf+18]. A graph’s represen-
tation is produced from the summation of all previous layers’ hidden representations,
with a mean pooling over all nodes in the graph. Note that we train OCGIN only
on down-sampled variants of a dataset, as it is trained end-to-end assuming outliers
to be minority. For figures utilizing full data, we simply feed-forward all the graphs
in the database over the trained model. We set number of layers to L = 5 and num-
ber of hidden units to 128 for all datasets. We use the Adam optimizer [KB14] to
train OCGIN with a 5 · 10�4 L2 penalty on weights. The model is trained for 25
epochs. All other hyperparameters are picked from typical/default values, since our
goal is to illustrate the performance flip and related issues instead of achieving best
performance. Hyperparameter selection for unsupervised deep outlier detection is an
important problem which is outside the scope of this paper.

Model configuration of non-propagation based methods: We only provide
measurement study for propagation based methods and omit the same for others as
the underlying mechanism is different and harder to analyze. We use two graph em-
bedding methods (Graph2Vec and FGSD 4) and 3 downstream outlier detectors (LOF,
OCSVM, and Isolation Forest [LTZ08]). Graph2Vec views graph as “document” and
subgraph as “word” and learn the embedding using the Word2Vec [Mik+13] algorithm.
We use the default parameter implemented in KarateClub [RKS20] with number of
WL iterations set to 3. FGSD uses histogram of spectral distances among all node
pairs to create graph embeddings and it only uses graph embedding without consid-
ering node labels. Similarly we use the default implementation given in KarateClub.
As for three downstream outlier detectors, LOF and OCSVM share the same configu-
ration with propagation based methods. Isolation Forest is not used for PK and WL
as it does not support kernel matrix as input. We use the default setup in sklearn for
it.
Pairwise similarity matrix. Our proposed measures in Sec. 7.2.3 are computed on
top of pairwise similarities among all graphs. For PK and WL kernels, the normalized
kernel matrix is investigated. For OCGIN, where we only have access to graph embed-
dings, we calculate pairwise similarity as (1 - normalized pairwise distance) between
two graphs, using Euclidean distance (i.e. L2 norm). Similarity matrix is normalized
to range [0, 1] via dividing it by the largest element in the matrix.
Remark. We (will) include all figures corresponding to those presented in the fol-
lowing as well as previous sections for all propagation based models on all datasets in
project website (https://github.com/LingxiaoShawn/GLOD-Issues). Only a subset
of them are presented in this manuscript for brevity.

7.3.2 Measurement study: when performance flip occurs

We have observed performance flip on majority of datasets. In this section we present
our measurement study and analysis based on DD dataset.

Analysis on full data.

We start with analyzing the inherent differences between two classes regarding den-
sity on DD. Fig. 7.9 (top row) visualizes the all-pairs similarity matrix based on WL
over increasing iterations where sparsification can be observed for both classes (left
to right). In the second row, 2-d MDS embeddings of all the graphs based on the
corresponding pairwise similarities are shown. Again sparsification can be visually

4We use implementation in [RKS20].

https://github.com/LingxiaoShawn/GLOD-Issues

134 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

confirmed based on the increasing spread of points (i.e. graphs) in each class. In
addition, we notice that class 0 (green points) sparsify faster than class 1 (orange
points), as the denser class 1 instances are surrounded by the dispersed class 0 in-
stances. We quantify this difference via the NN-Radius measure, as in the third row,
where the corresponding distributions of NN-Radius for all graphs are shown for each
class. Over iterations both class distributions shift to the right (i.e. sparsify). The
shift is more evident for class 0 (i.e. speed of sparsification is larger) as the (green)
histogram spreads out while the other (orange) histogram remains relatively peaked.

Figure 7.9: (Top row) Pairwise similarity matrix for all graphs in full DD dataset, based
on WL subtree kernel over increasing iterations (left to right). (Second row) 2-d MDS
visualization based on the similarity matrix. (Third row) Distribution of NN-Radius for all
graphs in each class. (Last row) Distribution of NN-Disagreement% for all graphs in each

class.

Next we analyze the overlapping support between two classes. The mixing of
colors in the MDS visualizations is suggestive of overlap, however one can argue that
it is an artifact of limited representation capacity of MDS in 2-d. To quantify overlap
more concretely, we show the distributions of NN-Disagreement% for all graphs in
each class in the last row of Fig. 7.9. The distributions for class 1 concentrate more
on the left side (majority of neighbors are from the same class) whereas for class
0 they concentrate on the right (majority of neighbors are from the opposite class).
Both density disparity and overlapping support are increasingly more evident with
increasing number of iterations, which suggests that graph propagation amplifies the
issue.

To summarize, this analysis confirms that class 0 in DD is the increasingly
sparser class with larger NN-Radius (means sample density is smaller) and higher
NN-Disagreement% (means higher overlapping support). As a result, down-sampling
class 0 as outlier induces a relatively ‘easy’ task for WL+LOF. Moreover, the task be-
comes ‘easier’ with more propagation as the graphs in class 0 spread out even further,
hence the increasing performance gap.

7.3. Empirical Analysis 135

The conclusions are similar for PK on DD, as shown in Fig. 7.10(a). For OCGIN,
while we continue to observe performance flip on DD variants, it is to a lesser degree.
Specifically we find that the disparity between classes is not worsened with increasing
graph propagation in this case, as suggested by Fig. 7.10(b). In fact, the difference
in distributions seems to close especially at the last layer. Irrespectively, OCGIN
performs considerably better when class 0 is down-sampled like the other models,
meaning that it is not shielded from the performance flip issue that we identify. We
believe this is due to the initial disparity (See Fig. 7.10(b) at layer 0, i.e. original
input), which it cannot recover from, despite model training. This is akin to a bad
initialization (for one variant) of OCGIN that ultimately leads to poor performance.

Analysis upon down-sampling.

Next we analyze the flip in performance upon down-sampling one class or the other
via the contrast in NN-Disagreement% distributions. Fig. 7.11(top) and (bottom)
respectively show those distributions when class 1 is down-sampled (denoted Outlier
in red) and when class 0 is down-sampled (now denoted Outlier in red) for WL on DD.
We notice the stark difference: At the (bottom), the inliers form a dense distribution
with negligible mixing with the outliers. The outliers are dispersed, far from one
another, as their NN-neighborhood mainly contains inliers. This is the ‘easy’ detection
task that well aligns with the underlying assumption of most outlier detectors – hence
the high peformance of WL+LOF.

In contrast, the (top) figures suggest that the inliers and outliers are intermixed,
which worsens with propagation as the distributions become more and more indistin-
guishable. (Note that down-sampled class inherently has a right-shifted distribution

(a) PK

(b) OCGIN.

Figure 7.10: Quantitative measures of density disparity and overlapping support on DD
for (a) PK and (b) OCGIN for increasing graph propagation (left to right).

136 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

iter=1, roc=0.841 iter=3, roc=0.819 iter=5, roc=0.811 iter=7, roc=0.808 iter=9, roc=0.810 iter=11, roc=0.809

Class 1 as outlier with its downsampling rate =0.1

iter=1, roc=0.229 iter=3, roc=0.182 iter=5, roc=0.181 iter=7, roc=0.182 iter=9, roc=0.181 iter=11, roc=0.181

Class 0 as outlier with its downsampling rate =0.1

Figure 7.11: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled
and bottom row: class 0 is down-sampled, in red) and inliers (vice versa, in blue) over WL

iterations (left to right) on DD.

as down-sampling induces sparsity.) This corresponds to the ‘hard’ detection task
where it is difficult to distinguish inliers from outliers – hence the poor, in fact worse-
than-random performance.

The conclusions are similar for WL+LOF on PROTEINS and NCI1, as shown in
Fig. 7.12(a) and (b), respectively (except for NCI1 down-sampling class 0 happens
to induce the ‘hard’ task). In fact, performance appears to be inversely correlated
with the amount of overlap between the NN-Disagreement% distributions of inliers
and outliers. We refer to the Appendix in [ZA23] for similar results on these three
datasets for PK+LOF and OCGIN.

7.3.3 Measurement study: when performance flip does not occur

Although the performance flip issue occured on a considerable number of datasets
we have experimented with, it is not always observed. In this section, we present
a similar analysis for IMDB-BINARY for comparison purposes. Results for other
datasets and propagation based methods will be available at https://github.com/
LingxiaoShawn/GLOD-Issues.

As shown in Fig. 7.13, sparsification arises rather fast on IMDB-BINARY with
increasing WL iterations – notice the drastic shift of the NN-Radius distributions
from left-most to right-most (third row). This can also be visually confirmed from
the pairwise similarity matrix (top row) as the heatmap gets darker blue (from left
to right). Interestingly, the rate (or speed) of sparsification appears to be similar
among the two classes. As such, density disparity does not seem to arise – notice the
similar mixing among the colored points in 2-d MDS visualization (second row). On
the other hand, we continue to observe the overlapping support (i.e. mixing) of graph
embeddings to a large extent (last row).

These suggest that down-sampling any one of the classes as outlier would induce
two detection tasks with similar difficulty. Fig. 7.14 confirms this hypothesis, where
the distribution of inliers and outliers in the embedding space look similar between the
two down-sampled variants of IMDB-BINARY. Moreover, the outliers are sparser and
more dispersed as compared to the inliers, which consequently leads to better-than-
random performance on both tasks. The ROC-AUC values are not too high due to
the mixing of the embeddings that makes the detection task harder. In Sec. 7.2.2 we
argued that density disparity alone is not a sufficient condition for performance flip.
This result on IMDB-BINARY shows that overlapping support (i.e. mixing) alone is
also not a sufficient condition for the performance flip. Both conditions together give
rise to the issue.

https://github.com/LingxiaoShawn/GLOD-Issues
https://github.com/LingxiaoShawn/GLOD-Issues

7.3. Empirical Analysis 137

iter=1, roc=0.614 iter=3, roc=0.785 iter=5, roc=0.757 iter=7, roc=0.748 iter=9, roc=0.742 iter=11, roc=0.739

Class 1 as outlier with its downsampling rate =0.1

iter=1, roc=0.482 iter=3, roc=0.329 iter=5, roc=0.311 iter=7, roc=0.311 iter=9, roc=0.310 iter=11, roc=0.312

Class 0 as outlier with its downsampling rate =0.1

(a) PROTEINS

iter=1, roc=0.520 iter=3, roc=0.365 iter=5, roc=0.340 iter=7, roc=0.330 iter=9, roc=0.325 iter=11, roc=0.325

Class 1 as outlier with its downsampling rate =0.1

iter=1, roc=0.601 iter=3, roc=0.723 iter=5, roc=0.739 iter=7, roc=0.756 iter=9, roc=0.769 iter=11, roc=0.781

Class 0 as outlier with its downsampling rate =0.1

(b) NCI1

Figure 7.12: NN-Disagreement% distribution of outliers (top rows: when class 1 is down-
sampled and bottom rows: when class 0 is down-sampled, in red) and inliers (vice versa,

in blue) over WL iterations (left to right) on (a) PROTEINS and (b) NCI1.

To conclude, our analysis sheds light onto the leading factors (density disparity
and overlapping support) as well as contributing factors (graph propagation) behind
the performance flip issue. These help us reason about both cases in which it occurs
or not. However, we do not have a full understanding of why these factors arise for
some datasets but not the others in the first place. Future research could focus on
studying this disparity between datasets.

7.3.4 Performance study: All GLOD methods

In the previous subsections, we have demonstrated an understanding and analysis
over propagation based GLOD methods. It is natural to ask whether only propa-
gation based methods suffer from performance flip. Some observations are already
summarized in Sec.7.2. FGSD operates in the Laplacian eigen-space, and Graph2Vec
employs skip-gram based training via negative sampling, etc. As such, these other
methods are harder to understand and analyze in detail. In this section we present a
full performance study over 10 datasets and these additional methods to empirically
answer the following questions:

• Q1: Is performance flip only restricted to propagation based methods?

• Q2: Do semantics of the dataset have any influence on performance flip?

• Q3: For two-stage methods (with first embedding and then outlier detection
stages), how does each stage affect performance flip?

138 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

Figure 7.13: (Top row) Pairwise similarity matrix for all graphs in full IMDB-BINARY
dataset, based on WL subtree kernel over increasing iterations (left to right). (Second
row) 2-d MDS visualization based on the similarity matrix. (Third row) Distribution of
NN-Radius for all graphs in each class. (Last row) Distribution of NN-Disagreement% for

all graphs in each class.

• Q4: Does the end-to-end method have advantage over two-stage methods?

We answer these questions sequentially in the following sections A1 (Sec. 7.3.4), A2
(Sec. 7.3.4), A3 (Sec. 7.3.4), A4 (Sec. 7.3.4). Besides observations, we provide our
understanding and hypothesis. Finally, we point out three key questions that we
believe are important to GLOD task (Sec. 7.3.4). As discussed before, we divide
the datasets into “X&Non-X” and “X&Y” type. We evaluate propagation based two-
stage methods (WL, PK), end-to-end propagation based method (OCGIN), and graph
embedding based two-stage methods (Graph2Vec, FGSD) for all datasets. Table 7.4
shows all the results on “X&Non-X” type datasets, and Table 7.5 contains all results
on “X&Y” type datasets. We carefully analyze these results to answer the above
questions next.

A1: Performance flip occurs across all methods.

To help summarize results we use yellow color to mark performance flip in Table 7.4
and Table 7.5. The dominance of yellow for both propagation based (first row-wise
block) and non-propagation based methods (second row-wise block) empirically verify
that performance flip is not restricted to propagation based methods but arises more
generally for other methods as well.

The observation strengths the prevalence of performance flip for GLOD task, and
raises the question of how to evaluate models for GLOD if the issue is persistent across
datasets and models.

7.3. Empirical Analysis 139

iter=1, roc=0.609 iter=3, roc=0.659 iter=5, roc=0.671 iter=7, roc=0.682 iter=9, roc=0.686 iter=11, roc=0.687

Class 1 as outlier with its downsampling rate =0.1

iter=1, roc=0.657 iter=3, roc=0.596 iter=5, roc=0.586 iter=7, roc=0.579 iter=9, roc=0.577 iter=11, roc=0.576

Class 0 as outlier with its downsampling rate =0.1

Figure 7.14: NN-Disagreement% distribution of outliers (top row: class 1 is down-sampled
and bottom row: class 0 is down-sampled, in red) and inliers (vice versa, in blue) over WL

iterations (left to right) on IMDB-BINARY.

Table 7.4: Average ROC-AUC (over 10 random seeds) of 5 different graph embedding
methods and 3 different outlier detectors over 5 “X&Non-X ” type datasets. Each dataset
has 2 down-sampled variants. ‘DC’ stands for down-sampled class, which is also outlier
class. Cells colored with Red, Green, Yellow represent: performance of both variants are
worse than random, both variants are better than random, and performance flip scenario,
respectively. Performance flip is widely observed. Among all cases, 67.3% have perfor-
mance gap� 0.2, 52.7% cases have performance gap � 0.3, 30.9% have performance

gap� 0.4. (G2V=Graph2Vec)

Methods DD PROTEINS NCI1 Mutagenicity AIDS
DC=0 DC=1 DC=0 DC=1 DC=0 DC=1 DC=0 DC=1 DC=0 DC=1
“X” “Non-X” “X” “Non-X” “Non-X” “X” “X” “Non-X” “X” “Non-X”

WL-LOF 0.186 0.815 0.276 0.664 0.730 0.349 0.460 0.629 0.193 0.950
PK-LOF 0.194 0.824 0.389 0.557 0.678 0.366 0.480 0.613 0.387 0.896
WL-OCSVM 0.179 0.820 0.189 0.794 0.653 0.341 0.500 0.540 0.048 0.972
PK-OCSVM 0.222 0.809 0.244 0.751 0.593 0.429 0.517 0.541 0.175 0.880
OCGIN-5 0.327 0.720 0.370 0.681 0.643 0.467 0.503 0.650 0.200 0.922

G2V-LOF 0.680 0.362 0.644 0.414 0.594 0.588 0.495 0.616 0.919 0.424
FGSD-LOF 0.628 0.425 0.468 0.422 0.712 0.417 0.458 0.634 0.934 0.290
G2V-OCSVM 0.631 0.336 0.569 0.466 0.332 0.634 0.492 0.491 0.903 0.035
FGSD-OCSVM 0.384 0.781 0.385 0.711 0.545 0.550 0.366 0.664 0.979 0.743
G2V-IF 0.656 0.335 0.552 0.449 0.341 0.636 0.446 0.586 0.904 0.035
FGSD-IF 0.745 0.400 0.773 0.272 0.384 0.637 0.476 0.569 0.984 0.018

Table 7.5: Same configuration as Table 7.4, this time over 5 “X&Y ” type datasets.
FGSD cannot run over REDDIT datasets. Performance flip is not observed for IMDB
dataset across all methods. OCGIN has performance above random across all datasets.
Performance flip is still widely observed for other methods. Among all cases, 30.6% have
performance gap� 0.2, 22.4% cases have performance gap � 0.3, 12.2% have performance

gap� 0.4.(G2V=Graph2Vec)

Methods IMDB-BINARY ENZYMES(c0&c1) ENZYMES(c2&c3) REDDIT(c0&c1) REDDIT(c2&c3)
DC=0 DC=1 DC=0 DC=1 DC=2 DC=3 DC=0 DC=1 DC=2 DC=3

WL-LOF 0.603 0.651 0.518 0.519 0.758 0.399 0.261 0.734 0.189 0.810
PK-LOF 0.624 0.581 0.553 0.550 0.755 0.633 0.485 0.579 0.361 0.640
WL-OCSVM 0.524 0.571 0.598 0.385 0.607 0.462 0.268 0.739 0.180 0.821
PK-OCSVM 0.538 0.548 0.590 0.402 0.456 0.642 0.388 0.696 0.207 0.802
OCGIN-5 0.643 0.508 0.615 0.517 0.587 0.636 0.662 0.622 0.573 0.608

G2V-LOF 0.534 0.558 0.551 0.354 0.398 0.532 0.376 0.563 0.678 0.323
FGSD-LOF 0.606 0.505 0.644 0.412 0.449 0.608 - - - -
G2V-OCSVM 0.526 0.551 0.565 0.419 0.492 0.649 0.465 0.528 0.679 0.329
FGSD-OCSVM 0.516 0.586 0.531 0.503 0.523 0.613 - - - -
G2V-IF 0.516 0.562 0.572 0.346 0.410 0.604 0.505 0.545 0.695 0.326
FGSD-IF 0.522 0.617 0.537 0.456 0.300 0.708 - - - -

140 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

A2: Dataset semantics play a role in performance flip.

Clearly, the percentage of yellow cells in Table 7.4 is noticeably larger than that in
Table 7.4, which suggests that (1) performance flip occurs more often in “X&Non-X
” type datasets than “X&Y ” type datasets. We further investigate the performance
gap (i.e. severity of performance flip) in both tables numerically. Table 7.4 has 67.3%
cases with performance gap � 0.2, 52.7% cases with performance gap � 0.3, and 30.9%
cases with performance gap � 0.4. In contrast, Table 7.5 has only 30.6% cases with
performance gap � 0.2, 22.4% cases with performance gap � 0.3, and 12.2% cases
with performance gap � 0.4. The dramatic difference of performance gap between
two types of datasets suggests that (2) performance flip applies more severely to
“X&Non-X ” type datasets than “X&Y ” type datasets. Finally, we also investigate
which version of the downsample achieves high ROC-AUC. In Table 7.4 we annotate
class labels 0 and 1 with corresponding “X” and “Non-X” based on class semantics,
where “X” refers to the compact class. Interestingly, for propagation based methods,
down-sampling “Non-X” class as outlier class consistently achieves high performance
while down-sampling “X” has performance worse than random. We conclude that (3)
downsampling the class with diverse patterns creates sparser, dispersed outliers in the
embedding space when using propagation based methods, resulting in an easier outlier
detection task with high ROC-AUC.

We remark that the correlation between class semantic and performance flip chal-
lenges whether we should repurpose X&Non�X type graph classification dataset to
evaluate GLOD. Further, one may argue we can always down-sample class “Non-X”
as outlier to evaluate, however the “Non-X” class may not be a semantic outlier class
(see Mutagenicity where “Non-X” represents non-mutagen that should be normal class
in semantic), and for other non-propagation based methods the performance is not
always high (see AIDS).

A3: Both embedding method and outlier detector affect performance flip.

Previously we have observed that the propagation based methods consistently achieve
high ROC-AUC when “Non-X” is down-sampled as outlier in “X&Non-X” datasets.
However this is not always true for other methods and datasets. We observe that
both graph embedding and downstream outlier detector affect which version of down-
sample has high performance. See for example the AIDS dataset in Table 7.4, where
using different graph embedding methods has dramatically reversed performance flip
pattern. Also see the DD dataset where FGSD+OCSVM and FGSD+LOF have re-
versed performance flip. The observation can be explained by the driving mechanism
identified in Sec.7.2.2. The performance of two-stage methods is determined by the
(mis)alignment of embedding space generated by graph embedding methods as well as
the assumptions of downstream outlier detector. In that sense, both graph embedding
and outlier detection methods play a role in whether performance flip occurs and the
amount of performance gap.

A4: End-to-end method can partially capture distribution of majority.

All two-stage methods we studied are unsupervised and produce deterministic embed-
dings regardless of dataset distribution. This is not ideal for outlier detection, as they
do not have enough ability to generate embeddings that capture distribution of the
majority class. On the other hand, end-to-end methods learn from the input dataset
by optimizing a loss (e.g. reconstruction error or distance to center) contributed by
each sample in the dataset, and should have certain degree of ability to capture the

7.4. Conclusion 141

majority (by achieving lower average loss for the majority class). As we can see in
Table 7.5, OCGIN is the only method that does not have performance flip for all 5
“X&Y” datasets. This empirically shows certain ability of capturing majority class for
OCGIN. Nevertheless, performance flip still occurs widely for OCGIN in all “X&Non-
X” datasets. Our hypothesis is that although OCGIN has certain ability to capture
majority, the inductive bias (underlying mechanism) shared across all propagation
based methods is too strong on “X&Non-X” datasets to be corrected by learning.

The relatively higher robustness of our end-to-end method, OCGIN, against per-
formance flip, especially on “X&Y” type datasets, appears to be a promising direction
for future work. This also motivates further analysis of other end-to-end GLOD meth-
ods.

Three key questions for GLOD

Based on our observations over all datasets and methods, we pinpoint three important
questions for GLOD and aim to draw the community’s attention toward answering
them:

• Given the widely observed performance flip issue across models and datasets,
what is the best way to evaluate detectors when repurposing graph classifica-
tion datasets? Is it fair to compare methods based on their average performance
across all datasets, as one would usually do, while we now expect that some
downsample versions will likely yield significantly worse-than-random perfor-
mance?

• As graph embedding method play a significant role on GLOD, how can we
design better graph-level embedding methods (either unsupervised or end-to-
end) to overcome performance flip issue specifically, and achieve better GLOD
performance overall at large?

• Given that methods do not agree on which version of downsample yields high
performance, given any new detection task (i.e. dataset) and a set of candidate
GLOD methods, how can we design unsupervised model selection strategies that
can effectively choose a model that achieves high detection performance?

We believe these questions stand on the foundation of GLOD and provide solid starting
points for the community toward progress on GLOD problems.

7.4 Conclusion

7.4.1 Summary

Many researchers and practitioners repurpose binary classification datasets for outlier
detection via down-sampling one of the classes to constitute the outliers. In graph-
level outlier detection, we found that most binary classification datasets, when used in
this fashion, introduce class-level bias for different variants of downsample, resulting
in dramatically different outlier detection performance. In this paper, we call this
phenomenon “performance flip”. This bias exhibits itself as disparity in detection task
difficulty determined by the alignment of graph embedding density and assumption
of downstream outlier detector. Looking over embedding space, the issue stems from
two factors: (1) density disparity; one class being more compact than the other in
the embedding space; and (2) overlapping support; mixing of the embeddings between
classes. Given that most outlier detectors assume a compact set of inliers and scattered

142 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

outliers, down-sampling the class that is sparse in the embedding space induces such
a scenario with scattered outliers and hence achieves high detecting performance. In
contrast, down-sampling the other class with denser embeddings induces clustered
outliers (that shares support with normal class) and results in significantly worse-
than-random performance.

Under unsupervised learning, the embedding space is determined by two parts:
the input dataset and the embedding method. These two parts can interact with
each other. Categorizing datasets into two as ’X&Non-X’ and ’X&Y’ reveals that
’X&Non-X’ type datasets have higher probability of performance flip with more severe
performance gap. Empirical results of propagation based methods on all ’X&Non-X’
type datasets suggest that the class with semantically diverse patterns can result in
sparser embeddings and down-sampling this class leads to high performance. For
non-propagation based methods, on the other hand, we observed a reversed pattern
of which variant of downsample yields high performance as compared with that for
propagation based methods. This suggests that it is hard to predict which class will
appear sparser in the embedding space by solely knowing the data semantics, as it
also depends on the embedding method itself.

Considering the importance of GNN based methods and its connection to prop-
agation based methods, we carefully conducted a measurement study for certain
propagation-based graph representation learning methods, namely Weisfeiler-Leman
(WL) and propagation kernel (PK), and found the interaction between the mentioned
factors and the sparsification property—where kernel similarity of two graphs decrease
with increasing number of propagations. This property leads to amplified density dis-
parity, as the originally sparser class of graphs sparsify at a relatively higher rate. This
is either a blessing or a curse for detection, depending on which scenario is considered
as a testbed. When class with diverse patterns is down-sampled, sparsification helps
disperse the outliers further, making the task easier. Otherwise, it makes the inliers
look more dispersed. Sharing the similar underlying mechanism, OCGIN, the one-
class end-to-end GNN based oulier detector we developed, has similar performance
behavior on all ’X&Non-X’ datasets with WL and PK. However being an end-to-end
trainable method, OCGIN has the ability of learning its parameters based mostly on
the majority class, and surprisingly eliminates performance flip issue on all ’X&Y’
datasets.

Based on all our observations and analysis, we remark three important questions
regarding GLOD as fundamental problems in this area, from three different perspec-
tives: evaluation, model selection, and graph embedding method. Given the widely
observed performance flip issue across models, traditional evaluation of models that
simply averages performance across all datasets becomes problematic, as including
worse-than-random performance does not appear to be the right thing. To avoid
the worse-than-random scenario for a given new dataset, one may argue that doing
model selection from among all candidate models to pick up one model without worse-
than-random performance would be a good way out in practice. But one should also
consider the hardness of unsupervised model selection and the high risk of picking
up the wrong model with poor performance. Another way to avoid evaluation under
performance flip is to design better graph embedding methods that can surpass the
performance flip issue.

7.4.2 Discussion

The three problems we outlined are essential but hard to answer. We present a
discussion of our arguments in the following.

7.4. Conclusion 143

Considering the performance flip is persistent and hard to avoid, caution should
be taken when evaluating new model(s) under performance flip. Based on Hawkins’s
definition of outliers [Haw80] – that the outliers are simply the minority instances that
are generated by a different mechanism – no matter how we down-sample, defining
outlier as the down-sampled class is meaningful. Then, evaluation by averaging per-
formance across all datasets (including all variants of downsample) should be used.
However, when worse-than-random performances are included, which skews the aver-
age performance, a model that appears competitive may result in considerably poor
performance for certain cases. Another way to define the outlier class is based on
dataset class semantics, where one class may be seen as a natural outlier class in the
real world. However not all datasets have semantic outliers, and sometimes which
class is outlier may be subjective and context-dependent (like in dataset AIDS, being
active against HIV could be deemed as outlier since HIV is rare and semantically im-
portant, yet in the context of developing new drugs for treating AIDS, inactive drugs
could be treated as the outliers).

A way to sidestep performance flip altogether is to design better graph embed-
ding methods that can overcome density disparity and overlapping support. One can
imagine that if the unsupervised embedding method can generate non-overlapping
and clustered embeddings for each class, then performance flip would not arise. In
other words, two-stage models are guaranteed to perform well for outlier detection if
their graph embedding method can achieve good performance in graph-level clustering
task. Another promising direction is to design effective end-to-end models that can
generate clustered representation for the majority class, by making use of the natural
property of learning. However the current end-to-end graph representation learning
models are all message-passing based graph neural networks which suffer from the
inductive bias shared by WL and PK.

In the prevalence of performance flip issue across existing models, it is not clear
how to do fair and accurate model evaluation so as to pinpoint competitive models
for GLOD. Assuming it is also hard to design new graph-level embedding models that
can bypass performance flip no matter what dataset they are presented with, an open
question remains as how to do GLOD in practice, i.e. in the wild, when presented with
a new GLOD task. The answer is not trivial. Model evaluation and benchmarking
is done exactly to identify a few competitive models to employ in practice. When
evaluation has issues we have identified, a way out appears to do model selection. That
is, instead of employing the “best” model based on average performance across many
historical/benchmark datasets, the goal would become designing an effective model
selection strategy to choose a model to employ from a pool of existing models for a new
task. Unfortunately, however, unsupervised model selection for GLOD is notoriously
difficult in the absence of any labels [ZRA20], and is perhaps an equally hard, if not
harder, problem than grappling with performance flip and model evaluation (where
labels are available for benchmark datasets, for evaluation). As with performance flip,
it incurs the risk of selecting a poor model. An easier yet practical direction may be
to do model selection using (only) a small amount of labeled data, which however,
has its own issues such as the representativeness of outliers in a small sample.

7.4.3 Future work

Several future directions that immediately span out of this study are three. First,
whether our findings regarding the sparsification property of certain propagation based
models have negative implications on (graph-level) clustering and classification tasks
warrants further research. Second, whether our findings transfer to non-graph settings

144 Chapter 7. Graph-level Anomaly Detection: Baselines and Issues

requires future analysis. We find that there is historical evidence that they do.5
Finally, our study can be extended to the analysis of class-level bias in model errors
when multi-class classification datasets (with greater than two classes) are used for
outlier benchmark creation.

5Arrhythmia, a (point-cloud) binary classification dataset from UCI Machine Learning Reposi-
tory has been repurposed for outlier mining, by downsampling either one of the classes, http://
homepage.tudelft.nl/n9d04/occ/514/oc_514.html versus http://homepage.tudelft.nl/n9d04/
occ/515/oc_515.html, respectively inducing scattered versus clustered outliers. Notice that the
performance of the detection models are significantly higher for the former scenario.

http://homepage.tudelft.nl/n9d04/occ/514/oc_514.html
http://homepage.tudelft.nl/n9d04/occ/514/oc_514.html
http://homepage.tudelft.nl/n9d04/occ/515/oc_515.html
http://homepage.tudelft.nl/n9d04/occ/515/oc_515.html

145

Chapter 8

Anomaly Detection of Attributed
Multi-graphs with Metadata

Chapter is based on Konstantinos Sotiropoulos*, Lingxiao Zhao*, Pierre Jinghong
Liang, and Leman Akoglu. “ADAMM: Anomaly Detection of Attributed Multi-
graphs with Metadata: A Unified Neural Network Approach”. In: 2023 IEEE
International Conference on Big Data (BigData). IEEE. 2023, pp. 865–874.

8.1 Introduction

Anomaly detection finds numerous practical applications in finance, manufacturing,
monitoring, etc. as anomalies are typically indicators of faults, inefficiencies, malicious
behavior, etc. in various real-world systems. One of the key challenges in real world
settings is the complexity of the data, which exhibit multiple different modalities and
heterogeneity—requiring new data representations and novel modeling designs.

This work is motivated by anomaly detection problems various real-world domains.
The first example is from business management and particularly accounting/auditing,
where the goal is to identify abnormalities (errors or fraud) among annual general-
ledger journal entries from a given firm. Each entry consists of a series of line items
of credit or debit transactions of various amounts between accounts with the total
debited dollar amount equal to the total credited amount, following the double-entry
bookkeeping rules. Accordingly, debits and credits within an entry create directed
and weighted links between accounts, and multiple transactions may occur between
the same pair of accounts or even within a single general-ledger account. Besides the
relational information, each journal entry is also associated with meta-features, such
as the approver, entry and effective dates, etc. This poses a multi-modal (relational
and tabular) data problem setting. A second example arises from communication
networks, where the problem is detecting significant events within a company based
on e-mails exchanged between different entities.

Our goal is to design a novel solution that not only unifies the data modalities
under a single, flexible model capable of managing complex relations based on di-
rected multi-graphs, but also offers broad applicability across the domains mentioned
earlier and potentially beyond. To this end, we represent the relational information
with a node- and edge-attributed directed multi-graph, and the auxiliary or meta-
data as tabular meta-features. (See Figure 8.1.) Our proposed solution, ADAMM (for
Anomaly Detection of Attributed Multi-graphs with Metadata), is a unified neural
network framework that learns an expressive graph-level representation for directed
and attributed multi-graphs and then fuses it with the meta-features within a shared
embedding space before feeding the joint embedding to an unsupervised anomaly

146 Chapter 8. Anomaly Detection of Attributed Multi-graphs with Metadata

Home Office

Coffee
Place

[20min,..]

[30min, ..]

[40min, ..]

[5
m

in,
…]

Type Day
Office Worker Monday

. . .

[$57, ..]

[$13, ..]

[$20, ..]

[$9
0,

..]

Equity Liabilities

Savings

Approver Entry Effective
John 02/01 01/01

. . .

[50min,…]

Manager Engineer

Director

[0.37,..]

[0.16, ..]

[-0.23, ..]

[0
.11

,…
]

Division Day
Sales Monday

. . .

[$57, ..]

[$13, ..]

[$20, ..]

[$9
0,

..]

Equity Liabilities

Savings

Approver Entry Effective
John 02/01 01/01

. . .
[0.82,…]

Figure 8.1: Modeling complex data. (left) E.g. from accounting: a journal entry’s
attributed multi-graph (multiple transactions between two accounts), with edge directions
(credit/debit), edge features (e.g. $ amount), and node features (account type; e.g. equity,
savings, etc.) plus aux. meta-features (approver, entry date, etc.); (right) E.g. from
communication networks: a daily activity multi-graph (multiple e-mails between two
company employees), with edge directions (to/from), edge features (e.g. text embedding)

and node features (role in the company.) plus aux. meta-features (division, day, etc.).

detection objective. Notably, our objective is crafted to handle data heterogeneity;
where for example, the journal entries may form multiple clusters (e.g. purchases vs.
interest gains), and individual behaviors can reflect socio-demographic groups (e.g.
single vs. married-with-children). Specifically, we replace the classic SVDD objective
that aims to learn embeddings tightly centered around a single centroid [TD04], and
instead employ an unsupervised loss to accommodate multiple centroids.

The literature is abound with anomaly detection techniques [Agg17; Pan+21;
Gup+13; Cho+21; ATK15; Ma+21], where a vast body focuses on uni-modal data.
Numerous prior work address outliers in tabular data [Agg17; Pan+21], possible due to
its wide presence in industry and its efficient storage in databases. However, molding
real world anomaly detection problems to tabular outlier detection requires “flatten-
ing” data from all modalities into manually-extracted features via laborious and often
costly domain-expertise [Ako21].

On the other hand, graph anomaly detection has been studied mainly on a single
graph for detecting node/edge-level anomalies, with much less emphasis on graph-level
anomalies [ATK15; Ma+21]. Few existing traditional approaches to attributed multi-
graph anomalies [Lee+21; NLA23] that are not neural network based are not learnable,
restricted to handling single-value edge features, not scalable for larger graphs, and do
not take auxiliary metadata into account. Similarly, the more recent neural network
based models [ZA23; Qiu+22; Zha+22d; Zha+22a] are not designed to accommodate
directed multi-graphs or graphs with metadata as in this work. (See related work in 1.2
for details.) Finally, we argue that a straightforward two-stage approach is naïve and
nontrivial; the reasons are first, treating data modalities/sources separately misses the
opportunity to capture inter-dependencies and second, the problem of how to combine
multiple anomaly rankings/scores open many possibilities without a principled way
to choose in the absence of any labels.

• Anomaly Detection in Real-World Settings with Complex Data: We
formulate anomaly detection under data complexity/variety, exhibiting rela-
tional as well as auxiliary information, in an elegant framework that can jointly
handle complex graphs with node/edge attributes, edge multiplicities, directions

8.2. Related Work 147

and self-loops, meta-features, as well as data heterogeneity. The formulation is
driven by anomaly detection problems from two different real-world domains,
namely accounting and human mobility, yet is general to apply to possibly other
domains.

• A Unified Detection Model: We introduce ADAMM, a novel neural net-
work architecture that can digest the aforementioned multi-modal data toward
anomaly detection in a unified fashion. It tackles edge multiplicities through set
representation learning, employs expressive graph-level embedding that is fused
with meta-features in a learned shared embedding space, and finally, optimizes
an unsupervised anomaly loss that can accommodate heterogeneous data with
multiple latent underlying clusters.

• Generality and Applications: ADAMM offers a general framework, where
the architecture can be extended to several other domains with data variety, us-
ing the idea of learning joint/shared-space embeddings and end-to-end anomaly
loss optimization. Besides addressing the data variety challenge of big data, our
ADAMM also targets business and societal value, as it is applied to two high-
stakes domains; accounting (finance) and human mobility (urban). Through
extensive experiments, we show that two-stage solutions are blind-sided and
that ADAMM outperforms those as well as other existing baselines significantly
on accounting data from three different firms, as well as human GPS trajectory
simulations.

Reproducibility. To foster future work on anomaly detection on complex multi-
graphs with metadata as well as for practical applications, we open-source the code
for ADAMM at https://github.com/konsotirop/ADAMM.

8.2 Related Work

Anomaly detection (AD) has an extensive literature mainly considering outliers in
tabular or vector data [CBK09; Agg15], including the recently emerging deep neural
network based approaches (see surveys [CC19; Ruf+20; Pan+21]). However, these do
not apply to AD for graphs with relational structure.

The majority of work on graph anomaly detection [ATK15], including the recent
graph NN (GNN) based techniques [YHL15; Yu+18; Din+19; Wan+20] focus on node,
edge, or subgraph anomalies within a single graph, rather than graph-level anomalies
in a database.

Different from these earlier work, we consider graph-level AD among a set of graphs
within a database. There exist traditional encoding or compression-based techniques
[NC03; EHC09; Lee+21; NLA23] that aim to identify frequent structural motifs or
graphlets that compress a graph database efficiently, and then flag those graphs with
long encoding length as anomalous. Most recent work have shifted attention to em-
ploying deep learning and GNNs toward graph-based AD (for a recent survey, see
[Ma+21]). The idea is to flatten each graph by leveraging their representation or
embedding learning capability, and train the GNN parameters end-to-end through
various AD objectives such as one-class [ZA23; Qiu+22], mutual information-based
[Zha+22a], distributional distance [Zha+22d], contrastive [Luo+22] as well as distilla-
tion losses [Ma+22]. While these have made progress in graph-level anomaly detection,
they do not handle multi -graphs, nor are they designed to admit multi-modal input
such as graphs with meta-features as in our case.

Examples of prior work on multi-graphs address summarization [BLA22], parti-
tioning [TLD09; PAI13; Kan+20], as well as anomaly detection [NLA23; MGF11],

https://github.com/konsotirop/ADAMM

148 Chapter 8. Anomaly Detection of Attributed Multi-graphs with Metadata

however without considering additional meta-features. An earlier work on node-level
(fake reviewers) AD in a single (reviewer-to-product) graph has attempted to bridge
node-level meta-features with graph data—by first using the meta-features to estimate
node outlierness scores and then propagating those over the graph to capture guilt-
by-association [RA15]. Their method, however, does not generalize to graph database
anomalies with graph-level meta-features.

In summary our proposed ADAMM, to our knowledge, is the first method for
graph-level anomaly detection for directed node/edge-attributed multi-graphs with
meta-features. It leverages (i) end-to-end multi -graph embedding, (ii) joint multi-
modal representation learning and (iii) a multi-centroid AD loss to effectively capture
complexities in the input data.

8.3 Preliminaries

We consider anomaly detection on a large database G = {(G1,M1), . . . , (Gn,Mn)}
of n pairs of directed, node/edge attributed, multi-graphs (multiple edges may exist
between two endpoints), and their associated metadata-level features.

Definition 8.3.1. (Directed, attributed, multi-graph). A graph Gi = (Vi, Ei, ⌧) is a
directed, attributed, multi-graph, endowed with a function ⌧ : Vi 7! Rd that assigns
a real-valued feature vector to every node in Gi. Moreover, Ei is a multi-set, where
an element et = (u, v, ft) is a directed edge between nodes u and v associated with an
edge-feature vector ft 2 Rk.

Definition 8.3.2. (Metadata). Each graph Gi is associated with a vector ZMi 2 RdM

reflecting tabular features.
Usually, we operate on sets (or multi-sets) of variable lengths, where there is no

specific order of the elements. In such cases, we need functions that are permutation
invariant.

Definition 8.3.3. (Set-function). A function f acting on sets is called a set function
if it is permutation invariant to the order of objects in the set. That is, for any
permutation ⇡ : f({x1, . . . , xn}) = f({x⇡(1), . . . , x⇡(n)}.

Neural network architectures, like DeepSet [Zah+17], can implement arbitrary
set functions, while the work of Xu et al. [Xu+19] extends such functions for multi-
sets.

Graph Neural Network (GNN) model: We use the provably expressive
GIN model of [Xu+19], where the embedding of a node v is updated during the
lth layer/iteration using the following aggregation function:

x
(l)
v = MLP (l)((1 + ✏) · x(l�1)

v +
X

u2N (v)

ReLU(xu + fvu);✓l) (8.1)

where MLP is a multi-layer perceptron, ✏ a learnable parameter, N (v) the neighbor-
hood of node v, fuv is the feature vector of edge (u, v) and ✓l a vector of trainable
parameters.

To obtain a graph-level representation ZG for the whole graph G we can use a
permutation-invariant function READOUT that aggregates node embeddings after
the final layer/iteration L, i.e.,

ZG = READOUT ({x(L)
v |v 2 V }) (8.2)

Our problem can be defined (informally) as follows:

8.4. ADAMM: Anomaly Detection of Multi-graphs with Metadata 149

Problem 1. (Anomaly Detection of Attributed Multi-graphs with Metadata
(ADAMM).) Given a database G = {(Gi,Mi)}ni=1 of n node- and edge-attributed
multi-graphs and their associated metadata; the goal is to identify the abnormal
(graph, metadata) pairs that differ significantly from the majority in the database.

8.4 ADAMM: Anomaly Detection of Multi-graphs with

Metadata

8.4.1 Data Representation

The input to ADAMM is a database comprising of pairs of graphs and their associated
metadata vectors. In what follows, we describe the capabilities of it in representing
complex graph data, the fusion of them with metadata vectors, as well as two con-
crete examples from the accounting and human mobility domains where this unified
representation can be used to model real-world scenarios.

Graph representation. ADAMM is designed to handle complex graph data of
virtually any type. Specific design choices allow the model to be able to represent:

1. Node attributes (or Node labels): Nodes can have attributes that are updated
after each graph convolution step. When nodes do not have attribute vectors
but categorical labels, we can learn representations for these node labels using
an embedding layer.

2. Edge features: Edges can have features containing important information about
the link between two nodes in the graph. Thus, node representations are updated
taking into account not only the embeddings of the neighboring nodes, but also
those of incident edges (see also Eq. Eq. (8.1)).

3. Edge direction: In various domains as with transactions (accounting) and trips
(mobility), edge direction is semantically important. Thus, we enhance edge
features with an encoding of the direction of the edge. Specifically, for each
multi-edge (u, v, ft), between nodes u and v, we encode it using label “1” if the
edge is present in the graph, i.e. (u, v, ft, “1”), and in the meanwhile, augment
another reversed edge (v, u, ft, “2”) with label “2” into the graph. Also, we re-
serve label “0” for self-loop edges, i.e. (u, u, ft) becomes (u, u, ft, “0”). These
edge direction labels are then applied as input to an embedding layer that pro-
duces the edge direction representation vector dt. The final representation vector
f
0
t for the edge et is then obtained as the sum of the edge features vector ft and

of the edge direction vector, that is, f
0
t = ft + dt.

4. Multiple edges: Currently, GNNs are not able to handle multi-edges. Instead,
they assume there exists a unique edge between two nodes, as in Eq. Eq. (8.1)
for GIN convolution. Multi-edges, however, model the multiple interactions that
can occur between two nodes in a network and each has its own feature vector.
ADAMM is designed to handle multi-edges by learning a single edge represen-
tation from the multi-set of edges. More precisely, we treat the edge features
of the multi-edges F = {f 01, . . . , f 0T } as a multi-set and we use a permutation-
invariant multi-set function f : F 7! Rde to learn an edge-level de-dimensional
representation vector.

The versatility of ADAMM in handling complex graph-data allows it to be used in
a wide variety of domains. We present two exemplar ones as follows.

150 Chapter 8. Anomaly Detection of Attributed Multi-graphs with Metadata

(i) Bookkeeping Graphs [Lia23]: Each graph is a representation of a journal entry :
a detailed transaction record. Every account present in the entry is associated
with a node, with its label being the account type (e.g. equity, revenue, etc.).
A directed edge represents monetary flow from a credited account to a debited
account and the feature of an edge is the monetary value associated with this
transaction. Directed multi-edges capture multiple credit/debit flows that can
take place between two accounts.

(ii) Human Mobility (or Activity) Graphs [Sch+13]: These represent the mobility
or activity behavior of an agent within a time-frame (e.g., a day of the week).
Nodes represent visited locations, while node labels represent the Points Of
Interest (POI) type in that location (school, restaurant, etc.). Directed multi-
edges stand for the trips between those locations and their features capture
information about the trip (duration, distance, etc.).

Metadata representation. ADAMM is able to fuse the graph-level represen-
tation with associated metadata vectors that contain auxiliary information. We give
examples of such information in the two aforementioned domains below.

(i) Metadata for Bookkeeping Graphs: The metadata vector contains information
regarding the ID of the user that created the specific journal entry, the approver
of this entry, total credit amount, a binary indicator of whether it is a reversal,
the date transactions took effect, or the date transactions were recorded in the
journal, etc.

(ii) Metadata for Human Mobility Graphs: For activity graphs the metadata vector
could contain information about the day of the week this activity took place
(e.g., Tuesday), a vector representation of the agent it describes (or simply a
unique ID), or other information that could contain GPS related information,
like speed-limit violations, etc.

8.4.2 A Unified Neural Network Architecture

ADAMM provides a unified architecture for anomaly detection in a database of graphs
and their associated metadata features. Figure 8.2 presents an overview of our model
and the steps it involves. The input is two-pronged: a directed, node/edge attributed
multi-graph and its associated metadata vector. Following the set representation
learning of the multi-edges, a GNN is employed to learn a graph-level embedding,
which is then fused with the metadata vector to obtain the final joint embedding.
A parameter estimation network decides on the (soft) membership of the final em-
beddings to one of K clusters. ADAMM is trained in an end-to-end fashion, i.e. all
of its parameters are optimized jointly with respect to a suitable objective function
that minimizes the weighted distance of embeddings to the K centroids of the clus-
ters. Additional regularization terms are introduced to spread-out the centroids as
well as to nudge the estimation network toward more confident assignments of cluster
memberships. We describe each of these steps in greater detail next.

Graph-level Embedding

We learn a graph-level embedding in two steps:
• Multi-edge Representation Learning: As noted, GNNs (including GIN) can not

readily handle multi-edges. For this reason, we “flatten" all directed multi-
edges between two nodes to a single undirected edge and its associated fea-
ture vector by learning a permutation-invariant multi-set function based on a

8.4. ADAMM: Anomaly Detection of Multi-graphs with Metadata 151

. . .

e.g. $ amount e.g. Equity

Node- & Edge-Attributed
Multi-graph

DEEPSET1

GNN

2
MeanPool

+ MLP

Graph-
Level

Embed.
ZG

PG

.

e.g. Entry day
e.g.Approver

Meta-
features
ZM

PM

INPUT
3b

3a

MLP

Concat + MLP
4

Final Joint
Embedding

Z

MEN

. . .Centroid
Memberships

1 2 K

Loss: Total weighted dist_to_centroids
Reg: • Diversity (spread_out_centroids)

• Entropy (near_hard memberships)

All ADAMM parameters - estimated end-to-end via unsupervised multi-centroid loss.

5
Multi-edge
Rep. Learn.

X

X

X

X

1 5

Figure 8.2: A workflow overview of the ADAMM architecture. Given two-pronged input
(in blue), i.e. attributed multi-graph and metadata, ADAMM first processes the former by
1○ learning a multi-set representation of the multi-edges, and 2○ flattening the resulting
graph via GNN into node representations that are pooled into a graph-level embedding.
Then, 3○ graph-level embed. and meta-features are projected, 4○ followed with a joint
embedding learning. Finally, 5○ the output layer employs an unsupervised regularized
multi-centroid anomaly loss where soft assignments are learned via a membership estimation
network (MEN). It is notable that ADAMM provides a unified multi-modal framework where

parameters of all the modules (in green) are estimated end-to-end.

DeepSet[Zah+17] architecture. This procedure is depicted in Figure 8.2 (see
step 1○), where the input attributed multi-graph is transformed using a learn-
able multi-set function to an attributed graph with single edges among its pairs
of nodes.

• Node Embeddings: The transformed graph, where all multi-edges have been
replaced by an attributed single edge, is used as input to a GNN model (step 2○
in Figure 8.2). In ADAMM we opt to use GIN [Xu+19] as a provably expressive
GNN. GIN learns node embeddings by performing the graph convolution of
Eq. Eq. (8.1), also incorporating the edge features.

To obtain a graph-level embedding we use a READOUT function on the node em-
beddings (see Eq. 8.2). We implement this function by performing mean pooling over
the node embeddings followed by a multi-layer perceptron (MLP) to learn the final
graph-level embedding as

ZG = MLP

1

|V |
X

v2V

x
(L)
v ;✓G

!
. (8.3)

A Unifying Embedding Space for Graph and Metadata

After having obtained a graph-level embedding, we learn a joint representation of the
graph and its metadata in a unifying embedding space. We are motivated by the
CLIP-style latents [Ram+22] that learn a shared embedding space for images and
their associated text captions, analogous to our graph and metadata pairs. More
precisely, we first linearly project the graph-level embedding vector ZG as well as the
metadata vector ZM by learning two projection functions (with separate parameters)
PG(ZG;✓G) : RdG 7! RdP and PM (ZM ;✓M) : RdM 7! RdP to obtain two new vectors
Z
0

G
and Z

0

M
of the same length dP as they share the same space. We normalize both

152 Chapter 8. Anomaly Detection of Attributed Multi-graphs with Metadata

vectors to have unit l2 norm and then concatenate them. Finally, we employ an MLP
to obtain the final joint embedding, denoted Z 2 Rd (see steps 3○ - 4○ in Figure 8.2)
as

Z = MLP
�
CONCAT(Z0

G,Z
0

M);✓J
�
. (8.4)

8.4.3 Anomaly Detection Loss

Objective functions used in anomaly detection, like One-Class DeepSVDD [Ruf+18],
make the somewhat strong assumption that all of the normal instances come from
the same distribution. Hence, their objective is to use a deep neural network to map
all normal instances as close to the center of a single hypersphere, with anomalous
instances identified as those mapped farther from this centroid. However, this objec-
tive does not take into account the multiple modalities or heterogeneities that may
exist in real world data. For this reason, we introduce a new objective function that
accommodates multiple clusters of the input samples. ADAMM estimates the (soft)
cluster membership of each sample using a membership estimation network and tries
to minimize the total average weighted distance from the K centroids, where hyper-
parameter K is carefully tuned (as discussed later in 8.4.4). Contrary to One-Class
DeepSVDD, where the center of the hypersphere is fixed during the training process,
the K centroids in our case are inferred from the membership estimation network and
the final embedding vectors.

Membership Estimation Network (MEN). The MEN is an MLP with a
softmax activation function (step 5○ of Fig. 8.2) that gives the membership predictions
for the final embedding vectors Z in Eq. Eq. (8.4). That is,

b� = softmax(MLP(Z;✓MEN)) , (8.5)
where b� is a K-dimensional vector depicting the soft membership probability predic-
tions of Z.

In what follows, and for a batch of N pairs of (graph, metadata) samples, where
Zi is the embedding of the ith sample, we denote by b� the N ⇥K matrix of cluster
membership estimations from Eq. Eq. (8.5) and by b�ik each entry of this matrix.

Then, the cluster centroids bck 2 Rd can be calculated using the cluster membership
estimations from Eq. Eq. (8.5) and embedding vectors Zi, for i = 1, . . . , N , by

bck =

P
N

i=1 b�ikZiP
N

i=1 b�ik
. (8.6)

Loss Function and Anomaly Score. Having estimated the embedding vectors
and cluster membership estimations, the anomaly score of a sample Ti = (Gi,Mi) is
then defined as the weighted sum of the Euclidean distance between the final embed-
ding vector Zi and the cluster centroids bck’s, i.e.

score(Ti) =
KX

k=1

b�ikkZi � bckk2 , (8.7)

which also serves as the anomaly score of a sample Ti (the higher, the farther and the
more anomalous).

ADAMM is then trained in an end-to-end fashion to optimize the following unsu-
pervised objective.

min
✓

1

N

NX

i=1

KX

k=1

b�ikkZi � bckk2 + �1 ·H(b�) + �2 ·D(bC) (8.8)

where ✓ depicts all ADAMM parameters collectively and �1,�2 are hyperparameters
that aim to strike a balance between the distance-to-centroids anomaly loss (first term)

8.5. Experiments 153

and two regularization terms, respectively, Entropy and Diversity, which we describe
as follows.

• The first is an entropy regularization that forces the network to be more con-
fident on the cluster to which it estimates an input sample to belong. More
specifically, we aim to minimize the average entropy over the rows of the b�
membership estimation matrix as

H(b�) =
1

N

NX

i=1

KX

i=1

�b�ik log(b�ik) . (8.9)

• The second is a diversity term that promotes separation between the cluster
centroids to avoid the undesired mode-collapse solutions where the network col-
lapses all centroids to the same point. Letting bC depict the K ⇥ d matrix
containing the cluster centroids bck’s as its rows;

D(bC) = � log(det(Cov(bC)) , (8.10)
where det(Cov(bC)) is the determinant of the covariance matrix of bC. In effect,
the larger the determinant of the covariance matrix, the more the centroids
are dispersed, promoting separation between and diversity among the cluster
centroids. A similar term has also been used in [DDK12] for selecting diverse
features in regression settings.

8.4.4 Model Selection

ADAMM, as with other deep neural networks based models, is configured with a set
of hyperparameters (HPs), such as the number of layers, weight decay and learn-
ing rates, number of training epochs, among others. In addition, our multi-centroid
anomaly objective incurs the number of centroids K, and the �1 and �2 terms from
Eq. Eq. (8.8). Each different configuration of these results in a different model, with
potentially drastic differences in anomaly detection effectiveness. The challenge is
that anomaly detection is an unsupervised task, where we usually lack ground-truth
labels of whether a sample is an anomaly. As a result, we do not have a labeled
validation set for hyperparameter tuning. For this reason, we devise an unsupervised
validation score, without using any labels, toward selecting an effective model that
performs better in anomaly detection than what we would have obtained by picking
at random (in absence of any other guidance).

Given a family of models, M, we opt to choose the model m that minimizes
the sum of the weighted distances of the N samples in the training set from the K
centroids as our model selection criterion, specifically,

NX

i=1

KX

k=1

b�ikkZi � bckk2 . (8.11)

This rule favors the model that succeeds into learning a tight representation of the
training instances into each of the K clusters by better extracting their shared pat-
terns, which in effect helps reveal the anomalies that deviate from these patterns.
In experiments, we compare the effectiveness of our model selection criterion against
random picking (i.e. average/expected performance over possible HP configurations).

8.5 Experiments

8.5.1 Experimental Setup

Datasets. For evaluation we use four datasets from two different domains, each

154 Chapter 8. Anomaly Detection of Attributed Multi-graphs with Metadata

Table 8.1: Dataset Summary Statistics

Name Graphs Nodes Multi-edges Node-attr. Edge-attr. Meta-feat.

SH 39,011 [1,15] [1,338] 11 1 11
KD 152,105 [1,91] [1,774] 10 1 9
HW 90,274 [1,25] [1,897] 11 1 7
MobiNet140,000 [1,22] [1,59] 41 4 9

containing a large database of graphs and their associated metadata. Those include
annual general-ledger journal entries from three different firms, in collaboration with
PwC. The fourth dataset involves simulated human GPS trajectories. Summary of
datasets is given in Table 8.1.

• Accounting Datasets: Three datasets from accounting consist of all annual jour-
nal entries from different firms anonymized as SH, HW, and KD. Each dataset
contains tens of thousands of bookkeeping graphs [Lia23] capturing itemized
transactions between impacted accounts along with dollar amounts, and meta-
data entries capturing auxiliary journal information including entry and effective
date, requester, approver, reversal indicator, and so on.

• Human Mobility Dataset : The fourth dataset, referred to as MobiNet, contains
the trajectories of 10, 000 simulated agents over a period of two weeks. We
use these trajectories to extract daily activity graphs [Sch+13] of the places
(i.e. POI) visited by each agent and the trips between them, as described in
Section 8.4.1. The metadata contains information about individual trips and
are transformed to a single vector using a DeepSet architecture during the
end-to-end training of ADAMM.

Baselines. For comparison, we use as baselines existing graph-level anomaly
detectors and tabular data outlier detectors. Unlike ADAMM, existing graph-level
anomaly detectors can not handle multi-edges. Therefore, we collapse all multi-edges
to a single edge and use the average representation of their feature vectors. To the
best of our knowledge, there is also no prior work that fuses graphs and metadata and
provides a single anomaly score. For this reason, we employ two-stage baselines: First,
we create a ranking of the samples with respect to their anomaly score as obtained
by a graph-level anomaly detector. Then, we create a second ranking by using a
tabular data outlier detector. We combine these two rankings to obtain a single
graph&metadata anomaly ranking using two well-established aggregation methods
detailed as follows.

(a) Graph-level Anomaly Detectors: We first aim to detect graph-level anomalies
using the following baselines:

(1) Weisfeiler-Lehman (WL) graph kernel [She+11], followed by the OCSVM
outlier detector [TC00] that can admit a kernel matrix as input.

(2) graph2vec [Nar+17], for graph-level embedding, followed by the OCSVM
detector.

(3) DOMINANT [Din+19], a GNN-based node anomaly detector, from which
we average the scores to obtain a graph-level anomaly score.

(b) Tabular Data Outlier Detectors: We use the tree-ensemble based Isolation Forest
algorithm [LTZ08] to score outlierness on the meta-features, which is the state-
of-the-art tabular data outlier detector [Emm+15].

8.5. Experiments 155

Table 8.2: Anomaly Detection Results for all methods across all datasets based on AU-
ROC. For baseline methods we run the experiments over a grid of hyperparameters and
report the average performance, along with the std. dev. ADAMM employs a model se-
lection criterion and outputs a unique ranking. Last row reports significance test results,
where (**) and (***) denote that ADAMM is significantly better than baselines w.r.t. the

Wilcoxon Signed Rank Test at p = 0.05 and p = 0.01, respectively.

Dataset Anomaly Type ADAMM WL+BFS WL+IR G2V+BFS G2V+IR DOM.+BFS DOM.+IR

SH

GA1 0.992 0.925 ± 0.01 0.922 ± 0.01 0.839 ± 0.09 0.833 ± 0.09 0.824 ± 0.01 0.821 ± 0.01
GA2 0.968 0.827 ± 0.02 0.829 ± 0.02 0.854 ± 0.02 0.854 ± 0.02 0.834 ± 0.01 0.837 ± 0.01
MA1 0.846 0.591 ± 0.02 0.610 ± 0.03 0.586 ± 0.01 0.592 ± 0.01 0.602 ± 0.02 0.613 ± 0.02
MA2 0.918 0.638 ± 0.02 0.642± 0.02 0.614 ± 0.01 0.618 ± 0.01 0.615 ± 0.01 0.618 ± 0.01

GA1 + MA1 0.955 0.899 ± 0.01 0.897 ± 0.02 0.807 ± 0.01 0.800± 0.01 0.811 ± 0.01 0.807 ± 0.02
GA2 + MA1 0.977 0.841 ± 0.03 0.840 ± 0.01 0.871 ± 0.01 0.869±0.02 0.836 ± 0.02 0.838 ± 0.01

KD

GA1 0.928 0.885 ± 0.01 0.880 ± 0.01 0.835 ± 0.04 0.828 ± 0.04 0.462 ± 0.01 0.450 ± 0.01
GA2 0.939 0.825 ± 0.03 0.828 ± 0.04 0.820 ± 0.01 0.824 ± 0.01 0.543 ± 0.01 0.528 ± 0.01
MA1 0.841 0.727 ± 0.01 0.716 ± 0.03 0.729 ± 0.01 0.718 ± 0.01 0.610 ± 0.01 0.588 ± 0.01
MA2 0.854 0.738 ± 0.02 0.743 ± 0.02 0.736 ± 0.02 0.741 ± 0.02 0.518 ± 0.01 0.505 ± 0.01

GA1 + MA1 0.933 0.901 ± 0.01 0.895 ± 0.01 0.814 ± 0.07 0.805 ± 0.01 0.458 ± 0.01 0.448 ± 0.01
GA2 + MA1 0.916 0.849 ± 0.03 0.849 ±0.04 0.818 ± 0.01 0.805 ± 0.07 0.537 ± 0.01 0.522 ± 0.01

HW
GA1 0.973 0.922 ± 0.01 0.916 ± 0.01 0.922 ±0.03 0.920 ± 0.03 0.713 ± 0.21 0.710 ± 0.21
GA2 0.994 0.895 ± 0.01 0.888 ± 0.01 0.666 ± 0.05 0.660 ± 0.05 0.400 ± 0.07 0.406 ± 0.07
MA2 0.967 0.691 ± 0.02 0.661 ± 0.02 0.706 ± 0.02 0.694 ± 0.01 0.535 ± 0.01 0.527 ± 0.01

MobiNet

GA1 0.526 0.676 ± 0.01 0.678 ± 0.02 0.466 ± 0.07 0.467 ± 0.05 0.320 ± 0.01 0.323 ± 0.01
GA2 0.491 0.487 ± 0.02 0.482 ± 0.03 0.499 ± 0.05 0.505 ± 0.04 0.341± 0.01 0.346 ± 0.01
MA3 0.441 0.558 ± 0.01 0.563 ± 0.01 0.556 ± 0.02 0.574 ± 0.03 0.411± 0.01 0.415 ± 0.01
MA4 0.450 0.492 ± 0.01 0.490 ± 0.01 0.517 ± 0.02 0.524 ± 0.01 0.349± 0.01 0.353 ± 0.0

GA1 + MA3 0.563 0.750 ± 0.01 0.754 ± 0.02 0.451 ± 0.01 0.454 ± 0.02 0.326 ± 0.01 0.329 ± 0.03
GA1 + MA4 0.678 0.743 ± 0.02 0.747 ± 0.01 0.457 ± 0.02 0.460 ± 0.01 0.350± 0.01 0.353 ± 0.02
GA2 + MA3 0.470 0.483 ± 0.01 0.480 ± 0.02 0.505 ± 0.01 0.510 ± 0.02 0.329 ± 0.04 0.332 ± 0.01
GA2 + MA4 0.477 0.494 ± 0.02 0.489 ± 0.01 0.520 ± 0.01 0.526 ± 0.03 0.332 ± 0.01 0.336 ± 0.01

Average AUROC 0.787 0.730 0.728 0.678 0.677 0.524 0.522

Average Rank 2.13 3.08 (**) 2.78 (**) 4.09 (***) 3.74 (***) 6.17 (***) 6 (***)

After having obtained a ranking from (a) the graph-level anomaly detectors and
(b) the tabular data anomaly detectors, we create a unique ranking for pairs of graphs
and metadata, by using: (i) a BFS-style aggregation that first sorts the results of each
stage in descending order of their anomaly score, and then selects the next object that
has the highest anomaly score by visiting the lists in a BFS fashion [LK05]; and (ii)
the Inverse Rank (IR) aggregation method, in which we score each sample by 1

ra
+ 1

rb
,

where ra is the rank by the graph-level anomaly detector and rb by the tabular data
outlier detector.

Overall we construct 6 baselines based on (1)–(3) ⇥ (i)–(ii).
Labeled Anomalies. Our datasets do not come with any ground truth anoma-

lies, therefore, we use the guidance of experts in the fields of accounting and human
mobility to simulate anomalies that are typically present in these datasets and of in-
terest in detecting them. We create two types of graph-level anomalies, as well two
types of metadata-level anomalies.

1) Graph anomalies involve small perturbations in nodes and edges as follows.
• Label change (GA1): We change the label of a node to a randomly chosen new

label. This injection corresponds to entry-error in an accounting dataset, or an
unusual visit to a new POI in human mobility behavior.

• Path injection (GA2): We delete an edge between nodes u and v and rewire
through an intermediary, creating a path u-z-v. This injection mimics money-
laundering in finance, where funds are passed through an intermediate account
instead of being transferred directly. For human mobility, this corresponds to
an unusual stop.

2) Metadata anomalies perturb feature values and reflect different semantics in
both domains.

For Accounting Datasets:
• Unusual back-dating (MA1): We pick a subset of entries with effective date

156 Chapter 8. Anomaly Detection of Attributed Multi-graphs with Metadata

close to the entry date (up to 3 days before), and change the entry date ran-
domly to one of {7, 14, 21} days after the effective date. This corresponds to an
unusual late entry date. We lack information about entry date in HW, hence
our experiments do not use this type of anomaly for this dataset.

• Combination of unrelated transactions (MA2): We merge two unrelated trans-
actions by creating a new one with a unique Journal ID. We set the metadata
entries to a randomly chosen value from the two initial transactions. Note that
this injection also modifies the graph structure into the representation of the
merged journals.

For Human Mobility Dataset:
• Unusual start time (MA3): We change the start time of a trip to a very early

(or late one). This corresponds to a trip occurring in an unusual time.
• Unusual trip duration (MA4): We change the duration of a trip to an unusually

long one.
3) Potpourri anomalies involve a combination of graph and metadata level

anomaly injections, where we pick one graph level anomaly and one metadata level
anomaly from above and inject both to a sample.

We inject anomalies on 5% of the samples in each dataset, where we use half of
the original dataset for training, and the remaining half with the injected anomalies
for testing. Note that the labeled anomalies are used only for evaluation purposes and
not during model training or model selection.

Model Selection. Anomaly detection is typically a fully unsupervised task,
where we lack ground truth labels of which samples are anomalous. As a result, we do
not have a validation set for hyperparameter tuning. For this reason, for each of the
baseline methods, we consider a set of hyperparamater configurations, across which
we report the average performance. This corresponds to the expected performance of
each method if one were to select a configuration at random. For ADAMM we show
that our proposed model selection criterion presented in 8.4.4 can consistently yield
better results than what we would expect when picking hyperparameters at random
(in the absence of any other guidance).

Hyperparameter (HP) Configurations: Detailed HP configurations can be
found in Tab.8.3.

Table 8.3: Hyperparameter Configurations

Hyperparameter Configurations

ADAMM
of centroids K 1, 2, 4
learning rate 1e-4, 1e-3
weight decay 1e-5, 1e-4
�1 0.1
�2 0, 0.1
WL Kernel
WL iterations 1, 2, 4, 8, 16
G2V
G2V iterations 1, 2, 4, 8, 16
DOMINANT
↵ 0.4, 0.6

8.5. Experiments 157

8.5.2 Detection Results

In evaluating proposed ADAMM, we conducted a series of experiments to answer the
following questions:

• Q1) Effectiveness: How effective is ADAMM in detecting graph- and
metadata-level anomalies, as compared to the two-stage baseline approaches?

• Q2) Model Selection: Can our proposed unsupervised model selection cri-
terion for ADAMM select a model (i.e. hyperparameter configuration) that is
better than random picking (i.e. avg. performance across config.s)?

• Q3) Ablation: How important are key components of ADAMM in the detec-
tion results?

A1: To answer the first question, we conduct extensive experiments using all four
datasets and graph, metadata as well as potpourri anomalies. The results are pre-
sented for each method across all datasets and injection types in Table 8.2 based on the
Area Under the Receiver Operator Characteristic Curve (AUROC), and in Table 8.4
based on the Area Under Precision-Recall Curve (AUPRC). We observe that ADAMM
succeeds in detecting both graph-level and metadata-level anomalies effectively. It
outperforms the baseline methods in 3 out of 4 datasets and across all injection types,
where the baselines do not show consistent performance. ADAMM performs consis-
tently well for all types of anomalies, whether they are graph, metadata-level, or even
of mixed type. The only exception is the MobiNet dataset, where the nature of meta-
data information (multiple vectors for a single graph that have to be aggregated) poses
significant challenges1

The superior performance of ADAMM over baselines is also validated using the
Wilcoxon signed rank test. ADAMM not only has the lowest average rank among the
competitors, but is also significantly better at p-value p = 0.05.

A2: The problem of model selection is an important one in unsupervised anomaly
detection. The lack of labels and of a validation set makes it challenging to choose an
effective model. For ADAMM we provide a validation criterion tightly connected to
its loss function (recall Eq. Eq. (8.11)). In Figure 8.3 we see that the model ADAMM
chooses based on its unsupervised criterion achieves consistently better performance
than random picking that corresponds to the average performance across all configura-
tions. This makes ADAMM not only able to spot graph and metadata level anomalies,
but also robust against different hyperparameter choices.

A3: ADAMM exhibits three key building blocks; multi-edge representation learn-
ing, graph-metadata fusion, and a suitable anomaly detection loss. Accordingly, we
perform an ablation study and design threevariants of ADAMM, each excluding the
respective design component to demonstrate its added benefit.

V1. ADAMM without Metadata Fusion: Here we remove the metadata fusion
component and instead we input only the graph-level embeddings ZG to the
membership estimation network. Our goal is to explore if the metadata compo-
nent interferes with the graph-level component by having a negative influence
on graph-level anomaly detection when only such anomalies are present.

1For baseline methods, we score all vectors separately and assign the maximum score as the
anomaly score of the sample. This gives better results than taking the average as the latter dilutes
the signal among multiple vectors.

158 Chapter 8. Anomaly Detection of Attributed Multi-graphs with Metadata

Table 8.4: Anomaly Detection Results for all methods across all datasets based on
AUPRC (Area Under Precision-Recall Curve). For baselines, average performance across
hyperparameters along with the std. dev. is reported. ADAMM outputs a unique ranking
based on a model selection criterion. Last row reports significance test results, where (**)
and (***) denote that ADAMM is significantly better than baselines w.r.t. the Wilcoxon

Signed Rank Test at p = 0.05 and p = 0.01, respectively.

Dataset Anomaly Type ADAMM WL+BFS WL+IR G2V+BFS G2V+IR DOM.+BFS DOM.+IR

SH

GA1 0.939 0.470 ± 0.01 0.461 ± 0.01 0.270 ± 0.01 0.327 ± 0.01 0.327 ± 0.02 0.320 ± 0.01
GA2 0.708 0.214 ± 0.02 0.217 ± 0.02 0.269 ± 0.04 0.252 ± 0.01 0.252 ± 0.01 0.256 ± 0.01
MA1 0.280 0.125 ± 0.01 0.126 ± 0.01 0.118 ± 0.01 0.125 ± 0.01 0.125 ± 0.01 0.126 ± 0.01
MA2 0.599 0.125 ± 0.01 0.125 ± 0.01 0.120 ± 0.01 0.121 ± 0.01 0.121 ± 0.01 0.122 ± 0.01

GA1 + MA1 0.877 0.458± 0.01 0.450 ± 0.01 0.255 ± 0.09 0.246 ± 0.09 0.080 ± 0.01 0.077 ± 0.01
GA2 + MA1 0.836 0.224 ± 0.02 0.225 ± 0.04 0.286 ± 0.03 0.241 ± 0.01 0.097± 0.01 0.093 ± 0.01

KD

GA1 0.553 0.363 ± 0.02 0.347 ± 0.01 0.255 ± 0.09 0.246 ± 0.09 0.08 ± 0.01 0.080± 0.01
GA2 0.430 0.284 ± 0.04 0.283 ± 0.04 0.234± 0.014 0.240 ± 0.01 0.102 ± 0.01 0.098 ± 0.01
MA1 0.141 0.142 ± 0.01 0.136 ± 0.01 0.148 ± 0.002 0.144 ± 0.01 0.106 ± 0.01 0.101 ± 0.01
MA2 0.342 0.117 ± 0.001 0.104 ± 0.01 0.162 ± 0.01 0.164 ± 0.01 0.089 ± 0.01 0.086 ± 0.01

GA1 + MA1 0.677 0.443 ± 0.01 0.424 ± 0.01 0.256 ± 0.12 0.247 ± 0.12 0.080 ± 0.01 0.077 ± 0.01
GA2 + MA1 0.351 0.261 ± 0.04 0.261 ± 0.04 0.237 ± 0.01 0.240 ± 0.01 0.097 ± 0.01 0.094 ± 0.01

HW
GA1 0.866 0.446 ± 0.03 0.438 ± 0.03 0.455 ± 0.10 0.451 ± 0.01 0.314 ± 0.21 0.310 ± 0.21
GA2 0.941 0.292 ± 0.01 0.280 ± 0.02 0.146 ± 0.03 0.144 ± 0.03 0.106 ± 0.04 0.105 ± 0.04
MA2 0.815 0.165 ± 0.01 0.151 ± 0.01 0.175 ± 0.01 0.168 ± 0.01 0.114 ± 0.01 0.110 ± 0.01

MobiNet

GA1 0.050 0.100 ± 0.01 0.102 ± 0.01 0.046 ± 0.01 0.046 ± 0.01 0.066± 0.01 0.065 ± 0.01
GA2 0.043 0.047 ± 0.01 0.047 ± 0.03 0.054 ± 0.01 0.054 ± 0.01 0.069 ± 0.01 0.069 ± 0.01
MA3 0.040 0.054 ± 0.01 0.055 ± 0.01 0.055 ± 0.01 0.057 ± 0.01 0.076 ± 0.01 0.076± 0.01
MA4 0.040 0.047 ± 0.01 0.047 ± 0.01 0.051 ± 0.01 0.051 ± 0.01 0.069 ± 0.01 0.067 ± 0.01

GA1 + MA3 0.052 0.165 ± 0.01 0.166 ± 0.01 0.043 ± 0.01 0.044 ± 0.01 0.067 ± 0.01 0.067 ± 0.01
GA1 + MA4 0.074 0.157 ± 0.01 0.158 ± 0.01 0.046 ± 0.01 0.046 ± 0.01 0.069 ± 0.01 0.068 ± 0.01
GA2 + MA3 0.052 0.044± 0.01 0.044 ± 0.01 0.054 ± 0.01 0.053 ± 0.01 0.066 ± 0.01 0.065 ± 0.01
GA2 + MA4 0.041 0.046 ± 0.01 0.046 ± 0.01 0.055 ± 0.01 0.056 ± 0.01 0.066 ± 0.01 0.066 ± 0.01

Average AUPRC 0.443 0.208 0.204 0.165 0.163 0.131 0.130

Average Rank 2.13 3.91 (***) 4.26 (***) 4.73 (***) 3.95 (***) 4.52 (***) 4.48 (***)

Figure 8.3: Model selection for ADAMM over all models with different hyper-parameter
configurations. The model selected consistently performs better than random picking, i.e.

average/expected performance over all models.

V2. ADAMM without DeepSet: In this version, we remove the DeepSet component
that aims to learn a single representation of the attributed multi-edges. Instead,

8.5. Experiments 159

Table 8.5: Ablation Study Results - Comparing ADAMM against its three variants: (i)
ADAMM without Metadata Fusion, (ii) ADAMM without DeepSet & (iii) ADAMM with

One-Class DeepSVDD loss (OCDL)

Dataset Type ADAMM w/o Metadata w/o DeepSet with OCDL

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

SH
GA1 0.992 0.938 0.989 0.920 0.988 0.920 0.986 0.894
GA2 0.968 0.708 0.961 0.622 0.965 0.758 0.930 0.489
MA2 0.918 0.598 0.898 0.580 0.816 0.427 0.868 0.467

MobiNet GA1 0.526 0.049 0.779 0.179 0.588 0.060 0.577 0.061
GA2 0.491 0.043 0.678 0.079 0.475 0.042 0.472 0.045

we simply average the attributes over each multi-edge.

V3. ADAMM with One-Class DeepSVDD loss: Finally, we compare ADAMM
and its loss function in Eq. Eq. (8.8) with a varint where we replace it with
the loss introduced by the One-Class DeepSVDD[Ruf+18] method which, as we
described in 8.4.3, maps all normal instances to a single hypersphere centered
around a fixed centroid.

Results of the ablation study are given in Table 8.5 for SH (as a representative
of the transaction datasets) as well as the MobiNet dataset. We see that ADAMM
outperforms all of its variants on the SH dataset, demonstrating the importance of the
various components in anomaly detection. The improvement is particularly noticeable
for the MA2 type anomalies (merge of unrelated transactions), which is of mixed type
(both metadata and graph). We note that ADAMM without metadata also performs
well for graph-only anomalies of type GA1 and GA2. In fact, excluding metadata lifts
the interference on MobiNet, leading to better detection.

8.5.3 Case Studies

Through quantitative experiments in 4.5.2 we showed that ADAMM can successfully
spot expert-guided injected anomalies. To further validate the effectiveness of our
method, we consider the original SH dataset that contains no injected anomalies.
That is, we use the whole dataset of 39, 011 graphs with metadata for training and
inspect their anomaly scores obtained by Eq. Eq. (8.7). As presented in Figure 8.4
(left), we see that ADAMM is able to highlight a small fraction of the samples as
standing out from the majority.

As ADAMM is unique in handling complex directed graphs with attributes and
multi-edges, we take a closer look at two example graphs as shown in Figure 8.4 (right).
Self-loops are the common feature of these graphs: the first has one self-loop with a
large dollar amount ($1.5M), while the second contains 38 self-loops in one graph.
From an accounting domain perspective, self-loops represent transactions recorded by
moving dollars within the same general ledger (GL) account. From a bookkeeping
standpoint, these within-GL movements indicate the presence of misidentification of
the correct sub-ledger account in the recording of a prior transaction. The self-loop in
the current journal entry is then designed to correct such a misidentification at a later
date. In the first graph A, a total of $1.5M was recorded in a sub-ledger incorrectly,
necessitating the current self-loop transaction to correct the cumulative mistakes made
earlier. The second graph B (with 38 self-loops) is even more pronounced in terms of
the number of corrections involved as well as the presence of errors beyond the simple
one illustrated in the first example.

Based on this transaction-level bookkeeping analysis, these two spotted transac-
tions are indeed unusual and worthy of the auditor’s attention to examine further.

160 Chapter 8. Anomaly Detection of Attributed Multi-graphs with Metadata

1

A B

$1.5M
38

. .
 .

Figure 8.4: Analyzing detected accounting anomalies. (Left) Anomaly scores (vs journal
ID) of all 39, 011 entries in the SH dataset. (Right) Two example graphs, A and B, that

are identified as anomalous by ADAMM in SH.

ADAMM’s ability to spot these anomalies involving edge-attributes and multi-edges
can be of assistance to the accounting/auditing practitioners.

8.6 Conclusion

In this work we addressed an anomaly detection problem that relates to one of the key
challenges of big data mining, that is, data complexity. In particular, we considered
a graph database consisting of node- and edge-attributed directed multi-graphs with
associated metadata, and proposed a new multi-modal anomaly detection approach
called ADAMM. In a unified neural network framework, ADAMM first captures a
set representation of the multi-edges, learns a graph-level embedding, fuses the graph
and metadata in a joint embedding space, on which it finally employs an unsupervised
anomaly loss based on a multi-centered data distribution. To our knowledge, ADAMM
is the first unified method that can tackle anomaly detection on complex data of this
nature in an end-to-end fashion. Through extensive experiments on datasets from two
real-world domains, namely accounting and urban mobility, we showed that ADAMM
significantly outperforms all two-stage baselines that handle graphs and metadata
separately. We open-source ADAMM’s code for future research as well as practical use
on possibly other real-world domains.

161

Part V

Conclusion

163

Chapter 9

Summary and Future Directions

9.1 Summary

This thesis has explored four distinct yet interconnected aspects of Graph Neural
Networks (GNNs): the node-level fundamental challenge like oversmoothing, graph-
level expressiveness towards universal function approximation, permutation-invariant
generative models on graphs, and applications of GNNs such as graph-level anomaly
detection. These four parts cover a wide range of topics within GNNs, spanning funda-
mental problems, theoretical understandings, model development, learning paradigms,
and practical applications, with the shared goal of achieving effective graph represen-
tations that encode as much rich structural information within graphs as possible.

Recently, the concept of foundation model [Bom+21] attracts increasing attention
across various domains. Large language models (LLM) like GPT-4 [Ope23], one type
of the powerful foundation model in language domain, has revolutionized our daily life.
The possibility of having powerful foundation models on graphs that are capable of
providing representations for solving wide range of downstreaming graph tasks is still
unknown and is a hot and active research topic. Many topics explored in this thesis are
intended to pave the way for building a graph foundation model. To understand the
prerequisites for a graph foundation model, let’s examine the success of large language
models (LLMs). Apart from the unique characteristics of the language domain, which
contains dense human knowledge, the success of LLMs relies on at least three crucial
components: the availability of a large amount of data, the power of the transformer
architecture as a universal function approximator [Yun+20], and effective generative
pretraining using the autoregressive next-token prediction task. Without the func-
tion approximation universality of transformer architecture, there will potentially be
a ceiling for the model during parameter scaling, causing the scaling laws of LLMs to
become less effective. Additionally, the simple yet highly effective next-token predic-
tion as a generative loss captures the rich information within the abundant training
data by modeling the entire joint distribution of sequences, making human-level intel-
ligence possible. Based on these insights and hypotheses, I have focused on enhancing
the expressiveness of graph neural networks (GNNs) toward becoming universal func-
tion approximators for functions on graphs to achieve more knowledge distillation
and storage for emergence and homogenization capabilities. Furthermore, I have con-
centrated on the generative modeling of graphs to facilitate generative pretraining,
such that the pretext tasks can condense rich knowledge within data. Of course,
these explorations only cover limited pieces of graph foundation model. Given the
intrinsic distinction between graphs and languages, there are numerous difficulties to
achieve emergence and homogenization in graph domain. For example, different from
language tasks, graphs are abstract data used for diverse applications and domains
without context intersection, such that cross-domain homogenization is significantly
challenging. Finding shared cornerstones and elements (for tokenization) is the key to

164 Chapter 9. Summary and Future Directions

achieve homogenization. Furthermore, killer applications are still lacking in the graph
domain compared to the widely used chatbots in the language domain that are useful
and approachable for everyone. This limits the resources and attention devoted to
developing graph foundation models. While drug discovery has the potential to be a
killer application, it remains a challenging and time-consuming field due to the diffi-
culties of having sophisticated domain expert knowledge and lengthy process involved
in testing and conducting clinical trials. Recently, [Liu+23] gives a comprehensive
overview of the current progress of developing graph foundation models, highlighted
many challenges and directions. This thesis contributes to the journey toward achiev-
ing a graph foundation model, and additional research will be conducted in the future
to continue in this direction. I hope that in the near future, large-scale graph models
will have groundbreaking applications in various domains.

9.2 Future directions

There are many important questions left in the area of GNNs, and many new prob-
lems are arising in the intersection between LLMs and GNNs. This section contains
problems that interest me the most.

9.2.1 Left problems in GNNs

Many theories have been developed, such as the expressiveness hierarchy of GNNs
[Zha+23a], approximation power of graph functions [GR22], ability of solving com-
binatorial NP-hard problems [GR22], generalization bound of GNNs [Ju+23] and
extrapolation ability [Xu+21]. These theories are far from being fully developed.

Fine-grained expressivity measurement. Previous studies on expressiveness,
based on the graph isomorphism test framework, equate universality with a complete
isomorphism test [Che+19b]. However, the isomorphism test is not sufficiently fine-
grained to characterize detailed function approximation abilities. A model’s ability
to distinguish two given graphs does not necessarily imply its capability to model
any functions on these graphs. Therefore, other fine-grained measurements of expres-
siveness and approximation ability are essential to determine what functions can be
approximated. Recently, Zhang et al. [Zha+24a] proposed a new expressivity mea-
surement called homomorphism expressivity, which provides a comprehensive and
practical tool for fine-grained and quantitative expressivity comparison in counting
graphs under homomorphism. In the future, identifying the exact graph function
family that can be approximated by a given graph network would be exciting. These
new measurements can further drive the development of highly expressive and scalable
graph networks, such as by improving higher-order graph networks.

Approximately equivariant model. A fundamental limitation of graph net-
works is their need to be permutation equivariant. This requirement imposes a strict
constraint on the model architecture, which has both advantages and disadvantages.
On the positive side, this constraint ensures that all approximated functions are nat-
urally permutation equivariant, aligning with the default inductive bias and reducing
the amount of data needed for learning. However, it also restricts the model’s expres-
siveness, preventing it from being universal and limiting its ability to approximate
certain functions, such as counting complex substructures. A well-known family of
highly expressive equivariant models is the higher-order models based on the higher-
order Weisfeiler-Lehman test [Zha+22b], which rely on exponential computational
and memory complexity. This indicates that, in a fully equivariant setting, mod-
els trade expressivity for computational cost, making them impractical for real-world

9.2. Future directions 165

applications. Recently, AlphaFold3 [Abr+24] demonstrates that equivariance is not
necessary in the structure prediction module, showing significant improvements over
AlphaFold2, which is a fully equivariant model. Similarly, AlphaTensor employs an
approximately equivariant architecture to discover faster tensor operations. By break-
ing equivariance, these models achieve greater simplicity and an expanded function
space. The evil of equivariance is also discussed in Pard [ZDA24], which shows that
without breaking the symmetry, general graph transformation from one graph to an-
other modified graph is not possible. Future research should systematically study the
influence of varying degrees of equivariance. Developing approximately equivariant
models that expand the function space while preserving a certain degree of symmetry
is a promising direction to balance between full equivariance and completely ignoring
inherent symmetries.

Generative modeling improvement. Generative pretraining is a key corner-
stone for foundation models, making generative modeling essential in graph represen-
tation learning. While Pard [ZDA24] has significantly improved the generation quality
of small graphs, many challenges remain in this area. Pard combines autoregressive
approach with diffusion model, with the categorical diffusion model being crucial due
to the discrete nature of graph edges and node features. Pard relies on the improved
discrete diffusion [Zha+24b] for better scalability and variational loss computation.
However, supporting classifier guidance conditional generation [DN21] based on the
pretrained unconditional model is nontrivial. Classifier guidance for continuous-state
diffusion was initially developed by [SD+15], using the locality property of Gaussian
distributions and Taylor expansion to make sampling tractable. This method does not
work for categorical distributions, which lack the locality assumption and cannot be
approximated using Taylor expansion as they are not differentiable. Some approaches
transform the categorical distribution back to an approximate Gaussian distribution
[Vig+23], but this can introduce significant approximation errors. Another challenge
is to build the generative model for a single giant graph like recommendation system
contains trillions of nodes and edges. Previous generative model focuses on modeling
the distribution of a collection of small graphs, with each graph being i.i.d.. How
to model the distribution of a single giant graph is unclear, with both computaton
challenge and the non-i.i.d. nature of all elements in the graph.

Large-scale graph foundation model. Recently there are many achievements
of building foundation model in domains like language and vision, and even multi-
modality, it is still not clear for the promise of graph foundation model. First, unlike
the domain of language that contains dense and crucial human knowledge, graph data
is diverse and more domain specific. Hence the effectiveness of pretrained large scale
graph foundation model may only benefits a particular narrow domain. Second, the
development of generative pre-training method is not mature yet, while diffusion mod-
els like [ZDA24] show a promising approach. Also, the expressiveness of current model
is far from being universal function approximator, which can limit the ability of pre-
trained model. Recently, there is some explorations of training large scale pretrained
model in specific domain like molecular [Ji+24], it is exciting to see a domain-specific
foundation model being developed first. Notice that the famous AlphaFold3 [Abr+24]
is also type of graph foundation model, with additional 3D geometric structure infor-
mation available outside of the plain graph.

9.2.2 New problems in the intersection of LLMs and GNNs

Recent study [Wan+23] shows that while GPT-4 can understand basic graphs, it strug-
gles with more complex graph-related problems, such as calculating graph properties.

166 Chapter 9. Summary and Future Directions

This limitation highlights that current pre-trained models, despite their multimodal
abilities, lack sufficient graph reasoning skills. Importantly, graph reasoning ability
is crucial for human for solving complex tasks, and graph as a mathematical model-
ing tool is widely used in daily life to simplify real-world problems to derive optimal
solutions like shortest-path trajectory or navigation with A* algorithm. Hence, im-
proving LLMs with graph reasoning is a key direction for the next-generation LLMs
like GPT-5, potentially enabling it to solve challenging tasks without extensive multi-
step prompting.

There are many important directions that I have interest. 1) Using Graphs to
Enhance Data Generation Pipelines. With the scaling law of LLMs, data quality
and size become the essential part of improving model abilities. For a vision-language
pretrained foundation model, the data creation within language and vision are already
widely explored with diminishing room for discovering new augmentation strategies.
Therefore, it would be intriguing to generate graph datasets with various graph rea-
soning tasks, forming (graph, reasoning task) pairs to augment the data pipeline.
2) Vision-language-graph multi-modal pretraining. Graphs can be viewed as a
unified compression language for both text and vision. For example, a paragraph or an
essay can be condensed into a graph with nodes representing entities and edges repre-
senting their relationships, effectively creating a compact knowledge graph. Similarly,
images can be summarized as scene graphs. Developing (image, graph) and (text,
graph) pairs could be a significant step towards a multimodal foundation model that
incorporates graphs. This would also provide users with simplified control over text
and image generation by editing the underlying graph. Moreover, more complex rea-
soning tasks in language and image domains can be facilitated with the aid of graphs
in the task generation pipeline. My work on generative graph models will be crucial
for designing training objectives and adapting transformers to support graph-involved
multimodal generative pretraining. 3) Retrieval augmented generation (RAG)
with relational content. RAG, which allows LLMs to utilize external content and
databases, is a valuable direction. When working with relational external databases,
such as knowledge graphs and relational tables, developing a vector database that
encodes graph structural information for content ranking is important. Equipping
LLMs with the ability to directly process graphs within RAG is also a significant
development. 4) LLM Planning with Graph-Based Decomposition. Research
shows that LLMs often struggle with complex tasks but can improve significantly
through multi-step reasoning approaches like chain-of-thought or graph-of-thought.
Implementing text-to-graph based conditional generative models for task decomposi-
tion could enhance LLMs’ abilities during inference. Additionally, this approach can
involve multiple LLM agents working collaboratively to solve complex tasks.

167

Bibliography

[Abb+21] Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas
Lukasiewicz. “The Surprising Power of Graph Neural Networks with Ran-
dom Node Initialization”. In: Proceedings of the Thirtieth International
Joint Conference on Artifical Intelligence (IJCAI). 2021.

[Abr+24] Josh Abramson et al. “Accurate structure prediction of biomolecular in-
teractions with AlphaFold 3”. In: Nature (2024), pp. 1–3.

[AEH+19] Sami Abu-El-Haija et al. “Mixhop: Higher-order graph convolutional ar-
chitectures via sparsified neighborhood mixing”. In: international confer-
ence on machine learning. PMLR. 2019, pp. 21–29.

[Agg17] Charu C Aggarwal. An introduction to outlier analysis. Springer, 2017.
[Agg15] Charu C Aggarwal. “Outlier analysis”. In: Data mining. Springer. 2015,

pp. 237–263.
[Ako21] Leman Akoglu. “Anomaly Mining: Past, Present and Future”. In: Inter-

national Conference on Information & Knowledge Management. 2021,
pp. 1–2.

[ATK15] Leman Akoglu, Hanghang Tong, and Danai Koutra. “Graph based
anomaly detection and description: a survey”. In: Data mining and knowl-
edge discovery 29 (2015), pp. 626–688.

[AY21] Uri Alon and Eran Yahav. “On the Bottleneck of Graph Neural Networks
and its Practical Implications”. In: International Conference on Learning
Representations. 2021. url: https : / / openreview . net / forum ? id =
i80OPhOCVH2.

[AH18] Namrata Anand and Possun Huang. “Generative modeling for protein
structures”. In: Advances in neural information processing systems 31
(2018).

[And12] William J Anderson. Continuous-time Markov chains: An applications-
oriented approach. Springer Science & Business Media, 2012.

[Arv+20] Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbit-
sky. “On weisfeiler-leman invariance: subgraph counts and related graph
properties”. In: Journal of Computer and System Sciences 113 (2020),
pp. 42–59.

[Aus+21] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Ri-
anne van den Berg. “Structured denoising diffusion models in discrete
state-spaces”. In: Advances in Neural Information Processing Systems 34
(2021), pp. 17981–17993.

[AL21] Waiss Azizian and Marc Lelarge. “Expressive Power of Invariant and
Equivariant Graph Neural Networks”. In: International Conference on
Learning Representations. 2021. url: https://openreview.net/forum?
id=lxHgXYN4bwl.

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=lxHgXYN4bwl
https://openreview.net/forum?id=lxHgXYN4bwl

168 Bibliography

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer nor-
malization”. In: CoRR abs/1607.06450 (2016).

[BES80] László Babai, Paul Erdos, and Stanley M Selkow. “Random graph iso-
morphism”. In: SIaM Journal on computing 9.3 (1980), pp. 628–635.

[BG98] Suresh Balakrishnama and Aravind Ganapathiraju. “Linear discriminant
analysis-a brief tutorial”. In: Institute for Signal and information Process-
ing 18.1998 (1998), pp. 1–8.

[Bal04] R Balakrishnan. “The energy of a graph”. In: Linear Algebra and its
Applications 387 (2004), pp. 287–295.

[Bal+21] Muhammet Balcilar, Pierre Héroux, Benoit Gaüzère, Pascal Vasseur,
Sébastien Adam, and Paul Honeine. “Breaking the Limits of Message
Passing Graph Neural Networks”. In: Proceedings of the 38th Interna-
tional Conference on Machine Learning (ICML). 2021.

[Bar+21] Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov.
“Graph Neural Networks with Local Graph Parameters”. In: (2021).

[Bea+21] Dominique Beani, Saro Passaro, Vincent Létourneau, Will Hamilton,
Gabriele Corso, and Pietro Lió. “Directional Graph Networks”. In: Pro-
ceedings of the 38th International Conference on Machine Learning
(ICML). 2021, pp. 748–758.

[BCV13] Y. Bengio, A. Courville, and P. Vincent. “Representation Learning: A Re-
view and New Perspectives”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 35.8 (Aug. 2013). Zu bearbeitendes Review,
pp. 1798–1828. issn: 0162-8828. doi: 10.1109/TPAMI.2013.50. url:
http://ieeexplore.ieee.org/document/6472238/.

[BLA22] Dimitris Berberidis, Pierre J Liang, and Leman Akoglu. “Summariz-
ing Labeled Multi-graphs”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer. 2022, pp. 53–
68.

[Bev+22] Beatrice Bevilacqua et al. “Equivariant Subgraph Aggregation Net-
works”. In: International Conference on Learning Representations. 2022.
url: https://openreview.net/forum?id=dFbKQaRk15w.

[Bod+21a] Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro
Liò, Guido Montúfar, and Michael Bronstein. “Weisfeiler and Lehman Go
Cellular: CW Networks”. In: Advances in Neural Information Processing
Systems. Vol. 34. 2021.

[Bod+21b] Cristian Bodnar, Fabrizio Frasca, Yuguang Wang, Nina Otter, Guido F
Montufar, Pietro Lió, and Michael Bronstein. “Weisfeiler and Lehman
Go Topological: Message Passing Simplicial Networks”. In: Proceedings
of the 38th International Conference on Machine Learning (ICML). 2021,
pp. 1026–1037.

[Bom+21] Rishi Bommasani et al. “On the opportunities and risks of foundation
models”. In: arXiv preprint arXiv:2108.07258 (2021).

[Bon+20] Angela Bonifati, Irena Holubová, Arnau Prat-Pérez, and Sherif Sakr.
“Graph generators: State of the art and open challenges”. In: ACM com-
puting sunrveys (CsunR) 53.2 (2020), pp. 1–30.

https://doi.org/10.1109/TPAMI.2013.50
http://ieeexplore.ieee.org/document/6472238/
https://openreview.net/forum?id=dFbKQaRk15w

Bibliography 169

[Bor+05] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vish-
wanathan, Alex J Smola, and Hans-Peter Kriegel. “Protein function pre-
diction via graph kernels”. In: Bioinformatics 21.suppl_1 (2005), pp. i47–
i56.

[Bou+20] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M
Bronstein. “Improving graph neural network expressivity via subgraph
isomorphism counting”. In: arXiv preprint arXiv:2006.09252 (2020).

[Bre+00] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg
Sander. “LOF: identifying density-based local outliers”. In: Proceedings
of the 2000 ACM SIGMOD international conference on Management of
data. 2000, pp. 93–104.

[Bro+20] Tom Brown et al. “Language models are few-shot learners”. In: Advances
in neural information processing systems 33 (2020), pp. 1877–1901.

[Cai+23] Chen Cai, Truong Son Hy, Rose Yu, and Yusu Wang. “On the Connection
Between MPNN and Graph Transformer”. In: International Conference
on Machine Learning (2023).

[CFI92] Jin-Yi Cai, Martin Fürer, and Neil Immerman. “An optimal lower bound
on the number of variables for graph identification”. In: Combinatorica
12.4 (1992), pp. 389–410.

[Cam+22] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth,
George Deligiannidis, and Arnaud Doucet. “A continuous time frame-
work for discrete denoising models”. In: Advances in Neural Information
Processing Systems 35 (2022), pp. 28266–28279.

[Cam+16] Guilherme O Campos et al. “On the evaluation of unsupervised outlier
detection: measures, datasets, and an empirical study”. In: Data mining
and knowledge discovery 30.4 (2016), pp. 891–927.

[CC19] Raghavendra Chalapathy and Sanjay Chawla. “Deep learning for
anomaly detection: A survey”. In: arXiv preprint arXiv:1901.03407
(2019).

[Cha+15] Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi
Ma. “PCANet: A simple deep learning baseline for image classification?”
In: IEEE Transactions on Image Processing 24.12 (2015), pp. 5017–5032.

[CBK09] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detec-
tion: A survey”. In: ACM computing surveys (CSUR) 41.3 (2009), pp. 1–
58.

[Cha+22] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman.
MaskGIT: Masked Generative Image Transformer. 2022. arXiv: 2202.
04200 [cs.CV].

[CSZ06] Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien. Semi-
Supervised Learning. 2006.

[Che+20a] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. “Measur-
ing and relieving the over-smoothing problem for graph neural networks
from the topological view”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 34. 2020, pp. 3438–3445.

[CCB20] Lei Chen, Zhengdao Chen, and Joan Bruna. “On graph neural networks
versus graph-augmented mlps”. In: arXiv preprint arXiv:2010.15116
(2020).

https://arxiv.org/abs/2202.04200
https://arxiv.org/abs/2202.04200

170 Bibliography

[Che23] Ting Chen. “On the importance of noise scheduling for diffusion models”.
In: arXiv preprint arXiv:2301.10972 (2023).

[Che+21] Xiaohui Chen, Xu Han, Jiajing Hu, Francisco Ruiz, and Liping Liu. “Or-
der Matters: Probabilistic Modeling of Node Sequence for Graph Gener-
ation”. In: International Conference on Machine Learning. PMLR. 2021,
pp. 1630–1639.

[Che+20b] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. “Can
graph neural networks count substructures?” In: arXiv preprint
arXiv:2002.04025 (2020).

[Che+19a] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. “On the
equivalence between graph isomorphism testing and function approxi-
mation with GNNs”. In: Advances in Neural Information Processing Sys-
tems. 2019.

[Che+19b] Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. “On the
equivalence between graph isomorphism testing and function approxima-
tion with GNNs”. In: Advances in neural information processing systems
32 (2019).

[Chi+19] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-
Jui Hsieh. “Cluster-gcn: An efficient algorithm for training deep and
large graph convolutional networks”. In: Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2019, pp. 257–266.

[Cho+21] Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. “Deep learn-
ing for anomaly detection in time-series data: review, analysis, and guide-
lines”. In: IEEE Access 9 (2021), pp. 120043–120065.

[Cor+20] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar
Veličković. “Principal Neighbourhood Aggregation for Graph Nets”. In:
Advances in Neural Information Processing Systems. Vol. 33. 2020,
pp. 13260–13271.

[CMR21] Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. “Reconstruc-
tion for powerful graph representations”. In: Advances in Neural Infor-
mation Processing Systems 34 (2021).

[DDK12] Abhimanyu Das, Anirban Dasgupta, and Ravi Kumar. “Selecting diverse
features via spectral regularization”. In: NeurIPS 25 (2012).

[Das+20] George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Vir-
maux. “Coloring Graph Neural Networks for Node Disambiguation”. In:
Proceedings of the Twenty-Ninth International Joint Conference on Arti-
ficial Intelligence, IJCAI-20. International Joint Conferences on Artificial
Intelligence Organization, 2020, pp. 2126–2132.

[De+22] sunparna De, Maria Bermudez-Edo, Honghui Xu, and Zhipeng Cai.
“Deep generative models in the industrial internet of things: a sunrvey”.
In: IEEE Transactions on Industrial Informatics 18.9 (2022), pp. 5728–
5737.

[DCK18] Nicola De Cao and Thomas Kipf. “MolGAN: An implicit generative
model for small molecular graphs”. In: arXiv preprint arXiv:1805.11973
(2018).

Bibliography 171

[DCO20] Ahmet Demirkaya, Jiasi Chen, and Samet Oymak. “Exploring the role
of loss functions in multiclass classification”. In: 2020 54th annual con-
ference on information sciences and systems (ciss). IEEE. 2020, pp. 1–
5.

[Den+09] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
“ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition. 2009, pp. 248–
255. doi: 10.1109/CVPR.2009.5206848.

[DN21] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat gans on
image synthesis”. In: Advances in neural information processing systems
34 (2021), pp. 8780–8794.

[Din+19] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. “Deep
anomaly detection on attributed networks”. In: Proceedings of the 2019
SIAM International Conference on Data Mining. SIAM. 2019, pp. 594–
602.

[DD03] Paul D Dobson and Andrew J Doig. “Distinguishing enzyme structures
from non-enzymes without alignments”. In: Journal of molecular biology
330.4 (2003), pp. 771–783.

[Don+17] Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang.
MuseGAN: Multi-track Sequential Generative Adversarial Networks for
Symbolic Music Generation and Accompaniment. 2017. arXiv: 1709 .
06298 [eess.AS].

[DDL22] Mohammed Haroon Dupty, Yanfei Dong, and Wee Sun Lee. “PF-GNN:
Differentiable particle filtering based approximation of universal graph
representations”. In: International Conference on Learning Representa-
tions. 2022. url: https://openreview.net/forum?id=oh4TirnfSem.

[Duv+15] David K Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre,
Rafael Gómez-Bombarelli, Timothy Hirzel, Alán Aspuru-Guzik, and
Ryan P Adams. “Convolutional Networks on Graphs for Learning Molec-
ular Fingerprints”. In: Advances in neural information processing sys-
tems. 2015.

[Dwi+20] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua
Bengio, and Xavier Bresson. “Benchmarking graph neural networks”. In:
arXiv preprint arXiv:2003.00982 (2020).

[EHC09] William Eberle, Lawrence Holder, and Diane Cook. “Identifying threats
using graph-based anomaly detection”. In: Mach. Learn. in Cyber Trust.
2009.

[Elt+19] Daniel C Elton, Zois Boukouvalas, Mark D Fuge, and Peter W Chung.
“Deep learning for molecular design—a review of the state of the art”.
In: Molecular Systems Design & Engineering 4.4 (2019), pp. 828–849.

[Emm+15] Andrew Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and
Weng-Keen Wong. “A meta-analysis of the anomaly detection problem”.
In: arXiv preprint arXiv:1503.01158 (2015).

[Emm+13] Andrew F Emmott, Shubhomoy Das, Thomas Dietterich, Alan Fern, and
Weng-Keen Wong. “Systematic construction of anomaly detection bench-
marks from real data”. In: Proceedings of the ACM SIGKDD workshop
on outlier detection and description. 2013, pp. 16–21.

https://doi.org/10.1109/CVPR.2009.5206848
https://arxiv.org/abs/1709.06298
https://arxiv.org/abs/1709.06298
https://openreview.net/forum?id=oh4TirnfSem

172 Bibliography

[Err+20] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. “A
Fair Comparison of Graph Neural Networks for Graph Classification”.
In: International Conference on Learning Representations (ICLR). 2020.
url: https://openreview.net/forum?id=HygDF6NFPB.

[ERO20] Patrick Esser, Robin Rombach, and Björn Ommer. Taming Transformers
for High-Resolution Image Synthesis. 2020. arXiv: 2012.09841 [cs.CV].

[Fan+19] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and
Dawei Yin. “Graph neural networks for social recommendation”. In: The
World Wide Web Conference. 2019, pp. 417–426.

[Fan+23] Wenqi Fan et al. “Generative diffusion models on graphs: Methods and
applications”. In: arXiv preprint arXiv:2302.02591 (2023).

[Fär+10] Ines Färber et al. “On using class-labels in evaluation of clusterings”. In:
MultiClust: 1st international workshop on discovering, summarizing and
using multiple clusterings held in conjunction with KDD. 2010, p. 1.

[FYW20] M. Fey, J. G. Yuen, and F. Weichert. “Hierarchical Inter-Message Pass-
ing for Learning on Molecular Graphs”. In: ICML Graph Representation
Learning and Beyond (GRL+) Workhop. 2020.

[Fey19] Matthias Fey. “Just Jump: Dynamic Neighborhood Aggregation in
Graph Neural Networks.” In: CoRR abs/1904.04849 (2019).

[FL19] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning
with PyTorch Geometric”. In: ICLR Workshop on Representation Learn-
ing on Graphs and Manifolds. 2019.

[For96] Scott Fortin. “The graph isomorphism problem”. In: (1996).
[Fra+22] Fabrizio Frasca, Beatrice Bevilacqua, Michael M Bronstein, and Haggai

Maron. “Understanding and extending subgraph gnns by rethinking their
symmetries”. In: arXiv preprint arXiv:2206.11140 (2022).

[Gal+08] Brian Gallagher, Hanghang Tong, Tina Eliassi-Rad, and Christos Falout-
sos. “Using ghost edges for classification in sparsely labeled networks.”
In: International Conference on Knowledge Discovery & Data Mining.
ACM, 2008, pp. 256–264. url: http://dblp.uni-trier.de/db/conf/
kdd/kdd2008.html#GallagherTEF08.

[GJJ20] Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. “Generalization and
representational limits of graph neural networks”. In: International Con-
ference on Machine Learning. PMLR. 2020, pp. 3419–3430.

[Gee20] Floris Geerts. “The expressive power of kth-order invariant graph net-
works”. In: arXiv preprint arXiv:2007.12035 (2020).

[GR22] Floris Geerts and Juan L Reutter. “Expressiveness and Approximation
Properties of Graph Neural Networks”. In: International Conference on
Learning Representations. 2022. url: https://openreview.net/forum?
id=wIzUeM3TAU.

[GK86] Paul Geladi and Bruce R Kowalski. “Partial least-squares regression: a
tutorial”. In: Analytica chimica acta 185 (1986), pp. 1–17.

[Gil01] Daniel T Gillespie. “Approximate accelerated stochastic simulation of
chemically reacting systems”. In: The Journal of chemical physics 115.4
(2001), pp. 1716–1733.

https://openreview.net/forum?id=HygDF6NFPB
https://arxiv.org/abs/2012.09841
http://dblp.uni-trier.de/db/conf/kdd/kdd2008.html#GallagherTEF08
http://dblp.uni-trier.de/db/conf/kdd/kdd2008.html#GallagherTEF08
https://openreview.net/forum?id=wIzUeM3TAU
https://openreview.net/forum?id=wIzUeM3TAU

Bibliography 173

[Gil77] Daniel T Gillespie. “Exact stochastic simulation of coupled chemical re-
actions”. In: The journal of physical chemistry 81.25 (1977), pp. 2340–
2361.

[Gil+17] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. “Neural message passing for quantum chemistry”. In:
International conference on machine learning. PMLR. 2017, pp. 1263–
1272.

[GIM99] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. “Similarity Search
in High Dimensions via Hashing”. In: The VLDB Journal. 1999, pp. 518–
529. url: http://citeseer.ist.psu.edu/203242.html.

[GB10] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of train-
ing deep feedforward neural networks”. In: Proceedings of the 13th In-
ternational Conference on Artificial Intelligence and Statistics. 2010,
pp. 249–256.

[GV89] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 1989.

[GM+11] Laura Gonzalez-Malerva et al. “High-throughput ectopic expression
screen for tamoxifen resistance identifies an atypical kinase that blocks
autophagy”. In: Proceedings of the National Academy of Sciences 108.5
(2011), pp. 2058–2063.

[GJR20] Nikhil Goyal, Harsh Vardhan Jain, and Sayan Ranu. “Graphgen: A scal-
able approach to domain-agnostic labeled graph generation”. In: Proceed-
ings of The Web Conference 2020. 2020, pp. 1253–1263.

[Gro21] Martin Grohe. “The logic of graph neural networks”. In: 2021 36th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE.
2021, pp. 1–17.

[GO15] Martin Grohe and Martin Otto. “Pebble games and linear equations”. In:
The Journal of Symbolic Logic 80.3 (2015), pp. 797–844.

[GL16] Aditya Grover and Jure Leskovec. “node2vec: Scalable feature learning
for networks”. In: Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining. 2016, pp. 855–864.

[Gup+13] Manish Gupta, Jing Gao, Charu C Aggarwal, and Jiawei Han. “Out-
lier detection for temporal data: A survey”. In: IEEE Transactions on
Knowledge and data Engineering 26.9 (2013), pp. 2250–2267.

[GLZ09] Ivan Gutman, Xueliang Li, and Jianbin Zhang. “Graph energy”. In: Anal-
ysis of Complex Networks: From Biology to Linguistics (2009), pp. 145–
174.

[HYL17] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representa-
tion learning on large graphs”. In: Advances in neural information pro-
cessing systems. 2017, pp. 1024–1034.

[Har+16] Christopher R Harshaw, Robert A Bridges, Michael D Iannacone, Joel
W Reed, and John R Goodall. “Graphprints: Towards a graph analytic
method for network anomaly detection”. In: Proceedings of the 11th An-
nual Cyber and Information Security Research Conference. 2016, pp. 1–
4.

[Haw80] Douglas M Hawkins. Identification of outliers. Vol. 11. Springer, 1980.

http://citeseer.ist.psu.edu/203242.html

174 Bibliography

[Haw04] Douglas M Hawkins. “The problem of overfitting”. In: Journal of chemical
information and computer sciences 44.1 (2004), pp. 1–12.

[He+16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep Resid-
ual Learning for Image Recognition”. In: Proceedings of 2016 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2016,
pp. 770–778.

[He+15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification”. In: Proceedings of the IEEE international Conference on
Computer Vision. 2015, pp. 1026–1034.

[HJA20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion proba-
bilistic models”. In: Advances in Neural Information Processing Systems
33 (2020), pp. 6840–6851.

[Ho+22] Jonathan Ho et al. “Imagen video: High definition video generation with
diffusion models”. In: arXiv preprint arXiv:2210.02303 (2022).

[Hoo+22a] Emiel Hoogeboom, Alexey A. Gritsenko, Jasmijn Bastings, Ben Poole,
Rianne van den Berg, and Tim Salimans. “Autoregressive Diffusion Mod-
els”. In: International Conference on Learning Representations. 2022.
url: https://openreview.net/forum?id=Lm8T39vLDTE.

[Hoo+21] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max
Welling. “Argmax flows and multinomial diffusion: Learning categorical
distributions”. In: Advances in Neural Information Processing Systems
34 (2021), pp. 12454–12465.

[Hoo+22b] Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max
Welling. “Equivariant Diffusion for Molecule Generation in 3D”. In: Pro-
ceedings of the 39th International Conference on Machine Learning. Ed.
by Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato. Vol. 162. Proceedings of Machine Learning
Research. PMLR, 2022, pp. 8867–8887. url: https://proceedings.
mlr.press/v162/hoogeboom22a.html.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer
feedforward networks are universal approximators”. In: Neural networks
2.5 (1989), pp. 359–366.

[Hu+20a] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vi-
jay Pande, and Jure Leskovec. “Strategies for Pre-training Graph Neural
Networks”. In: International Conference on Learning Representations.
2020. url: https://openreview.net/forum?id=HJlWWJSFDH.

[Hu+20b] Weihua Hu et al. “Open Graph Benchmark: Datasets for Machine Learn-
ing on Graphs”. In: arXiv preprint arXiv:2005.00687 (2020).

[HZ20] Kexin Huang and Marinka Zitnik. “Graph meta learning via local sub-
graphs”. In: Advances in Neural Information Processing Systems 33
(2020).

[Hyv07] Aapo Hyvärinen. “Some extensions of score matching”. In: Computational
statistics & data analysis 51.5 (2007), pp. 2499–2512.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift.” In: CoRR
abs/1502.03167 (2015).

https://openreview.net/forum?id=Lm8T39vLDTE
https://proceedings.mlr.press/v162/hoogeboom22a.html
https://proceedings.mlr.press/v162/hoogeboom22a.html
https://openreview.net/forum?id=HJlWWJSFDH

Bibliography 175

[Irw+12] John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and
Ryan G Coleman. “ZINC: a free tool to discover chemistry for biology”.
In: Journal of chemical information and modeling 52.7 (2012), pp. 1757–
1768.

[Ji+24] Xiaohong Ji, Wang Zhen, Zhifeng Gao, Hang Zheng, Linfeng Zhang,
Guolin Ke, et al. “Uni-Mol2: Exploring Molecular Pretraining Model at
Scale”. In: arXiv preprint arXiv:2406.14969 (2024).

[Jia+13] Bo Jiang, Chris Ding, Bio Luo, and Jin Tang. “Graph-Laplacian PCA:
Closed-form solution and robustness”. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition. 2013, pp. 3492–
3498.

[JLH22] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. “Score-based generative
modeling of graphs via the system of stochastic differential equations”. In:
International Conference on Machine Learning. PMLR. 2022, pp. 10362–
10383.

[Ju+23] Haotian Ju, Dongyue Li, Aneesh Sharma, and Hongyang R Zhang. “Gen-
eralization in graph neural networks: Improved pac-bayesian bounds on
graph diffusion”. In: International Conference on Artificial Intelligence
and Statistics. PMLR. 2023, pp. 6314–6341.

[KC18] Seokho Kang and Kyunghyun Cho. “Conditional molecular design with
deep generative models”. In: Journal of chemical information and mod-
eling 59.1 (2018), pp. 43–52.

[Kan+20] Zhao Kang, Guoxin Shi, Shudong Huang, Wenyu Chen, Xiaorong Pu,
Joey Tianyi Zhou, and Zenglin Xu. “Multi-graph fusion for multi-view
spectral clustering”. In: Knowledge-Based Systems 189 (2020), p. 105102.

[Kar+22] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. “Elucidating
the design space of diffusion-based generative models”. In: Advances in
Neural Information Processing Systems 35 (2022), pp. 26565–26577.

[KMB05] Jeroen Kazius, Ross McGuire, and Roberta Bursi. “Derivation and vali-
dation of toxicophores for mutagenicity prediction”. In: Journal of medic-
inal chemistry 48.1 (2005), pp. 312–320.

[KP19] Nicolas Keriven and Gabriel Peyré. “Universal invariant and equivariant
graph neural networks”. In: Advances in Neural Information Processing
Systems 32 (2019), pp. 7092–7101.

[Kim+22] Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae
Lee, Honglak Lee, and Seunghoon Hong. “Pure Transformers are Pow-
erful Graph Learners”. In: arXiv abs/2207.02505 (2022). url: https:
//arxiv.org/abs/2207.02505.

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014).

[KW17] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with
Graph Convolutional Networks”. In: International Conference on Learn-
ing Representations (ICLR). 2017.

[Kle00] Jon Kleinberg. “The small-world phenomenon: An algorithmic perspec-
tive”. In: Proceedings of the thirty-second annual ACM symposium on
Theory of computing. 2000, pp. 163–170.

https://arxiv.org/abs/2207.02505
https://arxiv.org/abs/2207.02505

176 Bibliography

[KBG19] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann.
“Predict then Propagate: Graph Neural Networks meet Personalized
PageRank”. In: International Conference on Learning Representations
(ICLR). 2019.

[Kol31] Andrei Kolmogoroff. “Über die analytischen Methoden in der
Wahrscheinlichkeitsrechnung”. In: Mathematische Annalen 104 (1931),
pp. 415–458.

[Kon+23] Lingkai Kong, Jiaming Cui, Haotian Sun, Yuchen Zhuang, B Aditya
Prakash, and Chao Zhang. “Autoregressive diffusion model for graph
generation”. In: International Conference on Machine Learning. PMLR.
2023, pp. 17391–17408.

[Krä+16] Philipp Krähenbühl, Carl Doersch, Jeff Donahue, and Trevor Darrell.
“Data-dependent initializations of convolutional neural networks”. In: In-
ternational Conference on Learning Representations (ICLR). 2016.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet clas-
sification with deep convolutional neural networks”. In: Advances in Neu-
ral Information Processing Systems. 2012, pp. 1097–1105.

[LK05] Aleksandar Lazarevic and Vipin Kumar. “Feature bagging for outlier
detection”. In: ACM SIGKDD. 2005, pp. 157–166.

[Lee+19] John Boaz Lee, Ryan A Rossi, Xiangnan Kong, Sungchul Kim, Eunyee
Koh, and Anup Rao. “Graph convolutional networks with motif-based
attention”. In: Proceedings of the 28th ACM International Conference on
Information and Knowledge Management. 2019, pp. 499–508.

[Lee+21] Meng-Chieh Lee, Hung T Nguyen, Dimitris Berberidis, Vincent S Tseng,
and Leman Akoglu. “GAWD: graph anomaly detection in weighted di-
rected graph databases”. In: IEEE/ACM ASONAM. 2021, pp. 143–150.

[Li+19a] Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. “Can
GCNs Go as Deep as CNNs?” In: CoRR abs/1904.03751 (2019).

[Li+20] Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. “Distance
Encoding: Design Provably More Powerful Neural Networks for Graph
Representation Learning”. In: (2020).

[LHW18] Qimai Li, Zhichao Han, and Xiao-Ming Wu. “Deeper Insights into Graph
Convolutional Networks for Semi-Supervised Learning”. In: Proceedings
of the 32nd AAAI Conference on Artificial Intelligence. 2018, pp. 3538–
3545.

[Li+19b] Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan.
“Label efficient semi-supervised learning via graph filtering”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2019, pp. 9582–9591.

[Li+22] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tat-
sunori B Hashimoto. “Diffusion-lm improves controllable text genera-
tion”. In: Advances in Neural Information Processing Systems 35 (2022),
pp. 4328–4343.

[LPL21] Yibo Li, Jianfeng Pei, and Luhua Lai. “Structure-based de novo drug
design using 3D deep generative models”. In: Chemical science 12.41
(2021), pp. 13664–13675.

Bibliography 177

[LZL18] Yibo Li, Liangren Zhang, and Zhenming Liu. “Multi-objective de novo
drug design with conditional graph generative model”. In: Journal of
Cheminformatics 10 (2018), pp. 1–24.

[Li+18] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter
Battaglia. “Learning deep generative models of graphs”. In: arXiv
preprint arXiv:1803.03324 (2018).

[Lia23] Pierre Jinghong Liang. “Bookkeeping Graphs: Computational Theory
and Applications”. In: Foundations and Trends® in Accounting 17.2
(2023), pp. 77–172.

[Lia+19] Renjie Liao et al. “Efficient graph generation with graph recurrent at-
tention networks”. In: Advances in neural information processing systems
32 (2019).

[Liu+05] Chao Liu, Xifeng Yan, Hwanjo Yu, Jiawei Han, and Philip S Yu. “Mining
behavior graphs for “backtrace” of noncrashing bugs”. In: Proceedings of
the 2005 SIAM International Conference on Data Mining. SIAM. 2005,
pp. 286–297.

[LTZ08] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. “Isolation forest”. In:
2008 eighth ieee international conference on data mining. IEEE. 2008,
pp. 413–422.

[Liu+23] Jiawei Liu et al. “Towards graph foundation models: A survey and be-
yond”. In: arXiv preprint arXiv:2310.11829 (2023).

[Lou20a] Andreas Loukas. “How hard is to distinguish graphs with graph neural
networks?” In: Advances in Neural Information Processing Systems. 2020.

[Lou20b] Andreas Loukas. “What graph neural networks cannot learn: depth vs
width”. In: International Conference on Learning Representations. 2020.
url: https://openreview.net/forum?id=B1l2bp4YwS.

[LTT17] Cheng-Yaw Low, Andrew Beng-Jin Teoh, and Kar-Ann Toh. “Stacking
PCANet+: An overly simplified convnets baseline for face recognition”.
In: IEEE Signal Processing Letters 24.11 (2017), pp. 1581–1585.

[Luo+22] Xuexiong Luo et al. “Deep graph level anomaly detection with contrastive
learning”. In: Scientific Reports 12.1 (2022), p. 19867.

[Lyu09] Siwei Lyu. “Interpretation and generalization of score matching”. In: Pro-
ceedings of the Twenty-Fifth Conference on Uncertainty in Artificial In-
telligence. 2009, pp. 359–366.

[Ma+23] Liheng Ma et al. “Graph Inductive Biases in Transformers without Mes-
sage Passing”. In: Proc. Int. Conf. Mach. Learn. 2023.

[Ma+22] Rongrong Ma, Guansong Pang, Ling Chen, and Anton van den Hengel.
“Deep graph-level anomaly detection by glocal knowledge distillation”.
In: WSDM. ACM, 2022, pp. 704–714.

[Ma+21] Xiaoxiao Ma et al. “A comprehensive survey on graph anomaly detection
with deep learning”. In: IEEE Trans. on Knowledge and Data Engineer-
ing (2021).

[Ma+20] Yao Ma, Xiaorui Liu, Tong Zhao, Yozen Liu, Jiliang Tang, and Neil Shah.
“A unified view on graph neural networks as graph signal denoising”. In:
arXiv preprint arXiv:2010.01777 (2020).

https://openreview.net/forum?id=B1l2bp4YwS

178 Bibliography

[MY01] Larry M Manevitz and Malik Yousef. “One-class SVMs for document
classification”. In: Journal of machine Learning research 2.Dec (2001),
pp. 139–154.

[MMA16] Emaad A. Manzoor, Sadegh M. Milajerdi, and Leman Akoglu.
“Fast Memory-efficient Anomaly Detection in Streaming Heterogeneous
Graphs.” In: KDD. ACM, 2016, pp. 1035–1044. url: http://dblp.uni-
trier.de/db/conf/kdd/kdd2016.html#ManzoorMA16.

[Mar+20] Amir Markovitz, Gilad Sharir, Itamar Friedman, Lihi Zelnik-Manor, and
Shai Avidan. “Graph Embedded Pose Clustering for Anomaly Detection”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 10539–10547.

[Mar+19a] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman.
“Provably powerful graph networks”. In: Advances in neural information
processing systems 32 (2019).

[Mar+19b] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. “In-
variant and Equivariant Graph Networks”. In: International Conference
on Learning Representations. 2019.

[Mar+19c] Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. “On
the universality of invariant networks”. In: International conference on
machine learning. PMLR. 2019, pp. 4363–4371.

[MGF11] Koji Maruhashi, Fan Guo, and Christos Faloutsos. “Multiaspectforen-
sics: Pattern mining on large-scale heterogeneous networks with tensor
analysis”. In: ASONAM. IEEE/ACM. 2011, pp. 203–210.

[Mik+13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. “Efficient
estimation of word representations in vector space”. In: arXiv preprint
arXiv:1301.3781 (2013).

[MM15] Dmytro Mishkin and Jiri Matas. “All you need is a good init”. In: arXiv
preprint arXiv:1511.06422 (2015).

[Mon+17] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan
Svoboda, and Michael M Bronstein. “Geometric deep learning on graphs
and manifolds using mixture model cnns”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2017, pp. 5115–
5124.

[Mon+19] Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and
Michael M Bronstein. “Fake news detection on social media using geo-
metric deep learning”. In: arXiv preprint arXiv:1902.06673 (2019).

[MOB18] Federico Monti, Karl Otness, and Michael M Bronstein. “Motifnet: a
motif-based graph convolutional network for directed graphs”. In: 2018
IEEE Data Science Workshop (DSW). IEEE. 2018, pp. 225–228.

[MKM17] Christopher Morris, Kristian Kersting, and Petra Mutzel. “Glocalized
weisfeiler-lehman graph kernels: Global-local feature maps of graphs”.
In: 2017 IEEE International Conference on Data Mining (ICDM). IEEE.
2017, pp. 327–336.

http://dblp.uni-trier.de/db/conf/kdd/kdd2016.html#ManzoorMA16
http://dblp.uni-trier.de/db/conf/kdd/kdd2016.html#ManzoorMA16

Bibliography 179

[Mor+20] Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Pe-
tra Mutzel, and Marion Neumann. “TUDataset: A collection of bench-
mark datasets for learning with graphs”. In: ICML 2020 Workshop on
Graph Representation Learning and Beyond (GRL+ 2020). 2020. arXiv:
2007.08663. url: www.graphlearning.io.

[Mor+22] Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravan-
bakhsh. “SpeqNets: Sparsity-aware Permutation-equivariant Graph Net-
works”. In: arXiv preprint arXiv:2203.13913 (2022).

[MRM20] Christopher Morris, Gaurav Rattan, and Petra Mutzel. “Weisfeiler and
Leman go sparse: Towards scalable higher-order graph embeddings”. In:
Advances in Neural Information Processing Systems 33 (2020).

[Mor+19] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. “Weisfeiler and
leman go neural: Higher-order graph neural networks”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. 2019.

[Mur+19] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno
Ribeiro. “Relational pooling for graph representations”. In: International
Conference on Machine Learning. PMLR. 2019, pp. 4663–4673.

[Nar+16] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, Yang
Liu, and Santhoshkumar Saminathan. “subgraph2vec: Learning dis-
tributed representations of rooted sub-graphs from large graphs”. In:
arXiv preprint arXiv:1606.08928 (2016).

[Nar+17] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkate-
san, Lihui Chen, Yang Liu, and Shantanu Jaiswal. “graph2vec:
Learning distributed representations of graphs”. In: arXiv preprint
arXiv:1707.05005 (2017).

[Nea+18] Brady Neal, Sarthak Mittal, Aristide Baratin, Vinayak Tantia, Matthew
Scicluna, Simon Lacoste-Julien, and Ioannis Mitliagkas. “A modern take
on the bias-variance tradeoff in neural networks”. In: arXiv preprint
arXiv:1810.08591 (2018).

[Neu+16] Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian
Kersting. “Propagation kernels: efficient graph kernels from propagated
information”. In: Machine Learning 102.2 (2016), pp. 209–245.

[NLA20] Hung T. Nguyen, Pierre J. Liang, and Leman Akoglu. Anomaly Detec-
tion in Large Labeled Multi-Graph Databases. 2020. arXiv: 2010.03600
[cs.DB].

[NLA23] Hung T Nguyen, Pierre J Liang, and Leman Akoglu. “Detecting anoma-
lous graphs in labeled multi-graph databases”. In: ACM Transactions on
Knowledge Discovery from Data 17.2 (2023), pp. 1–25.

[NAK16] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. “Learning
convolutional neural networks for graphs”. In: International conference
on machine learning. PMLR. 2016, pp. 2014–2023.

[NDV20] Giannis Nikolentzos, George Dasoulas, and Michalis Vazirgiannis. “k-hop
graph neural networks”. In: Neural Networks 130 (2020), pp. 195–205.

https://arxiv.org/abs/2007.08663
www.graphlearning.io
https://arxiv.org/abs/2010.03600
https://arxiv.org/abs/2010.03600

180 Bibliography

[Niu+20] Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover,
and Stefano Ermon. “Permutation invariant graph generation via score-
based generative modeling”. In: International Conference on Artificial
Intelligence and Statistics. PMLR. 2020, pp. 4474–4484.

[NC03] Caleb C. Noble and Diane J. Cook. “Graph-based anomaly detection.”
In: KDD. ACM, 2003, pp. 631–636.

[NM19] Hoang NT and Takanori Maehara. “Revisiting Graph Neural Networks:
All We Have is Low-Pass Filters”. In: CoRR abs/1905.09550 (2019).

[OS20] Kenta Oono and Taiji Suzuki. “Graph Neural Networks Exponentially
Lose Expressive Power for Node Classification”. In: International Con-
ference on Learning Representations (ICLR). 2020. url: https : / /
openreview.net/forum?id=S1ldO2EFPr.

[OVK18] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural
Discrete Representation Learning. 2018. arXiv: 1711.00937 [cs.LG].

[Ope23] OpenAI. “GPT-4 Technical Report”. In: ArXiv abs/2303.08774 (2023).
url: https://arxiv.org/abs/2303.08774.

[PC99] Victor Y Pan and Zhao Q Chen. “The complexity of the matrix eigen-
problem”. In: Proceedings of the 31th annual ACM Cymposium on Theory
of Computing. 1999, pp. 507–516.

[PSH21] Xuran Pan, Shiji Song, and Gao Huang. A Unified Framework for
Convolution-based Graph Neural Networks. 2021. url: https : / /
openreview.net/forum?id=zUMD--Fb9Bt.

[Pan+21] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den
Hengel. “Deep learning for anomaly detection: A review”. In: ACM com-
puting surveys (CSUR) 54.2 (2021), pp. 1–38.

[PAI13] Evangelos Papalexakis, Leman Akoglu, and Dino Ience. “Do more views
of a graph help? community detection and clustering in multi-graphs”. In:
International Conference on Information Fusion. IEEE. 2013, pp. 899–
905.

[Ped+11] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Jour-
nal of Machine Learning Research 12 (2011), pp. 2825–2830.

[PARS14] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “Deepwalk: Online
learning of social representations”. In: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data min-
ing. 2014, pp. 701–710.

[Pol+20] Daniil Polykovskiy et al. “Molecular Sets (MOSES): A Benchmarking
Platform for Molecular Generation Models”. In: Frontiers in Pharmacol-
ogy (2020).

[Qia+22] Chendi Qian, Gaurav Rattan, Floris Geerts, Christopher Morris, and
Mathias Niepert. “Ordered subgraph aggregation networks”. In: arXiv
preprint arXiv:2206.11168 (2022).

[Qiu+22] Chen Qiu, Marius Kloft, Stephan Mandt, and Maja Rudolph. “Rais-
ing the bar in graph-level anomaly detection”. In: arXiv preprint
arXiv:2205.13845 (2022).

[QBT19] Meng Qu, Yoshua Bengio, and Jian Tang. “GMNN: Graph Markov Neu-
ral Networks”. In: International Conference on Machine Learning. 2019,
pp. 5241–5250.

https://openreview.net/forum?id=S1ldO2EFPr
https://openreview.net/forum?id=S1ldO2EFPr
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=zUMD--Fb9Bt
https://openreview.net/forum?id=zUMD--Fb9Bt

Bibliography 181

[Raf16] Colin Raffel. “Learning-Based Methods for Comparing Sequences, with
Applications to Audio-to-MIDI Alignment and Matching”. PhD thesis.
Columbia University, 2016. doi: https://doi.org/10.7916/D8N58MHV.

[Ram+14] Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Ana-
tole Von Lilienfeld. “Quantum chemistry structures and properties of 134
kilo molecules”. In: Scientific data 1.1 (2014), pp. 1–7.

[Ram+22] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. “Hierarchical text-conditional image generation with clip latents”.
In: arXiv preprint arXiv:2204.06125 1.2 (2022), p. 3.

[RA15] Shebuti Rayana and Leman Akoglu. “Collective opinion spam detection:
Bridging review networks and metadata”. In: SIGKDD. 2015, pp. 985–
994.

[RC77] Ronald C Read and Derek G Corneil. “The graph isomorphism disease”.
In: Journal of graph theory 1.4 (1977), pp. 339–363.

[RB08] Kaspar Riesen and Horst Bunke. “IAM graph database repository for
graph based pattern recognition and machine learning”. In: Joint IAPR
International Workshops on Statistical Techniques in Pattern Recogni-
tion (SPR) and Structural and Syntactic Pattern Recognition (SSPR).
Springer. 2008, pp. 287–297.

[Rin+95] Andy Rindos, Steven Woolet, Ioannis Viniotis, and Kishor Trivedi. “Ex-
act methods for the transient analysis of nonhomogeneous continuous
time Markov chains”. In: Computations with Markov Chains: Proceed-
ings of the 2nd International Workshop on the Numerical Solution of
Markov Chains. Springer. 1995, pp. 121–133.

[Ron+19] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. “The
Truly Deep Graph Convolutional Networks for Node Classification.” In:
CoRR abs/1907.10903 (2019).

[Ros+20] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard,
Michael Bronstein, and Federico Monti. “Sign: Scalable inception graph
neural networks”. In: arXiv preprint arXiv:2004.11198 (2020).

[RKS20] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. “Karate Club: An
API Oriented Open-source Python Framework for Unsupervised Learn-
ing on Graphs”. In: Proceedings of the 29th ACM International Confer-
ence on Information & Knowledge Management. 2020, pp. 3125–3132.

[Ruf+20] Lukas Ruff et al. “A Unifying Review of Deep and Shallow Anomaly
Detection.” In: CoRR abs/2009.11732 (2020). url: http://dblp.uni-
trier.de/db/journals/corr/corr2009.html#abs-2009-11732.

[Ruf+18] Lukas Ruff et al. “Deep one-class classification”. In: International confer-
ence on machine learning. 2018, pp. 4393–4402.

[SK16] Tim Salimans and Durk P Kingma. “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks”. In:
Advances in Neural Information Processing Systems. 2016, pp. 901–909.

[SVH21] Dylan Sandfelder, Priyesh Vijayan, and William L Hamilton. “Ego-
GNNs: Exploiting Ego Structures in Graph Neural Networks”. In:
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE. 2021, pp. 8523–8527.

https://doi.org/https://doi.org/10.7916/D8N58MHV
http://dblp.uni-trier.de/db/journals/corr/corr2009.html#abs-2009-11732
http://dblp.uni-trier.de/db/journals/corr/corr2009.html#abs-2009-11732

182 Bibliography

[San+21] Aravind Sankar, Yozen Liu, Jun Yu, and Neil Shah. “Graph neural net-
works for friend ranking in large-scale social platforms”. In: Proceedings
of the Web Conference 2021. 2021, pp. 2535–2546.

[Sat20] Ryoma Sato. “A Survey on The Expressive Power of Graph Neural Net-
works.” In: CoRR abs/2003.04078 (2020). url: http : / / dblp . uni -
trier.de/db/journals/corr/corr2003.html#abs-2003-04078.

[SYK21] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. “Random features
strengthen graph neural networks”. In: Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM). SIAM. 2021, pp. 333–
341.

[SMG13] Andrew M Saxe, James L McClelland, and Surya Ganguli. “Exact so-
lutions to the nonlinear dynamics of learning in deep linear neural net-
works”. In: arXiv preprint arXiv:1312.6120 (2013).

[Sch+13] Christian M Schneider, Vitaly Belik, Thomas Couronné, Zbigniew
Smoreda, and Marta C González. “Unravelling daily human mobil-
ity motifs”. In: Journal of The Royal Society Interface 10.84 (2013),
p. 20130246.

[Sch+04] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Chris-
tian Heldt, Gregor Huhn, and Dietmar Schomburg. “BRENDA, the en-
zyme database: updates and major new developments”. In: Nucleic acids
research 32.suppl_1 (2004), pp. D431–D433.

[Sen+08] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-
ligher, and Tina Eliassi-Rad. “Collective classification in network data”.
In: AI magazine 29.3 (2008), pp. 93–93.

[Seu+17] Mathias Seuret, Michele Alberti, Marcus Liwicki, and Rolf Ingold. “PCA-
initialized deep neural networks applied to document image analysis”. In:
2017 14th IAPR International Conference on Document Analysis and
Recognition. Vol. 1. IEEE. 2017, pp. 877–882.

[Sha+16] Nauman Shahid, Nathanael Perraudin, Vassilis Kalofolias, Gilles Puy,
and Pierre Vandergheynst. “Fast robust PCA on graphs”. In: IEEE Jour-
nal of Selected Topics in Signal Processing 10.4 (2016), pp. 740–756.

[Shc+18] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and
Stephan Günnemann. “Pitfalls of graph neural network evaluation”. In:
arXiv preprint arXiv:1811.05868 (2018).

[She+11] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt
Mehlhorn, and Karsten M Borgwardt. “Weisfeiler-lehman graph kernels.”
In: Journal of Machine Learning Research 12.9 (2011).

[Shi+20] Chence Shi*, Minkai Xu*, Zhaocheng Zhu, Weinan Zhang, Ming Zhang,
and Jian Tang. “GraphAF: a Flow-based Autoregressive Model for
Molecular Graph Generation”. In: International Conference on Learn-
ing Representations. 2020. url: https://openreview.net/forum?id=
S1esMkHYPr.

[Shi+19] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. “Skeleton-based ac-
tion recognition with directed graph neural networks”. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 2019, pp. 7912–7921.

http://dblp.uni-trier.de/db/journals/corr/corr2003.html#abs-2003-04078
http://dblp.uni-trier.de/db/journals/corr/corr2003.html#abs-2003-04078
https://openreview.net/forum?id=S1esMkHYPr
https://openreview.net/forum?id=S1esMkHYPr

Bibliography 183

[Shu+13] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and
Pierre Vandergheynst. “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains”. In: IEEE Signal Processing magazine 30.3 (2013), pp. 83–98.

[Sig+20] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis,
Konstantinos Skianis, and Michalis Vazirgiannis. “GraKeL: A Graph
Kernel Library in Python.” In: Journal of Machine Learning Research
21.54 (2020), pp. 1–5.

[SK18] Martin Simonovsky and Nikos Komodakis. “Graphvae: Towards gener-
ation of small graphs using variational autoencoders”. In: International
conference on artificial neural networks. Springer. 2018, pp. 412–422.

[SD+15] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and sunrya
Ganguli. “Deep unsunpervised learning using nonequilibrium thermo-
dynamics”. In: International Conference on Machine Learning. PMLR.
2015, pp. 2256–2265.

[SME21] Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising Diffusion
Implicit Models”. In: International Conference on Learning Representa-
tions. 2021. url: https://openreview.net/forum?id=St1giarCHLP.

[SE19] Yang Song and Stefano Ermon. “Generative modeling by estimating gra-
dients of the data distribution”. In: Advances in neural information pro-
cessing systems 32 (2019).

[Son+21] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Ku-
mar, Stefano Ermon, and Ben Poole. “Score-Based Generative Modeling
through Stochastic Differential Equations”. In: International Conference
on Learning Representations. 2021. url: https://openreview.net/
forum?id=PxTIG12RRHS.

[Sot+23] Konstantinos Sotiropoulos*, Lingxiao Zhao*, Pierre Jinghong Liang, and
Leman Akoglu. “ADAMM: Anomaly Detection of Attributed Multi-
graphs with Metadata: A Unified Neural Network Approach”. In: 2023
IEEE International Conference on Big Data (BigData). IEEE. 2023,
pp. 865–874.

[SR20] Balasubramaniam Srinivasan and Bruno Ribeiro. “On the Equivalence
between Positional Node Embeddings and Structural Graph Represen-
tations”. In: International Conference on Learning Representations. 2020.
url: https://openreview.net/forum?id=SJxzFySKwH.

[Sri+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. “Dropout: a simple way to prevent neural net-
works from overfitting”. In: The journal of machine learning research
15.1 (2014), pp. 1929–1958.

[Sun+23] Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai.
“Score-based Continuous-time Discrete Diffusion Models”. In: The
Eleventh International Conference on Learning Representations. 2023.
url: https://openreview.net/forum?id=BYWWwSY2G5s.

[Swe+16] Lorne Swersky, Henrique O Marques, Jöerg Sander, Ricardo JGB
Campello, and Arthur Zimek. “On the evaluation of outlier detection
and one-class classification methods”. In: 2016 IEEE international con-
ference on data science and advanced analytics (DSAA). IEEE. 2016,
pp. 1–10.

https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=PxTIG12RRHS
https://openreview.net/forum?id=SJxzFySKwH
https://openreview.net/forum?id=BYWWwSY2G5s

184 Bibliography

[TJ20] Behrooz Tahmasebi and Stefanie Jegelka. “Counting Substructures with
Higher-Order Graph Neural Networks: Possibility and Impossibility Re-
sults”. In: arXiv preprint arXiv:2012.03174 (2020).

[TLD09] Wei Tang, Zhengdong Lu, and Inderjit S Dhillon. “Clustering with mul-
tiple graphs”. In: ICDM. IEEE. 2009, pp. 1016–1021.

[TD04] David MJ Tax and Robert PW Duin. “Support vector data description”.
In: Machine learning 54 (2004), pp. 45–66.

[TC00] John Shawe Taylor and Nello Cristianini. “Support Vector Machines and
other kernel-based learning methods”. In: Cambridge University (2000).

[TB07] Ambuj Tewari and Peter L Bartlett. “On the Consistency of Multiclass
Classification Methods.” In: Journal of Machine Learning Research 8.5
(2007).

[TZK21] Erik Henning Thiede, Wenda Zhou, and Risi Kondor. “Autobahn:
Automorphism-based Graph Neural Nets”. In: (2021).

[Ton+21] Xiaochu Tong et al. “Generative models for De Novo drug design”. In:
Journal of Medicinal Chemistry 64.19 (2021), pp. 14011–14027.

[Top+21] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamber-
lain, Xiaowen Dong, and Michael M Bronstein. “Understanding over-
squashing and bottlenecks on graphs via curvature”. In: arXiv preprint
arXiv:2111.14522 (2021).

[Tri+21] Jeanne Trinquier, Guido Uguzzoni, Andrea Pagnani, Francesco Zamponi,
and Martin Weigt. “Efficient generative modeling of protein sequences
using simple autoregressive models”. In: Nature communications 12.1
(2021), p. 5800.

[Vel+18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. “Graph Attention Networks”. In: Inter-
national Conference on Learning Representations (ICLR). 2018.

[Vel+19] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò,
Yoshua Bengio, and R Devon Hjelm. “Deep Graph Infomax”. In: In-
ternational Conference on Learning Representations (ICLR). 2019. url:
https://openreview.net/forum?id=rklz9iAcKQ.

[VZ17] Saurabh Verma and Zhi-Li Zhang. “Hunt for the unique, stable, sparse
and fast feature learning on graphs”. In: Advances in Neural Information
Processing Systems. 2017, pp. 88–98.

[Vig+23] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan
Cevher, and Pascal Frossard. “DiGress: Discrete denoising diffusion for
graph generation”. In: The Eleventh International Conference on Learn-
ing Representations. 2023. url: https://openreview.net/forum?id=
UaAD-Nu86WX.

[VLF20] Clément Vignac, Andreas Loukas, and Pascal Frossard. “Building pow-
erful and equivariant graph neural networks with structural message-
passing”. In: Advances in Neural Information Processing Systems. 2020.

[Wag+13] Raimar Wagner, Markus Thom, Roland Schweiger, Günther Palm, and
Albrecht Rothermel. “Learning convolutional neural networks from few
samples”. In: The 2013 International Joint Conference on Neural Net-
works (IJCNN). IEEE. 2013, pp. 1–7.

https://openreview.net/forum?id=rklz9iAcKQ
https://openreview.net/forum?id=UaAD-Nu86WX
https://openreview.net/forum?id=UaAD-Nu86WX

Bibliography 185

[WWK08] Nikil Wale, Ian A Watson, and George Karypis. “Comparison of de-
scriptor spaces for chemical compound retrieval and classification”. In:
Knowledge and Information Systems 14.3 (2008), pp. 347–375.

[Wan+23] Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang
Han, and Yulia Tsvetkov. “Can Language Models Solve Graph Problems
in Natural Language?” In: arXiv preprint arXiv:2305.10037 (2023).

[Wan+20] Xuhong Wang, Ying Du, Ping Cui, and Yupu Yang. “OCGNN: One-
class Classification with Graph Neural Networks”. In: arXiv preprint
arXiv:2002.09594 (2020).

[Web+19] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I. Weidele,
Claudio Bellei, Tom Robinson, and Charles E. Leiserson. Anti-Money
Laundering in Bitcoin: Experimenting with Graph Convolutional Net-
works for Financial Forensics. 2019. arXiv: 1908.02591 [cs.SI].

[WL68] B Weisfeiler and A Leman. “The reduction of a graph to canonical form
and the algebgra which appears therein”. In: NTI, Series 2 (1968).

[Wei76] Boris Weisfeiler. “On Construction and Identification of Graphs”. In:
LECTURE NOTES IN MATHEMATICS. Citeseer. 1976.

[Wu+19] Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu,
and Kilian Q. Weinberger. “Simplifying Graph Convolutional Networks.”
In: ICML. Vol. 97. Proceedings of Machine Learning Research. PMLR,
2019, pp. 6861–6871.

[Wu+20a] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. “Graph neu-
ral networks in recommender systems: a survey”. In: ACM Computing
Surveys (CSUR) (2020).

[Wu+18] Zhenqin Wu et al. “MoleculeNet: a benchmark for molecular machine
learning”. In: Chemical science 9.2 (2018), pp. 513–530.

[Wu+20b] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi
Zhang, and S Yu Philip. “A comprehensive survey on graph neural net-
works”. In: IEEE transactions on neural networks and learning systems
32.1 (2020), pp. 4–24.

[Xu+19] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How
Powerful are Graph Neural Networks?” In: International Conference on
Learning Representations (ICLR). 2019. url: https://openreview.
net/forum?id=ryGs6iA5Km.

[Xu+18] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-
ichi Kawarabayashi, and Stefanie Jegelka. “Representation Learning on
Graphs with Jumping Knowledge Networks”. In: Proceedings of the 35th
International Conference on Machine Learning. Vol. 80. 2018, pp. 5453–
5462.

[Xu+21] Keyulu Xu, Mozhi Zhang, Jingling Li, Simon Shaolei Du, Ken-Ichi
Kawarabayashi, and Stefanie Jegelka. “How Neural Networks Extrap-
olate: From Feedforward to Graph Neural Networks”. In: Interna-
tional Conference on Learning Representations. 2021. url: https://
openreview.net/forum?id=UH-cmocLJC.

https://arxiv.org/abs/1908.02591
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=UH-cmocLJC
https://openreview.net/forum?id=UH-cmocLJC

186 Bibliography

[Xu+22] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian
Tang. “GeoDiff: A Geometric Diffusion Model for Molecular Conforma-
tion Generation”. In: International Conference on Learning Representa-
tions. 2022. url: https://openreview.net/forum?id=PzcvxEMzvQC.

[Yan+23] Qi Yan, Zhengyang Liang, Yang Song, Renjie Liao, and Lele Wang.
“Swingnn: Rethinking permutation invariance in diffusion models for
graph generation”. In: arXiv preprint arXiv:2307.01646 (2023).

[YV15] Pinar Yanardag and SVN Vishwanathan. “Deep graph kernels”. In: Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining. 2015, pp. 1365–1374.

[Yin+21] Chengxuan Ying et al. “Do Transformers Really Perform Bad for Graph
Representation?” In: (2021).

[You18] Jiaxuan You. Caveman Dataset. https://github.com/JiaxuanYou/
graph-generation/blob/master/create_graphs.py. [Online; accessed
31-Jan-2024]. 2018.

[You+21] Jiaxuan You, Jonathan M Gomes-Selman, Rex Ying, and Jure Leskovec.
“Identity-aware Graph Neural Networks”. In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 35. 12. 2021, pp. 10737–10745.

[YYL19] Jiaxuan You, Rex Ying, and Jure Leskovec. “Position-aware graph neural
networks”. In: International Conference on Machine Learning. PMLR.
2019, pp. 7134–7143.

[You+18] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure
Leskovec. “Graphrnn: Generating realistic graphs with deep auto-
regressive models”. In: International conference on machine learning.
PMLR. 2018, pp. 5708–5717.

[YHL15] Rose Yu, Xinran He, and Yan Liu. “Glad: group anomaly detection in
social media analysis”. In: TKDD 10.2 (2015), pp. 1–22.

[Yu+18] Wenchao Yu, Wei Cheng, Charu C. Aggarwal, Kai Zhang, Haifeng
Chen, and Wei Wang. “NetWalk: A Flexible Deep Embedding Approach
for Anomaly Detection in Dynamic Networks”. In: KDD. ACM, 2018,
pp. 2672–2681.

[Yun+20] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank
Reddi, and Sanjiv Kumar. “Are Transformers universal approximators of
sequence-to-sequence functions?” In: International Conference on Learn-
ing Representations. 2020. url: https://openreview.net/forum?id=
ByxRM0Ntvr.

[Zah+17] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos,
Russ R Salakhutdinov, and Alexander J Smola. “Deep Sets”. In: Advances
in Neural Information Processing Systems 30 (2017).

[Zha+23a] Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang.
“A complete expressiveness hierarchy for subgraph gnns via subgraph
weisfeiler-lehman tests”. In: International Conference on Machine Learn-
ing. PMLR. 2023, pp. 41019–41077.

https://openreview.net/forum?id=PzcvxEMzvQC
https://github.com/JiaxuanYou/graph-generation/blob/master/create_graphs.py
https://github.com/JiaxuanYou/graph-generation/blob/master/create_graphs.py
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr

Bibliography 187

[Zha+24a] Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei
Wang. “Beyond Weisfeiler-Lehman: A Quantitative Framework for GNN
Expressiveness”. In: The Twelfth International Conference on Learning
Representations. 2024. url: https : / / openreview . net / forum ? id =
HSKaGOi7Ar.

[Zha+23b] Chenshuang Zhang, Chaoning Zhang, Mengchun Zhang, and In So
Kweon. “Text-to-image diffusion model in generative ai: A survey”. In:
arXiv preprint arXiv:2303.07909 (2023).

[Zha+22a] Ge Zhang et al. “Dual-discriminative graph neural network for imbal-
anced graph-level anomaly detection”. In: Advances in Neural Informa-
tion Processing Systems 35 (2022), pp. 24144–24157.

[Zha+18] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. “An
End-to-End Deep Learning Architecture for Graph Classification.” In:
AAAI. Vol. 18. 2018, pp. 4438–4445.

[ZL21] Muhan Zhang and Pan Li. “Nested Graph Neural Networks”. In: Ad-
vances in Neural Information Processing Systems 34 (2021).

[Zha+21] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. “Labeling
trick: A theory of using graph neural networks for multi-node represen-
tation learning”. In: Advances in Neural Information Processing Systems
34 (2021), pp. 9061–9073.

[Zha+20] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. “Revis-
iting graph neural networks for link prediction”. In: (2020).

[ZZ12] Zhenyue Zhang and Keke Zhao. “Low-rank matrix approximation with
manifold regularization”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 35.7 (2012), pp. 1717–1729.

[ZA20a] Lingxiao Zhao and Leman Akoglu. “Connecting graph convolutional net-
works and graph-regularized pca”. In: arXiv preprint arXiv:2006.12294
(2020).

[ZA23] Lingxiao Zhao and Leman Akoglu. “On using classification datasets to
evaluate graph outlier detection: Peculiar observations and new insights”.
In: Big Data 11.3 (2023), pp. 151–180.

[ZA20b] Lingxiao Zhao and Leman Akoglu. “PairNorm Tackling Oversmoothing
in {GNN}s”. In: International Conference on Learning Representations.
2020. url: https://openreview.net/forum?id=rkecl1rtwB.

[ZDA24] Lingxiao Zhao, Xueying Ding, and Leman Akoglu. “Pard: Permutation-
Invariant Autoregressive Diffusion for Graph Generation”. In: arXiv
preprint arXiv:2402.03687 (2024).

[Zha+24b] Lingxiao Zhao, Xueying Ding, Lijun Yu, and Leman Akoglu. “Improving
and Unifying Discrete&Continuous-time Discrete Denoising Diffusion”.
In: arXiv preprint arXiv:2402.03701 (2024).

[Zha+22b] Lingxiao Zhao, Louis Härtel, Neil Shah, and Leman Akoglu. “A Practical,
Progressively-Expressive GNN”. In: 36th Conference on Neural Informa-
tion Processing Systems. 2022. url: https://openreview.net/forum?
id=WBv9Z6qpA8x.

https://openreview.net/forum?id=HSKaGOi7Ar
https://openreview.net/forum?id=HSKaGOi7Ar
https://openreview.net/forum?id=rkecl1rtwB
https://openreview.net/forum?id=WBv9Z6qpA8x
https://openreview.net/forum?id=WBv9Z6qpA8x

188 Bibliography

[Zha+22c] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. “From Stars to
Subgraphs: Uplifting Any GNN with Local Structure Awareness”. In: In-
ternational Conference on Learning Representations. 2022. url: https:
//openreview.net/forum?id=Mspk_WYKoEH.

[Zha+22d] Lingxiao Zhao, Saurabh Sawlani, Arvind Srinivasan, and Leman Akoglu.
“Graph anomaly detection with unsupervised GNNs”. In: Preprint
arXiv:2210.09535 (2022).

[ZSA22] Lingxiao Zhao, Neil Shah, and Leman Akoglu. “A practical,
progressively-expressive GNN”. In: Advances in Neural Information Pro-
cessing Systems 35 (2022), pp. 34106–34120.

[ZRA20] Yue Zhao, Ryan A Rossi, and Leman Akoglu. “Automating outlier de-
tection via meta-learning”. In: arXiv preprint arXiv:2009.10606 (2020).

[Zhe+23] Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. “A Reparameter-
ized Discrete Diffusion Model for Text Generation”. In: arXiv preprint
arXiv:2302.05737 (2023).

[Zhe+20] Chen Zhengdao, Chen Lei, Villar Soledad, and Joan Bruna. “Can Graph
Neural Networks Count Substructures?” In: Advances in neural informa-
tion processing systems (2020).

[Zhu+20] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,
and Danai Koutra. “Beyond homophily in graph neural networks: Cur-
rent limitations and effective designs”. In: Advances in neural information
processing systems 33 (2020), pp. 7793–7804.

[Zhu+21] Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. “Interpreting
and Unifying Graph Neural Networks with An Optimization Framework”.
In: arXiv preprint arXiv:2101.11859 (2021).

[ZG02] Xiaojin Zhu and Zoubin Ghahramani. “Learning from Labeled and Un-
labeled Data with Label Propagation”. In: None. 2002.

[ZGL03] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. “Semi-supervised
learning using gaussian fields and harmonic functions”. In: Proceedings of
the 20th International conference on Machine learning (ICML-03). 2003,
pp. 912–919.

https://openreview.net/forum?id=Mspk_WYKoEH
https://openreview.net/forum?id=Mspk_WYKoEH

	Zhao, Lingxiao - Completed Dissertation Signature Page - S24
	PhD_Thesis
	Abstract
	Acknowledgements
	Introduction
	I Node-level Representation Learning
	Oversmoothing in GNNs
	Introduction
	Related Work
	Understanding Oversmoothing
	The Oversmoothing Problem
	Studying Oversmoothing with SGC

	Tackling Oversmoothing
	Proposed PairNorm
	A Case Where Deeper GNNs are Beneficial

	Experiments
	Experiment Setup
	Experiment Results

	Conclusion

	GNN and Graph-Regularized PCA
	Introduction
	Related Work
	Graph Convolution and GPCA
	Graph Convolution
	Graph-regularized PCA (GPCA)
	Connection between GCN and GPCA
	Connection between PPNP and GPCA
	Supervised GPCA
	Approximation and Complexity Analysis

	GPCAnet: A Stacking GPCA Model
	GPCAnet
	GPCAnet-initialization for GCN

	Experiments
	Experimental Setup
	Q1: Performance of (Unsupervised) GPCA and GPCAnet
	Q2: Unsupervised vs. Semi-supervised GPCA
	Q3: GPCAnet-initialization for GCN

	Conclusion

	II Graph-level Representation Learning
	Using Subgraphs to Boost Expressivity
	Introduction
	Related Work
	General Framework and Theory
	From Stars to Subgraphs
	Theory: Expressiveness Analysis

	Concrete Realization
	Improving Scalability: SubgraphDrop
	Subgraph Sampling Strategies
	Training with SubgraphDrop

	Experiments
	Empirical Verification of Expressiveness
	Comparing with SOTA and Generality
	Scaling up by Subsampling
	Ablation Study

	Conclusion

	Using Unordered High Order Interactions
	Introduction
	Related Work
	A practical progressively-expressive isomorphism test: (k,c)()-SetWL
	Preliminaries: the k-Weisfeiler-Leman (k-WL) Graph Isomorphism Test
	From k-WL to k-MultisetWL: Removing Ordering
	From k-MultisetWL to k()-SetWL: Removing Repetition
	From k()-SetWL to (k,c)()-SetWL: Accounting for Sparsity
	Complexity Analysis
	Set version of k-FWL

	A practical progressively-expressive GNN: (k,c)()-SetGNN
	From (k,c)()-SetWL to (k,c)()-SetGNN
	Bidirectional Sequential Message Passing
	Improving Supernode Initialization

	Experiments
	Setup
	Results
	Computational requirements

	Conclusion

	III Generative Model on Graphs
	Improving and Unifying Discrete Denoising Diffusion
	Introduction
	Discrete-time Discrete Diffusion
	Graphical Model View of Diffusion Models
	the Forward Diffusion Process
	Form of q(xt-1 | xt, x0)
	Parameterization of p(xt-1 | xt)
	Loss Function Derivation
	Simplifying Loss Further for Easier Opt.
	Reparameterization Form for Sampling

	Continuous-time Discrete Diffusion
	Background: Continuous-Time Markov Chain
	Forward and Backward CTMCs
	Simplification of Continuous-time Negative VLB
	Term 1
	Term 2
	All Terms

	Backward Sampling & Unification
	Shared MCMC Derivation
	The MCMC Sampling Corrector

	Experiments
	Datasets and Metrics
	Lakh Piano Dataset Details
	Pre-training VQGAN

	Baselines.
	Training Details.
	USD3 Lakh Pianoroll Training Details.
	USD3 VQCIFAR10 Training Details.

	Music Generation
	Music Generation Eval Metrics
	Results.

	Image Generation
	Metrics.
	Results.
	Ablation results using MCMC sampling

	Conclusion

	Permutation-Invariant Autoregressive Diffusion on Graphs
	Introduction
	Related Work
	Autoregressive Denoising Diffusion
	Discrete Denoising Diffusion on Graphs
	Autoregressive Graph Generation
	Impossibility of Equivariant Graph Transformation
	Pard: Autoregressive Denoising Diffusion

	Architecture Improvement
	Efficient and Expressive Higher-order Transformer
	Parallel Training with Causal Transformer

	Experiments
	Molecular Graph Generation
	Generic Graph Generation

	Conclusion

	IV Application: Graph-level Anomaly Detection
	Graph-level Anomaly Detection: Baselines and Issues
	GLAD Problem & Outlier Baselines
	Graph-Level Outlier Detection
	Graph-level Outlier Detection Models
	Two-Stage Graph Outlier Detection
	End-to-End Deep Graph Outlier Detection

	Using Classification Datasets for Outlier Model Evaluation: Issues
	Peculiar Observations
	Peculiar Observation 1: Performance Flip.
	Peculiar Observation 2: Invariance to Down-sampling Rate.
	Peculiar Observation 3: Growing Performance Gap with Propagation (propagation based methods only).

	Hypothesis on Driving Mechanisms
	Measures for Analysis
	A deeper analysis on embedding sparsity issue

	Empirical Analysis
	Experiment Setup
	Measurement study: when performance flip occurs
	Analysis on full data.
	Analysis upon down-sampling.

	Measurement study: when performance flip does not occur
	Performance study: All GLOD methods
	A1: Performance flip occurs across all methods.
	A2: Dataset semantics play a role in performance flip.
	A3: Both embedding method and outlier detector affect performance flip.
	A4: End-to-end method can partially capture distribution of majority.
	Three key questions for GLOD

	Conclusion
	Summary
	Discussion
	Future work

	Anomaly Detection of Attributed Multi-graphs with Metadata
	Introduction
	Related Work
	Preliminaries
	ADAMM: Anomaly Detection of Multi-graphs with Metadata
	Data Representation
	A Unified Neural Network Architecture
	Graph-level Embedding
	A Unifying Embedding Space for Graph and Metadata

	Anomaly Detection Loss
	Model Selection

	Experiments
	Experimental Setup
	Detection Results
	Case Studies

	Conclusion

	V Conclusion
	Summary and Future Directions
	Summary
	Future directions
	Left problems in GNNs
	New problems in the intersection of LLMs and GNNs

	Bibliography

