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Abstract

In the realm of scientific discoveries and practical applications, reliable application of statistical methodologies

necessitates a thorough examination of potential failure scenarios. One major concern is related to the robustness of

deployed methods to changes in data distribution. A classical assumption that collected data consists of observations

drawn independently from the same unknown distribution (referred to as the i.i.d. assumption) is frequently violated

in real-world scenarios. Therefore, it becomes essential to design statistical methods that are either inherently robust

to or capable of effectively handling violations of conventional assumptions.

The first part of this thesis is devoted to topics in sequential testing — a complementary approach to traditional

batch testing. Unlike batch testing where the sample size is specified before collecting data, sequential tests process

data online and update inference on the fly. Specifically, we consider two closely related problems of sequential

nonparametric two-sample and independence testing, which have extensive applications in various sub-fields of

machine learning and statistics, often involving high-dimensional observation spaces, such as images or text. One

major drawback of batch nonparametric two-sample and independence tests is that in general composite nonparametric

settings, even if the null hypothesis is false, it is not possible to determine beforehand collecting how much data is

sufficient to reject the null. If an analyst strongly believes that the null is false but specified sample size that was too

small, then nothing can rescue the situation as the error budget is fully utilized. Conversely, excessive data collection

followed by batch testing, is highly sub-optimal from several standpoints, including memory and computation usage.

To address these limitations, we develop consistent sequential tests for both problems and justify their excellent

empirical performance.

In addition, we consider the problem of detecting harmful distribution shifts. In practical settings, the assumption

that the test data, observed during model deployment, are independent of and identically distributed as the data used

for training is often violated. Therefore, it is essential to augment a learned model with a set of tools that raise

alerts whenever critical changes occur. Naive testing for the presence of distribution shifts is not fully practical as

it fails to account for the malignancy of a shift. Raising unnecessary alarms in benign scenarios can lead to delays

and a substantial increase in deployment costs. In this work, we define a harmful shift as the one characterized by

a significant drop in model performance according to pre-defined metrics and develop sequential tests to detect the

presence of such harmful distribution shifts.
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The second part of this thesis is devoted to topics in predictive uncertainty quantification. For a test point,

classification models usually output a set of scores between zero and one, and a natural intention is to interpret

those in a frequentist way (as probabilities of belonging to each of the classes). However, without additional

(strong) assumptions, such interpretation fails to hold true. The discrepancy between the forecasts and long-run label

frequencies is called model miscalibration. As an alternative way of communicating uncertainty, set-valued prediction

returns a set of labels for classification or an interval/collection of intervals for regression problems. Amongst various

tools for performing set-valued prediction, conformal prediction has become popular due to its reliable reflection of

uncertainty under minimal assumptions.

One problem that is being considered is that of distribution-free posthoc recalibration in the context of binary

classification. We establish a connection between calibration and alternative methods for quantifying predictive

uncertainty and use it to derive an impossibility result for distribution-free recalibration via popular scaling-based

recalibration methods. In the separate project, we consider assumption-light ways of quantifying predictive uncertainty

in the presence of label shift when at the deployment stage class label proportions change (common in medical

settings). We analyze strategies for handling label shift without labeled data from the target domain.
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Chapter 1

Introduction

Reliable application of statistical methodologies in practice requires a careful analysis of potential failure scenarios.

One major concern is the robustness of deployed tools in the presence of changes in data distribution. A classical

assumption that a collected dataset consists of observations drawn independently from the same unknown distribution

(referred to as the i.i.d. assumption) is often violated in real-world scenarios. Therefore, it becomes essential to

design statistical methods that are inherently robust to or are capable of effectively handling violations of conventional

assumptions.

In predictive settings, the i.i.d. assumption allows making rigorous theoretical claims about the expected

performance of trained predictive models on previously unseen data. However, in real-world scenarios, a deployed

machine learning model often makes predictions on data sampled from the target distribution (denoted as Q) which

differs from the source distribution (denoted as P ) that generated the training data. Moreover, the distribution of

test data may also drift over time. This phenomenon is referred to as dataset shift; see the book by Quionero-

Candela et al. (2009). Two commonly studied types of dataset shift include covariate shift (Shimodaira, 2000), where

Q(X) ̸= P (X) but Q(Y | X) = P (Y | X), and label shift (Saerens et al., 2002), where Q(Y ) ̸= P (Y ) but

Q(X | Y ) = P (X | Y ).

While posing structural assumptions about the nature of a present shift allows reasoning about the expected

behavior on the target domain, even with access to only unlabeled data, relying on covariate/label shift assumptions

suffers from a major drawback: such (unverifiable) assumptions may often be unrealistic in practice, and distribution

shifts that occur in practice are generally more complex. While the label shift assumption may be sensible in

medical diagnosis, the prevalence of certain diseases in the population: P (Y ), and the corresponding symptoms:

P (X|Y = y), might both change over time (during epidemics or due to potential mutations), thus violating the

underlying assumptions.
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In experimental settings, especially when observations are collected over time, the i.i.d. assumption can frequently

be violated. For example, evolving user behavior or system dynamics can introduce non-statitionarities and temporal

dependencies in the data. Deploying classical statistical tests in such settings thus leads to invalid inferential claims.

In this thesis, we study violations of the i.i.d. assumption from the perspectives of detection and adaptation.

Chapter 2 is devoted to topics in sequential experimentation. Unlike traditional batch tests, where the sample size

is specified before collecting data, sequential tests process data online. Sequential tests are particularly well-suited for

large-scale experimentation in the tech industry where the experiments may not have a fixed stopping rule. Moreover,

adaptive choices frequently often made by data scientists may invalidate traditional approaches, and thus require the

development of new tools with rigorous statistical guarantees.

Two specific problems we consider include nonparametric two-sample and independence testing. In the former,

given observations from two distributions: P and Q, the goal is to test the null hypothesis that the distributions are the

same (H0 : P = Q) against the alternative that they are not (H1 : P ̸= Q). In the latter, given paired observations

drawn from an unknown joint distribution PXY , the goal is to test the null that the random variables are independent

(H0 : PXY = PX ×PY ) against the alternative that they are not (H1 : PXY ̸= PX ×PY ). Both problems have broad

applications in many sub-fields of machine learning and statistics, often involving high-dimensional and structured

observation spaces, such as images or text.

While there exists a large body of literature on batch nonparametric two-sample and independence testing, related

methods suffer from a common limitation. Specifically, in general composite nonparametric settings, even if the

null hypothesis is false, it is never known beforehand collecting how much data will be “enough” to reject the null.

If an analyst strongly believes that the null hypothesis is false but specified the sample size which happened to be

too small, then nothing can rescue the situation as the error budget: α, is fully utilized. Conversely, excessive

data collection, followed by batch testing, is highly sub-optimal from several standpoints, including memory and

computation usage. Our sequential two-sample and independence tests address those limitations and demonstrate

excellent empirical performance.

While our new methods are interesting even under the i.i.d. setting, they also address a separate limitation of

the related batch approaches. Batch two-sample and independence testing are usually conducted by computing a

permutation p-value for some chosen dependence measure, with an implicit assumption that the distribution of the

data does not change over time. Even under mild changes in distribution, this approach is no longer valid, and an

inflated false alarm rate is often observed empirically. In contrast, our tests better handle non-stationarity in the data

distribution: they remain provably valid and powerful even if data distribution drifts.

In addition, we consider the problem of detecting harmful distribution shifts. In practical settings, the assumption

that the test data, observed during model deployment, are independent of and identically distributed as the data used

for training is often violated. To ensure the trustworthiness of a machine learning system, it is essential to augment a

learned model with a set of tools that raise alerts whenever critical changes occur. Naive testing for the presence of

distribution shifts is not fully practical as it fails to account for the malignancy of a shift. Raising unnecessary alarms

2



in benign scenarios can lead to delays and a substantial increase in deployment costs. In this work, we define a harmful

shift as the one characterized by a significant drop in model performance according to pre-defined metrics and develop

sequential tests to detect the presence of such harmful distribution shifts.

Chapter 3 is devoted to topics in predictive uncertainty quantification. For a test point, common classification

models output a set of scores between zero and one, and a natural intention is to interpret those in a frequentist

way (as probabilities of belonging to each of the classes). However, without additional (strong) assumptions, such

interpretation fails to hold true. The discrepancy between the forecasts and long-run label frequencies is called model

miscalibration. As an alternative way of communicating uncertainty, set-valued prediction returns a set of labels for

classification or an interval/collection of intervals for regression problems. Amongst various tools for performing set-

valued prediction, conformal prediction has recently become popular due to its reliable reflection of uncertainty under

minimal assumptions.

One problem that is being considered is that of distribution-free posthoc recalibration in the context of binary

classification. We establish a connection between calibration and alternative methods for quantifying predictive

uncertainty and use it to derive an impossibility result for distribution-free recalibration via popular scaling-based

recalibration methods. In the separate project, we consider assumption-light ways of quantifying predictive uncertainty

in the presence of label shift when at the deployment stage class label proportions change (common in medical

settings). We analyze strategies for handling label shift without access to labeled data from the target domain.

Contributions. In this thesis, we develop several new statistical methods that rigorously quantify uncertainty in the

presence of distribution shifts and justify their practical relevance across a wide range of synthetic and real settings.

The rest of this documents is organized as follows:

• Part I is devoted to topics in sequential experimentation. In Chapter 2, we analyze kernelized approaches for

sequential nonparametric independence testing. In Chapter 3, we analyze predictive approaches for sequential

nonparametric two-sample and independence testing. In Chapter 4, we develop tests for harmful distribution

shifts. These results are based on (Podkopaev and Ramdas, 2022; Podkopaev et al., 2023; Podkopaev and

Ramdas, 2023).

• Part II is devoted to topics in predictive uncertainty quantification. In Chapter 5, we consider distribution-free

posthoc recalibration in the context of binary classification. In Chapter 6, we analyze predictive uncertainty

quantification under label shift. These results are based on (Gupta et al., 2020; Podkopaev and Ramdas, 2021).
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Part I

Safe, Anytime-Valid Inference
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Chapter 2

Sequential Kernelized Independence Testing

2.1 Introduction

Independence testing is a fundamental statistical problem that has also been studied within information theory and

machine learning. Given paired observations (X,Y ) sampled from some (unknown) joint distribution PXY , the goal

is to test the null hypothesis that X and Y are independent. The literature on independence testing is vast as there

is no unique way to measure dependence, and different measures give rise to different tests. Traditional measures

of dependence, such as Pearson’s r, Spearman’s ρ, and Kendall’s τ , are limited to the case of univariate random

variables. Kernel tests (Jordan and Bach, 2001; Gretton et al., 2005c,a) are amongst the most prominent modern tools

for nonparametric independence testing that work for general X ,Y spaces.

In the literature, heavy emphasis has been placed on batch testing when one has access to a sample whose size

is specified in advance. However, even if random variables are dependent, the sample size that suffices to detect

dependence is never known a priori. If the results of a test are promising yet non-conclusive (e.g., a p-value is slightly

larger than a chosen significance level), one may want to collect more data and re-conduct the study. This is not

allowed by traditional batch tests. We focus on sequential tests that allow peeking at observed data to decide whether

to stop and reject the null or to continue collecting data.

Problem Setup. Suppose that one observes a stream of data: (Zt)t≥1, where Zt = (Xt, Yt)
iid∼ PXY . We design

sequential tests for the following pair of hypotheses:

H0 : Zt
iid∼ PXY , t ≥ 1 and PXY = PX × PY ,

H1 : Zt
iid∼ PXY , t ≥ 1 and PXY ̸= PX × PY .

(2.1a)

(2.1b)

5



Following the framework of “tests of power one” (Darling and Robbins, 1968), we define a level-α sequential test as

a mapping Φ : ∪∞t=1(X × Y)t → {0, 1} that satisfies

PH0
(∃t ≥ 1 : Φ(Z1, . . . , Zt) = 1) ≤ α.

As is standard, 0 stands for “do not reject the null yet” and 1 stands for “reject the null and stop”. Defining the stopping

time τ := inf {t ≥ 1 : Φ(Z1, . . . , Zt) = 1} as the first time that the test outputs 1, a sequential test must satisfy

PH0
(τ <∞) ≤ α.

We work in a very general composite nonparametric setting: H0 and H1 consist of huge classes of distributions

(discrete/continuous) for which there may not be a common reference measure, making it impossible to define densities

and thus ruling out likelihood-ratio based methods.

Our Contributions. Following the principle of testing by betting, we design consistent sequential nonparametric

independence tests. Our bets are inspired by popular kernelized dependence measures: Hilbert-Schmidt independence

criterion (HSIC) (Gretton et al., 2005a), constrained covariance criterion (COCO) (Gretton et al., 2005c), and

kernelized canonical correlation (KCC) (Jordan and Bach, 2001). We provide theoretical guarantees on time-uniform

type I error control for these tests — the type I error is controlled even if the test is continuously monitored and

adaptively stopped — and further establish consistency and asymptotic rates for our sequential HSIC under the i.i.d.

setting. Our tests also remain valid even if the underlying distribution changes over time. Additionally, while the

initial construction of our tests requires bounded kernels, we also develop variants based on symmetry-based betting

that overcome this requirement. This strategy can be readily used with a linear kernel to construct a sequential linear

correlation test. We justify the practicality of our tests through a detailed empirical study.

In the remainder of this section, we mention some related work on this topic. We start by highlighting two major

shortcomings of existing tests that our new tests overcome.

(i) Limitations of Corrected Batch tests and Reduction to Two-sample Testing. Batch tests (without corrections

for multiple testing) have an inflated false alarm rate under continuous monitoring (see Appendix A.1.1). Naı̈ve

Bonferroni corrections restore type I error control but generally result in tests with low power. This motivates a direct

design of sequential tests (not by correcting batch tests). It is tempting to reduce sequential independence testing to

sequential two-sample testing, for which a powerful solution has been recently designed (Shekhar and Ramdas, 2021).

This can be achieved by splitting a single data stream into two and permuting the X data in one of the streams (see

Appendix A.1.2). Still, the splitting results in inefficient use of data and thus low power, compared to our new direct

approach (Figure 2.1).

(ii) Time-varying Independence Testing: Beyond the i.i.d. Setting. A common practice of using a permutation

p-value for batch independence testing requires (X,Y )-pairs to be i.i.d. (more generally, exchangeable). If data
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Figure 2.1: Valid sequential independence tests for: Yt = Xtβ + εt, Xt, εt ∼ N (0, 1). Batch + n-step is batch HSIC
with Bonferroni correction applied every n steps (allowing monitoring only at those steps). Seq-MMD refers to the
reduction to two-sample testing (Appendix A.1.2). Our test outperforms other tests.

distribution drifts, the resulting test is no longer valid, and even under mild changes, an inflated false alarm rate

is observed empirically. Our tests handle more general non-stationary settings. For a stream of independent data:

(Zt)t≥1, where Zt ∼ P (t)
XY , consider the following pair of hypotheses:

H0 : P
(t)
XY = P

(t)
X × P (t)

Y , ∀t,

H1 : ∃t′ : P (t′)
XY ̸= P

(t′)
X × P (t′)

Y .

(2.2a)

(2.2b)

Suppose that under H0 in (2.2a), it holds that either P (t−1)
X = P

(t)
X or P (t−1)

Y = P
(t)
Y for each t ≥ 1, meaning that

either the distribution of X may change or that of Y may change, but not both simultaneously. In this case, our tests

control the type I error, whereas batch independence tests fail to.

Example 1. Let ((Wt, Vt))t≥1 be a sequence of i.i.d. jointly Gaussian random variables with zero mean and

covariance matrix with ones on the diagonal and ρ off the diagonal. For t = 1, 2, . . . and i ∈ {0, 1}, consider

the following stream: 


X2t−i = 2c sin(t) +W2t−1,

Y2t−i = 3c sin(t) + V2t−1,

(2.3)

Setting ρ = 0 falls into the null case (2.2a), whereas any ρ ̸= 0 implies dependence as per (2.2b). Visually, it is hard to

distinguish between H0 and H1: the drift makes data seem dependent (see Appendix A.5.1). In Figure 2.2a, we show

that our test controls type I error, whereas batch test fails*.

Related Work. In addition to the aforementioned papers on batch independence testing, our work is also related

to methods for “safe, anytime-valid inference”, e.g., confidence sequences (Waudby-Smith and Ramdas, 2023, and

*This is also related to Yule’s nonsense correlation (Yule, 1926; Ernst et al., 2017), which would not pose a problem for our method.
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(a) The null is true: W ⊥⊥ V in Example 1.
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Figure 2.2: (Batch) HSIC: dashed lines, SKIT: solid lines. Under distribution drift (2.3), SKIT controls type I error
under H0 and has high power under H1. Batch HSIC fails to control type I error under H0 (hence we do not plot its
power).

references therein) and e-processes (Grünwald et al., 2020; Ramdas et al., 2022). Sequential nonparametric two-

sample tests of Balsubramani and Ramdas (2016), based on linear-time test statistics and empirical Bernstein inequality

for random walks, are amongst the first results in this area. While such tests are valid in the same sense as ours, betting-

based tests are much better empirically (Shekhar and Ramdas, 2021).

The roots of the principle of testing by betting can be traced back to Ville’s 1939 doctoral thesis (Ville, 1939)

and was recently popularized by Shafer (2021). The latter work considered it mainly in the context of parametric and

simple hypotheses, far from our setting. The most closely related works to the current paper are (Shekhar and Ramdas,

2021; Shaer et al., 2023; Grünwald et al., 2023) which also handle composite and nonparametric hypotheses. Shekhar

and Ramdas (2021) use testing by betting to design sequential nonparametric two-sample tests, including a state-

of-the-art sequential kernel maximum mean discrepancy test. Two recent works by Shaer et al. (2023); Grünwald

et al. (2023), developed in parallel to the current paper, extend these ideas to the setting of sequential conditional

independence tests (H0 : X ⊥⊥ Y | Z) under the model-X assumption, i.e., when the distribution X | Z is assumed

to be known. Our methods are very different from the aforementioned papers because when Z = ∅, the model-X

assumption reduces to assuming PX is known, which we of course avoid. The current paper can be seen as extending

the ideas from (Shekhar and Ramdas, 2021) to nonparametric independence testing.

2.2 Sequential Kernel Independence Test

We begin with a brief summary of the principle of testing by betting (Shafer, 2021; Shafer and Vovk, 2019). Suppose

that one observes a sequence of random variables (Zt)t≥1, where Zt ∈ Z . A player begins with initial capitalK0 = 1.

At round t of the game, she selects a payoff function ft : Z → [−1,∞) that satisfies EZ∼PZ
[ft(Z) | Ft−1] = 0

for all PZ ∈ H0, where Ft−1 = σ(Z1, . . . , Zt−1), and bets a fraction of her wealth λtKt−1 for an Ft−1-measurable
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λt ∈ [0, 1]. Once Zt is revealed, her wealth is updated as

Kt = Kt−1(1 + λtft(Zt)). (2.4)

A level-α sequential test is obtained using the following stopping rule: Φ(Z1, . . . , Zt) = 1 {Kt ≥ 1/α}, i.e., the null

is rejected once the player’s capital exceeds 1/α. If the null is true, imposed constraints on sequences of payoffs

(ft)t≥1 and betting fractions (λt)t≥1 prevent the player from making money. Formally, the wealth process (Kt)t≥0 is

a nonnegative martingale. The validity of the resulting test then follows from Ville’s inequality (Ville, 1939).

To ensure that the resulting test has power under the alternative, payoffs and betting fractions have to be

chosen carefully. Inspired by sequential two-sample tests of Shekhar and Ramdas (2021), our construction relies

on dependence measures: m(PXY ; C), which admit a variational representation:

sup
c∈C

[EPXY
c(X,Y )− EPX×PY

c(X,Y )] , (2.5)

for some class C of bounded functions c : X ×Y → R. The supremum above is often achieved at some c∗ ∈ C, and in

this case, c∗ is called the “witness function”. In what follows, we use sufficiently rich functional classes C for which

the following characteristic condition holds:




m(PXY ; C) = 0, under H0,

m(PXY ; C) > 0, under H1,

(2.6)

for H0 and H1 defined in (2.1). To proceed, we bet on pairs of points from PXY . Swapping Y -components in a pair

of points from PXY : Z2t−1 and Z2t, gives two points from PX×PY : Z̃2t−1 = (X2t−1, Y2t) and Z̃2t = (X2t, Y2t−1).

We consider payoffs f(Z2t−1, Z2t) of the form:

s ·
(
(c(Z2t−1) + c(Z2t))− (c(Z̃2t−1)− c(Z̃2t))

)
, (2.7)

where the scaling factor s > 0 ensures that f(z, z′) ∈ [−1, 1] for any z, z′ ∈ X × Y . When the witness function c∗ is

used in the above, we denote the resulting function as the “oracle payoff” f∗. Let the oracle wealth process (K∗
t )t≥0

be defined by using f∗ along with the betting fraction

λ⋆ =
E [f⋆(Z1, Z2)]

E [f⋆(Z1, Z2)] + E [(f⋆(Z1, Z2))2]
. (2.8)

We have the following result regarding the above quantities, whose proof is presented in Appendix A.2.2.

Theorem 2.1. Let C denote a class of functions c : X × Y → R for measuring dependence as per (2.5).
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1. Under H0 in (2.1a) and (2.2a), any payoff f of the form (2.7) satisfies EH0 [f(Z1, Z2)] = 0.

2. Suppose that C satisfies (2.6). Under H1 in (2.1b), the oracle payoff f∗ based on the witness function c∗

satisfies EH1
[f⋆(Z1, Z2)] > 0. Further, for λ⋆ defined in (2.8), it holds that EH1

[log(1 + λ⋆f⋆(Z1, Z2)] > 0.

Hence, K⋆
t

a.s.−→ +∞, which implies that the oracle test is consistent: PH1
(τ⋆ < ∞) = 1, where τ⋆ =

inf {t ≥ 1 : K⋆
t ≥ 1/α}.

Remark 1. While the betting fraction (2.8) suffices to guarantee the consistency of the corresponding test, the fastest

growth rate of the wealth process is ensured by considering

λ⋆K ∈ argmax
λ∈(0,1)

E [log(1 + λf⋆(Z1, Z2)] .

Overshooting with the betting fraction may, however, result in the wealth tending to zero almost surely.

Example 2. Consider a sequence (Wt)t≥1, where

Wt =





1, with probability 3/5,

−1, with probability 2/5.

In this case, we have λ⋆K = 1/5 and E [log(1 + λ⋆Wt)] > 0, implying that Kt
a.s.−→ +∞. On the other hand, it is easy

to check that for λ̃ = 2λ⋆K we have: E[log(1+ λ̃Wt)] < 0. As a consequence, for the wealth processKt corresponding

to the pair (f∗, λ̃) it holds that Kt
a.s.−→ 0.

To construct a practical test, we select an appropriate class C for which the condition (2.6) holds and replace the oracle

f⋆ and λ⋆ with predictable estimates (ft)t≥1 and (λt)t≥1, meaning that those are computed using data observed prior

to a given round of the game. We begin with a particular dependence measure, namely HSIC (Gretton et al., 2005a),

and defer extensions to other measures to Section 2.3.

HSIC-based Sequential Kernel Independence Test (SKIT). Let G be a separable RKHS† with positive-definite

kernel k(·, ·) and feature map φ(·) on X . Let H be a separable RKHS with positive-definite kernel l(·, ·) and feature

map ψ(·) on Y .

Assumption 1. Suppose that:

(A1) Kernels k and l are nonnegative and bounded by one: supx∈X k(x, x) ≤ 1 and supy∈Y l(y, y) ≤ 1.

(A2) The product kernel k ⊗ l : (X × Y)2 → R, defined as (k ⊗ l)((x, y), (x′, y′)) := k(x, x′)l(y, y′), is a

characteristic kernel on the joint domain.
†Recall that an RKHS is a Hilbert space G of real-valued functions over X , for which the evaluation functional δx : G → R, which maps

g ∈ G to g(x), is a continuous map, and this fact must hold for every x ∈ X . Each RKHS is associated with a unique positive-definite kernel
k : X × X → R, which can be viewed as a generalized inner product on X . We refer the reader to (Muandet et al., 2017) for an extensive recent
survey of kernel methods.
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Assumption (A1) is used to justify that the mean embeddings introduced later are well-defined elements of RKHSs,

and the particular bounds are used to simplify the constants. Assumption (A2) is a sufficient condition for the

characteristic condition (2.6) to hold (Fukumizu et al., 2007b), and we use it to argue about the consistency of our

test. Under mild assumptions, it can be further relaxed to characteristic property of the kernels on the respective

domains (Gretton, 2015). We note that the most common kernels on Rd: Gaussian (RBF) and Laplace, satisfy both

(A1) and (A2). Define mean embeddings of the joint and marginal distributions:

µXY := EPXY
[φ(X)⊗ ψ(Y )] ,

µX := EPX
[φ(X)] , µY := EPY

[ψ(Y )] .
(2.9)

The cross-covariance operator CXY : H → G associated with the joint measure PXY is defined as

CXY := µXY − µX ⊗ µY ,

where ⊗ is the outer product operation. This operator generalizes the covariance matrix. Hilbert-Schmidt

independence criterion (HSIC) is a criterion defined as Hilbert-Schmidt norm, a generalization of Frobenius norm

for matrices, of the cross-covariance operator (Gretton et al., 2005a):

HSIC(PXY ;G,H) := ∥CXY ∥2HS . (2.10)

HSIC is simply the squared kernel maximum mean discrepancy (MMD) between mean embeddings of PXY and

PX × PY in the product RKHS G ⊗H on X × Y , defined by a product kernel k ⊗ l. We can rewrite (2.10) as

(
sup

g∈G⊗H
∥g∥G⊗H≤1

EPXY
[g(X,Y )]− EPX×PY

[g(X ′, Y ′)]

)2

,

which matches the form (2.5). The witness function for HSIC admits a closed form (see Appendix A.4):

g⋆ =
µXY − µX ⊗ µY

∥µXY − µX ⊗ µY ∥G⊗H
, (2.11)

where µXY , µX and µY are defined in (2.9). The oracle payoff based on HSIC: f⋆(Z2t−1, Z2t), is given by

1

2

(
g⋆(Z2t−1) + g⋆(Z2t)− g⋆(Z̃2t−1)− g⋆(Z̃2t)

)
, (2.12)
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which has the form (2.7) with s = 1/2. To construct the test, we use estimators (ft)t≥1 of the oracle payoff f⋆

obtained by replacing g⋆ in (2.12) with the plug-in estimator:

ĝt =
µ̂XY − µ̂X ⊗ µ̂Y

∥µ̂XY − µ̂X ⊗ µ̂Y ∥G⊗H
, (2.13)

where µ̂XY , µ̂X , µ̂Y denote the empirical mean embeddings (plug-in estimators of (2.9)) computed at round t as‡

µ̂XY = 1
2(t−1)

2(t−1)∑

i=1

φ(Xi)⊗ ψ(Yi),

µ̂X = 1
2(t−1)

2(t−1)∑

i=1

φ(Xi), µ̂Y = 1
2(t−1)

2(t−1)∑

i=1

ψ(Yi).

(2.14)

Note that in (2.13) the witness function is defined as an operator. We clarify this point in Appendix A.4. To select

betting fractions, we follow Cutkosky and Orabona (2018) who state the problem of choosing the optimal betting

fraction for coin betting as an online optimization problem with exp-concave losses and propose a strategy based on

online Newton step (ONS) (Hazan et al., 2007) as a solution. ONS betting fractions are inexpensive to compute while

being supported by strong theoretical guarantees. We also consider other strategies for selecting betting fractions and

defer a detailed discussion to Appendix A.3. We conclude with formal guarantees on time-uniform type I error control

and consistency of HSIC-based SKIT. In fact, we establish a stronger result: we show that the wealth process grows

exponentially and characterize the rate of the growth of wealth in terms of the true HSIC score. The proof is deferred

to Appendix A.2.2.

Algorithm 1 Online Newton step (ONS) strategy for selecting betting fractions

Input: sequence of payoffs (ft(Z2t−1, Z2t))t≥1, λONS
1 = 0, a0 = 1.

for t = 1, 2, . . . do
Observe ft(Z2t−1, Z2t);
Set zt = ft(Z2t−1, Z2t)/(1− λONS

t ft(Z2t−1, Z2t));
Set at = at−1 + z2t ;
Set λONS

t+1 := 1
2 ∧

(
0 ∨

(
λONS
t − 2

2−log 3 · ztat

))
;

Theorem 2.2. Suppose that Assumption 1 is satisfied. The following claims hold for HSIC-based SKIT (Algorithm 2):

1. Suppose thatH0 in (2.1a) or (2.2a) is true. Then SKIT ever stops with probability at most α: PH0
(τ <∞) ≤ α.

‡At round t, evaluating HSIC-based payoff requires a number of operations that is linear in t (see Appendix A.6.2). Thus after T steps, we have
expended a total of O(T 2) computation, the same as batch HSIC. However, our test threshold is 1/α, but batch HSIC requires permutations to
determine the right threshold, requiring recomputing HSIC hundreds of times. Thus, our test is actually more computationally feasible than batch
HSIC.
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Algorithm 2 HSIC-based SKIT

Input: significance level α ∈ (0, 1), data stream (Zi)i≥1, where Zi = (Xi, Yi) ∼ PXY , λONS
1 = 0.

for t = 1, 2, . . . do
Use Z1, . . . , Z2(t−1) to compute ĝt as in (2.13);
Compute HSIC payoff ft(Z2t−1, Z2t);
Update the wealth process Kt as in (2.4);
if Kt ≥ 1/α then

Reject H0 and stop;
else

Compute λONS
t+1 (Algorithm 1);

2. Suppose that H1 in (2.1b) is true. Then it holds that Kt
a.s., −→ +∞ and thus SKIT is consistent: PH1(τ <

∞) = 1. Further, the wealth grows exponentially, and the corresponding growth rate satisfies

lim inf
t→∞

logKt

t

a.s.
≥ E[f⋆(Z1,Z2)]

4 ·
(

E[f⋆(Z1,Z2)]
E[(f⋆(Z1,Z2))2]

∧ 1
)
, (2.15)

where f⋆ is the oracle payoff defined in (2.12).

Since E [f⋆(Z1, Z2)] =
√

HSIC(PXY ;G,H) and E
[
(f⋆(Z1, Z2))

2
]
≤ 1, Theorem 2.2 implies that:

lim inf
t→∞

(
1
t logKt

) a.s.
≥ 1

4 ·HSIC(PXY ;G,H).

However, the lower bound (2.15) is never worse. In particular, if the variance of the oracle payoffs: σ2 =

V [f⋆(Z1, Z2)], is small, meaning that σ2 ≤ E [f⋆(Z1, Z2)] (1−E [f⋆(Z1, Z2)]), we get a faster rate:
√

HSIC(PXY ;G,H)/4,

reminiscent of an empirical Bernstein type adaptation. Up to some small constants, we show that this is the best

possible exponent that adapts automatically between the low- and high-variance regimes. We do this by considering the

oracle test, i.e., assuming that the oracle HSIC payoff f⋆ is known. Amongst the betting fractions that are constrained

to lie in [−0.5, 0.5], like ONS bets, the optimal growth rate is ensured by taking

λ⋆ = argmax
λ∈[−0.5,0.5]

E [log(1 + λf⋆(Z1, Z2))] . (2.16)

We have the following result about the growth rate of the oracle test, whose proof is deferred to Appendix A.2.2.

Proposition 1. The optimal log-wealth S⋆ := E [log(1 + λ⋆f⋆(Z1, Z2))] — that can be achieved by an oracle betting

scheme (2.16) which knows f⋆ from (2.12) and the underlying distribution — satisfies:

S⋆ ≤ E [f⋆(Z1, Z2)]

2

(
8E [f⋆(Z1, Z2)]

3E [(f⋆(Z1, Z2))2]
∧ 1

)
. (2.17)
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Remark 2 (Minibatching). While our test processes the data stream in pairs, it is possible to use larger batches of

points from PXY . For a batch size is b ≥ 2, at round t, the bet is placed on
{
(Xb(t−1)+1, Yb(t−1)+1), . . . , (Xbt, Ybt)

}
.

In this case, the empirical mean embeddings are computed analogous to (2.14) but using {(Xi, Yi)}i≤b(t−1). We

defer the details to Appendix A.4. Such payoff function satisfies the necessary conditions for the wealth process to be

a nonnegative martingale, and hence, the resulting sequential test has time-uniform type I error control. The same

argument as in the proof of Theorem 2.2 can be used to show that the resulting test is consistent. The main downside

of minibatching is that monitoring of the test (and hence, optional stopping) is allowed only after processing every b

points from PXY .

Distribution Drift. As discussed in Section 2.1, batch independence tests have an inflated false alarm rate even under

mild changes in distribution. In contrast, SKIT remains valid even when the data distribution drifts over time. For a

stream of independent points, we claimed that our test controls the type I error as long as only one of the marginal

distributions changes at each round. In Appendix A.4, we provide an example that shows that this assumption is

necessary for the validity of our tests. Our tests can also be used to test instantaneous independence between two

streams. Formally, define Dt := {(Xi, Yi)}i≤2t and consider:

H0 : ∀t, X2t−1 ⊥⊥ Y2t−1 | Dt−1 and X2t ⊥⊥ Y2t | Dt−1,

H1 : ∃t′ : X2t′−1��⊥⊥ Y2t′−1 | Dt−1 or X2t′ ��⊥⊥ Y2t′ | Dt−1.

(2.18a)

(2.18b)

Assumption 2. Suppose that under H0 in (2.18a), it also holds that:

(a) The cross-links between X and Y streams are not allowed, meaning that for all t ≥ 1,

Yt ⊥⊥ Xt−1 | Yt−1, {(Xi, Yi)}i≤t−2,

Xt ⊥⊥ Yt−1 | Xt−1, {(Xi, Yi)}i≤t−2.
(2.19)

(b) For all t ≥ 1, either (Xt, Xt−1) or (Yt, Yt−1) are exchangeable conditional on {(Xi, Yi)}i≤t−2.

In the above, (a) relaxes the independence assumption within each pair, and (b) generalizes the assumption about

allowed changes in the marginal distributions of X and Y . Under the above setting, we deduce that our test retains

type-1 error control, and the proof is deferred to Appendix A.2.2.

Theorem 2.3. Suppose that H0 in (2.18a) is true. Further, assume that Assumption 2 holds. Then HSIC-based SKIT

(Algorithm 2) satisfies: PH0 (τ <∞) ≤ α.

Chwialkowski and Gretton (2014) considered a related (at a high level) problem of testing instantaneous

independence between a pair of time series. Similar to distribution drift, HSIC fails to test independence between

innovations in time series since naively permuting one series destroys the underlying structure. Chwialkowski and
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Gretton (2014) used a subset of permutations — rotations by circular shifting (allowed by their assumption of strict

stationarity) of one series for preserving the structure — to design a p-value and used the assumption of mixing

(decreasing memory of a process) to justify the asymptotic validity. The setting we consider is very different, and we

make no assumptions of mixing or stationarity anywhere. Related works on independence testing for time series also

include (Chwialkowski et al., 2014; Besserve et al., 2013). In the next section, we extend the methodology to other

dependence measures.

2.3 Alternative Dependence Measures

Let C1 and C2 denote some classes of bounded functions c1 : X → R and c2 : Y → R respectively. For a class C of

functions c : X × Y → R that factorize into the product: c(x, y) = c1(x)c2(y) for some c1 ∈ C1 and c2 ∈ C2, the

general form of dependence measures (2.5) reduces to

m(PXY ; C1, C2) = sup
c1∈C1,c2∈C2

Cov (c1(X), c2(Y )) .

Next, we develop SKITs based on two dependence measures of this form: COCO and KCC. While the corresponding

witness functions do not admit a closed form, efficient algorithms for computing the plug-in estimates are available.

Witness Functions for COCO. Constrained covariance (COCO) is a criterion for measuring dependence based on

covariance between smooth functions of random variables:

sup
g,h:

∥g∥G≤1,

∥h∥H≤1

Cov (g(X), h(Y )) = sup
g,h:

∥g∥G≤1,

∥h∥H≤1

⟨h,CXY g⟩H,
(2.20)

where the supremum is taken over the unit balls in the respective RKHSs (Gretton et al., 2005c,b). At round t, we are

interested in empirical witness functions computed from {(Xi, Yi)}i≤2(t−1). The key observation is that maximizing

the objective function in (2.20) with the plug-in estimator of the cross-covariance operator requires considering only

functions in G andH that lie in the span of the data:

ĝt =

2(t−1)∑

i=1

αi

(
φ(Xi)−

1

2(t− 1)

2(t−1)∑

j=1

φ(Xj)

)
,

ĥt =

2(t−1)∑

i=1

βi

(
ψ(Yi)−

1

2(t− 1)

2(t−1)∑

j=1

ψ(Yj)

)
.

(2.21)
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Coefficients α and β that solve the maximization problem (2.20) define the leading eigenvector of the following

generalized eigenvalue problem (see Appendix A.4):


 0 1

2(t−1)K̃L̃

1
2(t−1) L̃K̃ 0




α
β


 = γ


K̃ 0

0 L̃




α
β


 , (2.22)

where K̃ = HKH , L̃ = HLH , and H = I2(t−1) − (1/(2(t − 1))11⊤ is centering projection matrix. Computing

the leading eigenvector for (2.22) is computationally demanding for moderately large t. A common practice is to use

low-rank approximations of K and L with fast-decaying spectrum (Jordan and Bach, 2001). We present an approach

based on incomplete Cholesky decomposition in Appendix A.6.1.

Witness Functions for KCC. Kernelized canonical correlation (KCC) relies on the regularized correlation between

smooth functions of random variables:

sup
g∈G,
h∈H

Cov (g(X), h(Y ))√
V [g(X)] + κ1 ∥g∥2G ·

√
V [h(Y )] + κ2 ∥h∥2H

, (2.23)

where regularization is necessary for obtaining meaningful estimates of correlation (Jordan and Bach, 2001; Fukumizu

et al., 2007a). Witness functions for KCC have the same form as for COCO (2.21), but α and β define the leading

eigenvector of a modified problem (Appendix A.4).

SKIT based on COCO or KCC. Given a pair of the witness functions g⋆ and h⋆ for COCO (or KCC) criterion, the

corresponding oracle payoff: f⋆(Z2t−1, Z2t), is given by

1

2
(g⋆(X2t)− g⋆(X2t−1)) (h

⋆(Y2t)− h⋆(Y2t−1)) , (2.24)

which has the form (2.7) with s = 1/2. To construct the test, we rely on estimates (ft)t≥1 of the oracle payoff f⋆

obtained by using ĝt and ĥt, defined in (2.21), in (2.24). We assume that α and β in (2.22) are normalized: α⊤K̃α = 1

and β⊤L̃β = 1. We conclude with a guarantee on time-uniform false alarm rate control of SKITs based on COCO

(Algorithm 3), whose proof is deferred to Appendix A.2.3.

Algorithm 3 SKIT based on COCO (or KCC)

Input: significance level α ∈ (0, 1), data stream (Zi)i≥1, where Zi = (Xi, Yi) ∼ PXY , λONS
1 = 0.

for t = 1, 2, . . . do
Use Z1, . . . , Z2(t−1) to compute ĝt and ĥt as in (2.21);
Compute COCO payoff ft(Z2t−1, Z2t);
Update the wealth process Kt as in (2.4);
if Kt ≥ 1/α then

Reject H0 and stop;
else

Compute λONS
t+1 (Algorithm 1);
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Theorem 2.4. Suppose that (A1) in Assumption 1 is satisfied. Then, under H0 in (2.1a) and (2.18a), COCO/KCC-

based SKIT (Algorithm 3) satisfies: PH0
(τ <∞) ≤ α.

Remark 3. The above result does not contain a claim regarding the consistency of the corresponding tests. If (A2)

in Assumption 1 holds, the same argument as in the proof of Theorem 2.2 can be used to deduce that SKITs based on

the oracle payoffs (with oracle witness functions g⋆ and h⋆) are consistent. In contrast to HSIC, for which the oracle

witness function is closed-form and the respective plug-in estimator is amenable for the analysis, to argue about the

consistency of SKITs based on COCO/KCC, it is necessary to place additional assumptions, especially since low-rank

approximations of kernel matrices are involved. We note that a sufficient condition for consistency is that the payoffs

are positive on average: lim inft→∞
1
t

∑t
i=1 fi(Z2i−1, Z2i)

a.s.
> 0.

Synthetic Experiments. To compare SKITs based on HSIC, COCO, and KCC payoffs, we use RBF kernel with

hyperparameters taken to be inversely proportional to the second moment of the underlying variables; we observed

no substantial difference when such selection is data-driven (median heuristic). We consider settings where the

complexity of a task is controlled through a single univariate parameter:

(a) Gaussian model. For for t ≥ 1, we consider Yt = Xtβ + εt, where Xt, εt ∼ N (0, 1). We have that β ̸= 0

implies nonzero linear correlation (hence dependence). We consider 20 values for β, spaced uniformly in [0,0.3],

and use λX = 1/4 and λY = 1/(4(1 + β2)) as kernel hyperparameters.

(b) Spherical model. We generate a sequence of dependent but linearly uncorrelated random variables by taking

(Xt, Yt) = ((Ut)(1), (Ut)(2)), where Ut
iid∼ Unif(Sd), for t ≥ 1. Sd denotes a unit sphere in Rd and u(i) is the

i-th coordinate of u. We consider d ∈ {3, . . . , 15}, and use λX = λY = d/4 as kernel hyperparameters.

We stop monitoring after observing 20000 points from PXY (if SKIT does not stop by that time, we retain the

null) and aggregate the results over 200 runs for each value of β and d. In Figure 2.3, we confirm that SKITs control

the type I error and adapt to the complexity of a task. In settings with a very low signal-to-noise ratio (small β or large

d), SKIT’s power drops, but in such cases, both sequential and batch independence tests inevitably require a lot of data

to reject the null. We defer additional experiments to Appendix A.5.4.

2.4 Symmetry-based Betting Strategies

In this section, we develop a betting strategy that relies on symmetry properties, whose advantage is that it overcomes

the kernel boundedness assumption that underlined the SKIT construction. For example, using this betting strategy

with a linear kernel: k(x, y) = l(x, y) = ⟨x, y⟩ readily implies a valid sequential linear correlation test. Consider

Wt = ĝt(Z2t−1) + ĝt(Z2t)− ĝt(Z̃2t−1)− ĝt(Z̃2t), (2.25)
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(b) Spherical model.

Figure 2.3: Rejection rate and scaled sample size used to reject the null hypothesis for synthetic data. Inspecting the
rejection rate for β = 0 (independence holds) confirms that the type I error is controlled. Further, we confirm that
SKITs are adaptive to the complexity (smaller β and larger d correspond to harder settings).

where ĝt = µ̂XY − µ̂X ⊗ µ̂Y is the unnormalized plug-in witness function computed from {Zi}i≤2(t−1). Symmetry-

based betting strategies rely on the following key fact.

Proposition 2. Under any distribution in H0, Wt is symmetric around zero, conditional on Ft−1.

By construction, we expect the sign and magnitude of Wt to be positively correlated under the alternative. We

consider three payoff functions that aim to exploit this fact.

1. Composition with an odd function. This approach is based on the idea from sequential symmetry testing (Ram-

das et al., 2020) that composition with an odd function of a symmetric around zero random variable is mean-zero.

Absent knowledge regarding the scale of considered random variables, it is natural to standardize {Wi}i≥1 in a

predictable way. We consider

foddt (Wt) = tanh (Wt/Nt−1), (2.26)

where Nt = Q0.9({|Wi|}i≤t) − Q0.1({|Wi|}i≤t), and Qα({|Wi|}i≤t) is the α-quantile of the empirical

distribution of the absolute values of {Wi}i≤t. (The choices of 0.1 and 0.9 are heuristic, and can be replaced by

other constants without violating the validity of the test.) The composition approach has demonstrated promising

empirical performance for the betting-based two-sample tests of Shekhar and Ramdas (2021) and conditional

independence tests of Shaer et al. (2023).

2. Rank-based approach. Inspired by sequential signed-rank test of symmetry around zero of Reynolds Jr. (1975),

we consider the following payoff function:

f rankt (Wt) = sign(Wt) ·
rk(|Wt|)

t
, (2.27)
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where rk(|Wt|) =
∑t

i=1 1 {|Wi| ≤ |Wt|}.

3. Predictive approach. At round t, we fit a probabilistic predictor pt : R+ → [0, 1], e.g., logistic regression, using

{|Wi| , sign [Wi]}i≤t−1 as feature-label pairs. We consider the following payoff function:

fpredt (Wt) = (2pt(|Wt|)− 1)+ · (1− 2ℓt(Wt)) , (2.28)

where (·)+ = max {·, 0} and ℓt(|Wt| , sign [Wt]) is the misclassification loss of the predictor pt.

In the next result, whose proof is deferred to Appendix A.2.4, we show that symmetry-based SKITs are valid.

Algorithm 4 SKIT with symmetry-based betting

Input: significance level α ∈ (0, 1), data stream (Zi)i≥1, where Zi = (Xi, Yi) ∼ PXY , λONS
1 = 0.

for t = 1, 2, . . . do
Observe Z2t−1, Z2t and compute Wt as in (2.25);
Compute payoff foddt (Wt) as in (2.26);
Update the wealth process Kt as in (2.4);
if Kt ≥ 1/α then

Reject H0 and stop;
else

Compute λONS
t+1 (Algorithm 1);

Theorem 2.5. Under H0 in (2.1a) and (2.18a), the symmetry-based SKIT (Algorithm 4) satisfies: PH0
(τ <∞) ≤ α.

Synthetic Experiments. To compare the symmetry-based payoffs, we consider the Gaussian model along with

aGRAPA betting fractions. For visualization purposes, we complete monitoring after observing 2000 points from the

joint distribution. In Figure 2.4a, we observe that the resulting SKITs demonstrate similar performance. In Figure 2.4b,

we demonstrate that SKIT with a linear kernel has high power under the Gaussian model, whereas its false alarm rate

does not exceed α under the spherical model. Additional synthetic experiments can be found in Appendix A.5.3.

Real Data Experiment. We analyze average daily temperatures§ in four European cities: London, Amsterdam,

Zurich, and Nice, from January 1, 2017, to May 31, 2022. The processes underlying temperature formation are

complex and act both on macro (e.g., solar phase) and micro (e.g., local winds) levels. While average daily

temperatures in selected cities share similar cyclic patterns, one may still expect the temperature fluctuations occurring

in nearby locations to be dependent. We use SKIT for testing instantaneous independence (as per (2.18)) between

fluctuations (assuming that the conditions that underlie our test hold).

We run SKIT with the rank-based payoff and ONS betting fractions for each pair of cities using 6/α as a rejection

threshold (accounting for multiple testing). We select the kernel hyperparameters via the median heuristic using

recordings for the first 20 days. In Figures 2.5, we illustrate that SKIT supports our conjecture that temperature

fluctuations are dependent in nearby locations. We also run this experiment for four cities in South Africa (see
§data source: https://www.wunderground.com
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Figure 2.4: (a) SKITs with symmetry-based payoffs have high power under the Gaussian model. (b) SKIT with linear
kernel has high power under the Gaussian model (X and Y are linearly correlated for β ̸= 0), and its false alarm rate
is controlled under the spherical model (X and Y are linearly uncorrelated but dependent).

Appendix A.5.5). In addition, we analyze the performance of SKIT on MNIST data; the details are deferred to

Appendix A.5.6.
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Figure 2.5: Solid lines connect cities for which the null is rejected. SKIT supports the conjecture regarding dependent
temperature fluctuations in nearby locations.

2.5 Conclusion

A key advantage of sequential tests is that they can be continuously monitored, allowing an analyst to adaptively decide

whether to stop and reject the null hypothesis or to continue collecting data, without inflating the false positive rate.

In this paper, we design consistent sequential kernel independence tests (SKITs) following the principle of testing by

betting. SKITs are also valid beyond the i.i.d. setting, allowing the data distribution to drift over time. Experiments on

synthetic and real data confirm the power of SKITs.
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Chapter 3

Sequential Predictive Two-Sample and

Independence Testing

3.1 Introduction

We consider two closely-related problems of nonparametric two-sample and independence testing. In the former,

given observations from two distributions P and Q, the goal is to test the null hypothesis that the distributions are

the same: H0 : P = Q, against the alternative that they are not: H1 : P ̸= Q. In the latter, given observations

from some joint distribution PXY , the goal is to test the null hypothesis that the random variables are independent:

H0 : PXY = PX ×PY , against the alternative that they are not: H1 : PXY ̸= PX ×PY . Kernel tests, such as kernel-

MMD (Gretton et al., 2012) for two-sample and HSIC (Gretton et al., 2005a) for independence testing, are amongst

the most popular methods for solving these tasks which work well on data from simple distributions. However, their

performance is sensitive to the choice of a kernel and respective parameters, like bandwidth, and applying such tests

requires additional effort. Further, selecting kernels for structured data, like images, is a nontrivial task. Lastly, kernel

tests suffer from decaying power in high dimensions (Ramdas et al., 2015).

Predictive two-sample and independence tests (2STs and ITs respectively) aim to address such limitations of

kernelized approaches. The idea of using classifiers for two-sample testing dates back to Friedman (2004) who

proposed using the output scores as a dimension reduction method. More recent works focused on the direct evaluation

of a learned model for testing. In an initial arXiv 2016 preprint, Kim et al. (2021) proposed and analyzed predictive

2STs based on sample-splitting, namely testing whether the accuracy of a model trained on the first split of data and

estimated on the second split is significantly better than chance. The authors established the consistency of asymptotic

and exact tests in high-dimensional settings and provided rates for the case of Gaussian distributions. Inspired by

this work, Lopez-Paz and Oquab (2017) soon after demonstrated that empirically predictive 2STs often outperform
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state-of-the-art 2STs, such as kernel-MMD. Recently, Hediger et al. (2022) proposed a related test that utilizes out-of-

bag predictions for bagging-based classifiers, such as random forests. To incorporate measures of model confidence,

many authors have also explored using test statistics that are based on the output scores instead of the binary class

predictions (Kim et al., 2019; Liu et al., 2020; Cheng and Cloninger, 2022; Kübler et al., 2022).

The focus of the above works is on batch tests which are calibrated to have a fixed false positive rate (say, 5%) if

the sample size is specified in advance. In contrast, we focus on the setting of sequentially released data. Our tests

allow on-the-fly decision-making: an analyst can use observed data to decide whether to stop and reject the null or to

collect more data, without inflating the false alarm rate.

Problem Setup. First, we define the problems of sequential two-sample and independence testing.

Definition 1 (Sequential two-sample testing). Suppose that we observe a stream of i.i.d. observations ((Zt,Wt))t≥1,

where Wt ∼ Rademacher(1/2), the distribution of Zt |Wt = +1 is denoted P , and that of Zt |Wt = −1 is denoted

Q. The goal is to design a sequential test for

H0 : P = Q,

H1 : P ̸= Q.

(3.1a)

(3.1b)

Definition 2 (Sequential independence testing). Suppose that we observe that a stream of observations: ((Xt, Yt))t≥1,

where (Xt, Yt) ∼ PXY for t ≥ 1. The goal is to design a sequential test for

H0 : (Xt, Yt) ∼ PXY and PXY = PX × PY ,

H1 : (Xt, Yt) ∼ PXY and PXY ̸= PX × PY .

(3.2a)

(3.2b)

We operate in the framework of “power-one tests” (Darling and Robbins, 1968) and define a level-α sequential test as

a mapping Φ : ∪∞t=1Zt → {0, 1} that satisfies: PH0
(∃t ≥ 1 : Φ(Z1, . . . , Zt) = 1) ≤ α. We refer to such notion of

type I error control as time-uniform. Here, 0 stands for “do not reject the null yet” and 1 stands for “reject the null and

stop”. Defining the stopping time as the first time that the test outputs 1: τ := inf{t ≥ 1 : Φ(Z1, . . . , Zt) = 1}, a

sequential test must satisfy

PH0 (τ <∞) ≤ α. (3.3)

We aim to design consistent tests which are guaranteed to stop if the alternative happens to be true:

PH1 (τ <∞) = 1. (3.4)

Our construction follows the principle of testing by betting (Shafer, 2021). The most closely related work is

that of “nonparametric 2ST by betting” of Shekhar and Ramdas (2021), which later inspired several follow-up

works, including sequential (marginal) kernelized independence tests of Podkopaev et al. (2023), and the sequential

conditional independence tests under the model-X assumption of Grünwald et al. (2023) and Shaer et al. (2023). We
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extend the line of work of Shekhar and Ramdas (2021) and of Podkopaev et al. (2023), studying predictive approaches

in detail.

Sequential predictive 2STs have been studied by Lhéritier and Cazals (2018, 2019), but in practice, those tests were

found to be inferior to the ones developed by Shekhar and Ramdas (2021). Recently, Pandeva et al. (2022) proposed a

related test that handles the case of the unknown class proportions using ideas from (Wasserman et al., 2020). As we

shall see, our tests are closely related to (Lhéritier and Cazals, 2018, 2019; Pandeva et al., 2022), but are consistent

under much milder assumptions.

Sequential Nonparametric Two-Sample and Independence Testing by Betting. Suppose that one observes a

sequence of random variables (Zt)t≥1, where Zt ∈ Z . The principle of testing by betting (Shafer and Vovk, 2019;

Shafer, 2021) can be described as follows. A player starts the game with initial capital K0 = 1. At round t, she

selects a payoff function ft : Z → [−1,∞) that satisfies EZ∼PZ
[ft(Z) | Ft−1] = 0 for all PZ ∈ H0, where

Ft−1 = σ(Z1, . . . , Zt−1), and bets a fraction of her wealth λtKt−1 for an Ft−1-measurable λt ∈ [0, 1]. Once Zt is

revealed, her wealth is updated as

Kt = Kt−1 + λtKt−1ft(Zt) = Kt−1 (1 + λtft(Zt)) . (3.5)

The wealth of a player measures evidence against the null hypothesis, and if a player can make money in such game,

we reject the null. For testing H0 at level α ∈ (0, 1), we use the stopping rule:

τ = inf {t ≥ 1 : Kt ≥ 1/α} . (3.6)

The validity of the test follows from Ville’s inequality (Ville, 1939), a time-uniform generalization of Markov’s

inequality, since (Kt)t≥0 is a nonnegative martingale under any PZ ∈ H0. To ensure high power, one has to choose

(ft)t≥1 and (λt)t≥1 to guarantee the growth of the wealth if the alternative is true. In the context of two-sample and

independence testing, Shekhar and Ramdas (2021) and Podkopaev et al. (2023) recently proposed effective betting

strategies based on kernelized measures of statistical distance and dependence respectively which admit a variational

representation. In a nutshell, datapoints observed prior to a given round are used to estimate the witness function

— one that best highlights the discrepancy between P and Q for two-sample (or between PXY and PX × PY for

independence) testing — and a bet is formed as an estimator of a chosen measure of distance (or dependence).

In contrast, our bets are based on evaluating the performance of a sequentially learned predictor that distinguishes

between instances from distributions of interest.

Remark 4. In practical settings, an analyst may not be able to continue collecting data forever and may adaptively

stop the experiment before the wealth exceeds 1/α. In such case, one may use a different threshold for rejecting the

null at a stopping time τ , namely U/α, where U is a (stochastically larger than) uniform random variable on [0, 1]
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drawn independently from (Ft)t≥0. This choice strictly improves the power of the test without violating the validity;

see (Ramdas and Manole, 2023).

Contributions. We develop sequential predictive two-sample (Section 3.2) and independence (Section 3.3) tests. We

establish sufficient conditions for consistency of our tests and relate those to evaluation metrics of the underlying

models. We conduct an extensive empirical study on synthetic and real data, justifying the superiority of our tests over

the kernelized ones on structured data.

3.2 Classification-based Two-Sample Testing

Let G : Z → [−1, 1] denote a class of predictors used to distinguish between instances from P (labeled as +1) and

Q (labeled as −1)*. We assume that: (a) if g ∈ G, then −g ∈ G, (b) if g ∈ G and s ∈ [0, 1], then sg ∈ G, and (c)

predictions are based on sign[g(·)], and if g(z) = 0, then z is assigned to the positive class. Two natural evaluation

metrics of a predictor g ∈ G include the misclassification and the squared risks:

Rm(g) := P (W · sign [g (Z)] < 0) , Rs(g) := E
[
(g(Z)−W )2

]
, (3.7)

which give rise to the following measures of distance between P and Q, namely

dm(P,Q) := sup
g∈G

(
1
2 −Rm(g)

)
, ds(P,Q) := sup

g∈G
(1−Rs(g)) . (3.8)

It is easy to check that dm(P,Q) ∈ [0, 1/2] and dm(P,Q) ∈ [0, 1]. The upper bounds hold due to the non-negativity

of the risks and the lower bounds follow by considering g : g(z) = 0,∀z ∈ Z . Note that the misclassification risk

is invariant to rescaling (Rm(sg) = Rm(g), ∀s ∈ (0, 1]), whereas the squared risk is not, and rescaling any g to

optimize the squared risk provides better contrast between P and Q. In the next result, whose proof is deferred to

Appendix B.4.3, we present an important relationship between the squared risk of a rescaled predictor and its expected

margin: E [W · g(Z)].

Proposition 3. Fix an arbitrary predictor g ∈ G. The following claims hold:

1. For the misclassification risk, we have that:

sup
s∈[0,1]

(
1
2 −Rm(sg)

)
=
(
1
2 −Rm(g)

)
∨ 0 =

(
1
2 · E [W · sign [g(Z)]]

)
∨ 0. (3.9)

*Similar argument can be applied to general scoring-based classifiers: g : Z → R, e.g., SVMs, by considering G̃ =
{g̃ : g̃(z) = tanh(s · g(z)), g ∈ G, s > 0}, where the constant s > 0 corrects the scale of the scores.
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2. For the squared risk, we have that:

sup
s∈[0,1]

(1−Rs(sg)) ≥ (E [W · g(Z)] ∨ 0) ·
(
E [W · g(Z)]
E [g2(Z)]

∧ 1

)
(3.10)

Further, ds(P,Q) > 0 if and only if there exists g ∈ G such that E [W · g(Z)] > 0.

Consider an arbitrary predictor g ∈ G. Note that under the null H0 in (3.1a), the misclassification risk Rm(g) does not

depend on g, being equal to 1/2, whereas the squared risk Rs(g) does. In contrast, the lower bound (3.10) no longer

depends on g under the null H0, being equal to 0.

Oracle Test. It is a known fact that the minimizer of either the misclassification or the squared risk is gBayes(z) =

2η(z) − 1, where η(z) = P (W = +1 | Z = z). Since gBayes may not belong to G, we consider g⋆ ∈ G, which

minimizes either the misclassification or the squared risk over predictors in G, and omit superscripts for brevity. To

design payoff functions, we follow Proposition 3 and consider

fm⋆ (Zt,Wt) =Wt · sign [g⋆(Zt)] ∈ {−1, 1},

f s⋆(Zt,Wt) =Wt · g⋆(Zt) ∈ [−1, 1].

(3.11a)

(3.11b)

Let the oracle wealth processes based on misclassification and squared risks (Km,⋆
t )t≥0 and (Ks,⋆

t )t≥0 be defined by

using the payoff functions (3.11a) and (3.11b) respectively, along with a predictable sequence of betting fractions

(λt)t≥1 selected via online Newton step (ONS) strategy (Hazan et al., 2007) (Algorithm 5), which has been studied in

the context of coin-betting by Cutkosky and Orabona (2018). If a constant betting fraction is used throughout: λt = λ,

∀t, then

E
[
1
t logK

i,⋆
t

]
= E

[
log(1 + λf i⋆(Z,W ))

]
, i ∈ {m, s} . (3.12)

To illustrate the tightness of our results, we consider the optimal constant betting fractions which maximize the log-

wealth (3.12) and are constrained to lie in [−0.5, 0.5], like ONS bets:

λi⋆ = argmax
λ∈[−0.5,0.5]

E
[
log(1 + λf i⋆(Z,W ))

]
, i ∈ {m, s} . (3.13)

Algorithm 5 Online Newton step (ONS) strategy for selecting betting fractions

Input: sequence of payoffs (ft)t≥1, λONS
1 = 0, a0 = 1.

for t = 1, 2, . . . do
Observe ft ∈ [−1, 1];
Set zt := ft/(1− λONS

t );
Set at := at−1 + z2t ;
Set λONS

t+1 := 1
2 ∧

(
0 ∨

(
λONS
t − 2

2−log 3 · ztat

))
;
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We have the following result for the oracle tests, whose proof is deferred to Appendix B.4.3.

Theorem 3.1. The following claims hold:

1. Suppose that H0 in (3.1a) is true. Then the oracle sequential test based on either (Km,⋆
t )t≥0 or (Ks,⋆

t )t≥0 ever

stops with probability at most α: PH0 (τ <∞) ≤ α.

2. Suppose that H1 in (3.1b) is true. Then:

(a) The growth rate of the oracle wealth process (Km,⋆
t )t≥0 satisfies:

lim inf
t→∞

(
1
t logK

m,⋆
t

) a.s.
≥
(
1
2 −Rm (g⋆)

)2
. (3.14)

If Rm (g⋆) < 1/2, then the test based on (Km,⋆
t )t≥0 is consistent: PH1 (τ <∞) = 1. Further, the optimal

growth rate achieved by λm⋆ in (3.13) satisfies:

E [log(1 + λm⋆ f
m
⋆ (Z,W ))] ≤

(
16
3 ·
(
1
2 −Rm(g⋆)

)2 ∧
(
1
2 −Rm(g⋆)

))
. (3.15)

(b) The growth rate of the oracle wealth process (Ks,⋆
t )t≥0 satisfies:

lim inf
t→∞

(
1
t logK

s,⋆
t

) a.s.
≥ 1

4 · E [W · g⋆(Z)] . (3.16)

If E [W · g⋆(Z)] > 0, then the test based on (Ks,⋆
t )t≥0 is consistent: PH1 (τ <∞) = 1. Further, the

optimal growth rate achieved by λs⋆ in (3.13) satisfies:

E [log(1 + λs⋆f
s
⋆(Z,W ))] ≤ 1

2 · E [W · g⋆(Z)] . (3.17)

Theorem 3.1 precisely characterizes the properties of the oracle wealth processes and relates those to interpretable

metrics of predictive performance. Further, the proof of Theorem 3.1 highlights a direct impact of the variance of the

payoffs on the wealth growth rate, and hence the power of the resulting sequential tests (as the null is rejected once the

wealth exceeds 1/α).

The second moment of the payoffs based on the misclassification risk (3.11a) is equal to one, resulting in a

slow growth: the bound (3.14) is proportional to squared deviation of the misclassification risk from one half. The

bound (3.15) shows that the growth rate with the ONS strategy matches, up to constants, that of the oracle betting

fraction. Note that the second term in (3.15) characterizes the growth rate if Rm(g⋆) < 5/16 (low Bayes risk). In this

regime, the growth rate of our test is at least (3/16) · (1/2 − Rm(g⋆)) which is close to the optimal rate. The second

moment of the payoffs based on the squared risk is more insightful. First, we present a result for the case when the

oracle predictor g⋆ in (3.11b) is replaced by an arbitrary g ∈ G. The proof is deferred to Appendix B.4.3.
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Corollary 3.1.1. Consider an arbitrary g ∈ G with nonnegative expected margin: E [W · g(Z)] ≥ 0. Then the growth

rate of the corresponding wealth process (Ks
t)t≥0 satisfies:

lim inf
t→∞

(
1
t logKs

t

) a.s.
≥ 1

4

(
sup

s∈[0,1]

(1−Rs (sg)) ∧ E [W · g(Z)])
)

≥ 1
4 (E [W · g(Z)])2 ,

(3.18a)

(3.18b)

and the optimal growth rate achieved by λs⋆ in (3.13) satisfies:

E [log(1 + λs⋆f
s(Z,W ))] ≤

(
4
3 · sup

s∈[0,1]

(1−Rs (sg))
)
∧
(
1
2 · E [W · g(Z)]

)
. (3.19)

Corollary 3.1.1 states that for an arbitrary g ∈ G, the growth rate is lower bounded by the minimum of the expected

margin and the (optimized) squared risk of such predictor. While the latter term is always smaller for the optimal g⋆,

this may not hold for an arbitrary g ∈ G. The lower bound (3.18b), which follows from Proposition 3, is always worse

than that for g⋆ (the expected margin is squared). The upper bound (3.19) shows that the growth rate with the ONS

strategy matches, up to constants, that of the optimal constant betting fraction. Before presenting a practical sequential

2ST, we provide two important remarks that further contextualize the current work in the literature.

Remark 5. In practice, we learn a predictor sequentially and have to choose a learning algorithm. Note that (3.18a)

suggests that direct margin maximization may hurt the power of the resulting 2ST: the squared risk is sensitive to

miscalibrated and overconfident predictors. Kübler et al. (2022) made a similar conjecture in the context of batch

two-sample testing. To optimize the power, the authors suggested minimizing the cross-entropy or the squared loss

and related such approach to maximizing the signal-to-noise ratio, a heuristic approach that was proposed earlier

by Sutherland et al. (2017)†.

Remark 6. Suppose that gBayes ∈ G and consider the payoff function based on the squared risk (3.11b). At round t,

the wealth of a player Kt−1 is multiplied by

1 + λt ·Wt · gBayes(Zt) = (1− λt) · 1 + λt ·
(
1 +Wt · gBayes(Zt)

)

= (1− λt) · 1 + λt ·
(η(Zt))

1{Wt=1}
(1− η(Zt))

1{Wt=−1}

(
1
2

)1{Wt=1} ( 1
2

)1{Wt=−1} ,
(3.20)

and hence, the betting fractions interpolate between the regimes of not betting and betting using a likelihood ratio.

From this standpoint, 2STs of Lhéritier and Cazals (2018, 2019); Pandeva et al. (2022) set λt = 1, ∀t, and use only the

second term for updating the wealth despite the fact that the true likelihood ratio is unknown. An argument about the

consistency of such test hence requires imposing strong assumptions about a sequence of predictors (gt)t≥1 (Lhéritier

†Standard CLT does not apply directly when the conditioning set grows; see (Kim and Ramdas, 2020).
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and Cazals, 2018, 2019). Our test differs in a critical way: we use a sequence of betting fractions, (λt)t≥1, which

adapts to the quality of the underlying predictors, yielding a consistent test under much weaker assumptions.

Example 3. Consider P = N (0, 1) and Q = N (δ, 1) for 20 values of δ, equally spaced in [0, 0.5]. For a given δ, the

Bayes-optimal predictor is

gBayes(z) =
φ(z; 0, 1)− φ(z; δ, 1)
φ(z; 0, 1) + φ(z; δ, 1)

∈ [−1, 1], (3.21)

where φ(z;µ, σ2) denotes the density of N (µ, σ2) evaluated at z. In Figure 3.1a, we compare tests that use (a) the

Bayes-optimal predictor, (b) a predictor constructed with the plug-in estimates of the means and variances. While in

the former case betting using a likelihood ratio (λt = 1, ∀t) is indeed optimal, our test with an adaptive sequence

(λt)t≥1 is superior when a predictor is learned. The difference becomes even more drastic in Figure 3.1b where a

(regularized) k-NN predictor is used.
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(a) Parametric model.
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(b) Nonparametric model (k-NN).

Figure 3.1: Comparison between our 2ST with adaptive betting fractions and the likelihood ratio test for Example 3.
While the likelihood ratio test is better if the Bayes-optimal predictor is used, our test is superior if a predictor is
learned. The results are aggregated over 500 runs for each value of δ.

Practical Test. LetAc : (∪t≥1(Z × {−1,+1})t)×G → G denote a learning algorithm which maps a training dataset

of any size and previously used classifier, to an updated predictor. For example, Ac may apply a single gradient

descent step using the most recent observation to update a model. We start with D0 = ∅ and g1 ∈ G : g1(z) = 0, for

any z ∈ Z . At round t, we use one of the payoffs:

fmt (Zt,Wt) =Wt · sign [gt(Zt)] ∈ {−1, 1},

f st (Zt,Wt) =Wt · gt(Zt) ∈ [−1, 1].

(3.22a)

(3.22b)

After (Zt,Wt) is used for betting, we update a training dataset: Dt = Dt−1 ∪ {(Zt,Wt)}, and an existing predictor:

gt+1 = Ac(Dt, gt). We summarize our sequential classification-based 2ST (Seq-C-2ST) in Algorithm 6. While we
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do not need any assumptions to confirm the type I error control, we place some mild assumptions on the learning

algorithm Ac to argue about the consistency.

Algorithm 6 Sequential classification-based 2ST (Seq-C-2ST)

Input: level α ∈ (0, 1), data stream ((Zt,Wt))t≥1, g1(z) ≡ 0, Ac, D0 = ∅, λONS
1 = 0.

for t = 1, 2, . . . do
Evaluate the payoff f st (Zt,Wt) as in (3.22a);
Using λONS

t , update the wealth process Ks
t as per (3.5);

if Ks
t ≥ 1/α then
Reject H0 and stop;

else
Update the training dataset: Dt := Dt−1 ∪ {(Zt,Wt)};
Update predictor: gt+1 = Ac(Dt, gt);
Compute λONS

t+1 (Algorithm 5) using f st (Zt,Wt);

Assumption 3 (Rm-learnability). Suppose that H1 in (3.1b) is true. An algorithm Ac is such that the resulting

sequence (gt)t≥1 satisfies: lim supt→∞
1
t

∑t
i=1 1 {Wi · sign [gi(Zi)] < 0} a.s.

< 1/2.

Assumption 4 (Rs-learnability). Suppose thatH1 in (3.1b) is true. An algorithmAc is such that the resulting sequence

(gt)t≥1 satisfies: lim supt→∞
1
t

∑t
i=1 (gi(Zi)−Wi)

2 a.s
< 1.

In words, the above assumptions state that a sequence of predictors (gt)t≥1 is better than a chance predictor on average.

We conclude with the following result, whose proof is deferred to Appendix B.4.3.

Theorem 3.2. The following claims hold for Seq-C-2ST (Algorithm 6):

1. If H0 in (3.1a) is true, the test ever stops with probability at most α: PH0 (τ <∞) ≤ α.

2. Suppose that H1 in (3.1b) is true. Then:

(a) Under Assumption 3, the test with the payoff (3.22a) is consistent: PH1
(τ <∞) = 1.

(b) Under Assumption 4, the test with the payoff (3.22b) is consistent: PH1
(τ <∞) = 1.

Real Data Experiment. To compare sequential classification-based and kernelized 2STs, we consider Karolinska

Directed Emotional Faces dataset (KDEF) (Lundqvist et al., 1998) that contains images of actors and actresses

expressing different emotions: afraid (AF), angry (AN), disgusted (DI), happy (HA), neutral (HE), sad (SA), and

surprised (SU). Following earlier works (Lopez-Paz and Oquab, 2017; Jitkrittum et al., 2016), we focus on straight

profile only and assign HA, NE, SU emotions to the positive class (instances from P ), and AF, AN, DI emotions to the

negative class (instances from Q); see Figure 3.2a. We remove corrupted images and obtain a dataset containing 802

images with six different emotions. The original images (562 × 762 pixels) are cropped to exclude the background,

resized to 64× 64 pixels and converted to grayscale.

For Seq-C-2ST, we use a small CNN as an underlying model and defer details about the architecture and training to

Appendix B.5.1. As a reference kernel-based 2ST, we use the sequential MMD test of Shekhar and Ramdas (2021) and
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Figure 3.2: (a) Examples of instances from P (top row) and Q (bottom row) for KDEF dataset. (b) Rejection rates for
our test (Seq-C-2ST) and the sequential kernelized 2ST. While both tests achieve perfect power with enough data, our
test is superior to the kernelized approach, requiring fewer observations to do so. The results are averaged over 200
random orderings of the data.

adapt it to the setting where at each round either an observation from P or that fromQ is revealed; see Appendix B.5.1

for details. In Figure 3.2b, we illustrate that while both tests achieve perfect power after processing sufficiently many

observations, our Seq-C-2ST requires fewer observations to do so.

3.3 Classification-based Independence Testing

Sequential Classification-based Independence Test (Seq-C-IT). Under the setting of Definition 2, a single point

from PXY is revealed at each round. Following (Podkopaev et al., 2023), we bet on two points from PXY

(labeled as +1) and utilize external randomization to produce instances from PX × PY (labeled as −1). Let

AIT
c : (∪t≥1((X × Y)× {−1,+1})t)×G → G denote a learning algorithm which maps a training dataset of any size

and previously used classifier, to an updated predictor. We start with D0 = ∅ and g1 : g1(x, y) = 0, ∀(x, y) ∈ X ×Y .

We use derandomized versions of the payoffs (3.22), e.g., instead of (3.22b), we use

f st ((X2t−1, Y2t−1), (X2t, Y2t)) =
1
4 (gt(X2t−1, Y2t−1) + gt(X2t, Y2t))

− 1
4 (gt(X2t−1, Y2t) + gt(X2t, Y2t−1)) .

(3.23)

After (X2t−1, Y2t−1), (X2t, Y2t) have been used for betting, we update a training dataset:

Dt = Dt−1 ∪ {((X2t−1, Y2t−1),+1), ((X2t, Y2t),+1), ((X2t−1, Y2t),−1), ((X2t, Y2t−1),−1)} ,

and an existing predictor: gt+1 = AIT
c (Dt, gt). Seq-C-IT inherits the time-uniform type I error control and the

consistency guarantees of Theorem 3.2, and we omit details for brevity.
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Synthetic Experiments. In our evaluation, we first consider synthetic datasets where the complexity of the

independence testing setup is characterized by a single univariate parameter. We set the monitoring horizon to

T = 5000 points from PXY , and for each parameter value, we aggregate the results over 200 runs. In particular,

we use the following synthetic settings:

1. Spherical model. Let (Ut)t≥1 be a sequence of random vectors on a unit sphere in Rd: Ut
iid∼ Unif(Sd), and let

u(i) denote the i-th coordinate of u. For t ≥ 1, we take

(Xt, Yt) = ((Ut)(1), (Ut)(2)).

We consider d ∈ {3, . . . , 10}, where larger d defines a harder setup.

2. Hard-to-detect-dependence (HTDD) model. We sample ((Xt, Yt))t≥1 from

p(x, y) = 1
4π2 (1 + sin(wx) sin(wy)) · 1

{
(x, y) ∈ [−π, π]2

}
. (3.24)

We consider w ∈ {0, . . . , 6}, where H0 is true (random variables are independent) if and only if w = 0. For

w > 0, Corr (X,Y ) ≈ 1/w2, and the setup is harder for larger w.

For the comparison, we use two predictive models to construct Seq-C-ITs:

1. Let Nt(z) := N (z,Dt−1, kt) define the set of kt closest points in Dt−1 to a query point z := (x, y). We

consider a regularized k-NN predictor: ĝt(z) = 1
kt+1

∑
(Z,W )∈Nt(z)

W. We select the number of neighbors

using the square-root rule: kt =
√
|Dt−1| =

√
4(t− 1).

2. We use a multilayer perceptron (MLP) with three hidden layers and 128, 64 and 32 neurons respectively and the

parameters learned using an incremental training scheme.

We use the HSIC-based sequential kernelized independence test (SKIT) (Podkopaev et al., 2023) as a reference test and

defer details, such as MLP training scheme and SKIT hyperparameters, to Appendix B.5.1. In Figure 3.3, we observe

that SKIT outperforms Seq-C-ITs under the spherical model (with no localized dependence structure), whereas, under

the structured HTDD model, Seq-C-ITs, is superior. Further, inspecting Figure 3.3b at w = 0 confirms that all tests

control the type I error. We refer the reader to Appendix B.5.2 for additional experiments on synthetic data with

localized dependence where Seq-C-ITs are superior. In Appendix B.5.2, we also provide the results for the average

stopping times of our tests: we empirically confirm that our tests are adaptive to the complexity of a problem at hand:

they stop earlier on easy tasks and later on harder ones.

Real Data Experiment. We compare two independence tests on MNIST image dataset (LeCun et al., 1998). To

simulate the null setting, we sample pairs of random images from the entire dataset, and to simulate the alternative,

we sample pairs of random images depicting the same digit (Figure 3.4a). For Seq-C-IT, we use MLP with the same
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(a) Spherical model.
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(b) HTDD model.

Figure 3.3: Power of different sequential independence tests on synthetic data from Section 3.3. Under the spherical
model (no localized dependence), SKIT is better than Seq-C-ITs. Under the (structured) HTDD model, SKIT is
inferior to sequential predictive independence tests.

architecture as for simulations on synthetic data. For SKIT, we use the median heuristic with 20 points from PXY

to compute kernel hyperparameters. In Figure 3.4b, we show that while both tests control the type I error under H0,

SKIT is inferior to Seq-C-IT under H1, requiring twice as much data to achieve perfect power.
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Figure 3.4: (a) Instances from the PXY (top row) and PX × PY (bottom row) for MNIST dataset. (b) While both
independence tests control the type I error under H0, Seq-C-IT outperforms SKIT under H1, rejecting the null much
sooner. The results are aggregated over 200 runs.

3.4 Conclusion

While kernel methods are state-of-the-art for nonparametric two-sample and independence testing, their performance

often deteriorates on complex data, e.g., high-dimensional data with localized dependence. In such settings, prediction-

based tests are often much more effective. In this work, we developed sequential predictive two-sample and
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independence tests following the principle of testing by betting. Our tests control the type I error despite continuously

monitoring the data and are consistent under weak and tractable assumptions. Further, our tests provably adapt to the

complexity of a problem at hand: they stop earlier on easy tasks and later on harder ones. An additional advantage of

our tests is that an analyst may modify the design choices, e.g., model architecture, on-the-fly. Through experiments

on synthetic and real data, we confirm that our tests are competitive to kernel-based ones overall and outperform those

under structured settings.

We refer the reader to the Appendix for additional results that were not included in the main paper:

1. In Appendix B.1, we complement classification-based ITs with a regression-based approach. Regression-based

ITs represent an alternative to the classification-based approach in settings where a data stream ((Xt, Yt))t≥1

may be processed directly as feature-response pairs.

2. In Section 3.2, we considered the case of balanced classes, meaning that at each round, an instance from either

P or Q is observed with equal chance. In Appendix B.2, we extend the methodology to a more general case of

two-sample testing with unknown class proportions.

3. Batch two-sample and independence tests rely on either a cutoff computed using the asymptotic null distribution

of a chosen test statistic (when it is tractable) or a permutation p-value, and if the distribution drifts, both

approaches fail to provide the type I error control. In contrast, Seq-C-2ST and Seq-C-IT remain valid beyond

the i.i.d. setting by construction (analogous to tests developed by Shekhar and Ramdas (2021); Podkopaev et al.

(2023)), and we refer the reader to Appendix B.3 for more details.
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Chapter 4

Tracking the Risk of a Deployed Model and

Detecting Harmful Distribution Shifts

4.1 Introduction

Developing a machine learning system usually involves data splitting where one of the labeled folds is used to assess

its generalization properties. Under the assumption that the incoming test instances (target) are sampled independently

from the same underlying distribution as the training data (source), estimators of various performance metrics, such as

accuracy or calibration, are accurate. However, a model deployed in the real world inevitably encounters variability

in the input distribution, a phenomenon referred to as dataset shift; see the book by Quionero-Candela et al. (2009).

Commonly studied settings include covariate shift (Shimodaira, 2000) and label shift (Saerens et al., 2002). While

testing whether a distribution shift is present has been studied both in offline (Rabanser et al., 2019; Gretton et al.,

2012; Hu and Lei, 2020) and online (Vovk et al., 2005; Vovk, 2020a,b) settings, a natural question is whether an

intervention is required once there is evidence that a shift has occurred.

A trustworthy machine learning system has to be supplemented with a set of tools designed to raise alarms

whenever critical changes to the environment take place. Vovk et al. (2021) propose retraining once an i.i.d. assumption

becomes violated and design corresponding online testing protocols. However, naively testing for the presence of

distribution shift is not fully practical since it does not take into account the malignancy of a shift (Rabanser et al.,

2019). To elaborate, users are typically interested in how a model performs according to certain prespecified metrics.

In benign scenarios, distribution shifts could be present but may not significantly affect model performance. Raising

unnecessary alarms might then lead to delays and a substantial increase in the cost of model deployment. The recent

approach by Vovk et al. (2021) based on conformal test martingales is highly dependent on the choice of conformity
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score. In general, the methodology raises an alarm whenever a deviation from i.i.d. is detected, which does not

necessarily imply that the deviation is harmful (see Appendix C.1.2).

(a) (b)

Figure 4.1: Samples from the source and the target (hatched) distributions under benign (a) covariate and (b) label
shifts. (a) X ∼ Unif([0, 1] × [0, 1]) on the source and Xi ∼ Beta(1, 2), i = 1, 2 on the target. Labels satisfy:
P (Y = 1 | X = x) = P

(
x21 + x22 + ε ≥ 1/4

)
where ε ∼ N (0, 0.01). (b) Marginal probability of class 1 changes

from πS
1 = 0.7 on the source to πT

1 = 0.3 on the target. Covariates satisfy: X | Y = y ∼ N (µy, I2), where
µ0 = (−2, 0)⊤, µ1 = (2, 0)⊤. In both cases, a model which separates well data from the source will generalize well
to the target.

In some cases, it is possible to handle structured shifts in a post-hoc fashion without performing expensive actions,

such as model retraining. One example arises within the context of distribution-free uncertainty quantification where

the goal is to supplement predictions of a model with a measure of uncertainty valid under minimal assumptions.

Recent works (Tibshirani et al., 2019; Gupta et al., 2020; Podkopaev and Ramdas, 2021) show how to adapt related

procedures for handling covariate and label shifts without labeled data from the target. However, both aforementioned

shifts impose restrictive assumptions on the possible changes in the underlying probability distribution, assuming either

that P (X) changes but P (Y |X) stays unchanged (covariate shift assumption), or that P (Y ) changes but P (X|Y )

stays unchanged (label shift assumption).

Thinking of distribution shifts only in terms of covariate or label shifts has two drawbacks: such (unverifiable)

assumptions often may be unrealistic, and even if they were plausible, such shifts may be benign and thus could be

ignored. To elaborate on the first point, it is evident that while distribution shifts constantly occur in practice, they may

generally have a more complex nature. In medical diagnosis, P (Y ) and P (X|Y = y) could describe the prevalence

of certain diseases in the population and symptoms corresponding to disease y. One might reasonably expect not only

the former to change over time (say during flu season or epidemics) but also the latter (due to potential mutations and

partially-effective drugs/vaccines), thus violating both the covariate and label shift assumptions. Regarding the second

point, a model capable of separating classes sufficiently well on the source distribution can sometimes generalize well

to the target. We illustrate such benign covariate and label shifts on Figures 4.1a and 4.1b respectively. We argue that

the critical distinction—from the point of view on raising alarms—should be built between harmful and benign shifts,

and not between covariate and label shifts.
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A related question is whether labeled data from one distribution can be used for training a model in a way that

it generalizes well to another distribution where it is hard to obtain labeled examples. Importance-weighted risk

minimization can yield models with good generalization properties on the target domain, but the corresponding

statistical guarantees typically become vacuous if the importance weights are unbounded, which happens when the

source distribution’s support fails to cover the target support. Adversarial training schemes (Ganin et al., 2016; Wu

et al., 2019) for deep learning models often yield models with reasonable performance on some types of distribution

shifts, but some unanticipated shifts could still degrade performance. This paper does not deal with how to train a

model if a particular type of shift is anticipated; it answers the question of when one should consider retraining (or

re-evaluating) a currently deployed model.

We argue for triggering a warning once the non-regularities in the data generating distribution lead to a statistically

significant increase in a user-specified risk metric. We design tools for nonparametric sequential testing for an

unfavorable change in a chosen risk function of any black-box model. The procedure can be deployed in settings

where (some) true target labels can be obtained, immediately after prediction or in a delayed fashion.

During the preparation of our paper, we noticed a very recent preprint (Kamulete, 2022) on broadly the same topic.

While they also advise against testing naively for the presence of a shift, their approach is different from ours as (a) it

is based on measuring the malignancy of a shift based on outlier scores (while we suggest measuring malignancy via a

drop in test accuracy or another prespecified loss), and arguably more importantly (b) their procedure is non-sequential

(it is designed to be performed once, e.g, at the end of the year, and cannot be continuously monitored, but ours is

designed to flag alarms at any moment when a harmful shift is detected). Adapting fixed-time testing to the sequential

settings requires performing corrections for multiple testing: if the correction is not performed, the procedure is no

longer valid, but if naively performed, the procedure becomes too conservative, due to the dependence among the tests

being ignored (see Appendix C.1.1). We reduce the testing problem to performing sequential estimation that allows us

to accumulate evidence over time, without throwing away any data or the necessity of performing explicit corrections

for multiple testing; these are implicitly handled efficiently by the martingale methods that underpin the sequential

estimation procedures (Howard et al., 2021; Waudby-Smith and Ramdas, 2023).

In summary, the main contributions of this work are:

1. We deviate from the literature on detecting covariate or label shifts and instead focus on differentiating harmful

and benign shifts. We pose the latter problem as a nonparametric sequential hypothesis test, and we differentiate

between malignant and benign shifts by measuring changes in a user-specified risk metric.

2. We utilize recent progress in sequential estimation to develop tests that provably control the false alarm rate

despite the multiple testing issues caused by continuously monitoring the deployed model (Section 4.2.2), and

without constraining the form of allowed distribution shifts. For example, we do not require the target data to

itself be i.i.d.; our methods are provably valid even if the target distribution is itself shifting or drifting over time.
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3. We evaluate the framework on both simulated (Section 4.3.1) and real data (Section 4.3.2), illustrating its

promising empirical performance. In addition to traditional losses, we also study several generalizations of

the Brier score (Brier, 1950) to multiclass classification.

4.2 Sequential Testing for a Significant Risk Increase

Let X and Y denote the covariate and label spaces respectively. Consider predictors f : X → Y . Let ℓ(·, ·) be the loss

function chosen to be monitored, with R(f) := E [ℓ(f(X), Y )] denoting the corresponding expected loss, called the

risk of f .

We assume from here onwards that ℓ is bounded, which is the only restriction made. This is needed to quantify

how far the empirical target risk is from the true target risk without making assumptions on P (X,Y ). This is not a

restriction of the current paper only, but appears broadly in statistical learning theory (or the study of concentration

inequalities): if one picks an unbounded loss function—say the logarithmic loss—which can take on infinite values,

then it is impossible to say how far the true and empirical risks are without further assumptions, for example that the

distribution of P (Y |X) is light tailed. We prefer not to make such assumptions in this paper, keeping it as assumption-

light as possible and thus generally applicable in various domains. The restriction to bounded losses is not heavy since

examples abound in the machine learning literature; see some examples in Appendix C.2.

Remark 7. For classification, sometimes one does not predict a single label, but a distribution over labels. In that

case the range of f would be ∆|Y|. This poses no issue, and it is common to use bounded loss functions and risks such

as the Brier score, as exemplified in Section 4.3. On a different note, for regression, the loss (like squared error) is

bounded only if the observations are. This is reasonable in some contexts (predicting rain or snow) but possibly not in

others (financial losses).

4.2.1 Casting the Detection of Risk Increase as a Sequential Hypothesis Test

We aim to trigger a warning whenever the risk on the target domain exceeds the risk on the source by a non-negligible

amount specified in advance. For example, alerting could happen once it is possible to conclude with certain confidence

that the accuracy has decreased by 10%. Shifts that lead to a decrease or an insignificant increase in the risk are then

treated as benign. Formally, we aim to construct a sequential test for the following pair of hypotheses:

H0 : RT (f) ≤ RS(f) + εtol, vs. H1 : RT (f) > RS(f) + εtol, (4.1)

where εtol ≥ 0 is an acceptable tolerance level, and RS(f) and RT (f) stand for the risk of f on the source and

target domains respectively. Assume that one observes a sequence of data points Z1, Z2, . . . . At each time point t,

a sequential test takes the first t elements of this sequence and output either a 0 (continue) or 1 (reject the null and
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stop). The resulting sequence of 0s and 1s satisfies the property that if the null H0 is true, then the probability that

the test ever outputs a 1 and stops (false alarm) is at most δ. In our context, this means that if a distribution shift is

benign, then with high probability, the test will never output a 1 and stop, and thus runs forever. Formally, a level-δ

sequential test Φ defined as a mapping
⋃∞

n=1Zn → {0, 1} must satisfy: PH0
(∃t ≥ 1 : Φ(Z1, ..., Zt) = 1) ≤ δ.

Note that the sequential nature of a test is critical here as we aim to develop a framework capable of continuously

updating inference as data from the target is collected, making it suitable for many practical scenarios. We distinguish

between two important settings when we assume that the target data either satisfies (a) an i.i.d. assumption (under the

same or different distribution as the source) or (b) only an independence assumption. While the i.i.d. assumption may

be arguably reasonable on the source, it is usually less realistic on the target, since in practice, one may expect the

distribution to drift slowly in a non-i.i.d. fashion instead of shifting sharply but staying i.i.d.. Under setting (b), the

quantity of interest on the target domain is the running risk:

R(t)(f) =
1

t

t∑

i=1

E [ℓ (f(X ′
i), Y

′
i )] , t ≥ 1,

where the expected value is taken with respect to the joint distribution of (X ′
i, Y

′
i ), possibly different for each test

point i. The goal transforms into designing a test for the following pair of hypotheses:

H0 : R
(t)
T (f) ≤ RS(f) + εtol, ∀t ≥ 1, vs. H1 : ∃t⋆ ≥ 1 : R

(t⋆)
T (f) > RS(f) + εtol. (4.2)

When considering other notions of risk beyond the misclassification error, one could also be interested in relative

changes in the risk, and thus a sequential test for the following pair of hypotheses:

H ′
0 : RT (f) ≤ (1 + εtol)RS(f), vs. H ′

1 : RT (f) > (1 + εtol)RS(f). (4.3)

The proposed framework handles all of the aforementioned settings as we discuss next. The most classical approach

for sequential testing is the sequential probability ratio test (SPRT) due to Wald (1945). However, it can only be

applied, even for a point null and a point alternative, when the relevant underlying distributions are known. While

extensions of the SPRT exist to the composite null and alternative (our setting above), these also require knowledge of

the distributions of the test statistics (e.g., empirical risk) under the null and alternative, and being able to maximize the

likelihood. Clearly, we make no distributional assumptions and so we require a nonparametric approach. We perform

sequential testing via the dual problem of nonparametric sequential estimation, a problem for which there has been

much recent progress to draw from.
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4.2.2 Sequential Testing via Sequential Estimation

When addressing a particular prediction problem, the true risk on neither the source nor the target domains is known.

Performance of a model on the source domain is usually assessed through a labeled holdout source sample of a fixed

size nS : {(Xi, Yi)}nS

i=1. We can write:

RS(f) + εtol = R̂S(f) +
(
RS(f)− R̂S(f)

)
+ εtol,

where R̂S(f) := (
∑nS

i=1 ℓ(f(Xi), Yi)) /nS . For any fixed tolerance level δS ∈ (0, 1), classic concentration results

can be used to obtain an upper confidence bound εappr on the difference RS(f) − R̂S(f), and thus to conclude that

with probability at least 1− δS :

RS(f) + εtol ≤ ÛS(f) + εtol, where ÛS(f) = R̂S(f) + εappr. (4.4)

For example, by Hoeffding’s inequality, nS = O(1/ε2appr) points suffice for the above guarantee, but that bound can

be quite loose when the individual losses ℓ(f(Xi), Yi) have low variance. In such settings, recent variance-adaptive

confidence bounds (Waudby-Smith and Ramdas, 2023; Howard et al., 2021) are tighter. It translates to an increase in

the power of the framework, allowing for detecting harmful shifts much earlier, while still controlling the false alarm

rate at a prespecified level.

In contrast, the estimator of the target risk has to be updated as losses on test instances are observed. While the

classic concentration results require specifying in advance the size of a sample used for estimation, time-uniform

confidence sequences retain validity under adaptive data collection settings. For any chosen δT ∈ (0, 1), those yield a

time-uniform lower confidence bound on RT (f):

P
(
∃t ≥ 1 : RT (f) < L̂

(t)
T (f)

)
≤ δT ,

where L̂(t)
T (f) is the bound constructed after processing t test points. We typically set δS = δT = δ/2, where δ refers

to the desired type I error. Under the independence assumption ((4.2)), the form of the drift in the distribution of the

data is allowed to change with time. From the technical perspective, the difference with the i.i.d. setting is given by

the applicability of particular concentration results. While the betting-based approach of Waudby-Smith and Ramdas

(2023) necessitates assuming that random variables share a common mean, proceeding with the conjugate-mixture

empirical-Bernstein bounds (Howard et al., 2021) allows us to lift the common-mean assumption and handle a time-

varying mean. We summarize the testing protocol in Algorithm 7 and refer the reader to Appendix C.5 for a review

of the concentration results used in this work. One can easily adapt the framework to proceed with a fixed, absolute

threshold on the risk, rather than a relative threshold RS(f) + εtol, e.g., we can raise a warning once accuracy drops

below 80%, rather than 5% below the training accuracy.
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Algorithm 7 Sequential testing for an absolute increase in the risk.
Input: Predictor f , loss ℓ, tolerance level εtol, sample from the source {(Xi, Yi)}nS

i=1.
1: procedure
2: Compute the upper confidence bound on the source risk ÛS(f);
3: for t = 1, 2, . . . do
4: Compute the lower confidence bound on the target risk L̂(t)

T (f);
5: if L̂(t)

T (f) > ÛS(f) + εtol then
6: Reject H0 ((4.1)) and fire off a warning.

Testing for a relative increase in the risk is performed by replacing the line 5 in the Algorithm 7 by the condition

L̂
(t)
T (f) > (1 + εtol)ÛS(f). For both cases, the proposed test controls type I error as formally stated next. The proof

is presented in Appendix C.4.

Proposition 4. Fix any δ ∈ (0, 1). Let δS , δT ∈ (0, 1) be chosen in a way such that δS + δT = δ. Let L̂(t)
T (f) define

a time-uniform lower confidence bound on R(t)
T (f) at level δT after processing t data points (t ≥ 1), and let ÛS(f)

define an upper confidence bound on RS(f) at level δS . Then:





PH0

(
∃t ≥ 1 : L̂

(t)
T (f) > ÛS(f) + εtol

)
≤ δ,

PH′
0

(
∃t ≥ 1 : L̂

(t)
T (f) > (1 + εtol)ÛS(f)

)
≤ δ,

(4.5)

that is, the procedure described in Algorithm 7 controls the type I error for testing the hypotheses H0 ((4.1) and (4.2))

and H ′
0 ((4.3)).

Remark 8. Both the testing protocol (Algorithm 7) and the corresponding guarantee (Proposition 4) are stated in

a form which requires the lower bound on the target risk to be recomputed after processing each test point. More

generally, test data could be processed in minibatches of size m ≥ 1.

Remark 9. Type I error guarantee in (4.5) holds under continuous monitoring. This goes beyond standard fixed-time

guarantees, for which type I error is controlled only when the sample size is fixed in advance, and not under continuous

monitoring. Define a stopping time of a sequential test in Algorithm 7:

N(δ) := inf
{
t ≥ 1 : L̂

(t)
T (f) > ÛS(f) + εtol

}
.

Then the guarantee in (4.5) can be restated as: PH0
(N(δ) <∞) ≤ δ, that is the probability of ever raising a false

alarm is at most δ.

From sequential testing to changepoint detection. A valid sequential test can be transformed into a changepoint

detection procedure with certain guarantees (Lorden, 1971). The key characteristics of changepoint detection

procedures are average run length (ARL), or average time to a false alarm, and average detection delay (ADD).
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One way to convert a sequential test into a detection procedure is by running a separate test starting at each time point

t = 1, 2, . . . , and claiming a change whenever the first one of the tests rejects the null. Subsequently, these tests yield

a sequence of stopping variables N1(δ), N2(δ), . . . The corresponding stopping time is defined as:

N⋆(δ) := inf
k=1,2,...

(Nk(δ) + (k − 1)) .

Lorden (1971) established a lower bound on the (worst-case) ARL of such changepoint detection procedure of the

form: EH0
[N⋆(δ)] ≥ 1/δ. The (worst-case) average detection delay is defined as:

E1N(δ) = sup
m≥1

ess sup Em

[
(N(δ)− (m− 1))+ | (X ′

1, Y
′
1), . . . , (X

′
m−1, Y

′
m−1)

]
,

where Em denotes expectation under Pm, the distribution of a sequence (X ′
1, Y

′
1), (X

′
1, Y

′
1), . . . under which

(X ′
m, Y

′
m) is the first term from a shifted distribution.

4.3 Experiments

In Section 4.3.1, we analyze the performance of the testing procedure on a collection of simulated datasets. First, we

consider settings where the i.i.d. assumption on the target holds, and then relax it to the independence assumption.

In Section 4.3.2, we evaluate the framework on real data. We consider classification problems with different metrics

of interest including misclassification loss, several versions of the Brier score and miscoverage loss for set-valued

predictors. Due to space limitations, we refer the reader to Appendix C.2 for a detailed review of the considered loss

functions.

4.3.1 Simulated Data

Tracking the risk under the i.i.d. assumption. Here we induce label shift on the target domain and emulate a setting

where it noticeably harms the accuracy of a predictor by modifying the setup from Section 4.1 through updating the

class centers to µ0 = (−1, 0)⊤ and µ1 = (1, 0)⊤, making the classes largely overlap. The (oracle) Bayes-optimal

predictor on the source domain is:

f⋆(x) =
πS
1 · φ(x;µ1, I2)

πS
0 · φ(x;µ0, I2) + πS

1 · φ(x;µ1, I2)
, (4.6)
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where φ(x;µi, I2) denotes the probability density function of a Gaussian random vector with mean µi, i ∈ {0, 1} and

an identity covariate matrix. Let ℓ be the 0-1 loss, and thus the misclassification risk RT (f
∗) on the target is:

PT (f⋆(X) ̸= Y ) = P
(
X⊤(µ1 − µ0) < log

(
πS
0

πS
1

)
+

1

2

(
∥µ1∥22 − ∥µ0∥22

)
| Y = 1

)
· πT

1

+ P
(
X⊤(µ1 − µ0) ≥ log

(
πS
0

πS
1

)
+

1

2

(
∥µ1∥22 − ∥µ0∥22

)
| Y = 0

)
· πT

0 .

For three values of πS
1 , the source marginal probability of class 1, we illustrate how label shift affects the

misclassification risk of the Bayes-optimal predictor on Figure 4.2a, noting that it is linear in πT
1 . Importantly, whether

label shift hurts or helps depends on the value of πS
1 .

We fix πS
1 = 0.25 and use the corresponding Bayes-optimal rule. On Figure 4.2b, we compare upper

confidence bounds on the source risk due to different concentration results, against the size of the source holdout

set. Variance-adaptive upper confidence bounds—predictably-mixed empirical-Bernstein (PM-EB) and betting-based

(see Appendix C.5)—are much tighter than the non-adaptive Hoeffding’s bound. Going forward, we use a source

holdout set of 1000 points to compute upper confidence bound on the source risk, where εappr from (4.4) is around

0.025.
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Figure 4.2: (a) The misclassification risk on the target of the Bayes-optimal predictors for three values of πS
1 . Notice

that label shift does not necessarily lead to an increase in the risk. (b) Upper confidence bounds ÛS(f) on the
misclassification risk on the source obtained via several possible concentration results. For each sample size, the
results are aggregated over 1000 random data draws. The variance-adaptive confidence bounds (predictably-mixed
empirical-Bernstein and the betting-based one) are much tighter when compared against the non-adaptive one.

Next, we fix εtol = 0.05, i.e., we treat a 5% drop in accuracy as significant. For 20 values of πT
1 , evenly spaced in

the interval [0.1, 0.9], we sample 40 batches of 50 data points from the target distribution. On Figure 4.3a, we track the

proportion of null rejections after repeating the process 250 times. Note that here stronger label shift hurts accuracy

more. On Figure 4.3b, we illustrate average size of a sample from the target needed to reject the null. The results

confirm that tighter bounds yield better detection procedures, with the most powerful test utilizing the betting-based

bounds (Waudby-Smith and Ramdas, 2023). A similar analysis for the Brier score (Brier, 1950) as a target metric
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is presented in Appendix C.6. We further study the performance of the framework under the covariate shift setting

(Appendix C.8).
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Figure 4.3: (a) Proportion of null rejections when testing for an increase in the misclassification risk after processing
2000 samples from a shifted distribution. The vertical dashed yellow line separates null (benign) and alternative
(harmful) settings. Testing procedures that rely on variance-adaptive confidence bounds (CBs) have more power. (b)
Average sample size from the target that was needed to reject the null. Tighter concentration results allow to raise an
alarm after processing less samples.

Tracking beyond the i.i.d. setting (distribution drift). Here we consider testing for an increase in the running risk

((4.2)). First, we fix πT
1 = 0.75 and keep the data generation pipeline as before, that is, the target data are still sampled

in an i.i.d. fashion. We compare lower confidence bounds on the target risk studied before against the conjugate-

mixture empirical-Bernstein (CM-EB) bound (Howard et al., 2021). We note that this bound on the running mean of

the random variables does not have a closed-form and has to be computed numerically. On Figure 4.4a, we illustrate

that the lower confidence bounds based on betting are generally tighter only for a small number of samples. Similar

results hold for the Brier score as a target metric (see Appendix C.6.1).

Next, we lift the i.i.d. assumption by modifying the data generation pipeline: starting with πT
1 = 0.25, we increase

πT
1 by 0.1 after sampling each 200 instances, until it reaches the value 0.85. It makes CM-EB the only valid lower

bound on the running risk on the target domain. The results of running the framework for this setting are presented on

Figure 4.4b.

4.3.2 Real Data

In deep learning, out-of-distribution robustness is often assessed based on a model performance gap between the

original data (used for training) and data to which various perturbations are applied. We focus on two image

classification datasets with induced corruptions: MNIST-C (Mu and Gilmer, 2019) and CIFAR-10-C (Krizhevsky,

2009; Hendrycks and Dietterich, 2019). We illustrate an example of a clean MNIST image on Figure 4.5a along

with its corrupted versions after applying motion blur, blur along a random direction (Figure 4.5b), translate,

affine transformation along a random direction (Figure 4.5c), and zigzag, randomly oriented zigzag over an image
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Figure 4.4: (a) Different lower confidence bounds (LCB) on the target risk under the i.i.d. assumption. Betting-
based LCB is only tighter than conjugate-mixture empirical-Bernstein (CM-EB) for a small number of samples. (b)
Under distribution drift, only CM-EB performs estimation of the running risk. The resulting test consistently detects
a harmful increase in the running risk.

(Figure 4.5d). For CIFAR-10-C, we consider corrupting original images by applying the fog effect with 3 levels of

severity as illustrated on the bottom row of Figure 4.5. For both cases, clean or corrupted test samples are passed as

input to networks trained on clean data. While corruptions are visible to the human eye, one might still hope that they

will not significantly hurt classification performance. We use the betting-based confidence bounds on the source and

conjugate-mixture empirical-Bernstein confidence bounds on the target domain.

(a) Clean (b) Motion blur (c) Translate (d) Zigzag

(e) Clean (f) Fog, severity: 1 (g) Fog, severity: 3 (h) Fog, severity: 5

Figure 4.5: Examples of MNIST-C ((a)–(d)) and CIFAR-10-C ((e)–(h)) images.

Tracking the risk of a point predictor on MNIST-C dataset. We train a shallow CNN on clean MNIST data

and run the framework testing whether the misclassification risk increases by 10%, feeding the network with data in

batches of 50 points either from the original or shifted distributions. Details regarding the network architecture and
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the training process are given in Appendix C.7. On Figure 4.6a, we illustrate the results after running the procedure 50

times for each of the settings. The horizontal dashed line defines the rejection threshold that has been computed using

the source data: once the lower bound on the target risk (solid lines) exceeds this value, the null hypothesis is rejected.

When passing clean MNIST data as input, we do not observe degrading performance. Further, applying different

corruptions leads to both benign and harmful shifts. While to the human eye the translate effect is arguably the least

harmful one, it is the most harmful to the performance of a network. Such observation is also consistent with findings

of Mu and Gilmer (2019) who observe that if trained on clean MNIST data without any data augmentation, CNNs tend

to fail under this corruption. We validate this observation by retraining the network several times in Appendix C.7.

Tracking the risk of a set-valued predictor on CIFAR-10-C dataset. For high-consequence settings, building

accurate models only can be insufficient as it is crucial to quantify uncertainty in predictions. One way to proceed is to

output a set of candidate labels for each point as a prediction. The goal could be to cover the correct label of a test point

with high probability (Vovk et al., 2005) or control other notions of risk (Bates et al., 2021). We follow Bates et al.

(2021) who design a procedure that uses a holdout set for tuning the parameters of a wrapper built on top of the original

model which, under the i.i.d. assumption, is guaranteed to have low risk with high probability (see Appendix C.7 for

details). Below, we build a wrapper around a ResNet-32 model that controls the miscoverage risk ((C.8)) at level 0.1

with probability at least 0.95. For each run, CIFAR-10 test set is split at random into three folds used for: (a) learning

a wrapper (1000 points), (b) estimating upper confidence bound on the miscoverage risk on the source (1000 points),

and (c) evaluation purposes on either clean or corrupted images. We take εtol = 0.05, that is, 5% drop in coverage is

treated as significant. Figure 4.6b illustrates that only the most intense level of fog is consistently harmful to coverage.

We also consider setting a lower prescribed miscoverage level (0.05) for the set-valued predictor (see Appendix C.7).

When larger prediction sets are produced, adding fog to images becomes less harmful.
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Figure 4.6: (a) Performance of the testing framework on MNIST-C dataset. Only the translation effect is consistently
harmful to the classification performance of a CNN trained on clean data. (b) Performance of the testing framework
on CIFAR-10-C dataset. Only the most severe version of the fog lead to a significant degradation in performance
measured by a decrease in coverage of a set-valued predictor trained on top of a model trained on clean data.
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4.4 Conclusion

An important component of building reliable machine learning systems is making them alarm a user when potentially

unsafe behavior is observed, instead of allowing them to fail silently. Ideally, a warning should be displayed when

critical changes affecting model performance are present, e.g., a significant degradation of the target performance

metrics, like accuracy or calibration. In this work, we considered one particular failure scenario of deployed models—

presence of distribution shifts. Relying solely on point estimators of the performance metrics ignores uncertainty in

the evaluation, and thus fails to represent a theoretically grounded approach. We developed a set of tools for deciding

whether the performance of a model on the test data becomes significantly worse than the performance on the training

data in a data-adaptive way. The proposed framework based on performing sequential estimation requires observing

true labels for test data (possibly, in a delayed fashion). Across various types of distribution shifts considered in this

work, it demonstrated promising empirical performance for differentiating between harmful and benign ones.
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Part II

Assumption-Light Predictive Uncertainty

Quantification
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Chapter 5

Distribution-Free Binary Classification:

Prediction Sets, Confidence Intervals and

Calibration

5.1 Introduction

Let X and Y = {0, 1} denote the feature and label spaces for binary classification. Consider a predictor f : X → Z
that produces a prediction in some space Z . If Z = {0, 1}, f corresponds to a point prediction for the class label, but

often class predictions are based on a ‘scoring function’. Examples are, Z = R for SVMs, and Z = [0, 1] for logistic

regression, random forests with class probabilities, or deep models with a softmax top layer. In such cases, a higher

value of f(X) is often interpreted as higher belief that Y = 1. In particular, if Z = [0, 1], it is tempting to interpret

f(X) as a probability, and hope that

f(X) ≈ P(Y = 1 | X). (5.1)

However, such hope is unfounded, and in general (5.1) will be far from true without strong distributional assumptions,

which may not hold in practice. Valid uncertainty estimates that are related to (5.1) can be provided, but ML models do

not satisfy these out of the box. This paper discusses three notions of uncertainty quantification: calibration, prediction

sets (PS) and confidence intervals (CI), defined next. A function f : X → [0, 1] is said to be (perfectly) calibrated if

E [Y | f(X) = a] = a a.s. for all a in the range of f . (5.2)
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Define calL ≡ {{0}, {1}, {0, 1}, ∅} and fix α ∈ (0, 1). A function S : X → L is a (1− α)-PS if

P(Y ∈ S(X)) ≥ 1− α. (5.3)

Finally, let I denote the set of all subintervals of [0, 1]. A function C : X → I is a (1− α)-CI if

P(E [Y | X] ∈ C(X)) ≥ 1− α. (5.4)

All three notions are ‘natural’ in their own sense, but also different at first sight. We show that they are in fact

tightly connected (see Figure 5.1), and focus on the implications of this result for calibration. Our analysis is in the

distribution-free setting, that is, we are concerned with understanding what kinds of valid uncertainty quantification is

possible without distributional assumptions on the data.

Our work primarily extends the ideas of Vovk et al. (2005, Section 5) and Barber (2020). We also discuss Platt

scaling (Platt, 1999), binning (Zadrozny and Elkan, 2001) and the recent work of Vaicenavicius et al. (2019). Other

related work is cited as needed, and further discussed in Section 5.5. All proofs appear ordered in the Appendix.

Notation: Let P denote any distribution over X ×Y . In practice, the available labeled data is often split randomly

into the training set and the calibration set. Typically, we use n to denote the number of calibration data points, so

{(Xi, Yi)}i∈[n] is the calibration data, where we use the shorthand [a] := {1, 2, . . . a}. A prototypical test point is

denoted (Xn+1, Yn+1). All data are drawn i.i.d. from P , denoted succinctly as {(Xi, Yi)}i∈[n+1] ∼ Pn+1. As above,

random variables are denoted in upper case. The learner observes realized values of all random variables (Xi, Yi),

except Yn+1. (All sets and functions are implicitly assumed to be measurable.)

5.2 Calibration, Confidence Intervals and Prediction Sets

Calibration captures the intuition of (5.1) but is a weaker requirement, and was first studied in the meteorological

literature for assessing probabilistic rain forecasts (Brier, 1950; Sanders, 1963; Murphy and Epstein, 1967; Dawid,

1982). Murphy and Epstein (1967) described the ideal notion of calibration, called perfect calibration (5.2), which

has also been referred to as calibration in the small (Vovk and Petej, 2014), or sometimes simply as calibration (Guo

et al., 2017; Vaicenavicius et al., 2019; Dawid, 1982). The types of functions that can achieve perfect calibration can

be succinctly captured as follows.

Proposition 5. A function f : X → [0, 1] is perfectly calibrated if and only if there exists a space Z and a function

g : X → Z , such that

f(x) = E [Y | g(X) = g(x)] almost surely PX . (5.5)

(If parsing (5.5) is tricky: to evaluate f at x, first set g(x) ≡ z, then calculate E [Y | g(X) = z].) Vaicenavicius et

al. Vaicenavicius et al. (2019) stated and gave a short proof for the ‘only if’ direction. While the other direction is also
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straightforward, together they lead to an appealingly simple and complete characterization. The proof of Proposition 5

is in Appendix D.1.

It is helpful to consider two extreme cases of Proposition 5. First, setting g to be the identity function yields

that the Bayes classifier E [Y |X] is perfectly calibrated. Second, setting g(·) to any constant implies that E [Y ] is

also a perfect calibrator. Naturally, we cannot hope to estimate the Bayes classifier without assumptions, but even

the simplest calibrator E [Y ] can only be approximated in finite samples. Since Proposition 5 states that calibration

is possible iff the RHS of (5.5) is known exactly for some g, perfect calibration is impossible in practice. Thus we

resort to satisfying the requirement (5.2) approximately, which is implicitly the goal of many empirical calibration

techniques.

Definition 3 (Approximate calibration). A predictor f : X → [0, 1] is (ε, α)-approximately calibrated for some

α ∈ (0, 1) and a function ε : [0, 1]→ [0, 1] if with probability at least 1− α, we have

|E [Y |f(X)]− f(X)| ≤ ε(f(X)). (5.6)

Note that when the definition is applied to a test point (Xn+1, Yn+1), there may be two sources of randomness

in E [Yn+1 | f(Xn+1)]: the randomness in the test point, as well as randomness in f—the latter may be statistical

randomness via learning on the training data, or algorithmic randomness used to train f . There can also be randomness

in ε. All probabilities and expectations in this paper should be viewed through this lens. In practice, calibration is

often achieved via a post-processing step. Hence, with increasing amount of the calibration data, one might hope that

ε in Definition 3 vanishes to 0. We formalize this below.

Definition 4 (Asymptotic calibration). A sequence of predictors {fn}n∈N fromX → [0, 1] is asymptotically calibrated

at level α ∈ (0, 1) if there exists a sequence of functions {εn}n∈N such that fn is (εn, α)-approximately calibrated for

every n, and εn(fn(Xn+1)) = oP (1).

We will show that the notions of approximate and asymptotic calibration are related to prediction sets (5.3) and

confidence intervals (5.4). PSs and CIs are only ‘informative’ if the sets or intervals produced by them are small:

confidence intervals are measured by their length (denoted as |C(·)|), and prediction sets are measured by their

diameter (diam(S(·)) := |convex hull(S(·))|). Observe that for binary classification, the diameter of a PS is either 0

or 1.

For a given distribution, one might expect prediction sets to have a larger diameter than the length of the confidence

intervals, since we want to cover the actual value of Yn+1 and not its (conditional) expectation. As an example,

if E [Y |X = x] = 0.5 for every x, then the shortest possible confidence interval is (0.5, 0.5] whose diameter is 0.

However, a valid (1 − α)-PS has no choice but to output {0, 1} for at least (1 − 2α) fraction of the points (and a

random guess for the other 2α fraction), and thus must have expected diameter ≥ 1 − 2α even in the limit of infinite

data.

50



Recently, Barber (2020) built on an earlier result of Vovk et al. (2005) to show that if an algorithm provides

an interval C which is a (1 − α)-CI for all product distributions Pn+1 (of the training data and test-point), then

S := C ∩ {0, 1} is also a (1 − α)-PS whenever P is a nonatomic distribution. An immediate implication is that

C(·) must always contain one of the end-points 0 or 1 with probability 1 − α. Since this implication holds for all

distributions P , including the one with E [Y |X] ≡ 0.5 discussed above, it implies that distribution-free CIs must

necessarily be wide, and in particular their length cannot shrink to 0 as n→∞. This can be treated as an impossibility

result for the existence of (distribution-free) informative CIs.

One way to circumvent these impossibilities is to consider CIs for functions with ‘lower resolution’ than E [Y |X].

To this end, we introduce a notion of a CI or PS ‘with respect to f ’ (w.r.t.f ). As we discuss in Section 5.3 (and

Section 5.3.1 in particular), these notions are connected to calibration.

Definition 5 (CI or PS w.r.t. f ). A function C : Z → I is a (1− α)-CI with respect to f : X → Z if

P(E [Y | f(X)] ∈ C(f(X))) ≥ 1− α. (5.7)

Analogously, a function S : Z → L is a (1− α)-PS with respect to f : X → Z if

P(Y ∈ S(f(X))) ≥ 1− α. (5.8)

When instantiated for a test point (Xn+1, Yn+1), the probability in definitions (5.7) and (5.8) is not only over the

test point, but also over the randomness in the pair (f, C) or (f, S), which are usually learned on labeled data. In

order to produce PSs and CIs, one typically fixes a function f learned on an independent split of the labeled data, and

considers learning a C or S that provides guarantees (5.7) and (5.8). For example, S can be produced using inductive

conformal techniques Proedrou et al. (2002); Papadopoulos et al. (2002). In this case, C or S would be random as

well; to make this explicit, we often denote C or S as Ĉn or Ŝn.

5.3 Relating Notions of Distribution-free Uncertainty Quantification

As preluded to above, we consider a standard setting for valid distribution-free uncertainty quantification where the

‘training’ data is used to learn a scoring function f : X → Z and then held-out data ‘calibration’ data is used to

estimate uncertainty. We establish that in this setting, the notions of calibration, PSs and CIs are closely related.

Figure 5.1 summarizes this section’s takeaway message. Here, and in the rest of the section, if P is the distribution of

data, then we denote the distribution of the random variable Z = f(X) as Pf(X).

In Section 5.3.1, we show that if an algorithm provides a CI, it can be used to provide a calibration guarantee

and vice-versa (Theorem 5.1). This result is true even if the CI and calibration guarantees are not assumption-free.

Section 5.3.2 shows that for all distributions P such that Pf(X) is nonatomic, if an algorithm constructs a distribution-

free CI with respect to f , then it can be used to construct a distribution-free PS with respect to f (Theorem 5.2). This
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Figure 5.1: Relationship between notions of distribution-free uncertainty quantification.

result might seem surprising since one typically expects the length of CIs to shrink to 0 in the limit of infinite data,

whereas PSs have a fixed distribution-dependent lower bound on their diameter. Connecting our results, we infer the

key impossibility result for asymptotic calibration in Section 5.3.3 (Theorem 5.3). Informally, our result shows that

for a large class of standard scoring functions f (such as logistic regression, deep networks with a final softmax layer,

SVMs), it is impossible to achieve distribution-free asymptotic calibration without a ‘discretization’ step. Parametric

schemes such as Platt scaling (Platt, 1999) do not perform such discretization and thus cannot lead to distribution-free

calibration. To complement this lower bound, we provide calibration guarantees for one possible discretization step

(histogram binning) in Section 5.4.

5.3.1 Relating Calibration and Confidence Intervals

Given a predictor f that is (ε, α)-approximately calibrated, there is a trivial way to construct a function C that is a

(1− α)-CI: for x ∈ X ,

|E [Y | f(x)]− f(x)| ≤ ε(f(x))︸ ︷︷ ︸
calibration

=⇒ E [Y | f(x)] ∈ C(f(x))︸ ︷︷ ︸
CI w.r.t. f

:= [f(x)− ε(f(x)), f(x) + ε(f(x))]. (5.9)

On the other hand, given C that is a (1 − α)-CI with respect to f , define for z ∈ Range(f) the left-endpoint, right-

endpoint and midpoint functions respectively:

uC(z) := sup {g : g ∈ C(z)} , lC(z) := inf {g : g ∈ C(z)} , mC(z) := (uC(z) + lC(z))/2. (5.10)

Consider the midpoint mC(f(x)) as a ‘corrected’ prediction for x ∈ X :

f̃(x) := mC(f(x)), x ∈ X , (5.11)

and let ε(·) = supz∈Range(f) {|C(z)|/2} be the function returning the largest interval radius. Then f̃ is (ε, α)-

approximately calibrated for a non-trivial ε. These claims are formalized next.
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Theorem 5.1. Fix any α ∈ (0, 1). Let f : X → [0, 1] be a predictor that is (ε, α)-approximately calibrated for some

function ε. Then the function C in (5.9) is a (1− α)-CI with respect to f .

Conversely, fix a scoring function f : X → Z . If C is a (1−α)-CI with respect to f , then the predictor f̃ in (5.11)

is (ε, α)-approximately calibrated for ε(·) = supz∈Range(f) {|C(z)|/2}.

The proof is in Appendix D.2. An important implication of Theorem 5.1 is that having a sequence of predictors

that is asymptotically calibrated yields a sequence of confidence intervals with vanishing length as n → ∞. This is

formalized in the following corollary, also proved in Appendix D.2.

Corollary 5.1.1. Fix any α ∈ (0, 1). If a sequence of predictors {fn}n∈N is asymptotically calibrated at level α, then

construction (5.9) yields a sequence of functions {Cn}n∈N such that each Cn is a (1 − α)-CI with respect to fn and

|Cn(fn(Xn+1))| = oP (1).

Next, we show that for a large class of scoring functions, CIs and PSs are also related in the distribution-free setting.

This connection along with Corollary 5.2.1 (below) leads to an impossibility result for distribution-free asymptotic

calibration for certain functions f (Theorem 5.3 in Section 5.3.3).

5.3.2 Relating Distribution-free Confidence Intervals and Prediction Sets

Suppose a function satisfies a CI guarantee with respect to f no matter what the data-generating distribution P is.

We show that such a function would also provide a PS guarantee for all P such that Pf(X) is nonatomic. To write

our theorem, we define the ‘discretize’ function to transform a confidence interval C to a prediction set: disc(C) :=

C ∩ {0, 1} ⊆ L. In the following theorem, the CI and PS guarantees provided (per equations (5.7) and (5.8)) are to be

understood as marginal over both the calibration and test-data. To make this explicit, we denote the CI function as Ĉn.

Theorem 5.2. Fix f : X → Z and α ∈ (0, 1). If Ĉn is a (1 − α)-CI with respect to f for all distributions P , then

disc(Ĉn) is a (1− α)-PS with respect to f for all distributions P for which Pf(X) is nonatomic.

The proof is in Appendix D.2. It adapts the proof of Barber (2020, Theorem 1). Their result connects the notions of

CI and PS, but not with respect to f (like in equations (5.3), (5.4)). By adapting the result for CIs and PSs with respect

to f , and using Theorem 5.1, we are able to relate CIs and PSs to calibration and use this to prove an impossibility result

for asymptotic calibration. This is done in the proof of Theorem 5.3 in the Section 5.3.3. A corollary of Theorem 5.2

that is used in Theorem 5.3 (but is also important on its own) is stated next.

Corollary 5.2.1. Fix f : X → Z and α ∈ (0, 1). If Ĉn is a (1− α)-CI with respect to f for all P , and there exists a

P such that Pf(X) is nonatomic, then we can construct a distribution Q such that

EQn+1 |Ĉn(f(Xn+1))| ≥ 0.5− α.

The proof is in Appendix D.2. For a given f , the bound in the corollary needs existence of P such that Pf(X) is

nonatomic. These f are characterized in the discussion after Corollary 5.2.2 (Section 5.3.3), and formally in the proof
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of Theorem 5.3. One expects the length of a confidence interval to vanish as n→∞. Corollary 5.2.1 shows that this

is impossible in a distribution-free manner for certain f .

5.3.3 Necessary Condition for Distribution-Free Asymptotic Calibration

The characterization of calibration in Proposition 5 shows that a function f is a calibrated probabilistic classifier if

and only if it takes the form (5.5) for some function g, and in particular f is calibrated by defining g = f . Observe

that for the purposes of calibration, the actual values taken by f are only as informative as the partition of X provided

by its level sets. Denote this partition as {Xz}z∈Z , where Xz = {x ∈ X : f(x) = z}. Then we may equivalently

rewrite (5.5) as identifying values {fz}z∈Z where fz = P (Yn+1 = 1 | Xn+1 ∈ Xz). This allows us to re-characterize

calibration as follows.

Corollary 5.2.2 (to Proposition 5). Any calibrated classifier f is characterized by a partition of X into subsets

{Xz}z∈Z and corresponding conditional probabilities {fz}z∈Z for some index set Z .

Corollary 5.1.1 shows that asymptotic calibration allows construction of CIs whose lengths vanish asymptotically.

Corollary 5.2.1 shows however that asymptotically vanishing CIs are impossible (without distributional assumptions)

for f if there exists a distribution P such that Pf(X) is nonatomic. Consequently asymptotic calibration is also

impossible for such f . If Z is countable, then by the axioms of probability,
∑

z∈Z P(X ∈ Xz) = P(X ∈ X ) = 1,

and so P(X ∈ Xz) ̸= 0 for at least some z. Thus Pf(X) cannot be nonatomic for any P . On the other hand,

if Z is uncountable we can show that there always exists a P such that Pf(X) is nonatomic. Hence distribution-

free asymptotic calibration is impossible for such f . This argument is formalized in the following theorem. In the

statement, we used X (f) to denote the partition that a function f induces on X , and we use |X (f)| to denote its

cardinality (which may be infinite). Also ℵ0 denotes the largest cardinality of a countable set, which corresponds to

the cardinality of N. The proof of the following theorem is in Appendix D.2.

Theorem 5.3. Let α ∈ (0, 0.5) be a fixed threshold. If a sequence of scoring functions {fn}n∈N is asymptotically

calibrated at level α for every distribution P then

lim sup
n→∞

|X (fn)| ≤ ℵ0.

In words, the cardinality of the partition induced by fn must be at most countable for large enough n. The following

phrasing is convenient: f is said to lead to a fine partition of X if |X (f)| > ℵ0. Then, for the purposes of distribution-

free asymptotic calibration, Theorem 5.3 necessitates us to consider f that do not lead to fine partitions. Popular

scoring functions such as logistic regression, deep neural-nets with softmax output and SVMs lead to continuous f

that induce fine partitions of X and thus cannot be asymptotically calibrated without distributional assumptions.

This impossibility result can be extended to many parametric calibration schemes that ‘recalibrate’ an existing f

through a wrapper hn : Z → [0, 1] learned on the calibration data, with the goal that hn ◦ f is nearly calibrated:
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E [Y | hn(f(X))] ≈ hn(f(X)). For instance, consider methods like Platt scaling (Platt, 1999), temperature

scaling (Guo et al., 2017) and beta calibration (Kull et al., 2017). Each of these methods learns a continuous and

monotonic* (hence bijective) wrapper hn, and thus E [Y | hn(f(X))] = E [Y | f(X)]. If hn is a good calibrator,

we would have E [Y | f(X)] ≈ hn(f(X)). One way to formalize this is to consider whether an interval around

hn(f(X)) is a CI for E [Y | f(X)]. In other words — does there exist a function εn : [0, 1] → [0, 1] such that for

every distribution P ,

C̃n(f(X)) := [hn(f(X))− εn(hn(f(X))), hn(f(X)) + εn(hn(f(X)))]

is a (1 − α)-CI with respect to f and εn(hn(f(X))) = oP (1)? Theorem 5.3 shows that this is impossible if f leads

to a fine partition of X , irrespective of the properties of hn. Thus the aforementioned parametric calibration methods

cannot lead to asymptotic calibration in general (that is, without further distributional assumptions). It is likely that the

implications of our results also apply to other continuous parametric methods that are not necessarily monotonic,

as well as calibration schemes that directly aim to learn a calibrated predictor instead of post-hoc calibration or

recalibration.

A well-known calibration method that does not produce a fine partition of X is histogram binning (Zadrozny and

Elkan, 2001). In Section 5.4, we analyze histogram binning and show that any scoring function can be ‘binned’ to

achieve distribution-free calibration. We explicitly quantify the finite-sample approximate calibration guarantees that

automatically also lead to asymptotic calibration. We also discuss calibration in the online setting and calibration

under covariate shift.

5.4 Achieving Distribution-free Approximate Calibration

In Section 5.4.1, we prove a distribution-free approximate calibration guarantee given a fixed partitioning of the feature

space into finitely many sets. This calibration guarantee also leads to asymptotic calibration. In Section 5.4.2, we

discuss a natural method for obtaining such a partition using sample-splitting, called histogram binning. Histogram

binning inherits the bound in Section 5.4.1. This shows that binning schemes lead to distribution-free approximate

calibration. In Section 5.4.3 and 5.4.4 we discuss extensions of this scheme to adaptive sampling and covariate shift

respectively.

5.4.1 Distribution-free Calibration Given a Fixed Sample-space Partition

Suppose we have a fixed partition of X into B regions {Xb}b∈[B], and let πb = E [Y | X ∈ Xb] be the expected label

probability in region Xb. Denote the partition-identity function as B : X → [B] where B(x) = b if and only if x ∈ Xb.

*This assumes that the parameters satisfy natural constraints as discussed in the original papers: a, b ≥ 0 for beta scaling with at least one of
them nonzero, A < 0 for Platt scaling and T > 0 for temperature scaling.
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Given a calibration set {(Xi, Yi)}i∈[n], let ŝb := |{i ∈ [n] : B(Xi) = b}| be the number of points from the calibration

set that belong to region Xb. In this subsection, we assume that ŝb ≥ 1 (in Section 5.4.2 we show that the partition can

be constructed to ensure that ŝb is Ω(n/B) with high probability). Define

π̂b :=
1

ŝb

∑

i:B(Xi)=b

Yi and V̂b :=
1

ŝb

∑

i:B(Xi)=b

(Yi − π̂b)2 (5.12)

as the empirical average and variance of the Y values in a partition. We now deploy an empirical Bernstein

bound Audibert et al. (2007) to produce a confidence interval for πb.

Theorem 5.4. For any α ∈ (0, 1), with probability at least 1− α,

|πb − π̂b| ≤

√
2V̂b ln(3B/α)

ŝb
+

3 ln(3B/α)

ŝb
, simultaneously for all b ∈ [B].

The theorem is proved in Appendix D.3. Using the crude deterministic bound V̂b ≤ 1 we get that the length of

the confidence interval for partition b is O(1/
√
ŝb). However, if for some b, Xb is highly informative or homogeneous

in the sense that πb is close to 0 or 1, we expect V̂b ≪ 1. In this case, Theorem 5.4 adapts and provides an O(1/ŝb)

length interval for πb. Let b⋆ = argminb∈[B] ŝb denote the index of the region with the minimum number of calibration

examples.

Corollary 5.4.1. For α ∈ (0, 1), the function fn(x) := π̂B(x) is (ε, α)-approximately calibrated with

ε(·) =

√
V̂b⋆ ln(3B/α)

2ŝb⋆
+

3 ln(3B/α)

2ŝb⋆
.

Thus, {fn}n∈N is asymptotically calibrated at level α.

The proof is in Appendix D.3. Thus, any finite partition of X can be used for asymptotic calibration. However, the

finite sample guarantee of Corollary 5.4.1 can be unsatisfactory if the sample-space partition is chosen poorly, since it

might lead to small ŝb⋆ . In Section 5.4.2, we present a data-dependent partitioning scheme that provably guarantees

that ŝb⋆ scales as Ω(n/B) with high probability.

5.4.2 Identifying a Data-dependent Partition using Sample Splitting

Here, we describe ways of constructing the partition {Xb}b∈[B] through histogram binning Zadrozny and Elkan (2001).

Binning uses a sample splitting strategy, where the partition is learned on the first part and {π̂b}b∈[B] are estimated on

the second part. Formally, the labeled data is split at random into the training set Dtr and calibration set Dcal. Then

Dtr is used to train an underlying scoring classifier g : X → [0, 1] (in general the range of the classifier could be any
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interval of R but for simplicity we describe it for [0, 1]). The classifier g usually does not satisfy a valid calibration

guarantee out-of-the-box but can be calibrated using binning as follows.

A binning scheme B is any partition of [0, 1] into B non-overlapping intervals I1, . . . , IB , such that
⋃

b∈[B] Ib =

[0, 1] and Ib ∩ Ib′ = ∅ for b ̸= b′. B and g induce a partition of X as follows:

Xb = {x ∈ X : g(x) ∈ Ib} , b ∈ [B]. (5.13)

The simplest binning scheme corresponds to fixed-width binning. In this case, bins have the form

Ii =

[
i− 1

B
,
i

B

)
, i = 1, . . . , B − 1 and IB =

[
B − 1

B
, 1

]
.

However, fixed-width binning suffers from the drawback that there may exist bins with very few calibration points (low

ŝb), while other bins may get many calibration points. For bins with low ŝb, the π̂b estimates cannot be guaranteed to

be well calibrated, since the bound of Theorem 5.4 could be large. To remedy this, we consider uniform-mass binning,

which aims to guarantee that each region Xb contains approximately equal number of data points from the calibration

set. This is done by estimating the empirical quantiles of g(X). First, the calibration set Dcal is randomly split into

two parts, D1
cal and D2

cal. Then q̂j is simply defined as the (j/B)-th quantile of the empirical distribution of the values

{g(Xi), i ∈ D1
cal} for j ∈ [B − 1]. Consequently, the bins are defined as:

I1 = [0, q̂1) , Ii = [q̂i−1, q̂i] , i = 2, . . . , B − 1 and IB = (q̂B−1, 1] .

Next, onlyD2
cal is used for calibrating the underlying classifier. Kumar et al. (2019) showed that uniform-mass binning

provably controls the number of calibration samples that fall into each bin (see Appendix D.5.2). Building on their

result, we show the following guarantee for ŝb⋆ = minb∈[B] ŝb.

Theorem 5.5. There exists a universal constant c such that if
∣∣D1

cal

∣∣ ≥ cB ln(2B/α), then with probability at least

1− α,

ŝb⋆ ≥
∣∣D2

cal

∣∣ /2B −
√
|D2

cal| ln(2B/α)/2,

Thus even if |D1
cal| does not grow with n, as long as |D2

cal| = Ω(n), uniform-mass binning is

approximately calibrated at level (Õ(
√
B ln(1/α)/n), α), and hence also asymptotically calibrated for any α ∈

(0, 1).

The proof is in Appendix D.3. In words, if we use a small number of points (independent of n) for uniform-mass

binning, and the rest to estimate bin probabilities, we achieve (approximate/asymptotic) distribution-free calibration.
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5.4.3 Distribution-free Calibration in the Online Setting

So far, we have considered the batch setting with a fixed calibration set of size n. However, often a practitioner might

want to query additional calibration data until a desired confidence level is achieved. This is called the online or

adaptive setting. In this case, the results of Section 5.4 are no longer valid since the number of calibration samples is

unknown a priori and may even be dependent on the data. In order to quantify uncertainty in the online setting, we

use time-uniform concentration bounds Howard et al. (2021, 2020); these hold simultaneously for all possible values

of the calibration set size n ∈ N.

Fix a partition of X , {Xb}bn∈[B]. For some value of n, let the calibration data be given as D(n)
cal . We use the

superscript notation to emphasize the dependence on the current size of the calibration set. Let {(Xb
i , Y

b
i )}i∈[ŝ

(n)
b ]

be

examples from the calibration set that fall into the partition Xb, where ŝ(n)b := |{i ∈ [n] : B(Xi) = b}| is the total

number of points that are mapped to Xb. Let the empirical label average and cumulative (unnormalized) empirical

variance be denoted as

Y
b

t =
1

t

t∑

i=1

Y b
i , V̂ +

b = 1 ∨
ŝ
(n)
b∑

i=1

(
Y b
i − Y

b

i−1

)2
. (5.14)

Note the normalization difference between V̂ +
b and V̂ b used in the batch setting. The following theorem constructs

confidence intervals for {πb}b∈[B] that are valid uniformly for any value of n.

Theorem 5.6. For any α ∈ (0, 1), with probability at least 1− α,

|πb − π̂b| ≤
7

√
V̂ +
b ln

(
1 + ln V̂ +

b

)
+ 5.3 ln

(
6.3B
α

)

ŝ
(n)
b

, simultaneously for all b ∈ [B] and all n ∈ N. (5.15)

Thus π̂b is asymptotically calibrated at any level α ∈ (0, 1).

The proof is in Appendix D.3. Due to the crude bound: V̂ +
b ≤ ŝ

(n)
b , we can see that the width of confidence

intervals roughly scales as O(

√
ln(1+ln ŝ

(n)
b )/ŝ(n)

b ). In comparison to the batch setting, only a small price is paid for not

knowing beforehand how many examples will be used for calibration.

5.4.4 Calibration under Covariate Shift

Here, we briefly consider the problem of calibration under covariate shift Shimodaira (2000). In this setting, calibration

data {(Xi, Yi)}i∈[n] ∼ Pn is from a ‘source’ distribution P , while the test point is from a shifted ‘target’ distribution

(Xn+1, Yn+1) ∼ P̃ = P̃X ×PY |X , meaning that the ‘shift’ occurs only in the covariate distribution while PY |X does

not change. We assume the likelihood ratio (LR)

w : X → R; w(x) := dP̃X(x)/dPX(x)
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is well-defined. The following is unambiguous: ifw is arbitrarily ill-behaved and unknown, the covariate shift problem

is hopeless, and one should not expect any distribution-free guarantees. Nevertheless, one can still make nontrivial

claims using a ‘modular’ approach towards assumptions:

Condition (A): w(x) is known exactly and is bounded.

Condition (B): an asymptotically consistent estimator ŵ(x) for w(x) can be constructed.

We show the following: under Condition (A), a weighted estimator using w delivers approximate and asymptotic

distribution-free calibration; under Condition (B), weighting with a plug-in estimator for w continues to deliver

asymptotic distribution-free calibration. It is clear that Condition (B) will always require distributional assumptions:

asymptotic consistency is nontrivial for ill-behaved w. Nevertheless, the above two-step approach makes it clear

where the burden of assumptions lie: not with calibration step, but with the w estimation step. Estimation of w is a

well studied problem in the covariate-shift literature and there is some understanding of what assumptions are needed

to accomplish it, but there has been less work on recognizing the resulting implications for calibration. Luckily, many

practical methods exist for estimating w given unlabeled samples from P̃X (Bickel et al., 2007; Huang et al., 2007;

Kanamori et al., 2009). In summary, if Condition (B) is possible, then distribution-free calibration is realizable, and

if Condition (B) is not met (even with infinite samples), then it implies that w is probably very ill-behaved, and so

distribution-free calibration is also likely to be impossible.

For a fixed partition {Xb}b∈[B], one can use the labeled data from the source distribution to estimate EP̃ [Y | X ∈ Xb]

(unlike EP [Y | X ∈ Xb] as before), given oracle access to w:

qπ
(w)
b :=

∑
i:B(Xi)=b w(Xi)Yi∑
i:B(Xi)=b w(Xi)

. (5.16)

As preluded to earlier, assume that

for all x ∈ X , L ≤ w(x) ≤ U for some 0 < L ≤ 1 ≤ U <∞. (5.17)

The ‘standard’ i.i.d. assumption on the test point equivalently assumes w is known and L = U = 1. We now present

our first claim: qπ
(w)
b satisfies a distribution-free approximate calibration guarantee. To show the result, we assume that

the sample-space partition was constructed via uniform-mass binning (on the source domain) with sufficiently many

points, as required by Theorem 5.5. This guarantees that all regions satisfy |{i : B(Xi) = b}| = Ω(n/B) with high

probability.

Theorem 5.7. Assume w is known and bounded (5.17). Then for an explicit universal constant c > 0, with probability

at least 1− α,

∣∣∣qπ(w)
b − EP̃ [Y | X ∈ Xb]

∣∣∣ ≤ c
(
U

L

)2
√
B ln(6B/α)

2n
, simultaneously for all b ∈ [B],
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as long as n ≥ c(U/L)2B ln2(6B/α). Thus qπ
(w)
b is asymptotically calibrated at any level α ∈ (0, 1).

The proof is in Appendix D.4. Theorem 5.7 establishes distribution-free calibration under Condition (A). For

Condition (B), using k unlabeled samples from the source and target domains, assume that we construct an estimator

ŵk of w that is consistent, meaning

sup
x∈X
|ŵk(x)− w(x)| P→ 0. (5.18)

We now define an estimator qπ
(ŵk)
b by plugging in ŵk for w in the right hand side of (5.16):

qπ
(ŵk)
b :=

∑
i:B(Xi)=b ŵk(Xi)Yi∑
i:B(Xi)=b ŵk(Xi)

.

Proposition 6. If ŵk is consistent (5.18), then qπ
(ŵk)
b is asymptotically calibrated at any level α ∈ (0, 1).

In Appendix D.4, we illustrate through preliminary simulations that w can be estimated using unlabeled data from

the target distribution, and consequently approximate calibration can be achieved on the target domain. Recently, Park

et al. (2020) also considered calibration under covariate shift through importance weighting, but they do not show

validity guarantees in the same sense as Theorem 5.7. For real-valued regression, distribution-free prediction sets

under covariate shift were constructed using conformal prediction Tibshirani et al. (2019) under Condition (A), and is

thus a precursor to our modular approach.

5.5 Other Related Work

The problem of assessing the calibration of binary classifiers was first studied in the meteorological and statistics

literature (Brier, 1950; Sanders, 1963; Murphy and Epstein, 1967; Murphy, 1972a,b, 1973; Dawid, 1982; DeGroot

and Fienberg, 1983; Bröcker, 2012; Ferro and Fricker, 2012); we refer the reader to the review by Dawid (2014) for

more details. These works resulted in two common ways of measuring calibration: reliability diagrams (DeGroot

and Fienberg, 1983) and estimates of the squared expected calibration error (ECE) Sanders (1963): E(f(X) −
E [Y | f(X)])2. Squared ECE can easily be generalized to multiclass settings and some related notions such as

absolute deviation ECE and top-label ECE have also been considered, for instance Guo et al. (2017); Naeini et al.

(2015). ECE is typically estimated through binning, which provably leads to underestimation of ECE for calibrators

with continuous output (Vaicenavicius et al., 2019; Kumar et al., 2019). Certain methods have been proposed to

estimate ECE without binning (Zhang et al., 2020; Widmann et al., 2019), but they require distributional assumptions

for provability.

While these papers have focused on the difficulty of estimating calibration error, ours is the first formal

impossibility result for achieving calibration for many commonly used calibration schemes. In particular, Kumar
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et al. (2019, Theorem 4.1) show that the scaling-binning procedure achieves calibration error close to the best within

a fixed, regular, injective parametric class. However, as discussed in Section 5.3.3 (after Theorem 5.3), we show that

the best predictor in an injective parametric class itself cannot have a distribution-free guarantee. In summary, our

results show not only that (some form of) binning is necessary for distribution-free calibration (Theorem 5.3), but also

sufficient (Corollary 5.4.1).

Apart from classical methods for calibration (Platt, 1999; Zadrozny and Elkan, 2001, 2002; Niculescu-Mizil and

Caruana, 2005), some new methods have been proposed recently in the ML literature, primarily for calibration of deep

neural networks Lakshminarayanan et al. (2017); Guo et al. (2017); Kumar et al. (2018); Tran et al. (2019); Seo et al.

(2019); Kuleshov et al. (2018); Kendall and Gal (2017); Wenger et al. (2020); Milios et al. (2018). These calibration

methods perform well in practice but do not have distribution-free guarantees.

Calibration has natural applications in numerous sensitive domains where uncertainty estimation is desirable

(healthcare, finance, forecasting). Recently, calibrated classifiers have been used as a part of the pipeline for anomaly

detection Hendrycks et al. (2019); Lee et al. (2018) and label shift estimation Saerens et al. (2002); Alexandari et al.

(2020); Garg et al. (2020).

5.6 Conclusion

We analyze calibration for binary classification problems from the standpoint of robustness to distributional

assumptions. By connecting calibration to other ways of quantifying uncertainty, we establish that popular parametric

scaling methods cannot provide provable informative calibration guarantees in the distribution-free setting. In contrast,

we showed that a standard nonparametric method – histogram binning – satisfies approximate and asymptotic

calibration guarantees without distributional assumptions. We also establish guarantees for the cases of streaming

data and covariate shift.
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Chapter 6

Distribution-Free Uncertainty

Quantification for Classification under

Label Shift

6.1 Introduction

It is common in classification to assume access to labeled data {(Xi, Yi)}ni=1 where Xi ∈ X , Yi ∈ Y = {1, . . . ,K}
denote the covariates, or features, and the labels respectively, and the pairs (Xi, Yi), i = 1, . . . , n are sampled i.i.d.

from some unknown joint distribution P over X × Y . Such dataset is used to learn a predictor f , a mapping from

X to rankings or distributions over Y , by optimizing some loss/risk. However, accurate point prediction alone can be

insufficient in certain applications, e.g., medical diagnosis, where trustworthy deployment of a model requires a valid

measure of uncertainty associated with corresponding predictions.

Common prediction models are mappings of the form f : X → ∆K , where ∆K refers to the probability simplex

in RK , and a prediction on a new (test) point X ∈ X is performed by picking the top-ranked class according to f(X).

One hopes that the output vector f(X) reflects the true conditional probabilities of classes given the observed input, but

this won’t be true without additional distributional and modeling assumptions, that are typically strong and unverifiable

in practice. In this work, we focus on two categories of post-processing procedures — calibration via post-hoc binning

and conformal prediction — that use held-out data (referred to as calibration dataset) and a trained model to construct

a corresponding wrapper that provably quantifies predictive uncertainty when no distributional assumptions are made

about the data generating mechanism. (This generality comes at a certain price which we discuss further.)

We work in the context of distribution-free uncertainty quantification and, in particular, focus on producing

prediction sets (Section 6.2) and calibrated probabilities (Section 6.3), which are complementary approaches for
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classifier UQ. While the former aims to produce a set of labels that contains the truth with high probability, the latter

aims to amend the output of a probabilistic predictor so that it has a rigorous frequentist interpretation. It is useful

to view the task through the lens of how actionable the corresponding notion is in a given setup. For example, in a

binary classification setup with only 4 possible prediction sets {∅, {1} , {2} , {1, 2}}, if we were to observe prediction

sets {1, 2} for large fraction of data points, one might end up quite disappointed. Thus, calibration could be a better

way of quantifying uncertainty in the binary case. However, mathematical guarantees on calibration degrade with

growing number of classes, but the aforementioned prediction sets become an attractive option with more labels. To

summarize, neither of two notions provide a complete answer to the question of UQ for classification on their own,

but together they represent two of the more principled distribution-free approaches towards UQ that are practically

efficient and theoretically grounded.

In real-world applications, the target distribution (generating test data) might not be the same as the source

distribution (generating training data) which can both hurt a model’s generalization and lead to violation of the

assumptions under which even assumption-lean UQ is valid. As meaningful reasoning about uncertainty on the target

domain is hopeless without any additional information about the type of distribution shift, one may hope that it is

possible to make simplifying assumptions which would allow us to perform appropriate corrections and construct

procedures with non-trivial guarantees. Let P,Q stand for the source and target distributions defined on X × Y , with

p, q being the PDFs or PMFs associated with P and Q respectively. Two common assumptions about the type of shift

include covariate shift (Shimodaira, 2000): q(x) ̸= p(x) but q(y | x) = p(y | x), and label shift (Saerens et al., 2002):

q(y) ̸= p(y) but q(x | y) = p(x | y). Both assumptions allow for a tractable interpretation when viewing the data

generating process as a causal or anti-causal model respectively. For example, label shift is a reasonable assumption

in medical applications where diseases (Y ) cause symptoms (X): it is intuitive that some sort of correction might be

required when a predictor trained in ordinary conditions is deployed during extreme ones, e.g., during a pandemic.

Classic approaches for handling the aforementioned shifts make an assumption that the target support is contained

in the source support, so that the covariate or label likelihood ratios (or importance weights) q(x)/p(x) or q(y)/p(y)

are well-defined. In applications, true weights are never known exactly, so the construction of consistent estimators

has received a lot of attention in the ML community. For label shift dominant approaches that are still computationally

feasible in modern high-dimensional regimes, and that perform estimation using labeled data only from the source

distribution, include: (a) Black Box Shift Estimation (BBSE) (Lipton et al., 2018) and related Regularized Learning

under Label Shift (RLLS) (Azizzadenesheli et al., 2019), (b) Maximum Likelihood Label Shift (MLLS) and its variants

(Saerens et al., 2002; Alexandari et al., 2020).

Within the context of distribution-free UQ, covariate shift has recently received attention. Focusing on regression,

Tibshirani et al. (2019) generalize construction of conformal prediction intervals to handle the case of known covariate

likelihood ratio, and empirically demonstrate that the modified procedure works reasonably well with a plug-in

estimator for the importance weights. For binary classification, Gupta et al. (2020) propose a way of calibrating

probabilistic predictors under covariate shift, and quantify miscalibration of the resulting estimator.
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In this work, we close an existing gap for quantifying predictive uncertainty under label shift. Building on

recent results about distribution-free calibration and (split-)conformal prediction, we adapt both to handling label

shift through an appropriate form of reweighting. While typical application of those frameworks requires labeled

data from the target to provide guarantees, we show that under reasonable assumptions one can still reason about

uncertainty on the target even if only unlabeled data is available. In contrast to covariate shift where we observeX and

need the covariate likelihood ratio of X to reweight, under label shift we observe X but need the likelihood ratio of Y

to reweight. We also consider an alternative way of addressing label shift by performing label-conditional conformal

classification (Vovk et al., 2005, 2016; Sadinle et al., 2019; Guan and Tibshirani, 2022).

6.2 Conformal Classification

We begin with the notion of prediction sets as a way of quantifying predictive uncertainty. Formally, we wish to

construct an uncertainty set function C : X → 2Y , such that for a new (test) data point we can guarantee that:

P (Yn+1 ∈ C(Xn+1)) ≥ 1− α. (6.1)

Conformal prediction (Vovk et al., 2005) has received attention recently both in regression (Lei et al., 2018; Romano

et al., 2019; Barber et al., 2021) and classification (Cauchois et al., 2021; Romano et al., 2020; Angelopoulos et al.,

2021) settings. It does not require making any distributional assumptions, which comes at the price of provably

providing only marginal guarantees as stated in (6.1) which should be contrasted with possibly the ultimate goal of

obtaining prediction sets with guarantees conditional on a given input.

Since conditional guarantees often require making restrictive and unverifiable assumptions, we instead focus on

procedures that might provably provide marginal coverage guarantees but still tend to demonstrate good conditional

coverage empirically. Being flexible, conformal prediction allows to proceed with both probabilistic and scoring

classifiers. Within this framework, one usually defines a non-conformity score, a higher value of which on a given

data point indicates that it is more ‘atypical’. For example, even if a classifier outputs only the ranking of predicted

classes, a rank of the true class defines a valid non-conformity score. Keeping in mind that our techniques extend to

other types of classifiers, we nevertheless focus on probabilistic predictors in this work which are also dominant in

modern machine learning.

6.2.1 Exchangeable Conformal

Consider a sequence of candidate nested prediction sets {Fτ (x)}τ∈T : Fτ1(x) ⊆ Fτ2(x) ⊆ Y for any τ1 ≤ τ2 ∈ T ,

with Finf T = ∅ and Fsup T = Y (Gupta et al., 2022). For any point (x, y) ∈ X × Y define

r(x, y) := inf {τ ∈ T : y ∈ Fτ (x)} , (6.2)
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as the smallest radius of the set in a sequence {Fτ (x)}τ∈T that captures y. Within split-conformal framework,

available dataset is split at random into two parts: the first is used to construct a nested sequence and the second

is used to select the smallest τ⋆ that guarantees validity.

If the true class-posterior distribution πy(x) = P [Y = y | X = x] is known, the optimal prediction set for any

x ∈ X with conditional coverage guarantee is based on the corresponding density level sets (Vovk et al., 2005; Lei

et al., 2013; Gupta et al., 2022; Sadinle et al., 2019): one should pick the largest τα(x) and include all labels with

probabilities πy(x) exceeding τα(x) so that the corresponding total probability mass is at least 1 − α. When ties

are present, such procedure can yield conservative sets, e.g., if for some x ∈ X all classes are equally probable in

a 10-class problem, then τα(x) = 0.1 and the proposed set would simply be Y . For the discussion that follows we

assume that there are no ties or that they are broken as formally discussed in Appendix E.2.1. Then, to construct the

optimal prediction set, one should start with an empty one and keep including labels as long as the total probability

mass of labels included before is less than 1− α. Formally,

Coracle
α (x) := {y ∈ Y : ρy(x;π) < 1− α} ,

where ρy(x;π) :=

K∑

y′=1

πy′(x)1 {πy′(x) > πy(x)}

(6.3)

is the total probability mass of labels that are more likely than y ∈ Y . Notice that for any x ∈ X and the corresponding

most likely label y⋆ it holds that ρy⋆(x;π) = 0. When an estimator π̂ of the true conditional distribution is used, split-

conformal framework provides a way of updating the threshold 1 − α in (6.3) in order to retain coverage guarantees.

However, naive conformalization of the nested sequence suggested by the form (6.3) yields prediction sets with correct

marginal coverage but typically inferior conditional coverage in practice. Due to that reason and a desire of consistency,

i.e., recovering the oracle prediction sets from the conformal ones in the limit, we instead use a randomized version

of (6.3) defined as

C̃oracle
α (x) = {y : ρy(x;π) + u · πy(x) ≤ 1− α} , (6.4)

where u is a realization of Unif ([0, 1]), sampled independently of anything else (Vovk et al., 2005; Romano et al.,

2020). Note that replacing strict inequality by a non-strict does not expand the prediction set as equality happens with

zero probability and that induced randomization can result in exclusion only of a single label from the set Coracle
α (x).

The form of the optimal prediction sets (6.4) suggests to consider the following nested sequence:

Fτ (x, u; π̂) = {y ∈ Y : ρy(x; π̂) + u · π̂y(x) ≤ τ} , (6.5)
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for τ ∈ T = [0, 1]. Then for any triple (X,Y, U) the corresponding radius (6.2), or score, is given by

r(X,Y, U ; π̂) = inf {τ ∈ T : ρY (X; π̂) + U · π̂Y (X) ≤ τ}

= ρY (X; π̂) + U · π̂Y (X). (6.6)

Adapting to label shift can be performed with other non-conformity scores proposed recently for conformal

classification (Cauchois et al., 2021; Angelopoulos et al., 2021), and we further discuss the subtleties behind our

choice in Appendix E.2.2. Assume that the dataset is split at random into two parts: training {(Xi, Yi)}i∈I1
and

calibration {(Xi, Yi)}i∈I2
, where for simplicity the calibration data points are indexed as I2 = {1, . . . , n}. When the

data are exchangeable, the non-conformity scores ri = r(Xi, Yi, Ui; π̂) ∈ [0, 1], i ∈ I2 ∪ {n+ 1} are exchangeable

as well, which in turn implies that the prediction set

Fτ⋆ (x, u; π̂) = {y ∈ Y : ρy(x; π̂) + u · π̂y(x) ≤ τ⋆} ,

τ⋆ = Q1−α

(
{ri}i∈I2

∪ {1}
)
, (6.7)

does attain the right coverage guarantee*. This is a classic result in conformal prediction and represents a simple fact

about quantiles of exchangeable random variables, stated next for completeness.

Theorem 6.1. If {(Xi, Yi)}n+1
i=1 are exchangeable, then:

P(Yn+1 ∈ Fτ⋆ (Xn+1, Un+1; π̂) | {(Xi, Yi)}i∈I1
) ≥ 1− α.

Further, if the non-conformity scores are almost surely distinct, then the above probability is upper bounded by 1 −
α+ 1/(n+ 1).

The proof is given in Appendix E.2.3. Notice that the randomized sequence (6.5) might yield empty, and thus

non-actionable prediction sets, which is the consequence of deploying randomization only. Substituting the condition

in (6.7) with 1 {ρy(x; π̂) > 0} · (ρy(x; π̂) + u · π̂y(x)) ensures that the prediction set always includes the most likely

label. Such a construction trivially inherits the coverage guarantee stated in Theorem 6.1, and we refer the reader to

Appendix E.2.2 for further details.

6.2.2 Label-shifted Conformal

To illustrate the necessity of accounting for label shift we consider the following toy classification task with 3 classes

Y = {1, 2, 3} where class proportions are given as p = (0.1, 0.6, 0.3) and q = (0.3, 0.2, 0.5), and for each data

point the covariates are sampled according to X | Y = y ∼ N (µy,Σ) where µ1 = (−2; 0)⊤, µ2 = (2; 0)
⊤, µ3 =

*Qβ (F ) := inf {z : F (z) ≥ β} is β-quantile of a distribution F . For a multiset {z1, . . . , zm} we write Qβ ({z1, . . . , zm}) :=

Qβ

(
1
m

∑m
i=1 δzi

)
, where δa is a point-mass distribution at a, to denote quantiles of the corresponding empirical distribution.

66



−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

−6

−4

−2

0

2

4

6

8

10

Class 1

Class 2

Class 3

(a)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

−6

−4

−2

0

2

4

6

8

10

{1}
{2}
{3}
{1, 2}
{2, 3}
{1, 3}
{1, 2, 3}

(b)

0.800 0.825 0.850 0.875 0.900 0.925 0.950

Coverage

0

20

40

60

80

100

120

C
ou

nt

Nominal 90% level

Oracle weights

Estimated weights

Uncorrected

(c)

0.5 0.6 0.7 0.8 0.9 1.0

Coverage

0

20

40

60

80

100

120

C
ou

nt

Nominal 90% level

Oracle weights

Estimated weights

Uncorrected

(d)

Figure 6.1: (a) Test data sample for the toy simulation in Section 6.2.2. (b) Corresponding conformal prediction sets
when label shift is accounted for with oracle importance weights. (c) Empirical coverage on shifted data for the toy
simulation in Section 6.2.2. (d): Empirical coverage on the wine quality dataset. Dashed vertical lines describe
the median coverage values, which are significantly worse when label shift is not accounted for, while using estimated
weights mimics the oracle reasonably well.

(
0; 2
√
3
)⊤

, Σ = diag(4, 4). First, we perform the standard routine for constructing split-conformal prediction sets for

a single draw of data from the source and target distributions using the Bayes-optimal rule as an underlying predictor.

We illustrate a single draw of the test data on Figure 6.1a and the resulting prediction sets on Figure 6.1b. Next, we

repeat the simulation 1000 times and track empirical coverage on the test set. Results on Figure 6.1c demonstrate the

necessity of correcting for label shift as the classic conformal prediction sets introduced in Section 6.2.1 fail to achieve

the correct marginal coverage.

Assume that the true likelihood ratios w(y) = q(y)/p(y) are known for all y ∈ Y . In order to obtain provably

valid prediction sets, we consider instead:

F (w)
τ⋆ (x, u; π̂) = {y ∈ Y : ρy (x; π̂) + u · π̂y(x) ≤ τ⋆w(y)} ,

τ⋆w(y) = Q1−α

(
n∑

i=1

p̃wi (y)δri + p̃wn+1(y)δ1

)
,

where p̃wi (y) =
w(Yi)∑n

j=1 w(Yj) + w(y)
, i = 1, . . . , n,

p̃wn+1(y) =
w(y)∑n

j=1 w(Yj) + w(y)
.

(6.8)

(6.9)
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In addition to the fact that the empirical distribution used to calibrate the threshold in (6.8) is different from the one

used in exchangeable setting (6.7), notice that the thresholds themselves now vary depending on the class label. The

formal guarantee for the prediction set (6.8) is stated next.

Theorem 6.2. For any α ∈ (0, 1), if the true likelihood ratios w(y) = q(y)/p(y) are known for all y ∈ Y , it holds

that

P(Yn+1 ∈ F (w)
τ⋆ (Xn+1, Un+1; π̂) | {(Xi, Yi)}i∈I1

) ≥ 1− α.

The proof is given in Appendix E.2.3. It relies on the concept of weighted exchangeability introduced by

Tibshirani et al. (2019) to handle covariate shift in regression, and we adapt those ideas here to correct for label

shift in classification. Returning to the example considered in the beginning of this section, Figure 6.1c illustrates

that calibrating the threshold τ as in (6.8) with either oracle or estimated importance weights allows to achieve the

target marginal coverage. Here we use BBSE (Lipton et al., 2018) to estimate the importance weights; more details

are provided in Appendix E.1.

Next, we perform a similar experiment with the wine quality dataset (Cortez et al., 2009). We refer the

reader to Appendix E.2.4 for details regarding data pre-processing and modeling steps. The source and target class

proportions are taken to be p = (0.1, 0.4, 0.5) and q = (0.4, 0.5, 0.1) and the data are resampled accordingly.

Using a shallow multilayer perceptron as an underlying predictor and BBSE for importance weights estimation, at

each iteration we repeat the routine for random splits of the original dataset and compare empirical coverage for

different conformal prediction sets. Marginal coverage results given in Figure 6.1d support the idea that both shift-

corrected conformal prediction sets demonstrate superior coverage performance compared with uncorrected ones.

While conformal sets with oracle importance weights closely match the nominal coverage level, sets that proceed with

estimated ones have a slightly downgraded performance. Arising basically due to an imperfect classification model

and an imperfect importance weight estimation procedure, it highlights an important issue we discuss next.

While (weighted) exchangeability arguments yield a coverage guarantee in case of known importance weights,

in practice one only has access to a corresponding estimator. Dominant methods, which we briefly touch upon in

Appendix E.1, estimate importance weights using a separate labeled dataset from the source distribution and unlabeled

dataset from the target. Under reasonable assumptions, such as identifiability and boundedness of the true importance

weights, these estimators are known to be consistent as the size of both samples grows. For succinctness, we write

k = |Dest| to denote the total size of the datasets used for constructing an estimator ŵk of the importance weights w.

Corollary 6.2.1. Fix α ∈ (0, 1). Assume that ŵk is a consistent estimator of w. Further, assume that for the true w

and all y ∈ Y , the discrete distribution in (6.8) does not have a jump at level 1− α. Then:

lim
k→∞

P
(
Yn+1 ∈ F (ŵk)

τ⋆ (Xn+1, Un+1; π̂)
)
≥ 1− α.
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The proof is given in Appendix E.2.3. To demonstrate why presence of a jump might cause problems, consider a

simplified example. Let Z ∼ Ber(p) for which the quantile corresponding to any given level α is given by

Qα ((1− p) · δ0 + p · δ1) = 1 {p > 1− α} ,

Assume that we are given a sample of coin tosses Z1, . . . , Zn with the same bias parameter p. Even though the

sample average Zn is a consistent estimator of p, it nonetheless does not imply that the corresponding plug-in quantile

estimator is consistent as the continuous mapping theorem cannot be invoked due to a discontinuity at p = 1 − α.

Indeed, let

q̂n := Qα

((
1− Zn

)
· δ0 + Zn · δ1

)
= 1

{
Zn > 1− α

}
,

and observe that q̂n ∼ Ber
(
P
(
Zn > 1− α

))
. Then by the normal approximation it follows that:

P
(
Zn > 1− α

)
≈ 1− Φ

(
√
n
(1− α)− p√
p(1− p)

)
.

If p > 1− α, we can conclude that q̂n converges in probability to 1, and thus the estimator is consistent (similarly for

p < 1 − α). In case of equality, q̂n converges to Ber(1/2), and thus the estimator will not be consistent. Still, for a

more general setting of the distribution defined in (6.8) it is reasonable to expect the assumption regarding absence of

jumps to be satisfied as also confirmed by our conducted empirical study.

Label-conditional conformal prediction. Observing multiple points sharing the same label in a dataset makes it

possible to apply the split-conformal framework in a way that makes the resulting prediction sets inherently robust to

label shift (Vovk et al., 2005, 2016; Sadinle et al., 2019; Guan and Tibshirani, 2022). Assume that a set of significance

levels for each class {αy}y∈Y has been chosen (e.g., αy = α for all y). By further splitting the calibration set I2 into

|Y| = K groups depending on the corresponding labels, I2,y := {i ∈ I2 : Yi = y}, one can consider prediction sets

of the following form:

Fc
τ⋆
c
(x, u; π̂) = {y ∈ Y : ρy(x; π̂) + u · π̂y(x) ≤ τ⋆c (y)} ,

τ⋆c (y) = Q1−αy

(
{ri}i∈I2,y

∪ {1}
)
. (6.10)

In other words, we separately apply split-conformal prediction framework for each label; this is like performing a

separate hypothesis test for each label to determine whether there is sufficient evidence to exclude the label from the

prediction set. To elaborate, the label shift assumption states that conditional distribution ofX given Y = y for all y ∈
Y does not change between source and target distributions. Thus for a test point (Xn+1, Yn+1) the corresponding non-

conformity score r(Xn+1, Yn+1, Un+1; π̂) together with {ri}i∈I2,Yn+1
forms a collection of exchangeable random
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variables, which implies label-conditional validity, that is:

P
(
Yn+1 /∈ Fc

τ⋆
c
(Xn+1, Un+1; π̂) | Yn+1 = y

)
≤ αy,

for all y ∈ Y . When αy = α for all y, one can marginalize over y using any distribution (shifted or not), to yield

P
(
Yn+1 /∈ Fc

τ⋆
c
(Xn+1, Un+1; π̂)

)
≤ α. Thus, the label-conditional conformal framework yields a stronger guarantee

than the standard (marginal) conformal and, it is automatically robust to changes in class proportions, retaining validity

under label shift. The price to pay for the stronger conditional guarantee is larger prediction sets: for example, when

the classes are not well-separated, label-conditional conformal can be expected to yield larger prediction sets; see

Appendix E.2.5 for a careful empirical study. It should also be noted that the label-conditional conformal framework

requires splitting available calibration data into K parts that could result in large losses of statistical efficiency when

the number of classes K is large. On the other hand, such construction allows to tackle label shift in a way that

does not require importance weights estimation, and thus get exact finite-sample guarantee instead of asymptotic

one established in Corollary 6.2.1. Thus, we view the label-conditional conformal framework as a complementary

approach, perhaps worth utilizing when the amount of calibration data is larger relative to the number of labels.

6.3 Calibration

While prediction sets describe a construction on top of the output of a predictor, calibration quantifies whether the

output itself admits a rigorous frequentist interpretation. In contrast to the binary setting where there is usually no

confusion about a definition of a calibrated predictor, there is one in the multiclass setting. First, we state a definition

of a canonically calibrated predictor.

Definition 6 (Calibration). A probabilistic predictor f : X → ∆K is said to be calibrated if

P (Y = y | f(X)) = fy(X), y ∈ Y,

where fy(x) denotes the y-th coordinate of f(x).

Observe that canonical calibration requires the whole output vector to reflect the true conditional probabilities.

Two extreme examples of canonically calibrated predictors include: (a) fMarg: fMarg
y (x) = p(y), (b) fBayes:

fBayes
y (x) = πy(x). In words, the former predictor outputs marginal probabilities of classes and the latter outputs

the true class-posterior probabilities. In terms of classification efficiency, however, the first one is useless, while

the second minimizes the classification risk, or the probability of incorrectly classifying a new point. Minimizing

classification risk with respect to zero-one loss is computationally infeasible, and thus one refers instead to minimizing

so-called surrogate losses, e.g., cross-entropy loss, with possibly added regularization terms. As a result, one

obtains prediction models that are not calibrated out-of-the-box without making strong distributional and modeling
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assumptions, and thus aims to achieve it by performing post-processing using held-out data. While this topic has

attracted a lot attention from practitioners recently, less results have been established on the theoretical side providing

formal guarantees for common procedures that target improving model’s calibration. Recognized approaches include

Platt scaling (Platt, 1999), temperature scaling (Guo et al., 2017), histogram binning (Zadrozny and Elkan, 2001),

isotonic regression (Zadrozny and Elkan, 2002) and others.

Model miscalibration is usually assessed using either reliability curves or related one-dimensional summary

statistics. It is known that popular metrics, such as Expected Calibration Error (ECE), are not reliable since plug-

in estimates can be biased if binning, or discretization, of the output of the resulting model is not performed (Kumar

et al., 2019; Vaicenavicius et al., 2019). Gupta et al. (2020) establish the necessity of binning for obtaining distribution-

free calibration guarantees in a binary classification setup. Binning represents coarsening of the sample space and is

defined as the partitioning of the probability simplex into non-overlapping bins: ∆K = B1 ∪ · · · ∪BM , Bi ∩Bj = ∅,
i ̸= j. Then a predictor f induces a partition of the sample space:

Xm := {x ∈ X : f(x) ∈ Bm} , m ∈M := {1, . . . ,M} .

Since provable guarantees for canonical calibration require binning of the probability simplex, it is clear that the task

becomes prohibitive with growing number of classes as each bin has to be supplied with sufficiently many data points

during the calibration step for the resulting guarantees to be meaningful. One solution is given by either referring

to other notions of UQ, such as the aforementioned prediction sets, or by relaxing the notion of calibration in the

multiclass setting. One of well-known relaxations is class-wise, or marginal, calibration (Zadrozny and Elkan, 2002;

Vaicenavicius et al., 2019; Kull et al., 2019).

Definition 7 (Class-wise calibration). A probabilistic predictor f : X → ∆K is said to be class-wise calibrated if

P (Y = y | fy(X)) = fy(X), y ∈ Y. (6.11)

Vaicenavicius et al. (2019) illustrate the difference with the canonical calibration through useful examples. In

the binary setting, the two notions are equivalent with class-wise calibration being a weaker requirement for larger

number of classes. It is achieved by reducing the original multiclass problem toK one-vs-all binary problems with the

standard post-processing routine applied consequently to each one. We focus on canonical calibration for multiclass

problems as per Definition 6 and explicitly mention important implications for the binary setting, and thus marginal

calibration.
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6.3.1 Calibration for i.i.d. Data

First, we assume that the binning scheme has been chosen and use g : X → M to denote the bin-mapping function:

g(x) = m if and only if f(x) ∈ Bm. The calibration set Dcal = {(Xi, Yi)}ni=1 is used for estimating

πP
y,m := P (Y = y | f(X) ∈ Bm) , y ∈ Y, (6.12)

for all bins m ∈M. The superscript here highlights that probabilities correspond to the source distribution P and the

notation will become convenient when we talk about label shift setting. With finite data one can only estimate (6.12)

with quantifiable measures of error, and thus provably satisfy the calibration requirement only approximately:

P
(
Y = y | π̂P

y,g(X)

)
≈ π̂P

y,g(X). (6.13)

Let Nm = |{(Xi, Yi) ∈ Dcal : f(Xi) ∈ Bm}| denote the number of calibration points that fall into bin m ∈M. Note

that {Nm}m∈M are random and satisfy
∑M

m=1Nm = n. Empirical frequencies of class labels y ∈ Y in each bin

m ∈M:

π̂P
y,m :=

1

Nm

n∑

i=1

1 {Yi = y, f(Xi) ∈ Bm} , (6.14)

are natural candidates to satisfy the approximate calibration condition (6.13). For convenience, let πP
m :=

(πP
1,m, . . . , π

P
K,m)⊤ denote a vector with coordinates representing bin-conditional class probabilities and let h : X →

∆K denote the recalibrated predictor, i.e., the function that maps any feature vector to the corresponding vector of

calibrated probability estimates: h(x) = π̂g(x).

Theorem 6.3. Fix α ∈ (0, 1). With probability at least 1 − α,
∥∥π̂P

m − πP
m

∥∥
1
≤ εm, simultaneously for all m ∈ M,

where

εm :=
2√
Nm

√
1

2
ln

(
M2K

α

)
.

As a consequence, with probability at least 1− α,

K∑

y=1

|P (Y = y | h(X) = z)− zy| ≤ max
m∈M

εm,

simultaneously for all z in the range of h.

The proof is given in Appendix E.3.1. In words, Theorem 6.3 states that as long as the least-populated bin contains

sufficiently many points, the output of the recalibrated predictor will approximately satisfy condition (6.13). The

first part of Theorem 6.3 justifies use of empirical frequencies in place of unknown population quantities using the

language of the confidence intervals. In the binary setting, the fact that it yields the desired calibration guarantee, has
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been formally established by Gupta et al. (2020), and the second part of the theorem states a corresponding result for

canonical calibration in the multiclass setting.

A natural question is whether one can guarantee that each bin is supplied with a sufficient number of calibration

data points in order to obtain meaningful bounds. We note that in the binary setting, one way to provably spread the

calibration data evenly across bins is uniform-mass, or equal frequency, binning (Kumar et al., 2019; Gupta et al.,

2020; Gupta and Ramdas, 2021).

6.3.2 Label-shifted Calibration

For illustrating the necessity of accounting for label shift we consider the following binary classification problem:

Y = {0, 1} with class probabilities given as p(0) = p(1) = 1/2 and q(0) = 0.2, q(1) = 0.8, i.e., while on the source

domain classes are equally balanced, on the target class 1 becomes dominant. For each data point, conditionally on

the corresponding label, the covariates are sampled according to X | Y = y ∼ N (µy,Σ), where

µ0 =


−1

0


 , µ1 =


1

0


 , Σ =


0.75 0.25

0.25 0.75


 .

Similarly to the toy example from Section 6.2.2, here the class-posterior probabilities, and thus the Bayes-optimal rules

have a closed form for both source and target domains. Not only do they minimize the probability of misclassifying

a new point from the corresponding domain but also they are calibrated†. For the source distribution a perfect

probabilistic predictor is given by

πP
1 (x) =

p(1) · φ(x;µ1,Σ)

p(0) · φ(x;µ0,Σ) + p(1) · φ(x;µ1,Σ)
, (6.15)

where φ(x;µi,Σ), i = 0, 1 denotes the PDF of a Gaussian random vector with the corresponding parameters. As

illustrated on Figure 6.2a, even though the Bayes-optimal rule is calibrated on the source, a correction is required to

obtain a calibrated classifier under label shift. We sample points from the target distribution and highlight those that

fall inside the area S =
{
x ∈ R2 : πP

1 (x) ∈ [0.4; 0.6]
}

with boundary given by the black dashed lines. When the

shift is present, predictor (6.15) is no longer calibrated, since otherwise one should expect roughly half of the test data

points inside S to be labeled as class 1 (red squares) and half as class 0 (blue circles), which clearly does not happen.

If both the true class-posterior distribution πP
y (x) and the true label likelihood ratios w are known, then the form of

the adjustment of the probabilistic classifier under label shift is a simple implication of the Bayes rule (Saerens et al.,

2002):

πQ
y (x) =

w(y) · πP
y (x)∑K

k=1 w(k) · πP
k (x)

. (6.16)

†Recall that in the binary setting, canonical and class-wise calibration are equivalent.
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Figure 6.2: (a) Sampled points from the target distribution plotted against the true source class-posterior probabilities.
(b) Reliability curves for Fisher’s LDA calibrated via binning with/without taking label shift into account. The
deviation of uncorrected probabilities from the diagonal line (perfect calibration) reflects the need to correct for label
shift; recalibration based on estimated weights is almost identical to using oracle weights, both of which result in
near-perfect calibration.

While in the oracle setting predictor (6.16) is indeed calibrated on the target, in practice neither πP
y (x) nor w are

known. Using corresponding plug-in estimators in (6.16) would guarantee calibration of the resulting predictor only

asymptotically and under restricting modeling assumptions, and thus to obtain the distribution-free guarantees the

output of the original predictor has to be discretized, or binned as in the i.i.d. setting. Relationship (6.16) does clearly

continue to hold as formally stated next.

Proposition 7. Under label shift, for any class label y ∈ Y and any bin Bm, m ∈M it holds that:

πQ
y,m =

w(y) · πP
y,m∑K

k=1 w(k) · πP
k,m

.

In Section 6.3.1 we justified the use of empirical frequencies of class labels
{
π̂P
m

}
m∈M for achieving canonical

calibration of a predictor on the source domain and, as it has been noted in Section 6.2.2, there are estimators of the

importance weights which are known to be provably consistent under reasonable assumptions. Thus, with an estimator

ŵ at hand, Proposition 7 suggests an appropriate correction to provably obtain asymptotically calibrated predictors on

the target:

π̂(ŵ)
y,m =

ŵ(y) · π̂P
y,m∑K

k=1 ŵ(k) · π̂P
k,m

, y ∈ Y, (6.17)

for all bins m ∈ M. Theorem 6.3 quantifies the error when the empirical label frequencies are used as estimators for

the true unknown bin-conditional class probabilities on the source domain. However, different bounds on εm could be

available depending on chosen binning scheme, and thus we instead quantify how this estimation error on the source
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domain translates into the estimation error on the target for the cases when the importance weights are known and

when they are rather estimated. As we shall see, the performance depends on the ratio of the largest to the smallest

nonzero importance weight. Define the condition number:

κ :=
supk w(k)

infk:w(k)̸=0 w(k)
,

with κ = 1 corresponding to label shift not being present. Next, we quantify the miscalibration of the predictor (6.17).

Theorem 6.4. Let ŵ be an estimator of w and let π̂(ŵ)
y,m denote the reweighted empirical frequencies (6.17) for all

labels y ∈ Y and bins m ∈M. For any bin m ∈M, it holds that:

∥∥∥π̂(ŵ)
m − πQ

m

∥∥∥
1
≤ 2κ ·

∥∥π̂P
m − πP

m

∥∥
1︸ ︷︷ ︸

(a)

+
2 ∥ŵ − w∥∞

inf l:w(l) ̸=0 w(l)︸ ︷︷ ︸
(b)

. (6.18)

The proof is given in Appendix E.3.1. In words, the calibration error on the target decomposes into two terms where

(a) is controlled by the calibration error on the source and (b) is controlled by the importance weights estimation error.

Further, under reasonable assumptions common procedures, such as BBSE and RLLS, construct estimators of the

importance weights which are not only known to be consistent but also have quantifiable error (Lipton et al., 2018;

Azizzadenesheli et al., 2019). Similarly, any proper binning scheme that provably controls number of calibration points

in each bin, e.g., uniform-mass binning in the binary setting (Kumar et al., 2019), yields finite-sample guarantees for

the calibration error on the source (Gupta et al., 2020). Thus, finite-sample guarantees for the miscalibration of the

resulting predictor on the target domain trivially follow by virtue of Theorem 6.4 via invoking simple probabilistic

arguments.

Within the same binary classification setup from the beginning of Section 6.3.2, we also compare calibration via

uniform-mass binning with and without accounting for label shift but this time we use Fisher’s LDA as an underlying

classifier, which differs from the Bayes-optimal rule by using estimators of the corresponding means and covariance

matrices in (6.15). Results illustrated on Figure 6.2b via the reliability curves indicate that shift-corrected binning with

either true or estimated importance weights yields a calibrated predictor on the target domain while uncorrected fails

to do so as expected. To complete the empirical study, Appendix E.3.2 further examines calibration with and without

accounting for label shift on the wine quality dataset from Section 6.2.2.

6.4 Discussion

For safety-critical applications model’s prediction must be supported with a proper measure of uncertainty. As various

ad-hoc procedures provide valid inference only under assumptions that are either unrealistic or unverifiable, it is

essential to understand whether non-trivial guarantees can be obtained in an assumption-lean manner. Guided by this
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principle, we analyzed distribution-free uncertainty quantification for classification via two complementary notions:

prediction sets and calibration.

We focused on a less studied — but still highly relevant to real-world scenarios — setting of label shift. While it

is evident that label shift does hurt model’s calibration, the corresponding impact on prediction sets is less obvious.

In the extreme example of almost perfectly separable data, prediction sets are usually expected to contain the most

likely label only, and thus coverage is not expected to suffer much no matter how the class proportions change for

the test data. Still, as we illustrated, in less idealized settings, a correction for label shift is necessary. By adapting

conformal prediction sets and calibration via binning to label shift, we close an existing gap for distribution-free

uncertainty quantification under two standard ways of generalizing beyond the classic i.i.d. setting. Importantly, those

adaptations do not require labeled data from the target domain which can be useful in applications where the labeling

process is expensive. We note that handling label shift should be expected to be an easier task rather than handling

another common setting — covariate shift — as the latter typically involves estimating a high-dimensional, and usually

continuous, likelihood ratio.

With theoretical results available for calibration in the binary setting, and thus class-wise (coordinatewise)

calibration in a more general multiclass setting, establishing meaningful guarantees for “full” canonical calibration

in the latter setting remains an intriguing future research direction. One particular example is related to the question of

the importance weights estimation under label shift. While approaches based on confusion matrices, e.g., BBSE and

RLLS, provably yield consistent estimators under relatively mild assumptions, alternative approaches, such as MLLS

with preceding ad-hoc calibration on the source domain, tend to perform better empirically (Alexandari et al., 2020).

Theoretical foundations for MLLS developed recently by Garg et al. (2020) require the underlying predictor to be

canonically calibrated which is itself, unfortunately, hard to guarantee provably which creates a (somewhat circular)

gap between theory and practice.
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Appendix A

Additional Results for Chapter 2

A.1 Independence Testing for Streaming Data

In Section A.1.1, we describe a permutation-based approach for conducting batch HSIC and show that continuous

monitoring of batch HSIC (without corrections for multiple testing) leads to an inflated false alarm rate. In

Section A.1.2, we introduce the sequential two-sample testing (2ST) problem and describe a reduction of sequential

independence testing to sequential 2ST. In Section A.1.3, we compare our test to HSIC in the batch setting.

A.1.1 Failure of Batch HSIC under Continuous Monitoring

To conduct independence testing using batch HSIC, we use permutation p-value (with M = 1000 random

permutations): P = 1
M+1 (1 +

∑M
m=1 1 {Tm ≥ T}), where Tm is the value of HS-norm computed from the m-

th permutation and T is HS-norm value on the original data. In other words, suppose that we are given a sample

Z1, . . . , Zt, where Zi = (Xi, Yi). Let St denote the set of all permutations of t indices and let σ ∼ Unif(St) be a

random permutation of indices. Then:

(X1, Y1), . . . , (Xt, Yt) =⇒ T = ĤSICb ((X1, Y1), . . . , (Xt, Yt))

(X1, Yσm(1)), . . . , (Xt, Yσm(t)), =⇒ Tm = ĤSICb

(
(X1, Yσm(1)), . . . , (Xt, Yσm(t))

)
, m ∈ {1, . . . ,M} ,

where we use a biased estimator of HSIC:

ĤSICb =
1

t2

∑

i,j

KijLij +
1

t4

∑

i,j,q,r

KijLqr −
2

t3

∑

i,j,q

KijLiq =
1

t2
trKHLH.
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For brevity, we use Kij = k(Xi, Xj), Lij = l(Yi, Yj) for i, j ∈ {1, . . . , t}. Next, we study batch HSIC under

(a) fixed-time and (b) continuous monitoring. We consider a simple case when X and Y are independent standard

Gaussian random variables. We consider (re)conducting a test at 12 different sample sizes: t ∈ {50, 100, . . . , 600}:

(a) Under fixed-time monitoring, for each value of t, we sample a sequence Z1, . . . , Zt (100 times for each t) and

conduct batch-HSIC test. The goal is to confirm that batch-HSIC controls type I error by tracking the standard

miscoverage rate.

(b) Under continuous monitoring, we sample new datapoints and re-conduct the test. We illustrate inflated type

I error by tracking the cumulative miscoverage rate, that is, the fraction of times, the test falsely rejects the

independence null.

The results are presented in Figure A.1. For Bonferroni correction, we decompose the error budget as: α =
∑∞

i=1
α

i(i+1) , that is, for t-th test we use threshold αt = α/(t(t+ 1)) for testing.
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Figure A.1: Inflated false alarm rate of batch HSIC under continuous monitoring (CM, red line with squares) for the
case when X and Y are independent standard Gaussian random variables. Bonferroni correction (CM, blue line with
triangles) restores type I error control. As expected, type I error is controlled at a specified level under fixed-time
monitoring (FTM, green line with circles).

A.1.2 Sequential Independence Testing via Sequential Two-Sample Testing

First, we introduce the sequential two-sample testing problem. Suppose that we observe a stream of data:

(X̃1, Ỹ1), (X̃2, Ỹ2), . . . , where (X̃t, Ỹt)
iid∼ P ×Q. Two-sample testing refers to testing:

H0 : (X̃t, Ỹt)
iid∼ P ×Q and P = Q, vs. H1 : (X̃t, Ỹt)

iid∼ P ×Q and P ̸= Q.

In Figure 2.1, we compared our test against the approach based on the reduction of independence testing to

two-sample testing. We used the sequential two-sample kernel MMD test of Shekhar and Ramdas (2021) with the

product kernel K̃ (that is, a product of Gaussian kernels) and the same set of hyperparameters as for our test for a fair
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comparison. To reduce sequential independence testing to any off-the-shelf sequential two-sample testing procedure,

we convert the original sequence of points from PXY to a sequence of i.i.d. (X̃t, Ỹt)-pairs, where X̃t ∼ PXY and

Ỹt ∼ PX × PY respectively; see Figure A.2a. At t-th round, we randomly choose one point as X̃t, e.g., (X1, Y1) for

the first triple. Next, we obtain Ỹt by randomly matching X and Y from two other pairs, e.g., (X2, Y3) or (X3, Y2) for

the first triple. In fact, the betting-based sequential two-sample test of (Shekhar and Ramdas, 2021) allows removing

the effect of randomization (i.e., throwing away one observation in each triple), by averaging payoffs evaluated on

(X̃t, Ỹ
(1)
t ) and (X̃t, Ỹ

(2)
t ). Other approaches — which do not require throwing data away — are also available

(Figures A.2b) but those only yield an i.i.d. sequence only under the null.

X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6 · · ·

X̃1 X̃2Ỹ
(2)
1 Ỹ

(2)
2

Ỹ
(1)
1 Ỹ

(1)
2

(a)

X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5 Y5 X6 Y6 · · ·

X̃1 X̃2 X̃3 X̃4

Ỹ1 Ỹ2 Ỹ4 Ỹ2

(b)

X1 Y1 X2 Y2 X3 Y3 X4 Y4 X5
· · ·

X̃1 X̃2 X̃3 X̃4

Ỹ1 Ỹ2 Ỹ3 Ỹ4

(c)

Figure A.2: Reducing sequential independence testing to sequential two-sample testing. Processing as per (a) results
in a sequence of i.i.d. observations both under the null and under the alternative (making the results about power valid).
Processing data as per (b) gives an i.i.d. sequence only under the null. Reduction (b) is very similar to reduction (c).
However, the latter makes X̃i, i ≥ 2, dependent on the past, and thus can not be used directly for considered sequential
two-sample tests.

Additional Details of the Simulation Presented in Figure 2.1. We consider the Gaussian model: Yt = Xtβ + εt,

where Xt, εt ∼ N (0, 1), t ≥ 1. We consider 10 values of β: β ∈ {0, 0.04, . . . , 0.36}, and for each β we repeat

the simulation 100 times. In this simulation, we compare three approaches for testing independence (valid under

continuous monitoring):

1. HSIC-based SKIT proposed in this work (Algorithm 2);
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2. Batch HSIC adapted to continuous monitoring via Bonferroni correction. We allow monitoring after processing

every n, n ∈ {10, 100}, new points from PXY , that is, the permutation p-value (computed over 2500 randomly

sampled permutations) is compared against rejection thresholds: αn = α/(n(n+ 1)), n = 1, 2, . . .

3. Sequential independence testing via reduction sequential 2ST as described above.

We use RBF kernel with the same set of kernel hyperparameters for all testing procedures: λX = 1/4, λY =

1/(4(1 + β2)).

A.1.3 Comparison in the Batch Setting

Sequential tests are complementary to batch tests and are not intended to replace them, and hence comparing the two

on equal footing is hard. To highlight this, consider two simple scenarios. If we have 2000 data points, and HSIC

fails to reject, there is not much we can do to rescue the situation. But if SKIT fails to reject, an analyst can collect

more data and continue testing, retaining type I error control. In contrast, with 2 million points, HSIC will take forever

to run, especially due to permutations. But if the alternative is true and the signal is strong, then SKIT may reject

within 200 samples and stop. In short, the ability of SKIT to continue collecting and analyzing data is helpful for hard

problems, and the ability of SKIT to stop early is helpful for easy problems. There is no easy sense in which one can

compare them apples to apples and there is no sense in which batch HSIC uniformly dominates SKIT or vice versa.

In a real setting, if an analyst has a strong hunch that the null is false and has the ability to collect data and run HSIC,

the question is how much data should be collected? The answer depends on the underlying data distribution, which is

of course unknown. With SKIT, data can be collected and analyzed sequentially. Theorem 2.2 implies that SKIT will

stop early on easy problems and later on harder problems, all without knowing anything about the problem in advance.

If however, one has a fixed batch of data, no chance to collect more, and no computational constraints, then running

HSIC makes more sense.

To illustrate that batch HSIC can be superior to SKIT, we compare tests on a dataset with a prespecified sample

size (500 observations from the Gaussian model) and track the empirical rejection rates of two tests. In Figure A.3,

we show that HSIC actually has higher power than SKIT. However, for β = 0.1 (where all tests have low power),

Figure 2.3a shows that collecting just a bit more data (which is allowed) is needed for SKIT to reach perfect power.

We also added a third method (D-SKIT) which removes the effect of the ordering of random variables under the

assumptions that {(Xi, Yi)}ni=1 are independent draws from PXY . Let {σb}Bb=1 define B random permutations of

n indices, and let Kb
n denote the wealth after betting on a sequence ordered according to σb. For each b, Kb

n has

expectation at most one, and hence (by linearity of expectation and Markov’s inequality) 1
{

1
B

∑B
i=1Kb

n ≥ 1/α
}

is

a valid level-α batch test. This test is a bit more stable: it improves SKIT’s power on moderate-complexity setups at

the cost of a slight power loss on more extreme ones.
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Figure A.3: Comparison of SKIT and HSIC under Gaussian model in the batch setting. Non-surprisingly, batch HSIC
performs best. D-SKIT improves over SKIT’s power on moderate-complexity setups at the cost of a slight power loss
on more extreme ones.

A.2 Proofs

Section A.2.1 contains auxiliary results needed to prove the results presented in this paper. In Section A.2.2, we prove

the results from Section 2.2. In Secton A.2.3, we prove the results from Section 2.3.

A.2.1 Auxiliary Results

Theorem A.1 (Ville’s inequality (Ville, 1939)). Suppose that (Mt)t≥0 is a nonnegative supermartingale process

adapted to a filtration {Ft : t ≥ 0}. Then, for any a > 0 it holds that:

P (∃t ≥ 1 :Mt ≥ a) ≤
E [M0]

a
.

Theorem A.2 (Theorem 3 in (Gretton et al., 2005a)). Assume that k and l are bounded almost everywhere by 1, and

are nonnegative. Then for n > 1 and any δ ∈ (0, 1), it holds with probability at least 1− δ that:

∣∣∣HSIC(PXY ;G,H)− ĤSICb(PXY ;G,H)
∣∣∣ ≤

√
log(6/δ)

α2n
+
C

n
,

where α2 > 0.24 and C are some absolute constants.

A.2.2 Proofs for Section 2.2

In Section A.2.2, we prove several intermediate results. The proofs of the main results are deferred to Section A.2.2.
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Supporting Lemmas

Before we state the first result, recall the definition of the empirical mean embeddings computed from the first 2(t−1)

datapoints:

µ̂
(t)
XY =

1

2(t− 1)

2(t−1)∑

i=1

φ(Xi)⊗ ψ(Yi),

µ̂
(t)
X =

1

2(t− 1)

2(t−1)∑

i=1

φ(Xi), µ̂
(t)
Y =

1

2(t− 1)

2(t−1)∑

i=1

ψ(Yi),

(A.1)

where we highlight the dependence on the number of processed datapoints. We have the following result.

Lemma A.2.1. For the empirical (A.1) and population (2.9) mean embeddings, it holds that:

∥∥∥µ̂(t)
XY − µ̂

(t)
X ⊗ µ̂

(t)
Y

∥∥∥
G⊗H

a.s.−→ ∥µXY − µX ⊗ µY ∥G⊗H . (A.2)

Proof. We have

∥µXY − µX ⊗ µY ∥2G⊗H = HSIC(PXY ;G,H),
∥∥∥µ̂(t)

XY − µ̂
(t)
X ⊗ µ̂

(t)
Y

∥∥∥
2

G⊗H
= ĤSIC

(t)

b (PXY ;G,H),

where the latter is a biased estimator of HSIC, computed from 2(t− 1) datapoints from PXY . From Theorem A.2 and

the Borel-Cantelli lemma, it follows that:

∥∥∥µ̂(t)
XY − µ̂

(t)
X ⊗ µ̂

(t)
Y

∥∥∥
2

G⊗H

a.s.−→ ∥µXY − µX ⊗ µY ∥2G⊗H .

The result then follows from the continuous mapping theorem.

Lemma A.2.2. Suppose that H1 in (2.1b) is true. Then for the oracle (2.11) and plug-in (2.13) witness functions, it

holds that:

⟨ĝt, g⋆⟩G⊗H
a.s.−→ 1. (A.3)

As a consequence, ∥ĝt − g⋆∥G⊗H
a.s.−→ 0.

Proof. Suppose that the alternative in (2.1b) happens to be true. Then since k and l are characteristic kernels, it follows

that:

∥µXY − µX ⊗ µY ∥G⊗H > 0.

We aim to show that:

〈
µ̂
(t)
XY − µ̂

(t)
X ⊗ µ̂

(t)
Y∥∥∥µ̂(t)

XY − µ̂
(t)
X ⊗ µ̂

(t)
Y

∥∥∥
G⊗H

,
µXY − µX ⊗ µY

∥µXY − µX ⊗ µY ∥G⊗H

〉

G⊗H

a.s.−→ 1.
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From Lemma A.2.1, we know that:
∥∥∥µ̂(t)

XY − µ̂
(t)
X ⊗ µ̂

(t)
Y

∥∥∥
G⊗H

a.s.−→ ∥µXY − µX ⊗ µY ∥G⊗H. Hence it suffices to

show that

〈
µ̂
(t)
XY − µ̂

(t)
X ⊗ µ̂

(t)
Y , µXY − µX ⊗ µY

〉
G⊗H

a.s.−→ ∥µXY − µX ⊗ µY ∥2G⊗H . (A.4)

Recall that: µXY − µX ⊗ µY = E
[
φ(X̃)⊗ ψ(Ỹ )

]
− E

[
φ(X̃)

]
⊗ E

[
ψ(Ỹ )

]
. We have:

µ̂
(t)
XY − µ̂

(t)
X ⊗ µ̂

(t)
Y =

(
1− 1

2(t− 1)

)



1

2(t− 1)

2(t−1)∑

i=1

φ(Xi)⊗ ψ(Yi)−
1

4(t− 1)2 − 2(t− 1)

2(t−1)∑

j,k=1:
j ̸=k

φ(Xj)⊗ ψ(Yk)


 .

Further, it holds that:

〈
µ̂
(t)
XY − µ̂

(t)
X ⊗ µ̂

(t)
Y , µXY − µX ⊗ µY

〉
G⊗H

=

(
1− 1

2(t− 1)

)
 1

2(t− 1)

2(t−1)∑

i=1

EX̃,Ỹ

[
⟨φ(X̃), φ(Xi)⟩G⟨ψ(Ỹ ), ψ(Yi)⟩H

]



−
(
1− 1

2(t− 1)

)



1

4(t− 1)2 − 2(t− 1)

2(t−1)∑

j,k=1:
j ̸=k

EX̃

[
⟨φ(X̃), φ(Xj)⟩G

]
EỸ

[
⟨ψ(Ỹ ), ψ(Yk)⟩H

]

 ,

For any (x, y) ∈ X × Y , we have:

∣∣∣EX̃,Ỹ

[
⟨φ(X̃), φ(x)⟩G⟨ψ(Ỹ ), ψ(y)⟩H

]∣∣∣ ≤ EX̃,Ỹ

[∣∣∣⟨φ(X̃), φ(x)⟩G⟨ψ(Ỹ ), ψ(y)⟩H
∣∣∣
]

≤ EX̃,Ỹ

[√
k(X̃, X̃)k(x, x)l(Ỹ, Ỹ )k(y, y)

]

≤ 1,

and similarly, for any (x, y) ∈ X × Y it holds that:

∣∣∣EX̃

[
⟨φ(X̃), φ(x)⟩G

]
EỸ

[
⟨ψ(Ỹ ), ψ(y)⟩H

]∣∣∣ ≤ 1.

Hence, by the SLLN, it follows that ((X,Y ), (X̃, Ỹ )
iid∼ PXY ):

1

2(t− 1)

2(t−1)∑

i=1

EX̃,Ỹ

[
⟨φ(X̃), φ(Xi)⟩G⟨ψ(Ỹ ), ψ(Yi)⟩H

]
a.s.−→ EX,Y,X̃,Ỹ

[
⟨φ(X̃), φ(X)⟩G⟨ψ(Ỹ ), ψ(Y )⟩H

]

= ⟨µXY , µXY ⟩G⊗H .
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Similarly, by the SLLN for U-statistics with bounded kernel (Hoeffding, 1961), it follows that:

1

4(t− 1)2 − 2(t− 1)

2(t−1)∑

j,k=1:
j ̸=k

EX̃

[
⟨φ(X̃), φ(Xj)⟩G

]
EỸ

[
⟨ψ(Ỹ ), ψ(Yk)⟩H

]

a.s.−→ EX,X̃

[
⟨φ(X̃), φ(X)⟩G

]
EY,Ỹ

[
⟨ψ(Ỹ ), ψ(Y )⟩H

]

= ⟨µX ⊗ µY , µX ⊗ µY ⟩G⊗H .

Hence, we deduce that:

〈
µ̂
(t)
XY − µ̂

(t)
X ⊗ µ̂

(t)
Y , µXY − µX ⊗ µY

〉
G⊗H

a.s.−→ ⟨µXY , µXY ⟩G⊗H − ⟨µX ⊗ µY , µX ⊗ µY ⟩G⊗H

= ⟨µXY − µX ⊗ µY , µXY − µX ⊗ µY ⟩G⊗H

= ∥µXY − µX ⊗ µY ∥2G⊗H .

Recalling (A.4), the proof of (A.3) is complete. To establish the consequence, simply note that:

∥ĝt − g⋆∥G⊗H =
√

2
(
1− ⟨ĝt, g⋆⟩G⊗H

)
,

and hence the result follows.

Lemma A.2.3. Suppose that (xt)t≥1 is a sequence of numbers such that limt→∞ xt = x. Then the corresponding

sequence of partial averages also converges to x, that is, limn→∞
1
n

∑n
t=1 xt = x. This also implies that if (Xt)t≥1

is a sequence of random variables such that Xt
a.s.−→ X , then (

∑n
t=1Xt)/n

a.s.−→ X .

Proof. Fix any ε > 0. Since (xt)t≥1 is converging, then ∃M > 0:

|xt − x| ≤M, ∀t ≥ 1.

Now, let n0 be such that |xt − x| ≤ ε/2 for all n > n0. Further, choose any n1 > n0: Mn0/n1 ≤ ε/2. Hence, for

any ñ > n1, it holds that: ∣∣∣∣∣
1

ñ

ñ∑

t=1

xt − x
∣∣∣∣∣ ≤

∣∣∣∣∣
1

ñ

n0∑

t=1

xt − x
∣∣∣∣∣+
∣∣∣∣∣
1

ñ

ñ∑

t=n0+1

xt − x
∣∣∣∣∣

≤ 1

ñ

n0∑

t=1

|xt − x|+
1

ñ

ñ∑

t=n0+1

|xt − x|

≤ n0
ñ
M +

ñ− n0
ñ

ε

2
≤ ε

2
+
ε

2
= ε,

which implies the result.
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Before we state the next result, recall that HSIC-based payoffs are based on the predictable estimates {ĝi}i≥1 of

the oracle witness function g⋆ and have the following form:

fi(Z2i−1, Z2i) =
1

2
(ĝi(Z2i−1) + ĝi(Z2i))−

1

2

(
ĝi(Z̃2i−1) + ĝi(Z̃2i)

)
, i ≥ 1.

f⋆(Z2i−1, Z2i) =
1

2
(g⋆(Z2i−1) + g⋆(Z2i))−

1

2

(
g⋆(Z̃2i−1) + g⋆(Z̃2i)

)
.

(A.5)

Lemma A.2.4. Suppose that H1 in (2.1b) is true. Then it holds that:

1

t

t∑

i=1

fi(Z2i−1, Z2i)
a.s.−→ E [f⋆(Z1, Z2)] ,

1

t

t∑

i=1

(fi(Z2i−1, Z2i))
2 a.s.−→ E

[
(f⋆(Z1, Z2))

2
]
.

(A.6)

(A.7)

Proof. We start by proving (A.6). Note that:

fi(Z2i−1, Z2i) =
1

2
(ĝi(Z2i−1) + ĝt(Z2i))−

1

2

(
ĝi(Z̃2i−1) + ĝi(Z̃2i)

)

=
1

2
⟨ĝi, (φ(X2i)− φ(X2i−1))⊗ (ψ(Y2i)− ψ(Y2i−1))⟩G⊗H .

Next, observe that:

∣∣∣∣∣
1

t

t∑

i=1

fi(Z2i−1, Z2i)− E [f⋆(Z1, Z2)]

∣∣∣∣∣ ≤
∣∣∣∣∣
1

t

t∑

i=1

fi(Z2i−1, Z2i)−
1

t

t∑

i=1

f⋆(Z2i−1, Z2i)

∣∣∣∣∣

+

∣∣∣∣∣
1

t

t∑

i=1

f⋆(Z2i−1, Z2i)− E [f⋆(Z1, Z2)]

∣∣∣∣∣
︸ ︷︷ ︸

a.s.−→ 0

,

where the second term converges almost surely to 0 by the SLLN. For the first term, we have that:

∣∣∣∣∣
1

t

t∑

i=1

fi(Z2i−1, Z2i)−
1

t

t∑

i=1

f⋆(Z2i−1, Z2i)

∣∣∣∣∣ ≤
1

t

t∑

i=1

|fi(Z2i−1, Z2i)− f⋆(Z2i−1, Z2i)| .

Finally, note that:

|fi(Z2i−1, Z2i)− f⋆(Z2i−1, Z2i)| =
1

2

∣∣⟨ĝi − g⋆, (φ(X2i)− φ(X2i−1))⊗ (ψ(Y2i)− ψ(Y2i−1))⟩G⊗H
∣∣

≤ ∥ĝi − g⋆∥G⊗H
a.s.−→ 0,

(A.8)
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where the convergence result is due to Lemma A.2.2. The result (A.6) then follows after invoking Lemma A.2.3. Next,

we prove (A.7). Note that:

1

t

t∑

i=1

(fi(Z2i−1, Z2i))
2 =

1

t

t∑

i=1

(fi(Z2i−1, Z2i)− f⋆(Z2i−1, Z2i) + f⋆(Z2i−1, Z2i))
2

=
1

t

t∑

i=1

(fi(Z2i−1, Z2i)− f⋆(Z2i−1, Z2i))
2

︸ ︷︷ ︸
a.s.−→ 0

+
2

t

t∑

i=1

(f⋆(Z2i−1, Z2i))(fi(Z2i−1, Z2i)− f⋆(Z2i−1, Z2i))

+
1

t

t∑

i=1

(f⋆(Z2i−1, Z2i))
2

︸ ︷︷ ︸
a.s.−→ E[(f⋆(Z1,Z2))2]

,

where the first convergence result is due to (A.8) and Lemma A.2.3 and the second convergence result is due to the

SLLN. Using (A.8) and Lemma A.2.3, we deduce that:

∣∣∣∣∣
2

t

t∑

i=1

(f⋆(Z2i−1, Z2i))(fi(Z2i−1, Z2i)− f⋆(Z2i−1, Z2i))

∣∣∣∣∣ ≤ 2 · 1
t

t∑

i=1

|fi(Z2i−1, Z2i)− f⋆(Z2i−1, Z2i)| a.s.−→ 0,

and hence we conclude that the convergence (A.7) holds.

Main Results

Theorem 2.1. Let C denote a class of functions c : X × Y → R for measuring dependence as per (2.5).

1. Under H0 in (2.1a) and (2.2a), any payoff f of the form (2.7) satisfies EH0
[f(Z1, Z2)] = 0.

2. Suppose that C satisfies (2.6). Under H1 in (2.1b), the oracle payoff f∗ based on the witness function c∗

satisfies EH1 [f
⋆(Z1, Z2)] > 0. Further, for λ⋆ defined in (2.8), it holds that EH1 [log(1 + λ⋆f⋆(Z1, Z2)] > 0.

Hence, K⋆
t

a.s.−→ +∞, which implies that the oracle test is consistent: PH1(τ
⋆ < ∞) = 1, where τ⋆ =

inf {t ≥ 1 : K⋆
t ≥ 1/α}.

Proof. 1. Under H0 in (2.1a), we have that:

(X2t−1, Y2t−1)
d
= (X2t, Y2t)

d
= (X2t−1, Y2t)

d
= (X2t, Y2t−1),

and hence, the first part of the Proposition trivially follows from the linearity of expectation. Under distribution

drift, we use that at least one of the marginal distributions does not change at each round. For example, suppose
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that at round t, it holds that: P 2t−1
X = P 2t

X . For the stream of independent observations, we have: X2t ⊥⊥ Y2t−1

and X2t−1 ⊥⊥ Y2t. Further, under the H0 in (2.2a), it holds that: X2t−1 ⊥⊥ Y2t−1 and X2t ⊥⊥ Y2t. Hence, we

have:

(X2t−1, Y2t−1)
d
= (X2t, Y2t−1) and (X2t−1, Y2t)

d
= (X2t, Y2t),

and hence, we get the result using linearity of expectation.

2. Under the i.i.d. setting, we have

E [f⋆(Z2t−1, Z2t) | Ft−1] = E [f⋆(Z1, Z2)] = s ·m(PXY ; C),

and hence the result follows from the fact that the functional class C satisfies the characteristic condition (2.6).

3. Let W := f⋆(Z1, Z2), and consider EH1
[log(1 + λW )]. We know that EH1

[W ] > 0. We use the following

inequality (Fan et al., 2015, Equation (4.12)): for any y ≥ −1 and λ ∈ [0, 1), it holds:

log(1 + λy) ≥ λy + y2 (log(1− λ) + λ)

Hence

E [log(1 + λW )] ≥ λE [W ] + E
[
W 2
]
(log(1− λ) + λ) .

Finally, using that log(1− x) + x ≥ −x2/(2(1− x)) for x ∈ [0, 1), we get:

EH1 [log(1 + λ⋆W )] ≥ (EH1
[W ])2/2

EH1 [W ] + EH1 [W
2]
> 0,

where recall that:

λ⋆ =
E [W ]

E [W ] + E [W 2]
∈ (0, 1).

The wealth process corresponding to the oracle test satisfies:

Kt =

t∏

i=1

(1 + λ⋆f⋆(Z2i−1, Z2i)) = exp

(
t · 1
t

t∑

i=1

log(1 + λ⋆f⋆(Z2i−1, Z2i))

)
.

By the Strong Law of Large Numbers (SLLN), we have:

1

t

t∑

i=1

log(1 + λ⋆f⋆(Z2i−1, Z2i))
a.s.−→ E [log(1 + λ⋆W )] > 0.

Hence, we get that Kt
a.s.−→ +∞, and hence, the oracle test is consistent.
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Theorem 2.2. Suppose that Assumption 1 is satisfied. The following claims hold for HSIC-based SKIT (Algorithm 2):

1. Suppose thatH0 in (2.1a) or (2.2a) is true. Then SKIT ever stops with probability at most α: PH0 (τ <∞) ≤ α.

2. Suppose that H1 in (2.1b) is true. Then it holds that Kt
a.s., −→ +∞ and thus SKIT is consistent: PH1

(τ <

∞) = 1. Further, the wealth grows exponentially, and the corresponding growth rate satisfies

lim inf
t→∞

logKt

t

a.s.
≥ E[f⋆(Z1,Z2)]

4 ·
(

E[f⋆(Z1,Z2)]
E[(f⋆(Z1,Z2))2]

∧ 1
)
, (2.15)

where f⋆ is the oracle payoff defined in (2.12).

Remark 10. While it will be clear from the proof that the i.i.d. assumption is sufficient but not necessary for asymptotic

power one, the more relaxed sufficient conditions are slightly technical to state and thus omitted.

Proof. 1. First, let us show that the predictable estimates of the oracle payoff function are bounded when the

scaling factor s = 1/2 is used. Recall that:

ft((x
′, y′), (x, y)) =

1

2
(ĝt(x

′, y′)− ĝt(x′, y) + ĝt(x, y)− ĝt(x, y′))

=
1

2
⟨ĝt, φ(x′)⊗ ψ(y′)− φ(x′)⊗ ψ(y) + φ(x)⊗ ψ(y)− φ(x)⊗ ψ(y′)⟩G⊗H

=
1

2
⟨ĝt, (φ(x′)− φ(x))⊗ (ψ(y′)− ψ(y))⟩G⊗H .

(A.9)

Note that:
|ft((x′, y′), (x, y))| ≤

1

2
∥ĝt∥G⊗H ∥(φ(x′)− φ(x))⊗ (ψ(y′)− ψ(y))∥G⊗H

≤ 1

2
∥(φ(x′)− φ(x))⊗ (ψ(y′)− ψ(y))∥G⊗H

=
1

2
∥φ(x′)− φ(x)∥G · ∥ψ(y′)− ψ(y)∥H

=
1

2

√
2(1− k(x′, x)) ·

√
2(1− l(y′, y))

= 1.

and hence, ft((x′, y′), (x, y)) ≤ [−1, 1]. Next, we show that constructed payoff function yields a fair bet.

Indeed, we have that:

E [ft(Z2t−1, Z2t) | Ft−1] = ⟨ĝt, µXY − µX ⊗ µY ⟩G⊗H ,

and in particular, the above implies that EH0 [ft(Z2t−1, Z2t) | Ft−1] = 0 forH0 in (2.1a). ForH0 in (2.2a), it is

easy to see that the result holds using the form (A.9). We use that X2t−1 ⊥⊥ Y2t−1, X2t ⊥⊥ Y2t, X2t ⊥⊥ Y2t−1,

X2t−1 ⊥⊥ Y2t, and the fact that at least one of the marginal distributions does not change.

Next, we show that for all strategies for selecting betting fractions that are considered in this work, the resulting

wealth process is a nonnegative martingale. In case aGRAPA/ONS strategies are used, the resulting wealth
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process is clearly a nonnegative martingale since betting fractions are predictable. The mixed wealth process
(
Kmixed

t

)
t≥1

is a nonnegative martingale under the null H0, and hence

EH0

[
Kmixed

t | Ft−1

]
= E

[∫ 1

0

Kλ
t−1(1 + λft(Z2t−1, Z2t))ν(λ)dλ | Ft−1

]

=

∫ 1

0

Kλ
t−1EH0

[1 + λft(Z2t−1, Z2t) | Ft−1] ν(λ)dλ

=

∫ 1

0

Kλ
t−1ν(λ)dλ

= Kmixed
t−1 ,

where the interchange of conditional expectation and integration is justified by the conditional monotone con-

vergence theorem. The assertion of the Theorem then follows directly from Ville’s inequality (Proposition A.1)

when a = 1/α.

2. Next, we establish the consistency of HSIC-based SKIT with ONS betting strategy. Under the ONS betting

strategy, for any sequence of outcomes (fi)i≥1, fi ∈ [−1, 1], i ≥ 1, it holds that (see the proof of Theorem 1

in (Cutkosky and Orabona, 2018)):

logKt(λ0)− logKt = O

(
log

(
t∑

i=1

f2i

))
, (A.10)

whereKt(λ0) is the wealth of any constant betting strategy λ0 ∈ [−1/2, 1/2] andKt is the wealth corresponding

to the ONS betting strategy. It follows that the wealth process corresponding to the ONS betting strategy satisfies

logKt

t
≥ logKt(λ0)

t
− C · log t

t
, (A.11)

for some absolute constant C > 0. Next, let us consider:

λ0 =
1

2

((∑t
i=1 fi∑t
i=1 f

2
i

∧ 1

)
∨ 0

)
.

We obtain:
logKt(λ0)

t
=

1

t

t∑

i=1

log(1 + λ0fi)

(a)

≥ 1

t

t∑

i=1

(λ0fi − λ20f2i )

=

(
1
t

∑t
i=1 fi

4
∨ 0

)
·
(

1
t

∑t
i=1 fi

1
t

∑t
i=1 f

2
i

∧ 1

)
,

(A.12)
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where in (a) we used* that log(1 + x) ≥ x − x2 for x ∈ [−1/2, 1/2]. From Lemma A.2.4, it follows for

fi = fi(Z2i−1, Z2i) that:

1
t

∑t
i=1 fi(Z2i−1, Z2i)

4
·
(

1
t

∑t
i=1 fi(Z2i−1, Z2i)

1
t

∑t
i=1(fi(Z2i−1, Z2i))2

∧ 1

)
a.s.−→ E [f⋆(Z1, Z2)]

4
·
(

E [f⋆(Z1, Z2)]

E [(f⋆(Z1, Z2))2]
∧ 1

)
.

(A.13)

Further, note that:

E [f⋆(Z1, Z2)] = ∥µXY − µX ⊗ µY ∥G⊗H =
√
HSIC(PXY ;G,H),

which is positive if the H1 is true. Hence, using (A.11), we deduce that the growth rate of the ONS wealth

process satisfies

lim inf
t→∞

logKt

t
≥ E [f⋆(Z1, Z2)]

4
·
(

E [f⋆(Z1, Z2)]

E [(f⋆(Z1, Z2))2]
∧ 1

)
. (A.14)

We conclude that the test is consistent, that is, if H1 is true, then P(τ <∞) = 1.

Proposition 1. The optimal log-wealth S⋆ := E [log(1 + λ⋆f⋆(Z1, Z2))] — that can be achieved by an oracle betting

scheme (2.16) which knows f⋆ from (2.12) and the underlying distribution — satisfies:

S⋆ ≤ E [f⋆(Z1, Z2)]

2

(
8E [f⋆(Z1, Z2)]

3E [(f⋆(Z1, Z2))2]
∧ 1

)
. (2.17)

Proof. We start by establishing the upper bound in (2.17). The fact that S⋆ ≤ E [f⋆(Z1, Z2)] /2 trivially follows

from E [log(1 + λf⋆(Z1, Z2))] ≤ λE [f⋆(Z1, Z2)] ≤ E [f⋆(Z1, Z2)] /2. Since for any x ∈ [−0.5, 0.5], it holds that:

log(1 + x) ≤ x− 3x2/8, we know that:

S⋆ ≤ max
λ∈[−0.5,0.5]

(
λE [f⋆(Z1, Z2)]−

3

8
λ2E

[
(f⋆(Z1, Z2))

2
])

, (A.15)

and by solving the maximization problem, we get the upper bound:

S⋆ ≤ 2

3

(E [f⋆(Z1, Z2)])
2

E [(f⋆(Z1, Z2))2]
, (A.16)

assuming (E [f⋆(Z1, Z2)])
2/E

[
(f⋆(Z1, Z2))

2
]
≤ 3/8. On the other hand, it always holds that: S⋆ ≤ E [f⋆(Z1, Z2)] /2.

To obtain the claimed bound, we multiply the RHS of (A.16) by two, which completes the proof of (2.17).
*A slightly better constant for the growth rate (0.3 in place of 1/4) can be obtained by using the inequality: log(1 + x) ≥ x− 5

6
x2, that holds

∀x ∈ [−0.5, 0.5].
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Theorem 2.3. Suppose that H0 in (2.18a) is true. Further, assume that Assumption 2 holds. Then HSIC-based SKIT

(Algorithm 2) satisfies: PH0
(τ <∞) ≤ α.

Proof. Recall that at round t, the payoff function has form:

ft((X2t−1, Y2t−1), (X2t, Y2t)) =
1

2
⟨ĝt, (φ(X2t)− φ(X2t−1))⊗ (ψ(Y2t)− ψ(Y2t−1))⟩G⊗H.

Let Dt = {(Xi, Yi)}i≤2(t−1). To establish validity, we need to show that under H0 in (2.18a),

E [ft((X2t−1, Y2t−1), (X2t, Y2t)) | Dt] = 0, (A.17)

and hence it suffices to show that:

E [(φ(X2t)− φ(X2t−1))⊗ (ψ(Y2t)− ψ(Y2t−1)) | Dt] = 0.

Due to independence under the null H0, we have:

E [φ(X2t−1)⊗ ψ(Y2t−1) | Dt] = E [φ(X2t−1) | Dt]⊗ E [ψ(Y2t−1) | Dt] =: µ2t−1
X ⊗ µ2t−1

Y ,

E [φ(X2t)⊗ ψ(Y2t) | Dt] = E [φ(X2t) | Dt]⊗ E [ψ(Y2t) | Dt] =: µ2t
X ⊗ µ2t

Y ,

Consider one of the cross-terms φ(X2t)⊗ ψ(Y2t−1). We have the following:

E [φ(X2t)⊗ ψ(Y2t−1) | Dt]
a
= E [E [φ(X2t)⊗ ψ(Y2t−1) | X2t−1,Dt] | Dt]

b
= E [E [φ(X2t) | X2t−1,Dt]⊗ E [ψ(Y2t−1) | X2t−1,Dt] | Dt]

c
= E [E [φ(X2t) | X2t−1,Dt]⊗ E [ψ(Y2t−1) | Dt] | Dt]

d
= E [E [φ(X2t) | X2t−1,Dt] | Dt]⊗ E [ψ(Y2t−1) | Dt]

e
= E [φ(X2t) | Dt]⊗ E [ψ(Y2t−1) | Dt]

f
= µ2t

X ⊗ µ2t−1
Y .

In the above, (a) uses the law of iterated expectations and conditioning on X2t−1, (b) uses the assumption (2.19)

about conditional independence, (c) uses the independence null assumption (2.1a), (d) uses that E [ψ(Y2t−1) | Dt] is

σ(Dt)-measurable, (e) uses the law of iterated expectations, and (f) uses the definitions of the mean embeddings of

conditional distributions. An analogous argument can be used to deduce:

E [φ(X2t−1)⊗ ψ(Y2t) | Dt] = µ2t−1
X ⊗ µ2t

Y .
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We get that:

E [(φ(X2t)− φ(X2t−1))⊗ (ψ(Y2t)− ψ(Y2t−1)) | Dt] = µ2t−1
X ⊗ µ2t−1

Y + µ2t
X ⊗ µ2t

Y − µ2t−1
X ⊗ µ2t

Y − µ2t
X ⊗ µ2t−1

Y

= (µ2t
X − µ2t−1

X )⊗ (µ2t
Y − µ2t−1

Y ),

and hence, if either (X2t−1, X2t) or (Y2t−1, X2t) are exchangeable conditional on Dt, it follows that either µ2t
X =

µ2t−1
X or µ2t

Y = µ2t−1
Y respectively. This, in turn, implies that (A.17) holds, and hence, the result follows.

A.2.3 Proofs for Section 2.3

Theorem 2.4. Suppose that (A1) in Assumption 1 is satisfied. Then, under H0 in (2.1a) and (2.18a), COCO/KCC-

based SKIT (Algorithm 3) satisfies: PH0
(τ <∞) ≤ α.

Proof. It suffices to show that the proposed payoff functions are bounded. The rest of the proof follows will follow the

same steps as the proof of Theorem 2.2 (for a stream of independent observations) or Theorem 2.3 (for time-varying

independence null), and we omit the details. Note that:

∣∣∣ĥt(y′)− ĥt(y)
∣∣∣ =

∣∣∣⟨ĥt, ψ(y′)⟩H − ⟨ĥt, ψ(y)⟩H
∣∣∣

=
∣∣∣⟨ĥt, ψ(y′)− ψ(y)⟩H

∣∣∣

≤
∥∥∥ĥt
∥∥∥
H
∥ψ(y′)− ψ(y)∥H

≤ ∥ψ(y′)− ψ(y)∥H
=
√
2(1− l(y, y′))

≤
√
2,

where we used that
∥∥∥ĥt
∥∥∥
H
≤ 1 due to normalization. Analogous bound holds for |ĝt(x′)− ĝt(x)|. We conclude that

any predictable estimate of the oracle payoff function for COCO (or KCC) satisfies

|ft((x′, y′), (x, y))| ≤ 1,

as proposed. The fact that the payoff function is fair trivially follows from the definition. Regarding the existence of

the oracle payoff, whose mean is positive underH1 in (2.1b), note that if k and l are characteristic kernels, then COCO

and KCC satisfy the characteristic condition (2.6); see Jordan and Bach (2001); Gretton et al. (2005c,b). Hence, the

result follows from Theorem 2.1. This completes the proof.

103



A.2.4 Proofs for Section 2.4

Theorem 2.5. Under H0 in (2.1a) and (2.18a), the symmetry-based SKIT (Algorithm 4) satisfies: PH0
(τ <∞) ≤ α.

Proof. For any t ≥ 1, we have that the payoffs defined in (2.26), (2.27), and (2.28) are bounded: ft(w) ∈ [−1, 1],
∀w ∈ R. Due to Proposition 2, we know that, under the null, Wt is a random variable that is symmetric around

zero (conditional on Ft−1). Hence, for the composition approach, it trivially follows that EH0

[
foddt (Wt) | Ft−1

]
= 0

since a composition with an odd function is used. For the rank and predictive approaches, we use the fact that, under the

null, sign(Wt) ⊥⊥ |Wt| | Ft−1. Since, EH0 [sign(Wt) | Ft−1] = 0, it then follows that EH0

[
f rankt (Wt) | Ft−1

]
= 0.

Using that sign(Wt) ⊥⊥ |Wt| | Ft−1 and by conditioning on the sign of Wt, we get:

EH0 [ℓt(Wt) | Ft−1] =
1

2
PH0 (pt(|Wt|) ≥ 1/2) +

1

2
PH0 (pt(|Wt|) < 1/2) =

1

2
.

Hence EH0
[1− 2ℓt(Wt) | Ft−1] = 0. The rest of the proof regarding the validity of the symmetry-based SKITs

follows the same steps as the proof of Theorem 2.2, and we omit the details.

A.3 Selecting Betting Fractions

As alluded to in Remark 1, sticking to a single fixed betting fraction, λt = λ ∈ [0, 1], t ≥ 1, may result in a wealth

process that either has a sub-optimal growth rate under the alternative or tends to zero almost surely (see Figure A.4).

Mixing over different betting fractions is a simple approach that often works well in practice. Given a fine grid of

values: Λ =
{
λ(1), . . . , λ(J)

}
, e.g., uniformly spaced values on the unit interval, consider

Kmixed
t =

1

|Λ|
∑

λ(j)∈Λ

Kt(λ
(j)), (A.18)

where
(
Kt(λ

(j))
)
t≥0

is a wealth process corresponding to a constant-betting strategy with betting fraction λ(j) †.

While mixing often works well in practice, it introduces additional tuning hyperparameters, e.g., grid size. We

consider two compelling approaches for the selection of betting fractions in a predictable way, meaning that λt

depends only on {(Xi, Yi)}i≤2(t−1). In addition to the ONS strategy (Algorithm 1), we also consider aGRAPA strategy

(Algorithm 8). The idea that effective betting strategies are ones that maximize a gambler’s expected log capital dates

back to early works of Kelly (1956) and Breiman (1962). Assuming that the same betting fraction is used, the log

†Practically, it is advisable to start with a coarse grid (small J) at small t and occasionally add another grid point, so that the grid becomes finer
over time. Whenever a grid point is added, it is like adding another stock to a portfolio, and the wealth must be appropriately redistributed; we omit
the details for brevity.
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Figure A.4: SKIT with HSIC payoff function on two particular realizations of streams of dependent data: Yt =
0.1 ·Xt + εt, Xt, εt ∼ N (0, 1). For both cases, we consider a mixed wealth process for Λ = {0.05, 0.1, . . . , 0.95}.
We observe that the mixed wealth process follows closely the best of constant-betting strategies with λ ∈ {0.5, 0.95}.

capital after round (t− 1) is

logKt−1(λ) =

t−1∑

i=1

log (1 + λfi(Z2i−1, Z2i)) .

Algorithm 8 aGRAPA strategy for selecting betting fractions

Input: sequence of payoffs (ft(Z2t−1, Z2t))t≥1, λaGRAPA
1 = 0, µ(1)

0 = 0, µ(2)
0 = 1, c = 0.9.

for t = 1, 2, . . . do
Set µ(1)

t = µ
(1)
t−1 + ft(Z2t−1, Z2t);

Set µ(2)
t = µ

(2)
t−1 + (ft(Z2t−1, Z2t))

2;

Set λaGRAPA
t+1 = c ∧

(
0 ∨

(
µ
(1)
t /µ

(2)
t

))
;

Following Waudby-Smith and Ramdas (2023), we set the derivative to zero and use Taylor’s expansion to get

λaGRAPA
t =

(( ∑t−1
i=1 fi(Z2i−1, Z2i)∑t−1

i=1 (fi(Z2i−1, Z2i))
2

)
∨ 0

)
∧ c.

Truncation at zero is inspired by the fact that EH1 [f
⋆(Z2t−1, Z2t) | Ft−1] > 0, whereas truncation at c ∈ (0, 1] (e.g.,

c = 0.9) is necessary to guarantee that the wealth process is indeed nonnegative.

A.4 Omitted Details for Sections 2.2 and 2.3

In this section, we complement the material presented in the main paper by deriving the forms of the witness functions

for the dependence criteria considered in this work.
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Oracle Witness Function for HSIC. Let us derive the form of the oracle witness function for HSIC. Note that:

sup
g:∥g∥G⊗H≤1

[EPXY
[g(X,Y )]− EPX×PY

[g(X ′, Y ′)]]

= sup
g:∥g∥G⊗H≤1

[EPXY
[⟨g, φ(X)⊗ ψ(Y )⟩G⊗H]− EPX×PY

[⟨g, φ(X ′)⊗ ψ(Y ′)⟩G⊗H]]

= sup
g:∥g∥G⊗H≤1

[⟨g,EPXY
[φ(X)⊗ ψ(Y )]⟩G⊗H − ⟨g,EPX×PY

[φ(X ′)⊗ ψ(Y ′)]⟩G⊗H]

= sup
g:∥g∥G⊗H≤1

[⟨g, µXY ⟩G − ⟨g, µX ⊗ µY ⟩G⊗H]

= sup
g:∥g∥G⊗H≤1

⟨g, µXY − µX ⊗ µY ⟩G⊗H,

from which it is easy to derive the oracle witness function for HSIC.

Remark 11. Note that in (2.13) the witness function is defined as an operator: ĝt : X × Y → R. To clarify, for any

z = (x, y) ∈ X × Y , we have

(µ̂XY − µ̂X ⊗ µ̂Y )(z) =
1

2(t− 1)

2(t−1)∑

i=1

k(Xi, x)l(Yi, y)−


 1

2(t− 1)

2(t−1)∑

i=1

k(Xi, x)


 ·


 1

2(t− 1)

2(t−1)∑

i=1

l(Yi, y)


 ,

and the denominator in (2.13) can be expressed in terms of kernel matrices K,L ∈ R2(t−1)×2(t−1) with entries

Kij = k(Xi, Xj), Lij = l(Yi, Yj), i, j ∈ {1, . . . , 2(t− 1)}, as:

∥µ̂XY − µ̂X ⊗ µ̂Y ∥G⊗H =
1

2(t− 1)

√
tr(KHLH),

where H = I2(t−1) − (1/(2(t− 1))11⊤ is the centering projection matrix.

Remark 12. While the empirical witness functions for COCO/KCC (2.21) are defined as operators, we use those as

functions in the definition of the corresponding payoff function. To clarify, for any x ∈ X and y ∈ Y , we have

ĝt(x) =

2(t−1)∑

i=1

αi


k(Xi, x)−

1

2(t− 1)

2(t−1)∑

j=1

k(Xj , x)


 ,

ĥt(y) =

2(t−1)∑

i=1

βi


l(Yi, y)−

1

2(t− 1)

2(t−1)∑

j=1

l(Yj , y)


 .

Minibatched Payoff Function for HSIC. The minibatched payoff function at round t has the following form:

ft(Zb(t−1)+1, . . . , Zbt) =
1

b

b∑

i=1

ĝt(Xb(t−1)+i, Yb(t−1)+i)−
1

b(b− 1)

b∑

i,j=1
i ̸=j

ĝt(Xb(t−1)+i, Yb(t−1)+j).

106



Note that:

ft(Zb(t−1)+1, . . . , Zbt) =
1

b

b∑

i=1

⟨ĝt, φ(Xb(t−1)+i)⊗ ψ(Yb(t−1)+i)⟩G⊗H

− 1

b(b− 1)

b∑

i,j=1
i̸=j

⟨ĝt, φ(Xb(t−1)+i)⊗ ψ(Yb(t−1)+j)⟩G⊗H

=

〈
ĝt,

1

2b(b− 1)

b∑

i,j=1
i̸=j

(
φ(Xb(t−1)+i)− φ(Xb(t−1)+j)

)
⊗
(
ψ(Yb(t−1)+i)− ψ(Yb(t−1)+j)

)
〉

G⊗H

.

Let F ′
t−1 = σ({(Xi, Yi)}i≤b(t−1)). We have that:

E
[
ft(Zb(t−1)+1, . . . , Zbt) | F ′

t−1

]
= ⟨ĝt, µXY − µX ⊗ µY ⟩G⊗H,

and in particular, EH0

[
ft(Zb(t−1)+1, . . . , Zbt) | F ′

t−1

]
= 0 if the null H0 in (2.1a) is true. It suffices to show that the

payoff is bounded. Since ∥ĝt∥G⊗H = 1, we can easily deduce that:

∣∣ft(Zb(t−1)+1, . . . , Zbt)
∣∣ ≤ 1

2b(b− 1)

b∑

i,j=1
i ̸=j

∥∥(φ(Xb(t−1)+i)− φ(Xb(t−1)+j)
)
⊗
(
ψ(Yb(t−1)+i)− ψ(Yb(t−1)+j)

)∥∥
G⊗H

=
1

2b(b− 1)

b∑

i,j=1
i ̸=j

∥∥φ(Xb(t−1)+i)− φ(Xb(t−1)+j)
∥∥
G

∥∥ψ(Yb(t−1)+i)− ψ(Yb(t−1)+j)
∥∥
H

=
1

2b(b− 1)

b∑

i,j=1
i ̸=j

√
2(1− k(Xb(t−1)+i, Xb(t−1)+j))

√
2(1− l(Yb(t−1)+i, Yb(t−1)+j))

≤ 1.

Hence, we conclude that the wealth process constructed using a minibatched version of the payoff function is also a

nonnegative martingale.

Example 4. For t ≥ 1, consider

(Xt, Yt) =

(
Vt + 1− 1/t

2
,
V ′
t + 1− 1/t

2

)
,

where Vt, V ′
t

iid∼ Ber(1/2). Note that X = Y ⊆ [0, 1], which means that a pair of linear kernels, k(x, x′) = xx′ and

l(y, y′) = yy′ are nonnegative and bounded by one on X and Y respectively. Note that for a linear kernel,

ĝt(x, y) = ĝt · x · y.
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Hence,

ft((X2t−1, Y2t−1), (X2t, Y2t)) =
ĝt
2
(X2t −X2t−1) (Y2t − Y2t−1)

=
ĝt
8

(
V2t − V2t−1 +

1

2t(2t− 1)

)(
V ′
2t − V ′

2t−1 +
1

2t(2t− 1)

)
.

In particular, E [ft((X2t−1, Y2t−1), (X2t, Y2t)) | Ft−1] ̸= 0, implying that the wealth process (Kt)t≥0 is no longer a

nonnegative martingale.

Witness Functions for COCO. Let Φ and Ψ be a pair of matrices whose columns represent embeddings of

X1, . . . , X2(t−1) and Y1, . . . , Y2(t−1), that is, φ(Xi) = k(Xi, ·) and ψ(Yi) = l(Yi, ·) for i = 1, . . . , 2(t − 1). Recall

that

ĝ =

2(t−1)∑

i=1

αi


φ(Xi)−

1

2(t− 1)

2(t−1)∑

j=1

φ(Xj)


 = ΦHα,

ĥ =

2(t−1)∑

i=1

βi


ψ(Yi)−

1

2(t− 1)

2(t−1)∑

j=1

ψ(Yj)


 = ΨHβ,

where H = I2(t−1) − 1
2(t−1)11

⊤ is the centering projection matrix. We have

⟨h, ĈXY g⟩H =
1

2(t− 1)
(α⊤HΦ⊤)(ΦHΨ⊤)(ΨHβ) =

1

2(t− 1)
α⊤HKHLHβ =

1

2(t− 1)
α⊤K̃L̃β,

∥g∥2G = α⊤K̃α,

∥h∥2H = β⊤L̃β,

where K̃ := HKH and L̃ := HLH are centered kernel matrices. Hence, the maximization problem in (2.20) can be

expressed as:

max
α,β

1

2(t− 1)
α⊤K̃L̃β

subject to α⊤K̃α = 1, β⊤L̃β = 1.

(A.19)

After introducing Lagrange multipliers, it can then be shown that α and β, which solve (A.19), exactly correspond to

the generalized eigenvalue problem (2.22).

Witness Functions for KCC. Introduce empirical covariance operators:

ĈX =
1

2(t− 1)

2(t−1)∑

i=1

φ(Xi)⊗ φ(Xi)−


 1

2(t− 1)

2(t−1)∑

i=1

φ(Xi)


⊗

(
1

2(t− 1)

n∑

i=1

φ(Xi)

)
=

1

2(t− 1)
ΦHΦ⊤,

ĈY =
1

n

2(t−1)∑

i=1

ψ(Yi)⊗ ψ(Yi)−


 1

2(t− 1)

2(t−1)∑

i=1

ψ(Yi)


⊗


 1

2(t− 1)

2(t−1)∑

i=1

ψ(Yi)


 =

1

2(t− 1)
ΨHΨ⊤.
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Then the empirical variance terms can be expressed as:

V̂ [g(X)] = ⟨g, ĈXg⟩G =
1

2(t− 1)
(α⊤HΦ⊤)(ΦHΦ⊤)(ΦHα) =

1

2(t− 1)
α⊤K̃2α,

V̂ [h(Y )] = ⟨h, ĈY h⟩H =
1

2(t− 1)
(β⊤HΨ⊤)(ΨHΨ⊤)(ΨHβ) =

1

2(t− 1)
β⊤L̃2β.

Thus, an empirical estimator of the kernel canonical correlation (2.23) can be obtained by solving:

max
α,β

1

2(t− 1)
α⊤K̃L̃β

subject to
1

2(t− 1)
α⊤K̃2α+ κ1α

⊤K̃α = 1,

1

2(t− 1)
β⊤L̃2β + κ2β

⊤L̃β = 1.

After introducing Lagrange multipliers, it can then be shown that α and β, which solve (2.23), correspond to the

generalized eigenvalue problem:


 0 1

2(t−1)K̃L̃

1
2(t−1) L̃K̃ 0




α
β


 = γ


κ1K̃ + 1

2(t−1)K̃
2 0

0 κ2L̃+ 1
2(t−1) L̃

2




α
β


 ,

A.5 Additional Simulations

This section contains: (a) additional experiments on synthetic dataset and (b) data visualizations of the datasets used

in this paper.

A.5.1 Test of Instantaneous Dependence

In Figure A.5, we demonstrate it is hard to visually tell the difference between independence and dependence under

distribution drift setting (2.2). See Example 1 for details.

A.5.2 Distribution Drift

In this section, we consider the linear Gaussian model with an underlying distribution drift:

Yt = Xtβt + εt, Xt, εt ∼ N (0, 1), t ≥ 1,
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Figure A.5: Sample of independent (subplot (a)) and dependent (ρ = 0.5, subplot(b)) data according to (2.3). The
purpose of visualizing raw data is to demonstrate that dependence is hard to detect visually, and dependence refers to
more than temporal correlation which may be present due to cyclical trends.

that is, in contrast to the Gaussian linear model (Section 2.3), βt changes over time. We gradually increase it from

βt = 0 to βt = 0.1 in increments of 0.02, that is:

β0, . . . , βb−1︸ ︷︷ ︸
=0

, βb, . . . , β2b−1︸ ︷︷ ︸
=0.02

, . . . , β5b−1, . . .︸ ︷︷ ︸
=0.1

and, starting with β5b, we keep it equal to 0.1. We consider b ∈ {100, 200, 400} as possible block sizes. Note that

there is a transition from independence (first b datapoints in a stream) to dependence. In Figure A.6, we show that our

test performs well under the distribution drift setting and consistently detects dependence.
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Figure A.6: Rejection rate of sequential independence test under distribution drift setting. Focusing on the non-i.i.d.
time-varying setting, we confirm that our test has high power under the alternative.
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A.5.3 Symmetry-based Payoff Functions

In this section, we complement the comparison presented in Section 2.4 between the rank- and composition-based

betting strategies (since those require minimal tuning) used with ONS or aGRAPA criteria for selecting betting

fractions. We also increase the monitoring horizon to 20000 datapoints. In Figure A.7a, we consider the Gaussian

linear model, but in contrast to the setting considered in Section 2.4, we focus on harder testing settings by considering

β ∈ [0, 0.3]. In Figure A.7b, we compare composition- and rank-based approaches when data are sampled from the

spherical model. In both cases, composition and rank-based approaches are similar; none of the payoffs uniformly

dominates the other. We also observe that selecting betting fractions via aGRAPA criterion tends to result in a bit more

powerful testing procedure.
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Figure A.7: (a) Comparison of symmetry-based betting strategies under the Gaussian model. The betting strategy
based on composition with an odd function performs only slightly better than the rank-based strategy. (b) SKIT with
composition- and rank-based betting strategies under the spherical model. None of the betting strategies uniformly
dominates the other. aGRAPA criterion for selecting betting fractions tends to result in a bit more powerful testing
procedure.

A.5.4 Hard-to-detect Dependence

Hard-to-detect dependence. Consider the joint density p(x, y) of the form:

1

4π2
(1 + sin(wx) sin(wy)) · 1

{
(x, y) ∈ [−π, π]2

}
. (A.20)

With the null case corresponding to w = 0, the testing problem becomes harder with growing w. In Figure A.8, we

illustrate the densities and a data sample for the hard-to-detect setting (A.20).

We use λX = λY = 3/(4π2) as RBF kernel hyperparameters. For visualization purposes, we stop monitoring

after observing 20000 datapoints from PXY , and if a SKIT does not reject H0 by that time, we assume that the null is

retained. The results are aggregated over 200 runs for each value of w. In Figure A.9, where the null case corresponds
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Figure A.8: Visualization of the densities (top) and a dataset of size 5000 (bottom) sampled from the corresponding
distribution.

to w = 0, we confirm that SKITs have time-uniform type I error control. The average rejection rate starts to drop for

w ≥ 3, meaning that observing 20000 points from PXY does not suffice to detect dependence.
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Figure A.9: Rejection rate (solid) and fraction of samples used before the null hypothesis was rejected (dashed) for
hard-to-detect dependence model. By inspecting the rejection rate for w = 0 (independence holds), we confirm that
the type I error is controlled. Further, SKIT is adaptive to the complexity of a problem (larger w corresponds to a
harder setting).
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A.5.5 Additional Results for Real Data

In Figure A.10, we illustrate that the average daily temperature in selected cities share similar seasonal patterns. We

repeat the same experiment as in Section 2.4, but for four cities in South Africa: Cape Town (CT), Port Elizabeth (PE),

Durban (DRN), and Bloemfontein (BFN). In Figures A.10d and A.10e, we illustrate the resulting wealth processes for

each pair of cities and for each region. Finally, we illustrate the pairs of cities for which the null has been rejected in

Figure A.10c.

A.5.6 Experiment with MNIST data

In this section, we analyze the performance of SKIT on high-dimensional real data. This experiment is based on

MNIST dataset (LeCun et al., 1998) where pairs of digits are observed at each step; under the null one sees digits

(a, b) where a and b are uniformly randomly chosen, but under the alternative one sees (a, a′), i.e., two different

images of the same digit. To estimate kernel hyperparameters, we deploy the median heuristic using 20 pairs of

images.

We illustrate the results in Figure A.11. Under the null, our test does not reject more often than the required 5%,

but its power increases with sample size under the alternative, reaching power one after processing ≈ 500 pairs of

digits (points from PXY ) on average.

A.6 Scaling Sequential Testing Procedures

Updating the wealth process at each round requires evaluating the payoff function at a new pair of observations (and

hence computing the witness function corresponding to a chosen dependence criterion). In this section, we provide

details about the ways of reducing the computational complexity of this step, which are necessary to scale the proposed

sequential testing frameworks to moderately large sample sizes. Note that the proposed implementation of COCO

allows updating kernel hyperparameters on the fly. In contrast, linear-time updates for HSIC require fixing kernel

hyperparameters in advance.

A.6.1 Incomplete/Pivoted Cholesky Decomposition for COCO and KCC

Suppose that we want to evaluate COCO payoff function on the next pair of points (X2t−1, Y2t−1), (X2t, Y2t). In

order to do so, we need to compute g1,t and g2,t, that is solve the generalized eigenvalue problem. Note that

solving generalized eigenvalue problem at each iteration could be computationally prohibitive. One simple way

is to use a random subsample of datapoints when performing witness function estimation, e.g., once the sample

size n exceeds ns, e.g., ns = 25, we randomly subsample (without replacement) a sample of size ns to estimate

witness functions. Alternatively, a common approach is to reduce computational burden through incomplete Cholesky

decomposition. The idea is to use the fact that kernel matrices tend to demonstrate rapid spectrum decay, and thus
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Figure A.10: Temperatures for selected cities in Europe (subplot (a)) and South Africa (subplot (b)) share similar
seasonal patterns. Map (subplot (c)) where solid red lines connect those cities for which the null is rejected. SKIT
supports our conjecture about dependent temperature fluctuations for geographically close cities. For completeness,
we also plot wealth processes for SKIT used on weather data for Europe (subplot (d)) and South Africa (subplot (e)).

low-rank approximations can be used to scale the procedures. Suppose that K ≈ G1G
T
1 and L ≈ G2G

T
2 where Gi’s

are lower triangular matrices of size n ×M (M depends on the preset approximation error level). After computing
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Figure A.11: Rejection rate for SKIT on MNIST data. Under the null (red dashed line), our test does not reject more
often than the required 5%, but its power increases with sample size under the alternative (blue solid line). Each pair
corresponds to two points from PXY , and hence, SKIT reaches power one after processing ≈ 500 pairs of images on
average.

Cholesky decomposition, we center both matrices via left multiplication by H and compute SVDs of HG1 and HG2,

that is, HG1 = U1Λ1V
⊤
1 and HG2 = U2Λ2V

⊤
2 . We have:

K̃ ≈ U1Λ
2
1U

⊤
1 , L̃ ≈ U2Λ

2
2U

⊤
2 .

Our goal is to find the largest eigenvalue/eigenvector pair for Ax = γBx for a PD matrix B. Since:

Ax = γBx⇐⇒ B−1/2AB−1/2(B1/2x) = γ(B1/2x),

it suffices to leading eigenvalue/eigenvector pair for:

B−1/2AB−1/2y = γy.

Then x = B−1/2y is a generalized eigenvector for the initial problem.

COCO. For COCO, we have:

B =


K̃ 0

0 L̃


 ≈


U1Λ

2
1U

⊤
1 0

0 U2Λ
2
2U

⊤
2


 =


U1 0

0 U2




Λ2

1 0

0 Λ2
2




U1 0

0 U2




⊤

=⇒ B−1/2 ≈


U1 0

0 U2




Λ−1

1 0

0 Λ−1
2




U1 0

0 U2




⊤

=: UΛ−1U⊤.
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We also have:

A ≈


 0 1

nU1Λ
2
1U

⊤
1 U2Λ

2
2U

⊤
2

1
nU2Λ

2
2U

⊤
2 U1Λ

2
1U

⊤
1 0




=


U1 0

0 U2




 0 1

nΛ
2
1U

⊤
1 U2Λ

2
2

1
nΛ

2
2U

⊤
2 U1Λ

2
1 0




U1 0

0 U2




⊤

.

Thus we have:

B−1/2AB−1/2 ≈


U1 0

0 U2




 0 1

nΛ1U
⊤
1 U2Λ2

1
nΛ2U

⊤
2 U1Λ1 0




U1 0

0 U2




⊤

.

Hence, we only need to compute the leading eigenvector (say, z∗) for:


 0 1

nΛ1U
⊤
1 U2Λ2

1
nΛ2U

⊤
2 U1Λ1 0


 ∈ R(M1+M2)×(M1+M2).

It implies that the leading eigenvector for B−1/2AB−1/2 is then Uz∗, and the solution for the generalized eigenvalue

problem is given by:

UΛ−1z∗ =


U1Λ

−1
1 z∗1

U2Λ
−1
2 z∗2


 =:


α0

β0


 .

Next, we need to normalize this vector of coefficients appropriately, i.e., we need to guarantee that
∥∥∥K̃1/2α

∥∥∥
2
= 1 and

∥∥∥L̃1/2β
∥∥∥
2
= 1, and thus re-normalizing naively is quadratic in n. Instead, note that in order to compute incomplete

Cholesky decomposition, we choose a tolerance parameter δ so that:
∥∥PKP⊤ −G1G

⊤
1

∥∥
∗ =

∥∥K −G1G
⊤
1

∥∥
∗ ≤ δ

(nuclear norm). Let ∆ = K −G1G
⊤
1 . We know that:

α⊤K̃α = α⊤HKHα = α⊤H(∆ +G1G
⊤
1 )Hα = α⊤H∆Hα+ α⊤HG1G

⊤
1 Hα

First, note that α⊤H∆Hα ≤ δ∥Hα∥22. Next,

G⊤
1 H = V1Λ1U

⊤
1 .

Given an initial vector of parameters α0 and β0, vectors of coefficients can be normalized in linear time using

α =
α0√∥∥G⊤

1 Hα0

∥∥2
2
+ δ ∥Hα0∥22

=
U1Λ

−1
1 z∗1√

∥V1z∗1∥22 + δ ∥Hα0∥22
=

U1Λ
−1
1 z∗1√

∥z∗1∥22 + δ ∥Hα0∥22
,

β =
β0√∥∥G⊤

2 Hβ0
∥∥2
2
+ δ ∥Hβ0∥22

=
U2Λ

−1
2 z∗2√

∥V2z∗2∥22 + δ ∥Hβ0∥22
=

U2Λ
−1
2 z∗2√

∥z∗2∥22 + δ ∥Hβ0∥22
.
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For small δ, we essentially normalize by α⊤
0 K̃α0 and β⊤

0 L̃β0 as expected. It also makes sense to use δ = n · δ0. Still,

re-estimating the witness functions after processing 2t, t ≥ 1 points is computationally intensive. In contrast to HSIC,

for which there are no clear benefits of skipping certain estimation steps, for COCO we estimate the witness functions

after processing 2t2, t ≥ 1 points.

KCC. For KCC, we have:

B =


κ1K̃ + 1

nK̃
2 0

0 κ2L̃+ 1
n L̃

2




≈


κ1U1Λ

2
1U

⊤
1 + 1

nU1Λ
4
1U

⊤
1 0

0 κ2U2Λ
2
2U

⊤
2 + 1

nU2Λ
4
2U

⊤
2




=


U1Λ

2
1

(
κ1In + Λ2

1
1
n

)
U⊤
1 0

0 U2Λ
2
2

(
κ2In + Λ2

2
1
n

)
U⊤
2




= U


Λ2

1

(
κ1In + Λ2

1
1
n

)
0

0 Λ2
2

(
κ2In + Λ2

2
1
n

)


U⊤,

which implies that:

B−1/2 ≈ U



(
κ1In + Λ2

1
1
n

)−1/2
Λ−1
1 0

0
(
κ2In + Λ2

2
1
n

)−1/2
Λ−1
2


U⊤.

Recall that:

A ≈ U


 0 1

nΛ
2
1U

⊤
1 U2Λ

2
2

1
nΛ

2
2U

⊤
2 U1Λ

2
1 0


U⊤.

Thus,

B−1/2AB−1/2 ≈ U


 0 M∗

M⊤
∗ 0


U⊤,

where M∗ =
1

n

(
κ1In + Λ2

1

1

n

)−1/2

Λ1U
⊤
1 U2Λ2

(
κ2In + Λ2

2

1

n

)−1/2

.

Equivalently,

M∗ =
1

n
ρκ1(Λ1)Λ1U

⊤
1 U2Λ2ρκ2(Λ2), where ρκ(x) =

1√
x2/n+ κ

.

Hence, we only need to compute the leading eigenvector (say, z∗) for:


 0 M∗

M⊤
∗ 0
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It implies that the leading eigenvector for B−1/2AB−1/2 is then Uz∗. For the initial generalized eigenvalue problem,

an approximate solution (due to using low-rank approximations of kernel matrices) is given by:

B−1/2Uz∗ =


U1ρκ1

(Λ1)Λ
−1
1 z∗1

U2ρκ2
(Λ2)Λ

−1
2 z∗2


 =


U1Λ

−1
1 ρκ1

(Λ1)z
∗
1

U2Λ
−1
2 ρκ2

(Λ2)z
∗
2


 =:


α0

β0


 .

Next, we need to normalize this vector of coefficients appropriately, i.e., we need to guarantee that
∥∥∥K̃1/2α

∥∥∥
2
= 1 and

∥∥∥L̃1/2β
∥∥∥
2
= 1, and thus re-normalizing naively is quadratic in n. Instead, note that in order to compute incomplete

Cholesky decomposition, we choose a tolerance parameter δ so that:
∥∥PKP⊤ −G1G

⊤
1

∥∥
∗ =

∥∥K −G1G
⊤
1

∥∥
∗ ≤ δ

(nuclear norm). Let ∆ = K −G1G
⊤
1 . We know that:

α⊤K̃α = α⊤HKHα = α⊤H(∆ +G1G
⊤
1 )Hα = α⊤H∆Hα+ α⊤HG1G

⊤
1 Hα

First, note that α⊤H∆Hα ≤ δ∥Hα∥22. Next,

G⊤
1 H = V1Λ1U

⊤
1 .

Given an initial vector of parameters α0 and β0, vectors of coefficients can be normalized in linear time using

α =
α0√∥∥G⊤

1 Hα0

∥∥2
2
+ δ ∥Hα0∥22

=
U1ρκ1

(Λ1)Λ
−1
1 z∗1√

∥V1ρκ1(Λ1)z∗1∥22 + δ ∥Hα0∥22
=

U1ρκ1
(Λ1)Λ

−1
1 z∗1√

∥ρκ1(Λ1)z∗1∥22 + δ ∥Hα0∥22
,

β =
β0√∥∥G⊤

2 Hβ0
∥∥2
2
+ δ ∥Hβ0∥22

=
U2ρκ2(Λ2)Λ

−1
2 z∗2√

∥V2ρκ2
(Λ2)z∗2∥22 + δ ∥Hβ0∥22

=
U2ρκ2(Λ2)Λ

−1
2 z∗2√

∥ρκ2
(Λ2)z∗2∥22 + δ ∥Hβ0∥22

.

A.6.2 Linear-time Updates of the HSIC Payoff Function

Suppose that we want to evaluate HSIC payoff function on the next pair of points (X2t+1, Y2t+1), (X2t+2, Y2t+2). In

order to do so, we need to compute: ĝt(X2t+2, Y2t+2). It is clear that the computational of evaluating µ̂XY (x, y) and

(µ̂X ⊗ µ̂Y )(x, y) on a given pair (x, y) is linear in t. However, we also need to compute the normalization constant:

∥µ̂XY − µ̂X ⊗ µ̂Y ∥G⊗H . (A.21)

Recall that: ∥∥∥µ̂(t)
XY − µ̂

(t)
X ⊗ µ̂

(t)
Y

∥∥∥
2

G⊗H
=

1

(2t)2
trK(t)H(t)L(t)H(t),

where K(t) and L(t) are kernel matrices corresponding to the first 2t pairs, H(t) := I2t − 1
2t12t1⊤2t. Instead of

computing the normalization constant naively, we next establish a more efficient way of computing (A.21) in time
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linear in t by caching certain values. Introduce:

∆
(t)
1 =

2t∑

i,j=1

KijLij = trK(t)L(t),

∆
(t)
2 =

2t∑

i,j

Kij = 1⊤
2tK

(t)12t,

∆
(t)
3 =

2t∑

i,j

Lij = 1⊤2tL
(t)12t,

∆
(t)
4 =

2t∑

i=1

2t∑

j,q=1

KijLiq = 1⊤2tK
(t)L(t)12t.

We have:

∥∥∥µ̂(t+1)
XY − µ̂(t+1)

X ⊗ µ̂(t+1)
Y

∥∥∥
2

G⊗H
=

1

(2t+ 2)2
∆

(t+1)
1 +

1

(2t+ 2)4
∆

(t+1)
2 ·∆(t)

3 −
2

(2t+ 2)3
∆

(t+1)
4 .

Next, we show how to speed up computations via caching certain intermediate values. Kernel matrices have the

following structure:

K(t+1) =




K(t) K·,2t+1 K·,2t+2

K⊤
·,2t+1 K2t+1,2t+1 K2t+1,2t+2

K⊤
·,2t+2 K2t+2,2t+1 K2t+2,2t+2


 , L(t+1) =




L(t) L·,2t+1 L·,2t+2

L⊤
·,2t+1 L2t+1,2t+1 L2t+1,2t+2

L⊤
·,2t+2 L2t+2,2t+1 L2t+2,2t+2


 ,

where K·,2t+1,K·,2t+2, L·,2t+1, L·,2t+2 ∈ R2t contain kernel function evaluations:

K·,m =




k(X1, Xm)
...

k(X2t, Xm)


 , L·,m =




l(Y1, Ym)
...

l(Y2t, Ym)


 , m ∈ {2t+ 1, 2t+ 2} .

First, it is easy to derive that:

trK(t+1)L(t+1) = trK(t)L(t) + 2(L⊤
·,2t+1K·,2t+1) + 2(L⊤

·,2t+2K·,2t+2)+

+K2t+1,2t+1L2t+1,2t+1 +K2t+2,2t+2L2t+2,2t+2

+K2t+1,2t+2L2t+2,2t+1 +K2t+2,2t+1L2t+1,2t+2.
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Thus, if the value trK(t)L(t) is cached, then trK(t+1)L(t+1) can be computed in linear time. Note that:

K(t+1)12t+2 =




K(t)12t + k·,2t+1 + k·,2t+2

K⊤
·,2t+112t +K2t+1,2t+1 +K2t+1,2t+2

K⊤
·,2t+212t +K2t+2,2t+1 +K2t+2,2t+2


 ,

which can be computed in linear time if K(t)12t is stored (similar result holds for L(t+1)12t+2). It thus follows that

1⊤2t+2K
(t+1)12t+2, 1⊤

2t+2L
(t+1)12t+2 and 1⊤2t+2K

(t+1)L(t+1)12t+2 can all be computed in linear time. To sum up,

we need to cache trK(t)L(t), K(t)12t, L(t)12t to compute the normalization constant in linear time.
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Appendix B

Additional Results for Chapter 3

B.1 Regression-based Independence Testing

Regression-based independence tests represent an alternative to classification-based approaches in settings where a

data stream ((Xt, Yt))t≥1 may be processed directly as feature-response pairs. Suppose that one selects a functional

class G : X → Y for performing such prediction task, and let ℓ denote a loss function that evaluates the quality

of predictions. For example, if (Yt)t≥1 is a sequence of univariate random variables, one can use the squared loss:

ℓ(g(x), y) = (g(x)− y)2, or the absolute loss: ℓ(g(x), y) = |g(x)− y|.
Such tests rely on the following idea: if the alternative H1 in (3.2b) is true and a sequence of sequentially

updated predictors (gt)t≥1 has nontrivial predictive power, then the losses on random instances drawn from the joint

distribution PXY are expected to be less on average than the losses on random instances from PX × PY . For the t-th

pair of points from PXY , we can label the losses of gt on all possible (X,Y )-pairs as

L2t−1 = ℓ (gt(X2t−1), Y2t−1) , L2t = ℓ (gt(X2t), Y2t) ,

L′
2t−1 = ℓ (gt(X2t−1), Y2t) , L′

2t = ℓ (gt(X2t), Y2t−1) .
(B.1)

One can view this problem as sequential two-sample testing under distribution drift (due to incremental learning of

(gt)t≥1). Hence, one may use either Seq-C-2ST from Section 3.2 or sequential kernelized 2ST of Shekhar and Ramdas

(2021) on the resulting sequence of the losses on observations from PXY and PX × PY . In what follows, we analyze

a direct approach where testing is performed by comparing the losses on instances drawn from the two distributions.

A critical difference with a construction of Seq-C-2ST is that to design a valid betting strategy one has to ensure that

the payoff functions are lower bounded by negative one.
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B.1.1 Proxy Regression-based Independence Test

To avoid cases when some expected values are not well-defined, we assume for simplicity that X is a bounded subset

of Rd for som d ≥ 1: X =
{
x ∈ Rd : ∥x∥2 ≤ B1

}
for some B1 > 0. Similarly, we assume that Y is a bounded

subset of R: Y = {y ∈ R : |y| ≤ B2} for some B2 > 0. We note that the construction of the regression-based IT will

not require explicit knowledge of constants B1 and B2. First, we consider a setting where an instance either from the

joint distribution or an instance from the product of the marginal distributions is observed at each round.

Definition 8 (Proxy Setting). Suppose that we observe a stream of i.i.d. observations ((Xt, Yt,Wt))t≥1, where Wt ∼
Rademacher(1/2), the distribution of (Xt, Yt) |Wt = +1 is PX ×PY , and that of (Xt, Yt) |Wt = −1 is PXY . The

goal is to design a test for the following pair of hypotheses:

H0 : PXY = PX × PY ,

H1 : PXY ̸= PX × PY .

(B.2a)

(B.2b)

Oracle Proxy Sequential Regression-based IT. To construct an oracle test, we assume having access to the oracle

predictor g⋆ : X → Y , e.g., the minimizer of the squared risk is g⋆(x) = E [Y | X = x]. Formalizing the above

intuition, we use E [Wℓ(g⋆(X), Y )] as a natural way for measuring dependence between X and Y . To enforce

boundedness of the payoff functions, we use ideas of the tests for symmetry from (Ramdas et al., 2020; Shekhar and

Ramdas, 2021; Podkopaev et al., 2023; Shaer et al., 2023), namely we use a composition with an odd function:

f r⋆(Xt, Yt,Wt) = tanh (s⋆ ·Wt · ℓ(g⋆(Xt), Yt)) ∈ [−1, 1], (B.3)

where s⋆ > 0 is an appropriately selected scaling factor*. Since underH0 in (B.2a), s⋆ ·Wt ·ℓ(g⋆(Xt), Yt) is a random

variable that is symmetric around zero, it follows that E[f r⋆(Xt, Yt,Wt)] = 0, and, using the argument analogous to

the proof of Theorem 3.1, we can easily deduce that a sequential IT based on f r⋆ controls the type I error control. The

scaling factor s⋆ is selected in a way that guarantees that, if H1 in (B.2b) is true and if E [Wℓ(g⋆(X), Y )] > 0, then

E [f r⋆(X,Y,W )] > 0, which is a sufficient condition for consistency of the oracle test. In particular, we show that it

suffices to consider:

s⋆ =

√
2µ⋆

ν⋆
,

where µ⋆ = E [Wℓ(g⋆(X), Y )] ,

ν⋆ = E
[
(1 +W ) (ℓ(g⋆(X), Y ))

3
]
.

(B.4a)

(B.4b)

(B.4c)

Without loss of generality, we assume that ν⋆ is bounded away from zero (which is a very mild assumption since

ν⋆ essentially corresponds to a cubic risk of g⋆ on data drawn from the product of the marginal distributions PX ×
*We note that rescaling is important for arguing about consistency and not the type I error control.
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PY ). Let the oracle regression-based wealth process
(
Kr,⋆

t

)
t≥0

be defined by using the payoff function (B.3) with a

scaling factor defined in (B.4a), along with a predictable sequence of betting fractions (λt)t≥1 selected via the ONS

strategy (Algorithm 5). We have the following result about the oracle regression-based IT, whose proof is deferred to

Appendix B.4.4.

Theorem B.1. The following claims hold for the oracle sequential regression-based IT based on
(
Kr,⋆

t

)
t≥0

:

1. Suppose that H0 in (B.2a) is true. Then the test ever stops with probability at most α: PH1
(τ <∞) ≤ α.

2. Suppose that H1 in (B.2b) is true. Further, suppose that: E [Wℓ(g⋆(X), Y )] > 0. Then the test is consistent:

PH1 (τ <∞) = 1.

Practical Proxy Sequential Regression-based IT. To construct a practical test, we use a sequence of predictors

(gt)t≥1 that are updated sequentially as more data are observed. We write Ar : (∪t≥1(X × Y)t) × G → G to denote

a chosen regressor learning algorithm which maps a training dataset of any size and previously used predictor, to an

updated predictor. We start with D0 = ∅ and some initial guess g1 ∈ G. At round t, we use the payoff function:

f rt (Xt, Yt,Wt) = tanh (st ·Wt · ℓ(gt(Xt), Yt)) . (B.5)

where a sequence of predictable scaling factors (st)t≥1 is defined as follows: we set s0 = 0 and define:

st =

√
2µt

νt
,

where µt =

(
1

t− 1

t−1∑

i=1

Wi · ℓ(gi(Xi), Yi)

)
∨ 0,

νt =
1

t− 1

t−1∑

i=1

(1 +Wi) · (ℓ(gi(Xi), Yi))
3
.

(B.6a)

(B.6b)

(B.6c)

After (Xt, Yt,Wt) has been used for betting, we update a training dataset: Dt = Dt−1 ∪ {(Xt, Yt,Wt)}, and an

existing predictor: gt+1 = Ar(Dt, gt). We summarize this practical sequential 2ST in Algorithm 9.

For simplicity, we consider a class of functions G := {gθ : X → Y, θ ∈ Θ} for some parameter set Θ which

we assume to be a subset of a metric space. In this case, a sequence of predictors (gt)t≥1 is associated with the

corresponding sequence of parameters (θt)t≥1: for t ≥ 1, gt(·) = g(·; θt) for some θt ∈ Θ. To argue about the

consistency of the resulting test, we make two assumptions.

Assumption 5 (Smoothness). We assume that:

• Predictors in G are L1-Lipschitz smooth:

sup
x∈X
|g(x; θ)− g(x; θ′)| ≤ L1 ∥θ − θ′∥ , ∀θ, θ′ ∈ Θ. (B.7)
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Algorithm 9 Proxy Sequential Regression-based IT

Input: significance level α ∈ (0, 1), data stream ((Xt, Yt,Wt))t≥1, g1(z) ≡ 0, Ar, D0 = ∅, λONS
1 = 0, s1 = 0.

for t = 1, 2, . . . do
Evaluate the payoff f rt (Xt, Yt,Wt) as in (B.5);
Using λONS

t , update the wealth process Kr
t as in (3.5);

if Kr
t ≥ 1/α then
Reject H0 and stop;

else
Update the training dataset: Dt := Dt−1 ∪ {(Xt, Yt)};
Update predictor: gt+1 = Ar(Dt, gt);
Compute st+1 as in (B.6a);
Compute λONS

t+1 (Algorithm 5) using f rt (Xt, Yt,Wt);

• The loss function ℓ is L2-Lipschitz smooth:

sup
x∈X
y∈Y

|ℓ(g(x; θ), y)− ℓ(g(x; θ′), y)| ≤ L2 sup
x∈X
|g(x; θ)− g(x; θ′)| , ∀θ, θ′ ∈ Θ. (B.8)

In words, Assumption (B.7) states that the outputs of predictors, whose parameters are close, will also be close.

Assumption (B.8) states that that the losses of two predictors, whose outputs are close, will also be close. For example,

if G is a class of linear predictors: gθ(x) = θ⊤x, x ∈ X , then Assumption 5 will be trivially satisfied for the squared

and the absolute losses if X and Y are bounded. Note that we do not need an explicit knowledge of L1 or L2 for

designing a test. Second, we make a learnability assumption about algorithm Ar.

Assumption 6 (Learnability). Suppose that H1 in (B.2b) is true. We assume that the regressor learning algorithm Ar

is such that for the resulting sequence of parameters (θt)t≥1, it holds that θt
a.s.→ θ⋆, where θ⋆ is a random variable

taking values in Θ and E [Wℓ(g(X; θ⋆), Y ) | θ⋆]
a.s.
> 0, where (X,Y,W ) ⊥⊥ θ⋆.

We conclude with the following result for the practical proxy sequential regression-based IT, whose proof is deferred

to Appendix B.4.4.

Theorem B.2. The following claims hold for the proxy sequential regression-based IT (Algorithm 9):

1. Suppose that H0 in (B.2a) is true. Then the test ever stops with probability at most α: PH0
(τ <∞) ≤ α.

2. Suppose that H1 in (B.2b) is true. Further, suppose that Assumptions 5 and 6 are satisfied. Then the test is

consistent: PH1
(τ <∞) = 1.

Sequential Regression-based Independence Test (Seq-R-IT). Next, we instantiate this test for the sequential

independence testing setting (as per Definition 2) where we observe sequence ((Xt, Yt))t≥1, where (Xt, Yt)
iid∼ PXY ,

t ≥ 1. Analogous to Section 3.3, we bet on the outcome of two observations drawn from the joint distribution PXY .
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To proceed, we derandomize the payoff function (B.5) and consider

f rt ((X2t−1, Y2t−1), (X2t, Y2t)) =
1

4
(tanh (st · ℓ (gt(X2t−1), Y2t)) + tanh (st · ℓ (gt(X2t), Y2t−1)))

− 1

4
(tanh (st · ℓ (gt(X2t), Y2t))− tanh (st · ℓ (gt(X2t−1), Y2t−1))) .

(B.9)

After betting on the outcome of the t-th pair of observations from PXY , we update a training dataset:

Dt = Dt−1 ∪ {(X2t−1, Y2t−1), (X2t, Y2t)} ,

and a predictive model: ĝt+1 = Ar(Dt, ĝt).

B.1.2 Synthetic Experiments

To evaluate the performance of Seq-R-IT, we consider the Gaussian linear model. Let (Xt)t≥1 and (εt)t≥1 denote

two independent sequences of i.i.d. standard Gaussian random variables. For t ≥ 1, we take

(Xt, Yt) = (Xt, Xtβ + εt),

where β ̸= 0 implies nonzero linear correlation (hence dependence). We consider 20 values of β equally spaced in

[0, 1/2]. For the comparison, we use:

1. Seq-R-IT with ridge regression. We use ridge regression as an underlying model: ĝt(x) = β
(t)
0 + xβ

(t)
1 , where

(β
(t)
0 , β

(t)
1 ) = argmin

β0,β1

2(t−1)∑

i=1

(Yi −Xiβ1 − β0)2 + λβ2
1 .

2. Seq-C-IT with QDA. Note that PXY = N (µ,Σ+) and PX × PY = N (µ,Σ−), where

µ =


0

0


 , Σ+ =


1 β

β 1 + β2


 , Σ− =


1 0

0 1 + β2


 .

For this problem, an oracle predictor which minimizes the misclassification risk is

g⋆(x, y) =
φ((x, y);µ+,Σ+)− φ((x, y);µ−,Σ−)

φ((x, y);µ−,Σ−) + φ((x, y);µ+,Σ+)
∈ [−1, 1], (B.10)

where φ((x, y);µ,Σ) denotes the density of the Gaussian distribution N (µ,Σ) evaluated at (x, y). Recall that

Dt−1 = {(Zi,+1)}i≤2(t−1) ∪ {(Z ′
i,−1)}i≤2(t−1) denotes the training dataset that is available at round t for

training a predictor ĝt : X × Y → [−1, 1]. We deploy Seq-C-IT with an estimator ĝt of (B.10), obtained by
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using plug-in estimates of µ+,Σ+, µ−,Σ−, computed from Dt−1:

µ̂+
t =

1

2(t− 1)

∑

Z∈D+
t−1

Z, Σ̂+
t =


 1

2(t− 1)

∑

Z∈D+
t−1

ZZ⊤


− (µ̂+

t )(µ̂
+
t )

⊤,

and µ̂−
t , Σ̂−

t are computed similarly from D−
t .

In addition, we also include HSIC-based SKIT to the comparison and defer the details regarding kernel hyperparam-

eters to Appendix B.5.1. We set the monitoring horizon to T = 5000 points from PXY and aggregate the results

over 200 sequences of observations for each value of β. We illustrate the result in Figure B.1: while Seq-R-IT has

high power for large values of β, we observe its inferior performance against Seq-C-IT (and SKIT) under the harder

settings. Improving regression-based betting strategies, e.g., designing better scaling factors that still yield a provably

consistent test, is an open question for future research.
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Figure B.1: Comparison between Seq-R-IT, Seq-C-IT and HSIC-based SKIT under the Gaussian linear model.
Inspecting Figure B.1a at β = 0 confirms that all tests control the type I error. Non-surprisingly, kernel-based SKIT
performs better than predictive tests under this model (no localized dependence). We also observe that Seq-C-IT
performs better than Seq-R-IT.

B.2 Two-sample Testing with Unbalanced Classes

In Section 3.2, we developed a sequential 2ST under the assumption at each round, an instance from either P

or Q is revealed with equal probability. Such assumption was reasonable for designing Seq-C-IT, where external

randomization produced two instances from PXY and PX × PY at each round. Next, we generalize our sequential

2ST to a more general setting of unbalanced classes.

Definition 9 (Sequential two-sample testing with unbalanced classes). Let π ∈ (0, 1). Suppose that we observe a

stream of i.i.d. observations ((Zt,Wt))t≥1, where Wt ∼ Rademacher(π), the distribution of Zt | Wt = +1 is
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denoted P , and that of Zt | Wt = −1 is denoted Q. We set the goal of designing a sequential test for the following

pair of hypotheses:

H0 : P = Q,

H1 : P ̸= Q.

(B.11a)

(B.11b)

For what follows, we will focus on the payoff based on the squared risk due to its relationship to the likelihood-ratio-

based test (Remark 6). In particular, after correcting the likelihood under the null in (3.20) to account for a general

positive class proportion π, we can deduce that (see Appendix B.4.5):

(1− λt) · 1 + λt ·
(ηt(Zt))

1{Wt=1}
(1− ηt(Zt))

1{Wt=0}

(π)
1{Wt=1}

(1− π)1{Wt=0} = 1 + λt ·
Wt (gt(Zt)− (2π − 1))

1 +Wt(2π − 1)
, (B.12)

where ηt(z) = (gt(z) + 1)/2, and hence, a natural payoff function for the case with unbalanced classes is

fut (Zt,Wt) =
Wt (gt(Zt)− (2π − 1))

1 +Wt(2π − 1)
. (B.13)

Note that the payoff for the balanced case (3.22b) is recovered by setting π = 1/2. It is easy to check that (see

Appendix B.4.5): (a) fut (z, w) ≥ −1 for any (z, w) ∈ Z × {−1, 1}, and (b) if H0 in (B.11a) is true, then

EH0 [f
u
t (Zt,Wt) | Ft−1] = 0, where Ft−1 = σ({(Zi,Wi)}i≤t−1). This in turn implies that a wealth process that

relies on the payoff function fut in (B.13) is a nonnegative martingale, and hence, the corresponding sequential 2ST

is valid. However, the positive class proportion π, needed to use the payoff function (B.13), is generally unknown

beforehand. First, let us consider the case when λt = 1, t ≥ 1. In this case, the wealth of a gambler that uses the

payoff function (B.13) after round t is

Kt =

∏t
i=1 (ηi(Zi))

1{Wi=1}
(1− ηi(Zi))

1{Wi=0}

∏t
i=1 π

1{Wi=1} (1− π)1{Wi=0} . (B.14)

Note that:

π̂t :=
1

t

t∑

i=1

1 {Wt = 1} = argmax
π∈[0,1]

(
t∏

i=1

π1{Wi=1} (1− π)1{Wi=0}

)
,

is the MLE for π computed from {Wi}i≤t. In particular, if we consider a process (K̃t)t≥0, where

K̃t :=

∏t
i=1 (ηi(Zi))

1{Wi=1}
(1− ηi(Zi))

1{Wi=0}

∏t
i=1 (π̂t)

1{Wi=1}
(1− π̂t)1{Wi=0} , t ≥ 1,

it follows that K̃t ≤ Kt, ∀t ≥ 1, meaning that (K̃t)t≥0 is a process that is upper bounded by a nonnegative martingale

with initial value one. This in turn implies that a test based on (K̃t)t≥0 is a valid level-α sequential 2ST for the case of

unknown class proportions. This idea underlies the running MLE sequential likelihood ratio test of Wasserman et al.
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(2020) and has been recently considered in the context of two-sample testing by Pandeva et al. (2022). In case of

nontrivial betting fractions: (λt)t≥1, representation of the wealth process (B.14) no longer holds, and to proceed, we

modify the rules of the game and use minibatching. A bet is placed on every b (say, 5 or 10) observations, meaning that

for a given minibatch size b ≥ 1, at round t we bet on {(Zb(t−1)+i,Wb(t−1)+i)}i∈{1,...,b}. The MLE of π computed

from the t-th minibatch is

π̂t =
1

b

bt∑

i=b(t−1)+1

1 {Wi = +1} .

We consider a payoff function of the following form:

fut

({
(Zb(t−1)+i,Wb(t−1)+i)

}
i∈{1,...,b}

)
=

bt∏

i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π̂t − 1)

)
− 1. (B.15)

In words, the above payoff essentially compares the performance of a predictor gt, trained on {(Zi,Wi)}i≤b(t−1) and

evaluated on the t-th minibatch, to that of a trivial baseline predictor to form a bet. In particular, setting b = 1 yields a

valid, yet a powerless test. Indeed, we have π̂t = 1 {Wt = 1} = (Wt + 1)/2. In this case, the payoff (B.15) reduces

to
Wt (gt(Zt)− (2π̂t − 1))

1 +Wt(2π̂t − 1)
=
Wtgt(Zt)− 1

2

a.s.∈ [−1, 0],

implying that the wealth can not grow even if the null is false. Define a wealth processes (Ku
t )t≥0 based on the

payoff functions (B.15) along with a predictable sequence of betting fractions (λt)t≥1 selected via ONS strategy

(Algorithm 5). Let Ft = σ({(Zi,Wi)}i≤bt) for t ≥ 1, with F0 denoting a trivial sigma-algebra. We conclude with

the following result, whose proof is deferred to Appendix B.4.5.

Theorem B.3. Suppose that H0 in (B.11a) is true. Then (Ku
t )t≥0 is a nonnegative supermartingale adapted to

(Ft)t≥0. Hence, the sequential 2ST based on (Ku
t )t≥0 satisfies: PH0

(τ <∞) ≤ α.

B.3 Testing under Distribution Drift

First, we define the problem of two-sample testing when at each round instances from both distributions are observed.

Definition 10 (Sequential two-sample testing). Suppose that we observe that a stream of observations: ((Xt, Yt))t≥1,

where (Xt, Yt)
iid∼ PX × PY for t ≥ 1. The goal is to design a sequential test for

H0 : (Xt, Yt)
iid∼ PX × PY and PX = PY ,

H1 : (Xt, Yt)
iid∼ PX × PY and PX ̸= PY .

(B.16a)

(B.16b)

Under the two-sample testing setting (Definition 10), we label observations from PY as positive (+1) and

observations from PX as negative (−1). We write A2ST
c : (∪t≥1(X × {−1,+1})t) × G → G to denote a chosen
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learning algorithm which maps a training dataset of any size and previously used predictor, to an updated predictor.

We start with D0 = ∅ and g1 : g1(x) = 0, ∀x ∈ X . At round t, we bet using derandomized versions of the

payoffs (3.22), namely

fmt (Xt, Yt) =
1
2 (sign [gt(Yt)]− sign [gt(Xt)]) ,

f st (Xt, Yt) =
1
2 (gt(Yt)− gt(Xt)) .

(B.17a)

(B.17b)

After (Xt, Yt) has been used for betting, we update a training dataset and an existing predictor:

Dt = Dt−1 ∪ {(Yt,+1), (Xt,−1)} , gt+1 = A2ST
c (Dt, gt).

Testing under Distribution Drift. Batch two-sample and independence tests generally rely on either a cutoff

computed using the asymptotic null distribution of a chosen test statistic (if tractable) or a permutation p-value. Both

approaches require imposing i.i.d. (or exchangeability, for the latter option) assumption about the data distribution,

and if the distribution drifts, both approaches fail to guarantee the type I error control. In contrast, Seq-C-2ST and

Seq-C-IT remain valid beyond the i.i.d. setting by construction (analogous to tests developed in (Shekhar and Ramdas,

2021; Podkopaev et al., 2023)). First, we define the problems of sequential two-sample and independence testing

under distribution drift.

Definition 11 (Sequential two-sample testing under distribution drift). Suppose that we observe that a stream of

independent observations: ((Xt, Yt))t≥1, where (Xt, Yt) ∼ P (t)
X ×P

(t)
Y , t ≥ 1. The goal is to design a sequential test

for the following pair of hypotheses:

H0 : P
(t)
X = P

(t)
Y , ∀t,

H1 : ∃t′ : P (t′)
X ̸= P

(t′)
Y .

(B.18a)

(B.18b)

Definition 12 (Sequential independence testing under distribution drift). Suppose that we observe that a stream of

independent observations from the joint distribution which drifts over time: ((Xt, Yt))t≥1, where (Xt, Yt) ∼ P
(t)
XY .

The goal is to design a sequential test for the following pair of hypotheses:

H0 : P
(t)
XY = P

(t)
X × P (t)

Y , ∀t,

H1 : ∃t′ : P (t′)
XY ̸= P

(t′)
X × P (t′)

Y .

(B.19a)

(B.19b)

The superscripts highlight that, in contrast to the standard i.i.d. setting (Definitions 10 and 2), the underlying

distributions may drift over time. For independence testing, we need to impose an additional assumption that enables

reasoning about the type I error control of Seq-C-IT.
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Assumption 7. Consider the setting of independence testing under distribution drift (Definition 12). We assume that

for each t ≥ 1, it holds that either P (t−1)
X = P

(t)
X or P (t−1)

Y = P
(t)
Y , meaning that at each step either the distribution

of X changes or that of Y changes, but not both simultaneously†.

We have the following result about the type I error control of our tests under distribution drift.

Corollary B.3.1. The following claims hold:

1. Suppose that H0 in (B.18a) is true. Then Seq-C-2ST satisfies: PH0 (τ <∞) ≤ α.

2. Suppose that H0 in (B.19a) is true. Further, suppose that Assumption 7 is satisfied. Then Seq-C-IT satisfies:

PH0
(τ <∞) ≤ α.

The above result follows from the fact the payoff functions underlying Seq-C-2ST (B.17) and Seq-C-IT (3.23) are

valid under the more general null hypotheses (B.18a) and (B.19a) respectively. The rest of the proof of Corollary B.3.1

follows the same steps as that of Theorem 3.2, and we omit the details. We conclude with an example which shows

that Assumption 7 is necessary for the type I error control.

Example 5. Consider the following case when the null H0 in (B.19a) is true, but Assumption 7 is not satisfied. We

show that Seq-C-IT fails to control type I error (at any prespecified level α ∈ (0, 1)), and for simplicity, focus on the

payoff function based on the squared risk (3.23). Suppose that we observe a sequence of observations: ((Xt, Yt))t≥1,

where (Xt, Yt) = (t + Wt, t + Vt) and Wt, Vt
iid∼ Bern(1/2). It suffices to show that there exists a sequence of

predictors (gt)t≥1, for which

lim inf
t→∞

1

t

t∑

i=1

f st ((X2t−1, Y2t−1), (X2t, Y2t))
a.s.
> 0. (B.20)

If (B.20) holds, then using the same argument as in the proof of Theorem 3.2, one can then deduce that P (τ <∞) = 1.

Consider the following sequence of predictors (gt)t≥1:

gt(x, y) =
((
x−

(
2t− 1

2

)) (
y −

(
2t− 1

2

))
∧ 1
)
∨ −1.

We have:
gt(X2t, Y2t) =

((
W2t +

1
2

) (
V2t +

1
2

)
∧ 1
)
∨ −1,

gt(X2t−1, Y2t−1) =
(
W2t−1 − 1

2

) (
V2t−1 − 1

2

)
,

gt(X2t, Y2t−1) =
(
W2t +

1
2

) (
V2t−1 − 1

2

)
,

gt(X2t−1, Y2t) =
(
W2t−1 − 1

2

) (
V2t +

1
2

)
.

†Technically, a slightly weaker condition suffices — at odd t, the distribution can change arbitrarily, but at even t, either the distribution of X
changes or that of Y changes but not both; however, this weaker condition is slightly less intuitive than the stated condition.
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Simple calculation shows that:

E [gt(X2t, Y2t)] = 11/16, E [gt(X2t−1, Y2t−1)] = E [gt(X2t, Y2t−1)] = E [gt(X2t−1, Y2t)] = 0

and hence, for all t ≥ 1, it holds that E [f st ((X2t−1, Y2t−1), (X2t, Y2t))] = 11/64 > 0. This in turn implies (B.20),

and hence, we conclude that Seq-C-IT fails to control the type I error.

B.4 Proofs

B.4.1 Auxiliary Results

Proposition 8 (Ville’s inequality (Ville, 1939)). Suppose that (Mt)t≥0 is a nonnegative supermartingale process

adapted to a filtration (Ft)t≥0. Then, for any a > 0 it holds that:

P (∃t ≥ 1 :Mt ≥ a) ≤
E [M0]

a
.

B.4.2 Supporting Lemmas

Lemma B.3.1. Consider sequential two-sample testing setting (Definition 1). Suppose that a predictor g ∈ G satisfies

E [f(Z,W )] > 0, where f(z, w) := wg(z).

(a) Consider the wealth process (Kt)t≥0 based on f along with the ONS strategy for selecting betting fractions

(Algorithm 5). Then we have the following lower bound on the growth rate of the wealth process:

lim inf
t→∞

logKt

t

a.s.
≥ 1

4

(
(E [f(Z,W )])

2

E [f2(Z,W )]
∧ E [f(Z,W )]

)
. (B.21)

(b) For λ⋆ = argmaxλ∈[−0.5,0.5] E [log(1 + λf(Z,W ))], it holds that:

E [log(1 + λ⋆f(Z,W ))] ≤ 4

3
· (E [f(Z,W )])

2

E
[
(f(Z,W ))

2
] ∧ E [f(Z,W )]

2
. (B.22)

An analogous result holds when the payoff function f(z, w) := w · sign [g(z)] is used instead.

Proof. (a) Under the ONS betting strategy, for any sequence of outcomes (ft)t≥1, ft ∈ [−1, 1], it holds that (see

the proof of Theorem 1 in (Cutkosky and Orabona, 2018)):

logKt(λ0)− logKt = O

(
log

(
t∑

i=1

f2i

))
, (B.23)
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whereKt(λ0) is the wealth of any constant betting strategy λ0 ∈ [−1/2, 1/2] andKt is the wealth corresponding

to the ONS betting strategy. Hence, it follows that

logKt

t
≥ logKt(λ0)

t
− C · log t

t
, (B.24)

for some absolute constant C > 0. Next, consider

λ0 =
1

2

((∑t
i=1 fi∑t
i=1 f

2
i

∧ 1

)
∨ 0

)
.

We obtain:
logKt(λ0)

t
=

1

t

t∑

i=1

log(1 + λ0fi)

(a)

≥ 1

t

t∑

i=1

(λ0fi − λ20f2i )

=

(
1
t

∑t
i=1 fi

4
∨ 0

)
·
(

1
t

∑t
i=1 fi

1
t

∑t
i=1 f

2
i

∧ 1

)
,

(B.25)

where in (a) we used that log(1 + x) ≥ x− x2 for x ∈ [−1/2, 1/2]. From (B.24), it then follows that:

lim inf
t→∞

logKt

t

a.s.
≥
(
E [f(Z,W )]

4
∨ 0

)
·
(

E [f(Z,W )]

E [f2(Z,W )]
∧ 1

)

=
1

4

(
(E [f(Z,W )])

2

E [f2(Z,W )]
∧ E [f(Z,W )]

)
,

which completes the proof of the first assertion of the lemma.

(b) Since log(1 + x) ≤ x− 3x2/8 for any x ∈ [−0.5, 0.5], we know that:

E [log (1 + λ⋆f(Z,W ))] ≤ E
[
λ⋆f(Z,W )− 3

8
(λ⋆f(Z,W ))

2

]

≤ max
λ∈[−0.5,0.5]

(
λ · E [f(Z,W )]− 3λ2

8
· E
[
(f(Z,W ))

2
])

.

The optimizer of the above is

λ̃ =
4E [f(Z,W )]

3E
[
(f(Z,W ))

2
] ∧ 1

2
.

Hence, as long as E [f(Z,W )] ≤ (3/8) · E
[
(f(Z,W ))

2
]
, we have:

E [log (1 + λ⋆f(Z,W ))] ≤ 2

3

(E [f(Z,W )])
2

E
[
(f(Z,W ))

2
] . (B.26)
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If however, E [f(Z,W )] > (3/8) · E
[
(f(Z,W ))

2
]
, then we know that:

E [log (1 + λ⋆f(Z,W ))] ≤ E [f(Z,W )]

2
.

To bring it to a convenient form, we multiply the upper bound in (B.26) by two and get the bound (B.22), which

completes the proof of the second assertion of the lemma.

B.4.3 Proofs for Section 3.2

Proposition 3. Fix an arbitrary predictor g ∈ G. The following claims hold:

1. For the misclassification risk, we have that:

sup
s∈[0,1]

(
1
2 −Rm(sg)

)
=
(
1
2 −Rm(g)

)
∨ 0 =

(
1
2 · E [W · sign [g(Z)]]

)
∨ 0. (3.9)

2. For the squared risk, we have that:

sup
s∈[0,1]

(1−Rs(sg)) ≥ (E [W · g(Z)] ∨ 0) ·
(
E [W · g(Z)]
E [g2(Z)]

∧ 1

)
(3.10)

Further, ds(P,Q) > 0 if and only if there exists g ∈ G such that E [W · g(Z)] > 0.

Proof. 1. The first equality in (3.9) follows from two facts: (a) for any g ∈ G and any s ∈ (0, 1], it holds that

Rm(sg) = Rm(g), (b) Rm(0) = 1/2. The second equality easily follows from the following fact: sign [x] /2 =

1/2− 1 {x < 0}.

2. Consider an arbitrary predictor g ∈ G. Let us consider all possible scenarios:

(a) If E [W · g(Z)] ≤ 0, then the RHS of (3.10) is zero. For the LHS of (3.10), we have that:

sup
s∈[0,1]

(1−Rs(sg)) ≥ 1−Rs(0) = 0,

so the bound (3.10) holds.

(b) Next, assume that E [W · g(Z)] > 0, then it is easy to derive that:

s⋆ := argmax
s∈[0,1]

(1−Rs(sg)) =
E [W · g(Z)]
E [g2(Z)]

∧ 1. (B.27)
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A simple calculation shows that:

1−Rs(s⋆g) ≥ E [W · g(Z)] ·
(
E [W · g(Z)]
E [g2(Z)]

∧ 1

)
,

and hence, we conclude that the bound (3.10) holds.

To establish the second part of the statement, note that ds(P,Q) > 0 iff there is a predictor g ∈ G such that

Rs(g) < 1. For the squared risk, we have:

1−Rs(g) = 2E [W · g(Z)]− E
[
g2(Z)

]
, (B.28)

and hence, Rs(g) < 1 trivially implies that E [W · g(Z)] > 0. The converse implication trivially follows

from (3.10). Hence, the result follows.

Theorem 3.1. The following claims hold:

1. Suppose that H0 in (3.1a) is true. Then the oracle sequential test based on either (Km,⋆
t )t≥0 or (Ks,⋆

t )t≥0 ever

stops with probability at most α: PH0
(τ <∞) ≤ α.

2. Suppose that H1 in (3.1b) is true. Then:

(a) The growth rate of the oracle wealth process (Km,⋆
t )t≥0 satisfies:

lim inf
t→∞

(
1
t logK

m,⋆
t

) a.s.
≥
(
1
2 −Rm (g⋆)

)2
. (3.14)

If Rm (g⋆) < 1/2, then the test based on (Km,⋆
t )t≥0 is consistent: PH1 (τ <∞) = 1. Further, the optimal

growth rate achieved by λm⋆ in (3.13) satisfies:

E [log(1 + λm⋆ f
m
⋆ (Z,W ))] ≤

(
16
3 ·
(
1
2 −Rm(g⋆)

)2 ∧
(
1
2 −Rm(g⋆)

))
. (3.15)

(b) The growth rate of the oracle wealth process (Ks,⋆
t )t≥0 satisfies:

lim inf
t→∞

(
1
t logK

s,⋆
t

) a.s.
≥ 1

4 · E [W · g⋆(Z)] . (3.16)

If E [W · g⋆(Z)] > 0, then the test based on (Ks,⋆
t )t≥0 is consistent: PH1

(τ <∞) = 1. Further, the

optimal growth rate achieved by λs⋆ in (3.13) satisfies:

E [log(1 + λs⋆f
s
⋆(Z,W ))] ≤ 1

2 · E [W · g⋆(Z)] . (3.17)
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Proof. 1. We trivially have that the payoff functions (3.11a) and (3.11b) are bounded: ∀(z, w) ∈ Z × {−1, 1}, it

holds that fm⋆ (z, w) ∈ [−1, 1] and f s⋆(z, w) ∈ [−1, 1]. Further, under the null H0 in (3.1a), it trivially holds that

EH0
[fm⋆ (Zt,Wt) | Ft−1] = EH0

[f s⋆(Zt,Wt) | Ft−1] = 0, where Ft−1 = σ({(Zi,Wi)}i≤t−1). Since ONS

betting fractions
(
λONS
t

)
t≥1

are predictable, we conclude that the resulting wealth process is a nonnegative

martingale. The assertion of the Theorem then follows directly from Ville’s inequality (Proposition 8) when

a = 1/α.

2. Suppose that H1 in (3.1b) is true. First, we prove the results for the lower bounds:

(a) Consider the wealth process based on the misclassification risk (Km,⋆
t )t≥0. Note that for all t ≥ 1:

E [fm⋆ (Zt,Wt)] = 2 ·
(
1

2
−Rm (g⋆)

)
, (fm⋆ (Zt,Wt))

2
= 1.

Since E [fm⋆ (Zt,Wt)] ∈ [0, 1], we also have (E [fm⋆ (Zt,Wt)])
2 ≤ E [fm⋆ (Zt,Wt)]. From the first part of

Lemma B.3.1, it follows that:

lim inf
t→∞

logKm,⋆
t

t

a.s.
≥ 1

4
(E [fm⋆ (Zt,Wt)])

2
=

(
1

2
−Rm (g⋆)

)2

.

From the second part of Lemma B.3.1, and (B.22) in particular, it follows that:

E [log (1 + λm⋆ f
m
⋆ (Z,W ))] ≤

(
16

3
·
(
1

2
−Rm(g⋆)

)2

∧
(
1

2
−Rm(g⋆)

))
.

The first term in the above is smaller or equal than the second one wheneverRm(g⋆) ≥ 5/16. We conclude

that the assertion of the theorem is true.

(b) Next, we consider the wealth process based on the squared error: (Ks,⋆
t )t≥0. Note that:

E [f s⋆(Zt,Wt)] = E [W · g⋆(Z)] ,

E
[
(f s⋆(Zt,Wt))

2
]
= E

[
g2⋆(Z)

]
,

and hence from Lemma B.3.1, it follows that:

lim inf
t→∞

logKs,⋆
t

t

a.s.
≥ 1

4

(
(E [W · g⋆(Z)])2

E [g2⋆(Z)]
∧ E [W · g⋆(Z)]

)
. (B.29)

In the above, we assume that the following case is not possible: g⋆(Z)
a.s.
= 0 (for such g⋆, the corresponding

expected margin and the growth rate of the resulting wealth process are clearly zero, and will still be
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highlighted in our resulting bound). Next, note that since g⋆ ∈ argming∈G Rs (g), we have that:

1−Rs (g⋆) = sup
s∈[0,1]

(1−Rs (sg⋆)) ,

meaning that g⋆ can not be improved by scaling with s < 1. From Proposition 3, and (B.27) in particular,

it follows that:
E [W · g⋆(Z)]
E [g2⋆(Z)]

≥ 1, (B.30)

and hence, the bound (B.29) reduces to

lim inf
t→∞

logKs,⋆
t

t

a.s.
≥ E [W · g⋆(Z)]

4
.

From the second part of Lemma B.3.1, it follows that:

E [log (1 + λs⋆f
s
⋆(Z,W ))] ≤ 4

3

(E [W · g⋆(Z)])2

E
[
(g⋆(Z))

2
] ∧ E [W · g⋆(Z)]

2
. (B.31)

Next, we use that g⋆ satisfies (B.30), which implies that the second term in (B.31) is smaller, and hence,

E [log (1 + λs⋆f
s
⋆(Z,W ))] ≤ E [W · g⋆(Z)]

2
,

which concludes the proof of the second part of the theorem.

Corollary 3.1.1. Consider an arbitrary g ∈ G with nonnegative expected margin: E [W · g(Z)] ≥ 0. Then the growth

rate of the corresponding wealth process (Ks
t)t≥0 satisfies:

lim inf
t→∞

(
1
t logKs

t

) a.s.
≥ 1

4

(
sup

s∈[0,1]

(1−Rs (sg)) ∧ E [W · g(Z)])
)

≥ 1
4 (E [W · g(Z)])2 ,

(3.18a)

(3.18b)

and the optimal growth rate achieved by λs⋆ in (3.13) satisfies:

E [log(1 + λs⋆f
s(Z,W ))] ≤

(
4
3 · sup

s∈[0,1]

(1−Rs (sg))
)
∧
(
1
2 · E [W · g(Z)]

)
. (3.19)

Proof. Following the same argument as that of the proof of Theorem 3.1, we can deduce that:

lim inf
t→∞

logKs
t

t

a.s.
≥ 1

4

(
(E [W · g(Z)])2

E [g2(Z)]
∧ E [W · g(Z)]

)
. (B.32)
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Hence, it suffices to argue that the lower bound (B.32) is equivalent to (3.18a). Without loss of generality, we can

assume that E [W · g(Z)] ≥ 0, and further, the two lower bounds are equal if E [W · g(Z)] = 0. Hence, we consider

the case when E [W · g(Z)] > 0. First, let us consider the case when

E [W · g(Z)]
E [g2(Z)]

< 1. (B.33)

Using (B.27), we get that:

sup
s∈[0,1]

(1−Rs (sg)) =
(E [W · g(Z)])2

E [g2(Z)]
, (B.34)

and hence, two bounds coincide. For the upper bound (3.19), we use Lemma B.3.1, and the upper bound (B.22) in

particular. Note that the first term in (B.22) is less than the second term whenever

E [W · g(Z)]
E
[
(g(Z))

2
] ≤ 3

8
< 1.

However, in this regime we also know that (B.34) holds, and hence the two bounds coincide. This completes the proof.

Theorem 3.2. The following claims hold for Seq-C-2ST (Algorithm 6):

1. If H0 in (3.1a) is true, the test ever stops with probability at most α: PH0 (τ <∞) ≤ α.

2. Suppose that H1 in (3.1b) is true. Then:

(a) Under Assumption 3, the test with the payoff (3.22a) is consistent: PH1 (τ <∞) = 1.

(b) Under Assumption 4, the test with the payoff (3.22b) is consistent: PH1 (τ <∞) = 1.

Proof. 1. We trivially have that the payoff functions (3.22a) and (3.22b) are bounded: ∀t ≥ 1 and ∀(z, w) ∈
Z × {−1, 1}, it holds that fmt (z, w) ∈ [−1, 1] and f st (z, w) ∈ [−1, 1]. Further, under the null H0

in (3.1a), it trivially holds that EH0
[fmt (Zt,Wt) | Ft−1] = EH0

[f st (Zt,Wt) | Ft−1] = 0, where Ft−1 =

σ({(Zi,Wi)}i≤t−1). Since ONS betting fractions
(
λONS
t

)
t≥1

are predictable, we conclude that the resulting

wealth process is a nonnegative martingale. The assertion of the Theorem then follows directly from Ville’s

inequality (Proposition 8) when a = 1/α.

2. Note that if ONS strategy for selecting betting fractions is deployed, then (B.25) implies that the tests will be

consistent as long as

lim inf
t→∞

1

t

t∑

i=1

fi
a.s.
> 0, (B.35)

where for i ≥ 1, fi = fmi (Zi,Wi) and fi = f si (Zi,Wi) for the payoffs based on the misclassification and the

squared risks respectively.
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(a) Recall that

fmi (Zi,Wi) =Wi · sign [gi(Zi)] ,

and Assumption 3 states that:

lim sup
t→∞

1

t

t∑

i=1

1 {Wi · sign [gi(Zi)] < 0} a.s.
<

1

2
.

Since 1 {x < 0} = (1− sign [x]) /2, we get that:

lim sup
t→∞

1

t

t∑

i=1

(
1

2
− Wi · sign [gi(Zi)]

2

)
a.s.
<

1

2
,

which, after rearranging and multiplying by two, implies that:

lim inf
t→∞

1

t

t∑

i=1

Wi · sign [gi(Zi)]
a.s.
> 0.

Hence, a sufficient condition for consistency (B.35) holds, and we conclude that the result is true.

(b) Recall that

f si (Zi,Wi) =Wi · gi(Zi),

and Assumption 4 states that:

lim sup
t→∞

1

t

t∑

i=1

(gi(Zi)−Wi)
2 a.s
< 1,

which is equivalent to

lim sup
t→∞

1

t

t∑

i=1

(
g2i (Zi)− 2Wi · gi(Zi)

) a.s
< 0.

It is easy to see that the above, in turn, implies that:

lim inf
t→∞

1

t

t∑

i=1

Wi · gi(Zi)
a.s
> 0.

Hence, a sufficient condition for consistency (B.35) holds, and we conclude that the result is true.

B.4.4 Proofs for Appendix B.1

Theorem B.1. The following claims hold for the oracle sequential regression-based IT based on
(
Kr,⋆

t

)
t≥0

:

1. Suppose that H0 in (B.2a) is true. Then the test ever stops with probability at most α: PH1
(τ <∞) ≤ α.
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2. Suppose that H1 in (B.2b) is true. Further, suppose that: E [Wℓ(g⋆(X), Y )] > 0. Then the test is consistent:

PH1
(τ <∞) = 1.

Proof. 1. We trivially have that the payoff function (B.3) is bounded: ∀(x, y, w) ∈ X ×Y ×{−1, 1}, it holds that

f r⋆(x, y, w) ∈ [−1, 1]. Further, under the null H0 in (B.2a), it trivially holds that EH0
[f r⋆(Xt, Yt,Wt) | Ft−1] =

0, where Ft−1 = σ({(Xi, Yi,Wi)}i≤t−1). Since ONS betting fractions
(
λONS
t

)
t≥1

are predictable, we

conclude that the resulting wealth process is a nonnegative martingale. The assertion of the Theorem then

follows directly from Ville’s inequality (Proposition 8) when a = 1/α.

2. Note that if ONS strategy for selecting betting fractions is deployed, then (B.25) implies that the tests will be

consistent as long as

lim inf
t→∞

1

t

t∑

i=1

f r⋆(Xi, Yi,Wi)
a.s.
> 0. (B.36)

Note that:

1

t

t∑

i=1

f r⋆(Xi, Yi,Wi) =
1

t

t∑

i=1

tanh (s⋆ ·Wiℓ(g⋆(Xi), Yi))
a.s.→ E [tanh (s⋆ ·Wℓ(g⋆(X), Y ))] .

Note that for any x ∈ R : tanh(x) ≥ x− 1
3 ·max

{
x3, 0

}
. Hence, for any s > 0, it holds that:

E [tanh (s ·Wℓ(g⋆(X), Y ))] ≥ sE [Wℓ(g⋆(X), Y )]− 1

3
E
[
max

{
s3 ·W (ℓ(g⋆(X), Y ))3, 0

}]

= sE [Wℓ(g⋆(X), Y )]− s3

3
E
[
(ℓ(g⋆(X), Y ))3 ·max {W, 0}

]

= sE [Wℓ(g⋆(X), Y )]− s3

6
E
[
(1 +W ) · (ℓ(g⋆(X), Y ))3

]
,

(B.37)

where we used that max {W, 0} = (W + 1)/2 since W ∈ {−1, 1}. Maximizing the RHS of (B.37) over s > 0

yields s⋆ defined in (B.4a). Hence,

E [tanh (s⋆ ·Wℓ(g⋆(X), Y ))] ≥ s⋆E [Wℓ(g⋆(X), Y )]− s3⋆
6
E
[
(1 +W ) · (ℓ(g⋆(X), Y ))3

]

= s⋆

(
E [Wℓ(g⋆(X), Y )]− s2⋆

6
E
[
(1 +W ) · (ℓ(g⋆(X), Y ))3

])

= s⋆

(
E [Wℓ(g⋆(X), Y )]− 1

3
E [Wℓ(g⋆(X), Y )]

)

=
2s⋆
3

E [Wℓ(g⋆(X), Y )] > 0.

Hence, we conclude that the oracle regression-based IT is consistent since the sufficient condition (B.38) holds.

Theorem B.2. The following claims hold for the proxy sequential regression-based IT (Algorithm 9):

1. Suppose that H0 in (B.2a) is true. Then the test ever stops with probability at most α: PH0
(τ <∞) ≤ α.
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2. Suppose that H1 in (B.2b) is true. Further, suppose that Assumptions 5 and 6 are satisfied. Then the test is

consistent: PH1
(τ <∞) = 1.

Proof. 1. We trivially have that the payoff function (B.5) is bounded: ∀(x, y, w) ∈ X ×Y ×{−1, 1}, it holds that

f rt (x, y, w) ∈ [−1, 1]. Further, under the null H0 in (B.2a), it trivially holds that EH0
[f rt (Xt, Yt,Wt) | Ft−1] =

0, whereFt−1 = σ({(Xi, Yi,Wi)}i≤t−1). Since ONS betting fractions (λONS
t )t≥1 are predictable, we conclude

that the resulting wealth process is a nonnegative martingale. The assertion of the Theorem then follows directly

from Ville’s inequality (Proposition 8) with a = 1/α.

2. Note that if ONS strategy for selecting betting fractions is deployed, then (B.25) implies that the tests will be

consistent as long as

lim inf
t→∞

1

t

t∑

i=1

f rt (Xi, Yi,Wi)
a.s.
> 0. (B.38)

(a) Step 1. Consider a predictable sequence of scaling factors (st)t≥1, defined in (B.6a), and the corresponding

sequences (µt)t≥1 and (νt)t≥1, defined in (B.6b) and (B.6c) respectively. For t ≥ 1, let Ft :=

σ({(Xi, Yi,Wi)}i≤t). Since the losses are bounded, we have that:

(Wi · ℓ(g(Xi; θi), Yi)− E [Wi · ℓ(g(Xi; θi), Yi) | Fi−1])i≥1 ,

is a bounded martingale difference sequence (BMDS). By the Strong Law of Large Numbers for BMDS,

it follows that:

1

t

t∑

i=1

(Wi · ℓ(g(Xi; θi), Yi)− E [Wi · ℓ(g(Xi; θi), Yi) | Fi−1])
a.s.→ 0.

Since ((Xt, Yt,Wt))t≥1 is a sequence of i.i.d. observations, we can write

1

t

t∑

i=1

E [Wi · ℓ(g(Xi; θi), Yi) | Fi−1] =
1

t

t∑

i=1

E [W · ℓ(g(X; θi), Y ) | θi] ,

140



where (X,Y,W ) ⊥⊥ (θt)t≥1, θ⋆. Using Assumption 5, we get that:

∣∣∣∣∣
1

t

t∑

i=1

E [W · ℓ(g(X; θi), Y ) | θi]− E [W · ℓ(g(X; θ⋆), Y ) | θ⋆]
∣∣∣∣∣

≤ 1

t

t∑

i=1

sup
x∈X
y∈Y

|ℓ(g(x; θi), y)− ℓ(g(x; θ⋆), y)|

≤ 1

t

t∑

i=1

L2 sup
x∈X
|g(x; θi)− g(x; θ⋆)|

≤ 1

t

t∑

i=1

L2 · L1 · ∥θi − θ⋆∥ a.s.→ 0,

(B.39)

since ∥θi − θ⋆∥ a.s.→ 0 by Assumption 6. In particular, this implies that µt
a.s.→ E [Wℓ(g(X; θ⋆), Y ) | θ⋆].

Similar argument can be used to show that νt
a.s.→ E

[
(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆

]
, and hence,

st
a.s.→
√

2E [Wℓ(g(X; θ⋆), Y ) | θ⋆]
E [(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆]

=: s⋆. (B.40)

Note that s⋆ is a random variable which is positive (almost surely) by Assumption 6.

(b) Step 2. Recall that for any x ∈ R : tanh(x) ≥ x − 1
3 ·max

{
x3, 0

}
and that max {W, 0} = (W + 1)/2

since W ∈ {−1, 1}. We have:

1

t

t∑

i=1

f ri (Xi, Yi,Wi) =
1

t

t∑

i=1

tanh (si ·Wiℓ(g(Xi; θi), Yi))

≥ 1

t

t∑

i=1

(
si ·Wi · ℓ(g(Xi; θi), Yi)−

s3i
6
· (1 +Wi) · (ℓ(g(Xi; θi), Yi))

3

)
.

Note that θi and si are Fi−1-measurable (see Step 1 for the definition of Fi−1). Under a minor technical

assumption that (st)t≥1 is a sequence of bounded scaling factors (the lower bound is trivially zero and

the upper bound also holds if νt are bounded away from zero almost surely which is reasonable given the
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definition of νt), we can use analogous argument regarding a BMDS in Step 1 to deduce that:

lim inf
t→∞

1

t

t∑

i=1

f ri (Xi, Yi,Wi)

≥ lim inf
t→∞

1

t

t∑

i=1

(
si · E [W · ℓ(g(X; θi), Y ) | θi]−

s3i
6
E
[
(1 +W ) · (ℓ(g(X; θi), Y ))3 | θi

])
.

(B.41)

Using argument analogous to (B.39), we can show that:

1

t

t∑

i=1

E
[
(1 +W ) · (ℓ(g(X; θi), Y ))3 | θi

] a.s.→ E
[
(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆

]
. (B.42)

Combining (B.39), (B.40) and (B.42), we deduce that

1

t

t∑

i=1

(
si · E [W · ℓ(g(X; θi), Y ) | θi]−

s3i
6
E
[
(1 +W ) · (ℓ(g(X; θi), Y ))3 | θi

])

a.s.→ s⋆ · E [W · ℓ(g(X; θ⋆), Y ) | θ⋆]−
s3⋆
6
· E
[
(1 +W ) · (ℓ(g(X; θ⋆), Y ))3 | θ⋆

]

=
2s⋆
3
· E [W · ℓ(g(X; θ⋆), Y ) | θ⋆] .

Hence, from (B.41) it follows that:

lim inf
t→∞

1

t

t∑

i=1

f ri (Xi, Yi,Wi) ≥
2s⋆
3
· E [W · ℓ(g(X; θ⋆), Y ) | θ⋆] ,

where the RHS is a random variable which is positive almost surely. Hence, a sufficient condition for

consistency (B.38) holds which concludes the proof.
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B.4.5 Proofs for Appendix B.2

Two-Sample Testing with Unbalanced Classes. Note that (g(z) = 2η(z)− 1):

(1− λt) · 1 + λt ·
(η(Zt))

1{Wt=1}
(1− η(Zt))

1−1{Wt=1}

(π)
1{Wt=1}

(1− π)1−1{Wt=1}

= (1− λt) · 1 + λt ·

(
1+g(Zt)

2

)1{Wt=1} (
1−g(Zt)

2

)1−1{Wt=1}

(π)
1{Wt=1}

(1− π)1−1{Wt=1}

= (1− λt) · 1 +
λt
2
· (1 + g(Zt))

1{Wt=1}
(1− g(Zt))

1−1{Wt=1}

(π)
1{Wt=1}

(1− π)1−1{Wt=1}

= (1− λt) · 1 +
λt
2
· 1 +Wtg(Zt)

(π)
1{Wt=1}

(1− π)1−1{Wt=1}

= (1− λt) · 1 +
λt
2
· 2

1 +Wt(2π − 1)
· (1 +Wtg(Zt))

= (1− λt) · 1 +
λt

1 +Wt(2π − 1)
· (1 +Wtg(Zt))

= 1 + λt ·
Wt (g(Zt)− (2π − 1))

1 +Wt(2π − 1)
.

Payoff for the Case of Unbalanced Classes (known π). To see that the payoff function (B.13) is lower bounded by

negative one, note that:

fut (z, 1) =
gt(z)− (2π − 1)

2π
≥ −1− (2π − 1)

2π
= −1,

fut (z,−1) =
−gt(z) + (2π − 1)

2(1− π) ≥ −1 + (2π − 1)

2(1− π) = −1.

To see that such payoff is fair, note that:

EH0 [f
u
t (Zt,Wt) | Ft−1] = EP

[
π · gt(Zt)− (2π − 1)

2π

]
− EQ

[
(1− π) · gt(Zt)− (2π − 1)

2(1− π) | Ft−1

]
= 0,

where Ft−1 = σ
(
{(Zi,Wi)}i≤t−1

)
.

Theorem B.3. Suppose that H0 in (B.11a) is true. Then (Ku
t )t≥0 is a nonnegative supermartingale adapted to

(Ft)t≥0. Hence, the sequential 2ST based on (Ku
t )t≥0 satisfies: PH0

(τ <∞) ≤ α.

Proof. First, we show that (Ku
t )t≥0 is a nonnegative supermartingale. For any t ≥ 1, the wealth Kt−1 is multiplied at

round t by

1 + λtf
u
t

({
(Zb(t−1)+i,Wb(t−1)+i)

}
i∈{1,...,b}

)
= (1− λt) · 1 + λt ·

∏bt
i=b(t−1)+1 (1 +Wigt(Zi))
∏b

i=1 (1 +Wi(2π̂t − 1))
.
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Since λt ∈ [0, 0.5], we conclude that the process (Ku
t )t≥0 is nonnegative. Next, note that since π̂t is the MLE of π

computed from a t-th minibatch, it follows that:

1 + λtf
u
t

({
(Zb(t−1)+i,Wb(t−1)+i)

}
i∈{1,...,b}

)
≤ (1− λt) · 1 + λt ·

∏bt
i=b(t−1)+1 (1 +Wigt(Zi))

∏bt
i=b(t−1)+1 (1 +Wi(2π − 1))

= (1− λt) · 1 + λt ·
bt∏

i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π − 1)

)
.

Recall that Ft−1 = σ
(
{Zi,Wi}i≤b(t−1)

)
. It suffices to show that if H0 is true, then

EH0




bt∏

i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π − 1)

)
| Ft−1


 = 1.

Note that the individual terms in the above product are independent conditional on Ft−1. Hence,

EH0




bt∏

i=b(t−1)+1

(
1 +Wigt(Zi)

1 +Wi(2π − 1)

)
| Ft−1


 =

bt∏

i=b(t−1)+1

EH0

[
1 +Wigt(Zi)

1 +Wi(2π − 1)
| Ft−1

]
.

For any i ∈ {b(t− 1) + 1, . . . , bt}, it holds that:

EH0

[
1 +Wigt(Zi)

1 +Wi(2π − 1)
| Ft−1

]
= EH0

[
π · 1 + gt(Zi)

1 + (2π − 1)
+ (1− π) · 1− gt(Zi)

1− (2π − 1)
| Ft−1

]

= EH0

[
1 + gt(Zi)

2
+

1− gt(Zi)

2
| Ft−1

]

= 1.

Hence, we conclude that (Ku
t )t≥0 is a nonnegative supermartingale adapted to (Ft)t≥0. The time-uniform type I error

control of the resulting test then follows from Ville’s inequality (Proposition 8).

B.5 Additional Experiments and Details

B.5.1 Modeling Details

CNN Architecture and Training. We use CNN with 4 convolutional layers (kernel size is taken to be 3 × 3) and

16, 32, 32, 64 filters respectively. Further, each convolutional layer is followed by max-pooling layer (2 × 2). After

flattening, those layers are followed by 1 fully connected layer with 128 neurons. Dropout (p = 0.5) and early

stopping (with patience equal to ten epochs and 20% of data used in the validation set) is used for regularization.

ReLU activation functions are used in each layer. Adam optimizer is used for training the network. We start training
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after processing twenty observations, and update the model parameters after processing every next ten observations.

Maximum number of epochs is set to 25 for each training iteration. The batch size is set to 32.

Single-stream Sequential Kernelized 2ST. The construction of this test is the extension of 2ST of Shekhar and

Ramdas (2021) to the case when at each round an observation only from a single distribution (P or Q) is revealed. Let

G denote an RKHS with positive-definite kernel k and canonical feature map φ(·) defined on Z . Recall that instances

from P as labeled as +1 and instances from Q are labeled as −1 (characterized by W ). The mean embeddings of P

and Q are then defined as

µ̂
(t)
P =

1

N+(t)

t∑

i=1

φ(Zi) · 1 {Wi = +1} ,

µ̂
(t)
Q =

1

N−(t)

t∑

i=1

φ(Zi) · 1 {Wi = −1} ,

where N+(t) = |i ≤ t :Wi = +1| and N−(t) = |i ≤ t :Wi = −1|. The corresponding payoff function is

fkt (Zt+1,Wt+1) =Wt+1 · ĝt(Zt+1),

where ĝt =
µ̂
(t)
P − µ̂

(t)
Q∥∥∥µ̂(t)

P − µ̂
(t)
Q

∥∥∥
G

.

To make the test computationally efficient, it is critical to update the normalization constant efficiently. Suppose that

at round t+ 1, an instance from P is observed. In this case, µ̂(t+1)
Q = µ̂

(t)
Q . Note that:

µ̂
(t+1)
P =

1

N+(t+ 1)

t+1∑

i=1

φ(Zi) · 1 {Wi = +1}

=
1

N+(t) + 1

t+1∑

i=1

φ(Zi) · 1 {Wi = +1}

=
1

N+(t) + 1
φ(Zt+1) +

1

N+(t) + 1

t∑

i=1

φ(Zi) · 1 {Wi = +1}

=
1

N+(t) + 1
φ(Zt+1) +

N+(t)

N+(t) + 1
µ̂
(t)
P .

Hence, we have: ∥∥∥µ̂(t+1)
P − µ̂(t+1)

Q

∥∥∥
2

G
=
∥∥∥µ̂(t+1)

P − µ̂(t)
Q

∥∥∥
2

G

=
∥∥∥µ̂(t+1)

P

∥∥∥
2

G
− 2

〈
µ̂
(t+1)
P , µ̂

(t)
Q

〉
G
+
∥∥∥µ̂(t)

Q

∥∥∥
2

G
.

In particular, 〈
µ̂
(t+1)
P , µ̂

(t)
Q

〉
G
=

〈
1

N+(t) + 1
φ(Zt+1) +

N+(t)

N+(t) + 1
µ̂
(t)
P , µ̂

(t)
Q

〉

G

=
1

N+(t) + 1

〈
φ(Zt+1), µ̂

(t)
Q

〉
G
+

N+(t)

N+(t) + 1

〈
µ̂
(t)
P , µ̂

(t)
Q

〉
G
.
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Note that: 〈
φ(Zt+1), µ̂

(t)
Q

〉
G
=

1

N−(t)

t∑

i=1

k(Zt+1, Zi) · 1 {Wi = −1} .

Next, we assume for simplicity that k(x, x) = 1,∀x which holds for RBF kernel. Observe that:

∥∥∥µ̂(t+1)
P

∥∥∥
2

G
=
〈
µ̂
(t+1)
P , µ̂

(t+1)
P

〉
G

=
1

(N+(t) + 1)
2 +

2N+(t)

(N+(t) + 1)
2

〈
φ(Zt+1), µ̂

(t)
P

〉
G
+

(N+(t))
2

(N+(t) + 1)
2

∥∥∥µ̂(t)
P

∥∥∥
2

G
.

By caching intermediate results, we can compute the normalization constant using linear in t number of kernel

evaluations. We start betting once at least one instance is observed from both P and Q. For simulations, we use

RBF kernel and the median heuristic with first 20 instances to compute the kernel hyperparameter.

MLP Training Scheme. We begin training after processing twenty datapoints from PXY which gives a training

dataset with 40 datapoints (due to randomization). When updating a model, we use previous parameters as

initialization. We use the following update scheme: we start after next n0 = 10 datapoints from PXY are observed.

Once n0 becomes less than 1% of the size of the existing training dataset, we increase it by ten, that is, nt = nt−1+10.

When we fit the model, we set the maximum number of epochs to be 25 and use early stopping with patience of 3

epochs.

Kernel Hyperparameters for Synthetic Experiments. For SKIT, we use RBF kernels:

k(x, x′) = exp
(
−λX ∥x− x′∥22

)
, l(y, y′) = exp

(
−λY ∥y − y′∥22

)
.

For simulations on synthetic data, we take kernel hyperparameters to be inversely proportional to the second moment

of the underlying variables (the median heuristic yields similar results):

λX =
1

2E
[
∥X −X ′∥22

] , λY =
1

2E
[
∥Y − Y ′∥22

] .

1. Spherical model. By symmetry, we have: PX = PY , and hence we take λX = λY . We have

E
[
(X −X ′)2

]
= 2E

[
X2
]
=

2

d
.

2. HTDD model. By symmetry, we have: PX = PY , and hence we take λX = λY . We have

E
[
(X −X ′)2

]
= 2E

[
X2
]
=

2π2

3
.
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3. Sparse signal model. We have

E
[
∥X −X ′∥22

]
= 2E

[
∥X∥22

]
= 4d,

E
[
∥Y − Y ′∥22

]
= 2E

[
∥Y ∥22

]
= 2tr(BsB

⊤
s + Id) = 2(d+

d∑

i=1

β2
i ).

4. Gaussian model. We have
E
[
(X −X ′)2

]
= 2E

[
X2
]
= 2,

E
[
(Y − Y ′)2

]
= 2E

[
Y 2
]
= 2(1 + β2).

Ridge Regression. We use ridge regression as an underlying predictive model: ĝt(x) = β
(t)
0 + xβ

(t)
1 , where the

coefficients are obtained by solving:

(β
(t)
0 , β

(t)
1 ) = argmin

β0,β1

2(t−1)∑

i=1

(Yi −Xiβ1 − β0)2 + λβ2
1 .

Let Γ = diag(0, 1). Let Xt−1 ∈ R2(t−1)×2 be such that (Xt−1)i = (1, Xi), i ∈ [1, 2(t − 1)]. Finally, let Yt−1 be a

vector of responses: (Yt−1)i = Yi, i ∈ [1, 2(t− 1)]. Then:

β(t) = argmin
β

∥Yt−1 −Xt−1β∥2 + λβ⊤Γβ =
(
X⊤

t−1Xt−1 + λΓ
)−1

(X⊤
t−1Yt−1).

B.5.2 Additional Experiments for Seq-C-IT

In Figure B.2, we present average stopping times for ITs under the synthetic settings from Section 3.3. We confirm

that all tests adapt to the complexity of a problem at hand, stopping earlier on easy tasks and later on harder ones. We
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Figure B.2: Stopping times of ITs on synthetic data from Section 3.3. Subplot (a) shows that SKIT is only
marginally better than Seq-C-IT (MLP) due to slightly better sample efficiency under the spherical model (no localized
dependence). Under the structured HTDD model, SKIT is inferior to Seq-C-ITs.

147



also consider two additional synthetic examples where Seq-C-IT outperforms a kernelized approach:

1. Sparse signal model. Let (Xt)t≥1 and (εt)t≥1 be two independent sequences of standard Gaussian random

vectors in Rd: Xt, εt
iid∼ N (0, Id), t ≥ 1. We take

(Xt, Yt) = (Xt, BsXt + εt),

where Bs = diag(β1, . . . , βd) and only s = 5 of {βi}di=1 are nonzero being sampled from Unif([−0.5, 0.5]).
We consider d ∈ {5, . . . , 50}.

2. Nested circles model. Let (Lt)t≥1, (Θt)t≥1, (ε(1)t )t≥1, (ε(2)t )t≥1 denote sequences of random variables where

L
iid∼ Unif(1, . . . , l) for some prespecified l ∈ N, Θt

iid∼ Unif([0, 2π]), and ε(1)t , ε
(2)
t

iid∼ N (0, (1/4)2). For

t ≥ 1, we take

(Xt, Yt) = (Lt cos(Θt) + ε
(1)
t , Lt sin(Θt) + ε

(2)
t ). (B.43)

We consider l ∈ {1, . . . , 10}.

In Figure B.3, we show that Seq-C-ITs significantly outperform SKIT under these models. We note that the

degrading performance of kernel-based tests under the nested circles model (B.43) has been also observed in earlier

works (Berrett and Samworth, 2019; Podkopaev et al., 2023).

148



10 20 30 40 50

d

0.0

0.2

0.4

0.6

0.8

1.0

P
ow

er
at

T
im

e
T

=
50

00

SKIT

Seq-C-IT (MLP):
f s
t

fm
t

(a) Sparse signal model.
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Figure B.3: Rejection rates (left column) and average stopping times (right column) of sequential ITs for synthetic
datasets from Appendix B.5.2. In both cases, SKIT is inferior to Seq-C-ITs.
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Appendix C

Additional Results for Chapter 4

C.1 Issues with Existing Tests for Distribution Shifts/Drifts

C.1.1 Non-sequential Tests Have Highly Inflated False Alarm Rates when Continuously

Monitored

In this work, we propose a framework that utilizes confidence sequences (CSs), and thus allows for continuous

monitoring of model performance. On the other hand, traditional (fixed-time) testing procedures are not valid under

sequential settings, unless corrections for multiple testing are performed. First, we illustrate that deploying fixed-time

detection procedures under sequential settings necessarily leads to raising false alarms. Then, we illustrate that naive

corrections for multiple testing—without taking advantage of the dependence between the tests—lead to losses of

power of the resulting procedure.

Deploying fixed-time tests without corrections for multiple testing. Under the i.i.d. setting, our framework

reduces to testing whether the means corresponding to two unknown distributions are significantly different. Here

we consider a simplified setting: assume that one observes a sequence Z1, Z2, . . . of bounded i.i.d. random variables,

and the goal is to construct a lower confidence bound for the corresponding mean µ. In this case, a natural alternative

to confidence sequences is a lower bound obtained by invoking the Central Limit Theorem:

Zt − zδ ·
σ̂t√
t
,

where zδ is (1 − δ)-quantile of the standard Gaussian random variable and Zt, σ̂t denote the sample average and

sample standard deviation respectively computed using first t instances Z1, . . . , Zt. For the study below, we use the

critical (significance) level δ = 0.1. We sample the data as: Zt ∼ Ber(0.6), t = 1, 2, . . . , and consider 100 possible
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sample sizes, evenly spaced between 20 and 1000 on a logarithmic scale. Next, we compare the CLT lower bound

with the betting-based one (which underlies the framework proposed in this work) under the following settings:

1. Fixed-time monitoring. For a given sample size t, we sample the sequence Z1, . . . , Zt, compute the lower

bounds and check whether the true mean is covered only once. For each value of the sample size, we resample

data 100 times and record the miscoverage rate, that is, the fraction of times the true mean is miscovered.

2. Continuous monitoring. Here, the lower bound is recomputed once new data become available. We resample

the whole data sequence Z1, . . . , Z1000 1000 times, and for each value of the sample size, we track the

cumulative miscoverage rate, that is, the fraction of times the true mean has been miscovered at some time

up to t.

Under fixed-time monitoring (Figure C.1a), the false alarm rate is controlled at prespecified level δ by both

procedures. However, under continuous monitoring (Figure C.1b), deploying the CLT lower bound leads to raising

false alarms. At the same time, the betting-based lower bound controls the false alarm rate under both types of

monitoring.
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Figure C.1: False alarm rate for the CLT and betting-based lower confidence bound (LCB) under: (a) fixed-time
monitoring and (b) continuous monitoring. Note that both bounds control the false alarm rate at a prespecified level
δ = 0.1 under fixed-time monitoring. However under continuous monitoring, the false alarm rate of the CLT bound
quickly exceeds the critical level δ = 0.1. At the same time, the betting LCB successfully controls the false alarm rate.

Deploying fixed-time tests with corrections for multiple testing. Next, we illustrate that adapting fixed-time tests

to sequential settings via performing corrections for multiple testing comes at the price of significant power losses.

Performing the Bonferroni correction requires splitting the available error budget δ among the times when testing is

performed. In particular, we consider:

Power correction:
∞∑

i=1

δ

2i
= δ,

Polynomial correction:
6

π2

∞∑

i=1

δ

i2
= δ.

(C.1)
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Note that the second option is preferable as the terms in the sum decrease at a slower rate, thus allowing for a narrower

sequence of intervals. Proceeding under the setup considered in the beginning of this section (data points are sampled

from Ber(0.6)), we consider two scenarios:

1. We recompute the CLT lower bound each time a batch of 25 samples is received and perform the Bonferroni

correction (utilizing both ways of splitting the error budget described in (C.1)). We present the lower bounds on

Figure C.2a (the results have been aggregated over 100 data draws). Observe that:

• While the sequence of intervals shrinks in size with growing number of samples under the polynomial

correction, this is not the case under the power correction.

• Not only the betting confidence sequence is uniformly tighter than the CLT-based over all considered

sample sizes, it also allows for monitoring at arbitrary stopping times. Note that the CLT lower bound

allows for monitoring only at certain times (marked with stars on Figure C.2a).

2. For a fairer comparison with the betting-based bound, we also consider recomputing the CLT bound each time

a new sample is received. Since utilizing the power correction quickly leads to numerical overflows, we utilize

only the polynomial correction. We present the lower bounds on Figure C.2b (the results have been aggregated

over 100 data draws). While now the CLT lower bound can be monitored at arbitrary stopping times, it is

substantially lower (thus more conservative) than the betting-based.
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Figure C.2: Adapting the CLT lower bound to continuous monitoring via performing corrections for multiple testing:
(a) each time a batch of 25 samples is received, (b) each time a new sample is received. Under both settings, the
CLT-based lower bound is more conservative than the betting-based, which, in testing terminology, means that the
resulting testing framework has less power.

C.1.2 Conformal Test Martingales may not Differentiate between Harmful and Benign

Shifts

Testing the i.i.d. assumption online can be performed using conformal test martingales (Vovk et al., 2021; Vovk,

2020b,a). Below, we review building blocks underlying a conformal test martingale.
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1. First, one has to pick a conformity score. Assigning a lower score to a sample indicates abnormal behavior.

Vovk et al. (2021) consider the regression setting and, like us, use scores that depends on true labels: for a point

(xi, yi), let ŷi denote the output of a predictor on input xi. The authors propose a score of the form:

αi = − |yi − ŷi| . (C.2)

Note that lower scores defined in (C.2) clearly reflect degrading performance of a predictor (possibly due to the

presence of distribution drift). Under the classification setting, we propose to consider the following conformity

score:

αi =

K∑

i=1

fk(xi) · 1 {fk(xi) ≤ fyi
(xi)} = 1−

K∑

i=1

fk(xi) · 1 {fk(xi) > fyi
(xi)} , (C.3)

which is a rescaled estimated probability mass of all the labels that are more likely than the true one (here, we

assume that predictor f outputs an element of ∆|Y|). Rescaling in (C.3) is used to ensure that this score represent

the conformity score, that is, the higher the value is, the better a given data point conforms. Note that if for a

given data point, the true label happens to be top-ranked by a predictor f , then such point receives the largest

conformity score equal to one. This score is inspired by recent works in conformal classification (Romano et al.,

2020; Podkopaev and Ramdas, 2021).

2. After processing n data points, a transducer transforms a collection of conformity scores into a conformal

p-value:

Pn = p ({(xi, yi)}ni=1 , u) :=
|i ∈ {1, . . . , n} : αi < αn|+ u · |i ∈ {1, . . . , n} : αi = αn|

n
,

where u ∼ Unif([0, 1]). Conformal p-values are i.i.d. uniform on [0, 1] when the data points are i.i.d. (or more

generally, exchangeable; see (Vovk et al., 2021)). Note that the design of conformal p-value Pn ensures it takes

small value when the conformity score αn is small, that is, when abnormal behavior is being observed in a

sequence.

3. A betting martingale is used to gamble again the null hypothesis that a sequence of random variables is

distributed uniformly and independently on [0, 1]. Formally, a betting martingale is a measurable function

F : [0, 1]⋆ → [0,∞] such that F (□) = 1 (□ defines an empty sequence and Z⋆ stands for the set of all finite

sequences of elements of Z) and for each sequence (u1, . . . , un−1) ∈ [0, 1]n−1 and any n ≥ 1:

∫ 1

0

F (u1, . . . , un−1, u)du = F (u1, . . . , un−1).
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The simplest example is given by the product of simple bets:

F (u1, . . . , un) = εn

(
n∏

i=1

ui

)1−ε

, ε > 0, (C.4)

but more sophisticated options are available (Vovk et al., 2005). For the simulations that follow, we use simple

mixture martingale which is obtained by integrating (C.4) over ε ∈ [0, 1].

Conformal test martingale Sn is obtained by plugging in the sequence of conformal p-values P1, . . . , Pn into

the betting martingale. The test starts with S0 = 1 and it rejects at the first time n when Sn exceeds 1/α.

They type I error control for this test is justified by Ville’s inequality which states that for any nonnegative

martingale (which Sn is, under the i.i.d. null), the entire process Sn stays below 1/α with probability at least

1− α. Mathematically:

P (∃n : Sn ≥ 1/α) ≤ α.

To study conformal test martingales, we consider the label shift setting described in Section 4.3.1. Recall that

for this setting we know exactly when a shift in label proportions becomes harmful to misclassification risk of the

Bayes-optimal rule on the source distribution (see Figures 4.2a and 4.3a). For the simulations that follow, we assume

that the marginal probability of class 1 on the source is πS
1 = 0.25, and use the corresponding optimal rule.

We analyze conformal test martingales under several distribution drift scenarios differing in their severity and rate,

and start with the settings where a sharp shift is present.

1. Harmful distribution shift with cold start. Here, the data are sampled i.i.d. from a shifted distribution

corresponding to πT
1 = 0.75. We illustrate 50 runs of the procedure on Figure C.3a. Recall that when the

data are sampled i.i.d. the conformal p-values are i.i.d. uniform on [0, 1]. Under the (exchangeability) null,

conformal test martingales are not growing, and thus are not able to detect that a present shift, even though it

corresponds to a harmful setting.

2. Harmful distribution shift with warm start. For a fairer comparison, we also consider a warm start setting

when the first 100 points are sampled i.i.d. from the source distribution (πT
1 = 0.25), followed by the data

sampled i.i.d. from a shifted distribution (πT
1 = 0.75). We illustrate 50 runs of the procedure on Figure C.3b.

In this case, conformal test martingales demonstrate better detection properties. However, a large fraction of

conformal test martingales still is incapable of detecting a shift.

The simulations above illustrate that conformal test martingales are inferior to the framework proposed in this

work whenever a sharp distribution shift happens in the early stage of a model deployment, even when such shift is

harmful. Next, we consider several settings where instead of changing sharply, the distribution drifts gradually.

3. Slow and benign distribution drift. Starting with the marginal probability of class 1, πT
1 = 0.1, we keep

increasing πT
1 by 0.05 each time a batch of 75 data points is sampled until it reaches the value 0.45. Recall from
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Figure C.3: 50 runs of conformal test martingales (blue dotted lines) under harmful distribution shift with: (a) cold
start (shift happens in the beginning), (b) warm start (shift happens in an early stage of a model deployment). The
horizontal red dashed line outlines to the rejection threshold due to Ville’s inequality. Even though warm start improves
detection properties, only a small fraction of conformal test martingales detects a shift that leads to more than 10%
drop in classification accuracy.

Section 4.3.1 that those values of πT
1 correspond to a benign setting where the risk of the predictor on the target

domain does not exceed substantially the source risk. We illustrate 50 runs of the procedure on Figure C.4a.

4. Slow and harmful distribution drift. Starting with the marginal probability of class 1 πT
1 = 0.5, we keep

increasing πT
1 by 0.05 each time a batch of 75 data points is sampled until it reaches the value 0.85. Recall from

Section 4.3.1 that those values of πT
1 correspond to a harmful setting where the risk of the predictor on the target

domain is substantially larger than the source risk. We illustrate 50 runs of the procedure on Figure C.4b.

5. Sharp and harmful distribution drift. Starting with the marginal probability of class 1, πT
1 = 0.1, we keep

increasing πT
1 by 0.2 each time a batch of 150 data points is sampled until it reaches the value 0.9. We illustrate

50 runs of the procedure on Figure C.4c.

The settings where the distribution drifts gradually illustrate several shortcomings of conformal test martingales:

• Conformal test martingales consistently detect only sharp distribution drifts. Recall from Section 4.3.1 that

increasing πT
1 from 0.1 to 0.9 results in more than 20% accuracy drop. When a drift is slow (Figures C.4a

and C.4b), conformal test martingales demonstrate much less power.

• Inspired by the ideas of Vovk et al. (2021) who assumed, like us, that (some) true data labels are observed,

we designed a conformity score that reflects decrease in performance. On Figures C.4a and C.4b, conformal

test martingales illustrate similar behavior but the corresponding settings are drastically different. Only one

corresponds to a benign drift when the risk does not become significantly worse than the source risk. Thus, even

though it is possible to make conformal test martingale reflect degrading performance, it is hard to incorporate

evaluation of the malignancy of a change in an interpretable way, like a decrease of an important metric.

• Another problem of using conformal test martingales to be aware of is that after some time the corresponding

values of the test martingale (larger implies more evidence for a shift) could start to decrease as the shifted
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Figure C.4: 50 runs of conformal test martingales (blue dotted lines) under gradual distribution drifts: (a) slow
and benign, (b) slow and harmful, (c) sharp and harmful. The horizontal red dashed line outlines to the rejection
threshold due to Ville’s inequality. Note that conformal test martingales consistently detect only sharp distribution
drifts. Moreover, conformal test martingales illustrate similar behavior under (a) and (b) but the corresponding settings
are drastically different.

distribution becomes the ‘new normal’ (Vovk et al., 2021). This is because they measure deviations from iid

data, not degradations in performance from some benchmark (like source accuracy).

C.2 Loss Functions

For our simulations, we consider the following bounded losses. Below, let ŷ(x; f) := argmaxk∈Y fk(x) denote the

label prediction of a model f on a given input x ∈ X .

Multiclass losses. The most common example is arguably the misclassification loss and its generalization that allows

for a label-dependent cost of a mistake:

ℓmis(f(x), y) := 1 {ŷ(x; f) ̸= y} ∈ {0, 1}, ℓw-mis(f(x), y) := ℓy · 1 {ŷ(x; f) ̸= y} ∈ [0, L],

where {ℓk}k∈Y is a collection of per-class costs and L = maxk∈Y ℓk. The loss ℓw-mis is more relevant to high-stakes

decision settings and imbalanced classification. However, high accuracy alone can often be insufficient. The Brier

score (squared error), introduced initially for the binary setting (Brier, 1950), is commonly employed to encourage
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calibration of probabilistic classifiers. For multiclass problems, one could consider the mean-squared error of the

whole output vector:

ℓbrier(f(x), y) :=
1

2
∥f(x)− h(y)∥2 ∈ [0, 1], (C.5)

where h : Y → {0, 1}|Y| is a one-hot label encoder: hy′(y) = 1 {y′ = y} for y, y′ ∈ Y . Top-label calibration (Gupta

and Ramdas, 2022) restricts attention to the entry corresponding to the top-ranked label. A closely related loss function,

which we call the top-label Brier score, is the following:

ℓbrier-top(f(x), y) := (fŷ(x;f)(x)− 1 {ŷ(x; f) = y})2 = (fŷ(x;f)(x)− hŷ(x;f)(y))2 ∈ [0, 1]. (C.6)

Alternatively, instead of the top-ranked label, one could focus only on the entry corresponding to the true class. It

gives rise to another loss function which we call the true-class Brier score:

ℓbrier-true(f(x), y) := (fy(x)− 1)2 ∈ [0, 1]. (C.7)

The loss functions ℓbrier, ℓbrier-top, ℓbrier-true trivially reduce to the same loss function in the binary setting. In

Appendix C.3, we present a more detailed study of the Brier score in the multiclass setting with several illustrative

examples.

Set-valued predictors. The proposed framework can be used for set-valued predictors that output a subset of Y as

a prediction. Such predictors naturally arise in multilabel classification, where more than a single label can be the

correct one, or as a result of post-processing point predictors. Post-processing could target covering the correct label

of a test point with high probability (Vovk et al., 2005) or controlling other notions of risk (Bates et al., 2021) like the

miscoverage loss:

ℓmiscov(y, S(x)) = 1 {y /∈ S(x)} , (C.8)

where S(x) denotes the output of a set-valued predictor on any given input x ∈ X . When considering multilabel

classification, relevant loss functions include the symmetric difference between the output and the set of true labels,

false negative rate and false discovery rate.

C.3 Brier Score in the Multiclass Setting

This section contains derivations of decompositions stated in Section 4.2 and comparisons between introduced versions

of the Brier score.
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Brier score decompositions. Define a function c : X → ∆|Y|, with entries ck(X) := P (Y = k | f(X)). In words,

coordinates of c(X) represent the true conditional probabilities of belonging to the corresponding classes given an

output vector f(X). Recall that h : Y → {0, 1}|Y| is a one-hot label encoder. The expected Brier score for the

case when the whole output vector is considered (that is, the expected value of the loss defined in (C.5)) satisfies the

following decomposition:

2 ·Rbrier(f) = E∥f(X)− h(Y )∥2

= E∥f(X)− c(X) + c(X)− h(Y )∥2

(a)
= E∥f(X)− c(X)∥2 + E∥c(X)− h(Y )∥2

= E∥f(X)− c(X)∥2 + E∥c(X)− E [c(X)] + E [c(X)]− h(Y )∥2

(b)
= E∥f(X)− c(X)∥2︸ ︷︷ ︸

calibration error

−E∥c(X)− E [c(X)] ∥2︸ ︷︷ ︸
sharpness

+E∥h(Y )− E [h(Y )] ∥2︸ ︷︷ ︸
intrinsic uncertainty

.

Above, (a) follows by conditioning on f(X) for the cross-term and recalling that E [h(Y ) | f(X)] = c(X), (b) also

follows by conditioning on f(X) and noticing that E [h(Y )] = E [c(X)]. Now, recall that a predictor is (canonically)

calibrated if f(X)
a.s.
= c(X), in which case the calibration error term is simply zero.

Next, we consider the top-label Brier score ℓbrier-top. Define ctop : X → [0, 1], as:

ctop(X) := P
(
Y = ŷ(X; f) | fŷ(X;f)(X), ŷ(X; f)

)
,

or the fraction of correctly classified points among those that are predicted to belong to the same class and share the

same confidence score as X . Following essentially the same argument as for the standard Brier score, we get that:

E
[
ℓbrier-top(f(X), Y )

]

= E
(
fŷ(X;f)(X)− hŷ(X;f)(Y )

)2

= E
(
fŷ(X;f)(X)− ctop(X) + ctop(X)− hŷ(X;f)(Y )

)2

= E
(
fŷ(X;f)(X)− ctop(X)

)2
+ E

(
ctop(X)− hŷ(X;f)(Y )

)2

= E
(
fŷ(X;f)(X)− ctop(X)

)2
︸ ︷︷ ︸

top-label calibration error

−E
(
ctop(X)− E

[
ctop(X)

])2
︸ ︷︷ ︸

top-label sharpness

+V
(
hŷ(X;f)(Y )

)
︸ ︷︷ ︸

variance of the
misclassification loss

.

Note that in contrast to the classic Brier score decomposition, the last term in this decomposition depends only on the

top-class prediction of the underlying predictor, and thus on its accuracy.

Comparison of the scores in multiclass setting. Recall that the difference between three versions of the Brier score

arises when one moves beyond the binary classification setting. We illustrate the difference by considering a 4-class

classification problem where the data represent a balanced (that is all classes are equally likely) mixture of 4 Gaussians
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with identity covariance matrix and mean vectors being the vertices of a 2-dimensional unit cube. One such sample is

presented on Figure C.5a.

Next, we analyze locally the Brier scores when the Bayes-optimal rule is used as an underlying predictor, that is

we split the area into small rectangles and estimate the mean score within each rectangle by a sample average. The

results are presented on Figures C.5b, C.5c and C.5d. Note that the difference between the assigned scores is mostly

observed for the points that lie at the intersection of 4 classes where the support of the corresponding output vectors is

large.
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Figure C.5: (a) Visualization of 4-class classification problem with all classes being equally likely; (b) localized classic
Brier score ℓbrier ((C.5)); (c) localized top-label Brier score ℓbrier-top ((C.6)); (d) localized true-class Brier score ℓbrier-true

((C.7)).

Brier scores under label shift. Here we consider the case when label shift on the target domain is present. First,

introduce the label likelihood ratios, also known as the importance weights, wy := πT
y /π

S
y , y ∈ Y . For measuring the

strength of the shift, we introduce the condition number: κ = supy wy/ infy:wy ̸=0 wy . Note that when the shift is not

present, the condition number κ = 1. To evaluate the sensitivity of the losses to the presence of label shift, we proceed

as follows: first, the class proportions for both source and target domains are sampled from the Dirichlet distribution

(to avoid extreme class proportion, we perform truncation at levels 0.15 and 0.85 and subsequent renormalization).
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Then we use the Bayes-optimal rule for the source domain to perform predictions on the target and compute the

corresponding losses. On Figure C.6, we illustrate relative increase in the average Brier scores plotted against the

corresponding condition number when all data points are considered (Figure C.6a) and when attention is restricted to

the area where classes highly intersect (Figure C.6b). In general, all three versions of the Brier score suffer similarly on

average, but in the localized area where classes highly intersect, the top-label Brier score does not increase significantly

under label shift.
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Figure C.6: (a) Relative increase for different versions of the Brier score in the multiclass setting under label shift;
(b) Relative increase for different versions of the Brier score in the multiclass setting under label shift when attention
is restricted to the area where classes highly intersect (cube with vertices at (±1/2,±1/2)). While in general, all
three versions of the Brier score suffer similarly on average, in the localized area where classes highly intersect, the
top-label Brier score does not increase significantly under label shift.

C.4 Proofs

Proof of Proposition 4. For brevity, we omit writing f for the source/target risks and the corresponding bound

upper/lower confidence bounds. Starting with the absolute change and the null H0 : RT −RS ≤ εtol, we have:

PH0

(
∃t ≥ 1 : L̂

(t)
T > ÛS + εtol

)

= PH0

(
∃t ≥ 1 :

(
L̂
(t)
T −RT

)
−
(
ÛS −RS

)
> εtol − (RT −RS)

)

≤ PH0

(
∃t ≥ 1 :

(
L̂
(t)
T −RT

)
−
(
ÛS −RS

)
> 0
)
.

Note that ∃t ≥ 1 : (L̂
(t)
T −RT )− (ÛS −RS) > 0 implies that either ∃t ≥ 1 : L̂

(t)
T −RT > 0 or ÛS −RS < 0. Thus,

invoking union bound yields:

PH0

(
∃t ≥ 1 :

(
L̂
(t)
T −RT

)
−
(
ÛS −RS

)
> 0
)

≤ P
(
∃t ≥ 1 : L̂

(t)
T −RT > 0

)
+ P

(
ÛS −RS < 0

)

≤ δT + δS ,

160



by construction and validity guarantees for L̂(t)
T and ÛS . Similarly, considering the relative change, i.e., the null:

H ′
0 : RT ≤ (1 + ε′tol)RS , we have:

PH′
0

(
∃t ≥ 1 : L̂

(t)
T > (1 + ε′tol)ÛS

)

= PH′
0

(
∃t ≥ 1 :

(
L̂
(t)
T −RT

)
− (1 + ε′tol)

(
ÛS −RS

)
> (1 + ε′tol)RS −RT

)

≤ PH′
0

(
∃t ≥ 1 :

(
L̂
(t)
T −RT

)
− (1 + ε′tol)

(
ÛS −RS

)
> 0
)
.

Similarly, note that ∃t ≥ 1 : (L̂
(t)
T − RT )− (1 + ε′tol)(ÛS − RS) > 0 implies that either ∃t ≥ 1 : L̂

(t)
T − RT > 0 or

ÛS −RS < 0. Thus, invoking union bound yields the desired result.

C.5 Primer on the Upper and Lower Confidence Bounds

This section contains the details for the concentration results used in this work. Results presented in this section are

not new were developed in a series of recent works (Waudby-Smith and Ramdas, 2023; Howard et al., 2021). We

follow the notation from Waudby-Smith and Ramdas (2023) for consistency and use the superscript (t) when referring

to confidence sequences (CS) and (n) when referring to confidence intervals (CI).

Predictably-mixed Hoeffding’s (PM-H) confidence sequence. Then the upper and lower endpoints of the

predictably-mixed Hoeffding’s (PM-H) confidence sequence are given by:

L
(t)
PM-H :=

(∑t
i=1 λiZi∑t
i=1 λi

− log(1/δ) +
∑t

i=1 ψH(λi)∑t
i=1 λi

)
,

U
(t)
PM-H :=

(∑t
i=1 λiZi∑t
i=1 λi

+
log(1/δ) +

∑t
i=1 ψH(λi)∑t

i=1 λi

)
,

where ψH(λ) := λ2/8 and λ1, λ2, . . . is a predictable mixture. We use a particular predictable mixture given by:

λPM-H
t :=

√
8 log(1/δ)

t log(t+ 1)
∧ 1.

When approximating the risk on the source domain, one would typically have a holdout sample of a fixed size n, and

so one could either use the classic upper limit of the Hoeffding’s confidence interval, which is recovered by taking

equal λi = λ =
√

8 log(1/δ)/n, i = 1, . . . , n, in which case the upper and lower limits simplify to:

L
(n)
H :=

(∑n
i=1 Zi

n
−
√

log(1/δ)

2n

)
, U

(n)
H :=

(∑n
i=1 Zi

n
+

√
log(1/δ)

2n

)
,
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or by considering running intersection of the predictably mixed Hoeffding’s confidence sequence: (mint≤n U
(t)
PM-H,

maxt≤n L
(t)
PM-H).

Predictably-mixed empirical-Bernstein (PM-EB) confidence sequence. The upper and lower endpoints of the

predictably-mixed empirical-Bernstein (PM-EB) confidence sequence are given by:

L
(t)
PM-EB :=

∑t
i=1 λiZi∑t
i=1 λi

− log(1/δ) +
∑t

i=1 viψE(λi)∑t
i=1 λi

,

U
(t)
PM-EB :=

∑t
i=1 λiZi∑t
i=1 λi

+
log(1/δ) +

∑t
i=1 viψE(λi)∑t

i=1 λi
,

where

vi := 4 (Xi − µ̂i−1)
2
, and ψE(λ) := (− log(1− λ)− λ) /4, for λ ∈ [0, 1).

One particular choice of a predictable mixture (λPM-EB
t )∞t=1 is given by:

λPM-EB
t :=

√
2 log(1/δ)

σ̂2
t−1t log(1 + t)

∧ c, σ̂2
t :=

1
4 +

∑t
i=1(Zi − µ̂i)

2

t+ 1
, µ̂t :=

1
2 +

∑t
i=1 Zi

t+ 1
,

for some c ∈ (0, 1). We use c = 1/2 and also set µ̂0 = 1/2, σ̂0 = 1/4. If given a sample of a fixed size n, we consider

running intersection along with the predictable sequence given by:

λPM-EB
t =

√
2 log(1/δ)

nσ̂2
t−1

∧ c, t = 1, . . . , n.

Betting-based confidence sequence. Tighter confidence intervals/sequences can be obtained by invoking tools

from martingale analysis and deploying betting strategies for confidence intervals/sequences construction proposed

in (Waudby-Smith and Ramdas, 2023). While those can not be computed in closed-form, empirically they tend to

outperform previously considered confidence intervals/sequences. Recall that we are primarily interested in one-sided

results, and for simplicity we discuss. For any m ∈ [0, 1], introduce a capital (wealth) process:

K±
t (m) :=

t∏

i=1

(
1± λ±i (m) · (Zi −m)

)
,

where
{
λ+t (m)

}∞
t=1

and
{
λ−t (m)

}∞
t=1

are [0, 1/m]-valued and [0, 1/(1−m)]-valued predictable sequences respec-

tively. A particular example of such predictable sequences we use is given by:

λ+t (m) :=
∣∣∣λ̇+t
∣∣∣ ∧ c

m
, λ−t (m) :=

∣∣∣λ̇−t
∣∣∣ ∧ c

1−m,
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where, for example, c = 1/2 or 3/4 and λ̇±t do not depend on m. Such choice guarantees, in particular, that the

resulting martingale is nonnegative. For example, the wealth process K+
t (m) incorporates a belief that the true mean

µ is larger than m and the converse belief is incorporated in K−
t (m), that is, the wealth is expected to be accumulated

under the corresponding belief (e.g., consider m = 0 and the corresponding K+
t (0) with a high value, and m = 1

and the corresponding K+
t (1) with a low value). Using that K+

t (m) is non-increasing in m, i.e., m2 ≥ m1, then

K+
t (m2) ≤ K+

t (m1), we thus can use grid search (up to specified approximation error ∆grid) to efficiently approximate

L
(t)
Bet = inf B+

t , where

B+t :=
{
m ∈ [0, 1] : K+

t (m) < 1/δ
}
,

that is, the collection of all m for which that the capital wasn’t accumulated. Then we can consider L(n)
Bet =

maxt≤n L
(t)
Bet. When m = µ is considered, none of K±

t (µ) is expected to be large, since by Ville’s inequality:

P
(
∃t ≥ 1 : K+

t (µ) ≥ 1/δ
)
≤ δ,

and thus we know that with high probability the true mean is larger than L(n)
Bet . That is,

P
(
µ < L

(n)
Bet

)
= P

(
µ < max

t≤n
L
(t)
Bet

)
= P

(
∃t ≥ 1 : µ < inf B+

t

)

= P
(
∃t ≥ 1 : K+

t (µ) ≥ 1/δ
)
≤ δ.

By a similar argument, we get that with high probability, the true mean is less than U (n)
Bet = mint≤n supB

−
t :

P
(
µ > U

(n)
Bet

)
= P

(
µ > min

t≤n
supB−

t

)
= P

(
∃t ≥ 1 : µ > supB−

t

)

= P
(
∃t ≥ 1 : K−

t (µ) ≥ 1/δ
)
≤ δ.

Conjugate-mixture empirical-Bernstein (CM-EB) confidence sequence. Below, we present a shortened descrip-

tion of CM-EB and refer the reader to Howard et al. (2021) for more details. Assume that one observes a sequence of

random variables Zt, bounded in [a, b] almost surely for all t, and the goal is to construct a confidence sequence for

µt := t−1
∑t

i=1 Ei−1Zi, the average conditional expectation. Theorem 4 in Howard et al. (2021) states that for any

(Ẑt), [a, b]-valued predictable sequence, and any u, the sub-exponential uniform boundary with crossing probability

α for scale c = b− a, it holds that:

P


∀t ≥ 1 :

∣∣Zt − µt

∣∣ <
u
(∑t

i=1(Zi − Ẑi)
2
)

t


 ≥ 1− 2α,

where a reasonable choice for the predictable sequence (Ẑt) is given by Ẑt = (t− 1)−1
∑t−1

i=1 Zi.
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The key challenge which is addressed by conjugate mixtures is obtaining sublinear uniform boundaries that allows

the radius of the confidence sequences to shrink to zero asymptotically. When a closed form of the confidence

sequence is not required, the gamma-exponential mixture generally yields the tightest bounds. The procedure relies

on the following mixing result (Lemma 2, Howard et al. (2021)) which states that for any α ∈ (0, 1) and any chosen

probability distribution F on [0, λmax):

uCM
α (v) := sup




s :∈ R :

∫
exp (λs− ψ(λ)v) dF (λ)

︸ ︷︷ ︸
=:m(s,v)

<
1

α




,

yields a sub-ψ uniform boundary with crossing probabilityα. When the gamma distribution is used for mixing,m(s, v)

has a closed form given in [Proposition 9, Howard et al. (2021)]. Subsequently, the resulting gamma-exponential

mixture boundary uCM
α (v) is computed by numerically solving the equation m(s, v) = 1/α in s. Howard et al. (2021)

provide the packages for computing the corresponding confidence sequence.

C.6 Experiments on Simulated Data

Figure C.7 illustrates data samples for two settings where the presence of label shift is not expected to cause

degradation in model performance (measured in terms of absolute increase in misclassification risk) for the first one

(µ0 = (−2, 0)⊤, µ1 = (2, 0)⊤), but label shift may potentially degrade performance for the second (µ0 = (−1, 0)⊤,

µ1 = (1, 0)⊤). For both cases, samples follow the same data generation pipeline as in Section 4.1 with only changes

in class centers.

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Class 0

Class 1

(a)

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

Class 0

Class 1

(b)

Figure C.7: (a) Simulated dataset with well-separated classes. Presence of label shift presumably will not lead to a
high absolute increase in the misclassification risk. (b) In contrast, when the classes are not well-separated, presence
of label shift presumably might hurt the misclassification risk.
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C.6.1 Brier Score as a Target Metric

Here we replicate the empirical study from Section 4.3.1 but use the Brier score as a target metric. Recall that all

three multiclass versions of the Brier score discussed in this work reduce to the same loss in the binary setting.

First, we compare upper confidence bounds for the Brier score computed by invoking different concentration results

on Figure C.8. Similar to the misclassification risk, variance-adaptive confidence bounds exploit the low-variance

structure and are tighter when compared against the non-adaptive one.

Next, we perform empirical analysis of the power of the testing framework. We take εtol = 0.1 which corresponds

to testing for a 10% relative increase in the Brier score. We take nS = 1000 data points from the source distribution

to compute upper confidence bound on the source risk ÛS(f). Subsequently, we sample the data from the target

distribution in batches of 50, with maximum number of samples from the target set to be 2000. On Figure C.8b,

we present the proportion of cases when the null hypothesis is rejected out of 250 simulations performed for each

candidate class 1 probability. On Figure C.8c, we illustrate average sample size from the target domain that was

needed to reject the null hypothesis. When a stronger and more harmful label shift is present, less samples are required

to reject the null, and moreover, the most powerful tests utilize upper/lower confidence bounds obtained via the betting

approach. On Figure C.8d, we present the comparison of different time-uniform lower confidence bounds.

C.7 Experiments on Real Datasets

C.7.1 MNIST-C Simulation

Architecture and training. For MNIST-C dataset, we train a shallow CNN with two convolutional layers (each with

3 × 3 kernel matrices), each followed by max-pooling layers. Subsequently, the result is flattened and followed by a

dropout layer (p = 0.5), a fully-connected layer with 128 neurons and an output layer. Note that the network is trained

on original (clean) MNIST data, which is split split into two folds with 10% of data used for validation purposes. All

images are scaled to [0, 1] range before the training is performed.

Training multiple networks. To validate observations regarding shift malignancy from Section 4.3.2, we train 5

different networks (following the same training protocol) and report aggregated (over 25 random ordering of the data

from the target) results on Figure C.9. The observation that applying translation to the MNIST images represents a

harmful shift is consistent across all networks.

C.7.2 CIFAR-10-C Simulation

Architecture and training. The model underlying a set-valued predictor is a standard ResNet-32. It is trained for

50 epochs on the original (clean) CIFAR-10 dataset, without data augmentation, using 10% of data for validation
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Figure C.8: (a) Upper confidence bounds ÛS(f) on the Brier score for the source domain. Similar to the
misclassification risk, variance-adaptive confidence bounds are tighter when compared against the Hoeffding’s one.
For each fixed number of data points from the source domain used to compute ÛS(f), presented results are aggregated
over 1000 random data draws. (b) Proportion of null rejections made by the procedure when testing for 10% relative
increase of the Brier score. (c) Average sample size from the target distribution that was needed to reject the null.
Invoking tighter concentration results allows to raise an alarm after processing less samples from the target domain.
(d) Different lower/upper confidence bounds on the target/source domain for the Brier score.

purposes. All images are scaled to [0, 1] range before the training is performed. The accuracy of the resulting network

is ≈ 80.5%.

Transforming a point predictor into a set-valued one. To transform a point predictor into a set-valued one, we

consider a sequence of candidate prediction sets Sλ(x), parameterized by univariate parameter λ, with larger λ leading

to larger prediction sets. Under the considered setting, the underlying predictor is an estimator of the true conditional

probabilities πy(x) = P (Y = y | X = x). Given a learnt predictor f , we can define

ρy(x; f) :=

K∑

k=1

fk(x) · 1 {fk(x) > fy(x)}

to represent estimated probability mass of the labels that are more likely than y. Subsequently, we can consider the

following sequence of set-valued predictors:

Sλ(x) = {y ∈ Y : ρy(x; f) ≤ λ} , λ ∈ Λ := [0, 1],
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Figure C.9: Lines of the same color correspond to 5 different CNNs. For each network, the results aggregated over
25 random runs of the testing framework for randomly permuted test data. Applying translate effect is consistently
harmful to the performance of CNNs trained on clean MNIST data. The bar around the yellow dashed line corresponds
to 2 standard deviations.

that is the sequence is based on the estimated density level sets, starting by including the most likely labels according

to the predictions of f . To tune the parameter λ, we follow Bates et al. (2021): we keep a labeled holdout calibration

set, and use it to pick:

λ̂ = inf
{
λ ∈ Λ : R̂+(λ′) < β, ∀λ′ > λ

}
,

where R̂+(λ′) is an upper confidence bound for the risk function at level β. The resulting set-valued predictor is then

(β, γ)-RCPS, that is,

P
(
R(Sλ̂) ≤ β

)
≥ 1− γ,

under the i.i.d. assumption. More details and validity guarantees can be found in Bates et al. (2021).

Set-valued predictor when β = 0.05 is used as a prescribed error level. In contrast to β = 0.1 used in the main

paper, we also consider decreasing β to 0.05, which in words, corresponds to increasing a desired coverage level of

the resulting set-valued predictor. Figure C.10a compares average sizes of the prediction sets for two candidate values:

β1 = 0.05 and β2 = 0.1, when the set-valued predictor is passes either clean CIFAR-10 data, or images to which

fog corruption has been applied. As expected, decreasing β leads to larger prediction sets on average, with the size

increasing when corrupted images are passes as input, that the size reflects uncertainty in prediction. In Figure C.10b,

we observe that when we run the testing framework for the set-valued predictor corresponding to β = 0.05, only the

most severe version of corruptions by adding fog is consistently marked as harmful, and thus raising an alarm. Similar

to Section 4.3.2, we also use εtol = 0.05.
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Figure C.10: (a) Average size of prediction sets for β1 = 0.05 and β2 = 0.1 and different types of input data. First,
lower β, corresponding to higher desired coverage, leads to larger prediction sets on average. Second, average size of
the prediction sets increases when more corrupted images are passed as input, thus reflecting uncertainty in prediction.
(b) Results of running the framework when β1 = 0.05 is used to construct a wrapper. Observe that setting a lower
prescribed error level β and thus enlarging resulting prediction sets partially mitigates the impact of corrupting images
with the fog effect. However, the most severe form of such corruption still consistently leads to rejecting the null. The
bars around dashed and solid lines correspond to 2 standard deviations.

C.8 Testing for Harmful Covariate Shift

In this section, we consider a case when covariate shift is present on the target domain, that is, when the marginal

distribution P (X) changes but P (Y |X) does not. Consider the binary classification setting with accuracy being a

target metric. It is known that the optimal decision rule for this case is the Bayes-optimal rule:

f⋆(x) = 1 {P (Y = 1 | X = x) ≥ 1/2} ,

which minimizes the probability of misclassifying a new data point. Then one might expect that a change in the

marginal distribution of X does not necessarily call for retraining if a learnt predictor f is ‘close’ to f⋆ (which itself

could be a serious assumption to make). However, a change in the marginal distribution of X could indicate, in

particular, that one should reconsider certain design choices made during training a model. To illustrate when it could

be useful, we consider the following data generation pipeline:

1. Initially, each point is assigned either to the origin or to a circle of radius 1 centered at the origin with probability

1/2 .

2. For points assigned to the origin, the coordinates are sampled from multivariate Gaussian distribution with zero

mean and rescaled identity covariance matrix: 1
36I2.
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3. For points assigned to the circle, the coordinates are sampled from multivariate Gaussian distribution with the

same covariance matrix but with the mean vector:




µx = cos(φ),

µy = sin(φ),

where φS ∼ Unif([−π/3, π/3]) on the source domain and φT ∼ Unif([0, 2π]) on the target domain (see

Figure C.11 for a visualization).

4. Then points are assigned the corresponding labels according to:

P (Y = 1 | X = x) = 1

{
x21 + x22 ≥

1

2

}
.

It is easy to see that a linear predictor, e.g., logistic regression, can achieve high accuracy if deployed on the data

sampled from the source distribution. However, it will clearly fail to recover the true relationship between the features

and responses. In this case, a change in the marginal distribution of X might indicate that updating a functional class

could be necessary. On this data, we also run the proposed framework testing for a 10% increase in misclassification

risk (εtol = 0.1). At each run, we use 200 points to train a logistic regression and 100 points to estimate the betting-

based upper confidence bound on the source risk. On the target domain, we use the lower confidence bound due to

conjugate-mixture empirical-Bernstein (CM-EB). The results presented on Figure C.11c (which have been aggregated

over 100 random data draws) illustrate that the framework successfully detects a harmful shift, requiring only a small

number of samples to do so.
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Figure C.11: (a) Data samples from the source (red) and target (blue) distributions for the covariate shift simulation.
(b) Logistic regression predictor learnt on the source distribution plotted along with a data sample from the target
distribution. While learnt predictor clearly has high accuracy on the source domain, it fails to approximate the true
underlying data generating distribution. (c) Results of running the framework when testing for a 10% increase in the
misclassification risk. The framework detects a harmful shift after processing only a small number of samples.
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Appendix D

Additional Results for Chapter 5

The Appendix contains proofs of results in the main paper ordered as they appear. Auxiliary results needed for some

of the proofs are stated in Appendix D.5.

D.1 Proof of Proposition 5

The ‘if’ part of the theorem is due to Vaicenavicius et al. (2019, Proposition 1); we reproduce it for completeness.

Let σ(g), σ(f) be the sub σ-algebras generated by g and f respectively. By definition of f , we know that f is σ(g)-

measurable and, hence, σ(f) ⊆ σ(g). We now have:

E [Y | f(X)] = E [E [Y | g(X)] | f(X)] (by tower rule since σ(f) ⊆ σ(g))

= E [f(X) | f(X)] (by property (5.5))

= f(X).

The ‘only if’ part can be verified for g = f . Since f is perfectly calibrated,

E [Y | f(X) = f(x)] = f(x),

almost surely PX .
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D.2 Proofs of results in Section 5.3

Proof of Theorem 5.1. Assume that one is given a predictor f that is (ε, α)-approximately calibrated. Then the

assertion follows from the definition of (ε, α)-approximate calibration since:

|E [Y | f(X)]− f(X)| ≤ ε(f(X)) =⇒ E [Y | f(X)] ∈ C(f(X)).

Now we show the proof in the other direction. Since ε is a constant-valued function that depends on C, let us

denote its constant output as εC := ε(·) = supz∈Range(f) {|C(z)|/2}.
If mC was injective, E [Y | mC(f(X))] = E [Y | f(X)] and thus if E [Y | f(X)] ∈ C(f(X)) (which happens

with probability at least 1− α), we would have E [Y | mC(f(X))] ∈ C(f(X)) and so

|E [Y | mC(f(X))]−mC(f(X)| ≤ sup
z∈Range(f)

{|C(z)|/2} = εC .

This serves as an intuition for the proof in the general case, when mC need not be injective. Note that,

|E [Y | mC(f(X))]−mC(f(X))| = |E [Y | mC(f(X))]− E [mC(f(X)) | mC(f(X))]|
(1)
= |E [E [Y | f(X)] | mC(f(X))]− E [mC(f(X)) | mC(f(X))]|
(2)
= |E [E [Y | f(X)]−mC(f(X)) | mC(f(X))]|
(3)

≤ E [|E [Y | f(X)]−mC(f(X))| | mC(f(X))] , (D.1)

where we use the tower rule in (1) (since mC is a function of f ), linearity of expectation in (2) and Jensen’s inequality

in (3). To be clear, the outermost expectation above is over f(X) (conditioned on mC(f(X))). Consider the event

A : E [Y | f(X)] ∈ C(f(X)).

On A, by definition we have:

|E [Y | f(X)]−mC(f(X))| = uC(f(X))− lC(f(X))

2
≤ sup

z∈Range(f)

( |C(z)|
2

)
= εC .

By monotonicity property of conditional expectation, we also have that conditioned on A,

E [|E [Y | f(X)]−mC(f(X))| | mC(f(X))] ≤ E [εC | mC(f(X))] = εC ,

with probability 1. Thus by the relationship proved in the series of equations ending in (D.1), we have that conditioned

on A, with probability 1,

|E [Y | mC(f(X))]−mC(f(X))| ≤ εC .
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Since we are given that C is a (1 − α)-CI with respect to f , P(A) ≥ 1 − α. For any event B, it holds that P (B) ≥
P (B|A)P(A). Setting

B : |E [Y | mC(f(X))]−mC(f(X))| ≤ εC ,

we obtain:

P (|E [Y | mC(f(X))]−mC(f(X))| ≤ εC) ≥ 1− α.

Thus, we conclude that mC(f(·)) is (ε, α)-approximately calibrated.

Proof of Corollary 5.1.1. Let {fn}n∈N be asymptotically calibrated sequence with the corresponding sequence of

functions {εn}n∈N that satisfy εn(fn(Xn+1)) = oP (1). From Theorem 5.1, we can construct corresponding functions

Cn that are (1− α)-CI with respect to fn and satisfy

|Cn(fn(Xn+1))| = 2εn(fn(Xn+1)) = oP (1).

This concludes the proof.

Proof of Theorem 5.2. In the proof we write the test point as (Xn+1, Yn+1). Suppose Ĉn is a (1 − α)-CI with

respect to f for all distributions P . We show that Ĉn covers the label Yn+1 itself for distributions P such that Pf(X)

is nonatomic (and thus disc(Ĉn) would also cover the labels).

Let P be any distribution such that Pf(X) is nonatomic. Fix a set of m ≥ n + 1 samples from the distribution

P denoted as T = {(A(j), B(j))}j∈[m]. Given T , consider a distribution Q corresponding to the following sampling

procedure for (X,Y ) ∼ Q:





sample an index j uniformly at random from [m]

set (X,Y ) = (A(j), B(j)).

The distribution function for Q is given by

m−1
m∑

j=1

δ(A(j),B(j)).

where δ(a,b) denotes the points mass at (a, b). Note that Q is only defined conditional on T . Observe the following

facts about Q:

• supp(Q) = {(A(j), B(j))}j∈[m].
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• Consider any (x, y) ∈ supp(Q). Let (x, y) = (A(j), B(j)) for some j ∈ [m]. Then

EQ [Y | f(X) = f(x)] = EQ

[
Y | f(X) = f(A(j))

]

ξ1
= EQ

[
Y | X = A(j)

]

ξ2
= B(j) = y.

Above ξ1 holds since Pf(X) is nonatomic so that the f(X(i))’s are unique almost surely. Note that Pf(X) is

nonatomic only if PX itself is nonatomic. Thus the A(j)’s are unique almost surely, and ξ2 follow. In other

words, if (X,Y ) ∼ Q, then we have

Y = EQ [Y | f(X)] . (D.2)

Suppose the data distribution was Q, that is {(Xi, Yi)}i∈[n+1] ∼ Qn+1. Define the event that the CI guarantee holds

as

E1 : E [Yn+1 | f(Xn+1)] ∈ Ĉn(f(Xn+1)), (D.3)

and the event that the PS guarantee holds as

E2 : Yn+1 ∈ Ĉn(f(Xn+1)). (D.4)

Then due to (D.2), the events are exactly the same under Q:

E1
Q≡ E2. (D.5)

In particular, this means

PQn+1(EQ [Yn+1 | f(Xn+1)] ∈ Ĉn(f(Xn+1))) = PQn+1(Yn+1 ∈ Ĉn(f(Xn+1))). (D.6)

If Ĉn is a distribution-free CI, then PQn+1(E1) ≥ 1 − α and thus PQn+1(E2) ≥ 1 − α. This shows that for Q,

disc(Ĉn) is a (1−α)-PI. Note thatQ corresponds to sampling with replacement from a fixed set T where each element

is drawn with respect to P . Although Q ̸= P , we expect that as m → ∞ (while n is fixed), Q and P coincide. This

would prove the result for general P . To formalize this intuition, we describe a distribution which is close to Q but

corresponds to sampling without replacement from T instead.

For this, now suppose that {(Xi, Yi)}i∈[n+1] ∼ Rn+1 where Rn+1 corresponds to sampling without replacement

from T . Formally, to draw from Rn+1, we first draw a surjective mapping λ : [n+ 1]→ [m] as

λ ∼ Unif (n-sized ordered subsets of [m]),
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and set (Xi, Yi) = (A(λ(i)), B(λ(i))) for i ∈ [n+ 1].

First we quantify precisely the intuition that as m → ∞, Qn+1 and Rn+1 are essentially identical. Consider the

event T := no index is repeated in Qn+1. Let P(T ) = τm for some m and note that limm→∞ τm = 1. Now consider

any probability event E over {(Xi, Yi)}i∈[n+1] (such as E1 or E2). We have

PQn+1(E) = PQn+1(E|T ) · P(T ) + PQn+1(E|T c) · P(T c)

∈ [PQn+1(E|T ) · P(T ),PQn+1(E|T ) · P(T ) + P(T c)].

Now observe that PQn+1(E|T ) = PRn+1(E) to conclude

PQn+1(E) ∈ [PRn+1(E) · P(T ),PRn+1(E) · P(T ) + P(T c)].

Since m ≥ n+ 1, P(T ) ̸= 0 so we can invert the above and substitute τm = P(T ) to get

PRn+1(E) ∈
[
τ−1
m (PQn+1(E)− (1− τm)), τ−1

m PQn+1(E)
]
. (D.7)

Consider E = E2 defined in equation (D.4). We showed that PQn+1(E2) ≥ 1− α. Thus from (D.7),

PRn+1(E2) ≥ τ−1
m (1− α− (1− τm)).

The above is with respect to Rn+1 which is conditional on a fixed draw T . However since the right hand side is

independent of T , we can also include the randomness in T to say:

PRn+1,T (E2) ≥ τ−1
m (1− α− (1− τm)). (D.8)

Observe that if we consider the marginal distribution over Rn+1 and T (that is we include the randomness in T as

above), {(Xi, Yi)}i∈[n+1]
iid∼ P . This is not true if we do not marginalize over T , in particular since the (Xi, Yi)’s are

not independent (due to sampling without replacement). Thus equation (D.8) can be restated as

PPn+1(E2) ≥ τ−1
m (1− α− (1− τm)),

Since m can be set to any number and limm→∞ τm = 1, we can indeed conclude

PPn+1(E2) ≥ 1− α.

Recall that E2 is the event that Yn+1 ∈ Ĉn(Xn+1); equivalently Yn+1 ∈ discĈn(Xn+1). Thus disc(Ĉn) provides a

(1− α)-PI for P such that Pf(X) is nonatomic.
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Proof of Corollary 5.2.1. Let P be any distribution such that Pf(X) is nonatomic. By Theorem 5.2, Ĉn must provide

both a prediction set and a confidence interval for P :

P(E [Yn+1 | f(Xn+1)] ∈ Ĉn(f(Xn+1))) ≥ 1− α,

and

P(Yn+1 ∈ Ĉn(f(Xn+1))) ≥ 1− α.

Thus by a union bound

PPn+1({Yn+1,E [Yn+1 | f(Xn+1)]} ⊆ Ĉn(f(Xn+1))) ≥ 1− 2α. (D.9)

Now consider a distributionP such thatPf(X) is nonatomic and P(Y = 1 | X) = 0.5 a.s. PX so that E [Yn+1 | f(X)] = 0.5

a.s. Pf(X). The inequality (D.9) is true for this P as well. If

{Yn+1,E [Yn+1 | f(Xn+1)]} ⊆ Ĉn(f(Xn+1)),

then |Ĉn(Xn+1)| ≥ |Yn+1 − E [Yn+1 | f(Xn+1)]| ≥ 0.5. Thus

PPn+1(|Ĉn(f(Xn+1))| ≥ 0.5) ≥ 1− 2α.

Consequently we have
EPn+1 |Ĉn(f(Xn+1))| ≥ 0.5(1− 2α)

= 0.5− α.
This concludes the proof.

Proof of Theorem 5.3 Suppose that {fn}n∈N is asymptotically calibrated and satisfies

lim sup
n→∞

∣∣∣X (fn)
∣∣∣ > ℵ0,

that is, for every m ∈ N, there exists n ≥ m such that X (fn) is an uncountable set. We will show a contradiction using

Corollary 5.2.1 for fn and a certain Cn to be defined shortly.

First, we verify the condition of Corollary 5.2.1 for fn if X (fn) is uncountable: we construct a distribution P such

that P(fn(X)) is nonatomic. Let the range of fn acting on X be denoted as fn(X ), and for z ∈ fn(X ) let the level set

at value z be denoted as X (fn)
z . Since the sets X (fn) are measurable, we can define P (X) as follows:

P (fn(X)) = Unif(fn(X )); P (X | fn(X)) = Unif
(
X (fn)

fn(X)

)
. (D.10)
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P (X) along with any conditional probability function P (Y | X) constitutes a valid probability distribution P . Further,

from the construction, since X (fn) is uncountable, Pfn(X) is guaranteed to be nonatomic.

Next, since {fn}n∈N is asymptotically calibrated, by Corollary 5.1.1, one can construct a sequence of functions

{Cn}n∈N such that each Cn is a (1− α)-CI with respect to fn for any distribution Q, and

|Cn(fn(Xn+1))| = oQ(1).

Thus there exists a constant m such that for n ≥ m and any distribution Q,

EQn+1 |Cn(fn(Xn+1))| < 0.5− α. (D.11)

However, since lim sup
n→∞

|X (fn)| > ℵ0, there exists an n ≥ m such that X (fn) is uncountable. Hence the

requirements of Corollary 5.2.1 are satisfied by Ĉn and fn: namely Ĉn is a (1 − α)-CI with respect to f for all

distributions P , and there exists a P such that Pfn(X) is nonatomic. Thus Corollary 5.2.1 yields that we can construct

a distribution Q such that

EQn+1 |Cn(fn(Xn+1))| ≥ 0.5− α,

which is a contradiction to (D.11). Hence our hypothesis that lim sup
n→∞

|X (fn)| > ℵ0 must be false, concluding the

proof.

D.3 Proofs of Results in Section 5.4 (other than Section 5.4.4)

Proof of Theorem 5.4 Let EB(x) the event that (B(X1), . . . ,B(Xn)) = (B(x1), . . . ,B(xn)). On the event EB(x),

within each region Xb, the number of point from the calibration set is known and the Yi’s in each bin represent

independent Bernoulli random variables that share the same mean πb = E [Y | X ∈ Xb]. Consider any fixed region

Xb, b ∈ [B]. Using Theorem D.3, we obtain that:

P


|πb − π̂b| >

√
2V̂b ln(3B/α)

ŝb
+

3 ln(3B/α)

ŝb

∣∣∣ EB(x)


 ≤ α/B.

Applying union bound across all regions of the sample-space partition, we get that:

P


∀b ∈ [B] : |πb − π̂b| ≤

√
2V̂b ln(3B/α)

ŝb
+

3 ln(3B/α)

ŝb

∣∣∣ EB(x)


 ≥ 1− α.

Because this is true for any B(x), we can marginalize to obtain the assertion of the theorem in unconditional

form.
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Proof of Corollary 5.4.1 We show a calibration guarantee by using Theorem 5.1. Consider the scoring function as

B with Z = [B]. Then by Theorem 5.4, C : [B]→ I given by

C(b) =


π̂b −

√
2V̂b ln(3B/α)

ŝb
+

3 ln(3B/α)

ŝb
, π̂b +

√
2V̂b ln(3B/α)

ŝb
+

3 ln(3B/α)

ŝb


 , b ∈ [B],

provides a (1− α)-CI with respect to B. Let b⋆ = minb∈[B] ŝb. To apply Theorem 5.4, we define

ε(·) = sup
b∈[B]

|C(b)/2| =

√
V̂b⋆ ln(3B/α)

2ŝb⋆
+

3 ln(3B/α)

2ŝb⋆
,

and the mid-point function mC for C is given by mC(b) = π̂b. Applying Theorem 5.1 gives the first part of the result.

Next, suppose some bin b has P(B(X) = b) = 0. Then, a test point Xn+1 almost surely does not belong to the

bin, and the bin can be ignored for our calibration guarantee. Thus without loss of generality, suppose every b ∈ [B]

satisfies

P(B(X) = b) > 0.

Let minb∈[B] P(B(X) = b) = τ > 0. Then for a fixed number of samples n, any particular bin b, and any constant

α ∈ (0, 1) we have by Hoeffding’s inequality with probability 1− α/B

ŝb ≥ nτ −
√
n ln(B/α)

2
.

Taking a union bound, we have with probability 1− α, simultaneously for every b ∈ [B],

ŝb ≥ nτ −
√
n ln(B/α)

2
= Ω(n),

and in particular ŝb⋆ = Ω(n) where b⋆ = argminb∈[B] ŝb. Thus by the first part of this corollary, fn is εn calibrated

where εn = O(
√
n−1) = o(1). This concludes the proof.

Proof of Theorem 5.5 Denote |D2
cal| = n. Let pj = P(g(X) ∈ Ij) be the true probability that a random point falls

into partition Xj . Assume c is such that we can use Lemma D.3.1 to guarantee that with probability at least 1− α/2,

uniform mass binning scheme is 2-well-balanced. Hence, with probability at least 1− α/2:

1

2B
≤ pj ≤

2

B
, ∀j ∈ [B]. (D.12)
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Moreover, by Hoeffding’s inequality we get that for any fixed region of sample-space partition, with probability at

least 1− α/2B,

ŝj ≥ npj −
√
n ln(2B/α)

2
. (D.13)

Hence, by union bound across applied accross all regions and using (D.12), we get that with probability at least

1− α/2:

ŝb⋆ ≥ n/(2B)−
√
n ln(2B/α)

2
,

where the first term dominates asymptotically (for fixed B). Hence, we get that with probability at least 1 − α,

sb⋆ = Ω(n/B). By invoking the result of Corollary 5.4.1 and observing that V̂b ≤ 1, we conclude that uniform mass

binning is (ε, α) approximately calibrated with ε(·) = O(
√
B ln(B/α)/n) as desired. This also leads to asymptotic

calibration by Corollary 5.4.1.

Proof of Theorem 5.6. The proof is based on the result for an empirical-Bernstein confidence sequences for

bounded observations Howard et al. (2021). We condition on the event E∞
B(x) defined as (B(X1),B(X1), . . . ) =

(B(x1),B(x2), . . . ), that is the random variables denoting which partition the infinite stream of samples fall in

(thus allowing our bound to hold for every possible value of n). On E∞
B(x), the label values within each partition

of the sample-space partition represent independent Bernoulli random variable that share the same mean πb =

E [Y | X ∈ Xb] , b ∈ [B]. Consequently, the bound obtained can be marginalized over E∞
B(x) to obtain the assertion of

the theorem in unconditional form. Now we show the bound that applies conditionally on E∞
B(x).

Consider any fixed region of the sample-space partition Xb and corresponding points
{(
Xb

i , Y
b
i

)}ŝb
i=1

. Then St =(∑t
i=1 Y

b
i

)
− tπb is a sub-exponential process with variance process:

V̂ +
t =

t∑

i=1

(
Y b
i − Y

b

i−1

)2
.

Howard et al. (2020, Proposition 2) implies that St is also a sub-gamma process with variance process V̂t and the same

scale c = 1. Since the theorem holds for any sub-exponential uniform boundary, we choose one based on analytical

convenience. Recall definition of the polynomial stitching function

Sα(v) :=
√
k21vl(v) + k22c

2l2(v) + k2cl(v), where





l(v) := lnh(lnη(v/m)) + ln(l0/α),

k1 := (η1/4 + η−1/4)/
√
2,

k2 := (
√
η + 1)/

√
2.

where l0 = 1 for the scalar case. Note that for c > 0 it holds that Sα(v) ≤ k1
√
vl(v) + 2ck2l(v).

From Howard et al. (2021, Theorem 1), it follows that u(v) = Sα(v ∨m) is a sub-gamma uniform boundary with

scale c and crossing probability α. Applying Theorem D.2 with h(k) ← (k + 1)sζ(s) where ζ(·) is Riemann zeta
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function and parameters η ← e, s ← 1.4, c ← 1, m ← 1 and α ← α/(2B), yields that k2 ≤ 1.88, k1 ≤ 1.46 and

l(v) = 1.4 · ln ln (ev) + ln(2ζ(1.4)B/α). Since Theorem D.2 provides a bound that holds uniformly across time t,

then it provides a guarantee for t = ŝb, in particular. Hence, with probability at least 1− α/B,

|πb − π̂b| ≤
1.46

√
V̂ +
b · 1.4 · ln ln

(
e
(
V̂ +
b ∨ 1

))
+ ln(6.3B/α)

ŝb
+

5.27 · ln ln
(
e
(
V̂ +
b ∨ 1

))
+ 3.76 ln(6.3B/α)

ŝb

≤
7

√
V̂ +
b · ln ln

(
e
(
V̂ +
b ∨ 1

))
+ 5.3 ln(6.3B/α)

ŝb
.

using that
√
x+ y ≤ √x +

√
y and ln ln(ex) ≤

√
x ln ln ex for x ≥ 1. Finally, we apply a union bound to get a

guarantee that holds simultaneously for all regions of the sample-space partition.

D.4 Calibration under Covariate Shift (including results in Section 5.4.4)

The results from Section 5.4.4 are proved in Appendix D.4.1 (Theorem 5.7) and D.4.3 (Proposition 6). To show

Theorem 5.7, we first propose and analyze a slightly different estimator than (D.20) that is unbiased for π(w)
b , but

needs additional oracle access to the parameters {mb}b∈[B] defined as

mb = PPX
(X ∈ Xb) / PP̃X

(X ∈ Xb).

mb denotes the ‘relative mass’ of region Xb. (For simplicity, we assume that PP̃ (X ∈ Xb) > 0 for every b since

otherwise the test-point almost surely does not belong to Xb and estimation in that bin is not relevant for a calibration

guarantee.) We then show that mb can be estimated using w, which would lead to the proposed estimator qπ
(w)
b . First,

we establish the following relationship between EP̃ [Y | X ∈ Xb] and EP [Y | X ∈ Xb].

Proposition 9. Under the covariate shift assumption, for any b ∈ [B]

EP̃ [Y | X ∈ Xb] = mb · EP [w(X)Y | X ∈ Xb] .

Proof. Observe that
dP̃ (X | X ∈ Xb)

dP (X | X ∈ Xb)
=
dP̃ (X)

dP (X)
· PP (X ∈ Xb)

PP̃ (X ∈ Xb)
= w(X) ·mb.
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Thus we have,

EP̃ [Y | X ∈ Xb]
(1)
= EP̃

[
EP̃ [Y | X] | X ∈ Xb

]

(2)
= EP̃ [EP [Y | X] | X ∈ Xb]

(3)
= EP

[
dP̃ (X | X ∈ Xb)

dP (X | X ∈ Xb)
· EP [Y | X] | X ∈ Xb

]

(4)
= mb · EP [w(X)EP [Y | X] | X ∈ Xb]

(5)
= mb · EP [EP [w(X)Y | X] | X ∈ Xb]

(6)
= mb · EP [w(X)Y | X ∈ Xb] ,

where in (1) we use the tower rule, in (2) we use the covariate shift assumption, (3) can be seen by using the integral

form of the expectation, (4) uses the observation at the beginning of the proof, (5) uses that w(X) is a function of X

and finally, (6) uses the tower rule.

Let ŝb denote the number of calibration points from the source domain that belong to bin b. Given Proposition 9,

a natural estimator for EP̃ [Y | X ∈ Xb] is given by:

π̂
(w)
b :=

1

ŝb

∑

i:B(Xi)=b

mbw(Xi)Yi. (D.14)

Estimation properties of π̂(w)
b are given by the following theorem.

Theorem D.1. Assume that supx w(x) = U <∞. For any α ∈ (0, 1), with probability at least 1− α,

∣∣∣π̂(w)
b − EP̃ [Y | X ∈ Xb]

∣∣∣ ≤
√

2V̂
(w)
b ln(3B/α)

ŝb
+ 3mbU ln(3B/α)

ŝb
, simultaneously for all b ∈ [B],

where V̂ (w)
b = 1

ŝb

∑
i:B(Xi)=b(mbw(Xi)Yi − π̂(w)

b )2.

The proof is given in Appendix D.4.2. Next, we discuss a way of estimating mb using likelihood ratio w instead

of relying on oracle access. Observe that

dP̃ (X | X ∈ Xb)

dP (X | X ∈ Xb)
=
dP̃ (X)

dP (X)
· PP (X ∈ Xb)

PP̃ (X ∈ Xb)
= w(X) ·mb.

Thus we have,

EP [w(X) | X ∈ Xb] = m−1
b EP

[
dP̃ (X | X ∈ Xb)

dP (X | X ∈ Xb)
| X ∈ Xb

]
= m−1

b , (D.15)
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which suggests a possible estimator for mb given by

m̂b =

(∑
i:B(Xi)=b w(Xi)

ŝb

)−1

, b ∈ [B]. (D.16)

On substituting this estimate for mb in (D.14), we get a new estimator

∑
i:B(Xi)=b w(Xi)Yi∑
i:B(Xi)=b w(Xi)

,

which is exactly qπ
(w)
b . With this observation, we now prove Theorem 5.7.

D.4.1 Proof of Theorem 5.7

Let us define rb := 1/mb and

r̂b =

∑
i:B(Xi)=b w(Xi)

ŝb
. (D.17)

Step 1 (Uniform lower bound for ŝb). Since the regions of the sample-space partition were constructed using

uniform-mass binning, the guarantee of Theorem 5.5 holds. Precisely, we have that with probability at least 1− α/3,

simultaneously for every b ∈ [B],

ŝb ≥
n

2B
−
√
n ln(6B/α)

2
.

Step 2 (Approximating rb). Observe that the estimator (D.17) is an average of ŝb random variables bounded by the

interval [0, U ]. Let EB(x) be the event that (B(X1), . . . ,B(Xn)) = (B(x1), . . . ,B(xn)). On the event EB(x), within

each region Xb, the number of point from the calibration set is known and the Yi’s in each bin represent independent

Bernoulli random variables that share the same mean E [w(X) | X ∈ Xb]. Consider any fixed region Xb, b ∈ [B]. By

Hoeffding’s inequality, it holds that

P


|rb − r̂b| >

√
U2 ln(6B/α)

2ŝb

∣∣∣ EB(x)


 ≤ α/(3B).

Applying union bound across all regions of the sample-space partition, we get that:

P


∃b ∈ [B] : |rb − r̂b| >

√
U2 ln(6B/α)

2ŝb

∣∣∣ EB(x)


 ≤ α/3.
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Because this is true for any B(x), we can marginalize to obtain that with probability at least 1− α/3,

∀b ∈ [B], |rb − r̂b| ≤
√
U2 ln(6B/α)

2ŝb
. (D.18)

Step 3 (Going from rb to mb). Define r⋆ = minb∈[B] E [w(X) | X ∈ Xb]. Suppose ∀b ∈ [B], |rb − r̂b| ≤ ε and

ε < r⋆/2. Then, we have with probability at least 1− α/3:

|mb − m̂b| =
∣∣∣∣
1

rb
− 1

r̂b

∣∣∣∣ =
∣∣∣∣
rb − r̂b
rb · r̂b

∣∣∣∣ ≤
ε

r2b |1− ε/rb|
≤ 2ε

r2b
= 2m2

bε, ∀b ∈ [B]. (D.19)

We now set ε =
√

U2 ln(6B/α)
2ŝb

as specified in equation (D.18) and verify that ε < r⋆/2.

• First, from step 1, with probability at least 1− α/3, ŝb⋆ = Ω(n/B) and thus ŝb = Ω(n/B) for every b ∈ [B].

• By the condition in the theorem statement, for every b ∈ [B],

ε =

√
U2 ln(6B/α)

2ŝb
= O

(√
U2B ln(6B/α)

n

)
= O



√√√√ U2B ln(6B/α)(

U2B ln(6B/α)
L2

)


 = O (L) .

Finally recall that L ≤ r⋆. Thus we can pick c in the theorem statement to be large enough such that ε < L/2 ≤
r⋆/2.

Thus for ε =
√

U2 ln(6B/α)
2ŝb

, by a union bound over the event in (D.18) and step 1, the conditions for (D.19) are

satisfied with probability at least 1− 2α/3. Hence we have for some large enough constant c > 0,

|mb − m̂b| ≤ cm2
b ·
√
U2B ln(6B/α)

2n
≤ c · U

L2

√
B ln(6B/α)

2n
.

The final inequality holds by observing that mb ≤ 1/L which follows from relationship (D.15) and the assumption

that infx w(x) ≥ L.

Step 4 (Computing the final deviation inequality for qπ
(w)
b ). Recall the definitions of the two estimators:

π̂
(w)
b :=

1

ŝb

∑

i:B(Xi)=b

mbw(Xi)Yi,

and

qπ
(w)
b :=

1

ŝb

∑

i:B(Xi)=b

m̂bw(Xi)Yi,
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which differ by replacing mb by its estimator m̂b defined in (D.16). By triangle inequality,

|qπb − E [Y | X ∈ Xb]| ≤
∣∣∣qπ(w)

b − π̂(w)
b

∣∣∣+
∣∣∣π̂(w)

b − E [Y | X ∈ Xb]
∣∣∣ .

Theorem D.1 bounds the term
∣∣∣π̂(w)

b − E [Y | X ∈ Xb]
∣∣∣ with high probability. In the proof of Theorem D.1, we

can replace the empirical Bernstein’s inequality by Hoeffding’s inequality to obtain with probability at least 1− α/3,

∣∣∣π̂(w)
b − E [Y | X ∈ Xb]

∣∣∣ ≤
√
U2 ln(6B/α)

2ŝb
≤
(
U

L

)2
√

ln(6B/α)

2ŝb
,

simultaneously for all b ∈ [B] (the last inequality follows since L ≤ 1 ≤ U ). To bound
∣∣∣π̂(w)

b − qπ
(w)
b

∣∣∣, first note that:

∣∣∣π̂(w)
b − qπ

(w)
b

∣∣∣ =

∣∣∣∣∣∣
1

ŝb

∑

i:B(Xi)=b

(m̂b −mb)w(Xi)Yi

∣∣∣∣∣∣

≤ U ·

∣∣∣∣∣∣
1

ŝb

∑

i:B(Xi)=b

(m̂b −mb)

∣∣∣∣∣∣

= U · |m̂b −mb| .

Then we use the results from steps 1 and 3 to conclude that with probability at least 1− 2α/3,

∣∣∣qπ(w)
b − π̂(w)

b

∣∣∣ ≤ c ·
(
U

L

)2
√
B ln(6B/α)

2n
, and ŝb ≥ n/B −

√
n ln(6B/α)

2
.

simultaneously for all b ∈ [B]. Thus by union bound, we get that it holds with probability at least 1− α,

|qπb − E [Y | X ∈ Xb]| ≤ c ·
(
U

L

)2
√
B ln(6B/α)

2n
,

simultaneously for all b ∈ [B] and large enough absolute constant c > 0. This concludes the proof.

D.4.2 Proof of Theorem D.1

Consider the event EB(x) defined as (B(X1), . . . ,B(Xn)) = (B(x1), . . . ,B(xn)). Conditioned on EB(x), since

supx w(x) ≤ U , we get that π̂(w)
b is an average of independent nonnegative random variables mbw(Xi)Yi that are

bounded by mbU and share the same mean mb EP [w(X)Y | X ∈ Xb] = EP̃ [Y | X ∈ Xb] (by Proposition 9).Using

Theorem D.3 for a fixed b ∈ [B], we obtain:

P



∣∣∣π̂(w)

b − EP̃ [Y | X ∈ Xb]
∣∣∣ >

√
2V̂b ln(3B/α)

ŝb
+

3mbU ln(3B/α)

ŝb

∣∣∣ EB(x)


 ≤ α/B.
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Applying a union bound over all b ∈ [B], we get:

P

∀b ∈ [B] :
∣∣∣π̂(w)

b − EP̃ [Y | X ∈ Xb]
∣∣∣ ≤

√
2V̂b ln(3B/α)

ŝb
+

3mbU ln(3B/α)

ŝb

∣∣∣ EB(x)

 ≥ 1− α.

Because this is true for any B(x), we can marginalize to obtain the assertion of the theorem in unconditional form.

D.4.3 Proof of Proposition 6

Fix any α ∈ (0, 1). For any k ∈ N observe that by triangle inequality,

∣∣∣qπ(ŵk)
b − EP̃ [Y | X ∈ Xb]

∣∣∣ ≤
∣∣∣qπ(w)

b − EP̃ [Y | X ∈ Xb]
∣∣∣+
∣∣∣qπ(w)

b − qπ
(ŵk)
b

∣∣∣ .

Consider any ε > 0. Note that by Theorem 5.7, there exists sufficiently large n such that the first term is larger than

ε/2 with probability at most α/2 simultaneously for all b ∈ [B]. Hence, it suffices to show that there exists a large

enough k such that the probability of the second term exceeding ε/2 is at most α/2 simultaneously for all b ∈ [B].

While analyzing the second term, we treat n as a constant while leveraging the consistency of ŵk as k → ∞. For

simplicity, denote ∆k = supx |w(x)− ŵk(x)|. Then for any b ∈ [B]:

∣∣∣qπ(w)
b − qπ

(ŵk)
b

∣∣∣ =
∣∣∣∣∣

∑
i:B(Xi)=b w(Xi)Yi∑
i:B(Xi)=b w(Xi)

−
∑

i:B(Xi)=b ŵk(Xi)Yi∑
i:B(Xi)=b ŵk(Xi)

∣∣∣∣∣
(1)

≤
∣∣∣∣∣

∑
i:B(Xi)=b w(Xi)Yi∑
i:B(Xi)=b w(Xi)

−
∑

i:B(Xi)=b ŵk(Xi)Yi∑
i:B(Xi)=b w(Xi)

∣∣∣∣∣

+

∣∣∣∣∣

∑
i:B(Xi)=b ŵk(Xi)Yi∑
i:B(Xi)=b w(Xi)

−
∑

i:B(Xi)=b ŵk(Xi)Yi∑
i:B(Xi)=b ŵk(Xi)

∣∣∣∣∣
(2)

≤ n ·∆k ·
∣∣∣∣∣

1∑
i:B(Xi)=b w(Xi)

∣∣∣∣∣

+

∣∣∣∣∣
1∑

i:B(Xi)=b w(Xi)
− 1∑

i:B(Xi)=b ŵk(Xi)

∣∣∣∣∣

∣∣∣∣∣∣
∑

i:B(Xi)=b

ŵk(Xi)Yi

∣∣∣∣∣∣
(3)

≤ n

L
·∆k +

(
n ·∆k

(L−∆k)L

)
· ((U +∆k) · n) ,

where (1) is due to the triangle inequality, (2) is due to the facts that the number of points in any bin is at most n

and that absolute difference between ŵ and w is at most ∆k, (3) combines the aforementioned reasons in (2) and the

assumptions: L ≤ infx w(x) ≤ supx w(x) ≤ U . Since ∆k
P→ 0, clearly there exists a large enough k such that:

P
(∣∣∣qπ(w)

b − qπ
(ŵk)
b

∣∣∣ ≥ ε/2
)
≤ α/2.

Thus we conclude that qπ
(ŵk)
b is asymptotically calibrated at level α.
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D.4.4 Preliminary Simulations

This section is structured as follows. We first describe the overall procedure for calibration under covariate shift. The

finite-sample calibration guarantee of Theorem 5.7 holds for oracle w whereas in our experiments we will estimate w;

to assess the loss in calibration due to this approximation, we introduce some standard techniques used in literature.

The preliminary experiments are performed with simulated data which are described after this. Finally, we propose a

modified estimator π̃(ŵ)
b of EP̃ [Y | X ∈ Xb] which appears natural but has poor performance in practice.

Procedure. We describe how to construct approximately calibrated predictions practically. This involves approx-

imating the importance weights w and the relatives mass terms {mb}b∈[B]. The summarized calibration procedure

consists of the following steps:

1. Split the calibration set into two parts and use the first to perform uniform mass binning

2. Given unlabeled examples from both source and target domain, estimate ŵ. The unconstrained Least-Squares

Importance Fitting (uLSIF) procedure Kanamori et al. (2009) is used for this.

3. Compute for every b ∈ [B], the estimator as per (5.16), replacing w with ŵ:

qπ
(ŵ)
b :=

∑
i:B(Xi)=b ŵ(Xi)Yi∑
i:B(Xi)=b ŵ(Xi)

. (D.20)

4. On a new test point from the target distribution, output the calibrated estimate qπ
(ŵ)
B(Xn+1)

.

Assessment through reliability diagrams and ECE. Given a test set (from the target distribution) of size m:

{(X ′
i, Y

′
i )}i∈[m] and a function g : X → [0, 1] that outputs approximately calibrated probabilities, we consider the

reliability diagram to estimate its calibration properties. A reliability diagram is constructed using splitting the unit

interval [0, 1] into non-overlapping intervals {Ib}b∈[B′] for some B′ as

Ii =

[
i− 1

B′ ,
i

B′

)
, i = 1, . . . , B′ − 1 and IB′ =

[
B′ − 1

B′ , 1

]
.

Let B′ : [0, 1] → [B′] denote the binning function that corresponds to this binning. We then compute the following

quantities for each bin b ∈ [B′]:

FP(Ib) =

∑
i:B′(X′

i)=b Y
′
i

|{i : B′(X ′
i) = b}| (fraction of positives in a bin),

MP(Ib) =

∑
i:B′(X′

i)=b g(X
′
i)

|{i : B′(X ′
i) = b}| (mean predicted probability in a bin).
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If g is perfectly calibrated, the reliability diagram is diagonal. Define the proportion of points that fall into various

bins as:

p̂b =
|{i : B′(X ′

i) = b}|
m

, b ∈ [B′].

Then ECE (or ℓ1-ECE) is defined as:

ECE(g) =
∑

b∈[B′]

p̂b · |MP(Ib)− FP(Ib)| .

ECE can also be defined in the ℓp sense and for multiclass problems but we limit our attention to the ℓ1-ECE for binary

problems.
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Figure D.1: In Figure D.1a uncalibrated Random Forest (ECE ≈ 0.023) is compared with calibration that does not
take the covariate shift into account (ECE ≈ 0.047). In Figure D.1b uncalibrated Random Forest is compared with
calibration that takes the covariate shift into account (ECE ≈ 0.015).

Simulations with synthetic data. We illustrate the performance of our proposed estimator (5.16) using the following

simulated example, for which we can explicitly control the covariate shift. Consider the following data generation

pipeline: for the source domain each component of the feature vector is drawn from Beta(α, β) where α = β = 1,

which corresponds to uniform draws from the unit cube. For the target distribution each component can be drawn

independently from Beta(α′, β′). If the dimension is d, the true likelihood ratio is given as

w(x) =
dP̃X(x)

dPX(x)
=

Bd(α;β)

Bd(α′;β′)

d∏

i=1

(x(i))
α′−1(1− x(i))β

′−1

(x(i))α−1(1− x(i))β−1
,
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where x(i) are the coordinates of feature vector x. We set d = 3 and α′ = 2, β′ = 1 so that w(x) = 8 · x(1)x(2)x(3).
The labels for both source and target distributions are assigned according to:

P(Y = 1 | X = x) =
1

2

(
1 + sin

(
ω
(
x2(1) + x2(2) + x2(3)

)))
,

for ω = 20. As the underlying classifier we use a Random Forest with 100 trees (from sklearn). 14700 data points

were used to train the underlying Random Forest classifier, 2000 data points from both source and target were used for

the estimation of importance weights. The parameters σ and λ for uLSIF were tuned by leave-one-out cross-validation:

we considered 25 equally spaced values on a log-scale in range (10−2, 102) for σ and 100 equally spaced values on

a log-scale in range (10−3, 103) for λ. Uniform mass binning was performed with 10 bins and 1940 data points from

the source domain were used to estimate the quantiles. 7840 source data points were used for the calibration and

finally, 28000 data points from the target domain were used for evaluation purposes. We note that this simulation is a

‘proof-of-concept’; the sample sizes we used are not necessarily optimal can presumably be improved.

We compare the unweighted estimator (5.12) which corresponds to weighing points in each bin equally as we

would do if there was no covariate shift, and the estimator (5.16) that uses an estimate of w to account for covariate

shift. The reliability diagrams are presented in Figure D.1, with the ECE reported in the caption. For the ECE

estimation and reliability diagrams, we used B′ = 10.
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Figure D.2: Calibration of Random Forest with mb estimated as per equation (D.16) (ECE ≈ 0.035).

Alternative estimator formb. Estimator (D.16) is one way of estimatingmb using thew values, that leads to (5.16).

However, there exists another natural estimator which we propose and show some preliminary empirical results for.

Suppose we have access to additional unlabeled data from the source and target domains ({Xs
i }i∈[ns], and {Xt

i}i∈[nt]
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respectively). From the definition of mb = PPX
(X ∈ Xb)/PP̃X

(X ∈ Xb), a natural estimator is,

m̂b =
1
ns
|{i ∈ [ns] : B(Xs

i ) = b}|
1
nt
|{i ∈ [nt] : B(Xt

i ) = b}| , b ∈ [B]. (D.21)

In this case, the estimator (D.14) reduces to:

π̃
(ŵ)
b =

m̂b

ŝb

∑

i:B(Xi)=b

ŵ(Xi)Yi.

We show experimental results with this estimation procedure. We used 8500 data points from the source domain

and 8000 points from the target domain to compute (D.21). The reliability diagram and ECE with this estimator is

reported in Figure D.2. On our simulated dataset, we observe that the estimators π̃(ŵ)
b perform significantly worse

than the estimators qπ
(ŵ)
b . While this is only a single experimental setup, we outline some drawbacks of this estimation

method that may lead to poor performance in general.

1. π̃(ŵ)
b requires access to additional unlabeled data from the source and target domains without leading to increase

in performance.

2. The denominator of m̂b could be badly behaved if the number of points from the target domain in bin b are

small. We could perform uniform-mass binning on the target domain to avoid this, but in this case ŝb may be

small which would lead to the estimator π̃(ŵ)
b performing poorly.

Our overall recommendation through these preliminary experiments is to use the estimator π̂(ŵ)
b as proposed in

Section 5.4.4 instead of π̃(ŵ)
b .

D.5 Auxiliary results

D.5.1 Concentration Inequalities

Theorem D.2 (Howard et al. (2021), Theorem 4). Suppose Zt ∈ [a, b] a.s. for all t. Let (Ẑt) be any [a, b]-valued

predictable sequence, and let u be any sub-exponential uniform boundary with crossing probability α for scale c =

b− a. Then:

P


∀t ≥ 1 :

∣∣Zt − µt

∣∣ <
u

(∑t
i=1

(
Zi − Ẑi

)2)

t


 ≥ 1− 2α.

Theorem D.3 (Partial statement of Audibert et al. (2007), Theorem 1). Let X1, . . . , Xn be i.i.d. random variables

taking their values in [0, b]. Let µ = E [X1] be their common expected value. Consider the empirical expectation Xn
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and variance Vn defined respectively by

Xn =

∑n
i=1Xi

n
, and Vt =

∑n
i=1(Xi −Xn)

2

n
.

Then for any and x > 0, with probability at least 1− 3e−x,

∣∣Xn − µ
∣∣ ≤

√
2Vnx

n
+

3bx

n
.

D.5.2 Uniform-mass Binning

Kumar et al. (2019) defined well-balanced binning and showed that uniform mass-binning is well-balanced.

Definition 13 (Well-balanced binning). A binning scheme B of size B is β-well-balanced (β ≥ 1) for some classifier

g if
1

βB
≤ P (g(X) ∈ Ib) ≤

β

B
,

simultaneously for all b ∈ [B].

To perform uniform-mass binning labeled examples are required at the stage of training the base classifier g(·). We

denote this data as D1
cal. Procedures based on uniform-mass binning are well-balanced if

∣∣D1
cal

∣∣ is sufficiently large.

Lemma D.3.1 (Kumar et al. (2019), Lemma 4.3). For a universal constant c > 0, if
∣∣D1

cal

∣∣ ≥ cB ln(B/α), then with

probability at least 1− α, the uniform mass binning scheme B is 2-well-balanced.

The calibration guarantees in Section 5.4 depend on the minimum number of training points ŝb⋆ in any bin.

Uniform mass-binning guarantees that ŝb⋆ = Ω(n/B). This is used in the proof of Theorem 5.5.
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Appendix E

Additional Results for Chapter 6

E.1 Importance Weights Estimation under Label Shift

Below we provide details about importance weights estimation procedures which are relevant mainly to Sections 6.2.2

and 6.3.2 of the paper. Estimation of the importance weights is performed using a held-out labeled set from the source

distribution and an unlabeled set from the target distribution. Procedures, such as BBSE (Lipton et al., 2018) or

RLLS (Azizzadenesheli et al., 2019), are based on estimation of the confusion matrix and yield consistent importance

weights estimators with quantifiable estimation error under relatively mild assumptions. First, given a black-box

predictor f : X → ∆K , define the corresponding expected confusion matrix CP (f) ∈ R|Y|×|Y|:

[CP (f)]ij := EP

[
1

{
argmax

k
fk(X) = i

}
· 1 {Y = j}

]
.

We assume that

(A1) for every label y ∈ Y , it holds that q(y) > 0 =⇒ p(y) > 0,

(A2) expected confusion matrix CP (f) is full-rank.

Assumption (A1) states that target label distribution is absolutely continuous with respect to the source. Indeed,

reasoning properly about a class in the target domain which is not represented in the source domain is not possible.

Assumption (A2) simply represents an identifiability condition. Lipton et al. (2018) show that under label shift

assumption: PQ (f(X) = i) =
∑

j∈Y [CP (f)]ij w(j), or in matrix-vector notation:

µ = CP (f)w.
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where µ ∈ R|Y| : µi = PQ (f(X) = i). BBSE is a simple plug-in procedure, which yields the following estimator of

the importance weights:
ŵ = Ĉ−1 µ̂,

where Ĉij =
1

m

m∑

p=1

1
{
f(Xs

p) = i and Y s
p = j

}
,

µ̂i =
1

l

l∑

p=1

1
{
f(Xt

p) = i
}
,

where {(Xs
i , Y

s
i )}mi=1 is a labeled dataset from the source distribution and {(Xt

i )}
l
i=1 is unlabeled data from the target

distribution. BBSE-hard described above can be trivially modified to the whole probability distribution output of f

which is referred to as BBSE-soft procedure. Under aforementioned assumptions, Lipton et al. (2018) establish results

with respect to consistency of BBSE and corresponding convergence rates.

A well-known alternative approach to directly estimate the importance weights which performs well in practice

is MLLS (Saerens et al., 2002) and its recent variations that combine it with preceding calibration on the source

domain (Alexandari et al., 2020). We refer the reader to Garg et al. (2020) for the theoretical analysis of MLLS and

a detailed overview of the results for the importance weights estimation under label shift. For all simulations in this

work we use BBSE-soft procedure motivated simply by its satisfactory empirical performance throughout all of the

simulations we performed. Our modular approach to UQ allows to replace BBSE with any alternative choice.

E.2 Conformal Classification

Below, Section E.2.1 includes details about the tie-breaking rules for the oracle prediction sets, Section E.2.2 includes

a discussion regarding the role of randomization for conformal classification, Section E.2.3 includes all necessary

proofs for Sections 6.2.1 and 6.2.2 and Section E.2.4 includes details about the simulation on a real dataset mentioned

in Section 6.2.2.

E.2.1 Tie-breaking RRules for the Oracle Prediction Set

In practice, when an estimator π̂y(x) is used in place of πy(x), one does not expect ties to be present but for

completeness it is important to consider such scenario in the oracle setting. First, note that for any α ∈ (0, 1), the

oracle prediction set clearly never include labels y ∈ Y : πy(x) = 0. Now, presence of ties can lead to a conservative

prediction set for some x ∈ X if there is a subset of class labels S(x) ⊆ Y of size L = |S(x)| > 1, such that

∀y, y′ ∈ S(x) : πy(x) = πy′(x) > 0 and





P
(
Y ∈ Coracle

α (X)\S(X) | X = x
)
< 1− α,

P
(
Y ∈ Coracle

α (X) | X = x
)
≥ (1− α).
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In the oracle case ties can be broken arbitrarily in order to preserve the conditional coverage. One option is to break ties

randomly, i.e. one can fix a random permutation of labels in S(x): ỹi1 , . . . , ỹil , and output a smaller oracle prediction

set:

Coracle,new
α (X) :=

(
Coracle

α (X)\S(X)
)
∪ {ỹi1 , . . . , ỹil⋆ } ,

where l⋆ is the smallest index in {1, . . . , l} such that

P
(
Y ∈ Coracle

α (X)\S(X) | X = x
)
+

l⋆∑

k=1

πik(x) ≥ 1− α.

E.2.2 Note on Randomization and Conditional Coverage

As the number of works on conformal classification has seen a recent spurt, it is important to understand what exactly

might be the benefits of using one nested sequence over another. For example, Angelopoulos et al. (2021) state in

their Appendix B that “randomization is of little practical importance, since... output by the randomized procedure

will differ from that of the non-randomized procedure by at most one element”. However, we do not quite agree with

their sentiment about it being of little practical importance for the following reason. While their observation is indeed

accurate in the oracle setting, there is a noticeable difference in the empirical conditional coverage when the nested

sequences are conformalized in practice (non-oracle setting). Roughly speaking, randomized scores better handle the

heterogeneity of the conditional distribution of the response variable across the sample space. Note that this type of

randomization has a different role from that of a randomized conformal p-value Vovk et al. (2005) which aims to

improve possibly conservative marginal coverage. We believe that the reasoning below complements the one given

in Romano et al. (2020) and, in particular, might help an unfamiliar reader to gain some useful insights (as well as

arguably having simpler notation). For completeness, we start with an example of randomization in action. Consider

a binary classification problem: Y = {0, 1}, and fix target miscoverage level α = 0.05. Now, assume that for some

x ∈ X :

• π0(x) = 0.99, π1(x) = 0.01. Then with probability 95/99, we have C̃oracle
α (x, u) = {0} and C̃oracle

α (x, u) =

{∅} otherwise.

• π0(x) = 0.9, π1(x) = 0.1. Then with probability 1/2, C̃oracle(x, u) = {0, 1} and C̃oracle(x, u) = {0}
otherwise.

First, consider the marginal coverage of conformal prediction sets in the “null” case when π̂ ≡ π. The marginal

coverage guarantee of conformal prediction sets is due to Lemma E.1.1 which states a classic result for quantiles of

exchangeable random variables and is tight when these variables are almost surely distinct. In the non-randomized

setting for any point (X,Y ), the corresponding non-conformity score are given by ρY (X;π). Such form might

suggest that the marginal coverage could be conservative due to possible ties as whenever the predicted most likely
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label appears to be the correct one, it holds that ρY (X;π) = 0. However, if ties among non-conformity scores are

present, they would typically occur only between zero-valued scores, and thus in a reasonable classification setup one

should expect the marginal coverage to be tight even for non-randomized nested sequence as the calibrated threshold

would typically be nonzero.

Next, before reasoning about conditional coverage of conformal sets, recall that the conditional distribution of the

response is discrete in classification setting, and thus even in the null case it is hard to reason meaningfully about the

distribution of non-conformity scores ρY (X;π). However, Romano et al. (2020) noticed that if randomization (6.4) is

used, then it becomes possible to do at least in the null case. If π̂ ≡ π, it is trivial to see the distribution of corresponding

non-conformity scores ρY (X;π)+U ·π(X) is uniform conditional onX . Then, as the authors conjecture, it is intuitive

that conformal prediction sets would recover the oracle ones under some consistency assumptions for π̂.

However, randomization is also performed when the prediction set is a singleton containing the most likely label

only, and thus might yield non-interpretable and non-actionable empty prediction sets being purely the consequence of

deploying randomization. Thus one might consider abstaining from dropping a label from the prediction set whenever

it forms a singleton and perform randomization if and only if the oracle prediction set contains more than one label.

While that decision can be embedded into either prediction step only or calibration step as well, we state explicitly

that it should be done at the prediction step only for the aforementioned reasons.

Consider the binary toy example from Section 6.3.2 with focus on the source distribution only. As the true class-

posterior probability πP
1 (x) is known, we construct the non-randomized oracle prediction set Coracle and compare

it visually with the randomized version C̃oracle on Figures E.1a and E.1b where randomization demonstrates desired

behavior.

Consequently, we consider conformal prediction sets based on non-randomized sequence:

Fτ⋆ (x, u; π̂) = {y ∈ Y : r′(x, y) ≤ τ⋆} ,

τ⋆ = Q1−α

(
{r′i}i∈I2

∪ {1}
)
,

r′(x, y) = ρy(x; π̂),

(E.1)

and two randomized sequences where Scheme 1 performs randomization for all labels and was introduced before for

conformal prediction sets (6.7) and Scheme 2 (added for completeness of comparison) performs randomization for all

labels except the most likely one:

Fτ⋆ (x, u; π̂) = {y ∈ Y : r′′(x, y) ≤ τ⋆} ,

τ⋆ = Q1−α

(
{r′′i }i∈I2

∪ {1}
)
,

(E.2)

where

r′′(x, y) = 1 {ρy(x; π̂) > 0} · (ρy(x; π̂) + u · π̂y(x)) .
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We again use the Bayes-optimal classifier πy(x), and thus ignore the results that are due to estimation and focus purely

on effects that are due to conformalization. For a single data draw we illustrate the resulting conformal prediction sets

on Figures E.1c, E.1d and E.1e. While at first sight it might seem that non-randomized nested sequences is superior in

terms of yielding prediction sets with smaller cardinality, it should be taken with a grain of salt. We repeatedly draw

calibration and test data and track marginal characteristics for those sets. As expected, all three resulting prediction

sets inherit 1−α (marginal) coverage guarantee as confirmed on Figure E.2a. Moreover, Figure E.2b indeed confirms

that randomization could yield larger prediction sets for not perfectly separable data. But Figure E.2c confirms that

randomization proposed by Romano et al. (2020) (Scheme 1) demonstrates superior conditional coverage since for

this example the true πy(x) is used, and thus the oracle prediction sets are recovered if τ⋆ = 1 − α. Figure E.2d

confirms that oracle prediction sets are not recovered even when the size of the calibration set is increased.

E.2.3 Proofs

Proof of Theorem 6.1. By the definition of the conformal prediction set, Yn+1 ∈ Fτ⋆(Xn+1, Un+1; π̂) if and only if:

r(Xn+1, Yn+1, Un+1; π̂) ≤ Q1−α

(
{ri}i∈I2

∪ {1}
)
.

As the non-conformity scores {ri}n+1
i=1 are exchangeable random variables for any fixed π̂, Lemma E.1.1 implies the

desired result conditional on {(Xi, Yi)}i∈I1
. Finally, when randomization is performed, the scores are uniformly

distributed, and thus Lemma E.1.1 implies that the marginal coverage is nearly tight.

Proof of Theorem 6.2. First, recall the definition of weighted exchangeability (Tibshirani et al., 2019).

Definition 14 (Weighted exchangeability). Random variables Z1, . . . , Zn are said to be weighted exchangeable, with

weight functions ω1, . . . , ωn, if the density f of their joint distribution can be factorized as:

f(z1, . . . , zn) =

n∏

i=1

ωi(zi) · g(z1, . . . , zn),

where g is any function that that invariant to permutations of its arguments, i.e., g(zσ(1), . . . , zσ(n)) for any

permutation σ of 1, . . . , n.

Independent draws are always weighted exchangeable and it is easy to see that under label shift setting Zi =

(Xi, Yi, Ui), i = 1, . . . , n + 1 are weighted exchangeable with ωi ≡ 1, i = 1, . . . , n and ωn+1((x, y)) = q(y)/p(y),

for any pair (x, y) ∈ X × Y . Let rn+1 := r (Xn+1, Yn+1, Un+1; π̂). By construction Yn+1 ∈ F (w)
τ⋆ (Xn+1, Un+1; π̂)

if and only if:

rn+1 ≤ Q1−α

(
n∑

i=1

p̃wi (Yn+1)δri + p̃wn+1(Yn+1)δ1

)
.
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Figure E.1: Prediction sets corresponding to (a) the non-randomized oracle from (6.3); (b) the randomized oracle
from (6.4); (c) the non-randomized conformal method (E.1); (d) the randomized conformal (scheme 1) method (6.7);
(e) the randomized conformal (scheme 2) method (E.2). Notice that randomization acts differently in the oracle and
conformal settings. While for the oracle setting randomization as per scheme 2 corresponds to recoloring the purple
points to either green (leftmost color, class 0) or blue (rightmost color, class 1) depending on the most likely label,
for the conformal setting two schemes yield conceptually different prediction sets. Presented visualizations might
be misleading regarding the role of randomization for conformal classification as they suggest the non-randomized
conformal method is the optimal one. See Figure E.2 and Section E.2.2 for more details.
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Figure E.2: Characteristics of conformal prediction sets for the simulation in Section E.2.2: (a) average marginal
coverage, (b) average cardinality, (c) learned cut-off thresholds in each setting (appending empty prediction sets with
the most-likely label does not impact the threshold), (d) learned cut-off thresholds in each setting when increasing the
size of the calibration set. Key takeaways include: (i) marginal coverage requirement is met irrespective of whether
conformal method performs randomization or not, (ii) the fact that randomization yields larger prediction sets, and
thus is inferior is misleading, (iii) as in considered the example the conformal method recovers the oracle if learned
threshold τ⋆ = 0.95, only randomized (scheme 1) one does it, (iv) the cut-off thresholds do not depend much on the
size of the calibration dataset.
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Under label shift assumption, weights (E.8) do simplify as

pwi (Z1, . . . , Zn+1) =

∑
σ:σ(n+1)=i wn+1(Zi)∑

σ wn+1(Zσ(n+1))

=
w(Yi)∑n

j=1 w(Yj) + w(Yn+1)

= p̃wi (Yn+1),

for i = 1, . . . , n + 1 matching the ones stated in (6.9). The result follows by invoking Lemma E.1.2. As π̂ is

fixed at the calibration step being pre-computed on a separate part of the dataset split, the result is conditional on

{(Xi, Yi)}i∈I1
.

Proof of Corollary 6.2.1. As for the other results, here it is also conditional on the training data, and thus we omit

writing {(Xi, Yi)}i∈I1
for succinctness and we use rn+1 = r (Xn+1, Yn+1, Un+1; π̂) to denote the radius for the test

point. Choose an arbitrary ε > 0. We have:

P
(
Yn+1 /∈ F (ŵk)

τ⋆ (Xn+1, Un+1; π̂)
)

= P
(
rn+1 > τ⋆ŵk

(Yn+1)
)

= P
({
rn+1 > τ⋆ŵk

(Yn+1)
}
∩ {rn+1 + ε > τ⋆w(Yn+1)}

)

+ P
({
rn+1 > τ⋆ŵk

(Yn+1

}
) ∩ {rn+1 + ε ≤ τ⋆w(Yn+1)}

)
.

(E.3)

We have that:

P (rn+1 ≥ τ⋆w(Yn+1)) = P (rn+1 > τ⋆w(Yn+1)) < α,

where equality is due to the fact that rn+1 in the randomized scheme has a continuous distribution and inequality is

due to Theorem 6.2. For the first term in (E.3) we have:

P
({
rn+1 > τ⋆ŵk

(Yn+1

}
) ∩ {rn+1 + ε > τ⋆w(Yn+1)}

)

= P
({
rn+1 > τ⋆ŵk

(Yn+1

}
) ∩ {rn+1 > τ⋆w(Yn+1)− ε}

)

≤ P (rn+1 > τ⋆w(Yn+1)− ε) ,

and for the second term we have that:

P
({
rn+1 > τ⋆ŵk

(Yn+1)
}
∩ {rn+1 ≤ τ⋆w(Yn+1)− ε}

)
≤ P

(∣∣τ⋆ŵk
(Yn+1)− τ⋆w(Yn+1)

∣∣ ≥ ε
)
.
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Note that ε was chosen arbitrarily, so we can let ε → 0. By the continuous mapping theorem, consistency of ŵk

implies that of τ⋆ŵk
(y), y ∈ Y . Thus,

lim
k→∞

P
(
Yn+1 ∈ F (ŵk)

τ⋆ (Xn+1, Un+1; π̂)
)
≥ 1− α,

which concludes the proof of the Corollary.

E.2.4 Simulation on Real Data

For the simulation in Section 6.2.2 we use wine quality dataset (Cortez et al., 2009) to illustrate the performance

of the conformal prediction sets when label shift is (not) taken into account. We focus on white wine dataset only,

which has 4898 instances with 11 features and construct a 3-class classification problem by keeping classes 5,6,7 only

to avoid complications arising due to high imbalance in the dataset (less than 10% of the data points were removed).

Other important aspects include

1. Data Split: First, the original dataset D is split into two disjoint and approximately equal sets D1 and D2.

Then label shift is simulated via resampling according to considered class proportions yielding D̃1 and D̃2 of

the same size. Finally, the former dataset is split at random into sets for training (≈ 1000 instances), calibration

(≈ 100 instances) and importance weights estimation (≈ 700 instances) and the latter is split is split at random

into importance weight estimation (≈ 1000 instances; recall that only labels from the target are used) and test

(≈ 1600 instances) sets.

2. Model: We use a standard Feed Forward Neural Network with 3 hidden layers with (128,64,32) neurons and

ℓ2-regularization in each as an underlying model. We use Adam optimizer with default parameters, set the

maximum number of training epochs to 500 and deploy Early Stopping with patience for 25 epochs.

3. Estimating label shift: We use BBSE-soft (Lipton et al., 2018) for estimating importance weights.

E.2.5 Marginal Conformal versus Label-conditional Conformal

Various procedures of performing label-conditional conformal prediction have been proposed in a series of works (Vovk

et al., 2005, 2016; Sadinle et al., 2019; Guan and Tibshirani, 2022). Those are based on a slight modification of

the standard conformal p-value used to determine whether there is enough evidence to exclude given label from the

prediction set. Roughly speaking, for each candidate label y instead of looking whether a pair (Xn+1, y) conforms well

to the whole collection of points D̃ = {(Xi, Yi)}i∈I , one considers only the subcollection that shares the same label

y. Since the standard exchangeability argument immediately implies validity, the difference then lies in a particular

choice for the underlying (non-)conformity score. For example, one could design a score that aims to minimize

expected size of the prediction set Sadinle et al. (2019); Guan and Tibshirani (2022).
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Figure E.3: (a) Conformal prediction sets with marginal coverage guarantee, (b) Conformal prediction sets with class-
specific coverage guarantee. Stronger coverage comes at the price of larger the prediction sets in certain areas.

We now apply label-conditional split-conformal framework to the setting discussed in this work and focus on

the case of not well-separated data. Consider, for example, the data simulation pipeline from Section 6.2.2. First,

we fix αy = α = 0.1 for all y ∈ Y and illustrate the difference between label-conditional conformal (6.10) and

standard conformal (6.7) prediction sets with the same randomized non-conformity scores (6.6) for a fair comparison

on Figure E.3. In both cases a shallow MLP (two layers with 100 hidden units in each) is used as an underlying

predictor. In this particular example a stronger requirement of conditional validity forces many prediction sets to be

larger and to contain the least populated class 1.

Then we perform 1000 simulations and compare label-conditional conformal against marginal conformal in two

settings (in all cases prediction sets are forced to contain the most likely label for a fair comparison). First, we set

the calibration set size to be ≈ 350 data points and compare two procedures depending on whether class proportions

change, and in the former case we perform reweighting of the non-conformity scores as described in Section 6.2.2.

On Figure E.4b we observe that when class proportions do not change label-conditional conformal yields larger

prediction sets as opposed to standard marginal conformal due to a stronger coverage requirement. However, when

class proportions change, after performing the reweighting with the true label likelihood ratios, both procedures output

prediction sets of similar size on average as illustrated on Figure E.4d. Motivated by reasons related to the practical

limits of data resources when keeping a sufficiently large held-out set per label could become prohibitive, we also

consider a setting when the calibration set contains ≈ 100 data points (total). Smaller calibration set size results in

losses of statistical power when testing whether a given label should be included into the prediction set, and thus,

might yield larger prediction sets as observed on Figure E.4f.

To summarize, label-conditional conformal is a complementary (and a powerful) technique to label-shifted

conformal that is inherently robust to changes in class proportions. It does not require importance weights, and thus

can yield exact finite-sample guarantees. Still, it has certain limitations: (a) it might be potentially a bit conservative in

certain areas of the sample space where classes overlap, (b) it requires further splitting of the calibration set that could

have negative impact, especially when the number of classes K is large, a common setting for the modern datasets.
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Figure E.4: Empirical coverage and average cardinality of conformal prediction sets: (a-b) source distribution and ≈
350 calibration data points total, (c-d) target distribution and≈ 350 calibration data points total, (e-f) target distribution
and ≈ 100 calibration data points total. Complete comparison of the results is given in Section E.2.5.
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E.3 Calibration

Section E.3.1 includes all proofs for Sections 6.3.1 and 6.3.2 and Section E.3.2 includes details about the simulation

on a real dataset mentioned in Section 6.3.2.

E.3.1 Proofs

Proof of Theorem 6.3. Recall that g : X → M denotes the bin-mapping function. Let E be the event that

(g(X1), . . . , g(Xn)) = (g(x1), . . . , g(xn)). On this event, the number of calibration points Nm within each

bin Bm is known and for each bin labels are i.i.d. with corresponding class probabilities given by πP
y,m =

P (Y = y | f(X) ∈ Bm) for all y ∈ Y . Thus, a vector corresponding of label frequencies has multinomial distribution

with parameters Nm and
{
πP
y,m

}
y∈Y . Theorem E.1 yields that conditional on E

K∑

y=1

∣∣π̂P
y,m − πP

y,m

∣∣ ≥ 2√
Nm

√
1

2
ln

(
M2K

α

)
,

with probability at most α/M . Invoking union bound, we get that, conditional on E, with probability at least 1− α,

K∑

y=1

∣∣π̂P
y,m − πP

y,m

∣∣ ≤ 2√
Nm

√
1

2
ln

(
M2K

α

)
,

simultaneously for all m ∈ M. Since it is true for any E, we can marginalize to obtain the first assertion of the

Proposition. The second assertion simply represents a consideration of the case when multiple bins happen to have the

same calibrated output which is needed to state the desired calibration guarantee. Let

ε⋆ = sup
m∈M

εm

denote the worst-case bound. Note that ε⋆ is in fact random and to be fully rigorous we, first, perform next steps

conditional on E and then marginalize to obtain the assertion. Now, for any y ∈ Y:

|P (Y = y | h(X))− hy(X)|

= |E [1 {Y = y} | h(X)]− hy(X)|
(a)
= |E [1 {Y = y} | h(X)]− E [hy(X) | h(X)]|
(b)
= |E [E [1 {Y = y} | g(X)] | h(X)]− E [hy(X) | h(X)]|
(c)
=

∣∣∣E
[[
πP
y,g(X) − hy(X)

]
| h(X)

]∣∣∣
(d)

≤ E
[∣∣∣πP

y,g(X) − π̂y,g(X)

∣∣∣ | h(X)
]
,

(E.4)
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where (a), (b) are due to the tower rule (h is a function of g), (c) is due to linearity of conditional expectation and due

to definition of πP
y,m and, finally, (d) is due to Jensen’s inequality. Consider the event:

E1 :
∥∥π̂P

m − πP
m

∥∥
1
≤ εm,

simultaneously for allm ∈M. Note that the first assertion of the Proposition states eventE1 happens with probability

at least 1− α for chosen εm: P(E1) ≥ 1− α. Let E2 be the following event:

E2 :

K∑

y=1

|P (Y = y | h(X))− hy(X)| ≤ ε⋆.

Summing up over labels y ∈ Y , (E.4) yields that on E1 it holds with probability 1:

K∑

y=1

|P (Y = y | h(X))− hy(X)| ≤ E
[∥∥∥πP

g(X) − π̂g(X)

∥∥∥
1
| h(X)

]
≤ E [ε⋆ | h(X)] = ε⋆,

since ε⋆ is a constant. We get thatE1 ⊆ E2, and thus P(E2) ≥ P(E1), and the assertion of the Proposition follows.

Proof of Proposition 7. The Proposition is a straightforward combination of the Bayes rule and label shift assumption.

Given a predictor f , for any class label y ∈ Y and any bin Bm, m ∈M = {1, . . . ,M} one can equivalently represent

conditional probabilities with respect to the target distribution as:

PQ (Y = y | f(X) ∈ Bm)

(a)
= PQ (f(X) ∈ Bm | Y = y) · PQ (Y = y)

PQ (f(X) ∈ Bm)

(b)
= PP (f(X) ∈ Bm | Y = y) · PQ (Y = y)

PQ (f(X) ∈ Bm)

(c)
= PP (Y = y | f(X) ∈ Bm) · PQ (Y = y)

PP (Y = y)
· PP (f(X) ∈ Bm)

PQ (f(X) ∈ Bm)

= PP (Y = y | X ∈ Bm) · w(y) · Vm,

where w(y) is the importance weight of label y and Vm is the ‘relative volume’ of bin Bm. Steps (a), (c) are due to the

Bayes rule, (b) is due to label shift assumption. Normalization:
∑K

k=1 PQ (Y = k | f(X) ∈ Bm) = 1, implies that:

Vm =
1

∑K
k=1 π

P
k,m · w(k)

.

Thus for all bins m ∈M and labels y ∈ Y it holds:

πQ
y,m =

πP
y,m · w(y)∑K

k=1 π
P
k,m · w(k)

,
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which concludes the proof of the Proposition.

Proof of Theorem 6.4. By triangle inequality, one obtains that for any bin m ∈M:

K∑

y=1

∣∣∣π̂(ŵ)
y,m − πQ

y,m

∣∣∣ ≤
K∑

y=1

∣∣∣π̂(w)
y,m − πQ

y,m

∣∣∣+
K∑

y=1

∣∣∣π̂(ŵ)
y,m − π̂(w)

y,m

∣∣∣ . (E.5)

Consider the first term in (E.5). For any y ∈ Y:

∣∣∣π̂(w)
y,m − πQ

y,m

∣∣∣

=

∣∣∣∣∣
w(y) · π̂P

y,m∑K
k=1 w(k) · π̂P

k,m

− w(y) · πP
y,m∑K

l=1 w(l) · πP
l,m

∣∣∣∣∣

=

∣∣∣∣∣
π̂P
y,m∑K

k=1 w(k) · π̂P
k,m

− πP
y,m∑K

l=1 w(l) · πP
l,m

∣∣∣∣∣ · w(y)

=

∣∣∣∣∣
π̂P
y,m∑K

k=1 w(k) · π̂P
k,m

− πP
y,m − π̂P

y,m + π̂P
y,m∑K

l=1 w(l) · πP
l,m

∣∣∣∣∣ · w(y)

(a)

≤
∣∣∣∣∣

1
∑K

k=1 w(k) · π̂P
k,m

− 1
∑K

l=1 w(l) · πP
l,m

∣∣∣∣∣ · π̂
P
y,m · w(y) + w(y) ·

∣∣∣∣∣
πP
y,m − π̂P

y,m∑K
l=1 w(l) · πP

l,m

∣∣∣∣∣ ,

where (a) is due to triangle inequality. We infer that:

K∑

y=1

∣∣∣π̂(w)
y,m − πQ

y,m

∣∣∣

≤
∣∣∣∣∣1−

∑K
k=1 w(k) · π̂P

k,m∑K
l=1 w(l) · πP

l,m

∣∣∣∣∣+
∑K

y=1 w(y)
∣∣πP

y,m − π̂P
y,m

∣∣
∑K

l=1 w(l) · πP
l,m

=

∣∣∣
∑K

k=1 w(k) ·
(
π̂P
k,m − πP

l,m

)∣∣∣
∑K

l=1 w(l) · πP
l,m

+

∑K
y=1 w(y)

∣∣πP
y,m − π̂P

y,m

∣∣
∑K

l=1 w(l) · πP
l,m

(a)

≤ 2 ·
∑K

y=1 w(y)
∣∣πP

y,m − π̂P
y,m

∣∣
∑K

l=1 w(l) · πP
l,m

(b)

≤ 2 ·
(supk w(k)) ·

∑K
y=1

∣∣πP
y,m − π̂P

y,m

∣∣
∑K

l=1 w(l) · πP
l,m

,

where (a) is due to triangle inequality and (b) is due to Hölder’s inequality. Observe that for any m ∈M:

1
∑K

k=1 w(k) · πP
k,m

≤ 1(
inf

k:w(k)̸=0
w(k)

)
·∑K

l=1 π
P
l,m

=
1

inf
k:w(k) ̸=0

w(k)
,
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as
∑K

l=1 π
P
l,m = 1, ∀m ∈M. Hence, for any m ∈M,

K∑

y=1

∣∣∣π̂(w)
y,m − πQ

y,m

∣∣∣ ≤ 2 · supk w(k)

inf
k:w(k)̸=0

w(k)
·

K∑

y=1

∣∣πP
y,m − π̂P

y,m

∣∣ . (E.6)

Now, consider the second term in (E.5). Observe that:

∣∣∣π̂(ŵ)
y,m − π̂(w)

y,m

∣∣∣ =
∣∣∣∣∣

ŵ(y) · π̂P
y,m∑K

k=1 ŵ(k) · π̂P
k,m

− w(y) · π̂P
y,m∑K

l=1 w(l) · π̂P
l,m

∣∣∣∣∣

=

∣∣∣∣∣
ŵ(y)

∑K
k=1 ŵ(k) · π̂P

k,m

− w(y)
∑K

l=1 w(l) · π̂P
l,m

∣∣∣∣∣ · π̂
P
y,m

=

∣∣∣∣∣
ŵ(y)

∑K
k=1 ŵ(k) · π̂P

k,m

− w(y)− ŵ(y) + ŵ(y)
∑K

l=1 w(l) · π̂P
l,m

∣∣∣∣∣ · π̂
P
y,m

(a)

≤
∣∣∣∣∣

1
∑K

k=1 ŵ(k) · π̂P
k,m

− 1
∑K

l=1 w(l) · π̂P
l,m

∣∣∣∣∣ · π̂
P
y,m · ŵ(y) +

π̂P
y,m · |w(y)− ŵ(y)|∑K

l=1 w(l) · π̂P
l,m

,

where (a) is due to triangle inequality. Thus,

K∑

y=1

∣∣∣π̂(ŵ)
y,m − π̂(w)

y,m

∣∣∣ ≤
∣∣∣∣∣

1
∑K

k=1 ŵ(k) · π̂P
k,m

− 1
∑K

l=1 w(l) · π̂P
l,m

∣∣∣∣∣ ·
K∑

y=1

π̂P
y,m · ŵ(y) +

∑K
y=1 π̂

P
y,m · |w(y)− ŵ(y)|∑K
l=1 w(l) · π̂P

l,m

=

∣∣∣∣∣1−
∑K

y=1 ŵ(y) · π̂P
y,m∑K

l=1 w(l) · π̂P
l,m

∣∣∣∣∣+
∑K

y=1 π̂
P
y,m · |w(y)− ŵ(y)|∑K
l=1 w(l) · π̂P

l,m

=

∣∣∣
∑K

y=1 (w(y)− ŵ(y)) · π̂P
y,m

∣∣∣
∑K

l=1 w(l) · π̂P
l,m

+

∑K
y=1 π̂

P
y,m · |w(y)− ŵ(y)|∑K
l=1 w(l) · π̂P

l,m

≤ 2 ∥ŵ − w∥∞∑K
l=1 w(l) · π̂P

l,m

,

since
∑K

k=1 π̂
P
k,m = 1, ∀m ∈M. Similarly, for any m ∈M:

1
∑K

k=1 w(k) · π̂P
k,m

≤ 1(
inf l:w(l) ̸=0 w(l)

)
·∑K

k=1 π̂
P
k,m

=
1

inf l:w(l)̸=0 w(l)
.

Thus, we get that for any m ∈M:

K∑

y=1

∣∣∣π̂(ŵ)
y,m − π̂(w)

y,m

∣∣∣ ≤ 2 ∥ŵ − w∥∞
inf l:w(l)̸=0 w(l)

. (E.7)
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Combining bounds (E.6) and (E.7) with the bound (E.5), we obtain that for any m ∈M:

K∑

y=1

∣∣∣π̂(ŵ)
y,m − πQ

y,m

∣∣∣ ≤ 2κ ·
K∑

y=1

∣∣π̂P
y,m − πP

y,m

∣∣+ 2 ∥ŵ − w∥∞
inf l:w(l)̸=0 w(l)

,

which concludes the proof of the Theorem.

E.3.2 Simulation on Real Data

For the simulation mentioned in Section 6.3.2 we use wine quality dataset (Cortez et al., 2009). The original

dataset contains ratings for white wines and we reduce it to a binary classification problem by treating wine as good

if the corresponding rating is at least 7 on a 10-point scale. Logistic regression is used as an underlying predictor and

for each pass the original dataset D is, first, split into two disjoint and approximately equal sets D1 and D2. Label

shift is simulated via resampling of D̃1 with class proportions p = (0.8, 0.2) and D̃2 with class proportions (0.5, 0.5).

Final splitting resulted in ≈ 1350 instances used for both training and calibration, ≈ 700 and ≈ 400 instances used

for importance weights estimation on the source and the target respectively and ≈ 1100 instances used for the test.

Uniform-mass binning with 10 bins was used for calibration purposes. For 4 random data splits the resulting reliability

curves are presented on Figure E.5 illustrating that calibration with proper reweighting leads to approximate calibration

on the target domain and uncorrected fails to do so.

E.4 Auxiliary Results

Note Lemma E.1.1 and Lemma E.1.2 were originally formulated for possibly unbounded non-conformity scores. It is

easy to see that we can safely replace point masses δ∞ by δ1 in the conformal classification setting considered in this

work.

Theorem E.1 (Bretagnolle-Huber-Carol inequality (van der Vaart and Wellner, 1996)). If the random vector

(N1, . . . , Nk) is multinomially distributed with parameters n and (p1, . . . , pk), then

P

(
k∑

i=1

|Ni − npi| ≥ 2
√
nλ

)
≤ 2ke−2λ2

, λ > 0.

Lemma E.1.1 (Lemma 1 (Tibshirani et al., 2019)). Assume Z1, . . . , Zm+1 are exchangeable random variables

supported on [0, 1]. Then for any β ∈ (0, 1),

P (Zm+1 ≤ Qβ (Z1:m ∪ {1})) ≥ β.*

Moreover, if Zi, i = 1, . . . ,m+1 are almost surely distinct, then the above probability is upper bounded by β+ 1
m+1 .
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Figure E.5: Reliability curves for the simulation on the wine quality dataset obtained for several data splits.
Notice that the bars indicating calibration using oracle and estimated importance weights are quite similar to each
other, but most importantly that both are very close to the ideal diagonal line (perfect calibration). In contrast, the
uncorrected bars are poorly calibrated, demonstrating both the need for handling label shift and the relative success of
our procedures in doing so. See Section E.3.2 for details.
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Lemma E.1.2 (Lemma 3 (Tibshirani et al., 2019)). Let Zi, i = 1, . . . , n + 1 be weighted exchangeable random

variables with weight functions w1, . . . , wn+1 and supported on [0, 1]. Let Vi = S (Zi, Z−i), where Z−i =

Z1:(n+1)\{Zi}, i = 1, . . . , n+ 1 and S is an arbitrary score function. Define

pwi (z1, . . . , zn+1) =

∑
σ:σ(n+1)=i

∏n+1
j=1 wj(zσ(j))

∑
σ

∏n+1
j=1 wj(zσ(j))

, (E.8)

for i = 1, . . . , n+ 1, where summations are taken over permutations σ of 1, . . . , n+ 1. Then for any β ∈ (0, 1),

P (Vn+1 ≤ Qβ (Gn)) ≥ 1− β,

where the distribution Gn is defined as

Gn :=

n∑

i=1

pwi (Z1, . . . , Zn+1)δVi
+ pwn+1(Z1, . . . , Zn+1)δ1.
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