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Abstract

Detecting, analyzing, and modeling changes provide essential information for understanding
scientific processes and human behavior. While change analysis is fundamental in machine
learning and statistics, many standard models are limited in expressiveness or make unrealistic
simplifying assumptions. This thesis focuses on two interrelated elements of change analysis.

First, we provide rich characterization of changes by developing new methods for mod-
eling complex changes and for detecting anomalous patterns in real world data. In order
to characterize a change we automatically model the “null” regions of stability in the data
and identify where “alternative” regions of change or anomalies exist. By modeling how the
alternative regions differ or evolve from the null regions, we show that we are able to use
that information for scientific discovery and for early event detection.

Second, we consider causal and counterfactual inference by exploiting changes to uncover
the generative structure of data. By isolating changes in data we can reason about what
would have occurred in the absence of a change. Such reasoning enables us to predict the
counterfactual world and estimate the causal impact of certain variables or interventions in a
data set.

Using a dozen different public interest data sets we employ our methods to characterize
changes and identify causal mechanisms that can provide scientific and policy relevant
insights. Specifically, we concentrate on health policy and urban data, much of which exhibit
distinct spatial and demographic patterns. The data we explore includes measles incidence,
health insurance usage rates, water lead testing, requests for municipal services, urban opioid
deaths, weather related damage in urban neighborhoods, urban school absenteeism, and
police traffic stops.
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Chapter 1

Introduction

A season is set for everything, a time for every experience under heaven:
A time for being born and a time for dying, A time for planting and a time for uprooting;
A time for slaying and a time for healing, A time for tearing down and a time for building up;
A time for weeping and a time for laughing, A time for wailing and a time for dancing;
A time for throwing stones and a time for gathering stones, A time for embracing and a time
for shunning embraces;
A time for seeking and a time for losing, A time for keeping and a time for discarding;
A time for ripping and a time for sewing, A time for silence and a time for speaking;
A time for loving and a time for hating; A time for war and a time for peace.

Ecclesiastes 3:1-8

Everything changes. Yet Ecclesiastes emphasizes that as humans we often believe that
our world is somehow fixed. We’re surprised not only by political revolution but also by
highly predictable changes from Summer to Fall to Winter. And while statistical methods
exist to detect and use changes in data distributions, these methods tend to model relatively
simple changes or else require substantial expert human oversight. The potential for modeling
complex changes or automatically using changes in data to deeply understand a system are
vastly under-explored.

This thesis pays homage to changes. The fundamental contention throughout these
chapters is that detecting, analyzing, and modeling changes provide essential information for
understanding scientific processes and human behavior.

Change themes: Within the overarching theme of change detection we concentrate on two
major elements:



2 Introduction

• Characterizing changes by developing new methods for modeling complex changes
and for detecting anomalous patterns in complex data. In order to characterize a change
we automatically model the “null” regions of stability in the data and identify where
“alternative” regions of change or anomalies exist. By modeling how the alternative
regions differ or evolve from the null regions, we show that we are able to use that
information for scientific discovery or for early event detection.

• Causal and counterfactual inference by exploiting changes to uncover the generative
structure of data. By isolating changes in data we can reason about what would
have occurred in the absence of a change. Such reasoning enables us to predict the
counterfactual world and estimate the causal impact of certain variables or interventions
in a data set.

Methodological themes: Throughout this thesis we will use and innovate on two statistical
machine learning methodologies:

• Gaussian processes. GPs are particularly suited for change modeling since they allow
for quite general modeling of data with closed form expressions for inference and
likelihood estimation. GPs are a Bayesian non-parametric technique that provide a
natural means for encoding expert insight, or previously known characteristics of the
data. With respect to application domains, discussed in the paragraph below, GPs are a
useful model for spatiotemporal data since the covariance function can automatically
learn correlations across multiple dimensions. In public policy data we are also often
faced with missing or partially incomplete datasets, which are naturally handled by GPs
without any need for special modification. We provide a more detailed introduction to
GPs in Section 1.2.

• Subset scanning. Identifying where changes or anomalies exist is a challenging task
because we must both model the null data where no changes exist while also searching
for the alternative regions which exhibit a significant change in the data distribution.
By searching over constrained subsets of data, subset scanning provides an efficient
and formalized mechanism to discover changes in multidimensional data and can be
adapted to datasets with either real-valued or categorical variables and outputs.

Application themes: While this thesis focuses on developing novel statistical machine
learning methods to identify and exploit changes, we have a specific interest in application
areas of public importance. Change analysis is particularly important for understanding
scientific processes and public policy. In these fields it is often practically or morally difficult
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to run highly controlled experiments so researchers are left to use observational data to
understand a system. By focusing on regions of changes we can gain insight into the often
hidden mechanisms undergirding such systems. Specifically we concentrate on health care
data (such as historical epidemiological trends in Section 2.4.4) and urban policy data (such
as New York City 311 data in Section 4.4). Much of the data is spatiotemporal, whose
substantial correlations across dimensions adds complexity to our endeavor. While readers
with an exclusive interest in statistical methods may be tempted to ignore these application
sections, we encourage them to not be so hasty. The application of machine learning methods
to truly real data (rather than toy “real world” data) is an essential aspect of verifying the
utility of any new method. We spend considerable time in this thesis analyzing experimental
results to demonstration of how our methods can provide real insight to stakeholders.

1.1 Outline

Each chapter in this thesis addresses some combination of the themes described above.
Their purposes, methodologies, and applications build on one another and provide a general
perspective for considering how to approach a variety of changes in different types of data.

Chapter 2: The thesis begins by challenging changepoints, a ubiquitous framework for
modeling changes in data. Standard changepoint models are limited in expressiveness, often
addressing unidimensional problems and assuming instantaneous changes. We introduce
change surfaces as a multidimensional and highly expressive generalization of change-
points [63, 64]. We provide a model-agnostic formalization of change surfaces, illustrating
how they can provide variable, heterogeneous, and non-monotonic rates of change across
multiple dimensions. Additionally, we instantiate change surfaces by developing Gaussian
Process Change Surfaces (GPCS) and we demonstrate the ability for massive scalability by
introducing novel methods for additive non-separable kernels.

This chapter focuses on the themes of change characterization, GP methodology, and
applies the methods to three public policy and public health datasets.

Chapter 3: Continuing with change surfaces, this chapter develops a framework for using
change surfaces for counterfactual prediction. We discuss the assumptions necessary for the
validity of these counterfactuals, including how they relate to the potential outcomes frame-
work. Additionally, using Gaussian Process Change Surfaces we demonstrate counterfactual
prediction with Bayesian posterior mean and credible sets.



4 Introduction

This chapter focuses on the theme of casual inference, GP methodology, and applies the
methods to a large public health dataset.

Chapter 4: In an effort to detect localized changes in spatiotemporal data, this chapter
develops an anomalous pattern detection technique for highly correlated data [61]. Anomaly
detection techniques often identify points on the peripheries of the data distribution, which is
useful for tasks such as data cleaning or online monitoring for extreme points. Yet methods
that separately consider the anomalousness of each individual data point have low detection
power for subtle, emerging irregularities. Additionally, recent detection techniques based on
subset scanning make strong independence assumptions and suffer degraded performance in
correlated data. We introduce methods for identifying anomalous patterns in non-iid data by
combining Gaussian processes with novel log-likelihood ratio statistic and subset scanning
techniques. Our approaches are powerful, interpretable, and can integrate information across
multiple data streams.

This chapter focuses on the themes of change characterization, both GP and subset
scanning methodology, and applies the methods to four urban spatiotemporal data sets.

Chapter 5: Using anomalous pattern detection we develop the first statistical machine
learning approach for automatically discovering regression discontinuity designs [62]. RDDs
are a natural experiment setup often used in econometrics to infer causal treatment effects
from observational datasets. Our method identifies interpretable, localized RDDs in arbitrary
dimensional data and can seamlessly compute treatment effects without expert supervision.

This chapter focuses on the theme of casual inference, subset scanning methodology, and
applies the methods to three data sets in education and health care.

Chapter 6: Continuing to focus at intersection of machine learning and econometrics we
develop a framework for automatically discovering difference-in-differences (DD) in time
series data. Our method extends the RDD search techniques from Chapter 5 to discover
RDDs in heterogeneous categorical subsets of data. Specifically for DDs we apply this
approach to temporal data and discover RDDs in time. Additionally we develop a novel
approach for identifying control subsets for DDs in order to compute treatment effects.

This chapter focuses on the theme of casual inference, subset scanning methodology, and
applies the methods to two public policy datasets.

Chapter 7: We conclude the thesis in this chapter with some observations about overarch-
ing methodological and conceptual themes that span multiple chapters.
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1.2 Background on Gaussian processes

A number of chapters in this thesis rely heavily on Gaussian processes. As such we provide
a brief review of Gaussian processes here which has relevance to work throughout the thesis.
More details can be found in comprehensive works such as Rasmussen and Williams [113],
Schölkopf and Smola [130], and MacKay [93].

Consider data, (x,y), where x = {x1, . . . ,xn},xi ∈ RD, are inputs or covariates, and
y = {y1, . . . ,yn}, yi ∈ R are outputs or response variables indexed by x. We assume that y is
generated from x by a latent function with a Gaussian process prior (GP) and Gaussian noise.
In particular,

y = f (x)+ ε (1.1)

f (x)∼ G P(µ(x),k(x,x′)) (1.2)

ε ∼ N (0,σ2
ε ) (1.3)

A Gaussian process is a nonparametric prior over functions completely specified by mean
and covariance functions. The mean function, µ(x), is the prior expectation of f (x), while
the covariance function, k(x,x′), is a positive semidefinite kernel that defines the covariance
between function values f (x) and f (x′).

µ(x) = E[ f (x)] (1.4)

k(x,x′) = cov( f (x), f (x′)) (1.5)

Any finite collection of function values is normally distributed [ f (x1)... f (xp)]∼N (µ(x),K)

where p× p matrix Ki, j = k(xi,x j). Thus we can draw samples from a Gaussian process at
a finite set of points by sampling from a multivariate Gaussian distribution. In this thesis
we generally consider µ(x) = 0 and concentrate on the covariance function. The choice of
kernel is particularly important in Gaussian process applications since the kernel defines the
types of correlations encoded in the Gaussian process. For example, a common kernel choice
is a Radial Basis Function (RBF), also known as a Gaussian kernel,

k(x,x′) = s2 exp[−(x− x′)TV−1(x− x′)/2] (1.6)

where s2 is the signal variance and V is a diagonal matrix of bandwidths. The RBF kernel
implies that nearby values are more highly correlated. While this may be true in many
applications, it would be inappropriate for data with significant periodicity. In such cases a
periodic kernel would be more fitting. We consider more expressive kernel representations in
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Section 2.3.1. This formulation of Gaussian processes naturally accommodates inputs x of
arbitrary dimensionality.

Prediction with Gaussian processes Given a set of kernel hyperparameters, θ , and data,
(x,y), we can derive a closed form expression for the predictive distribution of f (x∗) evaluated
at points x∗,

f (x∗)|θ ,x,y,x∗ ∼ N
(

k(x∗,x)[k(x,x)+σ
2
ε I]−1(y−µ(x))+µ(x∗),

k(x∗,x∗)− k(x∗,x)[k(x,x)+σ
2
ε I]−1k(x,x∗)

) (1.7)

The predictive distribution provides posterior mean and variance estimates that can be used to
define Bayesian credible sets. Thus Gaussian process prediction is useful both for estimating
the value of a function at new points, x∗, and for deriving a function’s distribution in the
domain, x, for which we have data.

Learning Gaussian process hyperparameters In order to learn kernel hyperparameters
we often desire to optimize the marginal likelihood of the data conditioned on the kernel
hyperparameters, θ , and inputs, x.

p(y|θ ,x) =
∫

p(y| f ,x)p( f |θ)d f (1.8)

Thus we choose the kernel which maximizes the likelihood that the observed data is generated
by the Gaussian process prior with hyperparameters θ . In the case of a Gaussian observation
model we can express the log marginal likelihood as,

log p(y|θ ,x) =−1
2

log |K +σ
2
ε I|− 1

2
(y−µ(x))T (K +σ

2
ε I)−1(y−µ(x))+ constant (1.9)

Drawbacks However, solving linear systems and log determinants involving the n× n
covariance matrix K incurs O(n3) computations and O(n2) memory, for n training points,
using standard approaches based on the Cholesky decomposition [113]. These computational
requires are prohibitive for many applications, particularly in scientific analysis and public
policy — the foci of this thesis — where it is normal to have more than few thousand training
points. Additionally, recent advances in GP scalability have often been developed at the
expense of the expressiveness of the GP model. For example, Kronecker-based methods
require data be distributed on a multi-dimensional lattice and are restricted to separable
kernel functions across data dimensions.
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As part of our work on change modeling, we address some challenges of working with
GPs in modern datasets. In Chapter 2 we develop alternative inference procedures for additive
kernels which enable scalable non-separable inference for GPs. Additionally, we develop
novel initialization procedures for spectral mixture kernels which enable learning of more
complex covariance functions.





Chapter 2

Change Surfaces for Generalized
Change Modeling

2.1 Introduction

Detecting and modeling changes in data is critical in statistical theory, scientific discovery,
and public policy. For example, in epidemiology, detecting changes in disease dynamics
can provide information about when and where a vaccination program becomes effective.
In dangerous professions such as coal mining, changes in accident occurrence patterns can
indicate which regulations impact worker safety. In city governance, policy makers may be
interested in how requests for health services change across space and over time1.

Changepoint models have a long history in statistics, beginning in the mid-twentieth
century, when methods were first developed to identify changes in a data generating process
[108, 68]. The primary goal of these models is to determine if a change in the distribution of
the data has occurred, and then to locate one or more points in the domain where such changes
occur. While identifying these changepoints is an important result in itself, changepoint
methods are also frequently applied to other problems such as outlier detection or failure
analysis [118, 141, 80]. Different changepoint methods are distinguished by the diversity
of changepoints they are able to detect and the complexity of the underlying data. The
simplest models consider mean shifts between functional regimes [35, 83], while others
consider changes in the covariance structure or higher order moments [82, 120, 76]. A regime
is a particular data generating process or underlying function that is separated from other
underlying processes or functions by changepoints. Additionally, there is a fundamental
distinction between changepoint models that identify changes sequentially using online

1Published as Herlands et al. [64]
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algorithms, and those that analyze data retrospectively to find one or more changes in past
data [24, 33]. Finally, changepoint methods may be fully parametric, semi-parametric, or
nonparametric [120, 54]. For additional discussion of changepoints beyond the scope of this
chapter, readers may consider the literature reviews in Aue and Horváth [18], Ivanoff and
Merzbach [74], and Aminikhanghahi and Cook [8].

Yet nearly all changepoint methods described in the statistics and machine learning
literature consider system perturbations as discrete changepoints. This literature seeks to
identify instantaneous differences in parameter distributions. The advantage of such models
is that they provide definitive assessments of the location of one or more changepoints. This
approach is reasonable, for instance, when considering catastrophic events in a mechanical
system, such as the effect of a car crash on various embedded sensor readings. Yet the
challenge with these models is that real world systems rarely exhibit a clear binary transition
between regimes. Indeed, in many applications, such as in biological science, instantaneous
changes may be physically impossible. While a handful of approaches consider non-discrete
changepoints [e.g., 152, 155, 92] they still require linear, monotonic, one-dimensional, and,
in practice, relatively quick changes. Existing models do not provide the expressiveness
necessary to model complex changes.

Additionally, applying changepoints to multiple dimensions, such as spatio-temporal
data, is theoretically and practically non-trivial, and has thus been seldom attempted. Notable
exceptions include Majumdar et al. [95] who consider discrete spatio-temporal changepoints
with three additive Gaussian processes: one for t ≤ t0, one for t > t0, and one for all t.
Alternatively, Nicholls and Nunn [106] use a Bayesian onset-field process on a lattice to
model the spatio-temporal distribution of human settlement on the Fiji islands. However, the
models in these papers are limited to considering discrete changepoints.

2.1.1 Main contributions

In this chapter, we introduce change surfaces as expressive, multidimensional generalizations
of changepoints. We present a model-agnostic formulation of change surfaces and instantiate
this framework with scalable Gaussian process models. The resulting model is capable
of automatically learning expressive covariance functions and a sophisticated continuous
change surface. Additionally, we derive massively scalable inference procedures. Finally, we
apply the proposed methods to a wide variety of numerical data and complex human systems.
In particular, we:

1. Introduce change surfaces as multidimensional and highly flexible generalizations of
changepoint modeling.
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2. Introduce a procedure which allows one to specify background functions and change
functions, for more powerful inductive biases and added interpretability.

3. Present the Gaussian Process Change Surface model (GPCS) which models change
surfaces with highly flexible Random Kitchen Sink [111] features.

4. Develop massively scalable additive, non-stationary, non-separable kernels by using
the Weyl inequality [150] and novel Kronecker methods. In addition we integrate our
approach into the recent KISS-GP framework [154]. The resulting approach is the first
scalable Gaussian process multidimensional changepoint model.

5. Describe a novel initialization method for spectral mixture kernels [151] by fitting a
Gaussian mixture model to the Fourier transform of the data. This method provides
good starting values for hyperparameters of expressive stationary kernels, allowing for
successful optimization over a multimodal parameter space.

6. Demonstrate that the GPCS approach is robust to misspecification, and automatically
discourages extraneous model complexity, leading to the discovery of interpretable
generative hypotheses for the data.

7. Use GPCS for discovering and characterizing continuous changes in large observational
data. We demonstrate our approach on a recently released public health dataset
providing new insight that suggests how the effect of the 1963 measles vaccine may
have varied over space and time in the United States. Additionally, we apply the model
to requests for lead testing kits in New York City from 2014-2016. The results illustrate
distinct spatial patterns in increased concern about lead-tainted water.

2.1.2 Outline

The chapter is divided into three main units.
Section 2.2 formally introduces the notion of change surfaces as a multidimensional,

expressive generalization of changepoints and we discuss a variant of change surfaces in
Section 2.2.1. The discussion of change surfaces in this unit is method-agnostic, and should
be relevant to experts from a wide variety of statistical and machine learning disciplines. We
emphasize the novel contribution of this framework to the general field of change detection.

Section 2.3 presents the Gaussian Process Change Surface (GPCS) as a scalable method
for change surface modeling. We specify the GPCS model in Section 2.3.1. Scalable
inference using novel Kronecker methods are presented in Section 2.3.2, and we describe a
novel initialization technique for expressive Gaussian process kernels in Section 2.3.3.
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Section 2.4 demonstrates GPCS on out-of-class numerical data and complex spatio-
temporal data. We describe our numerical setup in Section 2.4.1 presenting results for
posterior prediction and change surface identification. We present a one-dimensional applica-
tion of GPCS on coal mining data in Section 2.4.2 including a comparison to state-of-the-art
changepoint methods. Moving to spatio-temporal data, we apply GPCS to model requests for
lead testing kits in New York City in Section 2.4.3 and discuss the policy relevant conclusions.
Additionally, we use GPCS to model measles incidence in the United States in Section 2.4.4
and discuss scientifically relevant insights.

2.2 Change surfaces

In human systems and scientific phenomena we are often confronted with changes or per-
turbations which may not immediately disrupt an entire system. Instead, changes such
as policy interventions and natural disasters take time to affect deeply ingrained habits or
trickle through a complex bureaucracy. The dynamics of these changes are non-trivial, with
sophisticated distributions, rates, and intensity functions. Using expressive models to fully
characterize such changes is essential for accurate predictions and scientifically meaningful
results. For example, in the spatio-temporal domain, changes are often heterogeneously
distributed across space and time. Capturing the complexity of these changes provides
useful insights for future policy makers enabling them to better target or structure policy
interventions.

In order to provide the expressive capability for such models, we introduce the notion
of a change surface as a generalization of changepoints. We assume data are (x,y), where
x = {x1, . . . ,xn},xi ∈RD, are inputs or covariates, and y = {y1, . . . ,yn}, yi ∈R, are outputs or
response variables indexed by x. A change surface defines transitions between latent functions
f1, . . . , fr defining r regimes in the data. Unlike with changepoints, we do not require that
the transitions be discrete. Instead we define r warping functions s(x) = [s1(x), . . . ,sr(x)]
where si(x) : RD → [0,1], which have support over the entire domain of x. Importantly, these
warping functions have an inductive bias towards {0,1} creating a soft mutual exclusivity
between the functions. We define the canonical form of a change surface as

y(x) = s1(x) f1(x)+ · · ·+ sr(x) fr(x)+ ε

s.t.
r

∑
i=1

si(x) = 1

si(x)≥ 0

(2.1)
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where ε(x) is noise. Each si(x) defines how the coverage of fi(x) varies over the input
domain. Where si(x)≈ 1, fi(x) dominates and primarily describes the relationship between x
and y. In cases where there is no i such that si(x)≈ 1, a number of functions are dominant in
defining the relationship between x and y. Since s(x) has a strong inductive bias towards 1 or
0, the regions with multiple dominant functions are transitory and often the areas of interest.
Therefore, we can interpret how the change surface develops and where different regimes
dominate by evaluating each s(x) over the input domain.

f1(x)

f2 (x)

s1(x) = 0.5
Region of 
significant 

change 

Fig. 2.1 Two-dimensional depiction of the change surface model where f1(x) is drawn in
orange and f2(x) is drawn in blue. The region in purple depicts an area of transition between
the two functions. The dashed line represents the domain where s1(x) = 0.5.

Figure 2.1 depicts a two-dimensional change surface model where latent f1(x) is drawn
in orange and latent f2(x) is drawn in blue. In those areas the first warping function, s1(x), is
nearly 1 and 0 respectively. The region in purple depicts an area of transition between the
two functions. We would expect that s1(x)≈ 0.5 in this region since both latent functions
are active.

In many applications we can imagine that a latent background function, f0(x), exists that
is common to all data regimes. One could reparametrize the model in Eq. (2.1) by letting each
latent regime be a sum of two functions: f0(x)+ fi(x). Thus each regime compartmentalizes
into f0(x), a common background function, and fi(x), a regime-specific latent function. This
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provides a generalized change surface model,

y(x) = f0(x)+ s1(x) f1(x)+ · · ·+ sr(x) fr(x)+ ε(x). (2.2)

Change surfaces can be considered particular types of adaptive mixture models [e.g.,
152], where s(x) are mixture weights in a simplex that have a strong inductive bias towards
discretization. There are multiple ways to induce this bias towards discretization. For
example, one can choose warping functions s(x) which have sharp transitions between 0
and 1, such as the logistic sigmoid function. With multiple functions, r ≥ 2, we can also
explicitly penalize the warping functions from having similar values. Since each of these
warping functions are constrained to be in [0,1] this penalty would tend move their values
towards 0 or 1. More generally, in the case of multiple functional regimes, we can penalize
s(x) from being far from {0,1}. For example, we could place a prior over s(x) with a heavy
weight on 1 and 0.

The flexibility of s(x) defines the complexity of the change surface. In the simplest case,
xi ∈ R1,s(x) ∈ {0,1}, and the change surface reduces to a univariate changepoint used in
much of the changepoint literature. Alternatively, if we consider x ∈ R1,s(x) = σ(x) the
change surface is a smooth univariate changepoint with a fixed rate of change. Such a model
only permits a monotonic rate of change and single changepoint.

Comparison to changepoint models: We illustrate the difference between the warping
functions, s(x), of a change surface model and standard changepoint methods in Figure 2.2.
The top plot shows unidimensional data with a clear change between two sinusoids. The
subsequent plots represent the changes modeled in a discrete changepoint, sigmoid change-
point, and change surface model respectively. The changepoint model can only identify a
change at a point in time, and the sigmoid changepoint is a special case of a change surface
constrained to a fixed rate of change. However, a general change surface can model gradual
changes as well as non-monotonic changes, providing a much richer representation of the
data’s dynamics, and seamlessly extending to multidimensional data.

Expressive change surfaces consider regimes as overlapping elements in the domain.
They can illustrate if certain changes occur more slowly or quickly, vary over particular
subpopulations, or change rapidly in certain regions of the input domain. Such insights are
not provided by standard changepoint models but are critical for understanding policy inter-
ventions or scientific processes. Table 2.1 compares some of the limitations of changepoints
with the added flexibility of change surfaces.

Yet the flexibility required by change surfaces as applied to real data sets might seem
difficult to instantiate with any particular model. Indeed, machine learning methods are
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Fig. 2.2 Unidimensional comparison of changepoint and change surface methods. In each
column, the top plot shows unidimensional data with a clear change between two sinusoids.
The subsequent plots represent the warping functions of a discrete changepoint, sigmoid
changepoint, and change surface model.

often desired to be expressive, interpretable, and scalable to large data. To address this
challenge we introduce the Gaussian Process Change Surface (GPCS) in Section 2.3 which
uses Gaussian process priors with flexible kernels to provide rich modeling capability, and a
novel scalable inference scheme to permit the method to scale to massive data.

2.2.1 Change surface background model

In certain applications we are interested in modeling how a change occurs concurrent with a
background function which is common to all regimes. For example, consider urban crime.
If a police department staged a prolonged intervention in one sector of the city, we expect
that some of the crime dynamics in that sector might change. However, seasonal and other
weather-related patterns may remain the same throughout the entire city. In this case we
want a model to identify and isolate those general background patterns as well as one or
more clearly interpretable functions representing regions of change from the background
distribution.

We can accommodate such a model as a special case of the generalized change surface
from Eq. (2.2). Each latent function is modeled as f0(x)+ fi(x) where f0(x) models “back-
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Table 2.1 Comparison of changepoint limitations to change surface flexibility.

Changepoints limited by: Change surfaces allow for:
Considering unidimensional, often
temporal-only problems

Multidimensional inputs with heterogeneous
changes across the input dimensions. Indeed, we
apply change surfaces to 3-dimensional, spatio-
temporal problems in Section 2.4.

Detecting discrete or near-discrete
changes in parameter distribution

Warping functions, s(x), can be defined flexi-
bly to allow for discrete or continuous changes
with variable, and even non-monotonic rates of
change.

Not simultaneously modeling the la-
tent functional regimes

Learning si(x) and fi(x) in Equation (2.1) to si-
multaneously model the change surface and un-
derlying functional regimes.

ground” dynamics, and fi(x) models each change function. Since changes do not necessarily
persist over the entire domain, we fix fr(x) = 0, and allow ∑

r−1
i=1 si(x) ≤ 1. This approach

results in the following change surface background model:

y(x) = f0(x)+ s1(x) f1(x)+ · · ·+ sr−1(x) fr−1(x)+ ε

s.t.
r−1

∑
i=1

si(x)≤ 1

si(x)≥ 0

(2.3)

Figure 2.3 presents a two-dimensional representation of the change surface and change
surface background models. The data depicted comes from the numerical experiments in
Section 2.4.1.

The explicit decomposition into background and change functions is valuable, for instance,
if we wish to model counterfactuals: we want to know what the data in a region might look
like had there been no change. The decomposition also enables us to interpret the precise
effect of each change. Moreover, from a statistical perspective, the decomposition allows
us to naturally encode inductive biases into the change surface model, allowing meaningful
a priori statistical dependencies between each region. In the particular case of r = 2, the
change surface background model has the form y(x) = f0(x)+ s1(x) f1(x), where f1(x) is
the only change function modulated by a change surface, s1(x) ∈ [0,1]. This corresponds to
observation studies or natural experiments where a single change is observed in the data. We
explore this special case further in our discussion of counterfactual prediction, in Chapter 3.



2.3 Gaussian Process Change Surfaces (GPCS) 17

yf1(x) f2(x)s1(x) s2(x)

yf0(x) f1(x)s1(x)

yf1(x) f2(x)s1(x) s2(x)

yf0(x) f1(x)s1(x)

CS 
model:

CS Background 
model:

yf1(x) f2(x)s1(x) s2(x)

yf0(x) f1(x)s1(x)

Fig. 2.3 Two-dimensional representation of the change surface model (Eq. 2.1) and change
surface background model (Eq. 2.3).

Finally, for any change surface or change surface background model, it is critical that
the model not overfit the data due to a proliferation of parameters, which could lead to
erroneously detected changes even when no dynamic change is present. We discuss one
strategy for preventing overfitting through the use of Gaussian processes in Section 2.3.

2.3 Gaussian Process Change Surfaces (GPCS)

We exemplify the general concept of change surfaces using Gaussian processes [e.g., 113].
We emphasize that our change surface formulations from Section 2.2 are not limited to a
certain class of models. Yet Gaussian processes offer a compelling instantiation of change
surfaces since they can flexibly model non-linear functions, seamlessly extend to multi-
dimensional and irregularly sampled data, and provide naturally interpretable parameters.
Perhaps most importantly, due to the Bayesian Occam’s Razor principle [114, 94, 113, 153],
Gaussian processes do not in general overfit the data, and extraneous model components
are automatically pruned. Indeed, even though we develop a rich change surface model
with multiple mixture parameters, our results below demonstrate that the model does not
spuriously identify change surfaces in data.

Gaussian processes have been previously used for nonparametric changepoint modeling.
Saatçi et al. [128] extend the sequential Bayesian Online Changepoint Detection algorithm
[6] by using a Gaussian process to model temporal covariance within a particular regime.
Similarly, Garnett et al. [51] provide Gaussian processes for sequential changepoint detection
with mutually exclusive regimes. Moreover, Keshavarz et al. [82] prove asymptotic con-
vergence bounds for a class of Gaussian process changepoint detection but are restricted to
considering a single abrupt change in one-dimensional data. Focusing on anomaly detection,
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Reece et al. [118] develop a non-stationary kernel that could conceivably be used to model
a changepoint in covariance structure. However, as with most of the changepoint models
discussed in Section 2.1, these models all focus on discrete changepoints, where regimes
defined by distinct Gaussian processes change instantaneously.

A small collection of pioneering work has briefly considered the possibility of Gaussian
processes with sigmoid changepoints [155, 92]. Yet these models rely on sigmoid transforma-
tions of linear functions which are restricted to fixed rates of change, and are demonstrated
exclusively on small, one-dimensional time series data. They cannot expressively characterize
non-linear changes or feasibly operate on large multidimensional data.

The limitations of these models reflect a common criticism that Gaussian processes are
unable to convincingly respond to changes in covariance structure. We propose addressing
this deficiency by modeling change surfaces with Gaussian processes. Thus our work both
demonstrates a generalization of changepoint models and an enhancement to the expressive
power of Gaussian processes.

2.3.1 Model specification

Change surface data consists of latent functions f1, . . . , fr defining r regimes in the data. The
change surface defines the transitions between these functions. We could initially consider
an input-dependent mixture model such as in Wilson et al. [152],

y(x) = w1(x) f1(x)+ · · ·+wr(x) fr(x)+ ε (2.4)

where the weighting functions, wi(x) : RD → R1, describe the mixing proportions over the
input domain. However, for data with changing regimes we are particularly interested in
latent functions that exhibit some amount of mutual exclusivity.

We induce this partial discretization with σ(z) : Rr → [0,1]r. These functions have
support over the entire real line, but a range in [0,1] and concentrated towards 0 and 1. Thus,
each wi(x) in Eq. (2.4) becomes σi(w(x)), where w(x) = [w1(x), ..,wr(x)]. Additionally,
we choose σ(z) such that it produces a convex combination over the weighting functions,

∑
r
i=1 σi(w(x)) = 1. In this way, each wi(x) defines the strength of latent fi over the domain,

while σ(z) normalizes these weights to induce weak mutual exclusivity. Thus considering
the general model of change surfaces in Eq. (2.1) we define each warping function as
si(x) = σi(w(x)).

A natural choice for flexible change surfaces is to let σ(z) be the softmax function. In
this way the change surface can approximate a Heaviside step function, corresponding to the
sharp transitions of standard changepoints, or more gradual changes. For r latent functions,
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the resulting warping function is:

si(x) = σi(w(x)) = softmax(w(x))i =
exp(wi(x))

∑
r
j=1 exp(w j(x))

(2.5)

The Gaussian process change surface (GPCS) model is thus

y(x) = σ1(w(x)) f1(x)+ · · ·+σr(w(x)) fr(x)+ ε (2.6)

where each fi is drawn from a Gaussian process. Importantly, we expect that each Gaussian
process, fi(x), will have different hyperparameter values corresponding to different dynamics
in the various regimes.

Since a sum of Gaussian processes is a Gaussian process, we can re-write Eq. (2.6) as
y(x) = f (x)+ ε , where f (x) has a single Gaussian process prior with covariance function,

k(x,x′) = σ1(w(x))k1(x,x′)σ1(w(x′))+ · · ·+σr(w(x))kr(x,x′)σr(w(x′)) (2.7)

In this form we can see that σ1(w(x)) . . .σr(w(x)) induce non-stationarity since they are
dependent on the input x. Thus, even if we use stationary kernels for all ki, GPCS observations
follow a Gaussian process with a flexible, non-stationary kernel.

Design choices for w(x)

The functional form of w(x) determines how changes can occur in the data, and how many
can occur. For example, a linear parametric weighting function,

w(x) = β0 +β
T
1 x (2.8)

only permits a single linear change surface in the data. Yet even this simple model is more
expressive than discrete changepoints since it permits flexibility in the rate of change and
extends to change regions in RD.

In order to develop a general framework, we introduce a flexible w(x) that is formed as a
finite sum of Random Kitchen Sink (RKS) features which map the D dimensional input x to
an m dimensional feature space. We use RKS features from a Fourier basis expansion with
Gaussian parameters and employ marginal likelihood optimization to learn the parameters
of this expansion. Similar expansions have been used to efficiently approximate flexible
non-parametric Gaussian processes [88, 111].
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Using m RKS features, w(x) is defined as,

w(x) =
m

∑
i=1

ai cos(ωT
i xi +bi) (2.9)

where we initially sample,

ai ∼ N (0,
σ0

m
I) (2.10)

ωi ∼ N (0,
1

4π2 Λ
−1) (2.11)

bi ∼ Uniform(0,2π) (2.12)

Initialization of hyperparameters σ0 and diagonal matrix of length-scales, Λ= diag(l2
1 , . . . , l

2
D),

is discussed in Section 2.3.3.
Experts with domain knowledge can specify a parametric form for w(x) other than

RKS features. Such specification can be advantageous, requiring relatively few, highly
interpretable parameters to optimize. For example, in an industrial setting where we are
modeling failure of parts in a factory we could define w(x) such that it was monotonically
increasing since machine parts do not self-repair. This bias could take the form of a linear
function as in Equation (2.8). Note that since parameters are learned from data, the functional
form of w(x) does not require prior knowledge about if or where changes occur.

Kernel specification

Each latent function is specified by a kernel with its own set of hyperparameters. By design,
each ki may be of a different form. For example, one function may have a Matérn kernel,
another a periodic kernel, and a third an exponential kernel. Such specification is useful when
domain knowledge provides insight into the covariance structure of the various regimes.

In order to maintain maximal generality and expressivity, we develop GPCS using
multidimensional spectral mixture kernels [151] where x ∈ RD.

kSM(x,x′) =
Q

∑
q=1

ωq cos(2π(x− x′)T
µq)

D

∏
d=1

exp(−2π
2(x(d)− x′(d))2v(d)q ) (2.13)

This kernel is derived via spectral densities that are scale-location mixtures of Q Gaussians.
Each component in this mixture has mean µq ∈ RD, covariance matrix diag(v(1)q , ...,v(D)

q ),
and signal variance parameter ωq ∈ R1. With a sufficiently large Q, spectral mixture kernels
can approximate any stationary kernel, providing the flexibility to capture complex patterns
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over multiple dimensions. These kernels have been used in pattern prediction, outperforming
complex combinations of standard stationary kernels [153].

Previous work on Gaussian processes changepoint modeling has typically been restricted
to RBF [128, 51] or exponential kernels [95]. However, expressive covariance functions
are particularly critical for modelling multidimensional and spatio-temporal data – a key
application for change surfaces – where structure is often complex and unknown a priori.

Initializing and training expressive kernels is often challenging. We propose a practical
initialization procedure in Section 2.3.3, which can be used quite generally to help learn
flexible kernels.

GPCS background model

Following Section 2.2.1 we extend GPCS to the “GPCS background model.” For this model
we add a latent background function, f0(x), with an independent Gaussian process prior.
Using the same choices for expressive w(x) and covariance functions, we define the GPCS
background model as,

y(x) = f0(x)+σ1(w(x)) f1(x)+ · · ·+σr−1(w(x)) fr−1(x)+ ε (2.14)

Recall that in this model we set fr(x) = 0. Additionally, since we continue to enforce

∑
r
i=1 σi(w(x)) = 1, thus ∑

r−1
i=1 σi(w(x))≤ 1.

This model effectively places different priors on the background and change regions, as
opposed to the the standard GPCS model which places the same GP prior on each regime.
The different priors in the GPCS background model reflect an intentional inductive bias
which could be advantageous in certain domain settings, such as policy interventions, as
discussed in Section 2.2.1 above.

2.3.2 Scalable inference

Analytic optimization and inference for Gaussian processes requires computation of the
log marginal likelihood from Eq. (1.9). Yet solving linear systems and computing log
determinants over n×n covariance matrices, using standard approaches such as the Cholesky
decomposition, requires O(n3) computations and O(n2) memory, which is impractical for
large datasets. Recent advances in scalable Gaussian processes [155] have reduced this
computational burden by exploiting Kronecker structure under two assumptions: (1) the
inputs lie on a grid formed by a Cartesian product, x ∈ X = X (1) × ...× X (D); and, (2)
the kernel is multiplicative across each dimension. Multiplicative kernels are commonly
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employed in spatio-temporal Gaussian process modeling [96, 95, 50], corresponding to a soft
a priori assumption of independence across input dimensions, without ruling out posterior
correlations. The popular RBF and ARD kernels, for instance, already have this multiplicative
structure. Under these assumptions, the n×n covariance matrix K = K1 ⊗·· ·⊗KD, where
each Kd is nd ×nd such that ∏

D
1 nd = n.

Using efficient Kronecker algebra, Saatçi [127] shows how one can solve linear systems
and compute log determinants in O(Dn

D+1
D ) operations using O(Dn

2
D ) memory. Furthermore,

Wilson et al. [153] extends the Kronecker methods for incomplete grids. Yet for additive
compositions of kernels, such as those needed for change surface modeling in Eq. (2.7), the
resulting sum of matrix Kronecker products does not decompose as a Kronecker product.
Thus, the standard Kronecker approaches for scalable inference and learning are inappli-
cable. Instead, solving linear systems for the kernel inverse can be efficiently carried out
through linear conjugate gradients as in Flaxman et al. [50] that only rely on matrix vector
multiplications, which can be performed efficiently with sums of Kronecker matrices.

However, there is no exact method for efficient computation of the log determinant of the
sum of Kronecker products. Instead, Flaxman et al. [50] upper bound the log determinant
using the Fiedler bound [49] which says that for n× n Hermitian matrices A and B with
sorted eigenvalues α1, . . . ,αn and β1, . . . ,βn respectively,

log(|A+B|)≤
n

∑
i=1

log(αi +βn−i+1) (2.15)

While efficient, the Fiedler bound does not generalize to more than two matrices.

Weyl bound

In order to achieve scalable computations for an arbitrary additive composition of Kronecker
matrices, we propose to bound the log determinant of the sum of multiple covariance matrices
using Weyl’s inequality [150] which states that for n× n Hermitian matrices, M = A+B,
with sorted eigenvalues µ1, . . . ,µn, α1, . . . ,αn, and β1, . . . ,βn respectively,

µi+ j−1 ≤ αi +β j ∀i, j ≥ 1 (2.16)

Since log(|A+B|)= log(|M|)=∑
n
i=1 log(µi) we can bound the log determinant by ∑

n
i+ j−1=1 log(αi+

β j). Furthermore, we can use the Weyl bound iteratively over pairs of matrices to bound the
sum of r covariance matrices K1, . . . ,Kr.

As the bound indicates, there is flexibility in the choice of which eigenvalue pair {αi,β j}
to use for bounding µi+ j−1. Thus for each eigenvalue, µk, we wish to choose i, j that
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minimizes αi + β j subject to k = i+ j − 1. One might be tempted to minimize over all
possible pairs for each eigenvalue, µ1, . . . ,µn, in order to obtain the tightest bound on the
log determinant. Unfortunately, such a procedure requires O(n2) computations. Instead we
explore two possible alternatives:

1. For each µi+ j−1 we choose the “middle” pair, {αi,β j}, such that i = j when possible,
and i = j+1 otherwise. This “middle” heuristic requires O(n) computations.

2. We employ a greedy search to choose the minimum of v possible pairs of eigenvalues.
Using the previous i′ and j′, we consider {αi,β j} for all i = i′− v

2 , ..., i
′+ v

2 and the
corresponding j values. Setting v= 1 corresponds to the middle heuristic. Setting v= n
corresponds to the exact Weyl bound. The greedy search requires O(vn) computations.

In addition to bounding the sum of kernels, we must also deal with the scaling functions,
σi(w(x)). We can rewrite Eq. (2.7) in matrix notation,

K = S1K1S′1 + · · ·+SrKrS′r (2.17)

where Si = diag(σi(w(x))) and S′i = diag(σi(w(x′))). Employing the bound on eigenvalues
of matrix products [21],

sort(eig(AB))≤ sort(eig(A))sort(eig(B)) (2.18)

we can bound the log determinant of K in Eq. (2.17) with an iterative Weyl approximation
over [{si,lki,ls′i,l}n

l=1]
r
i=1 where si,l , ki,l , and s′i,l are the lth largest eigenvalue of Si, Ki, and S′i

respectively.
We empirically evaluate the exact Weyl bound, middle heuristic, and greedy search

with v = 80 pairs of eigenvalue indexes to search above and below the previous index.
All experiments are evaluated using GPCS with synthetic data generated according to the
procedure in Section 2.4.1. We also compare these results against the Fiedler bound in the
case of two kernels.

Figure 2.4 depicts the ratio of each approximation to the true log determinant, and the
time to compute each approximation over increasing number of observations for two kernels.
While the Fiedler approximation is more accurate than any Weyl approach, all approximations
perform quite similarly (note the fine grained axis scale) and converge to ≈ 0.85 of the true
log determinant. In terms of computation time, the exact Weyl bound scales poorly with
data size as expected. Yet both approximate Weyl bounds scale well. In practice, we use the
middle heuristic described above, since it provides the fastest results, nearly equivalent to the
Fiedler bound.



24 Change Surfaces for Generalized Change Modeling

102 103 104

Observations (#)

0.76

0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Lo
g 

de
te

rm
in

an
t a

pp
ro

xi
m

at
io

n 
ra

tio

2 Kernels

102 103 104 105 106

Observations (#)

10 -3

10 -2

10 -1

100

101

102

103

104

T
im

e 
(s

ec
)

2 Kernels

Weyl exact
Weyl middle
Weyl greedy
True log det
Fiedler

Fig. 2.4 Left plot shows the ratio of log determinant approximations to the true log determi-
nant of two additive kernels. Note that the y-axis is scaled to a relatively narrow band. The
dashed line indicates that both the Weyl exact and Weyl greedy method performed similarly.
Right plot shows the time to compute each approximation and the true log determinant.

Figure 2.5 depicts the same quantities as Figure 2.4 but using three additive kernels.
Since the Fiedler approximation is only valid for two kernels it is excluded from these plots.
While the log determinant approximation ratios are less accurate for small datasets, as the
data size increases all Weyl approximations converge to ≈ 0.8.

In addition to enabling scalable change surface kernels, the Weyl bound method permits
scalable additive kernels in general. When applied to the spatio-temporal domain this yields
the first scalable Gaussian process model which is non-separable in space and time.

Massively Scalable Inference

We further extend the scalability and flexibility of the Weyl bound method by leveraging a
structured kernel interpolation methodology from the KISS-GP framework [154]. Although
many spatiotemporal policy relevant applications naturally have near-grid structure, such as
readings over a nearly dense set of latitudes, longitudes, and times, this integration with KISS-
GP further relaxes the dependencies on grid assumptions. The resulting approach scales to
much larger problems by interpolating data to a smaller, user-defined grid. In particular, with
local cubic interpolation, the error in the kernel approximation is upper bounded O(1/m3)

for m latent grid points, and m can be very large because the kernel matrices in this space are
structured. These scalable approaches are thus very generally applicable as demonstrated
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Fig. 2.5 Left plot shows the ratio of approximations to the true log determinant of 3 additive
kernels. Note that the y-axis has a much larger scale than in Figure 2.4. Right plot shows the
time to compute each approximation and the true log determinant of 3 additive kernels.

in an extensive range of previously published experiments in [156, 157] based on these
techniques. Additionally, KISS-GP enables the Weyl bound approximation methods to apply
to arbitrary, non-grid data.

We empirically demonstrate the advantages of integration with KISS-GP by evaluating
an additive GPCS on the two-dimensional data described above. Although the original data
lies on a grid, we use KISS-GP interpolation to compute the negative log likelihood on four
grids of increasingly smaller size. Figure 2.6 depicts the negative log likelihood and the
computation time for these experiments using the Weyl middle heuristic. The plot legend
indicates the size of the induced grid size. For example, ‘KISS-GP 75%’ is 75% the size of
the original grid. Note that the time and log likelihood scales in Figure 2.6 are different from
those in Figures 2.4 and 2.5 since we are now computing full inference steps as opposed to
just computing the log determinant. The results indicate that with minimal error in negative
log likelihood accuracy we can substantially reduce the time for inference.

2.3.3 Initialization

Since GPCS uses flexible spectral mixture kernels, as well as RKS features for the change
surface, the parameter space is highly multimodal. Therefore, it is essential to initialize
the model hyperparameters appropriately. Below we present an approach where we first
initialize the w(x) RKS features and then use those values in a novel initialization method for
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Fig. 2.6 Plots showing negative log likelihood and time for inference on two additive kernels
using the Weyl bound on grids of decreasing size. For example, ‘KISS-GP 75%’ computes
the Weyl middle bound on a grid which is 75% the size of the original grid used to compute
the first line.

the spectral mixture kernels. Like most GP optimization problems, GPCS hyperparameter
optimization is non-convex and there are no provable guarantees that the proposed initial-
ization will result in optimal solutions. However, it is our experience that this initialization
procedure works well in practice for the GPCS as well as spectral mixture kernels in general.

To initialize w(x) defined by RKS features we first simplify the change surface model
by assuming that each latent function, f1, ..., fr, from Eq. (2.6) is drawn from a Gaussian
process with an RBF kernel. Since RBF kernels have far fewer hyperparameters than spectral
mixture kernels, starting with RBF kernels helps our approach find good starting val

ues for w(x). Algorithm 1 provides the procedure for initializing this simplified change
surface model. Note that depending on the application domain, a model with latent functions
defined by RBF kernels may be sufficient as a terminal model.

Algorithm 1 Initialize RKS w(x) by optimizing a simplified model with RBF kernels
1: for i = 1 : m1 do
2: Draw a, ω , b for RKS features in w(x)
3: Draw m2 sets of hyperparameter values for RBF kernels, {θ1, ...,θm2}
4: Choose the best hyperparameter set, θ (i) = max-likelihood(θ1, ...,θm2)
5: Partial optimization of {a,ω,b,θ}→ Θ(i)

6: end for
7: Choose the best set of hyperparameters, Θ = max-likelihood(Θ(1), ...,Θ(m1))
8: Optimize Θ until convergence

In the algorithm, we test multiple possible sets of values for w(x) by drawing the hyperpa-
rameters a, ω , and b from their respective prior distributions (see Section 2.3.1) m1 number of
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times. We set reasonable values for hyperparameters in those prior distributions. Specifically,
we let Λ = ( range(x)

2 )2, σ0 = std(y), and σn =
mean(|y|)

10 . These choices are similar to those
employed in [88].

For each sampled set of w(x) hyperparameters, we sample m2 sets of hyperparameters
for the RBF kernels and select the set with the highest marginal likelihood. Then we run an
abbreviated optimization procedure over the combined w(x) and RBF hyperparameters and
select the joint set that achieves the highest marginal likelihood. Finally, we optimize the
resulting hyperparameters until convergence.

In order to initialize the spectral mixture kernels, we use the initialized w(x) from
above to define the subset {x : σi(w(x)) > 0.5} where each latent function, fi from Eq.
(2.6), is dominant. We then take a Fourier transform of y(x) over each dimension, x(d),
of {x : σi(w(x)) > 0.5} to obtain the empirical spectrum in that dimension. Note that we
consider each dimension of x individually since we have a multiplicative Q-component
spectral mixture kernel over each dimension [155]. Since spectral mixture kernels model the
spectral density with Q Gaussians on R1, we fit a 1-dimensional Gaussian mixture model,

p(x) =
Q

∑
q=1

φqN (µq,vq) (2.19)

to the empirical spectrum for each dimension. Using the learned mixture model we initialize
the parameters of the spectral mixture kernels for fi(x).

Algorithm 2 Initialize spectral mixture kernels
1: for ki : i = 1 : r do
2: for d = 1 : D do
3: Compute x(d) ∈ {x : σi(w(x))> 0.5}
4: Sample s ∼ |FFT(sort(y(x(d))))|2

5: Fit Q component GMM as p(s) = ∑
Q
q=1 φ

(d)
q N (µ

(d)
q ,v(d)q )

6: Initialize ωq = std(y(x(d)))∗φq
7: end for
8: end for

After initializing w(x) and spectral mixture hyperparameters, we jointly optimize the
entire model using marginal likelihood and non-linear conjugate gradients [115].
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2.4 Experiments

We demonstrate the power and flexibility of GPCS by applying the model to a variety of
numerical simulations and complex human settings. We begin with 2-dimensional numerical
data in Section 2.4.1, and show that GPCS is able to correctly model out-of-class polynomial
change surfaces, and that it provides higher accuracy regressions than other comparable
methods.

We next consider coal mining, epidemiological, and urban policy data to provide ad-
ditional analytical evidence for the effectiveness of GPCS and to demonstrate how GPCS
results can be used to provide novel policy-relevant and scientifically-relevant insights. The
ground truth against which GPCS is evaluated are the domain specific interventions in these
case studies.

In order to compare GPCS to standard changepoint models, we use a 1-dimensional
dataset on the frequency of coal mining accidents. After fitting GPCS, we show that the
change surface is able to identify a region of change similar to other changepoint methods.
However, unlike changepoint methods that only identify a single moment of change, GPCS
models how the data changes over time.

We then employ GPCS to analyze two complex spatio-temporal settings involving policy
and scientific questions. First we examine requests for residential lead testing kits in New
York City between 2014-2016, during a time of heightened concern about lead-tainted water.
GPCS identifies a spatially and temporally varying change surface around the period when
issues of water contamination were being raised in the news. We conduct a regression
analysis on the resulting change surface features to better understand demographic factors
that may have affected residents’ concerns about lead-tainted water.

Second, we apply GPCS to model state-level measles incidence in the United States
during the twentieth century. GPCS identifies a substantial change around the introduction of
the measles vaccine in 1963. However, the shape of the change surface varies over time for
each state, indicating possible spatio-temporal heterogeneity in the adoption and effectiveness
of the vaccination program during its initial years. We use regression analysis on the change
surface features to explore possible institutional and demographic factors that may have
influenced the impacts of the measles vaccination program.

2.4.1 Numerical Experiments

We generate a 50× 50 grid of synthetic data by drawing independently from two latent
functions, f1(x) and f2(x). Each function is characterized by an independent Gaussian
process with a two-dimensional RBF kernel of different length-scales and signal vari-
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ances. The synthetic change surface between the functions is defined by σ(wpoly(x)) where
wpoly(x) = ∑

3
i=0 β T

i xi, βi ∼ N (0,3ID). We chose a polynomial change surface because it
generates complex change patterns but is out-of-class when we use RKS features for w(x),
thus testing the robustness of GPCS to change surface misspecification.

GPCS model

Using the synthetic data generation technique described above we simulate data as y =

σ(wpoly(x)) f1(x)+(1−σ(wpoly(x))) f2(x)+ε , where ε ∼ N (0,σ2
ε ). We apply GPCS with

two latent functions, spectral mixture kernels, and w(x) defined by RKS features. We do not
provide the model with prior information about the change surface or latent functions. As
emphasized in Section 2.3.3, successful convergence is dependent on reasonable initialization.
Therefore, we use m1 = 100 and m2 = 20 for Algorithm 1. Figure 2.7 depicts two typical
results using the initialization procedure followed by analytic optimization. The model
captures the change surface and produces an appropriate regression over the data. Note that
in Figure 2.7b the predicted change surface is flipped since the order of functions is not
important in GPCS.
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Fig. 2.7 Two numerical data experiments. In each of (a) and (b) the top-left plot depicts the
data (e.g., observations indexed by two dimensional spatial inputs); the bottom-left shows
the true change surface with the range from blue to yellow depicting σ1(w(x)). The top-right
depicts the predicted output; the bottom-right shows the predicted change surface. Note
that the predicted change surface in plot (b) is flipped since the order of functions is not
important.

To demonstrate that the initialization method from Section 2.3.3 provides consistent
results, we consider a numeric example and run GPCS 30 times with different random
seeds. Figure 2.8 provides the true data and change surface as well as the mean and standard
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deviation over the 30 experimental results using the Section 2.3.3 initialization procedure.
For the predicted change surface we manually normalized the orientation of the change
surface before computing summary statistics. The results illustrate that the initialization
procedure provides accurate and consistent results for both y and σ(w(x)) across multiple
runs. Indeed, when we repeat these experiments with random initialization, instead of the
procedure from Section 2.3.3, the MSE between the predicted and true change surface is
58% greater than when using our initialization procedure. Additionally, the results have a
17% larger standard deviation of σ(w(xi)) over the 30 runs, demonstrating that the produre
we propose provides more consistent and accurate results.
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Fig. 2.8 Consistency results across 30 runs with different random seeds. True data and change
surface are on the left, while the mean and standard deviation of the predicted results are in
center and right panels.

Using synthetic data, we create a predictive test by splitting the data into training and
testing sets. We compare GPCS to three other expressive, scalable methods: sparse spectrum
Gaussian process with 500 basis functions [88], sparse spectrum Gaussian process with fixed
spectral points with 500 basis functions [88], and a Gaussian process with multiplicative
spectral mixture kernels in each dimension. For each method we average the results for
10 random restarts. For each method Table 2.2 shows the normalized mean squared error
(NMSE),

NMSE =
∥ytest − ypred∥2

2

∥ytest − ȳtrain∥2
2

(2.20)

where ȳtrain is the mean of the training data.
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Table 2.2 Comparison of prediction accuracy (normalized mean squared error) using flexible
and scalable Gaussian process methods on synthetic multidimensional change-surface data.

Method NMSE
GPCS 0.00078
SSGP 0.01530
SSGP fixed 0.02820
Spectral mixture 0.00200

GPCS performed best due to the expressive non-stationary covariance function that fits to
the different functional regimes in the data. Although the other methods can flexibly adapt to
the data, they must account for the change in covariance structure by setting a shorter global
length-scale over the data, thus underestimating the correlation of points in each regime.
Thus their predictive accuracy is lower than GPCS, which can accommodate changes in
covariance structure across the boundary of a change surface while retaining reasonable
covariance length-scales within each regime.

As discussed in Section 2.3, the underlying probabilistic Gaussian process model behind
GPCS automatically discourages extraneous complexity, favoring the simplest explanations
consistent with the data [94, 114, 113, 153, 155]. This property enables GPCS to discover
interpretable generative hypothesis for the data, which is crucial for public policy applications.
This Bayesian Occam’s razor principle is a cornerstone of many probabilistic approaches,
such as automatically determining the intrinsic dimensionality for probabilistic PCA [98],
or hypothesis testing for Bayesian neural network architectures [94]. In the absence of
such automatic complexity control, these methods would always favor the highest intrinsic
dimensionality or the largest neural network respectively.

To demonstrate this Occam’s razor principle in our context, we generate numeric data
from a single GP without any change surface by setting σ(wpoly(x)) = 0, and fit a misspecified
GPCS model assuming two latent regimes. Figure 2.9 depicts the predicted change surfaces
for 20 experiments of such data. The left panel illustrates pictorially that the change surfaces
are nearly all flat at either σ1(w(x)) = 0 or σ1(w(x)) = 1 for these experiments. Specifically,
std[σ1(w(x))]< 0.03 for all but two runs. This finding indicates that GPCS discovers that
no dynamic transition exists and does not overfit the data, despite the added flexibility
afforded by multiple mixture components. Only one of the 20 results (bottom-right) indicates
a change, and even in that case the magnitude of the transition is markedly subdued as
compared to the results in Figures 2.7 and 2.10. While the upper-right result appears to have
a large transition, in fact it has a flat change surface with std[σ1(w(x))] = 0.07. The right
panel provides a histogram of the mean centered change surface values for all experiments,
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Fig. 2.9 Data without any change surface, σ(wpoly(x)) = 0. The left panel depicts σ1(w(x))
for each experiment. The right panel provides a histogram of the mean centered change
surfaces values, σ1(w(x))−∑i∈n σ1(w(xi)).

σ1(w(x))−∑i∈n σ1(ω(xi)), again demonstrating that GPCS learns very flat change surfaces
and does not erroneously identify a change.

GPCS background model

We test the GPCS background model with a similar setup. Using the synthetic data generation
technique described above, we simulate data as y = f0(x)+σ(wpoly(x)) f1(x)+ ε , where
ε ∼ N (0,σ2

ε ). We again note that the polynomial change surface is out-of-class.
We apply the GPCS background model with one background function and one latent

function scaled by a change surface. Both Gaussian process priors use spectral mixture
kernels, and w(x) is defined by RKS features. We do not provide the model with prior
information about the change surface or latent functions. Figure 2.10 depicts two typical
results using the initialization procedure followed by analytic optimization. The model
captures the change surface and produces an appropriate regression over the data.

Log Gaussian Cox Process

The numerical experiments above demonstrate the consistency of GPCS for identifying
out-of-sample change surfaces and modeling complex data for high accuracy prediction.
To further demonstrate the flexibility of the model, we apply GPCS to data generated by a
log-Gaussian Cox process [99, 50]. This inhomogeneous Poisson process is modulated by a
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Fig. 2.10 Two numerical data experiments. In each of (a) and (b) the top-left plot depicts
the data; the bottom-left shows the true change surface with the range from blue to yellow
depicting σ1(w(x)). The top-right depicts the predicted output; the bottom-right shows the
predicted change surface.

stochastic intensity defined as a GP,

λ = f (2.21)

f ∼ G P(µ,K) (2.22)

Conditional on λ , and letting s denote a region in space-time, the resulting small-area count
data are non-negative integers distributed as

y(s) |λ ∼ Poisson
(

exp
∫

s
λ (x)dx

)
. (2.23)

We let this GP model be a convex combination of two GPs with an out-of-sample change
surface, as described in Section 2.4.1. Thus we generated data from this model as

y | f1(xi), f2(xi)∼ Poisson
(

exp
[
σ(wpoly(x)) f1(x)+(1−σ(wpoly(x))) f2(x)+ ε

])
.

(2.24)

Such data substantially departs from the type of data that GPCS is designed to model. Indeed,
while custom approaches are often created to handle inhomogeneous Poisson data [50, 137],
we use GPCS to demonstrate its flexibility and applicability to complex non-Gaussian data.
The results are shown in Figure 2.11. The model provides accurate change surfaces and
predictions even though the data is substantially out-of-class – even beyond the out-of-class
change surface data from Sections 2.4.1 and 2.4.1. The precise location of change surfaces
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Fig. 2.11 Two numerical data experiments with data from a log-Gaussian Cox process. In
each of (a) and (b) the top-left plot depicts the data (e.g., observations indexed by two
dimensional spatial inputs); the bottom-left shows the true change surface with the range
from blue to yellow depicting σ1(w(x)). The top-right depicts the predicted output; the
bottom-right shows the predicted change surface.

deviates slightly in GPCS, particularly on the left edge of Figure 2.11b where the raw data
is highly stochastic. Additionally, the model predictions are smoothed versions of the true
latent data, which reflects the fundamental difference between Gaussian and Poisson models.

2.4.2 British Coal Mining Data

British coal mining accidents from 1861 to 1962 have been well studied as a benchmark in
the point process and changepoint literature [110, 26, 6]. We use yearly counts of accidents
from Jarrett [77]. Adams and MacKay [6] indicate that the Coal Mines Regulation Act of
1887 affected the underlying process of coal mine accidents. This act limited child labor in
mines, detailed inspection procedures, and regulated construction standards [133]. We apply
GPCS to show that it can detect changes corresponding to policy interventions in data while
providing additional information beyond previous changepoint approaches.

We consider GPCS with two latent functions, spectral mixture kernels, and w(x) defined
by RKS features. We do not provide the model with prior information about the 1887
legislation date. Figure 2.12 depicts the cumulative data and predicted change surface. The
red line marks the year 1887 and the magenta line marks x : σ(w(x)) = 0.5. GPCS correctly
identified the change region and suggests a gradual change that took 5.6 years to transition
from σ(w(x)) = 0.25 to σ(w(x)) = 0.75.

Using the coal mining data we apply a number of well known univariate changepoint
methods using their standard settings. We compared Pruned Exact Linear Time (PELT)
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Fig. 2.12 British coal mining accidents from 1851 to 1962. The blue line depicts cumulative
annual accidents, the green line plots σ(w(x)), the vertical red line marks the Coal Mines
Regulation Act of 1887, and the vertical magenta line indicates σ(w(x)) = 0.5.

Table 2.3 Comparing methods for estimating the date of change in coal mining data.

Method Estimated date
GPCS σ(w(x)) = 0.5 1888.8
PELT mean change 1886.5
PELT variance change 1882.5
ecp 1887.0
Student-t test 1886.5
Bartlett test 1947.5
Mann-Whitney test 1891.5
Kolmogorov-Smirnov test 1896.5

[83] for changes in mean and variance and a nonparametric method named “ecp” [76].
Additionally, we tested the batch changepoint method described in [120] with Student-t and
Bartlett tests for Gaussian data as well as Mann-Whitney and Kolmogorov-Smirnov tests
for nonparametric changepoint estimation [134]. Figure 2.3 compares the dates of change
identified by these methods to the midpoint date where σ(w(x)) = 0.5 in GPCS.

Most of the methods identified a midpoint date between 1886 and 1895. While each
method provides a point estimate of the change, only GPCS provides a clear, quantitative
description of the development of this change. Indeed the 5.6 years during which the change
surface transitions between σ(w(x)) = 0.25 to σ(w(x)) = 0.75 nicely encapsulate most of
the point estimate method results.

2.4.3 New York City Lead Data

In recent years there has been heightened concern about lead-tainted water in major United
States metropolitan areas. For example, concerns about lead poisoning in Flint, Michigan’s
water supply garnered national attention in 2015 and 2016, leading to Congressional hearings.
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Similar lead contamination issues have been reported in a spate of United States cities such as
Cleveland, OH, New York, NY, and Newark, NJ [47]. Lead concerns in New York City have
focused on lead-tainted water in schools and public housing projects, prompting reporting in
some local and national media [52].

In order to understand the evolving dynamics of New York City residents’ concerns about
lead-tainted water, we analyzed requests for residential lead testing kits in New York City.
These kits can be freely ordered by any resident of New York City and allow individuals to
test their household’s water for elevated levels of lead [36]. We considered weekly requests
for each zip code in New York City from January 2014 through April 2016. This provides a
proxy for measuring the concern about lead tainted water. Figure 2.13 shows the aggregated
requests over the entire city for lead testing kits during the observation period. It could be
argued that this is an imperfect reflection of citizen concern since is unlikely that a household
will request more than one testing kit within a relatively short period of time. Thus a reduction
in requests may be due to saturation in demand for kits rather than a decrease in concern.
However, we contend that since there were only 28,057 requests for lead testing kits over the
entire observation period, and New York City contains approximately 3,148,067 households,
there is a substantial pool of households in New York City that are able to signal their concern
through requesting a lead testing kit [30].

Fig. 2.13 Requests for residential lead testing kits in New York City aggregated at a weekly
level across the entire city.

While there is a distinct uptick in requests for kits towards the middle and end of the
observation period, there is no ground truth change point, unlike the coal mining example in
Section 2.4.2 and the measles incidence example in Section 2.4.4. We apply GPCS with two
latent functions, spectral mixture kernels, and w(x) defined by RKS features. Note that the
inputs are three dimensional, x ∈ R3, with two spatial dimensions representing centroids of
each zipcode and one temporal dimension.
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08 Jul 2014
21 Oct 2015

Fig. 2.14 NYC zip codes colored by the date where σ(w(xzip)) = 0.5. Red indicates earlier
dates, with Bulls Head in Staten Island being the earliest. Blue indicates later dates, with
New Hyde Park at the eastern edge of Queens being the latest.

The model suggests that residents’ concerns about lead tainted water had distinct spatial
and temporal variation. In Figure 2.14 we depict the midpoint, σ(w(xzip)) = 0.5, for each
zip code. We illustrate the spatial variation in the midpoint date by shading zip codes with
an early midpoint in red and zip codes with later midpoint in blue. Regions in Staten Island
and Brooklyn experienced the earliest midpoints, with Bulls Head in Staten Island (zip code
10314) being the first area to reach σ(w(xzip)) = 0.5 and New Hyde Park at the eastern edge
of Queens (zip code 11040) being the last. The model detects certain zip codes changing in
mid to late 2014, which somewhat predates the national publicity surrounding the Flint water
crisis. However, most zip codes have midpoint dates sometime in 2015.

In Figure 2.15 we depict the change surface slope from σ(w(xzip))= 0.25 to σ(w(xzip))=

0.75 for each zip code to estimate the rate of change. We illustrate the variation in slope by
shading zip codes with flatter change slopes in red and the steeper change slopes in blue. The
flattest change surface occurred in Mariner’s Harbor in Staten Island (zip code 10303) while
the steepest change surface occurred in Woodlawn Heights in the Bronx (zip code 10470).
We find that some zip codes had approximately four times the rate of change as others.
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12.4

Fig. 2.15 NYC zip codes colored by the slope of σ(w(xzip)) from 0.25 to 0.75. Red indicates
flatter slopes, with Mariner’s Harbor in Staten Island being the flattest. Blue indicates steeper
slopes, with Woodlawn Heights in the Bronx being the steepest.

Regression analysis: The variations in the change surface indicate that the concerns about
lead-tainted water may have varied heterogeneously over space and time. In order to better
understand these patterns we considered demographic and housing characteristics that may
have contributed to differential concern among residents in New York City. Specifically
we examined potential factors influencing the midpoint date between the two regimes. All
data were taken from the 2014 American Community Survey 5 year average at the zip code
level [31]. Factors considered included information about residents such as education of
householder, whether the householder was the home owner, previous year’s annual income
of household, number of people per household, and whether a minor or senior lived in the
household. Additionally, we considered information about when the homes were built.

Results of a linear regression over all factors can be seen in Table 2.4. Five variables were
statistically significant at a p-value < 0.05: median annual household income, percentage of
houses built 1940-1959, percentage of householders with high school equivalent education,
percentage of householders with at least a college education, and percentage of owner
occupied households. Median annual household income had a positive correlation with the
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Table 2.4 Results from a linear regression to the NYC lead midpoint date, σ(w(xzip)) = 0.5.
Variables are listed on the left while their coefficients, with standard errors in parentheses,
are listed on the right. Asterisks indicate statistically significant variables.

Dependent variable:

Midpoint date

Log median household income 21.916∗∗

(7.912)
% homes built after 2010 0.549

(0.724)
% homes built 2000-2009 0.061

(0.164)
% homes built 1980-1999 −0.070

(0.153)
% homes built 1960-1979 0.027

(0.094)
% homes built 1940-1959 0.667∗∗

(0.092)
% education high school equivalent −1.609∗∗

(0.331)
% education some college 0.143

(0.312)
% education college and above −0.864∗∗

(0.303)
% households owner occupied −0.310∗

(0.126)
Average family size 9.507

(6.453)
% households with member 18 or younger −0.020

(0.282)
% households with member 60 or older 0.202

(0.215)
% households with only one member 0.283

(0.227)
Constant −149.602

(77.036)

Observations 176
R2 0.420
Adjusted R2 0.370

Note: ∗p<0.05; ∗∗p<0.01
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change date, suggesting that higher household income is associated with later midpoint dates.
People with lower incomes may tend to live in housing that is less well maintained, or is
perceived to be less well maintained. Thus they may require less “activation energy” to
request lead testing kits when faced with possible environmental hazards. Education levels
were compared to a base value of householders with less than a high school education. Thus
zip codes with more educated householders tended to have earlier midpoint dates, and more
concern about lead-tainted water. Similarly, owner occupied households had a negative
correlation with the midpoint date. Since owner occupiers may tend to have more knowledge
about their home infrastructure and may expect to remain in a location for longer than renters
– perhaps even over generations – they could have a greater interest in ensuring low levels of
water-based lead. The positive correlation of homes built between 1940-1959 may be due to
a geographic anomaly since zip codes with the highest proportion of these homes are all in
Eastern Queens. This region has very high median incomes which may ultimately explain
the later midpoint dates.

This analysis indicates that more education and outreach to lower-income families by
the New York City Department of Environmental Protection could be an effective means
of addressing residents’ concerns about future health risks. Additionally, it suggests an
information disparity between renters and owner-occupiers that may be of interest to policy
makers. Beyond the statistical analysis of demographic data, we also qualitatively examined
media coverage related to the Flint water crisis as detailed by the Flint Water Study [149].
While some articles and news reports were reported in 2014, the vast majority began in 2015.
The increased rate and national scope of this coverage in 2015 and 2016 may explain why zip
codes with later midpoint dates shifted more rapidly. Additionally, it may be that residents
with lower incomes identified earlier with those in Flint and thus were more concerned about
potentially contaminated water than their more affluent neighbors.

In addition to the regression factors, there is a significant positive correlation between
change slope and midpoint date with a p-value of 4×10−4. The positive correlation between
midpoint date and change slope is evident from a visual inspection of Figures 2.14 and 2.15.
This relation indicates that in zip codes that changed later, their changes were relatively
quicker perhaps due to the prevalence of news coverage at that later time.

2.4.4 United States Measles Data

Measles was nearly eradicated in the United States following the introduction of the measles
vaccine in 1963. However, due to the vast geographic, ethnic, bureaucratic, and socio-
economic heterogeneity in the United States we may expect differential effectiveness of the
vaccination program, particularly in its initial years. We analyze monthly incidence data
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for measles from 1935 to 2003 in each of the continental United States and the District of
Columbia. Incidence rates per 100,000 population based on historical population estimates
are made publicly available by Project Tycho [147]. We fit the model to ≈ 33,000 data
points where x ∈ R3 with two spatial dimensions representing centroids of each state and
one temporal dimension.

We apply GPCS with two latent functions, spectral mixture kernels, and w(x) defined by
RKS features. We do not provide prior information about the 1963 vaccination date. Results
for three states are shown in Figure 2.16 along with the predicted change surface for each
state. The red line marks the vaccine year of 1963, while the magenta line marks where
σ(w(xstate)) = 0.5.

Fig. 2.16 Measles incidence levels from three states, 1935 to 2003. The green line plots
σ(w(xstate)), the vertical red line indicates the vaccine in 1963, and the magenta line indicates
σ(w(xstate)) = 0.5.

GPCS correctly identified the time frame when the measles vaccine was released in the
United States. Additionally, the model suggests that the effect of the measles vaccine varied
both temporally and spatially. This finding again demonstrates the effectiveness of GPCS
to detect changes in real world data while providing important insight into the change’s
dynamics that are not ascertainable through existing models. In Figure 2.17 we depict the
midpoint, σ(w(xstate)) = 0.5, for each state. We illustrate the spatial variation in the change
surface midpoint by shading states with an early midpoint in red and states with a later
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midpoint in blue. We discover that there is an approximately 6 year range of midpoints
between states, with California being the earliest and North Dakota being the latest.

1961.5
1967.2

Fig. 2.17 U.S. states colored by the date where σ(w(xstate)) = 0.5. Red indicates earlier
dates, with California being the earliest. Blue indicates later dates, with North Dakota being
the latest. Grayed out states were missing in the dataset.

In Figure 2.18 we depict the change surface slope from σ(w(xstate))= 0.25 to σ(w(xstate))=

0.75 for each state to estimate the rate of change. We illustrate the variation in slope by
shading states with the flatter change regions in red and the steeper change regions in blue.
Here we find that some states had approximately twice the rate of change as others, with
Arizona having the flattest slope and Maine the steepest.

Regression analysis: These variations in the change surface indicate that the measles
vaccine may have affected states heterogeneously over space and time. In order to better un-
derstand these dynamics we considered demographic information that may have contributed
to differences in measles vaccine program implementation and effectiveness. Specifically
we examined potential factors influencing the midpoint shift date between the two regimes,
σ(w(xstate))= 0.5. Since the change surface shifts primarily during the 1960s and the measles
vaccine is introduced in 1963, we consider historical census data only from 1960-1962 [29].
Factors included annual birth rate, death rates of different age segments, and population in
each state. Since measles is often contracted by children and people are rarely diagnosed for
the disease twice in their life (it is a permanently immunizing disease), previous literature
has shown that birth rates and the size of a young non-immune population is important for
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Fig. 2.18 U.S. states colored by the slope of σ(w(xstate)) from 0.25 to 0.75. Red indicates
flatter slopes, with Arizona being the lowest. Blue indicates steeper slopes, with Maine being
the highest. Grayed out states were missing in the dataset.

understanding the pre-vaccination dynamics of measles [46]. Indeed, before the measles
vaccine 5-9 year olds comprised 50% of disease incidence [39]. We also consider median
household income and household income inequality for each state. Finally, we also consider
the average annual temperature in each state.

The results of a linear regression over all factors can be seen in Table 2.5. Four variables
were statistically significant at a p-value < 0.05: the Gini coefficient of annual family
income per state, average annual temperature, death rate of people aged 10+, and proportion
of population aged 0-9. The Gini coefficient had a relatively large, positive correlation
suggesting that wider family income inequality is associated with later dates of switching to
the post-vaccine regime. One potential explanation of this phenomenon may be that states
with higher Gini coefficients may have had large socio-economically depressed communities
as well as substantial rural populations. Inoculation and vaccination education may have
been more difficult in those communities and regions, thus delaying the midpoint date in
those states. For example, Arkansas, Alabama, Kentucky, and Tennessee are all relatively
rural states and have among the highest Gini coefficients. These states all have relatively late
midpoint dates sometime in 1966. Another interesting example is the District of Columbia,
which had the highest Gini coefficient. Although Washington D.C. is an urban center, it had
also been an area of poverty and substandard local government, which may have contributed
to its late change. Warmer temperatures are correlated with early midpoint dates perhaps
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Table 2.5 Results from a linear regression to the measles incidence midpoint date,
σ(w(xstate))= 0.5. Variables are listed on the left while their coefficients, with standard errors
in parentheses, are listed on the right. Asterisks indicate statistically significant variables.

Dependent variable:

Midpoint date

Log death rate aged 0-4 −1.614
(2.186)

Log death rate aged 5-9 5.023
(2.640)

Log death rate aged 10+ 7.651∗∗

(2.632)

Log birth rate −10.932
(5.472)

Gini of family income 48.503∗∗

(17.461)

Log median household income 4.997
(2.620)

Log population 0.117
(0.228)

Proportion of population aged 0-9 84.757∗

(32.784)

Average temperature (◦F) −0.093∗

(0.035)

Constant 1,980.509∗∗

(24.237)

Observations 46
R2 0.396
Adjusted R2 0.245

Note: ∗p<0.05; ∗∗p<0.01
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due to biological mechanisms underlying the contagion of measles. Additionally, measles is
spread through human contact which may also be affected by weather patterns. Death rates
of people aged 10+ and relatively larger populations of children aged 0-9 were associated
with later midpoint dates. Both of these factors indicate higher density of young children who
may never have been affected by measles. This in turn may have increased the prevalence of
the virus and delayed the midpoint date.

In addition to the regression factors, there is a significant positive correlation between
change slope and midpoint date with a p-value < 2.2×10−16, suggesting that states with
later changes transition more quickly from the pre-vaccine regime to the post-vaccine regime.
The steeper change slope may be due to other states already having inoculated their residents.
Fewer measles cases nationwide could have enabled states with later midpoint dates to more
effectively contain the disease in their borders.

While this analysis does not provide conclusive results about underlying causal mech-
anisms, it suggests that further scientific research is warranted to understand the political
and demographic factors that contributed to differential effectiveness in the early years of
the measles vaccine program. Indeed, one challenge in analyzing measles at a state-level
aggregation is that measles disease dynamics may vary between cities even within states
[40]. Nevertheless, the results indicate that future vaccination programs should particularly
consider how to quickly and effectively provide vaccinations to rural areas and provide
additional resources to socioeconomically disadvantaged communities. Additionally, care
should be taken when accounting for the effects of weather patterns and population dynamics.





Chapter 3

Counterfactual Prediction with Change
Surfaces

3.1 Introduction

As we observed while motivating the need for change surface models, interrogating the
richness of complex changes helps us to understand those changes and describe what hap-
pened in the data. Yet these descriptions are fundamentally about past data. Policy makers
often want to know, not only what happened in the past, but also what could have happened
given different a different set of circumstance or changes. Such information provides critical
insight for planning future policies and interventions. These types of “what if” questions are
essentially counterfactual questions1.

In this chapter we derive counterfactual prediction techniques using change surfaces. This
allows a new framework for conceptualizing counterfactuals within the context of change
analysis. In particular, the counterfactuals are computed with respect to real-valued labels,
s(x). Such labels provide a natural mechanism to encode partial treatment or spillover effects.
Additionally, we derive counterfactual prediction for GPCS. Given the Bayesian nature of
GPs this provides us with both posterior mean and covariance estimates for each point in
the input domain. Finally, we demonstrate GPCS counterfactual prediction on out-of-class
numerical data and complex spatiotemporal data.

1Published as Herlands et al. [63]
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3.2 Counterfactual prediction for change surfaces

By simultaneously characterizing the change surface, s(x), and the underlying generative
functions, f (x), change surface models allow us to ask questions about how the data would
have looked had there been only one latent function. In other words, change surface models
allow us to consider counterfactual questions.

For example, in Section 3.4.2 we consider measles disease incidence in the United States
in the twentieth century. The measles vaccine was introduced in 1963, radically changing
the dynamics of disease incidence. Counterfactual studies such as van Panhuis et al. [147]
attempt to estimate how many cases of measles there would have been in the absence of
the vaccine. To be clear, since change surface models do not consider explicit indicators of
an intervention, they do not directly estimate the counterfactual with respect to a particular
treatment variable such as vaccination. Instead, they identify and characterize changes in the
data generating process that may or may not correspond to a known intervention. The change
surface counterfactuals estimate the y values for each functional regime in the absence of the
change identified by the change surface model. In cases where the discovered change surface
does correspond to a known intervention of interest, domain experts may interpret the change
surface predictions as a counterfactual “what if” that intervention and any contemporaneous
changes in the data generating process (note that we cannot disentangle these causal factors
without explicit intervention labels) did not occur.

Counterfactuals are typically studied in econometrics. In observational studies econome-
tricians try to measure the effect of a “treatment” over some domain. Econometric models
often measure simple features of the intervention effect, such as the expected value of the
treatment over the entire domain, also known as the average treatment effect. A nascent
body of work considers machine learning approaches to provide counterfactual prediction in
complex data [17, 23, 79, 57], as well as richer measures of the intervention effect [17, 71].
Recent work by [131] uses Gaussian processes for trajectory counterfactual prediction over
time. However, these methods generally follow a common framework using the potential
outcomes model, which assumes that each observation is observed with a discrete treatment
[126, 67]. With discrete treatments a unit, x, is either intervened upon or not intervened
upon — there are no partial interventions. For example, in a medical study a patient may
be given a vaccination, or given a placebo. Such discretization is similar to a traditional
changepoint model where s(x) ∈ {0,1} can only be in one of two states. Yet discrete states
prove challenging in practical applications where units may be partially treated or affected
through spillover. For example, there may be herd effects in vaccinations whereby a person’s
neighbor being vaccinated reduces the risk of infection to the person. Certain econometric
models attempt to account for partial treatment such as treatment eligibility [1], where partial
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treatments are induced by defining proportions of the population that could potentially be
treated. Yet a model that directly enables and estimates continuous levels of treatment may
be more natural in such cases.

Counterfactuals using change surfaces. Change surface models enable counterfactual
prediction in potentially complex data through the expressive parameterization of the latent
functions, f1(x), . . . , fr(x). Determining the individual function value fi(x) over the input
domain is equivalent to determining the counterfactual of fi(x) in the absence of all other
latent functions. We can compute counterfactual estimates for latent functions in either the
regular change surface model or the change surface background model. In the latter case,
if r = 2 recall that the model takes the form y = f0(x)+ s1(x) f1(x)+ ε . Determining the
counterfactual for f0(x) provides an estimate for the data without the detected change, while
the counterfactual for f1(x) estimates the effect of that change across the entire regime.

f1(x)

f2 (x) f1(X)

Fig. 3.1 Two-dimensional depiction of change surface counterfactual prediction. The left
panel illustrates the change surface of Figure 2.1. The right image depicts the counterfactual
of f1 over the entire domain, X , representing what the observed data could look like in
the absence of an intervention. The darker shading of the picture depicts larger posterior
uncertainty.

For example, Figure 3.1 depicts the counterfactual of f1 from Figure 2.1, where f1 is
predicted over the entire regime, X . The darker shading of the picture depicts larger posterior
uncertainty. As we move toward the right portion of the plot, away from data regions where
f1 was active, we have greater uncertainty in our counterfactual predictions.

Computing counterfactuals for each fi(x) provides insight into the effect of a change
on the various regimes. When combined with domain expertise, these models may also be
useful for estimating the treatment effect of specific variables. Additionally, given a Bayesian
formulation of the change surface, such as that proposed in Section 2.3, we can compute the
full posterior distribution over the counterfactual prediction rather than just a point estimate.
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Finally, since change surfaces model all data points as a combination of latent functions, we
do not assume that observed data comes from a particular treatment or control. Rather we
learn the contribution of each functional regime to each data point.

Some simple changepoint models could, in theory, provide the ability for counterfactual
prediction between regimes. But since changepoint models consider each regime either
completely or nearly independently of other regimes, there is no information shared between
regimes. This lack of information sharing across regimes makes accurate counterfactual
prediction challenging without strong assumptions about the data generating process. Indeed,
to our knowledge there is no previous literature using changepoint models for counterfactual
prediction.

Assumptions in change surface counterfactuals: Change surface models identify chang-
ing data dynamics without explicitly considering intervention labels. Instead, counterfactuals
of the functional regimes are computed with respect to the change surface labels, s(x). Thus
these counterfactuals estimate the value of functional regimes in the absence of those changes
but do not necessarily represent counterfactual estimates of any particular variable. The
interpretation of these counterfactuals as estimates for each functional regime in the absence
of a specific known intervention requires identification of the correct change surface, i.e.:

• The intervention induces a change in the data generation process that cannot be modeled
with a single latent functional regime.

• The magnitude of the change is large enough to be detected.

• The change surface model is sufficiently flexible to accurately characterize this change.

• The change surface model does not overfit the data to erroneously identify a change.

Moreover, the resulting counterfactual estimates do not rule out the possibility that other
changes in the data generating process occur contemporaneously with the intervention of
interest. As such, these counterfactuals are most naturally interpreted as estimating what
the data would look like in the absence of the intervention and any other contemporaneous
changes. Disentangling these multiple potential causal factors would require additional data
about both the intervention and other potential causes.

Change surface counterfactual predictions can provide immense value in practical settings.
Although in some datasets explicit intervention labels are available, many observational
datasets do not have such labels. Learning a change surface effectively provides a real-valued
label that can be used to predict counterfactuals. Even when the approximate boundaries of
an intervention are known, change surface modeling can still provide an important advantage
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since the intervention labels may not capture the true complexity of the data. For example,
knowing the date that the measles vaccine was introduced does not account for regional
variation in vaccine distribution and uptake (see Section 3.4.2). Both observational studies
and randomized control trials suffer from partial treatment or spillover, where an intervention
on one agent or region secondarily affects a non-intervened agent or region. For example,
increasing policing in one area of the city may displace crime from the intervened region to
other areas of the city [148]. This effect violates the Stable Unit Treatment Value Assumption,
which is the basis for many estimation techniques in economics [125]. By using the assumed
boundaries of an intervention as a prior over s(x), a change surface model can discover if,
and where, spillover occurs. This spillover will be captured as a non-discrete change and
can aid both in interpretability of the results and counterfactual prediction. In all these cases
change surface counterfactuals may lead to more believable counterfactual predictions by
using a real valued change surface to directly model spillover and interventions.

3.3 GPCS Counterfactual Prediction

We consider counterfactuals when using two latent functions in a GPCS, f1(x) and f2(x). This
two-function setup addresses a typical setting for counterfactual prediction when considering
two alternatives. The derivations below can be extended to multiple functional regimes. As
discussed above, we note that change surface counterfactuals are only valid with respect to
the regimes of the data as identified by GPCS. Subsequent analysis and domain expertise are
necessary to make any further claims about the relationship between an identified change
surface and some latent intervention.

In counterfactual prediction we wish to infer the value of f1(x) and f2(x) in the absence
of the other function. Therefore we condition on the observations, (x,y), and GPCS model
parameters in order to compute the conditional distribution p

(
[ f1(x), f2(x)]|y

)
from the

multivariate Gaussian joint distribution p
(
[ f1(x), f2(x)],y

)
. For notational convenience we

omit explicit reference to the model parameters in the subsequent derivations but note that all
distributions are conditional on these parameters.

To recall, for two latent functions, f1(x) and f2(x), GPCS specifies

y(x) = σ1 f1(x)+σ2 f2(x)+ ε (3.1)

ε ∼ N (0,σ2
ε ) (3.2)

f1(x)∼ G P(0,K1) (3.3)

f2(x)∼ G P(0,K2) (3.4)
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where for notational simplicity we let K1 = k1(x,x′), K2 = k2(x,x′), σ1 = σ1(w(x)), and
σ2 = σ2(w(x)).

We consider the most general case when we want to predict counterfactuals for both f1(x)
and f2(x) over the domain X . No restrictions are placed over X . It can include the entire
original domain, parts of the original domain, or different inputs entirely. We concatenate
f1(X) and f2(X) together,

u = [ f1(X), f2(X)] . (3.5)

Since in Section 2.3.1 we assumed that f1(x) and f2(x) have independent Gaussian process
priors, we know that,

u ∼ N
(

0,

[
K1 0
0 K2

])
(3.6)

Considering the observed data, y, we know that u and y are jointly Gaussian,[
u
y

]
∼ N

(
0,

[
Σu,u Σu,y

ΣT
u,y Σy,y

])
(3.7)

and using multivariate Gaussian identities, we find that u has the conditional Gaussian
distribution

u|y ∼ N
(

Σu,yΣ
−1
y,y y,Σu,u −Σu,yΣ

−1
y,y Σ

T
u,y

)
(3.8)

Thus in order to derive counterfactuals for both f1(X) and f2(X) we only need to compute
Σu,y,Σy,y, and Σu,u. Note that with respect to Σu,u we have already derived the covariance
structure for u in Equation (3.6).
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Computation for Σu,y In order to compute Σu,y, we expand the multiplication noting that
y is defined to be a two-function GPCS,

Σu,y = E[uyT ] (3.9)

= E[



f1(x1)

...

f1(xn)

f2(x1)

...

f2(xn)


σ1(x1) f1(x1)+σ2(x1) f2(x1)+ ε

...

σ1(xn) f1(xn)+σ2(xn) f2(xn)+ ε


T

] (3.10)

Multiplying these elements is assisted by the following identities. Recall that kernels K1 and
K2 define the covariance among function values in f and g respectively,

E[ f1(xi) f1(x j)] = k1(i, j) (3.11)

E[ f2(xi) f2(x j)] = k2(i, j) (3.12)

Additionally, since f1(x) and f2(x) have independent Gaussian process priors, E[ f1(xi) f2(x j)]=

0. Furthermore, because ε is distributed with mean zero, E[εi] = 0. Finally, since σ1(x)
and σ2(x) are constant (conditional on hyperparameters) E[σ1(xi)] = σ1(xi) and E[σ2(xi)] =

σ2(xi). Thus we can conclude that

Σu,y =



σ1(x1)k1(1,1) σ1(x2)k1(1,2) ... σ1(xn)k1(1,n)
σ1(x1)k1(2,1) σ1(x2)k1(2,2) ... σ1(xn)k1(2,n)

...

σ1(x1)k1(n,1) σ1(x2)k1(n,2) ... σ1(xn)k1(n,n)
σ2(x1)k2(1,1) σ2(x2)k2(1,2) ... σ2(xn)k2(1,n)
σ2(x1)k2(2,1) σ2(x2)k2(2,2) ... σ2(xn)k2(2,n)

...

σ2(x1)k2(n,1) σ2(x2)k2(n,2) ... σ2(xn)k2(n,n)


(3.13)

=

[
K1 ⊙1σT

1

K2 ⊙1σT
2

]
(3.14)

where ⊙ is elementwise multiplication.
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Computation for Σy,y The computation for Σy,y is very similar to that of Σu,y so we omit
its expansion for the sake of brevity. The slight difference is that we must consider E[εiεi]

which equals σ2
ε .

Thus,

Σy,y = E[yyT ] (3.15)

= K1 ⊙ [σ1σ
T
1 ]+K2 ⊙ [σ2σ

T
2 ]+ Inσ

2
ε (3.16)

GPCS background model counterfactuals

The counterfactual derivations above directly apply to the GPCS background model with
r = 2, where y(x) = f0(x)+σ1(w(x)) f1(x). Recall that as we discussed in Section 2.2.1, this
is a special case of the GPCS background model where f1(x) is an additive change function.
In this case, the counterfactual for f0(x) estimates what would have occurred in the absence
of the identified change. The counterfactual for f1(x) models how the change would have
affected the entire domain.

If we let u = [ f0(X), f1(X)] we can derive counterfactuals for the GPCS background
model by setting σ0 = 1 in the equations for Σu,u, Σu,y, and Σy,y above. Explicitly,

Σu,u =

[
K0 0
0 K1

]
(3.17)

Σu,y =

[
K0

K1 ⊙1σT
1

]
(3.18)

Σy,y = K0 +K1 ⊙ [σ1σ
T
1 ]+ Inσ

2
ε (3.19)

3.4 Experiments

Using two-dimensional numerical data in Section 3.4.1 we compute highly accurate coun-
terfactual predictions for both GPCS and GPCS background models and discuss how the
posterior distribution varies over the prediction domain as a function of the change surface.
Additionally, using the US measles data from 2.4.4, we estimate the counterfactual of measles
incidence without vaccination by filtering out the detected change function and examining
the inferred latent background function.
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3.4.1 Numerical Experiments

We use GPCS to compute counterfactual predictions on the numerical data. In the previous
experiments from Section 2.4 we used the data, (x,y), to fit the parameters of GPCS, θ . Now
we condition on (x,y,θ) to infer the individual latent functions f1(x) and f2(x) over the entire
domain, x. By employing the marginalization procedure described in Section 3.3 we derive
posterior distributions for both f1(x) and f2(x). Since we have synthetic data we can then
compare the counterfactual predictions to the true latent function values. Specifically, we use
(x,y,θ) from Figure 2.7b to infer the posterior counterfactual mean and variance for both
f1(x) and f2(x) and show the results in Figure 3.2. Note how the posterior mean predictions
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Fig. 3.2 Posterior counterfactual predictions using hyperparameters derived from GPCS
model. We plot the true latent function as well as the posterior mean and variance estimates
for each function. Additionally, we plot the squared error between the true and posterior
mean values.

of f1(x) and f2(x) are quite similar to the true values. Moreover, the posterior uncertainty
estimates are very reasonable. For both f1(x) and f2(x) the posterior variance varies over
the two-dimensional domain, x, as a function of the change surface. Where s1(x) ≈ 1 the
posterior variance of f1(x)≈ 0 while the posterior variance of f2(x) is large. In areas where
s2(x)≈ 1 the posterior variance of f1(x) is large, while the posterior variance of f2(x)≈ 0.
The uncertainty is also evident in the squared error, 1

n ∑( fi(x)− ˆfi(x)), where, as expected,
each function has larger error in areas of high posterior variance.
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GPCS background model

We use the GPCS background model to compute counterfactual predictions on the data from
Figure 2.10b. Conditioning on (x,y,θ) we employ the marginalization procedure described
in Section 3.3 to infer posterior distributions for the background function, f0(x), and the
change function, f1(x), over the entire domain, x. The results are shown in Figure 3.3. Note
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Fig. 3.3 Posterior counterfactual predictions using hyperparameters derived from GPCS
background model. We plot the true latent function as well as the posterior mean and
variance estimates for each function. Additionally, we plot the squared error between the
true and posterior mean values.

how the posterior mean predictions of both the background and change functions are quite
similar to the true values. As in the case of GPCS, the posterior variance for each function
varies over the two-dimensional domain, x, as a function of the change surface, σ(wpoly(x)).

3.4.2 United States Measles Data Counterfactuals

Using the counterfactual GPCS framework and data from Section 2.4.4, we inferred the
incidence of measles in the absence of the change surface identified by GPCS. We used the
latent function that is dominant in the data before the measles vaccine to compute posterior
estimates for measles incidence between the earliest detected midpoint date in 1961 and the
end of the data in 2003. This estimation is inspired by the counterfactual estimation described
in van Panhuis et al. [147]. We argue that GPCS provides more believable counterfactual
estimates than simple interpolations or regressions because GPCS is a more expressive model
for measles dynamics and explicitly considers data variation both before and after the start
of the measles vaccine program. Figure 3.4 depicts the aggregated counterfactual posterior
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mean estimates over the entire United States. The left plot shows true and counterfactual
monthly incidence, while the right plot depicts the cumulative counterfactual incidence.
Under the assumption that the change surface reflects the causal effect of the vaccine program
intervention, we also estimate how many cases were “prevented” through the vaccination
program. Since disease dynamics may have many causal factors, we cannot disentangle the
introduction of the measles vaccine from any contemporaneous societal or policy changes
that may have impacted measles incidence. Thus these findings are a starting point for more
extensive epidemiological research. Additionally, while we plot the posterior mean estimates,
note that our confidence in these estimates diminishes as we consider counterfactual estimates
far from the change region.
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Fig. 3.4 Counterfactual posterior mean estimates for measles incidence. Plot (a) depicts
the aggregated counterfactual posterior mean estimates over the entire United States. Plot
(b) depicts the cumulative counterfactual incidence over the entire United States as well as
estimating how many cases were “prevented” through the vaccination program under the
assumption that the change surface corresponds to the vaccine intervention.





Chapter 4

Anomalous Pattern Detection in Non-iid
Data

4.1 Introduction

Anomalous pattern detection is the task of identifying subsets of data points that systemati-
cally differ from the underlying model. Identifying anomalous patterns in real-world data
is critical for understanding how people and systems deviate from expected behavior. In
the spatiotemporal domain, timely identification of such patterns can allow for effective
interventions. For example, detecting anomalous increases in opioid deaths can enable
health care workers to effectively target overdose prevention programs. Similarly, patterns of
increased 311 calls can help cities to better target services and allocate resources1.

To detect these anomalous patterns, we will address three key challenges. First, real-world
data is extremely complex with non-trivial correlations across space, time, and other features.
Treating data points as iid ignores important covariance structure and will substantially
overestimate the anomalousness of detected patterns. Second, an event of interest often
affects multiple nearby points. Simply considering how anomalous is each individual point
loses power to detect subtle anomalies. Third, anomalous patterns are often irregularly
shaped or discontiguous due to latent demographic or geographic features. Searching for
these complex patterns is important for precision and detection power, yet exhaustive methods
are computationally intractable and may result in overfitting.

A sensible approach to this problem is model-based anomaly detection, where a distribu-
tion is fit to model “regular” data. Points with a low likelihood under this distribution are
identified as anomalous [32, 66]. To address the complex correlations in real-world systems,

1Published as Herlands et al. [61]
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Gaussian processes (GPs) provide a natural means of learning covariance structure from
data. However, GP anomaly detection has been typically used to classify individual points as
outliers [138, 84, 140]. Such approaches have difficulty when confronted with subtle anoma-
lies, where each individual data point may seem to conform to the underlying distribution,
yet when taken as a group, they form a collectively anomalous pattern. Thus anomalous
pattern detection is a conceptually and statistically different problem than anomaly or outlier
detection.

A few recent GP models consider anomalous intervals [118] and sophisticated change
points [128, 64] to detect intervals of anomalous points. However, these methods (the first
two of which are applied exclusively to one-dimensional data) are limited to contiguous
intervals in the input domain and cannot model the irregularly shaped anomalies we expect in
complex data. Cheng et al. [34] recently developed an anomalous pattern detection technique
for spatiotemporal data. However, this approach requires a corpus of anomaly-free training
data, can only detect contiguous anomalous patterns, and is specific to video data.

In the statistics literature, spatial and subset scanning methods are commonly used to
identify collectively anomalous subsets of data [85, 102]. By combining information across
a subset of data elements, they generate a strong signal of anomalous behavior. These
approaches compute a log-likelihood ratio (LLR) of subsets being drawn from a null or
anomalous distribution. The LLR is a powerful statistic that measures how much evidence
exists in the data to conclude if the subset exhibits abnormal behavior [85, 105]. A core
challenge of subset scanning is searching through the O(2n) possible subsets of n data
elements [104, 7, 45, 159]. Neill [102] shows that certain LLR statistics satisfying a linear-
time subset scanning (LTSS) property can be optimized in O(n logn) by ordering points
according to a particular “priority function” and evaluating only n of the 2n subsets. However,
LTSS assumes that we can compute the contributions of individual points to the LLR. This is
possible only when assuming that data is uncorrelated under the null, as in the case of an
independent Gaussian scan statistic [101]. Yet when applied to non-iid data this independence
assumption would result in substantial false positive rates since correlated fluctuations will
be mistaken for anomalous movements.

4.1.1 Contributions

In this chapter we introduce novel techniques for identifying anomalous patterns in non-iid
data. Our methods are powerful and interpretable. By combining naturally interpretable GPs
with localized anomalous patterns we can describe the “regular” data dynamics as well as
quantify and corroborate anomalous regions with domain experts. Our main contributions
are:
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1. Combining GP modeling with subset scanning for powerful and interpretable detection
of anomalous patterns in highly correlated data.

2. Proposing a new likelihood ratio statistic and subset scan technique for correlated data
that do not assume conditional independence.

3. Performing hold-out GP inference while computing our new likelihood ratio statistic
conditioned on GP hyperparameters, to avoid corrupting the null model with anomalies.

4. Developing two novel, principled approaches to the NP-hard problem of searching for
the most anomalous subset, through a new iterative method and an application of the
Generalized Rayleigh Quotient respectively.

5. We demonstrate our methods on numeric simulations, opioid-related deaths, 311 calls
for service data, and multiple streams of sewer flooding reports and tree damage reports,
illustrating interpretable and policy-relevant results.

The chapter proceeds as follows: Section 4.2 introduces a novel log-likelihood ratio
statistic for non-iid data. Section 4.3 details the Gaussian Process Neighborhood Scan
(GPNS) and the Gaussian Process Subset Scan (GPSS). Experimental results on numerical
and real data are presented in Section 4.4.

4.2 LLR statistic for non-iid data

Consider data, (x,y), where x = {x1, . . . ,xn},xi ∈ RD, are inputs or covariates, and y =

{y1, . . . ,yn}, yi ∈ R are outputs or response variables indexed by x. We are interested in
anomalous patterns that systematically differ from the underlying data distribution. We
frame this search as an LLR comparison between a null model of “regular” behavior and an
alternative model of “anomalous” behavior. A single latent GP defines both models. Subsets
of data with the highest LLR scores are identified as the most anomalous and randomization
testing identifies a threshold for statistical significance.

Using a GP as the foundational modeling technique enables us to learn complex covari-
ance structure and seamlessly extend to high dimensions as well as missing data. GPs are
also naturally interpretable, which can provide insight about the “regular” data dynamics.

Consider a given subset of data points defined by the binary weighting vector w, where
wi = 1 if (xi,yi) is included in the subset and wi = 0 if excluded. Our null model, H0, assumes
that all points (regardless of wi) are drawn from a function with a GP prior: y = f (x)+ ε ,
where f (x) ∼ GP(θ0) and ε ∼ N (0,σ2

ε I). Our alternative model, H1(w), assumes that
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yi = f (xi)+ ε for wi = 0, and yi = g( f (xi),θ1)+ ε for wi = 1, where g(·) is any function of
the latent GP.

Here we focus on the case of a mean shift, g( f (x),θ1)= f (x)+β , β ∈R1. The covariance
structure remains the same in the null and alternative models. This allows us to efficiently
compute the posterior mean vector µ and covariance matrix Σ through GP inference, where
y ∼ N (µ,Σ) under H0, and y ∼ N (µ +βw,Σ) under H1(w). For posterior µ and Σ we
condition on all data outside the subset of points represented by w, ensuring that null model
estimates are not corrupted by anomalous observations. However, since anomalies are
assumed to be rare, their influence on parameter estimation is minimal. Therefore we use all
(x,y) for GP learning of the parameters of the null model θ0.

We concentrate on mean changes since many real world cases concern anomalous levels
of a quantity. Increases in localized drug overdoses, crime, and calls for city service are all
mean shifts of great importance. Methods for identifying arbitrary changes in distribution –
while able to detect other sorts of patterns – have reduced power to detect such mean shifts,
due to more diffuse inductive biases. Persistent changes in covariance structure are typically
considered changepoints and require substantial data in both regimes as opposed to the
localized anomalous patterns we detect.

To measure how anomalous is a subset defined by w, we compute the generalized log-
likelihood ratio, LLR(w) = maxβ LLR(w |β ), where:

LLR(w |β ) = log
MNPDF(y−βw |µ,Σ)

MNPDF(y |µ,Σ)
(4.1)

Here MNPDF is the multivariate normal probability density function. The most anomalous
subset, w∗, is

w∗ = argmax
w

LLR(w)

= argmax
w

max
β

−β 2

2
wT Ew+βwT E(y−µ)

(4.2)
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where E = Σ−1 for notational brevity. Conditional on w, we can determine the optimal mean
shift, β ∗ through maximum likelihood estimation as shown below.

β
∗ = max

β

(
(2π)−

k
2 |Σ|−

1
2 exp(−1

2
(y−wβ −µ)T

E(y−wβ −µ))
)

= max
β

− 1
2
(y−wβ −µ)T E(y−wβ −µ)

= max
β

(y−µ)T Ewβ − 1
2
(wβ )T E(wβ )

(4.3)

We take the derivative with respect to β and set it to zero

δLLR(w)
δβ

= (y−µ)T Ew− (wβ
∗)T E(w) = 0

⇒ (wβ
∗)T E(w) = (y−µ)T Ew

⇒ β
∗ =

wT E(y−µ)

wT Ew

(4.4)

Although β ∗ can be calculated in closed form, nevertheless, maximizing LLR(w) is an NP-
complete Integer Quadratic Program [41], so an optimal solution requires exponential-time
computation. Note that the LTSS condition for a log linear-time subset search described in
Neill [102] does not apply, since it requires independent data with a diagonal covariance
matrix.

4.2.1 Randomization testing

Given a method for finding anomalous subsets, the following randomization testing procedure
determines an α-level significance threshold for LLR(w) conditional on the parameters of
the null model:

1. Repeatedly draw y(r) ∼ GP(θ0), at the same covariates, x, as the real data for r = 1...R.

2. Scan over (x,y(r)) with the chosen subset searching method. For each randomization r
save the most anomalous LLR value, LLR(w∗,(r)).

3. Determine an α-level threshold for significance based on the (1−α) quantile of the R
maximum LLR values, above which any LLR(w) from the original scan is considered
statistically significant.
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4.3 Efficient subset scanning

Having defined the LLR scan statistic to evaluate how anomalous is a given subset, we must
now decide over which subsets to scan. Unconstrained optimization over O(2n) subsets is
computationally infeasible for an exhaustive search. Additionally, an unconstrained search
may return an unrelated set of points, reducing interpretability and increasing the potential for
overfitting. Anomalous events in human data, such as drug usage and requests for government
services, often affect multiple nearby points. Thus we assume that anomalous points are
near one another. For example, in spatiotemporal data we assume that anomalous points are
clustered in space and time. Following Neill [102], we define the local “k-neighborhood”
of each data point, consisting of that point and its k − 1 nearest neighbors, for some k.
We propose two approaches for using these neighborhoods to identify anomalous patterns:
Gaussian Process Neighborhood Scan (GPNS) and Gaussian Process Subset Scan (GPSS).

4.3.1 GP Neighborhood Scan (GPNS)

Given a maximum neighborhood size kmax, GPNS searches over the O(nkmax) local neigh-
borhoods consisting of the k-neighborhood for each point where k = {1,2, . . . ,kmax}. Where
neighborhoods are defined by Euclidean distance, such as in spatial data, the set of search
regions are circular in shape. For each neighborhood, (x(n),y(n)), we obtain posterior µ and Σ

conditional on θ0 and points (x(−n),y(−n)). We then compute LLR(w) for the neighborhood
where w = 1⃗, i.e., we evaluate the alternative hypothesis of the entire neighborhood being
anomalous. GPNS pseudocode is presented in Algorithm 3.

Algorithm 3 GPNS
1: for k = 1 : kmax do
2: for (xi,yi), i = 1 : n do
3: Define k-neighborhood, n(k,i), and infer (µ,Σ)
4: Set w(k,i) = 1⃗ ∈ {0,1}k

5: Compute β ∗ given w(k,i)

6: Compute LLR(w(k,i))
7: end for
8: end for
9: Choose n∗ = argmaxn(k,i) LLRn(k,i)

10: Randomization testing for significance
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4.3.2 GP Subset Scan (GPSS)

While GPNS simplifies the exponential search, it requires constraining assumptions about
the shape of neighborhoods and is only able to discover contiguous, spherical anoma-
lous patterns. While there are approaches to increase the variety of neighborhood shapes
without substantially degrading computational efficiency [87, 104, 86], these methods still
require strict specification of potential anomalies. Such foreknowledge is unrealistic in
real-world applications where natural boundaries, demographics, and stochastic effects lead
to irregularly-shaped patterns. In such cases GPNS has reduced detection and explanatory
power.

To flexibly detect irregularly-shaped patterns, GPSS conducts an unconstrained search for
the most anomalous subset within neighborhoods of fixed size k. Specifically, we identify the
subset of points (x(s),y(s))⊆ (x(n),y(n)) that maximize the LLR within each neighborhood.
This allows us to identify highly irregular and even non-contiguous anomalous patterns. By
restricting the search within a local neighborhood, we ensure that the identified patterns are
coherent and interpretable. GPSS requires evaluating O(n) neighborhoods, as presented in
Algorithm 4.

Algorithm 4 GPSS
1: Fix k at some size
2: for (xi,yi), i = 1 : n do
3: Define k-neighborhood, n(i), and infer (µ ,Σ)
4: Approximate the optimal subset, s(i) ⊆ n(i)

5: Set each w(i)
j = 1( j ∈ s(i))

6: Compute β ∗ given w(i)

7: Compute LLR(w(i))
8: end for
9: Choose s∗ = argmaxs(i) LLRs(i)

10: Randomization testing for significance

Unfortunately, this procedure requires finding w ∈ {0,1}k that maximizes the LLR of
a subset within the neighborhood, argmaxw -1

2wT βEwβ +wT βE(y(n)-µ). This is still an
Integer Quadratic Program, whose optimal solution is intractable even for moderately sized
neighborhoods. Instead, below we formulate three approaches for finding approximate
solutions.
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βMAX for conditionally optimal subset

Due to the full rank covariance matrix, we are unable to disentangle the individual contribu-
tions from each point to the LLR. However, if we condition on some subset of points, w, we
are able to compute the conditional contribution of each point. First, note that conditional
on w we can decompose w∗ from Equation 4.2 into a sum over each of the m points in the
neighborhood

wT
βE(y(n)−µ)− 1

2
wT

βEwβ

= ∑
i

wi

[
β
(
E(y(n)−µ)

)
i −

1
2
(
∑
j ̸=i

w jE j,i +Ei,i
)
β

2
] (4.5)

The contribution of point (xi,yi) to the LLR is the difference in LLR between wi = 0 and
wi = 1. Due to the outer and inner sums, the change in the LLR is:

β
(
E(y(n)−µ)

)
i −

1
2
(
∑
j ̸=i

2w jE j,i +Ei,i
)
β

2
(4.6)

To maximize the LLR a point is only added to the subset if its contribution is positive. By
setting Equation 4.6 to zero we can compute βMAXi , the maximum β value for which to
include point (xi,yi).

βMAXi =
[
2
(
E(y(n)-µ)

)
i

]
/
[
∑
j ̸=i

2w jE j,i +Ei,i

]
(4.7)

As proved in Speakman et al. [139], we obtain the conditional optimal subset by using βMAX

as a priority function, ranking each data point by βMAXi , and iteratively compute the score
function for subsets including each additional point. This yields a log linear search over data
points. Such an approach identifies the most anomalous subset with a positive mean shift. To
find the most anomalous subset with a negative mean shift we simply rank data points by
−βMAXi

Since the derivation of βMAXi is conditional on a subset w, we obtain the conditional
optimal subset. In order to approximate an optimal solution we use iteratively compute
the conditional optimal subset beginning with a null subset, w = 0⃗. This is an O(ℓk log(k))
algorithm for some ℓ number of iterations, where k is the size of the neighborhood. Pseudo-
code is depicted in Algorithm 5.

For a diagonal Σ, βMAX orders points according to 2(y(n)i −µi), which is equivalent to the
LTSS priority function for an independent Gaussian subset scan [139]. Thus βMAX approach
identifies the optimal subset in the independent case and is conditionally optimal in the
dependent case.
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Algorithm 5 Iterative βMAXi algorithm

1: Initialize w = 0⃗
2: for l = 1 : ℓ do
3: Compute βMAXi ∀i conditioned on the current value of w
4: Find highest scoring subset, w(l), using a linear search over sorted βMAXi

5: Compute LLR(w(l))
6: Set w = w(l)

7: end for
8: Choose w∗ = argmaxw(l) LLR(w(l))

Although we focus on unconstrained subsets searching within neighborhoods, real world
applications sometimes require a more constrained optimization. For example, in spatiotem-
poral phenomena it is often useful to consider anomalous patterns that are nearby in space
and contiguous over time. We can enforce such constraints by predefining mutually exclusive
blocks of points, (x(B),y(B))⊆ (x(n),y(n)) where points in a block must all either be included
in, or excluded from, a subset.

When considering blocks of points we can compute the total contribution from all points
in the block, though we must also account for additional off-diagonal terms in E due to the
blocking of data points. Following the derivation steps above we can derive the βMAXb for
each block,

βMAXB = ∑
i∈B

2
(
E(y(n)−µ)

)
i(

∑ j/∈B 2w jE j,i +Ei,i +∑k∈B Ek,i
) (4.8)

This can be used in a lightly modified version of Algorithm 5 where the βMAXB of blocks, not
individual points, is iteratively computed.

Generalized Rayleigh Quotient method

We consider an alternative optimization approach to obtain an approximately optimal subset.
Consider plugging the MLE solution, β ∗, into w∗ from Equation 4.2,

w∗ = argmax
w

[
wT(E(y(n)-µ)(y(n)-µ)T E

)
w
]
/
[
wT(2E

)
w
]

(4.9)

If we relax w such that w ∈ Rm, this can be re-written as the generalized Rayleigh quotient,

R(A,B,w) =
wT Aw
wT Bw

, (4.10)
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where A = E(y(n)− µ)(y(n)− µ)T E, and B = 2E. Note that A is a symmetric matrix and
B is a Hermitian positive-definite matrix. Taking the Cholesky decomposition B = LLT ,
the generalized Rayleigh quotient can be written as a Rayleigh quotient [160], R(A′,w′) =

(w′T A′w′)/(w′T w′), where A′ = L−1ALT−1
and w′ = LT w. The maximum w′ of the Rayleigh

quotient, w′
max = argmaxw′ R(A′,w′) = argmaxw′(w′T Aw′)/(w′T w′) = v(max), is the largest

eigenvector of A′. Since we defined w′ = LT w, then the maximum wmax = LT−1
v(max) is the

relaxed solution to our original optimization problem from Equation 4.9.
Although wmax has non-integer elements, the ordering of the elements of this eigenvector

corresponds to the importance of the data points in the neighborhood. Thus we scan over the
ordered elements of wmax, iteratively adding each to the subset. Maximizing LLR(w) over
this linear number of subsets provides an approximate solution to the constrained integer
program.

Forward stepwise optimization

A third approximation approach uses a greedy forward stepwise algorithm that iteratively
sets one element wi = 1 such that the objective is minimized in each iteration. Once the
objective cannot be further minimized the optimization is terminated, thereby providing a
greedy optimal solution. For a neighborhood of size k, the stepwise approach may require up
to k iterations, evaluating O(k) subsets at each iteration for a total of O(k2) computations.

4.3.3 Efficient Multi-Stream Search

Often we are interested in searching for anomalous patterns across multiple dimensions, or
streams, of data. For example, anomalous patterns of damaged trees and sewer flooding
can help localize severe storm damage. Multi-stream search can enhance the signal of
subtle anomalies that affect multiple streams, and reduce false positive detections when
perturbations in a single stream are not important to the application.

In principle, GPNS and GPSS can handle multiple streams by stacking the data from each
stream and adding a final dimension to indicate from which stream the data came. Yet naive
GP inference requires O(n3) complexity, so repeatedly concatenating data from multiple
streams quickly leads to scalability issues. On the other hand, Kronecker-based scalability
require a kernel that is multiplicatively decomposable over the input dimensions [127]. This
implies that the prior correlation structure is the same over all data dimensions except for
the stream indicator. For example, Kronecker structure in spatiotemporal settings constrains
streams to have the same prior spatiotemporal correlations. This assumption is overly
restrictive for the complex data in which we are interested.
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Instead, we learn independent GPs for each stream of data and then scan over neighbor-
hoods in the data jointly for all streams. Posteriors for each stream are independently inferred
from the associated GP. Thus for streams s = 1, ...,S, the posterior distribution for subset
scanning contains a block diagonal covariance,

N


µ1

...
µS

 ,
Σ1 0 0

0 . . . 0
0 0 ΣS




In this manner each stream can flexibly learn different prior covariance structures while still
ensuring scalability equivalent to single-stream GPNS and GPSS. The one drawback of this
approach is that inter-stream covariance information is not exploited for GP inference.

4.4 Experiments

We evaluate GPNS and GPSS using numeric simulations and three urban spatiotemporal
datasets. We compare the methods against a number of competitive baseline algorithms
from contemporary literature. First, we compare to an independent Gaussian subset scan, a
state of the art anomalous pattern detection Algorithm [101, 102]. Additionally, we compare
against a standard GP anomaly detection approach [84, 140], in which we use the posterior
distribution of the null GP model θ0 regressed over the entire dataset to classify points beyond
a given level-α significance threshold as anomalies. While all GP methods in this chapter
are agnostic to kernel choice, an RBF kernel and linear mean function were used for all
experiments.

Although anomalous pattern detection is a distinct problem from outlier or anomalous
point detection, we also compare against two commonly used outlier detection techniques:
a one-class SVM [129] and robust multivariate outlier detection using the Mahalanobis
distance [123, 124].

4.4.1 Numeric experiments

For each numeric test, baseline data is drawn from a two-dimensional GP [116]. Multiplica-
tive anomalies of arbitrary shape are injected by scaling randomly sampled points, within
a randomly chosen neighborhood, by a factor of ≥ 1. (Note that this simulation does not
correspond to our method’s assumption of an additive mean shift.) The most anomalous
subset is computed using GPSS methods and baseline approaches. For the baseline GP
approach and one-class SVM we provide additional information (the true percentage of the
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anomalous data) in order to determine their threshold levels. Thus those baseline methods
have more information than the GPSS approaches.
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Fig. 4.1 Precision, recall, and power at α = 0.05 for GPSS methods and baseline anomaly de-
tection approaches. The three GPSS methods dominate in all cases with the βMAX performing
best overall.

Varying the multiplicative factor between 1 and 2 we compute the average precision
and recall in Figure 4.1 over 50 tests in a 400 point grid for each multiplicative factor.
Randomization testing (α = .05) is performed for each synthetic test to determine the score
threshold for significance. For precision and recall, truly anomalous points are “positive” and
all other data is “negative.” The GPSS approaches dominate all other methods for nearly the
entire test range, with βMAX performing best overall.

Additionally, for each test we use an exhaustive search to find the subset with the highest
LLR. The ratios of the LLR of approximate GPSS solutions to LLR(w∗) are shown in
Figure 4.2. Note that all approximation methods are relatively close to the optimal value.
While the βMAX approach dominates at large magnitudes, the GRQ dominates at small
magnitudes and achieves a relatively stable ratio across all tests. Such stability may be
valuable when considering unexplored data.

To test the methods’ scalability we vary the maximum neighborhood size and measure
run time. In Figure 4.2 we compare GPSS, GPNS, and an exhaustive search for the optimal
subset. The exhaustive search quickly becomes computationally intractable. Despite the
added flexibility, GPSS is faster than GPNS because GP posterior inference is performed for
fewer neighborhoods.

We consider the effect of the density of anomalies on GPSS and GPNS where “density”
is defined by the proportion of anomalous points in the true subset (Figure 4.3). High
densities represent compact anomalies, while low densities represent irregularly-shaped
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Fig. 4.2 Numeric tests of GPNS and GPSS compared to exhaustive evaluation of LLR(w∗).
Left plot: ratio of maximum LLR identified by GPSS to true maximum LLR. Right plot: run
time.

anomalies. While the stepwise method is competitive with the βMAX and GRQ approaches at
low densities, its precision and recall drop off steeply at high densities. Thus the performance
in of stepwise in Figure 4.1 would degrade significantly if we had chosen a higher density
anomaly. Additionally, in relatively low density anomalies, where the anomalous shapes may
be highly irregular, GPNS has substantially reduced precision and recall.
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Fig. 4.3 Precision, recall, and size of detected subset for GPSS and GPNS methods over
subsets of varying density within a neighborhood.

4.4.2 Urban opioid overdose deaths

A recent United States opioid epidemic has garnered national attention [145]. We study
monthly opioid overdose deaths in New York from 1999-2015 [144]. Data is provided at
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a county level for Manhattan, Brooklyn, Queens, the Bronx, Nassau County, and Suffolk
County. Data is missing for some months in different counties. We apply GPSS and baseline
approaches jointly to data across all time, latitude, and longitude, with randomization testing
at α = 0.05.
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Fig. 4.4 Monthly opioid overdose deaths in New York from 1999-2015. Top plot depicts the
two statistically significant anomalies detected by βMAX . Bottom plot depicts points detected
by the one-class SVM.

All three GPSS approaches (βMAX , GRQ, and stepwise) identify two statistically sig-
nificant anomalous patterns. While precise points selected by the methods differ slightly,
Figure 4.4 depicts the two anomalous regions discovered by βMAX in blue circles and red
crosses. With the exception of the independent subset scan, the baseline methods failed to
discover a coherent anomalous pattern. Instead they selected individual points across space
and time. For example, see results from the one-class SVM in Figure 4.4.

The anomalies detected by GPSS correspond to important public health events. The blue
circles at the end of 2015 indicate a surge in opioid deaths corresponding to a well known
plague of fentanyl-related deaths in NYC [38]. The anomaly denoted by red crosses in 2006
is particularly interesting since it indicates a spike in opioid deaths immediately preceding
the introduction of community training programs to administer a lifesaving naloxone drug.
This may indicate a surge in fatalities that was cut short by making naloxone more widely
available and educating communities in its use.

4.4.3 School Absenteeism

Public schools in New York City record and publish daily student attendance [107]. Given
the importance of education on future outcomes there is tremendous interest in understanding
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patterns of school absenteeism. We consider public school attendance data in Manhattan
for the 2015-2016 school year. The data is messy, with missing entries and non-uniform
placement of school locations. We aggregate data at weekly level and remove the last four
weeks of the school year since they contain known high absenteeism rates that are not of
interest to Department of Education officials.

We apply GPSS methods and baseline approaches with neighborhoods of up to ten
local schools. All GPSS methods identified an anomaly around January to February 2016
concentrated on West Side of Manhattan. The results from GRQ around the time of the
detected anomaly are presented in Figure 4.5. Each dot represents a school location, with
yellow dots indicating high attendance and blue dots indicating low attendance. The space-
time locations of schools in the top ten anomalous subsets are bordered in red.
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Fig. 4.5 School absenteeism results from Manhattan using GRQ. Each dot represents a school
location, with yellow dots indicating high attendance and blue dots indicating low attendance.
The space-time locations of schools in the top ten anomalous subsets are bordered in red.

The detected anomalies correspond to a category five blizzard which may have disrupted
teachers and students from attending school even though no snow day closings were reported
at the time. Further research is required to understand why the West Side of Manhattan
differed systematically from the rest of the borough. Baseline anomaly detection methods
did not identify a coherent anomaly and instead detected anomalies throughout the year.
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4.4.4 Manhattan 311 requests

New York City’s 311 system enables residents to request government services. We consider
a local public health event that occurred on 01/22/16 in upper Manhattan. On that day, local
news reported that residents were concerned due to brown tap water [109, 27]. Detecting the
extent of the residents’ concerns is important to help identify and mitigate public health risks.

GRQ baseline RobustCov

Fig. 4.6 GPSS and robust covariance results for daily 311 requests in Manhattan on 01/22/16.
Red squares indicate detected anomalies.

We consider daily 311 requests in Manhattan for the month of January 2016, aggregated
over a 0.08 mile2 grid [37]. We apply GPSS methods and baseline approaches with neigh-
borhoods of up to 15 points. All GPSS methods identified an anomalous pattern around the
locations and time of the water discoloration event. Baseline methods tended to substantially
overestimate the anomaly’s extent in both space and time. These results from January 22 are
represented by the GRQ and the Robust baselines in Figure 4.6. Blue and yellow squares
indicate low and high volume of reports, respectively. Red squares indicate the top anomalous
regions discovered by each method.

Ground truth does not exist for these hyper-local events so we cannot compute precision
and recall. However, 311 requests have labeled types, although we used aggregated 311
calls as our data inputs. For each method we compute the ratio of water-related 311 calls to
non-water-related calls in the detected anomalies. This “water signal-to-noise” ratio, listed
in Table 4.1, indicates how precisely each method identified regions associated with many
water-related requests. The entire dataset has a water signal-to-noise of 0.07.
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Table 4.1 Signal-to-noise ratio of water-related 311 calls to non-water-related 311 calls for
all methods.

Model Signal-to-Noise
GRQ 7.22
Stepwise 7.22
βMAX 7.22
Independent SS 7.06
Baseline GP 0.44
One-class SVM 0.23
RobustCov 0.12

4.4.5 Multi-stream: trees and sewers

Using the multi-stream procedure from Section 4.3.3, we consider 311 reports of damaged
trees and sewer issues. Both streams indicate weather-related issues: damaged trees indicate
high winds while sewer calls indicate substantial precipitation. Together, these data identify
areas with dangerous post-storm conditions. Each complaint type is fit with an independent
GP and the entire data is scanned jointly for anomalies.
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Fig. 4.7 311 calls for damaged trees and sewer issues from 2016 in Brooklyn. Red squares
indicate the top anomalies discovered by the βmax approach.

We analyze data in Brooklyn aggregated weekly over a 0.08 mile2 grid [37]. We conduct
analyses for 2016 and 2010 with results depicted in Figs. 4.7 and 4.8. The number of sewer
reports (per week, per cell) are plotted on top, and damaged tree reports on bottom. Red
squares indicate the top anomalous regions discovered using the βmax approach. Note that
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searches were computed over each entire year; we are only showing the time periods in
which anomalies were discovered.

The most anomalous regions in 2016 were all concentrated during the week of July 20th
when a significant summer storm felled trees and flooded sewers, thus jointly affecting both
data streams [28]. Conversely, although the week of July 13th experienced elevated reports
of felled trees no anomalous region is detected since there is no corresponding increase in
sewer flooding. This demonstrates how multi-stream search may help to regulate GPSS.09/08
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Fig. 4.8 311 calls for damaged trees and sewer issues from 2010 in Brooklyn. Red squares
indicate the top anomalies discovered by the βmax approach.

The most anomalous regions in 2010 were all concentrated during the week of September
15th when an urban tornado cut through Brooklyn [5]. Unlike the 2016 results, these
anomalies only occurred in reports of damaged trees. Also note the lone yellow square in the
sewer data of September 22. Though the square indicates elevated number of calls, GPSS
does not consider it anomalous since it does not represent a systematic shift in space and
time.



Chapter 5

Regression Discontinuity Design
Discovery

5.1 Introduction

Understanding causal mechanisms is critical for the social and laboratory sciences. While
randomized control trials are the gold standard for identifying causal relationships, such
experiments are often time consuming, costly, or ethically inappropriate. In order to exploit
the plethora of observational data, econometricians often rely on “natural experiments,”
fortuitous circumstances of quasi-randomization that can be exploited for causal inference1.

Regression discontinuity designs (RDDs) are such a technique. RDDs use sharp changes
in treatment assignment for causal inference. For example, it is often difficult to assess the
effect of academic interventions since treated students may systematically differ from other
students. Yet, if a school intervenes on students who score below some threshold on a test,
then students with scores just above or below the threshold are not systematically different
and effectively receive random treatment [75]. That threshold induces an RDD that can be
used to infer the effect of the intervention.

RDDs require fewer assumptions than most causal inference techniques and are arguably
most similar to true randomized experiments [89]. However, identifying RDDs is a painstak-
ingly manual process requiring human intuition and construction, and thus limited by human
biases. Indeed, many papers reuse the same or analogous RDDs (e.g., discontinuities at
geographic boundaries, or test score cutoffs for school admission) and most of these RDDs
are one-dimensional, represented by a threshold value for a single variable. Finally, RDDs

1Published as Herlands et al. [62]
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often rely on the human “eye” to verify their validity. The “tinkering” that is often done in
practice implies that RDDs discovered by humans are subject to multiple testing issues.

To aid in discovering RDDs, we use statistical machine learning techniques to create the
first general methodology to discover, quantify, and validate RDDs in data. Our approach
can discover new RDDs across arbitrarily high dimensional spaces, enabling us to use RDDs
that humans would not be able to identify otherwise. Yet these high dimensional RDDs are
still interpretable, and we provide a simple mechanism for ranking how (observed) variables
influence the discovered discontinuities. We derive two log likelihood ratio statistics to search
for RDDs in potentially heteroskedastic data with either real-valued or binary treatments.
Additionally, the technique can seamlessly handle both real-valued and categorical covariates.
Finally, we present an integrated validation procedure ensuring rigorous statistical and
econometric validity.

We evaluate our approach on synthetic and real data. Using synthetic data we demonstrate
robust performance to out of sample discontinuities and model misspecification. For real data
we consider three educational and health care settings previously studied in the econometric
literature. Our approach can identify the RDDs in these data even with the injection of
substantial additional noise.

While this is the first method we know of that discovers RDDs in general data, Card et al.
[25] search for race-based “tipping” points in housing markets using an RDD design. They
employ two search methods specific to the problem formulation: one inspired by the shape
of curves derived from their data, and one that draws on structural break literature in time
series [56]. Beyond RDDs, there is increased interest in integrating econometric and machine
learning techniques [15, 100]. For example, deep learning and non-parametric Bayesian
methods have been used to predict counterfactuals and compute individualized treatment
effects [65, 79, 57]. Additionally, novel approaches have been developed for identifying
heterogeneous treatment effects [71, 16]. Within the context of online recommendation
systems, Sharma [135] and Sharma et al. [136] develop mechanisms of searching for certain
natural experiments.

5.1.1 Outline

The remainder of the chapter proceeds as follows. Section 5.2 provides a brief overview
of RDDs including their causal assumptions. Section 5.3 introduces our local search for
RDDs including the search statistics used for the Normal (Section 5.3.1) and Bernoulli
(Section 5.3.2) observation models, neighborhood definitions (Section 5.3.3), discontinuity
validation (Section 5.3.4), and treatment effect estimation (Section 5.3.5). Section 5.4
discusses the synthetic and real data experiments.
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5.2 Regression Discontinuity Designs

We provide practical background on RDDs for a computer science audience. There exist
excellent papers for details on assumptions, inference, convergence, and model variations [55,
72, 146].

Throughout this chapter we consider data, (x,T,y), where x = {x1, ...,xn}, are inputs
that can include both categorical and real-valued xi ∈ Rd variables, T = {T1, ...,Tn} is
a treatment variable that could either be binary, Ti ∈ {0,1}, or real-valued, Ti ∈ R, and
y = {y1, ...,yn},yi ∈ R, is an outcome variable. Both x and T are known a priori not to
be affected by y. Additionally, we consider “forcing variables,” z, which are a subset of
the real-valued dimensions of x. Typically, the dimensions of z ∈ x must be specified and
validated by the user, but our algorithm does this automatically.

In the most straightforward RDDs, called “sharp RDDs,” there is a one-dimensional
forcing vector, z, and a cutoff value, c, such that before the cutoff value treatment is never
assigned, E[T |z < c] = 0, and after the cutoff treatment is always assigned, E[T |z > c] = 1.
Thus there is a sharp RDD at z = c since at that point T jumps discontinuously from T = 0
to T = 1. As long as x does not also change discontinuously at z = c, there is no reason to
believe that the data on either side of the discontinuity are systematically different. Thus,
conceptually, at the local area around the discontinuity we can consider T to be randomly
assigned. Notice that the RDD is a function of x, z, and T but not y. Indeed, an RDD allows
us to investigate the effect of T on multiple different outputs, y.

RDDs appear in real-world settings where thresholds are used to assign treatment. For ex-
ample, academic punishments given to students whose GPA drops below a specific value [91],
or health insurance that covers children until they reach a certain age [11].

For this chapter we concentrate on “fuzzy RDDs” which generalize the sharp RDD.
Fuzzy RDDs exist where T is partially determined by the discontinuity, i.e., where P(T = 1)
jumps discontinuously at z = c. The special case where that jump is from P(T = 1) = 0 to
P(T = 1) = 1 constitutes a sharp RDD [72]. Given a fuzzy RDD, the treatment effect, τ ,
with respect to y, is,

τ =
limε→−0 E[y|z = c+ ε]− limε→+0 E[y|z = c+ ε]

limε→−0 E[T |z = c+ ε]− limε→+0 E[T |z = c+ ε]
. (5.1)

The limits in Eq. (5.1) indicate that although T is effectively random at z = c, farther away
from the discontinuity T is not expected to be randomly assigned. That said, τ can be
considered a weighted average treatment effect across the entire data, where the weights are
ex-ante probabilities that a point is in the vicinity of z = c [89].
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The fuzzy RDD assumes the following conditions for identification [55] (the first two are
also required for the sharp RDD):

• Imprecise control: the value of z cannot be precisely controlled to fall at z = c± ε . If
such control did exist, those individuals manipulating z to be just above or just below c
are likely to be systematically different than individuals who do not manipulate z, thus
invalidating the design.

• Excludability: x crossing z = c cannot affect y except through affecting the probability
distribution of T .

• Monotonicity: x crossing z = c cannot simultaneously cause some data to increase T
and other data to decrease T .

These assumptions are relatively light and the first is even testable (see Section 5.3.4). Impre-
cise control replaces the ignorability or unconfoundedness assumptions that are necessary
in many causal models. And unlike instrumental variables, RDDs do not assume anything
about exogeneity [89]. Thus RDDs are quite suitable for automated discovery since they do
not require the onerous, untestable, and often unbelievable assumptions made by other causal
inference methods.

5.3 Method

The essential element of an RDD, which our approach aims to discover automatically from
data, is the discontinuity, or “unexpected jump,” in T . Given a model, Ti = f (xi)+ εi, this
constitutes a special type of local anomaly where f (x) substantially deviates from T both
before and after the discontinuity. See Figure 5.1 for a 1-D example where f (x) approximates
the data well except for the two regions of deviation on either side of the discontinuity. Note
that the deviations are of opposite sign and may be of different magnitudes. Traditional
anomaly detection, such as one-class SVMs [129], focus on identifying individual outliers.
Yet an RDD is fundamentally a pattern of multiple data points. Thus we employ anomalous
pattern detection to search for RDDs. We frame the search as a log likelihood ratio (LLR)
comparison between the likelihood of a null model that assumes no RDD exists, and the
likelihood of an alternative model that assumes an RDD exists. We locally search for
circumscribed neighborhoods that contain a discontinuity. Although any one neighborhood
does not necessarily capture the entire discontinuity, it uses local data from around the
discontinuity which can provide greater insight. The discovered discontinuities from multiple
local neighborhoods can be combined to more precisely measure the treatment effect. Thus
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Fig. 5.1 Illustration of a one-dimensional RDD (dashed line). Blue dots are treatment Ti;
orange line is f (xi).

our approach is named “Local Regression Discontinuity Design Discovery” (LoRD3). In a
valid RDD, z must be be real-valued since sharp differences are expected to occur between
data points with different values of a categorical variable. Thus, given data (x,T,y), we let all
real-valued dimensions of x be forcing variables, z. LoRD3 searches for RDDs as follows2:

1. Model T with smooth model, f (x), such that Ti = f (xi)+ εi.

2. Compute the estimated value of T̂ using the learned model.

3. For each neighborhood size, k = 1, ...,K:

(a) For each of the n data points, consider its k-sized neighborhood, si,k, defined by z
(see Section 5.3.3).

i. Compute the likelihood of a null model which assumes that si,k does not
contain an RDD: L0(si,k).

ii. Repeatedly bisect the neighborhood into two mutually exclusive partitions,
assigning each point in the neighborhood to one of these two groups (see
Section 5.3.3). We denote group assignment by gk, j. For each grouping,
compute the likelihood of an alternative model which assumes that si,k

contains an RDD with each group denoting one side of the discontinuity:
L1(si,k,gk, j).

2Code and data are available at https://gitlab.com/herlands/LORD3

https://gitlab.com/herlands/LORD3
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iii. Compute the maximum log likelihood ratio (LLR) over all partitions for that
neighborhood,

LLR(si,k) = max
j

LLR(si,k,gk, j) = max
j

log
L1(si,k,gk, j)

L0(si,k)
. (5.2)

4. Test each of the neighborhoods for statistical significance and econometric validity,
controlling for multiple hypothesis testing (see Section 5.3.4). For each “validated”
neighborhood si,k that passes these tests, record the corresponding gk, j.

5. Estimate the τ using validated neighborhoods (see Section 5.3.5).

Notice that in step (a) the local neighborhoods are defined over the potentially multidi-
mensional z. While most research using RDDs considers one-dimensional forcing variables
z, even papers that consider multiple dimensional z [117, 158] require human identification
and are limited in practice to low dimensions. LoRD3 seamlessly considers z of arbitrary
dimension, allowing it to discover more diverse and nuanced RDDs than previously studied.

In Sections 5.3.1 and 5.3.2 we detail two observation models and LLR statistics for
real-valued treatments and binary treatments respectively.

5.3.1 Normal residual observation model

Given a model, Ti = f (xi)+ εi, we would expect f (x) to substantially and systematically
deviate from a jump discontinuity in T . Specifically, near the discontinuity f (x) should
underestimate the true value of T on one side and overestimate T on the other side. We
search for such a pattern using the LLR statistic below.

In principle we can use any regression approach for f (x). Yet the appropriate choice
requires f (x) to be expressive enough to faithfully model the data, yet not substantially
overfit to a potential discontinuity. For example, deep neural networks are untenable as they
can model discrete jumps in data. In order to elucidate LoRD3, we consider polynomial
models, f (x) = ∑r=0:R γrxR, which can be made increasingly expressive by increasing the
polynomial order.

Given data (x,T ), a neighborhood s, and a bisection g of the data points in s into “group
0” (gi = 0) and “group 1” (gi = 1), we consider the residuals, ri = Ti − f (xi). The null
model H0 assumes that no discontinuity exists in s. We define the null model as ri Normally
distributed around a single offset parameter, β0, which accounts for any bias in f (x) over
both groups. The alternative model H1 states that a discontinuity exists between the two
groups, and assumes that the ri are Normally distributed around two distinct mean shifts, one
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for each group. For maximal applicability, we consider unconstrained heteroskedastic noise,
εi ∼ N(0,σi):

H0 : ri ∼ N
(

β0,σi

)
,∀i ∈ s

H1 : ri ∼ N
(
(1−gi)βg0 +giβg1,σi

)
,∀i ∈ s.

(5.3)

Letting the alternative mean, µi = (1− gi)βg0 + giβg1 , for notational simplicity, we can
compute the LLR,

LLR(s,g) = log
Lik(H1(s,g))
Lik(H0(s))

= log
(
∏
i∈s

P
(
ri|N

(
µi,σi

))/
∏
i∈s

P
(
ri|N

(
β0,σi

)))
= ∑

i∈s
(2ri(µi −β0)−µ

2
i +β

2
0 )/(2σ

2
i ).

(5.4)

For unrestricted heteroskedastic models we cannot directly compute σi. Instead, we
assume that within a local area around each neighborhood the noise is homoskedastic. Thus
we compute σi as the empirical variance in the k-neighborhood around each point.

We use the MLE values of β0, βg0 , and βg1 from their respective heteroskedastic Normal
models. Thus for each neighborhood,

β
∗
0 =

(
∑
i∈s

ri

σ2
i

)/(
∑
i∈s

1
σ2

i

)
β
∗
g0
=
(

∑
i∈s∩(1−g)

ri

σ2
i

)/(
∑

i∈s∩(1−g)

1
σ2

i

)
β
∗
g1
=
(

∑
i∈s∩g

ri

σ2
i

)/(
∑

i∈s∩g

1
σ2

i

)
.

(5.5)

5.3.2 Bernoulli log-odds observation model

For binary T , the Normal model is inappropriate since the residual between a binary variable
and f (x) is rarely Gaussian. Instead, we model T as a Bernoulli distributed random variable
and search for discontinuities in the odds ratio [161].

Given a model for probability of treatment, Ti ∼ Bernoulli(p(xi)), we would expect p(x)
to systematically under- and over-estimate the true data around a jump discontinuity in T .
We search for such a pattern using the LLR statistic below. We use a base model of a Logistic
regression with polynomial functions, p(x) = Logit(∑r=0:R γrxr), to model the probability of
a data point having Ti = 1.
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Given data (x,T,s,g) as in Section 5.3.1, we consider the odds ratio of Ti = 1. The null
model assumes that no discontinuity exists in s. We define the null model as a constant
multiplicative scaled odds ratio to account for any bias in p(x) over both groups,

H0 : odds(Ti) = β0
p(xi)

1− p(xi)
,∀i ∈ s. (5.6)

The alternative model assumes that a discontinuity exists between the two groups. Continuing
to let µi = (1− gi)βg0 + giβg1 , we define the alternative model as an odds ratio with two
distinct multiplicative scales, one for each region,

H1 : odds(Ti) = µi
p(xi)

1− p(xi)
,∀i ∈ s. (5.7)

These correspond to the null and alternative models,

H0 : Ti ∼ Bernoulli
(

β0 p(xi)

1− p(xi)+β0 p(xi)

)
,∀i ∈ s

H1 : Ti ∼ Bernoulli
(

µi p(xi)

1− p(xi)+µi p(xi)

)
,∀i ∈ s,

(5.8)

with which we can compute the LLR,

LLR(s,g) = log
∏i∈s P

(
Ti|Bernoulli

(
µi p(xi)

1−p(xi)+µi p(xi)

))
∏i∈s P

(
Ti|Bernoulli

(
β0 p(xi)

1−p(xi)+β0 p(xi)

))
= ∑

i∈s
Ti log(µi/β0)+ log(1− p(xi)+β0 p(xi))

− log(1− p(xi)+µi p(xi)).

(5.9)

Unlike in the Normal case, there is no closed form solution for the MLE of β0, βg0 , or βg1 .
Instead, we solve for their values using a binary search. Eq. (5.10) provides the derivative
of the log likelihood with respect to β0. Note that the sum is taken over all points in the
neighborhood (i ∈ s). Similar results hold for βg0 , summing over group 0 (i ∈ s∩ (1−g)),
and βg1 , summing over group 1 (i ∈ s∩g).

δLL(s,g)
δβ0

= ∑
i∈s

( Ti

β0
− p(xi)

1− p(xi)+β0 p(xi)

)
(5.10)

We can then solve β0
δLL(s,g)

δβ0
= 0 by an efficient binary search, noting that this quantity

decreases monotonically with β0 > 0.
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5.3.3 Neighborhood definition and bisection

Using only z ∈ x to measure distance, the local neighborhood of a point includes itself and
its k− 1 nearest neighboring points. Since we are interested in generalizing to arbitrary
dimensional RDDs we first compute the vector, νs,i, between the center point of neighborhood
s and each point i∈ s. Then we bisect the neighborhood with k−1 hyperplanes, each of which
passes through the center point, and is orthogonal to a νs,i. Within each neighborhood, LoRD3
selects the bisection that maximizes the LLR defined above, testing the alternative hypothesis
that there is an RDD for that neighborhood and bisection against the null hypothesis of no
RDD.

5.3.4 Validate RDD neighborhoods

LoRD3 produces O(n) neighborhoods - one centered at each data point - each with a
corresponding bisection and LLR(s). We can automatically assess which neighborhoods are
statistically and econometrically valid using three techniques:

Randomization testing As is typical when searching with LLR statistics [85, 102], we
use randomization to adjust for multiple testing and determine whether discontinuities are
significant at level α . Specifically we use the following procedure:

1. Draw data T (q) from the null model Q times at the same covariates, x, as the true data.

• In the Normal observation model, since Ti = f (xi)+ εi this corresponds to sam-
pling the noise Q times.

• In the Bernoulli observation model, each Ti can be drawn directly from the H0

Bernoulli distribution in Eq. (5.8).

2. Run LoRD3 on each (x,T (q)). For each run save the value LLR(q) = maxs LLR(s).

3. Compute an α threshold using the 1−α quantile of the LLR(q) values. Any orig-
inal neighborhoods s with LLR(s) above this threshold are considered statistically
significant.

For the unconstrained heteroskedastic model, we estimate each point’s σi from the variance
of data within the k-local neighborhood of that point, as in Section 5.3.1 above. Since LoRD3
evaluates O(kn) possible neighborhood bisections, randomization is critical to address multi-
ple testing issues. Since we use the maximum score over s for both original and replica data,
this procedure provides an exact test for the highest-scoring neighborhood and a conservative
test for secondary neighborhoods.
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Density discontinuity As discussed in Section 5.2, RDDs assume that precise manipula-
tion of T is not possible. A violation of this assumption could be reflected in a discontinuous
density of z since data might “bunch” in z around the discontinuity to affect treatment status.
McCrary [97] provides a commonly used procedure to test for such discontinuities in z.
Since this test is limited to one dimension, we map our data to the vector orthogonal to
the hyperplane that bisects the two groups in each neighborhood and apply the test on this
one-dimensional data [42]. For each s, if the split selected by LoRD3 rejects the null we
invalidate this s.

Placebo Testing In RDDs, placebo testing ensures that the discontinuity in T cannot be
explained by a corresponding discontinuity or imbalance in x. While the forcing variables
z are continuous within each neighborhood s, any x\ z, such as categorical variables, may
still present issues. In order to be conservative, we run placebo tests on every dimension in x.
We iteratively select one observational variable, x(d), and considering data (T,x\ x(d)), we
estimate τ with x(d) as the output (see Section 5.3.5 for how to compute τ̂). We ensure that
this τ̂ is statistically indistinguishable from zero.

5.3.5 Estimating the treatment effect τ

Given a validated set of neighborhood discontinuities from LoRD3, practitioners may wish
to further investigate the detected regions using domain expertise. Yet, it is also possible
to directly use the neighborhood results from LoRD3 to estimate the treatment effect τ of
treatment T on some real-valued output y. Below we describe three automated approaches
for computing the estimate τ̂ given the results from LoRD3. If LoRD3 detects more than one
validated neighborhood s, we compute τ̂s for each s and average them for the final estimation.
Pooling the regions themselves, such as Bertanha [19] suggests for RDDs with multiple
thresholds, is not possible in this case since there is no defined orientation of the two groups.

2SLS estimator A two-stage least squares estimation of τ first instruments T̂ with a
validated RDD neighborhood and then regresses T̂ on y [13]. Given the data in neighborhood
s, and indicators gi for which group each data point is in, we first estimate,

Ti = νgi + f (xi)+ ε
(T )
i . (5.11)

Then we use the predicted T̂ to regress (where λ is a learned vector),

yi = τ̂T̂i +λxi + ε
(y)
i . (5.12)
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Non-parametric estimator Given a neighborhood and bisection, a non-parametric esti-
mator for τ draws on Eq. (5.1). Assuming that the neighborhood is sufficiently small to
approximate the limit, we use the empirical expectations over y and T to compute,

τ̂ =
E[y|g = 1]−E[y|g = 0]
E[T |g = 1]−E[T |g = 0]

. (5.13)

Group instrument While the 2SLS works generally for RDDs, using LoRD3 we can
leverage information about µ to instrument T in each group. For the Normal model we
instrument,

T̂i = Ti −µi, (5.14)

while for the Bernoulli model we can instrument T̂ as,

T̂i =
µi p(xi)

1− p(xi)+µi p(xi)
. (5.15)

Then we can run the second stage regression from Eq. (5.12).

5.3.6 Forcing variable influence

When humans identify an RDD it is clear which variables are responsible for the discontinuity.
Since we consider potentially high dimensional z it is useful to identify which z variable(s)
are most responsible for the RDD. Given a neighborhood, consider νs, the vector orthogonal
to the bisecting hyperplane. After normalizing the individual components of νs to lie in
[0,1], those components indicate which dimensions of z most influence the discontinuity. For
multiple neighborhoods, we average multiple normalized ν1, ...,νS.

5.3.7 Evaluating discontinuities

Given a known discontinuity in synthetic or real data, we can evaluate how well a neighbor-
hood s and bisection g chosen by LoRD3 correspond to the true discontinuity. Accuracy
and precision are not appropriate metrics since there is no defined orientation of the two
groups in a neighborhood. Instead, letting d ∈ {0,1} define the space on either side of the
true discontinuity, we compute the information gain (IG) of a k-sized neighborhood,

IG = k H
(
|s∩d|

k

)
−|s∩ (1−g)|H

(
|s∩ (1−g)∩d|
|s∩ (1−g)|

)
−|s∩g|H

(
|s∩g∩d|
|s∩g|

)
,

(5.16)



88 Regression Discontinuity Design Discovery

where H(p) is the entropy, H(p) = −p log(p)− (1− p) log(1− p). We then normalize
the IG to lie in [0,1] by dividing by the optimal IG for a neighborhood of size k with a
bisection of points into two equally sized groups, k ∗H(1

2). This metric is optimized when
the neighborhood bisection overlaps fully with the true discontinuity and when the bisection
equally divides the neighborhood points.

We provide measures of the normalized information gain (NIG) for all experiments in
Section 5.4. Higher NIG is better since it indicates that a neighborhood bisection provides
information about the true discontinuity. Lower NIG indicates that either the bisection is
misaligned or the neighborhood does not intersect the discontinuity.

5.3.8 Practical considerations

As a pre-processing step before running LoRD3, we remove any data points with missing
values and normalize each real-valued dimension x j to have zero mean and unit variance.
For datasets with categorical variables, we include these in x but not in z. Thus we do not
consider heterogeneous treatment effects [70]. By default, all real-valued x are in z, though
users may exclude variables based on domain knowledge. Finally, we note that approaches
which analyze a known RDD may fit two background functions - one to each side of the
discontinuity [89]. As detailed in Section 5.3, LoRD3 assumes a single background function
in order to enable an efficient search. Additionally, we do not consider nonparametric f (x)
models such as local linear regression [72], but these could be easily incorporated.

5.4 Experiments

In order to demonstrate the power and flexibility of LoRD3, we apply the technique to a wide
variety of synthetic and real data. RDDs are injected into the synthetic data, while for the real
data we consider previously studied settings where known discontinuities exist. Note that the
known RDD locations are used for evaluation purposes only, and are not provided to LoRD3.
We inject additional noise into the real data to stress-test the search technique and evaluate its
performance in the face of increasingly subtle discontinuities. For one-dimensional RDDs,
we provide a comparison to existing changepoint detection methods in the literature.

5.4.1 Generating synthetic data

For synthetic experiments, we draw observed covariates, x ∈ Rd , and unobserved covariates,
u ∈R1, through independent draws from a Uniform distribution, such that for i = 1 . . .n, j =
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1 . . .d,
xi, j ∼ Uniform(0,1), ui ∼ Uniform(0,1). (5.17)

We induce a discontinuity by randomly selecting a boundary, b j ∼Uniform(0,1) and defining
an indicator,

Di =
d⋃

j=1

xi, j > b j. (5.18)

Thus the discontinuous region is a d-dimensional cube and out-of-class for the hyperplanes
LoRD3 uses to bisect each neighborhood. Throughout all experiments we consider het-
eroskedastic noise,

ε
(T )
i ,ε

(p)
i ,ε

(y)
i ∼ N

(
0,

1
d ∑

j
xi, j

)
. (5.19)

Real-valued treatment indicators T are generated by selecting the magnitude of the disconti-
nuity, ζ ∈ R, and drawing,

γT ∼ N(0, Id)

µi = I(xi ∈ D)
ζ

2
− I(xi /∈ D)

ζ

2
Ti = xiγT +µi + ε

(T )
i +ui.

(5.20)

Binary treatment indicators T are generated by selecting the magnitude of the discontinuity,
ζ > 0, and drawing,

γp ∼ N(0, Id)

µi = I(xi ∈ D)exp(ζ/2)+ I(xi ̸∈ D)exp(−ζ/2)

pi = Logit(xiγp +µi + ε
(p)
i +ui)

Ti ∼ Bernoulli(pi).

(5.21)

Outputs yi ∈ R are generated by selecting τ ∈ R and drawing,

γy ∼ N(0, Id)

yi = xiγy +Tiτ + ε
(y)
i +ui.

(5.22)

5.4.2 Synthetic real-valued treatment results

We generate real-valued T with x ∈ R2 and τ = 5. To demonstrate how LoRD3 performs
under different signal levels of discontinuity, we vary ζ ∈ [0,2.5]. For each ζ value we
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generate 50 experiments with 1000 data points. For LoRD3 we let k = 50, z = x, and
consider the top scoring neighborhood for evaluation. Base f (x) models are order r = 1,2,4
polynomials to demonstrate results from both correctly and incorrectly specified models.
Randomization testing is performed to determine an α = .05 level for significance for each
experiment. Finally, throughout the synthetic and real data experiments we have verified the
placebo tests, as detailed in Section 5.3.4.

Figure 5.2 provides an example of an experiment with ζ = 3. The axes are the dimensions
of x. The left plot depicts T as colored circles and the square discontinuity is observable in
the upper right. The center plot depicts LLR(s) centered on each data point. The outline of
the discontinuity has relatively high LLR(s) indicating that LoRD3 has correctly identified
neighborhoods along the boundary of the discontinuity. The right plot highlights the two
groups from the neighborhood bisection with highest LLR(s).

Fig. 5.2 Left plot: synthetic T ∈ R as a function of x. Center plot: LLR(s) for each neighbor-
hood using Normal model. Right plot: neighborhood bisection with highest LLR(s).

We present results for NIG and power in Figure 5.3. LoRD3 performance improves as ζ

increases since higher ζ induce a larger magnitude discontinuity. While the more complex
specifications of f (x) have slightly decreased performance due to overfitting, both NIG and
power for all models are quite similar, demonstrating that the approach is robust to model
misspecification.

Estimates of the treatment effect τ̂ are plotted in Figure 5.4. Due to the data generating
process of y in Eq. (6.26), at low ζ where there is little to no discontinuity, LoRD3 tends to
overestimate the true τ . However, all f (x) model specifications (polynomials of degree 1,2,4)
yield τ̂ that converge towards the true τ at larger ζ . While the non-parametric and 2SLS
approaches converge more slowly, they tend to be more robust to model misspecification.

Varying dimension Letting ζ = 2 and holding z fixed at two dimensions, we vary the
number of covariates from 2 to 20. We apply LoRD3 with the three f (x) models as above and
plot the resulting NIG in the left panel of Figure 5.5. Next we hold x fixed at 10 dimensions
and vary the number of dimensions in z from 1 to 10, plotting the results in the right panel of
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Fig. 5.3 Left: NIG of top neighborhood for T ∈ R. The x-axis indicates ζ . Right: power to
reject the null at α = 0.05.

Fig. 5.4 LoRD3 Normal model estimated τ̂ on T ∈ R. Each plot represents a different f (x)
specification. True τ = 5.

Figure 5.5. These results indicate that given the same amount of data LoRD3 performance
is robust to large numbers of covariates but reduces in performance over larger spaces of
forcing variables.

Fig. 5.5 NIG of LoRD3 Normal model for T ∈ R with varying the dimensions of x and z in
left and right plots, respectively.
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5.4.3 Synthetic binary treatment results

We generate equivalent synthetic tests for T ∈ {0,1}. For each experiment we run LoRD3
with both Normal and Bernoulli observation models. We use p(x) of order r = 1,2,4
polynomials to demonstrate results from correctly and incorrectly specified models.

Fig. 5.6 Left shows T ∈ {0,1} as a function of x, center shows LLR(s) of Bernoulli model,
LLR(s) of Normal model.

Figure 5.6 provides an example of an experiment with ζ = 4 and LLR(s) using both
the Bernoulli and Normal models. While both models discover neighborhoods with high
LLR around the discontinuity boundary, the Normal model detects spuriously high LLR
elsewhere in the space. The advantage of the Bernoulli model for binary T is also seen
through the NIG results in Figure 5.7 where all p(x) specifications using the Bernoulli model
outperform the Normal model. We plot τ̂ from the Bernoulli model in Figure 5.8 where all
p(x) specifications have τ̂ that converge to the true τ = 5 at larger ζ .

Fig. 5.7 NIG of top neighborhood for T ∈ {0,1}. Left plot: Normal model. Right plot:
Bernoulli model.
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Fig. 5.8 LoRD3 Bernoulli model τ̂ on T ∈ {0,1}. Each plot represents a different p(x)
specification. True τ = 5.

5.4.4 Comparison to changepoint detection

In one dimension, RDD discovery is similar to changepoint detection, where the objective is
to identify points between regimes with persistent changes in mean or covariance structure.
We consider competitive changepoint methods that utilize Binary Segmentation cluster
analysis [132], parametric methods using Bartlett [60] and Student-t [59] test statistics, and
non-parametric methods using Mann-Whitney [122] and Kolmogorov-Smirnov [121] test
statistics.

We generate one-dimensional T ∈ R using ζ ∈ [0,2.5] (see Section 5.4.1). For each ζ

value we generate 50 experiments with 1000 data points. We apply all changepoint methods
and LoRD3 with the Normal model and three f (x) specifications. Mean squared error from
the true discontinuity is used to evaluate the results in Figure 5.9.

Fig. 5.9 Comparison of LoRD3 with changepoint methods.
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We observe that all LoRD3 configurations are superior to changepoint methods for high
ζ . Binary Segmentation equals the performance of LoRD3 MSE at low ζ , but has worse
MSE than LoRD3 as ζ increases. Moreover, we note that these changepoint methods are
limited to one dimension. LoRD3 advances into new territory by discovering RDDs in
arbitrary dimensions and thus may be considered a generalization of changepoints to multiple
dimensions.

5.4.5 Student test score data

Jacob et al. [75] consider the effect of an educational intervention on math test scores. We use
their student test score dataset which is based on seventh-grade math assessments. It contains
two sets of scores: “pre-test” scores that reflect student achievement before a potential
intervention, and “post-test” scores after the intervention. Only students who received below
215 on the pre-test were intervened upon. Thus there is a sharp RDD at pre-test score 215.

The data has 2,606 observations and eight covariates, x, for each student. Six covariates
are binary indicators for gender, special education status, eligibility for reduced-price lunch,
English as second language status, and ethnicity (Black, White, Hispanic or Asian). Two
of the covariates are real-valued: age of student and pre-test score. We use both real-valued
variables as z even though only pre-test score is the true relevant variable. The intervention
status is T and the post-test score is y. The true value of τ is 10.

We apply LoRD3 with the Normal and Bernoulli models, k = 100, and a 1-degree
polynomial for f (x) and p(x). LLR(s) is depicted in Figure 5.10. The strip of high LLR
around pre-test score 215 indicates that LoRD3 was able to locate the discontinuity with both
observation models.

Fig. 5.10 LLR(s) with student age as x-axis and pre-test score as y-axis. Normal model on
left, Bernoulli model on right.
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Table 5.1 lists the NIG, influence of the two z dimensions, and τ̂ over the top ten scoring
neighborhoods. Both observation models yield high NIG and correctly identify pre-test
score as the primary discontinuity variable. While the 2SLS and group instrument methods
generally correctly yield τ̂ within the standard error of 10, the non-parametric method
underestimates τ in both models.

Table 5.1 NIG, influence of z, and τ̂ for the student test data.

Normal model Bernoulli model
NIG 0.92±0.02 0.93±0.04
Influence: pre-test score 1.0±0.0 1.0±0.0
Influence: age of student 0.0±0.0 0.0±0.0
τ̂ 2SLS 8.89±1.11 9.88±0.98
τ̂ non-parametric 6.66 5.91
τ̂ Group inst 9.57±1.18 6.30±1.14

While the true data contains a sharp RDD, we inject synthetic noise to increase the
difficulty of the search problem. We generate noisy treatment, Tρ , such that P(Tρ,i = Ti) = ρ ,
where ρ ∈ [0.5,1]. Thus when ρ = 1, Tρ = T , and the data contains a sharp RDD. When
ρ = 0.5, Tρ,i is 0 or 1 with equal probability, resulting in no signal. Between those two
extremes, the data exhibits a fuzzy RDD at pre-test score 215. Figure 5.11 depicts Tρ at
ρ ∈ {0.5,0.75,1} to provide intuition for the magnitude of ρ noise.

Fig. 5.11 Student data with pre-test score on y-axis, age of student on x-axis, and T indicated
by circle color. Left plot is ρ = 1 (true T ), center plot is ρ = 0.75, and right plot is ρ = 0.5.

For each value of ρ ∈ [0.5,1], we generate 25 experiments with 2000 randomly sampled
data points. We apply LoRD3 as above and show results from the top scoring neighborhood
in Figure 5.12. Both observation models converge to nearly NIG = 1 well before ρ = 1,
demonstrating that they can identify RDDs in noisy data.
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Fig. 5.12 NIG of top LoRD3 neighborhood on student test score data using Normal and
Bernoulli observation models.

5.4.6 College GPA data

Lindo et al. [91] analyze the effect of academic probation on students at a Canadian university
with three campuses. Students are placed on probation if their first year GPA is below a
cutoff value. This cutoff induces an RDD that Lindo et al. [91] use to determine the causal
effect of academic probation on educational outcomes.

The data has 44,362 observations and nine covariates, x, for each student. Five of the
covariates are binary indicators for gender, English as a first language, being born in North
America, and two variables to indicate which campus the student attended. Four covariates
are real-valued: matriculation age, credits attempted in first year, high school grade percentile,
and distance of GPA from the GPA cutoff. We use all four real-valued variables in z even
though only distance from the GPA cutoff is the relevant factor. The intervention status is T .
There are five outcomes of interest: decision to leave after the first academic term, GPA in
the next academic term, and whether the student graduated within 4, 5 or 6 years.

We apply LoRD3 with Normal and Bernoulli models, k = 100, and f (x) as a 1-degree
polynomial. Table 5.2 lists the NIG and influence of the z dimensions over the top ten scoring
neighborhoods. The Bernoulli model yields substantially higher NIG than the Normal model,
as expected in data with binary T . Both methods correctly rank GPA cutoff as the most
influential dimension of z, but the importance of this variable is less pronounced in the
Normal results. Although [91] estimates τ̂ for each outcome using all students within 0.6
grade points of the cutoff GPA, these are not ground truth. Table 5.3 provides these values as
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Table 5.2 NIG and influence of z for full university GPA data.

Normal model Bernoulli model
NIG 0.59±0.05 0.71±0.06
Influence: GPA cutoff 0.79±0.37 1.0±0.0
Influence: HS grade pct 0.59±0.36 0.11±0.13
Influence: credits yr 1 0.20±0.40 0.0±0.0
Influence: age of student 0.0±0.0 0.0±0.0

Table 5.3 Estimated τ̂ on university GPA data.

Leave GPA y2 Grad y4 Grad y5 Grad y6
Lindo et al. [91] 0.018 0.233 -0.020 -0.044 -0.024
Normal LoRD3 model
2SLS 0.066 0.255 -0.211 -0.207 -0.116
Non-para 0.030 -0.025 -0.056 -0.189 -0.172
Group inst 0.058 0.188 -0.198 -0.187 -0.094
Bernoulli LoRD3 model
2SLS 0.021 0.219 -0.273 -0.245 -0.050
Non-para 0.017 0.125 -0.076 -0.036 0.105
Group inst 0.020 0.055 -0.293 -0.098 0.144

well as LoRD3 τ̂ values using the methods in Section 5.3.5. Though we expect deviations
between these estimates, most values, and nearly all signs, are quite similar.

In order to increase the difficulty of detection, we inject increasingly high ρ noise, as
described in Section 5.4.5. For each ρ value we generate 25 experiments with 2000 randomly
sampled data points. We apply LoRD3 with the same parameters as above and show NIG
results for the top scoring neighborhood in Figure 5.13. In this case, there is substantial
improvement using the Bernoulli model. While both models improve at higher values of ρ

the Bernoulli increases to NIG= 0.8 while the Normal model only reaches NIG= 0.7.

5.4.7 Emergency department usage

Emergency department (ED) overcrowding and extended waiting times has been critical
issue in the United States healthcare system [142, 69]. We consider aggregate emergency
department (ED) patient data used to study the impact of health insurance on ED usage [10,
11]. Data come from 2.2 million ED visits between 2002-2009 in Arizona, California,
Iowa, New Jersey, and Wisconsin. The only covariate is patient age and previous studies
identified RDDs at ages 19 and 23. The existence of multiple discontinuities in this data is
particularly interesting and we apply LoRD3 to see which RDDs it can detect. Note that due
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Fig. 5.13 NIG of top LoRD3 neighborhood on university GPA data using Normal and
Bernoulli observation models.

to endogeneity issues Anderson et al. [10] develop a specialized τ estimation approach that
is not replicated here.

Letting x = z be ED patient age, we separately consider T as percentage of ED patients
with private insurance and T as percentage of ED patients without insurance. In both cases
we use f (x) as a 3-degree polynomial and run 1000 randomization tests. We depict data,
LLR(s), and the α = 0.05 significance threshold in Figure 5.14.

Fig. 5.14 ED patients with private insurance on top, without insurance on bottom. Left: % of
patients vs. age. Right: LLR(s) centered at each age. Red line indicates α = 0.05 level.

The most prominent RDD peaks at 23 years 3 months for both T . This corresponds to
the RDD used in Anderson et al. [11] and reflects that health insurance plans at the time
allowed full-time students to remain on their parents’ plans until age 23. Both setups also
identify an RDD at age 19 corresponding to the RDD used in Anderson et al. [10]. This
reflects that non-students were allowed to remain on their parents’ insurance plans until age
19. Interestingly, both setups also identify an additional RDD centered at 16 years 10 months
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Table 5.4 LoRD3 and changepoint comparisons for ED data.

Private insurance Without Insurance
LoRD3 16.83, 19, 23.25, 25.33 16.83, 19, 23.25
Binary Seg 18, 19.08, 22, 26.67 19.08, 21.08, 24.42, 27.08
Student-t 17.42 17.42
Bartlett 17.42 17.33
Mann-Whitney 16.92 17.25
Kolmo.-Smirnov 16.92 17.25

which may provide useful information for research. Finally, the setup with private insurance
as T identifies a weaker RDD that peaks at 25 years 4 months. The identification of both
known and unexplored discontinuities confirms the ability of LoRD3 to identify RDDs and
to provide potentially policy-relevant insights.

We compare these results to the changepoint methods from Section 5.4.4. Binary Seg-
mentation, which can find multiple changepoints, correctly identified the discontinuity at age
19, but was not able to discern the discontinuity at age 23. The remainder of the methods
seem to corroborate that there is a discontinuity around age 17, though the precise values
they detect differ slightly from LoRD3.





Chapter 6

Difference-in-Differences Discovery

6.1 Introduction

Understanding the effect of public policy interventions, such as new or proposed legislation,
is critical for advancing impactful, evidence-based policies. However, laws are almost never
enacted as RCTs. Instead, researchers must consider observational data before and after the
policy implementation to understand its effects. In order to draw causal results from temporal
observational data researchers often employ another natural experiment technique called
difference-in-differences (DD).

DDs compare how a treated subpopulation and a “parallel”, untreated control population
change over time. In so doing, they address a key shortfall in RDDs. In particular, RDDs
are not well suited for the analysis of changes occurring over time – something known as an
RDD in time (RDiT). In RDiTs the forcing variable, z, is time, z = t. Since RDDs provide
weighted average treatment effects around the treatment discontinuity, an RDiT can only
provide insight about a treatment around the time of the discontinuity. The resulting treatment
effect is bound to a particular time and may not be generalizable to the past or future. Indeed,
time is a unique covariate insofar as we expect many changes to occur over time. Thus
the treatment effect estimates from Section 5.3.5 may not be applicable to other times or
over the longer term [58]. In contrast, DD are particularly built to analyze point-in-time
policy changes. By considering cross sectional effects across two subsets—one treated, one
untreated—DD enable us to generalize beyond the particular temporal moment of change.

Unfortunately, the discovery of DD is just as manual and serendipitous as finding RDDs.
DD research often begins by considering a previously known intervention, such as new
legislation, and analyzing if it induced a DD in observational data. The discovery process
is further complicated since the identification of a parallel control subset is difficult and
fundamentally based on unverifiable assumptions.
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Identifying an appropriate control is a general problem in DD research. At its core, this
question touches on the more general issue of determining an appropriate counterfactual.
While RCTs are designed to have both treatment and control units, natural experiments do
not have a pre-selected control. In many DD applications the control is created by selecting a
subset of non-treated units and arguing that they represent an appropriate comparison for the
treated units. This control subset may consist of all non-treated elements or even just a single
non-treated element [43]. Part of the justification is based on demonstrating that the treatment
and control subsets exhibit parallel trends in the pre-treatment period [12]. This implies
that the counterfactual treatment and control would also be parallel in the post-treatment
period a implied by the DD treatment effect estimation in Equation 6.4. However, parallel
trends in the pre-treatment period does not guarentee counterfactual similarity. Further,
recent work has shown that selecting a control based on tests for non-rejection of the parallel
trends assumption may be misguided [22, 112]. Thus it is important that the control also
be believably similar to the treatment subset. This is often achieved through qualitative
argument.

Instead of selecting a subset of records to function as a control, another popular approach
is to construct a “synthetic control” that satisfies certain conditions [4, 2]. One popular
approach for synthetic controls is to learn a convex combination of non-treated units which,
when combined in aggregate, exhibit parallel trends in the pre-treatment period. While
this may address the concern about finding an appropriate subset with strongly parallel pre-
trends, it may lead to substantial overfitting. There are deep connections between traditional
DD setups and synthetic controls and [43] provides a useful framework unifying the two
approaches.

To automatically discover DDs we modify the RDD subset scanning methodology from
Chapter 5 in a two key ways. First we develop an extension of LoRD3 that can identify
heterogeneous RDDs in categorical data. We apply this to data where the forcing variable is
time, z= t, thus enabling us to discover RDiTs. Second, we develop a method for identifying a
control subset parallel to the treatment subset. By pairing an RDiT with a parallel control, we
can identify a treatment effect through standard DD calculations. Both of these developments
represent novel methodological contributions and may be used independently. Specifically,
the control identification may be used in nearly any DD application. However, when these
methods are used together, they represent a self-contained automated search technique for
DDs.

We evaluate the automatic DD search technique with synthetic and real data. Using
synthetic data, we demonstrate robust performance to varying specifications and out of
sample data. For real data we consider two policy settings where state-level legislation
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induced a DD between states in the United States. Our approach can identify the DDs in
these data and provide insight for public policy experts.

6.1.1 Outline

The remainder of the chapter proceeds as follows. Section 6.2 provides a brief overview
of DDs including their causal assumptions. Section 6.3.1 introduces our search for hetero-
geneous RDiTs including multiple approaches for searching over heterogeneous subsets.
Section 6.3.2 introduces our search for an appropriate control subset along with two compari-
son techniques. Section 6.4 discusses the synthetic and real data experiments.

6.2 Difference-in-Differences

We provide practical background on DD for a computer science audience. There exist
excellent papers for details on assumptions, inference, convergence, and model variations
including [13, 20, 12], among others.

Throughout this chapter we consider a dataset, D, that contains n records, R1, ...Ri, ...Rn.
An individual record is defined by Ri = (xi, ti,θi,yi) where xi ∈ Cm is a vector of categorical
inputs such that each dimension xi, j ∈ {v j,1, ...,v j,k j}, ti ∈ R are time, θi are treatments that
could either be binary, θi ∈ {0,1}, or real-valued, θi ∈ R, and yi are outcomes that could
either be binary, yi ∈ {0,1}, or real-valued, yi ∈ R. τ is the treatment effect. We use the
potential outcomes framework [126] where yi(0) denotes an outcome without treatment and
yi(1) denotes an outcomes with a treatment. Since we never observe both yi(0) and yi(1)
for any particular Ri, we must estimate one of the counterfactuals ŷi(0) or ŷi(1) in order to
compute a treatment effect.

DDs are a popular econometric framework for determining the causal effect of an
intervention in temporal observation data. In particular, DDs are used when there exist
possible biases over time and between the treatment and control subsets. The most basic DD
model estimates a constant additive intervention effect between two subsets and two time
periods where the intervention, θ = 1, exists only in the treatment subset at only one time
period [14]. If we assume constant “fixed effects” for each subset and time period, letting
xi = 1 be the treatment subset and xi = 0 be the control subset, this estimate can be viewed
as a difference of the difference of expectations,

τ =
[
E[yi|xi = 1, ti = 1]−E[yi|xi = 1, ti = 0]

]
(6.1)

−
[
E[yi|xi = 0, ti = 1]−E[yi|xi = 0, ti = 0]

]
(6.2)
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Alternatively, the additive effect can be derived by a simple linear regression.

yi = β0 +(βt ∗ ti)+(βx ∗ xi)+(τ ∗θi)+ εi

θi = xi ∗ ti
(6.3)

Extending the problem to multiple control units, x ∈ 1, ...,g, and multiple time periods,
t ∈ 1, ...,h, and continuing to assume constant fixed effects, we immediately arrive at the
“panel DD” model which can also be solved via linear regression,

yi = β0 +
h

∑
T=1

(βT ∗1ti=T )+
g

∑
X=1

(βX ∗1xi=X)+(τ ∗θi)+ εi (6.4)

where θi = 1 in a subset of treated units after the time of intervention. Using a DD or panel
DD, we can estimate τ and its standard error. This estimation can be efficiently computed
due to the simplicity of linear regression.

6.2.1 Assumptions

DDs must satisfy the assumptions required for general OLS regressions, including SUTVA.
Additionally, at the boundary of the intervention, DDs must satisfy the same imprecise
control assumption as RDDs.

Unique to DDs is the assumption of parallel trends. The primary purpose of parallel
trends is to ensure that in the absence of treatment, the gap between the treatment and control
subsets in the post-treatment period would be the same as it is in the pre-treatment period. If
this is true, then the counterfactual subsets will be “parallel” across time. However, since
we do not have access to this counterfactual world the assumption is unverifiable. Instead,
we must measure how parallel the two subsets are in the pre-treatment period. Qualitative
reasoning and the human eye are then often used as a general guide to ensure believability of
the parallel trends assumption for the entire time including the treatment period.

6.3 Method

DDs are employed to analyze data across time, while RDDs in time (RDiTs) are generally
avoided. Yet DDs and RDDs are intimately connected since both rely on sudden changes in
θ . Indeed, DDs are composed of an RDiT in some subset of the data and another parallel
untreated subset of the data. Thus, it is natural to consider adapting some of the LoRD3
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methodology for DD discovery. When doing so there are two important differences between
the natural experimental techniques that make searching for DDs more difficult:

• In RDDs, the θ discontinuity affects all cross sectional units at the boundary. In DDs,
the discontinuous treatment only affects a subset of the cross sections over time. Thus
a DD search needs to identify heterogeneous treated cross-sectional subsets that do not
contain the entire dataset.

• After identifying the RDiT, to construct a DD, we then need an additional step of
identifying an appropriate control subset of untreated cross sectional units that satisfies
the parallel trend assumption.

With these considerations in mind we develop the Subset DD Discovery System (SuD-
DDS). This method shares the core concept of LoRD3: identifying discontinuities in treat-
ment can be framed as an anomalous pattern detection problem. Yet SuDDDS requires
developing substantial additional technology for the DD setting. Section 6.3.1 extends
the LoRD3 methodology to identify heterogenous RDiT subsets in categorical data. Then
Section 6.3.2 develops a novel approach for control subset identification that exhibit parallel
trends within the paradigm of subset selection.

6.3.1 Heterogeneous RDiT Search

Consider a subset s ∈ D to contain one or more covariate profiles comprising cross-sectional
units across all points in time. We search over categorical subsets to discover a subset,
sτ , which contains a treatment discontinuity in time. Were we interested in identifying
heterogeneous RDiTs, this step would be sufficient. Indeed, this step already represents a
generalization of LoRD3 to a heterogeneous search over categorical subsets of data. While
we concentrate on the special case where the forcing variable z = t, our approach can be
trivially extended for any arbitrary z.

We define a log likelihood ratio (LLR) statistic between a null model, H0(s,T0,W ), which
assumes that s does not contain a RDiT in the time window T0 −W < t ≤ T0 +W , and an
alternative model, H1(s,T0,W ), which assumes that s contains an RDiT during that time
window,

LLR(s,T0,W ) = log
L1(s,T0,W )

L0(s,T0,W )
(6.5)

where T0 is the time of the intervention or treatment.
Algorithm 6 presents the top-level conditional optimization we employ to identify a

heterogeneous RDiT. At the core of the algorithm we alternatively condition on T0 and
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optimize sτ , and then condition on sτ and optimize T0. This conditional optimization is
randomly initialized ℓ times in order to provide the algorithm with the opportunity to more
fully explore the search space. In practice, for the first iteration we often initialize s = D to
consider a maximal subset consisting of the entire dataset.

Algorithm 6 Heterogeneous RDiT Search
1: for W =W1 : Ww do
2: for iteration = 1 : ℓ do
3: Initialize sτ and T0 randomly
4: repeat
5: Compute LLRprev = LLR(sτ ,T0,W )
6: T0 = maxT LLR(sτ ,T,W ) by Algorithm 7
7: sτ = maxs∈D LLR(s,T0,W ) by Algorithm 8
8: until LLR(sτ ,T0,W ) = LLRprev
9: end for

10: end for
11: Test sτ for statistical significance and econometric validity

Conditionally optimize T0 As noted in line 8 of Algorithm 6, given sτ we conditionally
optimize T0. We approach this optimization through an exhaustive search detailed in Algo-
rithm 7. At each step we bisect sτ at some point in time into two mutually exclusive partitions
and compute the LLR for each bisection. The time that induces a partition with the greatest
LLR is returned as the new T0.

Algorithm 7 Conditionally optimize T0

1: Get the set of unique time points, T, in sτ

2: Compute LLR(sτ ,T,W ) for each T ∈ T
3: return T0 = argmaxT LLR(sτ ,T,W )

Conditionally optimize s As noted in line 9 of Algorithm 6, given T0 we conditionally
optimize sτ . The mechanism for doing so is difficult. On the one hand, an exhaustive search
over categorical subsets to identify an optimal sτ would require an exponentially complex
search in the number of data records. On the other hand, were we to naively select all the
individual records that have individually high LLR when t = T0, we would overfit sτ to noise
across a scattered subset of records. Instead we want the selected sτ to represent a coherent
set of records amenable to a DD estimation.

In order to compute this search in polynomial time we adapt the Multidimensional Subset
Scan (MDSS), which has been previously employed for subset scanning over categorical
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search spaces [103, 161]. Our approach to MDSS is detailed in Algorithm 8. Each iteration
of the algorithm optimizes sτ over the dimensions of x in a random sequence, which ensures
that at each iteration we update sτ such that LLR(sτ ,T0,W ) weakly increases. Note that

Algorithm 8 MDSS
1: repeat
2: Compute LLRprev = LLR(sτ ,T0,W )
3: Randomly order the m dimensions of x to scan from 1 to M
4: for j = 1 : M do
5: for k = 1 : k j do
6: s j,k = sτ ∩{xi|xi, j = v j,k}
7: Compute priorities γ(s j,k,T0)
8: end for
9: Scan over s j,k ordered by γ(s j,k,T0).

10: Update sτ with the highest scoring subset.
11: end for
12: until LLR(sτ ,T0) = LLRprev
13: return sτ

MDSS is a search over categorical values. For real-valued covariates of x we can discretize
them into a pre-specified number of units. Additional covariates in x that are not intended
to be included in the subset profile can still be used to model the treatment in line 1 of
Algorithm 6.

Compute LLR: Double β Normal Residual Model

For the LLR, we consider a variant of the Normal residual observation model from Sec-
tion 5.3.1 that detects the pair of deviations between the data and a smooth model immediately
before and after a sharp change in treatment. As in Section 5.3.1 we employ polynomial
models, f (x) = ∑r=0:R γrxR, which can be made increasingly expressive by increasing the
polynomial order. After modeling the data, we compute residuals, ri = θi − f (xi, ti), and
assume they are Normally distributed such that,

H0 : ri ∼ N
(

β0,σi

)
,∀i ∈ s

H1 : ri ∼ N
(
(1−gi)βg0 +giβg1,σi

)
,∀i ∈ s.

(6.6)

where g0 is an indicator of the set of records occurring in time interval [t −W, t) and g1

is an indicator of the set of records occurring in time interval [t, t +W ]. Letting µi =

(1− gi)βg0 + giβg1 be the alternative mean for notational simplicity, we can compute the
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LLR,

LLR(s,g) = log
Lik(H1(s,g))
Lik(H0(s))

= log
(
∏
i∈s

P
(
ri|N

(
µi,σi

))/
∏
i∈s

P
(
ri|N

(
β0,σi

)))
= ∑

i∈s
(2ri(µi −β0)−µ

2
i +β

2
0 )/(2σ

2
i ).

(6.7)

MDSS requires a priority function, γ(s, t), to rank order subsets of data (see Section 4.1
for a discussion of priority functions in subset scanning algorithms). Technically there are
two sets of priority functions that we can construct for DDs: one for a discontinuity that
occurs “forward” in time (i.e. where an event causes some s to discontinuously change in
the future) and one that occurs “backward” in time. Due to the natural ordering of time
the “forward” case is more intuitive and reflects how DDs are generally constructed in the
literature. While all of the priority functions detailed in this chapter take the “forward” form,
symmetric “backwards” functions would work as well.

For the priority function we let ci = ∑
ri
σ2

i
,bi = ∑

1
σ2

i
for each record and consider the

aggregate terms,
C1 = ∑

g
ci

B1 = ∑
g

bi

C2 = ∑
1−g

ci

B2 = ∑
1−g

bi

(6.8)

The LLR can then be reformulated as a function of these aggregated terms,

LLR(s,g) =
C2

1
2B1

+
C2

2
2B2

− (C1 +C2)
2

2(B1 +B2)
(6.9)

Following a similar approach to Neill [102] we define the ratios,

q1 =
C1

B1

q2 =
C2

B2

(6.10)
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where q1 and q2 are also the MLE values of βg0 and βg1 , respectively. This allows us to write
the LLR as,

LLR(s,g) = HM(B1,B2)
((q1 −q2)

2

)2
(6.11)

where HM is the harmonic mean, HM(α,β ) =
2αβ

α +β
. This formulation provides the

motivation to rank slices of data by the difference between their q ratios,

γ(s, t) = q1 −q2

=
∑g ci

∑g bi
−

∑1−g ci

∑1−g bi

(6.12)

Using this priority function, we could naively order records by (q1 −q2) and then scan over
that list, iteratively adding one record at a time to determine an optimal LLR. This approach
intuitively makes sense since B1 and B2 (and thus their harmonic means) weakly increase as
we increase the number of records in a subset.

However, the two q values can suffer from a version of Simpson’s paradox, where the
combined (q1−q2) may not be a convex combination of the original q1 and q2 values. Indeed,
this priority ordering can provide substantially sub-optimal results in some non-convex cases
such as when some high-priority elements have q1 >> 0 and q2 =−ε , and some have q1 = ε

and q2 << 0. In order to address this issue we consider the two methods below.

Greedy Search Instead of scanning directly over a list of records priority ranked by
(q1 − q2), we can follow a greedy search where we iteratively add to the subset the data
element that maximizes the total combined (q1 −q2). Using this priority method ranking we
apply Algorithm 8.

While this greedy search resolves Simpson’s paradox, it has other drawbacks. For
example, consider that the top element has q1 >> 0 and q2 = −ε and a number of other
elements have q1 = ε and q2 << 0. The greedy search will add only the top element, but
an optimal search would forgo the top element in favor of a subset of the other elements.
Therefore, while the greedy method will provide a better subset than a naive approach, it
cannot guarantee an optimal subset.

Weighted Convex Combinations An alternative method is to reframe the (q1 −q2) prior-
ity function as (ρ)(q1)+(1−ρ)(−q2) where 0 <= ρ <= 1. This enables us to consider any
convex combination of the q values. Furthermore, within Algorithm 8 we can draw multiple
values of ρ uniformly on [0,1] and maximize over subsets from all of these priority functions.
We can thus (separately) consider elements with q1 >> 0 and q2 =−ε and those with q1 = ε



110 Difference-in-Differences Discovery

and q2 << 0, for ρ close to 1 and ρ close to 0 respectively. Intuitively, this enables us to
correctly favor one q more heavily and thus obviate both the Simpson’s paradox and greedy
search issues.

Single ∆ Normal Residual Model

Instead of modeling the DD with two β parameters, we can consider a single ∆ offset for
both sides. Still assuming Normality of the residuals from Section 6.3.1, we can model the
null and alternative models,

H0 : r j ∼ N
(

µi,σ
2
j

)
,∀ j ∈ Si

H1 : r j ∼ N
(

µi −g0∆+g1∆,σ2
j

)
,∀ j ∈ Si.

(6.13)

where Si represents a subset with the same covariate profile. Each covariate profile Si has
its own mean shift, µi, determined by maximum likelihood estimate (MLE) under H0, and
assumed to be identical under both H0 and H1. Under H1 there is an additional shift of ±∆

on opposite sides of the boundary, where ∆ is constant across all covariate profiles Si and
determined by MLE.

Overall this single ∆ Normal residual model represents a much more flexible model due
to the covariate-profile level variables. Yet within a covariate profile the discontinuity model
is slightly less expressive since we assume that the magnitude of the deviation between the
data and f (x, t) is the same before and after the treatment discontinuity. Importantly, this
single variable in H1 enables this model to avoid the difficult double q search in Section 6.3.1.

To derive an appropriate priority function, let,

Bi = ∑
R j∈Si

1
σ2

j

Ci = ∑
R j∈Si

g1(r j −µi)−g0(r j −µi)

σ2
j

C = ∑
i

Ci

B = ∑
i

Bi

(6.14)

The LLR can then be reformulated as a function of these aggregate terms,

LLR(s, t) =
−∆2

2
B+∆C (6.15)
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Thus the MLE ∆∗ =
C
B

and we can use the priority function,

γ(s, t) =
Ci

Bi
(6.16)

to rank the data. This enables efficient and exact computation of the priorities for the single
∆ model.

Validating RDiT Subsets

As discussed in Section 5.3.4, we want to evaluate the RDiT to ensure statistical significance
and econometric validity. For SuDDDS we employ the same three techniques as LoRD3,
with slight variations.

Randomization testing Given the many subsets evaluated in SuDDDS we need to adjust
for multiple hypothesis issues. We employ the same randomization testing procedure from
Section 5.3.4 in order to ensure that the LLR of sτ is statistically significant.

Density discontinuity The one-dimensional density discontinuity test from McCrary [97]
is used to ensure there is no bunching at the discontinuity point. Unlike LoRD3, for SuDDDS
there is no need to map data to single vector since z = t is always unidimensional.

Placebo Testing Since z = t we run placebo tests for each dimension of x. Using the
control subset identification techniques from Section 6.3.2 we estimate τ̂ with one dimension
of x as the output and ensure that τ̂ is statistically indistinguishable from zero.

6.3.2 Identifying a Control Subset

Once a heterogeneous RDiT has been found we need to identify an appropriate control subset
in order to estimate a treatment effect, τ̂ . It is important that control exhibit parallel trends
with the treatment subset in the pre-treatment period. Yet, as discussed in Section 6.1 this
does not guarantee an appropriate counterfactual. Therefore it is important that the control
and treatment also be believably similar. In this section we consider two common approaches
for control identification and then propose a novel method within the paradigm of subset
selection.

Stated more technically, the objective is to estimate the counterfactual outcome yi(0) ∀ {i∈
sτ ; ti ≥ T0}. By comparing this to the existing outcome data yi(1) we can compute the treat-
ment effect. In order to identify an appropriate control subset we often try to minimize the
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counterfactual MSE in the pre-treatment period,

∑
i∈s,ti<T0

(
ŷ(0)i − yi

)2 (6.17)

Standard DD Control

The first comparison method is a standard DD setup used in much of the literature. After
defining the treatment subset, all other records, D \ sτ are used to define the control. The
counterfactual is computed from an average of the cross-sectional control records at each
time point plus a constant offset,

ŷ(0)i = α +
1

D\ sτ
∑

j/∈sτ ,t j=ti

y j

α =
1

T0|sτ | ∑
i∈s,ti<T0

yi −
1

T0|D\ sτ | ∑
i∈D\sτ ,ti<T0

yi

(6.18)

The constant offset accounts for fixed effects between the treatment and control subsets
(see Equation 6.4). This approach provides a believable control since, theoretically, by
considering all non-treated units there is no manipulation or selection that could lead to
overfitting in the pre-treatment period. However, this is not necessarily true in practice.
Researchers have discretion about which records to include in their dataset so there may
be effective manipulation of the control data by limiting the extent or scope of the dataset.
Additionally, this approach for estimating ŷ(0)i may not result in parallel treatment and
control groups, indicated by high pre-treatment MSE

Synthetic control

Another method of comparison is synthetic control, an approach that constructs a control by
learning a convex combination of non-treated units. At its core the synthetic control estimates
the counterfactual

yi(0) = ∑
j∈D,t j=ti

w jy j

∑
j

w j = 1
(6.19)

We do not provide extensive details on the theory and additional constraints of synthetic
controls which can instead be found in [2, 4, 9] among others. In practice we use the Synth
R package to compute the synthetic control for all experiments [3].
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Synthetic controls have the advantage of having lower pre-treatment MSE than the
standard DD setup. However, this comes at the expense of potential overfitting. Additionally,
since the weighting parameters, w are estimated based on observable data, the causal claims
of the resulting treatment estimates may be limited [48, 81].

Greedy Expansion Subset Search (GESS)

We propose an alternative method for identifying a suitable control for sτ . While the Standard
DD framework provides a believable control, in a large dataset it is unlikely that simply
considering all D\s will yield a reasonable estimate of the counterfactual to a relatively small
treatment subset. An alternative approach is to search for the top-k records that minimize
counterfactual MSE in the pre-treatment period [43]. Yet such an unconstrained search may
also lead to overfitting; the resulting control subset may consist of records with unrelated
covariate profiles – not a very believable or coherent control subset.

Instead, we want to balance the search for low counterfactual MSE with the intuition that
the most similar records are those which share the most characteristics with sτ . Those records
are most likely to exhibit parallel post-treatment counterfactual outcomes. Additionally, the
control subset should be compact without allowing for cherry-picking specific records. For
example, if in a population study sτ is white males, a control subset consisting of all males
may have lower pre-treatment MSE than the entire population dataset. Additionally, even if a
subset comprising only Asian females has lower MSE, such a group is less believably similar
to sτ than all males.

We search for this subset by greedily expanding sτ to form a superset, ssup, where the
control subset is defined as sc = ssup \ sτ . The search optimizes ssup such that sc minimizes
the pre-treatment MSE. We compute the counterfactual using a slightly modified version of
Equation 6.18,

ŷ(0)i = α +
1
|sc| ∑

j∈sc,t j=ti

y j

α =
1

T0|sτ | ∑
i∈sτ ,ti<T0

yi −
1

T0|sc| ∑
i∈sc,ti<T0

yi

(6.20)

For notational purposes we let mse(ssup) be the counterfactual MSE for the control subset
defined by ssup. We also define vs to be the covariate profile of subset s. Thus s = {Ri|xi, j ∈
vs}. Our approach, detailed in Algorithm 9, extends ssup by iteratively adding one covariate
value to vs. Each additional covariate value extends vsup and thus expands sc. This continues
in a greedy manner until the counterfactual MSE declines.

We also consider a slightly altered version of GESS where instead of iteratively adding a
single covariate’s value to vs we add all values from a covariate. To achieve this we replace
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Algorithm 9 Greedy Expansion Subset Search (GESS)
1: Initialize ssup = sτ

2: loop
3: for For each dimension, j of x do
4: Define s j,k = {Ri|xi, j ∈ (vssup ∪ v j,k)} for each v j,k ∈ x j
5: end for
6: s j,k

sup = argmax j,kmse(s j,k)

7: if mse(s j,k
sup)< mse(ssup) then

8: ssup = s j,k
sup

9: else
10: Break
11: end if
12: end loop
13: return sc = ssup \ sτ

the definition of s j,k in line 4 of Algorithm 9 with,

s j,k = {Ri|xi, j ∈ (vssup ∪ v j)}. (6.21)

In a classic bias-variance tradeoff this alternative model reduces the flexibility of the model
but also reduces overfitting in the pre-treatment period.

Randomization Testing

In order to ensure the statistical significance of τ̂ we employ randomization testing. We
iteratively draw a subset, sp, from a non-treated region of the data, sp ∈ {D \ stau} and
compute τ̂p. This provides us the ability to construct an empirical null distribution and test
whether τ̂ is significant relative to this distribution. For example, for a result to be statistically
significant at a level α = 0.05 the observed value needs to lie above the 95th percentile of
the null scores.

It is important to note this randomization test focused on τ̂ is independent of the pro-
cedures in Section 6.3.1 focused on the RDiT. We can separate out the significance testing
of the treatment discontinues from the testing of outcome effects since our RDiT searching
technique does not consider y. Indeed, the methods and testing from Section 6.3.2 can be
applied to any DD scenario without regard to how the RDiT is initially identified.
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6.4 Experiments

SuDDDS is evaluated using a rigorous combination of synthetic and real-world data. For the
synthetic experiments we test the robustness of the algorithm by varying the discontinuity
magnitude, treatment subset complexity, and treatment effect magnitude. We also consider the
effect of heterogenous data generative processes in a single dataset. We further demonstrate
the ability of SuDDDS to discover natural experiments in real world data. Two policy-
relevant datasets contain data exhibiting complex behavior over multiple covariates. In both
settings SuDDDS detects DDs corresponding to important policy changes. These applications
demonstrate how the technique could provide insight to shape future policy.

6.4.1 Synthetic Data

To generate synthetic data we draw observed covariates, x, and unobserved covariates, u, by
independent draws from a V -sized discrete uniform distribution, such that for i = 1 . . .n, j =
1 . . .d,

xi, j ∼ DiscreteUniform(1,V ), ui ∼ DiscreteUniform(1,V ). (6.22)

The data feature heteroskedastic noise,

ε
(θ)
i ,ε

(p)
i ,ε

(y)
i ∼ N

(
0,

1
d ∑

j
xi, j

)
. (6.23)

We induce a treatment discontinuity by randomly selecting a subset, sI , of the values in
each of the dimensions of x and randomly selecting T0 ∈ t. We draw γθ parameters for each
categorical value in each dimension of x,

γθ , j,v ∼ N(0, Id∗v) (6.24)

Real-valued treatment, θ , is then generated by selecting the magnitude of the discontinuity,
ζ ∈ R, and drawing,

θi = xi ∑
j∈d

∑
v∈V

γθ , j,vI(x j = v)+ I(xi ∈ sI)I(ti ≥ T0)ζ + ε
(θ)
i +ui. (6.25)

Outputs yi ∈ R are generated by selecting treatment effect τ ∈ R and drawing,

γy ∼ N(0, Id)

yi = xiγy +θiτ + ε
(y)
i +ui.

(6.26)
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6.4.2 Synthetic Experiments

We generate categorical synthetic data with four dimensions of x, each with eight discrete
values and ten time periods. The treated subset is defined by two random values in each of
two randomly chosen dimensions. We vary the magnitude of the discontinuity and apply
the RDiT heterogeneous search portion of SuDDDS from Section 6.3.1. Specifically we
test both the Greedy and Weighted Convex methods for optimizing LLR in the double β

Normal residual model from Section 6.3.1 as well as the single ∆ Normal residual model
from Section 6.3.1. Results for precision, recall, and F-score of the identified RDiT are
shown in Figure 6.1. The Weighted Convex and Single ∆ models perform similarly, while
the Greedy approach has substantially lower recall than the other techniques. This reflects a
sub-optimality of the greedy approach: that it may reach a local maximum and terminate
before adding all treated units to sτ .

Fig. 6.1 Precision, recall, and F-score of RDiTs identified by SuDDDS at varying magnitudes
of the true RDiT discontinuity. Three methods for optimizing LLR are compared.

Using a similar experimental setup, we vary the complexity of the true subset by adjusting
the number of dimensions that define the intervention from 1 to 5 dimensions. We maintain a
constant magnitude of the discontinuity at τ = 10. Results for precision, recall, and F-score
of identifying the RDiT are shown in Figure 6.2. The flat lines in these plots indicate that
all three methods are quite robust to changes in the complexity of the intervention. This is
important since in a real-world application the complexity of the intervention is not known a
priori.

Using synthetic data we apply the three methods for identifying control subsets from
Section 6.3.2, assuming that the true RDiT has been correctly identified in the first step of
SuDDDS. We then use the the counterfactual output, ŷ(0), from each method to compute an
estimated treatment effect, τ̂ . Finally, we compute the MSE betweenτ̂ and the true synthetic
τ and plot the results in Figure 6.3. The left figure plots τ̂ of each control estimation method
along with a dashed red line indicating the true τ . The right depicts the mean MSE of the
individual treatment effect estimates. Under these data all methods correctly estimate τ .



6.4 Experiments 117

Fig. 6.2 Precision, recall, and F-score of RDiTs identified by SuDDDS at varying complexities
of the true RDiT subset. Three methods for optimizing LLR are compared.

Fig. 6.3 Control identification methods applied to synthetic data assuming the true RDiT has
been correctly identified. The left plot shows τ̂ at different τ magnitudes. The dashed red
line indicates the true τ . The right plot shows the mean MSE of the individual treatment
effect estimates.

While the results in Figure 6.3 assume that the true RDiT has been correctly identified,
we now consider misidentification of the RDiT. In particular we vary the precision between
sτ and the true s from 0.3 to 1.0. Throughout all experiments we maintain a constant τ = 10.
The results in Figure 6.4 illustrate how misidentification of the RDiT results in incorrectly
estimated τ̂ .

Until now all the synthetic data has assumed that y are independent, conditional on x.
Yet real world data often contains subsets of y that have correlated noise. We model this
complexity by inducing a different data generating process in a predefined subset of the data,
sg. In particular, extending Equation 6.26, we generate,

yi = xiγy +θiτ + ε
(y)
i I(xi ∈ sg)t +ui (6.27)
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Fig. 6.4 Control identification methods applied to synthetic data assuming misidentification
of the RDiT. The left plot shows τ̂ at varying levels of precision of sτ . The right plot shows
the mean MSE of the individual treatment effect estimates.

In our experiments we define sg to be the union of the treated subset and a random subset of
the non-treated records,

sg = sτ ∪ sc, sc ∈ {D\ sτ} (6.28)

This intuitively reflects a real world setting where sτ is differentially correlated with a subset
of the remaining data.

Using this data generating process we rerun the experiments from Figure 6.3. Results are
shown in Figure 6.5. Under these conditions GESS performs substantially better than either
the standard DD control or the synthetic control. GESS’s searching procedure identifies the
superset of data corresponding to the altered generative data process. Both the standard DD
and synthetic control procedures substantially overestimate τ because they assume a single
data generative process and cannot properly disaggregate sg from the remaining data.

Figure 6.5 also depicts results from the full-dimensional version of GESS. While both
GESS algorithms are effective at identifying the correct subset, the full-dimensional version
is more accurate in this case. This represents a bias-variance tradeoff between the two GESS
approaches discussed in Section 6.3.2.

6.4.3 The California Smoking Legislation Study

In November 1988, California passed Proposition 99 anti-tobacco legislation which was
intended to reduce tobacco and cigarette consumption within the state [73]. We consider the
effect of this legislation by analyzing annual state-level data collected by [2]. This dataset
includes smoking consumption per capita from 1970 to 2000 in 30 US states, including
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Fig. 6.5 Control identification methods applied to synthetic data assuming the true RDiT has
been correctly identified. The data includes an alternative data generating process over sg.
The left plot shows τ̂ at different τ magnitudes. The dashed red line indicates the true τ . The
right plot shows the mean MSE of the individual treatment effect estimates.

California. Figure 6.6 depicts smoking consumption per capita between 1970 and 2000 in
California and three other states. Covariates in the dataset include per capita state personal
income, average retail price of cigarettes, percentage of the population age 15-24, per capita
beer consumption, and lagged variables of total smoking consumption in 1975, 1980, and
1988. Each covariate is quantized into four bins for our analysis in order to search over a
discrete space. We construct a binary treatment variable which equals 1 only for California
after Proposition 99 went into effect in January 1989.

Fig. 6.6 Smoking consumption per capita between 1970 and 2000 in California and three
other states
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Method τ̂ Significance
Diff-in-Diff -10.94 Yes at 5%

Synthetic Control -8.96 Yes at 5%
GESS -6.67 Yes at 5%

Table 6.1 Estimated treatment effects in California smoking data using three control identifi-
cation methods.

Previous literature has examined this dataset using both synthetic controls and DD where
the treatment discontinuity is assumed to be in California at January 1989 [2]. We attempt to
rediscover this discontinuity with SuDDDS. We apply the technique with each of the three
LLR searching methods. All three methods perfectly identify the RDiT used in previous
studies. Conditioning on the resulting sτ we applied the three control subset identification
methods. These all provided statistically significant estimates of τ̂ (shown in Table 6.1) all of
which have the same direction and similar magnitudes.

While SuDDDS correctly identifies the RDiT when given binary treatment labels, we
induce an increasingly difficult search problem by injecting synthetic noise into the treat-
ment variable and creating non-binary treatment labels. We use the same approach from
Section 5.4.5 for injecting the synthetic noise based on ρ .

Figure 6.7 depicts the precision, recall, and F-score of the discovered sτ for each LLR
search technique. While recall is relatively stable over increasing noise injection, the precision

Fig. 6.7 Precision, recall, and F-score of RDiTs identified by SuDDDS in the California
smoking data at varying amounts of injected noise. Three methods for optimizing LLR are
compared.

reduces more rapidly. This is due to the small size of the true treatment subset relative to the
entire dataset. Thus, even small errors in the estimated sτ may lead to large degradation of
the precision.
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6.4.4 Traffic stop data

The Stanford Open Policing Project collects data on traffic stops by law enforcement agencies
across the United States [143]. This data provides a unique perspective on the interactions
between police and the public. By analyzing how that relationship changes we can gain
insights into the effects of exogenous events (e.g. the passage of new legislation) on policing.
This can help inform future policy as well as provide insight to guide police behavior.

We analyze data on the legal basis provided for each search by the police. All individuals
in the United States are protected against illegal search and seizures by the Fourth Amendment
of the Constitution, meaning that police must provide a legal justification for every search
conducted as part of a traffic stop. In particular, there are two major reasons for searches
provided in our data: consent and probable cause. Consent searches are those where an
individual voluntarily allows the police to search their person or their property, without
requiring the police or a court to compel such a search. Probable Cause searches are those
where the police have a reasonable basis to believe that a crime is being, or has been
committed. This justification is based on the police’s judgment and permits a search that
does not require consent from the individual [90].

The data were released as individual records of traffic stops with associated metadata and
outcome data for each law enforcement agency. We consider state patrol law enforcement
agencies who report the consent and probable cause search bases for traffic searches and who
have nearly complete data between 2011-2016. We find nine states with the requisite data:
Arizona (AZ), California (CA), Colorado (CO), Florida (FL), Massachusetts (MA), North
Carolina (NC), Texas (TX), Wisconsin (WI), and Vermont (VT). We aggregate the individual
record data to count-level data at a quarterly basis for each state. Figure 6.8 depicts quarterly
count data of search bases for each state under investigation from 2011-2016. The data is
heavily seasonal and varies substantially across states (see Figure 6.8) so we employ a base
function, f (x, t), with fixed effects over states as well as interaction between time and each
state. We then run SuDDDS searching over states and search bases for the specified time
period.

SuDDDS discovers a treated subset consisting of probable cause traffic searches in a
single state, Colorado, after Q4 of 2012. We depict this DD by a dashed red line on the
Colorado subplot in Figure 6.8. This discovered DD corresponds to Colorado’s legalization
of marijuana. Legalization occurs by a ballot initiative to amend the state constitution, which
was passed in November 2012. In the context of traffic stops and searches, motorists were
suddenly permitted to transport marijuana within the state. The sharp reduction in probable
cause searches may have been caused by this policy change. Law enforcement officials
who had probable cause to believe that a person was had marijuana in their vehicle would
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Fig. 6.8 Quarterly count data of search bases for each state under investigation from 2011-
2016. The orange line indicates consent searches. The blue line indicates probable cause
searches. The vertical dashed red line indicates the time of the DD discovered by SuDDDS.

previously have executed a probable cause search. But since transporting marijuana is no
longer illegal after 2013, these searches ceased to occur.

Given this identified change, we investigate how the reduction in probable cause searches
effected the racial composition of traffic stops and searches in Colorado. One important
argument for marijuana legalization has been the disproportionate effect that marijuana
criminalization has on racial minorities, particularly African Americans [119, 53]. We
consider how the decrease in probable cause searches in Colorado has affected the distribution
of police traffic searches across racial groups. In particular, we analyze the proportion of
blacks and Hispanics searched as a percentage of the total number of individuals searched in
each state. The dataset is equivalent to the data described above, consisting of quarterly data
in the same nine states from 2011-2016. Figure 6.9 depicts aggregated data for this period
and indicates the detected DD subset.

For both racial group we use all three of control identification methods to identify
appropriate control subsets and compute treatment effects. We repeat this analysis using data
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Fig. 6.9 Quarterly data of the proportion of whites, blacks, and Hispanics searched as a
percentage of the total number of individuals searched in each state bases for each state
under investigation from 2011-2016. The orange line indicates whites, the blue line indicates
blacks, and the green line indicates Hispanics. The vertical dashed red line indicates the DD
discovered by SuDDDS.

on the number of traffic stops by racial group and data on the number of traffic searches by
racial group. Results of these analyses are shown in Tables 6.2 and 6.3.

All the estimated τ̂ values were close to zero, and randomization testing (described in
Section 6.3.2) shows that none of the results were statistically significant. Since SuDDDS
identified an RDiT these control methods provide unbiased estimates that the Colorado
marijuana law did not impact the racial distribution of traffic searches. This null result reflects
similar work on this dataset [143]. Additionally, it reflects other work on the legalization of
marijuana in Colorado which suggests that the racial equity arguments advanced before the
law may not been borne our in practice [44].



124 Difference-in-Differences Discovery

Method Stopping Searching
τ̂ Significance τ̂ Significance

Diff-in-Diff -0.0008 No -0.0066 No
Synthetic Control -0.0007 No -0.0051 No

GESS -0.0011 No -0.0124 No
Table 6.2 Estimated treatment effects of the proportion of blacks stopped and searched by
police in the traffic data. Results from all three control identification methods are compared.

Method Stopping Searching
τ̂ Significance τ̂ Significance

Diff-in-Diff -0.0042 No -0.0053 No
Synthetic Control -0.0032 No -0.0027 No

GESS -0.0002 No -0.0057 No
Table 6.3 Estimated treatment effects of the proportion of Hispanics stopped and searched by
police in the traffic data. Results from all three control identification methods are compared.



Chapter 7

Conclusions

In this thesis we examined a rich variety of machine learning techniques for identifying,
characterizing, and exploiting changes in data. If you are looking for a summary of each
chapter please see the introduction in Chapter 1. In concluding this work we will discuss
some of the overarching themes woven throughout the preceding chapters, but not explicitly
discussed.

Detection for Causal Inference Machine learning provides powerful models for detecting
subtle patterns in data. For certain applications, such as those discussed in Chapter 4, mere
detection of a particular pattern is an end in itself. Yet there is a substantial body of work using
detection techniques as the first stage of a larger process, such as “detection for prediction”
where automatically discovered patterns are used as features for prediction models (e.g. Jean
et al. [78] among others).

Work in this thesis considers a conceptual framework we might call “detection for causal
inference,” whereby we use automatically discovered changes in data for as the building
blocks of a subsequent causal model. For example, in Chapter 2 we use change surfaces as
the basis for counterfactual prediction. Similarly, in Chapters 5 and 6 we employ anomalous
pattern detection to identify natural experiments that allow us to compute treatment effects.
Data changes provide a natural opening for causal inference since they signal shifts in the data
distribution, allowing us a window – ever so briefly – into possible counterfactual worlds.

Machine learning and econometrics As noted in Chapter 3 there has recently been a surge
of interest at the intersection of machine learning and econometrics. The chapters in this
thesis on causal inference all contribute to this literature. In particular the models we present
in Chapters 5 and 6 pioneer novel ways of thinking about the connection between machine
learning and econometrics by employing automated search techniques for identifying natural
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experiments. The framework we develop in those chapters is powerful but nascent, leaving
much room for further development in this domain.

Real real-world data This thesis is submitted in fulfillment of a PhD in both machine
learning and public policy. Throughout these chapters we emphasize the use of data resulting
from real processes existing in the world, specifically those relating to public policy and
public health. These data are complex and messy. They do not obviously conform to the data
generating assumptions of any machine learning algorithm. Yet it is precisely this mismatch
that makes such data important. The statistical algorithms in this thesis were created to serve
public policy experts and must be usefully applied to the data those practitioners deal with
on a day-to-day basis.

We exclusively use data available to the general public. While proprietary data can
provide important insights to policy questions, research resulting from those data are difficult
(if not impossible) to replicate. This hinders the ability of researchers to validate and expand
on past results. Additionally, access to proprietary data is unequally distributed and its use in
public science tends to favor well-financed and established institutions. For these reasons all
data in this thesis can be accessed online, as of the publication of the thesis. References to
online sources are provided in the relevant chapters.
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