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Abstract

The ventral visual pathway in the brain plays central role in visual object recog-
nition. The classical model of the ventral visual pathway, which poses it as a hier-
archical, distributed and feed-forward network, does not match the actual structure
of the pathway, which is highly interconnected with reciprocal and non-hierarchical
projections. Here we address three major consequences of this non-classical struc-
ture with regard to neural dynamics and interactions: (i) the model does not consider
any extended information processing dynamics; (ii) the model does not allow for
adaptive and recurrent interactions between areas; (iii) the model only character-
izes evoked-response with no state-dependence from the neural context. To begin
to address these gaps in the classical model, we focus on the categorical-selective
regions in the ventral pathway and study the neural dynamics and interactions us-
ing intracranial electroencephalography (EEG), which overcomes the limitations of
spatiotemporal resolution in current non-invasive human neuroimaging techniques.

With respect to the first consequence, we applied multivariate pattern analysis
(MVPA) methods to the iEEG signal to analyze the dynamic roles of the word and
face sensitive areas. We found that both areas demonstrated a similar multi-stage
information processing dynamic wherein the representation in category-selective
fusiform gyrus evolves from a gist category-level and similarity-based representa-
tion to an invariant and highly detailed individual representation over the course of
500 ms. In addition, our results also suggest a dissociation between structural and
motion in the face processing streams.

Regarding to the second consequence, we introduced a novel method termed
Multi-Connection Pattern Analysis (MCPA) to extract the discriminant information
about cognitive states solely from the shared activity between neural populations
from the interacting brain areas. Our results on iIEEG and fMRI data with MCPA
support the hypothesis that individual-level exemplar information is not only en-
coded by the population activity within certain brain populations, but also repre-
sented through recurrent interactions between multiple distributed populations at the
network level.

Finally, to address the third consequence, we designed a two-stage generalized
linear model to study the relationship between category tuning and the ongoing neu-
ral activity in category selective cortical areas. We used this model to demonstrate
that endogenous activity modulates the category selective tuning in the post-stimulus
evoked response, and the same aspects of endogenous activity that modulate tuning
also predict perceptual behavior.

Taken together, in this thesis we develop and apply statistical methods to assess
the properties of the non-classical structure in the ventral visual stream, and high-
light contributions of regions to multiple stages of processing through interactive and
distributed computation that is influenced by ongoing neural context.
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Chapter 1

Introduction

1.1 Background

Vision is extremely important for human beings in almost every aspect of daily life. A great
amount of the information that human brain receives is through vision, and a great portion of the
cortex is devoted to vision (DiCarlo et al., 2012} [Felleman and Van Essen, [1991). It is crucial
for humans to process visual information and recognize visual stimuli rapidly and reliably, and
humans have tremendous ability to recognize objects. For example, we can effortlessly detect
and identify objects from among tens of thousands of possibilities within less than a second,
despite the huge amount of variation in the appearance of the objects and the environment. Un-
derstanding how visual information is represented and processed in the brain is one of the central
questions in cognitive neuroscience. Throughout the years, researchers have studied the visual
system and made significant breakthrough in understanding how vision works in the brain, from
cellular to system level.

The prevalent view of visual recognition is that visual information is represented and pro-
cessed in a hierarchical and distributed manner that involves multiple brain areas and circuits
(Felleman and Van Essen, [1991; Haxby et al., 2001; Mishkin et al., [1983)). This framework has
led to many successful computational models of visual system, such as Neocognitron (Fukushima
and Miyakel, [1982), HMAX (Riesenhuber and Poggio, [1999), and convolutional neural network
(LeCun et al., 1989). In such framework, the information processing proceeds along two distinct
cortical pathways, the ventral stream and the dorsal stream, which are mainly involved in object
and spatial vision respectively (Kravitz et al.| 2013 Mishkin et al.l [1983) (Figure [I.TJA). With
such framework, it is essential to address the following two questions:

(1) What is the role of each brain area that is involved in the network? In other words, what
information is encoded and processed in each area of the network? This would lead to
the encoding and decoding problems in neuroscience (Averbeck et al., 2006; Dayan and
Abbott, [2001). In the encoding problem, we try to understand that given a specific visual
stimulus, how would it be represented in the neural activity of the corresponding brain
area? For the decoding problem, on the other hand, we try to understand that given a
specific pattern of neural activity, what is the triggering visual input.

(2) How are different areas connected? For each area of interest, what other areas is it com-
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municating to during the process of object perception? And how are these connections
facilitating or contributing to object perception? This leads to the concept of functional
connectivity (Friston et al., 1993} |Gerstein and Perkel, |1969; Gerstein et al., [1989), which
describes the temporal correlation between neural activity measured from distinct neural
populations.

In this thesis, we mainly focus on the ventral stream and the process of visual object recog-
nition, and elaborate on these two questions from novel aspects.

The ventral stream gets its input from the lateral geniculate nucleus (LGN) and proceeds
along the occipitotemporal cortex (areas V1, V2, V3, V4, lateral occipital complex [LOC], etc.)
into anterior inferior temporal cortex (alT) (see Figure [I.T)). Functionally, as we progress along
the stream, the size of the neuronal receptive field becomes larger, and the tuning properties of
the neurons become more complex and abstract. V1 neurons have small receptive field size and
are tuned to directed lines, while IT neurons have larger receptive field size and are tuned to
more complex categorical information, such as cats and flowers (Kravitz et al., 2013). Moreover,
these category-selective neurons often clustered in different regions of the ventral temporal cor-
tex, forming different category-selective cortical regions. A large body of neuroimaging studies
have revealed multiple distinct regions, primarily located in the temporal cortex, that demonstrate
functional selectivity to specific categories of visual stimuli, e.g. the fusiform face area (Kan-
wisher et al., [1997), the parahippocampal place area (Epstein and Kanwisher, [1998)), the visual
word form area (Cohen et al., 2000), etc. These category-selective brain regions play central role
in the visual cognition of objects, and damage to these regions can lead to selective deficits with
respect to the visual cognition of the specific category of objects (Farah, [2004). (Cohen et al.,
2000; Downing et al., | 2001; Epstein and Kanwisher, 1998; Kanwisher et al., 1997 Martin, 2007).
The category-level functional specificity alone apparently does not constitute the full story of vi-
sual perception. Throughout the years, many studies are devoted to investigate different aspects
of the perceptual process across different levels. For example, with regard to the processes of
face and word recognition, multiple regions of interest have been identified, and their coding,
temporal dynamics, as well as interactions between them, have been investigated (Nestor et al.,
2011} |Puce et al., [1999; Sugase et al.,|1999; Wandell, 2011). In this thesis, we particularly focus
on the dynamic properties and interactions within and between these category-selective regions,

The classical hierarchical framework of the ventral stream comes from the static view that
the information flows in one direction from posterior to anterior (Figure [I.1B,C). Each node in
the network acts as a passive filter that cumulates inputs from the outputs of the previous layers
and feeds the information forward after performing local computations. This classical frame-
work captures many of the key characteristics of the ventral pathway and has been employed in
many visual cognition models with significant success (Riesenhuber and Poggio, [2000; Yamins
et al., 2014). To facilitate such a static feedforward model, we would expect that the actual neural
anatomical structure of the cortex is also largely feedforward. However, a close look at the actual
neural anatomy reveals that the majority of the connections between areas in the ventral visual
stream are reciprocal, and the only one-directional connections are actually feedback connec-
tions coming from top-down projections (Kravitz et al., 2013). This inconsistency between the
computational model and the actual anatomical structure in the ventral visual stream would lead
to several important caveats that the model cannot fully account for. In this thesis, we primarily

2



Latency
(ms)

80-100

70-90

60-80

50-70 V2 @

40-60 Vg

Figure 1.1: Classical framework of visual object perception. A) The ventral (blue) and dorsal
(red) pathways in the macaque monkey brain. B) The classical hierarchical view of visual infor-
mation processing in the ventral pathway. The approximate range of latencies of first response in
each area is shown on the left. Adapted from (Kravitz et al.,[2013)). C) The classicial hierarchi-
cal view of the feedforward computations in ventral visual pathway as described in the HMAX

model (Riesenhuber and Poggio, [2000; Serre et al., 2007a). Adapted from (Kravitz et al.,[2013)




focus on three of the gaps in the classical framework:
(i) the model does not consider any extended information processing dynamics;
(i1) the model does not allow for adaptive and recurrent interactions between areas;

(i11)) the model only characterizes evoked-response with no state-dependence from the neural
context.

From a methodological point of view, two of the major methods that have been developed to
address these two questions are multivariate pattern analysis (MVPA) and functional connectivity
analysis.

MVPA uses classification techniques from statistical machine learning to decode the patterns
of multivariate neural activity with respect to different stimuli or cognitive conditions, and to
infer the underlying neural coding within certain neural populations (Haxby et al., 2001} [Nor-
man et al., 2006). The rationale behind MVPA is that if a region is contributed to the visual
perception of a certain category, then it must be involved in the encoding of the information,
and has discriminant neural representation for the categorical information. And this represen-
tational difference would lead to different visual perception. On the other hand, if we read out
this discriminant neural representation, we can decode the visual information. Therefore, we can
analyze the role of the area in the visual perception process by decoding the visual representation
in a categorical-selective region, and see what kind of discriminant information is represented in
that area. Therefore, two major factors with regard to MVPA should be noticed and will be ad-
dressed in this thesis: 1) the outcome of MVPA depends on the features fed into the model, and
we can address different questions by manipulating the input features of the model 2) MVPA is
a correlational methods, and no causal link can be directly established through MVPA.

Functional connectivity assumes that statistical dependence between neural signals from dif-
ferent areas implies information communication between regions (Friston et al., |1993). Func-
tional connectivity has been applied to find the interaction between regions in the visual percep-
tual system, e.g. Ishai (2008)); Nestor et al. (2011]). However, the prevalent functional connec-
tivity methods can only answer the “yes/no” question with regard to the interactions between
brain areas, i.e. whether or not two areas are talking to each other, but are not able to probe the
“how” question, i.e. how are the two areas talking to each other and what information is being
communicated through the interactions.

1.2 Overview of Thesis Contributions and Structure

1.2.1 Information processing dynamics

The first gap is about the extended information processing dynamics beyond the simple hier-
archical feed-forward sweep along the pathway. According to this feedforward framework, the
whole process, as a serial information flow, would finish within ~100 ms as a result of the synap-
tic delay from V1 to alT (Figure[I.IB). However, as the anatomical evidence suggests, there are
both feedforward and feedback connections between areas in the ventral pathway, and majority
of the connections between these areas are indeed reciprocal (Kravitz et al., |2013). In addi-
tion, electrophysiological studies have also identified late time signatures that account for object
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recognition, which suggests feedback and recurrent interactions (Puce et al., 1999; Sugase et al.,
1999). Therefore, what is the timecourse of information processing in each area becomes an im-
portant question. Previous human cognitive studies often rely on imaging techniques that have
low temporal resolution (Haxby et al., [2000; [McCandliss et al., 2003} Price and Devlin, 2003),
such as fMRI, which makes it difficult to identify multiple stages of processing within the time
scale of several hundred milliseconds. On the other hand, previous human electrophysiology
studies mainly relied on univariate statistics on the signature peaks in the event related potentials
(ERPs) (Bentin et al.,|1996; Puce et al., 1999), which often does not give a full picture about the
dynamic timecourse. As a result, it remains unclear what dynamic roles the category-selective
regions play during the process of visual stimuli, such as faces and words.

To investigate the spatiotemporal dynamics, we seek for a signal modality that satisfies the
following requirements: (1) a neural signal modality with high temporal resolution (e.g. on
the order of millisecond); (2) fine spatial resolution is also necessary in order to localize the
category-selective region of interest with high accuracy; (3) probing the dynamic neural coding
would also require high signal-to-noise ratio (SNR). Despite the magnificent breakthroughs over
the past few decades, these requirements on spatiotemporal resolution and SNR have exceeded
the limitations of non-invasive imaging modalities, such as fMRI, MEG and scalp EEG. On the
contrary, intracranial EEG (iEEG) recording, as an alternative technique, fulfills these require-
ments and serves as the ideal signal modality for investigating the spatiotemporal dynamics of
the neural activity in the category-selective visual areas. In this thesis, we collect iEEG data
from a large cohort of human patients and study the recognition process of two representative
categories of visual objects, words and faces.

The first part of this thesis evolves from the two basic questions mentioned earlier in this
chapter, probing the spatiotemporal dynamics of the neural activity in cateogory-selective areas
from the following aspects:

Apply multivariate pattern analysis (MVPA) methods to the iIEEG signal to analyze the dy-
namic roles of the face and word sensitive areas during the face and word recognition processes.

e In Chapter 2] we apply pattern classification method to elucidate the dynamic role the left
midfusiform gyrus (ImFG) plays with an early processing stage organized by orthographic
similarity and a later stage supporting individuation of single words. Furthermore, we
utilized direct cortical stimulation to demonstrate a causal role of ImFG in word naming.
This study try to resolve a central issue in the neurobiology of reading, which is a debate
regarding the visual representation of words, particularly in ImFG.

e In Chapter 3] we investigate the dynamic role of the face sensitive patches in the fusiform
gyrus plays during the perception of face category and individual faces. We demonstrate a
similar gist-to-fine temporal dynamics in the face sensitive fusiform gyrus.

e In Chapter 4 we use similar approaches to further study the role that fusiform plays in
the perception of emotional facial expressions. We directly test the competing hypotheses
about whether fusiform contributes to the processing of facial expressions. Our results
suggest a dissociation between structural and motion in the face processing streams.
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1.2.2 The representational structure of the neural interactions

The second gap comes from the fact that the classical framework is based upon the idea of pas-
sive filtering. Recent studies demonstrate that neural populations in perceptual areas alter their
response properties based on context, task demands, etc. (Gilbert and Li, 2013). These modula-
tions of response properties suggest that lateral and long-distance interactions are adaptive and
dynamic processes responsive to the type of information being processed. However, not only the
classical framework does not account for such adaptive process, we also lack an analytical tool
to probe such information presentations. With respect to the first basic question of neural coding
within a certain population, pattern classification methods from modern statistics and machine
learning, such as MVPA (Haxby et al., 2001} 2014), have gained popularity in recent years for
decoding the information content contained in neuroimaging data analysis. These methods al-
low one to go beyond examining the involvement of a population in a particular neural process
and infer the representational content of the population activity. However, when we turn to the
second basic question and focus on the information represented through interactions between
areas, current MVPA methods do not allow one to assess the discriminant information encoded
in the pattern of functional connections between different neural populations. Furthermore, tra-
ditional methods for assessing functional connectivity only allow one to examine differences in
the degree of coupling across conditions and not the information carried by the pattern of in-
terregional connections (Coutanche and Thompson-Schill, |2013; [Finn et al.,|2015; Kriegeskorte
and Kievit, 2013} Richiardi et al., 2011; Rosenberg et al., 2016; [Shirer et al., 2012; Wang et al.,
20135)). Therefore, we seek for a novel method to decode the representation structure of the neural
interactions between populations.

e In Chapter [5| we introduce a novel method termed Multi-Connection Pattern Analysis
(MCPA) to extract the discriminant information about cognitive states solely from the
shared activity between neural populations from two brain areas. With this new tool, we
can perform single-trial prediction and classification, and probe the represetntational struc-
ture of the interactions between areas of interest. Specifically, MCPA is applied to iEEG
and fMRI data recorded from interacting regions in the visual cortex to evaluate the infor-
mation representation in the pattern of interactions between areas.

1.2.3 State-dependence of neural coding

The third gap in the classical framework comes from the fact that brain does not act in a de-
terministic manner and neural activations are state-dependent. Even identical repetitions of the
exact input stimulus would result in different neural activation, which would ultimately lead to
variance in the behavioral domain, such as reaction time, sensory perception, etc. In the last
part of the thesis, we study the space of the state-dependent dynamics in neural activity from the
ventral visual pathway.

An important source of the variation in the neural dynamics is the spontaneous ongoing ac-
tivity. Previous studies have demonstrated that both the post-stimulus evoked response (Arieli
et al., 1996} Basar, [1980; Brandt and Jansen, 1991} Fox et al., 2006; |[Fries et al., 2001; Henriks-
son et al., 2015} Kisley and Gerstein, |1999; Luczak et al., [2009; Tsodyks et al., [1999) and the
performance of sensory perception (Busch et al., 2009; Ergenoglu et al.,2004; Mathewson et al.,
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2009; Ress et al., [2000; [Thut et al., 2006; Van Dijk et al., 2008; VanRullen et al., 2011)) depend

on the internal brain state before stimulus presentation. However, most of the previous studies
have explored these two relationships separately. To influence perceptual behavior, the variance
in spontaneous ongoing activity should modulate the discriminant neural coding that directly
relates to visual perception. It is yet unclear whether the endogenous activity modulates neural
coding and category-selectivity in the ventral stream, which then provides a neural pathway for
behavioral modulation. Therefore, we need to analyze how the pre-stimulus activity modulate
the categorical sensitivity in the evoked response on a single-trial basis.

e In Chapter [} we build a block-wise generalized linear model (GLM) to study the corre-
lation between the categorical sensitivity and the pre-stimulus neural activity in the same
brain area. We use this GLM to test the hypothesis that pre-stimulus spontaneous activ-
ity can modulate the categorical sensitivity in post-stimulus evoked response and that the
same aspects of pre-stimulus activity that modulate tuning also correlate to variance in the
perceptual behavior.

Single Interacting
region regions

Decoding Scale

Disrupting

Causality

Figure 1.2: Probing the dynamics and interactions in the visual system along different
methodological dimensions.

1.2.4 Methodological summary

From the methodological point of view, we elaborate around the multivariate representational
space and explore along different methodological dimensions in order to attain a comprehensive
understanding of the aforementioned questions with regard to the spatiotemporal dynamics and
interactions underlying visual perception (Figure [I.2):
¢ The basic methodological building block that we employ is decoding the dynamics of
neural representation using event-related response from a single region of interest (ROI)

(Chapters [2] [3] 4).



® Moving along the dimension of causality, we use electrical stimulation to make causal
inference about the neural computation taking place within certain ROI (Chapter [2| and
see also (Aminoff et al.| 2016)).

® Moving from a single region to interacting regions, we develop new algorithm to probe the
representation of neural communications between interacting regions (Chapter [3).

¢ By involving the spontaneous activity into the decoding model, we evaluate the state-
dependency in the neural dynamics of each ROI (Chapter [6)).

We hope this thesis not only addresses the gaps in the classical model of the visual hierarchy
and sheds light upon the underlying information processing dynamics of visual perception, but
also demonstrates how novel applications of statistical machine learning techniques can allow
cognitive neuroscientists to ask fine-grained questions about neural information processing and
information flow at both the scale of local brain regions and the scale of broadly distributed
networks.

Related publications

e Chapter 2]- Decoding and disrupting left mid-fusiform gyrus activity during word reading
(PNAS 2016).

¢ Chapter 3| - Dynamic encoding of face information in the human fusiform gyrus (Nature
Communications (2014)).

e Chapter {] - Posterior Fusiform and Midfusiform Contribute to Distinct Stages of Facial
Expression Processing (Cerebral Cortex|2018)).

e Chapter [5] - Multi-Connection Pattern Analysis: decoding the representational content of
neural communication (Neuroimage 2017)).

e Chapter [6] - Endogenous activity modulates category tuning in cortex and influence per-

ceptual behavior (Work presented at VSS 2018, CCN 2018 and SfN 2018, manuscript in
preparation for submission).



Chapter 2

Temporal dynamics in human fusiform
underlying word individuation

In the first part of the thesis, we mainly explore the dynamics of the neural representation in two
neighboring category-selective areas in the ventral pathway, the visual word form area and the
fusiform face area. These two areas show strong selectivity with respect to two important visual
categories in daily life, the visual words and the faces. We start with the analysis of visual word
form area in this chapter.

The nature of the visual representation for words has been fiercely debated for over 150 years.
In this chapter, we used direct brain stimulation, pre- and post-surgical behavioral measures,
and intracranial electroencephalography to provide support for, and elaborate upon, the visual
word form hypothesis. This hypothesis states that activity in the left mid-fusiform gyrus (ImFG)
reflects visually organized information about words and word-parts. Using machine learning
methods to analyze the temporal dynamics of electrophysiological data from four patients with
electrodes placed directly in their ImFG, we found that information contained in early ImFG
activity was consistent with an orthographic similarity space. Furthermore, disrupting ImFG
activity through stimulation or surgical resection led to impaired perception of whole words
and word-parts. Finally, the ImFG contributed to at least two distinguishable stages of word
processing, an early stage that reflects gist-level visual representation sensitive to orthographic
statistics, and a later stage that reflects more precise representation sufficient for the individuation
of orthographic word forms. These results provide strong support for the visual word form
hypothesis and demonstrate the dynamic role the ImFG plays in multiple stages of orthographic
representation.

2.1 Introduction

A central debate in understanding how we read, documented at least as far back as Charcot,
Dejerine, and Wernicke, has revolved around whether or not visual representations of words can
be found in the brain. Specifically, Charcot and Dejerine posited the existence of a center for
the visual memory of words (Bub et al., 1993), whereas Wernicke firmly rejected that notion,
proposing that reading only necessitates representations of visual letters that feed forward into
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the language system (Wernicke, 1977). Similarly, the modern debate revolves around whether
or not there is a visual word form system that becomes specialized for the representation of
orthographic knowledge (e.g. the visual forms of letter combinations, morphemes, and whole
words; (Bub et al.l [1993; Dehaene et al., [2002; Warrington and Shallice, [1980). One side of the
debate is characterized by the view that the brain possesses a visual word form area that is a
major, reproducible site of orthographic knowledge (Dehaene and Cohen, 2011), while the other
side disavows any need for reading-specific visual specialization, arguing instead for neurons
that are general purpose analyzers of visual forms (Price and Devlin, 2011).

The visual word form hypothesis has attracted great scrutiny because the historical novelty of
reading makes it highly unlikely that evolution has created a brain system specialized for reading.
This places the analysis of visual word forms in stark contrast to other processes that are thought
to have specialized neural systems, such as social, verbal language, or emotional processes,
which can be seen in our evolutionary ancestors. Thus, testing the word form hypothesis is
critical not only for understanding the neural basis of reading, but also for understanding how
the brain organizes information that must be learned through extensive experience and for which
we have no evolutionary bias.

Advances in neuroimaging and lesion mapping have refocused the modern debate surround-
ing the visual word form hypothesis on the left mid-fusiform gyrus (ImFG). This focus reflects
widespread agreement that the ImFG region plays a critical role in reading. Supporting evidence
includes demonstrations that literacy shapes the functional specialization of the ImFG in children
and adults (Ben-Shachar et al.,2011; Brem et al., |2010; Dehaene et al., [2010; Schlaggar and Mc-
Candliss, [2007), the ImFG is affected by orthographic training in adults (Glezer et al., 2015} | Xue
and Poldrackl, 2007), and damage to the ImFG impairs visual word identification in literate adults
(Behrmann and Shallice, [1995; |Gaillard et al., [2006). However, debate remains about whether
the ImFG constitutes a visual word form area (Binder et al., 2006; (Cohen et al., [2002; [Dehaene
and Cohen, 2011} Glezer et al., 2009; McCandliss et al., 2003; Warrington and Shallice, |1980)
or not (Farah and Wallace, |1991}; Price and Devlin, 2003, 2011). That is: does it support the
representation of orthographic knowledge about graphemes, their combinatorial statistics, ortho-
graphic similarities between words, and word identity (Vinckier et al., [2007), or does it have
receptive properties tuned for general purpose visual analysis, with lexical knowledge emerging
from the spoken language network (Price and Devlin, 2011)?

To test the limits of the modern visual word form hypothesis, we present results from four
neurosurgical patients (P1-4) with electrodes implanted in their ImFG. We acquired pre and post
surgery neuropsychological data in P1, performed direct cortical stimulation in P1 and P2, and
recorded intracranial electroencephalography ((EEG) in all four participants to examine a num-
ber of indicators that have been proposed as tests for the visual word form hypothesis by both
supporters and opponents of this hypothesis (Dehaene and Cohen, 201 I}, Price and Devlin, 2011).
Pattern classification methods from machine learning were then used to measure whether neu-
ral coding in this region is sufficient to represent different aspects of orthographic knowledge,
including the identity of a printed word. We separately evaluated the timecourse of ImFG sen-
sitivity to different aspects of orthographic information to assess both early processing, which
should exclusively or predominantly capture bottom-up visual processing, and later processing,
which likely captures feedback and recurrent interactions with higher-level visual and non-visual
regions. Consequently, we were able to assess the dynamic nature of orthographic representation
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within the ImFG and thereby provide a novel perspective on the nature of visual word represen-
tation in the brain.

2.2 Methods

2.2.1 Subjects

Four patients (2 males, ages 25-45) undergoing surgical treatment for medicine-resistant epilepsy
participated in the experiments. The patients gave written informed consent to participate in this
study, under a protocol approved by the University of Pittsburgh Medical Center Institutional
Review Board. See supplement for demographic and clinical information about each participant.

2.2.2 Experimental paradigm

The experiment paradigm and the data pre-processing method were similar to those described
previously by Ghuman and colleagues (Ghuman et al., 2014)). Paradigms were programmed in
MATLAB using Psychtoolbox and custom written code. All stimuli for the Category Localizer,
Covert Naming, Word Individuation and Stimulation were presented on a 22-inch LCD computer
screen placed approximately 2 meters from participant’s head at the center of the screen (~
10° x 10° of visual angle). All stimuli for P1-P3 were identical. Due to a considerable delay
in testing, the covert naming and word individuation stimuli were modified and updated for P4
in order to address additional questions beyond the scope of the current study. However, the
critical characteristics of the stimuli and contrasts in the analyses remain consistent across all
four patients. The category localizer was identical for all patients.

2.2.3 Category localizer
Stimuli

In the localizer experiment, 90 different images from 3 categories were used, with 30 images of
bodies (50% male), 30 images of words, and 30 phase scrambled images. Phase scrambled im-
ages were created in MATLABTM by taking the 2-dimensional Fourier transform of the image,
extracting the phase, adding random phases, recombining the phase and amplitude, and taking
the 2-dimensional inverse Fourier transform.

Design and procedure

In the category localizer, each image was presented for 900 ms with 900 ms inter-trial interval,
during which a fixation cross was presented at the center of the screen. There were two consec-
utive blocks in a session. Each block consisted of all the 180 images with a random presenting
order. At random, 1/3 of the time an image would be repeated, which yielded a total of 480 trials
in one recording session. The participant was instructed to press a button on a button box when
an image was repeated (1-back task).
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2.2.4 Electrical brain stimulation
Stimuli

The stimuli used during electrode stimulation for P1 included 60 7-letter words with 11.35
(10.60-13.67) mean log frequency, determined by the HAL Study used in the English Lexicon
project (http://elexicon.wustl.edu/); single letters; and 13 famous faces that were
familiar and nameable by P1. Stimuli were presented repeatedly during the session, starting with
low stimulation trials. Thus, stimuli presented during high stimulation trials were likely to have
been seen previously. The stimuli used during electrode stimulation for P2 included 46 7-letter
words with 10.93 (10.02-13.13) mean log frequency, and black and white pictures of common
objects and animals. The 46 words that were presented during stimulation trials were out of a set
of 155 words total that did not repeat.

Design and procedure

Electrical current during stimulation passed between adjacent electrode pairs (e.g., 1 & 2,3 &
4, etc.). During the stimulation session pre-surgery, stimulation (1-10 mA, peak-to-peak ampli-
tude, which is the distance between the negative and positive square waves delivered to the two
contacts, i.e. this is 2 times the amplitude of the square waves) was alternatingly applied with
sham stimulation while P1 and P2 overtly named words (P1 and P2), letters (P1), famous faces
(P1), and pictures (P2). Each stimulus trial began with a beep, followed by 750 ms of fixation
and then the stimulus. The stimulus remained on the screen until it was named, after which an
experimenter manually advanced to the next item. Naming times were computed by calculating
the time between the beep and the response (minus 750 ms). Only trials in which the electrode
stimulation overlapped with the first 500ms of stimulus presentation were included in further
statistical analyses. T-tests comparing high and low stimulation trials were computed assuming
unequal variances and df adjusted based on Levene’s test for equality of variances.

2.2.5 Covert Naming: Sensitivity to Bigram Frequency
Stimuli

In the covert word-naming experiment, words with non-overlapping high and low bigram fre-
quency (70 each for P1, 40 each for P4), controlled for lexical frequency, were used as visual
stimuli.

Design and Procedure

In the covert word-naming experiment, each word was presented once, in a random order, for
3000 ms with 1000 ms inter-trial interval during which a fixation cross was presented at the
center of the screen. The patient was instructed to press a button the moment when he began to
covertly name the word to himself in order to ensure phonological encoding of each word and to
avoid potential movement artifacts that could result from overt articulation.
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2.2.6 Word Individuation

Stimuli

In the word individuation experiment, 20 different English words, with word length ranging from
2 to 5, were used as visual stimuli. Similar word pairs differed by one letter and different word
pairs did not share any letters. All comparisons were made within the same word length.

Design and Procedure

In the word individuation experiment, each image was presented for 900 ms with 900 ms inter-
trial interval, during which time a fixation cross was presented at the center of the screen. There
were 24 consecutive blocks within a session. Each block consisted of all the 20 words with a
random order. At random, 1/6 of the time an image would be repeated, which yielded a total of
560 trials in one session. The patient was instructed to press a button on a button box when an
image was repeated.

2.2.7 Data Preprocessing

Local field potential (LFP) Data for the Category Localizer, Covert Naming, and Word Individu-
ation tasks were collected at 1000 Hz using a Grapevine neural interface system (Ripple, LLC).
They were subsequently band-pass filtered offline from 1-115 Hz and notch filtered from 59-61
Hz, both using fifth order Butterworth filters in MATLAB, to remove slow and linear drift, the
line noise, and high frequency noise. Raw data was inspected for ictal events and none were
found during experimental recordings. To further reduce potential artifacts in the data, trials with
peak amplitude 5 standard deviations away from the mean across the rest of the trials or with
absolute peak amplitude larger than 350 pV° were eliminated. In addition, trials with a difference
larger than 25 ;/V between consecutive sampling points were eliminated. These criteria resulted
in the elimination of less than 1% of trials in each session.

2.2.8 Electrode Selection

Word sensitive electrodes were chosen based on anatomical and functional considerations. Elec-
trodes of interest were restricted to those that were located on the fusiform gyrus. In addition,
electrodes were selected such that their peak 3-way classification d’ score (see below for how this
was calculated) exceeded 1 (p < 0.001 based on a permutation test, as described below) and the
event related potential (ERP) for words was larger than the ERP for the other non-words object
categories, namely bodies and phase scrambled images.

P1, P2 and P3 each had 8 electrode contacts on a single strip on the ventral temporal lobe.
P4 had 28 electrode contacts on two high-density strips on the ventral temporal lobe. For P1, out
of the 8 electrode contacts, only the first three channels satisfied the criteria described above and
all analyses included data from all 3 of these electrode channels. The remaining five channels
failed to satisfy either of the two criteria. For P2, 3 out of the 8 electrode channels (channels 1,
3 and 4) satisfied the criteria. Only channels 3 and 4 were used for all analyses because chan-
nel 1 was non-contiguous with the other channels and more medial than would be expected for
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word sensitive ImFG. For P3, out of the 8 electrode channels, only one channel (the third elec-
trode channel on the strip) satisfied the criteria. Hence we used the data from this one electrode
channel for the multivariate classification analysis. For P4, 3 out of the 28 high-density ventral
temporal electrode channels satisfied the two criteria (channels 8, 9 and 22) and all analyses
included data from all 3 of these channels. The precise locations varied slightly, which is a typ-
ical characteristic of word-selective cortex described in the literature (Glezer and Riesenhuber,
2013). All patients’ postoperative structural MRIs were normalized to Talairach space using
AFNTI’s auto_tlrc program to confirm the location of the word-selective contacts in the fusiform

gyrus (Figure [2.T)).

2.2.9 Multivariate classification analysis

Considering that the size of the training set was smaller than the data dimensionality, a low-
variance classifier (specifically, Gaussian naive Bayes) was used. Principle component analysis
(PCA) and linear discriminant analysis (LDA) were used to lower the dimensions in the case of
multi-way categorical classifications. However, we found the dimensionality reduction method
was not plausible in the pair-wise words classification case, because the smaller number of trials
made the estimation of covariance unreliable. For all classification analyses, the Gaussian naive
Bayes classifier was trained based on the data from each time point of 100 ms windows from
single trials in the training set (the time course pattern from 100 ms of single trial potentials) and
was used to label the condition of the corresponding data from that time window from the testing
trial. The classification accuracy was estimated by counting the correctly labeled trials. This
procedure was then repeated for all time windows slid with 10 ms steps between —100 ~ 600
ms relative to the presentation of the stimuli. A recent study showed that combining single trial
potentials with the broadband signal improves classification accuracy in iEEG. In P1 and P4, we
found results consistent with this report showing increased classification accuracy in the range
of ~ 1% at the peak timepoints (no statistical changes were seen in that all effects reported as
significant remain significant and all effects reported as not significant remain not significant).
In P3 however, the broadband signal was flat despite clear single trial potential effects. Thus, for
the sake of consistency across subjects, and because the results did not substantively change in
P1 or P4, we use only single trial potentials throughout.

For the multi-way categorical classifications with K categories (here K = 2, 3), the classi-
fication accuracy was estimated through nested leave-p-out cross-validation. In the first level of
cross-validation, single-trial potentials were first split into training (80% of the trials) and testing
set (20% of the trials) randomly. For each random split, PCA was trained based on the training
set to lower the dimensionality down to P. Then LDA was used to project the data into K-1
dimensional space. Finally a Gaussian naive Bayes classifier was trained based on the projected
training set. The selection of the model parameter P was achieved by finding the P that gave
greatest d’ for Bayes classification based on an additional level of random sub-sampling vali-
dation with 50 repeats using only the training set. After training, true positive and false alarm
rates of the target condition were calculated across all of the test trials. d’ was calculated as
d' = ®~!(true positive rate) — ®~!(false alarm rate), where ®~'(z) is the inverse of the Gaus-
sian cumulative distribution function. The random split was repeated for 200 times and the
classification accuracy was estimated by averaging across results from these 200 random splits.
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For the pair-wise classification in the word individuation task, the pairwise classification
accuracy was estimated through leave-one-out cross-validation. Specifically, for each pair of
words, each trial was left out in turn as the testing trial, with the remaining trials used for the
training set. Finally, the overall pairwise classification accuracy was estimated through averaging
across all 190 word-pairs. The classification accuracy for each specifically controlled condition
was estimated by averaging the corresponding word-pairs.

2.2.10 Permutation test

Permutation testing was used to assess the statistical significance of classification accuracy and
the corresponding d’ value against the chance level for all the classification analyses described
above. Specifically, the null hypothesis could be stated as that the peak classification accuracy
was at chance level, using a global null hypothesis over the entire time course. This results in
significance values corrected for multiple time comparisons (Maris and Oostenveld, 2007). For
each permutation, the condition labels of all the trials were randomly permuted, and the same
classification procedure as described above was performed on the data with permuted labels.
The maximum classification accuracy across the 100 - 600 ms time window was then extracted
as the test statistic. The permutation procedure was repeated for N times (N = 200 or 500, N
is chosen heuristically based on the computational complexity of the problem and the accuracy
of estimation that is needed). The estimated p-value of the classification accuracy, corrected
for multiple comparisons, was then determined based on the distribution that results from the
permutation procedure.

Notably, the classification accuracy reported is generally greater than what is found using
non-invasive measures of neural activity, such as fMRI (Nestor et al., 2011). Nonetheless, the
fact that iEEG pools over the activity of hundreds of thousands of neurons likely means that
finer scale recordings, such as recording simultaneously from many single neurons, may have
improved classification accuracy.

It is also notable that a recent study showed that combining both the single trial potentials,
as we did here, and the broadband signal results in higher classification accuracy than either of
those signals alone (Miller et al., 2016)). In our case, P3 showed clean single trial potential data,
but poor quality broadband data. For that reason, we chose to use the single trial potential data
for all of our analyses. That said, in P1 and P4, the classification accuracy for single words did
improve when combining single trial potentials and the broadband signal, as predicted by Miller
et al. (2016). However, the classification accuracy improvement was quantitative and none of
hypothesis testing (e.g. what was and was not significant at the p < 0.05 level), between time-
course comparisons, or indeed, none of the conclusions from the results change when combining
broadband and single trial potential data.
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2.3 Results

2.3.1 Verification of orthographic selectivity at ImnFG electrode sites

In order to identify their seizure foci, four patients with medically intractable epilepsy, under-
went iEEG, which included insertion of multi-contact electrodes into or on their ventral temporal
cortex (VT) (Figure[2.T)). To assess the word sensitivity and specificity of InFG, we used a Gaus-
sian naive Bayes classifier to decode the neural activity (single trial potentials) while participants
viewed three different categories of visual stimuli: words, bodies, and phase-scrambled objects
(30 images per category, each repeated once). In each patient in electrode contacts in ImFG, we
observed a strong early sensitivity to words at 100 ms 400 ms (Figure [2.2h, [2.2b), which was
verified using a classifier model (Figure ; averaged peak d’ = 1.26, at 245 ms after stimu-
lus onset, p < 0.001; see Supplement Figure S2-5 for each individual contact on the electrodes
from each participant). The position of the ImFG electrode contacts in the anterior end of the
posterior fusiform sulcus is consistent with the putative ”visual word form area” described in
the functional neuroimaging literature (Baeck et al., 2015; [Wandell, [2011; Whaley et al., 2016).
Further, the timing of the category selective response is consistent with evoked potential findings
obtained from scalp electrodes (Maurer et al., 2005) and previous iEEG studies (Hamamé et al.,
2013},2014; Nobre et al., [1994; Whaley et al.,[2016), which have described orthographic-specific
effects approximately 200 ms after stimulus onset.

After completion of the iEEG study, in P1 a focal resection in the posterior basal temporal
lobe was performed. This included removal of tissue at the location of the implanted VT elec-
trode (Supplemental Figure 6), leading us to predict that P1 would exhibit post-surgical changes
in visual word recognition consistent with acquired alexia (Gaillard et al., 2006)). Neuropsycho-
logical assessments of naming times were conducted pre- and post-surgery at 1.5-weeks (acute),
6-weeks, and 3-months to assess the impact of the resection on his perception of visual stimuli.
P1 was asked to name words (3, 5, or 7 letters (Behrmann and Shallice, [1995))) and a mixed set
of stimuli (words, letters, single digits, 3-digit numbers, famous faces, objects, music notes, and
guitar tabs) aloud as rapidly and accurately as possible. After removal of the area surrounding
the VT electrode, P1 showed the characteristics of acquired alexia, specifically letter-by-letter
reading (Figure 2.3c) and longer naming times particularly for letters and words (Figure 3d)
as predicted based on the role of this area in orthographic processing (Behrmann and Shallice,
1995; (Gaillard et al., |2006). Additionally, orthographic processes were impacted to a greater
degree than phonological processes by the resection (Supplemental Figure 1). See Supplemental
Results for further description and elaboration on P1’s post-resection reading deficits.

The anatomical locus and category-specificity of the recorded iEEG response in P1-P4, and
the post-resection alexia in P1, were highly consistent with our localization of ImFG electrodes
to tissue that is central to the visual word form debate. We then tested specific putative indicators
of the visual word form hypothesis using data obtained from cortical stimulation (P1 & P2) and
iEEG (P1, P3 & P4) from these electrode sites.
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Figure 2.1: Location of implanted electrodes. Individual electrode contacts are visible on
axial (A, C, E, G) and coronal (B, D, F) views of the post-implantation MRI (P1: A-B;
P2: C-D; P3: E-F; P4: G). The VT depth electrodes were placed at the anterior end of the mid-
fusiform sulcus in P1-P3 (yellow arrow), and P4 was implanted with a left temporal subdural grid
crossing the ImFG. Red arrowheads (A-F) and red filled circles (G) indicate the word-selective
contacts identified in the category localizer, which were used in subsequent electrophysiologi-
cal and/or stimulation experiments. Talairach coordinates corresponding to the word-selective
contacts were located in post-operative MRI structural images, and were all identified in the left
fusiform gyrus, BA 37 (P1 electrodes: -31, -36, -13; -35, -37, -13; -39, -38, -12; P2 electrodes:
-30, -46, -11; -34, -46, -12; P3 electrode: -31, -35, -14; P4 electrodes: -38, -51, -21 ; -41, -50,
-22; -41, -54, -20).
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Figure 2.2: Verification of orthographic selectivity at ImFG electrode site. a) Example of
averaged event related potential (ERP) across ImFG electrodes in one of the participants (P1) for
three different stimulus categories (bodies, words and non-objects). The colored areas indicate
standard errors. b) Averaged event related potential (ERP) across all ImFG electrodes and across
all of the participants for three different stimulus categories (bodies, words and non-objects). The
colored areas indicate standard errors. ¢) Time course of word categorical sensitivity in ImFG
electrodes measured by sensitivity index d’ (mean d’ plotted against the beginning of the 100 ms
sliding window), averaged across three participants. The MTPA classifier uses time-windowed
single-trial potential signal from the electrodes from each subject (window length = 100 ms) with
each time point in the window from each electrode as multivariate input features (see Methods
for details). Across-participant standard errors are shaded grey. See Supplemental Figure 2-5 for
single electrode word categorical sensitivity.

2.3.2 Disrupting ImFG Activity Impairs Both Lexical and Sublexical Or-
thographic Processing

One indicator of whether the ImFG functions as a specialized visual word form system is whether
disrupting its activity using electrical stimulation impairs the normal perception of both printed
words and sublexical orthographic components (Hamameé et al., 2013; Nobre et al.,|1994), but not
other kinds of visual stimuli. As part of pre-surgical language mapping, P1 and P2 underwent
an electrical stimulation session where they named two kinds of orthographic stimuli (words
[P1 & P2] and letters [P1]), as well non-orthographic objects (faces [P1] and pictures [P2]).
We hypothesized that high stimulation (6-10 mA) to the ImFG electrodes would cause greater
disruption to reading orthographic stimuli than low stimulation (1-5 mA) due to the observed
category-specificity of the iIEEG response, but no disruption would be seen for stimulation during
object (face or picture) naming. Indeed, P1 and P2 were significantly slower at reading words
at high stimulation than low stimulation (Figure 2.3p[2.3b; P1: Mean RTjqy gim = 967ms, Mean
RThigh sim = 1860 ms, #(18) = 2.42, Cohen’s d = 1.14, p = 0.026; P2: Mean RTjy sim =
1586ms, Mean RTyigh sim = 8700ms, t(7) = 11.28, Cohen’s d = 5.15, p < .001 ). P1 also
misidentified 5% of words (naming ‘'number’ as 'nature’) under high stimulation on the ImFG
electrodes. P2 did not misidentify any words, but was generally unable to name words until the
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Figure 2.3: The effect of stimulation on naming times in ImFG and pre and post-surgery
neuropsychological naming task performance. a) The average naming reaction time for
words, letters, and faces under low stimulation (1-5 mA) and high stimulation (6-10 mA) to
ImFG electrodes in P1. Error bars correspond to standard error, * p < 0.05. b) The average nam-
ing reaction time for words and pictures under low stimulation (1-5 mA) and high stimulation
(6-10 mA) to ImFG electrodes in P2. Error bars correspond to standard error, *** p < 0.001. ¢)
Word length effect pre- and post-surgery in P1. d) Average percent change in reaction time in
the Mixed Naming Task Pre vs. Post-surgery in P1, *** p < (0.001.

stimulation had ceased. Her self-report suggested an orthographic disruption rather than speech
arrest. Specifically, for the word ’illegal’ she reported thinking two different words at the same
time, and trying to combine them. For the word message’, she reported thinking that there was
an 'n’ in the word (see SI Video 2). P1 was also asked to name single letters during stimulation
in ImFG electrodes. With limited letter trials during stimulation (two low stimulation and five
high stimulation), there was no significant difference in reaction time in letter naming between
high and low stimulation. However, P1 responded incorrectly to two letter stimuli, initially
responding ’A’ for X’, and responding 'F’ and then "H’ to the visual stimulus *C’, both of which
he had previously named accurately during the stimulation session (see SI Video 1). Importantly,
naming times for non-orthographic stimuli were not significantly affected by stimulation in ImFG
electrodes (P1, faces: Mean RTjoy gim = 1211 ms, Mean RTpigp sim = 1246 ms, t(12) = 0.11,
Cohen’s d = 0.05, p = 0.92; P2, pictures: Mean RT)oy gim = 1350 ms, Mean RTy;gh sim = 1490
ms, £(10) = 0.18, Cohen’s d = 0.13, p = 0.86). These results are consistent with previous
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reports of selective impairments due to stimulation in the ImFG for reading orthographic stimuli
(Mani et al., 2008). Notably, the category specific perceptual alteration seen in P1 and P2 shows
similar feature-level distortions of identity as has been reported faces when stimulating right
mFG (Parvizi et al., 2012). These stimulation results indicate that disruption of ImFG function
impairs both the skilled identification of visual words and sublexical components of word forms
(i.e., letters), supportive of the visual word form hypothesis.
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Figure 2.4: Dynamics of sensitivity to sublexical orthographic statistics (bigram frequency)
in the ImFG. Classification accuracy timecourse for comparison between low bigram frequency
real words (low BG) vs. high bigram frequency real words (high BG) in ImFG electrodes for P1
and P4 respectively, plotted against the beginning of the 100 ms sliding window. The classifier
uses time-windowed single-trial potential signal from the electrodes from each subject (window
length = 100 ms) with each time point in the window from each electrode as multivariate input
features (See Methods for details). The * corresponds to the peak of the windows in which
p < 0.05 corrected for multiple comparisons. The p = 0.05 significance threshold corresponds
to accuracy = 58.2% (P1), and 59.3% (P4). The horizontal grey line at 50% indicates chance
level.

2.3.3 Electrophysiological Evidence for a Visual Word Form Representa-
tion in the ImFG

We next used techniques from machine learning in iEEG data from P1 and P4 to assess the
sensitivity of ImFG to sublexical, orthographic statistics (bigram frequency) that has been hy-
pothesized as an indicator for a visual word form system (Binder et al., |2006; Vinckier et al.,
2007). To examine the dynamics of orthographic statistic sensitivity, we used a multivariate
temporal pattern analysis (MTPA) classification procedure to test how the ImFG represents as-
pects of orthographic knowledge critical to the word form hypothesis at different stages of the
timecourse.

In order to measure sublexical sensitivity as a test of the word form hypothesis, P1 and P4
performed a covert naming task with high and low bigram frequency words, controlled for lexical
frequency. The MTPA classifier was sensitive to differences between high and low bigram fre-
quency during a relatively early time window in both participants (Figure P1: peak accuracy
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=58.6%, p < 0.05 at 200-330 ms after stimulus onset; P4: peak accuracy = 60.2%, p < 0.05 at
210-310 ms after stimulus onset; all classification analyses were tested using permutation tests to
correct for multiple comparisons). This finding is consistent with early discrimination between
words and pseudowords in Kanji, which differ in sublexical statistical properties (i.e., likelihood
of a particular character preceding another) in the basal temporal cortex (Tanji et al.| 2005). It
has been noted that testing the visual word form hypothesis requires examining the represen-
tation in ImFG that results primarily from feed-forward input from earlier parts of the ventral
visual processing stream (Dehaene and Cohenl, 2011)). Thus, the result that sublexical aspects of
orthographic information began at a relatively early time point in processing is supportive of the

word form hypothesis (Binder et al., 2006; [Dehaene and Cohen, [2011}; Duncan et al., 2010; Price
and Devlin, 2011}, [Vinckier et al., 2007).
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Figure 2.5: Dynamics of word individuation selectivity in the ImFG. Dynamics of averaged
pair-wise word individuation accuracy for different conditions in ImFG electrodes for P1, P3,
and P4 respectively, plotted against the beginning of the 100 ms sliding window. The classifier
uses time-windowed single-trial potential signal from the electrodes from each subject (window
length = 100 ms) with each time point in the window from each electrode as multivariate input
features (See Methods for details). The time course of the accuracy is averaged across all word-
pairs of the corresponding conditions. The colored areas indicate standard errors. Similar pair:
a pair of words that have the same length and are only different in one letter, e.g. ’lint’ and
“hint’. Different pair: a pair of words that have the same length and are different in all letters,
e.g. ’lint’ and ’dome’. Horizontal grey line indicates chance level (accuracy = 50%). Colored *
corresponds to the peak of the windows in which p < 0.05 corrected for multiple comparisons.
The p = 0.05 significance threshold corresponds to accuracy = 56.5% (P1), 56.0% (P3), and
57.1% (P4).

2.3.4 Temporal Dynamics of Word Individuation in ImFG

To further elucidate the dynamic nature of orthographic representation, we next looked at the
sensitivity of ImFG to different aspects of individual words in P1, P3, and P4. Using words that
varied in their degree of visual similarity (e.g., words that differed by one letter vs. all letters),
we determined at what similarity level an MTPA classifier could discriminate between any two
items. We found that at an early time window after stimulus onset, an MTPA classifier could

21



significantly discriminate between words that did not share any letters (e.g., ’lint’ vs. ’dome’;
P1: peak classification accuracy = 59.6%, p < 0.05 from 120-250ms; P3: peak classification
accuracy = 58.3%, p < 0.05 from 180-360ms; P4: peak classification accuracy = 60.3%, p <
0.05 from 100-430ms, all p-values were corrected for multiple time comparisons; Figure[2.5)), but
could not discriminate between words that only differed by one letter (e.g., ’lint’ vs. “hint’; P1:
peak classification accuracy = 52.7%, p > 0.1; P3: peak classification accuracy = 53.7%, p >
0.1; P4: peak classification accuracy = 56.6%, p > 0.05; Figure [2.5)). This result demonstrates
an organization governed by an orthographic similarity space at the sublexical level, a finding
consistent with our observation of bigram frequency effects in a relatively early time window.
However, within a later time window, an MTPA classifier could discriminate between any two
words (Figure [2.5)). Notably, this includes word pairs with only one letter difference (P1: peak
classification accuracy = 57.1%, p < 0.05 from 360-470 ms; P3: peak classification accuracy =
57.3%, p < 0.05 from 470-640 ms; P4: peak classification accuracy = 59.2%, p < 0.05 from
490-620 ms).

2.4 Discussion

Our findings, which indicate that orthographic representation within the ImFG qualitatively shifts
over time, provide a novel advancement on the debate about the visual word form hypothesis
(Bub et al., |1993; Wernicke, [1977). Specifically, we demonstrated that ImFG meets all of the
proposed criteria for a visual word form system: early activity in ImFG coded for orthographic
information at the sublexical level, disrupting ImFG activity impaired both lexical and sublexical
perception, and early activity reflected an orthographic similarity space. Early activity in ImFG
is sufficient to support a gist-level representation of words that differentiates between words with
different visual statistics (e.g., orthographic bigram frequency).

Notably, the results in the late time window suggest that orthographic representation in ImFG
shifts from gist-level representations to more precise representations sufficient for the individu-
ation of visual words. In this late window, the ImFG became nearly insensitive to orthographic
similarity as shown by similar classification accuracy for word pairs that differed by one letter
compared to word pairs that were completely orthographically different. This kind of unique en-
coding of words is required to permit the individuation of visual words, a necessary step in word
recognition (see Table for summary). The time window in which this individuation signal is
seen suggests that interactions with other brain regions transform the orthographic representation
within the ImFG in support of word recognition. Such interactivity could function to integrate
the orthographic, phonological, and semantic knowledge that together uniquely identifies a writ-
ten word (Whaley et al., [2016). Lack of spatiotemporal resolution to detect dynamic changes in
ImFG coding of orthographic stimuli using fMRI may help to explain competing evidence for
and against the visual word form hypothesis in the literature (Dehaene and Cohen, 2011} |Price
and Devlin| 2011).

The dynamic shift in the specificity of orthographic representation in the ImFG has a very
similar time course as the coarse-to-fine processing shown in face sensitive regions of the human
fusiform (Ghuman et al., [2014)). Considering that only an gist-level representation is available
until approximately 250 ms, and that saccade planning and execution generally occur within
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Table 2.1: Summary of positive (v') results in early and late time windows

Early | Late
Word category > Objects v v
Sensitivity to bigram frequency v v
Sensitivity to lexical status v
Orthographic similarity space: v
’lint” vs ’"dome’ > ’lint’ vs “hint’

200-250 ms during natural reading (Reichle et al., [1998), the gist-to-individuated word process-
ing dynamic has important implications for neurobiological theories of reading. It suggests that
when visual word form knowledge first makes contact with the language system, it is in the
form of gist-level information that is insufficient to distinguish between visually similar alter-
natives. This is consistent with evidence that readers are vulnerable to making errors in word
individuation during natural reading, but contextual constraints are normally sufficient to avoid
misinterpretations (Levy et al., 2009). In other words, in most cases, accurate individuation is
achieved through continued processing that likely involves mutually constraining orthographic,
phonological, semantic, and contextual information resulting in a more precise individuated word
representation.

Another notable pattern in the gist-to-individuation temporal dynamic is that during the later
time window when individuation is significant (~ 300 — 500 ms, see Figure [2.5), the power to
detect category-level word selectivity (i.e., words vs. bodies and scrambled images; see Figure
2), which arguably only requires gist-level discrimination, weakens and the ERP response has
waned. This is also consistent with a temporal selectivity pattern described for faces (Ghuman
et al., 2014). One potential explanation for this selectivity and power shift could be that individ-
uation is achieved by relatively few neurons (sparse coding) (Young and Yamane, |1992). Sparse
coding would imply that relatively few word sensitive neurons were active and that the summed
approximate word-related activity in this time period therefore would be weak. However, the
neurons that were active encode for more precise word information, which would explain the
significant word individuation reported here.

The mechanism underlying the representational shift from gist-to-individuation could have
implications for models of reading disorders, like dyslexia, where visual word identification
is impaired (Bruck, 1990). Indeed, the effects of ImFG stimulation, especially slower reading
times, are suggestive of acquired (Behrmann and Shallice, 1995) and developmental reading
pathologies (Bowers and Wolt, [1993), which have been linked to dysfunction of ImFG (Martin
et al., 2016). The extent to which individual word reading may be impaired by excess noise in
the visual word form system, or the inadequate ability to contextually constrain noisy input into
the language system, is for future research to untangle.

In summary, our results provide strong evidence that the ImFG is involved in at least two
temporally distinguishable processing stages: an early stage that allows for category level word
decoding and gist-level representation organized by orthographic similarity and a later stage
supporting precise word individuation. An unanswered question is how the representation in the
ImFG transitions between stages in these local neural populations and how interactions between
areas involved in reading may govern these transitions. Taken together, the current results sug-
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gest a model in which ImFG contributes to multiple levels of orthographic representation, via a
dynamic shift in the computational analysis of different aspects of word information.

2.5 Appendix: Supplement Methods and Results

Patient Medical History

Patient P1 was a 25-year-old right-handed man with medically intractable epilepsy since the
age of 7. The clinical onset of his partial complex, secondary generalizing seizures was char-
acterized by behavioral arrest and inability to speak. His 3-Tesla MRI was negative for any
visible lesions. The patient had undergone two surgeries prior to the current one, first a partial
anterior temporal lobectomy (7 years prior), and then a second surgery to complete the resec-
tion of residual mesial structures (1 year prior). The patient exhibited baseline low average to
moderately impaired skills on IQ measures, but exhibited stable performance after his first and
second surgeries, with the exception of a decline on a verbal memory task after the first surgery.
Following further evaluation that included repeat video-EEG and magnetoencephalography, the
multidisciplinary epilepsy team recommended that the patient undergo intracranial monitoring
via stereo-electroencephalography (SEEG) to attempt to definitively delineate the seizure focus.
Ictal intracranial EEG suggested a seizure focus in the posterior left inferior temporal gyrus. Lan-
guage mapping was performed for surgical planning purposes. The epilepsy board recommended
resection of the presumed seizure onset zone that included portions of the middle, inferior and
fusiform gyri, to which the patient consented, after discussion of the potential risks and benefits
of surgery, including the eventuality of a reading impairment. The patient had a period of seizure
freedom for 10 weeks following surgery, but subsequently has continued to experience seizures.

Patient P2 was a 31-year-old female with a 4-year duration of medically intractable epilepsy,
with seizures occurring several times per week. Seizures began as alteration of awareness, pro-
gressing to generalized convulsions. The patient’s highest level of education is college course-
work, and neuropsychological testing revealed impairment in verbal greater than visual memory,
with an estimate of overall intelligence in the low-average range. A 3T MRI was normal. She
underwent left frontotemporal SEEG, which revealed seizure onset in the left anterior mesial
temporal lobe. She underwent a left anterior temporal lobectomy and has remained seizure free.

Patient P3 was a 41-yar-old-man with a 3-year duration of medically intractable epilepsy,
with seizures occurring several times per week. Seizures began with automatisms and alteration
of awareness, progressing to alterations in speech. The patient’s highest level of education is a
high school degree, and neuropsychological testing revealed deficits in verbal learning and mem-
ory skills, with overall intelligence estimated in the average range. A 3T MRI was normal. He
underwent bilateral frontotemporal SEEG, which predominately revealed a left anterior temporal
neocortical onset zone, with a possible smaller, independent focus in the right frontal operculum.
He underwent a left anterior temporal lobectomy and has remained seizure free.

Patient P4 was a 45-year-old female with an 11-year duration of medically intractable epilepsy,
with seizures occurring several times per month. Seizures began with an aura of anxiety, pro-
gressing to automatisms, alteration of awareness and tongue biting. The patients highest level of
education is a Master of Science, and neuropsychological testing revealed no lateralizing find-
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ings, with an estimate of overall intelligence in the high-average range. A 3T MRI revealed
a lesion in the left inferior temporal gyrus consistent with low-grade glioma. She underwent
intracranial monitoring via implantation of left temporal subdural grids and depth electrodes.
Findings were consistent with peri-lesional seizure onset. She underwent resection of the lesion,
found to be a ganglioglioma, and has remained seizure free.

Neuropsychological Tests
Stimuli

Neuropsychological assessments with P1 were conducted for research purposes before and 1.5-
weeks, 6-weeks, and 3-months post-surgery. Tasks included the word naming test reported by
Behrmann and colleagues (Behrmann and Shallicel [1995) that manipulates word-length (40 of
each three, five, and seven-letter words) with frequency and concreteness matched, and a mixed-
naming test that included 10 of each type of the following stimuli: letters, six-letter words, single
digits, three-digit numbers, famous faces known by the patient, pictures, and single musical notes
and guitar tab chords (due to the patients interest in reading music). A broad array of standard-
ized neuropsychological tests were administered pre- and post-surgery, but we only report the
two most relevant to his reading ability: TOWRE (Sight Word Efficiency and Phonemic De-
coding Efficiency tests (Torgesen et al., [1999)) and CTOPP Phonological Awareness (Elision
and Blending Words (Wagner et al., [1999))), which were administered before, and 6-weeks and
3-months post-surgery (Figure S1).

Design and Procedure

For both the word-length effect task and the mixed naming task, stimuli were presented in the
center of the screen until they were named without a time limit. The patient pressed the spacebar
upon naming the item and all responses were recorded using a digital recorder. A fixation cross
was displayed between each stimulus and the patient had to press the spacebar again to display
the next stimulus. A single tone was played simultaneously as the stimulus was presented, and
precise naming times were later extracted from the digital auditory files using the Audacity pro-
gram (audacity.sourceforge.net). Standard procedures were followed for the TOWRE (Torgesen
et al., [ 1999) and CTOPP (Wagner et al., 1999).

Post-Resection Neuropsychological Assessment

P1 showed no difference in reading times based on word length pre-surgery (mean reading times
for 3, 5, and 7 letter words were 583 ms, 589 ms, and 582 ms respectively; Figure 3b). At 1.5-
weeks, 6-weeks and 3-months post-surgery, P1 showed a linear increase in reading times as a
function of word length after surgery and ImFG resection (mean latency: 1583 ms), and there
was a consistent letter-by-letter reading pattern in each session, with longer latencies for longer
words (slopes of 277 ms, 317 ms, and 310 ms per letter in each session, see supplement for more
details). A 2 x 3 ANOVA was conducted with session (pre and post- surgery mean latencies)
and word length (3, 5, 7) as repeated measures. There was a significant main effect of session,
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F(1,39) = 557.75, n* = 0.94, p < 0.001, with longer latencies in the post-surgery session, and
a significant main effect of word length, F'(2,78) = 21.47, n* = 0.36, p < 0.001, with longer
words having greater latencies. Importantly, there was a significant interaction between session
and word length, F'(2,78) = 23.33, n? = 0.37, p < 0.001, such that the word length effect was
greater post-surgery than pre-surgery.

Significant increases in naming times from pre-surgery to post-surgery (average of all three
post-sessions) were observed for words ¢(28) = 4.63, d = 1.74, p < 0.001, and letters, ¢(32) =
3.87, d = 1.35, p < 0.001, in addition to 3-digit numbers, ¢(35) = 3.49, d = 1.18, p <
0.001 (t-tests assuming unequal variances and df adjusted based on Levene’s test for equality
of variances for all three conditions; Figure [2.3). The largest magnitude increase in naming
times was observed with words (103%). The finding of slower numeral naming after removal
of the ImFG is consistent with a weaker left-hemisphere ’visual number form area’ that is also
sensitive to letters and words (Shum et al., |2013). Significant changes were not found for any
other categories. The selectivity of P1’s deficits confirms that the resected tissue was an integral
component of a symbolic orthographic processing network that operates at both the sublexical
and lexical levels.
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Figure 2.6: Time course of word categorical sensitivity in each single electrode of P1. Time
course of word categorical sensitivity in each single electrode of P1 measured by sensitivity index
d'(mean d’ plotted against the beginning of the 100 ms sliding window). The classifier uses time-
windowed ERP signal from a single electrode (window length = 100 ms) as input features (See
Methods for details). Standard errors of cross-validations are shaded grey. Horizontal red line
indicates significance threshold. Horizontal grey line indicates chance level (d' = 0). Electrodes
1-3 were the contact of interest for further analysis in P1.
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Figure 2.7: Time course of word categorical sensitivity in each single electrode of P2. Time
course of word categorical sensitivity in each single electrode of P2 measured by sensitivity index
d'(mean d’ plotted against the beginning of the 100 ms sliding window). The classifier uses time-
windowed ERP signal from a single electrode (window length = 100 ms) as input features (See
Methods for details). Standard errors of cross-validations are shaded grey. Horizontal red line
indicates significance threshold. Horizontal grey line indicates chance level (d'
3 and 4 were the contact of interest for further analysis in P2 as electrode 1 was non-contiguous
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Figure 2.8: Time course of word categorical sensitivity in each single electrode of P3. Time
course of word categorical sensitivity in each single electrode of P2 measured by sensitivity index
d'(mean d’ plotted against the beginning of the 100 ms sliding window). The classifier uses time-
windowed ERP signal from a single electrode (window length = 100 ms) as input features (See
Methods for details). Standard errors of cross-validations are shaded grey. Horizontal red line
indicates significance threshold. Horizontal grey line indicates chance level (d’ = 0). Electrode
3 was the contact of interest for further analysis in P3.
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Figure 2.9: Time course of word categorical sensitivity in each single electrode of P4. Time
course of word categorical sensitivity in each single electrode of P2 measured by sensitivity index
d'(mean d’ plotted against the beginning of the 100 ms sliding window). The classifier uses time-
windowed ERP signal from a single electrode (window length = 100 ms) as input features (See
Methods for details). Standard errors of cross-validations are shaded grey. Horizontal red line
indicates significance threshold. Horizontal grey line indicates chance level (¢ = 0). A high-
density electrode strip was used in P4. This strip contained 2 rows of 14 electrode contacts and
thus the electrodes of interest, 8, 9, and 22, were next to each other. Other electrodes were either
substantially medial to the fusiform (1-5, 15-19) or the classification accuracy was a result of
stronger activity for the non-word control stimuli (7,10-12, 20, 21, 23-25).
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Figure 2.10: P1 performance on neuropsychological tests. P1 performance on neuropsycho-
logical tests. Visual Word Recognition (mean number of correctly named words in TOWRE
Sight Word and Phonemic Decoding Efficiency; pre-surgery: Form A; post-surgery: Form B)
and Phonological Awareness (mean correct trials in CTOPP Elision and Blending Words) were
measured pre- and post-surgery (6-weeks and 3-months). P1’s post-surgery performance on a
standardized test of visual word recognition (Torgesen et al., [1999) decreased to a greater ex-
tent compared to a test of phonological awareness, which remained stable after surgery
1999)(see Figure 2.11)). This suggests that P1’s resection disrupted orthographic, but not
phonological processes.
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Figure 2.11: P1 resection location. .The former location of the same depth electrode (red line)
is indicated on co-registered views of the postoperative MRI (A, B), in relation to the cortical
regions that were resected (blue region).
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Chapter 3

Temporal dynamics in human fusiform
underlying face individuation

In addition to reading visual word forms, the other important category of stimuli that requires
extensive amount of recognition processing in daily life is the faces. Humans’ ability to rapidly
and accurately detect, identify, and classify faces under variable conditions derives from a net-
work of brain regions highly tuned to face information. The fusiform face area (FFA) is thought
to be a computational hub for face processing, however temporal dynamics of face information
processing in FFA remains unclear. In this chapter we use multivariate pattern classification to
decode the temporal dynamics of expression-invariant face information processing using elec-
trodes placed directly upon FFA in humans. Early FFA activity (50-75 ms) contained informa-
tion regarding whether participants were viewing a face. Activity between 200-500 ms contained
expression-invariant information about which of 70 faces participants were viewing along with
the individual differences in facial features and their configurations. Long-lasting (500+ ms)
broadband gamma frequency activity predicted task performance. These results elucidate the
dynamic computational role FFA plays in multiple face processing stages and indicate what in-
formation is used in performing these visual analyses.

3.1 Introduction

Face perception relies on a distributed network of interconnected and interactive regions that are
strongly tuned to face information (Haxby et al., |2000). One of the most face selective regions
in the brain is located in fusiform gyrus (the fusiform face area, FFA). Damage to FFA results
in profound impairments in face recognition (Barton et al.,|2002) and the FFA is thought to be a
processing hub for face perception (Nestor et al., 2011). Recent studies have demonstrated that
the FFA activity contains information about individual faces invariant across facial expression
(Nestor et al., |2011) and gaze/viewpoint (Anzellotti et al., 2013]) and have started to describe
some of the organizing principles of individual-level face representations (Cowen et al., 2014;
Davidesco et al., 2013}; \(Goesaert and de Beeck, 2013)). However, due to the use of low temporal
resolution analyses or imaging modalities, little is known regarding the relative timing of when
FFA becomes sensitive to different aspects of face-related information. Specifically, face pro-
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cessing 1s thought to occur through a set of partially distinct stages (Bruce and Young, |1986)
and it remains unclear in which of these stages FFA participates and, more generally, when they
occur in the brain.

Evidence from FFA in humans and the putative analog to FFA in non-human primates has
demonstrated that FFA shows strong selectivity for faces versus non-face objects (Allison et al.,
1999; | Kanwisher et al., [1997; McCarthy et al., 1997} Perrett et al., 1982} |Sugase et al., |1999;
Tsao et al., 2006). There is disagreement about when exactly the FFA, and the human brain in
general, first responds selectively to faces (Itier and Taylor, 2004; Pitcher et al., 2012; Rossion
and Caharel, 2011). In particular, it is unknown when FFA becomes face selective relative to
areas in lateral occipital cortex (Itier and Taylor, 2004; Pitcher et al., 2009, [2012), relative to
single neurons in the cortex of non-human primates (Baylis et al., [1985; Perrett et al., |1982;
Sugase et al., [1999; Tsao et al., [2006), and relative to rapid behavioral face detection (Crouzet
etal.,2010). A recent study using intracranial electrocorticography (ECoG) showed that fusiform
becomes sensitive to the category of a visual object around 100 ms after stimulus onset (Liu et al.,
2009). However, the brain network highly tuned to face information (Haxby et al., 2000) may
allow faces to be processed more rapidly than other categories of objects. Therefore it remains
unclear how early FFA becomes face selective and whether it contributes to face detection.

Regarding face individuation, ensembles of single neurons responsive to individual faces
have been identified in face sensitive cortical regions of the non-human primate brain (Freiwald
et al.L|2009;|Leopold et al., 2006; |Sugase et al., 1999; Tsao et al.,[2006). Studies with humans also
show that FFA encodes information about individual faces (Davidesco et al., [2013; Nestor et al.,
2011). However, little is known regarding the temporal dynamics of individual face processing
in FFA, particularly relative to other processing stages.

Furthermore, it remains unknown whether FFA is sensitive to the key facial features used for
face recognition, particularly the eyes, mouth, and configural face information. Single neurons
of middle face patch in the non-human primate (a putative homolog of FFA) show sensitivity to
external facial features (face aspect ratio, direction, hair length, etc.) and properties of the eyes
(Freiwald et al.,[2009). A recent ECoG study showed that FFA is sensitive to global and external
features of the face and head (face area, hair area, etc.) (Davidesco et al., [2013)). Behavioral
studies have shown that the eyes are the most important facial feature used for face recognition,
followed by the mouth (Haig, 1986)) and that configural and holistic processing of faces is cor-
related with face recognition ability (DeGutis et al., 2013). It remains unknown whether FFA
is sensitive to individual differences in these featural and configural properties critical to face
recognition, particularly when changeable aspects of the face (e.g. expression) are taken into
account.

Finally, how FFA contributes to task-related stages of face processing is undetermined. Specif-
ically, previous studies have described a late, long-lasting (lasting many hundreds of millisec-
onds) face specific broadband gamma frequency (40+ Hz) activity (Davidesco et al., 2013 |[Engell
and McCarthyl, 2010; [Kawasaki et al.,|2012). Broadband gamma activity is closely related to the
underlying population firing rates (Manning et al., 2009; Ray and Maunsell, 201 1)), both of which
are face selective for many hundreds of milliseconds after seeing a face (Engell and McCarthy,
2010; Kawasaki et al., 2012; Tsao et al.l 2006), extending well beyond the timeframe of face
individuation seen in non-human primates (Tsao et al.,|2006). It is unknown what role this long-
lasting activity plays in face processing. Here we examine whether this long-lasting gamma band
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activity reflects the maintenance of face information in support of perceptual decision-making
and working memory processes (Freedman et al., 2003} |[Shadlen and Newsome, 2001)).

We used intracranial ECoG in humans and multivariate pattern classification methods to doc-
ument the temporal dynamics of face information processing in the FFA from the moment a
face is first viewed through response-related processing. Multivariate pattern classification was
used to decode the contents and timecourse of information processing in FFA in order to eluci-
date the dynamics and computational role of this area in face perception. Electrophysiological
activity (specifically the timecourse of the single-trial voltage potentials and broadband gamma
frequency power) from the epileptically unaffected FFA was assessed while each of four patients
(P1-4) participated in two face processing experiments (see Figure [3.1] for electrode locations;
all face sensitive electrodes appear to be in mid-fusiform, lateral to the mid-fusiform sulcus,
see [Weiner et al. (2014) for a detailed description regarding the face sensitive regions of the
fusiform). Experiment 1 was adopted to examine the temporal dynamics of face sensitivity and
specificity in FFA (e.g. face detection) and experiment 2 was employed to examine the temporal
dynamics of face individuation and categorization invariant with respect to facial expression. The
results of these experiments demonstrate that within 75 ms of presentation, FFA activity encodes
the presence of a face (face detection), between 200-450 ms FFA activity encodes which face it
is (face individuation), and late (500+ ms) broadband gamma FFA activity encodes task-related
information about faces. These results demonstrate the dynamic contribution of FFA to multiple,
temporally distinct face processing stages.

3.2 Methods

3.2.1 Subjects

The experimental protocols were approved by the Institutional Review Board of the University
of Pittsburgh. Written informed consent was obtained from all participants.

Four human subjects underwent surgical placement of subdural electrode grids and ventral
temporal electrode strips as standard of care for surgical epilepsy localization. P1 was male, age
26, and had seizure onset in the hippocampus. P2 was female, age 30, and had seizure onset in
the frontal lobe. P3 was female, age 30, and had seizure onset in premotor cortex. P4 was male,
age 65, and had seizure onset in the hippocampus. None of the participants showed evidence of
epileptic activity on the FG electrode used in this study. The order of the participants (P1-P4) is
chronological based on their recording dates.

3.2.2 Stimuli

In experiment 1, 30 images of faces (50% male), 30 images of bodies (50% male), 30 images of
shoes (50% men’s shoes), 30 images of hammers, 30 images of houses, and 30 images of phase
scrambled faces were used. Phase scrambled images were created in Matlab by taking the 2-
dimensional spatial Fourier spectrum of the image, extracting the phase, adding random phases,
recombining the phase and amplitude, and taking the inverse 2-dimensional spatial Fourier spec-
trum. Each image was presented in pseudorandom order and repeated once in each session.
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Faces in experiment 2 were taken from the Karolinska Directed Emotional Faces stimulus
set (Lundqvist et al., [1998)). Frontal views and 5 different facial expressions (happy, sad, angry,
fearful, and neutral) from all 70 faces (50% male) in the database were used for a total of 350
face images, each presented once in random order during a session. Due to time and clinical
considerations, P3 was shown 40 faces (50% male) from the database for a total of 200 faces
each presented once in random order during a session.

All stimuli were presented on an LCD computer screen placed approximately 2 meters from
participants’ heads.

3.2.3 Experimental paradigms

In experiment 1, each image was presented for 900 ms with 900 ms inter-trial interval during
which a fixation cross was presented at the center of the screen (~ 10° x 10° of visual angle).
At random, 20% of the time an image would be repeated. Participants were instructed to press
a button on a button box when an image was repeated (1-back). Only the first presentations of
repeated images were used in the analysis.

In experiment 2, each face was presented for 1500 ms with 500 ms inter-trial interval during
which a fixation cross was presented at the center of the screen. Subjects were instructed to
report whether the face was male or female via button press on a button box. Each individual
participated in two sessions of experiment 2 on different days.

Paradigms were programmed in MATLAB™ using Psychtoolbox and custom written code.

3.2.4 Data preprocessing

Data were collected at 2000 Hz. They were subsequently bandpass filtered offline from 1-115
Hz using a second order Butterworth filter to remove slow and linear drift, the 120 Hz harmonic
of the line noise, and high frequency noise. Data were also notch filtered from 55-65 Hz using
a second order Butterworth filter to remove line noise. To reduce potential artifacts in the data,
trials with maximum amplitude 5 standard deviations above the mean across the rest of the trials
were eliminated. In addition, trials with a change of more than 25 1V between consecutive
sampling points were eliminated. These criteria resulted in the elimination of less than 6% of
trials in each subject.

3.2.5 Electrode localization

Coregistration of iIEEG electrodes used the method of Hermes et al.| (2010). High resolution
CT scans of patients with implanted electrodes are combined with anatomical MRI scans before
neurosurgery and electrode implantation. The Hermes method accounts for shifts in electrode
location due to the deformation of the cortex by utilizing reconstructions of the cortical surface
with FreeSurfer™ software and co-registering these reconstructions with a high-resolution post-
operative CT scan. It should be noted that electrodes on the ventral surface typically suffer
minimal shift as compared to those located near the craniotomy. A cortical surface reconstruction
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was not possible in P4 due to the lack of a high-resolution MRI. Instead the high-resolution post-
operative CT scan was transformed into MNI space using a low resolution T1 MRI and the
electrode locations manually determined.

3.2.6 Electrode selection

Electrodes were chosen based on anatomical and functional considerations. Electrodes of in-
terest were restricted to those that were located on the fusiform gyrus. In addition, electrodes
were selected such that their peak 6-way face classification d’ score (see below for how this was
calculated) exceeded 1.5 and the ERP for faces was larger than the ERP for other the other object
categories. To avoid concerns about circularity with regards to electrode selection, only the data
from the training set (odd trials, see below) for the classification results reported were used for
electrode selection. Thus, all statistical values and classification accuracies reported for 6-way
face classification are derived from data independent of those used for electrode selection and
classifier training.

This procedure yielded 1 electrode per participant, except for P1 where it yielded 3 nearby
electrodes (see Supplementary Fig. 1). In the case of P1, we averaged the signal from the three
face sensitive electrodes (all three electrodes are shown in Figure [3.1)). For P2 the third electrode
displayed a peak d’ greater than 1.5, however, in examining the ERP it was evident that face
classification accuracy in the third electrode on the strip was due to lesser face activity relative
to the other conditions (see Supplementary Fig. 4). Face classification on the fourth electrode
for P2 was also above threshold and the activity in this electrode followed the pattern from other
subjects (e.g. greater face activity relative to other conditions), thus we chose this electrode. It
should be noted that even if the anatomical restriction was lifted and all electrodes were used, no
additional electrodes would have been chosen in any participant.

In addition to the 4 participants included in the study, 6 other individuals participated in the
experimental paradigm during the study period. None of these individuals had any electrodes
that met the selection criteria and thus were not included in the analysis. In 2 of these individ-
uals, there were no electrodes on ventral temporal cortex. The electrode locations from the 4
excluded participants with ventral temporal cortex electrodes are shown in Supplementary Fig.
2. In 1 of these individuals, data quality was poor (excessive noise) for unknown reasons (EP2,
none of the electrodes showed any visual response and were anterior to FFA). In 3 of these in-
dividuals, data quality was reasonable and there were electrodes on ventral temporal cortex, yet
none met the selection criteria (see Supplementary Fig. 3). In one of the non-included partic-
ipants one electrode exceeded the d’ threshold (see Supplementary Fig. 3), but this was due to
lesser face activity relative to the other conditions (see Supplementary Fig. 4). Considering the
ventral electrode strips are placed without functional or anatomical/visual guidance, a yield of
4/7 individuals with ventral strip electrodes having electrodes placed over highly face selective
regions is a substantial yield.

3.2.7 Experiment 1 classification analysis and statistics

For classification, single-trial potentials were first split into odd trials used as the training set and
even trials used as the test set. The Euclidean distance between the time windowed data from
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each of the test and each of the training trials was then calculated. The single-trial potentials
from the test trial were assigned to the stimulus condition with k-nearest neighbors classifier.
Alternatively, using the correlation (instead of Euclidean distance) between the test and train-
ing sets and the results did not yield substantively different results. The selection of k was
determined by finding the greatest d’ for k-nearest neighbors classification based on random sub-
sampling validation with 50 repeats using only the training set. True positive and false alarm rates
were calculated across all of the test trials. d’ was calculated as d’ = ¥~ (true positive rate) —
U~ (false alarm rate) where W~!(x) is the inverse of the Gaussian cumulative distribution func-
tion.

Because training and test data were separated (rather than cross validation) and not reversed
(e.g. the training and test sets were not switched), there is no statistical dependence between
the training and test sets and classification accuracy follows the binomial distribution. The null
hypothesis for statistical testing was that the true positive rate was equal to the false positive rate
under the binomial distribution (this justifies the use of a one tailed t-test).

3.2.8 Experiment 2 classification analysis and statistics

To determine if information regarding individual faces was present in the timecourse of the
single-trial potentials, we used across sessions binary nearest neighbors classification (e.g. k =
1). Specifically, the neural responses for the five presentations (each with a different facial ex-
pression) of two faces in the second session were used as the training set. The test set was the
average signal across the five presentations of one of those faces in the first session. The Eu-
clidean distance between the single-trial potentials from the test face and each training face in a
100 ms window was calculated. The test neural activity was classified as belonging to the face
that corresponded to the neural activity in the training set that was closest to the neural activity
from the test trial. This procedure was then repeated for all possible pairs of faces and all time
windows slid with 5 ms steps between 0-500 ms after the presentation of the face. It should
be noted that single trial classification was also examined and while classification accuracy was
lower, it was still as statistically significant in each participant as when using the average activity
across expressions for the 70 face identities (statistical significance was higher due to the use of
350 individual trials instead of 70 averaged trials, which increased statistical power, 40 faces and
200 trials in P3).

In addition, cross-expression classification was also calculated using the same classifier and
time windows as above. In this case the neural response for the eight presentations of four of
the expressions (4 expressions X 2 sessions) of two faces were used as the training set. The
test set was the average signal across the two presentations of the remaining expressions for one
of those faces in the first session. This procedure was repeated for each pair of faces and with
each expression left out as the test set (e.g. leave-one-expression-out cross-validation). Note that
using cross-validation, instead of holdout validation as in the cross-session classification, and
analyzing the 5 expressions separately, lowered the statistical threshold for this analysis.

Permutation testing was used for statistical testing of classification accuracy in experiment 2.
Specifically, the labels of the faces in each session were randomly permuted. The same procedure
as above was performed on these permuted trials. The maximum classification accuracy across
the 0-500 ms time window was then extracted. Using the maximum classification accuracy across
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the time window implies a global null hypothesis over the entire window, which corrects for
multiple time comparisons (Maris and Oostenveld, 2007). The labels were randomly permuted
again and this procedure was repeated 500 times. Using this procedure, p = 0.05, corrected for
multiple comparisons, corresponded to a classification accuracy of approximately 57% (+0.2%
across the 4 individuals).

Classification of the 5 facial expressions (Supplementary Fig. 5) was done using k-nearest
neighbors as in experiment 1.

Classification accuracy when the two training faces were the same gender or when they were
different gender was also compared in Supplementary Fig. 6. This was done because partici-
pants’ task was gender classification and we wanted to address the potential concern that neural
classification for individual faces could have been driven by task demands.

3.2.9 Facial feature analysis

Facial features were determined based on anatomical landmarks found by IntraFace (Xiong and
De la Torre| [2013). This toolbox marks 49 points on the face along the eyebrows, down the
bridge of the nose, along the base of the nose, and outlining the eyes and mouth. Based on
these landmarks we calculated the first 12 facial feature dimensions listed in Figure [3.3B. Red,
green, and blue intensities were calculated by taking the average intensity for these colors in
two 20 x 20 pixel squares, one on each cheek, the bottom of which was defined to align with
the bottom of the nose and the middle to horizontally align with the middle of the eye. High,
middle and low spatial frequencies were determined by calculating the mean power at different
levels of a Laplacian pyramid (Burt and Adelson, 1983)). The image was iteratively low-pass
filtered and subtracted from the original image to generate a 6 level Laplacian pyramid (from
level O to level 5), similar to 2-dimensional wavelet decomposition. The level with smaller index
contained higher frequency components. By adding up in pairs, e.g. level 0&1, level 2&3, level
4&S5, we get 3 images that corresponding to the high, mid and low frequency components of the
original image (note that if we add all 6 levels together we will get the original image). We then
performed a 2-dimensional Fast Fourier Transform for these three images to calculate the mean
power for each of them.

The values for these 18 feature dimensions were averaged across the five facial expressions
for each of the 70 faces (40 for P3). Finally, the values for each variable were normalized by
subtract the mean and dividing by the standard deviation across the 70 faces so that none would
unduly influence the canonical correlation analysis.

3.2.10 Canonical correlation analysis

Canonical correlation analysis (CCA) finds the maximally correlated linear combinations of two
multidimensional variables (Hotelling, [1936), in this case variable one was the 18 facial feature
dimensions and variable two was the single-trial potentials between 200 and 500 ms after stimu-
lus onset. Briefly, the first canonical coefficients of the face and neural variables (x4, x2, , z,, and
Y1, Y2, , Yn) respectively are found by maximizing the correlation between the canonical variables
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(W7 and V7) defined by:

s T \NTy,/T 1
paximize  (Wyz)"Vi'y (3.1)
subjectto ||[Wi]| = ||Vi|| =1 (3.2)

This procedure is then repeated for W, and V; to W, and V,, where p = min(m,n) and
all s are uncorrelated to one another and all V's are uncorrelated to find subsequent canonical
coefficients and functions. Significance of Wilks’ A (the multivariate generalization of the inverse
of R?) was based on the chi-squared statistic.

In the presence of noise, CCA is prone to overfit the data unless the number of samples
substantially exceeds the dimensionality of the data. To reduce the dimensionality of the neural
data, we performed a principal components analysis (PCA) on the faces x timepoints data (70
faces x 300 time points) and used the first N eigenvalues as the neural dimensions in the CCA.
The number of eigenvalues (N) was chosen such that they accounted for 90% of the variance in
the neural data. This yielded 9 eigenvalues for P1, 8 for P2, 9 for P3, and 8 for P4.

3.2.11 Gamma band analysis and statistics

Time-frequency power spectra were calculated using a Fourier transform with a Hanning window
taper calculated with a 200 ms sliding window and 2 Hz frequency step for each trial. The peak
frequency in the gamma range for all trials in experiment 1 collapsed across conditions and
subjects was found to be 65 Hz and a window of + 25 Hz around this peak was used as the
frequency window of interest. Trials in experiment 2 were ranked by reaction time (RT) and
split into fastest, middle, and slowest thirds according to RT. In addition, Spearman’s p between
RT and gamma power across trials was calculated. Spearman’s p was used to minimize the
potential for outliers skewing the correlation, though it should be noted that Pearsons correlation
and Spearman’s p did not substantially differ in any participants and both were significant in all
runs and participants.

3.3 Results

3.3.1 Timecourse and magnitude of face sensitivity in FFA

To assess the face sensitivity and specificity of FFA (experiment 1), we used a k-nearest neigh-
bors algorithm to decode the neural activity while participants viewed 6 different categories of
visual images: faces, human bodies, houses, hammers, shoes, and phase-scrambled faces (30 im-
ages per category, each repeated once, presented in random order; faces, bodies, and shoes were
balanced for gender; see Figure [3.2]A for examples). Participants pressed a button if an image
was repeated in consecutive trials (20% of trials, repeated images were excluded from analysis).
Each individual participated in two sessions of experiment 1; one session from P4 was not used
due to evidence of an ictal event during the recording (a total of 7 sessions across 4 participants).
We classified single trial voltage potentials between 100-250 ms after stimulus presentation into
one of the six categories described above and examined the decoding accuracy using the signal
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P3 P4

Figure 3.1: Locations of electrodes used in the study and their neighboring electrodes on
subjects’ native pial surface reconstruction. Electrodes in red denote the ones used in the
experiment and electrodes in white denote the other contacts on the same electrode strip. A high
resolution MRI was not available for pial surface reconstruction of P4 and thus the electrode is
visualized on a low resolution T1 MRI slice. MNI coordinates of electrodes are as follows: P1
- (35, -59, -22), (33, -53, -22), (42, -56, -26); P2 - (40, -57, -23); P3 - (-33, -44, -31); P4 - (-38,
-36, -30). All electrodes are over the fusiform gyrus.

recorded from face sensitive electrodes (see methods for details on electrode selection and Figure
[3.1] for locations). This time range was selected for the initial analysis because it includes most
of the previously described face sensitive electrophysiological responses (Allison et al., [1999;
[Engell and McCarthyl, 2010 [Itier and Taylor, 2004)(also see Figure 3.2A & B). We were able
to identify the category of a stimulus presented on a given trial with 54 - 93% accuracy across
the 7 sessions if the stimulus was a face (6-way classification, chance = 16.7%). Neural activ-
ity for non-face images was misclassified as a face in 0-8% across the sessions (P1 = 93%/0%,
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Figure 3.2: Dynamics of face selectivity in human FFA. (A) Example of stimuli from each
condition and event related potential (ERP) waveforms from session 1 of P1. Across trial means
are plotted and standard errors are shaded in light colors. (B) Average ERP waveforms across
the four participants. In each participant a positive going face sensitive peak between 100-140
ms and a negative going face sensitive peak between 160-200 ms could be identified.(C) Face
classification accuracy over time as measured by d’ (n = 4, mean d’ plotted against the beginning
of the 100 ms sliding window), which takes into account both the true and false positive rate.
Classification is based on single trial voltage potentials. See Supplementary Fig. 1 for individual
subject d’ time courses for these electrodes and neighboring electrodes. Standard deviations are
shaded grey. (D) Face classification accuracy in the first 100 ms after stimulus onset with 25 ms
windows. Classification is based on single trial voltage potentials. d’ scores in panels B and C
differ due to the different window sizes used for the respective analyses. Standard deviations are
shaded grey.
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82%11%; P2= 88%/8%, 54%/8%; P3= T3%/6%, T7%/1%; P4= 67%/8%; true positive rate/false
positive rate; chance = 16.7%/16.7%; p < 1075 in each of the eight sessions). Little consistency
in classification accuracy was seen across sessions and participants for the five other object cat-
egories (Supplementary Table 1). In addition, in all participants electrodes 1-2 cm away from
the electrodes of interest showed little face-sensitive (peak sensitivity index d’ < 1, Figure
and Supplementary Fig. 1), suggesting that face sensitivity was constrained within 1-2 cm. The
high sensitivity and specificity for face classification reported here demonstrates that human FFA
regions are strongly face selective (Baylis et al., 1985} Tsao et al., 2006).

Figure [3.2C shows the temporal dynamics of single trial face classification averaged across
participants in FFA using the sensitivity index (d’), which takes into account both the true and
false positive rate for face detection. Face sensitivity was seen in FFA between approximately
50-350 ms after stimulus onset. To determine the onset of face selective activity in FFA, we
examined the d’ for face classification from 0-100 ms in 25 ms moving windows shifted by 12.5
ms. All windows between 50-100ms showed significant face sensitivity (Figure[3.2D, 50-75 ms:
mean d' = 0.200, t(3) = 3.13, p = 0.0260; 62.5-87.5 ms: mean d' = 0.368, t(3) = 3.72,
p = 0.0169; 75-100 ms: mean d’ = 0.551, t(3) = 5.91, p = 0.0048), earlier time windows did
not reach statistical significance. None of the other five categories, including phase scrambled
faces, showed significant classification in these time windows. This suggests that this rapid
face processing was not driven by spatial frequency information (Rossion and Caharel, [2011) as
phase scrambled faces contain the same spatial frequency content as intact faces. The 50-75 ms
time window is earlier than human fusiform becomes sensitive to other visual object categories
(Liu et al., 2009). However, this time window is consistent with the reports of the earliest face
sensitivity in single cortical neurons in non-human primates (Baylis et al., |1985} Perrett et al.,
1982; [Sugase et al., |1999; [Tsao et al., [2006) and rapid behavioral face detection (Crouzet et al.,
2010) suggesting that FFA is involved in face detection.

3.3.2 Timecourse of individual-level face processing in FFA

In each of two sessions recorded on separate days, P1-P4 were shown 70 different faces, each re-
peated 5 times with different facial expressions each time (happy, sad, angry, fearful, and neutral
expressions) for a total of 350 unique images. The participants’ task was to report the gender of
each face they saw (50% male, 50% female faces). We used a nearest neighbor classification al-
gorithm to determine how accurately we could predict which face (given two drawn from the set
of faces) a participant was viewing at a particular moment in session 1 based on a model trained
on the timecourse of the single-trial voltage potentials from session 2. Session 2 was used as
the training set and session 1 as the test set for this analysis to test classification on previously
unseen faces. In each of the four participants in experiment 2, above chance intra-session clas-
sification of the neural response to individual faces was observed (Figure [3.3]A, p < 0.05 using
a permutation test, corrected for multiple time comparisons). Classification accuracy peaked in
P1 at 65% and was significant in the 210-390 ms time window, in P2 at 59% and was significant
in the 280-460 ms time window, in P3 at 63% and was significant in the 270-490 ms time win-
dow, and in P4 at 60% and was significant in the 350-540 ms time window (chance = 50%; 57%
corresponds to p = 0.05 corrected for multiple comparisons). In addition, we examined whether
individual-level face classification was invariant over expression by training the classifier on four
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Figure 3.3: Face individuation in human FFA. (A) Time course of individual level face classi-
fication accuracy based on single trial voltage potentials in each participant. This shows, given
two faces, how accurately we could predict which one the participant was viewing based on the
neural data, plotted against the beginning of the 100 ms sliding window. Red line at 57% in-
dicates p = 0.05, corrected for multiple time comparisons based on the permutation test, grey
line indicates chance accuracy (50%). (B) Across-expression, individual level face classification
accuracy. This shows, given two faces with a particular expression, how accurately we could
predict which one the participant was viewing based on the neural data from the other four ex-
pressions used in the study. Red line at 55.5% indicates p = 0.05, corrected for multiple time
comparisons based on the permutation test, grey line indicates chance accuracy (50%).

of the five expressions and testing the other, then repeating this with different expressions in
the training and test set until each expression (leave-one-expression-out cross-validation). In
each participant, above chance across-expression classification of the neural response to individ-
ual faces was observed (Figure [3.3B, p < 0.05 using a permutation test, corrected for multiple
time comparisons). This across-expression classification had a similar timecourse as the across-
session classification in Figure[3.3JA suggesting that the coding for individual faces in FFA is not
driven by low-level differences between images and is at least partially invariant over expression.
Indeed, classification of expression failed to reach statistical significance at any point between 0
and 500 ms (Supplementary Fig. 5). In addition, classification accuracy across face genders was
similar to classification within face gender (Supplementary Fig. 6), suggesting that classification
of individual faces in FFA was not driven by task demands. Also, training with the data from
session 1 and classifying the data from session 2 changed the peak classification accuracy by less
than 0.5%, the peak time by less than 15 ms, and the significant time window by less than 25
ms. Furthermore, individual faces could not be classified above chance in the adjacent or nearby
electrodes (Supplementary Fig. 7). These results suggest that the 200-500 ms time window is
critical for expression-invariant face individuation in FFA.
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Figure 3.4: Facial feature sensitivity of FFA electrodes. Multivariate canonical correlation
coefficients between the single trial 