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Machine Learning for Decision Support
in the Public Sector: Introduction

Recent advances in the production, collection, and curation of data have resulted in a new and
complex set of resources available to guide operational decisions at all levels of government.
At the same time, improvements in the accessibility of advanced statistical and computational
tools have expanded the capacity of governments to conduct rigorous empirical analyses and
develop decision support tools that are grounded in observed data. Machine learning has been
applied with widespread success for a variety of revenue-generating tasks in the commercial
sector such as demand forecasting and prediction of individual consumer preferences. This
success suggests that machine learning techniques could be similarly applied in the public
sector to benefit quality of life and improve social conditions, particularly in urban settings
where density of available data is highest.

The movement towards data-driven and computational approaches for decision-making
represents a significant paradigm shift in many policy contexts that have historically depended
solely on human expertise. n the health domain, clinicians and public health practitioners
traditionally rely on their own expert judgment to determine whether patients are at-risk of
abusing prescribed drugs. In metropolitan police departments, command staff are routinely
placed in charge of allocating patrols within a district of the city on a daily or weekly basis.
Machine learning offers a set of tools to bolster human intelligence with insights summarized
from large administrative data sets that would be impossible for a human to process without
computational support.

Machine learning methods also represent a fundamentally different approach from causal
inference studies that have traditionally been the focus of public policy research. Machine
learning methods excel at finding correlations or detecting patterns in observational data.
Consequently, these approaches are well-suited for settings where prediction or character-
ization of patterns is useful as a support for decision-making even when the underlying
causal forces may not be clear. For example, public health agencies may be concerned with
predicting the future spread of a disease outbreak in order to allocate healthcare resources
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and make safety recommendations to affected citizens. The causal mechanisms underlying
the spread of the disease may be difficult to understand and untangle quickly in a crisis
situation, while accurately predicting new cases at the population level can help efficiently
deploy personnel and medical supplies where they are likely to be needed most.

Naive application of machine learning methods also has the potential to exacerbate the
very problems they are intended to solve. Machine learning algorithms learn from patterns
in historical data, and model outputs will therefore reflect any biases inherent in the data
on which they were trained. If interventions based on these outputs affect how new data
is generated or collected, then models can perpetuate or worsen historical biases. Shifts in
the underlying data distribution, whether due to a policy intervention or some other cause,
may mean that models that were once accurate and unbiased are no longer meeting these
objectives.

For any machine learning system, designing a proper evaluation framework is critical
for understanding whether the system will work as intended when deployed. Rigorous and
periodic evaluation is particularly important when model outputs underlie decisions that
affect social conditions and the well-being of human lives. Regular vetting of operational
models by both (1) analysts with technical proficiency in predictive modeling and (2) subject
matter experts with knowledge of underlying domain and affected populations can ensure that
a deployed system remains effective over time. In many machine learning problems related
to public health and safety, such as disease outbreak detection or prediction of drug misuse,
proper evaluation is difficult because ground truth observations are scarce or impossible to
obtain. The absence of ground truth makes evaluation of new methods particularly hard in
settings where predictions or other model outputs can affect the data-generating process.

In this thesis, we present three case studies in which we propose and evaluate novel
machine learning approaches to inform operational decisions in the domains of public
health and safety. These studies showcase different approaches for evaluation of new
machine learning methods when ground truth data is limited or not available. These studies
all represent examples where public service experts identified a specific problem where
administrative data was available but limited, and methodology was designed with both the
problem and available data in mind.

In Chapter 1, we introduce the support vector subset scan (SVSS), a new method for
detecting localized and irregularly shaped anomalous patterns in spatial data. SVSS alter-
nately maximizes a penalized log-likelihood ratio over subsets of locations to obtain an
anomalous pattern, and learns a high-dimensional decision boundary between locations
included in and excluded from the anomalous subset. On each iteration of the algorithm,
we assign location-specific penalties to the log-likelihood ratio based on distance to the
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high-dimensional decision boundary, encouraging patterns which are spatially compact but
potentially highly irregular in shape. As ground truth labels are not available in many pattern
detection settings, we highlight the performance of SVSS relative to competing methods for
spatial cluster detection on detection of randomly generated patterns in simulated experi-
ments. Using publicly available data sets, we also demonstrate the real-world utility of SVSS
in three policy domains: disease surveillance, crime hot spot detection, and pothole cluster
detection.

In Chapter 2, we develop new methods to assess risk of opioid misuse based on individual-
level opioid timelines generated from prescription drug monitoring program (PDMP) data.
We first introduce a shape-based clustering framework to evaluate risk of misuse in new
individuals when patient outcomes are completely unknown outside of observed prescription
drug histories. By identifying “red flag" behaviors which are indicative of opioid misuse,
we evaluate the shape-based clustering approach on the task of early risk assessment, and
find that the detection method achieves statistically and practically significant lead times
with respect to red flags triggered by the PDMP. We also address the setting where labeled
instances of unsafe drug use are available but sparse, developing a new method for semi-
supervised learning using recurrent generative adversarial networks (RGANs) and designed
to assess risk of opioid misuse in new patients based on these labels. The RGAN architecture
provides a natural framework for incorporating conditional inputs to both the generator and
the discriminator. We incorporate red flag indicators and shape-based cluster assignments as
conditional inputs in addition to the opioid trajectories, as this additional information has the
potential to improve (1) the generator’s ability to generate realistic time series conditioned
on high risk, and (2) the discriminator’s performance on classifying new patients.

Lastly, in Chapter 3 we discuss findings from an empirical comparison of crime fore-
casting methods and a randomized field experiment evaluating a hot-spot-based predictive
policing program in Pittsburgh, PA. We compare the performance of several place-based
forecasting models on predicting historical crime data and select those that demonstrated
high predictive accuracy and spatial dispersion of forecasted areas in Pittsburgh. We evaluate
an operational hot spot program using a controlled crossover study, with areas exposed
to targeted patrols changing on a weekly basis. We observe statistically and practically
significant reductions in crime counts within hot spots treated with foot patrols, and find no
evidence of crime displacement resulting from increased patrols to predicted hot spots. We
also investigate potential harms from over-policing in hot spots, and find minimal evidence
of arrests due to hot spot patrols during the field study.





Chapter 1

Support Vector Subset Scan for Spatial
Pattern Detection1

1.1 Introduction

Detecting anomalous patterns in spatial data has applications across a wide variety of policy
domains. Public health agencies may be interested in characterizing spatial regions with
high prevalence of disease, indicating a possible outbreak. In large cities, police analysts
are interested in detecting and characterizing flare-ups of violent crime in order to dispatch
patrols effectively. Identifying spatial clusters of citizen complaints can help agencies
responsible for city services such as road maintenance or sanitation to prioritize projects
and efficiently address complaints. In this paper, we present an approach to address such
examples where decision makers must identify spatial patterns to design and target policy
interventions. In real world settings, we may expect patterns to be highly irregular in shape, as
spatial clustering is often influenced by environmental or social factors such as transportation
patterns, built infrastructure, land use, or natural features. Our proposed method allows for
precise localization of spatial clusters regardless of shape, addressing the need for flexible
detection of spatial clusters for intervention.

Anomalous patterns which are spatially compact are often preferable for identifying
situations in need of intervention or for guiding operational decisions in policy applications.
An anomalous cluster of locations is spatially compact if member locations are situated close
to each other in space and non-anomalous locations are sparse within the boundaries of the
cluster. Spatially compact clusters may be preferable for targeting intervention because they
are more likely to correspond to a single structural cause (e.g., virus-carrying mosquitoes

1This chapter is based on the research paper of the same title, co-authored by Yun Ni and Daniel B. Neill.
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breeding in a pool of stagnant water), or because locations in these clusters can be efficiently
targeted for mitigation efforts due to their physical proximity (e.g., a cluster of potholes on a
highly-trafficked road can be repaired by a single maintenance crew). Yet simpler spatial
scan approaches such as Kulldorff (1997), which search for spatially compact clusters of a
fixed shape, may fail to correctly identify the spatial extent of the cluster, and have reduced
detection power when the cluster is elongated or irregular in shape.

This work builds on the subset scan approach to pattern detection, which finds anomalous
patterns by performing a constrained scan over subsets of data points. In this framework, the
anomalousness of fixed subsets can be evaluated using a predefined score function, such as
the log-likelihood ratio statistics applied in Kulldorff (1997), Neill et al. (2005), Neill (2009),
and Neill (2012a). The subset scan approach has demonstrated high power to detect both
localized and global patterns, unlike ‘bottom-up’ approaches which identify and aggregate
individual anomalies, and ‘top-down’ approaches which localize anomalous patterns detected
in aggregated data (Neill, 2009, 2012a). Outlier detection methods such as one-class SVM
(Schölkopf et al., 2001) are likely to pick out individually anomalous data records with high
counts (often due to chance) and thus fail to detect the regions of interest, while density-based
clustering methods such as DBSCAN (Ester et al., 1996) can find anomalous regions but are
dramatically outperformed by our proposed method (as shown in Section 1.3.1).

Subset scanning poses a significant computational challenge, as there exist 2N possible
subsets to consider when searching for the most anomalous subset for a data set containing
N elements. Several approaches have been proposed to reduce the computation needed to
search over the entire data set. One approach is to restrict the search space by considering
only regions of a specific shape, such as circles (Kulldorff, 1997), ellipses (Kulldorff et al.,
2006), or rectangles (Neill and Moore, 2004). Other approaches reduce the number of subsets
under consideration by enforcing connectivity constraints between elements included in a
subset (Costa and Kulldorff, 2014; Duczmal and Assuncao, 2004; Duczmal et al., 2007;
Patil and Taillie, 2004; Speakman et al., 2015; Takahashi et al., 2008; Yiannakoulias et al.,
2007). These methods enable efficient computation of anomalous patterns but sacrifice both
detection power and spatial accuracy in comparison to unconstrained methods which do not
restrict the search space (Neill, 2012a).

One alternative to subset scanning for anomalous pattern detection is to fully model
dependence across spatially-distributed point observations using a geostatistical model, such
as a spatial generalized linear mixed model (SGLMM). Introduced in Diggle et al. (2002),
SGLMMs are a form of generalized linear model in which spatial dependence is modeled
with Gaussian processes across the spatial extent. While SGLMMs represent a powerful
tool for modeling spatial data, standard sample-based inference approaches on these models



1.1 Introduction 3

are computationally expensive and slow to converge (Haran, 2011). Further, SGLMMs do
not define a decision boundary around anomalous spatial regions, which is a practically
useful output for characterizing the extent of an affected region and thus enabling targeted
interventions.

Identifying patterns with arbitrary shape in the subset scanning framework is non-trivial
given the high number of patterns to consider. Methods that search over subsets with a fixed
geometric shape or impose connectivity constraints are not likely to accurately characterize
affected regions with irregular shapes or multiple disconnected components. Connectivity
may also be difficult to determine in contexts where no inherent graph structure is obvious.
Underconstrained patterns which are too disconnected or sparse may be similarly unrealistic.
Thus, recent developments in spatial scanning have focused on encouraging patterns which
are spatially compact while still allowing for detection of irregular shapes. Duczmal et al.
(2006) and Yiannakoulias et al. (2007) propose penalized score functions that discourage
highly irregular shapes based on measures of non-compactness or non-connectivity, but do not
provide a statistical framework for interpreting the penalized versions of the score functions.
Other approaches have applied multi-objective optimization algorithms to simultaneously
maximize a score function and minimize a geometric penalty function (Cancado et al., 2010;
Duarte et al., 2010; Duczmal et al., 2012; Moreira et al., 2015). These multi-objective
methods result in a set of non-dominated candidate patterns which must then be ranked by a
single objective function to obtain the most anomalous pattern. This ranking step presents
both computational and theoretical difficulties, as the set of candidates may be large and the
desired tradeoff between multiple objectives could be ill-defined across candidate patterns.

Neill (2012a) presents the fast subset scan (FSS), demonstrating that the most anomalous
unconstrained subset across an entire data set can be found both efficiently and exactly for
a family of score functions satisfying the Linear Time Subset Scan property. In practice,
the FSS framework may detect patterns which are spread across the spatial extent of the
study area and sparsely distributed among non-anomalous points. Several approaches to
imposing hard spatial constraints on FSS have been proposed, such as searching only over
local neighborhoods consisting of each location and its k�1 neighbors (Neill, 2012a), or
searching over locations connected by an underlying graph structure (Speakman et al., 2015).
Speakman et al. (2016) provides a structured approach to incorporating soft constraints into
the FSS framework with the penalized fast subset scan (PFSS), showing that one can apply
additive penalties and still maximize the penalized score function efficiently and exactly.
While PFSS gives us a framework for incorporating soft constraints, the question of how to
define penalty terms to encourage spatial compactness in detected patterns remains open.
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In this work, we present the support vector subset scan (SVSS), which detects anomalous
patterns in spatial data that are spatially coherent but potentially highly irregular in shape.
SVSS integrates PFSS with a kernel support vector machine (SVM) to encourage compact
subsets of locations. The SVM provides a natural solution to the problem of specifying
element-specific penalties for PFSS such that detected patterns are geometrically compact but
unconstrained in size, shape, or connectivity. SVSS benefits from the ability of PFSS to detect
subtle but significant anomalous patterns, while leveraging the SVM to identify coherent
spatial regions with a high density of anomalous points. This novel combination of two
proven methods results in a new approach for anomalous pattern detection that outperforms
each of the individual component methods. SVSS imposes soft constraints on FSS, which
encourage spatial compactness at the cost of a lower anomalousness score. In comparison to
the sparse patterns returned by FSS, SVSS finds compact patterns that are more suitable for
targeted intervention.

The SVSS algorithm proceeds iteratively, alternating between efficiently maximizing a pe-
nalized log-likelihood ratio (LLR) over subsets of locations, and learning a high-dimensional
decision boundary between locations included in and excluded from the anomalous subset.
Location-specific penalties are computed according to distance to the decision boundary and
added to the LLR score function, resulting in anomalous patterns which are spatially compact
and irregular in shape. This iterative method is guaranteed to converge to a locally-optimal
subset with respect to the biconvex SVSS objective function (Gorski et al., 2007). We apply
multiple random restarts to approach the global optimum of the SVSS objective.

In Section 1.2, we provide the statistical background motivating SVSS, then define the
SVSS optimization problem and algorithm. In Section 1.3.1, we evaluate SVSS on the task
of detecting letter-shaped anomalous patterns in simulated data and find that it significantly
outperforms competing methods at finding patterns which closely approximate the true
affected region. Using publicly available data sets, we demonstrate the method in three real
world contexts where spatial pattern detection is useful for guiding operations and policy
decisions in Sections 1.3.2-1.3.3. In the domain of disease surveillance, we apply SVSS to
West Nile Virus test results to identify disease clusters throughout the city of Chicago, IL.
For crime surveillance, we apply SVSS to characterize hotspots of street crime in Portland
OR. Finally, we apply SVSS to detect clusters of potholes in Pittsburgh, PA, demonstrating
the utility of the method for city services and management. We end with concluding remarks
in Section 1.4.
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1.2 Support vector subset scan (SVSS)

In this section, we describe a parametric scan statistic approach for spatial pattern detection
under weak distributional assumptions.

1.2.1 Background: Penalized fast subset scan (PFSS)

Consider the setting in which data set D includes a set of spatial coordinates xi for locations
(i = 1, ...,N). Let a 2 {0,1}N be a vector specifying a subset of locations, with ai = 1 if
location i is included in the subset and ai = 0 otherwise. Maximizing a score function over
subsets is performed by searching over values of the vector a and maximizing some score
function F(a). Neill et al. (2005) proposes a class of score functions called expectation-based
scan statistics, in which data set D also includes observed values (or “counts”) c and expected
values (or “baselines”) b of a random field indexed at locations. These location-specific
observations and expected values provide the basis for defining F(a) and determining
whether a subset is anomalous.

Let H1(a) be an alternative hypothesis that assumes an event occurring in the subset
defined by a causing increased values at those locations, and let H0 be the null hypothesis that
assumes no event occurring in the data set (or equivalently, that ai = 0 for all i). Following
Kulldorff (1997) and Neill et al. (2005), we define our score function as a log-likelihood ratio
(LLR) statistic F(a) = log(Pr(D|H1(a))/Pr(D|H0)). The expectation-based scan statistics
assume that under alternative hypothesis H1(a), values ci are drawn with mean qbi inside of
the region defined by a and mean bi outside of that region for some multiplicative constant
factor q > 1 known as relative risk. The expectation-based scan statistic is formulated as

F(a) = max
q>1

N

Â
i=1

ai
⇥

logPr(ci|qbi)� logPr(ci|bi)
⇤

(1.1)

Speakman et al. (2016) introduce the Penalized Fast Subset Scan (PFSS), observing that
for a fixed value of relative risk q, the LLR for the exponential family of expectation-based
scan statistics can be expressed as an additive set function over all locations included in a
subset:

F(a|q) =
N

Â
i=1

aili(q)

F(a) = max
q>1

F(a|q) = max
q>1

N

Â
i=1

aili(q)
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where li terms depend only on observed values ci, baselines bi, and relative risk q. Because
li(q) expressions can be derived for a variety of expectation-based scan statistics, this
additive score function is flexible in the underlying data distribution, making the assumption
that observed values ci are drawn from a distribution in the exponential family with finite first
moments. Further, the additive property of the score function enables addition of location-
specific penalty terms to the LLR, denoted as Di. Each Di can be interpreted as the prior
log-odds that location i is included in the affected subset. We express the penalized score
function as

Fpen(a) = max
q>1

N

Â
i=1

ai
�
li(q)+Di

�
(1.2)

where li(q)+Di represents the total contribution of location i to the score function. Con-
ditioning on a fixed value of relative risk q, the penalized score function can be optimized
over all subsets by including all and only those locations with a positive total contribu-
tion li(q)+Di. The score functions for expectation-based scan statistics can be optimized
efficiently by considering at most 2N distinct values of q (Speakman et al., 2016).

Specifically, Speakman et al. (2016) show that gi(q) = 0 for at most two values of q, and
we can compute a qmin

i and qmax
i for each location i such that gi(qmin

i ) = gi(qmax
i ) = 0 and

gi(q)> 0 for all qmin
i < q < qmax

i . We sort the set {qmin
1 , ...,qmin

N ,qmax
1 , ...,qmax

N }, remove any
duplicate values of q, then consider the disjoint intervals formed by consecutive values of
the sorted q. For each interval, we find the subset of locations with positive gi(q) over that
entire interval, then evaluate the score of that subset using the maximum likelihood estimate
for q given the subset. We then can optimize the penalized or unpenalized score function by
considering one value of q per interval,

PFSS thus provides an extremely flexible and computationally efficient framework for
scanning over subsets and incorporating soft constraints to encourage patterns with desirable
attributes. Yet the PFSS framework is not sufficient to obtain spatial coherence or compact-
ness in detected patterns. Because the penalty terms Di must be decided for each element
before optimizing the penalized LLR, there is no natural way of assigning element-wise
bonuses or penalties if we do not already know where the anomalous subset is likely to be.
PFSS is also limited because the penalties must be location-specific, precluding application of
an arbitrary prior over subsets to encourage more coherent regions. If the penalties depended
on other locations in the subset, we would not be able to perform the scan efficiently and
would have to exhaustively enumerate subsets. Thus, we must incorporate additional tools in
order to specify location-specific Di terms which promote compactness.
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1.2.2 Background: Support vector machines

To formulate Di terms for the PFSS framework, we turn to the support vector machine (SVM),
a popular algorithm for binary classification first proposed by Cortes and Vapnik (1995). The
SVM is trained on data elements consisting of feature vectors xi and positive or negative class
labels yi, finding the separating hyperplane between classes which maximizes the margin
between classes, or the distance between the hyperplane and the nearest data point on either
side.

A soft-margin SVM introduces slack variables xi and tuning parameter C to address the
case when the two classes are not linearly separable. Learning an SVM is formulated as
the following optimization problem, where weight vector w and intercept term w0 define
the separating hyperplane and f is a nonlinear transformation which maps x to a high-
dimensional feature space and allows a nonlinear decision boundary in the original space:

min
x ,w,w0

1
2
||w||2 +C

N

Â
i=1

xi

subject to xi � 0,8i = 1, ...,N

yi(w ·f(xi)�w0)� 1�xi,8i = 1, ...,N

This problem is typically optimized through its Lagrangian dual using algorithms for
efficiently solving quadratic programs. The dual formulation allows us to avoid the costly
computation of f by defining an easy-to-compute kernel function K such that K(xi,x j) =

hf(xi),f(x j)i. The SVM dual is then expressed as

max
µ

N

Â
i=1

µi�
1
2

N

Â
i=1

N

Â
j=1

µiµ jyiy jK(xi,x j)

subject to
N

Â
i=1

µiyi = 0

0 µi C,8i = 1, ...,N

The distance from any data element x j to the hyperplane in high dimensional space is
expressed as w ·f(x j)�b. Although we cannot evaluate the weight vector w after solving
the dual SVM problem, we can easily compute the distance from x j to the hyperplane defined
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by w and b in high dimensional space:

w =
N

Â
i=1

µiyif(x j)

w ·f(x j)�b =
N

Â
i=1

µiyif(xi)f(x j)�b

=
N

Â
i=1

µiyiK(xi,x j)�b

The SVM with Gaussian kernel results in a decision boundary with a potentially highly
irregular shape and multiple disconnected components, tending to demarcate high-density
regions of each class in the original feature space. As a supervised method, the SVM requires
locations to be labeled as belonging to one class or the other. In the context of spatial pattern
detection, it is not obvious how to assign labels for the SVM. One straightforward approach
is to apply a threshold to some function of location-specific counts and baselines to assign
class labels (included for comparison in Section 1.3.1). However, particularly for subtle
signals, a high proportion of points will initially be mislabeled, leading to an extremely noisy
classification problem and resulting poor performance. These considerations motivate our
SVSS approach which alternates between PFSS and SVM optimization steps: we iteratively
pick good thresholds for class labeling using the penalized score function from PFSS, then
specify location-specific penalty terms as distances to a SVM hyperplane within the PFSS
framework. The resulting patterns are spatially coherent but irregular in shape due to the
nonlinear decision boundary given by the kernel SVM.

1.2.3 SVSS optimization problem

With the kernel SVM, we now have the tools necessary to specify Di penalty terms for
PFSS in the context of unsupervised subset scanning. Given a fixed a which defines a
subset of locations, let yi = 2ai� 1 for all locations. Thus, our class labels yi 2 {�1,1}
represent inclusion or exclusion from the given subset defined by a , so that the SVM learns
a decision boundary to separate included from excluded locations. We formulate SVSS as
a modified version of the SVM optimization problem, while also minimizing over subsets
a and including the unpenalized LLR score function F(a) as an additional regularization
term. Alternatively, we could view this as a maximization of the penalized scan statistic,
optimizing F(a) with penalties from the SVM slack variables and the width of the margin.
We now have two tuning parameters C0 and C1, controlling the relative importance of these
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three factors.

min
a,x ,w,w0

1
2
||w||2 +C0

N

Â
i=1

xi�C1F(a)

s.t. ai 2 {0,1},8i = 1, ...,N

xi � 0,8i = 1, ...,N

(2ai�1)(w ·f(xi)�w0)� 1�xi,8i = 1, ...,N

Equivalently, we can express slack variables as a function of ai to obtain the SVSS optimiza-
tion problem.

min
a,x ,w,w0

1
2
||w||2 +C0

N

Â
i=1

xi(ai)�C1F(a) (1.3)

s.t. ai 2 {0,1},8i = 1, ...,N

xi(ai) =max(0,1� (2ai�1)(w ·f(xi)�w0))

This optimization problem is not convex, making computation of the global optimum
non-trivial. We optimize the SVSS objective by alternately (1) fixing the anomalous subset
a and optimizing w and w0 by training the SVM, then (2) fixing w and w0 and learning
an optimal subset a through a search over subsets to maximize the score function. This
alternating approach to minimization is guaranteed to give a convergent sequence for the
biconvex SVSS objective function, but does not necessarily find the global optimum (Gorski
et al., 2007). Thus, we use multiple restarts to randomly initialize the Di penalty terms and
take the optimal subset across all restarts (as measured by the combined objective) as our
anomalous pattern. SVSS iterates over two computationally efficient algorithms (PFSS and
SVM). Each iteration of PFSS is an O(N logN) operation. Computational complexity of the
RBF-kernel SVM scales between O(N2) and O(N3) and is dependent on the specific data set
and amount of regularization applied (Bottou and Lin, 2007). In practice, across a variety
of data sets, only a small number of iterations are needed for the algorithm to converge to a
local optimum. Algorithm 1 outlines the SVSS algorithm using Tmax random restarts.

For a given hyperplane specified by a fixed w and w0, we can optimize the SVSS objective
using the PFSS algorithm. Optimizing the SVSS objective for fixed w and w0 is equivalent to

argmax
a

F(a)�C0

C1

N

Â
i=1

xi(ai)
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Algorithm 1 Support Vector Subset Scan
procedure SVSS(c,b,x,Tmax,C0,C1) . Values c, expectations b,

min_score • and coordinates x
for t := 1 to Tmax do . Tmax random restarts

xi(ai) Uniform(�C0,C0),8i = 1, ...,N
while a is changing do

a  argmax
a

F(a)� (C0/C1)ÂN
i=1 xi(ai) . Optimize over a

x ,w,w0 argmin
x ,w,w0

1
2 ||w||2 +C0 ÂN

i=1 xi(ai) . Optimize over w,w0

end while
score 1

2 ||w||2 +C0 ÂN
i=1 xi(ai)�C1F(a)

if score < min_score then
min_score score
amin a

end if
end for
return amin

end procedure

where

xi(ai) =

8
<

:
max(0,1�w ·f(xi)+w0), 2ai�1 =+1)

max(0,1+w ·f(xi)�w0), 2ai�1 =�1)

Without changing the optimal solution, we can solve a modified problem with penalty
terms that are non-zero only for points included in the subset defined by a fixed a:

argmax
a

F(a)�C0

C1

N

Â
i=1

aiDi (1.4)

where

Di =max(0,1�w ·f(xi)+w0)�max(0,1+w ·f(xi)�w0)

=

8
>>><

>>>:

w ·f(xi)�w0 +1, w ·f(xi)�w0 � 1

2(w ·f(xi)�= w0), w ·f(xi)�w0 2 (�1,1)

w ·f(xi)�w0�1, w ·f(xi)�w0 �1

=[w ·f(xi)�w0 >�1](w ·f(xi)�w0 +1)+

[w ·f(xi)�w0 < 1](w ·f(xi)�w0�1)
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Fig. 1.1 Refinement of the detected pattern (shown in dark blue) across iterations of SVSS.
On the left, the pattern detected by the first iteration of the Fast Subset Scan includes many
points outside the true affected region. In the second (middle) and third (right) iterations,
points outside the SVM decision boundary are penalized and the detected pattern improves,
rapidly approaching the true affected region.

Because each penalty term Di depends only on spatial coordinates from location i and
not other locations, we can efficiently optimize (1.4) using the PFSS algorithm. Specifically,
for a fixed relative risk q, we include only those locations with a positive total contribution
to the objective function, and we maximize the objective over linearly many values of q as
discussed in Section 1.2.1.

Refinement of the detected pattern across iterations of the SVSS algorithm is demon-
strated in Figure 1.1. As the algorithm progresses, points outside of the SVM decision
boundary are penalized, resulting in patterns with spatial coherence. Figure 1.2 shows the
values of the penalty term D generated by SVSS on the final iteration of the algorithm across
the spatial region surrounding a simulated anomalous pattern. Figure 1.3 shows the patterns
returned by SVSS and circular scanning windows in the presence of both hot spots (with
increased counts relative to baseline) and cold spots (with decreased counts). The presence
of a cold spot contained within the hot spot does not affect the ability of SVSS to detect
the surrounding hot spot, but the cold spot forces the circular scan to identify only a small
portion of the true hot spot. While this work focuses on applying SVSS for detecting hot
spots with elevated values, the method can also be applied for cold spot detection with a
minor change to the log-likelihood ratio specification.

1.2.4 Ranking disconnected regions

As previously noted, the decision boundary learned by an SVM may result in multiple
disconnected components, allowing the SVSS algorithm to return anomalous patterns with
multiple disjoint regions. In the subset scanning framework, it is reasonable to consider
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(a) (b)

Fig. 1.2 (a) Binary classification with kernel SVM on final iteration of SVSS. SVM decision
boundary shown in black. (b) Penalty surface learned on final iteration based on distance to
separating hyperplane.

these regions as a single anomalous pattern, because the problem formulation assumes a
constant relative risk q across the entire pattern. However, for some applications, we may
seek to further search over components of our pattern to find the most anomalous component
across disconnected regions of our pattern. To accomplish this, we optimize the penalized
LLR Fpen(a) over components of the final SVM decision boundary as a post-processing
step. We can also consider the convex hull of a connected component in the grid in order to
evaluate geometric characteristics of the region, such as the compactness measure discussed
in Section 1.3. We demonstrate this ranking approach to connected components in Sections
1.3.2 and 1.3.3.

After running SVSS to obtain an optimal pattern, we take the following approach to find
disjoint components of the pattern. We first overlay a grid of equally-spaced points over
our spatial extent, and classify points using the SVM classifier learned on the final iteration
of SVSS. We then find the connected components within the grid belonging to the positive
(anomalous) class. Locations in the optimal pattern detected by SVSS are assigned to the
connected component of the nearest point from the grid overlay. The resolution of the grid
overlay is selected such that any disjoint components separated by less distance than the grid
resolution can be practically considered a single pattern component.

1.2.5 Tuning parameters

The SVSS optimization problem includes several parameters which must be selected ahead
of time. C0 is a regularization parameter which controls the impact of misclassification
on the overall objective function during the SVM step. With higher C0, the SVM learns a
more complex decision boundary to avoid misclassifications, giving patterns that are more
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Cold Spot Hot Spot Unaffected

(a)

Undetected Detected

(b)

Undetected Detected

(c)

Fig. 1.3 Anomalous patterns detected by two methods in the presence of both hot spots and
cold spots. (a) True labels of spatial locations, with hot spots shown in red and cold spots
shown in green. (b) Pattern detected by SVSS. (c) Pattern detected by the circular scan. The
presence of a cold spot forces the circular scan to identify only a portion of the true affected
region, while SVSS is able to closely approximate the spatial extent of the affected region.

irregular in shape. Similarly, the kernel function chosen for the SVM step may have a tuning
parameter which affects the shape of the decision boundary such as the bandwidth parameter
for a Gaussian kernel. C1 should be chosen in relation to the value of C0, as the ratio C0

C1

controls the scale of the penalty terms relative to the LLR in the PFSS.
In practice, the choice of parameters can have a significant impact on the shape and size

of the patterns returned by SVSS. High values of C0 and low values of Gaussian kernel
bandwidth parameter can result in highly irregular and elongated patterns that are unrealistic
and likely capture noise in the data rather than true anomalous patterns. A procedure is
needed for selecting parameter values that avoids overfitting to noise in the data while still
enabling SVSS to capture truly irregular affected regions. To tune the SVSS parameters, we
perform 10-fold cross-validation and choose the set of parameters that results in the highest
average anomalousness score on held-out data. Specifically, we choose the parameters which
maximize the average unpenalized LLR for points classified as anomalous by the SVM
trained in the final iteration of SVSS, since LLR on the held-out data corresponds to how well
the identified SVSS decision boundary (for particular parameter settings) captures the latent
risk surface. By optimizing on multiple held-out data folds, we prevent overfitting to noise
and the complexity of the resulting patterns reflects the true underlying spatial distribution.
For a fixed data set, we observe minimal variation in the optimal values of C0 and C1 selected
across multiple random restarts, providing evidence that the optimal parameter choices are a
function of patterns in the true underlying data distribution. We therefore reduce computation
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time by completing the parameter tuning step a single time rather than tuning parameters
separately for each restart.

1.3 Evaluation and Results

Evaluation of pattern detection methods on real world data can be difficult, given that we
often do not know the true affected region that we hope to capture with the detected patterns.
We evaluate the performance of SVSS and other pattern detection methods on simulated
experiments where ground truth is known, then demonstrate SVSS in three real world pattern
detection settings using real data.

1.3.1 Detecting letter-shaped simulated patterns

To evaluate our method in an experimental setting, we generate patterns of varying size,
shape, and intensity in simulated data. On each run of the simulation, we draw 2000 locations
uniformly at random across a rectangular study area. To generate patterns of irregular shape,
we insert an affected region within the study area with shape matching a letter from the
English alphabet. Each location has an observed count ci drawn from the Poisson distribution,
with counts outside the affected region drawn ci ⇠ Poisson(100) and counts inside the region
drawn ci ⇠ Poisson(100+ intensity). Each location has a fixed baseline bi = 100. We report
average performance across 1300 simulations (50 simulations for each of the 26 letters in the
uppercase English alphabet) for each pattern size under consideration, ranging from 1% to
20% of the study area. We tune parameters for SVSS using the cross-validation procedure
outlined in Section 1.2.5. For all data sets considered, we observe minimal variation in the
subsets returned and the LLR of optimal subsets across multiple, randomly initialized restarts
for SVSS, and we therefore fix the number of restarts at 10 for all experiments. We compare
the performance of SVSS with five other methods for spatial pattern detection: the circular
scan statistic (Kulldorff, 1997), upper level set scan statistic (ULS) (Patil and Taillie, 2004),
the fast subset scan (FSS) (Neill, 2012a), DBSCAN with thresholding (Ester et al., 1996),
and the Kernel Support Vector Machine (kSVM) with thresholding. Implementation details
for these methods are included in Appendix 1.A. All experiments were run in MATLAB
R2016a.

For the circular scan, ULS, FSS, and SVSS, we apply the expectation-based Poisson scan
statistic to formulate the LLR. We evaluate the performance of all methods at capturing the
true affected region with the top pattern returned using precision and recall. Precision is
defined as the proportion of points in the top pattern that lie in the true affected region, or
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the number of true positives divided by the number of true and false positives. Recall (or
true positive rate) is defined as the proportion of points in the true affected region that are
included in the top pattern, or the number of true positives divided by the number of true
positives and false negatives.

We first report summary statistics from the six pattern detection methods on individual
samples from three different signal intensities. For a pattern S returned by one of the scanning
algorithms, we report the number of locations included in the pattern (nS) and the unpenalized
log-likelihood ratio (LLR) and the maximum likelihood estimate of the relative risk qMLE

as two measures of anomalousness. We also adopt a measure of geometric compactness
presented in Duczmal et al. (2006). For a zone z, the geometric compactness K(z) is defined
as the area of z divided by the area of the circle with the same perimeter as the convex hull of
z. This measure of compactness is highest for circles (K(z) = 1), and low for shapes that are
highly irregular in shape. K(z) depends only on the shape of the zone but is independent of
its size. K is highest for circles (K = 1) and low for shapes that are highly irregular in shape.
We only report K for the circular scan and SVSS, as this measure evaluates compactness
of shapes and cannot be computed over sets of points returned by FSS and ULS. We also
introduce an alternate measure of compactness, Kpoint , which operates on sets of points and
allows us to compare compactness across all six detection methods. To compute Kpoint ,
we first find the Voronoi polygons for all spatial locations in the data set, then clip these
polygons to the convex hull of the pattern under evaluation and dissolve any shared edges
between polygons belonging to points in the pattern. Kpoint is then computed as the area
of the polygons covering our pattern divided by the area of the circle with the same total
perimeter as these polygons, giving a point-based measure analogous to K. Kpoint is close to
1 for patterns that are roughly circular in shape and not dispersed among points excluded
from the pattern. Patterns which are elongated or spread out among excluded points have a
low compactness as measured by Kpoint .

Pattern characteristics of the top patterns returned by all methods for three samples are
reported in Table 1.1. Across samples of varying pattern intensity, SVSS scores highest on
compactness metrics K and Kpoint . While methods such as FSS and ULS tend to find patterns
with higher LLR and qMLE , these methods score poorly on compactness, indicating that the
detected patterns are sparse and may be sensitive to observations that are elevated due to
random noise. With respect to computation time, SVSS is faster than the circular scan and
ULS across all pattern intensities, but is slower than DBSCAN, FSS, and kSVM, indicating
that the ability to detect spatially compact patterns comes at the expense of an increase in
computation time relative to less-constrained detection methods.
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Table 1.1 Summary statistics of detected patterns for simulated regions across three signal
intensities: affected regions have 10%, 25%, and 50% increase in expected counts relative
to unaffected regions. Statistics are shown for individual samples from each intensity with
affected region shaped like the letter “A”.

nS CPU Time (sec)

10% 25% 50% 10% 25% 50%

Circular scan 302 402 496 17.6 17.9 18.2
ULS 744 320 373 55.6 53.7 52.1
FSS 564 511 392 0.29 0.22 0.23
DBSCAN 78 259 377 0.21 0.24 0.2
kSVM 413 550 614 0.55 0.52 0.45
SVSS 236 356 372 15.8 13.3 10.6

LLR qMLE

10% 25% 50% 10% 25% 50%

Circular scan 74.8 398.8 1579.8 1.07 1.14 1.26
ULS 433.2 1157.1 4017.1 1.09 1.28 1.50
FSS 616.8 1346.6 4041.1 1.18 1.24 1.49
DBSCAN 252.7 1092.6 3734.6 1.27 1.30 1.48
kSVM 540.0 1301.4 3626.8 1.17 1.22 1.36
SVSS 147.3 1067.9 3925.4 1.11 1.25 1.49

K Kpoint

10% 25% 50% 10% 25% 50%

Circular scan 1.00 1.00 1.00 0.83 0.86 0.88
ULS - - - 0.01 0.03 0.12
FSS - - - 0.01 0.01 0.08
DBSCAN - - - 0.01 0.01 0.06
kSVM - - - 0.01 0.01 0.01
SVSS 0.45 0.48 0.48 0.17 0.13 0.15
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.4 Average precision (left) and recall (right) of six scanning algorithms on detection of
letter-shaped patterns of varying size (proportion of study area) in simulated data. Results
are shown for three different signal intensities: points in the affected region have a 10% (top),
25% (middle), and 50% (bottom) increase in expected counts.



18 Support Vector Subset Scan

(a) (b) (c)

Fig. 1.5 Average overlap of six scanning algorithms on detection of letter-shaped patterns
of varying size (proportion of study area) in simulated data. Results are shown for three
different signal intensities: points in the affected region have a 10% (left), 25% (middle), and
50% (right) increase in expected counts.

For the circular scan, ULS, FSS, and SVSS, we apply the expectation-based Poisson
scan statistic to formulate the LLR. We evaluate the performance of all methods at capturing
the true affected region with the top pattern returned using precision, recall, and overlap.
Precision is defined as the proportion of points in the top pattern that lie in the true affected
region, or the number of true positives divided by the number of true and false positives.
Recall (or true positive rate) is defined as the proportion of points in the true affected region
that are included in the top pattern, or the number of true positives divided by the number of
true positives and false negatives. Overlap is a measure of similarity between the top pattern
and the true affected region, defined as the number of points in the intersection divided by
the number of points in the union of the pattern and true affected points.

Precision and recall for patterns with three different signal intensities are reported in
Figure 1.4. For patterns with a 25% increase in expected counts relative to unaffected points,
we find that both SVSS and kSVM significantly outperform the other methods on precision
for the majority of pattern sizes under consideration, indicating that points included in the top
SVSS pattern are very likely to be in the true affected region for all but the smallest patterns
considered. SVSS outperforms kSVM on pattern sizes larger than 7.5% of the study area.
SVSS demonstrates high recall for patterns large and small, outperforming kSVM and the
circular scan across all pattern sizes and outperforming all methods on pattern sizes larger
than approximately 10% of the study area. Recall diminishes slightly for the circular scan,
FSS, and ULS as patterns increase in size, but SVSS maintains a recall close to 1 even as
patterns grow large. Although kSVM demonstrates comparable performance to SVSS with a
25% signal intensity, recall of kSVM drops significantly on patterns with weaker signals.
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On weaker patterns with a 10% signal intensity, SVSS and kSVM still outperform
competing methods on precision for most of the range of pattern sizes under consideration.
Recall of kSVM drops dramatically on the weaker signal relative to signal intensity of 25%.
SVSS is beaten by ULS on recall, but significantly outperforms kSVM on recall on the 10%
signal intensity. These results suggest that even on relatively weak signals, locations returned
by SVSS are very likely to be in the true affected region. The high precision of SVSS on
weak signals comes at the expense of suboptimal recall, but the drop in recall is smaller
than for other high-precision methods like kSVM. With stronger signals (e.g., 50% signal
intensity), both SVSS and ULS demonstrate high performance across the range of pattern
sizes considered and across both evaluation metrics.

Overlap for patterns with three different signal intensities is reported in Figure 1.5. On
weaker patterns with a 10% signal intensity, SVSS shows a clear advantage over all competing
methods for all but the smallest patterns. The circular scan outperforms SVSS for the smallest
patterns, as patterns made up of only small number of clustered locations are naturally well-
approximated by a circular scanning window. On patterns with a 25% signal intensity, kSVM
and SVSS perform similarly with respect to overlap, with SVSS slightly outperforming
kSVM on larger patterns. Finally, on stronger patterns with a 50% signal intensity, SVSS
and ULS both perform extremely well, with the top pattern from both methods overlapping
the true affected region almost perfectly across all but the smallest patterns. Of particular
note is that kSVM does not perform as well as SVSS or ULS for patterns with the strongest
intensities. While kSVM and ULS both give comparable performance on specific signal
intensities, SVSS outperforms other methods on overlap across the full range of signal
intensities considered. These results provide compelling evidence that SVSS represents a
flexible pattern detection method that can applied for identification of both subtle and strong
anomalous patterns. In comparison, competing methods either demonstrate comparable
performance across all signal intensities (e.g., circular scan, DBSCAN), or perform relatively
well on a narrow range of signal intensities (e.g., kSVM, ULS, FSS).

1.3.2 Detecting disease clusters

In the domain of disease surveillance, we demonstrate detection of disease clusters in
mosquito pools tested for West Nile Virus (WNV), using data made publicly available by
the Chicago Department of Public Health (CDPH) through the City of Chicago Data Portal.
Measuring presence of WNV in mosquitoes, a relatively short-lived vector for infection,
gives a useful approach to identifying spatial and temporal trends in disease risk throughout
a susceptible region (Lampman et al., 2013). Patterns returned by SVSS and other scanning
methods indicate the spatial clusters where the proportion of positive test results were
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Table 1.2 Summary statistics of top West Nile Virus clusters.

nS
CPU Time
(seconds) LLR qMLE qCV K Kpoint

Circular scan 30 0.64 70.8 1.66 1.21 1.00 0.86
ULS 20 0.34 91.8 1.76 - - 0.10
FSS 25 0.08 116.9 1.84 - - 0.06
DBSCAN 15 0.16 59.2 1.75 - - 0.15
kSVM 14 0.16 105.5 1.95 1.32 - 0.10
SVSS 13 7.40 97.3 1.87 1.36 0.62 0.17

elevated with respect to the citywide average over this period, which can help the CDPH
target mosquito control programs. Mosquito management is typically implemented through
the use of chemical pesticides. Accurately characterizing the spatial regions where the
disease is most prevalent in mosquitoes and the risk of transmission to humans is highest can
minimize the application of mosquito control measures which may have harmful effects on
the ecological health of the treated areas.

Mosquito pools throughout the city are tested regularly for presence of WNV by the
CDPH, with individual locations often tested multiple times a year over the course of several
years. The expectation-based binomial scan statistic is appropriate in this setting due to the
number of total tests varying across spatial locations. Each location thus has an observed
count of positive test results ci, an expected number of positive tests bi, and a total number of
tests ni. We aggregate observed counts and total number of tests at each test location for a
period of over 11 years from June 1, 2007 through September 30, 2018. For the expected
number of positive tests, we compute an overall rate of positive test results by aggregating
tests across the entire city and the entire study period, then multiply this average rate by
the number of total tests ni at each location. We thus assume a uniform rate of positive test
results across test locations under the null hypothesis.

Figure 1.6 shows the top patterns detected by six detection algorithms under comparison.
The circular scan is constrained in shape and approximates the shape of the true affected
region, either with an overly large circle surrounding the affected locations, or with an overly
small one identifying only a piece of the affected region. In comparison, SVSS has improved
power to detect disease clusters that are elongated or irregular in shape. For example, the
top WNV cluster detected by SVSS (Figure 1.6f) roughly conforms to sections of two major
rivers in North Chicago, overlapping significant portions of the forest preserves adjacent to
these rivers. FSS and ULS find patterns that are spread more widely throughout the study
area and interspersed with non-anomalous points.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.6 Clusters of West Nile Virus detected by six pattern detection algorithms in Chicago,
IL. (a) Circular scan. (b) Upper level set scan. (c) Fast subset scan. (d) DBSCAN with
thresholding. (e) Kernel support vector machine with thresholding. (f) Support vector subset
scan.
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The top patterns returned by each method are characterized in Table 1.2. SVSS finds
a pattern with a higher LLR and relative risk qMLE than the circular scan and DBSCAN.
For additional validation of the detected patterns, we also compute the held-out relative
risk qCV by holding out points from the pattern detection methods through 10-fold cross
validation, and computing the relative risk of all points that fall within the anomalous pattern
decision boundary produced by running the detection method on the other 9 folds. The
held-out relative risk values provide evidence that the patterns discovered are meaningful
with respect to unseen data or locations not provided to the detection method. For both all
methods for which we can compute qCV based on the detected decision boundary, we find
relatively high values that provide out-of-sample validation of the detected patterns, with
SVSS outperforming the circular scan and kSVM on this out-of-sample validation measure.

As measured by Kpoint , the SVSS pattern is more compact than the patterns found by
all methods except the circular scan, while still maintaining high relative risk and LLR
comparable to ULS. FSS finds the unconstrained subset with the highest LLR but at the
cost of low compactness. While other methods trade off compactness for high LLR or vice
versa, the pattern returned by SVSS scores highly on both objectives. The higher spatial
compactness of the SVSS pattern comes at the cost of higher computation time relative to
other methods under comparison.

This analysis applied SVSS in order to detect spatial patterns over a single fixed time
window, but the method can be easily extended to track changes in disease hot spots over
time by updating the observed and expected values at each location as new data is received.
Baseline values can be computed based on pre-outbreak levels, or continually updated based
on recent trends to assess where new hot spots are occurring or where existing ones are
spreading. This flexibility in definition of baseline values makes SVSS well-suited for
problem settings where it is necessary to characterize the changes in anomalous patterns over
time.

1.3.3 Detecting crime hot-spots

Next, we apply SVSS in the context of crime surveillance using calls-for-service records from
Portland, OR. These records were made publicly available by the Portland Police Bureau
(PPB) for the National Institute of Justice’s Real-Time Crime Forecasting Challenge. We
restrict our analysis to calls-for-service relating to “street crime” as categorized by the PPB,
which includes assaults, robberies, shootings, stabbings, and vice-related crimes, among
other crime types. We aggregate geotagged CFS records to 1000 foot square grid cells, and
estimate location-specific expected counts using the time series for each cell. Specifically,
we compute expected counts as an an average annual count of street crimes for each grid cell
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using data from the three year period from March 2012 through February 2015. Observed
counts are aggregated over the following year, from March 1, 2015 through February 29,
2016. We use the expectation-based Poisson scan statistic for all six methods. Patterns
returned by SVSS and other scanning methods indicate spatial regions where observed crime
in the most recent year of data was elevated relative to expected counts estimated from the
previous three years. Such regions could indicate newly emerging hot-spots of crime, e.g.,
due to changing neighborhood composition, new patterns of gang or other criminal activity,
crime attractors such as bars or liquor stores, or other structural changes. While police
departments are typically aware of neighborhoods with chronically high levels of crime, they
may not be aware of newly emerging hot-spots which could be effectively targeted for crime
prevention.

The crime patterns from six pattern detection algorithms are displayed in Figure 1.7, with
summary statistics reported in Table 1.3. The circular scan finds a circular pattern covering
much of Downtown and East Portland on either side of the Willamette River. The SVSS
pattern is situated in roughly the same area of Southeast Portland as the circular scan pattern,
but is highly irregular in shape and extends eastward to to encompass the Hawthorne District,
a popular commercial strip known for its bohemian vibe and vintage clothing stores. While
not a particularly high-crime area as compared to downtown Portland, the high foot traffic
and store density in this area provide ample opportunity for larceny that could be prevented
through targeted police patrols. The SVSS pattern has higher LLR and relative risk when
compared with the circular scan. FSS and ULS both result in large patterns that span most
of the city, with higher LLR than SVSS but extremely low relative compactness. The large
size and relative sparsity of these patterns indicate that FSS and ULS are badly overfitting.
The methods are not sufficiently constrained to produce coherent subsets, so they just pick
out many individual points throughout the study region with high counts due to chance. As
an additional evaluation metric, we report the count of street crimes per cell for the year
following the test period, from March 1, 2016 through February 28, 2017. We find that
the SVSS pattern resulted in the highest crimes per cell across all six methods in the year
following the test period. Even though FSS and ULS pick out points with high relative risk
in the training data (comparable to SVSS), the points chosen by SVSS have much higher
crime rate in the subsequent year’s data and thus seem to be a much better target for proactive
police patrols.

1.3.4 Detecting pothole clusters

For our final application, we apply SVSS in the domain of city services and management to
detect clusters of pothole complaints in Pittsburgh, PA. Our data set for this analysis consists
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.7 Clusters of street crime detected by detected by six pattern detection algorithms in
Portland, OR. (a) Circular scan. (b) Upper level set scan. (c) Fast subset scan. (d) DBSCAN
with thresholding. (e) Kernel support vector machine with thresholding. (f) Support vector
subset scan.
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Table 1.3 Summary statistics of top street crime clusters.

CPU
Time Next-year

nS (seconds) LLR qMLE crimes/cell K Kpoint
Circular scan 347 36.4 257.4 1.26 29.9 1.00 0.910
ULS 1102 171.7 986.3 1.39 17.0 - 0.005
FSS 945 0.3 1687.5 1.77 11.0 - 0.002
DBSCAN 536 0.2 1311.2 2.69 4.8 - 0.003
kSVM 1252 6.6 1310.3 1.48 13.7 - 0.003
SVSS 115 379.6 420.0 1.62 32.4 0.23 0.027

of publicly available call records from Pittsburgh’s 311 system. People living in Pittsburgh
can call the 311 telephone center to notify the city of any non-emergency issues, including
requests for service related to road deterioration. Potholes represent one of the most common
issues reported to the city, with pothole reports making up 13.1% of all 311 calls between
2016 and 2018. Detecting clusters in these reports has the potential to help public works
agencies in Pittsburgh and other cities identify and efficiently respond to emerging clusters
of potholes.

We aggregate counts of pothole reports to city blocks, using a two-year period from
January 1, 2016 through December 31, 2017 to estimate a city-wide average annual count of
potholes. As in the disease outbreak detection context, we thus assume a uniform baseline
rate of pothole reports under the null hypothesis. We find observed counts for each city
block from January 1, 2018 through December 31, 2018, and apply the expectation-based
Poisson scan statistic to search for spatial regions with elevated counts of potholes in 2018 in
comparison to the previous two years. Such clusters could indicate newly emerging regions
in need of attention due to weather events or recent shifts in traffic patterns contributing to
road surface deterioration, helping public works agencies plan and prioritize future road
maintenance projects.

For this analysis, we demonstrate an alternate approach to finding irregular patterns
with SVSS that may have multiple disconnected regions. In many real-world use cases for
pattern detection, multiple affected regions exist in the same data and we therefore would
benefit from a method for both detecting and prioritizing over many anomalous clusters. If
desired for operational purposes, SVSS allows users to rank the disconnected regions by
the unpenalized log-likelihood ratio statistic and choose k components to include in order
to retrieve an anomalous pattern of the desired scale (Higher k leading to a larger pattern
consisting of more disconnected but individually compact regions). Instead of selecting the
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Table 1.4 Summary statistics of top pothole clusters.

nS
CPU Time
(seconds) LLR qMLE qCV K Kpoint

Circular scan 497 28.3 2038.0 4.48 4.15 1.00 0.876
ULS 1096 140.3 6128.3 5.22 - - 0.006
FSS 642 0.3 9182.2 8.78 - - 0.003
DBSCAN 1607 0.2 7635.4 4.81 - - 0.003
kSVM 1805 2.0 4242.2 3.48 3.26 - 0.076
SVSS 111 131.4 2272.3 10.91 4.12 0.42* 0.030*

* denotes average over top five disjoint components.

single top component from the connected components of the SVM decision boundary as
discussed in Section 1.2.4, here we include the top 5 disconnected components of the pattern
returned by SVSS. Public works agencies could scale a proposed infrastructure project up or
down based on operational constraints by increasing or decreasing the number of disjoint
components to include.

Figure 1.8 displays the top pothole clusters returned by six pattern detection methods,
and Table 1.4 provides summary statistics for these patterns. For the compactness measures,
we report the average compactness across top 5 components for SVSS. As discussed above,
SVSS returns a pattern consisting of multiple disconnected regions. This pattern has the
highest relative risk among the detection methods under comparison, and higher LLR than
the circular scan pattern. The held-out relative risk qCV of both SVSS and the circular
scan are comparable and higher than that of kSVM. The individual components of SVSS
correspond to highly trafficked roads and intersections throughout Pittsburgh that are subject
to high rates of wear and degradation, with 4 of the 5 components overlapping one or
more public bus routes. The disconnected regions which make up the SVSS pattern are
elongated due to the underlying spatial structure of the road network. Yet these regions
are still individually compact, as indicated by the high average geometric compactness
measures relative to the sparse and underconstrained patterns found by ULS and FSS. As
in the previous two applications, SVSS scores relatively highly on both compactness and
measures of anomalousness, resulting in patterns that are highly anomalous but still spatially
coherent.
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(a) (b)

(c) (d)

(e) (f)

Fig. 1.8 Clusters of potholes detected by six pattern detection algorithms in Pittsburgh, PA. (a)
Circular scan. (b) Upper level set scan. (c) Fast subset scan. (d) DBSCAN with thresholding.
(e) Kernel support vector machine with thresholding. (f) Support vector subset scan.
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1.3.5 Discussion of real-world case studies

In all three of the above case studies, the literature reveals multiple distinct environmental
factors that can drive West Nile Virus, crime, or potholes respectively. Thus, these factors do
not clearly indicate which part of the city to target with public health, law enforcement, or
road maintenance interventions respectively, while our approach precisely localizes a spatial
area that can benefit from targeted intervention.

For West Nile Virus, Culex species mosquitos which transmit the virus can breed in a
variety of stagnant water sources, including low places with poor drainage, urban catch basins,
roadside ditches, sewage treatment lagoons, and manmade containers around houses (Ruiz
et al., 2007). A variety of other factors including temperature, humidity, rainfall, surface
permeability, and bird migration patterns were also identified as predictive (Hernandez et al.,
2019). Human WNV cases in a 2002 outbreak in Chicago were found to be associated with
higher percentages of vegetation in a census tract, and areas in Chicago’s inner suburbs were
found to have higher human WNV rates than either the outer suburbs or the urban center (Ruiz
et al., 2007). Thus the prior literature supports our identification of certain forest preserve and
river areas as WNV hot spots but does not necessarily point to these particular areas in North
Chicago. Similarly, the literature on crime prediction reveals that chronic hot spots of crime
are often found in large commercial areas and nearby residential areas (Fitzpatrick et al.,
2019), and while the Hawthorne District is one well-known commercial district of Portland,
there was no reason to expect a priori that this particular strip would exhibit a flare-up of
property crimes in the particular year of data under analysis. Finally, predictive factors for
pothole formation include weather (temperature and freeze-thaw cycles), pavement condition,
and traffic loads (Sadeghi et al., 2016). An analysis by the Metropolitan Transportation
Commission (MTC, June 2011) estimates that buses and other large vehicles create thousands
of times more physical stress on pavements per trip as compared to passenger vehicles,
supporting our discovery of spatial clusters of potholes in particular, heavily trafficked bus
routes in Pittsburgh.

1.4 Conclusions

In this chapter, we introduce the support vector subset scan (SVSS), a novel method for
detecting anomalous patterns in spatial data that are spatially compact and irregular in shape.
SVSS integrates soft spatial constraints into the fast subset scan, rewarding patterns with
spatial coherence. As demonstrated above in the contexts of disease outbreak detection,
crime surveillance, and city services and management, SVSS provides a flexible framework
for spatial pattern detection in a variety of problem settings where detection and characteri-
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zation of coherent anomalous patterns in spatial data has demonstrable real-world benefits.
Characteristics of patterns returned by SVSS may also be helpful as features in predictive
models related to the spatial data in question. For example, grid cells returned by SVSS as
part of crime clusters reported more crime in the following year than those returned by other
pattern detection methods. In future work, the authors plan to further evaluate how inclusion
of SVSS cluster attributes can improve prediction models in areas of public health and safety.

Appendix 1.A Implementation Details

As discussed in Section 2.1, Speakman et al. (2016) provide the expressions for the log-
likelihood ratio statistics li(q) for the expectation-based binomial scan statistic (EBB, used
in Section 3.2), the expectation-based Poisson scan statistic (EBP, used in Sections 3.1, 3.3,
and 3.4) and others in the exponential family. We include the expressions for li(q) in Table
1.5 for ease of reproducibility. We also report optimized parameter values for the three SVSS
tuning parameters used in the experiments in Sections 3.2-3.4 in Table 1.6.

To evaluate our method in an experimental setting, we generate patterns of varying size,
shape, and intensity in simulated data, and compare precision and recall of SVSS with five
other methods for spatial pattern detection:

• The circular scan statistic, which searches over N2 total circles and returns the circle
with the highest log-likelihood ratio (LLR). For each location, we evaluate the N circles
of increasing radius centered at the location, such that each successive circle grows to
include one additional neighboring point (Kulldorff, 1997).

• The upper level set scan statistic (ULS), which searches over connected components
of all possible upper level sets with respect to the ratio of observed values to baselines.
ULS searches over tessellated cells rather than points, so we construct a Voronoi
tessellation from points in space as a pre-processing step (Patil and Taillie, 2004).

• The fast subset scan (FSS), which returns the subset of locations which maximizes the
unpenalized LLR (Neill, 2012a).

• DBSCAN with thresholding, a clustering algorithm that finds high-density clusters of
arbitrary shape (Ester et al., 1996). Only with locations with count-to-baseline ratios
above a fixed threshold are clustered. The threshold and DBSCAN parameters are
selected to optimize anomalousness (LLR) of the top cluster. The single cluster with
highest LLR is considered as the pattern returned by DBSCAN.
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• Kernel Support Vector Machine (kSVM) with thresholding, which applies a threshold
to the ratio of counts to baselines for each location, then trains an SVM with a
Gaussian kernel to learn a nonlinear decision boundary between points above and
below the threshold. The threshold and SVM parameters are chosen using 10-fold
cross-validation to optimize the anomalousness score (LLR).

Table 1.5 Location-specific contributions to the score function for expectation-based statistics
in the exponential family. See (Speakman et al., 2016) for full derivations.
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Table 1.6 Parameter values for Support Vector Subset Scan on real world data sets.

Data Set

Gaussian
kernel

bandwidth C0 C1
Chicago West Nile 0.09 50 100
Portland street crime 0.03 100000 200000
Pittsburgh potholes 0.03 1000 2000



Chapter 2

Assessing Risk of Opioid Misuse from
Prescription Drug Monitoring Data1

2.1 Introduction

Prescription drug misuse has rapidly become one of the most common forms of illicit drug
use in the United States, with an estimated 1.7 million people suffering from prescription pain
reliever use disorder and an estimated 9.9 million people misusing prescription pain relievers
at least once in 2018 (Lipari and Park-Lee, 2018). Rates of drug overdose deaths caused by
prescription opioids have been increasing year-over-year since the 1990s, reaching a peak of
13.4 deaths2 per 100,000 people in 2017, the most recent year reported by the Centers for
Disease Control and Prevention (CDC) (Hedegaard et al., 2018). 75% of heroin users report
that their first experience with opioids was a prescription pain reliever (Cicero et al., 2014).
Opioids nonetheless represent an important option for clinicians in the mitigation of chronic
pain. In a 2015 literature review, Vowles et al. found that rates of addiction averaged between
8-12% for patients being prescribed opioids for chronic pain, suggesting an outstanding need
for accurate assessment of risk for patients presenting with symptoms of chronic pain to
clinicians.

The rise in abuse of prescription pain relievers coincided with an increase in legitimate
prescription of opioids in the 1990s and early 2000s for addressing chronic pain (Kuehn,
2007). Rigg et al. (2010) identify a set of practices contributing to the abuse and diversion
of prescription opioids in this period. So-called “pill mills” enabled patients to request
specific medications, accepted cash as the only form of payment, and engaged in aggressive

1This chapter is based on joint research with Daniel B. Neill. We wish to acknowledge Fan Xiong (Kansas
Department of Health) for providing data and domain expertise for this study.

2Excluding deaths from heroin and methodone overdose.
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advertising campaigns to attract customers. On-site pharmacies simplified the process of
obtaining prescription drugs for patients and facilitated obtaining prescriptions from multiple
doctors. Liberal prescribing habits meant that patients could easily obtain a prescription for a
much higher dose or a stronger drug than what was needed for their symptoms. Sponsored
drug diversion was the practice of individuals sharing the cost of a doctor’s visit and prescrip-
tion and splitting the drugs afterwards. A lack of regulatory oversight enabled doctor and
pharmacy shopping, in which patients obtained prescriptions from to multiple prescribers
simultaneously or sought out those with liberal prescribing tendencies. Falsification of symp-
toms was common among patients seeking to obtain a prescription without any legitimate
source of chronic pain. These practices all contributed to a historic rise in the abuse of
prescription opioids, leading to corresponding increases in cases of substance abuse disorder
and overdose deaths from opioids (Hedegaard et al., 2018).

In recent years, federal and state governments have taken measures to curb the unsafe
prescribing practices that proliferated in the past three decades. In 2017, the U.S. Depart-
ment of Justice formed the Opioid Fraud and Abuse Detection Unit, with the express goal
of increasing surveillance of opioid-related healthcare fraud and prosecuting individuals
contributing to the prescription opioid epidemic (DOJ, 2017). At the state level, prescription
drug monitoring programs (PDMPs) have been deployed in 49 out of 50 U.S. states. These
programs maintain a statewide electronic database that tracks all prescriptions of controlled
substances within the state, requiring that pharmacists enter prescription information into the
system before dispensing drugs.

In most states, clinicians are required to query PDMPs before writing a new prescription
for a controlled substance, thus providing them a natural checkpoint for assessing a patient’s
recorded history of prescription drugs. In addition, several question-based risk assessment
tools have been developed to provide additional support to clinicians interacting with patients
in need of pain treatment, as surveyed by Ducharme and Moore (2019). These risk assessment
tools all rely on self-reporting and require that patients answer questions truthfully about
their symptoms and history of drug use. Ducharme and Moore identify this weakness in
all existing screening tools for risk assessment, and recommend supplementing these tools
with additional resources for determining whether prescription of opioids or other controlled
substances is safe and warranted.

The widespread adoption of statewide PDMPs in the U.S. has laid the groundwork
for much better regulatory oversight of prescription practices on the part of prescribers,
pharmacies and patients. These programs represent a significant improvement in data
infrastructure available to help physicians and pharmacists make decisions about which
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patients can safely be prescribed opioids. Access to these new resources also raises questions
about how best to use the records stored in these databases to promote safe practices.

In this work, we discuss approaches for leveraging prescription drug monitoring data
to assess risk of opioid misuse based on patient-level opioid time series obtained from a
statewide PDMP. The majority of previous studies applying predictive models to predict risk
of adverse outcomes related to opioid misuse rely on medical records that may be difficult
for public health agencies to access outside of a clinical setting (Hylan et al., 2015). Ferris
et al. (2019) linked PDMP data to patient overdose deaths and predicted fatal overdose
using a multivariate logistic regression. Hastings et al. (2020) use Medicaid claims data to
predict risk of poor outcomes from a wide array of variables related to a patient’s history in
state-maintained databases, such as demographics, insurance claims, arrests, and payments
received from social welfare programs, and find strong predictive power. To our knowledge,
no previous studies have investigated whether risk of misuse can be predicted using only
signals present in PDMP data, which represent the most widely available data to state and
federal public health agencies.

In the remainder of this chapter, we develop two approaches for leveraging patient
timelines generated from a PDMP database for individual-level assessment of opioid risk. In
Section 2.2, we introduce a shape-based clustering framework to evaluate risk of misuse in
new patients when no ground truth data is linked to prescription timelines. In Section 2.3,
we move to a semi-supervised setting for predicting risk of opioid misuse, proposing and
evaluating a novel approach for prediction that leverages recurrent generative adversarial
networks (RGANs) for risk assessment in new patients when a small pool of trajectories are
linked to known cases of unsafe drug use. We close with a discussion of implications and
future research directions in Section 2.4.

2.2 Trajectory Clustering for Early Risk Assessment

The primary difficulty in using PDMP data for patient-level prediction stems from the lack
of explicit patient outcomes linked to prescriptions in the data set. In this section, we discuss
an approach for early risk assessment of new patients based on supplementing a shape-based
clustering analysis with noisy signals of opioid misuse that are observed in prescription
records.



34 Predicting Risk of Opioid Misuse

2.2.1 Shape-based time series clustering

As part of a collaboration with epidemiologists at the Kansas Data-Driven Prevention Ini-
tiative, we were provided access to de-identified records from the Kansas state PDMP for a
three-year study period ending in 2015. Using duration and quantity of prescribed opioids ag-
gregated across prescribers for a given patient, we generate timelines of morphine milligram
equivalents (MME) for individual patients. Given this aggregate measure of total opioids
being prescribed across different opioid types and dosages, we pose the following research
question: can we identify early indicators in patient MME timelines that are predictive of
later opioid misuse?

As an initial preprocessing step, we apply a 14-day moving average to MME timelines
to smooth out spikes occurring when prescriptions overlap. We also align patients at their
first day of non-zero MME, and keep only patients with at least two years of overlap with
the study period after their first opioid prescription. After preprocessing, 387,023 patients
remain in the data set, whom we randomly allocate into a training and test set using a 75-25
split.

To understand what common patterns appear across patients, we apply the k-shape
algorithm (Paparrizos and Gravano, 2015) to group patients together who have similar
patterns in their smoothed MME time series. k-shape is an algorithm for partitional clustering
that proceeds similarly to the popular k-means method for clustering; the algorithm alternates
between updating cluster members according to the closest cluster centroid according to
a shape-based distance metric, then updates cluster centroids based on changes to cluster
membership. This method is particularly well suited for the task of clustering MME time
series, because we would like to group patients together that have the same characteristic
shape in their prescription opioid timeline, regardless of differences in scale or translation.
For example, if two patients both experience a steady increase in MME at some point in
their timeline, we would like to group those patients together even if the increases begin at
different times or the absolute dosage levels vary.

Figure 2.1 shows the cluster centroid and a sample of member time series for 8 clusters
identified using the k-shape algorithm. Figure 2.1 shows the cluster centroid and four
randomly selected patient time lines for an example cluster. The characteristic shape is
apparent in the centroid as well as the samples; the patients experience a dip or period of
relatively flat MME, followed by a steady increase over time. As the shape-based distance is
translation invariant, the increases in MME are not aligned across patients.

Using the characteristic shape of the cluster centroids and member time series, we can
begin to infer which clusters may be associated with higher-risk patients, but additional
verification is needed based on other signals available in the prescription records. Aided by
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Fig. 2.1 Cluster centroids from shape-based clustering applied to smoothed morphine mil-
ligram equivalent (MME) time series. Sample of member time series in training set shown in
gray behind cluster centroids (red).
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Fig. 2.2 Cluster centroid (top) and sample of four patient time series (bottom) showing
characteristic shape for example cluster (Cluster 5).

epidemiologists at the Kansas Department of Health and Environment, we identified three
red flag indicators in PDMP data that suggest unsafe prescription drug practices: (1) greater
than two simultaneous opioid types, (2) greater than one simultaneous opioid prescriber, and
(3) benzodiazepine and opioid prescribed simultaneously. We show a visual comparison of
red flag rates across clusters in Figure 2.3 and report red flag rates by cluster in Table 2.1.
Although the PDMP data does not contain explicit information on patient outcomes, the rates
of red flag indicators enable us to associate some groups of patients with a higher risk of
prescription opioid misuse.

Based on characteristics of the cluster centroid, representative samples, and red flag
rates across clusters, we determined that Clusters 1, 5, and 7 represent a high-risk group of
patients relative to patients belonging to other clusters. Individuals from Clusters 1, 5, and 7
make up approximately 12.5% of the patients in the training set and account for 23.1% of
total red flags. Cluster 1 tends to include patients with periodic spikes in daily MME above
safe levels. Cluster 5 includes patients with a steady increase over the two-year observation
period (See Figure 2.2). Cluster 7 similarly includes patients with a period of plateauing
or steadily increasing MME, but also includes many patients with a drop to zero MME
after these periods. It is possible that this drop to zero could represent the patient stopping
their prescriptions or moving out of state and thus dropping out of the monitoring program.
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(a) (b) (c)

Fig. 2.3 Proportion of patients triggering red flags by cluster for three indicators of unsafe
prescriptions. Red flag proportions shown for (a) greater than two simultaneous opioid
types, (b) greater than one simultaneous opioid prescriber, and (c) benzodiazepine and opioid
prescribed simultaneously.

However, the high rate of red flags for this group suggests other explanations related to
prescription drug use, such as overdose or a shift to other forms of illicit drugs that are not
monitored by the PDMP. Cluster 4 was also considered for inclusion in the high-risk group,
but examination of the cluster centroid and sample patient time series indicate that this cluster
is associated with patients with a short-term increase in MME that returns to zero after a
handful of prescriptions.

The lowest-risk clusters tend to group patients with only a brief history recorded in the
PDMP. Clusters 2, 3, 6, and 8 appear to group patients with MME dropping to zero quickly
after the initial prescription, with only occasional increases above zero observed in Clusters
2, 3, and 8.

For the purposes of this analysis, we define a high-risk group of patients solely based
on cluster membership. Other relevant patient characteristics (e.g., average 30-day MME,
demographic characteristics, opioid type) could be combined with cluster membership to
define more granular subgroups for consideration as high-risk subsets of individuals.

2.2.2 Early risk assessment of partial time series

Once a high-risk group has been identified, a natural approach suggests itself for assigning
cluster membership for new patients without extensive prescription records in PDMP data,
who may have relatively short opioid time series present in the data set. Adapting the
shape-based distance measure from Paparrizos and Gravano (2015), we propose assigning
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Table 2.1 Summary statistics of patient clusters grouped with shape-based clustering ap-
proach on smoothed morphine milligram equivalent (MME) time series.

Cluster % of Patients

% Flagged,
> 2 Simult.

Opioid Type

% Flagged,
> 1 Simult.
Prescriber

% Flagged,
Opioid+Benzo

1 3.2 1.62 20.66 46.9
2 10.5 0.51 7.10 19.8
3 39.0 1.34 13.58 37.3
4 9.1 4.31 25.07 39.3
5 3.9 4.93 36.18 48.4
6 7.1 4.87 0.09 12.7
7 5.4 4.97 30.90 45.5
8 21.9 0.03 1.22 13.6

partial time series to the nearest cluster centroid and detecting a patient as high-risk if they
are assigned to one of the high-risk clusters. To find the nearest cluster centroid to a partial
time series of general length, we first extend the definition of shape-based distance to accept
sequences with different lengths.

Let CCxy be the cross-correlation or sliding inner product between vectors x 2 Rn and
y 2 Rm for a sequence of shifts w 2 {1,2, ...,m+n�1}. The cross-correlation is defined as:

CCxy(w) = Rxy(w�m) (2.1)

where

Rxy(k) =

8
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(2.2)

The shape-based distance SBD(x,y) is then defined by finding the maximum over the
cross-correlation sequence.

SBD(x,y) = 1�max
w

✓
CCxy(w)
kxk2kyk2

◆
(2.3)

Note that we apply the same coefficient normalization approach proposed by Paparrizos
and Gravano (2015) to maintain the property that this distance is in the interval [-1, 1]. Note
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that the endpoints of this interval will not be reached for m 6= n with this normalization
approach, but we still obtain a meaningful metric for comparing relative distance to cluster
centroids each having equal lengths.

Simulating observation of a new prescription drug trajectory over time, we find the
nearest cluster centroid at each time step with respect to the SBD distance metric. We apply
this detection approach to all patients in our test set, updating the cluster assignment at each
observed time step. We mark the detection time as the earliest time at which a patient is
assigned to a high-risk cluster after a minimum observation period of 14 days.

As visualized in Figure 2.4, we define lead time as the difference between the time of
the earliest red flag trigger and the earliest high-risk detection time. A positive lead time
indicates that the cluster-assignment approach was successful for early risk detection relative
to red flag indicators. In practice, a large and negative lead time is no worse than a lead time
of zero. Similarly, there is likely to be an upper bound on the practically useful lead time
for early detection. We therefore bound lead times below by zero and above by a maximum
threshold of 30 days. Lead times for all three red flag indicators are summarized in Table 2.2.

We obtain p-values for “percent detected with positive lead time” and “average lead time”
statistics through permutation testing. In each simulation, we fix the observed detection times
but randomly permute which patients are detected. We therefore test the null hypothesis
that we observed these statistics by chance alone, conditioned on the observed detection
times. We find that both “percent detected with positive lead time” and “average lead time”
are statistically significant at a = 0.01 for all three red flag indicators. Lead time summary
statistics under randomly-permuted alerts over 1000 simulations are provided in Table 2.3.

These results indicate that early risk assessment of partial time series using a cluster-
assignment method can provide significant improvements over a system of red flags based
on simple indicators triggered by PDMP records. We detect 39.9% of all the “greater than
two simultaneous opioid types” red flags with an average lead time of 10.0 days. While the
average lead times are shorter for the other two red flags, they still provide several days of
advance notice before the simple indicator is triggered, which may provide a crucial window
for a clinician deciding whether it is safe to prescribe additional drugs for a new patient.

2.3 Recurrent Generative Adversarial Networks for Semi-
Supervised Learning of Opioid Misuse

In the previous section, we discussed an approach for assessing risk of unsafe prescribing
practices when data on patient outcomes are unavailable outside of prescription information
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Fig. 2.4 Diagram of early detection lead time for a single patient with increasing morphine
milligram equivalents and a red flag indicating an unsafe prescription.

Table 2.2 Summary statistics of red flag lead times for high-risk alerts.

Red Flag % of Patients

% Detected
with Positive
Lead Time

Average
Lead Time (Days)

>2 Simultaneous Opioid Types 1.51 39.9⇤ 10.04⇤
>1 Simultaneous Opioid Prescriber 12.5 24.2⇤ 5.42⇤
Benzo+Opioid 29.8 13.9⇤ 3.15⇤
* Significant at a = 0.01. P-values obtained through permutation testing.

monitored by the PDMP. Data available to public health agencies on opioid-related health
outcomes is often limited to a small pool of patients for whom extreme adverse events are
known (e.g., overdose death), or to patients for whom health outcomes can be discerned
from signals present in the PDMP data (e.g., high and increasing MME or prescription of
pharmacological treatments for opioid dependence). Ideally, public health agencies would
like to learn from both the small set of patients for which they have observed poor health
outcomes, as well as the much larger pool of unlabeled patients monitored by the PDMP, in
order to learn patterns that are predictive of adverse outcomes. This combination of labeled
and unlabeled data suggests that a semi-supervised classification approach, in which a
prediction method leverages both a small set of labeled samples and a large pool of unlabeled
samples to train a classifier, may be beneficial.

In this section, we will present a novel approach for semi-supervised classification of
time series using recurrent generative adversarial networks (RGANs). We first discuss
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Table 2.3 Summary statistics of red flag lead times for randomly permuted alerts, averaged
over 1000 simulations.

Red Flag % of Patients

% Detected
with Positive
Lead Time

Average
Lead Time (Days)

>2 Simultaneous Opioid Types 1.51 10.3 2.9
>1 Simultaneous Opioid Prescriber 12.5 9.0 2.6
Benzo+Opioid 29.8 6.0 1.7

performance of semi-supervised recurrent generative adversarial networks (SS-RGANs) on
four medical time series classification tasks, which provide a set of benchmark tasks for
comparison against competing classification methods. Then, we present performance of
SS-RGAN and competing methods on prediction of unsafe levels of prescribed opioids using
PDMP data, incorporating red flag indicators and high-risk cluster assignment time series
from Section 2.2 as conditional inputs to the SS-RGAN model.

2.3.1 Adapting recurrent generative adversarial networks for semi- su-
pervised learning

Since their introduction by Goodfellow et al. (2014), generative adversarial networks (GANs)
have attracted significant attention for their ability to generate realistic images that are often
indistinguishable from real ones, even for human faces or other complex imagery. GANs
learn to simulate the underlying data distribution by pitting a generative neural network and
a discriminative neural network against each other as the models are trained simultaneously.
The generator attempts to generate realistic samples that are indistinguishable from real data,
while the discriminator attempts to classify samples as real or fake. Hyland et al. (2017)
propose an extension to the original GAN framework, the recurrent GAN (RGAN), in which
both the generator and discriminator are replaced with a recurrent neural network, resulting
in a framework for generating realistic, real-valued multivariate time series.

In the RGAN optimization procedure, the discriminator minimizes the average cross-
entropy between predictions and the labels of a sequence, averaged across time steps. Let
RNN(X) represent the vector of T outputs from a recurrent neural network (RNN) taking a
sequence of T input vectors {xt}T

t=1 with each xt 2Rd , and let CE(a,b) be the average cross-
entropy between two sequences a and b. Given a pair of sequence outputs and labels {Xi,yi}
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with Xi 2 RT⇥d and yi 2 {0,1}T , the loss function for discriminator RNND is expressed as

Dloss(Xi,yi) =CE(RNND(Xi),yi)) (2.4)

where yi is a sequence of 1s for real samples and a sequence of 0s for generated samples. The
input Zi to the generator RNNG is a sequence of T points sampled independently from the
latent noise space Z. As the generator is attempting to produce sequences the discriminator
cannot distinguish from real ones, the generator loss is formulated as the average cross-
entropy between the discriminator’s predictions on generated sequences and the sequence of
1s (indicating the “true” class label).

Gloss(Zi) =CE(RNND(RNNG(Zi)),1) (2.5)

Hyland et al. (2017) show that alternating updates to the generator and discriminator
based on these models results in a generator that can successfully simulate data distributions
across multiple domains, such as sine waves, smooth functions, handwritten digit sequences,
and medical time series.

We propose a modification to this method to adapt RGANs for the task of semi-supervised
time series classification. Specifically, we split the discriminator model into two separate
unsupervised and supervised discriminators with shared feature weights, where the unsu-
pervised discriminator still attempts to distinguish real time series from fake ones, and the
supervised discriminator attempts to classify from among K classes on the actual classifi-
cation task of interest. We follow the efficient implementation for this dual-discriminator
approach proposed in Salimans et al. (2016), in which the supervised discriminator is first
defined with a softmax output activation over K classes corresponding to the classification
task of interest. The unsupervised discriminator takes the input to the softmax function
from the supervised model at each time step and passes it through a logit-exponential-sum
activation function defined as

a(x) = Âk exp[lk(x)]
1+Âk exp[lk(x)]

(2.6)

where lk(x) is the logit input to the softmax function for class k. This activation function
outputs values close to 0 for small or negative activations, and close to 1 for large and positive
activations. The result of this stacked discriminator approach is that the supervised model is
encouraged to make a clear class prediction on real time series but not on fake ones. Updates
to both discriminators follow the approach proposed in the original RGAN framework, such
that the average cross-entropy between RNN outputs and label sequences is minimized.
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As discussed above, the discriminator model in the original RGAN algorithm is trained
by applying a vector of all 1s for real time series and a vector of all 0s for generated, “fake”
time series. In contrast, the label vectors provided to the supervised discriminator need not be
assigned to a single value across time steps. In many classification settings, labels may vary
across time, particularly if they are indicating occurrence of a particular event related to the
input sequences. If labels vary across time, the time-variant label sequence can be provided
to the supervised discriminator instead of a uniform label vector. For example, consider a
patient with certain health measurements being recorded once per minute in an intensive care
unit. If an adverse health event occurs for 30 minutes from times t = 1000 to t = 1090 out
of a total of 1440 measurements, then the label sequence indicating the adverse event then
consists of 0s from t = 0 to t = 999, 1s from t = 1000 to t = 1029, and 0s again through the
end of the sequence. In settings where labels of interest do not vary across time, a uniform
label vector is provided to both the supervised and unsupervised discriminators.

Figure 2.5 illustrates the data pipeline for training of semi-supervised RGANs (SS-
RGANs) for classification when labeled time series are sparse. On each training iteration,
the unsupervised discriminator and generator are updated exactly as they were in the original
RGAN framework. The supervised discriminator attempts to classify labeled sequences from
the small pool of labeled time series. In settings where only positive labels are known and the
class distribution is heavily weighted towards the negative class, (e.g., a small set of patient
timelines linked to drug overdoses), samples from the unlabeled sequences can be provided
to the supervised discriminator as “noisy” negative class examples.

The proposed SS-RGAN requires implementation and training of three separate recurrent
neural network models: the generator, the supervised discriminator, and the unsupervised
discriminator. We implement all three of these models as long short-term memory networks
(LSTMs), first described in Hochreiter and Schmidhuber (2011). An LSTM is a recurrent
neural network made up of layers composed of memory cells. Three regulatory gates control
the extent to which new information can flow into and out of each memory cell. The input
gate controls whether new values are allowed into a cell; the forget gate controls whether
a value is retained in a cells memory; and the output gate controls whether the value in
a cell’s memory is used in computing the output activation of the memory cell. Together,
the interactions of these regulatory gates with the flow of information passing through the
network during training allows the LSTM to learn arbitrary long-term dependencies in the
input sequences. LSTMs are trained through backpropagation, and are particularly well-
suited for addressing the vanishing gradient problem that hinders training of traditional
recurrent neural networks.
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Fig. 2.5 Data pipeline for training of recurrent generative adversarial network for semi-
supervised classification.

2.3.2 Evaluation on medical time series data

Before evaluating semi-supervised RGANs (SS-RGANs) on prediction of opioid misuse, we
first define a set of benchmark classification tasks to iterate on model architecture and assess
performance relative to other classification methods.

Data

From the publicly available Philips eICU database (Pollard et al., 2019), we select four
variables measured by bedside monitors in Intensive Care Units (ICUs): heart rate (HR),
respiratory rate (RR), oxygen saturation (SpO2), and mean arterial pressure (MAP). These
four sets of time series provide a complex range of patterns on which to evaluate SS-RGANs
on classification tasks. We obtained data on 192,831 total patients in the eICU database,
downsampling to a single measurement every fifteen minutes for all four variables. Due to
the size of the data set, we opted to drop any patients with missing values after downsampling.
To help frame our benchmark classification tasks, we consider critical thresholds for each
variable which indicate a potential adverse event in the ICU. We define the first 24 hours of a
patient’s stay as the observation period, and the subsequent 4 hours (hours 25-28 inclusive)
as the prediction period. Binary labels for classification are determined for each patient based
on whether they cross the critical threshold in the prediction period.

Evaluation Framework

We conduct two benchmarks for each ICU variable. The first benchmark task includes all
patients, regardless of whether the critical threshold was crossed in the observation period.
Note that this presents a relatively easy classification task for many positive examples, as a
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Table 2.4 Description of four time series data sets measured by bedside monitors in hospital
Intensive Care Units (ICU). Positive labels indicate critical threshold crossed during four-hour
prediction period.

All Patients

Non-Critical in
24-Hour

Observation Period

Measurement
Critical

Threshold # Patients
% Positive

Label # Patients
% Positive

Label

Heart Rate > 100 52576 33.0 22237 4.65
Respiratory Rate < 13 36045 19.0 20555 4.60
Oxygen Saturation < 95 32862 47.2 8535 11.8
Mean Arterial Pressure > 110 4863 10.8 3472 4.20

patient who crossed the critical threshold one or more times in the observation period is much
more likely to cross the threshold again in the prediction period. The second benchmark
is restricted to only patients who do not cross the critical threshold in the observation
period. This makes prediction more difficult, but provides a more realistic evaluation of
model performance in a deployed setting. Table 2.4 shows a summary of each time series
data set for the two benchmark tasks. The proportion of patients with positive labels varies
considerably across variables and benchmark tasks, with significant class imbalance weighted
towards the negative class in most cases.

As a point of comparison, we select three methods which have proven successful for
supervised time series classification: the long short-term memory network (LSTM), the
random forest (RandF), and the support vector machine with global alignment kernel (SVM-
GAK) introduced in Cuturi (2011). For each benchmark task, we divide patients into a
training and test set using a 75-25 split. To simulate the semi-supervised setting, we hold
back 80% of the training set from supervised methods (but make the unlabeled time series
from this held-back data available to the SS-RGAN). Hyperparameters for all methods are
tuned through 10-fold cross-validation on the labeled training set. We evaluate all methods
on area under the receiver operating characteristic curve (AUROC) and area under the
precision-recall curve (AUPRC).

Results

ROC curves and precision-recall curves are shown for the heart rate benchmark tasks on all
patients in Figures 2.6 and 2.7. Due to the imbalanced nature of the data sets, the precision-
recall curves provide an appropriate assessment of prediction performance on the positive
class. On the heart rate benchmark with all patients, SS-RGAN slightly outperforms the
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Fig. 2.6 Receiver Operating Characteristic (ROC) curves showing evaluation of binary
classifiers on prediction of heart rate becoming critical, for all patients.

LSTM and RandF classifiers. On the heart rate benchmark restricted to non-critical patients
in the observation period, the SS-RGAN demonstrates lower precision than LSTM and RandF
at lower ranges of recall, but performs comparably to these methods at high recall ranges.

Table 2.5 and Table 2.6 provide AUROC and AUPRC across all benchmark tasks. For all
patients, we observe that SS-RGAN gives slightly better performance than other methods
on three of the four ICU variables considered, with the random forest winning on the
mean arterial pressure experiment. For patients non-critical in the observation, SS-RGAN
performs comparably to the best-performing methods, and performs particularly well relative
to other methods on the “SpO2 < 95” task. Across all benchmarks, the SS-RGAN beats the
SVM-GAK classifier and performs similarly to the LSTM and random forest.

2.3.3 Evaluation on opioid time series

This preliminary benchmarking analysis method on four medical time series data sets provides
promising evidence that SS-RGAN is able to achieve classification performance comparable
to benchmark supervised methods for time series classification. We next proceed with a
full evaluation of SS-RGANs on the task of predicting unsafe levels of opioid prescription
in Kansas PDMP data. We follow the same experimental framework outlined in Section
2.3.2 for medical time series classification, in which we generate binary labels from a critical
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Fig. 2.7 Precision-recall curves showing evaluation of binary classifiers on prediction of
heart rate becoming critical in ICU medical time series data.

Table 2.5 Performance of binary classifiers on prediction of ICU measurements becoming
critical for all patients. Model performance is evaluated on area under the receiver operating
characteristic curve (AUROC) and area under the precision-recall curve (AUPRC).

HR > 100 RR < 100
Classifier AUROC AUPRC AUROC AUPRC

SS-RGAN 0.95 0.93 0.88 0.74
LSTM 0.94 0.92 0.87 0.71
RandF 0.94 0.91 0.88 0.74
SVM-GAK 0.93 0.90 0.86 0.69

SpO2 < 95 MAP > 110
Classifier AUROC AUPRC AUROC AUPRC

SS-RGAN 0.88 0.87 0.80 0.47
LSTM 0.87 0.87 0.80 0.46
RandF 0.87 0.86 0.82 0.48
SVM-GAK 0.86 0.84 0.80 0.45

Best-performing classifier for each column denoted in bold
face.
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Table 2.6 Performance of binary classifiers on prediction of ICU measurements becoming
critical for patients non-critical during observation period. Model performance is evaluated
on area under the receiver operating characteristic curve (AUROC) and area under the
precision-recall curve (AUPRC).

HR > 100 RR < 100
Classifier AUROC AUPRC AUROC AUPRC

SS-RGAN 0.81 0.23 0.65 0.09
LSTM 0.82 0.27 0.68 0.11
RandF 0.81 0.25 0.68 0.12
SVM-GAK 0.80 0.22 0.66 0.09

SpO2 < 95 MAP > 110
Classifier AUROC AUPRC AUROC AUPRC

SS-RGAN 0.72 0.29 0.61 0.09
LSTM 0.69 0.24 0.64 0.13
RandF 0.72 0.29 0.67 0.11
SVM-GAK 0.65 0.21 0.60 0.09

Best-performing classifier for each column denoted in bold
face.

threshold applied to a prediction period late in patient timelines, simulating a small pool of
labeled patients known to have poor outcomes.

Data

For evaluation of SS-RGAN on the predicting unsafe levels of opioid prescriptions, we rely
on the same data set described in Section 2.2. MME timelines for patients represented in
the Kansas PDMP provide multi-year time series for individuals that represent aggregate
measure of total opioids being prescribed across different drugs and dosages. As in the
shape-based clustering analysis, we preprocess the raw MME timelines by applying a 14-day
moving average to smooth out spikes occurring when prescriptions overlap.

Evaluation Framework

The CDC recommends that clinicians employ extra caution when prescribing opioids in
dosages greater than or equal to 50 MME per day, and to altogether avoid prescription of
opioids for pain relief in dosages above 90 MME per day. A daily MME of 90 is the equivalent
of nine 10/325 tablets of hydrocodone/acetaminophen, two 30 mg tablets of sustained-release
oxycodone, or four 5 mg tablets of methadone. CDC guidelines note that sustained intake
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of opioids above this threshold introduces serious risk of addiction and overdose, without
providing additional benefits in the form of chronic pain relief (Dowell et al., 2016). We
therefore use this high-risk threshold to generate binary labels for classification that indicate
unsafe levels of prescribed opioids. Daily MME observations in observation periods ranging
from three to twelve months represent the primary inputs to prediction models. Binary labels
are then defined based on whether a patient crosses the critical MME threshold of 90 MME
per day in a three-month prediction period subsequent to the observation period.

To generate labels, the critical MME threshold is applied after MME time series have
been smoothed with a 14-day moving average. Crossing the critical threshold therefore
indicates that a patient has sustained an unsafe level of prescribed opioids over at least two
weeks. Overlaps in prescriptions that may result in spikes in the raw MME timelines are
unlikely to occur in lengths exceeding one week, thus the positive labels are likely to capture
only those patients who are actually consuming unsafe levels of opioids across prescriptions
or diverting prescription opioids for illicit resale.

We conduct two sets of experiments based on different criteria for patient inclusion
in the analysis. For the first set of experiments, we include all patients in the MME time
series data set, which includes all individuals present in the PDMP data set for at least
two years after their first opioid prescription. These patients may have crossed the 90
MME/day critical threshold one or many times in the observation period, and therefore this
initial set of experiments likely presents an easier prediction task for those individuals with
sustained, unsafe MME levels in both the observation and prediction periods. The second
set of experiments is constrained to only include patients who do not cross the 90 MME/day
threshold in the three months before the prediction period. The constrained experimental
setting provides a more difficult prediction task, but represents a more realistic evaluation
of model performance in detection of patients who may be close to crossing the critical
threshold but have not already been identified by rule-based red flag filters in the PDMP.

To accurately evaluate the performance of classifiers in a realistic setting, we create
four separate pairs of training and test sets from the original MME data and report average
performance across all test sets. Each test set is generated from a non-overlapping period
following its corresponding training set, and prediction periods in the four test sets do not
overlap each other in time. Training and test sets include all MME timelines in the original
data set with an opioid prescription in the first three months of the observation period, thus
all data sets include patients with at least nine months of observations after their first opioid
prescription.

The four time series data sets used for opioid prediction experiments are described in
Table 2.7. In Data Set (1), the training set is generated from observations in months 1 through
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Table 2.7 Description of time series data sets designed to evaluate prediction unsafe levels of
morphine milligram equivalents. Positive labels indicate critical threshold crossed during
three-month prediction period. Statistics are provided for two groups of patients: (1) all
patients with an opioid prescription in the first three months of the observation period, and
(2) the subset of those patients who do not cross the critical threshold in the three months
before the prediction period.

All Patients Non-Critical Patients
Data Set ntrain ntest % Positive ntrain ntest % Positive

(1) 97,488 99,163 2.6% 92,706 94,281 2.0%
(2) 98,712 96,571 2.5% 93,739 91,789 1.9%
(3) 101,509 92,836 2.1% 95,937 86,456 1.8%
(4) 98,813 85,586 2.3% 93,125 81,805 1.9%

12 of the three-year study period inclusive, and the test set is generated from observations in
months 13 through 24 inclusive. In Data Set (2), the training set is generated from months
4 through 15, and the test set is generated from months 16 through 27. In Data Set (3),
the training set is generated from months 7 through 18, and the test set is generated from
months 19 through 30. Finally, in Data Set (4), the training set is generated from months 10
through 21, and the test set is generated from months 22 through 33. For all training and test
sets, critical threshold labels are generated from the three months following the end of the
observation period.

As in the previous section evaluating SS-RGAN on four medical time series prediction
tasks, we compare prediction performance against three supervised methods that have
demonstrated high performance on time series classification tasks: LSTM, RandF, and SVM-
GAK. To simulate a semi-supervised setting, we provide 5% of the original training set
to the three supervised methods. SS-RGAN, as a semi-supervised approach, has access to
both the labeled time series (5% of original training data set) and the unlabeled time series
(95% of original data set). Hyperparameters for all methods are tuned through 10-fold cross-
validation on the labeled time series. We first report results for all methods on traditional
performance metrics for binary classifiers in the machine learning literature: area under the
receiver operating characteristic curve (AUROC) and area under the precision-recall curve
(AUPRC).

We additionally consider a realistic setting for evaluation that aligns more closely with
how prediction models would be implemented by public health agencies to identify and inter-
vene on high-risk patients. We consider two resource-constrained scenarios, in which health
agencies must choose a subset of patients to prioritize and target with assistance programs,
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such as routine phone check-ins, referrals to medication-assisted treatment programs for
substance use disorder, or referrals to mental health treatment programs. We report precision
and recall under both low capacity and high capacity constraint scenarios, which indicate
how well the prediction models under consideration can identify high-risk patients across a
spectrum of realistic outreach program scales.

Results

AUROC and AUPRC are reported in Table 2.8 for all four classification methods on the
unconstrained set of patients in the PDMP data set. Individuals in the raw PDMP naturally
have histories of differing length depending on how long they have been administered
prescription drugs in the state of Kansas. Patients who have started opioid prescriptions
only recently or who just moved into the state will have few records with which to generate
MME timelines. Ideally, a classification method would not require a long observation period
in order to make accurate predictions about risk of unsafe opioid prescription. We report
performance on observation periods of three different lengths (three months, six months,
and twelve months), averaged across the four test sets, to illustrate how performance of
the methods considered varies according to the length of the time series provided as model
inputs.

ROC curves and AUROC illustrate predictive performance on both the positive and
negative classes, but are strongly weighted towards performance on the majority class in
heavily imbalanced settings. Due to the high class imbalance inherent to this prediction
task, precision-recall curves and the AUPRC provide the clearest picture for performance in
predicting the positive class (unsafe levels of opioid prescription). We find that across all
three observation period lengths, SS-RGAN outperforms competing methods on AUPRC.
The LSTM, RandF, and SVM-GAK models achieve comparable performance to each other,
with RandF performing particularly well in settings with a shorter observation period (three
months). As measured by AUPRC, the performance of SS-RGAN is not hindered by
shortened observation periods, and in fact the AUPRC is slightly higher on the shorter
observation periods than the twelve month observation period. With respect to AUROC, the
LSTM performs well across all three observation periods, but its performance on precision-
recall indicates that the LSTM is doing worse at identifying the low-frequency positive class
members. ROC curves and precision-recall curves on one of the four test sets considered
(Test Set (4)) are shown in Figure 2.8, where all models are provided sequences from a
twelve month observation period.

Table 2.9 shows average AUROC and AUPRC for the four classification methods on the
subset of patients who did not cross the 90 MME/day critical threshold in the three-month
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Table 2.8 Performance of binary classifiers on prediction of opioid time series crossing
critical threshold for all patients in prescription drug monitoring program. Model performance
is evaluated on area under the receiver operating characteristic curve (AUROC) and area
under the precision-recall curve (AUPRC) and averaged across four test sets.

3 month Obs. Period 6 month Obs. Period 12 month Obs. Period
Classifier AUROC AUPRC AUROC AUPRC AUROC AUPRC

SS-RGAN 0.93 0.86 0.92 0.87 0.94 0.85
LSTM 0.94 0.83 0.92 0.85 0.92 0.83
RandF 0.90 0.85 0.89 0.85 0.88 0.81
SVM-GAK 0.89 0.83 0.87 0.85 0.85 0.81

Best-performing classifier for each column denoted in bold face.

period leading up to the prediction period. As expected, prediction performance is lower
across the board when compared with the easier prediction task that includes all patients.
Still, SS-RGAN outperforms all other methods with respect to AUPRC on the constrained set
of patients, with an average area under the precision-recall curve ranging from 0.43 to 0.46
across the three observation periods. The RandF performs well given three months of input
data, tying the SS-RGAN on AUPRC. As in the previous setting, the LSTM performs well on
AUROC, but suffers on the more relevant metric of AUPRC. ROC curves and precision-recall
curves on Test Set (4) are shown in Figure 2.9.

The length of the observation period did not appear to have a significant impact on the
relative performance of competing methods, as AUROC and AUPRC typically varied by 1-2
percentage points across period lengths. We therefore focus on the 12-month observation
period for the remaining analysis, and note that results and relative performance is unlikely
to be meaningfully different for observation periods of shorter length. We also focus on the
constrained subset of patients who did not cross the critical threshold in the three months
leading to the prediction period, as this provides the more useful benchmark for real-world
use cases.

While ROC and precision-recall curves can provide an appealing and interpretable visual
comparison of prediction methods, they do not necessarily reflect relative performance of
methods in realistic settings where humans use predictions to target intervention. For example,
public health agencies may have limited resources with which to engage high-risk patients
with voluntary assistance programs or outreach. In this setting, the top-ranked predictions
from each model are therefore much more relevant to actual real-world performance than all
other predictions made by the model. Performance curves which assess all predictions in a
single curve or area metric may obscure the performance of the top-ranked predictions.
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Table 2.9 Performance of binary classifiers on prediction of opioid time series crossing
critical threshold for patients that were not critical in the three months prior to the prediction
period. Model performance is evaluated on area under the receiver operating characteristic
curve (AUROC) and area under the precision-recall curve (AUPRC) and averaged across
four test sets.

3 month Obs. Period 6 month Obs. Period 12 month Obs. Period
Classifier AUROC AUPRC AUROC AUPRC AUROC AUPRC

SS-RGAN 0.85 0.45 0.85 0.46 0.87 0.45
LSTM 0.86 0.43 0.85 0.44 0.85 0.41
RandF 0.79 0.45 0.81 0.45 0.80 0.42
SVM-GAK 0.78 0.42 0.80 0.44 0.79 0.40

Best-performing classifier for each column denoted in bold face.

(a) (b)

Fig. 2.8 Receiver Operating Characteristic curve and Precision-Recall curve showing evalua-
tion of binary classifiers on prediction of morphine milligram equivalents becoming critical
for all patients with 12 months of observations in prescription drug monitoring program.
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(a) (b)

Fig. 2.9 Receiver Operating Characteristic curve and Precision-Recall curve showing evalua-
tion of binary classifiers on prediction of morphine milligram equivalents becoming critical
for patients who were not critical in the three months prior to the prediction period

To assess the four prediction methods in a realistic setting, we report precision at k and
recall at k for two different resource constraint scenarios, averaged across four test sets
(Table 2.10). The low-capacity scenario simulates a setting in which resources exist for
providing assistance or outreach to 100 patients, which make up approximately 0.1% of the
total number of patients in the test sets considered. Out of the top 100 patients predicted
by the SS-RGAN on the test set, 87 of them did in fact cross the 90 MME/day threshold
during the prediction period, giving an average precision at 100 patients of 0.87 across test
sets. The LSTM represents the next-best competitor, with precision of 0.83 at 100 patients
averaged across test sets. This four-percentage-point difference represents an additional four
patients who would have been correctly identified by the SS-RGAN as requiring particular
attention due to high-risk of unsafe opioid prescription, but who would have been missed
altogether by all other prediction methods considered here. We also consider recall at 100
patients under the low-capacity scenario. SS-RGAN captures a slightly higher proportion of
all positive labels (patients crossing the MME threshold) relative to the other methods, and
with a recall of 0.06 the SS-RGAN approaches the best possible recall under this particular
resource constraint.

Under the high-capacity resource constraint scenario, we report precision and recall at
the top-ranked 1000 patients for each prediction method. The four test sets include between
1500-1900 individuals with positive labels, so the high capacity scenario can be considered a
benchmark for a program that is scaled up to approximately one-half to two-thirds the size of
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the estimated proportion of relevant individuals in the population. Under the high-capacity
scenario, the SS-RGAN still outperforms all other methods, with a precision of 0.58 and recall
of 0.37 for the 1000 top-predicted patients. Scaling up a targeted intervention in this way
allows a public health agency to capture more of the relevant, high-risk population (higher
recall), at the expense of a lower proportion of predicted individuals actually crossing the
critical threshold (lower precision). Policymakers at public health agencies should carefully
consider this tradeoff between precision and recall (true positive rate) when determining the
appropriate scale of a targeted intervention that relies on model predictions.

The results of the low-capacity resource scenario provide particularly compelling evidence
that SS-RGAN can successfully leverage large amounts of unlabeled data to outperform
purely supervised classification methods on predicting unsafe levels of MME, providing
a four-percentage-point improvement on precision at 0.1% of patients targeted. Still, a
statistical analysis of the difference between SS-RGAN and other methods is useful to
understand whether the method is providing a statistically significant improvement over
competitors across different evaluation settings.

We follow the approach proposed in Dietterich (1998) for comparing the performance
of two classifiers with a 5x2 cross-validated paired t-test. In this approach, we randomly
divide the evaluation set into two splits of equal size, and train on one split while evaluating
the difference between prediction methods on some performance metric (e.g., precision at k
patients or recall at k patients) on the other split. The two halves are then rotated (the training
set becomes the test set, and the test set becomes the training set), and the difference between
methods is averaged across both rotations and variance of differences across two rotations is
computed. This procedure is repeated for five iterations, giving five values for the variance in
differences between methods. The test statistic is computed as the difference on the initial
split and rotation divided by the square root of the average variance across five iterations. We
assume that the resulting test statistic approximately follows a t-distribution with 5 degrees
of freedom under the null hypothesis that the two prediction models have equal performance.
We can then obtain p-values which indicate whether the two methods provide significantly
different results on evaluation metrics considered.

Table 2.11 show the results of 5x2 cross-validation in conjunction with paired t-tests com-
paring SS-RGAN to the next-best classification model (LSTM) under constrained resource
evaluation settings, for a single test set (Test Set (4)). We find that on both precision and recall
at 100 patients, SS-RGAN provides a statistically significant improvement over the LSTM at
a = 0.05). Under the high-capacity constraint scenario, the difference between SS-RGAN
and LSTM is less pronounced; we therefore find that the improvement from SS-RGAN is
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Table 2.10 Performance of binary classifiers on prediction of opioid time series becoming
critical during prediction period under two resource constraint scenarios. Model performance
is evaluated on precision and recall at the top 100 predicted patients (low capacity) and top
1000 predicted patients (high capacity).

Low Capacity High Capacity

Classifier
Precision

@100 Patients
Recall

@100 Patients
Precision

@1000 Patients
Recall

@1000 Patients

SS-RGAN 0.87 0.055 0.58 0.37
LSTM 0.83 0.053 0.53 0.34
RandF 0.80 0.051 0.52 0.33
SVM-GAK 0.77 0.049 0.52 0.33
Best Possible 1.0 0.063 1.0 0.63

Best-performing classifier for each column denoted in bold face.

Table 2.11 Statistical comparison of SS-RGAN performance metrics to best performing
alternative, the LSTM. P-values are computed using 5x2 cross-validation with modified
Student’s t-test.

Performance Metric P-value

Precision @ 100 Patients 0.03**
Recall @ 100 Patients 0.04**
Precision @ 1000 Patients 0.08*
Recall @ 1000 Patients 0.08*
⇤⇤ denotes statistical significance at a =

0.05. ⇤ denotes statistical significance at
a = 0.10.

not significant at a = 0.05, with p-value of 0.08 for precision and recall respectively at 1000
patients predicted.

Introducing Conditional Inputs

Hyland et al. (2017) describe and evaluate an approach to augmenting RGANs with additional
conditional inputs. In recurrent conditional generative adversarial networks, the primary
inputs to the generator and discriminator LSTM networks are augmented with conditional
information at each time step. These conditional inputs are concatenated with the primary
input sequences at each time step. We follow the same approach to providing additional,
time-varying covariates to all three underlying networks in the SS-RGAN, so that each may
leverage relevant covariates to improve on respective tasks (i.e., generating realistic time
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series, distinguishing fake from real time series, and classifying time series as high-risk or
low-risk).

On the task of predicting unsafe levels of opioid prescription, we consider two different
sources of additional information which are relevant to MME trajectories and may therefore
improve prediction performance. First, we consider the set of red flag indicators suggesting
unsafe prescription drug practices described in Section 2.2.1: (1) greater than two simultane-
ous opioid types, (2) greater than one simultaneous opioid prescriber, and (3) benzodiazepine
and opioids prescribed simultaneously. We generate time series for each red flag, where each
observation indicates whether the flag is raised at that particular time step. Next, we consider
the set of shape-based time series clusters identified in 2.2.1, and include the sequence of
cluster assignments for each patient according to the nearest cluster centroid at each point in
time. We consider impacts to SS-RGAN performance when including both the red flag inputs
and cluster inputs individually, and finally when including all sets of conditional inputs.

ROC and precision-recall curves for different conditional input combinations are shown in
Figure 2.10. Table 2.12 provides a comparison of the baseline SS-RGAN performance (with
no conditional inputs) to SS-RGAN models trained with conditional inputs provided, under
the same resource constraint scenarios described in the previous section. We find that both
the cluster assignments and red flag indicators improve model performance slightly over the
MME-only baseline, and providing both sets of conditional inputs gives the best performance
observed in any experiments thus far on both precision and recall under both constraint
scenarios. These results on prediction of unsafe opioid levels provide promising evidence
that the SS-RGAN can leverage time-varying conditional inputs to improve prediction
performance on the classification task of interest.

Sensitivity to Single-Class Labeling

We note that in real-world public health settings, we may have access to only a small pool of
patients with positive labels, and no patients that are linked to negative labels. For example,
we may have a small set of patient timelines associated with known drug overdose deaths, but
no reliable information on which patients dropped out of the PDMP for other reasons but did
not die of drug overdose. In the case where only positive labels are known, we observe that
samples from the pool of unlabeled sequences can be provided to the SS-RGAN supervised
discriminator as “noisy” negative class examples. This approach assumes that the class
distribution is heavily weighted towards the negative class, so the supervised discriminator
will still be able to learn even with some fraction of incorrect labels in the negative class.
We simulate this setting by removing all time series with negative labels from the labeled
data set provided to the supervised discriminator. At each training iteration, a random set of
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(a) (b)

Fig. 2.10 Comparison of prediction performance from prescription timeline features (red flag
indicators and nearest MME trajectory cluster centroid) provided as conditional inputs to
SS-RGAN on opioid prediction task.

Table 2.12 Comparison of performance from prescription timeline features (red flag indica-
tors and nearest MME trajectory cluster centroid) provided as conditional inputs to SS-RGAN
on opioid prediction task under two resource constraint scenarios.

Low Capacity High Capacity

Classifier

Precision
@100

Patients

Recall
@100

Patients

Precision
@1000

Patients

Recall
@1000

Patients
MME Time Series
(No Conditional Inputs) 0.87 0.06 0.58 0.37
+High-Risk Cluster Labels 0.87 0.06 0.59 0.38
+Red Flag Indicators 0.88 0.06 0.59 0.38
+All Conditional Inputs 0.88 0.06 0.60 0.39
Best Possible 1.0 0.06 1.0 0.63

Best-performing classifier for each column denoted in bold face.
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(a) (b)

Fig. 2.11 Comparison of prediction performance for two labeling procedures in training data,
simulating settings where only positive labels are known during training time.

time series are selected from the unlabeled pool of time series and assigned negative class
labels. The supervised discriminator is then updated as usual. Figure 2.11 shows ROC and
precision-recall curves for the baseline SS-RGAN model and the SS-RGAN trained with
only positive labels. We find that this alternative labeling scheme gives almost identical
results to the original labeling scheme, due to the extremely low prevalence of true positive
examples in the unlabeled data pool.

2.4 Discussion

The analyses presented in presented in Section 2.2 and 2.3 provide important preliminary
evidence that both unsupervised and semi-supervised machine learning methods can help
human decision makers learn from patterns in PDMP data and guide decisions around which
patients to target with additional intervention for reducing risk of opioid misuse. In settings
where PDMP data represent the only source of information at hand, clustering approaches
can be used to improve upon rule-based red flag filters that are currently used by public health
agencies to identify high-risk patients. Targeted interventions can additionally benefit from
prediction models even when patient outcomes are known for only a small set of individuals.

Prescription drug monitoring programs represent a rich source of information on pre-
scription practices that have not yet been leveraged to their full potential for identifying and
intervening on high-risk patients. PDMPs already provide a critical source of information to
clinicians and other prescribers of opioids, representing the primary means by which doctors
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can avoid over-prescription of opioids to patients with obvious indicators of unsafe drug
use. Outside of the clinical setting, PDMPs can provide public health agencies with valuable
information in targeting assistance programs designed to monitor and provide help to the
highest-risk patients. For example, routine phone check-ins on high risk patients represent a
low-cost intervention that may have significant impacts on patient health, simply by providing
regular reminders of safe practices around prescription opioid use. Similarly, referrals to
voluntary, medication-assisted treatment programs can significantly reduce barriers to access
for patients with opioid use disorder (Scott et al., 2019), and these outreach efforts may be
targeted using prediction models trained on PDMP data. While selection into medication-
assisted treatment programs or voluntary mental health treatment programs should never be
made based solely on the outputs of a prediction model, these outputs nonetheless provide
a way for human decision makers to distill the vast amount of information collected in the
PDMP and leverage that information for better interventions.

A limitation of this study is that project partners were not able to provide access to linked
data sets indicating patient outcomes related to opioid use, such as drug overdose deaths.
We therefore relied on signals present in the primary PDMP data set to simulate settings
where a small pool of patients with poor outcomes is known, even though these labels can be
generated for any MME time series in the data set. A worthwhile research direction would
be to replicate this study using separate data sets on hand at public health agencies to identify
known, high-risk patients in the MME data set for the pool of labeled examples provided to
the semi-supervised method proposed.

2.5 Conclusions

The results of this study have laid important groundwork indicating that machine learning
models can provide useful outputs to help humans target interventions that provide assistance
to individuals at risk of opioid overdose or addiction. Still, research gaps remain to be filled
before the methods proposed in this study are deployed in an operational setting for targeting
intervention. Critically, the next step in the research pipeline is to evaluate an intervention
program in which predictions from machine learning models are integrated with existing
models for providing public assistance and outreach. Future work would involve evaluating a
human-in-the-loop system for targeting intervention, in which outputs from machine learning
models provide an additional source of information and insight to public health specialists or
clinicians, ideally with a randomized, controlled field trial.

The findings discussed in this study provide promising evidence that data available to
public health agencies from prescription drug monitoring programs can be useful for detecting
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patients at risk of opioid misuse and directly predicting unsafe practices related to opioid
prescription. In settings where patient outcomes are unknown, unsupervised approaches can
help identify early warnings for patients with only a small number of records in a PDMP
database. When patient outcomes are known for a small set of patients, semi-supervised
approaches such as the SS-RGAN can leverage the large pool of PDMP data records in order
to make predictions about a patient’s future risk. We look forward to continued collaboration
with project partners to understand what outputs from a risk assessment tool based on PDMP
data would be most useful for public health workers and clinicians. We hope that continued
research in this area will result in new techniques for prescription monitoring to mitigate the
harms caused by the opioid epidemic while enabling safe provision of pain relief for those
dealing with chronic pain.



Chapter 3

Policing Chronic and Temporary Hot
Spots of Violent Crime: A Controlled
Field Experiment1

3.1 Introduction

In recent years, police agencies have demonstrated an increased willingness to devote
resources toward proactive policing strategies that target underlying causes of crime. In
contrast to reactive policing, which prioritizes responding to 911 emergency requests for
police response and investigating crimes that have already occurred, proactive policing instead
aims to identify predictable patterns in which crimes typically occur or the underlying causal
factors that lead to crimes of various types. Most recently, in the United States, discussion
around the potential benefits and harms of proactive policing has become part of a wider
debate about the role of police and their impacts on the communities they serve, sparked by
multiple instances of police brutality against minorities and the resulting widespread protests
against systemic racism in policing.

Here we present results from a controlled experiment of proactive policing which con-
tributes several pieces of evidence to this debate, quantifying the crime prevention benefits
of proactive patrols targeting predicted “hot spots” of serious violent crime, and confirm-
ing that certain undesirable outcomes (over-policing arrests of racial minorities) did not
occur in the study period. We emphasize that these impacts are critically dependent on
the community-oriented approach taken by police in response to predicted hot spots, while
aggressive policing practices may substantially harm individuals and communities. In the

1This chapter is based on the research paper of the same title, co-authored by Wilpen Gorr and Daniel B.
Neill.
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discussion below, we note other critical issues to be addressed while evaluating the poten-
tial impacts of proactive policing, as well as describing a set of best practices intended to
maximize benefits and minimize harms.

A well-established finding in the criminology literature is that crimes do not occur
uniformly across time and space, but instead concentrate in micro-places, or “hot spots.”
Characterizing crime patterns at a fine resolution across time and space allows police agencies
to identify areas that are most in need of targeted intervention (National Research Council,
2004). Hot spots range from single intersections or storefronts to areas encompassing a
few city blocks and represent optimal locations for committing crimes (Block and Block,
1995; Brantingham and Brantingham, 1999; Eck and Weisburd, 1995; Sherman et al., 1989;
Weisburd, 2015). Crime hot spots make up a tiny fraction of the total area or street networks
in a city, yet tend to produce disproportionately many calls for police response and subsequent
reports relating to a range of violent, disorder, and property crimes. Routine activity theory
provides a theoretical characterization of hot spots as locations where likely offenders and
suitable targets (individuals or their property) converge in time and space in the absence of
capable guardianship (Cohen and Felson, 1979). For example, a crime hot spot might occur
near an automated teller machine (ATM) in an economically depressed commercial area,
where potential offenders can remain without appearing suspicious to police or shop owners
and where pedestrians are known to be carrying cash after visiting an ATM.

Police cannot effectively patrol all parts of the city at risk of experiencing crime. Police
command staff must weigh resource and manpower constraints when making decisions
about how to distribute patrols throughout a city and which proactive patrol activities are
appropriate in a given time and place. The day-to-day tactical decisions relating to patrol
management have observable impacts on the prevalence of crime and disorder in patrolled
neighborhoods (National Academies of Sciences, Engineering, and Medicine, 2018). A
substantial body of evidence indicates that sending proactive patrols to crime hot spots can
successfully lead to reductions in crime in those areas, but the amount of crime reduction
exhibited substantial variation across studies to date (Braga et al., 2019).

Enforcement actions such as stops, searches, and arrests can prevent crime by directly
incapacitating potential offenders (Weisburd and Eck, 2004). Incapacitation may have
immediate effects on crime (Wyant et al., 2012) or longer-term effects if prolific offenders are
removed from a community. However, it has been shown that aggressive policing practices,
including frequent stops, summonses, and arrests for low-level crimes, have adverse impacts
on community health (Geller et al., 2014), police-community relations (National Academies
of Sciences, Engineering, and Medicine, 2018), and racial equity. Minorities can suffer from
“over-policing” with aggressive enforcement actions. An example is the “broken windows”
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approach to policing that advocates zero tolerance by police to disorder behavior in the belief
that it would reduce crime. Strict enforcement of disorder crimes leads to disproportionate
harassment and arrest of minority persons and erodes public trust in police (Kamalu and
Onyeozili, 2018).

Guardian actions, such as increased police presence through patrols and community-
policing methods, deter crime by removing opportunities to commit crime and increasing
the perceived risk of crime commission, even though patrols generally do not involve direct
contact with potential offenders (Loughran et al., 2011; Sherman and Weisburd, 1995). Koper
(1995) presents evidence of short-term residual benefits from patrols after police leave an
area, finding that patrols to high-crime locations meeting a threshold dosage of about 10
minutes achieve a general deterrence effect which persists for several hours. Spatial diffusion
of patrol benefits is also supported by the literature, with several studies finding that the
general deterrent effect from police presence diffuses into nearby areas where police were
not concentrating efforts (Clarke and Weisburd, 1994; Telep et al., 2014; Weisburd et al.,
2006). Piza (2018) recently conducted a study of foot patrols, examining crime reduction
of enforcement actions versus guardian actions, and found that only guardian actions have
statistically significant effects. Similarly, a meta study on guardian actions in the form of
community-oriented policing and problem solving versus enforcement actions in hot spots
found only guardianship to have statistically significant effect sizes (Braga and Schnell,
2015).

Hot spots represent locations where police interventions have the greatest potential for
crime deterrence, but how to best identify and characterize these areas remains an open
question. Despite a large number of studies examining the effectiveness of hot spot-based
policing programs, most focus on the impact of patrolling a fixed set of hot spots pre-selected
using crime density maps or expert knowledge from police. Growing evidence shows
that hot spots can be dynamic in nature, with some crime clusters exhibiting changes in
shape, location, or magnitude over the course of days or weeks (Gorr and Lee, 2015, 2017;
Herrmann, 2015; Mohler et al., 2015). Although human crime analysts can typically pinpoint
areas with chronically high levels of crime with relative ease, subtle or emerging changes in
crime patterns can be harder to detect. Data-driven predictive analytics provide an alternative
strategy for hot spot selection. Crime forecasting models based on up-to-date crime data can
respond extremely quickly to the rapidly changing landscape of crime patterns across time
and space, and therefore provide a promising direction for dynamic selection of hot spots.

There have been relatively few studies which evaluate responsive selection of hot spots
through predictive modeling, but two evaluative studies of predictive policing programs
bear discussion. Hunt et al. (2014) present an evaluation of a predictive policing program
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implemented by the Shreveport, Louisiana Police Department in 2012. The program used
multivariate logistic regression models to predict small areas with increased risk of property
crimes, then deployed police patrols to conduct interventions at areas with highest predicted
risk over a seven-month period. The predictive policing program was evaluated by comparing
property crime rates in three treatment districts to three control districts where hot spots
were chosen using conventional crime mapping approaches. Hot spots were selected each
month and discussed daily with patrol officers during roll call. The evaluation found no
statistically significant difference in crime rates between treatment and control districts,
which the authors attribute to low statistical power of tests and significant variations in
proactive patrol implementation across districts and over the course of the experiment.

In contrast, Mohler et al. (2015) do find a statistically significant reduction in crime
volume within patrolled hot spots in an evaluation of crime forecasting using a self-exciting
point process (SEPP) for predictions (Mohler et al., 2011) in Los Angeles, CA. Predictions
were evaluated by comparing hot spots selected by the SEPP model with hot spots selected
by trained crime analysts. Police patrols were deployed to predicted hot spots for both
treatment and control hot spots. The Los Angeles field experiment indicated that relative to
hot spots selected by crime analysts, hot spots generated by the prediction model experienced
an average 7.4% reduction in crime volume per week at mean patrol levels. Within treatment
areas, the authors also observed a statistically significant negative relationship between patrol
time and crime volume, indicating that increased patrol time is more beneficial within hot
spots selected by the SEPP model.

Little work has been done to rigorously compare the effectiveness of multiple forecasting
methods on the task of hot spot selection for proactive patrols. In this study, we present
findings from (1) an empirical comparison of crime prediction methods on the task of one-
week-ahead crime prediction, and a (2) controlled field study evaluating a hot-spot-based
predictive policing program in Pittsburgh, PA. Section 3.2 compares the performance of
several place-based forecasting models on predicting historical crime data for the purpose of
selecting prediction models for the Pittsburgh field study. Section 3.3 describes the design,
implementation, and results of a controlled field study conducted in partnership with the
Pittsburgh Bureau of Police (PBP). General implications for predictive policing are discussed
Section 3.4. We end with concluding remarks and ideas for future research directions in
Section 3.5.
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3.2 Empirical Comparison of Prediction Methods for Crime
Forecasting

A hot-spot-based policing program inherently relies on the ability of police to identify crime
hot spots correctly and in a timely manner, so that proactive patrols can be dispatched to
areas most in need of intervention. The forecasting literature provides a wide array of
options for predictive methods which may be applied in the criminology setting to varying
degrees of success. Small tweaks to model specifications and parameters can have significant
implications on the performance of the method for the crime prediction task, even a within a
single class of predictive methods. For application in a predictive policing program, hot spot
selection models can have competing goals, such as high prediction accuracy and spatial
dispersion of predicted areas. To understand the tradeoffs of various prediction methods and
model specifications and design an appropriate process for weekly hot spot selection, we
evaluated the performance of a set of prediction models on five years of historical crime data
obtained from the PBP. Results from this analysis directly informed the choice and design of
prediction models used in the field study of a hot-spot-based predictive policing program in
Pittsburgh.

3.2.1 Data

To simulate a setting in which police command staff and crime analysts make weekly
decisions about where to distribute proactive patrols, we relied only on data sources readily
available to PBP for one-week ahead crime forecasts. Specifically, we obtained two data
sets spanning five years of historical data from June 1, 2011 through June 1, 2016. The
first data set is compiled from the City of Pittsburgh’s Automated Police Reporting System
(APRS), and contains data on all 206,150 crime incidents recorded by the PBP within the
five-year period of analysis. For each incident, the data set contains an associated crime
code corresponding to the Uniform Crime Reports (UCR) hierarchy employed by the Federal
Bureau of Investigation (FBI). Criminal offenses are divided into two primary groups in
the UCR hierarchy; Part I offenses represent the most serious categories of crime that are
likely to be reported to police, and Part II crimes include less serious offenses. Part I crimes
are further divided into two categories: violent crimes (P1V) and property crimes (P1P).
Table 3.1 reports crime counts for the seven component crime types which make up all Part 1
offenses in the APRS data. Though arson is also categorized by the FBI as an eighth Part 1
offense, data on arson incidents were not provided by the PBP. Analysis of crime incidents
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Table 3.1 Counts of APRS crime incidents for all Part 1 offenses from June 1, 2011 through
June 1, 2016 in Pittsburgh, PA.

UCR Code Crime Type Frequency

Part 1 Violent
(P1V) Offenses

1 Criminal Homicide 296
2 Forcible Rape 991
3 Robbery 5822
4 Aggravated Assault 5856

Part 1 Property
(P1P) Offenses

5 Burglary 11665
6 Larceny/Theft 37230
7 Vehicle Theft 3870

focused on the seven crime types reported in Table 3.1, with P1V crimes ultimately selected
as the primary target for prediction.

The second data set provided by PBP includes information on geotagged 911 calls for
assistance to the Pittsburgh police, totaling approximately one million calls over the five-year
period of analysis. This computer-aided dispatch (CAD) data includes the time and place that
a call was made, as well as a code indicating the reason the call was made and a descriptive
field indicating the outcome of the call. Taken together, the APRS data and CAD data provide
a comprehensive picture of when and where crimes are being reported in Pittsburgh. An
important caveat is that crimes that go unreported to police are not represented in these data
sources. This analysis therefore provides an evaluation of prediction methods at forecasting
crimes as they are reported to police, with the purpose of simulating one-week-ahead
forecasts of reported crime made by police analysts.

3.2.2 Methodology

To evaluate the effectiveness of various prediction models for hot spot selection, we divided
the five years of historical data into a two-year model calibration period (June 1, 2011 through
June 2, 2013) and a three-year evaluation period (June 3, 2013 through June 1, 2016). P1V
crimes comprise the most serious, violent offenses occurring throughout the city and are
therefore considered a top priority for crime deterrence efforts by police. We conducted
rolling one-week-ahead forecasts of P1V crime counts over the entire study period to simulate
crime analysts making weekly forecasts for hot spot selection. Input features provided to
the models varied by model, but can include lagged counts of the target variable, and lagged
counts of various “leading indicator” variables. Leading indicators represent events which
may be predictive of the outcome variable, such as other crime types or categories of 911
calls. The set of leading indicator variables provided as inputs for multivariate models are
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Table 3.2 Leading indicator variables provided as inputs to multivariate prediction models.

Data Source Leading Indicator Variable

Automated Police
Reporting System

(APRS)

Criminal Homicide
Forcible Rape
Robbery
Aggravated Assault
Burglary
Larceny/Theft
Vehicle Theft
Simple Assault
Vandalism
Liquor Law Violations
Public Drunkenness
Disorderly Conduct
Criminal Mischief
Trespass

Computer-Aided
Dispatch (CAD)

Assault
Burglary
Criminal Mischief
Disorderly Person
Disturbance
Drug-related Complaint
Harassment
Larceny
Suspicious Activity
Vehicle Theft
Weapons or Gunshot Complaint

reported in 3.2. Models were retrained on a rolling basis throughout the evaluation period
using two years of training data, allowing models to adapt to emerging changes in crime
patterns to make optimal predictions.

Many of the methods under analysis require a division of the study area into a number of
small spatial units representing the units of analysis for prediction. These units can be defined
using an arbitrary grid overlay in order to ensure uniform areas among all spatial units, or may
alternatively correspond to real-world geographies such as street segments or police beats.
As units of analysis get smaller in area, the spatial resolution of prediction increases, but
localized crime clusters may also be more likely to be split across multiple spatial units and
thus to become more difficult to detect. For this comparison of methods, we divided the city
into an arbitrary grid of 500 foot by 500 foot square cells. Exploratory work indicated that
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steps for grid optimization improved predictions fairly uniformly across prediction methods,
but did not result in significant changes to the relative performance of methods with respect
to each other. We therefore do not report results across grid optimizations but instead for a
single arbitrary grid overlay.

We compared 10 prediction models that have demonstrated good performance on fore-
casting crime counts or other types of spatio-temporal count data in the literature. The models
under comparison are:

• Within-Cell Moving Average (MAVG). A window length of fixed size was selected
to optimize prediction accuracy on the calibration period. At prediction time, target
crimes are tabulated for each spatial unit over the entire time window ending at the
present time period.

• Kernel Density Estimation (KDE). A density surface of target crimes was estimated
from spatial occurrences of the target variable over a fixed time window using a
Gaussian kernel. Kernel bandwidth and time window size were chosen to optimize
prediction accuracy over the calibration period.

• Logistic regression with lagged count features and L1-regularization (LASSO-
LC). A logistic regression model with L1-regularization was trained using lagged
count features from leading indicator variables made up of individual crime types
and 911 call categories. Counts were converted to binary class labels indicating
presence/absence of crime, and the regularization parameter was selected to optimize
prediction performance on the calibration period.

• Logistic regression with crime cluster features and L1-regularization (LASSO-
CC). Spatiotemporal clusters of leading indicator crimes were detected using the
Fast Subset Scan approach presented by Neill (2012b). Cluster characteristics (size,
duration, intensity) were used as features for a sparse logistic regression model trained
and tuned identically to LASSO-LC.

• Gaussian Process Regression (GP). A Gaussian process regression model was trained
assuming separable covariance across time and the two spatial dimensions. The
isotropic squared exponential covariance function was applied for all three dimensions,
and counts for leading indicators were included as linear terms in the mean function
(Rasmussen and Williams, 2005; Saatçi, 2011). GP hyperparameters were tuned over
the calibration period.

• Univariate Self-Exciting Point Process (SEPP-UNI). As presented by Mohler et al.
(2011), a univariate self-exciting point process model was trained in which a set
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of background crimes of the target type are assumed to occur independently across
time and space according to a stationary Poisson process, and subsequently result
in elevated predicted risk for offspring events in the spatial vicinity. Background
and offspring event rates are estimated iteratively through variable-bandwidth kernel
density estimation.

• Self-Exciting Point Process with spatial covariates (SEPP-MULTI). An extension
of the SEPP-UNI model was trained to allow counts from leading indicator crimes to
contribute to the overall intensity function of the target crime, following the training
procedure described by Reinhart and Greenhouse (2017).

• Multilayer Perceptron (MLP) with cell-specific lagged count features (MLP-LC).
A densely-connected feedforward network was trained to predict target crime counts
from 52 weeks of lagged crime data for a set of leading indicator crime types. Model
architecture was selected based on prediction accuracy in the calibration period, with a
single hidden layer and 10 hidden units outperforming other variants under considera-
tion.

• MLP with lagged count and local neighborhood features (MLP-NH) Additional
neighborhood features were added to the MLP-LC model, consisting of lagged crime
counts for leading indicators within the eight cells adjacent to the target cell for each
observation.

• Convolutional Neural Network (CNN). A convolutional neural network was adapted
to predict target crime counts from a rectangular grid overlay of the city and lagged
target crime counts within each cell. The CNN is designed to identify spatial patterns in
target crimes which appear throughout the city and are predictive of future crime, rather
than learning spatial structure individually within neighborhoods or other micro-areas.

The training and prediction framework was standardized as much as possible across the
10 models. Results from these models over the three-year evaluation period are reported in
the following section.

3.2.3 Evaluation of prediction methods

A variety of evaluation metrics are available for measuring the relative and absolute per-
formance of different prediction methods. For this analysis, the evaluation framework was
designed to align closely with police goals for a hot-spot-based predictive policing program.
In the place-based forecasting setting, a natural approach to assessing performance of crime
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prediction methods is to measure the prediction accuracy as the percent of crime volume
captured within a fixed amount of forecasted area. Because crime tends to concentrate in
areas making up a small fraction of the city, smaller and smaller proportions of crime are
captured per unit of area patrolled as additional hot spots are added to a proactive policing
program. A prediction tradeoff curve plots the crime volume captured versus area forecasted
over a range of area proportions from zero up to an upper limit determined by patrol resource
constraints. The curve provides a visual depiction of the benefit/cost tradeoff faced by
police when allocating resources to proactive patrols. If a single model outperforms others
everywhere along the tradeoff curve (i.e., is the highest curve), then that model is likely to
perform best regardless of how much area is ultimately selected for treatment. When curves
from two models cross within feasible ranges of patrol, the preferred model will depend on
the specific amount of area being forecasted and patrolled in a hot spot program.

Consideration of outcomes other than crime prediction accuracy is also necessary when
designing a predictive policing program for field implementation. Equity in crime deterrence
benefits across the city is an important consideration for police, as measured by the spatial
dispersion of the areas selected as hot spots across time. As discussed in Culyer (2001), one
concept of equity is defined as the provision of services to all areas in a city that are predicted
to be in need of crime prevention services, provided it is feasible for police to administer
those services. A hot spot program that selects the same subset of locations every week for
patrols results in a highly unbalanced distribution of proactive police effort throughout the
city, leaving most of the city without the benefits of crime deterrence even in areas where
there is a predicted need. Gorr and Lee (2017) use the annual footprint of predicted hot spots,
as measured by the area of hot spots with prevention services in one or more weeks, as one
measure of equity in the allocation of police resources.

For our empirical comparison of forecasting methods, we report hot spot prediction
entropy as a measure of spatial dispersion of top-predicted areas. For given prediction model,
let ni be the number of times grid cell i appears in the top-predicted 1% of all N cells across
all forecast periods, and define pi as the proportion of total hot spot selections occupied by
cell i:

pi =
ni

ÂN
j n j

Then hot spot prediction entropy H is calculated as the entropy of this hot spot distribution
across grid cells:

H =�
N

Â
i=1

pi log2 pi
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Hot spot selection entropy is highest for predictions that lead to a uniform distribution of hot
spots across the city, and lowest for prediction methods that choose the same hot spots in
every time period. This statistic therefore provides a useful point of comparison relating to
the geographic dispersion of hot spots selected by crime forecasting models.

Prediction tradeoff curves for all 10 forecasting models on predicting P1V crimes are
presented in Figure 3.1. All models under consideration demonstrate some effectiveness at
predicting crime, with all curves showing similar performance at the smallest levels of area
forecasted within the city. As more area is forecasted, the relative performance of the models
becomes clearer, with all models experiencing diminishing marginal rates of crime captured
as more area is forecasted. The MAVG model shows the best prediction performance in the
top-predicted areas, from zero up to 3% of the city area forecasted. Police departments are
typically only able to effectively patrol 1-3% of a city in a hot spot policing program, thus
these results indicate the relatively simple MAVG method is likely the best candidate for
selecting hot spots that capture the maximum amount of crime on average. With the exception
of the relative poor performance of the SEPP-UNI and LASSO-CC models, most of the
prediction models performed fairly similarly within the 0-3% range of feasible areas shown
in Figure 3.1. Although some of the models evaluated here are considerably more difficult
to design, tune, and train than the MAVG model, it seems that the additional complexity of
these models does not improve prediction performance within these feasible levels of patrol.

Table 3.3 reports summary statistics from the comparison of prediction methods. The
partial area under the tradeoff curve (pAUC) reports the area under the tradeoff curve up
to 1% of the city area forecasted. The pAUC results are a measure of predictive accuracy
which relate directly to feasible levels of patrols that may be dispatched to the top 1% of
hot spots selected by these models. As depicted visually by the prediction tradeoff curves,
predictions from the MAVG model give the highest pAUC at the 1% level compared with
all other models. This high level of prediction accuracy comes at the expense of decreased
hot spot selection entropy (H) values. The MAVG model has among the lowest entropy
values across models, indicating that the same cells are selected repeatedly in the top 1%
of predictions for this model. This lack of spatial dispersion of predictions is unsurprising
given the design of the MAVG model, which leverages only long-term trends in crime to
make predictions. The MLP-LC model provided the greatest variance in top-predicted cells,
with hot spot selection entropy of 8.42 over the evaluation period. These results indicate
that for a hot spot program where prediction accuracy and equity of proactive patrols are
both key objectives, an approach that leverages multiple models is necessary to achieve good
performance on both metrics simultaneously.
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Fig. 3.1 Prediction tradeoff curves for 10 forecasting models on one-week-ahead predictions
for Part 1 violent (P1V) crimes across a three year evaluation window.

3.3 Hot Spot Field Experiment in Pittsburgh, PA

Pittsburgh, PA is a city of 300,268 population with 64.9% white (non-Hispanic), 22.8%
African American, 5.7% Asian, and 2.3% Hispanic racial composition. The Pittsburgh
Bureau of Police (PBP) has approximately 900 sworn officers distributed across six police
zones, each with a police station and commander. Results from the comparison of forecasting
methods discussed in the previous section directly informed design of a field study in
Pittsburgh, aimed at evaluating the effectiveness of hot spot-based proactive patrols. The
field study was implemented in close partnership with the Pittsburgh Bureau of Police (PBP).
The goal of the field study was to assess how well a small-scale hot spot policing program
based on crime forecasts could deter serious crime offenses and equitably distribute police
effort to locations in need throughout the city.
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Table 3.3 Partial area under the tradeoff curve (pAUC) and hot spot selection entropy (H)
for a 1% target area from 10 forecasting models across a three year evaluation window.

Part 1 violent crimes

pAUC⇥102 H

MAVG 1.31 6.38
MLP-LC 1.23 8.42
MLP-NH 1.23 8.21
CNN 1.23 7.43
LASSO-LC 1.14 7.06
SEPP-MULTI 1.10 7.58
KDE 1.06 6.83
GP 1.05 6.30
LASSO-CC 0.94 8.31
SEPP-UNI 0.87 6.34

Best-performing model for each column
denoted in bold face.

Prior to our field study, PBP maintained a policy that uniformed patrol officers conduct
proactive patrols to prevent crimes and protect citizens. For such patrols, officers used
discretionary time when not responding to 911 calls for service or other official duties. PBP
policy for proactive patrols included community-oriented policing methods such as engaging
with local citizens, avoiding enhanced enforcement actions such as zero-tolerance arrests
and field interrogations. Command staff and individual officers determined patrol locations
using judgment informed by experience and recent crime events. Officers were free to choose
between car and foot patrol, although there was a preference by police leaders for foot patrol.
Foot patrol used “park and walk” so that parked marked police cars provided additional
police presence.

3.3.1 Experimental design

For the hot spot program under consideration, we relied on the same APRS and CAD data
sets described in Section 3.2.1, refreshed on a weekly basis in city-maintained databases
available to PBP crime analysts. Based on the outcomes of the empirical comparison of
prediction methods discussed in Section 3.2, we determined that using a single prediction
model for hot spot selection would not perform well on the multiple competing objectives of
(1) prediction accuracy and (2) equitable distribution of hot spots throughout the city. A hot



3.3 Hot Spot Field Experiment in Pittsburgh, PA 75

spot program with the sole aim of capturing the most crime within hot spots would likely be
very static, with the same small set of chronic hot spots being selected for patrols each week.

Table 3.4 reports the percent of hot spot selections occupied by frequently-selected
locations for a hot spot program targeting 1% of a city’s total area, which provides an
intuitive basis for understanding how frequently the top-selected hot spots change over time
across models. Even the MLP-LC model, which had a high hot spot selection entropy relative
to other methods, results in predicted hot spots that persist for long periods of time, with
43.6% of hot spot selections occupied by locations that remain hot spots for greater than 75%
of the study period.

Through discussion with PBP command staff, we identified an objective to predict
temporary hot spots, which represent short-term flare-ups over baseline levels of crime. In
order to predict temporary flare-ups in target crimes throughout the city, we modified the
MLP-LC model by tweaking the target variable for prediction. MLP-DIFF is identical to
MLP-LC in structure and inputs, but the outcome variable for prediction is changed from
total observed crime counts to the difference between observed counts and a one-year moving
average of target counts within each cell. The target variable is clipped at zero to prevent
negative observed outcomes and predictions. The predictions from MLP-DIFF no longer
represent the predicted number target crime counts at each location, but instead represent
the predicted positive difference from baseline levels of crime. Although the MLP-DIFF
model results in lower prediction accuracy with respect to total crime captured, the hot
spot selection entropy for this model is 10.53, much higher than the highest-entropy model
considered in the previous section. Further, Table 3.4 indicates that the MLP-DIFF model
results in top-predicted areas persisting for shorter periods of time than the MLP-LC and
MAVG models.

Based on this evidence that the within-cell moving average (MAVG) and MLP-DIFF
model address different police objectives for a proactive patrol program, we selected these
two models for separate identification of chronic and temporary hot spots. Despite the
MLP-DIFF predictions no longer representing a predicted total number of crimes occurring
in a predicted area, we can still examine the prediction tradeoff curve and hot spot selection
entropy from the temporary hot spot model to compare it with models predicting raw counts.
In Figure 3.2, we show the tradeoff curves for the MAVG and MLP-DIFF models, as well
as a composite curve that represents a combined chronic-temporary hot spots program with
equal numbers of chronic (MAVG) and temporary (MLP-DIFF) hot spots.

Chronic and temporary hot spots exhibit different temporal patterns and relationships to
minor crimes or other leading indicators, motivating our decision to select separate prediction
models for selecting weekly chronic and temporary hot spots for patrol. The temporary hot
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Table 3.4 Percent of hot spot selections occupied by frequently-selected locations (1% target
area).

% of Total Hot Spot Selections
Occupied by Locations Persisting For:

> 25% of
All Weeks

> 50% of
All Weeks

> 75% of
All Weeks

100% of
All Weeks

MAVG 96.2% 91.0% 82.6% 69.6%
MLP-LC 74.2% 55.5% 43.6% 0.0%
MLP-DIFF 3.5% 1.7% 0.0% 0.0%

Fig. 3.2 Composite tradeoff curve representing a combined chronic-temporary hot spot
program.

spot model includes weekly time lags of target crimes, as well as lags for leading indicator
crimes and 911 call types. Hot spots from both prediction models were selected every
week for each of the six police zones in Pittsburgh, and hot spots were provided to officers



3.3 Hot Spot Field Experiment in Pittsburgh, PA 77

conducting patrols (on foot and in patrol cars) as part of their usual shifts throughout the day
and night. P1V crimes were selected as the target crime type for prediction, as reducing the
frequency of these violent offenses is considered a top priority for PBP command staff.

We evaluated the hot spot-based predictive policing program through a controlled field
study motivated by crossover trials in the field of public health. Using historical data on
P1V crime frequency, we divided all six police zones in Pittsburgh into two halves of equal
area and roughly equal counts of historical violent crimes (Figure 3.3). For the experiment,
the areas of Pittsburgh exposed to treatment (increased patrols in the predicted hot spots)
were randomized then alternated on a weekly basis, so that no grid cell was selected for
treatment two weeks in a row. In partitioning the city, we also avoided separating chronic hot
spots across divisions in order to minimize spatial spillover effects from patrolling hot spots
directly on the boundary between treatment and control areas. Residual crime deterrence
effects after patrols leave an area are typically short (Koper, 1995; Telep et al., 2014), thus
temporal spillover effects from treatment in previous weeks were expected to be negligible.
Predicted hot spots in the “control” partitions for a given week were not provided to PBP;
thus, control hot spots had policing as usual, including reactive policing in response to 911
emergency calls for service and a limited number of police-designed proactive patrols that
existed before and during the experiment, but were not specifically targeted for patrols.

Beginning on February 20, 2017, we began a pilot period in which we initiated hot spot
selection for one of the six police zones in Pittsburgh. By May 1, 2017, we had expanded the
program to all six police zones, and upper level command staff from all zones were involved
in directing proactive patrols to hot spots selected by the forecasting models. We initially
identified 12 (six chronic and six temporary) hot spots per zone per week, totaling 72 hot
spots targeted for additional patrols. The target treatment dosage for each 500 ft. by 500 ft.
hot spot cell was three 15-minute foot patrols or nine 5-minute car patrols per hot spot per
day. Hot spots were presented to patrol officers at the beginning of each week in a roll call
meeting. A hot spot dashboard was also provided to officers through the computers in their
vehicles, so that officers could easily locate hot spots while out on patrol. Through discussion
with police and analysis of data on proactive patrols, we determined that individual hot spots
were not receiving adequate levels of patrol dosage; we therefore dropped to six hot spots
(three chronic and three temporary) per zone per week for the experimental phase. The result
was a small-scale program with 36 hot spots for the city consisting of three chronic and three
temporary hot spots for each of Pittsburgh’s six police zones with 0.5 percent of the area of
the city under treatment at any given time. During the study year treatment duration averaged
slightly less than 20 minutes per day for both chronic and temporary hot spots, less than the
targeted 45 minutes per day.
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Fig. 3.3 Two equal-area partitions of Pittsburgh, Pennsylvania used to separate treatment from
controls each week of the field trial. Partitions were selected to roughly balance historical
P1V crime counts within each of six police zones. Darker areas indicate higher concentration
of P1V crimes from 2011 through 2016.
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The experimental phase of the field study ran for 12 months (November 6, 2017 through
November 4, 2018). During the study year, there were a total of 37 homicides, 56 rapes,
686 robberies, 682 aggravated assaults, 1230 burglaries, 6394 larcenies, and 772 motor
vehicle thefts in the city of Pittsburgh (exclusive of domestic violent crimes and retail crimes).
Policing-as-usual for patrol officers in Pittsburgh, while mainly consisting of responding
to 911 calls for emergency services, also includes a number of police-generated proactive
patrols. We therefore expected that control hot spots, known to the researchers but not
provided to PBP, would have some police-generated proactive patrols. Overall, control hot
spots had proactive patrols in numbers equal to 14.8 percent of patrols conducted in treatment
hot spots (1.9 vs. 12.9 patrols per hot spot per week), with 18.8 percent for chronic hot
spots (2.6 vs. 13.8 patrols per hot spot per week) and 10.1 percent (1.2 vs. 12.1 patrols per
hot spot per week) for temporary hot spots. Thus, the observed differences between P1V
crimes in treatment and control hot spots represent the impact of targeting predicted (chronic
or temporary) hot spots on a given week of the experiment, resulting in an additional 11
proactive patrols to targeted cells on average.

We employ a fixed effects regression model to evaluate statistical significance of per-cell
P1V crime reductions from the hot spot-based proactive patrol program in Pittsburgh. The
units of analysis are cell-weeks, and outcomes Y are Part 1 Violent (P1V) crime or Part 1
Property (P1P) crime counts per cell. We defined a regression model (Equation 3.1) with
a binary variable Tp,w indicating whether partition p was selected for treatment in week w,
HSc,w indicating whether cell c was selected as a hot spot in week w, and Dc,w indicating
the number of proactive patrols in cell c during week w. HSc,w⇥Dc,w⇥Tp,w is then defined
as an interaction term between hot spot selection and treatment dose. Fixed effect terms for
partitions and weeks are included as ap and dw respectively, and ec,p,w terms are cell-specific
errors. Model coefficients are estimated through ordinary least squares (OLS).

To minimize spillover of deterrence effects across treatment and control boundaries, cells
in the control partition but directly adjacent to treatment hot spots were dropped from the
analysis. Similarly, cells in the treatment partition that were directly adjacent to control hot
spots were dropped. The primary coefficient of interest is b1, as this represents the per-cell
reduction in target crimes within treatment hot spots associated with an additional proactive
patrol.

3.3.2 Results

We separately estimate and report dose-dependent and non-dose-dependent estimates of
treatment effect on Part 1 Violent (P1V) crimes and Part 1 Property (P1P) crimes during the
study year.
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Dose-dependent per-cell crime reductions

We report per-cell dose-dependent regression results for four model variants: Model 1
(Equation 3.1) examines only the dose-dependent treatment effect of patrols to hot spot cells
and includes week and zone-partition fixed effects. Model 2 (Equation 3.2) additionally
examines possible changes in crime volume in cells adjacent to hot spots and in all other
cells (cells not selected as a hot spot and not adjacent to a hot spot). Model 3 (Equation 3.3)
estimates separate dose-dependent treatment effects for chronic and temporary hot spots.
Finally, Model 4 (Equation 3.4) estimates separate dose-dependent treatment effects for car
patrols and foot patrols on chronic and temporary hot spots. Previous studies have found that
car patrols are approximately 1/3 as effective as foot patrols for preventing crime; therefore
we compute combined patrol dose as (number of foot patrols) + (1/3)*(number of car patrols)
for Models (1-3). See Tables 3.5 and 3.7 for the full table of regression results with P1V
outcomes. We also provide results in Tables 3.6 and 3.8 on a second outcome variable, Part 1
Property crimes, to demonstrate that crime prevention was not limited to the targeted P1V
crimes.

Yc,p,w = b0 +b1[HSc,w⇥DALLc,w⇥Tp,w]+b2HSc,w +ap +dw + ec,p,w (3.1)

Yc,p,w = b0 +b1[HSc,w⇥DALLc,w⇥Tp,w]+b2HSc,w

+b3[ADJc,w⇥Tp,w]+b4ADJc,w +b5NADJc,w +ap +dw + ec,p,w
(3.2)

Yc,p,w = b0 +b1[HSCHRONICc,w⇥DALLc,w⇥Tp,w]+b2HSCHRONICc,w

+b3[HST EMPc,w⇥DALLc,w⇥Tp,w]+b4HST EMPc,w

+b5[ADJc,w⇥Tp,w]+b6ADJc,w +b7NADJc,w +ap +dw + ec,p,w

(3.3)

Yc,p,w = b0 +b1[HSCHRONICc,w⇥DCARc,w⇥Tp,w]

+b2[HSCHRONICc,w⇥DFOOTc,w⇥Tp,w]+b3HSCHRONICc,w

+b4[HST EMPc,w⇥DCARc,w⇥Tp,w]

+b5[HST EMPc,w⇥DFOOTc,w⇥Tp,w]+b6HST EMPc,w

+b7[ADJc,w⇥Tp,w]+b8ADJc,w +b9NADJc,w +ap +dw + ec,p,w

(3.4)
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A concern in estimating dose-dependent treatment effects is that dose was not randomized
across hot spots. It is possible that officers may direct proactive patrols either towards or
away from cells with high incidence of P1V, thereby affecting the dose-dependent treatment
effect coefficient. We refute this possibility by computing the correlation coefficient between
average number of proactive patrols when treated and average P1V when control for the 464
cells that are selected as both treatment and control at least once in the study period, and find
null correlations for all patrol types (foot patrols vs. P1V: 0.017; car patrols vs. P1V: -0.009;
foot patrols + car patrols vs. P1V: 0.000).

Model 1. The coefficient on Hotspot × Treatment Dose is negative and statistically
significant (b=-0.0009, 95% CI=[-0.001, -0.000], P<0.001), while the coefficient on the
Hotspot indicator variable is positive and statistically significant (b= 0.0431, 95% CI=[0.040,
0.046], P<0.001). Taken together, these results indicate that cells selected as a hot spot
experience higher crime volume on average, but treating these areas with additional proactive
patrols tends to decrease crime relative to hot spots that do not receive patrols.

Model 2. We find a weakly statistically significant reduction in P1V crimes in cells
adjacent to hot spots (b=-0.0014, 95% CI=[-0.003, 0.000], P=0.082), providing some evi-
dence for a small degree of spatial diffusion of crime deterrence benefits to areas surrounding
predicted hot spots. Note that this result represents the effect of being adjacent to a treatment
hot spot regardless of treatment dose at that location. We find no statistically significant
change in P1V crime in cells not adjacent to hot spots (b=-0.0001, 95% CI=[-0.001, 0.000],
P=0.895).

Model 3. The coefficients on Hotspot × Treatment Dose for both hot spot types are
negative (indicating a reduction in crime volume from treatment) and statistically significant
(chronic hot spots: b=-0.0015, 95% CI=[-0.002, -0.001], P<0.001; temporary hot spots:
b=-0.0008, 95% CI=[-0.001, 0.000], P=0.024). Differences in the estimated treatment effects
in chronic and temporary hot spots provide evidence that equivalent patrol protocols to
chronic versus temporary hot spots may result in a differing magnitude of crime deterrence
benefits.

Model 4. For foot patrols, the coefficients on Hotspot × Treatment Dose for both hot spot
types are negative (indicating a reduction in crime volume from treatment) and statistically
significant (chronic hot spots: b=-0.0031, 95% CI=[-0.005, -0.002], P<0.001; temporary
hot spots: b=-0.0025, 95% CI=[-0.004, -0.001], P=0.001). In contrast, car patrols do not
appear to provide P1V crime prevention. The dose-dependent treatment effect coefficient
is not significant for car patrols in chronic hot spots, while additional car patrols have a
positive and weakly statistically significant treatment effect in temporary hot spots (chronic
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hot spots:b=0.0002, 95% CI=[0.000, 0.001], P=0.47); temporary hot spots: b=0.0006, 95%
CI=[0.000, 0.001], P=0.094).

Non-dose-dependent per-cell crime reductions

We additionally provide non-dose-dependent regression results in Table 3.7 estimating treat-
ment effect of a cell being displayed to patrol officers as a hot spot, regardless of the observed
number of proactive patrols to the location while selected as treatment. The interaction terms
with the Treatment variable represents the treatment effect of being displayed as a hot spot
for hot spot cells, and the effect of being in a treatment partition for cells adjacent to or not
adjacent to a hot spot. While P1V crimes represent the primary target for proactive patrols,
we additionally provide P1P results in Table 3.8 as evidence that crime prevention benefits
are not limited to the targeted P1V crimes.

Yc,p,w = b0 +b1[HSc,w⇥Tp,w]+b2HSc,w +ap +dw + ec,p,w (3.5)

Yc,p,w = b0 +b1[HSc,w⇥Tp,w]+b2HSc,w

+b3[ADJc,w⇥Tp,w]+b4ADJc,w +b5NADJc,w +ap +dw + ec,p,w
(3.6)

Yc,p,w = b0 +b1[HSCHRONICc,w⇥Tp,w]+b2HSCHRONICc,w

+b3[HST EMPc,w⇥Tp,w]+b4HST EMPc,w

+b5[ADJc,w⇥Tp,w]+b6ADJc,w +b7NADJc,w +ap +dw + ec,p,w

(3.7)

Model 1. The first model (Equation 3.5) examines only the treatment effect of patrols to
hot spot cells, and includes week and zone-partition fixed effects as discussed in Section 3.3.1.
For both crime types, the coefficient on Hotspot ⇥ Treatment is negative and statistically
significant (P1V: b=-0.0128, 95% CI=[-0.017, -0.009], P<0.001; P1P: b=-0.0093, 95%
CI=[-0.020, 0.001], P=0.091), while the coefficient on the Hotspot indicator variable is
positive and statistically significant (P1V: b=0.0465, 95% CI=[0.044, 0.049], P<0.001; P1P:
b=0.1501, 95% CI=[0.142, 0.158], P<0.001). Taken together, these results indicate that cells
selected as a hot spot experience higher crime volume on average, but treating these areas
with proactive patrols tends to decrease crime relative to hot spots that do not receive patrols.

Model 2. The second model (Equation 3.6) additionally examines possible changes
in crime volume in cells adjacent to hot spots and in all other cells (cells not selected as
a hot spot and not adjacent to a hot spot). We find a statistically significant reduction in
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Table 3.5 Ordinary least squares (OLS) regression results estimating dose-dependent treatment
effect of proactive patrols on P1V crime counts. Units of analysis are cell-weeks. Reference
group for Model (1) is non-hot spot cells. Reference group for Models (2-4) is control cells
not selected as hot spots or adjacent to hot spots.

(1) (2) (3) (4)

HS 0.0431*** 0.0437***
(0.040, 0.046) (0.041,0.046)

HS⇥DALL -0.0009*** -0.0009***
(-0.001, 0.000) (-0.001, 0.000)

HSchronic 0.0772*** 0.0768***
(0.074, 0.081) (0.073, 0.080)

HSchronic⇥Dall -0.0015***
(-0.002, -0.001)

HSchronic⇥Dcar 0.0002
(0.000, 0.001)

HSchronic⇥D f oot -0.0031***
(-0.005, -0.002)

HStemp 0.0122*** 0.0116***
(0.009, 0.016) (0.008, 0.015)

HStemp⇥Dall -0.0008**
(-0.001, 0.000)

HStemp⇥Dcar 0.0006*
(0.000, 0.001)

HStemp⇥D f oot -0.0025***
(-0.004, -0.001)

Ad j. 0.0102*** 0.0102*** 0.0102***
(0.009, 0.011) (0.009, 0.011) (0.009, 0.011)

Ad j.⇥T -0.0014* -0.0014* -0.0014*
(-0.003, 0.000) (-0.003, 0.000) (-0.003, 0.000)

Not Ad j.⇥T -0.0001 -0.0001 -0.0001
(-0.001, 0.000) (-0.001, 0.000) (-0.001, 0.000)

Constant 0.0041*** 0.0035*** 0.0035*** 0.0035***
(0.002, 0.006) (0.002, 0.005) (0.002, 0.005) (0.002, 0.005)

Week FE Included Included Included Included
Zone-Partition FE Included Included Included Included

Adj. R2 0.005 0.007 0.009 0.009
No. Observations 361719 361719 361719 361719

Notes: 95% confidence intervals shown in parentheses. Significance at the 1% level is denoted by ***;
** denotes significance at the 5% level; and * significance at the 10% level.
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Table 3.6 Ordinary least squares (OLS) regression results estimating dose-dependent treat-
ment effect of proactive patrols on P1P crime counts. Units of analysis are cell-weeks.
Reference group for Model (1) is non-hot spot cells. Reference group for Models (2-4) is
control cells not selected as hot spots or adjacent to hot spots.

(1) (2) (3) (4)

HS 0.1394*** 0.1419***
(0.135, 0.149) (0.041,0.046)

HS⇥DALL 0.0018*** 0.0017***
(0.001, 0.003) (0.001, 0.003)

HSchronic 0.2210*** 0.2179***
(0.211, 0.231) (0.208, 0.228)

HSchronic⇥Dall 0.0019**
(0.000, 0.003)

HSchronic⇥Dcar 0.0063***
(0.005, 0.008)

HSchronic⇥D f oot -0.0103***
(-0.014, -0.006)

HStemp 0.0682*** 0.0696***
(0.059, 0.078) (0.060, 0.079)

HStemp⇥Dall -0.0001
(-0.002, 0.002)

HStemp⇥Dcar -0.0020**
(0.000, 0.008)

HStemp⇥D f oot 0.0039*
(-0.004, -0.001)

Ad j. 0.0341*** 0.0341*** 0.0342***
(0.031, 0.037) (0.031, 0.037) (0.031, 0.037)

Ad j.⇥T -0.0034 -0.0034 -0.0034
(-0.008, 0.001) (-0.008, 0.001) (-0.008, 0.001)

Not Ad j.⇥T 0.0001 0.0001 0.0001
(-0.001, 0.001) (-0.001, 0.001) (-0.001, 0.001)

Constant 0.0171*** 0.0150*** 0.0150*** 0.0150***
(0.013, 0.021) (0.011, 0.019) (0.011, 0.019) (0.011, 0.019)

Week FE Included Included Included Included
Zone-Partition FE Included Included Included Included

Adj. R2 0.012 0.014 0.016 0.016
No. Observations 361719 361719 361719 361719

Notes: 95% confidence intervals shown in parentheses. Significance at the 1% level is denoted by
***; ** denotes significance at the 5% level; and * significance at the 10% level.
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P1V crimes in cells adjacent to hot spots, providing evidence for a small degree of spatial
diffusion of crime deterrence effects to areas surrounding predicted hot spots (b=-0.0014,
95% CI=[-0.003, 0.000], P=0.083). No significant crime deterrence effect was observed
for P1P crimes in cells adjacent to hot spots. For both crime types, we find no statistically
significant change in crime in cells not adjacent to hot spots.

Model 3. Finally, we estimate separate treatment effects for chronic and temporary hot
spots (Equation 3.7). For P1V target crimes, the coefficients for both hot spot types are
negative (indicating a reduction in crime volume from treatment) and statistically significant
(chronic: b=-0.0203, 95% CI=[-0.026, -0.014], P<0.001; temporary: b=-0.0053, 95% CI=[-
0.011, 0.000], P=0.072). For P1P target crimes, the treatment coefficient for chronic hot spots
was statistically significant, but the coefficient for temporary hot spots was not, indicating
that the benefit from patrolling temporary hot spots may be limited to reductions in violent
crime and not other crime types (chronic: b=-0.0157, 95% CI=[-0.031, 0.000], P=0.043;
temporary: b=-0.0029, 95% CI=[-0.018, 0.012], P=0.710). Differences in the estimated
treatment effects in chronic and temporary hot spots were observed for both outcome crime
types, providing evidence that equivalent patrol protocols to chronic versus temporary hot
spots may result in a differing magnitude of crime deterrence benefits.
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Table 3.7 Ordinary least squares (OLS) regression estimating non-dose-
dependent treatment effect on Part 1 Violent crime counts. Units of analysis
are cell-weeks. Reference group for Model (1) is non-hot spot cells. Refer-
ence group for Models (2) and (3) is control cells not selected as hot spots or
adjacent to hot spots.

(1) (2) (3)

HS 0.0465*** 0.0472***
(0.044, 0.049) (0.044, 0.050)

HS⇥T -0.0128*** -0.0128***
(-0.017, -0.009) (-0.017, -0.009)

HSchronic 0.0818***
(0.078, 0.086)

HSchronic⇥T -0.0203***
(-0.026, -0.014)

HStemp 0.0125***
(0.008, 0.017)

HStemp⇥T -0.0053*
(-0.011, 0.000)

Ad j. 0.0102*** 0.0102***
(0.009, 0.011) (0.009, 0.011)

Ad j.⇥T -0.0014* -0.0014*
(-0.003, 0.000) (-0.003, 0.000)

Not Ad j.⇥T -0.0001 -0.0001
(-0.001, 0.000) (-0.001, 0.000)

Constant 0.0041*** 0.0035*** 0.0035***
(0.002, 0.006) (0.002, 0.005) (0.002, 0.005)

Week FE Included Included Included
Zone-Partition FE Included Included Included

Adj. R2 0.005 0.007 0.009
No. Observations 361719 361719 361719

Notes: 95% confidence intervals shown in parentheses. Significance at the 1% level
is denoted by ***; ** denotes significance at the 5% level; and * significance at the
10% level.
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Table 3.8 Ordinary least squares (OLS) regression estimating non-dose-
dependent treatment effect on Part 1 Property crime counts Units of analysis
are cell-weeks. Reference group for Model (1) is non-hot spot cells. Refer-
ence group for Models (2) and (3) is control cells not selected as hot spots
or adjacent to hot spots.

(1) (2) (3)

HS 0.1501*** 0.1525***
(0.142, 0.158) (0.145, 0.160)

HS⇥T -0.0093* -0.0093*
(-0.020, 0.001) (-0.020, 0.001)

HSchronic 0.2356***
(0.225, 0.246)

HSchronic⇥T -0.0157**
(-0.031, -0.000)

HStemp 0.0693***
(0.058, 0.080)

HStemp⇥T -0.0029
(-0.018, 0.012)

Ad j. 0.0342*** 0.0342***
(0.031, 0.037) (0.031, 0.037)

Ad j.⇥T -0.0034 -0.0034
(-0.008, 0.001) (-0.008, 0.001)

Not Ad j.⇥T 0.0001 0.0001
(-0.001, 0.001) (-0.001, 0.001)

Constant 0.0171*** 0.0150*** 0.0150***
(0.013, 0.021) (0.011, 0.019) (0.011, 0.019)

Week FE Included Included Included
Zone-Partition FE Included Included Included

Adj. R2 0.012 0.014 0.016
No. Observations 361719 361719 361719

Notes: 95% confidence intervals shown in parentheses. Significance at the 1%
level is denoted by ***; ** denotes significance at the 5% level; and * significance
at the 10% level.
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Table 3.9 Counts and standard deviations of P1V crimes in treatment and control hot spots
across cell-weeks.

Control P1V Treatment P1V % Reduction

Sum Std. Dev. N Sum Std. Dev. N in P1V

All Hot Spots 95 0.22 1872 71 0.20 1872 25.3%
Chronic Cells 80 0.29 936 61 0.26 936 23.8%
Temp. Cells 15 0.13 936 10 0.10 936 25.3%

Adj. Cells 163 0.12 11869 149 0.11 12135 8.6%

Spatial dispersion of chronic and temporary hot spots

As discussed in 3.2, the temporary hot spot model was selected to encourage spatial dispersion
of top-selected hot spots as measured by a selection entropy index. Figure 3.4 shows the
hot spot footprints for chronic and temporary hot spots across the 12-month period of
evaluation. Cells are flagged in red if they were included as a hot spot at least once through
the study period. As expected, the chronic hot spots selected using a one-year moving
average remained fairly static, only occurring in a small fraction of the city over 12 months.
By contrast, temporary hot spots selected by the multilayer perceptron predicting short-term
flare-up in crime were spread over almost five times the area of chronic spots over the same
period. Most cells in the temporary hot spot footprint received foot patrols at least once, with
6.5% of the city area receiving at least one foot patrol while treated as a temporary hot spot.

Overall reduction in crime volume from proactive patrols

The observed differences in P1V crimes and P1P crimes between control and treatment hot
spots are reported in Tables 3.10 and 3.11. Within all hot spots, we measured 24 fewer
P1V crimes in treatment hot spots relative to control hot spots, or a 25.3% reduction in P1V
crimes per hot spot cell (ntreatment = ncontrol = 1872 cell-weeks). We measured 18 fewer P1P
crimes in treatment cells, or a 5.5% reduction in P1P crimes in treatment hot spots relative to
control hot spots. We see a larger percentage reduction in temporary hot spots for P1V crimes
relative to chronic hot spots, with a reduction of 33.3% in temporary hot spots (n = 936)
and 23.8% in chronic hot spots (n = 936). In non-hot-spot cells in treatment partitions, we
measured an 4.5% decrease in P1V crimes per cell in treatment areas, and a 1.6% decrease
in P1P crimes per cell in treatment areas.

While the numbers of crimes reduced are small, their impact in terms of cost avoidance
to society and victims is large compared to the cost of proactive police patrols. In Table 3.10,
we compute that overall there were $3,411,328 in crime costs avoided, while the cost of
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(a) (b)

Fig. 3.4 Hot spot footprint in Pittsburgh over 12 months for two types of hot spots, (a) chronic
hot spots predicted using a long-term moving average, and (b) temporary hot spots predicted
using a multilayer perceptron. Cells are highlighted if they were selected as a hot spot at
least once in the study period.

patrols was less than $1 million (see Appendix 3.A). Counts and standard deviations of P1V
crimes in treatment and control cells are reported in Table 3.9. We observe a statistically
significant reduction in the number of African American and other non-white victims of P1V
crime, with 25 (39.7%) fewer victims in treatment vs. control cells over the study. Prevention
of P1V crimes with multiple victims accounts for a higher proportional reduction in minority
victims than the 25.3% reduction in overall P1V crime.

Proactive patrols increased relative to pre-study-year levels in control areas as well as
treatment areas, likely due to patrol officers continuing to conduct proactive patrols to recent
treatment areas during control weeks. We next estimate the overall impact of the hot spot
program on prevention of serious violent crimes in both treatment and control areas, which
requires several additional assumptions. First, we estimate the overall number of P1V crimes
prevented by all proactive patrols (in both treatment and control hot spots) during the study
year as 33.9 (27.8 in chronic hot spots + 6.1 in temporary hot spots), assuming that the crime
reduction effect is linear in the number of patrols. Second, we assume that the counterfactual
of “business as usual” in the absence of a hot spot program would have kept proactive patrols
at pre-study-year levels (1.1 and 0.2 patrols per hot spot per week for chronic and temporary
hot spots respectively), leading to 4.0 crimes prevented (3.8 in chronic hot spots + 0.2 in
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temporary hot spots) under the assumption of linear crime reduction effect. Finally, we note
that the number of patrols outside hot spots was essentially unchanged from pre-study-year
levels (204.7 vs. 197.5 average patrols per week), and (as discussed above) we observed no
evidence of crime displacement, thus suggesting that the program had negligible impact on
patrols or crime outside hot spots. These analyses suggest an estimate of 33.9 – 4.0 = 29.9
P1V crimes prevented in total by the hot spot program when considering crimes prevented in
both treatment and control areas, with an associated $4,265,221 in crime costs avoided by
the program.

Arrests during hot spot patrols

Over-policing is unnecessarily large amounts of police control and arrests, particularly for
racial minorities or economically disadvantaged communities (Ben-Porat, 2008). Over-
policing is especially a concern for “Broken Window” crimes that do not threaten public
safety, such as consumption of alcohol on streets, possession of small amounts of marijuana,
disorderly conduct, loitering, disturbing the peace, spitting, or jaywalking. Over-policing
results from racial profiling, institutional biases ingrained in the culture or policies of a police
department, or personal biases in officers. Pittsburgh police policy for proactive patrols is to
engage with the local residents and employ best practices for community-oriented policing
(for example, warning of possible violent crimes and gathering information). To assess the
impacts of the hot spot program on potential harms from over-policing, PBP crime analysts
(Johnson, 2019) measured the number of arrests occurring during hot spot patrols. In the
time window during and 30 minutes after the 20,000 hot spot patrols conducted during the
study year, only four arrests occurred while on patrol. Two of these were on-view arrests for
minor drug offenses, and the remaining two occurred during 911 calls for service to domestic
locations. PBP reported no arrests during hot spot patrol for other commonly over-policed
crimes, such as trespassing, disorderly conduct, loitering, and public drunkenness.

3.4 Discussion

The results from this field study provide statistically significant evidence that a small-scale
hot spot program based on proactive patrols, targeting only 0.5% of Pittsburgh, can lead to
measurable reductions in serious violent crime in those areas, while avoiding over-policing
arrests of racial minorities. These results contribute to the ongoing debate around proactive
policing, showing both benefits and mitigation of certain potential harms when community-
oriented policing practices are employed. Nonetheless, additional research is necessary to
fully address the public policy question of whether conducting hot spot policing in a given
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Table 3.10 Observed differences in Part 1 violent (P1V) crime counts between
control areas and treatment areas over 12 months of proactive hot spot patrols
(November 6, 2017 - November 4, 2018)

Part 1 violent crimes

% Change # of Crimes Est. Costs Avoided*

All Hot Spots -25.3% -24 $3,411,328
Chronic Hot Spots -23.8% -19 $2,701,891
Temporary Hot Spots -33.3% -5 $709,437

Non-Hot-Spot Cells -4.5% -30 $5,553,501

*Costs per P1V crime computed based on costs to society from individual component
crimes reported in (McCollister et al., 2010) and inflated to 2018 dollars. Note that
the cost of the proactive police patrols was less than $1 million. See Table 3.12 for
costs of individual component crimes.

Table 3.11 Observed differences in Part 1 property (P1P) crime counts between
control areas and treatment areas over 12 months of proactive hot spot patrols
(November 6, 2017 - November 4, 2018)

Part 1 property crimes

% Reduction # of Crimes Est. Costs Avoided*

All Hot Spots -5.5% -18 $98,341
Chronic Hot Spots -6.2% -15 $90,960
Temporary Hot Spots -3.5% -3 $7,382

Non-Hot-Spot Cells -1.6% -61 $279,105

*Costs per P1P crime computed based on costs to society from individual component
crimes reported in (McCollister et al., 2010) and inflated to 2018 dollars. Note that the
cost of the proactive police patrols was less than $1 million. See Table 3.12 for costs of
individual component crimes.

jurisdiction provides a net benefit to targeted communities. Predictive policing systems
present non-trivial risks of harms resulting from over-policing or under-policing, or potential
exacerbation of societal inequalities. We encourage future researchers and any users of
predictive policing systems to employ a set of best practices for assessing and mitigating
risks of bias and over-policing. These best practices include but are not limited to (1) using
beneficial, community-oriented patrol protocols rather than aggressive policing interventions,
(2) appropriately choosing minimally-biased target variables and predictor variables for
prediction models, (3) regularly vetting prediction models across multiple evaluation criteria,
(4) ensuring geographic dispersion of targeted patrols with a dynamic prediction model, (5)



92 Policing Chronic and Temporary Hot Spots of Violent Crime

considering impacts of the scale and intensity of a targeted intervention, and (6) designing a
predictive policing system around place-based rather than person-based predictions. Police
leadership, crime analysts, and policy-makers should carefully consider not only the potential
impacts of a program on crime reduction, but also the other consequences, intended and
unintended, of such systems before implementing them at full operational scale in urban
settings.

While this study focused on assessment of impacts on (1) crime volume, (2) spatial
dispersion of predicted areas, and (3) arrests of commonly over-policed crimes, we rec-
ommend that future studies additionally evaluate how proactive patrols impact community
sentiment surrounding increased presence of police and more frequent interactions with
patrol officers. A survey-based approach, in which civilian researchers assess community
sentiment and perception of potential harms related to over-policing in both treatment and
control areas, would provide important evidence to inform how targeted patrols in treatment
areas affects police-community relations and the perception of increased police presence.
Additionally, observation of proactive patrols through review of body-mounted video camera
footage would provide insight into the extent to which officers follow department-mandated
protocols for community-oriented policing during proactive patrols. If policy-makers find
that the benefits of a hot-spot-based predictive policing program outweigh the risks, adequate
oversight procedures should be created to ensure that proactive patrols avoid aggressive and
harmful policing practices and evaluate whether the program continues to achieve crime
prevention benefits while avoiding unintended harms.

The potential for bias and feedback loops in the data generating process is a critical
consideration within the experimental framework applied in this study. Historical biases in
policing activity disproportionately affect minority communities, and thus relying on histori-
cal crime reports could result in a further entrenchment of these biases. Brantingham et al.
(2018) examine whether biases in algorithmic place-based policing result in discriminatory
consequences for minority groups, and find no significant difference in arrest rates across
racial-ethnic groups between treatment and control areas. Still, feedback loops are possible
when relying on reported crime data for hot spot selection. Areas may be initially selected
for increased patrols due to high volume of historical crime reports; these areas subsequently
generate additional reports of crime due to increased police presence, then the same areas
are again selected as hot spots, and so on. To mitigate this issue, we selected hot spots
based on predictions of P1V crimes, which consist of violent offenses such as homicide,
rape, robbery, and aggravated assault. Reporting of these extremely serious and violent
offenses is less likely than other crime types to depend on presence or absence of police in
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an area. Predictions of these crimes are therefore less prone to feedback loops resulting from
increased patrols to hot spots.

A reduction of 24 P1V crimes represents 1.6% of observed citywide violent crime during
this period, corresponding to an estimated $3.4 million in avoided crime costs to citizens and
society. While this P1V reduction is small with respect to citywide crime volume, it results
from a fairly minimal amount of effort per patrol shift (an average of 20 minutes of hot spot
patrol per day). It is reasonable to expect that hot spot-based policing would experience
diminishing marginal benefits as the number of patrolled hot spots grows, but the small
dosage of hot spot patrolling evaluated in this study nonetheless leaves considerable capacity
for scaling up the patrol program, as would eliminating car patrols and using foot patrols
only. Additional studies are needed to evaluate the effects on crime volume of programs with
different scales and to ensure that potential undesirable impacts related to over-policing are
avoided as programs scale up. Nonetheless, this study provides evidence that hot-spot-based
policing programs may be worthwhile even for police departments that cannot afford to
invest heavily in proactive patrols, as even small-scale programs can lead to meaningful
crime reductions.

Chronic and temporary crime hot spots exhibit fundamental differences affecting the
mechanisms by which proactive patrols deter crime. Chronic hot spots may experience
elevated rates of crime for years or decades at a time. These highest-crime areas are typically
known to police, but crime volume can remain high even in the presence of regular police
patrols. By contrast, residential areas tend to experience low baseline rates of crime, but may
represent areas where the fear of crime is highest (Moore and Trojanowicz, 1988; Skogan
and Maxfield, 1981). Patrolling of temporary hot spots results in a spreading out of police
resources to residential areas away from commercial zones where crime is chronically high.
Results from this study indicate that patrols to temporary hot spots provide a meaningful
reduction in crime counts, despite having significantly less overall crime volume than chronic
hot spots.

Research has shown that guardianship actions are more effective than enforcement actions
in preventing crimes in hot spots (Braga and Schnell, 2015). This study supports recent
findings (Piza, 2018; Ratcliffe et al., 2011) that foot patrol is an effective approach for crime
deterrence, in contrast to proactive car patrols which do not provide crime prevention. Foot
patrol represents an opportunity to design a proactive policing protocol that can be integrated
with other community-oriented policing practices to improve police-community relations,
reduce fear of crime, and make residents feel safe while simultaneously deterring serious
violent crime.
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One concern related to targeting high crime locations with proactive patrols is the
possibility for displacement of crime to other locations outside of the area being patrolled.
Does patrolling high-crime areas reduce overall crime volume, or do patrols simply push
crime to other areas? Information about where police are located can travel rapidly through
social communication networks that are not restricted by arbitrary cell boundaries used in
this analysis. An examination of areas outside of hot spots is necessary to understand of
overall impacts on crime volume from policing hot spots. In this field study, we separately
examined the effect of patrols on per-cell crime volume in areas within hot spots, adjacent to
hot spots, and away from hot spots. We find no statistically significant evidence of crime
displacement from hot spots to other areas, whether they are adjacent to predicted areas or
further away. We instead find some evidence of a diffusion of crime deterrence effects from
patrolled areas, as cells adjacent to hot spots experience a small but statistically significant
reduction in P1V crimes on average.

A limitation of this study is that we do not account for crimes displaced from treatment
areas into control areas. Crimes that shift from treatment to control partitions as a result
of patrols would lead to an overestimate of treatment effect size. We believe this is not a
common occurrence, as a relatively small proportion of grid cells lie on a boundary between
partitions and the above results suggest that the amount of crime displacement is low or
nonexistent within partitions. We attempted to further mitigate this issue by drawing partition
boundaries that avoid bisecting high-crime neighborhoods.

3.5 Conclusions

This study has examined the possible reductions in reported Part 1 offenses from a hot spot-
based predictive program in Pittsburgh, PA, and provides evidence that even a small amount
of effort and resources invested in such a program can lead to measurable and practically
significant reductions in crime. We also examine the difference in crime deterrence benefits
within chronic and temporary hot spots, and find that foot patrols to both hot spot types are
effective at deterring crime.

Predictive analytics for policing is an emerging field, and more empirical studies are
needed to understand the potential impacts on crime volume and other citizen outcomes from
hot spot programs of different scales and across cities. This study focuses on hot spot models
that rely on reported crime data, and additional work is needed to understand the impacts
of specific areas and communities being over-represented or under-represented in reported
crime data. Further research is also needed to identify what patrol activities and strategies
are most effective at fostering goodwill among the communities being policed in addition to



3.A Estimates of Costs Avoided from Observed Crime Reductions 95

providing crime reduction benefits. Ultimately, designing a predictive policing system that is
both transparent and equitable is essential for long-term support from the general public.

Appendix 3.A Estimates of Costs Avoided from Observed
Crime Reductions

Table 3.12 shows estimates of per-offense costs to society as reported by McCollister et al.
(2010). Costs were inflated from 2008 dollars to 2018 dollars using the CPI inflation rate
reported by the U.S. Bureau of Labor Statistics. We estimate the cost of proactive patrols
overall to be less than $1 million, as follows. The 2018 PBP budget was $105 million. We
apply a conservative estimate of 66% as the proportion of this budget dedicated to patrol
officers. 40 officers on-duty at any point in time over 3 shifts per day results in 43,800
officer-days per year. We apply a conservative estimate that each officer spends their full
8-hour shift on patrol, resulting in 350,400 hours of patrol per year and $197.77 spent per
hour of patrol by PBP. The hot spot program in Pittsburgh resulted in 4,336 patrol hours to
hot spots over the course of the study year, making $857,588 the estimated total cost of the
program.

Table 3.12 Per-offense estimates of costs to society from Part 1 crime types.

Cost* ($2008) Cost** ($2018) % of Crime Volume***

P1V

Murder/Manslaughter $8,982,907 $10,510,001 2.5%
Forcible Rape $240,776 $281,708 4.5%
Aggravated Assault $107,020 $125,213 46.4%
Robbery $42,310 $49,503 46.6%

P1P
Burglary $6,462 $7,561 15.5%
Larceny $3,532 $4,132 75.7%
Vehicle Theft $10,772 $12,603 8.8%

*Reported in McCollister et al. (2010).
**Costs in 2008 dollars were inflated to 2018 dollars using
https://www.bls.gov/data/inflation_calculator.htm.
*** Proportion of crime volume within each Part 1 offense category (P1V and P1P) was calculated

using five years of historical crime data from Pittsburgh’s APRS system (June 1, 2011 through June 1,
2016).

https://www.bls.gov/data/inflation_calculator.htm
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