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Abstract
Geometric structures can aid statistics in several ways. In high dimensional statistics, geometric struc-
tures can be used to reduce dimensionality. High dimensional data entails the curse of dimensionality,
which can be avoided by if there are low dimensional geometric structures. On the other hand, geomet-
ric structures also provide useful information. Structures may carry scientific meaning about the data
and can be used as features to enhance supervised or unsupervised learning.

In this defense, I will explore how statistical inference can be done on geometric structures. First, I
will explore the minimax rates of dimension estimator and reach estimator. Second, I will investigate
inference on cluster trees and persistent homology of density filtration on rips complex. Third, I will
extend and improve R package TDA for computing topological data analysis.
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Chapter 1

Introduction

In high dimensional statistics, geometrical structures can be used to reduce dimensionality. High di-
mensional data suffers from the “curse of dimensionality”[Bellman, 1961, Lee and Verleysen, 2007a,
Hastie et al., 2009], which refers to the fact that the number of data samples for an inference with
the desired accuracy grows exponentially with dimensions. The curse of dimensionality is mitigated
if the data are to form geometrical structures. The assumed geometrical structures can both lower the
dimensionality of the data and approximate complicated structure of the data.

On the other hand, geometrical structures of the data also provide information on data. First, ge-
ometrical structures carry scientific meaning about data in many scientific applications. For example,
geometrical structures of galaxies, gas, and dark matter in the universe give clues on the initial state
of the universe before the big bang. Also, geometrical structures of an enzyme determine its function.
Second, the geometrical structures are used to enhance supervised or unsupervised learning. For this
case, the interpretation of geometrical structures is unclear, but geometrical structures are extracted
from data for higher performance in learning.

Lastly, geometry is also used in data visualization to provide insights on data through visual intu-
ition. Some geometrical structures in data visualization such as size, orientation, shape are basic visual
attributes that are perceived without conscious effort. Hence those geometrical structures are perceived
in parallel and hence fast[Few, 2004]. Nonquantitative information can be also conveyed by geomet-
ric structures[Few, 2013]. For example, a graph in 2d representing network data gives an immediate
interpretation about which nodes are clustered or which nodes are influential.

In this thesis, I will explore how statistical inference can be done on geometrical structures. First,
I will explore the minimax rates of dimension estimator (Chapter 2) and reach estimator (Chapter 3).
Second, I will investigate inference on cluster trees (Chapter 4) and persistent homology of density
filtration on rips complex (Chapter 5). Third, I will extend and improve R package TDA for computing
topological data analysis (Chapter 6).

1.1 Minimax
The minimax rate is the risk of an estimator that performs best in the worst case, as a function of the
sample size [see, e.g. Tsybakov, 2008]. Let P be a collection of probability distributions over the same
sample space X and let θ : P → Θ be a function over P taking values in some space Θ, the parameter
space. We can think of θ(P ) as the feature of interest of the probability distribution P , such as its
mean. For the fixed sample size n, suppose X = (X1, . . . , Xn) is an i.i.d. (independent and identically
distributed) sample drawn from a fixed probability distribution P ∈ P . Thus X takes values in the
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n-fold product space Xn = X × · · · × X and is distributed as P (n), the n-fold product measure. An
estimator θ̂n : Rn → Θ is any measurable function that maps the observation X into the parameter
space Θ. Let ` : Θ × Θ → R be a loss function, a non-negative bounded function that measures how
different two parameters are. Then for a fixed estimator θ̂n and a fixed distribution P , the risk of θ̂n is
defined as

EP (n)

[
`
(
θ̂n(X), θ(P )

)]
.

Then for a fixed estimator θ̂n, its maximum risk is the supremum of its risk over every distribution
P ∈ P , that is,

sup
P∈P

EP (n)

[
`
(
θ̂n(X), θ(P )

)]
. (1.1)

The minimax risk associated to P , θ, ` and n is the maximal risk of any estimator that performs the
best under the worst possible choice of P . Formally, the minimax risk is

Rn = inf
θ̂n

sup
P∈P

EP (n)

[
`
(
θ̂n(X), θ(P )

)]
. (1.2)

The minimax risk Rn in (1.2) is often viewed as a function of the sample size n, in which case any pos-
itive sequence ψn such that limn→∞Rn/ψn remains bounded away from 0 and∞ is called a minimax
rate. Notice that minimax rates are unique up to constants and lower order terms.

To define a meaningful minimax risk, it is essential to have some constraint on the set of distribu-
tions P in (1.1) and (1.2). If P is too large, then the minimax rate Rn in (1.2) will not converge to 0
as n goes to ∞: this means that the problem is statistically ill-posed. If P is too small, the minimax
estimator depends too much on the specific distributions in P and is not a useful measure of a statistical
difficulty.

Determining the value of the minimax risk Rn in (1.2) for a given problem requires two separate
calculations: an upper bound onRn and a lower bound. In order to derive an upper bound, one analyzes
the asymptotic risk of a specific estimator θ̂n. This will in turn yield an upper bound on the minimax
risk Rn, since

Rn = inf
θ̂n

sup
P∈P

EP (n)

[
`
(
θ̂n(X), θ(P )

)]
≤ sup

P∈P
EP (n)

[
`
(
θ̂n(X), θ(P )

)]
. (1.3)

Naturally, choosing an appropriate estimator is critical to get a sharp bound.
Lower bounds are instead usually computed by measuring the difficulty of a multiple hypothesis

testing problem that entails identifying finitely many distributions in P that are maximally difficult to
discriminate [see, e.g. Tsybakov, 2008, Section 2.2].

One method for to compute the lower bound from those distributions is Le Cam’s lemma [Yu, 1997,
Chapter 29.2, Lemma 1].
Lemma 1. (Le Cam’s Lemma) Let P be a set of probability measures on (Ω,F), and P1,P2 ⊂ P be
such that for all P ∈ Pi, θ(P ) = θi for i = 1, 2. For any Qi ∈ co(Pi), where co(Pi) is the convex hull
of Pi, let qi be the density of Qi with respect to a measure ν. Then

inf
θ̂

sup
P∈P

EP [`(θ̂, θ(P ))] ≥ ∆

2

∫
[q1(x) ∧ q2(x)]dν(x), (1.4)

where ∆ = `(θ1, θ2).
In above Le Cam’s lemma, considering the convex hull of distributions co(Pi) is sometimes critical

for getting the nontrivial lower bound. Sometimes P1 from P1 and P2 from P2 are always mutually
singular, resulting in 0 as a lower bound in (1.4). However, Q1 from co(P1) and Q2 from co(P2) can be
mutually nonsingular, resulting nontrivial lower bound in (1.4). This technique is used in Section 2.3.
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1.2 Differential Geometry
We briefly review some notation from differential geometry. A topological manifold of dimension d is a
topological space M and a family of homeomorphisms ϕα : Uα ⊂ Rd → Vα ⊂M from an open subset
of Rd to an open subset of M such that

⋃
α

ϕα(Uα) = M . Such d is unique and is called the dimension

of a manifold. If, for any pair α, β, with ϕα(Uα)∩ ϕβ(Uβ) 6= ∅, ϕ−1
β ◦ ϕα : Uα ∩Uβ → Uα ∩Uβ is Ck,

then M is a Ck-manifold.
We assume that the topological manifold M is embedded in Rm, i.e. M ⊂ Rm, and the metric is

inherited from the metric of Rm. For a topological manifold M ⊂ Rm and for any q, r ∈ M , a path
joining q1 to q2 is a map γ : [a, b]→M for some a, b ∈ R such that γ(a) = q1, γ(b) = q2. The length of
the curve γ is defined as Length(γ) =

∫ b
a
||γ′(t)||2dt. A topological manifold M is equipped with the

distance distM : M ×M → R as distM(q1, q2) = inf
γ: path joining q1 and q2

Length(γ). A path γ : [a, b]→M

is a geodesic if for all t, t′ ∈ [a, b], distM(γ(t), γ(t′)) = |t− t′|.
Let TqM denote the tangent space to M at q. Given q ∈ M , there exist a set 0 ∈ E ⊂ Tq(M) and

a mapping expq : E ⊂ TqM → M such that t → expq(tv), t ∈ (−1, 1), is the unique geodesic of M
which, at t = 0, passes through q with velocity v, for all v ∈ E . The map expq : E ⊂ TqM → M is
called the exponential map on q.

1.3 Reach
First introduced by Federer [Federer, 1959], the reach is a regularity parameter defined as follows.
Given a closed subsetA ⊂ Rm, the medial axis ofA, denoted by Med(A), is the subset of Rm composed
of the points that have at least two nearest neighbors on A. Namely, denoting by d(x,A) = infq∈A ||q−
x|| the distance function to A,

Med(A) = {x ∈ Rm|∃q1 6= q2 ∈ A, ||q1 − x|| = ||q2 − x|| = d(x,A)} . (1.5)

The reach of A is then defined as the minimal distance from A to Med(A).
Definition 2. The reach of a closed subset A ⊂ Rm is defined as

τA = inf
q∈A

d (q,Med(A)) = inf
q∈A,x∈Med(A)

||q − x||. (1.6)

Some authors refer to τ−1
A as the condition number Niyogi et al. [2008], Singer and Wu [2012].

From the definition of the medial axis in (1.5), the projection πA(x) = arg minp∈A ‖p− x‖ onto A is
well defined outside Med(A). The reach is the largest distance ρ ≥ 0 such that πA is well defined
on the ρ-offset {x ∈ Rm|d(x,A) < ρ}. Hence, the reach condition can be seen as a generalization of
convexity, since a set A ⊂ Rm is convex if and only if τA =∞.

In the case of submanifolds, one can reformulate the definition of the reach in the following manner.
Theorem 3. [Federer, 1959, Theorem 4.18] For all submanifold M ⊂ Rm,

τM = inf
q1 6=q2∈M

‖q1 − q2‖2
2

2d(q2 − q1, Tq1M)
. (1.7)

This formulation has the advantage of involving only points on M and its tangent spaces, while
(1.6) uses the distance to the medial axis Med(M), which is a global quantity. The formula (1.7) will
be the starting point of the estimator proposed in Chapter 3 (see Section 3.2.1).
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M

q1 + Tq1M

d (q2 − q1, Tq1M)

‖q2 − q1‖‖q2−q1‖2

2d(q2−q1,Tq1
M)

C

q2

q1

Figure 1.1: Geometric interpretation of quantities involved in (1.7).

The ratio appearing in (1.7) can be interpreted geometrically, as suggested in Figure 1.1. This ratio
is the radius of an ambient ball, tangent toM at q1 and passing through q2. Hence, at a differential level,
the reach gives a lower bound on the radii of curvature of M . Equivalently, τ−1

M is an upper bound on
the curvature of M .
Proposition 4 (Proposition 6.1 in Niyogi et al. [2008]). Let M ⊂ Rm be a submanifold, and γp,v an
arc-length parametrized geodesic of M . Then for all t,

∥∥γ′′p,v(t)
∥∥ ≤ 1/τM .

In analogy with function spaces, the class {M ⊂ Rm|τM ≥ τmin > 0} can be interpreted as the
Hölder space C2(1/τmin). In addition, as illustrated in Figure 1.2, the condition τM ≥ τmin > 0 also
prevents bottleneck structures where M is nearly self-intersecting. This idea will be made rigorous in
Section 3.2.

τM

M

Med(M)

Figure 1.2: A narrow bottleneck structure yields a small reach τM .

1.4 Algebraic Topology

1.4.1 Simplicial complex
A simplicial complex can be seen as a high dimensional generalization of a graph. Given a set V , an
(abstract) simplicial complex is a set K of finite subsets of V such that α ∈ K and β ⊂ α implies
β ∈ K. Each set α ∈ K is called its simpex. The dimension of a simplex α is dimα = cardα− 1, and
the dimension of the simplicial complex is the maximum dimension of any of its simplices. Note that
a simplicial complex of dimension 1 is a graph.

When we are to infer topological information of a metric space (X, d) from a finite sample points
X = {X1, . . . , Xn} ⊂ X, we use several simplicial complexes built on the sample points X . For x ∈ X
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and r > 0, let BX(x, r) be the ball centered at x and radius r > 0, i.e. BX(x, r) = {y ∈ X : d(x, y) <
r}.

For a set of positive numbers r ∈ (0,∞)n, the simplicial complex on X consisting of all simplices
[Xi1 , . . . , Xik ] such that the intersection ∩kj=1BX(Xij , rij) is non-empty is known as the (weighted)
Čech complex.
Definition 5 (Čech complex). Let X = {X1, . . . , Xn} ⊂ X and r ∈ (0,∞)n. The (weighted) Čech
complex is the simplicial complex

ČechX(X , r) :=

{
σ = [Xi1 , . . . , Xik ] ⊂ X :

k⋂

j=1

BX(Xij , rij) 6= ∅
}
, (1.8)

We will drop the subscript X when it is clear from the context.
The topology of the Čech complex is linked to underlying continuous spaces via Nerve Theorem.

Let r = (r1, . . . , rn) ∈ (0,∞)n and consider the union of balls
n⋃

i=1

BX(Xi, ri). (1.9)

Then the union of balls in (1.9) is homotopic equivalent to the Čech complex by the following Nerve
Theorem.
Lemma 6 (Nerve Theorem). Let Xn ⊂ X and r = (r1, . . . , rn) ∈ (0,∞)n. If, for each k = 1, . . . , n

and i1 < i2, . . . , < ik, the intersection
k⋂
j=1

BX(Xij , rij) is either empty or contractibe, then the Čech

complex ČechX(Xn, r) is homotopy equivalent to the union of balls
n⋃
i=1

BX(Xi, ri).

Computing the Čech complex requires computing all the intersections of the balls. To save on
computation time, we may instead add a simplex whenever pairwise distances of its vertices are close.
This leads to the Vietoris-Rips complex, also known as the Rips complex.
Definition 7 (Vietoris-Rips complex). The (weighted) Vietoris-Rips complex R(Xn, r) is defined by

R(Xn, r) :=
{
σ = [Xi1 , . . . , Xik ] : d

(
Xij , Xil

)
< rij + ril ,∀j 6= l, k = 1, . . . , n

}
. (1.10)

Note that the Čech complex and Rips complex have following interleaving inclusion relationship

Čech(Xn, r) ⊂ R(Xn, r) ⊂ Čech(Xn, 2r). (1.11)

In particular, when ri’s are all the same and X is a Euclidean space, then the constant 2 can be tightened
to
√

2:
Čech(Xn, r) ⊂ R(Xn, r) ⊂ Čech(Xn,

√
2r). (1.12)

Hence both Čech complex (1.8) and Rips complex (1.10) are both topologically approximating the
union of balls (1.9) via Nerve Theorem (Lemma 6) and interleaving relation between Čech complex
and Rips complex ((1.11) or (1.12)).

1.4.2 Persistent Homology
Persistent homology is a multiscale approach to analyze topological features in data.

Suppose X ⊂ X be an observed data points. A filtration F is a collection of subspaces in X
that approximates the data points in different resolutions. Define a partial order on RD by taking
(a1, · · · , aD) � (b1, · · · , bD) if and only if ai ≤ bi for all i.
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Definition 8. A (D-dimensional) filtration F =
{
Fa ⊂ X : a ∈ RD

}
is a collection of subspaces in X

satisfying that a � b implies Fa ⊂ Fb.
For a filtration F and for each k ∈ N0 = N ∪ {0}, associated persistent homology HkF is a

collection of k-th dimensional homology of each subset in F .
Definition 9. Let F be a D-dimensional filtration and let k ∈ N0. Associated (D-dimensional) k-th
persistent homology PHkF is a collection of vector spaces {HkFa}a∈RD equipped with homomor-

phisms
{
ıa,bk

}
a�b

, where HkFa is a k-th dimensional homology of Fa and ıa,bk is the homomorphism

induced from the inclusion Fa ⊂ Fb.
For 1-dimensional persistent homology, its structure is completely represented as its decomposition.

For k-th persistent homology PHkF , the set of filtration values that a specific homology appears is
always an interval [b, d) ⊂ [−∞,∞], i.e. a specific homology is formed at some filtration value
b ∈ [−∞,∞] and dies when the inside hole is filled at some filtration value d ∈ [−∞,∞].
Definition 10. Let F be a 1-dimensional filtration and let k ∈ N0. Associated k-th persistent diagram
Dgmk(F) is a finite multi-set of (R ∪ {∞})2, consisting of all pairs (b, d) where [b, d) is the set of
filtration values that a specific homology appears in PHkF . b is called a birth time and d is called a
death time.

1.4.3 Stability and Statistical Inference of Persistent Homology
Stability theorems and statistical inference have been developed for 1-dimensional filtrations, in par-
ticular when the filtration F is generated from sub-level sets or super-level sets of a function. Let
f : X ⊂ Rm → R be a function that approximates the data points in different resolutions. The asso-
ciated filtration F can be constructed from sub-level sets Fa = {x ∈ Rm : f(x) ≤ a} or super-level
sets Fa = {x ∈ X : f(x) ≥ a}. Common choices for the filtration function f are as follows: (1)
sub-level sets of distance function f(x) = d(x,X) = inf

y∈X
d(x, y), (2) super-level set of density function

f(x) = p̂h(x) = 1
n

n∑
i=1

1
hm
K
(
||x−Xi||

h

)
, with any kernel K and a positive number h. Super-level sets of

function f corresponds to sub-level sets of function −f , hence the same theory can be used. For each
k ∈ N0, let Dgmk(f) be k-th persistent diagram from either sub-level sets or super-level sets of f .

Let f, g : X ⊂ Rm → R be two functions, and let PH∗(f) and PH∗(g) be the corresponding
persistent homologies of the upper level set filtrations {f ≤ L}L∈R and {g ≤ L}L∈R.

To impose stability, we first endow the space of persistence diagrams with a metric. The most
fundamental one is the bottleneck distance.
Definition 11. The bottleneck distance between the persistent homology of the filtrations PH∗(f) and
PH∗(g) is defined by

dB(PHk(f), PHk(g)) = inf
γ∈Γ

sup
x∈Dgmk(f)

‖p− γ(p)‖∞,

where the set Γ consists of all the bijections γ : Dgmk(f) ∪Diag → Dgmk(g) ∪Diag, and Diag is
the diagonal line {(x, x) : x ∈ R} ⊂ R2 with infinite multiplicity.

We will impose a standard regularity condition for the functions f and g, which is tameness.
Definition 12. (Chazal et al. [2009], Bobrowski et al. [2014]) Let f : X → R. Then f is tame if
Hk(f

−1(−∞, L]) is of finite rank for all k ∈ N ∪ {0} and L ∈ R.
For two tame functions f and g, their bottleneck distance is bounded by their `∞ distance, an

important and useful fact known as the stability theorem.
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Theorem 13 (Stability Theorem). (Cohen-Steiner et al. [2007], Chazal et al. [2009]) For two tame
functions f, g : X→ R,

dB(PHk(f), PHk(g)) ≤ ‖f − g‖∞.
Statistical inference have been developed for persistent homology in [Fasy et al., 2014b]. When

points of birth and death are close to the diagonal in the persistence diagram, corresponding homologies
are not significant, since corresponding holes will be soon filled out right after when they are born.
With detailed statistical analysis, a 1−α confidence band cn for persistent homology can be calculated.
Precisely, cn satisfies

lim inf
n→∞

P
(
W∞( ̂Dgmk(f), Dgmk(f)) ∈ [0, cn]

)
≥ 1− α,

where Dgmk(f) is persistence diagram for the true distribution of data, ̂Dgmk(f) is persistence di-
agram computed on data, and W∞(X, Y ) is the bottleneck distance between two diagrams X and Y
defined as W∞(X, Y ) = inf

η:X→Y
sup
x∈X
‖x − η(x)‖∞. Those holes above the confidence band are simulta-

neously statistically significant.
Sublevel sets of the distance to measure (DTM) [Caillerie et al., 2011] is considered to approximate

holes in the data points in different resolutions. The DTM is a robustified version of the distance
function. More precisely, the DTM dµ,m0 for a probability distribution µ with parameter m0 ∈ [0, 1] is
defined by

dµ,m0 : Rm → R+, x 7→
√

1

m0

∫ m0

0

(δµ,m(x))2dm,

where δµ,m(x) = inf{r > 0 : µ(B(x, r)) > m}. When µ is an empirical measure Pn(x) = 1
n

n∑
i=1

IXi(x),

the empirical DTM is

d̂µ,m0(x) = dPn,m0(x) =

√√√√ 1

m0n

∑

i≤bm0nc

‖X(i) − x‖2
2 +

(
1− bm0nc

m0n

)
‖X(dm0ne) − x‖2

2, (1.13)

where for each x, X(1), · · · , X(n) is ordered so that ‖X(1) − x‖2 ≤ · · · ≤ ‖X(n) − x‖2. Hence the
empirical DTM behaves similarly to the k-nearest distance with k = bm0nc. The DTM is preferred
choice for the filtration function, since the persistence diagram computed on the DTM is robust to noise.
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Chapter 2

Minimax Rates for Estimating the Dimension
of a Manifold

This chapter presents the work in [Kim et al., 2016].
Suppose that X1, . . . , Xn is an i.i.d. sample from a distribution P whose support is an unknown,

well behaved, manifold M of dimension d in Rm, where 1 ≤ d ≤ m. Manifold learning refers broadly
to a suite of techniques from statistics and machine learning aimed at estimating M or some of its
features based on the data.

Manifold learning procedures are widely used in high dimensional data analysis, mainly to alleviate
the curse of dimensionality. Such algorithms map the data to a new, lower dimensional coordinate
system [Bellman, 1961, Lee and Verleysen, 2007a, Hastie et al., 2009], with little loss in accuracy.
Manifold learning can greatly reduce the dimensionality of the data.

Most manifold learning techniques require, as input, the intrinsic dimension of the manifold. How-
ever, this quantity is almost never known in advance and therefore has to be estimated from the data.

Various intrinsic dimension estimators have been proposed and analyzed; [see, e.g., Lee and Ver-
leysen, 2007b, Koltchinskii, 2000, Kégl, 2003, Levina et al., 2004, Hein and Audibert, 2005, Raginsky
and Lazebnik, 2005, Little et al., 2009, 2011, Sricharan et al., 2010, Rozza et al., 2012, Camastra and
Staiano, 2016] However, characterizing the intrinsic statistical hardness of estimating the dimension
remains an open problem.

The traditional way of measuring the difficulty of a statistical problem is to bound its minimax risk,
which in the present setting is loosely described as the worst possible statistical performance of an
optimal dimension estimator. Formally, given a class of probability distribution P , the minimax risk
Rn = Rn(P) is defined as

Rn = inf
d̂

sup
P∈P

EP
[
1(d̂ 6= d(P ))

]
. (2.1)

In (2.1), d(P ) is the dimension of the support of P , EP denotes the expectation with respect to the dis-
tribution P , 1(·) is the indicator function, and the infimum is over all estimators (measurable functions
of the data) d̂ = d̂(X1, . . . , Xn) of the dimension d(P ). The risk EP [1(d̂ 6= d(P ))] of a dimension
estimator d̂ is the probability that d̂ differs from the true dimension d(P ) of the support of the data
generating distribution P . The minimax risk Rn(P), which is a function of both the sample size n and
the class P , quantifies the intrinsic hardness of the dimension estimation problem, in the sense that any
dimension estimator cannot have a risk smaller than Rn uniformly over every P ∈ P .

The purpose of this chapter is to obtain upper and lower bounds on the minimax risk Rn in (2.1).
We impose several regularity conditions on the set of manifolds supporting the distribution in the class
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P , in order to make the problem analytically tractable and also to avoid pathological cases, such as
space-filling manifolds. We first assume that the manifold supporting the data generating distribution
P has two possible dimensions, d1 and d2. This assumption is then relaxed to any dimension d(P )
between 1 and the embedding dimension m. Our main result is the following theorem. See Section
2.1 for the definition of the class P of probability distributions supported on well-behaved manifolds
in Rm.
Theorem 14. The minimax risk Rn in (2.1) satisfies, an ≤ Rn ≤ bn, where

an = (C
(29)
KI

)n min{τ−4
` n−2, 1}n, (2.2)

bn = (C
(28)
KI ,Kp,Kv ,m

)n(1 + τ−(m2−m)n
g )n−

n
m−1 , (2.3)

and the constants τ`, τg, C
(29)
KI

and C(28)
KI ,Kp,Kv ,m

depend on P and are defined in Section 2.4.
This chapter is organized as follows. In Section 2.1, we formulate and discuss regularity conditions

on distributions and their supporting manifolds. In Section 2.2, we provide an upper bound on the
minimax rate by considering the traveling salesman path through the points. In Section 2.3, we derive
a lower bound on the minimax rate by applying Le Cam’s lemma with a specific set of d1-dimensional
and d2-dimensional probability distributions. In Section 2.4, we extend our upper bound and lower
bound for the case where the intrinsic dimension varies from 1 to m. For the readability, all the proofs
are postponed to Appendix A.

2.1 Regularity conditions
In this section, we define the setP of probability distributions that we consider in bounding the minimax
risk Rn in (2.1). Such distributions are supported on manifolds whose dimension d is between 1 and
m, where m is the dimension of the embedding space. In particular, we require that the supporting
manifolds have a uniform lower bound on their reach parameters τg and τl. The resulting class of
distributions is denoted by

P =
m⋃

d=1

Pdτg ,τ`,KI ,Kv ,Kp . (2.4)

In the rest of this subsection, we will make the definition Pdτg ,τ`,KI ,Kv ,Kp precise. Readers who are not
interested in the details may skip the rest of the section. All the proofs for this section are in Section
A.1.

In our analysis we require various regularity conditions on the class P of probability distributions
appearing in the minimax risk (2.1). Most of these conditions are of a geometric nature and concern the
properties of the manifolds supporting the probability distributions in P . Altogether, our assumptions
rule out manifolds that are so complicated to make the dimension estimation problem unsolvable and,
therefore, guarantee that the minimax risk Rn in (2.1) converges to 0 as n goes to∞. Such regularity
assumptions are quite mild, and in fact allow for virtually all types of manifolds usually encountered in
manifold learning problems.

Our first assumption is that the probability distributions in P are supported over manifold contained
inside a compact set, which, without loss of generality, we take to be the cube I := [−KI , KI ]

m, for
some KI > 0. See Figure 2.1.

Second, to exclude manifolds that are arbitrarily complicated in the sense of having unbounded
curvatures or of being nearly self intersecting, we assume that the reach is uniformly bounded from
below. More precisely, we will constrain both the global reach and the local reach as follows. Fix
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2KI

M

Figure 2.1: A manifold M is assumed to be contained inside the cube I = [−KI , KI ]
m, for some

KI > 0. See Definition 15.

πM (x)

x

≤ τg

M

≤ τ`y

πUx
(y) x

Ux

Figure 2.2: A manifold M with global reach at least τg, or local reach at least τ`. See Definition 15.

τg, τ` ∈ (0,∞] with τg ≤ τ`. The global reach condition for a manifold M is that the usual reach τ(M)
in (1.6) is lower bounded by τg as in Figure 2.2, and the local reach condition is that M can be covered
by small patches whose reaches are lower bounded by τ`, as in Figure 2.2. (See Definition 15 below
for more details.)

Third, we assume that the data are generated from a distribution P supported on a manifold M
having a density with respect to the (restriction of the) Hausdorff measure on M bounded from above
by some positive constant Kp.

For manifolds without boundary, the above conditions suffice for our analysis. However, to deal
with manifolds with boundary, we need further assumptions, namely local geodesic completeness and
essential dimension. A manifold M is said to be complete if any geodesic can be extended arbitrarily
farther, i.e. for any geodesic path γ : [a, b] → M , there exists a geodesic γ̃ : R → M that satisfies
γ̃|[a,b] = γ. [see, e.g., Lee, 2000, 2003, Petersen, 2006, do Carmo, 1992]. Accordingly, we define a
manifold M to be locally (geodesically) complete, if any two points inside a geodesic ball of small
enough radius in the interior of M can be joined by a geodesic whose image also lies on the interior of
M .

Fifth, we assume the manifold M is of essential dimension d, in volume sense. If we fix any point
p in the d-dimensional manifold M , then the volume of a ball of radius r grows in order of rd when r
is small. By extending this, fix Kv ∈ (0, 2−m], and we say that the manifold M is of essential volume
dimension d, if the volume of a geodesic ball of radius r around any point in M is lower bounded by
Kvr

dωd, for some positive constant Kv and all r small enough.
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We are now ready to formally define the class P of probability distributions that we will consider
in our analysis of the minimax problem (2.1).
Definition 15. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], with τg ≤ τ`. LetMd

τg ,τ`,KI ,Kv
be the

set of compact d-dimensional manifolds M such that:
(1) M ⊂ I := [−KI , KI ]

m ⊂ Rm;
(2) M is of global reach at least τg, i.e. τ(M) ≥ τg, and M is of local reach at least τ`, i.e. for all

p ∈M , there exists a neighborhood Up in M such that τ(Up) ≥ τ`;
(3) M is locally (geodesically) complete (with respect to τg): for all p ∈ int(M) and for all q1, q2 ∈

BM(p, 2
√

3τg), there exists a geodesic γ joining q1 and q2 whose image lies on intM ;
(4) M is of essential volume dimension d (with respect to Kv and τg): if for all p ∈ M and for all

r ≤
√

3τg, volM(BM(p, r)) ≥ Kvr
dωd.

Let P = Pdτg ,τ`,KI ,Kv ,Kp be the set of Borel probability distributions P such that:
(5) P is supported on a d-dimensional manifold M ∈Md

τg ,τ`,KI ,Kv
;

(6) P is absolutely continuous with respect to the restriction volM of the d-dimensional Hausdorff
measure on the supporting manifold M and such that supx∈M

dP
dvolM

(x) ≤ Kp.
For every P ∈ Pdτg ,τ`,KI ,Kv ,Kp , denote the dimension of its distribution as d(P ).

The regularity conditions in Definition 15 imply further constraints on both the distributions in P
and their supporting manifolds, in Lemma 16, 17, and 18. Such properties are exploited in Section 2.2
and 2.3. The proofs for Lemma 16, 17, and 18 are in Appendix A.1.
Lemma 16. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], with τg ≤ τ`. For M ∈ Md

τg ,τ`,KI ,Kv

and r ∈ (0, τg), let Mr := {x ∈ Rm : distRm(x,M) < r} be a r-neighborhood of M in Rm. Then, the
volume of M is upper bounded as:

volM(M) ≤ m!

d!
rd−mvolRm(Mr)

≤ C
(16)
KI ,d,m

(
1 + τ d−mg

)
,

where C(16)
KI ,d,m

is a constant depending only on KI , d and m.
Lemma 17. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], with τg ≤ τ`. Let M ∈Md

τg ,τ`,KI ,Kv
and

r ∈ (0, 2
√

3τg]. Then M can be covered by N radius r balls BM(p1, r), . . ., BM(pN , r), with

N ≤
⌊

2dvol(M)

Kvrdωd

⌋
.

Lemma 18. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], with τg ≤ τ`. Let M ∈ Md
τg ,τ`,KI ,Kv

and let exppk : Ek ⊂ Rm →M be an exponential map, where Ek is the domain of the exponential map
exppk and TpkM is identified with Rd. For all v, w ∈ Ek, let Rk := max{||v||, ||w||}. Then

‖ exppk(v)− exppk(w)‖Rm ≤
sinh(

√
2Rk/τ`)√

2Rk/τ`
‖v − w‖Rd .

Under these regularity conditions, the minimax risk Rn is defined as

Rn = inf
d̂n

sup
P∈P

EP (n)

[
1
(
d̂n(X) 6= d(P )

)]
, (2.5)

where in Section 2.2 and 2.3 we fix d1, d2 ∈ N with 1 ≤ d1 < d2 ≤ m and define

P = Pd1
τg ,τ`,KI ,Kv ,Kp

⋃
Pd2
τg ,τ`,KI ,Kv ,Kp

, (2.6)
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and in Section 2.4 we set instead

P =
m⋃

d=1

Pdτg ,τ`,KI ,Kv ,Kp . (2.7)

In (2.5), d̂n is any dimension estimator based on data X = (X1, . . . , Xn), and the loss function
`(·, ·) is 0− 1 loss, so for all x, y ∈ R, `(x, y) = 1(x = y).

2.2 Upper Bound for Choosing Between Two Dimensions
In this section we provide an upper bound on the minimax rate Rn in (2.5) when d(P ) can only take
two known values. Fix d1, d2 ∈ N with 1 ≤ d1 < d2 ≤ m, and assume that the data are generated from
a distribution P ∈ P such that either d(P ) = d1 or d(P ) = d2 as in (2.6). In this case, the minimax
risk quantifies the statistical hardness of the hypothesis testing problem of deciding whether the data
originate from a d1 or d2-dimensional distribution. In Section 2.4 we will relax this assumption and
allow for the intrinsic dimension d(P ) to be any integer between 1 and m as in (2.7). All the proofs for
this section are in Section A.2.

Our strategy to derive an upper bound on Rn is to choose a particular estimator d̂n and then derive
a uniform upper bound on its risk over the class P in (2.6), i.e. an upper bound for the quantity

sup
P∈P

EP (n)

[
1
(
d̂n(X) 6= d(P )

)]
, (2.8)

where P (n) denotes the n-fold product of P . This will in turn yield an upper bound on the minimax
risk Rn, as explained in (1.3). In Section 2.2.1, we define our dimension estimator d̂n and analyze its
risk. From that analysis, we derive an upper bound on the minimax risk Rn in (2.5) in Section 2.2.2.

2.2.1 Dimension Estimator and its Analysis
Our dimension estimator d̂n is based on the d1-squared length of the TSP (Traveling Salesman Path)
generated by the data. The d1-squared length of the TSP generated by the data is the minimal d1-squared
length of all possible paths passing through each sample point Xi once, which is

min
σ∈Sn

{
n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm

}
. (2.9)

Then, d̂n = d1 if and only if the d1-squared length of the TSP is below a certain threshold; that is

d̂n(X) :=




d1, if min

σ∈Sn

{
n−1∑
i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm

}
≤ C

(20)
KI ,Kv ,d1,m

(
1 + τ d1−m

g

)
,

d2, otherwise.
(2.10)

where C(20)
KI ,Kv ,d1,m

is a constant to be defined later.
We begin our analysis of the estimator d̂n with Lemma 19, which shows that d̂n makes an error with

probability of order O
(
n
−
(
d2
d1
−1
)
n

)
if the correct dimension is d2. Specifically, we demonstrate that,

for any positive value L, the d1-squared length of a piecewise linear path from X1 to Xn,
n−1∑
i=1

‖Xi+1 −
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Xσ(1)

Xσ(2)

Xσ(3)

Xσ(n−1)

Xσ(n)

. . .

Y1

Y2

Yn−1

∑
Yi ≤ volM (M)

M

Xσ(n−2)

Yn−2

Figure 2.3: When the manifold is a curve, the length of the TSP path min
σ∈Sn

{
n−1∑
i=1

‖Xσ(i+1) −Xσ(i)‖Rm
}

in (2.9) is upper bounded by the length of the curve volM(M).

Xi‖d1
Rm , is upper bounded by L with a very small probability of order O

(
n
−
(
d2
d1
−1
)
n

)
, as in (2.11).

Hence the d1-squared length of the path is not likely to be bounded by any such threshold L.
Lemma 19. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)

m,∞), d1, d2 ∈ N, with
τg ≤ τ` and 1 ≤ d1 < d2 ≤ m. Let X1, . . . , Xn ∼ P ∈ Pd2

τg ,τ`,KI ,Kv ,Kp
. Then for all L > 0,

P (n)

[
n−1∑

i=1

‖Xi+1 −Xi‖d1 ≤ L

]
≤

(
C

(19)
KI ,Kp,d1,d2,m

)n−1

L
d2
d1

(n−1)
(

1 + τ
(d2−m)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)
(n− 1)!

, (2.11)

where C(19)
KI ,Kp,d1,d2,m

is a constant depending only on KI , Kp, d1, d2,m.

Next, Lemma 20 shows that the estimator d̂n in (2.10) is always correct when the intrinsic dimen-
sion is d1, as in (2.12). Specifically, the d1-squared length of the TSP path in (2.9) is bounded by some
positive threshold C(20)

KI ,Kv ,d1,m

(
1 + τ d1−m

g

)
. We take note that, when d1 = 1, Lemma 20 is straight-

forward: the length of the TSP path in (2.9) is upper bounded by the length of curve volM(M), as in
Figure 2.3. This fact, combined with Lemma 16, which shows that volM(M) ≤ C

(16)
KI ,1,m

(
1 + τ 1−m

g

)
,

yields the result. In particular, the constant C(20)
KI ,Kv ,d1,m

can be set as C(20)
KI ,Kv ,d1,m

= C
(16)
KI ,1,m

.
When d1 > 1, Lemma 20 is proved using Lemma 16, 17 and 18, along with the Hölder continuity

of a d1-dimensional space-filling curve [Steele, 1997, Buchin, 2008].
Lemma 20. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], d1 ∈ N, with τg ≤ τ`. Let M ∈
Md1

τg ,τ`,Kp,Kv
and X1, . . . , Xn ∈M . Then

min
σ∈Sn

n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm ≤ C

(20)
KI ,Kv ,d1,m

(
1 + τ d1−m

g

)
, (2.12)

where C(20)
KI ,Kv ,d1,m

is a constant depending only on m, d1, Kv, and KI .
Proposition 21 below is the main result of this subsection and follows directly from Lemma 19 and

Lemma 20 above. Indeed, when the intrinsic dimension is d2, the risk of our estimator d̂n, is of order

O

(
n
−
(
d2
d1
−1
)
n

)
by Lemma 19 and the union bound. On the other hand, when the intrinsic dimension

is d1, the risk of our estimator d̂n is 0, because of Lemma 20.
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Proposition 21. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)
m,∞), d1, d2 ∈ N,

with τg ≤ τ` and 1 ≤ d1 < d2 ≤ m. Let d̂n be in (2.10). Then either for d = d1 or d = d2,

sup
P∈Pdτg,τ`,KI ,Kv,Kp

EP (n)

[
`
(
d̂n, d(P )

)]

≤ 1(d = d2)
(
C

(21)
KI ,Kp,Kv ,d1,d2,m

)n(
1 + τ

−
(
d2
d1
m+m−2d2

)
n

g

)
n
−
(
d2
d1
−1
)
n
,

where C(21)
KI ,Kp,Kv ,d1,d2,m

∈ (0,∞) is a constant depending only on KI , Kp, Kv, d1, d2,m.
As described so far, the convergence analysis of our dimension estimator is probable. This is enough

for our purpose, which is to quantify the statistical difficulties, in particular the minimax rate, of the
dimension estimation problem. However, our d̂n in (2.10) is not completely data-driven but depends
on the model parameters τg, KI , and Kv. Hence the model on which our convergence analysis is
valid depends on the model parameters. When it comes to applying our dimension estimator d̂n to
real data, we need to estimate the constant C(20)

KI ,Kv ,d1,m
. Proofs of Lemma 19 and 20 suggest that

overestimating C
(20)
KI ,Kv ,d1,m

by some constant factor doesn’t deteriorate the convergence rate, so the
constants C(20)

KI ,Kv ,d1,m
and τg can be replaced by any consistent estimators. Still, we have the difficulty

of tuning the constant C(20)
KI ,Kv ,d1,m

and τg. Also, the constant C(20)
KI ,Kv ,d1,m

is tuned to work for the worst
case, so the practical performance of our dimension estimator is questionable.

2.2.2 Minimax Upper Bound
As noted in the beginning of Section 2.2, the maximum risk of our estimator d̂n in (2.8) serves as an
upper bound on the minimax risk Rn in (2.5). Since we assume that the intrinsic dimension is either

d1 or d2, Proposition 21 yields that the maximum risk of our estimator d̂n is of order O
(
n
−
(
d2
d1
−1
)
n

)
.

This also serves as an upper bound of the minimax risk Rn, as in Proposition 22.
Proposition 22. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)

m,∞), d1, d2 ∈ N,
with τg ≤ τ` and 1 ≤ d1 < d2 ≤ m. Then

inf
d̂n

sup
P∈P1∪P2

EP (n)

[
`
(
d̂n, d(P )

)]

≤
(
C

(21)
KI ,Kp,Kv ,d1,d2,m

)n(
1 + τ

−
(
d2
d1
m+m−2d2

)
n

g

)
n
−
(
d2
d1
−1
)
n
,

where C(21)
KI ,Kp,Kv ,d1,d2,m

is from Proposition 21 and

P1 = Pd1
τg ,τ`,KI ,Kv ,Kp

, P2 = Pd2
τg ,τ`,KI ,Kv ,Kp

.

2.3 Lower bound for Choosing Between Two Dimensions
The goal of this section is to derive a lower bound for the minimax rate Rn. As in Section 2.2, we fix
d1, d2 ∈ N with 1 ≤ d1 < d2 ≤ m, and assume that the intrinsic dimension of data is either d1 or d2 as
in (2.6). This assumption is relaxed in Section 2.4. All the proofs for this section are in Section A.3.
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Our strategy is to find a subset T ⊂ In ⊂ (Rd)n and two sets of distributions Pd1
1 and Pd2

2 with
dimensions d1 and d2, such that Pd1

1 and Pd2
2 satisfy the regularity conditions in Definition 15, and

whenever the sample X = (X1, . . . , Xn) lies on T , one cannot easily distinguish whether the underly-
ing distribution is from Pd1

1 or Pd2
2 .

After constructing T , Pd1
1 and Pd2

2 , we derive the lower bound using Lemma 1 (Le Cam’s Lemma).
In Lemma 1 (Le Cam’s Lemma), considering the convex hull of distributions co(Pi) is critical for

getting the nontrivial lower bound. Suppose we are using the basic version of Le Cam’s lemma where
the convex hull is not considered, i.e. Qi ∈ Pi. Then for two distributions Q1 and Q2 respectively
from our d1 and d2 dimensional model Pd1

τg ,τl,KI ,Kv ,Kp
and Pd2

τg ,τl,KI ,Kv ,Kp
, Q1 and Q2 are singular to

each other; i.e. q1(x) ∧ q2(x) = 0 for all x. Hence no matter which subset P1 and P2 we choose with
d(P1) = d1 and d(P2) = d2, the lower bound in (1.4) will be always 0. This trivial bound can be
improved by considering the convex hull of distributions co(Pi) in Le Cam’s lemma.

Our construction for T , Pd1
1 , and Pd2

2 is based on mimicking a space-filling curve. Intuitively, this
gives the lower bound since it is difficult to differentiate a space-filling curve and a higher dimensional
cube. In detail, we set

Pd1
1 = {distributions supported on

a space-filling-curve like d1-dimensional manifold}, (2.13)

and
Pd2

2 = {uniform distributions on [−KI , KI ]
d2}. (2.14)

To apply Le Cam’s lemma, we construct a set T ⊂ In so that, whenever X = (X1, . . . , Xn) ∈ T , we
cannot distinguish whether X is from Pd1

1 in (2.13) or Pd2
1 in (2.14). Then, for an appropriately chosen

distribution Q1 in the convex hull of Pd1
1 with density q1 with respect to Lebesgue measure λ on the

cube [−KI , KI ]
d2 , and a density q2 from the class Pd2

2 ,
∫
T

[q1(x) ∧ q2(x)]dλ(x) is a lower bound on the
minimax rate Rn in (2.5). Indeed, from Le Cam’s Lemma 1, we have that

inf
θ̂

sup
P∈P

EP [`(θ̂, θ(P ))] ≥ 1

2

∫
[q1(x) ∧ q2(x)]dλ(x)

≥ 1

2

∫

T

[q1(x) ∧ q2(x)]dλ(x). (2.15)

For constructing the class Pd1
1 in (2.13), it will be sufficient to consider the case d1 = 1. In fact,

Lemma 23 states that the regularity conditions in Definition 15 are still preserved when the manifold
M is a Cartesian product with a cube [−KI , KI ]

∆d, as in Figure 2.4. Hence for constructing a d-
dimensional “space-filling” manifold, we first construct a 1-dimensional space-filling curve satisfying
the required regularity conditions, and then we form a Cartesian product with a cube of dimension d−1,
which becomes a d-dimensional manifold satisfying the same regularity conditions by Lemma 23.
Lemma 23. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], d, ∆d ∈ N, with τg ≤ τ` and 1 ≤
d + ∆d ≤ m. Let M ∈ Md

τg ,τ`,KI ,Kv
be a d-dimensional manifold of global reach ≥ τg, local reach

≥ τ`, which is embedded in Rm−∆d. Then

M × [−KI , KI ]
∆d ∈Md+∆d

τg ,τ`,KI ,Kv
,

which is embedded in Rm.
The precise construction of Pd1

1 in (2.13) and T is detailed in Lemma 24. As in Figure 2.5, we
construct Ti’s that are cylinder sets aligned as a zigzag in [−KI , KI ]

d2 , and then T is constructed as
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M

2KI

M × [−KI ,KI ]
∆d

Figure 2.4: The regularity conditions in Definition 15 are still preserved under the Cartesian product
with a cube [−KI , KI ]

∆d. Detailed explanations are in Figure A.3.

T = Sn
n∏
i=1

Ti, where the permutation group Sn acts on
n∏
i=1

Ti as a coordinate change. Then, we show

below that, for any x ∈∏Ti, there exists a manifold M ∈Md1
τg ,τ`,KI ,Kv

that passes through x1, . . . , xn.
The classPd1

1 in (2.13) is finally defined as the set of distributions that are supported on such a manifold.
Lemma 24. Fix τ` ∈ (0,∞], KI ∈ [1,∞), d1, d2 ∈ N, with 1 ≤ d1 ≤ d2, and suppose τ` < KI . Then
there exist T1, . . . , Tn ⊂ [−KI , KI ]

d2 such that:
(1) The Ti’s are distinct.
(2) For each Ti, there exists an isometry Φi such that

Ti = Φi

(
[−KI , KI ]

d1−1 × [0, a]× BRd2−d1 (0, w)
)
,

where c =
⌈
KI+τ`

2τ`

⌉
, a = KI−τ`

(d2−d1+ 1
2)
⌈

n

cd2−d1

⌉ , and w = min

{
τ`,

(d2−d1)2(KI−τ`)2

2τ`(d2−d1+ 1
2)

2
(⌈

n

cd2−d1

⌉
+1
)2

}
.

(3)There exists M : (BRd2−d1 (0, w))n →Md1
τg ,τ`,KI ,Kv

one-to-one such that for each yi ∈ BRd2−d1 (0, w),
1 ≤ i ≤ n, M (y1, . . . , yn)∩Ti = Φi([−KI , KI ]

d1−1× [0, a]×{yi}). Hence for any x1 ∈ T1, . . . , xn ∈
Tn, M ({Π−1

(d1+1):d2
Φ−1
i (xi)}1≤i≤n) passes through x1, . . . , xn.

Next we show that whenever x = (x1, . . . , xn) ∈ T , it is difficult to tell whether the data originated
from P ∈ Pd1

1 or P ∈ Pd2
2 . Let Q1 be in the convex hull of Pd1

1 and let q2 be the density function
of the uniform distribution on [−KI , KI ]

d2 , then from (2.15), we know that a lower bound is given by∫
T

[q1(x) ∧ q2(x)]dλ(x). Hence if we can choose Q1 such that q1(x) ≥ Cq2(x) for every x ∈ T with
C < 1, then q1(x) ∧ q2(x) ≥ Cq2(x), so that C

∫
T
q2(x) can serve as lower bound of minimax rate.

Such existence of Q1 and the inequality q1(x) ≥ Cq2(x) is shown in Claim 25.

Claim 25. Let T = Sn
n∏
i=1

Ti where the Ti’s are from Lemma 24. Let Q2 be the uniform distribution

on [−KI , KI ]
d2 , and let Pd1

1 be as in (2.13). Then there exists Q1 ∈ co(Pd1
1 ) satisfying that for all

x ∈ intT , there exists rx > 0 such that for all r < rx,

Q1

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)
≥ 2−nQ2

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)
.

The following lower bound is than a consequence of Le Cam’s lemma, Lemma 24, and the previous
claim.
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T1 T2

T4 T3

T5 T6

T8 T7

τ`

2KI

2KI

(a) alignment of Ti

T1 T2

x4

x1

x6

x2

x3

x5

x7x8

(b) manifold passing through xi’s

Figure 2.5: This figure illustrates the case where d1 = 1 and d2 = 2. a shows how Ti’s are aligned in
a zigzag. b shows for given x1 ∈ T1, . . . , xn ∈ Tn(represented as blue points), how a manifold with
regularity conditions(represented as a red curve) passes through x1, . . . , xn. Detailed constructions in
Figure A.4.

Proposition 26. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)
m,∞), d1, d2 ∈ N,

with τg ≤ τ` and 1 ≤ d1 < d2 ≤ m, and suppose that τ` < KI . Then

inf
d̂n

sup
P∈Q

EP (n) [`(d̂n, d(P ))]

≥
(
C

(26)
d1,d2,KI

)n
min

{
τ
−2(d2−d1+1)
` n−2, 1

}(d2−d1)n

,

where C(26)
d1,d2,KI

∈ (0,∞) is a constant depending only on d1, d2, and KI and

Q = Pd1
τg ,τ`,KI ,Kv ,Kp

⋃
Pd2
τg ,τ`,KI ,Kv ,Kp

.

2.4 Upper Bound and Lower Bound for the General Case
Now we generalize our results to allow the intrinsic dimension d to be any integer between 1 and m.

Thus the model is P =
m⋃
d=1

Pdτg ,τ`,KI ,Kv ,Kp as in (2.7). For the upper bound, we extend the dimension

estimator d̂n in (2.10) and compute its maximum risk. And for the lower bound, we simply use the
lower bound derived in Section 2.3 with d1 = 1 and d2 = 2. All the proofs for this section are in
Section A.4.

For the modelP in (2.7), our dimension estimator d̂n estimates the dimension as the smallest integer
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1 ≤ d ≤ m that the d-squared length of the TSP is below a certain threshold, i.e. (2.12) holds; that is,

d̂n(X) := min

{
d ∈ [1,m] :

min
σ∈Sn

{n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖dRm
}
≤ C

(20)
KI ,Kv ,d,m

(
1 + τ d−mg

)
}
. (2.16)

As a generalized result of Proposition 21, Proposition 27 gives an upper bound for the risk of our esti-
mator d̂n in (2.16). When the intrinsic dimension is d, our estimator d̂n makes an error with probability
of order O

(
n−

1
d−1

n
)

.

Proposition 27. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)
m,∞), with τg ≤ τ`.

Let d̂n be in (2.16). Then:

sup
P∈Pdτg,τ`,KI ,Kv,Kp

EP (n)

[
`
(
d̂n, d(P )

)]

{
= 0, d = 1,

≤
(
C

(27)
KI ,Kp,Kv ,d,m

)n (
1 + τ

−(dm+m−2d)n
g

)
n−

1
d−1

n, d > 1.

where C(27)
KI ,Kp,Kv ,d,m

∈ (0,∞) is a constant depending only on KI , Kp, Kv, d,m.

Then similarly to Section 2.2.2, the maximum risk of our estimator d̂n in (2.16) serves as an upper
bound on the minimax risk Rn in (2.5). The maximum of the upper bound in Proposition 27 over d
ranging from 1 to m should serve as the upper bound for the maximum risk, hence we get the upper
bound of the minimax risk Rn in Proposition 28 as a generalized result of Proposition 22.
Proposition 28. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)

m,∞), with τg ≤ τ`.
Then:

inf
d̂n

sup
P∈P

EP (n)

[
`
(
d̂n, d(P )

)]
≤
(
C

(28)
KI ,Kp,Kv ,m

)n (
1 + τ−(m2−m)n

g

)
n−

1
m−1

n

where C(28)
KI ,Kp,Kv ,m

∈ (0,∞) is a constant depending only on KI , Kp, Kv,m.
Proposition 29 provides a lower bound for minimax rate Rn in (2.5), in multi-dimensions. It can be

viewed of a generalization for the binary dimension case in Proposition 26.
Proposition 29. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)

m,∞), with τg ≤ τ`,
and suppose that τ` < KI . Then,

inf
d̂n

sup
P∈P

EP (n) [`(d̂n, d(P ))] ≥
(
C

(29)
KI

)n
min

{
τ−4
` n−2, 1

}n

where C(29)
KI
∈ (0,∞) is a constant depending only on KI .
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Chapter 3

The Origin of the Reach: Better
Understanding Regularity Through Minimax
Estimation Theory

This chapter presents the work in [Aamari et al., 2017].
Complexity and regularity notions play a central role in estimation topics. When dealing with high

dimensional data, a classical assumption is that a low dimensional curved structure underlies the studied
phenomenon. This setting gave birth to global geometric methods among which manifold learning and
topological data analysis. As in other fields of data analysis, regularity and scale parameters often
remain to be tuned by the user when dealing with real data. In such frameworks, what arise naturally
are intrinsic geometric quantities. Indeed, usual differential regularity notions are not relevant as they
are very dependent to a specific coordinate system or parametrization.

First introduced by Federer Federer [1959] , the reach τM of M ⊂ Rm is the largest length such
that any point at distance less than τM of M has a unique nearest neighbor on M . For a set, having
reach greater than τmin > 0 roughly means that one can roll freely a ball of radius τmin around it
Cuevas et al. [2012]. The reach informs on maximal directional curvature and on the width of possible
narrow bottleneck structures on the shape. It corresponds to a minimal size of features M contains. In
a view to inference, this gives a minimal scale at which look at data. In statistical settings, such a scale
corresponds to the least sampling density needed to recover geometric information.

Positive reach has been the minimal regularity assumption on sets in geometric measure theory
Federer [1969], Thäle [2008]. Sets with positive reach enjoy a structure close to be differential — the
so-called tangent and normal cones — and behave well in integral geometry. Since sets with positive
reach enjoy good geometric Federer [1969], Thäle [2008] and statistical properties Cuevas et al. [2012],
it has recently grown popular in the literature. In manifold reconstruction, the reach helps formalizing
in a simple way models on which minimax rates are well posed Genovese et al. [2012], Kim and Zhou
[2015]. The effective optimal estimators of Boissonnat and Ghosh [2014], Aamari and Levrard [2015]
implicitly use it as a scale parameter in their construction. In homology inference Niyogi et al. [2008],
Balakrishnan et al. [2013b], the reach drives the minimal sample size required to consistently estimate
topological invariants, and their recovery probability. It emerges in Cuevas et al. [2007] as a regular-
ity parameter in the estimation of Minkovski boundary lengths and surface areas. The reach has been
explicitly used in geometric inference, volume estimation Arias-Castro et al. [2016] and manifold clus-
tering Arias-Castro et al. [2013]. It is also a good regularity notion for dimension reduction techniques
such as vector diffusions maps Singer and Wu [2012]. Computational geometry also makes use of it in
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deterministic settings Boissonnat and Ghosh [2014].
This chapter gives new geometric results on what the reach relates to, and tackles the question of

its estimation, in both deterministic and minimax frameworks. Formally, given a class of probability
distribution P , the minimax risk Rn = Rn(P) is defined as

Rn = inf
τ̂n

sup
P∈P

EP (n)

[∣∣∣∣
1

τ(P )
− 1

τ̂n

∣∣∣∣
r]
. (3.1)

In (3.1), τ(P ) is the reach of the support of P , EP denotes the expectation with respect to the distribu-
tion P , and the infimum is over all estimators (measurable functions of the data) τ̂ = τ̂(X1, . . . , Xn) of
the reach τ(P ). The minimax risk Rn(P) has an interpretation that any reach estimator cannot have a
risk smaller than Rn uniformly over every P ∈ P .

In our model, we assumed that tangent spaces are observed at all the sample points. In other words,
we assume that when X1, . . . , Xn are observed, TX1M, . . . , TXnM are observed as well.

3.1 Statistical Model and Loss
Let us now describe the regularity assumptions we will use throughout. To avoid arbitrarily irregular
shapes, we consider submanifolds M with their reach lower bounded by τmin > 0. Since the parameter
of interest τM is a C2-like quantity, it is natural — and actually necessary, as we shall see in Proposition
33 — to require an extra degree of smoothness. For example, by imposing an upper bound on the third
order derivatives of geodesics.
Definition 30. We letMd,m

τmin,L
denote the set of compact connected d-dimensional submanifolds M ⊂

Rm without boundary such that τM ≥ τmin, and for which every arc-length parametrized geodesic γp,v
is C3 and satisfies ∥∥γ′′′p,v(0)

∥∥ ≤ L. (3.2)

The regularity bounds τmin and L are assumed to exist only for the purpose of deriving uniform
estimation bounds. However, we emphasize the fact that the forthcoming estimator τ̂ (3.4) does not
require them in its construction.

It is important to note that any compact d-dimensional C3-submanifold M ⊂ Rm belongs to such a
classMd,m

τmin,L
, provided that τmin ≤ τM and that L is large enough. Note also that since the third order

condition
∥∥γ′′′p,v(0)

∥∥ ≤ L needs to hold for all (p, v), we have in particular that
∥∥γ′′′p,v(t)

∥∥ ≤ L for all
t ∈ R. To our knowledge, such a quantitative C3 assumption on the geodesic trajectories has not been
considered in the computational geometry literature.

Any submanifold M ⊂ Rm of dimension d inherits a natural measure volM from the d-dimensional
Hausdorff measure Hd on Rm [Federer, 1959, p. 171]. We will consider distributions Q that have
densities with respect to volM that are bounded away from zero.
Definition 31. We let Qd,mτmin,L,fmin

denote the set of distributions Q having support M ∈ Md,m
τmin,L

and
with a Hausdorff density f = dQ

dvolM
satisfying infx∈M f(x) ≥ fmin > 0 on M .

As for τmin and L, the knowledge of fmin will not be required in the construction of the estimator τ̂
(3.4) described below.

In order to focus on the geometric aspects of the reach, we will first consider the case where tangent
spaces are observed at all the sample points. As mentioned in the introduction, the knowledge of
tangent spaces is a reasonable assumption in digital imaging Klette and Rosenfeld [2004].

We let Gd,m denote the Grassmanian of dimension d of Rm, that is the set of all d-dimensional
linear subspaces of Rm.
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Definition 32. For any distribution Q ∈ Qd,mτmin,L,fmin
with support M we associate the distribution P of

the random variable (X,TXM) on Rm ×Gd,m, where X has distribution Q. We let Pd,mτmin,L,fmin
denote

the set of all such distributions.
Formally, one can write P (dx dT ) = δTxM(dT )Q(dx), where δ· denotes the Dirac measure. An

i.i.d. n-sample of P is of the form (X1, T1), . . . , (Xn, Tn) ∈ Rm × Gd,m, where X1, . . . , Xn is an
i.i.d. n-sample of Q and Ti = TXiM with M = supp(Q). For a distribution Q with support M and
associated distribution P on Rm ×Gd,m, we will write τP = τQ = τM , with a slight abuse of notation.

To simplify the statements and the proofs, we focus on a loss involving the condition number.
Namely, we measure the error with the loss

`(τ, τ ′) =

∣∣∣∣
1

τ
− 1

τ ′

∣∣∣∣
p

, p ≥ 1. (3.3)

In other words, we will consider the estimation of the condition number τ−1
M instead of the reach

τM .
With the statistical framework developed above, we can now see explicitly why the third order

condition ‖γ′′′‖ ≤ L < ∞ is necessary. Indeed, the following Proposition 33 demonstrates that
relaxing this constraint — i.e. setting L = ∞— renders the problem of reach estimation intractable.
Below, σd stands for the volume of the d-dimensional unit sphere Sd.
Proposition 33. Given τmin > 0, provided that fmin ≤ (2d+1τ dminσd)

−1, we have for all n ≥ 1,

inf
τ̂n

sup
P∈Pd,mτmin,L=∞,fmin

EPn
∣∣∣∣

1

τP
− 1

τ̂n

∣∣∣∣
p

≥ cp
τ pmin

> 0,

where the infimum is taken over the estimators τ̂n = τ̂n (X1, T1, . . . , Xn, Tn).
Thus, one cannot expect to derive consistent uniform approximation bounds for the reach solely

under the condition τM ≥ τmin. This result is natural, since the problem at stake is to estimate a
differential quantity of order two. Therefore, some notion of uniform C3 regularity is needed.

3.2 Geometry of the Reach
In this section, we give a precise geometric description of how the reach arises. In particular, below
we will show that the reach is determined either by a bottleneck structure or an area of high curvature
(Theorem 37). These two cases are referred to as global reach and local reach, respectively. All the
proofs for this section are to be found in Section B.2.

Consider the formulation (1.6) of the reach as the infimum of the distance betweenM and its medial
axisMed(M). By definition of the medial axis (1.5), if the infimum is attained it corresponds to a point
z0 in Med(M) at distance τM from M , which we call an axis point. Since z0 belongs to the medial axis
of M , it has at least two nearest neighbors q1, q2 on M , which we call a reach attaining pair (see Figure
3.1b). By definition, q1 and q2 belong to B(z0, τM) and cannot be farther than 2τM from each other.
We say that (q1, q2) is a bottleneck of M in the extremal case ‖q2 − q1‖ = 2τM of antipodal points of
B(z0, τM) (see Figure 3.1a). Note that the ball B(z0, τM) meets M only on its boundary ∂B(z0, τM).
Definition 34. Let M ⊂ Rm be a submanifold with reach τM > 0.

• A pair of points (q1, q2) in M is called reach attaining if there exists z0 ∈ Med(M) such that
q1, q2 ∈ B(z0, τM). We call z0 the axis point of (q1, q2), and ‖q1 − q2‖ ∈ (0, 2τM ] its size.
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• A reach attaining pair (q1, q2) ∈ M2 is said to be a bottleneck of M if its size is 2τM , that is
‖q1 − q2‖ = 2τM .

As stated in the following Lemma 35, if a reach attaining pair is not a bottleneck — that is
‖q1 − q2‖ < 2τM , as in Figure 3.1b —, then M contains an arc of a circle of radius τM . In this
sense, this “semi-local” case — when ‖q1 − q2‖ can be arbitrarily small — is not generic. Though, we
do not exclude this case in the analysis.
Lemma 35. Let M ⊂ Rm be a compact submanifold with reach τM > 0. Assume that M has a reach
attaining pair (q1, q2) ∈ M2 with size ‖q1 − q2‖ < 2τM . Let z0 ∈ Med(M) be their associated axis
point, and write cz0(q1, q2) for the arc of the circle with center z0 and endpoints as q1 and q2.

Then cz0(q1, q2) ⊂ M , and this arc (which has constant curvature 1/τM ) is the geodesic joining q1

and q2.
In particular, in this “semi-local” situation, since τ−1

M is the norm of the second derivative of a
geodesic of M (the exhibited arc of the circle of radius τM ), the reach can be viewed as arising from
directional curvature.

Now consider the case where the infimum (1.6) is not attained. In this case, the following Lemma
36 asserts that τM is created by curvature.
Lemma 36. Let M ⊂ Rm be a compact submanifold with reach τM > 0. Assume that for all z ∈
Med(M), d(z,M) > τM . Then there exists q0 ∈ M and a geodesic γ0 such that γ0(0) = q0 and
‖γ′′0 (0)‖ = 1

τM
.

To summarize, there are three distinct geometric instances in which the reach may be realized:
• (See Figure 3.1a) M has a bottleneck: by definition, τM originates from a structure having scale

2τM .
• (See Figure 3.1b) M has a reach attaining pair but no bottleneck: then M contains an arc of a

circle of radius τM (Lemma 35), so that M actually contains a zone with radius of curvature τM .
• (See Figure 3.1c) M does not have a reach attaining pair: then τM comes from a curvature-

attaining point (Lemma 36), that is a point with radius of curvature τM .

From now on, we will treat the first case separately from the other two. We are now in a position to
state the main result of this section. It is a straightforward consequence of Lemma 35 and Lemma 36.
Theorem 37. LetM ⊂ Rm be a compact submanifold with reach τM > 0. At least one of the following
two assertions holds.

• (Global Case) M has a bottleneck (q1, q2) ∈ M2, that is, there exists z0 ∈ Med(M) such that
q1, q2 ∈ ∂B(z0, τM) and ‖q1 − q2‖ = 2τM .

• (Local Case) There exists q0 ∈M and an arc-length parametrized geodesic γ0 such that γ0(0) =
q0 and ‖γ′′0 (0)‖ = 1

τM
.

Let us emphasize the fact that the global case and the local case of Theorem 37 are not mutually
exclusive. Theorem 37 provides a description of the reach as arising from global and local geometric
structures that, to the best of our knowledge, is new. Such a distinction is especially important in our
problem. Indeed, the global and local cases may yield different approximation properties and require
different statistical analyses. However, since one does not know a priori whether the reach arises from
a global or a local structure, an estimator of τM should be able to handle both cases simultaneously.

3.2.1 Reach Estimator and its Analysis
In this section, we propose an estimator τ̂(·) for the reach and demonstrate its properties and rate of
consistency under the loss (3.3). For the sake of clarity in the analysis, we assume the tangent spaces
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(b) A non-bottleneck reach attaining pair.
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τM

B(z0, τM )

Med(M)M

(c) Curvature-attaining point.

Figure 3.1: The different ways for the reach to be attained, as described in Lemma 35 and Lemma 36.
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to be known at every sample point.
We rely on the formulation of the reach given in (1.7) (see also Figure 1.1), and define τ̂ as a plugin

estimator as follows: given a point cloud X ⊂M ,

τ̂(X ) = inf
x 6=y∈X

‖y − x‖2

2d(y − x, TxM)
. (3.4)

In particular, we have τ̂(M) = τM . Since the infimum (3.4) is taken over a set X smaller thanM , τ̂(X )
always overestimates τM . In fact, τ̂(X ) is decreasing in the number of distinct points in X , a useful
property that we formalize in the following result, whose proof is immediate.
Corollary 38. Let M be a submanifold with reach τM and Y ⊂ X ⊂ M be two nested subsets. Then
τ̂(Y) ≥ τ̂(X ) ≥ τM .

We now derive the rate of convergence of τ̂ . We analyze the global case (Section 3.2.2) and the
local case (Section 3.2.3) separately. In both cases, we first determine the performance of the estimator
in a deterministic framework, and then derive an expected loss bounds when τ̂ is applied to a random
sample.

Respectively, the proofs for Section 3.2.2 and Section 3.2.3 are to be found in Section B.3.1 and
Section B.3.2.

3.2.2 Global Case
Consider the global case, that is, M has a bottleneck structure (Theorem 37). Then the infimum (1.7)
is achieved at a bottleneck pair (q1, q2) ∈ M2. When X contains points that are close to q1 and q2, one
may expect that the infimum over the sample points should also be close to (1.7): that is, that τ̂(X )
should be close to τM .
Proposition 39. Let M ⊂ Rm be a submanifold with reach τM > 0 that has a bottleneck (q1, q2) ∈M2

(see Definition 34), and X ⊂M . If there exist x, y ∈ X with ‖q1 − x‖ < τM and ‖q2 − y‖ < τM , then

0 ≤ 1

τM
− 1

τ̂(X )
≤ 1

τM
− 1

τ̂({x, y}) ≤
9

2τ 2
M

max {dM(q1, x), dM(q2, y)} .

The error made by τ̂(X ) decreases linearly in the maximum of the distances to the critical points q1

and q2. In other words, the radius of the tangent sphere in Figure 1.1 grows at most linearly in t when
we perturb by t < τM its basis point p = q1 and the point q = q2 it passes through.

Based on the deterministic bound in Proposition 39, we can now give an upper bound on the ex-
pected loss under the model Pd,mτmin,L,fmin

. We recall that, throughout this chapter, Xn = {X1, . . . , Xn}
is an i.i.d. sample with common distribution Q associated to P (see Definition 32).
Proposition 40. Let P ∈ Pd,mτmin,L,fmin

and M = supp(P ). Assume that M has a bottleneck (q1, q2) ∈
M2 (see Definition 34). Then,

EPn
[∣∣∣∣

1

τM
− 1

τ̂(Xn)

∣∣∣∣
p]
≤ Cp,d,τM ,fmin

n−
p
d ,

where Cp,d,τM ,fmin
depends only on p,d,τM and fmin, and is a decreasing function of τM .

Proposition 40 follows straightforwardly from Proposition 39 combined with the fact that with high
probability, the balls centered at the bottleneck points q1 and q2 with radii O(n−1/d) both contain a
sample point of Xn.
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3.2.3 Local Case
Consider now the local case, that is, there exists q0 ∈ M and v0 ∈ Tq0M such that the geodesic
γ0 = γq0,v0 has second derivative ‖γ′′0 (0)‖ = 1/τM (Theorem 37). Estimating τM boils down to
estimating the curvature of M at q0 in the direction v0.

We first relate directional curvature to the increment ‖y−x‖2
2d(y−x,TxM)

involved in the estimator τ̂ (3.4).
Indeed, since the latter quantity is the radius of a sphere tangent at x and passing through y (Figure 1.1),
it approximates the radius of curvature in the direction y−x when x and y are close. For x, y ∈M , we
let γx→y denote the arc-length parametrized geodesic joining x and y, with the convention γx→y(0) = x.
Lemma 41. Let M ∈ Md,m

τmin,L
with reach τM and X ⊂ M be a subset. Let x, y ∈ X with dM(x, y) <

πτM . Then,

0 ≤ 1

τM
− 1

τ̂(X )
≤ 1

τM
− 1

τ̂({x, y}) ≤
1

τM
−
∥∥γ′′x→y(0)

∥∥+
2

3
LdM(x, y).

Let us now state how directional curvatures are stable with respect to perturbations of the base point
and the direction. We let κp denote the maximal directional curvature of M at p ∈M , that is,

κp = sup
v∈BTpM (0,1)

∥∥γ′′p,v(0)
∥∥ .

Lemma 42. Let M ∈ Md,m
τmin,L

with reach τM and q0, x, y ∈ M be such that x, y ∈ BM
(
q0,

πτM
2

)
. Let

γ0 be a geodesic such that γ0(0) = q0 and ‖γ′′0 (0)‖ = κq0 . Write

θx := ∠(γ′0(0), γ′q0→x(0)), θy := ∠(γ′0(0), γ′q0→y(0)),

and suppose that |θx − θy| ≥ π
2
. Then,

∥∥γ′′x→y(0)
∥∥

≥ κq0 −
1√

2− 1

(
κx − κq0 +

√
2(3κq0 + κx) sin2(|θx − θy|) +

√
2LdM(q0, x)

)
.

In particular, geodesics in a neighborhood of q0 with directions close to v0 have curvature close to
1
τM

. A point cloud X sampled densely enough in M would contain points in this neighborhood. Hence
combining Lemma 41 and Lemma 42 yields the following deterministic bound in the local case.
Proposition 43. Under the same conditions as Lemma 42,

0 ≤ 1

τM
− 1

τ̂(X )
≤ 1

τM
− 1

τ̂({x, y})

≤ 4
√

2 sin2(|θx − θy|)
(
√

2− 1)τM
+ L

(
2

3
dM(x, y) +

√
2√

2− 1
dM(q0, x)

)
.

In other words, since the reach boils down to directional curvature in the local case, τ̂ performs well
if it is given as input a pair of points x, y which are close to the point q0 realizing the reach, and almost
aligned with the direction of interest v0. Note that the error bound in the local case (Proposition 43)
is very similar to that of the global case (Proposition 39) with an extra alignment term sin2(|θx − θy|)
. This alignment term appears since, in the local case, the reach arises from directional curvature
τM =

∥∥γ′′q0,v0
(0)
∥∥ (Theorem 37). Hence, it is natural that the accuracy of τ̂(X ) depends on how

precisely X samples the neighborhood of q0 in the particular direction v0.
Similarly to the analysis of the global case, the deterministic bound in Proposition 43 yields a bound

on the risk of τ̂(Xn) when Xn = {X1, . . . , Xn} is random.
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Proposition 44. Let P ∈ Pd,mτmin,L,fmin
and M = supp(P ). Suppose there exists q0 ∈ M and a geodesic

γ0 with γ0(0) = q0 and ‖γ′′0 (0)‖ = 1
τM

. Then,

EPn
[∣∣∣∣

1

τM
− 1

τ̂(Xn)

∣∣∣∣
p]
≤ Cτmin,d,L,fmin,pn

− 2p
3d−1 ,

where Cτmin,d,L,fmin,p depends only on τmin, d, L, fmin and p.
This statement follows from Proposition 43 together with the estimate of the probability of two

points being drawn in a neighborhood of q0 and subject to an alignment constraint.
Proposition 40 and 44 yield a convergence rate of τ̂(Xn) which is slower in the local case than in

the global case. Recall that from Theorem 37, the reach pertains to the size of a bottleneck structure
in the global case, and to maximum directional curvature in the local case. To estimate the size of
a bottleneck, observing two points close to each point in the bottleneck gives a good approximation.
However, for approximating maximal directional curvature, observing two points close to the curvature
attaining point is not enough, but they should also be aligned with the highly curved direction. Hence,
estimating the reach may be more difficult in the local case, and the difference in the convergence rates
of Proposition 40 and 44 accords with this intuition.

Finally, let us point out that in both cases, neither the convergence rates nor the constants depend
on the ambient dimension D.

3.3 Minimax Estimates
In this section we derive bounds on the minimax risk Rn of the estimation of the reach over the class
Pd,mτmin,L,fmin

, that is

Rn = inf
τ̂n

sup
P∈Pd,mτmin,L,fmin

EPn
∣∣∣∣

1

τP
− 1

τ̂n

∣∣∣∣
p

, (3.5)

where the infimum ranges over all estimators τ̂n
(
(X1, TX1), . . . , (Xn, TXn)

)
based on an i.i.d. sample

of size n with the knowledge of the tangent spaces at sample points.
The rate of convergence of the plugin estimator τ̂(Xn) studied in the previous section leads to an

upper bound on Rn as explained in (1.3), which we state here for completeness.
Theorem 45. For all n ≥ 1,

Rn ≤ Cτmin,d,L,fmin,pn
− 2p

3d−1 ,

for some constant Cτmin,d,L,fmin,p depending only on τmin, d, L, fmin and p.
We now focus on deriving a lower bound on the minimax risk Rn. The method relies on an appli-

cation of Le Cam’s Lemma Yu [1997]. In what follows, let

TV (P, P ′) =
1

2

∫
|dP − dP ′|

denote the total variation distance between P and P ′, where dP, dP ′ denote the respective densities
of P, P ′ with respect to any dominating measure. Since |x − z|p + |z − y|p ≥ 21−p|x − y|p , the
following version of Le Cam’s lemma results from Lemma 1 in Yu [1997] and (1 − TV (P n, P ′n)) ≥
(1− TV (P, P ′))n.
Lemma 46 (Le Cam’s Lemma). Let P, P ′ ∈ Pd,mτmin,L,fmin

with respective supports M and M ′. Then for
all n ≥ 1,

Rn ≥
1

2p

∣∣∣∣
1

τM
− 1

τM ′

∣∣∣∣
p

(1− TV (P, P ′))
n
.
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Lemma 46 states that in order to derive a lower bound on Rn one needs to consider distributions
(hypotheses) in the model that are stochastically close to each other — i.e. with small total variation
distance — but for which the associated reaches are as different as possible. A lower bound on the
minimax risk over Pd,mτmin,L,fmin requires the hypotheses to belong to the class. Luckily, in our problem
it will be enough to construct hypotheses from the simpler class Qd,mτmin,L,fmin

. Indeed, we have the
following isometry result betweenQd,mτmin,L,fmin

andPd,mτmin,L,fmin for the total variation distance, as proved
in Section B.4.2.
Lemma 47. In accordance with the notation of Definition 32, let Q,Q′ ∈ Qd,mτmin,L,fmin

be distributions
on Rm with associated distributions P, P ′ ∈ Pd,mτmin,L,fmin,

on Rm ×Gd,m. Then,

TV (P, P ′) = TV (Q,Q′) .

In order to construct hypotheses inQd,mτmin,L,fmin
we take advantage of the fact that the classMd,m

τmin,L

has good stability properties, which we now describe. Here, since submanifolds do not have natural
parametrizations, the notion of perturbation can be well formalized using diffeomorphisms of the am-
bient space Rm ⊃ M . Given a smooth map Φ : Rm → Rm, we denote by dixΦ its differential of order
i at x. Given a tensor field A between Euclidean spaces, let ‖A‖op = supx ‖Ax‖op, where ‖Ax‖op is
the operator norm induced by the Euclidean norm. The next result states, informally, that the reach and
geodesics third derivatives of a submanifold that is perturbed by a diffeomorphism that is C3-close to
the identity map do not change much. The proof of Proposition 48 can be found in Section B.4.3.
Proposition 48. Let M ∈ Md,m

τminL
be fixed, and let Φ : Rm → Rm be a global C3-diffeomorphism. If

‖ID − dΦ‖op, ‖d2Φ‖op and ‖d3Φ‖op are small enough, then M ′ = Φ(M) ∈Md,m
τmin

2
,2L

.

Now we construct the two hypotheses Q,Q′ as follows (see Figure 3.2). Take M to be a d-
dimensional sphere andQ to be the uniform distribution on it. LetM ′ = Φ(M), where Φ is a bump-like
diffeomorphism having the curvature of M ′ to be different of that of M in some small neighborhood.
Finally, let Q′ be the uniform distribution on M ′. The proof of Proposition 49 is to be found in Section
B.4.3.
Proposition 49. Assume that L ≥ (2τ 2

min)−1 and fmin ≤ (2d+1τ dminσd)
−1. Then for ` > 0 small

enough, there exist Q,Q′ ∈ Qd,mτmin,L,fmin
with respective supports M and M ′ such that

∣∣∣∣
1

τM
− 1

τM ′

∣∣∣∣ ≥ cd
`

τ 2
min

and TV (Q,Q′) ≤ 12

(
`

2τmin

)d
.

Hence, applying Lemma 46 with the hypotheses P, P ′ associated to Q,Q′ of Proposition 49, and
taking 12 (`/2τmin)d = 1/n, together with Lemma 47, yields the following lower bound.
Proposition 50. Assume that L ≥ (2τ 2

min)−1 and fmin ≤ (2d+1τ dminσd)
−1. Then for n large enough,

Rn ≥
cd,p
τ pmin

n−p/d,

where cd,p depends only on d and p.
Here, the assumptions on the parameters L and fmin are necessary for the model to be rich enough.

Roughly speaking, they ensure at least that a sphere of radius 2τmin belongs to the model.
From Proposition 50, the plugin estimation τ̂(Xn) provably achieves the optimal rate in the global

case (Theorem 40) up to numerical constants. In the local case (Theorem 44) the rate obtained presents
a gap, yielding a gap in the overall rate. As explained above (Section 3.2.3), the slower rate in the local
case is a consequence of the alignment required in order to estimate directional curvature. Though, let
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M ′

M

Figure 3.2: Hypotheses of Proposition 49.

us note that in the one-dimensional case d = 1, the rate of Proposition 50 matches the convergence rate
of τ̂(Xn) (Theorem 45). Indeed, for curves, the alignment requirement is always fulfilled. Hence, the
rate is exactly n−p for d = 1, and τ̂(Xn) is minimax optimal.

Here, again, neither the convergence rate nor the constant depend on the ambient dimension m.
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Chapter 4

Statistical Inference for Cluster Trees

This chapter presents the work in [Kim et al., 2016].
Clustering is a central problem in the analysis and exploration of data. It is a broad topic, with

several existing distinct formulations, objectives, and methods. Despite the extensive literature on the
topic, a common aspect of the clustering methodologies that has hindered its widespread scientific
adoption is the dearth of methods for statistical inference in the context of clustering. Methods for
inference broadly allow us to quantify our uncertainty, to discern “true” clusters from finite-sample
artifacts, as well as to rigorously test hypotheses related to the estimated cluster structure.

In this chapter, we study statistical inference for the cluster tree of an unknown density. We assume
that we observe an i.i.d. sample {X1, . . . , Xn} from a distribution P0 with unknown density p0. Here,
Xi ∈ X ⊂ Rm. The connected components C(λ), of the upper level set {x : p0(x) ≥ λ}, are called
high-density clusters. The set of high-density clusters forms a nested hierarchy which is referred to as
the cluster tree1 of p0, which we denote as Tp0 .

Methods for density clustering fall broadly in the space of hierarchical clustering algorithms, and
inherit several of their advantages: they allow for extremely general cluster shapes and sizes, and in
general do not require the pre-specification of the number of clusters. Furthermore, unlike flat cluster-
ing methods, hierarchical methods are able to provide a multi-resolution summary of the underlying
density. The cluster tree, irrespective of the dimensionality of the input random variable, is displayed
as a two-dimensional object and this makes it an ideal tool to visualize data. In the context of statistical
inference, density clustering has another important advantage over other clustering methods: the object
of inference, the cluster tree of the unknown density p0, is clearly specified.

In practice, the cluster tree is estimated from a finite sample, {X1, . . . , Xn} ∼ p0. In a scientific ap-
plication, we are often most interested in reliably distinguishing topological features genuinely present
in the cluster tree of the unknown p0, from topological features that arise due to random fluctuations in
the finite sample {X1, . . . , Xn}. In this chapter, we focus our inference on the cluster tree of the kernel
density estimator, Tp̂h , where p̂h is the kernel density estimator,

p̂h(x) =
1

nhd

n∑

i=1

K

(‖x−Xi‖
h

)
, (4.1)

where K is a kernel and h is an appropriately chosen bandwidth 2.
To develop methods for statistical inference on cluster trees, we construct a confidence set for Tp0 ,

i.e. a collection of trees that will include Tp0 with some (pre-specified) probability. A confidence set can

1It is also referred to as the density tree or the level-set tree.
2We address computing the tree Tp̂h

, and the choice of bandwidth in more detail in what follows.
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Figure 4.1: Examples of density trees. Black curves are the original density functions and the red trees
are the associated density trees.

be converted to a hypothesis test, and a confidence set shows both statistical and scientific significances
while a hypothesis test can only show statistical significances [Wasserman, 2010, p.155].

To construct and understand the confidence set, we need to solve a few technical and conceptual
issues. The first issue is that we need a metric on trees, in order to quantify the collection of trees
that are in some sense “close enough” to Tp̂h to be statistically indistinguishable from it. We use the
bootstrap to construct tight data-driven confidence sets. However, only some metrics are sufficiently
“regular” to be amenable to bootstrap inference, which guides our choice of a suitable metric on trees.

On the basis of a finite sample, the true density is indistinguishable from a density with additional
infinitesimal perturbations. This leads to the second technical issue which is that our confidence set
invariably contains infinitely complex trees. Inspired by the idea of one-sided inference Donoho [1988],
we propose a partial ordering on the set of all density trees to define simple trees. To find simple
representative trees in the confidence set, we prune the empirical cluster tree by removing statistically
insignificant features. These pruned trees are valid with statistical guarantees that are simpler than the
empirical cluster tree in the proposed partial ordering.

4.1 Background and Definitions
We work with densities defined on a subset X ⊂ Rm, and denote by ‖.‖ the Euclidean norm on X.
Throughout this chapter we restrict our attention to cluster tree estimators that are specified in terms of
a function f : X 7→ [0,∞), i.e. we have the following definition:
Definition 51. For any f : X 7→ [0,∞) the cluster tree of f is a function Tf : R 7→ 2X, where 2X

is the set of all subsets of X, and Tf (λ) is the set of the connected components of the upper-level set
{x ∈ X : f(x) ≥ λ}. We define the collection of connected components {Tf}, as {Tf} =

⋃
λ

Tf (λ).

As will be clearer in what follows, working only with cluster trees defined via a function f simplifies
our search for metrics on trees, allowing us to use metrics specified in terms of the function f . With a
slight abuse of notation, we will use Tf to denote also {Tf}, and writeC ∈ Tf to signifyC ∈ {Tf}. The
cluster tree Tf indeed has a tree structure, since for every pair C1, C2 ∈ Tf , either C1 ⊂ C2, C2 ⊂ C1,
or C1 ∩C2 = ∅ holds. See Figure 4.1 for a graphical illustration of a cluster tree. The formal definition
of the tree requires some topological theory; these details are in Appendix C.2.

In the context of hierarchical clustering, we are often interested in the “height” at which two points
or two clusters merge in the clustering. We introduce the merge height from [Eldridge et al., 2015b,
Definition 6]:
Definition 52. For any two points x, y ∈ X, any f : X 7→ [0,∞), and its tree Tf , their merge height
mf (x, y) is defined as the largest λ such that x and y are in the same density cluster at level λ, i.e.

mf (x, y) = sup {λ ∈ R : there exists C ∈ Tf (λ) such that x, y ∈ C} .
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Figure 4.2: Three illustrations of the partial order � in Definition 54. In each case, in agreement with
our intuitive notion of simplicity, the tree on the top (a, b, and c) is lower than the corresponding tree
on the bottom(d, e, and f) in the partial order, i.e. for each example Tp � Tq.

We refer to the function mf : X× X 7→ R as the merge height function. For any two clusters C1, C2 ∈
{Tf}, their merge height mf (C1, C2) is defined analogously,

mf (C1, C2) = sup {λ ∈ R : there exists C ∈ Tf (λ) such that C1, C2 ⊂ C} .

One of the contributions of this chapter is to construct valid confidence sets for the unknown true
tree and to develop methods for visualizing the trees contained in this confidence set. Formally, we
assume that we have samples {X1, . . . , Xn} from a distribution P0 with density p0.
Definition 53. An asymptotic (1− α) confidence set, Cα, is a collection of trees with the property that

P0(Tp0 ∈ Cα) = 1− α + o(1).

We also provide non-asymptotic upper bounds on the o(1) term in the above definition. Addition-
ally, we provide methods to summarize the confidence set above. In order to summarize the confidence
set, we define a partial ordering on trees.
Definition 54. For any f, g : X 7→ [0,∞) and their trees Tf , Tg, we say Tf � Tg if there exists a map
Φ : {Tf} → {Tg} such that for any C1, C2 ∈ Tf , we have C1 ⊂ C2 if and only if Φ(C1) ⊂ Φ(C2).

With Definition 53 and 54, we describe the confidence set succinctly via some of the simplest trees
in the confidence set in Section 4.3. Intuitively, these are trees without statistically insignificant splits.

It is easy to check that the partial order � in Definition 54 is reflexive (i.e. Tf � Tf ) and transitive
(i.e. that Tf1 � Tf2 and Tf2 � Tf3 implies Tf1 � Tf3). However, to argue that � is a partial order,
we need to show the antisymmetry, i.e. Tf � Tg and Tg � Tf implies that Tf and Tg are equivalent in
some sense. In Appendices C.1 and C.2, we show an important result: for an appropriate topology on
trees, Tf � Tg and Tg � Tf implies that Tf and Tf are topologically equivalent.

The partial order � in Definition 54 matches intuitive notions of the complexity of the tree for sev-
eral reasons (see Figure 4.2). Firstly, Tf � Tg implies (number of edges of Tf ) ≤ (number of edges of Tg)
(compare Figure 4.2a and d, and see Lemma 103 in Appendix C.2). Secondly, if Tg is obtained from
Tf by adding edges, then Tf � Tg (compare Figure 4.2b and e, and see Lemma 104 in Appendix C.2).
Finally, the existence of a topology preserving embedding from {Tf} to {Tg} implies the relationship
Tf � Tg (compare Figure 4.2c and f, and see Lemma 105 in Appendix C.2).
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4.2 Tree Metrics
In this section, we introduce some natural metrics on cluster trees and study some of their properties that
determine their suitability for statistical inference. We let p, q : X → [0,∞) be nonnegative functions
and let Tp and Tq be the corresponding trees.

4.2.1 Metrics
We consider three metrics on cluster trees, the first is the standard `∞ metric, while the second and third
are metrics that appear in the work of Eldridge et al. Eldridge et al. [2015b].

`∞ metric: The simplest metric is d∞(Tp, Tq) = ‖p− q‖∞ = supx∈X |p(x)− q(x)|. We will show
in what follows that, in the context of statistical inference, this metric has several advantages over other
metrics.

Merge distortion metric: The merge distortion metric intuitively measures the discrepancy in the
merge height functions of two trees in Definition 52. We consider the merge distortion metric [Eldridge
et al., 2015b, Definition 11] defined by

dM(Tp, Tq) = sup
x,y∈X

|mp(x, y)−mq(x, y)|.

The merge distortion metric we consider is a special case of the metric introduced by Eldridge et al.
[2015b]3. The merge distortion metric was introduced by Eldridge et al. [2015b] to study the conver-
gence of cluster tree estimators. They establish several interesting properties of the merge distortion
metric: in particular, the metric is stable to perturbations in `∞, and further, that convergence in the
merge distortion metric strengthens previous notions of convergence of the cluster trees.

Modified merge distortion metric: We also consider the modified merge distortion metric given
by

dMM(Tp, Tq) = sup
x,y∈X

|dTp(x, y)− dTq(x, y)|,

where dTp(x, y) = p(x) + p(y) − 2mp(x, y), which corresponds to the (pseudo)-distance between x
and y along the tree. The metric dMM is used in various proofs in the work of Eldridge et al. [2015b].
It is sensitive to both distortions of the merge heights in Definition 52, as well as of the underlying
densities. Since the metric captures the distortion of distances between points along the tree, it is
in some sense most closely aligned with the cluster tree. Finally, it is worth noting that unlike the
interleaving distance and the functional distortion metric Bauer et al. [2015], Morozov et al. [2013], the
three metrics we consider in this chapter are quite simple to approximate to a high-precision.

4.2.2 Properties of the Metrics
The following Lemma gives some basic relationships between the three metrics d∞, dM and dMM. We
define pinf = infx∈X p(x), and qinf analogously, and a = infx∈X{p(x) + q(x)}− 2 min{pinf , qinf}. Note
that when the Lebesgue measure µ(X) is infinite, then pinf = qinf = a = 0.
Lemma 55. For any densities p and q, the following relationships hold: (i) When p and q are continu-
ous, then d∞(Tp, Tq) = dM(Tp, Tq). (ii) dMM(Tp, Tq) ≤ 4d∞(Tp, Tq). (iii) dMM(Tp, Tq) ≥ d∞(Tp, Tq)−
a, where a is defined as above. Additionally when µ(X) =∞, then dMM(Tp, Tq) ≥ d∞(Tp, Tq).

3They further allow flexibility in taking a sup over a subset of X.
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The proof is in Appendix C.6. From Lemma 55, we can see that under a mild assumption (continuity
of the densities), d∞ and dM are equivalent. We note again that the work of Eldridge et al. [2015b]
actually defines a family of merge distortion metrics, while we restrict our attention to a canonical one.
We can also see from Lemma 55 that while the modified merge metric is not equivalent to d∞, it is
usually multiplicatively sandwiched by d∞.

Our next line of investigation is aimed at assessing the suitability of the three metrics for the task of
statistical inference. Given the strong equivalence of d∞ and dM we focus our attention on d∞ and dMM.
Based on prior work (see Chen et al. [2015], Chernozhukov et al. [2016]), the large sample behavior
of d∞ is well understood. In particular, d∞(Tp̂h , Tp0) converges to the supremum of an appropriate
Gaussian process, on the basis of which we can construct confidence intervals for the d∞ metric.

The situation for the metric dMM is substantially more subtle. One of our eventual goals is to use
the non-parametric bootstrap to construct valid estimates of the confidence set. In general, a way to
assess the amenability of a functional to the bootstrap is via Hadamard differentiability Wellner [2013].
Roughly speaking, Hadamard-differentiability is a type of statistical stability, that ensures that the
functional under consideration is stable to perturbations in the input distribution. In Appendix C.3, we
formally define Hadamard differentiability and prove that dMM is not point-wise Hadamard differen-
tiable. This does not completely rule out the possibility of finding a way to construct confidence sets
based on dMM, but doing so would be difficult and so far we know of no way to do it.

In summary, based on computational considerations we eliminate the interleaving distance and the
functional distortion metric Bauer et al. [2015], Morozov et al. [2013], we eliminate the dMM metric
based on its unsuitability for statistical inference and focus the rest of this chapter on the d∞ (or equiv-
alently dM) metric which is both computationally tractable and has well understood statistical behavior.

4.3 Confidence Sets
In this section, we consider the construction of valid confidence intervals centered around the kernel
density estimator, defined in Equation (4.1). We first observe that a fixed bandwidth for the KDE gives
a dimension-free rate of convergence for estimating a cluster tree. For estimating a density in high
dimensions, the KDE has a poor rate of convergence, due to a decreasing bandwidth for simultaneously
optimizing the bias and the variance of the KDE.

When estimating a cluster tree, the bias of the KDE does not affect its cluster tree. Intuitively, the
cluster tree is a shape characteristic of a function, which is not affected by the bias. Defining the biased
density, ph(x) = E[p̂h(x)], two cluster trees from ph and the true density p0 are equivalent with respect
to the topology in Appendix C.1, if h is small enough and p0 is regular enough:
Lemma 56. Suppose that the true unknown density p0, has no non-degenerate critical points 4, then
there exists a constant h0 > 0 such that for all 0 < h ≤ h0, the two cluster trees, Tp0 and Tph have the
same topology in Appendix C.1.

From Lemma 56, a fixed bandwidth for the KDE can be applied to give a dimension-free rate of
convergence for estimating the cluster tree. Instead of decreasing bandwidth h and inferring the cluster
tree of the true density Tp0 at rate OP (n−2/(4+d)), Lemma 56 implies that we can fix h > 0 and infer
the cluster tree of the biased density Tph at rate OP (n−1/2) independently of the dimension. Hence a
fixed bandwidth crucially enhances the convergence rate of the proposed methods in high-dimensional
settings.

4The Hessian of p0 at every critical point is non-degenerate. Such functions are known as Morse functions.
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4.3.1 A data-driven confidence set
We recall that we base our inference on the d∞ metric, and we recall the definition of a valid con-
fidence set (see Definition 53). As a conceptual first step, suppose that for a specified value α we
could compute the 1 − α quantile of the distribution of d∞(Tp̂h , Tph), and denote this value tα. Then
a valid confidence set for the unknown Tph is Cα = {T : d∞(T, Tp̂h) ≤ tα}. To estimate tα, we use
the bootstrap. Specifically, we generate B bootstrap samples, {X̃1

1 , · · · , X̃1
n}, . . . , {X̃B

1 , · · · , X̃B
n }, by

sampling with replacement from the original sample. On each bootstrap sample, we compute the KDE,
and the associated cluster tree. We denote the cluster trees {T̃ 1

ph
, . . . , T̃Bph}. Finally, we estimate tα by

t̂α = F̂−1(1− α), where F̂ (s) =
1

B

n∑

i=1

I(d∞(T̃ iph , Tp̂h) < s).

Then the data-driven confidence set is Ĉα = {T : d∞(T, T̂h) ≤ t̂α}. Using techniques from Cher-
nozhukov et al. [2016], Chen et al. [2015], the following can be shown (proof omitted):
Theorem 57. Under mild regularity conditions on the kernel5, we have that the constructed confidence
set is asymptotically valid and satisfies,

P
(
Th ∈ Ĉα

)
= 1− α +O

(( log7 n

nhd

)1/6)
.

Hence our data-driven confidence set is consistent at dimension independent rate. When h is a fixed
small constant, Lemma 56 implies that Tp0 and Tph have the same topology, and Theorem 57 guarantees
that the non-parametric bootstrap is consistent at a dimension independentO(((log n)7/n)1/6) rate. For
reasons explained in Chernozhukov et al. [2016], this rate is believed to be optimal.

4.3.2 Probing the Confidence Set
The confidence set Ĉα is an infinite set with a complex structure. Infinitesimal perturbations of the
density estimate are in our confidence set and so this set contains very complex trees. One way to
understand the structure of the confidence set is to focus attention on simple trees in the confidence
set. Intuitively, these trees only contain topological features (splits and branches) that are sufficiently
strongly supported by the data.

We propose two pruning schemes to find trees, that are simpler than the empirical tree Tp̂h that are
in the confidence set. Pruning the empirical tree aids visualization as well as de-noises the empirical
tree by eliminating some features that arise solely due to the stochastic variability of the finite-sample.
The algorithms are (see Figure 4.3):
1. Pruning only leaves: Remove all leaves of length less than 2t̂α (Figure 4.3b).
2. Pruning leaves and internal branches: In this case, we first prune the leaves as above. This yields
a new tree. Now we again prune (using cumulative length) any leaf of length less than 2t̂α. We continue
iteratively until all remaining leaves are of cumulative length larger than 2t̂α (Figure 4.3c).

In Appendix C.4.2 we formally define the pruning operation and show the following. The remaining
tree T̃ after either of the above pruning operations satisfies: (i) T̃ � Tp̂h , (ii) there exists a function f
whose tree is T̃ , and (iii) T̃ ∈ Ĉα (see Lemma 109 in Appendix C.4.2). In other words, we identified a
valid tree with a statistical guarantee that is simpler than the original estimate Tp̂h . Intuitively, some of
the statistically insignificant features have been removed from Tp̂h . We should point out, however, that

5See Appendix C.4.1 for details.
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(a) The empirical tree. (b) Pruning only leaves.
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E3

E5

E4

(c) Pruning leaves and branches.

Figure 4.3: Illustrations of our two pruning strategies. a shows the empirical tree. In b, leaves that are
insignificant are pruned, while in c, insignificant internal branches are further pruned top-down.

there may exist other trees that are simpler than Tp̂h that are in Ĉα. Ideally, we would like to have an
algorithm that identifies all trees in the confidence set that are minimal with respect to the partial order
� in Definition 54. This is an open question that we will address in future work.

4.4 Experiments
In this section, we demonstrate the techniques we have developed for inference on synthetic data, as
well as on a real dataset.

4.4.1 Simulated data
We consider three simulations: the ring data (Figure 4.4a and d), the Mickey Mouse data (Figure 4.4b
and e), and the yingyang data (Figure 4.4c and f). The smoothing bandwidth is chosen by the Silverman
reference rule Silverman [1986] and we pick the significance level α = 0.05.

Example 1: The ring data. (Figure 4.4a and d) The ring data consists of two structures: an outer
ring and a center node. The outer circle consists of 1000 points and the central node contains 200
points. To construct the tree, we used h = 0.202.

Example 2: The Mickey Mouse data. (Figure 4.4b and e) The Mickey Mouse data has three
components: the top left and right uniform circle (400 points each) and the center circle (1200 points).
In this case, we select h = 0.200.

Example 3: The yingyang data. (Figure 4.4c and f) This data has 5 connected components: outer
ring (2000 points), the two moon-shape regions (400 points each), and the two nodes (200 points each).
We choose h = 0.385.

Figure 4.4 shows those data (a, b, and c) along with the pruned density trees (solid parts in d, e, and
f). Before pruning the tree (both solid and dashed parts), there are more leaves than the actual number
of connected components. But after pruning (only the solid parts), every leaf corresponds to an actual
connected component. This demonstrates the power of a good pruning procedure.

4.4.2 GvHD dataset
Now we apply our method to the GvHD (Graft-versus-Host Disease) dataset Brinkman et al. [2007].
GvHD is a complication that may occur when transplanting bone marrow or stem cells from one subject
to another Brinkman et al. [2007]. We obtained the GvHD dataset from R package ‘mclust’. There are
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Mickey mouse data, alpha = 0.05
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Yingyang data, alpha = 0.05
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Figure 4.4: Simulation examples. a and d are the ring data; b and e are the mickey mouse data; c and
f are the yingyang data. The solid lines are the pruned trees; the dashed lines are leaves (and edges)
removed by the pruning procedure. A bar of length 2t̂α is at the top right corner. The pruned trees
recover the actual structure of connected components.
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(a) The positive treatment data.
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(b) The control data.

Figure 4.5: The GvHD data. The solid brown lines are the remaining branches after pruning; the blue
dashed lines are the pruned leaves (or edges). A bar of length 2t̂α is at the top right corner.
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two subsamples: the control sample and the positive (treatment) sample. The control sample consists
of 9083 observations and the positive sample contains 6809 observations on 4 biomarker measurements
(d = 4). By the normal reference rule Silverman [1986], we pick h = 39.1 for the positive sample and
h = 42.2 for the control sample. We set the significance level α = 0.05.

Figure 4.5 shows the density trees in both samples. The solid brown parts are the remaining com-
ponents of density trees after pruning and the dashed blue parts are the branches removed by pruning.
As can be seen, the pruned density tree of the positive sample (Figure 4.5a) is quite different from the
pruned tree of the control sample (Figure 4.5b). The density function of the positive sample has fewer
bumps (2 significant leaves) than the control sample (3 significant leaves). By comparing the pruned
trees, we can see how the two distributions differ from each other.
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Chapter 5

Persistent homology of KDE filtration on Rips
complex

This chapter presents the work in Shin, Kim, Rinaldo, Wasserman, Persistent homology of KDE filtra-
tion on Rips complex.

When we observe data from a distribution P , the upper level sets DL := {x ∈ Rm : p(x) ≥ L}
of the density function p reveal important topological features of the data generating distribution. For
instance, density-based clustering methods [Hartigan, 1975, 1981, Cadre, 2006, Rinaldo and Wasser-
man, 2010] use the information about connected components of a level set to group data points in the
hope that points in the same connected component share common characteristics. Rather than choosing
a fixed level, a cluster tree [Chaudhuri and Dasgupta, 2010, Balakrishnan et al., 2013a, Eldridge et al.,
2015a, Kim et al., 2016] summarizes the hierarchy of high-density clusters at all levels simultaneously.

We can investigate topological features of level sets by their corresponding homology groups. For
example, the 0-th homology group of a level set contains information about connected components
in the level set. By using higher order homology groups, we can further characterize each connected
components. For instance, the rank of the 1st homology group of each connected component counts
the number of one-dimensional holes.

Since different level sets could show different aspects of the data generating distribution, analyzing
a fixed level set might be not enough to understand the overall shape of the distribution. Alternatively,
as cluster trees show clusters at all levels, we can investigate changes in shapes by looking at all possible
level sets simultaneously,

{DL}L>0. (5.1)

Note that DL1 ⊂ DL2 for any L1 ≥ L2. Thus (5.1) is called the level sets filtration of the density
function.

The persistent homology [Zomorodian and Carlsson, 2005, Edelsbrunner and Harer, 2008, 2010]
quantifies topological features at multiple scales by analyzing a filtration of topological spaces. The
persistent homology captures changes of homologies in filtrations simultaneously, see [Chung et al.,
2009, Phillips et al., 2013, Fasy et al., 2014b, Bobrowski et al., 2014, Bubenik, 2015].

Since the density function is unknown, the persistent homology of the density function needs to be
estimated. One approach, as in Fasy et al. [2014b], is to replace the level sets of the unknown density
function by level sets of the kernel density estimator (KDE) computed on a grid of points. Another
approach, as in Chazal et al. [2011b, 2013], Bobrowski et al. [2014], is to use level sets of the KDE
computed on Rips complexes which can be viewed as an approximation of the union of balls centered
at data points.
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The goal of this chapter is to demonstrate the advantage and validity of the persistent homology of
the KDE filtration on Rips complexes and show how to construct a bootstrap-based confidence set. The
rest of this chapter is organized as follows: In Section 5.1, we discuss how to approximate a persistent
homology of upper level set filtration of a general scalar function from noisy and finite number of
observations by using Rips complex filtrations. In Section 5.2, we focus on how to use the persistent
homology as a tool to extract the topological information of the data-generating distribution. After
introducing a novel target quantity which can be viewed as a simplified but still useful version of the
persistent homology of the upper level sets filtration of the density, we show consistency results for
both the persistent homology of the upper level sets filtration of the density and the new target quantity
we proposed. We also describe a novel methodology to construct an asymptotic confidence set based
on the bootstrap procedure. In Section 5.3, we illustrate how we can use the proposed methods to
do statistical inference on topological features of the underlying distribution by using toy examples.
We also conduct numerical experiments to demonstrate the computational efficiency of the proposed
method in Section 5.4. For the sake of readability, all proofs and technical details are postponed to
Appendix D.

5.1 Persistent homology of Rips complex filtration and Stability
In this section, we discuss how to approximate a persistent homology of upper level set filtration of a
scalar function from noisy and finite number of observations by using Rips complex filtrations. All the
proofs for this section are in Section D.3.

Formally, let f : X ⊂ Rm → (0,∞) be a scalar function of interest. The upper level set filtration
of f on X is defined by {DL}L>0 where

DL := {x ∈ X : f(x) ≥ L}, ∀L > 0. (5.2)

Let Xn = {X1, . . . , Xn} be an i.i.d. sample from a sampling distribution P on X. Let f̂ be a fixed
functional estimator of f . One natural way to approximate DL is to use an union of closed balls around
the sample points with higher function values. In detail, for any L ∈ R and r = (r1, . . . , rn) ∈ (0,∞)n,
the upper level set estimator is defined by

D̂L(r) :=
⋃

{Xi:f̂(Xi)≥L}

BX(Xi, ri), (5.3)

where
BX(x, r) := {y ∈ X : d(x, y) < r} , r > 0.

Let PHX
∗ (f) and PHX

∗ (f̂, r) be persistent homologies of filtrations {DL}L>0 in (5.2) and {D̂L}L>0

in (5.3), respectively. The following lemma shows how to bound the bottleneck distance between
PHX
∗ (f) and PHX

∗ (f̂, r) by controlling the estimation error (the difference between f and f̂ ), and the
geometrical approximation error (the difference between upper level set and the union of balls around
high function value samples).
Lemma 58. Suppose either f or f̂ is M -Lipschitz continuous. For any given r = (r1, . . . , rn) ∈
(0,∞)n, suppose the samples form an r-covering of X, that is,

X ⊂
⋃

i

BX(Xi, ri). (5.4)
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Figure 5.1: An example in which BX(X1, r)
⋃
BX(X2, r) is not homotopic equivalent to ČechX (Xn, r) where

X =
{
x ∈ R2 : ‖x‖2 = 1

}
, X1 = (−1, 0), X2 = (0, 1) and r >

√
2.

Then the bottleneck distance between PHX
∗ (f̂, r) and PHX

∗ (f) is upper bounded as

dB

(
PHX
∗ (f̂, r),PHX

∗ (f)
)
≤ ‖f̂ − f‖∞ +M‖r‖∞. (5.5)

The persistent homology PHX
∗ (f̂, r) is an oracle estimator, as it requires knowledge of X. However,

if the maximum radii of balls are smaller than the reach of X in (1.5), we can produce a computable
estimator based on the Čech complexes over sample points. Precisely, let assume X has positive reach
τ > 0. The positive reach assumption is crucial in many parts of our analysis and cannot be dispensed
of. In particular, one of the key implications is the fact that the homology of the union of balls (1.9)
built on a sample Xn from P can be recovered using the corresponding Čech complex ČechX (Xn, r)
in (1.8), provided the radii of the balls are all smaller than

√
2 times the reach.

Proposition 59. Let Xn = {X1, . . . , Xn} ⊂ X. Suppose X has a positive reach τ > 0 Then, for any
r = (r1, . . . , rn) ∈ (0,

√
2τ ]n, the union of balls

⋃n
i=1 BX(Xi, ri) is homotopic equivalent to the Čech

complex ČechX (Xn, r).
The previous result provides the theoretical underpinning for the methodology developed in this

chapter. Its proof is a direct consequence of the Lemma 6 (Nerve Theorem) and of Proposition 119 in
Appendix D.2, a simple geometric result that appears to be new and may be of independent interest.

The following example shows that the reach condition ‖r‖∞ ≤
√

2τ is tight in the sense that there
exists cases where Proposition 59 does not hold when ‖r‖∞ >

√
2τ .

Example 60. Let X be a unit Euclidean sphere. Let X1, X2 be an antipodal pair of points on X. For
a unit Euclidean sphere, the reach is equal to its radius 1. Therefore, if r = (r1, r2) ∈ (0,

√
2]2,

BX(X1, r1)
⋃
BX(X2, r2) is homotopic equivalent to ČechX (Xn, r) by Proposition 59. However, if

r1, r2 >
√

2, BX(X1, r1)
⋃

BX(X2, r2) ' X but ČechX (Xn, r) ' 0. Figure 5.1 illustrate the 2-
dimensional case.

Even if ČechX (Xn, r) is more easily computable than
⋃n
i=1 BX(Xi, ri), it still requires knowl-

edge of X to compute. Instead, we introduce a computable persistent homology estimator based on
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ČechRm (Xn, r), where the intersections of the balls in (1.8) are computed on Rm instead of the un-
known space X.
Definition 61. Let PHČ

∗ (p̂h, r) be the persistent homology of the filtrations of Čech complexes in (1.8)
as {

ČechRm
(
X f̂
n,L

)}
L>0

,

where
X f̂
n,L :=

{
Xi ∈ Xn : f̂(Xi) ≥ L

}
.

In general, ČechRm (Xn, r) is not homotopic equivalent to ČechX (Xn, r). However its persistent
homology is close to the one built up on ČechX (Xn, r) in terms of the bottleneck distance. Based on this
fact, bounds on the bottleneck distance between PHCechRm

∗ (p̂h, r) and the target persistent homology
PHX
∗ (f) are derived in the following theorem.

Theorem 62. Let τ be the reach of X. Suppose either f or f̂ is M -Lipschitz continuous. For any given
h > 0, r = (r1, . . . , rn) ∈ (0, τ/

√
2]n, suppose the samples form an r-covering of X, that is,

X ⊂
⋃

i

BX(Xi, ri). (5.6)

Then the bottleneck distance between PHČ
∗ (f̂, r) and PHX

∗ (f) is upper bounded as

dB

(
PHČ
∗ (f̂, r),PHX

∗ (f)
)
≤ ‖f̂ − f‖∞ + 2M‖r‖∞ (5.7)

PHČ
∗ (f̂, r) in Definition 61 is a computable estimator of PHX

∗ (f), since it does not require any
knowledge of X (other than an upper bound on the reach). However, it is computationally expensive, as
building the Čech complex rapidly becomes unfeasible when the sample size n (and the dimension d)
gets large. Instead, we consider an analogous estimator based on Rips complexes, which can be more
easily computed as it only needs as input the set of all pairwise Euclidean distances among the sample
points. This is the main estimator of this chapter.

Definition 63. Let PHR
∗

(
f̂, r
)

be the persistent homology of the filtrations of Rips complexes in (1.10)
as {

R
(
X f̂
n,L, r

)}
L>0

. (5.8)

The next result shows that, not surprisingly, the performance of PHR
∗

(
f̂, r
)

is at most worse than

the performance of the computationally prohibitive estimator PHČ
∗ (f̂, r) only by a constant factor.

Theorem 64. Let τ be the reach of X. Suppose either f or f̂ is M -Lipschitz continuous. For any given
h > 0, r = (r1, . . . , rn) ∈ (0, τ/

√
2]n, suppose the samples form an r-covering of X, that is,

X ⊂
⋃

i

BX(Xi, ri). (5.9)

Then the bottleneck distance between PHR
∗ (f̂, r) and PHX

∗ (f) is upper bounded as

dB

(
PHR
∗ (f̂, r),PHX

∗ (f)
)
≤ ‖f̂ − f‖∞ + 2M‖r‖∞. (5.10)

Remark 65. If ri = r ∀i ∈ [n] and X is a Euclidean space then Theorem 64 holds under the weaker
condition r ≤ τ instead of

√
2‖r‖∞ ≤ τ , and the terms in the bounds 2M‖r‖∞ can be replaced with√

2Mr.
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5.2 Consistency and Confidence sets for Persistent homology of
Density filtration

In this section, we discuss how to use the persistent homology as a tool to extract the topological
information of a probability distribution P . After defining the target persistent homology, we propose
two computable estimators based on a finite number of observations from P in the same way we did in
the previous section. With a high probability, both estimators are close to the target persistent homology
in terms of the bottleneck distance. Finally, we discuss how to construct bootstrap based asymptotic
confidence sets which can be used to identify significant topological features of the distribution P . All
the proofs for this section are in Section D.4.

5.2.1 Target Persistent Homology and Assumptions
Let X = {X1, . . . , Xn} be i.i.d. observations from a probability distribution P on Rm whose support
supp(P ) plays the role of the set X in the previous section.

We will impose the following assumptions on P :
Assumption 66. The probability measure P is such that:

1. supp(P ) is bounded and has positive reach τP > 0, and
2. there exist positive constants νmax, amin and ε0 such that, for all x ∈ supp(P ),

P (BRm(x, ε)) ≥ aminε
νmax , ∀ε ∈ (0, ε0).

The above assumptions on P are fairly standard. In particular, the last condition is also known
as the (a, b)-condition or the standard condition [Cuevas and Rodrı́guez-Casal, 2004, Cuevas, 2009,
Chazal et al., 2014a]. It is satisfied, for example, if supp(P ) is a smooth manifold of dimension νmax

and P has a density with respect to the Hausdorff measure on it bounded from below by amin.
In order to extract topological information of the distribution P , we rely on the kernel density esti-

mator (KDE), which smooths out the empirical measure by an appropriate kernel function K satisfying
the following, standard, assumptions.
Assumption 67. The kernel function K : Rm → R is a nonnegative function with the following
conditions:

1.
∫
K(x)dx = 1.

2.
∫
‖x‖K(x)dx <∞ and supx∈Rm K(x) <∞.

3. K is Lipschitz continuous with the constant MK > 0.
For a fixed value h > 0 of the bandwidth parameter, the corresponding kernel density estimator is

defined as

p̂h(x) :=
1

nhd

n∑

i=1

K

(
x−Xi

h

)
. (5.11)

Let ph : Rm → R be the pointwise average of the kernel density estimator, i.e. ph(x) := E[p̂h(x)],
for all x ∈ Rm. It is easy to see that ph is a density function (with respect to the Lebesgue measure).
Throughout this chapter, we assume ph is tame for any h > 0.

When the underlying distribution P admits a density p, the persistent homology PH∗(p) of the
upper level set filtration {x ∈ Rm : p(x) ≥ L}L>0 of p is a natural target quantity for understanding the
topology of P . However, as discussed in Fasy et al. [2014b], the persistent homology of the upper level
sets filtration of ph, with fixed h, would also serve a similar purpose while offering several advantages.
This is because:
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1. the density ph and the persitent homology of its upper level set flitration is always well-defined
even if the Lebesgue density p does not exist;

2. the function ph can be viewed as a topologically simplified version of p. The level sets of ph may
miss tiny topological features in p but can still capture significant ones.

3. The kernel density estimator p̂h is a point-wise unbiased estimator of ph and concentrates around
it exponentially fast in the sup-norm (again h is fixed) at a parametric rate: see ?? below. In
contrast, p̂h is a biased estimator of p, and the bias can only be removed by letting h → 0, in
which case p̂h converges to p at rates that depend on the dimension. Hence inference for ph is
more precise.

However, a potential complication arises when we target the persistent homology of the smoothed
density ph instead of the underlying density p (assuming it exists). Indeed, ph remain positive even
outside the support of P . As a result, the persistent homology of ph may exhibit topological properties
in regions that are of no interest. This issue can be avoided by considering only the persistent homology
of the upper level set filtration of ph restricted to supp(P ) rather than the larger set supp(ph).

Formally, for each L ≥ 0, let

DL := {x ∈ supp(P ) : ph(x) ≥ L} , (5.12)

denote the corresponding upper level set of ph intersected with supp(P ). Let PHsupp(P )
∗ (ph) be the

persistent homology of the corresponding level sets filtration {DL}L>0. The usual persistent homology
of the upper level sets filtration of ph will be denoted by PHRm

∗ (ph) or, more conveniently, PH∗(ph).
We first describe how the newly defined persistent homology PHsupp(P )

∗ (ph) relates to the persistent
homologies PH∗(ph) and PH∗(p).
Proposition 68. Let P be a probability measure on Rm and K be a kernel function satisfying Assump-
tion 66 and 67. Let p be the Lebesgue density of P , and assume p is Lipschitz continuous. For any
given h > 0, r = (r1, . . . , rn) ∈ (0,∞)n, the following hold :

(a) dB
(

PHsupp(P )
∗ (ph),PHRm

∗ (ph)
)
≤ supx/∈supp(P ) |ph(x)| ≤ CKMPh,

(b) dB
(

PHsupp(P )
∗ (ph),PH∗(p)

)
≤ supx∈supp(P ) |ph(x)− p(x)| ≤ CKMPh,

where CK =
∫
‖x‖K(x)dx and MP > 0 is the Lipschitz constant of p.

The following simple examples demonstrates that there exists a density p and a kernel K such that

dB

(
PHsupp(P )
∗ (ph),PH∗(p)

)
= 0 and dB

(
PHRm
∗ (ph),PH∗(p)

)
> 0.

Thus, in this particular instance, the persistence homology PHsupp(P )
∗ (ph) more accurately approximates

the persistent homology PH∗(p).
Example 69. Let P be a mixture of uniform distributions in R with the density function

p(x) =
1

4
1

(
|x| ∈ [

1

2
,
5

2
]

)
.

If we use the triangular kernel, K(x) = (1− |x|)1 (|x| ≤ 1), the pointwise average of the kernel den-
sity estimator, ph(x), become a combination of quadratic functions. Figure 5.2 illustrates the densities
p and ph for h = 1. In this case, the persistent homologies PH∗(p) and PHsupp(P )

∗ (ph) both consist
of two 0-th order homology classes that are born at 1

4
and die at 0. On the other hand, the PHRm

∗ (ph)
consists of two 0-th order homology classes that are born at 1

4
and die at 1

16
. Therefore,

dB

(
PHsupp(P )
∗ (ph),PH∗(p)

)
= 0 but dB

(
PHRm
∗ (ph),PH∗(p)

)
=

1

16
> 0
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p

ph

Figure 5.2: The density function of a mixture of uniform distributions, and the pointwise average of the kernel
density estimator with the triangular kernel (h = 1)

5.2.2 Consistency and Confidence sets for Persistent homology of Density filtra-
tion

In Theorem 64 in Section 5.1, it was shown that for any function f , the persistent homology of upper
level set filtration PHX

∗ (f) can be approximated by the persistent homology of Rips complexes built
upon finite number of observations PHR

∗ (f̂, r). As a special case for the smoothed density function
ph, we define an estimator using the KDE filtration on Rips complexes PHR

∗ (p̂h, r) for the persistent
homology of upper level set filtration of the smoothed density function PHsupp(P )

∗ (ph) as following :
Definition 70. The persistent homology of KDE filtrations on Rips complexes, PHR

∗ (p̂h, r) is defined
as the persistent homology of the filtration of Rips complexes in (1.10) as

{
R
(
X p̂h
n,L, r

)}
L>0

, (5.13)

where
X p̂h
n,L := {Xi ∈ Xn : p̂h(Xi) ≥ L} .

Recall that, under the proper conditions described in Theorem 64, the bottleneck distance between
the persistent homology of the density filtration PHsupp(P )

∗ (ph) and its estimator PHR
∗ (p̂h, r) is upper

bounded by ‖p̂h− ph‖∞+ 2M‖r‖∞ where M is the Lipschitz constant of either p̂h or ph. Since we use
MK-Lipschitz continuous kernel, both p̂h and ph are MK

hd+1 -Lipschitz continuous for any fixed h > 0.
If the underlying distribution P is more “smooth”, ph can have better Lipschitz constant depending
on P . For example, if P has MP -Lipschitz continuous Lebesgue density p, ph is also MP -Lipschitz
continuous regardless of the choice of the bandwidth h and the kernel functionK satisfying Assumption
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67. However, the assumption of Lipschitz continuous Lebesgue density could be too restrictive for
many TDA applications. Instead, we introduce a weaker smoothness condition on P which would be
more suitable for TDA purposes, and investigate the statistical performance of our estimator under both
conditions.
Assumption 71. The probability measure P satisfies the following: there exists νmin, amax > 0 so that
for all r > 0 and for all x ∈ Rm, P (BRm(x, r)) ≤ amaxr

νmin . Also, the support of the kernel function
K is bounded by a unit ball centered around 0, i.e., supp(K) ⊂ BRm(0, 1).
Assumption 72. The probability measure P has a density p : Rm → R with respect to the Lebesgue
measure that is MP -Lipschitz, for some MP > 0

If supp(P ) is a well-behaved sets, such as a smooth manifold of dimension νmin (possibly smaller
than d) and P has a bounded density with respect to the restriction of the Haudorff measure of di-
mension νmin on it, then Assumption 71 is satisfied, with amax depending on the maximal value of the
density.

The following proposition is a direct application of Theorem 64.
Proposition 73. Let P be a probability measure on Rm and K be a kernel function satisfying Assump-
tion 66 and 67. For any given h > 0, r = (r1, . . . , rn) ∈ (0,∞)n with

√
2‖r‖∞ ≤ τ , suppose the

samples form an r-covering of the support of P , that is,

X ⊂
⋃

i

BX(Xi, ri).

Then the bottleneck distance between the persistent homology of the density filtration PHsupp(P )
∗ (ph)

and its estimator PHR
∗ (p̂h, r) is upper bounded as, under Assumption 71,

dB

(
PHR
∗ (p̂h, r),PHsupp(P )

∗ (ph)
)
≤ ‖p̂h − ph‖∞ +

2amaxMK‖r‖∞
hd+1−νmin

, (5.14)

while, under Assumption 72,

dB

(
PHR
∗ (p̂h, r),PHsupp(P )

∗ (ph)
)
≤ ‖p̂h − ph‖∞ + 2MP‖r‖∞. (5.15)

Proposition 73 shows that the bottleneck distance between the persistent homology of the density
filtration PHsupp(P )

∗ (ph) and its estimator PHR
∗ (p̂h, r) can be upper bounded by the statistical estimation

error term, ‖p̂h − ph‖∞, and the geometrical error terms depending on smoothness assumptions on
the underlying distribution P . Based on it, the following theorem shows that the proposed estimator
PHR
∗ (p̂h, r) is consistent for the persistent homology of the smoothed density filtration PHsupp(P )

∗ (ph)
with properly chosen sequences of rn and hn.
Theorem 74. Suppose Assumption 66 and 67 holds. Let {rn = (rn,1, . . . , rn,n)}n∈N be a triangular
array of positive numbers such that

min
i
rn,i ≥ CP

(
log n

n

)1/νmax

,

with a constant CP depending only on amin. Let also assume
√

2‖rn‖∞ ≤ τ for all sufficiently large n.
Then, under Assumption 71, for a fixed h > 0, there exists a positive constant CK,P depends only on
‖K‖∞, ‖K‖2, νmin, νmax , amin, amax such that with probability at least 1 − δ, the bottleneck distance
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between the persistent homology of the density filtration PHsupp(P )
∗ (ph) and its estimator PHR

∗ (p̂h, rn)
is upper bounded as

dB

(
PHR
∗ (p̂h, rn),PHsupp(P )

∗ (ph)
)
≤ CK,P

(√
log(1/δ)

n
+ ‖rn‖∞

)
, (5.16)

for ∀n with
√

2‖rn‖∞ ≤ τ .
Under Assumption 72, suppose hn ≤ h0 for some fixed h0 ∈ (0, 1) for sufficiently large n and

h−dn log(1/hn) ≤ Ch0n for some constant Ch0 . Then there exists a positive constant CK,P,h0 depends
only on ‖K‖∞, ‖K‖2, d , amin, ‖p‖∞, h0 such that with probability at least 1−δ, the bottleneck distance
between the persistent homology of the density filtration PHsupp(P )

∗ (phn) and its estimator PHR
∗ (p̂hn , rn)

is upper bounded as

dB

(
PHR
∗ (p̂hn , rn),PHsupp(P )

∗ (phn)
)
≤ CK,P,h0

(√
log(1/δ)

nhdn
+

√
log(1/hn)

nhdn
+ ‖rn‖∞

)
. (5.17)

for ∀n with
√

2‖rn‖∞ ≤ τ .
Furthermore, combining Proposition 68 (b) and Theorem 74 shows that the proposed estimator

PHR
∗ (p̂h, r) is consistent for the persistent homology of the true density filtration PH∗(p) as well with

properly chosen sequences of rn and hn, as in Corollary 75.
Corollary 75. Suppose Assumption 66, 67 and 72 holds. Let {rn = (rn,1, . . . , rn,n)}n∈N be a triangular
array of positive numbers such that

min
i
rn,i ≥ CP

(
log n

n

)1/νmax

with a constant CP depending only on amin. Then, if ‖rn‖∞ = o(1) and log(1/hn)
nhdn

= O(1), then
the bottleneck distance between the persistent homology of the true density filtration PH∗(p) and the
proposed estimator PHR

∗ (p̂h, rn) is upper bounded as

dB
(
PHR
∗ (p̂hn , rn),PH∗(p)

)
= OP

(√
log(1/hn)

nhdn
+ ‖rn‖∞ + hn

)
. (5.18)

Remark 76. By using the same argument, we can show the consistency of the Čech complex based
estimator PHCechRm

∗ (p̂h, r) under the same assumptions.
Although Theorem 74 and Corollary 75 show the estimator PHR

∗ (p̂h, r) and target quantities PHsupp(P )
∗ (ph)

and PH∗(p) are close to each other with high probability, the upper bounds for the bottleneck distances
depend on unknown quantities of the underlying probability measure P . In the remaining part of this
section, we build a computable confidence set for the persistent homology PHsupp(P )

∗ (ph) of the level
sets filtration of the smoothed density ph on the support supp(P ).

A confidence set of the persistent homology PHsupp(P )
∗ (ph) is a random set of persistent homologies

that contains PHsupp(P )
∗ (ph) with some probability. Specifically, for given α ∈ (0, 1), a valid 1−α level

asymptotic confidence set of PHsupp(P )
∗ (ph) is a random set Ĉα satisfying

lim inf
n→∞

P(PHsupp(P )
∗ (ph) ∈ Ĉα) ≥ 1− α.
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We construct the confidence set Ĉα by considering all persistent homologies within cn bottleneck dis-
tance from the computable estimator PHCechRm

∗ (p̂h, r) or PHR
∗ (p̂h, r) for some cn > 0. Let ˆPH∗(ph) be

one of the estimators. Then, the confidence set has the following form,

Ĉα =
{
P : dB

(
P , ˆPH∗(ph)

)
≤ cn

}
,

where both ˆPH∗(ph) and radius cn are functions of X1, . . . , Xn. Note that PHsupp(P )
∗ (ph) ∈ Ĉα holds if

and only if
dB

(
ˆPH∗(ph),PHsupp(P )

∗ (ph)
)
≤ cn.

Therefore Ĉα is a valid 1− α asymptotic confidence set if and only if

lim inf
n→∞

P
(
dB

(
ˆPH∗(ph),PHsupp(P )

∗ (ph)
)
≤ cn

)
≥ 1− α.

Proposition 73 cannot be directly used to build a confidence set because the covering condition
is not checkable and bound terms are not computable without the knowledge of the data-generating
distribution P , which is typically unavailable. Instead, we can split the filtration in two parts : (0, ε] ∪
(ε,∞) for some ε > 0 satisfying

{x : p̂h(x) ≥ ε} ⊂
⋃

i

BRm(Xi, ri). (5.19)

Roughly speaking, when filtration values are restricted to (0, ε], the bottleneck distance between PHsupp(P )
∗ (p̂h, r)

and PHsupp(P )
∗ (ph) is upper bounded by ε. For filtration values in (ε,∞), due to the covering condition

(5.19), the bottleneck distance can be bounded by the maximal possible difference between the value
of p̂h at a sample point Xi and its value at any points within an ri-neighbor of Xi, for ∀i = 1 . . . , n,
which is given by

max
i

sup
‖x−Xi‖≤ri

|p̂h(x)− p̂h(Xi)|.

The following result formally shows how to combine these quantities to bound the distance between
PHsupp(P )
∗ (p̂h, r) and PHsupp(P )

∗ (ph).
Lemma 77. Let P be a probability measure on Rm and K be a kernel function satisfying Assumption
66 and 67. For any given h > 0, r = (r1, . . . , rn) ∈ (0,∞)n, set

Er =

{
ε ∈ R+ : {x : p̂h(x) ≥ ε} ⊂

⋃

i

BRm(Xi, ri)

}
. (5.20)

Then the bottleneck distance between the persistent homology of the density filtration PHsupp(P )
∗ (ph)

and its estimator PHR
∗ (p̂h, r) is upper bounded as,

dB

(
PHsupp(P )
∗ (p̂h, r),PHsupp(P )

∗ (ph)
)
≤ ‖p̂h − ph‖∞ + ĉr, (5.21)

where
ĉr := inf{ε ∈ Er} ∨max

i
sup

x∈BRm (Xi,ri)

|p̂h(Xi)− p̂h(x)|. (5.22)
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It is important to realize that, since Er in (5.20) is defined based on sample points and the values
of the KDE only, the quantity ĉr in (5.22) is computable without any knowledge about the underlying
distribution P . From a statistical standpoint, this is key, as it makes it possible to build confidence sets
for PHsupp(P )

∗ (ph).
As we did in Section 5.1, Rips complexes can be used to build computable estimators PHR

∗ (p̂h, r)
instead of PHsupp(P )

∗ (p̂h, r), and Lemma 77 can be extended to PHR
∗ (p̂h, r) by replacing ĉr with ĉr∨ ĉ2r.

Since ĉr and ĉ2r are numerically computable, once we get a confidence set for ‖p̂h − ph‖∞, we can
easily convert it into the confidence set for our target quantity, PHsupp(P )

∗ (ph). In this chapter, we use
the standard bootstrap based approach. We refer Chazal et al. [2014d] for the detailed discussion about
the validity of the bootstrap procedure and its TDA applications.

First, we generate B bootstrap samples {X̃1
1 , . . . , X̃

1
n}, . . . , {X̃B

1 , . . . , X̃
B
n }, by sampling with re-

placement from the original sample. On each bootstrap sample, let Ti =
√
nhd‖p̂h − p̂ih‖∞, where

p̂ih is the kernel density estimator computed on ith bootstrap samples {X̃ i
1, . . . , X̃

i
n}. Let the bootstrap

quantile ẑα be

ẑα = inf

{
z :

1

B

B∑

i=1

I(Ti > z) ≤ α

}
. (5.23)

Then, for large enough B, we have the following inequality which gives a 1− α asymptotic confi-
dence set for ‖ph − p̂h‖∞ with fixed h > 0.

P
(√

nhd‖p̂h − ph‖∞) ≤ ẑα

)
= 1− α +O

(
1√
n

)
. (5.24)

Based on the (5.24), we get the following asymptotic confidence sets for the persistent homology
PHsupp(P )
∗ (ph),

ĈR
α :=

{
P : dB

(
P ,PHR

∗ (p̂h, r)
)
≤ ẑα√

nhd
+ ĉr ∨ ĉ2r

}
. (5.25)

ĈR
α is a valid asymptotic 1− α confidence set for PHsupp(P )

∗ (ph) as in the following theorem:
Theorem 78. Suppose Assumption 66 and 67 holds. Let {rn = (rn,1, . . . , rn,n)}n∈N be a triangular
array of positive numbers such that

√
2‖rn‖∞ ≤ τ for all sufficiently large n. Then, the confidence set

ĈR
α in (5.25) is asymptotically valid and satisfies

P
(
dB

(
PHR
∗ (p̂h, rn),PHsupp(P )

∗ (ph)
)
≤ ẑα√

nhd
+ ĉrn ∨ ĉ2rn

)
≥ 1− α +O

(
1√
n

)
.

Remark 79. If rn,1 = · · · = rn,n and X is a Euclidean space, we can replace ĉ2rn with ĉ√2rn
.

5.3 Examples
To illustrate how one can use the methods in the previous section to do statistical inference on topo-
logical features of data generating distributions, we calculate persistence diagrams of our proposed
estimator PHR

∗ (p̂h, r) in Definition 70 and their confidence sets in (5.25) on toy examples. We make
2 synthetic data sets with circular shapes which are described in the left side of Figure 5.3 and 5.4.
The right side shows persistence diagrams of PHR

∗ (p̂h, r). Each black dot indicates the birth and death
of each 0-th homology class corresponding to each connected component. Similarly, each red triangle
represents the birth and death of each 1-st homology class related to each one-dimensional hole. For all
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diagrams, the shaded banded regions correspond to 90% confidence sets in the sense that any homol-
ogy class contained in the bands cannot be distinguished from the diagonal lines within the confidence
sets. In other words, homology classes outside of band illustrate significant topological features of the
underlying distribution. We refer to Fasy et al. [2014b] for the detailed interpretation. In Figure 5.3c
and 5.4c, we can check there are a black dot and a red triangle outside of band which coincide to the
fact that most of the data are distributed around a circle with a hole.

Persistence diagrams of PHR
∗ (p̂h, r) depend on choices of parameters h and r = (r1, . . . , rn). In all

examples, ri = r,∀i = 1, . . . , n are chosen to minimize ĉr ∨ ĉ√2r for given h. To choose appropriate h,
we can select the parameter that maximizes the total number of significant homology classes which is
a generally adopted strategy in TDA [Chazal et al., 2014a].
Remark 80. For our methods, we can also use another heuristic but intuitive parameter selection method
based on the diagram of the Rips complex filtration

{R (X , r)}r>0 . (5.26)

Recall that PHR
∗ (p̂h, r) in Definition 70 is the persistent homology of the filtration

{
R
(
X p̂h
n,L, r

)}
L>0

.

Since it is based on Rips complex with radius r, PHR
∗ (p̂h, r) can only capture the homology classes

whose birth time is smaller than r and death time is greater than r in the usual Rips persistence dia-
gram of the filtration in (5.26). Therefore, once the Rips persistence diagram in (5.26) reveals some
seemingly significant homology classes whose lifetimes are longer than the others, we can choose ap-
propriate h and r to make sure the base line Rips complex R (X , r) contain the seemingly significant
homology groups.
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Figure 5.3: One circle with additive noise example. (a) 700 data points uniformly distributed over a circle of
radius 1 with additive Gaussian noise N (0, ?). (b) The usual Rips persistence diagram of the filtration in (5.26).
(c) Persistence diagram of KDE filtration (h = 0.6) on Rips complex as in Definition 70. The shaded area
represents the confidence set as in (5.25).

5.4 Computation time comparison
In worst-case, the time complexity of persistent homology computation is known to be the order of
O(N3) where N is the number of simplices in the underlying simplicial complex. Therefore, when the
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Figure 5.4: One circle with background noise example. (a) 700 data points uniformly distributed over a circle
of radius 1, and 70 outliers are added to the data set (n = 770). (b) the usual Rips persistence diagram of the
filtration in (5.26). (c) Persistence diagram of KDE filtration (h = 0.6) on Rips complex as in Definition 70. The
shaded area represents the confidence set as in (5.25).

ambient space has large dimension or topological features are heterogeneously distributed, in which
case we need large size of grid points to approximate the ambient space precisely, our proposed esti-
mator PHR

∗ (p̂h, r) in Definition 70 could be computationally efficient to infer the topological features
of the data generating distributions.

In this section, we demonstrate the computational advantage of our method in 2 series of synthetic
data sets in which we expect the Rips complex based approach is computationally more efficient than
the grid-based ones.

5.4.1 Large dimensional ambient space
We generate a set of 600 sample points uniformly distributed on a 2-dimensional circle of radius 1
(Figure 5.5a). Then, by using a fixed orthonormal matrix, we embed the 2-dimensional circular sample
points in higher dimensional spaces (d = 3, 4, 5). Figure 5.5b shows the computation time of grid and
Rips complex based persistent homology estimators in log scale. For both methods, a fixed bandwidth
(h = 0.2) is used for all cases. The dashed lines in Figure 5.5a represent the grid used for the 2-
dimensional sample points. Grids with the same resolution are used for higher dimensional cases. The
parameter r in the Rips complex based estimator PHR

∗ (p̂h, r) is chosen to minimize ĉr ∨ ĉ√2r in the
2-dimensional case, and the same r is used for higher dimensional cases.

The time complexity of grid-based estimator increases exponentially as the dimension of the am-
bient space increases because the number of grid points required to approximate the space increase
exponentially. In contrast, the Rips-complex based estimator PHR

∗ (p̂h, r) in Definition 70 has constant
time complexity because the computational time is dominated by the number of sample points which
is constant in this experiment. A similar result is obtained for two circles case described in Figure 5.5c
and 5.5d.

5.4.2 Heterogeneously distributed topological features
We generate two sets of sample points uniformly distributed on two circles in R2 (Figure 5.6a). Then
we increase the distance between two circles from 2

√
2 to 32

√
2. Figure 5.6d shows the computation
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Figure 5.5: Time complexity comparison between grid and Rips complex based persistent homology estimator
when the dimension of ambient space increases.
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time of grid and Rips complex based persistent homology estimators in log scale. For both methods, a
fixed bandwidth (h = 0.2) is used for all cases. Grids with the same resolution are used for all cases.
The parameter r in PHR

∗ (p̂h, r) is chosen to minimize ĉr ∨ ĉ√2r in the 2-dimensional case, and the same
r is used for all the other cases.

The time complexity of grid-based estimator increase as the distance between centers of two circles
increase because a larger number of grid points are required to cover the larger ambient space. In
contrast, the Rips-complex based estimator PHR

∗ (p̂h, r) in Definition 70 has constant time complexity
because the computational time is dominated by the number of sample points which is constant in this
experiment.
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56



Chapter 6

R Package TDA: Statistical Tools for
Topological Data Analysis

This chapter presents the work in Fasy et al. [2014a].
This chapter is devoted to the presentation of the R package TDA, which provides a user-friendly

interface for the efficient algorithms of the C++ libraries GUDHI [Maria, 2014], Dionysus [Morozov,
2007], and PHAT [Bauer et al., 2012].

In Section 6.1, we describe how to compute some widely studied functions that, starting from a
point cloud, provide some topological information about the underlying space: the distance function
(distFct), the distance to a measure function (dtm), the k Nearest Neighbor density estimator (knnDE),
the kernel density estimator (kde), and the kernel distance (kernelDist). Section 6.2 is devoted to
the computation of persistence diagrams: the function gridDiag can be used to compute persistent
homology of sublevel sets (or superlevel sets) of functions evaluated over a grid of points; the function
ripsDiag returns the persistence diagram of the Rips filtration built on top of a point cloud.

One of the key challenges in persistent homology is to find a way to isolate the points of the persis-
tence diagram representing the topological noise. Statistical methods for persistent homology provide
an alternative to its exact computation. Knowing with high confidence that an approximated persis-
tence diagrams is close to the true–computationally infeasible–diagram is often enough for practical
purposes. Fasy et al. [2014b], Chazal et al. [2014c], and Chazal et al. [2014a] propose several statis-
tical methods to construct confidence sets for persistence diagrams and other summary functions that
allow us to separate topological signal from topological noise. The methods are implemented in the
TDA package and described in Section 6.2.

Finally, the TDA package provides the implementation of an algorithm for density clustering. This
method allows us to identify and visualize the spatial organization of the data, without specific knowl-
edge about the data generating mechanism and in particular without any a priori information about the
number of clusters. In Section 6.3, we describe the function clusterTree, that, given a density estimator,
encodes the hierarchy of the connected components of its superlevel sets into a dendrogram, the cluster
tree [Kpotufe and von Luxburg, 2011, Kent, 2013].

6.1 Distance Functions and Density Estimators
As a first toy example to using the TDA package, we show how to compute distance functions and
density estimators over a grid of points. The setting is the typical one in TDA: a set of points X =
{x1, . . . , xn} ⊂ Rd has been sampled from some distribution P and we are interested in recovering
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the topological features of the underlying space by studying some functions of the data. The following
code generates a sample of 400 points from the unit circle and constructs a grid of points over which
we will evaluate the functions.

library("TDA")
X <- circleUnif(400)

Xlim <- c(-1.6, 1.6); Ylim <- c(-1.7, 1.7); by <- 0.065

Xseq <- seq(Xlim[1], Xlim[2], by = by)
Yseq <- seq(Ylim[1], Ylim[2], by = by)
Grid <- expand.grid(Xseq, Yseq)

The TDA package provides implementations of the following functions:
• The distance function is defined for each y ∈ Rd as ∆(y) = infx∈X ‖x − y‖2 and is computed

for each point of the Grid with the following code:

distance <- distFct(X = X, Grid = Grid)

• Given a probability measure P , the distance to measure (DTM) is defined for each y ∈ Rd as

dm0(y) =

(
1

m0

∫ m0

0

(G−1
y (u))rdu

)1/r

,

where Gy(t) = P (‖X − y‖ ≤ t), and m0 ∈ (0, 1) and r ∈ [1,∞) are tuning parameters. As m0
increases, DTM function becomes smoother, so m0 can be understood as a smoothing parameter.
r affects less but also changes DTM function as well. The default value of r is 2. The DTM
can be seen as a smoothed version of the distance function. See [Chazal et al., 2011a, Definition
3.2] and [Chazal et al., 2015, Equation (2)] for a formal definition of the ”distance to measure”
function.
Given X = {x1, . . . , xn}, the empirical version of the DTM is

d̂m0(y) =


1

k

∑

xi∈Nk(y)

‖xi − y‖r



1/r

,

where k = dm0 ∗ ne and Nk(y) is the set containing the k nearest neighbors of y among
x1, . . . , xn.
For more details, see [Chazal et al., 2011a] and [Chazal et al., 2015].
The DTM is computed for each point of the Grid with the following code:

m0 <- 0.1
DTM <- dtm(X = X, Grid = Grid, m0 = m0)

• The k Nearest Neighbor density estimator, for each y ∈ Rd, is defined as

δ̂k(y) =
k

n vd rdk(y)
,

where vn is the volume of the Euclidean d dimensional unit ball and rdk(x) is the Euclidean
distance form point x to its kth closest neighbor among the points of X . It is computed for each
point of the Grid with the following code:
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k <- 60
kNN <- knnDE(X = X, Grid = Grid, k = k)

• The Gaussian Kernel Density Estimator (KDE), for each y ∈ Rd, is defined as

p̂h(y) =
1

n(
√

2πh)d

n∑

i=1

exp

(−‖y − xi‖2
2

2h2

)
.

where h is a smoothing parameter. It is computed for each point of the Grid with the following
code:

h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)

• The Kernel distance estimator, for each y ∈ Rd, is defined as

κ̂h(y) =

√√√√ 1

n2

n∑

i=1

n∑

j=1

Kh(xi, xj) +Kh(y, y)− 2
1

n

n∑

i=1

Kh(y, xi),

where Kh(x, y) = exp
(
−‖x−y‖22

2h2

)
is the Gaussian Kernel with smoothing parameter h. The

Kernel distance is computed for each point of the Grid with the following code:

h <- 0.3
Kdist <- kernelDist(X = X, Grid = Grid, h = h)

For this 2 dimensional example, we can visualize the functions using persp form the graphics package.
For example the following code produces the KDE plot in Figure 6.1:

persp(Xseq, Yseq,
matrix(KDE, ncol = length(Yseq), nrow = length(Xseq)), xlab = "",
ylab = "", zlab = "", theta = -20, phi = 35, ltheta = 50,
col = 2, border = NA, main = "KDE", d = 0.5, scale = FALSE,
expand = 3, shade = 0.9)
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Figure 6.1: distance functions and density estimators evaluated over a grid of points.

6.1.1 Bootstrap Confidence Bands
We can construct a (1 − α) confidence band for a function using the bootstrap algorithm, which we
briefly describe using the kernel density estimator:

1. Given a sample X = {x1, . . . , xn}, compute the kernel density estimator p̂h;

2. Draw X∗ = {x∗1, . . . , x∗n} from X = {x1, . . . , xn} (with replacement), and compute θ∗ =√
n‖p̂∗h(x)− p̂h(x)‖∞, where p̂∗h is the density estimator computed using X∗;

3. Repeat the previous step B times to obtain θ∗1, . . . , θ
∗
B;

4. Compute qα = inf
{
q : 1

B

∑B
j=1 I(θ∗j ≥ q) ≤ α

}
;

5. The (1− α) confidence band for E[p̂h] is
[
p̂h − qα√

n
, p̂h + qα√

n

]
.

Fasy et al. [2014b] and Chazal et al. [2014a] prove the validity of the bootstrap algorithm for kernel
density estimators, distance to measure, and kernel distance, and use it in the framework of persistent
homology. The bootstrap algorithm is implemented in the function bootstrapBand, which provides the
option of parallelizing the algorithm (parallel = TRUE) using the package parallel. The following code
computes a 90% confidence band for E[p̂h], showed in Figure 6.2.
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band <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 100,
parallel = FALSE, alpha = 0.1, h = h)

Figure 6.2: the 90% confidence band for E[p̂h] has the form [`, u] = [p̂h − qα/
√
n , p̂h + qα/

√
n]. The

plot on the right shows a section of the functions: the red surface is the KDE p̂h; the pink surfaces are
` and u.
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6.2 Persistent Homology
We provide an informal description of the implemented methods of persistent homology. We assume
the reader is familiar with the basic concepts and, for a rigorous exposition, we refer to the textbook
Edelsbrunner and Harer [2010].

6.2.1 Persistent Homology Over a Grid
In this section, we describe how to use the gridDiag function to compute the persistent homology of
sublevel (and superlevel) sets of the functions described in Section 6.1. The function gridDiag evaluates
a given real valued function over a triangulated grid, constructs a filtration of simplices using the values
of the function, and computes the persistent homology of the filtration. From version 1.2, gridDiag
works in arbitrary dimension. The core of the function is written in C++ and the user can choose to
compute persistence diagrams using either the C++ library GUDHI, Dionysus, or PHAT.

The following code computes the persistent homology of the superlevel sets
(sublevel = FALSE) of the kernel density estimator (FUN = kde, h = 0.3) using the point cloud stored in
the matrix X from the previous example. The same code would work for the other functions defined in
Section 6.1 (it is sufficient to replace kde and its smoothing parameter h with another function and the
corresponding parameter). The function gridDiag returns an object of the class ”diagram”. The other
inputs are the features of the grid over which the kde is evaluated (lim and by), the smoothing parameter
h, and a logical variable that indicates whether a progress bar should be printed (printProgress).

DiagGrid <- gridDiag(
X = X, FUN = kde, h = 0.3, lim = cbind(Xlim, Ylim), by = by,
sublevel = FALSE, library = "Dionysus", location = TRUE,
printProgress = FALSE)

We plot the data and the diagram, using the function plot, implemented as a standard S3 method for
objects of the class ”diagram”. The following command produces the third plot in Figure 6.3.

plot(DiagGrid[["diagram"]], band = 2 * band[["width"]],
main = "KDE Diagram")

The option (band = 2 * band[[”width”]]) produces a pink confidence band for the persistence di-
agram, using the confidence band constructed for the corresponding kernel density estimator in the
previous section. The features above the band can be interpreted as representing significant homolog-
ical features, while points in the band are not significantly different from noise. The validity of the
bootstrap confidence band for persistence diagrams of KDE, DTM, and Kernel Distance derive from
the Stability Theorem [Chazal et al., 2012] and is discussed in detail in Fasy et al. [2014b] and Chazal
et al. [2014a].

The function plot for the class ”diagram” provide the options of rotating the diagram (rotated =
TRUE), drawing the barcode in place of the diagram (barcode = TRUE), as well as other standard
graphical options. See Figure 6.4.

6.2.2 Rips Diagrams
The Vietoris-Rips complex R(X, ε) consists of simplices with vertices in
X = {x1, . . . , xn} ⊂ Rd and diameter at most ε. In other words, a simplex σ is included in the
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Figure 6.3: The plot on the right shows the persistence diagram of the superlevel sets of the KDE.
Black points represent connected components and red triangles represent loops. The features are born
at high levels of the density and die at lower levels. The pink 90% confidence band separates significant
features from noise.

complex if each pair of vertices in σ is at most ε apart. The sequence of Rips complexes obtained by
gradually increasing the radius ε creates a filtration.

The ripsDiag function computes the persistence diagram of the Rips filtration built on top of a point
cloud. The user can choose to compute the Rips filtration using either the C++ library GUDHI or
Dionysus. Then for computing the persistence diagram from the Rips filtration, the user can use either
the C++ library GUDHI, Dionysus, or PHAT.
The following code generates 60 points from two circles:

Circle1 <- circleUnif(60)
Circle2 <- circleUnif(60, r = 2) + 3
Circles <- rbind(Circle1, Circle2)

We specify the limit of the Rips filtration and the max dimension of the homological features we are
interested in (0 for components, 1 for loops, 2 for voids, etc.):
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par(mfrow = c(1, 2), mai = c(0.8, 0.8, 0.3, 0.1))
plot(DiagGrid[["diagram"]], rotated = TRUE, band = band[["width"]],

main = "Rotated Diagram")
plot(DiagGrid[["diagram"]], barcode = TRUE, main = "Barcode")

Rotated Diagram
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Figure 6.4: Rotated Persistence Diagram and Barcode

maxscale <- 5 # limit of the filtration
maxdimension <- 1 # components and loops

and we generate the persistence diagram:

DiagRips <- ripsDiag(X = Circles, maxdimension, maxscale,
library = c("GUDHI", "Dionysus"), location = TRUE,
printProgress = FALSE)

Alternatively, using the option (dist = ”arbitrary”) in ripsDiag(), the input X can be an n×n matrix
of distances. This option is useful when the user wants to consider a Rips filtration constructed using
an arbitrary distance and is currently only available for the option (library = ”Dionysus”).

Finally we plot the data and the diagram, as in Figure 6.5.:
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Figure 6.5: Rips persistence diagram. Black points represent connected components and red triangles
represent loops.

6.2.3 Alpha Complex Persistence Diagram
For a finite set of points X ⊂ Rd, the Alpha complex Alpha(X, s) is a simplicial subcomplex of the
Delaunay complex of X consisting of simplices of circumradius less than or equal to

√
s. For each

u ∈ X , let Vu be its Voronoi cell, i.e. Vu = {x ∈ Rd : d(x, u) ≤ d(x, v) for all v ∈ X}, and Bu(r)
be the closed ball with center u and radius r. Let Ru(r) consists of be the intersection of earh ball of
radius r with the voronoi cell of u, i.e. Ru(r) = Bu(r) ∩ Vu. Then Alpha(X, s) is defined as

Alpha(X, r) =

{
σ ⊂ X :

⋂

u∈σ

Ru(
√
s) 6= ∅

}
.

See [Edelsbrunner and Harer, 2010, Section 3.4] and [Rouvreau, 2015]. The sequence of Alpha com-
plexes obtained by gradually increasing the parameter s creates an Alpha complex filtration.

The alphaComplexDiag function computes the Alpha complex filtration built on top of a point
cloud, using the C++ library GUDHI. Then for computing the persistence diagram from the Alpha
complex filtration, the user can use either the C++ library GUDHI, Dionysus, or PHAT.

We first generate 30 points from a circle:

X <- circleUnif(n = 30)

and the following code compute the persistence diagram of the alpha complex filtration using the
point cloud X, with printing its progress (printProgress = FALSE). The function alphaComplexDiag
returns an object of the class ”diagram”.
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# persistence diagram of alpha complex
DiagAlphaCmplx <- alphaComplexDiag(

X = X, library = c("GUDHI", "Dionysus"), location = TRUE,
printProgress = TRUE)

## # Generated complex of size: 115
##
## 0% 10 20 30 40 50 60 70 80 90 100%
## |----|----|----|----|----|----|----|----|----|----|
## ***************************************************
## # Persistence timer: Elapsed time [ 0.000000 ] seconds

And we plot the diagram in Figure 6.6.

6.2.4 Persistence Diagram of Alpha Shape
The Alpha shape complex S(X,α) is the polytope with its boundary consisting of α-exposed simplices,
where a simplex σ is α-exposed if there is an open ball b of radius α such that b∩X = ∅ and ∂b∩X = σ.
Suppose Rd is filled with ice cream, then consider scooping out the ice cream with sphere-shaped spoon
of radius α without touching the points X . S(X,α) is the remaining polytope with straightening round
surfaces. See [Fischer, 2005] and [Edelsbrunner and Mücke, 1994]. The sequence of Alpha shape
complexes obtained by gradually increasing the parameter α creates an Alpha shape complex filtration.

The alphaShapeDiag function computes the persistence diagram of the Alpha shape filtration built
on top of a point cloud in 3 dimension, using the C++ library GUDHI. Then for computing the per-
sistence diagram from the Alpha shape filtration, the user can use either the C++ library GUDHI,
Dionysus, or PHAT. Currently the point data cloud should lie in 3 dimension.

We first generate 30 points from a cylinder:

n <- 30
X <- cbind(circleUnif(n = n), runif(n = n, min = -0.1, max = 0.1))

and the following code compute the persistence diagram of the alpha shape filtration using the point
cloud X, with printing its progress (printProgress = TRUE). The function alphaShapeDiag returns an
object of the class ”diagram”.

DiagAlphaShape <- alphaShapeDiag(
X = X, maxdimension = 1, library = c("GUDHI", "Dionysus"),
location = TRUE, printProgress = TRUE)

## # Generated complex of size: 543
##
## 0% 10 20 30 40 50 60 70 80 90 100%
## |----|----|----|----|----|----|----|----|----|----|
## ***************************************************
## # Persistence timer: Elapsed time [ 0.002000 ] seconds

And we plot the diagram and first two dimension of data in Figure 6.7.
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# plot
par(mfrow = c(1, 2))
plot(DiagAlphaCmplx[["diagram"]],

main = "Alpha complex persistence diagram")
one <- which(DiagAlphaCmplx[["diagram"]][, 1] == 1)
one <- one[which.max(DiagAlphaCmplx[["diagram"]][one, 3] -

DiagAlphaCmplx[["diagram"]][one, 2])]
plot(X, col = 1, main = "Representative loop")
for (i in seq(along = one)) {

for (j in
seq_len(dim(DiagAlphaCmplx[["cycleLocation"]][[one[i]]])[1])) {

lines(DiagAlphaCmplx[["cycleLocation"]][[one[i]]][j, , ],
pch = 19, cex = 1, col = i + 1)

}
}

Alpha complex persistence diagram
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Figure 6.6: Persistence diagram of Alpha complex. Black points represent connected components and
red triangles represent loops.

6.2.5 Persistence Diagrams from Filtration
Rather than computing persistence diagrams from built-in function, it is also possible to compute per-
sistence diagrams from a user-defined filtration. A filtration consists of simplicial complex and the
filtration values on each simplex. The functions ripsDiag, alphaComplexDiag, alphaShapeDiag have
their counterparts for computing corresponding filtrations instead of persistence diagrams: namely,
ripsFiltration corresponds to the Rips filtration built on top of a point cloud, alphaComplexFiltration to
the alpha complex filtration, and alphaShapeFiltration to the alpha shape filtration.
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par(mfrow = c(1, 2))
plot(DiagAlphaShape[["diagram"]],

main = "Alpha shape persistence diagram")
plot(X[, 1:2], col = 2,

main = "Representative loop of alpha shape filtration")
one <- which(DiagAlphaShape[["diagram"]][, 1] == 1)
one <- one[which.max(DiagAlphaShape[["diagram"]][one, 3] -

DiagAlphaShape[["diagram"]][one, 2])]
for (i in seq(along = one)) {

for (j in
seq_len(dim(DiagAlphaShape[["cycleLocation"]][[one[i]]])[1])) {

lines(
DiagAlphaShape[["cycleLocation"]][[one[i]]][j, , 1:2],
pch = 19, cex = 1, col = i)

}
}

Alpha shape persistence diagram
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Figure 6.7: Persistence diagram of Alpha shape. Black points represent connected components and red
triangles represent loops.

We first generate 100 points from a circle:

X <- circleUnif(n = 100)

Then, after specifying the limit of the Rips filtration and the max dimension of the homological features,
the following code compute the Rips filtration using the point cloud X.
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maxscale <- 0.4 # limit of the filtration
maxdimension <- 1 # components and loops
FltRips <- ripsFiltration(X = X, maxdimension = maxdimension,

maxscale = maxscale, dist = "euclidean", library = "GUDHI",
printProgress = TRUE)

## # Generated complex of size: 2730

One way of defining a user-defined filtration is to build a filtration from a simplicial complex and
function values on the vertices. The function funFiltration takes function values (FUNvalues) and
simplicial complex (cmplx) as input, and build a filtration, where a filtration value on a simplex is
defined as the maximum of function values on the vertices of the simplex.
In the following example, the function funFiltration construct a filtration from a Rips complex and the
DTM function values on data points.

m0 <- 0.1
dtmValues <- dtm(X = X, Grid = X, m0 = m0)
FltFun <- funFiltration(

FUNvalues = dtmValues, cmplx = FltRips[["cmplx"]])

Once the filtration is computed, the function filtrationDiag computes the persistence diagram from the
filtration. The user can choose to compute the persistence diagram using either the C++ library GUDHI
or Dionysus.

DiagFltFun <- filtrationDiag(
filtration = FltFun, maxdimension = maxdimension,
library = "Dionysus", location = TRUE, printProgress = TRUE)

##
## 0% 10 20 30 40 50 60 70 80 90 100%
## |----|----|----|----|----|----|----|----|----|----|
## ***************************************************
## # Persistence timer: Elapsed time [ 0.007000 ] seconds

Then we plot the data and the diagram in Figure 6.8.

6.2.6 Bottleneck and Wasserstein Distances
Standard metrics for measuring the distance between two persistence diagrams are the bottleneck dis-
tance and the pth Wasserstein distance [Edelsbrunner and Harer, 2010]. The TDA package includes the
functions bottleneck and wasserstein, which are R wrappers of the functions “bottleneck distance” and
“wasserstein distance” of the C++ library Dionysus.

We generate two persistence diagrams of the Rips filtrations built on top of the two (separate) circles
of the previous example,

Diag1 <- ripsDiag(Circle1, maxdimension = 1, maxscale = 5)
Diag2 <- ripsDiag(Circle2, maxdimension = 1, maxscale = 5)

and we compute the bottleneck distance and the 2nd Wasserstein distance between the two dia-
grams. In the following code, the option dimension = 1 specifies that the distances between diagrams
are computed using only one dimensional features (loops).
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par(mfrow = c(1, 2), mai=c(0.8, 0.8, 0.3, 0.3))
plot(X, pch = 16, xlab = "",ylab = "")
plot(DiagFltFun[["diagram"]], diagLim = c(0, 1))
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Figure 6.8: Persistence diagram from Rips filtration and DTM function values. Black points represent
connected components and red triangles represent loops.

print(bottleneck(Diag1[["diagram"]], Diag2[["diagram"]],
dimension = 1))

## [1] 1.38913

print(wasserstein(Diag1[["diagram"]], Diag2[["diagram"]], p = 2,
dimension = 1))

## [1] 2.327802

6.2.7 Landscapes and Silhouettes
Persistence landscapes and silhouettes are real-valued functions that further summarize the information
contained in a persistence diagram. They have been introduced and studied in Bubenik [2012], Chazal
et al. [2014c], and Chazal et al. [2014b]. We briefly introduce the two functions.

Landscape. The persistence landscape is a collection of continuous, piecewise linear functions λ : Z+ × R→ R
that summarizes a persistence diagram. To define the landscape, consider the set of functions created by
tenting each each point p = (x, y) =

(
b+d

2
, d−b

2

)
representing a birth-death pair (b, d) in the persistence

diagram D as follows:

Λp(t) =





t− x+ y t ∈ [x− y, x]

x+ y − t t ∈ (x, x+ y]

0 otherwise
=





t− b t ∈ [b, b+d
2

]

d− t t ∈ ( b+d
2
, d]

0 otherwise.
(6.1)

We obtain an arrangement of piecewise linear curves by overlaying the graphs of the functions {Λp}p;
see Figure 6.9 (left). The persistence landscape of D is a summary of this arrangement. Formally, the
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persistence landscape of D is the collection of functions

λ(k, t) = kmax
p

Λp(t), t ∈ [0, T ], k ∈ N, (6.2)

where kmax is the kth largest value in the set; in particular, 1max is the usual maximum function. see
Figure 6.9 (middle).

Silhouette. Consider a persistence diagram with N off diagonal points {(bj, dj)}Nj=1. For every
0 < p <∞ we define the power-weighted silhouette

φ(p)(t) =

∑N
j=1 |dj − bj|pΛj(t)∑N

j=1 |dj − bj|p
.

The value p can be thought of as a trade-off parameter between uniformly treating all pairs in the
persistence diagram and considering only the most persistent pairs. Specifically, when p is small, φ(p)(t)
is dominated by the effect of low persistence features. Conversely, when p is large, φ(p)(t) is dominated
by the most persistent features; see Figure 6.9 (right).
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Figure 6.9: Left: we use the rotated axes to represent a persistence diagram D. A feature (b, d) ∈ D
is represented by the point ( b+d

2
, d−b

2
) (pink). In words, the x-coordinate is the average parameter value

over which the feature exists, and the y-coordinate is the half-life of the feature. Middle: the blue curve
is the landscape λ(1, ·). Right: the blue curve is the silhouette φ(1)(·).

The landscape and silhouette functions can be evaluated over a one-dimensional grid of points tseq
using the functions landscape and silhouette. In the following code, we use the persistence diagram
from Figure 6.5 to construct the corresponding landscape and silhouette for one-dimensional features
(dimension = 1). The option (KK = 1) specifies that we are interested in the 1st landscape function, and
(p = 1) is the power of the weights in the definition of the silhouette function.
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maxscale <- 5
tseq <- seq(0, maxscale, length = 1000) #domain
Land <- landscape(DiagRips[["diagram"]], dimension = 1, KK = 1, tseq)
Sil <- silhouette(DiagRips[["diagram"]], p = 1, dimension = 1, tseq)

The functions landscape and silhouette return real valued vectors, which can be simply plotted with
plot(tseq, Land, type = ”l”); plot(tseq, Sil, type = ”l”). See Figure 6.10.
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Figure 6.10: Landscape and Silhouette of the one-dimensional features of the diagram of Figure 6.5.

6.2.8 Confidence Bands for Landscapes and Silhouettes
Recent results in Chazal et al. [2014c] and Chazal et al. [2014b] show how to construct confidence
bands for landscapes and silhouettes, using a bootstrap algorithm (multiplier bootstrap). This strategy
is useful in the following scenario. We have a very large dataset with N points. There is a diagram
D and landscape λ corresponding to some filtration built on the data. When N is large, computing
D is prohibitive. Instead, we draw n subsamples, each of size m. We compute a diagram and a
landscape for each subsample yielding landscapes λ1, . . . , λn. (Assuming m is much smaller than N ,
these subsamples are essentially independent and identically distributed.) Then we compute 1

n

∑
i λi,

an estimate of E(λi), which can be regarded as an approximation of λ. The function multipBootstrap
uses the landscapes λ1, . . . , λn to construct a confidence band for E(λi). The same strategy is valid for
silhouette functions. We illustrate the method with a simple example.
First we sample N points from two circles:

N <- 4000
XX1 <- circleUnif(N / 2)
XX2 <- circleUnif(N / 2, r = 2) + 3
X <- rbind(XX1, XX2)
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Then we specify the number of subsamples n, the subsample size m, and we create the objects that
will store the n diagrams and landscapes:

m <- 80 # subsample size
n <- 10 # we will compute n landscapes using subsamples of size m
tseq <- seq(0, maxscale, length = 500) #domain of landscapes

#here we store n Rips diags
Diags <- list()
#here we store n landscapes
Lands <- matrix(0, nrow = n, ncol = length(tseq))

For n times, we subsample from the large point cloud, compute n Rips diagrams and the corre-
sponding 1st landscape functions (KK = 1), using 1 dimensional features (dimension = 1):

for (i in seq_len(n)) {
subX <- X[sample(seq_len(N), m), ]
Diags[[i]] <- ripsDiag(subX, maxdimension = 1, maxscale = 5)
Lands[i, ] <- landscape(Diags[[i]][["diagram"]], dimension = 1,

KK = 1, tseq)
}

Finally we use the n landscapes to construct a 95% confidence band for the mean landscape

bootLand <- multipBootstrap(Lands, B = 100, alpha = 0.05,
parallel = FALSE)

which is plotted by the following code. See Figure 6.11.

plot(tseq, bootLand[["mean"]], main = "Mean Landscape with 95% band")
polygon(c(tseq, rev(tseq)),

c(bootLand[["band"]][, 1], rev(bootLand[["band"]][, 2])),
col = "pink")

lines(tseq, bootLand[["mean"]], lwd = 2, col = 2)

6.2.9 Selection of Smoothing Parameters
An unsolved problem in topological inference is how to choose the smoothing parameters, for example
h for KDE and m0 for DTM.

Chazal et al. [2014a] suggest the following method, that we describe here for the kernel density
estimator, but works also for the kernel distance and the distance to measure.

Let `1(h), `2(h), . . . , be the lifetimes of the features of a persistence diagram at scale h. Let
qα(h)/

√
n be the width of the confidence band for the kernel density estimator at scale h, as described

in Section 6.1.1. We define two quantities that measure the amount of significant information at level
h:

• The number of significant features, N(h) = #
{
i : `(i) > 2 qα(h)√

n

}
;

• The total significant persistence, S(h) =
∑

i

[
`i − 2 qα(h)√

n

]
+

.

These measures are small when h is small since qα(h) is large. On the other hand, they are small when
h is large since then all the features of the KDE are smoothed out. Thus we have a kind of topological
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Figure 6.11: 95% confidence band for the mean landscape function.

bias-variance tradeoff. We choose h to maximize N(h) or S(h).
The method is implemented in the function maxPersistence, as shown in the following toy example.

First, we sample 1600 point from two circles (plus some clutter noise) and we specify the limits of the
grid over which the KDE is evaluated:

XX1 <- circleUnif(600)
XX2 <- circleUnif(1000, r = 1.5) + 2.5
noise <- cbind(runif(80, -2, 5), runif(80, -2, 5))
X <- rbind(XX1, XX2, noise)

# Grid limits
Xlim <- c(-2, 5)
Ylim <- c(-2, 5)
by <- 0.2

Then we specify a sequence of smoothing parameters among which we will select the optimal one,
the number of bootstrap iterations and the level of the confidence bands to be computed:

parametersKDE <- seq(0.1, 0.6, by = 0.05)

B <- 50 # number of bootstrap iterations. Should be large.
alpha <- 0.1 # level of the confidence bands

The function maxPersistence can be parallelized (parallel = TRUE) and a progress bar can be printed
(printProgress = TRUE):

maxKDE <- maxPersistence(kde, parametersKDE, X,
lim = cbind(Xlim, Ylim), by = by, sublevel = FALSE,
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B = B, alpha = alpha, parallel = TRUE,
printProgress = TRUE, bandFUN = "bootstrapBand")

## 0 10 20 30 40 50 60 70 80 90 100
## |----|----|----|----|----|----|----|----|----|----|
## ***************************************************

The S3 methods summary and plot are implemented for the class ”maxPersistence”. We can display
the values of the parameters that maximize the two criteria:

print(summary(maxKDE))

## Call:
## maxPersistence(FUN = kde, parameters = parametersKDE, X = X,
## lim = cbind(Xlim, Ylim), by = by, sublevel = FALSE, B = B,
## alpha = alpha, bandFUN = "bootstrapBand", parallel = TRUE,
## printProgress = TRUE)
##
## The number of significant features is maximized by
## [1] 0.25 0.30 0.35
##
## The total significant persistence is maximized by
## [1] 0.15

and produce the summary plot of Figure 6.12.

6.3 Density Clustering
The last example of this vignette illustrates the use of the function clusterTree, which is an implemen-
tation of Algorithm 1 in Kent et al. [2013].

First, we briefly describe the task of density clustering; we defer the reader to Kent [2013] for a more
rigorous and complete description. Let f be the density of the probability distribution P generating the
observed sample X = {x1, . . . , xn} ⊂ Rd. For a threshold value λ > 0, the corresponding super level
set of f is Lf (λ) := cl({x ∈ Rs : f(x) > λ}), and its d-dimensional subsets are called high-density
regions. The high-density clusters of P are the maximal connected subsets of Lf (λ). By considering
all the level sets simultaneously (from λ = 0 to λ =∞), we can record the evolution and the hierarchy
of the high-density clusters of P . This naturally leads to the notion of the cluster density tree of P
(see, e.g., Hartigan [1981]), defined as the collection of sets T := {Lf (λ), λ ≥ 0}, which satisfies
the tree property: A,B ∈ T implies that A ⊂ B or B ⊂ A or A ∩ B = ∅. We will refer to this
construction as the λ-tree. Alternatively, Kent et al. [2013] introduced the α-tree and κ-tree, which
facilitate the interpretation of the tree by precisely encoding the probability content of each tree branch
rather than the density level. Cluster trees are particularly useful for high dimensional data, whose
spatial organization is difficult to represent.

We illustrate the strategy with a simple example. First we generate a 2D point cloud from three (not
so well) separated clusters (see top left plot of Figure 6.13):

X1 <- cbind(rnorm(300, 1, .8), rnorm(300, 5, 0.8))
X2 <- cbind(rnorm(300, 3.5, .8), rnorm(300, 5, 0.8))

75



par(mfrow = c(1, 2), mai = c(0.8, 0.8, 0.35, 0.3))
plot(X, pch = 16, cex = 0.5, main = "Two Circles")
plot(maxKDE, main = "Max Persistence - KDE")
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Figure 6.12: Max Persistence Method for the selection of smoothing parameters. For each value of the
smoothing parameter we display the persistence of the corresponding homological features, along with
a (pink) confidence band that separates the statistically significant features from the topological noise.

X3 <- cbind(rnorm(300, 6, 1), rnorm(300, 1, 1))
XX <- rbind(X1, X2, X3)

Then we use the function clusterTree to compute cluster trees using the k Nearest Neighbors den-
sity estimator (k = 100 nearest neighbors) and the Gaussian kernel density estimator, with smoothing
parameter h.

Tree <- clusterTree(XX, k = 100, density = "knn",
printProgress = FALSE)

TreeKDE <- clusterTree(XX, k = 100, h = 0.3, density = "kde",
printProgress = FALSE)

Note that, even when kde is used to estimate the density, we have to provide the option (k = 100), so
that the algorithm can compute the connected components at each level of the density using a k Nearest
Neighbors graph.

The ”clusterTree” objects Tree and TreeKDE contain information about the λ-tree, α-tree and κ-
tree. The function plot for objects of the class ”clusterTree” produces the plots in Figure 6.13.

plot(Tree, type = "lambda", main = "lambda Tree (knn)")
plot(Tree, type = "kappa", main = "kappa Tree (knn)")
plot(TreeKDE, type = "lambda", main = "lambda Tree (kde)")
plot(TreeKDE, type = "kappa", main = "kappa Tree (kde)")
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Martin R. Bridson and André Häfliger. Metric Spaces of Non-Positive Curvature. Die Grundlehren der
mathematischen Wissenschaften in Einzeldarstellungen. Springer-Verlag Berlin Heidelberg, 1999.
ISBN 978-3-540-64324-1. doi: 10.1007/978-3-662-12494-9. URL https://books.google.
com/books?id=3DjaqB08AwAC. A.1

Ryan Remy Brinkman, Maura Gasparetto, Shang-Jung Jessica Lee, Albert J Ribickas, Janelle Perkins,
William Janssen, Renee Smiley, and Clay Smith. High-content flow cytometry and temporal data
analysis for defining a cellular signature of graft-versus-host disease. Biology of Blood and Marrow
Transplantation, 13(6):691–700, 2007. 4.4.2

Peter Bubenik. Statistical topological data analysis using persistence landscapes. arXiv preprint
arXiv:1207.6437, 2012. 6.2.7

Peter Bubenik. Statistical topological data analysis using persistence landscapes. J. Mach. Learn. Res.,
16(1):77–102, January 2015. 5

Kevin. Buchin. 2. space-filling curves. In Organizing Point Sets:Space-Filling Curves, Delaunay
Tessellations of Random Point Sets, and Flow Complexes, chapter 2, pages 5–29. Freien Univer-
sität Berlin, 2008. URL http://www.diss.fu-berlin.de/diss/receive/FUDISS_
thesis_000000003494. 2.2.1, A.2

Benoı̂t Cadre. Kernel estimation of density level sets. Journal of Multivariate Analysis, 97(4):999–
1023, 2006. 5

Claire Caillerie, Frederic Chazal, Jerome Dedecker, and Bertrand Michel. Deconvolution for the
wasserstein metric and geometric inference. Electron. J. Statist., 5:1394–1423, 2011. doi:
10.1214/11-EJS646. URL http://dx.doi.org/10.1214/11-EJS646. 1.4.3

Francesco Camastra and Antonino Staiano. Intrinsic dimension estimation: Advances and open prob-
lems. Inf. Sci., 328:26–41, 2016. doi: 10.1016/j.ins.2015.08.029. URL http://dx.doi.org/
10.1016/j.ins.2015.08.029. 2

Kamalika Chaudhuri and Sanjoy Dasgupta. Rates of convergence for the cluster tree. In Advances in
Neural Information Processing Systems 23, pages 343–351. 2010. 5

Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J Guibas, and Steve Y Oudot. Proximity
of persistence modules and their diagrams. In Proceedings of the twenty-fifth annual symposium on
Computational geometry, pages 237–246. ACM, 2009. 12, 13, D.1, 111, 113

Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for probability mea-
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Appendix A

Appendix for Chapter 2

A.1 Proofs for Section 2.1
Lemma 16. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], with τg ≤ τ`. For M ∈Md

τg ,τ`,KI ,Kv
and

r ∈ (0, τg), let Mr := {x ∈ Rm : distRm(x,M) < r} be a r-neighborhood of M in Rm. Then, the
volume of M is upper bounded as

volM(M) ≤ m!

d!
rd−mvolRm(Mr)

≤ C
(16)
KI ,d,m

(
1 + τ d−mg

)
, (A.1)

where C(16)
KI ,d,m

is a constant depending only on KI , d and m.

Proof of Lemma 16. Suppose {A1, . . . , Al} is a disjoint cover of M , i.e. measurable subsets of M

such that Ai ∩ Aj = ∅,
l⋃

i=1

Ai = M , and each Ai is equipped with chart maps ϕ(i) : Ui ⊂ Rd →

Ai. Such a triangulation is always possible. For each Ai, define M (i)
r := {x ∈ Rm : πM(x) ∈

Ai, distRm,||·||1(x,M) ≤ r} so that each Ai is a projection of M (i)
r on M , as in Figure A.1. Then,

volRm(Mr) =
l∑

i=1

volRm(M (i)
r ). (A.2)

M
(i)
r

Ai

Aj1 Aj2

r

Figure A.1: {A1, . . . , Al} is a disjoint cover of M , and each Ai is a projection of M (i)
r on M .
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Fix i ∈ {1, . . . , l}. Then for each u ∈ Ui, there exists a linear isometryR(i)(u) : Rm−d → (Tϕ(i)(u)M)⊥,
which can be identified as an m× (m− d) matrix with jth column being R(i,j)(u), so that M (i)

r can be
parametrized as ψ(i) : Ui × BRm−d,‖·‖1(0, r)→M

(i)
r with

ψ(i)(u, t) = ϕ(i)(u) +R(i)(u)t = ϕ(i)(u) +
m−d∑

j=1

tjR
(i,j)(u). (A.3)

Then, because R(i) is an isometry,

R(i)(u)>R(i)(u) = Im−d. (A.4)

Let ψ(i)
u = ∂ψ(i)

∂u
=
(
∂ψ(i)

∂u1
, . . . , ∂ψ

(i)

∂ud

)
∈ Rm×d be the partial derivative of ψ(i) with respect to u and let

ψ
(i)
t = ∂ψ(i)

∂t
be the partial derivative of ψ(i) with respect to t. Define ϕ(i)

u and R(i,j)
u similarly. Then,

since R(i) is an isometry, image(R(i)(u)) = (Tϕ(i)(u)M)⊥ holds, and hence

R(i)(u)>ϕ(i)
u (u) = 0. (A.5)

Also by differentiating (A.4), for all j,

R(i,j)
u (u)>R(i)(u) = 0. (A.6)

Also by differentiating (A.3), we get

ψ(i)
u (u, t) = ϕ(i)

u (u) +
m−d∑

j=1

tjR
(i,j)
u (u), (A.7)

and
ψ

(i)
t (u, t) = R(i)(u). (A.8)

Hence by multiplying (A.7) and (A.8), and by applying (A.4), (A.5), and (A.6), we get

ψ
(i)
t (u, t)>ψ(i)

u (u, t) = R(i)(u)>ϕ(i)
u (u) +R(i)(u)>R(i)

u (u)t = 0, (A.9)

and
ψ

(i)
t (u, t)>ψ

(i)
t (u, t) = R(i)(u)>R(i)(u) = Im−d. (A.10)

Now let’s consider ψ(i)
u (u, t)>ψ

(i)
u (u, t). From (A.6) and image(R(i)(u)) = (Tϕ(i)(u)M)⊥, column space

generated by R(i,j)
u (u) is contained in Tϕ(i)(u)M , i.e.

〈
R(i,j)
u (u)

〉
⊂ Tϕ(i)(u)(M) = span(ϕ(i)

u (u)).

Therefore, there exists Λ(i,j)(u) : d× d matrix such that

R(i,j)
u (u) = ϕ(i)

u (u)Λ(i,j)(u).

Then by applying this to (A.7),

ψ(i)
u (u, t) = ϕ(i)

u (u)

(
I +

m−d∑

j=1

tjΛ
(i,j)(u)

)
. (A.11)
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Now M being of global reach ≥ τg implies ψ(i)
u (u, t) is of full rank for all t ∈ BRm−d,‖·‖1(0, τg). From

(A.11), this implies I +
m−d∑
j=1

tjΛ
(i,j)(u) is invertible for all t ∈ BRm−d,‖·‖1(0, τg), and this implies all

singular values of Λ(i,j)(u) are bounded by 1
τg

. Hence for all v ∈ Rd,

∣∣v>Λ(i,j)(u)v
∣∣ ≤ ‖v‖

2
2

τg
,

and accordingly,
∣∣∣∣∣v
>

(
I +

m−d∑

j=1

tjΛ
(i,j)(u)

)
v

∣∣∣∣∣ ≥ ‖v‖
2
2 −

m−d∑

j=1

|tj|
∣∣v>Λ(i,j)(u)v

∣∣

≥
(

1− ‖t‖1

τg

)
‖v‖2

2.

Hence any singular values σ of I +
m−d∑
j=1

tjΛ
(i,j)(u) satisfies |σ| ≥ 1− ‖t‖1

τg
. And since ‖t‖1 ≤ τg,

∣∣∣∣∣I +
m−d∑

j=1

tjΛ
(i,j)(u)

∣∣∣∣∣ ≥
(

1− ‖t‖1

τg

)d
.

By applying this result to (A.11), the determinant of ψ(i)
u (u, t)>ψ

(i)
u (u, t) is lower bounded as

∣∣ψ(i)
u (u, t)>ψ(i)

u (u, t)
∣∣ =

∣∣∣∣∣I +
m−d∑

j=1

tjΛ
(i,j)(u)

∣∣∣∣∣

2 ∣∣ϕ(i)
u (u)>ϕ(i)

u (u)
∣∣

≥
(

1− ‖t‖1

τg

)2d ∣∣ϕ(i)
u (u)>ϕ(i)

u (u)
∣∣ . (A.12)

Now, let g(Mr)
ij be the Riemannian metric tensor of Mr, and g(M)

ij be the Riemannian metric tensor of
M . Then from (A.9), (A.10), and (A.12), the determinant of Riemannian metric tensor g(Mr)

ij is lower
bounded by

| det(g
(Mr)
ij )| =

∣∣∣∣
(
ψ(i)
u (u, t) ψ

(i)
t (u, t)

)> (
ψ(i)
u (u, t) ψ

(i)
t (u, t)

)∣∣∣∣

=

∣∣∣∣∣
ψ

(i)
u (u, t)>ψ

(i)
u (u, t) ψ

(i)
u (u, t)>ψ

(i)
t (u, t)

ψ
(i)
u (u, t)>ψ

(i)
t (u, t) ψ

(i)
t (u, t)>ψ

(i)
t (u, t)

∣∣∣∣∣

=
∣∣∣ ψ(i)

u (u, t)>ψ
(i)
u (u, t)

∣∣∣

≥
(

1− ‖t‖1

τg

)2d ∣∣ϕ(i)
u (u)>ϕ(i)

u (u)
∣∣

=

(
1− ‖t‖1

τg

)2d

| det(g
(M)
ij )|.
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And from this, volume of M (i)
r is lower bounded as

volRm(M (i)
r ) =

∫

Ui×BRm,‖·‖1 (0,r)

√
| det(g

(Mr)
ij )|dudt

≥
∫

Ui

∫

BRm,‖·‖1 (0,r)

(1− ‖t‖1κg)
d

√
| det(g

(M)
ij )|dtdu

= vol(Ui)

∫ r

0

∫

t1+···+tm−d−1≤s

(
1− s

τg

)d
dt1 · · · dtm−d−1ds

=
1

(m− d− 1)!
vol(Ui)

∫ r

0

sm−d−1

(
1− s

τg

)d
ds

=
1

(m− d− 1)!
rm−dvol(Ui)

∫ 1

0

um−d−1

(
1− r

τg
u

)d
du

≥ 1

(m− d− 1)!
rm−dvol(Ui)

∫ 1

0

um−d−1(1− u)ddu

=
d!

m!
rm−dvol(Ui). (A.13)

By applying (A.13) to (A.2), we can lower bound volume of Mr as

volRm(Mr) ≥
d!

m!
rm−d

l∑

i=1

vol(Ui)

=
d!

m!
rm−dvolM(M). (A.14)

Also, with r = τg, Mr is contained in τg-neighborhood of I , hence

volRm(Mr) ≤ 2m(KI + τg)
m. (A.15)

By combining (A.14) and (A.15), we get the desired upper bound of volM(M) in (A.1) as

volM(M) ≤ m!

d!
rd−mvolRm(Mr)

≤ C
(16)
KI ,d,m

(
1 + τ d−mg

)
,

where C(16)
KI ,d,m

∈ (0,∞) is a constant depending only on KI , d and m.

Lemma 17. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], with τg ≤ τ`. Let M ∈ Md
τg ,τ`,KI ,Kv

and r ∈ (0, 2
√

3τg]. Then M can be covered by N radius r balls BM(p1, r), . . ., BM(pN , r), with

N ≤
⌊

2dvol(M)

Kvrdωd

⌋
. (A.16)

Proof of Lemma 17. We follow the strategy in [Ma and Fu, 2011, 4.3.1. Lemma 3].
Consider a maximal family of disjoint balls

{
BM(p1,

r
2
), . . . ,BM(pN ,

r
2
)
}

, i.e. BM(pi,
r
2
)∩BM(pj,

r
2
) =
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∅ for i 6= j and for all q ∈ M , there exists i ∈ [1, N ] such that BM(q, r
2
) ∩ BM(pi,

r
2
) 6= ∅. Then

‖q − pi‖2 < r holds, so {BM(p1, r), . . . ,BM(pN , r)} covers M . Now, note that BM(pi,
r
2
) are disjoint,

and hence
N∑

i=1

vol(BM(pi,
r

2
)) ≤ vol(M). (A.17)

Then since r
2
≤
√

3τg, condition (4) in Definition 15 implies vol(BM(pi,
r
2
)) ≥ Kv2

−drdωd for all i,
hence applying this to (A.17) yields

N ≤ 2dvol(M)

Kvrdωd
,

hence M can be covered by N radius r balls with N satisfying (A.16).

Lemma 81. (Toponogov comparison theorem, 1959) Let (M, g) be a complete Riemannian manifold
with sectional curvature≥ κ, and let Sκ be a surface of constant Gaussian curvature κ. Given any
geodesic triangle with vertices p, q, r ∈ M forming an angle α at q, consider a (comparison) triangle
with vertices p̄, q̄, r̄ ∈ Sκ such that distSκ(p̄, q̄) = distM(p, q), distSκ(r̄, q̄) = distM(r, q), and ∠p̄q̄r̄ =
∠pqr. Then

distM(p̄, r̄) ≤ distSκ(p, r).

Proof of Lemma 81. [See Petersen, 2006, Theorem 79, p.339]. Note that for a manifold with boundary,
the complete Riemannian manifold condition can be relaxed to requiring the existence of a geodesic
path joining p and q whose image lies on intM .

Lemma 82. (Hyperbolic law of cosines) Let Hκ be a hyperbolic plane whose Gaussian curvature is
−κ2. Then given a hyperbolic triangle ABC with angles α, β, γ, and side lengths BC = a, CA = b,
and AB = c, the following holds:

cosh(κa) = cosh(κb) cosh(κc)− sinh(κb) sinh(κc) cosα.

Proof of Lemma 82. [See Bridson and Häfliger, 1999, 2.13 The Law of Cosines in Mn
κ , p.24].

Claim 83. Let λ ∈ [0, 1] and let a, b ∈ [0,∞) satisfy a < b. Then

cosh−1 ((1− λ) cosh a+ λ cosh b)√
(1− λ)a2 + λb2

≤ sinh
(
b
2

)

b/2
. (A.18)

Proof of Claim 83. Consider functions F,G : [0,∞)2 × [0, 1] → R defined as F (a, b, λ) = f−1((1 −
λ)f(a) + λf(b)) and G(a, b, λ) = g−1((1− λ)g(a) + λg(b)), for 0 ≤ a < b, λ ∈ [0, 1], f(t) = cosh t,
and g(t) = t2. Toponogov comparison theorem in Lemma 81 implies F (a, b, λ) ≥ G(a, b, λ), and f
and g being strictly increasing function implies a < G(a, b, λ) ≤ F (a, b, λ) < b. Also differentiating
log fraction ∂

∂a
log F (a,b,λ)

G(a,b,λ)
gives

∂

∂a
log

F (a, b, λ)

G(a, b, λ)
=

(1− λ)f ′(a)

f ′(F (a, b, λ))F (a, b, λ)
− (1− λ)g′(a)

g′(G(a, b, λ))G(a, b, λ)

=
1− λ

F (a, b, λ)
exp

(
−
∫ F (a,b,λ)

a

(log f ′)′(t)dt

)

− 1− λ
G(a, b, λ)

exp

(
−
∫ G(a,b,λ)

a

(log g′)′(t)dt

)
. (A.19)
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τ`r2

τ`r1

2α
pk q1

q2

distM (q1, q2)

M

(a) triangle4pkq1q2 in M

τ`r2

τ`r1

2α
p̄k q̄1

q̄2

distHκl (q̄1, q̄2)

Hκl

(b) comparison triangle4p̄kq̄1q̄2 in Hκ`

Figure A.2: a triangle 4pkq1q2 in M formed by pk, q1, q2, and b its comparison triangle 4p̄kq̄1q̄2 in
Hκ` .

Then by applying (log f ′)′(t) = coth t > 1
t

= (log g′)′(t) and F (a, b, λ) ≥ G(a, b, λ) to (A.19) implies

0 < ∀a < b,
∂

∂a
log

F (a, b, λ)

G(a, b, λ)
< 0,

and hence
F (a, b, λ)

G(a, b, λ)
≤ F (0, b, λ)

G(0, b, λ)
.

By expanding F and G from this, we get

cosh−1 ((1− λ) cosh a+ λ cosh b)√
(1− λ)a2 + λb2

≤ cosh−1 (λ cosh b+ (1− λ))√
λb2

=
cosh−1

(
1 + 2λ sinh2

(
b
2

))

b
√
λ

≤ 2 sinh
(
b
2

)

b
,

where last line is coming from 1 + x ≤ cosh
√

2x =⇒ cosh−1 (1 + x) ≤
√

2x. Hence we get (A.18).

Lemma 18. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], with τg ≤ τ`. Let M ∈ Md
τg ,τ`,KI ,Kv

and let exppk : Ek ⊂ Rm →M be an exponential map, where Ek is the domain of the exponential map
exppk and TpkM is identified with Rd. For all v, w ∈ Ek, let Rk := max{||v||, ||w||}. Then

‖ exppk(v)− exppk(w)‖Rm ≤
sinh(

√
2Rk/τ`)√

2Rk/τ`
‖v − w‖Rd . (A.20)

Proof of Lemma 18. Let q1 = exppk(v) and q2 = exppk(w). Let distM(pk, q1) = τ√̀
2
r1, distM(pk, q2) =

τ√̀
2
r2, and ∠q1pkq2 = 2α with 0 ≤ α ≤ π, as in Figure A.2a. Then

‖v − w‖Rd =
τ`√

2

√
r2

1 + r2
2 − 2r1r2 cos 2α

=
τ`√

2

√
(r1 + r2)2 sin2 α + (r1 − r2)2 cos2 α. (A.21)
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Let κ` := 1
τ`

, H−2κ2
`

be a surface of constant sectional curvature −2κ2
` , and let p̄k, q̄1, q̄2 ∈ H−2κ2

`

be such that distH−2κ2
`

(p̄k, q̄1) = distM(pk, q1), distH−2κ2
`

(p̄k, q̄2) = distM(pk, q2), and ∠q̄1p̄kq̄2 =

∠q1pkq2, so that 4p̄kq̄1q̄2 becomes a comparison triangle of pkq1q2, as in Figure A.2b. Then since
(sectional curvature of M) ≥ −2κ2

` by [Aamari et al., 2017, Proposition A.1 (iii)], from the Toponogov
comparison theorem in Lemma 81,

distM(q1, q2) ≤ distH−2κ2
`

(q̄1, q̄2). (A.22)

Also, by applying the hyperbolic law of cosines in Lemma 82 to comparison triangle4p̄kq̄1q̄2 in Figure
A.2a,

cosh r1 cosh r2 − sinh r1 sinh r2 cos 2α

cosh(
√

2κ`distHκ` (q̄1, q̄2)) = cosh r1 cosh r2 − sinh r1 sinh r2 cos 2α

= (sin2 α) cosh(r1 + r2) + (cos2 α) cosh(r1 − r2). (A.23)

From (A.21) and (A.23), we can expand the fraction of distances
distH−2κ2

`

(q̄1,q̄2)

‖v−w‖Rd
as

distH−2κ2
`

(q̄1, q̄2)

‖v − w‖Rd
=

cosh−1
(
sin2 α cosh(r1 + r2) + cos2 α cosh(r1 − r2)

)
√

(sin2 α)(r1 + r2)2 + (cos2 α)(r1 − r2)2
. (A.24)

Then we can upper bound the fraction of distances
distH−2κ2

`

(q̄1,q̄2)

‖v−w‖Rd
by plugging in a = |r1 − r2|, b =

r1 + r2, λ = sin2 α to Claim 83 implies

cosh−1
(
sin2 α cosh(r1 + r2) + cos2 α cosh(r1 − r2)

)
√

(sin2 α)(r1 + r2)2 + (cos2 α)(r1 − r2)2
≤ sinh

(
r1+r2

2

)

(r1 + r2)/2
. (A.25)

Then since t 7→ sinh t
t

is an increasing function of t and r1+r2
2
≤
√

2Rk/τ`, so

sinh
(
r1+r2

2

)

(r1 + r2)/2
≤ sinh(

√
2Rk/τ`)√

2Rk/τ`
. (A.26)

Combining (A.24), (A.25), and (A.26), we have upper bound of the fraction of distances
distH−2κ2

`

(q̄1,q̄2)

‖v−w‖Rd
uniform over r1, r2 as

distH−2κ2
`

(q̄1, q̄2)

‖v − w‖Rd
≤ sinh(

√
2Rk/τ`)√

2Rk/τ`
. (A.27)

And finally, combining (A.22) and (A.27), we get desired upper bound of ‖ exppk(v) − exppk(w)‖Rm
in (A.20) as

‖ exppk(v)− exppk(w)‖Rm ≤ distM(q1, q2)

≤ distH−2κ2
`

(q̄1, q̄2)

≤ sinh(
√

2Rk/τ`)√
2Rk/τ`

‖v − w‖Rd .
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A.2 Proofs for Section 2.2
Claim 84. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)

m,∞), d1, d2 ∈ N, with
τg ≤ τ` and 1 ≤ d1 < d2 ≤ m. Let X1, . . . , Xn ∼ P ∈ Pd2

τg ,τ`,KI ,Kv ,Kp
. Then for all y ∈ [0,∞),

P (n)
(
||Xn −Xn−1||d1

Rm ≤ y|X1, . . . , Xn−1

)
≤ C

(84)
KI ,Kp,d2,m

(
1 + τ d2−m

g

)
y
d2
d1 , (A.28)

where C(84)
KI ,Kp,d2,m

is a constant depending only on KI , Kp, d2,m.

Proof of Claim 84. Let pXn be the pdf ofXn. Then conditional cdf of ||Xn−Xn−1||d1
Rm givenX1, . . . , Xn−1

is upper bounded by volume of a ball in the manifold M as

P (n)
(
||Xn −Xn−1||d1

Rm ≤ y|X1, . . . , Xn−1

)

= P (n)
(
Xn ∈ BRm

(
Xn−1, y

1
d1

)
| X1, . . . , Xn−1

)

=

∫

M∩
(
BRm

(
Xn−1,y

1
d1

)) pXn (xn) dvolM(xn)

≤ KpvolM

(
M ∩B

(
Xn−1, y

1
d1

))
, (A.29)

where last inequality is coming from condition (6) in Definition 15. And by applying Lemma 16,
volM

(
M ∩B

(
Xn−1, y

1
d1

))
can be further bounded as

volM

(
M ∩B

(
Xn−1, y

1
d1

))

≤ m!

d2!
min

{
y

1
d1 , τg

}d2−m
volRm

(
B
(
Xn−1, y

1
d1 + min

{
y

1
d1 , τg

}))
(Lemma 16)

=
m!

d2!
ωm


y

d2
d1 2m1(y

1
d1 ≤ τg) + y

d2
d1

(
τg

y
1
d1

)d2−m(
1 +

(
τg

y
1
d1

))m

1(y
1
d1 > τg)




≤ m!

d2!
ωm2m

(
y
d2
d1 1(y

1
d1 ≤ τg) + y

d2
d1

(
τg

2KI

√
m

)d2−m

1(y
1
d1 > τg)

)

≤ C
(84,1)
KI ,d2,m

(
1 + τ d2−m

g

)
y
d2
d1 , (A.30)

where C(84,1)
KI ,d2,m

= m!
d2!
ωm2m (2KI

√
m)

m−d2 . By applying (A.29) and (A.30), we get the upper bound
on conditional cdf of ||Xn −Xn−1||d1

Rm given X1, . . . , Xn−1 in (A.28) as

P (n)
(
||Xn −Xn−1||d1

Rm ≤ y|X1, . . . , Xn−1

)
≤ KpC

(84,1)
KI ,d2,m

(
1 + τ d2−m

g

)
y
d2
d1

≤ C
(84)
KI ,Kp,d2,m

(
1 + τ d2−m

g

)
y
d2
d1 , (A.31)

where C(84)
KI ,Kp,d2,m

= KpC
(84,1)
KI ,d2,m

= m!
d2!
Kpωm2m (2KI

√
m)

m−d2 .
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Lemma 19. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)
m,∞), d1, d2 ∈ N, with

τg ≤ τ` and 1 ≤ d1 < d2 ≤ m. Let X1, . . . , Xn ∼ P ∈ Pd2
τg ,τ`,KI ,Kv ,Kp

. Then for all L > 0,

P (n)

[
n−1∑

i=1

‖Xi+1 −Xi‖d1 ≤ L

]
≤

(
C

(19)
KI ,Kp,d1,d2,m

)n−1

L
d2
d1

(n−1)
(

1 + τ
(d2−m)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)
(n− 1)!

, (A.32)

where C(19)
KI ,Kp,d1,d2,m

is a constant depending only on KI , Kp, d1, d2,m.

Proof of Lemma 19. Let Yi := ‖Xi+1 − Xi‖d1
Rm , i = 1, . . . , n − 1, and let P (n)

n−2∑
i=1

Yi

be the cumulative

distribution function of
n−2∑
i=1

Yi. Then from Claim 84, probability of the d1-squared length of the path

being bounded by L, P (n)

(
n−1∑
i=1

Yi ≤ L

)
, is upper bounded as

P (n)

(
n−1∑

i=1

Yi ≤ L

)

=

∫ L

0

P (n)

(
Yn−1 ≤ yn−1|

n−2∑

i=1

Yi = L− yn−1

)
dP

(n)
n−2∑
i=1

Yi

(L− yn−1)

≤ C
(84)
KI ,Kp,d2,m

(
1 + τ d2−m

g

) ∫ L

0

y
d2
d1
n−1dP

(n)
n−2∑
i=1

Yi

(L− yn−1) (Claim 84)

= C
(84)
KI ,Kp,d2,m

(
1 + τ d2−m

g

)

×



[
−y

d2
d1
n−1P

(
n−2∑

i=1

Yi ≤ L− yn−1

)]L

0

+

∫ L

0

P

(
n−2∑

i=1

Yi ≤ L− yn−1

)
d

(
y
d2
d1
n−1

)


= C
(84)
KI ,Kp,d2,m

(
1 + τ d2−m

g

) ∫ L

0

P

(
n−2∑

i=1

Yi ≤ L− yn−1

)
d2

d1

y
d2−d1
d1

n−1 dyn−1.

By repeating this argument, we get upper bound of P (n)

(
n−1∑
i=1

Yi ≤ L

)
as

P (n)

(
n−1∑

i=1

Yi ≤ L

)
≤
(
d2

d1

C
(84)
KI ,Kp,d2,m

(
1 + τ d2−m

g

))n−1 ∫
n−1∑
i=1

yi≤L

n−1∏

i=1

y
d2−d1
d1

i dy.

From further upper bounding this, we get upper bound of P (n)

(
n−1∑
i=1

‖Xi+1 −Xi‖d1
Rm ≤ L

)
in (A.32)
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as

P (n)

(
n−1∑

i=1

‖Xi+1 −Xi‖d1
Rm ≤ L

)

≤
(
d2

d1

C
(84)
KI ,Kp,d2,m

(
1 + τ d2−m

g

))n−1 ∫
n−1∑
i=1

yi≤L

n−1∏

i=1

y
d2−d1
d1

i dy

≤
(

2d2

d1

C
(84)
KI ,Kp,d2,m

)n−1

L
d2
d1

(n−1) (
1 + τ (d2−m)(n−1)

g

)

×
∫
n−1∑
i=1

yi≤1

(
1

n− 1

n−1∑

i=1

yi

) (d2−d1)(n−1)
d1

dyn−1 · · · dy1

=

(
C

(19)
KI ,Kp,d1,d2,m

)n−1

L
d2
d1

(n−1)
(

1 + τ
(d2−m)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)

×
∫ 1

0

∫
n−2∑
i=1

yi≤z
z

(d2−d1)(n−1)
d1 dyn−2 · · · dy1dz

=

(
C

(19)
KI ,Kp,d1,d2,m

)n−1

L
d2
d1

(n−1)
(

1 + τ
(d2−m)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)
(n− 2)!

∫ 1

0

z
d2(n−1)

d1
−1
dz

≤

(
C

(19)
KI ,Kp,d1,d2,m

)n−1

L
d2
d1

(n−1)
(

1 + τ
(d2−m)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)
(n− 1)!

,

where C(19)
KI ,Kp,d1,d2,m

= 2d2

d1
C

(84)
KI ,Kp,d2,m

.

Lemma 85. (Space-filling curve) There exists a surjective map ψd : [0, 1] → [0, 1]d which is Hölder
continuous of order 1/d, i.e.

0 ≤ ∀s, t ≤ 1, ‖ψd(s)− ψd(t)‖Rd ≤ 2
√
d+ 3|s− t|1/d. (A.33)

Such a map is called a space-filling curve.

Proof of Lemma 85. [See Buchin, 2008, Chapter 2.1.6].

Lemma 20. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], d1 ∈ N, with τg ≤ τ`. Let M ∈
Md1

τg ,τ`,Kp,Kv
and X1, . . . , Xn ∈M . Then

min
σ∈Sn

n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm ≤ C

(20)
KI ,Kv ,d1,m

(
1 + τ d1−m

g

)
, (A.34)

where C(20)
KI ,Kv ,d1,m

is a constant depending only on m, d1, Kv, and KI .
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Proof of Lemma 20. When d1 = 1, the length of TSP path is bounded by the length of the curve
volM(M) as in Figure 2.3, and from Lemma 16 we have volM(M) ≤ C

(16)
KI ,d,m

(
1 + τ 1−m

g

)
, hence

C
(20)
KI ,Kv ,d1,m

can be set as C(20)
KI ,Kv ,d1,m

= C
(16)
KI ,d,m

, as described before.
Consider d1 > 1. By scaling the space-filling curve in Lemma 85, there exists a surjective map

ψd1 : [0, 1]→ [−r, r]d1 and ψm : [0, 1]→ [−KI , KI ]
m that satisfies

0 ≤ ∀s, t ≤ 1, ‖ψd1(s)− ψd1(t)‖Rd1 ≤ 4r
√
d1 + 3|s− t|1/d1 (A.35)

0 ≤ ∀s, t ≤ 1, ‖ψm(s)− ψm(t)‖Rm ≤ 4KI

√
m+ 3|s− t|1/m (A.36)

Let r := 2
√

3τg. From Lemma 17, M can be covered by N balls of radius r, denoted by

BM(p1, r), . . . , BM(pN , r), (A.37)

with N ≤
⌊

2d1volM (M)

Kvrd1ωd1

⌋
. Since ψm : [0, 1] → [−KI , KI ]

m in (A.36) is surjective, we can find a right
inverse Ψm : [−KI , KI ]

m → [0, 1] that satisfies ψm(Ψm(p)) = p, i.e.

[0, 1]
ψm ..

[−KI , KI ]
m.

Ψm

ll (A.38)

Reindex pk with respect to Ψm so that

Ψm(p1) < · · · < Ψm(pN). (A.39)

Now fix k, and consider the ball BM(pk, r) in the covering in (A.37). Then for all p ∈ BM(pk, r), since
dM(pk, p) < r, condition (3) in Definition 15 implies that we can find ϕk(p) ∈ BRd1 (0, r) such that
exppk(ϕk(p)) = p. So this shows

BM(pk, r) ⊂ exppk (BRd1 (0, r)) .

Now consider the composition of the exponential map exppk and ψd1 in (A.35), exppk ◦ψd1 : [0, 1] →
M . Then

BM(pk, r) ⊂ exppk (BRd1 (0, r)) ⊂ exppk
(
[−r, r]d1

)
= exppk ◦ψd1 ([0, 1]) ,

where last equality is from that ψd1 in (A.35) is surjective. So exppk ◦ψd1 : [0, 1]→ M is surjective on
BM(p, r), so we can find right inverse Ψk : BM(pk, r)→ [0, 1] that satisfies (exppk ◦ψd1)(Ψk(p)) = p,
i.e.

[0, 1]

ψd1 --
[−r, r]

exppk ..
M ⊃ BM(pk, r).

Ψk

ll (A.40)

Then, reindexX1, . . . , Xn with respect to Ψm and Ψk as {Xk,j}1≤k≤N, 1≤j≤nk , whereXk,1, . . . , Xk,nk ∈
BM(pk, r) and

Ψk(Xk,1) < · · · < Ψk(Xk,nk). (A.41)

Let σ ∈ Sn be corresponding order of index, so that the d1-squared length of the path
n−1∑
i=1

‖Xσ(i+1) −

Xσ(i)‖d1
Rm is factorized as

n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm =

N∑

k=1

nk−1∑

j=1

‖Xk,j+1 −Xk,j‖d1
Rm +

N−1∑

k=1

‖Xk+1,1 −Xk,nk‖d1
Rm . (A.42)
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First, consider the first term
N∑
k=1

nk−1∑
j=1

‖Xk,j+1 − Xk,j‖d1
Rm in (A.42). For all 1 ≤ k ≤ N , by applying

Lemma 18,
nk−1∑
j=1

‖Xk,j+1 −Xk,j‖d1
Rm is upper bounded as

nk−1∑

j=1

‖Xk,j+1 −Xk,j‖d1
Rm

≤
nk−1∑

j=1

‖(exppk ◦ψd1)(Ψk(Xk,j+1))− (exppk ◦ψd1)(Ψk(Xk,j))‖d1
Rm (from (A.40))

≤
(

sinh(
√

2r/τ`)√
2r/τ`

)d1 nk−1∑

j=1

‖ψd1(Ψk(Xk,j+1))− ψd1(Ψk(Xk,j))‖d1

Rd1 (Lemma 18)

≤
(

2
√

2(d1 + 3) sinh(
√

2r/τ`)

r/τ`

)d1

rd1

nk−1∑

j=1

|Ψk(Xk,j+1)−Ψk(Xk,j)| (from (A.35))

≤
(

2
√

2(d1 + 3) sinh(
√

2r/τ`)

r/τ`

)d1

rd1 (from (A.41)).

Then, by applying the fact that r = 2
√

3τg ≤ 2
√

3τ` and that t 7→ sinh t
t

is increasing function on t ≥ 0

to this, we have upper bound of
nk−1∑
j=1

‖Xk,j+1 −Xk,j‖d1
Rm as

nk−1∑

j=1

‖Xk,j+1 −Xk,j‖d1
Rm ≤

(√
2(d1 + 3) sinh 2

√
6√

3

)d1

rd1 . (A.43)

And then, the second term
N−1∑
k=1

‖Xk+1,1 −Xk,nk‖d1
Rm in (A.42) is upper bounded as

N−1∑

k=1

‖Xk+1,1 −Xk,nk‖d1
Rm

≤ 3d1−1

N−1∑

k=1

(
‖Xk+1,1 − pk+1‖d1

Rm + ‖pk+1 − pk‖d1
Rm + ‖pk −Xk,nk‖d1

Rm
)

≤ 2 · 3d1−1(N − 1)rd1 + 3d1−1

N−1∑

k=1

‖ψm(Ψm(pk+1))− ψm(Ψm(pk))‖d1

Rd1 (from (A.38))

< 3d1(N − 1)rd1 + 2 · 3d1
√
m+ 3KI

N−1∑

k=1

|Ψm(pk+1)−Ψm(pk)|
d1
m (from (A.36))

≤ 3d1(N − 1)rd1 + 2 · 3d1
√
m+ 3KI

(
N−1∑

k=1

|Ψm(pk+1)−Ψm(pk)|
d1
m
×m
d1

) d1
m
(
N−1∑

k=1

1
m

m−d1

)m−d1
m

(using Hölder’s inequality)

≤ 3d1(N − 1)rd1 + 2 · 3d1
√
m+ 3KI(N − 1)1− d1

m (from (A.39)). (A.44)
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Hence, by plugging in (A.43) and (A.44) to (A.42),
n−1∑
i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm is upper bounded as

n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm

<



(√

2(d1 + 3) sinh 2
√

6√
3

)d1

+ 3d1


 rd1N + 2 · 3d1

√
m+ 3KIN

1− d1
m

<

(
2
√
d1 + 3 sinh 2

√
6
)d1

+ 6d1

Kvωd1

volM(M) +
2 · 3 d1

2

√
m+ 3KI

(Kvωd1)1− d1
m

τ
d1( d1m−1)
g (volM(M))1− d1

m

≤ C
(20)
KI ,Kv ,d1,m

(
1 + τ d1−m

g

)
,

by some C(20)
KI ,Kv ,d1,m

which depends only on m, d1, Kv, and KI , where the last line comes from in-

equality in Lemma 16. Hence we have same upper bound for min
σ∈Sn

n−1∑
i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm as well, as

in (A.34).

Proposition 21. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)
m,∞), d1, d2 ∈ N,

with τg ≤ τ` and 1 ≤ d1 < d2 ≤ m. Let d̂n be in (2.10). Then either for d = d1 or d = d2,

sup
P∈Pdτg,τ`,KI ,Kv,Kp

EP (n)

[
`
(
d̂n, d(P )

)]

≤ 1(d = d2)
(
C

(21)
KI ,Kp,Kv ,d1,d2,m

)n(
1 + τ

−
(
d2
d1
m+m−2d2

)
n

g

)
n
−
(
d2
d1
−1
)
n
, (A.45)

where C(21)
KI ,Kp,Kv ,d1,d2,m

∈ (0,∞) is a constant depending only on KI , Kp, Kv, d1, d2,m.

Proof of Proposition 21. Consider first the case d = d1. Then for all P ∈ Pd1
τg ,τ`,KI ,Kv ,Kp

andX1, . . . , Xn ∼
P , by Lemma 20,

min
σ∈Sn

{
n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖d1
Rm

}
≤ C

(20)
KI ,Kv ,d1,m

(
1 + τ d1−m

g

)
,

hence d̂n in (2.10) always satisfies d̂n(X) = d1 = d(P ), i.e. the risk of d̂n satisfies

P (n)
[
d̂n(X1, . . . , Xn) = d2

]
= 0. (A.46)
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For the case when d = d2, for all P ∈ Pd2
τg ,τ`,KI ,Kv ,Kp

, the risk of d̂n in (2.10) is upper bounded as

P (n)
[
d̂n(X1, . . . , Xn) = d1

]

= P

[ ⋃

σ∈Sn

n−1∑

i=1

|Xσ(i+1) −Xσ(i)| ≤ C
(20)
KI ,Kv ,d1,m

(
1 + τ d1−m

g

)
]

≤
∑

σ∈Sn

P

[
n−1∑

i=1

|Xσ(i+1) −Xσ(i)| ≤ C
(20)
KI ,Kv ,d1,m

(
1 + τ d1−m

g

)
]

= n!P

[
n−1∑

i=1

|Xi+1 −Xi| ≤ C
(20)
KI ,Kv ,d1,m

(
1 + τ d1−m

g

)
]

=
n
(
C

(2,2)
Kp,d1,d2,m

)n−1 (
C

(20)
KI ,Kv ,d1,m

(
1 + τ d1−m

g

)) d2d1 (n−1) (
1 + τ

(d2−m)(n−1)
g

)

(n− 1)

(
d2
d1
−1
)

(n−1)
, (A.47)

where last line is implied by Lemma 19. Therefore, by combining (A.46) and (A.47), the risk is upper
bounded as in (A.45), as

sup
P∈Pdτg,τ`,KI ,Kv,Kp

EP (n)

[
`
(
d̂n, d(P )

)]

≤ 1(d = d2)

n2
d2
d1

(n−1)+1

(
C

(2,2)
Kp,d1,d2,m

(
C

(20)
KI ,Kv ,d1,m

) d2
d1

)n−1(
1 + τ

−
(
d2
d1
m+m−2d2

)
(n−1)

g

)

(n− 1)

(
d2
d1
−1
)

(n−1)

≤ 1(d = d2)
(
C

(21)
KI ,Kp,Kv ,d1,d2,m

)n(
1 + τ

−
(
d2
d1
m+m−2d2

)
n

g

)
n
−
(
d2
d1
−1
)
n
,

for some C(21)
KI ,Kp,Kv ,d1,d2,m

that depends only on KI , Kp, Kv, d1, d2,m.

Proposition 22. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)
m,∞), d1, d2 ∈ N,

with τg ≤ τ` and 1 ≤ d1 < d2 ≤ m. Then

inf
d̂n

sup
P∈P1∪P2

EP (n)

[
`
(
d̂n, d(P )

)]

≤
(
C

(21)
KI ,Kp,Kv ,d1,d2,m

)n(
1 + τ

−
(
d2
d1
m+m−2d2

)
n

g

)
n
−
(
d2
d1
−1
)
n
, (A.48)

where C(21)
KI ,Kp,Kv ,d1,d2,m

is from Proposition 21 and

P1 = Pd1
τg ,τ`,KI ,Kv ,Kp

, P2 = Pd2
τg ,τ`,KI ,Kv ,Kp

.
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Proof of Proposition 22. Applying Proposition 21 to (??) yields

inf
d̂n

sup
P∈Pd1τg,τ`,KI ,Kv,Kp∪P

d2
τg,τ`,KI ,Kv,Kp

EP (n)

[
`
(
d̂n, d(P )

)]

≤ sup
P∈Pd1τg,τ`,KI ,Kv,Kp∪P

d2
τg,τ`,KI ,Kv,Kp

EP (n)

[
`
(
d̂n, d(P )

)]

≤
(
C

(21)
KI ,Kp,Kv ,d1,d2,m

)n(
1 + τ

−
(
d2
d1
m+m−2d2

)
n

g

)
n
−
(
d2
d1
−1
)
n
.

Hence the minimax rate Rn in (2.5) is upper bounded as in (A.48).

A.3 Proofs for Section 2.3
Lemma 23. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], d, ∆d ∈ N, with τg ≤ τ` and
1 ≤ d + ∆d ≤ m. Let M ∈ Md

τg ,τ`,KI ,Kv
be a d-dimensional manifold of global reach ≥ τg, local

reach ≥ τ`, which is embedded in Rm−∆d. Then

M × [−KI , KI ]
∆d ∈Md+∆d

τg ,τ`,KI ,Kv
, (A.49)

which is embedded in Rm.

Proof of Lemma 23. For showing (A.49), we need to show 4 conditions in Definition 15. The other
conditions are rather obvious and the critical condition is (2), i.e. global reach condition and local
reach condition. Showing the local reach condition is almost identical to showing the global reach
condition, so we will focus on the global reach condition. From the definition of reach in Definition
2, we need to show that for all x ∈ Rm with distRm(x,M × [−KI , KI ]

∆d) < τg, x has unique closest
point πM×[−KI ,KI ]∆d(x) on M × [−KI , KI ].

Let x ∈ Rm be satisfying distRm(x,M × [−KI , KI ]
∆d) < τg, and let y ∈M × [−KI , KI ]

∆d. Then
the distance between x and y can be factorized as their distance on first m − ∆d coordinates and last
∆d coordinates,

distRm (x, y)

=

√
distRm−∆d (Π1:m−∆d(x), Π1:m−∆d (y))2 + distR∆d

(
Π(m−∆d+1):m(x), Π(m−∆d+1):m(y)

)2
.

(A.50)

For the first term in (A.50), note that the projection map Π1:m−∆d : Rm → Rm−∆d is a contraction, i.e.
for all x, y ∈ Rm, distRm−∆d(Π1:m−∆d(x), Π1:m−∆d(y)) ≤ distRm(x, y) holds, so Π1:m−∆d(x) is also
within a τg-neighborhood of M = Π1:m−∆d(M × [−KI , KI ]

∆d), i.e.

distRm−∆d (Π1:m−∆d(x), M) = distRm−∆d

(
Π1:m−∆d(x), Π1:m−∆d(M × [−KI , KI ]

∆d)
)

≤ distRm(x, M × [−KI , KI ]
∆d) < τg.

Hence from the definition of the global reach in Definition 2, πM (Π1:m−∆d(x)) ∈ M uniquely exists.
And from Π1:m−∆d(y) ∈M , distance of Π1:m−∆d(x) and Π1:m−∆d (y) is lower bounded by the distance
of Π1:m−∆d(x) and M , i.e.

distRm−∆d (Π1:m−∆d(x), Π1:m−∆d (y)) ≥ distRm−∆d (Π1:m−∆d(x), πM (Π1:m−∆d(x)))

= distRm−∆d (Π1:m−∆d(x), M) , (A.51)
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x

πM×[−KI ,KI ]∆d(x)

Π1:m−∆d

(
πM×[−KI ,KI ]∆d(x)

)
= πM (Π1:m−∆d(x))

Π1:m−∆d(x)

M

2KI

Figure A.3: πM×[−KI ,KI ]∆d(x) satisfies Π1:m−∆d

(
πM×[−KI ,KI ]∆d(x)

)
= πM (Π1:m−∆d(x)).

and equality holds if and only if Π1:m−∆d (y) = πM (Π1:m−∆d(x)).
The second term in (A.50) is trivially lower bounded by 0, i.e.

distR∆d

(
Π(m−∆d+1):m(x), Π(m−∆d+1):m(y)

)
≥ 0, (A.52)

and equality holds if and only if Π(m−∆d+1):m(x) = Π(m−∆d+1):m(y).
Hence by applying (A.51) and (A.52) to (A.50), distRm (x, y) is lower bounded by distance of

Π1:m−∆d(x) and M , i.e.

distRm (x, y)

=

√
distRm−∆d (Π1:m−∆d(x), Π1:m−∆d (y))2 + distR∆d

(
Π(m−∆d+1):m(x), Π(m−∆d+1):m(y)

)2

≥ distRm−∆d (Π1:m−∆d(x), M) ,

and equality holds if and only if Π1:m−∆d (y) = πM (Π1:m−∆d(x)) and Π(m−∆d+1):m(x) = Π(m−∆d+1):m(y),
i.e. when y =

(
πM (Π1:m−∆d(x)) , Π(m−∆d+1):m(x)

)
. Hence x has unique closest point πM×[−KI ,KI ]∆d(x)

on M × [−KI , KI ] as

πM×[−KI ,KI ]∆d(x) =
(
πM (Π1:m−∆d(x)) , Π(m−∆d+1):m(x)

)
,

as in Figure A.3.

Lemma 24. Fix τ` ∈ (0,∞], KI ∈ [1,∞), d1, d2 ∈ N, with 1 ≤ d1 ≤ d2, and suppose τ` < KI . Then
there exist T1, · · · , Tn ⊂ [−KI , KI ]

d2 such that:
(1) The Ti’s are distinct.
(2) For each Ti, there exists an isometry Φi such that

Ti = Φi

(
[−KI , KI ]

d1−1 × [0, a]× BRd2−d1 (0, w)
)
, (A.53)

where c =
⌈
KI+τ`

2τ`

⌉
, a = KI−τ`

(d2−d1+ 1
2)
⌈

n

cd2−d1

⌉ , and w = min

{
τ`,

(d2−d1)2(KI−τ`)2

2τ`(d2−d1+ 1
2)

2
(⌈

n

cd2−d1

⌉
+1
)2

}
.

(3)There exists M : (BRd2−d1 (0, w))n →Md1
τg ,τ`,KI ,Kv

one-to-one such that for each yi ∈ BRd2−d1 (0, w),
1 ≤ i ≤ n, M (y1, . . . , yn)∩Ti = Φi([−KI , KI ]

d1−1× [0, a]×{yi}). Hence for any x1 ∈ T1, . . . , xn ∈
Tn, M ({Π−1

(d1+1):d2
Φ−1
i (xi)}1≤i≤n) passes through x1, . . . , xn.
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T1 T2

T4 T3

T5 T6

T8 T7

w
a

τ`

b

R1 R2 R3

R4R5R6

R7 R8 R9

R10R11R12

A1

A2

A3

2KI

2KI

(a) comparison triangle4p̄kq̄1q̄2 in Hκ`

T1 T2

x4

x1

x6

x2

x3

x5

x7x8

(b) manifold passing through Xi’s

Figure A.4: This figure illustrates the case where d1 = 1 and d2 = 2. shows how Ti, Ri, and Ai’s
are aligned in a zigzag. a shows for given x1 ∈ T1, . . . , xn ∈ Tn (represented as blue points), how
M ({Π−1

(d1+1):d2
Φ−1
i (xi)}1≤i≤n) (represented as a red curve) passes through x1, . . . , xn

.

Proof of Lemma 24. By Lemma 23, we only need to show the case for d1 = 1. This is since for d1 > 1
case, we can build the set of manifolds inMd1

τg ,τ`,KI ,Kv
by forming a Cartesian product of the manifold

with the cube as in Lemma 23.
Let b = 2(d2−d1)(KI−τ`)

(d2−d1+ 1
2)
(⌊

n

cd2−d1

⌋
+1
) , so that

b ≥ 2
√

2wτ` and 2τ` +
⌊ n

cd2−d1

⌋
a+

(⌊ n

cd2−d1

⌋
+ 1
)
b = 2KI .

With such values of a, b, and w, align Ti, Ri, and Ai in a zigzag way, as in Figure A.4.
Then from the definition of Ti, (1) the Ti’s are distinct and (2) for each Ti, there exists an isometry

Φi such that Ti = Φi

(
[−KI , KI ]

d1−1 × [0, a]× BRd2−d1 (0, w)
)
. There exists isometry Ψi such that

Ri = Ψi

(
[−KI , KI ]

d1−1 × [0, b]× BRd2−d1 (0, w)
)

as well. Hence condition (1) and (2) are satisfied.
We are left to define M that satisfies condition (3). Now define a map from a set of points to a

set of manifolds M : (BRd2−d1 (0, w))n → Md1
τg ,τ`,KI ,Kv

as follows. For each yi ∈ BRd2−d1 (0, w), 1 ≤

i ≤ n,
4⋃
i=1

Ai ⊂M (y1, . . . , yn) ⊂
(

4⋃
i=1

Ai

)⋃(⋃
i=1

Ti

)⋃(⋃
i=1

Ri

)
. The intersection of M (y1, . . . , yn)

and Ti is a line segment Φi([−KI , KI ]
d1−1 × [0, a] × {yi}), as in Figure A.4a. Our goal is to make

M (y1, . . . , yn) be C1 and piecewise C2.
See Figure A.5 for construction of intersection of M (y1, . . . , yn) andRi. Given that M (y1, . . . , yn)∩((

4⋃
i=1

Ai

)⋃(⋃
i=1

Ti

))
is determined, two points on M (y1, . . . , yn) ∩ ∂Ri is already determined. By

translation and rotation if necessary, for all p, q with −w ≤ q ≤ p ≤ w, we need to find C2 curve with
reach ≥ τ` that starts from (0, p) ∈ R2, ends at (b, q) ∈ R2, and velocity at each end points are both
parallel to (1, 0) ∈ R2, as in Figure A.5.
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(0, p)

(b, q)

Ri

M(y)

M(y)

(0, p) C1

C2

C3τ`

(0, p− τ`)

(b, q + τ`)

(b, q)

t0

Figure A.5: We need to find C2 curve with local reach ≥ τ` that starts from (0, p) ∈ R2, ends at (b, q),
and velocity at each end points are both parallel to (1, 0). C1 and C2 are arcs of circles of radius Rl,
and C3 is the cotangent segment of two circles.

Let

t0 = cos−1

(
2τ` (2τ` − (p− q)) + b

√
b2 − (p− q) (4τ` − (p− q))

b2 + (2τ` − (p− q))2

)
, (A.54)

and let
C1 = {(0, p− τ`) + τ` (sin t, cos t) | 0 ≤ t ≤ t0} .

Then C1 is an arc of circle of which center is (0, p− τ`), and starts at (0, p) when t = 0 and ends at
(τ` sin t0, p− τ`(1− cos t0)) when t = t0. Also, the normalized velocities of C1 at endpoints are

(1, 0) at (0, p), (cos t0, − sin t0) at (τ` sin t0, p− τ`(1− cos t0)) . (A.55)

Similarly, let
C2 = {(b, q + τ`)− τ` (sin t, cos t) | 0 ≤ t ≤ t0} .

Then C2 is an arc of a circle of whose center is (b, q + τ`), and starts at (b, q) when t = 0 and ends at
(b− τ` sin t0, q + τ` (1− cos t0)) when t = t0. Also, the normalized velocities of C2 at endpoints are

(−1, 0) at (b, q), (− cos t0, sin t0) at (b− τ` sin t0, q + τ` (1− cos t0)) . (A.56)

Let

C3 =
{

(1− s) (τ` sin t0, p− τ`(1− cos t0)) + s (b− τ` sin t0, q + τ` (1− cos t0))

| 0 ≤ s ≤ 1
}
,

so that C3 is a segment joining (τ` sin t0, p− τ`(1− cos t0)) (when s = 0) and (b−τ` sin t0, q+τ`(1−
cos t0)) (when s = 1). Also, its velocity vector is

(b− τ` sin t0, q + τ` (1− cos t0)) for all s ∈ [0, 1]. (A.57)

Then from definition of t0 in (A.54),

cos t0 (q − p+ 2τ` (1− cos t0)) + sin t0 (b− 2τ` sin t0) = 0,
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and this implies that (b− 2τ` sin t0, q − p+ 2τ` (1− cos t0)) is parallel to (cos t0,− sin t0). Hence the
velocity vector ofC3 in (A.57) is parallel to the velocity vector ofC1 in (A.55) at (τ` sin t0, p− τ`(1− cos t0))
and the velocity vector of C2 in (A.56) at (b− τ` sin t0, q + τ`(1− cos t0)), i.e. C3 is cotangent to both
C1 and C2. See Figure A.5.

Now we check whether is of global reach ≥ τ`, which implies both global reach ≥ τg and local
reach ≥ τ` since τg ≤ τ`. From [Aamari et al., 2017, Theorem 3.4], the reach τ(M) of a manifold M
is realized in either the global case or the local case, where the global case refers to that there exists
two points q1, q2 ∈ M with B( q1+q2

2
, τ(M)) ∩ M = ∅, and the local case refers to that there exists

an arc-length parametrized geodesic γ such that ||γ′′(0)||2 = 1
τ(M)

. Now from the construction, any
q1, q2 ∈ M (y1, . . . , yn) with B( q1+q2

2
, τ) ∩M (y1, . . . , yn) = ∅ can only happen when τ ≥ τ`, so it

suffices to check whether any arc-length parametrized geodesics γ satisfies ||γ′′(0)||2 ≤ 1
τ`

. And this is
satisfied since M (y1, . . . , yn) is piecewise either a straight line segment or an arc of a circle of radius
τ`. Hence M (y1, . . . , yn) is of global reach ≥ τ`.

Claim 25. Let T = Sn
n∏
i=1

Ti where the Ti’s are from Lemma 24. Let Q2 be the uniform distribution

on [−KI , KI ]
d2 , and let Pd1

1 be as in (2.13). Then there exists Q1 ∈ co(Pd1
1 ) satisfying that for all

x ∈ intT , there exists rx > 0 such that for all r < rx,

Q1

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)
≥ 2−nQ2

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)
. (A.58)

Proof of Claim 25. Let Q1 be from (A.63) in Proposition 26. By symmetry, we can assume that x ∈
n∏
i=1

Ti, i.e. x1 ∈ T1, . . . , xn ∈ Tn. Choose rx small enough so that B(x, rx) ⊂ intT . Then for all r < rx,

from the definition of Q1 in (A.63),

Q1

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)
=

∫

P1

P (n)

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)
dµ1(P )

=

∫

Cn
Φ(y)(n)

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)
λCn(y)

=

∫

Cn

n∏

i=1

λM (y)

(
B‖·‖Rd2 ,∞(xi, r)

)
λCn(y). (A.59)

Then from condition (3) in Lemma 24, M (y) ∩ Ti = Φi

(
[−KI , KI ]

d1−1 × [0, a]× {yi}
)

holds, hence

M (y) ∩ B‖·‖Rd2 ,∞(xi, r)
{

= Φi

(
B‖·‖Rd1 ,∞

(
Π1:d1(Φ−1

i (xi)), r
)
× {yi}

)
, if

∥∥yi − Π(d1+1):d2(Φ−1
i (xi))

∥∥
Rd2−d1 < r,

⊃ ∅, otherwise.

And hence the volume of M (y) ∩ B‖·‖Rd2 ,∞(xi, r) can be lower bounded as

λM (y)

(
B‖·‖Rd2 ,∞(xi, r)

)
≥ rd1

2Kd1−1
I an

I
(∥∥yi − Π(d1+1):d2(Φ−1

i (xi))
∥∥
Rd2−d1 ,∞ < r

)
.
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By applying this to (A.59), Q1

(
n∏
i=1

B‖·‖Rd2 ,∞(xi, r)

)
can be lower bounded as

Q1

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)

≥
∫

Cn

n∏

i=1

rd1

2KI
d1−1an

I
(∥∥yi − Π(d1+1):d2(Φ−1

i (xi))
∥∥
Rd2−d1 ,∞ < r

)
λCn(y)

=
rd1n

2nK
(d1−1)n
I (an)n

n∏

i=1

∫

C

I
(∥∥yi − Π(d1+1):d2(Φ−1

i (xi))
∥∥
Rd2−d1 ,∞ < r

)
λC(yi)

=
rd1n

2nK
(d1−1)n
I (an)n

(
(2r)d2−d1

wd2−d1ωd2−d1

)n

=
2(d2−d1−1)nrd2n

K
(d1−1)n
I w(d2−d1)n(an)nωnd2−d1

≥ 2(d2−d1−1)nrd2n

Kd2n
I ωnd2−d1

, (A.60)

where the last inequality uses an ≤ cd2−d1KI ≤ K
d2−d1+1
I

τ
d2−d1
`

and w ≤ τ`.

On the other hand, Q2

(
n∏
i=1

B‖·‖Rd2 ,∞(xi, r)

)
=
(

2r
2KI

)d2n

= rd2n

K
d2n
I

, so from this and (A.60), we get

(A.58) as

Q1

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)
≥ 2(d2−d1−1)n

ωnd2−d1

Q2

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)

≥ 2−nQ2

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)
.

Proposition 26. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)
m,∞), d1, d2 ∈ N,

with τg ≤ τ` and 1 ≤ d1 < d2 ≤ m, and suppose that τ` < KI . Then

inf
d̂n

sup
P∈Q

EP (n) [`(d̂n, d(P ))]

≥
(
C

(26)
d1,d2,KI

)n
min

{
τ
−2(d2−d1+1)
` n−2, 1

}(d2−d1)n

, (A.61)

where C(26)
d1,d2,KI

∈ (0,∞) is a constant depending only on d1, d2, and KI and

Q = Pd1
τg ,τ`,KI ,Kv ,Kp

⋃
Pd2
τg ,τ`,KI ,Kv ,Kp

.

Proof of Proposition 26. Let J = [−KI , KI ]
d2 . Let Sn be the permutation group, and Sn y Jn

by coordinate change, i.e. σ ∈ Sn, x ∈ Jn, σx := (xσ(1), . . . , xσ(n)). For any set A ⊂ Jn, let
SnA := {σx ∈ Jn : σ ∈ Sn, x ∈ A}.
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Let Ti be Ti’s from Lemma 24. Let T := Sn
n∏
i=1

Ti, and V :=
n⋃
i=1

Ti = Π1:d2(T ). Intuitively, T is the

set of points x = (x1, . . . , xn) where xi lies on one of the Tj .
Let C = BRd2−d1 (0, w) where w is from Lemma 24, and precisely define a set of d1-dimensional

distribution P1 in (2.13) and a set of d2-dimensional distribution P2 in (2.14) as

P1 = {P ∈ Pd1
τg ,τ`,KI ,Kv ,Kp

: there exists M ∈M (Cn) such that P is uniform on M},
P2 = {λJ} ⊂ Pd2

τg ,τ`,KI ,Kv ,Kp
. (A.62)

Define a map Φ : Cn → P1 by Φ(y1, . . . , yn) = λM (y1,...,yn), i.e. the uniform measure on
M (y1, . . . , yn). Impose a topology and probability measure structure on P1 by the pushforward topol-
ogy and the uniform measure onCn, i.e. P ′ ⊂ P1 is open if and only if Φ−1(P ′) is open inCn, P ′ ⊂ P1

is measurable if and only if Φ−1(P ′) ∈ B(Cn), and µ1(P ′) = λCn(Φ−1(P ′)).
Define a probability measure Q1, Q2 on (Jn,B(Jn)) by

Q1(A) :=

∫

P1

P (n)(A)dµ1(P ) and Q2 = λJn . (A.63)

Fix P ∈ P1, let x = Φ−1(P ). Then P (n)(A) = λ
(n)
M (x)(A) is a measurable function of x and Φ is

a homeomorphism. Hence, p(n)(A) is measurable function and Q1(A) is well defined. Define ν =
Q1 + λJ . Then Q1, Q2 � ν, so there exist densities q1 = dQ1

dν
, q2 = dQ2

dν
with respect to ν.

Then by applying Le Cam’s Lemma (Lemma 1) with θ(P ) = d(P ), P1 and P2 from (A.62), and
Q1 and Q2 in (A.63), the minimax rate inf

d̂n

sup
P∈P1∪P2

EP
[
`(d̂n, d(P ))

]
can be lower bounded as

inf
d̂n

sup
P∈P1∪P2

EP
[
`(d̂n, d(P ))

]
≥ `(d1, d2)

2

∫

Jn
q1(x) ∧ q2(x)dν(x)

=
1

2

∫

Jn
q1(x) ∧ q2(x)dν(x). (A.64)

Then from Claim 25, for all x ∈ intT , there exists rx > 0 s.t. for all r < rx,

Q1

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)
≥ 2−nQ2

(
n∏

i=1

B‖·‖Rd2 ,∞(xi, r)

)
.

Hence q1(x) is lower bounded by q2(x) whenever x ∈ intT as

q1(x) ≥ 2−nq2(x) if x ∈ intT,

and q1(x) ∧ q2(x) is correspondingly lower bounded by q2(x) as

q1(x) ∧ q2(x) ≥ 2−nq2(x)1(x ∈ intT ).

Hence the integration of q1(x) ∧ q2(x) over T is lower bounded as

1

2

∫

T

q1(x) ∧ q2(x)dν(x) ≥ 2−n−1λJn(T ). (A.65)
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Then from a = KI−τ`
(d2−d1+ 1

2)
⌈

n

cd2−d1

⌉ and w = min

{
τ`,

(d2−d1)2(KI−τ`)2

2τ`(d2−d1+ 1
2)

2
(⌈

n

cd2−d1

⌉
+1
)2

}
, λJn(T ) can be

lower bounded as

λJn

(
Sn

n∏

i=1

Ti

)
= n!λJ1(T1)n

= n!

(
(2KI)

d1−1ωd2−d1aw
d2−d1

(2KI)d2

)n

≥
(
C

(26,1)
d1,d2,KI

)n
min

{
τ
−2(d2−d1+1)
` n−2, 1

}(d2−d1)n

, (A.66)

for some constant C(26,1)
d1,d2,KI

that depends only on d1, d2, and KI . Hence by combining (A.64), (A.65),

and (A.66), the minimax rate inf
d̂n

sup
P∈P1∪P2

EP
[
`(d̂n, d(P ))

]
can be lower bounded as

inf
d̂n

sup
P∈P1∪P2

EP
[
`(d̂n, d(P ))

]
≥
(
C

(26)
d1,d2,KI

)n
min

{
τ
−2(d2−d1+1)
` n−2, 1

}(d2−d1)n

,

for some constant C(26)
d1,d2,KI

that depends only on d1, d2, and KI . Then since P1 ⊂ Pd1
τg ,τ`,KI ,Kv ,Kp

and P2 ⊂ Pd2
τg ,τ`,KI ,Kv ,Kp

, the minimax rate Rn in (2.5) can be lower bounded by the minimax rate

inf
d̂n

sup
P∈P1∪P2

EP
[
`(d̂n, d(P ))

]
, i.e.

inf
d̂n

sup
P∈Pd1τg,τ`,KI ,Kv,Kp∪P

d2
τg,τ`,KI ,Kv,Kp

EP [`(d̂n, d(P ))] ≥ inf
d̂n

sup
P∈P1∪P2

EP [`(d̂n, d(P ))],

which completes the proof of showing (A.61).

A.4 Proofs For Section 2.4
Proposition 27. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)

m,∞), with τg ≤ τ`.
Let d̂n be in (2.16). Then:

sup
P∈Pdτg,τ`,KI ,Kv,Kp

EP (n)

[
`
(
d̂n, d(P )

)]
(A.67)

{
= 0, d = 1,

≤
(
C

(27)
KI ,Kp,Kv ,d,m

)n (
1 + τ

−(dm+m−2d)n
g

)
n−

1
d−1

n, d > 1.
(A.68)

where C(27)
KI ,Kp,Kv ,d,m

∈ (0,∞) is a constant depending only on KI , Kp, Kv, d,m.

Proof of Proposition 27. Note that for all P ∈ Pdτg ,τ`,KI ,Kv ,Kp and X1, . . . , Xn ∼ P , by Lemma 20,

min
σ∈Sn

{
n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖dRm
}
≤ C

(20)
KI ,Kv ,d,m

(
1 + τ d−mg

)
,
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hence d̂n in (2.16) always satisfies
d̂n(X) ≤ d = d(P ). (A.69)

Hence when d = 1, the risk of d̂n is 0. When d > 1, from (A.69) and Proposition 22, the risk of d̂n in
(2.16) is upper bounded as

P (n)
[
d̂n(X1, · · · , Xn) 6= d

]

= P (n)

[
max

{
k ∈ [1,m] : min

σ∈Sn

{
n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖kRm
}
≤ C

(20)
KI ,Kv ,d,m

(
1 + τ k−mg

)
}

< d

]
(from (A.69))

≤
d−1∑

k=1

P (n)

[
min
σ∈Sn

{
n−1∑

i=1

‖Xσ(i+1) −Xσ(i)‖kRm
}
≤ C

(20)
KI ,Kv ,k,m

(
1 + τ k−mg

)
]

≤
d−1∑

k=1

(
C

(21)
KI ,Kp,Kv ,k,d,m

)n(
1 + τ

−( dkm+m−2d)n
g

)
n−( dk−1)n (Proposition 22)

≤
(
C

(27)
KI ,Kp,Kv ,d,m

)n (
1 + τ−(dm+m−2d)n

g

)
n−

1
d−1

n,

for some C(27)
KI ,Kp,Kv ,d,m

that depends only on KI , Kp, Kv, d,m. Therefore, the risk is upper bounded as
in (A.67), as

sup
P∈Pdτg,τ`,KI ,Kv,Kp

EP (n)

[
`
(
d̂n, d(P )

)]

{
= 0, d = 1,

≤
(
C

(27)
KI ,Kp,Kv ,d,m

)n (
1 + τ

−(dm+m−2d)n
g

)
n−

1
d−1

n, d > 1.

Proposition 28. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)
m,∞), with τg ≤ τ`.

Then:
inf
d̂n

sup
P∈P

EP (n)

[
`
(
d̂n, d(P )

)]
≤
(
C

(28)
KI ,Kp,Kv ,m

)n (
1 + τ−(m2−m)n

g

)
n−

1
m−1

n (A.70)

where C(28)
KI ,Kp,Kv ,m

∈ (0,∞) is a constant depending only on KI , Kp, Kv,m.

Proof of Proposition 28. Note that (??) still holds when P is as in (2.7). Hence applying Proposition
27 to (??) yields

inf
d̂n

sup
P∈P

EP (n)

[
`
(
d̂n, d(P )

)]

≤ max
1≤d≤n



 sup
P∈Pdτg,τ`,KI ,Kv,Kp

EP (n)

[
`
(
d̂n, d(P )

)]




≤
(
C

(28)
KI ,Kp,Kv ,m

)n(
1 + τ

−(m2−m)n
g

)
n−

1
m−1

n,
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where C(28)
KI ,Kp,Kv ,m

= max
1≤d≤m

C
(27)
KI ,Kp,Kv ,d,m

depends only onKI , Kp, Kv,m. Hence the minimax rateRn

in (2.5) is upper bounded as in (A.70).

Proposition 29. Fix τg, τ` ∈ (0,∞], KI ∈ [1,∞), Kv ∈ (0, 2−m], Kp ∈ [(2KI)
m,∞), with τg ≤ τ`

and and suppose that τ` < KI . Then,

inf
d̂n

sup
P∈P

EP (n) [`(d̂n, d(P ))] ≥
(
C

(29)
KI

)n
min

{
τ−4
` n−2, 1

}n (A.71)

where C(29)
KI
∈ (0,∞) is a constant depending only on KI .

Proof of Proposition 29. For any d1 and d2, from Proposition 26,

inf
d̂n

sup
P∈P

EP (n) [`(d̂n, d(P ))]

≥ inf
d̂n

sup
P∈Pd1τg,τ`,KI ,Kv,Kp∪P

d2
τg,τ`,KI ,Kv,Kp

EP (n) [`(d̂n, d(P ))]

≥
(
C

(26)
d1,d2,KI

)n
min

{
τ
−2(d2−d1+1)
` n−2, 1

}(d2−d1)n

Hence by plugging in d1 = 1 and d2 = 2, the minimax rate Rn in (2.5) is lower bounded as in (A.70),
as

inf
d̂n

sup
P∈P

EP (n) [`(d̂n, d(P ))] ≥
(
C

(29)
KI

)n
min

{
τ−4
` n−2, 1

}n

with C(29)
KI

= C
(26)
d1=1,d2=2,KI

.
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Appendix B

Appendix for Chapter 3

B.1 Some Technical Results on the Model

B.1.1 Metric Properties
This section garners geometric lemmas on embedded manifolds in the Euclidean space that are related
to the reach, and that will be used several times in the proofs.
Proposition 86. Let M ⊂ Rm be a submanifold with reach τM > 0.

(i) For all p ∈M , we let IIp denote the second fundamental form of M at x. Then for all unit vector
v ∈ TpM , ‖IIp(v, v)‖ ≤ 1

τM
.

(ii) The injectivity radius of M is at least πτM .
(iii) The sectional curvatures κ of M satisfy − 2

τ2
M
≤ κ ≤ 1

τ2
M

.

(iv) For all p ∈ M , the map expp :
◦
BTpM (0, πτM) →

◦
BM (0, πτM) is a diffeomorphism. Moreover,

for all ‖v‖ < πτM
2
√

2
and w ∈ TpM ,
(

1− ‖v‖
2

6τ 2
M

)
‖w‖ ≤

∥∥dv expp ·w
∥∥ ≤

(
1 +
‖v‖2

τ 2
M

)
‖w‖

(v) For all p ∈M and r ≤ πτM
2
√

2
, given any Borel set A ⊂ BTpM(0, r) ⊂ TpM we have

(
1− r2

6τ 2
M

)d
Hd(A) ≤ Hd(expp(A)) ≤

(
1 +

r2

τ 2
M

)d
Hd(A).

(vi) Let γ be a geodesic at p ∈ M , and Pt the parallel transport operator along γ. Then for all
t < πτM and v ∈ TpM ,

∠(Pt(v), v) ≤ t

τM
.

Proof of Proposition 86. (i) is stated in Proposition 2.1 in Niyogi et al. [2008], yielding (ii) from Corol-
lary 1.4 in Alexander and Bishop [2006]. (iii) follows using (i) again and the Gauss equation [do Carmo,
1992, p. 130]. (iv) is derived from (iii) by a direct application of Lemma 8 in Dyer et al. [2015]. (v)
follows from (iv) and Lemma 6 in Arias-Castro et al. [2013]. All that remain to be showed is (vi).

For this, assume without loss of generality that ‖v‖ = 1. Let g : [0, t] → Sd−1 be defined by
g(s) = Ps(v). Let u ∈ Rm be a unit vector and denoting by ∇̄ the ambient derivative. We may write

〈g′(s), u〉 =
〈
∇̄γ′(s)Ps(w), u

〉
= 〈II(γ′(s), Ps(w)), u〉 .
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Hence ‖g′(s)‖ ≤ 1
τM

for all s ∈ [0, t]. Since g is a curve on Sd−1, this implies

∠(Pt(v), v) = dSd−1(γ(t), γ(0)) ≤
∫ t

0

‖g′(s)‖ ds ≤ t

τM
.

B.2 Geometry of the Reach
For M ⊂ Rm, a ∈M , and v ∈ Rm a non-zero vector, we define the local directional reach by

τM(a, v) = inf
{
d(x,M)|x ∈Med(M) with x = a+ tv for some t ≥ 0

}
,

with the convention τM(a, v) =∞ if Med(M) ∩ {a+ tv|t ≥ 0} = ∅.
Lemma 87. (i) For x /∈Med(M) ∪M , writing a = πM(x), we have τM(a, x− a) > 0, and for all

b ∈M ,

〈x− a, a− b〉 ≥ −‖a− b‖
2 ‖x− a‖

2τM(a, x− a)
.

(ii) Let 0 < r < q <∞ be fixed. Let x, y /∈Med(M) ∪M be such that d(x,M) ∨ d(y,M) ≤ r and

τM (πM(x), x− πM(x)) ∧ τM (πM(y), y − πM(y)) ≥ q.

Then,
‖πM(x)− πM(y)‖ ≤ q

q − r ‖x− y‖ .

Proof of Lemma 87. The proof of (i) follows that of Theorem 4.8 (7) in Federer [1959]. Let v = x−a
‖x−a‖

and S = {t|πM (a+ tv) = a}. As ‖x− a‖ > 0 belongs to S, supS > 0 and from [Federer, 1959,
Theorem 4.8 (6)] we get supS ≥ τM(a, v). Moreover, for 0 < t ∈ S,

‖a+ tv − b‖ ≥ d(a+ tv,M) = t.

Developing and rearranging the square of previous inequality yields

‖a− b‖2 + 2t 〈v, a− b〉+ t2 ≥ t2,

2t 〈v, a− b〉 ≥ −‖a− b‖2 ,

〈x− a, a− b〉 ≥ −‖a− b‖
2 ‖x− a‖
2t

.

On the other hand, the proof of (ii) follows that of Theorem 4.8 (8) in Federer [1959]. Writing
a = πM(x) and b = πM(y), the previous point yields

〈x− a, a− b〉 ≥ −‖a− b‖
2 r

2q
and 〈y − b, b− a〉 ≥ ‖a− b‖

2 r

2q
.
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As a consequence,

‖x− y‖ ‖a− b‖ ≥ 〈x− y, a− b〉
= 〈(x− a) + (a− b) + (b− y), a− b〉

≥ ‖a− b‖2

(
1− r

q

)
,

hence the result.

Lemma 88. Let M ⊂ Rm be a submanifold with reach τM > 0 having a reach attaining pair (q1, q2) ∈
M2 such that ‖q1 − q2‖ < 2τM . Write z0 ∈Med(M) for the associated axis point. Then there exists a
sequence of curves {γn}n∈N of M joining q1 and q2 with

lim
n→∞

Length(γn) = τM∠(q1 − z0, q2 − z0).

q1 q2

z0

τM

< 2τM

cz0(q1, q2)

hn(t)

γn(t)

r0
n

γ̃(t)

Figure B.1: Layout of the proof of Lemma 88.

Proof of Lemma 88. Without loss of generality, assume that z0 coincides with the origin. Let cz0(q1, q2)
be the circle arc of center z0 with endpoints q1 and q2, and let γ : [−t0, t0]→ cz0(q1, q2) be its arc length
parametrization with γ(−t0) = q1 and γ(t0) = q2. Let θ := ∠(q1 − z0, q2 − z0). Since ‖q1 − z0‖ =

‖q2 − z0‖ = τM , we have t0 = 1
2
τMθ. For all t ∈ [−t0, t0], let rt :=

√
τ 2
M − ‖q1−q2‖

2

4
/ cos

(
t
τM

)
, and

let γ̃ : [−t0, t0] → Rm be γ̃(t) = rt
τM
γ(t). Let us show that for all r ∈ (0, r0] and t ∈ [−t0, t0], the

following holds:
◦
B
(
r

τM
γ(t), r

)
⊂

◦
B (γ̃(t), rt) ⊂

◦
B (q1, τM) ∪

◦
B (q2, τM) . (B.1)

The left-hand side inclusion of (B.1) being straightforward, we turn to the second inclusion. First, note
that by definition,

γ̃(t) =


1

2
−

tan
(

t
τM

)

2 tan
(
t0
τM

)


 q1 +


1

2
+

tan
(

t
τM

)

2 tan
(
t0
τM

)


 q2

111



for all t ∈ [−t0, t0]. Hence,

γ̃(t)− γ̃(0) =
tan
(

t
τM

)

2 tan
(
t0
τM

)(q2 − q1), (B.2)

and from tan
(
t0
τM

)
= ‖q1−q2‖

2r0
, we get ‖γ̃(t)− γ̃(0)‖ = r0 tan

(
t
τM

)
. Now suppose that x ∈

◦
B (γ̃(t), rt),

then
‖x− γ̃(t)‖2 < r2

t . (B.3)

Then,
‖x− γ̃(t)‖2 = ‖x− γ̃(0)‖2 − 2 〈x− γ̃(0), γ̃(t)− γ̃(0)〉+ ‖γ̃(t)− γ̃(0)‖2 ,

and r2
t = r2

0 + r2
0 tan2

(
t
τM

)
= r2

0 + ‖γ̃(t)− γ̃(0)‖2, hence applying these and (B.2) to (B.3) implies

‖x− γ̃(0)‖2 −
tan
(

t
τM

)

tan
(
t0
τM

) 〈x− γ̃(0), q2 − q1〉 < r2
0. (B.4)

Now applying γ̃(−t0) = q1 to (B.2) gives q1 − γ̃(0) = −1
2
(q2 − q1), so

‖x− q1‖2 = ‖x− γ̃(0)‖2 + 2 〈x− γ̃(0), q1 − γ̃(0)〉+ ‖q1 − γ̃(0)‖2

= ‖x− γ̃(0)‖2 − 〈x− γ̃(0), q2 − q1〉+
1

4
‖q1 − q2‖2 .

Similarly,

‖x− q2‖2 = ‖x− γ̃(0)‖2 + 〈x− γ̃(0), q2 − q1〉+
1

4
‖q1 − q2‖2 ,

and hence

min
{
‖x− q1‖2 , ‖x− q2‖2}

= ‖x− γ̃(0)‖2 − |〈x− γ̃(0), q2 − q1〉|+
1

4
‖q1 − q2‖2 . (B.5)

Since
∣∣∣tan

(
t0
τM

)∣∣∣ ≥
∣∣∣tan

(
t
τM

)∣∣∣, applying (B.4) to (B.5) gives

min
{
‖x− q1‖2 , ‖x− q2‖2}

≤ ‖x− γ̃(0)‖2 −
tan
(

t
τM

)

tan
(
t0
τM

) 〈x− γ̃(0), q2 − q1〉+
1

4
‖q1 − q2‖2

< r2
0 +

1

4
‖q1 − q2‖2 = τ 2

M ,

which asserts the second inclusion in (B.1).
Now, by definition of the reach in (1.6),

( ◦
B(q1, τM) ∪

◦
B(q2, τM)

)
∩Med(M) = ∅, hence (B.1)

implies
◦
B
(
r

τM
γ(t), r

)
∩Med(M) = ∅.
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For all n ∈ N, let us now define hn, γn : [−t0, t0]→M by (See Figure B.1),

hn(t) =
r0

nτM
γ (t) and γn(t) = πM (hn(t)) .

Then for any fixed n ∈ N and t1, t2 ∈ [−t0, t0] such that |t1 − t2| < τM , from
◦
B
(
hn(ti),

r0
n

)
∩

Med(M) = ∅, we get

τM (γn(ti), hn(ti)− γn(ti)) ≥ d (hn(ti),M) +
r0

n

≥ d(hn(t1),M) ∧ d(hn(t2),M) +
r0

n
,

and since d(hn(ti),M) ≤ d(hn(t1),M) ∨ d(hn(t2),M), Lemma 87 (ii) yields

‖γn(t1)− γn(t2)‖ = ‖πM(hn(t1))− πM(hn(t2))‖

≤
(
d (hn(t1),M) ∧ d (hn(t2),M) + r0

n

)
‖hn(t1)− hn(t2)‖

d (hn(t1),M) ∧ d (hn(t2),M) + r0
n
− d (hn(t1),M) ∨ d (hn(t2),M)

=
d (hn(t1),M) ∧ d (hn(t2),M) + r0

n
r0
n
− |d(hn(t1),M)− d(hn(t2),M)| ‖hn(t1)− hn(t2)‖ .

Noticing furthermore that

|d(hn(t1),M)− d(hn(t2),M)| ≤ ‖hn(t1)− hn(t2)‖ ≤ r0

nτM
|t1 − t2| ,

and
d(hn(ti),M) ≤ d(z0,M) + ‖hn(ti)− z0‖ ≤ τM +

r0

n
,

we get

‖γn(t1)− γn(t2)‖ ≤ τM + 2 r0
n

r0
n
− r0

nτM
|t1 − t2|

r0

nτM
|t1 − t2|

=
τM + 2 r0

n

τM − |t1 − t2|
|t1 − t2|.

For any fixed k and 0 ≤ j ≤ k, set tk,j = 2j−k
k
t0. The inequality above yields,

k∑

j=1

‖γn(tk,j)− γn(tk,j−1)‖ ≤ τM + 2 r0
n

τM − 2t0
k

2t0,

so

Length(γn) = lim sup
k

k∑

j=1

‖γn(tk,j)− γn(tk,j−1)‖ ≤
(

1 +
2r0

τMn

)
2t0.

Moreover, the γn’s are curves joining q1 to q2 with images γn([−t0, t0]) ⊂ Rm \
◦
B(z0, τM), so that their

lengths are at most that of the arc of great circle cz0(q1, q2), that is

Length (γn) ≥ Length (cz0(q1, q2)) = 2t0.

Hence,
lim
n→∞

Length(γn) = 2t0 = τMθ.
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Lemma 89. Let M be a compact manifold, and q1, q2 ∈ M with q1 6= q2. Let (γn)n∈N be a sequence
of curves on M joining q1 and q2 such that supn Length(γn) < ∞ Then there exists a curve γ on M
joining q1 and q2 such that

lim inf
n→∞

Length(γn) ≤ Length(γ) ≤ lim sup
n→∞

Length(γn).

Proof of Lemma 89. Without loss of generality, we take the γn’s to be arc length parametrized. For all
n ∈ N, we let gn : [0, 1] → M be the reparametrization gn(t) = γn (Length(γn)t) . Notice that for all
t ∈ [0, 1], the set (gn(t))n∈N is contained in the compact set M , so that it is bounded uniformly in t.
Moreover, writing K = supn Length(γn) <∞, we have that for all t1, t2 ∈ [0, 1],

‖gn(t1)− gn(t2)‖ = ‖γn (Length(γn)t1)− γn (Length(γn)t2)‖
≤ Length(γn)|t1 − t2|
≤ K|t1 − t2|.

Hence, the sequence (gn)n∈N is pointwise bounded and equicontinuous. From Arzelà-Ascoli theorem
[Munkres, 1975, Theorem 45.4], there exists a curve γ : [0, 1] → M and subsequence (gni)i∈N con-
verging uniformly to γ.

For any fixed k and 1 ≤ j ≤ k, set tk,j = j/k. The (pointwise) convergence of (gni)i towards γ
ensures that

k−1∑

j=0

‖γ(tk,j+1)− γ(tk,j)‖ = lim
i→∞

k−1∑

j=0

‖gni(tk,j+1)− gni(tk,j)‖ .

Furthermore, from the uniform convergence of (gni)i towards γ on the compact set [0, 1],

Length(γ) = lim
k→∞

k−1∑

j=0

‖γ(tk,j+1)− γ(tk,j)‖

= lim
k→∞

lim
i→∞

k−1∑

j=0

‖gni(tk,j+1)− gni(tk,j)‖

= lim
i→∞

Length(gni) = lim
i→∞

Length(γni),

hence the result.

Proof of Lemma 35. Combining Lemma 88 and Lemma 89 provides the existence of a curve γ ⊂ M

joining q1 and q2 such that Length(γ) = Length(cz0(q1, q2)). But M ⊂ Rm \
◦
B(z0, τM), and since

‖q1 − q2‖ < 2τM , cz0(q1, q2) is the unique minimizing geodesic of ∂B(z0, τM) ⊂ Rm \
◦
B(z0, τM)

joining q1 and q2. Therefore, γ = cz0(q1, q2) ⊂M , hence the result.

Lemma 90. Let M ∈Md,m
τmin,L

be a submanifold with reach τM . For all p ∈M , let us denote

Lp := sup
q∈BM (p,τM/2)
v∈BTqM (0,1)

∥∥γ′′′q,v(0)
∥∥ .

Then for all r ≤ τM/2,
∣∣∣∣∣ sup
v∈TpM,‖v‖=1

∥∥γ′′p,v(0)
∥∥− sup

q∈B(p,r)∩M

2d(q − p, TpM)

‖q − p‖2

∣∣∣∣∣ ≤ 3

(
1

τ 2
M

+ Lp

)
r.
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To prove Lemma 90 we need the following straightforward result.
Lemma 91. Let U be a linear space and u ∈ U , n ∈ U⊥. If v = u+ n+ e, then

|d(v, U)− ‖v − u‖ | ≤ ‖e‖ .

Proof of Lemma 90. First note that for all unit vector v ∈ TpM , γp,v(r) belongs to B(p, r) ∩M and,
whenever 0 < r ≤ τM

2
, Proposition 86 (ii) ensures that γp,v(r) 6= p. Therefore, it suffices to show that

for all q ∈ B(p, r) ∩M , there exists a unit tangent vector v ∈ TpM such that
∣∣∣∣
∥∥γ′′p,v(0)

∥∥− 2d(q − p, TpM)

‖q − p‖2

∣∣∣∣ ≤ 3

(
1

τ 2
M

+ Lp

)
r.

Let q ∈ B(p, r)∩M be different from p. Denoting t = dM(p, q) > 0, we let γ = γp→q be the arc-length
parametrized geodesic of minimal length such that γ(0) = p and γ(t) = q. γ exists from Proposition
86 (ii) since r ≤ τM

2
< πτM . We will show that v = γ′(0) provides the desired bound.

First, a Taylor expansion at zero of γ yields,
∥∥∥∥
q − p
t
− γ′(0)− t

2
γ′′(0)

∥∥∥∥ ≤ Lp
t2

6
.

Since γ′′(0) ∈ TpM⊥, Lemma 91 shows that
∣∣∣∣d
(
q − p
t

, TpM

)
−
∥∥∥∥
q − p
t
− γ′(0)

∥∥∥∥
∣∣∣∣ ≤ Lp

t2

6
.

Therefore,
∣∣∣∣
2

t
d

(
q − p
t

, TpM

)
− ‖γ′′(0)‖

∣∣∣∣

≤ 2

t

(∣∣∣∣d
(
q − p
t

, TpM

)
−
∥∥∥∥
q − p
t
− γ′(0)

∥∥∥∥
∣∣∣∣+

∥∥∥∥
q − p
t
− γ′(0)− t

2
γ′′(0)

∥∥∥∥
)

≤ 2

3
Lpt.

This yields,
∣∣∣∣
2d(q − p, TpM)

‖q − p‖2 − ‖γ′′(0)‖
∣∣∣∣ ≤ 2d(q − p, TpM)

∣∣∣∣
1

dM(p, q)2
− 1

‖q − p‖2

∣∣∣∣+
2

3
Lpt.

Moreover, from ‖q − p‖ ≤ dM(p, q) and Proposition 6.3 in Niyogi et al. [2008], we derive

‖q − p‖2 ≤ dM(p, q)2 ≤ τ 2
M


1−

√
1− 2 ‖q − p‖

τM




2

≤ τ 2
M

(
‖q−p‖
τM

)2

(
1− 2‖q−p‖

τM

)3/2

≤ ‖q − p‖2

1− 3‖q−p‖
τM

,
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where the last two inequalities follow from elementary real analysis arguments. Therefore, we get
t ≤ 2 ‖q − p‖ and ∣∣∣∣

1

dM(p, q)2
− 1

‖q − p‖2

∣∣∣∣ ≤
3

τM ‖q − p‖
.

Finally, using (1.7) we derive,
∣∣∣∣‖γ′′(0)‖ − 2d(q − p, TpM)

‖q − p‖2

∣∣∣∣ ≤ 2d(q − p, TpM)
3

τM ‖q − p‖
+

4

3
Lp ‖q − p‖

≤ 3

τ 2
M

‖q − p‖+
4

3
Lp ‖q − p‖

≤ 3

(
1

τ 2
M

+ Lp

)
r.

Proof of Lemma 36. For r > 0, let ∆r := {(p, q) ∈M2| ‖p− q‖ < r}, and ∆̄ = ∩r>0∆r denote the
diagonal of M2. Consider the map ϕ : M2 \ ∆̄ → R defined by ϕ(p, q) = 2d(q − p, TpM)/‖q − p‖2.
From (1.7), if there exists p 6= q ∈ M such that ϕ(p, q) = τM

−1, then there exists z ∈ Med(M) with
d(z,M) = τM . Hence, for all p 6= q ∈ TpM , ϕ(p, q) < τ−1

M , and by compactness of M2\∆r, we have
supM2\∆r

ϕ < τ−1
M . Since we have the decomposition

1

τM
= sup

(p,q)∈M2\∆̄
ϕ(p, q) = max

{
sup

(p,q)∈M2\∆r

ϕ(p, q), sup
(p,q)∈∆r\∆̄

ϕ(p, q)

}
,

we get sup∆r\∆̄ ϕ = τ−1
M . Moreover, Lemma 90 implies that
∣∣∣∣∣∣∣

sup
p∈M

v∈TpM,‖v‖=1

∥∥γ′′p,v(0)
∥∥− sup

(p,q)∈∆r\∆̄
ϕ(p, q)

∣∣∣∣∣∣∣
≤ 3

(
1

τ 2
M

+ L

)
r

for r > 0 small enough. Letting r go to zero yields

sup
p∈M

v∈TpM,‖v‖=1

∥∥γ′′p,v(0)
∥∥ =

1

τM
.

Finally, the unit tangent bundle T (1)M = {(p, v), p ∈M, v ∈ TpM, ‖v‖ = 1} being compact, there
exists (q0, v0) ∈ T (1)M such that γ0 = γp0,v0 satisfies ‖γ′′0 (0)‖ = τ−1

M , which concludes the proof.

B.3 Analysis of the Estimator

B.3.1 Global Case
To show Proposition 39, we show a stronger result (Proposition 92) that applies to a reach attaining pair
with any size 2λ (see Definition 34), meaning that it is not necessarily a bottleneck.

Proof of Proposition 39. Follows by applying Proposition 92 with λ = τM .
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Proposition 92. Let M ⊂ Rm be a submanifold, and 0 < λ ≤ τM . Assume that M has a reach
attaining pair (q1, q2) ∈ M2 (see Definition 34) with ‖q1 − q2‖ ≥ 2λ. Let X ⊂ M . If there exists
x, y ∈ X with ‖q1 − x‖ < λ and ‖q2 − y‖ < λ, then

0 ≤ 1

τM
− 1

τ̂(X)
≤ 1

τM
− 1

τ̂({x, y}) ≤ CτM ,λ max {dM(q1, x), dM(q2, y)} ,

where CτM ,λ =
2τ2
M+6τMλ+λ2

2τ2
Mλ

2 depends only on the parameters τM , λ, and is a decreasing function of τM
and λ when the other parameter is fixed.

Proof of Proposition 92. The two left hand inequalities are a direct consequence of Corollary 38, let us
then focus on the third one.

Without loss of generality, assume that ‖q1 − q2‖ = 2λ. We set t to be equal to max {dM(q1, x), dM(q2, y)},
and z1 := x+ (q2− q1). We have ‖z1 − x‖ = ‖q2 − q1‖ = 2λ and ‖y − q2‖ , ‖q1 − x‖ ≤ t. Therefore,
from the definition of τ̂ in (3.4) and the fact that the distance function to a linear space is 1-Lipschitz,
we get

1

τ̂({x, y}) ≥
2d(y − x, TxM)

‖y − x‖2

=
2d ((y − q2) + (z1 − x) + (q1 − x), TxM)

‖(y − q2) + (z1 − x) + (q1 − x)‖2

≥ d(z1 − x, TxM)− 2t

2(λ+ t)2
.

Let now θ := ∠(q2 − q1, Tq1M) = minv∈Tq1M ∠(q2 − q1, v). Since z0 ∈ Med(M), with q1, q2 ∈
B(z0, τM) and ‖q1 − q2‖ = 2λ, for any v′ such that v′ ⊥ z0 − q1, we have ∠(q2 − q1, v

′) ≥ π
2
−∠(q2 −

q1, z0 − q1). Hence, sin θ ≥ λ
τM

and cos θ ≤
√
τ2
M−λ2

τM
. Let v1 ∈ Tq1M be any point in Tq1M realizing

this angle, in the sense that ∠(q2 − q1, v1) = ∠(q2 − q1, Tq1M). Then we have

∠(z1 − x, v1) = ∠(q2 − q1, v1) = θ.

Let v̄1 ∈ TxM be the parallel transport of v1 along the geodesic between q1 and x. Since M has reach
τM , Proposition 86 (vi) gives

∠(v1, v̄1) ≤ dM(x, q1)

τM
≤ t

τM
.

Hence the angle ∠(z1 − x, TxM) can be lower bounded as

∠(z1 − x, TxM) ≥ ∠(z1 − x, v̄1)

≥ ∠(z1 − x, v)− ∠(v, v̄1)

≥ θ − t

τM
.

And 0 ≤ λ
τM
− t

τM
≤ θ− t

τM
≤ ∠(z1−x, TxM) ≤ π

2
, so the inequality is preserved by the sine function,
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i.e.

d(z1 − x, TxM) = ‖z1 − x‖ sin(∠(z1 − x, TxM))

≥ 2λ sin

(
θ − t

τM

)

= 2λ

(
sin θ cos

t

τM
− cos θ sin

t

τM

)

=
2λ2

τM
cos

t

τM
− 2λ

√
τ 2
M − λ2

τM
sin

t

τM
.

Combining the previous bounds yields,

1

τM
− 1

τ̂({x, y}) ≤
1

τM
− d(z1 − x, TxM)− 2t

2(λ+ t)2

≤ 1

τM
−

1
τM

cos t
τM
−
√
τ2
M−λ2

τMλ
sin t

τM
− t

λ2

(
1 + t

λ

)2 .

Using again that t < λ ≤ τM , the latter right-hand side term is itself upper bounded by,

1

τM
−
(

1

τM

(
1− t2

2τ 2
M

)
−
√
τ 2
M − λ2

τMλ

t

τM
− t

λ2

)(
1− 2t

λ

)

≤
(

λ

2τ 3
M

+

√
τ 2
M − λ2

τ 2
Mλ

+
1

λ2
+

2

λτM

)
t

=
2τ 3
M + 2λτM

√
τ 2
M − λ2 + 4τ 2

Mλ+ λ3

2τ 3
Mλ

2
t

≤ 2τ 2
M + 6τMλ+ λ2

2τ 2
Mλ

2
t := CτM ,λt,

which is the announced result.

As for Proposition 39, we tackle the proof of Proposition 40 by showing the following stronger one,
Proposition 93 that contains an extra parameter 0 < λ ≤ τM .

Proof of Proposition 40. Follows by applying Proposition 93 with λ = τM .

Proposition 93. Let P ∈ Pd,mτmin,L,fmin
, M = supp(P ) and 0 < λ ≤ τM . Assume that M has a reach

attaining pair (q1, q2) ∈M2 (see Definition 34) with ‖q1 − q2‖ ≥ 2λ. Then

EPn
[∣∣∣∣

1

τM
− 1

τ̂(Xn)

∣∣∣∣
p]
≤ CτM ,λ,fmin,d,pn

− p
d ,

where CτM ,λ,fmin,d,p depends only on τM , λ, fmin d, p, and is a decreasing function of τM and λ when
other parameters are fixed.
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Proof of Proposition 93. Let Q be the distribution on Rm associated to P . Let s < 1
τM

, CτM ,λ =
2τ2
M+6τMλ+λ2

2τ2
Mλ

2 , and t = 1
CτM ,λ

s ≤ 2τM/9. Let ωd := Hd(BRd(0, 1)) be the volume of the d-dimensional
unit ball. Then note that from Proposition 86 (v), for all q ∈M ,

Q (BM(p, t)) ≥ fminHd (BM(p, t))

≥ ωdfmin

(
1−

(
t

6τM

)2
)d

td

≥ ωdfmin

(
728

729

)d
td.

Moreover, Proposition 39 asserts that
∣∣∣ 1
τM
− 1

τ̂(Xn)

∣∣∣ > s implies that either BM(q1, t) ∩ Xn = ∅ or
BM(q2, t) ∩ Xn = ∅. Hence,

P
(∣∣∣∣

1

τM
− 1

τ̂(Xn)

∣∣∣∣ > s

)
≤ P (BM(q1, t) ∩ Xn = ∅) + P (BM(q2, t) ∩ Xn = ∅)

≤ 2

(
1− ωdfmin

(
728

729

)d
td

)n

≤ 2 exp

(
−nωdfmin

(
728

729

)d
C−dτM ,λs

d

)
.

The integration of the above bound gives

EPn
[∣∣∣∣

1

τM
− 1

τ̂(Xn)

∣∣∣∣
p]

=

∫ 1

τ
p
M

0

P
(∣∣∣∣

1

τM
− 1

τ̂(Xn)

∣∣∣∣
p

> s

)
ds

≤ 2

∫ ∞

0

exp

(
−nωdfmin

(
728

729

)d
C−dτM ,λs

d
p

)
ds

=
2
(

729
728

) p
d Cp

τM ,λ

(nωdfmin)
p
d

∫ ∞

0

x
p
d
−1e−xdx

:= CτM ,λ,fmin,d,pn
− p
d .

where CτM ,λ,fmin,d,p depends only on τM , λ, fmin, d, p, and is a decreasing function of τM and λ when
other parameters are fixed.

B.3.2 Local Case
Lemma 94. Let M be a submanifold and p ∈ M . Let v0, v1 ∈ TpM be a unit tangent vector, and let
θ = ∠(v0, v1). Let γp,v be the arc length parametrized geodesic starting from p with velocity v, and
write γi = γp,vifor i = 0, 1. Let κp = maxv∈BTpM (0,1)

∥∥γ′′p,v(0)
∥∥. Then,

‖γ′′1 (0)‖ ≥ ‖γ′′0 (0)‖ −
√

2√
2− 1

sin2 θ (κp + ‖γ′′0 (0)‖)− 1√
2− 1

(κp − ‖γ′′0 (0)‖) , (B.6)
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and

‖γ′′1 (0)‖ ≥ ‖γ′′0 (0)‖ − sin2 θ (κp + ‖γ′′0 (0)‖)

− |cos θ sin θ|κp
√
κp − ‖γ′′0 (0)‖

(
√

2− 1) ‖γ′′0 (0)‖

(
2κp
‖γ′′0 (0)‖ + 1

)
. (B.7)

Proof of Lemma 94. Let w ∈ TpM be a unit vector satisfying w ⊥ v0 and v1 = cos θv0 + sin θw. For
t ∈ R, let v(t) := (cos t)v0 + (sin t)w ∈ TpM , so that v1 = v(θ). Then

∥∥d2
0 expp(v(t), v(t))

∥∥ =
∥∥cos2 td2

0 expp(v0, v0) + 2 cos t sin td2
0 expp(v0, w)

+ sin2 td2
0 expp(w,w)

∥∥
≥ |cos t|

∥∥cos td2
0 expp(v0, v0) + 2 sin td2

0 expp(v0, w)
∥∥

− sin2 t
∥∥d2

0 expp(w,w)
∥∥ . (B.8)

Now, note that when x ∈ [−1, 1],
√

1 + x ≥ 1 + f(x), where f(x) = min{x, (
√

2 − 1)x}. Hence for
any v′, v′′ ∈ TpM ,

‖v′ + v′′‖ =

√
‖v′‖2 + ‖v′′‖2

√
1 +

2 〈v′, v′′〉
‖v′‖2 + ‖v′′‖2

≥
√
‖v′‖2 + ‖v′′‖2

(
1 + f

(
2 〈v′, v′′〉

‖v′‖2 + ‖v′′‖2

))

≥ ‖v′‖+ f


 2 〈v′, v′′〉√
‖v′‖2 + ‖v′′‖2


 .

Applying the latter inequality to (B.8) and using d2
0 expp(v0, v0) = γ′′0 (0) together with

∥∥d2
0 expp(w,w)

∥∥ ≤
κp gives

∥∥d2
0 expp(v(t), v(t))

∥∥
≥ cos2 t

∥∥d2
0 expp(v0, v0)

∥∥− sin2 t
∥∥d2

0 expp(w,w)
∥∥

+ | cos t|f


 4 cos t sin t

〈
d0 expp(v0, v0), d0 expp(v0, w)

〉
√

cos2 t
∥∥d2

0 expp(v0, v0)
∥∥2

+ 4 sin2 t
∥∥d2

0 expp(v0, w)
∥∥2




≥ cos2 t ‖γ′′0 (0)‖ − κp sin2 t

+ | cos t|f


 4 cos t sin t

〈
γ′′0 (0), d0 expp(v0, w)

〉
√

cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t
∥∥d2

0 expp(v0, w)
∥∥2


 .

Now, note that f(x) ≥ −|x| for x ∈ [−1, 1], so applying this with t = θ gives

‖γ′′1 (0)‖ =
∥∥d2

0 expp(v1, v1)
∥∥

≥ cos2 θ ‖γ′′0 (0)‖ − sin2 θκp

− 4
∣∣cos2 θ sin θ

〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣
√

cos2 θ ‖γ′′0 (0)‖2 + 4 sin2 θ
∥∥d2

0 expp(v0, w)
∥∥2
. (B.9)

120



We now focus on the third term of the right-hand side. For this, note that either

t sin t〈γ′′0 (0), d0 expp(v0, w)〉 ≥ 0,

or

cos(−t) sin(−t)〈γ′′0 (0), d0 expp(v0, w)〉 ≥ 0,

so that

κp ≥ max
{∥∥d2

0 expp(v(−t), v(−t))
∥∥ ,
∥∥d2

0 expp(v(t), v(t))
∥∥}

≥ cos2 t ‖γ′′0 (0)‖+
4(
√

2− 1)
∣∣cos2 t sin t

〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣
√

cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t
∥∥d2

0 expp(v0, w)
∥∥2

− sin2 tκp.

As a consequence,
∣∣cos2 t sin t

〈
γ′′0 (0), d0 expp(v0, w)

〉∣∣
√

cos2 t ‖γ′′0 (0)‖2 + 4 sin2 t
∥∥d2

0 expp(v0, w)
∥∥2

≤ 1

4(
√

2− 1)

(
(1 + sin2 t)κp − cos2 t ‖γ′′0 (0)‖

)

=
1

4(
√

2− 1)

(
cos2 t (κp − ‖γ′′0 (0)‖) + 2 sin2 tκp

)
.

First, setting t = θ, we derive

‖γ′′1 (0)‖

≥ cos2 θ ‖γ′′0 (0)‖ −
(

1 +
2√

2− 1

)
sin2 θκp −

1√
2− 1

cos2 θ (κp − ‖γ′′0 (0)‖)

= ‖γ′′0 (0)‖ −
√

2√
2− 1

sin2 θ (κp + ‖γ′′0 (0)‖)− 1√
2− 1

(κp − ‖γ′′0 (0)‖) .

Furthermore, let t0 be defined by sin2 t0 = 1− ‖γ
′′
0 (0)‖
κp

+ ε for ε > 0 small enough. Then

√
cos2 t0 ‖γ′′0 (0)‖2 + 4 sin2 t0

∥∥d2
0 expp(v0, w)

∥∥2 ≤ κp,

yielding
∣∣〈γ′′0 (0), d0 expp(v0, w)

〉∣∣

≤
√
κp

4(
√

2− 1) cos2 t0| sin t0|
(
cos2 t0 (κp − ‖γ′′0 (0)‖) + 2 sin2 t0κp

)

=
κ

3
2
p

4(
√

2− 1)




1− ‖γ
′′
0 (0)‖
κp√

1− ‖γ
′′
0 (0)‖
κp

+ ε

+
2

√
1− ‖γ

′′
0 (0)‖
κp

+ ε

‖γ′′0 (0)‖
κp

− ε


 .
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Sending ε→ 0, we obtain

∣∣〈γ′′0 (0), d0 expp(v0, w)
〉∣∣ ≤ κp

√
κp − ‖γ′′0 (0)‖

4(
√

2− 1)

(
2κp
‖γ′′0 (0)‖ + 1

)
.

Using the previous bound together with

cos2 θ ‖γ′′0 (0)‖2
+ 4 sin2 θ

∥∥d2
0 expp(v0, w)

∥∥2 ≥ |cos θ| ‖γ′′0 (0)‖ ,

we finally obtain

‖γ′′1 (0)‖ ≥ ‖γ′′0 (0)‖ − sin2 θ (κp + ‖γ′′0 (0)‖)

− |cos θ sin θ|κp
√
κp − ‖γ′′0 (0)‖

(
√

2− 1) ‖γ′′0 (0)‖

(
2κp
‖γ′′0 (0)‖ + 1

)
.

Proof of Lemma 41. First note that from Proposition 86 (ii), dM(x, y) < πτM ensures the existence and
uniqueness of the geodesic γx→y. The two left hand inequalities are a direct consequence of Corollary
38. Let us then focus on the third one. Let t0 := dM(x, y), and write γ = γx→y for short. By definition
of τ̂ in (3.4),

1

τ̂({x, y}) ≥
2d(y − x, TxM)

‖y − x‖2 ≥ 2d(y − x, TxM)

t20
. (B.10)

Let Hγ′′(0) := {x+ u ∈ Rm|
〈
u, γ′′x→y(0)

〉
= 0} denote the affine hyperplane with normal vector γ′′(0)

that contain x. Since γ′′(0) ∈ TxM⊥, TxM ⊂ Hγ′′(0). As a consequence,

d (y − x, TxM) ≥ d
(
y − x,Hγ′′(0)

)
=
|〈γ′′(0), y − x〉|
‖γ′′(0)‖ . (B.11)

Using the Taylor expansion of γ at order two, we get

y − x = γ(t0)− γ(0) = t0γ
′(0) +

∫ t0

0

∫ t

0

γ′′(s)dsdt. (B.12)

Since γ is parametrized by arc length, 〈γ′(t), γ′(t)〉 = 1. Differentiating this identity at 0 yields
〈γ′′(0), γ′(0)〉 = 0. In addition, by definition of Md,m

τmin,L
3 M (Definition 30), the geodesic γ sat-

isfies ‖γ′′(s)− γ′′(0)‖ ≤ L|s|. Therefore,

|〈γ′′(0), γ′′(s)〉| = |〈γ′′(0), γ′′(0)〉 − 〈γ′′(0), γ′′(s)− γ′′(0)〉|
≥ ||γ′′(0)||2 − L||γ′′(0)|||s|.

Combining the above bound together with (B.10), (B.11) and (B.12), we derive

1

τ̂({x, y}) ≥ ‖γ
′′(0)‖ − 2

3
Lt0,

which is the announced inequality.
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θx

θ

q0

x

θy
γ′0(0)

γq0→yγq0→x

γx→y

y

Figure B.2: Layout of Lemma 42.

Proof of Lemma 42. For short, in what follows, we let tx := dM(q0, x), ty := dM(q0, y), and θ :=
∠(γ′x→y(0), γ′x→q0(0)) = π − ∠(γ′x→y(0), γ′q0→x(tx)) (see Figure B.2). From (B.6) in Lemma 94,

∥∥γ′′x→y(0)
∥∥ ≥

∥∥γ′′q0→x(tx)
∥∥−

√
2√

2− 1
sin2 θ

(
κx +

∥∥γ′′q0→x(tx)
∥∥)

− 1√
2− 1

(
κx −

∥∥γ′′q0→x(tx)
∥∥)

=

√
2√

2− 1
cos2 θ

∥∥γ′′q0→x(tx)
∥∥−

(
1√

2− 1
+

√
2√

2− 1
sin2 θ

)
κx. (B.13)

We now focus on the term
∥∥γ′′q0→x(tx)

∥∥. Since θx = ∠(γ′0(0), γ′q0→x(0)), applying (B.7) in Lemma 94
yields ∥∥γ′′q0→x(0)

∥∥ ≥ (1− 2 sin2 θx)κq0 ,

and since γ′′q0→x is L-Lipschitz,
∥∥γ′′q0→x(tx)

∥∥ ≥
∥∥γ′′q0→x(0)

∥∥−
∥∥γ′′q0→x(tx)− γ′′q0→x(0)

∥∥
≥ (1− 2 sin2 θx)κq0 − Ltx. (B.14)

Now we focus on bounding the terms sin2 θ and cos2 θ. Let S2
τM

be a d-dimensional sphere of radius
τM . In what follows, for short, ∠abc stands for ∠(γ′b→a(0), γ′b→c(0)). First, let q̃0, x̃, ỹ ∈ S2

τM
be such

that dS2
τM

(q̃0, x̃) = dM(q0, x), dS2
τM

(q̃0, ỹ) = dM(q0, y), and ∠x̃q̃0ỹ = ∠xq0y. Then from Toponogov’s
comparison theorem (see Karcher [1989]), we have dS2

τM
(x̃, ỹ) ≤ dM(x, y). Moreover, the spherical

law of cosines [Berger, 1987, Proposition 18.6.8] yields

cos

(
dS2

τM
(x̃, ỹ)

τM

)
= cos

(
tx
τM

)
cos

(
ty
τM

)
+ sin

(
tx
τM

)
sin

(
ty
τM

)
cos (∠x̃q̃0ỹ) ,

and since tx, ty ≤ π
2

and cos(·) is decreasing on [0, π], we get

ty ≤ dS2
τM

(x̃, ỹ) ≤ dM(x, y).

Now, let q̄0, x̄, ȳ ∈ S2
τM

be such that dS2
τM

(q̄0, x̄) = dM(q0, x), dS2
τM

(q̄0, ȳ) = dM(q0, y), and dS2
τM

(x̄, ȳ) =

dM(x, y). Applying Toponogov’s comparison theorem (see Karcher [1989]), we have ∠q0xy ≤ ∠q̄0x̄ȳ
and ∠xq0y ≤ ∠x̄q̄0ȳ, and from the spherical law of cosines [Berger, 1987, Proposition 18.6.8],

cos (∠q̄0x̄ȳ) =
cos
(
ty
τM

)
− cos

(
tx
τM

)
cos
(
dM (x,y)
τM

)

sin
(
tx
τM

)
sin
(
dM (x,y)
τM

) ≥ 0,
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so that ∠q0xy ≤ ∠q̄0x̄ȳ ≤ π
2
. Also, ∠xq0y ≥ |θx − θy| ≥ π

2
yields π

2
≤ ∠xq0y ≤ ∠x̄q̄0ȳ, and

θ = ∠(γ′x→y(0), γ′q0→x(tx)) = π − ∠q0xy. Hence, applying the spherical law of sines and cosines
[Berger, 1987, Proposition 18.6.8] yields

sin θ = sin(∠q0xy) ≤ sin(∠q̄0x̄ȳ)

=
sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)

√
1−

(
cos
(
tx
τM

)
cos
(
ty
τM

)
+ sin

(
tx
τM

)
sin
(
ty
τM

)
cos(∠x̄q̄0ȳ)

)2

≤
sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)

√
1− cos2

(
tx
τM

)
cos2

(
ty
τM

)

=
sin
(
ty
τM

)
sin(∠x̄q̄0ȳ)

√
sin2

(
ty
τM

)
+ sin2

(
tx
τM

)
cos2

(
ty
τM

)

≤ sin(∠x̄q̄0ȳ) ≤ sin(∠xq0y) ≤ sin(|θx − θy|). (B.15)

And accordingly,

| cos θ| =
√

1− sin2 θ ≥
√

1− sin2(|θx − θy|) = | cos(|θx − θy|)|. (B.16)

Hence, applying (B.14), (B.15), and (B.16) to (B.13) gives

∥∥γ′′x→y(0)
∥∥ ≥

√
2√

2− 1
cos2(|θx − θy|)

(
(1− 2 sin2 θx)κq0 − Ltx

)

−
(

1√
2− 1

+

√
2√

2− 1
sin2(|θx − θy|)

)
κx

=
(
√

2κq0 − κx)√
2− 1

−
√

2√
2− 1

Ltx cos2(θx + θy)

−
√

2√
2− 1

(
(κq0 + κx) sin2(|θx − θy|) + 2κq0 sin2 θx cos2(|θx − θy|)

)

≥ κq0 −
1√

2− 1

(
κx − κq0 +

√
2(3κq0 + κx) sin2(|θx − θy|) +

√
2Ltx

)
.

Proof of Proposition 44. In what follows, we let t0 ≤ τmin

10
,

B1 := expq0

({
v ∈ Tq0M : ‖v‖ ≤ t0, ∠(γ′0(0), v) ≤

√
t0
τmin

})
,

B2 := expq0

({
v ∈ Tq0M : ‖v‖ ≤ t0, ∠(γ′0(0), v) ≥ π −

√
t0
τmin

})
,

and B0 := B1 ∪ B2 (see Figure B.3). Let X ⊂ M , and x, y ∈ X be such that x ∈ B1, y ∈ B2. Writing
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S1

γ′0(0)√
t0
τmin

t0

u0

exp−1q0 (B1)exp−1q0 (B2)

Figure B.3: Layout of the proof of Proposition 44.

θx := ∠(γ′0(0), γ′q0→x(0)) and θy := ∠(γ′0(0), γ′q0→y(0)), then θx ≤
√

t0
τmin
≤ π

4
and θy ≥ π −

√
t0
τmin
≥

3π
4

. Also, dM(q0, x) ≤ t0 and dM(x, y) ≤ 2t0, so that

0 ≤ 1

τM
− 1

τ̂(X)

≤ 4
√

2 sin2(|θx − θy|)
(
√

2− 1)τM
+ L

(
2

3
dM(x, y) +

√
2√

2− 1
dM(q0, x)

)

≤
(

16
√

2

(
√

2− 1)τminτM
+

(7
√

2− 4)L

3(
√

2− 1)

)
t0.

A symmetric argument also applies when x ∈ B2 and y ∈ B1. Now, for any s < 1
τM

, let t0(s) :=(
16
√

2
(
√

2−1)τ2
min

+ (7
√

2−4)L

3(
√

2−1)

)−1

s < τmin

10
. The above argument implies that if

∣∣∣ 1
τM
− 1

τ̂(X)

∣∣∣ > s, then for any
x, y ∈ X ∩B0, one has either x, y ∈ B1 or x, y ∈ B2. Hence,

P
(∣∣∣∣

1

τM
− 1

τ̂(Xn)

∣∣∣∣ > s

)

≤
n∑

m=0

(
n

m

){
P (X1, . . . , Xm ∈M\B0, Xm+1, . . . , Xn ∈ B1)

+ P (X1, . . . , Xm ∈M\B0, Xm+1, . . . , Xn ∈ B2)
}

=
n∑

m=0

(
n

m

){
(1−Q(B0))mQ(B1)n−m + (1−Q(B0))mQ(B2)n−m

}

≤ (1−Q(B2))n + (1−Q(B1))n. (B.17)

Let us derive lower bounds forQ(B1) andQ(B2). For this purpose, let S1 := exp−1
q0

(B1)∩∂BTq0M(0, t0)
(see Figure B.3). Then exp−1

q0
(B1) ⊂ BTq0M(0, t0) is a cone satisfying

Hd
(
exp−1

q0
(B1)

)

Hd
(
BTq0M(0, t0)

) =
Hd−1 (S1)

Hd−1
(
∂BTq0M(0, t0)

) .
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Let ωd := Hd(BRd(0, 1)) and σd := Hd(∂BRd+1(0, 1)) be the volumes of the d-dimensional unit ball and
the unit sphere respectively. Then by homogeneity,Hd

(
BTq0M(0, t0)

)
= ωdt

d
0 andHd−1

(
∂BTq0M(0, t0)

)
=

σd−1t
d−1
0 . To derive a lower bound on Hd−1 (S1), consider u0 := t0γ

′
0(0) ∈ S1. Since τS1 = t0 and

exp−1
u0

(S1) ⊂ BTu0S1

(
0, τ

− 1
2

mint
3
2
0

)
, applying Proposition 86 (v) yields

Hd−1 (S1) ≥
(

1− t0
6τmin

)d−1

Hd−1
(
BTu0S1

(
0, τ

− 1
2

mint
3
2
0

))

≥
(

59

60

)d−1

ωd−1τ
− d−1

2
min t

3d−3
2

0 ,

and hence

Hd−1
(
exp−1

q0
(B1)

)
=
Hd
(
BTq0M(0, t0)

)
Hd−1 (S1)

Hd−1
(
∂BTq0M(0, t0)

)

≥
(

59

60

)d−1
ωd−1

d
τ
− d−1

2
min t

3d−1
2

0 .

Finally, since exp−1
q0

(B1) ⊂ BTq0M(q0,
τM
10

), Proposition 86 (v) yields

Hd (B1) ≥
(

599

600

)d
Hd
(
exp−1

q0
(B1)

)
≥
(

35341

36000

)d
1

d
τ
− d−1

2
min t

3d−1
2

0 ,

and hence,

Q(B1) ≥
(

35341

36000

)d
fmin

d
τ
− d−1

2
min t

3d−1
2

0 ≥ Cτmin,d,L,fmin
s

3d−1
2 .

By symmetry, the same bound holds for Q(B2). Applying these bounds to (B.17) gives

P
(∣∣∣∣

1

τM
− 1

τ̂(Xn)

∣∣∣∣ > s

)
≤ 2

(
1− Cτmin,d,L,fmin

s
3d−1

2

)n

≤ 2 exp
(
−Cτmin,d,L,fmin

ns
3d−1

2

)
.

As a consequence, by integration,

EPn
[∣∣∣∣

1

τ̂(Xn)
− 1

τM

∣∣∣∣
p]

=

∫ 1

τ
p
M

0

P
(∣∣∣∣

1

τ̂(Xn)
− 1

τM

∣∣∣∣
p

> s

)
ds

≤ 2

∫ ∞

0

exp
(
−Cτmin,d,L,fmin

ns
3d−1

2p

)
ds

= 2 (Cτmin,d,L,fmin
n)−

2p
3d−1

∫ ∞

0

x
2p

3d−1 e−xdx

:= Cτmin,d,L,fmin,pn
− 2p

3d−1 .

126



B.4 Minimax Lower Bounds

B.4.1 Stability of the Model With Respect to Diffeomorphisms
To prove Proposition 48, we will use the following result stating that the reach is a stable quantity with
respect to C2-perturbations.
Lemma 95 (Theorem 4.19 in Federer [1959]). Let A ⊂ Rm with τA ≥ τmin > 0 and Φ : Rm −→ Rm

is a C1-diffeomorphism such that Φ,Φ−1, and dΦ are Lipschitz with Lipschitz constants K,N and R
respectively, then

τΦ(A) ≥
τmin

(K +Rτmin)N2
.

Proof of Proposition 48. Let M ′ = Φ (M) be the image of M by the mapping Φ. Since Φ is a
global diffeomorphism, M ′ is a closed submanifold of dimension one. Moreover, Φ is ‖dΦ‖op ≤
(1+‖dΦ− ID‖op)-Lipschitz, Φ−1 is ‖dΦ−1‖op ≤ (1− ‖dΦ− ID‖op)−1-Lipschitz, and dΦ is ‖d2Φ‖op-
Lipschitz. From Lemma 95,

τM ′ ≥
τmin(1− ‖dΦ− ID‖op)2

‖d2Φ‖op τmin + (1 + ‖dΦ− ID‖op)
≥ τmin/2,

where we used that ‖d2Φ‖op τmin ≤ 1/2 and ‖dΦ− ID‖op ≤ 0.1. All that remains to be proved now is
the bound on the third order derivative of the geodesics of M ′. We denote by γ and γ̃ the geodesics of
M and M ′ respectively.

Let p′ = Φ(p) ∈ M ′ and v′ = dpΦ.v ∈ Tp′M
′ be fixed. Since M ∈ Md,m

τmin,L
is a compact

C3-submanifold with geodesics ‖γ′′′(0)‖ ≤ L, M can be parametrized locally by a C3 bijective map
Ψp : BRd(0, ε) → M with Ψp(0) = p. For a smooth curve γ on M nearby p, we let c = (c1, . . . , cd)

t

denote its lift in the coordinates x = Ψ−1
p , that is γ(t) = Ψp ◦ c(t). γ = γp,v is the geodesic of M with

initial conditions p and v if and only if c satisfies the geodesic equations (see do Carmo [1992] p.62).
That is, the second order ordinary differential equation

{
c′′` (t) +

〈
Γ` (c(t)) · c′(t), c′(t)

〉
= 0, (1 ≤ ` ≤ d)

c(0) = 0 and c′(0) = dpx.v,
(B.18)

where Γ` =
(
Γ`i,j
)

1≤i,j≤d are the Christoffel symbols of the C3 chart x, which depends only on x and
its differentials of order 1 and 2. By construction, M ′ is parametrized locally by Ψ′p′ = Φ ◦Ψp yielding
local coordinates y = Ψ′−1

p′ = Ψ−1
p ◦ Φ−1 nearby p′ ∈ M ′. Writing Γ̃` for the Christoffel’s symbols of

M ′, γ̃ is a geodesic of M ′ at p′ if its lift c̃ = Ψ′−1
p′ (γ̃) satisfies (B.18) with Γ` replaced by Γ̃`, and initial

conditions c̃(0) = c and c̃′(0) = dp′y.v
′ = dpx.v. From chain rule, the Γ̃`’s depend on Γ, dΦ, and d2Φ.

Write c′′′(0) − c̃′′′(0) by differentiating (B.18): since c(0) = c̃(0) = 0 and c′′(0) = c̃′′(0), we get
that for ‖ID − dΦ‖op, ‖d2Φ‖op and ‖d3Φ‖op small enough, ‖c′′′(0)− c̃′′′(0)‖ can be made arbitrarily
small. In particular, γ̃′′′(0) gets arbitrarily close to γ′′′(0), so that ‖γ̃′′′(0)‖ ≤ ‖γ′′′(0)‖ + L ≤ 2L,
which concludes the proof.

B.4.2 Lemmas on the Total Variation Distance
Prior to any actual construction, we show this straighforward lemma bounding the total variation be-
tween uniform distribution on manifolds that are perturbations of each other. For M ⊂ Rm, write
λM = 1MHd/Hd(M) for the uniform probability distribution on M .
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Lemma 96. Let M ⊂ Rm be a d-dimensional submanifold and B ⊂ Rm be a Borel set. Let Φ : Rm →
Rm be a global diffeomorphism such that Φ|Bc is the identity map and ‖dΦ− ID‖op ≤ 21/d − 1. Then
Hd(Φ(M)) ≤ 2Hd(M) and TV

(
λM , λΦ(M)

)
≤ 12λM (B).

Proof of Lemma 96. Since Φ is (1 + ‖dΦ− ID‖op)-Lipschitz, Lemma 7 of Arias-Castro et al. [2013]
asserts that

Hd (Φ(M ∩B)) ≤ (1 + ‖dΦ− ID‖op)dHd(M ∩B) ≤ 2Hd(M ∩B).

Therefore,

Hd (Φ(M))−Hd(M) = Hd (Φ(M ∩B))−Hd (M ∩B)

≤ Hd(M ∩B) ≤ Hd(M).

Now, writing4 for the symmetric difference of sets, we have M4Φ(M) = (B∩M)4(B∩Φ(M)) ⊂
(B ∩M) ∪ (B ∩ Φ(M)). Therefore, Lemma 7 in Arias-Castro et al. [2013] yields,

TV
(
λM , λΦ(M)

)
≤ 4
Hd (M4Φ(M))

Hd(M ∪ Φ(M))

≤ 4
Hd (M ∩B) +Hd (Φ(M) ∩B)

Hd(M)

= 4
Hd (M ∩B) +Hd (Φ(M ∩B))

Hd(M)

≤ 12
Hd(M ∩B)

Hd(M)
= 12λM(B).

Let us now tackle the proof of Lemma 47. For this, we will need the following elementary differ-
ential geometry results Lemma 97 and Corollary 98.
Lemma 97. Let g : Rd → Rk be C1 and x ∈ Rd be such that g(x) = 0 and dxg 6= 0. Then there exists
r > 0 such thatHd (g−1(0) ∩ B(x, r)) = 0.

Proof of Lemma 97. Let us prove that for r > 0 small enough, the intersection g−1(0) ∩ B(x, r) is
contained in a submanifold of codimension one of Rd. Writing g = (g1, . . . , gk), assume without loss
of generality that ∂x1g1 6= 0. Since g1 : Rd → R is nonsingular at x, the implicit function theorem
asserts that g−1

1 (0) is a submanifold of dimension d− 1 of Rd in a neighborhood of x ∈ Rd. Therefore,
for r > 0 small enough, g−1

1 (0)∩B(x, r) has d-dimensional Hausdorff measure zero. The result hence
follows, noticing that g−1(0) ⊂ g−1

1 (0).

Corollary 98. Let M,M ′ ⊂ Rm be two compact d-dimensional submanifolds, and x ∈ M ∩M ′. If
TxM 6= TxM

′, there exists r > 0 such that A = M ∩M ′ ∩ B(x, r) satisfies λM(A) = λM ′(A) = 0.

Proof of Corollary 98. Writing k = m − d, we see that up to ambient diffeomorphism — which pre-
serves the nullity of measure — we can assume that locally around x, M ′ coincides with Rd × {0}k
and that M is the graph of a C∞ function g : BRd(0, r

′)→ Rk for r′ > 0 small enough. The assumption
TxM 6= TxM

′ translates to d0g 6= 0, and the previous transformation maps smoothlyM∩M ′∩B(x, r′′)
to g−1(0) ∩ B(0, r′) for r′′ > 0 small enough. We conclude by applying Lemma 97.

We are now in position to prove Lemma 47.
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Proof of Lemma 47. Notice thatQ andQ′ are dominated by the measure µ = 1M∪M ′Hd, with dQ(x) =
f(x)dµ(x) and dQ′(x) = f ′(x)dµ(x), where f, f ′ : Rm → R+ have support M and M ′ respectively.
On the other hand, P and P ′ are dominated by ν(dx dT ) = δ{TxM,TxM ′} (dT )µ (dx) with respective
densities f̄(x, T ) = 1T=TxMf(x) and f̄ ′(x, T ) = 1T=TxM ′f

′(x), where we set arbitrarily TxM = T0

for x /∈M , and TxM ′ = T0 for x /∈M ′. Recalling that f vanishes outside M and f ′ outside M ′,

TV (P, P ′) =
1

2

∫

Rm×Gd,m
|f̄ − f̄ ′|dν

=
1

2

∫

Rm
1TxM=TxM ′|f(x)− f ′(x)|+ 1TxM 6=TxM ′(f(x) + f ′(x))Hd(dx).

From Corollary 98 and a straightforward compactness argument, we derive that

Hd (M ∩M ′ ∩ {x|TxM 6= TxM
′}) = 0.

As a consequence, the above integral expression becomes

TV (P, P ′) =
1

2

∫

Rm
|f − f ′|dHd = TV (Q,Q′),

which concludes the proof.

B.4.3 Construction of the Hypotheses
This section is devoted to the construction of hypotheses that will be used in Le Cam’s lemma (Lemma
46), to derive Proposition 33 and Theorem 50.
Lemma 99. Let R, `, η > 0 be such that ` ≤ R

2
∧
(
21/d − 1

)
and η ≤ `2

2R
. Then there exists

a d-dimensional sphere of radius R that we call M , such that M ∈ Md,m

R, 1
R2

and a global C∞-

diffeomorphism Φ : Rm → Rm such that,

‖dΦ− ID‖op ≤
3η

`
,
∥∥d2Φ

∥∥
op
≤ 23η

`2
,
∥∥d3Φ

∥∥
op
≤ 573η

`3
,

and so that writing M ′ = Φ(M), we haveHd(M ′) ≤ 2Hd(M) = 2σdR
d,

∣∣∣∣
1

τM
− 1

τM ′

∣∣∣∣ ≥
η

`2
, and TV (λM , λM ′) ≤ 12

(
`

R

)d
.

Proof of Lemma 99. LetM ⊂ Rd+1×{0}m−d−1 ⊂ Rm be the sphere of radiusRwith center (0,−R, 0, . . . , 0).
The reach of M is τM = R, and its arc-length parametrized geodesics are arcs of great circles, which
have third derivatives of constant norm ‖γ′′′(t)‖ = 1

R2 . Hence we see that M ∈ Md,m

R, 1
R2

. Let

φ : Rm → R+ be the map defined by φ(x) = exp
( ‖x‖2
‖x‖2−1

)
1‖x‖2<1. φ is a symmetric C∞ map with

support equal to B(0, 1) and elementary real analysis yields φ(0) = 1, ‖dφ‖op ≤ 3, ‖d2φ‖op ≤ 23 and
‖d3φ‖op ≤ 573. Let Φ : Rm → Rm be defined by

Φ(x) = x+ ηφ (x/`) · v,

where v = (0, 1, 0, . . . , 0) is the unit vertical vector. Φ is the identity map on B (0, `)c, and in B (0, `),
Φ translates points on the vertical axis with a magnitude modulated by the weight function φ(x/`).
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θ

Figure B.4: The bumped sphere M ′ of Lemma 99.

From chain rule, ‖dΦ− ID‖op = η ‖dφ‖∞ /` ≤ 3η/` < 1. Therefore, dxΦ is invertible for all x ∈ Rm,
so that Φ is a local C∞-diffeomorphism according to the local inverse function theorem. Moreover,
‖Φ(x)‖ → ∞ as ‖x‖ → ∞, so that Φ is a global C∞-diffeomorphism by Hadamard-Cacciopoli
theorem De Marco et al. [1994]. Similarly, from bounds on differentials of φ we get

∥∥d2Φ
∥∥
op
≤ 23

η

`2
and

∥∥d3Φ
∥∥
op
≤ 573

η

`3
.

Let us now write M ′ = Φ (M) for the image of M by the map Φ (see Figure B.4). Denote by
(Oy) the vertical axis span(v), and notice that since φ is symmetric, M ′ is symmetric with respect
to the vertical axis (Oy). We now bound from above the reach τM ′ of M ′ by showing that the point

x0 =

(
0, R+η/2

1+ `2

2Rη

, 0, . . . , 0

)
belongs to its medial axis Med(M ′) (see (1.5)). For this, write

b = (0, η, 0, . . . , 0), b′ = (0,−2R, 0, . . . , 0),

together with θ = arccos(1− `2/(2R2)), and

x = (R sin θ, R cos θ −R, 0, . . . , 0).

By construction, b, b′ and x belong toM ′. One easily checks that ‖x0 − x‖ < ‖x0 − b‖ and ‖x0 − x‖ <
‖x0 − b′‖, so that neither b nor b′ is the nearest neighbor of x0 on M ′. But x0 ∈ (Oy) which is an axis
of symmetry of M ′, and (Oy) ∩M ′ = {b, b′}. As a consequence, x0 has strictly more than one nearest
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neighbor on M ′. That is, x0 belongs to the medial axis Med(M ′) of M ′. Therefore,

1

τM ′
≥ 1

d (x0,M ′)
≥ 1

‖x0 − x‖
≥ 1

R

∣∣∣∣1− `2

2R2 − 1+ η
2R

1+ `2

2Rη

∣∣∣∣

≥ 1

R

(
1− 1+ η

2R

1+ `2

2Rη

) ≥ 1

R

(
1 +

1 + η
2R

1 + `2

2Rη

)
≥ 1

R
+
η

`2
,

which yields the bound
∣∣∣ 1
τM
− 1

τM′

∣∣∣ =
∣∣∣ 1
R
− 1

τM′

∣∣∣ ≥ η
`2

.

Finally, since M ′ = Φ(M) with ‖dΦ− ID‖op ≤ 21/d − 1 with Φ|B(0,`)c coinciding with the identity
map, Lemma 96 yieldsHd(M ′) ≤ 2Hd(M) = 2σdR

d and

TV (λM , λM ′) ≤ 12λM (B(0, `))

= 12
Hd
(
BSd

(
0, 2 arcsin

(
`

2R

)))

Hd (Sd)

≤ 12

(
`

R

)d
,

which concludes the proof.

Proof of Proposition 49. Apply Lemma 99 with R = 2τmin. Then the sphere M of radius 2τmin be-
longs to Md,m

2τmin,1/(4τ2
min)

. Furthermore, taking η = cd`
3/τ 2

min for cd > 0 and ` > 0 small enough,
Proposition 48 (applied to the unit sphere, yielding cd, and reasoning by homogeneity for the sphere of
radius 2τmin) asserts that M ′ = Φ(M) belongs toMd,m

τmin,1/(2τ2
min)
⊂ Md,m

τmin,L
, since L ≥ 1/(2τ 2

min).
Moreover,

Hd(M ′)−1 ∧Hd(M)−1 ≥
(
2d+1σdτ

d
min

)−1 ≥ fmin,

so that λM , λM ′ ∈ Qd,mτmin,L,fmin , which gives the result.

Let us now prove the minimax inconsistency of the reach estimation for L = ∞, using the same
technique as above.

Proof of Proposition 33. Let M and M ′ be given by Lemma 99 with ` ≤ R
2
∧ (21/d−1), η = `2/(23R)

and R = 2τmin. We have ‖dΦ− ID‖op ≤ 3η/` ≤ 0.1 and ‖d2Φ‖op ≤ 23η/`2 ≤ 1/(2τmin). Since
τM ≥ 2τmin, Lemma 95 yields

τM ′ ≥
τM(1− ‖dΦ− ID‖op)2

‖d2Φ‖op τM + (1 + ‖dΦ− ID‖op)
≥ τmin.

As a consequence,M andM ′ belong toMd,m
τmin,L=∞. Furthermore, since we have fmin ≤

(
2d+1τ dminσd

)−1 ≤
Hd(M)−1 ∧ Hd(M ′)−1, we see that the uniform distributions λM , λM ′ belong to Qd,mτmin,L=∞,fmin . Let
now P, P ′ denote the distributions of Pd,mτmin,L=∞,fmin associated to λM , λM ′ (Definition 32). Lemma 47
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asserts that TV (P, P ′) = TV (λM , λM ′). Applying Lemma 46 to P, P ′, we get that for all n ≥ 1, for `
small enough,

inf
τ̂n

sup
P∈Pd,mτmin,L=∞,fmin

EPn
∣∣∣∣

1

τP
− 1

τ̂n

∣∣∣∣
p

≥ 1

2p

∣∣∣∣
1

τM
− 1

τM ′

∣∣∣∣
p

(1− TV (P, P ′))
n

≥ 1

2p

( η
`2

)p
(

1− 12

(
`

2τmin

)d)n

=
1

2p

(
1

46τmin

)p(
1− 12

(
`

2τmin

)d)n

.

Sending `→ 0 with n ≥ 1 fixed yields the announced result.
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Appendix C

Appendix for Chapter 4

C.1 Topological Preliminaries
The goal of this section is to define an appropriate topology on the cluster tree Tf in Definition 51.
Defining an appropriate topology for the cluster tree Tf is important in Chapter 4 for several reasons:
(1) the topology gives geometric insight for the cluster tree, (2) homeomorphism (topological equiva-
lence) is connected to equivalence in the partial order � in Definition 54, and (3) the topology gives a
justification for using a fixed bandwidth h for constructing confidence set Ĉα as in Lemma 56 to obtain
faster rates of convergence.

We construct the topology of the cluster tree Tf by imposing a topology on the corresponding
collection of connected components {Tf} in Definition 51. For defining a topology on {Tf}, we define
the tree distance function dTf in Definition 100, and impose the metric topology induced from the tree
distance function. Using a distance function for topology not only eases formulating topology but also
enables us to inherit all the good properties of the metric topology.

The desired tree distance function dTf : {Tf} × {Tf} → [0,∞) is based on the merge height
function mf in Definition 52. For later use in the proof, we define the tree distance function dTf on
both X and {Tf} as follows:
Definition 100. Let f : X → [0,∞) be a function, and Tf be its cluster tree in Definition 51. For any
two points x, y ∈ X, the tree distance function dTf : X× X→ [0,∞) of Tf on X is defined as

dTf (x, y) = f(x) + f(y)− 2mf (x, y).

Similarly, for any two clusters C1, C2 ∈ {Tf}, we first define λ1 = sup{λ : C1 ∈ Tf (λ)}, and λ2

analogously. We then define the tree distance function dTf : {Tf} × {Tf} → [0,∞) of Tf on X as:

dTf (C1, C2) = λ1 + λ2 − 2mf (C1, C2).

The tree distance function dTf in Definition 52 is a pseudometric on X and is a metric on {Tf} as
desired, proven in Lemma 101. The proof is given later in Appendix C.5.
Lemma 101. Let f : X → [0,∞) be a function, Tf be its cluster tree in Definition 51, and dTf be its
tree distance function in Definition 100. Then dTf on X is a pseudometric and dTf on {Tf} is a metric.

From the metric dTf on {Tf} in Definition 100, we impose the induced metric topology on {Tf}.
We say Tf is homeomorphic to Tg, or Tf ∼= Tg, when their corresponding collection of connected
components are homeomorphic, i.e. {Tf} ∼= {Tg}. (Two spaces are homeomorphic if there exists a
bijective continuous function between them, with a continuous inverse.)
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To get some geometric understanding of the cluster tree in Definition 51, we identify edges that
constitute the cluster tree. Intuitively, edges correspond to either leaves or internal branches. An edge
is roughly defined as a set of clusters whose inclusion relationship with respect to clusters outside
an edge are equivalent, so that when the collection of connected components is divided into edges, we
observe the same inclusion relationship between representative clusters whenever any cluster is selected
as a representative for each edge.

For formally defining edges, we define an interval in the cluster tree and the equivalence relation
in the cluster tree. For any two clusters A,B ∈ {Tf}, the interval [A,B] ⊂ {Tf} is defined as a set
clusters that contain A and are contained in B, i.e.

[A,B] := {C ∈ {Tf} : A ⊂ C ⊂ B} ,

The equivalence relation ∼ is defined as A ∼ B if and only if their inclusion relationship with respect
to clusters outside [A,B] and [B,A], i.e.

A ∼ B if and only if
for all C ∈ {Tf} such that C /∈ [A,B] ∪ [B,A], C ⊂ A iff C ⊂ B and A ⊂ C iff B ⊂ C.

Then it is easy to see that the relation ∼ is reflexive(A ∼ A), symmetric(A ∼ B implies B ∼ A),
and transitive (A ∼ B and B ∼ C implies A ∼ C). Hence the relation ∼ is indeed an equivalence
relation, and we can consider the set of equivalence classes {Tf}/∼. We define the edge set E(Tf ) as
E(Tf ) := {Tf}/∼.

For later use, we define the partial order on the edge set E(Tf )) as follows: [C1] ≤ [C2] if and only
if for all A ∈ [C1] and B ∈ [C2], A ⊂ B. We say that a tree Tf is finite if its edge E(Tf ) is a finite set.

C.2 The Partial Order
As discussed in Section 4.1, to see that the partial order � in Definition 54 is indeed a partial order, we
need to check the reflexivity, the transitivity, and the antisymmetry. The reflexivity and the transitivity
are easier to check, but to show antisymmetric, we need to show that if two trees Tf and Tg satisfies
Tf � Tg and Tg � Tf , then Tf and Tg are equivalent in some sense. And we give the equivalence
relation as the topology on the cluster tree defined in Appendix C.1. The argument is formally stated in
Lemma 102. The proof is done later in Appendix C.5.
Lemma 102. Let f, g : X → [0,∞) be functions, and Tf , Tg be their cluster trees in Definition 51.
Then if f, g are continuous and Tf , Tg are finite, Tf � Tg and Tg � Tf implies that there exists a
homeomorphism Φ : {Tf} → {Tg} that preserves the root, i.e. Φ(X) = X. Conversely, if there exists a
homeomorphism Φ : {Tf} → {Tg} that preserves the root, Tf � Tg and Tg � Tf hold.

The partial order � in Definition 54 gives a formal definition of simplicity of trees, and it is used
to justify pruning schemes in Section 4.3.2. Hence it is important to match the partial order � with
the intuitive notions of the complexity of the tree. We provided three arguments in Section 4.1: (1) if
Tf � Tg holds then it must be the case that (number of edges of Tf ) ≤ (number of edges of Tg), (2) if
Tg can be obtained from Tf by adding edges, then Tf � Tg holds, and (3) the existence of a topology
preserving embedding from {Tf} to {Tg} implies the relationship Tf � Tg. We formally state each
item in Lemma 103, 104, and 105. Proofs of these lemmas are done later in Appendix C.5.
Lemma 103. Let f, g : X → [0,∞) be functions, and Tf , Tg be their cluster trees in Definition
51. Suppose Tf � Tg via Φ : {Tf} → {Tg}. Define Φ̄ : E(Tf ) → E(Tg) by for [C] ∈ E(Tf )
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choosing any C ∈ [C] and defining as Φ̄([C]) = [Φ(C)]. Then Φ̄ is injective, and as a consequence,
|E(Tf )| ≤ |E(Tg)|.
Lemma 104. Let f, g : X → [0,∞) be functions, and Tf , Tg be their cluster trees in Definition 51. If
Tg can be obtained from Tf by adding edges, then Tf � Tg holds.
Lemma 105. Let f, g : X → [0,∞) be functions, and Tf , Tg be their cluster trees in Definition 51. If
there exists a one-to-one map Φ : {Tf} → {Tg} that is a homeomorphism between {Tf} and Φ({Tf})
and preserves the root, i.e. Φ(X) = X, then Tf � Tg holds.

C.3 Hadamard Differentiability
Definition 106 (see page 281 of Wellner [2013]). Let D and E be normed spaces and let φ : Dφ → E be
a map defined on a subset Dφ ⊂ D. Then φ is Hadamard differentiable at θ if there exists a continuous,
linear map φ′θ : D→ E such that

∥∥∥∥
φ(θ + tqt)− φ(θ)

t
− φ′θ(h)

∥∥∥∥
E
→ 0

as t→ 0, for every qt → q.
Hadamard differentiability is a key property for bootstrap inference since it is a sufficient condition

for the delta method; for more details, see section 3.1 of Wellner [2013]. Recall that dMM is based on
the function dTp(x, y) = p(x) + p(y)− 2mp(x, y). The following theorem shows that the function dTp
is not Hadamard differentiable for some pairs (x, y). In our case D is the set of continuous functions on
the sample space, E is the real line, θ = p, φ(p) is dTp(x, y) and the norm on E is the usual Euclidean
norm.
Theorem 107. Let B(x) be the smallest set B ∈ Tp such that x ∈ B. dTp(x, y) is not Hadamard
differentiable for x 6= y when one of the following two scenarios occurs:

(i) min{p(x), p(y)} = p(c) for some critical point c.
(ii) B(x) = B(y) and p(x) = p(y).

The merge distortion metric dM is also not Hadamard differentiable.

C.4 Confidence Sets Constructions

C.4.1 Regularity conditions on the kernel
To apply the results in Chernozhukov et al. [2016] which imply that the bootstrap confidence set is
consistent, we consider the following two assumptions.

(K1) The kernel function K has the bounded second derivative and is symmetric, non-negative, and
∫
x2K(x)dx <∞,

∫
K(x)2dx <∞.

(K2) The kernel function K satisfies

K =

{
y 7→ K

(
x− y
h

)
: x ∈ Rd, h > 0

}
. (C.1)
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We require that K satisfies

sup
P
N
(
K, L2(P ), ε‖F‖L2(P )

)
≤
(
A

ε

)v
(C.2)

for some positive numbersA and v, whereN(T, d, ε) denotes the ε-covering number of the metric
space (T, d), F is the envelope function of K, and the supremum is taken over the whole Rd. The
A and v are usually called the VC characteristics of K. The norm ‖F‖2

L2(P ) =
∫
|F (x)|2dP (x).

Assumption (K1) is to ensure that the variance of the KDE is bounded and ph has the bounded
second derivative. This assumption is very common in statistical literature, see e.g. Wasserman [2006],
Scott [2015]. Assumption (K2) is to regularize the complexity of the kernel function so that the supre-
mum norm for kernel functions and their derivatives can be bounded in probability. A similar assump-
tion appears in Einmahl and Mason [2005] and Genovese et al. [2014]. The Gaussian kernel and most
compactly supported kernels satisfy both assumptions.

C.4.2 Pruning
The goal of this section is to formally define the pruning scheme in Section 4.3.2. Note that when
pruning leaves and internal branches, when the cumulative length is computed for each leaf and internal
branch, then the pruning process can be done at once. We provide two pruning schemes in Section 4.3.2
in a unifying framework by defining an appropriate notion of lifetime for each edge, and deleting all
insignificant edges with small lifetimes. To follow the pruning schemes in Section 4.3.2, we require
that the lifetime of a child edge is shorter than the lifetime of a parent edge, so that we can delete edges
from the top. We evaluate the lifetime of each edge by an appropriate nonnegative (possibly infinite)
function life. We formally define the pruned tree Prunedlife,t̂α(T̂h) as follows:
Definition 108. Suppose the function life : E(T̂h)→ [0,+∞] satisfies that [C1] ≤ [C2] =⇒ life([C1]) ⊂
life([C2]). We define the pruned tree Prunedlife,t̂α(T̂h) : R→ 2X as

Prunedlife,t̂α(T̂h)(λ) =
{
C ∈ T̂h(λ− t̂α) : life([C]) > t̂α

}
.

We suggest two life functions corresponding to two pruning schemes in Section 4.3.2. We first need
several definitions. For any [C] ∈ E(T̂h), define its level as

level([C]) :=
{
λ : there exists A ∈ [C] ∩ T̂h(λ)

}
,

and define its cumulative level as

cumlevel([C]) :=
{
λ : there exists A ∈ T̂h(λ), B ∈ [C] such that A ⊂ B

}
.

Then lifeleaf corresponds to first pruning scheme in Section 4.3.2, which is to prune out only insignifi-
cant leaves.

lifeleaf ([C]) =

{
sup{level([C])} − inf{level([C])} if inf{level([C])} 6= inf {cumlevel([C])}
+∞ otherwise.

.

And lifetop corresponds to second pruning scheme in Section 4.3.2, which is to prune out insignificant
edges from the top.

lifetop([C]) = sup{cumlevel([C])} − inf {cumlevel([C])} .
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Note that lifeleaf is lower bounded by lifetop. In fact, for any life function that is lower bounded
by lifetop, the pruned tree Prunedlife,t̂α is a valid tree in the confidence set Ĉα that is simpler than
the original estimate T̂h, so that the pruned tree is the desired tree as discussed in Section 4.3.2. We
formally state as follows. The proof is given in Appendix C.7.
Lemma 109. Suppose that the life function satisfies: for all [C] ∈ E(T̂h), lifetop([C]) ≤ life([C]). Then

(i) Prunedlife,t̂α(T̂h) � Tp̂h .
(ii) there exists a function p̃ such that Tp̃ = Prunedlife,t̂α(T̂h).

(iii) p̃ in (ii) satisfies p̃ ∈ Ĉα.
Remark: It can be shown that complete pruning — simultaneously removing all leaves and branches

with length less than 2t̂α — can in general yield a tree that is outside the confidence set. For example,
see Figure 4.3. If we do complete pruning to this tree, we will get the trivial tree.

C.5 Proofs for Appendix C.1 and C.2

C.5.1 Proof of Lemma 101
Lemma 101. Let f : X → [0,∞) be a function, Tf be its cluster tree in Definition 51, and dTf be its
tree distance function in Definition 100. Then dTf on X is a pseudometric and dTf on Tf is a metric.

Proof. First, we show that dTf on X is a pseudometric. To do this, we need to show non-negativity(dTf (x, y) ≥
0), x = y implying dTf (x, y) = 0, symmetry(dTf (x, y) = dTf (y, x)), and subadditivity(dTf (x, y) +
dTf (y, z) ≤ dTf (x, z)).

For non-negativity, note that for all x, y ∈ X, mf (x, y) ≤ min {f(x), f(y)}, so

dTf (x, y) = f(x) + f(y)− 2mf (x, y) ≥ 0. (C.3)

For x = y implying dTf (x, y) = 0, x = y implies mf (x, y) = f(x) = f(y), so

x = y =⇒ dTf (x, y) = 0. (C.4)

For symmetry, since mf (x, y) = mf (y, x),

dTf (x, y) = dTf (y, x). (C.5)

For subadditivity, note first that mf (x, y) ≤ f(y) and mf (y, z) ≤ f(y) holds, so

max {mf (x, y), mf (y, z)} ≤ f(y). (C.6)

And also note that there exists Cxy, Cyz ∈ Tf (min {mf (x, y), mf (y, z)}) that satisfies x, y ∈ Cxy and
y, z ⊂ Cyz. Then y ∈ Cxy ∩ Cyz 6= ∅, so x, z ∈ Cxy = Cyz. Then from definition of mf (x, z), this
implies that

min {mf (x, y), mf (y, z)} ≤ mf (x, z). (C.7)

And by applying (C.6) and (C.7), dTf (x, y) + dTf (y, z) is upper bounded by dTf (x, z) as

dTf (x, y) + dTf (y, z)

= f(x) + f(y)− 2mf (x, y) + f(y) + f(z)− 2mf (y, z)

= f(x) + f(z)− 2 (min {mf (x, y), mf (y, z)}+ max {mf (x, y), mf (y, z)} − f(y))

≥ f(x) + f(z)− 2mf (x, z)

= dTf (x, z). (C.8)
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Hence (C.3), (C.4), (C.5), and (C.8) implies that dTf on X is a pseudometric.
Second, we show that dTf on Tf is a metric. To do this, we need to show non-negativity(dTf (x, y) ≥

0), identity of indiscernibles(x = y ⇐⇒ dTf (x, y) = 0), symmetry(dTf (x, y) = dTf (y, x)), and
subadditivity(dTf (x, y) + dTf (y, z) ≤ dTf (x, z)).

For nonnegativity, note that if C1 ∈ Tf (λ1) and C2 ∈ Tf (λ2), then mf (C1, C2) ≤ min{λ1, λ2}, so

dTf (C1, C2) = λ1 + λ2 − 2mf (C1, C2) ≥ 0. (C.9)

For identity of indiscernibles, C1 = C2 implies mf (C1, C2) = λ1 = λ2, so

C1 = C2 =⇒ dTf (C1, C2) = 0. (C.10)

And conversely, dTf (C1, C2) = 0 implies λ1 = λ2 = mf (C1, C2), so there exists C ∈ Tf (λ1) such that
C1 ⊂ C and C2 ⊂ C. Then since C1, C2, C ∈ Tf (λ1), so C1 ∩ C 6= ∅ implies C1 = C and similarly
C2 = C, so

dTf (C1, C2) = 0 =⇒ C1 = C2. (C.11)

Hence (C.10) and (C.11) implies identity of indiscernibles as

C1 = C2 ⇐⇒ dTf (C1, C2) = 0. (C.12)

For symmetry, since mf (C1, C2) = mf (C2, C1),

dTf (C1, C2) = dTf (C2, C1). (C.13)

For subadditivity, note that mf (C1, C2) ≤ λ2 and mf (C2, C3) ≤ λ2 holds, so

max {mf (C1, C2), mf (C2, C3)} ≤ λ2. (C.14)

And also note that there exists C12, C23 ∈ Tf (min {mf (C1, C2), mf (C2, C3)}) that satisfies C1, C2 ⊂
C12 and C2, C3 ⊂ C23. Then C2 ⊂ C12 ∩ C23 6= ∅, so C1, C3 ∈ C12 = C23. Then from definition of
mf (C1, C3), this implies that

min {mf (C1, C2), mf (C2, C3)} ≤ mf (C1, C3). (C.15)

And by applying (C.14) and (C.15), dTf (C1, C2) + dTf (C2, C3) is upper bounded by dTf (C1, C3) as

dTf (C1, C2) + dTf (C2, C3)

= λ1 + λ2 − 2mf (C1, C2) + λ2 + λ3 − 2mf (C2, C3)

= λ1 + λ3 − 2 (min {mf (C1, C2), mf (C2, C3)}+ max {mf (C1, C2), mf (C2, C3)} − λ2)

≥ λ1 + λ3 − 2mf (C1, C3)

= dTf (C1, C3). (C.16)

Hence (C.9), (C.12), (C.13), and (C.16) dTf on Tf is a metric.
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C.5.2 Proof of Lemma 102
Lemma 102. Let f, g : X → [0,∞) be functions, and Tf , Tg be their cluster trees in Definition 51.
Then if f, g are continuous and Tf , Tg are finite, Tf � Tg and Tg � Tf implies that there exists a
homeomorphism Φ : Tf → Tg that preserves the root, i.e. Φ(X) = X. Conversely, if there exists a
homeomorphism Φ : Tf → Tg that preserves the root, Tf � Tg and Tg � Tf hold.

Proof. First, we show that Tf � Tg and Tg � Tf implies homeomorphism. Let Φ : Tf → Tg be the
map that gives the partial order Tf � Tg in Definition 54. Then from Lemma 103, Φ̄ : E(Tf )→ E(Tg)
is injective and |E(Tf )| ≤ |E(Tg)|. With a similar argument, |E(Tg)| ≤ |E(Tf )| holds, so

|E(Tf )| = |E(Tg)|.

Since we assumed that Tf and Tg are finite, i.e. |E(Tf )| and |E(Tg)| are finite, Φ̄ becomes a bijection.
Now, let [C1] and [C2] be adjacent edges in E(Tf ), and without loss of generality, assume C1 ⊂ C2.

We argue below that Φ̄([C1]) and Φ̄([C2]) are also adjacent edges. Then Φ(C1) ⊂ Φ(C2) holds from
Definition 54, and since Φ̄ is bijective, [Φ(C1)] = Φ̄([C1]) and [Φ(C2)] = Φ̄([C2]) holds. Suppose
there exists C̃3 ∈ Tg such that [C̃3] /∈ {Φ̄([C1]), Φ̄([C2])} and Φ(C1) ⊂ C̃3 ⊂ Φ(C2). Then since Φ̄
is bijective, there exists C3 ∈ Tf such that [Φ(C3)] = [C̃3]. Then Φ(C1) ⊂ C̃3 ⊂ Φ(C2) implies that
C1 ⊂ C3 ⊂ C2, and Φ̄ being a bijection implies that [C3] /∈ {[C1], [C3]}. This is a contradiction since
[C1] and [C2] are adjacent edges. Hence there is no such C̃3, and Φ̄([C1]) and Φ̄([C2]) are adjacent
edges. Therefore, Φ̄ : E(Tf ) → E(Tg) is a bijective map that sends adjacent edges to adjacent edges,
and also sends root edge to root edge.

Then combining Φ̄ : E(Tf )→ E(Tg) being bijective sending adjacent edges to adjacent edges and
root edge to root edge, and f, g being continuous, the map Φ̄ : E(Tf ) → E(Tg) can be extended to a
homeomorphism Tg → Tf that preserves the root.

Second, the part that homeomorphism implies Tf � Tg and Tg � Tf follows by Lemma 105.

C.5.3 Proof of Lemma 103
Lemma 103. Let f, g : X → [0,∞) be functions, and Tf , Tg be their cluster trees in Definition 51.
Suppose Tf � Tg via Φ : Tf → Tg. Define Φ̄ : E(Tf )→ E(Tg) by for [C] ∈ E(Tf ) choosing any C ∈
[C] and defining as Φ̄([C]) = [Φ(C)]. Then Φ̄ is injective, and as a consequence, |E(Tf )| ≤ |E(Tg)|.

Proof. We will first show that equivalence relation on Tg implies equivalence relation on Tf , i.e.

Φ(C1) ∼ Φ(C2) =⇒ C1 ∼ C2. (C.17)

Suppose Φ(C1) ∼ Φ(C2) in Tg. Then from Definition 54 of Φ, for any C ∈ Tf such that C /∈ [C1, C2]∪
[C2, C1], Φ(C) /∈ [Φ(C1),Φ(C2)] ∪ [Φ(C2),Φ(C1)] holds. Then from definition of Φ(C1) ∼ Φ(C2),

Φ(C) ⊂ Φ(C1) iff Φ(C) ⊂ Φ(C2) and Φ(C1) ⊂ Φ(C) iff Φ(C2) ⊂ Φ(C).

Then again from Definition 54 of Φ, equivalence relation holds for C1 and C2 holds as well, i.e.

C ⊂ C1 iff C ⊂ C2 and C1 ⊂ C iff C2 ⊂ C.
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Hence (C.17) is shown, and this implies that

Φ̄([C1]) = Φ̄([C2]) =⇒ [Φ(C1)] = [Φ(C2)]

=⇒ Φ(C1) ∼ Φ(C2)

=⇒ C1 ∼ C2

=⇒ [C1] = [C2],

so Φ̄ is injective.

C.5.4 Proof of Lemma 104
Lemma 104. Let f, g : X → [0,∞) be functions, and Tf , Tg be their cluster trees in Definition 51. If
Tg can be obtained from Tf by adding edges, then Tf � Tg holds.

Proof. Since Tg can be obtained from Tf by adding edges, there is a map Φ : Tf → Tg which preserves
order, i.e. C1 ⊂ C2 if and only if Φ(C1) ⊂ Φ(C2). Hence Tf � Tg holds.

C.5.5 Proof of Lemma 105
Lemma 105. Let f, g : X → [0,∞) be functions, and Tf , Tg be their cluster trees in Definition 51.
If there exists a one-to-one map Φ : Tf → Tg that is a homeomorphism between Tf and Φ(Tf ) and
preserves root, i.e. Φ(X) = X, then Tf � Tg holds.

Proof. For any C ∈ Tf , note that [C,X] ⊂ Tf is homeomorphic to an interval, hence Φ([C,X]) ⊂ Tg
is also homeomorphic to an interval. Since Tg is topologically a tree, an interval in a tree with fixed
boundary points is uniquely determined, i.e.

Φ([C,X]) = [Φ(C),Φ(X)] = [Φ(C),X]. (C.18)

For showing Tf � Tg, we need to argue that for all C1, C2 ∈ Tf , C1 ⊂ C2 holds if and only if
Φ(C1) ⊂ Φ(C2). For only if direction, suppose C1 ⊂ C2. Then C2 ∈ [C1,X], so Definition 54 and
(C.18) implies

Φ(C2) ⊂ Φ([C1,X]) = [Φ(C1),X].

And this implies
Φ(C1) ⊂ Φ(C2). (C.19)

For if direction, suppose Φ(C1) ⊂ Φ(C2). Then since Φ−1 : Φ(Tf ) → Tf is also an homeomorphism
with Φ−1(X) = X, hence by repeating above argument, we have

C1 = Φ−1(Φ(C1)) ⊂ Φ−1(Φ(C2)) = C2. (C.20)

Hence (C.19) and (C.20) implies Tf � Tg.
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C.6 Proofs for Section 4.2 and Appendix C.3

C.6.1 Proof of Lemma 55 and extreme cases
Lemma 55. For any densities p and q, the following relationships hold:

(i) When p and q are continuous, then d∞(Tp, Tq) = dM(Tp, Tq).

(ii) dMM(Tp, Tq) ≤ 4d∞(Tp, Tq).

(iii) dMM(Tp, Tq) ≥ d∞(Tp, Tq)− a, where a is defined as above. Additionally when µ(X) =∞, then
dMM(Tp, Tq) ≥ d∞(Tp, Tq).

Proof. (i)
First, we show dM(Tp, Tq) ≤ d∞(Tp, Tq). Note that this part is implicitly shown in Eldridge et al.

[2015b, Proof of Theorem 6]. For all ε > 0 and for any x, y ∈ X, let C0 ∈ Tp(mp(x, y) − ε) with
x, y ∈ C0. Then for all z ∈ C0, q(z) is lower bounded as

q(z) > p(z)− d∞(Tp, Tq)

≥ mp(x, y)− ε− d∞(Tp, Tq),

soC0 ⊂ q−1 (mp(x, y)− ε− d∞(Tp, Tq), ∞) andC0 is connected, so x and y are in the same connected
component of q−1 (mp(x, y)− ε− d∞(Tp, Tq), ∞), which implies

mq(x, y) ≤ mp(x, y)− ε− d∞(Tp, Tq). (C.21)

A similar argument holds for other direction as

mp(x, y) ≤ mq(x, y)− ε− d∞(Tp, Tq), (C.22)

so (C.21) and (C.22) being held for all ε > 0 implies

|mp(x, y)−mq(x, y)| ≤ d∞(Tp, Tq). (C.23)

And taking sup over all x, y ∈ X in (C.23) dM(Tp, Tq) is upper bounded by d∞(Tp, Tq), i.e.

dM(Tp, Tq) ≤ d∞(Tp, Tq). (C.24)

Second, we show dM(Tp, Tq) ≥ d∞(Tp, Tq). For all ε > 0, Let x be such that |p(x) − q(x)| >
d∞(Tp, Tq)− ε

2
. Then since p and q are continuous, there exists δ > 0 such that

B(x, δ) ⊂ p−1
(
p(x)− ε

2
, ∞

)
∩ q−1

(
q(x)− ε

2
, ∞

)
.

Then for any y ∈ B(x, δ), since B(x, δ) is connected, p(x) − ε
2
≤ mp(x, y) ≤ p(x) holds and

q(x)− ε
2
≤ mq(x, y) ≤ q(x), so

|mp(x, y)−mq(x, y)| ≥ |p(x)− q(x)| − ε

2
> d∞(Tp, Tq)− ε.

Since this holds for any ε > 0, dM(Tp, Tq) is lower bounded by d∞(Tp, Tq), i.e.

dM(Tp, Tq) ≥ d∞(Tp, Tq). (C.25)
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(C.24) and (C.25) implies d∞(Tp, Tq) = dM(Tp, Tq).
(ii)
We have already seen that for all x, y ∈ X, |mp(x, y) −mq(x, y)| ≤ d∞(Tp, Tq) in (C.23). Hence

for all x, y ∈ X,

|[p(x) + p(y)− 2mp(x, y)]− [q(x) + q(y)− 2mq(x, y)]|
≤ |p(x)− q(x)|+ |p(y)− q(y)|+ 2|mp(x, y)−mq(x, y)|
≤ 4d∞(Tp, Tq).

Since this holds for all x, y ∈ X, so

dMM(Tp, Tq) ≤ 4d∞(Tp, Tq).

(iii)
For all ε > 0, Let x be such that |p(x) − q(x)| > d∞(Tp, Tq) − ε

2
, and without loss of generality

assume that p(x) > q(x). Let y be such that p(y)+q(y) < inf
x

(p(x)+q(x))+ ε
2
. Thenmp(x, y) ≤ p(y)

holds, and since X is connected, qinf ≤ mq(x, y) holds. Hence

[p(x) + p(y)− 2mp(x, y)]− [q(x) + q(y)− 2mq(x, y)]

≥ [p(x) + p(y)− 2p(y)]− [q(x) + q(y)− 2qinf ]

= p(x)− q(x)− (p(y) + q(y)− 2qinf)

> d∞(Tp, Tq)−
(

inf
x

(p(x) + q(x))− 2qinf

)
− ε

≥ d∞(Tp, Tq)− a− ε,

where a = inf
x∈X

(p(x) + q(x))− 2 min {pinf , qinf}. Since this holds for all ε > 0, we have

dMM(Tp, Tq) ≥ d∞(Tp, Tq)− a.

Hence 0 ≤ dMM(Tp, Tq) ≤ 4d∞(Tp, Tq) holds. And both extreme cases can happen, i.e. dMM(Tp, Tq) =
4d∞(Tp, Tq) > 0 and dMM(Tp, Tq) = 0, d∞(Tp, Tq) > 0 can happens.
Lemma 110. There exists densities p, q for both dMM(Tp, Tq) = 4d∞(Tp, Tq) > 0 and dMM(Tp, Tq) =
0, d∞(Tp, Tq) > 0.

Proof. Let X = R, p(x) = I(x ∈ [0, 1]) and q(x) = 2I
(
x ∈

[
0, 1

4

])
+ 2I

(
x ∈

[
3
4
, 1
])

. Then
d∞(Tp, Tq) = 1. And with x = 1

8
and y = 7

8
,

|[p(x) + p(y)− 2mp(x, y)]− [q(x) + q(y)− 2mq(x, y)]| = |[1 + 1− 2]− [2 + 2− 0]|
= 4,

hence dMM(Tp, Tq) = 4d∞(Tp, Tq).
Let X = [0, 1), p(x) = 2I

(
x ∈

[
0, 1

2

))
and q(x) = 2I

(
x ∈

[
1
2
, 1
))

. Then d∞(Tp, Tq) = 2. And
for any x ∈

[
0, 1

2

)
and y ∈

[
1
2
, 1
)
,

|[p(x) + p(y)− 2mp(x, y)]− [q(x) + q(y)− 2mq(x, y)]| = |(2 + 0− 0) + (0 + 2− 0)|
= 0.
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y0 c x0

Figure C.1: The example used in the proof of Theorem 107.

A similar case holds for x ∈
[

1
2
, 1
)

and y ∈
[
0, 1

2

)
. And for any x, y ∈

[
0, 1

2

)
,

|[p(x) + p(y)− 2mp(x, y)]− [q(x) + q(y)− 2mq(x, y)]| = |(2 + 2− 4) + (0 + 0− 0)|
= 0.

and a similar case holds for x, y ∈
[

1
2
, 1
)
. Hence dMM(Tp, Tq) = 0.

C.6.2 Proof of Theorem 107
Theorem 107. Let B(x) be the smallest set B ∈ Tp such that x ∈ B. dTp(x, y) is not Hadamard
differentiable for x 6= y when one of the following two scenarios occurs:

(i) min{p(x), p(y)} = p(c) for some critical point c.

(ii) B(x) = B(y) and p(x) = p(y).

Proof. For x, y ∈ K, note that the merge height satisfies

mp(x, y) = min{t : (x, y) are in the same connected component ofL(t)}.

Recall that
dTp(x, y) = p(x) + p(y)− 2mp(x, y).

Note that the modified merge distortion metric is dMM(p, q) = supx,y |dTp(x, y)− dTq(x, y)|.
A feature of the merge height is that

mp(x, y) = p(x)⇒ B(y) ⊂ B(x)

mp(x, y) = p(y)⇒ B(x) ⊂ B(y)

mp(x, y) 6= p(y) or p(x)⇒ ∃c(x, y) ∈ C s.t. mp(x, y) = p(c(x, y)).

where C is the collection of all critical points. Thus, we have

dTp(x, y) =





p(x)− p(y) if B(y) ⊂ B(x)

p(y)− p(x) if B(x) ⊂ B(y)

p(x) + p(y)− 2p(c(x, y)) otherwise
.
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Case 1:
We pick a pair of x0, y0 as in Figure C.1. Now we consider a smooth symmetric function g(x) > 0
such that it peaks at 0 and monotonically decay and has support [−δ, δ] for some small δ > 0. We pick
δ small enough such that pε(x0) = p(x0), pε(y0) = p(y0). For simplicity, let g(0) = maxx g(x) = 1.

Now consider perturbing p(x) along g(x− c) with amount ε. Namely, we define

pε(x) = p(x) + ε · g(x− c).

For notational convenience, define ξp,ε = dTpε (x0, y0). When |ε| is sufficiently small, define

ξp,ε(x0, y0) = dTp(x0, y0) if ε > 0,

ξp,ε(x0, y0) = dTp(x0, y0)− 2ε if ε < 0.

This is because when ε > 0, the pε(c) > p(c), so the merge height for x0, y0 using pε is still the same
as p(y0), which implies ξp,ε(x0, y0) = dTp(x0, y0). On the other hand, when ε < 0, pε(c) < p(c), so
the merge height is no longer p(y0) but pε(c). Then using the fact that |ε| = p(c)− pε(c) we obtain the
result.

Now we show that dTp(x0, y0) is not Hadamard differentiable. In this case, φ(p) = ξp(x0, y0). First,
we pick a sequence of εn such that εn → 0 and εn > 0 if n is even and εn < 0 if n is odd. Plugging
t ≡ εn and qt = g into the definition of Hadamard differentiability, we have

φ′(p) ≡ ξp,εn(x0, y0)− dTp(x0, y0)

εn

is alternating between 0 and 2, so it does not converge. This shows that the function dTp(x, y) at such a
pair of (x0, y0) is non-Hadamard differentiable.

Case 2:
The proof of this case uses the similar idea as the proof of case 1. We pick the pair (x0, y0) satisfying
the desire conditions. We consider the same function g but now we perturb p by

pε(x) = p(x) + ε · g(x− x0),

and as long as δ is small, we will have pε(y0) = p(y0). Since B(x0) = B(y0) and p(x0) = p(y0),
dTp(x0, y0) = 0. When ε > 0, ξp,ε(x0, y0) = ε, and on the other hand, when ε < 0, δε(x0, y0) = −ε.

In this case, again, φ(p) = ξp(x0, y0). Now we use the similar trick as case 1: picking a sequence
of εn such that εn → 0 and εn > 0 if n is even and εn < 0 if n is odd. Under this sequence of εn, the
‘derivative’ along g

φ′(p) ≡ ξp,εn(x0, y0)− dTp(x0, y0)

εn

is alternating between 1 and −1, so it does not converge. Thus, dTp(x, y) at such a pair of (x0, y0) is
non-Hadamard differentiable.

C.7 Proofs for Section 4.3 and Appendix C.4

C.7.1 Proof of Lemma 56
Lemma 56. Let ph = E[p̂h] where p̂h is the kernel estimator with bandwidth h. We assume that p is
a Morse function supported on a compact set with finitely many, distinct, critical values. There exists
h0 > 0 such that for all 0 < h < h0, Tp and Tph have the same topology in Appendix C.1.
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Proof. Let S be the compact support of p. By the classical stability properties of the Morse function,
there exists a constant C0 > 0 such that for any other smooth function q : S → R with ‖q−p‖∞, ‖∇q−
∇p‖∞, ‖∇2q − ∇2p‖∞ < C0, q is a Morse function. Moreover, there exist two diffeomorphisms
h : R → R and φ : S → S such that q = h ◦ p ◦ φ See e.g., proof of [Chazal et al., 2014a,
Lemma 16]. Further, h should be nondecreasing if C0 is small enough. Hence for any C ∈ Tp(λ), since
q◦φ−1(C) = h◦p(C), so φ−1(C) is a connected component of Tq(h(λ)). Now define Φ : {Tp} → {Tq}
as Φ(C) = φ−1(C). Then since φ is a diffeomorphism, C1 ⊂ C2 if and only if Φ(C1) = φ−1(C1) ⊂
φ−1(C2) = Φ(C2), hence Tp � Tq holds. And from p ◦ φ = h−1 ◦ q, we can similarly show Tq � Tp
as well. Hence from Lemma 102, two trees Tp and Tq are topologically equivalent according to the
topology in Appendix C.1.

Now by the nonparametric theory (see e.g. page 144-145 of Scott [2015], and Wasserman [2006]),
there is a constant C1 > 0 such that ‖ph − p‖2,max ≤ C1h

2 when h < 1. Thus, when 0 ≤ h ≤
√

C0

C1
,

Th = Tph and T = Tp have the same topology.

C.7.2 Proof of Lemma 109
Lemma 109. Suppose that the life function satisfies: for all [C] ∈ E(T̂h), lifetop([C]) ≤ life([C]).
Then

(i) Prunedlife,t̂α(T̂h) � Tp̂h .

(ii) there exists a function p̃ such that Tp̃ = Prunedlife,t̂α(T̂h).

(iii) p̃ in (ii) satisfies p̃ ∈ Ĉα.

Proof. (i)
This is implied by Lemma 104.
(ii)
Note that Prunedlife,t̂α(T̂h) is generated by function p̃ defined as

p̃(x) = sup
{
λ : there exists C ∈ T̂h(λ) such that x ∈ C and life([C]) > 2t̂α

}
+ t̂α.

(iii)
Let C0 :=

⋃{C : life([C]) ≤ 2t̂α}. Then note that

p̂(x) = sup
{
λ : there exists C ∈ T̂h(λ) such that x ∈ C

}
,

so for all x, p̃(x) ≤ p̂(x) + t̂α, and if x /∈ C0, p̃(x) = p̂(x) + t̂α. Then note that
{
λ : there exists C ∈ T̂h(λ) such that x ∈ C

}

\
{
λ : there exists C ∈ T̂h(λ) such that x ∈ C and life([C]) > 2t̂α

}

⊂
{
λ : there exists C ∈ T̂h(λ) such that x ∈ C and life([C]) ≤ 2t̂α

}

Let ex := max
{
e : x ∈ ∪e, life(e) ≤ 2t̂α

}
. Then note that x ∈ C and life([C]) ≤ 2t̂α implies that we

can find some B ∈ ex such that C ⊂ B, so
{
λ : there exists C ∈ T̂h(λ) such that x ∈ C and life([C]) ≤ 2t̂α

}
⊂ cumlevel(ex).
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Hence

p̂(x) + t̂α − p̃(x) ≤ sup{cumlevel(ex)} − inf {cumlevel(ex)}
= lifetop(ex)

≤ life(ex) ≤ 2t̂α,

and hence
p̂(x)− t̂α ≤ p̃(x) ≤ p̂(x) + t̂α.
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Appendix D

Appendix for Chapter 5

D.1 Stability Theorem for Persistence module
This section gives an introduction to the Stability Theorem on persistence module. We refer to Chazal
et al. [2009] for more details.

A persistence module is an algebraic abstraction of a persistent homology. Let R be a connected
subset of R.
Definition 111. [Chazal et al., 2009, Definition 2.1] A persistence module F is a family {FL}L∈R
of Z2-vector spaces indexed by the elements of R, together with a family {fL′L : FL → FL′}L≤L′ of
homomorphisms such that: ∀L ≤ L′ ≤ L′′, fL′′L = fL

′′

L′ ◦ fL
′

L and fLL = idFL .
We say that F is tame if FL is a finite dimensional vector spaces for all L ∈ R.
For two functions f, g : X → R satisfying ‖f − g‖∞ ≤ ε, their sublevel sets filtrations are nested

as follows: ∀L ∈ R with L, L + ε ∈ R, Xf
L ⊂ Xg

L+ε and Xg
L ⊂ Xf

L+ε. By letting FL = Hk(Xf
L) and

GL = Hk(Xg
L), this induces the homomorphisms induced by the inclusions as FL → GL+ε and GL →

FL+ε. Also, the canonical inclusions Xf
L ⊂ Xf

L′ and Xg
L ⊂ Xg

L′ for L ≤ L′ induces homomorphisms as
FL → FL′ and GL → GL′ . This homomorphisms relations can be extended to persistence modules as
follows:
Definition 112. Two persistence modules F and G are said to be strongly ε-interleaved if there exist
two families of homomorphisms {φL : FL → GL+ε}L∈R and {ψL : GL → FL+ε}L∈R such that the
following diagrams commute for all L ≤ L′:

FL−ε //

φL−ε ""

FL′+ε FL+ε
// FL′+ε

GL
// GL′

ψL′

;;

GL
//

ψL
<<

GL′

ψL

::

FL // FL′
φL′

##

FL //

φL ""

FL′
φL′

$$
GL−ε //

ψL−ε
<<

GL′+ε GL+ε
// GL′+ε

(D.1)

If two persistence modules are strongly interleaved, then their bottleneck distance are close, which
is the strong stability theorem.
Theorem 113 (Strong Stability Theorem). [Chazal et al., 2009, Theorem 4.4] Let FR and GR be two
tame persistence modules. If FR and GR are strongly interleaved, then dB(FR,GR) ≤ ε.
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x

y z

λy + (1− λ)z

Figure D.1: The distance from one point x of a triangle to another point λy + (1− λ)z on the opposite
side, as in Claim 114.

D.2 Geometry and Topology of a Set of Positive Reach
Nerve Theorem requires that any intersection of balls is contractible. This section analyzes the geome-
try and topology of a set of positive reach, and in particular, shows that the intersection of small enough
balls is contractible. This contractibility will be used in our main theorem.

For a set A, let τ be its reach. For u ∈ Rm with d(u,A) < τ , let πA(u) ∈ A be its projection on A.
We first start with simple calculation of the distance from one point of a triangle to another point

lying on the opposite side, as in Claim 114.
Claim 114. Let x, y, z ∈ Rm and λ ∈ [0, 1]. Then

‖(λy + (1− λ)z)− x‖ =

√
λ ‖y − x‖2 + (1− λ) ‖z − x‖2 − λ(1− λ) ‖y − z‖2.

Proof of Claim 114. The distance from λy + (1− λ)z to x can be expanded as

‖(λy + (1− λ)z)− x‖2

= ‖λ(y − x) + (1− λ)(z − x)‖2

= λ2 ‖y − x‖2 + (1− λ)2 ‖z − x‖2 + 2λ(1− λ) 〈y − x, z − x〉 .

Then applying 2 〈y − x, z − x〉 = ‖y − x‖2 + ‖z − x‖2 − ‖y − z‖2 to above gives

‖(λy + (1− λ)z)− x‖2 = λ ‖y − x‖2 + (1− λ) ‖z − x‖2 − λ(1− λ) ‖y − z‖2 ,

and the claim directly follows.

Given a line segment whose end points are on A, Lemma 115 gives a bound on a distance from any
point on that segment to its projection on A.
Lemma 115. Let A ⊂ Rm be a set with reach τ > 0, and let y, z ∈ A. Let λ ∈ [0, 1], and let
u := λy + (1− λ)z be satisfying d(u,A) < τ . Then

‖πA(u)− u‖ ≤ τ −
√(

τ 2 − λ(1− λ) ‖y − z‖2)
+
.

Proof of Lemma 115. If πA(u) = u, then there is nothing to prove. Now, suppose πA(u) 6= u, and let
w := πA(u)+τ u−πA(u)

‖u−πA(u)‖ , then ‖w − πA(u)‖ = τ holds. Andw−u =
(
τ−‖πA(u)−u‖
‖πA(u)−u‖

)
(u−πA(u)) holds.
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y z

w

πA(u)

u

Figure D.2: Bound on the distance from any point on the segment to its projection on A, as in Lemma
115.

Since ‖u− πA(u)‖ < τ , 〈w − u, u− πA(u)〉 = ‖w − u‖ ‖u− πA(u)‖ and ‖u− πA(u)‖+ ‖w − u‖ =
‖w − πA(u)‖ holds. Since Theorem 4.8 (2) and (6) in Federer [1959] implies that

πA

(
πA(u) + r

u− πA(u)

‖u− πA(u)‖

)
= πA(u)

for all r < τ , hence B(w, τ) ∩ A = ∅. Then ‖w − y‖ ≥ τ and ‖w − z‖ ≥ τ holds, so applying Claim
114 on ‖w − u‖ implies

‖w − u‖ =

√
λ ‖w − y‖2 + (1− λ) ‖w − z‖2 − λ(1− λ) ‖y − z‖2

≥
√(

τ 2 − λ(1− λ) ‖y − z‖2)
+
.

Then ‖u− πA(u)‖ = ‖w − πA(u)‖ − ‖w − u‖ implies

‖u− πA(u)‖ ≤ τ −
√(

τ 2 − λ(1− λ) ‖y − z‖2)
+
.

For showing the contractibility, it is sufficient to show that when two points are in a ball, then the
projection of a path connecting them also lies on the ball as well. In particular, we will show that given
two points in a ball, the projection of the internally dividing points to the set of positive reach is also in
a ball in Claim 116 and 118. First, we consider the case when the radius of the ball is bounded by τ ,
where τ is the reach of the positive reach set, in Claim 116.
Claim 116. Let A ⊂ Rm be a set with reach τ > 0. Let y, z ∈ A, λ ∈ [0, 1], and let u := λy+(1−λ)z.
Let x ∈ Rm with ‖x− y‖ , ‖x− z‖ < τ . Then

‖x− πA(u)‖ ≤
√
λ ‖y − x‖2 + (1− λ) ‖z − x‖2.

Proof of Claim 116. Let r :=
√
λ ‖y − x‖2 + (1− λ) ‖z − x‖2. Then from Claim 114,

‖x− u‖ =

√
λ ‖y − x‖2 + (1− λ) ‖z − x‖2 − λ(1− λ) ‖y − z‖2

=

√
r2 − λ(1− λ) ‖y − z‖2. (D.2)
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Also, since ‖u− y‖+ ‖u− z‖ = ‖y − z‖ ≤ ‖x− y‖+ ‖x− z‖ < 2τ and y, z ∈ A,

d(u,A) ≤ min {‖u− y‖ , ‖u− z‖} < τ,

and hence Lemma 115 and ‖y − z‖ < 2τ implies

‖u− πA(u)‖ ≤ τ −
√
τ 2 − λ(1− λ) ‖y − z‖2. (D.3)

Then (D.2), (D.3), and r ≤ τ imply

‖x− πA(u)‖
≤ ‖x− u‖+ ‖u− πA(u)‖

≤
√
r2 − λ(1− λ) ‖y − z‖2 + τ −

√
τ 2 − λ(1− λ) ‖y − z‖2

= r − λ(1− λ) ‖y − z‖2


 1

r +
√
r2 − λ(1− λ) ‖y − z‖2

− 1

τ +
√
τ 2 − λ(1− λ) ‖y − z‖2




≤ r.

For the case when the center of the ball lies on the positive reach set, we need a slightly different
version of Theorem 4.8 (8) in Federer [1959].
Lemma 117. Let A ⊂ Rm be a set with reach τ > 0, x ∈ A, and u ∈ Rm with d(u,A) < τ . Then

‖πA(u)− x‖ ≤
√
τ
(
‖u− x‖2 − ‖u− πA(u)‖2)

τ − ‖u− πA(u)‖ .

Proof of Lemma 117. From Theorem 4.8 (7) in Federer [1959],

〈u− πA(u), πA(u)− x〉 ≥ −‖πA(u)− x‖2 ‖u− πA(u)‖
2τ

.

Hence ‖u− x‖2 can be expanded and lower bounded as

‖u− x‖2 = ‖u− πA(u)‖2 + ‖πA(u)− x‖2 + 2 〈u− πA(u), πA(u)− x〉

≥ ‖u− πA(u)‖2 + ‖πA(u)− x‖2

(
1− ‖u− πA(u)‖

τ

)
.

Rearranging this gives

‖πA(u)− x‖ ≤
√
τ
(
‖u− x‖2 − ‖u− πA(u)‖2)

τ − ‖u− πA(u)‖ .

Now we consider the case when center of the ball lies on the positive reach set and the radius of the
ball is bounded by

√
2τ , where τ is the reach, in Claim 118.
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Claim 118. Let A ⊂ Rm be a set with reach τ > 0. Let y, z ∈ A, λ ∈ [0, 1], and let u := λy+(1−λ)z.
Let x ∈ A with ‖x− y‖ , ‖x− z‖ <

√
2τ . Then

‖x− πA(u)‖ ≤
√
λ ‖y − x‖2 + (1− λ) ‖z − x‖2.

Proof of Claim 118. Let r :=
√
λ ‖y − x‖2 + (1− λ) ‖z − x‖2, then r <

√
2τ . Then from Claim 114,

‖x− u‖ =

√
λ ‖y − x‖2 + (1− λ) ‖z − x‖2 − λ(1− λ) ‖y − z‖2

=

√
r2 − λ(1− λ) ‖y − z‖2. (D.4)

Now, note that

‖u− x‖2 + ‖u− y‖ ‖u− z‖ <
(
r2 − λ(1− λ) ‖y − z‖2)+ ((1− λ) ‖y − z‖) (λ ‖y − z‖)

= r2 < 2τ 2,

which implies that at least one of ‖u− x‖ , ‖u− y‖ , ‖u− z‖ should be less than τ . And hence

d(u,A) ≤ min {‖u− x‖ , ‖u− y‖ , ‖u− z‖} < τ.

Then Lemma 115 and ‖y − z‖ < 2τ implies

‖u− πA(u)‖ ≤ τ −
√
τ 2 − λ(1− λ) ‖y − z‖2. (D.5)

Now, Lemma 117 gives the upper bound of ‖x− πA(u)‖ as

‖x− πA(u)‖ ≤
√
τ
(
‖u− x‖2 − ‖u− πA(u)‖2)

τ − ‖u− πA(u)‖ . (D.6)

Consider first the case where λ(1 − λ) ‖y − z‖2 ≥ 1
2
r2. Then applying ‖u− x‖ ≤ r√

2
to (D.6) gives

the bound for ‖x− πA(u)‖2 as

‖x− πA(u)‖2 ≤
τ
(
r2

2
− ‖u− πA(u)‖2

)

τ − ‖u− πA(u)‖ .

Now, for further upper bounding RHS, consider a function f as

f(t) :=
τ( r

2

2
− t2)

τ − t for t ∈
[
0, τ −

√
τ 2 − λ(1− λ) ‖y − z‖2

]
.

Then f ′(t) =
τ(t2−2τt+ r2

2
)

(τ−t)2 ≤ 0 if and only if τ−
√
τ 2 − r2

2
≤ t ≤ τ+

√
τ 2 − r2

2
. Since τ−

√
τ 2 − r2

2
≤
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τ −
√
τ 2 − λ(1− λ) ‖y − z‖2 ≤ τ +

√
τ 2 − r2

2
, f(t) is maximized at t = τ −

√
τ 2 − r2

2
, and hence

‖x− πA(u)‖ <
τ
(
r2

2
− ‖u− πA(u)‖2

)

τ − ‖u− πA(u)‖

≤
τ

(
r2

2
−
(

2τ 2 − r2

2
− 2τ

√
τ 2 − r2

2

))

√
τ 2 − r2

2

=

τ

(
r2 − 2τ 2 + 2τ

√
τ 2 − r2

2

)

√
τ 2 − r2

2

= r2 − (2τ 2 − r2)


 τ√

τ 2 − r2

2

− 1




≤ r2. (D.7)

Now, consider the case when λ(1− λ) ‖y − z‖2 ≤ 1
2
r2. Then applying (D.4) to (D.6) gives the bound

for ‖x− πA(u)‖2 as

‖x− πA(u)‖2 ≤ τ
(
(r2 − λ(1− λ) ‖y − z‖2)− ‖u− πA(u)‖2)

τ − ‖u− πA(u)‖ .

Now,for further upper bounding RHS, let r̃ =
√
r2 − λ(1− λ) ‖y − z‖2, and consider a function f as

f(t) :=
τ(r̃2 − t2)

τ − t for t ∈
[
0, τ −

√
τ 2 − λ(1− λ) ‖y − z‖2

]
.

Then f ′(t) = τ(t2−2τt+r̃2)
(τ−t)2 ≤ 0 if and only if τ −

√
τ 2 − r̃2 ≤ t ≤ τ +

√
τ 2 − r̃2. Since τ −

√
τ 2 − r̃2 =

τ −
√
τ 2 − (r2 − λ(1− λ) ‖y − z‖2) ≥ τ −

√
τ 2 − λ(1− λ) ‖y − z‖2, f(t) is maximized at t =
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τ −
√
τ 2 − λ(1− λ) ‖y − z‖2, and hence

‖x− πA(u)‖

≤ τ
(
(r2 − λ(1− λ) ‖y − z‖2)− ‖u− πA(u)‖2)

τ − ‖u− πA(u)‖

≤
τ

(
(r2 − λ(1− λ) ‖y − z‖2)− (2τ 2 − λ(1− λ) ‖y − z‖2 − 2τ

√
τ 2 − λ(1− λ) ‖y − z‖2)

)

√
τ 2 − λ(1− λ) ‖y − z‖2

=

τ

(
r2 − 2τ 2 + 2τ

√
τ 2 − λ(1− λ) ‖y − z‖2

)

√
τ 2 − λ(1− λ) ‖y − z‖2

= r2 − (2τ 2 − r2)


 τ√

τ 2 − λ(1− λ) ‖y − z‖2
− 1




≤ r2. (D.8)

Hence for either cases, (D.7) and (D.8) give the desired upper bound for ‖x− πA(u)‖ as

‖x− πA(u)‖ ≤ r =

√
λ ‖y − x‖2 + (1− λ) ‖z − x‖2.

Proposition 119 is the main statement of this section. Given a set A with its reach τ , it asserts that
the intersection of any balls whose radius being bounded by τ is contractible.
Proposition 119. Let A ⊂ Rm be a set with reach τA > 0 and {Bα}α∈I be a collection of balls of the
form Bα = BRm(xα, rα). Suppose for all α ∈ I , either xα ∈ A and rα ≤

√
2τ holds or rα ≤ τ holds.

Then
⋂
α∈I

Bα ∩ A is contractible.

Hence, applying Proposition 119 to Nerve Theorem establish that the topology of supp(P ) can be
still well approximated by the Cech complex, as in Theorem 59.

Proof of Proposition 119. Fix α ∈ I , and fix y1, y2 ∈ Bα ∩ A. Let l : [0, 1] → Bα with l(t) = ty1 +
(1 − t)y2 be the line segment from y1 to y2, and define a curve γy1,y2 : [0, 1] → A as γ(t) = πA(l(t)).
Thoerem 4.8 (4) in Federer [1959] implies that γ is continuous.

We will further argue that γy1,y2(t) ∈ Bα for t ∈ [0, 1]. For notational convenience, let γ = γy1,y2

here. Then from Claim 116 or 118,

‖xα − γ(t)‖ ≤
√
λ ‖xα − y1‖2 + (1− λ) ‖xα − y2‖2 < rα.

Hence γ(t) = γy1,y2(t) ∈ Bα.

Now, fix y0 ∈
⋂
α∈I

Bα ∩A, and define homotopic map F :

(⋂
α∈I

Bα ∩ A
)
× [0, 1]→

(⋂
α∈I

Bα ∩ A
)

as F (y, t) = γy0,y(t). Since γy0,y is continuous and above argument implies that γy0,y(t) ∈
⋂
α∈I

Bα ∩ A,

hence F is well-defined continuous map. And F (y, 0) = y and F (y, y0) = y0 for all y ∈ ⋂
α∈I

Bα ∩ A,

hence
⋂
α∈I

Bα ∩ A is contractible.
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Lemma 120. LetA ⊂ Rm be a set with reach τ > 0, and let x, y ∈ Rm with ‖x− πA(x)‖ , ‖y − πA(y)‖ <
τ . Then

‖x− y‖ ≥ ‖πA(y)− πA(x)‖
(

1− ‖x− πA(x)‖+ ‖y − πA(y)‖
2τ

)
.

Proof. From Theorem 4.8 (7) in Federer [1959],

〈y − πA(y), πA(y)− πA(x)〉 ≥ −‖πA(y)− πA(x)‖2 ‖y − πA(y)‖
2τ

,

〈x− πA(x), πA(x)− πA(y)〉 ≥ −‖πA(x)− πA(y)‖2 ‖x− πA(x)‖
2τ

.

Then applying and gives

‖x− y‖ ‖πA(x)− πA(y)‖ ≥ 〈x− y, πA(x)− πA(y)〉
≥ 〈(πA(x)− πA(y)) + (x− πA(x)) + (πA(y)− y) , πA(x)− πA(y)〉

≥ ‖πA(y)− πA(x)‖2

(
1− ‖x− πA(x)‖+ ‖y − πA(y)‖

2τ

)
.

Hence,

‖x− y‖ ≥ ‖πA(y)− πA(x)‖
(

1− ‖x− πA(x)‖+ ‖y − πA(y)‖
2τ

)
.

D.3 Proofs for Section 5.1
This section is for providing rigorous proofs for Section 5.1. Recall the setting in Section 5.1 that the
upper level set filtration of f on X is defined by {DL}L>0 where

DL := {x ∈ X : f(x) ≥ L}.

And the upper level set estimator D̂L(r) is defined by

D̂L(r) :=
⋃

{Xi:f̂(Xi)≥L}

BX(Xi, ri),

where
BX(x, r) := {y ∈ X : d(x, y) < r} , r > 0.

From Strong stability Theorem (Theorem 113), Upper bounding the bottleneck distance by ε for
Lemma 58, Theorem 62, and Theorem 64, is derived by showing ε-strongly interleaving of the cor-
responding persistence modules. Lemma 58, Theorem 62, and Theorem 64 are based on different
interleaving relation, but they all use the interleaving between the upper level set filtration {DL}L>0

and the upper level set estimator filtration {D̂L(r)}L>0, as in Lemma 121.
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Lemma 121. Suppose either f or f̂ is M -Lipschitz continuous. For any given r = (r1, . . . , rn) ∈
(0,∞)n, suppose the samples form an r-covering of X, that is,

X ⊂
⋃

i

BX(Xi, ri). (D.9)

Then the following inclusion holds,

DL+‖f̂−f‖∞+M‖r‖∞
⊂ D̂L(r) and D̂L+‖f̂−f‖∞+M‖r‖∞

(r) ⊂ DL, ∀L > 0. (D.10)

Proof of Lemma 121. Fix L > 0. For the first inclusion of (D.10), suppose x ∈ DL+‖f̂−f‖∞+M‖r‖∞
,

which is equivalent to f(x) ≥ L+
∥∥∥f̂ − f

∥∥∥
∞

+M ‖r‖∞ and x ∈ X. From (D.9), there exists some Xi

such that ‖x−Xi‖ ≤ ri. If f is M -Lipschitz, f̂(Xi) can be lower bounded as

f̂(Xi) ≥ f(Xi)−
∥∥∥f̂ − f

∥∥∥
∞
≥ f(x)−M ‖r‖∞ −

∥∥∥f̂ − f
∥∥∥
∞
≥ L.

If f̂ is M -Lipschitz, f̂(Xi) can be similarly lower bounded as

f̂(Xi) ≥ f̂(x)−M ‖r‖∞ ≥ f(x)−
∥∥∥f̂ − f

∥∥∥
∞
−M ‖r‖∞ ≥ L.

Hence for either cases, x ∈ D̂L(r), which implies

DL+‖f̂−f‖∞+M‖r‖∞
⊂ D̂L(r). (D.11)

For the second inclusion of (D.10), suppose x ∈ D̂L+‖f̂−f‖∞+M‖r‖∞
(r). Then x ∈ X and there

exists Xi such that ‖x−Xi‖ ≤ ri and f̂(Xi) ≥ L+
∥∥∥f̂ − f

∥∥∥
∞

+M ‖r‖∞. If f is M -Lipschitz, f(x)

can be lower bounded as

f(x) ≥ f(Xi)−M ‖r‖∞ ≥ f̂(Xi)−
∥∥∥f̂ − f

∥∥∥
∞
−M ‖r‖∞ ≥ L.

If f̂ is M -Lipschitz, f(x) can be similarly lower bounded as

f(x) ≥ f̂(x)−
∥∥∥f̂ − f

∥∥∥
∞
≥ f̂(Xi)−M ‖r‖∞ −

∥∥∥f̂ − f
∥∥∥
∞
≥ L.

Hence for either cases, x ∈ DL, which implies

D̂L+‖f̂−f‖∞+M‖r‖∞
(r) ⊂ DL. (D.12)

Hence (D.11) and (D.12) imply (D.10).

Then Lemma 58 is a direct consequence from Lemma 121 and Strong stability Theorem (Theorem
113).

Lemma 58. Suppose either f or f̂ is M -Lipschitz continuous. For any given r = (r1, . . . , rn) ∈
(0,∞)n, suppose the samples form an r-covering of X, that is,

X ⊂
⋃

i

BX(Xi, ri). (D.13)

Then the bottleneck distance between PHX
∗ (f̂, r) and PHX

∗ (f) is upper bounded as

dB

(
PHX
∗ (f̂, r),PHX

∗ (f)
)
≤ ‖f̂ − f‖∞ +M‖r‖∞. (D.14)
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Proof of Lemma 58. From (D.13), Lemma 121 implies that {DL}L>0 and {D̂L(r)}L>0 are strongly
‖f̂ − f‖∞ + M‖r‖∞-interleaved. Hence from Strong stability Theorem (Theorem 113), (D.14) is
derived.

In the following proofs of Claim 122 and Lemma 123, we refer to Čech(Xn, r) as Č(r) for nota-
tional convenience. Also, for r, r′ ∈ Rn, use the notation r ≤ r′ as ri ≤ r′i for all i.
Claim 122. Let τ be the reach of X. Fix L > 0 and r = (r1, . . . , rn) ∈

(
0,
√

2τ
]n

. Suppose X
is triangulated so that D̂L(r) and B(Xi, ri) are subcomplices. Then there exist simplicial maps φrL :

sd
(
D̂L(r)

)
→ sd

(
ČL(r)

)
and ψrL : sd

(
ČL(r)

)
→ sd

(
D̂L(r)

)
that are homotopic equivalent to each

other, i.e.
ψrL ◦ φrL ' idD̂L(r) and φrL ◦ ψrL ' idČL(r). (D.15)

Let L,L′ ∈ (0,∞), r, r′ ∈
(
0,
√

2τ
]n

and X is triangulated so that D̂L(r), D̂L′(r
′), B(Xi, ri), B(Xi, r

′
i)

are subcomplices. Then φrL and φr′L′ further satisfy that if r ≤ r′ and L′ ≤ L,

(φrL)∗ = (φr
′

L′)∗ on H∗(sd(D̂L′(r
′)). (D.16)

Also, ψrL and ψr′L′ further satisfy that

ψrL = ψr
′

L′ on sd
(
ČL(r)

)
∩ sd

(
ČL′(r

′)
)
. (D.17)

Proof of Claim 122. For showing (D.15), we consider two simplicial maps from Nerve Theorem [Björner,
1995, Theorem 10.6]. We define a simplicial map φrL : sd

(
D̂L(r)

)
→ sd

(
ČL(r)

)
to be a barycen-

tric map induced from σ 7→
{
Xi ∈ X f̂

n,L : σ ∈ BX(Xi, ri)
}

(where each BX(Xi, ri) is understood as a

simplicial subcomplex of X). We also define a simplicial map ψrL : sd
(
ČL(r)

)
→ sd

(
D̂L(r)

)
to be a

barycentric map induced from {Xn1 , . . . , Xnk} 7→
∑k
j=1 rjXnj∑k
j=1 rj

. From ri ≤
√

2τ for all i and Proposition

119, the proof of Björner [1995, Theorem 10.6] implies that ψrL and φrL gives the homotopy equivalence
between D̂L(r) and Č(r), i.e.

ψrL ◦ φrL ' idD̂L(r) and φrL ◦ ψrL ' idČL(r).

For showing (D.16), suppose r ≤ r′ and L′ ≤ L. For each σ ∈ sd
(
D̂L(r)

)
, since vertices of σ

can be ordered by inclusion relation, we can define its minimal vertex minσ := min{v : v ∈ σ}. And
let ∆σ :=

{
Xi ∈ X L′

n,L′ : minσ ∈ BX(Xi, ri)
}

be the set of vertices that is r′i-close from minσ. Then
∆σ ⊂ X L′

n,L′ and minσ ∈ ⋂Xi∈∆σ
BX(Xi, r

′
i) 6= ∅ implies that ∆σ is a subcomplex of ČL′(r′), i.e.

∆σ ⊂ ČL′(r
′).

Also, ‖φrL(σ)‖ ,
∥∥φr′L′(σ)

∥∥ ⊂ ‖∆σ‖ holds from the definition of φrL and ∆σ. Hence for any γ ∈
B∗

(
sd
(
D̂L(r)

))
, φrL(γ) and φr′L′(γ) are homotopic to each other in sd

(
ČL′(r

′)
)
, i.e., φrL(γ)−φr′L′(γ) ∈

Z∗
(
sd
(
ČL′(r

′)
))

and hence in H∗
(
sd
(
ČL′(r

′)
))

,

(φrL)∗[γ] = (φr
′

L′)∗[γ].

Therefore (D.16) holds.
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For showing (D.17), note that from the definition of ψrL, if σ ∈ sd
(
ČL(r)

)
∩ sd

(
ČL′(r

′)
)
, then ψrL

and ψr′L′ coincide on sd
(
ČL(r)

)
∩ sd

(
ČL′(r

′)
)
, i.e.

ψrL(σ) = ψr
′

L′(σ).

Hence (D.17) holds.

Lemma 123. Let τ be the reach of X and r′, r′′ ∈
(
0,
√

2τ
]n

with r′ ≤ r′′. Let ε > 0 be satisfying

DL+ε ⊂ D̂L(r′), and D̂L+ε(r
′′) ⊂ DL, for all L > 0.

Let r ∈
(
0,
√

2τ
]n

and let S = {SL(r)}L∈(0,∞) be a filtration of simplicial complexes satisfying

C̆echX(X f̂
n,L, r

′) ⊂ SL(r) ⊂ ČechX(X f̂
n,L, r

′′) for all L > 0.

Then {H∗ (DL)}L>0 and {H∗ (SL(r))}L>0 are strongly ε-interleaved. In particular,

dB
(
PH∗(S),PHX

∗ (f)
)
≤ ε. (D.18)

Proof of Lemma 123. Our goal is to define simplicial maps ΦL : DL+ε → sd (SL(r)) and ΨL :
sd (SL(r)) → DL−ε so that (ΦL)∗ : H∗(DL+ε) → H∗ (SL(r)) and (ΨL)∗ : H∗ (SL(r)) → H∗(DL−ε)
are homomorphisms satisfying strong ε-interleaving conditions in (D.1). Then Strong Stability Theo-
rem (Theorem 113) implies (D.18).

Now we construct ΦL and ΨL. Let ıD→D̂L : DL+ε → sd
(
D̂L(r′)

)
, ıC→SL : sd

(
ČL(r′)

)
→

sd (SL(r)), ıS→CL : sd (SL(r)) → sd
(
ČL(r′′)

)
, ıD̂→DL : sd

(
D̂L(r′′)

)
→ DL−ε be simplicial maps

induced from the inclusion maps. And then we define ΦL := ıC→SL ◦ φr′L ◦ ıD→D̂L : DL+ε → sd (SL(r))

and ΨL := ıD̂→DL ◦ ψr′′L ◦ ıS→CL : sd (SL(r))→ DL−ε, as in (D.19).

DL+ε

ıD→D̂L��

ΦL

��

DL−ε

D̂L(r′)

φr
′
L
��

D̂L(r′′)

ıD̂→DL

OO

ČL(r′)

ıC→SL

��

ČL(r′′)

ψr
′′
L

OO

SL(r) SL(r)

ıS→CL

OO

ΨL

YY
(D.19)

For L′ ∈ (0,∞) with L′ ≤ L, let ıDL→L′ : DL → DL′ , ıSL→L′ : sd (SL(r)) → sd (SL(r)) be simplicial
maps induced from the inclusion maps.

First we show that the diagram in (D.20) commutes,

H∗(DL+ε) //

ΦL ''

H∗(DL′−ε)

H∗ (SL(r)) // H∗ (SL′(r))

ΨL′

77
(D.20)
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i.e. compare ΨL′ ◦ ıSL→L′ ◦ ΦL : DL+ε → DL′−ε to inclusion map ıDL+ε→L′−ε : DL+ε → DL′−ε. For
γ ∈ B∗ (DL+ε), note that ΦL = ıC→SL ◦φr′L◦ıD→D̂L and ΨL′ = ıD̂→DL′ ◦ψr′′L′ ◦ıS→CL′ , hence ΨL′◦ıSL→L′◦ΦL(γ)
can be expanded as

ΨL′ ◦ ıSL→L′ ◦ ΦL(γ) = (ıD̂→DL′ ◦ ψr′′L′ ◦ ıS→CL′ ) ◦ ıSL→L′ ◦ (ıC→SL ◦ φr′L ◦ ıD→D̂L )(γ)

= ψr
′′

L′ ◦ φr
′

L (γ). (D.21)

Now, note that from L ≥ L′ and r′ ≤ r′′, ČL(r′) ⊂ ČL′(r
′′) holds, and hence

φrL(γ) ∈ B∗
(
sd
(
ČL(r′)

))
= B∗

(
sd
(
ČL(r′)

)
∩ sd

(
ČL′(r

′′)
))
.

Then (D.17) in Claim 122 implies that ψr′′L′ = ψr
′
L on sd

(
ČL(r′)

)
∩ sd

(
ČL′(r

′′)
)
, hence combined with

above gives
ψr
′′

L′ ◦ φr
′

L (γ) = ψr
′

L ◦ φr
′

L (γ). (D.22)

Then (D.15) in Claim 122 implies that ψr′L and φr′L are homotopic inverses to each other inH∗
(
D̂L(r′)

)
,

i.e. (
ψr
′

L ◦ φr
′

L

)
∗

[γ] = idD̂L(r′)[γ] = [γ] in H∗
(
D̂L(r′)

)
. (D.23)

Since D̂L(r′) ⊂ DL′−ε, combining (D.21), (D.22), and (D.23) gives that in H∗(DL′−ε),
(
ΨL′ ◦ ıSL→L′ ◦ ΦL

)
∗ [γ] =

(
ψr
′′

L ◦ φr
′

L

)
∗

[γ]

=
(
ψr
′

L ◦ φr
′

L

)
∗

[γ]

= [γ]

=
(
ıDL+ε→L′−ε

)
∗ [γ],

i.e. ΨL′ ◦ ıSL→L′ ◦ ΦL+ε and ıDL+ε→L′−ε coincide on H∗(DL′−ε), and hence (D.20) is shown.
Second, we show that the diagram in (D.24) commutes,

H∗ (DL−ε) // H∗ (DL′−ε)

H∗ (SL(r)) //

ΨL
77

H∗ (SL′(r))

ΨL′

77
(D.24)

i.e. compare ΨL′ ◦ ıSL→L′ : sd(SL(r)) → DL′−ε to ıDL−ε→L′−ε ◦ ΨL : sd(SL(r)) → DL′−ε. For
γ ∈ B∗ (sd(SL(r))), note that ΨL′ = ıD̂→DL′ ◦ ψr′′L′ ◦ ıS→CL′ and ΨL = ıD̂→DL ◦ ψr′′L ◦ ıS→CL , hence

ΨL′ ◦ ıSL→L′(γ) = (ıD̂→DL′ ◦ ψr′′L′ ◦ ıS→CL′ ) ◦ ıSL→L′(γ) = ψr
′′

L′ (γ), (D.25)

ıDL−ε→L′−ε ◦ΨL(γ) = ıDL−ε→L′−ε ◦ (ıD̂→DL ◦ ψr′′L ◦ ıS→CL )(γ) = ψr
′′

L (γ). (D.26)

From L ≥ L′, ČL(r′′) ⊂ ČL′(r
′′) holds, and hence

γ ∈ B∗
(
sd
(
ČL(r′′)

))
= B∗

(
sd
(
ČL(r′′)

)
∩ sd

(
ČL′(r

′′)
))
.

Also, (D.17) in Claim 122 implies that ψr′′L′ = ψr
′′
L on sd

(
ČL(r′′)

)
∩ sd

(
ČL′(r

′′)
)
, hence (D.25) and

(D.26) indeed eqaul, i.e.

ΨL′ ◦ ıSL→L′(γ) = ψr
′′

L′ (γ) = ψr
′′

L (γ) = ıDL−ε→L′−ε ◦ΨL(γ).
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Hence they equal in H∗(DL′−ε) as well, i.e.
(
ΨL′ ◦ ıSL→L′

)
∗ [γ] =

(
ıDL−ε→L′−ε ◦ΨL

)
∗ [γ] in H∗(DL′−ε),

and hence (D.24) is shown.
Third, we show that the diagram in (D.27) commutes,

H∗ (DL) // H∗ (DL′)
ΦL′−ε

''
H∗ (SL+ε(r)) //

ΨL+ε

77

H∗ (SL′−ε(r))

(D.27)

i.e. compare ΦL′−ε ◦ ıDL→L′ ◦ ΨL+ε : sd (SL+ε(r)) → sd (SL′−ε(r)) to inclusion map ıSL+ε→L′−ε :

sd (SL+ε(r))→ sd (SL′−ε(r)). For γ ∈ B∗ (sd (SL+ε(r))), note that ΦL′−ε = ıC→SL′−ε ◦ φr
′

L′−ε ◦ ıD→D̂L′−ε and
ΨL+ε = ıD̂→DL+ε ◦ ψr

′′
L+ε ◦ ıS→CL+ε , hence ΦL′−ε ◦ ıDL→L′ ◦ΨL+ε(γ) can be expanded as

ΦL′−ε ◦ ıDL→L′ ◦ΨL+ε(γ) = (ıC→SL′−ε ◦ φr
′

L′−ε ◦ ıD→D̂L′−ε ) ◦ ıDL→L′ ◦ (ıD̂→DL+ε ◦ ψr
′′

L+ε ◦ ıS→CL+ε )(γ)

= φr
′

L′−ε ◦ ψr
′′

L+ε(γ). (D.28)

Now, note that
∥∥ČL+ε(r

′′)
∥∥ = D̂L+ε(r

′′) ⊂ DL ⊂ DL′ ⊂ D̂L′−ε(r
′) =

∥∥ČL′−ε(r′)
∥∥, hence with

subdivisions if necessasry,

γ ∈ B∗
(
sd
(
ČL+ε(r

′′)
))

= B∗
(
sd
(
ČL+ε(r

′′)
)
∩ sd

(
ČL′−ε(r

′)
))
.

Then (D.17) in Claim 122 implies that ψr′′L+ε = ψr
′

L′−ε on sd
(
ČL+ε(r

′′)
)
∩ sd

(
ČL′−ε(r

′)
)
, hence com-

bined with above gives
φr
′

L′−ε ◦ ψr
′′

L+ε(γ) = φr
′

L′−ε ◦ ψr
′

L′−ε(γ). (D.29)

Then (D.15) in Claim 122 implies thatψr′L′−ε and φr′L′−ε are homotopic inverses to each other inH∗
(
sd
(
ČL′−ε(r

′)
))

,
i.e. (

φr
′

L′−ε ◦ ψr
′

L′−ε

)
∗

[γ] = idsd(ČL′−ε(r′))
[γ] = [γ] in H∗

(
sd
(
ČL′−ε(r

′)
))
. (D.30)

Since sd
(
ČL′−ε(r

′)
)
⊂ sd (SL′−ε(r)), combining (D.28), (D.29), and (D.30) gives that inH∗ (sd (SL′−ε(r))) ∼=

H∗ (SL′−ε(r)),

(
ΦL′−ε ◦ ıDL→L′ ◦ΨL+ε

)
∗ [γ] =

(
φr
′

L′−ε ◦ ψr
′′

L+ε

)
∗

[γ]

=
(
φr
′

L′−ε ◦ ψr
′

L′−ε

)
∗

[γ]

= [γ]

=
(
ıSL+ε→L′−ε

)
∗ [γ],

i.e. ΦL′−ε ◦ ıDL→L′ ◦ΨL+ε and ıSL+ε→L′−ε coincide on H∗ (SL′+ε(r)), and hence (D.27) is shown.
Fourth, we show that the diagram in (D.31) commutes,

H∗ (DL) //

ΦL−ε ''

H∗ (DL′)
ΦL′−ε

((
H∗ (SL−ε(r)) // H∗ (SL′−ε(r))

(D.31)
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i.e. compare ΦL′−ε ◦ ıDL→L′ : DL → sd(SL′−ε(r)) to ıSL−ε→L′−ε ◦ ΦL−ε : DL → sd(SL′−ε(r)). For
γ ∈ B∗ (DL), note that ΦL−ε = ıC→SL−ε ◦ φr

′
L−ε ◦ ıD→D̂L−ε and ΦL′−ε = ıC→SL′−ε ◦ φr

′

L′−ε ◦ ıD→D̂L′−ε , hence

ΦL′−ε ◦ ıDL→L′(γ) = (ıC→SL′−ε ◦ φr
′

L′−ε ◦ ıD→D̂L′−ε ) ◦ ıDL→L′(γ) = φr
′

L′−ε(γ), (D.32)

ıSL−ε→L′−ε ◦ ΦL−ε(γ) = ıSL−ε→L′−ε ◦ (ıC→SL−ε ◦ φr
′

L−ε ◦ ıD→D̂L−ε )(γ) = φr
′

L−ε(γ). (D.33)

Then (D.16) in Claim 122 implies that φr′L′−ε = φr
′
L−ε on H∗

(
sd
(
ČL′−ε(r)

))
, hence (D.32) and (D.33)

are equal in H∗
(
sd
(
ČL′−ε(r)

))
, i.e.

(
ΦL′−ε ◦ ıDL→L′

)
∗ [γ] =

(
φr
′

L′−ε

)
∗

[γ] =
(
φr
′

L−ε

)
∗

[γ] =
(
ıSL−ε→L′−ε ◦ ΦL

)
∗ [γ] in H∗

(
sd
(
ČL′−ε(r)

))
.

Since ČL′−ε(r) ⊂ SL′−ε(r), the same relation holds in H∗ (sd (SL′−ε(r))) ∼= H∗ (SL′−ε(r)) as well, and
hence (D.24) is shown.

From (D.20), (D.24), (D.27), and (D.31), {H∗ (DL)}L>0 and {H∗ (SL(r))}L>0 are strongly ε-
interleaved. Hence from Strong stability Theorem (Theorem 113), (D.18) is derived.

Theorem 62. Let τ be the reach of X. Suppose either f or f̂ is M -Lipschitz continuous. For any
given h > 0, r = (r1, . . . , rn) ∈ (0, τ/

√
2]n, suppose the samples form an r-covering of X, that is,

X ⊂
⋃

i

BX(Xi, ri). (D.34)

Then the bottleneck distance between PHČ
∗ (f̂, r) and PHX

∗ (f) is upper bounded as

dB

(
PHČ
∗ (f̂, r),PHX

∗ (f)
)
≤ ‖f̂ − f‖∞ + 2M‖r‖∞ (D.35)

Proof of Theorem 62. From (D.34), Lemma 121 implies that for all L > 0,

DL ⊂ D̂L−‖f̂−f‖∞−M‖r‖∞(r) ⊂ D̂L−‖f̂−f‖∞−2M‖r‖∞(r),

D̂L(2r) ⊂ DL−‖f̂−f‖∞−2M‖r‖∞ .

And Čech complexes on X and Čech complexes on Rm have the following inclusion relation as

ČechX(X f̂
n,L, r) ⊂ ČechRm(X f̂

n,L, r) ⊂ ČechX(X f̂
n,L, 2r).

Hence from Lemma 123, {H∗ (DL)}L∈R and
{
H∗

(
ČechRm(X f̂

n,L, r)
)}

L∈R
are strongly ‖f̂ − f‖∞ +

2M‖r‖∞-interleaved, and in particular, (D.35) is derived.

Theorem 64. Let τ be the reach of X. Suppose either f or f̂ is M -Lipschitz continuous. For any
given h > 0, r = (r1, . . . , rn) ∈ (0, τ/

√
2]n, suppose the samples form an r-covering of X, that is,

X ⊂
⋃

i

BX(Xi, ri). (D.36)

Then the bottleneck distance between PHR
∗ (f̂, r) and PHX

∗ (f) is upper bounded as

dB

(
PHR
∗ (f̂, r),PHX

∗ (f)
)
≤ ‖f̂ − f‖∞ + 2M‖r‖∞. (D.37)
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Proof of Theorem 64. From (D.36), Lemma 121 implies that for all L ∈ R,

DL ⊂ D̂L−‖f̂−f‖∞−M‖r‖∞(r) ⊂ D̂L−‖f̂−f‖∞−2M‖r‖∞(r),

D̂L(2r) ⊂ DL−‖f̂−f‖∞−2M‖r‖∞ .

And Čech complexes on X and Rips complexes have the following inclusion relation as

ČechX(X f̂
n,L, r) ⊂ R(X f̂

n,L, r) ⊂ ČechX(X f̂
n,L, 2r).

Hence from Lemma 123, {H∗ (DL)}L∈R and
{
H∗

(
R(X f̂

n,L, r)
)}

L∈R
are strongly ‖f̂−f‖∞+2M‖r‖∞-

interleaved, and in particular, (D.37) is derived.

D.4 Proofs for Section 5.2
Claim 124. Let P be a probability measure on Rm and K be a kernel function satisfying Assumption
66, 67, and 72. Let CK :=

∫
Rm |x|K(x)dx. Then,

‖ph − p‖∞ ≤ CKMPh.

Proof of Claim 124. Note that ph(x) can be expanded as

ph(x) = h−d
∫

Rm
K

(
x− z
h

)
dP (z).

Then under Assumption 72, dP (z) = p(z)dz, and hence the integral is further expanded as

ph(x) = h−d
∫

Rm
K

(
x− z
h

)
dP (z) =

∫

Rm
K(t)p(x− ht)dt.

Hence ph(x)− p(x) can be bounded as

|ph(x)− p(x)| =
∣∣∣∣
∫

Rm
K(t)p(x− ht)dt− p(x)

∣∣∣∣

=

∣∣∣∣
∫

Rm
K(t)(p(x− ht)− p(x))dt

∣∣∣∣

≤
∫

Rm
K(t) |p(x− ht)− p(x)| dt

≤ hMP

∫

Rm
|t|K(t)dt

= CKMPh.

Proposition 68. Let P be a probability measure on Rm and K be a kernel function satisfying
Assumption 66 and 67. Let p be the Lebesgue density of P , and assume p is Lipschitz continuous. For
any given h > 0, r = (r1, . . . , rn) ∈ (0,∞)n, the following hold :
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(a) dB
(

PHsupp(P )
∗ (ph),PHRd

∗ (ph)
)
≤ supx/∈supp(P ) |ph(x)| ≤ CKMPh,

(b) dB
(

PHsupp(P )
∗ (ph),PH∗(p)

)
≤ supx∈supp(P ) |ph(x)− p(x)| ≤ CKMPh,

where CK =
∫
‖x‖K(x)dx and MP > 0 is the Lipschitz constant of p.

Proof of Proposition 68. We will first show that

PHsupp(P )
∗ (ph) = PHRm

∗ (phIsupp(P )), (D.38)

where Isupp(P )(x) = I(x ∈ supp(P )) is an indicator function on a set supp(P ). Note that the level set
of (5.12) equals

DL = {x ∈ supp(P ) : ph(x) ≥ L} = {x ∈ Rm : ph(x)Isupp(P )(x) ≥ L},

and hence DL is a level set of phIsupp(P ) at L. Hence, PHsupp(P )
∗ (ph) = PHRm

∗ (phIsupp(P )) holds.
(a)
Applying (D.38) to Theorem 13 gives

dB

(
PHsupp(P )
∗ (ph),PHRm

∗ (ph)
)

= dB
(
PHRm
∗ (phIsupp(P )),PHRm

∗ (ph)
)

≤
∥∥phIsupp(P ) − ph

∥∥
∞ = sup

x/∈supp(P )

|ph(x)| .

Note that p(x) = 0 on Rm\supp(P ), and hence

sup
x/∈supp(P )

|ph(x)| = sup
x/∈supp(P )

|ph(x)− p(x)| ≤ ‖ph − p‖∞ .

Hence applying Claim 124 gives

dB

(
PHsupp(P )
∗ (ph),PHRm

∗ (ph)
)
≤ sup

x/∈supp(P )

|ph(x)| ≤ CKMPh.

(b)
Similarly, applying (D.38) to Theorem 13 gives

dB

(
PHsupp(P )
∗ (ph),PH∗(p)

)
= dB

(
PHRm
∗ (phIsupp(P )),PHRm

∗ (p)
)
≤ ‖ph − p‖∞ .

Hence applying Claim 124 gives

dB

(
PHsupp(P )
∗ (ph),PH∗(p)

)
≤ ‖ph − p‖∞ ≤ CKMPh.

Lemma 125. Suppose the distribution P and the kernel function K satisfies Assumption 66 and 67.
Then the following inequalities hold for any x, y ∈ Rm:

(a) If K is MK-Lipschitz, then

|p̂h(x)− p̂h(y)| ≤ MK

hd+1
‖x− y‖ .
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(b) Under Assumption 71,

|ph(x)− ph(y)| ≤ amaxMK

hd+1−νmin
‖x− y‖ .

(c) Under Assumption 72,
|ph(x)− ph(y)| ≤MP ‖x− y‖ .

Proof of Lemma 125. (a)
The first inequality comes from the MK-Lipschitz continuity of K.

|p̂h(x)− p̂h(y)| ≤ 1

nhd

n∑

i=1

∣∣∣∣K
(
x−Xi

h

)
−K

(
y −Xi

h

)∣∣∣∣

≤ 1

nhd
MK

∥∥∥∥
x− y
h

∥∥∥∥

=
MK

nhd+1
‖x− y‖ .

(b)
If we further suppose Assumption 71 holds, note that ph(x)− ph(y) can be factorized as

ph(x)− ph(y) = EP
[

1

hd

(
K

(
x−X
h

)
−K

(
y −X
h

))]

= h−d
∫

Rm

(
K

(
x− z
h

)
−K

(
y − z
h

))
dP (z)

= h−d
∫

B(x,h)∪B(y,h)

(
K

(
x− z
h

)
−K

(
y − z
h

))
dP (z)

+ h−d
∫

Rm\(B(x,h)∪B(y,h))

(
K

(
x− z
h

)
−K

(
y − z
h

))
dP (z).

Then note that for z ∈ Rm\(B(x, h)∪B(y, h)),
∥∥x−z

h

∥∥ ,
∥∥y−z

h

∥∥ ≥ 1 and henceK
(
x−z
h

)
= K

(
y−z
h

)
= 0

under Assumption 71. Hence the integral reduces to and is further bounded as

|ph(x)− ph(y)| = h−d
∣∣∣∣
∫

B(x,h)∪B(y,h)

(
K

(
x− z
h

)
−K

(
y − z
h

))
dP (z)

∣∣∣∣

≤ h−d
∫

B(x,h)∪B(y,h)

∣∣∣∣K
(
x− z
h

)
−K

(
y − z
h

)∣∣∣∣ dP (z)

≤ h−d
∫

B(x,h)∪B(y,h)

MK

∥∥∥∥
x− y
h

∥∥∥∥ dP (z)

=
MK

hd+1
‖x− y‖P (B(x, h) ∪ B(y, h))

≤ MK

hd+1
‖x− y‖ (P (B(x, h)) + P (B(y, h)))

≤ amaxMK

hd+1−νmax
‖x− y‖ .

(c)
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Now, we suppose Assumption 72. Note that ph(x) can be expanded as

ph(x) = EP
[

1

hd
K

(
x−X
h

)]

= h−d
∫

Rm
K

(
x− z
h

)
dP (z).

Then under Assumption 72, dP (z) = p(z)dz, and hence the integral is further expanded as

ph(x) = h−d
∫

Rm
K

(
x− z
h

)
p(z)dz

=

∫

Rm
K(t)p(x− ht)dt.

And hence ph(x)− ph(y) can be bounded as

|ph(x)− ph(y)| =
∣∣∣∣
∫

Rm
K(t)(p(x− ht)− p(y − ht))dt

∣∣∣∣

≤
∫

Rm
K(t) |p(x− ht)− p(y − ht))| dt

=

∫

Rm
K(t)MP ‖x− y‖ dt

= MP ‖x− y‖ .

Proposition 73. Let P be a probability measure on Rm and K be a kernel function satisfying
Assumption 66 and 67. For any given h > 0, r = (r1, . . . , rn) ∈ (0,∞)n with

√
2‖r‖∞ ≤ τ , suppose

the samples form an r-covering of the support of P , that is,

X ⊂
⋃

i

BX(Xi, ri).

Then the bottleneck distance between the persistent homology of the density filtration PHsupp(P )
∗ (ph)

and its estimator PHR
∗ (p̂h, r) is upper bounded as, under Assumption 71,

dB

(
PHR
∗ (p̂h, r),PHsupp(P )

∗ (ph)
)
≤ ‖p̂h − ph‖∞ +

2amaxMK‖r‖∞
hd+1−νmin

, (D.39)

while, under Assumption 72,

dB

(
PHR
∗ (p̂h, r),PHsupp(P )

∗ (ph)
)
≤ ‖p̂h − ph‖∞ + 2MP‖r‖∞. (D.40)

Proof of Proposition 73. Under Assumption 71, Lemma 125 (b) imply that ph is amaxMK

hd+1−νmin
-Lipschitz.

Hence Theorem 64 implies (D.39).
Similarly under Assumption 72, Lemma 125 (c) imply that ph is MP -Lipschitz. Hence Theorem 64

implies (D.40).
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Lemma 126. Suppose Assumption 66 holds. Let {rn = (rn,1, . . . , rn,n)}n∈N be a triangular array of
positive numbers. Then the probability of the samples forming an rn-covering of supp(P ) is bounded
as

P

(
supp(P ) ⊂

n⋃

i=1

BRm(Xi, rn,i)

)
≥ 1−a−1

min exp
(
νmax log(min

i
rn,i)

−1 − 2−νmaxaminn(min
i
rn,i)

νmax

)
.

(D.41)

In particular, if mini rn,i ≥ 2
(
β logn
aminn

)1/νmax

, then

P

(
supp(P ) ⊂

n⋃

i=1

BRm(Xi, rn,i)

)
≥ 1− 1

2νmaxnβ−1 log n
. (D.42)

Proof of Lemma 126. Let ε := 1
2

mini rn,i. Under Assumption 66, there exists x1, . . . , xN with N ≤
a−1

minε
−νmax satisfying

supp(P ) ⊂
N⋃

j=1

BRm(xj, ε).

Let E ′ be the event that all BRm(xj, ε) have intersections with {X1, . . . , Xn}, i.e. for each 1 ≤ j ≤ N ,
there exists 1 ≤ i ≤ n with Xi ∈ BRm(xj, ε). Then note that 2ε = mini rn,i ≤ rn,i, and hence
BRm(xj, ε) ⊂ BRm(Xi, 2ε) ⊂ BRm(Xi, rn,i). Hence under E ′,

supp(P ) ⊂
N⋃

j=1

BRm(xj, ε) ⊂
n⋃

i=1

BRm(Xi, rn,i),

and hence E ′ implies supp(P ) ⊂ ⋃n
i=1 BRm(Xi, rn,i), i.e.

P

(
supp(P ) ⊂

n⋃

i=1

BRm(Xi, rn,i)

)
≥ P(E ′). (D.43)

Then P (E ′) can be expanded and lower bounded as

P(E ′) = P

(
N⋂

j=1

n⋃

j=1

{Xi ∈ BRm(xj, ε)}
)

= 1− P

(
N⋃

j=1

n⋂

i=1

{Xi /∈ BRm(xj, ε)}
)

≥ 1−
N∑

j=1

P

(
n⋂

i=1

{Xi /∈ BRm(xj, ε)}
)

= 1−
N∑

j=1

n∏

i=1

(1− P (BRm(xj, ε))

≥ 1−
N∑

j=1

exp

(
−

n∑

i=1

P (BRm(xj, ε))

)
,
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where the last line is from that 1−t ≤ exp(−t) for all t ∈ R. Then from Assumption 66, P (BRm(xj, ε)) ≥
aminε

νmax holds, and hence applying this and N ≤ a−1
minε

−νmax gives

P (E ′) ≥ 1−N exp (−aminnε
νmax)

≥ 1− a−1
min exp

(
νmax log ε−1 − aminnε

νmax
)

≥ 1− a−1
min exp

(
νmax log(min

i
rn,i)

−1 − 2−νmaxaminn(min
i
rn,i)

νmax

)
. (D.44)

Hence applying (D.44) to (D.43) gives (D.41).

Now, suppose mini rn,i ≥ 2
(
β logn
aminn

)1/νmax

. Note that RHS of (D.41) is an increasing function of
mini rn,i, and hence

P

(
supp(P ) ⊂

n⋃

i=1

BRm(Xi, rn,i)

)
≥ 1− a−1

min exp

(
log

(
aminn

2νmax log n

)
− β log n

)

= 1− 1

2νmaxnβ−1 log n
.

Hence (D.42) is shown.

Theorem 74. Suppose Assumption 66 and 67 holds. Let {rn = (rn,1, . . . , rn,n)}n∈N be a triangular
array of positive numbers such that

min
i
rn,i ≥ CP

(
log n

n

)1/νmax

, (D.45)

with a constant CP depending only on amin. Let also assume
√

2‖rn‖∞ ≤ τ for all sufficiently large n.
Then, under Assumption 71, for a fixed h > 0, there exists a positive constant CK,P depends only on
‖K‖∞, ‖K‖2, νmin, νmax , amin, amax such that with probability at least 1 − δ, the bottleneck distance
between the persistent homology of the density filtration PHsupp(P )

∗ (ph) and its estimator PHR
∗ (p̂h, rn)

is upper bounded as

dB

(
PHR
∗ (p̂h, rn),PHsupp(P )

∗ (ph)
)
≤ CK,P

(√
log(1/δ)

n
+ ‖rn‖∞

)
, (D.46)

for ∀n with
√

2‖rn‖∞ ≤ τ .
Under Assumption 72, suppose hn ≤ h0 for some fixed h0 ∈ (0, 1) for sufficiently large n and
h−dn log(1/hn) ≤ Ch0n for some constant Ch0 . Then there exists a positive constant CK,P,h0 depends
only on ‖K‖∞, ‖K‖2, d , amin, ‖p‖∞, h0 such that with probability at least 1−δ, the bottleneck distance
between the persistent homology of the density filtration PHsupp(P )

∗ (phn) and its estimator PHR
∗ (p̂hn , rn)

is upper bounded as

dB

(
PHR
∗ (p̂hn , rn),PHsupp(P )

∗ (phn)
)
≤ CK,P,h0

(√
log(1/δ)

nhdn
+

√
log(1/hn)

nhdn
+ ‖rn‖∞

)
. (D.47)

for ∀n with
√

2‖rn‖∞ ≤ τ .
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Proof of Theorem 74. Note first that, under Assumption 66 and (D.45), Lemma 126 implies that when
nβ−1 log n ≥ 1

2νmax−1δ
,

P

(
supp(P ) ⊂

n⋃

i=1

BRm(Xi, rn,i)

)
≥ 1− 1

2νmaxnβ−1 log n
≥ 1− δ

2
, (D.48)

i.e. the sample forms an rn-covering of the support of P .
First, suppose the assumptions 66, 67, and 71. When the sample forms an rn-covering of supp(P ),

we have the following inequality from (5.14) in Proposition 73 as

dB

(
PHR
∗ (p̂hn , rn),PHsupp(P )

∗ (phn)
)
≤ ‖p̂hn − phn‖∞ +

2amaxMK ‖rn‖∞
hd+1−νmin
n

.

Then under the Assumption 71, with probability 1− δ
2
, we have

dB

(
PHR
∗ (p̂hn , rn),PHsupp(P )

∗ (phn)
)
≤ CP,K,h0

√
log(1/hn) + log(2/δ)

nh2d−νmin
n

+
2amaxMK ‖rn‖∞

hd+1−νmin
n

.

Hence when hn = h for all n, with probability 1− δ, we have

dB

(
PHR
∗ (p̂h, rn),PHsupp(P )

∗ (ph)
)
≤ CP,K,h,MK

(√
log(1/δ)

nh2d−νmin
+
‖rn‖∞
hd+1−νmin

)
,

where CP,K,h,MK
depends only on ‖K‖∞, ‖K‖2, νmin, νmax, amin, amax, h, MK .

Second, suppose the assumptions 66, 67, and 72. When the sample forms an rn-covering of
supp(P ), we have the following inequality from (5.15) in Proposition 73 as

dB

(
PHR
∗ (p̂hn , rn),PHsupp(P )

∗ (phn)
)
≤ ‖p̂hn − phn‖∞ + 2MP ‖rn‖∞ .

Then under the Assumption 72, with probability 1− δ
2
, we have

dB

(
PHR
∗ (p̂hn , rn),PHsupp(P )

∗ (phn)
)
≤ CP,K,h0

√
log(1/hn) + log(2/δ)

nh2d−νmin
n

+ 2MP ‖rn‖∞ .

And hence with probability 1− δ, we have

dB

(
PHR
∗ (p̂hn , rn),PHsupp(P )

∗ (phn)
)
≤ CP,K,h0,MP

(√
log(1/hn)

nh2d−νmin
n

+

√
log(1/δ)

nh2d−νmin
n

+ ‖rn‖∞

)
,

where CP,K,h0,MP
depends only on ‖K‖∞, ‖K‖2, νmin, νmax, amin, amax, h0, MP .

We generalize the setting of Lemma 77. For any given f̂ : Rm → R and r = (r1, . . . , rn) ∈ (0,∞)n,
let Er(f̂) ⊂ R be a version of (5.20) for f̂ , i.e.

Er(f̂) :=

{
ε ∈ R+ :

{
x : f̂(x) ≥ ε

}
⊂
⋃

i

BRd(Xi, ri)

}
, (D.49)

and let ĉr(f̂) a version of (5.22) for f̂ , i.e.

ĉr(f̂) := inf{ε ∈ Er(f̂)} ∨max
i

sup
x∈BRd (Xi,ri)

|f̂(Xi)− f̂(x)|. (D.50)
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Claim 127. For any f̂ : Rm → R and r = (r1, . . . , rn) ∈ (0,∞)n, the following holds:

(a)
(

sup f̂ ∨ 0,∞
)
⊂ Er(f̂).

(b) f̂−1
(

inf Er(f̂),∞
)
⊂ ⋃i BRm(Xi, ri).

(c) ĉr(f̂) ∈
[
inf Er(f̂), sup f̂ − inf f̂ ∧ 0

]
.

(d) For x ∈ BRm(Xi, ri),
∣∣∣f̂(x)− f̂(Xi)

∣∣∣ ≤ ĉr(f̂).

Proof of Claim 127. (a)
Note that for any ε > sup f̂ ∨ 0, ε ∈ R+ and

{
x : f̂(x) ≥ ε

}
= ∅ ⊂ ⋃i BRm(Xi, ri), and hence

(
sup f̂ ∨ 0,∞

)
⊂ Er(f̂).

(b)
From the definition of Er(f̂) in (D.49), f̂(x) > inf Er(f̂) implies that f̂(x) ∈ Er(f̂), and hence

x ∈
{
y : f̂(y) ≥ f̂(x)

}
⊂
⋃

i

BRm(Xi, ri).

(c)
ĉr(f̂) ≥ inf Er(f̂) is apparent from the definition in (D.50) as

ĉr(f̂) = inf Er(f̂) ∨max
i

sup
x∈BRm (Xi,ri)

|f̂(Xi)− f̂(x)| ≥ inf Er(f̂).

For ĉr(f̂) ≤ sup f̂ − inf f̂ , note that

max
i

sup
x∈BRm (Xi,ri)

|f̂(Xi)− f̂(x)| ≤ max
i

sup
x∈BRm (Xi,ri)

sup f̂ − inf f̂ ≤ sup f̂ − inf f̂ ∧ 0. (D.51)

Also from (a),
inf Er(f̂) ≤ sup f̂ ∨ 0 ≤ sup f̂ − inf f̂ ∧ 0. (D.52)

Hence from (D.51) and (D.52), ĉr(f̂) is upper bounded as

ĉr(f̂) = inf Er(f̂) ∨max
i

sup
x∈BRm (Xi,ri)

|f̂(Xi)− f̂(x)|

≤ sup f̂ − inf f̂ ∧ 0.

(d)
Let x ∈ BRm(Xi, ri). Then

∣∣∣f̂(x)− f̂(Xi)
∣∣∣ can be bounded as

∣∣∣f̂(x)− f̂(Xi)
∣∣∣ ≤ max

i
sup

x∈BRm (Xi,ri)

|f̂(Xi)− f̂(x)|

≤ inf Er(f̂) ∨max
i

sup
x∈BRm (Xi,ri)

|f̂(Xi)− f̂(x)| = ĉr(f̂).
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Lemma 128. For any bounded function f̂ : Rm → R and r = (r1, . . . , rn) ∈ (0,∞)n, the following
inclusion holds:

DL+‖f̂−f‖∞+ĉr(f̂) ⊂ D̂L(r) and D̂L+‖f̂−f‖∞+ĉr(f̂)(r) ⊂ DL, ∀L > 0, (D.53)

where
D̂L(r) =

⋃

{Xi:f̂(Xi)≥L}

BX(Xi, ri),

and
DL = {x ∈ X : f(x) ≥ L} .

Proof of Lemma 128. Fix L > 0. Note first that from Claim 127 (c) and f̂ bounded,

ĉr(f̂) ≤ sup f̂ − inf f̂ ∧ 0 <∞.

To prove the first inclusion of (D.53), suppose x ∈ DL+‖f̂−f‖∞+ĉr(f̂), which is equivalent to x ∈ X

and f(x) ≥ L+
∥∥∥f̂ − f

∥∥∥
∞

+ ĉr(f̂). Then from ĉr(f̂) <∞,

f̂(x) ≥ f(x)−
∥∥∥f̂ − f

∥∥∥
∞
≥ L+ ĉr(f̂) (D.54)

> ĉr(f̂).

Then from Claim 127 (c), f̂(x) > inf Er(f̂), and hence from Claim 127 (b),

x ∈
⋃

i

BRm(Xi, ri),

i.e. there exists some Xi such that ‖x−Xi‖ ≤ ri. Then from Claim 127 (d) and (D.54),

f̂(Xi) ≥ f̂(x)− ĉr(f̂) ≥ L,

Hence x ∈ D̂L, which implies that

DL+‖f̂−f‖∞+ĉr(f̂) ⊂ D̂L. (D.55)

For the second inclusion of (D.53), suppose x ∈ D̂L+‖f̂−f‖∞+ĉr(f̂)(r). Then x ∈ X and there exists

Xi such that ‖x−Xi‖ ≤ ri and f̂(Xi) ≥ L+
∥∥∥f̂ − f

∥∥∥
∞

+ ĉr(f̂). Then from Claim 127 (d),

f̂(x) ≥ f̂(Xi)− ĉr(f̂) ≥ L+
∥∥∥f̂ − f

∥∥∥
∞
.

Therefore,
f(x) ≥ f̂(x)−

∥∥∥f̂ − f
∥∥∥
∞
≥ L.

Hence x ∈ DL, which implies that

D̂L+‖f̂−f‖∞+ĉr(f̂)(r) ⊂ DL. (D.56)

Hence (D.55) and (D.56) imply (D.53).
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Lemma 129. For any given f̂ : Rm → R bounded above and r = (r1, . . . , rn) ∈ (0,∞)n, set

Er(f̂) =

{
ε ∈ R+ :

{
x : f̂(x) ≥ ε

}
⊂
⋃

i

BRd(Xi, ri)

}
.

Then,
dB

(
PHX
∗ (f̂, r),PHX

∗ (f)
)
≤ ‖f̂ − f‖∞ + ĉr, (D.57)

where
ĉr(f̂) := inf{ε ∈ Er(f̂)} ∨max

i
sup

x∈BRd (Xi,ri)

|f̂(Xi)− f̂(x)|.

Proof of Lemma 129. Lemma 128 implies that {DL}L∈(0,∞) and {D̂L(r)}L∈(0,∞) are strongly
∥∥∥f̂ − f

∥∥∥
∞

+

ĉr-interleaved. Hence from Strong stability Theorem (Theorem 113), (D.57) is derived.

Lemma 130. For any given f̂ : Rm → R bounded above and r = (r1, . . . , rn) ∈ (0,∞)n, the following
relation holds:

dB

(
PHR
∗ (f̂, r),PHX

∗ (f)
)
≤ ‖f̂ − f‖∞ + ĉr ∨ ĉ2r. (D.58)

Proof of Lemma 130. Lemma 128 implies that for all L ∈ (0,∞),

DL+‖f̂−f‖∞+ĉr∨ĉ2r ⊂ DL+‖f̂−f‖∞+ĉr
⊂ D̂L(r),

D̂L+‖f̂−f‖∞+ĉr∨ĉ2r(2r) ⊂ D̂L+‖f̂−f‖∞+ĉ2r
(2r) ⊂ DL.

And Čech complexes on X and Rips complexes have the following inclusion relation as

ČechX(X f̂
n,L, r) ⊂ R(X f̂

n,L, r) ⊂ ČechX(X f̂
n,L, 2r).

Hence from Lemma 123, {H∗ (DL)}L∈(0,∞) and
{
H∗

(
R(X f̂

n,L, r)
)}

L∈(0,∞)
are strongly

∥∥∥f̂ − f
∥∥∥
∞

+

ĉr ∨ ĉ2r-interleaved, and in particular, (D.58) is derived.

Theorem 78. Suppose Assumption 66 and 67 holds. Let {rn = (rn,1, . . . , rn,n)}n∈N be a triangular
array of positive numbers such that

√
2‖rn‖∞ ≤ τ for all sufficiently large n. Then, the confidence set

ĈR
α in (5.25) is asymptotically valid and satisfies

P
(
dB

(
PHR
∗ (p̂h, rn),PHsupp(P )

∗ (ph)
)
≤ ẑα√

nhd
+ ĉrn ∨ ĉ2rn

)
≥ 1− α +O

(
1√
n

)
.

Proof of Theorem 78. Applying Lemma 130 gives the lower bound for LHS of (D.59) as

P
(
dB

(
PHR
∗ (p̂h, rn),PHsupp(P )

∗ (ph)
)
≤ ẑα√

nhd
+ ĉrn ∨ ĉ2rn

)

≥ P
(
‖p̂h − ph‖∞ + ĉrn ∨ ĉ2rn ≤

ẑα√
nhd

+ ĉrn ∨ ĉ2rn

)

= P
(√

nhd ‖p̂h − ph‖∞ ≤ ẑα

)
. (D.59)
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Then from the 1− α asymptotic confidence set for ‖p̂h − ph‖∞ with fixed h > 0 in (5.24), we have

P
(√

nhd ‖p̂h − ph‖∞ ≤ ẑα

)
= 1− α +O

(√
1

n

)
. (D.60)

Then combining (D.59) and (D.60) gives (D.59).
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