
Causal Inference with
Complex Data Structures and

Non-Standard Effects

Kwangho Kim

Department of Statistics and Data Science
Machine Learning Department

Carnegie Mellon University

This dissertation is submitted for the joint degree of
Doctor of Philosophy

in

Statistics and Machine Learning

May 2020





Thesis Committee

Prof. Edward Kennedy (co-chair)
Department of Statistics & Data Science,

Carnegie Mellon University

Prof. Larry Wasserman (co-chair)
Department of Statistics & Data Science

and
Machine Learning Department,

Carnegie Mellon University

Prof. Alessandro Rinaldo
Department of Statistics & Data Science

Carnegie Mellon University

Prof. Sivaraman Balakrishnan
Department of Statistics & Data Science

and
Machine Learning Department,

Carnegie Mellon University

Prof. Ashley Naimi
Department of Epidemiology,

University of Pittsburgh

Prof. Jose Zubizarreta
Department of Health Care Policy,

Harvard Medical School
Department of Statistics,

Harvard University





I dedicate this thesis to my loving parents and my brother
for their constant support and unconditional love . . .





Acknowledgements

Undertaking Ph.D at CMU has been a truly life-changing experience for me. It requires
me to fully make a commitment to myself more than ever before. However, it would not
have been possible to do without the support and guidance that I received from many people.

Firstly, I would like to express my deepest gratitude to my advisor Prof. Edward
Kennedy for the continuous support of my Ph.D studies and related research, for his patience,
motivation, and for his immense knowledge of statistics. Having him as my Ph.D advisor is
the luckiest thing that ever happened during my Ph.D studies. He has been supportive since
the days I began working with him, not only academically but also emotionally through the
rough road to finish my Ph.D. Without his clear guidance and constant feedback, this Ph.D
would not have been achievable in any sense. It is whole-heartedly appreciated that his great
advice for my study proved monumental towards the success of this Ph.D degree. Edward
was the reason why I decided to go to pursue a career in research.

I would like to pay my special regards to my another advisor Prof. Larry Wasserman for
the invaluable assistance that he has provided during my Ph.D studies. He is a genuine expert
in statistics and machine learning; in many cases, just a few words of his email body are
enough to make a breakthrough in my research. Most importantly he is a wonderful person.
I could not have imagined having a better advisor and mentor for my study in statistical
machine learning.

Besides my advisors, my sincere thanks also go to the rest of my thesis committee. I
wish to show my gratitude to Prof. Alessandro Rinaldo for his scientific advice, knowledge
and many insightful discussions. I have really enjoyed our work on topological data analysis.
I am indebted to Prof. Ashley Naimi who has been helpful in providing advice many times
regarding our work on causal inference and my advanced data analysis project. I thank Prof.
Sivaraman Balakrishnan for his insightful comments and encouragement, but also for the
hard question which incented me to widen my research from various perspectives. I also am
thankful to my future postdoctoral research advisor with whom I am really looking forward
to working, Prof. Jose Zubizarreta for insightful discussions and all the great suggestions.

I am also very grateful to Prof. Barnabas Poczos for helpful advice and suggestions
particularly during the early stages of my Ph.D journey. His immense knowledge of machine



viii

learning and wide spectrum of research interests really inspired me. I value his teaching and
many insightful discussions for our research.

I will forever be thankful to Dr. Jisu Kim who is my friend as well as a great research
colleague of mine. He has been my primary resource for getting my statistics questions
answered and instrumental in helping me crank out all the hard problems we have been
working through. I still think fondly of our time we used to spend together, foraging for some
good French desserts while we were working late at night.

Dozens of people have helped and taught me immensely at both the Department of
Statistics & Data Science and Machine Learning Department. All the faculty and staff
members have been always supportive and caring during my time at CMU. I thank my fellow
Ph.D colleagues for the stimulating discussions, for the sleepless nights we were working
together before deadlines, and for all the fun we have had in the last four years. There are
several people to whom I am especially grateful for their friendship and the warmth they
showed to me when I was navigating through the profound personal hardship in the last year
of my Ph.D studies. If you had received my personal email recently, you are the one to whom
I am thankful here.

Last but not the least, I would like to say a heartfelt thank you to my parents and my little
brother for always believing in me and encouraging me to follow my dreams, and supporting
me spiritually throughout my Ph.D studies and my life in general.



Abstract

Many modern problems in causal inference have non-trivial complications beyond the
classical settings of randomized trials, parametric models, and average treatment effects.
Despite their inherent complexities, many recent questions in causal inference are still tackled
via overly simplified methods and data structures. My thesis is dedicated to overcoming some
of these methodological limitations of classical causal inference, aiming to bridge the gap
between methodological development and practice, by effectively harness advanced machine
learning tools. My work can be categorized into the following three sub-topics.

a.) Stochastic interventions for general longitudinal data. We generalize novel "incre-
mental" intervention effects to accommodate subject dropout in longitudinal studies. Our
methods do not require positivity or parametric assumptions, and are less sensitive to the
curse of dimensionality. We present efficient nonparametric estimators, showing that they
converge at

√
n rates and yield uniform inferential guarantees. Importantly, we argue that

incremental effects are much more efficient than conventional deterministic effects in a novel
infinite time horizon setting, where the number of timepoints can grow to infinity.

b.) Causal effects based on distributional distances. We have proposed a novel non-
standard causal effect based on the discrepancy between unobserved counterfactual distribu-
tions (i.e., L1 distance), in order to provide more nuanced and valuable information about
treatment effects than simple mean shifts. We consider single- and multi-source randomized
studies, as well as observational studies, and analyze error bounds and asymptotic properties
of the proposed estimators. Special difficulties arise due to the non-smoothness of the L1

distance functional.
c.) Causal clustering. We give a novel adaptation of unsupervised learning methods

for analyzing treatment effect heterogeneity. Specifically, we pursue an efficient way to
uncover subgroup structure in conditional treatment effects by leveraging tools in clustering
analysis. We find conditions under which k-means, density-based, and hierarchical clustering
algorithms can be successfully adopted into our framework. For k-means causal clustering,
we develop a novel estimator that attains fast convergence rates and asymptotic normality
of the cluster centers, even under weak nonparametric conditions on nuisance function
estimation. Unlike previous studies, our framework can be easily extended to outcome-wide
studies.
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Chapter 1

Introduction

“There are two types of statisticians: those who do causal inference and those
who lie about it.”

– Larry Wasserman

1.1 Background

Statistical causal inference is about estimating what would happen to some response
(outcome) when a “cause” of interest is changed or intervened upon, possibly contrary to an
observed fact. This is fundamentally distinct from associational questions that are commonly
found in standard statistical and machine learning analysis. Associational questions only care
about how things are - they do not require us to imagine intervening upon or changing the
system we are observing [63]. Consequently, they aim to learn parameters of a distribution
from samples drawn of that distribution.

On the other hand, causal analysis goes one step further. They ask how things would have
been if something fundamental had changed (or intervened). Therefore, causal questions are
inherently counterfactual. Thus, its aim is to infer not only beliefs or probabilities under
static conditions, but also the dynamics of beliefs under changing conditions where the
changes are induced by treatments or external interventions [100].

Causal inference is essential for answering many important questions in health, public
policy, economics, and has been increasingly being recognized as a crucial part of science.
Some typical examples of important causal questions which cannot be answered with the
associational framework alone include: how would survival change under medical treatment
A vs. B, or what would be the economic effects of policy X vs. Y? However, it is a common
fallacy to conflate association and causation. To mathematically frame such causal problems
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and distinguish causal inference from associational statistics , we need a counterfactual causal
language. In this thesis, we use potential outcomes which are the dominant causal language
in statistics [118]. For example, suppose that we have data on binary treatment A ∈ {0,1}
and outcome Y on units i = 1, ...,n where we observe i.i.d samples from Z = (A,Y )∼ P. We
concern what might have happened on Y if the treatment A changed, possibly contrary to an
observed fact. The potential or counterfactual outcome we would have observed had they
received treatment A = a is denoted Y a for a ∈ {0,1}.

It should be stressed that Y represents what we actually observed, while Y a represents
what we would have observed under treatment a. Standard associational studies (i.e., esti-
mating correlation between Y and A) do not cope with dynamics on Y a unless we are able to
travel to a parallel universe. In our example, we never get to observe all potential outcomes in
reality; we only can observe either Y 0 or Y 1 at best. This is called the fundamental problem
of causal inference since we want to contrast potential outcomes, but only see outcomes from
actual world, not counterfactual worlds [54].

Despite of this fundamental obstacle, under certain conditions still it is possible to obtain
accurate estimates of some important causal parameters. For example, as in our example, to
compare population-average outcomes between two treatment levels (i.e., control vs. treated),
we formulate the population-level average treatment effect (ATE) as

E(Y 1 −Y 0). (1.1)

This (the ATE, or the population average effect) represents how the mean outcome in the
population would have differed if all versus none were treated, and is arguably one of the most
popular causal parameters [63]. Nonetheless, here we remark that other causal parameters
(which contrast effects of the treated versus the control in different ways) may instead be of
interest in the analysis. For example, researchers may use the risk ratio E(Y 1)/E(Y 0) or the
odd ratio {P(Y 1 = 1)/P(Y 1 = 0)}/{P(Y 0 = 1)/P(Y 0 = 0)} as their target causal parameters,
depending on a goal of the scientific investigation (see [63, 64, 71] or the lecture note of [68]
for more examples).

1.2 Efficient influence function and nonparametric efficiency
bound

Once a causal parameter of interest has been precisely defined and identified, we are
ready to develop an estimator and the corresponding inference procedure for that parameter.
In this section, we will give a brief introduction about efficient functional estimation based
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on influence function and nonparametric efficiency bound, which will serve as the core
theoretical ingredient in developing estimators across different functionals in this thesis.
Before we go on, I declare that the primary sources of this subsection are [64, 65, 63, 71] and
the lecture notes used in CMU 36-731, 36-732 [68, 69], and that all the terms, definitions
and results are directly borrowed from the resources specified here.

We begin with introducing a doubly robust estimator for the ATE in observational studies.
Under the standard identification assumptions 1 the ATE ψ ≡ E[Y 1−Y 0] in (4.1) is identified
by

ψ = E[µ1 −µ0]≡ E{E[Y | X ,A = 1]−E[Y | X ,A = 0]} ,

where we define the outcome regression function µa = E[Y | X ,A = a].
In what follows, we define a doubly robust estimator by

ψ̂dr = Pn

{[
A

π̂(X)
− 1−A

1− π̂(X)

]
[Y − µ̂A(X)]+ [µ̂1(X)− µ̂0(X)]

}
. (1.2)

The doubly robust estimator (1.2) is known to be an efficient, model-free estimator for the
identified target parameter (the ATE) compared to other estimators (e.g., regression plug-in
and inverse probability weighting estimators) in using nonparametric models when we do
not have any substantive information on both of the exposure and outcome processes, as it
can be

√
n-consistent and asymptotically normal even when the nuisance functions µa, π are

estimated flexibly at slower than
√

n rates [e.g., 63, Theorem 4.5]. Given the superiority of
this doubly robust estimator, the following questions naturally arise: 1) would it be possible
to assess optimality of the doubly robust estimator in any way, as we did for parametric
models using the Cramér-Rao bound argument? 2) what is the general way to construct
such efficient, model-free estimators for a given parameter (beyond the ATE)? To address
these questions, we shall introduce the influence function, which is a foundational object
of statistical theory that allows us to characterize a wide range of estimators with favorable
theoretical properties and their efficiency. There are two notions of the influence function:
one for estimators and the other for parameters. To distinguish these two cases we will call
the latter, which corresponds to parameters, influence curves as in for example, [14, 65] 2.

First, we give a definition of influence curves. It was first introduced by [45] and studied to
provide a general solution to find approximation-by-averages representation for a functional
statistic. We only consider nonparametric models here.

1By standard identification assumptions, here I refer to consistency, no unmeasured confounding, and
positivity assumptions. See, for example, [63, 52] for more details and full definitions. We acknowledge that
there exist other identification strategies one might consider for causal inference in non-experimental settings
as well.

2However, the terms ‘influence curve’ and ‘influence function’ are used interchangeably in many cases.
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Suppose that we are given a target functional ψ . For a nonparametric model P, let {Pε ,
ε ∈ R} denote a smooth parametric submodel for P with Pε=0 = P. A typical example
of a parametric submodel is given by {Pε : pε(z) = p(z)(1+ εs(z))} for some mean-zero,
uniformly bounded function s. Then the influence curve for parameter ψ(P) is defined by any
mean-zero, finite-variance function φ(P) that satisfies the following pathwise differentiability,

∂

∂ε
ψ(Pε)

∣∣∣∣∣
ε=0

=
∫

φ(P)
(

∂

∂ε
logdPε

)∣∣∣∣∣
ε=0

dP. (1.3)

The above pathwise differentiability implies that our target parameter ψ is smooth enough
to admit a von Mises expansion: for two distribution P,Q

ψ(Q)−ψ(P) =
∫

φ(Q)d(Q−P)+R2(Q,P) (1.4)

where R2 is a second-order remainder. Therefore, the influence curve also corresponds to the
functional derivative in a Von Mises expansion of ψ .

One can obtain the classical Cramér-Rao lower bound for each parametric submodel Pε ;
the Cramér-Rao lower bound for Pε is ψ ′(Pε)

2/E(s2
ε) where ψ ′(Pε) =

∂

∂ε
ψ(Pε)

∣∣
ε=0 and

sε = sε(z) = ∂

∂ε
logdPε

∣∣
ε=0. The asymptotic variance of any nonparametric estimator is no

smaller than the supremum of the Cramér-Rao lower bounds for all parametric submodel,
and it is known that under the above pathwise differentiability condition the greatest such
lower bound is given by

sup
Pε

ψ ′(Pε)
2

E(s2
ε)

≤ E(φ 2).

Therefore, E(φ 2) = var(φ) is the nonparametric analog of the Cramér-Rao lower bound, and
we call the influence curve that attains the above bound the efficient influence curve. The
efficient influence curve gives the efficiency bound for estimating ψ . In parametric models,
more than one influence curves may exist. On the other hand in nonparametric model, the
influence curve is unique. However, the efficient influence curve is always unique in any
cases.

Once the efficient influence curve is known, no estimator can be more efficient than ψ̂(P)
such that

√
n(ψ̂ −ψ)⇝ N(0,var(φ)) (1.5)

as var(φ) serves to be our nonparametric efficiency bound. In (1.5), we call φ the (efficient)
influence function for the estimator ψ̂ 3. For each nonparametric estimator, the efficient

3In fact, influence curves themselves are the putative influence functions.
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influence function, if exists, is almost surely unique, so in this sense the influence function
contains all information about an estimator’s asymptotic behavior. In other words, if we
know the influence function for an estimator, we know its asymptotic distribution and can
easily construct confidence intervals and hypothesis tests.

Characterizing the influence curves is crucial not only to give the efficiency bound for
estimating ψ , thus providing a benchmark against which estimators can be compared, but
probably more importantly, to construct estimators with very favorable properties, such as
double robustness or general second-order bias which amounts to be a consequence of the
pathwise differentiability (1.4). In fact, we can find an (asymptotically linear) estimator
that satisfies (1.5) by solving appropriate estimating equations using the influence curves.
Particularly Chapter 2 and Chapter 4 of the thesis contains examples developing a novel
efficient, model-free estimator based on the efficient influence curve of the target parameter.

Back to the doubly robust estimator (1.2), let us consider ψ̂1
dr = Pn

{
ϕ1

dr(Z; η̂)
}

where

ϕ
1

dr(Z;η) =
A

π(X)
[Y −µA(X)]+µ1(X)

and η = (π,µ). Then it can be shown that

ψ̂1
dr −ψ

1 = Pn(ϕ
1

dr −ψ
1)+oP(1/

√
n)

where ψ1 = E[µ1] (Section 3, [65]). Hence, the efficient influence function of the estimator
ψ̂1

dr is ϕ1
dr −ψ1 by definition.

On the other hand, one may also show that the efficient influence curve for the parameter
ψ1 is given by

A
π(X)

[Y −µA(X)]+µ1(X)−ψ
1

which is exactly the same quantity with ϕ1
dr −ψ1. Hence, for the ordinary doubly robust

estimator, the efficient influence curve for the target parameter ψ1 coincides with the efficient
influence function for the estimator. In this case we can see that indeed there is a deep
connection between the estimator for a given target functional, and the corresponding
influence function.

Finally we remark that for complicated functionals pretending discrete space on Z can
facilitate our procedure to characterize influence curves. For example, assuming that our unit
space is discrete, the influence curve φ(P) for the functional ψ(P) can be defined by

φ(P) =
∂

∂ε
ψ ((1− ε)P+ εδz)

∣∣∣
ε=0+

= lim
ε→0+

ψ ((1− ε)P+ εδz)−ψ(P)
ε

(1.6)
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where we let δz be the Dirac measure at Z = z. This definition is equivalent to the Gateaux
derivative of ψ at P in direction of point mass (δz −P) (see, for example, Chapter 5 in [14]).

For more details for nonparametric efficiency theory and influence functions, we refer to
[64, 65, 71, 137, 130] and references therein.

1.3 Challenges for Modern Causal Inference

Despite the great importance of causal inference in modern science, still a lot of work in
causal inference rely on randomized trials, parametric models, average effects, and overly
simplified data structures. Many modern problems have non-trivial complications outside of
these classical settings. For example, in observational studies developing fully nonparametric
estimators beyond simple data structure Z = (X ,A,Y ) is very challenging (e.g., with time-
varying exposure) and typically positivity conditions which require everyone to have some
nonzero probability of receiving each treatment are unlikely to hold. Moreover, in some
cases the standard ATE is not enough to convey valuable information to policy-makers (e.g.,
in the presence of substantial effect heterogeneity).

There has been a growing interest in novel methods of causal inference for complex data
structure and non-standard effects, hoping to cope with these and other challenges that arise
in modern problems. We enumerate some of important challenges in modern causal inference
and delineate our approach to each them in subsequent subsections.

1.3.1 Causal inference for complex longitudinal data

Modern longitudinal data, where individuals are exposed to varying treatment levels over
time, is more complex than point exposure studies with a single timepoint. The simplest data
structure in longitudinal studies can be described by

Z = (X1,A1,Y1,X2,A2,Y2, ...,XT ,AT ,YT ) (1.7)

, where T is the number of timepoints in the study. By virtue of the recent advancement in
technology a capability of collecting data has been enormously enhanced, and consequently
many longitudinal studies have been proposed, typically with very large T (sometimes of the
same order of sample size) (see, for example, [81, 34, 77]).

However, such studies introduce numerous statistical challenges that remain largely
unaddressed. First, conventional deterministic interventions (fixed or dynamic) that are often
invoked for longitudinal causal studies reply on untenable positivity assumptions, which
require every subject to have a nonzero chance of receiving each available treatment at every
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time point. Even if positivity is only nearly violated, the finite-sample behavior of many
common estimators can be severely damaged. Second, even under positivity, longitudinal
studies are especially prone to the curse of dimensionality, since exponentially many samples
are needed to learn about all treatment trajectories. These issues only worsen when the
number of timepoints or covariates increases. Third, it is very common to have multiple
right-censored outcomes in longitudinal data. The right censoring (i.e. dropout) may happen
during data collection or during the experiment, especially when human subjects are involved.
In the presence of dropout, the tuple (X ,A,Y ) is no longer observable after a certain timepoint.
Incorporating dropout events can add much complexity to the data structure. These and other
issues have brought new attention to the development of novel methodological framework
with which we can effectively perform causal analysis for complex modern data structure.

1.3.2 Non-standard causal effects

Non-trivial mean-zero effects. Consider the case where the ATE may be less useful. For
a binary treatment A ∈ 0,1 and outcome Y ∈ R, suppose that (A,Y ) ∼ P and that Y 0 = 0
but P(Y 1 = 1) = P(Y 1 =−1) = 1/2. Then the ATE is exactly zero. Should policy makers
conclude that treatment really has no impact? This may be misleading, since the treatment
yields extreme harms and extreme benefits to half the population. As seen in this illustration,
there are often times when mere average effects reveal potentially less valuable information
about how treatment works on outcomes. Therefore, more nuanced measure of treatment
effects can be needed.

Heterogeneity in treatment effects. The ATE is a measure used to compare population-
average outcomes. However, subgroups of units often show considerable heterogeneity of
response toward the same treatment, which can be masked by the ATE. Identifying treatment
effect heterogeneity and corresponding subgroups is of great importance in policy evaluation,
drug development, and health care service, and has generated growing recent interest.

The most popular approach for studying effect heterogeneity targets the conditional
average treatment effects. Various methods have been proposed for this task. However,
most existing methods are afflicted with some common limitations. First, many methods are
limited to specific supervised learning techniques to derive a partition (subgroup structure)
of unit space. Second, many methods rely on unrealistic parametric assumptions. Finally
and perhaps most importantly, existing methods are not easily extendable to outcome-wide
studies where treatment effects are assessed over numerous outcomes. This conflicts with
the fact that a growing number of recent studies seek to adopt outcome-wide approaches,
possibly with very many treatment options.
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1.3.3 Contribution of the thesis

In this thesis, we develop novel methodological approaches to address each of the above
challenges. Specifically,

1. For causal inference with longitudinal data, we generalize incremental interventions to
accommodate subject dropout. We provide an identifying expression for incremental
effects when dropout is conditionally ignorable (i.e., under a time-varying missing-
at-random assumption), still without requiring (treatment) positivity, and derive the
nonparametric efficiency bound for estimating such effects. Then we present efficient
nonparametric estimators, showing that they converge at fast parametric rates and yield
uniform inferential guarantees, even when nuisance functions are estimated flexibly
at slower rates. Importantly, in this work we also study the relative efficiency of
incremental effects to more conventional deterministic effects in a novel infinite time
horizon setting, where the number of timepoints can grow to infinity with sample size.
Specifically, we show that our incremental effects can yield near-exponential efficiency
gains in this setup. Finally, we apply our methods to study the effect of low-dose
aspirin on pregnancy outcomes. Chapter 2 is devoted to this work.

2. In order to provide more nuanced and valuable information about treatment effects
than the ATE, we consider estimating causal effects based on the discrepancy between
unobserved counterfactual distributions. Continuing the illustrating example with
binary treatments, we let Q0,Q1 be the two counterfactual outcome distributions for
the binary treatments. Then in our setting, a causal effect can be defined in terms of the
L1 distance D1 between Q0,Q1, i.e. D1(Q0,Q1). We provide a novel way to estimate
each of the counterfactual outcome distributions for efficient estimation of our target
functional D1(Q0,Q1). We consider single- and multi-source randomized studies, as
well as observational studies, and analyze error bounds and asymptotic properties of
the proposed estimators. We further propose methods to construct confidence intervals
for the unknown mean distribution distance. Our proposed method can be always used
jointly with the ATE, as a first step in assessing whether there is effect modification
beyond a mean shift; for instance, when the ATE is nearly zero but D1(Q0,Q1) is large,
we should be cautious before making a decision based on the former. Chapter 3 is
devoted to this work.

3. As to analysis of the treatment effect heterogeneity, we give a novel adaptation of
unsupervised learning methods. Specifically, we pursue an efficient way to uncover
subgroup structure in conditional treatment effects by leveraging tools in clustering
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analysis. We find conditions under which k-means, density-based, and hierarchical
clustering algorithms can be successfully adopted into our framework. Particularly for
k-means causal clustering, we develop an estimator based on nonparametric efficiency
theory that attains fast convergence rates to the true cluster centers, under weak non-
parametric conditions on nuisance function estimation. This requires novel techniques
due to the non-smoothness of the minimizer of the k-means risk. Surprisingly, we give
conditions for asymptotic normality of the cluster centers. Chapter 4 is devoted to this
work.

1.4 Thesis Organization

The thesis is organized as follows. In Chapter 2, we propose a more comprehensive
form of stochastic dynamic intervention effects to accommodate subject dropout, and study
the relative efficiency of incremental effects to more conventional deterministic effects in
a novel infinite time horizon setting. In Chapter 3 we study a novel non-standrad causal
effect based on the discrepancy between unobserved counterfactual distributions using the
non-smooth L1 distance. In Chapter 4 we propose Causal Clustering, a novel framework for
the heterogeneous treatment effect analysis, where we pursue an efficient way to uncover
subgroup structure in conditional treatment effects by leveraging tools in clustering analysis.
Chapter 5 concludes with further remarks on future work.





Chapter 2

Incremental Intervention Effects in
Studies with Dropout and Many
Timepoints

2.1 Introduction

Causal inference has long been an important scientific pursuit, and understanding causal
relationships is essential across many disciplines. However, for practical and ethical reasons,
causal questions cannot always be evaluated via experimental methods (i.e., randomized
trials), making observational studies the only viable alternative. Further, when individuals
can be exposed to varying treatment levels over time, collecting appropriate longitudinal data
is important. To that end, recent technological advancements that facilitate data collection
are making longitudinal studies with a very large number of time points (sometimes of the
same order of sample size) increasingly common [e.g., 81, 34, 77].

The increase in observational studies with detailed longitudinal data has also introduced
numerous statistical challenges that remain unaddressed. For longitudinal causal studies,
two analytic frameworks are often invoked: deterministic fixed interventions [108, 112, 51],
in which all individuals are assigned to a fixed exposure level over all time-points; and
deterministic dynamic interventions [98, 110] in which, at each time, treatment is assigned
according to a fixed rule that depends on past history. In the real world, the fixed deterministic
interventions might not be of practical interest since the treatment is typically not applied
uniformly [67].

Generally, deterministic interventions (fixed or dynamic) rely on the positivity assumption
which requires every unit to have a nonzero chance of receiving each of the available
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treatments at every time point. If the positivity assumption is violated, the causal effect
defined under deterministic (fixed or dynamic) interventions will be no longer identifiable.
Even under positivity, longitudinal studies are especially prone to the curse of dimensionality,
since exponentially many samples are needed to learn about all treatment trajectories. These
issues only worsen when the number of timepoints or covariates increases. Thus, due to a
lack of analytic methods for such longitudinal data, researchers are often forced to either rely
on strong parametric assumptions, or forego the estimation of causal effects altogether [e.g.
81].

Recently, [67] has proposed a novel incremental intervention effects which quantify the
effect of shifting treatment propensities, rather than effects of setting treatment to fixed
values. An incremental intervention is a stochastic intervention in that it depends on unit
characteristics and is random at each timepoint [see 150, 27, 46, 96, as prior works on
stochastic interventions whose setup is relevant to our study]. Importantly, incremental effect
estimators do not require positivity, and can still achieve

√
n rates regardless of the number of

timepoints, even when flexible nonparametric methods are used. Despite these strengths, the
method has not been adapted to general longitudinal studies, where multiple right-censored
outcomes are common (particularly for human subjects).

In this paper we propose a more comprehensive form of incremental intervention effects
that accommodate not only time-varying treatments, but time-varying outcomes subject to
right censoring (i.e., dropout). We provide an identifying expression for incremental effects
when dropout is conditionally ignorable, still without requiring (treatment) positivity, and
derive the nonparametric efficiency bound for estimating such effects. We go on to present
efficient nonparametric estimators, showing that they converge at fast rates and give uniform
inferential guarantees, even when nuisance functions are estimated flexibly at much slower
rates with flexible machine learning tools under weak conditions. Importantly, we study
the relative efficiency of incremental effects to more conventional deterministic effects in a
novel infinite time horizon setting, where the number of timepoints can grow with sample
size to infinity. We specifically show that incremental effects can yield near-exponential
gains in this setup. Finally we conclude with a simulation study and apply our methods to a
longitudinal study of the effect of low-dose aspirin on pregnancy outcomes to demonstrate
the effectiveness of our method.

2.2 Setup

We consider a study where for each subject we observe covariates Xt ∈ Rd , treatment
At ∈ R, and outcome Yt ∈ R, with all variables allowed to vary over time, but where subjects
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can drop out or be lost to follow-up. In particular, we observe a set of i.i.d samples (Z1, ...,Zn)

from a probability distribution P where, for those subjects who remain in the study up to the
final timepoint t = T , we observe

Z = (X1,A1,Y1,X2,A2,Y2, ...,XT ,AT ,YT ).

But in general we only get to observe

Z = (X1,A1,R2,R2(Y1,X2,A2), ...,RT ,RT (YT−1,XT ,AT ),RT+1,RT+1YT ) (2.1)

with Rt = 1{ still in the study at time t } an indicator for whether the subject contributes
data at time t. We write Rt(Yt−1,Xt ,At) as a shorthand notation of (RtYt−1,RtXt ,RtAt), so
in the missingness process that we consider subjects can drop out at each time after the
measurement of covariates/treatment. This is motivated by the fact that this is likely the
most common type of dropout, since outcomes Yt at time t are often measured together
with or just prior to covariates Xt+1 at time t +1. As we consider a monotone dropout (i.e.,
right-censoring) process, Rt is non-increasing in time t, i.e.,Rt = 1 ⇒ (R1, ...,Rt−1) = 111

Rt = 0 ⇒ (Rt+1, ...,RT ) = 000,

where 000,111 are vectors of zeros and ones respectively. Thus our data structure Z is a chain
with t-th component

{Rt ,Rt(Yt−1,Xt ,At)}

for t = 1, ...,T +1 where R1 = 1 and we do not use Y0 or XT+1,AT+1. Although we suppose
each subject’s dropout will occur before the t-th stage, our data structure also covers the case
when the dropout will occur after the t-th stage because in that case we can write

{Rt(Yt−1,Xt ,At),Rt+1}

as the t-th component of our chain, and the general structure remains the same.
For simplicity, we consider binary treatment in this paper, so that the support of each At

is A = {0,1}. We use overbars and underbars to denote all the past history and future event
of a variable respectively, so that X t = (X1, ...,Xt) and At = (At , ...,AT ) for example. We
also write Ht = (X t ,At−1,Y t−1) to denote all the observed past history just prior to treatment
at time t, with support Ht . Finally, we use lower-case letters at ,ht ,xt to represent realized
values for At ,Ht ,Xt , unless stated otherwise.
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Now that we have defined our data structure we turn to our estimation goal, i.e., which
treatment effect we aim to estimate. We use Y at

t to denote the potential (counterfactual)
outcome at time t that would have been observed under a treatment sequence at = (a1, ...,at)

(note we have Y aT
t = Y at

t as long as the future cannot cause the past). In longitudinal causal
problems it is common to pursue quantities such as E(Y at

t ), i.e., the mean outcome at a given
time under particular treatment sequences at ; for example one might compare the mean
outcome under at = 111 versus at = 000, which represents how outcomes would change if all
versus none were treated at all times. However identifying these effects requires strong
positivity assumptions (i.e., that all have some chance at receiving every treatment at every
time), and estimating these effects often requires untenable parametric assumptions when
there are more than a few timepoints.

Following [67] we instead consider incremental intervention effects, which represent how
mean outcomes would change if the odds of treatment at each time were multiplied by a factor
δ (e.g., δ = 2 means odds of treatment are doubled). Incremental interventions shift propen-
sity scores rather than impose treatments themselves; they represent what would happen if
treatment were slightly more or less likely to be assigned, relative to the natural/observational
treatment. There are a number of benefits of studying incremental intervention effects: for
example, positivity assumptions can be entirely and naturally avoided; complex effects under
a wide range of intensities can be summarized with a single curve in δ , no matter how many
timepoints T there are; and they more closely align with actual intervention effects than their
fixed treatment regime counterparts. We refer to [67] for more discussion and details.

Formally, incremental interventions are dynamic stochastic interventions where treatment
is not assigned based on the observational propensity scores πt(ht) = P(At = 1 | Ht = ht);
instead these propensity scores are replaced by new interventional propensity scores given by

qt(ht ;δ ,πt) =
δπt(ht)

δπt(ht)+1−πt(ht)
(2.2)

to ensure the odds of treatment are multiplied by δ . We denote potential outcomes under the
above intervention as Y Qt(δ )

t where Qt(δ ) = {Q1(δ ), ...,Qt(δ )} represents draws from the
conditional distributions Qs(δ ) | Hs = hs ∼ Bernoulli{qs(hs;δ ,πs)}, s = 1, ..., t. We often
drop δ and write Qt = Qt(δ ) when the dependence is clear from the context. Note here
we use capital letters for the intervention indices since they are random, as opposed to Y at

t

where the intervention is deterministic. Therefore in this paper we aim to estimate the mean
counterfactual outcome

ψt(δ ) = E
(

Y Qt(δ )
t

)
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for any t ≤ T . This goal is different from [67] in that we allow varying outcomes over time
and dropout/right-censoring. Thus in the next section we describe the necessary conditions
for identifying ψt(δ ) in the presence of dropout.

2.3 Identification

In this section, we will give assumptions under which the entire marginal distribution
of the resulting counterfactual outcome Y Qt(δ )

t is identified. Specifically, we require the
following assumptions for all t ≤ T .

Assumption A1. Y = Y aT if AT = aT

Assumption A2-E. At ⊥⊥ Y aT | Ht

Assumption A2-M. Rt ⊥⊥ (X t ,At ,Y ) | Ht−1,At−1,Rt−1 = 1

Assumption A3. P(Rt = 1 | Ht−1,At−1,Rt−1 = 1) is bounded away from 0 a.e. [P]

Assumptions (A1) and (A2-E) correspond to consistency and exchangeability conditions
respectively, which are commonly adopted in causal inference problems. Consistency means
that the observed outcomes are equal to the corresponding potential outcomes under the
observed treatment sequence, and would be violated in settings with interference, for example.
Exchangeability means that the treatment and counterfactual outcome are independent,
conditional on the observed past (if there were no dropout), i.e., that treatment is as good as
randomized at each time conditional on the past. Experiments ensure exchangeability hold
by construction, but in observational studies it cannot be justified so in general we require
sufficiently many relevant adjustment covariates (Ht in our case) to be collected.

In this paper, we additionally require assumptions (A2-M) and (A3) because of the
missingness/dropout. (A2-M) is a time-varying missing-at-random assumption, ensuring that
dropout is independent of the future (and underlying missing data values), conditioned on
the observed history up to the current time point. This would be a reasonable assumption
if we can collect enough data to explain the dropout process, so we can ensure that those
who dropout look like those who do not, given all past observed data. (A3) is a positivity
assumption for missingness, meaning that each subject in the study has some non-zero chance
at staying in the study at the next timepoint. This would be expected to hold in many studies,
but may not if some subjects are ‘doomed’ to drop out based on their specific measured
characteristics. Note that assumptions (A2-M) and (A3) also appear in more classical works
on dealing with missing data [e.g. 115, 114].
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Importantly, we do not need any positivity conditions on the propensity scores, since we
are targeting incremental effects as defined in (2.2) rather than more common deterministic
effects. The next result gives an identifying expression for the incremental effect under the
above assumptions.

Theorem 2.3.1. Suppose identification assumptions (A1) - (A3) hold. Then the incremental
effect on outcome Y at time t with given value of δ ∈ [δl,δu] for 0 < δl ≤ δu < ∞ equals

ψt(δ ) =
∫

X t×A t

µ(ht ,at ,Rt+1 = 1)
t

∏
s=1

qs(as | hs,Rs = 1)dν(as) dP(xs | hs−1,as−1,Rs = 1)

(2.3)
for t ≤ T , where X t = X1 ×·· ·×Xt , A t = A1 ×·· ·×At ,
µ(ht ,at ,Rt+1 = 1) = E(Yt | Ht = ht ,At = at ,Rt+1 = 1), and

qs(as | hs,Rs = 1) =
asδπs(hs,Rs = 1)+(1−as){1−πs(hs,Rs = 1)}

δπs(hs,Rs = 1)+1−πs(hs,Rs = 1)
. (2.4)

with πs(hs,Rs = 1) = P(As = 1 | Hs = hs,Rs = 1) and a dominating measure ν for the
distribution of As.

Theorem 2.3.1 follows by Theorem 1 in [67] and Lemma A.4.1 given in the appendix.
Note that qs(as | hs) is the propensity score under the incremental intervention. The identify-
ing expression (2.3) shows that the mean counterfactual outcome ψt(δ ) is identified and can
be expressed in terms of the observed data distribution P.

As mentioned earlier, without the additional assumptions (A2-M) and (A3) together with
the result of Lemma A.4.1, the intervention effect ψt(δ ) would in general not be identifiable
under the setting considered by Kennedy [67], due to the dropout. It is also worth noting
that here we do not make any parametric assumptions and the censorship process is also
allowed to be model-free. Theorem 2.3.1 therefore extends previous results on incremental
interventions to studies with arbitrary time-varying outcomes and missing-at-random style
dropout.

To illustrate, the next corollary shows what the identification result gives in the simple
setting where there is only one timepoint, so dropout amounts to mere missing outcomes.

Corollary 2.3.1. When T = 1, the data structure reduces to

Z = (X ,A,R,RY )
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where R = 1 means the outcome was not missing. Then the identifying expression for ψ(δ )

simplifies to

ψ(δ ) = E
[

δπ(X)µ(X ,1,1)+{1−π(X)}µ(X ,0,1)
δπ(X)+{1−π(X)}

]
where π(X) = P(A = 1 | X) and µ(x,a,1) = E(Y | X = x,A = a,R = 1).

Therefore when T = 1 the effect ψ(δ ) is simply a weighted average of the regression
functions µ(X ,1,1) and µ(X ,0,1) among those with observed outcomes, with weights
depending on the observational propensity scores and δ .

2.4 Efficiency Theory

In the previous section, we showed the incremental intervention effect adjusted for right-
censoring and repeated outcomes can be identified under weak nonparametric assumptions,
without requiring any positivity conditions on the treatment process. Our main goal in this
section is to develop a nonparametric efficiency theory for the incremental effect, via the
efficient influence function for ψt(δ ).

The efficient influence function is a crucial object in non/semiparametric efficiency theory
because 1) its variance gives an asymptotic efficiency bound that cannot be improved upon
without adding assumptions, and 2) its form indicates how to do appropriate bias correction
in order to construct estimators that attain the efficiency bound under weak conditions.
Mathematically, given a target parameter ψ an influence function φ acts as the derivative
term in a distributional Taylor expansion of the functional of interest, which can be seen to
imply

∂ψ(Pε)

∂ε

∣∣∣
ε=0

=
∫

φ(z;P)
(

∂ logdPε(z)
∂ε

)∣∣∣
ε=0

dP(z) (2.5)

for all smooth parametric submodels Pε containing the true distribution so that Pε=0 = P. Of
all the influence functions, the efficient influence function is defined as the one which gives
the greatest lower bound of all parametric submodel Pε , so giving the efficiency bound for
estimating ψ . For more details we refer to Bickel et al. [11], Vaart [132], van der Laan &
James M Robins [133], Tsiatis [128], Kennedy [65], as well as Section 1.2.

The next theorem gives an expression for the efficient influence function for the incre-
mental effect ψt(δ ) at arbitrary time t ≤ T under a nonparametric model, which is the main
result in this section.
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Theorem 2.4.1. The efficient influence function for the intervention effect ψt(δ ) under a
nonparametric model is given by

t

∑
s=1

{
{As −πs(Hs)}(1−δ )

δAs +1−As

}[
ms(Hs,1,Rs+1 = 1)δπs(Hs)+ms(Hs,0,Rs+1 = 1){1−πs(Hs)}

δπs(Hs)+1−πs(Hs)

]
×ωs(Hs,As)

(
s

∏
k=1

δAk +1−Ak

δπk(Hk)+1−πk(Hk)
· 1(Rs+1 = 1)

ωs(Hs,As)

)

+
t

∏
s=1

{
δAs +1−As

δπs(Hs)+1−πs(Hs)
· 1(Rs+1 = 1)

ωs(Hs,As)

}
Yt −ψt(δ )

where πs(hs) = P(As = 1 | Hs = hs,Rs = 1), ωs(Hs,As) = dP(Rs+1 = 1 | Hs,As,Rs = 1), and

ms(hs,as,Rs+1 = 1)

=
∫
Rs

µ(ht ,at ,Rt+1 = 1)
t

∏
k=s+1

qk(ak | hk,Rk = 1)dν(ak)dP(xk|hk−1,ak−1,Rk = 1)

for ∀s ≤ t, where Rs = (X t ×A t)\ (X s ×A s), µ(ht ,at ,Rt+1 = 1) = E(Yt | Ht = ht ,At =

at ,Rt+1 = 1), and ν is a dominating measure for the distribution of Ak.

A proof can be found in the appendix A.4.2. This result will be used to construct efficient,
model-free estimators for our new incremental effects in the next section. Note that in
Theorem 2.4.1, all terms can be estimated via regression tools or simply obtained from the
observed data. As one may expect, if there is no censoring (i.e., P[Rt = 0] = 1 a.e [P] for all
t ≤ T ) then both the identifying expression and the efficient influence function reduce to the
expressions presented in Kennedy [67].

The efficient influence function in Theorem 2.4.1 consists of an augmentation term and
an product term, both of which are quite different from those that appear in estimators for
more standard causal effects. The structure of quotient terms is rooted in the form of our
incremental interventional score defined in (2.4). It is worth noting that every quotient term
is multiplied by 1(Rs+1=1)

ωs(Hs,As)
to adjust dropout effects at each stage s.

The above efficient influence function involves three types of nuisance functions: the
treatment propensity scores πs(Hs), the missingness propensity scores ωs(Hs,As) and the
psuedo outcome regression functions ms(Hs,As,Rs+1 = 1) for s ≤ t. The propensity scores
πs(Hs) and ωs(Hs,As) can be directly estimated. The psuedo outcome regression functions ms

can be estimated through sequential regressions without resorting to complicated conditional
density estimation, since they are marginalized versions of the full regression function
µ(hs,as,Rs+1 = 1) that condition on all of the past. In the appendix A.4.3 we give a
sequential regression formulation for these regression functions ms.
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The efficient influence function in the T = 1 case follows a relatively simple and intuitive
form, equaling a weighted average of the efficient influence functions for E(Y 1) and E(Y 0)

plus some contribution from the propensity scores ωs,πs. We give this result in the appendix
A.4.4.

2.5 Estimation and Inference

2.5.1 Proposed Estimator

In this section we develop an estimator that can attain fast
√

n convergence rates, even
when other nuisance functions are modeled nonparametrically and estimated at rates slower
than

√
n.

To begin, let ϕ(Z;ηηη ,δ , t) denote the uncentered efficient influence function from Theo-
rem 2.4.1, which is a function of the observations Z, indexed by a set of nuisance functions

ηηη = (πππ,,,mmm,,,ωωω) = (π1, ...,πt ,m1, ...,mt ,ω1, ...,ωt) ,

δ , and t ≤ T , where πt ,mt ,ωt are the same nuisance functions defined in Theorem 2.4.1.
Thus E[ϕ(Z;ηηη ,δ , t)] = ψt(δ ).

A natural estimator for φ(Z;ηηη ,δ ) would be given by the solution to the efficient influence
function estimating equation, i.e., the naive plug-in Z-estimator

ψ̂inc.pi(t;δ ) = Pn{ϕ(Z; η̂ηη ,δ , t)}

where η̂ηη represents a set of nuisance functions estimates, and Pn denotes the empirical
measure so that sample averages can be written as 1

n ∑i f (Zi) = Pn{ f (Z)}=
∫

f (z)dPn(z).
If we assume πt and ωt were correctly parametrically modeled, then one could use the

following simple inverse-probability-weighted (IPW) estimator

ψ̂inc.ipw(t;δ ) = Pn

{
T

∏
t=1

(
δAt +1−At

δ π̂t(Ht)+1− π̂t(Ht)
· 1(Rt+1 = 1)

ω̂t(Ht ,At)

)
Y

}
.

Note that this IPW estimator is a special case of ψ̂inc.pi where m̂t is set to zero for all t.
However, to develop general Z-estimators with desired convergence rates with non-

parametric models requires strong empirical process conditions (e.g., Donsker-type or low
entropy conditions) that restrict the flexibility of the nuisance estimators. This is due to
using the data twice (once for estimating the nuisance functions, again for estimating the
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average of the uncentered influence function), which can cause overfitting. Hence, to avoid
this downside and to make our estimator more practically useful, we use sample splitting,
following [155, 18, 67, 111]. As will be seen shortly, sample splitting allows us to achieve
fast parametric

√
n rates even when all the nuisance functions ηηη are flexibly estimated at

much slower rates than
√

n.
To this end we randomly split the observations (Z1, ...,Zn) into K disjoint groups, using a

random variable Si, i = 1, ...,n, drawn independently of the data, where each Si ∈ {1, ...,K}
denotes the group membership for unit i. Then our proposed estimator is given by

ψ̂t(δ ) = Pn
{

ϕ(Z; η̂ηη−S,δ , t)
}
≡ 1

K

K

∑
k=1

P(k)
n {ϕ(Z; η̂ηη−k,δ , t)} (2.6)

where we let P(k)
n denote sample averages only over the set of units {i : Si = k} in group k,

and let η̂ηη−k denote the nuisance estimator constructed excluding group k. We detail exactly
how to compute the proposed estimator ψ̂t(δ ) in Algorithm 4 in section A.1 of the appendix.

Computing the estimator is easily amenable to parallelizable due to the sample splitting.
It is worth noting that our method effectively utilizes all the observed samples available at
each time t without discarding any observations in advance.

2.5.2 Convergence Theory

Now we provide a theorem that details the main large-sample property of our proposed
estimator. In the theorem we verify that ψ̂t(δ ) is

√
n-consistent and asymptotically normal

even when all the nuisance functions are estimated at much slower than n−1/2 rates.
In what follows we denote the L2(P) norm of function f by ∥ f∥=

(∫
f (z)2dP(z)

)1/2, to
distinguish it from the ordinary L2 norm ∥ ·∥2 for a fixed vector. Moreover note that although
we write mt for the pseudo-regression functions defined in Theorem 2.4.1 for the sake of
brevity, in principle they should be indexed by both time t and the given increment parameter
δ as mt,δ . The next theorem shows uniform convergence of ψ̂t(δ ), which lays the foundation
for inference.

Theorem 2.5.1. Define the variance function as σ2(δ , t) = E
[
(ϕ(Z;ηηη ,δ , t)−ψt(δ ))

2
]

and

let σ̂2(δ , t) = Pn

[
(ϕ(Z; η̂ηη−S,δ , t)− ψ̂t(δ ))

2
]

denote its estimator. Assume:

1) The set D = [δl,δu] is bounded with 0 < δl ≤ δu < ∞.

2) P [| mt(Ht ,At ,Rt+1 = 1) |≤C] = P [| m̂t(Ht ,At ,Rt+1 = 1) |≤C] = 1 for some constant
C < ∞ and ∀t.



2.5 Estimation and Inference 21

3) supδ∈D

∣∣ σ̂2(δ ,t)
σ2(δ ,t) −1

∣∣= oP(1), and ∥supδ∈D | ϕ(Z;ηηη ,δ , t)−ϕ(Z; η̂ηη−S,δ , t)|∥= oP(1).

4)
(

sup
δ∈D

∥mδ ,t − m̂δ ,t∥+∥πt − π̂t∥
)(

∥π̂s −πs∥+∥ω̂s −ωs∥
)
= oP

(
1√
n

)
for ∀s ≤ t.

Then we have
ψ̂t(δ )−ψt(δ )

σ̂(t,δ )/
√

n
⇝G(δ , t)

in l∞(D), where G is a mean-zero Gaussian process with covariance E[G(δ1, t1)G(δ2, t2)] =
E [ϕ̃(Z;ηηη ,δ1, t1)ϕ̃(Z;ηηη ,δ2, t2)] and ϕ̃(Z;ηηη ,δ , t) = ϕ(Z;ηηη ,δ ,t)−ψt(δ )

σ(δ ,t) .

A proof of the above theorem is given in the appendix A.4.7. We also analyze the second
order remainder terms of the efficient influence function given in Lemma A.4.2, and keep
the intervention distribution completely general (see section A.4.8, A.4.9 in the appendix).
Therefore, the results can be applied to study other stochastic interventions under the presence
of right-censoring (which is beyond the scope of this paper).

Assumptions 1), 2) and 3) in Theorem 2.5.1 are all very weak. Assumptions 1) and
2) are mild boundedness conditions, where assumption 2) could be further relaxed at the
expense of a less simple proof, for example with bounds on Lp norms. Assumption 3) is
also a basic and mild consistency assumption, with no requirement on rates of convergence.
The main substantive assumption is Assumption 4), which requires that product of nuisance
function estimation errors must vanish at fast enough rates. Note that unlike the result from
[67], we have additional nuisance function ω in the condition. One sufficient condition for
Assumption 4 to hold is that all the nuisance functions are consistently estimated at a rate of
n−1/4 or faster.

Lowering the bar from
√

n to n−1/4 indeed allows us to employ a richer set of modern
machine learning methods by reducing the burden of nonparametric modeling. Such rates
are attainable under diverse structural constraints, e.g., [149, 106, 61, 44]. In this paper we
are agnostic about how such rates might be attained. In practice, we may want to consider
using different estimation techniques for each of πππ,,,mmm,,,ωωω based on our prior knowledge or
use ensemble learners.

Based on the result in Theorem 2.5.1, given the value of δ and t we can construct
pointwise 1−α confidence intervals for ψt(δ ) as

ψ̂t(δ )± z1−α/2
σ̂2(δ , t)√

n

where σ̂2(δ , t) is the variance estimator defined in Theorem 2.5.1. As in [67] we can use the
multiplier bootstrap for uniform inference, by replacing the z1−α/2 critical value with one cα
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satisfying

P

(
sup

δ∈D ,1≤t≤T

∣∣∣∣ψ̂t(δ )−ψt(δ )

σ̂(δ , t)/
√

n

∣∣∣∣≤ cα

)
= 1−α +o(1).

This is due to the fact that we only add a finite number T timepoints into the function
class of ϕ at maximum (see A.4.8 in the appendix for more detailed discussion). We refer to
[67] for details on how to construct cα via a bootstrap procedure.

2.6 Infinite Time Horizon Analysis

The great majority of causal inference literature considers a finite time horizon where
the number of timepoints is small and fixed, or even just equal to one, a priori ruling out
much significant (if any) longitudinal structure. However, in practice more and more studies
accumulate data across very many timepoints, due to ever increasing advances in data
collection technology. In fact, in many applications the number of timepoints T can even be
comparable to or larger than sample size n, rendering most of the classical methods based
on finite time horizons futile. For example, [81] describe how new mobile and wearable
sensing technologies have revolutionized randomized trial and other health-care studies
by providing data at very high sampling rates (e.g., 10-500 times per second). [77, 104]
use T = 210 timepoints in their study in which they present the micro-randomized trial for
just-in-time adaptive interventions via mobile applications. As we collect such more granular
and fine-grained data, some recent studies explore efficient off-policy estimation techniques
on infinite-time horizon (e.g. Liu et al. [90] in reinforcement learning). Interestingly, there
has been no formal analysis for general longitudinal studies.

Therefore here we analyze the behavior of the IPW version of our proposed incremental
effect estimator (relative to a standard IPW estimator of a classical deterministic effect),
in a more realistic regime where the number of timepoints can scale with sample size. To
the best of our knowledge, this is one of the first such infinite-horizon analyses in causal
inference, outside of some recent examples involving dynamic treatment regimes [83, 32].
Specifically, we study the relative efficiency bound in the number of timepoints T and show
how deterministic effects are afflicted by a large variance inflation relative to incremental
effects in the infinite time horizon. Even when two estimators target different effects, often
the efficiency helps guide us through the problem of selecting the estimand [e.g., 3, 22],
particularly when we do not have strong preference for one over the other.

We proceed with comparing the deterministic effect of receiving treatment at every
timepoint and the incremental effect for δ > 1 (the result for effects of receiving control at
every timepoint is similar and presented in the Section A.4.5 of appendix). The incremental
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intervention effect is asymptotically equivalent to the deterministic effect for the always-
treated as δ → ∞ (the larger δ is, the more closer the two effects are).

For the sake of simplicity, we consider the case where propensity scores are known
and do not vary with covariates (i.e., πt(Ht) = p for all t) and there is no dropout (i.e.
dP{Rt+1 = 1}= 1 a.e. [P] for all t = 1, ...,T ). In other words, we consider a simple setup
where the propensity scores are all equal to p and the pseudo-regression functions mt’s are
zero in the full nonparametric efficiency bounds.

In this setup we have unbiased estimators of the always-treated effect ψat = E(Y 111) and
the incremental effect ψinc = E(Y Q(δ )) given by

ψ̂at =
T

∏
t=1

(
At

p

)
Y

and

ψ̂inc =
T

∏
t=1

(
δAt +1−At

δ p+1− p

)
Y

respectively, where Y = YT . We now explore the asymptotic relative efficiency of these
estimators in the case where T → ∞. In the next theorem, we show that one can achieve the
near-exponential efficiency gain by targeting ψinc instead of ψat .

Theorem 2.6.1. Consider the estimators and assumptions defined above. Suppose |Y | ≤ bu

for some constant bu > 0 and E
[(

Y 111
)2
]
> 0. Then for any T ≥ 1,

CT

[{
δ 2 p2 + p(1− p)
(δ p+1− p)2

}T

− pT

]
≤ Var(ψ̂at)

Var(ψ̂inc)
≤CT ζ (T ; p)

{
δ 2 p2 + p(1− p)
(δ p+1− p)2

}T

where CT =
b2

u

E
[(

Y 111
)2
] and ζ (T ; p) =

1+
c
(
E
[
Y 111
])2

(1/p)TE
[(

Y 111
)2
]
 for any fixed value of c such

that 1

1−pT
(
E
[
Y 111
])2/

E
[
(Y 2)

111
] ≤ c.

A proof of the above theorem can be found in the Section A.4.5 of the appendix and
is based on similar logic used in deriving the g-formula [108]. In the proof, we give more
general results for any deterministic effects E(Y aT ), ∀aT ∈ A T . Note that we only require
two very mild assumptions: the boundedness assumption on Y and E[(Y 111)2]> 0 which is
equivalent to say that Y 111 is a non-degenerate random variable.

Theorem 2.6.1 allows us to precisely quantify the asymptotic relative efficiency gain.
Importantly, since δ 2 p2+p(1−p)

(δ p+1−p)2 < 1 for δ > 1 and ζ (T ; p)→ 1 monotonically at an expo-
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nential rate in T , the efficiency gain is also almost exponential in T . The result for the
never-treated effects is similar as well, and given in Section A.4.5 of the appendix. It is clear
to see lim

δ→∞

δ 2 p2+p(1−p)
(δ p+1−p)2 = 1−. Hence, the result of Theorem 2.6.1 can be framed as a trade-off

between efficiency gain and bias in targeting the same effects.
Theorem 2.6.1 implies that ψ̂inc will be always more efficient than ψ̂at if we intend to

incorporate substantial number of timepoints. In what follows we refine this statement so
that one can characterize the minimum threshold of the number of timepoints to make the
claim true, under the same condition used in Theorem 2.6.1.

Corollary 2.6.1. There exists a finite number Tmin such that

Var(ψ̂inc)<Var(ψ̂at)

for every T > Tmin, where Tmin is never greater than

min

{
T :
[

δ 2 p+1− p
(δ p+1− p)2

]T

− c111

pT +2 < 0

}
where c111 =

E
[(

Y 111
)2
]

b2
u

.

A proof can be found in Section A.4.6 in the appendix. The proof of the above corollary
relies upon the fact that var(ψ̂inc) can be represented as the variance of the weighted sum
of all the distinct deterministic intervention effects aT ∈ A T (Lemma A.4.7). The constant
c111 is simply the normalized second order moment and can be translated into the average
magnitude of Y 111. In other words, the larger |Y 111| is, the smaller Tmin is.

Remark 1. It may be possible to tighten the upper bound for Tmin, but in practice the value
of Tmin is typically already small. To illustrate, consider the setup where Y ∈ [0,1] and
δ = 2.5, p = 0.5, and two extreme cases: c111 = 0.95 (Y 111 is dispersed mostly around {0,1})
and c111 = 0.05 (Y 111 is concentrated around 0). Then the corresponding Tmin values are 2 and
6 respectively. If we use δ = 5, p = 0.5, the numbers will become 3 and 9 respectively.

Our proof of Theorem 2.6.1 and Corollary 2.6.1 can be generalized to the case where the
nuisance functions need to be estimated, but we feel the simple case captures the main ideas,
and the general case would only add complexity. Numerical simulations given in Section
A.2 of the appendix support our result. Our result in this section provides a crucial insight
into the longitudinal studies with many timepoints, indicating massive efficiency gains are
possible by studying incremental rather than classical deterministic effects.
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2.7 Experiments

2.7.1 Simulation Study

In this section we explore finite-sample performance of the proposed estimator ψ̂t(δ ) via
synthetic simulation for an observational study. We consider the following data generation
model

Xt = (X1,t ,X2,t)∼ N(0,I),

πt(Ht) = expit
(

111⊤Xt +2
t−1

∑
s=t−2

(As −1/2)
)
,

ωt(Ht ,At) = expit
(

C0 +
t

∑
s=1

As

)
, C0 ∼ U [ul,5],(

Y
∣∣X t ,At

)
∼ N

(
µ(X t ,At),1

)
for all t = 1, ..., t where we set µ(X t ,At) = 10+At +At−1 + |((111⊤Xt +111⊤Xt−1) | and t = 50.
U [ul,5] is a uniform random variable with interval [ul,5]. Basically in this setup we assume
that the more likely to have been treated, the less likely to drop out from the study.

We use three baseline methods: the naive Z-estimator (ψ̂inc.pi) and the IPW type estimator
(ψ̂inc.ipw), both of which are defined in Section 2.5.1, and the incremental-effect estimator
(ψ̂inc.nc) proposed by Kennedy [67], which does not take right-censoring into account. Since
finite-sample properties of ψ̂inc.nc were already extensively explored in Kennedy [67], here
we focus more on dropout effect on performance.

To estimate nuisance parameters, we form an ensemble of some widely-used nonparamet-
ric models. Specifically, we use cross-validation-based superleaner ensemble algorithm [136]
via the SuperLearner package in R to combine support vector machine, random forest,
k-nearest neighbor regression. For the proposed method, we use sample splitting with K = 2
splits as described in Algorithm 4.

We repeat simulation S times in which we draw n samples each simulation. We use
D values of δ equally spaced on the log-scale within [0.1,5]. Then performance of each
estimator is assessed via normalized root-mean-squared error (RMSE) defined by

R̂MSE =
1
D

D

∑
d=1

[
1
S

S

∑
s=1

{
ψ̂s(t;δd)−ψ(t;δd)

ψ(t;δd)

}2
]

where ψ̂s(t;δd) and ψ(t;δd) are an estimated value of estimator for s-th simulation with
value δd and a true value of the target parameter with δd respectively, and ψ(t;δd) means a
sample average of ψ(t;δd) across different values of δd . We present the results in Table 2.1.
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Setup
R̂MSE Average

Dropouts (%)ψ̂inc.pi ψ̂inc.ipw ψ̂inc.nc ψ̂proposed

S = 500,n = 1000,D = 25,ul = 1 0.85 0.82 0.91 0.55 36.0
S = 500,n = 5000,D = 25,ul = 1 0.69 0.60 0.73 0.36 35.1
S = 500,n = 1000,D = 25,ul = 5 0.72 0.81 0.63 0.64 4.7
S = 500,n = 5000,D = 25,ul = 5 0.58 0.65 0.40 0.38 4.9

Table 2.1 Normalized RMSE across different baselines and simulation settings.

As shown in Table 2.1, the proposed estimator performs in general better than the other
baseline methods especially when lots of data are dropped out, as anticipated from the
theory. ψ̂inc.pi and ψ̂inc.ipw in general show fairly large RMSE, since they are not expected
to converge at

√
n rates. Under the substantial dropout rates, ψ̂inc.nc shows even worse

performance than these estimators due to the smaller number of effective samples 1. On the
other hand, ψ̂inc.nc shows comparable performance to the proposed estimator when there is
only a small portion of censored data.

2.7.2 Application

Here we illustrate the proposed methods in analyzing the Effects of Aspirin on Gestation
and Reproduction (EAGeR) data, which evaluates the effect of daily low-dose aspirin on
pregnancy outcomes and complications. The EAGeR trial was the first randomized trial to
evaluate the effect of pre-conception low-dose aspirin on pregnancy outcomes ([119, 97]).
However, to date this evidence has been limited to intention-to-treat analyses.

The design and protocol used for the EAGeR study have been previously documented
[120]. Overall, 1,228 women were recruited into the study (615 aspirin, 613 placebo) and
11% of participants chose to drop out of the study before completion. Roughly 43,000 person
weeks of information were available from daily diaries, as well as study questionnaires, and
clinical and telephone evaluations collected at regular intervals over follow-up. The dataset
is characterized by a substantial degree of non-compliance (more than 50% at the end of the
study), and thereby is susceptible to positivity violation.

We used our incremental propensity score approach to evaluate the effect of aspirin on
live birth and pregnancy loss in the EAGeR trial, accounting for time-varying exposure
and dropout. The EAGeR dataset has been compiled as described in (2.1). Here, the study
terminates at week 89 (T = 89). We use 24 baseline covariates (e.g., age, race, income,

1For ψ̂inc.nc, we discard samples that have been dropped out.
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education, etc.) and 5 time-dependent covariates (compliance, conception, vaginal bleeding,
nausea and GI discomfort). At is a binary treatment variable coded as 1 if a woman took
aspirin at time t and 0 otherwise. Rt = 1 indicates that the woman is observed in the study at
time t. Lastly, Yt is an indicator of having a pregnancy outcome of interest at time t. We are
particularly interested in two types of pregnancy outcomes: live birth and pregnancy loss
(fetal loss). We perform separate analysis for each of the two cases.

For comparative purposes, we estimate the simple complete-case effect

ψ̂CC = Pn(Y |AT = 1,RT = 1)−Pn(Y |AT = 0,RT = 1).

which relies on both non-compliance and drop-out being completely randomized. The value
of ψ̂CC is 0.052 (5.2%) for live birth and 0.012 (1.2%) for pregnancy loss, both of which are
close to the intention-to-treat estimates reported in [120, 119].

Here, we give a brief discussion why standard approaches might fail for our analysis
of the EAGER dataset. We found a strong evidence of positivity violation in the EAGER
dataset due to non-compliance; as shown in Figure A.3 in Section A.3 of the appendix, the
average propensity score quickly drops to zero as t grows. So it would be hard to imagine
having all of the study participants take aspirin at each time. Standard approaches such as
widely-used marginal structural models (MSMs) [112] typically require treatment positivity,
and thus are likely to fail for our analysis. In fact, when we model the effect curve by
E[Y aT ] = m(aT ;β ) = β0 +∑

T
t=1 β1tat so that the coefficient for exposure can vary with time,

then an inverse-weighted MSM estimator indeed fails and no coefficient estimates can be
found even for moderate value of T , e.g. T =∼ 10. (see Figure A.3-(b) in the appendix for a
closer look on why). This positivity violation precludes most of the standard approaches for
time-varying treatments including MSMs. Not to mention that the MSM approach relies on
parametric models.

Therefore, in order to avoid positivity violation, we alter our target contrast from the
standard ATE to the mean outcome we would have observed in a population if “observed"
versus none (not all versus none as in the ATE) were treated. Then we apply some of other
nonparametric approaches available in the literature; we use the g-computation (plug-in)
estimator [108] and the sequential doubly robust (SDR) estimator proposed by Luedtke
et al. [92]. In short, the result based on the g-computation estimator (Figure A.4 in the
appendix) shows that the counterfactual mean outcomes for never-takers are worse-off than
the observed, whereas the result based on the SDR estimator (Figure A.5 in the appendix)
suggests that such effects look no longer statistically significant so we cannot make any
firm conclusion. Above all else, the alternative effect we have estimated here entails the
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fundamental limitation on the target effect since in many cases the always-taker group is
typically of utmost interest for researchers. See Section A.3 of the appendix for more details.

Now, we estimate the incremental effect curve ψT (δ ), which represents the probability of
having live birth or pregnancy loss at the end of the study (T = 89) if the odds of taking aspirin
were multiplied by factor δ . Specifically, this effect compares the outcome probabilities that
would be observed if the odds of taking aspirin for all women was increased by a factor of δ

at all timepoints, across different values of δ . Again, we use the cross-validated superleaner
algorithm [136] to combine support vector machine, random forest, k-nearest neighbor
regression, and multivariate adaptive regression splines, to estimate a tuple of nuisance
functions (mt ,ωt ,πt) at every t. We use sample splitting as in Algorithm 4 with K = 2 splits,
and use 10,000 bootstrap replications to compute pointwise and uniform confidence intervals.
Results are shown in Figure 2.1.

Fig. 2.1 Estimated incremental effect curves which represent the probability of having a live
birth (Left) and a pregnancy loss (Right). In each figure, lighter grey area with red dotted
line represents a 95% uniform band and darker grey area represents a 95% pointwise band.

We find the estimated curve is almost flat for live birth, and has a negative gradient with
respect to δ (odds ratio) in general for pregnancy loss. Thus, unlike the previous findings,
our result seems indicative of a positive effect of low-dose aspirin on reducing the risk of
pregnancy loss; if odds of taking aspirin were increased proportionally for all individuals,
the mean risk of pregnancy loss would drop from Pn(Y ) = 19.3% observationally to 13.1%,
if the odds doubled. However, one needs to take the wider band at large δ into consideration.
This analysis provides considerably more nuance than the alternative contrast used in the
g-computation and SDR estimators or a standard MSM approach, and requires none of the
parametric and positivity assumptions.
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In conclusion, our analysis suggests new evidence that the low-dose aspirin therapy can
be associated with decrease in the risk of pregnancy loss, but its accuracy is still afflicted
with some uncertainties.

2.8 Discussion

Incremental interventions are a novel class of stochastic dynamic intervention where
positivity assumptions can be completely avoided. However, they had not been extended
to repeated outcomes, and without further assumptions do not give identifiability under
dropout - both very common in practice. In this paper we solved this problem by showing
how incremental intervention effects are identified and can be estimated when drop-out
occurs (conditionally) at random. Even in the case of many dropouts, our proposed method
efficiently uses all the data without sacrificing robustness. We give an identifying expression
for incremental effects under monotone dropout, without requiring any positivity assumptions.
We establish general efficiency theory and construct the efficient influence function, and
present nonparametric estimators which converge at fast rates and yield uniform inferential
guarantees, even when all the nuisance functions are estimated with flexible machine learning
tools at slower rates. Furthermore, we studied the relative efficiency of incremental effects to
conventional deterministic dynamic intervention effects in a novel infinite time horizon setting
in which the number of timepoints can possibly grow with sample size, and showed that
incremental effects are more efficient than deterministic effects and yield near-exponential
efficiency gains in the infinite-time regime.

There are a number of avenues for future work. The first is application to other substantive
problems in medicine and the social sciences. For example, in a forthcoming paper we
analyze the effect of aspirin on pregnancy outcomes with more extensive data. It will also
be important to consider other types of non-monotone missingness where the standard time-
varying missing-at-random assumption A2-M may not be appropriate ([124, 126]). We
expect our approach can be extended to other important problems in causal inference; for
example, one could develop incremental effects for continuous treatments and instruments
[74, 73], or for mediation in the same spirit as [26], but generalized to the longitudinal
case with dropout. Developing incremental-based sensitivity analyses for the longitudinal
missing-at-random assumption would also be important.





Chapter 3

Causal effects based on distributional
distances

3.1 Introduction

We begin by considering a simple randomized experiment with a binary treatment
A ∈ {0,1} and an outcome Y ∈ R where (A,Y )∼ P for an unknown distribution P, which is
arguably one of the most classical and widely used setups in causal inference problems (e.g.,
A/B testing). Here, one often pursues the average treatment effect (ATE) of A on Y , defined
as

E[Y 1 −Y 0] (3.1)

where Y a denotes the counterfactual or potential outcome that would have been observed
under A = a for a ∈ {0,1} [118].

In this paper, we provide a novel insight on causal inference by considering causal effects
defined by means of a distributional distance between counterfactual outcome distributions.
For example, in the above randomized experiment, letting Qa denote the distribution of Y a,
we target the distributional distance between Q1 and Q0 defined by

D(Q1,Q0) (3.2)

where D is a distance defined on distribution inputs. In practice, the simple randomized
experiment described above is often not enough for causal effects of our interest. Therefore
in our work, we also consider randomized studies where we have multiple data sources (e.g.,
A/B testing across different websites or countries) or general observational studies.
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Our problem differs from traditional causal inference by relying on a more nuanced
measure of treatment effect. Note that the traditional ATE defined in (3.1) can be zero
even when the treatment has a significant impact. For example, if we suppose that Y 0 = 0
but P(Y 1 = 1) = P(Y 1 = −1) = 1/2, then the ATE is exactly zero. Should policy makers
conclude in this case that the treatment really has no impact? This might be misleading, since
the treatment indeed yields extreme harms and benefits to half the population. Therefore,
more nuanced measure of treatment effects than the ATE are needed. On the other hand,
unlike the ATE one may easily notice that the causal effect that we consider in (3.2) is
substantially positive. Directly comparing counterfactual outcome distributions, such as the
one in (3.2), can distinguish such subtle cases and in general provide more nuanced and
valuable information about treatment effects beyond the ATE. So we can always use it jointly
with the ATE in a complementary sense.

Relation to previous work. Here we give a brief review of some related literature, and
refer to cited references for more details. There have been several attempts to incorporate
distribution data into learning tasks in the modern machine learning. For example, distribution
regression has been discussed in a regression framework for functional data [e.g., 105, 36,
125]. [60] studied smooth distance functionals using the theory of influence functions and
sample splitting, and [59] gave minimax lower bounds for observational L1 distances. There
has also been substantial work in econometrics considering counterfactual quantile estimation,
for example by [37] and [116]. However, these topics were not studied in causal inference
framework.

We extend this previous work by proposing and studying non-smooth L1 distributional
distances between counterfactuals, not only in simple randomized experiments but also in
more complex multi-source and observational studies. Studying the counterfactual versions
of distributional distance functionals itself brings a number of non-trivial theoretical subtleties
(see, for example, [60, 59, 125]). The same goes for the non-smooth L1 distance compared
to the quantile and cumulative distribution function (cdf)-based effects previously studied
by [37, 116]. Nonetheless, the L1 distance provides a number of advantages. First, it is a
simple one-number summary of distributional differences, unlike the quantile and cdf effects
which are potentially complex curves. Thus it can be a simple tool to use as a first step in
assessing whether there is effect modification beyond a mean shift (e.g., when the average
effect is zero). Second, even if one is interested in quantiles/cdfs, the L1 distance can be used
to test hypotheses that these quantities really differ. Finally, the L1 distance is interpretable
as it means the average absolute difference in densities, and is invariant under monotone
transformations of Y (which is not true for many other distances including L2 distance) [24].
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Importantly, in this paper we also detail how to effectively estimate each counterfactual
outcome distribution, which may provide an in-depth way of analyzing "what" drives the
treatment effects. This problem is basically equivalent to density estimation with outcomes
missing at random, which has received very little attention compared to the standard density
estimation literature in statistics (with a few exceptions of [117, 113]). We develop a novel
doubly-robust estimator for nonparametric counterfactual density estimation in observational
studies, which, to the best of our knowledge, has not yet appeared in the literature and address
the improvements as compared to the plug-in estimator. Finally, we provide a bootstrap
approach to obtaining confidence intervals by characterizing the asymptotic convergence of
our proposed estimators, which is useful for the inferential and testing procedures.

3.2 Preliminaries

3.2.1 Setup and Identification

Throughout, we consider binary treatments A ∈ A := {0,1} and real-valued outcome
Y ∈ Y ⊂ Rd . Although d = 1 is the most common case in practice, we allow d > 1. Unless
otherwise mentioned, we let P be an observed data distribution on a compact subset. In
particular, we let Y have a density p with respect to d-dimensional Lebesgue measure λd . For
a treatment assignment A = a we define a counterfactual distribution Qa as the distribution
of Y a. For the distributional distance, we take D to be the L1 distance between densities,
as in D(P1,P2) = ∥p1 − p2∥1 =

∫
|p1(u)− p2(u)|du for two distributions P1,P2 and their

corresponding densities p1, p2 with respect to λd . Further, the counterfactual density qa is
defined as a Radon-Nikodym derivatives of Qa with respect to λd .

In what follows, we describe three different settings for which we develop our estimators.
Single-source randomized study: Z = (A,Y ) . In the simple randomized study we

observe i.i.d samples (Z1, ...,Zn) where Z = (A,Y )∼ P. For our causal parameter D(Q1,Q0)

in (3.2) to be identified, we require the following consistency and randomization assumptions.

• (C1) Consistency: Y = Y a if A = a

• (C2) Randomization: A ⊥⊥ Y a

These assumptions are typically hold by design in randomized experiments. Randomization
requires that treatment is independent of potential outcomes. Consistency implicitly conveys
a no-interference condition: one subject’s outcomes cannot be affected by others’ treat-
ments. Under assumptions (C1) and (C2), it is straightforward to see that Qa = P(Y |A = a).
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Consequently, we have the following identifying expression

D(Q1,Q0) =
∫

|q1(y)−q0(y)|dy =
∫ ∣∣p(y|A = 1)− p(y|A = 0)

∣∣dy. (3.3)

Multi-source randomized study: Z = ((A,Y )P,P). Now suppose that we are inter-
ested in causal effects over multiple sources of P still with the same data structure (A,Y ).
So the distributional properties of the data may vary across different P’s. To this end, we
let D denote the set of all distributions on (A ,Y ) which have a density with respect to the
Lebesgue measure. Then let P be a probability measure on a measurable space (D,σ(D))

where σ(D) is a σ -field generated by a measurable function D : D→ R+0 which is defined
on L1 distance. Now suppose we have N distinct Pi’s which are i.i.d. samples from the
superpopulation distribution P on D, that is,

P1,P2, ...,PN
i.i.d.∼ P

where (A,Y )Pi ∼ Pi, i = 1, ...,N. Namely, each (A,Y )Pi is a single-source experiment under
Pi with ni samples. Hence our target parameter in this case is given by

EP [D(Q1,Q0)]. (3.4)

This setting may be appropriate for when we conduct randomized experiments over
different environments which can be assumed to be independent. For identification, we need
slightly different assumptions from the simple, single-source randomized study.

• (C1) Consistency: Y = Y a if A = a

• (C2’) Conditional randomization: A ⊥⊥ Y a for each (A,Y )∼ Pi.

By the law of iterated expectation we have EP [D(Q1,Q0)] = EP [E{D(Q1,Q0) | P}].
Hence under assumptions (C1) and (C2’), conditioned on the sampled distribution P,
D(Q1,Q0) is identified in the same way as in (3.3), and consequently the target effect
(3.4) is identified.

Observational study: Z = (X,A,Y ). In observational studies, the treatment happened
naturally according to some unknown process, and was not under experimenter’s control.
Thus, randomization assumption no longer holds by design. Instead in general we try to
collect as many relevant covariates as possible, in an attempt to ensure that treatment is
at least conditionally randomized. We consider data structure Z = (X ,A,Y ), with X on
some compact support X ⊂ Rk. Our target parameter is still D(Q1,Q0) in (3.2) but in
observational study, we require a different set of assumptions for identification as follows.
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• (C1) Consistency: Y = Y a if A = a

• (C3) No unmeasured confounding: A ⊥⊥ Y a | X

• (C4) Positivity: P(A = a|X)> 0 a.s P

No unmeasured confounding (or exhangeability) will hold if the collected covariates can
explain treatment assignment, to the extent that after conditioning on them treatment is not
further related to potential outcomes. Positivity requires everyone to have some chance of
being treated at all treatment levels. Under these assumptions we have qa(y) =

∫
X p(y|X =

x,A = a)dP(x), and thus our target parameter is identified as

D(Q1,Q0) =
∫

|q1(y)−q0(y)|dy

=
∫ ∣∣∣∣∫

X

{
p(y|X = x,A = 1)− p(y|X = x,A = 0)

}
dP(x)

∣∣∣∣dy.
(3.5)

Kernel-smoothed counterfactual density. Finding an efficient estimator for the coun-
terfactual density qa is challenging and still an open problem. In this paper, we instead target
the kernel-smoothed version of our counterfactual density defined as

qa
h(y) := E

{
1
hd K

(
∥Y a − y∥2

h

)}
, (3.6)

with a valid kernel K and its bandwidth h. The smoothing bias vanishes as h goes to zero 1.
With this kernel-smoothed counterfactual density qa

h, our target parameter for each scenario
is still identified under the exactly same set of assumptions. Specifically, for single- and
multi-source randomized experiments under assumptions (C1),(C2) or (C1),(C2’) we have
an identifying expression for qa

h as

qa
h(y) = E

{
1
hd K

(
∥Y − y∥2

h

)
| A = a

}
,

and for an observational study under assumptions (C1), (C3), (C4) we have

qa
h(y) = E

{
E
[

1
hd K

(
∥Y − y∥2

h

)∣∣∣X ,A = a
]}

,

1For example, sup
qa∈Σ(β ,L)

|qa
h − qa| = O(hβ ) where Σ(β ,L) is a Hölder class of functions with constants

β > 0,L [e.g., 131].
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and consequently we will obtain identifying expressions for D(Q1
h1
,Q0

h0
) as previously by

simply replacing the identifying expressions for qa in (3.3) - (3.5) with the ones above for qa
h,

where Qa
ha

is the distribution having the density qa
ha

.
Throughout, we base our analysis on a fixed bandwidth case, following for example

Chen et al. [17], Rinaldo and Wasserman [107], Chazal et al. [16]. Using a fixed bandwidth
provides several advantages. First, we do not need strong smoothness assumptions about the
form of the density. In fact, the kernel-smoothed density can exist even if Y a itself does not
have a density in the usual sense Rinaldo and Wasserman [107]. Second, fixed bandwidths
may more closely mirror practical data analysis, since we typically face a single dataset
with a particular sample size, rather than a sequence of datasets of increasing size. Finally,
with a fixed bandwidth we avoid the need for any impractical undersmoothing to remove
bias Wasserman [146], and can achieve faster rates of convergence towards the smoothed
parameter. We aim to consider varying bandwidth analyses in future work.

3.2.2 Bootstrap and Stochastic Convergence of Empirical Process

For building valid confidence intervals for further quantifying randomness of our esti-
mates, we use theories on the bootstrap method and an empirical process. Introduced in [30],
Bootstrapping is a method for estimating the variance of an estimator and thus for finding
confidence intervals. When the target parameter is nonparametric, such as the causal effect
defined in (3.2), the stochastic convergence of an empirical process is required to guarantee
an asymptotic validity of the bootstrap procedure. The rest of this subsection is devoted to
provide a brief review for techniques in stochastic convergence of empirical process that are
essential to construct confidence intervals in Section 3.4, and readers who are not interested
in the details may skip the rest of the section. We refer to [139, 78] and reference therein for
further details.

Suppose an i.i.d sample (Z1, ...,Zn)∼ P on Z , and let Pn =
1
n ∑

n
i=1 δZi be the empirical

measure. Let (Z∗
1 , . . . ,Z

∗
n) be the bootstrapped samples, i.e. a set of samples with replacement

from the original sample (Z1, . . . ,Zn), and let P∗
n = 1

n ∑
n
i=1 δZ∗

i
be the bootstrap empirical

measure. Bootstrapping is used to infer information of unknown measure Pn −P by known
and computable measure P∗

n −Pn.
One theoretical guarantee for bootstrap is that

√
n(Pn −P) and

√
n(P∗

n −Pn) converges
to same Brownian Bridge. Let F ⊂ RZ be a class of measurable functions. We let ℓ∞(F )

be the collection of all bounded functions φ : F → R equipped with the sup norm (or
uniform norm) ∥ · ∥∞. A random measure µ is understood in ℓ∞(F ) as µ( f ) =

∫
f dµ .

For random measures {µn}n∈N and µ , we say µn → µ weakly in ℓ∞(F ) if and only if
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E [φ(µn)]→ E [φ(µ)] for every bounded continuous map φ : ℓ∞(F )→ R. Now we have the
following theorem for convergence of the bootstrap.

Theorem 3.2.1. (Gine and Zinn [40, Theorem 2.4], Kosorok [78, Theorem 2.6])
√

n(Pn −
P)→G weakly in ℓ∞(F ) if and only if

√
n(P∗

n −Pn)→G a.s. weakly in ℓ∞(F ) for a limit
process G. If either convergence happens, the limit process G is a centered Gaussian process
with Cov[G( f ),G(g)] =

∫
f gdP−

∫
f dP

∫
gdP for f ,g ∈ F .

Therefore, once
√

n(Pn −P)→G weakly in ℓ∞(F ) is shown, Theorem (3.2.1) implies
that

√
n(P∗

n−Pn)→G weakly in ℓ∞(F ) a.s. as well, and the unknown measure
√

n(Pn−P)
can be asymptotically approximated by know and computable measure

√
n(P∗

n −Pn). One
way to show

√
n(Pn−P)→G weakly in ℓ∞(F ) (i.e. F is P-Donsker) is to use the bracketing

entropy argument as detailed in, for example, Van Der Vaart and Wellner [142, Chapter 2.5].

3.3 Proposed Estimator and Error Analysis

3.3.1 Single-source randomized study

To estimate the counterfactual density function qa - we propose a conditional kernel
density estimator defined as

q̂a
ha
(y) =

1(na > 0)
na

n

∑
j=1

1
hd

a
K
( ||y−Yj||2

ha

)
1(A j = a), (3.7)

where K is a valid kernel function with a fixed bandwidth ha > 0 and na = ∑i1(Ai = a). In
practice, one may set h1 = h0 = h. Given this estimator, we have the following identity.

Proposition 3.3.1. Under the causal assumptions (C1), (C2), q̂a
h defined in (3.7) satisfies

that
E[q̂a

h | Ai = a, ∀i] = qa
h.

The proof of the above proposition is given in Section B.2.1 in the appendix. Now we
propose the following plug-in estimator for the single-source randomized study

D(Q̂1
h1
, Q̂0

h0
), (3.8)

where Q̂a
ha

denotes a distribution induced from q̂a
ha

.
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To evaluate performance of the proposed estimator, we aim to upper bound the L1 risk
(mean absolute deviation) of our plug-in estimator defined by

E
[∣∣∣D(Q̂1

h1
, Q̂0

h0
)−D(Q1

h1
,Q0

h0
)
∣∣∣] . (3.9)

To proceed, first we need to bound E[D(Qa
h, Q̂

a
h)] = E[∥qa

h − q̂a
h∥1], the L1 risk of our kernel

density estimator. In what follows, we make two basic assumptions on the counterfactual
distribution Qa and on the kernel function K to construct the kernel density estimator in (3.7).

• (A1) Bounded density and support of the counterfactual distribution: Probability distri-
bution Qa has a density qa = dQa

dλd
with respect to the Lebesgue measure λd on Rd where

qa ≤ qmax < ∞, and is supported on a compact set Y ⊂ Rd .

• (A2) Finite L2 norm and bounded support of the kernel function: The kernel function
K : Rd → R has finite L2 norm ∥K∥2 :=

√∫
K(u)2du < ∞ and has a bounded support, i.e.

there exists RK < ∞ with supp(K)⊂ BRK(0), where BRK(0) = {u ∈ Rd : ∥u∥2 ≤ RK}.

Both the assumptions (A1) and (A2) are all weak and commonly found in nonparametric
statistics. Now the following lemma gives upper bound of E[D(Qa

h, Q̂
a
h)].

Lemma 3.3.1. Let Q̂a
h denote estimated distribution for true distribution Qa

h under treatment
A = a with kernel bandwidth h. Then for Z = (A,Y )∼ P, under the assumptions (A1) and
(A2), we have

E[D(Qa
h, Q̂

a
h)] = O

(
1√

nπahd

)
(3.10)

where πa = P(A = a).

The proof of Lemma 3.3.1 is given in Section B.2.2 of the appendix. Consequently, we
have the following theorem regarding the upper bound of the L1 risk (3.9).

Theorem 3.3.1 (L1 risk of the estimator D(Q̂1
h1
, Q̂0

h0
)). Under assumptions (A1) and (A2),

E
[∣∣∣D(Q̂1

h1
, Q̂0

h0
)−D(Q1

h1
,Q0

h0
)
∣∣∣]= O

 1√
nπ1hd

1

+
1√

nπ0hd
0

 . (3.11)

The proof will be given in Section B.2.3 of the appendix. The above theorem shows that
having the kernel bandwidth fixed our error vanishes at

√
n rates.
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3.3.2 Multi-source randomized study

For the multi-source randomized experiment where we have Z =
(
(A,Y )Pi

,Pi
)
, Pi ∼ P

for i = 1, ...,N, to estimate the target parameter EP [D(Q1
h1
,Q0

h0
)] we propose the sample

mean of plug-in estimators
1
N

N

∑
i=1

D
(
(Q̂1

h1
)i,(Q̂0

h0
)i

)
(3.12)

, where each (Q̂a
ha
)i is an estimated counterfactual distribution for assignment A = a and

subpopulation Pi via the kernel density estimator in (3.7) with a prespecified bandwidth ha.
Thus now we are interested in upper bounding the L1 risk

E

[∣∣∣∣∣ 1
N

N

∑
i=1

D
(
(̂Q1

h1
)

i
, (̂Q0

h0
)

i

)
−EP [D(Q1

h1
,Q0

h0
)]

∣∣∣∣∣
]
. (3.13)

The following theorem provides the error bound of (3.13).

Theorem 3.3.2 (L1 risk of the estimator 1
N ∑

N
i=1 D

(
(̂Q1

h1
)

i
, (̂Q0

h0
)

i

)
). Under assumptions (A1)

and (A2),

E

[∣∣∣∣∣ 1
N

N

∑
i=1

D
(
(̂Q1

h1
)

i
, (̂Q0

h0
)

i

)
−EP [D(Q1

h1
,Q0

h0
)]

∣∣∣∣∣
]

= O

 1
N

N

∑
i=1

 1√
niπ1,ihd

1,i

+
1√

niπ0,ihd
0,i

+
σP√

N

 (3.14)

where ni, ha,i is the total number samples and the bandwidth used for kernel density estimation

for a subpopulation Pi respectively, and σP =

√
VarP

[
D(Q1

h1
,Q0

h0
)
]
. In particular, when

ni = n, ha,i = ha, π1,i = π1, π0,i = π0 for all i, then

E

[∣∣∣∣∣ 1
N

N

∑
i=1

D
(
(̂Q1

h1
)

i
, (̂Q0

h0
)

i

)
−EP [D(Q1

h1
,Q0

h0
)]

∣∣∣∣∣
]
= O

 1√
nhd

1π1

+
1√

nhd
0π0

+
σP√

N

 .

We give the proof of Theorem 3.3.2 in Section B.2.4 of the appendix. Notice that the
error bound in (3.14) consists of two parts. The first part is simply the average estimation
error over N different single-source randomized experiments. The second part is related
to the heterogeneity of treatment effects across subpopulations and will be negligible if
DPi(Q

1
h1
,Q0

h0
) does not vary too much across Pi’s.
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3.3.3 Observational study

An observational study requires more careful argument to develop the estimator. Since
the identifying expression (3.5) contains conditional densities not only depending on Y ∈ Rd

but also potentially high-dimensional X ∈ Rk, a plug-in estimator might yield impractically
slow convergence rates. Recall that under the causal assumptions (C1), (C3), (C4), from
(3.6) we have

E
{
E
[
Th,y(Y )

∣∣∣X ,A = a
]}

= qa
h(y)

for a given h, where we define Th,y(Y ) = 1
hd K

(
∥Y−y∥2

h

)
. In what follows we propose a novel

doubly robust style estimator for qa
h(y) by

ψ̂
a
h (y) = Pn

{
1(A = a)

π̂a(X)

(
Th,y(Y )− µ̂A(X)

)
+ µ̂a(X)

}
, (3.15)

where πa(X) = P(A = a|X), µA(X) = E[Th,y(Y )|A,X ], µa(X) = E[Th,y(Y )|A = a,X ] and
π̂a(X), µ̂A(X), µ̂a(X) denote their estimates respectively. The estimator in (3.15) resembles
the doubly robust (or semiparametric) estimator for the ATE, where we have replaced Y in the
original estimator with Th,y(Y ). The doubly robust estimator is known to be efficient, model-
free estimators, in the sense that they achieve

√
n-consistency and asymptotic normality even

when π and µ are estimated flexibly with nonparametric models, without committing a priori
to particular estimators or function classes. For more details on doubly robust estimators and
related topics, we refer the interested readers to [12, 130, 137, 65].

Next we propose our estimator for observational studies by

D(Q̂1
h, Q̂

0
h) (3.16)

where Q̂0
h a distribution induced by ψ̂a

h in (3.15). As will be verified shortly in Lemma 3.3.2,
construction based on ψ̂a

h endows the same kind of double robustness property which can
be found in the ordinary doubly robust estimator for the ATE to our estimator. For the sake
of simplicity here we use a single bandwidth h, acknowledging that we can also proceed
with the different bandwidths as previously. Hereafter, for a given function f , we use the
notation ∥ f∥q = (

∫
| f (z)|qdP(z))

1
q to denote the Lq(P)-norm of f . Before formally stating

the theorem, we enumerate additional assumptions we need as below.

• (B1) Convergence rate of nuisance parameters: Let πa and µa denote fixed functions
to which π̂a and µ̂a converge in the sense that ∥π̂a −πa∥2 = oP(r(n)) and ∥µ̂a −µa∥2 =

oP(s(n)). We require r(n)s(n) = O(n−
1
2 ) but we only require either πa = πa or µa = µa

where πa and µa are true parameters.
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• (B2) Uniform boundedness: ∥1/π̂a∥∞
, and ∥µ̂a∥2 are uniformly bounded.

• (B3) Sample splitting: The estimators for nuisance functions (π̂a, µ̂a) are computed in a
separate independent sample.

Note that all the extra assumptions (B1) - (B3) are quite weak as well. Assumption (B1),
the main substantive assumption in this subsection, says that at least one of the estimators
π̂a or µ̂a must be consistent for the true πa or µa in terms of the L2 norm at the rate of
oP(s(n)),oP(r(n)) respectively. Since only one of the nuisance estimators is required to
be consistent (not necessarily both), our estimator shows double robustness (see Lemma
B.2.3 in the appendix). Compared to naive plug-in estimators where

√
n rates are never

attainable in nonparametric models, the requirement on double rates of s(n)r(n) = n−
1
2

brings significant improvement since under reasonable structural assumptions on regression
functions (e.g., sparsity)

√
n rates are attainable through many nonparametric methods.

One sufficient condition for (B1) would be s(n) = n−
1
4 and r(n) = n−

1
4 . Assumption (B2)

involves a minimal regularity condition on the reciprocal of estimator π̂a and its limit πa.
Assumption (B3) enables us to accommodate the added complexity from estimating both
nuisance functions and ψa

h without relying on complicated empirical process conditions (e.g.,
Donsker condition) [18, 66].

Now we give our result on error analysis. The next lemma describes how accurately
we can approximate the true counterfactual distribution via the proposed density estimator
(3.15).

Lemma 3.3.2. Let πa,µa be fixed functions to which π̂a and µ̂a asymptotically converge.
Then under assumptions (A1), (A2), (B2), and (B3), together with the causal assumptions
(C1), (C3), (C4), we have

E
[
D(Q̂a

h,Q
a
h)
]
= O

(
1√
n

)
+∥µ̂a −µa∥2∥π̂a −πa∥2. (3.17)

Lemma 3.3.2 is elaborated in Lemma B.2.6 in the appendix in more details. Importantly,
to the best of our knowledge this result has not yet appeared in nonparametric counterfactual
density estimation. One may notice that the product of two L2 norms in (3.17) becomes
negligible under Assumption (B1). Now we provide our main theorem for this subsection.

Theorem 3.3.3 (L1 risk of the estimator D(Q̂1
h, Q̂

0
h) for observational study). Under assump-

tions (A1), (A2), (B1), (B2), and (B3), together with the causal assumptions (C1), (C3), (C4),
we have

E
[∣∣∣D(Q̂1

h, Q̂
0
h)−D(Q1

h,Q
0
h)
∣∣∣ ∣∣∣]= OP

(
1√
n

)
(3.18)
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where we use random sample splitting so we estimate ψa
h and (π̂a, µ̂a) on separate sample

sets.

The proof of Theorem 3.3.3 requires more involved argument than previous randomized
experiments and is given in B.2.5 of the appendix. The result of Theorem 3.3.3 implies
that the proposed estimator can be estimated at the fast

√
n rates as well, even when all the

nuisance parameters µ,π are estimated flexibly at much slower rates than
√

n.

Remark 2. 1 . (Bandwidth selection) For each of the proposed estimators, the fixed kernel
smoothing bandwidth h must be specified in advance through a separate procedure. This
turns out to be a very challenging problem; since we do not have "ground truth", standard
approaches such as cross-validation cannot be applied. Here, we are basically being agnostic
about the optimal bandwidth choice rule as it is beyond what we focus on in this paper.
Instead, we proceed on an ad hoc basis as follows.

1. We generate an artificial dataset that resembles the observed data distribution but has
all the counterfactual outcomes. For example, for the given Dobs = {Ai,Xi,Yi}n

i=1, we
generate an artificial one Daf = {Ai,Xi,Y 0

i ,Y
1
i }n

i=1. This can be done via something
akin to matching [1], for instance.

2. Then we estimate D(Q̂1
h, Q̂

0
h), D(Q1

h,Q
0
h) using Dobs, Daf respectively.

3. We find h that minimizes the mean squared error.

The procedure described above should be done on the separate dataset, whence we compute
the proposed estimators. Again, note that the method is pretty much ad hoc without formal
validity. The optimal bandwidth choice problem can be tackled via theoretical analysis, which
also would be closely related to another interesting future work. For example, we conjecture
our proposed estimators in Section 3.3 may be minimax optimal when the bandwidth is tuned
in a particular way.

3.4 Asymptotic Convergence and Confidence Interval

3.4.1 Asymptotic Convergence

In the previous section we described effective ways to estimate the counterfactual density
and our target causal effect in various scenarios and analyzed their error rates. In this section
we characterize an asymptotic behavior of our proposed counterfactual density estimators,
and delineate how to construct a confidence interval via bootstrapping. To this end we require
slightly stronger version of the previous assumptions (A2), (B2) as follows.
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• (A2’) Finite L∞ norm, Lipschitz, and bounded support of the kernel function: The
kernel function K : Rd → R has finite L∞ norm ∥K∥∞ := supu |K(u)| < ∞ and has a
bounded support, i.e. there exists RK < ∞ with supp(K)⊂ BRK(0), where BRK(0) =
{u ∈ Rd : ∥u∥2 ≤ RK}. Also, K is Lipschitz, i.e. there exists LK < ∞ with |K(u1)−
K(u2)| ≤ LK∥u1 −u2∥.

• (B2’) Uniform boundedness: ∥1/π̂a∥∞
, 1/πa and ∥µ̂a∥2 are uniformly bounded.

Note that in (A2’) the bounded norm and bounded support in above assumptions are still
considered mild. Also, the smoothness condition on the kernel function is commonly found
in nonparametric literature [e.g., 131].

In the next theorem we characterize an asymptotic property of the proposed counterfactual
density estimator for the single-source randomized study (3.7). Hereafter, we use ⇝ for
denoting convergence in distribution 2.

Theorem 3.4.1. Under assumptions (A1), (A2’), for a treatment assignment A = a we have

√
nD(Q̂a

h,Q
a
h)⇝

1
πa

∫
|G(y)−qa

h(y)G(a)|dy,

where G is a centered Gaussian process 3 with Cov[G(y1),G(y2)] = πaE[Th,y1(Y )Th,y2(Y )]−
π2

a qh(y1)qh(y2), Cov[G(y),G(a)] = πa(1−πa)qh(y), and Var[G(a)] = πa(1−πa), where we
write Th,y(Y ) = 1

hd K
(
∥Y−y∥2

h

)
and qh(y) = E[Th,y(Y )].

The proof of Theorem 3.4.1 is given in Section B.2.6 of the appendix. Characterization
of the asymptotic behavior for observational study appears a little bit different, as stated in
the next theorem.

Theorem 3.4.2. Under the assumptions (A1), (A2’), (B1), (B2’), (B3), it follows

√
nD(Q̂a

ha
,Qa

ha
)⇝

∫
|G(y)|dy,

where G is a centered Gaussian process with Cov[G(y1),G(y2)]=E
[

f a
y1

f a
y2

]
−E

[
f a
y1

]
E
[

f a
y2

]
,

f a
y := 1(A=a)

πa(X)

(
Th,y(Y )−µA(X)

)
+µa(X). π , µ are defined in Lemma 3.3.2.

The proof of Theorem 3.4.2 is given in Section B.2.7 of the appendix. Theorem 3.4.1
and 3.4.2 lay the foundation to construct confidence intervals for the proposed estimators as
detailed in the next section.

2In our context, weak convergence is equivalent to "convergence in distribution" or "convergence in law".
We sometimes interchangeably use those terms in our paper in order to conserve the original statement in the
theorems that we cite from other literature.

3Here, the index set is understood as a multiset (Y ∪A ,m) where the multiplicity m = 2 only for elements
in Y ∩A so that we can use the indices y ∈ Y and a ∈ A together.
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3.4.2 Confidence Interval via Bootstrapping

In this section we present a bootstrap approach to constructing confidence interval for
each of the proposed estimators. For α ∈ (0,1), a 1−α confidence interval Ĉα for our target
parameter θ is an interval satisfying

liminf
n→∞

P(θ ∈ Ĉα)≥ 1−α,

where θ is the estimator for single- and multi-source randomized study, and observational
study respectively, as presented in (3.8), (3.12), and (3.16).

We construct the confidence interval Ĉα centered at the causal estimator θ̂ and of width
2cn, i.e., Ĉα = [θ̂ − cn, θ̂ + cn], where θ̂ = D(Q̂1

h1
, Q̂0

h0
) for the single-source randomized

study or observational study (h0 = h1), and θ̂ = 1
N ∑

N
i=1 D((Q̂1

h1
)i,(Q̂0

h0
)i) for the multi-source

randomized study.
Then Ĉα is a valid 1−α asymptotic confidence set if and only if

liminf
n→∞

P(|θ̂ −θ | ≤ cn)≥ 1−α. (3.19)

We use bootstrapping to compute the confidence interval. Algorithms detailing how to
compute Ĉα for each of the proposed estimators are given in Algorithm 1, 2, and 3 in the
following page. Proposed bootstrapping algorithms provide a straightforward way to derive
estimates of the radius of the interval cn and are simple to implement in practice.

As briefly described in Section 3.2.2, the validity of the bootstrap confidence interval is
based on the stochastic convergence of the empirical process. Suppose we have an original
i.i.d sample set (Z1, ...,Zn) ∼ P and a bootstrapped set (Z∗

1 , . . . ,Z
∗
n), and their empirical

measures Pn, P∗
n respectively. The main theory that underpins our bootstrapping algorithm

is that the empirical process and its bootstrapped version converge to the same limiting
distribution (Theorem 3.2.1). For example, one sufficient condition we find in Algorithm 1
for (3.19) to hold is liminf

n→∞
P
(√

nD(Q̂a
ha
,Qa

ha
)≤ ẑa

α/2

)
≥ 1− α

2 . Thus for the case of single-

source randomized study, it suffices to prove that
√

nD(Q̂a
h,Q

a
h) and

√
nD(Q̂a

h
∗
, Q̂a

h) converge
to the same limiting distribution. Convergence of

√
nD(Q̂a

h,Q
a
h) can be obtained from

Theorem 3.4.1, and applying Theorem 3.2.1 implies that indeed
√

nD(Q̂a
h
∗
, Q̂a

h) converges
to the same limiting distribution. We can show validity of other bootstrapping algorithms
basically in the same manner as well. These results are summarized in the following theorem.

Theorem 3.4.3. Under assumptions (A1), (A2’) for single- and multi-source randomized
study, and under assumptions (A1), (A2’), (B1), (B2’), (B3) for observational study, cor-
responding confidence intervals Ĉα constructed via Algorithm 1, 2, 3 are valid confidence
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intervals, i.e.
liminf

n→∞
P
(
θ ∈ Ĉα

)
≥ 1−α

for given level of α .

We give a proof of the above Theorem in section B.2.8, B.2.9, and B.2.10 of the appendix.

Algorithm 1 Bootstrapping algorithm for single-source randomized study.
1. We generate B bootstrap samples {Z̃1

1 , . . . , Z̃
1
n}, . . . ,{Z̃B

1 , . . . , Z̃
B
1 }, by sampling with

replacement from the original sample.
2. On each bootstrap sample, compute T a

i =
√

nD(Q̂a
ha

i
, Q̂a

ha
), where Q̂a

ha

i
is the esti-

mated distribution of kernel density estimator Q̂a
ha

computed on ith bootstrap samples
{Z̃i

1, . . . , Z̃
i
n}.

3. Compute α

2 -quantile ẑa
α/2 = inf

{
z : 1

B ∑
B
i=1 I(T a

i > z)≤ α

2

}
.

4. Define Ĉα =

[
D(Q̂1

ha
, Q̂0

ha
)−

ẑ0
α/2√

n −
ẑ1

α/2√
n , D(Q̂1

ha
, Q̂0

ha
)+

ẑ0
α/2√

n +
ẑ1
α/2√

n

]
.
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Algorithm 2 Bootstrapping algorithm for multi-source randomized study.
1. For each i = 1, . . . ,N, we generate ith bootstrap samples {Z∗

Pi,1, . . . ,Z
∗
Pi,ni} by sampling

with replacement from the ith original sample {ZPi,1, . . . ,ZPi,ni}.
2. On each bootstrap sample {Z∗

Pi,1, . . . ,Z
∗
Pi,ni} , compute Da

i =
√

nD((Q̂a
ha
)∗i ,(Q̂

a
ha
)i),

where (Q̂a
ha
)∗i is the estimated distribution of kernel density estimator Q̂a

ha
computed

on ith bootstrap samples {Z∗
Pi,1, . . . ,Z

∗
Pi,ni}.

3. Compute D̄a = 1
N ∑

N
i=1 Da

i .

4. We generate B bootstrap distributions {P(1)
1 , . . . ,P(1)

N }, . . . ,{P(B)
1 , . . . ,P(B)

N }, by sam-
pling with replacement from the original distribution {P1, . . . ,PN}.

5. On each bootstrap sample, compute

Tj =

∣∣∣∣∣ 1√
N

N

∑
i=1

D((Q̂1
h1
)
( j)
i ,(Q̂0

h0
)
( j)
i )− 1√

N

N

∑
i=1

D((Q̂1
h1
)i,(Q̂0

h0
)i)

∣∣∣∣∣ ,
, where (Q̂a

ha
)
( j)
i is the estimated distribution of kernel density estimator Q̂a

ha
computed

on the sample {ZP( j)
i ,1

, . . . ,ZP( j)
i ,n

} from the bootstrapped distribution P( j)
i .

6. Compute α-quantile ẑα = inf
{

z : 1
B ∑

B
j=1 I(Tj > z)≤ α

}
.

7. Define

Ĉα =

[
1
N

N

∑
i=1

D((Q̂1
h1
)i,(Q̂0

h0
)i)−

D̄1
√

n
− D̄0

√
n
− ẑα√

N
,

1
N

N

∑
i=1

D((Q̂1
h1
)i,(Q̂0

h0
)i)+

D̄1
√

n
+

D̄0
√

n
+

ẑα√
N

]
.

Algorithm 3 Bootstrapping algorithm for observational study.
1. We generate B bootstrap samples {Z̃1

1 , . . . , Z̃
1
n}, . . . ,{Z̃B

1 , . . . , Z̃
B
1 }, by sampling with

replacement from the original sample.
2. On each bootstrap sample, compute T a

i =
√

nD(Q̂a
ha

i
, Q̂a

ha
), where Q̂a

ha

i
is the esti-

mated distribution of kernel density estimator Q̂a
ha

computed on ith bootstrap samples
{Z̃i

1, . . . , Z̃
i
n}.

3. Compute α

2 -quantile ẑa
α/2 = inf

{
z : 1

B ∑
B
i=1 I(T a

i > z)≤ α

2

}
.

4. Define Ĉα =

[
D(Q̂1

ha
, Q̂0

ha
)−

ẑ0
α/2√

n −
ẑ1

α/2√
n , D(Q̂1

ha
, Q̂0

ha
)+

ẑ0
α/2√

n +
ẑ1

α/2√
n

]
.
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3.5 Numerical Illustration

Here we present a series of simulation studies using both synthetic and real-world data to
illustrate our method. We consider three different setups; we generate two synthetic datasets
for a single-source experiment and one for a multi-source experiment, and use the real-world
data for an observational study. For each setup, we illustrate how the proposed estimator
can uncover clues on the distributional shift induced by a given treatment, which otherwise
would not have been revealed by traditional methods.

3.5.1 Single-source experiment

For a single-source experiment, we generate two pairs of counterfactual distributions
having the exact same mean as illustrated in Figure 3.1. The first pair consists of two beta
distributions and the second consists of a univariate Gaussian and a mixture of two Gaussian
distributions. To generate data (A,Y ) from each pair of distributions, we randomly sample
100 points from each of q0,q1 respectively. In both cases, we set P(A = 1) = 1/2.

Fig. 3.1 Two pairs of counterfactual distributions that have the same mean. In each pair, the
distribution for the treated is largely different from the control, for example in terms of the
variance, skewness, and (the number of) mode.

Then we estimate causal effects defined in (3.2) using the proposed estimator. For
baseline methods, we use the difference-in-means ( ˆψdiff) and Horvitz-Thompson estimators
( ˆψHT), two of most widely used methods in randomized experiments, whose target parameter
is the ATE defined in (3.1). Given dataset (A,Y ) and known π = P(A = 1), the two baseline
estimators are defined as below.

ˆψdiff = Pn[Y |A = 1]−Pn[Y |A = 0] =
Pn[AY ]
Pn[A]

− Pn[(1−A)Y ]
Pn[1−A]

ˆψHT = Pn[
AY
π

− (
1−A
1−π

)Y ]
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Even though the mean of the two counterfactual distributions in each pair in Figure 3.1
is the same, the given treatment brings a substantial change to shape of the distribution. In
the second example of the unimodal and bimodal distributions, this becomes much more
obvious; we also have a considerable degree of the effect heterogeneity in this example. By
construction, the baseline estimators whose target parameter is (3.1) estimate zero effects for
both cases.

We present the value of the two baseline estimators and our proposed estimator defined
in (3.8) together with the 95% confidence interval in Table 3.1, using the synthetic data
distributions described in Figure 3.1. For bootstrapping we use B = 100. When computing
the proposed estimator the numerical integration is done via Monte Carlo with uniform
sampling, and we use bandwidth h0 = h1 = 0.005 for kernel density estimation. As expected,
all the baseline estimators report that treatment effects are insignificant, whereas the proposed
estimator gives a significant clue on a substantial shift in counterfactual distribution.

Two beta distributions Uni- vs. Bi-modal
Estimator Point Estimation 95% CI Point Estimation 95% CI

Difference-in-means 0.002 (−0.015,0.020) 0.013 (−0.189,0.215)
Horvitz-Thompson 0.014 (−0.030,0.059) 0.012 (−0.188,0.212)
Difference-in-distribution 0.735 (((000...777111888,,,000...777555222))) 0.311 (((000...222555000,,,000...333777111)))

Table 3.1 Estimated causal effects across different estimators for the two experimental setups
described in Figure 3.1.

3.5.2 Multi-source experiment

For the multi-source experiment, we setup the super-distribution P as below

Pi ∼ (1−A)N (0,u2
1)+A

{
wN ((1−w)u2,u2

3)+(1−w)N (−wu2,u2
4)
}
, ∀i

u1 ∼ U (0.5,1.5)) u2 ∼ U (1,5) u3 ∼ U (0.5,1.5)

u4 ∼ U (0.5,1.5) w ∼ U (0.25,0.75) A ∼ Bernoulli(0.5)

, where we set N = 50,n = 100. Under this setting, for each Pi ∼ P we have

Pi(Y A)⇒

unimodal, if A = 0

bimodal, if A = 1.

Note that for each i a pair Pi(Y 1),Pi(Y 0) looks like the second example in Figure 3.1 and
has the same mean by design. Having all the other conditions be the same with the previous
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single-source experiment setup, we estimate two baselines ˆψdiff, ˆψHT, and our proposed
estimator (3.12) as before, and present the results with 95% confidence intervals in Table 3.2.
As shown in Table 3.2, the proposed estimator suggests there has been a significant shift in
counterfactual distribution caused by the given treatment.

Estimator Point Estimation 95% CI

Difference-in-means 0.039 (−0.361,0.435)
Horvitz-Thompson 0.037 (−0.368,0.432)
Difference-in-distributions 0.194 (((000...111000555,,,000...222888444)))

Table 3.2 Estimated causal effects across different estimators for the multi-source experiment

3.5.3 Real-world Example: Effect of Free Lunch on Achievement Gap

In this subsection, we illustrate the use of the proposed causal effects with an analysis of
the effect of free lunch on achievement gap. Disparity in academic achievement across races
is a severe social problem in the US. For example, the achievement gap between white and
black students has narrowed very little over the last 50 years, despite supposed progress in
race relations and increased emphasis on closing such discrepancies [47].

On the other hand, many public schools in the US provide free lunch for qualifying
students, with the aim of equalizing performance based on the clear relationship between
students’ learning and overall nutritional status [151]. Surprisingly, the debate over free
lunch programs involved little discussion about its impact on academic achievement, for
example as to whether providing the free meal plans at school could improve the educational
achievement gaps between different races. Here we attempt to investigate the causal effect of
offering more free lunches upon the improvement on the achievement gap between different
ethnicities.

We use datasets from the Stanford Education Data Archive (SEDA) 4 in which we
collect the test score gaps between ethnicities, percent free lunch in average and other
socioeconomic, and demographic characteristics of geographical school districts during
2009-2013 on a district basis. We consider a school district treated if it is providing above-
average school level free lunch to ethnic minorities. Our outcome is Math and ELA test score
gaps between White and two ethnic minorities, Black and Hispanic. Detailed information
about dataset can be found in Table B.1 and B.2 in section B.1 of the appendix.

4 https://cepa.stanford.edu/seda/data-archive

https://cepa.stanford.edu/seda/data-archive
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We first estimate the causal effect of free lunch on test gaps each year by employing three
baseline methods that are widely used for observational studies in causal inference literature.
Given the data structure (X ,A,Y ) we provide a description of each baseline estimator as
below.

• The plug-in regression estimator ψ̂pi

φ̂pi = Pn[µ̂1(X)− µ̂0(X)]

where µ is regression function E[Y | A = a,X ] to be estimated.

• The inverse probability weighting estimator ˆψIPW

φ̂IPW = Pn

[
AY

π̂(X)
− (

1−A
1− π̂(X)

)Y
]

where π(X) = P(A = 1|X).

• The doubly-robust (semi-parametric) estimator ψ̂DR

φ̂DR = φ̂pi +Pn

{(
A

π̂(X)
− 1−A

1− π̂(X)

)
[Y − µ̂A(X)]

}
.

Acknowledging that it would cause slow convergence rates for ψ̂pi and ˆψIPW, here we
employ a nonparametric model to estimate both π,µ; we use Random Forests via ranger
package in R. More details about these estimators (e.g. asymptotic properties) can be found,
for example, in [94].

For each year, we estimate ψ̂pi, ˆψIPW, ψ̂DR, and our proposed estimator (3.16), and
present the results with 95% confidence intervals. For the sake of brevity, only the results
for year 2009 are presented in Table 3.3 5. Most of the baseline methods appear to be
not significant in that their 95% confidence interval contains zero. On the other hand, the
proposed estimator suggests a substantial shift in counterfactual distribution induced by the
free lunch program for both the White vs Black and White vs Hispanic. One may further look
into and decide whether such distributional change is meaningful from the the policy-making
perspective through extra tests if necessary.

5Since the results for other years are more or less similar, we move them to Table B.3, B.4, B.5 in section
B.1 of the appendix.
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White-Black White-Hispanic
Estimator Math ELA Math ELA

Plug-in regression
−0.030

(−0.086,0.026)

0.025
(−0.085,0.036)

−0.029
(−0.057,0.028)

−0.024
(−0.084,0.036)

IPW
−0.020

(−0.059,0.019)

−0.012
(−0.056,0.032)

−0.022
(−0.059,0.015)

−0.002
(−0.029,0.028)

Doubly Robust
−0.056

(−0.070,−0.042)

−0.035
(−0.048,−0.024)

−0.049
(−0.062,−0.037)

−0.013
(−0.026,0.001)

Difference-in-distributions
0.752

(0.724,0.780)

0.638
(0.596,0.680)

0.702
(0.650,0.754)

0.529
(0.480,0.579)

Table 3.3 Estimated causal effect of free lunch on test gaps in 2009 (with 95% CI)

3.6 Discussion

As illustrated in the introduction, there are often times when mere comparison of average
effects reveals potentially less valuable information about how treatment works on outcomes.
In this study, we pursue a more nuanced way to explore causal effects beyond the ATE
by considering estimating causal effects based on the discrepancy between unobserved
counterfactual distributions.

We provide a novel way to estimate each of the counterfactual outcome distributions for
efficient estimation of our target functional D1(Q0,Q1) with the non-smooth L1 distance by
considering single- and multi-source randomized studies, as well as observational studies.
We analyzed error bounds and asymptotic properties of the proposed estimators. To the
best of our knowledge, our doubly robust style estimator for an observational study is the
first result on efficient nonparametric counterfactual density estimation. We further propose
methods to construct confidence intervals for the unknown mean distribution distance by
analyzing the asymptotic convergence of our counterfactual density estimators.

Our proposed method can be always used jointly with the ATE, as a first step in assessing
whether there is effect modification beyond a mean shift; for instance, when the ATE is
nearly zero but our estimator is large, we should be cautious before making a decision
merely based on the former. On top of that, one may build upon our proposed framework
to meet their own analytical goals. For example, we conjecture that when used together
with the ATE our method may provide an alternative indirect approach to test the degree
of heterogeneity in treatment effects, in the sense that a large value of D1(Q1,Q0) with the
nearly zero ATE implies considerable variation in subgroup effect in terms of magnitude
or direction and thereby can be used as an evidence of heterogeneous treatment effects
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under certain circumstances (see the second example used in Section 3.5.1) 6. Furthermore,
even when we are interested in other types of functional such as quantiles and cdfs between
different counterfactual distributions, we can use our results to construct and test hypotheses
with respect to these quantities. It is also worth noting that our method can be extended to the
weighted distributional distances Dw defined by Dw =

∫
w(u)|p(u)−q(u)|du. In the ordinary

L1 distance we have w = 1 everywhere, but one can appropriately tailor the weight function
w if necessary; one example can be a sigmoid function, which would be useful when we care
more about positive effects.

Our work leads to many opportunities for important future work from theoretical per-
spective as well. We plan several extensions of our work from L1 distance to more general
functionals. Considering varying bandwidth in our counterfactual density estimator would
be another important future extension. Moreover, as mentioned in Remark 1, we conjecture
that our proposed estimators may be minimax optimal when the bandwidth is tuned in a
particular way, but we leave that to future work.

6This must be accompanied with other statistical metrics that would help us to properly define the degree of
heterogeneity in treatment effects.



Chapter 4

Causal Clustering

4.1 Introduction

Statistical causal inference is about estimating what would happen to some response when
a “cause” of interest is changed or intervened upon, possibly contrary to an observed fact.
This is essential for answering many important questions in health, public policy, economics,
and across science: e.g., how would survival change under medical treatment A vs. B, or what
are the economic effects of policy X vs. Y? To mathematically frame such causal problems,
we use counterfactual or potential outcomes [118]. We consider a setup where we observe n
iid samples of Z = (X ,A,Y )∼ P, where X ∈ Rd are covariates, A ∈ {0,1, ..., p−1} denotes
treatment, and Y ∈ R is an outcome of interest. The potential or counterfactual outcome we
would have observed for a unit had they received treatment A = a is denoted Y a for a ∈ A .
To compare population-average outcomes between two treatment levels (e.g., A = 1 versus
A = 0), we can formulate the population-level average treatment effect (ATE) as

E(Y 1 −Y 0). (4.1)

The ATE is one of the most popular target effects in causal inference, and can be identified
and estimated under a proper set of assumptions in both randomized and observational studies
[e.g., 52, 56]. There have been much work concerning efficient estimation of the ATE, and its
analogs in more complex data structures such as censored longitudinal data [137]. Recently
there has been also a huge interest in incorporating the benefits of machine learning into
estimating such causal parameters [e.g., 138, 19, 109].
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4.1.1 Heterogeneity in Treatment Effects

A potential shortcoming of the ATE in (4.1) is that it can mask heterogeneity in causal ef-
fects, e.g., across subgroups of different units. Identifying such treatment effect heterogeneity
and corresponding subgroups is of great importance in policy evaluation, drug development,
and health care service, and has generated growing recent interest. For example, patients
with different subtypes of cancer often react differently to the same treatment; however, our
understanding of cancer subtypes at the molecular level is limited [50], and there is little
consensus about which treatments are most effective for which patients [79]. Typically, the
functional form of the relationship between treatment effects and the attributes of units is not
known a priori and thus such effect heterogeneity has to be explored via data driven methods.
There has been a lot of recent work in this area [5, 145, 153, 29, 55, 39, 42, 43, 147, 122],
but there are many open problems and it has not been studied as extensively as other branches
of causal inference [70].

Most approaches for studying effect heterogeneity target the conditional average treatment
effect (CATE), defined as follows.

Definition 4.1.1 (Conditional average treatment effect (CATE)).

τ(X) = E[Y 1 −Y 0 | X ]. (4.2)

The CATE captures how treatment effects vary with covariates. Various methods have
been proposed to obtain estimates of and inferences for the CATE, with a special emphasis in
recent years on incorporating flexible machine learning tools. For example, van der Laan and
Luedtke [134] provided a framework of efficient CATE estimation based on the loss-based
super-learning approach. Athey and Imbens [5] developed a popular tree-based method. Imai
et al. [55] and Wager and Athey [145] adapted random forest and support vector machine
classifiers. Shalit et al. [122] presented error bounds using domain adaptation. Künzel et al.
[82] proposed meta-algorithms for CATE estimation, with a particular focus on unbalanced
designs. Nie and Wager [99] gave a novel adaptation of RKHS regression methods and
studied conditions for oracle efficiency. Kennedy [70] gave generic model-free error bounds
and pursued fastest possible convergence rates.

4.1.2 Motivation

In contrast to previous work, which pursues methods with a definite supervised learning
flavor, we instead consider assessing effect heterogeneity via an unsupervised learning
perspective. Namely, rather than estimating the CATE specifically, we aim to infer the
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properties and structure of effect heterogeneity by finding underlying subgroups and clusters.
Our work is therefore more descriptive and discovery-based, which we feel fills a gap in the
literature. This is exactly analogous to the clustering versus regression distinction in standard
statistical learning [25, Theorem 2.2]; to the best of our knowledge, clustering methods have
yet to be exploited in causal inference, let alone in the heterogeneous effects problem.

Thus in this paper we propose adapting unsupervised learning methods for understanding
treatment effects: we develop Causal Clustering, a new approach for analyzing effect
heterogeneity that leveraging tools from clustering analysis. Specifically, we pursue an
efficient way to uncover subgroup structure in conditional treatment effects by harnessing
widely-used clustering methods. Relative to standard CATE estimators, our framework
provides complementary tools for ascertaining subgroups with similar treatment effects,
exploiting flexible unsupervised machine learning methods. Importantly, causal clustering
can be particularly useful in outcome-wide studies with multiple treatment levels [143, 144],
where rather than probing a high-dimensional CATE surface to assess structure one can
instead find lower-dimensional clusters with similar treatment effects.

4.1.3 Clustering with Unknown Outcomes

Our problem largely differs from the standard clustering setup since, as we indicate
in Section 4.2 in more detail, the variable to be clustered consists of unknown regression
functions that need to be estimated. Clustering with this kind of unknown “pseudo-outcome”
has not been studied as extensively as standard clustering that is performed on deterministic,
fully observed data. Some recent work has considered cluster analysis with partially observed
data, as in for example Serafini et al. [121] who explored missing data problems in clustering
and Haviland et al. [49] who studied group-based trajectory modeling with non-random
dropout. They use parametric approach to model partially unobserved outcomes which are in
a vector form in fixed dimensions, unlike fully unobserved regression functions in our paper.
Su et al. [123] has considered clustering with measurement errors, by modeling marginal
outcome distribution through deconvoluting density estimation, but still on outcomes in a
vector form. Kumar and Patel [80] considered clustering on unknown model parameters,
without theoretical arguments, relying on parametric assumption. Importantly, as far as
we are aware, none of the existing methods in clustering literature have explored general
nonparametric approaches to clustering on unknown pseudo-outcomes.
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4.1.4 Paper Organization

The remainder of the paper is structured as follows. In Section 2, we present the idea
of causal clustering and associated assumptions and notation. In Section 3, we show that
k-means, density-based, and hierarchical clustering algorithms can be successfully adopted
into our framework with simple plug-in estimators, albeit with a cost in error rates coming
through a first-order nuisance error. In Section 4, we develop a more efficient bias-correced
estimator for k-means causal clustering using nonparametric efficiency theory, which attains
fast convergence rates to the true cluster centers under weak nonparametric conditions on
nuisance estimators. There, we also give conditions for asymptotic normality of the cluster
centers. In Section 5, we argue why our framework can be easily generalized to outcome-
wide studies. Section 6 provides simulation studies as well as case studies with real data.
Section 7 concludes with a discussion.

4.2 Setup & Notation

As in the previous section, we consider an observational study consisting of n iid samples
of Z = (X ,A,Y )∼ P, where we let X ∈ Rd , A = {1, ..., p}, and Y ∈ R denote the support
of our pre-treatment covariate (X), treatment (A), and outcome (Y ) variables respectively.
Note that we allow multi-level treatments, i.e. p distinct levels of treatment with p ≥ 2 where
the index starts from 1. For conditional effects like the CATE in (4.2) to be identified, we
require the following standard causal assumptions.

Assumption A1. (consistency) Y = Y a if A = a.

Assumption A2. (no unmeasured confounding) A ⊥⊥ Y a | X.

Assumption A3. (positivity) P(A = a | X) is bounded away from 0 a.s. [P].

Assumptions (A1)-(A3) are the standard assumptions commonly adopted in the causal
inference literature [52]. Assumption (A1) means that observed outcomes must equal corre-
sponding potential outcomes under the observed treatment sequence; it could be violated for
example in the presence of interference. Assumption (A2) is sometimes called (conditional)
randomization or exchangeability and holds by design in a randomized experiment. However,
in an observational study it requires sufficiently many relevant confounders to be collected.
Assumption (A3) implies that everyone must have some positive probability of receiving
each treatment level. This is needed since otherwise some counterfactuals would never be
observed even in an infinite superpopulation.
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Under Assumptions (A1)-(A3), it is well-known that the counterfactual regression func-
tion under a ∈ A is identified as

µa(X)≡ E[Y a | X ] = E[Y | X ,A = a]

Therefore, for ∀a,a′ ∈ A a pairwise CATE of the treatment a relative to a′ is given by

τaa′(X)≡ E[Y | X ,A = a]−E[Y | X ,A = a′]

= µa(X)−µa′(X)
(4.3)

Next we define the conditional counterfactual mean vector that maps the covariates into
the p-dimensional mean-outcome space.

Definition 4.2.1 (Conditional counterfactual mean vector). We define µµµ by

µµµ(X) =
[
E[Y 1 | X ], ...,E[Y p | X ]

]⊤
. (4.4)

In other words, µµµ is a surjection of covariate space X onto Rp. Under Assumptions
(A1)-(A3), µµµ could be estimated by estimating each regression function µa with observed
data.

Each point projected through the conditional counterfactual mean vector carries implicit
information about the CATE. If all coordinates of a point µµµ(X) were the same, this would
mean no treatments had any effects on the conditional mean scale. Furthermore for two units
i, j, we have

µµµ(Xi)≈ µµµ(X j)⇒ τaa′(Xi)≈ τaa′(X j) for all a,a′ ∈ A .

Namely, adjacent units in the conditional counterfactual mean vector space would show
similar reactions toward a given set of treatments in terms of the CATE. This gives some mo-
tivation for uncovering subgroup structure via cluster analysis on the image of the conditional
counterfactual mean vector.

In Figure 4.1, we illustrate the idea of causal clustering through the case of binary
treatments (p = 2). We generate 900 samples in the conditional counterfactual mean vector
space using a mixture of six Gaussian distributions with different means and covariance
functions, where the overall ATE is set to be exactly zero. By construction, there are roughly
six clusters where units within each cluster are more homogeneous in terms of the CATE.
When it comes to analyzing the heterogeneity of treatment effect, often people rely on
histogram of the CATE as in Figure 4.1-(c). However in this illustration drawing histogram
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Fig. 4.1 Illustration for causal clustering for the case of binary treatments with a mixture
of six Gaussian distributions, where µµµ ∈ R2 and E[Y 1 −Y 0] = 0. The symmetrical, bell-
shaped histogram of CATE in (c) is not informative on the underlying patterns of the mixture
distributions shown in (b), which could be exploited via clustering analysis.

still does not give the whole story. On the other hand, cluster analysis with µµµ’s can effectively
discover a subgroup structure that would be obscure when just looking at the histogram of
CATE.

Although the aforementioned clustering idea is simple and intuitive, standard results from
the clustering literature cannot be applied off-the-shelf, since the variable to be clustered is
µµµ , which consists of unknown outcome regression functions that need to be estimated. In
contrast, standard clustering is performed on observed data, not unknown pseudo-outcomes
like µµµ . Consequently, it is unclear which if any theoretical guarantees of the original
clustering algorithms hold for causal clustering, and under what conditions.

For our analysis, we simply write µµµ ≡ µµµ(X) = [µ1(X), ...,µp(X)]⊤ and µ̂µµ ≡ µ̂µµ(X) =

[µ̂1(X), ..., µ̂p(X)]⊤ when the dependency on X is clear from the context, and consider sets
of points Un = {µµµ1,µµµ2, ...,µµµn} and On = {µ̂µµ1, µ̂µµ2, ..., µ̂µµn} induced from our data Dn =

{Z1,Z2, ...,Zn} where each Zi
i.i.d∼ P.

Hereafter, we let ∥x∥p denote Lp norm for any fixed vector x. When we are given
a fixed operator f , we let Pn and P denote the empirical measure over Dn and the con-
ditional expectation over P, respectively, as in Pn( f ) = Pn{( f (Z)} = 1

n ∑
n
i=1 f (Zi) and

P( f ) =
∫

f (z)dP(z). We also use ∥ f∥P,p to denote the Lp(P) norm defined by ∥ f∥P,p =

[P( f p)]1/p = [
∫

f (z)pdP(z)]1/p. In particular, we use ∥ · ∥ as a shorthand notation for L2(P)
norm as L2(P) is used most frequently in this paper. Moreover throughout the development,
for x ∈ Rd and r > 0, we let B(x,r) denote the open ball centered at x with radius r with
respect to L2 norm, i.e. B(x,r) = {y ∈Rd : ∥x−y∥2 < r} and use the notation B(x,r) for the
closed ball.

Lastly, we impose the following mild boundedness assumption to ensure that our cluster
analysis is performed on the compact space.
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Assumption A4. ∥Y∥∞ < ∞ and ∥µµµ∥2,∥µ̂µµ∥2 ≤ B for some finite constant B.

Remark 3. One may flexibly tailor the conditional counterfactual mean vector in (4.2.1) to
fit a specific purpose. We give two examples here. For the sake of simplicity, let us assume
A = {0,1}. 1) Suppose that we only care about the magnitude of the CATE. Then we can
simply redefine µµµ = µ1 − µ0

1 and perform clustering analysis with this new µµµ . 2) Next
suppose, for example, that we are interested in how a treatment shifts the median of an
outcome variable as in the context of the quantile treatment effects [e.g. 21, 103, 154]. In this
case, we can redefine our conditional counterfactual mean vector by µµµ = (Q0(q),Q1(q)) for
some prespecified q ∈ (0,1) (for median, q = 1/2), where Qa(q) is the quantile function of
our potential outcome Y a, i.e. Qa(q) = inf{y ∈ R : q ≤ FY a(y)} where FY a = P(Y a ≤ y | X).

Remark 4. A growing number of recent studies seek to adopt outcome-wide approaches
where our outcome variable is essentially multivariate [143, 88, 144]. Suppose that
we assess causal effects over m different outcomes. We let Y a

(l) denote a potential out-

come for the l-th outcome under treatment a ∈ A and µ
(l)
a ≡ E[Y a

(l) | X ]. Our frame-
work is easily extendable to outcome-wide studies by simply letting, for example, µµµ =

(µ
(1)
0 , ...,µ

(1)
p ,µ

(2)
0 , ...,µ

(2)
p , ...,µ

(m)
0 , ...,µ

(m)
p ).

4.3 Analysis on Three Causal Clustering Algorithms

In this section, we analyze three causal clustering algorithms. Specifically, we provide
error analysis of plug-in estimators for k-means, density-based, and hierarchical clustering
algorithms, and show that they can be successfully adopted into our framework at the cost of
first-order nuisance error rates.

4.3.1 k-means Clustering

Originally from signal processing, k-means (a.k.a vector quantization) is the one of the
oldest, and the most popular approaches to clustering. It works by finding k representative
points which defines a Voronoi tessellation. There has been a substantial amount of research
on k-means clustering (see, for review, [57] or the monograph of [41]). It is one of the few
clustering algorithms whose theoretical properties are relatively well-understood, since the
analysis is relatable to principal components analysis [28, 152].

1One may instead use a proper dissimilarity measure to get the same result.
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We call a set of those k representative points a codebook C = {c1, ...,ck} where c j ∈
Rp, j = 1, ...,k. Let ΠC[x] be the projection of x ∈ Rp onto C:

ΠC[x] = argmin
c∈C

∥c− x∥2
2.

Then define the population clustering risk R(C) and empirical clustering risk Rn(C) by

R(C) = E∥µµµ −ΠC[µµµ]∥2
2, Rn(C) =

1
n

n

∑
i=1

∥µµµ i −ΠC[µµµ i]∥2
2

One may construct an ordinary k-means clustering scheme by computing the optimal
codebook Ĉ∗ that minimizes Rn(C) as an estimate of the optimal population codebook C∗.
That is,

Ĉ∗ = argmin
C∈Ck

Rn(C), C∗ = argmin
C∈Ck

R(C)

where Ck denotes all codebooks of length k in the image of µµµ . The common way to find
such Ĉ∗ is known as Lloyd’s algorithm [91, 62] but there are other recent developments as
well [84]. A solution of such algorithms normally depends on the starting values. Some
popular methods for choosing good starting values are discussed in Arthur and Vassilvitskii
[4], Tseng and Wong [127].

The problem of evaluating how good Ĉ∗ is, compared to the truly optimal C∗, has been
extensively studied particularly in perspective of the excess risk analysis. Pollard [101]
proved that k-means is risk consistent in the sense that R(Ĉ∗)−R(C∗)

a.s.−−→ 0. Borrowing
techniques from statistical learning theory, the standard result by Linder et al. [89] states that

when an input vector is almost surely bounded we achieve E
[
R(Ĉ)−R(C∗)

]
= O

(√
logn

n

)
.

The lower bound is found by Bartlett et al. [8] as O(1/
√

n) which is later achieved by [10].
However, it has been shown that faster rates of O(logn/n), O(1/n) can be achieved under
certain conditions as well [e.g., see Section 1 of 87].

All the previous studies including the mentioned above assume fixed, deterministic
training samples. However in our setting we cannot compute Ĉ∗ as in ordinary k-means
since we do not observe Un. Instead for k-means causal clustering, we propose the following
plug-in estimator to compute the optimal codebook Ĉ from On by

Ĉ = argmin
C∈Ck

R̂n(C),

where R̂n(C) =
1
n

n

∑
i=1

∥µ̂µµ i −ΠC[µ̂µµ i]∥2
2.

(4.5)
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We aim to verify that under which conditions Ĉ is still risk consistent and compute the
convergence rate. By borrowing similar techniques used in [89], in what follows we provide
an error bound of L1-risk for our k-means causal clustering.

Theorem 4.3.1. Suppose we are given On where µ̂µµ is estimated in the separate sample set
Dn

0 = {Zn+1, ...,Z2n}. Then under assumptions (A1)-(A4), there exists an integer n0 such that
for every n > n0

E
∣∣∣R(Ĉ)−R(C∗)

∣∣∣≤ 32B2

√
k(p+1) logn

n
+4

√
2B∑

a
∥µ̂a −µa∥1 .

A proof of above theorem is given in Section C.2.1 of the appendix. Note that in Theorem
4.3.1 we use sample splitting to avoid imposing any extra conditions on the function class of
µa. The first term of the error bound in Theorem 4.3.1 is the same order as the rates given in
[89]. Therefore, Theorem 4.3.1 implies that the extra price that we pay as regards the excess
risk is the estimation error of outcome regression functions.

The fact that Ĉ is risk consistent does not always imply that Ĉ is actually close to
the true codebook C∗. The classical result of Pollard et al. [102] addressed this issue by
finding conditions to assure asymptotic normality of Ĉ∗ to C∗ by assuming a unique optimal
codebook. On the other hand, in our case even in the context where there is a unique optimal
codebook, quite different configurations of centers C may give rise to very similar values
of the excess risk R(C)−R(C∗) due to discrepancy between Un and On. We will save our
discussion of this topic until Section 4.4.

4.3.2 Hierarchical Clustering

Hierarchical clustering methods build a set of nested clusters at different resolutions,
and the resulting hierarchy is usually depicted by a binary tree or dendrogram. Hence,
they require no prior specification of the number of clusters and they permit the data to be
understood simultaneously at many levels of granularity based on the predefined similarity
measure. We will be considering algorithms whose only access to their data is via a pairwise
similarity function d : Rp ×Rp → [−1,1]. There are two types of hierarchical clustering:
agglomerative (bottom-up) and divisive (top-down). Here we only consider agglomerative
approach which is more common in practice [148].

Many agglomerative clustering algorithms extend d so that we can compute the distance,
or linkage, D(A,B) between sets of points A and B to form the cluster hierarchy [e.g.,
58, 23, 31]. The most common ways of extending the distance are to use single, average,



62 Causal Clustering

or complete linkages. The following lemma provides an error bound of computing the set
distance in On.

Lemma 4.3.1. Let D denote the single linkage between sets of points. Then for any two sets
A,B in UN and the corresponding estimates Â, B̂ in On, we have∣∣∣D(A,B)−D(Â, B̂)

∣∣∣≤√
2 ∑

a∈A

∥µ̂a −µa∥∞
.

The same result holds for average and complete linkages.

The proof of the lemma is given in Section C.2.2 of the appendix. Unlike k-means
clustering it is not straightforward to analyze the performance of hierarchical clustering
with respect to the true target hierarchy which is an infinite set of clusters across different
resolutions. More importantly, in the presence of noise the standard linkage-based algorithms
might fail.

Balcan et al. [7] proposed a new robust agglomerative hierarchical clustering algorithm
that can handle above issues. Their algorithm produces clustering that contains a pruning
which is close to the target clustering at a prespecified error rate in the presence of noise, and
can be implemented even under the inductive setting where we use only small subset of entire
sample. Suppose we have N samples in total. We consider a subset S of size n, n ≪ N, and
a clustering problem (S, l) in the conditional counterfactual mean vector space where each
point µµµ ∈ S has a true cluster label l(µµµ) ∈ {C1, ...,Ck}. Further we let C(µµµ) denote a cluster
corresponding to the label l(µµµ), and nC(µµµ) denote the size of the cluster C(µµµ). To proceed
we define the following good-neighborhood property to quantify the level of noisiness in our
population distribution.

Definition 4.3.1 ((α,ν)-good neighborhood property for distribution). For µµµ ′ ∈ UN , let
C(µµµ ′) = {µµµ : C(µµµ) = C(µµµ ′)}, i.e. a set whose label is equal to C(µµµ ′), and rµµµ ′ = inf

r
{r :

P[µµµ ∈ B(µµµ ′,r)] = P[C(µµµ ′)]}. The distribution Pα,ν satisfies (α,ν)-good neighborhood
property if Pα,ν = (1−ν)Pα +νPnoise where Pα is a probability distribution which satisfies

P{µµµ ∈ B(µµµ ′,rµµµ ′)\C(µµµ ′)} ≤ α

for any µµµ ′ ∈ UN , and Pnoise is any valid distribution.

The good-neighborhood property in Definition 4.3.1 is distributional extension of the
original good neighborhood property proposed by Balcan et al. [6, 7]. Next, we assume the
following mild boundedness condition on our population density.

Assumption A5. Pα,ν in Definition 4.3.1 has a bounded Lebesgue density.
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In the next theorem, we specify the cost of performing causal clustering via the robust
agglomerative hierarchical clustering.

Theorem 4.3.2. Suppose that UN consists of N i.i.d samples from Pα,ν that satisfies the
(α,ν)-good neighborhood property in Definition 4.3.1. Also assume that µ̂µµ is estimated in
the separate sample set Dn

0 = {ZN+1, ...,ZN+n}. Consider a random subset Un ⊂ UN and
corresponding On in which clustering to be performed. Now let γ = ∑a∈A ∥µ̂a −µa∥∞

, and
for any δN ,δn ∈ (0,1), define

α
′ = α +O

(√
1
N

log
1

δN

)
, ν

′ = ν +O
(√

1
N

log
1

δN

)
, β = O

(
γ +

1
n

log(
1
δn

)

)
.

Then as long as the smallest target cluster has size greater than 12(ν ′+α ′+β )N, the robust
hierarchical clustering [7, Algorithm 2] in On with n = Θ

(
1

min(α ′+β ,ν ′) ln 1
δ min(α ′+β ,ν ′)

)
produces a hierarchy with a pruning that have error at most ν ′+δ with respect to the true
target clustering with probability at least 1−δ −δN −δn.

The proof is given in Section C.2.2 in the appendix. The above theorem assumes the
inductive setting where we use only subset of size n from the entire sample set of size N. The
main implication of Theorem 4.3.2 is that roughly speaking, the natural misclassification
error α has increased by O(∑a∈A ∥µ̂a −µa∥∞

)+o(1) due to the cost of causal clustering 2.

4.3.3 Density-Based Clustering

The idea of density-based clustering was first introduced as an efficient clustering al-
gorithm for large-scale, noisy datasets [33, 53]. It works by detecting areas where points
are concentrated and where they are relatively sparse or empty. The density-based methods
provide advantages over other clustering methods through their noise handling capabilities
and ability to determine non-spherical shaped clusters. Here, we focus on the level-set
approach (Hartigan [48]; ? ] and the references therein.).

To avoid confusion with the notation on probabilistic arguments, we slightly abuse the
notation in this subsection; we set |A |= d so now µµµ ∈Rd . Further we let P be the probability
distribution of µµµ to distinguish it from P, and p be the corresponding Lebesgue density. We
also let K denote a valid kernel function, i.e. a nonnegative function with

∫
K(u)du = 1. We

construct the oracle kernel density estimator p̃h with bandwidth h > 0 as

p̃h(µµµ
′) =

1
n

n

∑
i=1

1
hd K

(
∥µµµ i −µµµ ′∥

h

)
,

2This can be clear by comparing the result of Theorem 4.3.2 with Theorem 11 of [7]
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for ∀µµµ ′ ∈ Rd . Then we define an average oracle kernel density estimator by ph ≡ E(p̃h)

and the corresponding upper level set by Lh,t = {µµµ : ph(µµµ) > t}. Suppose that for each
t, Lh,t can be decomposed into finitely many disjoint sets: Lh,t = C1 ∪ ·· · ∪Clt . Then
Ct = {C1, ...,Clt} is the level set clusters of our interest at level t.

With regard to the analysis of topological properties of the distribution P, the upper level
set of ph serves a very similar role to the upper level set of the true density p, while offering
several advantages [35, 76]. For example, ph is always well-defined even when p is not, ph

provides simplified topological information, and the convergence rate of the kernel density
estimator to ph is faster than to p. For such reasons, we typically target the level set Lh,t

induced from ph instead of the one induced from p.
When each µµµ i is observed, the level sets can be estimated by computing L̃h,t = {µµµ :

p̃h(µµµ) > t}. Specifically, for each t we let W̃t = {µµµ : p̃h(µµµ) > t}, and construct a graph
Gt where each µµµ i ∈ W̃t is a vertex and there is an edge between µµµ i and µµµ j if and only if
∥µµµ i−µµµ j∥ ≤ h. Then the clusters at level t are estimated by taking the connected components
of the graph Gt which is called a Rips graph. Persistent homology measures how the topology
of Rt varies by the value of t. See Kent et al. [75], Bobrowski et al. [13] for details in
algorithm and its theoretical properties.

However in our case, the oracle kernel density estimator p̃h is not computable since we
do not observe each µµµ i. Thus we construct a plug-in version of the kernel density estimator
for µ̂µµ as

p̂h(µµµ
′) =

1
n

n

∑
i=1

1
cκhd K

(
∥µ̂µµ i −µµµ ′∥

h

)
with a normalizing constant cκ , and target the corresponding level set L̂h,t = {µµµ : p̂h(µµµ)> t}.

In order to handle the additional complication in estimating L̂h,t , we impose the same
bounded-density assumption (A5) on the distribution P and introduce the following mild
regularity conditions on the kernel K.

Assumption A6. The kernel function K has a support on B(0,1). Moreover, it is Lipschitz
continuous with constant MK , i.e. for all x,y ∈ Rd , |K(x)−K(y)| ≤ MK ∥x− y∥2.

In the next theorem, we claim that provided that the target level set Lh,t is stable enough,
i.e. it does not change too much when t perturbs, our level set estimator L̂h,t is close to the
target level set Lh,t in the Hausdorff distance H.

Theorem 4.3.3. Suppose that Lh,t is stable and let H(·, ·) be the Hausdorff distance be-
tween two sets. We further assume that µ̂µµ is estimated in the separate sample set Dn

0 =
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{Zn+1, ...,Z2n}. Let the bandwidth vary with n such that {hn}n∈N ⊂ (0,h0) and

limsup
n

(log(1/hn))+
nhd

n
< ∞.

Then, under the assumptions (A1)-(A6),

H(L̂t ,Lh,t) = OP

(√
(log(1/hn))+

nhd
n

+
1

hd+1
n

min
{

∑
a
∥µ̂a −µa∥1 , hn

})
See Appendix C.1.1 for the definition of the stability of the level set and the Hausdorff

distance. The proof of Theorem 4.3.3 is given in the appendix C.2.3. The above theorem
guarantees the estimated level sets are not drastically different from Lh,t . Hence we again
verify that causal clustering also can be done via level-set density-based clustering at the
additional cost of estimating the nuisance regression functions for the outcome process.

The three clustering algorithms analyzed in this section are developed based on different
theories, and each has its own merits and risks. Therefore, which method to use should
depend on data.

4.4 Efficient k-means Causal Clustering

All the estimators proposed in Section 4.3 are essentially nonparametric plug-in type, and
we showed that their convergence rates is in general dominated by the estimation rate of the
outcome regression function µa. Although they are easy to implement, the dependence on the
estimation rate of µa would be problematic to attain

√
n rates in nonparametric models, unless

we assume unrealistic structural assumptions such as high-order smoothness. Furthermore,
although the risk function characterizes an important feature of the clustering scheme in k-
means clustering, characterization of convergence properties of the cluster centers themselves
could convey more valuable information. This section is devoted to developing a more
efficient estimator for k-means causal clustering based on the nonparametric efficiency theory
and influence functions.

4.4.1 Setup

Consider the population clustering risk R(C) given a codebook C ∈ Ck as in Section
4.3.1. In the sequel, the set of minimizers of the clustering risk will be denoted by M ∗, i.e.
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M ∗ = {C∗ ∈ Ck : R(C∗) = min
C∈Ck

R(C)}. Then we consider the kernel-smoothed risk function

Rh(C)≡ E∥µµµ − Π̃C(µµµ;h)∥2
2 (4.6)

, where the non-smooth projection function ΠC has been smoothed with kernel KKK and
bandwidth h > 0 by

Π̃C(µµµ;h) = ∑
r

ωr(µµµ;C,h)cr,

where ωr(µµµ;C,h)≡
KKK
(
∥µµµ−cr∥2

h

)
∑l KKK

(
∥µµµ−cl∥2

h

) . (4.7)

For the brevity of proofs we use Gaussian (radial basis function) kernel: KKK(µµµ,cr) =

exp(−∥µµµ−cr∥2
h ). However, we remark that other types of kernel also can be employed as long

as they are bounded and sufficiently smooth 3. Also to simplify the notation, we drop the
dependency on W and C,h in the weight ωr when it is clear from context.

First, for a given codebook C we aim to develop a doubly robust, efficient influence
function based estimator for Rh(C) so that it can eventually be an efficient estimator for the
original risk R(C) with proper choice of h. Next, we propose a minimizer of the estimator for
Rh(C) as our estimator for the optimal cluster codebook C∗ and show that it is risk consistent
at fast rates. Finally, we will argue that under proper conditions our proposed estimator is
consistent and asymptotically normal to the true optimal codebook.

In our development, we will show that utilizing information on treatment process gives
better efficiency. Hereafter, we define πa(X) ≡ P[A = a | X ], a conditional probability of
receiving the treatment a ∈ A . When p = 2, we let π ≡ π1 be the propensity score.

4.4.2 Proposed estimator

To find conditions that the smoothing approximation from Rh to R is negligible is relatively
straightforward (see Lemma C.3.3 in Section C.3.1 of the appendix). Therefore we will put
more weight on finding an efficient estimator for the smoothed function Rh throughout the
development. To show this emphasis, we use ψ(Z;C,h,η)≡ Rh(C) given a fixed codebook
C, where η denotes a set of all nuisance parameters (π1, ...,πp,µ1, ...,µp).

In order to develop the efficient estimator for ψ(Z;C,h,η) we use the efficient influence
function approach. The efficient influence function is important to construct optimal estima-
tors since its variance equals the efficiency bound (in asymptotic minimax sense). Using
the efficient influence function also endows our estimators with favorable properties such as

3To be formal, all partial derivatives up to order kp must exist and be bounded.
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double robustness or general second-order bias, which leads to relaxation of nonparametric
conditions on the nuisance parameter estimation. There is at most one efficient influence
function in nonparametric models. We refer the interested reader to Section 1.2 and refer-
ences therein for more detailed information about the influence function and nonparametric
effiency theory.

We let φ(Z;C,h,η) be the efficient influence function of ψ(Z;C,h,η). We hide the
dependency on Z, h and η when it is clear in context, and use shorthand notations φC ≡
φ(Z;C,h,η), ψC ≡ ψ(Z;C,h,η). Further, we let ϕC ≡ (Z;C,h,η) denote the uncentered
efficient influence function of ψC: i.e., ϕC = φC +ψC. The next theorem gives the efficient
influence function for our target parameter ψC under a nonparametric model.

Theorem 4.4.1 (Efficient influence function). Under a nonparametric model, the uncentered
efficient influence function ϕC for ψC is as given by

ϕC(Z) = ∑
a∈A

{
2
[
∑
r

f a
r (µµµ)

]
∑

a′∈A

{
∑
r

[
∂ f a

r
∂ µa′

1(A = a′)
πa′

(Y −µa′)

]}
+

[
∑
r

f a
r (µµµ)

]2
}

where for a,a′ ∈ A

f a
r (µµµ;C,h) = ωr(µa − cra),

∂ωr

∂ µa′
=−ωr

h

{
µa′ − cra′

∥µµµ − cr∥2
−∑

j

µa′ − c ja′

∥µµµ − c j∥2
ω j

}
, cr = [cr1, ...,crp]

⊤. The weight term ωr is the same as in (4.7).

The proof is given in Section C.3.1 of the appendix. We compute the remainder of the
first order von Mises expansion of the efficient influence function in Lemma C.3.2 of the
same section, which will be one of the key ingredients to develop our theory.

In order to flexibly incorporate modern machine learning tools without requiring complex
empirical process conditions, we use sample splitting [19, 18]. We randomly split the
observations (Z1, ...,Zn) into S disjoint groups, and let Ps

n denote the empirical measure
only over the set of units in group s, s ∈ {1, ...,S}, and let η̂−s denote a set of the nuisance
estimators constructed excluding the group s. Then for a given C, the efficient influence
function based estimator for ψC is given by

ψ̂C =
1
S

S

∑
s=1

Ps
n {ϕ(Z;C,h, η̂−s)} . (4.8)
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Finally, our proposed estimator for the optimal codebook C∗ is given by

Ĉ = argmin
C∈Ck

ψ̂C. (4.9)

In next section, we will argue that the proposed estimator Ĉ in (4.9) indeed has favorable
theoretical properties in regard to both excess risk and cluster codebook.

4.4.3 Theoretical Properties

In the following two subsections, we analyze theoretical properties of our estimator in
two aspects: convergence in the excess risk and asymptotic normality of Ĉ.

Excess Risk Analysis

This subsection is devoted to finding conditions where the excess risk R(Ĉ)−R(C∗)

vanishes fast at
√

n rates.
Given a codebook C = {c1, ...,ck}, we define the Voronoi cell associated with ci as the

closed set defined by

Vi(C) =
{

µµµ | ∥µµµ − ci∥2 ≤ ∥µµµ − c j∥2,∀ j ̸= i
}
,

and its boundary by

∂Vi(C) =
{

µµµ | ∥µµµ − ci∥2 = ∥µµµ − c j∥2,∀ j ̸= i
}
.

Thus the entire boundary induced from a given quantization with C can be written by

∂C =
⋃

i

∂Vi(C).

Next, we define a neighborhood of ∂C in which the distance from µµµ to nearest cluster
centers only differs up to t. Namely, for t > 0 we define the t-neighborhood NC(t) by

NC(t) =
⋃

i

{
µµµ ∈Vi(C)

∣∣∣min
j ̸=i

{∣∣∥µµµ − c j∥2 −∥µµµ − ci∥2
∣∣}≤ t

}
.

For example, in 2-dimensional Euclidean space for each pair ci,c j,
∣∣∥µµµ − c j∥2 −∥µµµ − ci∥2

∣∣≤
t forms a region surrounded by two hyperbolas which are symmetric around the line
{µµµ | ∂Vi(C) = ∂Vj(C)}. Now we introduce the following (κ,α)-margin condition.
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Fig. 4.2 Illustration for the margin condition in [85] (Left) and the margin condition in
Definition 4.4.1 (Right), where we restrict the probability mass in the shaded area, inside
red-dashed lines. Two areas are equal up to a constant.

Definition 4.4.1 ((κ,α)-Margin condition). Let us define p(t) := sup
C∈M ∗

P(µµµ ∈ NC(t)). A

distribution P satisfies a (κ,α)-margin condition with radius κ > 0 and rate α > 0 if and
only if for all 0 ≤ t ≤ κ ,

p(t)≲ tα .

The above margin condition requires a local control of the probability mass around ∂C
for C ∈ M ∗, hence implies that every classification associated with an optimal codebook
forms a natural classification in some sense. Here, smaller α implies weaker condition. Due
to the boundedness assumption (A4), our margin condition is essentially equivalent to the
margin condition used by Levrard [85, 86] who studied a nonasymptotic bounds for k-means
clustering in the sense that the volumes of the t-neighborhood are equal up to a constant (see
Figure 4.2) 4. This type of margin condition is also adopted in causal inference problems
involving estimation of non-smooth target parameters [e.g., 72, 135, 93].

Next theorem gives the conditions under which ψ̂C reasonably well approximates R(C)

when C ∈ M ∗.

Lemma 4.4.1. Along with the causal and boundedness assumptions (A1) ∼ (A4) assume
the following:

(a) The (κ,α)-margin condition

(b) The estimators µ̂a, π̂a are consistent in the sense that ∥µ̂a −µa∥= oP(1), ∥π̂a −πa∥=
oP(1)

4In the study of Levrard [85, 86], α is set to 1
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(c) There exists γ ∈ (0,1) such that nhαγ = O(1)

(d)
(

kh
α

2 −1 +1
)

∑
a′∈A

∥πa′ − π̂a′∥P,4 ∥µa′ − µ̂a′∥P,4 +
(

k2h
α

2 −2 +1
)

∑
a′,a′′∈A

∥µa′ − µ̂a′∥P,4 ∥µa′′ − µ̂a′′∥P,4

+ khα +
1

nh2 = oP

(
1√
n

)
Then for any optimal codebook C ∈ M ∗, we have

√
n(ψ̂C −R(C))⇝ N

(
0,var

(
∑

a∈A

φ̄
a
C∗

))

where φ̄ a
C∗ is determined in the proof.

Hence given any optimal codebook C ∈ M ∗, ψ̂C is a
√

n-consistent, asymptotic normal
estimator for the original risk R(C). A proof of the above theorem is given in Section C.3.2
of the appendix.

In Assumption (a), the radius κ is only required to be fixed and positive, but α > 4 must
be satisfied due to assumptions (c) and (d). The left-hand side of Assumption (d) is basically
the upper bound of the second-order remainder of the von Mises expansion of φC plus the
last term of 1/nh2 which characterizes the lower bound of our bandwidth h.

Theorem 4.4.1 provides guarantees to achieve
√

n rates in terms of the L4 estimation
rate for the nuisance parameters. Even though L4 error rates are somewhat less common
than L2 rates (i.e., square loss), for many nonparametric classes of interest including smooth,
Hölder, and Sobolev classes, minimax Lp error rates have been characterized for general
p > 0 [e.g., 38, Corollary 1] and can be applied directly here. Moreover, if we assume the
moment comparison condition [e.g., 38, Section 6] on our function class, L4 error rates are
always upper bounded by L2 error rates. In this case, we can appeal to the result on ordinary
L2 error rates. See, for example, [38] and references therein for more detailed discussion.

The result in Lemma 4.4.1 is valid only for C ∈ M ∗. In order to analyze the excess risk,
we show consistency of Ĉ in the following lemma.

Lemma 4.4.2. Along with the assumptions (a) - (d) in Lemma 4.4.1, assume that

(e) C∗ is unique up to relabeling of its coordinates,

Then Ĉ converges in probability to C∗.

A proof can be found in Section C.3.3 of the appendix. The uniqueness condition (e) is
also used in the previous work of [101, 102] in order to show consistency of the empirical
risk minimizer Ĉ∗. Based on Lemma 4.4.2, 4.4.1, we compute an asymptotic bound for the
excess risk as stated in the next theorem.
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Theorem 4.4.2. Suppose (a) - (e). Then we have

R(Ĉ)−R(C∗) = OP

(
1√
n

)
.

See Section C.3.4 of the appendix for the proof. It is worth noting that since R(·) is a
continuous, bounded function whose domain Ck is compact, the uniqueness condition (e) guar-
antees that C∗ is a well-separated point of maximum of R; in other words inf

C/∈Bδ (M
∗)

R(C)>

R(C∗) for any C∗ ∈M ∗ and every δ > 0 where Bδ (M
∗) = {C : dcodebook(C,C∗)< δ ,∀C∗ ∈

M ∗} for any valid metric dcodebook for codebooks.
Here we give a brief discussion of bandwidth selection for our estimator. For finite α , our

result holds as long as h = Ω(n−1/4) and h = O(n−1/αγ) for some γ ∈ (0,1) and α > 4. α

should be as small as possible as since larger α implies that we require the stronger margin
condition. Consequently, one could take h ∼ n−1/4 logn. Unfortunately when we assume the
optimistic strong margin condition, it is not clear how to characterize the optimal h. This
issue will be discussed in some more detail later in Chapter 4.6.

Asymptotic Normality of Codebook

One may find our approach more beneficial if we can apply the central limit theorem
argument to Ĉ. In this subsection, we find conditions to assure

√
n-consistency as well

as asymptotic normality of Ĉ. To this end we consider (κ,∞)-margin condition where we
assume zero probability mass inside the κ-neighborhood NC(κ) for a given C and some
κ > 0. Although κ can be arbitrarily small, the above condition is much stronger than
the original margin condition as it implies that every classification associated with optimal
codebooks must form a non-overlapping, hard-margin natural classifier.

In what follows, we show an asymptotic normality of our estimated codebook Ĉ using
this stronger version of margin condition.

Theorem 4.4.3. Under the assumptions (a) - (e) in Lemma 4.4.1 and Lemma 4.4.2, where
we replace Assumption (a) by (κ,∞)-margin condition, we have

√
n(Ĉ−C∗)⇝ N

(
0,Σ ′

C∗,η

)
where the kp× kp covariance matrix Σ ′

C∗,η is specified in (C.25) in Section C.3.5 of the
appendix.
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The stronger version of margin condition is the price we pay to make the central limit
theorem applicable to our Ĉ. A proof of this theorem is given in Section C.3.5 of the
appendix.

4.5 Experiments

4.5.1 Simulation Study

Here we explore finite-sample properties for the k-means causal clustering approaches
that we developed in Section 4.3.1 and 4.4. Simulation is particularly designed to demonstrate
validity of our theoretical results in Section 4.4.3.

We consider the following data generating process with sample size n. First, we fix k, p,
each of which is randomly drawn from a set {2, ...,10}. For each pair (k, p), we randomly
pick k points in a bounded hypercube [0,1]p in a way that every pairwise mutual Euclidean
distance is always greater than 0.2. A set of these k points is our true (optimal) codebook
C∗ = {c∗1, ...,c

∗
k} 5. Then we assign roughly equal number of units to each cluster center

c∗j , j = 1,2, ..,k. Specifically for each unit i = 1, ...,n, we draw a label I ∈ {1, ...,k} from
a multinomial distribution: multi(p1, ..., pk) with p1 = · · · = pk = 1/k. Given this label
information, we set µµµ = cI + ε truc where ε truc follows a truncated normal distribution of
N(0,1/2) with the threshold of min

ci,c j∈C
d(ci,c j)/2− 0.01. This guarantees that the nearest

center for units with label j is always c j. Next, we model our observed data generating process
by A ∼ multi(π1, ...,πp) and Y = µA+Z, where all the π’s are roughly equal and Z ∼ N(0,1).
Finally, we assume that µ̂a = µa + ξ and π̂a = πa + ζ , where ξ ∼ N(0,n−(rµ+0.01)) and
ζ ∼ N(0,n−(rπ+0.01)) respectively.

Note that under the above simulation setup, we have ∥µ̂a −µa∥P,4 = o(n−rµ ) and ∥π̂a −
πa∥P,4 = o(n−rπ ). This is simple yet enough to verify our theoretical results. For example,
when µ̂a converges to its true values at slower rates (e.g., when rµ = 1/4), the nonparametric
plug-in estimator proposed in Section 4.3.1 should not perform better than the efficient
k-means causal clustering in Section 4.4.

We randomly pick 10 different pairs of (k, p) and vary the sample size n from 250 to 10k
for each (k, p) pair. For each (k, p,n) tuple, we generate data according to the above specified
process, and then compute Ĉpi, the plug-in estimator in (4.5), and Ĉeff, the efficient estimator
in (4.9), and their risk R(Ĉpi) and R(Ĉeff), respectively. We repeat the simulation J = 100

5Rigorously speaking, the true codebook in this setting are not exactly the optimal codebook C∗ defined
to be a minimizer of the risk function as in Section 4.3.1. However, for sufficiently large n ( >∼ 1000) they
become almost identical.
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Fig. 4.3 Finite sample performance of the plug-in estimator (pi) and the efficient influence
function based estimator (eff) with respect to the excess risk (left) and codebook (right),
across different sample sizes (n=250 ∼ 10k) and nuisance estimation rates (1/4, 1/2). Each
point is obtained with 100 simulations. Two reference curves in black dotted line are scaled
by an appropriate constant.

times for each (k, p,n). The entire simulation are done twice across different nuisance
estimation rates: i.e., (rµ ,rπ) = (1/2,1/2),(1/4,1/4).

First, we consider the excess risk Rexcess = R(Ĉ)−R(C∗). Then the performance of
estimators in excess risk is assessed via

∣∣Rexcess
∣∣+
√√√√1

J

J

∑
j=1

(
Rexcess, j −Rexcess

)2 ≡
∣∣Rexcess

∣∣+ ŜD(Rexcess)

where Rexcess =
1
J ∑

J
j=1 Rexcess, j, an average over J simulations. Next, we also assess accuracy

of Ĉ for estimating the true codebook C∗ similarly via

1
kp ∑

r,a

∣∣∣cra − c∗ra

∣∣∣+
√√√√1

J

J

∑
j=1

(
cra, j − cra

)2

≡ m̂ean
(∣∣∣Ĉbias

∣∣∣+ ŜD(Ĉ)
)

where cra =
1
J ∑

J
j=1 cra, j. Here m̂ean and ŜD represent sample mean and sample standard

deviation operators respectively. We use h = n−1/4 logn for the kernel bandwidth and
random starting values for the minimization step in (4.9). Finally for each n, values for these
performance measures are averaged over different (k, p) pairs. Results are given in Figure
4.3.

For both fast (rµ = rπ = 1/2) and slow (rµ = rπ = 1/4) rates at which the nuisance
functions are estimated, the performance of R(Ĉeff) and Ĉeff with respect to their true value
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Fig. 4.4 Estimated density of average bias across all coordinates in Ĉ−C∗ at different sample
sizes (n=2.5k, 10k), when simulation is repeated 100 times each. Nuisance functions are
estimated at n1/4 rates.

is improved as n grows, nearly at n1/2 rates. This is expected by Theorem 4.4.2 and Theorem
4.4.3. On the other hand, when the nuisance functions are estimated at the slow rates the
plug-in based estimators R(Ĉpi) and Ĉpi show much worse performance, roughly at n1/4 rates,
since they are no longer expected to converge at n1/2 rates as described in Theorem 4.3.1.

To further verify benefits of the efficient k-means causal clusters in Section 4.4, we also
estimate density of average bias 1

kp ∑r,a (ĉra − c∗ra) across 100 simulations for Ĉeff and Ĉpi

respectively, at two different sample sizes n = 2.5k, 10k. Here all the nuisance functions
are estimated at the slow n1/4 rates. As shown in Figure 4.4, Ĉeff is substantially more
concentrated around the true values.

4.5.2 Illustration

In this section, we illustrate our method through two case studies. We use the semi-
synthetic data on voting study [99] and the real-world data on substance abuse treatment
[95].

Voting study. Nie and Wager [99] considered a dataset on the voting study originally
used by Arceneaux et al. [2], where they generated synthetic treatment effect to make the
task of estimating heterogeneous treatment effects non-trivial. We use the same setup of
Nie and Wager [99, Chapter 2], where we have binary treatments, binary outcomes, and 11
pretreatment covariates (including state, age, gender, etc.), and the true CATE τ(·) in (4.1.1)
is known 6. While Nie and Wager [99] specifically focused on accurate estimation of τ(·),
here we aim to illustrate how our causal clustering can be useful to discover an interesting

6Roughly 36% of samples are set to have zero CATE values.
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(a) (b) (b)

Fig. 4.5 (a) Histogram of the true CATE in the test set. We define a true label L as an indicator
variable whose value is 1 for negative CATE. (b) The result of density-based causal clustering.
Units in the two clusters C1 and C2 are assigned to L̂ = 1 and L̂ = 0, respectively. (c) Points
in the clusters C1 and C2 are concentrated around the right upper area (large µ0,µ1) and the
lower left area (small µ0,µ1), respectively.

subgroup structure. We randomly chose a training set of size 130,000 and a test set of size
10,000 from the entire sample, and estimate the conditional counterfactual mean vector µµµ in
the training set and perform the causal clustering in the test set.

We fit models for µµµ via Random Forests (RF), Generalized Boosted Models (GBM), and
Lasso using ranger, gbm, glmnet R packages respectively, and chose the GBM based on
the cross-validated (CV) error. Points for µ̂µµ show non-spherical shapes so we proceed with
the level-set density clustering discussed in Section 4.3.3 7, via the TDA R package. We only
consider two clusters corresponding to the two largest branches at the bottom of the tree (see
Figure 4.5-(c)). Roughly 4% of the points are classified as noise.

In Figure 4.5-(b), we see two clusters that are clearly separable from each other, one
with nearly zero CATE (Cluster C2) and the other with substantially negative CATE (Cluster
C1), which seems consistent with the shape of the histogram of true CATE shown in Figure
4.5-(a). To verify that we did not get our findings just by chance, we define the true label
L := 1{τ(X) < 0} and its estimate via the causal clustering L̂ := 1{µ̂µµ ∈ C1}. We repeat
simulation 100 times, each with different synthetic effect assignment, and compute the error
Pn{1(L ̸= L̂)} in the test set across different simulations. All the errors are exactly zero, and
thus we confirm our finding is not a coincidence.

7Typically, this plug-in method suffers from inefficiency compared to the efficient k-means method proposed
in Section 4.4, but here it can be justified by a large number of samples.
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(a) (b)

Fig. 4.6 (a) The three clusters in µ̂µµ . The average CATEs of receiving the MET&CBT-5
(upper) and the SCY (lower) over traditional programs (community) are presented together
inside the box for each cluster. (b) The density plots for the pairwise CATEs τ̂2,1(X) (upper)
and τ̂3,1(X) (lower) across three clusters.

Another interesting fact which can be discovered by causal clustering here is the difference
in distribution of (µ0,µ1) between the two clusters. In general, units in the cluster C1 have
larger µ0,µ1 than the cluster C2. This is more clearly illustrated in Figure 4.5-(c).

Substance abuse treatment. McCaffrey et al. [95] studied the relative effects of three
treatment programs (community/MET&CBT-5/SCY) for adolescent substance abuse. Instead
of using the full data originally collected by the Substance Abuse Mental Health Services
Administration’s Center for Substance Abuse Treatment (SAMHSA CSAT), we use a random
subset of the data which is readily available via the twang R package. The subset of data
to be analyzed contains 600 samples, 200 youths in each treatment, and 5 covariates (age,
ethnicity, criminal history, etc.). Our outcome is the substance frequency score, where higher
scores indicate increased frequency of substance use. See McCaffrey et al. [95], Burgette
et al. [15] for a more detailed description of the dataset.

Cross-sectional scatter plots reveal several spherical chunks in the estimated conditional
counterfactual mean vector space (µ̂µµ). To implement the efficient k-means clustering algo-
rithm, we set k = 3 for the number of clusters, which is determined by the Elbow Method,
S = 2 for sample splitting, and use h ∼ n−1/4 logn as before. Here we fit the RF model for
all the nuisance components µ̂’s and π̂’s as it delivers the lowest CV error. The results are
presented in Figure 4.6.

In Figure 4.6(a), we compute the average (pairwise) CATEs of receiving the MET&CBT-
5 (τ̂2,1) and the SCY (τ̂3,1) treatment programs over the traditional community program,
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respectively, within each of the three clusters. In Figure 4.6(b), we also present the density
plots for each pairwise CATE across different clusters. Our result suggests that there is a
moderate degree of treatment effect heterogeneity.

4.6 Discussion

Causal clustering is a novel methodological framework that provides an effective, and
potentially more intuitive way of analyzing treatment effect heterogeneity by leveraging
tools in clustering analysis. Based on what we propose, one may benefit from flexible
unsupervised machine learning tools to uncover subgroup structure and ascertain subgroups
with similar conditional treatment effects, even with multiple treatments and outcome-wide
studies. We showed that k-means, density-based, and hierarchical clustering algorithms can
be successfully adopted into our framework, and also developed an efficient k-means causal
clustering based on nonparametric efficiency theory that attains fast convergence rates and
asymptotic normality.

There are a couple of caveats to our developments that are worth mentioning. First, as
mentioned in Section 4.4.3, our kernel bandwidth choice problem is not completely solved.
Although it is always safe to assume small α , it would be better if we could also rely on a
data-driven method to pick the optimal bandwidth. Unfortunately, unlike standard tuning
parameter selection problems there is no clear way to estimate the risk, and thus we cannot
rely on cross-validation. Addressing the optimal bandwidth choice problem in a data-driven
way would be an interesting topic to pursue in future work. Second, albeit in a different
context, some of previous work that also studied estimation of non-smooth parameters in the
causal inference literature (for example, [135, 93] on optimal treatment regime and [72] on
classification of compilers) required only the margin condition to guarantee fast

√
n rates and

asymptotic normality, whereas we required both the margin condition and kernel smoothing
approach, which is typically not the case in the nonparametric literature. We conjecture that
the reason why we require the both conditions arises from the increased complexity in our
target parameter R(c); the special non-smooth function ΠC might have brought the additional
complexity which either the margin condition or the smoothing approach alone is not enough
to deal with. We leave the formal discussion on this topic for future work.

Our study leads to many opportunities for important future work. For example, we plan
to apply causal clustering tools in an optimal treatment regime framework, considering the
optimal rule among those that map clusters to treatment decisions. It will be also useful to
evaluate optimality of our estimators by computing minimax bounds. Furthermore, it would
be interesting to consider clustering directly on counterfactual outcomes Y a instead of µa. To
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this end, one may pursue to explore a link between previous work on clustering on partially
observed data and clustering on Y a, since clustering on Y a can be framed as missing data
problem in a vector form in fixed dimensions. However, this may require extra assumptions
both for identification and estimation, which would lead to another interesting future work.



Chapter 5

Conclusion

In this thesis, I have extended methods in causal inference to novel, non-standard effects
with complex data structures by adapting techniques in statistical machine learning and
semiparametric theory. Methodologies developed in this thesis pursue a more nuanced way
to explore causal effects beyond the ATE and simple data structure, making efficient use
of the information in data while avoiding unnecessary assumptions about the underlying
data generating mechanism. Many of my research questions can be framed as developing
optimal nonparametric estimators of complex statistical functionals; in them I explore how
to effectively harness advanced machine learning tools (e.g., techniques in unsupervised
learning) to address crucial issues in modern causal inference.

Although I have already enumerated many promising future directions which can be
potentially expanded from what is done in this thesis at the end of each chapter, I would
like to highlight a few topics that I particularly plan to pursue in the near future. First,
I expect many results in this thesis to play an important role to provide new insight into
learning how to best assign treatment when effects are non-standard, in the context of optimal
treatment regime estimation. For example, it will be important to consider how to effectively
construct specific treatment decision rules with observational data when positivity is likely
violated, effects of interest are non-standard, or we have considerable degree of heterogeneity
in treatment effects. I plan to apply tools developed in this thesis in an optimal treatment
regime framework. Second, it would be interesting to extend the given results to the other
identification setups, i.e., instrumental variables, mediation, etc. Third, throughout some parts
of the thesis a kernel smoothing approach has been used in an attempt to develop efficient
nonparametric estimators for non-smooth functionals. However, due to the highly nontrivial
nature of our original target functional, it is usually not obvious how to select the kernel
bandwidth; unlike standard tuning parameter selection problems since we do not have access
to all ground truth data there is no clear way to estimate the risk, and thus we cannot rely
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on cross-validation. It will be useful to develop a general data-driven approach for optimal
bandwidth selection in the context of semiparametric causal inference with nonparametric
functional estimation. Finally, since the methods and results developed in this thesis can
accommodate more complex data structures and subtle effects, they would lead to many
opportunities for interesting applied work with various real-world data. I plan to apply some
of the tools developed in this thesis in such applied work during my postdoctoral experience.

I expect my work on causal inference with non-standard effects and complex data
structures will produce substantial contributions to the literature and to statistical practice for
modern causal inference. The R code for all developed methods will be publicly available,
allowing researchers across many fields to go beyond simple effects and learn more valuable
information about causality.
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A.1 Algorithm

A.2 Empirical demonstration for Theorem 2.6.1

To empirically assess the above result in finite samples, we conduct two simple simu-
lations under different setups; one in a randomized trial and the other in an observational
study.

Simulation 1. (Randomized Trial) We set p = 0.5 in the simulation for both always-
treated and never-treated units. We let Y | At ∼ N

(
10+ | At |2,1

)
truncated at ± two

standard deviations. Given a value of δ , we generate datasets for t = 1, ...,50, n = 250 for
all t, and repeat the same simulation 100 times with the same data generation process. For
positivity assumption to be valid, we always keep at least one always-treated or never-treated
unit in each simulation. We compute the sample variance of each estimator and the relative
efficiency. Figure A.1 shows the results along with the true lower bound on the relative
efficiency given in Theorem 2.6.1 (the dotted line).

Simulation 2. (Observational Study) Although not directly covered by the setup from
Theorem 2.6.1, it is also valuable to investigate the corresponding results in an observational
study. To this end, we consider the following model

Xt = (X1,t ,X2,t)∼ N(0,I)

πt(Ht) = expit
(

111⊤Xt +2
t−1

∑
s=t−2

(As −1/2)
)

(
Y
∣∣X t ,At

)
∼ N

(
µ(X t ,At),1

)
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Algorithm 4 Implementation of the proposed estimator (2.6)
Let δ be fixed and pick t ≤ T . For each k ∈ {1, ...,K}, let D0 = {Zi : Si ̸= k} and D1 = {Zi :
Si = k} denote corresponding training and test data, respectively, and let D = D0

⋃
D1.

1. For each time t = 1, ..., t regress At on Ht using only observable samples at time t in
D0, then obtain predicted values π̂t(Ht) for only subject with Rt = 1 in D.

2. For each time t = 1, ..., t regress Rt+1 on (Ht ,At) using only observable samples at
time t in D0, then obtain predicted values ω̂t(Ht ,At) for only subject with Rt = 1 in D.

3. For each time t = 1, ..., t, letting Ws =
δAs+1−As

δ π̂s(Hs)+1−π̂s(Hs)
· 1

ω̂s(Hs,As)
and construct follow-

ing cumulative product weights for only subject with Rt+1 = 1 in D1:

· W̃t = ω̂t(Ht ,At)∏
t
s=1Ws for 1 ≤ t < t

· W̃t = ∏
t
s=1Ws

4. For each time t = t, t −1, ...,1, by setting Mt+1 = Yt :

a. Regress Mt+1 on (Ht ,At) using only observable samples at time t +1 (i.e. only if
Rt+1 = 1) in D0, then obtain predictions m̂t(Ht ,1) and m̂t(Ht ,0) for only subject
with Rt = 1 in D.

b. Construct pseudo-outcome Mt =
m̂t(Ht ,1)δ π̂t(Ht)+m̂t(Ht ,0){1−π̂t(Ht)}

δ π̂t(Ht)+1−π̂t(Ht)
for only subject

with Rt = 1 in D.

5. Construct time-dependent weights Vt =
{At−π̂t(Ht)}(1−δ )

δAt+1−At
for only subject with Rt = 1

in D1.

6. Compute ∑t W̃tVtMt +W̃tYt for only subject with Rt+1 = 1 in D1 and define ψ̂
(k)
t (δ ) to

be its average.

Output : ψ̂t(δ ) =
1
K ∑

K
k=1 ψ̂

(k)
t (δ )
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Fig. A.1 Relative efficiency curve in log-scale over time t for the case of always-treated unit
where we use δ = 5,10 (Left) and for the case of never-treated unit where we use δ = 0.2,0.1
(Right). The true lower bound for each δ is represented as dotted line.

for all t ≤ T where we set µ(X t ,At) = 10+At +At−1+ |((111⊤Xt +111⊤Xt−1) | and 111 = [1,1]⊤.
This simple simulation setup assumes that it is more (less) likely to receive a treatment
if a subject has recently received (not received) treatments. The rest of the simulation
specifications are the same as Simulation 1. The result is presented in Figure A.2.

Fig. A.2 Relative efficiency curve over time t for the case of always-treated unit where we
use δ = 2,5,10 (Left) and for the case of never-treated unit where we use δ = 0.5,0.2,0.1
(Right).

Overall, the simulation results support Theorem 2.6.1. Remarkably, even when we
consider the setup for observational studies (the second simulation) we still observe almost
exponential gains with incremental intervention effects.
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A.3 Alternative approaches for the EAGeR data analysis

Here, we discuss why standard approaches might fail for our analysis of the EAGER
dataset in Section 2.7.2 of the main text. Then, for the purpose of comparison, we alter
our target effect and then apply some of other nonparametric approaches available in the
literature. Then we compare the result with the one we obtained in Section 2.7.2.

A.3.1 Why standard model fails: positivity violation

All the standard models dealing with time-varying treatments, except on very rare
occasions, require treatment positivity. However, as will be elaborated below, positivity is
likely violated in the EAGER dataset. Many individuals turned out not to follow the given
protocol of taking aspirin. This non-compliance only exacerbates over time. To illustrate this,
we present the average propensity score over time in Figure A.3-(a). As shown in Figure
A.3-(a), the average propensity score quickly drops to zero as t grows. As a result, at the end
of the study it is almost impossible to find individuals who have been consistently taking
aspirin at every timepoint. In other words, Figure A.3-(a) implies that it would be hard to
imagine having all of the study participants take aspirin at each time.

(a) (b)

Fig. A.3 (a) The average propensity score over the course of follow-up. We observe that
due to the non-complinace, the average propensity score sharply decreases over time, which
strongly hints at positivity violation in the EAGeR dataset. (b) Pn(∏

t
j=1 π̂ j) over the course

of follow-up. When t ≥ 5, Pn(∏
t
j=1 π̂ j) becomes less than 5×10−4, which makes an IPW

estimation in MSMs infeasible. We used Random Forests (via the ranger package in R) to
estimate πt .

Even if positivity is only nearly violated, it can pose a serious problem in attempting
to estimate our target causal effect. One of the most widely-used approaches to handle
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time-varying treatments is marginal structural models (MSMs) [112]. In practice, MSMs are
often estimated via inverse probability weighting (IPW). The following quantity appears in
the IPW (also in the doubly robust) moment condition

h(AT )

{
Y −m(AT ;β )

∏
T
t=1 π̂t

}
,

for any choice of h (with matching dimensions) where π̂t(at) = P̂(At = at | Ht). However,
Figure A.3-(b) indicates that on average a cumulative product of propensity score sharply
drops to zero even with moderate t. This would make standard estimation techniques such as
IPW to fail as Pn(∏

T
j=1 π̂ j) easily blows up.

Specifically, when we parametrically model the effect curve by E[Y aT ] = m(aT ;β ) =

β0 +∑
T
t=1 β1tat so that the coefficient for exposure can vary with time, then an inverse-

weighted MSM estimator which is the solution to

Pn

[
h(AT )

{
Y −m(AT ;β )

∏
T
t=1 π̂t

}]
= 0

indeed fails and no coefficient estimates can be found even for moderate value of T , e.g.
T =∼ 10. Thus, it appears that positivity violation in our dataset precludes the standard
MSM-based approach. We remark that these limitations are not at all unique to the analysis
of our EAGeR dataset, but instead are common to many observational MSM-based analyses
as well as other recent approaches [e.g., 92].

A.3.2 Alternative approach

Due to the positivity violation, the estimation result, if any, via standard approaches will
remain dubious at best. Therefore, we alter our target contrast from the standard ATE to the
mean outcome we would have observed in a population if “observed" versus none (not all
versus none) were treated, which is defined by

τobs(T )≡ E
[
Y ĀT=aobs,R̄T=1̄]−E

[
Y ĀT=0̄,R̄T=1̄], (A.1)

where aobs denotes an observed history of aspirin consumption. This new estimand would
tell us how the mean outcome would have changed if no one in the population had taken
aspirin throughout the study and we can avoid estimating the problematic counterfactual
E
[
Y ĀT=1̄,R̄T=1̄]. However, by construction this solution entails the fundamental limitation as

we have sacrificed the causal effect of original interest.
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We use the g-computation 1 (plug-in) estimator [108] and the sequential doubly robust
(SDR) estimator proposed by Luedtke et al. [92] which also allows right-censored data
structures.

A.3.3 Estimation and inference

Estimation. First for the g-computation estimator, we estimate the following g-formula

E
[
Y ĀT=āT ,RT=0]= ∫ · · ·

∫
E
[
Y |XT ,AT = aT , R̄T = 1̄T

] T

∏
t=2

dP(Xt |X t−1,At−1 = at−1,Rt−1 = 1t−1)

×dP(X1,A1 = a1,R1 = 1)

via plug in estimators of the pseudo-outcome regression function each time step. Next, for
the SDR estimator, we tailor Algorithm 2 of Luedtke et al. [92] for our right-censored data
structures (everything remains the same except that we add the condition Rt−1 = 1t−1 on each
pseudo-outcome regression function). For both methods, we use the same nonparametric
ensemble we used in Section 2.7.2 of the main text as our regression model.

Inference. Confidence intervals are estimated by bootstrapping at 95% level for both of
the estimators. Note that for the SDR estimator, we are guaranteed to consistently estimate
standard errors (pointwisely) by bootstrapping due to the following asymptotically property,

√
n(τ̂obs(t)− τobs(t))⇝N (0,Var(φτ(t)))

for all t ≤ T , where φτ(t) is the influence function of τ̂obs(t). However, this is no longer
guaranteed for the g-computation estimator.

A.3.4 Result

For the sake of completeness, we estimate each τobs(t) for all t = 2 ∼ 89 and present the
cumulative effects over time t. The results for the g-computation and the SDR estimators are
presented in Figure A.4, A.5, respectively.

The result based on the g-computation estimator in Figure A.4 shows that the counterfac-
tual mean outcomes for never-takers (individuals who have never taken aspirin throughout
the study) are worse-off than the observed. Specifically, for the never-takers the probability
of having live birth has been decreased and the probability of having fetal loss has increased.
The result seems to be statistically significant at T = 89.

1We also tried a weighting estimator but omitted the result here, since it gives almost the same result with
wider confidence band.
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Live birth Pregnancy loss

Fig. A.4 Cumulative risk curve for live birth and pregnancy loss via the regression based
g-computation estimator. Pointwise 95% confidence interval is estimated by bootstrapping
with 1000 resampling.

Live birth Pregnancy loss

Fig. A.5 Cumulative risk curve for live birth and pregnancy loss via the sequential doubly
robust (SDR) estimator. Pointwise 95% confidence interval is estimated by bootstrapping
with 1000 resampling.

On the other hand, the result based on the SDR estimator in Figure A.5 indicates that
although the mean effects for the never-takers still appear to be worse off than the observed,
they look no longer statistically significant. Hence in this case we cannot draw any firm
conclusion about the effect of aspirin on pregnancy outcome.

It might be tempting to take the results from Figure A.4 as it seems to deliver more
clear messages. However, we do not know if our variance estimates there are correct.
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Also, particularly considering the sample size (n=1024), we are likely to suffer from slow
estimation rates of our regression model. These issues can be mitigated in doubly robust
estimators as in the SDR estimator. Thus, we should rather resort to the results presented in
Figure A.5, which basically tells us that the effect of low-dose aspirin is insignificant and
remains dubious, at the very least, based on the causal effect defined in (A.1).

After all, it should be noted that due to the positivity violation we end up limiting
ourselves to the more narrow notion of causal effects (i.e. observed versus none) which is
different from the ATE type estimands that are typically of utmost interest for policy makers.
The causal effect in (A.1) might not be practically meaningful as to aspirin prescription for
pregnant since we are in general much more interested in the always-taker group than the
never-taker group.

A.4 Technical Results and Proofs

A.4.1 Lemma for the identifying expression in Theorem 2.3.1

To identify our target parameter ψt(δ ) = E
(

Y Qt(δ )
t

)
, we need the following lemma.

Lemma A.4.1. Under (A2-M) and (A3), and for all t ≤ T , we have following equvalence
properties:

a. dP(At |Ht) = dP(At |Ht ,Rt = 1)

b. dP(Xt |At−1,Ht−1) = dP(Xt |At−1,Ht−1,Rt = 1)

c. E[Y |X t ,At ] = E[Y |X t ,At ,Rt+1 = 1]

Lemma A.4.1 thus shows that the above important quantities conditional on the observed
data are equivalent to corresponding quantities conditioned on the full data. In the identifying
expression we can only use quantities directly estimated from observed history, so the above
equivalence relations play a key role.

Proof. Proof is done based on induction. We proceed one by one as follows.

• dddP(((AAAttt |||HHHttt))) === dddP(((AAAttt |||HHHttt ,,,RRRttt === 111)))
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First note that

dP(At ,Ht) = dP(X t ,At) = dP(X2,A2 | X1,A1)dP(X1,A1)

= dP(X2,A2 | X1,A1,R2 = 1)dP(X1,A1,R1 = 1)

= dP(X3,A3 | X2,A2,R2 = 1)
dP(X1,A1,R1 = 1)
dP(X1,A1,R2 = 1)

dP(X2,A2,R2 = 1)

= dP(X3,A3 | X2,A2,R3 = 1)
dP(X1,A1,R1 = 1)
dP(X1,A1,R2 = 1)

dP(X2,A2,R2 = 1)

= dP(Xt ,At | X t−1,At−1,Rt = 1)
t−2

∏
s=1

dP(X s,As,Rs = 1)
dP(X s,As,Rs+1 = 1)

dP(X t−1,At−1,Rt−1 = 1)

= dP(X t ,At ,Rt = 1)
t−1

∏
s=1

dP(X s,As,Rs = 1)
dP(X s,As,Rs+1 = 1)

where the first equality follows by definition, the second by definition of conditional
probability, the third by assumption (A2-M), the fourth again by definition of conditional
probability, the fifth by assumption (A2-M), and the sixth by repeating the same step t −1
times. The last expression is obtained by simply rearranging terms using the definition of
conditional probability.

Now introduce the following shorthand notation:

ΠΠΠP(t −1)≡
t−1

∏
s=1

dP(X s,As,Rs = 1)
dP(X s,As,Rs+1 = 1)

so we can write dP(At ,Ht) = dP(X t ,At ,Rt = 1)ΠΠΠP(t −1).

Then, similarly we have

dP(Ht) = dP(X t ,At−1) = dP(X t ,At−1,Rt = 1)ΠΠΠP(t −1).

Hence, finally we obtain

dP(At | Ht) =
dP(At ,Ht)

dP(Ht)
=

dP(X t ,At ,Rt = 1)
dP(X t ,At−1,Rt = 1)

=
dP(At ,Ht ,Rt = 1)

dP(Ht ,Rt = 1)

= dP(At |Ht ,Rt = 1)
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where the second equality comes from the above results. The proof naturally leads to
subsequent result of dddQQQttt(((AAAttt |||HHHttt))) === dddQQQttt(((AAAttt |||HHHttt ,,,RRRttt === 111))).

• dddP(((XXX ttt |||AAAt−1,,,HHHt−1))) === dddP(((XXX ttt |||AAAt−1,,,HHHt−1,,,RRRttt === 111)))

By definition dP(Xt |At−1,Ht−1) = dP(Ht)/dP(At−1,Ht−1), and from previous part it im-
mediately follows

dP(Ht) = dP(X t ,At−1,Rt = 1)ΠΠΠP(t −1),

dP(At−1,Ht−1) = dP(X t−1,At−1,Rt−1 = 1)ΠΠΠP(t −2).

Hence, we have

dP(Ht)

dP(At−1,Ht−1)
=

dP(X t ,At−1,Rt = 1)
dP(X t−1,At−1,Rt = 1)

= dP(Xt | Ht−1,At−1,Rt = 1)

which yields the desired result.

• E[[[YYY |||X ttt ,,,Attt ]]] === E[[[YYY |||X ttt ,,,Attt ,,,RRRt+1 === 111]]]

By definition E[Y |X t ,At ] =
∫

ydP(y|X t ,At), and thereby it suffices to show that dP(Y |X t ,At)=

dP(Y |X t ,At ,Rt+1).

By the same logic we use for the first proof, we have

dP(Y,X t ,At) = dP(Y,X t ,At ,Rt = 1)ΠΠΠP(t −1)

and also
dP(X t ,At) = dP(X t ,At ,Rt = 1)ΠΠΠP(t −1).

Thus it follows by what are shown above displays together with assumption (A2-M) that

dP(Y | X t ,At) = dP(Y | X t ,At ,Rt = 1) = dP(Y | X t ,At ,Rt+1 = 1).

Hence, we have shown that all the identities hold.
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A.4.2 Proof of Theorem 2.4.1

Identifying expression for the efficient influence function

In the next lemma, we provide an identifying expression for the efficient influence
function for our incremental effect ψt(δ ) under a nonparametric model, which allows the
data-generating process P to be infinite-dimensional.

Lemma A.4.2. Define

ms(hs,as,Rs+1 = 1)

=
∫
Rs

µ(ht ,at ,Rt+1 = 1)
t

∏
k=s+1

dQk(ak | hk,Rk = 1)dP(xk|hk−1,ak−1,Rk = 1)

for s= 0, ..., t−1, ∀t ≤T , where we write Rs =(X t ×A t)\(X s×A s) and µ(ht ,at ,Rt+1 =

1) =E(Yt |Ht = ht ,At = at ,Rt+1 = 1). For s= t and s= t+1, we set ms(·) = µ(ht ,at ,Rt+1 =

1) and mt+1(·) = Y . Moreover, let 1(Hs=hs,Rs=1)
dP(hs,Rs=1) φs(Hs,As,Rs = 1;as) denote the efficient in-

fluence function for dQs(as|hs,Rs = 1).
Then, the efficient influence function for m0 = ψt(δ ) is given by

t

∑
s=0

{∫
As+1

ms+1(Hs+1,As+1,Rs+2 = 1)dQs+1(as+1|Hs+1,Rs+1 = 1)−ms(Hs,As,Rs+1 = 1)
}

×1(Rs+1 = 1)

(
s

∏
k=0

dQk(Ak | Hk,Rk = 1)
dP(Ak | Hk,Rk = 1)

1
dP(Rk+1 = 1 | Hk,Ak,Rk = 1)

)

+
t

∑
s=1

1(Rs = 1)

(
s−1

∏
k=0

dQk(Ak | Hk,Rk = 1)
dP(Ak | Hk,Rk = 1)

1
dP(Rk+1 = 1 | Hk,Ak,Rk = 1)

)
×
∫
As

ms(Hs,as,Rs+1 = 1)φs(Hs,As,Rs = 1;as)dν(as)

where we define dQt+1 = 1, mt+1(·) = Y , and dQ0(a0|h0)/dP(a0|h0) = 1, and ν is a domi-
nating measure for the distribution of As.

The proof of Lemma A.4.2 involves derivation of efficient influence function for general
stochastic interventions that depend on the both observational propensity scores and right-
censoring process. In the proof, we delineate how we can apply chain rule arguments to
derive efficient influence functions for complicated functionals from much simpler functional
forms. We further simplify and render the above efficient influence function to estimable
form in next theorem.
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The basic proof structure follows the work of [67]. We begin by presenting the following
three additional lemmas to prove Lemma A.4.2.

Lemma A.4.3. For ∀t, the efficient influence function for

dQt(at | ht ,Rt = 1) =
atδπt(ht)+(1−at){1−πt(ht)}

δπt(ht)+1−πt(ht)

which is defined in (2.2) is given by 1(Ht=ht ,Rt=1)
dP(ht ,Rt=1) φt(Ht ,At ,Rt = 1;at), where φt(Ht ,At ,Rt =

1;at) equals
(2at −1)δ{At −πt(Ht)}
(δπt(Ht)+1−πt(Ht))

2

where πt(ht) = P(At = 1 | Ht = ht ,Rt = 1).

Lemma A.4.4. Suppose QT is not depending on P. Recall that for ∀t ≤ T ,

ms(hs,as,Rs+1 = 1) =
∫
Rs

µ(ht ,at ,Rt+1 = 1)
t

∏
k=s+1

dQk(ak | hk,Rk = 1)dP(xk|hk−1,ak−1,Rk = 1)

for s = 0, ..., t −1, where we write Rs = (X t ×A t)\ (X s ×A s) and µ(ht ,at ,Rt+1 = 1) =
E(Yt | Ht = ht ,At = at ,Rt+1 = 1). Note that from definition of ms it immeidately follows
ms =

∫
Xs×As

ms+1dQs+1(as+1 | hs+1,Rs+1 = 1)dP(xs+1|hs,as,Rs+1 = 1).
Now the efficient influence function for ψ∗(Qt) = m0 is

t

∑
s=0

{∫
As+1

ms+1(Hs+1,As+1,Rs+2 = 1)dQs+1(as+1|Hs+1,Rs+1 = 1)−ms(Hs,As,Rs+1 = 1)
}

×1(Rs+1 = 1)

(
s

∏
k=0

dQk(Ak | Hk,Rk = 1)
dP(Ak | Hk,Rk = 1)

1
dP(Rk+1 = 1 | Hk,Ak,Rk = 1)

)

where we define dQt+1 = 1, mt+1(·) = Yt , and dQ0(a0|h0)/dP(a0|h0) = 1.

Lemma A.4.5. Suppose QT depends on P and let 1(Ht=ht ,Rt=1)
dP(ht ,Rt=1) φt(Ht ,At ,Rt = 1;at) denote

the efficient influence function for dQt(at |ht ,Rt = 1) defined in Lemma A.4.3 for all t. Then
the efficient influence function for ψt(δ ) is given as

ϕ
∗(Qt)

+
t

∑
s=1

1(Rs = 1)

(
s−1

∏
k=0

dQk(Ak | Hk,Rk = 1)
dP(Ak | Hk,Rk = 1)

1
dP(Rk+1 = 1 | Hk,Ak,Rk = 1)

)
×
∫
As

ms(Hs,as,Rs+1 = 1)φs(Hs,As,Rs = 1;as)dν(as)
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where ϕ∗(Qt) is the efficient influence function from Lemma A.4.4 and ν is a dominating
measure for the distribution of As.

The proof of Lemma A.4.3, A.4.4 and A.4.5 are basically results of a series of chain
rules, after specifying efficient influence functions for terms that commonly appear. The
full proofs are not particularly illuminating considering its length. Thus we omit a proof of
Lemma A.4.3 and only include a brief sketch for proofs of Lemma A.4.4 and A.4.5 below,
which can be useful to develop results for more general stochastic interventions.

Proof of Lemma A.4.4 and Lemma A.4.5

Let I F : ψ → φ denote a map to the efficient influence function φ for a functional ψ .
First without proof, we specify efficient influence functions for mean and conditional mean
which serve two basic ingredients for our proof. For mean value of a random variable Z, we
have

I F
(
E[Z]

)
= Z −E[Z],

and for conditional mean with a pair of random variables (X ,Y )∼ P where X is discrete, we
have

I F
(
E[Y |X = x]

)
=
1(X = x)
P(X = x)

{
Y −E[Y | X = x]

}
.

These results can be directly obtained from either (2.5) or (??) in section 2.4.

Proof. It is sufficient to prove for the case t = 2 since it is straightforward to extend the proof
for general t ≤ T by induction. For t = 2, it is enough to compute the following four terms.

A)
∫
H2×A2

I F
(

µ(h2,a2,R3 = 1)
) 2

∏
s=1

dQs(as | hs,Rs = 1)dP(xs|hs−1,as−1,Rs = 1)

=
∫
H2×A2

1{(H2,A2,R3) = (h2,a2,1)}
dP(h2,a2,R3 = 1)

{
Y −µ(h2,a2,R3 = 1)

}
×

2

∏
s=1

dQs(as | hs,Rs = 1)dP(xs|hs−1,as−1,Rs = 1)

=
∫
H2×A2

1
{
(H2,A2,R3) = (h2,a2,1)

}{
Y −µ(h2,a2,R3 = 1)

}
×

2

∏
s=1

dQs(as | hs,Rs = 1)
dP(as | hs,Rs = 1)

1
dP(Rs+1 = 1 | hs,as,Rs = 1)

= {Y −µ(H2,A2,R3 = 1)}1(R3 = 1)
2

∏
s=1

dQt(As | Hs,Rs = 1)
dP(As | Hs,Rs = 1)

1
dP(Rs+1 = 1 | Hs,As,Rs = 1)
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B)
∫
H2×A2

µ(h2,a2,R3 = 1)I F
(

dP(x2|h1,a1,R2 = 1)
)

dP(h1)
2

∏
s=1

dQs(as | hs,Rs = 1)

=
∫
H2×A2

µ(h2,a2,R3 = 1)
1
{
(H1,A1,R2) = (h1,a1,1)

}
dP(h1,a1,R2 = 1)

{
1(X2 = x2)−dP(x2|h1,a1,R2 = 1)

}
×dP(h1)

2

∏
s=1

dQs(as | hs,Rs = 1)

=
∫
H2×A2

µ(h2,a2,R3 = 1)
1
{
(H1,A1,R2) = (h1,a1,1)

}{
1(X2 = x2)−dP(x2|h1,a1,R2 = 1)

}
dP(R2 = 1|h1,a1)dP(a1|h1)dP(h1)

×dP(h1)
2

∏
s=1

dQs(as | hs,Rs = 1)

=
∫
H2×A2

µ(h2,a2,R3 = 1)dQ2(a2 | h2,R2 = 1)1
{
(H1,A1,R2) = (h1,a1,1)

}
×
{
1(X2 = x2)−dP(x2|h1,a1,R2 = 1)

}dQ1(A1 | H1)

dP(A1 | H1)

1
dP(R2 = 1 | H1,A1)

=

{∫
H2×A2\H2

µ(H2,a2,R3 = 1)dQ2(a2 | H2,R2 = 1)

−
∫
H2×A2\H1×A1

µ(h2,a2,R3 = 1)dQ2(a2 | h2,R2 = 1)dP(x2|h1,a1,R2 = 1)

}

×1(R2 = 1)
dQ1(A1 | H1)

dP(A1 | H1)

1
dP(R2 = 1 | H1,A1)

=

{∫
A2

µ(H2,a2,R3 = 1)dQ2(a2 | H2,R2 = 1)−m1(h1,a1,R2 = 1)

}

×1(R2 = 1)
dQ1(A1 | H1)

dP(A1 | H1)

1
dP(R2 = 1 | H1,A1)

C)
∫
H2×A2

µ(h2,a2,R3 = 1)dP(x2|h1,a1,R2 = 1)I F
(

dP(h1)
) 2

∏
s=1

dQs(as | hs,Rs = 1)

=
∫
H2×A2

µ(h2,a2,R3 = 1)dP(x2|h1,a1,R2 = 1)
{
1(X1 = x1)−dP(x1)

} 2

∏
s=1

dQs(as | hs,Rs = 1)

=
∫
H2×A2\H1

µ(h2,a2,R3 = 1)dQ2(a2 | h2,R2 = 1)dP(x2|h1,a1,R2 = 1)dQ1(a1|h1)−m0

=
∫
A1

m1(h1,a1,R2 = 1)dQ1(a1|h1)−m0
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D) Let φt denote the efficient influence function for dQt(at |ht ,Rt = 1) as given in Lemma
A.4.3. Now we have∫

H2×A2

µ(h2,a2,R3 = 1)dP(h1)dP(x2|h1,a1,R2 = 1)I F
(

dQ1(a1|h1)dQ2(a2 | h2,R2 = 1)
)

=
∫
H2×A2

µ(h2,a2,R3 = 1)dP(h1)dP(x2|h1,a1,R2 = 1)
1
{
(H2,R2) = (h2,1)

}
dP(h2,R2 = 1)

φ2dQ1(a1|h1)

+
∫
H2×A2

µ(h2,a2,R3 = 1)dP(h1)dP(x2|h1,a1,R2 = 1)
1
{
(H1 = h1)

}
dP(h1)

φ1dQ2(a2 | h2,R2 = 1)

=
∫
H2×A2

µ(h2,a2,R3 = 1)
1
{
(H2,R2) = (h2,1)

}
dP(h1)dP(x2|h1,a1,R2 = 1)dQ1(a1|h1)

dP(x2|h1,a1,R2 = 1)dP(R2 = 1|h1,a1)dP(a1|h1)dP(h1)
φ2

+
∫
H2×A2

µ(h2,a2,R3 = 1)dP(x2|h1,a1,R2 = 1)1
{
(H1 = h1)

}
φ1dQ2(a2 | h2,R2 = 1)

=
∫
H2×A2\H2

µ(H2,a2,R3 = 1)1(R2 = 1)φ2
dQ1(A1 | H1)

dP(A1 | H1)

1
dP(R2 = 1 | H1,A1)

+
∫
H2×A2\H1

µ(h2,a2,R3 = 1)dQ2(a2 | h2,R2 = 1)dP(x2|h1,a1,R2 = 1)φ1

=

{
dQ1(A1 | H1)

dP(A1 | H1)

1
dP(R2 = 1 | H1,A1)

}∫
A2

µ(H2,a2,R3 = 1)φ2dν(a2)1(R2 = 1)

+
∫
A1

m1(h1,a1,R2 = 1)φ1dν(a1)

Note that we have set dQ0(a0|h0)/dP(a0|h0) = 1, and that we have dP(R1 = 1) = 1 and
1(R1 = 1) = 1 by construction. Hence, putting part A), B), and C) together proves Lemma
A.4.4 and part D) proves Lemma A.4.5.

Preparation for Algebra: Some Lemmas

Next, we convert the identifying expression in Lemma A.4.2 into something we can
estimate from observed data. To this end, we first present two Identity equations on the
pseudo regression functions mt defined in Lemma A.4.2 in the following lemma.

Lemma A.4.6. Given mt defined in Lemma A.4.2 for ∀t ≤ T we have the following identities.

a. 1(Rt+1 = 1)mt(Ht ,At ,Rt+1 = 1) = mt(Ht ,At ,Rt+1 = 1)

b.
(

1(Rt+1=1)
dP(Rt+1=1|Ht ,At ,Rt=1)

)
mt(Ht ,At ,Rt+1 = 1) = 1(Rt+1 = 1)mt(Ht ,At ,Rt+1 = 1)

Proof. First, note that from Remark 5,

mt(Ht ,At ,Rt+1 = 1)

= E

[
mt(Ht+1,at+1,1)δπt+1(Ht+1)+{1−mt(Ht+1,0,1)}{1−πt+1(Ht+1)}

δπt+1(Ht+1)+1−πt+1(Ht+1)

∣∣∣∣∣Ht ,At ,Rt+1 = 1

]
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where we use shorthand notation mt(Ht+1,at+1,1) = mt(Ht+1,At+1 = at+1,Rt+2 = 1). In
this proof, let (m ·dQ)t+1 denote mt(Ht+1,at+1,1)δπt+1(Ht+1)+{1−mt(Ht+1,0,1)}{1−πt+1(Ht+1)}

δπt+1(Ht+1)+1−πt+1(Ht+1)
which

is the quotient inside above conditional expectation.
The identity in part a immediately follows from the definition of mt .
For the identity in part b, we first note that by assumption (A2-M) it follows dP(xs|hs−1,as−1,Rs =

1) = dP(xs|hs−1,as−1,Rs−1 = 1) for every s > 1. Thus, we can write

mt = E
[
(m ·dQ)t+1

∣∣Ht ,At ,Rt = 1
]

based on the definition of mt . Now define another shorthand notation hAt ,Ht
t+1 := (xt+1,At ,Ht)

and RRt=1
t+1 := (Rt+1,Rt = 1). Then it follows that

mt(Ht ,At ,Rt+1 = 1)

= E
[
(m ·dQ)t+1

∣∣Ht ,At ,Rt = 1
]

= E
[
E
{
(m ·dQ)t+1

∣∣Ht+1,At+1,R
Rt=1
t+1

}∣∣Ht ,At ,Rt = 1
]

=
∫

E
{
(m ·dQ)t+1

∣∣hAt ,Ht
t+1 ,at+1,R

Rt=1
t+1

}
dP(at+1 | hAt ,Ht

t+1 ,RRt=1
t+1 )dP(xt+1,Rt+1 | Ht ,At ,Rt = 1)

=
∫

E
{
(m ·dQ)t+1

∣∣hAt ,Ht
t+1 ,at+1,R

Rt=1
t+1

}
×dP(at+1 | hAt ,Ht

t+1 ,RRt=1
t+1 )dP(xt+1 | Ht ,At ,Rt = 1)dP(Rt+1 | Ht ,At ,Rt = 1)

=
∫

E
{
(m ·dQ)t+1

∣∣hAt ,Ht
t+1 ,at+1,R

Rt=1
t+1

}
×dP(at+1 | hAt ,Ht

t+1 ,RRt=1
t+1 )dP(xt+1 | Ht ,At ,R

Rt=1
t+1 )dP(Rt+1 | Ht ,At ,Rt = 1)

= E
[
(m ·dQ)t+1

∣∣Ht ,At ,R
Rt=1
t+1

]
dP(Rt+1 | Ht ,At ,Rt = 1)

, where both the fourth and the fifth equalities follow from assumption (A2-M). From this
result, it is straightforward to see

1(Rt+1 = 1)mt(Ht ,At ,Rt+1 = 1)

= 1(Rt+1 = 1)E
[
(m ·dQ)t+1

∣∣Ht ,At ,R
Rt=1
t+1

]
dP(Rt+1 | Ht ,At ,Rt = 1)

= 1(Rt+1 = 1)E
[
(m ·dQ)t+1

∣∣Ht ,At ,Rt+1 = 1
]

dP(Rt+1 = 1 | Ht ,At ,Rt = 1).

Finally assumption (A3) guarantees that we obtain(
1(Rt+1 = 1)

dP(Rt+1 = 1 | Ht ,At ,Rt = 1)

)
mt(Ht ,At ,Rt+1 = 1) = 1(Rt+1 = 1)mt(Ht ,At ,Rt+1 = 1)
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which is the desired identity.

Finally, we are ready to give a proof of Theorem 2.4.1. In fact, it is nothing but rearranging
terms in the given efficient influence function.

Proof of Theorem 2.4.1

Proof. First, we define following shorthand notations for the proof: for ∀s ≤ t

dQs(As)≡ dQs(As|Hs,Rs = 1), dPs(As)≡ dP(As | Hs,Rs = 1),

dωs ≡ ωs(Hs,As)≡ dP(Rs+1 = 1 | Hs,As,R′
s = 1),

ms(Hs,as)≡ ms(Hs,as,Rs+1 = 1)

With these notations we can rewrite the result of Lemma A.4.4 as below.

t

∑
s=0

{∫
As+1

ms+1(Hs+1,as+1)dQs+1(as+1)−ms(Hs,As)

}
1(Rs+1 = 1)

(
s

∏
k=0

dQk(Ak)

dPk(Ak)

1
dωk

)

=
t

∑
s=1

{∫
As

ms(Hs,as)dQs(as)−ms(Hs,As)

[
1(Rs+1 = 1)

dQs(As)

dPs(As)

1
dωs

]}
×1(Rs = 1)

(
s−1

∏
k=0

dQk(Ak)

dPk(Ak)

1
dωk

)
+1(Rt+1 = 1)

(
t

∏
s=1

dQs(As)

dPs(As)

1
dωs

)
Yt −m0.

Now, by the result of Lemma A.4.4 and A.4.5, we can represent the efficient influence
function for ψt(δ ) as

t

∑
s=1

{∫
As

ms(Hs,as)dQs(as)−ms(Hs,As)

[
1(Rs+1 = 1)

dQs(As)

dPs(As)

1
dωs

]

+
∫
As

ms(Hs,as)φs(Hs,As,Rs = 1;as)dν(as)

}
1(Rs = 1)

(
s−1

∏
k=0

dQk(Ak)

dPk(Ak)

1
dωk

)

+1(Rt+1 = 1)

(
t

∏
s=1

dQs(As)

dPs(As)

1
dωs

)
Yt −m0.

On the other hand, we have∫
As

ms(Hs,as)dQs(as) =
ms(Hs,1)δπs(Hs)+ms(Hs,0){1−πs(Hs)}

δπs(Hs)+1−πs(Hs)
,
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dQs(As)

dPs(As)
=

δAs +1−As

δπs(Hs)+1−πs(Hs)
,

ms(Hs,As)
dQs(As)

dPs(As)
=

ms(Hs,1,Rs+1 = 1)δAs +ms(Hs,0,Rs+1 = 1)(1−As)

δπs(Hs)+1−πs(Hs)
,

∫
As

ms(Hs,as)φs(Hs,As,Rs = 1;as)dν(as) =
{ms(Hs,1)−ms(Hs,0)}δ (As −πs(Hs))

(δπs(Hs)+1−πs(Hs))
2 .

Now going back to the expression for the efficient influence function, note that by Lemma
A.4.6 terms inside the summation before multiplied by
1(Rs = 1)

(
∏

s−1
k=0

dQk(Ak)
dPk(Ak)

1
dωk

)
simplify to

∫
As

ms(Hs,as)dQs(as)−ms(Hs,As)

[
1(Rs+1 = 1)

dQs(As)

dPs(As)

1
dωs

]
=
∫
As

1(Rs+1 = 1)ms(Hs,as)dQs(as)−1(Rs+1 = 1)ms(Hs,As)
dQs(As)

dPs(As)

+
∫
As

1(Rs+1 = 1)ms(Hs,as)φs(Hs,As,R′
s = 1;as)dν(as)

=

[
ms(Hs,1)δπs(Hs)+ms(Hs,0){1−πs(Hs)}

δπs(Hs)+1−πs(Hs)
+

ms(Hs,1)δAs +ms(Hs,0)(1−As)

δπs(Hs)+1−πs(Hs)

+
{ms(Hs,1)−ms(Hs,0)}δ (As −πs(Hs))

(δπs(Hs)+1−πs(Hs))
2

]
1(Rs+1 = 1)

=

[
(πs(Hs)−As){δms(Hs,1)−ms(Hs,0)}

δπs(Hs)+1−πs(Hs)
+

{ms(Hs,1)−ms(Hs,0)}δ (As −πs(Hs))

(δπs(Hs)+1−πs(Hs))
2

]
1(Rs+1 = 1)

=

(
{As −πs(Hs)}(1−δ )

δπs(Hs)+1−πs(Hs)

)[
ms(Hs,1)δπs(Hs)+ms(Hs,0){1−πs(Hs)}

δπs(Hs)+1−πs(Hs)

]
1(Rs+1 = 1)

By multiplying
[

dQs(As)
dPs(As)

1
dωs

]−1
to the last expression, we finally obtain an equivalent form of

the efficient influence function for ψt(δ ) as

t

∑
s=0

{
{As −πs(Hs)}(1−δ )

δAs +1−As

}[
ms(Hs,1)δπs(Hs)+ms(Hs,0){1−πs(Hs)}

δπs(Hs)+1−πs(Hs)

]
ωs(Hs,As)

×

(
s

∏
k=1

δAk +1−Ak

δπk(Hk)+1−πk(Hk)
· 1(Rk+1 = 1)

ωk(Hk,Ak)

)
+

t

∏
s=1

{
δAs +1−As

δπs(Hs)+1−πs(Hs)
· 1(Rs+1 = 1)

ωs(Hs,As)
Yt

}
−ψt(δ ).
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A.4.3 Sequential regression formulation

The efficient influence function derived in the previous subsection involves pseudo-
regression functions m, whose estimation in general might involve complicated conditional
density estimation. However, as pointed out by Kennedy [67], one efficient strategy is to
formulate a series of sequential regressions for ms, as described in the subsequent remark in
more detail.

Remark 5. From the definition of ms, it immediately follows that

ms =
∫
Xs×As

ms+1dQs+1(as+1 | hs+1,Rs+1 = 1)dP(xs+1|hs,as,Rs+1 = 1).

Hence, we can find equivalent form of the functions ms(·) in Theorem 2.4.1 as the following
recursive regression:

ms(Hs,As,Rs+1 = 1)

= E

[
ms+1(Hs+1,as+1,1)δπs+1(Hs+1)+{1−ms+1(Hs+1,0,1)}{1−πs+1(Hs+1)}

δπs+1(Hs+1)+1−πs+1(Hs+1)

∣∣∣∣∣Hs,As,Rs+1 = 1

]

for s= 1, ..., t−1, where we use shorthand notation ms+1(Hs+1,as+1,1)=ms+1(Hs+1,As+1 =

as+1,Rt+2 = 1) and ms(Hs,As,1) = µ(Hs,As,Rs+1 = 1).

Above sequential regression form is very practically useful when we estimate ms, since it
allows us to bypass all the conditional density estimations and instead use regression methods
that are more readily available in statistical software.

A.4.4 EIF for T = 1

In the next corollary we provide the efficient influence function for the incremental effect
in a single timepoint study (T = 1) whose identifying expression is given in Corollary 2.3.1.

Corollary A.4.1. When T = 1, the efficient influence function for ψ(δ ) in Corollary 2.3.1 is
given by

1(R = 1)

[
δπ(1|X)φ1,R=1(Z)+π(0|X)φ0,R=1(Z)

δπ(1|X)+π(0|X)
+

δ{µ(X ,1,1)−µ(X ,0,1)}(A−π(1|X))

{δπ(1|X)+π(0|X)}2

]
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where
µ(x,a,1) = E(Y | X = x,A = a,R = 1),

π(a|X) = dP(A = a | X = x),

and
φa,R=1(Z) =

1(A = a)1(R = 1)
π(a|X)ω(X ,a)

{Y −µ(X ,a,1)}+µ(X ,a,1)

which is the uncentered efficient influence function for E[µ(X ,a,1)].

The efficient influence function for the point exposure case has a simpler and more
intuitive form. In fact, as stated in Corollary A.4.1, it is a weighted average of the two efficient
influence functions φ0,R=1,φ1,R=1, plus a contribution term due to unknown propensity scores.
An existence of the indicator function 1(R = 1) proceeds from a likelihood of potential
dropouts, and it implies that if a dropout occurs the outcome would not be available and
consequently a contribution from the subject would not be taken into account.

A.4.5 Proof of Theorem 2.6.1

First we find an alternative form of the variance of each estimator, which eventually
comes in handy for our proof. To this end, let ψ̂c.ipw(a′T ) denote the standard IPW estimator

of a classical deterministic intervention effect E
[
Y a′T

]
under i.i.d assumption, i.e.

ψ̂c.ipw(a′T ) =
T

∏
t=1

(
1(At = a′t)
πt(a′t |Ht)

)
Y.

Hence ψ̂c.ipw(111) is equivalent to ψ̂at in the main text. Now by definition we have

Var
(
ψ̂c.ipw(a′T )

)
= E

{(
T

∏
t=1

1(At = a′t)
πt(a′t |Ht)2

)
Y 2

}
−

{
E

[
T

∏
t=1

1(At = a′t)
πt(a′t |Ht)

Y

]}2

≡ Vc.ipw.1(a′T )−Vc.ipw.2(a′T )

where Vc.ipw.1(a′T ) and Vc.ipw.2(a′T ) are simply the first and second term in the first line of
the expansion respectively.
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By the same procedure to derive g-formula [108] it is easy to see

Vc.ipw.1(a′T ) = E

{
T

∏
t=1

(
1(At = a′t)
πt(a′t |Ht)2

)
Y 2

}

=
∫
X

E
[
Y 2 | X t ,At = a′t

] T

∏
t=1

dP(Xt | X t−1,At−1 = a′t−1)

πt(a′t |Ht)

where X = X1 ×·· ·×XT . Above result simply follows by iterative expectation condition-
ing on X t and then another iterative expectation conditioning on Ht followed by the fact that
E
[
1(At=a′t)
πt(a′t |Ht)

∣∣Ht

]
= 1 for all t. We repeat this process T times, starting from t = T all the way

through t = 1.
Likewise, for ψ̂inc we have

Var(ψ̂inc) = E

{
T

∏
t=1

(
δAt +1−At

δπt(Ht)+1−πt(Ht)

)2

Y 2

}
−

{
E

[
T

∏
t=1

(
δAt +1−At

δπt(Ht)+1−πt(Ht)

)
Y

]}2

≡ Vinc.1 −Vinc.2

For the first term Vinc.1, observe that

E

{
T

∏
t=1

(
δAt +1−At

δπt(Ht)+1−πt(Ht)

)2

Y 2

}

= E

{
T−1

∏
t=1

(
δAt +1−At

δπt(Ht)+1−πt(Ht)

)2

E

[(
δAT +1−AT

δπT (HT )+1−πT (HT )

)2

Y 2

∣∣∣∣∣HT

]}

= E

{
T−1

∏
t=1

(
δAt +1−At

δπt(Ht)+1−πt(Ht)

)2

E

[
δ 2Y 2

(δπT (HT )+1−πT (HT ))2

∣∣∣∣∣HT ,AT = 1

]
πT (HT )

}

+E

{
T−1

∏
t=1

(
δAt +1−At

δπt(Ht)+1−πt(Ht)

)2

E

[
Y 2

(δπT +1−πT )2

∣∣∣∣∣HT ,AT = 0

]
(1−πT (HT ))

}

where we apply the law of total expectation in the first equality and the law of total probability
in the second.

After repeating the same process for T −1 times, for t = T −1, ...,1, we obtain 2T terms
in the end where each of which corresponds to distinct treatment sequence AT = aT . Hence,
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we eventually have

Vinc.1 = ∑
aT∈A T

∫
X

E
[
Y 2 | HT ,AT = aT

] T

∏
t=1

1(at = 1)δ 2πt(Ht)+1(at = 0){1−πt(Ht)}
(δπt(Ht)+1−πt(Ht))2

×dP(Xt | X t−1,At−1 = at−1).

Recall that we assume πt(Ht) = p for all t as stated in Theorem 2.6.1. Hence we can
write πt(at | Ht) as πt(at) = 1(at = 1) p+1(at = 0){1− p}.

Next we notice that to compute the upper bound of RE(ψ̂c.ipw(aT ), ψ̂inc)=
Vinc.1−Vinc.2

Vc.ipw.1(aT )−Vc.ipw.2(aT )

for always-treated unit (i.e. aT = 111) it suffices to compute the quantity

Vinc.1

Vc.ipw.1(111)−Vc.ipw.2(111)

since 0 < Vinc.2 < Vinc.1 by Jensen’s inequality.
On the other hand, we have

Vc.ipw.1(111)−Vc.ipw.2(111) =
∫
X

E
[
Y 2 | XT ,AT = a′T

] T

∏
t=1

dP(Xt | X t−1,At−1 = a′t−1)

p
−
(
E[Y 111]

)2

=

(
1
p

)T

E
[(

Y 111
)2
]
−
(
E
[
Y 111
])2

, and under the given boundedness assumption we see the ratio of the second term to the first
term becomes quickly (at least exponentially) negligible as t increases. Hence we can write

1
Vc.ipw.1(111)−Vc.ipw.2(111)

≤ 1
Vc.ipw.1(111)

1+
c
(
E
[
Y 111
])2

(1/p)T E
[(

Y 111
)2
]


for some constant c such that 1
1−Vc.ipw.2(111)/Vc.ipw.1(111)

= 1

1−pT
(
E
[
Y 111
])2/

E
[(

Y 111
)2
] ≤ c. Note that

in our setting in which we have an infinitely large value of T , c can be almost any constant
greater than one.

Putting above ingredients together, for sufficiently large t it follows that

RE(ψ̂c.ipw(111), ψ̂inc)≤
Vinc.1

Vc.ipw.1(111)

1+
c
(
E
[
Y 111
])2

(1/p)T E
[(

Y 111
)2
]
 ,
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where we have

Vinc.1

Vc.ipw.1(111)
=

w(111)Vc.ipw.1(111)+∑aT ̸=111 w(aT ;δ , p)Vc.ipw.1(aT )

Vc.ipw.1(111)

= w(111)+ ∑
aT ̸=111

w(aT ;δ , p)
T

∏
t=1

 p
πt(at)

E
[(

Y 2)aT
]

E
[(

Y 111
)2
]


≤ b2
u

E
[(

Y 111
)2
]
w(111)+ ∑

aT ̸=111

[
T

∏
t=1

1(at = 1)δ 2 p2 +1(at = 0)(1− p)p
(δ p+1− p)2

]
=

b2
u

E
[(

Y 111
)2
] {δ 2 p2 + p(1− p)

(δ p+1− p)2

}T

where the first equality follows by the fact that Vinc.1 = ∑aT∈A T
w(aT ;δ , p)Vc.ipw.1(aT )

derived in the proof of the first part, the second equality by the fact that Vc.ipw.1(aT ) =

∏
T
t=1

1
πt(at)

E
[(

Y 2)aT
]
, the first inequality by definition of w(aT ;δ , p) and the given bound-

edness assumption, and the last equality by binomial theorem. Therefore we obtain the upper
bound as

RE(ψ̂c.ipw(111), ψ̂inc)≤
b2

u

E
[(

Y 111
)2
] {δ 2 p2 + p(1− p)

(δ p+1− p)2

}T

1+
c
(
E
[
Y 111
])2

(1/p)T E
[(

Y 111
)2
]
 .
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Next for the lower bound, first we note that

Vinc.2 =

{
E

[
T

∏
t=1

(
δAt +1−At

δ p+1− p

)
Y

]}2

=

{
∑

aT∈A T

∫
X

E [Y | HT ,AT = aT ]

(
T

∏
t=1

1(at = 1)δ p+1(at = 0)(1− p)
δ p+1− p

)

×dP(Xt | X t−1,At−1 = at−1)

}2

≤ b2
u

 ∑
aT∈A T

T

∏
t=1

(
1(at = 1)δ p+1(at = 0)(1− p)

δ p+1− p

)2

= b2
u

(
δ p+1− p
δ p+1− p

)2T

= b2
u

where the first equality follows by definition, the second equality by exactly same process
used to find the expression for Vinc.1, the first inequality by the boundedness assumption, and
the third equality by binomial theorem.

However, we already know that

Vc.ipw.1(111)−Vc.ipw.2(111)≤ Vc.ipw.1(111) =
(

1
p

)T

E
[(

Y 111
)2
]
.

Hence putting these together we conclude

RE(ψ̂c.ipw(111), ψ̂inc) =
Vinc.1 −Vinc.2

Vc.ipw.1(111)−Vc.ipw.2(111)

≥ Vinc.1 −b2
u

Vc.ipw.1(111)

=
b2

u

E
[(

Y 111
)2
] {δ 2 p2 + p(1− p)

(δ p+1− p)2

}T

− b2
u

E
[(

Y 111
)2
] pT .

At this point, we obtain upper and lower bound for RE(ψ̂c.ipw(111), ψ̂inc), which yields the

result of part ii) having CT =
b2

u

E
[(

Y 111
)2
] .

Proof for the case of a′T = 000 (never-treated unit) is based on the almost same steps as

the case of a′T = 111 except for the rearragement of terms due to replacing
(

1
p

)T
by
(

1
1−p

)T
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and so on. In fact, due to the generality of our proof structure, the exact same logic used for
ψ̂c.ipw(111) also applies to ψ̂c.ipw(000) (and ψ̂c.ipw(a′T ) for ∀a′T ∈ AT ). We present the result
without the proof as below.

C′
T

[{
δ 2 p(1− p)+(1− p)2

(δ p+1− p)2

}T

− (1− p)T

]
≤ RE(ψ̂c.ipw(000), ψ̂inc)

≤C′
T ζ

′(T ; p)
{

δ 2 p(1− p)+(1− p)2

(δ p+1− p)2

}T

where we define C′
T =

b2
u

E
[
(Y 2)

000
] and ζ ′(T ; p) =

1+
c
(
E
[
Y 111
])2

(1/(1−p))TE
[(

Y 111
)2
]
.

A.4.6 Proof of Corollary 2.6.1

Now we provide following Lemma A.4.7 which becomes a key to prove Corollary 2.6.1.

Lemma A.4.7. Assume that πt(Ht) = p for all 1 ≤ t ≤ T for 0 < p < 1. Then we have
following variance decomposition :

Var(ψ̂inc) =Var

 ∑
aT∈A T

√
w(aT ;δ , p)ψ̂c.ipw(aT )


where for ∀aT ∈ A T the weight w is defined by

w(aT ;δ , p) =
T

∏
t=1

πt(at)
{
1(at = 1)δ 2 p+1(at = 0)(1− p)

}
(δπt(Ht)+1−πt(Ht))2 .
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Proof. From the last display for Vinc.1, we have that

Vinc.1

= ∑
aT∈A T

∫
X

E
[
Y 2 | HT ,AT = aT

] T

∏
t=1

πt(at)
(
1(at = 1)δ 2 p+1(at = 0){1− p}

)
(δ p+1− p)2

×
T

∏
t=1

dP(Xt | X t−1,At−1 = at−1)

πt(at)

= ∑
aT∈A T

w(aT ;δ , p)
∫
X

E
[
Y 2 | HT ,AT = aT

] T

∏
t=1

dP(Xt | X t−1,At−1 = at−1)

πt(at)

= ∑
aT∈A T

w(aT ;δ , p)Vc.ipw.1(aT )

where we let weight w(aT ;δ , p) denote the product term ∏
T
t=1

πt(at)(1(at=1)δ 2 p+1(at=0){1−p})
(δπt(Ht)+1−πt(Ht))2 .

Next, we observe that

Vinc.2 =

{
E

[
T

∏
t=1

(
δAt +1−At

δ p+1− p

)
Y

]}2

=

{
E

[
T

∏
t=1

(
δ1(At = 1)
δ p+1− p

)
Y + · · · +

T

∏
t=1

(
1(At = 0)
δ p+1− p

)
Y

]}2

= ∑
aT∈A T

v2
inc.2(AT ;aT )+ ∑

a′T ̸=aT

vinc.2(AT ;aT )vinc.2(AT ;a′T )

where we have decomposed Vinc.2 into 2T ×2T terms by defining vinc.2(AT ;aT ) by

vinc.2(AT ;aT )≡ E

[
T

∏
t=1

(
δ1(at = 1)+1(at = 0)

δ p+1− p

)
1(At = at) ·Y

]
.

Then for fixed aT it is straightforward to see that

v2
inc.2(AT ;aT )

w(aT ;δ , p)
=

{
E

[
T

∏
t=1

(
{δ1(at = 1)+1(at = 0)}1(At = at)√

π(at)(1(at = 1)δ 2 p+1(at = 0){1− p})

)
Y

]}2

=

{
E

[
T

∏
t=1

(
1(At = at)

π(at)

)
Y

]}2

= Vc.ipw.2(aT )
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Now putting this together, we obtain

Vinc.1 −Vinc.2

= ∑
aT∈A T

w(aT ;δ , p)
{
Vc.ipw.1(aT )−Vc.ipw.2(aT )

}
− ∑

a′T ̸=aT

vinc.2(AT ;aT )vinc.2(AT ;a′T )

= ∑
aT∈A T

w(aT ;δ , p)Var (ψ̂c.ipw(aT ))− ∑
a′T ̸=aT

vinc.2(AT ;aT )vinc.2(AT ;a′T ).

However, from the second term in the last display one could notice that

vinc.2(AT ;aT )vinc.2(AT ;a′T )√
w(aT ;δ , p)w(a′T ;δ , p)

= E

[
T

∏
t=1

(
1(At = at)

π(at)

)
Y

]
E

[
T

∏
t=1

(
1(At = a′t)

π(a′t)

)
Y

]

=−Cov(ψ̂c.ipw(aT ), ψ̂c.ipw(a′T ))

where the last equality follows by the fact that

E

{
T

∏
t=1

(
1(At = at)

π(at)

) T

∏
t=1

(
1(At = a′t)

π(a′t)

)
Y 2

}
= 0 for ∀a′T ̸= aT .

Hence finally we conclude that

Var(ψ̂inc) = Vinc.1 −Vinc.2

= ∑
aT∈A T

w(aT ;δ , p)Var (ψ̂c.ipw(aT ))

+ ∑
aT ,a′T∈A T

a′T ̸=aT

√
w(aT ;δ , p)w(a′T ;δ , p)Cov(ψ̂c.ipw(aT ), ψ̂c.ipw(a′T ))

= ∑
aT ,a′T∈A T

√
w(aT ;δ , p)w(a′T ;δ , p)Cov(ψ̂c.ipw(aT ), ψ̂c.ipw(a′T )).

In Lemma A.4.7 it should be noticed that the weight w(aT ;δ , p) exponentially and
monotonically decays to zero for ∀aT ∈ A T .
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Now we show that there always exists Tmin such that Var(ψ̂inc)<Var(ψ̂c.ipw(111)) for all
T ≥ Tmin. Let 111 = [1, ...,1]. From Lemma A.4.7 it follows that

Var(ψ̂inc)−Var(ψ̂c.ipw(111))

= ∑
aT∈A T

w(aT ;δ , p)Var (ψ̂c.ipw(aT ))−Var(ψ̂c.ipw(111))

+ ∑
aT ,a′T∈A T

a′T ̸=aT

√
w(aT ;δ , p)w(a′T ;δ , p)Cov(ψ̂c.ipw(aT ), ψ̂c.ipw(a′T ))

= ∑
aT∈A T

T

∏
t=1

πt(at)
{
1(at = 1)δ 2 p+1(at = 0)(1− p)

}
(δ p+1− p)2

(
T

∏
t=1

1
πt(at)

E
[(

Y 2)aT
]
−
(
E
[
Y aT
])2
)

−
(

1
p

)T

E
[(

Y 111
)2
]
+
(
E
[
Y 111
])2

− ∑
aT ,a′T∈A T

a′T ̸=aT

√
w(aT ;δ , p)w(a′T ;δ , p)E

[
Y aT
]
E
[
Y a′T

]

≤ b2
u ∑

aT∈A T

(
T

∏
t=1

1(at = 1)δ 2 p+1(at = 0)(1− p)
(δ p+1− p)2

)
−
(

1
p

)T

E
[(

Y 111
)2
]
+
(
E
[
Y 111
])2

− ∑
aT ,a′T∈A T

a′T ̸=aT

√
w(aT ;δ , p)w(a′T ;δ , p)E

[
Y aT
]
E
[
Y a′T

]
+ ∑

aT∈A T

w(aT ;δ , p)
(
E
[
Y aT
])2

= b2
u


[

δ 2 p+1− p
(δ p+1− p)2

]T

−

(
c1/T

111
p

)T


− ∑
aT ,a′T∈A T

√
w(aT ;δ , p)w(a′T ;δ , p)E

[
Y aT
]
E
[
Y a′T

]
+
(
E
[
Y 111
])2

= b2
u


[

δ 2 p+1− p
(δ p+1− p)2

]T

−

(
c1/T

111
p

)T

−A(δ , p)+B


where c111 =

E
[(

Y 111
)2
]

b2
u

, A(δ , p)=∑aT ,a′T∈A T

√
w(aT ;δ , p)w(a′T ;δ , p)

E[Y aT ]
bu

E
[

Y a′T
]

bu
, and B=(

E
[

Y 111
])2

b2
u

. The inequality comes from the boundedness condition. It can be immediately

noted that c1/T
111 → 1 as T → ∞ very quickly and monotonically. Also we note |A(δ , p)| ≤ 1

and 0 ≤ B ≤ 1.
For δ > 1, δ 2 p+1−p

(δ p+1−p)2 < 1
p . Hence based on above observation, it follows that for suf-

ficiently large T the last display is strictly less than zero. Consequently we conclude
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Var(ψ̂inc)−Var(ψ̂c.ipw(111))< 0 for all T ≥ Tmin, which is the result of part i). Likewise, we
have the same conclusion for 000T = [0, ...,0] such that Var(ψ̂inc)−Var(ψ̂c.ipw(000T ))< 0.

The value of Tmin is determined by δ , p, and distribution of counterfactual outcome Y aT .
One rough upper bound of such Tmin is

min

{
T :
[

δ 2 p+1− p
(δ p+1− p)2

]T

− c111

pT +2 < 0

}

which could be obtained by the last display above and is always finite due to the fact c111 > 0
by given assumption in the theorem. Tmin should not be very large for moderately large

value of δ unless c111 is unreasonably small since the difference 1
pT −

[
δ 2 p+1−p
(δ p+1−p)2

]T
also grows

exponentially.

A.4.7 Proof of Theorem 2.5.1

First we need to define the following notations:

∥ f |D ,T ≡ sup
δ∈D ,t∈T

| f (δ , t) |

Ψ̂n(δ , t)≡
√

n{ψ̂t(δ )−ψt(δ )}/σ̂(δ , t)

Ψ̃n(δ , t)≡
√

n{ψ̂t(δ )−ψt(δ )}/σ(δ , t)

Ψn(δ ; t)≡Gn{ϕ̃(Z;ηηη ,δ , t)}

where we let T = {1, ...,T}, let Gn denote the empirical process on the full sample as usual,
and let ϕ̃(Z;ηηη ,δ , t) = {ϕ(Z;ηηη ,δ , t)−ψ(t;δ )}/σ(δ ; t) and let G be a mean-zero Gaussian
process with covariance E[G(δ1; t1)G(δ2; t2)] = E [ϕ̃(Z;ηηη ,δ1, t1)ϕ̃(Z;ηηη ,δ2, t2)] as defined
in Theorem 2.5.1 in the main text.

The proof consists of two parts; in the first part we will show Ψn(·)⇝G(·) in l∞(D ,T )

and in the second we will show ∥Ψ̂n −Ψn |D ,T = oP(1).
Part 1. A proof of the first statement immediately follows from the proof of Theorem

3 in Kennedy [67]. He showed the function class Fη̄ηη = {ϕ(·; η̄ηη ,δ ) : δ ∈ D} is Lipschitz
and thus has a finite bracketing integral for any fixed set of nuisance functions, and then
applied Theorem 2.5.6 in Van Der Vaart and Wellner [142]. In our case, the function class
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Fη̄ηη = {ϕ(·; η̄ηη ,δ , t) : δ ∈ D , t ≤ T} is still Lipschitz, since for ∀t ∈ {1, ...,T} we have∣∣∣∣ ∂

∂δ

[
{at −πt(ht)}(1−δ )

δat +1−at

]∣∣∣∣≤ 1
δl

+
1

4δ 2
l∣∣∣∣ ∂

∂δ

[
mt(ht ,1,1)δπt(ht)+mt(ht ,0,1){1−πt(ht)}

δπt(ht)+1−πt(ht)
·ωt(ht ,at)

]∣∣∣∣≤ 2C
δ 2

l

∂

∂δ

[
δat +1−at

δπt(ht)+1−πt(ht)
· 1

ωt(ht ,at)

]
≤ 1

cωδ 2
l

where we use assumption 1) and 2) in the Theorem, and the identification assumption (A3)
that there exist a constant cω such that 0 < ωt(ht ,at) < cω ≤ 1 and thus 1

ωt(ht ,at)
≤ 1

cω
a.e.

[P]. Therefore, every ϕ(·; η̄ηη ,δ , t) is basically a finite sum of products of Lipschitz functions
with bounded D and we conclude Fη̄ηη is Lipschitz.

Hence our function class still has a finite bracketing integral for fixed η̄ηη and t, which
concludes the first statement is true.

Part 2. Let N = n/K be the sample size in any group k = 1, ...,K, and denote the
empirical process over group k units by Gk

n =
√

N(Pk
n −P). From the result of Part 1 and the

proof of Theorem 3 in Kennedy [67] we have

Ψ̃n(δ ; t)−Ψn(δ ; t)

=

√
n

Kσ(δ ; t)

K

∑
k=1

[
1√
N
Gk

n
{

ϕ(Z; η̂ηη−k,δ , t)−ϕ(Z;ηηη ,δ , t)
}
+P

{
ϕ(Z; η̂ηη−k,δ , t)−ϕ(Z;ηηη ,δ , t)

}]
≡ Bn,1(δ ; t)+Bn,2(δ ; t).

Now we analyze the above two pieces Bn,1(δ ; t) and Bn,2(δ ; t). Showing Bn,1(δ ; t) =
oP(1) follows the exact same steps done by Kennedy [67]. However, analysis on Bn,2(δ ; t) is
largely different.

To analyze Bn,2(δ ; t), we follow the same notation with that of Kennedy [67]. First let
ψ(P;Q) denote the mean outcome under intervention Q for a population corresponding
to observed data distribution P. Next, let denote ϕ∗(z;ηηη , t) its centered efficient influence
function when Q does not depend on P, as given in Lemma A.4.4 and let denote ζ ∗(z;ηηη , t)
the contribution to the efficient influence function ϕ∗(z;ηηη , t) due to estimating Q when it
depends on P, as given in Lemma A.4.5. Now by definition,

ϕ(Z;ηηη ,δ , t) = ϕ
∗(Z;ηηη , t)+ψ(P;Q)+ζ

∗(Z;ηηη , t),
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and thereby after some rearrangement we obtain

1√
n

Bn,2(δ ; t) = P{ϕ(Z;ηηη ,δ , t)−ϕ(Z;ηηη ,δ , t)}

=
∫

ϕ
∗(z;ηηη , t)dP(z)+ψ(P;Q)−ψ(P;Q)

+
∫

ζ
∗(z;ηηη , t)dP(z)+ψ(P;Q)−ψ(P;Q).

Although one can relate ηηη to η̂ηη−k in above equation, it can be anything associated with new
P and Q.

Hence, by analyzing the second order remainder terms of von Mises expansion for
the efficient influence functions given in Lemma A.4.4 and A.4.5, we can evaluate the
convergence rate of Bn,2(δ ; t). The following two lemmas analyze those second order
remainder terms in the presence of censoring process.

Lemma A.4.8. Let ψ(P;Q) be a mean outcome under intervention Q for a for a population
corresponding to observed data distribution P, and let ϕ∗(z;ηηη , t) denote its efficient influence
function when Q does not depend on P for given t, as given in Lemma A.4.4. For another
data distribution P, let ηηη denote the corresponding nuisance functions. Then we have von
Mises type expansion

ψ(P;Q)−ψ(P;Q) =
∫

ϕ
∗(z;ηηη , t)dP(z)

+
2

∑
t=1

t

∑
s=1

∫
(m∗

t −mt)

(
t

∏
r=1

dQrdPr

)(
dπs −dπs

dπs

)(
dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

+
2

∑
t=1

t

∑
s=1

∫
(m∗

t −mt)

(
t

∏
r=1

dQrdPr

)(
dωs −dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)
where we define

mt =
∫

mt+1dQt+1dPt+1, m∗
t =

∫
mt+1dQt+1dPt+1,

dQt = dQt(At | Ht), dπt = dP(At | Ht), dPt = dP(Xt | Ht−1,At−1),

dωs = dP(Rs+1 = 1 | Hs,As,Rs = 1), dωs = dP(Rs+1 = 1 | Hs,As,Rs = 1).
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Proof. From Lemma A.4.4, we have

E{ϕ
∗(Z;ηηη)}=

t

∑
t=0

E

{(∫
mt+1dQt+1 −mt

)
1(Rt+1 = 1)

t

∏
s=0

(
dQs

dπs

1
dωs

)}

=
t

∑
t=0

E

{
E

[(∫
mt+1dQt+1 −mt

)
1(Rt+1 = 1)1(Rt = 1)

t

∏
s=0

(
dQs

dπs

1
dωs

)∣∣∣∣∣Ht ,At ,Rt

]}

=
t

∑
t=0

E

{
E

[(∫
mt+1dQt+1 −mt

)
1(Rt = 1)

t

∏
s=0

(
dQs

dπs

1
dωs

)∣∣∣∣∣Ht ,At ,Rt = 1,Rt+1 = 1

]

×dP(Rt+1 = 1 | Ht ,At ,Rt = 1)

}

=
t

∑
t=0

E

{(∫ ∫
mt+1dQt+1dPt+1 −mt

)
1(Rt = 1)dωt

t

∏
s=0

(
dQs

dπs

1
dωs

)}

=
t

∑
t=0

E

{
(m∗

t −mt)dωt1(Rt = 1)
t

∏
s=0

(
dQs

dπs

1
dωs

)}

=
t

∑
t=0

∫
(m∗

t −mt)dωt

t

∏
s=0

{(
dQs

dπs

1
dωs

)
dπsdPsdωs−1

}
where the first equality follows by the definition and linearity of expectation, the second by
iterated expectation and the equivalence between 1(Rt+1 = 1) and 1(Rt+1 = 1,Rt = 1) 2, the
third by the law of total probability on conditional expectation 3, the fourth by the result of
Lemma A.4.1 (i.e. dPt+1 = dP(Xt+1 | Ht ,At ,Rt+1 = 1)) and by the definition, and the fifth
simply by definition. To obtain the last equality, we first apply iterated expectation condi-
tioning on (Ht ,Rt), then do another iterated expectation conditioning on (Ht−1,At−1,Rt−1)

followed by same steps from the second, the third and the fourth equalities, and repeat these
processes for t −2, ...,1.

2For ∀t the event {Rt = 1} implies {Rs = 1 for all s ≤ t} by construction.
3For random variable X ,Y,Z, it follows E[X |Y ] = ∑zE[X |Y,Z = z]P(Z = z|Y ).
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From the last expression, now we have

t

∑
t=0

∫
(m∗

t −mt)
t

∏
s=0

{(
dQs

dπs

dωs

dωs

)
dπsdPs

}
=

t

∑
t=0

∫
(m∗

t −mt)
dπt

dπt

dωt

dω t
dQtdPt

t−1

∏
s=0

{(
dQs

dπs

dωs

dωs

)
dπsdPs

}
=

t

∑
t=0

∫
(m∗

t −mt)

(
dπt −dπt

dπt

)
dωt

dω t
dQtdPt

t−1

∏
s=0

{(
dQs

dπs

dωs

dωs

)
dπsdPs

}
+

t

∑
t=0

∫
(m∗

t −mt)
dωt

dω t
dQtdPt

t−1

∏
s=0

{(
dQs

dπs

dωs

dωs

)
dπsdPs

}
=

t

∑
t=1

∫
(m∗

t −mt)

(
dπt −dπt

dπt

)
dωt

dω t
dQtdPt

t−1

∏
s=0

{(
dQs

dπs

dωs

dωs

)
dπsdPs

}
+

t

∑
t=1

∫
(m∗

t −mt)

(
dωt −dω t

dω t

)
dQtdPt

t−1

∏
s=0

{(
dQs

dπs

dωs

dωs

)
dπsdPs

}
+

t

∑
t=1

∫
(m∗

t −mt)dQtdPt

t−1

∏
s=0

{(
dQs

dπs

dωs

dωs

)
dπsdPs

}
+(m∗

0 −m0)

, where all the algebras are basically adding and subtracting the same term after some
rearrangement. Note that we use the convention from earlier lemmas that all the quantities
with negative times such as dQ−1 are set to one. If we repeat above process t times we obtain
the following identity.

t

∑
t=0

∫
(m∗

t −mt)
t

∏
s=0

{(
dQs

dπs

dωs

dωs

)
dπsdPs

}
=

t

∑
t=1

t

∑
s=1

∫
(m∗

t −mt)

( t

∏
r=s

dQrdPr

)(
dπs −dπs

dπs

)
dωs

dωs

s−1

∏
r=1

{(
dQr

dπr

dωr

dωr

)
dπrdPr

}
+

t

∑
t=1

t

∑
s=1

∫
(m∗

t −mt)

( t

∏
r=s

dQrdPr

)(
dωs −dωs

dωs

) s−1

∏
r=1

{(
dQr

dπr

dωr

dωr

)
dπrdPr

}
+

t

∑
t=1

∫
(m∗

t −mt)

(
t

∏
s=1

dQsdPs

)
+(m∗

0 −m0)

However, by last part of Lemma 5 in Kennedy [67] we have

t

∑
t=1

∫
(m∗

t −mt)

(
t

∏
s=1

dQsdPs

)
= m0 −m∗

0.
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Putting all these together, after some rearranging finally we have

E{ϕ
∗(Z;ηηη)}= m0 −m0

+
t

∑
t=1

t

∑
s=1

∫
(m∗

t −mt)

(
t

∏
r=1

dQrdPr

)(
dπs −dπs

πs

)(
dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

+
t

∑
t=1

t

∑
s=1

∫
(m∗

t −mt)

(
t

∏
r=1

dQrdPr

)(
dωs −dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)
, which yields the formula we have in Lemma A.4.8.

Lemma A.4.9. Let ζ ∗(z;ηηη , t) denote the contribution to the efficient influence function
ϕ∗(z;ηηη , t) due to dependence between P and Q as given in Lemma A.4.5. Then for two
different intervention distributions Q and Q whose corresponding densities are dQt and dQt

respectively with respect to some dominating measure for t = 1, ..., t, we have von Mises type
expansion

ψ(P;Q)−ψ(P;Q) =
∫

ζ
∗(z;ηηη , t)dP(z)

+
t

∑
t=1

∫
φ tdπt(mt −mt)dνdPt

t−1

∏
s=0

(
dQs

dπs

1
dωs

)
dπsdPsdωs

+
t

∑
t=1

t

∑
s=1

∫
φ tdπtmtdνdPt

(
t−1

∏
r=0

dQrdPr

)(
dπs −dπs

dπs

)(
dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

+
t

∑
t=1

t

∑
s=1

∫
φ tdπtmtdνdPt

(
t−1

∏
r=0

dQrdPr

)(
dωs −dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

+
t

∑
t=1

∫
mt
(
dQt −dQt −φ tdπtdν

)
dPt

(
t−1

∏
s=0

dQsdPs

)

where we define all the notation in the same way in Lemma A.4.8.

Proof. From Lemma 6 in Kennedy [67] and by Lemma A.4.1, we have

Ψ(P;Q)−Ψ(P;Q) =
∫

mT

(
T

∏
t=1

dQtdPt −
T

∏
t=1

dQtdPt

)

=
t

∑
t=1

∫
mt
(
dQt −dQt

)
dPt

t−1

∏
s=0

dQsdPs.
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Next, for the expected contribution to the influence function due to estimating Q when it
depends on P, we have that

E[ζ ∗(Z;ηηη)] = E

[
t

∑
t=1

∫
φ tmtdν

(
t−1

∏
s=0

dQs

dπs

1
dωs

)
1(Rt = 1)

]

=
t

∑
t=1

E

[∫
φ tdπtmtdν

(
t−1

∏
s=0

dQs

dπs

1
dωs

)
1(Rt = 1)1(Rt−1 = 1)

]

=
t

∑
t=1

E

{[∫
φ tdπtmtdνdPt

(
t−1

∏
s=0

dQs

dπs

1
dωs

)
1(Rt−1 = 1)

]
dP(Rt = 1 | Ht−1,At−1,Rt−1 = 1)

}

=
t

∑
t=1

E

{∫
φ tdπtmtdνdPt

t−1

∏
s=0

(
dQs

dπs

1
dωs

)
dωt−11(Rt−1 = 1)

}

=
t

∑
t=1

∫
φ tdπtmtdνdPt

t−1

∏
s=0

(
dQs

dπs

1
dωs

)
dπsdPsdωs

where the first equality by definition, the second by iterated expectation conditioning on
(Ht ,Rt) and equivalence between 1(Rt = 1)1(Rt−1 = 1) and 1(Rt = 1), the third by iterated
expectation conditioning on (Ht−1,At−1,Rt−1) and law of total probability, and the fifth by
repeating the process T times. Details follow almost the same logic as in Lemma A.4.8.

Now, we further expand our last expression as

t

∑
t=1

∫
φ tdπtmtdνdPt

t−1

∏
s=0

(
dQs

dπs

1
dωs

)
dπsdPsdωs

=
t

∑
t=1

∫
φ tdπt(mt −mt)dνdPt

t−1

∏
s=0

(
dQs

dπs

1
dωs

)
dπsdPsdωs

+
t

∑
t=1

∫
φ tdπtmtdνdPt

t−1

∏
s=0

(
dQs

dπs

1
dωs

)
dπsdPsdωs

=
t

∑
t=1

∫
φ tdπt(mt −mt)dνdPt

t−1

∏
s=0

(
dQs

dπs

1
dωs

)
dπsdPsdωs

+
t

∑
t=1

t

∑
s=1

∫
φ tdπtmtdνdPt

(
t−1

∏
r=0

dQrdPr

)(
dπs −dπs

dπs

)(
dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

+
t

∑
t=1

t

∑
s=1

∫
φ tdπtmtdνdPt

(
t−1

∏
r=0

dQrdPr

)(
dωs −dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

+
t

∑
t=1

∫
φ tdπtmtdνdPt

(
t−1

∏
s=0

dQsdPs

)
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where the first equality follows by adding and subtracting the second term, an the second by
the same steps used in Lemma A.4.8.

With the last term in the last expression above, it follows

Ψ(P;Q)−Ψ(P;Q)−
t

∑
t=1

∫
φ tdπtmtdνdPt

(
t−1

∏
s=0

dQsdPs

)

=
t

∑
t=1

∫
mt
(
dQt −dQt −φ tdπtdν

)
dPt

(
t−1

∏
s=0

dQsdPs

)
.

Putting these all together, finally we have

Ψ(P;Q)−Ψ(P;Q) = E[ζ ∗(Z;ηηη)]

+
t

∑
t=1

∫
φ tdπt(mt −mt)dνdPt

t−1

∏
s=0

(
dQs

dπs

1
dωs

)
dπsdPsdωs

+
t

∑
t=1

t

∑
s=1

∫
φ tdπtmtdνdPt

(
t−1

∏
r=0

dQrdPr

)(
dπs −dπs

dπs

)(
dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

+
t

∑
t=1

t

∑
s=1

∫
φ tdπtmtdνdPt

(
t−1

∏
r=0

dQrdPr

)(
dωs −dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

+
t

∑
t=1

∫
mt
(
dQt −dQt −φ tdπtdν

)
dPt

(
t−1

∏
s=0

dQsdPs

)

which is the result of the lemma.

Finally, the next Lemma concludes the proof of the second statement and thus completes
the proof of the Theorem 2.5.1. In fact, it is this lemma that substantiates why having all
nuisance functions estimated at rate of n−1/4 can be one sufficient condition.

Lemma A.4.10. Remainders of the von Mises expansion from Lemma A.4.8 and A.4.9 are
both diminishing at rate of n−

1
2 uniformly in δ , if(

sup
δ∈D

∥mδ ,t − m̂δ ,t |+ | πt − π̂t |
)(

| πs −πs∥+ | ωs −ωs∥
)
= oP

(
1√
n

)
,

for ∀s ≤ t ≤ T .
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Proof. The remainder term of the Von Mises type expansion from Lemma A.4.8 equals

t

∑
t=1

t

∑
s=1

∫
(m∗

t −mt)

(
t

∏
r=1

dQrdPr

)(
dπs −dπs

dπs

)(
dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

+
t

∑
t=1

t

∑
s=1

∫
(m∗

t −mt)

(
t

∏
r=1

dQrdPr

)(
dωs −dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

=
t

∑
t=1

t

∑
s=1

∫ {
(mt+1 −mt+1)dQt+1dPt+1 +(mt −mt)

}( t

∏
r=1

dQrdPr

)(
dπs −dπs

dπs

)(
dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

+
t

∑
t=1

t

∑
s=1

∫ {
(mt+1 −mt+1)dQt+1dPt+1 +(mt −mt)

}( t

∏
r=1

dQrdPr

)(
dωs −dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)
≲

t

∑
t=1

(
| mt+1 −mt+1 |+ | mt −mt |

) t

∑
s=1

(
| πs −πs∥+ | ωs −ωs∥

)
where we obtain the first inequality simply by adding and subtracting mt .

For the remainder term from Lemma A.4.9, first note that by Lemma A.4.1 the following
results stated in Kennedy [67] also holds for our case:∫

φ tdπt =
δ (2at −1)(πt −πt)

(δπt +1−πt)2 ,

dQt −dQt −
∫

φ tdπt =
δ (δ −1)(2at −1)(πt −πt)

2

(δπt +1−πt)2(δπt +1−πt)
.

where we additionally condition Rt = 1 for πt ,πt in our case. Hence, it immediately
follows that the remainder from Lemma A.4.9 is

t

∑
t=1

∫
φ tdπt(mt −mt)dνdPt

t−1

∏
s=0
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dQs

dπs

1
dωs

)
dπsdPsdωs

+
t
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t
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s=1

∫
φ tdπtmtdνdPt

(
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∏
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dQrdPr
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dπs

)(
dωs

dωs
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∏
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(
dπr

dπr

dωr

dωr

)

+
t
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t

∑
s=1

∫
φ tdπtmtdνdPt

(
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∏
r=0

dQrdPr

)(
dωs −dωs

dωs

) s−1

∏
r=1

(
dπr

dπr

dωr

dωr

)

+
t

∑
t=1

∫
mt
(
dQt −dQt −φ tdπtdν

)
dPt

(
t−1

∏
s=0

dQsdPs

)

≲
t

∑
t=1

| πt −πt |

{
| mt −mt |+

t

∑
s=1

(
| πs −πs∥+ | ωs −ωs∥

)
+ | πt −πt |

}
.
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Therefore, supported by the condition 4) in Theorem 2.5.1, if we have(
sup
δ∈D

∥mδ ,t − m̂δ ,t |+ | πt − π̂t |
)(

| πs −πs∥+ | ωs −ωs∥
)
= oP(

1√
n
),

for ∀s ≤ t ≤ t, both of the remainders from Lemma A.4.8 and A.4.9 are diminishing at rate
of n−

1
2 uniformly in δ .

A.4.8 Rationality of using multiplier bootstrap from [67]

As in the proof of Theorem 2.5.1, we let

Proof.
∥ f |D ,T ≡ sup

δ∈D ,t∈T
| f (δ , t) |

and define the processes

Ψ̂n(δ , t)≡
√

n{ψ̂t(δ )−ψt(δ )}/σ̂(δ , t)

Ψ̂
∗

n (δ , t)≡Gn [ε{ϕ(Z; η̂ηη−S,δ , t)− ψ̂t(δ )}/σ̂(δ , t)]

Ψ
∗

n (δ , t)≡Gn [ε{ϕ(Z;ηηη ,δ , t)−ψ(t;δ )}/σ(δ , t)]

where we let the star superscripts denote multiplier bootstrap processes defined in The-
orem 4 of Kennedy [67] and let G be a mean-zero Gaussian process with covariance
E[G(δ1; t)G(δ2; t)] = E [ϕ̃(Z;ηηη ,δ1, t1)ϕ̃(Z;ηηη ,δ2, t2)] as defined in Theorem 2.5.1 in the
main text.

From above setup and the result of Theorem 2.5.1 it only requires to show∣∣∣P(| Ψ̂n |D ,T ≤ ĉα

)
−P

(
| Ψ̂ ∗

n |D ,T ≤ ĉα

)∣∣∣= o(1),

since P
(
| Ψ̂ ∗

n |D ,T ≤ ĉα

)
= 1−α by definition. The proof is very straightforward since we

already have shown ∥Ψ̂n−Ψn |D ,T = oP(1) in the proof of Theorem 2.5.1, which implies that∣∣∣| Ψ̂ ∗
n |D ,T − |Ψ ∗

n |D ,T

∣∣∣ = oP(1). Furthermore since we are adding only finite number of
discrete timepoints into the function class used in the proof of Theorem 4 in Kennedy [67],
Lemma 2.3. in Chernozhukov et al. [20] and Corollary 2.2 in Belloni et al. [9] are still valid
in our case and thereby the exact same argument used in the proof of Theorem 4 in Kennedy
[67] follows to conclude the above statement.
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Supplementary Materials for Chapter 3

B.1 Simulations: supplementary materials

Summary of variables

Variable labels in the following tables are exactly match with the one in the SEDA archive
at Stanford Center for Education Policy Analysis 1. In the end, I have on average 1035
samples (the number of districts) each year. In the following tables, one can find list of
covariates (X) used in the simulation and also description of treatment (A) and outcome (Y )
variables.

Group Variable Labels
Varies

by
grade?

Varies
by

year?

Baseline
Covariates

fips, baplus_all, poverty517_all,
singmom_all, snap_all, samehouse_all,

unemp_all, inc50all, giniall,
baplus_mal, baplus_fem, pov_mal,

pov_fem, teenbirth_all

No No

Time-varying
Covariates

nsch, speced, tottch, aides,
diffstutch_hspwht, diffstutch_blkwht

No Yes

Table B.1 Summary of covariates

1https://cepa.stanford.edu/seda/papers
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Group Variable Labels Description

Treatment (A)
flunch_hsp

, flunch_blk
Percent free lunch in average

{Black, Hispanic} student’s school

Outcome (Y )

White.Black.ELA.Gap,
White.Hispanic.ELA.Gap,
White.Black.Math.Gap,

White.Hispanic.Math.Gap

Test score gaps between white and {Black, Hispanic}
students in English/Language Arts (ELA)

and Math standardized assessment outcomes
in grades 3 to 8. We render it binary by using

their average (i.e. 1 if > mean).

Table B.2 Summary of treatment and outcome

Additional results

For completeness of section 3.5.3, we attach additional simulation results for year 2010-
2012. Original data in SEDA ranges from 2009-2013, but we found that there are some
unusual outliers and a number of samples is particularly also very small for year 2013.
Hence we exclude year 2013 and conduct the same simulation with rest of the years. Here
ψ̂DD indicates estimated value of our proposed estimator (difference-in-distribution) for
observational study.

White-Black White-Hispanic
Estimator Math ELA Math ELA

ψ̂pi −0.057 (−0.098,−0.016) −0.041 (−0.075,−0.006) −0.041 (−0.087,0.006) −0.028 (−0.061,0.006)

φ̂IPW −0.040 (−0.089,0.009) −0.032 (−0.055,−0.009) −0.032 (−0.065,0.002) −0.033 (−0.069,0.004)

ψ̂DR −0.053 (−0.064,−0.045) −0.055 (−0.067,−0.041) −0.029 (−0.040,−0.019) −0.050 (−0.076,−0.025)

ψ̂DD 0.812 (0.768,0.856) 0.783 (0.740,0.822) 0.658 (0.620,0.695) 0.802 (0.775,0.830

Table B.3 Estimated causal effect of free lunch on test gaps in 2010 (with 95% CI)

White-Black White-Hispanic
Estimator Math ELA Math ELA

ψ̂pi −0.032 (−0.076,0.012) −0.029 (−0.047,−0.010) −0.052 (−0.097,−0.007) −0.025 (−0.054,0.005)

φ̂IPW −0.012 (−0.038,0.005) −0.019 (−0.039,0.002) −0.022 (−0.059,0.015) 0.011 (−0.025,0.048)

ψ̂DR −0.003 (−0.009,0.016) −0.060 (−0.070,−0.050) −0.036 (−0.049,−0.023) 0.038 (0.026,0.048)

ψ̂DD 0.752 (0.725,0.780) 0.538 (0.510,0.555) 0.702 (0.665,0.730) 0.359 (0.334,0.385)

Table B.4 Estimated causal effect of free lunch on test gaps in 2011 (with 95% CI)
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White-Black White-Hispanic
Estimator Math ELA Math ELA

ψ̂pi −0.039 (−0.087,0.016) −0.030 (−0.060,0.001) −0.046 (−0.077,−0.016) −0.039 (−0.072,−0.006)

φ̂IPW −0.037 (−0.091,0.018) −0.022 (−0.067,0.023) −0.019 (−0.055,0.035) 0.019 (−0.018,0.057)

ψ̂DR −0.068 (−0.079,−0.057) −0.066 (−0.077,−0.056) −0.080 (−0.092,−0.069) 0.022 (−0.001,0.045)

ψ̂DD 0.798 (0.749,0.847) 0.723 (0.681,0.745) 0.658 (0.629,0.694) 0.746 (0.723,0.770)

Table B.5 Estimated causal effect of free lunch on test gaps in 2012 (with 95% CI)

B.2 Proofs

In every proof, all the constants are only defined locally unless a connection to the one in
the main paper is explicitly stated.

B.2.1 Proof of Proposition 3.3.1

Proof. We let Th,y(Y ) = 1
hd K

(
∥y−Y∥2

h

)
as previously. Then

E[q̂a
h | Ai = a, ∀i] = E

[
1(na > 0)

na

n

∑
j=1

Th,y(Y j)1(A j = a) | Ai = a, ∀i

]

=
1
na

n

∑
j=1

1(A j = a)E[Th,y(Yj) | Ai = a, ∀i]

=
1
na

na

∑
j=1

E[Th,y(Yj) | A j = a]

=
1
na

na

∑
j=1

E[Th,y(Y a
j ) | A j = a]

=
1
na

na

∑
j=1

E[Th,y(Y a
j )] = E[Th,y(Y a)],

where the fourth and the fifth equalities follow by assumption (C1) and (C2) respectively.

B.2.2 Proof of Lemma 3.3.1

Lemma B.2.1. Under the assumption (A1), (A2),

E [|q̂a
h(y)−qa

h(y)|]≤
CK,qmax√

nπahd
,
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where CK,qmax is a constant depending only on ∥K∥2 and qmax.

Proof. Recall that q̂a
h(y) is defined by

q̂a
h(y) =

∑
n
i=1 Th,y(Yi)1(Ai = a)

∑
n
i=11(Ai = a)

1(na > 0)

where we let Th,y(Y ) = 1
hd

a
K
(
||y−Y ||2

ha

)
as previously. Then (q̂a

h(y)−qa
h(y))

2 is expanded as

(q̂a
h(y)−qa

h(y))
2 =

(
∑

n
i=1 Th,y(Yi)1(Ai = a)

∑
n
i=11(Ai = a)

1(na > 0)−qa
h(y)

)2

=

(
∑

n
i=1(Th,y(Yi)−qa

h(y))1(Ai = a)
∑

n
i=11(Ai = a)

)2

1(na > 0)+qa
h(y)

2
1(na = 0).

(B.1)

Consider the first term of (B.1). Conditioned on Ã =: A1, ...,An, its expectation can be
expanded as

E

[(
∑

n
i=1(Th,y(Yi)−qa

h(y))1(Ai = a)
∑

n
i=11(Ai = a)

)2

1(na > 0) | Ã

]

=
E
[(

∑
n
i=1(Th,y(Yi)−qa

h(y))1(Ai = a)
)2 | Ã

]
(∑n

i=11(Ai = a))2 1(na > 0)

=
∑

n
i=1E

[
(Th,y(Yi)−qa

h(y))
2 | Ai = a

]
(∑n

i=11(Ai = a))2 1(na > 0)

+
∑i ̸= jE

[
(Th,y(Yi)−qa

h(y))(Th,y(Yj)−qa
h(y))1(Ai = a)1(A j = a) | Ã

]
(∑n

i=11(Ai = a))2 1(na > 0).

(B.2)

Then it follows

E
[
(Th,y(Yi)−qa

h(y))
2 | Ai = a

]
= E

[
(Th,y(Y a

i )−qa
h(y))

2]
=Var(Th,y(Yi))≤

qmax∥K∥2
2

hd (B.3)

where the first equality follows by (C1) and (C2) and the last inequality by Proposition 1.1 of
[131].
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Similarly, for any i ̸= j, we have

E
[
(Th,y(Yi)−qa

h(y))(Th,y(Yj)−qa
h(y))1(Ai = a)1(A j = a) | Ã

]
= E

[
(Th,y(Yi)−qa

h(y))(Th,y(Yj)−qa
h(y)) | Ai = a,A j = a

]
= E

[
(Th,y(Y a

i )−qa
h(y))(Th,y(Y a

j )−qa
h(y))

]
= 0, (B.4)

where the last equality follows by the identity E[Th,y(Y a)] = qa
h(y). Hence applying (B.3)

and (B.4) to (B.2) gives

E

[(
∑

n
i=1(Th,y(Yi)−qa

h(y))1(Ai = a)
∑

n
i=11(Ai = a)

)2

1(na > 0) | Ã

]

≤
∑

n
i=1

qmax∥K∥2
2

hd 1(Ai = a)

(∑n
i=11(Ai = a))2 1(na > 0)

=
qmax∥K∥2

2
hd

1(na > 0)
∑

n
i=11(Ai = a)

. (B.5)

Now, by the law of total expectation we have

E

[(
∑

n
i=1(Th,y(Yi)−qa

h(y))1(Ai = a)
∑

n
i=11(Ai = a)

)2

1(na > 0)

]

= E

[
E

[(
∑

n
i=1(Th,y(Yi)−qa

h(y))1(Ai = a)
∑

n
i=11(Ai = a)

)2

1(na > 0) | Ã

]]

≤
qmax∥K∥2

2
hd E

[
1(na > 0)

∑
n
i=11(Ai = a)

]
≤

2qmax∥K∥2
2

(n+1)hdπa
, (B.6)

where the last inequality follows by Lemma 4.1 from [? ]. Thus we have obtained the upper
bound for the first term of (B.1).

Next, the second term of (B.1) can be bounded simply as

E
[
qa

h(y)
2
1(na = 0)

]
= qa

h(y)
2P(na = 0)≤

qmax∥K∥2
2

hd (1−πa)
n. (B.7)
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Finally, applying (B.6) and (B.7) to (B.1) gives L2(P) bound for q̂a
h(y)−qa

h(y) as

E
[
(q̂a

h(y)−qa
h(y))

2
]

= E

[(
∑

n
i=1(Th,y(Yi)−qa

h(y))1(Ai = a)
∑

n
i=11(Ai = a)

)2

1(na > 0)

]
+E

[
qa

h(y)
2
1(na = 0)

]
≤

qmax∥K∥2
2

hd

(
2

(n+1)πa
+(1−πa)

n
)

≤
qmax∥K∥2

2
hd

(
2

nπa
+ exp(−nπa)

)
≤

3qmax∥K∥2
2

nπahd .

Applying Jensen’s inequality gives the bound for q̂a
h(y)−qa

h(y) by

E [|q̂a
h(y)−qa

h(y)|]≤
√
E
[(

q̂a
h(y)−qa

h(y)
)2
]

≤
√

3qmax∥K∥2√
nπahd

≤
CK,qmax√

nπahd
,

where CK,qmax =
√

3qmax∥K∥2 is a constant depending only on ∥K∥2 and qmax.

Lemma B.2.2.
E
[
D(Q̂a

h,Q
a
h)
]
≤

CK,qmax,D√
nπahd

,

where CK,qmax,D is a constant depending only on ∥K∥2, qmax, λd(D).

Proof. Applying Lemma B.2.1 and Fubini Theorem gives

E
[
D(Q̂a

h,Q
a
h)
]
= E

[∫
D
|q̂a

h(u)−qa
h(u)|du

]
=
∫
D
E [|q̂a

h(u)−qa
h(u)|]du

≤ λd(D) sup
u∈D

E [|q̂a
h(u)−qa

h(u)|]

≤
CK,qmaxλd(D)√

nπahd
=

CK,qmax,D√
nπahd

,

where CK,qmax,D =CK,qmaxλd(D).
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B.2.3 Proof of Theorem 3.3.1

Claim B.2.1. For distributions Q1, Q2, Q3, Q4,

|D(Q1,Q2)−D(Q3,Q4)| ≤ D(Q1,Q3)+D(Q2,Q4).

Proof. Since D is distance measure, by triangle inequality it follows

D(Q1,Q2)≤ D(Q1,Q3)+D(Q3,Q4)+D(Q4,Q2),

D(Q3,Q4)≤ D(Q3,Q1)+D(Q1,Q2)+D(Q2,Q4),

and consequently we obtain

|D(Q1,Q2)−D(Q3,Q4)| ≤ D(Q1,Q3)+D(Q2,Q4).

Theorem B.2.1. Under the assumptions (A1) and (A2),

E
[
|D(Q̂1

h1
, Q̂0

h)−D(Q1
h1
,Q0

h0
)|
]
≤CK,qmax,D

 1√
nπ1hd

1

+
1√

nπ0hd
0

 ,

where CK,qmax,D is a constant depending only on ∥K∥2, qmax, λd(D).

Proof. Applying Claim B.2.1 gives

|D(Q̂1
h1
, Q̂0

h0
)−D(Q1

h1
,Q0

h0
)| ≤ D(Q̂1

h1
,Q1

h1
)+D(Q̂0

h0
,Q0

h0
).

Hence under (A1) and (A2), taking expectation and applying Lemma B.2.2 gives

E
[
|D(Q̂1

h1
, Q̂0

h0
)−D(Q1

h1
,Q0

h0
)|
]
≤ E

[
D(Q̂1

h1
,Q1

h1
)
]
+E

[
D(Q̂0

h0
,Q0

h0
)
]

≤CK,qmax,D

 1√
nπ1hd

1

+
1√

nπ0hd
0

 .
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B.2.4 Proof of Theorem 3.3.2

Theorem B.2.2. Under the assumptions (A1) and (A2),

EP

[∣∣∣∣∣ 1
N

N

∑
i=1

D((Q̂1
h1
)i,(Q̂0

h0
)i)−EP

[
D(Q1

h1
,Q0

h0
)
]∣∣∣∣∣
]

≤
CK,qmax,D

N

N

∑
i=1

 1√
niπ1,ihd

1

+
1√

niπ0,ihd
0

+
σP√

N
,

where CK,qmax,D is from Theorem B.2.1 and σP =

√
VarP

[
D(Q1

h1
,Q0

h0
)
]

depends only on

P .

Proof. First, note that 1
N ∑

N
i=1 D(Q̂1

i , Q̂
0
i )−EP [D(Q1,Q0)] can be expanded as

1
N

N

∑
i=1

D((Q̂1
h1
)i,(Q̂0

h0
)i)−EP

[
D(Q1

h1
,Q0

h0
)
]

=
1
N

N

∑
i=1

(
D((Q̂1

h1
)i,(Q̂0

h0
)i)−D(Q1

h1
,Q0

h0
)
)
+

1
N

N

∑
i=1

(
D(Q1

h1
,Q0

h0
)−EP

[
D(Q1

h1
,Q0

h0
)
])

.

(B.8)

For the first term of (B.8), by law of total expectation and Theorem B.2.1, we have

EP

[∣∣∣∣∣ 1
N

N

∑
i=1

(
D((Q̂1

h1
)i,(Q̂0

h0
)i)−D(Q1

h1
,Q0

h0
)
)∣∣∣∣∣
]

= EP

[
E

[∣∣∣∣∣ 1
N

N

∑
i=1

(
D((Q̂1

h1
)i,(Q̂0

h0
)i)−D(Q1

h1
,Q0

h0
)
)∣∣∣∣∣ |P1, . . . ,Pn

]]

≤ 1
N

N

∑
i=1

EP

[
E
[∣∣∣D((Q̂1

h1
)i,(Q̂0

h0
)i)−D(Q1

h1
,Q0

h0
)
∣∣∣ |Pi

]]
≤

CK,qmax,D
N

N

∑
i=1

 1√
niπ1,ihd

1

+
1√

niπ0,ihd
0

 , (B.9)



B.2 Proofs 139

For the second term of (B.8), Jensen inequality and applying Lemma B.2.4 gives the bound
as

EP

[∣∣∣∣∣ 1
N

N

∑
i=1

(
D(Q1

h1
,Q0

h0
)−EP

[
D(Q1

h1
,Q0

h0
)
])∣∣∣∣∣
]

≤

√√√√√EP

( 1
N

N

∑
i=1

(
D(Q1

h1
,Q0

h0
)−EP

[
D(Q1

h1
,Q0

h0
)
]))2



≤

√
VarP

[
D(Q1

h1
,Q0

h0
)
]

√
N

. (B.10)

Hence applying (B.9) and (B.10) to (B.8) gives the bound for 1
N ∑

N
i=1 D((Q̂1

h1
)i,(Q̂0

h0
)i)−

EP

[
D(Q1

h1
,Q0

h0
)
]

as

EP

[∣∣∣∣∣ 1
N

N

∑
i=1

D((Q̂1
h1
)i,(Q̂0

h0
)i)−EP

[
D(Q1

h1
,Q0

h0
)
]∣∣∣∣∣
]

≤ EP

[∣∣∣∣∣ 1
N

N

∑
i=1

(
D((Q̂1

h1
)i,(Q̂0

h0
)i)−D(Q1

h1
,Q0

h0
)
)∣∣∣∣∣
]

+EP

[∣∣∣∣∣ 1
N

N

∑
i=1

(
D(Q1

h1
,Q0

h0
)−EP

[
D(Q1

h1
,Q0

h0
)
])∣∣∣∣∣
]

≤
CK,qmax,D

N

N

∑
i=1

 1√
niπ1,ihd

1

+
1√

niπ0,ihd
0

+
σP√

N
,

where σP =

√
VarP

[
D(Q1

h1
,Q0

h0
)
]

.

B.2.5 Proof of Theorem 3.3.3

Part A: Lemmas on robustness to model misspecification and sample splitting
First we prove following two lemmas that come in handy for rest of the proof.

Lemma B.2.3. (Robustness to model misspecification) As in assumption (B1), let πa and
µa denote fixed functions to which π̂a and µ̂a asymptotically converge in the sense that
∥π̂a − πa∥ = oP(1) and ∥µ̂a − µ

a∥ = oP(1), where πa and µa are not necessarily true
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functions πa and µa. Also recall that qa
h(y) = E

{
E
[
Th,y(Y )

∣∣∣X ,A = a
]}

as defined in (3.6).
Then under the set of causal assumptions for observational study, it follows

qa
h(y) = E{µa(X)}

= E
{
1(A = a)

πa(X)

(
Th,y(Y )−µA(X)

)
+µa(X)

}
= E

{
1(A = a)

πa(X)

(
Th,y(Y )−µA(X)

)
+µa(X)

} (B.11)

Proof. First equality in (B.11) immediately comes from the definition. Let’s start with the
second equality in which πa is not correctly specified. It is not hard to obtain the following:

E
{
1(A = a)

πa(X)

(
Th,y(Y )−µA(X)

)
+µa(X)

}
= E

{
E
[
1(A = a)

πa(X)

(
Th,y(Y )−µA(X)

)
+µa(X)

∣∣∣A,X]}
= E

{
1(A = a)

πa(X)

(
E[Th,y(Y )|A,X ]−µA(X)

)
+µa(X)

∣∣∣}
= E

{
1(A = a)

πa(X)

(
µA(X)−µA(X)

)
+µa(X)

∣∣∣}
= E{µa(X)}
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, where the first equality comes from the law of total expectation. Next, we show the third
equality of (B.11) where µa is not correctly specified. In fact, it follows that

E
{
1(A = a)

πa(X)

(
Th,y(Y )−µA(X)

)
+µa(X)

}
= E

{
E
[
1(A = a)

πa(X)

(
Th,y(Y )−µA(X)

)
+µa(X)

∣∣∣A,X]}
= E

{
1(A = a)

πa(X)

(
E[Th,y(Y )|A,X ]−µA(X)

)
+µa(X)

}
= E

{
1(A = a)

πa(X)

(
µA(X)−µA(X)

)
+µa(X)

}
= E

{
1(A = a)

πa(X)

(
µa(X)−µa(X)

)
+µa(X)

}
= E

{
E
[
1(A = a)

πa(X)

(
µa(X)−µa(X)

)
+µa(X)

∣∣∣X]}
= E

{
E[A = a|X ]

πa(X)

(
µa(X)−µa(X)

)
+µa(X)

}
= E{µa(X)−µa(X)+µa(X)}
= E{µa(X)}

, where we use the law of total expectation in the first and the fifth equality and use the fact
that E[A = a|X ] = πa(X) in the sixth equality.

Note that the assumption used in Lemma B.2.3 is even much weaker than (B1). Indeed,
µa and πa can be anything to which π̂a and µ̂a converge regardless of the convergence rates.

We then show the following Lemma, which is a slight modification from [? , Lemma 2].
As mentioned in the main text, for a function f , we use the notation ∥ f∥q = (

∫
| f (z)|qdP(z))

1
q

be the Lq(P)-norm of f .

Lemma B.2.4. Let Pn denote the empirical measure over (Z1, . . . ,Zn), which is i.i.d. from
P. Let f̂ be a real-valued function constructed in a separate independent sample. Let
P( f̂ ) =

∫
f̂ (z)dP(z) and let E be over (Z1, . . . ,Zn), then we have

√
E
[(
(Pn −P) f̂

)2
]
≤

√
Var

[
f̂
]

n
≤
∥∥ f̂
∥∥

2√
n
.
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Proof.
(
(Pn −P) f̂

)2 can be expanded as

(
(Pn −P) f̂

)2
=

(
1
n

n

∑
i=1

(
f̂ (Zi)−E

[
f̂ (Zi)

]))2

=
1
n2

n

∑
i=1

(
f̂ (Zi)−E

[
f̂ (Zi)

])2
+∑

i ̸= j

(
f̂ (Zi)−E

[
f̂ (Zi)

])(
f̂ (Z j)−E

[
f̂ (Z j)

])
.

Then from independence of Zi and Z j,

E
[(
(Pn −P) f̂

)2
]

=
1
n2

n

∑
i=1

E
[(

f̂ (Zi)−E
[

f̂ (Zi)
])2
]
+∑

i ̸= j
E
[

f̂ (Zi)−E
[

f̂ (Zi)
]]
E
[

f̂ (Z j)−E
[

f̂ (Z j)
]]

=
1
n

Var
[

f̂
]

≤ 1
n
E
[

f̂ 2]= 1
n

∥∥ f̂
∥∥2

2 .

Just for further guide to notations, notice that P( f ) is random only if f̂ depends on
samples, in which case P( f̂ ) ̸= E( f̂ ). Otherwise P and E can be use exchangeably.

Part B: Bounding ψ̂a
h −qa

h

For all y ∈Rd , let Th,y : Rd → R be Th,y(y′) = 1
hd K

(
∥y−y′∥2

h

)
, and let f̂ a

h,y : Rd ×{0,1}×
R→ R, f a

h,y : Rd ×{0,1}×R→ R be

f̂ a
h,y(x

′,a′,y′) =
1a(a′)
π̂a(x′)

(
Th,y(y′)− µ̂a′(x

′)
)
+ µ̂a(x′),

f a
h,y(x

′,a′,y′) =
1a(a′)
π̄a(x′)

(
Th,y(y′)− µ̄a′(x

′)
)
+ µ̄a(x′),

Hereafter we proceed with shorthand notations π̂a, µ̂a,πa,µa.

Claim B.2.2. For all y ∈ Rd , ψ̂a
h (y)−qa

h(y) can be decomposed as

ψ̂
a
h (y)−qa

h(y) = (Pn −P) f̂ a
h,y +P( f̂ a

h,y − f a
h,y).

Proof. By Lemma B.2.3, we have

ψ̂
a
h (y)−qa

h(y) = Pn f̂ a
h,y −P f a

h,y = (Pn −P) f̂ a
h,y +P( f̂ a

h,y − f a
h,y),
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as long as at least one of µa and πa is correctly specified as µa and πa respectively.

Lemma B.2.5. Under the assumptions (A2), (B2), and (B3), and that at least one of µa and
πa is correctly specified as µa and πa, for all y ∈ Rd ,

E [|ψ̂a
h (y)−qa

h(y)|]≤Ch,K,π̂a,µ̂a

1√
n
+Cπ̂a∥µ̂a −µa∥2∥π̂a −πa∥2,

where Ch,K,π̂a,µ̂a is a constant depending only on h, ∥K∥2,
∥∥∥ 1

π̂a

∥∥∥
∞

, ∥µ̂a∥2, and Cπ̂a is a

constant depending only on
∥∥∥ 1

π̂a

∥∥∥
∞

.

Proof. From Claim B.2.2 it follows

ψ̂
a
h (y)−qa

h(y) = (Pn −P) f̂ a
h,y +P( f̂ a

h,y − f a
h,y). (B.12)

For the first term of (B.12), under (A2) and (B2), note that
∥∥∥ f̂ a

h,y

∥∥∥
L2

can be bounded as

∥∥∥ f̂ a
h,y

∥∥∥
2
=

∥∥∥∥1a

π̂a

(
Th,y − µ̂a

)
+ µ̂a

∥∥∥∥
2

≤
∥∥∥∥1a

π̂a

∥∥∥∥
∞

(∥∥Th,y
∥∥

2 +∥µ̂a∥2
)
+∥µ̂a∥2

≤
∥∥∥∥ 1

π̂a

∥∥∥∥
∞

(
h−d ∥K∥2 +2∥µ̂a∥2

)
.

Hence under (B3), we apply Lemma B.2.4 and get the bound as

E
[∣∣∣(Pn −P) f̂ a

h,y

∣∣∣]≤√E
[∣∣∣(Pn −P) f̂ a

h,y

∣∣∣2]

≤

∥∥∥ f̂ a
h,y

∥∥∥
2√

n

≤ 1√
n

∥∥∥∥ 1
π̂a

∥∥∥∥
∞

(
h−d ∥K∥2 +2∥µ̂a∥2

)
. (B.13)
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For the second term of the decomposition (B.12), we have that

P( f̂ a
h − f a

h ) = P
[
1(A = a)

π̂a
(Th − µ̂A)+ µ̂a −

1(A = a)
πa

(Th −µA)−µa

]
= P

[
1(A = a)Th

π̂aπa
(πa − π̂a)−

1(A = a)
π̂a

(µ̂A −µA)−µA1(A = a)
πa − π̂a

π̂aπa
+ µ̂a −µa

]
= P

[
1(A = a)

π̂aπa
(πa − π̂a)(Th −µA)+(µ̂a −µa)

(
1− 1(A = a)

π̂a

)]
= P

[
1(A = a)

π̂aπa
(πa − π̂a)(µA −µA)+(µ̂a −µa)

(π̂a −πa)

π̂a

]
= P

[
(µ̂a −µa)

(π̂a −πa)

π̂a

]

where the second inequality follows by adding and subtracting 1(A=a)
π̂a

µA and the fourth by

the law of total expectation conditioning on (X ,A). By assumption (B2), we have
∥∥∥ 1

π̂a

∥∥∥
∞

< ∞.
Hence by conditional Cauchy-Schwarz inequality finally we have

P( f̂ a
h − f a

h )≤
∥∥∥∥ 1

π̂a

∥∥∥∥
∞

P [(µ̂a −µa)(π̂a −πa)]

≤
∥∥∥∥ 1

π̂a

∥∥∥∥
∞

∥µ̂a −µa∥2∥π̂a −πa∥2. (B.14)

Hence applying (B.13) and (B.14) to (B.12) leads to

E [|ψ̂a
h (y)−qa

h(y)|]≤ E
[∣∣∣(Pn −P) f̂ a

h,y

∣∣∣]+P( f̂ a
h,y − f a

h,y)

≤ 1√
n

∥∥∥∥ 1
π̂a

∥∥∥∥
∞

(
h−d ∥K∥2 +2∥µ̂a∥2

)
+

∥∥∥∥ 1
π̂a

∥∥∥∥
∞

∥µ̂a −µa∥2∥π̂a −πa∥2

=Ch,K,π̂a,µ̂a

1√
n
+Cπ̂a∥µ̂a −µa∥2∥π̂a −πa∥2,

where Ch,K,π̂a,µ̂a =
∥∥∥ 1

π̂a

∥∥∥
∞

(
h−d ∥K∥2 +2∥µ̂a∥2

)
is a constant depending only on h, ∥K∥2,∥∥∥ 1

π̂a

∥∥∥
∞

, ∥µ̂a∥2, and Cπ̂a =
∥∥∥ 1

π̂a

∥∥∥
∞

is a constant depending only on
∥∥∥ 1

π̂a

∥∥∥
∞

.

Part C: Bounding L1 risk of D(ψ̂1
h , ψ̂

0
h )

Claim B.2.3. Let Yh,RK = {u ∈ Rd : there exists y ∈ Y with
∥∥u−y

h

∥∥ ≤ RK}. Then if u /∈
Yh,RK ,

ψ̂
a
h (u) = qa

h(u) = 0.
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Proof. Note that for all u /∈ Yh,RK and y ∈ Y , K
(u−y

h

)
= 0. And hence ψ̂a

h (u) = qa
h(u) = 0

if u /∈ Yh,RK .

Lemma B.2.6. Under the assumptions (A1), (A2), (B2), and (B3), we have

E
[∣∣∣D(Q̂a

h,Q
a
h)
∣∣∣]≤Ch,K,π̂a,µ̂a,Yh,RK

1√
n
+Cπ̂a,Yh,RK

∥µ̂a −µa∥2∥π̂a −πa∥2,

where Ch,K,π̂a,µ̂a,Yh,RK
is a constant depending only on h, ∥K∥2,

∥∥∥ 1
π̂a

∥∥∥
∞

, ∥µ̂a∥2, λd(Yh,RK),

and Cπ̂a,Yh,RK
is a constant depending only on

∥∥∥ 1
π̂a

∥∥∥
∞

, λd(Yh,RK), with Yh,Rk from Claim
B.2.3.

Proof. From our set up we have that

D(Q̂a
h,Q

a
h) =

∫
|q̂a(u)−qa(u)|du =

∫
|ψ̂a

h (u)−qa
h(u)|du.

Then from Claim B.2.3,

D(Q̂a
h,Q

a
h) =

∫
Yh,Rk

|ψ̂a
h (u)−qa

h(u)|du.

Then applying Fubini’s Theorem and Lemma B.2.5 provides the upper bound for E
[∣∣∣D(Q̂a

h,Q
a
h)
∣∣∣]

as

E
[∣∣∣D(Q̂a

h,Q
a
h)
∣∣∣]= E

[∫
Yh,Rk

|ψ̂a
h (u)−qa

h(u)|du

]
=
∫
Yh,Rk

E [|ψ̂a
h (u)−qa

h(u)|]du

≤ λd(Yh,Rk) sup
u∈Yh,Rk

|E [|ψ̂a
h (u)−qa

h(u)|]|

≤ λd(Yh,Rk)Ch,K,π̂a,µ̂a

1√
n
+λ (Yh,Rk)Cπ̂a∥µ̂a −µa∥2∥π̂a −πa∥2

=Ch,K,π̂a,µ̂a,Yh,RK

1√
n
+Cπ̂a,Yh,RK

∥µ̂a −µa∥2∥π̂a −πa∥2,

where Ch,K,π̂a,µ̂a,Yh,RK
= λd(Yh,RK)Ch,K,π̂a,µ̂a and Cπ̂a,Yh,RK

= λd(Yh,RK)Cπ̂a .

Finally the following theorem concludes our proof for Theorem 3.3.3.



146 Supplementary Materials for Chapter 3

Theorem B.2.3. Under the assumptions (A1), (A2), (B1), (B2), and (B3), we have

E
[∣∣∣D(Q̂1

h, Q̂
0
h)−D

(
Q1

h,Q
0
h
)∣∣∣]≤Ch,K,π̂1,π̂0,µ̂1,µ̂0,Yh,RK

1√
n
+Cπ̂1,π̂0,Yh,RK

∥µ̂a−µa∥2∥π̂a−πa∥2,

where Ch,K,π̂1,π̂0,µ̂1,µ̂0,Yh,RK
is a constant depending only on h, ∥K∥2,

∥∥∥ 1
π̂1

∥∥∥
∞

,
∥∥∥ 1

π̂0

∥∥∥
∞

, ∥µ̂1∥2,

∥µ̂0∥2, λd(Yh,RK), and Cπ̂1,π̂0,Yh,RK
is a constant depending only on

∥∥∥ 1
π̂1

∥∥∥
∞

,
∥∥∥ 1

π̂0

∥∥∥
∞

, λd(Yh,RK).
In particular,

E
[∣∣∣D(Q̂1

h, Q̂
0
h)−D

(
Q1

h,Q
0
h
)∣∣∣]= O

(
1√
n

)
+OP (s(n)r(n)) .

Proof. E
[∣∣∣D(Q̂1

h, Q̂
0
h)−D

(
Q1

h,Q
0
h

)∣∣∣] can be bounded as

E
[∣∣∣D(Q̂1

h, Q̂
0
h)−D

(
Q1

h,Q
0
h
)∣∣∣]≤ E

[∣∣∣D(Q̂1
h,Q

1
h)
∣∣∣]+E

[∣∣∣D(Q̂0
h,Q

0
h)
∣∣∣] .

Then under (A1), (A2), (B1), (B2), (B3), applying Lemma B.2.6 gives the bound as

E
[∣∣∣D(Q̂1

h, Q̂
0
h)−D

(
Q1

h,Q
0
h
)∣∣∣]≤Ch,K,π̂1,µ̂1,Yh,RK

1√
n
+Cπ̂1,Yh,RK

∥µ̂a −µa∥2∥π̂a −πa∥2

+Ch,K,π̂0,µ̂0,Yh,RK

1√
n
+Cπ̂0,Yh,RK

∥µ̂a −µa∥2∥π̂a −πa∥2

≤Ch,K,π̂1,π̂0,µ̂1,µ̂0,Yh,RK

1√
n
+Cπ̂1,π̂0,Yh,RK

∥µ̂a −µa∥2∥π̂a −πa∥2,

where Ch,K,π̂1,π̂0,µ̂1,µ̂0,Yh,RK
=Ch,K,π̂1,µ̂1,Yh,RK

+Ch,K,π̂0,µ̂0,Yh,RK
and Cπ̂1,π̂0,D=Cπ̂1,Yh,RK

+Cπ̂0,Yh,RK
.

B.2.6 Proof of Theorem 3.4.1

For a ∈ {0,1}, let π̂a =
1
n ∑

n
i=11a(Ai) =

na
n . For all y ∈ Rd , let f a

h,y : {0,1}×R→ R be

f a
h,y(a

′,y′) =
1
hd K

(
∥y− y′∥2

h

)
1a(a′),

and let F a := { f a
h,y : y∈Yh,RK ,a∈A } where Yh,RK = {u∈Rd : there exists y∈Y with

∥∥u−y
h

∥∥≤
RK} which can be found in Claim B.2.3. Now we need the following Lemma B.2.7.

Lemma B.2.7. Under the assumptions (A1), (A2’),

√
n(Pn −P)→G weakly in ℓ∞(F

a).
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Proof. First, we note that by Assumption (A2’) for all y1,y2 ∈ Yh,RK ,

∣∣∣ f a
h,y1

(a′,y′)− f a
h,y2

(a′,y′)
∣∣∣≤ 1

hd

∣∣∣∣K(∥y1 − y′∥2

h

)
−K

(
∥y2 − y′∥2

h

)∣∣∣∣
≤ LK

hd+1∥y1 − y2∥2,

and hence for any probability measure P on {0,1}×Rd ,

∥ f a
h,y1

− f a
h,y2

∥L2(P) ≤ ∥ f a
h,y1

− f a
h,y2

∥∞ ≤ LK

hd+1∥y1 − y2∥2.

Therefore f a
h,y is Lipschitz in parameter, and by Example 19.7 of van der Vaart [139] we have

the bracketing numbers satisfy

N[](F
a,L2(P),ε

LK

hd+1 )≤CYh,RK

(
diamΘ

ε

)d

for some constant CYh,RK
, where Θ =Yh,RK ∪A . Since Yh,RK is compact subset of Rd , diamΘ

is bounded by some constant CΘ < ∞. Then we have the bracketing integral satisfying

J[](F
a,L2(P),1) =

∫ 1

0

√
logN[](F ,L2(P),ε)dε

≤
∫ 1

0

√
log
(

CΘ Lk/hd+1

ε

)d

dε

≤
∫ 1

0

√
d log

(
1
ε

)
+d logLKdε < ∞.

Hence, by Theorem 19.5 in van der Vaart [139]
√

n(Pn −P)→G weakly in ℓ∞(F a).

Proof of Theorem 3.4.1. Note that from Claim B.2.3, q̂a
h(y) = qa

h(y) = 0 if y /∈ Yh,RK . Also

we note that from the proof of Proposition B.2.1, qa
h =

E[Th,y(Y )1(A=a)]
P(A=a) =

P f a
h,y

P1a
. Hence
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√
nD(Q̂a

h,Q
a
h) can be expanded as

√
nD(Q̂a

h,Q
a
h) =

∫ √
n |q̂a

h(y)−qa
h(y)|dy

=
∫
Yh,RK

√
n |q̂a

h(y)−qa
h(y)|dy

=
∫
Yh,RK

√
n

∣∣∣∣∣Pn f a
h,y1(Pn1a > 0)

Pn1a
−

P f a
h,y

P1a

∣∣∣∣∣dy

=
∫
Yh,RK

√
n

∣∣∣∣∣1(Pn1a > 0)
Pn1a

(
(Pn −P) f a

h,y −
(Pn −P)1aP f a

h,y

P1a

)
−1(Pn1a = 0)

P f a
h,y

P1a

∣∣∣∣∣dy

=
∫
Yh,RK

∣∣∣∣1(π̂a > 0)
π̂a

(√
n(Pn −P) f a

h,y −qa
h(y)

√
n(Pn −P)1a

)
−qa

h(y)
√

n1(π̂a = 0)
∣∣∣∣dy.

Hence by letting Φ : ℓ∞(Fa)× [0,1]× ℓ∞(R) → R as Φ(µ,θ ,q) = 1(θ>0)
θ

∫
Yh,RK

|µ f a
h,y −

q(y)µ1a|dy, then Φ is continuous on ℓ∞(Fa)× (0,1]× ℓ∞(R), and

∣∣√nD(Q̂a
h,Q

a
h)−Φ(

√
n(Pn −P), π̂a, qa

h)
∣∣≤√

n1(π̂a = 0)
∫
Yh,RK

qa
h(y)dy.

Now, note that from strong law of large numbers, π̂a → πa > 0 a.s.. Hence by Lemma B.2.7
and continuous mapping theorem (e.g., Kosorok [78, Theorem 7.7]) applied to

√
n(Pn−P)→

G and π̂a → πa, we have

Φ(
√

n(Pn −P), π̂a, qa
h)→ Φ(G,πa,qa

h) =
1
πa

∫ ∣∣∣G f a
h,y −qa

h(y)G1a

∣∣∣dy in distribution.

Also, note that
E
[√

n1(π̂a = 0)
]
=
√

n(1−πa)
n → 0.

Then by Markov inequality, we have∣∣√nD(Q̂a
h,Q

a
h)−Φ(

√
n(Pn −P), π̂a, qa

h)
∣∣→ 0in probability,

and consequently

√
nD(Q̂a

h,Q
a
h)→

1
πa

∫ ∣∣∣G f a
h,y −qa

h(y)G1a

∣∣∣dy in distribution.



B.2 Proofs 149

B.2.7 Proof of Theorem 3.4.2

For all y ∈ Rd , let Th,y : Rd → R be Th,y(y′) = 1
hd K

(
∥y−y′∥2

h

)
, and let f̂ a

h,y : Rk ×{0,1}×
Rd → R, f a

h,y : Rk ×{0,1}×Rd → R be

f̂ a
h,y(x

′,a′,y′) =
1a(a′)
π̂a(x′)

(
Th,y(y′)− µ̂a′(x

′)
)
+ µ̂a(x′),

f a
h,y(x

′,a′,y′) =
1a(a′)
π̄a(x′)

(
Th,y(y′)− µ̄a′(x

′)
)
+ µ̄a(x′).

Consider F a = { f a
h,y : y ∈ Yh,RK ,a ∈ A } where Yh,RK is defined in Claim B.2.3.

Lemma B.2.8. Under the assumptions (A1), (A2’), (B1), (B2’), (B3),

√
n(Pn −P)→G weakly in ℓ∞(F

a).

Proof. By assumption (A2’) and (B2’) for all y1,y2 ∈ Yh,RK ,

∣∣∣ f a
h,y1

(x′,a′,y′)− f a
h,y2

(x′,a′,y′)
∣∣∣≤ ∥∥∥∥ 1

π̄a

∥∥∥∥
∞

1
hd

∣∣∣∣K(∥y1 − y′∥2

h

)
−K

(
∥y2 − y′∥2

h

)∣∣∣∣
≤
∥∥∥∥ 1

π̄a

∥∥∥∥
∞

LK

hd+1∥y1 − y2∥2

≤ Bπ

LK

hd+1∥y1 − y2∥2,

for some constant 0 < Bπ < ∞, and hence for any probability measure P on {0,1}×Rd we
have

∥ f a
h,y1

− f a
h,y2

∥L2(P) ≤ ∥ f a
h,y1

− f a
h,y2

∥∞ ≤ Bπ

LK

hd+1∥y1 − y2∥2.

Therefore f a
h,y is Lipschitz in parameter, and by Example 19.7 of van der Vaart [139] we

have the bracketing numbers satisfy

N[](F
a,L2(P),ε

BπLK

hd+1 )≤CYh,RK

(
diamΘ

ε

)d

for some constant CYh,RK
, where Θ = Yh,RK ∪A . Since Yh,RK is compact subset of Rd ,

diamΘ is bounded by some constant CΘ < ∞. By the similar argument as in Lemma B.2.7,
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we have the bracketing integral satisfying

J[](F
a,L2(P),1) =

∫ 1

0

√
logN[](F a,L2(P),ε)dε

≤
∫ 1

0

√
log
(

CΘ BπLk/hd+1

ε

)d

dε

≤
∫ 1

0

√
d log

(
1
ε

)
+d log(BπLK)dε < ∞.

Hence, by Theorem 19.5 in van der Vaart [139]
√

n(Pn −P)→G weakly in ℓ∞(F a).
Notice that since

∥ f̂ a
h,y1

− f̂ a
h,y2

∥L2(P) ≤ ∥ f̂ a
h,y1

− f̂ a
h,y2

∥∞ ≤ Bπ

LK

hd+1∥y1 − y2∥2.

as well, the same conclusion also holds for F̂ a = { f̂ a
h,y : y ∈ Yh,RK ,a ∈ A }.

Proof of Theorem 3.4.2. Note that from Claim B.2.3, ψ̂a
h (y) = qa

h(y) = 0 if y /∈ Yh,RK . Also
under (B1), by Lemma B.2.3 we have qa

h(y) = P f a
h,y. Hence

√
nD(Q̂a

h,Q
a
h) can be expanded

as

√
nD(Q̂a

h,Q
a
h) =

∫ √
n |ψ̂a

h (y)−qa
h(y)|dy

=
∫
Yh,RK

√
n |ψ̂a

h (y)−qa
h(y)|dy

=
∫
Yh,RK

√
n
∣∣∣Pn f̂ a

h,y −P f a
h,y

∣∣∣dy

=
∫
Yh,RK

∣∣∣√n(Pn −P) f a
h,y +

√
nPn( f̂ a

h,y − f a
h,y)
∣∣∣dy.

= Φ(
√

n(Pn −P))+ rn,

where Φ : ℓ∞(F a) → R is defined by Φ(µ) =
∫
Yh,RK

|µ f a
h,y|dy. Then Φ is continuous on

ℓ∞(F a). Hence by Lemma B.2.8
√

n(Pn −P)→G weakly in ℓ∞(F a) and the continuous
mapping theorem [e.g., 78, Theorem 7.7] implies

Φ(
√

n(Pn −P))→ Φ(G) =
∫
Yh,RK

|G f a
h,y|dyweakly in R.
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For rn, it follows that

rn =
√

nD(Q̂a
ha
,Qa

ha
)−Φ(

√
n(Pn −P))

≤
∫
Yh,RK

|
√

nPn( f̂ a
h,y − f a

h,y)|dy

≤
∫
Yh,RK

|
√

nP( f̂ a
h,y − f a

h,y)|dy+
∫
Yh,RK

|
√

n(Pn −P)( f̂ a
h,y − f a

h,y)|dy.

Under the condition (B1) and (B2’), by the previous result of (B.14) we have

|
√

nP( f̂ a
y − f a

y )| ≤
√

n
∥∥∥∥ 1

π̂a

∥∥∥∥
∞

∥µ̂a −µa∥2∥π̂a −πa∥2 = oP(1),

and also by (B.14) together with Lemma B.2.4,∫
Yh,RK

|
√

n(Pn −P)( f̂ a
h,y − f a

h,y)|dy = oP(1).

Consequently we have
rn = oP(1),

and hence by Slutsky Theorem [78, Theorem 7.15], finally we have

√
nD(Q̂a

ha
,Qa

ha
)→

∫
|G f a

h,y|dy weakly in R.

B.2.8 Bootstrap validity of Theorem 3.4.3 for Single-source random-
ized study

For θ = D(Q1
h1
,Q0

h0
) and θ̂ = D(Q̂1

h1
, Q̂0

h0
), by triangle inequality we have |θ̂ − θ | ≤

D(Q̂1
h1
,Q1

h1
)+D(Q̂0

h0
,Q0

h0
), hence one of the sufficient condition for the confidence interval

Ĉα to be valid is

liminf
n→∞

P
(
D(Q̂1

h1
,Q1

h1
)+D(Q̂0

h0
,Q0

h0
)≤ cn

)
≥ 1−α.
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And this is implied from

liminf
n→∞

P
(√

nD(Q̂1
h1
,Q1

h1
)≤ ẑ1

α/2

)
≥ 1− α

2
,

liminf
n→∞

P
(√

nD(Q̂0
h0
,Q0

h0
)≤ ẑ0

α/2

)
≥ 1− α

2
.

Hence it suffice to show that
√

nD(Q̂a
h,Q

a
h) and

√
nD(Q̂a

h
∗
, Q̂a

h) converges to the same distri-
bution.

As in Section B.2.6, for a ∈ {0,1}, we let π̂a =
1
n ∑

n
i=11a(Ai) =

na
n . For all y ∈ Rd , let

f a
h,y : {0,1}×Rd → R be

f a
h,y(a

′,y′) =
1
hd K

(
∥y− y′∥2

h

)
1a(a′),

and let F a := { f a
h,y : y ∈ Yh,RK ,a ∈ A }.

Theorem B.2.4. Under the assumptions (A1), (A2’),

√
nD(Q̂a

h,Q
a
h)→

1
πa

∫ ∣∣∣G( f a
h,y)−qa

h(y)G(1a)
∣∣∣dy weakly in R, (B.15)

√
nD((Q̂a

h)
∗, Q̂a

h)→
1
πa

∫ ∣∣∣G( f a
h,y)−qa

h(y)G(1a)
∣∣∣dy weakly in R, (B.16)

where G is a centered Gaussian process with Cov[G( f ),G(g)] =
∫

f gdP−
∫

f dP
∫

gdP.

Proof. We already have (B.15) from the result of Theorem 3.4.1. Hence we are left to show
(B.16), which can be done by Theorem (3.2.1) and repetition of the proof of Theorem 3.4.1.

Combining Lemma B.2.7 and Theorem (3.2.1) implies that

√
n(P∗

n −Pn)→G weakly in ℓ∞(F
a).
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Then similarly as in the proof of Theorem 3.4.1 in Section B.2.6,
√

nD((Q̂a
h)

∗, Q̂a
h) can be

expanded as

√
nD((Q̂a

h)
∗, Q̂a

h) =
∫ √

n |(q̂a
h)

∗(y)− q̂a
h(y)|dy

=
∫
Yh,RK

√
n

∣∣∣∣∣P
∗
n f a

h,y1(P
∗
n1a > 0)

P∗
n1a

−
Pn f a

h,y1(Pn1a > 0)

Pn1a

∣∣∣∣∣dy

=
∫
Yh,RK

√
n

∣∣∣∣∣1(P∗
n1a > 0)1(Pn1a > 0)

P∗
n1a

{
(P∗

n −Pn) f a
h,y −

(P∗
n −Pn)1aPn f a

h,y1(Pn1a > 0)

Pn1a

}

+
P∗

n f a
h,y1(P

∗
n1a > 0)1(Pn1a = 0)

P∗
n1a

−
Pn f a

h,y1(Pn1a > 0)1(P∗
n1a = 0)

Pn1a

∣∣∣∣∣dy

=
∫
Yh,RK

∣∣∣∣∣1((π̂a)
∗ > 0)1(π̂a > 0)
(π̂a)∗

{√
n(P∗

n −Pn) f a
h,y − q̂a

h(y)
√

n(P∗
n −Pn)1a

}
+
√

n
P∗

n f a
h,y1((π̂a)

∗ > 0)1(π̂a = 0)

(π̂a)∗
−
√

n
Pn f a

h,y1(π̂a > 0)1((π̂a)
∗ = 0)

π̂a

∣∣∣∣∣dy.

(B.17)

Now define a function Φ : ℓ∞(Fa)×[0,1]×[0,1]×ℓ∞(R)→R by Φ(µ,θ ,θ ∗,q)= 1(θ>0)1(θ∗>0)
θ∗

∫
|µ f a

y −
q(y)µ1a|dy. Then Φ is continuous on ℓ∞(Fa)× [0,1]× (0,1]× ℓ∞(R). Note that by the
strong law of large numbers, π̂a → πa > 0 a.s., (π̂a)

∗ → πa > 0 a.s., and q̂a
h → qa

h a.s.. Hence
by the continuous mapping theorem [e.g., 78, Theorem 7.7]) together with

√
n(P∗

n−Pn)→G
as shown previously, we have

Φ(
√

n(P∗
n−Pn), π̂a, (π̂a)

∗, q̂a
ha
)→Φ(G,πa,πa,qa

h)=
1
πa

∫ ∣∣∣G f a
h,y −qa

h(y)G1a

∣∣∣dy weakly in R.

Next, by (B.17) it follows that∣∣∣√nD((Q̂a
h)

∗, Q̂a
h)−Φ(

√
n(P∗

n −Pn), π̂a, (π̂a)
∗, q̂a

h)
∣∣∣

≤
√

n1(π̂a = 0)
∫
Yh,RK

P∗
n f a

h,y1((π̂a)
∗ > 0)

(π̂a)∗
dy+

√
n1((π̂a)

∗ = 0)
∫
Yh,RK

Pn f a
h,y1(π̂a > 0)

π̂a
dy.
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For the first term in the last display, we have

E

{
√

n1(π̂a = 0)
∫
Yh,RK

P∗
n f a

h,y1((π̂a)
∗ > 0)

(π̂a)∗
dy

}
≤ E

{
√

n1(π̂a = 0)
∫
Yh,RK

h−d ∥K∥2 dy

}
=
√

n(1−πa)
nh−d ∥K∥2 Vol(BRK(0))

→ 0,

where the first inequality follows by assumption (A2). Then by Markov inequality,∣∣∣√nD((Q̂a
h)

∗, Q̂a
h)−Φ(

√
n(P∗

n −Pn), π̂a, (π̂a)
∗, q̂a

h)
∣∣∣→ 0 in probability.

And hence,

√
nD
(
(Q̂a

h)
∗, Q̂a

h

)
→ 1

πa

∫ ∣∣∣G f a
h,y −qa

h(y)G1a

∣∣∣dy weakly in R.

B.2.9 Bootstrap validity of Theorem 3.4.3 for Multi-source random-
ized study

For this case, θ = EP

[
D(Q1

h1
,Q0

h0
)
]

and θ̂ = 1
N ∑

N
i=1 D((Q̂1

h1
)i,(Q̂0

h0
)i). Then

∣∣θ̂ −θ
∣∣≤ ∣∣∣ 1

N

N

∑
i=1

(
D((Q̂1

h1
)i,(Q̂0

h0
)i)−D((Q1

h1
)i,(Q0

h0
)i)
)∣∣∣

+
∣∣∣ 1
N

N

∑
i=1

D((Q1
h1
)i,(Q0

h0
)i)−EP

[
D(Q1

h1
,Q0

h0
)
]∣∣∣

≤ 1
N

N

∑
i=1

D((Q̂1
h1
)i,(Q1

h1
)i)+

1
N

N

∑
i=1

D((Q̂0
h0
)i,(Q0

h0
)i)

+
∣∣∣ 1
N

N

∑
i=1

D((Q1
h1
)i,(Q0

h0
)i)−EP

[
D(Q1

h1
,Q0

h0
)
]∣∣∣,
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hence one of the sufficient condition for the confidence interval Ĉα to be valid is

liminf
n→∞

P

(
1
N

N

∑
i=1

D((Q̂1
h1
)i,(Q1

h1
)i)+

1
N

N

∑
i=1

D((Q̂0
h0
)i,(Q0

h0
)i)

+
∣∣∣ 1
N

N

∑
i=1

D((Q1
h1
)i,(Q0

h0
)i)−EP

[
D(Q1

h1
,Q0

h0
)
]∣∣∣≤ D̄1

√
n
+

D̄0
√

n
+

ẑα√
N

)
≥ 1−α.

And this is implied from

1
N

N

∑
i=1

√
nD((Q̂a

ha
)i,(Qa

ha
)i) and D̄a converges to same limit,

liminf
n→∞

P

(
√

N
∣∣∣ 1
N

N

∑
i=1

D((Q1
h1
)i,(Q0

h0
)i)−EP

[
D(Q1

h1
,Q0

h0
)
]∣∣∣≤ ẑα

)
≥ 1−α.

And for the second one, it suffice to show that
√

N
(

1
N ∑

N
i=1 D((Q1

h1
)i,(Q0

h0
)i)−EP

[
D(Q1

h1
,Q0

h0
)
])

and√
N
(

1
N ∑

N
i=1 D((Q1

h1
)∗i ,(Q

0
h0
)∗i )− 1

N ∑
N
i=1 D((Q1

h1
)i,(Q0

h0
)i)
)

converges to same distribution,

and then plugging in (Q̂a
ha
)i in place of (Qa

ha
)i when computing ẑα .

Theorem B.2.5. Under the assumptions (A1), (A2’),

1
N

N

∑
i=1

√
nD((Q̂1

h1
)i,(Q1

h1
)i)→ EP

[
1
πa

∫ ∣∣∣G( f a
h,y)−qa

h(y)G(1a)
∣∣∣dy
]

a.s., (B.18)

D̄a → EP

[
1
πa

∫ ∣∣∣G( f a
h,y)−qa

h(y)G(1a)
∣∣∣dy
]

a.s.. (B.19)

Proof. For (B.18), from Theorem B.2.4 and stong law of large numbers,

1
N

N

∑
i=1

√
nD((Q̂1

h1
)i,(Q1

h1
)i)→ EP

[
1
πa

∫ ∣∣∣G( f a
h,y)−qa

h(y)G(1a)
∣∣∣dy
]

a.s..

For (B.19), note that D̄a = 1
N ∑

N
i=1

√
nD((Q̂a

ha
)∗i ,(Q̂

a
ha
)i). Then from Theorem B.2.4 and stong

law of large numbers,

D̄a → EP

[
1
πa

∫ ∣∣∣G( f a
h,y)−qa

h(y)G(1a)
∣∣∣dy
]

a.s..

Theorem B.2.6. Under the assumptions (A1), (A2’),
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√
N

(
1
N

N

∑
i=1

D((Q1
h1
)i,(Q0

h0
)i)−EP

[
D(Q1

h1
,Q0

h0
)
])

→ N
(

0,VarP

[
D(Q1

h1
,Q0

h0
)
])

(B.20)

√
N

(
1
N

N

∑
i=1

D((Q1
h1
)∗i ,(Q

0
h0
)∗i )−

1
N

N

∑
i=1

D((Q1
h1
)i,(Q0

h0
)i)

)
→ N

(
0,VarP

[
D(Q1

h1
,Q0

h0
)
])

a.s.

(B.21)

Proof. For (B.20), note that 1
N ∑

N
i=1 D((Q1

h1
)i,(Q0

h0
)i)−EP

[
D(Q1

h1
,Q0

h0
)
]
= (PN −P)Φ ,

where Φ(P) = D(Q1
h1
,Q0

h0
). Hence from Central Limit Theorem,

√
N

(
1
N

N

∑
i=1

D((Q1
h1
)i,(Q0

h0
)i)−EP

[
D(Q1

h1
,Q0

h0
)
])

→ N
(

0,VarP

[
D(Q1

h1
,Q0

h0
)
])

.

For (B.21) note that 1
N ∑

N
i=1 D((Q1

h1
)∗i ,(Q

0
h0
)∗i )− 1

N ∑
N
i=1 D((Q1

h1
)i,(Q0

h0
)i) = (P∗

N −PN)Φ .
Hence from (B.20) and Theorem (3.2.1),

√
N

(
1
N

N

∑
i=1

D((Q1
h1
)∗i ,(Q

0
h0
)∗i )−

1
N

N

∑
i=1

D((Q1
h1
)i,(Q0

h0
)i)

)
→N

(
0,VarP

[
D(Q1

h1
,Q0

h0
)
])

a.s.

B.2.10 Bootstrap validity of Theorem 3.4.3 for Observational study

For this case, θ =D(Q1
h,Q

0
h) and θ̂ =D(Q̂1

h, Q̂
0
h). Then |θ̂ −θ | ≤D(Q̂1

h,Q
1
h)+D(Q̂0

h,Q
0
h),

hence one of the sufficient condition for the confidence interval Ĉα to be valid is

liminf
n→∞

P
(
D(Q̂1

h,Q
1
h)+D(Q̂0

h,Q
0
h)≤ cn

)
≥ 1−α.

And this is implied from

liminf
n→∞

P
(√

nD(Q̂1
h,Q

1
h)≤ ẑ0

α/2

)
≥ 1− α

2
,

liminf
n→∞

P
(√

nD(Q̂0
h,Q

0
h)≤ ẑ1

α/2

)
≥ 1− α

2
.

Hence it suffice to show that
√

nD(Q̂a
h,Q

a
h) and

√
nD(Q̂a

h
∗
, Q̂a

h) converges to the same distri-
bution.
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For all y ∈ Rd , let Th,y : Rd → R be Th,y(y′) = 1
hd K

(
∥y−y′∥2

h

)
, and let f̂ a

h,y : Rk ×{0,1}×
Rd → R, f a

h,y : Rk ×{0,1}×Rd → R be

f̂ a
h,y(x

′,a′,y′) =
1a(a′)
π̂a(x′)

(
Th,y(y′)− µ̂a′(x

′)
)
+ µ̂a(x′),

f a
h,y(x

′,a′,y′) =
1a(a′)
π̄a(x′)

(
Th,y(y′)− µ̄a′(x

′)
)
+ µ̄a(x′),

and let F a = { f a
h,y : y ∈ R}.

Theorem B.2.7. Under the assumptions (A1), (A2’), (B1), (B2), (B3),

√
nD(Q̂a

ha
,Qa

ha
)→

∫
|G f a

y |dy weakly in R, (B.22)

√
nD((Q̂a

h)
∗, Q̂a

h)→
∫

|G f a
y |dy weakly in R, (B.23)

where G is a centered Gaussian process with Cov[G( f ),G(g)] =
∫

f gdP−
∫

f dP
∫

gdP.

Proof. Note that we already have (B.22) is from Theorem 3.4.2, and we are to left show
(B.23), which can be done by Theorem (3.2.1) and repetition of the proof of Theorem 3.4.2.

Combining Lemma B.2.7 and Theorem (3.2.1) implies that

√
n(P∗

n −Pn)→G weakly in ℓ∞(F
a).

Then as similar to proof of Theorem 3.4.2,
√

nD((Q̂a
h)

∗, Q̂a
h) can be expanded as

√
nD((Q̂a

h)
∗, Q̂a

h) =
∫ √

n |(ψ̂a
h )

∗(y)− ψ̂
a
h (y)|dy

=
∫
Yh,RK

√
n |(ψ̂a

h )
∗(y)− ψ̂

a
h (y)|dy

=
∫
Yh,RK

√
n
∣∣∣(P∗

n −Pn) f̂ a
h,y

∣∣∣dy

=
∫
Yh,RK

√
n
∣∣∣(P∗

n −Pn) f a
h,y +(P∗

n −Pn)( f̂ a
h,y − f a

h,y)
∣∣∣dy

= Φ(
√

n(P∗
n −Pn))+ rn,
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where we define Φ : ℓ∞(Fa)→ R by Φ(µ) =
∫
|µ f a

h,y|dy. Now first note that

rn =
√

nD(Q̂a
ha
,Qa

ha
)−Φ(

√
n(Pn −P))

≤
∫
Yh,RK

|
√

n(P∗
n −Pn)( f̂ a

h,y − f a
h,y)|dy.

Since Φ is continuous on ℓ∞(Fa), by the continuous mapping theorem [e.g., 78, Theorem
7.7] and the previous result

√
n(P∗

n −Pn)→G, it follows

Φ(
√

n(P∗
n −Pn))→ Φ(G) =

∫
Yh,RK

|G f a
h,y|dy a.s. weakly in R.

Moreover, under the condition (B1) and (B2’), by the previous result of (B.14) we have

|
√

nP( f̂ a
y − f a

y )| ≤
√

n
∥∥∥∥ 1

π̂a

∥∥∥∥
∞

∥µ̂a −µa∥2∥π̂a −πa∥2 = oP(1).

Hence by Lemma B.2.4,∣∣∣√n(P∗
n −Pn)( f̂ a

h,y − f a
h,y)
∣∣∣≤ ∣∣∣√n(P∗

n −P)( f̂ a
h,y − f a

h,y)
∣∣∣+ ∣∣∣√n(Pn −P)( f̂ a

h,y − f a
h,y)
∣∣∣

= oP(1)+oP(1) = oP(1),

which implies
∫
Yh,RK

|
√

n(P∗
n −Pn)( f̂ a

h,y − f a
h,y)|dy = oP(1) and thus we obtain

rn = oP(1).

Finally, putting these together we conclude

√
nD((Q̂a

h)
∗, Q̂a

h)→
∫

|G f a
y |dy a.s. weakly in R.
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C.1 Additional Technical Details

C.1.1 Stability of the level set

This section supplements the concept of the level set stability that is used in Section 4.3.3.
Hausdorff distance is a common way of measuring difference between two sets that are

embedded in the same space. Below we define the Hausdorff distance for any two subsets in
Euclidean space.

Definition C.1.1 (Hausdorff distance). Let A,B ⊂ Rd . Their Hausdorff distance H(A,B) is
defined as

H(A,B) = max

{
sup
x∈A

inf
y∈B

∥x− y∥ ,sup
y∈B

inf
x∈A

∥x− y∥
}
.

The Hausdorff distance can be equivalently defined as

H(A,B) = inf{ε ≥ 0 : A ⊂ Bε and B ⊂ Aε} ,

where
Aε := {y ∈ Rd : there exists x ∈ A with ∥x− y∥ ≤ ε}.

When we estimate the target level set Lt,h = {ph > t} by the estimator L̂t = {p̂h > t}, we
rely on that the function difference ∥ p̂h − ph∥∞

is small. To transfer that to the set difference
H(Lt,h, L̂t), we need that the target level set Lt,h doesn’t change too much when the level t
perturbs.
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Definition C.1.2 (Level set stability). We say that the level set Lt,h = {w ∈ R2 : pH(w)> t}
is stable if there exists a > 0 and C > 0 such that, for all δ < a,

H(Lt−δ ,h,Lt+δ ,h)≤Cδ .

C.2 Proofs

C.2.1 k-means clustering: Theorem 4.3.1

Lemma C.2.1. Suppose each µ̂a is estimated in the separate sample set Dn with n samples.

(a) The expectation of
∥∥∥Ŵi −Wi

∥∥∥
2

can be upper bounded as

P
[∥∥∥Ŵi −Wi

∥∥∥
2

]
≤ ∑

a
∥µ̂a −µa∥1 . (C.1)

(b) Suppose Assumption (A4). For δ ∈ (0,1), 1
n ∑

n
i=1

∥∥∥Ŵi −Wi

∥∥∥
2

can be bounded with
probability at least 1−δ as

1
n

n

∑
i=1

∥∥∥Ŵi −Wi

∥∥∥
2
≤ ∑

a
∥µ̂a −µa∥1 +B

√
log(1/δ )

n
. (C.2)

Proof of Lemma C.2.1. (a)
P
[∥∥∥Ŵi −Wi

∥∥∥
2

]
can be upper bounded as

P
[∥∥∥Ŵi −Wi

∥∥∥
2

]
= P

[√
∑
a
(µ̂a(X)−µa(X))2

]
≤ ∑

a
P [|µ̂a(X)−µa(X)|]

= ∑
a
∥µ̂a −µa∥1 .

(b)
We the high probability bound for 1

n ∑
n
i=1

∥∥∥Ŵi −Wi

∥∥∥
2
, note that Assumption (A4) implies

0 ≤
∥∥∥Ŵi −Wi

∥∥∥
2
≤
√

2B a.s., and hence by Hoeffding’s inequality,

P

(
1
n

n

∑
i=1

∥∥∥Ŵi −Wi

∥∥∥
2
−P

[∥∥∥Ŵi −Wi

∥∥∥
2

]
> t

)
≤ exp

(
−nt2

B2

)
.
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Hence for any δ > 0, applying t = B
√

log(1/δ )
n gives

P

(
1
n

n

∑
i=1

∥∥∥Ŵi −Wi

∥∥∥
2
≤ P

[∥∥∥Ŵi −Wi

∥∥∥
2

]
+B

√
log(1/δ )

n

)
≥ 1−δ .

Then applying (C.1) gives

P

(
1
n

n

∑
i=1

∥∥∥Ŵi −Wi

∥∥∥
2
≤ ∑

a
∥µ̂a −µa∥1 +B

√
log(1/δ )

n

)
≥ 1−δ .

Proof of Theorem 4.3.1

Proof of Theorem 4.3.1. We first bound
∣∣∣R(Ĉ)−R(C∗)

∣∣∣ by as

∣∣∣R(Ĉ)−R(C∗)
∣∣∣= R(Ĉ)−R(C∗)

= R(Ĉ)− R̂n(Ĉ)+ R̂n(Ĉ)−R(C∗)

≤ R(Ĉ)− R̂n(Ĉ)+ R̂n(C∗)−R(C∗)

≤ 2 sup
C∈Ck

∣∣∣R(C)− R̂n(C)
∣∣∣ .

Then for any C ∈ Ck,
∣∣∣R(C)− R̂n(C)

∣∣∣ is further upper bounded as

∣∣∣R(C)− R̂n(C)
∣∣∣≤ |R(C)−Rn(C)|+

∣∣∣Rn(C)− R̂n(C)
∣∣∣ ,

which yields

E
[∣∣∣R(Ĉ)−R(C∗)

∣∣∣]≤ 2E

[
sup

C∈Ck

|R(C)−Rn(C)|
]
+2E

[
sup

C∈Ck

∣∣∣Rn(C)− R̂n(C)
∣∣∣] . (C.3)
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For the first term of (C.3), we note that ∥Wi∥2
2 ≤ B2 by (A4), and hence Lemma 2,

Theorem 1, and Remark of [89] altogether give its upper bound as

E

[
2 sup

C∈Ck

|R(C)−Rn(C)|
]
≤ 16B2

√
k(p+1) logn

n
+o

(√
logn

n

)

≤ 32B2

√
k(p+1) logn

n
, (C.4)

for large enough n.
For the second term of (C.3), note first that for any C ∈ Ck,

∣∣∣Rn(C)− R̂n(C)
∣∣∣ is upper

bounded as

∣∣∣Rn(C)− R̂n(C)
∣∣∣= ∣∣∣∣∣1n n

∑
i=1

∥Wi −ΠC[Wi]∥2
2 −

1
n

n

∑
i=1

∥Ŵi −ΠC[Ŵi]∥2
2

∣∣∣∣∣
≤ 1

n

n

∑
i=1

∣∣∣∥Wi −ΠC[Wi]∥2
2 −∥Ŵi −ΠC[Ŵi]∥2

2

∣∣∣
=

1
n

n

∑
i=1

(
∥Wi −ΠC[Wi]∥2 +∥Ŵi −ΠC[Ŵi]∥2

)∣∣∣∥Wi −ΠC[Wi]∥2 −∥Ŵi −ΠC[Ŵi]∥2

∣∣∣
≤ 2

√
2B

n

n

∑
i=1

∣∣∣∥Wi −ΠC[Wi]∥2 −∥Ŵi −ΠC[Ŵi]∥2

∣∣∣ , (C.5)

where last line is from the boundedness assumption (A4). Now, note that for any x,y ∈ R2,
ΠC[x] = minc∈C ∥x− c∥2 and the triangle inequality give

∥x−ΠC[x]∥2 −∥y−ΠC[y]∥2 ≤ ∥x−ΠC[y]∥2 −∥y−ΠC[y]∥2

≤ ∥(x−ΠC[y])− (y−ΠC[y])∥2

= ∥x− y∥2 ,

and ∥y−ΠC[y]∥2 −∥x−ΠC[x]∥2 ≤ ∥x− y∥2 by symmetry as well, and hence

|∥x−ΠC[x]∥2 −∥y−ΠC[y]∥2| ≤ ∥x− y∥2 .

Applying this result to (C.5) gives an upper bound for
∣∣∣Rn(C)− R̂n(C)

∣∣∣ as

∣∣∣Rn(C)− R̂n(C)
∣∣∣≤ 2

√
2B

n

n

∑
i=1

∥∥∥Ŵi −Wi

∥∥∥
2
,
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and the RHS bound is independent of C. Hence by applying (C.1) in Lemma C.2.1, the
second term of (C.3) is further upper bounded as

2E

[
sup

C∈Ck

∣∣∣Rn(C)− R̂n(C)
∣∣∣]≤ 4

√
2BP

[∥∥∥Ŵi −Wi

∥∥∥
2

]
≤ 4

√
2B∑

a
∥µ̂a −µa∥1 . (C.6)

Hence applying (C.4) and (C.6) to (C.3) gives the upper bound of E
[∣∣∣R(Ĉ)−R(C∗)

∣∣∣] as

E
[∣∣∣R(Ĉ)−R(C∗)

∣∣∣]≤ 32B2

√
k(p+1) logn

n
+4

√
2B∑

a
∥µ̂a −µa∥1 .

C.2.2 hierarchical clustering: Lemma 4.3.1, Theorem 4.3.2

Proof of Lemma 4.3.1

Proof. We consider a pair of points W1 = (µ1(X1), ...,µp(X1)), W2 = (µ1(X2), ...,µp(X2)),
and their estimates Ŵ1 =

(
µ̂1(X1), ..., µ̂p(X1)

)
, Ŵ2 =

(
µ̂1(X2), ..., µ̂p(X2)

)
for ∀X1,X2 ∈ X .

To prove the theorem, first we upper bound the maximum discrepancy between d(W1,W2)

and d(Ŵ1,Ŵ2) as below.

Lemma C.2.2. For Euclidean distance d, we have∣∣∣d(W1,W2)−d(Ŵ1,Ŵ2)
∣∣∣≤ 2p∥µ̂ −µ∥

∞
.
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Proof. We have ∥x∥2 −∥y∥2 ≤ ∥x − y∥2 for ∀x,y in the same metric space. Hence by
definition,

d(W1,W2)−d(Ŵ1,Ŵ2)

≤
√

∑
a
{µa(X1)−µa(X2)− (µ̂a(X1)− µ̂a(X2))}2

=
√

∑
a
{µa(X1)− µ̂a(X1)− (µa(X2)− µ̂a(X2))}2

≤
2

∑
j=1

∑
a∈A

∣∣µ̂a(X j)−µa(X j)
∣∣

≤ 2 ∑
a∈A

∥µ̂a −µa∥∞
.

For the proof of Lemma 4.3.1, consider two sets A,B and their estimates Â= {Ŵ : W ∈A},
B̂ = {Ŵ : W ∈ B} respectively. Let (a∗,b∗) = argmin

a∈A,b∈B
d(a,b) and â∗, b̂∗ be their estimates.

Then by definition of single linkage we have

∣∣∣D(A,B)−D(Â, B̂)
∣∣∣= ∣∣∣∣∣ min

â∈Â,b̂∈B̂
d(â, b̂)−d(a∗,b∗)

∣∣∣∣∣
≤
∣∣∣d(â∗, b̂∗)−d(a∗,b∗)

∣∣∣
≤ 2 ∑

a∈A

∥µ̂a −µa∥∞
.

The exact same result follows for the case of complete linkage. The result for average
linkage directly follows by Lemma C.2.2.

Proof of Theorem 4.3.2

As before, we will let µµµ denote the conditional counterfactual mean vector space. Further
by Assumption A5, we assume that every distribution satisfying the good neighborhood
property in Definition 4.3.1 has a density bounded by pµµµ < ∞. We begin with introducing
some useful lemmas.
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Lemma C.2.3. Under Assumption A5, for any W ∈ µµµ

sup
w∈Rp,r>0

P(W ∈ B(w,r+ s)\B(w,r))≤ C1s,

where C1 is a constant that depends on pµµµ , B, and p.

Proof. Let λp be the p-dimensional Lebesgue measure. By Assumption (A4), supp(W )⊂
[−2B,2B]p, and hence for any w ∈ Rp and r,s > 0,

λp ({B(w,r+ s)\B(w,r)}∩ supp(W ))≤ λp ({B(w,r+ s)\B(w,r)}∩ [−2B,2B]p) .

Now, we bound λp−1(∂B(w, t)∩ [−2B,2B]p) for any t ∈ R. First, note that for any u ≥ 0, by
considering that the map ϕ : ∂B(w, t)∩ [−2B,2B]p → ∂B(w, t +u)∩ [−2B−u,2B+u]p by
ϕ(w+ tv) = w+(t +u)v for unit vector v satisfies ∥ϕ(x)−ϕ(y)∥ ≥ ∥x− y∥, we have

λp−1(∂B(w, t)∩ [−2B,2B]p)≤ λp−1(∂B(w, t +u)∩ [−2B−u,2B+u]p).

And hence

2B
p

λp−1(∂B(w, t)∩ [−2B,2B]p) =
∫ 2B

p

0
λp−1(∂B(w, t)∩ [−2B,2B]p)du

≤
∫ 2B

p

0
λp−1 (∂B(w, t +u)∩ [−2B−u,2B+u]p)du

≤
∫ 2B

p

0
λp−1

(
∂B(w, t +u)∩

[
−2(1+

1
p
)B,2(1+

1
p
)B
]p)

du

= λp

(
B(w, t +B)\B(w, t))∩

[
−2(1+

1
p
)B,2(1+

1
p
)B
]p)

≤ λp

([
−2(1+

1
p
)B,2(1+

1
p
)B
]p)

≤ e4pBp,

and hence
λp−1(∂B(w, t)∩ [−2B,2B]p)≤ e22p−1Bp−1 p.

Then λp ((B(w,r+ s)\B(w,r))∩ [−2B,2B]p) is bounded as

λp ((B(w,r+ s)\B(w,r))∩ [−2B,2B]p) =
∫ s

0
λp−1(∂B(w,r+ t)∩ [−2B,2B]p)dt

≤
∫ s

0
e22p−1Bp−1 pdt = e22p−1Bp−1 ps.
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And hence for all w ∈ Rp and r > 0, Under Assumption A5,

P(W ∈ B(w,r+ s)\B(w,r))≤ pµµµ

∫
(B(w,r+s)\B(w,r))∩supp(W )

λp (dw)

≤ epµµµ22p−1Bp−1 ps.

Lemma C.2.4. With probability 1−δn,

sup
w∈Rp,r>0

∣∣∣∣ |S∩ (B(w,r+ s)\B(w,r))|
n

−P(W ∈ B(w,r+ s)\B(w,r))
∣∣∣∣

≤ C2

(
1
n

log(
1
δn

)+

√
s
n

log
(

1
s

)
+

√
s
n

log(
1
δn

)

)
,

where C2 is a constant depending only on p, B, pµµµ .

Proof. For w∈Rp and r,s> 0, let Bw,r,s :=B(w,r+s)\B(w,r), and let Fs :=
{
1Bw,r,s : w ∈ Rp,r > 0

}
.

Then

sup
w∈Rp,r>0

∣∣∣∣ |S∩ (B(w,r+ s)\B(w,r))|
n

−P(W ∈ B(w,r+ s)\B(w,r))
∣∣∣∣

= sup
f∈Fs

∣∣∣∣∣1n n

∑
i=1

f (Wi)−E [ f (Wi)]

∣∣∣∣∣ .
Now, for w ∈ Rp and r > 0, let Bw,r := B(w,r) and B̃w,r := Rp\B(w,r), and let H :=

{Bw,r : w ∈ Rp,r > 0} and H̃ :=
{

B̃w,r : w ∈ Rp,r > 0
}

. Then the VC dimension of H or
H̃ is no greater than p+2. Therefore, let s(H ,n) and s(H̃ ,n) be shattering number of H

and H̃ , respectively, then by Sauer’s Lemma for n ≥ p+2,

s(H ,n)≤
(

en
p+2

)p+2

and s(H̃ ,n)≤
(

en
p+2

)p+2

.

Now, let Gs := {Bw,r,s : w ∈ Rp,r > 0}, then Gs ⊂
{

A∩B : A ∈ H ,B ∈ H̃
}

, and hence for
n ≥ p+2,

s(Gs,n)≤ s(H ,n)s(H̃ ,n)≤
(

en
p+2

)2p+4

.
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Then, for n = (2p+4)2,

s(Gs,(2p+4)2)≤ (2e(2p+4))2p+4

≤ (22p+4)2p+4 = 2(2p+4)2
,

so VC dimension of Gs is bounded by (2p+4)2. Then from Theorem 2.6.4 in Van Der Vaart
and Wellner [142],

N (Fs,∥ · ∥,ε)≤ K(2p+4)2(4e)(2p+4)2
(

1
ε

)2((2p+4)2−1)

≤
(

8K(p+2)e
ε

)2((2p+4)2−1)

,

for some universal constant K. Now, for all f ∈ Fs, EP f 2 ≤CB,pµµµ
ps. Hence, by Theorem

30 in Kim et al. [76], with probability 1−δn,

sup
f∈Fs

∣∣∣∣∣1n n

∑
i=1

f (Wi)−E [ f (Wi)]

∣∣∣∣∣
≤C

νp

n
log(2Ap)+

√
νpC3s

n
log
(

2Ap

C3s

)
+

√
C3s log( 1

δn
)

n
+

log( 1
δn
)

n

 ,

where νp = 2((2p+4)2 −1) and Ap = 8K(p+2)e. Hence, it can be simplified as

sup
f∈Fs

∣∣∣∣∣1n n

∑
i=1

f (Wi)−E [ f (Wi)]

∣∣∣∣∣≤ C2

(
1
n

log(
1
δn

)+

√
s
n

log
(

1
s

)
+

√
s
n

log(
1
δn

)

)
,

where C2 is a constant depending only on p, B, pµµµ .

Corollary C.2.1. Under Assumption A5, with probability 1−δn,

sup
w∈Rp,r>0

|S∩ (B(w,r+ s)\B(w,r))|
n

≤ C3

(
s+

1
n

log(
1
δn

)+

√
s
n

log
(

1
s

))
,

where C3 is a constant depending only on p, B, pµµµ .
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Proof.

sup
w∈Rp,r>0

|S∩ (B(w,r+ s)\B(w,r))|

≤ sup
w∈Rp,r>0

P(W ∈ B(w,r+ s)\B(w,r))

+ sup
w∈Rp,r>0

∣∣∣∣ |S∩ (B(w,r+ s)\B(w,r))|
n

−P(W ∈ B(w,r+ s)\B(w,r))
∣∣∣∣ .

Then from Lemma C.2.3 and C.2.4,

sup
w∈Rp,r>0

|S∩ (B(w,r+ s)\B(w,r))|

≤ C′
1s+C2

(
1
n

log(
1
δn

)+

√
s
n

log
(

1
s

)
+

√
s
n

log(
1
δn

)

)

≤ C′
1s+C2

(
1
n

log(
1
δn

)+

√
s
n

log
(

1
s

)
+

1
2

(
s+

1
n

log(
1
δn

)

))

≤ C3

(
s+

1
n

log(
1
δn

)+

√
s
n

log
(

1
s

))
,

where C3 = max
{
C′

1 +
1
2C2,

3
2C2
}

.

Lemma C.2.5. Suppose UN = {W1, ...,WN} are i.i.d samples from the mixture distribution
Pα,ν defined in Definition 4.3.1. Then with probability 1− δn, the similarity function K
constructed on UN satisfies (α ′,ν ′)-good neighborhood property for the clustering problem
(UN , l), where

α
′ = α +O

(√
1
N

log
1

δN

)
and ν

′ = ν +O
(√

1
N

log
1

δN

)
.

Proof. For any δN ∈ (0,1), by Hoeffding’s inequality we have

1
N

N

∑
i=1

1{Wi ∼ Pnoise} ≥ ν +

√
B
N

log
2

δN

with probability at most δN/2. Again by Hoeffding’s inequality, for all points w ∈ UN we
have

1
N

N

∑
i=1

1{Wi ∼ Pα and Wi ∈ B(w,rw)\C(w)} ≥ α +

√
B
N

log
2

δN
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with probability at most δN/2, as Pα{W ∈ B(w,rw) \C(w)} ≤ α by the given condition.
Therefore by definition, it follows that with probability at least 1−δN the similarity function
K satisfies

(
α +

√
B
N log 2

δN
,ν +

√
B
N log 2

δN

)
-good neighborhood property.

Proof of Theorem 4.3.2

Proof. Since the similarity function K satisfies (α,ν)-good property, there exists some subset
S′ ⊂ S of size (1−ν)n such that for all points w ∈ S′ all but αn out of nC(w)∩S′ neighbors
in S′ belongs to the cluster C(w). For each w ∈ S′, let rS′,w := inf{r ≥ 0 : | S′ ∩B(w,r) |
≥ nC(w)∩S′} be the distance to the nC(w)∩S′-th nearest neighbor of w in S′. Then it follows
| S′∩B(w,rS′,w)\C(w) |≤ αn.

Now we let γ := ∑a∈A ∥µ̂a −µa∥∞
, and define β by

β := sup
w∈S′

∣∣S′∩ (B(w,rS′,w +4γ)\B(w,rS′,w))
∣∣

n
.

Then from Corollary C.2.1, under Assumption A5 with probability 1−δn,

β ≤ sup
w∈Rp,r>0

|S∩ (B(w,r+4γ)\B(w,r))|
n

≤ 4C3

(
γ +

1
n

log(
1
δn

)+

√
γ

n
log
(

1
γ

))
.

Hence, β = O(γ + 1
n log( 1

δn
)).

Let ŵ be an estimate of w. Now, note that d(w,w′)≤ rS′,w implies d(ŵ, ŵ′)≤ rS′,w +2γ ,
and hence w′ ∈ S′∩B(w,rS′,w) implies ŵ′ ∈ Ŝ′∩B(ŵ,rS′,w +2γ). Hence∣∣Ŝ′∩B(ŵ,rS′,w +2γ)

∣∣≥ ∣∣S′∩B(w,rS′,w)
∣∣≥ nC(w)∩S′ = nC(ŵ)∩Ŝ′.

Therefore by definition,
rŜ′,ŵ ≤ rS′,w +2γ.

Also, note that d(ŵ, ŵ′) ≤ rS′,w + 2γ implies d(w,w′) ≤ rS′,w + 4γ , and thereby ŵ′ ∈ Ŝ′ ∩
B(ŵ,rS′,w +2γ) implies x′ ∈ S′∩B(w,rS′,w +4γ). Thus we have∣∣Ŝ′∩B(ŵ,rS′,w +2γ)\Ĉ(w)

∣∣≤ ∣∣S′∩B(w,rS′,w +4γ)\C(w)
∣∣

≤
∣∣S′∩B(w,rS′,w)\C(w)

∣∣+ ∣∣S′∩ (B(w,rS′,w +4γ)\B(w,rS′,w))
∣∣

≤ (α +β )n,
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which leads to∣∣∣Ŝ′∩B(ŵ,rŜ′,ŵ)\Ĉ(w)
∣∣∣≤ ∣∣Ŝ′∩B(ŵ,rS′,w +2γ)\Ĉ(w)

∣∣≤ (α +β )n.

Consequently, K satisfies (α +β ,ν)-good property for the clustering problem (Ŝ, l). Then
the result follows from Theorem 11 in Balcan et al. [7].

C.2.3 density clustering: Theorem 4.3.3

Theorem C.2.1. Suppose that Lh,t is stable and let H(·, ·) be the Hausdorff distance between
two sets. Suppose each µ̂a is estimated in the separate sample set Dn with size n, and suppose
that assumptions (A1)-(A6) hold. Let δ ∈ (0,1) and {hn}n∈N ⊂ (0,h0) be satisfying

limsup
n

(log(1/hn))++ log(2/δ )

nhd
n

< ∞.

Then, with probability at least 1−δ ,

H(L̂hn,t ,Lhn,t)≤ CP,K,B

(√
(log(1/hn))++ log(2/δ )

nhd
n

+
1

hd+1
n

min

{
∑
a
∥µ̂a −µa∥1 +

√
log(2/δ )

n
, hn

})

In order to show Theorem C.2.1, we need the following Lemma.

Lemma C.2.6. Suppose each µ̂a is estimated in the separate sample set Dn, and suppose
that assumptions (A1)-(A6) hold. Let δ ∈ (0,1) and {hn}n∈N ⊂ (0,h0) be satisfying

limsup
n

(log(1/hn))++ log(2/δ )

nhd
n

< ∞.

Then, with probability at least 1−δ ,

∥p̂hn − phn∥∞
≤CP,K,B

(√
(log(1/hn))++ log(2/δ )

nhd
n

+
1

hd+1
n

min

{
∑
a
∥µ̂a −µa∥1 +

√
log(2/δ )

n
, hn

})
.

for some constant CP,K,B depending only on P, K, B.
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For showing Lemma (C.2.6), we note that ∥p̂h − ph∥∞
can be upper bounded as

∥p̂hn − phn∥∞
≤ ∥ p̃hn − phn∥∞

+∥ p̂hn − p̃hn∥∞
. (C.7)

Therefore, in what follows we shall provide high probability bound for ∥p̃hn − phn∥∞
in

Lemma (C.2.7) and ∥p̂hn − p̃hn∥∞
in Lemma (C.2.8). Then applying these to (C.7) will

conclude the proof.
The following is from applying Kim et al. [76, Corollary 13].

Lemma C.2.7. Under Assumptions (A1)-(A6), if we let δ ∈ (0,1) and {hn}n∈N ⊂ (0,h0) be
satisfying

limsup
n

(log(1/hn))++ log(2/δ )

nhd
n

< ∞,

then with probability at least 1−δ it follows

∥p̃hn − phn∥∞
≤ CP,K

√
(log(1/hn))++ log(2/δ )

nhd
n

,

where C depends only on P and K.

Proof. Consider X= B(0,B+h0). Then by Assumption (A4) for ∀w ∈ Rd\X it follows

∥Wi −w∥2

h
> 1.

supp(K)⊂ B(0,1) from Assumption (A6) implies that

p̃hn(w) =
1
n

n

∑
i=1

K
(

Wi −w
h

)
= 0 a.s.,

and consequently that phn(w) = 0 as well. Therefore,

∥p̃hn − phn∥∞
= sup

w∈X
|p̃hn(w)− phn(w)| . (C.8)

Since under (A5), P has bounded density p, so by Kim et al. [76, Proposition 5] we have that

limsup
r→0

sup
x∈X

∫
B(x,r) p(w)dw

rd < ∞.
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Now note that under (A6), we have that |K(x)−K(y)| ≤ MK ∥x− y∥2 for any x,y ∈ Rd and
supp(K)⊂ B(0,1), which together implies that ∥K∥

∞
≤ MK < ∞. Hence,

∫
∞

0
t sup
∥x∥≥t

K2(x)dt ≤
∫ 1

0
tM2

Kdt =
1
2

M2
K < ∞.

Then applying Kim et al. [76, Corollary 13] gives that with probability at least 1−δ ,

sup
w∈X

|p̃hn(w)− phn(w)| ≤ CP,K

√
(log(1/hn))++ log(2/δ )

nhd
n

, (C.9)

where CP,K depends only on P and K. Finally (C.8) and (C.9) together imply that with
probability at least 1−δ , we have

∥ p̃hn − phn∥∞
≤ CP,K

√
(log(1/hn))++ log(2/δ )

nhd
n

.

Lemma C.2.8. Suppose Assumptions (A1)-(A4) and (A6). Then

∥p̂hn − p̃hn∥∞
≤

CMK ,B

hd+1
n

min

{
∑
a
E [∥µ̂a −µa∥1]+

√
log(1/δ )

n
, hn

}
,

where CMK ,B depends only on MK and B.

Proof. By Assumption (A6) it follows that |K(x)−K(y)| ≤ MK ∥x− y∥2 for any x,y ∈ Rd

and supp(K) ⊂ B(0,1), which together implies that |K(x)−K(y)| ≤ MK and ∥K∥
∞
≤ MK .

Thus it follows
|K(x)−K(y)| ≤ min{MK ∥x− y∥2 ,MK} .

Now for any w ∈ Rd , |p̂hn(w)− p̃hn(w)| is upper bounded by

|p̂hn(w)− p̃hn(w)| ≤
1

nhd
n

n

∑
i=1

∣∣∣∣∣K
(

Ŵi −w
hn

)
−K

(
Wi −w

hn

)∣∣∣∣∣
≤ 1

nhd
n

n

∑
i=1

min

MK

∥∥∥Ŵi −Wi

∥∥∥
2

hn
,MK


≤ MK

hd+1
n

min

{
1
n

n

∑
i=1

∥∥∥Ŵi −Wi

∥∥∥
2
,hn

}
.
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Since this holds for any w ∈ Rd ,

∥p̂hn − p̃hn∥∞
≤ MK

hd+1
n

min

{
1
n

n

∑
i=1

∥∥∥Ŵi −Wi

∥∥∥
2
,hn

}
.

Then under (A4), applying (C.2) from Lemma C.2.1 gives that with probability 1− δ ,
∥p̂hn − p̃hn∥∞

is upper bounded as

∥p̂hn − p̃hn∥∞
≤ MK

hd+1
n

min

{
∥µ̂a −µa∥1 +2B

√
log(1/δ )

n
, hn

}

≤
CMK ,B

hd+1
n

min

{
∥µ̂a −µa∥1 +

√
log(1/δ )

n
, hn

}
,

where CMK ,B = MK max{1,2B}.

Now we are ready to prove Lemma C.2.6.

Proof of Lemma C.2.6. As in (C.7), we upper bound ∥p̂hn − phn∥∞
as

∥p̂hn − phn∥∞
≤ ∥p̂hn − p̃hn∥∞

+∥p̃hn − phn∥∞
.

Then by Lemma C.2.7 and C.2.8, with probability 1−δ it follows that

∥p̂hn − phn∥∞
≤ CP,K

√
(log(1/hn))++ log(2/δ )

nhd
n

+
CMK ,B

hd+1
n

min

{
∑
a
∥µ̂a −µa∥1 +

√
log(2/δ )

n
, hn

}

≤ CP,K,B

(√
(log(1/hn))++ log(2/δ )

nhd
n

+
1

hd+1
n

min

{
∑
a
∥µ̂a −µa∥1 +

√
log(2/δ )

n
, hn

})
,

where CP,K,B depends only on P, K, B.

Proof of Theorem 4.3.3

Recall that Lhn,t is stable if there exist a > 0 and C > 0 such that, for all 0 < ζ < a,
H(Lhn,t−ζ ,Lhn,t+ζ )≤Cζ .
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Proof. Let us define

rn :=CP,K,B

(√
(log(1/hn))++ log(2/δ )

nhd
n

+
1

hd+1
n

min

{
∑
a
∥µ̂a −µa∥1 +

√
log(2/δ )

n
, hn

})
,

which is RHS of the inequality in Lemma C.2.6.
Suppose that we are given a sufficiently large n so that ∥p̂hn − phn∥∞

< rn holds with
probability at least 1−δ where rn < a for some constant a > 0. We aim to show two things:
(a) for every x ∈ Lhn,t there exists y ∈ L̂hn,t with ∥x− y∥2 ≤Crn, and (b) for every x ∈ L̂hn,t

there exists y ∈ Lhn,t with ∥x− y∥2 ≤Crn.
To show (a), consider x ∈ Lhn,t , Then by the stability property of Lhn,t , there exists

y ∈ Lhn,t+rn such that ∥x− y∥2 ≤Crn. Then phn(y)> t + rn which implies that

p̂hn(y)≥ phn(y)−∥p̂hn − phn∥∞
> phn(y)− rn > t.

Hence we conclude y ∈ L̂hn,t with ∥x− y∥2 ≤Crn.
Similarly, to show (b), consider x ∈ L̂hn,t so that p̂hn(x)> t. Thus we have

phn(x)≥ p̂hn(x)−∥p̂hn − phn∥∞
> t − rn,

which leads to x ∈ Lhn,t−rn . Then again by the stability property of Lhn,t , there exists y ∈ Lhn,t

such that ∥x− y∥2 ≤Crn.
Hence by definition, we upper bound the Hausdorff distance H(L̂t ,Lh,t) by

Crn

=CCP,K,B

(√
(log(1/hn))++ log(2/δ )

nhd
n

+
1

hd+1
n

min

{
∑
a
∥µ̂a −µa∥1 +

√
log(2/δ )

n
, hn

})
.

C.3 Proofs for Section 4.4

C.3.1 Proof of Theorem 4.4.1 and the 2nd order remainder

The following lemma computes the efficient influence function (EIF) of ψC when our
covariate space X is discrete. For the sake of simplicity, we consider the binary treatment
case which is enough for our proof.
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Lemma C.3.1 (Efficient influence function). Suppose that X is discrete. For ψC, the
uncentered efficient influence function ϕC under a nonparametric model is as given by

ϕC(Z) = ∑
a∈A

{
2
[
∑
r

f a
r (µµµ)

]
∑

a′∈A

{
∑
r

[
∂ f a

r
∂ µa′

1(A = a′)
πa′

(Y −µa′)

]}
+

[
∑
r

f a
r (µµµ)

]2
}

where for a,a′ ∈ A

f a
r (µµµ;C,h) = ωr(µa − cra),

∂ωr

∂ µa′
=−ωr

h

{
µa′ − cra′

∥µµµ − cr∥2
−∑

j

µa′ − c ja′

∥µµµ − c j∥2
ω j

}
, cr = [cr1, ...,crp]

⊤. The weight term ωr is defined in (4.7) based on the Gaussian kernel.

Proof. It suffices to prove for p = 2 (binary treatments). By definition,

ψC = E∥µµµ − Π̃C(µµµ;h)∥2
2

= E

[
∑

a∈A

(
∑
r

ωr(µa − cra)

)2
]
.

By letting ψa
C ≡ E

[
(∑r ωr(µa − cra))

2
]
, we can write ψC = ∑a∈A ψa

C.

Now define a function f a
r : R2 → R by f a

r (µµµ) = ωr(µa − cra) for ∀a ∈ A ,k ∈ {1, ...,k}.
Note thta since we use smooth Gaussian kernel, f a

r is also smooth, differentiable in arbitrary
order. Then we have ψa

C = E
[
(∑r f a

r (µµµ))
2
]
.

Let φ a
C denote the EIF of ψa

C. In order to find an EIF of ψa
C we use derivative rule. First

we suppose X is discrete. Then we have

ψ
a
C = ∑

x∈X

[
∑
r

f a
r (µµµ(x))

]2

p(x)

where p(x) = P(X = x). From this, it follows

φ
a
C = ∑

x∈X

{
IF

([
∑
r

f a
r (µµµ(x))

]2
)

p(x)+
[
∑
r

f a
r (µµµ(x))

]2

IF(p(x))

}

= ∑
x∈X

{
2
[
∑
r

f a
r (µµµ(x))

]
∑
r

[
∂ f a

r
∂ µ0

(x)IF(µ0(x))+
∂ f a

r
∂ µ1

(x)IF(µ1(x))
]}

p(x)

+

[
∑
r

f a
r (µµµ(x))

]2

IF(p(x)).
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However we have

IF(µ0(x)) =
1−A

1−π(x)
1(X = x)

p(x)
[Y −µ0(x)]

IF(µ1(x)) =
A

π(x)
1(X = x)

p(x)
[Y −µ1(x)]

IF(p(x)) = 1(X = x)− p(x).

Plugging this into the last display yields

φ
a
C = 2

[
∑
r

f a
r (µµµ)

]
∑
r

[
∂ f a

r
∂ µ0

1−A
1−π

[Y −µ0]+
∂ f a

r
∂ µ1

A
π
[Y −µ1]

]
+

[
∑
r

f a
r (µµµ)

]2

− ∑
x∈X

[
∑
r

f a
r (µµµ(x))

]2

p(x)

= 2
[
∑
r

f a
r (µµµ)

]
∑
r

[
∂ f a

r
∂ µ0

1−A
1−π

[Y −µ0]+
∂ f a

r
∂ µ1

A
π
[Y −µ1]

]
+

[
∑
r

f a
r (µµµ)

]2

−ψ
a
C. (C.10)

Finally we obtain φC = ∑a∈A φ a
C. Note that φ a

C relies on a set of nuisance parameters
η = (π,µ0,µ1) for ∀a ∈ A . By induction, the result for any p follows immediately.

In order to formally verify that (C.10) in Lemma C.3.1 is actually the EIF of ψC, we study
the remainder term in the von-Mises expansion (1.4) and show that it is indeed a second-order
term. Due to linearity it suffices to consider φ a

C for ∀a ∈ A . Let P, P be two arbitrary
distributions. We use overbars to denote parameters or nuisance functions corresponding to
P. Then we have the von Mises expansion

ψ
a
C(P)−ψ

a
C(P) =−

∫
φ

a
C(P)dP+Ra

2(P,P)

=−EZ∼P[φ
a
C]+Ra

2(P,P).
(C.11)

The next lemma provides an explicit formula for Ra
2(P,P) in (C.11). For the notational

brevity, we shall stick to the case p = 2, as the extension to arbitrary p is straightforward.
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Lemma C.3.2. In (C.11), it follows that

Ra
2(P,P) = 2EZ∼P

{[
∑
r

f a
r (µµµ)

]
∑
r

[
∂ f a

r
∂ µ0

π −π

1−π
[µ0 −µ0]+

∂ f a
r

∂ µ1

π −π

π
[µ1 −µ1]

]}
−EZ∼P

{
[µ0 −µ0,µ1 −µ1]HHH∗

g

[
µ0 −µ0

µ1 −µ1

]}
.

(C.12)

Proof. We compute

EZ∼P[φ
a
C]+ψ

a
C(P)−ψ

a
C(P)

= 2EZ∼P

{[
∑
r

f a
r (µµµ)

]
∑
r

[
∂ f a

r
∂ µ0

1−A
1−π

[Y −µ0]+
∂ f a

r
∂ µ1

A
π
[Y −µ1]

]}
+EZ∼P

{[
∑
r

f a
r (µµµ)

]2
}
−ψ

a
C(P)+ψ

a
C(P)−ψ

a
C(P)

= 2EZ∼P

{[
∑
r

f a
r (µµµ)

]
∑
r

[
∂ f a

r
∂ µ0

1−π

1−π
[µ0 −µ0]+

∂ f a
r

∂ µ1

π

π
[µ1 −µ1]

]}
+EZ∼P

{[
∑
r

f a
r (µµµ)

]2
}
−ψ

a
C(P)

= 2EZ∼P

{[
∑
r

f a
r (µµµ)

]
∑
r

[
∂ f a

r
∂ µ0

π −π

1−π
[µ0 −µ0]+

∂ f a
r

∂ µ1

π −π

π
[µ1 −µ1]

]}
+EZ∼P

{
2
[
∑
r

f a
r (µµµ)

]
∑
r

[
∂ f a

r
∂ µ0

[µ0 −µ0]+
∂ f a

r
∂ µ1

[µ1 −µ1]

]}
+EZ∼P

{[
∑
r

f a
r (µµµ)

]2

−
[
∑
r

f a
r (µµµ)

]2
}

, where the second equality follows by the law of iterated expectations, the third by adding
and subtracting the second term in the display.

Now let g(µµµ) = [∑r f a
r (µµµ)]

2. Taylor’s Theorem gives[
∑
r

f a
r (µµµ)

]2

−
[
∑
r

f a
r (µµµ)

]2

−2
[
∑
r

f a
r (µµµ)

]
∑
r

[
∂ f a

r
∂ µ0

[µ0 −µ0]+
∂ f a

r
∂ µ1

[µ1 −µ1]

]
= [µ0 −µ0,µ1 −µ1]HHH∗

g

[
µ0 −µ0

µ1 −µ1

]
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where (HHH∗
g)i j =

∂ 2g
∂ µi∂ µ j

(µµµ∗) for some µµµ∗ on the line segment joining µµµ and µµµ for each
i, j ∈ A . Applying this to our last display in the above equation yields

Ra
2(P,P) = 2EZ∼P

{[
∑
r

f a
r (µµµ)

]
∑
r

[
∂ f a

r
∂ µ0

π −π

1−π
[µ0 −µ0]+

∂ f a
r

∂ µ1

π −π

π
[µ1 −µ1]

]}
−EZ∼P

{
[µ0 −µ0,µ1 −µ1]HHH∗

g

[
µ0 −µ0

µ1 −µ1

]}

Since this remainder term depends only on the second-order products of differences
between P and P, it is clear to see that the pathwise differentiability (1.4) holds.

C.3.2 Proof of Lemma 4.4.1

We need the following two auxiliary lemmas; for an optimal cluster codebook C ∈ M ∗,
Lemma C.3.3 bounds an error from kernel-smoothing the original k-means risk function
R(C), and Lemma C.3.4 shows an asymptotic behavior of our estimator ψ̂C.

Lemma C.3.3. Under the margin condition, for an optimal codebook C ∈ M ∗ we have

Rh(C)−R(C) = O(khα) .

Proof. For simplicity, we write Π̃C ≡ Π̃C(µµµ;h), ΠC ≡ ΠC(µµµ;h), ωr ≡ ωr(µµµ) in this proof.
Now we have

Rh(C)−R(C) = E∥µµµ − Π̃C∥2
2 −E∥µµµ −ΠC∥2

2

= E

{
2

〈
ΠC − Π̃C,µµµ − ΠC + Π̃C

2

〉}
≤ 4BE∥ΠC − Π̃C∥2

, where the last inequality follows by the Cauchy-Schwarz inequality and the boundedness
assumption (A4).

By abuse of notation we let k∗ = argmin
j∈{1,...,k}

∥µµµ − c j∥2 and k∗∗ = argmin
j∈{1,...,k}, j/∈k∗

∥µµµ − c j∥2.

Similarly, we let c∗, c∗∗ denote cluster centers corresponding to k∗ or k∗∗ respectively (i.e.
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c∗ = ΠC). Finally let us write KKK∗ = KKK(µµµ,c∗), KKK∗∗ = KKK(µµµ,c∗∗). Then we obtain

E∥ΠC − Π̃C∥2 = E
∥∥∥∥∑

r
cr (1{r = k∗}−ωr)

∥∥∥∥
2

≤ E

{
∑

r ̸=k∗
∥cr∥2ωr +∥ck∗∥2 (1−ωk∗)

}

≲ BE

{
∑

r ̸=k∗
ωr +(1−ωk∗)

}

≤ BE
{

2(k−1)
KKK∗∗

KKK∗

}
.

Next we note that

E
[

KKK∗∗

KKK∗

]
≤ E

[
KKK∗∗

KKK∗

∣∣∣∣∣µµµ /∈ NC(κ)

]
+E

[
KKK∗∗

KKK∗

∣∣∣∣∣µµµ ∈ NC(κ)

]
.

The condition µµµ /∈ NC(κ) implies κ < ∥µµµ − c∗∗∥2 −∥µµµ − c∗∥2. Thus the first term is
easily bounded by

E

[
KKK∗∗

KKK∗

∣∣∣∣∣µµµ /∈ NC(κ)

]
≲ exp

(
−κ

h

)
.

For the second term, we let ξC(µµµ) := ∥µµµ − c∗∗∥2 −∥µµµ − c∗∥2. Then under the condition
µµµ ∈ NC(κ), our margin condition implies that P(ξC(µµµ)≤ t)≤C′min{tα ,1} for some C′ ≥ 1
and all 0 ≤ t ≤ κ . Then it follows

E

[
KKK∗∗

KKK∗

∣∣∣∣∣µµµ ∈ NC(κ)

]
=

∫
µµµ∈NC(κ)

exp
(
−ξC(µµµ)

h

)
dP(µµµ)

=
∫

∞

0
P
(

exp
(
−ξC(µµµ)

h

)
≥ t
)

dt

=
∫ 1

0
P(ξC(µµµ)≤−h log t)dt

≲
∫ 1

0
min{(−h log t)α ,1}dt

=

{∫ exp(−1/h)

0
dt +hα

∫ 1

exp(−1/h)

(
log

1
t

)α

dt
}

≤
{

exp
(
−1

h

)
+hα

[
log

1
c′

]α}
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for some constant c′ ∈ (exp(−1/h) ,1), where we used the mean value theorem and the fact
that exp

(
−1

h

)
> 0 to obtain the last inequality. Therefore we conclude that

E

[
KKK∗∗

KKK∗

∣∣∣∣∣µµµ ∈ NC(κ)

]
= O(hα) .

Collecting two separate pieces, we have that

E
[

KKK∗∗

KKK∗

]
= O

(
exp
(
−κ

h

)
+hα

)
= O(hα) .

Hence we finally conclude that

Rh(C)−R(C) = O(khα) .

Lemma C.3.4. For C ∈ M ∗,

√
n(ψ̂C −R(C)) = an +bn + cn

where an = OP
(
∑a∈A ∥ϕ̂a

C −ϕa
C∥
)
, bn⇝ N

(
0,var

(
∑a∈A φ̄ a

C∗(Z)
))

, and

cn ≲

(
kh

α

2 −1

2
α

2
+1

)
∑

a′∈A

∥πa′ −πa′∥P,4 ∥µa′ −µa′∥P,4

+

(
k2

4
α

2
h

α

2 −2 +
k

2
α

2
h

α

2 −1 +1
)

∑
a′,a′′∈A

∥µa′ −µa′∥P,4 ∥µa′′ −µa′′∥P,4

+ khα .

φ̄ a
C∗(Z) is defined in (C.19) in the proof.

Proof. Here we show our proposed estimator ψ̂C is consistent and asymptotically normal
estimator for R(C). First, since ψC = Rh(C) we have

ψ̂C −R(C) = ψ̂C −ψC +Rh(C)−R(C).

Recall the uncentered efficient influence function ϕa
C = φ a

C +ψa
C for a ∈ A and let Gs

n

denote the empirical process over group s by Gs
n =

√
n(Ps

n −P). Then we have the following
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decomposition

√
n(ψ̂C −R(C)) =

1
S

S

∑
s=1

∑
a∈A

[Gs
n {ϕ

a
C(η̂−s)−ϕ

a
C(η)}]︸ ︷︷ ︸

i

+
√

n

{
1
S

S

∑
s=1

∑
a∈A

[P{ϕ
a
C(η̂−s)−ϕ

a
C(η)}]+Rh(C)−R(C)

}
︸ ︷︷ ︸

ii

+ ∑
a∈A

Gn {ϕ
a
C(η)}︸ ︷︷ ︸

iii

(C.13)

which follows by noting that ψa
C = P

(
ϕa

C

)
and ∑sPs

n
(
ϕa

C

)
= ∑sPn

(
ϕa

C

)
and simple rearrang-

ing. In what follows, we analyze each term in the right-hand side of above display.
part i) Let us write ϕ

a
C = ϕa

C(η̂−s) and φ
a
C = φ a

C(η̂−s). By the sample splitting lemma
[72, Lemma 2] it immediately follows

Gs
n (ϕ

a
C −ϕ

a
C) = OP (∥ϕ

a
C −ϕ

a
C∥)

and thereby the entire term is of order OP
(
∑a∈A ∥ϕ

a
C −ϕa

C∥
)
.

part ii) From (C.11) and by P(ψC) = 0, we first notice that for any a

P{ϕ
a
C −ϕ

a
C}=

∫
φ

a
CdP+ψ

a
C −ψ

a
C

= Ra
2(P,P)

(C.14)

where P is the probability distribution for units in all but group s that are used to estimate η .
Hence we have that 1

S ∑s ∑a∈A

[
P
{

ϕa
C(η̂−s)−ϕa

C(η)
}]
≲∑a∈A Ra

2(P̂,P). Now let us define

Rn :=
1
S ∑

s
∑

a∈A

[P{ϕ
a
C(η̂−s)−ϕ

a
C(η)}]+Rh(C)−R(C),

which consists of the second-order remainders which we analyzed in (C.12) and the approxi-
mation error analyzed in Lemma C.3.3.

On the other hand, for ∀a ̸= a′ ∈ A ,

∑
r

∂ f a
r

∂ µa′
= ∑

r

{
(µa − cra)

∂ωr

∂ µa′

}
, ∑

r

∂ f a
r

∂ µa
= ∑

r

{
(µa − cra)

∂ωr

∂ µa

}
+∑

r
ωr.
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As in Lemma C.3.3, we again let k∗ denote an index corresponding to the projection
ΠC(µµµ). Then it follows that

∣∣∣∣∑
r

{
(µa − cra)

∂ωr

∂ µa′

}∣∣∣∣=
∣∣∣∣∣∑r

{
(µa − cra)

ωr

h

(
− µa′ − cra′

∥µµµ − cr∥2
+∑

j

µa′ − c ja′

∥µµµ − c j∥2
ω j

)}∣∣∣∣∣
≤ 1

h

∣∣∣∣∣(µa − ck∗a)ωk∗

{
∑

j

µa′ − c ja′

∥µµµ − c j∥2

(
ω j −1{ j = k∗}

)}∣∣∣∣∣
+

1
h

∣∣∣∣∣∑r ̸=k∗
(µa − cra)(ωr −1{r = k∗})

(
− µa′ − cra′

∥µµµ − cr∥2
+∑

j

µa′ − c ja′

∥µµµ − c j∥2
ω j

)∣∣∣∣∣
≤ 2B

h

∣∣∣∣∣∑j

µa′ − c ja′

∥µµµ − c j∥2

(
ω j −1{ j = k∗}

)∣∣∣∣∣+ 2
h

∣∣∣∣∣∑r ̸=k∗
(µa − cra)(ωr −1{r = k∗})

∣∣∣∣∣
≲

1
h

∣∣∣∣∑
r

ϒr (ωr −1{r = k∗})
∣∣∣∣ ,

where ϒr ∈R for all k ∈N such that |ϒr| ≤ B′ for 0 < B′ < 4B. With this result, by the similar
logic used in Lemma C.3.3, we obtain that

∥∥∥∥∑
r

{
(µa − cra)

∂ωr

∂ µa′

}∥∥∥∥= [E{ 1
h2

∣∣∣∣∑
r

ϒr (ωr −1{r = k∗})
∣∣∣∣ ∣∣∣∣∑

r
ϒr (ωr −1{r = k∗})

∣∣∣∣}]1/2

≲
1
h

[
E

{(
k

KKK∗∗

KKK∗

)2
}]1/2

≲
k

2
α

2
h

α

2 −1. (C.15)

Therefore for any a,a′ ∈ A ,∥∥∥∥∑
r

∂ f a
r

∂ µa′

∥∥∥∥≲ k

2
α

2
h

α

2 −1 +1. (C.16)

On the other hand, given g(µµµ) = [∑r f a
r (µµµ)]

2, for ∀a′,a′′ we have

∂ 2g
∂ µa′∂ µa′′

= 2
(

∑
r

∂ f a
r

∂ µa′

)(
∑
r

∂ f a
r

∂ µa′′

)
+2
(

∑
r

f a
r

)(
∑
r

∂ 2 f a
r

∂ µa′∂ µa′′

)
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where ∑r
∂ 2 f a

r
∂ µa′∂ µa′′

= ∑r
∂ 2ωr

∂ µa′∂ µa′′
+∑r

∂ωr
∂ µa′

+∑r
∂ωr
∂ µa′′

. Through the similar algebra to obtain
(C.16) one can show that for ∀a′,a′′ ∈ A ,∥∥∥∥ ∂ 2g

∂ µa′∂ µa′′

∥∥∥∥≲ k2

4
α

2
h

α

2 −2 +
k

2
α

2
h

α

2 −1 +1. (C.17)

Now from (C.12), using (C.16), (C.17) and the fact that ∑r f a
r (µµµ) and all the other

quantities are bounded, by the Cauchy-Schwarz and the triangle inequality we have

Ra
2(P,P)≲ ∑

a′∈A

{∥∥∥∥∑
r

∂ f a
r

∂ µa′

∥∥∥∥∥(πa′ −πa′)(µa′ −µa′)∥
}
+ ∑

a′,a′′∈A

∥∥∥∥ ∂ 2g
∂ µa′∂ µa′′

∥∥∥∥∥(µa′ −µa′)(µa′′ −µa′′)∥

≲

(
kh

α

2 −1

2
α

2
+1

)
∑

a′∈A

∥(πa′ −πa′)(µa′ −µa′)∥

+

(
k2

4
α

2
h

α

2 −2 +
k

2
α

2
h

α

2 −1 +1
)

∑
a′,a′′∈A

∥(µa′ −µa′)(µa′′ −µa′′)∥

≲

(
kh

α

2 −1

2
α

2
+1

)
∑

a′∈A

∥πa′ −πa′∥P,4 ∥µa′ −µa′∥P,4

+

(
k2

4
α

2
h

α

2 −2 +
k

2
α

2
h

α

2 −1 +1
)

∑
a′,a′′∈A

∥µa′ −µa′∥P,4 ∥µa′′ −µa′′∥P,4 . (C.18)

(C.18) together with the result of Lemma C.3.3 give the upper bound for Rn, thereby for
part ii.

part iii) We fix a and define

φ
a
C,1 = 2

[
∑

j
f a

j (µµµ)

]
∑
r

{
(µa − cra) ∑

a′∈A

∂ωr

∂ µa′

1(A = a′)
πa′

(Y −µa′)

}
,

φ
a
C,2 = 2

[
∑

j
f a

j (µµµ)

]
m(A,X ,Y )+

[
∑

j
f a

j (µµµ)

]2

−ψ
a
C

where

m(A,X ,Y ) = ∑
a′∈A

1(A = a′)
πa′

(Y −µa′).

Then the efficient influence function φ a
C in (C.10) (for any p ≥ 2) can be written by

φ
a
C = φ

a
C,1 +φ

a
C,2.
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First for φ a
C,1, we note that φ a

C,1 ≲ ∑a′∈A ∑r

{
(µa − cra)

∂ωr
∂ µa′

}
as all the other terms are

bounded. Then, through the similar procedure to derive (C.16) we note that for any a,a′ ∈ A

∑
r

{
(µa − cra)

∂ωr

∂ µa′

}
=

1
h ∑

r

{
(µa − cra)ωr

(
− µa′ − cra′

∥µµµ − cr∥2
+∑

j

µa′ − c ja′

∥µµµ − c j∥2
ω j

)}

≤ 2
h ∑

r
ϒr (ωr −1{r = k∗})

for some bounded ϒr ∈ R. Now for any γ ∈ (0,1) consider NC(hγ). Note that NC(hγ) is
shrinking toward ∂C as n grows. Then based on the same logic used in Lemma C.3.3, it
follows that

∑
r

ϒr (ωr −1{r = k∗})≲ k
KKK∗∗

KKK∗

≤

1, if µµµ ∈ NC(hγ)

exp(−hγ−1), otherwise.

Since we only consider C ∈ M ∗, by the given margin condition (a) for all n,

∑
j
P
(

µµµ j ∈ NC(hγ)
)
≤ ∑

j
P
(

µµµ j ∈ NC(hγ) | κ ≤ hγ

)
+∑

j
P
(

µµµ j ∈ NC(hγ) | κ > hγ

)
≤ M0 +nhαγ

< ∞,

for some finite constant M0 > 0, where the last inequality follows by Assumption (c). Hence
by the Borel-Cantelli lemma, almost surely µµµ j /∈ NC(hγ) for all but finitely many n.

Consequently we have

√
nPn

{
φ

a
C,1
}
=

1√
n

{
∑

i:µµµ i∈NC(n−γ )

φ
a
C,1(µµµ i)+ ∑

i:µµµ i /∈NC(hγ )

φ
a
C,1(µµµ i)

}

≲
1

h
√

n
card({i : µµµ i ∈ NC(hγ)})+ 1√

n ∑
i:µµµ i /∈NC(hγ )

1
h

exp(−hγ−1)

= o(1) a.s.

where the last equality follows by the fact that card({i : µµµ i ∈ NC(hγ)}) < ∞ for all n, and
that 1

h
√

n = o(1) under Assumption (c).
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On the other hand, if we let ζ a
a′(X) = 2

[
∑ j f a

j (µµµ)
][

∑r(µa − cra)
∂ωr
∂ µa′

]
then by the law

of total expectation,

E
[
φ

a
C,1
]
= E

[
∑
a′

ζ
a
a′(X)E

{
m(A,X ,Y ) | X ,A = a′

}
P(a′ | X)

]
= 0

where we used E{ma′(A,X ,Y ) | X ,A = a′}= 0 for ∀a′. Hence we conclude that Gn

{
φ a

C,1

}
=

o(1) a.s., which implies that Gn

{
φ a

C,1

}
= oP(1).

Next for φ a
C,2, first note that ∑ j f a

j (µµµ) → µa − ck∗a and that ψa
C → E[(µa − ck∗a)

2] by
assumption (A3), (A4) and the dominated convergence theorem. Hence we define the
limiting value of φ a

C,2 by

φ̄
a
C∗(A,X ,Y ) = 2(µa − ck∗a)m(A,X ,Y )+(µa − ck∗a)

2 −E[(µa − ck∗a)
2] (C.19)

which is a fixed function of Z, independent of n. As shown above, by the law of total
expectation it is straightforward to show E

[
φ a

C,2

]
= 0 and thus E

[
φ̄ a

C∗
]
= 0, .

Furthermore, based on the similar algebra used to derive (C.16), with the additional fact
that ma is bounded, we have

φ
a
C,2 − φ̄

a
C∗ ≲∑

r
ϒ

′
r (ωr −1{r = k∗})

for some bounded ϒ ′
r ∈ R. Therefore, based on the exact same argument used to derive

Gn

{
φ a

C,1

}
= o(1) a.s. as above, we conclude that

Gn
{

φ
a
C,2 − φ̄

a
C∗
}
=
√

nPn
{

φ
a
C,2 − φ̄

a
C∗
}

= o(1) a.s.

and thus Gn

{
φ a

C,2 − φ̄ a
C∗

}
= oP(1).

Putting all the pieces together, finally we have

Gn {ϕ
a
C}=Gn(φ

a
C)

=Gn
{

φ
a
C,1
}
+Gn

{
φ

a
C,2 − φ̄

a
C∗
}
+Gn

{
φ̄

a
C∗
}

= oP(1)+oP(1)+Gn
{

φ̄
a
C∗
}
.
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Hence, by the central limit theorem and Slutsky theorem we obtain

Gn {ϕ
a
C}⇝ N

(
0,var

(
φ̄

a
C∗
))

,

for any a ∈ A . Therefore,

Gn

{
∑

a∈A

ϕ
a
C,η

}
⇝ N

(
0,var

(
∑

a∈A

φ̄
a
C∗(Z)

))
.

Now we are in a position to prove Lemma 4.4.1.

Proof of Lemma 4.4.1

Proof. Using the same decomposition as in part ii) of the proof of Lemma C.3.4 first let
us write φ a

C = φ a
C,1 +φ a

C,2 − φ̄ a
C∗ + φ̄ a

C∗ , where φ̄ a
C∗ is given in (C.19). Then from (C.16) and

Assumption (d) we already know
∥∥∥φ a

C,1

∥∥∥= o(1). Furthermore, by definition of f a
j and the

boundedness assumption (A4) one can easily show that[
∑

j
f a

j (µµµ)

]2

− (µa − ck∗a)
2 ≲∑

r
cra (1{r = k∗}−ωr) .

Hence similarly as before, we obtain
∥∥∥φ a

C,2 − φ̄ a
C∗

∥∥∥ = o(1) and ψa
C − ψa

C∗ = o(1) under

Assumption (d), where ψa
C∗ ≡ E[(µa − ck∗a)

2].
Therefore we have

∥ϕ
a
C −ϕ

a
C∥ ≤ ∥φ

a
C −φ

a
C∥+∥ψ

a
C −ψ

a
C∥

≤ ∥φ̄
a
C∗ − φ̄

a
C∗∥+o(1)+∥ψ

a
C∗ −ψ

a
C∗∥+o(1).

Note that φ̄ a
C∗ , ψa

C∗ are Lipschitz in L2(P) norm with respect to η and µa respectively, as
they are everywhere differentiable and their first derivatives are all bounded in L2(P) norm.
Hence, the last display is bounded by

O(∥η −η∥)+O(∥µ −µ∥)+o(1)

= O(oP(1))+O(oP(1))+o(1) = oP(1)
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where the equality follows by the given assumption (b). Consequently we have OP
(
∑a∈A ∥ϕ

a
C −ϕa

C∥
)
=

oP(1).
Moreover, by Assumption (d) we have

√
nRn = oP(1). Finally, Lemma C.3.4 and the

Slutzky theorem yield the result.

C.3.3 Proof of Lemma 4.4.2

Before proceeding, we first introduce the following lemma which will be useful to prove
Lemma 4.4.2.

Lemma C.3.5. For any a ∈ A and sufficiently large n such that h∧1 = h, it follws that with
probability at least 1−δ

sup
C∈Ck,η∈[ρ,1−ρ]p×Rp

|(Pn −P)ϕ
a
C(η)| ≤ C′

(√
log(1/δ )

nh2 +
log(1/δ )

nh

)

for any ρ > 0 and global constant C′ > 0 that does not depend on n,h,C,η .

Proof. Let us define a function class G1
a ≡
{

g1
a
C,η : Z → R |C ∈ Ck,η ∈ [ρ,1−ρ]p × [−B,B]p

}
such that

g1
a
C,η(Z) = 2

[
∑
r

f a
r (W ;C,h)

]
∑
r

∑
a′∈A

∂ f a
r (W ;C,h)

∂ µa′

1(A = a′)
πa′

(Y −µa′),

and a class G2
a ≡

{
g2

a
C,µ : Z → R |C ∈ Ck,µ ∈ [−B,B]p

}
such that

g2
a
C,µ(Z) =

[
∑
r

f a
r (W ;C,h)

]2

,

where η is a set of all the nuisance parameters as before and µ = (µ1, ...,µp). Then, it
follows that

sup
C∈Ck,η∈[ρ,1−ρ]p×Rp

|(Pn −P)ϕ
a
C(η)|

≤ sup
g1∈G a

1

∣∣∣∣∣1n n

∑
i=1

g1(Zi)−E [g1(Zi)]

∣∣∣∣∣︸ ︷︷ ︸
(i)

+ sup
g2∈G a

2

∣∣∣∣∣1n n

∑
i=1

g2(Zi)−E [g2(Zi)]

∣∣∣∣∣︸ ︷︷ ︸
(ii)

.
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For the part (i) in RHS of the above inequality, we first note that from the proof of Lemma
C.3.4 part (ii)

∥ f a
r ∥∞

≤ 2B,
∥∥∥∥ ∂ f a

r
∂ µa′

∥∥∥∥
∞

≤ 2Bk
h

+1

for ∀a,a′ ∈ A , which leads to

∥∥g1
a
C,η

∥∥
∞
≤ 2

∣∣∣∣∑
r

f a
r

∣∣∣∣
{

∑
r

∑
a′∈A

∥∥∥∥ ∂ f a
r

∂ µa′

1(A = a′)
πa′

(Y −µa′)

∥∥∥∥
∞

}

≤ 2k2B
(

2Bk
h

+1
)(

|Y∥∞ +B
ρ

)
≤ (h∧1)−1Ck,B,∥Y∥

∞
,ρ .

with some finite constant Ck,B,∥Y∥
∞
,ρ . Hence we conclude EP(g1

a
C,η)

2 < C2
k,B,∥Y∥

∞
,ρ(h∧1)−2.

Next, in order to consider the covering number of G a, suppose that for any indices r,a
and some ε > 0

∥∥µa −µ
′
a
∥∥

∞
≤ hε,

∥∥C−C′∥∥
∞
≤ hε,

∣∣∣∣ 1
πa

− 1
π ′

a

∣∣∣∣≤ hε,
∣∣ωr −ω

′
r
∣∣≤ hε

where we use superscript ′ to represent a different element in the same function/parameter
class. Then, it is clear to see that∣∣∣∣∂ωr

∂ µa
−
(

∂ωr

∂ µa

)′∣∣∣∣≤ |ωr −ω ′
r|

h
≤ ε,

and ∣∣ f a
r − ( f a

r )
′∣∣≤ ∣∣ωr −ω

′
r
∣∣∥µa − cra∥∞

+∥ωr∥∞

{∣∣µa −µ
′
a
∣∣+ ∣∣cra − c′ra

∣∣}
≤ hε(2B+1).

Consequently it also follows that∣∣∣∣ ∂ f a
r

∂ µa′
−
(

∂ f a
r

∂ µa′

)′∣∣∣∣≤ ∣∣∣∣ ∂ωr

∂ µa′
−
(

∂ωr

∂ µa′

)′∣∣∣∣∥µa − cra∥∞
+
∣∣ωr −ω

′
r
∣∣

≤ ε(2B+h)

≤ εC′
B
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for some constant C′
B > 0 as h = o(1). Now we have∥∥∥g1

a
C,η −g1

a
C′,η ′

∥∥∥
∞

≤ 2∑
r

∥∥ f a
r − ( f a

r )
′∥∥

∞

∥∥∥∥∥∑r
∑

a′∈A

∂ f a
r

∂ µa′

1(A = a′)
πa′

(Y −µa′)

∥∥∥∥∥
∞

+2
∥∥∥∥∑

r
f a
r

∥∥∥∥
∞

{
∑
r

∑
a′∈A

∥∥∥∥ ∂ f a
r

∂ µa′

1(A = a′)
πa′

(Y −µa′)−
(

∂ f a
r

∂ µa′

)′
1(A = a′)

π ′
a′

(Y −µ
′
a′)

∥∥∥∥
∞

}

≤ 2khε(2B+1)k
{

2Bk
h

+1
}

B+∥Y∥∞

ρ

+4Bk
{(

2Bk
h

+1
)(

hε

ρ
+(B+∥Y∥∞)hε

)
+ εC′

B

(
B+∥Y∥∞

ρ

)}
≤ εC′′

k,B,∥Y∥∞,ρ

for some constant C′′
k,B,∥Y∥∞,ρ

> 0, which follows by rearranging terms and applying triangle
inequality with all the bounds we have discussed so far. Let ε ′ = εC′′

k,B,∥Y∥∞,ρ
. Then finally

we have

N (G a,∥·∥
∞
,ε ′)

≤ N ([−B,B]p,∥·∥
∞
,hε)N ([−B,B]kp,∥·∥

∞
,hε)N ([1,

1
ρ
]p,∥·∥

∞
,hε)pN ([0,1]k,∥·∥

∞
,hε)

≤
(

2B
hε

)p+kp( 1
ρhε

)p( 1
hε

)k

= (hε/C′′′
k,p,ρ,B)

−2p−kp−k

≤

(
MCk,B,∥Y∥

∞
,ρ(h∧1)−1

ε ′

)2p+kp+k

,

where M =
C′′

k,B,∥Y∥∞,ρC
′′′
k,p,ρ,B

Ck,B,∥Y∥∞,ρ
. Hence by Theorem 30 in Kim et al. [76], for some constants C′

1,

C′
2, C′

3 , with probability at least 1−δ

sup
g1∈G a

1

∣∣∣∣∣1n n

∑
i=1

g1(Zi)−E [g1(Zi)]

∣∣∣∣∣
≤ C′

1

√
(2p+ kp+ k)C2

k,B,∥Y∥
∞
,ρ

n(h∧1)2 log(2M)+C′
2

√
C2

k,B,∥Y∥
∞
,ρ

n(h∧1)2 log(1/δ )+C′
3

(
Ck,B,∥Y∥

∞
,ρ

n(h∧1)
log(1/δ )

)
.
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Hence provided that h = h∧1, for sufficiently large constant C′ > 0 that only depends on
k, p,B,ρ,∥Y∥∞ we have

sup
g1∈G a

1

∣∣∣∣∣1n n

∑
i=1

g1(Zi)−E [g1(Zi)]

∣∣∣∣∣≤ C′

(√
log(1/δ )

nh2 +
log(1/δ )

nh

)

with probability at least 1−δ .
We omit the proof here for the sake of brevity, but we obtain the same upper bound for

the part (ii) as well based on the similar procedure. Hence, the result follows.

Now we are back to the proof of Lemma 4.4.2.

Proof. First note that

R(Ĉ)−R(C∗) = R(Ĉ)− ψ̂Ĉ + ψ̂Ĉ −R(C∗)

≤ R(Ĉ)− ψ̂Ĉ + ψ̂C∗ −R(C∗)

≤ 2∥ψ̂C −R(C)∥Ck

where we adopt the notation ∥ψ̂C − R(C)∥Ck ≡ sup
C∈Ck

|ψ̂C −R(C)|. Then by the triangle

inequality it follows that

∥ψ̂C −R(C)∥Ck ≤ ∥Rh(C)−R(C)∥Ck︸ ︷︷ ︸
i

+∥ψ̂C −Rh(C)∥Ck︸ ︷︷ ︸
ii

.

Let us analyze an asymptotic behavior of the right-hand side in the above display by term
by term.

i) As we expand our scope to arbitrary C ∈Ck, we can no longer rely on the margin condition
as in Lemma C.3.3 where we only considered an optimal codebook C ∈M ∗. Nonetheless,
for arbitrary C it still follows that

Rh(C)−R(C)≲ E
[

KKK∗∗

KKK∗

]
as seen in the proof of the Lemma C.3.3. Next for any ν such that 0 < ν < 1, we consider
NC(hν). Then, µµµ /∈ NC(hν)⇒ hν < ∥µµµ − ck∗∗∥2 −∥µµµ − ck∗∥2, and thereby
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KKK∗∗

KKK∗ ≤

exp
(
−hν

h

)
if µµµ /∈ NC(hν),

1 elsewhere
.

Hence,

E
[

KKK∗∗

KKK∗

]
≤

∫
µµµ /∈NC(hν )

KKK∗∗

KKK∗ dP(µµµ)+
∫

µµµ∈NC(hν )

KKK∗∗

KKK∗ dP(µµµ)

≤ exp
(
−hν−1)+ ∫

µµµ∈NC(hν )

dP(µµµ)

≲ exp
(
−hν−1)+hν = O(hν) = o(1), (C.20)

which leads to Rh(C)−R(C) = o(1). Since this result is independent on C, we conclude
that ∥Rh(C)−R(C)∥Ck = o(1).

ii) Using the following decomposition

ψ̂C −Rh(C) = ∑
a∈A

1
S

S

∑
s=1

(
Ps

n −P−s)
ϕ

a
C(η̂−s)+ ∑

a∈A

1
S

S

∑
s=1

P−s {ϕ
a
C(η̂−s)−ϕ

a
C(η)}

where P−s stands for the population distribution for samples not in group s, we have

sup
C∈Ck

|ψ̂C −Rh(C)| ≤ 1
S

S

∑
s=1

∑
a∈A

sup
C∈Ck

∣∣(Ps
n −P−s){ϕ

a
C(η̂−s)}

∣∣
+

1
S

S

∑
s=1

∑
a∈A

sup
C∈Ck

∣∣P−s {ϕ
a
C(η̂−s)−ϕ

a
C(η)}

∣∣ .
For the first term in the right-hand side,

sup
C∈Ck

∣∣(Ps
n −P−s){ϕ

a
C(η̂−s)}

∣∣≤ sup
C∈Ck,η∈[ρ,1−ρ]p×Rp

∣∣(Ps
n −P−s)

ϕ
a
C(η)

∣∣
∼= sup

C∈Ck,η∈[ρ,1−ρ]p×Rp

∣∣(Pn/S −P
)

ϕ
a
C(η)

∣∣ ,
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under random sample splitting, where ∼= means same in distribution. Hence by applying
Lemma C.3.5, for each s we have that with probability at least 1−δ ,

sup
C∈Ck

∣∣(Ps
n −P−s){ϕ

a
C(η̂−s)}

∣∣≤ C′
S

(√
log(1/δ )

nh2 +
log(1/δ )

nh

)
.

For the second term, from (C.12) we note that

P−s {ϕ
a
C(η̂−s)−ϕ

a
C(η)}= Ra

2(P̂,P),

where P̂ is the distribution corresponding to η̂−s. Since our C is no longer guaranteed to
be in M ∗ for the analysis of the above Ra

2(P̂,P) we have to use (C.20) in the preceding
part i). Based on the exact same algebra to deduce (C.18), we obtain

Ra
2(P̂,P)≲ ∑

a′∈A

{∥∥∥∥∑
r

∂ f a
r

∂ µa′

∥∥∥∥∥πa′ − π̂a′∥∥µa′ − µ̂a′∥
}
+ ∑

a′,a′′∈A

∥∥∥∥ ∂ 2g
∂ µa′∂ µa′′

∥∥∥∥∥µa′ − µ̂a′∥∥µa′′ − µ̂a′′∥

≲
(

kh
ν

2 −1 +1
)

∑
a′∈A

∥πa′ −πa′∥P,4 ∥µa′ −µa′∥P,4

+
(

k2h
ν

2 −2 + kh
ν

2 −1 +1
)

∑
a′,a′′∈A

∥µa′ −µa′∥P,4 ∥µa′′ −µa′′∥P,4 (C.21)

for any C ∈ Ck.

From Assumption (d), we have ∥πa′ − π̂a′∥∥µa′ − µ̂a′∥ = oP(n−1/2), ∥µa′ − µ̂a′∥∥µa′′ −
µ̂a′′∥= oP(n−1/2) for ∀a′,a′′ ∈A , and h

ν

2 −2 = h
ν

2 h−2 = o(1)oP(n1/2). Hence Ra
2(P̂,P) =

oP(1), independent of C. Consequently

sup
C∈Ck

∣∣∣P−k {ϕ
a
C(η̂−s)−ϕ

a
C(η)}

∣∣∣= oP(1).

Putting these together, we finally conclude

∥ψ̂C −Rh(C)∥Ck
= OP

(
1√
nh2

)
+oP(1).

Now, from above part i) and part ii) we have

∥ψ̂C −R(C)∥Ck = o(1)+OP

(
1√
nh2

)
+oP(1) = oP(1)+OP (oP(1)) = oP(1)

where the second last equality follows by 1√
nh2 = oP(1) from Assumption (d).
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Finally, the desired consistency can be shown by validating Theorem 5.7 in [141] where
we set M(·) =−R(·),Mn(·) =−ψ̂(·). We already have verified that ∥ψ̂C −R(C)∥Ck = oP(1).
Furthermore, since Ĉ is a minimizer of ψ̂ it is clear that −ψ̂C∗ + ψ̂Ĉ ≤ 0.

Note that R(·) is a bounded, continuous function whose domain (Ck) is compact. Hence
due to the local uniqueness condition (d), each C∗ is a locally well-separated minimizer of R.
Consequently, by the same logic used in Theorem 5.7 in [141], one may show that for each
δ > 0 the probability of the event {dcodebook(Ĉ,C∗)< δ , for some C∗ ∈ M ∗} converges to
1. Thus we conclude that Ĉ converges in probability to some C∗ ∈ M ∗, which yields the
result.

C.3.4 Proof of Theorem 4.4.2

The following lemma emphasizes the fact that if a codebook C ∈ Ck is sufficiently similar
to C∗ ∈ M ∗ (in terms of a valid distance function), then C satisfies the margin condition as
well.

Lemma C.3.6. Let C,C∗ belong to Ck,M
∗ respectively. If C is close enough to C∗, then C

also satisfies the margin condition.

Proof. Let W be in NC(κ
′) for some κ ′ > 0. Without loss of generality, let c∗i ∈C∗ denote

the nearest optimal cluster center for W , i.e. µµµ ∈Vi(C∗), for a fixed i ∈ {1, ...,k} .
First consider the case µµµ ∈ Vi(C∗)

⋂
Vi(C). Then by the triangle inequality for ∀ j ̸= i

such that Vj(C∗) is adjacent to Vi(C∗),∥∥µµµ − c∗j
∥∥

2 −
∥∥µµµ − c∗i

∥∥
2 ≤

∥∥µµµ − c j
∥∥

2 +
∥∥c j − c∗j

∥∥
2 −
∥∥µµµ − ci

∥∥
2 +
∥∥ci − c∗i

∥∥
2

≲ κ
′+dcodebook(C,C∗)

for a valid distance dcodebook equipped with metric space (R|A |,L2). Next we consider the
case where µµµ ∈Vi(C∗)

⋂
Vj(C) for ∀ j ̸= i. In this case we have∥∥µµµ − c∗j

∥∥
2 −
∥∥µµµ − c∗i

∥∥
2 ≤ d

(
∂Vi(C∗),c∗j

)
+d (∂Vi(C∗),W )−d (∂Vi(C∗),c∗i )+d (∂Vi(C∗),W )

≤ 2d (∂Vi(C∗),W )

≲ dcodebook(C,C∗)

where the first inequality follows by the triangle inequality, the second by d (∂Vi(C∗),ci) =

d
(
∂Vi(C∗),c j

)
for all Vj(C∗) adjacent to Vi(C∗), and the last by Lemma 4.2 in [85].
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Hence by setting κ ′ properly, for sufficiently small value of dcodebook(C,C∗) we obtain

min
j ̸=i

{
∥µµµ − c∗j∥2 −∥µµµ − c∗i ∥2

}
≤ κ

for µµµ ∈Vi(C∗). If we take a minimum of such κ ′ over all i, generalization to ∀i can be done.
Hence we conclude that µµµ ∈ NC∗(κ).

Note that value of the margin gap does not affect our result in Lemma 4.4.1. Having
Lemma C.3.6, it can be said that there exists a constant τκ > 0 such that if dcodebook(C,C∗)≤
τκ then C satiesfies the margin condition as well.

We are now in a position to prove Theorem 4.4.2.

Proof of Theorem 4.4.2. Let C∗ belong to M ∗. By Lemma 4.4.1, for each ε > 0 we can
always find Mε and nε such that P(

√
n|ψ̂C∗ −R(C∗)|> Mε)< ε for all n ≥ nε . Furthermore

by the result of Lemma C.3.6, we can find the constant τκ > 0 that makes a codeset C
satiesfy the margin condition whenever dcodebook(C,C∗)≤ τκ . Lastly note that by Lemma
4.4.2 we have dcodebook(Ĉ,C∗)

P−→ 0, and thus for each ε ′ > 0 there exists nε ′ such that
P
(

dcodebook(Ĉ,C∗)> τκ

)
< ε ′ for all n ≥ nε ′ . Now by the law of total probability,

P
(√

n
∣∣∣ψ̂Ĉ −R(Ĉ)

∣∣∣> Mε

)
≤ P

(√
n
∣∣∣ψ̂Ĉ −R(Ĉ)

∣∣∣> Mε | dcodebook(Ĉ,C∗)≤ τκ

)
+P

(
dcodebook(Ĉ,C∗)> τκ

)
< P

(√
n |ψ̂C∗ −R(C∗)|> Mε

)
+ ε

′

< ε + ε
′

for all n ≥ max(nε ,nε ′). Note that the second inequality follows by the local uniqueness of
C∗, along with Lemma C.3.6. As ε and ε ′ are both arbitrary we conclude that

√
n
(

ψ̂Ĉ −R(Ĉ)
)
= OP(1).

Finally,

R(Ĉ)−R(C∗)≤ R(Ĉ)− ψ̂Ĉ + ψ̂C∗ −R(C∗)

= OP

(
1√
n

)
.
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C.3.5 Proof of Theorem 4.4.3

To proceed, we define a function ϕ(Z;C,η ′)≡ϕC,η ′ : Z →Rk×|A | by ϕC,η ′ =∇C′=C {ϕC′(η ′)},
a vector of partial derivatives of the uncentered EIF ϕ with respect to each cluster center
c′ ∈ C′ evaluated at value c ∈ C, indexed by a cluster codebook C and a set of nuisance
parameters η ′. Then our estimate Ĉ is zeros of the equation 1

S ∑
S
s=1Ps

n
{
ϕC,η̂−s

}
= 0.

Let η denote true nuisance parameters. As before, we let C∗ ∈M ∗ denote a minimizer of
the true risk function R(C). In additiona to that, let us write C0 ≡ argmin

C∈Ck

ψC,η , a minimizer

of the kernel-smoothed risk ψC,η = Rh(C). In Lemma 4.4.2 we gives the result that Ĉ is
consistent to C∗. The following lemma provides the same consistency guarantee for C0.

Lemma C.3.7. Under the same condition as in Lemma 4.4.2, C0 converges in probability to
C∗.

Proof. It suffices to show that Ĉ converges to C0 by recycling the proof structure used in
Lemma 4.4.2: i.e., showing that assumptions of Theorem 5.7 in [141] are satisfied. We
already showed that ∥ψ̂C,η −ψC,η∥Ck = oP(1) in the second part of Lemma 4.4.2. Next by
definition ψ̂Ĉ,η

−ψC,η ≤ 0.
Finally we claim that C0 is a well-separated point of minimum of a function Rh(·) = ψ·,η .

Suppose that it is not and for any δ > 0 there exists another minimizer C1 such that Rh(C1) =

Rh(C0) and d(C1,C0)≥ δ for all n. Then since ∥Rh(C)−R(C)∥Ck = o(1) from the first part
of Lemma 4.4.2, on one hand it follows that

Rh(C0)−R(C1) = Rh(C0)−R(C0)+R(C0)−R(C1)

= o(1)+R(C0)−R(C1) = o(1)

which yields R(C0)−R(C1) = o(1). On the other hand, Rh(C0) = min
C∈Ck

Rh(C) = min
C∈Ck

{R(C)+

o(1)} = R(C∗) + o(1) for some C∗ ∈ M ∗ and Rh(C0) = R(C0) + o(1). Hence R(C∗) =

R(C0)+o(1).
Consequently we have R(C∗)−R(C0) = o(1) and R(C∗)−R(C1) = o(1). Since each

C∗ is a locally well-separated point of minimum of R, there exists nδ such that for n ≥ nδ

d(C∗,C0) <
δ

2 and d(C∗,C1) <
δ

2 , which yields d(C0,C1) < δ , a contradiction. Hence we

conclude that C0 is a well-separated point of minimum of Rh, and thereby Ĉ P−→C0.

Note that Lemma C.3.7 does not require the strong margin condition in Definition ??.
With this lemma, we are ready to prove Theorem 4.4.3.
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Proof of Theorem 4.4.3

Proof. First note that by Leibniz’s rule

P
{
ϕC0,η

}
= P

{
∇C=C0

(
φC,η +ψC,η

)}
= ∇C=C0

{
P
(
φC,η

)}
+P

{
∇C=C0ψC,η

}
= 0

as P
(
φC,η

)
= 0 for ∀C and ∇C=C0ψC,η = 0 by definition. Thus it follows,

0 =
√

n

[
1
S

S

∑
s=1

Ps
n

{
ϕĈ,η̂−s

}
−P

{
ϕC0,η

}]

=

√
n

S

S

∑
s=1

Ps
n

{
ϕĈ,η̂−s

−ϕC∗,η̂−s

}
+
√

n

[
1
S

S

∑
s=1

Ps
n
{
ϕC∗,η̂−s

}
−P

{
ϕC0,η

}]
. (C.22)

Fix s. For any unit in group s, by Taylor’s theorem we have

ϕĈ,η̂−s
−ϕC∗,η̂−s = ∑

|α|=1
DαϕC∗,η̂−s(Ĉ−C∗)+

1
2 ∑
|α|=2

DαϕC̃∗,η̂−s
(Ĉ−C∗)2

for some C̃∗ between Ĉ and C∗ (in terms of linear interpolation between each pair of points),
where Dα is the differential operator for multi-index α = (α1, ...,α|A |k) of length |A |× k

and |α|= ∑
|A |k
l=1 αl .

On one hand, since ϕC consists of the first partial derivatives with respect to each
coordinate of C, ∑

|α|=1
DαϕC∗,η̂−s is a summation of all the second order partial derivatives

with respect to each coordinate of C∗. For a fixed a ∈ A and label indices j, j′, l, due to their
structural resemblance ∂ f a

l
∂c ja

can be analysed through the very similar algebra used for ∂ f a
l

∂ µa
in

part ii of Lemma C.3.4. Thus again we may write,

∑
j
∑

l

∂ f a
l

∂c ja
(µa − cla)≲∑

j
ω j +

1
h ∑

j
ϒj
(
ω j −1{ j = k∗}

)
for some bounded ϒj ∈ R for all j ∈ N. Under the strong margin condition, we obtain faster
rates of the approximation term

∑
l

ϒl (ωl −1{l = k∗})≲ exp(−κ

h
),
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which leads to

∂ 2ϕC∗

∂c ja∂c j′a
≲ 1+

1
h2 exp(−κ

h
), and consequently ∑

|α|=1
DαϕC∗,η̂−s ≲ 1+

1
h2 exp(−κ

h
).

This is an analogous result to (C.16) and (C.17) in Lemma C.3.4. On the other hand, when
|α| ≥ 2 the addition of 1 (from ∑ j ω j) no longer exists as we start taking the additional
derivative at the third or higher order, and it could be deduced that∣∣∣∣∣ ∂ |α|

∂ α1c1,a1 · · ·∂
α|A |kck,a|A |

ϕC∗,η

∣∣∣∣∣≲ |α|

∑
j=1

b j

h j

{
exp
(
−κ

h

)
+ · · ·+ exp

(
− jκ

h

)}

where b j’s are finite constants which do not vary with n. Hence ∑
|α|=2

DαϕC∗,η̂−s ≲
1
h2 exp(−κ

h )

1.
Next, we claim that for any codeset C̃ such that C̃ P−→ C∗, ∥DαϕC̃,η̂−s

∥ = OP(1) for
all α such that |α| ≥ 0. To this end, first we note that for each ε > 0 there exists nε

such that P
(

dcodebook(C̃,C∗)> τκ

)
< ε for all n ≥ nε , where we interpret the constant

τκ in the exact same way as in Lemma C.3.6. Furthermore from before, it is clear that
∥DαϕC∗,η̂−s∥= O(1) for every α and C∗ ∈ M ∗. Hence there exists a univeral constant M
such that ∥DαϕC∗,η̂−s∥ ≤ M. Now it follows

P
(
∥DαϕC̃,η̂−s

∥ ≤ M
)
≥ P

(
∥DαϕC̃,η̂−s

∥ ≤ M | dcodebook(Ĉ,C∗)≤ τκ

)
P
(

dcodebook(Ĉ,C∗)≤ τκ

)
> P

(
∥DαϕC∗,η̂−s∥ ≤ M

)
(1− ε)

= (1− ε) .

Since ε is arbitrary, we get the desired result. Now we notice that

var
(√

n
S

Ps
n

{
DαϕC̃∗,η̂−s

})
=

n
S2

S
n

var
(

DαϕC̃∗,η̂−s

)
≤ 1

S
∥DαϕC̃∗,η̂−s

∥2.

Hence using Chebyshev’s inequality, it follows

P


∣∣∣√n

S Ps
n

{
DαϕC̃∗,η̂−s

}∣∣∣
∥DαϕC̃∗,η̂−s

∥/S
≥ t

≤ 1
t2

1We omit the detailed algebra here since they are mostly very analogous to those used in the part ii of the
proof of Lemma C.3.4 and thereby not particularly illuminating here.
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for any t > 0. By letting t = 1/
√

ε and noting ∥DαϕC̃∗,η̂−s
∥ = OP(1), we obtain that

√
n

S Ps
n

{
DαϕC̃∗,η̂−s

}
= 1

SOP (1).
Finally we are ready to analyze the first term in (C.22). Putting all things together,

√
n

S

S

∑
s=1

Ps
n

{
ϕĈ,η̂−s

−ϕC∗,η̂−s

}
=
√

n(Ĉ−C∗)
1
S

S

∑
s=1

{
Pn

(
1+

1
h2 exp(−κ

h
)

)}
+

1
2

S

∑
s=1

√
n

S
Ps

n

{
∑

|α|=2
DαϕC̃∗,η̂−s

}
(Ĉ−C∗)2

=
√

n(Ĉ−C∗)+oP(1)o(1)+
1
S

S

∑
s=1

OP (1)oP(1)

=
√

n(Ĉ−C∗)+oP(1). (C.23)

Now for the second term in (C.22) we have,

√
n

[
1
S

S

∑
s=1

Ps
n
{
ϕC∗,η̂−s

}
−P

{
ϕC0,η

}]

=
1
S

S

∑
s=1

√
n(Ps

n −P)
{
ϕC∗,η̂−s −ϕC∗,η

}
+

√
n

S

S

∑
s=1

(Ps
n −P)ϕC0,η

+
1
S

S

∑
s=1

√
nP
{
ϕC∗,η̂−s −ϕC∗,η

}
+

√
n

S

S

∑
s=1

Ps
n
{
ϕC∗,η −ϕC0,η

}
=

1
S

S

∑
s=1

Gs
n
{
ϕC∗,η̂−s −ϕC∗,η

}
︸ ︷︷ ︸

i

+GnϕC0,η︸ ︷︷ ︸
ii

+
1
S

S

∑
s=1

√
nP
{
ϕC∗,η̂−s −ϕC∗,η

}
︸ ︷︷ ︸

iii

+
√

nPn
{
ϕC∗,η −ϕC0,η

}︸ ︷︷ ︸
iv

(C.24)

where Gn =
√

n(Pn −P) and Gs
n =

√
n(Ps

n −P) as before. In (C.24), we shall proceed term
by term as below.

i) Without loss of generality let us fix c ∈C∗, a ∈ A and by abuse of notation let ϕ ′
C,η

denote a particular coordinate of ϕC,η corresponding to c and a, i.e. ϕ ′
C,η = ∂

∂ca
ϕ(·;C,η).

Then we define a function class F ∗ =
{

ϕ ′
C,η : C ∈ M ∗

}
, where η is still defined as the set

of true nuisance parameters.
As shown in above ∥DαϕC∗,η̂−s∥= O(1) for arbitrary α such that |α| ≥ 0 and M ∗ ⊂ Ck

is compact, F ∗ is Lipschitz of order ⌊k/2⌋+1 with respect to each coordinate of C. Hence,
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by Theorem 2.7.2 in [142] we have

logN[] (ε,F
∗,L2(P))≲

(
1
ε

) k|A |
⌊k|A |/2⌋+1

.

Therefore by Theorem 19.5 in [141], F ∗ is Donsker and due to the consistency of η̂−s we
have

Gs
n

{
ϕ
′
C∗,η̂−s

−ϕ
′
C∗,η

}
= oP(1).

This claim holds for every pair of c,a. Thus we conclude that Gs
n
{
ϕC∗,η̂−s −ϕC∗,η

}
= oP(1).

ii) We may write

GnϕC0,η =Gn
{
ϕC0,η −ϕC∗,η

}
+GnϕC∗,η .

As shown previously in part i, a function class for each coordinate of ϕC∗,η is Donsker.

Furthermore C0
P−→C∗ by Lemma C.3.7. Hence basically by recycling the argument used in

part i, we obtain Gn
{
ϕC0,η −ϕC∗,η

}
= oP(1).

Next, to analyze GnϕC∗,η we can follow the same logic used in the part iii in Lemma
C.3.4. Again let ϕ ′

C,η denote a particular coordinate of ϕC,η corresponding to a pair c, a;
so we need to take an additional derative of the EIF ϕC∗,η with respect to c∗a ∈C∗. After a
course of simple algebra as in the part iii in Lemma C.3.4, we may write

ϕ
′
C∗,η(Z) = ma(Z)+(µa − c∗k∗a)ma(Z)+ ϕ̃

′
C∗,η(Z)

≡ ϕ̄
′
C∗,η(Z)+ ϕ̃

′
C∗,η(Z)

with the same definition of ma and k∗ as before, where all the terms in ϕ̃ ′
C∗,η decay to zero at

exponential rates this time due to the strong margin condition (unlike before we do not need
any probablistic arguments). Namely, the function ϕ ′

C∗,η consists of the fixed function ϕ̄ ′
C∗,η

and the shrinking function ϕ̃ ′
C∗,η whose terms go to zero at exponential rates. Finally, the

central limit theorem and Slutsky theorem yield

GnϕC∗,η ⇝ N
(
0,Σ ′

C∗,η

)
(C.25)

where Σ ′
C∗,η is a covariance matrix for due to ϕ̄ ′

C∗,η part at each coordinate.
iii) As shown in (C.14) in the proof of Lemma C.3.4, we have

P
{
ϕC∗,η̂−s −ϕC∗,η

}
≲ Ra

2(P̂,P)
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and under the condition in Theorem 4.4.2 it follows Ra
2(P̂,P) = oP(n−1/2). Consequently,

√
nP
{
ϕC∗,η̂−s −ϕC∗,η

}
= oP(1).

iv) By Lemma C.3.7, we have C0
P−→C∗. Thus we can proceed with the same argument

we used for analyzing the first term in (C.22). Using Taylor’s theorem and noting that
∥DαϕC∗,η∥= O(1) we obtain ∥ϕC0,η −ϕC∗,η∥= oP(1). Then by the Chebyshev’s inequality
argument as before, we conclude that

√
nPn

{
ϕC∗,η −ϕC0,η

}
= oP(1).

Putting all the pieces in part i - iv together we are guaranteed an asymptotic normaility in
(C.24). Therefore, plugging all the results back into (C.22), again by Slutsky theorem we
reach to the desired result.
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