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Abstract

Gene networks hold immense importance in understanding the underlying mechanisms that
govern cellular activities and organismal behavior. As the true gene interaction is not observable,
people often resort to observable gene expression data to statistically infer the gene network.
In this thesis, we address the immense challenges in the statistical gene network, including 1)
benchmark tool for gene network estimation 2) nonlinear gene network estimation methods 3)
the application of gene networks in Autism associated gene understanding.

In Chapter [2| we address benchmarking imputation methods on gene coexpression estimation.
We develop a new simulation tool that allows realistic simulation of a homogeneous cell group,
heterogeneous cell groups, as well as complex cell groups relationships such as tree and trajectory
structure, together with gene co-expression structure. We show the usefulness of our tool by
accessing the effect of gene expression denoising methods on downstream gene co-expression
estimation. In Chapter [3] we address the limitation of current gene co-expression estimation
methods in capturing nonlinear relationships. We show that averaging cell-specific gene coex-
pression over a population gives a novel dependence measure that can detect any non-linear,
non-monotone, and non-global relationship. We formally establish the consistency and robustness
and demonstrate its advantage over a large family of dependence measures. In Chapter [4] we
explore the application of various types of gene networks in a case study of identifying active
genes associated with autism spectrum disorders (ASD). To enable a systematic investigation, we
also develop a novel gene group interaction measure, which extends an existing idea addressing
the challenges when the true gene groups are unknown to nonlinear setups. Using a unified
network-assisted gene risk modeling, we found that some types of gene networks are evidently
more useful than others for our task: they help identify an assortment of unique “active” and
“reactive” gene communities that are biologically interesting.
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One

Introduction

All figures in this chapter are used only to demonstrate or visualize different concepts
needed for the remaining chapters of the thesis.

1.1 PRELIMINARIES

The purpose of this section is to provide a reader with a concise, simplified, and
targeted overview of genomics so readers have the necessary biological background
to approach the upcoming chapters in this thesis.

It is now well-known that genes play a fundamental role in our existence. The
decoding of genes occurs through the process of gene expression. A simplified
understanding of the gene expression process is described by the “central dogma’”,
which states that genes are transcribed into messenger RNA (mRNA), which is
then translated into proteins. These proteins serve diverse functions within the
body, including contributing to the structure, function, and regulation of tissues
and organs. Figure [1.1] provides a visual representation of this abstract process. It
is important to note that genes do not work in isolation during the gene expression
process; rather, they interact during both transcription and translation. The
interaction scheme is complex, and unlike other observable interaction systems like
social networks, these interactions are not directly observable.

To comprehend the underlying biological factors that influence the gene expres-
sion process (as depicted in Figure , sophisticated data collection methods are
necessary. Various laboratory instruments employ different biochemical approaches
to investigate distinct aspects of this process, such as DNA sequencing data, RNA-
sequencing data (which provides mRNA counts for each gene), and protein data
(which provides protein counts for each gene). In this thesis, our focus is on a
specific aspect of the process: transcription, which involves the conversion of genes
into mRNA. It is widely acknowledged that genes dynamically produce mRNA in a
stochastic manner Raj et al.| (2006). Each gene exhibits a Poisson-like process with a
certain production rate, which can be influenced by other genes (gene interactions),
molecules, and experimental conditions. Biochemists often describe this process
using Stochastic Differential Equations (SDE), while statisticians tend to model
the observed mRNA counts directly using multivariate modeling techniques. It has



1.2. Overview to Chapter 2

been demonstrated that these two approaches align Shahrezaei and Swain| (2008)):
when the stochastic process described by SDE reaches a steady state, the mRNA
count follows a negative binomial distribution (a generalized Poisson distribution)
marginally. As SDE estimation and inference can be challenging, statistical models
have played a crucial role in unraveling the gene expression process. The objective of
this thesis is to develop statistical methods that, when applied to RNA-sequencing
data, can uncover patterns within the data, particularly gene interaction patterns.

Transcription Translation
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Figure 1.1: A simplified summary of the gene expression process.

1.2 OVERVIEW TO CHAPTER 2

In Chapter [2] we extensively explore the current state-of-the-art in generating
synthetic RNA-sequencing data. The main objective of this chapter is to develop
data simulation software that is both realistic and user-friendly. While numerous
software tools already exist for this purpose, we specifically focus on a crucial aspect
that has been overlooked for a long time: capturing the interactions among genes
during data synthesis. In the following, we briefly introduce the necessary scientific
background and overview of our contribution. The work in this chapter resulted in
the publication,

Jinjin Tian, Jiebiao Wang, and Kathryn Roeder. "ESCO: single cell expression
simulation incorporating gene co-expression." Bioinformatics 37.16 (2021):
2374-2381.

Draft as of August 1, 2023 2



1.2. Overview to Chapter 2

1.2.1 Scientific background

The two most widely used technologies for generating RNA-sequencing data are bulk
RNA-seq and single-cell RNA-seq (scRNA-seq), as illustrated in Figure Both
methods measure gene expression levels by counting the mRNA produced by genes.
However, there are significant differences between the two approaches. In bulk
RNA-seq, a population of cells is collected and simultaneously processed, resulting in
an averaged measurement of mRNA counts for the entire population. The resulting
data matrix is structured in a gene-by-sample format, where each sample represents
a bulk of cells. On the other hand, scRNA-seq measures gene expression on a
cell-by-cell basis. Each cell is individually processed and analyzed, leading to a
data matrix in a gene-by-cell format. scRNA-seq offers a much higher resolution
compared to bulk RNA-seq, providing new opportunities for research. However, this
increased resolution comes with some challenges. One challenge with scRNA-seq
data is the presence of missing counts. A gene may exhibit zero expression in a
particular cell due to biological reasons (i.e., the gene is not expressed in that cell) or
technical noise (resulting in missing counts). Furthermore, the noise in the non-zero
counts can be more pronounced compared to bulk RNA-seq data. To overcome
these challenges, various denoising and imputation methods have been proposed
to unlock the full potential of scRNA-seq data, particularly in addressing missing
counts. However, a key question arises regarding how to evaluate and benchmark
these methods since there is no ground truth available. While realistic simulation
software has been developed to mimic the biological and data collection processes
accurately, many of these tools overlook the importance of gene interactions during
the gene expression process.

Single-cell RNA-sequencing Cells
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Figure 1.2: A simplified summary of the data collection process in RNA-sequencing.

1.2.2 Contribution overview

In our approach, instead of employing a complex stochastic differential equation
framework to model gene interaction, we utilize a copula model to directly incor-

Draft as of August 1, 2023 3



1.3. Overview to Chapter 3

porate gene interaction while leveraging the existing understanding of marginal
distributions in scRNA-seq data. This straightforward procedure offers users direct
control over the gene interaction scheme and enables efficient generation of large-
scale data. We extend the application of copula modeling beyond single cell group
simulation to include multiple discrete cell groups, tree-structured cell groups, and
continuous cell trajectories. This broadens the scope of our software and facilitates
the generation of diverse cell group scenarios. Furthermore, we utilize our soft-
ware to benchmark existing imputation methods that address the issue of missing
counts in scRNA-seq data. Specifically, we evaluate the impact of these methods
on downstream gene co-expression estimation, which measures the synchronization
of gene expression levels. Surprisingly, we discovered that many methods, despite
being effective at fitting the marginal distribution of the data, result in a spurious
inflation of gene co-expression. This previously unknown limitation of these methods
highlights the importance of careful evaluation. Among the evaluated methods, an
ensemble approach demonstrates the most consistent top performance, albeit with
increased computation time.

1.3 OVERVIEW TO CHAPTER 3

In Chapter[3] our focus is on the estimation of gene co-expression, which captures the
synchronization of gene expression levels, particularly for contemporary large hetero-
geneous scRNA-seq data where gene interactions often exhibit local characteristics.
Specifically, the gene interactions can vary from one sample point to another, may
only be present in a subset of samples, and can display non-linear or non-monotonic
relationships. Existing dependence measures often do not specifically target local
dependence relationships, and those that do tend to be computationally intensive.
In this chapter, we introduce a novel gene co-expression measure that effectively
captures local dependence patterns. This measure has the ability to identify and
quantify non-linear or even non-monotonic relationships while providing statistical
guarantees. By developing this innovative approach, we are able to address the
limitations of previous methods and provide a more comprehensive understanding
of gene co-expression in contemporary scRNA-seq datasets.

In the following, we briefly introduce the necessary scientific background and
overview of our contribution. The work in this chapter results in the following
preprint respectively,

Jinjin Tian, Jing Lei, and Kathryn Roeder. "From local to global gene co-
expression estimation using single-cell RNA-seq data." Biometrics, minor
revision.

1.3.1 Scientific background

The true biological networks are of form of a directed network, which describes
how a collection of molecular regulators interact with each other and with other

Draft as of August 1, 2023 4



1.3. Overview to Chapter 3

substances in the cell to govern the gene expression levels of mRNA and proteins
which, in turn, determine the function of the cell. These networks, called genetic
regulatory networks (GRNs), are central to all biological organisms, and their
deciphering is crucial to understand the development, functioning, and pathology of
these organisms. Once a remote theoretical possibility, this deciphering is now made
possible by advances in genomics, most notably high-throughput profiling of gene
expression patterns with DNA microarrays and RNA sequencing [Karlebach and
Shamir| (2008); |Delgado and Gomez-Velal (2019)); Mercatelli et al.| (2020); Nguyen
et al. (2021). These advances have prompted the development of a plethora of
models of GRNs and algorithms to reverse-engineer them from expression data. On
one aspect, there are physical models mimicking the biological mechanisms at play,
including promoter recognition, mRNA transcription, and protein translation. These
models, typically based on systems of ordinary or stochastic differential equations
Cao et al.| (2012); [Dibaeinia and Sinhal (2020a)), can generate realistic behavior
but a large number of experimental data since they tend to have high-dimensional
parameter spaces.

Alternatively, statistical models based on the analysis of dependencies between
expression patterns (gene co-expressions) offer an intermediate level of complexity
and have shown success in aiding the inference of large GRNs. Some methods
utilize the bivariate dependency between expression patterns of gene pairs to infer
“gene coexpression networks (GCN)” Langfelder and Horvath! (2008]); Reshef et al.
(2011). Although these pairwise gene relationships lack directionality (and causal
interpretation), they serve as reliable candidates for subsequent causal structure
discovery, which is often computationally demanding |[Vowels et al. (2022). In this
thesis, our focus is on statistical approaches for estimating undirected gene networks
(i.e. GCNs), and the inference of directional gene networks (i.e. GRNs) is beyond
the scope of our current work.

1.3.2 Contribution overview

In Chapter [3| we leverage a recently proposed ambitious concept: a gene relationship
measure at the single-cell level, under the name of cell-specific gene networks. We
demonstrate that by averaging the cell-specific gene relationships across a population,
we obtain a novel univariate dependence measure called the averaged Local Density
Gap (aLDG). This measure effectively accumulates local dependence information
and has the capability to detect non-linear and non-monotonic relationships. We
establish the robustness of alLDG through a consistent nonparametric estimator that
performs well both at the population and empirical levels. Additionally, we explore
the application of aLDG in various scenarios by averaging the cell-specific gene
relationships over mini-batches defined by external structural information, such as
spatial or temporal factors. This approach helps to highlight meaningful local struc-
ture change points. We examine the usefulness of aLDG and its minibatch variant
in different contexts, including pairwise gene relationship estimation, detection of

Draft as of August 1, 2023 5



1.4. Overview to Chapter 4

bifurcating points in cell trajectories, and visualization of spatial transcriptomics
structures. Through simulations and analysis of real data, we demonstrate that
alLDG outperforms existing methods, particularly when applied to scRNA-seq data.

1.4 OVERVIEW TO CHAPTER 4

In Chapter {4} our focus is on understanding the mechanism of differential expression
(DE) in Autism Spectrum Disorder (ASD). While numerous genes that exhibit
differential expression between ASD and neurotypical brains have been identified,
their precise role in ASD development remains elusive. A gene can be differentially
expressed as a causal factor contributing to the phenotype ("active") or as a
result of the phenotype itself ("reactive"). Our work represents the first endeavor
to comprehensively investigate the DE mechanism in ASD. By delving into this
mechanism, we aim to provide fresh insights into the causal relationships and effects
associated with ASD from a novel perspective.

1.4.1 Scientific background

Detecting which genes are highly associative of ASD when mutated can help future
researchers better understand the genomic basis of ASD as well as design better
treatment, but searching across the genome for so-called “autism risk genes” can be
extremely timely and costly. A standard analysis to find autism risk genes involves
sequencing the genome of trios (an individual with ASD as well as the two parents
without ASD) and determining which genes have a mutation in the individual with
ASD that leads to severe disruption in how it is expressed (if any). This type
of mutation is called de novo loss-of-function (dnLoF) mutations, which provide
a great signal-to-noise ratio, but unfortunately, are extremely rare to observe in
sequencing data. Some (He et al 2013; [Fu et al., 2022) also pool other forms of
genomic information aside from dnLoF mutations to help inferring likely autism risk
genes. Still, among thousands of trios sequenced, only a few hundreds of genes were
deemed as autism risk genes, and preliminary studies suggest there should be nearly
a thousand ASD risk genes (Neale et al.||2012;|He et al.,[2013|). Researchers have also
started to investigate the problem from another angle: studying the heterogeneity
in gene expression patterns when contrasting ASD and normal samples. Those
endeavors represented by |Gandal et al.| (2022) found over four thousands of genes
that are differentially expressed between ASD and normal samples, however, which
of them are the cause of ASD and which are affected by ASD remains unknown.

1.4.2 Contribution overview

To unravel the differential expression (DE) mechanism in Autism Spectrum Disorder
(ASD), we employ an integrative approach that incorporates information from other
sources, specifically the Transmission And De novo Association (TADA) analysis.
TADA analysis directly assesses the likelihood of a gene being the cause of ASD

Draft as of August 1, 2023 6



1.4. Overview to Chapter 4

based on DNA sequencing data. Integrating these disparate sources of information
is a challenging task, as we observed minimal overlap between genes identified as
TADA-significant (genes carrying mutations strongly associated with ASD) and
DE-significant genes (genes exhibiting significant differential expression). To bridge
this gap, we leverage their shared biological mechanism: gene interactions within
a gene network. Firstly, we embark on a systematic investigation of various gene
network concepts in the context of modeling ASD risk genes, with a focus on
nonlinearity and group interactions. Secondly, we propose a novel model based on
Hidden Markov Random Field (HMRF) to jointly model DE and TADA signals,
while incorporating gene network information. Our approach enhances the overlap
between DE and TADA signals in a meaningful manner by carefully regularizing the
signals through “message passing” within the gene network. Through the network
regularization of these two sources of information, we successfully identify distinct
clusters of “active” and “reactive” DE genes. The active clusters are found to be
associated with synaptic and neuronal functions, enriched in neuron-type cells,
aligning with the prevailing belief that ASD arises from dysfunctions in neuronal
activities. Conversely, the reactive clusters predominantly pertain to responsive
functions and are enriched in non-neuronal cells, providing novel insights into the
impact of ASD on the misfunctioning of non-neuronal activities. Our findings shed
light on the underlying molecular mechanisms of ASD and contribute to a deeper
understanding of its complexities.

Draft as of August 1, 2023 7
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ESCO: scRNA-seq simulation

Incorporating gene co-expression

Gene-gene co-expression networks (GCN) are of biological interest for the useful
information they provide for understanding gene-gene interactions. The advent of
single cell RNA-sequencing allows us to examine more subtle gene co-expression
occurring within a cell type. Many imputation and denoising methods have been
developed to deal with the technical challenges observed in single cell data; mean-
while, several simulators have been developed for benchmarking and assessing these
methods. Most of these simulators, however, either do not incorporate gene co-
expression or generate co-expression in an inconvenient manner. Therefore, with the
focus on gene co-expression, we propose a new simulator, ESCO, which adopts the
idea of the copula to impose gene co-expression, while preserving the highlights of
available simulators, which perform well for simulation of gene expression marginally.
Using ESCO, we assess the performance of imputation methods on GCN recovery
and find that imputation generally helps GCN recovery when the data are not too
sparse, and the ensemble imputation method works best among leading methods.
In contrast, imputation fails to help in the presence of an excessive fraction of
zero counts, where simple data aggregating methods are a better choice. These
findings are further verified with mouse and human brain cell data. The ESCO
implementation is available as R package ESCEﬂ

Publication. This work was done in collaboration with Jiebiao Wang and Kathryn
Roeder, and contains content that appears in (Tian et al.| (2021)):

Jinjin Tian, Jiebiao Wang, and Kathryn Roeder. "ESCO: single cell expression
simulation incorporating gene co-expression." Bioinformatics 37.16 (2021):
2374-2381.

Thttps://github.com/JINJINT /ESCO



2.1. Introduction

2.1 INTRODUCTION

A synchronization between gene expression leads to gene co-expression. Cell hetero-
geneity, due to cell type or cell cycle, can generate correlations between genes that
are highly expressed in similar cells. Alternatively, any form of gene cooperation
within a cell type, such as gene co-regulation, also results in co-expression. To
differentiate these two settings, we refer them as the gene co-expression across
heterogeneous cell groups and gene co-expression within homogeneous cell groups
respectively, throughout this article. Understanding gene co-expression in the former
setting helps with cell-type identification, and in the latter setting, it helps detect
gene regulation relationships and can further provide insights into genetic disorders
(Pang et al., 20205 Polioudakis et al., 2019; Parikshak et al., [2013; Willsey et al.,
2013b).

Single-cell RNA sequencing (scRNA-seq), a recent breakthrough technology that
paves the way for measuring transcription at single cell resolution to study precise
biological functions, allows us to target gene co-expression within homogeneous cell
groups for the first time. Indeed, early statistical models argued that genes within
homogeneous cell groups were independent (Quinn et al., 2018). However, they
overlooked the investigations from the biological end, which reveal that correlation
arises due to the stochastic nature of gene expression and gene regulation dynamics
(Raj et al., 2006]).

scRNA-seq data present many challenges for co-expression analysis, due to the
sparsity of counts, which include many zeros, mainly arising from low capture and
sequencing efficiency in the data collecting process. Sparsity occurs in both a gene-
and a cell-specific manner and is observed to have the greatest impact on genes
that have low expression. An ever-growing literature attempts to address these
challenges using imputation and other denoising methods (Chen et al., 2020; |Gong
et al., 2018 [Huang et al.l 2018} [Li and Li, [2018; [Van Dijk et al.l 2018} |[Eraslan
et al 2019; |Linderman et al., 2018). To systemically benchmark these methods, we
require realistic simulation tools to construct a ground truth for scRNA-seq data
with realistic technical noise; however, currently there is a paucity of methods for
this purpose.

Numerous scRNA-seq simulators using both non-parametric and parametric
approaches have been proposed during recent years, e.g., Splat (Zappia et al., [2017)),
SymSim (Zhang et al.. 2019a), PROSSTT (Papadopoulos et al., 2019)), and SERGIO
(Dibaeinia and Sinha, [2020b). Each of those methods focuses on producing realistic
marginal behavior of gene expression, and successfully modeling these features, as
well as capturing cell type heterogeneity. But, those simulators either ignore gene
co-expression, or they generate it in a way that is hard to benchmark. Real data
clearly display gene co-expression within homogeneous cell groups (Figure )
and gene co-expression across heterogeneous cell groups (Figure ) By contrast,
almost all gene pairs show no correlation for simulated data generated using Splat,

Draft as of August 1, 2023 9



2.2. Methods

even without the challenge of added technical noise (Figure ) While the data
simulated by SymSim may show a modest level of gene co-expression (Figure
left panel), that correlation arises from the cell type confounding, rather than true
gene-gene interaction (Figure right panel). PROSSTT, shares a similar
issue with SymSim, in that it also introduces co-expression via a random dot
product model. SERGIO, on the other hand, directly approximates the biological
gene expression process via a series of differential equations with gene regulation
relationship as constrains, therefore it is able to introduce gene co-expression based
on real gene-gene interactions. However, it is hard to anticipate the final level of
co-expression from the imposed gene regulation relationship, hence it is difficult to
systematically benchmark the outcome.

Here we propose a new simulation tool, Ensemble Single-cell expression simulator
incorporating gene CO-expression, ESCO, which is constructed as an ensemble of
the best features among current simulators to preserve the marginal performance,
while allowing easily incorporating co-expression structure among genes using a
copula. Particularly, ESCO allows realistic simulation of a homogeneous cell group,
heterogeneous cell groups, as well as complex cell group relationships such as tree
and trajectory structure, together with a flexible input of co-expression. As for
technical noise, ESCO integrates the parametric and non-parametric approaches
in current literature and gives the user flexibility to choose. In order to mimic a
specific real data set, ESCO can estimate all the hyperparameters in a feasible
way for both a homogeneous cell group or heterogeneous cell groups. ESCO is
implemented in the R package ESCO, which is built upon the R package Splatter
(Zappia et al., 2017)), in order to provide a unified software framework.

2.2 METHODS

2.2.1 Models

Despite their differences, current simulation approaches arguably follow a general
flowchart (Figure. For example, Splat (Zappia et al., [2017)) simulates scRNA-seq
data using a hierarchical model in which the gamma-Poisson distribution imposes
a mean and variance trend; SymSim (Zhang et al., 2019a)) is based on a similar
hierarchical model with gene kinetics guiding the hyperparameter selection, a non-
parametric approach to introduce more realistic noise, and a focus on tree-structured
heterogeneity; PROSSTT (Papadopoulos et al., 2019) aims to simulate realistic
cell trajectories using a model based on Brownian motion; SERGIO (Dibaeinia and
Sinhal 2020b)) starts from the gene regulation relationship and solves a series of
stochastic differential equations given by gene kinetics to impose those regulations.
The more complex non-parametric modeling tends to fit data better than parametric
modeling, given that the aim is to mimic data for which the model has already
been trained. However, this approach is not practical for producing simulated
data similar to a new data set. For example, the non-parametric methods like
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SymSim and SERGIO use grid search over a large number of tuning parameters. By
contrast, the parametric Splat approach can be tuned to data by fitting a one-step
statistical regression model. ESCO also follows the general flowchart in Figure [2.1
but it aims to incorporate the best features from the existing methods. Figure [2.2]
illustrates the superiority of ESCO, as it allows simulation of scRNA-seq data with
various cell heterogeneity patterns and customized gene co-expression patterns.
The correlation pattern input is successfully replicated in the simulated data, both
within and between homogeneous cell groups. In this section, we elaborate on the
specific simulation models that ESCO adopts, following the framework outlined
in Figure 2.1 More detailed descriptions of the simulation models and the time
complexity for simulating large complex data are provided in Appendix and

respectively.

Base expression level. We simulate base expression level in an empirical way
that allows inputting any density function, either non-parametric or parametric.
Particularly, we denote the base expression level for gene g as Ay, and we let A\, A
for all g.

Extrinsic variation. The heterogeneity of cell groups is driven by the differential
expressed (DE) behavior among certain gene sets across groups. Therefore we
implement the cell group heterogeneity, i.e., the extrinsic variation, via modeling the
behavior of DE genes (GPF). We use the random dot product model to introduce
this heterogeneity by imposing a DE factor generated separately on the otherwise
homogeneous gene expression means. Particularly, we generate the different cell
group structures we want, via modeling the DE factor fé“ for gene g in cell group k
in each of the following ways.

A. Discrete cell groups:. In order to generate clear and distinguishable cell groups,
we randomly split the set of DE genes into subsets, each is identified as marker
genes for a cell group. Then we simulate the DE factor for each marker gene set as
a LogNormal random variable with different mean and variance indexed by group
identity.

B. Tree-structured cell groups:. We utilize the idea in SymSim (Zhang et al.,
2019a)), which makes the DE factor of similar cell groups more related to each other.
Particularly, we generate the DE factor from a multivariate normal distribution,
where the covariance matrix is given by the tree structure of the data. Additionally,
in order to assure the identifiability of different cell groups, we introduce extra
heterogeneity via strengthening the DE factor for a small proportion of DE genes,
which are identified as marker genes in this setting (different from those in the
discrete cell group setting).
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Figure 2.1: Summary of simulators for scRNA-seq data. A. The general modeling
flowchart of commonly used simulators. Simulators often start with (a) extrinsic
variation that arose from cell heterogeneity in the biological sense, and import this model
to (b) the base expression mean generated for each gene, to formalize the heterogeneous
expression means for a gene in a cell of a particular cell type. Then, those means are
used to generate the expression level, i.e., mMRNA counts, by modeling the (c) intrinsic
variation, i.e., the stochasticity of gene expression in a cell with a defined base rate of
expression. This process is often modeled by the gene kinetic model in biochemistry,
which could be stated as a stochastic process in statistical terms. The stable distribution
of this stochastic process can usually be approximated by distributions like negative
binomial / Poisson / beta Poisson. Finally, some simulators allow the generation of
technical noise (d) separately, by adding noise, step by step, to the true counts, to
mimic the data collection process (the cartoon display is from |Zhang et al.| (2019a))).
Usually, this stepwise process is approximated by the zero-inflation model, where the
true counts are set to zero with probability related to expression level. B. Summary
of the current state of simulators following the general modeling flowchart described
above, with blue and orange text color indicating whether they use statistical estimation
or grid search when fitting the simulator to a real data set. The objective of ESCO is to
create an ensemble of the best features among current simulators in each step, while
allowing easily imposing co-expression structure among genes via a copula.
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C. Continuous cell trajectories:. We utilize the idea in PROSSTT (Papadopoulos
et al., 2019)), which uses Brownian motion to generate the DE factors, so that the
smooth cell heterogeneity can be generated.

Finally, we generate the base expression with an adjustment of library size for each
gene g in cell ¢ as

Age = chgc/ ngc for each cell c, (2.1)
g

iid Ay 5(0) if g € GPE, with k(c) denotes the group

identity of cell ¢; otherwise Ag. ~ Ag.

where log L. d Fr, and ch

Intrinsic variation.

Marginal distribution:. Gene expression in individual cells is an inherently stochas-
tic process (Raj et al., [2006). If the gene regulation is ignored, this process is
just a simple two state birth-death process. The steady-state distribution for this
stochastic process in most cases turns out to be a Gamma-Poisson, Beta-Poisson,
or Poisson, which is justified from the theoretical biochemistry aspect (Griin et al.,
2014; Kim and Marionil [2013), the experimental data sampling aspect (Quinn et al.,
2018)), and also the common observations from the data. Splat (Zappia et al., 2017
and PROSSTT (Papadopoulos et al., 2019) utilize the negative binomial model in
the simulation of marginal gene expression; while SymSim (Zhang et al., [2019al)
uses a Beta-Poisson instead; SERGIO (Dibaeinia and Sinha;, [2020b]) simulates the
gene expression via solving the series of ordinary differential equation functions
following the literature about gene kinetics with regulation (Schaffter et al., 2011]).

ESCO adopts the negative binomial model, since it is widely accepted in the
literature and enjoys support from biochemistry, experimental data sampling, and
empirical observations. Particularly, following Splat (Zappia et al., [2017), we can
naturally enforce a mean-variance trend by simulating the Biological Coefficient of
Variation (BCV) for each gene. BCV is defined as the square root of the standard
deviation divided by the mean, i.e., the square root of the coefficient of dispersion.
It has been pointed out (McCarthy et al., 2012) that one should not assume a
common dispersion for all the genes, as a gene-specific variation is often detected
in RNA-seq case studies. Splat simulates BCV as a weighted sum of a common
dispersion and a gene-specific dispersion, such that some information can be shared
across genes to benefit the estimation, while preserving the gene-specific variation.

Co-expression:. The gene expression (either the truth or the observed) is not neces-

sarily independent even within cells of the same type, resulting from gene regulation.
Characterizing the joint distribution requires solving the steady distribution of
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multiple correlated stochastic processes, which usually does not have a closed-form
solution and requires large computational power (Pratapa et al. 2020; Dibaeinia
and Sinhaj 2020b). Since the marginal distribution of gene expression is understood
fairly well, naturally, we think of using the copula to model the gene dependence.
This idea is shown to be successful in Inouye et al.| (2017) to model bulk RNA-seq
data.

A copula is defined by a joint cumulative distribution function (CDF), C(u) :
[0,1]P — [0, 1] with uniform marginal distributions. One of the most popular copula
models is the Gaussian copula, which is defined simply as:

O = Ny (@ (ur), @ uz), .., 0 () 22)

where ®~! denotes the inverse function of standard normal CDF, and Ny: denotes the
joint CDF of a multivariate normal random vector with zero means and correlation
matrix X. Due to the well-known consistency between ¥ and the empirical Pearson
correlation matrix, the Gaussian copula allows for directly interpretable dependence
simulation, and therefore is adopted by ESCO.

Technical noise:. Currently, there are mainly two single cell library preparation
protocols: (1) full-length mRNAs profiling without the use of UMIs (e.g., with a
standard Smart-Seq protocol); and (2) profiling only the end of the mRNA molecule
with the addition of UMIs (e.g., 10x Chromium). The former protocol is usually
applied for a small number of cells and with a large number of reads per cell,
providing full information on transcript structure. The latter is normally applied
for many cells with shallower sequencing, and it is impacted less by amplification
and gene length biases. We focus on the UMI-based protocol in this paper because
it is usually less biased with greater sparsity.

There currently exist two approaches to simulate the technical noise: one is
based on data generating process, and the other is based on data visualization
and fitting. As an example of the former, SymSim (Zhang et al., |2019a)) uses
the empirical approximation of the major steps in the experimental procedures
such as mRNA capture, PCR amplification, RNA fragmentation, and sequencing,
to directly imitate the technical noise. On the other hand, Splat (Zappia et al.,
2017)) simulates the technical noise by adopting a zero-inflation model, where the
zero-inflation probability relates to the gene expression level in a way that comes
from the observed trend in the real data.

There are both pros and cons with regard to these two approaches. The empirical
approach facilitates the generation of more realistic noise, but suffers from finding
appropriate configuration to match a particular data set (actually, SymSim uses
a grid search to do the matching). In contrast, the parametric approach allows a
one-step estimation of the parameters from the real data, but can suffer from poor
goodness-of-fit due to the mismatch of models. Therefore, ESCO integrates both
procedures and gives users the freedom to choose between the two.
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Figure 2.2: ESCO can simulate scRNA-seq data of various cell heterogeneity and gene co-
expression. A. The simulation results for one homogeneous cell group consisting of 200
cells and 500 genes. The first panel displays the heatmap of log2 transformed normalized
simulated expression data, where rows represent genes and columns represent cells; 30%
of genes are chosen to be co-expressed genes, and the rest are independent genes. The
following displays depict, in order, the given correlation structure for co-expressed genes,
the simulated correlation structure among those co-expressed genes without noise, and
that with technical noise, and the simulated correlation structure for independent genes.
B. The simulation results for three discrete heterogeneous cell groups consisting of
500 cells and 1000 genes. 30% of the genes are chosen to be cell-type DE genes and
presumably co-expressed, among which each marks one cell type. Another 10% of genes
are chosen to be housekeeping genes, and also presumably co-expressed. The rest are
independent non-DE genes. The first display shows the heatmap of log2 transformed
normalized simulated data, where different gene types (rows) and cell types (columns)
are marked with color bars on the margin. The following displays depict, in order in each
row, the given correlation structure for both marker genes of Group2 and co-expressed
housekeeping genes, the simulated correlation structure among those co-expressed genes
without noise, and that with technical noise; and, at the end of each row the simulated
correlation structure among all DE genes across all cells, and that among all independent
genes across all cells, with corresponding gene types marked with a color bar on top. C.
The simulation results for five heterogeneous cell groups that follow a tree structure
given in the first panel. We simulate 1000 cells and 2000 genes: 30% of genes are
chosen to be DE genes and presumably co-expressed, among which 5% are markers;
the rest are independent non-DE genes. The second panel shows the heatmap of log2
transformed normalized simulated data. Different cell types are marked with color bars
on the column margin, together with the hierarchical clustering of cells. The following
displays depict, in order, the resulting correlation structure among all marker genes
across all cells, with corresponding gene types marked with a color bar on top; the given
correlation structure for co-expressed marker genes of Neuronl cells, and the resulting
correlation structure among those co-expressed genes. D. The simulation results for
five heterogeneous cell groups that follow a smooth cell trajectory structure given in the
top left panel. There are 1000 cells and 2000 genes; 30% of genes are chosen to be DE
genes and presumably co-expressed and share the same correlation structure within each
branches, and the rest are independent non-DE genes. The following displays depict, in
order, the UMAP for the first two dimensions of the simulated data, the heatmap of
log2 transformed normalized simulated data for all DE genes in one continuous path
(i.e., branches 1 — 2 — 5), with branch ID marked with a color bar on top; the given
shared correlation structure for the DE genes, and the resulting correlation structure
simulated of those genes within each branch.
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2.2.2 Estimation

ESCO facilitates mimicking any particular data set, consisting of either homogeneous
or heterogeneous cell groups, by estimating the hyperparameters from the data.
Through learning the parameters in the parametric model, this approach fits data
as well as possible, given the limitations of the parametric choice, as illustrated by
comparing mouse brain cells (Zeisel et al., [2015) with simulated outcomes. A good
match is obtained for mean, variance of expression, UMAP of cells, percent zero
outcomes, and co-expression patterns (Figure .

Next, we elaborate on our specific estimation strategies. Recall that ESCO
takes a hierarchical modeling approach, paired with a copula. As such, an empirical
Bayesian approach to parameter estimation would be appropriate. However, it is
usually infeasible to compute the solution. Therefore, we follow Splat and estimate
the parameters in each layer separately. Particularly, we assume the data are already
normalized (i.e., no batch effect arises due to technical reason) and have disjoint
marker gene sets across cell types, and consider the three estimation tasks in the
following.

Estimating the heterogeneity. We have introduced three types of heterogeneity
of gene expression (discrete, tree, and trajectory), but we only present an estimation
procedure for the discrete one here, and leave a full elaboration of the more complex
structure of the other two models to future work. Nevertheless, ESCO is usable for
these two models provided the tree structure and trajectory information is available
from side information. When the tree/trajectory information is not available, in
contrast with SymSim and PROSSTT, we caution against using a grid search to
chose model parameters due to the difficulty in determining a good “match” in these
complex heterogeneity cases. SymSim and PROSSTT use summary statistics, such
as global mean and variance, as standards for a good “match”, but two datasets can
have similar mean and variance and totally different cell heterogeneity structure.

Following our modeling of the discrete heterogeneous cell groups, we first split
all the genes to DE and non-DE genes based on their Area Under the Curve (AUC)
scores in cell group prediction using SC3 (Kiselev et al., |2017)), provided that we
already have the true cell group annotation. Particularly, we use 0.7 as our cutting
threshold of the AUC score, i.e., classifying the genes with AUC score no less than
0.7 as DE genes and the others as non-DE genes.

We then use the DE genes to estimate the DE factors. Particularly, we divide
those DE genes into marker genes for each cell group based on their classification
result from SC3 (Kiselev et al., 2017). We assume that the mean distribution of
marker genes in their marked cell group follows the same distribution in the other
cell group and a DE factor that follows LogNormal distribution indexed by the cell
type. Therefore, we estimate the DE factor for marker genes of cell group k via
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fitting a LogNormal distribution on the ratio of their sample mean within cell group
k and those outside cell group k.

Estimating the intrinsic variation. First, as for estimating the parameters
related to marginal intrinsic variation, we follow the technique used in Splat (Zappia
et al., 2017), with a few refinements. We allow non-parametric fitting of the
library size distribution and base mean distribution, which can be done quickly by
computing the empirical CDF and also later on sampled from using Metropolis-
Hastings sampling due to the univariate nature. One may refer to|Zappia et al.[(2017)
for further details about the estimation procedure for other marginal parameters
included in the algorithm, such as BCV and outlier.

As for the estimation of the covariance in copula model, we cluster similar
cells and form metacells (Baran et al., [2019)) first to circumvent challenges due to
technical noise and sparse counts. As an integrated version of the original real
data, the size of metacells must be carefully selected so that the technical variation
can be reduced, while some biological variation can be preserved. We refer the
reader to the source paper of MetaCell (Baran et all) 2019) for further details. A
more statistically convincing approach would be the non-parametric estimation
procedure called SKEPTIC (Liu et all [2012]), which is built for a continuous
marginal paired with a Gaussian copula. However, SKEPTIC is derived assuming a
continuous marginal without additional noise. In our case, the data are discrete,
and the underlying truth is severely masked by the additional zeros, so we find it
challenging to recover signals from real data. Therefore, we did not consider this
direction, though careful adjustment of the estimation procedure and corresponding
consistency under the discrete marginals masked by false zeros is worth attention
in future work.

FEstimating the technical noise. ESCO also allows estimation of the technical
noise when adopting the parametric zero-inflation model. Though Splat already
includes the corresponding estimation via fitting a logistic regression between the
log-transformed gene mean and their observed zeros proportions, it is biased towards
inflating the probability of excess zeros as explained in the Appendix [2.5.2] where
we provide a correction of the bias in the end.

2.3 RESULTS

Recall that a particularly prominent aspect of noise that complicates scRNA-seq
data analysis is sparsity due to low capture and sequencing efficiency in the data
collecting process. Excess sparsity has been shown to corrupt the analysis of scRNA-
seq data in many ways (e.g., cell clustering, trajectory inference, DE gene detection,
etc.). Imputation methods can generally help according to several benchmarking
efforts (Zhang and Zhang, |2018; Andrews and Hemberg) 2018). However, the
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influence of sparsity on gene co-expression, particularly within the homogeneous
cell group, has been overlooked by many. ESCO provides an easy way to fill in
the gap, as it allows for the generation of flexible gene co-expression as a ground
truth. In the following we present a systematic evaluation of the performance of
imputation methods on the recovery of gene co-expression using ESCO.

2.3.1 Sparsity attenuates the gene co-expression.

First, we show that sparsity indeed impedes the recovery of gene co-expression in
scRNA-seq data. Highly expressed genes are much less likely to suffer from technical
noise, as they have sufficient replicates to be detected in the data collecting process,
in contrast to relatively lowly expressed genes. To illustrate this point we contrast
gene co-expression for marker genes in scRNA-seq data (Velmeshev et al| 2019)) to
bulk RNA-seq data (Parikshak et al., 2016)). Genes are classified as high or mid,
based on their expression values. In scRNA-seq data, the mid-genes demonstrate
substantially less correlation when compared to the high-genes (Figure top
panel). But in the bulk RNA-seq data, mid and high-genes demonstrate equivalent
levels of correlation (Figure bottom panel). Because we expect little, if any,
impact of technical noise in bulk data, and similar levels of correlation for marker
genes in these two data sources, this investigation suggests that sparsity attenuates
measured correlation of gene expression in scRNA-seq data. Thus we look to
imputation for improved performance.

2.3.2 Imputation can help recover GCN with moderate sparsity.

Working with the Zeisel data (Zeisel et al., 2015), we consider a subset consisting
of the 4000 most differentially expressed genes and 526 cells from three cell types
(astrocytes ependymal, endothelial-mural, microglia) that have distinct marker
genes. We simulate data from 1000 genes and 200 cells with hyperparameters
estimated from the real data, while manually changing the sparsity level such that
the zero proportion ranges from 60% to 90% (the real data has ~ 43% zeros). The
objective is to recover GCN with greater accuracy by imputing zeros. Success
is measured in two ways: improved estimates of gene clustering, based on co-
expression networks, and improved identification of pairs of co-expressed genes,
based on permutation test of correlation. Comparing the truth to imputation, the
former is assessed by computing the Adjusted Rand Index (ARI) and the latter
using Area Under the Curve (AUC). We evaluate ARI and AUC for each imputation
method under a range of sparsity levels (i.e., zero proportion) for the marker genes
within cell groups, the housekeeping genes across cell groups, and the DE genes
across cell groups (Figure )

To compute ARI we choose the number of clusters that maximizes the score,
calculated over a range of clusters numbers (2-9). To calculate AUC we label
gene pairs as connected or un-connected based on the co-expression significance in
permutation testing of the simulated truth. We then assess the prediction accuracy
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(AUC scores) of connections for each imputation method using their estimated
co-expression. All the results are averaged over 10 replicates.

We observe the following results (Figure [2.3B). (1) Generally, imputation helps
(beat the un-imputed raw data, depicted by the bold dashed black line) recovering
both gene co-expression within homogeneous cell groups and gene co-expression
across heterogeneous cell groups, but fails to help much with gene co-expression
within homogeneous cell groups when facing excessive sparsity (>90% zeros), while
tends to introduce specious gene co-expression across heterogeneous cell groupswhen
facing moderate sparsity (~ 60-80% zeros). (2) As for a comparison among different
methods, there is no universal winner for all settings, but the ensemble method,
depicted by the bold black line, provides the best or close to the best performance
across almost all settings we considered.

In the following section, we aim to verify our findings of imputation using real
scRNA-seq data. It is conjectured that the co-expression of marker genes in the
mouse brain will be similar to that of the human brain. Therefore, we expect the
recovered gene correlation from a data set measuring mouse brain will follow a
similar pattern to those from the data set measuring the human brain. Particularly,
we use Zeisel data (Zeisel et al., 2015) for the mouse brain and Velmeshev data
(Velmeshev et al. 2019)) for the human brain. The Zeisel data have deeper sequencing
for single cells and consequently are less noisy, with less sparsity, compared with
the Velmeshev data, which have a much greater number of nuclei sampled, each
with fewer reads. Therefore, we can see the influence of the sparsity level on gene
co-expression by directly comparing these two data sets. We select five common cell
types in both data sets and use the Zeisel data as the benchmark. We evaluate the
correlation matrix of marker genes before and after imputation of Zeisel data, across
cell types and within one cell type (i.e., interneurons). Figure[2.3C(a) plots both the
gene co-expression across heterogeneous cell groups and gene co-expression within
homogeneous cell groups before and after imputation with Enlmpute method (Zhang
et al., ) 2019b) using Zeisel data, while Figure (b) plots the same results but using
the Velmeshev data. We can see that for the Zeisel data (moderate level of sparsity),
imputation enhances the gene co-expression pattern both within homogeneous and
across heterogeneous cell groups. In contrast, for the Velmeshev data (excessive
sparsity), imputation fails to help much to recover the gene co-expression across
heterogeneous cell groups pattern, while failing utterly for gene co-expression within
homogeneous cell groups, which is expected, as it is a harder task. This investigation
supports some of our findings of imputation, i.e., imputation can generally help,
but may fail as sparsity levels increase to a very high level.

2.3.3 Data aggregating is a better way to recover GCN with excessive
sparsity.

Despite the excessive sparsity in the Velmeshev data, these data have the advantage
of abundant numbers of cells, which inspired us to explore another approach for
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Figure 2.3: Application of ESCO in benchmarking imputation for gene co-expression
recovery. A. Evidence that sparsity attenuates gene co-expression. The top panel
depicts the histogram of Pearson's correlations for the 1000 highest expressed (~0-10%
quantile) genes and 1000 moderately expressed genes (~60-70% quantile) in Velmeshev
scRNA-seq data. The bottom figure depicts the histogram of Pearson’s correlations for
the same genes as in the top panel, but using the corresponding bulk data. B. The
performance of different imputation methods on recovering the gene co-expression. We
simulate 1000 genes and 200 cells for three cell groups, using the parameters estimated
from the Zeisel data, and aggregate the results from 10 replicates. The corresponding
ARI score and AUC score (represented by each row) of each imputation method versus
different sparsity levels (represented by zero proportion) on different types of gene
co-expression (represented by each column, respectively, as marker genes, housekeeping
genes, DE genes) are plotted. C. Verification of the findings of imputation using real
data. (@) The correlation matrix of marker genes before and after imputation of Zeisel
data, across cell types (five in total) and within one cell type (interneurons). (b) The
correlation matrix of marker genes before and after the imputation of the Velmeshev
data. (c) The correlation matrix of marker genes of the Velmeshev data after AOB and
BigScale aggregation.
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recovering gene co-expression: data aggregation that utilizes the abundance of
measured cells. We introduce two methods below, a simple heuristic (AOB) and a
complex algorithm (BigSCale).

Awveraging over cell bags.. If one has successfully assigned the cell type labels, one
may be able to use the simple procedure of averaging gene expression over random
splits within cell types, and then compute the gene co-expression based on those
averaged values (Polioudakis et al., [2019). We will refer to this procedure as AOB
(Averaging Over Bags). The only tuning parameter here is the bag size, which
should be chosen carefully so that we can mitigate the influence of sparsity and
other noise, while still maintaining some variability among samples.

Pre-clustering and transforming the expression value.. More recently, a method
called BigSCale (Iacono et al., [2019) was developed for the problem of recovering
GCN in a similar, but more complex way. This algorithm first clusters cells sharing
highly similar transcriptomes together, and then treats them as biological replicates
to evaluate the noise and an indirect measure of correlation. This method works
well when there is a sufficiently large number of cells for meaningful cell clusters to
form, but it is computationally challenging.

We find both methods work well in recovering gene co-expression across het-
erogeneous cell groups (Figure 2.3C(c)), though neither successfully recover gene
co-expression within homogeneous cell groups. Future efforts are needed to recover
these subtle signals.

2.4 DISCUSSION

In this paper, we propose a new scRNA-seq simulator, ESCO, which borrows the
good features of the current state of art simulators in an ensemble, while for the first
time, allowing both interpretable and controllable gene co-expression generation.
Specifically, ESCO allows realistic simulation of various cell group structure, ranging
from simple homogeneous cell groups to tree-structured discrete cell groups to
continuously changing cell trajectories, together with gene co-expression. ESCO
outperforms other methods as it preserves the highlights of all the other existing
simulators in one R package, including the hierarchical semi-parametric modeling of
homogeneous groups from Splat, the tree-structure generation from SymSim, and the
trajectory generation from PROSSTT, all while interjecting gene-gene interactions.
Specifically, ESCO allows the flexible generation of both gene co-expression across
heterogeneous cell groups arising from a cell group structure and gene co-expression
within homogeneous cell groups arising from gene-gene interaction in one functional
cell group, which have been overlooked and underdeveloped in other methods.
There is still much room for future work in this area. The efficient estimation
of the hyperparameters from the real data in the tree-structured cell group and
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continuous cell trajectories scenario still needs improvement. Currently, most
simulators rely on a grid search of parameters to find parameters that fit a particular
data, but these parameter choices do not extend to new settings, and it is extremely
challenging to simulate data similar to new data sets. The ability to simulate
realistic batch effects in various settings is also not satisfactory in the current
methods. ESCO, which mimics Splat in this regard, shares this shortcoming. A
careful, deep-dive to produce realistic batch effects is needed.

2.5 APPENDICES

2.5.1 Model details

Modeling the extrinsic variation.

A. Discrete cell groups:. Particularly, denote the set of DE genes as GPF, and the
marker gene set {G*}XX, for k cell groups such that GTUG?---UGFU...GE = GPE,
we let the DE factor for each DE gene ¢ in cell group k be

k_{h’; if g € G¥;

fg = (2.3)

1 otherwise,

where log hl; (S N (pg, o).

B. Tree-structured cell groups:. Specifically, given the similarity between cell groups
by a K x K correlation matrix 3. generated from the tree structure, and a set of
DE genes GPE, we firstly select a small proportion of GP® and split them into the
marker genes for each group G, G?,...,GX. We let the DE factor for each DE
gene g in cell group k be

kok. if k
1k {hgm ; ifged (2.4)

hi; otherwise
where (log h;, ..., log hf) w N(z,diag{o1,...,0K}),

with z:= (z;,...,zf) @N(H,E),

and m* > 1 is a scalar parameter controlling the level of the additional heterogeneity
for each group.
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C. Continuous cell trajectories:. Particularly, for each gene in the DE gene set
GPE | we simulate the DE factor at each step ¢ in branch b with length T} as

fort=1,...,T}:
750 = exp (), (2.5)
where wét,b) — w{(}tfl,b) 4 v{(}tq,b)

with v = o{=10) + N(0, 2/T5,).
In particular, we initialize

v{(;o’b) ~ N(0,0p);
0, if p(b) = 0;
w0 — { if p(b)

Ty (p).p(b .
7 w; o) P )), otherwise.

Then, for each branch b, we randomly sample several time points to generate the
final cell samples, and let the “group” identity of cell sample ¢ be k(c) = (¢,b).

Finally, we generate the base expression with an adjustment of library size for each
gene g in cell ¢ as

Age = Le—2<— for each cell c, (2.6)
g )‘96

~ by k(c) if DE

where Age jid afg 1y EQ ’

Ags otherwise;

and log L. ud Fr,
where k(c) denotes the group identity of cell c.

Modeling the intrinsic variation.

A. Marginal:. Particularly, we generate the marginal counts 1790 as:

1 1
7 _ 2.7
By’ AgeBZ + D 2.7)

where Byo ~ (6 + %)«/df/)ﬂ(df);
gc

Yge ~ NB(

where ¢ is the common dispersion parameter, and df represents the degree of
freedom of the X2, and N B represents the Negative Binomial distribution.
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B. Co-expression:. Recall a copula is defined by a joint cumulative distribution
function (CDF), C(u) : [0,1]” — [0, 1] with uniform marginal distributions. One of
the most popular copula models is the Gaussian copula, which is defined simply as:

G = Ny (07 (ur), @7 (ua), -, O (up)) (2.8)

where ®~! denotes the inverse function of standard normal CDF, and Ny: denotes the
joint CDF of a multivariate normal random vector with zero means and correlation
matrix 3.

Then we generate true counts Y. via the following model:

Yge = NBy! (271 (Xg)) forg=1,2,...,p, (2.9)
where (X, Xoc, ..., Xpe) ~ N(0,);

and N Bg_c1 is the quantile function of the Negative Binomial distribution with
parameters indexed by cell ¢ and gene g in equation (2.7), and X is the target
correlation matrix.

Modeling the technical noise. Particularly, as for the empirical approach from
SymSim, one may resort to Zhang et al. (2019a)) for details. While as for the
parametric approach from Splat, the observed counts Zy. from the data is generated
via the following

Zge = Yge(1 = Dyc) (2.10)

where Dy, ~ Ber(mg.)
1

1+ exp {—k(log (\ge) — z0)}’

where 7y denotes the probability of zero-inflation, given the expression mean Ay,
Ber denotes the Bernoulli distribution, and Z,. denotes the final observed counts.

with 7y =

2.5.2 Estimating the technical noise

ESCO also allows estimation of the median zero-inflation and shape parameters
in equation . Though Splat already includes the corresponding estimation
via fitting a logistic regression between the log-transformed gene mean and their
observed zeros proportions, it is biased towards inflating the probability of excess
zeros, as can be understood via the following reasoning:

Given a real scRNA-seq data set Z € RP*", where each element Z,. is the
observed count of the expression of gene g in cell ¢, let

W;C = Pr{Z,. = 0}. (2.11)

Splat estimates W;C via fitting a logistic function to model the relationship between

the log means of the normalized counts and the proportion of cell samples that are
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zero for each gene. Then Splat plugs the estimation 7, in place of 4. in equation

(2.10) to simulate ch,
Zge = Yye(1 = Dyc), where Dye ~ Ber(7ge). (2.12)

and i?gc is the imitation of the true counts Y. for gene g in cell ¢ simulated in the
previous steps.

Assuming the estimation of 7y, is accurate and the simulated true counts }A/gc
well mimics the real truth Y., then this approach would cause more sparsity than
expected, since the proportion of zeros in the simulated observation will be

Pr{Zs =0} = Pr{¥,. =0} + Pr{¥;. #0, D, =1}
DpefVe=0b+ PV £0}Pe{Dy =1}, (213)
where (*) is true since ?gc and ﬁgc are independent once condition on Ag.. Therefore,
Pr{Zs = 0} = Pr{ ¥ = 0} + Pr{¥y £ 0} 7
> Pr{ffgc = 0} Tge + Pr{?gc £ 0} e
= Tge = Ty = Pr{Zy. = 0}, (2.14)
From the above calculation, one simple correction for this bias uses:
R Pr{?gc - 0}
Tge = =
1= Pr{¥,. =0}

(2.15)

as the plug-in for equation (2.10). Particularly, ESCO approximates Pr{?gc = 0}
using the CDF of Poisson with mean A4 at zero.
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2.5.3 Supplementary Figure

cex2 Gene co-expression
simulated from Splat

Gene co-expression

os
'
° 05
05 N o
1 \\
N 05
Cell type e I

Mastrocytes_ependymal LN AN

M endothelial-mural \
interneurons . .

= mmicroglia Gene co-expression Gene co-expression

Il = oligodendrocytes simulated from SymSim simulated from SymSim
Gene co-expression (with cell confounder) (without cell confounder)

Figure 2.4: Gene co-expression is informative, but we lack satisfactory methods to
simulate it for scRNA-seq data. A. Connection between gene regulation and gene
co-expression. The left panel shows the regulation relationship between the 19 genes in
Gonadal Sex Determination (Rios et al., 2015)), while the right panel shows Pearson's
correlation matrix for these 19 genes with inferred expression (Pratapa et al., 2020). B.
Connection between gene co-expression and cell group clusters. The correlation matrix
of the 500 most significant marker genes of the five major cell types from the Zeisel
data (Zeisel et al., 2015) with corresponding gene types marked with a color bar on top,
clustered using hierarchical clustering. C. The correlation matrix for 200 simulated genes
from Splat (Zappia et al,, 2017)), without zero-inflation. D. The correlation matrix for
200 simulated genes from SymSim (Zappia et al., [2017)), without zero-inflation. The left
and right panels show results with and without the cell confounding effect, respectively.
Specifically, the confounding effect arise as SymSim generates the gene expression for
gene g in cell ¢ via a random product model, that is expression Y. = Ay7., where
Ag YWF and . Y G. Once conditioning on the cell confounder 7., the correlation
between expression of genes g1 and gy disappears.
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Figure 2.5: ESCO can learn both the cell heterogeneity and gene co-expression from
the data. A. The generation process of gene co-expression for one homogeneous cell
group from real data using ESCO. Particularly, the example is for 500 randomly selected
genes in pyramidal CA1 cell type (911 cells) from Zeisel data. B. The comparison
of marginal features of real data consist of 500 randomly selected genes in pyramidal
CAL1 cell type (911 cells) extracted from Zeisel data, and the corresponding simulated
data using different simulators. Particularly, Lun (Lun et al., 2016)) is one of the
earliest scRNA-seq simulators, which has been found to be suboptimal (Zappia et al.,
2017). We include it here as a clear contrast with the state-of-art methods. C. The
comparison of real data consist of 4000 most differential expressed genes in three
cell types (astrocytes ependymal, endothelial mural, microglia) of 526 cells in total
extracted from Zeisel data, and the corresponding simulated data using ESCO. While

the UMAP depiction differs somewhat, the expression and co-expression patterns match
closely.
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2.5.4 Supplementary Table

(a) With gene co-expression

(#genes, #cells) (1000, 300) (5000, 500) (10000, 1000) (15000, 3000) (20000, 5000)
One group 10.6 17.2 49.8 343.5 1102.8

Discrete groups 15.8 27.5 89.7 458.9 1365.7

Tree structured 17.8 31.2 80.5 454.6 1328.2
Trajectories 16.3 29.5 99.1 452.6 1270.8

(b) Without gene co-expression

(#genes, #cells) (1000, 300) (5000, 500) (10000, 1000) (15000, 3000) (20000, 5000)
One group 2.5 8.0 10.4 42.0 94.2

Discrete groups 6.6 12.5 28.0 91.7 184.0

Tree structured 7.4 16.0 34.1 112.7 212.6
Trajectories 7.3 12.9 30.2 101.7 196.5

Table 2.1: Time (seconds) spent of simulating large complex data.
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Three

Averaged local density gap

In genomics studies, the investigation of gene relationships often brings important
biological insights. Currently, the large heterogeneous datasets impose new chal-
lenges for statisticians because gene relationships are often local. They change from
one sample point to another, may only exist in a subset of the sample, and can
be non-linear or even non-monotone. Most previous dependence measures do not
specifically target local dependence relationships, and the ones that do are compu-
tationally costly. In this paper, we explore a state-of-the-art network estimation
technique that characterizes gene relationships at the single cell level, under the
name of cell-specific gene networks. We first show that averaging the cell-specific
gene relationship over a population gives a novel univariate dependence measure,
the averaged Local Density Gap (aLDG), that accumulates local dependence and
can detect any non-linear, non-monotone relationship. Together with a consistent
nonparametric estimator, we establish its robustness on both the population and
empirical levels. Then, we show that averaging the cell-specific gene relationship
over mini-batches determined by some external structure information (e.g. spatial
or temporal factor) better highlights meaningful local structure change points. We
explore the application of aLDG and its minibatch variant in many scenarios, in-
cluding pairwise gene relationship estimation, bifurcating point detection in cell
trajectory, and spatial transcriptomics structure visualization. Both simulations
and real data analysis show that alLDG outperforms existing ones.

Publication. This work was done in collaboration with Jing Lei and Kathryn
Roeder, and contains content that appears in (Tian et al.| (2022)):

Jinjin Tian, Jing Lei, and Kathryn Roeder. "From local to global gene co-
expression estimation using single-cell RNA-seq data." Biometrics, minor
revision.

3.1 INTRODUCTION

Experimental biologists and clinicians seek a deeper understanding of biological
processes and their link with disease phenotypes by characterizing cell behavior.
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3.1. Introduction

Gene expression offers a fruitful avenue for insights into cellular traits and changes
in cellular state. Advances in technology that enable the measurement of RNA
levels for individual cells via Single-cell RNA sequencing (scRNA-seq) significantly
increase the potential to advance our understanding of the biology of disease by
capturing the heterogeneity of expression at the cellular level (Haque et al., [2017)).
Gene differential expression analysis, which contrasts the marginal expression levels
of genes between groups of cells, is the most commonly used mode of analysis
to interrogate cellular heterogeneity. By contrast, the relational patterns of gene
expression have received far less attention. The most intuitive relational effect is
gene co-expression, a synchronization between gene expressions, which can vary
dramatically among cells. Converging evidence has revealed the importance of
co-expression among genes. When looking at a collection of highly heterogeneous
cells, such as cells from multiple cell types, significant gene co-expression may
indicate rich cell-level structure. Alternatively, when looking at a batch of highly
homogeneous cells, gene co-expression could imply gene cooperation through gene
co-regulation (Raj et al., |2006; [Emmert-Streib et al.l 2014). Biochemistry offers a
complementary motivation for the advantages of studying co-expression in addition
to marginal expression levels of genes. The biological system of a cell is generally
described by a non-linear dynamical system in which gene expression is variable
(Raj et al., 2006). Therefore, the observed gene expression level varies by time
and condition, even within the same cell, while the cooperation between genes
is more stable over time and condition. For this reason, it can be argued that
co-expression may more reliably characterize the biological system or state of the
cell (Dai et al., [2019). scRNA-seq, allows us to investigate gene co-expression at
different resolutions, to understand not only how genes interact with each other
within different cells, but also how the interactions relate to cell heterogeneity.
The recent work by Dai et al.| (2019) attempts an ambitious task: characterizing
the gene co-expression at a single cell level (termed “cell-specific network” CSN).
Specifically, for a pair of genes and a target cell, |Dai et al. (2019) construct a 2-way
2 x 2 contingency table test by binning all the cells based on whether they are in
the marginal neighborhoods of the target cell and assigning the test results as a
binary indicator of gene association in the target cell. Viewed over all gene pairs,
the result is a cell-specific gene network. Forgoing interpretation of the detected
associations, they utilize the CSN to obtain a data transformation. Specifically, they
replace the transcript counts in the gene-by-cell matrix with the degree sequence of
each cell-specific network. Although this data transformation shows encouraging
success in various downstream tasks, such as cell clustering, it remains unclear
what the detected “cell-specific” gene association network really represents. The
implementation details and interpretation of the results are presented at a heuristic
level, making it difficult for others to appreciate and generalize this line of work.
In a follow-up paper, |Wang et al.| (2021b]) take the first steps to capitalize
on the CSN approach by redirecting the concept to obtain an estimator of co-
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expression. Specifically, they propose averaging the “cell specific" gene association
indicators over cells in a class to recover a global measure of gene association
(avgCSN). The resulting measure performs remarkably well in certain simulations
and detailed empirical investigations of brain cell data. Compared to Pearson’s
correlation, the avgCSN gene co-expression appears less noisy and provides more
accurate edge estimation in simulations. It is also more powerful in a test to uncover
differential gene networks between diseased and control brain cells. Finally, it
provides biologically meaningful gene networks in developing cells.

The empirical success of avgCSN likely lies in the nature of gene expression data:
often noisy, sparse and heterogeneous, meaning not all cells exhibit co-expression
at all times due to cellular state and conditions. For this reason, a successful
method must be robust and sensitive to local patterns of dependencies. Being an
average of a series of binary local contingency table tests, the error in each entry
of avgCSN is limited, meanwhile the non-negative summands ensure that local
patterns are not cancelled out. By contrast, measures like Pearson’s correlation can
have both negative and positive summands, and therefore the final value can be
small even if the dependence structure is clear for a subset of the cells. To make
the method more stable, Wang et al.| (2021b)) proposed some heuristic and practical
techniques to compute avgCSN, for which we would like to have more principled
insights. Examples are the choice of window size in defining neighborhoods in the
local contingency table test, the choice of thresholding in constructing an edge,
and the range of cells to aggregate over. Many natural questions emerge: how
does avgCSN relate to other gene co-expression measures and the full range of
general univariate dependence measures, and why does it perform well in practice?
Through theoretical analysis and extensive experimental evaluations, we address
these questions, revealing that avgCSN is an empirical estimator of a new dependency
measure, which enjoys various advantages over the existing measures.

For comparison, we briefly review the related work in gene co-expression measures
and general univariate dependence. Since the work by |Eisen et al.| (1998), Pearson’s
correlation has been the most popular gene co-expression measure for its simple
interpretation and fast computation. However, Pearson’s correlation fails to detect
non-linear relationships and is sensitive to outliers. Another class of co-expression
methods is based on mutual information (MI) (Bell, 1962; [Steuer et al., 2002;
Daub et al., 2004). The computation of MI involves discretizing the data and
tuning parameters, and the dependence measure does not have an interpretable
scale. |Reshef et al.| (2011) proposed the maximal information coefficient (MIC) as
an extension of MI, but MIC was shown to be over-sensitive in practice. More
comparisons of different co-expression measures and the constructed co-expression
networks can be found in [Song et al. (2012); Allen et al.| (2012).

In the broader statistical literature, the problem of finding gene co-expression
is closely related to that of detecting univariate dependence between two random
variables. Specifically, for a pair of univariate random variables X,Y, how to
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measure the dependence between them has been a long-standing problem. The
problem is often described as finding a function 6(X,Y), which measures the
discrepancy between the joint distribution Fxy and product of marginal distribution
FxFy. Numerous solutions to this problem have been provided: include the
Renyi correlation (Rényi, 1959 measuring the correlation between two variables
after suitable transformations; various regression-based techniques; Hoeffding’s D
(Hoeffding, (1948]), distance correlation (dCor) (Székely et al., [2007)), kernel-based
measure like HSIC (Gretton et al., 2005 and rank based measure like Kendall’s 7
and the refinement later, 7* (Bergsma et al. 2014)). Most of these methods have
not yet been widely adopted in genetics applications.

Aside from avgCSN, the methods mentioned so far do not specifically target
dependence relationships that are local and often assume the data are random
samples from a common distribution (in contrast with a mixture distribution)
in the theoretical analysis. However, real gene interactions may change as the
intrinsic cellular state varies and may only exist under specific cellular conditions.
Furthermore, with data integration now being a routine approach to combat the
curse of dimensionality, samples from different experimental conditions or tissue
types are likely to possess different gene relationships and thus create more complex
situations for detecting gene interactions. In this setting, much like avgCSN, an
ideal measure accumulates subtle local dependencies, possibly only observed in a
subset of the cells. A co-expression measure that aims to detect local patterns,
developed by |Wang et al. (2014), counts the proportion of matching patterns of local
expression ranks as the measure of gene co-expression. Specifically, they aggregate
the gene interactions across all subsamples of size k. However, despite its promising
motivation, it has low power to detect non-monotone relationships. MIC (Reshef
et al., 2011) and HHG |Heller et al. (2013) are also measures that attempt to account
for local patterns of dependencies.

In this paper, we first give a detailed review of the related methods in Section [3:2]
Then in Section [3.3.1] we show that avgCSN is indeed an empirical estimate of a
valid dependence measure, which we define as averaged Local Density Gap (aLDG).
In Section [3.3.2] and Section [3.3.3] we formally establish its statistical properties,
including estimation consistency and robustness. We also investigate data-adaptive
hyperparameter selection to justify and refine the heuristic choices in application
in Section [3.3.4] Finally, we provide a systematic comparison of aLDG and its
competitors via both simulation and real data examples in Section [3.5]

3.2 A BRIEF REVIEW OF DEPENDENCE AND ASSOCIATION MEASURES

Before starting on the description of the various dependence measures, let us remark
that |[Rényi (1959) proposed that a measure of dependence between two stochastic
variables X and Y, 6(X,Y"), should ideally have the following properties:

Draft as of August 1, 2023 33



3.2. A brief review of dependence and association measures

(i) 0(X,Y) is defined for any X,Y neither of which is constant with probability
1

(il)) 0(X,Y)=4(Y, X).

)

(iii) 0 <H(X,Y) <

(iv) 6(X,Y) =0 if and only if X and Y are independent.
)

(v) §(X,Y) =1 1if either X = g(Y) or Y = f(X), where f anf g are measurable

functions.

(vi) If the Borel-measurable functions f and g map the real axis in a one-to-one
way to itself, then §(f(X),g(Y)) =d(X,Y).

Particularly, a measure satisfying (iv) is called a strong dependence measure.

Apart from the above properties, there are two more properties that are partic-
ularly useful in single-cell data analysis. Single-cell data often contain a significant
amount of noise, among which outliers account for a non-negligible fraction. There-
fore robustness is a desirable property in a dependence measure. Specifically, keeping
with previous literature (Dhar et al 2016), by robustness we mean that the value
of the measure does not change much when a small contamination point mass, far
away from the main population, is added. A formal description and corresponding
evaluation metric will be described later. Another often overlooked property is
locality, which is a relatively novel concept and has not been properly defined to
the best of our knowledge. Nevertheless, this concept has been catching attention
over the recent decade (Reshef et al., [2011 Heller et al.l 2013, [2016; Wang et al.|
2014)), especially in work motivated by genetic data analysis. Locality targets a
special kind of dependence relationship that is generally restricted to a particular
neighborhood in the sample space. A natural example is dependence that occurs
in some, but not necessarily all of the components in a finite mixture. Another is
dependence within a moving time window in a time series. Generally speaking, the
interactions change as the hidden condition varies, or only exist under a specific
hidden condition. A dependence measure that is local should be able to accumulate
dependence in the local regions.

No measure has all of the properties mentioned above, as far as we know. Our
new measure possesses all but properties (v) and (vi). In the following, we review a
selected list of univariate dependence measures in more details.

3.2.1 Moment based measures

The first class of methods is based on various moment calculations. The main
advantage is fast computation and minimum tuning, while the main drawback is
non-robustness to outliers from their moment-based nature.
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Pearson’s correlation. The simplest measure is the classical Pearson’s correlation:

Cov(X,Y)
/Var(X)Var(Y)

Plugin the sample estimation of covariance and variance, consistency and asymptotic
normality can be proven using law of large numbers and the central limit theorem,
respectively. Pearson’s p has been, and probably still is, the most extensively
employed measure in statistics, machine learning, and real-world applications, due
to its simplicity. However, it is known to detect only linear relationships. Also, as
is the case for regression, it is well known that the product-moment estimator is
sensitive to outliers: even just a single outlier may have substantial impact on the
measure.

Pearson’s p(X,Y) :=

(3.1)

Mazimal correlation. The maximal correlation (MC) is based on Pearson’s p. It is
constructed to avoid the problem that Pearson’s p can easily be zero even if there
is strong dependence. |Gebelein| (1941)) first propose MC as

MC(X,Y) == S}lpp(f(X),g(X))- (3.2)
g

Here the supremum is taken over all Borel-measurable functions f, g with finite
and positive variance for f(X) and ¢g(Y’). The measure MC can detect non-linear
relationships, and in fact, it is a strong dependence measure. However, often MC
cannot be evaluated explicitly except in special cases, because there does not always
exist functions fo and go such that MC = p(fo(X), go(Y)). Also, it has been found
to be overly “sensitive”, i.e. it gives high value for distributions arbitrarily “close” to
independence in practice.

Distance correlation. A recent surge of interests has been placed on using distance
metrics to achieve consistent independence testing against all dependencies. A
notable example is the distance correlation (dCor) proposed by Székely et al. (2007):

V(X,Y)
VV(X, X)V(Y,Y)
where V(X,Y) =E|X — X'||Y = Y'| +E|X — X'[E]Y — Y|

dCor(X,Y) := (3.3)

—9Exy [IEX,|X ~X'[Ey|Y — Y"}v

with (X, Y’) an i.i.d copy of (X,Y’). The distance correlation enjoys universal
consistency against any joint distribution of finite second moments; however, in
practice, it does not work well for non-monotone relationship (Shen et al., [2020).
Also, it is not robust from its moment based nature, as proven by Dhar et al. (2016).
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HSIC. Recall the definition and formula for the maximal correlation, about which
we mentioned it is difficult to compute since it requires the supremum of the
correlation p(f(X),g(Y)) taken over Borel-measurable f and g. In the framework
of reproducing kernel Hilbert spaces (RKHS), it is possible to pose this problem and
compute an analogue of MC quite easily. A state-of-the-art method in this direction
is the so-called Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al.l
2005)). Denote the support of X and Y as X and ) respectively, HSIC considers
f,g9 to be in RKHS F and G of functionals on sets X and ) respectively. Then
HSIC is defined to be the Hilbert-Schmidt (HS) norm of a Hilbert-Schmidt operator.
We refer the reader to |(Gretton et al.| (2005)) for detailed description. What might
be of interest is that, in many cases, HSIC is equivalent to dCor.

3.2.2 Rank based measures

Another line of work based on ordinal statistics is developed in parallel to the
moment-based methods. A random variable X is called ordinal if its possible values
have an ordering, but no distance is assigned to pairs of outcomes. Ordinal data
methods are often applied to data in order to achieve robustness.

Spearman’s pg, Kendall’s 7 and 7*. 'The two most popular measures of dependence
for ordinal random variables X and Y are Kendall’s 7 and Spearman’s pg. Both
Kendall’s 7 and Spearman’s pg are proportional to sign versions of the ordinary
covariance, which can be seen from the following expressions for the covariance:

Cov(X,Y) = %E [(X — X')(Y = Y")]  Kendall
=E[(X' - X")(Y' - Y")] x Spearman,

where (X', Y"), (X", Y"),(X",Y") are ii.d replications of (X,Y). Note that
Kendall’s 7 is simpler than Spearman’s pg in the sense that it can be defined
using only two rather than three independent replications of (X,Y’), so often
Kendall’s 7 is preferred. A concern from certain applications is that Kendall’s 7
and Spearman’s pg are not strong dependence measures, so tests based on them are
inconsistent for the alternative of a general dependence. In fact, it is often observed
that they have difficulty detecting nonmonotone relationship. Later, an extension
7* (Bergsma et al., 2014) mitigates such deficiency by modifying Kendall’s 7 to a
strong measure.

Hoeffding’s D and BKR. Related to the ordinal statistics-based methods, another
class of methods start from the cumulative distribution function (CDF), some of
which are equivalent to ordinal forms due to the relationship between CDF and
ranks. The oldest example is the Hoeffing’s D proposed by Hoeftding| (1948):

Hoefﬁng’s D:.= E)(,y (FX7y — FxFy)Q] N
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where F, Fy, Fxy are the CDF of X, Y, (X,Y) respectively. Still, Hoeffing’s D
is not a strong measure, while its modified version BKR (Blum et al., |1961):

BKR := ExEy [(FX,Y - FXFY)Q}

is. It turns out Hoeffding’s D belongs to a more general family of coefficients, which
can be formulated as

Cgh = /g(FX7Y — FxFy)dh(ny)

for some g and h. We will abbreviate Hoeffding’s D as HoeffD in the figures in the
remainder of paper.

3.2.3 Dependence measures aware of local patterns

Most of the methods mentioned so far do not specifically target dependence rela-
tionships that can be local in nature. In the following, we describe a few measures
that were designed to capture complex relationships, whether local or not.

Maximal Information Coefficient. The idea behind the Maximal Information
Coefficient (MIC|Reshef et al.| (2011]) statistic consists in computing the mutual
information locally over a grid in the data set and then take as statistic the maximum
value of these local information measures over a suitable choice of grid. However,
several examples were given in Simon and Tibshirani (2014)) and |Gorfine et al.| (2012)
where MIC is clearly inferior to dCor.

HHG. [Heller et al.| (2013) pointed out another way to account for local patterns:
that is, looking at dependence locally and then aggregating the dependence over
the local regions. The local regions is simply defined as bins via partitioning
the sample space. Additionally, HHG takes a multi-scale approach: multiple
sample space partitions are conducted, and results are aggregated over all of
them. This results in a provably consistent permutation test. However, the cost of
implementation is significantly longer computation time than its competitors: it
takes O(n3) computation time while its competitors normally take at most O(n?).

Matching ranks. Another method that developed specifically for accounting local
pattern is proposed by (Wang et al., 2014)). Given n pair of observations of
(X,Y), {(zi,vi)}I,, they propose to count the number of subsequences of size k:
(Ziy s Tig, - .- xiy,) and (Yiy, Yigs - - - Yiy, ) such that their rank is matched. We refer to

this measure as MR (Matching Ranks). Specifically, we write the scaled version of
MR such that it is in range [0,1]:

1
MR := m Z (I{rank(xil,xh,...mik) = rank(Yi,, Yio, - - - Yip )t

k/ 1<ij<ig--<ip<n

+ Krank(zi,, ziy, . .. xi),) = rank(—yi,, —Yis, -+ — yzk)}),
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where rank(ay,...,a;) = (r(a1),...,r(ax)) where r(a;) is the rank of element a;

within the sequences (a1, ...,ax), and the equality inside the indicator function
applies element-wisely. Though claimed to be able to detect complex relationship,
this measure is inferior to others in some non-monotone dependence case like
quadratic relationship.

3.3 OUR METHOD: AVERAGED LOCAL DENSITY GAP

First, we elaborate on the origin of our work, which was inspired by gene co-
expression analysis using single-cell data. In the context of gene co-expression
analysis, the pair of random variables X, Y represents the expression level of a pair
of genes, and the goal is to find the relationship between them. Pearson’s correlation
is one commonly used metric for this task. In light of the many shortcomings of
this global measure of dependence, [Dai et al.| (2019) proposed to characterize the
gene relationships for every cell. Their method takes the following approach: for
the gene pair (X,Y), and a target cell j, partition the n samples based on whether
|X. — X;| < hy and |Y. = Y}| < hy, where h; and h, are predefined window sizes.
This partition can be summarized as a 2 X 2 contingency table (Table . Then
evidence against independence in this 2 x 2 table can be quantified by a general
contingency table test statistic. |[Dai et al. (2019)) uses

o o Vm (nfn — nny) (3.4)
e 99— D) — ) ) '
x, 'ty €T, Y

and conducts a one-sided « level test based on its asymptotic normality, that is

19, =Yy > o711 - a)). (3.5)
Y. Y[ <hy | [V -Y|>h
X —Xj|<h, |  nJ) ny!
‘X. — Xj’ > hy
n) n

Table 3.1: The 2 x 2 contingency table based on distance from j-th sample.

Dai et al.| (2019)) claim that I g;/ indicates whether or not gene pairs X and Y are
dependent in cell j, and refer to the detected dependence as local dependence. Though
interesting as a novel concept, it lacks rigor and interpretability. Alternatively we
propose to define X and Y as being locally independent at position (z,y) as

fxv(z,y) = fx(2)fr(y), (3.6)
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then I'xy provides a way of assessing local independence. Specifically, as a one-sided
test, Ixy(j) assesses whether or not fxy(z,y) > fx(x)fy(y), at position (z,y)
marked by cell 5. To assess global independence, aggregation, as proposed by Wang
et al.| (2021Db)), is needed. Their empirical measure can be formally written as:

avgCSN = % S I (3.7)
=1

Some simple approximations gives us a population correspondence of avgCSN.
Assume the variables X, Y have joint density fxy, and marginal densities, fx and
fy, that have common support. Let fxy, fx, fy be the estimated densities given
observations of (X,Y’). Under the assumption that the bandwidth h,,h, — 0
and /hyhyn — oo, with some simple algebra (see Appendix for detailed
derivation), we see that

aveCSN ~ 1 1 fX,Y(xia?/J\i) - fi((xi)fY(yz‘) e
tim Fx (@) fy (yi)
where t,, = m (3.8)

/nhghy ’

and « € [0, 1] is some hyperparameter related to the test level of the local contingency
test (usually « is set to 0.05 or 0.01). Because t,, | 0 as n goes to infinity, we
naturally think of the following population dependence measure:

Pryy {fX,Y<X,Y> — () (Y) O} |
’ fx(X) fr(Y)

In the remainder of this section, we formally define a generalized version of this
measure in Section [3.3.1] along with its properties on the population level. Then we
discuss consistent and robust estimation in Section and provide guidance on
hyper-parameter selection in Section [3:3:4] Finally, we comment on the relationship
between our measure and some of the previous work in Section [3.3.5

3.3.1 Definition and basic properties

Definition 3.1. (averaged Local Density Gap) Consider a pair of random variables
X, Y whose joint and marginal densities both exist, and denote fxv, fx, fy as their
joint and marginal densities. The averaged Local Density Gap (aLDG) measure is
then defined as

aLDG; :=Prx y {T(X,Y) > t},
 Ixy(X)Y) = fx(X) fy(Y)

where T'(X,Y) := O h ) (3.9)

and ¢ > 0 is a tunable hyper-parameter.
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From the definition, one can immediately realize the following lemma.

Lemma 3.2. For a pair of random variables X,Y whose joint and marginal densities
both exist, we have

1. X 1Y <= alLLDGy =0;

2. ift >0, then X 1 Y = aLDG; =0;

3. aLDG; is non-increasing with regard ¢ for all ¢ > 0;
4. alLDG; € [0,1];

5. aLDGy(X,Y) = aLDG(Y, X);

As a concrete example of the alLDG measure, the left plot of Figure displays
aL DG, given different ¢ for a bivariate Gaussian with different choices of correlation.
We can see that (1) aLDGy is non-increasing with regard ¢ as our Lemma
suggests; (2) aLDG; equals zero at independence for all ¢ > 0, while aLDGq equals
zero if and only if there is no dependence, as our Lemma suggests; (3) aLDGy
increases with the dependency level, indicating that it is a sensible dependence
measure.

Note that, from Lemma alLDGy is a stmngﬂ measure of dependence. While
being strong is a desirable feature of a dependence measure, for aLDG type of
measure, we find that it comes with the sacrifice of robustness under independence
(Proposition . On the other hand, setting ¢ > 0 could result in insensitivity
under weak dependence, but with a provable guarantee of robustness (Theorem [3.4]).
In summary, the hyper-parameter ¢ serves as a trade-off between robustness and
sensitivity. In Section we will discuss the practical choice of ¢ in more detail.
For now, we treat it as a predefined non-negative constant.

3.3.2 Robustness analysis

In the following, we present a formal robustness analysis. An important tool to
measure the robustness of a statistical measure is the influence function (IF). It
measures the influence of an infinitesimal amount of contamination at a given value
on the statistical measure. The Gross Error Sensitivity (GES) summarizes IF in a
single index by measuring the maximal influence an observation could have.

Definition 3.3 (Influence function (IF) and Gross Error Sensitivity (GES)). Assume
that the bivariate random variable (X,Y") follows a distribution F', the influence
function of a statistical functional R at F' is defined as

IF((xa y)7 R7 F) = lim R((l _ 6)F + 65(7379)) - R(F)

e—0 €

(3.10)

'Recall that a measure of dependence between a pair of random variable X,Y is strong if it
equals zero if and only if X and Y are independent.
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where 0(, . is a Dirac measure putting all its mass at (z,y). The Gross Error
Sensitivity (GES) summarizes IF in a single index by measuring the maximal
influence over all possible contamination locations, which is defined as

GES(R, F) := sup | IF((z,y),R, F) | . (3.11)
()

An estimator is called B-robust if its GES is bounded.

Among the related work we have mentioned, only the robustness of 7, 7*, and
dCor have been theoretically investigated to the best of our knowledge. [Dhar
et al.| (2016) proved that dCor is not robust while 7 and 7* are. Their evaluation
criteria is a bit different from ours. We investigate the limit of the ratio when
the contamination mass goes to zero. They investigate the ratio limit when the
contamination position goes far away, given fixed contamination mass. We argue
that our analysis aligns better with the main statistical literature. In the following,
we show that aLDG; with ¢ > 0 is B-robust, under some reasonable regularity
conditions.

Theorem 3.4. Consider ¢ > 0, and a bivariate distribution F' of variable (X,Y")
whose joint and marginal densities exist as fxy, fx, fy, and satisfy

Jmax == ||V [x fy]]eo < 00; |aLDG;— —aLDGy| < Le, ¥V e > 0; (3.12)

then we have
GES(aLDGy, F) < Lfax + 1 < 00. (3.13)

The proof of Theorem [3.4] is in Appendix The first assumption about the
boundness of density is common in density based statistical analysis. The second
assumption about the aLDG; smoothness may look less familiar, however after

a transformation, it is no more than a CDF-smoothness assumption: recall that
T(X,Y) = Ixy () IxXOY ) 4hen
’ IxX)fy ()

|aLDGy_. — aLDGy| < Le <= P{|T(X,Y) — t| < €} < Le, (3.14)

that is, the CDF of random variable T'(X,Y) is L-lipschitz around ¢ for ¢t > 0.
In Figure we show the empirical density of T'(X,Y") for bivariate Gaussian of
different correlation, which is generally bounded by some constant L at positive
values.
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Figure 3.1: The empirical density of statistics 7. The underlying bivariate distribution

is Gaussian, and the value of T is calculated using the true Gaussian density. We can

see that, as the correlation increases, the density of 7" near zero (annotated by the red

dashed line) is smaller.

In the following, we show that alLDGq is not robust under independence.
Proposition 1. For any distribution F' over a pair of independent random variables
(X,Y) whose joint and marginal density exists and are smooth almost everywhere,
we have

GES(aLDGy, F) = o0 (3.15)
if and only if X is independent of Y.

The proof of Proposition [I]is in Appendix[3.7.3] The right plot in Figure 3.2 pro-
vides some empirical evidence of the non-robustness of aLDGg under independence.
Specifically, we plot the population value of the ratio inside limitation (3.10)), under
bivariate Gaussian with small enough contamination proportion €, to approximately
show that the IF value of aLDG; at independence indeed goes to infinity as t goes
to zero.

1.00- 1e+07 -

0.75- — 107 -0
<) 107 3 10405 - - 107
Q o050 107 g 1077
2 1074 w - 10

0.25- 1073 - 107

102 1e+03 - o 107!

0.00- T 1 T T T — 107! I T J ! x

000 025 050 075 1.00 0.000 0025 0050 0075 0.100
True correlation True correlation

Figure 3.2: (Left) The true aLDG; value for bivariate Gaussian with different levels
of correlation under different choices of t. (Right) The influence function value
approximated by setting the contamination proportion very small (e = 107%).

3.3.3 Comnsistent and robust estimation

In this section we investigate estimation of aLDG; given finite samples. One
natural way to estimate alLDG; is using the following plug-in estimator: recall
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that fxy,fx,fy are the estimated joint and marginal densities, then given n
observations {(x1,y1),..., (Zn,yn)} of (X,Y), aLDG; can be estimated by

— 1 & .
= iy Y1 2 )
aLDGy - ; 1 {T(m Yi) t}

where (25, i) = Ixy (@i i) — fx (@) fy (y3) (3.16)

Fx (@) fy (i)

In the following, we establish the non-asymptotic high probability bound of the
estimation error using the above simple plug-in estimator mt. The error rate
is determined by the density estimation error for variable X Y, as well as the
probability estimation error for 7'(X,Y).

Theorem 3.5. Consider ¢ > 0, and a bivariate distribution F' of variable (X,Y")
whose joint and marginal densities exist as fxy, fx, fy, and satisfy

ixng fxy(x,y), inf fx(x) ir;f v (¥) > cmin,

sup fxy(x,y), sup fx(z)sup fy (y) < cmax,
€,y X )

and for some 7, with lim, _,. 1, — 0, with probability at least 1 — %
fxy = fxvlloo: [1fx = fxlloos [[fy = frlloo < s (3.17)
and for some constant 0 < L < oo,
|aLDG;— —aLDGy| < Le for all € > 0. (3.18)

Then we have, with probability at least 1 — %, we have

J—_ 21
‘aLDGt - aLDGt‘ < LCp + \/W , (3.19)
n

where C' depends only on ¢pmin, Cmax-

Theorem [3.5] is flexible in the sense that one can plug-in any kind of density
estimator and its error rate to obtain the error rate of the corresponding aLDG
estimator. The proof of Theorem is in Appendix Though Theorem
was for fixed t, we also provide similar result that holds true uniformly over all
possible ¢ in Appendix [3.6]

As for a concrete example, we provide explicit results for a special class of
bivariate density and a simple density estimator. Specifically, we consider the true
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marginal density fx, fy that are L-Lipschitz, and the joint density fxy that are
simply the product of fx, fy; we also consider the following density estimatorﬂ

ZKh ;) J?Y('):%ZKhn(ayj)a
j=1
Fxv() = LS K B ). (3.20)
j=1

where Kp,, (-, u) := 1{|-—u| < hy,}/(2h;,) is one-dimensional boxcar kernel smoothing
function with bandwidth h,,. From Proposition 2 in Appendix [3.7.6] the uniform
estimation error rate 7, in this setting is O(nil/ 6/logn), given the asymptotic
near-optimal bandwidth h = O(n_l/ 6). Therefore, applying Theorem gives us
estimation error rate of O(n~/%,/logn) for aLDG;.

We also include robustness analysis of mt in Appendix Specifically,
we consider an empirical contamination model that is commonly encountered in
single-cell data analysis: a small proportion of the sample points are replaced by
“outliers” far away from the rest samples. We show that zmt with and without
outliers are close as long as the outlier proportion is small. This suggests that the
estimator of alLDG; preserves its robust nature.

3.3.4 Selection of hyper-parameter ¢

In this section, we propose two methods for selecting ¢, each of which has merit.
We also provide guidance on which one is preferable in different practice settings.

Uniform error method. From the results in the previous section, we learn that
aLLDGy is not robust under independence. To prevent afD\Gt from approaching
alLDGg under independence, it is sufficient to make sure that the estimation error
of T under independence is uniformly dominated by ¢ with high-probability. To
compute the uniform estimation error of 1" under independence, we first manually
construct the independence case via random shuffle. Given n samples {(z4, y;) }iz, of
(X,Y), denote the corresponding empirical joint distribution as FXy, and marginal
joint distribution as F 'x and Fy Applying the random shuffle function 7 on indices
of one dimension (i.e. Y'), we have

{(@i, Yn(o) i1 ~ Fx Fy, (3.21)

that is the shuffled samples {(2i, yx(;))} now come from a different joint distribution
where (X,Y") are independent.

2The density estimator used here is not chosen to be minimax optimal. We instead design it
to align the best with the practical methods |Dai et al.| (2019)) and [Wang et al.| (2021b)), such that
we can better justify and refine their heuristic choices of hyperparameter by theory.
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We can then use the shuffled samples to compute the uniform estimation error
of T under independence. Note that 1" under independence is exactly zero, therefore
its uniform estimation error is just the uniform upper bound of its estimation. To
stabilize the estimation of such upper bound, we use the median of estimated upper
bound from max{[1000/n],5} different random shuffles as the final estimation. We
call this t selection method the uniform error method.

Asymptotic norm method. When using alLDGy in large-scale data analysis, choosing
t using the above data-dependent choice may be undesirable because it requires ad-
ditional computations. In extensive simulations we observe that a simple alternative
also performs fine in terms of maintaining consistency, power and robustness:

t =L (1 - i) / (mn”?‘) . (3.22)

This choice is motivated by the following heuristic. Recall our derivation of aLDG
statistics from avgCSN around : as the sample size n goes to infinity, and
hzyhy — 0, hyhyn — oo, the empirical estimation of aLDG; using the boxcar kernel
cioncide with avgCSN. Therefore, ¢, in (3.8)) could serve as a natural choice for ¢,
but one need to be extra careful about «, which is the test level of local contingency
test (3.5)) in definition towards avgCSN. We specically modify « to decrease with
n instead of a fixed value like 0.05 since we desire consistency: i.e. aLDG; under
independence should goes to zero as n goes to infinity. Finally, plugging in our
choice of bandwidth h, = Uanl/ﬁ, hy = oyn /6 together with the new «,, in
place of « into ¢, , we get . We call this ¢ selection method the asymptotic
norm method.

Empirically we find that the asymptotic norm method is often too conservative
given the small sample size (which is expected since it is based on the asymptotic
normality of a contingency table test statistic). In practice, we recommend people
use uniform error over asymptotic norm when the sample size is not too big (e.g.,
no bigger than 200). When the sample size is big enough (e.g., bigger than 200), and
the computation budget is limited, we recommend the asymptotic norm method.
In the rest of the paper, we use the uniform error method when the sample size
is no bigger than 200 and the asymptotic norm method when the sample size is
bigger than 200. We admit that there could be other promising ways of selecting
t, for example, a geometry way we provided in Appendix [3.7.8] Here we only
present the methods that we found working the best after a careful evaluation (see

Appendix [3.7.8)).
3.3.5 Relationships to HHG

The method that is most similar to aLDG is HHG (Heller et al.| (2013)). Like aLDG,
HHG (Heller et al., |2013) is based on aggregation of multiple contrasts between the
local joint and marginal distributions
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. .. .. 2
B’LJ _ BW B’LJ
HHG :=Y_ M(i,j), M(i,j):=(n—2) i(.pXY( Xy)i?X( X)f)Y( Y)) o
= px(BY) (1= px(BY) )y (BY) (1 - vy (BY))

with BY = {z : o — il < |a; — i}, BY = {y : ly —uil < |yi — |} and
By, = BY @ By, pxy,px,py are joint probability function for (X,Y’) and marginal
probability function for X and Y respectively. While the two measures appear quite
similar, they differ in two critical aspects.

The efficiency of single scale bandwidth. One notable difference between HHG
and alLDG is that the former relies on a multi-scale choice of bandwidth for each
sample point. Specifically, it utilizes multiple (O(n)) bandwidths for each data
point. This results in a provably consistent permutation test; however, the cost
of implementation is significantly longer computation time than its competitors.
aLLDG takes a single-scale approach, which considerably improves the computation
efficiency. Moreover, the alLDG formulation provides a direct analogy to a density
functional, which allows us to exploit existing work in density estimation to determine
an appropriate bandwidth. This single-scale approach, though may not optimal,
achieves comparable power to HHG, as shown in the upcoming simulation studies.

The merit of thresholding. Another difference is that empirically aLDG aggregates
over thresholded summands, see (3.16]). It turns out thresholding brings implicit
robustness to noise. By contrast, consider the non-thresholded version of aLDG:

aLDGyon == E [T(X,Y)] . (3.23)

Even with slight departures from independence, aLDGy,, can go to infinity. For
example, consider the following joint and marginal distribution that admits a kernel
product density mixture:

fxv(z,y) = akor(@)kor(y) + (1 — @)ko1()ko,1(y),
Ix(z) = ako,(z) + (1 —a)koi(x), fy(y) = akor(y)+ (1 —a)ko,1(y)

where a € (0,1), 0 <7 < 1 and ky,,(-) :== 1k(=£), with k as the density of 1-dim
uniform distribution supported on [—1,1].

Note that as @« — 0 and r — 0, the model is essentially an independence case
contaminated with a small point mass. Additionally with a/r — oo, we can show

that (see Appendix for details)
E[T(X,Y)] ~ < = oo, (3.24)
r

that is the non-thresholded version of aLLDG is very large under such simple case of
small departure from independence, therefore is problematic. With thresholding,
however, aLDG is guaranteed to be approximately «, which goes to zero for small
perturbations, as one would desire.
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3.4 MINIBATCHED LDG: LOCAL RELATIONAL STRUCTURE

In many cases, a special structure emerges between cellular states. For example,
a smooth transition where individual cells represent points along a continuum or
lineage; or a spatial graph where cell states represent nodes in a graph. Cells in
these cases change states by undergoing gradual transcriptional changes that are
controlled by an underlying temporal or spatial factor.

The majority of the work in structured genetic data analysis focuses on marginal
characterization, while higher-order perspectives like gene-gene relationships are
underexplored. scHOT (Ghazanfar et al., 2020) makes the first attempt towards this
direction: they infer gene pairs with relational differences along a trajectory or across
spatial locations. Despite the novel perspective, their approach is rather heuristic:
assuming the trajectories and corresponding pseudotime (or the spatial location)
are given, they compute gene coexpression at each time point (or location) using
weighted univariate correlation (weights are determined by a triangular kernel).
To test whether a gene pair is differentially associated along a curve or across
spatial location, they use the standard deviation of the series of time-specific gene
coexpressions along the curve as the summary statistics and perform a permutation
test. Wang et al|(2021b)) explore a similar task, but they split the cells into multiple
bins along the trajectory first and then compute one covariance matrix (avgCSN)
for each bin using only cells from that bin. Finally, they test the differences between
the covariance matrices as a whole and report the leverage genes as the differentially
associated genes along the trajectory.

3.4.1 Minibatched LDG

Formally put, assume there are p genes and n cells, and each cell is associated with a
structure covariate S taking values on a set S. Assume the following data-generating
mechanism:

(1) For each i =1,...,n, independently generate S; from a distribution Q. These
are the structure covariates for each cell.

(2) For each i = 1,...,n, generate Z; € RP independently from Pg,, where
{Ps : s € S} is a class of probability distribution on R? indexed by s.

Then both scHOT and avgCSN estimate the dependence of gene pairs under
Ps,, which is a p x p dependence matrix for the joint distribution Pg,. The local
aggregation in scHOT or binning in avgCSN further reduces the estimation error
from similar time points. The underlying assumption is that Ps, and hence the
corresponding dependence matrix indexed by s, varies smoothly as s changes.

The approach we are going to propose instead works on the mixture distribution
Ps where S is treated as randomly generated from Q. For gene pairs (i, j), we use
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Z1,..., 2y, to estimate at cell £ the LDG matrix:

o . o Jii(Zeiy Zig) — [i(Zki) £ (Zg)

Gr(i,j) = YTp(i,j) > t}, Tr(i,j): FZ) 5 (Za) . (3.25)
Then for each cell k, we aggregate the LDG matrix of its neighboring cells according
to their structure covariate value closeness (e.g. pseudotime or spatial location).
This local aggregation pools G to get the final estimate of time/location-specific
gene coexpression, and was designed to reduce estimation error. We call these
estimations the minibatched LDG. This local aggregating approach was designed to
reduce estimation error. The underlying assumption is that the G matrix, which is
a random matrix, moves smoothly in its sample space as the structure covariate S
changes.

In Section [3:5.2 we provide two real data examples to demonstrate how mini-
batched LDG can be used to highlight local structural change.

3.5 EMPIRICAL EVALUATION

3.5.1 Simulation results

In this section, we consider simulations that resembling single-cell data to gain
insights underlying the behavior of aLDG relative to the other methods. Specifically,
we investigate scenarios where the bivariate relationship is (1) finite mixture; (2)
linear or nonlinear; (3) monotone or non-monotone. See Figure for all the
synthetic data distributions we considered. We evaluate each dependence measure
from the following perspective: (1) ability to capture complex relationship; (2) ability
to accumulate subtle local dependence; (3) interpretation of strength of dependence
in common sense; (4) power as an independence test; and (5) computation time.
In the following, we focus on one perspective in each subsection, showing selective
examples that inform our conclusions, relegating other examples to supplementary
materials.
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Figure 3.3: A summary of all the synthetic bivariate data distribution we considered
in this paper. For each data distribution we plot the corresponding scatter plot using
1000 samples. We believe this series of distributions are representative enough as it
covers cases from linear to nonlinear, monotone to nonmonotone, and also probabilistic
mixture.

Detecting nonlinear, non-monotone relationships. By construction, aLDG is ex-
pected to detect any non-negligible deviation from independence. Though many
existing measures, such as HSIC, Hoeffding’s D, dCor, 7*, claim to be sensitive
to nonlinear, non-monotone relationships, some approaches are known to perform
poorly under certain circumstances. By contrast, alLDG outperforms most of its
competitors in the following standard evaluation experiment. Figure [3.4] illustrates
three points: (1) at independence, except for dCor, HHG, and MIC, most measures
produce negligible values, as desired; (2) for linear and monotone relationship, all
measures produce high values as expected; and (3) for nonlinear non-monotone
relationships only alLDG, dCor, HHG and MIC produce high values consistently. In
conclusion, only aLLDG can effectively detect various types of dependency relation-
ships while maintaining near-zero value at independence. dCor, HHG, and MIC
are known to be sensitive to small, artificial deviations from independence, and
these simulations reveal that they are indeed too sensitive as they often produce
high values at independence. A big portion of scRNA-seq data are collected over
time; therefore, nonlinear, non-monotone and specifically oscillatory relationships
are expected to happen. Therefore it is desirable to have a measure that is sensitive
to dependence while remaining near zero of true independence, even under small
perturbations.
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Figure 3.4: Empirical dependency estimates obtained for different data distributions for
a variety of relationships between a pair of variables. For the visualization of different
data distributions, see Figure [3.3] Here we show the corresponding dependence level
given by different measures using 200 samples (averaged over 50 trials).

Accumulating subtle local dependencies. al.DG detects the subset of the sample
space that shows a pattern of dependence. In Figure [3.5] we simulated data as a
bivariate Gaussian mixture consisting of three components with a varying proportion
of highly dependent components and estimated the corresponding dependence level.
We find that aLDG, together with other dependence measures designed to capture
local dependence (HHG and MIC) increase with the proportion of highly correlated
components, indicates that these global dependence measures can also detect subtle
local dependence structure. Similar results are obtained for Negative Binomial
mixtures (Figure in Appendix . As the finite mixture relationship is a
common choice of model for scRNA-seq data, this suggests that measures able to
accumulate dependencies across individual components could considerably benefit
scRNA-seq data analysis.
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Figure 3.5: Empirical aLDG value for Gaussian mixtures. In each plot we show the
dependence level given by different measures for 200 samples (averaged over 50 trials).
The data are generated as a three-component Gaussian mixture. From left to right,
there are 0, 1, 2 and 3 out of 3 components with correlation of 0.8, while the remaining
components have correlation 0, i.e., the dependence level increases from left to right.
For the visualization of these different data distributions, see Figure .

aLDG interprets degree of dependencies. Degree of dependencies While it is hard
to define the relative dependence level in general, we argue that when one random
variable is a function of the other, Y = h(X), then the pair should be regarded as
having the perfect dependence (and be assigned of dependence level 1). Moreover,
the dependence level should decrease as independent noise is added. That is, for
Y. = h(X) + ¢, where ¢ L X, one should expect the dependence measure ¢ to
satisfy d(Ye, X) < 6(Y, X). We checked this monotonicity property by simulating
data with several bivariate relationships and varying levels of noise (Figure .
Specifically, we simulate the noise € to be standard normal, and Y = h(X) + ce
where ¢ € [0, 1] indicates the noise level. We find that aLDG, HSIC, MIC, dCor,
and HHG all show a clear decreasing pattern as the noise level increases; however,
aLLDG shows the most consistent monotonic drop from perfect dependence as the
noise level increased.
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Figure 3.6: Empirical dependence measure versus noise levels for different bivariate
relationships. For the visualization of different data distributions, see Figure[3.3] The
results are shown for 100 samples (averaged over 50 trials). We claim that the higher
the noise level is, the lower the estimated degree of dependence should be. Compared
with other measures, aLDG decreases significantly as the noise level increases, and hence
correctly infers the relative degree of dependence.

Power as an independence test. Dependence measures are natural candidates for
tests of independence. In this context, most existing dependence measures rely
on bootstrapping or permutation to determine significance; hence we adopt this
practice for all the dependence measures under comparison. Figure shows the
empirical power under test level 0.05 for various types of data distribution and
sample size, where we do 200 repetitions of permutations to estimate the null
distribution. We observe the following outcomes: (1) almost all tests have controlled
type-I error under independence; (2) Pearson’s p, Spearman’s pg and Kendall’s 7 are
powerless for testing nonlinear and non-monotone relationships; (3) aLDG, HHG,
and HSIC are consistently among the top three most powerful approaches for testing
both linear and nonlinear, monotone and non-monotone relationships. Similar
observations can be made for tests based on Gaussian mixtures (Figure in

Appendix [3.7.10| ) and Negative Binomial mixtures (Figure in Appendix |3.7.10
).

Draft as of August 1, 2023 52



3.5. Empirical evaluation

indep linear step ubern circle
1.00- 1.00-0—e—e——o——» 1.00-e—s—s——o— 1.00-0—e—o——o— 1.00- /»/.;—o—-
L 075~ L 075~ L 0.75- L 075~ + 0.75-3
E g E g E
Z 050~ 2 0.50- Z 0.50- Z 050- Z 0.50-
2025 20.25- 20.25- 20.25- S0.25- /*
000- & FF=———  000-, . , ,  000-, , , ., 000-, ., . . 000~y gt
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
sample size sample size sample size sample size sample size
spiral quad wshape diamond multi
00- - 00-8 00-4 00- . 00~ gt—t—e—s
1.00 = 10077-——- 100%/—-—- 1.00 i 1.00-¢ Y
L 075- —4 L 075- L 0.75- L 075- & s 1 075- -
) = L ] [ x S ) 3 - [ L
Z050- £ 0.50- £ 0.50- 2050~ J— £ 050- -
So025-¢ 7" 1 So2s- S025-2, So025-5 4 2 025-5—4
-+ P T 5 s r— -
0.00-3 a " ; 0.00-, ; ] ] 0.00-, ; " ; 0.00- =45 " i 0.00-, " J "
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
sample size sample size sample size sample size sample size
method Spearman . Taustar . HHG MIC . HSIC
Pearson Kendall dCor . HoeffD . MRank . aLDG

Figure 3.7: The empirical power of permutation test at level 0.05, based on different
dependency measures under different data distributions and sample sizes. For the
visualization of different data distributions, see Figure[3.3] The power is estimated using
50 independent trials.

Computational comparisons. Theoretically speaking, aLDG requires O(n?) in time
of computation (where n is the number of samples), which is comparable to reported
requirements for most dependence measures that can detect complex relationships.
This empirically confirmed in a comparison of the computation time of aLDG with all
its competitors. In (Figure in Appendix we plot the time of computation
versus sample size n for different dependence measureﬂ In previous evaluations, we
saw that HHG as a method motivated from capturing local dependence structure,
was indeed a strong competitor to aLDG: it has high power as an independence
test across almost all the data distribution we considered; however, it requires

O(n?) time of computation, and (Figure in Appendix [3.7.10|) shows this large
discrepancy from all the other methods, which normally takes O(n?) time.

Highlighting bifurcating point along trajectory. Realistic gene expression dynamics
that include gene cooperation are hard to be captured using a probabilistic model.
Instead, success has been achieved by modeling the gene cooperation dynamics
using ordinary differential equations (ODE). The state-of-art method is a simulation
software called BoolODE |Pratapa et al.| (2020)). For each gene, BoolODE requires a
Boolean function that specifies how that gene’s cooperators combine to control its
state. Fach Boolean function is then converted into a nonlinear ordinary differential
equation, together with Gaussian noise terms to make the equation stochastic.
Simulating this system of stochastic differential equations generates the requisite

3The time include some constant wrapper function loading time, therefore, might be longer
than a direct function call; however, the relative scale is still correct.
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gene expression data. Under this model, we would like to estimate time-specific gene
coexpression and detect potential branching points in the developmental trajectory.

The data is simulated using the simulation tool based on gene regulation
specifically: BoolODE (Pratapa et al., 2020). The data are generated via simulating
a series of ordinary differential equations given by the kinetics function defined by
the gene regulation relationship.

(a) (b) (c)
Dependence graph of 19 genes t-SNE plot using all genes LDG tensor

End 2
Time
Late

End 1 ‘

Early Start %
TSR T o]

19 dependent —
genes 70 independent

genes

t-SNE 2

Positive regulation

Negative regulation
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(d) Minibatched LDG over time
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Figure 3.8: Trajectory analysis on simulated data. (a) The boolean regulating relationship
among the 19 dependent genes (left top panel). (b) The tSNE plots of the simulated
data. (c) The aLDG tensor computed using all the data at once. (d) The minibatched
aLDG with the sLED based permutation tests p-values annotated on the top. We show
just a few selected pseudotime points along the continuous trajectory.

We simulate 500 cells and 89 genes in total, in which 19 genes form a Boolean
regulating relationship (shown in Figure (a)), and the remaining 70 genes are
independent. We design the simulation to generate a bifurcating trajectory, which
starts from a common origin, and develops into two stable states (shown in Figure
(b)). We compute the LGD tensor and order the cells based on their pseudotime
(we use slingshot (Street et al., 2018) to estimate the pseudotime). Figure (c)
visualizes the LDG tensor with different time stages and gene sets annotated. We
can see that interesting patterns emerge: in the shared branch, the dependent genes
have a two-block dependence structure, while after the splitting point, each branch
preserves only one of the blocks; while for independent genes, no structure emerged,
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as we expected. These patterns become more evident in the minibatched LDG
over time shown in Figure (d), where we take a window size w = 20 and do
aggregating as we described earlier. At each time point, we conduct sLED test for
its gene coexpression matrix and that of the time w units after it., and output the
corresponding p-value. We observe that, the resulting p-values are only smaller than
our testing level 0.05 near the branching point, meaning that our minibatched LDG
method can reveal statistically significant changes around the branching point.

3.5.2 Real data applications and realistic simulations

In this section, we evaluate the performance of aLDG among the other measures
using scRNA-seq data from two studies.

Case study: Chu dataset:. This dataset (Chu et al., [2016) contains 1018 cells of
human embryonic stem cell-derived lineage-specific progenitors. The seven cell types,
including H1 embryonic stem cells (H1), H9 embryonic stem cells (H9), human
foreskin fibroblasts (HFF'), neuronal progenitor cells (NPC), definitive endoderm
cells (DEC), endothelial cells (EC), and trophoblast-like cells (TB), were identified
by fluorescence-activated cell sorting (FACS) with their respective markers. On
average, 9600 genes are measured per cell. In the following, we show some special
gene pairs that exhibit strong, weak, or no relational patterns and the corresponding
dependence values produced by different measures. We find that only aLDG gives
a high value for strong relational patterns no matter how complex the pattern
composition is; maintains near-zero values for known independent cases; and avoids
a spurious relationship skewed by technical noise and sparsity (Figure .
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Figure 3.9: Example of gene pair scatter plots from the Chu dataset, which has 1018
cells from 7 cell types. Gene expression is recorded as counts per million (CPM) and log,
transformed. In each plot, we show the scatter plot of logy(CPM+ 1) for a pair of genes
and provide the corresponding estimated dependence values using different methods to
the right of the plots. (a) aLDG gives a much higher value than the others in these
scenarios which appear to illustrate a strong mixture dependence pattern, even when the
signal is predominantly in one cell type. (b) aLDG produces a high value for the obvious
three mixture relationship in the first subplot. By contrast, in the second subplot, the
cell identity are randomly shuffled for each gene pair, resulting in a constructed case of
independence. Most measures, including aLDG, give near-zero values in this setting.
The exception is MIC, which gives a misleadingly high value. (c) This example illustrate
performance when there is a high level of sparsity: MIC and the moment-based methods
like Pearson, dCor, and HSIC provide estimates that are greatly overestimated, while
aLDG, TauStar, and Hoeffding's D are not influenced by this phenomenon. (d) This
gene pair combines the challenge of sparsity with considerable noise: aLDG is still able
to capture the less noisy, local cluster pattern in the upper left corner.

Detecting change point along trajectory: Mouse liver datasets. The data set we
use is a merged data set from four different sources using scMerge (Lin et al., [2019),
as scHOT (Ghazanfar et al. 2020)) did. The dataset contains cells captured from 8

Draft as of August 1, 2023 56



3.5. Empirical evaluation

real-time stages, different time stages may contain different cell types. The scHOT
(Ghazanfar et al.,[2020]) paper conducted downstream analysis on this dataset for the
three most interesting cell types: Cholangiocyte, Hepatoblast, and Hepatocyte (540
cells in total). Particularly, Hepatoblast cells are a predecessor of both Cholangiocyte
and Hepatoblast cells, that is, at some time point the Hepatoblast lineage splits into
two different developmental branches: one becomes Cholangiocyte cells, and the
other becomes Hepatoblast cells. We focus on these three cell types in this section.

In Figure [3.10] we plot the first two principal components and indicate cell types
and real-time stages for each point (cell), with the curves estimated by slingshot
(Street et al.l 2018) using only a randomly selected half of the data. We can see
that the curves fit the data well, and the real-time stages generally agree with
the pseudotime. Then we use the remaining half of the data to estimate the
minibatched LDG. In Figure we show results for the curve starting from
Hepatoblast and ending at Cholangiocyte (conclusions are similar for the other
branch). We visually spot a consistent emergence of strong gene coexpression
patterns around the branching time (framed by the red rectangle).

Now that we have a gene coexpression matrix (i.e. the minibatched LDG) that
changes over pseudotime, we consider the task of change point detection. Our
estimated time-specific gene coexpression appears to be very sparse in many stages,
making the dynamic community estimation based on the stochastic block model
inappropriate. Other methods that impose fewer structure constraints require
lots of tuning and computation time (Wang et al., 2021a)), in order to get high-
confidence results. In the following, we present a simple heuristic method instead,
which works well in simulation and real data examples. Specifically, we use sLED
(Zhu et al., [2017) to test whether time (i.e. pseudotime rank) i; and time iy are
different: we input LDG tensor, and during permutation, we permute the entire
time indices; the differences matrix is computed as the absolute differences between
minibatched LDGs at time i and i2 using window size w (i.e. averaged LDG within
the [i; — w,4; + w]th and the [i2 — w, i3 + w]th samples).

At each time point, we conduct sLED test for its gene coexpression matrix and
that of the time w units after it., and output the corresponding p-value. We observe
that the resulting p-values are only smaller than our testing level 0.05 near the
branching point, meaning that our minibatched LDG method can reveal statistically
significant changes around the branching point.

Draft as of August 1, 2023 57



3.5. Empirical evaluation

2 - A Cholangiocyte
O Hepatoblast
S -| @ Hepatocyte
o _|
S . ® E105
B ® E115
o -
o ® E125
o | e E135
o
‘ E14.5
o | E15.5
M E16.5
2 E17.5
| | 1 1
-150 -100 -50 0 50 100

PC1

Figure 3.10: The PCA plot of liver development data. These data contain three cell
types (annotated by different shapes) and and 8 stages (annotated by different colors).
The black curve is the developmental trajectory fitted using slingshot with only half of
the data.
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Figure 3.11: The minibatched LDG at some interesting pseudotime points for the curve
starting with Hepatoblast cells and ending with Cholangiocyte cells, estimated using the
other half of the data (the first half was used to estimate pseudotime). We show the
estimated minibatched LDG for three independent trials (i.e., different data-splitting).
We annotate on top of each coexpression matrices the sSLED p-value (testing whether
the current time point is significantly different from the latter one right after it).
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Highlight brain structure: MERFISH brain datasets. This dataset was used by
Fischer et al.| (2021) for cell communication estimation. The dataset was first
assimilated by [Zhang et al.| (2021]), who measured mouse primary motor cortex
with multiplexed error-robust fluorescence in situ hybridization (MERFISH) in 634
images across two mice with 254 genes observed in 284,098 cells. The cell-types were
originally annotated by |Zhang et al.| (2021]). We focus on L2/3, L4/5, L5, L6 cells,
which were shown to form an interesting transition in the original paper. We further
constrain the other experimental conditions to rule out any other confounding effects.
The final dataset has around 2600 cells, and we can see that in Figure the
gene interaction shows more spatial patterns: the top and the bottom (especially
the top) layer seem to have more interaction than the middle layer, and especially
in the top layer.
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Figure 3.12: The spatial plot annotated by cell-type, total gene expression level and
total gene interaction, using 52 genes (the union of 26 differentially co-expressed and 26
non-differentially expressed genes), and L2/3, L4/5, L5, L6 IT cells. (a) The cell type
annotation for each spatial sample; (b) The average of all gene expression levels for
each spatial sample; (c) the average of all edges in minibatched LDG for each spatial
sample; (d) The degree of each gene in minibatched LDG for each spatial sample, larger
3d point size represents larger degrees. We can see that gene 30-50 contribute to most
of the gene interactions.

3.6 CONCLUSION AND DISCUSSION

In this paper, we formalize the idea of averaging the cell-specific gene association
(Dai et al.,|2019; [Wang et al., 2021b)) under a general statistical framework. We show
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that this approach produces a novel univariate dependence measure, called aLDG,
that can detect nonlinear, non-monotone relationships between a pair of variables.
We then develop the corresponding theoretical properties of this estimator, including
robustness and consistency. We also provide several hyper-parameter choices that
are more justifiable and effective. Extensive simulations, motivated by expected
scRNA-seq gene co-expression relationships and real data applications, show that
this measure outperforms existing independence measures in various aspects: (1)
it accumulates subtle local dependence over sub-populations; (2) it successfully
interprets the relative strength of a monotonic function of dependence in the presence
of noise better than many other measures that arose from independence test; (3) it
is sensitive to complex relationships while robustly maintaining near-zero value at
true independence, while several other measures are often overly sensitive to slight
perturbations from independence and noise; (4) it computes comparatively rapidly
compared to other dependence measures designed to capture complex relationships.
Other measures perform well in some settings but fail in others that are highly
relevant to the single-cell setting. For instance, MIC performed well as part of
the sLED test for differences in co-expression matrices, but this measure tends to
produce a high estimate of dependence even when the variables are independent, or
nearly so (Figure and Figure . The moment-based methods like Pearson,
dCor, and HSIC perform poorly when the expression values are sparse, producing
false indications of correlation (Figure , and yet sparsity is the norm in most
single cell data. Our method is implemented in the R package aLDGEL where we
also include all the other methods that we have compared with, as well as functions
for replication of experiments.

The alLDG method does have some practical challenges: as a measure based
on density estimation, the hyperparameter choices such as bandwidth can affect
the performance of the measure. Though we provide some asymptotically optimal
choices of those hyperparameters, in practice, they can fail due to the small sample
size. For any given setting, the hyperparameters can be adjusted based on realistic
simulations of the actual data and a solid understanding of the scRNA-seq data
distribution. Similarly, due to the reliance on density estimation, it is hard to
extend this measure to a multivariate setting. The sample size required for accurate
estimation grows exponentially with the dimension. In practice, this limitation has
little practical importance because gene co-expression studies focus on bivariate
relationships.

‘https://github.com/JINJINT/aLDG
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3.7 APPENDICES

3.7.1 From avgCSN to aLDG

Recall that we consider only a pair of random variables X,Y whose joint and
marginal densities exist and have the same support, and denote fxv, fx, fy as
their joint and marginal densities. Also, let fxy, fX, fy be the estimated densities
given observations of (X,Y’), and px,y(z,y) be the proportion of samples points in
a square of side length h centering at (x,y), and px and py be defined similarly for

the marginal distribution.

First we point out that a reformulation of avgCSN statistics reveals its link to
the population dependence measure we are going to introduce. Under our notation,
the original avgCSN |Wang et al.| (2021b) can be written as

aveCSN :— Px,v (i, yi) — Dx (x:)Dy (vi) o 1(1-a) } |
BN Zl{\/pX (z:)(1 = px (:))py (vi) (1 — Py (v:)) - Vn

where &~ 1is the quantile function of standard normal. When using a particular
choice fxy = px,y/h?% fx = bx/h, fy = by /h, we have

anCSN— il{ fXY(xuyz)hQ7fAX(fL'7,)th(yz) > q)l(la)}

VEx@oh( = Fx@om fy ok - Frwon) V"

Assuming the bandwidth A — 0 and hy/n — oo, the expression can be approximated
by the following

(1 - )
hvn

1=

avgCSN ~ % Z 1 { fX,Y(Z'i,/y\i) — ff(fz)fY(yl)
! fx (@) fy (yi)
3.7.2 Proof for Theorem 3.4

> tn} ,  Where t,, =

Proof. Denote the joint and marginal density of F' as fxy, fx, fy. Consider a fixed
contamination position (2/,y’), then we have the corresponding contaminated joint
and marginal density as

@), . ) (I=e&fx(x), if z#2,
/ (x).—{OQ ifoe o

f(y/)(y) — { I-afy), ify#Y,

v 0, if y=19,
(«'y") ) A =ofxy(@y), if (xy)# @ y),
fX,Y (r,y) = {oo, if (2,y) = (w',y'). .

Denote the density gap under original distribution F' as A8 := fxy — fx fy,
(z"y")

and the corresponding density gap under contaminated distribution as Agap” ' :=
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f)((l:{/y ) _ f)(? )f§(/y )7 then
Aéﬁ;y/)(l«’y) =(1-¢) (Agap(xa y) + EfX(x)fY(?/)> if £ # 2" and y # ¢/,
and the contaminated aLDG; statistics
aLDG{™"Y) = Pry {Agg;y” NG ) f;y’)(y)}

< Pri {(1 = O (Buan (@,9) + efx @)y ) > t1 = WV @ ), (@.9) # @)}
+ Prp/ {(LE’y) 7é (1’/, y/)}

Agap(,y)
= —€)Prp{ ———122 . Ty )
e { Ix (@) fy(y) +ev fx(@)fr(y) >t} +

@ _ Agap(w, y) — _
<(1-¢)Prp {fx(x)fy(y) + €fmax > t} +e=(1-¢€)alDGi_cf,.. +€

<(1 =€) (aLDGy + [aLDGy—cfp0r — aLDGy|) + €

®)
<(1 - €)(aLDGt + Lfmax€) + €,

where (a) comes from the assumption that fuax := ||V /xfy|leo < 00, and (b)
comes from the assumption that [aLDG;_. — aLDGy| < Le for all € > 0.
Therefore,

LDGY) _ aLDG
IF ((xl, Y'), RaLDG, F) = lim 2 t a t

e—0 €
< —alDGy + (1 — €)L frnaz + 1

Since the upper bound of IF does not depend on location of (z’,1), therefore,

GES(RaLDGﬁF> < Lfmax +1 < oo,

3.7.3 Proof for Proposition 1

Proof. Denote the joint and marginal density of F' as fxy, fx, fy. Consider a
fixed contamination point (2’,y’) with mass €, then we have the corresponding
contaminated joint and marginal density as

ﬁ”my:{“—dhum ot

00, if v =2a;

ﬂw@%:{ﬂ—dh@%ify#%

o, ify=1y'
f%w@w%:{u—any@wxffmwfcgw,
0o, if (x,y) = (@",y).
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Recall that the density gap A% := fxy — fx fy, and hence the contaminated gap,
AE(@,5) = (1= ) (Bgap(,) + elx (@) fr(v)), i (29) £ (&)

and the contaminated aLDG statistics
aLDG™™Y) = Prp {AEY) > 0}
< P {(1= ) (Bgap(@,9) + efx (@) fy (1)) > 0, () # (/1)) }
+ PrF’ {(m,y) 7é (l’/, y/)}
— (1 - OPrp {Agup(e,y) + efx (@) fy () > 0} +
Note that
PrF {Agap('T? y) + efX(x)fY(y) > O}
=Prp {Agap(z,y) > 0} + Pr{—efx(z)fy(y) < A*P(z,y) <0}
fX,Y(:Ba y) < 1}

fx(@)fy(y) —
=alDGo + Prp{l — € < cp(u,v) < 1},

:aLDGO + PI"F {1 —e<

where cp(u,v) is the joint density of u := Fy'(x),v := F,'(z), i.e. the corre-
sponding copula representation of distribution F. Then, denoting the volume of
set I'y : {(u,v,t) : cp(u,v) <t} as Vol(t), and the area of sublevel set v, : {(u,v) :
cr(u,v) <t} as A(t), and the contour line C(t) := {(u,v) : cp(u,v) = t}, we have

1 1
lim —Pr{l — e < cp(u,v) <1} = lim - cr(u, v)dudv
e—0 € e—~0¢€ 1—e<cp(u,w)<1
1(1) — Vol(1 — 1
— lim Vol(1) — Vol(1 —¢) _ dVo s
e—0 € dt
(@) A1) (0) 1

Ver(uo )z ~ TVer(uo,wlk
where (ug, vg) is some point on C; and Vep(ug, vg) is the gradient of cp at (ug, vo),
and (a) comes from Theorem 1 in Trinh| (2019)) using the a.e. smoothness of the
joint and marginal densities fxy, fx, fy; (b) uses the trivial bound A(1) < 1 since
we are working on [0, 1]? space.

Plug the above calculation back to IF function, we get

(1—¢) (aLDGo + Vol(1) — Vol(1 — 6)) +e

€

IF((UC’a Y'), RaLDGy > F) =
=1—aLDGo — Vol(1)

1
+ lirr(l)Vol(l —€) + lim — (Vol(1) — Vol(1 — ¢))
e—

e—0 €

1

<1-—aLDGqy+ )
O I Ver (uo, v0)|J2
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where (ug, vp) is some point on the contour line C; := {(u,v) : c¢p(u,v) = t}, and
Vep(ug, vp) is the gradient of cp at (ug, vo).
Note that this upper bound is irrelevant with (z’,4"), therefore we have

1

GES(RaLpc, F) < 1—aLDGo(F) +
(RaLpG, ) o(F) [Ver(uo, vo)]l2

< 00,
as long as X,Y is not independent.

However, when X,Y are independent, we have cp(u,v) = 1 for all (u,v) € [0, 1]?,
and aLDGg = 0, then we have

aLDGY™ ") > Prp{Agap(z,y) + efx () fr(y) > 0, (x.) # (2'.3/)}
=(1-¢) (aLDGO +Pr{l —e < cp(u,v) < 1})
=(1—-€¢0+1)=1—c¢,

and hence

= OQ.

1—
IF((xlvy/)vRaLDG07F> > lim ——

e—0 €

Again this lower bound is irrelevant with (z’,3’), therefore we have

GES(RaLDG07 F) = OQ.

3.7.4 Proof for Theorem 3.5
Proof. Denote the set

S, i {@:7 ) Por@y) = Ix@ivy) t},
fx (@) fy (y)
G = Ly L@ - K@)

Fx (@) fy(y)

From the assumption that ||fxy — fxv||oos [|fx — [x||oos ||y — f¥|loo < 7 with
probability at least 1 — %, we have the following holds for some constant ¢ > 0 with
probability at least 1 — %:

fxy —Ixfy  fxy - fxfy
sup -

vy | VIxlfy /fxfy
(3Cmax + 1)77n + (3Cmax + 1)77721 + 2Cmax7]n
3

<

< Cnp,

2
min Cinin
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where C' := (ScmeH) + (30m3x+§1 J+2emax and correspondingly

c2

2
¢ min

min

Stron, © St € Si—cn, -

As a result, applying the empirical measure P(S) := L5 1{(wi, yi) € S} on these
three sets, we get

P(Siicom,) < P(Sy) = aLDG(t) < P(Si—cn,)- (3.26)
Using the Hoeffding’s inequality on binomials, we get

B(S) — P(8)] < 1/ 218"

n

with probability at least 1 — % for any deterministic set S. Applying this inequality
to ﬁ(StJrcnn) and ﬁ(St—cnn) in (3.26)), we get
2logn _ ~, 4 2logn

S8 < P(8) < P(Si-cy) +\ =

n n

IN

with probability at least 1 — % This further implies that

2logn 2logn

< aLDG(t) < aLDGy_cn, +

LDG —
a t+Cnr, n n

with probability at least 1 — % With the condition that |[aLDG;_. — aLDGy| < Le
for all € > 0, we have

21 i 21
aLDGy — LC, — 1/ 228" < aLDG; < aLDG; + LC, + \/W |
n n

that is
_ 21
}aLDGt - aLDGt‘ < LOyy + 1/ 28
n

with probability at least 1 — %

3.7.5 A uniform variant of consistency

Theorem 3.6. Consider a bivariate distribution F' of variable (X,Y) whose joint and
marginal densities exist as fxy, fx, fv, and satisfy

ixnyf Ixy(x,y), inf fx(x) igf Iy (¥) > cmin,

sup fxy(x,y), sup fx(z)sup fy (y) < cmax,
€,y € )
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and for some 7, with lim,_,. 7, — 0, with probability at least 1 — %

| fxy = fxvloo 1fx = [xloos |fy = fYlloo < 1

and for some constant 0 < L < oo,
|aLDG¢_¢ —aLDGy| < Le for all e >0, forall ¢ > 0.

Then we have, with probability at least 1 — %, we have

_ 1
sup |[aLDG; — aLDG;| < LCn, + 104/ —2",
n

t>0

where C' depends only on ¢min, Cmax-

Proof. Recall the bivariate functional

~

fxv(ey) — fx@)fvly) = Fxv(@,y) — Fx(@)fr(y)

, Tz, N
Fx @) () Y )

T: (z,y)—

Correspondingly, for a t > 0, denote the set

Sy =A{(z,y) : T(x,y) > t}, S, = {(a:,y) : T\(x,y) > t} .

We also denote the collection of such set over all t > 0 as S = {S; : t > 0}.

From proposition 4.20 (Wainwright|, 2019), it is easy to see that the class S
has VC dimension at most 1, since it can be written as the subgraph class of the
function class {g; : (z,y) — t — T(x,y);t > 0} is a vector space of dim(1) (as
function T is deterministic and only ¢ is changing). Using VC theorem, we get

logn

sup | P, (S) — P(S)] < \/?f (log(n + 1) + log(16n)) < 10\/

Ses n

with probability at least 1 — 5-, where P(S) := L5 1{(zi, y;) € S} is the empirical
measure. R N R

From the assumption that || fxy — fxy||oos ||fx — fx|loos |y — f¥ oo < np with
probability at least 1 — %, we have the following holds for some constant ¢ > 0 with

. 1.
probability at least 1 — -

Ixvy = Ixlfy  Jxy = IxJy

sup
T,y \/foY 7
Ixfy
3 max 1 n 3 max 1 2 2 max'’/n
§( c l+ n +(c + )Zn+ Cmaxln _ (3.27)
Célin Célin
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where C' = (3cmix+1) 4 (3cmax+§1)+gcmax

2
min

and correspondingly

c2

¢ min

St+CT]n - §t - Sthnn for all ¢ > 0.
As a result, applying the empirical measure ﬁ(S ) on these three sets, we get
P(Siicm,) < P(8;) = aLDG(t) < P(Si_cy,) for all t > 0. (3.28)

Applying (B:27) to P(Sicy,) and P(S ) in (B:28), we get

1 I 1
P(Sivcm,) — 104/ % < P(8)) < P(Si—cy,) + 104/ Oi” for all ¢ > 0

with probability at least 1 — % This further implies that

1 i 1
aLDGy ¢y, — 104/ OfL " < aLDG(t) < aLDGy_cy, + 104/ Oi " forallt>0

with probability at least 1 — % With the condition that |aLDG;_ — aLDGy| < Le
for all e > 0 and ¢t > 0, we have

1 — 1
aLDG, — LCn, — 104/ —22 < aLDG, < aLDGy + LC, + 104/ —22 . for all ¢t > 0
n n

that is

_ I
sup |aLDG; — aLDGt’ < LCny +10y/ 222
n

t>0

with probability at least 1 — %

3.7.6 Uniform estimation error of product kernel density estimator

Definition 3.7. Let 8 be a positive integer, we define G(/3) as the class of one-
dimensional kernel function K, in which K has support [—1,1], and [ K = 1,
[|K|P < oo for any p > 1, [ [t|PK(t)dt < oo and [t*K (t)dt = 0 for any 1 < s < 3.

Definition 3.8. Let B be a positive integer, L be a positive constant, we define
H(B, L) as the class of one-dimensional density k, such that

AP k(z)  dPk(y)
s < Llx —y|, forall z,y

In the following we analyse a special class of multivariate density function
together with a special class of density estimator. Specifically, for positive integer
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B, consider density function k € H(S3, L), and kernel function K € G(8). For
dimension d > 1, we consider the following multivariate density function in R%:

d
1 /. —
Koy (@) = [ [ Faor () (@), where ko () = (1 — a)k () + a~k < “) :
palet r r
(3.29)
with a € [0, 1] as the mixture proportion, p > 0 the relative location, and r > 0 as

the relative scale; we also consider the following multivariate kernel function

d
K (z) == [[ Kn(i), where Ky() = %K(i),
i=1

with h > 0 € R; and the corresponding empirical kernel density estimator
—~ 1 <&
Ki() =~ > Ku(Xi =), (3.30)
i=1

given n observations X7, ..., X, in R%

Proposition 2. Consider kg, in (3.29) and I?h in (3.30). Then for any § > 0, we
have

— Clog(1/8)(1 — o+ 2)d d
Pr{ sup |Kp(2) — ka,u,r(2)| >\/ BX 2 +C(1—a+ /sofu) hdﬁ} <3,
I8

d
xR nh

where C' and c¢ are positive constants which do not depend on h, v, u, r. Particularly,
choosing adaptively

S
_ C’log%(l — o+ %)d @F+1)d
A\l —a+ f)H ;

we have

~ (710g‘l 2p+1 o J%tLd
Prq sup |Kp(x) — k()| > 2¢c ( = 5) (1 —a+ m) s

zcR4

Remark 1. Back to the example in the main paper, the joint density for X,Y we
considered is in fact fxy(z,y) = k(z)k(y) with & € H(1,L). And the density
estimator we considered is in fact I?h in with the one-dimensional kernel
function K as boxcar kernel smoothing function (which obviously belongs to G(1)).
Then use Proposition [4] with 8 = 1,a = 0,d = 2, we have with probability at least
1—-1/n,

1 fxv = Fxylloo < O(n~5/logn).
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Similarly, for the marginal densities, we have that, with bandwidth h,, = O(n=1/6),

-~ 1 -~ 1
1fx = fxlloo < O(n75/logn), |[fy = frllee < O(n"5+/logn).
Finally, recall the definition of error rate 7,, we have
~ -~ ~ _1
M = sup{|| fxy — fxvlloo, [Ifx = fxlloos [ fy = fylleo} < O(n™6+/logn)
with probability at least 1 — 1/n.

Proof. We can decompose the deviation as the following:

Hk\h - ka,u,r

<2 @] ] e

: (3.31)

[e.9]

where the expectation in E [f(\ h} is taken over given samples Xi,..., X,. In the

following, we bound each term separately, throughout which we denote expressions
that do not depend on h, a, 7, 4 as constants terms.

Step 1. To bound the first term in (3.31]), we use Corollary 2.2 in |Giné and Guillou
(2002). Firstly we introduce the required condition.

Definition 3.9. (VC class) Let F be a uniformly bounded collection of mea-
surable functions on R%. We say that F is a bounded measurable VC class of
functions if the class F is separable and if there exist positive numbers A and
v such that, for every probability measure P on R? and every 0 < € < 1,

A v
sup N(F. La(PhoelFlle) < () (3:32)

€
where N (T, d, €) denote the e-covering number of the metric space (T,d), F’
is the envelope function of F and the supremum is taken over the set of
all probability measure on R?. The quantities A and v are called the VC
characteristics of F.

Lemma 3.10. (Giné and Guillou| (2002) Corollary 2.2) Consider F be a mea-
surable uniformly bounded VC class of functions on R? whose VC characters
are A,v, and

sup Varp[f] < 0% sup ||f|leo < U, (3.33)
feF feF

with 0 < 02 < ¥ and \/no > Uy/log (£). Then there exist positive constants
C and Cj depending only on A and v such that for all A > Cy and t satisfying

U 2
Covinoy/log = <t < A"
o U
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we have

. [0} A 2
Pr{sup|2f(Xi) - f(Xy)] > t} < Cexp{_l g(l+47) t 2}’

id
where X1,...,X, ~ P.

Denote the class of functions
Fi = {Kh(-—ac), :cERd}.
Then we can write

[ s[R] = s

0 peRrd

f(\h(z) —E F{\h(w)] ‘ = %fseu;_)h

(r(xi) - f(Xl))‘ ,

=1

iid
where X1,..., X, ~ Eka -

First we examine that F3, is VC class for K € G(f). Since K is compact
supported and polynomial, therefore Fy is a VC class with v = (d;ﬁ ), and
some constant A.

Then we examine the variance and infinity norm condition in (3.33)): note

sup Varp[f] = sup Varyp[Kp(u — x)]

feF ©cRA
< sup K’%(u_w)ka,g,r(U)du
xeRd JueRd
1 2 S
= R K2 1~ L k N
g I KT et

d
—x4h 1
u=rthv supdhdH/Kg(vi)ka,“,r(:vi+hv¢)dvi
xzeR i=1 R
L4
< - k K?(v;)dv;
< sup hdg (H a,u,er/R (v3) vz)

_ (M}l*a))d <|]k\|oo/RK2(x)da:)d — C1o?,

where C1 = (||k[oo [5 K2(x)da:)d is constant only depends on k and K. Also
note

d
a _ |IK]]
up [flloe = sup_[[Kiu — )| = 1Kl = 151 = 12T
feF m,UGRd
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Step 2.

Let U =2C(1 — o+ %)dh—ld, with Cy = || k|| [[ K|, then it is easy to verify
that

sup || flleo < U, 0<0?<U/2,

feF

since [ K2 < ||K|| [ K =||K|lo,and 3 |k], <1<1-a+2.
Since both ¢? and U do not depend on n, therefore condition /noc >
U log(%) is satisfied for all n bigger than finite ng := g—jlog % Con-

sider 0 < € < COU—UQ, A = Cp, and n > (C2 V 1)ng, we can finally apply
Lemma [3.10] and get

Pr{ sup |f(\h —E F(\h} | > e} = Pr{)scleq})_zn: (f(Xy) = f(X1) | > en}

zERY

Ooc (1 -+ %)d

log (1 + &e 2, 14
SCexp{—Cl Og( +4C) e“nh }

Let the right hand side equals ¢, in turn we have, for § small enough (solve
the upper bound on € to get the lower bound on ),

— — Cslog (C/6)(1 —a+ 2)d
Pr¢ sup ]Kh—E[Kh}|>\/ 3log ( /)(d at+ %) <6,
rcRd nh

CoC

where C3 := | —=0~ |
3 C log (14+52)

For the second term in (3.31)), first we prove that if & € H(S,L), then
kour € H(B, (1 — a+ —#)L). Note that for this argument, we are only
considering the one-dimensional case, therefore

dPk(z)
dzP

<L (3.34)

ke H(B,L) < sup

Using the chain rule, we have

B B APl (Z=£
ko (@) _ (1_a)d k(x) Lo (=4)
dzxP dxP r  daf
dPk(u) a d°k(u)
= (=)= e T g bz

Therefore using (3.34)), we have

d°ke ()
dxB

sup
X

< ((1 —a)+ %)L,
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that is ka,,u,r €cH (ﬁ? (1 —a+ ﬁ)L)

Then we have

o ] ko

= sup| / K, ([t — ]]) Koo (1)dts — Koy ()]

d
—sup T [ 8 (s = 1) (o (1) = i)
i=1

d
=sup H/K(M!) (ka,uﬂ"(xi + hv;) — ka,u,r(xi)>|
i=1
d
00 1)
i=1
+ ‘/K(!vz\) (kgluﬁr(frz + hv;) — ka,#ﬂ"(xi)>' }

d
(i)

/ K (|ui]) (k:aw(x,- + hoy) — K5 (s + hvi)> '

where -®# is the taylor expansion of - at z to order § — 1, and Cy :=
LY [ K (|v]) ]vmd. Specifically, (i) is true since ko € H(B, (1 —a + F)L),
and therefore (k:g’;’,f r(Ti + hvy) — ka%r(xi)) is a polynomial of degree 8 — 1,
then use the fact that K € G(f), we have the second term is zero; and (ii) is
true from the fact that ko . € H(B, (1 — o+ —#7)L).

Combining the above analysis, we have

— Cslog (1/8)(1 — a4 2)d a N\ 4
_ _ B
Pr{feuﬂi?d |Kh — ko] > \/ - +Ci(1-at 7)) h?p <o,

where C3,Cy are constants that do not depend on h,a,pu,r, but depend on
k,K,d,n,(, L. O
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3.7.7 Robustness on the empirical level

Definition 3.11. (Empirical contamination model) Given n samples {(x;, y;)},
we consider the corresponding contaminated samples { (27, y;)} ; that satisfying

(25, yi) = (zi,y3) for 1 < i < dp; (z5,95) = (2',y) for dp, + 1 < i <,

where 1 < d,, < n is the number of outliers.

Denote the empirical aLDG; under the contamination model Definition [3.1]]

—
as aLDG,. We consider characterizing the following modified influence function
(defined to adapt empirical setting)

MIF((z', /), aLDG, F,,) := [aLDGy — aLDGy|.

In Theorem we give an upper bound on MIF, which depends on the number
of outliers d,, and sample size n.

Theorem 3.12. Consider the contamination model in Definition with d,, outliers,
and the empirical aL/D\G using boxcar kernel density estimato ﬁ with bandwidth
hy. Assume the point mass (2/,y') is far away from all the n uncontaminated
samples:
(2',y'): min|z; — 2’| > hy, min|y; —y'| > hy.
n] Jj€ln]

JE€l

Under the same conditions on the true data distribution as in Theorem 3.5, then
with high probability, we have

MIF((«',4/), aLDG, F,,) := |aLDG, — mt\

logn
< 2€, + NMn—d,, + 2\/ €n + Mn—d, & s

n

where €, 1= dﬁ is the contamination mass, and F}, denote the empirical distribution

of the uncontaminated data.

Proof. Given n bivariate samples (z1,y1), ..., (Zn, yn), denote
fxy (@ y) — fx(@)fr(y)
T(z,y) = == yo =T (v, v0);
) Vi@ () (i)
Fla,y) = fX,Y(fE’ﬁi) - ff(m)fY(y)’ T = T yi)
fx (@) fy(y)

"Equation (17) of the main paper
SEquation (21) of the main paper
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where ny, fx, ]?y are some density estimator for fxy, fx, fy. Then the empirical
aLDG can be written as

n

DG = > 1{T =1},

i=1

Denote the density estimator under the contaminated model as ]?3(, f{/, fg(y,

~ —/
and the corresponding statistics as 7}, and aLDG,. First we have

i _ l - oo oA
fX()_n Z Khn(7x])+6nKhn(’$)
den"rl
.7 =dp+1
1 n
Jj=dn+1

And consequently, for d, +1 <i <mn,
dn

fX(x) fX xz _En ZKh .’EZ,.%']

-~

d
1 n
f)//(yz) f Yi _Endn;Kh yzay]

~ 1
Py (@i wi) = Fxy (@i, 3) — €n > Knlwi, w)) Kn(yi, y5)-

We assume that the true marginal densities fx and fy are bounded by some constant
Cmax and the corresponding density estimation error is uniformly bounded by 7,
with high probability. Denote

d d
. 1 & 1 &
Cmax :=ma><{sup—§ Ky (z,25), sup —— E Kn(y,v5), sup —— E Kh(%l‘j)Kh(%yj)},
Yy n z,y Un
Jj=1 j=1

then we have
Cmax — "ld, < 6\max < Cmax + Nd,,

with high probability. Consequently we have

dn-ﬁ%}i{gn ‘Tz/ - Tz| < 6n/C\maux <ep (Cmax + 77dn)

with high probability.
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Therefore, for all ¢, with high probability, we can conclude
T, > t+ en(Cmax +7a,) o T; <t — €n(Cmax + 7a,,)
— 1T, >t} = 1{T} > t}.
This implies, with high probability,
|aLDG; — aLDGy|

n

1 ~
Sﬁn"i‘ﬁ Z 1{t_€n(cmax+77dn) <T; §t+€n(cmax+ndn)}
i=dn+1

= €n + (1 - En) (Pnfdn (Stfen(cmax‘l’ndn)) - Pn*dn(st‘FGn(Cmax“Fndn)))

~

< n + (1= en) (Paaa (St—cntcmun i) —em_a)
— An—dn (St+5n(cmax+77dn)+077n—dn ))
< ew+ (1= ) (P(DY) + [Pama, (D) = P(D)]),
where

S, = {(z,y) : T > t}y, Sp:=A{(z,y): T >t},
Dt = Stffn(cmax‘i"r]n)*cnnfdn \ St+€n(cmax+77n)+cn7L—dn'

Since we assume that aLDG; is L-Lipschitz smooth around ¢, therefore
P(Dt) < 2L(5n(cmax + ndn) + Cnn—dn) = O(En + nn—dn) — 0.

Then using the Bernstein inequality for Bernoulli variable with mean P(D;) < 1,
with high probability we have

|Py_q.(Dy) — P(Dy)| < \/P(Dt);o_g Eln —dy)

< (En + nn—dn) logn _ €n + Mn—d, logn
n—dy l—e, V n °

Combine the above results, with high probability we have,

ALDC. — alLDC €n + Nn— logn
‘aLDGt_aLDG”§5n+(1_6n><6n+77n—d"+ n T n—dy, \/?)

1—e¢,
logn
< 2n + N—d, +2\/n T Tn—a, i .
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Finally, we can conclude, if the contamination mass €, — 0 as n — oo, and
satisfy €, = O(nn V 1%50), then with high probability, we have

n

J— logn
MIF((z',/),aLDG, F))) < 2en + Nn—a. + 2\/n T TIn—a. % <1,

which goes to zero as n goes to infinity. O

3.7.8 Discussion on thresholding methods

Another intuitive way we found for selecting ¢ is based on the curve of aLDG,
versus t. This function tends to decrease rapidly near zero and then reaches an
inflection point, after which it declines very slowly (e.g., Figure . We propose
selecting the threshold ¢ to be the inflection point t*. Since the increment of ¢
around t* is suddenly unable to reduce further aLDG; much, therefore, we expect
this choice to strike a balance between robustness and sensitivity. To stabilize the
estimation of such inflection point, we use the median of estimated inflection point
from max{[1000/n|,5} different random shuffles as the final estimation. We call
this ¢ selection method the inflection point method.

In Figure [3.13] and Figure we compare the above three proposed methods
of selecting t. We use 18 different bivariate distributions to make the comparison
(see Figure for the explicit display of each distribution). We believe this series
of distributions are representative enough as it covers cases from linear to nonlinear,
monotone to nonmonotone, and also probabilistic mixtures. We find that the
asymptotic norm method is often too conservative given the small sample size. In
contrast, the uniform error and inflection point method are often similar to each
other. On the other hand, Figure shows that uniform error method gives
more stable value than the inflection point method, while asymptotic norm is the
most stabilised among the three. Therefore in practice, we recommend people use
uniform error over asymptotic norm when the sample size is not too big (e.g., no
bigger than 200); while using asymptotic norm when the sample size is big enough
(e.g., bigger than 200) and the computation budget is limited.
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Figure 3.13: The curves of aLDG; versus t estimated by 1000 samples. Each plot
represents different bivariate distribution annotated by the subtitle (see Figure for
explicit display of each distribution). In each plot, the black dot curve represents the
aLDG; estimated using original data samples, and the gray dot curves represent the
aLDG; estimated using shuffled data samples (one curve each random shuffle, 20 curves
in total); The vertical lines represent different choices of the thresholding: the orange
one represents the inflect point method; the green one represents the uniform error
method; and the blue one represent the asymptotic norm one.
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Figure 3.14: The value of aLDG; estimated by 1000 samples using different method of
choosing t. The x-axis represents different bivariate distribution (see Figure 6 in the
main paper for explicit display of each distribution). For each distribution, we show the
mean value of aLDG; over 20 trials with error bar, where different thresholding method
is annotated by different color.

3.7.9 Detailed example for merits of thresholding

Consider the following product kernel density mixture:

fx(x) = akoy(z) + (1 —a)kor(z), fr(y)=kor(y)+ (1 —a)koi(y),
Ixy(z,y) = ako(x)kor(y) + (1 — a)ko,1ko,1,
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where o € (0,1), 0 <7 < 1 and k,(-) := L1k(=£), with k as the density of a one

—r r
dimensional uniform distribution supported on [—1, 1].
With a/r — 0o, @« — 0 and r — 0, we have

IX|<r&l|Y|<r

E [fXY(Xv Y) - fx(X)fy(Y)

fx(X)fy(Y) afr r
and
E fXY(X7Y)_fX(X)fY(Y) |X’>7“Ol“ |Y|>’I” %_a(l_a)/r:a_l’
fx(X) fy(Y) afr
E fXY(X7Y)_fX(X)fY(Y) ’X’>T&‘Y‘>7‘ %—(1_0[)06:—047
fx(X)fr(Y) l1-a
therefore using the law of total expectation, we finally have
fxv(X,Y) = fx(X)fy(Y) e
E ~ -1 3Q, 3.35
[ OO A () P1 + p2(a—1) + psa (3.35)

where
pr=Pr{X|<r&|Y|<rl=a+ (1 -a)?
po =Pr{(|X|>r&|Y|<r)or (| X|<r&|Y|>r}=(1-a)2r— 27’2),
p3 =Pr{|X|>r&|Y|>r}=(1-a)1—2r+7r?%).

Simplifying (3.35]) we have,

g | &Y - XEONFY)| e

fx(X)fr(Y)

<
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3.7.10 Supplementary figures
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Figure 3.15: Empirical aLDG value for Negative Binomial mixture. The upper row shows
the scatter plot, while the lower row shows the corresponding dependence level given by
different measures. The data are generated as a three-component Negative Binomial
mixture. From left to right there are 0,1,2,3 out of 3 components has correlation 0.8,
while the rest has correlation 0, i.e. the dependence level increases from left to right.

method
5.0- 5.0- Pearson
> 25- > 25- % Spearman
0.0- 0.0- Kendall
Taustar
-50 0.0 5.0 dCor
B nsic
100, % 1 o 1.00-5/,/ Loo-Z/ 1.00 - g==
_075-¢ _ 075-& — | 075- . 075" . HHG
[ T [ N o T o
g 0.50- « g 0.50-+ # g 0.50- + g 0.50- . HoeffD
Q o T Q o Q
0.25 0.25 0.25- ¢ 0.25 MIC
0.00-, 1 1 1 0.00-, 1 1 1 0.00-, 1 1 1 0.00-% } 1 1
50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200 . MRank
sample size sample size sample size sample size
p! p! P! p! . alLDG

Figure 3.16: The empirical power of permutation test at level 0.05, based on different
dependency measures under different Gaussian mixture distributions and sample sizes.
The power is estimated using 50 independent trials. The data are generated as a
three-component Gaussian mixture. From left to right the overall dependence level
increases: specifically, 0,1,2 and 3 of the 3 components have correlation of 0.8, while
the remaining components have no correlation.
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Figure 3.17: The empirical power of permutation test at level 0.05, based on different
dependency measures under different negative binomial mixture distributions and sample
sizes. The power is estimated using 50 independent trials. The data are generated as
three-component Negative Binomial mixture. From left to right the overall dependence
level increases: specifically, 0,1,2 and 3 of the 3 components have correlation of 0.8,
while the remaining components have no correlation.
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Figure 3.18: Computation time (log; scaled) versus sample size for different methods,
averaged over 10 independent trials. We can see that HHG is much slower than the
others as sample size grows, while aLDG is roughly as fast as dCor, HSIC, MIC.
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Four

|dentitying active differential expression
genes in Autism

In an effort to better understand autism spectrum disorders (ASD), we focus on
two types of ASD-related genes: Differential Expression (DE) genes which are
differentially expressed in ASD versus neurotypical brains, and TADA genes, which
are identified by unusual patterns of genetic mutations. While TADA genes are
thought to be “active”, DE genes are thought to be either “active” (cause of ASD)
or “reactive” (outcome of ASD). In this project, we aim to dive deep into the
mechanism of DE genes: discriminating the “active” ones from “reactive”. Relying
on the conjecture that active DE gene modules are enriched with TADA genes, while
reactive ones are not, we adopt a network-assisted approach to bridge these two
sources of information and identify an assortment of unique “active” and “reactive”
DE gene communities. Our work brings new insights toward understanding the role
genes play in the development of ASD and how ASD affects gene expression as well.

4.1 INTRODUCTION

The autism spectrum disorder (ASD) is a clinically heterogeneous class of neu-
rodevelopmental disorders that has a strong genetic basis. Over the past decade,
extensive studies have led to the identification of numerous susceptibility genes.
These genes were discovered through various approaches, including the analysis of
unusual patterns of genetic mutations in DNA. The TADA method (He et al., [2013)),
in particular, has been instrumental in identifying ASD susceptibility genes by
examining the frequency of de novo and transmitted mutations in parent-offspring
trios. This approach has proven to be highly effective, especially when applied to
exome or whole-genome sequencing data from large family samples. Still, among
thousands of trios sequenced, only a few hundreds of genes were deemed as ASD
risk genes, and preliminary studies suggest there should be nearly a thousand ASD
risk genes (Neale et all 2012; |He et al., 2013). In this project, we look at this
problem using a novel integrative perspective: with another source of information,
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we utilize gene networks to bridge it with existing TADA results and aim to extract
new insights about ASD mechanisms.

Specifically, we consider gene expression data as our additional information
source. Gene expression data has revealed many (over four thousands) genes that
are differentially expressed (DE) in ASD versus neuro typical (NT) or say control
brains (Gandal et al., [2022). Interesting functional modules are identified for these
DE genes, however, what roles these DE genes play in ASD remains unknown: a
gene can be differentially expressed to cause the phenotype (“active”), or it can
be differentially expressed because of the phenotype (“reactive”). On the contrary,
analysis using genetic mutations in the DNA like TADA outputs genes known to be
the cause of the phenotype. Therefore, one natural idea is to deconvolve the DE
mechanism with the help of TADA results. The “active” DE genes might be a new
group of candidates for ASD risk genes.

One might think about just doing a simple set diff on those two sets of significant
genes, and directly treating DE genes that are also TADA significant as active and
the rest as reactive. However, we find that there is not much overlap between the
DE and TADA significant genes when just taking a cutoff of their g-values E] to
determine significance (see Table . So this simple approach is not good enough
for interesting findings, and a bridge to connect these two information sources seems
necessary.

cutoff || 0.001 | 0.005 | 0.01 | 0.05 || #TADA

0.001 1 1 2 3 72
0.005 6 8 10 15 97
0.01 9 12 14 22 111
0.05 19 26 31 48 185

#DE || 720 | 1517 | 2077 | 4223 ||

Table 4.1: The overlaps between DE and TADA significant genes. The first row and
first column indicate four different cutoffs on the g-values, and each cell in the table
represents the number of overlapping DE and TADA significant genes when taking
different cutoffs at their respective g-values to determine significance. The last row and
last column represent the number of DE and TADA significant genes separately. We
use DE results from |Gandal et al.| (2022), and TADA results from [Fu et al.| (2022).

Observations in previous studies motivate us to look at gene networks as the
bridge and conduct analysis on the module level. Specifically, [Willsey et al.| (2013al)
found that ASD-related genes tend to cluster meaningfully in a gene network derived
from gene expression in the developing brain, compared with other genes. Later,
many have conjectured that network derived from gene expression can be utilized

'A g-value is a p-values that has been adjusted for the False Discovery Rate (FDR) control.
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to discover ASD risk genes (Liu et al.l [2014] |2015; |Xie et al., 2022), and indeed
many novel ASD risk gene discoveries are made with joint modeling of gene network
and gene risk using a Hidden Markov Random Field Model (HMRF). As for our
task, we additionally observe that for gene networks appropriately constructed,
there exist gene communities that are solely enriched with DE-significant genes;
and also communities that are enriched with both TADA-significant genes (TADA
genes for short) and DE-significant genes (DE genes for short). Naturally, we
conjecture that the communities that have many TADA genes and DE genes as
members tend to “affect” the etiology of ASD (i.e. active communities); whereas
those communities solely comprised of DE genes tend to be an “outcome” of ASD
(“reactive communities”).

Based on these observations, we propose to first use gene network to regularize
the DE and TADA information and then search for clusters that satisfy our target
signal distribution. Figure demonstrate the whole analysis pipeline of our
method, which involves three major steps: 1) gene network construction 2) network
regularization of DE and TADA signal 3) active and reactive community detection.
We develop novel methods in each of these three steps, to address long-overlooked
or newly-appeared challenges.

ASD Gene scores Network regularization

of gene scores Regularized gene states
brain
samples .
Z-scores o e e
Observations v
i )
.Normal Z0 il Z G 5 0 O Active
brain sample: A A A

4 - _ 2 © Reactive
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\ G ) @ether is active, reactive or oth?y S ‘/ a0 © Reactive DE community,
Step 1 Step 2 Step 3

Figure 4.1: The whole pipeline of our method.

In the first step, the choice of gene network type is a crucial decision in the
analysis of ASD risk gene modeling. Previous studies, such as |Liu et al. (2014)
and |Liu et al. (2015), have focused on specific types of gene networks without
conducting a systematic evaluation of different network concepts. For instance,
(Liu et al., 2014) used Pearson correlation to measure gene co-expression and
constructed gene networks using Weighted Gene Co-expression Network Analysis
(WGCNA) (Langfelder and Horvath, [2008). On the other hand, Liu et al.|(2015)
used partial correlation as a gene co-expression measurement for a sparser and more
interpretable graph structure. Xie et al.| (2022)), on the other hand, directly utilized
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downstream protein-protein interaction networks from existing databases. However,
these approaches have overlooked two important aspects in this domain. Firstly,
they do not adequately capture the nonlinear nature of gene interactions, which is
increasingly recognized as common in modern large heterogeneous datasets (Tian
et al., [2022). Secondly, they do not effectively account for the fact that genes often
work together in groups or pathways, with potential overlap between pathways
(Wang et al. 2015]). Assessing group-level interactions becomes challenging when
the true gene groups are unknown. Motivated by these limitations, we contribute
the first-ever systematic investigation of various gene network concepts in the
application of ASD risk gene modeling, taking into account nonlinearity and group
interaction. For completeness, we propose two novel gene network construction
methods. One is the aLDG proposed in Chapter [3] which measures the nonlinear
marginal gene relationship, another called Ensemble nonlinear Partial correlation
using Additive CCA (EnPAC) is in Section which extends an existing idea
addressing the challenges of measuring gene group level interaction when the true
gene groups are unknown to nonlinear setups.

To jointly model differential expression (DE) and Transmission and De Novo
Association (TADA) signals in the context of gene networks, we build upon the
original Hidden Markov Random Field (HMRF) approach proposed in |Liu et al.
(2014). In our work, we extend the hidden states of genes to represent three classes:
“reactive”’, “active” and “others”. We believe that true reactive and active genes are
likely to be clustered together in the gene network, meaning that the “active” and
“reactive” hidden state of a gene can be inferred from the states of its neighboring
genes. To leverage this clustering tendency, we update the posterior probability
of each gene’s hidden status based on the observed DE and TADA z-scores of its
neighbors. By incorporating information from the gene network, we obtain a more
regularized estimate of hidden states of genes. After obtaining the jointly regularized
gene states, we employ a graph clustering approach that we have developed by
adapting a popular existing method to our specific setting. We specifically aim to
find gene groups enriched with active genes (our target active gene communities)
and enriched with reactive genes (our targeted reactive gene communities).

Using our method, we are able to identify a series of active and reactive gene
communities that are biologically interesting. We find that the identified active
clusters are related to synaptic and neuronal functions, and are enriched in neuron-
type cells, which agrees with the common belief that ASD is caused by misfunction
of neuronal activities. On the other hand, the reactive clusters are mostly related
to responsive functions and are enriched in nonneuron-type cells, which brings new
insights into the effect of ASD on the misfunction of nonneuronal activities.

In Section [£.2] we introduce the related work in more detail; then we describe
the core methods we used in our analysis in Section Finally, in Section [£.4] we
present the results we get using two recently published real datasets.
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4.2 RELATED WORK

Differential expression analysis. Differential expression analysis is a fundamen-
tal computational method extensively employed in the field of transcriptomics to
elucidate gene expression variations across different experimental conditions. By
comparing the transcriptome profiles of distinct biological samples, this analysis aims
to identify genes whose expression levels significantly differ between groups, thereby
revealing key regulatory mechanisms underlying biological processes. Differential
expression analysis encompasses a series of statistical techniques, including normal-
ization, data transformation, hypothesis testing, and multiple testing correction. For
our study here, the key to DE analysis is just a two-sample testing problem. |Gandal
et al.| (2022) represents the most recent quality work in this direction. In the study
conducted by (Gandal et al.| (2022), the focus is on differential expression (DE) anal-
ysis, which involves comparing gene expression patterns between different groups.
They collected bulk RNA-seq samples from various brain regions and performed a
comprehensive investigation of ASD differential expression. To identify differentially
expressed genes in individuals with Autism Spectrum Disorder (ASD) compared to
neurotypical individuals, |Gandal et al.| (2022)) employed a regression model. This
model included both technical variables (e.g., batch effects) and biological variables
(e.g, region, age, sex, diagnosis, etc) as covariates. One of the key covariates is
the variable “diagnosis”, which indicates whether an individual has ASD or not.
The differential expression analysis was conducted by examining the significance of
the coefficients associated with the “diagnosis” covariate in the regression model.
If the coeflicient is significantly nonzero, it indicates that the gene’s expression is
differentially expressed between individuals with ASD and neurotypical individuals.

TADA analysis. The method developed by He et al.| (2013), known as Transmission
And De novo Association (TADA), represents the most successful and widely used
analysis framework in inferring ASD risk genes from genetic mutation patterns.
ADA incorporates various types of genetic variations, including de novo mutations,
inherited variants, and case-control variant data. TADA employs a gene-based
parametric likelihood model that involves estimating parameters for allele frequencies
and gene-specific penetrances. The inference process relies on a Hierarchical Bayes
strategy, which leverages information across all genes to estimate parameters that
would be challenging to determine for individual genes alone. By borrowing strength
across genes, TADA improves the estimation of these parameters and enhances the
power to identify ASD risk genes. Compared to other common methods used for
gene-based association analysis, TADA demonstrates significantly higher statistical
power. Its effectiveness has led to its widespread adoption in subsequent research
studies, especially when multiple types of WES data are available.
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Gene network estimation. The true biological networks are of form of a directed
network, which describes how a collection of molecular regulators interact with
each other and with other substances in the cell to govern the gene expression
levels of mRNA and proteins which, in turn, determine the function of the cell.
These networks, called genetic regulatory networks (GRNs), are central to all
biological organisms, and their deciphering is crucial to understand the development,
functioning, and pathology of these organisms. Once a remote theoretical possibility,
this deciphering is now made possible by advances in genomics, most notably
high-throughput profiling of gene expression patterns with DNA microarrays and
RNA sequencing (Karlebach and Shamir, 2008; Delgado and Gomez-Velal [2019;
Mercatelli et al., |2020; Nguyen et al., 2021)). These advances have prompted the
development of a plethora of models of GRNs and algorithms to reverse-engineer
them from expression data. On one aspect, there are physical models mimicking the
biological mechanisms at play, including promoter recognition, mRNA transcription,
and protein translation. These models, typically based on systems of ordinary or
stochastic differential equations (Cao et al., 2012; |Dibaeinia and Sinhal 2020a), can
generate realistic behavior but a large number of experimental data since they tend
to have high-dimensional parameter spaces.

On the other hand, models based on the statistical analysis of dependencies
between expression patterns have intermediate complexity and have already been
successfully applied to aid in the inference of large gene regulatory networks (GRNs).
There are methods that utilize bivariate dependencies between the expression pat-
terns of all pairs of genes to infer “coexpression networks” (Langfelder and Horvath,
2008; Reshef et al., 2011). However, pairwise (or marginal) gene relationships fail
to capture more complex statistical dependencies, such as higher-order interactions.
Various refinements have been proposed to measure group-level interactions in coex-
pression networks, where the relationship between a pair of genes is assessed after
conditioning on a group of other known functional-related genes (i.e., pathways)
(Toh and Horimoto, 2002} |Kim et al., 2012; |Wang et al., 2015). Although both
pairwise and group-level gene relationships are directional, as the GRN should
be, they provide reliable candidates for later causal structure discovery, which is
often computationally expensive (Vowels et al., |2022). In this project, we focus on
statistical approaches for estimating undirected gene networks, as the estimation
of directional gene networks is currently beyond the scope of our computational
resources.

Network assisted ASD risk gene identification. Gene-based tests, such as TADA,
often yield only a small number of genes with p-values that meet the threshold for
genome-wide significance. However, when considering the gene interaction network,
it is observed that certain genes with low individual p-values tend to cluster together
(Liu et al., [2014). Although these genes may not be individually significant, the
presence of such clustering of small p-values in the network is unlikely to occur by
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chance. To improve the detection of risk genes, (Liu et al.l 2014} 2015} Xie et al.|
2022)) employ an HMRF model to identify risk genes by discovering those that are
clustered with other known significant genes in the provided gene networks.

4.3 METHODS

[ [ Marginal [ Partial [ Ensemble Partial

Linear Pearson PNS (Liu et al., |2014) | EPC (Wang et al., |2015)
Nonlinear || aLDG (Chapter GENIE3 (Huynh-Thu et al.} |2010) EnPAC (Section [4.3.2)

Table 4.2: All the gene network concepts we considered.

4.3.1 Selective review of statistical gene network estimation

Marginal gene relationship. Most methods for inferring edges in gene networks
are based on the notion of measuring pairwise gene expression profile similarity or
co-expression, which aims to estimate marginal relationships between pairs of genes.
For pair of genes X, Y, the simplest measure is the classical Pearson’s correlation:

Cov(X,Y)
V/Var(X)Var(Y)

Plugin the sample estimation of covariance and variance, consistency, and asymptotic
normality can be proven using the law of large numbers and the central limit theorem,
respectively. Pearson’s p has been, and probably still is, the most extensively
employed measure in genetic applications, due to its simplicity. However, it is
known to detect only linear relationships.

There are many works in the literature for detecting nonlinear pairwise gene
relationships (see (Tian et al., 2022) for a review), here we adopt the measure called
averaged Local Density Gap due to its superior performance compared with others
in the extensive simulations and real data analysis conducted by (Tian et al., 2022]).
For a pair of genes X, Y, assume joint and marginal densities both exist, denote
fxv, fx, fy as their joint and marginal densities. Then averaged Local Density
Gap (aLDG) (Tian et al., 2022) measure is then defined as

Pearson’s p(X,Y) := (4.1)

aLDG; :=Prx y {T(X,Y) > t},

where T(X,Y) = fxy (X, Y) — fx(X)fy(Y) (4.2)

fx(X)fy(Y)

and ¢ > 0 is a tunable hyper-parameter that can be set in a data-dependent
way using the principle of eliminating estimation noise. (Tian et all [2022) show
that aLDG can accumulate local dependence and can detect any non-linear, non-
monotone relationship. Together with a consistent nonparametric estimator, they
also establish the robustness of aLLDG on both the population and empirical levels.

Draft as of August 1, 2023 88



4.3. Methods

Partial gene relationship. The previous approaches for estimating gene depen-
dencies mainly focus on pairwise relationships, neglecting higher-level interactions.
However, in biological pathways, genes can interact with groups of genes, even if their
marginal relationships are weak. To capture these higher-level interactions, partial
correlations have been utilized. In the current literature, partial correlations are
typically calculated conditioned on either all available genes or a pre-defined subset
that may contain biologically unrelated genes. Gaussian graphical models (GGMs)
offer a more realistic approach to modeling these interactions in linear settings. By
assuming that gene expression levels follow a multivariate normal distribution, the
conditional independence structure can be inferred by estimating the support of the
inverse covariance matrix of the expression data. One can prove that estimating
such support is equivalent to the neighborhood selection task, which uses regression
techniques to select pairs of genes with nonzero coefficients. However, a challenge
arises when applying this model in genetic practice due to the limited number
of expression samples compared to the number of genesﬂ To improve estimation
precision in very high-dimensional cases, DAWN (Liu et al., 2014) introduced a
neighborhood pre-screening approach along with the LASSO-based method called
PNS (partial neighborhood selection). As a natural extension to linear partial
relationships, GENIE3 (Huynh-Thu et al.l 2010) decomposes the prediction of a
network between p genes into p separate regression problems. Each regression prob-
lem predicts the expression pattern of a target gene using the expression patterns of
all other genes as inputs, employing tree-based ensemble methods such as Random
Forests or Extra-Trees. The importance of an input gene in predicting the target
gene’s expression pattern is considered an indication of a potential linkage. By
aggregating these putative linkages across all genes, a ranking of interactions is
generated, allowing for the reconstruction of the entire network.

Ensemble partial gene relationship. As highlighted by (De La Fuente et al.l 2004;
Kim et al., 2012)), including irrelevant genes in the conditioning set during partial
relationship estimation can introduce false dependencies and lead to erroneous
edges in the estimated network. This is due to the fact that the underlying gene
interaction mechanism follows a causal graph, and conditioning on a collider can
introduce spurious dependencies. To address this issue, researchers have explored
the use of lower-order partial correlations, which condition on one or two other genes
or a small set of known pathway genes. The work by (Wang et al., 2015) represents
the state-of-the-art in this field, addressing the challenge through an unsupervised
approach involving sparse canonical correlation analysis combined with repeated
random partition and subsampling. Their method aims to identify strong linear
relationships among a small subset of candidate genes. By applying canonical

2In our analysis, we aim to estimate a network for approximately 8000 genes with around 300
samples.
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correlation analysis to randomly partitioned gene groups and averaging the linear
coefficients over iterations, an edge weight matrix is constructed to capture the
aggregated level of partial gene interactions of different orders. Sparsity is further
incorporated to filter out weak or noisy relationships. However, their approach is
limited to linear settings, and no nonlinear variants have been proposed thus far.
In Section [£.3:2] we extend their approach to nonlinear settings by adopting an
additive canonical correlation analysis model with group sparsity.

4.3.2 EnPAC: Ensemble nonlinear partial relationship

To provide a more comprehensive understanding of the original linear method
developed by Haiyan et al. (Wang et al., |2015), which serves as the foundation for
our endeavor to extend it to nonlinear settings, it is necessary to delve into its specific
details. Algorithm outlines the main steps of their approach, which aims to
capture the ensemble partial relationship by traversing through different conditional
sets of genes and computing an aggregated measure of partial correlations of varying
orders.

Their algorithm involves solving a sparse Canonical Correlation Analysis (CCA)
problem, which we will briefly recap its most general non-sparse version here
Hotelling (1936). Consider data matrices X € R"*P|'Y € R"*? CCA aim to find
linear combinations of X and Y columns which have a maximum correlation with
each other:

max corr(Xux,Yuy),
uxGRle,uyeRqX1

Cov(a,b)

Var(a)Var(b)
et al.| (2015) additionally imposes sparsity in ux and wy. For more discussion on
computation and theory about sparse CCA, we refer readers to (Gao et al., 2015
GAO et al.| 2017, Wang and Zhou, [2021)).

The utilization of CCA in Algorithm can be framed within a regression
context. In the case of a functional gene group (x1,...,x), where the expression
levels are assumed to follow a multivariate normal distribution, regressing x; on the
remaining genes yields z; = > ki Bijz;. Consequently, for partitions that result in
such configurations (e.g., 1 versus k — 1), the elements in the weight vector u are
proportional to §;;, and thus indicative of the correlations between pairs of genes
conditioned on the other genes within the same group (and selected within the same
subsample). When considering more general configurations, such as having [ genes
in one set versus k — [ genes in the other set, the weight vector w is proportional
to the correlation between a gene and a linear combination of the genes in the
other set, conditioned on the remaining genes in the same set. By averaging the
weight vectors over multiple iterations of random subsampling and partitioning,
an aggregated measure of partial correlations of different orders is obtained. This
iterative process allows for the exploration of all possible dependent sets, resulting
in a comprehensive assessment of gene interactions.

where corr(a,b) = is the correlation. Sparse CCA used in (Wang
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Algorithm 4.1 Aggregated partial correlation.

Input: Gene expression matrix X € RP*™ subsampling ratio «, sampling times
K, partition times M.
Output: A p x p matrix F indicating the pairwise ensemble partial correlation
strength among all the genes.

for k=1,...,K do
Random sample |ap] genes;
form=1,...,M do
Random split the sampled genes into two sets AM) and B(m),
(Denote |A(™)| = p4, |B(™)| = pp, and submatrices as X 4 (m) € RPAX™ and X p(,)RPEX™).
Solve sparse CCA for X 4(m) and X g(my and get ug‘m) € RPaX1, u%n) € RpX1,
Recover gene-level coefficients u(™ e RP*1:
ufg?A, if i € A
ul™ =™ /|e™)]|y, where e™ = ¢ Wi | ifie B
0, otherwise
Em) = (m) ()T
end
M
E = 5 Y B
end

Additive CCA formulation. Naturally, we can have a nonlinear version of Algo-
rithm by replacing the CCA step in Algorithm with its nonlinear variant.
There have been many works in nonlinear CCA, which mainly falls into three
categories: Kernel CCA (Bach and Jordan, 2002; |Chang et al.l 2013; |Yoshida et al.,
2017)), which transform the feature space to kernel space; Functional CCA (Bals
akrishnan et all 2012), which extends the linear combination in CCA to nonlinear
additive models; and HSIC CCA (Chang et al., 2013; |Uurtio et al., 2018), which
modifies the dependence measure in CCA from correlation to HSIC(Gretton et al.,
2005)). In this paper, we mainly follow the Functional CCA route, as kernel CCA
lacks of interpretation in the original feature space, and HSIC CCA runs rather
slowly in practice. In the following, we formulate our explicit objective function
as well as optimization processes. Our approach can be treated as a simplified but
more practical version of (Balakrishnan et al., 2012).

We consider the following family of non-linear transformations that transform
each dimension using a finite set of uniformly bounded, orthonormal basis functions

Draft as of August 1, 2023 91



4.3. Methods

{7717"'77711}:
L
:{f:R—HR, x»—)ZBml(as), WhereﬁleRVle[L]}. (4.3)
=1

Then for X4 € R"*PA X € R"*PB_ we consider a variant of CCA where the linear
combination is replaced by the additive model to combine all the features. That is,
we are solving

max corr ($(X.), $(X5)). (4.4)

where

.
P(Xa) —(ZW Xa1i), ZW XAm> e R,
=1

T

ZW XBaj), ZWXBW e R,

and ¢’ and 1)’ are from function class F for all i € [p4] and j € [pp], and we take
the representation

L L
)= BamC), @)= B m(). (4.5)
=1 =1

Remark 2. Using this finite set of basis yields a truncation bias if the true function is
from a more generally assumed space like a second-order Sobolev space, however, the
resulting CCA objective can be much easier to write out and the optimization process
can be much faster and more stable. As for CCA, we are handling a nonconvex
problem and using alternating updating for optimization, the convergence of the
optimization process can be tricky, and therefore the estimation stability in each
step is much more needed.

Convert to linear form. We show how we can solve (4.4)) efficiently by converting
it into a linear format, from where the appropriate way of introducing gene-level
sparsity is clear. Define X4 € R™*PAL and Xp € RPsL 45

_UI(XA;I,I) UI(XA;I,p) nL(XA;Lp)
Tao= |MEa20) o m(Xagp) o mn(Xanp) |
_nl(XA;n,l) nl(XA;n,p) nL(XA;n,p)
_nl(XB;l,l) nl(XBgl,p) nL(XB;l,p)
= m(Xe21) - m(Xs2p) - L Xb2p) (4.6)
[ (XBin1) - m(XBmp) - 1L(XBinp),
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and wy € RPEXD and wg € RIEXT a5

1 1 T
wA :(ﬁA,]_?/BA,lﬂ’/BAl?’ﬁi?L) )
1 1 T
wp = (ﬁBJ?"‘/BB,L""753,17"’7 %?L) .

Also, define 5,43 = )?X)?B, éAA = )A(;X)A(:A and (~7BB = )Z';)A(;B. Then we have
problem (4.22)) be rewritten as a classic CCA problem (constrained form):

max 'wACABwB, subject to wXC’AAwA =1, wEC’BB'wB =1. (4.7)
wy €ERPA
wpERPB

Add feature level sparsity. To introduce feature-level sparsity in the transformed
problem (4.7), we partition w4 and wp into p and ¢ non-overlapping groups
respectively:

¢
g) = (ﬁim,...,ﬁz’,:) eRFNt=1,....p
wg) : (ﬁg’l,...,ﬁj‘;L) eRM s=1,....q.

Then we consider a group Lasso (GL) penalty for wy and wp as follows:
QGL wA Z\FHU}A HQ, and QGL wB Z\FHU}B HQ

Now we can propose the following group sparse CCA:

min — wléABwB (4.8)
wa,wp

subject toH)?AwAHQ <1,Qqr(wa) < e,
1 Xpws|* < 1,0 (ws) < .

which will impose feature-level sparsity.

Optimization. The Lagrangian form of the above problem (4.8]) is:

E(wA,wB) = —w}éABwB + M QGL(UJA) + Ao QGL(’UJB)
+ || Xawal® + n| | Xpws] %, (4.9)

where A\; > 0, X2 > 0,1 > 0,72 > 0 are Lagrange multipliers. To minimize
L(wa,wp), we use the alternating iterative algorithm based on a block coordinate
descent method to optimize w4 for a fixed wp and vice versa. Particularly, following
(Balakrishnan et al., |2012), we use the solution to a non-sparse variant as our
initialization (warm start). The explicit processes are summarized as Algorithm [£.27]
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The more detailed description is presented in Section where we also include
simulation studies to show the validity of our method.

Algorithm 4.2 Sparse additive CCA.

Input: Data matrixes: X4 € R"*PA Xp € R"*P5B;

a set of 1-D basis functions to be used in additive models: {n1,...,n5};
sparsity parameter s € (0, 1]; norm penalty 71,72 > 0;

maximum iteration 7T'; maximum error tolerance ¢ > 0.

Output: Canonical coefficients w4 € RPA*! and up € RPBX1,

Data transformation:

get )N(A,)N(B using Equation CN'AB — )?A)}; € Rpalxpsl

0 0 > =
Warm start: wfq), 'wfg) = argmax,, cpralxl corr(wy Xa,wip Xp)

'wBG]RpBLX1
Optimization: t < 1;
while ¢t < T and ¢ > € do
Update Aj, A2 as 100(1-s) quantile of grouped norm.

Fix w4 update wpg:

=arg min —(wxfl)

weRﬁBLxl

’wg) )T Capw + 2| Xpw||? + AaQar (w).

Fix wp update wy:
®© = i —w Carnw®
w,’ =arg min w Capwp +771|XAw|| + M Qar (w).
’LUE]RPALX1
Compute error: ¢ = |luwh — w'y |l + | [w, — wj; ||
t+—t+1
end

Recover gene—level coefficients:

t .
wa Z| Wionrul fori€pali wup, Z\wB Gonypail for j € [pg]
l 1

return uy, up.

4.3.3 Joint-HMRF: joint modeling of DE and TADA scores

Inspired by a series of previous works (Liu et all) 2014, 2015; Xie et al., [2022)
which adopted a Hidden Markov Random Field (HMRF)(Rabiner; 1989) model to
incorporate network into gene risk modeling, we model TADA score and DE score
jointly with a four-states HMRF model.

Four-states HMRF model. Consider a list of genes of length p, denote their observed
ASD DE z-scores as ZPF, .. .,ZI?E, and the observed ASD TADA z-scores as
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, if gene i is only risk;

ZlTADA, ey ZpTADA. Also, we denote the true category of genes as hidden states
I,...,Ip, each takes values in 4 cases:
1, if gene 7 is both DE and risk;
I = i if gene ¢ is only DE; for all i € {1,...,p}, (4.10)
4

, if gene 7 is neither DE nor risk

where value 1 and 2 indicate genes being “active” and ‘“reactive” respectively, and
value 3 and 4 are for the “other” genes that we do not care much about.

We then model ZTAPA ZPE T using the following HMRF model. The prob-
abilistic nature of ZiD E and ZiT ADA s determined by the unobservable Markov
random field on {I;,4 € [p]}. That is, given the neighbors N of 4, I; is independent
of all other I; (Markov property). The model is formulated in such a way that con-
ditioning on I;, ZiD E and ZZT ADA are independent of any other observable variables,
also, we assume that ZiDE are independent of ZZTADA.

Therefore, the joint probability of ZPF ZTAPA T can be written as

p
p(ZPE, ZTAPA T = p(I) [ [ p(Z2P | 1)p(Z2] AP 1),
=1

and parameters can be estimated via iterating maximizing the three parts: p(I),
D ADA
f:l p(Z; E|Ii)a f:1 p(Zz‘T |1;).

To model p(ZiDE|IZ-), similar as in (Liu et al. 2014]), we consider each ZiDE follows
a Gaussian mixture model:

ZPP ~ 1penay - N(m,of) + Legzay - N0, 05y). (4.11)
And for ZiT ADA e assume
ZIAPA 1113y - N(p2,03) + 1rcqoay - N(0, 08,). (4.12)

To model p(I), we design the potential function in the Markov random field such
that p(I) has the following representation:

3 2
p(I) < exp Z bos (Z 1Ii:5> + Z bis Z 1r=s1,=5 (4.13)
s=1 % s=1 BJEN;

For quick optimization, we instead optimize for the pseudo-likelihood

A = [ Lot Iv). (4.14)
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where p(I;|In;) has

p(Li|In;) o< exp (501 17,1+ bo2ly,—2 + bo3lr,—3 (4.15)
Hbily—1 Y L—1 bl Y 11j=2) = q(Ly).
JEN; JEN;

Note that here the network structure only takes effect for active or reactive cases,
as those are the only two we care about, and conjectured to be clustered together
meaningfully in the network.

Optimization. For optimization, we follow an EM style approach: alternating
between maximizing the pseudo-likelihood [, p(I;|Ias;) using coordinate descent,
getting maximum a posteriori probability (MAP) estimation of I using iterative
conditional mode (ICM) method (Besag, [1986)), and then maximizing [, p(ZPF|I;)
and [[; p(ZF4PA|I,) using the relationship between Gaussian MLE and moment
estimation.

As for initialization, instead of random initialization, we initialize the hidden
states of the node using

if ZPE > C & ZI'4P4 > ©;
if ZPP > C & 7IAPA <
if ZPE < C & 7I4PA > ¢
if ZPE < C & 7I4APA < ¢,

70 _

i =

(4.16)

U

where the cutoff C' is pre-determined threshold; and initialize the values of the
parameters using

20) _ 30) _ 7(0) _ (0 0
bél) = béz) = bga) = bgl) :352) =0;

i 70 =
> 1150>€{172} > 1I§0>€{172}
~(0
~(0) 2zt ADAlIfO)e{l,s} ~(0) S8 — ))21z§°)e{1,3}
2 111-(0)6{1,3} Yo 111_(0)6{173}
~(0) Zi(ziDE)QlL“”e{s 43 (0 Zi(ZiTADA)21[_<o)€{2 n
751 = L0 50 - (4.17)
01 S 1 02 <1
i 71{0e{3,4) i T1%ef2,4}

Then the whole optimization process is summarized in Algorithm [£.3] After ob-
taining the estimated parameters, we use Gibbs Sampling to estimate the posterior
distribution p(I;|ZPF, ZTAPA) for each I;, and take the value of the state which
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maximizes such a marginal posterior probability for each gene as its estimated true
states.

In Figure we show the good convergence of model parameters our proposed
computational approximations, when using the PNS network as the underlying gene
network €2, and the DE z-scores from (Gandal et al.| (2022), TADA z-scores from Fu
et al| (2022), and set the threshold C' as ®~1(1—0.01), with @' as the inverse CDF
function of Gaussian (N(0, 1)) distribution. Simulation studies in Section also
demonstrate the effectiveness of our proposed approximate learning algorithm.

parameter

b01
== H02
b03
b1l

Y
~
g /"\M—\‘_‘i b12
§ 24 mul

mu2

sigmal

sigma2

b i

sigma0l

sigma02

10 20 30 40 50 60 70 8 90 100
iterations

Figure 4.2: Evidence of convergence when applying Joint-HMRF algorithm on real data.
For input, we use the PNS network as the underlying gene network €2, and the DE
z-scores from (Gandal et al.| (2022), TADA z-scores from |Fu et al.| (2022).
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Algorithm 4.3 Joint-HMRF inference.

Input: Gene network: Q € RP*P; gene DE z-scores: ZPF ¢ R'Y¥P; gene TADA
z-scores: ZTAPA ¢ R1xP. threshold C'; max iteration T'; max error tolerance
e > 0.
21 Qutput: Estimated HMRF parameters

6 := (501,1?02,5037511,512,/~61,M2701,0270017002)

22 Initialization: Set the initial states of the node and the initial values for parameters
using and ([£.17)).

23 Optimization: ¢ <+ 1;

24 while ¢t <T and ¢; > € do

25 Update hidden variable related parameters:

0D, 50 b © 0 b0

g(I; = 1871y
01 b0z bog» 011, b1g) = arg max HZ

sel4] 4 q(L; = s)

where ¢ is the energy function in .
26 Apply a single cycle of ICM (Besag), 1986) to update the hidden states:
1 = argmax p(L; = 5|27, ZTADA [~V glt-b)

p(ZPPI (2 AP L) (L T D, 00 7Y) (4.18)
27 Update observable variables related parameters:

(1) _ 2 ZPEp(1") ¢ {1,2}|ZPF, ZTADA §i-1)
Yy, pu® € {1,2}|ZDE, ZTADA gi-1))
) _ 2i(ZPF — A0)2p(1Y € {1,2}|ZDE, ZTADA §i-1)
o Y, p(IY) € {1,2}|ZDE, ZTADA g(t-1))
) X, ZTADAR([Y ¢ {1,3}|ZDE, ZTADA §lt-1))
a S, p(IY € {1,3}|ZDE, ZTADA g(t-1))
() 2 (ZTADA 9)2p(1® € {1,3}|ZDF, ZTADA §(-1)
0y~ = Zip(li(t) c {173}|ZDE7zTADA7§(t_1)) ;
(1) _ S.(ZPEY2p(1 M) € {3,4}|ZDF, ZTADA §(-1)
Tp1 = S, p(I? € {3,4}|ZDE, ZTADA §(t-1))
S0 _ S (ZTAPAY2(1®) ¢ (2, 4)|ZDE, ZTADA §li-1))
e Zip(lft) € {2,4}|ZDE ZTADA §(t-1)) :

3

28 Compute error: ¢ = || — (D]
tt+1

29 end
30 return é(t).
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4.3.4 TwolLeiden: two-step graph clustering

After the gene network construction and joint regularization of DE and TADA
information, we now have the following network with attributes (or say covariates):
for each node (gene) in the network, it is associated with a discrete value that
indicates its estimated true states. Our goal is to identify clusters in the gene
network that are enriched with genes in states 1 (active) or states 2 (reactive). This
task falls into a more general topic: community detection with node attributes
(Chunaevl 2020)). Existing methods fall into three main categories: pre-fusion,
simultaneous-fusion, and post-fusion, depending on whether to incorporate the
attribute information before, during, or after the network community detection
process. However, when applied in our specific setting, we observed that these
methods failed to yield more meaningful results compared to clustering without
covariates. This suggests a delicate situation where the integration of network
structure and covariate information can lead to a performance collapse. While
we acknowledge that we may not have explored all potential solutions, we leave
this avenue for future research to address. In this study, we have employed a
straightforward approach by conducting clustering solely based on the network
information. Subsequently, we determine the categorization of clusters as “active” or
“reactive” based on the proportions of active and reactive genes within each cluster.
Despite its simplicity, this approach has yielded the most biologically meaningful
results in our analysis.

Network community detection (or say graph clustering) itself has also been a
long-studied problem (Mohamed et al., 2019; Su et al 2022), and popular method in
the genetic domain falls into three main categories: model-based, embedding-based,
and modularity-based. Model-based methods are mostly based on the stochastic
block model and probabilistic graphical model. Embedding methods focus on
learning a node embedding for the graph and then conducting matrix clustering
based on those embeddings. Modularity-based methods aim to find community
partition that maximizes a measure called Modularity, which measures the density
of links inside communities compared to links between communities. In this project,
we follow the modularity-based route as it is the most widely used method in genetic
research communities.

The most popular modularity-based method is the Louvain method (Blondel
et al.| 2008]). However, it is known to fail to detect clusters smaller than some scale
(Fortunato and Barthelemy, [2007)), and can also yield arbitrarily badly connected
communities (Traag et al. [2019)), therefore we adopt a refined method called Leiden
(Traag et al., 2019) which successfully addresses these two drawbacks. In Figure
we show evidence of the superiority of Leiden over Louvain: even with the highest
resolution 1, Louvain fails to produce more small clusters; while for Leiden, more
small-sized clusters can be captured as resolution goes up, and for the highest
resolution 1, each gene forms its own clusters. In practice, we select the resolution
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that gives us the highest modularity. Note that Leiden clustering cannot output
clusters with a specified fixed number of outputs, instead, it determines the number
of clusters that achieves the highest modularity.

Louvain

resolution = 0.1 resolution = 0.5 resolution = 0.7 resolution = 1

D ND O AN -
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Figure 4.3: The correlation matrix between the first eigenvector of each cluster. We
show results using the real data described in Section With the PNS network.

A two-step variant of Leiden. We observe that clusters output by Leiden with a
resolution that gives the highest modularity tend to still have many small-sized
clusters that are too similar to each other (Figure . This inspires us to take
the following two-step approach. We propose to first use Leiden to construct
initial clusters; then we construct a similarity matrix among those clusters using
information from each cluster’s low-dimensional embeddings. Finally, we conduct
a hierarchical clustering based on this similarity matrix, which merges the initial
clusters into our final clusters. We select the number of final clusters in the merging
step that leads to the highest stability like MRtree did. The detailed steps are
presented in Algorithm [£.4]
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4.4. Real data analysis

Algorithm 4.4 Two Step Leiden.

Input: Gene network §2 € RP*P; gene expression matrix X € R"*P,

Output: A series of gene sets which represents a partition of all the genes.

Step 1: Get the series of initial gene clusters of high resolution.
Conduct Leiden clustering on network 2 with a resolution that gives the highest
modularity. Denote the resulted clusters C1, ..., C} as initial clusters.

Step 2: Get the similarity measure according to gene expression.
Compute the first eigenvector for each initial gene cluster using the expression
matrix X, then compute the correlation matrix among those eigenvectors, and
denote it as S € RF*F,

Step 4: Merge initial clusters.

Convert the similarity matrix S to the distance matrix and conduct MRtree |Peng
et al.[ (2021) on it to obtain the final clusters.

4.4 REAL DATA ANALYSIS

4.4.1 Datasets

The Gandal brain dataset. |Gandal et al. (2022) perform bulk RNA-sequencing
(RNA-seq) on 725 brain samples spanning 11 distinct cortical areas in 112 ASD
cases and neurotypical controls. The authors have conducted several processing and
analysis steps shown below, which prepare us for our analysis.

1. Gene Filtering: Genes were retained if they had a counts-per-million (CPM)
value greater than 0.1 in at least 30% of the samples. Additionally, genes with
an effective length (measured by RSEM) of less than 15 bp were removed.
Following these filters, the dataset consisted of 24836 genes.

2. Normalization: To ensure comparability and eliminate potential biases, the
remaining genes were subjected to further normalization using the limma-trend
approach within the 1limma R package. This approach involved taking the
log2(CPM+1) transformation of read counts, while accounting for variations in
sample read depth. Additionally, a CQN-derived offset value was incorporated
during the normalization process to address potential biases related to GC
content and gene effective length. Collectively, these steps aimed to obtain
normalized expression data suitable for downstream analysis.

3. Outlier removal: To identify sample outliers within each sequencing batch
by cortical lobe group (frontal, parietal, temporal, and occipital), the normal-
ized expression data underwent a two-step outlier detection process. First,
samples were flagged as outliers if they met the following criteria: (1) an abso-
lute z-score exceeding 3 for any of the top 10 expression principal components
(PCs), and (2) a sample connectivity score below -2. The sample connectivity
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score was computed using the fundamental NetworkConcepts function from
the WGCNA R package, utilizing the signed adjacency matrix (soft power of 2)
of the sample biweight midcorrelation. This procedure successfully identified
34 outliers in the dataset.

4. Technical effects removal: Next, to address technical effects, a regressed
dataset was created using the lmerTest package in R. This involved subtracting
the effects of 20 technical covariates from each gene, resulting in a dataset
that retained only the random intercept, biological covariate effects, and the
residual. The regressed gene expression dataset specifically captured the effects
of biological covariates, including subject, diagnosis, region, sex, ancestry, and
age.

5. DE ASD genes identification: Finally, the whole cortex differentially ex-
pressed (DE) genes were identified by examining the significant nonzero
coefficients associated with the covariate “diagnosis” in the regression model.

The above processing output a final gene expression matrix with a total of 24836
genes and 725 samples (341=Control, 384=ASD) with technical noises removed.
We will use this dataset for our analysis.

The Fu TADA dataset. We opted to utilize the TADA association results provided
by Fu et al. (2022)) as they represent the most cutting-edge findings in the field.
The gene association results in their study were obtained through a joint statistical
analysis of rare protein-truncating variants (PTVs), damaging missense variants,
and copy number variants (CNVs) identified from exome sequencing data collected
from a large cohort of 63237 individuals from ASD cohorts. These results serve
as a robust and comprehensive resource for investigating gene associations in the
context of our analysis.

4.4.2 Data preparation and preprocess

Our input data have three parts:

e Whole cortex gene expression data (bulk RNA-sequencing data) from (Gandal
et al.l 2022)), which has 24836 genes and 725 samples(341=Control, 384=ASD).

e ASD DE g-values from (Gandal et al.; |2022) for all the 24836 genes using the
whole cortex data gene expression data.

e ASD TADA ¢-values from (Fu et al., [2022) for 18128 genes.

With these three parts of data, we did the following exploratory analysis and further
processing to make it fit our task.
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Recalibration. We first transform the TADA /DE g-values into p-values using the
following formula for each gene i € [p]:

povalue; — J X rank(a) (4.19)
P X maXep] Gi

and check whether the p-values need re-calibration. Specifically, we consider the
p-values to be well-calibrated if the distribution of the corresponding z-scores using

z-score = ®71(1 — p-value) (4.20)

as if the p-value is a one-sided and is a mixture of N(0,1) and N (0, 7), otherwise
not. Below we can see that (Figure TADA z-scores distributed nicely as a
mixture of N(0,1) and N(d,7) (i.e. well-calibrated); while DE z-scores appear
to have a shifted null distribution (Figure [£.4)). Therefore we recalibrate the DE
z-scores using Efron’s method (Efron) 2004): estimating the mean p and variance o
of the distribution of corresponding z-values and then adjusted it as 2 = =&, We
use these adjusted scores as our input z-scores to the joint-HMRF model.

TADA DE
2000 3000-
1500 - 2000 after: mean =0, std = 1
mean = 0.02, std = 1.01 status
€ €
3 1000~ 3 after
e © before
1000 - ©
500 before: mean = 0.54, std = 1.48
0- 0-
0 5 10 0 5 10
Z_score Z_score

Figure 4.4: (left)The distribution of TADA z-score for all the genes. (right) The
distribution of DE z-score for all the genes before and after calibration.

Filtration. We filter the genes to adapt to our analysis and focus on genes that
have adequate expression, according to the prior knowledge that ASD risk genes are
rarely very low-expressed. We first take the intersection of genes that are covered in
both TADA results and DE results, which results in 15628 genes. Then we choose
genes that exhibit non-zero expression in at least 50% of the samples. Among these
genes, we further prioritize the top 8000 genes based on their mean expression levels.
This step allows us to focus on a subset of genes that demonstrate sufficiently robust
expression patterns across the samples.

4.4.3 Network estimation

We use all the samples from the neurotypical brain to estimate the gene network. To
ensure the exclusion of gene connections influenced by ASD, we deliberately omit the
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ASD brain samples during the network estimation process. This decision is based on
the underlying assumption that the mutation causing ASD can lead to differential
expression of reactive genes. Consequently, these reactive genes are likely to exhibit
high correlation with causal (active) ASD genes, resulting in dense and inseparable
connections between the active and reactive communities. By excluding ASD brain
samples from network estimation, we aim to mitigate the confounding effects and
focus on capturing biologically meaningful connections within the network.
We consider the following six types of network estimation methods:

Marginal Partial B Aggregated Partial
Linear Pearson PNS (Liu et al., [2014) 3 | EPC (Wang et al., |2015)
Nonlinear | aLDG (Chapter[3) | GENIE3 (Huynh-Thu et al.;[2010) | EnPAC (Section [4.3.2)

Table 4.3: The summary of gene network estimation methods of our consideration.

Following DAWN (Liu et al., 2014), we preselect a subset of core genes of
potential interest and focus on estimating their connection with genes both within
this subset and outside this subset. In contrast to DAWN, our approach involves
including genes that belong to the union of DE genes and TADA genes. Specifically,
we consider genes that fall within the highest 10% of either the TADA z-scores or
the DE z-scores as “core genes”. By combining these two sets, we obtain a total of
1532 core genes for further analysis. This integration allows us to capture genes
that show strong evidence of association with the phenotype of interest, considering
both differential expression and TADA analysis.

For EnPAC, EPC and PNS method that involves sparsity parameters, we refer
to both the R? of the network fitting to the power law H and the visualization to
choose the appropriate value. For example, for PNS, we end up choosing the lasso
penalty parameter A = 0.2, which has both a satisfactory R? (Figure and a
visually rich structure (Figure [4.6).

02 04 06
lambda

Figure 4.5: The R? of fitting power-law for networks estimated with different X:
A €{0.1,0.15,0.2,...,0.5}.

3In the network context, a power law refers to a specific pattern of connectivity or degree
distribution within a network. Specifically, it implies the frequency of nodes with high degrees
decreases exponentially as the degree increases.
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(a) A =0.15 (b) A =02 (c) A =0.25 (d) A=03 (e) \=10.4

Figure 4.6: The visualization of the fitted networks with different \: X\ €
{0.1,0.2,0.3,...,0.5}.

For Pearson, alLDG, and GENIE3 which do not consider sparsity, we simply
use a hard thresholding approach to sparsify and binarize the network. We set the
threshold on edge weights such that only edges with the top 0.1% of weights are
preserved. This cutoff gives us roughly the same sized network with PNS, so we
can compare more fairly. A special note on alLDG is that most edges with high
weights are still capturing linear relationships, therefore we take a transformationlﬂ
such that the nonlinear ones are more upweighted.

After obtaining the estimated network following the above processes, we further
prune the network by removing the genes with degrees smaller than 2 for better
visualization and analysis. Figure visualizes all the six estimated networks. We
can see that some methods clearly produce networks with more structure than
others: particularly, Pearson, PNS, GENIE3 and EnPAC are visually the most
promising ones. EPC seems to collapse, probably due to the unsatisfactory sparse
CCA optimization implemented in the paper. We leave the diagnoses for this
method for future work.

All the networks under investigation have approximately 1000 nodes and exhibit
varying degrees of overlap with each other. In Figure [£.8] the proportion of overlap-
ping nodes and edges is depicted for each pair of networks. Notably, the Pearson,
PNS, and EnPAC networks demonstrate the highest node overlap, suggesting the
presence of a group of nodes that contribute significantly to the overall network
structure. Furthermore, both Pearson and PNS networks exhibit substantial edge
overlap, indicating similar gene relationships captured by these networks. However,
EnPAC shows minimal edge overlap with Pearson and PNS, suggesting that it
estimates distinct gene relationships compared to the other two networks. To
evaluate the practical implications of these networks, we assess their usefulness in
downstream applications such as joint-HMRF modeling and active/reactive cluster
identification. Given the absence of ground truth in this domain, we omit simulation

4For a pair of genes, denote their original aLDC measure as a and their Pearson correlation as
b, then we transform the aLDG measure as @ = a(1 — |b])*? such that linear relationship is being
downscaled and nonlinear relationship are being upscaled.
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studies and instead rely on the biological relevance and interpretability of the results
obtained from these networks.

(a) Pearson (b) PNS (c) EPC

(d) aLDG (e) GENIE3 (f) EnPAC

g
S

Figure 4.7: The visualization of the fitted networks with different methods. The
hyperparameters in each method are chosen to have the best fit of the power law with
visually clear interpretation.
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overlapping genes overlapping edges
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Figure 4.8: The proportion of overlapping genes and edges for each pair of estimated
gene networks.
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4.4.4 Network regularization of DE and TADA

Following the methodology outlined in Section [£.3.3] we proceed to regularize the
differential expression (DE) and TADA information using the various estimated
networks described in Section [£:4.3] To highlight the significance of our joint
modeling approach, we compare it to a naive approach that treats DE and TADA
signals separately, serving as a baseline for comparison. In this naive approach,
DE and TADA information are independently modeled without considering their
interplay. By isolating the DE and TADA information, we aim to assess the added
value and necessity of our joint modeling framework.

A baseline model: separate HMRF model. To establish a baseline method, we
employ the DAWN framework proposed by Liu et al. (2015) for modeling risk genes
using an HMRF-based approach with binary hidden states (risk and non-risk). In
this baseline approach, we run the DAWN algorithm twice: The first run of DAWN
utilizes TADA z-scores as input, focusing on the TADA analysis. We employ the
same estimated network for this run. The second run of DAWN employs DE z-scores,
concentrating on the DE analysis. Again, we utilize the same estimated network as
in the previous run. After obtaining the estimated parameters from each run, we
employ Gibbs sampling to estimate the marginal posterior probability, denoted as
P(I; = 0|Z). This probability reflects the likelihood of a gene being non-risk given
the observed gene expression patterns. Finally, we update the p-values based on
these posterior probabilities, following the approach described by |Liu et al. (2014),
for both the TADA analysis and the DE analysis. This involves establishing a
connection between P(I; = 0|Z) and g-values, resulting in updated p-values.

After obtaining the DAWN TADA p-values and DAWN DE p-values for each
node in the network, we proceed to classify the genes based on these values. Genes
that have both DAWN TADA p-values and DAWN DE p-values below 0.01 are
classified as “active”. This implies that these genes exhibit significant associations
with both the TADA risk analysis and the differential expression analysis. On the
other hand, genes that have both DAWN TADA p-values and DAWN DE p-values
above 0.01 are classified as “reactive”. These genes demonstrate a lack of significant
associations in both the TADA risk analysis and the differential expression analysis.
Genes that do not fall into either of these categories are classified as “others”.

By performing these steps, we establish a baseline method for analyzing TADA
and DE information separately, while still incorporating the estimated network like
our joint modeling framework.

our method: Joint-HMRF model. When applying our proposed method in Sec-
tion we set the threshold C' on z-score in initialization as ®~1(1 — 0.01),
which corresponds to p-value 0.01. We run the Algorithm for each of the six
gene networks in Section [£.4.3] till convergence, and they all converge within 100
iterations (except for EPC, which fails to converge). Then we classify genes based
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on their most possible hidden states (MPHS) according to the marginal posterior
p(I;|ZPP, ZTAPAY. we call genes with MPHS=1 as “active”, and MPHS=2 as
“reactive”, and the rest as “others”.

Before regularization After regularization
(Separate) (Joint)

Pearson

alLDG

PNS

GENIE3

SCCA

EnPAC

Figure 4.9: (Continue on next page)
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Figure 4.9: The visualization of the fitted networks with different methods, and annotated
with different states definition/estimation. (left) Node are colored by the original TADA
and DE results. (middle) Node are colored by seperate-HMRF TADA and DE results
(baseline). In both graphs, node are colored by a preliminary definition of active
(hotpink), reactive (skyblue), and other (yellow) genes: where active-DE is genes with
ppe < 0.01, prapa < 0.01; reactive-DE is genes with ppg < 0.01, prapa > 0.01;
and others are the rest genes. (right) Node are colored by joint-HMRF TADA and DE
results, according to the estimated genes states: active (hotpink), reactive (skyblue),
and other (yellow).

Figure demonstrates each gene’s states before and after the network regu-
lation. We can see that, before network regularization, DE and TADA significant
genes have nearly no overlap, while after the network regularization, more overlap
(i.e. “active” genes) is shown. Also, our joint method is better than the separate one
as it visually gives more purified clusters: for the separate method, “active” genes
tend to scatter over the network rather than clustered together.

4.4.5 Active and reactive DE gene modules identification:

Given the results from Section we now have an associated state for each
gene in the network. We then group genes into different clusters using the method
described in Section 3.4

As an example of the process, we demonstrate how we conduct the grouping
for the PNS network. Specifically, we choose the resolution in the initial Leiden
clustering that gives us the highest modularity. According to Figure [1.11] we choose
the resolution as 0.005. With resolution 0.005, Leiden originally outputs 31 clusters.
Then we merge these initial clusters for better interpretability using hierarchical
clustering on the fused similarity described in Algorithm [4.4] where the final number
of clustering 14 is chosen based on the stability of merged clusters. We can see that,
after the merging process, the correlation among the cluster embeddings is much
lower, indicating the clusters are more heterogenous to each other.
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resolution resolution

Figure 4.10: The modularity score using different resolution parameters in Leiden
clustering.
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Figure 4.11: (Left) The correlation matrix of cluster eigengenes for all the clusters
before merging. (Middle) The correlation matrix of cluster eigengenes for all the
clusters after merging, given the chosen cluster number 14. (Right) The stability of
cluster results given different cluster numbers. We choose 14 as our determined cluster
numbers following MRtree (Peng et al., 2021)).

Figure visualize the results for the found 14 clusters for PNS network, and
Table [I.4] summarizes cluster-specific statistics for all 14 clusters. We exclude the
clusters with too small sizes (sizes smaller than 5 genes), which gives us only 11
clusters (C1-11) as a result. We can see a bunch of clusters that are potentially
active (e.g. C2,C3,C4,C5,C8) and a bunch of clusters that are potentially reactive
(e.g. cluster C1,C6,C9,C11). We further plot the proportion of active genes and
reactive genes in each of these 9 clusters in Figure We can see more clearly
that these 9 clusters fall into three categories: “active”(C2, C3, C4, C5, C8): which
have high proportions of active genes; “reactive”(C1, C6, C9, C11): have high
proportions of reactive genes but low proportions of active genes; and “other” (C7,
C10): have both low proportions of reactive gene ratio but low proportions of
active genes. This distinction in clusters would not be observable without our
network regularization process (i.e. our joint-HMRF method): in Figure we
also show the corresponding signal distribution for each cluster with just the raw
DE and TADA information, where genes with both DE p-value<0.01 and TADA
p-value<0.01 are regarded “active”, and genes with DE p-value<0.01 and TADA
p-value> 0.01 are regarded “reactive”. One can see that it’s impossible to categorize
these clusters into “active” or “reactive” without network regularization. In Table[4.4]
we show the summary statistics for all 14 clusters, which makes the effect of our
network regularization process (i.e. our joint-HMRF method) even more clear.
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Figure 4.13: The proportion of active and reactive genes in each of the big 11 gene
clusters before and after network regularization. We can see there is a clear distinction
in the signal distribution after network regularization. The clusters in the blue block are
just the "reactive” clusters we are looking for, and the clusters in the pink block are just
the “active” clusters we are looking for.

Hidden States Twoleiden Clustering

Figure 4.12: Results about the potential /identified reactive and active DE gene clusters.
(left) For Hidden States, we mean nodes are colored by the estimated hidden states
from our joint-HMRF model. The skyblue clusters are the potential “reactive” DE genes
we are interested in; while the hotpink clusters are the potential “active” DE genes
we are interested in, and the “yellow” genes are the other genes we don't care about.
(right) We show the graph visualization with nodes colored by our two-step Leiden
clustering.
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before regularization | after regularization 4 total
# active | # reactive | # active | # reactive
C2 2 47 50 107 165
active C3 0 11 49 42 133
clusters | C4 0 5 35 15 67
Ch 4 30 73 102 202
C8 0 4 11 5 57
reactive C1 0 46 3 111 126
clusters C6 0 6 4 21 35
C9 1 10 1 15 20
C11 0 3 0 7 7
Cr 0 1 3 2 34
C10 0 0 0 0 7
C12 0 0 0 1 3
others C13 0 0 0 0 3
C14 0 1 0 3 5

Table 4.4: The summary of statistics for all the PNS clusters.

We conduct a similar analysis using each of the six networks estimated in
Section however, only PNS gives the cleanest results and are most biologically
interesting. This observation is reasonable as the PNS method shares similar edge
interpretations with Markov Random Field (MRF). Our initial hope that the other
network concept, though disagreeing with the MRF assumption, might still present
useful results seems to fail. Nevertheless, these negative results provide useful
insights/guidelines for future research.

In the following sections, we only show the interpretation of results for the PNS
network, and leave those for the others in Section [4.6.3]

4.4.6 Interpretation of results

GO Enrichment analysis. The Gene Ontology (Ashburner et al 2000) is a widely
used standardized vocabulary that describes the functions, cellular locations, and
biological processes associated with genes and gene products. It provides a structured
framework to annotate genes based on their functional attributes. GO terms are
organized in a hierarchical manner, with broad terms at the top (e.g., “biological
process”) and more specific terms below (e.g., “cell cycle” or “DNA repair”). Gene
Ontology (GO) term enrichment is a computational method used in bioinformatics
and genomics to analyze large sets of genes or proteins and determine whether
specific GO terms are overrepresented within those sets.

To perform GO term enrichment analysis, researchers start with a set of genes
or proteins of interest, typically derived from experimental data. The goal is to
identify whether any particular GO terms are significantly enriched within this gene
set compared to what would be expected by chance. The analysis involves statistical
calculations to assess the significance of observed GO term enrichments. Various
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statistical methods, such as hypergeometric or Fisher’s exact test, are commonly
used for this purpose. These methods take into account the total number of genes
in the genome, the number of genes associated with each GO term, and the size
of the gene set under investigation. The output of a GO term enrichment analysis
typically includes a list of significantly enriched GO terms along with statistical
measures, such as p-values, which help determine the level of confidence in the
enrichment results.

We conduct GO enrichment analysis using the enrichGO function in “cluster-
Profiler” (Yu et al., 2012) R package. We set the p-value cutoff as 0.05 and used
Benjamini-Hochberg (Benjamini and Hochberg) [1995)) for multiplicity correction.
We find out that, all of the five active DE gene clusters we identified (C2, C3,
C4, C5, C8) are enriched with synaptic/neural related GO terms (Figure first
row), while all of the reactive DE gene clusters we identified (C1, C6, C9, C11) are
enriched with responsive GO terms (Figure first row). We also conduct the
Synaptic GO enrichment analysis, and find that all of our identified active DE gene
clusters are enriched with synaptic genes (Figure second row); while all of our
identified reactive DE gene clusters are not much enriched with synaptic genes.

We also show GO results for the “other” clusters (C7 and C10) we identified in
Figure and as we expected they are not enriched in synaptic/neural related
functions, and they are not enriched in synaptic genes.
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Figure 4.14: The ALL terms GO analysis (first row) and SynGO analysis (second row)
results for our identified active DE clusters.

Draft as of August 1, 2023 113



4.4. Real data analysis

Cluster 11

Cluster 9

Cluster 1 Cluster 6 Cluster 9
-log10 Q-value

too few genes

is

K 522 o2 o M not significant
e o= 2 “ 2
tsynapse postsynapse: postsynapse N pestsynapse 4
e
M
| B

Figure 4.15: The ALL terms GO analysis (first row) and SynGO analysis (second row)
results for our identified reactive DE clusters.

Cluster 7 Cluster 10

pepicylysine

Cluster 7 Cluster 10

pepticylysine

-log10 Q-value

too few genes
M not significant
i 2

e postsynapse . 4
presy e . 6
PO

| H:

o0 0 10 15 20 .210

Seuks

Faetiksenxe

S

S

Figure 4.16: The ALL terms GO analysis (first row) and SynGO analysis (second row)
results for our identified other DE clusters.

Comparing to WGCNA modules. We also compare our identified 11 clusters with
the 35 identified WGCNA modules. Figure [1.17) shows the proportion of WGCNA
module genes for each of our clusters. We can see that, our identified active DE
gene clusters mostly lie in the neuron-type (e.g. ExNeuron and InNeuron) WGCNA
modules, and the reactive DE gene clusters mostly lie in the non-neuron type (e.g.
Astrocytes and Endothelial) WGCNA modules. It is found in previous studies that

ASD risk genes are more enriched in neuron-type of cells (Fu et all |[2022), which

just concurs with our results.
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Figure 4.17: The comparison between our PNS clusters and the WGCNA modules found
in (Gandal et al} 2022)). The heatmap displays the proportion of genes from the PNS
clusters that overlap with the corresponding WGCNA modules. The hotpink, skyblue,
and yellow frames are used to highlight the prominent overlapping patterns for the
"active," "reactive," and "other" PNS clusters, respectively.

Direction of differential expression. We also look into the direction of the differential
expression for active and reactive DE genes for each gene cluster, in order to see
whether the active and reactive DE tend to be more highly/lowly expressed in
ASD cases (i.e. upregulated/downregulated). In Figure where we plot the
histogram of log fold change (logFC) for genes in each cluster, we can see that our
reactive DE genes and also reactive DE gene clusters as a whole tend to be more
upregulated in ASD, while active ones tend to be more downregulated in ASD. Note
that this is not a result of our gene filtration: for the 8000 genes we selected to do
the analysis, the mean of logFC is -0.034 and the standard deviation is 0.1. It is our
PNS network and joint-HMREF analysis that makes most of the downregulated genes
stand out. This result also concurs with previous findings: (Gandal et al., 2022])
found that within the “Attenuation of Transcriptomic Regional Identity” genes EI,
the downregulated gene set showed broad enrichment for neuronal cell-type-specific
markers and RNA processing pathways, and contained many transcription factors
(just like our active clusters); while the upregulated genes also contained many
transcription factors and were enriched for oligodendrocyte progenitor cell (OPC)
and astrocyte cell-type markers along with metabolic and development pathways
(just like our reactive clusters).

®Genes that associated with an attenuation of typical gene expression differences between two
regions frontal and temporal lobe in ASD.
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Figure 4.18: The whole cortex differential direction of active and reactive DE genes in
different modules. In each plot we show the histogram of log fold change (logFC) for
genes in the corresponding cluster. Positive logFC means a gene is more expressed in
ASD, while negative means less expressed.

4.5 (CONCLUSION

In this project, we study the problem of the differential expression mechanism in
Autism (ASD). Though lots of genes that are differentially expressed between ASD
and neurotypical brains are identified, their role in ASD development remains a
mystery. A gene can be differentially expressed to cause the phenotype (“active”),
or it can be differentially expressed because of the phenotype (“reactive”). To
deconvolve the DE mechanism, we integrate information from other sources, the
Transmission And De novo Association (TADA) analysis, which directly measures
how likely a gene is to be the cause of ASD. The integration task is nontrivial as
we found that TADA-significant genes (genes that carry mutations significantly
associated with ASD) have nearly no overlap with DE-significant genes (genes that
are significantly differentially expressed). Therefore, to bridge them together, we
resort to their common underlying biological mechanism: the interaction among
genes (i.e. gene network). Our method involves three major steps: 1) gene network
construction 2) network regularization of DE and TADA signal 3) active and
reactive community detection. We develop novel methods in each of these three
steps, to address long-overlooked or newly-appeared challenges. Our contributions
and findings can be summarized in the following two aspects.

First, we contribute the first-ever effort to systematically investigate various
gene network concepts in the application of ASD risk gene modeling, with special
inclusion of nonlinearity and group interaction. For completeness, we also developed
a novel nonlinear variant of the ensemble group interaction concept. Instead of
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far-from-truth simulation, we directly evaluate the usefulness of each gene network
concept by their ability to induce biological meaningful results in the downstream
analysis of the DE mechanism. We found that a linear type of group interaction
appears most useful in our task. This surprising finding also concurs with recent
findings in (Manicka et al., 2023), that biological regulation tends to be less nonlinear
than expected. Our effort benefits beyond just the problem we study here: the
collection and implementation of various gene network concepts provide convenience
for other scientific studies. Also, our findings provide insights into the correct
direction for the development of gene network estimation: nonlinearity, though
interesting, might often not be worth the trouble due to the estimation difficulty
and the rarity of the case.

Second, we propose a novel Hidden Markov Random Field (HMRF) model
to model DE and TADA signals jointly with the gene network information. Our
approach expands the overlap between DE and TADA signals in a meaningful
way: the signals are regularized together carefully by “message passing” while
traversing the gene network. With this network regularization of the two sources
of information, we are able to identify a collection of “active” and ‘reactive” DE
gene clusters. We find that the identified active clusters are related to synaptic and
neuronal functions, and are enriched in neuron-type cells, which agrees with the
common belief that ASD is caused by misfunction of neuronal activities. On the
other hand, the reactive clusters are mostly related to responsive functions and are
enriched in nonneuron-type cells, which brings new insights into the effect of ASD
on the misfunction of nonneuronal activities.

4.6 APPENDICES

4.6.1 Details on sparse additive CCA

Consider the following family of non-linear transformations that transform each

dimension using a set of basis functions {ny,...,n5}:
L
S = {s ‘R >R, z— Y Bm(x), where 3 e RV 1€ [L]} : (4.21)
=1

For X € R"*P| Y € R™4 we consider additive model to combine all the features.
That is, we are solving

~max  corr (P(X),o(Y)), (4.22)
B ERP, i€[p]
B3R, j€elq]

where

p P T
P(X) = (Z@bi(Xli),...,Zwi(Xni)) e R,
=1 =1
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T

p
ZW (Yij)yoon & (Yng) | € R™,
7j=1

and ¢' and ¢/ are from function class S for all i € [p] and j € [g], and we take the
representation

L L
=) Bm(), S0 =D0 B m(). (4.23)
=1 =1
Write in terms of 5 coefficient, we get:
n p L A q L
PY(X) P(Y) := Z (Z Zﬁ%,ml(in)> Z Zﬁyﬁl Vi) | - (4.24)
k=1 \i=1 =1 j=11=1

If we define Mx € R™PL and My € R™¥9L where

mX1) - m(Xip) oo mn(Xip)
MX — m (XQJ) v 7]1(X27p) e nL(XQ,p) ’
m (Xml) e (Xn,p) e nL(Xn,p)
mYi1) . m(Yip) - no(Yip)
My = |m21) e m(ep) o e (Yap)
mYn1) o mYap) -0 nL(Yap),

and wy € RPEX and wy € RIY%T where

wy = (6%(,1? .. 'ﬁ}(,La e ,ﬁg(’l, . ’ﬁQ,L)T7
= (Byire By By By )
Then we can write (4.24]) as
P(X)TH(Y) 1= wi My Mywy = wiCxywy, (4.25)

where éxy = M;(—My.
Similarly, define C'x x := M;M x, and Cyy = M; My, we have problem (4.22)
be rewritten as a classic CCA problem:
maﬁép ’wXCXy’wy, subject to w)T(éXX'wX =1, w;éyy’wy =1. (4.26)
€
wy R
Suppose wyx and wy can be respectively divided into L and M non-overlapping
groups: wgg) € Rrs*l g € 1,...,G; and 'wg/m) € Rim*l g € 1,...,M. Then
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consider the (adaptive) group Lasso (GL1) penalty for wyx and wy as follows:

Qcr, (wx) Z\/»HWX ll2,  and Q¢r, (wy) Z\/quwY |2

Based on the definition of GL; penalty, we propose the following group sparse
CCA:

min — w;—(éxywy (4.27)
wx,wy

subject toH)N(wXH2 <1,Q¢n1(wx) < e,
H?wYHQ <1,Q¢1(wy) < ca.

The Lagrangian form of the above problem is:

L(wx,wy)

= —wiCxywy + M Qari(wy) + A2 Qari(wy) + m|| Xwx||? + n2||Ywy |,
where A\; > 0, X2 > 0,1 > 0,72 > 0 are Lagrange multipliers. To minimize
L(wx,wy), we use the alternating iterative algorithm based on a block coordinate
descent method to optimize wx for a fixed wy and vice versa.

Specifically, to learn wx: fix wy and let z = éxy’wy, then the target function
become:

G
Loy (wx, A,m) = —wkz + M > VBgllwd |2+ m|| Xwx|[3
g=1

EG:( @T () 4\, \/]TgHw HZ) zn:iﬁl(w)?)Tm )2’

g9=1 i=1 g=1

where x; € RP*! is the i-th row of X. Since L, (wx) is strictly convex and
separable, the block coordinate descent algorithm must converge to its optimal
solution (Tseng, [2001)).

(9)

Then the subgradient of £,,, with respect to wy’ is
O () Lwy = ) )\1\/]793(9) +2n Z wz(g) (wz(g)ng?))
’UJX ‘

=29 4\ pgs(g) +2n <Z ml(g)wz(g)T> 'wg?)

i=1
= 29 4 X\ /Bys? + 2p(X T X) D
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where

(9)
_wx . (9)
s@ = @’ ifwy” #0

€ {s € RPs*!: ||s]|a <1} otherwise.

Then according to KKT condition, the solution needs to satisfy 0 € aw(g>£wx, and
X

therefore we get
Qn(XTX)(g)wg?) =2 — )\ /pys9).

Then a necessary and sufficient condition for 6 to be zero is that the system of
equations
29 = )\ pgs(g) have a solution with |[s9||; <1,

or equivalently, whether ||2(9)||s < A1, /Py.

Then if |[2(9)||3 > A\ /g, then we have wg?) # 0. Therefore the target function
we optimize over is the sum of convex differentiable functions, and hence we can
use gradient descent to obtain the global minimum. The gradient is just

(9)

X
[0S

T (X T X)Dep'?)
Wy

ngg)ﬁwx = —Z(g) + A1 Dg

We use backtracking line search to determine the step size. We use warm start,
that is set initialization as the solution of the nonsparse variant. Also, for fast
computation, we only take a few (like 10) gradient steps in each iteration (instead
of solving it towards convergence). This turns out to give a good enough solution.
We use cosine and sine basis functions with order 3 and normalize the data to range
[0,1] before putting them into the additive sparse CCA solver.

Simulations. In the following, we use simulations to show the validity of our
propose Sparse Additive CCA. We consider p = ¢ = 15, n = 50, and each sample in
X and Y are generated by the following:

X; ~N(0,1) forall i = 1,...,p;
V) = f(X2); Yi~ N(0,1) for all i # 1;

That is, there is only one dimension in each set that is relevant to the others, and
the true canonical weights should be wx = (0,1,0,...,0) and wy = (1,0,0,...,0).
We consider various type f, both linear and nonlinear, and run 10 repeats of the
experiment. In Figure [I.19] we plot the average of the estimated canonical weights
over the 10 experiments for each method: CCA; Sparse CCA and our propose
Sparse Additive CCA. We can see that only our method can recover the truth with
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the highest precision across all the settings, while the other method collapses when
handling some nonlinear relationships.

Linear Quadratic Cosine Normal density
1 1
Y, =X, Y, = X2 ¥ = cos(Xy) Y, = exp(=X3)
2
T
E1 1 :_1 1
2 2 2 2
3 3 [ 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
CCA 8 8 I 8 8
9 9 9 9
10 10 10 10
1 1 1 1
12 12 12 12
13 13 13 13
14 14 14 14
15 15 15 15
X Y X Y X Y X Y
Truth
2 2 2 2 1
4 4 4 4
5 5 5 5 0.8 i
6 6 6 6 5
Sparse 7 7 7 7 06 6
8 8 8 8 -
CCA 9 9 9 9 ;
2 . 2 p Fo :
12 12 12 12 B bt
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Additive 8 8 8 8
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13 3 13 [ 3
14 14 | 14 14
15 15 15 [ 15
X Y X Y X Y X Y

Figure 4.19: Summary of simulation results for CCA, Sparse CCA and our propose
Sparse Additive CCA.

4.6.2 Simulations on joint HMRF

In this section, we conduct a simple simulation study to further justify for our
joint-HMRF method. To simulate the data, we first consider the true graph is
Figure .20, which contains 654 nodes and presents a nice cluster structure and a
nice power-law distribution of edge degree; and we set the rest parameters in the
MRF model as b01 = b()g = —3, b03 = 0, b11 = b12 = 2.
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degree

Figure 4.20: The summary of the true graph we considered.

Initial values of I are randomly assigned to each node in the simulated graph
and we let each class of the nodes have the same size. We then use Gibbs sampling
to update I for 1000 iterations and withdraw the first 200 iterations to avoid
nonstationarity in the initial period. Then we compute marginal probabilities for
each node and set the true hidden states as the states that give the maximum
marginal probabilities for each node. Then we generate z-scores for DE and TADA
using and given the true hidden states, with parameters p; = po = 2,
001 = 0g2 = 011 = o012 = 1. Figure M(a) visualize the true hidden states, and
Figure [4.21|(b,c) visualize the simulated DE and TADA z-scores.

. b) DE z-score c) TADA z-score
(a) True hidden states (b) (<)
e wl i
40 -
. risk o 07 risk
2] - =
10-

0- - 0- L a0

*2'.5 OTO 2'5 5?0 *l2 (l) i :8 ElS
DE_score TADA_score

Figure 4.21: The summary of the sampled data from the true joint HMRF model. (a)
The sampled true hidden states, where the color of the node indicates the hidden states
of the node: hotpink for “active”; skyblue for “reactive”; yellow for “others”. (b) The
sampled DE z-score. (c) The sampled TADA z-score.

Then we estimate the gene hidden states using the sampled DE and TADA
z-score and the graph as input. We consider the following three methods: (1) Thred
Input: Directly thresholding on the input DE and TADA z-score to determine gene
states (like (4.16)). (2) Separate HMRF: the method we described as the baseline
for comparison in Section [£:4.4] which run DAWN twice, one using DE z-score as
input and another using TADA z-score as input, and then threshold the output
DAWN-DE and DAWN-TADA p-values to determine gene states. (3) Joint HMRF":
our proposed method described in Section
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In Figure we visualize the estimated hidden states using the three different
methods described above, and we can see that our method performs the best. To
quantitatively evaluate the results, we use a weighted F1 score, to account for the
fact that in practice we care more about nodes with high degrees in the graph.

remsmn I w, s) * recall([I, T JW, S
F ( Z p ) ( )

‘= precision(I T;w,s) + recall(I, T;w, s)

where

= Zwl .= Zw]_ o
precision(I, I;w, s) = %; #
D wily > wilf=s

In Figure we show the summarized weighted F1 score for the three methods
we considered across 10 repetitions, where we set weights w as the node degree.

recall(I, T;w, s) =

Truth (a) Thred Input (b) Separate HMRF (c) Joint HMRF

Figure 4.22: Visualization of hidden states using different estimation methods. In each
plot, the color of the node indicates the hidden states of the node: hotpink for “active”;
skyblue for “reactive”; yellow for “others”. (a) The hidden states are estimated by direct
thresholding the input DE and TADA 2z-scores using cutoff ®~1(1 — 0.05); (b) The
hidden states are estimated by direct thresholding the DAWN DE and TADA p-values
using cutoff 0.05; (c) The hidden states are estimated using our proposed Joint-HMRF
method with cutoff C = ®~1(1 — 0.05) in initialization.

Draft as of August 1, 2023 123



4.6. Appendices
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Figure 4.23: The weighted F1 for different hidden states estimation methods
across 10 experiment repetitions, where the node weights are proportional to
the node degrees. thred-Input0.01,thred-Input0.05,thred-Input0.1 represents
Thred Input with cutoff ®~1(1 — 0.01), ®~(1 — 0.05), @~ (1 — 0.1) respectively;
sep-HMRF0.01,sep-HMRFO.05,sep-HMRFO. 1 represents Separate HMRF with cutoff
0.01, 0.05, 0.1 respectively; joint-HMRFO.01,joint-HMRFO.05,joint-HMRFO.1 repre-
sents Joint HMRF with cutoff C = ®~1(1 —0.01), (1 — 0.05), ®~1(1 — 0.1) in the

initialization.
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4.6.3 Additional plots
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Figure 4.24: The summary of results using Pearson network. (a) the comparison of
found clusters with the WGCNA module as in Figure [4.17] (b) The proportion of active
and reactive genes in each cluster before and after network regularization; (c) The
clusters were visualized on the network, and a heatmap was generated to display the
proportions of active, reactive, and other genes within each cluster. (d) The GO and
SynGO results for the identified gene clusters are presented below. Active clusters are
highlighted with a hotpink frame, reactive clusters with a skyblue frame, and other
clusters with a yellow frame.
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Figure 4.25: The summary of results using EnPAC network. (a) the comparison of found
clusters with the WGCNA module as in Figure [4.17] (b) The proportion of active and
reactive genes in each cluster before and after network regularization; (c) The clusters
were visualized on the network, and a heatmap was generated to display the proportions
of active, reactive, and other genes within each cluster. (d) The GO and SynGO results
for the identified gene clusters are presented below. Active clusters are highlighted with
a hotpink frame, reactive clusters with a skyblue frame, and other clusters with a yellow
frame.
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Figure 4.26: The summary of results for networks that failed to give meaningful active
and reactive clusters. (a-c) are for GENIE3 networks; and (d-f) are for aLDG networks.
EPC even failed to give meaningful clusters, therefore we omit for analysis. (a)/(d) the
comparison of found clusters using GENIE3/aLDG networks with the WGCNA module
as in Figure[4.17] (b)/(f) The proportion of active and reactive genes in each cluster
from GENIE3/aLDG networks before and after network regularization; (c)/(e) The
clusters were visualized on the GENIE3/aLDG networks, and a heatmap was generated
to display the proportions of active, reactive, and other genes within each cluster.
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Five

Conclusions and Future work

This thesis focuses on the study of gene networks, which describe the collaborative
relationships among genes. It addresses several challenges in the field of statistical
gene network analysis, including benchmarking gene network estimation methods,
developing nonlinear gene network estimation techniques, and exploiting gene
networks to understand genes associated with Autism Spectrum Disorders (ASD).

In Chapter[2] the thesis introduces a benchmarking tool for evaluating imputation
methods on gene coexpression estimation. It presents a new simulation tool capable
of generating realistic data for homogeneous and heterogeneous cell groups, as well
as complex cell group relationships such as tree structures and cell trajectories. The
tool specifically incorporates gene coexpression patterns, allowing for the assessment
of the impact of gene expression denoising methods on downstream gene coexpression
estimation.

Chapter [3] addresses the limitations of existing gene coexpression estimation
methods in capturing nonlinear relationships. It proposes a novel dependence
measure, the averaged Local Density Gap (aLDG), which accumulates local depen-
dence and can detect non-linear, non-monotone, and non-global relationships. The
chapter establishes the consistency and robustness of the proposed measure and
demonstrates its superiority over a wide range of existing dependence measures.

In Chapter [4 the thesis explores the application of different types of gene
network concepts in identifying active genes associated with ASD. Particularly,
it introduces a novel gene group interaction measure to address challenges when
the true gene groups are unknown in nonlinear setups. By employing a unified
network-assisted modeling approach, the chapter identifies distinct “active” and
“reactive” gene communities associated with ASD, shedding light on the biological
mechanisms underlying the disorder.

Overall, the thesis contributes to the field of gene network analysis by developing
innovative methods, benchmarking tools, and applying gene networks to gain insights
into complex biological processes, such as gene coexpression and the etiology of
ASD.
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5.1 FUTURE DIRECTIONS

Higher level higher resolution cell heterogeneity characterization. In Chapter [3]
the thesis explores the concept of cell-specific gene co-expression and its potential
applications in single-cell data analysis. While the chapter focuses on aggregating
cell-specific gene co-expression to obtain a global gene co-expression measure,
there is an interesting direction to investigate the utility of cell-specific gene co-
expression without aggregation. In single-cell data analysis, the heterogeneity of
cells is commonly captured through marginal or first-moment information, such as
low-dimensional embeddings and clustering analysis. However, these approaches
often overlook the higher-order interactions among genes. For instance, if two cell
clusters differ only in their covariance structure (i.e., gene-by-gene interactions)
but not in their marginal distribution levels, existing clustering methods may fail
to differentiate these two clusters. To address this limitation, some researchers
Ghazanfar et al.| (2020); [Dai et al. (2019) have been advocating a higher-order and
higher-resolution analysis that focus on differentiating cells based on gene relational
information. By considering the interplay and relationships among genes within
individual cells, these methods can uncover novel cell heterogeneity that may not
be captured by traditional approaches.

Exploring the potential of cell-specific gene co-expression without aggregation
opens up new avenues for understanding cell heterogeneity and its underlying
molecular mechanisms. By directly leveraging the gene relational information
within cells, it may be possible to discover previously hidden subpopulations,
identify unique cell states, and gain insights into the regulatory dynamics of cellular
processes. This direction suggests a shift towards a more comprehensive analysis of
single-cell data, considering both the marginal distributions and the higher-order
gene-gene interactions. By integrating these aspects, researchers can potentially
uncover more nuanced and detailed information about cellular heterogeneity and
its functional implications.

In Chapter [A] we make several attempts in this direction: we generalize [Dal
et al| (2019)’s work, which we characterize as a non-linear data transformation, and
subsequently define a general class of data transformation that allows capturing
pairwise local distributional (PLoD) information. Initial results suggest that PLoD
allows novel characterization of cell heterogeneity from the gene-gene interaction
perspective, as well as localization of gene pairs whose relation drives the observed
cell heterogeneity.

First, in the second-order clustering problem, where clusters differ only in terms
of covariance, the PLoD transformation-induced clustering method achieves near-
optimal performance compared to other competitive methods that collapse in this
scenario. This demonstrates the effectiveness of PLoD in capturing the covariance
structure and enabling accurate clustering. Second, in a nontraditional signal-noise
mixture model where the signal is determined by variance rather than the mean,
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the PLoD transformation-induced feature selection method enables exact signal
recovery. This is in contrast to canonical methods like sparse PCA, which struggle
in such scenarios. These results highlight the potential of PLoD-induced methods
in capturing and extracting meaningful information from complex data settings.

However, when applied to real data, the PLoD-induced methods do not out-
perform existing methods. This suggests that the nontraditional problem settings
investigated here may not commonly emerge in real single-cell RNA-seq (scRNA-seq)
data. Nevertheless, this finding opens up interesting avenues for further exploration.
It raises the question of whether cell clusters in scRNA-seq data are determined
predominantly by marginal information alone or if gene-gene interactions also play
a prominent role.

Region-specifc partial gene network estimation. In the application described in
Chapter [4] we conducted the analysis using the whole-cortex gene network. However,
an interesting follow-up direction would be the analysis on a region-specific level.
Previous studies, such as Gandal et al.| (2022), have identified region-specific ASD
DE genes, with the smallest region, BA17, showing the highest number of DE
genes associated with ASD. However, these region-specific DE genes did not show
enrichment in known ASD genetic risk genes identified through methods like TADA.

To gain a better understanding of these region-specific ASD differentially ex-
pressed genes, the proposed analysis framework in the thesis can be extended to
incorporate a region-specific gene network. Constructing a region-specific Partial
Network Similarity (PNS) network is challenging due to the limited sample size
for each region. For instance, BA17 has only 28 samples from neurotypical brains,
making it difficult to estimate reliable networks for specific regions. Simulations
conducted in Chapter |B|reveal that with only 100 samples, a PNS network for 3000
genes can result in a high False Discovery Rate (FDR) of 50%. Therefore, a joint
analysis considering all the regions becomes necessary. Assuming that the region-
specific networks share a substantial proportion of edges while the region-specific
edges are sparse, modeling and estimating them jointly can leverage the shared
information and improve the accuracy of the analysis.

In Chapter [B] we delves further into this direction and proposes two methods
for joint estimation. While these methods perform better than estimating each
region separately, they still exhibit a relatively high FDR. The thesis also explores
procedures for network estimation with FDR control, such as the high-dimensional
graphical knockoff filter proposed in recent studies (Li and Maathuis, [2021; Zhou
et al.| 2022)). However, the performance improvement is limited as the FDR control
results are guaranteed under strict conditions that may not hold in practical scenarios.
Therefore, additional efforts are needed to achieve accurate region-specific PNS
network estimation given the extremely small sample size.

One potential approach to address this challenge is to switch to a marginal
gene network, such as Pearson correlation, which requires fewer samples to obtain a
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reliable estimation. By adapting the methodology and considering marginal gene
networks instead of PNS, it may be possible to overcome the limitations posed by
the small sample size and improve the accuracy of the region-specific analysis.

5.2 NEXT FRONTERIORS

Over the past two decades, significant progress has been made in characterizing gene
expression data, both in terms of marginal analysis and relational analysis. Marginal
analysis techniques, such as low-dimensional embedding, differential expression, and
cell clustering, have been widely used to understand gene expression patterns at the
individual gene and cell levels. On the other hand, relational analysis approaches,
such as gene regulatory and co-expression networks, have provided insights into the
interactions /relationships between genes.

However, there has been relatively less effort in integrating these two aspects
together. Researchers have recognized the power of gene relational information
when it comes to analyzing gene expression data in a marginal context. For example,
in genome-wide association studies (GWAS), linkage disequilibrium (LD) among
SNPs in a gene have been leveraged to correct for dependencies among tests in the
analysis |Yurko et al.| (2021). In differential expression analysis, gene covariance
information has been utilized for improved sample selection |Lin et al.| (2021]). In
the integration of multi-omics data, gene regulatory networks have been employed
to align information from different omics modalities |Cao and Gao (2022)).

This thesis highlights three key scientific questions that merit further exploration.
Firstly, it is crucial to investigate what types of gene relational information are
most useful in different application scenarios. Understanding the specific types of
gene interactions and relationships that are relevant to various analytical tasks can
guide the development of appropriate methodologies and approaches.

Secondly, there is a need to explore how to effectively incorporate gene relational
information into the existing analysis pipeline. Developing methodologies that can
seamlessly integrate relational information with marginal analysis techniques will
enable a more comprehensive understanding of gene expression patterns and their
biological significance.

Lastly, the possibility of jointly learning both marginal and relational informa-
tion should be examined. Existing approaches routinely learn marginal structure
(cell structure) first and then learn relational structure (gene relationship). By
simultaneously modeling and estimating the marginal characteristics of gene expres-
sion data along with their relational aspects, it may be possible to uncover novel
insights and improve the overall analysis outcomes.

While this thesis represents a small step towards addressing these questions,
further research is required to fully answer them and advance the integration of
marginal and relational analysis in the field of gene expression data analysis. Except
for considering the traditional statistical approaches, modern machine learning,
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and even deep learning approaches should be given more attention. Those modern
techniques have shown amazing performances among many scientific domains or
real-world applications (Zhan et al.,[2021], 2022} 2022; Ma et al.| [2020; |Chen and|
. Particularly, the graph neural network has made surprising progress in
relational data modeling (Dong et al. 2021} |Chen et al., 2022; Duan et al. [2022;
Dong et al., 2023); the higher-order modeling idea has shown effectiveness in the
mechanical system science as well (Wu and Dul, 2020; Wu et al |2021; [Wu and Du,

2020).
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A

PLoD: pairwise local distributional
information

A.1 INTRODUCTION

Chapter [3| depicts the relationship between two random variables with one single
metric. However, there is often more structure in how two random variables are
associated. For example, it is common among finance analysts and econometricians
that the dependency between financial objects becomes stronger as the market
goes down and approaches one when the market crashes. In genetics, people [Wang
et al.| (2021Db)); Ghazanfar et al.| (2020) found that gene coexpression changes with
cell development: some genes tend to be actively co-expressed with each other in
the cell developmental phase while being independent when the cells hit puberty.
Characterization of a sort of local dependence becomes more essential than a single
scalar dependence measure.

A.2 RELATED WORK

A.2.1 Local dependence quantifier

The curve of correlation. |Bjerve and Doksum) (1993), |Doksum et al.| (1994) and
Blyth| (1994ayb) introduce and discuss a “correlation curve", which is defined as how
the amount of variance explained by a regression curve. Suppose random variables

X and Y have joint density function f(z,y), then the correlation curve c(x) is

defined as
oadp(x)?

2
c“(z) == )
o2du(@)? + o2(z)
where p(z) := E[Y | X = 2] and o?(z) := Var[Y | X =], and 02 = Var[X].
However, this definition is really a regression concept rather than association
concept as it does not treat X and Y on an equal footing.

Local linear dependence. To address the asymmetric issue of correlation curve,
(Bairamov et al., 2003)) describe a symmetrized variant whose expected value is
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approximately equal to the Pearson correlation coefficient. Specifically, let X and
Y be random variables with marginal distribution functions and densities Fx, fx
and Fy, fy, respectively, then the local linear dependency function is defined as

o g) e X (XY =y))(Y “Er]X=a})}
T VEIX —EXY = ) VE(Y - E(YIX = y})3)

With simple algebra, the local linear dependency function can be rewritten as

(A1)

_ p+re(y)ry(z)
la.y) = It/ ry(@)? (A.2)

where p is the Pearson correlation coefficient, and r,(y) and

L
L
(@) = -~ (B{X} ~ E{XIY = y}),

ry(2) (E{X} —E{X|Y = y})

and é (E{Y} — E{Y'|X = z}) respectively, which can be seen as the normalized
residuals.

Local Gaussian dependence. |Tjgstheim and Hufthammer| (2013) proposed to depict
local dependence by fitting a series of bivariate Gaussian locally. Specifically, for a
general bivariate density f for the variables (X1, X3), locally in a neighbourhood
of each position & = (x1,23), they fit a bivariate Gaussian density No(te, Xa),
where pg := (p1(x), po(x)) is the local mean vector and Xy := (o;(x)) is the local
covarance matrix. Then the local correlation measure is defined as

012(m)

Ull(ib)0'22<a§) )

plx) =

Local dependence function. The notion of cross-product ratio for discrete two-way
contingency table is extended to the case of continuous bivariate densities, which
results in the “local dependence function” (Holland and Wang, [1987) that measures
the margin-free dependence between bivariate random variables:

__Olog f(x,y) 1 of(z,y) of (x,y) Of(z,y)
v(z,y) = 20y _f2(x,y)( T - o )

f(z,y)

Bjerve and Doksum| (1993) provides a different derivation of this definition from a
weighted Pearson correlation, stating that using a special product kernel weighting
mechanism, the weighted Pearson correlation around (z,y) approximates y(z,y) as
the kernel bandwidth goes to zero.
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Properties of v(x,y) include: 1) it is a strong measure of dependence; 2) it
is invariant to monotone marginal tranbformation 3) for a bivariate normal, it is
constant everywhere and takes the value ; p2 where p is the Pearson correlation
coefficient, and later |Jones| (1998]) identified a family of distributions satisfying the
property of constant local dependence, a family he called the exponential family of
the conditional distribution.

The local contingency table test. Given n bivariate samples (z1,y1), ..., (Tn,Yn),
denote

fxy(z,y) = fx () fy(y) Tz, y) = Fxy (@) — Fx(@)fy(y)

T(z,y) == =~ =
Ix (@) fy(y) Ix (@) fy(y)

k")

where f XY, [x, fy are some density estimator for fxy, fx, fy. And for simplicity

Ys
we write T := T'(x;,y;). Then the empirical aLDG can be written as

— 1 & ~
DG, =-S5 "1 {T, > t} . A.
aLDG; = — 2 > (A.3)
If using boxcar kernel density estimator with bandwidth h, and set t = %\}ga),

then it is easy to derive that,
LT, >t} = 0a(50),

which is the a level Pearson’s chi square test for 2 x 2 contingency tables defined
by partitioning the sample space based on whether = € [z; — h,z; + h], and
y € lyi —hyi + A

Remark 3. Note that the local dependence function in (Holland and Wang, [1987) is
derived from the odds ratio of local contingency table tests. Specifically, at position
(x,y), consider the m x m contingency tables defined by slicing the sample space to
m x m rectangulars with sides dzx, dy, such that [z, z + dz], and [y,y + dy] is one
cell among this large contingency table. Then as dx,dy — 0, the odds ratio for cell
[z,x 4+ dz| X [y,y + dy| and [z + dx,z + 2dz] X [y + dy, y + 2dy]

x,y)dzdy f(x + dx,y + dy)dzdy

f(
A4
ey f(z,y + dy)dady f(z + dz, y)dzdy (A-4)
_ S y)f(@+de,y + dy) (A5)
[zt dayy) fa,y + dy) ‘
when dx, dy — 0, the limitation
. logr(z,y) Olog f(x,y)
! = = A
dx—)(l)glly—m dxdy D0y y(z,y), (A.6)
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which is just the local dependence function. In conclusion, our aLDG induced
local statistics T'(x,y) can be thought as a variant of the local dependence function
v(x,y): both are based on a 2-way local contingency table test, but the former is
using Pearson Chi-square statistics for 2 x 2 table, and the latter is using odds ratio
statistics for m x m table.

A.2.2 Synthetic example

In the following, we investigate the behaviors of above mentioned local dependence
quantifier using synthetic examples. Specifically, we color each sample point based
on the value of the local dependence quantifier at its position. Particularly we
compare our local contingency table test statistics T'(z,y) with several others: the
local linear dependence [(z,y), the local Gaussian correlation p(zx,y), the local
dependence function «(z,y), and the local density ratio test statistics r(x,y). In
Figure we plot the landscape of different local dependence quantifiers for
different bivariate distributions, and we spot that T'(z,y) tends to highlight the
part that contributes the most to the global dependence such as the boundaries
and shapes. In Figure [A72] we plot similar metrics for three-component Gaussian
mixture. We spot that only v(z,y) can give a sensible measure of dependence in
restricted regions.
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Scatter plot T(x,y) I(x,y) p(x,y) y(x,y) r(x,y)
value value value value " value
03 - 3 5 ™ 4 . : 0.12
N I 02 o L | [ ? 05 | 2 5 0.09
4 01 0, A 00 Z o 0.06
5 0.0 z -0.5 0.03
-0.1 [ [ ] - -2
X X X X X
value : value : value value ] value
04 L P N | ST N
> | 03 > i 1= R & 05 - ;i 1> 0.10
e?’ 8 & 0 00 - 0 0.05
3 -0.1 48 = -2 s L)
X X X X X
value # value i value o value . value
04 P # i W - 3 f 0.15
N 03 b T i 05 o 2 ! 010
I 82 i@ 0 e 00 - 1
i 00 il -1 o - 0 005
# 00, E [ i W os ] °
X X X X X X

Figure A.2: Pattern given by different local dependence quantifier under Gaussian
mixture.

A.3 APPLICATION OF PLoD

As we discussed in Section [A.2.1] for n bivariate samples D := {(z1,41),- -, (Tn,yn)},
and fX Y, fX, fy are some densrcy estimator for fxy, fx, fy based on data D, and
the aLDG induced local statistics

Fxy(@y) — fx(@)fy(y

Tp(z,y) = (:y) - A( 2idt ), (A7)
Fx(@)fy (y)

can highlight subtle local dependence pattern. In multivariate case, where we

observe data D = {z1,...,2,} with z; = (2},...,2}) € RP iid drawn from a

p-dimensional distribution, we define the following data transformation motivated
by the alLDG induced local statistics:

W RPXT — RPXPX Doy T (A.8)

where 7T is a 3-way tensor with entry

~

Tigk = T e o)zt o ),

for i,j € [p], k € [n]. In words, we convert each p-dimensional observation vector to
a p X p matrix that measures a local dependence level around this specific observation
for each pair of features.

Transformation ¢ can be defined more generally, with a different type of pairwise
local measure T;; being plugged in, and the measure need not be about dependence:
it can be any type of distributional information, i.e. the local measures mentioned
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in Section can now being plugged in. We call this class of data transformation
as Pairwise Local Distributional (PLoD) transformation, which is formally defined
as the following:

Definition A.1. (PLoD transformation) Consider a bivariate local measure [, such
that [(D; k) depicts some local distributional information at the k-th observation
among all observations D. For n observations of p-dimensional random vectors M,
we call the transformation

W RPX™ — RPXPXT . M T = {ﬂjk}il;je[[p]p Tijr = l(M{m}; k) (A.9)
€ln

as PLoD (Pairwise Local Distributional) transformation, where My; ;3 stands for
the subset of data that contains observations only for the 7, j-th dimension of the
random vector.

In the following, we investigate the application of this data transformation in
various data tasks that admit a pattern of sparse mixed signals among enormous
background noise. We show that, for this type of data, PLoD transformation
captures subtle signals as it highlights local distributional information. In contrast,
canonical global summary statistics cannot as the subtle signals are often averaged
out with the enormous background noise.

A.3.1 A general model set-up

First we describe a general non-parametric mixture model, of which most of our theo-
retical analysis is a special case. Consider a random vector Y = (Y1,Y5,...,Y,) € RP
with mixture density

M
9=00®jep ho+ Y amf™ Qjgs,, ho, (A.10)

m=1

where the first component is a p-dimensional density representing the pure back-
ground noise and the second component is a M-mixture density, with .S, C [p], and
fm as |Sp|-dim density representing the low-dim signals for each mixture component.
The proportion of group m is represented by «,, € [0, 1], with Z%:o am = 1.

We call Sy, as the signal dimensions for the m-th mixture, and denote G; as the
group indexes that contains ¢ as signals. We denote S = U,,,¢(p1)Sm as the set of all
signals, and A;; := ZmeGmGj ., as the total group proportion where dimensions
i and j are both signals, and correspondingly A; ; = Zmeci\Gj Qm, Aj\; ==
EmEGj\Gi Qpp, AijC = ZmE(Giqu)c ;. Note that Aij + Az\] + A]\z + Aijc =1.

A.3.2 Second-order population detection

In this section, we consider the task of clustering. The distributional differences
in each cluster lie in the second-order information, e.g., covariance, rather than

Draft as of August 1, 2023 152



A.3. Application of PLoD

the first-order information, e.g., mean. To give an example of such data structure,
we first describe a data generation model in the following. We empirically show
that canonical clustering methods like kMeans, Louvain, hierarchical clustering
fail when directly applied to this kind of data, while they succeed after the PLoD
transformation.

Problem description. We consider a special case of the general model in Sec-
tion [A-31] to make the dependence on covariance more clear. Specifically, we
generate data for one cluster via the following Gaussian copula model:

Yie = Qi (q)_l(sz)) fori=1,2,...,p, (All)
where (X1, Xog, ..., Xpr) ~ N(0,%); fork=1,2,...,n,

where @; is the quantile function of a complex distribution with parameters indexed
by feature 7, and X is a correlation matrix to impose dependency among features.
We consider the clustering problem when two clusters are different only in 3.

Given such data matrix Y := {Yi}ic[p| keln], applying PLoD transformation
gives the three-way tensor T := {Tiji}; jelp| ke[n), and now the clustering task
becomes inferring the group index for each sample using a p X p symmetric matrix.
We call this symmetric matrix as sample specific matriz to set apart from original
data matrix.

Tentative methods. Dai et al. (2019) propose to directly aggregate the sample
specific matrix column wise, which results in a p x n dimensional matrix again. They
call this matrix network degree matriz (NDM), for which they demonstrate better
clustering results on various real data set. In the following simulation study, however,
we show that this naive aggregation is not sufficient: it breaks down whenever the
signal is sparse or overlapping. As for a concrete example of its weakness, note
that, changes in any sub-modules in sample specific matrix of equal-sized 2-block
structure [31 13] with A = AT to [13 Sl] in a symmetric matrix does not change

its NDM.

Therefore we seek methods that preserve more information of the sample-specific
matrix. We currently have explored the following three directions: (1) One simple
but effective approach is vectorization: i.e. flatten the sample-specific matrix to one
long vector of length p(p—1). (2) One natural but more complex way is treating the
sample-specific matrix as a weighted graph and utilizing graph clustering algorithms
(e.g. Kriege et al.| (2020))). (3) Moreover, when the signal is low-rank, methods
based on tensor SVD may be more appropriate. Tensor SVD (e.g. (Chen et al.
(2019)) decomposes the noisy 7 to low-dimensional feature and sample loadings,
and then matrix clustering algorithms can be applied on the sample loadings.
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Synthetic experiments. With the motivation of application in single cell RNA-seq
data, we simulate the data using a marginal distribution based on Negative Binomial,
following the general modeling of single cell RNA-seq data in the literature (e.g.
Tian et al.|(2021)). And we simulate the correlation matrix ¥ € RP*P to follow the
following block structure: given a set S C [p],

Y =%u=p>0, if{i,j} CS; Yij =%;i =0 otherwise, (A.12)

as it is often the case with gene interaction. We set p = 0.99 throughout the
following experiments.lﬂ We simulate two cluster, each has n = 200, p = 100.
We denote signal feature set for cluster 1 as Si, and Sy for cluster 2. We use
the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) score to evaluate the
performance of clusteringﬂ In Figure we plot the boxplot of ARI from 20
runs using different methods under different setting of S; and Ss. We can see that
clustering directly on data fails (Data), as well as the previous attempts (Dai et al.,
2019) that aggregates the sample-specific matrix (Avg.Tensor), while our newly
proposed ones do not. Particularly, the flattened tensor (Flatten.Tensor) and
tensor SVD (SVD.Tensor) achieve near oracle performance, while the one based
on graph clustering (Graph.Tensor) needs further adjustment. More supporting
results are shown in Appendix [A.4]

Uz
7(2)
U e RSz e gixn 72 ¢ Re=1SDxn Both Z(M) and Z?® have independent rows.
2The ARI score lies in [0,1] where O corresponds to random assignment, and 1 corresponds to
perfect assignment. A higher score implies better alignment of the estimated group labels to the
true group labels.

With this strong correlation (p = 0.99), the model can also be seen as Y = { ], where
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Figure A.3: The clustering performance over the 20 independent trials. The left plot
shows results for non-overlapping communities: S; = {1,...,10}; Sy = {11,...,20};
the right plot shows results for overlapping communities: S; = {1,...,30}; S5, =
{11,...,40}. Specifically, Data indicates clustering on original data matrix; and
Avg.Tensor indicates clustering on the NDM of the tensor from the PLoD transfor-
mation; Flatten.Tensor indicates clustering on the vectorized tensor; Graph.Tensor
indicates clustering using the graph view of sample specific matrix; SVD.Tensor indicates
clustering on the sample loadings from tensor SVD.

Future work.

e We observe that (see Appendix [A.4]), when the covariance is weak, even PLoD
induced methods failed. So one interesting direction is to find out when it
fails, and whether we could circumvent it.

e We aim to find published data with signals that we can discover with our
proposed techniques. To promote progress we need to scale the computations
to handle realistic large scale data. We also wish to validate our findings, but
this is difficult because at this time there are few, if any, gold standards in
real data.

A.3.3 Feature selection

As pointed out by Kim et al.| (2021) and many others, in single-cell RNA-seq data,
stable gene expression is a key indicator of cell identity: genes marking a cell type
should be (1) expressed and (2) stable in its expression level within this cell type,
relative to other cell types. Regarding genes as features, cells as samples, the
detection of such gene markers can be formulated as a special feature selection
problem in a mixture model. Specifically, important features emerge only in subsets
of samples, and the difference between important and unimportant features lies in
the variance but not necessarily the mean. In other words, the shape of the data
distribution matters and the more centered features are rendered more important.

Problem description. To make the problem statement more concrete, we consider
the following data generative model, which is a specification of the general mixture
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model described in Section Specifically, we consider a simple setting of only
one signal group and independent features, that is

y=(1-0z + bz c R?, (A.13)
where the random variables

b ~ Bernoulli(ar), x(®) ~ ®pko,1, z® ~ Rieskur Qigs ko1,

with &, »(2) := %k (‘T;“), and k is a kernel smoothing function supported on [—1, 1],

and S is the set of dimensions that we deem as a signal.

Remark 4. Note that under this model, the entries of (9 i.i.d follow ko1, and the
first d entries of () i.i.d. follow kur, and the rest p — d entries i.i.d. follow ko .
Also note that, for random variable € ~ kg1, and x ~ k,;, we have € and x are
respectively o2-sub-Gaussian and o2-sub-Gaussian random variables where,

El =0, o2:=E [62] :/ quoﬁl(u)du; (A.14)
[7171}
E[z] = u, ag =E [wQ] = / (ru+ M)Qkovl(u)du = r2062 + 12 (A.15)
[7171]

We are interested in the exact recovery of S in the high-dimensional setting,
specifically when given only n < p observations. For cleaner theoretical analysis,
we analyze the ad-hoc version of all methods considered, that is, all the cutoffs (if
there are any) are chosen as if the true size of S is known.

Tentative methods. Canonical methods to deal with signal recovery in this sparse,
high dimensional setting are often based on global summary statistics, like the first-
moment method based on empirical mean over all the samples or the second-moment
method based on the empirical covariance matrix. We consider the following two
methods to represent the global first moment and second-moment methods.

(1) First moment method: sparse Mean (sMean)
Consider using the empirical mean of all the features, and select feature
dimensions with the top d empirical means as signals.

(2) Second moment method: sparse PCA (sPCA)

Consider using the leading eigenvector 41 of the empirical covariance matrix
of all the features, and select feature dimensions with the top d absolute values
as signals.

As opposed to those global type of methods, we propose the following local type of
method based on our PLoD transformation: We select the feature dimensions with
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the top d PLoD scores as the signals, where the PLoD scores for each dimension

are defined as
P n

Z; = Z 1Aijk>t’ foralli=1,...,p, (A.16)
j=1 k=1

where t is some pre-specified threshold and ﬁjk is the (1,7, k)-th entry of the
tensor from PLoD transformtion of the data. In this section we take ﬁ-jk to be
the estimated gap between the joint and marginal product density of the ¢th and
jth feature at the k-th sample, which works well for this task. Hence we call the
resulted feature selection method as Local Density Gap (LDG) method.

Theoretical results. We identified sufficient conditions for sMean, sPCA, LDG to
have exact recovery of S concerning the simple non-parametric model , under
the mild assumption that the underlying marginal kernel density %k is in Holder
class H(B, L) on R. We found that, for global type of methods, sparse mean and
sparse PCA, the sufficient condition requires the signal-to-noise ratio:

1 /1
SNR:= £ > = /228P
oe ~ « n

for exact recovery of S. The detailed theorems are in Appendix

These results reveal the following scenario where sparse mean and sparse PCA
fail to have exact recovery, but LDG still can: consider 8 = 1, the sufficient
conditions for LDG to recover signals exactly become

3
a < n 2

1 — ~ .

< <10gp>

x
Note that, for o = (%) with z > %, it is impossible for sparse PCA to recover

signals (if taken SNR as fixed); however, LDG can still recover signals perfectly

2x+3

when <1ng> Y irx (%)5.

n

Synthetic experiments. We conducted the following simulations to verify the
theoretical findings. We consider generating data following model , with
n = 100,p = 200,d = 20, « = 0.1, and study the influence of r, 1 on the performance.
In order to gain more consistent results for different density, we replace u with
SNR := 4. We demonstrate results in Figure for one simple case of marginal

UE
density, specifically, the compact non-smooth density, Boxcar: k = %I{\m] <1}. We
can see that LDG has the highest power in most cases, regardless of SNR level. We
observe similar success for other densities like Epanechnikov, Gaussian, Negative
Binomial: we refer readers to Appendix for details.
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Figure A.4: The empirical power for recovering signal dimensions using simulated boxcar
kernel densities in model (A.13]) with n = 100, p = 200,d = 20, = 0.1, © = SNRo..
The power is estimated via averaging over 10 trials.

Future work.

e We wish to improve performance of feature selection when the signal lies on a
low-dimensional manifold (e.g. important features form complex dependence
relationship).

e We wish to find real data application of this particular type of feature definition:
that is the shape define the signal but not the location.
A.4 MORE SYNTHETIC EXPERIMENTS FOR SUBPOPULATION DETECTION

We simulate the correlation matrix ¥ € R?*? for the signal components to follow
the following block structure, as it is always the case with gene interaction: given
sets S1,52,...,8% C[d], and i # 7,

Eij = E]’i =p>0, if {Z,j} C S™; for each m € [b],
Yij =25 =0 otherwise. (A.17)

Still we simulate two cluster, and denote the corresponding signal sets as Sll, e Sfl
1 b
and S5, ...55°.
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Clustering performance Clustering performance (¢ = 0)
2 1.00- 1.00-

ARI

-

% z .
20 20 -~
0.75- 0.75-
0.50- Z 0s0- -
0.25- 0.25-
| B
=05 » 0.00-

=05

method
T 050~
=« E data_mrSeurat
21 data_kmeans
0,00~ = A —am EI . E ndm_mrSeurat

ndm_kmeans

Clustering performance E graph.graphkernel
] E tflat_kmeans

20 20 ] a
075~ E tflat_skmeans
tensor_kmeans
.. 0.50-
0.25-
1 m |

e S
=099 p =099 oo e

ARI

-

Figure A.5: The clustering performance over the 10 independent trials. For different row,
the set up for the correlation matrix is different. Specifically, data_ indicates clustering
on original data matrix; and ndm_ indicates clustering on the NDM of the tensor from
the PLoD transformation; tflat_ indicates clustering on the vectorized tensor; graph_
indicates clustering using the graph view of sample specific matrix; tensor_ indicates
clustering on the sample loadings from tensor SVD.

A.5 THEORETICAL RESULTS ON FEATURE SELECTION

For succinct, we only present technical results but omit the technical proofs.

Global type of methods.

Proposition 3. Consider n i.i.d observations Y7, ...,Y, sampled from model (A.13]).
We have

(a) if d,p,n > 1, then sMean gives us

/logd
min i; — maxu; > O — 70\ ——— — O
icS Hi jES Hi = a vV oan ¢

where 7i; is the i-th entry of i := 1 "7 | V.
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(b) if a eigen-gap condition is satisfied, i.e. u? > %U?, then sPCA gives us

— R < N S L
v —wll2 SO | —a——m |
a(ty — d )
where w1 and 47 is the leading eigenvector of the true and empirical covariance
matrix over all the features respectively.

Proposition [3] indicates that the case is hard for sparse PCA, if signal-to-noise
ratio u/oe is low; signal proportion « is low; signal radius r is small; and signal
dimensions d is small. What is worth noting is that, the influence of r can be
ignored, as long as the signal to noise ratio is bigger than one. However, if the
signal to noise ratio is very small, then bigger r gonna makes things easier.

Our method. In the following we analysis the application of LDG statistics on
signal recovery. We consider the following statistics based on bivariate density:

Definition A.2. For two random variables Y;, Y in R, we call the gap between their
joint density and marginal density product as local density gap (LDG), that is

AFP = gij — gi9 (A.20)
where g;;, g;, gj are the joint and marginal density of Y;, Y; respectively.

It is well known that Y; and Y; are independent, iff Afjap = 0; however such
argument does not hold true if Y; and Y; are only independent within each mixture
component. In fact, Lemma [A-3] states the relationship between LDG statistics
with and without within-group independence, under general finite mixture bivariate
model.

Lemma A.3. For any bi-variate mixture model of Y;, Y; with finite mixtures, we
have

y’uyj Zam Cij yuy]) m)gzm(yi)gjm(yj)

— > g ()] (1)), (A.21)
mi7#msa

975 (i:y;5)
9i(yi)g; (y;)

We consider quantifying the conditions that leads to well separation of the above
statistics in the following cases. Without loss of generality, we consider ¢ < j.

Denote D" = {y : [y—p*| <r}foralli e Sand m € G;, and D = {y : |y| < t}.
Particularly, denote D0 D \ Upeg, D", which is the region of pure noise for
dimension 7. We would like to find appropriate conditions on au,,,t, i by such
that the above statistics can highlight region D;" for i € Sy, inside truncated feasible
region D.

where cf%(yi, yj) =
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Condition 1. For the above kernel mixture model formulation, we call it has strong
separability if

(a) t > maxjesmea, [pi"] + 2r,

(b) r < 1;

(c) ¢} €1C,C1, for all i, j and m € G; N G;, where constants

2/c? y <1<C. .
CO/C1 maxAj < C<1<C (A.22)

Lemma A.4. Denote Cy = K(0),Cy = K(1). Considering the kernel mixture model
with strong separability defined in Condition [, we have that, for any ¢ € S, and

m#m' € Gj, forally € D, fi"(y) € 0, 5], ho(y) € [F, ], and

(A.23)

fMy) €[4, 2], ifye DM
fy) =0, if y ¢ DI

Lemma [A74] is easy to verify from the properties of K. From Cy > C; > 0;
Lemma describes a nice separation among marginal signal density and noise.
In the following, we use Lemma [A4] constantly to obtain additional separation
conditions.

Theorem A.5. Considering a kernel mixture model with strong separability. If

minn;# > 1, and % < 00, then the following arguments holds true:

(a) if {i,j} C S, y; ¢ DY and y; ¢ D?, then we have

Cc2 C?
AEP (i, y) 2 ome (C — By )
if Im* € GiNGy st (yi,y;) € D @ D™
(A.24)

2
gap c
AG (YY) S —myoms 3,

otherwise, implies Im} # mj3 s.t. (yi,y;) € D;n{ & D;.ng.

\

(b) if {i,j} € S, and (yi,y;) € D" @ DY, withm € G, <or (vi,yj) € DY@ D,
with m € G; >, then

1 i
b Wi yi) S Ang(1— Apg)—

0. (A.25)

a) C2
(01“ AP (i y) S Ape(1 — Apa) 78 )
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(c) if {i,j} C S, and (y;,y;) € DY ®D§.]7 then

a 02
AP (Ysr ) < Agje(1 = Aje) 5 (A.26)
(d) if {z,4} € S, then for all (y;,y;),
AEP (i, ;) = 0. (A.27)

Theorem guarantees the nice property of LDG statistics: for T = %,
Afjpym >T whp<=1i,j€ S,

In the following we consider the one-dimensional kernel density k belongs to the
Holder class H(f3,L) on R, that is its S-th derivative is bounded by L. And we
consider a kernel estimator of k& with bandwidth h on R and R?, that is

n

> 1 1 Y;i —Yi
Kh;i(yi) = nZhK< ! h > )

t=1
o N R Yij —yj
Kh;ij(yiayj):—nZth< N >K< Jh J>7 (A.28)
t=1

where the kernel estimator function K belongs to the class G(8) on R, that is K
has support on [-1,1], and [ K =1, [ |K[P < oo for any p > 1, [ [t|°K (t)dt < oo
and [¢t5K(t)dt =0 for s < 3.

Then the corresponding ad-hoc version of LDG method for signal recovery is
the following.

Definition A.6. (LDG signal recovery) We select the feature dimensions with the
top d LDG scores as the signals, where the LDG scores for each dimension is

n

VARES ; ; 13§;§'>T’ foralli=1,...,p; (A.29)

in which the LDG statistics is estimated as
Aij;l = I?h;i(yl;i) - I?h;z'j (Yi, Yi5), (A.30)

and T is some pre-specified threshold.

One key step to quantify the accurateness boils down to control the estimation
error in the kernel density estimation. Therefore we first present the following
results with regard general kernel density estimation error under model (A.13]).
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Proposition 4. Consider 1-dimensional kernel smoothing function K € G(3), and
1-dimensional kernel density k € H(j3,L). Denote Kj(-) = %K(E)v K; = @K},

Kn() = 3500 Kn(Xi = )3 kapr(:) = (1= @)k () + atk (54), and ko, =
@%%kq e (+). Then for any § > 0, we have

—~ Clog(1/0)(1 — a4 2)d a \d
Pr{ sup |Kr(x) — ka,pu,r(x)| > \/ o +c(1—o¢+rﬁ+1) L <6,

zERI

(A.31)

where C' and c¢ are positive constants which do not depend on h, v, u, r. Particularly,
choosing adaptively

: (A.32)

n(l —a+ Tﬁ()frl )2d

1
(Clogé(l —a+ i‘)d) (26+1)d

we have

_B
- C1 1\ 28+1 B+1 4
Prq sup [Kp(z) — kyp(x)] > 2¢ ( o8 5) (1 —a+ %) R <6

2
zcR4 c'n

(A.33)

Now we are ready to introduce the results about using LDG method for signal
recovery.

Theorem A.7. Consider the simple mixture model (A.13) with the underlying
marginal kernel density k € H (3, L). If we use the 1-dimensional kernel smoothing
function K € G(f) in density estimation, and assume

1 (2§+&)5
2., 1,P . o < (_"n o .
reV d(n V)i <a<kl; P EF Y25+ <logp ;0 T'x 2
(A.34)
Then for any § > 0, with probability at least 1 — 9, we have
P n P n
. > )
DD Agmrag |i€5 2 DD Agm g |i €S, (A.35)
j=11=1 j=11=1

The high level sketch of the proof follow the following four steps:

Step 1. Use Theorem [A5] to obtain asymptotic bounds on population level
statistics Alg; P

Step 2. Use Proposition [4] to obtain high probability bound on empirical level
statistics A"
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Step 3. Use a graph dependency based variant of Bernstein inequality (Theo-
rem 2.4. \Janson| (2004)) to obtain high probability bound on ;" ; 1zgap.
15l

Step 4. Use a simple union bound over all feature dimensions to obtain
high probability bound on the final accumulated degrees for each dimension

p
j=1 i 135’;5"
A.5.1 More synthetic experiments for feature selection

We consider another three marginal densities as follows:

(i) Compact smooth density, Epanechnikov : k= 3(1 — 2?)I{|z| < 1};

N

.. . . . 1
(ii) Non-compact smooth density, Gaussian : &k = Jom XD (-%)
(iii) Non-compact non-smooth density , single cell gene expression (Tian et al.| (2021)) ]}

Yi; ~ Poisson(\;;); (A.36)
2
1 1

JX,) G
)\/

)\;j = Ljii A; ~ Gamma(w, 8); Lj ~ logNorm(pr,0p,)

2N

Nij = Gamma(l/@j,)\;jﬁbij% Gij~ | o+

In order to gain more consistent results for different density, we replace p with
snr := L3 for case (i-ii). For case (iii), as the data distribution is much more
Complex,ehence the signal-to-noise ratio and signal radius is hard to quantitatively
defined. Particularly we vary the mean parameter py, of library size L; to control
the overall mean and difference between the mean of noise group and cell group,
and we vary the shape « (and rate 3, under constrains a = 8 such that the mean
is not influenced) parameters in the distribution of gene means )\fq to control the
difference between the variance of noise group and cell group. In fact we set and
pr, =4 and o = 8 = 0.1 for noise group; pur =4+ p with p > 0, anda:ﬂ:ﬁ
for the signal group, such that the ratio between signal variance and noise ratio is r.
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Figure A.6: The empirical power for recovering signal dimensions using simulated
Epanechnikov densities with n = 100,p = 200,d = 20, = 0.1, # = SNRo.. The
power is estimated via averaging over 10 trials.
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Figure A.7: The empirical power for recovering signal dimensions using simulated
Gaussian densities with n = 100, p = 200,d = 20, « = 0.1, ;x = SNRo.. The power is
estimated via averaging over 10 trials.
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Sparse Mean Sparse PCA LDG
1 1 1
0.5 05 0.5
0.2 0.2 0.2
0.1 0.1 0.1
0.02 " 0.02 g 002
0.01 0.01 0.01
0.002 0.002 0.002
0.001 0.001 0.001
005 115 2 25 3 35 0 051 15 2 25 3 35 005 115 2 25 3 35
SNR SNR SNR

Figure A.8: The empirical power for recovering signal dimensions using simulated single
cell gene expression densities in model ((A.13) with n = 500, p = 1000, d = 100, « = 0.1.
The power is estimated via averaging over 10 trials.
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Regional partial gene network estimation

Recall that in PNS, for gene 4, we estimate its edges with other genes via running
lasso regression. For simplicity of demonstration, let’s drop the penalization for
now, and just consider the following linear model. Previously we estimate the gene
network for the whole cortex using the following model:

(whole cortex model) z; = m)\—/(i),@, B € RP*! (B.1)

Now take the regional differences into consideration, we will instead assume
(regional model) z; = :I:X/—(i)ﬁ(r), B e RP*!| for region r (B.2)
where N (i) is the selected partial neighbourhood for gene i, and p is the size of

N(i).

Key assumption. Assuming that neighbour gene j has Bj(.r) = [3; for the most of the
genes N (7). That is, the regional effect is sparse. Under our assumption, it makes
sense to bring together samples from different regions to estimate the network, such
that they can borrow strength from each other when estimating parameters for the
majority common part. However, simply stacking every sample together will likely
bury the sparse regional effect.

Baseline: separate PNS. If we have enough samples, the best way to estimate the
regional network is to run PNS within each region separately. We call this method
as the baseline.

B.1 THE NECESSITY OF JOINT ESTIMATION

Network estimation is unstable given small sample size.. We first using simulation
to show how unstable the network estimation can be if the sample size is too small.
We consider the similar simulaiton steps in the literature:

e Generate a random graph G € RP*P as the initialization.
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e Get the “upper triangular" adjacency matrix of this graph and replace any non
null coefficient by a random realization of a uniform variable (e.g. U(0.8,1),
but any interval is possible), which then allows to define an upper triangular
weight matrix, W.

e Compute the following matrix M := (I + W) (I + W), where is the identity
matrix, defining a new graph G slightly different from the initial graph G,
but above all defining a sparse positive definite matrix M.

e Normalize this matrix to get a partial correlation matrix II.

e Generate the dataset from the multivariate Gaussian distribution X ~
N(p, TI7Y), with p; ~ N(0,1) for each dimension i.

We consider p = 3000, n € {28,28x4,...,28%20}. (Since the smallest region has
only 28 samples). In PNS, we set the genes with the top 700 degrees as important
genes to recover edges upon.

We measure the instability by the following experiments: given n samples, we
generate b = 20 subsets of samples by excluding a random 1/28 of the total samples.
For example, for n = 28, we will end up with b subsamples X!, ... X where each
two are only differ by at most 2 samples. Then we run PNS given each of the
subsamples and get the estimated partial correlation network ﬁl, ... TI°. Then we
compute the instability by

b
1 = = 1 ~
Instability := — E II;;;  where II := 7 E I~ (B.3)
pT =
i k=1

0.40-

instability
o
w
(5}

o

w

S
|

0.25- v i i v )
100 200 300 400 500
sample_size

Figure B.1: The instability of edge estimation versus sample size.
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Network estimation has low power with separate PNS. Then we consider the
setting of simulating multiple regions. To mimic the real data setting we have, I
just simulate three regions. First we start with simulating three partial correlation
networks:

e Generate a random graph G € RP*P as the initialization.

e Generate a region specific random subgraph S € R4*? for each region 7,
with higher degree per node.

e Get the regional random graph r via selecting d nodes D, out of all p
nodes, and modify the edge for those d nodes as G (i, j) = I{G™ (i, j) =
1 or S™it(j, j) = 1} for i, € D,. So now we have regional graph that have
edges only differ in some subset of nodes.

e Get the partial correlation matrix II, for each region as before.

e Generate the dataset for region r from the multivariate Gaussian distribution
X ~ N(p,IT 1), with p; ~ N(0,1) for each dimension 4.

We consider p = 300, d = 30, and select important genes as the union of genes with
the top 50 degrees in each regional graph. (This gives us 100 important genes).
We simulate ny = 28, no = 132, n3 = 94 samples for regions 1,2, 3, which exactly
mimics the number of samples of our real dataset. Then, given the nonzero entries
of Iy, Ils, I3 as truth, we can compute the power and false discovery rate of edge
recovery.

FDR Power
8
0.8- 0.75-
method
0.7- —8— separate
o
o [ i
[a) g 0.50 —o- weighted
WL os a interact_0.5
—— interact_0.7
051 3 0.25 —e— interact_0.9
N
0.4-
O.dOO 0.(;25 O.OISO 0.(;75 O.]:OO 0.(;00 O.OIZS 0.(;50 O.OI75 0.:[00
lambda lambda

Figure B.2: The power and FDR of edge recovery versus penalty A\ using different
methods. We report the maximum FDR and minimum Power over three regions for
each method. The results are averaged over 20 independent trials, where the bandwidth
indicates the standard deviation.
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Figure B.3: The power and FDR of edge recovery versus penalty \ for each region using
different methods. We report the average FDR and Power over 20 independent trials,
where the bandwidth indicates the standard deviation.

B.2 FDR CONTROL IN LARGE-SCALE GRAPHICAL MODELS

A better screening. Identifying large-scale conditional dependence structures throughlf
graphical models is a challenging yet practical problem. Under ultra-high dimen-
sional settings, a screening procedure is generally suggested before variable selection
to reduce computational costs. However, most existing screening methods examine
the marginal correlations, thus not suitable to discover the conditional dependence in
graphical models. To overcome this issue, Wang and Leng] (2015)/Zheng et al.| (2020))
propose a new procedure called graphical uniform joint screening (GUS) for edge
identification in graphical models. Instead of screening out edges node-wisely, GUS
utilizes a uniform threshold for all statistics indicating the significance of different
edges to adapt to various kinds of graphical structures. They demonstrate that GUS
enjoys the sure screening property and even the screening consistency by preserving
the rankings of the significant edges. Furthermore, a scalable implementation of
GUS is developed for big data applications.

Network estimation with FDR control. Recently, |Li and Maathuis (2021) and [Zhou
et al.| (2022) propose procedures called the high-dimensional graphical knockoff filter
to control the overall FDR for large-scale graph recovery. The proposed procedure
enjoys not only theoretical guarantees and high power but also the robustness
of FDR control even when the population precision matrices of predictors are
replaced by consistent estimates. Furthermore, a scalable implementation approach
is developed such that all knockoff variables can be generated through one single
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estimation of the overall graphical structure.

However, after trying out the above two techniques on our simulation and data, the
performance is poor: though FDR is lower (but still not controled), the power is
only about 0.01.

B.3 JOINT ESTIMATION METHODS

In this section, we propose three directions for joint estimation of region-specific
partial gene network and provide detailed methodologies for the practical ones
among them (the first two directions).

B.3.1 Approach 1: weighted PNS

First, we propose an intuitive weighted ensemble method, where weights comes
from prior knowledge about how likely a sample is from each region:

B .= argmﬁinZP(k € Region 7)(Xy; — XkyN(i)ﬁ)Q + MBI (B.4)
k=1

We can estimate P(k € Region ) from the data itself.

Unsupervised estimation of weights. First I tried to use soft-clustering to gain
weights but unfortunately, the data do not form very distinct clusters (see Figure.
Also, the Parietal lobule (the three blue-colored regions) seems to be scattered
around the whole place. Therefore, we remove this lobule from our consideration
now, also we merge the regions inside the same lobule (such that we can have a
more stable estimation).

Supervised estimation of weights. In the following, we focus on the BA17, Frontal,
Temporal lobules(regions). We now use supervised learning to gain weights: specifi-
cally, I fit a shallow classification tree such that the estimated probability distribution
over classes is not too spiky. Then, for each class, I use the estimated probability of
sample ¢ being a member of this class as this sample’s weight. See Figure [B:5] for
calculated weights. I removed one region as its samples are highly overlapping with
other regions from tSNE plot.
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Figure B.4: The embedding of the expression data using all the region DE genes. We
use all the DE genes with p-value < 0.01 (~ 800 genes). It seems like many regions
are mixed together. And not all the regions from the same cortical lobule are placed
together.
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Figure B.5: The tSNE embedding of the DE genes with samples colored by true class
and by class-specific weights learned by classification.

B.3.2 Approach 2: interactive PNS

Another more statistical way of introducing this regional variation is incoporating
the region as a categorical feature, and considering the interaction between it and
each of the neighbour genes:

Ty = *’-B/\[ z)ﬁ"" Zﬁyr c=C + Z Za] 1)R+rx]]lc— Crs (B5)
JEN(3) r=1

,B c Rpxl’ ~ c RRXI, o c RPRXI,

where ¢ is a categorical feature taking values in {Cy, ..., Cr} representing which
region a sample is from, and p is the size of neighbourhood.
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Weighted lasso. In practice, we observe that the interaction effects (i.e. the «
coefficient) are often overwhelmed by the main effects (i.e. 8 coefficient), if using
the same lasso penalty. To emphasize more the interaction effect, we use different
levels of lasso penalty on the main effect and the interaction effect.

(8.7, &) = arg 511/11}1 Z(sz‘ — Xpn()B — Diy — That)? (B.6)
T k=1

+ M8l + Ml + A2fled]1,

where D, T is the matrix representation of the categorical feature and the interaction
term respectively.
Then for region C,, the region-wise partial correlation B8(") can be calculated as

) = { B, if r =0 (B.7)

B+a), if >0, wherea) = (Qr, QriRy - Qrg(p1)R)-

Related work. 1In fact, this approach coincides with an existing work |(Cheng et al.
(2017), where they extend Gaussian graphical models to mixed Gaussian graphical
models, with categorical features incorporated into the joint density. Specifically,
consider

R R R
p(ma C) X exp { ZUT‘HC:CT + wT(O‘O + Z arﬂc:CT) - %w‘r(@o + Z @T]IC:CT):E}, (BS)

r=1 r=1 r=1

where diag(®") = 0 for all r. Then the conditional distribution of z; given x_;, c
is given by

E R
1 0

L=l i =1
1 & R

= (I)T ( Z nr]lczcr - Z /Bijxj - Z Z O‘jT’xj]Ic:Cr —+ ei) (Blo)
b r=1 j#i i r=1

where e; ~ N(0,1), and K := Zf:o Q.
For the loss function, in addition to mean squared error, they also consider
following overlapping group lasso penalization

R
penalty := > ||(nr, ) l[a + Y 1(Bij i) |2- (B.11)
r=1 jF#i
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Note that this penalty is overlapping group lasso, which is hard to optimize, therefore
they propose to use an upper bound of this penalty instead (using ||b||2 < ||b||; for
any vector b to get the upper bound):

penalty’ : Zym +222|aﬂ\ +) 18351, (B.12)

r=1 j#i J#i

which essentially gives them a weighted lasso.
We are essentially doing the same thing, just that we use different penalization:

our penalty := Z || + ratloz Z lojir| + Z |Bij] (B.13)

r=1 j#i J#
i.e. the penalty weight is a tuning parameter in our scenario.

B.3.3 Approach 3: Bayesian modeling

There is a group of methods using Bayesian modeling (e.g. |Li et al.|(2019)). One of
the most popular approaches for Bayesian inference with Gaussian graphical models
is the G-Wishart prior. The G-Wishart prior estimates the precision matrices
with exact zeros in the off-diagonal elements and enjoys the conjugacy with the
Gaussian likelihood. However, posterior inference under the G-Wishart prior can
be computationally burdensome and has to rely on stochastic search algorithms
over the large model space, consisting of all possible graphs. In recent years, several
classes of shrinkage priors have been proposed for estimating large precision matrices,
including the graphical lasso prior, the continuous spike- and-slab prior, and the
graphical horseshoe prior. This line of work draws direct connections between
penalized likelihood schemes and, as their names suggest, the posterior modes
in a Bayesian setting. Unlike the G-Wishart prior, these shrinkage priors do not
take point mass at zero for the off-diagonal elements in the precision matrix, and
thus usually lead to efficient block sampling algorithms with improved scalability.
However, fully Bayesian procedures still need to rely on stochastic search to achieve
model selection, making it less appealing for many problems. To address this issue,
deterministic algorithms have been proposed to perform fast posterior exploration
and mode searching in Gaussian graphical models.

We did not dive deep into this direction as this line of methods could be too
complex and thus not suitable for high-dimensional problems.

B.4 HYPERPARAMETER SELECTION

Criteria based on network structure. For a single network, we can just use the R?
of the network fitting to the power law to choose the hyperparameter.
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Criteria based on regional effect. Since we are estimating multiple networks, and
we hope to see meaningful differences between them. Therefore, in addition to the
power law criteria, we also introduce the following criteria based on the permutation
test of meaningful differences. Considering we already defined some good metrics of
network differences, we denote those L metrics using a single vector u € REX1

Then we permute the indices of the true categorical feature. We use this
permuted categorical feature to estimate the regional network as usual, and then
compute the network differences measure. We do such permutation for m times
and get a list of network differences estimation {u',...,uM}.

Then we compute the standardized true network differences for each metric:

_w— ﬁ Z%:l uy"
std({u},...,uM})’

JA=1...,L (B.14)

which is basically treating {@',...,u™} as an estimation of the network differences
due to randomness/instability.

Criteria based on stability. Sedgewick et al. (2016) used a very similar idea like
our interaction model, and they propose to use the following stability measure to
select hyperparameters.

They draw N subsamples of size b without replacement and compute the network
using those subsamples and get network A; ... Ayx. Then they compute the averaged
variance for each edge, treating the edge as a Bernoulli random variable. The final
instability metric S = Mean(2 * (4) * (1 — A)), where 4 = % Zfil A; and * means
element-wise multiplication. They propose to select the parameter such that the
stability is minimized. We can see that, however, the instability measure in our
case is not informative enough: it does not vary much for different A (here when
I do the Mean, I do it over only the nonzero entries, such that we do not trivially
assign more stability to very big A, since those can be stable just due to that there
is no edge left).

Combine all criteria. For each pair of the network, we can calculate such a
difference vector. For each network, we can also calculate the power law non-fitness
metric, R2. We stack all those vectors together as a long vector v. We require each
dimension of v to have range [0, 1], with 0 being the ideal best case, and 1 being
the worst case possible. Then we choose hyperparameters h using

h := argmax |[v(h)|| (B.15)

Note that we need to do this on a hold-out set, to avoid p-hacking! Not sure whether
this will cause us problems since we already have a too-small sample size.
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B.5 REsuLTS

When applied to the Danel data, we only consider on the lobule level (otherwise the
estimation is too unstable). We find that the Parietal lobule (the three blue-colored
regions) seems to be mixed with the other three lobules from the embedding of the
expression data using all the region DE genes Figure [B:4l Therefore, we remove
this lobule from our consideration now. See Figure for calculated weights for
each lobule when using the weighted PNS method.

In Figure and Figure [B.7] we provide a comparison of three methods we
mentioned before in regional partial network estimation. Specifically, Figure[B.6]tests
the significance of regional differences using different regional network estimation
methods, and we can see that while none of them provide significant results over all
differences metrices, interact PNS seems to produce significance in most metrics.
Also, visually we can see in Figure that, interact PNS gives the most interesting
contrast of network structure across regions.

The performance of these methods on downstream active and reactive DE cluster
identification is left to future work.

(a) separate PNS (b) Weighted PNS (c) Interact PNS
node_nonov_1 . node_nonov_1 node_nonov_1
deg_nonov_1 deg_nonov_1 deg_nonov_1
edge_ov_1 edge_ov_1 edge_ov_1
node_nonoy_2 S9fificance node_nonov_2 S'QTS“"CS l node_nonov_2 singf)icance

deg_nonov_2 z deg_nonov_2 Z deg_nonov_2 8
6
. node_nonov_3 node_nonov_3
node_nonov_3
deg_nonov_3 deg_nonov_3
deg_nonov_3
edge_ov_3 edge_ov_3
N VD> 0L N VD> 0L edge_ov.3
Py O TR X O 7T T
L RGO AN N

Figure B.6: The significance of regional differences using different regional network
estimation methods. Each column is of the same lasso penalty A, and each row is of
the same regional differences measure. Specifically, “node nonov" is the proportion
of nonoverlapping nodes, “deg nonov" is the ratio between the averaged degree of
nonoverlapping nodes and overlapping nodes; and “edge ov" is the proportion of conflict
edges among overlapping nodes. The suffix number 1 means BA17 v.s. Frontal; 2
means BA17 v.s. Temporal; and 3 means Frontal v.s. Temporal.
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(a) whole cortex

(e) whole cortex

(i) whole cortex

(b) BA17
(separate PNS)

(f) BA17
(weighted PNS)

(j) BA17
(interact PNS)

(c) Frontal
(separate PNS)

(g) Frontal
(weighted PNS)

(k) Frontal

(d) Temporal
(separate PNS)

(h) Temporal
(weighted PNS)

(1) Temporal

(interact PNS) (interact PNS)

Figure B.7: The visualization of regional networks estimated via different methods,
with the hyperparameters chosen via the above-described way. We can see that, the
interactive PNS method seems to give the most interesting regional differences. Here
we fix the position of each node across all networks for better visualization of edge
differences (and therefore the networks seem a bit messy as the layout is not optimized
for each network). Each node is colored by the initial hidden states (active: hotpink;
reactive: skyblue; others: yellow) estimated from the data before HMRF regularization.
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