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Abstract
Humans are multimodal and multitasking agents – a fact reflected in the com-

plexity of our visual system. Robust behavior is supported by multiple visual pro-
cessing pathways in the human brain, each capable of facilitating a wide variety
of downstream tasks, ranging from recognizing familiar objects, navigating a new
scene, and inferring ongoing events from a picture, etc. Slow progress in unraveling
the representational basis and mechanisms of these pathways has been a challenge
for vision scientists for many decades. Excitingly, our ability to account for neural
responses in visual brain pathways has recently advanced much more rapidly due
to the use of representations derived from task optimized neural networks. Previ-
ously unaccounted for high-level tasks in both visual and semantic processing can
now be “explained” by state-of-the-art deep neural networks. While such expla-
nations are promising, they are based on black box-like models that achieve much
better accuracy than before, but still suffer from a lack of meaningful interpreta-
tions for understanding neural processing. My work advances our understanding of
visual and semantic processing in the human brain by: 1) leveraging relationships
among modern computer vision tasks to reveal the task-specific architecture of the
human visual system; and 2) using multi-modal networks trained on both vision and
language to investigate representational basis of visual semantic processing. I also
address the limitations of task driven methods as well as potential for applying these
methods in a more dynamic, cross-modal setting to model the interplay of language
and visual representations.
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Chapter 1

Introduction

Human vision supports a wide range of high-level tasks, ranging from object classification, navi-

gation, and scene interpretation, etc. Since Hubel and Wiesel [1959a] discovered the orientations

receptive fields of neurons in 1959, and Kanwisher et al. [1997a] identified the patch in the brain

consistently responds to face images in 1997, for many decades, progress has been slow in un-

raveling the representational basis of these neural pathways that support these high-level tasks.

One of the main reason why this is a persistent challenge for vision scientists is that, manually

curating these mid to high level features that the brain represents are simply beyond our ability.

It is for the same reason why computational models for vision did not work well before deep

learning and big datasets. We simply cannot come up with layers of perfect descriptors to make

up a model to recognize a dog, for example.

Excitingly, our ability to account for neural responses in the visual brain has recently ad-

vanced much more rapidly due to the use of representations derived from task optimized deep

neural networks. Previously unaccounted for high-level tasks in both visual and semantic pro-

cessing can now be “explained” by state-of-the-art deep neural networks [Yamins et al., 2014a,

Kell et al., 2018]. While not created as models of the brain per se, these deep neural network

models’ dramatic increases in prediction performance appear to be driven by the fact that com-

mon task goals between artificial and natural systems lead to similar representations [Yamins and
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DiCarlo, 2016a, Agrawal et al., 2014, Güçlü and van Gerven, 2015]. While the exact reason why

these networks are so good at mapping brain representation is not well studied, it is reasonable

to hypothesize that the "engineering solution" that these networks land at solving a task, can be

useful to probe the "biological solution" that the brain comes up with. One thing to note here is

that this approach simply maps representations from task-optimized network to the brain, instead

of optimizing these neural networks directly to predict brain responses, therefore the success of

this approach cannot simply be explained by the fact that neural networks are simply powerful

approximators for any functions.

Works presented in this thesis further explores the efficacy and limitation of this approach.

First of all, this high-level correspondence between "engineering solution" and "biological so-

lution" has held particularly in the study of vision, where computer vision models of object

classification are very effective at accounting for neural responses in human ventral-temporal

cortex – the neural pathway that supports visual object processing and recognition[Güçlü and

van Gerven, 2015, Yamins and DiCarlo, 2016b, Toneva and Wehbe, 2019]. Until recent years,

almost all neural-network models deployed in visual neuroscience are trained on a single visual

task – object classification. The long focus on object-centered vision is not surprising since it is

itself a better defined task compared to scene vision – Image of a object can have a clear label.

However, human visual perception is a multifaceted process that incorporates both a wide vari-

ety of task objectives and interactions between visual and non-visual knowledge [Aminoff and

Tarr, 2021]. Vision allows us to navigate everyday life, understand the things around us and to

interact with the environment. To learn about the world, we constantly think and reason about

what we see. Therefore high-level visual representations are thought to reflect both the structure

of the visual world, relevant information for potential task (i.e. navigation) and semantics – non-

perceptual associations such as object function or linguistic meaning [?]. As such, relying on

neural-network models optimized for visual tasks such as object classification necessarily limits

prediction to purely visual components of the perceptual process.
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In my thesis, I show my work of extending the method of using task driven representations for

brain mapping to a multi-task and multi-modality approach. The thesis is organized as follows:

• Section 2 introduces related works.

• Section 3 describes challenges in modeling scene understanding in human with fMRI data,

and explains why we adopted specific approaches and datasets.

• Section 4 introduces our work on using a pool of 21 task-trained networks (Taskonomy[Zamir

et al., 2018]) to quantify task relevant information in the brain. This work aims at using

task driven networks and their relations as interpretation tools to disentangle high level

visual representations in the brain.

• Section 5 details our attempts in modeling affordances (i.e. actions an objects affords to

an observer) with task-driven neural networks, where we designed a affordances datasets,

trained a neural network to predict affordances to pictures.

• Section 6 introduces our work on using representations from a multimodal model with

language and vision pre-training to map out relevant semantic dimensions in the visual

semantic processing in the brain. This works aims at exploring the fact that humans learn

to see with language learning and shows that language grounded visual representation is a

better model and explains unique variances in the brain.

• Section 7 describes our ongoing attempts on applying task-driven models on modeling

attention switching across modality. We extended the use of visual and language models

to probe the attended modality while humans subjects are watching a famous TV sitcom.

• Section 8 describes our attempt to look at the potential problems and limitations in using

different task driven representations for brain mapping and propose a potential solution

with network sparsification.

• Section 9 contains conclusions and discussion of the works described in this thesis.

3
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Chapter 2

Background and Related Work

As one of the most primitive systems in animals, the visual systems has been the forefront topic

of neuroscientists’ endeavors in understanding how the brain works. One of the reasons is that

vision is essential for primal animal behaviors such as food gathering, prey and recognising

enemies and basically anything related to interaction with the environment. Another reason is

that visual processing is relatively straightforward and representative of other perceptive systems.

It is an mostly unconscious process where animals do effortlessly. Unlike more complex and

conscious process such as decision making where modeling the internal states is crucial, without

the manipulation of attention, we can treat vision as a faithful system where if you give it the

same input, it will respond with the same output.

In one of the most important early experiments in visual neuroscience, Hubel and Wiesel

showed light bars to cats and recorded cells that consistently responded to different orientations

of edges [Hubel and Wiesel, 1959a]. This experiment allowed the pinpointing of a cell’s receptive

field, and led researchers to use cellular recording to eventually identify properties such as shape

preferences in V4 neurons [Roe et al., 2012, Gallant et al., 1993] and direction preference in

motor cortex by populations of neurons [Georgopoulos and Carpenter, 2015]. The difficulties of

going down this path lies in coming up with exactly what the neuron is coding for to present it to

the system and record the neuronal firing.
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It took a couple decades for the data collection to catch up from single cell recordings to

calcium imaging, which allows us to record populations of neuron at a time, and as well as to

fMRI, which uses blood flow as a proxy for neuronal activity at the whole brain level. The

opportunity to observe the system in a noninvasive way at the whole brain level allowed us to

model various levels of processing across the human visual system and fMRI became a popular

method among visual neuroscientists. This in turn led to the discovery of specific semantically

defined functional brain regions such as the fusiform face areas (FFA) [Kanwisher et al., 1997a,

2002], parahippocampal place area (PPA) [Epstein and Kanwisher, 1998a], extrastriate body area

(EBA) [Downing et al., 2001a], etc. At this stage, most of the findings were driven by univariate

methods where images of a few categories or different properties are presented and the contrast of

voxels responses are recorded as selective responses for the presented categories. The hypothesis

space are largely limited with this method.

More than a decade later, a new framework, voxelwise encoding models, was developed by

Naselaris et al. [2011] to describe neural processing at the voxel level across the whole brain. In

this framework, hypotheses about input properties that the neurons care about (e.g., 30 degree

line, human face) are parameterized as a function of the input. The encoded properties are then

mapped linearly to voxel responses from seeing an image. Prediction accuracy of the encoding

models are evaluated on held out datasets and successful prediction indicates that a voxel shares

similar representations as the hypothesis incorporated in the encoding model. The encoding

model framework allows researchers to use highly complex naturalistic stimuli (such as a scene

in real life) and test a wide range of hypothesis at the same time. After the model is learned,

it provides a basis of latent visual features that the brain represents from the highly complex

visual environments we live in. With this framework, neuroscientists were able to map out low

to high level visual features the brain uses and even decode what a subject sees in the scanner

[Kay et al., 2008, Nishimoto et al., 2011]. It was also widely applied in other neural functions

such semantic and language, where representations of the semantic concepts were mapped out
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in the brain [Huth et al., 2016], and we have a better picture of how the brain represent language

with contexts, syntax as well as meaning [Wehbe et al., 2014a, Deniz et al., 2019]. Encoding

models thus allow the test of a large number of hypotheses from the same naturalistic data. The

difficulties now lie in finding good hypotheses about the input that capture how visual systems

process image for downstream tasks.

Almost in parallel to the quest for biological intelligence, computer vision has been one of the

main driver that pushes artificial intelligence forward. Large scale image datasets starting with

ImageNet [Deng et al., 2009a] have helped to scale up the training of artificial networks. Increas-

ingly large-scale naturalistic dataset allowed for networks trained to do different tasks[Zamir

et al., 2018], and bridge across modalities (such as CLIP [Radford et al., 2021]). An interesting

point for researchers using encoding models is that artificial networks that solve tasks that hu-

man can do, such as recognizing an object from a picture and navigating through a space, can

be used as proxy models as well as hypotheses for what we think the brain is doing for solving

the same tasks. This is not merely an coincidence but the fact that human visual systems likely

use similar efficient coding that extract the statistical regularities from the visual world for use

in downstream task. Properties we can already pinpoint to be important for the visual system,

such as hierarchies of edges and shapes, can be found in networks learned with sparse coding

[Olshausen and Field, 1996], as well as deep neural network trained in an end-to-end fashion.

What’s more, these networks also provides us other visual features that are hard to be described

by language or designed by hand, and can be used as hypotheses to test with the visual system.

Indeed, the use of the activations from task trained networks to model representations in the brain

has provided a leap of prediction of brain responses for visual stimuli in recent years [Agrawal

et al., 2014, Güçlü and van Gerven, 2015, Yamins and DiCarlo, 2016b, Yamins et al., 2014b].

Advances in dataset scale in neuroscience also opened up a new chapter in modeling of brain

representations. Datasets such as BOLD5000 [Chang et al., 2019] with around 5000 images per

subject and Natural Scene Dataset (NSD) [Allen et al., 2021] with 10,000 images per subject,
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rely on images from benchmark computer vision datasets. These images are taken from real life

scenes, and span much larger visual and semantics space than the images from most other con-

trolled visual experiments. Neural datasets that are extensive in both stimuli space and recording

time, with working end-to-end trained image-computable models, opens up a brand new frontier

for data driven neuroscience research.

Data driven methods have shortcomings as well, especially in their poor interpretability. As

features extracted from these proxy model become more and more complex, they become harder

to interpret. Dimensionality reduction methods such as principal component analysis (PCA) are

handy to make sense of the low dimension latent space of the model. Unit visualization tool such

as Net Dissect [Bau et al., 2017], and attribution analysis through pruning [Tanaka et al., 2019]

are useful as well to tease apart representations of specific units in a network.

My thesis focuses on modeling the processing of natural scenes in the human visual system.

Scene understanding requires the integration of space perception, visual object recognition, and

the extraction of semantic meaning. The human brain’s solution to this challenge has been eluci-

dated in recent years by the identification of scene-selective brain areas via comparisons between

images of places and common objects [Epstein and Kanwisher, 1998a]. This simple contrast has

been extended across a wide variety of image manipulations that have provided evidence for the

neural coding of scene-relevant properties such as relative openness [Kravitz et al., 2011, Park

et al., 2014, Harel et al., 2012], the distance of scenes to the viewer [Kravitz et al., 2011, Park

et al., 2014, Lescroart et al., 2015], 3D spatial layout [Ferrara and Park, 2016, Kamps et al.,

2016, Kornblith et al., 2013] and navigational affordances [Bonner and Epstein, 2017]. Indepen-

dent findings in how the human brain process features related to scene understanding are hard to

organically built on top of of each together since each experiment might use different but corre-

lated hypothesis. Recently, in 2019, to help with this, Lescroart and Gallant [2019] developed an

encoding model using a feature space that parametrizes 3D scene structures along the distance

and orientation dimensions and provides a computational framework to account for human scene

8



processing. Intriguingly, Lescroart and Gallant [2019] were able to identify distance and open-

ness within scenes as the dimensions that best account for neural responses in scene-selective

brain areas. At a higher, semantic, level, Stansbury et al. [2013] found that neural responses in

scene-selective brain areas can be predicted using scene categories that were learned from object

co-occurrence statistics. Such findings demonstrate that human scene-selective areas represent

both visual and semantic scene features.

9
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Chapter 3

Motivations and Methods

3.1 Motivations: Challenges in scene understanding modeling

Natural scenes are complex, high dimensional in nature and ill-defined by language. It is hard

to answer the question: what is a natural scene? It encompasses any visual scene we encounter

in the wild. Indoor, outdoor, close-up, or further away, natural scenes contain a wide variety of

different visual and semantic contents. Furthermore, building models of scene understanding is

complicated by the fact that visual and semantic features are correlated with one another. For

example, man-made objects such as buildings have more rectilinear lines as compared to natural

objects such as animals (cite), or, for example, that horses and grasses tend to co-occur. For these

and many other reasons, scene perception in humans entails a model that encapsulates a broad

space in terms of both visual and semantics features. Only through such a model will we have

a fuller picture of how the human brain processes the complex information carried in natural

scenes.

At the same time, there is strong evidence that the neural representation of visual concepts

and features is distributive in nature. From past work we learned that, even though there are

regions of the brain that can be shown to be associated with important semantic categories such

as faces [Kanwisher et al., 1997a] or places [Epstein et al., 1999], most other semantic categories
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are distributively coded in the human brain [Huth et al., 2016] and even nominally category-

selective regions also encode information about non-domain categories [McGugin et al., 2012,

Grill-Spector et al., 2006].

These challenges directly inform our chosen methodologies for modeling scene understand-

ing in human:

1. We build an efficient voxelwise encoding model pipeline that utilizes linear algebra tricks

such as the Woodbury matrix identity[Woodbury, 1950] and is implemented on PyTorch

for running on GPUs. This pipeline could fit regression models for all voxels from the

whole brain fMRI with efficient hyperparameter tuning.

2. We use naturalistic stimuli in human fMRI experiments to obtain realistic neural re-

sponses to complex scene images.

3. We combine naturalistic scene images together with ecological tasks as training feedback

to build an image computable proxy model for scene understanding in the human brain.

4. We extract activations from the trained models as features to build a voxelwise encoding

model that informs us as to where in the brain visual and semantic information is repre-

sented.

5. We build interpretable tools with variance partitioning and principal component analysis

(PCA) to further interrogate the feature spaces that are represented across the brain.

The following sections provide details on each of these methods.

3.2 Our approaches

3.2.1 Encoding Models

Encoding models – predictive models of brain activity that are able to generalize and predict

brain responses to novel stimuli [Naselaris et al., 2011] – are widely used in understanding feed-
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forward information processing in human perception, including scene perception. Researchers

have also used encoding models to infer which dimensions are critical for prediction by compar-

ing the weights learned by the model [Huth et al., 2016, Lescroart and Gallant, 2019]. One of

the successes of encoding models lies in predicting low- to mid-level visual cortex responses in

humans and primates using features that were learned via a convolutional neural network trained

on object recognition [Agrawal et al., 2014, Güçlü and van Gerven, 2015, Yamins et al., 2014b,

Eickenberg et al., 2017]. Most interestingly, these studies demonstrate a correspondence be-

tween human neural representation and learned representations within CNN models along the

perceptual hierarchy: early layers tend to predict early visual processing regions, whereas later

layers tend to predict later visual processing regions. Similarly, researchers have found that net-

work representations from other task-driven networks, including networks trained on speech or

music related tasks, are able to explain neural responses in human auditory pathways [Kell et al.,

2018]. Many researchers hold that such successes are not mere coincidences but rather indica-

tions of how fundamental task-driven representations are to both task training and to information

processing in the brain [Yamins and DiCarlo, 2016b].

In the works I present here, I apply encoding models across multiple works. The procedure is

as follows. I first parameterize each image in the training set into values along different feature

dimensions in a feature space. For example, if the feature space of interest is an intermediate

layer in a task-driven network, we simply feed the image into the network and extracted its layer

activation. The activations are then used as regressors in a ridge regression model (implemented

in PyTorch; see [Koushik, 2017]) to predict each voxels’ response to that image. The fMRI

dataset to images are split into training and testing sets, usually with a ratio of 4-to-1 ratio.

Training data are further split into train and validation sets with 4-to-1 ratio. Performance from

the validation data is used to choose the regularization parameter in the ridge regression model.

We choose to use a ridge regression model instead of more complicated models in order to

retain the interpretability of model weights, which may provide insights into the underlying
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dimensions of the brain responses. For each subject, each voxel’s regularization parameter was

chosen independently via 7-fold cross-validation based on the prediction performance of the

validation data. We swept through 100 regularization parameters spaced evenly on a log scale

from 10−8 to 1010, i.e. np.logspace(-8, 10, 100).

Ridge solutions for multiple regularization values are computed efficiently by using the

Woodbury identity[Woodbury, 1950]. With X (n x d) representing the feature matrix, and y

(n x 1) the outcomes, the ridge solution is given by

β = (XTX + lI)−1XTy

where l is the regularization coefficient. This can be reduced to

(1/l)(XTy −XTV (e+ lI)−1(XTV )TXTy)

where Ue1/2V T is the singular-value decomposition of XT . Since (e + lI) is a diagonal

matrix, its inverse can be computed efficiently simply by taking the reciprocal of the diagonal

elements. Then, (XTV )TXTy is a vector; so it can be multiplied by (e + lI)−1 just by scalar

multiplication.

After the regularization parameters are selected, ridge models are retrained with the training

and validation data. Final model performance was evaluated on the test data using both Pear-

son’s correlation and coefficient of determination (R2). To determine the significance of the

predictions, we ran permutation tests where we shuffle the stimuli evoked brain responses 5000

times, re-computed the performance metrics such as correlation score and R2, and obtained FDR

corrected p-values for both ROI and whole brain results.

3.2.2 Variance Partitioning

To obtain unique variance by two model A and B, as shown in 3.1, we first create joint model of

A and B by concatenating features from these two models. We then fit voxelwise ridge regression
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Figure 3.1: Schematic of variance partitioning between two models. The goal is to identify
variance that is explained by one model and not the other (outer crescents).

model to the joint model and obtain R2
A&B. The variance explained by individual model A and B

are denoted as R2
A and R2

B, respectively. We then calculate the unique variance for model A and

B:

R2
A = R2

&B −R2
B

R2
B = R2

A&B −R2
A

.

3.2.3 PCA analysis

Principal component analysis (PCA), or singular vector decomposition (SVD) are widely used

as tools to recover basis of latent space in encoding models trained to predict brain responses

[Huth et al., 2016, Lescroart and Gallant, 2019]. More specifically, after the encoding model

is learned, we applied PCA to the weight matrix that has dimension of #-of-features by #-of-

voxel. This could be applied on subject specific weight matrix, or a group weight matrix from

concatenation of subject weight matrices. For group models, we selected usually 20,000 best

predicted voxels (out of roughly 100k) for each individual subject based on the noise corrected

model performance.
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3.3 fMRI Datasets with naturalistic stimuli

3.3.1 BOLD5000

BOLD5000 is a publicly available large-scale fMRI dataset [Chang et al., 2019]. In the BOLD5000

study, participants’ brains were scanned while they fixated at real-world images and judged how

much they liked the image using a button press. Images in the BOLD5000 dataset were chosen

from standard computer vision datasets (ImageNet [Russakovsky et al., 2015], COCO [Lin et al.,

2014a] and SUN [Xiao et al., 2010]). The experiment was run in a slow-event setting where trials

are separated by 10 seconds. From BOLD5000, we used data from three participants viewing

4916 unique images. These 4916 image trials are separated into random training, validation,

and testing sets during model fitting. Average of TR 3 and 4 of each slow-event trial is used for

model fitting and testing. Region of interest (ROI) boundaries that identify category-selective

brain regions in the whole-brain map presented in our results were generated directly from the

ROI masks provided with the BOLD5000 dataset.

3.3.2 Natural Scene Dataset (NSD)

Natural Scenes Dataset (NSD) [Allen et al., 2022] is an open dataset of 7T whole brain high-

resolution fMRI responses from eight subjects (S1-S8) who each viewed ∼10,000 unique images

of natural scenes, each image repeated 3 times. These scene images were a subset of the images

in the annotated Microsoft Common Objects in Context (COCO) dataset [Lin et al., 2014b].

COCO is unique among large-scale image datasets in that COCO images contain contextual

relationships and non-iconic (or non-canonical) object views. In comparison to ImageNet [Deng

et al., 2009b], COCO contains fewer labeled categories (91), but includes more examples for

each category (> 5, 000 for 82 of the categories). Note, however, that many labeled categories

in ImageNet are at the subordinate level – COCO likely contains at least as many unlabeled

subordinate categories. The complete set of COCO images and additional details can be found
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on the COCO website: https://cocodataset.org.

Of the 70,566 total images presented across subjects, ∼1,000 images were viewed by all

subjects. fMRI data were collected during 30-40 scan sessions. Stimulus images were square

cropped, presented for 3 s at a size of 8.4◦ × 8.4◦ with 1 s gaps in between image presentations.

Subjects were instructed to fixate on a central point and to press a button after each image if they

had seen that image previously.

The functional MRI data were acquired at 7T using whole-brain gradient-echo EPI at 1.8-

mm resolution and 1.6-s repetition time. Preprocessing steps included a temporal interpolation

(correcting for slice time differences) and a spatial interpolation (correcting for head motion).

Single-trial beta weights were estimated with a general linear model. In this paper we used

the betas_fithrf_GLMdenoise_RR preparation of the betas. FreeSurfer [Dale et al., 1999, Fischl

et al., 1999] was used to generate cortical surface reconstructions to which the beta weights were

mapped. The beta weights were z-scored across run and were averaged across repetitions of

the image (up to 3 repetitions of each image), resulting in one averaged fMRI response to each

image per voxel, in each subject. NSD also includes several visual ROIs that were identified

using separate functional localization experiments. We drew the boundaries of those ROIs for

each subject on their native surface for better visualization and interpretation of the results. All

brain visualizations were produced using Pycortex software [Gao et al., 2015a].

3.3.3 Friends Dataset

Friends Dataset is provided by the Courtois NeuroMod group (data release cneuromod-2022)[Boyle

et al., 2021]. This dataset contains functional data acquired while showing 6 participants episodes

of the Friends TV show in English. It includes seasons 1-6 for all subjects, except sub-04 who

only completed seasons 1-4 (and a few segments of season 5). Each episode is cut in two seg-

ments (a/b) to allow more flexible scanning and give participants opportunities for breaks. There

is a small overlap between the segments to allow participants to catch up with the storyline. The
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fMRI sampling rate (TR) was 1.49s. The data were prepossessed using fMRIPrep 20.1.0 (ref.

59). These data are available on request at https://docs.cneuromod.ca/en/latest/ACCESS.html.
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Chapter 4

Neural Taskonomy: inferring the similarity

of task-derived representations from brain

activity

4.1 Introduction

Scene understanding requires the integration of space perception, visual object recognition, and

the extraction of semantic meaning. The human brain’s solution to this challenge has been eluci-

dated in recent years by the identification of scene-selective brain areas via comparisons between

images of places and common objects [Epstein and Kanwisher, 1998a]. This basic contrast has

been extended across a wide variety of image manipulations that have provided evidence for

the neural coding of scene-relevant properties such as relative openness [Kravitz et al., 2011,

Park et al., 2014, Harel et al., 2012], the distance of scenes to the viewer [Kravitz et al., 2011,

Park et al., 2014, Lescroart et al., 2015], 3D spatial layout [Ferrara and Park, 2016, Kamps et al.,

2016, Kornblith et al., 2013] and navigational affordances [Bonner and Epstein, 2017]. Recently,

to help explain such findings, Lescroart and Gallant [2019] developed an encoding model using a

feature space that parametrizes 3D scene structures along the distance and orientation dimensions

19



and provides a computational framework to account for human scene processing. Intriguingly,

Lescroart and Gallant [2019] were able to identify distance and openness within scenes as the

dimensions that best account for neural responses in scene-selective brain areas. At a higher,

semantic, level, Stansbury et al. [2013] found that neural responses in scene-selective brain areas

can be predicted using scene categories that were learned from object co-occurrence statistics.

Such findings demonstrate that human scene-selective areas represent both visual and semantic

scene features. At the same time, there is still no robust model of how these different kinds of

information are integrated both within and across brain regions.

Encoding models are widely used in understanding feedforward information processing in

human perception, including scene perception. Encoding models are predictive models of brain

activity that are able to generalize and predict brain responses to novel stimuli [Naselaris et al.,

2011]. Researchers have also used encoding models to infer which dimensions are critical for

prediction by comparing the weights learned by the model [Huth et al., 2016, Lescroart and Gal-

lant, 2019]. One of the successes of encoding models lies in predicting low- to mid-level visual

cortex responses in humans and primates using features that were learned via a convolutional

neural network trained on object recognition [Agrawal et al., 2014, Güçlü and van Gerven, 2015,

Yamins et al., 2014b, Eickenberg et al., 2017]. Most interestingly, these studies demonstrate a

correspondence between human neural representation and learned representations within CNN

models along the perceptual hierarchy: early layers tend to predict early visual processing re-

gions, whereas later layers tend to predict later visual processing regions. Similarly, researchers

have found that network representations from other task-driven networks, including networks

trained on speech or music related tasks, are able to explain neural responses in human auditory

pathways [Kell et al., 2018]. Such successes are not mere coincidences but rather indications

of how fundamental task-driven representations are to both task training and to information pro-

cessing in the brain.

Despite these advances, CNN features themselves are notoriously difficult to interpret. First,
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activations from the convolutional layers lie in extremely high-dimensional spaces and it is dif-

ficult to interpret what each feature dimension signifies. Second, features from a CNN tailored

for a particular visual task can represent any image information that is relevant to that task. As

a consequence of these two issues, the feature representations learned by the network are not

necessarily informative with respect to the nature of visual processing in the brain despite their

good performance in predicting brain activity.

To better understand the specificity of the information represented in the human visual pro-

cessing pathways, we adopted a different approach. Instead of choosing a generic object-classification

CNN as a source of visual features, we built encoding models with individual feature spaces ob-

tained from different task-specific networks. These tasks included mid-level features such as sur-

face normal estimation, edge detection, scene classification, etc. In any task-driven network, the

feature space learned to accomplish the task at hand should only represent information from input

images that is task-relevant. Therefore we can use the predictive regions from each of the models

to identify the brain regions where specific task-relevant information is localized. Independently,

Dwivedi and Roig [2018] have shown that representation similarity analysis (RSA) performed

between task representations and brain representations can differentiate scene-selective regions

of interest (ROIs) by their preferred task. For example, representations in scene-selective oc-

cipital place area (OPA) are more highly correlated with representations from a network trained

to predict navigational affordances. However, this study was limited to pre-defined regions of

interest, while the task representations we identify span the entire brain. Consequently, the brain

regions predicted by each model provide an atlas of neural representation of visual tasks and

allow us to further study the representational relationships among tasks.

Independently of the brain, visual tasks have relationships among them. Task representations

that are learned specifically for one task can be transferred to other tasks. Computer vision re-

searchers commonly use transfer learning between tasks to save supervision and computational

resources. In this vein, Zamir et al. [2018] recently showed that by standardizing model struc-
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ture and measuring performance in transfer learning, one can generate a taxonomic map for task

transfer learning (“Taskonomy”). This map provides an account of how much information is

shared across different vision tasks. Given this global task structure, we can infer clusters of

information defined by segregation of tasks, and then ask: does the brain represent visual infor-

mation in the same task-relevant manner?

We compared the relationships between tasks using both brain representations and task learn-

ing. These comparisons reveal clustering of 2D tasks, 3D tasks, and semantic tasks. Compared

to general encoding models, building individual encoding models and exploiting existing rela-

tionship among models has the potential to provide more in-depth understanding of the neural

representation of visual information.

4.2 Methods

4.2.1 Encoding Model

To explore how and where visual features are represented in human scene processing, we ex-

tracted different features spaces describing each of the stimulus images and used them in an

encoding model to predict brain responses. Our reasoning is as follows. If a feature is a good

predictor of a specific brain region, information about that feature is likely encoded in that region.

In this study, we first parameterized each image in the training set into values along different fea-

ture dimensions in a feature space. For example, if the feature space of interest is an intermediate

layer in a task-driven network, we simply fed the image into the network and extracted its layer

activation. These values are used as regressors in a ridge regression model (implemented in

PyTorch; see [Koushik, 2017]) to predict brain responses to that image. Performance from the

validation data is used to choose the regularization parameter in the ridge regression model. We

chose to use a ridge regression model instead of more complicated models in order to retain the

interpretability of model weights, which may provide insights into the underlying dimensions
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of the brain responses. For each subject, each voxel’s regularization parameter was chosen in-

dependently via 7-fold cross-validation based on the prediction performance of the validation

data. Model performance was evaluated on the test data using both Pearson’s correlation and

coefficient of determination (R2). To determine the significance of the predictions, we ran per-

mutation tests where we shuffled responses 5000 times, computed the correlation scores, and

obtained FDR corrected p-values for both ROI and whole brain results.

4.2.2 Feature Spaces

To simultaneously test representations from multiple 2D, and 3D vision tasks, we used the la-

tent space features from each of the 21 tasks in Taskonomy [Zamir et al., 2018] model bank:

autoencoding, colorization, curvature estimation, denoising, depth estimation, edge detection

(2D), edge detection (3D) or occlusion edges detection, keypoint detection (2D), keypoint detec-

tion (3D), depth, reshading, room layout estimation, segmentation (2D), segmentation (2.5D),

surface normal estimation, vanishing point estimation, semantic segmentation, jigsaw puzzle,

inpainting, object classification and scene classification. In the Taskonomy training scheme, an

intermediate latent space with fixed dimension (16 × 16 × 8) was enforced for each of these

networks. We obtained these latent space activations by feeding our images into each pre-trained

task-specific network in the task bank provided with the Taskonomy paper. Four of the 25 tasks

were excluded from this analysis because these tasks take multiple images as input, while the

brain responses we have are only to single images. Examples of these excluded tasks include

camera pose estimation and egomotion estimation. We then built individual ridge regression

models with the extracted latent features to predict brain responses and measured the correlation

between the prediction and the true response in the held-out dataset.
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4.2.3 Neural Data

The images used in this paper are from a publicly available large-scale fMRI dataset, BOLD5000 [Chang

et al., 2019]. In the BOLD5000 study, participants’ brains were scanned while they fixated at

real-world images and judged how much they liked the image using a button press. Images in

the BOLD5000 dataset were chosen from standard computer vision datasets (ImageNet [Rus-

sakovsky et al., 2015], COCO [Lin et al., 2014a] and SUN [Xiao et al., 2010]). The experiment

was run in a slow-event setting where trials are separated by 10 seconds. From BOLD5000,

we used data from three participants viewing 4916 unique images. These 4916 image trials are

separated into random training, validation, and testing sets during model fitting. Average of TR

3 and 4 of each slow-event trial is used for model fitting and testing. Region of interest (ROI)

boundaries that identify category-selective brain regions in the whole-brain map presented in our

results were generated directly from the ROI masks provided with the BOLD5000 dataset.

4.2.4 Task Similarity Computation

For each task, we took prediction performance scores across all voxels (n ≈ 55, 000). We set the

score of a voxel to zero if the p-value of the correlation obtained from permutation test is above

significance threshold (p> 0.05, FDR corrected). This gave us a performance matrix of mean-

ingful correlations of size m× v, where m is the number of tasks of interest and v is the number

of voxels. To analyze the relationship between tasks based on neural representations, we com-

puted pairwise similarity across tasks in the performance matrix using cosine similarity. These

pairwise similarities were then used to construct graphs and similarity trees among tasks. Other

distance or similarity functions such as euclidean distance did not show substantial differences.
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4.3 Results

4.3.1 Model Prediction on ROIs

In Figure 4.1 we show the prediction accuracy measured using the Pearson correlation coef-

ficient. This was done for the 21 task-related feature spaces that were used to predict brain

responses in predefined ROIs. Each bar shown in the figure represents the average correlation

score across all voxels in that ROI. Overall, the predictions using these feature spaces—which

come from mid-level computer vision tasks—show significant correlations with brain responses,

except for the feature space from the curvature task. Among scene-selective regions, such as

parahippocampal place area (PPA), retrosplenial complex (RSC), occipital place area (OPA), and

lateral occipital complex (LOC), models with 3D features (e.g. keypoints, edges) show far better

predictions than models with 2D features. This finding is consistent with the results of Lescroart

and Gallant [2019]. In contrast, within early visual areas, the prediction results between 2D and

3D features are not differentiable. Across all ROIs, features from object and scene classification

tasks provide the best predictions. For more scene specific tasks or semantic tasks such as 3D

keypoints/edges, 2.5D/semantic segmentation, depth, distance, reshading, surface normal, room

layout, vanishing points estimation, and object/scene classification, scene-selective regions are

better predicted as compared to early visual areas. These patterns are consistent across all three

participants. To quantify the consistency of results across subjects, we computed correlations

of prediction accuracy for each pair of subjects: 0.7957 (S1 vs. S2), 0.9034 (S1 vs. S3) and

0.9345 (S2 vs. S3). These results provide evidence that scene-selective areas show selectivity

for scene-specific task representations.

4.3.2 Model Prediction Across the Whole Brain

Prediction performance in pre-defined ROIs may omit relevant information arising in other brain

regions. In Figure 4.2 and 4.3 we show prediction performance across the entire brain in a flat-
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Figure 4.1: Pearson correlation coefficient between predicted and true responses across
tasks. Each sub-figure corresponds to a particular participant. Colors in the legend are arranged
by columns. Features from 3D tasks, compared to those from 2D tasks, predict better in OPA,
PPA, RSC, and LOC.

tened view (generated using Pycortex [Gao et al., 2015b]). Figure 4.2 shows the raw prediction

performance as correlation coefficients for each task feature space. Figure 4.3 shows a contrast

in prediction between 3D and 2D keypoints as well as edges. In this figure, red-colored vox-

els are better predicted by 3D features than 2D features, and vice-versa for blue-colored voxels;

white-colored voxels are well predicted by both features. We find that 3D features make better

predictions for scene-selective regions—those delimited by ROI borders, while 3D and 2D fea-

tures seem to predict early visual areas equally well. Figure 4.2 shows that prediction results

are consistent across three participants despite anatomical differences in their brain structures
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and 4.3 shows that the results are consistent across tasks.

Correlation

Figure 4.2: Whole brain prediction correlation using task representation of scene classifi-
cation network. The flat maps are cropped from the occipital regions of the brain. The upper
zoom-out view shows the relative locations of the flat maps. Lower colored figures are the pre-
diction performance across 3 participants. Prediction results are consistent across subjects.

Model performance using feature spaces from other tasks are shown in Figure 4.4. Here we

plot 6 of the 21 tasks, and the remaining figures for this sample subject (subject 1) are provided

in the appendix. Voxels with insignificant predictions (p ≥ 0.05, FDR corrected) are masked

in these figures. Prediction performances of all tasks and all three subjects can be viewed at

https://cs.cmu.edu/∼neural-taskonomy.

To provide a better estimate of the variance ceiling, we ran ridge regression to predict re-

sponses of one subject from another. In Figure 4.5 we show the prediction correlation for each

subject from the remaining two subjects. The average correlation between predictions and true

responses across voxels for each subject are: 0.0931, 0.0932, 0.112, as shown by the black lines

on each plot. The histogram includes low signal to noise ratio (SNR) voxels that are not engaged

by the task. The histograms distribution indicates that the accuracy we obtained on significant
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3D vs. 2D Keypoints 3D vs. 2D Edges
3D

2D

Figure 4.3: Contrast of prediction performance (measured with Pearson correlation coef-
ficients) between 2D and 3D features in one sample subject (subject 1). The flat maps are
cropped similar to as in Figure 4.2. The color map indicates the difference in correlation coeffi-
cients: red: 3D > 2D; blue: 2D > 3D. 3D task features predict better in scene selective regions
and in more anterior parts of the brain.

voxels across the whole brain using features from various task is close to the ceiling. Cross sub-

ject prediction results from each pair of subjects is provided in the appendix. Note that we are

predicting single-trial fMRI data with no repetitions, which leads to a lower signal to noise ratio

(and therefore lower variance ceiling) than other fMRI studies that average repetitions.

4.3.3 Evaluation of Neural Representation Similarity

To this point we have shown that the neural prediction maps across tasks differ from one another;

at the same time, there are many overlapping voxels across the predicted regions. Importantly,

this pattern of voxels as predicted by the tasks can be exploited and used to infer task relationships

in the brain. We computed task similarity averaged across 3 subjects using the methods discussed

in 4.2.4 (Figure 4.6). The individual patterns of task similarity are almost identical across 3

subjects. More specifically, correlations (Pearson’s r) between similarity matrices for each pair
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(a) 2D Segmentation (b) Semantic segmentation (c) Distance estimation

(d) Reshading (e) Object Classification (f) Scene Classification

Figure 4.4: Predictive voxels using tasks features from Taskonomy [Zamir et al., 2018] in
one sample subject (subject 1). Predictive regions of different tasks differ from each other
across tasks.
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Figure 4.5: Noise ceiling derived from cross subjection prediction. Each subfigure is a his-
togram of correlation scores across voxels. The black lines on each subfigure indicate the average
correlation values.

of subjects are: 0.9610 (S1 vs. S2), 0.9477 (S1 vs. S3) and 0.9407 (S2 vs. S3). In this comparison

across the whole brain, tasks such as 2.5D segmentation, room layout estimation, surface normal

estimation, scene classification etc. have similar predictions patterns.
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Figure 4.6: Prediction similarity matrix across 21 tasks, averaged across 3 subjects. A large
similarity value between task X and Y indicates encoding models with features representation
from task X and Y have similar predictions of brain responses.

4.3.4 Task Similarity Tree

To further explore the relationship between tasks as represented in the brain, we ran hierarchical

clustering on the prediction correlation results and visualized the clustering results as dendro-

grams. Figure 4.7 compares the task similarity tree based on transferring-out patterns in the

original Taskonomy paper [Zamir et al., 2018], with the task similarity tree generated based on

similarity in voxel prediction performance. Trees independently generated for each subject show

great similarity. In the Taskonomy result, tasks are clustered into 3D (indicated in green), 2D

(blue), low-dimensional geometric (red) and semantic (purple) tasks. Interestingly, the tree de-

rived from brain representation also shows a similar structure: semantic, 2D and 3D tasks are

clustered together. The differences between the two similarity trees may be due to low abso-
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(d) Neural Taskonomy (subject 3)

(a) Taskonomy from transfer learning

Figure 4.7: Task Trees from (a) Taskonomy [Zamir et al., 2018] and (b-d) brain represen-
tation of tasks from 3 differnet subjects. Tasks in (b-d) are colored according to colors in (a).
Similar clusters of 2D (in blue), 3D (green) and semantic (purple) tasks are found among neural
taskonomy trees. Clustering results are highly consistent across three subjects.

31



lute performance of the encoding model. For example, the model with features from curvature

estimation task has less than 10 significant voxels in some subjects which may lead to bias in

the representation of the task tree. Overall the similarity between two task trees shows that, at

a coarse level, neural representation of task information is similar to that found through transfer

learning. The clustering and dendrogram structures are stable across subjects and across different

linkage criteria. Aside from using “average” linkage for clustering, as shown here, we also used

“ward” linkage criterion (shown in the appendix) and obtained similar structures.

4.4 Discussion

The architecture of the primate visual system reflects a series of computational mechanisms that

enable high performance for accomplishing evolutionarily adaptive tasks [Yamins and DiCarlo,

2016b]. However, the precise nature of these tasks remains unknown because of the limitations

of neuroscience data collection methods and the lack of interpretability of intermediate visual

representations. To address these issues we leveraged the space of vision tasks learned through

transfer learning in Taskonomy [Zamir et al., 2018] and the recent availability of a larger-scale

human functional imaging dataset, BOLD5000 [Chang et al., 2019]. One challenge we faced was

the substantial difference between the image distributions of BOLD5000 (which contains general

objects and scenes) and the Taskonomy dataset (which includes indoor scenes exclusively). As

such, when we applied the pre-trained Taskonomy models to BOLD5000 images, we found that

these models didn’t perform as well as on the Taskonomy dataset, especially for the outdoor

images used in BOLD5000. Such inconsistency in image distribution is unavoidably reflected

in the encoding model performance and hinders us from making more specific claims about task

spaces in the brain. One solution to this issue would be to use a more general computational

model of visual tasks, as well as a larger brain dataset based on more images, both of which are

outside of the scope of this paper.

In the future we would also like to investigate the unique and shared variance explained
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Correlation (r)
0.05 0.2

(a) 2D keypoints estimation (b) 3D keypoints estimation (c) 2D edges estimation

(d) 3D edges estimation (e) Autoencoding (f) Denoising

(g) Colorization (h) Depth estimation (i) 2.5D segmentation

Figure 4.8: Model predictions of tasks from Taskonomy (Part 1). Voxels below significance
threshold (p ≥ 0.05, FDR corrected) are masked.

by each task. At present we are still unclear as to what transferability between tasks within

Taskonomy predicts for similarity in task representations within the brain.

Finally, although our whole brain prediction maps do seem to suggest the involvement of

additional functional brain areas beyond the pre-defined ROIs, we strongly feel that making

claims about new functionally-defined brain areas would be premature given our current data
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(a) Inpainting (b) Vanishing point estimation (c) Surface normal estimation

(d) Jigsaw puzzle (e) Curvature estimation (f) Room layout estimation

Figure 4.9: Model predictions of tasks from Taskonomy (Part 2). Voxels below significance
threshold (p ≥ 0.05, FDR corrected) are masked.
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(a) Neural Taskonomy (Subject 1)
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(b) Neural Taskonomy (Subject 2)
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(c) Neural Taskonomy (Subject 3)

and analysis. We believe that to make robust claims about new "functional territories", we would

first need to run additional validation experiments in which specific manipulations are used to

establish that specific brain regions are sensitive to the tasks in question.
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4.5 Conclusion

Our results reveal that task-specific representations in neural networks are useful in predicting

brain responses and localizing task-related information in the brain. One of the main findings is

that features from 3D tasks, compared to those from 2D tasks, predict a distinct part of visual

cortex. In the future we will incorporate features from other tasks to obtain a more comprehensive

picture of task representation in the brain.

For years neuroscientists have focused on recovering which parts of the brain represent a

given type of information. However, what are the computational principles behind the encoding

of information in the brain? We observe feedforward hierarchies in the visual pathways, but

what are the stages of information processing? To date, we have few satisfying answers. The

ultimate goal in studying task representation in the brain is to answer some of these questions. We

exploited the task relationship found in transfer learning and used it as a ground truth of visual

information space to study the neural representation of visual and semantic information. In sum,

our paper provides an initial attempt in using task relationships to answer broader questions of

neural information processing.
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Chapter 5

Learning Intermediate Features of Object

Affordances with a Convolutional Neural

Network

While interacting with our environment, we naturally infer the functional properties of the objects

around us. These properties, typically referred to as affordances, are defined by [Gibson, 1979],

as all of the actions that an object in the environment offers to an observer. For example, “kick”

for a ball and “drink” for water. Understanding affordances is critical for understanding how

humans are able to interact with objects in the world.

In recent years, convolutional neural networks have been successful in preforming object

recognition in large-scale image datasets [Krizhevsky et al., 2012]. At the same time, convolu-

tional networks trained to recognize objects have been used as feature extractors and can success-

fully model neural responses as measured by fMRI in human visual cortex [Agrawal et al., 2014]

or by electrodes in monkey IT cortex [Yamins and DiCarlo, 2016b]. To understand the relevant

visual features in an object that are indicative of affordances, we trained a CNN to recognize

affordable actions of objects in images.
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5.1 Dataset Collection

Training deep CNNs is known to require large amounts of data. Available affordance datasets

with images and semantic labels are largely limited at this moment. The only relevant dataset

currently available to the public was created by [Chao et al., 2015], and only includes affordance

labels for 20 objects from the PASCAL dataset and 90 objects from the COCO dataset. Here

we built a large scale affordance dataset with affordances labels attached to all images in the

ImageNet dataset [Deng et al., 2009a]. This dataset forms a more general representation of the

affordance space and allows large scale end-to-end training from the image space and to this

affordance space. The dataset collection process is shown in Figure 5.1. Human labelers were

presented with object labels from ImageNet object categories and answered the question “What

can you do with that object?”. All answers were then co-registered with WordNet [Miller, 1995]

action labels so that our labels could be extended to other datasets. The top five responses from

labelers were used as canonical affordance labels for each object. 334 categories of actions were

labeled for around 500 objects categories. When combined with image to object label mappings

from ImageNet, these affordance labels provided us with the image to affordance label mappings

that were used to train our CNN.

Figure 5.1: Dataset Collection. The labelers are given object labels, indicated in the green boxes
here and assign to them affordances labels, indicated with blue boxes.
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5.2 Visualization of Affordance Space

In our affordance dataset, each object was represented by a binary vector indicating whether each

of the possible actions was available for this object or not. Each object can then be represented

as a point in the affordance space. We used PCA to project these affordance vectors into a 3D

space and plotted the object classes as illustrated in Figure 5.2. In the 3D space created for

visualization, the objects appear to be well separated. More specifically, the majority of living

things were organized along the top axis; the majority of small household items were organized

along the left axis; and transportation tools and machines were organized along the right axis.

Human-related categories such as dancer and queen do not belong to any axis and appear as

flowing points in the space.

Figure 5.2: ImageNet images in the affordance space.
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5.3 Results

5.3.1 Network Training

A CNN was trained to predict affordance categories from images. A total of 55 affordances

were selected as potential actions after ensuring that each affordance label had at least 8 object

categories associated with it (by removing affordances that were associated with too few object

categories). Each object category was placed in the training, validation or testing sets. These

sets were exclusive, such that, if one object category appeared in one set, it would not appear

in the other two sets. Such separation ensures that the learning of affordances was not based on

recognizing the same objects and learning linear mappings between objects and affordances.

We used the ResNet18 model [He et al., 2016] (other models such as VGG produced similar

results), and trained it using the Adam optimizer [Kingma and Ba, 2014] by minimizing binary

cross-entropy loss. Approximately 630,000 images from ImageNet were used in training, and

approximately 71,000 images each were used for validation and testing. The trained CNN was

evaluated by computing the average percentage of correctly predicted affordance labels, and the

results are reported in Table 5.1. The trained networks showed significantly better performance

compared to the baseline.

Table 5.1: Training Results. “Fine-tuning” indicates that the network was pre-trained to predict
image categories, while “Training from Scratch” indicates that the network was initialized with
random weights. Baseline accuracy was calculated by estimating the most frequent categories.

Baseline Fine-

tuning

Training from

scratch

Fine-tuning +

oversampling

Training from

scratch + over-

sampling

Training Acc (%) 7.61 80.39 71.42 87.60 85.05

Testing Acc (%) 6.86 44.62 37.47 55.42 53.43
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5.3.2 Skewed Distribution and Oversampling

Since actions such as “hold” and “grab” would be used on objects much more often than actions

such as “thrust”, we obtained an uneven distribution of affordance labels across image categories,

as shown in Figure 5.3. In computer vision, oversampling is a commonly used solution for this

problem. However, because of the multi-label nature of the affordance recognition problem,

proper oversampling is challenging. Less frequently appearing classes need to be oversampled

without over representing the more frequently appearing classes. We used Multi-label Best First

Over-sampling (ML-BFO) [Ai et al., 2015], and re-trained the CNN with the resampled data.

This produced a considerable increase in prediction performance, as seen in Table 5.1.

Figure 5.3: Percentages of objects classes assigned to each affordances categories.

5.3.3 Sample Predictions

Figures 5.4(a)–(d) demonstrate images where the network was able to predict correctly. However,

the presence of distinct features can mislead the network. For example, in Figure 5.4(e), where

white bars stand out in the image, the network predicted “grab” and “drive”, potentially mistaking

the image as a bar or a road. On the other hand, human labelers, knowing that it is a image of a

wall, provided labels such as “walk” and “enter”. Since ImageNet contains natural scene images,
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multiple objects are likely to appear in one image, even though each image is assigned only one

object label. Such images confuse both the labelers and the network, and therefore can lead to

incorrect affordance recognition as shown in Figures 5.4(f) and (g).

(a) care/feed (b) hang/wear/grab (c) eat/taste (d) switch on/off

(e) P: grab/drive
GT: walk/exit

(f) P: empty/fill
GT: taste

(g) P: hunt/chase
GT: talk/meet

Figure 5.4: Sample predictions. (a)-(d): Examples of images with correct affordance predictions
(correct label below each image). (e)-(g): Examples of images with incorrect affordance pre-
dictions (P: indicates the CNN prediction, while GT: indicates the ground truth based on human
labeling.

5.4 Visualizing the Learned Representation Space

5.4.1 RDM across Layers

To visualize the representations learned by the network, we randomly sampled 10 images from

each of 30 objects classes, and extracted activations from the network layers. Pairwise correlation

distance between network activation across layers was computed for each pair of images, and is
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shown in Figure 5.5. Pairwise distance between affordance labels is shown in the bottom-right

matrix. This matrix denotes the ground truth distance in affordance space. Similar patterns begin

to emerge in Layer 4 for both the fine-tuned network and the network trained from scratch. Crit-

ically, this pattern is not seen for the off-the-shelf network that was not trained on affordances.

This demonstrates that our network learns representations that effectively separate different af-

fordance categories.

Pretrained 
AffNet

AffNet Trained 
from Scratch

Off-the-Shelf 
Pretrained 
Network

Layer 1 Layer 2 Layer 3 Layer 4 Avgpool

Object 
Categories

Affordance 
Categories 

Figure 5.5: RDM matrix of layers from CNN from off-the-shelf pre-trained network, fine-tuned
network and network trained from scratch for affordances.

5.4.2 t-SNE

Activations from the second to last layer in the network trained from scratch were visualized

using t-SNE [Maaten and Hinton, 2008], as shown in Figure 5.6. Images are coarsely split into

four groups based on their distinct affordances: living things, vehicles, physical spaces and small

items. In the 2D t-SNE visualization, the representation of living things (in green), vehicles (in

red) and physical spaces (in blue) are visibly separable. Small items (in yellow), in contrast, span

the entire space. The category of small items does not appear well separated, which is likely due
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to the visualization being limited to 2 dimensions.

● Living Things: meet, feed, water, pet, catch, care, …
● Vehicle: drive, operate, decelerate, ride, board, ...
● Space: stand, enter, exit, travel to, walk, ...
● Small_items: fill, carry, open, grab, cover, ...

Figure 5.6: t-SNE visualization of the second to last layer in the CNN trained from scratch.
Representations of images are coarsely split into four groups based on the distinct affordances of
the images: living things (green), vehicles (red), physical spaces (blue) and small items (yellow).

5.4.3 Unit Visualization

We were able to visualize the output layer units of the CNN by optimizing in pixel space to

determine which images maximally activated a specific unit. Figure 5.7 shows such visualization

of 6 units from the output layer. The “ride” unit, for example, shows human- and horse-like

structures; the “wear” unit shows a coarse clothing pattern and details of common textures often

associated with clothing. Similarly, units “climb”, “sit”, and “fill” show stairs-like, chair-like,

and container-like structures respectively. Interestingly, the “watch” unit shows preference for

dense textures in the center of the image space, which may correlate with image characteristics

from objects that are related to watching (e.g., TV). It should be noted that unit visualization is

very limited for capturing the learned intermediate features. Interpreting features in a limited 2D

space is inherently biased and subjective.
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(a) Ride (b) Wear (c) Watch

(d) Climb (e) Fill (f) Sit

Figure 5.7: Visualization of 6 last layer units in the CNN.

5.5 Discussion

We successfully trained a CNN to predict affordances from images, as a means for learning the

underlying dimensionality of object affordances. The intermediate features in the CNN constitute

an underlying compositional structure for the representation of affordances.

5.6 Discussions

To ensure the objectivity of the affordance labeling, affordance labels for images – as opposed

to just object categories labels – are being collected currently using Amazon Mechanical Turk.

This dataset is availaby by request.

With a CNN trained for affordance recognition, weights from the intermediate layers can be

extracted and used to featurize each image. A model can then be trained to predict the BOLD
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responses to each image. Correlations between the predicted responses and the true responses

can be used to measure model performance. If a linear model is built to perform this task, the

model weights could then be used as a proxy to localize where information about affordances is

represented in the human brain.

Finally, affordance categories can be split into two large groups: semantically relevant ones,

such as “eat”, which requires past experience with the objects in question; and non-semantically

relevant ones, such as “sit”, which may be inferred directly from the shapes of the objects. If

semantic affordances are being processed in the brain, top-down information about the objects

is potentially necessary in order to inform an observer about affordable actions, while the non-

semantic ones would not require top-down information. Given such differences we may be able

to differentiate between top-down and bottom-up visual processing in the human brain using our

model; in particular, by distinguishing the different brain regions that are engaged in either or

both of these two processes.
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Chapter 6

Joint natural language and image

pre-training builds better models of human

higher visual cortex

6.1 Introduction

Advances in deep learning have sparked a revolution in machine intelligence over the past

decade [LeCun et al., 2015a]. Somewhat surprisingly, these recent advances have also sparked

a parallel revolution in how we explain brain recordings [Yamins et al., 2014a]. Heretofore un-

accounted for brain responses associated with tasks in both visual and semantic processing can

now be well predicted by deep neural networks [Yamins et al., 2014a, Toneva et al., 2022]. As

suggested by Yamins and DiCarlo [Yamins and DiCarlo, 2016a], these dramatic improvements

in prediction performance may be driven by the fact that artificial neural network models sharing

task goals with natural systems also learn representations shared with those systems. This is

true not only for complex behaviors, but also for mid-level tasks realized within our perceptual

systems [Wang et al., 2019]. However, the use of modern neural networks to study biological

intelligence has been limited by the fact that most artificial models learn only a single or low
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dimensional task objective. Consequently, to date, models used to account for the visual behav-

ior of biological systems have been trained using purely visual tasks. Moreover, much of this

research has also been based on networks pre-trained on the relatively small and undiversified

ImageNet dataset [Deng et al., 2009b]. In contrast, natural vision is an active process that evolved

(i.e., was trained) over hundreds of millions of years in order to support complex behaviors such

as scene interpretation and navigation and which incorporates information from diverse percep-

tual, conceptual, and language sources [Aminoff and Tarr, 2015, Gauthier et al., 2003, Schaffner

et al., 2023, Lupyan et al., 2010]. In this context, a major challenge for understanding how

biological systems process and represent visual information is to consider such sources, includ-

ing incorporating complex training signals that capture human-relevant information and greater

diversity in experience.

Of particular note, recent state-of-the-art models in machine intelligence capture complex

human semantics by learning from multiple modalities simultaneously[Radford et al., 2021, Li

et al., 2022, Yuan et al., 2021, Jia et al., 2021, WuD]. The dramatic performance improvements

seen in both vision and language tasks for these models may be attributed to several factors,

including the fact that the confluence of information from different sources can help delineate

what is important in inputs and the fact that their training sets tend to be larger and more diverse

than earlier models. For the former, this is especially true if one of the modalities is language,

since human language is generated by humans and has evolved to highlight aspects of the world

that are behaviorally relevant [Pinker, 2007]. For the latter, increasing training set size not only

provides more (and possibly better) examples, but concomitantly, there may be an increase in the

diversity of training inputs [Fang et al., 2022]. Parallel to the improvements these multimodal

and large-scale models bring to machine intelligence, using these same models we find that we

also obtain dramatic improvements in our ability to explain aspects of biological intelligence.

In one of the recent studies to explore whether joint vision-language models are effective for

predicting brain data, Devereux et al.[Devereux et al., 2018] investigated the representation of
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semantic information in anterior regions of the ventral visual stream by combining a deep neural

network for vision with an attractor network model of semantics. Within this “visuo-semantic”

model, concepts associated with visual inputs are activated due to co-occurrence between visual

information and semantic features. This model was used to predict brain responses from fMRI

arising from an object naming task. Consistent with the idea that higher level visual areas encode

semantics, anterior regions of the ventral stream were best explained by high level layers of the

attractor network representing semantics. Such results provide an important demonstration of

how a joint vision-language model can account for patterns of activation at different stages of

visual processing. However, there are a couple limitations in this work. For instance, the model

used in this paper only takes in object centered image with white background and is not able to

account for complex scene semantics. The use of human labeled concept property norm also has

limited generalizblity to semantics on any new images. Another limitations is that the analyses in

this paper are all based on representational similarity analysis (RSA) on coarsely defined regions

in the brain, it is hard to pinpoint exactly where each semantic dimension is represented and for

others to compare their findings against other visual-semantic models.

Building on this work and aiming to resolve aforementioned limitations, we took state-of-the-

art models using “Contrastive Language-Image Pre-training” or “CLIP” [Radford et al., 2021]

as representative of the class [Li et al., 2022, Yuan et al., 2021, Jia et al., 2021, Mu et al., 2022]

in that models with CLIP successfully leverage supervision from natural language (image cap-

tions) for vision and supervision from vision (complex scene images) for language. In CLIP

schemes, models are trained with real-world image/associated caption pairs, learn separate im-

age and text encoders from scratch that encode each image/caption pair of training data with

similar representations at the final layer. Different than most other previous multimodal models

(e.g., VisualBERT [Li et al., 2019], LXMERT [Tan and Bansal, 2019]), multimodal loss signals

in the final layer of CLIP are propagated through all earlier layers of both the visual and lan-

guage encoders, and, therefore, model learning with CLIP may be more similar to human visual
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learning, where top-down knowledge has been found to influence even the earliest layers of the

visual pathway [Murray et al., 2006, Gilbert and Li, 2013]. Of note, CLIP can be used with

different model architectures – here we tested two different model backbones with CLIP: visual

transformer (ViT-32; “ViT-32CLIP ”) and ResNet50 (“ResNetCLIP ”). The use of these two quite

different backbones allowed us to rule out performance improvements due to network architec-

ture. Of particular interest, multimodal models using CLIP excel at current zero shot benchmark

tests in computer vision – outperforming vision models that do not include natural language su-

pervision. When considered in light of the complex, multitask visual abilities of humans, we

initially decided to explore whether brain prediction based on models using CLIP would be bet-

ter than earlier models – our motivating assumption being that any improved performance might

be attributable, in part, to the multimodal structure of CLIP.

To begin to address this possibility, we extracted network representations from standard neu-

ral network models trained with CLIP, such as ResNetCLIP (using each image or its associated

caption) and from several single modality task-optimized models: ImageNet [Deng et al., 2009b]

pre-trained ResNet50 [He et al., 2016] (which we refer to as “ResNetImageNet”) and BERT [De-

vlin et al., 2019] (using the caption associated with each image). We then constructed voxelwise

encoding models[Naselaris et al., 2011] (Figure 6.1a) to explain whole brain responses arising

from viewing natural images from Allen et al.’s Natural Scenes Dataset (NSD) [Allen et al.,

2022]. Our objective was to use this large-scale brain activity dataset to evaluate and quantify

the contribution of multimodal pre-training in generating more brain-like visual representations.

As already alluded to, a variety of factors characteristic of CLIP and different from those

of most prior models used for brain prediction, may be contributing to the improved prediction

performance we obtained with CLIP. However, as a proprietary model, we are unable to vary and

control for these different aspects of CLIP. Consequently, as a next step towards exploring these

factors, we selected a series of recent models that allow for more direct comparisons between

four important factors: model architecture, training feedback, dataset size, and data diversity.
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Specifically, we extended our analyses to a self-supervised model, simCLR [Chen et al., 2020], a

self-supervised model that included language feedback as in CLIP, SLIP [Mu et al., 2022], and an

open source version of CLIP [Schuhmann et al., 2022a]. As shown in Figure 6.5a, these models

were trained with datasets that included 15 million (YFCC [Thomee et al., 2016]), 400 million

(as in the original CLIP model), or 2 billion examples from LAION [Schuhmann et al., 2022a].

As we did with CLIP, we extracted network representations from these models and constructed

voxelwise encoding models. These encoding models were then used to explain responses from

NSD, allowing us to evaluate and quantify, as compared to the performance of CLIP, the con-

tributions of model architecture, multimodal pre-training, dataset size, and data diversity in gen-

erating brain-like visual representations. To preview our most important contributions, we find

that:

1. Pre-training with CLIP enables encoding models that are much more accurate at predict-

ing visual and semantic representations in the human brain as compared to single modality

models that are pre-trained with ImageNet. These improvements are not due to architec-

tural differences and beyond a certain training dataset size, appear to be related more to the

quality and/or diversity of the data, as well as the joint image/caption training that this data

affords. Critically, we also see consistent improvement due to language feedback when

dataset factors are controlled.

2. Models using CLIP are able to predict the recorded activity in human visual cortex using

image captions alone – indicating that these models learn a robust latent space bridging

natural language and vision.

3. Models using CLIP account for more of the unique variance in high-level visual regions.

We observe the greatest improvement from a latent dimension of CLIP that represents

complex scenes of humans interacting with one another and their environment, which in

turn allows us to better predict brain areas that process such information.
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6.2 Results

6.2.1 Multimodal embeddings best predict high-level visual cortex

The central question of our study is whether models using CLIP is a better model for human

high-level visual cortex as compared to previous, vision-only models. To address this ques-

tion, we extracted representations from the last layer of the ResNetCLIP image encoder and

ResNetImageNet. Recall that both these networks have the same architecture but are trained with

different objectives.

We expect that images are represented differently by ResNetCLIP and ResNetImageNet, such

that ResNetCLIP embeddings contain more semantic information, and ResNetImageNet contain

more visual properties. In Figure 6.1b, we show the similarity between pairs of images com-

puted using the two embeddings. For each pair of 10000 randomly sampled images, a simi-

larity score was computed (measured in correlation) between the representations of these two

images extracted from ResNetCLIP and ResNetImageNet (i.e. SimCLIP
i,j and SimResNetI

i,j ). Pairs

of images were ranked according to the differences between the similarities. Namely, Si,j =

SimCLIP
i,j − SimResNetI

i,j ,∀i, j ∈ {1, ..., 10, 000}, where SimCLIP
i,j and SimResNetI

i,j are corre-

lations of representations between Image i and Image j in ResNetCLIP and ResNetImageNet,

respectively. Figure 6.1b shows the pairs of images that are most similar in ResNetCLIP and

dissimilar in ResNetImageNet (ranked by Sij) and vice versa. Images represented similarly in

the ResNet model trained with CLIP are semantically related, but this is not so for the ResNet

model trained with ImageNet. For example, within ResNetCLIP , images of people surfing and

skateboarding are more similar and images of giraffes and an elephant are more similar. In

contrast, within ResNetImageNet, images with different contexts are more similarly represented

according to their visual similarity. For example, people wearing dark suits with a white shirt

and a contrasting tie. These “corner” images illustrate that with natural language as training

feedback, representations within ResNetCLIP capture contextual similarities that are not present
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in ResNetImageNet (which appears to be much more anchored in visual similarity).

We used the stimuli representation from ResNetCLIP image encoder and ResNetImageNet to

predict fMRI voxelwise responses across the brain. In Figure 6.1c we show the R2 performances

in the held out data set across the whole brain. For visualization purpose, we only plotted in the

flatmap the voxels that are predicted significantly higher than chance (p < 0.05, FDR-corrected

[Benjamini and Hochberg, 1995]). The encoding model built with the last layer of ResNetCLIP ’s

visual encoder explains variance close to the voxel noise ceiling (see Fig. 6.6 for performance

measured in r for Subject S5). As a reference, earlier papers using voxelwise encoding models

for brain prediction report well below 0.7 in maximum correlation [Güçlü and van Gerven, 2015,

Huth et al., 2016]. In Allen et al. [Allen et al., 2022] a brain optimized model of early visual

cortex (V1-V4) explains up to 0.8 in R2, similar to what we observe here in high-level visual

cortex. However, directly comparing performance across wide range of models is challenging

due to the fact that different studies are carried out with very distinct experimental designs and

rely on different data preprocessing and fitting pipelines. Studies that report model performance

in terms of averages within ROIs and representation similarity (RSA) scores are also difficult to

compare to our present results. Importantly, the high level performance we observed was not

idiosyncratic to a few subjects: both the overall level and the pattern of prediction performance

were highly consistent across S1-S8 (results for S5 are shown in Fig. 6.1, results for S1-S8 are

shown in Fig. 6.7 and Fig. 6.8).

The ResNetCLIP encoding model’s superior prediction performance provides compelling ev-

idence that joint supervision from text information leads to representations that are better pre-

dictive of high-level visual cortex. We discuss this further in the Discussion section. From a

theoretical point of view, these results suggest that the semantic information summarized in the

image captions plays an important role in the organization of high-level visual knowledge in the

human brain.

Beyond overall performance metrics, performance peaks in the brain prediction maps were
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aligned with common functionally-defined category-selective ROIs. In particular, peaks within

regions implicated as scene-selective [Epstein and Baker, 2019], body-selective [Downing et al.,

2001b], and face-selective [Sergent et al., 1992, Kanwisher et al., 1997b] were sufficiently well

defined so as to allow localization of these ROIs based solely on the prediction performance of

ResNetCLIP . We speculate that these alignments signal the importance of semantic associations

in scene understanding and person recognition.

In order to rule out performance improvements based on a specific network architecture,

we extracted features from two available model backbones that are pre-trained with CLIP: vi-

sual transformer (ViT-32) and ResNet50. Differences in prediction performance were small (see

Fig. 6.11), indicating that the improvement provided by models using CLIP is not due to any

particular neural-net architecture.

To explore whether captions associated with images alone could predict the brain activity

in response to viewing the corresponding image, representations extracted from the last layer

of the CLIP text encoder were also used to predict voxelwise responses across the brain. To

accomplish this we provided the text encoder with the captions of the images viewed in the

scanner by each subject. The text encoder representation was then used to make voxelwise brain

predictions. Somewhat surprisingly, in the absence of any image information, the model is still

able to predict higher level visual cortex similar to that of the model based on ResNetCLIP ’s

image encoder (Fig. 6.2), though the visual encoder still explains most of the unique variance

throughout the cortex (see Fig. 6.12 for variance partitioning between visual and text encoder

model). This result shows CLIP does enable models to learn meaningful latent space that bridges

between vision and natural language as well as the efficacy of this latent space in capturing brain

relevant visual-semantic information from the images and the captions. The fact that both the

image and text encoders have similar patterns of high predictive performance indicates that the

information encoded in these high-level visual areas is highly anchored in semantics.
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Visualization of ROIs with common English words

The trained encoding model with CLIP created a new tool for us to probe semantic representation

of a brain region. From previous results, we show that the trained model reliable maps from the

latent space of both visual and text encoder of CLIP to all voxels in the brain. Using the learned

mapping from text encoder, we can now provide prediction of how each voxels respond to any

text stimuli, in or out of the dataset. We then take a step further and ask, given a set of general

words, what are the words or sentence that maximally activates a brain area. In table X, we show

the set of the words that maximally activate brain areas that’s well known to us. For the fusiform

face area (FFA), for example, the words maximally activate it according to the trained model

are: people, face, smile, etc, which is consistent with our previously knowledge of FFA. For the

parahippocampal place area (PPA), we see a different set of words including: land, property, and

stations, etc. This result is also consistent with our prior knowledge of this brain area. Together

this shows that the visualizing the areas with text can consistently reveal semantic turning of

brain areas, and encoding model with CLIP text encoder provides a simple visualization tool for

semantic representation in the brain.

6.2.2 Embeddings learned with CLIP explain more unique variance than

unimodal embeddings

As compared to the ImageNet trained ResNet50 (ResNetImageNet), ResNetCLIP explains more

variances in individual voxels across the whole brain, as shown in 6.3a and Fig. 6.10. In order to

measure the unique variance accounted for by ResNetCLIP as compared to unimodal models, we

performed a variance partitioning analysis [Lescroart et al., 2015, de Heer et al., 2017] (Fig. 6.3).

Only voxels with significantly higher than chance unique variance are plotted for both models

(p < 0.05, FDR-corrected). We compared the unique variance accounted for by the last layer

of the ResNetCLIP image encoder to that accounted for by last layer of ResNetImageNet (which

had the same ResNet50 architecture), ruling out potential performance differences arising from
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model architecture.

Consistent with our results for prediction performance, ResNetCLIP accounts for the majority

of the unique variance in areas anterior to primary visual cortex, particularly in OPA, PPA and

EBA – all functional ROIs implicated in scene and person perception. To evaluate ROI-level

improvement we also present a series of voxel scatter plots for a range of functional ROIs in

Figure 6.3b. With the exception of early visual areas (e.g., V1v, h4v), ResNetCLIP accounts for

a much larger portion of the unique variance for the majority of voxels in these high-level ROIs.

Beyond category-selective ROIs that respond to faces, places, and bodies, we also identified

ROIs such as TPOJ and Angular Gyrus (AG) that were much better explained by ResNetCLIP .

Interestingly, these two areas are held to be related to theory of mind and language [Saxe and

Kanwisher, 2013].

Note that the last layer of ResNetCLIP explained less of the variance in early visual cortex

as compared to ResNetImageNet; however, this does not imply that ResNetCLIP fails to capture

information represented in these regions. The last layer of ResNetCLIP is the bottleneck layer that

captures the image embeddings optimized to match in similarity with the text embeddings. As

shown in Fig. 6.13, the entire visual pathway is best predicted by a progression of ResNetCLIP

layers (including ones below the bottleneck layer). More generally, ResNetCLIP is the best

predictive model for the whole of visual cortex.

6.2.3 Regions that benefit most from ResNetCLIP embeddings encode scenes

of humans interacting with their environment

To better understand the semantic dimensions learned in the encoding model built with CLIP

model representations, we performed principal component analysis (PCA) on the learned weight

matrix concatenated across the 20,000 top predicted voxels from each of the eight subjects in

NSD. We projected the concatenated voxels onto the principal component (PC) dimensions to

understand the tuning of the entire voxel space, following previous work [Huth et al., 2016, Çukur
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et al., 2013]. By visualizing each PC of the learned model and its corresponding voxel projection,

we were able to uncover some of the semantic bases that underlie semantic organization in the

brain. To interpret the information captured by different PCs, we visualized the top images that

have the most similar representations to a given PC, for the top 5 PCs, which account for most

of the explained variance (as shown in Fig. 6.15). These images, as shown in Fig. 6.16, were

identified by computing the dot product similarity of ResNetCLIP image embeddings with the

vector corresponding to the PC direction.

As illustrated in Figure 6.4d, we observed that animate and inanimate images are separated

by PC1, and its brain projections correspond to functionally-defined body and face regions (e.g.,

FFA and EBA). As illustrated in the bottom row of Figure 6.17, we observed that scenes and food

images are separated by PC2 when we split the functional areas identified from PC1 with PC2;

its brain projections corresponded to functionally-defined place regions (e.g., PPA, RSC, OPA)

and the food region [Jain et al., 2023, Pennock et al., 2023, Khosla et al., 2022]. Of note, we

obtained interpretable PC dimensions up to PC10 (despite the relatively low explained variance

from PC6 onwards), allowing us to identify more fined-grained semantic distinctions within

high-level visual cortex. Images visualization of the rest of the PCs are shown in Fig. 6.16.

We directly compared the brain projection for PC1 and the unique variance map for ResNetCLIP .

We found that voxels that have large negative values on the PC1 overlay the majority of the time

with voxels where ResNetCLIP has the largest unique variance (Figs. 6.4a and 6.4b). These vox-

els clustered in ventral EBA, FFA-1, FFA-2, as well as ventral RSC. Figure 6.4c further validates

this finding by showing a strong negative correlation for the voxels with a negative projection be-

tween the magnitude of this projection and the unique variance explained by ResNetCLIP . (Note

that the sign of the PC is arbitrary and can be flipped; we use “negative” here to refer to one

of the sides of PC1.) Thus, PC1 appears to separate the regions of high-level visual cortex that

benefit the most when ResNetCLIP is used to predict performance.

Figure 6.4d shows the top 10 images for both ends of PC1. Top negative images are people
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participating in sports, whereas the top positive images are indoor scenes. This separation is

consistent with the location of the best predicted voxels from ResNetCLIP being centered on

the extrastriate body area (EBA). Distribution of object categories present in the images that are

on the two sides of the PC1 further validate this finding (Fig. 6.4d). We leveraged the known

category and super-category labels of images in COCO and found that images that lie on the

negative end of the PC1 are more likely to contain people, animals, and sports items. These

observations suggest that the representation of people in ResNetCLIP is the domain for which

the model provided the most leverage in terms of predicting brain responses (i.e., as compared

to ResNetImageNet). From an ecological standpoint this finding appears to capture high-level

semantic statistics regarding the world around us: scenes of people and human interactions are

heavily present in our daily life. Returning to our original hypothesis, by including natural

language as input (image captions) along with complex scenes, ResNetCLIP is more effective at

capturing the rich semantics of scenes as compared to models trained with image/label pairs pre-

training (e.g., ImageNet). At the same time, it is important to recognize that the process of how

CLIP is trained has other major differences from earlier models. These differences, for example,

larger training datasets and greater diversity in dataset distribution, may also contribute to the

ability of CLIP to predict brain responses in high-level visual areas. We explore these factors in

the next section.

6.2.4 Disentangling the effects of language feedback, model architecture,

dataset size, and data diversity

As noted, beyond model architecture, the training data distribution and size may both impact

model representations and how predictive they are in voxelwise encoding models of the brain.

To better understand, in a controlled manner, the contributions of each of these factors towards

the high brain prediction performance we observe with CLIP, we included three further variance

partitioning analyses. The additional models we compared to one another in these analyses are
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listed with their relevant characteristics in Figure 6.5a. Critically, these models also allow us to

use the publicly available YFCC (“Yahoo Flickr Creative Commons”) [Thomee et al., 2016] and

LAION [Schuhmann et al., 2022a] datasets to better control for dataset size and diversity. YFCC

is a 100 million example dataset comprised of multimedia “objects” which includes 15 million

photos with captions selected from Flickr, while LAION is a large-scale dataset that contains

5.85 billion multilingual CLIP-filtered image-text pairs. Both the YFCC and LAION datasets

provide sufficient multimodal data to retrain CLIP with different dataset parameters that allow

for better control of dataset parameters.

We visualized averaged model performance across all models in Figure 6.5b for several well-

characterized ROIs within each general anatomical and semantic categories (EarlyVis: V1v, h4v;

Scene: PPA, OPA, RSC; Body: EBA; Face: FFA-1, FFA-2; TPOJ: TPOJ-1, TPOJ-2). Each

point in the figure is a region’s averaged performance, averaged across 8 subjects and error bar

indicates standard error across 8 subjects. We observe that all CLIP models and the SSL models

explained brain responses in higher visual cortex significantly better than the ResNetImageNet

model, while differences among SSL and CLIP models are small. An important point about

these summary results is that they describe average responses across all voxels in a given ROI.

Consequently, they do not reflect any spatial patterns of unique variance within that ROI. In that

some ROIs as defined in NSD are large in terms of number of voxels, ROI average analyses

are likely to mask meaningful spatial prediction patterns across models. In the flattened cortical

maps of the unique variance shown in Figure 6.5c-e, and as discussed in detail in the next section,

model comparisons that are similar on the average, as described in [Conwell et al.], actually also

carry fine-grained information about the effects of model architecture, data distribution, and

dataset size.

To take a closer look on how model feedback, dataset size and diversity affects predictions

of each individual voxels, we present three voxelwise analyses in which we extracted features

from models to build encoding models to predict voxel responses and analyzed voxelwise unique
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variances explained by each model: 1) the effect of language feedback when controlling for the

dataset parameters of distribution and size; 2) the effect of dataset size when controlling for the

data distribution, feedback type, and model architecture; and 3) the effect of data distribution

when controlling for feedback type and training dataset size. Note that while other comparisons

between models are possible, all of them would involve models that vary from one another on

more than one factor. As such, these three included comparisons are the ones that are maximally

informative in terms of isolating single factors with respect to their impact on brain prediction

performance.

First, we evaluated the effect of language feedback while controlling for dataset size and data

distribution by comparing the simCLR and SLIP (which combines simCLR and CLIP losses,

meaning that language is the only varying factor) models trained on 15 million photos captions

pairs from the YFCC dataset. Figure 6.5c shows the spatial brain map of the unique variance

comparison, thresholded by statistical significance (p < 0.05, FDR-corrected [Benjamini and

Hochberg, 1995]). Using the exact same dataset, we see unique variance explained by SLIP in

EBA, FFA and adjacent to the boundary of RSC, while simCLR shows more unique variance

explained in early visual cortex and posterior EBA. Below the brain maps, we further exam

model preferences using a histogram of unique variance across all EBA voxels (for all 8 sub-

jects). We observe a bimodal distribution of voxels preferring one model or the other, with more

voxels skewing towards YFCC SLIP. Flatmaps of significant unique variance explained by SLIP

are also visualized across 8 subjects in the common MNI space in Figure 6.18. In MNI space,

significant voxels show consistent patterns across subjects. More generally, these data visual-

izations indicate that interpreting brain prediction across models requires analysis at the voxel,

rather than the ROI, level, in order to move beyond the broad functional roles associated with

different ROIs.

Second, we evaluated the effect of dataset size while controlling for data distribution by com-

paring two CLIP models trained on 400 million or 2 billion image/caption pairs from the LAION
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dataset [Schuhmann et al., 2022a]. Figure 6.5d shows the spatial brain map of the unique vari-

ance comparison, thresholded by statistical significance (p < 0.05, FDR-corrected [Benjamini

and Hochberg, 1995]). The representations from CLIP trained using the larger dataset explained

more unique variance than CLIP trained using the smaller dataset in EBA, FFA, and areas outside

of RSC. However, this improvement in prediction performance due to dataset size was small. The

scale of the unique variance accounted by both versions of CLIP is shown in the histogram of

EBA voxels below the brain maps. The narrow spread indicates that dataset size, after reaching

a critical level for model training, does not seem to be a critical factor in the improvements in

brain prediction we obtained using CLIP.

Third, we evaluated the effect of data distribution while controlling both feedback type

and dataset size by comparing two CLIP models trained on 400 million image/caption pairs

from OpenAI [Radford et al., 2021] or from LAION [Schuhmann et al., 2022a]. Figure 6.5e

shows the spatial brain map of the unique variance comparison, thresholded by statistical signif-

icance (p < 0.05, FDR-corrected [Benjamini and Hochberg, 1995]). The representations from

CLIP trained using OpenAI’s dataset explained more unique variance than CLIP trained using

LAION’s dataset in regions including the EBA, FFA and areas outside of RSC. This result aligns

with a previous study [Fang et al., 2022] that argues that data diversity in the training dataset con-

tributes significantly to the robustness of the OpenAI CLIP model. As shown in the histogram

of EBA voxels below the brain maps, the scale of difference arising from data distribution is

larger than that arising from dataset size, indicating that data diversity is an important factor in

the improvements in brain prediction we obtained using OpenAI CLIP.

To summarize, we argue that the inclusion of language feedback and the diversity/quality

of training data, given some baseline amount of data, are important model characteristics for

achieving improved brain prediction in high level visual cortex. At this point in time, however,

these factors cannot easily be disentangled further in that natural language labeling (i.e., image

captions), compared to category labels, may introduce large variations that are concomitant with
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dataset size and data diversity. That is, if language is the training feedback that distinguishes a

good proxy model of the brain [Leeds et al., 2013], then it logically follows that the quality of

those language annotations also make a difference in the brain prediction performance of these

models.

We also performed a variance partitioning analysis comparing ViT-32CLIP and BERT, and

likewise found that ViT-32CLIP accounts for almost all unique variance, again ruling out im-

provements in prediction due to architectural differences (Fig. 6.14). Thus, the advances we

observed in brain prediction using models using CLIP do not appear to arise from incorporating

complex semantics alone, but rather, can be attributed to a meaningful mapping between visual

and semantic representations.

6.3 Discussion

Do higher performing models using more human-like training feedback, and in particular, nat-

ural language, as well as more diverse, ecologically-valid training sets, also perform better at

accounting for brain data in response to complex, real-world scenes? To address this ques-

tion, we evaluated and quantified the contributions of the multimodal pre-training as provided

by CLIP for generating semantically-grounded, behaviorally-relevant representations of natural

scenes. We find that models using CLIP as a pre-training task are extraordinarily good at predict-

ing voxelwise responses to viewing real-world scenes in the Natural Scenes Dataset [Allen et al.,

2022]. Validating this finding, a second study also finds that models using CLIP as a pre-training

task can better predict responses in NSD as compared to other deep network models (likewise

controlling for training data and model architectures)[Conwell et al., 2022a,b]. However, while

it is appealing to attribute the improved prediction performance of CLIP to its inclusion of lan-

guage feedback during training, several other factors may also contribute to the high level of

brain prediction performance using CLIP. More specifically, CLIP models, as compared to prior

models used for brain prediction [Yamins et al., 2014a, Güçlü and van Gerven, 2015], often have
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different model architectures and were pre-trained with many more examples. Consequently,

model architecture, multimodal pre-training, dataset size, or data diversity (or some combination

therein) may underlie some or all of the improved brain prediction performance we obtained.

To address the potential contributions of these factors, we examined the prediction perfor-

mance for several other models that enabled us to control for each factor. Using models for brain

prediction that differ from one another along only a single dimension, we found that: 1) Models

trained with natural language feedback show a consistent advantage in prediction performance

in certain high-level brain regions, including the EBA and TPOJ; 2) The quality, diversity, and

quantity of the training data may set a ceiling for improvements in prediction arising from adding

language feedback; 3) The size of the training dataset for the CLIP model appears to be both less

consequential for improved prediction performance and shows diminishing returns as compared

to other data characteristics (i.e., data diversity). As such, we conclude that models using CLIP

(along with sufficient data diversity) are better candidate models for understanding representation

in high-level human visual cortex.

More broadly, in contrast to simply quantifying overall brain prediction performance across

a range of models, we focus on human-like training in the form of natural language feedback and

larger, more diverse datasets. We not only identify the brain areas that benefit most from natural

language feedback, but also provide analyses that help us to better understand the ways in which

CLIP pre-training facilitates learning brain-like representations. Visualizations of the representa-

tions from ResNetCLIP and a unimodal network reveal that ResNetCLIP better captures semantic

information. This observation is consistent with our finding that natural language feedback is

central to CLIP’s improved performance and our hypothesis that this improvement is associated

with the encoding of complex semantic representations in high-level visual cortex. We then used

PCA analyses to explore our results, finding that, withing ResNetCLIP , the fine-grained represen-

tation of scenes depicting human interaction drives the largest gains in brain prediction, which

in turn illuminates some of the underlying reasons why models using CLIP yield such excellent
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performance particularly in EBA. Our conjecture is that ResNetCLIP is capturing information

about humans interacting with the world around them, and that such complex semantic infor-

mation is predictive of this fundamental aspect of higher level brain regions [Bracci and Op de

Beeck, 2023].

In toto, our results support the theory that human higher-level visual representations reflect

semantics and the relational structure of the visual world beyond object identity; for example,

non-perceptual associations such as function or linguistic meaning [Gauthier et al., 2003, Bracci

and Op de Beeck, 2023, Maier and Abdel Rahman, 2019]. Supporting this point, in concurrent

work [Charest et al., 2020], an embedding model based on text captions for viewed images also

suggests that higher-level visual cortex represents semantic information related to those images.

Indeed, while it is well established that language plays a critical role in the acquisition of seman-

tics [Nappa et al., 2009, Waxman and Markow, 1995], language also influences the acquisition

of visual categories during development, where visual learning occurs concurrently with lan-

guage and conceptual learning [Waxman and Markow, 1995, Lupyan et al., 2007, Shusterman

and Spelke, 2005a]. In this context, in conjunction with our results, it seems clear that language

and semantics strongly influence the high-level organization of visual information encoded in the

human brain.

Returning to the question of what it is about models pre-trained with CLIP that enables them

to excel not just at visual tasks such as few-shot learning, but also at brain prediction, we note

that this is a question that is still being debated within the field of computer vision [Fang et al.,

2022]. In our view, the same natural language feedback, along with data diversity, helps prompt

higher performance in both domains - another instance where higher performing models also

perform better at brain prediction [Yamins and DiCarlo, 2016a]. Interestingly, beyond a certain

size, the size of the training dataset appears to have little impact on performance. This is in line

with the intuition that even if we were able to re-train ResNet on a much bigger dataset, but con-

tinued to include only category labels, the resultant model would be unlikely to learn fine-grained
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representations of semantically complex scenes. Such nuanced information regarding human in-

teractions in real-world scenes is not typically carried by category labels. That is, while some

labels do contain semantic information beyond the category (e.g., “party”), language feedback

provides context and a broader understanding, for example, the semantic relationships between

different real-world scenes. Supporting this point, we found that, given equivalent training data,

models with natural language feedback outperformed self-supervised and unimodal models in

higher level visual areas. As such, the natural language feedback present in models pre-trained

with CLIP appears crucial to their excellent performance in tasks related to both machine and

biological intelligence.

In sum, the ability of CLIP pre-trained models to predict brain responses opens up new possi-

bilities for developing a deeper understanding of the functional architecture of the human brain.

Further exploring the implications of this finding will require new ways of thinking about both

machine and biological systems. Future large-scale efforts should incorporate stimuli, tasks, rep-

resentations, and models that reflect the natural complexity of how we interact with the world

around us.

6.4 Materials and Methods

6.4.1 Datasets

fMRI data. Brain recordings were obtained from the the Natural Scenes Dataset (NSD) [Allen

et al., 2022], an open dataset of 7T whole brain high-resolution fMRI responses from eight sub-

jects (S1-S8) who each viewed ∼10,000 unique images of natural scenes, each image repeated

3 times. These scene images were a subset of the images in the annotated Microsoft Common

Objects in Context (COCO) dataset [Lin et al., 2014b]. Of the 70,566 total images presented

across subjects, ∼1,000 images were viewed by all subjects. fMRI data were collected during

30-40 scan sessions. Stimulus images were square cropped, presented for 3 s at a size of 8.4◦ ×
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8.4◦ with 1 s gaps in between image presentations. Subjects were instructed to fixate on a central

point and to press a button after each image if they had seen that image previously.

The functional MRI data were acquired at 7T using whole-brain gradient-echo EPI at 1.8-

mm resolution and 1.6-s repetition time. Preprocessing steps included a temporal interpolation

(correcting for slice time differences) and a spatial interpolation (correcting for head motion).

Single-trial beta weights were estimated with a general linear model. In this paper we used

the betas_fithrf_GLMdenoise_RR preparation of the betas. FreeSurfer [Dale et al., 1999, Fischl

et al., 1999] was used to generate cortical surface reconstructions to which the beta weights were

mapped. The beta weights were z-scored across run and were averaged across repetitions of

the image (up to 3 repetitions of each image), resulting in one averaged fMRI response to each

image per voxel, in each subject. NSD also includes several visual ROIs that were identified

using separate functional localization experiments. We drew the boundaries of those ROIs for

each subject on their native surface for better visualization and interpretation of the results (e.g.,

Fig. 6.1). All brain visualizations were produced using Pycortex software [Gao et al., 2015a].

Natural scene images. All stimulus images used in NSD and in our experiments were drawn

from the COCO dataset [Lin et al., 2014b]. COCO is unique among large-scale image datasets

in that COCO images contain contextual relationships and non-iconic (or non-canonical) object

views. In comparison to ImageNet [Deng et al., 2009b], COCO contains fewer labeled categories

(91), but includes more examples for each category (> 5, 000 for 82 of the categories). Note,

however, that many labeled categories in ImageNet are at the subordinate level – COCO likely

contains at least as many unlabeled subordinate categories. The complete set of COCO images

and additional details can be found on the COCO website: https://cocodataset.org.
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6.4.2 Model details and feature extraction

Models used in the analysis includes: 1) OpenAI trained CLIP (with ViT-32 transformer and

ResNet50 backbones); 2) YFCC trained SLIP, CLIP, simCLR; 3) Open CLIP models trained on

LAION 400m and LAION 2B; 4) ImageNet pretrained ResNet50. All NSD stimuli images were

input to the these models.

For model comparison, we use the output of the “image encoder” in CLIP models and the

second to the last layer in ImageNet trained models as feature spaces for the encoding models.

The feature dimensions for each of the model feature spaces are as follows: ImageNet trained

ResNet50: 2048; OpenAI CLIP with ViT-32 backbone: 512; OpenAI CLIP with ResNet50

backbone: 1024; YFCC simCLR: 768; YFCC SLIP: 512; YFCC CLIP: 512; LAION 400m

CLIP: 512; LAION 2B CLIP: 512.

For image captions, we use the human generated captions for each of the NSD images pro-

vided by the COCO dataset and input them into both BERT and CLIP-based models’ text en-

coders for their layerwise activations. On average, COCO provides 5-6 captions for each image.

Caption embeddings for a image are extracted individually and the average is used in the encod-

ing models.

6.4.3 Voxelwise encoding models

We built ridge regression model (implemented in PyTorch; see [Koushik, 2017]) to predict one

averaged fMRI response to each image per voxel, in each subject. We chose to use a ridge regres-

sion model instead of more complicated models in order to retain the interpretability of model

weights, which may provide insights into the underlying dimensions of the brain responses. We

randomly split the total number of images a subject sees into training and test set with a 4-to-1 ra-

tio. For each subject, each voxel’s regularization parameter was chosen independently via 7-fold

cross-validation across the training set. We swept through 100 regularization parameters spaced

evenly on a log scale from 10−8 to 1010, i.e. np.logspace(-8, 10, 100). Cross-validation was han-
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dled by sklearn.model_selection.KFold, where data are split into consecutive folds

without shuffling. Each fold is used once as validation while the rest of the set are used for

training. Model performance was evaluated on the test data using both Pearson’s correlation and

coefficient of determination (R2). To determine the significance of the predictions, we perform a

bootstrap test where we resample the test set with replacement for 2000 times and compute the

FDR corrected p-values threshold for various performance statistics.

6.4.4 Variance Partitioning

To obtain unique variance by two model A and B, we first create joint model of A and B by

concatenating features from these two models. We then fit voxelwise ridge regression model

to the joint model and obtain R2
A&B. The variance explained by individual model A and B are

denoted as R2
A and R2

B, respectively. We then calculate the unique variance for model A and B,

where R2
A = R2

&B −R2
B, R2

B = R2
A&B −R2

A.

6.4.5 PCA analysis

We performed principal component analysis (PCA) on the learned matrix to recover the semantic

basis of the learned model. We selected the 20,000 best predicted voxels for each individual sub-

ject based on the noise corrected model performance of the ResNetCLIP . We then concatenated

the weight matrices (used in encoding model with ResNetCLIP ) corresponding to these voxels

from all eight subjects along the voxel dimension. We then centered the matrix, applied PCA,

and obtained the first 20 PCs. Explained variance by these PCs are plotted in Figure 6.15.
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“a living room scene with a laptop 
and a television.”

“a person eating with chopsticks and 
reading books in their living room”

“a few graphic novels and a laptop 
on a couch in front of a tv”

fMRI
Image 

Enc.

Text 
Enc.

Optimized 
to be similar 

during training

predict

predict

a b

c

Prediction Performance - R2

(all colored voxels p < 0.05, FDR corrected)
NS

Figure 6.1: Model pipeline, motivation and prediction performance for the ResNetCLIP vi-
sual encoder. (a) Last-layer representations from the CLIP image and text encoders are extracted
from images and captions, respectively. These representations are used in voxelwise encoding
models to predict brain responses to each image. (b) The similarities of pairs of images when
using embeddings from ResNetCLIP and ResNetImageNet are compared. The position of each dot
in the scatter plot is determined by similarity scores for the same pair of images in ResNetCLIP

and ResNetImageNet model spaces. Pairs of images in the bottom right corner are those most
similar in ResNetCLIP and most dissimilar in ResNetImageNet; for example, images of people
surfing and skateboarding and images of giraffes and an elephant. In contrast, pairs of images in
the top left corner are those most similar in ResNetImageNet and least similar in ResNetCLIP ; for
example, visually similar pictures of people wearing dark suits with a white shirt and a contrast-
ing tie. (c) Voxelwise prediction performance (measured in R2) on a held-out test set is shown
for Subject S5 in a flattened view of the brain with overlays for functionally-defined, category-
selective ROIs (top), as well as in lateral, posterior and bottom views (bottom row, left-to-right).
(Bottom-right) A 2D histogram of model performance in R2 against noise ceiling and 85% noise
ceiling across all voxels in the whole brain. Density of voxels are shown in a log scale. Most
voxels are predicted close to its noise ceiling and some are above the 85% noise ceiling.
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Prediction Performance -

(all colored voxels p < 0.05, FDR corrected)

R2

NS

Figure 6.2: Prediction performance for the CLIP text encoder. Prediction performance for
voxelwise responses – R2 – in held out data for the CLIP text encoding model for S5 with
overlays for functionally-defined, category-selective ROIs. Although only having access to the
captions of the images that the subjects viewed, the CLIP text encoder is still able to predict
fMRI data in many functionally-defined ROIs (e.g., EBA, PPA, RSC, FFA).
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(all colored 
voxels p < 0.05, 
FDR corrected)

c

Figure 6.3: Performance for the CLIP visual encoder using a ResNet backbone as compared
to ResNetImageNet (a) 2D distribution plots of voxels from the whole brain in S5 in model
performance (in R2) and unique variance comparing between ResNetCLIP and ResNetImageNet.
The red lines indicates equal performance for the two models. ResNetCLIP predicts much better
in terms of total variance and unique variance. (b) Unique variance accounted for by ResNetCLIP

as compared to ResNetImageNet for 12 different ROIs for all eight subjects. Individual voxels
are plotted as blue points. The red lines indicate iso-variance, that is, (y = x). ResNetCLIP

accounts for overwhelmingly more variance than ResNetImageNet in higher-level visual cortex.
In contrast, ResNetImageNet only accounts for more variance in ventral V1 and a reasonable
proportion of the variance in ventral V4. (c) Unique variance accounted for by ResNetCLIP

as compared to ResNetImageNet for S5 – obtained by subtracting R2 for each model from that
of the joint model (with concatenated feature spaces). Voxels where ResNetCLIP accounts for
greater unique variance are orange and voxels where ResNetImageNet accounts for greater unique
variance are blue.
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Figure 6.4: Better representations of scenes with people in a model trained with CLIP can
account for gains in unique variance. (a) Unique variance explained by ResNetCLIP plotted on
a flatmap from S5. (b) Projection of voxels onto PC1 of ResNetCLIP for S5. Voxels that are best
explained by ResNetCLIP overlap largely with the voxels that lie on positive side when projected
onto the 1st PC. (c) Voxelwise scatter plot illustrating that for voxels lying on the negative side of
1st PC projection, the further down the voxel lies on the projection, the better it is explained by
ResNetCLIP . (d) Images are grouped in to “+” and “−” depending on which side the image lies
on when projected onto the PC1. The top 10 images that best align with either end of the PC1 are
shown in the yellow and green boxes respectively. For the positive projection we observe images
of indoor scenes, whereas for the negative projection we observe images of people participating
in outdoor sports. (e) Category distribution of two groups of images validates that images on the
negative side consist more of people, animal, and sports, relative to images on the positive side.
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YFCC SLIP vs. YFCC simCLR
15M (SSL + Lang) 15M SSL

LAION 2b vs. LAION 400m
2B Lang 400M Lang

OpenAI CLIP  vs. LAION 400m
400m Lang 400M Lang

(e) varying data distribution only(d) varying dataset size only(c) varying language feedback only

(b)(a)

EBA voxels EBA voxels EBA voxels

S5

S2S1 S7

.05

0 .05

Figure 6.5: Variance partitioning analyses controlling for model architecture, data distribution,
and dataset size indicate that dataset size and diversity have comparatively smaller effects on
voxel prediction than language input does. (a) The models we consider with their relevant char-
acteristics; (b) Brain prediction performance averaged across all voxels in a given brain region for
each model+dataset combination (“SSL” denotes self-supervised learning; “Lang” denotes nat-
ural language feedback for a given model). Error bars reflects standard error across 8 subjects.
When looking at average brain prediction performance with an ROI, all three CLIP pre-trained
models and the SSL model perform significantly better than ImageNet trained ResNet50, while
differences between all three CLIP models and the SSL model are relatively small. (c-e) Cortical
flatmaps showing the fine-grained, spatial distribution of unique variance for model comparisons
varying a single factor while controlling for the others. For each comparison, the first row shows
brain maps from S5, while the second row shows unique variance brain maps from S1, S2, and
S7, respectively. The third row of each comparison shows a 2D histogram of unique variance
for individual voxels in EBA for all 8 subjects. The red line indicates identical unique variance
(y = x). Notably, as shown in (c), when the same dataset is used for training across models,
SLIP, a model that includes language feedback, accounts for more unique variance in high-level
brain areas such as EBA and some parts of FFA, relative to simCLR, an otherwise identical
model that does not include language feedback. Beyond language feedback, as shown in (e),
a good data distribution appears to also account for unique variance in some high-level visual
areas, while, as shown in (d), dataset size per se appears to account for very small improvements
in unique variance past a certain size.
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Prediction Performance -

(all colored voxels p < 0.05, FDR corrected)

r

NS

Figure 6.6: Prediction performance meansured in corrlation using the CLIP visual encoder.
Voxelwise prediction performance (measured in r) on a held-out test set is shown for S5 in a
flattened view of the brain.
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(all colored voxels p < 0.05, FDR corrected)

Figure 6.7: Prediction performance with CLIP visual encoder for all eight subjects. Vox-
elwise prediction performance (measured in R2) on a held-out test set is shown for S1-S8 in a
flattened view of the brain.
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Figure 6.8: Scatterplots of noise ceiling against model performance in R2 for all subjects.
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(all colored 
voxels p < 0.05, 
FDR corrected)
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Figure 6.9: Unique variance accounted for by ResNetCLIP as compared to ResNetImageNet

(noted as RN in the figure) for all eight subjects. Voxels where ResNetCLIP accounts for
greater unique variance are orange and voxels where ResNetImageNet accounts for greater unique
variance are blue.
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Figure 6.10: Total variance accounted for by ResNetCLIP as compared to ResNetImageNet

for S5 Voxels where ResNetCLIP accounts for greater variance are orange and voxels where
ResNetImageNet accounts for greater variance are blue. White voxels are where both models
explain well.

.1

0 .1ViT-32

RN50

Figure 6.11: Performance 2D map between ResNetCLIP and ViT-32CLIP .
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Figure 6.12: Unique variance by CLIP visual encoder and CLIP text encoder.

Layers

Figure 6.13: Layer preference by voxels across the brain.
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CLIP

BERT

Figure 6.14: Performance comparison between CLIP text encoder with BERT Unique vari-
ance accounted for by CLIP as compared to BERT for S5 – obtained by subtracting R2 for each
model from that of the the concatenated model. Voxels where CLIP accounts for greater unique
variance are orange and voxels where BERT accounts for greater unique variance are blue.
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Figure 6.15: Explainable variances across 20 PCs
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Figure 6.16: Top 15 images for top 5 PCs
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FFA
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………

20000 best predicted voxels

Figure 6.17: Cortical semantic organization as revealed by the principal components of
the CLIP encoding model. Brain regions well predicted by ResNetCLIP can be hierarchically
decomposed using the model PCs. PC1 separates animacy regions (EBA and FFA) from other
regions, which are themselves separated by PC2 into place and food regions [Jain et al., 2023].
The rest of the tree is not shown due to space constraints.
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Figure 6.18: Unique variances by YFCC SLIP compared to YFCC simCLR across all 8
subjects in MNI space. Unique variances explained by YFCC SLIP from each subjects are
projected into MNI space. Only unique variances above significance threshold are projected
(p < 0.05, FDR-corrected [Benjamini and Hochberg, 1995].

84



Chapter 7

Interplay of language and visual

representations

7.1 Introduction

In the prior sections, we have used task driven and multimodal models to map out the represen-

tation of visual and semantic information in the human brain. Notably, these data are collected

using fMRI responses while viewing static images under free viewing (albeit with fixation) con-

ditions. In particular, there is no manipulation of attention with respect to different scene loca-

tions or objects in the scene. However, as demonstrated by Çukur et al. [2013], different attention

conditions can warp the representation of different semantic categories. For example, they show

that instructing subjects to pay attention to people versus cars warps the representational space

towards the attended to category so that the attended categories and its adjacent categories are

more heavily represented in the brain.

The fact that neural representations change their structure with shifts in attention is relevant

to our interactions with dynamic scenes. As we go about our daily life, we constantly switch

attention to different elements of the scene and, sometimes, we simultaneously process infor-

mation from two or more modalities while attending to both. In this chapter, we explore how
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humans manage to accomplish this. The specific questions we ask include:

1. When we see and hear at the simultaneously (e.g., watching a movie), does the brain recruit

different representations depending on which modality we are attending to?

2. If so, which neural mechanisms mediate switching between modalities and where in the

brain do we observe representation shifts when there is a shift in attending to a given

modality?

To address these questions, we employed a state-of-the-art visual and language semantics

model to model brain responses arising from watching episodes of the “Friends” TV show as

collected in the Friends movie dataset [Boyle et al., 2021], as shown in Figure 7.1. Critically,

subjects were presented with simultaneous visual and audio stimuli, but were free to attend to

whichever modality they preferred. One interesting aspect of Friends is that incongruency be-

tween the semantic content between visual and audio is common during the episodes. One com-

mon example of such incongruency is at a dinner table, where the visual inputs switch between

scenes of people’s faces and food, while the audio inputs carry a conversation on a wide array of

topics – for example, discussions of other people, life updates, jobs, etc. The goal of this project

is to use encoding models that are based on both the visual and language modalities to map out

the processing of both streams of information in the brain, thereby revealing potential neural

areas that have flexible semantic representations for the attended modality. We hypothesized that

we would be able to observe fluctuations of model prediction between the two modalities across

time, as pictured in Figure 7.2. Potential factors that we hypothesize can drive these fluctuations

include: 1) presence and absence of conversation; 2) presence and absence of body and faces as

the focus of the scene; 3) frequency of switching of visual frames (density of visual information);

4) congruency between linguistics and visual content. In exploring each of these hypothesized

drivers, we aim to account for how the human brain is able to process multi-modal information

in parallel.

This work is still ongoing at the time this thesis was written. Therefore, this chapter provides
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Figure 7.1: Model pipeline.

Figure 7.2: Hypothesized fluctuations of model accuracy between visual and language modali-
ties.

an overview of the current results and presents directions for future research.
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7.2 Methods

7.2.1 fMRI data

The Friends Dataset is provided by the Courtois NeuroMod group (data release cneuromod-

2022)[Boyle et al., 2021]. This dataset contains functional data acquired while showing 6 sub-

jects many episodes of the Friends TV show with English dialog. It includes seasons 1-6 for

all subjects, except sub-04 who only completed seasons 1-4 (and a few segments of season 5).

Each episode is cut in two segments (a/b) to allow for more flexibility while scanning and to

give subjects opportunities for breaks. There is a small overlap between the segments to allow

subjects to catch up with the storyline. The fMRI sampling rate (TR) was 1.49s. The data were

prepossessed using fMRIPrep 20.1.0 (ref. 59). These data are available on request here.

Before fitting encoding models, fMRI data are z-scored across runs. 20 TRs are removed

from the beginning of the run and 15 TRs are removed from the end of the run to ensure data

quality for model fitting. Data across subjects 1-5 are averaged for better signal to noise ratio

before model fitting. Data from subject 6 is reserved for future testing.

7.2.2 Feature Extraction

To process videos and extract the rough semantic content from each distinct scenes, we first used

content based scene detect algorithms (‘scenedetect’ Python library) to split episodes into distinct

scenes. We then input the first frame of each distinct scene into vision model and extracted the

network activations. We tested the last layer of the CLIP visual encoder[Radford et al., 2021]

and, as a control, the second-to-last layer of a ImageNet[Deng et al., 2009a] trained ResNet50[He

et al., 2016]. To align with brain data, when more than one distinct scene (as determined by the

‘scenedetect‘ algorithm) is present within a TR, the scene embeddings for each distinct scene are

averaged.

To process the dialog in each episode, we used the transcripts provided by the Friends Dataset
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and input them into a BERT model with a sequence length of 7, and extracted the last layer

activations from the model for each token in the transcripts. To align the token embedding with

brain data, we used a Lanczos filter to interpolate the token embedding for each TR, similar to

what has been done with other language datasets [Huth et al., 2016].

7.2.3 Encoding Model

Features from both vision and language are delayed 2s, 4s, 6s, 8s and then concatenated together

to model the hemodynamic responses in voxels. We built a ridge regression model (implemented

in PyTorch; see [Koushik, 2017]) to predict one averaged fMRI response for each scene per

voxel. We chose to use a ridge regression model instead of more complex models in order

to retain the interpretability of model weights, which may provide insights into the underlying

dimensions of the brain responses.

We did not shuffle the data but split season 1 of Friends into training and test sets with

roughly a 4-to-1 ratio. For each subject, each voxel’s regularization parameter were chosen

independently via 7-fold cross-validation across the training set. We swept through 100 regular-

ization parameters spaced evenly on a log scale from 10−8 to 1010, that is, np.logspace(-8, 10,

100). Cross-validation was handled by sklearn.model_selection.KFold, where data

are split into consecutive folds without shuffling. Each fold is used once as validation while the

rest of the set is used for training. Model performance was evaluated on the test data using both

Pearson’s correlation and coefficient of determination (R2).

7.3 Results

The encoding models with CLIP and BERT both show reasonable performance in the whole

brain across three runs in the test data (s1e23b, s1e24a, s1e24b). Averaged model performance

measured in correlation (Pearson’s r) for CLIP and BERT across these three runs is shown in
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Figure 7.3 and Figure 7.4, respectively. We have also tested an encoding model based on Im-

ageNet trained ResNet50 as an alternative visual encoding model. The prediction accuracy is

lower across the brain as compared to CLIP based encoding model. More specifically, both

CLIP based and BERT based encoding models showed good performance in high-level visual

cortex, and language regions of interest (AG, PTL, ATL). Differences in model performance be-

tween visual (CLIP) and language (BERT) models measured in r2 averaged across the 3 test runs

are shown in Figure 7.5. Compared to the vision model (shown in orange), the language encod-

ing models (shown in purple) have better prediction across the test data, especially in language

ROIs. Visual encoding model based on CLIP visual encoder only have better average prediction

accuracy in more ventral part of the higher visual cortex (the orange stripe in the figure).

Figure 7.3: Model Performances (measured in correlation) from CLIP visual encoder in test data.

We were interested in prediction accuracy across time during the three test runs and analyzing

which factors drive prediction accuracy for each modality. In Figure 7.6, we show four snapshots

over s1e23b to demonstrate that visual and language encoding models show fluctuation in accu-

racy over time. The accuracy is evaluated over a time window of 10 TRs with a padding of 9 TR.

Here we measured accuracy with both R2 and negative Mean Square Error (MSE) and generally

two metrics show very similar patterns in Pycortex flatmaps while R2 has noisier results. As pre-

liminary results, we found that the absence of conversation and the presence of faces (especially
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Figure 7.4: Model Performances (measured in correlation) from BERT models in test data.

Figure 7.5: Difference in model Performances (measured in R2) between CLIP visual encoder
(orange) and BERT (purple) averaged across test data.

baby faces!) are indicative of better performance for the visual encoding model in the ventral

cortex.

In future work, we will analyze other potential factors that we hypothesize may drive fluc-

tuations as revealed by differences in predictions across visual and language encoding models.

These factors include: 1) frequency of switching of visual frames, which we posit can describe

demands in visual processing; and 2) congruency between spoken dialog and visual content.

In summary, with these preliminary results, we demonstrate the potential for understanding dy-

91



namic scenarios such as TV watching using encoding models for multiple modalities based on

task driven networks.
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Figure 7.6: Four snapshots that show differences in model performances (measured in mean
square error) between CLIP visual encoder (orange) and BERT (purple) in sliding time windows
(T=10TR, padding=9TR) across run s1e23b. Selective frames from the movie stimuli are shown
on the right and the respective differences in model accuracies are shown on the left.
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Chapter 8

Joint interpretation of representations in

neural networks and the brain

8.1 Motivation

Given similarity in the task end goals of both artificial and biological systems, it is not surprising

that high-performing systems in both domains share representations despite drastically different

physical implementations[Yamins and DiCarlo, 2016a]. More broadly, we see a similar conver-

gence in many domains, including vision [Agrawal et al., 2014, Güçlü and van Gerven, 2015,

Yamins et al., 2014b, Schrimpf et al., 2018], audition [Kell et al., 2018], language [Wehbe et al.,

2014b, Jain and Huth, 2018, Caucheteux and King, 2020, Jain et al., 2020], and both feedforward

and recurrent networks [Wehbe et al., 2014b, Nayebi et al., 2021].

The “explanatory arrow" has almost always been unidirectional – what can artificial neural

networks and their learned representations tell us about brain representations. Implicit in this

directionality is the assumption that neural networks are good models for neural systems; that

is, that the computations implemented in neural networks help us to better understand the "black

box" computations realized in different parts of the brain. Here we take a deeper look into how

various choices of network in terms of layers and task the network is trained on could affects how
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well these representation can predict the the brain. Our results indicate that the converse is also

possible: facts about the brain can help us to better understand computations and representation

in artificial neural networks.

Interest in “interpretable AI" and different methods for visualizing representation in artificial

neural networks has exploded over the past several years [Bau et al., 2017, Mordvintsev et al.,

2015, Olah et al., 2017, 2018]. Yet there are limitations on how much one can learn from visu-

alization of network features - not the least of which is the human tendency to assign a greater

semantic meaning and functional relevance to visualizations than otherwise might be warranted.

On the other hand, there is a century long history of visual neuroscience on which we can build

[Gross, 1994]. For example, Hubel and Wiesel’s [Hubel and Wiesel, 1959b] elucidation of the

response properties of localized receptive fields – a concept that forms the basis for almost all

modern approaches to edge detection [Canny, 1986] – and the well investigated functional re-

gions of interest (ROI) in high level vision of human discovered using fMRI that consistently

serve as face and place detectors [Kanwisher et al., 1997a, Epstein et al., 1999]. Outside of the

field of vision, [Toneva and Wehbe, 2019] recently demonstrated that the explanatory arrow can

be reversed in the domain of language, and that brain activity during reading can be used to fa-

cilitate the interpretation of deep neural network language models. In this light, we suggest that

our extensive understanding of biological vision will not only enable future advances in artifi-

cial vision systems, but that this knowledge will also enable a better understanding of the inner

workings of such systems.

8.2 Methods

We extract learned representations from different tasks and network architectures and explored

how they differ in predicting brain responses to natural images. Layerwise features are extracted

from specific networks and then used to build voxelwise encoding models for the cortical area

of Participant 1 in NSD. For evaluation, we calculate R, the square root of the coefficient of
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determination, as the metric of the goodness of fit for the encoding model. We also show weights

learned from the stacking algorithm for each feature.

Stacked regression method [Wolpert, 1992, Breiman, 1996] is adapted such that each encod-

ing model used a different feature space as input. At each voxel, encoding models are trained,

then the stacking algorithm learns a convex combination of the predictions of these models for

that voxel. The result from stacking is a readily-interpretable combination of individual features

that outperforms the performance of the best feature alone. These stacking weights indicate how

features are best combined to predict the specific voxel response: generally, the fewer errors a

feature makes in its respective encoding model, the higher its corresponding stacked weight; that

is, the importance of that feature for prediction.

8.3 Results

We extracted learned representations from different tasks and network architectures and explored

how they differ in predicting brain responses to natural images. Layerwise features were ex-

tracted from specific networks and then used to build voxelwise encoding models for the cortical

area of Participant 1 in NSD. For evaluation, we calculated R, the square root of the coefficient of

determination, as the metric of the goodness of fit for the encoding model. We also show weights

learned from the stacking algorithm for each feature.

To investigate how tasks influence the representations learned by a network and their ability

to predict brain data, we fixed the network architecture and compared representations learned

for object and scene classification. We used AlexNet [Krizhevsky et al., 2012] pretrained on

ImageNet [Deng et al., 2009a] and Places365 [Zhou et al., 2017] for each task. For each AlexNet

model, we extracted features from the following 7 layers in an order consistent with the network

architecture: Conv-1, Conv-2, Conv-3, Conv-4, Conv-5, FC-6, FC-7.

Figure 8.1 shows the result from encoding V1, V2, V3, V4 in the early visual cortex, Place

ROIs (OPA, PPA, RSC) and Face ROIs (FFA, OFA, aTLface) using layerwise features from
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AlexNet for object and scene classification. Within each subfigure, each individual line is pre-

diction performances and stacking weights across features from different layers for an individual

voxel. For each row of the subfigures, we can see a progression of preferred layers across ROIs.

Consistent with previous results [Güçlü and van Gerven, 2015, Yamins et al., 2014b], in AlexNet-

Object features extracted from convolution layers (Conv-2 and Conv-3) encode the early visual

areas (especially V1, V2, V3) better while features extracted from fully connected layer (FC-7)

outperform those from all other layers in encoding Place and Face ROIs. Comparing the first row

with the second, and the third row with the fourth, we can see there is a peak weight shift from

Conv-3 layer to Conv-4 layer as we change the task from AlexNet-Object to AlexNet-Place. This

indicates that with the same architecture, change of tasks could affect how representations from

network predict the brain.

Task differences observed in Alexnet do not replicate when we change the network architec-

ture to ResNet50 [He et al., 2016] while fixing the task and dataset. From ResNet50, we extract

features from the following 6 layers in the order consistent with how the network is built: Conv-

1, the last layer of Conv-2 to Conv-5 blocks respectively, and the last Avgpool layer before the

final layer.

Figure 8.2 shows results from voxelwise encoding models of V1-V4 in the early visual cortex,

Place ROIs (OPA, PPA, RSC) and Face ROIs (FFA, OFA, aTLface) using layerwise features from

ResNet50 for object and scene classification. Similar to what we see in the AlexNet results in

Figure8.1, we observe the same trend that features extracted from early layers represent the early

visual cortex better while features extracted from later layers represent Place and Face ROIs

better. However, preferred layers by the brain as well as stacking weight are consistent between

the two tasks, indicating that the additional depth of networks might lessen the influence of task

in terms brain prediction and that these deeper network might just represent more information

about the input that are not subject to tasks. One thing to note is that, for Face and Place area

prediction, layer 4 in ResNet is assigned the largest stacking weight. Different from what we see
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Figure 8.1: AlexNet encoding results. Every line corresponds to one of the best 200 encoded
voxels. Each column corresponds to a visual ROI. The first and second rows are R results for
AlexNet-Object and AlexNet-Place layers. The third and fourth row are the stacking weights. For
V1-V4 show a reverse pattern when going from AlexNet-Object to AlexNet-Place: weights of
Conv-4 layer surge and weights of Conv-3 layer plunge.

in Alexnet, where the last layer has the largest weight, it indicates that network expressiveness

might the key for a good brain prediction instead of the semantic structure in the representations.

Lastly, the commonly observed pattern that early layers in networks predict early visual layers

in the brain better while later layers in a network predict higher visual areas better, as shown in

Güçlü and van Gerven [2015], Yamins et al. [2014b], does not hold when using representations

extracted from edge detection networks. Here we extracted features from Taskonomy [Zamir

et al., 2018] encoder trained for 2D and 3D edge detection. The network architecture is similar

to ResNet50 but differs in replacing stride 2 convolution with stride 1 convolution in Conv-5 and

removing all global average pooling. We extracted features exactly as what we do in ResNet50

but excluded Conv-4 blocks.
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Figure 8.2: ResNet50 encoding results. Every line corresponds to one of the best 200 encoded
voxels. Each column corresponds to a visual ROI. The first and second rows are R results for
ResNet50-Object and ResNet50-Place layers. The third and fourth row are the stacking weights.
Preferred layers for ResNet50-Object and ResNet50-Place are consistent across ROIs.

Figure 8.3 shows the encoding results for V1 to V4 in the early visual cortex, Place ROIs

(OPA, PPA, RSC) and Face ROIs (FFA, OFA, aTLface) using Taskonomy features for 2D and

3D edge detection. For both Edge2d and Edge3d, early layers predict consistently better across

ROIs. The overall prediction performance is lower, which is not surprising considering how

little information edge detection task would normally required compared to more high level

semantic tasks. What’s surprising here is how early layers of edge detection networks yield

higher prediction performances than the later layers even in predicting place and face areas in

the brain. From the neuroscience literature, we know fairly well about the consistent responses of

place and face images in Place [Epstein et al., 1999, Park and Chun, 2009, Rajimehr et al., 2011]

and Face ROIs [Kanwisher et al., 1997a, 2002, Tarr and Gauthier, 2000, Gauthier et al., 2000,

Grill-Spector et al., 2004] in the brain respectively. Contrary to the commonly believed view
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Figure 8.3: Taskonomy edge detection network encoding results. Content in each subfigure is
similar as ones in previous figures. The first and second rows are R results for Edge2D and
Edge3D layers. The third and fourth row are the stacking weights. For both Edge2d and Edge3d,
early layers predict consistently better across ROIs and Conv-3 layer is the most preferred in all
ROIs except V1.

that a network trained to do a task should only represent variance relevant to that task [Bruna

and Mallat, 2013], our result indicates that a network could possibly represent more information

than what is needed in a task among the intermediate layers. Further analysis would be needed

to further support this point.

8.4 Discussion

We observed that in predicting brain response using representations from a relatively simple

neural network (i.e., AlexNet), varying the training task leads to differences in which network

layers best predict the brain. Of note, this effect is network dependent and disappears when the
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same comparison is done with a much larger network (i.e., ResNet50). As previously shown

in multi-task learning, network capacity and expressive power [Bengio and Delalleau, 2011,

Raghu et al., 2017] influences the learned task-relevant representations and affects how different

tasks may be learned together [Standley et al., 2020]. Thus, our first takeaway is that network

structure should be taken into consideration when mapping from network representations to the

brain. A second takeaway is that, as exemplified by our results from edge detection networks,

one can leverage our extensive understanding of the computations realized in different brain

areas to gain a more holistic understanding of learned representations in neural networks - a step

beyond visualizing randomly- or hand-picked units. Overall, the methods presented here enable a

more comprehensive approach to using neural network representations to model brain function,

allowing us to both better understand how choices as to network architecture and task affect

predictions for biological systems and, conversely, to further interpret the learned representations

realized in artificial systems.
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Chapter 9

Conclusion

9.1 Summary of Contributions

This thesis built upon past works and methods on using task driven neural networks as proxy

models for brain mapping, in order to understand how the brain processes visual scenes and

semantics. Prior to works in this thesis, only representations from networks trained for object

classification is used in prediction of brain responses to images. Works in this thesis expand this

approach to multiple tasks and multiple modality to both build a more accurate and ecological

model of the visual and semantic processing in the brain as well as to help the interpretation

of information landscapes in the brain. Lastly, the thesis also points out the limitation of this

method. We detail the contribution as follows:

• We extended the approach of using task driven neural networks as proxy models for brain

mapping to a pool of 21 task-trained networks. By building encoding models using rep-

resentation of each of these 21 task specific networks, we have a map of how low to high

level task related visual information is represented in the brain (a.k.a Neural Taskonomy).

We show similarity between tasks structure found through transfer learning and brain pre-

dictions. More generally, we propose Neural Taskonomy as a tool to help with interpreting

prediction by task driven models. This methodology can be widely applied in pools of any
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chosen tasks.

• We collected the first affordances (i.e. actions an objects affords to an observer) dataset

with human labelers and trained a neural network to predict affordances from images.

• We used a multimodal model with language and vision pre-training (CLIP) to identified the

relevant semantic dimension in high level visual cortex. We compared the prediction from

this model with vision only and self-supervised models across different data set size and

diversity. With the controlled experiment, we found unique variance in the brain explained

by using natural language as feedback to vision models.

• We further applied task driven visual and language models in modeling brain response

while subjects viewing popular TV sitcom. We showed the potentials of extending this

method to modeling attend modality and semantic concepts in more realisitcs and dynamic

scenario such as TV watching.

• Lastly, we examined the limitation and potential problems of using task driven methods in

modeling visual representations in the brain. We showed that layer correspondence from

neural networks representations to layers in human visual cortex is dependent on network

architecture and tasks. Our results suggests that as the networks get more and more com-

plex and expressive, hierarchical representation of visual feature as seen in simpler net-

works such as AlexNet no longer holds and thus making it harder to interpret successful

predictions from network representation to brain responses.
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