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Abstract

This thesis concerns nonparametric statistical methods for comparing black-box pre-

dictors, namely sequential forecasters and abstaining classifiers.

In the first part of the thesis, we develop anytime-valid estimation and testing ap-

proaches for comparing probability forecasters on sequentially occurring events. Our

main contribution is the development of confidence sequences (CS) that estimate the

time-varying average score difference between the forecasters. Unlike classical confi-

dence intervals, CSs can be continuously monitored over time while retaining their cov-

erage guarantees. The CSs also do not require any distributional assumptions on the dy-

namics of the outcomes or on the forecastingmodels. We additionally develop e-processes

and p-processes, which are testing counterparts to CSs that are anytime-valid, i.e., valid

at any data-dependent stopping times.

In the second part of the thesis, we consider the problem of evaluating and comparing

black-box abstaining classifiers. Abstaining classifiers have the option to withhold pre-

dictions on inputs that they are uncertain about, making them increasingly popular in

safety-critical applications. We introduce a novel approach and perspective to the evalu-

ation problem by treating the abstentions of a classifier as missing data. Our approach is

centered around defining the counterfactual score, which measures the expected perfor-

mance of the classifier had it not been allowed to abstain. The missing data perspective

clarifies the precise identifying conditions for the counterfactual score, requiring inde-

pendent evaluation data and stochastic abstentions, and paves the way for a nonparamet-

rically efficient and doubly robust estimator for the score. The approach also straightfor-

wardly extends to estimating the difference in two counterfactual scores under distinct

abstention mechanisms.
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Chapter 1

Introduction

1.1 Problem Statement

As more black-box machine learning (ML) predictors become readily available across domains, the

practitioner faces the task of choosing between these predictors by estimating their performance dif-

ferences on a desired use case. Despite the focus on (small) accuracy increases amongML researchers,

it is often unclear whether these improvements will translate to better performance in the practi-

tioner’s actual use case. In particular, the black-box nature of many ML predictors, whether it is

because they are expensive to train and uninterpretable, or because their training data is proprietary,

only adds to the practitioner’s challenge of figuring out which predictor is themost useful and reliable

for them. This motivates us to develop principled answers to the following general question:

Given (a pair of) black-box predictors, test data, and a scoring rule,

how do we compare their expected scores on the test distribution,

while accurately accounting for the sampling uncertainty of the test data?

This problem is well-studied in a standard setup where the predictors each give their predictions

on an independent and identically distributed (i.i.d.) test data, of some fixed sample size 𝑛, and the

evaluation is done once. However, modern applications of ML introduce new challenging scenarios

that differ from this standard setup in one or more ways. One example is the case of comparing se-

quential predictors, where two forecasters make predictions on sequentially occurring events, such

as weather outcomes, and the practitioner seeks to continuously monitor the forecasters’ scores. An-
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other example is the case of comparing abstaining predictors, where each predictor may occasionally

withhold its predictions according to an unknown abstention mechanism. In both cases, standard

methods of comparison are no longer readily applicable. In this thesis, we seek to develop statisti-

cally rigorous methods for comparing their expected prediction scores, without requiring minimal

assumptions about the underlying data distributions or the predictors.

As we will illustrate throughout the thesis, the departure from the standard i.i.d. setup introduces

new conceptual and technical challenges that can be addressed by ideas from seemingly disparate

topics, such as game-theoretic statistics, anytime-valid inference, missing data, and causal inference.

A complementary goal of this thesis is to make these connections clear within each problem context.

We now proceed with a brief overview of the main contributions in this thesis to the problem of

comparing black-box predictors.

1.2 Overview of Contributions

Figure 1.1 places themain contributions of this thesis in the broader context ofnonparametricmethods

for comparing black-box predictors. Our focus here is on confidence intervals (CI) that can estimate the

expected (average) score difference between the two predictors, according to a wide range of scoring

rules; hypothesis tests for the score differences are also mentioned when relevant. We categorize

various comparison settings into groups using two characteristics:

• Evaluation data: i.i.d. data, sequentially observed data, and potentially missing evaluation data

due to abstentions;

• Anytime-validity: whether or not the methods are valid at arbitrary data-dependent stopping

times. For confidence sequences, this is equivalent to the time-uniform guarantee, i.e., that the

coverage guarantee holds at all (fixed or random) times (Howard et al., 2021). This is explained

in greater detail in Chapter 2.

The i.i.d. evaluation setting is completely standard, at least for a fixed sample size. Once we

choose a scoring rule 𝑆 (say, the accuracy or the Brier score for classifiers and the squared error for re-

gressors), the problem reduces to that of i.i.d. mean comparison using paired samples (of i.i.d. scores).

Thismeans that the central limit theorem (CLT) can be applied to the score differences to yield asymp-

2
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Figure 1.1: Overviewof themain contributions in this thesis, in the context of nonparametricmethods
for comparing black-box predictors. Novel contributions in this thesis are highlighted in bold and blue
cells. See text for an explanation of each cell. 1Howard et al. (2021); 2Waudby-Smith and Ramdas
(2023); 3Waudby-Smith et al. (2021).

totic CIs that can estimate the score difference. Analogously, any statistical tests of paired difference,

such as the paired 𝑡-test/𝑧-test, are applicable. There also exist specialized methods for certain se-

tups, such as McNemar (1947)’s test for 2x2 contingency tables (when comparing binary classifiers)

and paired 𝑡-tests using 𝐾-fold cross-validation (when comparing learning algorithms and not just

their predictions). See Dietterich (1998) for a review of these methods.

To achieve anytime-validity in the i.i.d. evaluation setting, we can apply any time-uniform confi-

dence sequence (CS) for i.i.d. means. For example, if the scores are bounded in the setup, then any

CS for a bounded i.i.d. mean, such as the empirical-Bernstein (EB) CS (Howard et al., 2021) and the

hedged capital CS (Waudby-Smith and Ramdas, 2023), can tightly estimate the mean difference at

data-dependent sample sizes. If the scores are assumed to have at least𝑚 > 2moments (bounded or

not), then the asymptotic CS (Waudby-Smith et al., 2021) can tightly estimate the mean score differ-

ence (while trading off finite-sample validity).

The rest of the thesis primarily concerns challenging settings beyond the simple i.i.d. evaluation

3



setup. In Chapter 3, we focus on comparing sequential forecasters, i.e., black-box probabilistic predic-

tors on sequentially occurring events, such as outcomes in meteorology, sports, and economics.

Previously, Lai et al. (2011) derived fixed-time CIs for the time-varying mean score difference, where

the expectation is taken term-by-term given all available information at the time of prediction. In

our work, we introduce tight CSs for this time-varying average score difference that are valid under

continuous monitoring, which is a common scenario when comparing time series forecasters, as well

as at data-dependent stopping times. The validity of the CSs, like Lai et al. (2011)’s fixed-time CI, does

not rely on stationarity (Diebold and Mariano, 1995) or restrictive modeling (Giacomini and White,

2006) assumptions. Our results include both the (nonasymptotic) EB CS and the asymptotic CS.

In Chapter 4, we focus on comparing black-box predictors under abstentions, i.e., where each

predictor can selectively withhold their predictions given each evaluation input. We first propose a

novel evaluation metric called the counterfactual score, defined as the expected score of an abstain-

ing predictor had it not been allowed to abstain. We then show how the problem of comparing ab-

staining predictors w.r.t. the counterfactual score reduces to the problem of evaluating each predictor

under missing-at-random predictions under Rubin (1974)’s missing data framework. Note that, for

this score, standard methods for estimating i.i.d. means are no longer applicable, even when the eval-

uation set itself is i.i.d., because we do not observe predictions on any abstentions. Given that the

evaluation metric itself is novel, we first develop an asymptotically valid CI for a fixed sample size,

and we later extend our results to an asymptotic CS (Appendix B.5).

Before delving into these contributions, in Chapter 2, we also include an exposition of anytime-

valid inference methods, with a focus on their game-theoretic formulations and their applications to

sequential inference involving time-varying means. The chapter serves as a prelude to Chapter 3.

1.3 Bibliographical Notes

The main chapters of this thesis are based on the author’s recent preprints:

• Chapter 3 is based on Choe and Ramdas (2021), a joint work with Aaditya Ramdas. This work

is currently under revision in a journal.

• Chapter 4 is based on Choe et al. (2023), a joint work with Aditya Gangrade and Aaditya Ram-

4



das. This work is currently in submission for review at a conference.

During the early part of his Ph.D., the author also published an appliedwork on high-dimensional

correlation analysis using neuroscience data, demonstrating the structure-function relationship be-

tween the local white matter and the functional connectivity of the human brain (Choe et al., 2018).

This is joint work with Sivaraman Balakrishnan, Aarti Singh, Jean Vettel, and Timothy Verstynen,

and it was published in the Proceedings of the 2018 IEEE Conference on Systems, Man, and Cyber-

netics (SMC). The work is excluded from this thesis in favor of topical coherence.
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Chapter 2

A Prelude on Game-Theoretic Statistics

and Anytime-Valid Sequential

Inference

Before jumping into the main chapters of this thesis, we give a selective exposition of the core tools in

anytime-valid inference, including e-processes and confidence sequences (CS). We specifically focus

on their uses in sequential settings involving time-varyingmeans aswell as their game-theoretic inter-

pretations, both directly relevant to Chapter 3. For a comprehensive survey, see Ramdas et al. (2022a);

other key references include Ville (1939); Wald (1945); Darling and Robbins (1967, 1968); Robbins

and Siegmund (1970); Robbins (1970); Dawid and Vovk (1999); Shafer and Vovk (2005); Shafer et al.

(2011); Balsubramani and Ramdas (2016); Johari et al. (2022); Shafer and Vovk (2019); Shafer (2021);

Grünwald et al. (2019); Vovk and Wang (2021); Wasserman et al. (2020); Howard et al. (2020, 2021);

Waudby-Smith and Ramdas (2023); Ramdas et al. (2020, 2022b); Ruf et al. (2022).

We note that game-theoretic (betting) ideas are prevalent in fields beyond probability theory and

statistical inference, namely in information theory (Kelly, 1956;Krichevsky andTrofimov, 1981; Cover,

1974, 1991) and online learning (Cesa-Bianchi and Lugosi, 2006; Orabona and Pál, 2016; Rakhlin and

Sridharan, 2017; Jun and Orabona, 2019). We refer the reader to Waudby-Smith and Ramdas (2023,

Section 6 and Appendix F) for a summary of how betting ideas have been utilized in these fields. In

7



Fixed-time Anytime-valid

Testing p-values e-processes & test supermartingales;
(Quantifying evidence) p-processes

Estimation confidence intervals confidence sequences
(Quantifying uncertainty)

Table 2.1: A brief comparison of tools for fixed-time and anytime-valid statistical inference.

our exposition, we focus on concepts directly relevant to statistical inference, which is the primary

goal of this thesis.

In Table 2.1 (right column), we summarize the key methods and objects of anytime-valid infer-

ence, categorized by their uses in statistical inference. E-processes, test supermartingales, and p-

processes are anytime-validmethods applicable to hypothesis testing asmeasures of evidence, whereas

confidence sequences can be used to estimate a (possibly time-varying) parameter while accounting

for the sampling uncertainty. These contrast with their “fixed-time” counterparts (left column), i.e.,

p-values for testing and confidence intervals (CI) for estimation, whose validity is restricted to a fixed,

pre-specified sample size.

It is worth pointing out that the game-theoretic view is not merely an interpretation. Game-

theoretic probability, in the senses of Shafer and Vovk (2005, 2019), should be viewed as an alternative

to (and a generalization of) measure-theoretic probability itself. Game-theoretic statistics (Ramdas

et al., 2022a) then builds upon the ideas and intuitions from game-theoretic probability and applies

them to statistical inference problems, i.e., hypothesis testing and parameter estimation. Although

our general approach here is to define concepts using measure-theoretic probability and intuit them

using their game-theoretic equivalents, we note that a fully game-theoretic exposition is also possible.

Such connections have been made precise in, e.g., Ville (1939); Dawid and Vovk (1999); Shafer and

Vovk (2005, 2019); Ruf et al. (2022).

2.1 Test Supermartingales and Testing by Betting

Test Supermartingales. The theory ofmartingales and its interpretation as a gambler’s wealth in a

betting game are often the starting point for deriving anytime-validmethods (althoughwewill shortly
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see that it is the e-process that is the central object). To set the stage, let (𝒳,𝒢) be a measurable space,

and let𝔊 = (𝒢𝑡)𝑡≥0 be a filtration where 𝒢0 = {∅,𝒳} and 𝒢𝑡 represents the accumulated information

up to time 𝑡 ≥ 0. Hereafter, we restrict ourselves to a discrete time scale (𝑡 = 0, 1, 2,… ). A stochastic

process (𝑋𝑡)𝑡≥0 is adapted to (or non-anticipating w.r.t.) 𝔊 if 𝑋𝑡 is 𝒢𝑡-measurable for each 𝑡 ≥ 0; it is

further predictable if 𝑋𝑡 is 𝒢𝑡−1-measurable for each 𝑡 ≥ 1.

Let 𝑃 denote a probability distribution on (𝒳,𝒢). In the context of hypothesis testing, 𝑃 represents

a point null hypothesis. (In the next section, we will generalize this to composite null testing for a

family of distributions 𝒫.) An adapted and integrable process (𝑋𝑡)𝑡≥0 is a 𝑃-supermartingale if

𝔼𝑃 [𝑋𝑡 ∣ 𝒢𝑡−1] ≤ 𝑋𝑡−1, ∀𝑡 ≥ 1. (2.1)

(𝑋𝑡)𝑡≥0 is a 𝑃-martingale if it the inequality is replaced with an equality. If a 𝑃-(super)martingale is

nonnegative 𝑃-almost surely, then it is a nonnegative 𝑃-(super)martingale. Finally, a nonnegative 𝑃-

(super)martingale (𝐿𝑡)𝑡≥0 with initial value one, i.e., 𝐿0 = 1, is called a test (super)martingale for

𝑃. Any nonnegative 𝑃-(super)martingale can be rescaled by 1∕𝐿0 into a test (super)martingale for 𝑃.

Game-Theoretic Interpretation of Test Supermartingales. Test (super)martingales have an

important game-theoretic interpretation1: a test (super)martingale for a probability 𝑃 corresponds

to a gambler’s wealth against a casino who proposes 𝑃 as a bet. If 𝑃 correctly describes the bet’s out-

come distribution, then a test supermartingale for 𝑃 describes a betting strategywith which the wealth

does not increase over time in expectation under 𝑃. (A test martingale for 𝑃 describes one with which

the wealth stays constant in expectation.) The connection to hypothesis testing is then immediate. If

the null hypothesis 𝑃 correctly describes the data, then a test supermartingale for 𝑃 is not expected to

grow large; conversely, if a test supermartingale for 𝑃 grows large, then we can discredit 𝑃.

To give a concrete example, suppose that a casino table offers a game that costs 𝜇 ∈ [0, 1] dollars

to enter. At each round 𝑡 = 1, 2,… of the game, after a bet is made, a biased coin is flipped, and the

bettor receives a payoff 𝑌𝑡 of $1 if the coin turns heads and $0 otherwise.2 A gambler, also known as
1The relevance of martingales to betting games is sometimes discussed in probability courses, but it is not often formal-

ized in the game-theoretic statistical framework.
2Shafer and Vovk (2019, Section 1.3) notes that the price 𝜇 can be referred to as a probability for 𝑌𝑡 = 1, “because it

invites Skeptic [the Gambler] to bet on this outcome at odds 𝜇 ∶ 1 − 𝜇.” The price of this game is in fact the definition of
probability in subjective probability theory (de Finetti, 1970).
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the skeptic, sits at the table with $1 and places a fraction of their money at each round. We formalize

this game in Game 2.1:

Game 2.1 (Testing a probability by betting).

Players: Casino and Gambler

Protocol:

1. Casino announces the price of the game, 𝜇 ∈ [0, 1].

2. Gambler enters the game with an initial wealth of 𝐿0 = 1.

3. For rounds 𝑡 = 1, 2,… :

(a) Gambler chooses the amount of bet 𝜆𝑡 ∈ [− 1
1−𝜇

, 1
𝜇
].

(b) Casino reveals the payoff 𝑌𝑡 ∈ {0, 1}.

(c) Gambler’s wealth is updated according to the payoff as follows:

𝐿𝑡 = 𝐿𝑡−1 ⋅ {1 + 𝜆𝑡(𝑌𝑡 − 𝜇)} . (2.2)

Result: Gambler wins if 𝐿𝑡 grows large; Casino wins otherwise.

The payoff function (2.2) says that the gambler is placing bets on the difference (𝑌𝑡 − 𝜇) between

the realized payoff and the price. Thus, if 𝜇 correctly describes the probability of the payoffs, then the

gambler is not expected tomake or losemoney in the long run. On the other hand, if𝜇 underestimates

the probability of the payoffs being $1, then the gambler can increase their wealth by placing positive

bets (𝜆𝑡 > 0). The fact that the gambler has a strategy to grow their wealth suggests that the price

𝜇 does not adequately describe the probability of actual payoffs being one, and the gambler’s wealth

can thus be a measure of evidence against the proposed probability (in the form of the price 𝜇).

We can now translate this game into themeasure-theoretic framework by defining the appropriate

filtration. The filtration𝔊 = (𝒢𝑡)𝑡≥0 corresponding to this game is defined as:

𝒢𝑡−1 = all available information up to round 𝑡 − 1 and the gambler’s bet 𝜆𝑡.

Under this filtration, the gambler’s wealth (2.2) is a test martingale for 𝜇, in the sense that 𝔼𝑃[𝐿𝑡 ∣

𝒢𝑡−1] = 𝐿𝑡−1 for each 𝑡 ≥ 1, where 𝑃 satisfies 𝑃(𝑌𝑡 = 1 ∣ 𝒢𝑡−1) = 𝜇 for each 𝑡 ≥ 1. The bounds on 𝜆𝑡
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are given to ensure that the gambler cannot bet more than the wealth they have at any given round,

such that 𝐿𝑡 ≥ 0 for each round 𝑡. Note that, if we restrict the gambler to make only nonnegative bets

(𝜆𝑡 ≥ 0), then (𝐿𝑡)𝑡≥0 is also a test supermartingale for any 𝑃 that satisfies 𝑃(𝑌𝑡 = 1 ∣ 𝒢𝑡−1) ≤ 𝜇, ∀𝑡.

We also remark that everything generalizes straightforwardly to the case where the payoff is now a

continuous variable in [0, 1] and 𝜇 models the conditional mean 𝔼𝑃[𝑌𝑡 ∣ 𝒢𝑡−1]. Finally, see Waudby-

Smith and Ramdas (2023) for ways to effectively choose the betting strategy (𝜆𝑡)𝑡≥0 for Game 2.1.

The betting interpretation is “as old as probability itself,” and yet it provides a scientifically mean-

ingful notion of evidence in hypothesis testing: if 𝑃 describes a null hypothesis of a proposed test,

then the gambler’s wealth expressed as test supermartingale for 𝑃 quantifies the amount of evidence

against the null. This interpretation is the basis for the testing-by-betting frameworkproposed by Shafer

(2021), who refers to the gambler’s wealth as the betting score.

*A Clarifying Note on the Term Forecaster. In Shafer and Vovk (2019)’s parlance, Casino in

Game 2.1 plays both the role of a Forecaster, who announces the price/probability of the game (𝜇), and

Reality, who decides and reveals the outcome (𝑌𝑡). Then, Forecaster is a separate entity from Reality

that merely gives a hypothesis for the (unknown) probability of the biased coin in the game. This

use of the term Forecaster is consistent with the term’s usage in the literature of subjective probability

theory and forecast evaluation; nevertheless, in Chapters 1 and 3, we reserve the term forecaster to

only refer to an entity that produces probabilistic predictions for future outcomes in a sequence of

events (synonymous to a “prophet”). This choice is mainly due to the fact that, when comparing

multiple forecasters, each forecaster alone does not fully describe the hypothesis being tested by the

gambler (e.g., that one forecaster outperforms the other). An alternative terminology choice would

have been to call these forecasters as Predictors, and Forecaster would be the one that proposes a

hypothesis describing the behaviors of any involved Predictor as well as Reality. See Shafer and Vovk

(2019, Chapter 12.9) for further clarification.

2.2 E-Processes, Anytime-Validity, and Composite Nulls

E-Processes and Anytime-Validity. The central object of anytime-valid inference is the e-process

(Ramdas et al., 2022b), which is a sequence of nonnegative random variables that are, under the
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(possibly composite) null hypothesis, bounded by one in expectation at arbitrary stopping times. De-

signing useful e-processes is the key to deriving modern anytime-valid procedures.

To define an e-process, first recall that a stopping time 𝜏 (w.r.t.𝔊) is a random variable that takes

values in ℕ ∪ {∞} and satisfies {𝜏 = 𝑡} ∈ 𝒢𝑡 for each 𝑡 ≥ 0. Then, given a family of distributions 𝒫, a

nonnegative adapted process (𝐸𝑡)𝑡≥0 with 𝐸0 = 1 is defined as an e-process for 𝒫 if

for any 𝑃 ∈ 𝒫 and any arbitrary stopping time 𝜏, 𝔼𝑃[𝐸𝜏] ≤ 1, (2.3)

where we take 𝐸∞ = lim sup𝑡→∞ 𝐸𝑡 for infinite stopping times. The term ‘process’ is used to empha-

size the fact that the condition 𝔼𝑃[𝐸𝜏] ≤ 1 is true under any 𝑃 ∈ 𝒫 at arbitrary stopping times. We

refer to this validity at stopping times as anytime-validity (Johari et al., 2022; Howard et al., 2021).

For a fixed value 𝑡, 𝐸𝑡 is also referred to as an e-variable, or e-value for its instantiation (Vovk

and Wang, 2021; Grünwald et al., 2019), and if 𝒫 = {𝑃} then it is a betting score after 𝑡 rounds in a

betting game against 𝑃 (as in Game 2.1). E-values are alternatives to the familiar (but problematic) p-

values and can be defined outside of the sequential framework. Recent work has shown that e-values

have important uses in combining results that can be arbitrarily dependent, particularly in multiple

testing (Wang and Ramdas, 2022; Xu et al., 2021) andmeta-analysis (ter Schure and Grünwald, 2022).

Importantly, e-processes are strict generalizations (Ramdas et al., 2022b) of test supermartingales

to a family of distributions 𝒫, which corresponds to a composite null in hypothesis testing.3 To see

this, we first extend the definition of a test supermartingale to a family of distributions 𝒫 as follows:

(𝐿𝑡)𝑡≥0 is a test (super)martingale for 𝒫 if it is a test (super)martingale for each 𝑃 ∈ 𝒫. Then, by the

supermartingale stopping theorem (Durrett, 2019, Theorem 4.8.4), for any 𝑃 ∈ 𝒫 and any (possibly

infinite) stopping time 𝜏,

𝔼𝑃[𝐿𝜏] ≤ 1,

which coincides with (2.3). In fact, this connection further leads to an equivalent characterization of

an e-process involving test supermartingales (Ramdas et al., 2020, Section 8.2.3). That is, (𝐸𝑡)𝑡≥0 is

an e-process for 𝒫 if and only if for each 𝑃 ∈ 𝒫, there exists a test supermartingale (𝐿𝑃𝑡 )𝑡≥0 for 𝑃 that

3Composite nulls are also related to imprecise probabilities, as the null set for testing imprecise probabilities can be
expressed as a family of distributions (e.g., when testing𝐻0 ∶ 𝔼[𝑌𝑡] ∈ [0.3, 0.7]).
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upper-bounds the e-process uniformly over time, under 𝑃:

𝐸𝑡 ≤ 𝐿𝑃𝑡 , 𝑃-almost surely, ∀𝑡 ≥ 0, ∀𝑃 ∈ 𝒫. (2.4)

Ramdas et al. (2022b) further formalized the betting-based definition of an e-process: an e-process is

theminimum wealth of a gambler who bets on each game corresponding to 𝑃 ∈ 𝒫.

An Example of a Game-Theoretic Formulation Involving an E-Process. To illustrate how

an e-process can be utilized for composite null hypothesis testing, we consider a generalization of

Game 2.1 where the casino can choose a different price for each round of the game. This example

combines ideas from Howard et al. (2021); Ramdas et al. (2022b) and Chapter 3 of this thesis.

Game 2.2 (Testing time-varying probabilities by betting).

Players: Casino and Gambler

Protocol:

1. Gambler enters the game with an initial wealth of 𝐿0 = 1.

2. Gambler chooses the amount of bet 𝜆 ∈ [0, 1] (fixed for each round).

3. For rounds 𝑡 = 1, 2,… :

(a) Casino announces the price of the game for this round, 𝜇𝑡 ∈ [0, 1].

(b) Casino reveals the payoff 𝑌𝑡 ∈ {0, 1}.

(c) Gambler’s wealth is updated according to the payoff as follows:

𝐿𝑡 ∶= 𝐿𝑡−1 ⋅ exp
{
𝜆(𝑌𝑡 − 𝜇𝑡) − 𝜆2∕8

}
. (2.5)

Result: Gambler wins if 𝐿𝑡 grows large; Casino wins otherwise.

There are two modifications made from Game 2.1. First, the casino now announces a different

price for each round, allowing for the possibility that the bias of each coin changes over time. If we

were to define the analogous filtration, then we would additionally include this price in it:

𝒢𝑡−1 = all available information up to round 𝑡 − 1, including the gambler’s bet 𝜆, and the price 𝜇𝑡.
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Then, 𝜇𝑡 is interpreted as the casino’s proposed probability for 𝑃(𝑌𝑡 = 1 ∣ 𝒢𝑡−1).

Second, the gambler nowchooses a single bet amount𝜆 ∈ [0, 1] for all rounds, and theirwealth (2.5)

is updated differently. At each round 𝑡, the gambler still bets proportionally to the difference (𝑌𝑡−𝜇𝑡),

but the bet is now offset by a “hedge” on a conservative estimate of the variance, i.e., 1∕4, of each out-

come. The wealth is also an example of an exponential supermartingale, as it can be expressed as an

exponential of sum and variance terms:

𝐿𝑡 =
𝑡∏

𝑖=1
exp

{
𝜆(𝑌𝑖 − 𝜇𝑖) − 𝜆2∕8

}
= exp {𝜆

𝑡∑

𝑖=1
(𝑌𝑖 − 𝜇𝑖) − 𝑡𝜆2∕8} . (2.6)

To clarify in what sense this is a supermartingale, we define a family of distributions𝒫𝜇, each defined

over all variables in Game 2.2 (𝜆, 𝜇1, 𝑌1, 𝜇2, 𝑌2,… ), as follows:

𝒫𝜇 = {𝑃 ∶ 𝔼𝑃[𝑌𝑡 ∣ 𝒢𝑡−1] = 𝑃(𝑌𝑡 = 1 ∣ 𝒢𝑡−1) = 𝜇𝑡, ∀𝑡 ≥ 1} . (2.7)

In words, 𝒫𝜇 consists of any distribution on the entire game sequence such that the conditional prob-

ability for each round’s payoff being $1 matches the casino’s proposed price for that round.4 Then,

it can be shown that (𝐿𝑡)𝑡≥0 is a test supermartingale for any 𝑃 ∈ 𝒫𝜇, by Hoeffding (1963)’s lemma

(using the boundedness/sub-Gaussianity of 𝑌𝑡):

𝔼𝑃 [𝐿𝑡 ∣ 𝒢𝑡−1] = 𝐿𝑡−1 ⋅ 𝔼𝑃[exp
(
𝜆(𝑌𝑡 − 𝜇𝑡) − 𝜆2∕8

)
∣ 𝒢𝑡−1] ≤ 𝐿𝑡−1, (2.8)

given that, under any 𝑃 ∈ 𝒫𝜇, 𝜇𝑡 is precisely the conditional mean of 𝑌𝑡 w.r.t. 𝒢𝑡−1. Thus, the test

supermartingale (𝐿𝑡)𝑡≥0 for 𝒫𝜇 can test whether the casino’s announced price matches the actual

conditional probability of the outcomes. Similarly, we can further show that (𝐿𝑡)𝑡≥0 is also a test

supermartingale for the one-sided family defined as 𝒫≤𝜇 = {𝑃 ∶ 𝑃(𝑌𝑡 = 1 ∣ 𝒢𝑡−1) ≤ 𝜇𝑡, ∀𝑡 ≥ 1}. This

wealth process would grow large if the casino consistently overprices its bet at each round.5

So far, we did not introduce an e-process that is not a test supermartingale. To do this, suppose

4Given that 𝑌𝑡 is binary and the only random outcome in the game, the “family” 𝒫𝜇 is actually a singleton in this case.
But we can also straightforwardly generalize the game to one where 𝑌𝑡 is a bounded random variable within [0, 1]; in this
case, 𝒫𝜇 can be a composite family of distributions whose conditional means are specified by 𝜇.

5If we are only interested in testing 𝒫𝜇 or 𝒫≤𝜇, a variant of the game in which the gambler can place different bets per
round (𝜆𝑡 ∈ [0, 1]) would also work.
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now there are reasons to believe that the casino’s announced bets accurately model the outcomes,

i.e., 𝜇𝑡 = 𝑃(𝑌𝑡 = 1 ∣ 𝒢𝑡−1), but the gambler does not know what the values 𝜇𝑡 would be. Recall that,

in Game 2.2, the gambler has to announce their bet before any of the rounds begin. In this case, let

�̄�𝑡 = 𝑡−1
∑𝑡

𝑖=1 𝜇𝑖 be the running average of the outcome probabilities, and consider the case where

the gambler wants to test whether the chance of winning on average is better than 1∕2 at some point.

This leads to the following family of distributions for testing:

𝒫 = {𝑃 ∶
1
𝑡

𝑡∑

𝑖=1
𝑃 (𝑌𝑖 = 1 ∣ 𝒢𝑖−1) ≤

1
2 and 𝑃(𝑌𝑡 = 1 ∣ 𝒢𝑡−1) = 𝜇𝑡, ∀𝑡 ≥ 1} . (2.9)

Note that 𝒫 ⊆ 𝒫𝜇, and the gambler does not know the exact values of (𝜇𝑡)𝑡≥0 when placing the bet.

In order to test (2.9), the gambler can agree to play a variant6 of Game 2.2 where the wealth is

updated as follows: 𝐸0 = 1 and

𝐸𝑡 = 𝐸𝑡−1 ⋅ exp {𝜆 (𝑌𝑡 −
1
2) −

𝜆2

8 } = exp {𝜆
𝑡∑

𝑖=1
(𝑌𝑡 −

1
2) −

𝑡𝜆2

8 } . (2.10)

Then, under any 𝑃 ∈ 𝒫, notice that 𝐸𝑡 is upper-bounded by 𝐿𝑡 for every 𝑡:

𝐸𝑡 = exp {𝜆
𝑡∑

𝑖=1
(𝑌𝑡 −

1
2) −

𝑡𝜆2

8 } (2.11)

= exp {𝜆
𝑡∑

𝑖=1
(𝑌𝑡 − 𝜇𝑡) −

𝑡𝜆2

8 } ⋅ exp {𝜆𝑡 (�̄�𝑡 −
1
2)} (2.12)

= 𝐿𝑡 ⋅ exp {𝜆𝑡 (�̄�𝑡 −
1
2)} (2.13)

≤ 𝐿𝑡 (𝑃-a.s.). (2.14)

The equality in (2.13) follows under any 𝑃 ∈ 𝒫𝜇; the inequality in (2.14) follows from the condition

in (2.9), which simplifies to �̄�𝑡 ≤ 1∕2, ∀𝑡. Given that (𝐿𝑡)𝑡≥0 is a test supermartingale for𝒫 from (2.8),

we can use the equivalent definition (2.4) to prove that (𝐸𝑡)𝑡≥0 is an e-process for 𝒫.

Therefore, assuming that the price of each bet (𝜇𝑡) correctly describes the payoff distribution, the

6As implied earlier, the precise game corresponding to an e-process would be one where the gambler playsmany games,
each corresponding to a member of 𝒫, and then taking the minimum of the wealth across all games. We omit the exact
formulation for the sake of clarity of the current exposition. See Ramdas et al. (2022b, Section 5.4) for a general formulation,
including when there is no single upper-bounding test supermartingale.
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e-process is expected to be small (at most one) at any time 𝜏when the gambler decides to stop (2.3), as

long as the running average of the outcome probabilities is at most half. In particular, the e-process

can be used to then test whether the average outcome probability is favorable to the gambler, just by

seeing the outcomes (𝑌𝑡), even when the exact prices at each round are not known. In Chapter 3, we

showhow an improved version of this e-process can be utilized to tightly estimate the running average

�̄�𝑡, uniformly across time.

*A Comparison with the Frequentist Hypothesis Testing Framework. In the standard fre-

quentist framework, we would first start with a (modeling) assumption that the payoffs are generated

as 𝑌𝑡 ∣ 𝒢𝑡−1 ∼ 𝖡𝖾𝗋(𝜃𝑡), for some unknown “true” parameter sequence (𝜃𝑡)𝑡≥0. Then, we can define

the null hypothesis as 𝐻0 ∶ �̄�𝑡 = 𝑡−1
∑𝑡

𝑖=1 𝜃𝑖 ≤ 1∕2, ∀𝑡 and try to come up with a test, say involving a

likelihood according to the assumed model, such that the test’s type I error is controlled.

In contrast, the game-theoretic approach can often bypass the need to assume a parametrized

model but still retain frequentist type I error control or coverage guarantee via the e-process (see

Section 2.3). For example, in Game 2.2, we do not require fully parametrizing the proposed dis-

tributions from the beginning, as (𝜃𝑡)𝑡≥0 can be chosen after the earlier outcomes are realized. In

sequential settings, this makes it easier to deal with composite nulls involving imprecise probability

statements or allowing for “adversarial” choices by Reality. The approach is also more amenable to

non-i.i.d. settings, as games are constructed sequentially. There are many composite nulls for which

the model involves unspecified parameters besides the mean or a parametrized model is not assumed

at all (Ramdas et al., 2022b; Shekhar and Ramdas, 2021; Shaer et al., 2023; Podkopaev et al., 2023).

Another key difference is that the game-theoretic approach is more evidential than the frequentist

approach, as it places a notion of quantified evidence (via e-processes) at the center. This is particu-

larly in contrast with the Neyman-Pearson framework, which forces a binary decision. The equiva-

lent of the alternative hypothesis is the gambler’s betting strategy, which can be chosen flexibly. More

generally, the game-theoretic framework can be viewed as a middle ground between frequentist and

Bayesian inference. See Ramdas et al. (2022a, Appendix A) for further details.
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2.3 Ville’s Inequality, P-Processes, and Confidence Sequences

Ville’s Inequality for Test Supermartingales and E-Processes. Ville (1939)’s inequality for test

supermartingales is the primary tool for constructing confidence sequences. If (𝐿𝑡)∞𝑡=0 is a test super-

martingale for 𝑃, then Ville’s inequality states that, for any 𝛼 ∈ (0, 1),

𝑃 (∃𝑡 ≥ 1 ∶ 𝐿𝑡 > 1∕𝛼) ≤ 𝛼. (2.15)

Given the definition (2.4), it is immediate that Ville’s inequality also holds for e-processes (𝐸𝑡)𝑡≥0 for

𝒫, w.r.t. each 𝑃 ∈ 𝒫: for any 𝛼 ∈ (0, 1),

𝑃 (∃𝑡 ≥ 1 ∶ 𝐸𝑡 > 1∕𝛼) ≤ 𝛼, ∀𝑃 ∈ 𝒫. (2.16)

Furthermore, by Howard et al. (2021, Lemma 3), each statement has an equivalent stopping time

version. For any 𝛼 ∈ (0, 1),

𝑃 (𝐿𝜏 > 1∕𝛼) ≤ 𝛼, ∀ stopping time 𝜏, (2.17)

and

𝑃 (𝐸𝜏 > 1∕𝛼) ≤ 𝛼, ∀ stopping time 𝜏, ∀𝑃 ∈ 𝒫. (2.18)

These versions reveal that Ville’s inequality is an anytime-valid generalization ofMarkov’s inequality.

Ville’s inequality is a powerful statement. It states that the probability of a test supermartingale

or an e-process exceeding 1∕𝛼 at any (fixed or random) time is at most 𝛼, under 𝑃 or 𝒫 respectively.

By Ville’s inequality, any e-process for 𝒫 immediately yields a level-𝛼 sequential test for 𝒫, which we

can formally define as a binary decision function 𝜙𝑡 such that 𝑃(𝜙𝜏 = 1) ≤ 𝛼 for any stopping time

𝜏, 𝑃 ∈ 𝒫, and 𝛼 ∈ (0, 1). Given an e-process (𝐸𝑡)𝑡≥0, we have from (2.18) that 𝜙𝑡 = 1 (𝐸𝑡 > 1∕𝛼),

as well as the more powerful variant 𝜙𝑡 = 1
(
sup𝑖=1,…,𝑡 𝐸𝑖 > 1∕𝛼

)
, are both valid level-𝛼 sequential

tests. Ville’s inequality thus formalizes the betting interpretation into a concrete sequential test using

an e-process: if 𝑃 correctly describes the data generating distribution, then the wealth of a gambler

betting against 𝒫 cannot ever exceed a large threshold (e.g., 20) with high probability (e.g., 95%).
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P-Processes. Given a family of distributions 𝒫, representing a possibly composite null hypothesis,

we say that a nonnegative adapted process (𝗉𝑡)𝑡≥0 is a p-process (or an anytime-valid p-value) for 𝒫 if

𝑃(𝗉𝜏 ≤ 𝛼) ≤ 𝛼, ∀ stopping time 𝜏, ∀𝛼 ∈ [0, 1], ∀𝑃 ∈ 𝒫. (2.19)

A p-process is the anytime-valid counterpart to a p-value, for which the definition does not require

stopping time validity. As evident from equations (2.16) and (2.18), we can convert an e-process into

a p-process via either

𝗉𝑡 =
1
𝐸𝑡

or 𝗉𝑡 =
1

sup𝑖=1,…,𝑡 𝐸𝑖
. (2.20)

There are also ways to “calibrate” p-processes into e-processes, e.g., via 𝐸𝑡 =
(
2
√
𝗉𝑡
)−1

(Vovk and

Wang, 2021). In this thesis, we generally favor e-processes over p-processes for their usefulness (in

constructing CSs or combining results under arbitrary dependence) and their betting interpretation.

Confidence Sequences. When a test supermartingale or an e-process involves a (time-varying) pa-

rameter, such as in Game 2.2, we can utilize Ville’s inequality to construct confidence sequences that

estimate the parameter. Formally, given 𝛼 ∈ (0, 1), a (1 − 𝛼)-level confidence sequence (CS) (Dar-

ling and Robbins, 1967; Howard et al., 2021) for a time-varying target parameter (𝜃𝑡)∞𝑡=1 is a sequence

of confidence intervals (CIs) (𝐶𝑡)∞𝑡=1 such that

𝑃 (∃𝑡 ≥ 1 ∶ 𝜃𝑡 ∉ 𝐶𝑡) ≤ 𝛼, or equivalently, 𝑃 (∀𝑡 ≥ 1 ∶ 𝜃𝑡 ∈ 𝐶𝑡) ≥ 1 − 𝛼. (2.21)

A CS is time-uniform, in the sense that it covers the target parameter uniformly across all (fixed or

random) times, even when it changes over time. Thus, a CS can be continuously monitored as more

data is collected, and its coverage guarantee remains valid without requiring any corrections. This

crucially differentiates a CS from a fixed-time CI, 𝐶𝑛, which only has the following (much) weaker

guarantee:

∀𝑛 ≥ 1, 𝑃 (𝜃𝑛 ∉ 𝐶𝑛) ≤ 𝛼, or equivalently, ∀𝑛 ≥ 1, 𝑃 (𝜃𝑛 ∈ 𝐶𝑛) ≥ 1 − 𝛼. (2.22)

Hereafter, 𝑛 represents a fixed (pre-specified) sample size.
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Fixed-time Anytime-valid
CI & p-value CS, e-process, sequential test, & p-process

Validity at a fixed sample size 𝑛 Yes Yes
Validity at an arbitrary stopping time 𝜏 No Yes
(“anytime-valid”)

Validity under continuous monitoring No Yes (CS, sequential test, & p-process)
(“time-uniform”)

Inference w/ composite nulls Nontrivial Yes
(imprecise probabilities)

Game-theoretic interpretation No Yes

Table 2.2: A summary of the characterizing properties of anytime-valid methods. This is shown in
comparison with existing “fixed-time” methods, whose validity is limited to a fixed sample size.

Furthermore, as with Ville’s inequality, the time-uniform guarantee (2.21) is equivalent to the

following anytime-valid property of the CS (Howard et al., 2021, Lemma 3):

𝑃 (𝜃𝜏 ∈ 𝐶𝜏) ≥ 1 − 𝛼, ∀ stopping time 𝜏. (2.23)

This means that a CS also remains valid under optional stopping or continuation (Grünwald et al.,

2019), i.e., deciding to stop or continue collecting data after seeing the data, without having to pre-

specify a sample size a priori. This property is sometimes referred to as the safety7 of an inference

procedure, leading to the umbrella term safe, anytime-valid inference (SAVI). Note that a fixed-time

CI is not anytime-valid or safe in this sense.

When it comes to sequential inference, particularly involving a time-varying parameter and adap-

tive data collection (e.g., A/B testing), CSs can be much more useful than CIs.

2.4 Summary

Table 2.2 summarizes the characterizing properties of the aforementioned anytime-valid inference

methods, in comparison with their fixed-time counterparts. In Chapter 3, we illustrate these charac-

teristics on the problem of comparing sequential forecasters using real-world examples.

7This is unrelated to the notion of safety for an ML predictor (e.g., robustness and alignment).
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Chapter 3

Comparing Sequential Forecasters

This chapter is based on Choe and Ramdas (2021).

3.1 Introduction

Forecasts of future outcomes are widely used across domains, including meteorology, economics,

epidemiology, elections, and sports. Often, we encounter multiple forecasters making probability

forecasts on a regularly occurring event, such as whether it will rain the next day and whether a

sports team will win its next game. Yet, despite the ubiquity of forecasts, it is not obvious how we can

formally compare different forecasters on their predictive ability, particularly in a sequential setting

where they each make a prediction on a sequence of outcomes (once for each outcome).

As an illustrative example, consider the probability forecastsmade on each gameof the 2019World

Series by real-world (and fictitious) forecasters in Table 3.1. It is not clear how we can effectively

model the sequence of baseball game outcomes over time, and we also do not have full information

on how each forecaster comes up with their predictions. As we observe these forecasts and outcomes

game-by-game, we may see one forecaster appearing to be better than the other, according to some

scoring rule. But how much of that difference can be attributed to chance or luck? How much evi-

dence do we have that one forecaster has been “genuinely” better than another, even after accounting

for chance, and can we quantify this evidence without having to make assumptions about reality or
1Source: https://projects.fivethirtyeight.com/2019-mlb-predictions/games/.
2Source: https://sports-statistics.com/sports-data/mlb-historical-odds-scores-datasets/.
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Forecasts on Nationals Win 1 2 3 4 5 6 7
FiveThirtyEight1 37.9% 41.0% 52.7% 58.7% 37.3% 40.5% 48.5%
Vegas-Odds.com2 34.9% 37.7% 41.0% 50.7% 33.7% 37.4% 43.1%

Adjusted Win Percentage 47.1% 47.4% 47.6% 47.4% 47.2% 47.0% 47.2%
K29 Defensive Forecast 50.0% 50.0% 50.9% 51.6% 50.7% 49.9% 49.1%
Constant Baseline 50.0% 50.0% 50.0% 50.0% 50.0% 50.0% 50.0%

Average Joe 40.0% 50.0% 60.0% 50.0% 30.0% 40.0% 50.0%
Nationals Fan 70.0% 70.0% 80.0% 70.0% 60.0% 60.0% 70.0%

Did the Nationals Win? Yes Yes No No No Yes Yes

Table 3.1: Probability forecasts (%) on whether the Washington Nationals will win each game of the
2019 World Series. The first two forecasts are taken from publicly available websites online. The
next three forecasts are baselines computed using the 10-year win/loss records (win probability is
rescaled with the opponent’s win probability to sum to 1). The last two forecasts are imaginary (but
not unrealistic) casual sports fans making their own forecasts using different heuristics. All forecasts
are made prior to the beginning of each game. See Section 3.5.2 for more details.

how the forecasts are made?

In this work, we derive statistically rigorous procedures for sequentially comparing forecasters via

the powerful tool of confidence sequences (CS) (Darling and Robbins, 1967; Lai, 1976b; Howard et al.,

2021). CSs are sequences of confidence intervals (CIs) that provide time-uniform coverage guaran-

tees, which allow valid sequential inference under continuous monitoring and at data-dependent

stopping times. The parameter of interest in this work is the time-varying mean difference in forecast

scores up to time 𝑡. Most CSs we develop in our work are also nonasymptotically valid, meaning that

their coverage guarantee holds at every time point 𝑡 ≥ 1.

In addition, we derive e-processes and p-processes (Ramdas et al., 2022b) for testing whether one

forecaster outperforms the other on average, which is a composite null that we formally define in

Section 3.4.4. An e-process 𝐸𝑡 is a nonnegative process such that under the null, its expectation at

any stopping time is at most one. It quantifies the amount of accumulated evidence against the null

up to time 𝑡: a larger 𝐸𝑡 is more evidence against the null. Further, 𝗉𝑡 = 1∕ sup𝑖≤𝑡 𝐸𝑖 is a p-process

— its realization at any stopping time is a valid p-value, a property referred to as anytime-valid or

always-valid (Johari et al., 2022; Howard et al., 2021). These are also formally defined in Section 3.4.4.

Throughout the chapter, we define safe, anytime-valid inference (SAVI) methods as ones that satisfy

either the time-uniform coverage guarantee (CS) or the anytime-valid guarantee (e- or p-processes).
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Figure 3.1: Left: A 95% CS (Theorem 3.2) for the average Brier score differentials (∆𝑡)𝑇𝑡=1 between
FiveThirtyEight and Vegas, two real-world forecasters that made game-by-game probability forecasts
onMajor League Baseball (MLB) games from 2010 to 2019 (𝑇 = 25, 165). Positive values of∆𝑡 indicate
that the first forecaster is better than the second on average. Unlike a classical CI, a CS covers the
time-varying parameter ∆𝑡 uniformly over all 𝑡 with high probability. In this case, we find that, with
95% probability, the sequence ∆𝑡 trends negative for 𝑡 ≥ 10, 000, indicating that Vegas outperformed
FiveThirtyEight on average across most of the time horizon. Right: E-processes (Theorem 3.3) for
the null hypotheses, ℋ0 ∶ ∆𝑡 ≤ 0, ∀𝑡 (brown) and ℋ0 ∶ ∆𝑡 ≥ 0, ∀𝑡 (purple), respectively. An
e-process quantifies the accumulated evidence against the null, and it has a direct correspondence to
the CS. In this example, larger values in the e-process forℋ0 ∶ ∆𝑡 ≥ 0, ∀𝑡 indicate evidence of Vegas
outperforming FiveThirtyEight on average. The gray horizontal line plots the value 2∕𝛼 = 40, and the
time at which an e-process upcrosses this line is also when the (1 − 𝛼)-CS moves entirely below or
above zero. See Sections 3.4 and 3.5 for details.

The setup in which we develop our methods is game-theoretic (Shafer and Vovk, 2019): we posit

that two players participate in a forecasting game on a sequence of outcomes with an unknown distri-

bution. This game-theoretic setup naturally leads to “distribution-free” inference procedures—other

than requiring bounded scoring rules, wemake no distributional assumptions on the time-varying dy-

namics of the outcomes and forecasts, such as stationarity. We further discuss how to relax even the

assumption of bounded scores using asymptotic CSs (App. A.3) and normalized scores (App. A.4).

In Figure 3.1, we show an example of a CS and its corresponding e-processes applied to a forecast-

ing game between two real-world forecasters, FiveThirtyEight and Vegas, on the outcomes of Major

League Baseball (MLB) games. The CS in the left plot continuously tracks the expected average score

differential over time and effectively visualizes the time-varying trend along with the uncertainty on

its estimation. The two e-processes in the right plot each measure the accumulated evidence favor-

ing each forecaster over time. In this example, both the CS and the e-processes show that Vegas has
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outperformed FiveThirtyEight on average. We return to this example in Section 3.5.2.

The rest of the chapter is organized as follows. After discussing related work (Section 3.2) and

preliminaries (Section 3.3), we derive CSs for the time-varying average forecast score differentials

between two probabilistic forecasters in Sections 3.4.1-3.4.3, with the case of binary outcomes as a

working example. In Section 3.4.4, we also derive e-processes and p-processes as duals to our CSs,

providing alternative sequential inference procedures for forecast comparison. In Section 3.5.1, we

empirically validate our CSs and compare them against fixed-time and asymptotic confidence inter-

vals (CIs) on simulated data. Finally, in Sections 3.5.2 and 3.5.3, we apply our methods to real-world

forecast comparison tasks, namely comparing game-by-game predictions in Major League Baseball

(MLB) and comparing statistical postprocessing methods of ensemble weather forecasts. For further

details, Section A.1 contains omitted proofs; Section A.2 contains technical details about the time-

uniform boundary choices; Section A.3 contains an alternative forecast comparison approach using

an asymptotic CS; Sections A.4-A.6 contain extensions to normalized scores, lag-ℎ forecasts, and pre-

dictable conditions/bounds, respectively; Section A.7 contains extensions from binary outcomes to

categorical and continuous outcomes; Section A.8 contains detailed comparisons with existing fore-

cast comparison methods; and Section A.9 contains additional experimental results and details.

3.2 RelatedWork

Evaluation and Comparison of Forecasts. Forecast evaluation is a well-studied subject in the

literature of statistics, economics, finance, and climatology, dating back to the works of Brier (1950);

Good (1952); DeGroot and Fienberg (1983); Dawid (1984); Schervish (1989). The primary tool for

evaluating forecasts is proper scoring rules, of which the literature is extensive. Many characteri-

zation theorems for proper scoring rules exist across different forecasting scenarios, notably includ-

ing the case of probability forecasts for binary and categorical outcomes, point forecasts (e.g., mean,

quantiles, and prediction intervals) for continuous outcomes, and fully probabilistic forecasts (e.g.,

densities and CDFs) for continuous outcomes. See, e.g., McCarthy (1956); Savage (1971); Schervish

(1989); Winkler et al. (1996); Grünwald and Dawid (2004); Gneiting and Raftery (2007); Gneiting

(2011); Abernethy and Frongillo (2012); Dawid andMusio (2014); Ehm et al. (2016); Ovcharov (2018);
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Frongillo and Kash (2021); Waggoner (2021), for both classical and recent developments.

The problem of comparing forecasts while accounting for sampling uncertainty was first popular-

ized in the case of probability forecasts by Diebold and Mariano (1995) (DM), who proposed tests of

equal (historical) forecast accuracy using the differences in forecast errors. The DM test is based on

the asymptotic normality of the average forecast score differentials, and it makes stationarity assump-

tions about the outcomes. Giacomini andWhite (2006) (GW) developed tests of conditional predictive

accuracy given past information, allowing for the comparison of “which forecaster is more accurate

given the information available at the time of forecasting.” The GW test thus allows for nonstation-

arity, although it restricts the forecasters to a fixed window size𝑚 and its validity depends on mixing

assumptions. Lai et al. (2011) presented a comprehensive overview of the aforementioned methods

of forecast comparison and developed a martingale-based theory of scoring rules whose differentials

are linear in the outcome, such as proper scoring rules. They proved the asymptotic normality of

both forecast scores and score differentials, leading to an asymptotic and fixed-time CI that we use

as a point of comparison in our work. More recent work by Ehm and Krüger (2018); Ziegel et al.

(2020); Yen and Yen (2021) derive fixed-time tests of forecast dominance under all consistent scor-

ing functions (Gneiting, 2011). In comparison with all of these previous methods that presuppose

a fixed sample size, the key difference in our work is that we develop inference methods that are

valid at arbitrary data-dependent stopping times, while making virtually no assumption on the time-

varying dynamics of the data generating process. The resulting graphical representations of CSs and

e-processes also convey information about the entire time-varying trend of score differences, as in

Figure 3.1, unlike classical tests and CIs that concern a single comparison at a fixed time point.

Recently, Henzi and Ziegel (2022) constructed sequential tests of conditional forecast dominance

based on e-processes (Howard et al., 2020; Grünwald et al., 2019; Shafer, 2021; Ramdas et al., 2022b;

Vovk and Wang, 2021). These methods are also anytime-valid and nonasymptotic; yet, they test a

“strong3 null,” which states that one forecaster is better than the other at every point in time, some-

thing we rarely believe a priori. Thus, rejecting the strong null only suggests that there exists some

time point where the latter forecaster is better than the former, which may not come as much of a

3This distinction of strong andweak nulls come from the discussion of randomized experiments in causal inference; see,
e.g., Lehmann (1975); Rosenbaum (1995). Within the context of forecast comparison, Ehm and Krüger (2018) distinguish
between tests of average and step-by-step conditional predictive ability, which mirrors that of weak and strong nulls.
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Method & Key Result Null Hypothesisℋ0 Weak CI SAVI NA DF
Diebold and Mariano (1995) 𝛿 = 0 ✗ ✓ ✗ ✗ ✗√
𝑛(∆̂𝑛 − 𝛿)⇝ 𝑁(0, 2𝜋𝑓𝑑(0))

Giacomini and White (2006) 𝔼𝑛−1[�̂�𝑚,𝑛] = 0, ∀𝑛 ✗ ✗ ✗ ✗ ✗

𝑇𝑚(∆̂𝑛)⇝ 𝜒2

(𝑚: max. forecasting window)
Lai et al. (2011) 1

𝑛

∑𝑡
𝑖=1 𝔼𝑖−1[�̂�𝑖] = 0, ∀𝑛 ✓ ✓ ✗ ✓ ✗

√
𝑛(∆̂𝑛 − ∆𝑛)∕𝑠𝑛 ⇝ 𝑁(0, 1)

Henzi and Ziegel (2022) 𝔼𝑡−1[�̂�𝑡] ≤ 0, ∀𝑡 ✗ ✗ ✓ ✓ ✓

𝐸𝑡 =
∏𝑡

𝑖=1 (1 + 𝜆 𝛿𝑖(𝑦𝑖)
𝛿𝑖(1(𝑝𝑖>𝑞𝑖))

)

is an e-process, 𝜆 > 0
Ours 1

𝑡

∑𝑡
𝑖=1 𝔼𝑖−1[�̂�𝑖] ≤ 0, ∀𝑡 ✓ ✓ ✓ ✓ ✓

𝑡(∆̂𝑡 − ∆𝑡) is sub-exponential,
yielding a CS & an e-process

Table 3.2: Inference methods for comparing probability forecasts for binary outcomes. This table is
meant to be a quick summary only; see each referenced paper for the precise definitions, conditions,
and guarantees for the method. Notations: for each 𝑡 ∈ ℕ, 𝑝𝑡 and 𝑞𝑡 are two probability forecasts on
the outcome 𝑦𝑡; 𝛿𝑡(𝑦) = 𝑆(𝑝𝑡, 𝑦) − 𝑆(𝑞𝑡, 𝑦); �̂�𝑡 = 𝛿𝑡(𝑦𝑡); ∆̂𝑡 = 𝑡−1

∑𝑡
𝑖=1 �̂�𝑖; ∆𝑡 = 𝑡−1

∑𝑡
𝑖=1 𝔼𝑖−1[�̂�𝑖]. We

also use 𝑡 to refer to a time index varying over time, and 𝑛 to denote a fixed sample size that must be
determined before the experiment. Weak: whether the method tests a weak null (involving a time-
varying average). CI: whether the method provides a confidence interval for the score difference (as
opposed to only deriving a test). SAVI: whether inference is valid at arbitrary data-dependent stopping
times (as opposed to only fixed times). NA: whether the method has a nonasymptotic guarantee.
DF: whether the method has a distribution-free guarantee (as opposed to requiring distributional
assumptions like stationarity/mixing/i.i.d.). The last twomethods are the only ones that are anytime-
valid, nonasymptotic, and distribution-free — both of which develop e-processes. Among the two,
only our method tests the weak null and provides a CS for estimating ∆𝑡.

surprise. (One case where the strong null is appropriate is if we test two sets of forecasts produced

by the same data scientist, with one forecaster using more features or more sophisticated models; but

for two unrelated forecasters, we rarely expect the strong null to be true.) In contrast, our e-processes

test whether one forecaster dominates the other on average over time (thus requiring consistent out-

performance), and the CSs can even test such averaged nulls in a two-sided fashion (equivalently,

it tests both one-sided nulls). We examine this distinction further in Sections 3.4.4 and 3.5.3; other

methodological differences are summarized in Section A.8.1.

Table 3.2 summarizes the aforementioned methods of forecast comparison in terms of whether

they have a stopping time (or equivalently, time-uniform; see Section 3.4.4 for further details) guar-

antee, a non-asymptotic guarantee, and a distribution-free guarantee.
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Time-Uniform Confidence Sequences. Confidence sequences were developed by Robbins and

coauthors (Darling and Robbins, 1967; Robbins, 1970; Robbins and Siegmund, 1970; Lai, 1976a).

Recent renewed interests on CSs are partly due to best-arm identification in multi-armed bandits

(Jamieson et al., 2014; Jamieson and Jain, 2018), where CSs are sometimes referred to as always-valid

or anytime confidence intervals. CSs are also duals to sequential hypothesis tests, analogously to

CIs being dual to fixed-time hypothesis tests, and one can further derive a sequence of e-processes

and p-processes given the CSs (more precisely, its underlying exponential process) (Ramdas et al.,

2022b). In Section 3.4.4, we make this connection explicit and discuss how our approach also leads

to p-processes, or anytime-valid p-values (Johari et al., 2022), for weak nulls.

The recent work by Howard et al. (2021) is of particular importance in our work, as it devel-

ops tight confidence sequences that are uniformly valid over time under nonparametric assumptions

and has widths that shrink to zero. This work and its underlying technique of developing exponen-

tial test (super)martingales (Howard et al., 2020; Darling and Robbins, 1967; Ville, 1939) have led to

several interesting results, including state-of-the-art concentration inequalities for IID mean estima-

tion (Waudby-Smith and Ramdas, 2023) and sequential quantile estimation (Howard and Ramdas,

2022). Our work makes the connection between the empirical Bernstein (EB) CSs derived in Howard

et al. (2021) and the martingale property of forecast score differentials (Lai et al., 2011), leading to a

novel sequential inference procedure for forecaster comparison.

3.3 Preliminaries

3.3.1 Test Supermartingales, Ville’s Inequality, and Confidence Sequences

See Chapter 2 for a detailed introduction to these central concepts.

3.3.2 Forecast Evaluation via Scoring Rules

Let 𝒴 be the space of all possible outcomes equipped with a 𝜎-field 𝒢. Let ∆(𝒴) be the set of all

probability distributions on (𝒴,𝒢) and 𝒫 ⊆ ∆(𝒴). To facilitate our discussion, the primary working

example in this chapter will be the space of binary outcomes 𝒴 = {0, 1} and probability forecasts

parametrized by theirmeans in𝒫 = [0, 1]. But our setup can be generalized to any finite sample space
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𝒴 = {1,… , 𝐾} with 𝐾-dimensional probability forecasts 𝒫 = ∆𝐾−1, for 𝐾 ≥ 2, and 𝑑-dimensional

sample space 𝒴 ⊆ ℝ𝑑, for 𝑑 ≥ 1, with point (e.g., mean and quantile) or probabilistic (e.g., CDF)

forecasts. (We defer our discussion of these general cases to Section A.7.)

A scoring rule is any extended real-valued function4 𝑆 ∶ 𝒫 × 𝒴 → ℝ and can be used to evaluate

the performance of a (probabilistic) forecast 𝑝 ∈ 𝒫 given an observation 𝑦 ∈ 𝒴. Following Gneiting

and Raftery (2007), we take scoring rules to be positively oriented, meaning that higher scores reflect

better forecasts. A prominent example is the Brier score (Brier, 1950), which in the binary case can

be expressed as 𝑆(𝑝, 𝑦) = 1 − (𝑝 − 𝑦)2 for 𝑝 ∈ [0, 1] and 𝑦 ∈ {0, 1}.

Given a forecast 𝑝 ∈ 𝒫 and a probability distribution 𝑞 ∈ ∆(𝒴), we can naturally extend the

definition of a scoring rule 𝑆 to its expected score w.r.t. 𝑦 ∼ 𝑞 (conditional on 𝑝):

𝑆(𝑝; 𝑞) = 𝔼𝑦∼𝑞 [𝑆(𝑝, 𝑦)] . (3.1)

Here, we make the distinction between the scoring rule 𝑆 on 𝒫 × 𝒴 and its expected score 𝑆 defined

on 𝒫 × ∆(𝒴) by the notations 𝑆(𝑝, 𝑦) and 𝑆(𝑝; 𝑞), respectively. We can recover the scoring rule from

the expected score definition via 𝑆(𝑝, 𝑦) = 𝑆(𝑝; 𝛿𝑦), where 𝛿𝑦 is a point measure on 𝑦.

A scoring rule 𝑆 is proper if any probability 𝑞 ∈ ∆(𝒴)maximizes the expected score 𝑆(⋅; 𝑞):

𝑞 ∈ argmax
𝑝∈𝒫

𝑆(𝑝; 𝑞). (3.2)

𝑆 is strictly proper if the argmax in (3.2) is unique. Intuitively, a proper scoring rule encourages fore-

casters to be honest, because if a forecaster believes that the outcome follows the distribution 𝑞 ∈ 𝒫,

then they are incentivized to honestly forecast 𝑞, instead of any other distribution 𝑝 ≠ 𝑞, as 𝑞 max-

imizes the expected score (uniquely, if 𝑆 is strictly proper) according to their belief. Proper scoring

rules are often considered as the primary means of evaluating probabilistic forecasts, as they assess

both calibration and sharpness (Winkler et al., 1996; Gneiting et al., 2007).

Classical examples of proper scoring rules for probability forecasts 𝑝 ∈ 𝒫 = [0, 1] on binary

outcomes 𝑦 ∈ 𝒴 = {0, 1} include the following:

4More formally, the scoring rule 𝑆 is required to be 𝒫-quasi-integrable in its second argument, meaning that for every
𝑝 ∈ 𝒫, 𝑆(𝑝, ⋅) is measurable and, for all 𝑞 ∈ 𝒫, the integral ∫𝒴 𝑆(𝑝, 𝑦)𝑑𝑞(𝑦) exists as a possibly infinite but not indeterminate
value (Bauer, 2001; Abernethy and Frongillo, 2012).
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• The Brier score or the quadratic score (Brier, 1950): 𝑆(𝑝, 𝑦) = 1 − (𝑝 − 𝑦)2.

• The spherical score (Good, 1971): 𝑆(𝑝, 𝑦) = 𝑝𝑦+(1−𝑝)(1−𝑦)
√
𝑝2+(1−𝑝)2

.

• The logarithmic score (Good, 1952): 𝑆(𝑝, 𝑦) = 𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝).

• The zero-one score or the success rate: 𝑆(𝑝, 𝑦) = 𝑦1 (𝑝 ≥ 0.5) + (1 − 𝑦)1 (𝑝 < 0.5).

The Brier, spherical, and logarithmic scores are examples of strictly proper scoring rules, while the

zero-one score is an example of a proper but not strictly proper scoring rule. An example of an im-

proper scoring rule for probability forecasts is the absolute score, 𝑆(𝑝, 𝑦) = 1− |𝑝−𝑦|. Also note that

all of the examples except the logarithmic score are bounded for 𝑝 ∈ [0, 1] and 𝑦 ∈ {0, 1}.

3.4 Anytime-Valid Inference forAverageForecast ScoreDifferentials

In this section, we derive CSs and e-processes, as well as their corresponding sequential tests and p-

processes, for the time-varying average difference in the quality of forecasts, as measured by a scoring

rule. Our intuition comes from the extensive literature on evaluating and comparing probability fore-

casts via scoring rules (Winkler et al., 1996; Gneiting and Raftery, 2007; DeGroot and Fienberg, 1983;

Schervish, 1989; Gneiting, 2011; Lai et al., 2011), combined with the powerful tool of time-uniform

CSs (Darling and Robbins, 1967; Howard et al., 2021). For now, our working example in this section

will be the case of comparing probability forecasts on binary outcomes; we further discuss extensions

to categorical and certain continuous outcomes in Section A.7.

3.4.1 A Game-Theoretic Formulation

The intuition behind our SAVImethods for forecast score differentials comes from the game-theoretic

statistical framework (Shafer, 2021; Ramdas et al., 2022a). Consider a forecasting game where two

players make probabilistic forecasts on an event that happens over time (e.g., whether it will rain on

each day, whether a sports team will win its game each week, and more) and an unknown player

named reality chooses a sequence of distributions that generates the outcomes that the forecasters

are trying to predict. Let 𝑡 = 1, 2,… denote each round of the game. Though not required, we can

also optionally allow having any historical data 𝑦−(𝐻−1),… , 𝑦−1, 𝑦0 for some 𝐻 ≥ 0. The forecasting

game can be formulated in general as follows — the case of probability forecasts on binary outcomes
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is obtained by setting 𝒫 = ∆(𝒴) = [0, 1] (𝑦𝑡 ∼ 𝑟𝑡 would refer to 𝑦𝑡 ∼ Bernoulli(𝑟𝑡)).

Game 3.1 (Comparing Sequential Forecasters). For rounds 𝑡 = 1, 2,… :

1. Forecasters 1 and 2 make their forecasts, 𝑝𝑡, 𝑞𝑡 ∈ 𝒫, respectively. The order in which the fore-

casters make their forecasts is not specified.

2. Reality chooses 𝑟𝑡 ∈ ∆(𝒴). 𝑟𝑡 is not revealed to the forecasters.

3. 𝑦𝑡 ∼ 𝑟𝑡 is sampled and revealed to the forecasters.

We now elaborate on the role of each player in Game 3.1.

Forecasters 1 & 2. At each round 𝑡, the two forecasters canmake their forecasts using any informa-

tion available to them. This includes historical and previous outcomes 𝑦−(𝐻−1),… , 𝑦0, 𝑦1,… , 𝑦𝑡−1, any

of the previous forecasts made, 𝑝1,… , 𝑝𝑡−1, 𝑞1,… , 𝑞𝑡−1, as well as any other side information available

to either forecaster. They cannot, however, make their predictions using any of 𝑟1,… , 𝑟𝑡’s (or infor-

mation from the future). For example, when predicting the outcome of the next baseball game, the

forecasters’ filtrationmay include not only all of previous games’ results but also any side information

that either forecaster may have, such as which players are starting the game and whether there are

injuries. The setup also allows for the case where two forecasters have different side information, as

our results are completely agnostic to such details.

This game-theoretic framework for forecast comparison is prequential (Dawid, 1984), in the sense

that we put no restrictions on how these forecasts are generated, and we only evaluate forecasters

based on the forecasts they did make and the outcomes that did occur, as opposed to forecasts they

would have made had the outcomes been different.

Reality. In our game, Reality is the player that determines the unknown distribution 𝑟𝑡 of the even-

tual outcome 𝑦𝑡 conditioned on its past, which notably includes the forecasters’ choices 𝑝𝑡 and 𝑞𝑡.

In the binary case, for example, Reality chooses the conditional mean sequence of the outcomes 𝑦𝑡

given everything it has seen. Reality can essentially choose 𝑟𝑡 “however theywant,” and they can even

choose 𝑟𝑡 after seeing 𝑝𝑡 or 𝑞𝑡, although in practice Reality is usually not influenced by the forecasters.

Put differently, the framework is agnostic to what information Reality sees: Reality may only see its

past choices 𝑟1,… , 𝑟𝑡−1 and (optionally) the past outcomes 𝑦1,… , 𝑦𝑡−1, or it may act adversarially after
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seeing 𝑝𝑡 and 𝑞𝑡. In particular, 𝑟𝑡 could also be a point distribution at 𝑦𝑡.

We note that the distribution-free property of our methods corresponds to the fact that the game

places no distributional assumptions on the time-varying dynamics of (𝑟𝑡)∞𝑡=1, such as stationarity,

Markovian or other conditional independence assumptions.

The Statistician. The statistician, who stands outside of the game, has the goal of comparing the

predictive performance of the two forecasters according to a chosen scoring rule and based only on

the observed data (𝑝𝑡, 𝑞𝑡, 𝑦𝑡)∞𝑡=1, without making any assumptions about the behavior of any player

involved.5 The statisticianmay choose to update their inferential conclusions as the game progresses.

How the statistician achieves such a goal will be the focus of the subsequent sections.

3.4.2 The Measure-Theoretic Setup

We now formalize Game 3.1 in the context of comparing the two probabilistic forecasters over time.

Let (𝑝𝑡)∞𝑡=1 and (𝑞𝑡)
∞
𝑡=1 be two sequences of forecasts in 𝒫, for a sequence of outcomes (𝑦𝑡)

∞
𝑡=1 in 𝒴. In

the binary case, the forecasts will take values in 𝒫 = [0, 1] and the outcomes in 𝒴 = {0, 1}. We can

define Game 3.1 in a measure-theoretic sense by specifying the associated filtrations, i.e., a sequence

of “information sets” with which we perform inference. Our formulation is closely related to the

setup of Lai et al. (2011), although we make the game-theoretic intuitions explicit.

The “Observable” Forecaster Filtration𝔉. We first define the filtration with which the two fore-

casters generate their forecasts, denoted as 𝔉 ∶= (ℱ𝑡)∞𝑡=0. For each 𝑡 ≥ 1, let ℱ𝑡−1 represent any

information available to the forecasters before making their predictions at time 𝑡, as described in

the previous subsection. Mathematically, this means that (𝑝𝑡)∞𝑡=1, (𝑞𝑡)
∞
𝑡=1, and (𝑦𝑡)

∞
𝑡=1 are predictable

w.r.t. 𝔉. Note that 𝔉 also represents the information available to the statistician, making this the

“observable” filtration that contrasts with the “oracle” filtration (defined below).

The “Oracle” Game Filtration 𝔊. The game filtration, denoted as 𝔊 ∶= (𝒢𝑡)∞𝑡=0, represents all

sets of information associated with Game 3.1. The parameter of interest (unknown to the statistician)
5Specifically, we do not explicitly consider strategic issues arising from (say) the choice of the scoring rule or themethod

of comparison. In other words, we consider the comparison problem separately from the elicitation problem (how to elicit
honest forecasts). A separate line of work considers these important, but orthogonal, issues.
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is defined in terms of this filtration, making it the “oracle” filtration. More precisely, for each 𝑡 ≥ 1,

𝒢𝑡−1 includes not only everything in ℱ𝑡−1 but also any information available to Reality before the

outcome 𝑦𝑡 is realized, including Reality’s choice 𝑟𝑡. Mathematically, this implies that (𝑝𝑡)∞𝑡=1, (𝑞𝑡)
∞
𝑡=1,

and (𝑟𝑡)∞𝑡=1 are predictable w.r.t. 𝔊. The setup allows for the flexible choices of Reality described in

the previous subsection, as it does not preclude Reality’s actions in any way.

In the remainder of the chapter, we use the notation𝔼𝑡−1[⋅] = 𝔼 [⋅ ∣ 𝒢𝑡−1] to denote the conditional

expectation with respect to the game filtration for each 𝑡. In the case of binary (and categorical)

outcomes, because the outcome distribution is completely specified by their mean, we simply let 𝑟𝑡

denote the (unknown) conditional mean of the outcome 𝑦𝑡 given 𝒢𝑡−1 for each 𝑡, with a slight abuse

of notation. In such cases, we have that

𝑟𝑡 = 𝔼𝑡−1[𝑦𝑡] ∀𝑡 = 1, 2,… , (3.3)

where 𝔼𝑡−1 refers to the conditional expectation over 𝑦𝑡 ∼ 𝑟𝑡 ∣ 𝒢𝑡−1.

Comparing Sequential Forecasters via Average Forecast Score Differentials. With the afore-

mentioned setup, we can now use scoring rules to assess and compare the quality of the two fore-

casters over time. We define the average (forecast) score differential ∆𝑡 between the sequences of

forecasts (𝑝𝑖)∞𝑖=1 and (𝑞𝑖)
∞
𝑖=1, up to time 𝑡, as the average difference in expected scores:

∆𝑡 ∶=
1
𝑡

𝑡∑

𝑖=1
𝔼𝑖−1 [𝑆 (𝑝𝑖, 𝑦𝑖) − 𝑆 (𝑞𝑖, 𝑦𝑖)] , 𝑡 ≥ 1, (3.4)

where 𝔼𝑖−1 denotes the expectation over 𝑦𝑖 ∼ 𝑟𝑖 conditioned on the game filtration 𝒢𝑖−1, which in-

cludes both forecasts 𝑝𝑖 and 𝑞𝑖 as well as 𝑟𝑖. The time-varying parameter ∆𝑡 provides an intuitive way

of quantifying the difference in the quality of forecasts made up to time 𝑡. We highlight that ∆𝑡 helps

us infer whether one forecaster is better than the other on average (over time), as opposed to one

strictly dominating the other (Giacomini and White, 2006; Henzi and Ziegel, 2022). This estimand is

also used in Lai et al. (2011)’s asymptotic CI.

The parameter ∆𝑡 is not observable to the statistician or the forecasters, because reality’s moves

𝑟1,… , 𝑟𝑡 are unknown and never observed. We thus define the empirical average (forecast) score
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differential ∆̂𝑡 as the unbiased estimate of each summand in (3.4), also averaged over time:

∆̂𝑡 ∶=
1
𝑡

𝑡∑

𝑖=1
[𝑆 (𝑝𝑖, 𝑦𝑖) − 𝑆 (𝑞𝑖, 𝑦𝑖)] , 𝑡 ≥ 1. (3.5)

∆̂𝑡 is completely observable to the statistician after time 𝑡.

The statistician’s goal then becomes quantifying how far ∆̂𝑡 is from ∆𝑡, while accounting for the

uncertainty associated with sampling 𝑦𝑡 at each time 𝑡. To this end, we define the pointwise (forecast)

score differential 𝛿𝑖 ∶= 𝔼𝑖−1[𝑆(𝑝𝑖, 𝑦𝑖)−𝑆(𝑞𝑖; 𝑦𝑖)] and its empirical counterpart �̂�𝑖 ∶= 𝑆(𝑝𝑖, 𝑦𝑖)−𝑆(𝑞𝑖, 𝑦𝑖).

Then, it is immediate that the cumulative sums of deviations, defined by 𝑆0 = 1 and

𝑆𝑡 ∶= 𝑡
(
∆̂𝑡 − ∆𝑡

)
=

𝑡∑

𝑖=1

(
�̂�𝑖 − 𝛿𝑖

)
, 𝑡 ≥ 1, (3.6)

forms a martingale, i.e., 𝔼𝑡−1[𝑆𝑡] = 𝑆𝑡−1, ∀𝑡 ≥ 1. Previous work including Seillier-Moiseiwitsch and

Dawid (1993); Lai et al. (2011) use this property to derive the asymptotic normality of empirical aver-

age score differentials. In the following sections, we illustrate how (𝑆𝑡)∞𝑡=0 can further be uniformly

and non-asymptotically bounded by constructing exponential test supermartingales. As a result, we

will be able to estimate and cover ∆𝑡 using CSs and also test its sign using e-processes.

3.4.3 Time-Uniform Confidence Sequences for Average Score Differentials

Time-Uniform Boundaries and Exponential Test Supermartingales We now show that we

can uniformly bound the difference between ∆̂𝑡 and ∆𝑡 over time using uniform boundaries and test

supermartingales. To do this, we start with a cumulative sum process 𝑆𝑡 ∶=
∑𝑡

𝑖=1(�̂�𝑖 − 𝛿𝑖) as well

as its intrinsic time �̂�𝑡, which is the variance process for 𝑆𝑡 (to be defined later). Our goal is then to

uniformly bound the sum 𝑆𝑡 over the intrinsic time �̂�𝑡, which corresponds to bounding the difference

between ∆̂𝑡 and ∆𝑡 over time due to (3.6).

Following Howard et al. (2020), for any sum process (𝑆𝑡)∞𝑡=0 and its intrinsic times (�̂�𝑡)
∞
𝑡=0, we

define a (one-sided) uniform boundary 𝑢 = 𝑢𝛼 with crossing probability 𝛼 ∈ (0, 1) as any function of

the intrinsic time that gives a time-uniform bound on the sums:

𝑃
(
∀𝑡 ≥ 1 ∶ 𝑆𝑡 ≤ 𝑢𝛼(�̂�𝑡)

)
≥ 1 − 𝛼, (3.7)
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that is, with probability at least 1 − 𝛼, the sums 𝑆𝑡 are upper-bounded by 𝑢(�̂�𝑡) at all times 𝑡. By sim-

ilarly computing uniform boundary to (−𝑆𝑡, �̂�𝑡)∞𝑡=0, we can also obtain a time-uniform lower bound

on 𝑆𝑡. (Alternatively, we can directly define a two-sided sub-𝜓 uniform boundary, which satisfies

𝑃(∀𝑡 ≥ 1 ∶ −𝑢𝛼(�̂�𝑡) ≤ 𝑆𝑡 ≤ 𝑢𝛼(�̂�𝑡)) ≥ 1 − 𝛼. An example is Robbins (1970)’s two-sided normal

mixture that we describe later.) The upper and lower bounds then jointly form a time-uniform CS on

(∆𝑡)∞𝑡=1 by rearranging the terms.

How do we show that there exists such a uniform boundary for our definitions of (𝑆𝑡, �̂�𝑡)∞𝑡=0?

Howard et al. (2020, 2021) show that there exists such a uniform boundary if, for each 𝜆 ∈ [0, 𝜆max),

the exponential process defined by 𝐿0(𝜆) = 1 and

𝐿𝑡(𝜆) = exp
{
𝜆𝑆𝑡 − 𝜓(𝜆)�̂�𝑡

}
, 𝑡 ≥ 1, (3.8)

is a test supermartingale w.r.t. 𝔊. Here, 𝜓 ∶ [0, 𝜆max) → ℝ is a “CGF-like” function (Howard et al.,

2020), with a scale parameter 𝑐 > 0, that controls how fast 𝑆𝑡 can grow relative to the intrinsic time

�̂�𝑡. It is called a “CGF-like” function because it closely resembles (or equals) a cumulant generating

function (CGF) of a mean-zero random variable. In this work, we use two 𝜓 functions:

• 𝜓𝑁,𝑐(𝜆) = 𝑐2𝜆2∕2, ∀𝜆 ∈ [0,∞), which is the CGF of a centered Gaussian with variance 𝑐2;

• 𝜓𝐸,𝑐(𝜆) = 𝑐−2(− log(1 − 𝑐𝜆) − 𝑐𝜆), ∀𝜆 ∈ [0, 1∕𝑐), which is a rescaled CGF of a centered Expo-

nential with scale 𝑐.

If 𝐿𝑡(𝜆) is a test supermartingale for each 𝜆 ∈ [0, 𝜆max) for some 𝜓, then we say that (𝑆𝑡)∞𝑡=0 is sub-𝜓

with variance process (�̂�𝑡)∞𝑡=0. In particular, we say that (𝑆𝑡)
∞
𝑡=0 is sub-Gaussian or sub-exponential,

with variance process (�̂�𝑡)∞𝑡=0 and scale 𝑐, if it is sub-𝜓𝑁,𝑐 or sub-𝜓𝐸,𝑐 respectively; these generalize the

definitions of sub-Gaussian and sub-exponential random variables to cumulative sums w.r.t. intrinsic

time. The uniform boundary 𝑢 defined using 𝜓 is then called a sub-𝜓 uniform boundary.

Our goal is now to identify the conditions with which (𝐿𝑡(𝜆))∞𝑡=0 is indeed a test supermartingale

and use different 𝜓 functions to obtain different uniform boundaries and hence CSs.

Warmup: Hoeffding-Style Confidence Sequences We first derive an illustrative example of a

CS for ∆𝑡 solely based on the sub-Gaussianity of the empirical pointwise score differentials (�̂�𝑖)∞𝑖=1.
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While the resulting CS is not the tightest one in our case, its derivation is simple enough to showcase

the general pipeline for deriving CSs.

Recall the problem setup in Section 3.4.2, and for each 𝑖 ≥ 1, consider two probability forecasts

𝑝𝑖, 𝑞𝑖 ∈ [0, 1] on a binary outcome 𝑦𝑖 ∈ {0, 1} with unknown mean 𝑟𝑖 ∈ [0, 1]. Since 𝑝𝑖, 𝑞𝑖, and 𝑦𝑖 are

all bounded, we know that the pointwise score differentials �̂�𝑖 for 𝑖 ≥ 1 are also bounded for many

of the scoring rules we’ve discussed (e.g., |�̂�𝑖| ≤ 1 for the Brier, spherical, and zero-one scores). If

|�̂�𝑖| ≤ 𝑐 for some 𝑐 > 0, we know that �̂�𝑖 is 𝑐-sub-Gaussian (Hoeffding, 1963) conditioned on the

game filtration 𝒢𝑖−1, meaning that 𝔼𝑖−1[𝑒𝜆(�̂�𝑖−𝛿𝑖)] ≤ 𝑒𝜆2𝑐2∕2 = exp{𝜓𝑁,𝑐(𝜆)} for all 𝜆 ∈ ℝ.

Now, for each 𝑡, define the cumulative sum 𝑆𝑡 =
∑𝑡

𝑖=1(�̂�𝑖 − 𝛿𝑖) and the intrinsic time �̂�𝑡 =
∑𝑡

𝑖=1 1 = 𝑡. It then follows that, for each 𝜆 ∈ [0,∞), the exponential process (𝐿𝑡(𝜆))∞𝑡=0 given by

𝐿𝑡(𝜆) = exp{𝜆𝑆𝑡 − 𝜓𝑁,𝑐(𝜆)�̂�𝑡} is a test supermartingale:

𝔼𝑡−1[𝐿𝑡(𝜆)] = 𝐿𝑡−1(𝜆) ⋅ 𝔼𝑡−1
[
exp

{
𝜆
(
�̂�𝑡 − 𝛿𝑡

)
− 𝜓𝑁,𝑐(𝜆)

}]
≤ 𝐿𝑡−1(𝜆). (3.9)

Hence, there exists a sub-Gaussian uniform boundary for (𝑆𝑡, �̂�𝑡) such that the time-uniform guar-

antee in (3.7) holds. By rearranging terms and also using the analogous argument for (−𝑆𝑡, �̂�𝑡), we

arrive at our first CS. Hereafter, the notation (𝑎 ± 𝑏) denotes the interval (𝑎 − 𝑏, 𝑎 + 𝑏).

Theorem 3.1 (Hoeffding-style confidence sequences for ∆𝑡). Suppose that �̂�𝑖 is 𝑐-sub-Gaussian con-

ditioned on 𝒢𝑖−1 for 𝑖 ≥ 1, for some 𝑐 ∈ (0,∞). Then, for any 𝛼 ∈ (0, 1),

𝐶𝖧𝑡 ∶= (∆̂𝑡 ±
𝑢(𝑡)
𝑡 ) forms a (1 − 𝛼)-CS for ∆𝑡, (3.10)

where 𝑢 = 𝑢𝛼∕2,𝑐 is any (one-sided) sub-Gaussian uniform boundary with crossing probability 𝛼
2
and

scale 𝑐 (or alternatively, a two-sided version with crossing probability 𝛼 and scale 𝑐).

The statement (3.10) is equivalent to saying that, with probability at least 1 − 𝛼, ∆𝑡 is contained

in 𝐶𝖧𝑡 for all time 𝑡, or that 𝑃(∀𝑡 ≥ 1 ∶ ∆𝑡 ∈ 𝐶𝖧𝑡 ) ≥ 1 − 𝛼. This CS is called a Hoeffding-style CS, as

it extends Hoeffding (1963)’s inequality for the sums of independent sub-Gaussian random variables

to the sequential case. In the sub-Gaussian case, it is also possible to construct a two-sided boundary

without separately constructing one-sided boundary. This is due to a classical result byRobbins (1970)

that we restate later in (3.13), so the upper and lower confidence bounds need not be constructed
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separately; in practice, the one-sided and two-sided variants are nearly identical (Howard et al., 2021).

We further discuss the possible choices of the uniform boundary later in this subsection.

The condition for Theorem 3.1 (and for Theorem 3.2 that will follow shortly) is satisfied by many

scoring rules for probability forecasts on binary or categorical outcomes, including the Brier, spher-

ical, and zero-one scores. For the unbounded logarithmic score, one can use its truncated variant

𝑆(𝑝, 𝑦) = 𝑦 log(𝑝 ∨ 𝜖) + (1 − 𝑦) log((1 − 𝑝) ∨ 𝜖) for some small 𝜖 > 0; although the score is no

longer proper, our methods remain valid. The condition is also satisfied for scoring rules on bounded

continuous outcomes, such as Brier and quantile scores on [0, 1]-valued outcomes (See Section A.7).

Main Result: Empirical Bernstein Confidence Sequences Now we are ready to present our

main result, which is the derivation of a tight CS for ∆𝑡. The key difference from the Hoeffding-

style CS is that we now use an empirical estimate of the variance process for the cumulative sums,

leading to a variance-adaptive CS that is often much tighter in practice.6 Recall the problem setup in

Section 3.4.2 once again.

Theorem 3.2 (Empirical Bernstein confidence sequences for ∆𝑡). Suppose that |�̂�𝑖| ≤
𝑐
2
for each

𝑖 ≥ 1, for some 𝑐 ∈ (0,∞). Also, let �̂�𝑡 =
∑𝑡

𝑖=1(�̂�𝑖 − 𝛾𝑖)
2, where (𝛾𝑖)∞𝑖=1 is any

[
− 𝑐
2
, 𝑐
2

]
-valued predictable

sequence w.r.t.𝔊. Then, for any 𝛼 ∈ (0, 1),

𝐶𝖤𝖡𝑡 ∶= (∆̂𝑡 ±
𝑢(�̂�𝑡)
𝑡 ) forms a (1 − 𝛼)-CS for ∆𝑡, (3.11)

where 𝑢 = 𝑢𝛼∕2,𝑐 is any sub-exponential uniform boundary with crossing probability 𝛼
2
and scale 𝑐.

As before, the statement (3.11) is equivalent to saying that, with probability at least 1 − 𝛼, ∆𝑡

is contained in 𝐶𝖤𝖡𝑡 for all time 𝑡, or that 𝑃
(
∀𝑡 ≥ 1 ∶ ∆𝑡 ∈ 𝐶𝖤𝖡𝑡

)
≥ 1 − 𝛼. The proof is provided in

Section A.1.2. Theorem 3.2 (and its proof) can be viewed as an extension of Theorem 4 in Howard

et al. (2021) to our setup of sequential forecast comparison.

Like the Hoeffding-style CS in Theorem 3.1, the EB CS estimates the conditional predictive ability

in an anytime-valid and distribution-free manner. The EB CS is further variance-adaptive because its

width is a function of the empirical variance process (�̂�𝑡)∞𝑡=0, and we illustrate this empirically in Sec-

6The improvement from a Hoeffding-style CS to an empirical Bernstein CS mirrors the improvement from Hoeffding’s
inequality to empirical Bernstein’s inequality for bounded random variables in the fixed-sample case.
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Type CS 𝐶𝑡 Intrinsic Time �̂�𝑡 Uniform Boundary 𝑢
Hoeffding-Style

(∆̂𝑡 ±
𝑢(�̂�𝑡)
𝑡
) 𝑡

Normal Mixture
(Theorem 3.1) Polynomial Stitching
Emp. Bernstein

(∆̂𝑡 ±
𝑢(�̂�𝑡)
𝑡
)

∑𝑡
𝑖=1(�̂�𝑖 − 𝛾𝑖)2, Gamma-Exponential Mixture

(Theorem 3.2) (𝛾𝑖)∞𝑖=1 predictable Polynomial Stitching

Table 3.3: Summary of confidence sequences and their uniform boundary choices.

tion 3.5. As before, we can use any bounded scoring rules, which in the binary and categorical cases

include the Brier, spherical, and zero-one scores (proper), as well as the truncated logarithmic score

(improper); scoring rules for bounded continuous outcomes can similarly be used. In addition, for

unbounded proper scores for binary forecasts, such as the logarithmic score, we show in Section A.4

that a normalized version of the average score differential, due to Winkler (1994), can be used.

The choice of the uniform boundary 𝑢 is discussed in the following subsection. A reasonable

choice for the predictable sequence (𝛾𝑖)∞𝑖=1 is the average of previous score differentials, i.e., 𝛾𝑖 = ∆̂𝑖−1,

although a smarter choice may lead to tighter CS. For the rest of this chapter, our default choice of CS

for ∆𝑡 will be that of Theorem 3.2, using �̂�𝑡 =
∑𝑡

𝑖=1(�̂�𝑖 − ∆̂𝑖−1)2, unless specified otherwise.

Choosing the Uniform Boundary via the Method of Mixtures The specific choice of the uni-

form boundary 𝑢 controls the tightness of the CS across time, and an extensive list of choices for 𝑢

is covered in detail in Howard et al. (2021). While the simplest uniform boundaries are given as lin-

ear functions of the intrinsic time (Howard et al., 2020), curved uniform boundaries can produce CSs

that are tighter across time. Here, we focus on a type of curved boundary called the conjugate-mixture

boundary; another option, called the polynomial stitching boundary, is also discussed in App. A.2.2.

Either boundary type is applicable to Theorems 3.1 and 3.2.

The conjugate-mixture (CM) boundary (Howard et al., 2021), denoted as 𝑢𝖢𝖬𝛼 , represents a class of

uniform boundaries arising from the method of mixtures, the first instance of which was derived by

Darling and Robbins (1967). The key idea is summarized as follows. Since 𝐿𝑡(𝜆) = exp{𝜆𝑆𝑡 −𝜓(𝜆)�̂�𝑡}

is a test supermartingale for every 𝜆 ∈ [0, 𝜆max), it follows that for any distribution 𝐹 on [0, 𝜆max),

the mixture 𝐿𝗆𝗂𝗑𝑡 ∶= ∫ 𝐿𝑡(𝜆)𝑑𝐹(𝜆) is also a test supermartingale. Choosing 𝐹 to be conjugate (in

the Bayesian sense) to 𝜓 then gives a closed-form expression for 𝐿𝗆𝗂𝗑𝑡 . For example, if (𝑆𝑡)∞𝑡=0 is sub-
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Gaussian with (�̂�𝑡)∞𝑡=0 (Theorem 3.1), then choosing 𝐹 to be a Gaussian results in the normal mixture

boundary (Robbins, 1970); if (𝑆𝑡)∞𝑡=0 is sub-exponential with (�̂�𝑡)
∞
𝑡=0 (Theorem 3.2), then choosing 𝐹

as a Gamma results in a gamma-exponential mixture boundary.

To elaborate, by Lemma 2 of Howard et al. (2021), if 𝐿𝑡(𝜆) = exp{𝜆𝑆𝑡 − 𝜓(𝜆)�̂�𝑡} is a test super-

martingale for each 𝜆 ∈ [0, 𝜆max) and 𝐹 is any probability distribution on [0, 𝜆max), then the following

function is a sub-𝜓 uniform boundary with crossing probability 𝛼 ∈ (0, 1):

𝑢𝖢𝖬𝛼 (𝑣) ∶= sup

⎧
⎪

⎨
⎪
⎩

𝑠 ∈ ℝ ∶ ∫ exp {𝜆𝑠 − 𝜓(𝜆)𝑣}𝑑𝐹(𝜆)
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

=∶𝑚(𝑠,𝑣)

< 1
𝛼

⎫
⎪

⎬
⎪
⎭

, 𝑣 ≥ 0. (3.12)

Because𝑚(𝑆𝑡, �̂�𝑡) = 𝐿mix
𝑡 is a test supermartingale, Ville’s inequality says that 𝑃(∀𝑡 ≥ 1 ∶ 𝑚(𝑆𝑡, �̂�𝑡) <

1∕𝛼) ≥ 1 − 𝛼, which in turn implies that 𝑃(∀𝑡 ≥ 1 ∶ 𝑆𝑡 ≤ 𝑢𝖢𝖬𝛼 (�̂�𝑡)) ≥ 1 − 𝛼. Similarly, if (−𝑆𝑡, �̂�𝑡)∞𝑡=0
is also sub-𝜓, then the above procedure also gives the lower bound on 𝑆𝑡.

Importantly, the uniform boundary (3.12) can be used for both Theorems 3.1 and 3.2, with the

choice of 𝐹 differing in each case. For the Hoeffding-style CS in Theorem 3.1, a two-sided normal

mixture boundary can be computed directly in closed-form by choosing 𝐹 to be𝒩(0, 𝜌−1) (Robbins,

1970):

𝑢𝖢𝖬𝛼 (𝑣;𝜓𝑁) =

√

(𝑣 + 𝜌) log (
𝑣 + 𝜌
𝛼2𝜌

) (3.13)

where 𝜌 > 0 is a free parameter. In practice, 𝜌 can be chosen to optimize the width of the resulting

CS at a pre-specified intrinsic time. A one-sided normal mixture boundary can also be derived in

closed-form (Howard et al., 2021).

For the EB CS in Theorem 3.2, a one-sided gamma-exponential mixture boundary 𝑢𝖢𝖬𝛼 (𝑣;𝜓𝐸),

with 𝐹 as a Gamma, can be computed efficiently using a numerical root finder (𝑚(𝑠, 𝑣) has a closed

form; the boundary 𝑢𝖢𝖬𝛼 is obtained numerically. See App. A.2.1 for details). The one-sided boundary

can be used for computing both the upper and lower confidence bounds of the EBCS. If a closed-form

boundary is needed, then the polynomial stitching boundary (App. A.2.2) can be used. Also, while

the CM boundary has an asymptotic rate of 𝑂(
√
𝑣 log 𝑣) as illustrated in (3.13), it is usually tighter

than the polynomial stitched boundary in practice. In fact, the CM boundary is unimprovable in the
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case of sub-Gaussian random variables without extra assumptions (Howard et al., 2021, Ppn. 4).

Table 3.3 summarizes the choice of uniform boundaries and the CSs we derived for estimating

∆𝑡. In our experiments, we use the conjugate-mixture uniform boundary by default, although we

also perform an empirical comparison between the different choices as well as their hyperparameters

in Section A.9.4. We use the publicly available implementation of the polynomial stitching and CM

uniform boundaries by Howard et al. (2021).7

3.4.4 Sequential Tests, E-Processes and P-Processes

While our derivation so far has focused on confidence sequences, we can also derive e-processes and

p-processes (Shafer andVovk, 2019; Vovk andWang, 2021; Grünwald et al., 2019; Ramdas et al., 2020).

In particular, an e-process can be derived as a lower bound on the exponential test supermartingale

(3.8) that we used to construct the CS in the previous section. This correspondence is general to

any exponential process upper-bounded by a test supermartingale, as noted in, e.g., Ramdas et al.

(2020); Howard et al. (2021); our work utilizes this fact to introduce alternative sequential inference

procedures with the same anytime-valid and distribution-free guarantees.

Weak and Strong Null Hypotheses. Before deriving e- and p-processes, we first make clear the

null hypotheses that correspond to the CS derived in Theorem 3.2. We define the weak one-sided null

ℋ𝗐
0 (𝑝, 𝑞) as

ℋ𝗐
0 (𝑝, 𝑞) ∶ ∆𝑡 =

1
𝑡

𝑡∑

𝑖=1
𝛿𝑖 ≤ 0, ∀𝑡 = 1, 2,…. (3.14)

ℋ𝗐
0 (𝑝, 𝑞) implies that, across all times 𝑡, the first forecaster (𝑝) is no better than the second fore-

caster (𝑞) on average. Note thatℋ𝗐
0 (𝑝, 𝑞) is a composite null, in the sense that it consists of all joint

distributions 𝑃 on 𝔊 such that ∆𝑡 ≤ 0 for all 𝑡 ≥ 1 under 𝑃. ℋ𝗐
0 (𝑞, 𝑝) is analogously defined as

ℋ𝗐
0 (𝑞, 𝑝) ∶ ∆𝑡 =

1
𝑡

∑𝑡
𝑖=1 𝛿𝑖 ≥ 0.

We now illustrate how the CSs derived in Theorem 3.1 and Theorem 3.2 would correspond to

sequential tests of theweak one-sided nullsℋ𝗐
0 (𝑝, 𝑞) andℋ

𝗐
0 (𝑞, 𝑝), drawing from the duality between

CSs and sequential tests (Johari et al., 2022; Howard et al., 2021; Ramdas et al., 2020). Specifically,

because the upper and lower confidence bounds are often constructed separately, the (1 − 𝛼)-level
7https://github.com/gostevehoward/confseq
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CS for ∆𝑡 denoted as 𝐶𝑡 = (𝐿𝑡, 𝑈𝑡) satisfies ∆𝑡 ≤ 𝑈𝑡 with probability at least 1 −
𝛼
2
and that ∆𝑡 ≥ 𝐿𝑡

with probability at least 1 − 𝛼
2
. Thus, if for any time 𝑡 we find that 𝐿𝑡 > 0 or 𝑈𝑡 < 0, then we can

reject eitherℋ𝗐
0 (𝑝, 𝑞) orℋ

𝗐
0 (𝑞, 𝑝) with high probability. More generally, the CSs readily provide a

valid stopping rule for rejectingℋ𝗐
0 , a fact that we summarize in the following corollary. Below, we

follow Robbins’ power-one testing framework which uses one-sided stopping rules that only stop on

rejecting the null (and do not stop otherwise).

Corollary 3.1 (A sequential test forℋ𝗐
0 using a CS). Given a (1 − 𝛼)-CS 𝐶𝑡 = (𝐿𝑡, 𝑈𝑡) obtained using

either Theorem 3.1 or 3.2, the following stopping rule provides a valid level-𝛼 sequential test forℋ𝗐
0 (𝑝, 𝑞)

andℋ𝗐
0 (𝑞, 𝑝) (jointly):

Rejectℋ𝗐
0 (𝑝, 𝑞) if 𝐿𝑡 > 0; rejectℋ𝗐

0 (𝑞, 𝑝) if𝑈𝑡 < 0. (3.15)

This means that:

sup
𝑃∈ℋ𝗐

0 (𝑝,𝑞)
𝑃(∃𝑡 ≥ 1 ∶ Rejectℋ𝗐

0 (𝑝, 𝑞)) + sup
𝑃∈ℋ𝗐

0 (𝑞,𝑝)
𝑃(∃𝑡 ≥ 1 ∶ Rejectℋ𝗐

0 (𝑞, 𝑝)) ≤ 𝛼. (3.16)

The stopping rule (3.15) is equivalent to deciding that𝑝 has been better (worse) than 𝑞 if𝐶𝑡 is entirely

above (below) zero. The anytime-validity of this rule implies that the statistician can, e.g., periodically

perform the test as 𝑡 increases and update their decision accordingly. On one extreme, the statistician

can choose to perform the test after every round 𝑡, or on the other extreme, they can test just once at

a designated time 𝑡∗ (while leaving open the possibility of revisiting the experiment some time later).

Compared to a standard hypothesis test for a stationarymean, the underlying∆𝑡 can change its course

over time, so in general it may not be sufficient to test once at 𝑡∗ in order to have power against the

weak null. See Section 3.5 for an illustration and Section 3.6 for a further discussion.

We note that separately testing for bothℋ𝗐
0 (𝑝, 𝑞) andℋ

𝗐
0 (𝑞, 𝑝) is not equivalent to simply testing

for∆𝑡 = 0, ∀𝑡, which is equivalent to 𝛿𝑡 = 0, ∀𝑡. Rather, the sequential test (3.15) is the combination of

two separate sequential tests in (3.15) forℋ𝗐
0 (𝑝, 𝑞) andℋ

𝗐
0 (𝑞, 𝑝), each at the significance level 𝛼∕2.

The interpretation of the CS as two simultaneous sequential tests allows the user to continuously

monitor the score differential on both sides via the CS-based stopping rule (3.15).
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For the sake of comparison, we also define the strong one-sided nullℋ𝗌
0 =ℋ𝗌

0(𝑝, 𝑞) as

ℋ𝗌
0(𝑝, 𝑞) ∶ 𝛿𝑡 ≤ 0, ∀𝑡 = 1, 2,… . (3.17)

ℋ𝗌
0(𝑞, 𝑝) is defined analogously asℋ

𝗌
0(𝑞, 𝑝) ∶ 𝛿𝑡 ≥ 0, ∀𝑡 = 1, 2,… . The recent work by Henzi and

Ziegel (2022) develops e-processes (defined in the next paragraph) and sequential tests for this null.

In contrast toℋ𝗐
0 ,ℋ

𝗌
0 corresponds to saying that the first forecaster (𝑝) is no better than the second

forecaster (𝑞) at every time step 𝑡 = 1, 2,… . Thus, the strong nullℋ𝗌
0 implies the weak nullℋ

𝗐
0 , but

not vice versa. The critical distinction here is that rejectingℋ𝗌
0 only tells us that 𝑝 outperformed 𝑞 at

some time step 𝑡, but it does not tell us if either was better on average over time. To give a concrete

example, fix 𝑘 > 2 (say, 𝑘 = 7 indicating Sundays), and define

𝛿𝑡 = +0.1 if 𝑡 = 𝑘, 2𝑘, 3𝑘,… ; 𝛿𝑡 = −1 otherwise. (3.18)

In other words, 𝑝 is generally worse than 𝑞 but marginally better than 𝑞 every 𝑘th time step (e.g.,

every Sunday). Because the strong null is false, any (powerful) sequential test for the strong null will

reject it, and yet this may be a confusing conclusion as 𝑞 is generally a better forecaster.

Sub-Exponential E-Processes for theWeakNull. We now show that the exponential test super-

martingale underlying the CS in Theorem 3.2 can also be transformed to directly measure evidence

against the weak one-sided null (rather than make a decision at a level 𝛼). Formally, an e-process

(Ramdas et al., 2022b) for a (possibly composite) null hypothesisℋ0 is defined as a nonnegative pro-

cess (𝐸𝑡)∞𝑡=0, starting at one (𝐸0 = 1), such that:

for any 𝑃 ∈ℋ0 and any arbitrary stopping time 𝜏, 𝔼𝑃[𝐸𝜏] ≤ 1, (3.19)

where we define 𝐸∞ ∶= lim sup𝑡→∞ 𝐸𝑡. The larger the value of 𝐸𝑡, the more the evidence against

the null. In particular, if the null is true, then it is unlikely to observe large values of the process

at any stopping times (by Markov’s inequality, 𝑃(𝐸𝜏 ≥ 1∕𝛼) ≤ 𝛼). An e-process is anytime-valid

by definition (3.19) (validity at arbitrary stopping times), analogous to the anytime-validity of a CS,
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and the term ‘process’ is also used to emphasize this property. An e-process can also be interpreted

in a fully game-theoretic statistical sense: an e-process for a composite null measures the minimum

wealth among bets against each member of the null (Ramdas et al., 2022b), such that it only grows

large when there is evidence against all members. At a fixed 𝑡, 𝐸𝑡 is also called an e-variable, and its

realization is called an e-value (Vovk and Wang, 2021; Grünwald et al., 2019).

We can now define and show an e-process that corresponds to Theorem 3.2. (We can also define

an analogous e-process corresponding to Theorem 3.1, but this is omitted due to space constraints.)

The following e-process is for the weak one-sided nullℋ𝗐
0 (𝑝, 𝑞) and is related to the lower confidence

bound of the CS from Theorem 3.2; the e-process forℋ𝗐
0 (𝑞, 𝑝) is analogous and related to the upper

confidence bound of the CS. Recall once again the problem setup in Section 3.4.2.

Theorem 3.3 (Sub-exponential e-processes for ℋ𝗐
0 ). Assume the same conditions as Theorem 3.2.

Then, for each 𝜆 ∈ [0, 1∕𝑐),

𝐸𝑡(𝜆) ∶= exp {𝜆
𝑡∑

𝑖=1
�̂�𝑖 − 𝜓𝐸,𝑐(𝜆)�̂�𝑡} is an e-process forℋ𝗐

0 (𝑝, 𝑞). (3.20)

Furthermore, given a probability distribution 𝐹 on [0, 1∕𝑐), the mixture process 𝐸mix
𝑡 ∶= ∫ 𝐸𝑡(𝜆)𝑑𝐹(𝜆)

is an e-process forℋ𝗐
0 (𝑝, 𝑞).

The proof, provided in Section A.1.3, shows that under each 𝑃 ∈ ℋ𝗐
0 , 𝐸𝑡(𝜆) is upper-bounded by

a exponential test supermartingale for 𝑃, namely 𝐿𝑡(𝜆) in (3.8). Because a process is upper-bounded

by a test supermartingale for 𝑃 ∈ℋ0 if and only if it is an e-process forℋ0 (Ramdas et al., 2020), this

establishes that 𝐸𝑡(𝜆) is an e-process in the sense of (3.19). It then follows that 𝐸mix
𝑡 ≤ ∫ 𝐿𝑡(𝜆)𝑑𝐹(𝜆) =

𝐿mix
𝑡 ∀𝑡, so 𝐸mix

𝑡 is also an e-process.

The e-process of Theorem 3.3 is an anytime-valid inference procedure that provides a measure of

accumulated evidence against the weak one-sided nullℋ𝗐
0 (𝑝, 𝑞) at any stopping time. By definition,

it is expected to be small under the weak null, and we only expect to see it grow large when the

weak null does not hold. In comparison with Henzi and Ziegel (2022)’s e-process for the strong null,

we see that our e-process provides a more useful notion of evidence for saying that one forecaster

outperforms another. In the example of (3.18), an e-process for the strong null can grow large, even

though 𝑞 is generally a better forecaster; in contrast, our e-process (3.20) for the weak null is expected
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to remain small. In Section 3.5.3, we provide an empirical comparison of the two e-processes.

Choosing 𝜆 (or 𝐹) for E-Processes. Theorem 3.3 tells us that the expected value of 𝐸𝑡(𝜆) and 𝐸𝗆𝗂𝗑𝑡

are bounded by 1 at all stopping times under the null, for any choice of 𝜆 or any mixture distribu-

tion 𝐹. In practice, we default to using a mixture e-process with the conjugate distribution 𝐹, as in

Section 3.4.3. For the sub-exponential e-process, the gamma-exponential mixture as before provides

a closed form for the function 𝑚(𝑠, 𝑣) in (3.12), so that 𝐸𝗆𝗂𝗑𝑡 = 𝑚(
∑𝑡

𝑖=1 �̂�𝑖, �̂�𝑡) can be computed effi-

ciently. The expression for𝑚(𝑠, 𝑣) is included in Section A.2.1.

P-Processes. Finally, we remark that any e-process forℋ0 can also be converted into an p-process

forℋ0, i.e., the sequence (𝗉𝑡)∞𝑡=0 that satisfies: for any 𝛼 ∈ (0, 1),

for any 𝑃 ∈ℋ0 and for any arbitrary stopping time 𝜏, 𝑃(𝗉𝜏 ≤ 𝛼) ≤ 𝛼. (3.21)

A p-process evaluated at any stopping time 𝜏, i.e. 𝗉𝜏, is a p-value, but unlike a classical p-value,

a p-process is anytime-valid. Any e-process (𝐸𝑡)∞𝑡=0 can be converted into a p-process via 𝗉𝑡 ∶=

1∕ sup𝑖≤𝑡 𝐸𝑖, following derivations from, e.g., Ramdas et al. (2020, 2022b).

We also remark that 𝗉𝑡 can alternatively be defined from a CS as the smallest 𝛼 for which the

(1 − 𝛼)-level CS does not include zero (Howard et al., 2021), so all three notions (CS, e-process, and

p-process) are closely related.

3.5 Experiments

In this section, we run both simulated and real-data experiments for sequential forecast comparison

using our CSs as well as e-processes. All code and data sources for the experiments are made publicly

available online at https://github.com/yjchoe/ComparingForecasters.

3.5.1 Numerical Simulations

As our first experiment, we compare our Hoeffding-style and EB CSs (Theorems 3.1 and 3.2, respec-

tively) on simulated data with the asymptotic fixed-time CIs due to Theorem 2 of Lai et al. (2011). The
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Figure 3.2: Various forecasters on a simulated non-IID data (𝑇 = 104) with sharp changepoints across
time. Note that, instead of plotting the binary outcomes 𝑦𝑡 ∈ {0, 1}, we plot the Reality’s choices (𝑟𝑡)𝑇𝑡=1
that generates the outcome sequence. See text for details about the forecasters.

main goal is to confirm that the CSs cover time-varying average score differentials uniformly, unlike

the fixed-time CI, and are also nearly as tight as the CI.

In our simulated experiments, we also include an asymptotic CS for time-varyingmeans, recently

developed by Waudby-Smith et al. (2021), as an additional tool for anytime-valid inference. Asymp-

totic CSs can be viewed as alternatives to their non-asymptotic counterparts, including the ones we

introduced in Section 3.4, and they trade off non-asymptotic validity to achieve versatility and also

comparatively smaller widths at smaller sample sizes. A formal review of asymptotic CSs in the con-

text of sequential forecast comparison is included in Section A.3.

As for our simulated data, we generate a sequence of non-IID binary outcomes and compare

different forecasters using our CSs. The overall simulation pipeline closely follows Game 3.1, with

𝒫 = ∆(𝒴) = [0, 1], 𝒴 = {0, 1}, and 𝑇 = 104. At each round 𝑡 = 1,… , 𝑇, each forecaster makes a

probability forecast 𝑝𝑡, 𝑞𝑡 ∈ 𝒫, then reality chooses 𝑟𝑡, and finally 𝑦𝑡 ∼ Bernoulli(𝑟𝑡) is sampled. The

forecasts 𝑝𝑡 and 𝑞𝑡 are made only using the previous outcomes, i.e., 𝑦1,… , 𝑦𝑡−1. The Reality’s choices

(𝑟𝑡)𝑇𝑡=1 is specifically chosen to be non-IID and contain sharp changepoints, as shown in Figure 3.2.

This serves as a challenging test case for the EB CS, as the sharp changepoints make it difficult to

quickly adapt to the underlying variance. See Section A.9.1 for further details.

At the end of each round 𝑡 = 1,… , 𝑇, we compute the 95%Hoeffding-style and EB CS for∆𝑡, using
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Theorems 3.1 and 3.2 respectively. We use the Brier score 𝑆(𝑝, 𝑞) = 1−(𝑝−𝑞)2 as our default scoring

rule, but we also explore other scoring rules later in the section. As for the hyperparameter choices

for sub-𝜓 uniform boundaries, we are guided by preliminary experiments in Section A.9.4.

We consider several forecasters, which are drawn with lines in Figure 3.2. These include the con-

stant baseline, i.e., 𝑝𝑡 = 0.5 (constant_0.5), as well as the Laplace forecasting algorithm (laplace)

𝑝𝑡 =
𝑘+0.5
𝑡+1

, where 𝑘 = #{𝑖 ∈ [𝑡] ∶ 𝑦𝑖 = 1}. We further add predictions using the K29 defensive fore-

casting algorithm (k29) (Vovk et al., 2005), which is a game-theoretic forecasting method that yields

calibrated forecasts. The method depends on the choice of a kernel function, and here we use the

Gaussian RBF𝐾(𝑝, 𝑞) = exp (− (𝑝−𝑞)2

2𝜎2
)with bandwidth 𝜎 = 0.01. The mix_01_noiseless forecaster

is defined as 𝑝𝑡 = 0.8 for 𝑡 ≤ 6000 and 𝑝𝑡 = 0.2 for 𝑡 > 6000; the mix_01 forecaster is a noisy version

that adds an independent noise to 𝑝𝑡 by 𝑝𝑡 = 𝑝𝑡 + 0.5 ⋅ 𝜖𝑡 (clipped at 0 and 1), where 𝜖𝑡 is drawn IID

from Student’s 𝑡 distribution with 1 degree of freedom. The mix_10_noiseless forecaster is defined

as 𝑞𝑡 = 1 − 𝑝𝑡 and the mix_10 forecaster 𝑞𝑡 is analogously defined.

The choices of forecasters and Reality are made in such a way that the unknown parameter ∆𝑡

can not only change its sign but also have different variances over time. For example, the mix_10

forecaster outperforms (∆𝑡 > 0) the mix_01 forecaster on average during 𝑡 ∈ (2000, 6000), while the

sign then reverses (∆𝑡 < 0) for 𝑡 ∈ (6000, 10000). Among the algorithmic forecasters, the K29 vari-

ants consistently perform better than the Laplace algorithm, especially when using sharper kernels,

because they are better at modeling the sharp changepoints over time.

In Figure 3.3, we plot the 95% Hoeffding-style CS (Theorem 3.1), EB CS (Theorem 3.2), and a

fixed-time CI for ∆𝑡 (top left), as well as their widths (top right), the corresponding e-process (bottom

left), and the cumulative miscoverage rates (bottom right). First, both CSs successfully cover ∆𝑡 at

any given time point, and their widths decrease as more outcomes are observed. As expected, the

width of the EB CS decays more quickly than the width of the Hoeffding CS due to its use of the

empirical variance term (�̂�𝑡) but more slowly than the fixed-time CI, matching the patterns observed

in Howard et al. (2021); Waudby-Smith et al. (2021). As noted before, the fixed-time CI is only valid at

a fixed time 𝑡 and not uniformly over time, despite its tighter width, and this is illustrated by its large

cumulative miscoverage rate, i.e., 𝛼𝑡 = 𝑃 (∃𝑖 ≤ 𝑡 ∶ ∆𝑖 ∉ 𝐶𝑖) (estimated over the repeated sampling of
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𝑦1,… , 𝑦𝑡 under 𝑃). In contrast, the EB CS8 keeps its cumulative miscoverage rate well below 𝛼 (it is in

fact zero, as it is constructed using supermartingales and not martingales). In Section A.8.2, we also

include an analogous plot comparing our methods with other classical tests (Diebold and Mariano,

1995; Giacomini and White, 2006).

The sub-exponential e-processes forℋ0(𝑝, 𝑞) (solid green) andℋ0(𝑞, 𝑝) (dotted purple) showhow

they accurately track the accumulated evidence for/against each forecaster over time. For example,

the e-process for ℋ0(𝑝, 𝑞) stays below 1 during 𝑡 < 2000, when neither forecaster outperforms the

other, and grows large during 𝑡 ∈ (2000, 6000) when data shows more evidence against the null

hypothesis that ∆𝑡 ≤ 0, ∀𝑡 because the true ∆𝑡 in fact becomes positive. It then decreases back to

values below 1 during 𝑡 ∈ (6000, 10000), when the true ∆𝑡 becomes negative. We note that the gray

dotted line indicates the value 2∕𝛼 = 40; testing whether an e-process exceeds 2∕𝛼 corresponds to a

level-(𝛼∕2) sequential test equivalent to the one stated in Corollary 3.1. In fact, the plots show that

the points at which the (1 − 𝛼)-level EB CS excludes zero (on either side) are precisely when either

e-process exceeds 2∕𝛼, illustrating the duality between the CS and the e-process.

In Figure 3.4, we now plot the 95% CSs (left), their widths (middle), and also the corresponding

e-processes (right) for comparing the k29_poly3 forecaster against the laplace baseline, using the

spherical score (strictly proper), zero-one score (proper), the 𝜖-truncated logarithmic score (𝜖 = 10−8)

(improper). We observe that all variants of CSs always cover the true ∆𝑡 over time, at 𝛼 = 0.05,

and its width decreases similarly to the case of Brier scores and eventually approaches that of the

asymptotic CS. In terms of the width comparison between EB and Hoeffding CSs, we see that the EB

CS is generally much tighter than the Hoeffding CS, and it decreases more slowly around time steps

when there are sharp changepoints in ∆𝑡. This can be explained by the variance-adaptive nature

of the EB CS, which would use larger values of intrinsic time �̂�𝑡 at sharp changepoints, whereas

the Hoeffding CS simply uses �̂�𝑡 = 𝑡 irrespective of the variance process. The sub-exponential e-

processes forℋ𝗐
0 (𝑝, 𝑞) andℋ

𝗐
0 (𝑞, 𝑝) illustrate the accumulated evidence for the first forecaster in all

three cases around the same time the CS moves entirely above zero, illustrating the duality between

the two methods.

We include a plot of all pairwise comparisons between four of the forecasters in Section A.9.1.

8The EB CS is computed with the polynomial stitching bound for computational efficiency.
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Figure 3.3: Top Left: 95% EB CS (blue, solid), Hoeffding-style CS (skyblue, dotted), asymptotic CS
(green, dashed; SectionA.3), and a fixed-time asymptotic CI (orange, dash-dotted) for simulated time-
varying average score differentials (∆𝑡)𝑇𝑡=1 between the mix_10 and mix_01 forecasters (𝑇 = 104). The
Brier score is used. All CSs, but not the CI, uniformly cover the true score differential sequence, which
changes signs sharply multiple times across the horizon. Top Right: Widths of the CSs and the CI across
time steps. The variance-adaptive EB CS is tighter than the Hoeffding CS and slightly looser than the
asymptotic CS; the fixed-time CI is the tightest, but it does not have the time-uniform guarantee. Bot-
tomLeft: Sub-exponential e-processes (Theorem 3.3) thatmeasures the accumulated evidence against
either forecaster (solid green: first forecaster; dashed purple: second). Testing whether the e-process
exceeds the dashed gray line at 2∕0.05 = 40 corresponds to a sequential test at 𝛼 = 0.05 (Corol-
lary 3.1). Bottom Right: The cumulative miscoverage rate, which estimates 𝛼𝑡 = 𝑃 (∃𝑖 ≤ 𝑡 ∶ ∆𝑖 ∉ 𝐶𝑖)
over repeated sampling of 𝑦1,… , 𝑦𝑡 under 𝑃. For a (1−𝛼)-CS, this rate is controlled at 𝛼 by definition;
it is in fact always zero for the non-asymptotic CSs in our experiments. For a fixed-time CI, this rate
exceeds well above 𝛼 and continues to increase (in log-scale of time).
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Figure 3.4: 95% EB, Hoeffding-style, and asymptotic CSs (left), their widths (middle), and the sub-
exponential e-processes (right) between theK29 forecaster and the Laplace forecaster. Three different
scoring rules are usedhere: the spherical (top), the zero-one (middle), and the 𝜖-truncated logarithmic
(𝜖 = 0.01) (bottom) scores. All scoring rules are positively oriented, such that positive values of ∆𝑡
indicate that the first forecaster is better than the second. Even when the scoring rule is not strictly
proper (zero-one) or not proper at all (truncated logarithmic), all CSs still cover ∆𝑡 uniformly, and in
general the width of the EB CS shrinks close to the asymptotic CS than the Hoeffding-style CS, which
is wider. The e-processes forℋ𝗐

0 ∶ ∆𝑡 ≤ 0 (green) cross the 2∕𝛼 line (gray) as the lower confidence
bound of the EB CS crosses zero.
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3.5.2 Comparing Forecasters onMajor League Baseball Games

As our first real-world application of the CSs, we consider the problem of predicting wins and losses

for baseball games played in the Major League Baseball (MLB). Sports game prediction is particu-

larly suitable for our setting, because there are multiple publicly available probability forecasts on the

outcome of each game (e.g., FiveThirtyEight, betting odds, and pundits/experts), that are frequently

updated across time. There is also no obvious assumption to be reasonably made about the outcome

of the games, such as stationarity or assumptions of parametric models. Recall Table 3.1 for an illus-

tration of various probability forecasts made on MLB games.

We specifically focus on predicting the outcome of MLB games over ten years (2010-2019), culmi-

nating in the 2019 World Series between the Houston Astros and the Washington Nationals. We use

every regular season and postseason MLB game from 2010 to 2019 as our dataset. We convert each

game as a single time point in chronological order, leading to a total of 𝑇 = 25, 165 games. As for the

forecasters, we consider the following:

• 538: Game-by-game probability forecasts by FiveThirtyEight on every MLB game since 1871,

available at https://data.fivethirtyeight.com/#mlb-elo.

• vegas: Pre-game closing oddsmade on each gameby online sports bettors, converted and scaled

to probabilities, as reported by https://Vegas-Odds.com.9

• constant: a constant baseline corresponding to 𝑝𝑡 = 0.5 for each 𝑡.

• laplace: A seasonally adjusted Laplace algorithm, representing the season win percentage for

each team. The final adjust win percentage from the previous season, reverted to the mean by

one-third, is used as the baseline probability for the next season. The final probability forecast

for a game between two teams is rescaled to sum to 1.

• k29: The K29 algorithm applied to each team, using the Gaussian kernel with 𝜎 = 0.1, com-

puted using data from the current season only. The final probability forecast for a game between

two teams is rescaled to sum to 1.

In Section A.9.2, we give further details about the five forecasters and also plot their forecasts on the

last 200 games of 2019.

9https://sports-statistics.com/sports-data/mlb-historical-odds-scores-datasets/
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Weperformall pairwise comparisons of thefive aforementioned forecasters on the 10-yearwin/loss

predictions. See Sections A.9.4 for details on tuning the free hyperparameter on the uniform bound-

ary. First, as we showed in Figure 3.1, we compare the two publicly available forecasters in 538 (𝑝)

and vegas (𝑞), finding that the vegas forecaster has marginally outperformed the 538 forecaster: af-

ter 𝑇 = 25, 165 games, 95% EB CS for ∆𝑇 is (−0.00265,−0.00062), and the e-value for ℋ𝗐
0 (𝑞, 𝑝) ∶

∆𝑡 ≥ 0, ∀𝑡 is 2979.0. The fact that the vegas forecaster (marginally) outperformed the 538 forecaster

is interesting, especially given that the primary goal of sports bettors is not to maximize predictive

accuracy but their overall profit.10 Yet, given the relatively small score difference and also the in-

herent uncertainty in sports game outcomes,11 more fine-grained comparisons between real-world

sports forecasters (e.g., regular season vs. playoffs, team-specific comparisons, and comparisons with

or without specific side information) remain interesting future work.

In Table 3.4, we further compare every other forecaster against the vegas forecaster by estimating

the average Brier score differential ∆𝑇 using the 95% EB CS. We also show the corresponding sub-

exponential e-processes (Theorem 3.3) for the null of ℋ𝗐
0 (𝑞, 𝑝) ∶ ∆𝑡 ≥ 0, ∀𝑡, which translates to

saying that vegas is not assumed to be better under the null, evaluated at time 𝑇. Furthermore, we

include comparisons involving the logarithmic score, namely via the averageWinkler score𝑊𝑇(𝑝, 𝑞)

(Proposition A.4, Section A.4) that quantifies the relative “skill” of forecasters (Winkler, 1994; Lai

et al., 2011) as measured by a scoring rule (the logarithmic score, in this case). The Winkler score

approach allows us to utilize unbounded proper scoring rules, such as the logarithmic score, when

dealing with binary outcomes. Because the score is normalized and thus always maximized at 1, we

can construct a one-sided CSwith an upper confidence bound (UCB), and also construct an e-process

against the nullℋ𝗐𝗐
0 ∶𝑊𝑡 ≥ 0, ∀𝑡. A negative UCB or a high value in the e-process indicates that 𝑝

is significantly worse than 𝑞 in relative skill.

Our results show that none of the other forecasters, including the 538 forecaster, have outper-

formed vegas, both in terms of the Brier score and the Winkler-logarithmic score.

We include a plot of all pairwise comparisons between the five forecasters in Section A.9.2.

10https://fivethirtyeight.com/features/the-imperfect-pursuit-of-a-perfect-baseball-forecast/
11https://projects.fivethirtyeight.com/checking-our-work/mlb-games/
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Forecaster 𝐶𝖤𝖡𝑇 𝐸𝑇
538 (-0.00265, -0.00061) 2979.0
laplace (-0.00980, -0.00596) > 104

k29 (-0.01392, -0.00905) > 104

constant (-0.01115, -0.00713) > 104

(a) ∆𝑇 (Brier) against vegas

Forecaster 𝐶𝖤𝖡𝑇 𝐸𝑇
538 ( −∞, -0.01012) > 104

laplace ( −∞, -0.04723) > 104

k29 ( −∞, -0.14684) > 104

constant ( −∞, -0.05165) > 104

(b)𝑊𝑇 (Winkler-logarithmic) against vegas

Table 3.4: Comparing forecasters against the vegas forecaster. In (a), we present 95% EB CS for the
average Brier score differential (∆𝑡)∞𝑡=0, evaluated at time 𝑇 = 25, 165 (i.e., 𝐶𝖤𝖡𝑇 ), as well as the e-
process for the null ofℋ𝗐

0 (𝑞, 𝑝) ∶ ∆𝑡 ≥ 0, ∀𝑡, also evaluated at time 𝑇 (i.e., 𝐸𝑇). In (b), we present
the analogous table for the averageWinkler score𝑊𝑇 (Section A.4), with the logarithmic score as the
base score. Note that 𝐶𝖤𝖡𝑇 is one-sided due to the one-sided boundedness of𝑊𝑇. Positive (negative)
values of∆𝑇 and𝑊𝑇 indicate that the forecaster is better (worse) than the baseline. We find that none
of the other forecasters, including 538, have outperformed vegas from 2010 to 2019.

3.5.3 Comparing Statistical Postprocessing Methods for Weather Forecasts

Asour second real-data experiment, we compare a set of statistical postprocessingmethods forweather

forecasts (Vannitsem et al., 2021), following the recent work by Henzi and Ziegel (2022). Statistical

postprocessing here refers to the process of correcting for biases and dispersion errors in ensemble

weather forecasts, which are produced by perturbing the initial conditions of numerical weather pre-

diction (NWP) methods. As ensemble forecasts are commonly used in state-of-the-art weather fore-

casting systems as a means of producing probabilistic forecasts, statistical postprocessing is consid-

ered a key component of modern weather forecasting.

Given 24-hour precipitation data from 2007 to 2017 at four locations (Brussels, Frankfurt, London

Heathrow, and Zurich), our goal is to compare three postprocessing methods over time: isotonic dis-

tributional regression (IDR; Henzi et al. (2021)), heteroscedastic censored logistic regression (HCLR;

Messner et al. (2014)), and a variant of HCLR without its scale parameter (HCLR_). We use the Brier

score throughout this section. See Section A.9.3 for details regarding data as well as a plot of the three

forecasting methods.

Our main goal here is to sequentially compare the three statistical postprocessing methods us-

ing the EB CS and the sub-exponential e-process. As noted in Sections 3.2 and 3.4.4, the inferential

conclusions drawn from the sub-exponential e-process (Theorem 3.3) are different from Henzi and

Ziegel (2022)’s e-process, which provides a test of conditional forecast dominance at all times (i.e.,
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Figure 3.5: Top: 90% EB CSs for ∆𝑡 between pairs of statistical postprocessing methods (HCLR and
IDR; IDR and HCLR_; HCLR and HCLR_) for 1-day ensemble forecasts using Theorem 3.2, com-
puted and plotted separately for each airport: Brussels (𝑇 = 1, 703), Frankfurt (𝑇 = 1, 809), London
(𝑇 = 1, 128), and Zurich (𝑇 = 1, 621). Positive/negative scores of ∆𝑡(𝑝, 𝑞) indicate that forecaster 𝑝
is better/worse than forecaster 𝑞. Overall, the CSs capture the time-varying score gap on average be-
tween the two forecasters across the years. Bottom: E-processes for the null thatℋ𝗐

0 ∶ ∆𝑡 ≤ 0, ∀𝑡, cor-
responding to (the lower bound of) the 90%CSs above. These e-processes are theweak (average) coun-
terpart to Henzi and Ziegel (2022)’s e-processes for the strong (step-by-step) null thatℋ𝗌

0 ∶ 𝛿𝑡 ≤ 0 ∀𝑡.
Note that the e-processes exceed 10 approximately when the lower bound of the 90% CS exceeds 0.
Both procedures use the Brier score as the scoring rule.

the strong null), instead of average (i.e., the weak null). Given that the weak null is larger than the

strong null, we would generally expect the sub-exponential e-process for the weak null to be smaller

than Henzi and Ziegel (2022)’s e-process for the strong null. On the other hand, the two methods are

similar in that they are both valid at arbitrary (data-dependent) stopping times.

In Figure 3.5, we plot both the 90% EB CS on ∆𝑡 (top) as well as the sub-exponential e-processes

for the weak one-sided nullℋ𝗐
0 (bottom), between HCLR and IDR, IDR and HCLR_, and HCLR and

HCLR_ on 1-day PoP forecasts at the four airport locations. Note thatwe compare the same three pairs

as Henzi and Ziegel (2022), who compare e-processes for the strong one-sided nullℋ𝗌
0. The EB CS

is computed using Theorem 3.2 and the gamma-exponential mixture boundary (3.12); the analogous
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mixture e-processes are then computed using Theorem 3.3. We use the significance level of 𝛼 = 0.1

for the EB CS, corresponding the threshold of 2∕𝛼 = 20 for each one-sided e-process.

We first note from Figure 3.5 that the lower bound of our 90% EB CS on ∆𝑡(𝑝, 𝑞) and the e-process

forℋ𝗐
0 ∶ ∆𝑡(𝑝, 𝑞) ≤ 0 share a similar trend over time, where the e-process grows largewhen the lower

bound grows significantly larger than zero, implying that the forecaster 𝑝 is better than the forecaster

𝑞, using the stopping rule (3.15). Whereas the CS provides a (two-sided) estimate of ∆𝑡(𝑝, 𝑞) with

uncertainty, the e-process explicitly gives the amount of evidence for whether one is better than the

other. This illustrates how the two procedures complement each other for anytime-valid inference

on ∆𝑡. We also remark that, although we only plot the e-processes for one-sided nullℋ𝗐
0 (𝑝, 𝑞), we

can further compute the e-processes forℋ𝗐
0 (𝑞, 𝑝) ∶ ∆𝑡(𝑞, 𝑝) ≤ 0, and they would correspond to the

upper confidence bounds of the EB CSs.

Based on these results, we find from the 90% EB CSs that IDR forecasts are found to outperform

both HCLR and HCLR_ 1-day forecasts for Brussels and that HCLR forecasts outperform HCLR_

forecasts for Frankfurt and Zurich, but we do not find significant differences at other locations be-

tween other pairs. The e-processes (thresholded at 20) lead to the same conclusions, and they clearly

visualize at which point in time is one forecaster first found to outperform the other and how that

pattern changes. For example, when comparing IDR to HCLR_ for Brussels, IDR is found to be better

as early as 2012, and it also shows the period between late 2012 and late 2015 where it is no longer

found to be better, before eventually regaining evidence favoring IDR starting 2016.

When we compare the sub-exponential e-processes for the weak nullℋ𝗐
0 with the e-processes for

the strong nullℋ𝗌
0, which are drawn in Figure 3 of Henzi and Ziegel (2022), we find that e-processes

for the strong null are large whenever e-processes for the weak null are also large, but not vice versa.

For example, the comparison of IDR against HCLR_ in Frankfurt is only found to have strong evi-

dence against the strong null, but not the weak null. This is consistent with our previous discussion

in Section 3.4.4 that the strong null implies the weak null and thus is easier to “reject” (or gather

evidence against). For example, in Frankfurt, we can infer we only have strong evidence that IDR

has outperformed HCLR_ at some point in time between 2012 and 2017, but we do not have sufficient

evidence that IDR has outperformed HCLR_ on average in the same time period.

In Section A.5, we include e-processes for comparing lag-ℎ forecasts in the same setting.
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3.6 Extensions and Discussion

In the following, we discuss some related points that were not highlighted in previous sections.

On the Use of Unbounded Scoring Rules. Our main results in Theorems 3.2 and 3.3 require the

use of bounded scoring rules, whichmaybe restrictive in certain use cases. If the score differentials are

unbounded, a general solution would be to use the asymptotic CS (Section A.3), which assumes that

only 2 + 𝛿 moments are bounded. When it comes to unbounded proper scores for binary outcomes,

such as the logarithmic score, the Winkler score (Section A.4), which we used in Section 3.5.2, offers

a nonasymptotic and anytime-valid solution.

Comparing Forecasts of Lag ℎ > 1. In general forecasting scenarios, we may encounter forecasts

that are made ℎ > 1 rounds ahead of when the outcome is revealed at time 𝑡. In these cases, the

expected score differential we seek to estimate should be conditioned on the filtration available at the

time of forecasting, rather than the filtration at round 𝑡−1. We formally derivemethods for comparing

lag-ℎ forecasts in Section A.5. These include lagged sequential e-values (Arnold et al., 2021), which

are not e-processes themselves but cannevertheless quantify the evidence against theweaknull (and a

“less weak” variant), as well as p-processes and e-processes that are more conservative. The technical

details follow the recent discussions by Arnold et al. (2021); Henzi and Ziegel (2022). Constructing a

more powerful e-process and also a CS for the lagged weak null remains a challenging problem.

On “Looking Ahead” in Distribution-Free Sequential Inference on Time-Varying Means.

Our methods are valid without any assumptions about the time-varying dynamics of the forecast

score differentials (�̂�𝑖)∞𝑖=1, and in particular we avoid conditions involving stationarity or mixing. A

large e-value againstℋ0 ∶ ∆𝑡(𝑝, 𝑞) ≤ 0, ∀𝑡 at some stopping time 𝜏 tells us that 𝑝 has achieved a bet-

ter conditional predictive performance than 𝑞 up to 𝜏 on average. The utility of comparing forecasters

in such a descriptive sense is often significant in the real world: determining a winner in real-world

forecasting competitions can often land significant cash prizes (e.g., financial forecasting12) and/or

media attention (e.g., election and sports forecasting).
12https://m6competition.com
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This also means that the inferential conclusions drawn from our methods need not extrapolate to

future time steps, because hypothetically the forecasters or Reality (from Game 3.1) can completely

change their behaviors going forward. Indeed, there is a distinction between saying that one has done

better than the other and that one is going to be better than the other in the future — the former is

descriptive, while the latter is predictive. All ourmethods provide evidence and uncertainty related to

the former statement. Becausewe do notmake any assumption that says “the futurewill resemble the

past,” no method can make conclusive statements about the latter without clairvoyance. Our setup

highlights that past performance can be compared in a distribution-free manner, while predictions of

future performance will require nontrivial distributional assumptions.

Ultimately, the decision to take the inferential conclusion and extrapolate it toward the future

is (and should be) left to the practitioner’s own beliefs. If a practitioner opts to make additional as-

sumptions about Reality, then in principle, the conclusions drawn from our methods can extend to

settings that the assumptions allow. If one is willing to assume, say, that the score differentials are

constant, then the inferential conclusions will straightforwardly extrapolate to future time steps (in

the assumed setting). Furthermore, the variance-adaptive EB CS will remain tight, because the un-

derlying variance remains constant. It should be noted that, even under such assumptions, which are

often made by classical methods like the Diebold and Mariano (1995) test, anytime-valid approaches

avoid the “p-hacking” problem that the classical methods are susceptible to.
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Chapter 4

Counterfactaully Comparing

Abstaining Classifiers

This chapter is based on Choe et al. (2023).

4.1 Introduction

Abstaining classifiers (Chow, 1957; El-Yaniv andWiener, 2010), also known as selective classifiers or

classifiers with a reject option, are classifiers that have the option to abstain frommaking predictions

on certain inputs. As their use continues to grow in safety-critical applications, such asmedical imag-

ing and autonomous driving, it is natural to ask how a practitioner should evaluate and compare the

predictive performance of abstaining classifiers under black-box access to their decisions.

In this chapter, we introduce the counterfactual score as a new evaluation metric for black-box

abstaining classifiers. The counterfactual score is defined as the expected score of an abstaining clas-

sifier’s predictions, had it not been allowed to abstain. This score is of intrinsic importance when the

potential predictions on abstaining inputs are relevant. We proceed with an illustrative example:

Example 4.1 (Free-trial ML APIs). Suppose that we compare different image classification APIs.

EachAPI has two versions: a free version that abstains, and a paid one that does not. Before paying for

the full service, the user can query the free version for up to 𝑛 sample predictions on a user-provided

dataset, although it may choose to reject any input that it deems as requiring the paid service. Given
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two such APIs, how can the practitioner determine which of the two paid (non-abstaining) versions

would be better on the population data source, given their abstaining predictions on a sample?

Example 4.1 exhibits why a user of a black-box abstaining classifier would be interested in its

counterfactual score. Although this is a hypothetical example, we can imagine variants of popular

application settings in which the counterfactual score is relevant. Specifically, these are settings in

which the hidden prediction of an abstaining classifier is meaningful for future uses, or it may be

utilized as a backup option in a failuremode. We include three additional examples inAppendix B.1.1.

To formally define, identify, and estimate the counterfactual score, we cast the evaluation prob-

lem in Rubin (1976)’s missing data framework and treat abstentions asmissing predictions. This novel

viewpoint directly yields nonparametric methods for estimating the counterfactual score of an ab-

staining classifier, drawing upon methods for causal inference in observational studies (Rubin, 1974;

Robins et al., 1994; van der Vaart, 2000), and represents an interesting yet previously unutilized the-

oretical connection between selective classification, model evaluation, and causal inference.

The identifiability of the counterfactual score is guaranteed under two standard assumptions: the

missing at random (MAR) condition, which is satisfied as long as the evaluation data is independent

of the classifier (or its training data), and the positivity condition, both of which are provably un-

avoidable. We later discuss each condition in detail, including when the positivity condition is met

and how a policy-level approach may be necessary for safety-critical applications.

The counterfactual score can be viewed as an alternative to the selective score (mean score on

nonabstentions) and the coverage (1 minus the abstention rate) (El-Yaniv and Wiener, 2010), which

are the main existing metrics for evaluating black-box abstaining classifiers. As a two-dimensional

metric, comparison on the basis of these is non-trivial. A common approach is to assume a fixed

cost for each abstention (Chow, 1970), but this is not always satisfactory since determining how to

weigh abstentions and errors against one another is a nontrivial question. Thus, in settings such

as Example 4.1, the notion of counterfactual score becomes necessary. Importantly, selective scores

are not representative of the counterfactual performance, except in the (unrealistic) case wherein

predictions are missing completely at random (MCAR).1 Figure 4.1 gives an overview of scenarios

1MCARmeans themissing observations are simply a uniformly random subset of all observations, independently of the
input/output. In contrast, MAR means there can be systematic differences between the missing and observed values, but
these can be explained by the input. Our method only requires MAR.

58



Figure 4.1: A schematic flowchart of comparing abstaining classifiers. In a black-box setting where
the evaluator does not have access to the training algorithms or the resources to train them, the task
can be viewed as a nontrivial missing data problem. This work proposes the counterfactual score as
an evaluation metric.

where different metrics may be appropriate to compare abstaining classifiers.

The counterfactual score also offers practical benefitswhen comparing abstaining classifiers. Coun-

terfactual scores are comparable even if abstaining classifiers are tuned to different abstention rates or

selective scores. Moreover, compared to evaluation methods using the selective score-coverage curve

(equivalent to re-training the classifier several times at different score/coverage levels), estimating the

counterfactual score does not require re-training the classifier. Instead, we only require estimating a

pair of nuisance functions that can be learned using the observed predictions (nonabstentions) in the

evaluation set. Let us further note that the setup is applicable generally to any form of prediction that

can be scored, including regression and structured prediction. In this chapter, we restrict our atten-

tion to classification for concreteness, given that it is the most well-studied abstention framework.

Summary of Contributions. We first formalize the problem of comparing abstaining classifiers

as a missing data problem and introduce the counterfactual score as a metric for abstaining classifier

comparison. Next, we discuss how the counterfactual score can be identified under the MAR and

positivity conditions. Then, we develop efficient nonparametric estimators for the counterfactual

scores and their differences, namely doubly robust confidence intervals. We analyze our approach in

simulated and real-data experiments. Table 4.1 summarizes the methods developed in our work.
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Evaluation Comparison

Classifier(s) (𝑓, 𝜋) (𝑓𝖠, 𝜋𝖠) & (𝑓𝖡, 𝜋𝖡)
Target 𝜓 = 𝔼 [𝑆] ∆𝖠𝖡 = 𝔼

[
𝑆𝖠 − 𝑆𝖡

]

Identification MAR & Positivity
Estimation Doubly Robust CI
Optimality Nonparametrically Efficient

Table 4.1: A summary of problem formulations and proposed approaches for evaluation and compar-
ison of abstaining classifiers. Our approaches avoid parametric assumptions and allow for black-box
classifiers.

Related Work on Abstaining Classifiers. The training of abstaining classifiers has seen signif-

icant interest in the literature. We refer to Hendrickx et al. (2021); Zhang et al. (2023) for recent

surveys.

For evaluation, aside from using some combination of selective score and coverage, the most per-

tinent reference is the work of Condessa et al. (2017), who propose the metric of ‘classifier quality’

that is a somewhat inverse version of our counterfactual accuracy. This metric is the sum of the pre-

diction accuracy when the classifier predicts, and prediction inaccuracy when it abstains, the idea

being that if a classifier is not abstaining needlessly, then it must hold that the underlying predictions

on points it abstains on are very poor. While this view is relevant to the training of abstention rules, it

is at odds with black-box settings where the underlying predictions may still be executed even when

the method abstains, motivating the counterfactual score.

RelatedWorkonMissingData, Causal Inference, andDoublyRobust Estimation. Ourmain

approach to the estimability of counterfactual scores is driven by a reduction to an inference problem

under missing data (or censoring) (Rubin, 1976; Little and Rubin, 2019). A missing data problem can

be viewed equivalently as a causal inference problem in an observational study (Rubin, 1976; Pearl,

2000; Shpitser et al., 2015; Ding and Li, 2018), and there exist well-established theories and methods

for both identifying the counterfactual quantity of interest and efficiently estimating the identified

target functional. For identification, unlike in some observational settings for estimating treatment ef-

fects, our setup straightforwardly satisfies the standard assumption of consistency (non-interference).

The MAR assumption is satisfied as long as independent evaluation data is used, and the positivity
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assumption translates to abstentions being stochastic. We discuss various implications of these con-

ditions in Sections 4.2.2 and 4.5. For estimation, efficient methods for estimating targets such as the

average treatment effect (ATE) have long been studied under semiparametric and nonparametric set-

tings. Doubly robust (DR) estimators, in particular, are known to achieve the asymptotic minimax

lower bound on the mean squared error. For details, we refer the reader to Bickel et al. (1993); Robins

et al. (1994); van der Vaart (2000, 2002); van der Laan and Robins (2003); Bang and Robins (2005); Tsi-

atis (2006); Chernozhukov et al. (2018); Kennedy (2022). Unlike the standard ATE estimation setup

in observational studies, our setup contrasts two separate causal estimands, the counterfactual scores

of the two competing classifiers, that operate under their distinct missingness mechanisms.

4.2 Definition and Identification of the Counterfactual Score

We formulate the problem of evaluating and comparing abstaining classifiers under the missing data

framework (Rubin, 1976). We follow the standard approach of defining the target parameter (§4.2.1),

identifying it with observable quantities (§4.2.2), and estimating the identified parameter using data

(§4.3). In each step, we first consider evaluating one abstaining classifier and then extend to compar-

ing two abstaining classifiers. In the following,𝒳 denotes the input space and 𝒴 = {1,… , 𝐶} is the set

of possible classes, while ∆𝐶−1 denotes the 𝐶-dimensional probability simplex on 𝒴.

Abstaining Classifiers. We define an abstaining classifier as a pair of functions (𝑓, 𝜋), represent-

ing its base classifier 𝑓 ∶ 𝒳 → ∆𝐶−1 and abstention mechanism 𝜋 ∶ 𝒳 → [0, 1], respectively. Given

a query 𝑋, the classifier first forms a preliminary (probabilistic) prediction 𝑓(𝑋). Then, potentially

using the output 𝑓(𝑋), the classifier determines 𝜋(𝑋), i.e., the abstention probability. Using 𝜋(𝑋), the

classifier then makes the binary abstention decision 𝑅 ∣ 𝜋(𝑋) ∼ 𝖡𝖾𝗋(𝜋(𝑋)), so that if 𝑅 = 1 (“rejec-

tion”), the classifier abstains on the query, and if 𝑅 = 0, it reveals its prediction 𝑓(𝑋). In some cases,

we will explicitly define the source of randomness 𝜉 (independent of the data) in deciding 𝑅, such

that 𝑅 = 𝗋(𝜋(𝑋), 𝜉) for a deterministic function 𝗋.2 Neither 𝑓 nor 𝜋 is assumed to be known to the

evaluator, modeling the black-box access typically available to practitioners.

2Specifically, let 𝜉 ∼ 𝖴𝗇𝗂𝖿[0, 1] and 𝑅 = 1 (𝜉 ≤ 𝜋(𝑋)). Then, 𝑅 is a function of only 𝜋(𝑋) and 𝜉.
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ScoringRules (Higher ScoresAreBetter). Wemeasure the quality of a prediction𝑓(𝑥) for a label

𝑦 via a positively oriented scoring rule 𝗌 ∶ ∆𝐶−1 × 𝒴 → ℝ. One simple scoring rule is classification

accuracy, i.e., 𝗌(𝑓(𝑥), 𝑦) = 1
(
argmax𝑐∈𝒴 𝑓(𝑥)𝑐 = 𝑦

)
, but a plethora of scores exist in the literature,

such as the Brier (1950) score, defined as 𝗌(𝑓(𝑥), 𝑦) = 1 −
∑

𝑐∈𝒴(𝑓(𝑥)𝑐 − 1 (𝑦 = 𝑐))2.

The Evaluation Setup. For each labeled data point (𝑋,𝑌) in an evaluation set, we observe the

abstention decision 𝑅 = 𝗋(𝜋(𝑋), 𝜉) for some independent source of randomness 𝜉 used by the ab-

staining classifier. Then, its prediction 𝑓(𝑋) is observed by the evaluator if and only if 𝑅 = 0. Let

𝑆 ∶= 𝗌(𝑓(𝑋), 𝑌) denote the score of the prediction 𝑓 on the query 𝑋, irrespective of 𝑅. Because 𝑆

is not observable when 𝑅 = 1, we refer to 𝑆 as the potential score that would have been seen had the

classifier not abstained. (See Appendix B.1.2 for equivalent formulations that explicitly invoke Rubin

(1974)’s potential outcomes model.) Since our evaluation is based only on the score 𝑆, we can sup-

press the role of 𝑌 and assume that 𝑆 is observed directly when 𝑅 = 0. Similarly, we can suppress the

role of 𝜉, which is independent of the data. We let ℙ denote the law of 𝑍 ∶= (𝑋, 𝑅, 𝑆).

4.2.1 Definition of the Counterfactual Score

We propose to assess an abstaining classifier (𝑓, 𝜋) through its (expected) counterfactual score:

𝜓 ∶= 𝔼 [𝑆] , (4.1)

where the expectation is taken w.r.t. ℙ. In words, 𝜓 refers to the expected score of the abstaining clas-

sifier had it not been given the option to abstain. The counterfactual score captures the performance

of an abstaining classifier via the score of its base classifier, making it suitable for cases where the

evaluator is interested in the predictions without using an abstention mechanism.

Note that 𝜓 does not in general equal the selective score, i.e., 𝔼 [𝑆 | 𝑅 = 0]. For example, when

a classifier abstains from making predictions on its “weak points,” i.e., inputs on which the classi-

fier performs poorly, the counterfactual score will be lower than the selective score. Also see Ap-

pendix B.1.3 for a direct comparison with Condessa et al. (2017)’s score.

62



Comparison. Counterfactual scoresmay also be used to compare two abstaining classifiers, (𝑓𝖠, 𝜋𝖠)

and (𝑓𝖡, 𝜋𝖡), in the form of their counterfactual score difference: ∆𝖠𝖡 ∶= 𝜓𝖠−𝜓𝖡 = 𝔼[𝑆𝖠−𝑆𝖡]. Here,

the expectation is now taken over the joint law of 𝑍𝖠𝖡 ∶= (𝑋, 𝑅𝖠, 𝑆𝖠, 𝑅𝖡, 𝑆𝖡).

4.2.2 Identification of the Counterfactual Score

Having defined the target parameters 𝜓 and ∆𝖠𝖡, we now discuss the assumptions under which these

quantities become identifiable using only the observed random variables. In other words, these as-

sumptions establish when the counterfactual quantity equals a statistical quantity. As in standard

settings of counterfactual inference under missing data, the identifiability of counterfactual scores in

this setting depends on two standard conditions: (i) the missing at random condition and (ii) positiv-

ity.

The missing at random (MAR) condition, also known as the ignorability or no unmeasured con-

founding condition, requires that the score 𝑆 is conditionally independent of the abstention decision

𝑅 given 𝑋, meaning that there are no unobserved confounders 𝑈 that affect both the abstention de-

cision 𝑅 as well as the score 𝑆. Note that 𝑆 is the potential score of what the classifier would get had

it not abstained — it is only observed when 𝑅 = 0. We formally state the MAR condition as follows:

Assumption 4.1 (Scores are missing at random). 𝑆 ⟂⟂ 𝑅 ∣ 𝑋.

In standard ML evaluation scenarios, where the evaluation set is independent of the training set

for the classifier, Assumption 4.1 is alwaysmet. We formalize this sufficient condition forMAR in the

following proposition. Let𝒟train denote the collection of any training data used to learn the abstaining

classifier (𝑓, 𝜋) and, as before, (𝑋,𝑌) denote an (i.i.d.) data point in the evaluation set.

Proposition 4.1 (Independent evaluation data ensures MAR). If (𝑋,𝑌) ⟂⟂ 𝒟train, then 𝑆 ⟂⟂ 𝑅 ∣ 𝑋.

This result is intuitive: given an independent test input 𝑋, the score 𝑆 = 𝗌(𝑓(𝑋), 𝑌) is a deter-

ministic function of the test label 𝑌, and the abstention decision 𝑅 of a classifier cannot depend on 𝑌

simply because the classifier has no access to it. A short proof is given in Appendix B.2.1 for complete-

ness. In Appendix B.3, we also include causal graphs that visually illustrate how the MAR condition

is met.

If the evaluation data is not independent of 𝒟train, then the classifier already has information

about the data on which it is tested, so generally speaking, no evaluation score will not accurately
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reflect its generalization performance. Although the independence between the training and eval-

uation data is expected in standard ML applications, it may not be guaranteed when, e.g., using a

publicly available dataset that is used during the training of the classifier. These issues can be pre-

vented by ensuring that the evaluation set is held out (e.g., a hospital can use its own patient data to

evaluate APIs).

The second condition, the positivity condition, is more substantial in our setting:

Assumption 4.2 (Positivity). There exists 𝜖 > 0 such that 𝜋(𝑋) = ℙ (𝑅 = 1 | 𝑋) ≤ 1 − 𝜖.

Assumption 4.2 says that, for each input 𝑋, there has to be at least a small probability that the

classifier will not abstain (𝑅 = 0). Indeed, if the classifier deterministically abstains from making

predictions on a specific input that has nonzero marginal density, then we have no hope of estimat-

ing an expectation over all possible values that 𝑋 can take. When it comes to evaluating abstaining

classifiers on safety-critical applications, we argue that this condition may need to be enforced at a

policy level—we elaborate on this point in Section 4.5 and Appendix B.4. In practice, the exact value

of 𝜖 is problem-dependent, and inAppendix B.6.4, we include additional experiments illustrating how

our methods retain validity as long as the abstention rate is capped at 1 − 𝜖 for some 𝜖 > 0.

Another justification for the positivity condition is that stochastically abstaining classifiers can

achieve better performances than their deterministic counterparts. Kalai and Kanade (2021) illus-

trate how stochastic abstentions can improve the out-of-distribution (OOD) performance w.r.t. the

Chow (1970) score (i.e., selective score + 𝛼 ⋅ coverage). Schreuder and Chzhen (2021) also introduce

randomness in their abstaining classifiers, which leverage abstentions as a means to improve their

accuracy while satisfying a fairness constraint. The role of random abstentions in these examples

mirrors the role of randomization in the fairness literature (Barocas et al., 2019), where the optimal

randomized fair predictors are known to outperform their deterministic counterparts (Agarwal and

Deshpande, 2022; Grgić-Hlača et al., 2017). Given the effectiveness of randomized classifiers for fair-

ness, it would not be surprising if a fair abstaining classifier was randomized (in its decisions and

abstentions).

WithMARandpositivity in hand, we can show that the counterfactual score is indeed identifiable.

Define 𝜇0(𝑥) ∶= 𝔼 [𝑆 ∣ 𝑅 = 0, 𝑋 = 𝑥] as the regression function for the score under 𝑅 = 0.

Proposition 4.2 (Identification). Under Assumptions 4.1 and 4.2, 𝜓 is identified as 𝔼 [𝜇0(𝑋)].
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The proof, included in Appendix B.2.2, follows a standard argument in causal inference. The

identification of the target parameter 𝜓 using 𝜇0 implies that we can estimate 𝜓, the expectation of

a potential outcome, using only the observed inputs and scores. Specifically, the task of estimating

𝜓 consistently reduces to the problem of estimating the regression function 𝜇0, which only involves

predictions that the classifier did not abstain from making. We note that, as in standard causal infer-

ence, the task of identification, which concerns what to estimate, is largely orthogonal to the task of

estimation, which concerns how to estimate the quantity. We discuss the latter problem in Section 4.3.

Comparison. For the comparison task, given∆𝖠𝖡 = 𝜓𝖠−𝜓𝖡, it immediately follows that if theMAR

and positivity assumptions hold for each of (𝑋, 𝑅𝖠, 𝑆𝖠) and (𝑋, 𝑅𝖡, 𝑆𝖡), then∆𝖠𝖡 is also identified, and

it can be consistently estimated via ∆𝖠𝖡 = 𝔼[𝜇𝖠0 (𝑋) − 𝜇𝖡0 (𝑋)], where 𝜇
∙
0(𝑥) ∶= 𝔼 [𝑆∙|𝑅∙ = 0, 𝑋 = 𝑥]

for ∙ ∈ {𝖠,𝖡}. A sufficient condition for the identification of ∆𝖠𝖡 is that (i) the evaluation data is

independent of the training data for either classifier (MAR) and (ii) each classifier has at least a small

chance of not abstaining on each input (positivity).

4.3 Nonparametric and Doubly Robust Estimation of the Counter-

factual Score

Having identified the counterfactual scores, we now focus on the problem of consistently estimating

them. We estimate these quantitieswithout resorting to parametric assumptions about the underlying

black-box abstention mechanisms. Instead, we reduce the problem to that of functional estimation

and leverage techniques from nonparametric statistics. See Kennedy (2022) for a recent review.

4.3.1 Estimating the Counterfactual Score

Task. Let {(𝑋𝑖, 𝑅𝑖, 𝑆𝑖)}𝑛𝑖=1 ∼ ℙ denote an i.i.d. evaluation set of size 𝑛. As before, we assume that we

are given access to the censored version of this sample, i.e., that we observe 𝑆𝑖 if and only if 𝑅𝑖 = 0.

Using the observables, we seek to form an estimate �̂� of the counterfactual score 𝜓 = 𝔼[𝑆].
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Doubly Robust Estimation. Under identification (Ppn. 4.2), we can estimate 𝜓 by estimating the

regression function 𝜇0(𝑋) on the data {(𝑋𝑖, 𝑆𝑖) ∶ 𝑅𝑖 = 0}. However, the naïve “plug-in” estimate

suffers from an inflated bias due to structure present in the abstention patterns. (See §B.1.4 for de-

tails.) We instead develop a doubly robust (DR) estimator (Robins et al., 1994; Bang andRobins, 2005),

which is known to consistently estimate 𝜓 at the optimal nonparametric efficiency rates, meaning that

no other estimator based on the 𝑛 observations can asymptotically achieve a smaller mean squared

error (van der Vaart, 2002). The derivation below is relatively standard, explaining our brevity.

Formally, the DR estimator is defined using the (uncentered) efficient influence function (EIF) for

the identified target functional𝜓(ℙ) = 𝔼ℙ[𝜇0(𝑋)]: 𝖨𝖥(𝑥, 𝑟, 𝑠) ∶= 𝜇0(𝑥)+
1−𝑟

1−𝜋(𝑥)
(𝑠 − 𝜇0(𝑥)) (0∕0 ∶= 0).

Here, 𝜋 and 𝜇0 are the “nuisance” functions, representing the abstention mechanism and the score

regression function under 𝑅 = 0, respectively. The EIF can be computed as long as 𝑠 is available when

𝑟 = 0. An intuition for the EIF is that it is the first-order “distributional Taylor approximation” (Fisher

and Kennedy, 2021) of the target functional, such that its bias is second-order.

Given that 𝜋 and 𝜇0 are unknown, we define an estimate of the EIF, denoted as ̂𝖨𝖥, by plugging

in estimates �̂� for 𝜋 and �̂�0 for 𝜇0. Then, the DR estimator is simply the empirical mean of the EIF:

�̂�𝖽𝗋 =
1
𝑛

𝑛∑

𝑖=1

̂𝖨𝖥(𝑋𝑖, 𝑅𝑖, 𝑆𝑖) =
1
𝑛

𝑛∑

𝑖=1
[�̂�0(𝑋𝑖) +

1 − 𝑅𝑖
1 − �̂�(𝑋𝑖)

(𝑆𝑖 − �̂�0(𝑋𝑖))] . (4.2)

This estimator is well-defined because 𝑆𝑖 is available precisely when 𝑅𝑖 = 0. Note that the first term is

the (biased) plug-in estimator, and the second term represents the first-order correction term, which

involves inverse probability weighting (IPW) (Horvitz and Thompson, 1952; Rosenbaum, 1995). In

our experiments, we show how the DR estimator improves upon both the plug-in estimator, in terms

of the bias, and the IPW-based estimator, which we formally define in §B.1.4, in terms of the variance.

The “double robustness” of �̂�𝖽𝗋 translates to the following useful property: �̂�𝖽𝗋 retains the para-

metric rate of convergence, 𝑂ℙ(1∕
√
𝑛), even when the estimators �̂�0 and �̂� themselves converge at

slower rates. This allows us to use nonparametric function estimators to estimate 𝜇0 and 𝜋, such as

stacking ensembles (Breiman, 1996) like the super learner (van der Laan et al., 2007) and regular-

ized estimators like the Lasso (Tibshirani, 1996; Belloni et al., 2014). Even for nonparametric models

whose rates of convergence are not fully understood, such as random forests (Breiman, 2001) and deep
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neural networks (LeCun et al., 2015), we can empirically demonstrate valid coverage and efficiency

(§4.4).

In practice, the nuisance functions can be estimated via cross-fitting (Robins et al., 2008; Zheng and

van der Laan, 2011; Chernozhukov et al., 2018), which is a 𝐾-fold generalization of sample splitting.

First, randomly split the data into𝐾 folds; then, fit �̂� and �̂�0 on𝐾−1 folds and use them to estimate the

EIF on the remaining “evaluation” fold; repeat the process𝐾 timeswith each fold being the evaluation

fold; finally, average the EIFs across all data points. The key benefit of using cross-fitting is to avoid

any complexity restrictions on individual nuisance functions without sacrificing sample efficiency.

In the following, we let �̂�𝖽𝗋 be the estimator (4.2) obtained via cross-fitting.

Now we are ready to present our first result, which states the asymptotic validity and efficiency of

the DR estimator for 𝜓 under identification and the DR condition.

Theorem 4.1 (DR estimation of the counterfactual score for an abstaining classifier). Suppose that

Assumptions 4.1 and 4.2 hold. Also, suppose that

‖�̂� − 𝜋‖𝐿2(ℙ) ‖�̂�0 − 𝜇0‖𝐿2(ℙ) = 𝑜ℙ(1∕
√
𝑛) (4.3)

and that ‖ ̂𝖨𝖥 − 𝖨𝖥‖𝐿2(ℙ) = 𝑜ℙ(1). Then,

√
𝑛
(
�̂�𝖽𝗋 − 𝜓

)
⇝𝒩 (0,𝖵𝖺𝗋ℙ (𝖨𝖥)) ,

where 𝖵𝖺𝗋ℙ (𝖨𝖥)matches the nonparametric efficiency bound.

The proof adapts standard arguments in mathematical statistics as found in, e.g., van der Vaart

(2002); Kennedy (2022), to the abstaining classifier evaluation setup. We include a proof sketch in

Appendix B.2.3. Theorem 4.1 tells us that, under the identification and the DR condition (4.3), we

can construct a closed-form asymptotic confidence interval (CI) at level 𝛼 ∈ (0, 1) as follows:

𝐶𝑛,𝛼 = (�̂�𝖽𝗋 ± 𝑧𝛼∕2
√
𝑛−1𝖵𝖺𝗋ℙ̂𝑛

( ̂𝖨𝖥
)
) , (4.4)

where 𝑧𝛼∕2 = Φ(1 − 𝛼
2
) is the (1 − 𝛼

2
)-quantile of a standard normal (e.g., 1.96 for 𝛼 = 0.05). In §B.5,

we describe a version that is also valid under continuous monitoring (e.g., as more data is collected).
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4.3.2 Estimating Counterfactual Score Differences

Task. Next, we return to the problem of comparing two abstaining classifiers, (𝑓𝖠, 𝜋𝖠) and (𝑓𝖡, 𝜋𝖡),

that each makes a decision to make a prediction on each input 𝑋𝑖 or abstain from doing so. That is,

𝑅∙𝑖 ∣ 𝜋
∙(𝑋𝑖) ∼ 𝖡𝖾𝗋(𝜋∙(𝑋𝑖)), and we observe 𝑆∙𝑖 = 𝗌(𝑓∙(𝑋𝑖), 𝑌𝑖) if and only if 𝑅∙𝑖 = 0, for ∙ ∈ {𝖠,𝖡}.

Recall that the target here is the score difference ∆𝖠𝖡 = 𝜓𝖠 − 𝜓𝖡 = 𝔼
[
𝑆𝖠 − 𝑆𝖡

]
.

DoublyRobustDifferenceEstimation. If the parameters𝜓𝖠 and𝜓𝖡 are each identified according

to Ppn. 4.2, then we can estimate ∆𝖠𝖡 as ∆̂𝖠𝖡 = �̂�𝖠 − �̂�𝖡, for individual estimates �̂�𝖠 and �̂�𝖡. The

resulting EIF is simply the difference in the EIF for 𝖠 and 𝖡: 𝖨𝖥𝖠𝖡(𝑥, 𝑟𝖠, 𝑟𝖡, 𝑠𝖠, 𝑠𝖡) = 𝖨𝖥𝖠(𝑥, 𝑟𝖠, 𝑠𝖠) −

𝖨𝖥𝖡(𝑥, 𝑟𝖡, 𝑠𝖡), where 𝖨𝖥𝖠 and 𝖨𝖥𝖡 denote the EIF of the respective classifier. Thus, we arrive at an

analogous theorem that involves estimating the nuisance functions of each abstaining classifier and

utilizing 𝖨𝖥𝖠𝖡 to obtain the limiting distribution of ∆̂𝖠𝖡𝖽𝗋 = �̂�𝖠𝖽𝗋 − �̂�𝖡𝖽𝗋 .

Theorem 4.2 (DR estimation of the counterfactual score difference). Suppose that Assumptions 4.1

and 4.2 hold for both (𝑋𝑖, 𝑅𝖠𝑖 , 𝑆
𝖠
𝑖 ) and (𝑋𝑖, 𝑅

𝖡
𝑖 , 𝑆

𝖡
𝑖 ). Also, suppose that

‖�̂�𝖠 − 𝜋𝖠‖𝐿2(ℙ)‖�̂�
𝖠
0 − 𝜇𝖠0 ‖𝐿2(ℙ) + ‖�̂�𝖡 − 𝜋𝖡‖𝐿2(ℙ)‖�̂�

𝖡
0 − 𝜇𝖡0‖𝐿2(ℙ) = 𝑜ℙ(1∕

√
𝑛) (4.5)

and that ‖ ̂𝖨𝖥𝖠𝖡 − 𝖨𝖥𝖠𝖡‖𝐿2(ℙ) = 𝑜ℙ(1). Then,

√
𝑛
(
∆̂𝖠𝖡𝖽𝗋 − ∆𝖠𝖡

)
⇝𝒩

(
0,𝖵𝖺𝗋ℙ

(
𝖨𝖥𝖠𝖡

))
,

where 𝖵𝖺𝗋ℙ[𝖨𝖥
𝖠𝖡]matches the nonparametric efficiency bound.

A proof is given in Appendix B.2.4. As with evaluation, Theorem 4.2 yields a closed-form asymp-

totic CI of the form (4.4) using the analogous estimate of EIF under MAR, positivity, and DR (4.5).

Inverting this CI in the standard manner further yields a hypothesis test for 𝐻0 ∶ 𝜓𝖠 = 𝜓𝖡 vs.

𝐻1 ∶ 𝜓𝖠 ≠ 𝜓𝖡.
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4.4 Experiments

In our experiments, we first present results on simulated data to examine the validity of our pro-

posed inferencemethods (CIs and hypothesis tests). We then study three scenarios on the CIFAR-100

dataset that illustrate the practical use of our approach to real data settings.

4.4.1 Simulated Experiments: Abstentions Near the Decision Boundary

Setup (MARbutNotMCAR). Wefirst consider comparing two abstaining classifiers according to

their accuracy scores, on a simulated binary classification dataset with 2-dimensional inputs. Given

𝑛 = 2, 000 i.i.d. inputs {𝑋𝑖}𝑛𝑖=1 ∼ 𝖴𝗇𝗂𝖿([0, 1]2), each label 𝑌𝑖 is decided using a linear boundary,

𝑓∗(𝑥1, 𝑥2) = 1 (𝑥1 + 𝑥2 ≥ 1), along with a 15% i.i.d. label noise. Importantly, each classifier abstains

near its decision boundary, such that its predictions and scores areMAR but not MCAR (because ab-

stentions depend on the inputs). As a result, while the counterfactual score of 𝖠 (𝜓𝖠 = 0.86) is much

higher than 𝖡 (𝜓𝖡 = 0.74), their selective scores are more similar (𝖲𝖾𝗅𝖠 = 0.86, 𝖲𝖾𝗅𝖡 = 0.81) and

coverage is lower for 𝖠 (𝖢𝗈𝗏𝖠 = 0.55) than for 𝖡 (𝖢𝗈𝗏𝖡 = 0.62). Another point to note here is that,

even though both the outcome model and classifier 𝖠 are linear, both the abstention mechanism3 𝜋𝖠

and the selective score function4 𝜇𝖠0 are nonlinear functions of the inputs (similarly for 𝜋
𝖡 and 𝜇𝖡0 ).

More generally, if a classifier abstains near its decision boundary, then both 𝜋 and 𝜇0 could be at least

as complex as the base classifier 𝑓 itself. Further details of the setup, including a plot of the data,

predictions, and abstentions, are provided in Appendix B.6.1.

Miscoverage Rates andWidths. As our first experiment, we compare the miscoverage rates and

widths of the 95% DR CIs (Theorem 4.2) against two baseline estimators: the plug-in and the IPW

(Rosenbaum, 1995) estimators (§B.1.4). For each method, the miscoverage rate of the CI 𝐶𝑛 is ap-

proximated via ℙ(∆𝖠𝖡 ∉ 𝐶𝑛) ≈ 𝑚−1∑𝑚
𝑗=1 𝟏(∆

𝖠𝖡 ∉ 𝐶(𝑗)𝑛 ), where 𝑚 is the number of simulations

over repeatedly sampled data. If the CI is valid, then this rate should approximately be 0.05. The

miscoverage rate and the width of a CI, respectively, capture its bias and variance components. For
3The abstentionmechanism 𝜋(𝑥) = ℙ(𝑅 = 1 ∣ 𝑋 = 𝑥) here separates the region below and above the decision boundary

from the region near the boundary. Thus 𝜋 is nonlinear even when the boundary is linear.
4Given any input 𝑋 for which the classifier did not abstain (𝑅 = 0) and its output 𝑌, the score 𝑆 = 𝗌(𝑓(𝑋), 𝑌) is

nonlinear if either 𝗌(⋅, 𝑦) or 𝑓 is nonlinear. Thus, even for linear 𝑓, nonlinear scores like the Brier score automatically make
the selective score function 𝜇0(𝑥) = 𝔼[𝑆 ∣ 𝑅 = 0, 𝑋 = 𝑥] nonlinear.
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Nuisance Function Estimators Plug-in IPW DR

Linear/Logistic Regression 1.00 ± 0.00 0.76 ± 0.01 1.00 ± 0.00
(0.00) (0.09) (0.04)

Random Forest 0.64 ± 0.02 0.14 ± 0.01 0.05 ± 0.01
(0.02) (0.13) (0.07)

Super Learner 0.91 ± 0.01 0.03 ± 0.01 0.05 ± 0.01
(0.01) (0.12) (0.06)

Table 4.2: Miscoverage rates (and widths) of 95% CIs using three estimation approaches and three
nuisance function (𝜋 and 𝜇0) estimators in a simulated experiment. Mean and standard error com-
puted over 𝑚 = 1, 000 runs are shown; those within 2 standard errors of the intended level (0.05)
are boldfaced. The sample size is 𝑛 = 2, 000 in each run. The mean widths of CIs are shown in
parentheses. DR estimation with either a random forest or a super learner achieves control over the
miscoverage rate, and the DR-based CI is twice as tight as the IPW-based CI in terms of their width.

the nuisance functions, we try linear predictors (L2-regularized linear/logistic regression for �̂�0/�̂�),

random forests, and super learners with 𝑘-NN, kernel SVM, and random forests.

We present our results in Table 4.2. First, using either the random forest or the super learner, the

DRCIs consistently achieve the intended coverage level of 0.95, over𝑚 = 1, 000 repeated simulations

(standard error 0.01). This validates the asymptotic normality result of (4.2). Note that the version

with linear estimators does not achieve the intended coverage level: this is expected as neither �̂� nor

�̂�0 can consistently estimate 𝜋 or 𝜇0, which are nonlinear functions, and thus violates (4.5).

Second, when considering both themiscoverage rate and CI width, the DR estimator outperforms

both the plug-in and IPW estimators. The plug-in estimator, despite having small CI width, has a

very high miscoverage rate (0.91with the super learner), meaning that it is biased even when flexible

nuisance learners are used. On the other hand, the IPW estimator has double the width of the DR

estimator (0.12 to 0.06, with the super learner), meaning that it is not as efficient. Also, while the IPW

estimator achieves the desired coverage level with the super learner (0.03), it fails with the random

forest (0.14), which tends to make overconfident predictions of the abstention pattern and biases the

resulting estimate. In contrast, the DR estimator retains its intended coverage level of 0.05 with the

random forest, suggesting that it is amenable to overconfident nuisance learners.
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Power Analysis. We further conduct a power analysis of the statistical test for 𝐻0 ∶ ∆𝖠𝖡 = 0

vs. 𝐻1 ∶ ∆𝖠𝖡 ≠ 0 by inverting the DR CI. The results confirm that the power reaches 1 as either the

sample size (𝑛) or the absolute difference (|∆𝖠𝖡|) increases. This experiment is included in App. B.6.2.

4.4.2 Comparing Abstaining Classifiers on CIFAR-100

To illustrate a real data use case, we compare abstaining classifiers on the CIFAR-100 image classifi-

cation dataset (Krizhevsky, 2009). Observe that abstaining classifiers can behave differently not just

when their base classifiers are different but also when their abstention mechanisms are different. In

fact, two abstaining classifiers can have a similarly effective base classifier but substantially different

abstention mechanisms (e.g., one more confident than the other). In such a case, the counterfac-

tual score difference between the two classifiers is zero, but their selective scores and coverages are

different. We examine such scenarios by comparing image classifiers that use the same pre-trained

representation model but have different output layers and abstention mechanisms.

We start with the 512-dimensional final-layer representations of a VGG-16 convolutional neural

network (Simonyan and Zisserman, 2015), pre-trained5 on the CIFAR-100 training set, and compare

different output layers and abstention mechanisms on the validation set. Generally, in a real data

setup, we cannot verify whether a statistical test or a CI. Yet, in this experiment, we still have access

to the base model of each abstaining classifier. This means that (a) if we compare abstaining classi-

fiers that share the base classifier but differ in their abstention patterns, then we actually know that

their counterfactual scores are exactly the same (∆𝖠𝖡 = 0); (b) if we compare abstaining classifiers

with different base classifiers, then we can compute their counterfactual scores accurately up to an

i.i.d. sampling error. This estimate is denoted by ∆̄𝖠𝖡 ∶= 𝑛−1
∑𝑛

𝑖=1[𝗌(𝑓
𝖠(𝑋𝑖), 𝑌𝑖) − 𝗌(𝑓𝖡(𝑋𝑖), 𝑌𝑖)].

For all comparisons, we use the DR estimator, where the nuisance functions �̂� and �̂�0 for both

classifiers are each an L2-regularized linear layer learned on top of the pre-trained VGG-16 features.

The use of pre-trained representations for learning the nuisance functions is motivated by Shi et al.

(2019), who demonstrated the effectiveness of the approach in causal inference contexts. We also use

the Brier score in this experiment. We defer other experiment details to Appendix B.6.3.

In scenario I, we compare two abstaining classifiers that use the same softmax output layer but
5Reproduced version, accessed from https://github.com/chenyaofo/pytorch-cifar-models.
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Scenarios Base Classifier Abstention Rule ∆̄𝖠𝖡 95% DR CI Reject𝐻0?

I Same Different 0.000 (-0.005, 0.018) No
II Same Different 0.000 (-0.014, 0.008) No
III Different Same −0.029 (-0.051, -0.028) Yes

Table 4.3: The 95% DR CIs and their corresponding hypothesis tests for 𝐻0 ∶ ∆𝖠𝖡 = 0 at significance
level 𝛼 = 0.05, for three different comparison scenarios on (half of) the CIFAR-100 test set (𝑛 =
5, 000). The three scenarios compare different abstention mechanisms or predictors, as detailed in
text; all comparisons use the Brier score. ∆̄𝖠𝖡 is the empirical counterfactual score difference without
any abstentions. The result of each statistical test agrees with whether ∆̄𝖠𝖡 is 0.

use a different threshold for abstentions. Specifically, both classifiers use the softmax response (SR)

thresholding (Geifman and El-Yaniv, 2017), i.e., abstain ifmax𝑐∈𝒴 𝑓(𝑋)𝑐 < 𝜏 for a threshold 𝜏 > 0, but

𝖠 uses amore conservative threshold (𝜏 = 0.8) than 𝖡 (𝜏 = 0.5). As a result, while their counterfactual

scores are identical (∆𝖠𝖡 = 0), 𝖠 has a higher selective score (+0.06) and a lower coverage (−0.20)

than 𝖡. This is also a deterministic abstentionmechanism, potentially challenging the premises of our

setup. As shown in Table 4.3, we see that the 95% DR CI is (−0.005, 0.018) (𝑛 = 5, 000), confirming

that there is no difference in counterfactual scores.6

Scenario II is similar to scenario I, except that the abstention mechanisms are now stochastic: 𝖠

uses the SR as the probability of making a prediction, i.e., 𝜋𝖠(𝑥) = 1 − max𝑐∈[𝐶] 𝑓(𝑋)𝑐, while 𝖡 uses

the Gini impurity as the probability of abstention, i.e., 𝜋𝖡(𝑥) = 1−
∑𝐶

𝑐=1 𝑝
2
𝑐 , both clipped to (0.2, 0.8).

This results in a higher coverage for 𝖠 and a higher selective score for 𝖡 because the Gini impurity is

typically smaller than the SR. The 95% DR CI is (−0.014, 0.008), confirming that there is once again

no difference in counterfactual scores. These two scenarios correspond to case (a).

In scenario III, we now examine a case where there is a difference in counterfactual scores

between the two abstaining classifiers (case (b)). Specifically, we compare the pre-trained VGG-16

model’s output layers (512-512-100) with the single softmax output layer that we considered in ear-

lier scenarios. It turns out that the original model’s multi-layer output model achieves a worse Brier

score (0.758) than one with a single output layer (0.787), likely because the probability predictions

of the multi-layer model are too confident (miscalibrated). When using the same abstention mech-

6The reason why the DR CI correctly estimates the true ∆𝖠𝖡 = 0, despite the fact that positivity is violated in this case,
is because the two classifiers happen to abstain on similar examples (𝖡 abstains whenever 𝖠 does) and their scores on their
abstentions happen to be relatively similar (0.604 for 𝖠; 0.576 for 𝖡).
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anism (stochastic abstentions using SR, as in II), the overconfident original model correspondingly

achieves a higher coverage (and worse selective Brier score) than the single-output-layer model. The

Monte Carlo estimate of the true counterfactual score difference is given by ∆̄𝖠𝖡 = −0.029, and the

95% DR CI falls entirely negative with (−0.051,−0.028), rejecting the null of ∆𝖠𝖡 = 0 at 𝛼 = 0.05.

4.5 Limitations and Discussion

This chapter lays the groundwork for addressing the challenging problem of comparing black-box ab-

staining classifiers in a counterfactual sense. Our solution casts the problem in Rubin (1976)’s miss-

ing data framework, where we treat abstentions as missing-at-random predictions of the classifier(s).

This allows us to leverage nonparametrically efficient, doubly-robust tools from causal inference.

There are important future directions and limitations stemming from our framework. On a con-

ceptual level, the largest challenge arises from the positivity condition, which requires the classifiers

to deploy a non-deterministic abstention mechanism. As mentioned in §4.2.2, the counterfactual

score is unidentifiable without this assumption. We argue that, especially in auditing scenarios, this

issue calls for a policy-level treatment, in which vendors must supply evaluators with a classifier that

is can abstain but must have at least an 𝜖 > 0 chance of nonabstention, a level that can be mutu-

ally agreed upon by both parties. This achieves a middle ground where the vendors are not required

to fully reveal their proprietary classifiers. In §B.4, we discuss this policy-level treatment in further

detail.

An alternative is to explore existing techniques that aim to address positivity violations directly (Pe-

tersen et al., 2012; Ju et al., 2019; Léger et al., 2022). Due to the unidentifiability result, these tech-

niques have their own limitations. For example, wemay consider applying sample trimming (Crump

et al., 2009) and making inferences on a subpopulation, although the conclusions would not hold for

the entire input domain (even when relevant). Exploring these options is left as future work.
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Appendix A

Supplementary Materials for

“Comparing Sequential Forecasters”

A.1 Main Proofs

A.1.1 Sub-exponential Test Supermartingales for Time-Varying Means

The proofs of Theorems 3.2 and 3.3 are both based on a variance-adaptive test supermartingale that

uniformly bounds sums of random variables that are bounded from below. We first derive this test

supermartingale (which, by definition, is also an e-process itself) and use the result for the proofs of

the main theorems in the following subsections.

We start by revisiting a useful lemma for the sub-exponential processes. Recall from Section 3.4.3

that 𝜓𝐸,𝑐(𝜆) = 𝑐−2(− log(1 − 𝑐𝜆) − 𝑐𝜆), ∀𝜆 ∈ [0, 1∕𝑐) is the exponential CGF-like function. By the

proof of Lemma 4.1 in Fan et al. (2015), for any 𝜆 ∈ [0, 1∕𝑐) and any 𝜉 ≥ −𝑐,

exp
{
𝜆𝜉 − 𝜓𝐸,𝑐(𝜆)𝜉2

}
≤ 1 + 𝜆𝜉. (A.1)

Note that the original proof uses 𝑐 = 1, but it straightforwardly generalizes to any value of 𝑐 > 0. To

see this, for any 𝑐 > 0, set �̃� = 𝑐𝜆 ∈ [0, 1) and �̃� = 𝑐−1𝜉 ≥ −1. Then, applying the lemma with 𝑐 = 1

using (�̃�, �̃�) gives the desired result.

Now, we show a time-uniform sub-exponential boundary that is generally applicable to sums of
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random variables that are bounded from below. This is an extension of Lemma 3(e) from Howard

et al. (2020), which also utilizes (A.1). We note that a similar extension is utilized in the recent work

of Waudby-Smith et al. (2022) but without the predictable bounds (𝑐𝑖)∞𝑖=1.

In the following, let (𝑋𝑖)∞𝑖=1 be any process whose conditional means 𝜇𝑖 ∶= 𝔼𝑖−1[𝑋𝑖] exist. Let

(𝑆𝑡)∞𝑡=0 be its cumulative deviations from the conditional means, i.e., 𝑆0 = 0 and 𝑆𝑡 =
∑𝑡

𝑖=1(𝑋𝑖 − 𝜇𝑖).

Note that 𝑆𝑡 is amartingale, i.e., 𝔼𝑡−1[𝑆𝑡] = 𝑆𝑡−1. Also, let (�̂�𝑡)∞𝑡=0 be a nondecreasing variance process

of the form �̂�0 = 0 and �̂�𝑡 =
∑𝑡

𝑖=1(𝑋𝑖 − 𝛾𝑖)2, where (𝛾𝑖)∞𝑖=1 is a predictable process. Also, we take

1∕∞ = 0 and, with a slight abuse of notation, [0, 0) = {0}.

PropositionA.1 (Sub-exponential test supermartingales for time-varyingmeans). Suppose that there

exists a predictable positive sequence (𝑐𝑖)∞𝑖=1 such that 𝑋𝑖 − 𝛾𝑖 ≥ −𝑐𝑖 a.s. for all 𝑖 ≥ 1. Then,

𝐿𝑡(𝜆) =
𝑡∏

𝑖=1
exp

{
𝜆(𝑋𝑖 − 𝜇𝑖) − 𝜓𝐸,𝑐𝑖 (𝜆) (𝑋𝑖 − 𝛾𝑖)

2} (A.2)

is a test supermartingale for each 𝜆 ∈ [0, 1∕𝑐0), where 𝑐0 = sup𝑖≥1 𝑐𝑖 .

Proof. For each 𝑖 ≥ 1, it suffices to show that

𝔼𝑖−1
[
exp

{
𝜆(𝑋𝑖 − 𝜇𝑖) − 𝜓𝐸,𝑐𝑖 (𝜆)(𝑋𝑖 − 𝛾𝑖)2

}]
≤ 1. (A.3)

Let �̃�𝑖 = 𝑋𝑖 − 𝜇𝑖 and �̃�𝑖 = 𝛾𝑖 − 𝜇𝑖. Then, �̃�𝑖 − 𝛾𝑖 = 𝑋𝑖 − 𝛾𝑖 ≥ −𝑐𝑖 a.s. by assumption. By (A.1),

exp
{
𝜆(�̃�𝑖 − �̃�𝑖) − 𝜓𝐸,𝑐𝑖 (𝜆)(�̃�𝑖 − �̃�𝑖)2

}
≤ 1 + 𝜆(�̃�𝑖 − �̃�𝑖). (A.4)

Multiplying each side by exp{𝜆�̃�𝑖} and rearranging terms, we get

exp
{
𝜆�̃�𝑖 − 𝜓𝐸,𝑐𝑖 (𝜆)(�̃�𝑖 − �̃�𝑖)2

}
≤ 𝑒𝜆�̃�𝑖 (1 − 𝜆�̃�𝑖) + 𝑒𝜆�̃�𝑖𝜆�̃�𝑖 ≤ 1 + 𝑒𝜆�̃�𝑖𝜆�̃�𝑖, (A.5)

where in the second inequality we used the fact that 1 − 𝑥 ≤ 𝑒−𝑥 for all 𝑥 ∈ ℝ.

Finally, we take the conditional expectation𝔼𝑖−1 on each side. Because𝔼𝑖−1[�̃�𝑖] = 𝔼𝑖−1[𝑋𝑖−𝜇𝑖] =
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0, and also because (𝛾𝑖)∞𝑖=1 and (𝑐𝑖)
∞
𝑖=1 are predictable, we get

𝔼𝑖−1
[
exp

{
𝜆�̃�𝑖 − 𝜓𝐸,𝑐𝑖 (𝜆)(�̃�𝑖 − �̃�𝑖)2

}]
≤ 1 + 𝑒𝜆�̃�𝑖𝜆𝔼𝑖−1 [�̃�𝑖] = 1. (A.6)

Substituting back in �̃�𝑖 = 𝑋𝑖 − 𝜇𝑖 and �̃�𝑖 − �̃�𝑖 = 𝑋𝑖 − 𝛾𝑖, we get the desired result.

Proposition A.1 is stated for a general setting in which bounds on the pointwise score differentials

can vary across time, as long as they form a predictable sequence. If there is a constant 𝑐 ∈ (0,∞)

such that |�̂�𝑖| ≤
𝑐
2
, such as in Theorems 3.2 and 3.3, then we can simply choose 𝑐𝑖 = 𝑐 for all 𝑖 and

further simplify the expression (A.2) to

𝐿𝑡(𝜆) = exp
{
𝜆𝑆𝑡 − 𝜓𝐸,𝑐(𝜆)�̂�𝑡

}
, ∀𝜆 ∈ [0, 1∕𝑐). (A.7)

We return to the case of using non-constant predictable bounds in Section A.6.2.

A.1.2 Proof of Theorem 3.2

The proof is a direct consequence of Proposition A.1, applied once each to the lower and upper con-

fidence bounds.

The stated conditions imply that �̂�𝑖 − 𝛾𝑖 ≥ −𝑐 a.s. for all 𝑖 ≥ 1. Define 𝑆𝑡 =
∑𝑡

𝑖=1(�̂�𝑖 − 𝛿𝑖). Then,

by Proposition A.1, the process

𝐿lcb
𝑡 (𝜆) = exp

{
𝜆𝑆𝑡 − 𝜓𝐸,𝑐(𝜆)�̂�𝑡

}
(A.8)

is a test supermartingale for 𝜆 ∈ [0, 1∕𝑐). By definition, this implies that (𝑆𝑡)∞𝑡=0 is sub-𝜓𝐸,𝑐 (“sub-

exponential with scale 𝑐”) with variance process (�̂�𝑡)∞𝑡=0, and thus we have

ℙ
(
∃𝑡 ≥ 1 ∶ 𝑆𝑡 ≥ 𝑢𝛼∕2(�̂�𝑡)

)
≤ 𝛼∕2, (A.9)

for any sub-exponential uniform boundary (3.7) with crossing probability 𝛼∕2 and scale 𝑐, denoted

here as 𝑢𝛼∕2. Using the fact that
1
𝑡
𝑆𝑡 =

1
𝑡

∑𝑡
𝑖=1 �̂�𝑖 −

1
𝑡

∑𝑡
𝑖=1 𝛿𝑖 = ∆̂𝑡 −∆𝑡, we can divide each side of the

inequality by 𝑡 to obtain the lower confidence bound (LCB).
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Similarly, the conditions also imply that −�̂�𝑖 + 𝛾𝑖 ≥ −𝑐, so Proposition A.1 also implies that the

process

𝐿ucb
𝑡 (𝜆) = exp

{
𝜆(−𝑆𝑡) − 𝜓𝐸,𝑐(𝜆)�̂�𝑡

}
(A.10)

is also a test supermartingale for 𝜆 ∈ [0, 1∕𝑐), or equivalently, (−𝑆𝑡)∞𝑡=0 is sub-𝜓𝐸,𝑐 with the same vari-

ance process (�̂�𝑡)∞𝑡=0. Applying the same argument to 𝐿
ucb
𝑡 (𝜆) gives the analogous upper confidence

bound (UCB) using the same uniform boundary 𝑢𝛼∕2.

Finally, combining the lower and upper confidence bounds with a union bound, we obtain the

CS:

ℙ (∀𝑡 ≥ 1 ∶ ||||∆̂𝑡 − ∆𝑡
|||| <

𝑢(�̂�𝑡)
𝑡 ) ≥ 1 − 𝛼. (A.11)

A.1.3 Proof of Theorem 3.3

We state and prove a slightly more general version of Theorem 3.3 that only assumes the empiri-

cal score differentials �̂�𝑖 are bounded from below and the predictable estimates 𝛾𝑖 are bounded (or

truncated) from above. Theorem 3.3 assumes that the score differentials are bounded from below

and above, so applying the following proposition twice to (�̂�𝑖, 𝛾𝑖)∞𝑖=1 and (−�̂�𝑖,−𝛾𝑖)
∞
𝑖=1 will give us the

result.

Proposition A.2. Suppose that �̂�𝑖 ≥ − 𝑐
2
for each 𝑖 ≥ 1, for some 𝑐 ∈ (0,∞). Also, let (𝛾𝑖)∞𝑖=1 be any

predictable sequence and �̂�𝑡 =
∑𝑡

𝑖=1(�̂�𝑖 − 𝛾𝑖)
2, where 𝛾𝑖 = 𝛾𝑖 ∧

𝑐
2
. Then, for each 𝜆 ∈ [0, 1∕𝑐), the

process (𝐸𝑡(𝜆))∞𝑡=0 defined as 𝐸0(𝜆) = 1 and

𝐸𝑡(𝜆) ∶= exp {𝜆
𝑡∑

𝑖=1
�̂�𝑖 − 𝜓𝐸,𝑐(𝜆)�̂�𝑡} is an e-process forℋ𝗐

0 (𝑝, 𝑞). (A.12)

Proposition A.2 tells us that, if the pointwise empirical score differentials are bounded from below

(or above), then we can derive a sub-exponential e-process forℋ0(𝑝, 𝑞) (orℋ0(𝑞, 𝑝)). An important

use case for the more general scenario is when using the Winkler score (Winkler, 1994), which is

bounded from above by 1 but unbounded from below, as we describe in Section A.4.

Proof of Proposition A.2. First, note that (𝐸𝑡(𝜆))∞𝑡=0 is an adapted process w.r.t.𝔊 (and also consists of

empirical quantities only). Let 𝑆𝑡 =
∑𝑡

𝑖=1(�̂�𝑖 − 𝛿𝑖) = 𝑡(∆̂𝑡 − ∆𝑡). Since �̂�𝑖 − 𝛾𝑖 ≥ −𝑐 for all 𝑖 ≥ 1,
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Proposition A.1 implies that

𝐿𝑡(𝜆) ∶= exp
{
𝜆𝑆𝑡 − 𝜓𝐸(𝜆)�̂�𝑡

}
(A.13)

is a test supermartingale for each 𝜆 ∈ [0, 1∕𝑐).

Now, under any 𝑃 ∈ℋ𝗐
0 (𝑝, 𝑞), we have that exp

{
−𝜆

∑𝑡
𝑖=1 𝛿𝑖

}
≥ 1, so for any 𝑡 ≥ 1,

𝐿𝑡(𝜆) = exp {𝜆
𝑡∑

𝑖=1
�̂�𝑖 − 𝜓𝐸(𝜆)�̂�𝑡} exp {−𝜆

𝑡∑

𝑖=1
𝛿𝑖}

≥ exp {𝜆
𝑡∑

𝑖=1
�̂�𝑖 − 𝜓𝐸(𝜆)�̂�𝑡} = 𝐸𝑡(𝜆). (A.14)

In other words, for each 𝑃 ∈ ℋ𝗐
0 (𝑝, 𝑞), the process (𝐸𝑡(𝜆))

∞
𝑡=0 is upper-bounded by the test super-

martingale (𝐿𝑡(𝜆))∞𝑡=0 at all times 𝑡. This implies that (𝐸𝑡(𝜆))
∞
𝑡=0 is an e-process forℋ

𝗐
0 (𝑝, 𝑞), by Corol-

lary 22 of Ramdas et al. (2020).

A.2 Details on Time-Uniform Boundary Choices

A.2.1 Computing the Gamma-Exponential Mixture

Here, we derive a closed-form expression (up to efficiently computable gamma functions) for the

gamma-exponentialmixture, which is used in both themixture boundary for the CS (Equation (3.12))

and in the mixture e-process for the weak null (Theorem 3.3). The mixture takes the following form:

𝑚(𝑠, 𝑣) ∶= ∫ exp
{
𝜆𝑠 − 𝜓𝐸,𝑐(𝜆)𝑣

}
𝑓𝜌(𝜆)𝑑𝜆, (A.15)

where 𝑓𝜌, for any 𝜌 > 0, is a reparametrized Gamma density 𝑓𝜌(𝜆) = 𝐶(𝜌)(1 − 𝜆)𝜌−1𝑒−𝜌(1−𝜆), 𝜆 ∈

[0, 1∕𝑐), where 𝐶(𝜌) = 𝜌𝜌

𝛾(𝜌,𝜌)Γ(𝜌)
is the normalization constant, Γ(𝑎, 𝑧) ∶= ∫ ∞𝑧 𝑢𝑎−1𝑒−𝑢𝑑𝑢 is the upper

incomplete gamma function, Γ(𝑎) ∶= Γ(𝑎, 0) is the gamma function, and 𝛾 is the regularized lower

incomplete gamma function:

𝛾(𝑎, 𝑧) ∶= 1
Γ(𝑎)

∫
𝑧

0
𝑢𝑎−1𝑒−𝑢𝑑𝑢, ∀𝑎, 𝑧 > 0. (A.16)
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Both Γ and 𝛾 can be computed efficiently in standard scientific computing software. (E.g., 𝛾 can be

computed using boost::math::gamma_p in C++ and scipy.special.gammainc in Python.)

We note here that all time-uniform boundaries have a “tradeoff of tightness” across different (in-

trinsic) times (Howard et al., 2021), so that it is natural to have a hyperparameter that controls at

what intrinsic time we want the resulting CS width to be optimized. In the above, the single hyper-

parameter, 𝜌 > 0, can be related to the user-specified optimal intrinsic time 𝑣opt (and the significance

level 𝛼) via the mapping 𝜌 = −𝑣opt(𝑊−1(−𝛼2∕𝑒) + 1), where𝑊−1 is the lower branch of the Lambert

𝑊 function. As described in Proposition 3 of Howard et al. (2021), this choice of 𝜌 uniquely mini-

mizes the width function 𝑣 ↦→ 𝑢(𝑣)∕
√
𝑣, when 𝑢 is the two-sided normal mixture boundary, and it

is also known to also provide a good approximation for the (one-sided) gamma-exponential mixture

boundary in practice.

The first part of the following proposition is essentially a restatement of Proposition 9 in Howard

et al. (2021); the second part additionally provides an upper bound for the mixture when 𝑠 ≪ 0 (e.g.,

the mixture e-process when data supports the null).

Proposition A.3 (Gamma-exponential mixture for e-processes). Fix 𝑐 > 0 and 𝜌 > 0. Consider any

values of 𝑠 ∈ ℝ and 𝑣 ≥ 0. If 𝑐𝑠+𝑣+𝜌
𝑐2

> 0, then

𝑚(𝑠, 𝑣) = 𝐶 (
𝜌
𝑐2
)
Γ
(𝑣+𝜌

𝑐2

)
𝛾
(𝑣+𝜌

𝑐2
, 𝑐𝑠+𝑣+𝜌

𝑐2

)

( 𝑐𝑠+𝑣+𝜌
𝑐2

) 𝑣+𝜌
𝑐2

exp {𝑐𝑠 + 𝑣
𝑐2

} ; (A.17)

otherwise, if 𝑐𝑠+𝑣+𝜌
𝑐2

< 0, then

𝑚(𝑠, 𝑣) ≤ 𝐶 (
𝜌
𝑐2
)
exp

{
− 𝜌
𝑐2

}

𝑣+𝜌
𝑐2

≤ 1. (A.18)

This is precisely the formula for the sub-exponential mixture e-process in Theorem 3.3: 𝐸mix
𝑡 =

𝑚(
∑𝑡

𝑖=1 �̂�𝑖, �̂�𝑡) with 𝑓𝜌 being the mixture density. It makes sense that 𝑚(𝑠, 𝑣) is upper-bounded by 1

when 𝑐𝑠+𝑣+𝜌
𝑐2

< 0, because 𝑠 < −𝑣+𝜌
𝑐

< 0 would imply that the sum of score differentials is negative,

supporting the weak null. In our implementation, we use the first upper bound in (A.18), which can

be computed efficiently and get substantially smaller than 1 when 𝑣 ≫ 0.

Proof of Proposition A.3. For simplicity, we assume 𝑐 = 1. The proof is analogous for any 𝑐 > 0.
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Recall that 𝜓𝐸(𝜆) = − log(1 − 𝜆) − 𝜆 for 𝜆 ∈ [0, 1). For any 𝜌 > 0,

𝑚(𝑠, 𝑣) = 𝐶(𝜌) ∫
1

0
exp {𝜆𝑠 − 𝜓𝐸(𝜆)𝑣} ⋅ (1 − 𝜆)𝜌−1𝑒−𝜌(1−𝜆)𝑑𝜆

= 𝐶(𝜌) ∫
1

0
𝑒𝜆(𝑠+𝑣)(1 − 𝜆)𝑣 ⋅ (1 − 𝜆)𝜌−1𝑒−𝜌(1−𝜆)𝑑𝜆

= 𝐶(𝜌) ∫
1

0
(1 − 𝜆)𝑣+𝜌−1𝑒𝜆(𝑠+𝑣)−𝜌(1−𝜆)𝑑𝜆

= 𝐶(𝜌) (∫
1

0
(1 − 𝜆)𝑣+𝜌−1𝑒−(𝑠+𝑣+𝜌)(1−𝜆)𝑑𝜆) 𝑒𝑠+𝑣, (A.19)

where in the last equality we used

𝜆(𝑠 + 𝑣) − 𝜌(1 − 𝜆) = (𝑠 + 𝑣) − (1 − 𝜆)(𝑠 + 𝑣) − (1 − 𝜆)𝜌 = −(𝑠 + 𝑣 + 𝜌)(1 − 𝜆) + (𝑠 + 𝑣).

Now, let 𝑎 = 𝑣 + 𝜌 and 𝑧 = 𝑠 + 𝑣 + 𝜌, and note that 𝑎 > 0.

Case 1: 𝑧 = 𝑠 + 𝑣 + 𝜌 > 0. Using the change-of-variable formula 𝑢 = (𝑠 + 𝑣 + 𝜌)(1 − 𝜆) = 𝑧(1 − 𝜆),

we have that

𝑚(𝑠, 𝑣) = 𝐶(𝜌) (∫
0

𝑧

(𝑢
𝑧

)𝑎−1
𝑒−𝑢 𝑑𝑢−𝑧) 𝑒

𝑠+𝑣

= 𝐶(𝜌) ⋅ 1𝑧𝑎 (∫
𝑧

0
𝑢𝑎−1𝑒−𝑢𝑑𝑢) 𝑒𝑠+𝑣 (A.20)

= 𝐶(𝜌)
Γ(𝑎)𝛾(𝑎, 𝑧)

𝑧𝑎 𝑒𝑠+𝑣, (A.21)

wherewe use the fact that the integral in (A.20) corresponds to the numerator of the lower incomplete

gamma function 𝑃(𝑎, 𝑧) in (A.16). The expression (A.21) can be computed in closed-form.
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Case 2: 𝑧 = 𝑠+𝑣+𝜌 < 0. Using the change-of-variable formula 𝑢 = −(𝑠+𝑣+𝜌)(1−𝜆) = −𝑧(1−𝜆),

we obtain

𝑚(𝑠, 𝑣) = 𝐶(𝜌) (∫
0

−𝑧

( 𝑢
−𝑧

)𝑎−1
𝑒𝑢 𝑑𝑢𝑧 ) 𝑒𝑠+𝑣

= 𝐶(𝜌) ⋅ 1
(−𝑧)𝑎

(∫
−𝑧

0
𝑢𝑎−1𝑒𝑢𝑑𝑢) 𝑒𝑠+𝑣

= 𝐶(𝜌) ⋅ 1
|𝑧|𝑎

(∫
|𝑧|

0
𝑢𝑎−1𝑒𝑢𝑑𝑢) 𝑒𝑠+𝑣. (A.22)

Although the integral in (A.22) is no longer a regularized lower incomplete gamma function, we can

still show that𝑚(𝑠, 𝑣) is upper-bounded by 1. Since 𝑒𝑢 ≤ 𝑒|𝑧| = 𝑒−𝑧 for 𝑢 ≤ |𝑧|, we have that

𝑚(𝑠, 𝑣) ≤ 𝐶(𝜌) ⋅ 1
|𝑧|𝑎

(∫
|𝑧|

0
𝑢𝑎−1𝑑𝑢) 𝑒−𝑧 ⋅ 𝑒𝑠+𝑣

= 𝐶(𝜌) ⋅ 1
|𝑧|𝑎

(∫
|𝑧|

0
𝑢𝑎−1𝑑𝑢) 𝑒−𝜌 (A.23)

= 𝐶(𝜌) ⋅ 1
|𝑧|𝑎

(𝑢
𝑎

𝑎 )
|||||||

|𝑧|

0
𝑒−𝜌

=
𝐶(𝜌)𝑒−𝜌

𝑣 + 𝜌 , (A.24)

where in (A.23) we used −𝑧 + (𝑠 + 𝑣) = −(𝑠 + 𝑣 + 𝜌) + (𝑠 + 𝑣) = −𝜌, and in (A.24) we substituted in

𝑎 = 𝑣 + 𝜌. We can further bound this value, using the fact that 𝑣 > 0 and substituting back in 𝐶(𝜌):

𝑚(𝑠, 𝑣) ≤
𝐶(𝜌)𝑒−𝜌

𝑣 + 𝜌 ≤
𝐶(𝜌)𝑒−𝜌

𝜌

= 𝜌𝜌−1𝑒−𝜌 ⋅ (∫
𝜌

0
𝑢𝜌−1𝑒−𝑢𝑑𝑢)

−1

≤ 𝜌𝜌−1𝑒−𝜌 ⋅ (𝑒−𝜌 ∫
𝜌

0
𝑢𝜌−1𝑑𝑢)

−1

(A.25)

= 𝜌𝜌−1 ⋅ [(
𝑢𝜌

𝜌 )
|||||||

𝜌

0
]
−1

= 1, (A.26)

where in (A.25) we used the fact that 𝑒−𝜌 ≤ 𝑒−𝑢 for 𝑢 ∈ [0, 𝜌].
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A.2.2 The Polynomial Stitching Boundary

The polynomial stitched boundary (Theorem 1, Howard et al. (2021)) provides a fully closed-form

(without any gamma functions) alternative to the aforementioned gamma-exponentialmixture bound-

ary. It is constructed by finding a smooth analytical upper bound on a sequence of linear uniform

bounds across different timesteps. The boundary asymptotically grows with 𝑂(
√
𝑣 log log 𝑣) rate,

matching the form of the law of the iterated logarithm (LIL). For example, a 95% EB CS for ∆𝑡 (The-

orem 3.2) using the polynomial stitching boundary is given as follows (assuming |�̂�𝑖| ≤ 1, ∀𝑖):

∆̂𝑡 ± 2 ⋅
1.7

√(
�̂�𝑡 ∨ 1

) (
log log

(
2
(
�̂�𝑡 ∨ 1

))
+ 3.8

)
+ 3.4 log log

(
2
(
�̂�𝑡 ∨ 1

))
+ 13

𝑡 (A.27)

where �̂�𝑡 is the intrinsic time.

The polynomial stitched boundary can be applied to both Theorems 3.1 and 3.2 by setting �̂�𝑡 = 𝑡

and �̂�𝑡 =
∑𝑡

𝑖=1(�̂�𝑖−𝛾𝑖)
2 respectively. Previous work showed that the polynomial stitched boundary is

a sub-gamma uniform boundary (Theorem 1, Howard et al. (2021)), which is also a “universal” sub-𝜓

uniform boundary for any CGF-like function 𝜓 (Proposition 1, Howard et al. (2020)). We omit a full

restatement of Howard et al. (2021)’s Theorem 1, which establishes the validity of the polynomial

stitching boundary, but rather, we list its three hyperparameters for practical use:

• 𝑣opt > 0 determines the value of the intrinsic time at which the boundary is tightest;

• 𝑠 > 1 controls how the crossing probability is distributed over intrinsic time;

• 𝜂 > 1 controls the geometric spacing of the intrinsic time.

Throughout this work, we fix 𝑠 = 1.4 and 𝜂 = 2, as recommended by the original paper, and only

adjust 𝑣opt, which serves the analogous role as the hyperparameter of the same name for the gamma-

exponential boundary in Section A.2.1.

Although the stitching boundary is computed in closed form andmatches the LIL rate, it is usually

not as tight as the CM boundary in practice, and thus we use the CM boundary as our default in all

of our main experiments.
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A.3 Asymptotic CSs for Sequential Forecast Comparison

In their recent work, Waudby-Smith et al. (2021) introduce a new class of time-uniform CSs called

asymptotic CSs, which trade the nonasymptotic guarantee of a standard CS for applicability to awider

variety of scenarios, e.g., estimating the average treatment effect in causal inference (for which a

nonasymptotic CS is not known). Formally, a sequence of confidence intervals (�̂�𝑡±𝑅𝖠𝑡 )∞𝑡=1 is a (1−𝛼)-

asymptotic CS (AsympCS) for (𝜃𝑡)∞𝑡=1 if there exists a nonasymptotic (1−𝛼)-CS (�̂�𝑡±𝑅
𝖭𝖠
𝑡 )∞𝑡=1, for (𝜃𝑡)

∞
𝑡=1,

such that

𝑅𝖭𝖠𝑡 ∕𝑅𝖠𝑡
𝑎.𝑠.
,→ 1. (A.28)

Furthermore, the AsympCS has an approximation rate of 𝑟(𝑡) if 𝑅𝖭𝖠𝑡 − 𝑅𝖠𝑡 = 𝑂𝑎.𝑠.(𝑟(𝑡)). Defini-

tion (A.28) says that, as 𝑡 →∞, theAsympCS is an “arbitrarily precise approximation” of the nonasymp-

totic CS, and it can be viewed as approximately satisfying the time-uniform coverage property when

𝑡 is large.

Waudby-Smith et al. (2021) describes an asymptotic CS for time-varyingmeans that can be applied

to our setting of estimating (∆𝑡)∞𝑡=1 under Lyapunov CLT-type conditions. For the sake of complete-

ness, we include the (simplified) assumptions and the resulting closed form of the asymptotic CS,

adapted to our setting and notations.

Let 𝜎2𝑡 = 𝔼𝑡−1[(�̂�𝑡 − 𝛿𝑡)2] denote the conditional variance, 𝑉𝑡 =
∑𝑡

𝑖=1 𝜎
2
𝑖 be the cumulative

conditional variance, and �̃�2𝑡 = 𝑡−1𝑉𝑡 be the average. Let �̂�2𝑡 be any estimator of 𝜎2𝑡 , such as �̂�2𝑡 =

𝑡−1
∑𝑡

𝑖=1(�̂�𝑖 − ∆̂𝑖−1)
2. (Notice that, in the setting of Theorem 3.2, �̂�2𝑡 = 𝑡−1�̂�𝑡 with 𝛾𝑖 set to ∆̂𝑖−1.) Now,

we assume the following:

(a) �̃�2𝑡
𝑎.𝑠.
,→ 𝜎2∗ for some 𝜎2∗ > 0;

(b) there exists 𝑞 > 2 such that the 𝑞th moments of �̂�𝑡 is uniformly bounded (a.s.) for all 𝑡 ≥ 1; and

(c) �̂�2𝑡 ∕�̃�2𝑡
𝑎.𝑠.
,→ 1.

As noted in the paper, these conditions can be substantially more general than either sub-Gaussianity

or boundedness. Given these assumptions, we know by Theorem 2.3 of Waudby-Smith et al. (2021)
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that, for any 𝜌 > 0 and any 𝛼 ∈ (0, 1),

𝐶𝖠𝑡 ∶=

⎛
⎜
⎜
⎜
⎝

∆̂𝑡 ±

√
√√√√√√√

2(𝑡�̂�2𝑡 𝜌2 + 1)
𝑡2𝜌2

log
⎛
⎜
⎜
⎝

√
𝑡�̂�2𝑡 𝜌2 + 1

𝛼

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

(A.29)

forms a (1−𝛼)-AsympCS for (∆𝑡)∞𝑡=1 with an approximation rate of 𝑜(
√
𝑉𝑡 log𝑉𝑡∕𝑡). 𝜌 > 0 is a hyper-

parameter that affects the relative tightness of the CS across time, analogous to the hyperparameter 𝜌

in Section A.2. In our experiments, we follow Waudby-Smith et al. (2021) (Equation 74) and use the

choice that approximately optimizes the width at a pre-specified time 𝑡∗ ≥ 1:

𝜌(𝑡∗) =

√
2 log(1∕𝛼) + log(1 + 2 log(1∕𝛼))

𝑡∗ . (A.30)

Unless specified otherwise, 𝑡∗ is chosen to be 100 in our experiments.

As illustrated inFigures 3.3 and 3.4, theAsympCS is typically tighter than theEBCS (Theorem3.2)

for smaller values of 𝑡, and as 𝑡 grows large the widths of the two CSs become close to one another.

A.4 Comparing Relative Forecasting Skills Using theWinkler Score

In a typical forecast comparison scenario, we are often interested in comparing a newly developed

forecasting algorithm (say, 𝑝) with an existing baseline (say, 𝑞). For example, a company that already

deploys a daily forecasting algorithm may want to A/B test if its newly developed method is at least

as good as the existing one. In such settings, we may be interested in the relative improvement of

a forecaster over a baseline, and early work by Murphy (1988) and Winkler (1994) propose using

normalized scoring rules that better reflect the relative “skill” of the new forecaster.

In this section, we show how our main results can be extended in a unique way to construct time-

uniform CSs and e-processes for the average Winkler score (Winkler, 1994), which is a normalized

version of the average score differentials between probability forecasts on binary outcomes. Interest-

ingly, these results yield SAVI approaches that are valid without a boundedness or sub-Gaussianity

assumption on the underlying scoring rule, and instead they are valid whenever the scoring rule is
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proper (Gneiting and Raftery, 2007). The Winkler score is particularly useful when comparing prob-

ability forecasters based on the logarithmic score, which is a strictly proper but unbounded score, as

we showcased in Section 3.5.2. We remark that Lai et al. (2011) first showed the asymptotic normality

of the average Winkler score. In contrast to their work, the methods we develop here are nonasymp-

totic and anytime-valid, depending only on the natural upper bound (of 1) on the Winkler score; we

also allow the baseline forecaster to be nonconstant.

Formally, we first define the (pointwise) Winkler score 𝑤(𝑝, 𝑞, 𝑦) with a base scoring rule 𝑆 as

follows:

𝑤(𝑝, 𝑞, 𝑦) ∶=
𝑆(𝑝, 𝑦) − 𝑆(𝑞, 𝑦)

𝑆(𝑝,1 (𝑝 > 𝑞)) − 𝑆(𝑞,1 (𝑝 > 𝑞))
, 𝑝, 𝑞 ∈ (0, 1), 𝑦 ∈ {0, 1}, (A.31)

where we set 0∕0 ∶= 0. We note that (A.31) is equivalent to the increment in the e-process of (Henzi

and Ziegel, 2022) (details in Section A.8.1), and thus we can interpret Henzi and Ziegel (2022)’s e-

process for the strong null as betting directly proportional to the relative forecasting skill between the

forecasters. We also define the expected (pointwise) Winkler score as

𝑤(𝑝, 𝑞; 𝑟) ∶= 𝔼𝑦∼𝑟 [𝑤(𝑝, 𝑞, 𝑦)] =
𝔼𝑦∼𝑟 [𝑆(𝑝, 𝑦)] − 𝔼𝑦∼𝑟 [𝑆(𝑞, 𝑦)]
𝑆(𝑝,1 (𝑝 > 𝑞)) − 𝑆(𝑞,1 (𝑝 > 𝑞))

, (A.32)

for 𝑝, 𝑞 ∈ (0, 1) and 𝑟 ∈ [0, 1]. As before, 𝑦 ∼ 𝑟 denotes 𝑦 ∼ Bernoulli(𝑟) (conditional on 𝑝 and 𝑞). It

follows directly from (A.32) that, given a constant forecaster 𝑞 ∈ (0, 1), 𝑆𝑤𝑞 (𝑝, 𝑦) = 𝑤(𝑝, 𝑞, 𝑦) itself is

a (strictly) proper scoring rule if 𝑆 is (strictly) proper (Winkler, 1994). The score is also standardized

in the sense that, if 𝑞 is the “least skillful” calibrated forecaster, i.e., the constant, historical-average

forecaster (climatology in weather forecasting), and 𝑝 is another well-calibrated forecaster, then the

expected Winkler score 𝑤(𝑝, 𝑞; 𝑟) is zero (minimum) when 𝑝 = 𝑞 and one (maximum) when 𝑝 ∈

{0, 1}. On the other hand, the empirical Winkler score 𝑤(𝑝, 𝑞, 𝑦) can take negative values, which

would suggest that 𝑝 is worse than 𝑞 on forecasting the outcome 𝑦 under 𝑆.

In the following lemma, we summarize the characteristics of theWinkler score that are useful for

both its interpretation and the proofs that will follow shortly.
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LemmaA.1 (Winkler (1994)). Let 𝑆 be a proper scoring rule. Then, for any 𝑝, 𝑞 ∈ (0, 1) and 𝑦 ∈ {0, 1},

𝑤(𝑝, 𝑞, 𝑦) =

⎧
⎪

⎨
⎪
⎩

1 if 𝑦 = 1 (𝑝 > 𝑞) ;

≤ 0 otherwise.
(A.33)

In the case that 𝑦 ≠ 1 (𝑝 > 𝑞), the denominator is non-negative and the numerator is non-positive.

See Winkler (1994, 1977) for a proof. Lemma A.1 establishes that 𝑝 gets a positive score of 1 if it

is at least as good as 𝑞, but otherwise, it does not get a positive score. Two implications are: (i) the

Winkler score is bounded from above by 1, and (ii) when we take the average of pointwise Winkler

scores over 𝑡 forecasts and outcomes, we can read off the sign of the average to tell whether 𝑝 has

better or worse forecasting skills than 𝑞.

Returning to the sequential setup inGame 3.1, we now treat the pointwiseWinkler scores between

(𝑝𝑡)∞𝑡=1 and (𝑞𝑡)
∞
𝑡=1 as the analogs of pointwise score differentials from Section 3.4. Because (𝑝𝑡)∞𝑡=1 and

(𝑞𝑡)∞𝑡=1 are predictable w.r.t.𝔊, we replace the expectation in (A.32) with the conditional expectation

w.r.t. 𝒢𝑡−1. Then, for each 𝑡, we can define the (expected) average Winkler score up to 𝑡:

𝑊𝑡 ∶=
1
𝑡

𝑡∑

𝑖=1
𝔼𝑡−1[𝑤(𝑝𝑖, 𝑞𝑖, 𝑦𝑖)], 𝑡 ≥ 1. (A.34)

This is the time-varying sequence of parameters that we seek to estimate; we also analogously define

the weak Winkler (WW) null

ℋ𝗐𝗐,≥
0 (𝑝, 𝑞) ∶𝑊𝑡 ≥ 0, ∀𝑡 ≥ 1. (A.35)

For this null, the sign is the opposite of (3.14): we assert that 𝑝 is at least as good as 𝑞 as our null,

and rejectingℋ𝗐𝗐,≥
0 (𝑝, 𝑞) would mean that 𝑝 is decidedly worse than 𝑞 on average up to some time

𝑡. Note also that we slightly generalize the average score from Winkler (1994)’s to allow the baseline

forecaster to be any predictable (0, 1)-valued forecaster (𝑞𝑡)∞𝑡=1.

We are now ready to present ourmain result. In the following, wedenote the (empirical) pointwise

Winkler scores as �̂�𝑖 = 𝑤(𝑝𝑖, 𝑞𝑖, 𝑦𝑖) for each 𝑖 and their average over time as �̂�𝑡 ∶=
1
𝑡

∑𝑡
𝑖=1𝑤(𝑝𝑖, 𝑞𝑖, 𝑦𝑖).

Proposition A.4 (Sequential inference on the average Winkler score). Suppose that 𝑆 is a proper

scoring rule and that 𝑝𝑖, 𝑞𝑖 ∈ (0, 1) for each 𝑖 ≥ 1. Let (𝛾
𝑖
)∞𝑖=1 be a [−1,∞)-valued predictable process
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and let �̂�𝑡 =
∑𝑡

𝑖=1(�̂�𝑖 − 𝛾
𝑖
)2.

1. (One-sided EB CS for (𝑊𝑡)∞𝑡=1.) For each 𝛼 ∈ (0, 1), the sequence of intervals (𝐶𝖤𝖡𝑡 )∞𝑡=1 defined as

𝐶𝖤𝖡𝑡 ∶=
(
−∞, �̂�𝑡 + 𝑡−1𝑢𝛼(�̂�𝑡)

)
∩ (−∞, 1] (A.36)

is a (1−𝛼)-CS for (𝑊𝑡)∞𝑡=1, for any sub-exponential uniform boundary 𝑢𝛼 with crossing probability

𝛼 and scale 2.

2. (Sub-exponential e-process for ℋ𝗐𝗐,≥
0 .) For each 𝜆 ∈ [0, 1∕2), the process (𝐸𝑡(𝜆))∞𝑡=0 defined as

𝐸0(𝜆) = 1 and

𝐸𝑡(𝜆) ∶= exp
{
−𝜆�̂�𝑡 − 𝜓𝐸,2(𝜆)�̂�𝑡

}
(A.37)

is an e-process forℋ𝗐𝗐,≥
0 ∶ 𝑊𝑡 ≥ 0, ∀𝑡, and so is the mixture process 𝐸𝗆𝗂𝗑𝑡 ∶= ∫ 𝐸𝑡(𝜆)𝑑𝐹(𝜆) for

any distribution 𝐹 on [0, 1∕𝑐).

The proof is a direct application of Proposition A.1, using the upper bound of 1 on the empirical

pointwise Winkler scores. Because the Winkler score is unbounded from below, the standard ma-

chinery only readily provides the upper confidence bound for (𝑊𝑡)∞𝑡=1. Thus, we derive a one-sided

CS in (A.36) that tells us the certainty to which we know 𝑊𝑡 is away from 1. The sub-exponential

e-process in (A.37) corresponds to this upper confidence bound and measures the evidence against

the null that 𝑝 is at least as good as 𝑞. From the sequential testing point-of-view, either a large value

in the e-process or a small value of the upper confidence bound suggests that 𝑝 underperforms 𝑞;

conversely, either a small value in the e-process or a value close to 1 for the upper confidence bound

(i.e., a vacuous CS) tells us that there is no such evidence. Note that, to satisfy the constraint on the

predictable process (𝛾𝑖)∞𝑖=1 to be bounded from below by −1, we can choose as default the running

average as in Theorem 3.2, but cap it from below at −1, i.e., 𝛾𝑖 = −1 ∨ �̂�𝑖−1.

Proof of Proposition A.4. We first use Lemma A.1 to obtain an upper bound of 1 on the pointwise

empirical Winkler scores, 𝑤𝑖 = 𝑤(𝑝𝑖, 𝑞𝑖, 𝑦𝑖). Then, the rest of the proof follows similarly from the

proofs of Proposition A.1 as well as Theorem 3.2 and Theorem 3.3.
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Specifically, define the process (𝐿𝑡(𝜆))∞𝑡=0 as 𝐿0(𝜆) = 1 and

𝐿𝑡(𝜆) ∶= exp
{
𝜆
(
−�̂�𝑡 +𝑊𝑡

)
− 𝜓𝐸,2(𝜆)�̂�𝑡

}
, (A.38)

which is a test supermartingale an w.r.t.𝔊 for each 𝜆 ∈ [0, 1∕2) by Proposition A.1 and Lemma A.1.

By definition, the process (𝑡(𝑊𝑡 − �̂�𝑡))∞𝑡=0 is sub-exponential with scale 2 (i.e., sub-𝜓𝐸,2) having the

variance process (�̂�𝑡)∞𝑡=0. The results then follow analogously to Theorems 3.2 and 3.3.

We close with the note that, if the main goal is rather to tightly estimate (𝑊𝑡)∞𝑡=1 from both sides

or to test the nullℋ𝗐𝗐,≤
0 ∶ 𝑊𝑡 ≤ 0, ∀𝑡, then there is a way to use either the sub-Gaussianity or the

boundedness assumption on scoring rules (rather than propriety) and apply any of our main Theo-

rems; the proof would be analogous for each application. The caveat with the Winkler score is that

it is unbounded from below even when using a bounded base scoring rule, such as the Brier score,

because the lower bound depends on how close 𝑞 can get to 0 or 1. If 𝑞𝑡 = 𝑞 ∈ (0, 1) is the climatology

forecaster, then this is not an issue and the two-sided approach can also be useful. We summarize the

analogs of Theorem 3.2 and Theorem 3.3 for the average Winkler score as a corollary.

Corollary A.1 (Two-sided sequential inference on the average Winkler score.). Suppose there exists

some 𝑐 > 0 such that �̂�𝑖 ≥ 1 − 𝑐 for any 𝑖 ≥ 1. Let (𝛾𝑖)∞𝑖=1 be a [1 − 𝑐, 1]-valued predictable process and

let �̂�𝑡 =
∑𝑡

𝑖=1(�̂�𝑖 − 𝛾𝑖)2. Then,

1. (Two-sided EB CS for (𝑊𝑡)∞𝑡=1.) For each 𝛼 ∈ (0, 1), the sequence of intervals (𝐶𝖤𝖡𝑡 )∞𝑡=1 defined as

𝐶𝖤𝖡𝑡 ∶=
(
�̂�𝑡 ± 𝑡−1𝑢𝛼∕2(�̂�𝑡)

)
∩ (−∞, 1] (A.39)

is a (1 − 𝛼)-CS for (𝑊𝑡)∞𝑡=1, for any sub-exponential uniform boundary 𝑢𝛼∕2 with crossing proba-

bility 𝛼∕2 and scale 𝑐.

2. (Sub-exponential e-process for ℋ𝗐𝗐,≤
0 .) For each 𝜆 ∈ [0, 1∕𝑐), the process (𝐸𝑡(𝜆))∞𝑡=0 defined as

𝐸0(𝜆) = 1 and

𝐸𝑡(𝜆) ∶= exp
{
𝜆�̂�𝑡 − 𝜓𝐸,𝑐(𝜆)�̂�𝑡

}
(A.40)

is an e-process forℋ𝗐𝗐,≤
0 ∶ 𝑊𝑡 ≤ 0, ∀𝑡, and so is the mixture process 𝐸𝗆𝗂𝗑𝑡 ∶= ∫ 𝐸𝑡(𝜆)𝑑𝐹(𝜆) for

any distribution 𝐹 on [0, 1∕𝑐).
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The value of 𝑐 may depend on both the choice of 𝑆 and how close 𝑞𝑖 can get to either 0 or 1. For

example, if 𝑆 is the Brier score and 𝑞𝑖 ∈ [𝑞0, 1 − 𝑞0] for some constant 𝑞0 ∈ (0, 1), then 𝑐 = 2∕𝑞0.

A.5 Comparing Lagged Forecasts

Given an integer lag ℎ ≥ 1, if 𝑝𝑖 and 𝑞𝑖 were lag-ℎ forecasts made at round 𝑖 for the eventual outcome

𝑦𝑖+ℎ−1, then we would be interested in the following time-varying parameter:

∆(ℎ)𝑡 ∶= 1
𝑡 − ℎ + 1

𝑡−ℎ+1∑

𝑖=1
𝔼𝑖−1 [𝑆(𝑝𝑖, 𝑦𝑖+ℎ−1) − 𝑆(𝑞𝑖, 𝑦𝑖+ℎ−1)] , ∀𝑡 ≥ ℎ. (A.41)

For each 𝑡 ≥ ℎ, we take the average up to the (𝑡− ℎ+1)th round, because the forecasts made beyond

that round can only be evaluated after the 𝑡th round. The conditional expectation is taken in such

a way that the forecasters (𝑝𝑖 and 𝑞𝑖) are evaluated based on the information they had at the time of

forecasting (𝒢𝑖−1) and not the one right before the outcome is realized (𝒢𝑖+ℎ−1).

The case of ℎ = 1 corresponds to the setting we considered in Section 3.4, but extending the

construction to the case of ℎ > 1 is not straightforward. For example, the sequence (𝐸𝑡(𝜆))∞𝑡=0 defined

analogously to the one in Theorem 3.3 would not be an e-process w.r.t. the game filtration𝔊, let alone

a process, because the 𝑡th term would include future outcomes that are not realized at time 𝑡. Rather,

the process (𝐸𝑡(𝜆))∞𝑡=0 now only satisfies the weaker property that 𝔼𝑡−ℎ[𝐸𝑡] ≤ 1 for all (non-stopping)

times 𝑡 ≥ ℎ underℋ0. In their recent work, Arnold et al. (2021) refer to such processes as sequential

e-values forℋ0 at lag ℎ and propose to combine ℎ subsequences of the original process that are each

test supermartingales w.r.t. different sub-filtrations of𝔊.

Although lag-ℎ sequential e-values are not e-processes themselves, the recent preprints of Arnold

et al. (2021); Henzi and Ziegel (2022) show that there is a workaround to turn them into an e-process

possessing anytime-validity. Here, we adapt their approach and develop e- and p-processes forweaker

nulls similar to the weak null in the lag-1 case; developing a tight CS for estimating ∆(ℎ)𝑡 remains an

open problem.

To proceed, we define two weak nulls related to the sequence of parameters (∆(ℎ)𝑡 )∞𝑡=ℎ. The first is
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a straightforward generalization of the lag-1 weak null (3.14) to any ℎ ≥ 1:

ℋ𝗐
0 (𝑝, 𝑞;ℎ) ∶ ∆

(ℎ)
𝑡 ≤ 0, ∀𝑡 ≥ ℎ. (A.42)

This recoversℋ𝗐
0 (𝑝, 𝑞) when ℎ = 1. We refer to (A.42) as the lag-ℎ weak null between 𝑝 and 𝑞.

Because of the aforementioned challenge in the ℎ > 1 case, we also define a null hypothesis for

which we can derive a more powerful e-process. The lag-ℎ period-wise (PW) weak null, which we

denote asℋ𝗉𝗐
0 (𝑝, 𝑞;ℎ), asserts that the weak null holds at every ℎth step for all periods 𝑘 ∈ {1,… , ℎ},

making it (slightly) stronger than the weak null but weaker than the strong null.

Formally, define the index set

𝐼[𝑘]𝑡 = {𝑘 + 1 + ℎ𝑠 ∶ 𝑠 = 0, 1,… ,⎢
⎣
𝑡 − 𝑘
ℎ

⎥
⎦
− 1} , (A.43)

which includes every ℎth round of the game starting at 𝑘+1 up to (at most) 𝑡− ℎ+1. (For 𝑡 < ℎ+ 𝑘,

𝐼[𝑘]𝑡 = ∅.) Now, for each 𝑘 = 1,… , ℎ, we define ∆[𝑘]𝑡 ∶= 1
𝑡−ℎ+1

∑
𝑖∈𝐼[𝑘]𝑡

𝛿𝑖, so that
∑ℎ

𝑘=1 ∆
[𝑘]
𝑡 = ∆(ℎ)𝑡 .

Then, the lag-ℎ PW weak null is defined as

ℋ𝗉𝗐
0 (𝑝, 𝑞;ℎ) ∶ ∆[𝑘]𝑡 ≤ 0, ∀𝑡 ≥ ℎ, ∀𝑘 = 1,… , ℎ. (A.44)

It is clear from their definitions that the following inclusion relationships hold between the three null

hypotheses:

ℋ𝗐
0 (ℎ) ⊇ℋ𝗉𝗐

0 (ℎ) ⊇ℋ𝗌
0(ℎ) (A.45)

for any ℎ ≥ 1. When ℎ is a small integer (say, 5 or 10) and 𝑡 grows large, the lag-ℎ PW weak null is

still much weaker than the lag-ℎ strong null.

Having defined the two nulls, we first present an e-process and a p-process for the lag-ℎ PW

null (A.44). Because we cannot straightforwardly derive an e-process for ℎ > 1, we start with a p-

process constructed using the lag-ℎ sequential e-values and then use a p-to-e calibrator (Shafer et al.,

2011) to obtain an e-process that remains valid at arbitrary stopping times. An analogous proposition

for (A.42) is shown later and relies on similar proof techniques.

Let �̂�(ℎ)𝑖 = 𝑆(𝑝𝑖, 𝑦𝑖+ℎ−1) − 𝑆(𝑞𝑖, 𝑦𝑖+ℎ−1) be the empirical pointwise score differential for lag-ℎ fore-
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casts. Note that 𝛿(ℎ)𝑖 = 𝔼𝑖−1[�̂�
(ℎ)
𝑖 ]. In addition, we say that a function 𝑓 ∶ [0, 1] → [0,∞) is a p-to-e

calibrator if it is non-increasing and satisfies ∫ 10 𝑓(𝑢)𝑑𝑢 = 1.

Proposition A.5 (Sequential inference for ℋ𝗉𝗐
0 (ℎ)). Suppose that |�̂�(ℎ)𝑖 | ≤ 𝑐

2
for all 𝑖 ≥ 1, for some

𝑐 ∈ (0,∞). Let (𝛾𝑖)∞𝑖=1 be a [−
𝑐
2
, 𝑐
2
]-valued predictable process w.r.t.𝔊. Also, for each 𝑘 ∈ {1,… , ℎ} and

𝜆 ∈ [0, 1∕𝑐), define

𝐸[𝑘]𝑡 (𝜆) =
∏

𝑖∈𝐼[𝑘]𝑡

exp {𝜆�̂�(ℎ)𝑖 − 𝜓𝐸,𝑐(𝜆)
(
�̂�(ℎ)𝑖 − 𝛾𝑖

)2
} , ∀𝑡 ≥ 0, (A.46)

where
∏

𝑖∈∅(⋅) = 1. Then, for each 𝜆 ∈ [0, 1∕𝑐), the following statements are true:

1. (Averaged sequential e-values.) The process

�̄�𝗉𝗐𝑡 (𝜆) ∶= 1
ℎ

ℎ∑

𝑘=1
𝐸[𝑘]𝑡 (𝜆), ∀𝑡 ≥ 0, (A.47)

is adapted w.r.t. 𝔊 and satisfies 𝔼𝑃[�̄�
𝗉𝗐
𝜏+ℎ−1(𝜆)] ≤ 1 for any 𝔊-stopping time 𝜏 and any 𝑃 ∈

ℋ𝗉𝗐
0 (𝑝, 𝑞;ℎ).

2. (P-process.) The process (𝗉𝗉𝗐𝑡 )∞𝑡=1 defined by

𝗉𝗉𝗐𝑡 ∶=
ℎ𝑒 logℎ

∑ℎ
𝑘=1

(
1∕𝗉[𝑘]𝑡

) , where 𝗉[𝑘]𝑡 ∶= 1 ∧ (1∕ sup
𝑖≤𝑡

𝐸[𝑘]𝑖 (𝜆)) , ∀𝑡 ≥ 0, (A.48)

is a p-process forℋ𝗉𝗐
0 (𝑝, 𝑞;ℎ) w.r.t.𝔊.

3. (Calibrated e-process.) Let 𝑓 ∶ [0, 1]→ [0,∞) be any p-to-e calibrator. Then, the process (𝐸𝗉𝗐𝑡 )∞𝑡=0

defined by 𝐸𝗉𝗐0 = 1 and

𝐸𝗉𝗐𝑡 ∶= 𝑓(𝗉𝗉𝗐𝑡 ), ∀𝑡 ≥ 1 (A.49)

is an e-process forℋ𝗉𝗐
0 (𝑝, 𝑞;ℎ) w.r.t.𝔊.

The structure of the index set ensures that 𝐸[𝑘]𝑡 (𝜆) for each 𝑘 is adapted and non-increasing under

the null. For example, with lag-3 forecasts, 𝐸[𝑘]𝑡 (𝜆) for each 𝑘 is computed using each of the subse-

quences (1, 4, 7,… ), (2, 5, 8,… ), and (3, 6, 9,… ). As for the choice of a p-to-e calibrator 𝑓, we follow
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Vovk and Wang (2021); Ramdas et al. (2022b) and use (as our default)

𝑓(𝑝) =
1 − 𝑝 + 𝑝 log𝑝

𝑝(log𝑝)2
, 𝑝 ∈ [0, 1]. (A.50)

In words, sequential e-values are expected to be at most 1 at time 𝜏+ℎ−1, where 𝜏 is any stopping

timew.r.t.𝔊. In contrast, the p-process directly yields a valid sequential test without such a condition,

and it can also be calibrated to yield an e-process.

Proof of Proposition A.5. Our goal is to derive a p-process forℋ𝗉𝗐
0 (ℎ) based on ideas from the proofs

of Proposition 3.4 in Arnold et al. (2021) and from the validity of their proposed sequential test, and

then to calibrate it into an e-process (Shafer et al., 2011; Ramdas et al., 2022b).

Sub-filtrations 𝔊[𝑘] and processes 𝐿[𝑘]𝑡 . Recall that 𝔊 = (𝒢𝑡)∞𝑡=0, and define the 𝔊
[1],… ,𝔊[ℎ] as

follows: for each 𝑘 = 1,… , ℎ,

𝔊[𝑘] ∶=
(
𝒢[𝑘]𝑡

)∞
𝑡=0

, where 𝒢[𝑘]𝑡 ∶= 𝒢⌊ 𝑡−𝑘
ℎ

⌋
ℎ+𝑘. (A.51)

Because
⌊ 𝑡−𝑘

ℎ

⌋
ℎ+ 𝑘 ≤

( 𝑡−𝑘
ℎ

)
ℎ+ 𝑘 ≤ 𝑡, we have 𝒢[𝑘]𝑡 ⊆ 𝒢𝑡 ∀𝑡, i.e.,𝔊[𝑘] is a sub-filtration of𝔊 for each

𝑘. (Each 𝒢[𝑘] only updates its filtration every ℎ steps.)

In the following, we fix 𝜆 ∈ [0, 1∕𝑐) and omit any dependence on it for notational convenience.

For each 𝑘 = 1,… , ℎ, define the process (𝐿[𝑘]𝑡 )∞𝑡=0 as follows: 𝐿
[𝑘]
0 ∶= 1 and, for each 𝑡 ≥ 1,

𝐿[𝑘]𝑡 ∶=
∏

𝑖∈𝐼[𝑘]𝑡

𝑙𝑖−1(𝑦𝑖+ℎ−1), (A.52)

where
∏

𝑖∈∅(⋅) = 1 and

𝑙𝑖−1(𝑦𝑖+ℎ−1) ∶= exp {𝜆
(
�̂�(ℎ)𝑖 − 𝛿(ℎ)𝑖

)
− 𝜓𝐸,𝑐(𝜆)

(
�̂�(ℎ)𝑖 − 𝛾𝑖

)2
} . (A.53)

(We index (A.53) by 𝑖 − 1, because it only consists of 𝒢𝑖−1-measurable terms aside from 𝑦𝑖+ℎ−1. For

example, 𝛿(ℎ)𝑖 = 𝔼𝑖−1[�̂�
(ℎ)
𝑖 ] is 𝒢𝑖−1-measurable.) Then, each (𝐿

[𝑘]
𝑡 )∞𝑡=0 is an adapted process w.r.t. 𝔊,

because the last index of 𝐼[𝑘]𝑡 is at most 𝑡 − ℎ + 1, and the outcome corresponding to that index is 𝑦𝑡,
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which is 𝒢𝑡-measurable.

(𝐿[𝑘]𝑡 )∞𝑡=0 is a test supermartingale w.r.t. 𝔊[𝑘] for each 𝑘. Recall that 𝔼[�̂�(ℎ)𝑖 ∣ 𝒢𝑖−1] = 𝛿(ℎ)𝑖 by

definition. Since the score differentials are bounded by assumption, the proof of Proposition A.1

(with 𝑦𝑖 replaced with 𝑦𝑖+ℎ−1 in the proof) implies that

𝔼 [𝑙𝑖−1(𝑦𝑖+ℎ−1) ∣ 𝒢𝑖−1] ≤ 1 ∀𝑖 ≥ ℎ. (A.54)

Now, if 𝑡 < ℎ or
⌊ 𝑡−𝑘

ℎ

⌋
≠ 𝑡−𝑘

ℎ
(i.e., not an integer), then 𝐼[𝑘]𝑡 = 𝐼[𝑘]𝑡−1 by construction, so 𝐿

[𝑘]
𝑡 = 𝐿[𝑘]𝑡−1. On

the other hand, if 𝑡 ≥ ℎ and
⌊ 𝑡−𝑘

ℎ

⌋
= 𝑡−𝑘

ℎ
, then algebra shows that 𝐿[𝑘]𝑡 = 𝐿[𝑘]𝑡−1 ⋅ 𝑙𝑡−ℎ(𝑦𝑡), and also that

𝒢[𝑘]𝑡−1 = 𝒢⌊ (𝑡−1)−𝑘
ℎ

⌋
ℎ+𝑘 = 𝒢( 𝑡−𝑘

ℎ
−1

)
ℎ+𝑘 = 𝒢𝑡−ℎ. Thus,

𝔼
[
𝐿[𝑘]𝑡 ∣ 𝒢[𝑘]𝑡−1

]
= 𝐿[𝑘]𝑡−1 ⋅ 𝔼 [𝑙𝑡−ℎ(𝑦𝑡) ∣ 𝒢𝑡−ℎ] ≤ 𝐿[𝑘]𝑡−1. (A.55)

The above algebra also shows that each multiplicative increment of 𝐿[𝑘]𝑡 is either constant (1) or𝔊[𝑘]
𝑡 -

measurable. Therefore, (𝐿[𝑘]𝑡 )∞𝑡=0 is a test supermartingale w.r.t.𝔊
[𝑘].

(�̄�𝗉𝗐𝑡 )∞𝑡=0 is a sequential e-value of lag ℎ for ℋ
𝗉𝗐
0 (w.r.t. 𝔊). Under any 𝑃 ∈ ℋ𝗉𝗐

0 (𝑝, 𝑞;ℎ), we

know that

∆[𝑘]𝑡 =
∑

𝑖∈𝐼[𝑘]𝑡

𝛿(ℎ)𝑖 ≤ 0, ∀𝑡 ≥ ℎ. (A.56)

We thus have, 𝑃-almost surely,

𝐸[𝑘]𝑡 =
∏

𝑖∈𝐼[𝑘]𝑡

exp {𝜆�̂�(ℎ)𝑖 − 𝜓𝐸,𝑐(𝜆)
(
�̂�(ℎ)𝑖 − 𝛾𝑖

)2
} (A.57)

≤ exp
⎧

⎨
⎩

−
∑

𝑖∈𝐼[𝑘]𝑡

𝛿(ℎ)𝑖

⎫

⎬
⎭

⋅
∏

𝑖∈𝐼[𝑘]𝑡

exp {𝜆�̂�(ℎ)𝑖 − 𝜓𝐸,𝑐(𝜆)
(
�̂�(ℎ)𝑖 − 𝛾𝑖

)2
} = 𝐿[𝑘]𝑡 , ∀𝑡 ≥ ℎ. (A.58)

In other words, under any 𝑃 ∈ℋ𝗐
0 (𝑝, 𝑞;ℎ), 𝐸

[𝑘]
𝑡 is upper-bounded by 𝐿[𝑘]𝑡 for each 𝑘, where (𝐿[𝑘]𝑡 )∞𝑡=0 is

a test supermartingale w.r.t. 𝔊[𝑘]. By the supermartingale optional stopping theorem (e.g., Theorem
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4.8.4, Durrett (2019)), we thus have that, for any stopping time 𝜏[𝑘] w.r.t.𝔊[𝑘],

𝔼𝑃
[
𝐸[𝑘]
𝜏[𝑘]

]
≤ 1, (A.59)

under any 𝑃 ∈ℋ𝗐
0 (𝑝, 𝑞;ℎ).

Finally, the construction (A.51) implies that, for any stopping time 𝜏 w.r.t.𝔊, the mapping 𝜏 ↦→

𝜏[𝑘] defined by

𝜏[𝑘] ∶= (⎢
⎣
𝜏 − 𝑘 − 1

ℎ
⎥
⎦
+ 1)ℎ + 𝑘 (A.60)

gives a stopping time w.r.t. 𝔊[𝑘] (Henzi and Ziegel, 2022), where 𝜏[𝑘] ∈ {𝜏, 𝜏 + 1,… , 𝜏 + (ℎ − 1)}.

Therefore, for any stopping time 𝜏 w.r.t.𝔊,

𝔼𝑃[�̄�𝜏+ℎ−1] ≤
1
ℎ

ℎ∑

𝑘=1
𝔼𝑃

[
𝐸[𝑘]
𝜏[𝑘]

]
≤ 1, (A.61)

for any 𝑃 ∈ℋ𝗐
0 (𝑝, 𝑞;ℎ).

(𝗉𝗉𝗐𝑡 )∞𝑡=0 is a p-process for ℋ
𝗉𝗐
0 . The key idea here is to first use the fact that 𝐿[𝑘]𝑡 is a test super-

martingale w.r.t. 𝔊[𝑘] that upper-bounds 𝐸[𝑘]𝑡 , for each 𝑘 ∈ {1,… , ℎ}, and then use the time-uniform

equivalence lemma for probabilities (Ramdas et al., 2020), along with a p-merging function (Vovk

and Wang, 2021), to obtain a combined p-process.

First, define the following process for each 𝑘 = 1,… , ℎ:

𝗊[𝑘]𝑡 ∶= 1 ∧ (1∕ sup
𝑖≤𝑡

𝐿[𝑘]𝑖 ) , ∀𝑡 ≥ 1. (A.62)

The process involves the running supremum of (𝐿[𝑘]𝑡 )∞𝑡=0, which is a test supermartingale w.r.t. 𝔊
[𝑘]

as we showed earlier. In particular, (A.58) implies that 𝗉[𝑘]𝑡 ≥ 𝗊[𝑘]𝑡 for all 𝑡 and 𝑘 under 𝑃 ∈ℋ𝗉𝗐
0 .

Applying Ville (1939)’s inequality to (𝐿[𝑘]𝑡 )∞𝑡=0, for any 𝑃,

𝑃
(
∃𝑡 ≥ 1 ∶ 𝗊[𝑘]𝑡 ≤ 𝛼

)
= 𝑃 (sup

𝑡≥1
𝐿[𝑘]𝑖 ≥ 1

𝛼) ≤ 𝛼, ∀𝛼 ∈ (0, 1). (A.63)
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Then, under any 𝑃 ∈ℋ𝗉𝗐
0 , the fact that 𝗉[𝑘]𝑡 ≥ 𝗊[𝑘]𝑡 under 𝑃 implies

𝑃
(
∃𝑡 ≥ 1 ∶ 𝗉[𝑘]𝑡 ≤ 𝛼

)
≤ 𝛼, ∀𝛼 ∈ (0, 1). (A.64)

Now, following an earlier proof in (A.53) where we showed that (𝐿[𝑘]𝑡 )∞𝑡=0 is an adapted process

w.r.t. the game filtration𝔊, we can analogously show that (𝐸[𝑘]𝑡 )∞𝑡=0 is also an adapted process w.r.t.𝔊,

and so is (𝗉[𝑘]𝑡 )∞𝑡=0 by its definition. Then, by Lemma 2 of Ramdas et al. (2020), (i) ⇒ (iii), equa-

tion (A.64) implies that

𝑃
(
𝗉[𝑘]𝜏 ≤ 𝛼

)
≤ 𝛼, ∀𝛼 ∈ (0, 1), (A.65)

for any stopping time 𝜏 w.r.t. 𝔊 and 𝑃 ∈ ℋ𝗉𝗐
0 (ℎ). In other words, (𝗉[𝑘]𝑡 )∞𝑡=1 is a p-process forℋ

𝗉𝗐
0 (ℎ)

w.r.t.𝔊, for each 𝑘 ∈ {1,… , ℎ}.

Finally, we can merge the p-processes (𝗉[𝑘]𝑡 )∞𝑡=1 at any𝔊-stopping times. For any𝔊-stopping time

𝜏, using the harmonic average p-merging function by Vovk and Wang (2021) combined with (A.65)

gives, for any 𝑃 ∈ℋ𝗉𝗐
0 ,

𝑃
(
𝗉𝗉𝗐𝜏 ≤ 𝛼

)
≤ 𝛼, ∀𝛼 ∈ (0, 1). (A.66)

(𝐸𝗉𝗐𝑡 )∞𝑡=0 is an e-process forℋ𝗉𝗐
0 . This follows directly from the validity of a p-to-e calibrator for

p-processes (e.g., Proposition 12, Ramdas et al. (2020)).

The statements and proofs for the weak null ℋ𝗐
0 (ℎ) are completely analogous, except that in-

stead of taking averages across the ℎ sub-processes we have to take the minimum/maximum for e-/p-

processes, because the weak null only implies that there exists some 𝑘 for which ∆[𝑘]𝑡 ≤ 0.

Proposition A.6 (Sequential inference forℋ𝗐
0 (ℎ)). Assume the same setup as Proposition A.5. Then,

for each 𝜆 ∈ [0, 1∕𝑐), the following statements are true:

1. (Minimum sequential e-values.) The process

�̄�𝗐𝑡 (𝜆) ∶= min
𝑘=1,…,ℎ

𝐸[𝑘]𝑡 (𝜆) (A.67)

satisfies 𝔼𝑃[�̄�
𝗉𝗐
𝜏+ℎ−1(𝜆)] ≤ 1 for any𝔊-stopping time 𝜏 and any 𝑃 ∈ℋ𝗐

0 (𝑝, 𝑞;ℎ).
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2. (P-process.) The process (𝗉𝗐𝑡 )
∞
𝑡=1 defined by

𝗉𝗐𝑡 ∶= max
𝑘=1,…,ℎ

𝗉[𝑘]𝑡 , where 𝗉[𝑘]𝑡 ∶= 1 ∧ (1∕ sup
𝑖≤𝑡

𝐸[𝑘]𝑖 (𝜆)) , (A.68)

is an p-process forℋ𝗐
0 (𝑝, 𝑞;ℎ) w.r.t.𝔊.

3. (Calibrated e-process.) Let 𝑓 ∶ [0, 1] → [0,∞) be any p-to-e calibrator. Then, the process (𝐸𝗐𝑡 )
∞
𝑡=0

defined by 𝐸𝗐0 = 1 and

𝐸𝗐𝑡 ∶= 𝑓(𝗉𝗐𝑡 ), ∀𝑡 ≥ 1 (A.69)

is an e-process forℋ𝗐
0 (𝑝, 𝑞;ℎ) w.r.t.𝔊.

The methods described in Propositions A.5 and A.6 both provide valid options for sequentially

comparing lag-ℎ forecasters. While 𝐸𝗉𝗐𝑡 may involve a seemingly less intuitive null hypothesis, it

upper-bounds 𝐸𝗐𝑡 , and it can grow more quickly when either null is false. Rejecting ℋ𝗉𝗐
0 (𝑝, 𝑞;ℎ)

implies that there exists some 𝑘 ∈ {1,… , ℎ} such that ∆[𝑘]𝑡 > 0 for some 𝑡. For example, if ℎ = 2,

then it implies 𝑝 outperforms 𝑞 on average on either odd or even days. A scenario in which rejecting

ℋ𝗉𝗐
0 (ℎ)would clearly not implyℋ𝗐

0 (ℎ) is when (coincidentally) there is seasonality of period exactly

ℎ in the game—e.g., when comparing 7-day forecasts for a sequence of outcomes that have a different

distribution every weekend, 𝐸𝗐𝑡 and 𝐸
𝗉𝗐
𝑡 may differ significantly. A simple way to mitigate this issue

is to simply monitor both e-processes (depending on the use case).

In Table A.1, we list the sequential e-values forℋ𝗐
0 (Proposition A.6),ℋ

𝗉𝗐
0 (Proposition A.5), and

ℋ𝗌
0 (Henzi and Ziegel (2022); denoted as �̄�

𝗌), for the weather comparison tasks in Section 3.5.3 with

lags ℎ = 1,… , 5. As in Henzi and Ziegel (2022), no stopping is applied in any of the sequential e-

values. As shown, while �̄�𝗐 tends to be overly conservative, �̄�𝗉𝗐 remains relatively powerful despite

testing a substantially weaker null than the strong null (for �̄�𝗌). Across different locations and lags,

�̄�𝗌 is generally large (≥ 20) whenever �̄�𝗉𝗐 is large, and this is explained by the inclusion relationship

between the nulls in (A.45). The comparison of HCLR against HCLR_ in Zurich is the only case

where �̄�𝗉𝗐 exceeds �̄�𝗌. In this case, the e-values drawn over time (similar to Figure 3.5) show that

there are multiple time periods (2012-2013 and 2014-2015) during which both �̄�𝗌 and �̄�𝗉𝗐 decrease

substantially, and it is possible that the choice of the hyperparameter or the variance-adaptivity of our

e-values affects how quickly they “rebound” after such sharp decreases.
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Location Lag HCLR/IDR IDR/HCLR– HCLR/HCLR–
�̄�𝗐 �̄�𝗉𝗐 �̄�𝗌 �̄�𝗐 �̄�𝗉𝗐 �̄�𝗌 �̄�𝗐 �̄�𝗉𝗐 �̄�𝗌

Brussels

1 0.012 0.012 0.000 > 100 > 100 > 100 1.083 1.083 > 100
2 0.021 0.033 0.000 0.196 1.659 > 100 0.510 1.196 > 100
3 0.049 0.060 0.006 0.060 0.121 1.786 0.698 2.289 > 100
4 0.053 1.032 22.811 0.018 0.042 0.000 0.114 1.855 > 100
5 0.145 0.714 > 100 0.021 0.034 0.000 0.254 19.411 > 100

Frankfurt

1 0.034 0.034 0.000 1.284 1.284 > 100 > 100 > 100 > 100
2 0.022 0.029 0.000 1.573 7.223 > 100 1.537 69.508 > 100
3 0.022 0.041 0.000 0.311 3.814 > 100 0.836 > 100 > 100
4 0.047 0.214 0.361 0.033 0.090 0.122 0.163 27.920 > 100
5 0.037 0.334 2.468 0.023 0.104 0.001 0.173 1.781 > 100

London

1 0.041 0.041 0.029 0.277 0.277 1.351 0.285 0.285 2.845
2 0.038 0.038 0.021 0.289 0.321 2.002 0.164 0.200 5.178
3 0.037 0.061 0.185 0.087 0.367 0.203 0.141 0.241 9.613
4 0.077 0.121 1.751 0.051 0.108 0.018 0.077 1.714 8.428
5 0.070 0.208 4.949 0.032 0.066 0.002 0.113 0.279 1.427

Zurich

1 0.034 0.034 0.003 6.670 6.670 25.692 > 100 > 100 61.747
2 0.054 0.061 0.012 0.328 0.415 19.229 2.195 > 100 74.745
3 0.066 0.487 1.079 0.037 0.197 0.661 1.877 7.311 94.613
4 0.091 1.553 30.478 0.023 0.066 0.004 0.210 54.131 47.069
5 0.082 8.436 > 100 0.026 0.053 0.000 0.192 3.964 40.648

Table A.1: Lag-ℎ sequential e-values between pairs of statistical postprocessingmethods for ensemble
weather forecasts across different locations and lags, where 𝑇 is the last time step (January 01, 2017).
�̄�𝗐, �̄�𝗉𝗐, and �̄�𝗌 indicate the lag-ℎ sequential e-values for the lag-ℎweak, period-wiseweak, and strong
nulls, respectively. All procedures use the Brier score as the scoring rule. “p/q” indicates the null that
“p is no better than q.” Generally speaking, �̄�𝗐 is the most conservative, while �̄�𝗉𝗐 can be powerful
against its relatively weak null (compared to the strong null for �̄�𝗌).

We close with the note that the choice of how aggressively one can bet, either via the choice of

the hyperparameter in the mixture distribution 𝐹 for �̄�𝗐 and �̄�𝗉𝗐 (cf. Section 3.4.4) or the alternative

probability 𝜋1 for 𝐸𝗌, directly affects the power of these e-values. Developing powerful strategies for

choosing 𝐹 in the lagged scenario remains a problem deserving of future investigation.

A.6 Inference for Predictable Subsequences and Bounds

Martingale theory tells us thatwe can substitute each variable in the exponential supermartingale (3.8)

with any predictable terms, similar to (𝛾𝑖)∞𝑖=1 in Theorem 3.2. In doing so, wemust make sure that the

resulting test supermartingale leads to estimating/testing an appropriate quantity of interest. Here,
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we illustrate two useful extensions involving this general technique.

A.6.1 Inference for Predictable Subsequences

Suppose that each round of our forecast comparison game (Game 3.1) happens daily, but we are only

interested in comparing the forecasters on weekdays, on every other day, or more interestingly, on

days after some specific event happens (e.g., days following market crashes). To formalize this, we

introduce a predictable {0, 1}-valued process 𝜉 ∶= (𝜉𝑡)∞𝑡=1 and then estimate/test the average score

differential only at times when 𝜉𝑡 = 1. The resulting parameter of interest is expressed as follows:

∆𝑡(𝜉1∶𝑡) ∶=
∑𝑡

𝑖=1 𝜉𝑖𝛿𝑖
∑𝑡

𝑖=1 𝜉𝑖
= 1
∑𝑡

𝑖=1 𝜉𝑖

𝑡∑

𝑖=1
𝜉𝑖𝔼𝑖−1 [𝑆(𝑝𝑖, 𝑦𝑖) − 𝑆(𝑞𝑖, 𝑦𝑖)] , (A.70)

where 𝛿𝑖 = 𝔼𝑖−1[�̂�𝑖] = 𝔼𝑖−1[𝑆(𝑝𝑖, 𝑦𝑖) − 𝑆(𝑞𝑖, 𝑦𝑖)] and 𝜉1∶𝑡 = (𝜉1,… , 𝜉𝑡). ∆𝑡(𝜉1∶𝑡) measures the time-

varying average score differential only for times when 𝜉𝑖 = 1. Henzi and Ziegel (2022) introduce an

analogous extension to testing the strongnull (3.17), where the predictable condition 𝜉𝑡 = 1
(
max{𝑝𝑡, 𝑞𝑡} ≥

1
2

)

is used to compare extreme precipitation forecasts.

Because the conditions are predictable, we have the property that 𝔼𝑖−1[𝜉𝑖�̂�𝑖] = 𝜉𝑖𝔼𝑖−1[�̂�𝑖] = 𝜉𝑖𝛿𝑖,

from which the proofs of Theorem 3.1 (assuming sub-Gaussianity), as well as Theorem 3.2 and The-

orem 3.3 (assuming boundedness), straightforwardly follow. For example, for each 𝜆 ∈ [0, 1∕𝑐),

consider

𝐿𝑡(𝜆; 𝜉1∶𝑡) ∶=
∏

𝑖∶𝜉𝑖=1
exp

{
𝜆(�̂�𝑖 − 𝛿𝑖) − 𝜓𝐸(𝜆)(�̂�𝑖 − 𝛾𝑖)2

}
(A.71)

=
𝑡∏

𝑖=1

[
(1 − 𝜉𝑖) + 𝜉𝑖 exp

{
𝜆(�̂�𝑖 − 𝛿𝑖) − 𝜓𝐸(𝜆)(�̂�𝑖 − 𝛾𝑖)2

}]
. (A.72)

Then, under the same conditions as Proposition A.1, 𝐿𝑡(𝜆; 𝜉1∶𝑡) is a test supermartingale w.r.t.𝔊:

𝔼𝑡−1[𝐿𝑡(𝜆; 𝜉1∶𝑡)] = 𝐿𝑡−1(𝜆; 𝜉1∶𝑡−1)
[
(1 − 𝜉𝑖) + 𝜉𝑖𝔼𝑡−1 exp

{
𝜆(�̂�𝑖 − 𝛿𝑖) − 𝜓𝐸(𝜆)(�̂�𝑖 − 𝛾𝑖)2

}]
(A.73)

≤ 𝐿𝑡−1(𝜆; 𝜉1∶𝑡−1), (A.74)

for each 𝑡 ≥ 1. We used the predictability of (𝜉𝑡)∞𝑡=1 in (A.73) and the boundedness condition (see
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proof of Proposition A.1) in (A.74). Applying this to the proof of Theorem 3.2 shows that we can

construct an EB CS for (∆𝑡(𝜉1∶𝑡))∞𝑡=1.

Similarly, we can also derive the corresponding sub-exponential e-process for the nullℋ𝗐
0 (𝜉) ∶

∆𝑡(𝜉1∶𝑡) ≤ 0, ∀𝑡. This e-process is given by

𝐸𝑡(𝜆; 𝜉1∶𝑡) ∶=
∏

𝑖∶𝜉𝑖=1
exp

{
𝜆�̂�𝑖 − 𝜓𝐸(𝜆)(�̂�𝑖 − 𝛾𝑖)2

}
, (A.75)

for any 𝜆 ∈ [0, 1∕𝑐). This is an e-process because, underℋ𝗐
0 (𝜉), we have that exp(−𝜆

∑𝑡
𝑖=1 𝜉𝑖𝛿𝑖) =

∏
𝑖∶𝑐𝑖=1

exp(−𝜆𝛿𝑖) ≥ 1, and thus

𝐸𝑡(𝜆; 𝜉1∶𝑡) ≤
∏

𝑖∶𝜉𝑖=1
exp

{
𝜆(�̂�𝑖 − 𝛿𝑖) − 𝜓𝐸(𝜆)(�̂�𝑖 − 𝛾𝑖)2

}
= 𝐿𝑡(𝜆; 𝜉1∶𝑡). (A.76)

Since 𝐸𝑡(𝜆; 𝜉1∶𝑡) is upper-bounded by the test supermartingale 𝐿𝑡(𝜆; 𝜉1∶𝑡) for all 𝑡 under ℋ𝗐
0 (𝜉), it

follows that 𝐸𝑡(𝜆; 𝜉1∶𝑡) is an e-process forℋ𝗐
0 (𝜉) (Ramdas et al., 2020).

In summary, both the CS and the e-process remain valid under predictable conditions.

A.6.2 Inference Under Predictable Bounds

For Theorems 3.2 and 3.3, we require that the pointwise score differentials are bounded by some fixed

constant, i.e., |�̂�𝑖| ≤
𝑐
2
for all 𝑖, for some 𝑐 ∈ (0,∞). In practice, this may be restrictive when the value

of 𝑐 is not known a priori or its range shifts drastically over time. One way to mitigate this issue is to

have a predictable bound (𝑐𝑖)∞𝑖=1 at each round, such that

||||�̂�𝑖
|||| ≤

𝑐𝑖
2 , (A.77)

for 𝑖 ≥ 1, instead of having a uniform bound over all rounds. Predictable bounds can also be useful

in cases where one can guess how bad/good the forecasts can be before each new round begins.

Here, we show that we can extend both Theorem 3.2 and Theorem 3.3 to work for predictably

bounded score differentials. This result depends on the following facts about the exponential CGF-

like function, 𝜓𝐸,𝑐(𝜆), as a function of its scale 𝑐. Below, we take 1∕0 = ∞.

LemmaA.2. For each 𝜆 ≥ 0, the function 𝑓𝜆(𝑐) ∶= 𝜓𝐸,𝑐(𝜆) = 𝑐−2[−𝑐𝜆−log(1−𝑐𝜆)] is non-decreasing
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and convex on 𝑐 ∈ (0, 1∕𝜆). Furthermore, 𝑓𝜆 is strictly increasing and strongly convex on 𝑐 ∈ (0, 1∕𝜆) if

and only if 𝜆 > 0.

Proof. Since 𝑓𝜆(𝑐) is twice differentiable w.r.t. 𝑐, it suffices to show that 𝑓′𝜆(𝑐) ≥ 0 and 𝑓′′𝜆 (𝑐) ≥ 0 for

all 𝑐, and also that 𝑓′𝜆(𝑐) > 0 and 𝑓′′𝜆 (𝑐) > 0 for all 𝑐 if and only if 𝜆 > 0.

Given that 0 ≤ 𝑐𝜆 < 1, we utilize the Taylor series of 𝑥 ↦→ − log(1 − 𝑥) at 𝑥 = 0:

− log(1 − 𝑐𝜆) =
∞∑

𝑡=1

(𝑐𝜆)𝑡

𝑡 = 𝑐𝜆 + 𝑐2𝜆2

2 + 𝑐3𝜆3

3 +⋯ , (A.78)

which converges (absolutely). It then follows that

𝑓𝜆(𝑐) =
−𝑐𝜆 − log(1 − 𝑐𝜆)

𝑐2
= 𝜆2

2 + 𝑐𝜆3

3 +⋯ = 𝜆2
∞∑

𝑡=0

(𝑐𝜆)𝑡

𝑡 + 2 . (A.79)

Taking first derivatives term-by-term,

𝑓′𝜆(𝑐) = 𝜆2
∞∑

𝑡=1

𝑡𝜆𝑡𝑐𝑡−1

𝑡 + 2 . (A.80)

Given that 𝑐 > 0, we have that 𝑓′𝜆(𝑐) ≥ 0 for any 𝜆 ≥ 0. Furthermore, we have that 𝑓′𝜆(𝑐) > 0 for 𝜆 > 0

and 𝑓′𝜆(𝑐) = 0 for 𝜆 = 0.

Similarly, taking second derivatives term-by-term,

𝑓′′𝜆 (𝑐) = 𝜆2
∞∑

𝑡=2

𝑡(𝑡 − 1)𝜆𝑡𝑐𝑡−2

𝑡 + 2 . (A.81)

Given that 𝑐 > 0, we have that 𝑓′′𝜆 (𝑐) ≥ 0 for any 𝜆 ≥ 0. Furthermore, we have that 𝑓′′𝜆 (𝑐) > 0 for

𝜆 > 0 and 𝑓′′𝜆 (𝑐) = 0 for 𝜆 = 0.

In Figure A.1, we plot 𝜓𝐸,𝑐(𝜆) as a function of 𝑐, illustrating that it is indeed strictly increasing

and strongly convex for different values of 𝜆 > 0, and we also show that 𝜓𝐸,1 as a function of 𝜆

approximates 𝜓𝑁,1(𝜆) = 𝜆2∕2 as 𝜆 → 0+.

Now, we derive an e-process that involves predictable bounds and is upper-bounded by a test

supermartingale that uses a uniform bound. Let 𝑐0 be a (possibly infinite) constant such that 𝑐𝑖 ≤ 𝑐0

for all 𝑖, and let 𝑣𝑖 = (�̂�𝑖 − 𝛾𝑖)2 where (𝛾𝑖)∞𝑖=1 is any predictable sequence as in Theorems 3.2 and 3.3.
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Figure A.1: Left: Plots of the exponential CGF-like function 𝑓𝜆(𝑐) = 𝜓𝐸,𝑐(𝜆) against 𝑐 ∈ (0, 1∕𝜆), for
fixed 𝜆 values of 0.9, 0.95, and 1.0. For each 𝜆 ≥ 0, 𝑓𝜆(𝑐) is strictly increasing and strongly convex on
𝑐 ∈ (0, 1∕𝜆). Right: Comparing 𝜓𝐸,1(𝜆), as a function of 𝜆 ∈ [0, 1), with the Gaussian CGF 𝜓𝑁,1(𝜆) =
𝜆2∕2.

Now, for each 𝜆 ∈ [0, 1∕𝑐0) (as before, we set 1∕∞ = 0 and [0, 0) = {0}), define the following

processes: 𝐿
˜0
(𝜆) = 𝐿0(𝜆) = 1, and for 𝑡 ≥ 1,

𝐿
˜𝑡
(𝜆) ∶=

𝑡∏

𝑖=1
exp {𝜆

(
�̂�𝑖 − 𝛿𝑖

)
− 𝜓𝐸,𝑐0(𝜆)

(
�̂�𝑖 − 𝛾𝑖

)2
} ; (A.82)

𝐿𝑡(𝜆) ∶=
𝑡∏

𝑖=1
exp {𝜆

(
�̂�𝑖 − 𝛿𝑖

)
− 𝜓𝐸,𝑐𝑖 (𝜆)

(
�̂�𝑖 − 𝛾𝑖

)2
} . (A.83)

(If 𝑐0 = ∞, then 𝜓𝐸,𝑐0 is not well-defined, so set 𝐿˜𝑡
(𝜆) = 1 for all 𝑡 ≥ 1.)

Proposition A.7. Suppose that |�̂�𝑖| ≤
𝑐𝑖
2
, where (𝑐𝑖)∞𝑖=1 is a strictly positive predictable sequence. Also,

let �̂�𝑡 =
∑𝑡

𝑖=1(�̂�𝑖 − 𝛾𝑖)2, where (𝛾𝑖)∞𝑖=1 is any
[
− 𝑐𝑖

2
, 𝑐𝑖
2

]
-valued predictable sequence. Then, for each 𝜆 ∈

[0, 1∕𝑐0), the following statements are true:

1. 𝐿
˜𝑡
(𝜆) ≤ 𝐿𝑡(𝜆) for all 𝑡 ≥ 1;

2. The process (𝐿𝑡(𝜆))∞𝑡=0 is a test supermartingale w.r.t.𝔊;

3. (A predictably-bounded e-process.) The process (𝐸𝑡(𝜆))∞𝑡=0, defined as 𝐸0(𝜆) = 1 and

𝐸𝑡(𝜆) ∶=
𝑡∏

𝑖=1
exp {𝜆�̂�𝑖 − 𝜓𝐸,𝑐𝑖 (𝜆)

(
�̂�𝑖 − 𝛾𝑖

)2
} , ∀𝑡 ≥ 1, (A.84)

is an e-process forℋ𝗐
0 (𝑝, 𝑞) ∶ ∆𝑡 ≤ 0, ∀𝑡 ≥ 1.

Proof. 1. Using the fact that 𝑐𝑖 ≤ 𝑐0 for each 𝑖 and that𝜓𝐸,𝑐(𝜆) is non-decreasing in 𝑐 byLemmaA.2,
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we obtain

𝐿
˜𝑡
(𝜆) = exp

{
𝜆𝑆𝑡 − 𝜓𝐸,𝑐0(𝜆)�̂�𝑡

}
≤ 𝐿𝑡(𝜆). (A.85)

2. If 𝑐0 = ∞, then we must have 𝜆 = 0, so (𝐿𝑡(𝜆))∞𝑡=0 always takes the value 1 and is a (trivial)

test supermartingale. Otherwise, Proposition A.2 directly implies that (𝐿𝑡(𝜆))∞𝑡=0 is a test super-

martingale w.r.t.𝔊.

3. Because (𝑐𝑖)∞𝑖=1 is predictable w.r.t. 𝔊, the process (𝐸𝑡(𝜆))
∞
𝑡=0 is adapted w.r.t. 𝔊. Then, 𝐸𝑡(𝜆) ≤

𝐿𝑡(𝜆) (𝑃-a.s.) for all 𝑡 under any 𝑃 ∈ ℋ𝗐
0 (𝑝, 𝑞), as in the proof of Theorem 3.3, and thus the

result follows by Corollary 22 of Ramdas et al. (2020).

Note that, if a constant bound 𝑐0 = 𝑐 > 0were known a priori, then 𝐿
˜𝑡
(𝜆) coincides with the expo-

nential test supermartingale in Equation (3.8). The e-process (A.84) can bemore powerful than using

the analogous (𝐸
˜𝑡
(𝜆))∞𝑡=0 involving 𝑐0 in some cases, although taking themixture over 𝜆 (Section 3.4.3)

may not yield a closed form.

A.7 Generalizations To Other Outcome and Forecast Types

In principle, the game-theoretic approach we describe in Section 3.4.1 can straightforwardly gener-

alize beyond the case of probability forecasts on dichotomous events. We briefly discuss two such

generalizations and to what extent our methods are applicable in each case.

The first is to the case of 𝐶-categorical outcomes, for 𝐶 ≥ 2. We can start with the game-theoretic

setup (Game 3.1) and parameterize the outcome space using 𝐶-dimensional length-1 binary vectors,

i.e., 𝒴 = {𝐞𝑐}𝐶𝑐=1 where 𝐞𝑐 = [1 (𝑖 = 𝑐)]𝐶𝑖=1, and the set of forecasts as the 𝐶-dimensional probability

simplex, i.e., 𝒫 = ∆𝐶−1 = {𝐩 ∈ [0, 1]𝐶 ∶
∑𝐶

𝑐=1 𝑝
(𝑐) = 1}. Reality also makes its choices from ∆𝐶−1.

Note that, if 𝐶 = 2, we can recover the binary case via the mapping 𝐩 = (1 − 𝑝, 𝑝), for 𝑝 ∈ [0, 1].

Then, by choosing any bounded scoring rule for categorical outcomes, we can straightforwardly apply

Theorems 3.2 and 3.3 to obtain CSs and e/p-processes (respectively) on the average score differentials.

The 𝐶-dimensional Brier score, defined as 𝑆(𝐩,𝐲) = 1−‖𝐩 − 𝐲‖22, is bounded within [0, 1]; the spher-

ical and zero-one scores can be defined analogously (Gneiting and Raftery, 2007) and are similarly
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bounded. We note that using the normalized Winkler score to utilize unbounded scores, as in Sec-

tion A.4, is not straightforward.

The next extension is to the case of continuous outcomes. In this case, we can once again startwith

the game-theoretic setup (Game 3.1) and parameterize the outcome space as 𝒴 ⊆ ℝ𝑑 for some 𝑑 ≥ 1.

At each round 𝑡, Reality now chooses an arbitrary distribution 𝑟𝑡 on 𝒴, from which 𝑦𝑡 is sampled.

Depending on the specific forecasting task, the forecasters may either predict (i) certain functional(s)

of the outcome distribution, denoted as Γ(𝑃) for each 𝑃 ∈ 𝒫, or (ii) the CDF (or density) itself. As an

example for (i), each forecaster may predict a level-𝛼 (e.g., 95%) prediction interval (𝑙𝑡, 𝑢𝑡), in which

case the statistician can use the 𝛼-interval score (Dunsmore, 1968):

𝑆𝛼((𝑙, 𝑢), 𝑦) = −(𝑢 − 𝑙) − (2∕𝛼)(𝑙 − 𝑦)1 (𝑦 < 𝑙) − (2∕𝛼)(𝑦 − 𝑢)1 (𝑦 > 𝑢) , (A.86)

for (𝑙, 𝑢) ⊆ 𝒴 and 𝑦 ∈ 𝒴. As an example for (ii), each forecastermay predict a (Borel-measurable) CDF

𝐹𝑡 for 𝑦𝑡, inwhich case the statistician canuse the continuously rankedprobability score (CRPS) (Math-

eson and Winkler, 1976):

𝑆(𝐹, 𝑦) = − ∫
∞

−∞
(𝐹(𝑥) − 1 (𝑥 ≥ 𝑦))2𝑑𝑥 = 𝔼𝑌,𝑌′∼𝐹

[
|𝑌 − 𝑌′|

]
− 𝔼𝑌∼𝐹 [|𝑌 − 𝑦|] , (A.87)

for any CDF 𝐹 and outcome 𝑦 ∈ 𝒴. In either case, our main results (Theorems 3.2 and 3.3) are

applicable when the associated score differentials are bounded. Specifically, we can allow the choices

of 𝒴, 𝒫, and 𝑆 such that 𝒫 ⊆ 𝒫(𝑐), where

𝒫(𝑐) = {𝑝 ∈ ∆(𝒴) ∶ |𝑆(𝑝, 𝑦) − 𝑆(𝑞, 𝑦)| ≤ 𝑐∕2, ∀𝑞 ∈ ∆(𝒴)} , (A.88)

for some 𝑐 ∈ (0,∞). For instance, if𝒴 = [0, 1], then ourmain theorems can be used to comparemean,

quantile, or interval forecasts on𝒴, using the corresponding scoring rule in each case (Gneiting, 2011).

If (A.88) is restrictive for the use case, then onemay consider using predictable bounds (SectionA.6.2)

or the asymptotic CS (Section A.3). Deriving a fully general anytime-valid procedure for unbounded

domains and scoring rules remains an open problem.

In Table A.2, we summarize these extensions based on the different choices of the outcome space
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Outcome Type Categorical Continuous
Domain 𝒴 = {𝐞𝑐}𝐶𝑐=1 𝒴 ⊆ ℝ𝑑

Reality’s Choice 𝑟𝑡 ∈ ∆𝐶−1 𝑟𝑡 ∈ ∆(𝒴) (arbitrary distribution)
Forecast Type Probability Functional Distribution

Domain 𝒫 = ∆𝐶−1 Γ(𝒫) 𝒫 ⊆ ∆(𝒴)
Forecast Examples any 𝐶-dim. probability mean, prediction interval CDF
Score Examples Brier, spherical, 0-1, log scores quadratic, interval scores CRPS

Thms. 3.2 & 3.3 apply if 𝒫 ⊆ 𝒫(𝑐) for some 𝑐 ∈ (0,∞)

Table A.2: Different specifications of Game 3.1 based on the outcome space and the forecast type,
and the types of scoring rules that can be used in each case. In principle, the game-theoretic setup
in Section 3.4.1 can straightforwardly extend to these settings; our main approaches (Theorems 3.2
and 3.3) extend to cases where the score differentials are bounded.

𝒴 and the forecast type 𝒫 within Game 3.1.

A.8 Comparison with Other Forecast Comparison Methods

A.8.1 Methodological Comparison with Henzi and Ziegel (2022)

The biggest difference between our approach and Henzi and Ziegel (2022)’s (HZ) is in the difference

between the strong andweak nulls, as described in themain text. Here, we summarize othermethod-

ological differences that are worth noting for practical use cases. HZ focus on sequentially comparing

forecasts on dichotomous events using consistent scoring functions (Gneiting, 2011), which straight-

forwardly induce proper scoring rules, and they develop e-processes of the form

𝐸HZ
𝑡 (𝜆1,… , 𝜆𝑡) =

𝑡∏

𝑖=1

(
1 + 𝜆𝑖�̃�𝑖

)
, where �̃�𝑖 =

𝑆(𝑝𝑖, 𝑦𝑖) − 𝑆(𝑞𝑖, 𝑦𝑖)
|𝑆(𝑝𝑖,1 (𝑝𝑖 ≥ 𝑞𝑖)) − 𝑆(𝑞𝑖,1 (𝑝𝑖 ≥ 𝑞𝑖))|

, (A.89)

for a [0, 1]-valued predictable sequence (𝜆𝑡)∞𝑡=1 and a negatively oriented scoring function 𝑆. The form

of �̃�𝑖 is exactly that of theWinkler score: by LemmaA.1 and reversing the orientation of 𝑆, we see that

�̃�𝑖 = −𝑤(𝑝𝑖, 𝑞𝑖, 𝑦𝑖), and thus HZ’s e-process can be interpreted as betting on the relative forecasting

skill as determined by the pointwise empirical Winkler score (A.31). In this sense, our e-process for

the weak Winkler null in Proposition A.4 is a weak-null counterpart of HZ’s e-process.

In terms of the specific form of the e-process, (A.89) is an example of a product form e-process,

contrasting with our exponential form variant. The two forms of e-processes are both found the lit-
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erature, such as the product form in Waudby-Smith and Ramdas (2023) and the exponential form in

Howard et al. (2021) for estimating bounded means. Also, while the e-process we derive in (3.20)

explicitly shows its variance-adaptive property and further utilizes the method of mixtures (Robbins,

1970), HZ’s e-process seeks to optimize its power by optimizing the growth rate of the e-process in

the worst case (GROW) (Grünwald et al., 2019) under a chosen alternative (typically set to a convex

combination of 𝑝𝑡 and 𝑞𝑡).

In terms of use cases, the CSs perform estimation and thus provide information as to exactly how

much one forecaster is outperforming the other. Themethods in ourwork are agnostic to the different

types of outcomes (Section A.7), so they can, e.g., be applied to forecasts on categorical outcomes with

𝐶 > 2 categories and to forecasts on bounded continuous outcomes. HZ’s approach is applicable to

any consistent scoring functions (Gneiting, 2011) on binary outcomes and can also test for forecast

dominance w.r.t. all consistent scoring functions.

A.8.2 Comparison with DM and GW Tests

As we highlighted in Section 3.2, the key difference between our work and existing forecast compar-

ison methods, such as Diebold and Mariano (1995); Giacomini and White (2006); Lai et al. (2011);

Ehm and Krüger (2018), is whether they have an anytime-valid guarantee. Here, we present addi-

tional experiments to illustrate that (i) the DM and GW tests are not valid at arbitrary stopping times,

like most other classical tests including Lai et al. (2011), and (ii) anytime-valid methods need not

require larger sample sizes than DM and GW tests for high power.

To recap, the DM test of unconditional predictive ability that tests

ℋ𝖣𝖬
0 ∶ 𝔼[�̂�𝑛] = 0, ∀𝑛 ≥ 1, (A.90)

where the scoring rule is assumed to depend only on the forecast error, e.g., 𝑆(𝑝𝑛, 𝑦𝑛) = 1−(𝑝𝑛−𝑦𝑛)2.

By the DM assumption, the loss differentials are assumed to be covariance stationary, implying that

𝔼[�̂�𝑛] = 𝛿 for some fixed 𝛿 at any 𝑛. Given the (stationary) autocovariance function 𝛾(𝑘) for score

differentials and a consistent estimator 𝑓(0) of its spectrum at frequency zero, the DM test uses the

asymptotic normality underℋ𝖣𝖬
0 given by

√
𝑛(∆̂𝑛 − 𝜇)∕

√
2𝜋𝑓(0)⇝ 𝑁(0, 1).
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Figure A.2: Left: Two forecasters, denoted as optimist (blue) and pessimist (orange), on a simu-
lated reality sequence (gray). There is no performance gap between the two in Brier score. Middle:
The true average score differentials (∆𝑡)𝑇𝑡=1 (dark red) along with the 95% EB CS (blue) and the fixed-
time CI (yellow). Right: Comparing the cumulative type I error rate for the EB CS (blue), the DM test
of unconditional predictive ability (orange), the GW test of conditional predictive ability (brown),
and Lai et al. (2011)’s asymptotic CIs (yellow). All tests are for one-sided nulls of the form “optimist
performs no better than the pessimist.” Unlike the EB CS, all classical fixed-time methods, including
DM and GW tests, incur a cumulative miscoverage/false decision rate higher than 𝛼 = 0.05.

The GW test, on the other hand, is a test of conditional predictive ability that tests

ℋ𝖦𝖶
0 ∶ 𝔼𝑛−1[�̂�𝑚,𝑛] = 0, ∀𝑛 ≥ 1. (A.91)

Here, 𝑚 is the maximum window size that each forecaster can look back to, meaning that the test

now depends on the forecasting model. The GW assumption allows for nonstationarity, although the

test statistic involves weights that depend on mixing assumptions (Lai et al., 2011).

First, we consider a simplistic setting in which ∆𝑡 = 0 for each time 𝑡 and both the DM and

GW assumptions are met. We compare two forecasters, named optimist (𝑝𝑡) and pessimist (𝑞𝑡),

that are equally apart from Reality (𝑟𝑡) in their forecasts (Figure A.2, left). For all methods, we test

their form of the null that “the optimist is no better than the pessimist” under the Brier score. As

expected, both the EB CS (Theorem 3.2) and the fixed-time CI (Lai et al., 2011) to quickly shrink to

zero (Figure A.2, middle), and also neither the DM nor GW test falsely rejects the null at 𝑇 = 10, 000.

Now, we can also compute the cumulative type I error rate, which for p-values (𝗉𝑡) is given by

𝛼𝑡 = 𝑃 (∃𝑖 ≤ 𝑡 ∶ 𝗉𝑖 ≤ 𝛼). For CS/CIs (𝐶𝑡), this is equivalent in this case to the cumulativemiscoverage

rate 𝛼𝑡 = 𝑃 (∃𝑖 ≤ 𝑡 ∶ 0 ∉ 𝐶𝑖) that we used earlier in Section 3.5.1, because ∆𝑡 = 0 under any 𝑃 ∈ℋ0.

The quantity is estimated over a repeated sampling of the data under 𝑃. We expect that an anytime-

valid procedure satisfies 𝛼𝑡 ≤ 𝛼 for any 𝑡 by definition, whereas classical fixed-time tests such as the
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Figure A.3: Left: Two forecasters, k29 (blue) and laplace (orange), on a simulated reality sequence
(gray) that induces a changepoint in the loss differentials later in the time horizon. Middle: The 95%
EB CS for (∆𝑡)𝑇𝑡=1 using the Brier score. ∆𝑡 stays zero initially but trends positive later. Right: P-values
for the null “k29 is no better than laplace” at each sample size 𝑡. CR (ours; blue) and HZ (yellow)
are anytime-valid (SAVI), whereas DM (green) and GW (orange) are not. When ∆𝑡 quickly trends
positive (𝑡 ≈ 7300), all p-values shrink to zero, and neither CR nor HZ requires substantially many
extra samples to get to zero compared to DM and GW.

DM and GW tests do not. As shown Figure A.2 (right), the cumulative type I errors of both the DM

and GW tests exceed the significance level of 𝛼 = 0.05 after roughly 100 and 1000 steps, respectively,

and they continue to trend upward in log-scale. This confirms that the p-values obtained by DM or

GW tests, much like the fixed-time CI, are overconfident under continuous monitoring and thus at

data-dependent stopping times, even when their assumptions are met. In other words, the DM and

GW tests, along with fixed-time CIs, do not have an anytime-valid guarantee.

Next, we show that the anytime-validity of SAVI methods (CSs, e-processes, and p-processes), do

not necessarily require larger sample sizes than the classical tests. We compare two forecasters, k29

with a 3-degree polynomial kernel (𝑝𝑡) and laplace (𝑞𝑡), whose average and pointwise score differ-

entials stay close to zero for a while (𝑡 ≤ 7000) until a sharp changepoint in the data is introduced and

∆𝑡 trends positive afterwards (Figure A.3, left). Note that this invalidates the covariance stationarity

assumption of the DM test. The EB CS for ∆𝑡 is drawn in the middle plot of Figure A.3, which shows

that the CS uniformly covers the time-varying average as expected.

To illustrate that SAVI approaches do not necessarily require larger sample sizes for “detecting”

this changepoint, we compare SAVI and non-SAVI p-values for the null that “k29 is no better than

laplace” under the Brier score. First, we plot the p-process 𝗉𝑡 = 1∕ sup𝑖≤𝑡 𝐸𝑖, where (𝐸𝑡)
∞
𝑡=0 is the sub-

exponential e-process (3.20) that corresponds to the LCB of the CS. This is denoted in the right plot of

Figure A.3 (denoted as “CR”). We also plot the p-process constructed from Henzi and Ziegel (2022)’s
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e-process (𝐸𝖧𝖹𝑡 )∞𝑡=0 via the same mapping, i.e., 𝗉
𝖧𝖹
𝑡 = 1∕ sup𝑖≤𝑡 𝐸

𝖧𝖹
𝑖 . As shown in the plot, when

compared against the DM and GW p-values, both our and HZ’s p-processes shrink to zero nearly as

quickly, indicating that they require comparable amounts of data to reject the null when ∆𝑡 trends

positive.

A.9 Additional Experiment Details and Results

A.9.1 Additional Details & Results from Numerical Simulations

Data Generation The reality sequence (𝑟𝑡)𝑇𝑡=1 is specifically chosen to be non-IID and contain

sharp changepoints, as drawn with gray dots in Figure 3.2:

𝑟𝑡 = [0.8 ⋅ 𝜃𝑡 + 0.2 ⋅ (1 − 𝜃𝑡)] + 𝜖𝑡,

where

𝜃𝑡 =

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

0.5 for 𝑡 ∈ [1, 2000]

1 for 𝑡 ∈ [2001, 4000]

0 for 𝑡 ∈ [4001, 6000]

1 for 𝑡 ∈ [6001, 8000]

0 for 𝑡 ∈ [8001, 10000]

and 𝜖𝑡 ∼𝒩(0, 0.12) is an independent Gaussian noise for each 𝑡.

AllPairwiseComparisons inNumerical Simulations InFigureA.4, we plot the 95%EB,Hoeffding-

style, and asymptoticCSs for all pairwise comparisons between the constant baseline (constant_0.5),

the Laplace forecaster (laplace), and the K29 forecasters with the 3-degree polynomial kernel and

theGaussianRBFkernelwith bandwidth 0.01 (k29_poly3 and k29_rbf0.01, respectively). The Brier

score is used. Across all pairwise comparisons, both CSs uniformly cover the true score differentials

across all times, regardless of whether the score differentials contain sharp changepoints and contain

specific trends.

109



0 2500 5000 7500 10000

0.10

0.05

0.00

0.05

0.10

t(k29_poly3, k29_rbf0.01): (0.010, 0.019)

t

EB CS

Hoeffding CS

Asymptotic CS

0 2500 5000 7500 10000

0.10

0.05

0.00

0.05

0.10

t(k29_poly3, laplace): (0.056, 0.073)

t

EB CS

Hoeffding CS

Asymptotic CS

0 2500 5000 7500 10000

0.10

0.05

0.00

0.05

0.10

t(k29_poly3, constant_0.5): (0.056, 0.073)

t

EB CS

Hoeffding CS

Asymptotic CS

0 2500 5000 7500 10000

0.10

0.05

0.00

0.05

0.10

C
S 

fo
r 

t

t(k29_rbf0.01, k29_poly3): (-0.019, -0.010)

t

EB CS

Hoeffding CS

Asymptotic CS

0 2500 5000 7500 10000

0.10

0.05

0.00

0.05

0.10

t(k29_rbf0.01, laplace): (0.043, 0.058)

t

EB CS

Hoeffding CS

Asymptotic CS

0 2500 5000 7500 10000

0.10

0.05

0.00

0.05

0.10

t(k29_rbf0.01, constant_0.5): (0.042, 0.058)

t

EB CS

Hoeffding CS

Asymptotic CS

0 2500 5000 7500 10000

0.10

0.05

0.00

0.05

0.10

C
S 

fo
r 

t

t(laplace, k29_poly3): (-0.073, -0.056)

t

EB CS

Hoeffding CS

Asymptotic CS

0 2500 5000 7500 10000

0.10

0.05

0.00

0.05

0.10

t(laplace, k29_rbf0.01): (-0.058, -0.043)

t

EB CS

Hoeffding CS

Asymptotic CS

0 2500 5000 7500 10000

0.10

0.05

0.00

0.05

0.10

t(laplace, constant_0.5): (-0.003, 0.003)

t

EB CS

Hoeffding CS

Asymptotic CS

0 2500 5000 7500 10000
Time

0.10

0.05

0.00

0.05

0.10

C
S 

fo
r 

t

t(constant_0.5, k29_poly3): (-0.073, -0.056)

t

EB CS

Hoeffding CS

Asymptotic CS

0 2500 5000 7500 10000
Time

0.10

0.05

0.00

0.05

0.10

t(constant_0.5, k29_rbf0.01): (-0.058, -0.042)

t

EB CS

Hoeffding CS

Asymptotic CS

0 2500 5000 7500 10000
Time

0.10

0.05

0.00

0.05

0.10

t(constant_0.5, laplace): (-0.003, 0.003)

t

EB CS

Hoeffding CS

Asymptotic CS

95% Confidence Sequences on t; S=BrierScore

Figure A.4: 95% EB (blue), Hoeffding-style (skyblue), and asymptotic (green) CSs on ∆𝑡 between four
different forecasters (k29_poly3, k29_rbf0.01, laplace, and constant_0.5) plotted in Figure 3.2.
Scoring rule is the Brier score, and positive values of ∆𝑡 indicate that the first forecaster is better than
the second. In all comparisons, both CSs cover ∆𝑡 uniformly, and the width of the EB CS approaches
that of the asymptotic CS as time grows large.
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Figure A.5: Various forecasters on the last 100 MLB games played in 2019 (including regular season
and postseason). FiveThirtyEight and Vegas forecasts are publicly available forecasts online; Laplace
and K29 forecasts aremade using historical outcomes as data without external information. Note that
the forecasts are computed using data from a 10-year window (2010 to 2019), but we only show the last
100 games here for visualization purposes. The shaded region highlights the playoff games.

A.9.2 Additional Details & Results from the MLB Experiment

For all MLB-related experiments, we choose 𝑣opt = 100, given the longer time horizon considered

(compared to other experiments in this work).

Details on the MLB Forecasters Here, we describe the five Major League Baseball (MLB) fore-

casters that are compared in Section 3.5.2. Figure A.5 illustrate their forecasts on the last 100 games.

• 538: Game-by-game probability forecasts on every MLB game since 1871, available at https:

//data.fivethirtyeight.com/#mlb-elo. According to the methodology report at https://

fivethirtyeight.com/features/how-our-mlb-predictions-work/, the probabilities are cal-

culated using an ELO-based rating system for each team, and game-specific adjustments are

made for the starting pitcher as well as other external factors (travel, rest, home field advan-

tage, etc.). Before each new season, team ratings are reverted to the mean by one-third and

combined with preseason projections from other sources (Baseball Prospectus’s PECOTA, Fan-

Graphs’ depth charts, and Clay Davenport’s predictions).

• vegas: Pre-game closing odds made on each game by online sports bettors, as reported by

https://Vegas-Odds.com. (Download source: https://sports-statistics.com/sports-data/

mlb-historical-odds-scores-datasets/.) The betting odds are given in the American for-
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mat, so each odds 𝑜 is converted to its implied probability𝑝 via𝑝 = 1 (𝑜 ≥ 0) 100
100+𝑜

+1 (𝑜 < 0) −𝑜
100−𝑜

.

Then, for each matchup, the pair of implied probabilities for each team is rescaled to sum to 1.

For example, given a matchup between team 𝐴 and team 𝐵 with betting odds 𝑜𝐴 = −140 and

𝑜𝐵 = +120, the implied probabilities are �̃�𝐴 = 0.58 and �̃�𝐵 = 0.45, and the rescaled probabilities

are 𝑝𝐴 = 0.56 and 𝑝𝐵 = 0.44.

• constant: a constant baseline predicting 𝑝𝑡 = 0.5 for each 𝑡.

• laplace: A seasonally adjusted Laplace algorithm, representing the season win percentage for

each team. Mathematically, it is given by 𝑝𝑡 =
𝑘𝑡+𝑐𝑡
𝑛𝑡+1

, where 𝑘𝑡 is the number of wins so far

in the season, 𝑛𝑡 is the number of games played in this season, and 𝑐𝑡 ∈ [0, 1] is a baseline

that represents the final probability forecast from the previous season, reverted to the mean by

one-third. For example, if the previous season ended after round 𝑡0, then 𝑘𝑡 =
∑𝑡−1

𝑖=𝑡0
1 (𝑦𝑖 = 1),

𝑛𝑡 = 𝑡 − 𝑡0, and 𝑐𝑡 =
2
3
⋅ 𝑝𝑡0 +

1
3
⋅ 1
2
(with 𝑐0 =

1
2
). The final probability forecast for a game

between two teams is rescaled to sum to 1.

• k29: The K29 algorithm applied to each team, using the Gaussian kernel with bandwidth 0.1,

computed using data from the current season only. The final probability forecast for a game

between two teams is rescaled to sum to 1.

All Pairwise Comparisons of MLB Forecasters Figure A.6 includes all pairwise comparisons

between the five MLB forecasters considered in our experiment. See main text from Section 3.5.2 for

further details.
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FigureA.6: ComparingMLBwin probability forecasts from2010 to 2019, using the EB andHoeffding-
style CSs at significance level 𝛼 = 0.05. 𝑇 = 25, 165 corresponds to the final game of the 2019 World
Series. Note that the horizontal axis is drawn in log-scale. The Brier score is used. We find that, over
time, the five forecasters are found to achieve significantly different predictive performance from each
other (except laplace and constant), with the vegas forecaster achieving the best performance,
followed by fivethirtyeight, laplace ≈ constant, and k29. The title of each subplot includes the
95% EB CS at 𝑇 = 25, 165.
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Figure A.7: Comparing three statistical postprocessing methods (IDR, HCLR, HCLR_) for 1-day en-
semble weather forecasts on the Probability of Precipitation (PoP). The binary outcome is drawn as
gray dots. For visualization purposes, we plot the data and the forecasts only for the final 3 months (Oc-
tober 01, 2016 to January 01, 2017) and at one airport location (Brussels).

A.9.3 Additional Details & Results from theWeather Experiment

The setup closely follows the comparison experiment byHenzi and Ziegel (2022), who compare statis-

tical postprocessing methods for predicting the Probability of Precipitation (PoP) using the ensemble

forecast data from the European Centre for Medium-Range Weather Forecasts (ECMWF; Molteni

et al. (1996)). The dataset includes the observed 24-hour precipitation from January 06, 2007 to Jan-

uary 01, 2017 at four airport locations (Brussels, Frankfurt, London Heathrow, and Zurich), and for

each location and date it also includes 1- to 5-day ensemble forecasts, consisting of a higher resolution

forecast, 50 perturbed ensemble forecasts at a lower resolution, and a control run for the perturbed

forecasts. They consider three statistical postprocessing methods in their experiments: isotonic dis-

tributional regression (IDR; Henzi et al. (2021)), heteroscedastic censored logistic regression (HCLR;

Messner et al. (2014)), and a variant of HCLR without its scale parameter (HCLR_). Each method is

applied to the first half of the data, separately for each airport location and lag ℎ = 1,… , 5, and the

second-half data is used to make sequential comparisons of the postprocessing methods. Note that

each location has a different number of observations: 3,406 for Brussels, 3,617 for Frankfurt, 2,256

for London, and 3,241 for Frankfurt. See Section 5 in Henzi et al. (2021) and Section 5.1 in Henzi and

Ziegel (2022) for further details about the dataset and the postprocessing methods.

In Figure A.7, we plot the three forecasters (1-day) on the probability of precipitation (PoP) for

the final year (2016-2017) in Brussels.
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Figure A.8: (Left) Histogram of 𝛿𝑖
IID
∼ Beta(30, 10) − Beta(10, 30) for 𝑖 = 1,… , 10, 000. (Right) Plot of

the cumulative variance (intrinsic time) �̂�𝑡 =
∑𝑡

𝑖=1(�̂�𝑖 − ∆̂𝑖−1)2, where ∆̂𝑖−1 =
∑𝑖−1

𝑗=1 �̂�𝑗. Note that the
horizontal axis 𝑡 is drawn in log-scale. Also note that the hyperparameter 𝑣opt determines the intrinsic
time �̂�𝑡 at which the uniform boundary is the tightest.

A.9.4 Comparing CSWidths on IIDMean Differentials

The uniform boundaries we use in our CSs come with hyperparameter(s) that one can choose to

optimize theCSwidths at specific intrinsic times (i.e., values that the non-decreasing sequence (�̂�𝑡)∞𝑡=1
can take). As explained in Section A.2, this choice can be thought of as an additional fine-tuning step

and is secondary to choosing the type of uniformboundary. Nevertheless, since it is a hyperparameter,

we seek to find a reasonable default that can be used for typical scenarios of forecast comparison

without an a priori knowledge of how large the intrinsic time can get.

To achieve this, we compare the widths of various time-uniform CSs for the mean differentials

between two independent and identically distributed (IID) random variables. The main reason for

using IID data is so that we can compare the width of our CSs with other CSs developed in previous

work (Howard et al., 2021; Waudby-Smith and Ramdas, 2023; Waudby-Smith et al., 2021).

We compare both theHoeffding-style CS (Theorem 3.1 and the empirical-Bernstein (EB) CS (The-

orem 3.2) using both the conjugate-mixture (CM) (Section 3.4.3) and the polynomial stitching (Sec-

tion A.2.2) uniform boundaries. We also include Hoeffding-style and EB CSs using the predictable-

mixture (PM) boundary (Waudby-Smith and Ramdas, 2023), which is an efficient alternative to the

conjugate-mixture boundary that can be used specifically for bounded IID means. We also include
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Figure A.9: Left: Hyperparameter tuning for the width of the conjugate-mixture EB CS by adjusting
the optimal intrinsic time parameter 𝑣opt. The choices 𝑣opt = 10 and 𝑣opt = 100 give the smallest
widths overall, with the former being tighter early on and the latter later on. Thewidth of stitching EB
CS with 𝑣opt = 10, drawn as a point of comparison, is wider than the mixture EB CS with 𝑣opt = 10.
Right: Comparing the widths of CS variants, including the conjugate- (CM) and predictable- (PM)
mixture boundaries for EB/Hoeffding CSs, and also the asymptotic CS. Overall, the asymptotic CS
is the tightest, although the mixture EB CSs get close; the stitching EB CS is slightly wider than the
mixture variants, and all Hoeffding variants are considerably wider than the rest in this case.

the asymptotic CS (Waudby-Smith et al., 2021) that we described in Section A.3. As for the data, we

use the difference between two IID Beta random variables, as a proxy for score differentials between

two sets of forecasts: for 𝑖 = 1,… , 10, 000,

𝛿𝑖
IID
∼ Beta(30, 10) − Beta(10, 30). (A.92)

Note that−1 ≤ 𝛿𝑖 ≤ 1 a.s. and that 𝔼 [𝛿𝑖] =
30

30+10
− 10

10+30
= 1

2
. Figure A.8 illustrates the data sampled

according to (A.92) (left) as well as the intrinsic time �̂�𝑡 =
∑𝑡

𝑖=1(�̂�𝑖 − ∆̂𝑖−1)2, where ∆̂𝑖−1 =
∑𝑖−1

𝑗=1 �̂�𝑗,

over log-scaled time (right).

Recall from Section A.2 that 𝑣opt denotes the hyperparameter that specifies the intrinsic time at

which the CS width is optimized. In Figure A.9 (left), we present the hyperparameter tuning results

of several conjugate-mixture EB CSs with respect to its optimal intrinsic time hyperparameter 𝑣opt.

As a point of comparison, we include the Hoeffding-style CS and also the EB CS with the polynomial

stitching bound, using 𝑣opt = 10. Comparing the values of 𝑣opt ∈ {0.1, 1, 10, 100, 1000} for themixture

boundary, we find that the EB CS is generally the tightest across time with 𝑣opt = 10 and 𝑣opt = 100.

Based on these results, we use themixture EBCSwith 𝑣opt = 10 for our other experiments throughout

the paper, unless specified otherwise.
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In Figure A.9 (right), we now plot the widths of the 95% CS variants, optimized for the intrin-

sic time 𝑣opt = 10 when applicable. We compare both the Hoeffding-style and EB CSs, the asymp-

totic CS (Section A.3); for the Hoeffding-style and EB CSs, we also include the predictable-mixture

(PM) uniform boundary (Waudby-Smith and Ramdas, 2023), which is an efficient alternative to the

conjugate-mixture boundary that can be used for IID means.

Generally speaking, we observe that the CSs are the tightest for the asymptotic CS, followed by

the EB CS variants and the Hoeffding CS variants. This is consistent with our intuition, as the EB CS

additionally makes use of the estimated variance to achieve smaller widths than the Hoeffding CS,

and the asymptotic CS is the ideal “limit” of EB CS in terms of width. Among the EB CS variants, the

conjugate-mixture variant is tighter towards the beginning (𝑡 < 103) while the predictable mixture

becomes slightly tighter afterward, and the stitching CS is not as tight as the other two. This is also

as expected, as both mixture CSs have similar widths (up to differences determined by the choice

of hyperparameters) (Waudby-Smith and Ramdas, 2023) and the stitching CS tends to be looser in

practice (Howard et al., 2021). This trend is also analogous for the Hoeffding CS variants, although

the stitching variant does become tighter for larger 𝑡 in this case.
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Appendix B

Supplementary Materials for

“Counterfactually Comparing

Abstaining Classifiers”

B.1 Further Discussion

B.1.1 Additional Motivating Examples for the Counterfactual Score

Here, we include three additional examples that motivate the counterfactual score. These illustrate

cases in which either (a) themissing predictions are utilized in a failure mode (Examples B.1 and B.2)

or (b) the missing predictions are relevant to the evaluator’s future uses (Examples B.2 and B.3).

ExampleB.1 (Inattentive driver in a self-driving car). Consider anMLclassifier in a semi-autonomous

vehicle system that predicts a label (the weather, time of day, etc.) given the available sensory inputs.

The predicted label is then used by the sequential decision making agent. In principle, when facing

a high-uncertainty input, the classifier can abstain from a prediction and alert the driver to take back

control. Yet, in reality, we would still greatly prefer a system that can make a safe decision in case

the driver is inattentive1 at the time, and cannot take back control. But how do we evaluate what a

system would have done in situations where it decided to abstain from making a prediction?
1Driver inattention is a real issue in semi-autonomous vehicles; studies have shown that the lack of active involvement

correlates with both driver fatigue and tardy reactions to take-over requests (Vogelpohl et al., 2019).
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Example B.2 (Comparing ML radiologist assistants). Consider a hospital that is evaluating third-

party radiology APIs that can assist with its diagnosis system. An API will either give a prediction

or abstain from making one, and then a human radiologist will examine the input on which the

classifier chose to abstain (Raghu et al., 2019). The APIs can also abstain non-deterministically to

improve upon their performance (Kalai and Kanade, 2021). Importantly, the hospital is wary that

there are inputs for which the professional would also abstain or have cognitive biases against (Busby

et al., 2018;Madras et al., 2018). Thus, it would need to occasionally rely on the classifier’s predictions

even on examples that it chose to abstain. If these “hidden predictions” are not readily available from

the third-party providers (e.g., require extra costs), how can the hospital compare their services?

Example B.3 (Evaluating an abstaining classifier’s internal biases). Suppose that an independent

agency is auditing an ML-based recidivism prediction system2 that has been deployed for a certain

amount of time. Given the high stakes of misclassification, the system is trained to occasionally (and

randomly) abstain frommaking a prediction, such that the rejected cases can be examined by human

judges. The auditing agency is interested in checking whether the ML classifier possesses internal

biases against certain demographic groups, and in particular, it wants to estimate the classifier’s ac-

curacy on each demographic group had it not abstained on any input. While the agency has access

to the system’s past predictions and abstentions, it does not have access to the underlying predictive

model or its abstention mechanism (i.e., black-box). How can the agency evaluate the system’s biases

while accounting for the missing predictions due to abstentions?

B.1.2 An Equivalent Formulation via the Potential Outcomes Framework

There are other equivalent ways to formulate our setup (Section 4.2.2) using variants of the potential

outcomes framework. First, we can define a (potentially observed) prediction 𝑓(𝑋;𝑅), which equals

𝑓(𝑋) if 𝑅 = 0 and ∗ if 𝑅 = 1, where the symbol ∗ indicates an abstention (the same notation is used

in Rubin (1976)’s missing data framework). The score 𝑆 is then 𝗌(𝑓(𝑋), 𝑌) if 𝑅 = 0 and ∗ otherwise.

Alternatively, we can explicitly invoke Rubin (1974)’s potential outcomes framework to write

𝑆(0)← 𝗌(𝑓(𝑋), 𝑌) and 𝑆(1)←∗, where 𝑆(𝑟) refers to the score of the abstaining classifier when 𝑅 = 𝑟

2Algorithmic approaches to recidivism prediction, such as COMPAS, have been both increasingly popular and highly
controversial.
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for each 𝑟 ∈ {0, 1}. We do not use this notation in our main chapter because 𝑆(1) is not meaningful

in our case.

B.1.3 Comparison with Condessa et al. (2017)’s Score

To better understand the counterfactual score 𝜓 = 𝔼[𝑆], we can contrast it with Condessa et al.

(2017)’s notion of the ‘classification quality score’ 𝜃. Assuming 𝑆 ∈ [0, 1], the classification qual-

ity score is decomposed as follows:

𝜃 ∶= 𝔼 [𝑆 ∣ 𝑅 = 0]ℙ(𝑅 = 0) + 𝔼 [1 − 𝑆 ∣ 𝑅 = 1]ℙ(𝑅 = 1). (B.1)

In contrast, note that the counterfactual score is decomposed into

𝜓 = 𝔼 [𝑆 ∣ 𝑅 = 0]ℙ(𝑅 = 0) + 𝔼 [𝑆 ∣ 𝑅 = 1]ℙ(𝑅 = 1). (B.2)

Thus, our target quantity 𝜓 is large if the classifier is good on all inputs (abstentions or not), while

𝜃 is large if the classifier is good on points it predicts on but poor on points it abstains on. However,

much like 𝜓, the challenge of estimating 𝜃 is driven entirely by the 𝔼 [𝑆|𝑅 = 1] term, as the remaining

terms are directly observed.

We note that estimates of 𝜓 also yield estimates of 𝜃, since 𝜃+𝜓 is an observable quantity that can

be straightforwardly estimated. Subtracting an estimate of 𝜓 from the sum gives an estimate of 𝜃.

B.1.4 The Plug-in and Inverse Propensity Weighting Estimators

The uniqueness of efficient influence functions tells us that the DR estimator outperforms two intu-

itive yet suboptimal estimators in an asymptotic and locally minimax sense. The first is the plug-in

estimator, which is derived directly from the identified target 𝜓 = 𝔼[𝜇0(𝑋)] in Ppn. 4.2:

�̂�𝗉𝗂 =
1
𝑛

𝑛∑

𝑖=1
�̂�0(𝑋𝑖), (B.3)

where �̂�0 is any estimate of the regression function 𝜇0(𝑥) = 𝔼 [𝑆 | 𝑅 = 0, 𝑋 = 𝑥]. The quality of

this simple estimator directly depends on the estimation quality of �̂�0 for 𝜇0, and in a nonparametric
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setting, the estimator can suffer from the statistical curse of dimensionality. Another point of concern

is that it makes no use of the missingness patterns.

The second is inverse probability weighting (IPW) estimator (Horvitz and Thompson, 1952; Rosen-

baum, 1995):

�̂�𝗂𝗉𝗐 =
1
𝑛

𝑛∑

𝑖=1

1 − 𝑅𝑖
1 − �̂�(𝑋𝑖)

𝑆𝑖, (B.4)

where �̂� is an estimate of the abstention mechanism 𝜋(𝑥) = ℙ (𝑅 = 1 | 𝑋 = 𝑥). If �̂� consistently

estimates 𝜋, the IPW estimator is unbiased; yet, it has the opposite problem to the plug-in estimator

as it does not model the conditional score 𝜇0 at all.

B.2 Proofs

B.2.1 Proof of Proposition 4.1

Since (𝑋,𝑌) is independent of the training data 𝒟train for (𝑓, 𝜋), and because 𝜉 is an independent

source of randomness, we can treat the functions 𝑓 and𝜋 as fixed. Then, by definition, 𝑆 = 𝗌(𝑓(𝑋), 𝑌)

is a deterministic function of (𝑋,𝑌) and 𝑅 = 𝗋(𝜋(𝑋), 𝜉) is a deterministic function of 𝑋 and 𝜉. This

means that the condition 𝑆 ⟂⟂ 𝑅 ∣ 𝑋 is equivalent to saying that 𝑌 ⟂⟂ 𝜉 ∣ 𝑋. Given that 𝜉 is indepen-

dent of (𝑋,𝑌), the latter condition follows.

B.2.2 Proof of Proposition 4.2

Positivity (Assumption 4.2) ensures that the conditional expectation 𝜇0(𝑋) = 𝔼 [𝑆 | 𝑅 = 0, 𝑋] is well-

defined. Then,

𝔼 [𝜇0(𝑋)] = 𝔼 [𝔼 [𝑆 | 𝑅 = 0, 𝑋]]
(MAR)
= 𝔼 [𝔼 [𝑆 | 𝑋]] = 𝔼 [𝑆] = 𝜓, (B.5)

where the second inequality follows from the MAR condition (Assumption 4.1), i.e., 𝑆 ⟂⟂ 𝑅 ∣ 𝑋.

B.2.3 Proof Sketch of Theorem 4.1

We follow the relevant notations and derivations fromKennedy (2022). Denoteℙ {𝑓} = 𝔼ℙ [𝑓(𝑍)] and

ℙ𝑛 {𝑓} = 𝑛−1
∑𝑛

𝑖=1 𝑓(𝑍𝑖)where 𝑍𝑖
𝑖𝑖𝑑
∼ ℙ. We use the centered influence function for 𝜓(ℙ) = 𝔼ℙ [𝜇0(𝑋)]
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(upon identification), defined as follows:

𝖨𝖥ℙ(𝑥, 𝑟, 𝑠) ∶= [ 1 − 𝑟
1 − 𝜋(𝑥)

(𝑠 − 𝜇0(𝑥)) + 𝜇0(𝑥)] − 𝜓(ℙ). (B.6)

Here, 𝖨𝖥ℙ depends onℙ, which determines 𝜋 and 𝜇0. Analogously, we let ℙ̂ denote the distribution of

abstentions and score outcomes involving estimators �̂� and �̂�0 (in place of 𝜋 and 𝜇0), and let 𝖨𝖥ℙ̂ and

𝜓(ℙ̂) denote the corresponding influence function and target functional, respectively, defined using

�̂� and �̂�0. Also, note that an uncentered version is shown in the main text for ease of explanation; the

resulting variance does not change due to this centering. Using these definitions, we proceed with

the proof in two steps.

Step 1: Showing that 𝖨𝖥 (B.6) is the efficient influence function for 𝜓. To show that 𝖨𝖥 is

indeed the unique efficient influence function for 𝜓, we show that ℙ {𝖨𝖥ℙ} = 0 and that its bias term

is second-order. The uniqueness and asymptotic efficiency of this EIF in a nonparametric setting, in

general, is well-known (e.g., van der Vaart (2002)). First, observe that

ℙ {𝖨𝖥ℙ} = 𝔼ℙ [
1 − 𝑅

1 − 𝜋(𝑋)
(𝑆 − 𝜇0(𝑋)) + 𝜇0(𝑋)] − 𝜓(ℙ) (B.7)

= 𝔼ℙ [
𝔼 [(1 − 𝑅)(𝑆 − 𝜇0(𝑋)) ∣ 𝑋]

1 − 𝜋(𝑋)
] (B.8)

(a)
= 0, (B.9)

where (a) follows from the fact that

𝔼 [(1 − 𝑅)𝑆 ∣ 𝑋] = 𝜋(𝑋) ⋅ 0 + (1 − 𝜋(𝑋))𝔼 [𝑆 ∣ 𝑅 = 0, 𝑋] = (1 − 𝜋(𝑋))𝜇0(𝑋). (B.10)
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Furthermore, for any distributions ℙ̂ and ℙ, the bias term is given by

𝑅2(ℙ̂,ℙ) = 𝜓(ℙ̂) − 𝜓(ℙ) + ℙ
{
𝖨𝖥ℙ̂

}
(B.11)

= 𝜓(ℙ̂) − 𝜓(ℙ) + 𝔼ℙ [
1 − 𝑅

1 − �̂�(𝑋)
(𝑆 − �̂�0(𝑋)) + �̂�0(𝑋)] − 𝜓(ℙ̂) (B.12)

= 𝔼ℙ [
1 − 𝑅

1 − �̂�(𝑋)
(𝑆 − �̂�0(𝑋)) + �̂�0(𝑋) − 𝜇0(𝑋)] (B.13)

(IE,a)
= 𝔼ℙ [

1 − 𝜋(𝑋)
1 − �̂�(𝑋)

(𝜇0(𝑋) − �̂�0(𝑋)) − (𝜇0(𝑋) − �̂�0(𝑋))] (B.14)

= 𝔼ℙ [
(�̂�(𝑋) − 𝜋(𝑋)) (𝜇0(𝑋) − �̂�0(𝑋))

1 − �̂�(𝑋)
] (B.15)

≤ 1
𝜖 ⋅

‖�̂� − 𝜋‖𝐿2(ℙ) ‖�̂�0 − 𝜇0‖𝐿2(ℙ) . (B.16)

This is a second-order product term in the difference of ℙ̂ and ℙ, showing that 𝖨𝖥 is an influence

function for ℙ.

Step 2: Showing the asymptotic normality of
√
𝑛(�̂�𝖽𝗋−𝜓). To derive the explicit form of the lim-

iting distribution, denote ̂𝖨𝖥 = 𝖨𝖥ℙ̂, and observe that the DR estimator is a “one-step” bias-corrected

estimator (Bickel, 1975), given by �̂�𝖽𝗋 = ℙ𝑛
{ ̂𝖨𝖥

}
+ 𝜓(ℙ̂). Then, we have the following three-term

decomposition:

�̂�𝖽𝗋 − 𝜓 = ℙ𝑛
{ ̂𝖨𝖥

}
+ 𝜓(ℙ̂) − 𝜓(ℙ) (B.17)

= (ℙ𝑛 − ℙ)
{ ̂𝖨𝖥

}
+ 𝑅2(ℙ̂,ℙ) (B.18)

= (ℙ𝑛 − ℙ) {𝖨𝖥} + (ℙ𝑛 − ℙ)
{ ̂𝖨𝖥 − 𝖨𝖥

}
+ 𝑅2(ℙ̂,ℙ). (B.19)

The first term, which is a sample average term, has the desired limiting distribution by the central

limit theorem:

√
𝑛 ⋅ (ℙ𝑛 − ℙ) {𝖨𝖥} =

1
√
𝑛

𝑛∑

𝑖=1
[𝖨𝖥(𝑍𝑖) − 𝔼ℙ [𝖨𝖥(𝑍)]]⇝𝒩 (0,𝖵𝖺𝗋ℙ (𝖨𝖥)) . (B.20)

Then, by Slutsky’s theorem, it suffices to show that the other two terms are of order 𝑜ℙ(1∕
√
𝑛). The

third term, 𝑅2(ℙ̂,ℙ), is precisely the second-order bias term we derived in (B.16), and it is 𝑜ℙ(1∕
√
𝑛)
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by the DR assumption (4.3).

The second term, called the empirical process term, can be shown to be of order 𝑜ℙ(1∕
√
𝑛) when

using cross-fitting to estimate ℙ̂. Specifically, the sample splitting procedure guarantees that ℙ̂ ⟂⟂ ℙ𝑛

(where ℙ𝑛 now refers to the held-out fold in each step of cross-fitting), which is enough to show that

(ℙ𝑛 − ℙ)
{ ̂𝖨𝖥 − 𝖨𝖥

}
= 𝑂ℙ (

‖ ̂𝖨𝖥 − 𝖨𝖥‖𝐿2(ℙ)
√
𝑛

) . (B.21)

Since ‖ ̂𝖨𝖥 − 𝖨𝖥‖𝐿2(ℙ) = 𝑜ℙ(1) by assumption, the term itself is of order 𝑜ℙ(1∕
√
𝑛) as desired. The loss

of sample efficiency due to a single sample splitting can be recovered by the cross-fitting procedure.

See, e.g., Lemma 1 and Proposition 1 of Kennedy (2022) for details.

B.2.4 Proof of Theorem 4.2

Given that 𝖨𝖥𝖠𝖡ℙ = 𝖨𝖥𝖠ℙ−𝖨𝖥
𝖡
ℙ, it is immediate that it is an influence function for∆𝖠𝖡 = 𝜓𝖠−𝜓𝖡 because

ℙ{𝖨𝖥𝖠𝖡ℙ } = ℙ{𝖨𝖥𝖠ℙ} − ℙ{𝖨𝖥𝖡ℙ} = 0 and

𝑅2(ℙ̂,ℙ) ≤
1
𝜖 ⋅

(
‖�̂�𝖠 − 𝜋𝖠‖𝐿2(ℙ)

‖‖‖‖�̂�0,𝖠 − 𝜇0,𝖠
‖‖‖‖𝐿2(ℙ) +

‖�̂�𝖡 − 𝜋𝖡‖𝐿2(ℙ)
‖‖‖‖�̂�0,𝖡 − 𝜇0,𝖡

‖‖‖‖𝐿2(ℙ)
)
. (B.22)

The limiting distribution can also be derived analogously, where the upper bound in (B.22) reveals

the additive form of the DR assumption (4.5).

B.3 Illustration of the MAR Condition via Causal Graphs

Intuitively, the MAR condition is satisfied as long as the evaluation label is unknown to either classi-

fier, simply because the classifier cannot access the actual score 𝑆 = 𝗌(𝑓(𝑋), 𝑌), which is a function of

the true label𝑌, in making its abstention decision. This already implies 𝑃(𝑅 = 1|𝑆, 𝑋) = 𝑃(𝑅 = 1|𝑋).

We can further elucidate how the causal relationships between the random variables in our setup,

and highlight how the MAR condition is generally satisfied, via graphical representations of the eval-

uation setup. The comparison case is an analogous extension to two abstaining classifiers.

Assuming that the abstaining classifier (𝑓, 𝜋) does not depend on the evaluation output label 𝑌,

we (the evaluator) can treat both functions as fixed given the input𝑋. We can then illustrate theMAR
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𝑋 𝑌

𝑅 𝑆

(a) Simple DAG representation of our setup, as-
suming 𝑋 → 𝑌.

𝑋 𝑌

𝑅 𝑆𝜉

𝑈

(b) A more general graph that allows arbitrary re-
lationships between 𝑋 and 𝑌 as well as the classi-
fier’s internal randomness/bias (𝜉).

Figure B.1: Two graphical representations of the random variables involved in our evaluation frame-
work from §4.2, assuming that the true label 𝑌 is independent of the abstaining classifier (𝑓, 𝜋).
Shaded variables are observed by the evaluator; the score 𝑆 = 𝗌(𝑓(𝑋), 𝑌) is partially observed by the
evaluator (depicted as a diamond node). In plot B.1a, assuming 𝑋 → 𝑌, the simple DAG illustrates
that 𝑆 and 𝑅 are 𝑑-separated given 𝑋. In plot B.1b, we further allow arbitrary relationships between
𝑋 and 𝑌, including 𝑋 → 𝑌, 𝑌 → 𝑋, and𝑈 → (𝑋,𝑌) for some unobserved confounder𝑈. The classi-
fier’s decision to abstain, 𝑅, is also allowed to additionally depend on some internal randomness and
bias 𝜉 that is independent of the evaluation data. Accounting for these generalizations, 𝑆 and 𝑅 are
still 𝑑-separated given 𝑋, irrespective of the causal direction (if any) between 𝑋 and 𝑌.

condition via two causal graphs. First, suppose𝑋 → 𝑌 (for the sake of simplification). Then, we have

the relationships𝑋 → 𝑌,𝑋 → 𝑅 (Bernoulli with probability 𝜋(𝑋)), and (𝑋,𝑌)→ 𝑆 (deterministic via

𝑓 and 𝗌). In the resulting graph, shown in Figure B.1a, the variables 𝑆 and 𝑅 are 𝑑-separated (Pearl,

2000) given𝑋, i.e., 𝑆 ⟂⟂ 𝑅 ∣ 𝑋. Note that 𝑆 is partially observed and thus drawn as a diamond node, but

it does not affect the conditional independence relationship. An alternative representation is possible

via missingness graphs (Mohan et al., 2013), which would give us the same conclusion.

Next, we can remove the assumption on the relationship 𝑋 → 𝑌, and allow any possible rela-

tionship between 𝑋 and 𝑌: 𝑋 → 𝑌 (causal), 𝑌 → 𝑋 (anticausal), or 𝑈 → (𝑋,𝑌), where 𝑈 is an

unobserved confounder to the prediction task. This is depicted as a dashed line between 𝑋 and 𝑌,

along with a possible presence of 𝑈, in Figure B.1b. We can further allow the abstaining classifier to

utilize some internal randomness or bias 𝜉, which is independent of the randomness in evaluation

data, for its decision to abstain 𝑅. In the resulting graph, shown in Figure B.1b, none of the general-

izations change the fact that 𝑆 and 𝑅 are 𝑑-separated given 𝑋, i.e., the MAR condition is satisfied.

Finally, as mentioned in the main text, the MAR condition can be violated when the evaluation

data is not independent of the training data. For example, if the true label 𝑌 is used by the abstaining
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classifier during its training to inform its abstention decision, then this would correspond to a graph

in which there is an additional edge from 𝑌 to 𝑅, as the abstention function 𝜋 now depends on 𝑌.

Then, 𝑆 and 𝑅 are no longer 𝑑-separated because there is a now connecting path via 𝑌 (common

cause).

B.4 Positivity and Policy

Our identification results in §4.2.2 impose a requirement of positivity (Assumption 4.2) on the abstain-

ing classifier (𝑓, 𝜋), i.e., a demand that for some 𝜖 > 0, the essential supremum of𝜋(𝑥) is smaller than

1 − 𝜖. This requirement is necessary: intuitively, if no feedback about the behaviour of 𝑓 is available

in a region, it is impossible (without further strong assumptions about the global structure of 𝑓) to

determine the behaviour of the score in this region. Operationally, this is seen quite directly in the

validity of the confidence intervals inferred from data (Figure B.5). Of course, the parameter 𝜖 also

plays a quantitative role: the higher the 𝜖, the better the validity andwidths of our CIs. In other words,

our ability to identify decays gracefully with 𝜖, with complete inability if 𝜋(𝑥) = 1 in a region of large

mass.

While necessary, this positivity requirement is at odds with the practical deployment of client-

facing abstaining classifiers. Indeed, there are twomajor reasons to implement an abstaining mecha-

nism in such scenarios. In a positive sense, abstentions signal that the use of the underlying classifier

𝑓 is inappropriate in a particular domain. However, in a negative sense, abstentions can also be em-

ployed in order to artificially limit a vendor’s liability when their predictions (and the actions driven

by the same) are incorrect. A pertinent example is the recent investigation of the Tesla autopilot by the

NHTSA (2022) which found that in 16 incidents, the autopilot would deactivate and hand-off control

to the driver at the very last seconds before a crash, thus artificially inflating the safety metrics of the

system.

Part of the impetus behind studying a metric such as the counterfactual score is precisely to iden-

tify such behaviours before unsafe incidents bring them to light. Nevertheless, if vendors can stymie

this investigation simply by ensuring that abstention is accompanied by a very high 𝜋(𝑥), then the

method is not particularly useful.
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This technical impasse begs for a policy-level treatment: through regulatory action, the executive

may ensure that vendors supply evaluators (whether government agencies or independent reviewers)

with abstaining classifiers that reveal the counterfactual decision of𝑓 at least an 𝜖-fraction of the times

when the decision is to abstain, where 𝜖 is set by mutual agreement of the stakeholders. Note that

it is not enough to just supply evaluators with the predictions of 𝑓 (although this would solve our

particular problem formulation), since it is important to understand its behaviour in the context of

when the abstaining classifier actually tends to reject points (i.e., it is equally important for evaluators

and users to understand 𝔼 [𝑆 ∣ 𝑅 = 1], which of course is estimable under our setup).

B.5 Confidence Sequences for Anytime-Valid Counterfactual Score

Estimation

The nonparametric efficiency result of Theorem 4.1 yields an optimal inference procedure (either a

hypothesis test or a confidence interval) for evaluating and comparing abstaining classifiers at a fixed

sample size. Here, we go one step further and utilize a confidence sequence (CS) (Darling and Robbins,

1967; Howard et al., 2021), which is a sequence of confidence intervals whose validity holds uniformly

over all sample sizes. This time-uniform property allows the evaluator to continuouslymonitor the re-

sult as more data is collected over time. The time-uniform property also implies anytime-validity (Jo-

hari et al., 2022; Grünwald et al., 2019), which allows the evaluator to run the experiment without

pre-specifying the size of the evaluation set and compute the CIs as more data is collected. This

implies that anytime-valid methods avoid the issue of inflated miscoverage rates coming from “data

peeking.” See Ramdas et al. (2022a) for an introduction.

Formally, for any 𝛼 ∈ (0, 1), a (1 − 𝛼)-level (non-asymptotic) CS (𝐶𝑡)𝑡≥1 for a parameter 𝜃 ∈ ℝ is

a sequence of confidence intervals (CI) such that

ℙ (∀𝑡 ≥ 1 ∶ 𝜃 ∈ 𝐶𝑡) ≥ 1 − 𝛼. (B.23)

Importantly, a CS contrasts with a fixed-time CI, whose guarantee no longer remains valid at stopping

times: a CI only satisfies ℙ (𝜃 ∈ 𝐶𝑡) ≥ 1 − 𝛼 for a fixed sample size 𝑡.
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Here, we describe how we can perform the proposed counterfactual comparison of abstaining

classifiers using a variant of aCS that is asymptotic and readily applicable to causal estimands (Waudby-

Smith et al., 2021). An (two-sided) (1 −𝛼)-asymptotic CS (AsympCS) (�̃�𝑡)𝑡≥1 for a parameter 𝜃 ∈ ℝ is

a sequence of intervals, �̃�𝑡 = (�̂�𝑡 ± �̃�𝑡), for which there exists a non-asymptotic CS (𝐶𝑡)𝑡≥1 for 𝜃 of the

form 𝐶𝑡 = (�̂�𝑡 ± 𝐵𝑡) that satisfies

𝐵𝑡∕�̃�𝑡
𝖺.𝗌.
,→ 1. (B.24)

The AsympCS has an approximation rate of 𝑟𝑡 if �̃�𝑡 − 𝐵𝑡 = 𝑂(𝑟𝑡) almost surely.

Intuitively, an AsympCS is an arbitrarily precise approximation of a non-asymptotic CS. Because

no knownnon-asymptotic CS exists for counterfactual quantities such as theATE,AsympCShas been

derived as an (only) viable alternative. Waudby-Smith et al. (2021) further leverage the (previously

described) nonparametric efficiency theory and doubly robust estimation to derive an AsympCS for

theATE in randomized experiments and observational studies; we apply their theory to estimating the

counterfactual scores and their differences. The resulting AsympCS is asymptotically time-uniform

and anytime-valid, and its width scales similarly, up to logarithmic factors, to a fixed-time CI derived

directly from Theorem 4.1.

Nowwe describe ourmain theorem for anytime-valid and counterfactual evaluation of an abstain-

ing classifier. We consider evaluating the classifier on an i.i.d. test set that is continuously collected

over time; let 𝑛 be the (data-dependent) sample size with which inference is performed. As before,

the comparison problem reduces to evaluating each abstaining classifier and taking their difference.

We suppose that the nuisance functions �̂� and �̂�0 are learned via cross-fitting, and these are used to

compute the EIF estimate (4.2). Now we can formally state an asymptotic CS for 𝜓 = 𝔼[𝑆] (4.1) that

is anytime-valid and doubly robust. In the below, the 𝑜(⋅) notation refers to almost sure convergence.

Theorem B.1 (Anytime-valid DR estimation of the counterfactual score). Suppose that �̂�0 and �̂�

consistently estimates 𝜇0 and 𝜋 in 𝐿2(ℙ), respectively, at a product rate of 𝑜(
√
log log𝑛∕𝑛):

‖�̂�0 − 𝜇0‖𝐿2(ℙ) ‖�̂� − 𝜋‖𝐿2(ℙ) = 𝑜(
√
log log𝑛∕𝑛). (B.25)

Also, suppose that ‖ ̂𝖨𝖥 − 𝖨𝖥‖𝐿2(ℙ) = 𝑜(1) and that 𝖨𝖥 has at least four finite moments.
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Then, under Assumption 4.1 and 4.2, for any choice of 𝜌 > 0,

�̂�𝖽𝗋 ±
√

̂𝖵𝖺𝗋𝑛
( ̂𝖨𝖥

)
⋅

√
√√√2𝑛𝜌2 + 1

𝑛2𝜌2
log (

√
𝑛𝜌2 + 1
𝛼 ) (B.26)

forms a (1 − 𝛼)-AsympCS for 𝜓 with an approximation rate of
√
log log𝑛∕𝑛.

This result is an adaptation of Theorems 2.2 and 3.2 in Waudby-Smith et al. (2021) to our setup.

The assumptions on �̂� and �̂�0 are analogous to the double robustness assumptions (4.3) in Theo-

rem 4.1, as they require the same product rate up to logarithmic factors. Here, 𝜌 is a free parameter

that can be chosen to optimize the CS width (see Appendix C.3 of Waudby-Smith et al. (2021) for

details).

Compared to the fixed-size CI of (4.1), whose width shrinks at a 𝑂(1∕
√
𝑛) rate, the width of the

AsympCS in (B.26) shrinks at a 𝑂(
√
log𝑛∕𝑛) rate. This means that, in terms of the CI width, the

extra cost of ensuring anytime-validity is logarithmic in 𝑛. In practice, the AsympCS may be wider

than the CI from Theorem 4.1; nevertheless, the AsympCS may be preferred in scenarios where the

evaluation/comparison is performed on continuously collected data. Another potential benefit of

the AsympCS is the extension to settings with sequential and time-varying evaluation tasks (e.g., in-

volving time-series forecasters that abstain). We leave the formalization of the time-varying setup as

future work.

Finally, to apply Theorem B.1 to a comparison setting, we can construct two (1−𝛼∕2)-AsympCSs,

𝐶𝖠𝑛 = (𝐿𝖠𝑛 , 𝑈𝖠
𝑛 ) and 𝐶𝖡𝑛 = (𝐿𝖡𝑛, 𝑈𝖡

𝑛) for 𝜓𝖠 and 𝖡 respectively, and then combine them into one (1−𝛼)-

AsympCS for ∆𝖠𝖡 = 𝜓𝖠 − 𝜓𝖡 via 𝐶𝖠𝖡𝑛 = (𝐿𝖠𝑛 −𝑈𝖡
𝑛 , 𝑈𝖠

𝑛 − 𝐿𝖡𝑛).

B.6 Additional Experiments and Details

B.6.1 Details on the Simulated Data and Abstaining Classifiers

The evaluation set is generated as follows: (𝑋0𝑖, 𝑋1𝑖) ∼ 𝖴𝗇𝗂𝖿[0, 1],𝐸𝑖 ∼ 𝖡𝖾𝗋(0.15), and𝑌𝑖 = 1 (𝑋0𝑖 + 𝑋1𝑖 ≥ 1)

if 𝐸𝑖 = 0 and 𝑌𝑖 = 1 (𝑋0𝑖 + 𝑋1𝑖 < 1) otherwise (label noise). Classifier 𝖠 uses a logistic regres-

sion model with the optimal linear decision boundary, i.e., 𝑓𝖠(𝑥0, 𝑥1) = 𝜎(𝑥0 + 𝑥1 − 1), where

𝜎(𝑢) = 1∕(1 + exp(−𝑢)), achieving an accuracy of 0.85 by design. Classifier 𝖡, on the other hand,
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has a (suboptimal) curved boundary: 𝑓𝖡(𝑥0, 𝑥1) = 0 ∨ ( 1
2
(𝑥20 + 𝑥21) +

1
10
) ∧ 1. Classifier 𝖠 is thus

“oracle” logistic regression model with the same decision boundary, achieving an empirical score of

0.86 before abstentions; classifier 𝖡 is a biased model that achieves an empirical score of 0.74 before

abstentions.

For both classifiers, 𝜖 = 0.2 determines the coefficient for positivity, and they are designed to

abstain more frequently near their decision boundaries. For classifier 𝖠, 𝜋𝖠(𝑥) = 1− 𝜖 if the distance

from 𝑥 to its boundary is less than 𝛿, and 𝜋𝖠(𝑥) = 𝜖 otherwise; for classifier 𝖡, we use 0.8𝛿 as the

threshold, resulting in less abstentions than 𝖠. In some sense, this is a setting where 𝜖-positivity is

“minimally” satisfied because the abstention rate is always either 𝜖 or 1 − 𝜖, and not in between, in

all regions of the input space. If, say, the abstention rate was 0.5 in most parts but 𝜖 in a small region,

the positivity level would still be 𝜖 but the estimation would in general be easier. Thus, this example

can be viewed as a more challenging case than a standard causal inference setup with small regions

of 𝜖-positivity.

Figure B.2 shows both the predictions (blue circles: 0, green triangles: 1) and the abstention deci-

sions (orange x’s: predictions) for each classifier. Each classifier has a high chance of abstaining near

its boundary (shaded orange region) and a low chance otherwise, meaning that abstentions are not

spread out uniformly (MAR but not MCAR). In particular, classifier 𝖡 hides many of its misclassifi-

cations as abstentions, leading to its high selective score (𝖲𝖾𝗅𝖡 = 0.81) relative to its counterfactual

score (𝜓𝖡 = 0.74).

The nuisance functions �̂� and �̂�0 for each classifier 𝖠 and 𝖡 are learned via 2-fold cross-fitting. In

each case, we cap extreme propensity predictions by �̂�𝖠 and �̂�𝖡 are capped at 1 − 𝜖.

On a 128-core CPUmachine, using parallel processing, the entire compute time it took to produce

Table 4.2 was approximately 5 minutes.

B.6.2 Power Analysis

To examine the efficiency of the DR estimator, we now analyze the power of the statistical test for

𝐻0 ∶ ∆𝖠𝖡 = 0 vs. 𝐻1 ∶ ∆𝖠𝖡 ≠ 0 by inverting the DR CI. For different values of the sample size and the

underlying performance gap, we compute the rejection rate of the statistical test across 1,000 runs. As

before, the classifier 𝖠 represents the oracle classifier that has the optimal decision boundary, which
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Figure B.2: A simulated example where we compare two hypothetical abstaining classifiers. The left
plot shows a binary classification dataset (25% shown) in which the true decision boundary is linear.
The two plots on the right show both the predictions (blue circles for 0; green triangles for 1) and the
abstentions (orange x’s) of two classifiers: 𝖠, which has the optimal linear boundary, and 𝖡, which
has the biased nonlinear boundary. Both classifiers abstain w.p. 1 − 𝜖 in the shaded (orange) region
near the decision boundary and w.p. 𝜖 outside the region. For both classifiers, 𝜖 is set to 0.2 (positivity
is satisfied). Because the abstentionmechanism of either classifier is determined by the input, it is not
uniformly spread out across the input domain (MAR). As a result, the difference in selective scores,
i.e., 𝔼[𝑆𝖠 ∣ 𝑅𝖠 = 0] − 𝔼[𝑆𝖡 ∣ 𝑅𝖡 = 0] ≈ 0.044, is substantially smaller than the difference in the
counterfactual scores, i.e., ∆𝖠𝖡 = 𝔼[𝑆𝖠−𝑆𝖡] ≈ 0.116. Our 95% DR CI for ∆𝖠𝖡 the yields (0.077, 0.145),
using 𝑛 = 2, 000.

is linear, but the classifier 𝖡 now uses a linear decision boundary that is shifted from the optimal one

by a fixed amount, thereby shifting ∆𝖠𝖡 away from zero. As such, 𝖡 performs increasingly worse as

∆𝖠𝖡 increases.

To increasingly vary the counterfactual score difference between two classifiers, we set 𝖠 as the

same classifier as in §B.6.1 and set 𝖡 to use the (optimal) linear decision boundary of 𝖠 shifted diag-

onally by a fixed amount 𝜇. Specifically, 𝑓𝖡(𝑥0, 𝑥1) = 𝜎(𝑥0 + 𝑥1 − (1 + 𝜇)). An example with 𝜇 = 0.2

is shown in Figure B.3. While ∆𝖠𝖡 is not strictly a linear function of 𝜇, it is gradually increasing as

𝜇 increases, as shown in Table B.1. Aside from this difference, both classifiers use the same absten-

tion mechanism as classifier 𝖠 from the previous experiment, and the data generating process is also

identical to the previous experiment.

Figure B.4 plots the rejection rates of the level-𝛼 statistical test, for 𝛼 = 0.05, against different

values of ∆𝖠𝖡 (0 to 0.27) for various sample sizes (𝑛 = 400, 800, 1600, 3200). Here, we plot the miscov-

erage rate as a function of the resulting values of ∆𝖠𝖡 directly. We use the super learner to learn the

nuisance functions. Overall, we see that as 𝑛 or ∆𝖠𝖡 increases, the power of the statistical test quickly

approaches 1, implying that the test can consistently detect a gap in counterfactual scores if either the

sample size or the difference gets large.
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Figure B.3: A simulated example for the power experiment in which ∆𝖠𝖡 = 0.123. The evaluation
data is the same as the one in Figure B.2. For 𝖡, the decision boundary of 𝖠 is shifted diagonally
upwards by 𝜇 = 0.2; in the power experiment, we experiment with various values of 𝜇 (and thus
∆𝖠𝖡).

∆𝖠𝖡 0.0 0.045 0.069 0.088 0.123 0.152 0.180 0.181 0.219 0.248 0.271

𝜇 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Table B.1: The relationship between ∆𝖠𝖡 and 𝜇, the distance between the linear decision boundaries
of 𝖠 and 𝖡, in the power experiment of Section B.6.2.

On a 128-core CPUmachine, using parallel processing, the entire compute time it took to produce

Table B.4 was approximately 88 minutes.

B.6.3 Details on the CIFAR-100 Experiment

The abstaining classifiers compared in the experiments are variants of the VGG-16 CNN model with

batch normalization (Simonyan and Zisserman, 2015). Specifically, the feature representation layers

are obtained from a model3 trained on the training set of the CIFAR-100 dataset and are fixed during

evaluation. Using half (𝑛 = 5, 000) of the validation set, we train a L2-regularized softmax output layer

and its softmax response (SR) for the abstention mechanism. The comparison is done on the other

half (𝑛 = 5, 000) of the validation set. This version of the VGG-16 features and the softmax layer is

used for all scenarios, with different abstentionmechanisms described in themain text, except for the

last comparison, where we compare this softmax layer with VGG-16’s original 3-layer output model

(2 hidden layers of size 512).
3https://github.com/chenyaofo/pytorch-cifar-models
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Figure B.4: Power of the statistical test for 𝐻0 ∶ ∆𝖠𝖡 = 0 derived by our 95% DR CIs, plotted for
different values of 𝑛 (sample size) and ∆𝖠𝖡, which varies based on the distance between the (linear)
decision boundaries of 𝖠 and 𝖡. Mean rejection rates of𝐻0 over 1,000 simulations are shown, with 1
standard error as shaded error bars. As either 𝑛 or ∆𝖠𝖡 grows large, the power approaches 1.

The nuisance functions, �̂� and �̂�0 for each classifier in each scenario, also utilize the pre-trained

representations of the VGG-16 layer, but their output layers (both L2-regularized linear models) are

trained separately via cross-fitting.

The pre-trained VGG-16 features on the CIFAR-100 validation set were first obtained using a sin-

gle NVIDIAA100GPU, taking approximately 20 seconds. On a 128-core CPUmachine, using parallel

processing, the rest of the computation to produce Table 4.3 took less than 10 seconds (note that there

are no repeated runs in this experiment).

B.6.4 Sensitivity to Different Positivity Levels

Here, we examine how the DR estimator is affected by the level of positivity, i.e., 𝜖 in (4.2). As dis-

cussed in the main chapter, positivity violations make it infeasible to properly identify and estimate

causal estimands. In practice, we expect the DR estimator to remain valid up until 𝜖 becomes smaller

than a certain (small) number. To validate this, we use the same setting from our first experiment

(Section 4.4.1; Appendix B.6.1) but vary the level of positivity from 𝜖 = 0.5 (MCAR) to 𝜖 = 0.1 (posi-

tivity near-violation).

Figure B.5 plots the miscoverage rate of the DR estimator, averaged over 1,000 repeated simula-

tions, using the three nuisance learner choices we used in Section 4.4.1. The result confirms that
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Figure B.5: Miscoverage rates of 95% doubly robust CIs by varying the level of 𝜖 (positivity), plotted for
different nuisance function learners. Each point is the mean over 1,000 repeated simulations; shaded
error bars represent 1 standard error.

the DR estimator, when using either the random forest or the super learner, retains validity as long

as 𝜖 ≥ 0.2, in this particular case; as 𝜖 shrinks to below 0.2, the miscoverage rates start to go above

the significance level. This confirms that there is a (problem-dependent) level of positivity we must

expect for the DR estimator to work; otherwise, we do not expect the counterfactual target to be a

meaningfully identifiable quantity in the first place.

On a 128-core CPUmachine, using parallel processing, the entire compute time it took to produce

Figure B.5 was approximately 12 minutes.
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