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Abstract

Robustness properties of optimization techniques are a fundamental require-
ment for modern ML applications. In an environment where vast quantities of
data is scraped from the Internet or collected from varied sources, curating clean
data has become an increasingly intractable problem. Sophisticated adversaries
can easily bypass simple data cleaning methods to poison training data in order
to influence the training procedure. Many attacks exist which can construct a
backdoor in the learned model enabling maliciously targeted predictions dur-
ing deployment. Some of the advanced attacks even claim broad generality,
wherein, corruptions produced for one model can be successfully used to deploy
an attack for another. This is a problem which models of all complexities have
to contend with in the real world. To address this issue, existing research has
focused on providing specialized solutions for specific model classes. This puts
an enormous burden on the practitioner to keep pace with the rapid progress of
research. Moreover, a lot of techniques treat the two problems of optimization
and handling poisoned data separately.

In the first part of this thesis, we take a unified approach in which we pro-
vide a single optimization technique that can be used to train any ML model
and which also shows impressive fortitude against data poisoning attacks. We
experimentally evaluate our study on a wide class of ML models and provide
a theoretical analysis for convergence as well as a mathematical understand-
ing of what enables robustness against data poisoning for our techniques. For
a given optimization problem, our technique constructs a sequence of smaller-
dimensional optimization problems. It assumes access to a black box that can
solve these smaller-dimensional problems and the solution of the last problem
in the sequence is the desired model.

We continue with the theme of developing algorithms that use cleverly con-
structed black-box solvers in the second and third parts of this thesis. In the
second part, we pose the problem of solving an Euclidean optimization problem
as one that of solving an optimization problem on a manifold (specifically, the
Grassmannian and the Multinomial manifold). This transforms an optimiza-
tion problem from a given dimension to a sequence of problems in a smaller
dimension. For a class of optimization problems which are defined using a data
matrix, we also develop a technique which reduces the row dimension of the data
matrix to construct the sequence of problems to solve. These techniques provide
a very novel perspective on optimization problems in the Euclidean space and
have the potential to inspire future developments of optimization procedures
with robustness and privacy properties.

In the third part of the thesis, we study online optimization algorithms
with access to black-box solvers for minimization and maximization procedures.
These algorithms can be used to find the Nash Equilibrium of two-player zero-
sum games. We formulate the problem of finding minimax optimal estimators



as that of finding a Nash Equilibrium of a two-player zero-sum game. This helps
us bypass the mathematical complexity of constructing minimax optimal esti-
mators, which usually involve a lot of problem-specific analysis and development
of new theoretical tools, to directly learn them as neural networks by solving the
stated two-player game. Using this technique, we are able to construct minimax
optimal estimators for a class of fundamental statistical estimation problems for
which optimal estimators have not been known prior to this work.

In summary, in this thesis we develop techniques which have broad applica-
bility within their domains (the domains being robust optimization, Euclidean
optimization, and learning minimax estimators) by leveraging optimization pro-
cedures which have access to appropriate black boxes.
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1 | Introduction

Modern ML systems are built with large quantities of data. These data are collected from
a number of sources and can be measured from giga-to-terabytes [75]. The performance of
trained models is crucially dependent on the quality of the training data used [31, 42, 90].
Due to the sheer size of the training data, curating it can be extremely challenging. One
cannot trust the sources where the data is collected from entirely and widely used methods of
data collection like scraping it from publicly available sources leave these datasets vulnerable
to attacks from adversaries, especially in the form of injecting small amounts of adversarially
chosen data. This can either throw off the learning process to decrease the quality of the
model learned [33, 36] or more maliciously inject backdoors which can enable the adversary
to manipulate the predictions of the model during deployment [24, 76, 92]. See [25] for a
comprehensive survey on data poisoning strategies in the research literature.

Combating such challenges involves deploying preventive techniques at every stage of the
ML pipeline. From data collection to data sanitization, model selection, robust training
algorithms, and building guardrails around the delpoyed model. While these preventive
techniques are necessary to keep lazy adversaries at bay, they usually tend to be heuristics
and can be side-stepped by the next clever idea. Especially techniques which address the
data in bulk tend to lack the nuance with which a motivated adversary can work, since at
these stages it can be difficult to distinguish malicious data from normal data except by
human inspection. Interestingly, techniques which can bypass human inspection have also
been proposed in the literature. Hence, it is important to develop a mathematical under-
standing of how and when a small amount of data can negatively affect the training process
or the learned model. Using this, techniques can be provided with a sound mathematical
understanding of how to build robust models. The model selection and training algorithms
provide the most fertile ground for this task. Among these two, we choose to work with the
training algorithm, since it has the added benefit of being generally applicable to a wide
range of real-world scenarios and mixing well with other techniques that might already be
in use. The proposed training algorithm works across the range of ML models with which a
practitioner might want to work in a given scenario. This forms the first part of the thesis.
In this part:

1. In chapter 2, we present new techniques for the building and analyzing of robust
stochastic optimization algorithms. To solve the given d-dimensional optimization
problem, our technique generates a sequence of random k-dimensional subproblems,
where k < d, and solves them instead. Unlike traditional optimization analysis which
exploits structural assumptions like convexity, Lipschitzness or Polyak-Lojasiewicz

1



criterion of the loss function to obtain convergence rates, our analysis only uses the
geometrical structure of the randomness used in the algorithm. This offers a wider
applicability to our approach than traditional methods, and indeed it works for all
smooth loss functions. Moreover, our analysis identifies an important parameter of
the loss function, which we call the gap parameter. This parameter dictates the
convergence rates of our algorithm. We experimentally study the algorithm on linear
regression, logistic regression, SVMs and neural networks. Using these experiments,
we argue that the gap parameter also controls the robustness of the solutions obtained
by our algorithm in the presence of noise in the training data. A modified algorithm
which can control the effect of noise on it’s output is presented as well. Finally, in
this chapter we discuss how the choice of k affects the convergence and robustness of
our algorithm.

As stated above, the main technique of the first part of this thesis works by breaking a
given optimization problem into a sequence of smaller-dimensional optimization problems.
We develop on this idea further in the second part of the thesis. In this part, we formulate
the problem of solving an optimization problem in an Euclidean space as that of solving
one on a non-Euclidean manifold. Specifically,

2. In chapter 3, we reformulate the problem of solving a Euclidean optimization problem
as one that of solving an optimization problem on a Grassmannian. A Grassmannian
is a Riemannian manifold parameterized by two positive integers d and k. Every point
in this manifold represents a k-dimensional subspace of the d-dimensional Euclidean
space. We transform an Euclidean optimization problem to one on a Grassmannian
by defining an objective function on the Grassmannian whose value at every point
is the minimum value of the function on the Euclidean space when restricted to the
subspace corresponding to that point. We then provide formulae and convergence
guarantees for gradient descent of this newly defined objective on the Grassmannian.

3. In chapter 4, we take a similar approach as that of the previous chapter but with a
different manifold. In this chapter, we work with Euclidean optimization problems
of a specific kind which are defined using a data matrix. For these kind of optimiza-
tion problems we define a corresponding optimization problem on the multinomial
manifold. The multinomial manifold is a Riemannian manifold parameterized by two
positive integers n and m. Every point of this manifold is a matrix of size n × m
with positive entries and whose every column sums to 1. We provide gradient descent
formulae as well as convergence guarantees for the reformulated objective.

The aim of this section is not necessarily to push the state-of-the-art in terms of providing
techniques that beat the existing techniques on a certain benchmark. Instead, the aim is
to provide a new mathematical perspective on age-old problems to inspire future research
directions.

The main algorithmic theme connecting the last two sections was that of using access to a
certain well-designed black-box solver in order to solve a bigger problem at hand. By making
this black-box assumption, we open doors for innovating new techniques. This connects
the work from the last two sections to the work in the next section. In the last part of
the thesis, we provide algorithmic ideas for the design of minimax optimal estimators, a
fundamental problem in the field of statistics.

2



Figure 1.1: Clean label backdoor attack image taken from [100]. The backdoor attack is
added to the image on the right lower corner with the attack increasing in intensity starting
with no attack from left to right.

4. In chapter 5, we consider the problem of designing minimax estimators for estimating
the parameters of a probability distribution. Unlike classical approaches such as the
MLE and minimum distance estimators, we consider an algorithmic approach for
constructing such estimators. We view the problem of designing minimax estimators
as finding a mixed strategy Nash equilibrium of a zero-sum game. By leveraging recent
results in online learning with non-convex losses, we provide a general algorithm for
finding a mixed-strategy Nash equilibrium of general non-convex non-concave zero-
sum games. Our algorithm requires access to two subroutines: (a) one which outputs
a Bayes estimator corresponding to a given prior probability distribution, and (b)
one which computes the worst-case risk of any given estimator. Given access to these
two subroutines, we show that our algorithm outputs both a minimax estimator and
a least favorable prior. To demonstrate the power of this approach, we use it to
construct provably minimax estimators for classical problems such as estimation in
the finite Gaussian sequence model, and linear regression. Despite being a well-
studied problem, most of the approaches for constructing minimax estimators are
problem specific and usually do not extend or generalize to other problems. Often,
the process of designing minimax estimators is considered to be an art, as there is no
single technique for coming up with these estimators which works for all problems. In
this work, we provide algorithmic approaches for constructing minimax estimators.
The key advantage of our approach is that it is not problem specific and can be
used to construct minimax estimators for general problems. It requires access to two
optimization sub-routines. For problems where these sub-routines can be implemented
efficiently, our algorithm provides a computationally efficient technique to construct
minimax estimators. This chapter is written by referencing the work [43].

1.1 Background

In this section, we provide some mathematical background for the research problems ad-
dressed in the thesis.

1.1.1 Data Poisoning

Data poisoning in machine learning refers to the process of modifying the training data,
used to train a machine learning model by an adversary to disrupt its learning process. It
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Figure 1.2: Hidden trigger backdoor attack image taken from [100]. The backdoor attack
constructs poisoned images which are close to their source image visually but are close to a
patched version of an image in a target class in some feature space. The first column in the
figure are target images that the adversary wants to poison. The second column are the
source images that the adversary wants the corresponding poisoned images to share the class
with. The third column is a patched version of the source images and the fourth column
are the poisoned targets generated by the attack. The poisoned targets are intended by the
attacked to be classified as per the corresponding source image by the attacked classifier.

usually involves either a carefully designed noise added to the existing dataset or a set of
cleverly designed new data points. Mathematically, these two ways can be formulated in
the same manner as adding noise to the training dataset. Many data poisoning attacks
have been proposed in the machine learning literature, and indeed even small amounts of
cleverly chosen noise have been shown to produce a large impact on the training of the
models. Frameworks have been proposed to classify and study the various attacks and
countermeasures that the community has developed, such as [25] and [98]. We give an
overview of the attacks against which we tested our techniques.

Attack against Logistic Regression models. We consider the attack presented in
[27]. The objective of this attack is to launch a kind of denial of service attack by adding
noise to the training data which makes it difficult to learn a meaningful classifier. In this
attack, an adversary constructs a bi-level optimization problem to generate the poisoned
samples. The bi-level optimization consists of an outer maximization procedure which

4



finds poisoned samples that maximize the loss desired by the adversary, and an inner
minimization procedure which finds the optimal solution over the corrupted data. The
inner optimization models the learning that can be performed on the poisoned training data
while the outer optimization models how well the adversary does for the given poisoning.
This bi-level optimization problem is then solved using projected gradient-ascent to get the
poisoned samples. See [27] for more details.

Attack against Support Vector Machines. We consider the attack presented in [13].
The objective and approach of this attack is similar to that presented for Logistic Regression.
The attack is intended to increase the training loss and is constructed by solving a bi-level
optimization problem using projected gradient ascent.

Attack against Deep Learning models. We consider the attack presented in [100] and
[93]. These are backdoor attacks where the adversary places a pattern of pixels cleverly
over a subset of the training images with the intention of invoking a desired response from
the model when the same pattern of pixels is found on a test image. For example, in a
digit recognition setting, an adversary may be interested in classifying any image with the
desired pixel pattern present on it as an image of a 0 instead of the actual number in the
image. This enables the adversary to manipulate the model to get the desired responses
out of the system and hence bypass the model entirely.

In [100], they propose a clean label backdoor attack in which the special pixels are added
only to the images that belong to the desired class, for example in the previous scenario the
adversary would only add the pixels to images corresponding to a 0 in the training data.
This has the added benefit of the attack passing some rudimentary checks like human
inspection. We present an example of this attack in Figure 1.1 which is taken from [100].
In [93], they propose a method which constructs poisoned images by solving an optimization
problem defined to keep the poisoned image close to it’s source visually while moving it
close to a patched version of an image of desired target class in the feature space. We
present an examples of this attack in Figure 1.2 which is taken from [93].

1.1.2 Euclidean and non-Euclidean optimization

Optimization refers to the task of finding a solution that minimizes or maximizes a given
function. In Euclidean optimization, the function is defined over the Euclidean space of a
certain dimension d. Let f : Rd → R be the function that we want to minimize, a popular
and generally applicable method to do so is gradient descent. In gradient descent, one
starts out with an initial guess for the minimizing solution and improves upon it by moving
in the direction opposite to the gradient of the function at that point, repeating the same
procedure at the new solution obtained, and so on. Let x0 ∈ Rd be the initial guess for
the minimizing solution, then at any step i ≥ 1 of the gradient descent step we update x0

using,
xi = xi−1 − η∇f(xi−1)

where η is the learning rate of the algorithm which decides how much to move in one step
of the algorithm. Many theoretical results exist that show convergence of this procedure to
global minima, local minima, or saddle points of f depending on it’s mathematical prop-
erties [11]. Variants of gradient descent are used to train most modern Machine Learning
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systems. For our purposes, we will only be dealing with the basic version of this very
versatile technique.

Although this technique has a very benign-looking formula for Euclidean spaces, the com-
plexity of the same procedure increases many times when one formulates it over a non-
Euclidean space. This happens because one has to now start using the various differential
geometric constructs which typically do not need explicit formulations in the Euclidean
space. We will assume a basic familiarity with these differential geometric constructs, only
defining the narrow set of concepts that we will be using directly in our algorithms and
results. We do not aim to provide a comprehensive understanding of any of these concepts
in this thesis. Look at the excellent manifold books [71–73] by John M. Lee or any other
standard references for the background.

Figure 1.3: Geodesic on a manifold.

Algorithm 1.1 RiemannianGD(F, x(0), N, t)

1: x(0) is the starting point for GD inM
2: N is the number of iterations and t is the step size
3: for i ∈ [N ] do
4: x(i) ← γx(i−1) (−∇Fx(i−1) , t) /* Gradient descent step */
5: Return: x(N)

To describe the gradient descent procedure over non-Euclidean spaces, we need to describe
the procedure using the geometry of the space. Specifically, we will need two quantities:
Riemannian gradients and geodesics. Riemannian gradients play the same role as that
of gradients in the Euclidean space (they provide the direction in which to move) while
geodesics being the equivalent of a straight line in the Euclidean space provide the actual
path to move along.

We demonstrate this in Figure 1.3. Given a point x ∈ M and a tangent vector ξx ∈ TxM
(direction of descent in our case), γ : [0, t)→M is a curve s.t. γ(0) = x and γ′(0) = ξx. We
use the notation γx(ξx, t) to denote the geodesic at the point x and moving in the direction
ξx. With this notation, the Riemannian gradient descent algorithm is given in Algorithm
1.1.

In Chapters 3 and 4, we will model Euclidean optimization as optimization problems over
manifolds. Here we will need explicit formulae to compute Riemannian gradients and
geodesics, which we will provide and restate the detailed gradient descent in their terms.
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Optimization problems over manifolds have been studied in the past for solving various
problems. These problems tend to exploit the fact that the set of desirable solutions forms
the underlying manifold and hence instead of defining a function in the Euclidean space by
mapping the points on the manifold to the Euclidean space, one can directly optimize over
the desired manifold. An example of this is the Rayleigh quotient problem [3].

Our use of the gradient descent procedure over the manifold differs considerably from this
usual approach. We take a problem in the Euclidean space whose desired solution is also
a point in the same Euclidean space but we use the manifold to break the problem down
into small parts. Each of these small parts can be solved on their own and since the set
of all of these small parts forms a manifold we can use an optimization procedure over the
manifold to get the final answer for the full problem.

1.1.3 Minimax Estimation and Statistical Games

Let P = {Pθ : θ ∈ Θ ⊆ Rd} be a parametric family of distributions. In this work, we
assume Θ is a compact set. Let Xn = {X1, . . . Xn} ∈ X n be n independent samples drawn
from some unknown distribution Pθ ∈ P. Given Xn, our goal is to estimate the unknown
parameter θ. A deterministic estimator θ̂ of θ is any measurable function from X n to Θ.
We denote the set of deterministic estimators by D. A randomized estimator is given by a
probability measure on the set of deterministic estimators. Given Xn, the unknown param-
eter θ is estimated by first sampling a deterministic estimator according to this probability
measure and using the sampled estimator to predict θ. Since any randomized estimator can
be identified by a probability measure on D, we denote the set of randomized estimators
byMD, the set of all probability measures on D. Let M : Θ×Θ→ R be a measurable loss
function such that M(θ′, θ) measures the cost of an estimate θ′ when the true parameter
is θ. Define the risk of an estimator θ̂ for estimating θ as R(θ̂, θ)

def
= E

[
M(θ̂(Xn), θ)

]
,

where the expectation is taken with respect to randomness from Xn and the estimator θ̂.
The worst-case risk of an estimator θ̂ is defined as supθ∈ΘR(θ̂, θ) and the minimax risk is
defined as the best worst-case risk that can be achieved by any estimator

R∗ def
= inf

θ̂∈MD

sup
θ∈Θ

R(θ̂, θ). (1.1)

Any estimator whose worst case risk is equal to the minimax risk is called a minimax
estimator. We refer to the above min-max problem as a statistical game. Often, we are also
interested in deterministic minimax estimators, which are defined as estimators with worst
case risk equal to

inf
θ̂∈D

sup
θ∈Θ

R(θ̂, θ). (1.2)

From the perspective of game theory, the optimality notion in Equation (1.1) is referred
to as the minmax value of the game. This is to be contrasted with the maxmin value of
the game supθ∈Θ inf θ̂∈MD

R(θ̂, θ). In general, these two quantities are not equal, but the
following relationship always holds:

sup
θ∈Θ

inf
θ̂∈MD

R(θ̂, θ) ≤ inf
θ̂∈MD

sup
θ∈Θ

R(θ̂, θ). (1.3)

7



In statistical games, for typical choices of loss functions, supθ∈Θ inf θ̂∈MD
R(θ̂, θ) = 0, whereas

inf θ̂∈MD
supθ∈ΘR(θ̂, θ) > 0; that is, the minmax value is strictly greater than maxmin value

of the game. So we cannot in general reduce computing the minmax value to computing
the maxmin value.

Linearized Statistical Games. Without any additional structure such as convexity,
computing the values of min-max games is difficult in general. So it is common in game
theory to consider a linearized game in the space of probability measures, which is in general
better-behaved. To set up some notation, for any probability distribution P , define R(θ̂, P )

as Eθ∼P

[
R(θ̂, θ)

]
. In the context of statistical games, a linearized game has the following

form:
inf

θ̂∈MD

sup
P∈MΘ

R(θ̂, P ), (1.4)

whereMΘ is the set of all probability measures on Θ. The minmax and maxmin values of
the linearized game and the original game in Equation (1.1) are related as follows

sup
θ∈Θ

inf
θ̂∈MD

R(θ̂, θ) ≤ sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P ) ≤ inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P )
(a)
= inf

θ̂∈MD

sup
θ∈Θ

R(θ̂, θ),

where (a) holds because for any estimator θ̂, supP∈MΘ
R(θ̂, P ) is equal to supθ∈ΘR(θ̂, θ).

Thus, the minmax values of the original and linearized statistical games are equal. Any
estimator whose worst-case risk is equal to the minmax value of the linearized game is a
minimax estimator. The maxmin values of the original and linearized statistical games are
however in general different. In particular, as discussed above, the maxmin value of the
original statistical game is usually equal to zero. The maxmin value of the linearized game
however has a deep connection to Bayesian estimation.

Note that R(θ̂, P ) is simply the integrated risk of the estimator θ̂ under prior P ∈ MΘ.
Any estimator which minimizes R(θ̂, P ) is called the Bayes estimator for P , and the cor-
responding minimum value is called Bayes risk. Though the set of all possible measurable
estimators is in general vast, in what might be surprising from an optimization or game-
theoretic viewpoint, the Bayes estimator can be characterized simply as follows. Letting
P (·|Xn) be the posterior distribution of θ given the data Xn, a Bayes estimator of P can
be found by minimizing the posterior risk

θ̂P (Xn) ∈ argmin
θ̃∈Θ

Eθ∼P (·|Xn)

[
M(θ̃, θ)

]
. (1.5)

Certain mild technical conditions need to hold for θ̂P to be measurable and for it to be
a Bayes estimator [9]. We detail these conditions in Section 5.8.1, which incidentally are
all satisfied for the problems considered in this work. A least favourable prior is defined
as any prior which maximizes the Bayes risk; that is, P̃ is LFP if inf θ̂∈MD

R(θ̂, P̃ ) =

supP∈MΘ
inf θ̂∈MD

R(θ̂, P ). Thus, LFPs solve for the maxmin value of the linearized statis-
tical game. Any prior whose Bayes risk is equal to the maxmin value of the linearized game
is an LFP.

Nash Equilibrium. Directly solving for the minmax or maxmin values of the (linearized)
min-max games is in general computationally hard, in large part because: (a) these val-
ues need not be equal, which limits the set of possible optimization algorithms, and (b)
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the optimal solutions need not be stable, which makes it difficult for simple optimization
problems. It is thus preferable that the two values are equal1, and the solutions be stable,
which is formalized by the game-theoretic notion of a Nash equilibrium (NE).

For the original statistical game in Equation (1.1), a pair (θ̂∗, θ∗) ∈ MD × Θ is called a
pure strategy NE, if the following holds

sup
θ∈Θ

R(θ̂∗, θ) ≤ R(θ̂∗, θ∗) ≤ inf
θ̂∈MD

R(θ̂, θ∗) = inf
θ̂∈D

R(θ̂, θ∗),

where the equality follows since the optimum of a linear program over a convex hull can
always be attained at an extreme point. Intuitively, this says that there is no incentive for
any player to change their strategy while the other player keeps hers unchanged. Note that
whenever a pure strategy NE exists, the minmax and maxmin values of the game are equal
to each other:

inf
θ̂∈MD

sup
θ∈Θ

R(θ̂, θ) ≤ sup
θ∈Θ

R(θ̂∗, θ) ≤ R(θ̂∗, θ∗) ≤ inf
θ̂∈MD

R(θ̂, θ∗) ≤ sup
θ∈Θ

inf
θ̂∈MD

R(θ̂, θ).

Since the RHS is always upper bounded by the LHS from (1.3), the inequalities above are
all equalities.

As we discussed above, the maxmin and minmax values of the statistical game in Equa-
tion (1.1) are in general not equal to each other, so that a pure strategy NE will typically
not exist for the statistical game (1.1). Instead what often exists is a mixed strategy NE,
which is precisely a pure strategy NE of the linearized game. That is, (θ̂∗, P ∗) ∈MD×MΘ

is called a mixed strategy NE of statistical game (1.1), if

sup
θ∈Θ

R(θ̂∗, θ) = sup
P∈MΘ

R(θ̂∗, θ) ≤ R(θ̂∗, P ∗) ≤ inf
θ̂∈MD

R(θ̂, P ∗) = inf
θ̂∈D

R(θ̂, P ∗).

As with the original game, if (θ̂∗, P ∗) is a pure strategy NE of the linearized game of (1.1),
aka, a mixed strategy NE of (1.1), then the minmax and maxmin values of the linearized
game are equal to each other, and, moreover θ̂∗ is a minimax estimator and P ∗ is an LFP.
Conversely, if θ̂∗ is a minimax estimator, and P ∗ is an LFP, and the minmax and maxmin
values of (1.4) are equal to each other, then (θ̂∗, P ∗) is a mixed strategy NE of (1.1). These
just follow from similar sandwich arguments as with the original game, which we add for
completeness in Section 5.8.2.

In gist, it might be computationally easier to recover the mixed strategy NE of the statistical
game, assuming they exist, and doing so, would recover minimax estimators and LFPs. In
this work, we are thus interested in imposing mild conditions on the statistical game so
that a mixed strategy NE exists, and under this setting, develop tractable algorithms to
estimate the mixed strategy NE.

Existence of NE. We now briefly discuss sufficient conditions for the existence of NE.
As discussed earlier, a pure strategy NE does not exist for statistical games in general. So,
here we focus on existence of mixed strategy NE. In a seminal work, Wald [104] studied
the conditions for existence of a mixed strategy NE, and showed that a broad class of

1John Von Neumann, a founder of game theory, has said he could not foresee there even being a theory
of games without a theorem that equates these two values
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statistical games have mixed strategy NE. Suppose every distribution in the model class
P is absolutely continuous, Θ is compact, and the loss M is a bounded, non-negative
function. Then minmax and maxmin values of the linearized game are equal. Moreover, a
minimax estimator with worst-case risk equal to R∗ exists. Under the additional condition
of compactness of P, [104] showed that an LFP exists as well. Thus, based on our previous
discussion, this implies the game has a mixed strategy NE. In this work, we consider a
different and simpler set of conditions on the statistical game. We assume that Θ is compact
and the risk R(θ̂, θ) is Lipschitz in its second argument. Under these assumptions, we show
that the minmax and maxmin values of the linearized game in Equation (1.4) are equal
to each other. Such results are known as minimax theorems and have been studied in the
past [103, 104, 110]. However, unlike past works that rely on fixed point theorems, we rely
on a constructive learning-style proof to prove the minimax theorem, where we present an
algorithm which outputs an approximate NE of the statistical game. Under the additional
condition that the risk R(θ̂, θ) is bounded, we show that the statistical game has a minimax
estimator and an LFP.

Computation of NE. Next, we discuss previous numerical optimization techniques for
computing a mixed strategy NE of the statistical game. Note that this is a difficult compu-
tational problem: minimizing over the domain of all possible estimators, and maximizing
over the set of all probability measures on Θ. Nonetheless, several works in statistics have
attempted to tackle this problem [9]. One class of techniques involves reducing the set of
estimators D via admissibility considerations to a small enough set. Given this restricted
set of estimators, they can then directly calculate a minimax test for some testing problems;
see for instance Hald [45]. A drawback of these approaches is that they are restricted to
simple estimation problems for which the set of admissible estimators are easy to construct.
Another class of techniques for constructing minimax estimators relies on the properties
of LFPs [26, 55]. When the parameter set Θ is a compact subset of R, and when cer-
tain regularity conditions hold, it is well known that LFPs are supported on a finite set
of points [9, 40]. Based on this result, Kempthorne [59], Nelson [86] propose numerical
approaches to determine the support points of LFPs and the probability mass that needs
to be placed on these points. However, these approaches are restricted to 1-dimensional
estimation problems and are not broadly applicable. In a recent work, Luedtke et al. [77]
propose heuristic approaches for solving statistical games using deep learning techniques.
In particular, they use neural networks to parameterize the statistical game and solve the
resulting game using local search techniques such as alternating gradient descent. However,
these approaches are not guaranteed to find minimax estimators and LFPs and can lead
to undesirable equilibrium points. They moreover parameterize estimators via neural net-
works whose inputs are a simple concatenation of all the samples, which is not feasible for
large n.

In our work, we develop numerical optimization techniques that rely on online learning
algorithms (see Section 1.1.4). Though the domains as well as the setting of the statistical
game are far more challenging than typically considered in learning and games literature, we
reduce the problem of designing minimax estimators to a purely computational problem of
efficient implementation of certain optimization subroutines. For the wide range of problems
where these subroutines can be efficiently implemented, our algorithm provides an efficient
and scalable technique for constructing minimax estimators.
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1.1.4 Online Learning

The online learning framework can be seen as a repeated game between a learner/decision-
maker and an adversary. In this framework, in each round t, the learner makes a prediction
xt ∈ X , where X ⊆ Rd, and the adversary chooses a loss function ft : X → R and observe
each others actions. The goal of the learner is to choose a sequence of actions {xt}Tt=1

so that the cumulative loss
∑T

t=1 ft(xt) is minimized. The benchmark with which the
cumulative loss will be compared is called the best fixed policy in hindsight, which is given
by infx∈X

∑T
t=1 ft(x). This results in the following notion of regret, which the learner aims

to minimize
T∑
t=1

ft(xt)− inf
x∈X

T∑
t=1

ft(x).

When the domain X is compact, and convex, and the loss functions ft are
convex: Under this simple setting, a number of efficient algorithms for regret min-
imization have been studied. Some of these include Follow the Regularized Leader
(FTRL) [48, 81], Follow the Perturbed Leader (FTPL) [57]. In FTRL, one predicts xt

as argminx∈X
∑t−1

i=1 fi(x) + r(x), where r is a strongly convex regularizer. In FTPL, one
predicts xt as Eσ

[
argminx∈X

∑t−1
i=1 fi(x)− ⟨σ,x⟩

]
, where σ is a random perturbation drawn

from some appropriate probability distribution such as exponential distribution. These al-
gorithms are known to achieve the optimal O(

√
T ) regret in the convex setting [81, 96].

When X is compact, but either the domain or the loss functions ft are non–
convex: Under this setting, no deterministic algorithm can achieve sub-linear regret (i.e.,
regret which grows slower than T ) [21, 96]. In such cases one has to rely on randomized algo-
rithms to achieve sub-linear regret. In randomized algorithms, in each round t, the learner
samples the prediction xt from a distribution Pt ∈MX , whereMX is the set of all proba-
bility distributions supported on X . The goal of the learner is to choose a sequence of dis-
tributions {Pt}Tt=1 to minimize the expected regret

∑T
t=1 Ex∼Pt [ft(x)]− infx∈X

∑T
t=1 ft(x).

An alternative perspective of such randomized algorithms is as deterministic algorithms
solving a linearized problem in the space of probability distributions, with loss functions
f̃t(P ) = Ex∼P [ft(x)], and rely on algorithms for online convex learning. For example, by
relying of FTRL, one predicts Pt as

argminP∈MX

∑t−1
i=1 f̃i(P ) + r(P ), for some strongly convex regularizer r(P ). When r(P ) is

the negative entropy of P , Krichene et al. [67] show that the resulting algorithm achieves
O(
√
dT log T ) expected regret.

Another technique to solve the linearized problem is via the FTPL algorithm [4, 96]. In
this algorithm, Pt is given by the distribution of the random variable xt(σ), which is a
minimizer of

∑t−1
i=1 fi(x) − ⟨σ,x⟩. Here, σ is a random perturbation drawn from some

appropriate probability distribution. In recent work, Suggala and Netrapalli [96] show that
this algorithm achieves O(

√
d3T ) expected regret.

Without any assumptions on X or the loss functions ft. A key caveat with sta-
tistical games is that the domain of all possible measurable estimators is not bounded and
is an infinite-dimensional space. Thus, results as discussed above from the learning and
games literature are not applicable to such a setting. In particular, regret bounds of FTRL
and FTPL scale with the dimensionality of the domain, which is infinite in this case. But
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there is a very simple strategy that is applicable without making any assumptions on the
domain whatsoever, but under the provision that ft was known to the learner ahead of
round t. Then, an optimal strategy for the learner is to predict xt as simply a minimizer
of ft(x). It is easy to see that this algorithm, known as Best Response (BR), has 0 regret.
While this is an impractical algorithm in the framework of online learning, it can be used
to solve min-max games, as we will see in Section 5.1.

FTPL. We will be making use of the FTPL algorithm in the sequel, so we now describe
this in a bit more detail. In this algorithm, the learner predicts xt as a minimizer of∑t−1

i=1 fi(x)− ⟨σ,x⟩, where σ ∈ Rd is a random perturbation such that {σj}dj=1
i.i.d∼ Exp(η)

and Exp(η) is the exponential distribution with parameter η2. When the domain X is
bounded and loss functions {ft}Tt=1 are Lipschitz (not necessarily convex), FTPL achieves
O(
√
d3T ) expected regret, for appropriate choice of η [96]. A similar regret bound holds

even when xt is an approximate minimizer of
∑t−1

i=1 fi(x)− ⟨σ,x⟩. Suppose for any t ∈ N,
xt is such that

t−1∑
i=1

fi(xt)− ⟨σ,xt⟩ ≤ inf
x∈X

t−1∑
i=1

fi(x)− ⟨σ,x⟩+ (α+ β∥σ∥1) ,

where α, β are positive constants. Then FTPL achieves O(T 1/2 + αT + βT 3/2) expected
regret for appropriate choice of η (see Section 5.8.3 for more details).

2Recall, X is an exponential random variable with parameter η if P (X ≥ s) = exp(−ηs)

12



Part I

Data poisoning in Machine Learning
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2 | A new stochastic optimization
technique for combating data
poisoning attacks

We study methods for stochastic optimization in the setting where a subset of training data
might be corrupted by an adversary. Stochastic methods in optimization have become an
important workhorse in the practice of modern Machine Learning. These methods usually
work on data collected from a variety of different sources (such as scraping the Internet).
Naturally, an adversary can inject malicious data in this training set and it might be very
challenging to detect and remove this corrupted subset. In such a scenario, it is desirable to
have algorithms which are immune to injections of small amount of arbitrary corruptions.
In this paper, we propose a novel method for stochastic optimization which has the potential
of addressing this problem for a wide class of loss functions.

Difficulty of the problem. The problem of learning good models under worst case
corruptions in training data is NP-hard even for simple problems like binary classification
with half-spaces [44]. The popular method of dealing with these difficulties is to make
distributional assumptions over the data or the noise added by the adversary [61]. These
distributional assumptions heavily dictate the design of appropriate algorithms in these
settings. However, one doesn’t always know how the distributions will look like in practice
and, moreover, in the case of noise a determined attacker might tailor it to the specific
training data at hand and hence invalidate any distributional assumptions made. This
makes the problem of building optimization problems which are robust to worst-case noise
in the training data seemingly intractable.

In this work, we propose a tractable way out of this difficulty. Instead of expecting our
algorithm to behave perfectly on all input instances and be able to handle all worst-
case noise (which makes the problem NP-hard), we build an algorithm that performs well
on most instances and handles worst-case noise on these instances without putting any
distributional assumptions on either the training data or the noise. By working well on
most input instances we expect to capture all the instances that one could reasonably
expect to see in practice, while leaving out the small fraction of instances which are often
responsible for the computational hardness of a given problem (for example, the ones to
which a reduction from an NP-hard problem like satisfiability might map to).

The idea is to develop an algorithm whose output does not change drastically under small
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perturbations in the training data. This algorithm is not designed to necessarily perform
well on a small set of instances, even when some other algorithm might be able to solve
these instances well. The hope is that this small set of instances is one that will not be
seen in practice. Since characterizing the complexity landscape of various instances is a
highly intricate and mathematically extremely challenging subject [5], the above discussion
is meant to only give an intuitive understanding of our approach. As we shall see later
in Section 2.5, we achieve our objective by identifying a crucial property (called the gap
parameter) of the solutions of a given optimization problem. Our algorithm will only find
solutions that have a large enough gap parameter, giving them good robustness properties
under perturbations in the input data.

Our approach. Instead of working in the original dimension of the given optimization
problem, our algorithm proceeds by solving the given problem in a sequence of random
hyperplanes of a smaller dimension. These hyperplanes are defined so that each successive
one contains the solution obtained from the previous one. The algorithm stops either
when the improvements in the successive hyperplanes become small enough or after a
chosen number of iterations, and outputs the solution obtained in the last hyperplane. See
Algorithms 2.1 and 2.2.

Significance of our approach. Our approach to stochastic optimization algorithms has
interesting connections with the theory of expander graphs. The role of the gap parameter
in our analysis is akin to that of the spectral gap of the Laplacian of a graph. Under very
mild assumptions on this parameter (the logarithm of this parameter has to be polynomially
bounded in the dimension of the problem) we obtain a polynomially bounded runtime for
our algorithm (see Theorem 2.1).

The second eigenvalue is an important spectral quantity for graphs [66] and our analysis
shows that a similar quantity for functions dictates how fast certain stochastic optimization
algorithms can converge. This is distinct from all previous analyses which rely on structural
properties of the functions like convexity, Lipschitzness, or the Polyak-Lojasiewicz criterion
to bound the rate of convergence. As far as we know, such a parallel between the very well-
studied theory of random walks on expander graphs and stochastic optimization algorithms
is entirely novel to our work.

The highlight of our analysis is Lemma 2.2, which is a statement about moving non-trivially
away from the maximum of a function by random sampling. For a function whose domain
is a Lie group which satisfies Kazhdan’s Property (T), it gives a lower bound on the size of
the set where the function takes a value non-trivially away from the maximum. This is a
very general lemma (see Section 2.4) and we believe that it will find applicability in many
future analyses.

Organization of this paper. In Section 2.1, we discuss existing approaches for stochastic
optimization and dealing with perturbations in training data, popularly referred to as data
poisoning attacks. In Section 2.2, we set up the notation and introduce all the concepts
needed for the rest of the paper. In Section 2.3, we describe and discuss our stochastic
optimization algorithm and give our convergence result. In Section 2.4, we discuss the
main theoretical technique of our analysis. In Section 2.5, we discuss the robustness of our
algorithm and demonstrate the efficacy of our approach with experiments in Section 2.6.
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2.1 Related Work

In this section, we compare our approach to stochastic optimization with existing ap-
proaches as well as discuss the literature on data poisoning attacks in Machine Learning.

Comparison to existing stochastic techniques. Most of the existing literature focuses
on either stochastic gradient descent or it’s popular variants like Adam [63] and AdaGrad
[30]. In stochastic gradient descent one picks a random subset of the data, computes the
loss on this subset and uses the gradient of this loss to update the parameters of the model.
Convergence for this scheme can be shown under assumption like strong convexity [84],
the Polyak-Lojasiewicz condition [41], and convergence to stationary points for non-convex
functions which satisfy an expected smoothness assumption [60]. These convergence results
rely crucially on the respective structural properties mentioned for the loss functions, while
the randomness of picking a subset of the data usually worsens the convergence rates as
compared to their deterministic counterparts (which work with the full training data in all
iterations).

Our approach is fundamentally different from these approaches. Instead of subsets of the
training data being the source of randomness, in our approach the randomness comes from
the selection of random subspaces in which the given optimization problem is solved. In
the particular case when the optimization problem is solving for optimal parameters in a
Euclidean space, our method works in subspaces of the full space of the parameters. The
only existing technique that has superficial similarities to this is the dropout method in
deep learning [95]. But even there one typically considers only subsets and not subspaces of
the parameters. Note that the set of all subspaces of the parameter space is a much bigger
space (being a smooth manifold) than the set of all of their subsets (which is a discrete
set). In addition, dropout is a specialized technique that is only used in the context of deep
learning.

Analytically, our analysis is dependent on the crucial fact that the space our randomness is
drawn from forms a smooth manifold that it is a quotient of a compact Lie group, and in
particular therefore satisfies Kazhdan’s Property (T). The only assumption we need from
the loss function is that it should be smooth. We do not need any other assumptions like
convexity or Lipschitzness.

Data poisoning in Machine Learning. Many methods exist in the literature for dealing
with data poisoning; see [98] and [25] for excellent surveys. While there are a lot of methods
which try to deal with data poisoning for specific models like linear regression, logistic
regression, or neural networks, few methods exist which have general applicability. Data
sanitization and some form of bagging and majority voting seem to be among these few
general techniques. Data sanitization can be difficult as adversaries assemble more and
more sophisticated forms of noise to make noisy data look indistinguishable from real data.
Bagging and voting can decrease the amount of data available for training for a single model
and can have unwanted accuracy trade-offs. Robust training, which augments the training
data with poisoned instances to specifically train the model to handle such data, is another
popular method to combat such attacks. All of these techniques deal with the preprocessing
of the training data, and not with the actual learning process.

Techniques like [89] and [22], which deal with the learning process, have been developed
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in the robust statistics literature to mitigate the influence of noise in the training data.
But these techniques tend to be intractable without making restrictive distributional or
modeling assumptions.

Our technique, which is primarily a new optimization algorithm, can be used either as an
alternative to these existing techniques or in conjunction with them to provide enhanced
protection against data poisoning attacks.

2.2 Preliminaries

Notation. We use G to represent a Lie group and H to represent a subgroup of it.
Moreover, we use G/H to represent the quotient of G w.r.t. H. For a treatment of Lie
groups see [17]. We use O(d) to represent the compact orthogonal group acting on Rd.
The product group O(k) × O(d − k) can naturally be identified as a subgroup of O(d).
The quotient O(d)/ (O(k)×O(d− k)) has a natural interpretation as the set of all k-
dimensional subspaces of Rd. This is a well studied geometric object, popularly known as
the Grassmannian (see [8]). We denote it by Gk,d. We use the term k-plane to refer to
a k-dimensional affine subspace, i.e. a k-dimensional hyperplane of Rd, in the rest of the
paper.

For us, ℓ : Rd → R will be the smooth loss function we want to optimize. Here, smoothness
means that ℓ is infinitely differentiable. We use η with various subscripts to represent
subspaces or k-planes of appropriate dimensions (which will be clear from the context).

Measures on Lie Groups. Our Lie groups, like all locally compact Lie groups, have a
left-invariant Haar measure which is unique up to scaling [85]. This covers a wide range of
Lie groups used in applications [38]. For results regarding existence of invariant measures
on compact Lie groups, their quotients (like the Grassmannians) and validity of Fubini style
decompositions look at Chapter 1 of [94].

For a measurable subset A of a given measure space we use |A| to denote the measure of
this set under the implied measure.

Kazhdan’s Property (T). For a definition of this property see Section 3.1 of [91]. It
is primarily defined for non-compact Lie groups. Indeed for compact Lie groups, such
as we are considering in this paper, the property is trivially satisfied. We bring it up
here because of its impact on expander graphs and their random walks which forms an
important motivation for our work. Also, because we formulate our core lemma, Lemma
2.2, on non-compact Lie groups. We will only be working with the following consequence
of the property in our proofs:

Lemma 2.1. [Remark 1.1.4 in [7]] Let G be a locally compact Lie group that satisfies
Kazhdan’s property (T). Then there exists a c > 0 such that for all functions f : G → R,
square integrable w.r.t. a left-invariant Haar measure and which satisfy

∫
G f = 0, there

exists a γ ∈ G satisfying
∥f − γ · f∥2 ≥ c∥f∥2

where the action of γ on f is defined by (γ · f)(x) = f(γ−1 · x).
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Algorithm 2.1 Our Random Walk

Input: ℓ : Rd → R, x0 ∈ Rd, d > k > 1, T ≥ 0, N ≥ 0
1: for i = 1, . . . , N do
2: Sample η1, . . . , ηT uniformly from Gk,d

3: yj ← argminy∈xi−1+ηj ℓ(y) for j ∈ [T ]
4: xi ← argminy∈{y1,...,yT } ℓ(y)

5: return xN

Remark 2.1. The constant c > 0 in Lemma 2.1 is only dependent on the group and is
popularly referred to as the Kazhdan constant of the group. We can chose c = 2 for compact
Lie groups. The proof of Lemma 2.2 in Appendix 2.7.2 includes a proof of this fact.

Noise model. We will study the robustness properties of our techniques in Section 2.5. We
consider noise only in the training data matrix A. Noise may be introduced by perturbing
a certain fraction of the rows of A with a noise matrix ∆ or by augmenting A with a small
number of well crafted data points. Generally, both these settings can be mathematically
modelled as adding noise ∆ to A. This setting is popularly referred to as data poisoning.
We study the behavior of our approach as the fraction of rows that ∆ corrupts increases.
Note that we do not make any distributional assumptions on ∆, instead we work with the
worst case ∆ by evaluating our technique against existing data poisoning attacks in the
literature, which generate ∆ with full knowledge of A.

2.3 Our Results

In this section, we describe our random walk, which is a stochastic optimization technique
applicable to any smooth loss function. Moreover, we provide a convergence result that
works in this very general setting.

2.3.1 Random Walk

The aim of any optimization algorithm is to find some critical point of ℓ, usually one of the
global minima, i.e., find an x∗ ∈ Rd such that

x∗ ∈ arg min
x∈Rd

ℓ(x)

Assume that we are given a black-box access for solving the same problem but in a smaller-
dimensional space, specifically a k-plane η ⊂ Rd, i.e., we can find an x∗η such that

x∗η ∈ argmin
x∈η

ℓ(x)

Our random walk is motivated by asking the question: Can we use this black box repeatedly
for a sequence of k-planes η1, η2, . . . to find an x∗? This suggests a natural random walk as
follows: start with some x1 ∈ Rd and sample a random k-plane η1 containing x1; find an
x2 such that x2 ∈ argminx∈η1 ℓ(x); in i-th step find a random k-plane ηi containing xi and
solve for argminx∈ηi ℓ(x); stop the algorithm after N steps. We state this more formally in
Algorithm 2.1.
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This is a very natural random walk from computational complexity theory perspective. It
leverages the ability to solve several smaller-dimensional random problems when solving
a bigger-dimensional problem. This approach has been used to study other problems in
the literature (see Section 10.1.2 in [5]), and has provided interesting insights in to the
structure of these problems. This approach is called random self-reducibility. To the best
of our knowledge, our work is the first to study this approach for optimization problems in
the Euclidean space.

One of the surprising observations from the practice of modern ML is the ease of solving
many seemingly intractable non-convex optimization problems. This justifies the use of a
black-box to solve a problem of a smaller dimension in Algorithm 2.1. Since our random
walk is designed to serve the dual purpose of optimization as well as learning a model robust
to data poisoning, one would not be advised to use the same black-box to solve the original
problem directly. The black box can be implemented with any of the existing techniques.
We recommend using a technique best suited to the specific machine learning model that
is being learned. We now study the convergence properties of Algorithm 2.1.

2.3.2 Convergence Analysis

For the convergence analysis, we need to define a few auxiliary functions. We define L :
Rd ×Gk,d → R,M : Rd → R,m : Rd → R,Θ : Rd → R and θ : R→ R as follows:

L(x, η) := min
y∈x+η

ℓ(y),

M(x) := max
η∈Gk,d

L(x, η), m(x) := min
η∈Gk,d

L(x, η),

Θ(x) :=
∥L(x, ·)∥22

2|M(x)−m(x)|2
, θ(α) := min

x∈{x:ℓ(x)=α}
Θ(x)

We call θ the gap function of ℓ and θ(ℓ(x)) the gap parameter of the minimizer x. The
gap function of ℓ plays a crucial role in our analysis and have very close connections with
the spectral gap of a Laplacian on a graph. We discuss this connection in more detail in
the next section. Our main convergence proof is as follows:

Theorem 2.1. Let ℓ : Rd → R be a smooth loss function such that θ(ℓ) ≥ 1 − δ for some
δ > 0. Let α = minx ℓ(x). For all ϵ0 and γ in (0, 1), with N = log 1/ϵ0

log 2/δ and T = logN+log 2/3γ
log 1/δ

and with probability at least 1− γ, Algorithm 2.1 finds an x ∈ Rd such that

ℓ(x)− α ≤ ϵ0(ℓ(x0)− α).

We defer the proof of Theorem 2.1 to Appendix 2.7.5 and discuss the main theoretical
ideas behind it in Section 2.4. For now, there are several interesting points to note about
Theorem 2.1:

1. It only uses a smoothness assumption on the loss function ℓ. We believe that this
assumption can be relaxed to a continuity assumption with a little bit more work.
But for ease of exposition, we avoid it. In particular, note that we do not assume any
bound on the Lipschitz constant of ℓ, which is quite unusual for convergence analysis
in the optimization literature.
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2. The dependence on all parameters is logarithmic. In contrast, the dependence on the
relevant parameters (like Lipschitz or Polyak- Lojasiewicz constant) is at least linear
for gradient descent and its stochastic counterparts. Moreover, the dependence on ϵ0
for stochastic procedures is also always at least linear in 1/ϵ0 even under very limited
setting of convex functions [39].

3. The analysis is non-local in the sense that at each iteration we directly track progress
with respect to the global minimum value α. In typical analysis in the non-convex
optimization literature one uses bounds on the difference between consecutive iterates,
i.e, ℓ(xi)− ℓ(xi−1).

2.4 Main theoretical insight

In this section we state and discuss Lemma 2.2 which forms our main theoretical technique.
We state Lemma 2.2 more generally than is needed to prove Theorem 2.1. It is stated for
any locally compact Lie group that satisfies Kazhdan’s Property (T). We do this in order
to emphasize the general nature of our result and to bring out the connection of this crucial
lemma with Kazhdan’s Property (T) which is a very important and extensively studied
property of Lie groups [7]. Note that all locally compact group with a normalized Haar
measure are compact. So Lemma 2.2 is equivalent to it’s Corollary 2.1 presented in the next
subsection. But stating them as two different statements gives us an opportunity to provide
two different proofs and highlight the connection of our work with Kazhdan’s Property (T).
A proof of Lemma 2.2 is presented in Appendix 2.7.1.

Lemma 2.2. Let G be a locally compact Lie group that satisfies Kazhdan’s Property (T)
with constant c. Fix a normalized left-invariant Haar-measure on G. Let f : G → R
be a smooth function such that

∫
G f = 0. Let α = ming∈G f(g), β = maxg∈G f(g) and

ϵ =
c∥f∥22

2|β−α|2 . Then, ∣∣{g : f(g)− α ≤ (1−
√
ϵ)(β − α)}

∣∣ ≥ ϵ/2.

Contextualizing Lemma 2.2. The lemma gives a non-trivial lower bound on the prob-
ability of finding a point that is substantially away from the maximum of the function
defined on a locally compact group G, by simply sampling a point randomly according to
the fixed left-invariant Haar measure. The fundamental nature of this lemma should be
compared with results like the Markov inequality or the Chebyshev inequality, which give a
non-trivial lower bound on the probability of getting a value close to the mean by sampling
a point according to the used probability distribution.

Generality of Lemma 2.2. Though this result is stated on a Lie group one can transfer it
to other spaces which lack this structure, for example, the n-dimensional hypercube. This
is possible because one can construct a smooth map from the n-dimensional hypercube to
the n-dimensional torus, which is a compact Lie group. We state this here to demonstrate
the generality of Lemma 2.2 but we do not provide the details because we do not use such
a result in the paper. In the next section, in Lemma 2.3, we discuss how the result can
be transferred to an appropriate quotient of a Lie group. We also note that an argument
similar to the proof of Lemma 2.2 can be constructed for a discrete group like the boolean
hypercube, further increasing the applicability of our result.
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2.4.1 Using Lemma 2.2 to prove Theorem 2.1

In Algorithm 2.1 we sample from the Grassmannian, which is a quotient space of the
compact Lie group O(d). We do not sample from the group directly. In Lemma 2.3 we
show that a statement similar to Lemma 2.2 holds for our quotient space, also. The proof of
Lemma 2.3 (which is presented in Appendix 2.7.3) uses Lemma 2.2 adapted to the special
case of compact Lie groups (presented in Corollary 2.1). Kazhdan’s Property (T) is a
concept for Lie groups and does not have an equivalent statement for their quotients.

Corollary 2.1. Let G be a compact Lie group and let f : G→ R be a smooth function such
that

∫
G f = 0. Let α = ming∈G f(g), β = maxg∈G f(g) and ϵ =

∥f∥22
|β−α|2 . Then,∣∣{g : f(g)− α ≤ (1−

√
ϵ)(β − α)}

∣∣ ≥ ϵ/2. (2.1)

Lemma 2.3. Let G be a compact Lie group and H a closed subgroup of G. Let f : G/H → R
be a smooth function such that

∫
G/H f = 0. Let α = minx∈G/H f(x), β = maxx∈G/H f(x)

and ϵ =
∥f∥22

|β−α|2 . Then, ∣∣{x : f(x)− α ≤ (1−
√
ϵ)(β − α)}

∣∣ ≥ ϵ/2.

A direct proof of Corollary 2.1 (which also establishes Lemma 2.1 for compact Lie groups)
is presented in Appendix 2.7.2 and the proof for Lemma 2.3 is presented in Appendix 2.7.3.

Discussion on the gap parameter. One of the very important application of Kazhdan’s
property (T) is the first explicit construction of an expander graph in [80]. By the virtue of
their spectral gap (the difference between the first and second eigenvalue of the Laplacian),
expander graphs have very good mixing properties, i.e., a random walk on an expander
graph quickly gets distributed evenly across the graph [91]. The parameter ϵ in the Lemmas
2.2-2.3 behaves very similarly to the spectral gap of an expander graph. It dictates how
fast f can approach its minimum α. In fact, it plays a similar role in the proof of Theorem
2.1 as the spectral gap does in the rapid mixing proofs. More specifically, the key parallel
with expander graphs is that their graph adjacency matrix shrinks functions which are
orthogonal to constants (e.g., Lemma 1 of Miller and Venkatesan [83]). This is the same
operating principle as in Lemmas 2.2-2.3. This is the reason why we call θ the gap function
of ℓ.

One can potentially develop this connection with random walks on expander walks further
by noticing that our random walk can be modeled using a supermartingale. One can then
try to show that as the random walk approaches convergence, it endows a uniform or a
near-uniform distribution over the set of all global minima. In an expander random walk
this uniform distribution is over the set of all nodes. In a certain sense, because we are
always picking a random Gk,d (defining the set of hyperplanes containing xi in the ith
iteration of the Algorithm 2.1), our random walk gives a similar sampling strategy, but
over the set of all global minima, as does a random walk on an expander graph.

2.5 Robustness

For any smooth function ℓ, by Theorem 2.1 we know that Algorithm 2.1 converges towards
its minimum α. However, in practice, the algorithm might converge to a point different
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from the global minimum (see Section 2.6). In this section, we discuss why this can happen
and what this means for the robustness of the solution obtained from Algorithm 2.1 under
perturbations in the training data. The noise model we use in this section was described in
Section 2.2.

2.5.1 Ignoring a small set

Let f be a function on the Grassmannian. Consider the situation where there is a set U of
small measure on which the function dips dramatically compared to the measure of U . In
this case, the minimum of f outside of U may be substantially larger than the minimum of
f over its entire domain. The variance of f on this restricted space might still be almost
the same as its variance on its entire domain. By only considering the space outside U , the
gap parameter increases substantially. This means that the value of f , at a random point
on the Grassmannian, will have a higher probability of being close to the minimum outside
of U than the one on the entire space. Mathematically, this can be formalized as follows:

Lemma 2.4. Let G be a compact Lie group with a normalized measure. Let H be a closed
subgroup of it. Let G/H, the quotient of G with respect to H, have a normalized measure on
it. Let f : G/H → R be a smooth function such that

∫
G/H f = 0. Let α = minx∈G/H f(x),

β = maxx∈G/H f(x) and α′ ∈ (α, β). Set U = {x : f(x) < α′} and ϵ =
∥f∥22

|β−α′|2 −2|U | |β−α|2
|β−α′|2 .

Assume ϵ > 0. Then, ∣∣{x : f(x)− α′ ≤ (1−
√
ϵ)(β − α′)}

∣∣ ≥ ϵ/2.

One way of interpreting this is that random sampling is blind to the bad behavior of
the function on small sets in its domain. Leaving out the small set, we get a better gap
parameter for the minimizers of our loss function ℓ that lie outside this set. In the next
two subsections, we will discuss the implications of this for the robustness of Algorithm 2.1.
But first we use Lemma 2.4 to give a new convergence result.

Define a function ℓα′ as ℓα′ := max(ℓ, α′) for some α′ > α. With Lemma 2.4 in tow, we can
now study the convergence properties of Algorithm 2.1 towards α′ even when the algorithm
uses ℓ in its execution. We therefore obtain the following theorem:

Theorem 2.2. Let ℓ : Rd → R be a smooth loss function and α = minx ℓ(x). Choose
α′ > α and set ℓα′ := max(ℓ, α′). Let θℓα′ be the gap function of ℓα′ . Assume θℓα′ ≥ 1 − δ

for some δ > 0. Then, for all ϵ0 and γ in (0, 1), with N = log 1/ϵ0
log 2/δ and T = logN+log 2/3γ

log 1/δ ,
with probability at least 1− γ, Algorithm 2.1 finds an x ∈ Rd such that

ℓ(x)− α′ ≤ ϵ0(ℓ(x0)− α′).

Note that ℓα′ , as defined, might not be a smooth function. But that does not matter since
we only use it to compute θℓα′ theoretically. It has arbitrarily close smooth approximations
that yield the same θ.

2.5.2 Gap parameter as a measure of robustness

In the last section, we saw that leaving a “part” of the function out can increase the gap
parameter of the minimizers of the loss function ℓ. In general, the value of ℓ on it’s domain
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Algorithm 2.2 Our Robust Random Walk

Input: ℓ : Rd → R, x0 ∈ Rd, 1 < k < d, 0 < θ0 < 1/2, N > 0
1: T ← 2N

log 1/(1−θ0)
2: for i = 1, . . . , N do
3: Sample η1, . . . , ηT uniformly from Gk,d

4: yj ← argminy∈xi−1+ηj ℓ(y) for j ∈ [T ]
5: xi ← argminy∈{y1,...,yT } ℓ(y)

6: return xN

can vary between the maximum and minimum value of ℓ. When set to the maximum
value, the gap parameter for the corresponding solutions will be 1 and when set to the
minimum value, it will have the smallest possible value for this function. We hypothesize
that for a solution x returned by Algorithm 2.1, its gap parameter dictates its robustness
as a minimizer of ℓ.

When an adversary introduces a perturbation ∆ to the data matrix, if it is able to corrupt
the solutions on most of Gk,d then the loss function is highly unstable, and there is little
hope to build any protection against perturbations. But if we look at the class of loss
functions for which most of this perturbation is limited to a small subset of Gk,d, then
for such functions it is natural to aim to find solutions which lie outside of these easily
corruptible subsets. Since, by Lemma 2.4, the gap parameter directly measures the size of
the set that lies close to a given target value α′, if this set is small, it makes the solutions
corresponding to this target value more susceptible to noise and hence less robust. This
is why it is reasonable to use the gap parameter as a measure of robustness. With this
motivation we give a modification of Algorithm 2.1 which can be used to optimize ℓ up to
an α′ with a desired gap parameter. We present this in Algorithm 2.2 and prove that it
finds the correct α′ in Theorem 2.3. Note that Algorithm 2.2 does not need α′ as an input
parameter.

Theorem 2.3. Let ℓ : Rd → R be a smooth loss function. Then for all N > 0 and
0 < θ0 < 1/2, Algorithm 2.2, with probability at least 1 − 3/2N , converges to an α′ with
θ(ℓα′) ≥ θ0, i.e., it finds an x such that

ℓ(x)− α′ ≤
(
1−

√
2θ0

)N (
ℓ(x0)− α′) .

We provide a proof of this theorem in Appendix 2.7.7.

2.5.3 Dependence of robustness on k

Up until now, we have discussed the convergence properties of the random walk, and iden-
tified the gap parameter as an important parameter controlling both the convergence and
the robustness of the solution. In this section, we discuss how the choice of k, the dimen-
sion of the planes in which the optimization problem is solved, affects the algorithm and in
turn informs the gap parameter of the solution retrieved. This subsection is best read in
conjunction with Section 2.6 where our experimental results are presented.
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A general trend in our experiments, across a range of models, is that for smaller values of
k the learned models usually have very good loss values and robustness properties. As k
increases, the loss might improve, but at the cost of decreased robustness. For example,
in experiments with neural networks, the models learned with a smaller value of k do
drastically better on backdoor attacks than the models learned without Algorithm 2.1
while achieving similar accuracy to the latter on clean test data.

As k decreases, the way the optimization problem is adapted to the respective Grassmannian
changes, seemingly hiding solutions which are more susceptible to noise in the small sets
as discussed in the last two sections. Surprisingly, the solutions retrieved still have close
to optimal loss values. We believe that this robust behavior can be attributed to the
difficulty of constructing perturbations which can simultaneously affect a large portion of
random projections of the data matrix. Choosing k appropriately, we can control the
trade-off between obtaining a solution with an optimal loss value and a solution with better
robustness properties.

2.6 Experiments

In this section, we show the versatility of our technique by testing it on a wide range of
models: Linear Regression, Logistic Regression, SVMs and Neural Networks. We use both
synthetic as well as popular evaluation datasets.

Implementation details. To simplify the implementation, we work with a modification
of Algorithm 2.1 for our experiments. This modification is presented as Algorithm 2.3
in Appendix 2.7.8. It replaces hyperplanes in Algorithm 2.1 with subspaces, which are
hyperplanes that pass through the origin.

Picking a random subspace. One important step in Algorithm 2.3, used in all the
experiments below, is that of picking a random subspace containing a given vector x ∈ Rd.
To do this, we consider two different techniques:

1. In the first technique, we start by constructing a basis U for the space orthogonal
to x by taking the singular vectors corresponding to non-trivial singular values of
the matrix Id − xxT /∥x∥2, where Id is the d × d identity matrix. We then sample a
mean 0 and variance 1 gaussian i.i.d. matrix of size (d − 1) × (d − 1) and construct
V ∈ R(d−1)×(k−1), the matrix whose columns are the top k− 1 left singular vectors of
the randomly sampled matrix. Our desired random supspace then is the span of the
column space of UV combined with x.

2. In the second technique, we start by constructing a d×k matrix U by keeping its first
column as x and filling the rest of it’s entries with gaussian i.i.d. random variables.
We then do a QR decomposition on U and use the orthonormal matrix obtained from
this decomposition in our algorithms. Note that the span of this orthonormal matrix
will always contain x.

While the first method will provably generate a uniformly random subspace containing x,
the second method has no such guarantees. But the second method is computationally
much faster when d is large and hence is used for all our deep learning experiments.
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(a) Condition number = 102 (b) Condition number = 104 (c) Condition number = 105

Figure 2.1: Plots for Algorithm 2.3 run on Linear Regression. We compare the loss of the
solution retrieved for different values of k with the loss of the solutions retrieved by ridge
regression with regularization parameters set to 5, 15 or 25. The dark lines correspond to
the mean and the shaded area to one standard deviation over 10 runs of the experiment.
We see that the linear regression models retrieved by Algorthm 2.3 have losses comparable
to those of the regularized models learned with ridge regression.

2.6.1 Linear Regression

For linear regression experiments, we work with synthetic data in 100 dimensions with
1000 data points. The behavior of a linear regression instance is largely determined by the
condition number of its data matrix. Accordingly, we study the effect of our algorithm for
data matrices with preselected condition numbers.

For a given condition number, we generate an instance whose singular values are equally
spaced between a top singular value of 100 and the corresponding least singular value.
We generate a regressor vector by setting the last five values to 1 and by picking other
coordinate uniformly at random between 0 and 1. The idea here is that in real world data,
the top singular vectors usually correspond to the signal whereas the last singular vectors
correspond to the noise. We might be able to get a solution with a lower loss by fitting to
the last singular vectors, but this would be overfitting to the training data. We can avoid
this by using some regularization technique like ridge regression (see Section 3.4.1 in Hastie
et al. [47]). Using this setting, we want to demonstrate that for an appropriate choice of
k, Algorithm 1 retrieves solutions which have loss corresponding to different choices of the
regularization parameters in ridge regression. We repeated the experiments 10 times and
report the mean and standard deviation in our plots. The results are presented in Figure
2.1. This shows that linear regression models trained with Algorithm 2.3, avoid fitting to
the noise in the problem, and hence can be expected to have robust behavior.

2.6.2 Logistic Regression and SVMs

For binary classification experiments, we use a subset of the MNIST dataset by sampling
100 images corresponding to a pair of digits to construct our training dataset, and 500
images to construct our testing dataset. We then use SecML [82], a library for secure
and explainable Machine Learning in Python, to poison the training dataset to degrade
the performance of the learned classifier. The library implements the attack from [27] to
generate poisoned datasets for logistic regression and the attack from [13] for SVMs. We
study the effect of poisoning an increasing number of points on various choices of k for
Algorithm 2.3. As a baseline, we compare this with the accuracy obtained by training the
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(a) LogReg: Digits 2 and 7 (b) LogReg: Digits 3 and 8 (c) LogReg: Digits 5 and 9

(d) SVM: Digits 2 and 7 (e) SVM: Digits 3 and 8 (f) SVM: Digits 5 and 9

Figure 2.2: Plots for classifying pairs of digits from MNIST dataset using the logistic
regression and SVM models trained with Algorithm 2.3. We poison the datasets using
SecML [82] and compare the accuracy of a solution retrieved by Algorithm 2.3, for various
values of k, to the solution obtained by directly learning the classifier on the poisoned
dataset (this corresponds to the baseline). For reference, we also give the accuracy of the
model trained on the clean data in the plots. The dark lines correspond to the mean and
the shaded area to one standard deviation over 10 runs of the experiment. We see across all
the plots that training with Algorithm 2.3 yields models with substantially better accuracy
in presence of the data poisoning attacks.

corresponding classifiers without Algorithm 2.3. We also give the accuracy for training the
classifiers without Algorithm 2.3 on a dataset with no poisoned samples. We repeated the
experiments 10 times and report the mean and standard deviation in our plots. The results
are presented in Figure 2.2. As we can see, the models obtained from the training with
Algorithm 2.3 give much better accuracy than those trained without it. Observation also
indicates that the accuracy is generally better for smaller values of k. We note that SVM is
not a “smooth” optimization problem per se, but Algorithms 2.1, 2.2 and 2.3 are still well
defined for it.

2.6.3 Neural Networks

In this section, we discuss the efficacy of Algorithm 2.3 against backdoor attacks in deep
learning. The agenda of a backdoor attack is to emanate a specific response from a trained
network when a test image has a special patch of pixels (the backdoor) overlapped on it.
This attack can be used to misclassify images during testing. To carry out such an attack,
an adversary introduces a set of images with the backdoor attached to them, and with
their labels set to a desired label in the training dataset. The network then runs the risk
of learning an association between the backdoor and the desired label, while ignoring the
true label of the image entirely.

Attack from [100]. For our experiments, we use the implementation of this attack pro-
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(a) Accuracy on a clean test set (b) Accuracy on a poisoned test
set

(c) Accuracy of the poisoning
attack

Figure 2.3: Accuracy plots for MNIST against a backdoor attack presented in [100]. A
feedforward neural network is trained with Algorithm 2.3 for different values of k with
poisoned samples in the training data. We report three metrics: 1) accuracy on a clean
test set which doesn’t contain any images with the backdoor, 2) accuracy on a poisoned
test set which contains images with the backdoor, 3) accuracy of the attack, i.e., images
with the backdoor getting classified as intended by the adversary. We compare the results
against the same model trained directly (this corresponds to the baseline). The dark lines
correspond to the mean and the shaded area to one standard deviation over 5 runs of the
experiment. At 0.3 fraction of the training, a modest decrease in the clean accuracy of the
models trained using Algorithm 2.3 yields substantially better accuracy on the poisoned
data set while also considerably decreasing the accuracy of the attack.

vided in the ART toolbox [87]. In this attack the backdoor is inserted only into images
corresponding to a target label. This is done to avoid the filtering of clearly mislabeled
poisoned samples by human inspection. We work with the MNIST dataset. Our model is a
fully connected MLP with three hidden layers and 100 neurons in each layer. For training,
we use the Adam optimizer. A baseline model is trained on the poisoned dataset for 10
epochs. For training with Algorithm 2.3, we set N = 10. To solve the problem in the
subspace selected in a given iteration of Algorithm 2.3, we train the network for 5 epochs.
The models are evaluated on a clean test set as well as a poisoned test set which consists
of images corrupted with the backdoor. We repeated the experiments 5 times and report
the mean and standard deviation in our plots. The results are presented in Figure 2.3. The
baseline model corresponds to k = 784, which is the full dimension of the problem.

Since the parameters of an MLP are distributed across different layers and neurons, treating
them as part of the same Euclidean space and working with the subspaces of this single Eu-
clidean space is unnatural. Instead, we work with the parameters of each neuron separately
by treating them as living in their own Euclidean spaces, and sampling different subspaces
for each of these spaces individually when running Algorithm 2.3. This corresponds to
working with a finite product of Grassmannians, which is still the quotient of a compact lie
group (the group now will be a product of the same number of orthonormal groups). All
theoretical guarantees hold in this setting, since the underlying mathematics is based on
compact lie groups.

As we can see in Figure 2.3, the models trained using Algorithm 2.3 are able to achieve an
accuracy on the clean test data which is close to that of the accuracy of the models trained
without it. At the same time, their accuracy on the poisoned test data is substantially
higher and thus the success rate of the poisoning attack substantially smaller. Specifically,
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(a) Accuracy on a clean test set (b) Accuracy on a poisoned test
set

(c) Accuracy on a poisoning at-
tack

Figure 2.4: Accuracy plots for CIFAR-10 against the backdoor attack presented in [93].
A CNN based architecture is fine-tuned with Algorithm 2.3 for different values of k on a
training set which contains poisoned data points. We report three metrics: 1) accuracy
on a clean test set which doesn’t contain any images with the backdoor, 2) accuracy on a
poisoned test set which contains images with the backdoor, 3) accuracy of the attack, i.e.,
images with the backdoor getting classified as intended by the adversary. We compare the
results against the same model fine-tuned directly (this corresponds to the baseline). The
dark lines correspond to the mean and the shaded area to one standard deviation over 5
runs of the experiment. We see that the models trained with Algorithm 2.3 not only have
better accuracy on the clean test set, but also have better accuracy on the poisoned test
set and are able to substantially decrease the accuracy of the attack.

around the 1/3rd training mark, the accuracy of the models trained with Algorithm 2.3
with k ≤ 15 is greater than 80%, while those trained without it have an accuracy of less
than 40% on the posioned test data.

Attack from [93]. For this attack too, we use the implementation provided by [87]. The
intent of the attack is the same as the previous one. It is constructed in a manner so that
the poisoned image is closer to the desired target image in the feature space while visually
being indistinguishable from its source image. In [93], the authors show that the attack is
robust against many existing defense mechanisms.

For our experiments, we work with the CIFAR-10 dataset and the CNNs-based architecture
used by [87] in their demonstration of the attack. We do not attempt to optimize any
hyperparameters to improve the clean classification accuracy of the used model. Instead,
we choose to work with the experimental setup of [87] to demonstrate the versatility of our
technique. In their setup, the poisoned dataset is used only in the fine-tuning step where
all but the last fully connected layer (which has a hidden dimension of 4096) are frozen.
We use Algorithm 2.3 on this last layer, modifying it in a way similar to what we did in
the last section.

We pretrained a model for 200 epochs using SGD with learning rate 0.01, momentum
0.9 and weight decay 2 × 10−4, reducing the learning rate by a factor of 0.1 after 100
and 150 epochs. For fine-tuning we reinitialize the last layer with gaussian i.i.d. random
variables and train for another 10 epochs. For fine-tuning with Algorithm 2.3, apart from
reinitializing the last layer, we use N = 10 and to solve the problem in the selected subspace
of each iteration, we train for 1 epoch. We repeated the experiments 5 times and report
the mean and standard deviation in our plots.
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We present the results of our experiments in Figure 2.4 and consider three metrics: accuracy
on a benign unpoisoned test set, accuracy on a poisoned test set, and the success rate of the
attack on this poisoned test set. As we can see Algorithm 2.3 does not affect the accuracy of
trained model on the benign samples, while drastically increasing its accuracy on poisoned
samples and drastically decreasing the efficacy of the attack on the same samples, especially
for smaller values of k.

2.7 Proofs

We present the details left out from the main body of the paper here.

2.7.1 Proof of Lemma 2.2

Proof. Since f is a non-constant smooth function with zero mean, we have, by Kazhdan’s
Property (T) that there exists a γ ∈ G such that

∥f − γ · f∥2 ≥ c · ∥f∥2

where c is the Kazhdan constant of G. Define h : G → [0, 1] as h(g) = |f(g)−γ·f(g)|2
|β−α|2 . Let

Uϵ := {g : h(g) > ϵ}. Then, we have by Lebesgue integration,

1∫
0

|Uϵ|dϵ =
∫
G
h(g)dg =

∥f − γ · f∥2

|β − α|2
≥ c · ∥f∥2

|β − α|2
. (2.2)

Since f is a smooth function, |Uϵ| is a continuous non-increasing function of ϵ. Moreover,
|U0| = 1 and |U1| = 0. From this we have the following upper bound for any ϵ′ ∈ [0, 1],

1∫
0

|Uϵ|dϵ ≤ ϵ′ + |Uϵ′ |. (2.3)

Let ϵ′ ∈ [0, 1] be such that |Uϵ′ | = ϵ′. Substituting this ϵ′ in (2.3) and using the lower bound
from (2.2) we get ϵ′ ≥ c·∥f∥2

2|β−α|2 . For this ϵ′, since |Uϵ′ | = ϵ′, we also have |Uϵ′ | ≥ c·∥f∥2
2|β−α|2 . As

|Uϵ′ | decreases as ϵ′ increases, we can select ϵ′ = c·∥f∥2
2|β−α|2 and for this ϵ′ we will still have

|Uϵ′ | ≥ c·∥f∥2
2|β−α|2 .

Now, using the definition of h, for every g ∈ Uϵ we have

|f(g)− γ · f(g)|2

|β − α|2
≥ ϵ′.

On taking the denominator to the right and taking a square root on both the sides, we get
either

f(g)− γ · f(g) >
√
ϵ′(β − α) or γ · f(g)− f(g) >

√
ϵ′(β − α).

Since both f(g) and γ · f(g) are less than β, we can substitute f(g) with it in the first
equation and γ · f(g) with it in the second equation. We get

β − γ · f(g) >
√
ϵ′(β − α) or β − f(g) >

√
ϵ′(β − α).
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On rearranging, we get

γ · f(g) < β −
√
ϵ′(β − α) or f(g) < β −

√
ϵ′(β − α).

Now subtract α on both sides to get

γ · f(g)− α < (1−
√
ϵ′)(β − α) or f(g)− α < (1−

√
ϵ′)(β − α).

Since the above statements are strict inequalities, when either of them is true, there will
exist a small ball around g contained in Uϵ such that the corresponding inequality will also
be true for every element in this small ball. Let U1

ϵ be the union of such balls corresponding
to the set for which the first inequality is true, and let U2

ϵ be the corresponding union for
which the second inequality is true. By construction, both sets are open. Also, they are
measurable as the Haar measure is a Borel measure by definition.

Now, every element of Uϵ will belong to one of these two sets, hence |U1
ϵ |+ |U2

ϵ | ≥ |Uϵ| and
at least one of them will have a measure greater than or equal to |Uϵ|/2. Since the measure
is left-invariant |γ · U2

ϵ | = |U2
ϵ |. This gives us the conclusion.

2.7.2 Proof of Corollary 2.1

Proof. Consider the following integral for a non-constant zero-mean smooth function f :
G→ R,∫

G
∥f − γ · f∥2dγ =

∫
G

∫
G
(f(g)− γ · f(g))2dgdγ

=

∫
G

∫
G

(
f(g)2 + f(γ−1 · g)2 − 2f(g)f(γ · g)

)
dgdγ

(a)
=

∫
G
f(g)2dg +

∫
G

∫
G
f(γ−1 · g)2dgdγ − 2

∫
G
f(g)

∫
G
f(γ−1 · g)dγdg

(b)
=

∫
G
f(g)2dg +

∫
G
f(g)2dg − 2

(∫
G
f(γ−1)dγ

)(∫
G
f(g)dg

)
(c)
= 2

∫
G
f(g)2dg

= 2∥f∥2

where we change the order of integration for the last term in (a), use the invariance property
of the Haar measure for compact Lie groups to simplify the second and third term in (b)
(left invariance for the second term and right invariance for the third term) and use the
fact that f is mean-zero for (c).

Using mean value theorem and the above calculation we see that there exists a γ ∈ G such
that,

∥f − γ · f∥2 ≥ 2∥f∥2. (2.4)

From here on we proceed exactly as we did for the proof of Lemma 2.2 but with fewer
details. Define h : G → [0, 1] as h(g) = |f(g)−γ·f(g)|2

|β−α|2 . Let Uϵ := {g : h(g) ≥ ϵ}. Then, we
have by Lebesgue integration,

1∫
0

|Uϵ|dϵ =
∫
G
h(g)dg =

∥f − γ · f∥2

|β − α|2
≥ 2∥f∥2

|β − α|2
.
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Since, |Uϵ| is a non-increasing function of ϵ and, |U0| = 1 and |U1| = 0, we have |Uϵ| ≥ ∥f∥2
|β−α|2

for ϵ = ∥f∥2
|β−α|2 .

Now, for g ∈ Uϵ we have, either

f(g)− α ≤ (1−
√
ϵ)(β − α) or, γ · f(g)− α ≤ (1−

√
ϵ)(β − α).

This gives us the conclusion.

2.7.3 Proof of Lemma 2.3

We use the following lemma on the existence of an invariant measure on quotient spaces
for our proof:

Lemma 2.5 (Theorem 1.9 and Remark on page 93 of [49]). Let G be a compact Lie group
and H a compact Lie subgroup of G. Then there exists a unique normalized left G-invariant
measure dx on G/H such that for all f ∈ C(G)∫

G
f(g)dg =

∫
G/H

∫
H
f(x · h)dhdx

where dg and dh are normalized left-invariant measures on G and H respectively.

Proof of Lemma 2.3. Consider any function t : G/H → R. Since G =
⋃

h∈H ((G/H) · h),
we can define a function t′ : G → R as t′(x · h) = t(x),∀h ∈ H and x ∈ G/H. Define f ′

using f similarly. Corollary 2.1 gives us an estimate on the measure of the “good” subset
of G for f ′. We will use UG to denote this set and UG/H to denote a corresponding set on
G/H for f i.e.,

UG/H :=

{
x :
|f(x)− γ · f(x)|2

|β − α|2
≥ ϵ

}
where ϵ here is the same as in Corollary 2.1 and, α and β are the minimum and maximum
values of f respectively. Note that they are also the minimum and maximum values of f ′

respectively. This follows from the definition of f ′.

Now, let dg, dh and dx be normalized measures on G,H and G/H respectively. Using
Lemma 2.5 we can write ∫

G
t′(g)dg =

∫
G/H

∫
H
t′(x · h)dhdx

=

∫
G/H

∫
H
t(x)dhdx

=

(∫
G/H

t(x)dx

)(∫
H
dh

)

=

(∫
G/H

t(x)dx

)
.

Note that f ′ is constant on the cosets gH of H in G. This means that for any g in the good
set of f ′, the good set will contain the entire coset gH. Set t = 1{x∈UG/H} in the above
calculation, then t′ = 1{g∈UG}. We get that measure of the good set of f on G/H will be
the same as the measure of the good set of f ′ on G. This gives us the conclusion.
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2.7.4 Proof of Lemma 2.4

Proof of Lemma 2.4. We first prove an equivalent statement over the group G in Lemma
2.6, then we can use the same machinery as we did in proving Lemma 2.3 from Corollary
2.1 to transfer the estimate from the group to it’s quotient to get the full proof. The details
are straightforward.

Lemma 2.6. Let G be a compact Lie group and let f : G→ R be a smooth function such that∫
G f = 0. Let α = ming∈G f(g), β = maxg∈G f(g) and α′ ∈ (α, β). Set U = {g : f(g) < α′}

and ϵ =
∥f∥22

|β−α′|2 − 2|U | |β−α|2
|β−α′|2 . Then,∣∣{g : f(g)− α′ ≤ (1−

√
ϵ)(β − α′)}

∣∣ ≥ ϵ/2

Proof. The proof proceeds in a manner similar to that of Corollary 2.1. We provide the extra
details needed here. Define h : G→ [0, 1] as h(g) = |f(g)−γ·f(g)|2

|β−α′|2 and let V = U ∪ γ−1 · U .
We consider integrals over the space G\V . To do this we use the normalized measure dg on
G and divide it by |V | so that the resulting measure is normalized over G \ V . We denote
this measure by dgV . We use | · |V to denote the size of a set w.r.t. this measure.

Now, let Uϵ := {g : h(g) ≥ ϵ, g ∈ G \ V }. We use the measure dgV when measure the size
of the set Uϵ. We have,

1∫
0

|Uϵ|V dϵ
(a)
=

∫
G\V

h(g)dgV

=

∫
G\V

|f(g)− γ · f(g)|2

|β − α′|2
dgV

(b)
=

1

|β − α′|2

(∫
G\V

|f(g)− γ · f(g)|2

|G \ V |
dg

)

=
1

|G \ V ||β − α′|2

(∫
G
|f(g)− γ · f(g)|2dg −

∫
V
|f(g)− γ · f(g)|2dg

)
(c)

≥ ∥f − γ · f∥2 − |V ||β − α|2

|G \ V ||β − α′|2
(d)

≥ 2∥f∥2 − |V ||β − α|2

|G \ V ||β − α′|2

where we use Lebesgue integration in (a), we change the measure from dgV to dg in (b),
use the upper and lower bound on f to get (c) and use (2.4) to get (d).

Since, |Uϵ|V is a non-increasing function of ϵ and, |U0|V = 1 and |U1|V = 0, using the same
ideas as in proof of Corollary 2.1 we have |Uϵ|V ≥ 2∥f∥2−|V ||β−α|2

2|G\V ||β−α′|2 for ϵ = 2∥f∥2−|V ||β−α|2
2|G\V ||β−α′|2 .

Moreover, since |Uϵ|V = |Uϵ|
|G\V | , we have |Uϵ| ≥ ∥f∥2

|β−α′|2 − |V |
|β−α|2
|β−α′|2 ≥

∥f∥2
|β−α′|2 − 2|U | |β−α|2

|β−α′|2 .

Now, for g ∈ Uϵ we have, either

f(g)− α′ ≤ (1−
√
ϵ)(β − α′) or, γ · f(g)− α′ ≤ (1−

√
ϵ)(β − α′).

Using the same argument as in the proof of Corollary 2.1 we get the conclusion.
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2.7.5 Proof of Theorem 2.1

Proof. We use the notation set up in Section 2.3.2 for this proof. At step i of Algorithm
2.1, from Lemma 2.3, we know that we can find an ηi such that

L(xi−1, ηi)−m(xi−1) ≤
(
1−

√
2Θ(xi−1)

)
(M(xi−1)−m(xi−1)) (2.5)

with probability at least Θ(xi−1). Since Θ(xi−1) ≥ θ(ℓ) ≥ 1− δ and, as we sample T points
in each iteration and take the minimum over these samples, the probability that we will
find one such point amplifies to 1− δT .

The probability of this happening for all N iterations of the algorithm is (1 − δT )N . We
want this probability to be greater than 1−γ. Set (1−δT )N ≥ 1−γ and take the logarithm
on both sides. Rearrange, and we get N log 1

1−δT
≤ log 1

1−γ . Now, we use the following
approximations to simplify further:

∀t ∈ [0, 1), t ≤ log
1

1− t
≤ t+

t2

2
≤ 3t

2
.

Using these approximations it is sufficient to work with NδT ≤ 3γ/2. Taking logarithm on
both the sides again and rearranging we get,

T ≥ logN + log 2/3γ

log 1/δ
.

This gives us a bound on the number of samples we need to draw in each iteration of
Algorithm 2.1.

Now, we need two facts to proceed:

1. m(x) is a constant function with value α

2. ∀i ∈ [1, T ], M(xi) ≤ L(xi−1, ηi).

To prove the first we proceed as follows. Recall α = minx ℓ(x). Then for k ≥ 2, ∀x, m(x) =
α. This is because, for any given x, there exists a k-plane that passes through x and a
global minimum of ℓ.

To prove the second, notice that xi is an argmin of ℓ in the k-plane xi−1 + ηi. This k-plane
will correspond to some η ∈ Gk,d such that xi + η ∼= xi−1 + ηi. Moreover, on any other
k-plane that contains xi the minimum value of ℓ will be upper bounded by ℓ(xi). Hence
M(xi) = maxη L(xi, η) ≤ ℓ(xi) = L(xi−1, ηi).

Using the above two facts we can rewrite (2.5) as,

ℓ(xi)− α ≤
(
1−

√
2Θ(xi−1)

)
(ℓ(xi−1)− α).

Conjugating this over all N steps we get,

ℓ(xN )− α ≤
N∏
i=1

(
1−

√
2Θ(xi)

)
(ℓ(x0)− α).
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For convenience, we loosen this equation a bit by dropping the 2 in the equation and
substituting Θ(x) with 1− δ to get,

ℓ(xN )− α ≤
(
1−
√
1− δ

)N
(ℓ(x0)− α).

We want
(
1−
√
1− δ

)N ≤ ϵ0. This gives us N ≥ log ϵ0
log(1−

√
1−δ)

. This can be further

simplified as follows:

N ≥ log ϵ0

log(1−
√
1− δ)

(a)

≥ log ϵ0
log δ/2

=
log 1/ϵ0
log 2/δ

where we use the fact that
√
1− δ ≤ 1− δ/2 for δ ≥ 0 in (a). This completes the proof.

2.7.6 Proof of Theorem 2.2

Proof. The proof here is exactly the same as the proof of Theorem 2.1.

2.7.7 Proof of Theorem 2.3

Proof. Let β = maxx ℓ(x), then θ(ℓβ) = 1. Now, if θ(ℓα) ≥ θ0, the theorem is trivially true.
So we suppose that this is not the case. Since θ as a function of α′ is continuous there
exists an α′ such that θ(ℓ′α) ≥ θ0.

Now, let θ0 = 1 − δ. In step i of Algorithm 2.2, with probability greater than 1 − δT we
find an x such that

ℓ(xi)− α′ ≤
(
1−

√
2(1− δ)

)
(ℓ(xi+1)− α′).

By composition, after N with probability greater than (1− δT )N we have,

ℓ(xN )− α′ ≤
(
1−

√
2(1− δ)

)N
(ℓ(x0)− α′)

=
(
1−

√
2θ0

)N
(ℓ(x0)− α′).

Now, we need to lower bound the probability of success (1 − δT )N . To do so we consider
the negative logarithm of this quantity,

−N log
(
1− (1− θ0)

T
)
= N log

(
1

1− (1− θ0)T

)
(a)

≤ 3N(1− θ0)
T

2

=
3N

2
2T log(1−θ0)
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Algorithm 2.3 Random Walk for the experiments

Input: ℓ : Rd → R, x0 ∈ Rd, 1 < k < d,N > 0
1: for i = 1, . . . , N do
2: x̄i−1 ← xi−1

∥xi−1∥
3: Sample η uniformly from Gk−1,d−1

4: xi ← argminy∈π(x̄i−1,η) ℓ(y)

5: return xN

where (a) follows from the inequality log 1
1−t ≤

3t
2 for all t > 0. Setting T = 2 logN

log 1/(1−θ0)
, we

get

−N log
(
1− (1− θ0)

T
)
≤ 3N

2
2−2 logN

≤ 3N

2

1

N2
=

3

2N
.

Hence, the probability of success is at least 2−3/2N ≥ 1 − 3/2N for all N > 0. This gives
us the theorem.

2.7.8 Implementation details

Instead of working with Algorithms 2.1 and 2.2 as they are, we modify them a bit to make
them more implementation friendly. To do this, we make two modifications:

1. First, redefine the function L defined in Section 2.3.2 by changing its domain. To do
this, define π : G1,d×Gk−1,d−1 → Gk,d as described now. For (x, η) in the domain of π
pick a fixed basis, represented by a matrix U ∈ Rd×(d−1), for the space x⊥ orthogonal
to x in Rd. Note that x⊥ is a (d − 1)-dimensional space. Pick η from Gk−1,d−1 and
use a matrix V ∈ R(d−1)×(k−1) to represent it as a subspace of Rd−1. Then construct
a (k − 1)-dimensional subspace of x⊥ by considering the subspace spanned by UV .
Note that this subspace will live in Rd and will be orthogonal to x. The image of
(x, η) under π is the k-dimensional space spanned by x and ηx⊥ .

Now, define L : G1,d ×Gk−1,d−1 → R as follows:

L(x, η) := min
y∈π(x,η)

ℓ(y)

2. Second, we do not sample multiple subspaces in each iteration. This decreases the
computational complexity of the algorithm and is motivated by empirical observa-
tions.

We present the modification of Algorithm 2.1 that we use in our experiments in Algorithm
2.3.

The reason why we do not work with this formulation is to avoid using too many unnecessary
theoretical concepts that might obscure intuition. To theoretically analyze Algorithm 2.3,
mathematically the correct manifold to use is a degenerate flag manifold [69] instead of
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G1,d × Gk−1,d−1. The theoretical analysis still remains the same as it is mostly concerned
with the use of the Grassmannian as the second space in the product manifold. However,
this version of the algorithm is much easier to implement since it eliminates the affine
component present in Algorithms 2.1 and 2.2.
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Part II

New perspectives on Euclidean
optimization
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3 | Euclidean optimization on the
Grassmannian

Let f : Rd → R be the function that we want to minimize. Let us assume that we are given
a black box that solves any Euclidean minimization problem of dimension k < d. How can
we use this black box to solve the d-dimensional minimization problem defined by f? We
studied one approach to this problem in Chapter 2, but as we saw, that approach has an
inherent robustness because of which it might not always yield the true optimum of f . In
this chapter, we develop techniques which differ from those in Chapter 2 in the sense that
they aim to find a true minimum of f .

We proceed in a way similar to Section 2.3.2 by defining an alternative optimization prob-
lem. But instead of working with Rd × Gk,d we work only with Gk,d. Let us define
F : Gk,d → R as:

F (η) := min
x∈η

f(x) (3.1)

As it turns out, Gk,d has the structure of a differentiable manifold which can be used to
construct an array of familiar optimization techniques on it. For our purpose of optimizing
F we will work with gradient descent as outlined in Algorithm 1.1.

In this chapter, we first discuss the differential geometry of the Grassmannain in Section 3.1,
then we present the various calculations needed to realize the gradient descent procedure
with the specified geometry in Section 3.2. Finally, we present our convergence results in
Section 3.3.

The main purpose of this chapter is to demonstrate an alternative perspective on how Eu-
clidean optimization can be approached. We do not compare the technique developed in this
chapter with existing techniques in terms of either experimental evaluation or convergence
rates.

3.1 Differential geometry of the Grassmannian

We introduced the Grassmannian as the set of all subspaces in Section 2.2 where we studied
it as a quotient of the orthogonal group and used the Kazhdan property (T) satisfied by
the latter to obtain the main theoretical result of Chapter 2 on the Grassmannian. In this
chapter, we will be dealing with the differential geometry of this object.
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There are many different perspectives from which the differential geometry of the Grass-
mannian can be derived [8]. For our purpose, we look at the Grassmannian as a quotient of
the non-compact Stiefel manifold. This perspective was developed in [2] and we borrowed
most of the material in this section from there.

The noncompact Stiefel manifold STk,d is the set of all d × k matrices of full rank. It can
be defined as:

STk,d := {Y ∈ Rd×k : rank(Y ) = k}

The span of the columns of every d× k full-rank matrix represents a subspace. Moreover,
for a given such matrix Y if we multiply it on the right by any full-rank k× k matrix, then
the subspace defined by the columns of the resultant matrix is the same as that defined by
the columns of Y . The collection of all k × k full-rank matrices forms the General Linear
group GLk which acts over Rk. Hence, by taking the quotient of STk,d with respect to
GLk we get the Grassmannian Gk,d, i.e. Gk,d

∼= STk,d/GLk. Let π : STk,d → Gk,d be the
map that takes a full-rank d× k matrix to the subspace defined by the span of its columns.
Then the quadruple (GLk, STk,d, π,Gk,d) is a principal GLk fiber bundle with total space
STk,d and base space Gk,d.

The benefit of using this perspective lies in the fact that locally, in an open neighborhood,
the Stiefel manifold STk,d behaves like a Euclidean space Rd×k. That is, it has a trivial
embedding in it. For any element W ∈ STk,d consider the open ball

U = {Y ∈ Rd×k : ∥W − Y ∥2 < λmin(W )}

where λmin(W ) is the smallest singular value of W . All elements in U are full rank and
therefore belong to STk,d. Thus, around any point W ∈ STk,d we can find an open set
U ⊆ STk,d and a map ϕ : U → Rd×k s.t. ϕ is an identity. This gives us a Euclidean
coordinate system around W , and enables STk,d to inherit the standard metric from the
Euclidean space locally. One then obtains an easy-to-work Riemannian geometry for the
manifold and derivatives of functions defined on the Stiefel manifold can be computed as
their Euclidean derivatives locally. Now we can utilize this Riemannian geometry of STk,d

and the principal GLk fiber bundle mentioned previously to endow a Riemannian geometry
over Gk,d.

The process of endowing this geometry is certainly nontrivial and has been previously
studied in the literature in detail. To gain access to all details of this process, one will have
to study the structure of the principal fiber bundles [64, 65], specifically concepts such as
cross sections, decomposition of the tangent space of the total space into horizontal and
vertical space and horizontal lift of tangent vectors from the tangent space of the base
space to that of the total space. One will then have to instantiate these concepts for the
specific principal fiber bundle in use by identifying the correct matrix representations of
the concerned geometric objects, for example as done in [35] for our case. And then bring
everything together as done in [2] to extract the differential geometry for the Grassmannian
out of that of the Stiefel manifold via the principal fiber bundle connection.

These concepts are required to build the necessary bridges to enable calculations using a
chosen full-rank matrix Y as a representation of a subspace, which is an abstract concept,
while remaining faithful to the geometry of the abstract manifold Gk,d. Effectively, we
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obtain formulae for various Riemannian quantities of Gk,d in terms of the corresponding
Riemannian quantities of STk,d that are readily computable.

We avoid these details and directly use the friendly formulae provided in [2]. We will need
to perform two major calculations to realize Algorithm 1.1. The first is to calculate the
gradient and the second is to calculate the subspace obtained by walking along the geodesic
defined by the gradient for a specific amount of time.

3.1.1 Computing the gradient

The Riemannian gradient of a function F : Gk,d → R as such is a vector field which satisfies
the identity,

⟨∇F, ξ⟩W = ξf, ∀ξ ∈ TWGk,d

To work with this quantity over the Grassmannian we will compute the horizontal lift of it
over STk,d. Let W ∈ STk,d and W ∈ Gk,d be s.t. π(W ) = W. Then for every ξ ∈ TWGk,d

there exists a unique horizontal lift ξ̃ ∈ TWSTk,d. Moreover, according to Proposition
2.25 of [73], any smooth vector field on Gk,d, like ∇F , has a unique horizontal lift ∇̃F on
STk,d s.t. dπW ∇̃FW = ∇FW . We will also need the function F̃ : STk,d → R defined as
F̃ (W ) = F (π(W )).

Now, using formula (14) of [2], we can compute the horizontal lift of the gradient as

∇̃FW = (I − Y Y T )∇F̃ (W )W TW (3.2)

where quantity∇F̃ can be computed as is done in an Euclidean space. We are thus equipped
to work with the gradients of our function.

3.1.2 Computing the geodesic

A geodesic on a manifold is equivalent to a straight line in Euclidean space. It is a curve
γ : [0, 1]→ Gk,d s.t. the “acceleration” of the curve, i.e., it’s second derivative, at every point
in its domain is zero. We use formula (19) from [2] which gives the formula of a geodesic
over the Grassmannian. Let W0 ∈ STk,d represent the starting point of the geodesic W(t)
and let the full singular value decomposition of W0(W

T
0 W0)

−1/2 be UΣV T . Then we have,

W(t) = π(W0(W
T
0 W0)

−1/2V cosΣt+ U sinΣt) (3.3)

3.2 Formulae for Gradient descent

In this section, we compute the formulae for the gradient of F defined in (3.1) and the
corresponding geodesic over which we walk to realize Algorithm 1.1. We will only work with
matrices in STk,d for which the columns are orthonormal, since this will greatly simplify all
our formulae.

Lemma 3.1. Let Y ∈ STk,d. Assume that f has unique minimum over the span of Y . Let
x∗Y = argmin

x
f(Y x). Then we have,

∇F̃Y = ∇f(Y x∗Y )x
∗
Y
T

∇̃F Y = ∇f(Y x∗Y )x
∗
Y
T
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Proof. Let δEij ∈ Rd×k be s.t. for i, j, ∆Yij = δ and it is equal to 0 in all other co-ordinates.
Then we have

min
x∈Rk

f((Y +∆Y )x) = f((Y +∆Y )x∗Y+∆Y )

= f((Y +∆Y )(x∗Y +∆x∗Y ))

= f(Y x∗Y +∆Y x∗Y + Y∆x∗Y +∆Y∆x∗Y )

= f(Y x∗Y ) +∇f(Y x∗Y )
T (∆Y x∗Y + Y∆x∗Y +∆Y∆x∗Y ) +O(δ2)

= f(Y x∗Y ) + δ∇if(Y x∗Y )(x
∗
Y )j +∇f(Y x∗Y )

TY∆x∗Y +O(δ2)

= f(Y x∗Y ) + δ∇if(Y x∗Y )(x
∗
Y )j +O(δ2)

where the last equality follows from the optimality of x∗Y . Now

∂F̃ (Y )

∂Yij
= lim

δ→0

min
x∈Rk

f((Y +∆Y )x)− min
x∈Rk

f(Y x)

δ

= lim
δ→0

f((Y +∆Y )x∗Y+∆Y )− f(Y x∗Y )

δ

= lim
δ→0

f(Y x∗Y ) + δ∇if(Y x∗Y )(x
∗
Y )j +O(δ2)− f(Y x∗Y )

δ

= ∇if(Y x∗Y )(x
∗
Y )j

which gives us the first desired result. Substituting this in (3.2) gives us the second desired
result.

Lemma 3.2. The subspace Y ′ obtained after travelling for time t on the geodesic starting
at the subspace Y with velocity ∇FY is spanned by

Y ′ =

[
Y x̄∗Y cos(Σ11t) +

∇f(Y x∗Y )

∥∇f(Y x∗Y )∥
sin(Σ11t) Y V ′

]
where x̄∗Y is a unit vector in the direction of x∗Y , V ′ ∈ Rk×k−1 is a basis for the space
orthogonal to x̄∗Y in Rk and Σ11 = ∥x∗Y ∥∥∇f(Y x∗Y )∥.

Proof. Let Y ∈ STk,d have orthonormal columns that span Y. From Lemma 3.1 we have,

∇̃F Y = ∇f(Y x∗Y )x
∗
Y
T

Now, to compute the point at distance t on the geodesic we use (3.3). Let UΣV T be the
compact SVD of ∇̃F Y , then:

V = [x̄∗Y V ′], Σ11 = ∥x∗Y ∥∥∇f(Y x∗Y )∥, Σii = 0 for i ̸= 1

and U1 =
−∇f(Y x∗Y )

∥∇f(Y x∗Y )∥
these can be plugged in to directly obtain the given formula.
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3.3 Convergence Result

In this section, we present our convergence result in Theorem 3.1. Note that we get the
same rate of convergence as does the ordinary gradient descent on Euclidean space.

Theorem 3.1. For a convex function f with L-Lipschitz gradients, gradient descent over
Gk,d with a suitable step size gives a subspace Yi s.t. starting from Y0 we have

f(Yix
∗
Yi
)− f(y∗) ≤

∥Y0x∗Y0
− y∗∥2

2iL

where y∗ is the global solution. Hence, in O
(
1
ϵ

)
steps we can find a Y s.t. f(Y x∗Y )−f(y∗) ≤

ϵ.

Proof. For a suitably chosen t > 0, from Lemma 3.2 the subspace Y ′ at iteration i + 1 is
spanned by

Y ′ =

[
Y x̄∗Y cos(Σ11t) +

∇f(Y x∗Y )

∥∇f(Y x∗Y )∥
sin(Σ11t) Y V ′

]
We will now bound min

y∈Y ′
f(y) as follows: for any y1, y2 ∈ Rd, by Taylor’s series expansion

we know that there exists a z ∈ Rd s.t.

f(y1) = f(y2) +∇f(y2)T (y1 − y2) +
1

2
(y1 − y2)

T∇2f(y2)(y1 − y2)

Since f has L-Lipschitz gradients ∇2f(z) ⪯ LI and we get

f(y1) ≤ f(y2) +∇f(y2)T (y1 − y2) +
L

2
∥y1 − y2∥2 (3.4)

On choosing the following:

y1 = Y x∗Y +
∇f(Y x∗Y )

∥∇f(Y x∗Y )∥
∥x∗Y ∥ tan(Σ11t) and y2 = Y x∗Y

and noting that y1 ∈ Y ′ we get

min
y∈Y ′

f(y) ≤ f(y1) ≤ f(y2) + ∥∇f(y2)∥∥x∗Y ∥ tan(Σ11t) +
L

2
∥x∗Y ∥2 tan2(Σ11t)

On setting tan(Σ11t) = −
∥∇f(y2)∥
L∥x∗Y ∥

we get

f(Y ′x∗Y ′) ≤ f(Y x∗Y )−
∥∇f(Y x∗Y )∥2

2L
(3.5)

From here the proof follows exactly as in the case of gradient descent (see (6.3) in [1] and
the proof thereafter) to give after i iterations a subspace Yi s.t. starting from Y0 we have

f(Yix
∗
Yi
)− f(y∗) ≤

∥Y0x∗Y0
− y∗∥2

2iL

where y∗ is the global solution.

45



46



4 | Euclidean optimization on the
Multinomial manifold

In the previous chapter, we formulated Euclidean optimization over the Grassmannian. In
situations where the function f is defined using a data matrix A ∈ Rn×d the technique
effectively reduces the column dimension of the data matrix from d to k for the smaller
sub-problems that it uses the black box for. For example, in the case of linear regression,
the parameters x ∈ Rd are multiplied with A to get Ax. When we restrict this problem to
a subspace defined by the columns of a matrix W ∈ Rd×k, we essentially only work with
x of the form Wy for y ∈ Rk. This means that the smaller-dimensional problem is defined
by the matrix AW whose column dimension now is k.

In this chapter, we develop a different technique which can be used to reduce the row
dimension of the data matrix for a certain class of optimization problems. We formulate
this by taking convex combinations of the rows of matrix A. This requires using the
Multinomial manifold Pm,n which is defined as follows:

Pm,n = {Y ∈ Rn×m : Y > 0 and ∀j ∈ [m],
∑
i

Yij = 1}

Setup. Let A ∈ Rn×d be the data matrix, x ∈ Rd, f : Rd → R, g : Rn → R and ϕ : R→ R
be functions s.t.

f(x) = g(Ax) =

n∑
i=1

ϕ(aTi x)

where ai is the i-th row of A. Many popular machine learning models like logistic regression
and more broadly generalized linear models can be written in this form.

For Y ∈ Pm,n consider the matrix Y TA. The rows of this matrix are convex combinations
of the rows of A. To define a problem using a smaller row dimension data matrix, we define
a function f̃ : Rd → R and g̃ : Rm → R as

f̃(x) = g̃(Y TAx) =
m∑
i=1

ϕ((Y TAx)i)

Let x∗Y be the minimizer of f̃ . Then f(x∗Y ) quantifies how well the solution obtained for f̃
works for f . This gives us a way of defining an optimization problem over the multinomial
manifold. Define F : Pm,n → R as follows:

F (Y ) = g(Ax∗Y ), where x∗Y = arg min
x∈Rd

g̃(Y TAx) (4.1)
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Since Pm,n can be endowed with the structured of a Riemannian manifold, we can use
Algorithm 1.1 to optimize F . To flesh out the details of this technique we first describe the
differential geoemtry of Pm,n in Section 4.1, we then provide the formulae for the various
Riemannian quantities in Section 4.2 followed by a convergence result in Section 4.3.

4.1 Differential geometry of the Multinomial manifold

We borrow the differential geometric treatment of Pm,n, including the gradient and retrac-
tion formulae as presented later, from [97]. In this work, Pm,n is treated as an embedded
Riemannian manifold of Rn×m, equipped with the Fisher information metric defined as:

gU (ξU , ηU ) =
n∑

i=1

m∑
j=1

(ξU )ij(ηU )ij
Uij

, ∀U ∈ Pm,n and ∀ξU , ηU ∈ TUPm,n

4.1.1 Computing the gradient

Since we realize Pm,n as an embedded submanifold of Rn×m, we can use the formulae for the
Euclidean gradient of a function and “project” it down to the manifold using the following
orthogonal projector w.r.t. the Fisher metric defined above. For Y ∈ Pm,n, define the linear
function ΠY : Rn×m → TY Pm,n as

ΠY (Z) = Z − (1n1
T
nZ)⊙ Y

where 1n ∈ Rn is a vector with all entries as ones and ⊙ is the Hadamard product (entry-
wise multiplication of matrices).

Now, to compute the gradient, define F̄ : Rn×m → R, the extension of F from Pm,n to its
ambient space Rn×m as follows

F̄ (Z) = g(Ax∗Z), where x∗Z = arg min
x∈Rd

g̃(ZTAx)

We then have the following formula for the gradient of F in terms of the gradient of F̄ :

∇FY = ΠY

(
∂F̄

∂Z

∣∣∣∣
Y

⊙ Y

)
(4.2)

4.1.2 Computing the retraction

In the previous chapter, to move on the Grassmannian we used a geodesic. But to move
on Pm,n we instead use retractions. Retractions are mappings from the tangent space of a
manifold to the manifold itself. In the case of Pm,n they are easier to compute than the
geodesics, so we prefer them.

At each point Y ∈ Pm,n we define the retraction RY : TY Pm,n → Pm,n, for ξY ∈ TY Pm,n,
as follows:

RY (ξY ) = (Y ⊙ exp(ξY ⊘ Y ))⊘ (1n1
T
n (Y ⊙ exp(ξY ⊘ Y ))) (4.3)

where ⊘ is the Hadamard division (entry-wise division of matrices) and exp : Rn×m →
Rn×m is the element-wise exponentiaion of matrices.
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In our setting, if we move for time t in the direction ∇FY , we will use the retraction of
t · ∇FY on the manifold. Note that in the case where ξY is of the type of ∇FY we can
simplify the retraction formula to the following:

RY (∇FY ) =

(
Y ⊙ exp

(
∂F̄

∂Z

∣∣∣∣
Y

))
⊘
(
1n1

T
n

(
Y ⊙ exp

(
∂F̄

∂Z

∣∣∣∣
Y

)))
(4.4)

4.2 Formulae for gradient descent

In this section, we compute the formula for the gradient of function F defined in (4.1) in
Lemma 4.1.

Lemma 4.1. Let B = ZTA ∈ Rm×d, then for the function F̄ defined as above, we have

∂F̄ (Z)

∂Z
= Ax∗Z∇g(Ax∗Z)TA

[
BT∇2g̃(Bx∗Z)B

]−1
BT∇2g̃(Bx∗Z)+

A
[
BT∇2g̃(Bx∗Z)B

]−1
AT∇g(Ax∗Z)∇g̃(Bx∗Z)

T

Remark 4.1. Note that in the gradient expression of the above lemma, we have the gradient
of the local function ∇g̃(Bx∗Z) ∈ Rm, the hessian of the local function ∇2g̃(Bx∗Z) ∈ Rm×m

and the gradient of the global function ∇g(Ax∗Z) ∈ Rn. Also, note that if B is a full rank
matrix then the second term in the above expression should be zero because ∇g̃(Bx∗Z)

T will
be zero.

Proof. We have,

∂F̄ (Z)

∂Z
=

∂g(Ax∗Z)

∂Z
= ∇g(Ax∗Z)TA

∂x∗Z
∂Z

(4.5)

To obtain the derivative of x∗Z w.r.t. Z we use the inverse function theorem. Since x∗Y is a
minimizer of the function f̃ , we have BT∇g̃(Bx∗Y ) = 0. Define, Φ : Rn×m × Rd → Rd as

Φ(Z, x) = BT∇g̃(Bx∗Z)

and let Φl(Z, x) = Φ(Z, x)l. Then,

∂Φl

∂xi
=

∂BT
l ∇g̃(Bx)

∂xi

= Bpl
∂(∇g̃(Bx))p

∂xi

= Bpl(∇2g̃(Bx))pq
∂(Bx)q
∂xi

= Bpl(∇2g̃(Bx))pqBqi

= BT
l ∇2g̃(Bx)Bi
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and,

∂Φl

∂Zij
=

∂BT
l ∇g̃(Bx)

∂Zij

= Bpl
∂(∇g̃(Bx))p

∂Zij
+

(
∂Bpl

∂Zij

)
(∇g̃(Bx))p

= Bpl(∇2g̃(Bx))pq
∂(Bx)q
∂Zij

+

(
∂(ZT

p Al)

∂Zij

)
(∇g̃(Bx))p

= Bpl(∇2g̃(Bx))pq
∂(ZT

q Ax)

∂Zij
+Ail(∇g̃(Bx))j

= Bpl(∇2g̃(Bx))pj(Ax)i +Ail(∇g̃(Bx))j

= BT
l (∇2g̃(Bx))j(Ax)i +Ail(∇g̃(Bx))j

Hence,

∂x∗Z
∂Y ij

=

[
∂Φl

∂xp

]−1 [ ∂Φl

∂Zij

]
=
[
BT∇2g̃(Bx)B

]−1 [
BT (∇2g̃(Bx))j(Ax)i + ai(∇g̃(Bx))j

]
where ai is the i-th row of A. Substituting this in (4.5), we get the desired result.

4.3 Convergence result

Now we will show that a line search-based gradient descent method on Pm,n will converge
to the solution of a convex function f . In Theorem 4.2 below, we show that if Y is a critical
point of F then x∗Y is a critical point of f . Using Theorem 4.3.1 from [3] (which we state
below as Theorem 4.1 without proof), we know that the line search algorithm will converge
to a critical point of F . Hence, if f has only one critical point which is its minima, then
Algorithm 1.1 converges to this minima.

Theorem 4.1 ([3]). Let {Yk} be an infinite sequence of iterates generated by Accelerated
Line Search. Then every accumulation point of {Yk} is a critical point of the function F .

Theorem 4.2. Assume that for any y ∈ Rm s.t. all coordinates of y are equal, y is not
a critical point of the local problem g̃(y). Also, assume that all critical points of f̃ are
either strict maximas or minimas, i.e., the hessians at these points are invertible. Then for
Y ∈ Pm,n, a critical point of F , x∗Y is a critical point of f .

Proof. Since Y is a critical point of F , we have ∇FY = 0. Now,

∇FY = ΠY

(
∂F̄

∂Z

∣∣∣∣
Y

⊙ Y

)
=

∂F̄

∂Z

∣∣∣∣
Y

⊙ Y −
(
1n1

T
n

(
∂F̄

∂Z

∣∣∣∣
Y

⊙ Y

))
⊙ Y

=

(
∂F̄

∂Z

∣∣∣∣
Y

−
(
1n1

T
n

(
∂F̄

∂Z

∣∣∣∣
Y

⊙ Y

)))
⊙ Y
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Since ∀ i ∈ [n], j ∈ [m], Yij > 0, to satisfy the critical point condition we have,(
∂F̄

∂Z

∣∣∣∣
Y

−
(
1n1

T
n

(
∂F̄

∂Z

∣∣∣∣
Y

⊙ Y

)))
ij

= 0 =⇒
(
∂F̄

∂Z

∣∣∣∣
Y

)
ij

=

(
∂F̄

∂Z

∣∣∣∣
Y

)T

j

Yj

Since this is true for each i, j, we conclude that for each j, all the co-ordinates of
(
∂F̄
∂Z

∣∣
Y

)
j

are equal. Which in turn implies that ∂F̄
∂Z

∣∣
Y

is a rank 1 or a rank 0 matrix.

Now, we will show that it cannot be a rank 1 matrix. We have,

∂F̄

∂Z

∣∣∣∣
Y

= Ax∗Y∇g(Ax∗Y )TA
[
BT∇2g̃(Bx∗Y )B

]−1
BT∇2g̃(Bx∗Y )+

A
[
BT∇2g̃(Bx∗Y )B

]−1
AT∇g(Ax∗Y )∇g̃(Bx∗Y )

T

This is a matrix of the form u1v
T
1 + u2v

T
2 where u1, u2 ∈ Rn and v1, v2 ∈ Rm. We consider

two cases:

1. AT∇g(Ax∗Y ) = 0: This implies that it’s a rank 0 matrix.

2. AT∇g(Ax∗Y ) ̸= 0: Since the hessian of the local problem f̃ is invertible at x∗Y we have
that ∇2f̃(x∗Y ) = BT∇2g̃(Bx∗Y )B is an invertible matrix which in turn implies that
BT∇2g̃(Bx∗Y ) is a full rank matrix. Hence,

[
BT∇2g̃(Bx∗Y )B

]−1
AT∇g(Ax∗Y ) ̸= 0 and

v1 ̸= 0. Now we consider the following sub-cases:

(a) u2 = 0: This implies that Ax∗Y has all the coordinates to be equal, which in turn
implies that Bx∗Y has all co-ordinates to be equal. But such a point cannot be
a critical point from the assumption.

(b) u1 = 0: This implies that Bx∗Y = Y TAx∗Y = 0, but this cannot be a critical
point of g̃ from the assumption.

(c) v2 = 0: This too implies that Ax∗Y has all the coordinates to be equal.

(d) u1 ∥ u2: This also implies that Ax∗Y has all coordinates equal.

(e) v1 ∥ v2: This implies that vT1 B ∥ vT2 B. But vT1 B = ∇g(Ax∗Y )TA and vT2 B = 0,
the latter following from the fact that x∗Y is a critical point of f̃ . This is a direct
contradiction to the assumption.

Hence, ∂F̄
∂Z

∣∣
Y

is a rank 0 matrix.

Now, we show that if the matrix is rank 0 then AT∇g(Ax∗Y ) = 0, establishing that x∗Y is a
critical point of f . From the arguments used above we know that u1 ̸= 0, hence v1 = 0. But
∇2f̃(x∗Y ) = BT∇2g̃(Bx∗Y )B is invertible and BT∇2g̃(Bx∗Y ) is a full rank matrix. Hence,
for v2 = 0, we need AT∇g(Ax∗Y ) = 0.
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Part III

Minimax estimators using online
learning

53





5 | Learning minimax estimators

Estimating the properties of a probability distribution is a fundamental problem in ma-
chine learning and statistics. In this problem, we are given observations generated from
an unknown probability distribution P belonging to a class of distributions P. Knowing
P, we are required to estimate certain properties of the unknown distribution P , based on
the observations. Designing good and “optimal” estimators for such problems has been a
fundamental subject of research in statistics. Over the years, statisticians have considered
various notions of optimality to compare the performance of estimators and to aid their
search of good estimators. Some popular notions of optimality include admissibility, min-
imax optimality, Bayesian optimality, asymptotic efficiency [34, 74]. Of these, minimax
optimality is the most popular notion and has received wide attention in frequentist statis-
tics. This notion of optimality has led to the minimax estimation principle, where the goal
is to design estimators with the minimum worst-case risk. Let R(θ̂, θ(P )) be the risk of
an estimator θ̂ for estimating the property θ(P ) of a distribution P , where an estimator
is a function which maps observations to the set of possible values of the property. Then
the worst-case risk of θ̂ is defined as supP∈P R(θ̂, θ(P )). The goal in minimax estimation
principle is to design estimators with worst-case risk close to the best worst-case risk, which
is defined as R∗ = inf θ̂ supP∈P R(θ̂, θ(P )), where the infimum is computed over the set of
all estimators. Such estimators are often referred to as minimax estimators [99].

Classical Estimators. A rich body of work in statistics has focused on studying the min-
imax optimality properties of classical estimators such as the maximum likelihood estimator
(MLE), Bayes estimators, and minimum contrast estimators (MCEs) [14, 15, 50, 70, 101,
109]. Early works in this line have considered parametric estimation problems and focused
on the asymptotic setting, where the number of observations approaches infinity, for a fixed
problem dimension. In a series of influential works, Hájek and Le Cam showed that under
certain regularity conditions on the parametric estimation problem, MLE is asymptotically
minimax whenever the risk is measured with respect to a convex loss function [50, 70].
Later works in this line have considered both parametric and non-parametric estimation
problems in the non-asymptotic setting and studied the minimax rates of estimation. In a
series of works, Birgé [14, 15] showed that under certain regularity conditions on the model
class P and the estimation problem, MLE and MCEs are approximately minimax w.r.t
Hellinger distance.

While these results paint a compelling picture of classical estimators, we highlight two
key problem settings where they tend to be rate inefficient (that is, achieve sub-optimal
worst-case risk) [15, 105]. The first is the so-called high dimensional sampling setting,
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where the number of observations is comparable to the problem dimension, and under
which, classical estimators can be highly sub-optimal. In some recent work, Jiao et al.
[53] considered the problem of entropy estimation in discrete distributions and showed that
the MLE (plug-in rule) is sub-optimal in the high dimensional regime. Similarly, Cai and
Low [19] considered the problem of estimation of non-smooth functional 1

d

∑d
i=1 |θi| from an

observation Y ∼ N (θ, Id) and showed that the MLE is sub-optimal. The second key setting
where classical estimators tend to be sub-optimal is when the risk R(θ̂, θ(P )) is measured
w.r.t “non-standard” losses that have a very different behavior compared to standard losses
such as Kullback-Leibler (KL) divergence. For example, consider the MLE, which can be
viewed as a KL projection of the empirical distribution of observations onto the class of
distributions P. By its design, we expect it to be minimax when the risk is measured w.r.t
KL divergence and other related metrics such as Hellinger distance [15]. However, for loss
metrics which are not aligned with KL, one can design estimators with better performance
than MLE, by taking the loss into consideration. This phenomenon is better illustrated
with the following toy example. Suppose P is the set of multivariate normal distributions in
Rd with identity covariance, and suppose our goal is to estimate the mean of a distribution
P ∈ P, given n observations drawn from it. If the risk of estimating θ as θ̃ is measured
w.r.t the following loss ∥θ̃ − θ − c∥22, for some constant c, then it is easy to see that MLE
has a worst-case risk greater than ∥c∥22. Whereas, the minimax risk R∗ is equal to d/n,
which is achieved by an estimator obtained by shifting the MLE by c. While the above loss
is unnatural, such a phenomenon can be observed with natural losses such as ℓq norms for
q ∈ (0, 1) and asymmetric losses.

Bespoke Minimax Estimators. For problems where classical estimators are not opti-
mal, designing a minimax estimator can be challenging. Numerous works in the literature
have attempted to design minimax estimators in such cases. However the focus of these
works is on specific problems [18, 19, 53, 102], and there is no single estimator which is
known to be optimal for a wide range of estimation problems. For example, Jiao et al.
[53], Wu and Yang [108] considered the problem of entropy estimation for discrete distri-
butions and provided a minimax estimator in the high-dimensional setting. Cai and Low
[19] considered the problem of estimating a non-smooth functional in high dimensions and
provided a minimax estimator. While these results are impressive, the techniques used in
these works are tailored towards specific problems and do not extend to other problems.
So, a natural question that arises in this context is, how should one go about constructing
minimax estimators for problems where none of the classical estimators are optimal? Unfor-
tunately, our current understanding of minimax estimators does not provide any concrete
guidelines on designing such estimators.

Minimax Estimation via Solving Statistical Games. In this work, we attempt to
tackle the problem of designing minimax estimators from a game-theoretic perspective. In-
stead of the usual two-step approach of first designing an estimator and then certifying
its minimax optimality, we take a more direct approach and attempt to directly solve the
following min-max statistical game: inf θ̂ supP∈P R(θ̂, θ(P )). Since the resulting estimators
are solutions to the min-max game, they are optimal by construction. Such a direct ap-
proach for construction of minimax estimators has certain advantages over the classical
estimators. First, the technique itself is very general and can theoretically be used to con-
struct minimax estimators for any estimation problem. Second, a direct approach often
results in exact minimax estimators with R∗ + o(1) worst-case risk. In contrast, classical
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estimators typically achieve O(1)R∗ worst-case risk, which is constant factors worse than
the direct approach. Finally, a direct approach can make effective use of any available side
information about the problem, to construct estimators with better worst-case risk than
classical estimators. For example, consider the problem of mean estimation given samples
drawn from an unknown Gaussian distribution. If it is known a priori that the true mean
lies in a bounded set, then a direct approach for solving the min-max statistical game re-
sults in estimators with better performance than classical estimators. Several past works
have attempted to directly solve the min-max game associated with the estimation prob-
lem [see 9, and references therein]. We discuss these further in Section 5.1 after providing
some background, but in gist, existing approaches either focus on specific problems or are
applicable only to simple estimation problems.

This Work. In this work, we rely on recent advances in online learning and game theory
to directly solve the min-max statistical game. Recently, online learning techniques have
been widely used for solving min-max games. For example, Freund and Schapire [37] re-
lied on these techniques to find equilibria in min-max games that arise in the context of
boosting. Similar techniques have been explored for robust optimization by Chen et al.
[23], Feige et al. [32]. In this work, we take a similar approach and provide an algorithm
for solving statistical games. A critical distinction of statistical games, in contrast to the
typical min-max games studied in the learning and games literature, is that the domain of
all possible measurable estimators is extremely large, the set of possible parameters need
not be convex, and the loss function need not be convex-concave. We show that it is
nonetheless possible to finesse these technical caveats and solve the statistical game, pro-
vided we are given access to two subroutines: a Bayes estimator subroutine which outputs
a Bayes estimator corresponding to any given prior, and a subroutine which computes the
worst-case risk of any given estimator. Given access to these two subroutines, we show that
our algorithm outputs both a minimax estimator and a least favorable prior. The mini-
max estimator output by our algorithm is a randomized estimator which is an ensemble
of multiple Bayes estimators. When the loss function is convex - which is the case for a
number of commonly used loss functions - the randomized estimator can be transformed
into a deterministic minimax estimator. For problems where the two subroutines are effi-
ciently implementable, our algorithm provides an efficient technique to construct minimax
estimators. While implementing the subroutines can be computationally hard in general,
we show that the computational complexity can be significantly reduced for a wide range
of problems satisfying certain invariance properties.

To demonstrate the power of this technique, we use it to construct provably minimax esti-
mators for the classical problems of finite dimensional Gaussian sequence model and linear
regression. In the problem of Gaussian sequence model, we are given a single sample drawn
from a normal distribution with mean θ and identity covariance, where θ ∈ Rd, ∥θ∥2 ≤ B.
Our goal is to estimate θ well under squared-error loss. This problem has received much
attention in statistics because of its simplicity and connections to non-parametric regres-
sion [55]. Surprisingly, however, the exact minimax estimator is unknown for the case when
B ≥ 1.16

√
d [10, 12, 78]. In this work, we show that our technique can be used to construct

provably minimax estimators for this problem, for general B. To further demonstrate that
our technique is widely applicable, we present empirical evidence showing that our algo-
rithm can be used to construct estimators for covariance and entropy estimation which
match the performance of existing minimax estimators.

57



Outline. We conclude this section with a brief outline of the rest of the paper. We
already provided the necessary background on minimax estimation and online learning and
in Section 1.1.3 and 1.1.4 respectively. In Section 5.1, we introduce our algorithm for solving
statistical games. In Sections 5.2, 5.3, 5.4 we utilize our algorithm to construct provably
minimax estimators for finite dimensional Gaussian sequence model and linear regression.
In Section 5.7 we study the empirical performance of our algorithm on a variety of statistical
estimation problems. We defer technical details to Section 5.8.12.2. Finally, we refer the
reader to Section 6.3 in Chapter 6 for a discussion of future directions and some open
problems.

5.1 Minimax Estimation via Online Learning

In this section, we present our algorithm for computing a mixed strategy NE of the sta-
tistical game in Equation (1.1) (equivalently a pure strategy NE of the linearized game in
Equation (1.4)). A popular and widely used approach for solving min-max games is to
rely on online learning algorithms [21, 48]. In this approach, the minimization player and
the maximization player play a repeated game against each other. Both the players rely
on online learning algorithms to choose their actions in each round of the game, with the
objective of minimizing their respective regret. The following proposition shows that this
repeated game play converges to a NE.

Proposition 5.1. Consider a repeated game between the minimization and maximization
players in Equation (1.4). Let (θ̂t, Pt) be the actions chosen by the players in iteration t.
Suppose the actions are such that the regret of each player satisfies

T∑
t=1

R(θ̂t, Pt)− inf
θ̂∈D

T∑
t=1

R(θ̂, Pt) ≤ ϵ1(T ),

sup
θ∈Θ

T∑
t=1

R(θ̂t, θ)−
T∑
t=1

R(θ̂t, Pt) ≤ ϵ2(T ).

Let θ̂rnd denote the randomized estimator obtained by uniformly sampling an estimator from
the iterates {θ̂t}Tt=1. Define the mixture distribution Pavg as 1

T

∑T
i=1 Pi. Then (θ̂rnd, Pavg)

is an approximate mixed strategy NE of Equation (1.1)

R(θ̂rnd, Pavg) ≤ inf
θ̂∈D

R(θ̂, Pavg) +
ϵ1(T ) + ϵ2(T )

T
,

R(θ̂rnd, Pavg) ≥ sup
θ∈Θ

R(θ̂rnd, θ)−
ϵ1(T ) + ϵ2(T )

T
.

Note that the above proposition doesn’t specify an algorithm to generate the iterates (θ̂t, Pt).
All it shows is that as long as both the players rely on algorithms which guarantee sub-
linear regret, the iterates converge to a NE. As discussed in Section 1.1.4, there exist several
algorithms such as FTRL, FTPL, Best Response (BR), which guarantee sub-linear regret.
It is important to choose these algorithms appropriately as our choices impact the rate
of convergence to a NE and also the computational complexity of the resulting algorithm.
First, consider the minimization player, whose domainMD is the set of all probability mea-
sures over D. Note that D, the set of all deterministic estimators, is an infinite dimensional
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space. So, algorithms such as FTRL, FTPL, whose regret bounds depend on the dimension
of the domain, can not guarantee sub-linear regret. So the minimization player is forced
to rely on BR, which has 0 regret. Recall, in order to use BR, the minimization player
requires the knowledge of the future action of the opponent. This can be made possible in
the context of min-max games by letting the minimization player choose her action after the
maximization player reveals her action. Next, consider the maximization player. Since the
minimization player is relying on BR, the maximization player has to rely on either FTRL
or FTPL to choose her action1. In this work we choose the FTPL algorithm studied by [96].
Our choice is mainly driven by the computational aspects of the algorithm. Each iteration
of the FTRL algorithm of Krichene et al. [67] involves sampling from a general probability
distribution. Whereas, each iteration of the FTPL algorithm requires minimization of a
non-convex objective. While both sampling and optimization are computationally hard in
general, the folklore is that optimization is relatively easier than sampling in many practical
applications.

We now describe our algorithm for computing a pure strategy NE of Equation (1.4). In
iteration t, the maximization player chooses distribution Pt using FTPL. Pt is given by the
distribution of the random variable θt(σ), which is generated by first sampling a random
vector σ ∈ Rd from exponential distribution and then computing an optimizer of

sup
θ∈Θ

t−1∑
i=1

R(θ̂i, θ) + ⟨σ, θ⟩ . (5.1)

The minimization player chooses θ̂t using BR, which involves computing a minimizer of the
integrated risk under prior Pt

inf
θ̂∈D

R(θ̂, Pt). (5.2)

Very often, computing exact optimizers of the above problems is infeasible. Instead, one
can only compute approximate optimizers. To capture the error from this approximation,
we introduce the notion of approximate optimization oracles/subroutines.

Definition 5.1.1 (Maximization Oracle). A function Omax
α,β (·) is called (α, β)-approximate

maximization oracle, if for any set of estimators {θ̂i}Ti=1 and perturbation σ, it returns
θ′ ∈ Θ which satisfies the following inequality

T∑
i=1

R
(
θ′, θ

)
+
〈
σ, θ′

〉
≥ sup

θ∈Θ

T∑
i=1

R(θ̂i, θ) + ⟨σ, θ⟩ − (α+ β∥σ∥1) .

We denote the output θ′ by Omax
α,β

(
{θ̂i}Ti=1, σ

)
.

Definition 5.1.2 (Minimization Oracle). A function Omin
α (·) is called α-approximate mini-

mization oracle, if for any probability measure P , it returns an approximate Bayes estimator
θ̂′ which satisfies the following inequality

R(θ̂′, P ) ≤ inf
θ̂∈D

R(θ̂, P ) + α.

We denote the output θ̂′ by Omin
α (P ).

1If both the players use BR, then both will wait for the other player to pick an action first. As a result,
the algorithm will never proceed.
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Algorithm 5.1 FTPL for statistical games
1: Input: Parameter of exponential distribution η, approximate optimization oracles
Omax

α,β (·) ,Omin
α′ (·) for problems (5.1), (5.2) respectively

2: for t = 1 . . . T do
3: Let Pt be the distribution of random variable θt(σ), which is generated as follows:

(i) Generate a random vector σ such that {σj}dj=1
i.i.d∼ Exp(η)

(ii) Compute θt(σ) as
θt(σ) = Omax

α,β

(
{θ̂i}t−1

i=1, σ
)
.

4: Compute θ̂t as
θ̂t = Omin

α′ (Pt) .

5: Output: {θ̂1, . . . θ̂T }, {P1, . . . PT }.

Given access to subroutines Omax
α,β (·) ,Omin

α′ (·) for approximately solving the optimization
problems in Equations (5.1), (5.2), the algorithm alternates between the maximization and
minimization players who choose Pt and θ̂t in each iteration. We summarize the overall
algorithm in Algorithm 5.1. The following theorem shows that Algorithm 5.1 converges to
an approximate NE of the statistical game.

Theorem 5.1 (Approximate NE). Consider the statistical game in Equation (1.1). Suppose
Θ ⊆ Rd is compact with ℓ∞ diameter D, i.e., D = supθ1,θ2∈Θ ∥θ1 − θ2∥∞. Suppose R(θ̂, θ)
is L-Lipschitz in its second argument w.r.t ℓ1 norm:

∀θ̂, θ1, θ2 |R(θ̂, θ1)−R(θ̂, θ2)| ≤ L∥θ1 − θ2∥1.

Suppose Algorithm 5.1 is run for T iterations with approximate optimization subroutines
Omax

α,β (·), Omin
α′ (·) for solving the maximization and minimization problems. Let θ̂rnd be the

randomized estimator obtained by uniformly sampling an estimator from the iterates {θ̂t}Tt=1.
Define the mixture distribution Pavg as 1

T

∑T
i=1 Pi. Then (θ̂rnd, Pavg) is an approximate

mixed strategy NE of the statistical game in Equation (1.1)

sup
θ∈Θ

R(θ̂rnd, θ)− ϵ ≤ R(θ̂rnd, Pavg) ≤ inf
θ̂∈D

R(θ̂, Pavg) + ϵ,

where ϵ = O
(
ηd2 + d(βT+D)

ηT + α+ α′
)
.

As an immediate consequence of Theorem 5.1, we show that the minmax and maxmin
values of the statistical game in Equation (1.4) are equal to each other. Moreover, when
the risk is bounded, we show that the statistical game (1.1) has minimax estimators and
LFPs.

Corollary 5.1 (Minimax Theorem). Consider the setting of Theorem 5.1. Then

inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P ) = sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P ) =: R∗.

Furthermore, suppose the risk R(θ̂, θ) is a bounded function and Θ is compact w.r.t the
following metric: ∆M (θ1, θ2) = supθ∈Θ |M(θ1, θ)−M(θ2, θ)|. Then there exists a minimax
estimator θ̂∗ ∈MD whose worst-case risk satisfies

sup
θ∈Θ

R(θ̂∗, θ) = R∗,
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and there exists a least favorable prior P ∗ ∈MΘ whose Bayes risk satisfies

inf
θ̂∈D

R(θ̂, P ∗) = R∗.

We note that the assumption on compactness of Θ w.r.t ∆M is mild and holds whenever
Θ is compact w.r.t ℓ2 norm and M is a continuous function. As another consequence of
Theorem 5.1, we show that Algorithm 5.1 outputs approximate minimax estimators and
LFPs.

Corollary 5.2. Consider the setting of Theorem 5.1. Suppose Algorithm 5.1 is run with
η =

√
1

dL2T
. Then the worst-case risk of θ̂rnd satisfies

sup
θ∈Θ

R(θ̂rnd, θ) ≤ R∗ +O(d
3
2LT− 1

2 + α+ α′ + βd
3
2LT

1
2 ).

Moreover, Pavg is approximately least favorable with the associated Bayes risk satisfying

inf
θ̂∈D

R(θ̂, Pavg) ≥ R∗ −O(d
3
2LT− 1

2 + α+ α′ + βd
3
2LT

1
2 ).

In addition, suppose the loss M used in the computation of risk is convex in its first argu-
ment. Let θ̂avg be the deterministic estimator which is equal to the mean of the probability
distribution associated with θ̂rnd. Then the worst-case risk of θ̂avg satisfies

sup
θ∈Θ

R(θ̂avg, θ) ≤ R∗ +O(d
3
2LT− 1

2 + α+ α′ + βd
3
2LT

1
2 ),

and θ̂avg is an approximate Bayes estimator for prior Pavg.

Remark 5.1 (Near Optimal Estimator). Corollary 5.2 shows that when the approximation
error of the optimization oracles is sufficiently small and when T is large enough, Algo-
rithm 5.1 outputs a minimax estimator with worst-case risk (1 + o(1))R∗. This improves
upon the approximate minimax estimators that are usually designed in statistics, which have
a worst-case risk of O(1)R∗.

Remark 5.2 (Deterministic Minimax Estimators). For general non-convex loss functions,
Algorithm 5.1 only provides a randomized minimax estimator. Given this, a natural question
that arises is whether there exist efficient algorithms for finding a deterministic minimax
estimator. Unfortunately, even with access to the optimization subroutines used by Algo-
rithm 5.1, finding a deterministic minimax estimator can be NP-hard [see Theorem 9 of
23]

Remark 5.3 (Implementation Details). Note that the estimators {θ̂i}Ti=1 and distributions
{Pi}Ti=1 output by Algorithm 5.1 are infinite dimensional objects and can not in general be
stored using finitely many bits. However, in practice, we use independent samples generated
from Pi as its proxy and only work with these samples. Since θ̂i is a Bayes estimator for prior
Pi, it can be approximately computed using samples from Pi. This process of approximating
Pi with its samples introduces some approximation error and the number of samples used
in this approximation need to be large enough to ensure Algorithm 5.1 returns a minimax
estimator. For the problems of finite Gaussian sequence model and linear regression studied
in Sections 5.3, 5.4, we show that poly(d) samples suffice to ensure a minimax estimator.

61



Remark 5.4 (Computation of the Oracles). We now consider the computational aspects
involved in the implementation of optimization oracles used by Algorithm 5.1. Recall that
the maximization oracle, given any estimator, computes its worst-case risk with some linear
perturbation. Since this objective could potentially be non-concave, maximizing it can take
exponential time in the worst-case. And recall that the minimization oracle computes the
Bayes estimator given some prior distribution. Implementation of this minimization oracle
can also be computationally expensive in the worst case. While the worst case complexities
are prohibitive, for a number of problems, one can make use of the problem structure to
efficiently implement these oracles in polynomial time.

In particular, we leverage symmetry and invariance properties of the statistical games to
reduce the complexity of optimization oracles, while controlling their approximation errors;
see Section 5.2. We further consider the case where there is no structure in the problem,
other than the existence of finite-dimensional sufficient statistics for the statistical model.
This allows one to reduce the computational complexity of the minimization oracle by re-
placing the optimization over D in Equation (5.2) with universal function approximators
such as neural networks. Moreover, one can use existing global search techniques to imple-
ment the maximization oracle. While such a heuristic approach can reduce the computa-
tional complexity of the oracles, bounding their approximation errors can be hard (recall, the
worst-case risk of our estimator depends on the approximation error of the optimization or-
acles). Nevertheless, in later sections, we empirically demonstrate that the estimators from
this approach have superior performance over many existing estimators which are known to
be approximately minimax.

We briefly discuss some classical work that can be leveraged for efficient implementation
of optimization oracles, albeit for specific models or settings. For several problems, it can
be shown that there exists an approximate minimax estimator in some restricted space of
estimators such as linear or polynomial functions of the data [19, 29, 88]. Such results can
be used to reduce the space of estimators in the statistical game (1.1). By replacing MD in
Equation (1.1) with the restricted estimator space, one can greatly reduce the computational
complexity of the optimization oracles. Another class of results relies on analyses of conver-
gence of posterior distributions. As a key instance, when the number of samples n is much
larger than the dimension d, it is well known that the posterior distribution behaves like a
normal distribution, whenever the prior has sufficient mass around the true parameter [46].
Such a property can be used to efficiently implement the minimization oracle.

5.2 Invariance of Minimax Estimators and LFPs

In this section, we show that whenever the statistical game satisfies certain invariance prop-
erties, the computational complexity of the optimization oracles required by Algorithm 5.1
can be greatly reduced. We first present a classical result from statistics about the in-
variance properties of minimax estimators.When the statistical game in Equation (1.2) is
invariant to group transformations, the invariance theorem says that there exist minimax
estimators which are also invariant to these group transformations [9, 62]. Later, we utilize
this result to reduce the computational complexity of the oracles required by Algorithm 5.1.

We first introduce the necessary notation and terminology to formally state the invariance
theorem. We note that the theorem stated here is tailored for our setting and more general
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versions of the theorem can be found in Kiefer et al. [62]. Let G be a compact group of
transformations on X ×Θ which acts component wise; that is, for each g ∈ G, g(X, θ) can
be written as (g1X, g2θ), where g1, g2 are transformations on X ,Θ. With a slight abuse
of notation we write gX, gθ in place of g1X, g2θ. We assume that the group action is
continuous, so that the functions (g,X)→ gX and (g, θ)→ gθ are continuous. Finally, let
µ be the unique left Haar measure on G with µ(G) = 1. We now formally define “invariant
statistical games”, “invariant estimators” and “invariant probability measures”.

Definition 5.2.1 (Invariant Game). A statistical game is invariant to group transforma-
tions G, if the following two conditions hold for each g ∈ G

• for all θ ∈ Θ, gθ ∈ Θ. Moreover, the probability distribution of gX is Pgθ, whenever
the distribution of X is Pθ.

• M(gθ1, gθ2) = M(θ1, θ2), for all θ1, θ2 ∈ Θ.

Definition 5.2.2 (Invariant Estimator). A deterministic estimator θ̂ is invariant if for each
g ∈ G, θ̂(gXn) = gθ̂(Xn), where gXn = {gX1, . . . gXn}.

Definition 5.2.3 (Invariant Measure). Let B(Θ) be the Borel σ-algebra corresponding to
the parameter space Θ. A measure ν on (Θ,B(Θ)) is invariant if for all g ∈ G and any
measurable set A ∈ B(Θ), ν(gA) = ν(A).

Example 5.2.1. Consider the problem of estimating the mean of a Gaussian distribution.
Given n samples X1, . . . Xn drawn from N (θ, Id×d), our goal is to estimate the unknown
parameter θ. Suppose the parameter space is given by Θ = {θ′ : ∥θ′∥2 ≤ B} and the risk of
any estimator is measured w.r.t squared L2 loss. Then it is easy to verify that the problem
is invariant to transformations of the orthogonal group O(d) = {U : UUT = UTU = I}.

We now present the main result concerning the existence of invariant minimax estimators.A
more general version of the result can be found in [62].

Theorem 5.2 (Invariance). Consider the statistical game in Equation (1.1). Suppose the
game is invariant to group transformations G. Suppose the loss metric M is convex in its
first argument. Then for any deterministic estimator θ̂, there exists an estimator θ̂G which
is invariant to group transformations G, with worst-case risk no larger than the worst-case
risk of θ̂

sup
θ∈Θ

R(θ̂G, θ) ≤ sup
θ∈Θ

R(θ̂, θ).

This shows that there exists a minimax estimator which is invariant to group transforma-
tions. We now utilize this invariance property to reduce the complexity of the optimization
oracles. Let Θ =

⋃
β Θβ be the partitioning of Θ into equivalence classes under the equiv-

alence θ1 ∼ θ2, if θ1 = gθ2 for some g ∈ G. The quotient space of Θ is defined as the set of
equivalence classes of the elements of Θ under the above defined equivalence and is given
by Θ/G = {Θβ}β . For an invariant estimator θ̂, we define RG(θ̂,Θβ) as R(θ̂, θβ) for any
θβ ∈ Θβ . Note that this is well defined because for invariant estimators R(θ̂, θ1) = R(θ̂, θ2)
whenever θ1 ∼ θ2 (see Lemma 5.1). Our main result shows that Equation (1.1) can be
reduced to the following simpler objective

inf
θ̂∈MD,G

sup
Θβ∈Θ/G

RG(θ̂,Θβ), (5.3)
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where MD,G represents the set of randomized estimators which are invariant to group
transformations G. This shows that the outer minimization over the set of all estimators
in Equation (1.1) can be replaced with a minimization over just the invariant estimators.
Moreover, the inner maximization over the entire parameter space Θ can be replaced with
a maximization over the smaller quotient space Θ/G , which in many examples we study
here is a one or two-dimensional space, irrespective of the dimension of Θ.

Theorem 5.3. Suppose the statistical game in Equation (1.1) is invariant to group trans-
formations G. Moreover, suppose the loss metric M is convex in its first argument. Then,

inf
θ̂∈MD

sup
θ∈Θ

R(θ̂, θ) = inf
θ̂∈MD,G

sup
Θβ∈Θ/G

RG(θ̂,Θβ).

Moreover, given any ϵ-approximate mixed strategy NE of the reduced statistical game (5.3),
one can reconstruct an ϵ-approximate mixed strategy NE of the original statistical
game (1.1).

We now demonstrate how Theorem 5.3 can be used on a variety of fundamental statistical
estimation problems.

5.2.1 Finite Gaussian Sequence Model

In the finite Gaussian sequence model, we are given a single sample X ∈ Rd sampled from
a Gaussian distribution N (θ, I). We assume the parameter θ has a bounded L2 norm and
satisfies ∥θ∥2 ≤ B. Our goal is to design an estimator for θ which is minimax with respect
to squared-error loss. This results in the following min-max problem

inf
θ̂∈MD

sup
∥θ∥2≤B

R(θ̂, θ) ≡ EX∼N (θ,I)

[
∥θ̂(X)− θ∥22

]
. (5.4)

Theorem 5.4. Let O(d) = {U : UUT = UTU = I} be the group of d×d orthogonal matrices
with matrix multiplication as the group operation. The statistical game in Equation (5.4)
is invariant under the action of O(d), where the action of g ∈ O(d) on (X, θ) is defined
as g(X, θ) = (gX, gθ). Moreover, the quotient space Θ/O(d) is homeomorphic to the real
interval [0, B] and the reduced statistical game is given by

inf
θ̂∈MD,G

sup
b∈[0,B]

R(θ̂, be1), (5.5)

where e1 is the first standard basis vector in Rd andMD,G represents the set of randomized
estimators which are invariant to the actions of orthogonal group.

The theorem shows that the supremum in the reduced statistical game (5.3) is over a
bounded interval on the real line. So the maximization oracle in this case can be efficiently
implemented using grid search over the interval [0, B]. In Section 5.3 we use this result
to obtain estimators for Gaussian sequence model which are provably minimax and can be
computed in polynomial time.
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Estimating a few co-ordinates. Here, we again consider with the Gaussian sequence
model described above, but we are now interested in the estimation of only a subset of the
co-ordinates of θ. Without loss of generality, we assume these are the first k coordinates.
The loss M is the squared L2 loss on the first k coordinates. The following Theorem presents
the invariance properties of this problem. It relies on the group O(k)×O(d− k), which is

defined as the set of orthogonal matrices of the form g =

[
g1 0
0 g2

]
where g1 ∈ O(k) and

g2 ∈ O(d− k).

Theorem 5.5. The statistical game described above is invariant under the action of the
group O(k)×O(d− k). Moreover, the quotient space Θ/O(k)×O(d− k) is homeomorphic
to the ball of radius B centered at origin in R2 and the reduced statistical game is given by

inf
θ̂∈MD,G

sup
b21+b22≤B2

R(θ̂, [b1e1,k, b2e1,d−k]), (5.6)

where e1,k is the first standard basis vector in Rk andMD,G represents the set of randomized
estimators which are invariant to the actions of orthogonal group.

5.2.2 Linear Regression

In the problem of linear regression with random design we are given n independent samples
Dn = {(Xi, Yi)}ni=1 generated from a linear model Yi = XT

i θ
∗+ϵi, where Xi ∼ N (0, I), and

ϵi ∼ N (0, 1). We assume the true regression vector is bounded and satisfies ∥θ∗∥2 ≤ B.
Our goal is to design minimax estimator for estimating θ∗ from Dn, w.r.t squared error
loss. This leads us to the following min-max problem

inf
θ̂∈MD

sup
||θ||2≤B

R(θ̂, θ) ≡ EDn

[
||θ̂(Dn)− θ||22

]
. (5.7)

Theorem 5.6. The statistical game in Equation (5.7) is invariant under the action of
the orthogonal group O(d), where the action of g ∈ O(d) on ((X,Y ), θ) is defined as
g((X,Y ), θ) = ((gX, Y ), gθ). Moreover, the quotient space Θ/O(d) is homeomorphic to
the interval [0, B] and the reduced statistical game is given by

inf
θ̂∈MD,G

sup
b∈[0,B]

R(θ̂, be1), (5.8)

whereMD,G represents the set of randomized estimators which are invariant to the actions
of orthogonal group.

5.2.3 Normal Covariance Estimation

In the problem of normal covariance estimation we are given n independent samples Xn =
{Xi}ni=1 drawn from N(0,Σ). Here, we assume that the true Σ has a bounded operator
norm and satisfies ∥Σ∥2 ≤ B. Our goal is to construct an estimator for Σ which is minimax
w.r.t the entropy loss, which is defined as

M(Σ1,Σ2) = tr
(
Σ−1
1 Σ2

)
− log |Σ−1

1 Σ2| − d.
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This leads us to the following min-max problem

inf
Σ̂∈MD

sup
Σ∈Ξ

R(Σ̂,Σ) ≡ EXn

[
M(Σ̂(Xn),Σ)

]
, (5.9)

where Ξ = {Σ : ||Σ||2 ≤ B}.

Theorem 5.7. The statistical game defined by normal covariance estimation with entropy
loss is invariant under the action of the orthogonal group O(d), where the action of g ∈ O(d)
on (X,Σ) is defined as g(Xi,Σ) = (gXi, gΣg

T ). Moreover the quotient space Ξ/O(d) is
homeomorphic to ΞG = {λ ∈ Rd : B ≥ λ1 ≥ . . . λd > 0} and the reduced statistical game is
given by

inf
Σ̂∈MD,G

sup
λ∈ΞG

R(Σ̂,Diag(λ)), (5.10)

where Diag(λ) is the diagonal matrix whose diagonal entries are given by λ and MD,G

represents the set of randomized estimators which are invariant to the actions of orthogonal
group.

The theorem shows that the maximization problem over Ξ can essentially be reduced to an
optimization problem over a d-dimensional space.

5.2.4 Entropy estimation

In the problem of entropy estimation, we are given n samples Xn = {X1, . . . Xn} drawn
from a discrete distribution P = (p1, . . . pd). Here, the domain of each Xi is given by
X = {1, 2, . . . d}. Our goal is to estimate the entropy of P , which is defined as f(P ) =
−
∑d

i=1 pi log2 pi, under the squared error loss. This leads us to the following min-max
problem

inf
f̂∈MD

sup
P∈P

R(f̂ , P ) ≡ EXn

[(
f̂(Xn)− f(P )

)2]
, (5.11)

where P is the set of all probability distributions supported on d elements.

Theorem 5.8. The statistical game in Equation (5.11) is invariant to the action of the
permutation group Sd. The quotient space P/Sd is homeomorphic to PG = {P ∈ Rd : 1 ≥
p1 ≥ . . . ≥ pd ≥ 0,

∑
i pi = 1} and the reduced statistical game is given by

inf
f̂∈MD,G

sup
P∈PG

R(f̂ , P ), (5.12)

whereMD,G represents the set of randomized estimators which are invariant to the actions
of permutation group.

5.3 Finite Gaussian Sequence Model

In this section we consider the finite Gaussian sequence model described in Section 5.2.1
and use Algorithm 5.1 to construct a provably minimax estimator, which can be computed
in polynomial time. This problem has received a lot of attention in statistics because of its
simplicity, relevance and its connections to non-parametric regression [see Chapter 1 of 56].
When the radius of the domain B is smaller than 1.15

√
d, Marchand and Perron [78] show

that the Bayes estimator with uniform prior on the boundary is a minimax estimator for the
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problem. For larger values of B, the exact minimax estimator is unknown. Several works
have attempted to understand the properties of LFP in such settings [20] and constructed
approximate minimax estimators [12]. In this work, we rely on Algorithm 5.1 to construct
an exact minimax estimator and an LFP, for any value of B, d.

Recall, in Theorem 5.4 we showed that the original min-max statistical game can be reduced
to the simpler problem in Equation (5.5) To use Algorithm 5.1 to find a Nash equilibrium
of the reduced game, we need efficient implementation of the required optimization oracles
and a bound on their approximation errors. The optimization problems corresponding to
the oracles in Equations (5.1), (5.2) are given as follows

θ̂t ← argmin
θ̂∈DG

Eb∼Pt

[
R(θ̂, be1)

]
, bt(σ)← argmax

b∈[0,B]

t−1∑
i=1

R(θ̂i, be1) + σb,

where DG is the set of deterministic invariant estimators and Pt is the distribution of ran-
dom variable bt(σ). We now present efficient techniques for implementing these oracles
(Algorithms 5.2, 5.3). Since the maximization problem is a 1 dimensional optimization
problem, grid search can be used to compute an approximate maximizer. The approxima-
tion error of the resulting oracle depends on the grid width and the number of samples used
to compute the expectation in the risk R(θ̂, be1). Later, we show that poly(d,B) grid points
and samples suffice to have a small approximation error. The minimization problem, which
requires finding an invariant estimator minimizing the integrated risk under any prior Pt,
can also be efficiently implemented. As shown in Proposition 5.2 below, the minimizer has
a closed-form expression which depends on Pt and modified Bessel functions. To compute
an approximate minimizer of the problem, we approximate Pt with its samples and rely on
the closed-form expression. The approximation error of this oracle depends on the number
of samples used to approximate Pt. We again show that poly(d,B) samples suffice to have
a small approximation error.

Proposition 5.2. The optimizer θ̂t of the minimization problem defined above has the
following closed-form expression

θ̂t(X) =

 Eb∼Pt

[
b3−d/2e−b2/2Id/2(b∥X∥2)

]
Eb∼Pt

[
b2−d/2e−b2/2Id/2−1(b∥X∥2)

]
 X

∥X∥2
,

where Iν is the modified Bessel function of first kind of order ν.

We now show that using Algorithm 5.1 for solving objective (5.5) with Algorithms 5.2, 5.3 as
optimization oracles, gives us a provably minimax estimator and an LFP for finite Gaussian
sequence model.

Theorem 5.9. Suppose Algorithm 5.1 is run for T iterations with Algorithms 5.2, 5.3 as the
maximization and minimization oracles. Suppose the hyper-parameters of these algorithms
are set as η = 1

B(B+1)
√
T
, w = B

T 3/2 , N1 =
T 3

(B+1)2
, N2 =

T 4

(B+1)2
. Let P̂t be the approximation

of probability distribution Pt used in the tth iteration of Algorithm 5.1. Moreover, let θ̂t be
the output of Algorithm 5.3 in the tth iteration of Algorithm 5.1.

67



Algorithm 5.2 Maximization Oracle

1: Input: Estimators {θ̂i}t−1
i=1, perturbation σ, grid width w, number of samples for computation

of expected risk R(θ̂, θ): N1

2: Let {b1, b2 . . . bB/w} be uniformly spaced points on [0, B]
3: for j = 1 . . . B/w do
4: for i = 1 . . . t− 1 do
5: Generate N1 independent samples {Xk}N1

k=1 from the distribution N (bje1, I)

6: Estimate R(θ̂i, bje1) as 1
N1

∑N1

k=1 ∥θ̂i(Xk)− be1∥22.
7: Evaluate the objective at bj using the above estimates
8: Output: bj which maximizes the objective

Algorithm 5.3 Minimization Oracle

1: Input: Samples {bi}N2
i=1 generated from distribution Pt.

2: For any X, compute θ̂t(X) as (∑N2

i=1 wibiA(bi∥X∥2)∑N2

i=1 wi

)
X

∥X∥2
,

where A(γ) =
Id/2(γ)

Id/2−1(γ)
, wi = b

2−d/2
i e−b2i /2Id/2−1(bi∥X∥2), and Iν is the modified Bessel

function of the first kind of order ν.

1. Then the averaged estimator θ̂avg(X) = 1
T

∑T
i=1 θ̂i(X) is approximately minimax and

satisfies the following worst-case risk bound with probability at least 1− δ

sup
θ:∥θ∥2≤B

R(θ̂avg, θ) ≤ R∗ + Õ

(
B2(B + 1)√

T

)
,

where Õ(.) hides log factors and R∗ is the minimax risk.

2. Define the mixture distribution P̂avg as 1
T

∑T
i=1 P̂i. Let P̂LFP be a probability distri-

bution over Rd with density function defined as p̂LFP(θ) ∝ ∥θ∥1−d
2 P̂avg(∥θ∥2), where

P̂avg(∥θ∥2) is the probability mass placed by P̂avg at ∥θ∥2. Then P̂LFP is approximately
least favorable and satisfies the following with probability at least 1− δ

inf
θ̂∈D

R(θ̂, P̂LFP) ≥ R∗ − Õ

(
B2(B + 1)√

T

)
,

where the infimum is over the set of all estimators.

We believe the polynomial factors in the bounds can be improved with a tighter analysis
of the algorithm. The above Theorem shows that Algorithm 5.1 learns an approximate
minimax estimator in poly(d,B) time. To the best our knowledge, this is the first result
providing provable minimax estimators for finite Gaussian sequence model, for any value
of B.
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5.4 Linear Regression

In this section we consider the linear regression problem described in Section 5.2.2 and
provide a provably minimax estimator. Recall, in Theorem 5.6 we showed that the original
min-max statistical game can be reduced to the simpler problem in Equation (5.8). We now
provide efficient implementations of the optimization oracles required by Algorithm 5.1 for
finding a Nash equilibrium of this game. The optimization problems corresponding to the
two optimization oracles are as follows

θ̂t ← argmin
θ̂∈DG

Eb∼Pt

[
R(θ̂, be1)

]
, bt(σ)← argmax

b∈[0,B]

t−1∑
i=1

R(θ̂i, be1) + σb,

whereDG is the set of deterministic invariant estimators and Pt is the distribution of random
variable bt(σ). Similar to the Gaussian sequence model, the maximization oracle can be
efficiently implemented via a grid search over [0, B] (Algorithm 5.4). The solution to the
minimization problem has a closed-form expression in terms of the mean and normalization
constant of Fisher-Bingham distribution, which is a distribution obtained by constraining
multivariate normal distributions to lie on the surface of unit sphere [68]. Letting Sd−1 be
the unit sphere in Rd, the probability density of a random variable Z distributed according
to Fisher-Bingham distribution is given by

p(Z;A, γ) = C(A, γ)−1 exp
(
−ZTAZ + ⟨γ, Z⟩

)
,

where Z ∈ Sd−1, and γ ∈ Rd, A ∈ Rd×d are the parameters of the distribution with A
being positive semi-definite and C(A, γ) is the normalization constant. Note that the mean
of Fisher-Bingham distribution is given by C(A, γ)−1 ∂

∂γC(A, γ). The following proposition
obtains a closed-form expression for θ̂t in terms of C(A, γ) and ∂

∂γC(A, γ).

Proposition 5.3. The optimizer θ̂t of the minimization problem defined above has the
following closed-form expression

θ̂t(Dn) =

Eb∼Pt

[
b2

∂

∂γ
C
(
2−1b2XTX, γ

) ∣∣∣
γ=bXTY

]
Eb∼Pt

[
bC
(
2−1b2XTX, bXTY

)] ,

where X = [X1, X2 . . . Xn]
T and Y = [Y1, Y2 . . . Yn].

We note that there exist a number of efficient techniques for computation of the mean
and normalization constant of Fisher-Bingham distribution [51, 68]. In our experiments we
rely on the technique of Kume and Wood [68] (we relegate the details of this technique to
Section 5.8.9.2). To compute an approximate optimizer of the minimization problem, we ap-
proximate Pt with its samples and rely on the above closed-form expression. Algorithm 5.5
describes the resulting minimization oracle. We now show that using Algorithm 5.1 for
solving objective (5.8) with Algorithms 5.4, 5.5 as optimization oracles, gives us a provably
minimax estimator and an LFP for linear regression.

Theorem 5.10. Suppose Algorithm 5.1 is run for T iterations with Algorithms 5.4, 5.5
as the maximization and minimization oracles. Suppose the hyper-parameters of these al-
gorithms are set as η = 1

B(B
√
n+1)

√
T
, w = B

T 3/2 , N1 =
T 3

(B
√
n+1)2

, N2 =
T 4

(B
√
n+1)2

. Let P̂t be
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Algorithm 5.4 Regression Maximization Oracle

1: Input: Estimators {θ̂i}t−1
i=1, perturbation σ, grid width w, number of samples for computation

of expected risk R(θ̂, θ): N1

2: Let {b1, b2 . . . bB/w} be uniformly spaced points on [0, B]
3: for j = 1 . . . B/w do
4: for i = 1 . . . t− 1 do
5: Generate N1 independent datasets {Dn,k}N1

k=1 from the linear model with true regression
vector bje1

6: Estimate R(θ̂i, bje1) as 1
N1

∑N1

k=1 ∥θ̂i(Dn,k)− be1∥22.
7: Evaluate the objective at bj using the above estimates
8: Output: bj which maximizes the objective

Algorithm 5.5 Regression Minimization Oracle

1: Input: Samples {bi}N2
i=1 generated from distribution Pt

2: For any Dn, compute θ̂t(Dn) as

θ̂t(Dn) =

∑N2

i=1 b
2
i

∂
∂γC

(
2−1b2iX

TX, γ
) ∣∣∣

γ=biXTY∑N2

i=1 biC (2−1b2iX
TX, biXTY)

,

where X = [X1, X2 . . . Xn]
T and Y = [Y1, Y2 . . . Yn].

the approximation of probability distribution Pt used in the tth iteration of Algorithm 5.1.
Moreover, let θ̂t be the output of Algorithm 5.5 in the tth iteration of Algorithm 5.1.

1. Then the averaged estimator θ̂avg(Dn) = 1
T

∑T
i=1 θ̂i(Dn) is approximately minimax

and satisfies the following worst-case risk bound with probability at least 1− δ

sup
θ:∥θ∥2≤B

R(θ̂avg, θ) ≤ R∗ + Õ

(
B2(B + 1)

√
n

T

)
.

2. Define the mixture distribution P̂avg as 1
T

∑T
i=1 P̂i. Let P̂LFP be a probability distri-

bution over Rd with density function defined as p̂LFP(θ) ∝ ∥θ∥1−d
2 P̂avg(∥θ∥2), where

P̂avg(∥θ∥2) is the probability mass placed by P̂avg at ∥θ∥2. Then P̂LFP is approximately
least favorable and satisfies the following with probability at least 1− δ

inf
θ̂∈D

R(θ̂, P̂LFP) ≥ R∗ − Õ

(
B2(B + 1)

√
n

T

)
.

5.5 Covariance Estimation

In this section, we consider the problem of normal covariance estimation. Recall, in Sec-
tion 5.2.3 we showed that the problem is invariant to the action of the orthogonal group
and can be reduced to the simpler problem in Equation (5.10). The optimization problems
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corresponding to the oracles in Equations (5.1), (5.2) are as follows

Σ̂t ← argmin
Σ̂∈DG

Eλ∼Pt

[
R(Σ̂,Diag(λ))

]
, λt(σ)← argmax

λ∈ΞG

t−1∑
i=1

R(Σ̂i,Diag(λ)) + ⟨λ, σ⟩ ,

where DG is the set of deterministic invariant estimators and Pt is the distribution of ran-
dom variable λt(σ). Note that the maximization problem involves optimization of a non-
concave objective in d-dimensional space. So, implementing a maximization oracle with
low approximation error can be computationally expensive, especially in high dimensions.
Moreover, unlike finite Gaussian sequence model and linear regression, the minimization
problem doesn’t have a closed form expression, and it is not immediately clear how to effi-
ciently implement a minimization oracle with low approximation error. In such scenarios,
we show that one can rely on a combination of heuristics and problem structure to fur-
ther reduce the computational complexity of the optimization oracles. Although relying on
heuristics comes at the expense of theoretical guarantees, in later sections, we empirically
demonstrate that the resulting estimators have superior performance over classical estima-
tors. We begin by showing that the domain of the outer minimization in Equation (5.10)
can be reduced to a smaller set of estimators. Our reduction relies on Blackwell’s theorem,
which shows that for convex loss functions M , there exists a minimax estimator which is
a function of the sufficient statistic [50]. We note that Blackwell’s theorem is very general
and can be applied to a wide range of problems, to reduce the computational complexity
of the minimization oracle.

Proposition 5.4. Consider the problem of normal covariance estimation. Let
Sn =

∑n
i=1 XiX

T
i

n be the empirical covariance matrix and let U∆UT be the eigen decomposi-
tion of Sn. Then there exists a minimax estimator which can be approximated arbitrarily
well using estimators of the form Σ̂f,g(Xn) = U Σ̃f,g(∆)UT , where Σ̃f,g(∆) is a diagonal
matrix whose ith diagonal entry is given by

Σ̃f,g,i(∆) = f

∆i,
∑
j ̸=i

g(∆i,∆j)

 ,

for some functions f : Rd+1 → R, g : R2 → Rd. Here, ∆i is the ith diagonal entry of
∆. Moreover, the optimization problem in Equation (5.10) can be reduced to the following
simpler problem

inf
Σ̂∈Mf,g

sup
λ∈ΞG

R(Σ̂,Diag(λ)) = R∗, (5.13)

where Mf,g is the set of probability distributions over estimators of the form Σ̂f,g.

We now use Algorithm 5.1 to solve the statistical game in Equation (5.13). The optimization
problems corresponding to the two optimization oracles are given by

f̂t, ĝt ← argmin
f,g

Eλ∼Pt

[
R(Σ̂f,g,Diag(λ))

]
, λt(σ)← argmax

λ∈ΞG

t−1∑
i=1

R(Σ̂f̂i,ĝi
,Diag(λ)) + ⟨λ, σ⟩ .

We rely on heuristics to efficiently implement these oracles. To implement the minimization
oracle, we use neural networks (which are universal function approximators) to parameterize
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functions f, g. Implementing the minimization oracle then boils down to the finding the
parameters of these networks which minimize the objective. To implement the maximization
oracle, we rely on global search techniques. In our experiments, we use DragonFly [58],
which is a zeroth order optimization technique, to implement this oracle. Note that these
heuristics do not come with any guarantees and as a result the oracles are not guaranteed
to have a small approximation error. Despite this, we empirically demonstrate that the
estimators learned using this approach have good performance.

5.6 Entropy Estimation

In this section, we consider the problem of entropy estimation. Recall, in Section 5.2.4 we
showed that the problem is invariant to the action of permutation group and can be reduced
to the simpler problem in Equation (5.12). Similar to the problem of covariance estimation,
implementing the optimization oracles for this problem, with low approximation error, can
be computationally expensive. So we again rely on heuristics and problem structure to
reduce the computational complexity of optimization oracles.

Proposition 5.5. Consider the problem of entropy estimation. Let P̂n = (p̂1, . . . p̂d) be
the observed empirical probabilities. Then there exists a minimax estimator which can be
approximated arbitrarily well using estimators of the form f̂g,h(P̂n) = g(

∑d
i=1 h(p̂i)), for

some functions g : Rd+1 → R, h : R → Rd+1. Moreover, the optimization problem in
Equation (5.12) can be reduced to the following problem

inf
f̂∈Mg,h

sup
P∈PG

R(f̂ , P ) = R∗, (5.14)

where Mg,h is the set of probability distributions over estimators of the form f̂g,h.

The proof of this proposition is presented in Section 5.8.11.1. We now use Algorithm 5.1
to solve the statistical game in Equation (5.14). The optimization problems corresponding
to the two optimization oracles are given by

ĝt, ĥt ← argmin
g,h

EP∼Pt

[
R(f̂g,h, P )

]
, Pt(σ)← argmax

P∈PG

t−1∑
i=1

R(f̂ĝi,ĥi
, P ) + ⟨P, σ⟩ ,

where Pt is the distribution of random variable Pt(σ). To implement the minimization ora-
cle, we use neural networks to parameterize functions g, h. To implement the maximization
oracle, we rely on DragonFly.

5.7 Experiments

In this section, we present experiments showing performance of the proposed technique for
constructing minimax estimators. While our primary focus is on the finite Gaussian se-
quence model and linear regression for which we provided provably minimax estimators, we
also present experiments on other problems such as covariance and entropy estimation. For
each of these problems, we begin by describing the setup as well as the baseline algorithms,
before proceeding to a discussion of the experimental findings.
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5.7.1 Finite Gaussian Sequence Model

In this section, we focus on experiments related to the finite Gaussian sequence model. We
first consider the case where the risk is measured with respect to squared error loss, i.e.,
M(θ1, θ2) = ∥θ1 − θ2∥22.

Proposed Technique. We use Algorithm 5.1 with optimization oracles described in Al-
gorithms 5.2, 5.3 to find minimax estimators for this problem. We set the hyper-parameters
of our algorithm as follows: number of iterations of FTPL T = 500, grid width w = 0.05×B,
number of samples for computation of R(θ̂, θ) in Algorithm 5.2 N1 = 1000, number of sam-
ples generated from Pt in Algorithm 5.3 N2 = 1000. We note that these are default values
and were not tuned. The randomness parameter η in Algorithm 5.1 was tuned using a
coarse grid search. We report the performance of the following two estimators constructed
using the iterates of Algorithm 5.1: (a) Averaged Estimator θ̂avg(X) = 1

T

∑T
i=1 θ̂i(X), (b)

Bayes estimator for prior 1
T

∑T
i=1 P̂i which we refer to as “Bayes estimator for avg. prior”.

The performance of the randomized estimator θ̂rnd is almost identical to the performance
of θ̂avg. So we do not report its performance.

Baselines. We compare our estimators with various baselines: (a) standard estima-
tor θ̂(X) = X, (b) James Stein estimator θ̂(X) =

(
1− (d− 3)/∥X∥22

)+
X, where c+ =

max(0, c), (c) projection estimator (MLE) θ̂(X) = min(∥X∥2, B) X
∥X∥2 , (d) Bayes estimator

for uniform prior on the boundary; this estimator is known to be minimax for B ≤ 1.15
√
d.

Worst-case Risk. We compare the performance of various estimators based on their
worst-case risk. The worst-case risk of the standard estimator is equal to d. The worst
case risk of all the other estimators is computed as follows. Since all these estimators
are invariant to orthogonal group transformations, the risk R(θ̂, θ) only depends on ∥θ∥2
and not its direction. So the worst-case risk can be obtained by solving the following
optimization problem: maxb∈[0,B]R(θ̂, be1), where e1 is the first standard basis vector. We
use grid search to solve this problem, with 0.05 × B grid width. We use 104 samples to
approximately compute R(θ̂, be1) for any θ̂, b.

Duality Gap. For estimators derived from our technique, we also present the duality
gap, which is defined as supθ∈ΘR(θ̂avg, θ)− inf θ̂∈D R(θ̂, 1

T

∑T
i=1 P̂i). Duality gap quantifies

the closeness of (θ̂avg, 1
T

∑T
i=1 P̂i) to a Nash equilibrium. Smaller the gap, closer we are to

an equilibrium.

Results. Table 5.1 shows the performance of various estimators for various values of
d,B along with the duality gap for our estimator. For B =

√
d, the estimators obtained

using Algorithm 5.1 have similar performance as the “Bayes estimator for uniform prior
on boundary”, which is known to be minimax. For B = 2

√
d, 3
√
d for which the exact

minimax estimator is unknown, we achieve better performance than baselines. Finally, we
note that the duality gap numbers presented in the table can be made smaller by running
our algorithm for more iterations. When the dimension d = 1, Donoho et al. [29] derived
lower bounds for the minimax risk, for various values of B. In Table 5.2, we compare the
worst risk of our estimator with these established lower bounds. It can be seen that the
worst case risk of our estimator is close to the lower bounds.
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Table 5.1: Worst-case risk of various estimators for finite Gaussian sequence model. The risk
is measured with respect to squared error loss. The worst-case risk of the estimators from Al-
gorithm 5.1 (last two rows) is smaller than the worst-case risk of baselines. The numbers in the
brackets for Averaged Estimator represent the duality gap.

Worst-case Risk
B =

√
d B = 1.5

√
d B = 2

√
d

Estimator d = 10 d = 20 d = 30 d = 10 d = 20 d = 30 d = 10 d = 20 d = 30

Standard 10 20 30 10 20 30 10 20 30
James Stein 6.0954 11.2427 16.073 7.9255 15.0530 21.3410 8.7317 16.6971 24.7261
Projection 8.3076 17.4788 26.7873 10.3308 20.3784 30.2464 10.1656 20.2360 30.3805

Bayes estimator
for uniform prior

on boundary
4.8559 9.9909 14.8690 11.7509 23.4726 35.2481 24.5361 49.0651 73.3158

Averaged
Estimator

4.7510
(0.1821)

9.7299
(0.2973)

14.8790
(0.0935)

6.7990
(0.0733)

13.8084
(0.2442)

20.5704
( 0.0087)

7.8504
(0.3046)

15.6686
(0.2878)

23.8758
(0.6820)

Bayes estimator
for avg. prior 4.9763 10.1273 14.8128 6.7866 13.8200 20.3043 7.8772 15.6333 23.5954

Table 5.2: Comparison of the worst case risk of θ̂avg with established lower bounds from
[29] for finite Gaussian sequence model with d = 1.

B = 1 B = 2 B = 3 B = 4

Worst case risk of
Averaged Estimator 0.456 0.688 0.799 0.869

Lower bound 0.449 0.644 0.750 0.814

5.7.2 Finite Gaussian Sequence Model with a few coordinates

In this section we again consider the finite Gaussian sequence model, but with a different
risk. We now measure the risk on only the first k coordinates: M(θ1, θ2) =

∑k
i=1(θ1(i) −

θ2(i))
2. We present experimental results for k = 1, d/2.

Proposed Technique. Following Theorem 5.5, the original min-max objective can be
reduced to the simpler problem in Equation (5.6). We use similar optimization oracles as
in Algorithms 5.2, 5.3, to solve this problem. The maximization problem is now a 2D opti-
mization problem for which we use grid search. The minimization problem, which requires
computation of Bayes estimators, can be solved analytically and has similar expression as
the Bayes estimator in Algorithm 5.3 (see Section 5.8.8 for details). We use a 2D grid of
0.05B width and length in the maximization oracle. We use the same hyper-parameters as
above and run FTPL for 10000 iterations for k = 1 and 4000 iterations for k = d/2.

Worst-case Risk. We compare our estimators with the same baselines described in the
previous section. For the case of k = 1, we also compare with the best linear estimator,
which is known to be approximately minimax with worst case risk smaller than 1.25 times
the minimax risk [28]. Since all these estimators, except the best linear estimator, are
invariant to the transformations of group O(k)×O(d−k), the max risk of these estimators
can be written as maxb21+b22≤B2 R(θ̂, [b1e1,k, b2e1,d−k]). We solve this problem using 2D grid
search. The worst case risk of best linear estimator has a closed form expression.

Results. Table 5.3 shows the performance of various estimators for various values of
d,B. It can be seen that for B =

√
d, our estimators have better performance than other

baselines. The performance difference goes down for large B, which is as expected. In
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Table 5.3: Worst-case risk of various estimators for bounded normal mean estimation when the
risk is evaluated with respect to squared loss on the first k coordinates.

Worst-case Risk
k = 1,B =

√
d k = 1,B = 2

√
d k = 1,B = 3

√
d

Estimator d = 10 d = 20 d = 30 d = 10 d = 20 d = 30 d = 10 d = 20 d = 30
Standard Estimator 1 1 1 1 1 1 1 1 1

James-Stein Estimator 2.3796 4.9005 7.3489 2.5087 4.9375 7.3760 2.4288 4.8951 7.3847
Projection Estimator 1.0055 1.4430 2.0424 1.0263 1.1051 1.5077 1.0288 1.0310 1.0202
Best Linear Estimator 0.9091 0.9524 0.9677 0.9756 0.9877 0.9917 0.9890 0.9945 0.9963
Bayes Estimator for

average prior 0.7955 0.8565 0.8996 0.9160 0.9496 0.9726 0.9611 1.0007 1.0172

Averaged Estimator 0.7939 0.8579 0.8955 0.9104 0.9497 0.9724 0.9640 1.0003 1.0101
Worst-case Risk

k = d/2,B =
√
d k = d/2,B = 2

√
d k = d/2,B = 3

√
d

Estimator d = 10 d = 20 d = 30 d = 10 d = 20 d = 30 d = 10 d = 20 d = 30
Standard Estimator 5 10 15 5 10 15 5 10 15

James-Stein Estimator 4.1167 7.9200 11.6892 5.0109 9.7551 14.6568 5.0281 10.0155 14.9390
Projection Estimator 7.1096 15.8166 24.8158 30.3166 66.1806 103.0456 73.4834 156.5076 241.1031

Bayes Estimator for
average prior 3.2611 6.5834 9.8189 4.2477 8.6564 13.0606 4.6359 9.2773 13.9678

Averaged Estimator 3.2008 6.4763 9.7763 4.2260 8.6421 13.0353 4.6413 9.2760 13.9446

order to gain insights about the estimator learned by our algorithm, we plot the contours of
θ̂avg(X) in Figure 5.1, for the k = 1 case, where the risk is measured on the first coordinate.
It can be seen that when X(1) is close to 0, irrespective of other coordinates, the estimator
just outputs X(1) as its estimate of θ(1). When X(1) if far from 0, by looking along the
corresponding vertical line, the estimator can be seen as outputting a shrinked version of
X(1), where the amount of shrinkage increases with the norm of X(2 : d). Note that this
is unlike James Stein estimator which shrinks vectors with smaller norm more than larger
norm vectors.

Contours of Estimator d = 10, B =
√
10
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Figure 5.1: Contour plots of the estimator learned using Algorithm 5.1 when the risk is evaluated
on the first coordinate. x axis shows the first coordinate of X, which is the input to the estimator.
y axis shows the norm of the rest of the coordinates of X. The contour bar shows θ̂(1), the first
co-ordinate of the output of the estimator.

5.7.3 Linear Regression

In this section we present experimental results on linear regression. We use Algorithm 5.1
with optimization oracles described in Algorithms 5.4, 5.5 to find minimax estimators for
this problem. We use the same hyper-parameter settings as finite Gaussian sequence model,
and run Algorithm 5.1 for T = 500 iterations. We compare the worst-case risk of mini-
max estimators obtained using our algorithm for various values of (n, d,B), with ordi-
nary least squares (OLS) and ridge regression estimators. Since all the estimators are
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invariant to the transformations of orthogonal group O(d), the max risk can be written as
maxb∈[0,B]R(θ̂, be1), which can be efficiently computed using grid search. Table 5.4 presents
the results from this experiment. It can be seen that we achieve better performance than
ridge regression for small values of n/d, B. For large values of n/d, B, the performance of
our estimator approaches ridge regression. The duality gap numbers presented in the Table
suggest that the performance of our estimator can be improved for larger values of n/d,B,
by choosing better hyper-parameters.

Table 5.4: Worst-case risk of various estimators for linear regression. The performance of ridge is
obtained by choosing the best regularization parameter. The numbers in the brackets for Averaged
Estimator represent the duality gap.

Worst-case Risk
n = 1.5× d,B = 0.5×

√
d n = 1.5× d,B =

√
d

Estimator d = 5 d = 10 d = 15 d = 20 d = 5 d = 10 d = 15 d = 20
OLS 5.0000 2.5000 2.5000 2.2222 5.0000 2.5000 2.5000 2.2222

Ridge regression 0.6637 0.9048 1.1288 1.1926 1.3021 1.4837 1.6912 1.6704
Averaged
Estimator

0.5827
(0.0003)

0.8275
(0.0052)

0.9839
(0.0187)

1.0946
(0.0404)

1.2030
(0.0981)

1.4615
(0.1145)

1.6178
(0.1768)

1.6593
(0.1863)

Bayes estimator
for avg. prior 0.5827 0.8275 0.9844 1.0961 1.1750 1.4621 1.6265 1.6674

Worst-case Risk
n = 2× d,B = 0.5×

√
d n = 2× d,B =

√
d

Estimator d = 5 d = 10 d = 15 d = 20 d = 5 d = 10 d = 15 d = 20
OLS 1.2500 1.1111 1.0714 1.053 1.2500 1.1111 1.0714 1.053

Ridge regression 0.5225 0.6683 0.7594 0.8080 0.8166 0.8917 0.9305 0.9608
Averaged
Estimator

0.4920
(0.0038)

0.5991
(0.0309)

0.6873
(0.0485)

0.7339
(0.0428)

0.8044
(0.0647)

0.8615
(0.0854)

0.9388
(0.0996)

0.9621
(0.1224)

Bayes estimator
for avg. prior 0.4894 0.6004 0.6879 0.7320 0.8140 0.8618 0.9375 0.9656

5.7.4 Covariance Estimation

In this section we present experimental results on normal covariance estimation.

Minimization oracle. In our experiments we use neural networks, which are universal
function approximators, to parameterize functions f, g in Equation (5.13). To be precise,
we use two layer neural networks to parameterize each of these functions. Implementing
the minimization oracle then boils down to finding the parameters of these networks which
minimize Eλ∼Pt

[
R(Σ̂f,g,Diag(λ))

]
. In our experiments, we use stochastic gradient descent

to learn these parameters.

Baselines. We compare the performance of the estimators returned by Algorithm 5.1 for
various values of (n, d,B), with empirical covariance Sn and the James Stein estimator [52]
which is defined as Kn∆JSK

T
n , where Kn is a lower triangular matrix such that Sn = KnK

T
n

and ∆JS is a diagonal matrix with ith diagonal element equal to 1
n+d−2i+1 .

Results. We use worst-case risk to compare the performance of various estimators. To
compute the worst-case risk, we again rely on DragonFly. We note that the worst-case
computed using this approach may be inaccurate as DragonFly is not guaranteed to return
a global optimum. So, we also compare the risk of various estimators at randomly generated
Σ’s (see Section 5.8.12). Table 5.5 presents the results from this experiment. It can be seen
that our estimators outperform empirical covariance for almost all the values of n, d,B and
outperform James Stein estimator for small values of n/d, B. For large values of n/d, B,
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our estimator has similar performance as JS. In this setting, we believe the performance of
our estimators can be improved by running the algorithm with better hyper-parameters.

Table 5.5: Worst-case risk of various estimators for covariance estimation for various configurations
of (n, d,B). The worst-case risks are obtained by taking a max of the worst-case risk estimate from
DragonFly and the risks computed at randomly generated Σ’s.

Worst-case Risk
n = 1.5× d,B = 1 n = 1.5× d,B = 2 n = 1.5× d,B = 4 n = 1.5× d,B = 8

Estimator d = 5 d = 10 d = 5 d = 10 d = 5 d = 10 d = 5 d = 10
Empirical Covariance 2.5245 5.1095 2.5245 5.1095 2.5245 5.1095 2.5245 5.1095
James-Stein Estimator 2.1637 4.1704 2.1637 4.1704 2.1637 4.1704 2.1637 4.1704
Averaged Estimator 1.8686 3.1910 1.9371 3.7019 2.0827 4.2454 2.1416 3.9864

Worst-case Risk
n = 2× d,B = 1 n = 2× d,B = 2 n = 2× d,B = 4 n = 2× d,B = 8

Estimator d = 5 d = 10 d = 5 d = 10 d = 5 d = 10 d = 5 d = 10
Empirical Covariance 1.8714 3.4550 1.8714 3.4550 1.8714 3.4550 1.8714 3.4550
James-Stein Estimator 1.6686 2.9433 1.6686 2.9433 1.6686 2.9433 1.6686 2.9433
Averaged Estimator 1.2330 2.1944 1.5237 2.6471 1.6050 3.0834 1.6500 2.9907

Worst-case Risk
n = 3× d,B = 1 n = 3× d,B = 2 n = 3× d,B = 4 n = 3× d,B = 8

Estimator d = 5 d = 10 d = 5 d = 10 d = 5 d = 10 d = 5 d = 10
Empirical Covariance 1.1425 2.1224 1.1425 2.1224 1.1425 2.1224 1.1425 2.1224
James-Stein Estimator 1.0487 1.9068 1.0487 1.9068 1.0487 1.9068 1.0487 1.9068
Averaged Estimator 0.8579 1.3731 0.9557 1.7151 1.0879 1.9174 1.2266 2.0017

5.7.5 Entropy Estimation

In this section, we consider the problem of entropy estimation described in Section 5.2.4.
Similar to covariance estimation, we use two layer neural networks to parameterize functions
g, h in Equation (5.14). Implementing the minimization oracle then boils down to finding
the parameters of these networks which minimize EP∼Pt

[
R(f̂g,h, P )

]
. We use stochastic

gradient descent to solve this optimization problem.

Baselines. We compare the performance of the estimators returned by Algorithm 5.1 for
various values of (n, d), with the plugin MLE estimator −

∑d
i=1 p̂i log p̂i, and the minimax

rate optimal estimator of Jiao et al. [53] (JVHW). The plugin estimator is known to be
sub-optimal in the high dimensional regime, where n < d [53].

Results. We compare the performance of various estimators based on their worst-case risk
computed using DragonFly. Since DragonFly is not guaranteed to compute the worst-case
risk, we also compare the estimators based on their risk at randomly generated distributions
(see Section 5.8.12). Table 5.6 presents the worst-case risk numbers. It can be seen that the
plugin MLE estimator has a poor performance compared to JVHW and our estimator. Our
estimator has similar performance as JVHW, which is the best known minimax estimator
for entropy estimation. We believe the performance of our estimator can be improved with
better hyper-parameters.
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Table 5.6: Worst-case risk of various estimators for entropy estimation, for various values of (n, d).
The worst-case risks are obtained by taking a max of the worst-case risk estimate from DragonFly
and the risks computed at randomly generated distributions.

Worst-case Risk
d = 10 d = 20 d = 40 d = 80

Estimator n = 10 n = 20 n = 20 n = 40 n = 10 n = 20 n = 40 n = 20 n = 40 n = 80

Plugin
MLE

0.2895 0.1178 0.2512 0.0347 2.1613 0.8909 0.2710 2.2424 0.9142 0.2899

JVHW [53] 0.3222 0.0797 0.1322 0.0489 0.6788 0.2699 0.0648 0.3751 0.1755 0.0974
Averaged
Estimator 0.1382 0.0723 0.1680 0.0439 0.5392 0.2320 0.0822 0.5084 0.2539 0.0672

5.8 Proofs

5.8.1 Measurability of Bayes Estimators

For any prior Π, define pΠ(Xn) as ∫
θ

n∏
i=1

p(Xi; θ)dΠ(θ).

For any prior Π, define estimator θ̂Π as follows

θ̂Π(Xn) ∈ argmin
θ̃∈Θ

Eθ∼Π(·|Xn)

[
M(θ̃, θ)

]
.

Certain regularity conditions need to hold for this to be a Bayes estimator of Π. θ̂Π de-
fined this way need not be a measurable function of Xn. We now provide sufficient condi-
tions on the statistical problem which guarantee measurability of θ̂Π. These conditions are
from Brown and Purves [16].

Assumption 5.1. The sample space X n and the parameter set Θ are non-empty Borel
sets.

Assumption 5.2. Let B(X n) be the Borel σ-algebra corresponding to the sample space X n

and B(Θ) be the Borel σ-algebra corresponding to parameter space Θ. Let Π be a prior
probability measure on Θ. Suppose, for each θ ∈ Θ, Pθ is such that, for each B ∈ B(X n),
the function θ → Pθ(B) is measurable w.r.t B(Θ).

Assumption 5.3. The loss function M defined on Θ × Θ and taking non-negative real
values, is measurable w.r.t B(Θ) × B(Θ). Moreover, M(·, θ) is lower semi-continuous on
Θ, for each θ ∈ Θ.

Under these assumptions, when Θ is compact, Brown and Purves [16] show that there exists
a Borel measurable function θ̂Π such that

θ̂Π(Xn) ∈ argmin
θ̃∈Θ

Eθ∼Π(·|Xn)

[
M(θ̃, θ)

]
.

Moreover, θ̂Π is the Bayes estimator for Π.
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5.8.2 Minimax Estimators, LFPs and Nash Equilibirium

Proposition 5.6. Consider the statistical game in Equation (1.1). If (θ̂∗, P ∗) is a mixed
strategy NE of (1.1), then the minmax and maxmin values of the linearized game are equal
to each other. Moreover, θ̂∗ is a minimax estimator and P ∗ is an LFP. Conversely, if θ̂∗

is a minimax estimator, and P ∗ is an LFP, and the minmax and maxmin values of the
linearized game (1.4) are equal to each other, then (θ̂∗, P ∗) is a mixed strategy NE of (1.1).
Moreover, θ∗ is a Bayes estimator for P ∗.

Proof. Suppose (θ̂∗, P ∗) is a mixed strategy NE. Then, from the definition of mixed strategy
NE, we have

sup
P∈MΘ

R(θ̂∗, P ) ≤ R(θ̂∗, P ∗) ≤ inf
θ̂∈MD

R(θ̂, P ∗).

This further implies

inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P )
(a)

≤ sup
P∈MΘ

R(θ̂∗, P ) ≤ R(θ̂∗, P ∗)
(b)

≤ inf
θ̂∈MD

R(θ̂, P ∗)
(c)

≤ sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P ).

Since inf θ̂∈MD
supP∈MΘ

R(θ̂, P ) ≥ supP∈MΘ
inf θ̂∈MD

R(θ̂, P ), the above set of inequali-
ties all hold with an equality and imply that the minmax and maxmin values of the lin-
earized game are equal to each other. Moreover, from (a), we have supP∈MΘ

R(θ̂∗, P ) =

inf θ̂∈MD
supP∈MΘ

R(θ̂, P ). This implies θ̂∗ is a minimax estimator. From (c), we have
inf θ̂∈MD

R(θ̂, P ∗) = supP∈MΘ
inf θ̂∈MD

R(θ̂, P ). This implies P ∗ is an LFP. Finally, from
(b), we have R(θ̂∗, P ∗) = inf θ̂∈MD

R(θ̂, P ∗). This implies θ̂∗ is a Bayes estimator for P ∗.

We now prove the converse. Since θ̂∗ is a minimax estimator and P ∗ is an LFP, we have

sup
P∈MΘ

R(θ̂∗, P ) = inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P ), inf
θ̂∈MD

R(θ̂, P ∗) = sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P ).

Moreover, since minmax and maxmin values of the linearized game are equal to each other,
all the above 4 quantities are equal to each other. Since R(θ̂∗, P ∗) ≤ supP∈MΘ

R(θ̂∗, P )

and R(θ̂∗, P ∗) ≥ inf θ̂∈MD
R(θ̂, P ∗), we have

sup
P∈MΘ

R(θ̂∗, P ) = R(θ̂∗, P ∗) = inf
θ̂∈MD

R(θ̂, P ∗).

This shows that (θ̂∗, P ∗) is a mixed strategy NE of the linear game in Equation (1.4).

5.8.3 Follow the Perturbed Leader (FTPL)

We now describe the FTPL algorithm in more detail. We first introduce the notion of an
offline optimization oracle, which takes as input a function f : X → R and a perturbation
vector σ and returns an approximate minimizer of f(x)− ⟨σ,x⟩. An optimization oracle is
called “(α, β)-approximate optimization oracle” if it returns x∗ ∈ X such that

f(x∗)− ⟨σ,x∗⟩ ≤ inf
x∈X

f(x)− ⟨σ,x⟩+ α+ β∥σ∥1.
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Denote such an oracle with OFTPL
α,β (f, σ). Given access to such an oracle, the FTPL algo-

rithm is given by the following prediction rule (see Algorithm 5.6)

xt = OFTPL
α,β

(
t−1∑
i=1

fi, σ

)
,

where σ ∈ Rd is a random perturbation such that {σj}dj=1
i.i.d∼ Exp(η) and Exp(η) is the

exponential distribution with parameter η. We now state the following result from Suggala
and Netrapalli [96] which provides an upper bound on the expected regret of Algorithm 5.6.

Theorem 5.11 (Regret Bound). Let D be the ℓ∞ diameter of X . Suppose the losses
encountered by the learner are L-Lipschitz w.r.t ℓ1 norm. For any fixed η, the predictions
of Algorithm 5.6 satisfy the following regret bound

E

[
1

T

T∑
t=1

ft(xt)−
1

T
inf
x∈X

T∑
t=1

ft(x)

]
≤ O

(
ηd2DL2 +

d(βT +D)

ηT
+ α+ βdL

)
.

Algorithm 5.6 Follow the Perturbed Leader (FTPL)
1: Input: Parameter of exponential distribution η, approximate optimization subroutine Oα,β

2: for t = 1 . . . T do
3: Generate random vector σ such that {σj}dj=1

i.i.d∼ Exp(η)
4: Predict xt as

xt = OFTPL
α,β

(
t−1∑
i=1

fi, σ

)
.

5: Observe loss function ft

5.8.4 Minimax Estimation via Online Learning

5.8.4.1 Proof of Proposition 5.1

We have the following bounds on the regret of the minimization and maximization players
T∑
t=1

R(θ̂t, Pt)− inf
θ̂∈D

T∑
t=1

R(θ̂, Pt) ≤ ϵ1(T ),

sup
θ∈Θ

T∑
t=1

R(θ̂t, θ)−
T∑
t=1

R(θ̂t, Pt) ≤ ϵ2(T ).

Now consider the following

inf
θ̂∈D

1

T

T∑
t=1

R(θ̂, Pt)

≥ 1

T

T∑
t=1

R(θ̂t, Pt)−
ϵ1(T )

T

≥ sup
θ∈Θ

1

T

T∑
t=1

R(θ̂t, θ)−
ϵ1(T ) + ϵ2(T )

T
,

(5.15)
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where the first and the second inequalities follow from the regret bounds of the minimization
and maximization players. We further bound the LHS and RHS of the above inequality as
follows

inf
θ̂∈D

1

T

T∑
t=1

R(θ̂, Pt) ≤
1

T 2

T∑
t=1

T∑
t′=1

R(θ̂t′ , Pt) = R(θ̂rnd, Pavg),

sup
θ∈Θ

1

T

T∑
t=1

R(θ̂t, θ) ≥
1

T 2

T∑
t=1

T∑
t′=1

R(θ̂t′ , Pt) = R(θ̂rnd, Pavg).

Combining the previous two sets of inequalities gives us

R(θ̂rnd, Pavg) ≥ sup
θ∈Θ

R(θ̂rnd, θ)−
ϵ1(T ) + ϵ2(T )

T
,

R(θ̂rnd, Pavg) ≤ inf
θ̂∈D

R(θ̂, Pavg) +
ϵ1(T ) + ϵ2(T )

T
.

5.8.4.2 Proof of Theorem 5.1

To prove the Theorem we first bound the regret of each player and then rely on Propo-
sition 5.1 to show that the iterates converge to a NE. Since the maximization player is
responding using FTPL to the actions of minimization player, we rely on Theorem 5.11 to
bound her regret. First note that the sequence of reward functions seen by the maximiza-
tion player R(θ̂i, ·) are L-Lipschitz. Moreover, the domain Θ has ℓ∞ diameter of D. So
applying Theorem 5.11 gives us the following regret bound

Eσ

[
sup
θ∈Θ

1

T

T∑
t=1

R(θ̂t, θ)−
1

T

T∑
t=1

R(θ̂t, θt(σ))

]
≤ O

(
ηd2DL2 +

d(βT +D)

ηT
+ α+ βdL

)
.

Taking the expectation inside, we get the following

sup
θ∈Θ

1

T

T∑
t=1

R(θ̂t, θ)−
1

T

T∑
t=1

R(θ̂t, Pt) ≤ O

(
ηd2DL2 +

d(βT +D)

ηT
+ α+ βdL

)
. (5.16)

Since the minimization player is using BR, her regret is upper bounded by 0. Plugging in
these two regret bounds in Proposition 5.1 gives us the required result.

5.8.4.3 Proof of Corollary 5.1

Note that this corollary is only concerned about existence of minimax estimators and LFPs,
and showing that minmax and maxmin values of Equation (1.4) are equal to each other. So
we can ignore the approximation errors introduced by the oracles and set α = β = α′ = 0
in the results of Theorem 5.1 (that is, we assume access to exact optimization oracles, as
we are only concerned with existence of NE and not about computational tractability of
the algorithm).
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Minimax Theorem. To prove the first part of the corollary, we set η =
√

1
dL2T

in
Theorem 5.1 and let T →∞. We get

sup
θ∈Θ

R(θ̂rnd, θ) = inf
θ̂∈D

R(θ̂, Pavg)

=⇒ sup
P∈MΘ

R(θ̂rnd, P ) = inf
θ̂∈MD

R(θ̂, Pavg)

=⇒ inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P ) ≤ sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P ).

Since minmax value of any game is always greater than or equal to maxmin value of the
game, we get

inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P ) = sup
P∈MΘ

inf
θ̂∈MD

R(θ̂, P )R∗.

Existence of LFP. We now show that the statistical game has an LFP. To prove this
result, we make use of the following result on the compactness of probability spaces. If Θ
is a compact space, thenMΘ is sequentially compact; that is, any sequence Pn ∈MΘ has
a convergent subsequence converging to a point in MΘ (the notion of convergence here is
weak convergence). Let Pavg,t =

1
t

∑t
i=1 Pi be the mixture distribution obtained from the

first t iterates of Algorithm 5.1 when run with η =
√

1
dL2T

and exact optimization oracles.
Consider the sequence of probability measures {Pavg,t}∞t=1. Since the parameter space Θ is
compact, we know that there exists a converging subsequence {Pavg,ti}∞i=1. Let P ∗ ∈ MΘ

be the limit of this sequence. In the rest of the proof, we show that P ∗ is an LFP; that is,
inf θ̂∈D R(θ̂, P ∗) = R∗. Since R(θ̂, θ) is bounded, and Lipschitz in its second argument, we
have

∀θ̂ ∈MD lim
i→∞

R(θ̂, Pavg,ti) = R(θ̂, P ∗). (5.17)

This follows from the equivalent formulations of weak convergence of measures. We now
make use of the following result from Corollary 5.2 (which we prove later in Section 5.8.4.4)

inf
θ̂∈D

R(θ̂, Pavg,t) ≥ R∗ −O(t−
1
2 ).

Combining this with the fact that supP∈MΘ
inf θ̂∈D R(θ̂, P ) = R∗, we get

lim
i→∞

inf
θ̂∈D

R(θ̂, Pavg,ti) = R∗. (5.18)

Equations (5.17), (5.18) show that inf θ̂∈D R(θ̂, Pavg,ti), R(θ̃, Pavg,ti) are converging se-
quences as i→∞. Since inf θ̂∈D R(θ̂, Pavg,ti) ≤ R(θ̃, Pavg,ti) for all i, θ̃ ∈ D, we have

lim
i→∞

inf
θ̂∈D

R(θ̂, Pavg,ti) ≤ lim
i→∞

R(θ̃, Pavg,ti), ∀θ̃ ∈ D.

From Equations (5.17), (5.18), we then have

R∗ ≤ R(θ̃, P ∗), ∀θ̃ ∈ D
=⇒ R∗ ≤ inf

θ̂∈D
R(θ̂, P ∗),
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Combining this with the fact that supP∈MΘ
inf θ̂∈D R(θ̂, P ) = R∗, we get

inf
θ̂∈D

R(θ̂, P ∗) = R∗.

This shows that P ∗ is an LFP.

Existence of Minimax Estimator. To show the existence of a minimax estimator, we
make use of the following result from Wald [104], which is concerned about the “compact-
ness” of the space of estimatorsMD.

Proposition 5.7. Suppose Θ is compact w.r.t ∆M (θ1, θ2) = supθ∈Θ |M(θ1, θ)−M(θ2, θ)|.
Moreover, suppose the risk R is bounded. Then for any sequence of {θ̂i}∞i=1 of estimators
there exists a subsequence {θ̂ij}∞j=1 such that limj→∞ θ̂ij = θ̂0 and for any θ ∈ Θ

lim inf
i→∞

R(θ̂ij , θ) ≥ R(θ̂0, θ).

Let θ̂rnd,t be the randomized estimator obtained by uniformly sampling an estimator
from {θ̂i}ti=1. Consider the sequence of estimators {θ̂rnd,t}∞t=1. From the above propo-
sition, we know that there exists a subsequence {θ̂rnd,tj}∞j=1 and an estimator θ̂∗ such that
lim infj→∞R(θ̂rnd,tj , θ) ≥ R(θ̂∗, θ). We now show that θ̂∗ is a minimax estimator; that is,
we show that supθ∈ΘR(θ̂∗, θ) = R∗. We make use of the following result from Corollary 5.2

sup
θ∈Θ

R(θ̂rnd,t, θ) ≤ R∗ +O(t−
1
2 ).

Combining this with the fact that inf θ̂∈D supP∈MΘ
R(θ̂, P ) = R∗, we get

lim
j→∞

sup
θ∈Θ

R(θ̂rnd,tj , θ) = R∗. (5.19)

Since supθ∈ΘR(θ̂rnd,tj , θ) ≥ R(θ̂rnd,tj , θ̃) for any j, θ̃ ∈ Θ, we have

lim inf
j→∞

sup
θ∈Θ

R(θ̂rnd,tj , θ) ≥ lim inf
j→∞

R(θ̂rnd,tj , θ̃) ≥ R(θ̂∗, θ), ∀θ̃ ∈ Θ.

Since {R(θ̂rnd,tj , θ)}∞j=1 is a converging sequence, we have

lim inf
j→∞

sup
θ∈Θ

R(θ̂rnd,tj , θ) = lim
j→∞

sup
θ∈Θ

R(θ̂rnd,tj , θ) = R∗.

This together with the previous inequality gives us supθ̃∈ΘR(θ̂rnd,tj , θ̃) ≤ R∗. This shows
that θ∗ is a minimax estimator.
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5.8.4.4 Proof of Corollary 5.2

Minimax Estimator. From Theorem 5.1 we have

sup
θ∈Θ

R(θ̂rnd, θ) = sup
θ∈Θ

1

T

T∑
i=1

R(θ̂i, θ)

≤ inf
θ̂∈D

1

T

T∑
i=1

R(θ̂, Pi) +O

(
ηd2DL2 +

d(βT +D)

ηT
+ α+ α′ + βdL

)

= inf
θ̂∈MD

1

T

T∑
i=1

R(θ̂, Pi) +O

(
ηd2DL2 +

d(βT +D)

ηT
+ α+ α′ + βdL

)
(a)

≤ inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, P ) +O

(
ηd2DL2 +

d(βT +D)

ηT
+ α+ α′ + βdL

)
,

where (a) follows from the fact that supθ∈ΘR(θ̂, θ) ≥ 1
T

∑T
i=1R(θ̂, Pi). Substituting

η =
√

1
dL2T

in the above equation shows that the randomized estimator is approximately
minimax. This completes the first part of the proof. If the metric M is convex in its first
argument, then from Jensen’s inequality we have

∀θ, R(θ̂avg, θ) ≤ R(θ̂rnd, θ).

This shows that the worst-case risk of θ̂avg is upper bounded as

sup
θ∈Θ

R(θ̂avg, θ) ≤ inf
θ̂∈MD

sup
P∈MΘ

R(θ̂, θ) +O

(
ηd2DL2 +

d(βT +D)

ηT
+ α+ α′ + βdL

)
.

(5.20)

Substituting η =
√

1
dL2T

in Equation (5.20) gives us the required bound on the worst-case

risk of θ̂avg.

LFP. We now prove the results pertaining to LFP. From Theorem 5.1, we have

inf
θ̂∈MD

R(θ̂, Pavg) = inf
θ̂∈MD

1

T

T∑
i=1

R(θ̂, Pi)

≥ sup
P∈MΘ

1

T

T∑
i=1

R(θ̂i, P )−O

(
ηd2DL2 +

d(βT +D)

ηT
+ α+ α′ + βdL

)
≥ inf

θ̂∈MD

sup
P∈MΘ

R(θ̂, P )−O

(
ηd2DL2 +

d(βT +D)

ηT
+ α+ α′ + βdL

)
.

Substituting η =
√

1
dL2T

in the above equation shows that Pavg is approximately least
favourable. Now consider the case where M is convex in its first argument. To show that
θ̂avg is an approximate Bayes estimator for Pavg, we again rely on Theorem 5.1 where we
showed that

sup
P∈MΘ

1

T

T∑
i=1

R(θ̂i, P ) ≤ inf
θ̂∈MD

1

T

T∑
t=1

R(θ̂, Pt)+O

(
ηd2DL2 +

d(βT +D)

ηT
+ α+ α′ + βdL

)
.
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Since 1
T 2

∑T
t=1

∑T
t′=1R(θ̂t′ , Pt) ≤ supP∈MΘ

1
T

∑T
i=1R(θ̂i, P ), we have

1

T 2

T∑
t=1

T∑
t′=1

R(θ̂t′ , Pt) ≤ inf
θ̂∈MD

1

T

T∑
t=1

R(θ̂, Pt)+O

(
ηd2DL2 +

d(βT +D)

ηT
+ α+ α′ + βdL

)
.

Since M is convex in its first argument, we have

1

T 2

T∑
t=1

T∑
t′=1

R(θ̂t′ , Pt) ≥
1

T

T∑
i=1

R(θ̂avg, Pi).

Combining the above two equations shows that θ̂avg is an approximate Bayes estimator for
Pavg.

5.8.5 Invariance of Minimax Estimators

5.8.5.1 Proof of Theorem 5.2

In our proof, we rely on the following property of left Haar measure µ of a compact group
G. For any real valued integrable function f on G and any g ∈ G [see Chapter 7 of 106]∫

G
f(g−1h)dµ(h) =

∫
G
f(h)dµ(h). (5.21)

We now proceed to the proof of the Theorem. For any estimator θ̂ : X n → Θ, define the
following estimator θ̂G

θ̂G(Xn) =

∫
G
gθ̂(g−1Xn)dµ(g),

where µ is the left Haar measure on G and gXn = {gX1, . . . gXn}. The above integral
is well defined because θ̂ is measurable, G is compact and the action of the group G is
continuous. We first show that θ̂G is invariant under group transformations G. For any
h ∈ G, consider the following

θ̂G(hXn) =

∫
G
gθ̂((g−1h)Xn)dµ(g)

=

∫
G
h(h−1g)θ̂((h−1g)−1Xn)dµ(g)

= h

[∫
G
(h−1g)θ̂((h−1g)−1Xn)dµ(g)

]
(a)
= h

[∫
G
gθ̂(g−1Xn)dµ(g)

]
= hθ̂G(Xn),

where (a) follows from Equation (5.21). This shows that θ̂G is an invariant estimator. We
now show that the worst case risk of θ̂G is less than or equal to the worst case risk of θ̂.
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Consider the following upper bound on the risk of θ̂G at any θ ∈ Θ

R(θ̂G, θ) = EXn∼Pn
θ

[
M(θ̂G(Xn), θ)

]
≤ EXn∼Pn

θ

[∫
G
M(gθ̂(g−1Xn), θ)dµ(g)

]
(convexity of M)

= EXn∼Pn
θ

[
Eg∼µ

[
M(gθ̂(g−1Xn), θ)

]]
(a)
= Eg∼µ

[
EXn∼Pn

g−1θ

[
M(gθ̂(Xn), θ)

]]
(change of variables)

(b)
= Eg∼µ

[
EXn∼Pn

g−1θ

[
M(θ̂(Xn), g−1θ)

]]
(invariance of M)

= Eg∼µ

[
R(θ̂, g−1θ)

]
≤ sup

θ′∈Θ
R(θ̂, θ′),

where (a) follows from Fubini’s theorem and change of variables X ′ = g−1X and the fact
that if X ∼ Pθ, then g−1X ∼ Pg−1θ. (b) follows from the invariance property of the metric
M . This shows that supθ∈ΘR(θ̂G, θ) ≤ supθ∈ΘR(θ̂, θ). This shows that we can always
improve a given estimator by averaging over the group G and hence there should be a
minimax estimator which is invariant under the action of G.

5.8.5.2 Proof of Theorem 5.3

We first prove some intermediate results which we require in the proof of Theorem 5.3.

Lemma 5.1. Suppose θ̂ is a deterministic estimator that is invariant to group transforma-
tions G. Then R(θ̂, θ1) = R(θ̂, θ2), whenever θ1 ∼ θ2.

Proof. Suppose θ2 = gθ1 for some g ∈ G. From the definition of R(θ̂, gθ1) we have

R(θ̂, θ2) = R(θ̂, gθ1) = EXn∼Pn
gθ1

[
M(θ̂(Xn), gθ1)

]
= EXn∼Pn

gθ1

[
M(g−1θ̂(Xn), θ1)

]
(invariance of loss metric)

= EXn∼Pn
gθ1

[
M(θ̂(g−1Xn), θ1)

]
(invariance of estimator)

(a)
= EXn∼Pn

θ1

[
M(θ̂(Xn), θ1)

]
= R(θ̂, θ1),

where (a) follows from the fact that gX ∼ Pgθ whenever X ∼ Pθ. This shows that
R(θ̂, θ1) = R(θ̂, θ2).

Lemma 5.2. Suppose Π is a probability distribution which is invariant to group transfor-
mations G. For any deterministic estimator θ̂, there exists an invariant estimator θ̂G such
that the Bayes risk of θ̂G is no larger than the Bayes risk of θ̂

R(θ̂,Π) ≥ R(θ̂G,Π).
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Proof. Define estimator θ̂G as follows

θ̂G(Xn) =

∫
G
gθ̂(g−1Xn)dµ(g),

where µ is the left Haar measure on G. Note that, in the proof of Theorem 5.2 we showed
that this estimator is invariance to the action of group G. We now show that the Bayes
risk of θ̂G is less than equal to the Bayes risk of θ̂. Consider the following

R(θ̂G,Π) = Eθ∼Π[R(θ̂G, θ)]

= Eθ∼Π

[
EXn∼Pn

θ

[
M

(∫
G
gθ̂(g−1Xn)dµ(g), θ

)]]
(a)

≤ Eθ∼Π

[
EXn∼Pn

θ

[
Eg∼µ

[
M
(
gθ̂(g−1Xn), θ

)]]]
= Eg∼µ

[
Eθ∼Π

[
EXn∼Pn

θ

[
M
(
gθ̂(g−1Xn), θ

)]]]
(b)
= Eg∼µ

[
Eθ∼Π

[
EXn∼Pn

θ

[
M
(
θ̂(g−1Xn), g−1θ

)]]]
= Eg∼µ

[
Eθ∼Π

[
R(θ̂, g−1θ)

]]
(c)
= Eθ∼Π

[
R(θ̂, θ)

]
,

where (a) uses convexity of M and follows from Jensen’s inequality, (b) follows from the
invariance of M and (c) follows from the invariance of distribution Π to actions of group
G.

We now proceed to the proof of Theorem 5.3. We first prove the second part of the
Theorem. The first part immediately follows from the proof of second part. Suppose
(θ̂∗G, P

∗
G) is an ϵ-approximate mixed strategy Nash equilibirium of the reduced statistical

game in Equation (5.3). Our goal is to construct an approximate Nash equilibrium of the
original statistical game in Equation (1.1), using (θ̂∗G, P

∗
G).

Note that θ̂∗G is a randomized estimator over the set of deterministic invariant estimators
DG and P ∗

G is a distribution on the quotient space Θ/G. To construct an approximate
Nash equilibrium of the original statistical game (1.1), we extend P ∗

G to the entire parameter
space Θ. We rely on Bourbaki’s approach to measure theory, which is equivalent to classical
measure theory in the setting of locally compact spaces we consider in this work [106]. In
Bourbaki’s approach, any measure ν on a set Θ is defined as a linear functional on the set
of integrable functions (that is, a measure is defined by its action on integrable functions)

ν[f ] =

∫
Θ
f(θ)dν(θ).

We define P ∗, the extension of P ∗
G to the entire parameter space Θ, as follows

P ∗[f ] =

∫
Θ/G

f ′(Θβ)dP
∗
G(Θβ),

where f ′ : Θ/G→ R is a function that depends on f , and is defined as follows. First define
fI : Θ → R, an invariant function constructed using f , as fI(θ) =

∫
Θ f(gθ)dµ(g), where
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µ is the left invariant Haar measure of G. From Equation (5.21), it is easy to see that
fI(hθ) = fI(θ), for all h ∈ G. So fI is constant on the equivalence classes of Θ. So fI can
be written in terms of a function f ′ : Θ/G→ R, as follows

fI = f ′ ◦ γ,

where γ : Θ→ Θ/G is the orbit projection function which projects θ ∈ Θ onto the quotient
space. We first show that P ∗ defined this way is an invariant measure. To this end, we use
the following equivalent definition of an invariant measure.

Proposition 5.8. A probability measure ν on Θ is invariant to transformations of group
G iff for any ν-integrable function f and for any h ∈ G,

∫
f(θ)dν(θ) =

∫
f(hθ)dν(θ).

Since fI is an invariant function, relying on the above proposition, it is easy to see that P ∗

is an invariant measure. We now show that (θ̂∗G, P
∗) is an ϵ-approximate mixed strategy

Nash equilibrium of Equation (1.1). Since (θ̂∗G, P
∗
G) is an ϵ-approximate Nash equilibrium

of Equation (5.3), we have

sup
Θβ∈Θ/G

RG(θ̂
∗
G,Θβ)− ϵ ≤ EΘβ∼P ∗

G
[RG(θ̂

∗
G,Θβ)] ≤ inf

θ̂∈DG

EΘβ∼P ∗
G
[RG(θ̂,Θβ)] + ϵ, (5.22)

where DG is the set of deterministic invariant estimators. Now consider the following

Eθ∼P ∗ [R(θ̂∗G, θ)]
(a)
= EΘβ∼P ∗

G
[RG(θ̂

∗
G,Θβ)] (Lemma 5.1)

≤ inf
θ̂∈DG

EΘβ∼P ∗
G
[RG(θ̂,Θβ)] + ϵ (Equation (5.22))

= inf
θ̂∈DG

Eθ∼P ∗ [R(θ̂, θ)] + ϵ (definition of P ∗)

(b)
= inf

θ̂∈D
Eθ∼P ∗ [R(θ̂, θ)] + ϵ (Lemma 5.2),

where (a) follows from the definition of P ∗ and Lemma 5.1. (b) follows from the fact
that for any invariant prior, there exists a Bayes estimator which is invariant to group
transformations (Lemma 5.2). Next, we provide a lower bound for Eθ∼P ∗ [R(θ̂∗G, θ)]

Eθ∼P ∗ [R(θ̂∗G, θ)] = EΘβ∼P ∗
G
[RG(θ̂

∗
G,Θβ)]

≥ sup
Θβ∈Θ/G

RG(θ̂
∗
G,Θβ)− ϵ

= sup
θ∈Θ

R(θ̂∗G, θ)− ϵ (Lemma 5.1)

The upper and lower bounds for Eθ∼P ∗ [R(θ̂∗G, θ)] derived in the previous two equations
shows that (θ̂∗G, P

∗) is an ϵ-approximate mixed strategy Nash equilibrium of the original
statistical game in Equation 1.1. The above inequalites also show that

sup
θ∈Θ

R(θ̂∗G, θ)− ϵ ≤ EΘβ∼P ∗
G
[RG(θ̂

∗
G,Θβ)] ≤ inf

θ̂∈D
Eθ∼P ∗ [R(θ̂, θ)] + ϵ.

This, together with Equation (5.22), shows that

inf
θ̂∈MD

sup
θ∈Θ

R(θ̂, θ) = inf
θ̂∈MD,G

sup
Θβ∈Θ/G

RG(θ̂,Θβ).
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5.8.6 Applications of Invariance Theorem

In our proofs, we establish homeomorphisms between the quotient spaces and another
natural space over which we run our algorithm. Note that establishing a homeomorphism is
sufficient since we are only dealing with Borel σ-algebras on our spaces and homeomorphism
would imply that there is an isomorphism between the Borel σ-algebras of the two spaces.
Hence, measures learnt on one space can be transferred to another.

5.8.6.1 Proof of Theorem 5.4

First note that for any g ∈ O(d) and θ ∈ Θ, we have gθ ∈ Θ and the distribution of gX is
Pgθ. Moreover, for any orthogonal matrix g ∈ O(d) we have ∥gθ− gX∥2 = ∥θ−X∥2, which
implies the statistical game is invariant to group transformations G.

For the second part, note that for any θ1, θ2 ∈ Θ such that ∥θ1∥2 = ∥θ2∥2, ∃g ∈ O(d) s.t.
gθ1 = θ2. Mapping all elements to their norm gives us a bijection between the quotient
space and the interval [0, B]. The continuity of this bijection and it’s inverse can easily be
checked using the standard basis for both the topologies.

5.8.6.2 Proof of Theorem 5.5

Note that for any θ ∈ Θ, gθ = [g1θ
1:k, g2θ

k+1:d] ∈ Θ. Since g1 is orthogonal, for any
θ1, θ2 ∈ Θ we have ∥g1θ1:k1 − g1θ

1:k
2 ∥ = ∥θ1:k1 − θ1:k2 ∥. Hence the invariance of the statistical

game follows.

Now, for any θ1, θ2 ∈ Θ such that ∥θ1:k1 ∥ = ∥θ1:k2 ∥ and ∥θk+1:d
1 ∥ = ∥θk+1:d

2 ∥, ∃g1 ∈ O(k) and
g2 ∈ O(d− k) such that g1θ

1:k
1 = θ1:k2 and g2θ

k+1:d
1 = θk+1:d

2 . Hence ∃g ∈ O(k)×O(d− k)
such that gθ1 = θ2. This means that in each equivalence class the parameters B1 = ∥θ1:k1 ∥2
and B2 = ∥θk+1:d

1 ∥2 are constant. Since ∥θ∥2 ≤ B we have B1 + B2 ≤ B, this gives us a
bijection. The continuity of this bijection and it’s inverse can easily be checked using the
standard basis for both the topologies.

5.8.6.3 Proof of Theorem 5.6

We define the action of any g ∈ O(d) on the samples {(Xi, Yi)}ni=1 as transforming them
to {(gXi, Yi)}ni=1. Since Yi = XT

i θ + ϵi = XT
i g

T gθ + ϵi = (gXi)
T gθ + ϵi and ∥gθ1 − gθ2∥ =

∥θ1 − θ2∥ for any θ1, θ2 ∈ Θ we have the invariance of the statistical game. The rest of the
proof uses similar arguments as in Theorem 5.4.

5.8.6.4 Proof of Theorem 5.7

First note that for any Σ such that ∥Σ∥2 ≤ B, and any g ∈ O(d), we have ∥gΣgT ∥ ≤ B. If
X ∼ N(0,Σ) then for any g ∈ O(d)

E[gXXT gT ] = gE[XXT ]gT = gΣgT .
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Hence gX ∼ N(0, gΣgT ). Moreover, we have

M(gΣ1g
T , gΣ2g

T )

= tr
(
(gΣ1g

T )−1gΣ2g
T
)
− log |(gΣ1g

T )−1gΣ2g
T | − d

= tr
(
gΣ−1

1 gT gΣ−1
2 gT

)
− log |gΣ−1

1 gT gΣ−1
2 gT | − d

= tr(gΣ−1
1 Σ2g

T )− log |gΣ−1
1 Σ2g

T | − d

= M(Σ1,Σ2),

where the last equality follows from the invariance of trace to multiplication with orthogonal
matrices and the property of the determinant to split over the multiplication of matrices.
This shows the desired invariance of the statistical game.

Now, consider two covariance matrices Σ1,Σ2 with singular value decompositions (SVD)
Σ1 = U1∆1U

T
1 and Σ2 = U2∆2U

T
2 respectively. Here all matrices are square and of full

rank. In particular, ∆1 and ∆2 are diagonal matrices with decreasing entries from left to
right and, U1 and U2 are orthogonal matrices. Since the orthogonal group is transitive
∃g ∈ O(d) such that gU1 = U2. If ∆1 = ∆2 we have gΣ1g

T = Σ2. Hence under the action
of O(d), all covariance matrices with the same singular values fall in the same equivalence
class. It is easy to see that this is also a necessary condition. These equivalence classes
naturally form a bijection with a sequence of d decreasing positive real numbers bounded
above by B. The continuity of this bijection and it’s inverse can easily be checked using
the standard basis for both the topologies.

5.8.6.5 Proof of Theorem 5.8

Let P,Q be any two distributions on d elements {1, . . . d} such that ∃g ∈ Sd s.t. gP = Q.
They are indistinguishable from the samples they generate. Since the entropy is defined as

f(P ) = −
d∑

i=1

pi log(pi)

it doesn’t depend upon the ordering of the individual probabilites. Hence the statistical
game is invariant under the action of Sd.

Since using a permutation we can always order a given set of probabilities in decreasing
order, there is a natural bijection between the quotient space and the given space. The
continuity of this map and it’s inverse can easily be checked using the standard basis for
both the topologies.

5.8.6.6 Mixture of Gaussians

In the problem of mixture of Gaussians we are given n samples X1, . . . , Xn ∈ Rd which
come from a mixture distribution of k Gaussians with different means

Pθ =
k∑

i=1

piN (θi,Σi).

We assume that all k Gaussians have the same covariance, let’s say identity, and we also
assume that we know the mixture probabilities. Finally, we assume that the mean vectors
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θi are such that ∥θi∥ ≤ B. Under this setting we want to estimate the k different means
while minimizing the sum of the L2

2 losses of all the estimates of the mean parameters.

We will show the invariance of this statistical game under the action of the group G =
O(d) × O(d − 1) × . . . × O(d − k + 1). But first we describe an element in the group and
it’s operation on the parameter and sample space.

An element of g ∈ G is made up of a sequence of k orthonormal matrices (g1, . . . , gk) such
that for a given set of parameters θ = (θ1, . . . , θk) ∈ Rd×k (where each θi ∈ Rd) the matrix
gi leaves the first (i − 1) parameters unchanged, i.e. for j = 1, . . . , i − 1 giθj = θj . Hence
the ith orthonormal matrix has (d − i + 1) degrees of freedom and can be viewed as an
element in O(d− i+ 1).

The action of g on θ is defined as

gθ = g(θ1, . . . , θk)

= (gθ1, . . . , gθk)

= (gk . . . g1θ1, . . . , gk . . . g1θ1)

= (g1θ1, . . . , gi . . . g1θi, . . . , gk . . . g1θk)

where the last equality follows from the definition of our group. The group acts in a similar
manner on the sample space, i.e., for an X ∈ X gX = gk . . . g1X.

Theorem 5.12. The statistical game defined by mixture of k-Gaussians with identity co-
variance and known mixture probabilities under L2

2 loss is invariant under the action of the
group O(d)×O(d− 1)× . . .×O(d− k+1). Moreover, the quotient space is homeomorphic
to (0, B]k × [0, π](

k
2).

Proof. First we show the invariance of the mixture distribution Pθ =
∑

i piN (θi, I), i.e.,
if X ∼ Pθ then gX ∼ Pgθ. Note that from the proof of Theorem 5.4 it follows that for
a given normal distribution N(θ̃, I) and an orthonormal matrix h ∈ O(d) s.t. hθ̃ = θ̃ if
X ∼ N(θ̃, I) then hX ∼ N(hθ̃, I) = N(θ̃, I). The invariance of P follows directly from this
by substituting each ∥X − θi∥2 in the pdf with ∥gk . . . g1X − gk . . . g1θi∥2 and the definition
of the group. The L2

2 loss is trivially invariant and hence we establish the invariance of the
statistical game.

Now, notice that for any two given parameters θ = (θ1, . . . , θk), ϕ = (ϕ1, . . . , ϕk) ∈ Rdk

if we have the property that ∀i ∥θi∥ = ∥ϕi∥ and ∀i, j θTi θj = ϕT
i ϕj then we can find

orthonormal matrices g1, . . . , gk s.t. ∀i gi . . . g1θi = ϕi. This follows from the following
inductive argument: Assume we have g1, . . . , gi−1 which satisfy the given constraints. Con-
sider θ′ = gi−1 . . . g1θi. We have ∀j = 1, . . . , i− 1 θ′Tϕj = θTi θj = ϕT

i ϕj because gT = g−1.
Now if ϕi lies in the span of ϕ1, . . . , ϕi−1 then θ′ = ϕi and we can pick gi to be any or-
thonormal matrix which doesn’t transform this spanned space. Otherwise, we can pick an
orthonormal matrix which rotates the axis orthogonal to the spanned subspace and in the
direction of the high component of θ′ to the corresponding axis for ϕi. This completes the
desired construction.

It is easy to see that given θ, ϕ, g which satisfy gθ = ϕ, we have ∀i ∥θi∥ = ∥ϕi∥ and
∀i, j θTi θj = ϕT

i ϕj . Hence the equivalence classes are defined uniquely by the norms of the
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individual gaussians and the angles between them, since there are k different norms and
(
k
2

)
many angles we can establish a bijection between the quotient space and (0, B]k× [0, π](

k
2).

The continuity of this map and it’s inverse can easily be checked using the standard basis
for both the topologies.

5.8.7 Finite Gaussian Sequence Model

5.8.7.1 Proof of Proposition 5.2

In this section we derive a closed-form expression for the minimizer θ̂t of the following
objective

argmin
θ̂∈DG

Eb∼Pt

[
R(θ̂, be1)

]
,

where DG is the set of deterministic estimators which are invariant to transformations of
orthogonal group O(d). From Lemma 5.1, we know that for any invariant estimator θ̂ ∈ DG

and any g ∈ O(d), R(θ̂, be1) = R(θ̂, bge1). So the above problem can be rewritten as follows

argmin
θ̂∈DG

Eb∼Pt

[
Eθ∼Ub

[
R(θ̂, θ)

]]
,

where Ub is the uniform distribution over spherical shell of radius b, centered at origin; that
is, its density ub(θ) is defined as

ub(θ) ∝

{
0, if ∥θ∥2 ̸= b

b−d+1, otherwise
.

The above optimization problem can be further rewritten as

argmin
θ̂∈DG

R(θ̂,Πt),

where R(θ̂,Πt)
def
= Eθ∼Πt

[
R(θ̂, θ)

]
, and Πt is the distribution of a random variable θ which

is generated by first sampling b from Pt and then generating a sample from Ub. Note that Πt

is a spherically symmetric distribution. From Lemma 5.2, we know that the Bayes estimator
corresponding to any invariant prior is an invariant estimator. So the minimization over
DG in the above optimization problem can be replaced with minimization over the set of
all estimators D. This leads us to the following equivalent optimization problem

argmin
θ̂∈D

R(θ̂,Πt).

Let θ̂t be the minimizer of this equivalent problem. We now obtain an expression for θ̂t(X)
in terms of modified Bessel functions. Let Πt(·|X) be the posterior distribution of θ given
the data X and let p(X; θ) be the probability density function for distribution Pθ. Since
the risk is measured with respect to ℓ22 metric, the Bayes estimator θ̂t(X) is given by the
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posterior mean

θ̂t(X) = Eθ∼Πt(·|X) [θ]

=
Eθ∼Πt [θp(X; θ)]

Eθ∼Πt [p(X; θ)]

=
Eb∼Pt

[∫
θub(θ)p(X; θ)dθ

]
Eb∼Pt

[∫
ub(θ)p(X; θ)dθ

] (definition of Πt)

=
Eb∼Pt

[
b−d+1

∫
∥θ∥2=b θp(X; θ)dθ

]
Eb∼Pt

[
b−d+1

∫
∥θ∥2=b p(X; θ)dθ

] (since Ub is uniform on sphere)

=
Eb∼Pt

[
b−d+1e−b2/2

∫
∥θ∥2=b θe

⟨X,θ⟩dθ
]

Eb∼Pt

[
b−d+1e−b2/2

∫
∥θ∥2=b e

⟨X,θ⟩dθ
]

=
Eb∼Pt

[
b2e−b2/2

∫
∥θ∥2=1 θe

b⟨X,θ⟩dθ
]

Eb∼Pt

[
be−b2/2

∫
∥θ∥2=1 e

b⟨X,θ⟩dθ
] (change of variables).

We now obtain a closed-form expression for the terms
∫
∥θ∥2=1 θe

b⟨X,θ⟩dθ and
∫
∥θ∥2=1 e

b⟨X,θ⟩dθ
appearing in the RHS of the above equation. We do this by relating them to the mean
and normalization constant of Von Mises-Fisher (vMF) distribution, which is a probability
distribution on the unit sphere centered at origin in Rd. This distribution is usually studied
in directional statistics [79]. The probability density function of a random unit vector
Z ∈ Rd distributed according to vMF distribution is given by

p(Z;µ, κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
exp(κ ⟨µ,Z⟩),

where κ ≥ 0, ∥µ∥2 = 1, Iν is the modified Bessel function of the first kind of order ν. Using
the fact that a probability density function integrates to 1, we get the following closed-form
expression for

∫
∥θ∥2=1 e

b⟨X,θ⟩dθ

∫
∥θ∥2=1

eb⟨X,θ⟩dθ =
(2π)d/2Id/2−1(b∥X∥2)

(b∥X∥2)d/2−1
. (5.23)

To get a closed-form expression for
∫
∥θ∥2=1 θe

b⟨X,θ⟩dθ, we relate it to mean of vMF dis-
tribution. We have the following expression for the mean of a random vector distributed
according to vMF distribution [6]∫

∥Z∥=1
Zp(Z;µ, κ)dZ =

Id/2(κ)

Id/2−1(κ)
µ.

Using the above equality, we get the following expression for
∫
∥θ∥2=1 θe

b⟨X,θ⟩dθ

∫
∥θ∥2=1

θeb⟨X,θ⟩dθ =
(2π)d/2Id/2(b∥X∥2)

(b∥X∥2)d/2−1

X

∥X∥2
. (5.24)
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Substituting Equations (5.23), (5.24) in the expression for θ̂t(X) obtained above, we get
an expression for θ̂t(X) which involves the modified Bessel function Iν and integrals over
variable b. We note that Iν can be computed to very high accuracy and there exist accurate
implementations of Iν in a number of programming languages. So in our analysis of the
approximation error of Algorithm 5.3, we assume the error from the computation of Iν is
0.

5.8.7.2 Proof of Theorem 5.9

Before we present the proof of the Theorem we present useful intermediate results which
we require in our proof.

Intermediate Results

Lemma 5.3 (Lipschitz Continuity). Consider the problem of finite Gaussian sequence
model. Let Θ = {θ : θ ∈ Rd, ∥θ∥2 ≤ B} be the ball of radius B centered at origin
in Rd. Let θ̂ be any estimator which maps X to an element in Θ. Then the
risk R(θ̂, θ) = EX∼N (θ,I)

[
∥θ̂(X)− θ∥22

]
is Lipschitz continuous in its second argument

w.r.t ℓ2 norm over the domain Θ, with Lipschitz constant 4(B +
√
dB2). Moreover,

R(θ̂, be1) = EX∼N (θ,I)

[
∥θ̂(X)− be1∥22

]
is Lipschitz continuous in b over the domain [0, B],

with Lipschitz constant 4(B +B2).

Proof. Let Rθ̂(θ) = R(θ̂, θ). The gradient of Rθ̂(θ) with respect to θ is given by

∇θRθ̂(θ) = EX∼N (θ,I)

[
2(θ − θ̂(X)) + (X − θ)∥θ̂(X)− θ∥22

]
.

The norm of ∇θRθ̂(θ) can be upper bounded as follows

∥∇θRθ̂(θ)∥2 ≤
∣∣∣∣∣∣EX∼N (θ,I)

[
2(θ − θ̂(X))

] ∣∣∣∣∣∣
2
+
∣∣∣∣∣∣EX∼N (θ,I)

[
(X − θ)∥θ̂(X)− θ∥22

] ∣∣∣∣∣∣
2

(a)

≤ 4B + Ex∼N (θ,I)

[
∥X − θ∥2∥θ̂(X)− θ∥22

]
(b)

≤ 4B + 4B2EX∼N (θ,I) [∥X − θ∥2]

≤ 4B + 4
√
dB2,

where the first term in (a) follows from the fact that θ, θ̂(X) ∈ Θ and the second term
follows from Jensen’s inequality. This shows that Rθ̂(θ) is Lipschitz continuous over Θ.
This finishes the first part of the proof. To show that R(θ̂, be1) is Lipschitz continuous in
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b, we use similar arguments. Let Rθ̂(b) = R(θ̂, be1). Then

∣∣∣R′
θ̂
(b)
∣∣∣ = ∣∣∣ 〈e1,∇θRθ̂(θ)

∣∣∣
θ=be1

〉 ∣∣∣
(a)

≤
∣∣∣EX∼N (be1,I)

[
2(b− [θ̂(X)]1)

] ∣∣∣+ ∣∣∣∣∣∣EX∼N (be1,I)

[
(X1 − b)∥θ̂(X)− be1∥22

] ∣∣∣∣∣∣
2

≤ 4B + Ex∼N (be1,I)

[
|X1 − b|∥θ̂(X)− be1∥22

]
≤ 4B + 4B2EX∼N (be1,I) [|X1 − b|]
≤ 4B + 4B2,

where (a) follows from the expression for ∇θRθ̂(θ) obtained above.

Lemma 5.4 (Approximation of risk). Consider the setting of Lemma 5.3. Let θ̂ be any
estimator which maps X to an element in Θ. Let {Xi}Ni=1 be N i.i.d samples from N (θ, I).
Then with probability at least 1− δ

∣∣∣ 1
N

N∑
i=1

∥θ̂(Xi)− θ∥22 −Rθ̂(θ)
∣∣∣ ≤ 4B2

√
log 1

δ

N
.

Proof. The proof of the Lemma relies on concentration properties of sub-Gaussian random
variables. Let Z(X) = ∥θ̂(X) − θ∥2. Note that Rθ̂(θ) = EX∼N (θ,I) [Z(X)]. Since Z(X) is
bounded by 4B2, it is a sub-Gaussian random variable. Using Hoeffding bound we get

∣∣∣ 1
N

N∑
i=1

Z(Xi)− E [Z(X)]
∣∣∣ ≤ 4B2

√
log 1

δ

N
, w.p ≥ 1− δ.

Main Argument The proof relies on Corollary 5.2 to show that the averaged estimator
θ̂avg is approximately minimax and P̂LFP is approximately least favorable. Here is a rough
sketch of the proof. We first apply the corollaries on the following reduced statistical game
that we are aiming to solve

inf
θ̂∈DG

sup
b∈[0,B]

R(θ̂, be1).

To apply these corollaries, we need the risk R(θ̂, be1) to be Lipscthiz continuous in b.
This holds for us because of Lemma 5.3. Next, we convert the guarantees for the reduced
statistical game to the orginial statistical game to show that we learn a minimax estimator
and LFP for finite Gaussian sequence model.

To use Corollary 5.2, we first need to bound α, β, α′, the approximation errors of the
optimization subroutines described in Algorithms 5.2, 5.3. A major part of the proof
involves bounding these quantities.

95



Approximation error of Algorithm 5.2. There are two causes for error in the opti-
mization oracle described in Algorithm 5.2: (a) grid search and (b) approximate computa-
tion of risk R(θ̂, be1). We now bound the error due to both (a) and (b). From Lemma 5.4
we know that for any estimator θ̂i and grid point bj , the following holds with probability
at least 1− δ ∣∣∣ 1

N1

N1∑
k=1

∥θ̂i(Xk)− bje1∥22 −R(θ̂i, bje1)
∣∣∣ ≤ 4B2

√
log 1

δ

N1
.

Taking a union bound over all estimators {θ̂i}Ti=1 and grid points {bj}B/w
j=1 , we can show

that with probability at least 1− δ, the following holds for all i ∈ [T ], j ∈ [B/w]

∣∣∣ 1
N1

N1∑
k=1

∥θ̂i(Xk)− bje1∥22 −R(θ̂i, bje1)
∣∣∣ ≤ 4B2

√
log BT

wδ

N1
. (5.25)

Let ft,σ(b) be the actual objective we would like to optimize in iteration t of Algorithm 5.1,
which is given by

ft,σ(b) =

t−1∑
i=1

R(θ̂i, be1) + σb.

Let f̂t,σ(b) be the approximate objective we are optimizing by replacing R(θ̂i, be1) with its
approximate estimate. Let b∗t be a maximizer of ft,σ(b) and b∗t,approx be the maximizer of
f̂t,σ(b) (which is also the output of Algorithm 5.2). Finally, let b∗t,NN be the point on the grid
which is closest to b∗t . Using Lemma 5.3 we first show that ft,σ(b) is Lipschitz continuous
in b. The derivative of ft,σ(b) with respect to b is given by

f ′
t,σ(b) =

t−1∑
i=1

〈
e1,∇θR(θ̂i, θ)

∣∣∣
θ=be1

〉
+ σ

Using Lemma 5.3, the magnitude of f ′
t,σ(b) can be upper bounded as

|f ′
t,σ(b)| ≤ 4(t− 1)(B +B2) + σ.

This shows that ft,σ(b) is Lipschitz continuous in b. We now bound ft,σ(b
∗
t )−ft,σ(b

∗
t,approx),

the approximation error of the optimization oracle

ft,σ(b
∗
t )

(a)

≤ ft,σ(b
∗
t,NN) +

(
4t(B +B2) + σ

)
w

(b)

≤ f̂t,σ(b
∗
t,NN) + 4tB2

√
log BT

wδ

N1
+
(
4t(B +B2) + σ

)
w

(c)

≤ f̂t,σ(b
∗
t,approx) + 4tB2

√
log BT

wδ

N1
+
(
4t(B +B2) + σ

)
w

(d)

≤ ft,σ(b
∗
t,approx) + 8tB2

√
log BT

wδ

N1
+
(
4t(B +B2) + σ

)
w,

where (a) follows from Lipschitz property of the loss function and (b), (d) follow from
Equation (5.25) and hold with probability at least 1− δ and (c) follows from the optimality
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of b∗t,approx. This shows that Algorithm 5.2 is a

(
O

(
TB2

√
log BT

wδ
N1

+ TB(1 +B)w

)
, w

)
-

approximate maximization oracle; that is

α = O

TB2

√
log BT

wδ

N1
+ TB(1 +B)w

 , β = w.

Approximation error of Algorithm 5.3. There are two sources of approximation error
in Algorithm 5.3: (a) computation of modified Bessel functions Iν , and (b) approximation
of Pt with its samples. In this analysis we assume that Iν can be computed to very high
accuracy. This is a reasonable assumption because many programming languages have
accurate and efficient implementations of Iν . So the main focus here is on bounding the
error from approximation of Pt.

First, note that since we are using grid search to optimize the maximization problem, the
true distribution Pt for which we are supposed to compute the Bayes estimator is a discrete
distribution supported on grid points {b1, . . . bB/w}. Algorithm 5.3 does not compute the
Bayes estimator for Pt. Instead, we generate samples from Pt and use them as a proxy for
Pt. Let P̂t be the empirical distribution obtained by sampling N2 points from Pt. Let pt,j
be the probability mass on grid point bj . Using Bernstein inequality we can show that the
following holds with probability at least 1− δ

∀j ∈ [B/w] |p̂t,j − pt,j | ≤

√
pt,j

log B
wδ

N2
. (5.26)

Define estimators θ̂′t, θ̂t as

θ̂′t ← argmin
θ̂∈DG

Eb∼Pt

[
R(θ̂, be1)

]
, θ̂t ← argmin

θ̂∈DG

Eb∼P̂t

[
R(θ̂, be1)

]
.

θ̂′t is what we ideally want to compute. θ̂t is what we end up computing using Algorithm 5.3.
We now show that θ̂t is an approximate minimizer of the left hand side optimization problem
above. To this end, we try to bound the following quantity

Eb∼Pt

[
R(θ̂t, be1)−R(θ̂′t, be1)

]
.

Let ft(θ̂) = Eb∼Pt

[
R(θ̂, be1)

]
and f̂t(θ̂) = Eb∼P̂t

[
R(θ̂, be1)

]
. We would like to bound the

quantity ft(θ̂t)− ft(θ̂
′
t). Consider the following

ft(θ̂t)
(a)

≤ f̂t(θ̂t) +
4B3

w

√
log B

wδ

N2

(b)

≤ f̂t(θ̂
′
t) +

4B3

w

√
log B

wδ

N2

(c)

≤ ft(θ̂
′
t) +

8B3

w

√
log B

wδ

N2
,
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where (a) follows from Equation (5.26) and the fact that the risk R(θ̂, θ) of any estimator is
bounded by 4B2, (b) follows since θ̂t is a minimizer of f̂t and (c) follows from Equation (5.26).

This shows that with probability at least 1 − δ, Algorithm 5.3 is an O

(
B3

w

√
log B

wδ
N2

)
-

approximate optimization oracle; that is,

α′ = O

B3

w

√
log B

wδ

N2

 .

Minimax Estimator. We are now ready to show that θ̂avg is an approximate minimax
estimator. Instantiating Corollary 5.2 for the reduced statistical game gives us the following
bound, which holds with probability at least 1− δ

sup
b∈[0,B]

R(θ̂avg, be1) ≤ inf
θ̂∈DG

sup
b∈[0,B]

R(θ̂, be1) + Õ

(
B2(B + 1)√

T
+ α+ α′ + βB(B + 1)

√
T

)
,

where we used the fact that the risk R(θ̂, be1) is 4B(B + 1)-Lipschitz continuous w.r.t b.
The Õ notation in the above inequality hides logarithmic factors. Plugging in the values of
α, α′, β in the above equation gives us

sup
b∈[0,B]

R(θ̂avg, be1) ≤ inf
θ̂∈DG

sup
b∈[0,B]

R(θ̂, be1) + Õ

(
B2(B + 1)√

T

)
.

We now convert this bound to a bound on the original statistical game. From Theo-
rem 5.3 we know that inf θ̂∈DG

supb∈[0,B]R(θ̂, be1) = inf θ̂∈D supθ∈ΘR(θ̂, θ) = R∗. Since the
estimator θ̂avg is invariant to transformations of orthogonal group, we have R(θ̂avg, θ) =
R(θ̂avg, ∥θ∥2e1) for any θ ∈ Θ. Using these two results in the above inequality, we get

sup
θ∈Θ

R(θ̂avg, θ) = sup
b∈[0,B]

R(θ̂avg, be1) ≤ R∗ + Õ

(
B2(B + 1)√

T

)
.

This shows that the worst-case risk of θ̂avg is close to the minimax risk R∗. This finishes
the first part of the proof.

LFP. To prove the second part, we rely on Corollary 5.2. Instantiating it for the reduced
statistical game gives us

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼Pt

[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B + 1)√

T
+ α+ α′ + βB(B + 1)

√
T

)
.

Plugging in the values of α, α′, β in the above equation gives us

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼Pt

[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B + 1)√

T

)
.
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From Equation (5.26) we know that Pt is close to P̂t with high probability. Using this, we
can replace Pt in the above bound with P̂t and obtain the following bound, which holds
with probability at least 1− δ

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t

[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B + 1)√

T

)
. (5.27)

In the rest of the proof, we show that inf θ̂∈DG

1
T

∑T
t=1 Eb∼P̂t

[
R(θ̂, be1)

]
= inf θ̂ R(θ̂, P̂LFP).

Recall, the density function of P̂LFP is given by: p̂LFP(θ) ∝ ∥θ∥1−d
2 P̂avg(∥θ∥2), where

P̂avg(∥θ∥2) is the probability mass placed by P̂avg at ∥θ∥2. This distribution is equiva-
lent to the distribution of a random variable which is generated by first sampling b from P̂t

and then sampling θ from the uniform distribution on (d− 1) dimensional sphere of radius
b, centered at origin in Rd. Using this equivalence, we can equivalently rewrite R(θ̂, P̂LFP)
for any estimator θ̂ as

R(θ̂, P̂LFP) =
1

T

T∑
t=1

Eb∼P̂t

[
Eθ∼U

[
R(θ̂, bθ)

]]
,

where U is the uniform distribution on the (d − 1) dimensional unit sphere centered at
origin, in Rd. Next, from Lemma 5.2, we know that the Bayes estimator corresponding to
any invariant prior is an invariant estimator. Since P̂LFP is an invariant distribution, we
have

inf
θ̂∈D

R(θ̂, P̂LFP) = inf
θ̂∈DG

R(θ̂, P̂LFP) = inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t

[
Eθ∼U

[
R(θ̂, bθ)

]]
.

From Lemma 5.1 we know that for any invariant estimator θ̂, we have R(θ̂, θ1) = R(θ̂, θ2),
whenever θ1 ∼ θ2. Using this result in the above equation gives us

inf
θ̂∈D

R(θ̂, P̂LFP) = inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t

[
R(θ̂, be1)

]
.

Combining the above result with Equation (5.27) shows that P̂LFP is approximately least
favorable.

5.8.8 Loss on few co-ordinates

In this section, we present the optimization oracles for the problem of finite Gaussian
sequence model, when the loss is evaluated on a few co-ordinates. Recall, in Theorem 5.5
we showed that the original min-max statistical game can be reduced to the following
simpler problem

inf
θ̂∈MD,G

sup
b:b[1]2+b[2]2≤B2

R(θ̂, [b[1]e1,k, b[2]e1,d−k]), (5.28)

where b[j] represents the jth co-ordinate of b. We now provide efficient implementations of
the optimization oracles required by Algorithm 5.1 for finding a Nash equilibrium of this

99



game. The optimization problems corresponding to the two optimization oracles are as
follows

θ̂t ← argmin
θ̂∈DG

Eb∼Pt

[
R(θ̂, [b[1]e1,k, b[2]e1,d−k])

]
,

bt(σ)← argmax
b:b[1]2+b[2]2≤B2

t−1∑
i=1

R(θ̂i, [b[1]e1,k, b[2]e1,d−k]) + ⟨σ, b⟩ ,

where DG is the set of deterministic invariant estimators and Pt is the distribution of
random variable bt(σ). The maximization oracle can be efficiently implemented via a grid
search over {b : b[1]2 + b[2]2 ≤ B2} (see Algorithm 5.7). The minimization oracle can also
be efficiently implemented. The minimizer has a closed form expression which depends on
Pt and modified Bessel functions (see Algorithm 5.8).

Algorithm 5.7 Maximization Oracle

1: Input: Number of coordinates to evaluate loss on k, estimators {θ̂i}t−1
i=1, perturbation σ, grid

width w, number of samples for computation of expected risk R(θ̂, θ): N1

2: Let {b1, b2 . . . bN(w)} be the w-covering of {b : b[1]2 + b[2]2 ≤ B2}
3: for j = 1 . . . N(w) do
4: for i = 1 . . . t− 1 do
5: Generate N1 independent samples {Xl}N1

l=1 from the following distribution

N ([bj [1]e1,k, bj [2]e1,d−k], I)

6: Estimate R(θ̂i, [bj [1]e1,k, bj [2]e1,d−k]) as

1

N1

N1∑
l=1

∥θ̂i(Xl)[1 : k]− bj [1]e1,k∥22.

7: Evaluate the objective at bj using the above estimates
8: Output: bj which maximizes the objective

Algorithm 5.8 Minimization Oracle

1: Input: Samples {bi}N2
i=1 generated from distribution Pt, number of coordinates to evaluate loss

on k.
2: For any X, compute θ̂t(X) as(∑N2

i=1 wibi[1]Ak(bi[1]∥X[1 : k]∥2)∑N2

i=1 wi

)
X[1 : k]

∥X[1 : k]∥2
,

where Ak(γ) =
Ik/2(γ)

Ik/2−1(γ)
,

wi = bi[1]
2− k

2 bi[2]
2− d−k

2 e−
∥b∥2

2 Ik/2−1(bi[1]∥X[1 : k]∥2)I(d−k)/2−1(bi[2]∥X[k + 1 : d]∥2),

and Iν is the modified Bessel function of the first kind of order ν.
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5.8.9 Linear Regression

5.8.9.1 Proof of Proposition 5.3

In this section we derive a closed-form expression for the minimizer θ̂t of the following
objective

argmin
θ̂∈DG

Eb∼Pt

[
R(θ̂, be1)

]
.

Using the same arguments as in proof of Proposition 5.2, we can show that the above
optimization problem can be rewritten as the following equivalent optimization problem
over the set of all deterministic estimators

argmin
θ̂∈D

Eθ∼Πt

[
R(θ̂, θ)

]
,

where Πt is the distribution of a random variable θ which is generated by first sampling
a b from Pt and then drawing a random sample from Ub, the uniform distribution on a
spherical shell of radius b. The density function of Ub is given by

ub(θ) ∝

{
0, if ∥θ∥2 ̸= b

b−d+1, otherwise
.

Since the risk is measured with respect to ℓ22 metric, the minimizer θ̂t(Dn) is given by the
posterior mean

θ̂t(Dn) = Eθ∼Πt(·|Dn) [θ]

=
Eθ∼Πt [θp(Dn; θ)]

Eθ∼Πt [p(Dn; θ)]

=
Eb∼Pt

[∫
θub(θ)p(Dn; θ)dθ

]
Eb∼Pt

[∫
ub(θ)p(Dn; θ)dθ

]
=

Eb∼Pt

[
b−d+1

∫
∥θ∥2=b θp(Dn; θ)dθ

]
Eb∼Pt

[
b−d+1

∫
∥θ∥2=b p(Dn; θ)dθ

]

=

Eb∼Pt

[
b−d+1

∫
∥θ∥2=b θe

− ∥Y−Xθ∥22
2 dθ

]
Eb∼Pt

[
b−d+1

∫
∥θ∥2=b e

−
∥Y−Xθ∥22

2 dθ

]

=

Eb∼Pt

[
b2
∫
∥θ∥2=1 θe

−
b2∥Xθ∥22−2b⟨θ,XTY⟩

2 dθ

]

Eb∼Pt

[
b
∫
∥θ∥2=1 e

−
b2∥Xθ∥22−2b⟨θ,XTY⟩

2 dθ

] (change of variables).

We now relate the terms appearing in the above expression to the mean and normalization
constant of Fisher-Bingham (FB) distribution. As stated in Section 5.4, the probability
density function of a random unit vector Z ∈ Rd distributed according to FB distribution
is given by

p(Z;A, γ) = C(A, γ)−1 exp
(
−ZTAZ + ⟨γ, Z⟩

)
,
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where Z ∈ Sd−1, and γ ∈ Rd, A ∈ Rd×d are the parameters of the distribution with A being
positive semi-definite and C(A, γ) is the normalization constant which is given by

C(A, γ) =

∫
∥Z∥2=1

exp
(
−ZTAZ + ⟨γ, Z⟩

)
dZ.

The mean of Z is given by∫
∥Z∥2=1

Zp(Z;A, γ)dZ = C(A, γ)−1

∫
∥Z∥2=1

Z exp
(
−ZTAZ + ⟨γ, Z⟩

)
dZ = C(A, γ)−1 ∂

∂γ
C(A, γ).

Using these in the previously derived expression for θ̂(Dn) gives us the required result.

5.8.9.2 Mean and normalization constant of Fisher-Bingham distribution

In this section, we present our technique for computation of C (A, γ). Once we have an
accurate technique for its computation, computing ∂

∂γC(A, γ) should be straight forward as
one can rely on efficient numerical differentiation techniques for its computation. Recall, to
implement Algorithm 5.5 we need to compute C

(
2−1b2XTX, bXTY

)
. Let Σ̂ = 1

nX
TX and

let UΛUT be its eigen decomposition. Then it is easy to see that C
(
2−1b2XTX, bXTY

)
can be rewritten as

C
(
2−1b2XTX, bXTY

)
= C(2−1nb2Λ, bUTXTY).

So it suffices to compute C(A, γ) for some positive semi-definite, diagonal matrix A and
vector γ. Let ai be the ith diagonal entry of A and let γi be the ith element of γ. Kume
and Wood [68] derive the following expression for C(A, γ)

C(A, γ) = (2π)d/2

(
d∏

i=1

a
−1/2
i

)
exp

(
1

4

d∑
i=1

γ2i
ai

)
fA,γ(1),

where fA,γ is the probability density of a non-central chi-squared random variable
∑d

i=1 z
2
i

with zi ∼ N ( γi
2ai

, 1
2ai

). There are number of efficient techniques for computation of
fA,γ(1) [51, 68]. We first present the technique of Imhof [51] for exact computation of
fA,γ(1). Imhof [51] showed that fA,γ(1) can be written as the following integral

fA,γ(1) = π−1

∫ ∞

0
[ρ(u)]−1 cos ζ(u)du,

where ρ : R→ R and ζ : R→ R are defined as

ζ(u) =
1

2

d∑
i=1

(
tan−1

(
u

2ai

)
+

γ2i
8a3i

(
1 +

u2

4a2i

)−1

u

)
− 1

2
u,

ρ(u) =

d∏
i=1

(
1 +

u2

4a2i

)1/4

exp

 1

32

(uγi/a
2
i )

2

1 + u2

4a2i

 .

One can rely on numerical integration techniques to compute the above integral to desired
accuracy. In our analysis of the approximation error of Algorithm 5.5, we assume the error
from the computation of fA,γ(1) is negligible.
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Before we conclude this subsection, we present another technique for computation of fA,γ(1),
which is typically faster than the above approach. This approach was proposed by Kume
and Wood [68] and relies on the saddle point density approximation technique. While this
approach is faster, the downside of it is that it only provides an approximate estimate of
fA,γ(1). To explain this method, we first present some facts about non-central chi-squared
random variables. The cumulant generating function of a non-central chi-squared random
variable with density fA,γ is given by

K(t) =
d∑

i=1

(
−1

2
log

(
1− t

ai

)
+

1

4

γ2i
ai − t

− γ2i
4ai

)
(t < min

i
ai).

The first derivative of K(t) is given by

K(1)(t) =
d∑

i=1

(
1

2

1

ai − t
+

1

4

γ2i
(ai − t)2

)
,

and higher derivatives are given by

K(j)(t) =

d∑
i=1

(
(j − 1)!

2

1

(ai − t)j
+

j!

4

γ2i
(ai − t)j+1

)
, (j ≥ 2).

Let t̂ be the unique solution in (−∞,mini ai) to the saddle point equation K(1)(t̂) = 1.
Kume and Wood [68] show that t̂ has finite upper and lower bounds

min
i

ai −
d

4
− 1

2

(
d2

4
+ dmax

i
γ2i

)1/2

≤ t̂ ≤ min
i

ai −
1

4
− 1

2

(
1

4
+ γ2min

)1/2

,

where γmin is equal to γi∗ for i∗ = argmini ai. So, to find t̂, one can perform grid search in
the above range. Given t̂, the first-order saddle point density approximation of fA,γ(1) is
given by

f̂A,γ,1(1) =
(
2πK(2)(t̂)

)−1/2
exp(K(t̂)− t̂).

The second-order saddle point density approximation of Zg,h(1) is given by

f̂A,γ,2(1) = f̂A,γ,1(1)(1 + T ),

where T = 1
8 ρ̂4 −

5
24 ρ̂

2
3, where ρ̂j = K(j)(t̂)/(K(2)(t̂))j/2.

5.8.9.3 Proof of Theorem 5.10

Before we present the proof of the Theorem we present useful intermediate results which
we require in our proof.

Intermediate Results

Lemma 5.5 (Lipschitz Continuity). Consider the problem of linear regression described in
Section 5.2.2. Let Θ = {θ : θ ∈ Rd, ∥θ∥2 ≤ B} and let θ̂ be any estimator which maps the
data Dn = {(Xi, Yi)}ni=1 to an element in Θ. Then the risk R(θ̂, θ) = EDn

[
∥θ̂(Dn)− θ∥22

]
103



is Lipschitz continuous in its second argument w.r.t ℓ2 norm over the domain Θ, with
Lipschitz constant 4(B+B2

√
nd). Moreover, R(θ̂, be1) = EDn

[
∥θ̂(Dn)− be1∥22

]
is Lipschitz

continuous in b over the domain [0, B], with Lipschitz constant 4(B +B2√n).

Proof. Let Rθ̂(θ) = R(θ̂, θ). The gradient of Rθ̂(θ) with respect to θ is given by

∇θRθ̂(θ) = EDn

[
2(θ − θ̂(Dn))

]
+ EDn

[
∥θ̂(Dn)− θ∥22XT (Y −Xθ)

]
,

where X = [X1, X2, . . . Xn]
T ,Y = [Y1, . . . Yn]. The norm of ∇θRθ̂(θ) can be upper bounded

as follows

∥∇θRθ̂(θ)∥2 ≤
∣∣∣∣∣∣EDn

[
2(θ − θ̂(Dn))

] ∣∣∣∣∣∣
2
+
∣∣∣∣∣∣EDn

[
∥θ̂(Dn)− θ∥22XT (Y −Xθ)

] ∣∣∣∣∣∣
2

(a)

≤ 4B + EDn

[
∥XT (Y −Xθ)∥2∥θ̂(Dn)− θ∥22

]
(b)

≤ 4B + 4B2EDn

[
∥XT (Y −Xθ)∥2

]
≤ 4B + 4B2

√
nd,

where the first term in (a) follows from the fact that θ, θ̂(X) ∈ Θ and the second term
follows from Jensen’s inequality. This shows that Rθ̂(θ) is Lipschitz continuous over Θ.
This finishes the first part of the proof. To show that R(θ̂, be1) is Lipschitz continuous in
b, we use similar arguments. Let Rθ̂(b) = R(θ̂, be1). Then∣∣∣R′

θ̂
(b)
∣∣∣ = ∣∣∣ 〈e1,∇θRθ̂(θ)

∣∣∣
θ=be1

〉 ∣∣∣
(a)

≤
∣∣∣EDn

[
2(b− [θ̂(Dn)]1)

] ∣∣∣+ ∣∣∣∣∣∣EDn

[
eT1 X

T (Y −Xθ)∥θ̂(Dn)− be1∥22
] ∣∣∣∣∣∣

2

≤ 4B + 4B2EDn

[
|eT1 XT (Y −Xθ)|

]
≤ 4B + 4B2√n,

where (a) follows from our bound for ∥∇θRθ̂(θ)∥2 obtained above.

Lemma 5.6 (Approximation of risk). Consider the setting of Lemma 5.5. Let θ̂ be any
estimator which maps Dn to an element in Θ. Let {Dn,k}Nk=1 be N independent datasets
generated from the linear regression model with true parameter θ. Then with probability at
least 1− δ ∣∣∣ 1

N

N∑
i=1

∥θ̂(Dn,i)− θ∥22 −Rθ̂(θ)
∣∣∣ ≤ 4B2

√
log 1

δ

N

Proof. The proof of the Lemma relies on concentration properties of sub-Gaussian random
variables. Let Z(Dn) = ∥θ̂(Dn) − θ∥2. Note that Rθ̂(θ) = EDn [Z(Dn)]. Since Z(Dn) is
bounded by 4B2, it is a sub-Gaussian random variable. Using Hoeffding bound we get

∣∣∣ 1
N

N∑
i=1

Z(Dn,i)− E [Z(Dn)]
∣∣∣ ≤ 4B2

√
log 1

δ

N
, w.p ≥ 1− δ.
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Main Argument The proof uses exactly the same arguments as in the proof of Theo-
rem 5.9. The only difference between the two proofs are the Lipschitz constants derived in
Lemmas 5.3, 5.5. The Lipschitz constant in the case of regression is O(B+B2√n), whereas
in the case of finite Gaussian sequence model it is O(B +B2).

Approximation Error of Algorithm 5.4. There are two causes for error in the opti-
mization oracle described in Algorithm 5.4: (a) grid search and (b) approximate computa-
tion of risk R(θ̂, be1). We now bound the error due to both (a) and (b). From Lemma 5.6
we know that for any estimator θ̂i and grid point bj , the following holds with probability
at least 1− δ

∣∣∣ 1
N1

N1∑
k=1

∥θ̂i(Dn,k)− bje1∥22 −R(θ̂i, bje1)
∣∣∣ ≤ 4B2

√
log 1

δ

N1
.

Taking a union bound over all estimators {θ̂i}Ti=1 and grid points {bj}B/w
j=1 , we can show

that with probability at least 1− δ, the following holds for all i ∈ [T ], j ∈ [B/w]

∣∣∣ 1
N1

N1∑
k=1

∥θ̂i(Dn,k)− bje1∥22 −R(θ̂i, bje1)
∣∣∣ ≤ 4B2

√
log BT

wδ

N1
. (5.29)

Let ft,σ(b) be the actual objective we would like to optimize in iteration t of Algorithm 5.1,
which is given by

ft,σ(b) =

t−1∑
i=1

R(θ̂i, be1) + σb.

Let f̂t,σ(b) be the approximate objective we are optimizing by replacing R(θ̂i, be1) with its
approximate estimate. Let b∗t be a maximizer of ft,σ(b) and b∗t,approx be the maximizer of
f̂t,σ(b) (which is also the output of Algorithm 5.4). Finally, let b∗t,NN be the point on the grid
which is closest to b∗t . Using Lemma 5.5 we first show that ft,σ(b) is Lipschitz continuous
in b. The derivative of ft,σ(b) with respect to b is given by

f ′
t,σ(b) =

t−1∑
i=1

〈
e1,∇θR(θ̂i, θ)

∣∣∣
θ=be1

〉
+ σ

Using Lemma 5.5, the magnitude of f ′
t,σ(b) can be upper bounded as

|f ′
t,σ(b)| ≤ 4(t− 1)(B +B2√n) + σ.
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This shows that ft,σ(b) is Lipschitz continuous in b. We now bound ft,σ(b
∗
t )−ft,σ(b

∗
t,approx),

the approximation error of the optimization oracle

ft,σ(b
∗
t )

(a)

≤ ft,σ(b
∗
t,NN) +

(
4t(B +B2√n) + σ

)
w

(b)

≤ f̂t,σ(b
∗
t,NN) + 4tB2

√
log BT

wδ

N1
+
(
4t(B +B2√n) + σ

)
w

(c)

≤ f̂t,σ(b
∗
t,approx) + 4tB2

√
log BT

wδ

N1
+
(
4t(B +B2√n) + σ

)
w

(d)

≤ ft,σ(b
∗
t,approx) + 8tB2

√
log BT

wδ

N1
+
(
4t(B +B2√n) + σ

)
w,

where (a) follows from Lipschitz property of the loss function and (b), (d) follow from
Equation (5.29) and hold with probability at least 1−δ and (c) follows from the optimality of

b∗t,approx. This shows that Algorithm 5.4 is a

(
O

(
TB2

√
log BT

wδ
N1

+ TB(1 +B
√
n)w

)
, w

)
-

approximate maximization oracle; that is

α = O

TB2

√
log BT

wδ

N1
+ TB(1 +B

√
n)w

 , β = w.

Approximation Error of Algorithm 5.5. There are two sources of approximation error
in Algorithm 5.5: (a) computation of mean and normalization constant of FB distribution,
and (b) approximation of Pt with its samples. In this analysis we assume that mean and
normalization constant of FB distribution can be computed to very high accuracy. So the
main focus here is on bounding the error from approximation of Pt.

First, note that since we are using grid search to optimize the maximization problem, the
true distribution Pt for which we are supposed to compute the Bayes estimator is a discrete
distribution supported on grid points {b1, . . . bB/w}. Algorithm 5.5 does not compute the
Bayes estimator for Pt. Instead, we generate samples from Pt and use them as a proxy for
Pt. Let P̂t be the empirical distribution obtained by sampling N2 points from Pt. Let pt,j
be the probability mass on grid point bj . Using Bernstein inequality we can show that the
following holds with probability at least 1− δ

∀j ∈ [B/w] |p̂t,j − pt,j | ≤

√
pt,j

log B
wδ

N2
. (5.30)

Define estimators θ̂′t, θ̂t as

θ̂′t ← argmin
θ̂∈DG

Eb∼Pt

[
R(θ̂, be1)

]
, θ̂t ← argmin

θ̂∈DG

Eb∼P̂t

[
R(θ̂, be1)

]
.

θ̂′t is what we ideally want to compute. θ̂t is what we end up computing using Algorithm 5.5.
We now show that θ̂t is an approximate minimizer of the left hand side optimization problem
above. To this end, we try to bound the following quantity

Eb∼Pt

[
R(θ̂t, be1)−R(θ̂′t, be1)

]
.
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Let ft(θ̂) = Eb∼Pt

[
R(θ̂, be1)

]
and f̂t(θ̂) = Eb∼P̂t

[
R(θ̂, be1)

]
. We would like to bound the

quantity ft(θ̂t)− ft(θ̂
′
t). Consider the following

ft(θ̂t)
(a)

≤ f̂t(θ̂t) +
4B3

w

√
log B

wδ

N2

(b)

≤ f̂t(θ̂
′
t) +

4B3

w

√
log B

wδ

N2

(c)

≤ ft(θ̂
′
t) +

8B3

w

√
log B

wδ

N2
,

where (a) follows from Equation (5.30) and the fact that the risk R(θ̂, θ) of any estimator is
bounded by 4B2, (b) follows since θ̂t is a minimizer of f̂t and (c) follows from Equation (5.30).

This shows that with probability at least 1 − δ, Algorithm 5.5 is an O

(
B3

w

√
log B

wδ
N2

)
-

approximate optimization oracle; that is,

α′ = O

B3

w

√
log B

wδ

N2

 .

The rest of the proof is same as the proof of Theorem 5.9 and involves substituting the
approximation errors computed above in Corollary 5.2.

Minimax Estimator. We now show that θ̂avg is an approximate minimax estimator.
Instantiating Corollary 5.2 for the reduced statistical game gives us the following bound,
which holds with probability at least 1− δ

sup
b∈[0,B]

R(θ̂avg, be1) ≤ inf
θ̂∈DG

sup
b∈[0,B]

R(θ̂, be1)+Õ

(
B2(B

√
n+ 1)√
T

+ α+ α′ + βB(B
√
n+ 1)

√
T

)
,

where we used the fact that the risk R(θ̂, be1) is 4B(B
√
n + 1)-Lipschitz continuous w.r.t

b. The Õ notation in the above inequality hides logarithmic factors. Plugging in the values
of α, α′, β in the above equation gives us

sup
b∈[0,B]

R(θ̂avg, be1) ≤ inf
θ̂∈DG

sup
b∈[0,B]

R(θ̂, be1) + Õ

(
B2(B

√
n+ 1)√
T

)
.

We now convert this bound to a bound on the original statistical game. From Theo-
rem 5.3 we know that inf θ̂∈DG

supb∈[0,B]R(θ̂, be1) = inf θ̂∈D supθ∈ΘR(θ̂, θ) = R∗. Since the
estimator θ̂avg is invariant to transformations of orthogonal group, we have R(θ̂avg, θ) =
R(θ̂avg, ∥θ∥2e1) for any θ ∈ Θ. Using these two results in the above inequality, we get

sup
θ∈Θ

R(θ̂avg, θ) = sup
b∈[0,B]

R(θ̂avg, be1) ≤ R∗ + Õ

(
B2(B

√
n+ 1)√
T

)
.

This shows that the worst-case risk of θ̂avg is close to the minimax risk R∗. This finishes
the first part of the proof.
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LFP. To prove the second part, we rely on Corollary 5.2. Instantiating it for the reduced
statistical game gives us

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼Pt

[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B

√
n+ 1)√
T

+ α+ α′ + βB(B
√
n+ 1)

√
T

)
.

Plugging in the values of α, α′, β in the above equation gives us

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼Pt

[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B

√
n+ 1)√
T

)
.

From Equation (5.26) we know that Pt is close to P̂t with high probability. Using this, we
can replace Pt in the above bound with P̂t and obtain the following bound, which holds
with probability at least 1− δ

inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t

[
R(θ̂, be1)

]
≥ R∗ − Õ

(
B2(B

√
n+ 1)√
T

)
. (5.31)

In the rest of the proof, we show that inf θ̂∈DG

1
T

∑T
t=1 Eb∼P̂t

[
R(θ̂, be1)

]
= inf θ̂ R(θ̂, P̂LFP).

From the definition of P̂LFP, we can equivalently rewrite R(θ̂, P̂LFP) for any estimator θ̂ as

R(θ̂, P̂LFP) =
1

T

T∑
t=1

Eb∼P̂t

[
Eθ∼U

[
R(θ̂, bθ)

]]
,

where U is the uniform distribution on the (d − 1) dimensional unit sphere centered at
origin, in Rd. Next, from Lemma 5.2, we know that the Bayes estimator corresponding to
any invariant prior is an invariant estimator. Since P̂LFP is an invariant distribution, we
have

inf
θ̂∈D

R(θ̂, P̂LFP) = inf
θ̂∈DG

R(θ̂, P̂LFP) = inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t

[
Eθ∼U

[
R(θ̂, bθ)

]]
.

From Lemma 5.1 we know that for any invariant estimator θ̂, we have R(θ̂, θ1) = R(θ̂, θ2),
whenever θ1 ∼ θ2. Using this result in the above equation gives us

inf
θ̂∈D

R(θ̂, P̂LFP) = inf
θ̂∈DG

1

T

T∑
t=1

Eb∼P̂t

[
R(θ̂, be1)

]
.

Combining the above result with Equation (5.31) shows that P̂LFP is approximately least
favorable.

5.8.10 Covariance Estimation

5.8.10.1 Proof of Proposition 5.4

In this proof, we rely on permutation invariant functions and a representer theorem for such
functions. A function f : Rd → R is called permutation invariant, if for any permutation π
and any X ∈ Rd

f(π(X)) = f(X).

The following proposition provides a representer theorem for such functions.
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Proposition 5.9 (Zaheer et al. [111]). A function f(X) from Rd to R is permutation
invariant and continuous iff it can be decomposed in the form ρ(

∑d
i=1 ϕ(Xi)), for some

suitable transformations ϕ : R→ Rd+1 and ρ : Rd+1 → R.

We now prove Proposition 5.4. First note that from Blackwell’s theorem we know that
there exists a minimax estimator which is just a function of the sufficient statistic, which
in this case is the empirical covariance Sn = 1

n

∑n
i=1XiX

T
i [see Theorem 2.1 of 50]. So

we restrict ourselves to estimators which are functions of Sn. This, together with Theorem
5.2, shows that there is a minimax estimator which is a function Sn and which is invariant
under the action of the orthogonal group O(d). Let Σ̂ be such an estimator. Since Σ̂ is an
invariant estimator, it satisfies the following equality for any orthogonal matrix V

Σ̂(V SnV
T ) = V Σ̂(Sn)V

T .

Setting V = UT in the above equation, we get Σ̂(Sn) = U Σ̂(∆)UT . Hence, Σ̂ is completely
determined by it’s action on diagonal matrices. So, in the rest of the proof we try to
understand Σ̂(∆). Again relying on invariance of Σ̂ and setting V = ∆′UT for some
diagonal matrix ∆′ with diagonal elements ±1, we get

Σ̂(∆′∆∆′) = ∆′UT Σ̂(Sn)U∆′ (a)= ∆′Σ̂(∆)∆′,

where (a) follows from the fact that Σ̂(Sn) = U Σ̂(∆)UT . Since ∆′∆∆′ = ∆, the above
equation shows that ∆′Σ̂(∆)∆′ = Σ̂(∆) for any diagonal matrix ∆′ with diagonal elements
±1. This shows that Σ̂(∆) is a diagonal matrix. Next, we set V = PπU

T , where Pπ is the
permutation matrix corresponding to some permutation π. This gives us

Σ̂(Pπ∆P T
π ) = PπΣ̂(∆)P T

π .

This shows that for any permutation π, Σ̂(π(∆)) = π(Σ̂(∆)), where π(∆) represents per-
mutation of the diagonal elements of ∆. In the rest of the proof, we use the notation ∆i

to denote the ith diagonal entry of ∆ and Σ̂i(∆) to denote the ith diagonal entry of Σ̂(∆).
The above property of Σ̂ shows that Σ̂i(∆) doesn’t depend on the ordering of the elements
in {∆j}j ̸=i. This follows by choosing any permutation π which keeps the ith element fixed.
Next, by considering the permutation which only exchanges positions 1 and i, we get

Σ̂i(∆1, . . .∆i, . . .∆d) = Σ̂1(∆i, . . .∆1, . . .∆d).

Thus Σ̂i can be expressed in terms of Σ̂1. Represent Σ̂1 by Σ̂0. Combining the above two
properties, we have

Σ̂i(∆) = Σ̂0(∆i, {∆j}j ̸=i),

where {∆j}j ̸=i represents the independence of Σ̂0 on the ordering of elements {∆j}j ̸=i.
Now, consider the function Σ̂0(∆1, {∆j}dj=2). For any fixed a, and ∆1 = a, Σ̂0(a, {∆j}dj=2)

is a permutation invariant function. Using Proposition 5.9, Σ̂0(a, {∆j}dj=2) can be written
as

Σ̂0(a, {∆j}dj=2) = fa

 d∑
j=2

ga(∆j)

 ,
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for some functions fa, ga. We overload the notation and define fa(x) = f(a, x) and ga(x) =
g(a, x). Using this, we can represent Σ̂i(∆) as

Σ̂i(∆) = f

∆i,
∑
j ̸=i

g(∆i,∆j)

 ,

for some functions f, g. There is a small technicality which we ignored while using Propo-
sition 5.9 on Σ̂0. Proposition 5.9 only holds for continuous functions. Since Σ̂0 is not
guaranteed to be continuous, the proposition can’t be used on this function. However,
this is not an issue because any measurable function is a limit of continuous functions.
Since Σ̂0 is a measurable function, it can be approximated arbitrarily close in the form of
fa

(∑d
j=2 ga(∆j)

)
.

To conclude the proof of the proposition, we note that

inf
Σ̂∈MD,G

sup
λ∈ΞG

R(Σ̂,Diag(λ)) = inf
Σ̂∈Mf,g

sup
λ∈ΞG

R(Σ̂,Diag(λ)).

This is because the minimax estimator can be approximated arbitrarily well using estimators
of the form Σ̂i(∆) = f

(
∆i,

∑
j ̸=i g(∆i,∆j)

)
and the fact that the model class has absolutely

continuous distributions.

5.8.11 Entropy Estimation

5.8.11.1 Proof of Proposition 5.5

First note that any estimator of entropy is a function of P̂n, which is a sufficient statistic
for the problem. This, together with Theorem 5.2, shows that there is a minimax estimator
which is a function of P̂n and which is invariant under the action of permutation group. Let
f̂ : Rd → R be such an estimator. Since f̂ is invariant, it satisfies the following property
for any permutation π

f̂(π(P̂n)) = f̂(P̂n).

If f̂(P̂n) is continuous, then Proposition 5.9 shows that it can written as g
(∑d

j=1 h(p̂j)
)
,

for some functions h : R → Rd+1, g : Rd+1 → R. Even if it is not continuous, since it
is a measurable function, it is a limit of continuous functions. So f̂ can be approximated
arbitrarily close in the form of g

(∑d
j=1 h(p̂j)

)
. This also implies the statistical game in

Equation (5.12) can reduced to the following problem

inf
f̂∈MD,G

sup
P∈PG

R(f̂ , P ) = inf
f̂∈Mg,h

sup
P∈PG

R(f̂ , P ).

5.8.12 Further Experiments

5.8.12.1 Covariance Estimation

In this section, we compare the performance of various estimators at randomly generated
Σ’s. We use beta distribution to randomly generate Σ’s with varying spectral decays and
compute the average risks of all the estimators at these Σ’s. Figure 5.2 presents the results
from this experiment. It can be seen that our estimator has better average case performance
than empirical and James Stein estimators.
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Figure 5.2: Risk of various estimators for covariance estimation evaluated at randomly generated
Σ’s. We generated multiple Σ’s whose eigenvalues are randomly sampled from a Beta distribution
with various parameters and averaged the risks of estimators at these Σ’s. Plots on the left corre-
spond to d = 5 and the plots on the right correspond to d = 10.

5.8.12.2 Entropy Estimation

In this section, we compare the performance of various estimators at randomly generated
P ’s. We use beta distribution to randomly generate P ’s and compute the average risks of
all the estimators at these P ’s. Figure 5.3 presents the results from this experiment.

Figure 5.3: Risk of various estimators for entropy estimation evaluated at randomly generated
distributions. We generated multiple P ’s with pi’s sampled from a Beta distribution and averaged
the risks of estimators at these P ’s.
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6 | Conclusion

In this chapter, we provide an overview of the techniques developed in the thesis, discuss
their importance, and present some future research directions. Broadly speaking, we devel-
oped three different ideas in the thesis. The first idea builds into a new random walk which
has very general applicability and provides strong robustness performance across a wide
range of machine learning models in the presence of data poisoning attacks. The second
idea provides a new perspective on Euclidean optimization by formulating it over two differ-
ent manifolds: the Grassmannian and the Multinomial manifold. The third idea solves the
classical statistical estimation problem of minimax estimators using latest developments in
online learning, providing optimal estimators for fundamental problems for the first time.
The first two parts of the thesis are held together by the use of the Grassmannian as the
driving force for algorithmic innovation, while the last two parts of the thesis are held to-
gether by the use of clever black-box solvers to develop innovative algorithmic techniques
with provable guarantees. The latter is a general theme across all the sections of the thesis
and highlights the possibilities that open up with the right set of assumptions, here the
assumptions being access to right solvers.

6.1 Stochastic optimization for combating data poisoning at-
tacks

In Chapter 2, we present a new algorithm for robust stochastic optimization. We give a
very general convergence theorem for this algorithm, identify an important parameter of
the analysis (the gap parameter) and experimentally study the robustness properties of our
algorithm. We give a modification of our algorithm which can control the robustness of its
output by controlling the gap parameter of the loss function it optimizes and discuss the
role of k in our algorithm. We also present a very general lemma about the probability of
an element picked at random from a Lie group being non-trivially away from it’s maximum.
We believe that this lemma is very novel, can be adapted to a lot of other settings, and will
be useful in future analyses.

While many approaches to stochastic optimization exist in the literature and various de-
fense strategies for data poisoning attacks have been proposed, our approach stands out
because of it’s general applicability. Apart from the goal of optimization and robustness,
our random walk also has the potential to provide privacy properties because of it’s ex-
tensive use of randomness. Studying the privacy properties of our approach is a promising
future direction. We believe that developing algorithms which can address many different
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requirements at the same time and work for a vast variety of optimization problems is nec-
essary given the recent explosion in machine learning research. This paper seeks to advance
such a research.

6.2 New perspectives on Euclidean optimization

In Chapters 3 and 4, we introduced two new techniques for Euclidean optimization. In the
former we formulated Euclidean optimization as a problem on the Grassmannian, and in the
latter we formulated it as a problem on the Multinomial manifold. Our approach is novel in
two ways. Firstly, it is a novel framework for Euclidean optimization as it introduces a way
of using entirely new manifolds for the task. Secondly, it is a novel use of optimization on the
used manifolds, since the solution we are seeking does not live on them but the points of the
manifolds are just an accessory to finding the solution. The advantage of developing such
techniques is that they provide a fresh perspective and an inspiration to develop alternative
methods. For example, Algorithms 2.1 and 2.2, developed in Chapter 2, were inspired by
these techniques. Hence, while these techniques did not yield immediate practical benefits,
they served as an intermediary in the development of the robust stochastic optimization
techniques of Chapter 2.

The techniques developed in Chapters 3 and 4 can be further looked upon as an exact
method of doing dimension reduction. Dimension reduction is a popular area of research
in computer science. Inspired by the results of Johnson and Lindenstrauss [54], many ad-
vanced techniques have been built that provide various trade-offs between accuracy and
the dimension to which the problem is reduced to [107]. In our techniques, we eliminate
the component of loss in accuracy and are able to retrieve the full solution by generating a
sequence of smaller-dimensional problems. This provides a new perspective on dimension
reduction by exposing some of their geometric underpinnings. The existing approaches to
these techniques have mostly been probabilistic in nature, in the sense that the main tech-
nical analysis goes via analyzing the randomness used in the dimension reduction process.
Our techniques open a new avenue with a geometric perspective by posing the problem
on manifolds. In the future, it would be interesting to see what new techniques can be
developed by combining the two and find applications to other domains like robustness and
privacy.

6.3 Minimax estimators using online learning

In Chapter 5, we introduced an algorithmic approach for constructing minimax estimators,
where we attempt to directly solve the min-max statistical game associated with the esti-
mation problem. This is unlike the traditional approach in statistics, where an estimator
is first proposed and then its minimax optimality is certified by showing its worst-case risk
matches the known lower bounds for the minimax risk. Our algorithm relies on techniques
from online non-convex learning for solving the statistical game and requires access to cer-
tain optimization subroutines. Given access to these subroutines, our algorithm returns
a minimax estimator and a least favorable prior. This reduces the problem of designing
minimax estimators to a purely computational question of efficient implementation of these
subroutines. While implementing these subroutines is computationally expensive in the
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worst case, we showed that one can rely on the structure of the problem to reduce their
computational complexity. For the well studied problems of finite Gaussian sequence model
and linear regression, we showed that our approach can be used to learn provably minimax
estimators in poly(d) time. For problems where provable implementation of the optimiza-
tion subroutines is computationally expensive, we demonstrated that our framework can
still be used together with heuristics to obtain estimators with better performance than
existing (up to constant-factor) minimax estimators. We empirically demonstrated this on
classical problems such as covariance and entropy estimation. We believe our approach
could be especially useful in high-dimensional settings where classical estimators are sub-
optimal and not much is known about minimax estimators. In such settings, our approach
can provide insights into least favourable priors and aid statisticians in designing minimax
estimators.

There are several avenues for future work. The most salient is a more comprehensive under-
standing of settings where the optimization subroutines can be efficiently implemented. In
this work, we have mostly relied on invariance properties of statistical games to implement
these subroutines. As described in Section 5.1, there are several other forms of problem
structure that can be exploited to implement these subroutines. Exploring these directions
can help us construct minimax estimators for several other estimation problems. Another
direction for future work would be to modify our algorithm to learn an approximate min-
imax estimator (i.e., a rate optimal estimator), instead of an exact minimax estimator.
There are several reasons why switching to approximate rather than exact minimaxity can
be advantageous. First, with respect to our risk tolerance, it may suffice to construct an
estimator whose worst-case risk is constant factors worse than the minimax risk. Second,
by switching to approximate minimaxity, we believe one can design algorithms requiring
significantly weaker optimization subroutines than those required by our current algorithm.
Third, the resulting algorithms might be less tailored or over-fit to the specific statistical
model assumptions, so that the resulting algorithms will be much more broadly applicable.
Towards the last point, we note that our minimax estimators could always be embedded
within a model selection sub-routine, so that for any given data-set, one could select from
a suite of minimax estimators using standard model selection criteria. Finally, it would be
of interest to modify our algorithm to output a single estimator which is simultaneously
minimax for various values of n, the number of observations.
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