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Abstract
Novel learning algorithms have enhanced our ability to acquire knowledge solely

from past observations of single events to learn from the observations of several

related events. This ability to leverage shared useful information across time series

is causing a paradigm shift in the time-series forecasting practice. Still, machine

learning-based forecasting faces pressing challenges that limit its usability, useful-

ness, and attainable real-world impact, including human interpretability, the ability

to leverage structured information, generalization capabilities, and computational

costs. This thesis tackles these challenges by bridging the gap between machine

learning and classic statistical forecasting methods.

We organized the thesis as follows. We introduce the time-series forecasting task,

accompanied by a short review of modern forecasting models, their optimization,

and forecast evaluation methods. In the following chapters, we present our ap-

proach with three case studies. First, we augment state-of-the-art neural forecasting

algorithms with interpretability capabilities inspired by time series decomposition

analysis; we illustrate its application in the short-term electricity price forecasting

task. Second, we improve neural forecasting generalization and computational

efficiency in the long-horizon setting through a novel wavelet-inspired algorithm

that assembles its predictions sequentially, emphasizing components with different

frequencies and scales. Third, we tackle the hierarchical forecasting task, a regres-

sion problem with linear aggregation constraints, by augmenting neural forecasting

architectures with a specialized probability mixture capable of incorporating the

aggregation constraints in its construction. Our approach improves upon the current

state-of-the-art in each of the considered domains.
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Chapter 1
Introduction

1.1 Problem Statement

‘e time series forecasting problem concerns many areas ranging from €nance and economics
to healthcare analytics. As data generation increases, the forecasting necessities have evolved
from the need to predict small groups of time series to predicting thousands or even millions of
them. Extracting statistical pa‹erns from the data that generalize has been the most reliable
method of producing predictions. ‘is is why machine learning has become one of the most
successful approaches for the task.

Large dataset environments have witnessed Deep Learning (LeCun et al., 2015) grow in
popularity as it becomes a valuable and general-purpose forecasting technique, as shown by
its success in recent forecasting competitions (Makridakis et al., 2020a; Makridakis et al., 2021)
where it rede€ned the state-of-the-art. Its bene€ts include:

1. Forecasting Accuracy: A global model is €‹ed simultaneously to the historical data
of related time series, allowing it to share information across them; this helps to train
highly parameterized and ƒexible models that o‰en translates in more accurate forecasts,
this technique is known ascross learning(Makridakis et al., 2020a). ‘e model is able to
provide forecasts for items that have li‹le to no history available, in contrast to classical
methods.

2. Forecasting Pipeline's Simpli€cation : ‘e deep learning framework is able to autom-
atize the featurization of the dataset, while its representations exhibit longer memory.
‘e use of global models greatly simplify the data pipelines and make the process more
e•cient. While the training times are bigger than other methods, deep learning techniques
compensates for it during the data featurization process, which is usually extremely fast.

Plenty of methods and ideas have been tried in forecasting, with varying degrees of success.
Di‚erent algorithms have strengths and weaknesses, varying complexity, development opportu-
nities, and challenges. Machine Learning has a great potential to enhance forecasting systems,
yet some limitations hinder its adoption, among them we identi€ed the lack of interpretability, its
computational scalability when dealing with large amounts of data, or long-horizon predictions.
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Prompted by the interpretability and computational cost limitations of machine learning
forecasting systems, in this thesis, we guide our work by the following question:

Can econometrics and statistical innovations be combined to advance usability, useful-
ness, and real-world impact of machine learning-based forecasting?

1.2 Goal

‘ere is o‰en an imagined divide between statistical and econometric forecasting models and the
machine learning approach. On one side, statistical models are highly determined by assumptions
to model relationships between variables. ‘ese models strive to understand the underlying
data-generating processes and are typically inspired by theory. On the other hand, machine
learning forecasting models are characterized by their ability to assemble predictions primarily
based on the data without being explicitly programmed to do so. Due to this, these models have
minimal assumptions and are exceptionally ƒexible.

‡esis statement. My thesis aims to bridge the gap between econometric, statistical, and
machine learning forecasting methods, and centers around the idea that:

Con€ning machine learning-based forecasting methods with econometric and statis-
tical domain knowledge is necessary to improve their accuracy, interpretability, and
e•ciency.

1.3 Contributions

‘e thesis main body presents case studies showcasing the successful application of our approach,
which enhances neural forecasting methods with econometric and statistical inspirations. Below
is an executive summary of the thesis' contributions.

ˆ We introduced NBEATSx, a neural forecasting solution that extends the neural basis
expansion analysis incorporating exogenous variables. NBEATSx improves accuracy
through the integration of multiple information sources. ‘e architecture also provides
an interpretable signal decomposition, allowing users to visualize the impact of trend and
seasonal components and their interactions with exogenous factors.

ˆ We introduced NHITS, a neural hierarchical interpolation for time series inspired by
Wavelet analysis. NHITS improves long-horizon forecasting accuracy and reduces the
computation time of the multi-step forecasting strategy.

ˆ We tackled the hierarchical forecasting challenge by combining neural networks with a
novel probabilistic mixture model. Our hierarchical mixture neural network can repre-
sent arbitrary probability distributions, including those with coherence constraints. It is
accurate, computationally e•cient, and probabilistically coherent by construction.
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1.4 Overview

We organize the thesis into three main parts. ‘e €rst part introduces the time forecasting
methodology, reviewing di‚erent models, principles, and approaches to prepare, produce and
evaluate forecasts, focusing on neural forecasting methods. ‘e second section presents four
case studies showcasing our contributions to the neural forecasting literature. Finally, the third
and concluding part summarizes the thesis and outlines potential avenues for future research.
Below, we provide a brief overview of each part.

Part I: Background

‘is part introduces time series forecasting, framing it as a multivariate regression problem.

‘e second chapter delves deeper into the regression problem and examines predictor
variables, evaluation methods, model optimization, probabilistic estimation, and model and
hyperparameter selection. ‘e third chapter overviews contemporary forecasting models,
focusing on machine learning-based models and neural networks, and discusses related research.
Finally, we brieƒy outline the technical approach employed in the case studies composing the
remainder of the work.

Part II: Case Studies

Chapter 4: Interpretable Neural Forecasting

Accuracy alone is not always enough; in some cases, our ability to understand a model's forecasts
is equally important. In situations like this, the need for interpretability can hinder the adoption
of neural forecasting models.

In this €rst case study, we demonstrate how leveraging classic econometric signal decompo-
sition techniques can improve the interpretability of neural forecast models without sacri€cing
their accuracy. We extend the Neural Basis Expansion analysis method (Oreshkin et al., 2020) by
incorporating exogenous variables, which signi€cantly enhances its accuracy and enables the
integration of multiple sources of helpful information. ‘eNBEATSx neural network provides
an interpretable signal decomposition, allowing users to visualize the relative impact of trend and
seasonal components and the interactions with exogenous factors. With NBEATSx, it becomes
easier to comprehend how the model constructs its predictions.

We assess the e‚ectiveness ofNBEATSx, evaluating it on the challenging electricity price
forecasting task, which has been extensively studied. Our results show thatNBEATSx achieves
state-of-the-art performance, improving the forecast accuracy by nearly 20% compared to the
original NBEATSmodel and by up to 5% over other well-established statistical and machine
learning methods specialized for this task.
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Chapter 5: Probabilistic Hierarchical Forecasting

‘e hierarchical forecasting challenge arises when time series data is organized into natural
groups with multiple levels of aggregation, for which we need accurate predictions that maintain
probabilistic coherence.

In this case study, motivated by the shortcomings of existing methods, which o‰en lack
accuracy or are computationally complex, we propose a novel approach that combines the
strengths of neural networks with a novel multivariate mixture model. Our composite hier-
archical mixture neural network (HINT) method is accurate, computationally e•cient, and
probabilistically coherent by construction.

In principle, the hierarchical mixture neural network can represent arbitrary conditional
probability distributions, including those with coherence constraints, in the same way, a conven-
tional neural network can represent arbitrary functions. We demonstrate the e‚ectiveness of
the hierarchical mixture networks on three real-world hierarchical datasets; we achieve relative
performance improvements of 11.8% on Australian domestic tourism data, 8.1% on the Favorita
grocery store dataset, and similar results to statistical reconciliation methods on a San Francisco
Bay Area highway tra•c dataset.

Chapter 6: Long-Horizon Forecasting

Long-horizon forecasting remains a challenge. Recurrent predictions su‚ers error concatenation,
while multistep predictions su‚er high variance due to their over-parametrized nature.

In this case study, we tackle the high volatility and computational complexity limitations of
multistep forecasting strategies introducing the neural hierarchical interpolation for time series
(NHITS). It addresses these challenges by incorporating innovative hierarchical interpolation
and multi-rate data sampling techniques inspired by Wavelet analysis.

By assembling predictions sequentially and emphasizing components with di‚erent frequen-
cies and scales, NHITS signi€cantly improves accuracy in long-horizon forecasting tasks while
reducing computation time by orders of magnitude compared to existing neural forecasting
approaches. We demonstrate its capabilities on six large-scale benchmark datasets from the
long-horizon forecasting literature: electricity transformer temperature, exchange rate, electric-
ity consumption, San Francisco bay area highway tra•c, weather, and inƒuenza-like illnesses,
where we improve point prediction accuracy by almost 20% over the previous state-of-the-art.
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Most of the work in this thesis has been published or is in revision in the following venues.
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1.6 Open-Source Contributions

Evaluating and comparing new forecasting methods with established baselines is crucial for
their systematic development. For this reason, as an integral component of this thesis work, we
made most of the models and baselines available in their corresponding open-source libraries.

ˆ NeuralForecast (Olivares et al., 2022b): A Python library specialized in time series
forecasting with deep learning models, that contains e•cient datasets and data-loading
utilities, evaluation functions, statistical tests implemented inPyTorch (Paszke et al.,
2019) andPyTorchLightning (Falcon et al., 2019).

ˆ StatsForecast (Garza et al., 2022): A python library o‚ering widely used uni-
variate time series forecasting models, including automaticARIMA, ETS, CES, and
Theta modeling optimized for high performance usingNumba (Lam et al., 2015).

ˆ HierarchicalForecast (Olivares et al., 2022c): A benchmark library for hierarchi-
cal forecasting that builds upon Python's fastest open-sourceETS/ARIMAimplementations
to improve the availability, utility, and adoption of hierarchical forecast reference baselines.

ˆ GluonTS (Alexandrov et al., 2020): Another Python library for deep-learning based time
series modeling, mostly based onMXNet (Tianqi Chen et al., 2015), the package built
API calls to several R baselines' implementations (Hyndman et al., 2020), as well as the
HierE2E model (Rangapuram et al., 2021).

‘ese are the references to the open source contributions resulting from this thesis work:

ˆ Kin G. Olivares, Cristian Chall�u, Federico Garza, Max Mergenthaler Canseco, and Artur
Dubrawski.NeuralForecast: User friendly state-of-the-art neural forecasting models.PyCon
Salt Lake City, Utah, US 2022. 2022.url : h‹ps://github.com/Nixtla/neuralforecast

ˆ Kin G. Olivares, Federico Garza, David Luo, Cristian Chall�u, Max Mergenthaler, Souhaib
Ben Taieb, Shanika L. Wickramasuriya, and Artur Dubrawski. \HierarchicalForecast:
A Reference Framework for Hierarchical Forecasting in Python". In:Work in progress
paper, submiˆed to Journal of Machine Learning Research.abs/2207.03517 (2022).url :
h‹ps://arxiv.org/abs/2207.03517

ˆ Federico Garza, Max Mergenthaler Canseco, Cristian Chall�u, and Kin G. Olivares.Stats-
Forecast: Lightning Fast Forecasting with Statistical and Econometric Models. PyCon Salt
Lake City, Utah, US 2022. 2022.url : h‹ps://github.com/Nixtla/statsforecast
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I am tomorrow, or some future day, what I establish today. I am today what I
established yesterday or some previous day.

James Joyce

Part I

Forecasting Principles

Here we introduce the forecasting task, its principles, and its practice with a look
into the future. In Chapter 2, we provide an introduction to the regression problem,
forecast evaluation methods, as well as common model estimation and optimiza-
tion techniques. In Chapter 3, we brieƒy overview forecast modeling approaches,
including statistical, econometric, and machine learning techniques, that served as
a reference for the thesis work.
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Chapter 2
Background

2.1 What is Time Series Forecasting?

Forecasting has always been at the forefront of decision making and planning.Its theory and
models rest on the premise that by analyzing historical data, pa‹erns can be identi€ed and
utilized to make accurate predictions about the future values of a time series. Forecasting aims
to predict the future as accurately as possible, conditional on all the available information.

A time series is a sequence of chronological observations of a random variable. When the
observations are uniformly spaced, they comprise a regular time series; when the space between
the observations varies, they comprise an irregular time series. In this work, we will focus on
the €rst kind of series.

In this thesis we denote thetarget time seriesasy, it can be univariate or multi variate. We
denote theforecast creation datewith the time indext, in which the prediction is created. For any
forecast creation datet, within the forecast horizon of sizeH , we denote the relativeprediction
time stepwith � 2 [t + 1; : : : ; t + H ].

We denotepoint predictionsthat estimate the central location of the target time series' future
through a mean or median value aŝy � , with the following vectorized notation:

y [t+1: t+ H ] = [ y t+1 ; : : : ; y t+ H ] and ŷ [t+1: t+ H ] = [ŷ t+1 ; : : : ;ŷ t+ H ] (2.1)

In case ofprobabilistic predictionsthat conveys the uncertainty around the central forecast,
we denote theforecasting probabilityasP̂. In time series forecasting, uncertainty plays a crucial
role in acknowledging and accounting for the inherent unpredictability of future events, which
can impact the accuracy and reliability of predictions. By incorporating uncertainty, forecasters
can provide more accurate and realistic forecasts, accounting for a range of possible outcomes.

P̂(y [t+1: t+ H ]) (2.2)
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2.2 Predictor Variables

‘e forecasting methods depend heavily on the availability and quality of data. We provide a
classi€cation of the most common predictor variables in terms of their relationship to the target
variable and its time dependence.

2.2.1 Autoregressive Features

Basic time series foresting models use only information of the target variable and omit the
a‹empt to learn predictive relationships with other variables. Despite their simplicity, the
univariate time series forecasting methods include well-proven methods like Naive, Seasonal
Naive, ETS,ARIMA, discussed in Section 3.1. ‘ese methods should always be considered as
baselines to evaluate the predictive accuracy of other more complex alternatives. We refer to
the past values of the target series asautoregressive featuresand denote them through the thesis
with the following notation:

y [t � L :t ] = [ y t � L ; y t � L +1 ; : : : ; y t � 1; y t ] and y [:t ] = [ : : : ; y t � L ; ; y t � L +1 ; : : : ; y t � 1; y t ] (2.3)

2.2.2 Exogenous Variables

We refer to the features used to create the predictions beyond the autoregressive as exogenous
variables. We distinguish three types of exogenous variables depending on whether they reƒect
static or time-dependent aspects of the modeled data and their availability at the time of the
predictionst, into static, historical, and future exogenous variables.

Static. ‘e static exogenousvariablesx (s) carry time-invariant information. When the models
share parameters across multiple time series, these variables allow sharing information within
groups of time series with similar static variable levels. Examples of static variables include
designators such as identi€ers of regions, groups of products, etc., that mark agglomerates of
series that demonstrate similar behaviors.

Historic . ‘e historic exogenousvariablesx (h)
[:t ] provide the models with information at

the moment of the forecast creation that are determined independently, and they are not
systematically a‚ected by the target variables yet a‚ect it. Examples of these variables can be
treatments in healthcare-related data prices of goods and services in the case of competitive
markets. Another example is weather data for the prediction of agricultural yield, as weather
remains una‚ected by local small production. Or advertisement spending, where we normally
assume control, and treat it as independent from demand. Endogenous variables pose di‚erent
challenges as they determine multivariate forecasting problems.

Future . ‘e future exogenousvariablesx (f )
[:t+ H ] provide the models of available information

about the future, planned events, special events, or even predictions of other covariates. An
example of these features can be seasonal covariates linked to the natural frequencies in the
data encoded in calendar variables to identify hours, days, months, or holidays, among others.
Another example can be the distance to events like holidays or distance to promotions in retail
and e-commerce.
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2.3 Forecasting Task

(a) Linear (b) General

Figure 2.1: Multivariate Regression

‘e time-series forecasting task that we tackle in this thesis can be formally represented with a
variant of the following high-dimensional multivariate regression problem:

P(y [t+1: t+ H ] j X [:t+ H ]) with X [:t+ H ] = f y [:t ]; x (h)
[:t ] ; x (f )

[:t+ H ]; x (s)g (2.4)

where, for description simplicity,X [:t+ H ] denotes the collection of predictor variables that
contain, autorregressives, historic, future and static exogenous variables. Figure 2.1 shows the
univariate regression case with a single future exogenous variable.

Probabilistic Forecasting . Making predictions for the future involves varying degrees
of imperfect or unknown information that translates into uncertainty (Dawid, 1984). For this
reason, probabilistic forecasting has emerged as a natural answer to quantify the uncertainty of
the future of the target variable, conditioning on the available information of its predictors. ‘e
probabilistic forecasting task is to produce at any timet a predictive probability distributionfor
the next observations of the target variabley [t+1: t+ H ]. A consequence of the estimation of the
joint probability distribution throughout the horizon are the marginal distributionŝF� for each
prediction time step� 2 [t + 1 : t + H ], Figure 2.1b depicts them. Equation (2.5) de€nes the
predictive marginal distribution and its quantiles, that compose prediction intervals.

F̂� (y) = P̂
�
y� � y j X [:t+ H ]

�
ŷ(q)

� = F̂ � 1
� (q) (2.5)

Point Forecasting . For a long time, statisticians and forecasters relied on Gaussian assump-
tions and treated forecasts as an expression of the information of its parameters, particularly
its location. ‘e point forecasting task is to produce an estimation of the future location of the
target variabley� , and the model's output is o‰en the conditional mean from Equation (2.6) or a
robust median as a particular case of Equation (2.5).

�̂ y� jX � = E
�

y� j X [:t+ H ]

�
(2.6)
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2.4 Evaluation

2.4.1 Point Forecast Errors

‘e most important magnitude for point forecast is the forecast error, which is the di‚erence
between the observed valuey� and the prediction̂y� , at time� :

e� = y� � ŷ� with � 2 [t + 1 : t + H ] (2.7)

‘e forecasting community tends to di‚erentiate between that forecast errors from regression
residual, in the sense that we measure forecast errors in the validation and test sets. In contrast,
we measure regression residuals in the train set that we de€ne in Section 2.4.4. Finally, forecast
accuracy summarizes the errors in di‚erent metrics that we will explain below. We follow closely
Hyndman and Athanasopoulos, 2018b taxonomy, with the addition of the probabilistic errors.

1. Scale-dependent errors. ‘is type of measurement is on the same scale as the data,
for which it is desirable that the data is normalized or the scales of the time-series that
compose it are comparable. ‘e most common metrics are Mean Absolute Error (MAE),
Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) that is more robust to
outliers, than its unrooted counterpart.

MAE =
1
H

t+ HX

� = t+1

jy� � ŷ� j (2.8)

MSE =
1
H

t+ HX

� = t+1

(y� � ŷ� )2 RMSE =

vu
u
t 1

H

t+ HX

� = t+1

(y� � ŷ� )2 (2.9)

2. Percentage errors. Percentage errors have the advantage of being unit-free, making
them suitable for comparison across datasets or time series of di‚erent scales. Common
percentage metrics are Mean Absolute Percentage Error (MAPE), symmetric Mean Ab-
solute Percentage Error (sMAPE) (Meade and Armstrong, 1986). Hyndman and Koehler
2006 recommend sMAPE to avoid MAPE's degradation aroundy� zero.

MAPE =
1
H

t+ HX

� = t+1

jy� � ŷ� j
jŷ� j

sMAPE =
200
H

t+ HX

� = t+1

jy� � ŷ� j
jy� j + jŷ� j

(2.10)

3. Relative/Scaled errors. Relative accuracy measures o‚er a way to compare the prediction
errors to baseline models, examples are relative Mean Absolute Error (relMAE) (Hyndman
and Koehler, 2006; Lago et al., 2021a) and relative Mean Squared Error (relMSE) (Olivares
et al., 2021). As in percentage errors, the measure is unit-free. When the error is greater
than one, the predictions are worse than the baseline's predictions

relMSE =

P t+ H
� = t+1 (y� � ŷ� )2

P t+ H
� = t+1 (y� � ŷbase

� )2
relMAE =

P t+ H
� = t+1 jy� � ŷ� j

P t+ H
� = t+1 jy� � ŷbase

� j
(2.11)
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(a) Absolute Error (b) Squared Error (c) Abs. Percentage Error

(d) Relative Abs. Error (e) •antile Loss (f) Multi •antile Loss

Figure 2.2: Evaluation Metrics and Train Losses

2.4.2 Probabilistic Forecast Errors

Here we describe metrics that allow to empirically asses the accuracy and compareprobabilistic
forecastsintroduced in Section 2.3.

1. †antile Loss . Consider the estimated cumulative distribution function̂F � and its asso-
ciated quantileŝy(q)

� = F̂ � 1
� ( q), for an observationy� , the •antile Loss (QL) (Matheson

and Winkler, 1976), depicted in Figure 2.2e, is de€ned as:

QL(y� ; ŷ(q)
� ) = 2

�
(1 � q) ( ŷ(q)

� � y� )+ + q(y� � ŷ(q)
� )+

�

= 2
�

1f y� � F̂ � 1
� ( q)g � q

� �
F̂ � 1

� ( q) � y�

� (2.12)

2. Multi †antile Loss . ‘e Multi •antile Loss (MQL) (Wen et al., 2017), depicted in
Figure 2.2f, measures simultaneously the errors for various estimated quantiles.

MQL( y� ; [y(q1 )
� ; : : : ; y(qQ )

� ]) =
1
Q

X

qi

QL(y� ; y(qi )
� ) (2.13)

3. Continuous Ranked Probability Score . Additionally when the objective a the full
predictive distribution a common evaluation metric is the Continuous Ranked Probability
Score (CRPS) (Matheson and Winkler, 1976). ‘e CRPS measures the accuracy of whole
predictive distributions and has desirable theoretical properties as a metric (Gneiting and
Ranjan, 2011). Following notation from Laio and Tamea 2007, the CRPS is de€ned as:

CRPS(y� ; F̂ � ) =
Z 1

0
QL(y� ; ŷ(q)

� )q dq (2.14)

‘e evaluation of the CRPS uses numerical integration technique, that discretizes the
quantiles and treats the integral with a le‰ Riemann approximation, averaging over
uniformly distanced quantiles, as the asymptotic behavior of the MQL.
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2.4.3 Prediction's Improvements Statistical Tests

To assess which forecasting model provides be‹er predictions, we rely on the Giacomini-White
test (GW) (Giacomini and White, 2006) of the multi-step conditional predictive ability, which can
be interpreted as a generalization of the Diebold-Mariano test (DM) (Diebold and Mariano, 2002),
widely used in the forecasting literature. Compared with the DM or other unconditional tests,
the GW test is valid under general assumptions such as heterogeneity rather than stationarity of
data. ‘e GW test examines the null hypothesis of equal accuracy speci€ed in Equation (2.15),
measured by the MAE orL1 norm of the forecast errors of a pair of modelsA andB, conditioned
on the available information to that moment in timeF t .

H0 : E
�
jjy � � ŷA

� jj 1 � jj y � � ŷB
t jj � j F t

�
� E

h
� A;B

t j F t

i
= 0 (2.15)

‘e available information F t is usually replaced with a constant and lags of the error
di‚erence � A;B

t and the test is performed using a linear regression with a Wald-like test. When
the conditional information is only the constant variable, one recovers the original DM test.

2.4.4 Train, Validation and Test splits

‘e magnitude of the train errors rarely provide a good assessment of the future generalization
ability of the model; this becomes evident with modern, ƒexible models prone to over€t. A
reliable estimator for the accuracy of a model's predictions requires that the model obtains and
produces genuine forecast signals during model optimization and evaluation, avoiding possible
future information leakage into the model's inputs during train and inference. A temporal
train-evaluation split procedure allows us to estimate the model's generalization performance on
future data unseen by the model. We use thetrain setto optimize the model parameters, and the
validation and test setsto evaluate the accuracy of the model's predictions. ‘e di‚erence between
the validation and test sets is that the validation is used during hyperparameter optimization,
while we reserve thetest setfor the €nal measurements. Figure 2.3 shows an example.

Figure 2.3: Time-series Data Splits
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2.4.5 Temporal Cross-Validation

(a) Rolling Windows

(b) Chaining Windows

Figure 2.4: Temporal cross-validation assesses a model's forecast accuracy over time. It sequentially
de€nes a sliding or chaining windows (green and blue) and test windows (orange).

Usually, the test set is longer than the forecast horizonH , which allows for an improved
time-series cross-validation version over the train and evaluation set split. Cross-validation
improves the forecast accuracy estimation by reducing its variability through using di‚erent data
partitions (Arlot and Celisse, 2010). A particular version of the technique known as time-series
cross-validation, that avoids future information leakage, is commonly used (Hyndman and
Athanasopoulos, 2018b). ‘is technique creates multiple training windows consisting only of
observations prior to the test windows. ‘e €nal forecast evaluation is the average of the errors
on the chained or rolled test windows.

Figure 2.4 depicts time-series cross-validation. We mark the train observations in green
and blue, while the test observations are orange. In this example, the €nal forecast evaluation
average would be done across thet1; t2; t3 indexes. ‘e time-series cross-validation can be a
rolling or chaining window strategy depending on the model's inputs. Figure 2.4a depicts rolling
windows of sizeL that corresponds to the lag inputsy [t � L :t ], while Figure 2.4b represents models
with in€nite theoretical memory capabilities, with all the past inputsy [:t ] available until timet.

Model Recalibration. In practical se‹ings, it is advisable to retrain the model a‰er updating
the rolling/chaining windows to incorporate all the available data before the predictions. In the
time-series forecasting tasks, this helps with rapidly shi‰ing distributions. ‘e forecast accuracy
gains come with the downside of this strategy is the additional computational costs of the model
optimization. We can avoid the recalibration process for more extended periods in the presence
of slowly shi‰ing distributions.
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2.5 Model Estimation

A model approximates the relationships between the predictor variables and the target vari-
ables through a set of assumptions. Most of times it is de€ned by a family of functions
F = f f g parametrized by a vector� 2 � , and the most common way to estimate its val-
ues is through anobjective loss functionL : Y � X � � ! R+ , that depends on training data
D = f (y [t+1: t+ H ]; X :t+ H )g. We further simplify the notation of the subsection and denote the
target variable asy = y [t+1: t+ H ] and the predictors asX = X :t+ H . Finding good performing
parameters in the training data is also known as €‹ing, or training a model

2.5.1 Empirical Risk Minimization

In general a learning task can be translated into a function estimation problem using the classic
Empirical Risk Minimization (ERM) framework (Vapnik, 1999), where the objective is to minimize
the expected loss function at the dataset level:

�̂ := arg min
� 2 �

E [ L (y; ŷ (X j � )) ] and f � := arg min
f 2F

E [ L (y; f (X )) ] (2.16)

In the particular case of thepoint forecastingtask orprobabilistic forecastingwith prediction
intervals, it is immediate to translate the evaluation metrics described in Section 2.4.1 and
Section 2.4.2 into training losses. Here we inspect two well known regression se‹ings.

1. Ordinary Least Squares. When the objective function is the mean of the squared errors
or MSE, we obtain a classical regression se‹ing that is characterized with very appealing
theoretical guarantees. For instance, it can be shown under stationarity conditions that
the population's risk minimizer is the conditional expectation in Equation (2.17).

f � (X ) = arg min
f 2F

E [ MSE(y; f (X )) ] = E [ y j X ] (2.17)

2. †antile Regression. When the objective function is the mean of the quantile loss (QL),
we obtain a quantile regression se‹ing (Koenker and Basse‹, 1978). ‘ese estimators o‚er
a non-parametric alternative for the estimation of the prediction intervals. ‘ey have
essential connections to robust statistics, as the objective function o‚ers a very desirable
resistance to outliers while being as e•cient as MSE estimation. Additionally, the estima-
tors also have very appealing theoretical guarantees. Under stationarity conditions, we can
show that the population's risk minimizer is the conditional quantiles in Equation (2.18).

f � (X ) = arg min
f 2F

E
�

QLq (y ; f (X ))
�

= F � 1
y ( q) (2.18)

A lot of research has been done recently on model estimation, in particular when combined
with regularization side objectives that help to restrict the ƒexibility of the family of functions
F into a be‹er behaved spaced based. Examples of this include RIDGE and LASSO regressions
(Hastie et al., 2009).
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2.5.2 Maximum Likelihood Estimation

Advancing the construction forecasting models, one can assume the target variabley = y [t+1: t+ H ]

coming from a particular probability distribution for Equation (2.4). ‘is approach has many
advantages. ‘e output of the model is a completepredictive distributionrather than only location
estimates or prediction intervals. ‘e selection of the probability distribution can encode domain
expertise that can help the accuracy of the models, for example, when constraining the event
space of the probability to guarantee consistency of the predictions.

‘e likelihood intends to measure the probability of the dataD of being originated by the
model; a large likelihood is linked with good models, while small likelihoods are associated
with poor models. To estimate the parameters of these probabilistic forecasting models, one
can minimize the negative log-likelihood of the data under the maximum likelihood estimation
Maximum Likelihood Estimation (MLE) (Murphy, 2012) optimization strategy:

�̂ := arg min
� 2 �

E [ L (y; X ; � ) ] = E [ � log ( P( y j X ; � ) ) ] (2.19)

For a very long time the forecasting community used the least squares errors estimation
method as a default. ‘is method under restrictive assumptions, namely that the regression is
linear in its parameters, stationarity and no multi-collinearity of the predictors, homoscedasticity,
normally distributed errors centered around zero, matches the MLE optimization strategy with
Gaussian distribution. Since then a lot of progress has been done beyond Gaussian assumptions.

2.5.3 Maximum a Posteriori Estimation

A closely related alternative to MLE is the Maximum a Posteriori Estimation (MAP) strategy that
employs an augmented optimization objective that can o‰en be interpreted as regularization.
‘e main intuition behind it is the additional assumption of a probability distribution for the
parametersP(� ) that constraints the likelihood optimization. MAP estimation method is de€ned
by Equation (2.20):

�̂ := arg min
� 2 �

E [ L (y; � ) ] = E [ � log ( P( y j X ; � ) ) � log ( P(� ) ) ; ] (2.20)

Regarding the fully-Bayesian approach we think there are still plenty of research opportuni-
ties to improve its scalability, since many practical scenarios the forecasting needs are in the
hundreds or thousands of time series, we do not consider it in this work.

‘e three mentioned methods are have been used with success in forecasting applications.
‘ey have their bene€ts and disadvantages regarding their predictive accuracy, computational
complexity, and theoretical support. In this work Chapter 4 and Chapter 6 tackle thepoint
forecasting taskand use an empirical risk minimization approach, while Chapter 5 tackles a
probabilistic forecasting taskand extends the maximum likelihood estimation towards composite
likelihood (Lindsay, 1988; Varin et al., 2011) with to improve its computational feasibility.
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2.5.4 Parameter Optimization

‘e process of €nding a maximizing or minimizing parameter for the loss functions introduced
in Section 2.5 is known as optimization. When theobjective loss functionis characterized with
advantageous smoothness properties like di‚erentiability or subdi‚erentiability, one can rely on
the long tradition of gradient-based optimization algorithms (Cauchy et al., 1847). ‘rough time
Stochastic Gradient Descent (Robbins and Monro, 1951) has become one of the most important
optimization methods in Machine Learning because of its e•ciency in respect to the size of the
datasets and model's parameters is uncontested. We describe SGD in Algorithm 2.1.

Algorithm 2.1 Stochastic Gradient Descent.

1: � 1 2 � , learning rate� .
2: repeat
3: Sample a training batch(y i ; X i ) � D .
4: Calculate the gradientgt = rL (y i ; X i ; �̂ t ).
5: Update parameterŝ� t+1 = �̂ t � � gt

6: until convergence

Improvements on SGD include momentum-based methods built by the contributions of
Nesterov's accelerated gradient (Nesterov, 1983), that under be‹er smoothness conditions of
the objective function tends to dampen the oscillations of SGD and speed up its iterations, thus
achieving a faster convergence. A classic intuition on momentum is that it adds inertia to the
gradients acting as a trajectory smoother that traverses local minima and small increases of the
loss function.

One of the most popular gradient optimization variants is Adaptive Moment Estimation
SGD (ADAM) (Kingma and Ba, 2014), described in Algorithm 2.2. In addition to the gradient's
momentum ADAM includes second-order moments to rescale the gradients and implicitly adapt
the learning rate for di‚erent parameters. ADAM can be thought of as performing a diagonal
approximation to the Hessian that accounts for the local curvature of the objective in classic
second-order optimization methods. ‘e method is fairly robust to the learning rate selection
and has very fast convergence. In this thesis we mostly rely on this optimization method.

Algorithm 2.2 Adaptive Moment Estimation SGD.

1: � 1 2 � , learning rate� , � 1; � 2 decay rates for moments.
2: repeat
3: Sample a training batch(y i ; X i ) � D .
4: Calculate the gradientgt = rL (y i ; X i ; �̂ t ).
5: Estimate €rst momentm t = � 1m t � 1 + (1 � � 1)gt

6: Estimate second moment diagonalD t = � 2D t � 1 + (1 � � 2)I � g2
t

7: Correct the moments biasm t = 1=(1 � � t
1)m t andD t = 1=(1 � � t

2)D t

8: Update parameterŝ� t+1 = �̂ t � � D̂ � 1=2
t m t

9: until convergence
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2.6 Model Selection

2.6.1 Model Identi€cation

‘e process of model identi€cation, de€ned for many years the forecasting practice, as most
statisticians and forecasters pursued the discovery of a \true model" governing the data genera-
tion process of the time series. ‘e process of model selection was that of the de€nition of the
assumptions of relatively simple models that governed the trend, seasonal and autoregressive
true relationships on the target variable. Rather than a more pragmatic approach to minimize
the predictive errors in a held-out dataset (Bates and Granger, 1969).

Automatic forecasting methods inherited the identi€cation tradition, and explore classical
families like Error, Trend, Seasonality Exponential Smoothing State Space (ETS) (Holt, 1957;
Hyndman et al., 2008) and Autorregresive Integrated Moving Average (ARIMA) in a statistically
principled way to ensure stationarity of the modeled processes, seasonalities and autoregressive
features (Box et al., 2015a; Hyndman and Khandakar, 2008). ‘ese methods o‚er a solution to
forecasting tasks of large numbers of univariate time series and are obligated baselines.

2.6.2 Hyperparameter Optimization

Machine Learning forecasting methods are de€ned by many hyperparameters that control their
behavior, with e‚ects ranging from their speed and memory requirements to their predictive
performance. For a long time, hyperparameter tuning was done manually. ‘is approach is
time-consuming, and automated, e•cient hyperparameter optimization methods have been
introduced, proving to be more e•cient than manual tuning, grid search, and random search.
‘e comprehension of the impacts of the hyperparameters is still a precious skill, as it can help
guide the design of informed hyperparameter spaces that are faster to explore automatically.

A common approach for hyperparameter optimization is a technique called sequential model-
based optimization that intelligently samples hyperparameter con€gurations deemed promising
based on the validation evaluation of other hyperparameter con€gurations. Gaussian Processes
or adaptive Parzen windows approximate the expected improvement (EI) for new con€gurations.
Algorithm 2.3 describes the Sequential Model-Based Hyperparameter Optimization (HYPEROPT)
(Bergstra et al., 2011). All novel methods proposed in this thesis rely on HYPEROPT to select
con€gurations with the added bene€t of guaranteeing the research's replicability.

Algorithm 2.3 Sequential Model-based Hyperparameter Optimization.

1: Initialize H = ; con€gurations' evaluations, and approximation modelM 0.
2: for each evaluation stept 2 [: T] do
3: Obtain promising hyperparametersH � = arg maxH EI(H; M t � 1).
4: Evaluate loss functionL (H � ) = L (y; X ; � (H � )) .
5: Update the con€gurations' evaluations historyH = H [ f (H � ; L (H � )) g.
6: Fit a new modelM t on H
7: end for
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Chapter 3
Overview of Modeling Approaches

In this chapter we overview the most adopted modeling approaches, using the two primary
model families' classi€cation presented by Petropoulos et al., 2022 survey as a starting point.

Statistical and econometric forecasting models rely on theory-inspired assumptions about
variables' relationships. In contrast, machine learning models assemble predictions primarily
based on data without being explicitly programmed, making them exceptionally ƒexible and with
minimal assumptions. ‘e categorization of forecasting methods into statistical and machine
learning is based on whether they prescribe the data-generating process. Methods such as
Neural Networks, Decision Trees, Support Vector Machines, and Gaussian Processes that build
on unstructured, non-linear regression algorithms are typically categorized as machine learning
models (Makridakis et al., 2018a; Januschowski et al., 2020). We do not subscribe entirely to
the methods' dichotomy, and as we showcase throughout this thesis work, there are plenty of
possible, enriching interactions between the two model families, although this taxonomy is a
good starting point for an overview of modeling approaches.

Figure 3.1: A taxonomy of time series forecasting models. We review them from Section 3.1-Section 3.3
with a special emphasis on neural forecasting models that are closely related to this thesis contributions.
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3.1 Statistical and Econometric Models

3.1.1 Simple Baselines

Simple methods can be surprisingly accurate in many situations. ‘ese methods always con-
stitute useful baselines against which we can compare the performance of more sophisticated
methods. Examples of simple baselines include Naive (Naive), a random walk model that predicts
using the last available observation, Seasonal Naive (SNaive) similar to Naive but using the last
seasonal observation, Moving Average (MA) an average of the lastL available observations,
Historic Average (HA) a simple average of all past observations.

ŷNaive
t+ h j t = yt ŷSNaive

t+ h j t = yt+ h� sb1+ h � 1
s c

ŷMA
t+ h j t =

1
L

LX

l=1

yt � l ŷHA
t+ h j t =

1
T

TX

l=1

yt � l

(3.1)

For additional information on the topic we refer to the simple forecasting methods chapter
from Hyndman and Athanasopoulos, 2018b book.

3.1.2 Exponential Smoothing

‘e idea behind Exponential Smoothing (ES) is simple and a‹ractive. ‘e technique creates the
forecasts as weighted averages of observations, with the more recent having greater weight than
those in the distant past. ‘e exponential smoothing model family is a useful and dependable
model for many practical applications. Its history dates back to 1944 with the work of Brown,
1959 and was naturally extended to smooth di‚erent signal's components like the level, trend,
and seasonal pa‹erns by Holt, 1957 and Winters, 1960.

‘e simplest exponential smoothing has the following recursive representation:

ŷt+1 j t = �y t + (1 � � )ŷt � 1 (3.2)

where the exponential smoothing parameter� 2 (0; 1). In the past the estimation of the ES
parameters was done through discounted least squares, modern implementations minimize the
squared errors of one step forward predictions (Nelder and Mead, 1965).

‘e method's theoretical understanding and its use cases grew, and connections between the
ES family and ARIMA were stablished (Gardner Jr, 1985). Similarly, the ES family was extended
with a statistical framework capable of producing forecast distributions through the Error, Trend,
Seasonality Exponential Smoothing State Space (ETS) (Hyndman et al., 2008). For a taxonomy
and systematic reviews of the model family, we refer to the work of Pegels, 1969; Gardner Jr,
1985; Taylor, 2003; Hyndman et al., 2008. A more recent extension of the model family includes
the Complex Exponential Smoothing (CES), moves away from the classic level, trend, and
seasonality decomposition, through the usage of complex-valued functions (Svetunkov, 2016).
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3.1.3 Linear Regression

Classic regression is one of the most popular statistical forecasting techniques. It aims to estimate
the relationship between the target time series variableyt and its predictor variablesx i;t . In
its basic form, the model is optimized by minimizing the sum of squared errors, and it can be
interpreted with the following conditional Gaussian linear model:

yt+1 j t = � 0 + � 1x1;t + � � � + � kxk;t + � t (3.3)

ŷt+1 j t = �̂ 0 + �̂ 1x1;t + � � � + �̂ kxk;t (3.4)

where� t is the residual error at timet, � i are the coe•cients that measure the e‚ect of the
predictorx i;t on the target variable. As mentioned in Section 2.2.2, the predictor variables can be
autoregressive features, promotions, calendar dummies marking special days or holidays, and
polynomial and harmonic functions to capture trends and seasonalities. ‘is model is optimized
minimizing Mean Squared Error (MSE) that matches the Maximum Likelihood Estimation (MLE)
through the Gaussian distribution assumption on the residuals. When the regression models use
autoregressive features, it can be interpreted as a member of the Autorregresive Models (AR)
family. ‘e community generally distinguishes the Machine Learning approach from classic
regression by the relaxation of the linearity assumption of Equation (3.3).

3.1.4 Autoregressive Integrated Moving Average

Autorregresive Integrated Moving Average (ARIMA) along with Exponential Smoothing (ES)
are workhorses of the forecasting practice. While exponential smoothing models rely on
characterizing the trend and seasonality of the data, ARIMA models focus on characterizing the
autocorrelations present in the data.

An autoregressive model predicts the target variable with a linear combination of its past.
‘e name "autoregression" denotes that the model is a form of regression where the variable is
regressed against itself. An autoregressive model of orderp, denoted as AR(p), can be wri‹en as:

yt = c + � 1yt � 1 + � 2yt � 2 + � � � + � pyt � p + � t (3.5)

Similarly to AR models that use historical values of the target variable in a regression, a
Moving Average (MA) model applies past forecast errors in a regression-style model, a moving
average model of orderq, denoted as MA(q), can be wri‹en as:

yt = c + � t + � 1� t � 1 + � 2� t � 2 + � � � + � q� t � q (3.6)

ARIMA combines both AR(p) and MA(q), along with the di‚erencated target variabley
0

t for
the following stationary regression (zero mean uncorrelated errors� t with shared variance):

y
0

t = c + � t +
pX

l=1

� ly
0

t � l +
qX

l=2

� k � t � k (3.7)

‘e ARIMA model family has been extensively studied, in particular in the work of George
et al., 1976; Box et al., 2015b. ‘e most popular implementation of the method ARIMA is available
in the fable R package (Hyndman and Khandakar, 2008).
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3.1.5 ‡eta Method

Another simple, e•cient and well-proven method, as shown by its success in the M3 competition
(Makridakis and Hibon, 2000; Assimakopoulos and Nikolopoulos, 2000). In its simplest form the
‘eta Method (‘eta) creates a prediction using the last observation is combined with a trend
function, which could be a constant, a linear or non-linear trend, or a nonparametric trend:

Q(� )t = (1 �
1
�

)Tt+1 +
1
�

yt (3.8)

ŷt+1 j t = � Q(� )t + yt (3.9)

where the trend (usually linear) is denoted byTt+1 . ‘e theoretical study of ‘eta family
is performed by Nikolopoulos and ‘omakos, 2019, and its extensions towards probabilistic
forecasts introduced by Hyndman and Billah, 2003. ‘e simple method was shown by Hyndman
and Billah, 2003 to be equivalent to a simple exponential smoothing with dri‰.

Research on the topic is active, as shown by the work of Spiliotis et al., 2020a on its gen-
eralization. One of the most popular implementations of ‘eta baselines is available in the
forec‘eta library (Fiorucci and Louzada, 2020), and is based on a ‘eta generalization that
models a short and a long term linear trend, the €rst is optimally estimated while the second is
dynamically estimated (Fiorucci et al., 2016).

3.1.6 Conditional Heteroscedasticity Models

In some instances, like €nancial applications, a statistical model may exhibit an irregular pa‹ern
of variation in an error term or variable. In such cases, the assumption that the variance of the
errors remains constant is no longer valid, and conditional heteroscedasticity comes into play.

‘is model family estimates the volatility of the target variable, usually assuming it is
centered around zero1. ‘e Autoregressive Conditional Heteroskedasticity (ARCH) (Engle, 1982),
assumes the following autoregressive variance structure:

� 2
t = c +

pX

l=1

� ly2
t � l and yt = � t � t (3.10)

‘e Generalized Autoregressive Conditional Heteroskedasticity (GARCH) (Bollerslev, 1986)
extension assumes that the variance can be predicted by the long-term average variance, the
predicted variance for the current period, and the most recent squared residual, which represents
new information for the period. ‘e three factors are weighted together in the calculation:

� 2
t = c +

pX

l=1

� ly2
t � l +

qX

k=1

� k � 2
t � k (3.11)

1Under certain conditions it can be thought as an autorregresive model for the squaredy2
t series.
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3.1.7 Multiple Seasonalities

Multiple seasonal models extend on time series decomposition analysis that presents a time series
as a function of other partial signals called components. ‘e simplest form of decomposition
assumes that a time series is formed by trend, seasonal component, and the remainder, where
the seasonal component has cyclical pa‹erns over time. ‘e mathematical decomposition
approach has a long history dating to the work of Buys-Ballot, 1847, to classic smoothing
methods like that of Macaulay, 1931. Digitalization advancements has signi€cantly impacted the
frequency at which time series data is analyzed. In various sectors, including energy, healthcare,
transportation, and telecommunications, there is a growing need to analyze time series data
that exhibits multiple seasonalities or cyclical components of varying frequencies.

‘e €eld of multiple seasonalities modeling is vast and continuously expanding. In this article,
we will highlight some examples and suggest referring to surveys conducted by Dokumentov and
Hyndman, 2015 for more information. One modern approach is the use of regression methods,
in which seasonal components are typically chosen from harmonic functions such as Seasonal-
Trend regression (STR) (Dokumentov and Hyndman, 2015), or Bayesian regression, such as
Facebook Prophet (Prophet)(Taylor and Letham, 2018). Another approach is iterative local
polynomial projections, like Seasonal-Trend decomposition using LOESS (STL) (Cleveland et al.,
1990; Bandara et al., 2021). Specialized structural models, such as double-seasonal exponential
smoothing work of Taylor, 2014, are also available.

3.1.8 Markov Regime-Switching

Dynamic econometric modeling and forecasting techniques have increasingly relied on a spe-
cialized class of Markov Regime-Switching (MS) models since the late 1980s, particularly in
macroeconomics and €nance. ‘ese models can accommodate regime shi‰s and allow for tem-
poral regime dependence, non-linearities, and is especially helpful in modeling mean reversion.

A Markov regime-switching approach represents the observed stochastic behavioryt by K
separate states or regimes, each having di‚erent underlying stochastic processes, i.e.,yt;k of
k = 1; :::; K: ‘e switching mechanism between these states is governed by an unobserved
(latent) Markov chain� t , which is characterized by the transition matrixP = [ P(� t = i j� t = j )].
For a simple MS example consider the conditional regression model:

yt+1 j t; k = � 0;k + � 1;kx1;t + � � � + � p;kxp;t + � t;k (3.12)

P =

2

6
6
6
4

p1;1 p1;2 : : : p1;j : : : p1;K

p2;1 p2;2 : : : p2;j : : : p2;K
...

...
...

...
...

...
pK; 1 pK; 2 : : : pK;j : : : pK;K

3

7
7
7
5

with
KX

j =1

pi;j = 1 (3.13)

A‰er the early work of Hamilton, Nelson, and Schwertz (Hamilton, 1989; Pagan and Schwert,
1990; Kim, Nelson, et al., 1999), there has been an explosion of applications and generalizations
of MS-based models. Updated surveys of the method are performed by Guidolin and Pedio, 2018
and Phoong et al., 2022.
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3.1.9 Vector Autorregresive Models

Forecasting tasks o‰en involve predicting multiple related series dependent on each other.
However, as a simplifying assumption, it is common to assume that these series are (conditionally)
independent. While this simpli€cation can be useful, there are cases where the bene€ts of
modeling the series relationships outweigh the advantages of the simpli€ed assumption.

‘e Vector Autoregression (VAR) time series model is o‰en used to address this issue. ‘is
multivariate statistical model assumes that each variable is inƒuenced not only by its past
behavior but also by the past behavior of other variables in the system. By forming a set of
interrelated equations:

y t = c + � 1y t � 1 + � 2y t � 2 + � � � + � py t � p + � t (3.14)

‘e VAR model was introduced in 1980 (Sims, 1980) and has since been widely adopted
in macroeconomics and €nance, resulting in a large body of literature. Several variants and
extensions have been proposed to address various challenges, including multivariate state-
space (Durbin and Koopman, 2012) and MGARCH models (Bauwens et al., 2006). Researchers
have also proposed alleviating over-parametrization challenges through theoretically moti-
vated regularization (Deaton and Muellbauer, 1980) and factor analysis augmentations, such as
FAVAR (Bernanke et al., 2005).

3.1.10 Count and Zero Inƒated Data

Scenarios with non-Gaussian distributed target variables, such as binary, count, or zero-inƒated
processes, motivated the introduction of more ƒexible statistical frameworks, like the general-
ized linear model (GLM) (Nelder and Wedderburn, 1972) with Bernoulli, Poisson, and Negative
binomial distributions. Other specialized distribution work includes the Zero Inƒated Poisson
Regression (ZIP) (Lambert, 1992), and the special classes of the exponential dispersion mod-
els (Tweedie et al., 1984; Jorgensen, 1987) that proven to be remarkably accurate in the M5
international forecasting competition (Makridakis et al., 2021).

Classic forecasting baselines like exponential smoothing are known to struggle with zero-
inƒated processes; ‘e Croston Method (Croston) (Croston, 1972) improves on this, €‹ing two
separate simple exponential smoothings to the positive values and the size zero-€lled intervals.
Extensions to the Croston baseline include work of Intermi‹ent Multiple Aggregation Prediction
Algorithm (IMAPA) (Syntetos and Boylan, 2021), and the Aggregate-Disaggregate Intermitent
Demand Approach (ADIDA) (Nikolopoulos et al., 2011).
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3.2 Machine Learning Forecasting

3.2.1 Nearest Neighbors.

Nearest-neighbor techniques rely on identifying the training set's observations that are closest
in input space to regressorsx to create predictionŝyt (x). In particular K-Nearest Neighbor
Model (KNN) de€nes its predictions as follows:

ŷt (x) =
1
k

X

x i 2 N k (x )

yi (3.15)

whereNk(x), which consists of the k closest pointsx i in the training set tox. We then determine
the predictionŷt (x) by averaging the responses of these k closest neighbors.

Nearest neighbor methods are unsuitable for extrapolation since they assume the underlying
relationship between input features and response variable remains constant. While not com-
monly used in forecasting tasks, KNN can be reasonable when stationarity holds or augment
the method with de-trending or di‚erencing techniques (Mart��nez et al., 2019). One can replace
classic Euclidean distance for specialized time series distance alternatives (Senin, 2008).

3.2.2 Support Vector Regression.

Most machine learning methods a‹empt to estimate functions directly from the input space,
while the Support Vector Machine (SVM) takes a di‚erent approach by performing a non-linear
mapping of the data into a high-dimensional space and then using simple linear functions to
create linear decision boundaries in that space. SVM produces a single solution characterized
by the global minimum of the optimized functional. Initially introduced in 1995 by Cortes
and Vapnik, 1995 to tackle classi€cation problems, SVM was later modi€ed to solve regression
problems (Vapnik et al., 1997; Vapnik, 1999).

‘e original Support Vector Regression follows the following ERM problem:

Minimize
w;b;� i ;� 0

i

C
TX

t=1

L � (yt ; f (x t ; w)) +
1
2

jjwjj 2

where L � (y; f (x t ; w)) =
�

0 if jy � f (x t ; w)j � �
jy � f (x t ; w)j � � otherwise

(3.16)

SVMs were once a popular forecasting choice (Trafalis and Ince, 2000; Sapankevych and
Sankar, 2009), their usage has decreased due to several factors. One of the main drawbacks of
SVMs is their computational complexity (Rahimi and Recht, 2008; Williams and Seeger, 2001),
especially when dealing with large datasets or high-dimensional feature spaces. Additionally,
the lack of interpretability in SVMs can be challenging as their non-linear transformations can be
di•cult to understand and o‰en require complex kernel functions. Furthermore, unlike neural
networks, SVMs require substantial feature engineering e‚ort to compete in many applications.
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3.2.3 Gaussian Processes.

Similar to SVMs, Gaussian Process (GP) methods also utilize kernel functions to model the
covariance between data points (Williams and Rasmussen, 2006). In the case of GPs, kernel
functions are used to model the covariance of a continuous stochastic process. Although
GP's interpolation is are particularly suitable for time-series signal decomposition (known as
Kriging) it can also be applied to long-horizon forecasting and when uncertainty estimation is
important (Roberts et al., 2013).

3.2.4 Decision Trees.

Decision trees are a versatile class of regression methods that have gained widespread adoption,
some popular variants include Random Forests (RF) (Breiman, 1996; Breiman, 2001) and Gradient
Boosting Decision Trees (GBD) (Freund and Schapire, 1997; Chen and Guestrin, 2016; Ke et al.,
2017). ‘ese models have consistently performed well in forecasting competitions such as
Kaggle (Bojer and Meldgaard, 2021), M4 (Makridakis et al., 2020a), and M5 (Makridakis et al.,
2021), and have become well-established baselines that excel under time constraints.

Tree-based methods are o‰en the selection for users seeking e‚ective, easy-to-use black
box learners for forecasting tasks (Januschowski et al., 2022). ‘eir success in forecasting
competitions can be a‹ributed to several factors:

ˆ ‘ese method's mature so‰ware implementations have garnered strong community sup-
port, making them easily accessible and widely adopted.

ˆ ‘ese highly robust methods can e‚ectively handle noise, missing data, and variations in
time series scales, allowing for reliable predictions even in challenging datasets.

ˆ Unlike other methods, Tree-based methods do not require extensive model tuning or
parameter adjustments to achieve competitive performance, making them an a‹ractive
option for users without specialized knowledge of machine learning.

It is important to note that Tree-based methods generally partition the training input space
into regions and assign a speci€c output value to each region. However, when presented with
inputs outside the training set's range, decision trees o‰en fail to predict accurately; the decision
tree may assign the inputs to a region with an edge or default output value. For this reason,
the methods are not ideal for extrapolation or non-stationary se‹ings. ‘is is a well-known
problem and research on this area is an active topic.

In contrast, other machine learning models, such as neural networks and support vector
machines, can learn continuous and smooth functions that can be used for extrapolation, making
them be‹er suited to handle situations with values outside the training set's range.

26



3.3 Neural Forecasting

In recent years, there has been an increasing need to forecast large numbers of related time
series rather than just a few individual ones. In such scenarios, global models can use data from
collections of related time series to learn complex relationships without the risk of over-€‹ing.
In addition to improving accuracy, this approach can save time and e‚ort by eliminating the need
for experts to select and prepare covariates and models, as traditional techniques require (Wen
et al., 2017; Smyl, 2019; Semenoglou et al., 2021). Before the advent of deep learning, it was
necessary to design complex pipelines involving clustering similar series, creating speci€c
features for each series, like each series' special handling of promotional or holiday e‚ects, and
selecting di‚erent model speci€cations based on individual characteristics.

Neural forecasting provides a simpler solution. ‘ese models require only a small amount
of data preprocessing before they can learn an end-to-end solution to the forecasting problem.
In particular, data processing is included in the model and optimized jointly to produce the
best possible forecast. Unlike traditional pipelines, which rely on heuristics such as expert-
designed components and manual covariate design, deep learning forecasting pipelines rely
almost entirely on what the model can learn from the data.

Deep Learning's ability to learn the relationship between features and forecasts and the fea-
tures' representation itself is called representation learning. It enables it to automatically discover
good representations from raw data without relying on manual feature engineering (Goodfellow
et al., 2016). ‘e ability depends on introducing data representations constructed on top of other
simpler representations obtained through the layers of the models. Representation learning
has solid theoretical foundations, including theUniversal Approximation Œeorem(Hornik, 1991;
Cybenko, 1989). ‘e theorem states that even a simple architecture like a feedforward neural
network can arbitrarily approximate any continuous function, conditioned on its depth and
number of hidden units.

Figure 3.2: Representation learning is a powerful machine learning tool, as it allows us to automatically
discover and extract useful features from the data without manual feature engineering.
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Figure 3.3: When the relationship between regressorsy [t � L :t ] and forecastŝy [t+1: t+ H ] is complex,
preparing covariates and selecting models is time-consuming. Neural forecasting solves this di•culty
through representation learning, decomposing complex functions into a series of simpler ones, each
function represented by the model's di‚erent layers. ‘e input layer processes the original features, while
subsequent hidden layers extract increasingly abstract features. ‘ese hidden features are not initially
in the data; the model determines which transformations are most useful for forecasting. Overall, deep
learning simpli€es learning the relationship between regressors and forecasts.

3.3.1 Architecture Building Blocks

‘ere are many di‚erent neural network architectures, and their strengths and weaknesses make
them suited for di‚erent tasks. Researchers and practitioners in deep learning are constantly
seeking to improve model performance, reduce computational costs, and expand their range of
applications. ‘e following subsections will brieƒy cover their most important building blocks.

Multi Layer Perceptron

‘e simplest network architecture is the Multi Layer Perceptron (MLP) (Rosenbla‹, 1961). It
operates as an autoencoder since its initial layers operate as an encoder function that converts the
raw inputs into a di‚erent representation and a decoder function that converts the representation
into the desired output. In the edge case where the autoencoder has a single layer, the autoencoder
turns into a linear Autorregresive Models (AR) model.

‘e feedforward neural network gets its name because inputs are processed in one direction,
ƒowing through the network to produce outputs. In Figure 3.3, each circle represents a node
in the network, while the edges depict the transformations applied by the network. A layer is
a set of nodes that use an a•ne transformation followed by a nonlinear activation function.
Activation functions serve the purpose of adapting the output of the network to speci€c domains,
for example, by predicting distribution parameters.
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(a) Single Layer RNN

(b) Hyperbolic tangent activation

(c) LSTM activation

Figure 3.4: (a) Recurrent Neural Networks are a family of models specialized on sequential data. ‘eir
internal mechanism allows them to deal with inputs of varying length as its weights are shared across
time steps. (b) In its original versions RNNS would use hyperbolic tanget activations. (c) To tackle the
exploding and vanishing gradient problems new activations have been proposed.

Recurrent Neural Networks

One signi€cant limitation of Multilayer Perceptrons (MLPs) is their over parametrization. Since
the model is fully connected, it does not leverage any speci€c structure in the data, as other
architectures do. Additionally, its €xed parameters limit their ability to process inputs of varying
lengths. However, most modern neural networks use MLPs as an essential building block.

Recurrent Neural Network (RNN)s (Rumelhart et al., 1986; Elman, 1990) are a model family
specialized on sequential data. In contrast to MLPs that are static architectures, RNNs are
dynamic and can handle sequences of varying lengths because they have a mechanism for
updating their internal state based on the entire sequence history. ‘e mechanism's weights
are shared across all time steps. RNNs dynamic memory depends feeds its hidden units back to
themselves at each time step, and endows it with the ability to capture long-term dependencies.

While training RNNs over long sequences using back-propagation is that their gradients
tend to vanish or explode. Long Short Term Memory (LSTM) (Gers et al., 2000; Sak et al., 2014)
introduced a clever mitigation through its activation's gating mechanism that selectively learns
which information to keep and which to discard from previous time steps in the input sequence.

Additional computational e•ciency improvements include the Gated Recurrent Unit (GRU)
that simpli€es LSTM's activation by combining its gating mechanism (Chung et al., 2014; Cho
et al., 2014). Still due to the sequential processing nature of RNNs, their operations cannot be
parallelized in contrast with those of MLP-based and Transformer-based architectures, for this
reason they have o‰en worse computational e•ciency.
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Figure 3.5: Simple convolutional architectures can outperform modern RNNs. By skipping temporal
connections, causal convolution €lters e•ciently model longer memory. Stacking multiple convolutional
layers creates higher-order features for accurate forecasts.

Convolutional Neural Networks

‘e Convolutional Neural Networks (CNN) (LeCun et al., 1989) constitue a specialized family
of models designed for inputs with a known ordinal structure, such as images and time series.
Unlike MLPs, CNNs utilize convolutional layers that employ €lters operating locally on subsets
of the input data, which are shared across the input range. For time series forecasting, Temporal
Convolution Network (TCN) (Oord et al., 2016; Bai et al., 2018) performs a moving weighted sum
by sliding a €lter across the input data. ‘e weight sharing of the €lter drastically reduces the
number of free parameters compared to the dense layers of MLPs and improving generalization.

Causal convolution €lters can be applied to larger time spans while remaining computation-
ally e•cient by skipping temporal connections (Chang et al., 2017). ‘is approach, depicted in
Figure 3.5, can be further extended by stacking multiple convolutional layers on top of each other,
which combines low-level features extracted in earlier layers to derive higher-order features.
‘is process of feature extraction allows for the creation of more complex representations of the
input data, enabling more accurate predictions or classi€cations.

Attention Mechanism and Transformer Architectures

‘e a‹ention mechanism overcomes the information bo‹leneck in Sequence to Sequence ar-
chitectures by selectively focusing on relevant parts of the input sequence. By weighting the
importance of di‚erent input elements based on the decoder's current state, a‹ention allows the
model to a‹end to the most relevant parts (Chorowski et al., 2014; Bahdanau et al., 2016).

‘e Transformer (Transformer) (Vaswani et al., 2017) architecture is a feedforward network
that processes the input sequence in parallel rather than sequentially like RNNs. ‘e Transformer
uses multi-headed a‹ention to capture the relationships between di‚erent input sequence
elements. While Transformer-based models have achieved great success in natural language
processing and computer vision tasks, their adaptation for forecasting purposes is a relatively
recent area of research that requires further development and re€nement to reach comparable
levels of success. As we show in Chapter 6, early a‹empts have been partially unsuccessful (Zhou
et al., 2020; Wu et al., 2021; Zhou et al., 2022).
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Figure 3.6: Temporal normalization (le‰), layer normalization (center) and batch normalization (right).
‘e entries in green show the components used to compute the normalizing statistics.

Temporal Normalization

Temporal normalization has proven essential in neural forecasting tasks, enabling the network's
non-linearities to express themselves. Forecasting scaling methods take particular interest in
the temporal dimension where most of the variance dwells, contrary to other deep learning
techniques like BatchNorm, which normalizes across batch and temporal dimensions, and
LayerNorm, which normalizes across the feature dimension.

3.3.2 Neural Forecasting Architectures

We reviewed the fundamental neural network's building blocks in the preceding subsections.
Although the neural network architectures for modern applications have become more intricate,
they still consist of a fusion of elementary structures, such as MLPs, RNNs, CNNs, and a‹ention
mechanisms. Here we brieƒy review and point to notable or well-performing architectures.

‘e Sequence to Sequence Architecture (Seq2Seq) (Graves, 2013) was a breakthrough in
sequential data processing tasks due to its ability to handle variable-length input and output
sequences. Variants of the architecture have been applied to large industrial forecasting systems,
such as Deep Auto Regressive Network (DeepAR) (Salinas et al., 2020), Multi •antile Forecaster
Family (MQForecaster) (Wen et al., 2017; Eisenach et al., 2021) and Temporal Fusion Transformer
(TFT) (Lim et al., 2021), with great e‚ect. Neural forecasting has transcended industry bound-
aries into academia due to its outstanding performance in the latest forecasting competitions
(Makridakis et al., 2018c; Makridakis et al., 2020b). ‘e latest submissions witnessed the Expo-
nential Smoothing Recurrent Neural Network (ESRNN) (Smyl, 2019) and Neural Basis Expansion
Analysis (NBEATS) (Oreshkin et al., 2020) obtain €rst and third place, respectively.

Cross-learningis common to all these architectures, it involves optimizing a shared model
across a collection of related time series. ‘e clever integration of temporal normalization
strategies within the architectures has supported this approach (Semenoglou et al., 2021).
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In the computer €eld,
the moment of truth is a running program; all else is prophecy.

Herbert Simon

Part II

Contributions

We present the thesis's main contributions in three case studies that combine
neural forecasting methods with econometric and statistical inspirations. Chapter 4
introduces NBEATSx, which extends neural basis expansion analysis with exogenous
variables improving its accuracy and providing interpretable signal decomposition
capabilities. In Chapter 5, we introduce a novel probabilistic mixture model to tackle
the hierarchical forecasting task. ‘e new method extends network's capabilities
to arbitrarily approximate functions to approximate distributions, including those
with coherence constraints. In Chapter 6, we tackle long-horizon forecasting with
NHITS, a Wavelet analysis-inspired approach that specializes multi-step forecasting
strategy into di‚erent frequencies through time.
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Chapter 4
Interpretable Neural Forecasting

4.1 Summary

Existing neural forecasting approaches can be limited in their interpretability, so we created
NBEATSx to address this challenge.NBEATSx extends the neural basis expansion analysis
method by incorporating exogenous variables, signi€cantly improving its accuracy and enabling
the integration of multiple sources of helpful information. ‘e neural network used inNBEATSx
provides an interpretable signal decomposition, allowing users to visualize the relative impact of
trend and seasonal components and the interactions with exogenous factors.NBEATSx makes
it easier to understand how the model composes its predictions.

4.2 Motivation

In the last decade, a signi€cant progress has been made in the application of deep learning to
forecasting tasks, with models such as the Exponential Smoothing Recurrent Neural Network
(ESRNN) (Smyl, 2019) and the Neural Basis Expansion Analysis (NBEATS) (Oreshkin et al., 2020),
outperforming classical statistical approaches in the recent M4 competition (Makridakis et al.,
2020a). Despite this success we still identify two possible improvements, namely the integration
of time-dependent exogenous variables as their inputs and the interpretability of the neural
network outputs. Neural networks have proven powerful and ƒexible, yet there are several
situations where our understanding of the model's predictions can be as crucial as their accuracy,
which constitutes a barrier for their wider adoption. ‘e interpretability of the algorithm's
outputs is critical because it encourages trust in its predictions, improves our knowledge of the
modeled processes, and provides insights that can improve the method itself.

Additionally, the absence of time-dependent covariates makes these powerful models un-
suitable for many applications. For instance, Electricity Price Forecasting (EPF) is a task where
covariate features are fundamental to obtain accurate predictions. For this reason, we chose this
challenging application as a test ground for our proposed forecasting methods.
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In this chapter, we address the two mentioned limitations by €rst extending the neural basis
expansion analysis, allowing it to incorporate temporal and static exogenous variables. And
second, by further exploring the interpretable con€guration ofNBEATSand showing its use as
a time-series signal decomposition tool. We refer to the new method asNBEATSx. ‘e main
contributions of this paper include:

(i) Incorporation of Exogenous Variables: We propose improvements to theNBEATS
model to incorporate time dependent as well as static exogenous variables. For this
purpose, we have designed a special substructure built with convolutions, to clean and
encode useful information from these covariates, while respecting time dependencies
present in the data. ‘ese enhancements greatly improve the accuracy of theNBEATS
method, and extend its interpretability capabilities, so rare in neural forecasting.

(ii) Interpretable Time Series Signal Decomposition: Our method combines the power of
non-linear transformations provided by neural networks with the ƒexibility to model mul-
tiple seasonalities and simultaneously account for interaction events such as holidays and
other covariates, all while remaining interpretable. ‘e extendedNBEATSx architecture
allows to decompose its predictions into the classic set of level, trend, and seasonality, and
identify the e‚ects of exogenous covariates.

(iii) Electricity Price Forecasting Comparison: We showcase the use ofNBEATSx model
on €ve EPF tasks achieving state-of-the-art performance on all of the considered datasets.
We obtain accuracy improvements of almost 20% in comparison to the originalNBEATS
andESRNNarchitectures, and up to 5% over other well-established machine learning,
EPF-tailored methods (Lago et al., 2021a).

4.3 Related Work

4.3.1 Electricity Price Forecasting

‘e Electricity Price Forecasting (EPF) task aims at predicting the spot (balancing, intraday,
day-ahead) and forward prices in wholesale markets. Since the workhorse of short-term power
trading is the day-ahead market with its conducted once-per-day uniform-price auction (Mayer
and Tr•uck, 2018), the vast majority of research has focused on predicting electricity prices for the
24 hours of the next day, either in a point (Weron, 2014; Lago et al., 2021a) or a probabilistic se‹ing
(Nowotarski and Weron, 2018). ‘ere also are studies on EPF for very short-term (Narajewski
and Ziel, 2020), as well as mid- and long-term horizons (Ziel and Steinert, 2018a). ‘e recent
expansion of renewable energy generation and large-scale ba‹ery storage has induced complex
dynamics to the already volatile electricity spot prices, turning the €eld into a proli€c subject
on which to test novel forecasting ideas and trading strategies (Chitsaz et al., 2018; Gianfreda
et al., 2020; Uniejewski and Weron, 2021).

Energy markets' liberalization and renewable energy sources induced complex dynamics
and volatility to electricity prices (Angelica Gianfreda and Pelaga‹i, 2016; Gianfreda et al., 2020;
Muniain and Ziel, 2020), turning them into a proli€c subject on which to test forecasting ideas.
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Figure 4.1: ‘e day-aheadauction market allows participants to purchase and sell electric energy at prices
determined on dayd � 1 for the next dayd. ‘e market establishes the 24 hourly prices simultaneously,
and it is usual that the prices are published at midday.

Out of the numerous approaches to EPF developed over the last two decades, two classes of
models are of particular importance when predicting day-ahead prices { statistical (also called
econometric or technical analysis), in most cases based on linear regression, and computational
intelligence (also referred to as arti€cial intelligence, non-linear or machine learning), with
neural networks being the fundamental building block. Among the la‹er, many of the recently
proposed methods utilize deep learning (Wang et al. 2017; Lago et al. 2018a; Marcjasz 2020), or
are hybrid solutions, that typically comprise data decomposition, feature selection, clustering,
forecast averaging and/or heuristic optimization to estimate the model (hyper)parameters (Nazar
et al., 2018; Li and Becker, 2021).

Unfortunately, as argued by Lago et al., 2021a, the majority of the neural network EPF
related research su‚ers from too short and limited to a single market test periods, lack of well
performing and established benchmark methods, and/or incomplete descriptions of the pipeline
and training methodology resulting in poor reproducibility. To address these shortcomings, our
models are compared across two-year out-of-sample periods from €ve power markets and using
two highly competitive benchmarks recommended in previous studies: theLasso Estimated
Auto-Regressive(LEAR) model and a (relatively) parsimoniousDeep Neural Network(DNN).

4.4 Methodology

4.4.1 Neural Basis Expansion Analysis

‘e NBEATSx model o‚ers a solution to the multivariate regression problem

P(y [t :t+ H ] j y [:t ]; X [:t+ H ]) := P( y [t+1: t+ H ] j y [t � L : t ]; X [t � L : t+ H ]) (4.1)

wherey [t :t+ h]; y [:t ]; X [:t+ H ] represent future and past observations of the target time series up
until time t, and the the exogenous variables available at the prediction time, respectively. And
L denotes the number of lags considered in the regression, andH is the forecast horizon.
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