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Abstract
Novel learning algorithms have enhanced our ability to acquire knowledge solely

from past observations of single events to learn from the observations of several

related events. This ability to leverage shared useful information across time series

is causing a paradigm shift in the time-series forecasting practice. Still, machine

learning-based forecasting faces pressing challenges that limit its usability, useful-

ness, and attainable real-world impact, including human interpretability, the ability

to leverage structured information, generalization capabilities, and computational

costs. This thesis tackles these challenges by bridging the gap between machine

learning and classic statistical forecasting methods.

We organized the thesis as follows. We introduce the time-series forecasting task,

accompanied by a short review of modern forecasting models, their optimization,

and forecast evaluation methods. In the following chapters, we present our ap-

proach with three case studies. First, we augment state-of-the-art neural forecasting

algorithms with interpretability capabilities inspired by time series decomposition

analysis; we illustrate its application in the short-term electricity price forecasting

task. Second, we improve neural forecasting generalization and computational

efficiency in the long-horizon setting through a novel wavelet-inspired algorithm

that assembles its predictions sequentially, emphasizing components with different

frequencies and scales. Third, we tackle the hierarchical forecasting task, a regres-

sion problem with linear aggregation constraints, by augmenting neural forecasting

architectures with a specialized probability mixture capable of incorporating the

aggregation constraints in its construction. Our approach improves upon the current

state-of-the-art in each of the considered domains.
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Chapter 1
Introduction

1.1 Problem Statement

The time series forecasting problem concerns many areas ranging from finance and economics

to healthcare analytics. As data generation increases, the forecasting necessities have evolved

from the need to predict small groups of time series to predicting thousands or even millions of

them. Extracting statistical patterns from the data that generalize has been the most reliable

method of producing predictions. This is why machine learning has become one of the most

successful approaches for the task.

Large dataset environments have witnessed Deep Learning (LeCun et al., 2015) grow in

popularity as it becomes a valuable and general-purpose forecasting technique, as shown by

its success in recent forecasting competitions (Makridakis et al., 2020a; Makridakis et al., 2021)

where it redefined the state-of-the-art. Its benefits include:

1. Forecasting Accuracy: A global model is fitted simultaneously to the historical data

of related time series, allowing it to share information across them; this helps to train

highly parameterized and flexible models that often translates in more accurate forecasts,

this technique is known as cross learning (Makridakis et al., 2020a). The model is able to

provide forecasts for items that have little to no history available, in contrast to classical

methods.

2. Forecasting Pipeline’s Simplification: The deep learning framework is able to autom-

atize the featurization of the dataset, while its representations exhibit longer memory.

The use of global models greatly simplify the data pipelines and make the process more

efficient. While the training times are bigger than other methods, deep learning techniques

compensates for it during the data featurization process, which is usually extremely fast.

Plenty of methods and ideas have been tried in forecasting, with varying degrees of success.

Different algorithms have strengths and weaknesses, varying complexity, development opportu-

nities, and challenges. Machine Learning has a great potential to enhance forecasting systems,

yet some limitations hinder its adoption, among them we identified the lack of interpretability, its

computational scalability when dealing with large amounts of data, or long-horizon predictions.
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Prompted by the interpretability and computational cost limitations of machine learning

forecasting systems, in this thesis, we guide our work by the following question:

Can econometrics and statistical innovations be combined to advance usability, useful-
ness, and real-world impact of machine learning-based forecasting?

1.2 Goal

There is often an imagined divide between statistical and econometric forecasting models and the

machine learning approach. On one side, statistical models are highly determined by assumptions

to model relationships between variables. These models strive to understand the underlying

data-generating processes and are typically inspired by theory. On the other hand, machine

learning forecasting models are characterized by their ability to assemble predictions primarily

based on the data without being explicitly programmed to do so. Due to this, these models have

minimal assumptions and are exceptionally flexible.

Thesis statement. My thesis aims to bridge the gap between econometric, statistical, and

machine learning forecasting methods, and centers around the idea that:

Confining machine learning-based forecasting methods with econometric and statis-
tical domain knowledge is necessary to improve their accuracy, interpretability, and
efficiency.

1.3 Contributions

The thesis main body presents case studies showcasing the successful application of our approach,

which enhances neural forecasting methods with econometric and statistical inspirations. Below

is an executive summary of the thesis’ contributions.

• We introduced NBEATSx, a neural forecasting solution that extends the neural basis

expansion analysis incorporating exogenous variables. NBEATSx improves accuracy

through the integration of multiple information sources. The architecture also provides

an interpretable signal decomposition, allowing users to visualize the impact of trend and

seasonal components and their interactions with exogenous factors.

• We introduced NHITS, a neural hierarchical interpolation for time series inspired by

Wavelet analysis. NHITS improves long-horizon forecasting accuracy and reduces the

computation time of the multi-step forecasting strategy.

• We tackled the hierarchical forecasting challenge by combining neural networks with a

novel probabilistic mixture model. Our hierarchical mixture neural network can repre-

sent arbitrary probability distributions, including those with coherence constraints. It is

accurate, computationally efficient, and probabilistically coherent by construction.
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1.4 Overview

We organize the thesis into three main parts. The first part introduces the time forecasting

methodology, reviewing different models, principles, and approaches to prepare, produce and

evaluate forecasts, focusing on neural forecasting methods. The second section presents four

case studies showcasing our contributions to the neural forecasting literature. Finally, the third

and concluding part summarizes the thesis and outlines potential avenues for future research.

Below, we provide a brief overview of each part.

Part I: Background

This part introduces time series forecasting, framing it as a multivariate regression problem.

The second chapter delves deeper into the regression problem and examines predictor

variables, evaluation methods, model optimization, probabilistic estimation, and model and

hyperparameter selection. The third chapter overviews contemporary forecasting models,

focusing on machine learning-based models and neural networks, and discusses related research.

Finally, we briefly outline the technical approach employed in the case studies composing the

remainder of the work.

Part II: Case Studies

Chapter 4: Interpretable Neural Forecasting

Accuracy alone is not always enough; in some cases, our ability to understand a model’s forecasts

is equally important. In situations like this, the need for interpretability can hinder the adoption

of neural forecasting models.

In this first case study, we demonstrate how leveraging classic econometric signal decompo-

sition techniques can improve the interpretability of neural forecast models without sacrificing

their accuracy. We extend the Neural Basis Expansion analysis method (Oreshkin et al., 2020) by

incorporating exogenous variables, which significantly enhances its accuracy and enables the

integration of multiple sources of helpful information. The NBEATSx neural network provides

an interpretable signal decomposition, allowing users to visualize the relative impact of trend and

seasonal components and the interactions with exogenous factors. With NBEATSx, it becomes

easier to comprehend how the model constructs its predictions.

We assess the effectiveness of NBEATSx, evaluating it on the challenging electricity price

forecasting task, which has been extensively studied. Our results show that NBEATSx achieves

state-of-the-art performance, improving the forecast accuracy by nearly 20% compared to the

original NBEATS model and by up to 5% over other well-established statistical and machine

learning methods specialized for this task.
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Chapter 5: Probabilistic Hierarchical Forecasting

The hierarchical forecasting challenge arises when time series data is organized into natural

groups with multiple levels of aggregation, for which we need accurate predictions that maintain

probabilistic coherence.

In this case study, motivated by the shortcomings of existing methods, which often lack

accuracy or are computationally complex, we propose a novel approach that combines the

strengths of neural networks with a novel multivariate mixture model. Our composite hier-

archical mixture neural network (HINT) method is accurate, computationally efficient, and

probabilistically coherent by construction.

In principle, the hierarchical mixture neural network can represent arbitrary conditional

probability distributions, including those with coherence constraints, in the same way, a conven-

tional neural network can represent arbitrary functions. We demonstrate the effectiveness of

the hierarchical mixture networks on three real-world hierarchical datasets; we achieve relative

performance improvements of 11.8% on Australian domestic tourism data, 8.1% on the Favorita

grocery store dataset, and similar results to statistical reconciliation methods on a San Francisco

Bay Area highway traffic dataset.

Chapter 6: Long-Horizon Forecasting

Long-horizon forecasting remains a challenge. Recurrent predictions suffers error concatenation,

while multistep predictions suffer high variance due to their over-parametrized nature.

In this case study, we tackle the high volatility and computational complexity limitations of

multistep forecasting strategies introducing the neural hierarchical interpolation for time series

(NHITS). It addresses these challenges by incorporating innovative hierarchical interpolation

and multi-rate data sampling techniques inspired by Wavelet analysis.

By assembling predictions sequentially and emphasizing components with different frequen-

cies and scales, NHITS significantly improves accuracy in long-horizon forecasting tasks while

reducing computation time by orders of magnitude compared to existing neural forecasting

approaches. We demonstrate its capabilities on six large-scale benchmark datasets from the

long-horizon forecasting literature: electricity transformer temperature, exchange rate, electric-

ity consumption, San Francisco bay area highway traffic, weather, and influenza-like illnesses,

where we improve point prediction accuracy by almost 20% over the previous state-of-the-art.

4



1.5 Bibliographic Notes

Most of the work in this thesis has been published or is in revision in the following venues.

Chapter 4 is based on:

• Kin G. Olivares, Cristian Challu, Grzegorz Marcjasz, Rafał Weron, and Artur Dubrawski.

“Neural basis expansion analysis with exogenous variables: Forecasting electricity prices

with NBEATSx”. In: International Journal of Forecasting (2022). issn: 0169-2070. doi:

https://doi.org/10.1016/j.ijforecast.2022.03.001. url: https://www.sciencedirect.com/

science/article/pii/S0169207022000413

Chapter 5 is based on:

• Kin G. Olivares, Nganba Meetei, Ruijun Ma, Rohan Reddy, Mengfei Cao, and Lee Dicker.

“Probabilistic Hierarchical Forecasting with Deep Poisson Mixtures”. In: International
Journal of Forecasting, submitted Accepted Paper version available at arXiv:2110.13179

(2021). url: https://arxiv.org/abs/2110.13179

• Kin G. Olivares, David Luo, Stefania La Vattiata, Cristian Challu, Max Mergenthaler,

and Artur Dubrawski. “HINT: Hierarchical Neural Networks For Coherent Probabilistic

Forecasting”. In: International Conference of Machine Learning Workshop paper available

at arXiv:2110.13179 (2023). url: https://arxiv.org/abs/2110.13179

Chapter 6 summarizes the work on:

• Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza, Max Mergenthaler, and

Artur Dubrawski. “N-HiTS: Neural Hierarchical Interpolation for Time Series Forecasting”.

In: The Association for the Advancement of Artificial Intelligence Conference 2023 (AAAI
2023). 2023. url: https://arxiv.org/abs/2201.12886

• Cristian Challu, Kin G. Olivares, Gus Welter, and Artur Dubrawski. “DMIDAS: Deep

Mixed Data Sampling Regression for Long Multi-Horizon Time Series Forecasting”. In:

9th International Conference of Machine Learning, (ICML 2021) Workshop on Time Series

(2021). url: https://arxiv.org/abs/2106.05860

Since Chapters 4 to 6 present previously submitted results, the work on this thesis presents

a unified notation and general framework. In addition to a more concise, summarized version of

the results and discussion of new research ideas.

5

https://doi.org/https://doi.org/10.1016/j.ijforecast.2022.03.001
https://www.sciencedirect.com/science/article/pii/S0169207022000413
https://www.sciencedirect.com/science/article/pii/S0169207022000413
https://arxiv.org/abs/2110.13179
https://arxiv.org/abs/2110.13179
https://arxiv.org/abs/2201.12886
https://arxiv.org/abs/2106.05860


1.6 Open-Source Contributions

Evaluating and comparing new forecasting methods with established baselines is crucial for

their systematic development. For this reason, as an integral component of this thesis work, we

made most of the models and baselines available in their corresponding open-source libraries.

• NeuralForecast (Olivares et al., 2022b): A Python library specialized in time series

forecasting with deep learning models, that contains efficient datasets and data-loading

utilities, evaluation functions, statistical tests implemented in PyTorch (Paszke et al.,

2019) and PyTorchLightning (Falcon et al., 2019).

• StatsForecast (Garza et al., 2022): A python library offering widely used uni-

variate time series forecasting models, including automatic ARIMA, ETS, CES, and

Thetamodeling optimized for high performance using Numba (Lam et al., 2015).

• HierarchicalForecast (Olivares et al., 2022c): A benchmark library for hierarchi-

cal forecasting that builds upon Python’s fastest open-sourceETS/ARIMAimplementations

to improve the availability, utility, and adoption of hierarchical forecast reference baselines.

• GluonTS (Alexandrov et al., 2020): Another Python library for deep-learning based time

series modeling, mostly based on MXNet (Tianqi Chen et al., 2015), the package built

API calls to several R baselines’ implementations (Hyndman et al., 2020), as well as the

HierE2E model (Rangapuram et al., 2021).

These are the references to the open source contributions resulting from this thesis work:

• Kin G. Olivares, Cristian Challú, Federico Garza, Max Mergenthaler Canseco, and Artur

Dubrawski. NeuralForecast: User friendly state-of-the-art neural forecasting models. PyCon

Salt Lake City, Utah, US 2022. 2022. url: https://github.com/Nixtla/neuralforecast

• Kin G. Olivares, Federico Garza, David Luo, Cristian Challú, Max Mergenthaler, Souhaib

Ben Taieb, Shanika L. Wickramasuriya, and Artur Dubrawski. “HierarchicalForecast:

A Reference Framework for Hierarchical Forecasting in Python”. In: Work in progress
paper, submitted to Journal of Machine Learning Research. abs/2207.03517 (2022). url:

https://arxiv.org/abs/2207.03517

• Federico Garza, Max Mergenthaler Canseco, Cristian Challú, and Kin G. Olivares. Stats-
Forecast: Lightning Fast Forecasting with Statistical and Econometric Models. PyCon Salt

Lake City, Utah, US 2022. 2022. url: https://github.com/Nixtla/statsforecast
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I am tomorrow, or some future day, what I establish today. I am today what I

established yesterday or some previous day.

James Joyce

Part I

Forecasting Principles

Here we introduce the forecasting task, its principles, and its practice with a look

into the future. In Chapter 2, we provide an introduction to the regression problem,

forecast evaluation methods, as well as common model estimation and optimiza-

tion techniques. In Chapter 3, we briefly overview forecast modeling approaches,

including statistical, econometric, and machine learning techniques, that served as

a reference for the thesis work.
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Chapter 2
Background

2.1 What is Time Series Forecasting?

Forecasting has always been at the forefront of decision making and planning. Its theory and

models rest on the premise that by analyzing historical data, patterns can be identified and

utilized to make accurate predictions about the future values of a time series. Forecasting aims

to predict the future as accurately as possible, conditional on all the available information.

A time series is a sequence of chronological observations of a random variable. When the

observations are uniformly spaced, they comprise a regular time series; when the space between

the observations varies, they comprise an irregular time series. In this work, we will focus on

the first kind of series.

In this thesis we denote the target time series as y, it can be univariate or multi variate. We

denote the forecast creation date with the time index t, in which the prediction is created. For any

forecast creation date t, within the forecast horizon of size H , we denote the relative prediction
time step with τ ∈ [t+ 1, . . . , t+H].

We denote point predictions that estimate the central location of the target time series’ future

through a mean or median value as ŷτ , with the following vectorized notation:

y[t+1:t+H] = [yt+1, . . . ,yt+H ] and ŷ[t+1:t+H] = [ŷt+1, . . . , ŷt+H ] (2.1)

In case of probabilistic predictions that conveys the uncertainty around the central forecast,

we denote the forecasting probability as P̂. In time series forecasting, uncertainty plays a crucial

role in acknowledging and accounting for the inherent unpredictability of future events, which

can impact the accuracy and reliability of predictions. By incorporating uncertainty, forecasters

can provide more accurate and realistic forecasts, accounting for a range of possible outcomes.

P̂(y[t+1:t+H]) (2.2)
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2.2 Predictor Variables

The forecasting methods depend heavily on the availability and quality of data. We provide a

classification of the most common predictor variables in terms of their relationship to the target

variable and its time dependence.

2.2.1 Autoregressive Features

Basic time series foresting models use only information of the target variable and omit the

attempt to learn predictive relationships with other variables. Despite their simplicity, the

univariate time series forecasting methods include well-proven methods like Naive, Seasonal

Naive, ETS, ARIMA, discussed in Section 3.1. These methods should always be considered as

baselines to evaluate the predictive accuracy of other more complex alternatives. We refer to

the past values of the target series as autoregressive features and denote them through the thesis

with the following notation:

y[t−L:t] = [yt−L,yt−L+1, . . . ,yt−1,yt] and y[:t] = [ . . . ,yt−L, ,yt−L+1, . . . ,yt−1,yt] (2.3)

2.2.2 Exogenous Variables

We refer to the features used to create the predictions beyond the autoregressive as exogenous

variables. We distinguish three types of exogenous variables depending on whether they reflect

static or time-dependent aspects of the modeled data and their availability at the time of the

predictions t, into static, historical, and future exogenous variables.

Static. The static exogenous variables x(s)
carry time-invariant information. When the models

share parameters across multiple time series, these variables allow sharing information within

groups of time series with similar static variable levels. Examples of static variables include

designators such as identifiers of regions, groups of products, etc., that mark agglomerates of

series that demonstrate similar behaviors.

Historic. The historic exogenous variables x
(h)
[:t] provide the models with information at

the moment of the forecast creation that are determined independently, and they are not

systematically affected by the target variables yet affect it. Examples of these variables can be

treatments in healthcare-related data prices of goods and services in the case of competitive

markets. Another example is weather data for the prediction of agricultural yield, as weather

remains unaffected by local small production. Or advertisement spending, where we normally

assume control, and treat it as independent from demand. Endogenous variables pose different

challenges as they determine multivariate forecasting problems.

Future. The future exogenous variables x
(f)
[:t+H] provide the models of available information

about the future, planned events, special events, or even predictions of other covariates. An

example of these features can be seasonal covariates linked to the natural frequencies in the

data encoded in calendar variables to identify hours, days, months, or holidays, among others.

Another example can be the distance to events like holidays or distance to promotions in retail

and e-commerce.
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2.3 Forecasting Task

X1 X2 X3 X4

μy|X1 μy|X2 μy|X3 μy|X = β0 + β1X

μy|X4

yτPrediction

XτRegressor

(a) Linear

X1 X2 X3 X4

μy|X1 μy|X2
μy|X3

μy|X4

Regression 
equation

  Quantile y(q)
τ

Distribution  
F′ τ(y)yτPrediction

XτRegressor

(b) General

Figure 2.1: Multivariate Regression

The time-series forecasting task that we tackle in this thesis can be formally represented with a

variant of the following high-dimensional multivariate regression problem:

P(y[t+1:t+H] | X[:t+H]) with X[:t+H] = {y[:t], x
(h)
[:t] , x

(f)
[:t+H], x

(s)} (2.4)

where, for description simplicity, X[:t+H] denotes the collection of predictor variables that

contain, autorregressives, historic, future and static exogenous variables. Figure 2.1 shows the

univariate regression case with a single future exogenous variable.

Probabilistic Forecasting. Making predictions for the future involves varying degrees

of imperfect or unknown information that translates into uncertainty (Dawid, 1984). For this

reason, probabilistic forecasting has emerged as a natural answer to quantify the uncertainty of

the future of the target variable, conditioning on the available information of its predictors. The

probabilistic forecasting task is to produce at any time t a predictive probability distribution for

the next observations of the target variable y[t+1:t+H]. A consequence of the estimation of the

joint probability distribution throughout the horizon are the marginal distributions F̂τ for each

prediction time step τ ∈ [t + 1 : t +H], Figure 2.1b depicts them. Equation (2.5) defines the

predictive marginal distribution and its quantiles, that compose prediction intervals.

F̂τ (y) = P̂
(
yτ ≤ y | X[:t+H]

)
ŷ(q)τ = F̂−1

τ (q) (2.5)

Point Forecasting. For a long time, statisticians and forecasters relied on Gaussian assump-

tions and treated forecasts as an expression of the information of its parameters, particularly

its location. The point forecasting task is to produce an estimation of the future location of the

target variable yτ , and the model’s output is often the conditional mean from Equation (2.6) or a

robust median as a particular case of Equation (2.5).

µ̂yτ |Xτ = E
[
yτ | X[:t+H]

]
(2.6)
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2.4 Evaluation

2.4.1 Point Forecast Errors

The most important magnitude for point forecast is the forecast error, which is the difference

between the observed value yτ and the prediction ŷτ , at time τ :

eτ = yτ − ŷτ with τ ∈ [t+ 1 : t+H] (2.7)

The forecasting community tends to differentiate between that forecast errors from regression

residual, in the sense that we measure forecast errors in the validation and test sets. In contrast,

we measure regression residuals in the train set that we define in Section 2.4.4. Finally, forecast

accuracy summarizes the errors in different metrics that we will explain below. We follow closely

Hyndman and Athanasopoulos, 2018b taxonomy, with the addition of the probabilistic errors.

1. Scale-dependent errors. This type of measurement is on the same scale as the data,

for which it is desirable that the data is normalized or the scales of the time-series that

compose it are comparable. The most common metrics are Mean Absolute Error (MAE),

Mean Squared Error (MSE), and Root Mean Squared Error (RMSE) that is more robust to

outliers, than its unrooted counterpart.

MAE =
1

H

t+H∑
τ=t+1

|yτ − ŷτ | (2.8)

MSE =
1

H

t+H∑
τ=t+1

(yτ − ŷτ )
2 RMSE =

√√√√ 1

H

t+H∑
τ=t+1

(yτ − ŷτ )2 (2.9)

2. Percentage errors. Percentage errors have the advantage of being unit-free, making

them suitable for comparison across datasets or time series of different scales. Common

percentage metrics are Mean Absolute Percentage Error (MAPE), symmetric Mean Ab-

solute Percentage Error (sMAPE) (Meade and Armstrong, 1986). Hyndman and Koehler

2006 recommend sMAPE to avoid MAPE’s degradation around yτ zero.

MAPE =
1

H

t+H∑
τ=t+1

|yτ − ŷτ |
|ŷτ |

sMAPE =
200

H

t+H∑
τ=t+1

|yτ − ŷτ |
|yτ |+ |ŷτ |

(2.10)

3. Relative/Scaled errors. Relative accuracy measures offer a way to compare the prediction

errors to baseline models, examples are relative Mean Absolute Error (relMAE) (Hyndman

and Koehler, 2006; Lago et al., 2021a) and relative Mean Squared Error (relMSE) (Olivares

et al., 2021). As in percentage errors, the measure is unit-free. When the error is greater

than one, the predictions are worse than the baseline’s predictions

relMSE =

∑t+H
τ=t+1(yτ − ŷτ )

2∑t+H
τ=t+1(yτ − ŷbaseτ )2

relMAE =

∑t+H
τ=t+1 |yτ − ŷτ |∑t+H

τ=t+1 |yτ − ŷbaseτ |
(2.11)
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Figure 2.2: Evaluation Metrics and Train Losses

2.4.2 Probabilistic Forecast Errors

Here we describe metrics that allow to empirically asses the accuracy and compare probabilistic
forecasts introduced in Section 2.3.

1. Quantile Loss. Consider the estimated cumulative distribution function F̂τ and its asso-

ciated quantiles ŷ
(q)
τ = F̂−1

τ ( q ), for an observation yτ , the Quantile Loss (QL) (Matheson

and Winkler, 1976), depicted in Figure 2.2e, is defined as:

QL(yτ , ŷ
(q)
τ ) = 2

(
(1− q) (ŷ(q)τ − yτ )+ + q (yτ − ŷ(q)τ )+

)
= 2

(
1{yτ ≤ F̂−1

τ ( q )} − q
)(

F̂−1
τ ( q )− yτ

) (2.12)

2. Multi Quantile Loss. The Multi Quantile Loss (MQL) (Wen et al., 2017), depicted in

Figure 2.2f, measures simultaneously the errors for various estimated quantiles.

MQL(yτ , [y
(q1)
τ , . . . , y(qQ)

τ ]) =
1

Q

∑
qi

QL(yτ , y
(qi)
τ ) (2.13)

3. Continuous Ranked Probability Score. Additionally when the objective a the full

predictive distribution a common evaluation metric is the Continuous Ranked Probability

Score (CRPS) (Matheson and Winkler, 1976). The CRPS measures the accuracy of whole

predictive distributions and has desirable theoretical properties as a metric (Gneiting and

Ranjan, 2011). Following notation from Laio and Tamea 2007, the CRPS is defined as:

CRPS(yτ , F̂τ ) =

∫ 1

0

QL(yτ , ŷ
(q)
τ )q dq (2.14)

The evaluation of the CRPS uses numerical integration technique, that discretizes the

quantiles and treats the integral with a left Riemann approximation, averaging over

uniformly distanced quantiles, as the asymptotic behavior of the MQL.
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2.4.3 Prediction’s Improvements Statistical Tests

To assess which forecasting model provides better predictions, we rely on the Giacomini-White

test (GW) (Giacomini and White, 2006) of the multi-step conditional predictive ability, which can

be interpreted as a generalization of the Diebold-Mariano test (DM) (Diebold and Mariano, 2002),

widely used in the forecasting literature. Compared with the DM or other unconditional tests,

the GW test is valid under general assumptions such as heterogeneity rather than stationarity of

data. The GW test examines the null hypothesis of equal accuracy specified in Equation (2.15),

measured by the MAE or L1 norm of the forecast errors of a pair of modelsA andB, conditioned

on the available information to that moment in time Ft.

H0 : E
[
||yτ − ŷA

τ ||1 − ||yτ − ŷB
t ||τ | Ft

]
≡ E

[
∆A,B

t | Ft

]
= 0 (2.15)

The available information Ft is usually replaced with a constant and lags of the error

difference ∆A,B
t and the test is performed using a linear regression with a Wald-like test. When

the conditional information is only the constant variable, one recovers the original DM test.

2.4.4 Train, Validation and Test splits

The magnitude of the train errors rarely provide a good assessment of the future generalization

ability of the model; this becomes evident with modern, flexible models prone to overfit. A

reliable estimator for the accuracy of a model’s predictions requires that the model obtains and

produces genuine forecast signals during model optimization and evaluation, avoiding possible

future information leakage into the model’s inputs during train and inference. A temporal

train-evaluation split procedure allows us to estimate the model’s generalization performance on

future data unseen by the model. We use the train set to optimize the model parameters, and the

validation and test sets to evaluate the accuracy of the model’s predictions. The difference between

the validation and test sets is that the validation is used during hyperparameter optimization,

while we reserve the test set for the final measurements. Figure 2.3 shows an example.

Validation Set Test Set

Figure 2.3: Time-series Data Splits
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2.4.5 Temporal Cross-Validation

1980 1984 1988 1992 1996 2000
Date

1980 1984 1988 1992 1996 2000
Date

1980 1984 1988 1992 1996 2000
Date

(a) Rolling Windows

1980 1984 1988 1992 1996 2000
Date

1980 1984 1988 1992 1996 2000
Date

1980 1984 1988 1992 1996 2000
Date

(b) Chaining Windows

Figure 2.4: Temporal cross-validation assesses a model’s forecast accuracy over time. It sequentially

defines a sliding or chaining windows (green and blue) and test windows (orange).

Usually, the test set is longer than the forecast horizon H , which allows for an improved

time-series cross-validation version over the train and evaluation set split. Cross-validation

improves the forecast accuracy estimation by reducing its variability through using different data

partitions (Arlot and Celisse, 2010). A particular version of the technique known as time-series

cross-validation, that avoids future information leakage, is commonly used (Hyndman and

Athanasopoulos, 2018b). This technique creates multiple training windows consisting only of

observations prior to the test windows. The final forecast evaluation is the average of the errors

on the chained or rolled test windows.

Figure 2.4 depicts time-series cross-validation. We mark the train observations in green

and blue, while the test observations are orange. In this example, the final forecast evaluation

average would be done across the t1, t2, t3 indexes. The time-series cross-validation can be a

rolling or chaining window strategy depending on the model’s inputs. Figure 2.4a depicts rolling

windows of size L that corresponds to the lag inputs y[t−L:t], while Figure 2.4b represents models

with infinite theoretical memory capabilities, with all the past inputs y[:t] available until time t.

Model Recalibration. In practical settings, it is advisable to retrain the model after updating

the rolling/chaining windows to incorporate all the available data before the predictions. In the

time-series forecasting tasks, this helps with rapidly shifting distributions. The forecast accuracy

gains come with the downside of this strategy is the additional computational costs of the model

optimization. We can avoid the recalibration process for more extended periods in the presence

of slowly shifting distributions.
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2.5 Model Estimation

A model approximates the relationships between the predictor variables and the target vari-

ables through a set of assumptions. Most of times it is defined by a family of functions

F = {f} parametrized by a vector θ ∈ Θ, and the most common way to estimate its val-

ues is through an objective loss function L : Y × X ×Θ → R+
, that depends on training data

D = {(y[t+1:t+H],X:t+H)}. We further simplify the notation of the subsection and denote the

target variable as y = y[t+1:t+H] and the predictors as X = X:t+H . Finding good performing

parameters in the training data is also known as fitting, or training a model

2.5.1 Empirical Risk Minimization

In general a learning task can be translated into a function estimation problem using the classic

Empirical Risk Minimization (ERM) framework (Vapnik, 1999), where the objective is to minimize

the expected loss function at the dataset level:

θ̂ := argmin
θ∈Θ

E [L(y, ŷ(X|θ)) ] and f ∗ := argmin
f∈F

E [L(y, f(X)) ] (2.16)

In the particular case of the point forecasting task or probabilistic forecasting with prediction

intervals, it is immediate to translate the evaluation metrics described in Section 2.4.1 and

Section 2.4.2 into training losses. Here we inspect two well known regression settings.

1. Ordinary Least Squares. When the objective function is the mean of the squared errors

or MSE, we obtain a classical regression setting that is characterized with very appealing

theoretical guarantees. For instance, it can be shown under stationarity conditions that

the population’s risk minimizer is the conditional expectation in Equation (2.17).

f ∗(X) = argmin
f∈F

E [MSE (y, f(X)) ] = E [y |X ] (2.17)

2. Quantile Regression. When the objective function is the mean of the quantile loss (QL),

we obtain a quantile regression setting (Koenker and Bassett, 1978). These estimators offer

a non-parametric alternative for the estimation of the prediction intervals. They have

essential connections to robust statistics, as the objective function offers a very desirable

resistance to outliers while being as efficient as MSE estimation. Additionally, the estima-

tors also have very appealing theoretical guarantees. Under stationarity conditions, we can

show that the population’s risk minimizer is the conditional quantiles in Equation (2.18).

f ∗(X) = argmin
f∈F

E
[

QLq (y, f(X))
]
= F−1

y ( q ) (2.18)

A lot of research has been done recently on model estimation, in particular when combined

with regularization side objectives that help to restrict the flexibility of the family of functions

F into a better behaved spaced based. Examples of this include RIDGE and LASSO regressions

(Hastie et al., 2009).
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2.5.2 Maximum Likelihood Estimation

Advancing the construction forecasting models, one can assume the target variabley = y[t+1:t+H]

coming from a particular probability distribution for Equation (2.4). This approach has many

advantages. The output of the model is a complete predictive distribution rather than only location

estimates or prediction intervals. The selection of the probability distribution can encode domain

expertise that can help the accuracy of the models, for example, when constraining the event

space of the probability to guarantee consistency of the predictions.

The likelihood intends to measure the probability of the data D of being originated by the

model; a large likelihood is linked with good models, while small likelihoods are associated

with poor models. To estimate the parameters of these probabilistic forecasting models, one

can minimize the negative log-likelihood of the data under the maximum likelihood estimation

Maximum Likelihood Estimation (MLE) (Murphy, 2012) optimization strategy:

θ̂ := argmin
θ∈Θ

E [L(y,X,θ) ] = E [− log ( P(y | X,θ) ) ] (2.19)

For a very long time the forecasting community used the least squares errors estimation

method as a default. This method under restrictive assumptions, namely that the regression is

linear in its parameters, stationarity and no multi-collinearity of the predictors, homoscedasticity,

normally distributed errors centered around zero, matches the MLE optimization strategy with

Gaussian distribution. Since then a lot of progress has been done beyond Gaussian assumptions.

2.5.3 Maximum a Posteriori Estimation

A closely related alternative to MLE is the Maximum a Posteriori Estimation (MAP) strategy that

employs an augmented optimization objective that can often be interpreted as regularization.

The main intuition behind it is the additional assumption of a probability distribution for the

parameters P(θ) that constraints the likelihood optimization. MAP estimation method is defined

by Equation (2.20):

θ̂ := argmin
θ∈Θ

E [L(y,θ) ] = E [− log ( P(y | X,θ) )− log ( P(θ) ) , ] (2.20)

Regarding the fully-Bayesian approach we think there are still plenty of research opportuni-

ties to improve its scalability, since many practical scenarios the forecasting needs are in the

hundreds or thousands of time series, we do not consider it in this work.

The three mentioned methods are have been used with success in forecasting applications.

They have their benefits and disadvantages regarding their predictive accuracy, computational

complexity, and theoretical support. In this work Chapter 4 and Chapter 6 tackle the point
forecasting task and use an empirical risk minimization approach, while Chapter 5 tackles a

probabilistic forecasting task and extends the maximum likelihood estimation towards composite

likelihood (Lindsay, 1988; Varin et al., 2011) with to improve its computational feasibility.
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2.5.4 Parameter Optimization

The process of finding a maximizing or minimizing parameter for the loss functions introduced

in Section 2.5 is known as optimization. When the objective loss function is characterized with

advantageous smoothness properties like differentiability or subdifferentiability, one can rely on

the long tradition of gradient-based optimization algorithms (Cauchy et al., 1847). Through time

Stochastic Gradient Descent (Robbins and Monro, 1951) has become one of the most important

optimization methods in Machine Learning because of its efficiency in respect to the size of the

datasets and model’s parameters is uncontested. We describe SGD in Algorithm 2.1.

Algorithm 2.1 Stochastic Gradient Descent.

1: θ1 ∈ Θ, learning rate α.

2: repeat
3: Sample a training batch (yi,Xi) ⊂ D.

4: Calculate the gradient gt = ∇L(yi,Xi, θ̂t).
5: Update parameters θ̂t+1 = θ̂t − αgt

6: until convergence

Improvements on SGD include momentum-based methods built by the contributions of

Nesterov’s accelerated gradient (Nesterov, 1983), that under better smoothness conditions of

the objective function tends to dampen the oscillations of SGD and speed up its iterations, thus

achieving a faster convergence. A classic intuition on momentum is that it adds inertia to the

gradients acting as a trajectory smoother that traverses local minima and small increases of the

loss function.

One of the most popular gradient optimization variants is Adaptive Moment Estimation

SGD (ADAM) (Kingma and Ba, 2014), described in Algorithm 2.2. In addition to the gradient’s

momentum ADAM includes second-order moments to rescale the gradients and implicitly adapt

the learning rate for different parameters. ADAM can be thought of as performing a diagonal

approximation to the Hessian that accounts for the local curvature of the objective in classic

second-order optimization methods. The method is fairly robust to the learning rate selection

and has very fast convergence. In this thesis we mostly rely on this optimization method.

Algorithm 2.2 Adaptive Moment Estimation SGD.

1: θ1 ∈ Θ, learning rate α, β1, β2 decay rates for moments.

2: repeat
3: Sample a training batch (yi,Xi) ⊂ D.

4: Calculate the gradient gt = ∇L(yi,Xi, θ̂t).
5: Estimate first moment mt = β1mt−1 + (1− β1)gt

6: Estimate second moment diagonal Dt = β2Dt−1 + (1− β2)I⊙ g2
t

7: Correct the moments bias mt = 1/(1− βt
1)mt and Dt = 1/(1− βt

2)Dt

8: Update parameters θ̂t+1 = θ̂t − α D̂
−1/2
t mt

9: until convergence
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2.6 Model Selection

2.6.1 Model Identification

The process of model identification, defined for many years the forecasting practice, as most

statisticians and forecasters pursued the discovery of a “true model” governing the data genera-

tion process of the time series. The process of model selection was that of the definition of the

assumptions of relatively simple models that governed the trend, seasonal and autoregressive

true relationships on the target variable. Rather than a more pragmatic approach to minimize

the predictive errors in a held-out dataset (Bates and Granger, 1969).

Automatic forecasting methods inherited the identification tradition, and explore classical

families like Error, Trend, Seasonality Exponential Smoothing State Space (ETS) (Holt, 1957;

Hyndman et al., 2008) and Autorregresive Integrated Moving Average (ARIMA) in a statistically

principled way to ensure stationarity of the modeled processes, seasonalities and autoregressive

features (Box et al., 2015a; Hyndman and Khandakar, 2008). These methods offer a solution to

forecasting tasks of large numbers of univariate time series and are obligated baselines.

2.6.2 Hyperparameter Optimization

Machine Learning forecasting methods are defined by many hyperparameters that control their

behavior, with effects ranging from their speed and memory requirements to their predictive

performance. For a long time, hyperparameter tuning was done manually. This approach is

time-consuming, and automated, efficient hyperparameter optimization methods have been

introduced, proving to be more efficient than manual tuning, grid search, and random search.

The comprehension of the impacts of the hyperparameters is still a precious skill, as it can help

guide the design of informed hyperparameter spaces that are faster to explore automatically.

A common approach for hyperparameter optimization is a technique called sequential model-

based optimization that intelligently samples hyperparameter configurations deemed promising

based on the validation evaluation of other hyperparameter configurations. Gaussian Processes

or adaptive Parzen windows approximate the expected improvement (EI) for new configurations.

Algorithm 2.3 describes the Sequential Model-Based Hyperparameter Optimization (HYPEROPT)

(Bergstra et al., 2011). All novel methods proposed in this thesis rely on HYPEROPT to select

configurations with the added benefit of guaranteeing the research’s replicability.

Algorithm 2.3 Sequential Model-based Hyperparameter Optimization.

1: Initialize H = ∅ configurations’ evaluations, and approximation model M0.

2: for each evaluation step t ∈ [: T ] do
3: Obtain promising hyperparameters H∗ = argmaxH EI(H,Mt−1).
4: Evaluate loss function L(H∗) = L(y,X,θ(H∗)).
5: Update the configurations’ evaluations history H = H ∪ { (H∗,L(H∗)) }.

6: Fit a new model Mt on H
7: end for
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Chapter 3
Overview of Modeling Approaches

In this chapter we overview the most adopted modeling approaches, using the two primary

model families’ classification presented by Petropoulos et al., 2022 survey as a starting point.

Statistical and econometric forecasting models rely on theory-inspired assumptions about

variables’ relationships. In contrast, machine learning models assemble predictions primarily

based on data without being explicitly programmed, making them exceptionally flexible and with

minimal assumptions. The categorization of forecasting methods into statistical and machine

learning is based on whether they prescribe the data-generating process. Methods such as

Neural Networks, Decision Trees, Support Vector Machines, and Gaussian Processes that build

on unstructured, non-linear regression algorithms are typically categorized as machine learning

models (Makridakis et al., 2018a; Januschowski et al., 2020). We do not subscribe entirely to

the methods’ dichotomy, and as we showcase throughout this thesis work, there are plenty of

possible, enriching interactions between the two model families, although this taxonomy is a

good starting point for an overview of modeling approaches.

Statistical and 
Econometric

Machine 
Learning

Exponential 
Smoothing

Linear 
Regression ARIMA

Theta 
Method

Conditional 
Heteroscedasticity

Multiple 
Seasonalities

Simple 
Baselines

Markov 
Regime-
Switching

Others

Nearest 
Neighbors

Support Vector 
Regression

Decision 
Trees

Neural 
Forecast Feed-forward Recurrent Transformers

Forecast Models

Figure 3.1: A taxonomy of time series forecasting models. We review them from Section 3.1-Section 3.3

with a special emphasis on neural forecasting models that are closely related to this thesis contributions.
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3.1 Statistical and Econometric Models

3.1.1 Simple Baselines

Simple methods can be surprisingly accurate in many situations. These methods always con-

stitute useful baselines against which we can compare the performance of more sophisticated

methods. Examples of simple baselines include Naive (Naive), a random walk model that predicts

using the last available observation, Seasonal Naive (SNaive) similar to Naive but using the last

seasonal observation, Moving Average (MA) an average of the last L available observations,

Historic Average (HA) a simple average of all past observations.

ŷNaive
t+h | t = yt ŷSNaive

t+h | t = yt+h−s⌊1+h−1
s ⌋

ŷMA
t+h | t =

1

L

L∑
l=1

yt−l ŷHA
t+h | t =

1

T

T∑
l=1

yt−l

(3.1)

For additional information on the topic we refer to the simple forecasting methods chapter

from Hyndman and Athanasopoulos, 2018b book.

3.1.2 Exponential Smoothing

The idea behind Exponential Smoothing (ES) is simple and attractive. The technique creates the

forecasts as weighted averages of observations, with the more recent having greater weight than

those in the distant past. The exponential smoothing model family is a useful and dependable

model for many practical applications. Its history dates back to 1944 with the work of Brown,

1959 and was naturally extended to smooth different signal’s components like the level, trend,

and seasonal patterns by Holt, 1957 and Winters, 1960.

The simplest exponential smoothing has the following recursive representation:

ŷt+1 | t = αyt + (1− α)ŷt−1 (3.2)

where the exponential smoothing parameter α ∈ (0, 1). In the past the estimation of the ES

parameters was done through discounted least squares, modern implementations minimize the

squared errors of one step forward predictions (Nelder and Mead, 1965).

The method’s theoretical understanding and its use cases grew, and connections between the

ES family and ARIMA were stablished (Gardner Jr, 1985). Similarly, the ES family was extended

with a statistical framework capable of producing forecast distributions through the Error, Trend,

Seasonality Exponential Smoothing State Space (ETS) (Hyndman et al., 2008). For a taxonomy

and systematic reviews of the model family, we refer to the work of Pegels, 1969; Gardner Jr,

1985; Taylor, 2003; Hyndman et al., 2008. A more recent extension of the model family includes

the Complex Exponential Smoothing (CES), moves away from the classic level, trend, and

seasonality decomposition, through the usage of complex-valued functions (Svetunkov, 2016).
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3.1.3 Linear Regression

Classic regression is one of the most popular statistical forecasting techniques. It aims to estimate

the relationship between the target time series variable yt and its predictor variables xi,t. In

its basic form, the model is optimized by minimizing the sum of squared errors, and it can be

interpreted with the following conditional Gaussian linear model:

yt+1 | t = θ0 + θ1x1,t + · · ·+ θkxk,t + ϵt (3.3)

ŷt+1 | t = θ̂0 + θ̂1x1,t + · · ·+ θ̂kxk,t (3.4)

where ϵt is the residual error at time t, θi are the coefficients that measure the effect of the

predictor xi,t on the target variable. As mentioned in Section 2.2.2, the predictor variables can be

autoregressive features, promotions, calendar dummies marking special days or holidays, and

polynomial and harmonic functions to capture trends and seasonalities. This model is optimized

minimizing Mean Squared Error (MSE) that matches the Maximum Likelihood Estimation (MLE)

through the Gaussian distribution assumption on the residuals. When the regression models use

autoregressive features, it can be interpreted as a member of the Autorregresive Models (AR)

family. The community generally distinguishes the Machine Learning approach from classic

regression by the relaxation of the linearity assumption of Equation (3.3).

3.1.4 Autoregressive Integrated Moving Average

Autorregresive Integrated Moving Average (ARIMA) along with Exponential Smoothing (ES)

are workhorses of the forecasting practice. While exponential smoothing models rely on

characterizing the trend and seasonality of the data, ARIMA models focus on characterizing the

autocorrelations present in the data.

An autoregressive model predicts the target variable with a linear combination of its past.

The name ”autoregression” denotes that the model is a form of regression where the variable is

regressed against itself. An autoregressive model of order p, denoted as AR(p), can be written as:

yt = c+ θ1yt−1 + θ2yt−2 + · · ·+ θpyt−p + ϵt (3.5)

Similarly to AR models that use historical values of the target variable in a regression, a

Moving Average (MA) model applies past forecast errors in a regression-style model, a moving

average model of order q, denoted as MA(q), can be written as:

yt = c+ ϵt + ϕ1ϵt−1 + ϕ2ϵt−2 + · · ·+ ϕqϵt−q (3.6)

ARIMA combines both AR(p) and MA(q), along with the differencated target variable y
′
t for

the following stationary regression (zero mean uncorrelated errors ϵt with shared variance):

y
′

t = c+ ϵt +

p∑
l=1

θly
′

t−l +

q∑
l=2

ϕkϵt−k (3.7)

The ARIMA model family has been extensively studied, in particular in the work of George

et al., 1976; Box et al., 2015b. The most popular implementation of the method ARIMA is available

in the fable R package (Hyndman and Khandakar, 2008).
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3.1.5 Theta Method

Another simple, efficient and well-proven method, as shown by its success in the M3 competition

(Makridakis and Hibon, 2000; Assimakopoulos and Nikolopoulos, 2000). In its simplest form the

Theta Method (Theta) creates a prediction using the last observation is combined with a trend

function, which could be a constant, a linear or non-linear trend, or a nonparametric trend:

Q(θ)t = (1− 1

θ
)Tt+1 +

1

θ
yt (3.8)

ŷt+1 | t = ∆Q(θ)t + yt (3.9)

where the trend (usually linear) is denoted by Tt+1. The theoretical study of Theta family

is performed by Nikolopoulos and Thomakos, 2019, and its extensions towards probabilistic

forecasts introduced by Hyndman and Billah, 2003. The simple method was shown by Hyndman

and Billah, 2003 to be equivalent to a simple exponential smoothing with drift.

Research on the topic is active, as shown by the work of Spiliotis et al., 2020a on its gen-

eralization. One of the most popular implementations of Theta baselines is available in the

forecTheta library (Fiorucci and Louzada, 2020), and is based on a Theta generalization that

models a short and a long term linear trend, the first is optimally estimated while the second is

dynamically estimated (Fiorucci et al., 2016).

3.1.6 Conditional Heteroscedasticity Models

In some instances, like financial applications, a statistical model may exhibit an irregular pattern

of variation in an error term or variable. In such cases, the assumption that the variance of the

errors remains constant is no longer valid, and conditional heteroscedasticity comes into play.

This model family estimates the volatility of the target variable, usually assuming it is

centered around zero
1
. The Autoregressive Conditional Heteroskedasticity (ARCH) (Engle, 1982),

assumes the following autoregressive variance structure:

σ2
t = c+

p∑
l=1

θly
2
t−l and yt = ϵtσt (3.10)

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) (Bollerslev, 1986)

extension assumes that the variance can be predicted by the long-term average variance, the

predicted variance for the current period, and the most recent squared residual, which represents

new information for the period. The three factors are weighted together in the calculation:

σ2
t = c+

p∑
l=1

θly
2
t−l +

q∑
k=1

ϕkσ
2
t−k (3.11)

1
Under certain conditions it can be thought as an autorregresive model for the squared y2t series.
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3.1.7 Multiple Seasonalities

Multiple seasonal models extend on time series decomposition analysis that presents a time series

as a function of other partial signals called components. The simplest form of decomposition

assumes that a time series is formed by trend, seasonal component, and the remainder, where

the seasonal component has cyclical patterns over time. The mathematical decomposition

approach has a long history dating to the work of Buys-Ballot, 1847, to classic smoothing

methods like that of Macaulay, 1931. Digitalization advancements has significantly impacted the

frequency at which time series data is analyzed. In various sectors, including energy, healthcare,

transportation, and telecommunications, there is a growing need to analyze time series data

that exhibits multiple seasonalities or cyclical components of varying frequencies.

The field of multiple seasonalities modeling is vast and continuously expanding. In this article,

we will highlight some examples and suggest referring to surveys conducted by Dokumentov and

Hyndman, 2015 for more information. One modern approach is the use of regression methods,

in which seasonal components are typically chosen from harmonic functions such as Seasonal-

Trend regression (STR) (Dokumentov and Hyndman, 2015), or Bayesian regression, such as

Facebook Prophet (Prophet)(Taylor and Letham, 2018). Another approach is iterative local

polynomial projections, like Seasonal-Trend decomposition using LOESS (STL) (Cleveland et al.,

1990; Bandara et al., 2021). Specialized structural models, such as double-seasonal exponential

smoothing work of Taylor, 2014, are also available.

3.1.8 Markov Regime-Switching

Dynamic econometric modeling and forecasting techniques have increasingly relied on a spe-

cialized class of Markov Regime-Switching (MS) models since the late 1980s, particularly in

macroeconomics and finance. These models can accommodate regime shifts and allow for tem-

poral regime dependence, non-linearities, and is especially helpful in modeling mean reversion.

A Markov regime-switching approach represents the observed stochastic behavior yt by K
separate states or regimes, each having different underlying stochastic processes, i.e., yt,k of

k = 1, ..., K. The switching mechanism between these states is governed by an unobserved

(latent) Markov chain κt, which is characterized by the transition matrix P = [P (κt = i|κt = j)].
For a simple MS example consider the conditional regression model:

yt+1 | t, k = θ0,k + θ1,kx1,t + · · ·+ θp,kxp,t + ϵt,k (3.12)

P =


p1,1 p1,2 . . . p1,j . . . p1,K
p2,1 p2,2 . . . p2,j . . . p2,K

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

pK,1 pK,2 . . . pK,j . . . pK,K

 with
K∑
j=1

pi,j = 1 (3.13)

After the early work of Hamilton, Nelson, and Schwertz (Hamilton, 1989; Pagan and Schwert,

1990; Kim, Nelson, et al., 1999), there has been an explosion of applications and generalizations

of MS-based models. Updated surveys of the method are performed by Guidolin and Pedio, 2018

and Phoong et al., 2022.

23



3.1.9 Vector Autorregresive Models

Forecasting tasks often involve predicting multiple related series dependent on each other.

However, as a simplifying assumption, it is common to assume that these series are (conditionally)

independent. While this simplification can be useful, there are cases where the benefits of

modeling the series relationships outweigh the advantages of the simplified assumption.

The Vector Autoregression (VAR) time series model is often used to address this issue. This

multivariate statistical model assumes that each variable is influenced not only by its past

behavior but also by the past behavior of other variables in the system. By forming a set of

interrelated equations:

yt = c+ θ1yt−1 + θ2yt−2 + · · ·+ θpyt−p + ϵt (3.14)

The VAR model was introduced in 1980 (Sims, 1980) and has since been widely adopted

in macroeconomics and finance, resulting in a large body of literature. Several variants and

extensions have been proposed to address various challenges, including multivariate state-

space (Durbin and Koopman, 2012) and MGARCH models (Bauwens et al., 2006). Researchers

have also proposed alleviating over-parametrization challenges through theoretically moti-

vated regularization (Deaton and Muellbauer, 1980) and factor analysis augmentations, such as

FAVAR (Bernanke et al., 2005).

3.1.10 Count and Zero Inflated Data

Scenarios with non-Gaussian distributed target variables, such as binary, count, or zero-inflated

processes, motivated the introduction of more flexible statistical frameworks, like the general-

ized linear model (GLM) (Nelder and Wedderburn, 1972) with Bernoulli, Poisson, and Negative

binomial distributions. Other specialized distribution work includes the Zero Inflated Poisson

Regression (ZIP) (Lambert, 1992), and the special classes of the exponential dispersion mod-

els (Tweedie et al., 1984; Jorgensen, 1987) that proven to be remarkably accurate in the M5

international forecasting competition (Makridakis et al., 2021).

Classic forecasting baselines like exponential smoothing are known to struggle with zero-

inflated processes; The Croston Method (Croston) (Croston, 1972) improves on this, fitting two

separate simple exponential smoothings to the positive values and the size zero-filled intervals.

Extensions to the Croston baseline include work of Intermittent Multiple Aggregation Prediction

Algorithm (IMAPA) (Syntetos and Boylan, 2021), and the Aggregate-Disaggregate Intermitent

Demand Approach (ADIDA) (Nikolopoulos et al., 2011).
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3.2 Machine Learning Forecasting

3.2.1 Nearest Neighbors.

Nearest-neighbor techniques rely on identifying the training set’s observations that are closest

in input space to regressors x to create predictions ŷt(x). In particular K-Nearest Neighbor

Model (KNN) defines its predictions as follows:

ŷt(x) =
1

k

∑
xi∈Nk(x)

yi (3.15)

whereNk(x), which consists of the k closest points xi in the training set to x. We then determine

the prediction ŷt(x) by averaging the responses of these k closest neighbors.

Nearest neighbor methods are unsuitable for extrapolation since they assume the underlying

relationship between input features and response variable remains constant. While not com-

monly used in forecasting tasks, KNN can be reasonable when stationarity holds or augment

the method with de-trending or differencing techniques (Martı́nez et al., 2019). One can replace

classic Euclidean distance for specialized time series distance alternatives (Senin, 2008).

3.2.2 Support Vector Regression.

Most machine learning methods attempt to estimate functions directly from the input space,

while the Support Vector Machine (SVM) takes a different approach by performing a non-linear

mapping of the data into a high-dimensional space and then using simple linear functions to

create linear decision boundaries in that space. SVM produces a single solution characterized

by the global minimum of the optimized functional. Initially introduced in 1995 by Cortes

and Vapnik, 1995 to tackle classification problems, SVM was later modified to solve regression

problems (Vapnik et al., 1997; Vapnik, 1999).

The original Support Vector Regression follows the following ERM problem:

Minimize

w,b,ζi,ζ′i

C

T∑
t=1

Lϵ (yt, f(xt, w)) +
1

2
||w||2

where Lϵ(y, f(xt, w)) =

{
0 if |y − f(xt, w)| ≤ ϵ
|y − f(xt, w)| − ϵ otherwise

(3.16)

SVMs were once a popular forecasting choice (Trafalis and Ince, 2000; Sapankevych and

Sankar, 2009), their usage has decreased due to several factors. One of the main drawbacks of

SVMs is their computational complexity (Rahimi and Recht, 2008; Williams and Seeger, 2001),

especially when dealing with large datasets or high-dimensional feature spaces. Additionally,

the lack of interpretability in SVMs can be challenging as their non-linear transformations can be

difficult to understand and often require complex kernel functions. Furthermore, unlike neural

networks, SVMs require substantial feature engineering effort to compete in many applications.

25



3.2.3 Gaussian Processes.

Similar to SVMs, Gaussian Process (GP) methods also utilize kernel functions to model the

covariance between data points (Williams and Rasmussen, 2006). In the case of GPs, kernel

functions are used to model the covariance of a continuous stochastic process. Although

GP’s interpolation is are particularly suitable for time-series signal decomposition (known as

Kriging) it can also be applied to long-horizon forecasting and when uncertainty estimation is

important (Roberts et al., 2013).

3.2.4 Decision Trees.

Decision trees are a versatile class of regression methods that have gained widespread adoption,

some popular variants include Random Forests (RF) (Breiman, 1996; Breiman, 2001) and Gradient

Boosting Decision Trees (GBD) (Freund and Schapire, 1997; Chen and Guestrin, 2016; Ke et al.,

2017). These models have consistently performed well in forecasting competitions such as

Kaggle (Bojer and Meldgaard, 2021), M4 (Makridakis et al., 2020a), and M5 (Makridakis et al.,

2021), and have become well-established baselines that excel under time constraints.

Tree-based methods are often the selection for users seeking effective, easy-to-use black

box learners for forecasting tasks (Januschowski et al., 2022). Their success in forecasting

competitions can be attributed to several factors:

• These method’s mature software implementations have garnered strong community sup-

port, making them easily accessible and widely adopted.

• These highly robust methods can effectively handle noise, missing data, and variations in

time series scales, allowing for reliable predictions even in challenging datasets.

• Unlike other methods, Tree-based methods do not require extensive model tuning or

parameter adjustments to achieve competitive performance, making them an attractive

option for users without specialized knowledge of machine learning.

It is important to note that Tree-based methods generally partition the training input space

into regions and assign a specific output value to each region. However, when presented with

inputs outside the training set’s range, decision trees often fail to predict accurately; the decision

tree may assign the inputs to a region with an edge or default output value. For this reason,

the methods are not ideal for extrapolation or non-stationary settings. This is a well-known

problem and research on this area is an active topic.

In contrast, other machine learning models, such as neural networks and support vector

machines, can learn continuous and smooth functions that can be used for extrapolation, making

them better suited to handle situations with values outside the training set’s range.
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3.3 Neural Forecasting

In recent years, there has been an increasing need to forecast large numbers of related time

series rather than just a few individual ones. In such scenarios, global models can use data from

collections of related time series to learn complex relationships without the risk of over-fitting.

In addition to improving accuracy, this approach can save time and effort by eliminating the need

for experts to select and prepare covariates and models, as traditional techniques require (Wen

et al., 2017; Smyl, 2019; Semenoglou et al., 2021). Before the advent of deep learning, it was

necessary to design complex pipelines involving clustering similar series, creating specific

features for each series, like each series’ special handling of promotional or holiday effects, and

selecting different model specifications based on individual characteristics.

Neural forecasting provides a simpler solution. These models require only a small amount

of data preprocessing before they can learn an end-to-end solution to the forecasting problem.

In particular, data processing is included in the model and optimized jointly to produce the

best possible forecast. Unlike traditional pipelines, which rely on heuristics such as expert-

designed components and manual covariate design, deep learning forecasting pipelines rely

almost entirely on what the model can learn from the data.

Deep Learning’s ability to learn the relationship between features and forecasts and the fea-

tures’ representation itself is called representation learning. It enables it to automatically discover

good representations from raw data without relying on manual feature engineering (Goodfellow

et al., 2016). The ability depends on introducing data representations constructed on top of other

simpler representations obtained through the layers of the models. Representation learning

has solid theoretical foundations, including the Universal Approximation Theorem (Hornik, 1991;

Cybenko, 1989). The theorem states that even a simple architecture like a feedforward neural

network can arbitrarily approximate any continuous function, conditioned on its depth and

number of hidden units.

Representation Learning

Deep Learning

Machine Learning
Example: Decision Tree Regression

Example: LASSO Regression

Example: Multi-Layer Perceptron

Figure 3.2: Representation learning is a powerful machine learning tool, as it allows us to automatically

discover and extract useful features from the data without manual feature engineering.
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ŷ[t+1:t+H]
Output

Hidden Units

Figure 3.3: When the relationship between regressors y[t−L:t] and forecasts ŷ[t+1:t+H] is complex,

preparing covariates and selecting models is time-consuming. Neural forecasting solves this difficulty

through representation learning, decomposing complex functions into a series of simpler ones, each

function represented by the model’s different layers. The input layer processes the original features, while

subsequent hidden layers extract increasingly abstract features. These hidden features are not initially

in the data; the model determines which transformations are most useful for forecasting. Overall, deep

learning simplifies learning the relationship between regressors and forecasts.

3.3.1 Architecture Building Blocks

There are many different neural network architectures, and their strengths and weaknesses make

them suited for different tasks. Researchers and practitioners in deep learning are constantly

seeking to improve model performance, reduce computational costs, and expand their range of

applications. The following subsections will briefly cover their most important building blocks.

Multi Layer Perceptron

The simplest network architecture is the Multi Layer Perceptron (MLP) (Rosenblatt, 1961). It

operates as an autoencoder since its initial layers operate as an encoder function that converts the

raw inputs into a different representation and a decoder function that converts the representation

into the desired output. In the edge case where the autoencoder has a single layer, the autoencoder

turns into a linear Autorregresive Models (AR) model.

The feedforward neural network gets its name because inputs are processed in one direction,

flowing through the network to produce outputs. In Figure 3.3, each circle represents a node

in the network, while the edges depict the transformations applied by the network. A layer is

a set of nodes that use an affine transformation followed by a nonlinear activation function.

Activation functions serve the purpose of adapting the output of the network to specific domains,

for example, by predicting distribution parameters.
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Figure 3.4: (a) Recurrent Neural Networks are a family of models specialized on sequential data. Their

internal mechanism allows them to deal with inputs of varying length as its weights are shared across

time steps. (b) In its original versions RNNS would use hyperbolic tanget activations. (c) To tackle the

exploding and vanishing gradient problems new activations have been proposed.

Recurrent Neural Networks

One significant limitation of Multilayer Perceptrons (MLPs) is their over parametrization. Since

the model is fully connected, it does not leverage any specific structure in the data, as other

architectures do. Additionally, its fixed parameters limit their ability to process inputs of varying

lengths. However, most modern neural networks use MLPs as an essential building block.

Recurrent Neural Network (RNN)s (Rumelhart et al., 1986; Elman, 1990) are a model family

specialized on sequential data. In contrast to MLPs that are static architectures, RNNs are

dynamic and can handle sequences of varying lengths because they have a mechanism for

updating their internal state based on the entire sequence history. The mechanism’s weights

are shared across all time steps. RNNs dynamic memory depends feeds its hidden units back to

themselves at each time step, and endows it with the ability to capture long-term dependencies.

While training RNNs over long sequences using back-propagation is that their gradients

tend to vanish or explode. Long Short Term Memory (LSTM) (Gers et al., 2000; Sak et al., 2014)

introduced a clever mitigation through its activation’s gating mechanism that selectively learns

which information to keep and which to discard from previous time steps in the input sequence.

Additional computational efficiency improvements include the Gated Recurrent Unit (GRU)

that simplifies LSTM’s activation by combining its gating mechanism (Chung et al., 2014; Cho

et al., 2014). Still due to the sequential processing nature of RNNs, their operations cannot be

parallelized in contrast with those of MLP-based and Transformer-based architectures, for this

reason they have often worse computational efficiency.
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Figure 3.5: Simple convolutional architectures can outperform modern RNNs. By skipping temporal

connections, causal convolution filters efficiently model longer memory. Stacking multiple convolutional

layers creates higher-order features for accurate forecasts.

Convolutional Neural Networks

The Convolutional Neural Networks (CNN) (LeCun et al., 1989) constitue a specialized family

of models designed for inputs with a known ordinal structure, such as images and time series.

Unlike MLPs, CNNs utilize convolutional layers that employ filters operating locally on subsets

of the input data, which are shared across the input range. For time series forecasting, Temporal

Convolution Network (TCN) (Oord et al., 2016; Bai et al., 2018) performs a moving weighted sum

by sliding a filter across the input data. The weight sharing of the filter drastically reduces the

number of free parameters compared to the dense layers of MLPs and improving generalization.

Causal convolution filters can be applied to larger time spans while remaining computation-

ally efficient by skipping temporal connections (Chang et al., 2017). This approach, depicted in

Figure 3.5, can be further extended by stacking multiple convolutional layers on top of each other,

which combines low-level features extracted in earlier layers to derive higher-order features.

This process of feature extraction allows for the creation of more complex representations of the

input data, enabling more accurate predictions or classifications.

Attention Mechanism and Transformer Architectures

The attention mechanism overcomes the information bottleneck in Sequence to Sequence ar-

chitectures by selectively focusing on relevant parts of the input sequence. By weighting the

importance of different input elements based on the decoder’s current state, attention allows the

model to attend to the most relevant parts (Chorowski et al., 2014; Bahdanau et al., 2016).

The Transformer (Transformer) (Vaswani et al., 2017) architecture is a feedforward network

that processes the input sequence in parallel rather than sequentially like RNNs. The Transformer

uses multi-headed attention to capture the relationships between different input sequence

elements. While Transformer-based models have achieved great success in natural language

processing and computer vision tasks, their adaptation for forecasting purposes is a relatively

recent area of research that requires further development and refinement to reach comparable

levels of success. As we show in Chapter 6, early attempts have been partially unsuccessful (Zhou

et al., 2020; Wu et al., 2021; Zhou et al., 2022).
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Figure 3.6: Temporal normalization (left), layer normalization (center) and batch normalization (right).

The entries in green show the components used to compute the normalizing statistics.

Temporal Normalization

Temporal normalization has proven essential in neural forecasting tasks, enabling the network’s

non-linearities to express themselves. Forecasting scaling methods take particular interest in

the temporal dimension where most of the variance dwells, contrary to other deep learning

techniques like BatchNorm, which normalizes across batch and temporal dimensions, and

LayerNorm, which normalizes across the feature dimension.

3.3.2 Neural Forecasting Architectures

We reviewed the fundamental neural network’s building blocks in the preceding subsections.

Although the neural network architectures for modern applications have become more intricate,

they still consist of a fusion of elementary structures, such as MLPs, RNNs, CNNs, and attention

mechanisms. Here we briefly review and point to notable or well-performing architectures.

The Sequence to Sequence Architecture (Seq2Seq) (Graves, 2013) was a breakthrough in

sequential data processing tasks due to its ability to handle variable-length input and output

sequences. Variants of the architecture have been applied to large industrial forecasting systems,

such as Deep Auto Regressive Network (DeepAR) (Salinas et al., 2020), Multi Quantile Forecaster

Family (MQForecaster) (Wen et al., 2017; Eisenach et al., 2021) and Temporal Fusion Transformer

(TFT) (Lim et al., 2021), with great effect. Neural forecasting has transcended industry bound-

aries into academia due to its outstanding performance in the latest forecasting competitions

(Makridakis et al., 2018c; Makridakis et al., 2020b). The latest submissions witnessed the Expo-

nential Smoothing Recurrent Neural Network (ESRNN) (Smyl, 2019) and Neural Basis Expansion

Analysis (NBEATS) (Oreshkin et al., 2020) obtain first and third place, respectively.

Cross-learning is common to all these architectures, it involves optimizing a shared model

across a collection of related time series. The clever integration of temporal normalization

strategies within the architectures has supported this approach (Semenoglou et al., 2021).
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In the computer field,

the moment of truth is a running program; all else is prophecy.

Herbert Simon

Part II

Contributions

We present the thesis’s main contributions in three case studies that combine

neural forecasting methods with econometric and statistical inspirations. Chapter 4

introduces NBEATSx, which extends neural basis expansion analysis with exogenous

variables improving its accuracy and providing interpretable signal decomposition

capabilities. In Chapter 5, we introduce a novel probabilistic mixture model to tackle

the hierarchical forecasting task. The new method extends network’s capabilities

to arbitrarily approximate functions to approximate distributions, including those

with coherence constraints. In Chapter 6, we tackle long-horizon forecasting with

NHITS, a Wavelet analysis-inspired approach that specializes multi-step forecasting

strategy into different frequencies through time.
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Chapter 4
Interpretable Neural Forecasting

4.1 Summary

Existing neural forecasting approaches can be limited in their interpretability, so we created

NBEATSx to address this challenge. NBEATSx extends the neural basis expansion analysis

method by incorporating exogenous variables, significantly improving its accuracy and enabling

the integration of multiple sources of helpful information. The neural network used inNBEATSx
provides an interpretable signal decomposition, allowing users to visualize the relative impact of

trend and seasonal components and the interactions with exogenous factors. NBEATSx makes

it easier to understand how the model composes its predictions.

4.2 Motivation

In the last decade, a significant progress has been made in the application of deep learning to

forecasting tasks, with models such as the Exponential Smoothing Recurrent Neural Network

(ESRNN) (Smyl, 2019) and the Neural Basis Expansion Analysis (NBEATS) (Oreshkin et al., 2020),

outperforming classical statistical approaches in the recent M4 competition (Makridakis et al.,

2020a). Despite this success we still identify two possible improvements, namely the integration

of time-dependent exogenous variables as their inputs and the interpretability of the neural

network outputs. Neural networks have proven powerful and flexible, yet there are several

situations where our understanding of the model’s predictions can be as crucial as their accuracy,

which constitutes a barrier for their wider adoption. The interpretability of the algorithm’s

outputs is critical because it encourages trust in its predictions, improves our knowledge of the

modeled processes, and provides insights that can improve the method itself.

Additionally, the absence of time-dependent covariates makes these powerful models un-

suitable for many applications. For instance, Electricity Price Forecasting (EPF) is a task where

covariate features are fundamental to obtain accurate predictions. For this reason, we chose this

challenging application as a test ground for our proposed forecasting methods.
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In this chapter, we address the two mentioned limitations by first extending the neural basis

expansion analysis, allowing it to incorporate temporal and static exogenous variables. And

second, by further exploring the interpretable configuration of NBEATS and showing its use as

a time-series signal decomposition tool. We refer to the new method as NBEATSx. The main

contributions of this paper include:

(i) Incorporation of Exogenous Variables: We propose improvements to the NBEATS
model to incorporate time dependent as well as static exogenous variables. For this

purpose, we have designed a special substructure built with convolutions, to clean and

encode useful information from these covariates, while respecting time dependencies

present in the data. These enhancements greatly improve the accuracy of the NBEATS
method, and extend its interpretability capabilities, so rare in neural forecasting.

(ii) Interpretable Time Series Signal Decomposition: Our method combines the power of

non-linear transformations provided by neural networks with the flexibility to model mul-

tiple seasonalities and simultaneously account for interaction events such as holidays and

other covariates, all while remaining interpretable. The extended NBEATSx architecture

allows to decompose its predictions into the classic set of level, trend, and seasonality, and

identify the effects of exogenous covariates.

(iii) Electricity Price Forecasting Comparison: We showcase the use of NBEATSx model

on five EPF tasks achieving state-of-the-art performance on all of the considered datasets.

We obtain accuracy improvements of almost 20% in comparison to the original NBEATS
and ESRNN architectures, and up to 5% over other well-established machine learning,

EPF-tailored methods (Lago et al., 2021a).

4.3 Related Work

4.3.1 Electricity Price Forecasting

The Electricity Price Forecasting (EPF) task aims at predicting the spot (balancing, intraday,

day-ahead) and forward prices in wholesale markets. Since the workhorse of short-term power

trading is the day-ahead market with its conducted once-per-day uniform-price auction (Mayer

and Trück, 2018), the vast majority of research has focused on predicting electricity prices for the

24 hours of the next day, either in a point (Weron, 2014; Lago et al., 2021a) or a probabilistic setting

(Nowotarski and Weron, 2018). There also are studies on EPF for very short-term (Narajewski

and Ziel, 2020), as well as mid- and long-term horizons (Ziel and Steinert, 2018a). The recent

expansion of renewable energy generation and large-scale battery storage has induced complex

dynamics to the already volatile electricity spot prices, turning the field into a prolific subject

on which to test novel forecasting ideas and trading strategies (Chitsaz et al., 2018; Gianfreda

et al., 2020; Uniejewski and Weron, 2021).

Energy markets’ liberalization and renewable energy sources induced complex dynamics

and volatility to electricity prices (Angelica Gianfreda and Pelagatti, 2016; Gianfreda et al., 2020;

Muniain and Ziel, 2020), turning them into a prolific subject on which to test forecasting ideas.
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Figure 4.1: The day-ahead auction market allows participants to purchase and sell electric energy at prices

determined on day d− 1 for the next day d. The market establishes the 24 hourly prices simultaneously,

and it is usual that the prices are published at midday.

Out of the numerous approaches to EPF developed over the last two decades, two classes of

models are of particular importance when predicting day-ahead prices – statistical (also called

econometric or technical analysis), in most cases based on linear regression, and computational

intelligence (also referred to as artificial intelligence, non-linear or machine learning), with

neural networks being the fundamental building block. Among the latter, many of the recently

proposed methods utilize deep learning (Wang et al. 2017; Lago et al. 2018a; Marcjasz 2020), or

are hybrid solutions, that typically comprise data decomposition, feature selection, clustering,

forecast averaging and/or heuristic optimization to estimate the model (hyper)parameters (Nazar

et al., 2018; Li and Becker, 2021).

Unfortunately, as argued by Lago et al., 2021a, the majority of the neural network EPF

related research suffers from too short and limited to a single market test periods, lack of well

performing and established benchmark methods, and/or incomplete descriptions of the pipeline

and training methodology resulting in poor reproducibility. To address these shortcomings, our

models are compared across two-year out-of-sample periods from five power markets and using

two highly competitive benchmarks recommended in previous studies: the Lasso Estimated
Auto-Regressive (LEAR) model and a (relatively) parsimonious Deep Neural Network (DNN).

4.4 Methodology

4.4.1 Neural Basis Expansion Analysis

The NBEATSx model offers a solution to the multivariate regression problem

P(y[t:t+H] | y[:t], X[:t+H]) := P(y[t+1:t+H] | y[t−L: t], X[t−L: t+H]) (4.1)

where y[t:t+h],y[:t],X[:t+H] represent future and past observations of the target time series up

until time t, and the the exogenous variables available at the prediction time, respectively. And

L denotes the number of lags considered in the regression, and H is the forecast horizon.
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Figure 4.2: The Building blocks of the NBEATSx are structured as a system of multilayer perceptrons

with ReLU based nonlinearities. Blocks overlap using the doubly residual stacking principle for the

backcast ỹ[t−L:t],s,b and forecast ŷ[t+1:t+H],s,b outputs of the b-th block within the s-th stack. The final

predictions ŷ[t+1:t+H] are composed by aggregating the outputs of the stacks.

The NBEATSx framework decomposes the objective signal by performing separate local

nonlinear projections of the data onto basis functions across its different blocks. Figure 4.2

depicts the general architecture of the model. Each block consists of a Multi Layer Perceptron

(MLP) (Rosenblatt, 1961) which learns expansion coefficients for the backcast and forecast

elements. The backcast model is used to clean the inputs of subsequent blocks, while the

forecasts are summed to compose the final prediction. The blocks are grouped in stacks. Each of

the potentially multiple stacks specializes in a different variant of basis functions.

To continue NBEATSx’ description, we introduce the following notation: the objective

signal is represented by the vector y, the inputs for the model are the backcast window vector

y[t−L:t] of length L, and the forecast window vector y[t+1:t+H] of length H ; where L denotes

the length of the lags available as classic autoregressive features, and H is the forecast horizon

treated as the objective. While NBEATS only admits as regressor the backcast period of the

target variable y[t−L:t], the NBEATSx incorporates covariates in its analysis denoted with the

matrix X. Figure 4.2 shows an example where the target variable is the hourly electricity price,

the backcast vector has a length L of 96 hours, and the forecast horizon H is 72 hours, in the

example, the covariate matrix X is composed of wind power production and electricity load. For

the EPF comparative analysis of Section 4.5.6 the horizon considered is H = 24 that corresponds

to day-ahead predictions, while backcast inputs L = 168 correspond to a week of lagged values.
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For its predictions, the NBEATSx receives a local vector of inputs corresponding to the

backcast period, making the computations exceptionally fast. The model can still represent

longer time dependencies through its local inputs from the exogenous variables; for example, it

can learn long seasonal effects from calendar variables. As shown in Figure 4.2, the NBEATSx
is composed of S stacks of B blocks each, the input y[t−L:t],X[t−L:t] of the first block consists of

L lags of the target time series y and the exogenous matrix X, while the inputs of each of the

subsequent blocks include residual connections with the backcast output of the previous block.

We will describe in detail in the next subsections the blocks, stacks, and model predictions.

4.4.2 Blocks

For a given s-th stack and b-th block within it, the NBEATSx model performs two trans-

formations, depicted in the blue rectangle of Figure 4.2. The first transformation, defined in

Equation (4.2) and Equation (4.3), takes the input data (y[t−L:t],s,b−1,X[t−L:t+H],s), and applies a

Fully Connected Multi Layer Perceptron (MLP; Rosenblatt 1961) to learn hidden units hs,b ∈ RNh

that are linearly adapted into the forecast θfs,b ∈ RNst
and backcast θbs,b ∈ RNst

expansion

coefficients, with Nst the dimension of the stack basis.

hs,b = MLPs,b

(
y[t−L:t],s,b

)
or hs,b = MLPs,b

(
y[t−L:t],s,b,X[t−L:t+H],s

)
(4.2)

θbs,b = LINEARb (hs,b) and θfs,b = LINEARf (hs,b) (4.3)

The second transformation, in Equation (4.4), consists of a basis expansion between the

learnt coefficients and the block’s basis V[t−L:t],s,b ∈ RL×Nst
and V[t+1:t+H],s,b ∈ RH×Nst

, this

transformation results in the backcast ỹ[t−L:t],s,b and forecast ŷ[t+1:t+H],s,b components.

ỹ[t−L:t],s,b = V[t−L:t],s,b θ
b
s,b and ŷ[t+1:t+H],s,b = V[t+1:t+H],s,b θ

f
s,b (4.4)

4.4.3 Stacks and Residual Connections

The blocks are organized into stacks using the doubly residual stacking principle, which is

described in Equation (4.5) and depicted in the brown rectangle of Figure 4.2. The residual

backcast y[t−L:t],s,b+1 ∈ RL
allows the model to subtract the component associated to the basis

of the s, b-th stack and block V[t−L:t]s,b from y[t−L:t], which can be also thought of as a sequential

decomposition of the modeled signal. In turn, this methodology helps with the optimization

procedure as it prepares the inputs of the subsequent layer making the downstream forecast

easier. The stack forecast ŷ[t+1:t+H],s ∈ RH
aggregates the partial forecasts from each block.

y[t−L:t],s,b+1 = y[t−L:t],s,b − ỹ[t−L:t],s,b and ŷ[t+1:t+H],s =
B∑
b=1

ŷ[t+1:t+H],s,b (4.5)
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(b) Harmonic Basis

Figure 4.3: Examples of polynomial and harmonic basis in the interpretable configuration of the neural

basis expansion analysis. The slowly varying basis allow NBEATS to model trends and seasonalities.

4.4.4 Model predictions

The final predictions ŷ[t+1:t+H] ∈ RH
, we later denote particular day predictions as ŷd, shown

in the yellow rectangle of Figure 4.2, are obtained by summation of all the stack predictions.

ŷ[t+1:t+H] =
S∑

s=1

ŷ[t+1:t+H],s (4.6)

The additive generation of the forecast implies a very intuitive decomposition of the predic-

tion components when the bases within the blocks are interpretable.
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4.4.5 NBEATSx Configurations

The original neural basis expansion analysis method proposed two configurations based on the

assumptions encoded in the learning algorithm by selecting the basis vectors V[t−L:t],s,b and

V[t+1:t+H],s,b used in the blocks from Equation (4.4). A mindful selection of restrictions to the

basis allows the model to output an interpretable decomposition of the forecasts, while allowing

the basis to be freely determined can produce more flexible forecasts by effectively removing any

constraints on the form of the basis functions. In this subsection, we present both interpretable

and generic configurations, explaining in particular how we propose to include the covariates in

each case. We limit ourselves to the analysis of the forecast basis, as the backcast basis analysis

is almost identical, only differing by its extension over time. We show an example in Figure 4.3.

Interpretable Configuration

The choice of basis vectors relies on time series decomposition techniques that are often used

to understand the structure of a given time series and patterns of its variation. Work in this

area ranges from classical smoothing methods (Macaulay, 1931) and their extensions such as

X-11-ARIMA, (Shishkin et al., 1967; Dagum, 1980), X-12-ARIMA, (Findley et al., 1998), and X-13-

ARIMA-SEATS, (U.S. Census Bureau, 2013), to modern approaches such as TBATS (Livera et al.,

2011), and STR/STL (Cleveland et al., 1990; Dokumentov and Hyndman, 2015). To encourage

interpretability, the blocks within each stack may use harmonic functions, polynomial trends,

and exogenous variables directly to perform their projections. The partial forecasts of the

interpretable configuration are described by Equation (4.7)-Equation (4.9).

ŷtrend
[t+1:t+H],s,b =

Npol∑
i=0

ti θtrends,b,i ≡ T θtrends,b (4.7)

ŷseas
[t+1:t+H],s,b =

Nhar∑
i=0

cos (2πit) θseass,b,i + sin (2πit) θseass,b,i+⌊H/2⌋ ≡ S θseass,b (4.8)

ŷexog
[t+1:t+H],s,b =

Nx∑
i=0

X[t+1:t+H],i θ
exog
s,b,i ≡ X[t+1:t+H] θ

exog
s,b (4.9)

where the time vector t⊺ = [0, 1, 2, . . . , H − 2, H − 1]/H is defined discretely. When the basis

V[t+1:t+H],s,b is T = [1, t, . . . , tNpol ] ∈ RH×(Npol+1)
, where Npol is the maximum polynomial

degree, the coefficients are those of a polynomial model for the trend. When V[t+1:t+H],s,b are

harmonic S = [1, cos(2πt), . . . , cos(2πit), sin(2πt), . . . , sin(2πit)] ∈ RH×Nhar
, and Nhar =

(H − 1), the coefficients vector θfs,b can be interpreted as Fourier transform coefficients. The

exogenous basis expansion can be thought as a time-varying local regression when the basis

is the matrix X[t+1:t+H] = [X1, . . . ,XNx ] ∈ RH×Nx
, where Nx is the number of exogenous

variables. The resulting models can flexibly reflect common structural assumptions, in particular

using the interpretable bases, as well as their combinations.
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In this paper, we propose including one more type of stack to specifically represent exogenous

variable basis as described in Equation (4.9) and depicted in Figure 4.2. In the original NBEATS
framework (Oreshkin et al., 2020), the interpretable configuration usually consists of a trend stack

followed by a seasonality stack, each containing three blocks. Our NBEATSx extension of this

configuration consists of three stacks, one of each type of factors (trend, seasonal, exogenous).

We refer to this interpretable and its enhanced interpretable configuration as the NBEATS-I
and NBEATSx-I models, respectively.

Generic Configuration

For the generic configuration, the basis of the non linear projection in Equation (4.4) corresponds

to canonical vectors, that is V[t+1:t+H],s,b = IH×H , an identity matrix of dimensionality equal to

the forecast horizon H that matches the coefficient’s cardinality |θfs,b| = H .

ŷ[t+1:t+H],s,b = V[t+1:t+H],s,b θ
f
s,b = θfs,b (4.10)

This basis enables NBEATSx to effectively behave like a classic Fully Connected Multilayer
Perceptron (MLP). The output layer of the MLP inside each block hasH neurons, that correspond

to the forecast horizon, each producing the forecast for one particular time point of the forecast

period. This can be understood as the basis vectors being learned during optimization, allowing

the waveform of the basis of each stack to be freely determined in a data-driven fashion.

Compared to the interpretable counterpart described in Section 4.4.5, the constraints on the

form of the basis functions are removed. This affords the generic variant more flexibility and

power at representing complex data, but it can also lead to less interpretable outcomes and

potentially escalated risk of overfitting.

For theNBEATSxmodel with the generic configuration, we propose a new type of exogenous

block that encodes the past C[t+1:t+H],s,b ∈ RH×Nf
from the time-dependent covariates with an

encoder convolutional sub-structure:

ŷexog
[t+1:t+H],s,b =

Nf∑
i=1

C[t+1:t+H],s,b,i θ
f
s,b,i ≡ C[t+1:t+H],s,b θ

f
s,b

with C[t+1:t+H],s,b = TCN(X[t−L:t+H],s)[t+1:t+H]

(4.11)

In the previous equation, a Temporal Convolution Network (TCN) (Bai et al., 2018; Oord et al.,

2016) is employed as an encoder, but any neural network with a sequential structure will be

compatible with the backcast and forecast branches of the model, and could be used as an

encoder. Temporal convolutions can be an effective alternative to RNNs as it is also able to

capture long term dependencies and interactions of covariates by stacking multiple layers, while

dilations help it keep the models computationally tractable. In addition, convolutions have a

very convenient interpretation as a weighted moving average signal filters. The final linear

projection and the additive composition of the predictions can be interpreted as a decoder. The

original NBEATS configuration includes only one generic stack with dozens of blocks, while

our proposed model includes both the generic and exogenous stacks, with the order determined

via hyperparameter tuning. We refer to this configuration as the NBEATSx-G model.
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Table 4.1: Datasets used in our empirical study. For the five day-ahead electricity markets considered,

we report the test period dates and two influential covariate variables.

Market Exogenous Variable 1 Exogenous Variable 2 Test Period

NP day-ahead load day-ahead wind generation 27-12-2016 to 24-12-2018

PJM 2 day-ahead system load 2 day-ahead COMED load 27-12-2016 to 24-12-2018

EPEX-FR day-ahead load day-ahead total France generation 04-01-2015 to 31-12-2016

EPEX-BE day-ahead load day-ahead total France generation 04-01-2015 to 31-12-2016

EPEX-DE day-ahead zonal load day-ahead wind and solar generation 04-01-2016 to 31-12-2017

4.5 Experiments

4.5.1 Electricity Price Datasets

In the short-term electricity price forecasting tasks the objective is to predict day-ahead prices.

Five major power markets are used in the empirical evaluation, all comprised of hourly observa-

tions of the prices and two influential temporal exogenous variables that extend for 2,184 days

(312 weeks, six years). From the six years of available data for each market, we hold two years

out, to test the forecasting performance of the algorithms. The length and diversity of the test

sets allow us to obtain accurate and highly comprehensive measurements of the robustness and

the generalization capabilities of the models.

Table 4.1 summarizes the key characteristics of each market. The Nord Pool electricity market

(NP), which corresponds to the Nordic countries exchange, contains the hourly prices and day-

ahead forecasts of load and wind generation. The second dataset is the Pennsylvania-New

Jersey-Maryland market in the United States (PJM), which contains hourly zonal prices in the

Commonwealth Edison (COMED) and two day-ahead forecasts of load at the system and COMED

zonal levels. The remaining three markets are obtained from the integrated European Power

Exchange (EPEX). Belgium (EPEX-BE) and France (EPEX-FR) markets share the day-ahead

forecast generation in France as covariates since it is known to be one of the best predictors

for Belgian prices (Lago et al., 2018b). Finally, the German market (EPEX-DE) contains hourly

prices, day-ahead load forecasts, and the country wind and solar generation day-ahead forecast.

Figure 4.4 displays the NP electricity price time series and its corresponding covariate

variables to illustrate the datasets. The NP market is the least volatile among the considered

markets, since most of its power comes from hydroelectric generation, renewable source volatility

is negligible, and zero spikes are rare. The PJM market is transitioning from coal generation to

natural gas and some renewable sources, zero spikes are rare, but the system exhibits higher

volatility than NP. In EPEX-BE and EPEX-FR markets, negative prices and spikes are more

frequent, and as time passes, these markets begin to show increasing signs of integration. Finally,

the EPEX-DE market shows few price spikes, but the most frequent negative and zero price

events, due in great part to the impact of renewable sources.

The exogenous covariates are normalized following best practices drawn from the EPF

literature (Uniejewski et al., 2018). Preprocessing the inputs of neural networks is essential to

accelerate and stabilize the optimization (LeCun et al., 1998).
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Early Stopping 

Validation Test Set

Figure 4.4: The top panel shows the day-ahead electricity price time series for the NordPool (NP) market.

The second and third panels show the day-ahead forecast for the system load and wind generation. The

training data is composed of the first four years of each dataset. The validation set is the year that follows

the training data (between the first and second dotted lines). For the held-out test set, the last two years

of each dataset are used (marked by the second dotted line). During evaluation, we recalibrate the model

updating the training set to incorporate all available data before each daily prediction. The recalibration

uses an early stopping set of 42 weeks randomly chosen from the updated training set (a sample selection

is marked with blue rectangles in the top panel).
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4.5.2 Interpretable Time Series Decomposition

We demonstrate NBEATSx versatility and show how a careful selection of the inductive bias,

constituted by the assumptions used to learn the modeled signal, endows it with an outstanding

ability to model complex dynamics while enabling human understanding of its outputs.

Our method combines the power of non-linear transformations provided by neural networks

with the flexibility to model multiple seasons that can be fractional, and simultaneously account

for interaction events such as holidays and other covariates. As described earlier, the interpretable

configuration of the NBEATSx architecture computes time-varying coefficients for slowly

changing polynomial functions to model the trend, harmonic functions to model the cyclical

behavior of the signal, and exogenous covariates. Here, we show how this configuration can

decompose a time series into the classic set of level, trend, and seasonality components, while

identifying the covariate effects.

In this time series signal decomposition example, we show how the NBEATSx-I model

benefits over NBEATS-I from explicitly accounting for information carried by exogenous

covariates. Figure 4.5 shows the NP electricity market’s hourly price (EUR/MWh), for December

18, 2017 which is a day with high prices due to high load. Other days have a less pronounced

difference between the results obtained with the original NBEATS-I and the NBEATSx-I.

We selected a day with a higher than normal load for exposition purposes, to demonstrate

qualitative differences in the forecasts. We can see a substantial difference in the forecast

residual magnitudes in the bottom row of Figure 4.5. NBEATS shows a strong negative bias.

On the other hand, NBEATSx-I is able to capture the evidently substantial explanatory value

of the exogenous features, resulting in a much more accurate forecast.
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(b) NBEATSx

Figure 4.5: Time series signal decomposition for NP electricity price day-ahead forecasts using inter-

pretable variants of NBEATS and NBEATSx. The top row of graphs shows the original signal and the

level, the latter is defined as the last available observation before the forecast. The second row shows the

polynomial trend components, the third and fourth rows display the complex seasonality modeled by

nonlinear Fourier projections and the exogenous effects of the electricity load on the price, respectively.

The bottom row graphs show the unexplained variation of the signal. The use of electricity load and

production forecasts turns out to be fundamental for accurate price forecasting.
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4.5.3 Evaluation

To ensure the comparability of our results with the existing literature, we opted to follow the

widely accepted practice of evaluating the accuracy of point forecasts with the following metrics:

Mean Absolute Error (MAE), relative Mean Absolute Error (relMAE)
1
, symmetric Mean Absolute

Percentage Error (sMAPE) and Root Mean Squared Error (RMSE), defined as:

MAE =
1

24Nd

Nd∑
d=1

24∑
τ=1

|yd,τ − ŷd,τ | relMAE =

∑Nd

d=1

∑24
τ=1 |yd,τ − ŷd,τ |∑Nd

d=1

∑24
τ=1 |yd,τ − ŷNaive

d,τ |

sMAPE =
200

24Nd

Nd∑
d=1

24∑
τ=1

|yd,τ − ŷd,τ |
|yd,τ |+ |ŷd,τ |

RMSE =

√√√√ 1

24Nd

Nd∑
d=1

24∑
τ=1

(yd,τ − ŷd,τ )
2

where yd = y[t+1:t+H] and yd,τ and ŷd,τ are the actual value and the forecast of the time series at

day d and hour τ , for our experiments given the two years of each test set Nd = 728. The MAE

and RMSE measure the errors in absolute terms, and as such they are not easily comparable

across time series. For this reason, we also include the sMAPE and relMAE metrics that are

relative. The sMAPE is included as an alternative to MAPE which in the presence of values close

to zero may degenerate (Hyndman and Koehler, 2006). The difference between the relative mean
absolute error (relMAE) and mean absolute scaled error (MASE) is that the relative mean absolute
error includes the out-of-sample predictions which helps to compare the relative performance

of the model with the accuracy of the seasonal naive benchmark (Lago et al., 2021a).

Statistical Tests

To assess which forecasting model provides better predictions, we rely on the Giacomini-White

test (GW) (Giacomini and White, 2006) of the multi-step conditional predictive ability, which can

be interpreted as a generalization of the Diebold-Mariano test (DM) (Diebold and Mariano, 2002),

widely used in the forecasting literature. Compared with the DM or other unconditional tests,

the GW test is valid under general assumptions such as heterogeneity rather than stationarity of

data. The GW test examines the null hypothesis of equal accuracy specified in Equation (4.12),

measured by the L1 norm of the daily errors of a pair of models A and B, conditioned on the

available information to that moment
2

in time Fd−1.

H0 : E
[
||yd − ŷA

d ||1 − ||yd − ŷB
d ||1 | Fd−1

]
≡ E

[
∆A,B

d | Fd−1

]
= 0 (4.12)

1
The Naive forecast method in EPF corresponds to a similar day rule, where the forecast for a Monday, Saturday

and Sunday equals the value of the series observed on the same weekday of the previous week, while the forecast

for Tuesday, Wednesday, Thursday, and Friday is the value observed on the previous day.

2
In practice, the available information Fd−1 is replaced with a constant and lags of the error difference ∆A,B

d and

the test is performed using a linear regression with a Wald-like test. When the conditional information considered

is only the constant variable, one recovers the original DB test.
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4.5.4 Train and Hyperparameter Optimization

Train Methodology

The cornerstone of the training methodology for NBEATSx and the benchmark models included

in this work is the definition and use of the training, validation, early stopping, and test datasets

depicted in Figure 4.4. The training set for the five markets comprises the first three years, the

test set includes the last two years of data. The validation set is defined as the year between the

train and test set coverages. The early stopping set, used for regularization, is either randomly

sampled or corresponds to 42 weeks following the time span of the training set. These sets are

used in the hyperparameter optimization phase and recalibration phase that we describe below.

During the hyperparameter optimization phase, model performance measured on the vali-

dation set is used to guide the exploration of the hyperparameter space defined in Table 4.2.

During the recalibration phase, the optimally selected model, as defined by its hyperparameters,

is re-trained for each day to include newly available information before the test inference. In

this phase, an early stopping set provides a regularization signal for the retraining optimization.

To train the neural network, we use mean absolute error (MAE) Empirical Risk Minimization

(ERM) optimized using Adaptive Moment Estimation SGD (ADAM) (Kingma and Ba, 2014)).

Figure A.1 in the Appendix compares the training and validation trajectories for NBEATS and

NBEATSx, as diagnostics to assess the differences of the methods. The early stopping strategy

halts the training procedure if a specified number of consecutive iterations occur without

improvements of the loss measured on the early stopping set (Yao et al., 2007).

The NBEATSx model is implemented and trained in PyTorch (Paszke et al., 2019) and

can be run with both CPU and GPU resources. The code is available publicly in a dedicated

repository at NBEATSx repository to promote reproducibility of the presented results and to

support related research.

Hyperparameter Optimization

We follow the practice of Lago et al., 2018a to select the hyperparameters that define the model, in-

put features, and optimization settings. During this phase, the validation dataset is used to guide

the search for well performing configurations. To compare the benchmarks and the NBEATSx,

we rely on the same automated selection process: a Bayesian optimization technique that effi-

ciently explores the hyperparameter space using tree-structured Parzen estimators (HYPEROPT;

Bergstra et al. 2011). The architecture, optimization, and regularization hyperparameters are

summarized in Table 4.2. To have comparable results, during the hyperparameter optimization

stage we used the same number of configurations as in Lago et al., 2018a.

Note, that some of the methods do not require any hyperparameter optimization – e.g., the

AR1 benchmark – and some might only have one hyper-parameter to be determined, such as

the regularization parameter in the LEARx method, which is typically computed using the

information criteria or cross-validation.
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Table 4.2: Hyperparameters of NBEATSx networks. They are common to all presented datasets. We

list the typical values we considered in our experiments. The configuration that performed best on the

validation set was selected automatically.

Hyperparameter Considered Values

Architecture Parameters
Input size, size of autorregresive feature window. L ∈ {168}
Output size is the forecast horizon for day ahead forecasting. H ∈ {24}
List for architecture’s type/number of stacks. {[identity, TempConv]}.

Type of activations used accross the network. {softplus,selu,prelu,sigmoid}
Blocks separated by residual links per stack (shared across stacks). {[1,1,1], [1, 1]}.

MLP layers within each block. {2}
MLP hidden neurons on each layer of a block. Nh ∈ {50, . . . , 500}
Temporal convolution filters, for exogenous variables. Nf ∈ {2, . . . , 10}
Only interpretable, degree of trend polynomials. Npol ∈ {2}
Only interpretable, number of Fourier basis (seasonality smoothness). Nhar ∈ {6}
Whether NBEATSx coefficients take input X {True, False}

Optimization and Regularization parameters
Initialization strategy for network weights. {orthogonal, he norm, glorot norm}
Initial learning rate for regression problem. Range(5e-4,1e-2)

The number of samples for each gradient step. {256, 512}
The decay constant allows large initial lr to escape local minima. {0.5}
Number of times the learning rate is halved during train. {3}
Maximum number of iterations of gradient descent. {30000}
Iterations without validation loss improvement before stop. {10}
Frequency of validation loss measurements. {100}
Whether batch normalization is applied after each activation. {True, False}
The probability for dropout of neurons in the projection layers. Range(0,1)

The probability for dropout of neurons for the exogenous encoder. Range(0,1)

Constant to control the Lasso penalty used on the coefficients. Range(0, 0.1)

Constant that controls the influence of L2 regularization of weights. Range(1e-5,1e-0)

The objective loss function with which NBEATSx is trained. {MAE}
Random weeks from full dataset used to validate. {42}
Number of iterations of hyperparameter search. {1500}
Random seed that controls initialization of weights. DiscreteRange(1,1000)

Data Parameters
Rolling window sample frequency, for data augmentation. {1, 24}
Number of time windows included in the full dataset. 4 years

Number of validation weeks used for early stopping strategy. {40, 52}
Normalization strategy of model inputs. {none, median, invariant }
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4.5.5 Ensembling

In many recent forecasting competitions, and particularly in the M4 competition, most of the top-

performing models were ensembles (Atiya, 2020). It has been shown that in practice, combining

a diverse group of models can be a powerful form of regularization to reduce the variance of

predictions (Breiman, 1996; Nowotarski et al., 2014; Hubicka et al., 2018).

The techniques used by the forecasting community to induce diversity in the models are

plentiful. The original NBEATS model obtained its diversity from three sources, training with

different loss functions, varying the size of the input windows, and bagging models with different

random initializations (Oreshkin et al., 2020). They used the median as the aggregation function

for 180 different models. Interestingly, the original model did not rely on regularization, such

as L2 or dropout, as Oreshkin et al., 2020 found it to be good for the individual models but

detrimental to the ensemble.

In our case, we ensemble the NBEATSx model using two sources of diversity. The first

being a data augmentation technique controlled by the sampling frequency of the windows

used during training, as defined in the data parameters from Table 4.2. The second source of

diversity being whether we randomly select the early stopping set or instead use the last 42

weeks preceding the test set. Combining the data augmentation and early stopping options, we

obtain four models that we ensemble using arithmetic mean as the aggregation function. This

technique is also used by the DNN benchmark (Lago et al., 2018a; Lago et al., 2021a).

4.5.6 Forecasting Results

We conducted an empirical study involving two types of Autorregresive Models (AR1 and

ARx1) (Weron, 2014), the Lasso Estimated Auto-Regressive (LEARx) (Uniejewski et al., 2016), a

parsimonious Deep Neural Network (DNN) (Lago et al., 2018a; Lago et al., 2021a), the original

Neural Basis Expansion Analysis (NBEATS) without exogenous covariates (Oreshkin et al.,

2020), and the Exponential Smoothing Recurrent Neural Network (ESRNN) (Smyl, 2019). This

experiment examines the effects of including the covariate inputs and comparing NBEATSx
with state-of-the-art methods for the electricity price day-ahead forecasting task.

Table 4.3 summarizes the performance of the ensembled models where NBEATSx ensemble

shows prevailing performance. It improves 18.77% on average for all metrics and markets

when compared with the original NBEATS and 20.6% when compared to ESRNN without time-

dependent covariates. For the ensembled models, NBEATSx RMSE improved on average 4.68%,

MAE improved 2.53%, relMAE improved 1.97%,and sMAPE improved 1.25%. When comparing

NBEATSx ensemble against DNN ensemble on individual markets, NBEATSx improved by

5.38% on the NordPool market, by 2.48% on French market and 2.81% on German market. There

was a non-significant difference of NBEATSx performance on PJM and EPEX-BE markets of

0.24% and 1.1%, respectively.

Figure 4.6 provides a graphical representation of the statistical significance from the Giacomini-
White test (GW) for the six ensembled models, across the five markets for the MAE evaluation

metric. A similar significance analysis is conducted for the single models. The models included
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Table 4.3: Forecast accuracy measures for day-ahead electricity price predictions of ensembled models.
The ESRNN and NBEATS do not include time dependent covariates. The reported metrics are mean
absolute error (MAE), relative mean absolute error (rMAE), symmetric mean absolute percentage error
(sMAPE) and root mean squared error (RMSE). The smallest errors in each row are highlighted in bold.

*
The EPEX-DE’s LEARxresults differ from Lago et al., 2021a – the values are revised (Lago et al., 2021b)

.

AR1 ESRNN NBEATS ARx1 LEARx* DNN NBEATSx-G NBEATSx-I

NP

MAE 2.26 2.09 2.08 2.01 1.74 1.68 1.58 1.62

rMAE 0.71 0.66 0.66 0.63 0.55 0.53 0.50 0.51

sMAPE 6.47 6.04 5.96 5.84 5.01 4.88 4.63 4.70

RMSE 4.08 3.89 3.94 3.71 3.36 3.32 3.16 3.27

PJM

MAE 3.83 3.59 3.49 3.53 3.01 2.86 2.91 2.90

rMAE 0.79 0.74 0.72 0.73 0.62 0.59 0.60 0.60

sMAPE 14.5 14.12 13.57 13.64 11.98 11.33 11.54 11.61

RMSE 6.24 5.83 5.64 5.74 5.13 5.04 5.02 4.84

EPEX-BE

MAE 7.2 6.96 6.84 7.19 6.14 5.87 5.95 6.11

rMAE 0.88 0.85 0.83 0.88 0.75 0.72 0.73 0.75

sMAPE 16.26 15.84 15.80 16.11 14.55 13.45 13.86 14.02

RMSE 18.62 16.84 17.13 18.07 15.97 15.97 15.76 15.80

EPEX-FR

MAE 4.65 4.65 4.74 4.56 3.98 3.87 3.81 3.79
rMAE 0.78 0.78 0.80 0.76 0.67 0.65 0.64 0.64
sMAPE 13.03 13.22 13.30 12.7 11.57 10.81 10.59 10.69

RMSE 13.89 11.83 12.01 12.94 10.68 11.87 11.50 11.25

EPEX-DE

MAE 5.74 5.60 5.31 4.36 3.61 3.41 3.31 3.29
rMAE 0.71 0.70 0.66 0.54 0.45 0.42 0.41 0.41
sMAPE 21.37 20.97 19.61 17.73 14.74 14.08 13.99 13.99
RMSE 9.63 9.09 8.99 7.38 6.51 5.93 5.72 5.65

in the significance tests are the same as in Table 4.3: LEAR, DNN, ESRNN, NBEATS, and our

proposed methods, NBEATSx-G and NBEATSx-I. The p-value of each comparison shows if

the improvement of the model’s predictions corresponding to the column index of a cell in the

grids shown in Figure 4.6 over the model’s predictions corresponding to the row of this cell of

the grid is statistically significant. NBEATSx-G model outperformed DNN model in NP and

EPEX-DE, while NBEATSx-I outperformed it in NP, EPEX-FR, and EPEX-DE. Moreover,

no benchmark significantly outperformed NBEATSx-I and NBEATSx-G in any market.

In the Appendix A we observe similar results for the single best models chosen from the

four possible configurations of the ensemble components described in Section 4.5.5. Table A.2

summarizes the accuracy of the predictions measured with the MAE and Figure A.2 displays the

significance of the GW test. Ensembling improves the accuracy of NBEATSx by 3% on average

acrosss all markets, when compared to the single best models.

Finally, regarding the computational time complexity NBEATSx maintains good perfor-

mance. As shown in Table A.1 in the Appendix, the time necessary to compute day-ahead

predictions is in the order of miliseconds and comparable to that of the LEAR and DNN bench-

marks. Additionally, the average time needed to perform a recalibration only takes circa 50

percent more than the relatively parsimonious DNN.
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Figure 4.6: Giacomini-White test for the day-ahead predictions with mean absolute error (MAE) applied

to pairs of the ensembled models on the five electricity markets datasets. Each grid represents one market.

Each colored cell in a grid is plotted black, unless the predictions of the model corresponding to its column

of the grid outperforms the predictions of the model corresponding to its row of the grid. The color scale

reflects significance of the difference in MAE, with solid green representing the lowest p-values.
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4.6 Conclusion

We have presented NBEATSx: the new method for univariate time series forecasting with

exogenous variables. It extends the well-performing neural basis expansion analysis. The

resulting neural based method has several valuable properties that make it suitable for a wide

range of forecasting tasks. The network is fast to optimize as it is mainly composed of fully-

connected layers. It can produce interpretable results, and achieves state-of-the-art performance

on forecasting tasks where consideration of exogenous variables is fundamental.

We demonstrated NBEATSx’s utility using a set of benchmark datasets from electricity

price forecasting domain, but it can be straightforwardly applied to forecasting problems in other

domains. Qualitative evaluation shows that the interpretable configuration of NBEATSx can

provide valuable insights to the analyst, as it explains the variation of the time series by separating

it into trend, seasonality, and exogenous components, in a fashion analogous to classic time series

decomposition. Regarding the quantitative forecasting performance, we observed no significant

differences between ESRNN and NBEATS without exogenous variables. At the same time,

NBEATSx improves over NBEATS by nearly 20% and up to 5% over LEAR and DNN models

specialized for the Electricity Price Forecasting tasks. Finally, we found no significant trade-offs

between the accuracy and interpretability of NBEATSx-G and NBEATSx-I predictions.

The neural basis expansion analysis is a flexible method capable of producing accurate and

interpretable forecasts, yet there is still room for improvement. For instance, augmentation of the

harmonic functions towards wavelets or replacement of the convolutional encoder that would

generate the covariate basis with smoothing alternatives such as splines. Additionally, one can

extend the non-interpretable method by regularizing its outputs with smoothness constraints.
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Chapter 5
Probabilistic Hierarchical Forecasting

5.1 Summary

In this case study, we address the hierarchical forecasting challenge that arises when time series

data is organized into natural groups with multiple levels of aggregation, for which we need

accurate predictions that maintain probabilistic coherence. Motivated by the shortcomings of

existing methods, which often lack accuracy or are computationally complex, we propose a novel

approach that combines the strengths of neural networks with a novel probabilistic mixture

model. Our composite method is accurate, computationally efficient, and probabilistically

coherent by construction.

5.2 Motivation

Large collections of time series data are commonly organized into structures with different levels

of aggregation; examples include product and geographical groupings. It is often important to

ensure that the forecasts are coherent so that the predicted values at disaggregate levels add

up to the aggregate forecast (Hyndman et al., 2014; Athanasopoulos et al., 2017; Spiliotis et al.,

2020b). Hierarchical coherency is easy to understand for mean forecasts which are additive,

for probabilistic forecast the notion extends and probabilistic coherency is achieved when the

forecast distribution of the aggregate series is identical to the distribution of the sum of its

children’s forecast series under an implicit or explicit joint distribution (Ben Taieb et al., 2017;

Ben Taieb et al., 2021; Wickramasuriya, 2023; Panagiotelis et al., 2020; Panagiotelis et al., 2023).

While summing the most disaggregated level forecasts (bottom-up) will provide coherent

forecasts, it can perform poorly on highly disaggregated series. Existing solutions rely on

reconciliation methods that first generate independent base forecasts for each series and then

reconcile them to produce coherent forecasts (Hyndman et al., 2011; Wickramasuriya et al.,

2019). Efficiently leveraging the cross-learning approach (Makridakis et al., 2018c; Semenoglou

et al., 2021) to improve accuracy while maintaining probabilistic coherence remains a challenge.
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This chapter presents a novel method for producing probabilistic coherent forecasts. It

combines the strength of modern neural networks and an intuitive statistical model for the

disaggregated-forecast joint distribution. In contrast to earlier efforts (Han et al., 2021; Ranga-

puram et al., 2021), our approach is an extension to the Mixture Density Network (MDN; Bishop

1994). Our method is coherent by construction and does not require an explicit reconciliation

step, either as part of a single end-to-end network or as a separate step. We call it the Hierarchi-
cal Forecast Network (HINT). The HINT models the joint probability of the multivariate time

series as a finite mixture of Poisson distributions and combines that with the well-established

MQForecaster neural architecture (Wen et al., 2017; Eisenach et al., 2021). We formulate the

problem as an MDN, where we independently choose a relevant class of probabilistic model and

the neural architecture. Our method’s key advantages are:

(i) Flexible Forecast Distribution: We model the predictive distribution as a finite mixture

of Poisson random variables, which is analogous to a Poisson kernel density. The resulting

distribution is flexible, capable of accurately modeling a wide range of joint probability

distributions, compatible as an output layer with state-of-the-art neural architectures. We

will demonstrate this empirically on three different forecasting tasks in Section 5.5.

(ii) Computational Efficiency: Learning coherent forecast distributions in a high dimen-

sional hierarchical space can be computationally intractable. To alleviate this, we anchor

the HINT on a bottom level multivariate distribution and employ composite likelihood

optimization strategies, which enables us to extend to large-scale applications.

(iii) Hierarchical Forecasting Comparison: We demonstrate the effectiveness of the HINT
model on three hierarchical forecasting tasks achieving state-of-the-art results on two.

Our approach improves probabilistic coherent accuracy by 11.8% on Australian domestic

tourism data and 8.1% on the Favorita grocery sales dataset. It performs similarly to

statistical baselines on a San Francisco Bay Area dataset.

5.3 Related Work

5.3.1 Hierarchical Forecasting Notation

Mathematically a hierarchical series can be denoted by the vector y[a,b],τ = [y⊤
[a],τ | y⊤

[b],τ ]
⊤ ∈

R(Na+Nb)
for each time point τ ; where [a], [b] stand for the set of all aggregate and bottom indices

of the time series respectively, and α ∈ [a], β ∈ [b] are single aggregate and bottom time series

indices. The total number of series in the hierarchy is | [a, b] | = (Na +Nb), where | [a] | = Na

is the number of aggregated series and | [b] | = Nb the number of bottom series that are at the

most dis-aggregated level possible. Time indices for past information until t is given by the set

[t] with length | [t] | = Nt, and the h time step forecast horizon is denoted as [t+ 1 : t+ h]. e

use t to denote the forecast creation time, while τ identifies the relative forecast horizon index.

With this notation the hierarchical aggregation constraints at each time point τ ∈ [t+ 1 : t+ h]
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yβ2,τ yβ3,τ yβ4,τ

yTotal,τ

yβ1,τ

yβ1,τ + yβ2,τ yβ3,τ + yβ4,τ

Figure 5.1: A simple three level time series hierarchical structure, with four bottom level variables. The
disaggregated bottom variables are marked with gray background. In this description each node represents
non overlapping series for a single point in time.

have the following matrix representation:

y[a,b],τ = S[a,b][b]y[b],τ ⇔
[
y[a],τ

y[b],τ

]
=

[
A[a][b]

I[b][b]

]
y[b],τ (5.1)

The matrix S[a,b][b] ∈ R(Na+Nb)×Nb
aggregates the bottom level to the series above. It is

composed by the aggregation matrix A[a][b] ∈ RNa×Nb
and an Nb ×Nb identity matrix I[b][b].

Figure 5.1 represents a hierarchy where each parent node is the sum of its children. Here the

dimensions areNa = 3,Nb = 4, and the hierarchical, aggregated and base series are respectively:

yTotal,τ = yβ1,τ + yβ2,τ + yβ3,τ + yβ4,τ

y[a],τ = [yTotal,τ , yβ1,τ + yβ2,τ , yβ3,τ + yβ4,τ ]
⊺ y[b],τ = [yβ1,τ , yβ2,τ , yβ3,τ , yβ4,τ ]

⊺ (5.2)

The constraint matrix of the Figure 5.1 example and the corresponding aggregations from

Equation (5.2) is the following:

S[a,b][b] =


A[a][b]

I[b][b]

 =



1 1 1 1
1 1 0 0
0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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5.3.2 Mean Forecast Reconciliation Strategies

Statistical solutions for hierarchical forecasting implement a two-stage process, first generating

base forecasts ŷ[a,b],τ ∈ RNa+Nb
and then reconciling them into coherent forecasts ỹ[a,b],τ .

Definition 5.1: Hierarchical Reconciliation

Hierarchical reconciliation can be compactly expressed by:

ỹ[a,b],τ = S[a,b][b]P[b][a,b]ŷ[a,b],τ (5.3)

where S[a,b][b] ∈ R(Na+Nb)×Nb
is the hierarchical aggregation matrix, P[b][a,b] ∈ RNb×(Na+Nb)

is a matrix determined by the reconciliation strategies.

The most common reconciliation methods can be classified into top-down, bottom-up and

alternative approaches
1
.

• Bottom-up: The simple bottom-up strategy, abbreviated as NaiveBU (Orcutt et al., 1968),

first generates bottom level forecasts and then aggregates them to produce forecasts for

all the series in the multivariate structure. Here the reconciliation matrix is given by:

P[b][a,b] = [0[b][a] | I[b][b]] (5.4)

• Top-down: The top-down strategy, abbreviated as TD (Gross and Sohl, 1990; Fliedner,

1999), disaggregates down the total forecast through hierarchy using proportions that can

be historical actuals or forecasted separately. Its reconciliation matrix is given by:

P[b][a,b] = [p[b] | 0[b][a,b −1]] (5.5)

• Alternative: The more recent middle-out strategies, denoted as MO (Hyndman et al.,

2011; Hyndman and Athanasopoulos, 2018a)), treat the second stage reconciliation as

an optimization problem for the matrix P[b][a,b]. These reconciliation techniques include

among others the minimum trace reconciliation (MinT; Wickramasuriya et al. 2019) and

the empirical risk minimization approach (ERM; Souhaib and Bonsoo 2019).

Despite the advancements in alternative reconciliation strategies with statistical solutions,

as mentioned in Section 5.2, there are still fundamental limitations. First, most post-process

reconciliation methods produce mean forecasts but not probabilistic forecasts, with some ex-

ceptions that have relied on univariate statistical methods with strong probability assumptions

for the base series that may be restrictive (Ben Taieb et al., 2017; Panagiotelis et al., 2020).

Second, the mentioned methods independently learn the model parameters of the base level

forecasts, limiting the base model’s optimization inputs to single series. This approach induces

an over-fitting prone setting for complex nonlinear methods, which, as noted by the forecasting

community, is one of their biggest challenges (Makridakis et al., 2018b). The implied data scarcity

translates into a missed opportunity to leverage the flexibility of nonlinear methods.

1
For our work’s purposes we implemented in Python a comprehensive collection of hierarchical reconciliation

methods, we made them available in the HierarchicalForecast library (Olivares et al., 2022c).
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5.3.3 Probabilistic Coherent Forecasting

There are few specialized methods on coherent probabilistic forecasting as most research on

hierarchical forecasting has been limited to point predictions. Exceptions are the work by Shang

and Hyndman, 2017 and Jeon et al., 2019 that provide an early exploration of forecast quantile

reconciliation; Ben Taieb et al., 2017 and Ben Taieb et al., 2021 that propose the combination of

bottom-level forecast marginal distributions with empirical copula functions describing their

dependencies to create aggregate predictive distributions.

To the best of our knowledge, a formal definition of probabilistic coherence has only been

explored by Ben Taieb et al. 2021, Puwasala et al. 2018, Wickramasuriya 2023 and Panagiotelis

et al. 2023. Ben Taieb et al. 2021 provides a convolution-based definition while Panagiotelis et al.

2023 provide a generalized and intuitive framework
2

that we follow in our work and introduce:

Definition 5.2: Probabilistic Coherence

Let (Ω[b],F[b], P̂[b]) be a probabilistic forecast space, with sample spaceΩ[b],F[b] its σ-algebra,

and P̂[b] a forecast probability. Let S[a,b][b](·) : Ω[b] 7→ Ω[a,b] be the linear transformation

implied by the constraints matrix. A coherent probabilistic forecast space (Ω[a,b],F[a,b], P̂[a,b])
satisfies:

P̂[a,b]

(
S[a,b][b](B)

)
= P̂[b] (B) for any set B ∈ F[b] and set’s image S[a,b][b](B) ∈ F[a,b]

(5.6)

i.e., it assigns a zero probability to sets in RNa+Nb
not containing any coherent forecasts.

For a simple definition-satisfying example, consider three random variables (Yα, Yβ1 , Yβ2)

with Yα := Yβ1 + Yβ2 . A coherent forecast assigns zero probability to the variable realizations

(yα, yβ1 , yβ2) if they do not satisfy the aggregation constraint yα = yβ1 + yβ2 . An equivalent

definition of coherence is to require that the marginal distributions are derivable from the joint

distribution of the bottom level random variables. In this case, the probability function of interest

is P̂(Yβ1 , Yβ2), and the marginal probabilities can be derived from it using indicator functions as

follows:

P̂(Yβ1 = yβ1) =
∑
yβ2

P̂(Yβ1 = yβ1 , Yβ2 = yβ2) and P̂(Yβ2 = yβ2) =
∑
yβ1

P̂(Yβ1 = yβ1 , Yβ2 = yβ2)

P̂(Yα = yα) =
∑

yβ1 ,yβ2

P̂(Yβ1 = yβ1 , Yβ2 = yβ2) 1(yα = yβ1 + yβ2)

where 1(yα = yβ1 + yβ2) equals 1 when yα = yβ1 + yβ2 , and 0 otherwise. The marginal

probability for Yα, has the aggregation constraint built into its definition and is by construction

a hierarchically coherent probability with respect to P̂(Yβ1) and P̂(Yβ2). Note that knowledge of

the joint distribution is not required to generate hierarchically coherent forecast. However, if we

had access to the joint distribution constructing hierarchically coherent marginal distributions

becomes straight forward.

2
Rangapuram et al., 2021 informally introduce a probabilistic coherence notion, with the HierE2E method.
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5.3.4 Hierarchical Neural Forecasting

In the last decade, neural network-based forecasting methods have become ubiquitous in large-

scale forecasting applications (Wen et al., 2017; Böse et al., 2017; Madeka et al., 2018; Eisenach

et al., 2021), transcending industry boundaries into academia, as it has redefined the state-of-

the-art in many practical tasks (Yu et al., 2018; Ravuri et al., 2021; Olivares et al., 2022a) and

forecasting competitions (Makridakis et al., 2018c; Makridakis et al., 2020b).

The latest neural network-based solutions to the hierarchical forecasting include methods

like the Simultaneous Hierarchically Reconciled Quantile Regression (SHARQ; Han et al. 2021) and

Hierarchically Regularized Deep Forecasting (HIRED; Paria et al. 2021) and the Probabilistic Robust
Hierarchical Network (PROFHiT; Kamarthi et al. 2022) that augment the training loss function

with approximations to the hierarchical constraints. And Hierarchical End-to-End learning

(HierE2E; Rangapuram et al. 2021) that integrates an alternative reconciliation strategy in

its VAR forecasts through linear projections. With the exception of HierE2E, the rest of

these methods encourage probabilistic coherence through regularization but do not guarantee

it. Additionally, if a user requires updating the hierarchical structure of interest, a whole new

optimization of the networks would be needed for the existing methods to forecast the structure

correctly.

Our proposed method, HINT, addresses these deficiencies by specifying any network’s

output as our proposed Poisson Mixture. With this predictive distribution, a model needs only

to forecast the hierarchy’s bottom-most level, after which any desired hierarchical structure of

interest can be predicted with guaranteed probabilistic hierarchical coherence.

5.4 Methodology

5.4.1 Multivariate Poisson Mixture Distribution

In this work, we focus our attention on hierarchical forecasting of non-negative discrete events.

Many forecasting problems fall in this category as shown by the data sets described in Section 5.5.

However, the general framework presented here works for continuous distributions as well

with a suitably chosen base class for the mixture distribution e.g. Gaussian distribution. For

discrete events, we start by postulating that the forecast joint probability of bottom level future

multivariate time series realization y[b][t+1:t+h] ∈ NNb×h
is captured by the following mixture:

P̂
(
y[b][t+1:t+h]| λ[b][k][t+1:t+h]

)
=

Nk∑
κ=1

wκ

∏
(β,τ)∈[b][t+1:t+h]

Poisson (yβ,τ |λβ,κ,τ )

=

Nk∑
κ=1

wκ

∏
(β,τ)∈[b][t+1:t+h]

λ
yβ,τ
β,κ,τ

yβ,τ !
e−λβ,κ,τ

(5.7)

The joint distribution in Equation (5.7), assumes that the modeled observations y[b][t+1:t+h]

are conditionally independent given the latent Poisson rates λ[b][k][t+1:t+h]. That is for all bottom
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Figure 5.2: The Poisson Mixture distribution has desirable properties that make it well-suited for

probabilistic hierarchical forecasting for count data. Under minimal conditions, its aggregation rule

implies probabilistic coherence of the random variables it models.

level series and horizons (β, τ) ̸= (β′, τ ′) and (β, τ), (β′, τ ′) ∈ [b][t+ 1 : t+ h]:

P̂(Yβ,τ , Yβ′,τ ′ |λβ,κ,τ , λβ′,κ,τ ′) = P̂(Yβ,τ |λβ,κ,τ )P̂(Yβ′,τ ′ |λβ′,κ,τ ′) (5.8)

The mixture model is able to describe single bottom level and their correlations through

the distribution of the mixture’s latent variables defined by the Poisson rates λ[b][k][t+1:t+h] ∈
RNb×Nk×h

and the associated weights w[k] ∈ [0, 1]Nk
, with w[k] ≥ 0 and

∑Nk

κ=1wκ = 1. The

number of components | [k] |= Nk is a hyperparameter of the model that controls the flexibility

of the mixture distribution. We show an example of the Poisson mixture distribution in Figure 5.2.

5.4.2 Marginal Distributions for Bottom Series

Equation (5.7) describes the joint distribution of all bottom level time series. We can derive

the marginal distribution for one of the bottom level series β ∈ [b] and for a single future time

period τ ∈ [t+ 1 : t+ h] by integrating out the remaining time and series indices. The marginal

distribution is:

P̂(Yβ,τ = yβ,τ ) =
∑

y[b][t+1:t+h]\(β,τ)

Nk∑
κ=1

wκ

∏
(β′,τ ′)∈[b][t+1:t+h]

Poisson(yβ′,τ ′|λβ′,κ,τ ′)

=

Nk∑
κ=1

wκ Poisson(yβ,τ |λβ,κ,τ ) (5.9)

We get a clean final expression for the marginal distribution, which is equivalent to simply

dropping all other time series and time periods from the product in Equation (5.7).
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5.4.3 Marginal Distributions for Aggregate Series

An important consequence of the conditional independence in Equation (5.8) is that the marginal

distributions at aggregate levelsy[a],τ can be computed via simple component-wise addition of the

lower level Poisson rates. For example consider an aggregate level variable Yα,τ = Yβ1,τ + Yβ2,τ .

The marginal distribution for Yα,τ can be derived from the joint distribution in Equation (5.7)

as follows. First marginalize all other series and time indices (as done in Section 5.4.2 above),

which gives us the joint distribution for Yβ1,τ and Yβ2,τ

P̂(Yβ1,τ = yβ1,τ , Yβ2,τ = yβ2,τ ) =

Nk∑
κ=1

wκ Poisson(yβ1,τ |λβ1,κ,τ )× Poisson(yβ2,τ |λβ2,κ,τ )

Now, the aggregate marginal distribution is

P̂(Yα,τ = yα,τ ) =
∑

yβ1,τ ,yβ2,τ

P̂(Yβ1,τ = yβ1,τ , Yβ2,τ = yβ2,τ ) 1(ya,τ = yβ1,τ + yβ2,τ )

For each mixture component κ, the distributions of yβ1,τ and yβ2,τ conditioned on respec-

tive Poisson rates λβ1,κ,τ and λβ2,κ,τ are independent Poisson distributions, and therefore,

the distribution of the aggregate is another Poisson Mixture distribution with parameters

λa,κ,τ = λβ1,κ,τ + λβ2,κ,τ .

P̂(Yα,τ = yα,τ ) =

Nk∑
κ=1

wκPoisson(yα,τ |λα,κ,τ = λβ1,κ,τ + λβ2,κ,τ )

The aggregation rule can be concisely described as:

λ[a][k],τ = A[a][b]λ[b][k],τ (5.10)

with A[a][b] the hierarchical aggregation matrix defined in Section 5.3.1. The joint predic-

tive distribution is probabilistic coherent by construction. We offer a formal proof of HINT’

satisfaction of the probabilistic coherence property from Definition 5.2 in Section 5.3.3.

5.4.4 Covariance Matrix

Using the law of total covariance and the conditional independence from Equation (5.8), we show

in Appendix B.2 that the covariance of any two bottom level series naturally follows:

Cov(Yβ,τ , Yβ′,τ ′) = λβ,τ1(β = β′)1(τ = τ ′) +

Nk∑
κ=1

wκ

(
λβ,κ,τ − λβ,τ

) (
λβ′,κ,τ ′ − λβ′,τ ′

)
(5.11)

where λβ,τ =
∑Nk

κ=1wκλβ,κ,τ . Appendix B.3 shows the non-diagonal covariance matrix

expressivity, as determined by its rank, depends on the number of mixture components from

Equation (5.7).
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5.4.5 Parameter Estimation and Inference

Maximum Joint Likelihood

To estimate model parameters, we can use Maximum Likelihood Estimation (MLE) implied by the

joint distribution from Equation (5.7). Let θ represent the neural network parameters as described

in Section 5.4.6, we parameterize the probabilistic model with Poisson rates λ[b][k][t+1:t+h] as

follows:

λ[b][k][t+1:t+h] := λ̂[b][k][t+1:t+h](θ |y[b][:t],x
(h)
[b][:t],x

(f)
[b][t+1:t+h],x

(s)
[b] )

w[k] := ŵ[k](θ |x̃(h)
[:t] , x̃

(s))
(5.12)

We condition the probability on the history of the bottom level time series, other associated

historical covariates, future information available at the forecast generation time and static

features, denoted by y[b][:t], x
(h)
[b][:t], x

(f)
[b][t+1:t+h] and x

(s)
[b] respectively. And the shared mixture

weights w[k], are conditioned on temporal and static aggregate features shared across the bottom

series, x̃
(h)
[:t] and x̃(s)

respectively.

We denote the combined conditioning information as

x
(h)
[:t] = {x(h)

[b][:t], x̃
(h)
[:t] } and x(s) = {x(s)

[b] , x̃
(s)} (5.13)

The negative log-likelihood can then be written
3
:

L(θ) = −log

 Nk∑
κ=1

ŵκ(θ)
∏

(β,τ)∈[b][t+1:t+h]

(
(λ̂β,κ,τ (θ))

yβ,τ
exp {−λ̂β,κ,τ (θ)}

(yβ,τ )!

) (5.14)

This is the same expression as the joint probability mass function in Equation (5.7) but

parametrized as a function of the neural network parameters θ. The maximum likelihood

estimation method (MLE) has desirable properties like statistical efficiency and consistency.

However, the mixture components cannot be estimated separately, for this reason, MLE is

only feasible for hierarchical time series with a small number of series and needs its scalability

improved.

Maximum Composite Likelihood

An attractive, computationally efficient alternative to MLE for estimating the model parameters

is to maximize the composite likelihood. This method involves breaking up the high-dimensional

space into smaller sub-spaces, and the composite likelihood consists of the weighted product

of the marginal likelihoods of the subspaces (Lindsay, 1988). For simplicity, we used uniform

weights. In addition to the computational efficiency, maximizing the composite likelihood

provides a robust and unbiased estimate of marginal model parameters with the drawback that

the model inference may suffer from properties similar to a misspecified model (Varin et al.,

2011). We will discuss variants of the composite likelihood below.

3
We kept notations simple and omitted the explicit conditioning on input features.
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Naive Bottom Up: A simple option of using composite likelihood is to define each bottom-

level time series as its likelihood sub-space and treat them as independent during model training

(Orcutt et al., 1968). We refer to this estimation method for the HINT as Naive Bottom Up (HINT-

NaiveBU). The negative logarithm of the HINT-NaiveBU composite likelihood follows:

LNaiveBU(θ) = −
∑
β∈[b]

log

 Nk∑
κ=1

ŵκ(θ)
∏

τ∈[t+1:t+h]

(
(λ̂β,κ,τ (θ))

yβ,τ
exp {−λ̂β,κ,τ (θ)}

(yβ,τ )!

) (5.15)

Even though the sub-space consists of single bottom level time series, HINT-NaiveBU is still a

multi-variate model with the composite likelihood defined over multiple time points [t+1 : t+h].
Maximizing the HINT-NaiveBU composite likelihood will still learn correlations across the

time points and will generate coherent forecast distributions for aggregations in the time

dimension. It does not attempt, however, to discover correlations across different time series.

Group Bottom Up: If prior information helps us identify groups of time series with inter-

esting correlation structures, we may estimate them by including the groups in the composite

likelihood. We refer to this estimation method for the HINT as Group Bottom Up (HINT-

GroupBU). Let G = {[gi]} be time-series groups, then the negative log composite likelihood

for the HINT-GroupBU is

LGroupBU(θ) = −
∑
[gi]∈G

log

 Nk∑
κ=1

ŵκ(θ)
∏

(β,τ)∈[gi][t+1:t+h]

(
(λ̂β,κ,τ (θ))

yβ,τ
exp {−λ̂β,κ,τ (θ)}

(yβ,τ )!

)
(5.16)

The main advantage over HINT-NaiveBU is that the model now learns to capture the

cross-series relationships. In this paper we only rely on intuitive grouping like geographic

proximity, but one could in principle employ more sophisticated methods like clustering to

define the groups, as we mention in Section 5.6. To optimize the learning objective we use

stochastic gradient descent, and sample train series batches at the group level.

Forecast Inference

As mentioned earlier, model inference from composite likelihood estimation suffers from prob-

lems similar to model misspecification. This is because of the independence assumed across

sub-spaces. In our model, the maximum composite likelihood estimates do not understand how

mixture components learnt for one sub-space relate to mixture components learnt for a different

subspace. However, we need to identify mixture components across sub-spaces in order to

define the joint distribution in Equation (5.7) across all bottom level time series. Knowing this

joint distribution is at the crux of forecast inference from our model. Fortunately, there is a

natural way for us to resolve this issue. Both in the HINT-NaiveBU composite likelihood

in Equation (5.15) and in the HINT-GroupBU composite likelihood in Equation (5.16), the

weights ŵ[k](θ) ∈ RNk} are shared across all sub-spaces. . We identify components with the

same weight as belonging to the same multivariate sample, and hence providing the full joint

distribution. We call this method weight matching.

61



For the HINT-NaiveBU estimation method, the weight matching method is an statistical

model over extension on the simplicity of the joint distribution. The HINT-GroupBU approach

significantly alleviates this problem because the model parameters are well defined within each

group [gi] ∈ G and if most of the interesting correlations are already captured within each group,

then much less burden is placed on the weight matching method. We show in the empirical

evaluation of Section Section 5.5 that both HINT-NaiveBU and HINT-GroupBU models

perform favorably when compared to other mean and probabilistic hierarchical forecasting

methods, and between the two, HINT-GroupBU is generally more accurate when the time

series grouping given is informative.

5.4.6 Hierarchical Mixture Network

Our primary goal is to create a probabilistic coherent forecasting model that is accurate and

efficient. For this purpose, we opt to extend the MQForecaster family (Wen et al., 2017; Eisenach

et al., 2021), proven by its history of industry service, with the Poisson mixture distribution.

We refer to this model as the Hierarchical Forecast Network (HINT). Our MQForecaster
architecture selection is driven by its high computational efficiency consequence of the forking-
sequences technique and multi-step forecasting strategy. In addition to its ability to incorporate

static, and known future temporal features.

5.4.7 Model Features

As part of the innovations within our work, we propose to separate the bottom-level and

aggregate-level features that we use in the forecasts. Sharing aggregate-level features across their

respective bottom series, helps simplify the model’s inputs and reducing redundant information,

and greatly improving the model’s memory requirements.

We follow the hierarchical forecasting literature practice for the static features and send the

group identifiers implied by the hierarchy structure. We denote them

x(s) = {x(s)
[b] , x̃(s)}. (5.17)

Regarding temporal features, for the bottom level, we use the bottom series’ past; for the

aggregate level we use the parent node series’ past. The future temporal information available

can be problem specific like prices or promotions, or other simpler model forecasts as inputs,

such as Naive or SNaive that help the model predict series levels and seasonalities. We denote

the historical and future temporal features as

x
(h)
[:t] = {x(h)

[b][:t], x̃
(h)
[:t] } and x

(f)
[:t+h] = {x(f)

[b][:t+h], x̃
(f)
[:t+h]} (5.18)
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ŷ[b],t+1
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Figure 5.3: The Hierarchical Forecast Network (HINT) is a Sequence-to-Sequence with Context network

that uses dilated temporal convolutions as the primary encoder and MLP decoders for a direct multi-step

forecast. The forked decoders share parameters and create joint forecast distribution for each encoder’s

time point, making the architecture efficient in its optimization and forecasts.

5.4.8 Model Architecture

In summary, the HINT builds on the Multi Quantile Forecaster Family (MQForecaster) architec-

ture that is based on Seq2Seq-C (Cho et al., 2014). TheHINT uses Temporal Convolution Network

(TCN) (Oord et al., 2016) to encode the available history into hidden states and uses forked

decoders based on Multi Layer Perceptron (MLP) (Rosenblatt, 1961) in a direct multi-horizon

forecast strategy (Amir and Souhaib, 2016).

Encoder

As explained earlier the HINT main encoder is a stack of dilated temporal convolutions. Addi-

tionally, we use a global dense layer to encode the static features and a local dense layer, shared

across time, to encode the available future information. The encoder for each time [t] and its

components are described in Equation (5.19).

h
(h)
t = {h(h)

1,t , h̃
(h)
2,t } = {TCN(x

(h)
[b][:t]) , TCN(x̃

(h)
[:t] )}

h(s) = {h(s)
1 , h

(s)
2 } = {MLP(x

(s)
[b] ) , MLP(x̃(s))}

h
(f)
t = MLPL(x

(f)
[b][:t+h])

(5.19)
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The encoder’s output in Equation (5.20) is a set of shared and bottom level encoded features

h1,t andh2,t. The first concatenates all the encoded pasth
(h)
1,t , h

(h)
2,t ∈ RNcf

, statich
(s)
1 , h

(s)
2 ∈ RNs

and available future h
(f)
t ∈ RNf

information
4
. The second one concatenates the encoded past

h
(p)
2,t ∈ RNp

, and static h
(s)
2 ∈ RNs

shared features.

ht = {h1,t, h2,t} = {[h(h)
1,t |h

(h)
2,t |h

(s)
1 |h(s)

2 |h(f)
t ], [h

(h)
2,t |h

(s)
2 ]}

(5.20)

Forked Decoders

The HINT uses a two-branch MLP decoder. The first decoder branch, summarizes the encoder

output and future available information into two contexts: The horizon-agnostic context set

c(ag) ∈ RN
ag and the horizon-specific context c

(sp)
[t+1:t+h] ∈ RNsp×h

that provides structural aware-

ness of the forecast horizon and plays a crucial role in expressing recurring patterns in the time

series if any. Equation (5.21) describes the first decoder branch:

c(ag) = {c(ag)1 , c
(ag)
2 } = {MLP(h1,t), MLP(h2,t)}

c
(sp)
[t+1:t+h] = MLPL(h1,t) (5.21)

The second decoder branch adapts the horizon-specific and horizon-agnostic contexts into

the parameters of the Poisson mixture distribution. For the horizon-specific Poisson rates, we

use the forking-sequence technique with a series of decoders with shared parameters for each

time point [t] and for the mixture weights, we apply an MLP followed by a softmax on the

aggregate horizon agnostic context. Equation (5.22) describes the second decoder branch:

λ̂[b][k][t+1:t+h] = MLPL(c
(ag)
1 , c

(sp)
[t+1:t+h], x

(f)
[b][t+1:t+h])

ŵ[k] = SoftMax(MLP(c
(ag)
2 ))

(5.22)

5.5 Experiments

5.5.1 Hierarchical Datasets

To evaluate our method, we consider three forecasting tasks where the objective is to provide

quantile forecasts for each time series in the group or hierarchy structure. All the three datasets

that we use in the empirical evaluation
5

are publicly available and have been used in the

hierarchical forecasting literature (Wickramasuriya et al., 2019; Souhaib and Bonsoo, 2019;

Rangapuram et al., 2021; Paria et al., 2021). Table 5.1 summarizes the datasets’ characteristics
6

4
The local horizon-specific MLPL aligns future seasonalities and events and improves the forecast’s sharpness.

5Traffic is available at the UCI ML repository. Tourism-L is available at MinT reconciliation web page.

Favorita is available in its Kaggle Competition url.

6
We include more details for the Traffic, Tourism-L, and Favorita datasets in Appendix B.4.
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Table 5.1: Summary, hierarchical structure and forecast horizon of datasets used in our empirical study.

Dataset Total Aggregated Bottom Levels Observations Horizon (h)

Traffic 207 7 200 4 366 1

Tourism-L 555 175 76 / 304 4 / 5 228 12

Favorita 371,312 153,386 217,944 4 1,688 34

(a) Traffic (b) Tourism (c) Favorita

Figure 5.4: Empirical evaluation datasets’ hierarchical constraints visualization. (a) Traffic groups

200 highways’ occupancy series into quarters, halves and total. (b) Tourism-L groups its 555 regional

visit series, into a combination travel purpose, zones, states and country geographical aggregations. (c)

Favorita groups its grocery sales geographically, by store, city, state and country levels.

The Tourism-L (Tourism Australia, Canberra, 2019) is an Australian Tourism dataset

that contains 555 monthly visit series from 1998 to 2016, grouped by geographical regions

and travel purposes. Favorita (Corporación Favorita, 2018) is a Kaggle competition dataset

of grocery item sales daily history with additional information on promotions, items, stores,

and holidays, containing 371,312 series from January 2013 to August 2017, with a geographic

hierarchy of states, cities, and stores. We show their hierarchical constraints matrix in Figure 5.4.

Traffic (Dua and Graff, 2017; Souhaib and Bonsoo, 2019) measures the occupancy of 200 car

lanes in the San Francisco Bay Area freeways, randomly grouped into a year of daily observations

with 207 series hierarchical structure.

The datasets unique characteristics provide an opportunity to showcase the broad appli-

cability of the HINT. Tourism-L allows us to test the HINT to model group structures

with multiple hierarchies. Favorita allows us to test the HINT on a large-scale dataset.

Traffic is composed of randomly assigned hierarchical groupings that may not have any

informative structures for the HINT to learn with GroupBU.
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(b) HINT-GroupBU

Figure 5.5: HINT-NaiveBU and HINT-GroupBU forecast distributions on a Tourism-L hierarchi-

cal series. The top row shows total tourist visits in Australia, the second row shows the visits to Australia

for the North South Wales state (A), the third row shows the holiday visits in the metropolitan Area

of New South Wales (AA), the fourth row shows the Sidney total visits (AAA), the final row shows the

holiday visits to Sidney. Forecast distributions, 99% and 75% prediction intervals in light and dark blue.

5.5.2 Time Series Covariance Modeling

As described in Section 5.4.4, when in the presence of informative group structures, the HINT
can use the multivariate Poisson joint distribution expressiveness to its advantage, as it better

models the dependencies within the series groups considered in its estimation while remaining

computationally efficient. In this subsection, we demonstrate HINT’s distribution versatility

showing how it can leverage the presence of complex correlation structures like the ones present

Tourism-L and Favorita datasets to improve the forecast sharpness.

Figure 5.5 shows how HINT-NaiveBU’s composite likelihood suffers from a joint bottom-

level series probability misspecification, as it does not consider its interactions. In contrast,

the HINT-GroupBU method correctly estimates Tourism-L’s bottom-level correlations

improving the forecast distribution concentration of the upper-level series. We validate these in-

tuitions in the experiments of Section 5.5 where HINT-GroupBU outperforms the probabilistic

coherent forecasting baselines in the Tourism-L and Favorita datasets with informative

group series structures. HINT-NaiveBU performs well on disaggregated series and means as

we show in Section 5.5, and produces forecasts comparable to those of hierarchical forecasting

baselines on the Tourism-L and Favorita datasets, while it outperforms them in the

Traffic dataset where the hierarchical structure is noisy or uninformative, since its group

structure was randomly assigned.
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Test SetValidation Set 

Figure 5.6: Geographically linked time series from the Favorita dataset. The top level shows the

sales for a grocery item for the Favorita stores in the country of Ecuador. The second level shows the sold

units within the Pichincha state, the third level shows the sales for the city of Quito, the final level shows

the sales for the item at a particular store. For this dataset, the training set comprises all the observations

preceding the validation and test sets. The validation set (between the first and second dotted lines) is the

34 days before the test set. The held-out test set (marked by the last dotted line) is the last 34 observations.

5.5.3 Datasets Partition and Preprocessing

For the main experiments we separate the train, validation and test datasets’ partition as follows:

we hold out the final horizon-length observations as the test set. In a sliding-window fashion,

we use the horizon-length that precedes the test set as the validation set and treat as training set
the rest of the past information. A partition example is depicted in Figure 5.6.

For comparability with recent hierarchical forecasting literature, we keep ourselves as close

as possible to the preprocessing and wrangling of the datasets to that of Rangapuram et al., 2021
7
.

In general, the static variables that we consider on all the datasets correspond to the hierarchical

and group designators as categorical variables implied by the hierarchical constraint matrix. The

temporal covariates that we consider are the time series for the upper levels of the hierarchy, as

well as calendar covariates associated with the time series frequency of each dataset. As future
data, we include calendar covariates to help the HINT capture seasonalities.

7
The pre-processed datasets are available in the hierarchical forecasting extension to the GluonTS library.
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5.5.4 Evaluation

Probabilistic Forecasting

The primary evaluation metric of the model’s forecasts is based on the Multi Quantile Loss

(MQL) (Matheson and Winkler, 1976); consider the estimated cumulative distribution function

F̂i,τ , of the variable Yi,τ , and its observation yi,τ , the loss is defined as:

QL(F̂i,τ , yi,τ )q = 2
(
1{yi,τ ≤ F̂−1

i,τ ( q )} − q
)(

F̂−1
i,τ ( q )− yi,τ

)
(5.23)

We summarize the evaluation, for convenience of exposition and to ensure the comparability

of our results with the existing literature, using the Continuous Ranked Probability Score

(CRPS) (Matheson and Winkler, 1976)
8
. We use the following mean scaled CRPS (Bolin and

Wallin, 2019; Makridakis et al., 2022) version:

CRPS(F̂[i ],τ ,y[i ],τ ) =
2

|[ i ]|
∑
i

∫ 1

0

QL(F̂i,τ , yi,τ )qdq (5.24)

sCRPS(F̂[i ],τ ,y[i ],τ ) =
CRPS(F̂[i ],τ ,y[i ],τ )∑

i |yi,τ |
(5.25)

The CRPS measures the forecast distributions’ accuracy and has desirable theoretical proper-

ties as a metric (Gneiting and Ranjan, 2011; Bolin and Wallin, 2019). For instance it is a proper
scoring rule, since for any forecast distribution F̂i,τ and true distribution Fi,τ the expected score

satisfies:

EYi,τ
[CRPS(Fi,τ , Yi,τ )] ≤ EYi,τ

[
CRPS(F̂i,τ , Yi,τ )

]
(5.26)

which implies that it will prefer an ideal probabilistic forecasting system over any other.

The main focus of the paper is probabilistic coherent forecasting, yet we complement the

results from Section 5.5.6 with the evaluation of HINT’s mean hierarchical forecasts in Sec-

tion 5.5.7.

Mean Forecasting

To evaluate the mean hierarchical forecasts we take recommendations from Hyndman and

Koehler, 2006 and define the relative Mean Squared Error (relMSE) based on the following

Equation:

relMSE(y, ŷ, ỹ) =
MSE(y, ŷ)

MSE(y, ỹ)
(5.27)

where y, ŷ, ỹ ∈ RN×H
represent the time series observations, the mean forecasts and the

Naive baseline forecasts respectively. As a relative measurement relMSE removes the data’s

scale while comparing to the baseline prediction.

8
In practice the evaluation of the CRPS uses numerical integration technique, that discretizes the quantiles and

treats the integral with a left Riemann approximation, averaging over uniformly distanced quantiles.
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Table 5.2: Considered hyperparameters for the Hierarchical Forecast Network (HINT). The learning rate,

random seed, and SGD epochs that performed best on the validation set were selected automatically in

each HYPEROPT run. The rest parameters were configured once per dataset, as explained in B.6.

*
The Parametrized Exponential Linear Unit (PeLU) modifies the ReLU activation improving the network’s training speed Clevert et al., 2015.

Hyperparameter Considered Values

Initial learning rate for SGD optimization. lr ∈ [0.00001, 0.01]
SGD full passes to dataset (epochs). n epochs ∈ {10, . . . , 3000}
Random seed that controls initialization of weights. seed train ∈ {1, . . . , 10}
SGD Batch Size. batch size ∈ [4, 100]
Activation Function. PeLU

*

Temporal Convolution Kernel Size. Nck ∈ {2, 7}
Temporal Convolution Layers. Ncl ∈ {3, 5}
Temporal Convolution Filters. Ncf ∈ {10, 30}
Future Encoder Dimension. Nf ∈ {50}
Static Encoder Dimension. Ns ∈ {100}
Horizon Agnostic Decoder Dimensions. Nag ∈ {50}
Horizon Specific Decoder Dimensions. Nsp ∈ {20}
Poisson Mixture Weights Decoder Layers. Nwdl ∈ {3, 4}
Poisson Mixture Rate Decoder Layers. Nrdl ∈ {2, 3, 4}
Local Decoder Dimensions. Nk ∈ {25, 50, 100}

5.5.5 Train and Hyperparameter Optimization

For the overall hyperparameter selection, we used a standard two-stage approach where we

first fixed the architecture, and the estimated probability distribution, and a second stage

where we optimized the architecture’s training procedure. Keeping a second stage explored

hyperparameter space small serves two purposes: It keeps space exploration computationally

tractable and showcases HINT’s robustness, broad applicability, and accuracy with minor

modifications. We defer some hyperparameter selection details to Appendix B.6.

In the first stage we select the number of HINT’s mixture components that are responsible

for single-series forecasting and modeling bottom-level correlations, as stated in Section 5.4.5 and

shown in Appendix B.3. For each dataset, we selected the components optimally using temporal

cross-validation in Appendix B.5 ablation study, where we found that complex correlation

structures favored a higher number of components. To observe the effects of modeling the series

covariance, we compared HINT-GroupBU and HINT-NaiveBU variants.

In the second stage, as shown in Table 5.2, the hyperparameter space that we consider for

optimization is minimal. We only tune the learning rate, random seed to escape underperforming

local minima, and the number of SGD epochs as a form of regularization (Yao et al., 2007).

During the hyperparameter optimization phase, we measure the model sCRPS performance

on the validation set described in Section 5.5.3, and use HYPEROPT (Bergstra et al., 2011), a

Bayesian optimization library, to efficiently explore the hyperparameters based on the validation

measurements.

After the optimal hyperparameters are determined, we estimate the model parameters again

by shifting the training window forward, noted as the retrain phase, and predict for the final

test set. We refer to the combination of the hyperparameter optimization and retrain phases as a

run. The HINT is implemented using MXNet (Tianqi Chen et al., 2015). To train the network,

we minimize the negative log-composite likelihood variant from Section 5.4.5, using stochastic

gradient descent with Adaptive Moment Estimation SGD (ADAM) (Kingma and Ba, 2014).
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Table 5.3: Empirical evaluation of probabilistic coherent forecasts. Mean scaled continuous ranked
probability score (sCRPS) averaged over 8 runs, at each aggregation level, the best result is highlighted

(lower measurements are preferred). Methods without standard deviation have deterministic solutions.

*
The HierE2E results differ from Rangapuram et al., 2018, sCRPS quantile interval space has granularity of 1 percent over its original 5 percent.

** PERMBU-MinT on Tourism-L is unavailable because the original implementation, currently can’t be applied to structures beyond single hierarchies.

Dataset Level HINT-GroupBU HINT-NaiveBU HierE2E* PERMBU-MinT**
ARIMA GLMPoisson

Traffic

Overall 0.0907± 0.0024 0.0704± 0.0014 0.0375± 0.0058 0.0677± 0.0061 0.0751 0.0771

1 (geo.) 0.0397± 0.0044 0.0134± 0.0022 0.0183± 0.0091 0.0331± 0.0085 0.0376 0.0063

2 (geo.) 0.0537± 0.0024 0.0289± 0.0017 0.0183± 0.0081 0.0341± 0.0081 0.0412 0.0194

3 (geo.) 0.0538± 0.0022 0.0290± 0.0011 0.0209± 0.0071 0.0417± 0.0061 0.0549 0.0406

4 (geo.) 0.2155± 0.0022 0.2101± 0.0008 0.0974± 0.0021 0.1621± 0.0027 0.1665 0.2420

Tourism-L

Overall 0.1249± 0.0020 0.1274± 0.0028 0.1472± 0.0029 - 0.1416 0.1762

1 (geo.) 0.0431± 0.0042 0.0514± 0.0030 0.0842± 0.0051 - 0.0263 0.0854

2 (geo.) 0.0637± 0.0032 0.0705± 0.0026 0.1012± 0.0029 - 0.0904 0.1153

3 (geo.) 0.1084± 0.0033 0.1068± 0.0019 0.1317± 0.0022 - 0.1389 0.1691

4 (geo.) 0.1554± 0.0025 0.1507± 0.0014 0.1705± 0.0023 - 0.1878 0.2165

5 (prp.) 0.0700± 0.0038 0.0907± 0.0061 0.0995± 0.0061 - 0.0770 0.0954

6 (prp.) 0.1070± 0.0023 0.1175± 0.0047 0.1336± 0.0042 - 0.1270 0.1682

7 (prp.) 0.1887± 0.0032 0.1836± 0.0038 0.1955± 0.0025 - 0.2022 0.2458

8 (prp.) 0.2629± 0.0034 0.2481± 0.0026 0.2615± 0.0016 - 0.2834 0.3134

Favorita

Overall 0.4020± 0.0182 0.5301± 0.0120 0.5298± 0.0091 0.4670± 0.0096 0.4373 0.4524

1 (geo.) 0.2760± 0.0149 0.4166± 0.0195 0.4714± 0.0103 0.2692± 0.0076 0.3112 0.3611

2 (geo.) 0.3865± 0.0207 0.5128± 0.0108 0.5182± 0.0107 0.3824± 0.0092 0.4183 0.4398

3 (geo.) 0.4068± 0.0206 0.5317± 0.0115 0.5291± 0.0129 0.6838± 0.0108 0.4446 0.4598

4 (geo.) 0.5387± 0.0253 0.6594± 0.0150 0.6012± 0.0131 0.5532± 0.0116 0.5749 0.5490

5.5.6 Forecasting Results

Probabilistic Forecasting Results

For our proposed methods, we report the HINT-NaiveBU and the HINT-GroupBU. As

described in Section 5.4.5, the HINT-NaiveBU treats the bottom level series as independent

observations, and the HINT-GroupBU considers groups of time series during its composite

likelihood estimation. Both methods obtain probabilistic coherent forecasts using the bottom-up

reconciliation. The comparison of the HINT variants serves as an ablation experiment to better

analyze the source of the accuracy improvements. It also showcases the ability of the Poisson

Mixture model to give good results for unseen hierarchical structures, and in the case of the

Traffic dataset, of uninformative or noisy time-series group structure, to explore the limits

of the GroupBU estimation method.

Table 5.3 shows sCRPS measurements for predictive distributions at each level of the dataset

hierarchy. The overall sCRPS score is reported in the top row, with the best result highlighted

in bold. The HINT improves the overall sCRPS for Tourism-L and Favorita. The HINT-

GroupBU variant significantly shows 11.8% percent and 8.1% percent, respectively. However,

in the Traffic dataset, the HINT-GroupBU variant does not improve upon other methods.

We hypothesize that holiday features explain the Traffic New Year’s day performance gap

between HierE2E’s and alternative approaches. The HINT-NaiveBU variant performs well

on Traffic and gives an acceptable performance on Tourism-L and Favorita.
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Table 5.4: Empirical evaluation of mean hierarchical forecasts. Relative Mean Squared Error (relMSE)

averaged over 8 runs, at each aggregation level, the best result is highlighted (lower measurements are

preferred). Methods without standard deviation have deterministic solutions.

*
The ARIMA-ERM results for Tourism-L differ from Rangapuram et al., 2021, as we improved the numerical stability of their implementation.

Dataset Level HINT-GroupBU HINT-NaiveBU ARIMA-ERM* ARIMA-MinT-ols ARIMA GLMPoisson SNaive

Traffic

Overall 0.1750± 0.0099 0.0168± 0.0026 0.0199 0.0425 0.0433 0.0175 0.0709

1 (geo.) 0.1619± 0.0099 0.0033± 0.0026 0.0133 0.0344 0.0302 0.0001 0.0547

2 (geo.) 0.1835± 0.0101 0.0240± 0.0027 0.0135 0.0380 0.0392 0.0109 0.0676

3 (geo.) 0.1819± 0.0100 0.0239± 0.0027 0.0373 0.0647 0.0850 0.0462 0.0989

4 (geo.) 0.9964± 0.043 0.9561± 0.0022 0.6355 0.5876 0.5669 1.2119 1.3118

Tourism-L

Overall 0.1113± 0.0158 0.2680± 0.0748 0.1178 0.1251 0.1414 0.1944 0.1306
1 (geo.) 0.0597± 0.0212 0.3371± 0.1506 0.0596 0.0472 0.0343 0.2015 0.0582

2 (geo.) 0.1121± 0.0152 0.3186± 0.1130 0.1293 0.1476 0.2530 0.2274 0.1628

3 (geo.) 0.2250± 0.0196 0.3909± 0.0822 0.2529 0.3556 0.4429 0.3913 0.3695

4 (geo.) 0.2980± 0.0197 0.4198± 0.0668 0.3236 0.4288 0.4835 0.4238 0.4766

5 (prp.) 0.0798± 0.0195 0.1459± 0.0177 0.0895 0.0856 0.0973 0.0961 0.0615
6 (prp.) 0.1403± 0.0150 0.1576± 0.0113 0.1466 0.1537 0.1663 0.1840 0.1577

7 (prp.) 0.2654± 0.0212 0.2537± 0.0100 0.2705 0.3017 0.2914 0.3293 0.3699

8 (prp.) 0.3302± 0.0235 0.3030± 0.0083 0.3543 0.3970 0.3769 0.3908 0.4969

Favorita

Overall 0.7563± 0.0713 0.9533± 0.0201 0.8163 0.9465 0.9665 0.8346 1.1420

1 (geo.) 0.7944± 0.0568 0.9188± 0.0187 0.8362 0.8999 0.9217 0.9054 1.1269

2 (geo.) 0.7355± 0.1057 1.0451± 0.0310 0.7830 1.0057 1.0451 0.8037 1.1078

3 (geo.) 0.7303± 0.1035 1.0317± 0.0333 0.7986 1.0418 1.0881 0.8003 1.1315

4 (geo.) 0.6770± 0.0351 0.8090± 0.0180 0.8199 0.8808 0.8228 0.6499 1.2815

Our results confirm observations from the community that a global model, capable of cross-

learning from all the time series jointly, improves the forecasts over those from univariate

time series methods. Additionally, the qualitative comparison between the NaiveBU and

GroupBUmethods shows that an expressive joint distribution framework capable of leveraging

the hierarchical structure of the data, when informative, benefits the forecasts’ accuracy.

5.5.7 Mean Hierarchical Forecasting Results

In Section 5.4, the HINT joint likelihood defines a probabilistic coherent system for its pre-

dictive distributions; the mean hierarchical coherence is naturally implied. In this experiment,

we compare HINT mean hierarchical forecasts (weighted average of Poisson rates) with the

following methods’ forecasts: (1) ARIMA-ERM (Souhaib and Bonsoo, 2019) that performs an

optimization-based reconciliation free of the unbiasedness assumption of the base forecasts, (2)

ARIMA-MinT (Wickramasuriya et al., 2019) meant to reconcile unbiased independent forecasts

and minimize the variance of the forecast errors, (3) ARIMA-NaiveBU (Orcutt et al., 1968)

that produces univariate bottom-level time-series forecasts independently and then sums them

according to the hierarchical constraints, (4) automatic ARIMA (Hyndman and Khandakar, 2008),

(5) GLMPoisson (Nelder and Wedderburn, 1972) (6) and the SNaive model.

Table 5.4 contains the relMSE measurements for the predicted means at each aggregation

level. The top row reports the overall relMSE (averaged across all the hierarchy levels). We

highlight the best result in bolds. HINT shows overall improvements or comparable results

with the baselines’. With respect to mean hierarchical baselines HINT shows 4% Traffic
improvements, 5% Tourism-L improvements , and Favorita improvements of 7%.
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5.6 Conclusion

In this work, we have introduced a novel method for probabilistic coherent forecasting, the

Hierarchical Forecast Network (HINT), which focuses on learning the joint distribution of bottom

level time series and naturally guarantees hierarchical probabilistic coherence. We have also

shown through empirical evaluations that our model is accurate for count data. We observed

overall significant improvements in sCRPS when compared with previous state-of-the-art proba-

bilistically coherent models on three different hierarchical datasets, Australian domestic tourism

(11.8%) and Ecuadorian grocery sales (8.1%). However, the model does not show improvement

in sCRPS over alternative approaches when evaluated on San Francisco Bay Area traffic data.

The framework presented here is also extensible. We chose to focus on forecasting count data

and used Poisson kernels, but one could also use Gaussian kernels to model joint distributions

of real valued hierarchical data. In fact, any kernel which admits closed form expression for

aggregated distributions under conditional independence akin to Equation (5.8) will work well,

and it includes kernels like the Gamma and the Negative Binomial distributions in addition to

the Poisson and the Gaussian distributions already mentioned.

With respect to the definition of the groups considered in the composite likelihood, we

selected them naturally inspired by geographic proximity in this work. Still, a promising line of

research is an informed creation of such groups based on the series characteristics, for example

via clustering.

By formulating the model as a Mixture Density Network, we have separated the probabilistic

model of the predictive distribution from the underlying network, making it compatible with

any other archiecture. In the current paper we relied on the convolutional encoder version of

the MQForecaster architecture, but significant progress has been made in the last few years

on neural network based forecasting models; for example, Transformer-based deep learning

architectures (Eisenach et al., 2021) that can improve performance. We plan to explore both

directions, new kernels and new neural network architectures in future work.

HINT has its drawbacks as well. As is the case with any finite mixture model, the fidelity

of the estimated distribution depends on the number of mixture components. A few hundred

samples may be sufficient to describe a single marginal distribution but can be too sparse to

describe the joint distribution in a high dimensional space. The sparsity will be particularly

obvious if customers of hierarchical forecasting are interested in forecast distributions condi-

tioned on partially observed data. The small number of samples will lead to overly confident

posterior distributions. Another issue is the model misspecification during inference. The weight
matching method performs quite well in empirical evaluations but is somewhat unsatisfactory

as a statistical model. To mitigate both issues we are exploring generative factor models where

the mixture components are truly samples from an underlying distribution and correlations

between marginal distributions will be captured by common factors. It will bring HINT closer

to standard Hierarchical Bayesian formulation but with fewer and less strict assumptions.
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Chapter 6
Long Multi-horizon Forecasting

6.1 Summary

In this case study, we focus on the challenging task of long-horizon forecasting. To tackle the

limitations of existing multi-step forecasting strategies, including high volatility and computa-

tional complexity, we introduce the neural hierarchical interpolation for time series NHITS. Our

model addresses these challenges by incorporating innovative hierarchical interpolation and

multi-rate data sampling techniques inspired by wavelet analysis. By assembling predictions

sequentially and emphasizing components with different frequencies and scales, NHITS signifi-

cantly improves accuracy in long-horizon forecasting tasks while reducing computation time by

orders of magnitude compared to existing neural forecasting approaches.

6.2 Motivation

Long-horizon forecasting is critical in many important applications including risk management

and planning. Notable examples include power plant maintenance scheduling (Hyndman and

Fan, 2009) and planning for infrastructure construction (Ziel and Steinert, 2018b), as well as

early warning systems that help mitigate vulnerabilities due to extreme weather events (Basher,

2006; Field et al., 2012). In healthcare, predictive monitoring of vital signs enables detection of

preventable adverse outcomes and application of life-saving interventions (Churpek et al., 2016).

Neural time series forecasting has progressed in a some promising directions. First, the

architectural evolution included adoption of the attention mechanism and the rise of Transformer-

inspired approaches (Li et al., 2019; Fan et al., 2019; Alaa and Schaar, 2019; Lim et al., 2021), as

well as introduction of attention-free architectures composed of deep stacks of fully connected

layers (Oreshkin et al., 2020; Olivares et al., 2022a). Both of these approaches are relatively easy

to scale up in terms of capacity, compared to LSTMs, and have proven to be capable of capturing

long-range dependencies. The attention-based approaches are very generic as they can explicitly

model direct interactions between every pair of input-output elements. Unsurprisingly, they
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happen to be the most computationally expensive. The architectures based on fully connected

stacks capture input-output relationships implicitly, however they tend to be more compute-

efficient. Second, the recurrent forecast generation strategy has been replaced with the multi-step

prediction strategy in both of these approaches. Aside from its convenient bias-variance benefits

and robustness (Marcellino et al., 2006; Amir and Souhaib, 2016), the multi-step strategy has

enabled the models to efficiently predict long sequences in a single forward pass (Wen et al.,

2017; Zhou et al., 2020; Lim et al., 2021).

Despite all the recent progress, long-horizon forecasting remains challenging for neural

networks, because their unbounded expressiveness translates directly into excessive computa-
tional complexity and forecast volatility, both of which become especially pronounced in this

context. For instance, both attention and fully connected layers scale quadratically in memory

and computational cost with respect to the forecasting horizon length. Figure 6.1 illustrates

how forecasting errors and computation costs inflate dramatically with growing forecasting

horizon in the case of the fully connected architecture electricity consumption predictions.

Attention-based predictions show similar behavior.

Neural long-horizon forecasting research has mostly focused on attention efficiency making

self-attention sparse (Child et al., 2019; Li et al., 2019; Zhou et al., 2020) or local (Li et al., 2019). In

the same vain, attention has been cleverly redefined through locality-sensitive hashing (Kitaev

et al., 2020) or FFT (Wu et al., 2021). Although that research has led to incremental improvements

in compute cost and accuracy, the silver bullet long-horizon forecasting solution is yet to be

found. In this paper we make a bold step in this direction by developing a novel forecasting

approach that cuts long-horizon compute cost by an order of magnitude while simultaneously

offering 16% accuracy improvements on a large array of multi-variate forecasting datasets

compared to existing state-of-the-art Transformer-based techniques. We redefine existing fully-

connected NBEATS architecture (Oreshkin et al., 2020; Olivares et al., 2022a) by enhancing

its input decomposition via multi-rate data sampling and its output synthesizer via multi-

scale interpolation. Our extensive experiments show the importance of the proposed novel

architectural components and validate significant improvements in accuracy and computational

complexity of the proposed algorithm. This chapter’s contributions are summarized below:

(i) Multi-Rate Data Sampling: We incorporate sub-sampling layers in front of fully-

connected blocks, significantly reducing the memory footprint and the amount of compu-

tation needed, while maintaining the ability to model long-range dependencies.

(ii) Hierarchical Interpolation: We enforce smoothness of the multi-step predictions by

reducing the dimensionality of neural network’s prediction and matching its time scale

with that of the final output via multi-scale hierarchical interpolation. This novel technique

is not unique to our proposed model, and can be incorporated in different architectures.

(iii) NHITS architecture: A novel way of hierarchically synchronizing the rate of input

sampling with the scale of output interpolation across blocks, which induces each block

to specialize on forecasting its own frequency band of the time-series signal.

(iv) Long Horizon Forecasting Comparison: We achieve SoTA performance on six large-

scale benchmark datasets: electricity transformer temperature, exchange rate, electricity

consumption, San Francisco bay area highway traffic, weather and influenza-like illness.
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Figure 6.1: (a) The computational costs in time and memory (b) and mean absolute errors (MAE) of the

predictions of a high capacity fully connected model exhibit evident deterioration with growing forecast

horizons. (c) Specializing a flexible model’s outputs in the different frequencies of the signal through

hierarchical interpolation combined with multi-rate input processing offers a solution.
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6.3 Related Work

Neural forecasting. Over the past few years, deep forecasting methods have become ubiquitous

in industrial forecasting systems, with examples in optimal resource allocation and planning in

transportation (Laptev et al., 2017), large e-commerce retail (Wen et al., 2017; Olivares et al., 2021;

Paria et al., 2021; Rangapuram et al., 2021), or financial trading (Banushev and Barclay, 2021).

The evident success of the methods in recent forecasting competitions (Makridakis et al., 2020a;

Makridakis et al., 2021) has renovated the interest within the academic community (Benidis et al.,

2020). In the context of multi-variate long-horizon forecasting, Transformer-based approaches

have dominated the landscape in the recent years, including Autoformer (Wu et al., 2021),

an encoder-decoder model with decomposition capabilities and an approximation to attention

based on Fourier transform, Informer (Zhou et al., 2020), Transformer with MLP based

multi-step prediction strategy, that approximates self-attention with sparsity, Reformer (Ki-

taev et al., 2020), Transformer that approximates attention with locality-sensitive hashing and

LogTrans (Li et al., 2019), Transformer with local/log-sparse attention.

Multi-step forecasting. Investigations of the bias/variance trade-off in multi-step fore-

casting strategies reveal that the direct strategy, which allocates a different model for each step,

has low bias and high variance, avoiding error accumulation across steps, exhibited by the

classical recursive strategy, but losing in terms of net model parsimony. Conversely, in the joint
forecasting strategy, a single model produces forecasts for all steps in one shot, striking the

perfect balance between variance and bias, avoiding error accumulation and leveraging shared

model parameters (Bao et al., 2014; Amir and Souhaib, 2016; Wen et al., 2017).

Multi-rate input sampling. Previous forecasting literature recognized challenges of ex-

tremely long horizon predictions, and proposed mixed data sampling regression (MIDAS) (Ghy-

sels et al., 2007; Armesto et al., 2010) to ameliorate the problem of parameter proliferation while

preserving high frequency temporal information. MIDAS regressions maintained the classic

recursive forecasting strategy of linear auto-regressive models, but defined a parsimonious

fashion of feeding the inputs.

Interpolation. Interpolation has been extensively used to augment the resolution of modeled

signals in many fields such as signal and image processing (Meijering, 2002). In time-series

forecasting, its applications range from completing unevenly sampled data and noise filters

Chow and Lin, 1971; Fernandez, 1981; Shukla and Marlin, 2019; Rubanova et al., 2019 to fine-

grained quantile-regressions with recurrent networks (Gasthaus et al., 2019). To our knowledge,

temporal interpolation has not been used to induce multi-scale hierarchical time-series forecasts.
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6.4 Methodology

In this section, we describe our proposed approach, NHITS, whose high-level diagram and

main principles of operation are depicted in Figure 6.3. Our method extends the Neural Basis

Expansion Analysis (NBEATS) approach (Oreshkin et al., 2020; Olivares et al., 2022a) in several

important respects, making it more accurate and computationally efficient, especially in the

context of long-horizon forecasting. In essence, our approach uses multi-rate sampling of the

input signal and multi-scale synthesis of the forecast, resulting in a hierarchical construction of

forecast, greatly reducing computational requirements and improving forecasting accuracy.

Similarly to NBEATS, NHITS performs local nonlinear projections onto basis functions

across multiple blocks. Each block consists of a Multi Layer Perceptron (MLP), which learns

to produce coefficients for the backcast and forecast outputs of its basis. The backcast output

is used to clean the inputs of subsequent blocks, while the forecasts are summed to compose

the final prediction. The blocks are grouped in stacks, each specialized in learning a different

characteristic of the data using a different set of basis functions. The overall network input,

y[t−L:t], consists of L lags.

NHITS is composed of S stacks, B blocks each. Each block contains an MLP predicting

forward and backward basis coefficients. The next subsections describe the novel components

of our architecture. Note that in the following, we skip the stack index s for brevity.

6.4.1 Multi-Rate Signal Sampling

At the input to each block ℓ, we propose to use a MaxPool layer with kernel size kℓ to help it

focus on analyzing components of its input with a specific scale. Larger kℓ will tend to cut more

high-frequency/small-time-scale components from the input of the MLP, forcing the block to

focus on analyzing large scale/low frequency content. We call this multi-rate signal sampling,

referring to the fact that the MLP in each block faces a different effective input signal sampling

rate. Intuitively, this helps the blocks with larger pooling kernel size kℓ focus on analyzing large

scale components critical for producing consistent long-horizon forecasts.

Additionally, multi-rate processing reduces the width of the MLP input for most blocks,

limiting the memory footprint and the amount of computation as well as reducing the number

of learnable parameters and hence alleviating the effects of overfitting, while maintaining the

original receptive field. Given block ℓ input y[t−L:t],ℓ (the input to the first block ℓ = 1 is the

network-wide input, y[t−L:t],1 ≡ y[t−L:t]), this operation can be formalized as follows:

y
(p)
[t−L:t],ℓ = MaxPool

(
y[t−L:t],ℓ, kℓ

)
(6.1)
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6.4.2 Non-Linear Regression

Following subsampling, block ℓ looks at its input and non-linearly regresses forward θfℓ and

backward θbℓ interpolation MLP coefficients that learns hidden vector hℓ ∈ RNh
, which is then

linearly projected:

hℓ = MLPℓ

(
y
(p)
[t−L:t],ℓ

)
θfℓ = LINEARf (hℓ)

θbℓ = LINEARb (hℓ)

(6.2)

The coefficients are then used to synthesize backcast ỹ[t−L:t],ℓ and forecast ŷ[t+1:t+H],ℓ outputs of

the block, via the process described below.

6.4.3 Hierarchical Interpolation

In most multi-horizon forecasting models, the cardinality of the neural network prediction

equals the dimensionality of horizon, H . For example, in NBEATS-I |θfℓ | = H ; in Transformer-

based models, decoder attention layer cross-correlates H output embeddings with L encoded

input embeddings (L tends to grow with growing H). This leads to quick inflation in compute

requirements and unnecessary explosion in model expressiveness as horizon H increases.

To combat these issues, we propose to use temporal interpolation. We define the dimension-

ality of the interpolation coefficients in terms of the expressiveness ratio rℓ that controls the

number of parameters per unit of output time, |θfℓ | = ⌈rℓH⌉. To recover the original sampling

rate and predict all H points in the horizon, we use temporal interpolation via the interpolation

function g:

ŷτ,ℓ = g(τ, θfℓ ), ∀τ ∈ {t+ 1, . . . , t+H},
ỹτ,ℓ = g(τ, θbℓ), ∀τ ∈ {t− L, . . . , t}.

(6.3)

Interpolation can vary in smoothness, g ∈ C0, C1, C2
. In Appendix G we explore the nearest

neighbor, piece-wise linear and cubic alternatives. For concreteness, the linear interpolator

g ∈ C1
, along with the time partition T = {t + 1, t + 1 + 1/rℓ, . . . , t + H − 1/rℓ, t + H}, is

defined as

g(τ, θ) = θ[t1] +

(
θ[t2]− θ[t1]

t2 − t1

)
(τ − t1)

t1 = arg min
t∈T :t≤τ

τ − t, t2 = t1 + 1/rℓ.
(6.4)

The hierarchical interpolation principle is implemented by distributing expressiveness ratios

across blocks in a manner synchronized with multi-rate sampling. Blocks closer to the input
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Figure 6.2: NHITS composes its predictions hierarchically using blocks specialized in different fre-

quencies based on controlled signal projections, through expressiveness ratios, and interpolation of each

block. The coefficients are locally determined along the horizon, allowing NHITS to reconstruct non-

periodic/stationary signals, beyond constant Fourier transform projections.

have smaller rℓ and larger kℓ, implying that input blocks generate low-granularity signals via

more aggressive interpolation, being also forced to look at more aggressively sub-sampled (and

smoothed) signals. The resulting forecast ŷ[t+1:t+H] is assembled by summing the outputs of all

blocks, essentially composing it out of interpolations at different time-scale hierarchy levels.

Since each block specializes on its own scale of input and output signal, this induces a

clearly structured hierarchy of interpolation granularity, the intuition conveyed in Figure 6.1

and Figure 6.2. We propose to use exponentially increasing expressiveness ratios to handle a wide

range of frequency bands while controlling the number of parameters. Alternatively, each stack

can specialize in modeling a different known cycle of the time-series (weekly, daily etc.) using a

matching rℓ (see Table A.3). Finally, the backcast residual formed at previous hierarchy scale

is subtracted from the input of the next hierarchy level to amplify the focus of the next level

block on signals outside of the band that has already been handled by the previous hierarchy

members.

ŷ[t+1:t+H] =
L∑
l=1

ŷ[t+1:t+H],ℓ

y[t−L:t],ℓ+1 = y[t−L:t],ℓ − ỹ[t−L:t],ℓ

Hierarchical interpolation has advantageous theoretical guarantees. We show in Appendix

A, that it can approximate infinitely/dense horizons. As long as the interpolating function g
is characterized by projections to informed multi-resolution functions Vw, and the forecast

relationships are smooth.

79



Forecast PeriodBackcast Period
Model Input 

y[t−L:t]

Stack 1

…

\+

Stack 2 \+

Block 1
\

_

… …
\

_

…

Stack 
forecast

\
_

MLP Stack

Forecast 
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Figure 6.3: NHITS architecture. The model is composed of several MLPs with ReLU nonlinearities.

Blocks are connected via doubly residual stacking principle with the backcast ỹt−L:t,ℓ and forecast

ŷt+1:t+H,ℓ outputs of the ℓ-th block. Multi-rate input pooling, hierarchical interpolation and backcast

residual connections together induce the specialization of the additive predictions in different signal

bands, reducing memory footprint and compute time, improving architecture parsimony and accuracy.

6.4.4 Neural Basis ApproximationTheorem

The simplicity of NHITS provides allows to identify the sources of its performance improve-

ments, which we back up with a strong theoretical foundation. NHITS’ hierarchical inter-

polation extends the Fourier transform and connects the multi-step forecasting approach to

non-linear wavelet projections (Daubechies, 1992), central to Shannon’s interpolation theory.

Theorem 6.1: Neural Basis Approximation.

Let a forecast mapping be Y(· | y[t−L:t]) : [0, 1]L → F , where the forecast functions

F = {Y(τ) : [0, 1] → R} = L2([0, 1]) representing a infinite/dense horizon, are square

integrable. If the multi-resolution functions Vw = {ϕw,h(τ) = ϕ(2w(τ − h)) | w ∈ Z, h ∈
2−w× [0, . . . , 2w]} can arbitrarily approximate L2([0, 1]). And the projection ProjVw

(Y(τ))
varies smoothly on y[t−L:t]. Then the forecast mapping Y(· | y[t−L:t]) can be arbitrarily

approximated by a neural basis expansion learning a finite number of multi-resolution

coefficients θ̂w,h. That is ∀ϵ > 0,∫
|Y(τ | y[t−L:t])−

∑
w,h

θ̂w,h(y[t−L:t])ϕw,h(τ)|dτ ≤ ϵ (6.5)

Examples of multi-resolution functions Vw = {ϕw,h(τ) = ϕ(2w(τ − h)) | w ∈ Z, h ∈
2−w × [0, . . . , 2w]} include piece-wise constants, piece-wise linear functions and splines with

arbitrary approximation capabilities.
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Table 6.1: Summary of datasets used in our empirical study. All the datasets are used in the multivariate

forecasting experiments, univariate experiments are performed on ETTm2 and Exchange.

Dataset Freqency Time Series

Total

Observations

Test

Observations

Rolled forecast

evaluation

data points

Horizon (H)

ETTm2 15 Minute 7 403,200 80,640 5.81e7 {96, 192, 336, 720}
Exchange Daily 8 60,704 12,136 8.74e6 {96, 192, 336, 720}
ECL Hourly 321 8,443,584 1,688,460 1.22e9 {96, 192, 336, 720}
Traffic-L Hourly 862 15,122,928 3,023,896 2.18e9 {96, 192, 336, 720}
Weather 10 Minute 21 1,106,595 221,319 1.59e8 {96, 192, 336, 720}
ILI Weekly 7 6,762 1,351 9.73e5 {24, 36, 48, 60}

6.5 Experiments

In this section we present our empirical results, we follow the experimental settings from (Wu

et al., 2021; Zhou et al., 2020) (NeurIPS 2021 and AAAI 2021 Best Paper Award). We first describe

datasets, baselines and metrics used for the quantitative evaluation of our model. Table 6.3

presents our key results, demonstrating SoTA performance of our method relative to existing

work. We then carefully describe the details of training and evaluation setups. We conclude the

section by describing ablation studies.

6.5.1 Datasets

All large-scale datasets used in our empirical studies are publicly available and have been used

in neural forecasting literature, particularly in the context of long-horizon (Lai et al., 2017; Zhou

et al., 2019; Li et al., 2019; Wu et al., 2021). Table 6.1 summarizes their characteristics. Each set is

normalized with the train data mean and standard deviation.

Electricity Transformer Temperature. The ETTm2 dataset measures an electricity trans-

former from a region of a province of China including oil temperature and variants of load

(such as high useful load and high useless load) from July 2016 to July 2018 at a fifteen minutes

frequency. Exchange-Rate. The Exchange dataset is a collection of daily exchange rates of

eight countries relative to the US dollar. The countries include Australia, UK, Canada, Switzer-

land, China, Japan, New Zealand and Singapore from 1990 to 2016. Electricity. The ECL dataset

reports the fifteen minute electricity consumption (KWh) of 321 customers from 2012 to 2014.

For comparability, we aggregate it hourly. San Francisco Bay Area Highway Traffic. This

Traffic-L dataset was collected by the California Department of Transportation, it reports

road hourly occupancy rates of 862 sensors, from January 2015 to December 2016. Weather.
This Weather dataset contains the 2020 year of 21 meteorological measurements recorded

every 10 minutes from the Weather Station of the Max Planck Biogeochemistry Institute in Jena,

Germany. Influenza-like illness. The ILI dataset reports weekly recorded influenza-like

illness (ILI) patients from Centers for Disease Control and Prevention of the United States from

2002 to 2021. It is a ratio of ILI patients vs. the week’s total.
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Figure 6.4: Datasets’ partition into train, validation, and test sets used in our experiments (ETTm2, ECL,

Exchange, ILI, Traffic-L, and Weather). All use the last 20% of the total observations as test

set (marked by the second dotted line), and the 10% preceding the test set as validation (between the

first and second dotted lines), except for ETTm2 that also use 20% as validation. Validation provides the

signal for hyperparameter optimization. We construct test predictions using rolling windows.
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Table 6.2: NHITS’ explored hyperparameters.

Hyperparameter Considered Values

Initial learning rate. {1e-3}
Training steps. {1000}
Random seed for initialization. DiscreteRange(1, 10)

Input size multiplier (L=m*H). m ∈ {5}
Batch Size. {256}
Activation Function. ReLU

Learning rate decay (3 times). 0.5

Pooling Kernel Size. [k1, k2, k3] ∈ {[2,2,2], [4,4,4], [8,8,8],

[8,4,1], [16,8,1]}
Number of Stacks. S ∈ {3}
Number of Blocks in each stack. B ∈ {1}
MLP Layers. {2}
Coefficients Hidden Size. Nh ∈ {512}
Number of Stacks’ Coefficients. [r−1

1 , r−1
2 , r−1

3 ] ∈ {[168,24,1], [24,12,1]

[180,60,1], [40,20,1],

[64,8,1] }
Interpolation strategy g(τ, θ) ∈ {Linear}

6.5.2 Evaluation

We evaluate the accuracy of our approach using Mean Absolute Error (MAE) and Mean Squared

Error (MSE) metrics, which are well-established in the literature (Zhou et al., 2020; Wu et al.,

2021), for varying horizon lengths H :

MSE =
1

H

t+H∑
τ=t

(yτ − ŷτ )
2 , MAE =

1

H

t+H∑
τ=t

|yτ − ŷτ | (6.6)

Note that for multivariate datasets, our algorithm produces forecast for each feature in the

dataset and metrics are averaged across dataset features. Since our model is univariate, each

variable is predicted using only its own history, yt−L:t, as input. Datasets are partitioned into

train, validation and test splits. Train split is used to train model parameters, validation split is

used to tune hyperparameters, and test split is used to compute metrics reported in Table 6.3.

6.5.3 Train and Hyperparameter Optimization

We consider a minimal space of hyperparameters to explore configurations of the NHITS archi-

tecture. First, we consider the kernel pooling size for multi-rate sampling from Equation (6.1).

Second, the number of coefficients from Equation (6.2) that we selected between several alterna-

tives, some matching common seasonalities of the datasets and others exponentially increasing.

We tune the random seed to escape underperforming local minima. Details in Appendix C.3’s

Table 6.2.

During the hyperparameter optimization phase, we measure MAE performance on the vali-

dation set and use a Bayesian optimization library (HYPEROPT; Bergstra et al. 2011), with 20

iterations. We use the optimal configuration based on the validation loss to make prediction on

the test set. We refer to the hyperparameter optimization and test prediction as a run.
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Figure 6.5: ETTm2 and 720 ahead forecasts using NHITS (left panel), NHITS with linear interpolation

and multi-rate sampling removed (right panel). The top row shows the original signal and the forecast. The

second, third and fourth rows show the forecast components for each stack. The last row shows residuals,

y − ŷ. In (a), each block shows scale specialization, unlike (b), in which signals are not interpretable.

NHITS is implemented in PyTorch (Paszke et al., 2019) and trained using Adaptive

Moment Estimation SGD (ADAM) (Kingma and Ba, 2014), and MAE Empirical Risk Minimization

(ERM), batch size 256 and initial learning rate of 1e-3, halved three times across the training

procedure. All experiments use a GeForce RTX 2080 GPU.

6.5.4 Forecasting Results

We compare NHITS to the following baselines: Transformer-based forecasting models (1)

FEDformer (Zhou et al., 2022), (2) Autoformer (Wu et al., 2021), (3) Informer (Zhou

et al., 2020), (4) Reformer (Kitaev et al., 2020) and (5) LogTrans (Li et al., 2019). Addi-

tionally, we consider the univariate baselines: (6) Dilated RNN (Chang et al., 2017) and (7)

ARIMA (Hyndman and Khandakar, 2008).

Forecasting Accuracy. Table 6.3 summarizes the multivariate forecasting results. NHITS
outperforms the best baseline, with average relative error decrease across datasets and horizons

of 14% in MAE and 16% in MSE. NHITS maintains a comparable performance to other state-

of-the-art methods for the shortest measured horizon (96/24), while for the longest measured

horizon (720/60) decreases multivariate MAE by 11% and MSE by 17%. We complement the key

results in Table 6.3, with the additional univariate forecasting experiments in Appendix F, again

demonstrating state-of-the-art performance against baselines.
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Table 6.3: Key empirical results in long-horizon forecasting setup, lower scores are better. Metrics are

averaged over eight runs and standard deviation in brackets, best results are highlighted in bold, second

best results are highlighted in blue.

*
Caveats of the concurrent research comparison are that these articles have not yet been peer-reviewed; some evaluations deviate in the length of the forecast horizons or don’t report results

for all the benchmark datasets, and finally, unfortunately, most studies only report a single run or don’t report standard deviations in their accuracy measurements for which it is difficult to

assess the significance of the results.

NHITS (Ours) Autoformer Informer LogTrans Reformer ARIMA FEDformer ETSformer
*

Preformer
*

Horizon MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
2

96 0.176 0.255 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619 0.225 0.301 0.203 0.287 0.183 0.275 0.213 0.295

(0.003) (0.001) (0.020) (0.020) (0.062) (0.047) (0.071) (0.020) (0.121) (0.021) (-) (-) (-) (-) (-) (-) (-) (-)

192 0.245 0.305 0.281 0.340 0.533 0.563 0.989 0.757 1.078 0.827 0.298 0.345 0.269 0.328 - - 0.269 0.329

(0.005) (0.002) (0.027) (0.025) (0.109) (0.050) (0.124) (0.049) (0.106) (0.012) (-) (-) (-) (-) (-) (-) (-) (-)

336 0.295 0.346 0.339 0.372 1.363 0.887 1.334 0.872 1.549 0.972 0.370 0.386 0.325 0.366 - - 0.324 0.363

(0.004) (0.002) (0.018) (0.015) (0.173) (0.056) (0.168) (0.054) (0.146) (0.0) (-) (-) (-) (-) (-) (-) (-) (-)

720 0.401 0.413 0.422 0.419 3.379 1.388 3.048 1.328 2.631 1.242 0.478 0.445 0.421 0.415 - - 0.418 0.416

(0.013) (0.009) (0.015) (0.010) (0.143) (0.037) (0.140) (0.023) (0.126) (0.014) (-) (-) (-) (-) (-) (-) (-) (-)

E
C
L

96 0.147 0.249 0.201 0.317 0.274 0.368 0.258 0.357 0.312 0.402 1.220 0.814 0.183 0.297 0.187 0.302 0.180 0.297

(0.002) (0.002) (0.003) (0.004) (0.004) (0.003) (0.002) (0.002) (0.003) (0.004) (-) (-) (-) (-) (-) (-) (-) (-)

192 0.167 0.269 0.222 0.334 0.296 0.386 0.266 0.368 0.348 0.433 1.264 0.842 0.195 0.308 0.196 0.311 0.189 0.302

(0.005) (0.005) (0.003) (0.004) (0.009) (0.007) (0.005) (0.004) (0.004) (0.005) (-) (-) (-) (-) (-) (-) (-) (-)

336 0.186 0.290 0.231 0.338 0.300 0.394 0.280 0.380 0.350 0.433 1.311 0.866 0.212 0.313 0.215 0.330 0.201 0.319

(0.001) (0.001) (0.006) (0.004) (0.007) (0.004) (0.006) (0.001) (0.004) (0.003) (-) (-) (-) (-) (-) (-) (-) (-)

720 0.243 0.340 0.254 0.361 0.373 0.439 0.283 0.376 0.340 0.42 1.364 0.891 0.231 0.343 0.236 0.348 0.232 0.342

(0.008) (0.007) (0.007) (0.008) (0.034) (0.024) (0.003) (0.002) (0.002) (0.002) (-) (-) (-) (-) (-) (-) (-) (-)

E
x
c
h
a
n
g
e

96 0.092 0.02 0.197 0.323 0.847 0.752 0.968 0.812 1.065 0.829 0.296 0.214 0.139 0.276 0.083 0.202 0.148 0.282

(0.002) (0.002) (0.019) (0.012) (0.150) (0.060) (0.177) (0.027) (0.070) (0.013) (-) (-) (-) (-) (-) (-) (-) (-)

192 0.208 0.322 0.300 0.369 1.204 0.895 1.040 0.851 1.188 0.906 1.056 0.326 0.256 0.369 0.180 0.302 0.268 0.378

(0.025) (0.020) (0.020) (0.016) (0.149) (0.061) (0.232) (0.029) (0.041) (0.008) (-) (-) (-) (-) (-) (-) (-) (-)

336 0.301 0.403 0.509 0.524 1.672 1.036 1.659 1.081 1.357 0.976 2.298 0.467 0.426 0.464 0.354 0.433 0.447 0.499

(0.042) (0.030) (0.041) (0.016) (0.036) (0.014) (0.122) (0.015) (0.027) (0.010) (-) (-) (-) (-) (-) (-) (-) (-)

720 0.798 0.596 1.447. 0.941 2.478 1.310 1.941 1.127 1.510 1.016 20.666 0.864 1.090 0.800 0.996 0.761 1.092 0.812

(0.041) (0.013) (0.084) (0.028) (0.198) (0.070) (0.327) (0.030) (0.071) (0.008) (-) (-) (-) (-) (-) (-) (-) (-)

T
r
a
f
f
i
c
-
L

96 0.402 0.282 0.613 0.388 0.719 0.391 0.684 0.384 0.732 0.423 1.997 0.924 0.562 0.349 0.614 0.395 0.560 0.349

(0.005) (0.002) (0.028) (0.012) (0.150) (0.060) (0.177) (0.027) (0.070) (0.013) (-) (-) (-) (-) (-) (-) (-) (-)

192 0.420 0.297 0.616 0.382 0.696 0.379 0.685 0.39 0.733 0.42 2.044 0.944 0.562 0.346 0.629 0.398 0.565 0.349

(0.002) (0.003) (0.042) (0.020) (0.050) (0.023) (0.055) (0.021) (0.013) (0.011) (-) (-) (-) (-) (-) (-) (-) (-)

336 0.448 0.313 0.622 0.337 0.777 0.420 0.733 0.408 0.742 0.42 2.096 0.960 0.570 0.323 0.646 0.417 0.577 0.351

(0.006) (0.003) (0.009) (0.003) (0.069) (0.026) (0.012) (0.008) (0.0) (0.0) (-) (-) (-) (-) (-) (-) (-) (-)

720 0.539 0.353 0.660 0.408 0.864 0.472 0.717 0.396 0.755 0.423 2.138 0.971 0.596 0.368 0.631 0.389 0.597 0.358

(0.022) (0.012) (0.025) (0.015) (0.026) (0.015) (0.030) (0.010) (0.023) (0.014) (-) (-) (-) (-) (-) (-) (-) (-)

W
e
a
t
h
e
r

96 0.158 0.195 0.266 0.336 0.300 0.384 0.458 0.49 0.689 0.596 0.217 0.258 0.217 0.296 0.189 0.272 0.227 0.292

(0.002) (0.002) (0.007) (0.006) (0.013) (0.013) (0.143) (0.038) (0.042) (0.019) (-) (-) (-) (-) (-) (-) (-) (-)

192 0.211 0.247 0.307 0.367 0.598 0.544 0.658 0.589 0.752 0.638 0.263 0.299 0.276 0.336 0.231 0.303 0.275 0.322

(0.001) (0.003) (0.024) (0.022) (0.045) (0.028) (0.151) (0.032) (0.048) (0.029) (-) (-) (-) (-) (-) (-) (-) (-)

336 0.274 0.300 0.359 0.395 0.578 0.523 0.797 0.652 0.064 0.596 0.330 0.347 0.339 0.380 0.305 0.357 0.324 0.352

(0.009) (0.008) (0.035) (0.031) (0.024) (0.016) (0.034) (0.019) (0.030) (0.021) (-) (-) (-) (-) (-) (-) (-) (-)

720 0.351 0.353 0.419 0.428 1.059 0.741 0.869 0.675 1.130 0.792 0.425 0.405 0.403 0.428 0.352 0.391 0.394 0.393

(0.020) (0.016) (0.017) (0.014) (0.096) (0.042) (0.045) (0.093) (0.084) (0.055) (-) (-) (-) (-) (-) (-) (-) (-)

I
L
I

24 1.862 0.869 3.483 1.287 5.764 1.677 4.480 1.444 4.4 1.382 5.554 1.434 2.203 0.963 2.862 1.128 3.143 1.185

(0.064) (0.020) (0.107) (0.018) (0.354) (0.080) (0.313) (0.033) (0.177) (0.021) (-) (-) (-) (-) (-) (-) (-) (-)

36 2.071 0.934 3.103 1.148 4.755 1.467 4.799 1.467 4.783 1.448 6.940 1.676 2.272 0.976 2.683 1.029 2.793 1.054

(0.015) (0.003) (0.139) (0.025) (0.248) (0.067) (0.251) (0.023) (0.138) (0.023) (-) (-) (-) (-) (-) (-) (-) (-)

48 2.134 0.932 2.669 1.085 4.763 1.469 4.800 1.468 4.832 1.465 7.192 1.736 2.209 0.981 2.456 0.986 2.845 1.090

(0.142) (0.034) (0.151) (0.037) (0.295) (0.059) (0.233) (0.021) (0.122) (0.016) (-) (-) (-) (-) (-) (-) (-) (-)

60 2.137 0.968 2.770 1.125 5.264 1.564 5.278 1.56 4.882 1.483 6.648 1.656 2.545 1.061 2.630 1.057 2.957 1.124

(0.075) (0.012) (0.085) (0.019) (0.237) (0.044) (0.231) (0.014) (0.123) (0.016) (-) (-) (-) (-) (-) (-) (-) (-)
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Figure 6.6: Computational efficiency comparison. NHITS exhibits the best training time compared to

Transformer-based and fully connected models, and smallest memory footprint.

Computational Efficiency. We measure the computational training time of NHITS,

NBEATS and Transformer-based methods in the multivariate setting and show compare in

Figure 6.6. The experiment monitors the whole training process for the ETTm2 dataset. For the

Transformer-based models we used hyperparameters reported in (Wu et al., 2021). Compared

to the Transformer-based methods, NHITS is 45× faster than Autoformer. In terms of

memory, NHITS has less than 26% of the parameters of the second-best alternative, since

it scales linearly with respect to the input’s length. Compared to the original NBEATS, our

method is 1.26× faster and requires only 54% of the parameters. Finally, while NHITS is an

univariate model, it has global (shared) parameters for all time-series in the dataset.

6.5.5 Ablation Studies

We believe that the advantages of the NHITS architecture are rooted in its multi-rate hierarchi-

cal nature. Figure 6.5 shows a qualitative comparison of NHITS with and without hierarchical

interpolation/multi-rate sampling components. We clearly see NHITS developing the ability to

produce interpretable forecast decomposition providing valuable information about trends and

seasonality in separate channels, unlike the control model. Appendix G presents the decompo-

sition for the different interpolation techniques. We support our qualitative conclusion with

quantitative results. We define the following set of alternative models: NHITS, our proposed

model with both multi-rate sampling and hierarchical interpolation, NHITS2 only hierarchical

interpolation, NHITS3 only multi-rate sampling, NHITS4 no multi-rate sampling or interpola-

tion (corresponds to the original NBEATS-G (Oreshkin et al., 2020)), finally NBEATS-I, the

interpreatble version of the NBEATS. Table 6.4 clearly shows that the combination of both

proposed components (hierarchical interpolation and multi-rate sampling) results in the best

performance, emphasizing their complementary nature in long-horizon forecasting. We see that
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the original NBEATS is consistently worse, especially the NBEATS-I. The advantages of the

proposed techniques for long-horizon forecasting, multi-rate sampling and interpolation, are

not limited to the NHITS architecture. In Appendix H we demonstrate how adding them to a

DilRNN improve its performance.

Table 6.4: Empirical evaluation of long multi-horizon multivariate forecasts for NHITS with/without

enhancements. MAE and MSE for predictions averaged over eight runs, and five datasets, the best result

is highlighted in bold, second best in blue (lower is better).

NHITS NHITS2 NHITS3 NHITS4 NBEATS-I
A

.
M

S
E

96 0.195 0.196 0.192 0.196 0.209

192 0.250 0.261 0.251 0.263 0.266

336 0.315 0.315 0.342 0.346 0.408

720 0.484 0.498 0.518 0.548 0.794

A
.
M

A
E

96 0.239 0.241 0.237 0.240 0.254

192 0.290 0.299 0.291 0.300 0.307

336 0.338 0.342 0.346 0.352 0.405

720 0.439 0.450 0.454 0.468 0.597

Additional ablation studies are reported in Appendix G. The MaxPool multi-rate sampling

wins over AveragePool. Linear interpolation wins over nearest neighbor and cubic. Finally and

most importantly, we show that the order in which hierarchical interpolation is implemented

matters significantly. The best configuration is to have the low-frequency/large-scale components

synthesized and removed from analysis first, followed by more fine-grained modeling of high-

frequency/intermittent signals.

6.6 Conclusion

Our results indicate the complementarity and effectiveness of multi-rate sampling and hier-

archical interpolation for long-horizon time-series forecasting. Table 6.4 indicates that these

components enforce a useful inductive bias compared to both the free-form model NHITS4

(plain fully connected architecture) and the parametric model NBEATS-I (polynomial trend

and sinusoidal seasonality used as basis functions in two respective stacks). The latter obviously

providing a detrimental inductive bias for long-horizon forecasting. Notwithstanding our current

success, we believe we barely scratched the surface in the right direction and further progress

is possible using advanced multi-scale processing approaches in the context of time-series

forecasting, motivating further research.

NHITS outperforms SoTA baselines while simultaneously providing an interpretable non-

linear decomposition. Figure 6.1 and Figure 6.5 showcase NHITS perfectly specializing and

reconstructing latent harmonic signals from synthetic and real data respectively. This novel

interpretable decomposition can provide insights to users, improving their confidence in high-

stakes applications like healthcare. Finally, NHITS hierarchical interpolation can be explored

from the multi-resolution analysis perspective (Daubechies, 1992). Replacing the sequential

projections from the interpolation functions onto these Wavelet induced spaces is an interesting

line of research.
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Our study raises a question about the effectiveness of the existing long-horizon multi-variate

forecasting approaches, as all of them are substantially outperformed by our univariate algorithm.

If these approaches underperform due to problems with overfitting and model parsimony at the

level of marginals, it is likely that the integration of our approach with Transformer-inspired

architectures could form a promising research direction as the univariate results in Appendix C.4

suggest. However, there is also a chance that the existing approaches underperform due to

their inability to effectively integrate information from multiple variables, which clearly hints

at possibly untapped research potential in this area. Whichever is the case, we believe our

results provide a strong guidance signal and a valuable baseline for future research in the area

of long-horizon multi-variate forecasting.

We proposed a novel neural forecasting algorithmNHITS that combines two complementary

techniques, multi-rate input sampling and hierarchical interpolation, to produce drastically

improved, interpretable and computationally efficient long-horizon time-series predictions. Our

model, operating in the univariate regime and accepting only the predicted time-series’ history,

significantly outperforms all previous Transformer-based multi-variate models using an order

of magnitude less computation. This sets a new baseline for all ensuing multi-variate work on

six popular datasets and motivates further research to effectively use information from multiple

variables.
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It’s a dangerous business, going out your door.

You step onto the road, and if you don’t keep your feet, there’s no knowing

where you might be swept off to.

J. R. R. Tolkien

Part III

Conclusion
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Chapter 7
Main Results and Future Work

There is often an imagined divide between statistical and econometric forecasting models and

the machine learning approach. Statistical models are usually built on theoretically-inspired

assumptions about the relationships between variables. Meanwhile, machine learning forecasting

models are highly flexible and make predictions based on data without explicit programming,

making minimal assumptions. Yet plenty of opportunities exist to improve forecasting methods

through cross-pollination between statistics, econometrics, and machine learning.

We started the work with a simple question:

Can econometrics and statistical innovations be combined to advance usability, useful-
ness, and real-world impact of machine learning-based forecasting?

We sought to rediscover the connection between machine learning-based forecasting with

classic approaches and find a new balance between their extremes. This middle ground would

enable us to balance the excess and deficiency in the forecasting methods’ flexibility and rigid

assumptions. Incorporating statistical and econometric approaches can effectively act as a form

of regularization that balances the complexity of the model with its ability to generalize to new

data while simultaneously enabling human understanding of its predictions and improving its

computational efficiency. To test these ideas, we organized the thesis around the following

hypothesis:

Thesis statement.
Confining machine learning-based forecasting methods with econometric and statis-
tical domain knowledge is necessary to improve their accuracy, interpretability, and
efficiency.

We presented and investigated three neural forecasting methods that enhance state-of-the-

art deep learning architectures with statistical and econometric intuitions. This final chapter

summarizes our findings and their relevance to our hypothesis. Our experiments have shown

promising results, matching our expectations, with evidence of improved interpretability, accu-

racy, and computational efficiency of our novel forecasting methods. These findings represent

an important step toward multiple avenues of future research that we discuss in the last section.
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7.1 Main Results

In Part I of our thesis, we provided an introduction to the forecasting task and its principles,

along with a look into the modern approaches in the field. Chapter 2 covered the basics of the

regression problem, forecast evaluation methods, common model estimation, and optimization

techniques. In Chapter 2, we provided an overview of various forecast modeling approaches,

including statistical, econometric, and machine learning techniques, which served as a reference

for the thesis work.

In Part II, we presented the thesis’s main contributions through four case studies that

combined neural forecasting methods with econometric and statistical inspirations. Chapter 4

introduced NBEATSx, which extended neural basis expansion analysis with exogenous variables.

In Chapter 5, we presented a novel probabilistic mixture model that can effectively tackle

the hierarchical forecasting task. This new method extended the network’s capabilities to

approximate distributions, including those with coherence constraints. Chapter 6 introduced

NHITS, a Wavelet analysis-inspired approach that specializes in multi-step forecasting strategies

across different frequencies through time, addressing the long-horizon forecasting challenge.

The results presented in Part II proved our approach is a promising direction to enhance and

guide the design of neural forecasting algorithms. By leveraging the strengths of econometric,

statistical, and machine learning-based methods, two new methods introduced signal decompo-

sition techniques capable of extracting insights and human understanding of the methods. All

the techniques showed improved accuracy compared to the state-of-the-art while significantly

reducing the computational costs of the methods.

7.2 Future Work

In this section we briefly introduce some of the most interesting lines of work extending on the

ideas presented in the thesis. These ideas are a complement to those included in the conclusion

of each case study from Part II. We believe that some of these ideas have the potential of defining

the future of the forecasting task.

Transfer learning is one of the most outstanding achievements in machine learning and has

many practical applications, yet for time series forecasting, the technique needs to be explored

more. Training large forecasting models on vast data will continue to improve prediction

accuracy. Still, more importantly, it will bypass the trade-off between accuracy and speed and

enable time series forecasting without the need of a specific time series past information.

Forecasting aims to predict the future as accurately as possible, conditional on all the available

information. Planning, on the other side, involves defining appropriate actions based on goals

and forecasts; by its nature, planning is intended to lead to a specific course of action. An exciting

research avenue is to develop algorithms that shorten the distance between the predictions and

the actions. Training algorithms to take actions directly will see them shaping the future instead

of only describing it.
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Appendix A
Interpretable Neural Forecasting
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A.1 Training and validation curves
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Figure A.1: Training and validation Mean Absolute Error (MAE) curves on the NP market. We show

the curves for NBEATSx-G with exogenous variables and NBEATS without exogenous variables as a

function of optimization iterations. We define four curves by a different random seed used for initialization.

To study exogenous variables effects on the NBEATS model, we performed model training

procedure diagnostics. Figure A.1 shows the train and validation mean absolute error (MAE)

for the NBEATS and NBEATSx models as training progresses. The curves correspond to the

hyperparameter optimization phase described in Section 4.5.4. The models trained with and

without exogenous variables display a considerable difference in their train and validation errors

as observed by the two separate clusters of trajectories. The exogenous variables, in this case,

the electricity load and production forecasts, improve the neural basis expansion analysis.

94



A.1.1 Computational Time

Table A.1: Computational time performance in seconds for the top four most accurate models for the

day-ahead electricity price forecasting task in the NP market, averaged for the four elements of the

ensembles (Time performance for the rest of the markets is almost identical).

LEARx DNN NBEATSx-G NBEATSx-I

Recalibration 18.57 50.65 75.02 81.61

Prediction 0.0032 0.0041 0.0048 0.0054

We measured the computational time of the top four best algorithms with two metrics: the

recalibration of the ensemble models selected from the hyperparameter optimization, and the

computation of the predictions. For these experiments, we used a GeForce RTX 2080 GPU for

the neural network models and an Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz for LEAR.

The time of the recalibration phase of NBEATSx remains efficient, as it still trains in 75 and

81 seconds, increasing by 30 seconds on the DNN. The computational time of the prediction

remains within miliseconds. Finally the hyperparameter optimization scales linearly with respect

to the time of the recalibration phase and the evaluation steps of the optimization, in case of the

NBEATSx-G the approximate time of a hyperparameter search of 1000 steps takes two days
1
.

1
For comparability we use 1000 steps (Lago et al., 2021a), restricting to 300 steps yields similar results.
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Table A.2: Forecast accuracy measures for day-ahead electricity prices for the best single model out of the

four models described in the Section 4.5.5. The ESRNN and NBEATS, are the original implementations

and do not include time dependent covariates. The reported metrics are mean absolute error (MAE),

relative mean absolute error (rMAE), symmetric mean absolute percentage error (sMAPE) and root mean
squared error (RMSE). The smallest errors in each row are highlighted in bold.

*
The EPEX-DE’s LEARxresults differ from Lago et al., 2021a – the values are revised (Lago et al., 2021b)

.

AR1 ESRNN NBEATS ARx1 LEARx* DNN NBEATSx-G NBEATSx-I

NP

MAE 2.28 2.11 2.11 2.11 1.95 1.71 1.65 1.68

rMAE 0.72 0.67 0.67 0.67 0.62 0.54 0.52 0.53

sMAPE 6.51 6.09 6.06 6.1 5.62 4.97 4.83 4.89

RMSE 4.08 3.92 3.98 3.84 3.60 3.36 3.27 3.33

PJM

MAE 3.88 3.63 3.48 3.68 3.09 3.07 3.02 3.01
rMAE 0.8 0.75 0.72 0.76 0.64 0.63 0.62 0.62
sMAPE 14.66 14.26 13.56 14.09 12.54 12.00 11.97 11.91
RMSE 6.26 5.87 5.59 5.94 5.14 5.20 5.06 5.00

EPEX-BE

MAE 7.04 7.01 6.83 7.05 6.59 6.07 6.14 6.17

rMAE 0.86 0.86 0.83 0.86 0.80 0.74 0.75 0.75

sMAPE 16.29 15.95 16.03 16.21 15.95 14.11 14.68 14.52

RMSE 17.25 16.76 16.99 17.07 16.29 15.95 15.46 15.43

EPEX-FR

MAE 4.74 4.68 4.79 4.85 4.25 4.06 3.98 3.97
rMAE 0.80 0.78 0.80 0.86 0.71 0.68 0.67 0.67
sMAPE 13.49 13.25 13.62 16.21 13.25 11.49 11.07 11.29

RMSE 13.68 11.89 12.09 17.07 10.75 11.77 11.61 11.08

EPEX-DE

MAE 5.73 5.64 5.37 4.58 3.93 3.59 3.46 3.37
rMAE 0.71 0.70 0.67 0.57 0.49 0.45 0.43 0.42
sMAPE 21.22 21.09 19.71 18.52 16.80 14.68 14.78 14.34
RMSE 9.39 9.17 9.03 7.69 6.53 6.08 5.84 5.64

A.2 Best Single Models

Table A.2 shows that the best NBEATSx models yield improvements of 14.8% on average

across all the evaluation metrics when compared to its NBEATS counterpart without exogenous

covariates, and improvements of 23.9% when compared to ESRNN without time-dependent

covariates. A perhaps more remarkable result is the statistically significant improvement of

forecast accuracy over LEAR and DNN benchmarks, ranging from 0.75% to 7.2% across all

metrics and markets, with the exception of EPEX-BE. Compared to DNN, the RMSE improved

on average 4.9%, the MAE improved 3.2%, the rMAE improved 3.0%, and sMAPE improved

1.7%. When comparing the best NBEATSx models against the best DNN on individual markets,

NBEATSx improved by 3.18% on the Nord Pool market (NP), 2.03% 2.65% on French (EPEX-FR)

and 5.24% on German (EPEX-DE) power markets. The positive difference in performance for

Belgian (EPEX-BE) market of 0.53% was not statistically significant.

Figure A.2 provides a graphical representation of the GW test for the six best models,

across the five markets for the MAE evaluation metric. The models included in the significance

tests are the same as in Table A.2: LEAR, DNN, the ESRNN, NBEATS, and our proposed

methods, the NBEATSx-G and NBEATSx-I. The p-value of each individual comparison

shows if the improvement in performance (measured by MAE or RMSE) of the x-axis model

over the y-axis model is statistically significant. Both the NBEATSx-G and NBEATSx-I
model outperformed the LEAR and DNN models in all markets, with the exception of Belgium.

Moreover, no benchmark outperformed the NBEATSx-I and NBEATSx-G on any market.
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Figure A.2: Giacomini-White test for the day-ahead predictions with mean absolute error (MAE) applied

to single model pairs on the five electricity markets datasets. Each grid represents one market. Each

colored cell in a grid is plotted black, unless the predictions of the model corresponding to its column of

the grid outperforms the predictions of the model corresponding to its row of the grid. The color scale

reflects significance of the difference in MAE, with solid green representing the lowest p-values.
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Appendix B
Probabilistic Hierarchical Forecasting
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B.1 HINT ’s Probabilistic Coherence

In this Appendix we prove that HINT’s probabilistic coherence. Given access to the joint

bottom-level forecast probability P̂[b], and the aggregation rule for P̂[a] consequence of the

conditional independence of Equation (5.8) in Section 5.4.3, the implied forecast probability for

the hierarchical series P̂[a,b] is coherent and satisfies Definition 5.2. The proof first shows that

P̂[a] is well defined, and then shows that HINT’s aggregate marginal probability assigns a zero

probability to any set that does not contain any coherent forecasts, which implies probabilistic

coherence.

Lemma B.1: Aggregate Variables Coherence

Let (Ω[b],F[b], P̂[b]) be a probabilistic forecast space, with F[b] a σ-algebra on Ω[b]. The

aggregation rule defines a probability measure over Ω[a] = A[a][b](Ω[b]):

P̂[a](y[a]) =

∫
Ω[b]

P̂[b](y[b])1{y[a] = A[a][b]y[b]}dy[b] (B.1)

Proof. We prove P̂[a] satisfies Kolmogorov axioms on (Ω[a],F[a], P̂[a]) with Ω[a] = A[a][b](Ω[b]).

1. P̂[a](A) ≥ 0 ∀A ∈ F[a] : This follows from the positivity of P̂[b](B) and the indicator

function.

2. P̂[a](Ω[a]) = 1: The unit measure assumption holds because

P̂[a](A[a][b](Ω[b]) =

∫
Ω[a]

∫
Ω[b]

P̂[b](y[b])1{y[a] = A[a][b]y[b]}dy[b]dy[a] =

∫
Ω[b]

P̂[b](y[b])dy[b] = 1

3. P̂[a] (
⋃∞

i=1Ai) =
∑∞

i=1 P̂(Ai) for disjoint sets Ai’s: The σ-additivity assumption holds

P̂[a]

(
∞⋃
i=1

Ai

)
= P̂[a]

(
∞⋃
i=1

A[a][b](Bi)

)
=

∫
P̂[b]

(
∞⋃
i=1

Bi

)
1{y[a] = A[a][b]y[b]}dy[b]

=

∫
P̂[b]

(
∞⋃
i=1

Bi

)
dy[b] =

∞∑
i=1

P̂(Bi) =
∞∑
i=1

P̂(Ai)
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Lemma B.2: Characterization of Probabilistic Coherence

Let (Ω[b],F[b], P̂[b]) be a probabilistic forecast space, withF[b] a σ-algebra onΩ[b]. If a forecast

distribution assigns a zero probability to sets that don’t contain coherent forecasts, it defines

a coherent probabilistic forecast space (Ω[a,b],F[a,b], P̂[a,b]) with Ω[a,b] = S[a,b][b](Ω[b]).

P̂[a]

(
y[a] /∈ A[a][b](B) | B

)
= 0 =⇒ P̂[a,b]

(
S[a,b][b](B)

)
= P̂[b] (B) ∀B ∈ F[b] (B.2)

Proof.

P̂[a,b]

(
S[a,b][b](B)

)
= P̂[a,b]

([
A[a][b]

I[b][b]

]
(B)
)

= P̂[a,b]

(
{
[
A[a][b](B)

RNb

]
} ∩ {

[
RNa

B

]
}
)

= P̂[a]

(
A[a][b](B) | B

)
P̂[b] (B) = (1− P̂[a]

(
y[a] /∈ A[a][b](B) | B

)
)× P̂[b] (B) = P̂[b] (B)

The first equality is the image of a set B ∈ Ω[b] corresponding the constraints matrix transforma-

tion, the second equality defines the spanned space as a subspace intersection of the aggregate

series and the bottom series, the third equality uses conditional probability multiplication rule,

the final equality uses the zero probability assumption.

Theorem B.1: HINT ’s probabilistic coherence.

With (Ω[b],F[b], P̂[b]) probabilistic forecast space, we can construct a coherent probabilistic

forecast space (Ω[a,b],F[a,b], P̂[a,b]) with Lemma B.1’s aggregation.

Proof. It follows from Section 5.4.3’s aggregation rule that P̂[a]

(
y[a] /∈ A[a][b](B) | B

)
= 0, using

Lemma B.2 we obtain a probabilistic coherent space (Ω[a,b],F[a,b], P̂[a,b]).
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B.2 Covariance Formula

Here we present the derivation of the covariance formula in Equation (5.11).

Proof. Using the law of total covariance, we get

Cov(Yβ,τ , Yβ′,τ ′) = E [Cov(Yβ,τ , Yβ′,τ ′ |λβ,κ,τ , λβ′,κ,τ ′)] + Cov (E [Yβ,τ |λβ,κ,τ ] ,E [Yβ′,τ ′|λβ′,κ,τ ′ ])
(B.3)

Using the conditional independence from Equation (5.8)). We can rewrite the expectation of

the conditional covariance:

E [Cov(Yβ,τ , Yβ′,τ ′ |λβ,κ,τ , λβ′,κ,τ ′)] = E [Var(Yβ,τ |λβ,κ,τ )]1(β = β′)1(τ = τ ′)

= E [λβ,κ,τ ]1(β = β′)1(τ = τ ′)

= λβ,τ1(β = β′)1(τ = τ ′) (B.4)

where λβ,τ =
∑Nk

κ=1wκλβ,κ,τ .

In the second term, because the conditional distributions are Poisson we have

E [Yβ,τ |λβ,κ,τ ] = λβ,κ,τ and E [Yβ′,τ ′|λβ′,κ,τ ′ ] = λβ′,κ,τ ′

Which implies

Cov (E [Yβ,τ |λβ,κ,τ ] ,E [Yβ′,τ ′|λβ′,κ,τ ′ ]) =

Nk∑
κ=1

wκ

(
λβ,κ,τ − λ̄β,τ

) (
λβ′,κ,τ ′ − λ̄β′,τ

)
(B.5)

Therefore, the covariance formula is:

Cov(Yβ,τ , Yβ′,τ ′) = λβ,τ1(β = β′)1(τ = τ ′) +

Nk∑
κ=1

wκ

(
λβ,κ,τ − λβ,τ

) (
λβ′,κ,τ ′ − λβ′,τ ′

)
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B.3 Mixture Components and Covariance Matrix Rank

As mentioned in Section 5.4.5, complex correlations across series benefit from a higher number

of mixture components. We ground this intuition on the expressiveness of HINT’s Poisson

Mixture covariance matrix controlled by its rank. We can show that for HINT’s finite Poisson

mixture distribution, the bottom level’s estimator of the non-diagonal covariance matrix series

is a matrix of rank at most K − 1 given by:

Cov(y[b],τ ) =
K∑

κ=1

wκ(λ[b],κ,τ − λ̄[b],τ )(λ[b],κ,τ − λ̄[b],τ )
⊺ ∈ RNb×Nb

(B.6)

Proof. One can easily extend the pair-wise covariance from Equation (B.5) to multivariate co-

variance Equation (B.6).

Let zκ = (λ[b],κ,τ − λ̄[b],τ ), by construction we can show that

∑K
κ=1 zκ = 0.

Rewriting the last vector zK = −
∑K−1

κ=1 zk we obtain a sum of K − 1 rank-1 matrices

K∑
k=1

zkz
⊺
k =

K−1∑
k=1

zkz
⊺
k +

(
−

K−1∑
k=1

zk

)
z⊺K =

K−1∑
k=1

zk(zk − zK)
⊺

which implies that HINT’s modeled covariance matrix rank is upper bounded byK−1.
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B.4 Dataset Details

The Traffic dataset, as mentioned, measures the occupancy rates of 963 freeway lanes from

the Bay Area. The original data is at a 10-minute frequency from January 1st 2008 to March

30th 2009. The dataset is further aggregated from the 10-minute frequency into daily frequency

with 366 observations. We match the sample procedure from previous hierarchical forecasting

literature (Souhaib and Bonsoo, 2019; Rangapuram et al., 2021), and use the same 200 bottom

level series from the 963 available. From these 200 bottom level series a hierarchy is randomly

defined by aggregating them into quarters and halves of 50 and 100 series each, finally we

consider the total aggregation. Table B.1 describes the hierarchical structure.

Table B.1: San Francisco Bay Area highway traffic data summary.

*
The hierarchical structure is randomly defined.

Geographical
Level *

Series per
Level

Bay Area 1

Halves 2

Quarters 4

Bottom 200

Total 207

The Tourism-L dataset contains 555 monthly series from 1998 to 2016, it is organized by

geography and purpose of travel. The four-level geographical hierarchy comprises seven states,

divided further into 27 zones and 76 regions. The categories for purpose of travel are holiday,

visiting friends and relatives, business and other. This dataset has been referenced by important

hierarchical forecasting studies like the one of the MinT reconciliation strategy and the more

recent HierE2E (Wickramasuriya et al., 2019; Rangapuram et al., 2021). Tourism-L is a

grouped dataset, it has two dimensions in which it is aggregated, the total level aggregation and

its four associated purposes. Table B.2 describes the group and hierarchical structures.

Table B.2: Australian Tourism flows.

Geographical
Level

Series per
Level

Series per
Level & Purpose Total

Australia 1 4 5

States 7 28 35

Zones 27 108 135

Regions 76 304 380

Total 111 444 555
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The Favorita dataset, once balanced for items and stores, contains 217,944 bottom level

series, in contrast the original competition considers 210,645 series. We resort for this balance

because, for the moment the GroupBU version of the Poisson Mixture requires balanced hier-

archies for its estimation. In the case of the Favorita experiment we consider a geographical

hierarchy (93 nodes) conditional of each of grocery item (4,036). The hierarchy defines 153,368

new aggregate series at the item-country, item-state, and item-city levels. Table B.3 describes

the structure.

Regarding the dataset preprocessing, we confirmed observations from the best submissions

to the Kaggle competition. Most holiday distances included in the dataset and covariates like oil

production lack value for the forecasts. The models did not benefit from a long history, filtering

the training window to the 2017 year consistently produced better results.

Table B.3: Favorita Grocery Sales.

Geographical
Level

Nodes per
Level

Series per
Level Total

Ecuador 1 4,036 4,036

States 16 64,576 64,576

Cities 22 88,792 88,792

Stores 54 217,944 217,944

Total 93 371,312 371,312

B.5 Poisson Mixture Size Ablation Study

As shown in Appendix B.2, the job of HINT’ mixture distribution goes beyond forecasting single

time series but also modeling correlations across them too. Based on the covariance matrix

expressiveness theoretical properties, it is reasonable to expect that the number of optimal

components grows with the complexity of the modeled time series structure.

In this ablation study, we empirically test these intuitions showing how the number of

optimally selected HINT’s mixture components grows with larger datasets. For the experiment,

we measured the cross-validation performance of HINT’ configurations as defined in Table 5.2

explored automatically with HYPEROPT (Bergstra et al., 2011) where we fix the number of

mixture components.

Table B.4: Empirical evaluation of probabilistic coherent forecasts for differentHINT-GroupBU, varying

the Poisson mixture size. Mean overall scaled continuous ranked probability score (sCRPS). The best result

is highlighted (lower measurements are preferred).

Dataset Level K = 1 K = 10 K = 25 K = 50 K = 100

Traffic Overall 0.1647± 0.0009 0.1435± 0.0947 0.0958± 0.0005 0.1337± 0.0004 0.1261± 0.0037

Tourism-L Overall 0.1673± 0.0052 0.1380± 0.0017 0.1247± 0.0025 0.1284± 0.0031 0.1251± 0.0034

Favorita Overall 0.8390± 0.0124 0.4416± 0.0152 −− 0.4204± 0.0108 0.3758± 0.0040
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Table B.4 reports the validation probabilistic forecast accuracy measured with sCRPS, across

Traffic, Tourism-L, and Favorita, for HINT-GroupBU with different number of

Poisson mixture components. For this experiment, we report the overall validation sCRPS

averaged over four independent HYPEROPT runs with twelve optimization steps and eight

steps in the Traffic dataset.

Table B.4’s sCRPS measurements suggest that there is a bias-variance trade-off controlled

by the Poisson mixture size. When K = 1, HINT-GroupBU model corresponds to Poisson

regression and treats each series as probabilistically independent, such model high-bias simple

model produced forecasts with the worst sCRPS. The forecast accuracy improves as the number

of Poisson components increases from K = 1, but the accuracy begins to deteriorate beyond a

certain threshold. We hypothesize that a small number of mixture components does not have

enough degrees of freedom to describe the data, and too many mixture components lead to

over-fitting the training data, resulting in large variance on the validation data.

We observed that the precise value of an optimal Poisson mixture components varies across

the datasets. Larger datasets, or datasets with a complex time series correlation structure, appear

to benefit from more flexible probability mixtures. Traffic, our smallest dataset, produced

optimal results with K = 25 components, Tourism-L, a medium-sized dataset, produced

optimal results with K = 25 components. Finally Favorita our largest dataset, did not

saturate even with the largest number of components we experimented with; we capped the

choice of the number of mixture components at K = 100 due to GPU memory constraints.

0.10

0.15

Tr
af

fic

0.14

0.16

To
ur

is
m

-L

0 20 40 60 80 100
0.4

0.6

0.8

Fa
vo

ri
ta

Number of Poisson Mixture Components

O
ve

ra
ll 

Va
lid

at
io

n 
C

R
PS

 

Figure B.1: Poisson Mixture size ablation study. There is a bias-variance trade-off controlled by the

mixture components, both Traffic and Tourism-L have an optimal values of 25 components,

beyond which the sCRPS validation performance worsens, with classic U-shaped pattern. In the case of

Favorita, the largest dataset, the validation sCRPS continued to improve beyond K = 100.
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B.6 Model Parameter Details

Table B.5: Hierarchical Forecast Network (HINT) architecture parameters configured once per dataset.

These hyperparameters correspond to the first selection phase preceding the automatic optimization.

*
SGD batch follows an ablation study considering values between {2,4,8,16,32,64,100}. We report the best validation batch size.

Parameter Notation Considered Values

Traffic Tourism-L Favorita

SGD Batch Size
*

. - 4 4 100

Activation Function. - PeLU PeLU PeLU

Temporal Convolution Kernel Size. Nck {7} {2} {2}
Temporal Convolution Layers. Ncl {3} {5} {5}
Temporal Convolution Filters. Np {10} {30} {30}
Future Encoder Dimension. Nf {50} {50} {50}
Static Encoder Dimension. Ns {100} {100} {100}
Horizon Agnostic Decoder Dimensions. Nag {50} {50} {50}
Horizon Specific Decoder Dimensions. Nsp {20} {20} {20}
Poisson Mixture Weight Decoder Layers. Nwdl {3} {4} {4}
Poisson Mixture Rate Decoder Layers. Nrdl {2} {3} {3}
Poisson Mixture Components. Nk {25} {25} {100}
GPU Training Configuration. - 2 x NVIDIA V100 2 x NVIDIA V100 4 x NVIDIA V100

As mentioned in Section 5.5.5, for the overall hyperparameter selection, we used a standard

two-stage approach where we fixed the architecture, the probability distribution to estimate

(and implicit training loss), and a second stage where we optimized the architecture’s training

procedure.

In the first stage, we carefully fixed the architecture and the probability distribution to

estimate. The most important heuristic guiding this selection was to increase the architecture’s

and probability’s capacity for larger or more complex datasets. To increase the network’s

capacity, we increased the number of convolution layers Ncl and convolution filters Np as well

as the mixture weight and rate decoder layers Nwdl, Nrdl. In particular, since Traffic is

the smallest dataset, we opted for a reduced model size and the number of Poisson mixture

components to control the model’s variability. Additionally, due to the dataset’s strong weekly

seasonality pattern, we adjusted the convolution kernel size to encompass seven days. We

control the probability’s capacity with the mixture size and SGD batchsize. In an ablation study

similar to Appendix B.5 we found that for datasets with strong correlations like Favorita
and Tourism-L maximizing the batch size with respect to GPU memory limitations resulted

in better validation performance; for Traffic, though the entire dataset could fit in memory

at once, it was preferable to feed in subsets to allow the model to learn from different randomly

sampled highway groups in each epoch.

For the second hyperparameter selection stage, as reported in Section 5.5.5, for each fixed

architecture and probability we optimally explored its training procedure hyperparameters

defined in Table 5.2 using HYPEROPT algorithm’s Bayesian optimization (Bergstra et al., 2011).

The second phase only considers the optimal exploration of the learning rate, random initializa-

tion, and the number of SGD epochs, the selection is guided by temporal cross-validation signal

obtained from the dataset partition introduced in Section 5.5.3.
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B.7 Qualitative Analysis of Poisson Mixture Rates

We use a histogram in Figure B.2 to visualize the distribution of Poisson Mixture rates learned

by the HINT-GroupBU method on the Traffic, Tourism-L, and Favorita datasets.

These rates correspond to those of the models from Table 5.3, for a base time series and a single

time step ahead in the forecast horizon. In the histogram, we use the learned mixture weights

wk in the vertical axis to account for the probability of each Poisson rate λk represented in the

horizontal axis.

Exciting patterns arise from visualizing the learned Poisson Mixture rates and their weights.

First, the HINT likelihood, in similar fashion to Zero Inflated Poisson Regression (ZIP) (Lambert,

1992), is capable of modeling sparse data in the case of the Favorita bottom level series;

as we can see from the probability accumulation around zero, this may explain its superior

performance on Favorita bottom level series that tends to be sparse as previously shown in

Figure 5.6. Second, all the Poisson rate distributions show multiple modes, a quality that cannot

be replicated by a Gaussian, uni-modal, and symmetric distribution. This observation further

motivates using a flexible distribution capable of better modeling the underlying data generation

processes. Third, the distribution of Poisson rates in the Tourism-L dataset can overcome the

limitations of simple Poisson distributions that tend to have collapsed variances for aggregated

series due to their scale since the variance of the series can still be correctly modeled by the

variance of the Poisson rates.
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Figure B.2: Poisson Mixture rates distribution for the HINT-GroupBU model reported in Table 5.3. A

single bottom-level series and a time step ahead in the forecast horizon is considered. The mixture distri-

bution is capable of flexibly modeling multimodal processes, overcome Poisson regression’s limitations

for aggregated data and model zero inflated processes for disaggregated data. These qualities make it

exceptionally useful for hierarchical forecasting tasks.
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Appendix C
Long Multi-horizon Forecasting
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C.1 Neural Basis ApproximationTheorem

In this Appendix we prove the neural basis expansion approximation theorem introduced in

Section 6.5.3. We show that NHITS’ hierarchical interpolation can arbitrarily approximate

infinitely long horizons (τ ∈ [0, 1] continuous horizon), as long as the interpolating functions g
are defined by a projections to informed multi-resolution functions, and the forecast relationships

satisfy smoothness conditions. We prove the case when gw,h(τ) = θw,hϕw,h(τ) = θw,h1{τ ∈
[2−w(h− 1), 2−wh]} are piecewise constants and the inputs y[t−L:t] ∈ [0, 1]. The proof for linear,

spline functions and y[t−L:t] ∈ [a, b] is analogous.

Lemma C.1: Haar’s Wavelets Approximation

Let a function representing an infinite forecast horizon be Y : [0, 1] → R a square

integrable function L2([0, 1]). The forecast function Y can be arbitrarily well approximated

by a linear combination of piecewise constants:

Vw = {ϕw,h(τ) = ϕ(2w(τ − h)) | w ∈ Z, h ∈ 2−w × [0, . . . , 2w]}

where w ∈ N controls the frequency/indicator’s length and h the time-location (knots)

around which the indicator ϕw,h(τ) = 1{τ ∈ [2−w(h− 1), 2−wh]} is active. That is, ∀ϵ > 0,

there is a w ∈ N and Ŷ(τ |y[t−L:t]) = ProjVw
(Y(τ |y[t−L:t])) ∈ Span(ϕw,h) such that∫

[0,1]

|Y(τ)− Ŷ(τ)|dτ =

∫
[0,1]

|Y(τ)−
∑
w,h

θw,hϕw,h(τ)|dτ ≤ ϵ (C.1)

Proof. This classical proof can be traced back to Haar’s work (1910). The indicator functions

Vw = {ϕw,h(τ)} are also referred in literature as Haar scaling functions or father wavelets.

Details provided in Boggess and Narcowich, 2015.Let the number of coefficients for the ϵ-
approximation Ŷ(τ |y[t−L:t]) be denoted as Nϵ =

∑w
i=0 2

i
.

Lemma C.2: Neural Network’s Universal Approximation

Let a forecast mapping Y(· | y[t−L:t]) : [0, 1]L → L2([0, 1]) be ϵ-approximated by

Ŷ(τ |y[t−L:t]) = ProjVw
(Y(τ |y[t−L:t])), the projection to multi-resolution piecewise con-

stants. If the relationship between y[t−L:t] ∈ [0, 1]L and θw,h varies smoothly, for instance

θw,h : [0, 1]L → R is a K-Lipschitz function then for all ϵ > 0 there exists a three-layer

neural network θ̂w,h : [0, 1]L → R with O (L( K
ε

)
L
)

neurons and ReLU activations such

that ∫
[0,1]L

|θw,h(y[t−L:t])− θ̂w,h(y[t−L:t])|dy[t−L:t] ≤ ϵ (C.2)

Proof. This lemma is a special case of the neural universal approximation theorem that states

the approximation capacity of neural networks of arbitrary width (Hornik, 1991). The theorem
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has refined versions where the width can be decreased under more restrictive conditions for the

approximated function (Barron, 1993; Hanin and Sellke, 2017).

Theorem C.1: Neural Basis Approximation

Theorem 1. Let a forecast mapping be

Y(· | y[t−L:t]) : [0, 1]
L → F , where the forecast functions F = {Y(τ) : [0, 1] → R} =

L2([0, 1]) representing a continuous horizon, are square integrable.

If the multi-resolution functions Vw can arbitrarily approximate L2([0, 1]). And the pro-

jection ProjVw
(Y(τ)) varies smoothly on y[t−L:t]. Then the forecast mapping Y(· | y[t−L:t])

can be arbitrarily approximated by a neural network learning a finite number of multi-

resolution coefficients θ̂w,h.

That is ∀ϵ > 0,∫
|Y(τ | y[t−L:t])− Ỹ(τ | y[t−L:t])|dτ

=

∫
|Y(τ | y[t−L:t])−

∑
w,h

θ̂w,h(y[t−L:t])ϕw,h(τ)|dτ ≤ ϵ
(C.3)

Proof. For simplicity of the proof, we will omit the conditional lags y[t−L:t]. Using both the

neural approximation Ỹ from Lemma 2, and Haar’s approximation Ŷ from Lemma 1,∫
|Y(τ)− Ỹ(τ)|dτ =

∫
|(Y(τ)− Ŷ(τ)) + (Ŷ(τ)− Ỹ(τ))|dτ

By the triangular inequality:∫
|Y(τ)− Ỹ(τ)|dτ ≤

∫
|Y(τ)− Ŷ(τ)|

+ |
∑
w,h

θw,hϕw,h(τ)−
∑
w,h

θ̂w,hϕw,h(τ)|dτ

By a special case of Fubini’s theorem∫
|Y(τ)− Ỹ(τ)|dτ ≤∫
|Y(τ)−

∑
w,h

Ŷ(τ)|dτ +
∑
w,h

∫
τ

|(θw,h − θ̂w,h)ϕw,h(τ)|dτ
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Using positivity and bounds of the indicator functions∫
|Y(τ)− Ỹ(τ)|dτ ≤∫
τ

|Y(τ)−
∑
w,h

Ŷ(τ)|dτ +
∑
w,h

|θw,h − θ̂w,h|
∫
τ

ϕw,h(τ)dτ

<

∫
τ

|Y(τ)−
∑
w,h

Ŷ(τ)|dτ +
∑
w,h

|θw,h − θ̂w,h|

To conclude we use the both arbitrary approximations from the Haar projection and the

approximation to the finite multi-resolution coefficients∫
|Y(τ)− Ỹ(τ)|dτ ≤∫
|Y(τ)− Ŷ(τ)|dτ +

∑
w,h

|θw,h − θ̂w,h| ≤ ϵ1 +Nϵ1ϵ2 ≤ ϵ
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C.2 Computational Complexity Analysis

We consider a single forecast of length H for the following complexity analysis, with a NBEATS
and a NHITS architecture of B blocks. We do not consider the batch dimension. We consider

most practical situations, the input size L = O(H) linked to the horizon length.

The block operation described by Equation (6.2) has complexity dominated by the fully

connected layers of O(H Nh), with Nh the number of hidden units that we treat as a constant.

The depth of stacked blocks in the NBEATS-G architecture, that endows it with its expressivity,

is associated to a computational complexity that scales linearly O(HB), with B the number of

blocks.

In contrast the NHITS architecture that specializes each stack in different frequencies,

through the expressivity ratios, can greatly reduce the amount of parameters needed for each

layer. When we use exponentially increasing expressivity ratios through the depth of the ar-

chitecture blocks it allows to model complex dependencies, while controlling the number of

parameters used on each output layer. If the expressivity ratio is defined as rℓ = rl then the

space complexity of NHITS scales geometrically O(
∑B

l=0Hr
l) = O

(
(H(1− rB)/(1− r)

)
.

Table C.1: Computational complexity of neural based forecasting methods as a function of the output

size H . For simplicity, we assume that the input size L scales linearly with respect to H . For NHITS and

NBEATS we also consider the network’s B blocks.

Model Time Memory

LSTM O(H) O(H)
ESRNN O(H) O(H)
TCN O(H) O(H)
Transformer O(H2) O(H2)
Reformer O(H logH) O(H logH)
Informer O(H logH) O(H logH)
Autoformer O(H logH) O(H logH)
LogTrans O(H logH) O(H2)

NBEATS-I O(H2B) O(H2B)
NBEATS-G O(HB) O(HB)
NHITS O(H(1− rB)/(1− r)) O(H(1− rB)/(1− r))
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C.3 Hyperparameter Exploration

All benchmark neural forecasting methods optimize the length of the input {96, 192, 336, 720}
for ETT, Weather, and ECL, {24, 36, 48, 60} for ILI, and {24, 48, 96, 192, 288, 480, 672}
for ETTm. The Transformer-based models: Autoformer, Informer, LogTrans, and

Reformer are trained with MSE loss and ADAM of 32 batch size, using a starting learning

rate of 1e-4, halved every two epochs, for ten epochs with early stopping. Additionally, for

comparability of the computational requirements, all use two encoder layers and one decoder

layer.

We use the adaptation to the long-horizon time series setting provided by Wu et al. 2021

of the Reformer (Kitaev et al., 2020), and LogTrans (Li et al., 2019), with the multi-step

forecasting strategy (non-dynamic decoding).

The Autoformer (Wu et al., 2021) explores with grid-search the top-k auto-correlation

filter hyper-parameter in {1, 2, 3, 4, 5}. And fixes inputs L = 96 for all datasets except for ILI
in which they use L = 36. For the Informer (Zhou et al., 2020) we use the reported best

hyperparameters found using an grid-search, that include dimensions of the encoder layers

{6, 4, 3, 2}, the dimension of the decoder layer {2}, the heads of the multi-head attention layers

{8, 16} and its output’s {512}.

We considered other classic models, like the automatically selected ARIMAmodel (Hyndman

and Khandakar, 2008). The method is trained with maximum likelihood estimation under

normality and independence. And integrates root statistical tests with model selection performed

with Akaike’s Information Criterion.

Finally, as mentioned in Section 6.5.3 for NHITS main results we limit the exploration to

a minimal space of hyperparameters. We only consider the kernel pooling size for multi-rate

sampling from Equation (6.1), the number of coefficients in Equation (6.2) and the random seed

from Table 6.2.
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C.4 Univariate Forecasting

As a complement of the main results from Section 6.5.4, in this Appendix, we performed

univariate forecasting experiments for the ETTm2 and Exchange datasets. This experiment

allows us to compare closely with other methods specialized in long-horizon forecasting that

also considered this setting (Zhou et al., 2020; Wu et al., 2021).

For the univariate setting, we consider the Transformer-based (1) Autoformer (Wu et al.,

2021), (2)Informer (Zhou et al., 2020), (3)LogTrans (Li et al., 2019) and (4)Reformer (Ki-

taev et al., 2020) models. We selected other well-established univariate forecasting benchmarks:

(5) NBEATS (Oreshkin et al., 2020), (6) DeepAR (Salinas et al., 2020) model, which takes autore-

gressive features and combines them with classic recurrent networks. (7) Prophet (Taylor and

Letham, 2018), an additive regression model that accounts for different frequencies non-linear

trends, seasonal and holiday effects and (8) an auto ARIMA (Hyndman and Khandakar, 2008).

Table C.2 summarizes the univariate forecasting results. NHITS significantly improves over

the alternatives, decreasing 17% in MAE and 25% in MSE across datasets and horizons, with

respect the best alternative. As noticed by the community recurrent based strategies like the

one from ARIMA, tend to degrade due to the concatenation of errors phenomenon.

Table C.2: Empirical evaluation of long multi-horizon univariate forecasts. Mean Absolute Error (MAE)

and Mean Squared Error (MSE) for predictions averaged over eight runs, the best result is highlighted in

bold (lower is better). We gradually prolong the forecast horizon.

NHITS Autoformer Informer Reformer NBEATS DeepAR ARIMA
MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
2

96 0.066 0.185 0.065 0.189 0.088 0.225 0.131 0.288 0.082 0.219 0.099 0.237 0.211 0.362

192 0.087 0.223 0.118 0.256 0.132 0.283 0.186 0.354 0.120 0.268 0.154 0.310 0.261 0.406

336 0.106 0.251 0.154 0.305 0.180 0.336 0.220 0.381 0.226 0.370 0.277 0.428 0.317 0.448

720 0.157 0.312 0.182 0.335 0.300 0.435 0.267 0.430 0.188 0.338 0.332 0.468 0.366 0.487

E
x
c
h
a
n
g
e 96 0.093 0.223 0.241 0.299 0.591 0.615 1.327 0.944 0.156 0.299 0.417 0.515 0.112 0.245

192 0.230 0.313 0.273 0.665 1.183 0.912 1.258 0.924 0.669 0.665 0.813 0.735 0.304 0.404

336 0.370 0.486 0.508 0.605 1.367 0.984 2.179 1.296 0.611 0.605 1.331 0.962 0.736 0.598

720 0.728 0.569 0.991 0.860 1.872 1.072 1.280 0.953 1.111 0.860 1.890 1.181 1.871 0.935
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C.5 Ablation Studies

This section performs ablation studies on the validation set of five datasets that share horizon

lengths, ETTm2, Exchange, ECL, Traffic-L, and Weather. The section’s experiments

control for NHITS settings described in Table 6.2, only varying a single characteristic of interest

of the network and measuring the effects in validation.

C.5.1 Pooling Configurations

In Section 6.4.1 we described the multi-rate signal sampling enhancement of the NHITS architec-

ture. Here we conduct a study to compare the accuracy effects of different pooling alternatives,

on Equation (6.1). We consider the MaxPool and AveragePool configurations. As shown in

Table C.3, the MaxPool operation consistently outperforms the AveragePool alternative, with

MAE improvements up to 15% and MSE up to 8% in the most extended horizon. On average, the

forecasting accuracy favors the MaxPool method across the datasets and horizons.

Table C.3: Empirical evaluation of long multi-horizon multivariate forecasts for NHITS with different

pooling configurations. All other hyperparameters were kept constant across all datasets. MAE and MSE

for predictions averaged over eight seeds, the best result is highlighted in bold (lower is better). Average

percentage difference relative to average pooling in the last panel.

MaxPool AveragePool

MSE MAE MSE MAE

E
T
T
m
2

96 0.185 0.265 0.186 0.262
192 0.244 0.308 0.257 0.315

336 0.301 0.347 0.312 0.356

720 0.429 0.438 0.436 0.447

E
C
L

96 0.152 0.257 0.181 0.290

192 0.172 0.275 0.212 0.320

336 0.197 0.304 0.238 0.343

720 0.248 0.347 0.309 0.400

E
x
c
h
a
n
g
e 96 0.109 0.232 0.112 0.238

192 0.280 0.375 0.265 0.371
336 0.472 0.504 0.501 0.502
720 1.241 0.823 1.610 0.942

T
r
a
f
f
i
c
-
L 96 0.405 0.286 0.468 0.332

192 0.421 0.297 0.490 0.347

336 0.448 0.318 0.531 0.371

720 0.527 0.362 0.602 0.400

P
.
D

i
ff

.

96 -8.911 -6.251 0.000 0.000

192 -7.544 -6.085 0.000 0.000

336 -8.740 -4.575 0.000 0.000

720 -15.22 -8.318 0.000 0.000
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(a) N.Neighbors (b) Linear (c) Cubic

Figure C.1: Proposed interpolator configurations.

C.5.2 Interpolation Configurations

In Section 6.4.3 we described the hierarchical interpolation enhancement of the multi-step

prediction strategy. Here we conduct a study to compare the accuracy effects of different

interpolation alternatives. To do it, we change the interpolation technique used in the multi-step

forecasting strategy of the NHITS architecture. The interpolation techniques considered are

nearest neighbor, linear and cubic. We describe them in detail below.

Recalling the notation from Section 6.4.3, consider the time indexes of a multi-step prediction

τ ∈ {t + 1, . . . , t + H}, let T = {t + 1, t + 1 + 1/rℓ . . . , t + H} be the anchored indexes in

NHITS layer ℓ, and the forecast ŷτ,ℓ = g(τ, θfℓ ) and backast ỹτ,ℓ = g(τ, θfℓ ) components. Here

we define different alternatives for the interpolating function g ∈ C0, C1, C2
. For simplicity we

skip the ℓ layer index.

Nearest Neighbor. In the simplest interpolation, we use the anchor observations in the

time dimension closest to the observation we want to predict. Specifically, the prediction is

defined as follows:

ŷτ = θ[t∗] with t∗ = argmint∈T {|t− τ |} (C.4)

Linear. An efficient alternative is the linear interpolation method, which uses the two closest

neighbor indexes t1 and t1, and fits a linear function that passes through both.

ŷτ =

(
θ[t1] +

(
θ[t2]− θ[t1]

t2 − t1

)
(τ − t1)

)
(C.5)

Cubic. Finally we consider the Hermite cubic polynomials defined by the interpolation

constraints for two anchor observations θt1 and θt1 and its first derivatives θ
′
t1

and θ
′
t1

.

ŷτ = θ[t1]ϕ1(τ) + θ[t2]ϕ2(τ) + θ
′
[t1]ψ1(τ) + θ

′
[t2]ψ2(τ) (C.6)

With the Hermite cubic basis defined by:

ϕ1(τ) = 2τ 3 − 3τ 2 + 1 (C.7a)

ϕ2(τ) = −2τ 3 + 3τ 2 (C.7b)

ψ1(τ) = τ 3 − 2τ 2 + τ (C.7c)

ψ2(τ) = τ 3 − τ 2 (C.7d)
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The ablation study results for the different interpolation techniques are summarized in

Table C.4, we report the average MAE and MSE performance across the five datasets. Figure C.2

presents the decomposition for the different interpolation techniques. We found that linear

and cubic interpolation consistently outperform the nearest neighbor alternative, and show

monotonic improvements relative to the nearest neighbor technique along the forecasting

horizon.

The linear interpolation improvements over nearest neighbors are up to 15.8%, and up to

7.0% for the cubic interpolation. When comparing between linear and cubic the results are

inconclusive as different datasets and horizons slight performance differences. On average across

the datasets both the forecasting accuracy and computational performance favors the linear

method, with which we conducted the main experiments of this work with this technique.

Table C.4: Empirical evaluation of long multi-horizon multivariate forecasts for NHITS with different

interpolation configurations. All other hyperparameters were kept constant across all datasets. MAE

and MSE for predictions averaged over eight seeds, the best result is highlighted in bold (lower is better).

Percentage difference relative to n. neighbor in the last panel, average across datasets.

Linear Cubic N.Neighbor

MSE MAE MSE MAE MSE MAE

E
T
T
m
2

96 0.185 0.265 0.179 0.256 0.180 0.259

192 0.244 0.308 0.241 0.303 0.252 0.315

336 0.301 0.347 0.314 0.358 0.302 0.351

720 0.429 0.438 0.439 0.450 0.442 0.455

E
C
L

96 0.152 0.257 0.149 0.252 0.151 0.255

192 0.172 0.275 0.174 0.279 0.175 0.279

336 0.197 0.304 0.190 0.295 0.211 0.318

720 0.248 0.347 0.256 0.353 0.263 0.358

E
x
c
h
a
n
g
e 96 0.109 0.232 0.1307 0.254 0.126 0.248

192 0.280 0.375 0.247 0.357 0.357 0.416

336 0.472 0.504 0.625 0.560 0.646 0.560

720 1.241 0.823 1.539 0.925 1.740 0.973

T
r
a
f
f
i
c
-
L 96 0.405 0.286 0.402 0.282 0.405 0.359

192 0.421 0.297 0.417 0.295 0.419 0.201

336 0.448 0.318 0.446 0.315 0.445 0.253

720 0.527 0.362 0.540 0.366 0.525 0.318

W
e
a
t
h
e
r 96 0.164 0.199 0.162 0.203 0.161 0.360

192 0.224 0.255 0.225 0.257 0.218 0.928

336 0.285 0.311 0.285 0.304 0.298 0.988

720 0.366 0.359 0.380 0.369 0.368 1.047

P
.
D

i
ff

.

96 -0.907 -0.717 0.146 1.61 0.000 0.000

192 -5.582 -3.259. -7.985 -4.332 0.000 0.000

336 -10.516 -4.199 -2.108 -1.455 0.000 0.000

720 -15.800 -7.042 -5.480 -1.579 0.000 0.000
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0 100 200 300 400 500 600 700

1.5

2.0

2.5

ET
Tm

2 True
Forecast

0 100 200 300 400 500 600 7000.0
0.2
0.4
0.6
0.8
1.0

St
ac

k 
1

0 100 200 300 400 500 600 7000.5
0.0
0.5
1.0
1.5

St
ac

k 
2

0 100 200 300 400 500 600 700
0.4
0.2
0.0
0.2
0.4

St
ac

k 
3

0 100 200 300 400 500 600 700
Prediction   {t+1,..., t+H}

0.75
0.50
0.25
0.00
0.25
0.50
0.75

Re
sid

ua
ls

(b) Linear
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(c) Cubic
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(d) No Interpolation

Figure C.2: ETTm2 and 720 ahead forecasts using NHITS with different interpolation techniques. The

top row shows the original signal and the forecast. The second, third and fourth rows show the forecast

components across stack, residuals in the last row.
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(a) Top-Down (b) Bottom-Up

Figure C.3: Hierarchical representation configurations.

C.5.3 Order of Hierarchical Representations

Deep Learning in classic tasks like computer vision and natural language processing is known

to learn hierarchical representations from raw data that increase complexity as the information

flows through the network. This automatic feature extraction phenomenon is believed to drive

to a large degree the algorithms’ success (Bengio et al., 2012). Our approach differs from the

conventions in the sense that we use a Top-Down hierarchy where we prioritize in the synthesis

of the predictions to low frequencies and sequentially complement them with higher frequencies

details, as explained in Section 6.4. We achieve this with NHITS’ expressiveness ratio schedules.

Our intuition is that the Top-Down hierarchy acts as a regularizer and helps the model to focus

on the broader factors driving the predictions rather than narrowing its focus at the beginning

on the details that compose them. To test these intuitions, we designed an experiment where we

inverted the expressiveness ratio schedule into Bottom-Up hierarchy predictions and compared

the validation performance.

Remarkably, as shown in Table C.5, the Top-Down predictions consistently outperform the

Bottom-Up counterpart. Relative improvements in MAE are 4.6%, in MSE of 7.5%, across horizons

and datasets. Our observations match the forecasting community practice that addresses long-

horizon predictions by first modeling the long-term seasonal components and then its residuals.

Research on long-horizon forecasting has primarily focused on long-term seasonal component,

as it is a common belief that it is the most important.
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Table C.5: Empirical evaluation of long multi-horizon multivariate forecasts for NHITS with different

hierarchical orders. All other hyperparameters were kept constant across all datasets. MAE and MSE for

predictions averaged over eight seeds, the best result is highlighted in bold (lower is better). Average

percentage difference relative to ascending hierarchy in the last panel.

Top-Down Bottom-Up

MSE MAE MSE MAE

E
T
T
m
2

96 0.185 0.265 0.191 0.266

192 0.244 0.308 0.261 0.320

336 0.301 0.347 0.302 0.353

720 0.429 0.438 0.440 0.454

E
C
L

96 0.152 0.257 0.164 0.270

192 0.172 0.275 0.186 0.292

336 0.197 0.304 0.217 0.327

720 0.248 0.347 0.273 0.369

E
x
c
h
a
n
g
e 96 0.109 0.232 0.114 0.242

192 0.280 0.375 0.436 0.452

336 0.472 0.504 0.654 0.574

720 1.241 0.823 1.312 0.861

T
r
a
f
f
i
c
-
L 96 0.405 0.286 0.410 0.292

192 0.421 0.297 0.427 0.305

336 0.448 0.318 0.456 0.323

720 0.527 0.362 0.557 0.379

W
e
a
t
h
e
r 96 0.164 0.199 0.163 0.200

192 0.224 0.255 0.219 0.252
336 0.285 0.311 0.288 0.311

720 0.366 0.359 0.365 0.355

P
.
D

i
ff

.

96 -2.523 -2.497 0.000 0.000

192 -12.296 -6.793 0.000 0.000

336 -11.176 -5.507 0.000 0.000

720 -4.638 -3.699 0.000 0.000
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C.6 Multi-rate sampling and Hierarchical Interpolation
beyond NHITS

Empirical observations let us infer that the advantages of theNHITS architecture are rooted in its

multi-rate hierarchical nature, as both the multi-rate sampling and the hierarchical interpolation

complement the long-horizon forecasting task in MLP-based architectures. In this ablation

experiment, we quantitatively explore the effects and complementarity of the techniques in an

RNN-based architecture.

This experiment follows the Table 6.4 ablation study, reporting the average performance

acrossETTm2, ECL,Exchange, Traffic-L, andWeather datasets. We define the follow-

ing set of alternative models: DilRNN1, our proposed model with both multi-rate sampling and

hierarchical interpolation, DilRNN2 only hierarchical interpolation, DilRNN3 only multi-rate

sampling, DilRNN with no multi-rate sampling or interpolation (corresponds to the original

DilRNN (Chang et al., 2017)).

Table C.6 shows that the hierarchical interpolation technique drives the main improvements

(DilRNN2), while the combination of both proposed components (hierarchical interpolation

and multi-rate sampling) sometimes results in the best performance (DilRNN1), the difference

is marginal. Contrary to the clear complementary observed in Table 6.4, the DilRNN does not

improve substantially from the multi-rate sampling techniques. We find an explanation in the

behavior of the RNN that summarizes past inputs and the current observation of the series, and

not the complete whole past data like the MLP-based architectures.

A key takeaway of this experiment is that NHITS’ hierarchical interpolation technique

exhibits significant benefits in other architectures. Despite these promising results, we decided

not to pursue more complex architectures in our work as we found that the interpretability of

the NHITS predictions and signal decomposition capabilities was not worth losing.

Table C.6: Empirical evaluation of long multi-horizon multivariate forecasts for DilRNN with/without

enhancements. Average MAE and MSE for five datasets, the best result is highlighted in bold, second best

in blue (lower is better).

DilRNN1 DilRNN2 DilRNN3 DilRNN

A
.
M

S
E

96 0.346 0.331 0.369 0.347

192 0.539 0.528 0.545 0.561

336 0.647 0.691 0.705 0.723

720 0.765 0.762 0.789 0.800

A
.
M

A
E

96 0.343 0.335 0.352 0.347

192 0.460 0.444 0.462 0.468

336 0.513 0.537 0.539 0.649

720 0.585 0.566 0.600 0.598
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Figure C.4: NHITS performance improvement over Autoformer as a function of explored hyperpa-

rameter configurations.

C.7 Hyperparameter Optimization Resources

Computational efficiency has implications for the prediction’s accuracy and the cost of de-

ployment. Since forecasting systems are constantly retrained to address distributional shifts,

orders-of-magnitude improvements in speed can easily translate into orders-of-magnitude price

differences deploying the models. This section explores the implications of computational effi-

ciency in the accuracy gains associated with hyperparameter optimization and training economic

costs.

Hyperparameter Optimization. Despite all the progress improving the computation

efficiency of Transformer-based methods, see Figure 6.6, their speed and memory requirements

make exploring their hyperparameter space unaffordable in practice, considering the amount of

GPU computation they still require.

For this experiment we report the iterations of the hyperparameter optimization phase, de-

scribed in Section 6.5.3, where we explore the hyperparameters from Table 6.2 usingHYPEROPT,

a Bayesian hyperparameter optimization library (Bergstra et al., 2011). As shown in Figure C.4 the

exploration exhibits monotonic relative performance gains of NHITS versus the best reported

Autoformer (Wu et al., 2021) in the ablation datasets.

Training Economic Costs. We measure the train time for NHITS, NBEATS-G and

Transformer-based models, on the six main experiment datasets and 8 runs. We rely on a AWS

g4dn.2xlarge, with an NVIDIA T4 16GB GPU.

We differentiate betweenNHITS1, our method with a singleHYPEROPT iteration randomly

sampled from Table 6.2, and NHITS20 to our method after 20 HYPEROPT iterations. For the

Transformer-based models we used optimal hyperparameters as reported in their repositories.

Table C.7 shows the measured train time for the models, NHITS1 takes 1.5 hours while more

expensive architectures likeAutoformer orInformer take 92.6 and 62.1 hours each. Based

on hourly prices from January 2022 for the g4dn.2xlarge instance, USD 0.75, the main
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results of the paper would cost nearly USD 70.0 withAutoformer, USD 46.5 withInformer,

while NHITS1 results can be executed under USD 1.5 and NHITS20 with USD 22.8. Figure C.4,

shows that NHITS1 achieves a 17% MSE average performance gain over Autoformer with

1.6% of a single run cost, and NHITS20 almost 25% gain with 33% of a single run cost. A single

run does not consider hyperparameter optimization.

ExptPrice = GPUPrice × HyperOptIters × TrainTime × Runs

Table C.7: Train time hours on a g4dn.2xlarge instance.

Horizon NHITS1 NHITS20 Autoformer Informer NBEATS-G

A
.
T

i
m

e

96/24 0.183 3.66 12.156 9.11 0.291

192/36 0.257 5.14 16.734 11.598 0.462

336/48 0.398 7.96 22.73 15.237 0.674

720/60 0.682 13.64 40.987 26.173 1.249

Total 1.523 30.46 92.607 62.118 2.676
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[122] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew W. Senior, and Koray Kavukcuoglu. “WaveNet:

A Generative Model for Raw Audio”. In: Computer Research Repository abs/1609.03499

(2016). arXiv: 1609.03499. url: http://arxiv.org/abs/1609.03499 (cit. on pp. 30, 40, 63).

[123] Ivan Svetunkov. Complex exponential smoothing. Lancaster University (United Kingdom),

2016 (cit. on p. 20).

[124] Bartosz Uniejewski, Jakub Nowotarski, and Rafał Weron. “Automated Variable Selection

and Shrinkage for Day-Ahead Electricity Price Forecasting”. In: Energies 9.8 (2016). issn:

1996-1073. url: https://www.mdpi.com/1996-1073/9/8/621 (cit. on p. 48).

[125] George Athanasopoulos, Rob J Hyndman, Nikolaos Kourentzes, and Fotios Petropoulos.

“Forecasting with temporal hierarchies”. In: European Journal of Operational Research
262.1 (2017), pp. 60–74 (cit. on p. 52).

[126] Souhaib Ben Taieb, James W. Taylor, and Rob J. Hyndman. “Coherent Probabilistic

Forecasts for Hierarchical Time Series”. In: Proceedings of the 34th International Conference
on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of

Machine Learning Research. PMLR, Aug. 2017, pp. 3348–3357. url: http://proceedings.

mlr.press/v70/taieb17a.html (cit. on pp. 52, 55, 56).
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