
G E N E R A L I Z AT I O N T H R O U G H
R I C H E R S U P E RV I S I O N

alexander c. li

May 2025

CMU-ML-25-103

Machine Learning Department
School of Computer Science
Carnegie Mellon University

thesis committee:
Deepak Pathak, Chair

Zico Kolter
Ruslan Salakhutdinov

Alexei A. Efros (UC Berkeley)

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy.

Copyright ©2025 Alexander Li

This research was sponsored by Defense Advanced Research Projects Agency contract
number N660011924034 and National Science Foundation Graduate Research Fellowship
Program award numbers 1745016 and 2140739.

Keywords: machine learning, deep learning, generalization, generative models,
distribution shift, diffusion models, language models, Transformer, exploration, data
curation, Internet, self-supervised learning, contrastive learning

A C K N O W L E D G M E N T S

I’m deeply grateful to my advisor, Deepak Pathak, for his continuous guidance
throughout my PhD. Alyosha Efros has also been instrumental in my research jour-
ney, providing valuable insights and collaboration since the start of my PhD. They’ve
helped me grow so much as a researcher, from scrutinizing the smallest details (“look
at the pixels!”) to thinking big, no matter how crazy the idea. I’m also very grateful
for my undergraduate advisor, Pieter Abbeel, as well as my undergraduate mentors
Lerrel Pinto and Carlos Florensa, for inspiring me to love research and getting me
started on this journey. Finally, thank you to my committee members Zico Kolter and
Ruslan Salakhutdinov for thoughtful comments and fruitful discussions throughout
the years.

I’m lucky to have worked with such an incredible set of collaborators during
my PhD: Ellis Brown, Mihir Prabhudesai, Shivam Duggal, Tsung-Wei Ke, Katerina
Fragkiadaki, Ananya Kumar, Xinlei Chen, Yuandong Tian, and Beidi Chen. I’d also
like to thank my labmates Russell Mendonca, Shikhar Bahl, Kenny Shaw, Ananye
Agarwal, Murtaza Dalal, and Lili Chen for many wonderful conversations. Thank
you to all the researchers in the Machine Learning Department and Robotics Insti-
tute, who have fostered such a vibrant community at CMU. I’m grateful for my
friends Rishi Veerapaneni, Patrick Chao, and many more who have provided much-
needed balance, perspective, and laughter. I’d also like to thank Christina Baek for
her constant support, endless patience, and ability to bring joy during the most
challenging moments of this journey. Most importantly, I thank my family. Their
unwavering love and support has made everything possible.

iii

A B S T R A C T

Machine learning methods have achieved superhuman performance in limited do-
mains, but they still fall short in their ability to generalize to new scenarios. In this
thesis, we suggest that this shortcoming stems from the fact that training objectives
are too easy. Models can quickly overfit to training examples without learning general
principles that apply broadly. We propose addressing this issue by recasting prob-
lems to be richer and more complex, encouraging models to understand the underlying
structure rather than memorizing surface statistics. We present three complementary
solutions: autonomous data acquisition, better learning objectives, and careful algo-
rithm design.

Chapter 2 develops a curiosity-based system that continually learns by search-
ing the Internet for data that it is least knowledgeable about. Our Internet Explorer
method learns to generate targeted Google queries and selectively trains on retrieved
data, outperforming alternatives while requiring 32x less training time and 180x less
data. Chapters 3 and 4 explore how to extract more value from existing datasets
by revisiting generative classifiers, which have the harder task of modeling both in-
puts and labels jointly. By implementing these classifiers with modern generative
architectures, we achieve significant improvements in compositional reasoning and
out-of-distribution generalization. Finally, Chapter 5 advances sequence modeling
algorithms by recasting masked discrete diffusion as a generalization of autoregres-
sive models and developing efficient architectures for any-order generative model-
ing. This approach enables training on all possible sequence permutations, resulting
in better performance on algorithmic reasoning tasks as well as substantially lower
sampling latency.

iv

C O N T E N T S

1 introduction 1

1.1 Autonomously Acquiring Hard Data 2

1.2 Harder Learning Objectives 3

1.3 Dynamically choosing problem formulation at test-time 4

i autonomous data acquisition 6

2 internet explorer : targeted representation learning on the

open web 7

2.1 Internet Explorer: An Online Agent 10

2.1.1 Text-to-image Search 10

2.1.2 Text Query Generation 10

2.1.3 Self-supervised Training 11

2.1.4 Image Relevance Reward 11

2.1.5 Estimating Reward for Unseen Concepts 13

2.1.6 Provable speedup in relevant query identification 14

2.1.7 Query sampling distribution 15

2.2 Experimental Setting 16

2.2.1 Self-supervised Exploration 16

2.2.2 Label Set-guided Exploration 16

2.2.3 Datasets and Metrics 16

2.3 Results and Analysis 17

2.3.1 Self-supervised Results 17

2.3.2 Self-supervised Exploration Behavior 18

2.3.3 Label Set-guided Results 19

2.3.4 Domain dataset results 19

2.3.5 Learning from other sources of data 19

2.3.6 Effect of image reward type 20

2.3.7 Comparison to image-to-image search 21

2.4 Related Work 22

2.5 Discussion 23

ii harder learning objectives 24

3 learning generative models for classification 25

3.1 Classification via Diffusion Models 25

3.1.1 Method: Diffusion Classifier 26

v

3.1.2 Diffusion Model Preliminaries 26

3.1.3 Variance Reduction via Difference Testing 28

3.2 Practical Considerations 30

3.2.1 Effect of timestep 30

3.2.2 Efficient Classification 31

3.3 Experimental Details 31

3.3.1 Zero-shot Classification 31

3.3.2 Supervised Classification 33

3.4 Experimental Results 34

3.4.1 Zero-shot Classification Results 34

3.4.2 Improved Compositional Reasoning Abilities 35

3.4.3 Supervised Classification Results 37

3.5 Discussion 40

4 generative classifiers avoid shortcut solutions 42

4.1 Related Work 44

4.2 Preliminaries 45

4.2.1 Types of Distribution Shift 45

4.2.2 Shortcomings of Discriminative Classifiers 45

4.3 Generative Classifiers 46

4.3.1 Intuition 46

4.3.2 Diffusion-based Generative Classifier 46

4.3.3 Autoregressive Generative Classifier 47

4.4 Experiments 48

4.4.1 Setup 48

4.4.2 Results on Distribution Shift Benchmarks 49

4.4.3 Why Do Generative Classifiers Do Better? 51

4.5 Illustrative Setting 53

4.5.1 Data 53

4.5.2 Algorithms 54

4.5.3 The Inductive Bias of LDA 54

4.5.4 Generalization Phase Diagrams 56

4.6 Discussion 57

iii algorithm design 59

5 discrete diffusion is generalized autoregression 60

5.1 Connecting Discrete Diffusion and Autoregression 61

5.1.1 Preliminaries 61

5.1.2 Equivalence to a Generalized Autoregressive Ordering 62

5.2 Methods 63

5.2.1 Generalized Autoregressive Transformer 64

vi

5.2.2 Double RoPE Positional Encoding 65

5.2.3 Data orderings 66

5.2.4 Accelerated sampling 67

5.2.5 Confidence-based decoding 68

5.3 Results 70

5.3.1 Scaling Laws 70

5.3.2 Accelerated sampling 72

5.3.3 Reasoning 74

5.4 Discussion 75

6 conclusion 76

6.1 Frontiers 76

iv appendix 79

a internet explorer : targeted representation learning on the

open web 80

a.1 Learning from other sources of data 80

a.2 Are we finding the entire test set online? 83

a.3 Method Details 84

a.3.1 WordNet Lemmas 84

a.3.2 GPT-J Descriptor Prompting 87

a.3.3 Concept Vocabulary Size 87

a.3.4 Query Model Details 88

a.3.5 Training Details 89

a.3.6 Hyperparameters 89

a.3.7 Image Licenses 90

a.3.8 Domain Dataset Descriptor Details 90

a.4 Proof of Lemma 2.1.1 91

a.5 Progression of downloaded images 92

b your diffusion model is secretly a zero-shot classifier 95

b.1 Efficient Diffusion Classifier Algorithm 95

b.2 Inference Costs and Hybrid Classification Approach 95

b.3 Inference Objective Function 97

b.4 Interpretability via Image Generation 98

b.5 How Does Stable Diffusion Version Affect Zero-Shot Accuracy? 100

b.6 Additional Implementation Details 101

b.6.1 Zero-shot classification using Diffusion Classifier 101

b.6.2 Compositional reasoning using Diffusion Classifier 102

b.6.3 ImageNet classification using Diffusion Classifier 102

b.6.4 Baselines for Zero-Shot Classification 103

vii

b.7 Techniques that did not help 104

c generative classifiers avoid shortcut solutions 107

c.1 Additional Analysis 107

c.1.1 Additional Results on the Effect of Discriminative Model Size 107

c.1.2 Scaling Can Improve Generative Classifiers 108

c.1.3 Results on Additional Datasets 108

c.1.4 Correlation between Generative and Discriminative Performance 109

c.1.5 Effect of Image Embedding Model 112

c.1.6 Comparison with Pre-trained Discriminative Models 112

c.1.7 Additional Plots for Generalization Phase Diagrams 114

c.2 Experimental Details 115

c.2.1 Image-based Experiments 116

c.2.2 Autoregressive Generative Classifier 117

bibliography 117

viii

1
I N T R O D U C T I O N

Machine learning methods have achieved superhuman performance in limited do-
mains like game-playing [172], competition programming [110], and protein fold-
ing [89]. However, in more realistic settings, models exhibit a puzzling failure to gen-
eralize. Object detection models are overly sensitive to tiny changes in position [155];
classification models are susceptible to background changes or small corruptions [14,
75]; the list of failures is endless. Failure to generalize can be life-threatening: mod-
els trained to recognize pneumonia or cancer fail on images from new hospitals [2,
205], and self-driving cars can crash when encountering a novel road condition [149].
Naively training on more data, up to hundreds of billions of words, can even hurt
generalization [121]. Why do models fail to generalize, and how can we prevent this?

95% of examples 5% of examples

Figure 1.1: Camel vs cow toy
classification task

Consider a toy classification task where the objec-
tive is to classify whether an image shows a camel or
a cow. This appears easy enough to humans. How-
ever, models can learn pathologically bad solutions,
as their training objective only requires them to con-
fidently and correctly predict the training set. First,
models can overfit, using features that work on the
training data but don’t generalize to the validation
dataset [109, 188]. Second, models can also rely on
shortcut solutions [57], which appear to generalize to
the validation set but actually utilize features that are
not causally related to the label. Shortcut solutions,
e.g., background color or high-frequency texture [58,
160], can then cause huge drops in performance un-
der distribution shift, when these shortcuts no longer hold. Notably, models can
learn to rely on shortcut solutions even when they aren’t perfectly predictive on the
training set. In the cow versus camel example, the training set contains a strong cor-
relation between the label and the background color of sand versus grass, though
there are counterexamples like the cow on the beach or the camel in the grasslands.

1

Models are still perfectly “happy” to use the background to get most of the train-
ing examples correct, then overfit to the remaining difficult examples where this cue
doesn’t hold.

This suggests that our models’ failure to generalize may stem from the fact that our
training objective is too easy: there are too many solutions that just don’t generalize.
Even if there are generalizing solutions (in this case, animal shape) that work on all
training and test examples, models have little incentive to find them during training.
Perhaps, then, we need to make our problems harder in order to get the learning
signal necessary for models to better generalize in- and out-of-distribution.

In this thesis, we explore three types of approaches to train our models with richer
and more complex supervision. First, we develop a method to autonomously acquire
hard data for training. Next, we revisit the paradigm of generative classifiers as a
better training objective. Finally, we explore generalizations of autoregressive models
as new algorithms for language modeling.

1.1 autonomously acquiring hard data

One of the most successful approaches for improving generalization is to pretrain
on a much broader data distribution [96, 146, 147], before finetuning on a desired
target task. Fang et al. [52] show that the diversity of the pretraining set primarily
drives the increase in performance. This makes sense: as we scale the number of
“rare” examples, it becomes harder to overfit to all of them, and it also becomes
more likely that we’ll see similar training examples to any test point. Thus, a reliable
approach to improve performance has been to continuously scale up pretraining
datasets. However, such approaches require scaling up the amount of compute to
the point that training runs last for months and cost millions of dollars. This is
impractical for most applications and researchers.

In Chapter 2, we propose an alternate approach. If we know the target task that
we care about, we shouldn’t waste training compute on examples that are too easy
or irrelevant. Instead, we should focus on collecting as much hard, relevant data as
possible in order to train a specialized model. Our Internet Explorer method has
access to all of the data on the Internet and learns to make queries that yield useful
training images for self-supervised representation learning. It determines this by
identifying the downloaded images that increase the self-supervised training loss
on the target task images the most. This process is similar to active learning [40], but
Internet Explorer only requires a small, unlabeled set of images from our target task
and does not need labels. We show that this is highly effective: Internet Explorer
outperforms CLIP [147] with 32x less training time and 180x less data.

2

1.2 harder learning objectives

While Chapter 2 focuses on improving generalization by finding hard training data
examples that provide more learning signal, we can also improve generalization
given a fixed amount of data if we train on a more difficult objective. There are many
popular techniques for doing so, such as data augmentation to enforce certain in-
variances [203, 207] or regularization to reduce overfitting [127, 178]. Self-supervised
objectives like CPC [134], MoCo [71], DINO [25], and MAE [70] force the model to
differentiate between images or reconstruct missing patches, and are designed to
encourage the model to learn features that are also useful for the supervised task.

While these methods do improve generalization, they have their limitations. It’s
difficult to hand-design effective augmentation strategies, since we need to find a bal-
ance between adding invariances and keeping the transformed data similar enough
to the original distribution. Furthermore, there are many invariances that are diffi-
cult to easily enforce via augmentation. For example, it’s not clear how to transform
images so that models avoid using a watermark shortcut feature [111] on ImageNet.
Regularization is useful but limited, as models still often find a way to overfit or learn
shortcuts. Finally, auxiliary self-supervised objectives have to be carefully tuned [29],
otherwise their learned features are too irrelevant for the task at hand.

These techniques are particularly ineffective for improving out-of-distribution gen-
eralization trends. Taori et al. [181] and Miller et al. [125] evaluate the in-distribution
(ID) and out-of-distribution (OOD) accuracy of hundreds of models, trained on the
same data with varying augmentation, regularization, and auxiliary objective. Sur-
prisingly, if graphed with ID accuracy on the x-axis and OOD accuracy on the y-axis,
on most distribution shifts the performances of all of these models fall on a single
line. This is concerning: all methods so far only improve OOD accuracy by improv-
ing ID accuracy, and none have a better scaling trend for OOD accuracy! The only
approach to get OOD performance above the trend line is to train on additional data,
which is often infeasible.

We suggest that the issue with all of these previous approaches is that they’re try-
ing to compensate for a weak discriminative objective. Minimizing the cross-entropy
loss − logpθ(y

∗ | x) is too easy. Going back to the camel versus cow example, the
model has little incentive to learn the causal “shape” features if it can minimize
loss just via an easy-to-learn background feature and overfitting on the examples
where this shortcut doesn’t hold. Even if the model has somehow learned the causal
features, models trained with cross-entropy often still prefer to use the spurious
features [93, 128, 156, 177].

Motivated by the idea that the discriminative objective − logpθ(y | x) is too easy,
we revisit the idea of generative classifiers, which train models to learn the condi-

3

tional likelihood pθ(x | y). This is a much harder objective, as it requires modeling
the entire input x, conditioned on the label y. This is desirable. In the camel versus
cow example, a generative classifier cannot just learn to model the grass and sand. It
must eventually understand how to generate the shapes of each animal. And once it
learns the causal shape features, it should prefer to use them since they are the most
consistently correlated with the label.

Generative classifiers are not new, dating at least as far back as Fischer discrimi-
nant analysis [55]. However, they had fallen in popularity, likely due to the lack of
strong generative modeling algorithms at the time. Today, though, we have powerful
generative models for multiple modalities: diffusion models [76, 173] for images and
autoregressive Transformers [190] for text. Thus, this is a good time to design effi-
cient and accurate classifiers using these new generative models and explore their
learning advantages. In Chapter 3, we propose Diffusion Classifier, a way to turn
class-conditional diffusion models into strong classifiers. We find that Diffusion Clas-
sifier does especially well on harder tasks like compositional reasoning. In Chapter 4,
we show that generative classifiers do indeed generalize better on distribution shifts.
In fact, we find that generative classifiers are the first approach to have a qualitatively
better ID vs OOD trend line (“effective robustness”) without using any additional
training data. These findings hold across image, text, and low-dimensional Gaussian
benchmarks.

1.3 dynamically choosing problem formulation at test-time

Finally, we turn our attention to how we can use richer supervision to improve lan-
guage modeling. Today’s most ubiquitous language models are autoregressive [21,
186], predicting text one word at a time from left-to-right by modeling pθ(xt | x1:t).
This formulation dates back to Shannon [170], which introduced language model-
ing using n-grams. Since then, RNNs [158], LSTMs [79], and Transformer [190] text
generation models have all been autoregressive, though there have been alternate al-
gorithms proposed [59, 187]. Left-to-right autoregressive prediction is easy to train,
works well on natural language, and easily handles variable-length sequences. For
Transformers in particular, autoregressive prediction also enables efficient sampling
due to key-value caching.

However, autoregression in a fixed order has drawbacks. First, it may hurt gener-
alization. Some problems are hard to solve from left-to-right, but easy to solve in a
different ordering. For example, Sudoku is relatively easy to solve when filling in the
next most constrained square, but essentially impossible if you have to solve it from
left-to-right, top-to-bottom. Sampling from autoregressive models is also slow, as we

4

can only generate a single token per forward pass. This could be a big drawback in
latency-sensitive scenarios.

Discrete diffusion models are a promising alternative generative modeling frame-
work [6, 173] that could solve these problems. These models start with a sequence
that has been corrupted with noise and learn to gradually denoise it step by step.
Unlike continuous diffusion used in image generation, discrete diffusion operates
on discrete tokens and uses various corruption processes such as masking tokens,
replacing them with random tokens, or applying more complex transitions. Recent
approaches have shown promise but still face challenges in training efficiency and
inference speed compared to traditional autoregressive models [6, 117, 162]. Despite
these challenges, discrete diffusion models enable flexible conditioning, parallel to-
ken generation, and potentially improved reasoning capabilities.

In Chapter 5, we provide new insights into discrete diffusion that lead to better
generalization and more efficient models. We first establish a theoretical equivalence
between absorbing discrete diffusion and any-order autoregressive models. We pro-
pose Prism, our improved discrete diffusion language model, and train it as an au-
toregressive model over random permutations of each sequence. This costs more to
pretrain than autoregressive models, which only have to learn the single left-to-right
ordering, but this extra training supervision has several advantages. Given a test
prompt, Prism can use a confidence-based decoding strategy to dynamically decide
which order it should sample tokens in. This substantially improves performance
on algorithmic reasoning tasks over existing models. Training over all data permuta-
tions also enables Prism to predict multiple tokens in parallel. This reduces sampling
latency by up to 4− 8×.

5

Part I

A U T O N O M O U S D ATA A C Q U I S I T I O N

2
I N T E R N E T E X P L O R E R : TA R G E T E D R E P R E S E N TAT I O N
L E A R N I N G O N T H E O P E N W E B

Suppose you have a small dataset and need to train a model for some task, say clas-
sification. A pipeline that has become standard today is to download the latest pre-
trained deep network and fine-tune it on your own small dataset. This pre-trained
model used to be ImageNet-based [43, 72] and now would probably be CLIP [146].
The implicit goal set by the community for such pre-trained models is that they
should transfer well to any kind of downstream task not known in advance. This has
led to a race to build ultra-large-scale models in terms of computation, model size,
and dataset size. But is this goal of building an “omniscient” pre-trained model that
can work on any future downstream task even feasible? Perhaps not, as our world
is continually changing. Although the size of the pretraining datasets has grown
from 1.2M [43] to 5B [166] images, what has not changed at all is their nature: these
datasets are curated and, more importantly, static. For instance, the portion of Im-
ageNet curated before 2007 has no idea what an iPhone is. Furthermore, although
a few hundred million images represent a staggering quantity of visual data, they
are minuscule compared to the entire Internet, where billions of new photos are
uploaded every day. Thus, current static datasets, however big they become, fail to
capture the richness and dynamic nature of the data available on the Internet. More-
over, as our static datasets grow, they require increasingly inaccessible amounts of
compute.

In this section, we rethink the idea of generic large-scale pretraining and propose
an alternate paradigm: train a small-scale but up-to-date model geared towards the
specific downstream task of interest. To do so, we look beyond static datasets and
treat the Internet itself as a dynamic, open-ended dataset. Unlike conventional datasets,
which are expensive to expand and grow stale with time, the Internet is dynamic,
rich, grows automatically, and is always up to date. Its continuously evolving nature
also means we cannot hope to ever download it or train a model, whether large or
small, on all of it.

7

static dataset

pre-train
once

fine-tune

model

Standard Pre-Training Setting

Internet

focus on
knowledge gaps

learn from
new datamodel

Our Setting: Continually Explore the Internet

target dataset

target dataset

Figure 2.1: Given unlabeled data for a target task, our approach, Internet Explorer, searches
the Internet to progressively find more and more relevant training data via self-
supervised exploration.

We propose that the Internet can be treated as a special kind of dataset—one
that exists out there, ready to be queried as needed to quickly train a customized
model for a desired task. We draw an analogy to reinforcement learning, where even
though the task is known, finding a policy that can generate the desired behavior is
non-trivial due to the high complexity of the state space. Hence, most approaches
rely on some form of exploration to figure out what actions the agent should take
so that it quickly finds high-reward states. Inspired by this analogy, we formulate
a disembodied, online agent we call Internet Explorer, that actively queries standard
search engines to find relevant visual data that improve feature quality on a target
dataset (see Figure 2.1). The agent’s actions are text queries made to search engines,
and the observations are the data obtained from the search.

The queries made by Internet Explorer improve over time. It cycles between search-
ing for images on the Internet with text queries, self-supervised training on down-
loaded images, determining which images are relevant to the target dataset, and pri-
oritizing what to search for next (see Figure 2.2). We also bootstrap Internet Explorer
using existing pre-trained models such as MoCo-v3 [71] and obtain a significant
boost on the target datasets.

8

Internet Explorer Method
1. Sample Query

Learned concept distribution

BMW, sunflower, . . . , duck

GPT

2. Internet Image Search

3. Self-Supervised Training

encoder

contrastive
loss

4. Update Concept Distribution
calculate
reward

encoder

increase probability of useful concepts

BMW, sunflower, . . . , duck

target dataset

“duck”“baby” +

Figure 2.2: Overview of Internet Explorer. Our goal is to efficiently search the Internet for
images that improve our performance on a target dataset. In each iteration, we
first generate text queries by combining a concept sampled from a learned dis-
tribution with a GPT-generated descriptor (§2.1.2, §2.1.7). Next, we query search
engines with the resulting phrase and download the top 100 image results (§2.1.1,
2.3.5). We add these images to the set of previously downloaded images and
perform self-supervised training on the combined dataset (§2.1.3). Finally, we
evaluate the relevance of the new images and update our concept distribution to
increase the likelihood of similar queries if their images were similar to the target
dataset (§2.1.4, §2.1.5).

Our setting is different from active learning [169], where the goal is to selectively
obtain labels for data points from a fixed dataset. In contrast, Internet Explorer con-
tinually expands the size of its dataset and requires no labels for training, even from
the target dataset. Some prior works have also discussed ways to leverage the In-
ternet as an additional source of data. NELL [24] proposed a way to continually
scrape web pages to learn new concepts and relationships, which are periodically
curated by a human in the loop. NEIL [32] builds on NELL’s dictionary to search
visual data and develop visual relationships. Both are semi-supervised methods to
gather general “common-sense” knowledge from the Internet. In contrast, we per-
form an actively improving directed search to perform well on target data, in a fully
self-supervised manner.

9

2.1 internet explorer : an online agent

We focus on the problem of efficiently improving representations for some target
dataset by acquiring Internet data. We make as few assumptions as possible and
assume that we have only unlabeled training data from the target dataset. Success-
ful representation learning in this setting would lead to better performance on the
target dataset distribution for standard tasks like classification and detection, and po-
tentially others where the labels are not semantic (e.g., depth prediction or robotics).
An overview of the Internet Explorer method is depicted in Figure 2.2 and described
in Algorithm 1.

2.1.1 Text-to-image Search

We discover and download images from the full breadth of the Internet by query-
ing text-to-image search engines, which return images based on their captions and
surrounding text. Text-to-image search is fast, finds diverse images from across the
Internet, and enables searches for vastly different queries simultaneously. Note that
text-to-image search is noisy and makes use of weak supervision (the image-text
pairing on webpages). Thus, we only perform self-supervised training on the down-
loaded images. We use a public codebase to query Google Images, which can down-
load the top 100 images for each query [38, 189]. We also try other search engines in
Section 2.3.5.

2.1.2 Text Query Generation

As text queries are our only input interface with the Internet, it is crucial that we can
generate diverse queries that correspond to a variety of visual categories. Specificity
is also important. Once a useful visual category is identified, generating fine-grained
variants of the query is necessary to obtain data for all visual variations in the cate-
gory. We construct queries by combining two components:

1. Concepts specify semantic categories such as people, places, or objects.
2. Descriptors are modifiers that generate variations in appearance.
We draw our concepts from the WordNet hierarchy [124], which consists of 146,347

noun lemmas. Not all of these lemmas are visual, but the vocabulary still covers
an incredible range of topics. To generate a text query, we first sample a concept
from a learned distribution over our vocabulary. This discrete distribution is defined
by our estimates of how relevant each concept in the vocabulary is at the current
time (see Section 2.1.4 for details on estimating rewards and Section 2.1.7 for the
distribution). Given a sampled concept, we can generate a descriptor by prompting

10

a GPT-J language model [192] with examples of descriptor-concept pairs. Finally, as
shown in Step 1 of Figure 2.2, we concatenate the concept and descriptor. If our
concept is “duck” and the GPT-generated descriptor is “baby,” our search engine
query is “baby duck.”

2.1.3 Self-supervised Training

We use self-supervised learning (SSL) to learn useful representations from the un-
labeled images that we download from the Internet. Internet Explorer is compat-
ible with any SSL algorithm that uses images or image-text pairs, including con-
trastive [29, 71], non-contrastive [12, 25, 64, 204], masking-based [9, 70], or multi-
modal [146] approaches. For speed and stability reasons, we use the MoCo-v3 algo-
rithm [33], which trains encoders fq and fk on augmentations (x1, x2) of the same
image to output vectors q = fq(x1) and k = fk(x2). fq is trained to minimize the
InfoNCE loss [134]:

Lq = − log
exp(q · k+/τ)

exp(q · k+/τ) +∑
k− exp(q · k−/τ) (2.1)

k+ corresponds to fk’s output on the other augmentation of the image used to com-
pute q, and the set of negative examples {k−} corresponds to fk’s output on other
images in the batch. The temperature τ is set to 1 by default. fk consists of a base
encoder, a projection MLP, and a prediction head, whereas fq is the exponential mov-
ing average of the base encoder and projection MLP from fk. By training q and k+ to
be similar across image augmentations, MoCo-v3 encourages the network to learn
high-level semantic features.

Before turning to the Internet, we initialize a ResNet-50 model [72] using a MoCo-
v3 checkpoint trained offline for 100 epochs on ImageNet and then fine-tuned on the
target dataset. Without using labels, we select the best starting checkpoint by early
stopping on the SSL loss, which highly correlates with target accuracy [105]. In each
iteration of our method, we use MoCo-v3 to fine-tune our encoder on a mixture of
newly downloaded, previously downloaded, and target dataset images.

2.1.4 Image Relevance Reward

We want to rank newly downloaded images by how much they improve our fea-
tures for the target dataset. This allows us to (a) prioritize taking gradient steps on
useful images, and (b) understand what to search for in subsequent iterations. Un-
fortunately, it is challenging to directly measure the effect of an individual training
example on performance. Numerous techniques have been proposed [53, 85, 94, 140],

11

but they all require extensive and repeated training on new images to estimate their
impact.

Instead of trying to precisely measure what is learned from each image, we use its
similarity to the target dataset as a proxy for being relevant to training. We rank the
downloaded images by their similarity in representation space to the target dataset
images; those most similar to the target dataset induce larger contrastive loss since
each exp(q · k−) term in the denominator of Eq. 2.1 is larger when the negative
examples {k−} are closer to q. These “hard negatives” [56, 68, 133, 153, 165, 196] yield
larger and more informative gradients and should result in the biggest improvement
in representation quality. Thus, overloading notation for k, we compute the reward
for a particular image as its representation’s average cosine similarity to its k closest
neighbors in the target dataset. Given an image encoder fk : RH×W×3 → Rd, an
unlabeled target dataset D = {xi}

N
i=1, and a new image y to evaluate, the reward is

calculated:

r(fk,D,y) = max
I⊂{1,...,N};

|I|=k

1

k

∑
i∈I

Scos(fk(xi), fk(y)) (2.2)

where Scos is the cosine similarity. A previous metric for identifying relevant data [87]
used k = 1 nearest neighbors, but we found that this was too noisy and allowed
high rewards for outlier target images to distract our search. We instead use k = 15

to improve the accuracy of our relevance estimation. In Section 2.3.6, we compare
our reward to alternatives and explore their failure modes. This reward is used for
two purposes: determining which of the downloaded images to train on and, subse-
quently, which concepts would be useful to search for next.

which images to train on. Many newly downloaded images are not worth
training on, since they come from unrelated queries or are noisy results from the
search engine. Thus, at the end of each iteration, we rank the newly downloaded
images by their reward and save the top 50% to a replay buffer that we maintain
across iterations. In subsequent iterations, we continue training on this filtered data.

determining which concepts are useful . When we search for a concept
and get back Q image results {Ii}

Q
i=1, we take the average of the top 10 image-level

rewards ri = r(fk,D, Ii) and use that as a concept-level score. This gives us an accurate
measure of the relevance of a particular query and reduces the impact of noisy search
results.

12

Algorithm 1 Internet Explorer

1: Input: target dataset D, SSL algorithm A, search engine SE, encoder f :

RH×W×3 → Rd, image reward function r, vocabulary V = {ci}
C
i=1, # concepts/itr

M, # query results/search Q, GPT-based concept→ descriptor function GPTDesc,
concept distribution function CalcProb

2: Initialize replay buffer B← ∅
3: Initialize concept distribution p = Uniform{1,C}
4: for iteration = 1, 2, . . . do
5: for i = 1, . . . ,M do
6: Sample concept ci ∼ p(V) (§2.1.2)
7: Sample descriptor di ← GPTDesc(ci)

8: Image search {Iij}
Q
j=1 ← SE(di + ci,Q) (§2.1.1)

9: Calc. reward rci ← 1
Q

∑Q
j=1 r(f,D, Iij) (§2.1.4)

10: end for
11: Bnew = {I1j }

Q
j=1 ∪ · · · ∪ {IMj }

Q
j=1

12: SSL training: A(f,D∪B∪Bnew) (§2.1.3)
13: Add to buffer: B← B∪ Top50%(Bnew, r)
14: Predict all concept rewards rconcept from {rci} (§2.1.5)
15: Update concept dist p← CalcProb(rconcept) (§2.1.7)
16: end for

2.1.5 Estimating Reward for Unseen Concepts

Since our vocabulary contains hundreds of thousands of concepts, it is inefficient to
search to test whether a query yields relevant images. Luckily, we can estimate the
quality of a query by using the observed rewards of the queries used so far. Humans
can do this effortlessly due to our understanding of what each concept means. To
us, it is obvious that if querying “golden retriever” yielded useful images for this
dataset, then “labrador retriever” probably should as well. To give our method the
same understanding of concept meaning, we embed our 146,347 WordNet concepts
into a 384-dimensional space using a pre-trained sentence similarity model [151].

We use Gaussian process regression (GPR) [195] over the text embeddings {ei} to
predict the concept-level reward r(ei) for untried concepts. GPR models the function
outputs for any set of inputs {r(ei)} as jointly Gaussian random variables, and it
estimates a Gaussian posterior with mean µ(e ′) and variance σ(e ′)2. We encourage
exploration by setting the score of unobserved concepts to µ(ei) + σ(ei).

13

100 101 102 103 104 105

10−5

10−3

Pr
ob

ab
ili

ty

Scale, softmax
Scale, softmax, tier

100 101 102 103 104 105

Sorted Concept Index (log scale)

0.0

0.5

1.0

C
um

ul
at

iv
e

Pr
ob

.

Figure 2.3: Learned concept sampling distribution. Given estimated scores for each of the
146, 347 concepts, we need to choose how often to sample each one in order
to balance exploration and exploitation. Top: we scale our scores to a desired
temperature, then take the softmax to obtain a distribution over concepts. Finally,
we create tiers so that the top 250 concepts have 80% of the probability mass, and
the next 750 have 10%. This ensures that we sample enough from the top 1,000
concepts while still exploring other concepts with lower scores. Bottom: the top
1,000 concepts are only sampled a tiny fraction of the time without tiering.

2.1.6 Provable speedup in relevant query identification

Only a small subset of our vocabulary of n concepts is relevant to the target dataset.
We assume that the relevant concepts are partitioned into c disjoint clusters of size
s, with cs ≪ n. We want to discover every relevant concept by sampling concepts
uniformly at random (with replacement) to test. We assume that sampling a concept
conclusively tells us whether it is relevant. Furthermore, we assume that we could
optionally use an algorithm (e.g., Gaussian process regression) that, if we have sam-
pled a relevant concept, tells us that all concepts in its cluster are also relevant. Then,
Lemma 2.1.1 shows that the Gaussian process drastically reduces the time required
to identify all relevant concepts.

Lemma 2.1.1. Let Tbase be the expected time to identify every relevant concept without the
GPR, and TGPR be the expected time when exploiting the additional knowledge from the GPR.
Then, Tbase = nHc·s, TGPR = nHc

s , and the speedup from GPR is Tbase
TGPR

≈ s log s.

For our vocabulary and target datasets, we estimate s ≈ 100, for a total speedup
of 200 − 300×. This shows that a predictive model like GPR is crucial for quickly
identifying all useful concepts.

14

Target dataset: Pets

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure 2.4: Progression of downloaded images across training. Top: samples of Oxford-IIIT
Pets images. Bottom: samples of images queried by Internet Explorer across iter-
ations. As it learns, it makes queries that are progressively more relevant to the
target dataset.

2.1.7 Query sampling distribution

Once we have estimates for the quality of each concept, how do we determine what
to search for next? We face the age-old dilemma of exploration versus exploitation:
we need to sample the top concepts frequently enough to get relevant training data
for SSL, while at the same time, we need sufficient exploration of promising untried
concepts.

We use a sampling-based approach based on Boltzmann exploration [180]. Boltz-
mann exploration samples based on a scaled softmax distribution p(ci) ∝ exp(r(ci)/τ),
where τ is the temperature scaling. However, with a large vocabulary (action space)
of 146, 347 concepts, it becomes difficult to tune τ so that we sample the top concepts
frequently enough without being too skewed. Thus, we define a “tiering function” to
adjust the probability mass in specified intervals of our distribution. Given a sorted
discrete probability distribution p, interval boundaries T0 = 0 < T1 < · · · < Tn, and
interval masses ∆0, . . . ,∆n−1 such that

∑
i∆i = 1, tiering computes a new distribu-

tion:

ptier
i = ∆j

pi∑Tj+1

k=Tj
pk

for j s.t. Tj ⩽ i < Tj+1 (2.3)

ptier is a new distribution such that
∑Tj+1

k=Tj
ptier = ∆j. We use T0 = 0, T1 = 250,

T2 = 1,000, T3 = 146,347, ∆0 = 0.8, ∆1 = 0.1, and ∆2 = 0.1. Simply put: we give the
highest-ranked 250 concepts 80% of the probability mass, the next 750 concepts 10%,

15

and all remaining concepts 10%. Figure 2.3 shows that tiering the scaled softmax
distribution samples frequently enough from the top concepts while a vanilla scaled
softmax distribution does not.

2.2 experimental setting

2.2.1 Self-supervised Exploration

We assume that we have an unlabeled target dataset of images for which we would
like to learn useful visual features. We compare three methods:

1. Random: sample concepts uniformly from the vocab.
2. Ours: sample concepts from our learned distribution.
3. Ours++: additionally use GPT-generated descriptors.

2.2.2 Label Set-guided Exploration

We may sometimes know the set of labels for our task (e.g., “golden retriever,” etc.)
even if we do not have image-label pairs. Knowing the label set greatly accelerates
learning on the Internet, because it acts as a strong prior on what could be useful.
Using our text similarity model, we reduce the size of the vocabulary by selecting
the top 10% (14,635 concepts) with the largest average top-k similarity to the label
set in text embedding space. We set k to a third of the size of the label set to reduce
the impact of outliers. Reducing the size of the vocabulary strengthens our baselines
by ensuring that they only search for potentially useful concepts. We compare 4

methods:
1. Labels: only search for labels.
2. Labels + relevant: search for labels half of the time, and random concepts from

the pruned vocabulary the other half of the time.
3. Ours: sample labels half of the time and sample from our learned concept

distribution the other half.
4. Ours++: additionally use GPT-generated descriptors.

We call this setting “label set-guided,” since we have additional supervision in the
form of the label set.

2.2.3 Datasets and Metrics

We evaluate Internet Explorer on 4 popular small-scale fine-grained classification
datasets: Birdsnap [15], Flowers-102 [131], Food101 [18], and Oxford-IIIT Pets [139].
These small datasets consist of 2,040 to 75,750 training examples, making them ideal

16

Model Birdsnap Flowers Food Pets VOC2007 IN100 FMoW⋆ Images GPU hrs.

Fixed dataset, lang. supervision
CLIP ResNet-50 (oracle) 57.1 96.0 86.4 88.4 86.7 89.3 44.9 400× 106 4,000

Fixed dataset, self-supervised
MoCo-v3 (ImageNet pre-train) 26.8 83.2 70.5 79.6 − − 40.8 1.2× 106 72

MoCo-v3 (ImageNet + target) 39.9 94.6 78.3 85.3 58.0† 84.7† 52.5 1.2× 106 72+ 12

No label set information
Random exploration 39.6 (−0.3) 95.3 (+0.7) 77.0 (−1.3) 85.6 (+0.3) 70.2 (+12.2) 85.7 (+1.0) 54.3 (+1.8) 2.2× 106 84+ 40

Ours 43.4 (+3.5) 97.1 (+2.5) 80.5 (+2.2) 86.8 (+1.5) 68.5 (+10.5) 86.2 (+1.5) − − 2.2× 106 84+ 40

Ours++ 54.4 (+14.5) 98.4 (+3.8) 82.2 (+3.9) 89.6 (+4.3) 80.1 (+22.1) 86.4 (+1.7) 54.1 (+1.6) 2.2× 106 84+ 40

Use label set information
Search labels only 47.1 (+7.2) 96.3 (+1.7) 80.9 (+2.6) 85.7 (+0.4) 61.8 (+3.8) 85.7 (+1.0) 53.5 (+1.0) 2.2× 106 84+ 40

Labels + relevant terms 49.9 (+10.0) 98.0 (+3.4) 81.2 (+2.9) 87.0 (+1.7) 67.5 (+9.5) 86.3 (+1.6) 54.1 (+1.6) 2.2× 106 84+ 40

Ours 52.0 (+12.1) 97.6 (+3.0) 81.2 (+2.9) 87.3 (+2.0) 70.3 (+14.3) 86.4 (+1.7) – – 2.2× 106 84+ 40

Ours++ 62.8 (+22.9) 99.1 (+4.5) 84.6 (+6.3) 90.8 (+5.5) 79.6 (+21.6) 87.1 (+2.4) 54.5 (+2.0) 2.2× 106 84+ 40

Table 2.1: Linear probing accuracy. Our method significantly improves the starting check-
point performance in just 40 additional hours of training. We show the perfor-
mance change from the starting MoCo-v3 (ImageNet + target) initialization in
green/red. CLIP numbers correspond to linear probe (which is higher than its
zero-shot accuracy). Internet Explorer reaches or often surpasses CLIP (oracle with
2x params) performance on each dataset while using 2.5% as much compute and
0.5% as much data. †For VOC2007 and IN100, we do not do ImageNet pre-training
because ImageNet is too similar and obscures the effect. ⋆For FMoW-WILDS, we
use a hand-crafted list of domain-specific descriptors common to all models

for testing whether Internet Explorer can efficiently find relevant useful data. We
also evaluate on PASCAL VOC 2007 (Cls) [51], a coarse-grained multi-label classifi-
cation task, and ImageNet-100 [185]. Finally, we try FMoW [36], a satellite domain
classification task. We compare the representation quality of our model w.r.t. its tar-
get dataset using two metrics: k-nearest neighbors (k-NN) accuracy and linear probe
accuracy.

2.3 results and analysis

2.3.1 Self-supervised Results

Internet Explorer improves the k-NN accuracy more efficiently than sampling queries
uniformly at random from the concept vocabulary. In fact, random sampling occa-
sionally decreases accuracy, likely due to the fact that Internet images can generally
be unsuitable for pre-training due to issues such as watermarks, images containing
text, and overly photogenic images [30, 123]. Table 2.1 shows that our method signif-
icantly improves on the starting MoCo-v3 (ImageNet + target) checkpoint and can
outperform a CLIP [146] model of the same size while using much less compute and

17

0 5 10 15

0.5

0.6

0.7

A
vg

E
st

im
at

ed
R

ew
ar

d

Cats
Dogs
Other felines
Other canines
Other
First cat
First dog

0 5 10 15
Iteration

0.00

0.25

0.50

0.75

1.00

Pr
ob

ab
ili

ty
pe

rC
at

eg
or

y

Cats
Dogs
Other felines
Other canines
Other

Figure 2.5: Self-supervised concept discovery on Pets dataset. When targeting the Pets
dataset, self-supervised Internet Explorer quickly estimates high reward for con-
cepts from the cat category (82 concepts) and dog category (246 concepts). It is
also able to identify felines that are not cats (e.g., tiger) and canines that are not
dogs (e.g., wolf), although it gives them lower reward on average. Finding these
categories is especially challenging since they comprise only 460/146,347 = 0.3%
of the vocabulary.

data. This is impressive as CLIP can be considered an oracle since its training set
contains up to 20k Bing image search results for each WordNet lemma (in addition
to other queries). Using GPT-generated descriptors in “Ours++” also significantly
improves performance by enabling Internet Explorer to generate diverse views of
the most useful concepts.

2.3.2 Self-supervised Exploration Behavior

Figure 2.5 shows the progression of Internet Explorer (Ours++) behavior on the Pets
dataset in the self-supervised setting. Since Pets consists of cat and dog breeds, to an-
alyze the results, we use the WordNet hierarchy to divide concepts in our vocabulary
into 5 meaningful categories: cats, dogs, non-cat felines (e.g., lion), non-dog canines
(e.g., wolf), and other. This categorization is only done for this post hoc analysis
and is not provided during training. Figure 2.5 (top) shows that Internet Explorer
rapidly identifies the roughly 0.3% of concepts that are useful for Pets. During the

18

first two iterations, the average estimated reward for each category is roughly the
same. However, after the first dog concept is searched in iteration #2, the estimated
reward and probability mass for dogs and other canines rapidly increases. The same
happens for cats after the first cat is searched in iteration #4. Interestingly, while
“other felines” and “other canines” have higher average reward than the “other” cat-
egory, they still have much lower reward than cats and dogs. This indicates that our
model understands that other felines and canines (mostly large, wild predators) are
only moderately relevant for house pet cats and dogs.

Figure 2.4 shows how Internet Explorer downloads progressively more useful im-
ages over time. It shows 8 random images that were downloaded in iteration #0,
#1, #3, #6, #10, and #15 in the self-supervised setting. Iteration #0 contains mostly
useless data, like graphics or screenshots, but Pets-relevant images already make up
most of the downloads by iteration #3.

2.3.3 Label Set-guided Results

Internet Explorer significantly outperforms the stronger baselines in the label set-
guided setting where we additionally have knowledge of the label set. Searching for
the label set continuously provides useful data and helps us rapidly identify other
useful concepts. Together with the diversity promoted by GPT descriptors, Ours++
outperforms CLIP in 4/7 datasets and approaches its performance in the other 3,
using just 2.5% of the time and 0.5% the data.

2.3.4 Domain dataset results

To test if Internet Explorer is effective when the target dataset contains very specific
domain knowledge, we apply it to FMoW-WILDS [36]—a popular satellite imaging
domain dataset—by hand-designing a dozen search prompts that help induce satel-
lite image results. Even though the WordNet vocabulary is not particularly suited for
this dataset, Internet Explorer still improves the LP accuracy by 2 percentage points
(see Table 2.1). Notably, all of our methods dramatically outperform CLIP here, likely
because the distribution of satellite data is very different than the data used to train
CLIP. This demonstrates the wide flexibility of our method to be applied to arbitrary
domains.

2.3.5 Learning from other sources of data

We primarily obtain images by querying Google Images, but Internet Explorer is
compatible with any text-to-image search engine. To measure the effect of the choice

19

Model
Flowers Food Pets

Google Flickr LAION Google Flickr LAION Google Flickr LAION

Fixed dataset
MoCo-v3 (IN) 83.2 83.2 83.2 70.5 70.5 70.5 79.6 79.6 79.6
MoCo-v3 (IN + target) 94.6 94.6 94.6 78.3 78.3 78.3 85.3 85.3 85.3

Undirected search
Random exploration 95.3 95.2 94.8 77.0 80.0 80.2 85.6 84.4 85.1

Internet Explorer
Ours++ (no label set) 98.4 98.1 94.6 81.2 80.3 80.9 87.3 88.4 85.9
Ours++ (with label set) 99.1 99.0 95.8 84.6 81.9 81.0 90.8 89.1 86.7

Table 2.2: Linear probe accuracy with other search engines. Internet Explorer improves its
performance using any search engine, including Flickr and our custom text-based
LAION search engine.

of search engine, we also test Internet Explorer with the Flickr photo search API and
a custom search engine we built on top of a subset of LAION-5B [166]. LAION-5B
consists of noisy web-scraped (text, image) pairs, and our custom LAION search
engine searches using approximate nearest neighbors in text embedding space. Thus,
it tests whether Internet Explorer can still improve even when the search engine has
little inductive bias. Table 2.2 shows that Internet Explorer consistently improves
over time, regardless of the search engine we use. Google consistently does best,
followed by Flickr, then LAION (which has the smallest pool of images to draw
from). Using Internet Explorer to search LAION-5B consistently performs better than
random exploration—indicating that Internet Explorer is effective even for selecting
data from a static dataset.

2.3.6 Effect of image reward type

Reward Type Food

MoCo loss 81.2
1-NN sim 83.2
15-NN sim (ours) 84.6

Table 2.3: Ablation on type of image reward. MoCo loss does not identify relevant concepts,
and k = 1 similarity is too noisy to identify useful concepts.

20

15-NN
similarity:

MoCo loss:

1-NN
similarity:

1-NN in
Pets dataset:

breakfast
burrito

edamame chocolate
mousse

hamburgerLabel:

Figure 2.6: Most preferable images under different rewards. We show the top 5 down-
loaded images ranked by 3 possible image rewards for adversarial Food101 ex-
amples. MoCo loss encourages noisy out-of-distribution images; 15-NN (ours)
prefers a wide variety of food images, whereas outliers in the Food dataset throw
off 1-NN, causing it to reward black images, text, and zebras.

We run an ablation on the type of image relevance reward. Instead of calculating
the image reward based on the average similarity to the k = 15 nearest neighbors
in representation space (as in Section 2.1.3), we also try using k = 1 or the MoCo
contrastive loss as the reward. Table 2.3 compares these three metrics in the label
set-guided setting and shows that k = 15 does best. We explain this result by qual-
itatively comparing the behavior of various metrics on Food101 in Figure 2.6. The
MoCo loss does not identify relevant concepts, instead preferring images that are
difficult to align across augmentations. Representation similarity with k = 1 also
fails, as it prefers images of zebras and books because they are highly similar to a
few outlier images in Food101. Our proposed reward with k = 15 eliminates the
influence of outliers and avoids this problem.

2.3.7 Comparison to image-to-image search

An alternate approach to finding relevant Internet data is to use image-to-image
search: for each image in the target dataset, directly retrieve images that are visually
similar.

21

scientific and practical issues Image-to-image search uses strong visual
representations from pretrained models in order to identify similar images. This
defeats the primary purpose of Internet Explorer: learning useful representations
when none exist beforehand (e.g., a new iPhone is released that is out-of-distribution
for existing vision models). Text-based search avoids this issue by using additional
supervision (e.g., caption and surrounding text) that makes it easier to index new
images. Image-to-image search also relies on paid APIs that can cost thousands of
dollars.

comparison to text-based search Regardless of the concerns above, we do
a controlled comparison between Internet Explorer and image-based search over
LAION-5B. For each image in a target training set, we compute its CLIP ViT-L/14

representation and find its N nearest neighbors in LAION-5B. We choose N so that
we download a total of 1 million new images, which matches how many images
Internet Explorer downloads. We then train a MoCo-v3 model on a 1:1 mix of the
target dataset and the downloaded images with the exact same hyperparameters
(e.g., learning rate, number of steps, etc) as Internet Explorer. Interestingly, Table 2.4
shows that the image-to-image approach consistently learns worse features than In-
ternet Explorer, despite taking advantage of strong, pretrained vision features from
CLIP. We hypothesize that image-to-image search finds images that are too similar
to the target images, resulting in less additional information that was not already
present in the target dataset. In contrast, using text (concepts and descriptors) as
an intermediate bottleneck encourages Internet Explorer to download novel images
that generalize along useful axes.

2.4 related work

Many papers use self-supervised or weakly-supervised learning on large-scale static
datasets collected from the Internet, such as YFCC-100M [183], Instagram-1B [118],
or LAION-5B [166]. However, these are usually impractically expensive since they
train on all of the data, not just the subset relevant to a target dataset. Concurrent
work [135] attempts to address this by adding a “one-time” automatic data curation
step that keeps only the most relevant images from a static web crawl dataset. This
approach works well but is limited as the selection process does not use the most
up-to-date learned features or adjust its searches on-the-fly to focus on especially
useful data.

Other approaches obtain additional training data by searching for predetermined
queries. Fergus et al. [54] create a supervised training dataset from the Google image
search results for a list of known classes. Kamath et al. [90] improve a visual question-

22

Flowers Pets VOC2007

Image-to-image 96.6 81.6 67.8
Internet Explorer (ours) 98.8 87.0 76.1

Table 2.4: k-NN accuracy across search methods. Image-to-image search uses CLIP ViT-L/14

vision features to acquire the nearest neighbors of each target dataset image. De-
spite using strong pretrained features and the same source data (LAION-5B), num-
ber of downloaded images, and other hyperparameters as Internet Explorer, the
image-to-image approach learns worse features.

answering model using a set of predetermined Bing queries. However, these ap-
proaches query the internet just once, which is susceptible to noise in the search
results, and the total amount of data is limited to the relevant search terms known a
priori. Internet Explorer’s self-supervised approach bypasses these problems. It can
learn useful features from noisy yet relevant data, and it only needs an initial image
collection to identify relevant search queries. This enables it to continually explore
the Internet via a potentially unbounded number of searches.

Finally, some approaches continuously interact with the Internet to find useful
data. NELL [24, 126] extracts text from web pages to form beliefs, and NEIL [32] uses
images downloaded from Google Image Search to learn visual concepts. However,
both methods are undirected (i. e., they do not modify their exploration behavior to
prioritize specific data), which means that learning is slow and will not necessarily
improve performance on a desired task. In contrast, Internet Explorer continually
uses targeted exploration on the Internet to find data for self-supervised training.

2.5 discussion

We show that interactively exploring the Internet is an efficient source of highly
useful training data—if one knows how to search for it. In just 30–40 hours of train-
ing on a single GPU, Internet Explorer significantly outperforms or closely matches
the performance of compute-heavy oracle models like CLIP trained on huge, static
datasets, as well as strong baselines that search the Internet in an undirected manner.

23

Part II

H A R D E R L E A R N I N G O B J E C T I V E S

3
L E A R N I N G G E N E R AT I V E M O D E L S F O R C L A S S I F I C AT I O N

Classification is a fundamental problem in machine learning, and AlexNet’s strong
results on the ImageNet classification challenge arguably jumpstarted the popularity
of deep learning as a field. Today, deep learning classification algorithms have largely
converged to using a neural network to output logits, which attempt to minimize
some variant of a cross-entropy loss.

This is a discriminative approach to classification, and it stands in stark contrast to
how humans do it. Significant evidence from cognitive science [202] indicates that
humans have a generative understanding of a world – we can classify cats vs. dogs
because we know what they look like, from head to tail. In contrast, discrimina-
tive models cannot “imagine” what a dog would look like. Internally, they may be
looking for a small set of discriminative features, perhaps a particular eye shape or
fur texture. But they do not learn what each class looks like as a whole. Perhaps
this difference in objective, generative vs discriminative, is responsible for current
shortcomings of deep learning, such as sensitivity to distribution shift?

Generative classifiers have had a long history in machine learning, since early
methods like linear discriminant analysis and Naive Bayes [130], but had been lim-
ited due to the lack of flexible generative models. Today’s generative modeling al-
gorithms are far more powerful. In this section, we design efficient and accurate
classifiers using these new generative models and explore their learning advantages.

3.1 classification via diffusion models

Diffusion models are a recent class of likelihood-based generative models that model
the data distribution via an iterative noising and denoising procedure [76, 173].
These models are trained via a variational objective, which maximizes an evidence
lower bound (ELBO) [16] of the log-likelihood. They have recently achieved state-of-
the-art performance [45] on several text-based content creation and editing tasks [78,
143, 157, 161, 214]. However, diffusion models have been underexplored for discrim-
inative tasks like classification. In this paper, we use diffusion models, the current

25

––KV
Q

2

<latexit sha1_base64="1wWc0GGRaknl4pv1RRZvH9lz9zY=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVZIi6rLoxmUF+4AmlMl00g6dTMLMjVhCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATX6DjfVmltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrI0fBeoliJAoE6waT29zvPjKleSwfcJowPyIjyUNOCRrJ8yKC4yDMnmYDHFRrTt2Zw14lbkFqUKA1qH55w5imEZNIBdG67zoJ+hlRyKlgs4qXapYQOiEj1jdUkohpP5tnntlnRhnaYazMk2jP1d8bGYm0nkaBmcwz6mUvF//z+imG137GZZIik3RxKEyFjbGdF2APuWIUxdQQQhU3WW06JopQNDVVTAnu8pdXSadRdy/rjfuLWvOmqKMMJ3AK5+DCFTThDlrQBgoJPMMrvFmp9WK9Wx+L0ZJV7BzDH1ifP5I2kgo=</latexit>xt

KV
Q

<latexit sha1_base64="56hsVbtdGBpzTtu/VRwSPNgalD4=">AAAB+HicbZDLSsNAFIYnXmu9NOrSzWARXJWkiLosunFZwV6gCWUyPWmHTi7MnAg19EncuFDErY/izrdx2mahrT8MfPznHM6ZP0il0Og439ba+sbm1nZpp7y7t39QsQ+P2jrJFIcWT2SiugHTIEUMLRQooZsqYFEgoROMb2f1ziMoLZL4AScp+BEbxiIUnKGx+nbFg1QLadDDESDr21Wn5sxFV8EtoEoKNfv2lzdIeBZBjFwyrXuuk6KfM4WCS5iWvUxDyviYDaFnMGYRaD+fHz6lZ8YZ0DBR5sVI5+7viZxFWk+iwHRGDEd6uTYz/6v1Mgyv/VzEaYYQ88WiMJMUEzpLgQ6EAo5yYoBxJcytlI+YYhxNVmUTgrv85VVo12vuZa1+f1Ft3BRxlMgJOSXnxCVXpEHuSJO0CCcZeSav5M16sl6sd+tj0bpmFTPH5I+szx8uXJNv</latexit>✏✓
<latexit sha1_base64="56hsVbtdGBpzTtu/VRwSPNgalD4=">AAAB+HicbZDLSsNAFIYnXmu9NOrSzWARXJWkiLosunFZwV6gCWUyPWmHTi7MnAg19EncuFDErY/izrdx2mahrT8MfPznHM6ZP0il0Og439ba+sbm1nZpp7y7t39QsQ+P2jrJFIcWT2SiugHTIEUMLRQooZsqYFEgoROMb2f1ziMoLZL4AScp+BEbxiIUnKGx+nbFg1QLadDDESDr21Wn5sxFV8EtoEoKNfv2lzdIeBZBjFwyrXuuk6KfM4WCS5iWvUxDyviYDaFnMGYRaD+fHz6lZ8YZ0DBR5sVI5+7viZxFWk+iwHRGDEd6uTYz/6v1Mgyv/VzEaYYQ88WiMJMUEzpLgQ6EAo5yYoBxJcytlI+YYhxNVmUTgrv85VVo12vuZa1+f1Ft3BRxlMgJOSXnxCVXpEHuSJO0CCcZeSav5M16sl6sd+tj0bpmFTPH5I+szx8uXJNv</latexit>✏✓

<latexit sha1_base64="3TI8V8cX099fkVQmqy6nYpDaQUA=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKewGUY9BLx4jmIckS5idzCZD5rHMzAphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHdFCWfG+v63V1hb39jcKm6Xdnb39g/Kh0cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWyc99mhiGFey1C9X/Ko/B1olQU4qkKPRL3/1BoqkgkpLODamG/iJDTOsLSOcTku91NAEkzEe0q6jEgtqwmx+8BSdOWWAYqVdSYvm6u+JDAtjJiJynQLbkVn2ZuJ/Xje18XWYMZmklkqyWBSnHFmFZt+jAdOUWD5xBBPN3K2IjLDGxLqMZiEEyy+vklatGlxWa/cXlfpNHkcRTuAUziGAK6jDHTSgCQQEPMMrvHnae/HevY9Fa8HLZ47hD7zPH4aLkDs=</latexit>✏

<latexit sha1_base64="DyoYokN8kOj0I2NP2cbbPxB/37w=">AAACaHicbVDLjtMwFHXCq3R4hJcQYmNNhdRKUCVdDCwrEBLLQaIzI9Uhctyb1hrHjuwbNCUT8Qls+QI+iB0fwIavwGkHBDNcydLxOefq3nvySkmHcfw9CC9dvnL1Wu96f+fGzVu3ozt3D5yprYCZMMrYo5w7UFLDDCUqOKos8DJXcJgfv+r0ww9gnTT6Ha4rSEu+1LKQgqOnsugTq/XC64CNaBtmKrAcjdW8hIbbZSl121KmoMAhZSXHVZ43r9uswaeUQeWkMrqlc3b6+5MxXAHy4dZbNCdt5q1iRJ/98bPT95OUMiuXKxxl0SAex5uiF0FyBgbT0eePVe/rl/0s+sYWRtQlaBSKOzdP4gpTvytKoaDts9pBxcUxX8Lcw+4QlzaboFr6xDMLWhjrn0a6Yf/uaHjp3LrMvbPb353XOvJ/2rzG4kXaSF3VCFpsBxW1omholzpdSAsC1doDLqz0u1Kx4pYL9Nn3fQjJ+ZMvgoPJONkbT94mg+lLsq0eeUx2yZAk5DmZkjdkn8yIID+CneB+8CD4GUbhw/DR1hoGZz33yD8V7v4Cq5G+hQ==</latexit>

argmin
c

�
Et,✏[k✏✓(xt, c)� ✏k2]

�

<latexit sha1_base64="wXxrnsnojZTp0+85EvDANFahYFI=">AAACCnicbVC7TsNAEDyHVwgvAyXNQYJEFdkpgDKChnRBIg8pjqLz5UxOOT90t0aJLNc0/AoNBQjR8gV0/A3nxAUkjLTSaGZXuztuJLgCy/o2Ciura+sbxc3S1vbO7p65f9BWYSwpa9FQhLLrEsUED1gLOAjWjSQjvitYxx1fZ37ngUnFw+AOphHr++Q+4B6nBLQ0MI8dYBNwvaQRRDHghrZZiiuOT2Ck1UlaGZhlq2rNgJeJnZMyytEcmF/OMKSxzwKggijVs60I+gmRwKlgacmJFYsIHetNPU0D4jPVT2avpPhUK0PshVJXAHim/p5IiK/U1Hd1Z3aiWvQy8T+vF4N32U949iUL6HyRFwsMIc5ywUMuGQUx1YRQyfWtmI6IJBR0eiUdgr348jJp16r2ebV2WyvXr/I4iugInaAzZKMLVEc3qIlaiKJH9Ixe0ZvxZLwY78bHvLVg5DOH6A+Mzx80u5qU</latexit>

Input Image x

<latexit sha1_base64="gcHqBrzeOG8wGMskCfpomwH7USY=">AAACEHicbVC7SgNBFJ2Nrxhfq5Y2g4kYQcJuCrUM2mgjEc0DsiHMTm6SITOzy8ysEEI+wcZfsbFQxNbSzr9x8ig0euDC4Zx7ufeeMOZMG8/7clILi0vLK+nVzNr6xuaWu71T1VGiKFRoxCNVD4kGziRUDDMc6rECIkIOtbB/MfZr96A0i+SdGcTQFKQrWYdRYqzUcg9viYg54FwAsWY8kjjQTOBAENOjhOPrvHeMr45yLTfrFbwJ8F/iz0gWzVBuuZ9BO6KJAGkoJ1o3fC82zSFRhlEOo0yQaIgJ7ZMuNCyVRIBuDicPjfCBVdq4Eylb0uCJ+nNiSITWAxHazvGhet4bi/95jcR0zppDJuPEgKTTRZ2EYxPhcTq4zRRQwweWEKqYvRXTHlGEGpthxobgz7/8l1SLBf+kULwpZkvnszjSaA/tozzy0SkqoUtURhVE0QN6Qi/o1Xl0np03533amnJmM7voF5yPb4d8mvU=</latexit>

Sample ✏ ⇠ N (0, I)

<latexit sha1_base64="7jO/wKq456c9VQx8ZwdaPRzsRss=">AAAB/3icbVA9SwNBEJ2LXzF+nQo2NouJYCHhLoVaBm0sI+YLLkfY2+wlS3bvjt09IcQU/hUbC0Vs/Rt2/hs3yRWa+GDg8d4MM/OChDOlHefbyq2srq1v5DcLW9s7u3v2/kFTxakktEFiHst2gBXlLKINzTSn7URSLAJOW8HwZuq3HqhULI7qepRQX+B+xEJGsDZS1z66xyLhFJU06igmkOeeo7pf6tpFp+zMgJaJm5EiZKh17a9OLyapoJEmHCvluU6i/TGWmhFOJ4VOqmiCyRD3qWdohAVV/nh2/wSdGqWHwliaijSaqb8nxlgoNRKB6RRYD9SiNxX/87xUh1f+mEVJqmlE5ovClCMdo2kYqMckJZqPDMFEMnMrIgMsMdEmsoIJwV18eZk0K2X3oly5qxSr11kceTiGEzgDFy6hCrdQgwYQeIRneIU368l6sd6tj3lrzspmDuEPrM8fHRSUOA==</latexit>

Sample t ⇠ [1, T]

<latexit sha1_base64="tA6EB5xvVjriuxAt3mNfE12GWbg=">AAACAXicbVC7SgNBFJ2NrxhfURvBZjAIVmE3hVoGtbARIpgHJEuYndxNhsw+mLkrhiU2/oqNhSK2/oWdf+Mk2UITDwwczjmXO/d4sRQabfvbyi0tr6yu5dcLG5tb2zvF3b2GjhLFoc4jGamWxzRIEUIdBUpoxQpY4EloesPLid+8B6VFFN7hKAY3YP1Q+IIzNFK3eNBBeEDPT6+E7yeTGL2JeiDH3WLJLttT0EXiZKREMtS6xa9OL+JJACFyybRuO3aMbsoUCi5hXOgkGmLGh6wPbUNDFoB20+kFY3pslB71I2VeiHSq/p5IWaD1KPBMMmA40PPeRPzPayfon7upCOMEIeSzRX4iKUZ0UgftCQUc5cgQxpUwf6V8wBTjaEormBKc+ZMXSaNSdk7LldtKqXqR1ZEnh+SInBCHnJEquSY1UiecPJJn8krerCfrxXq3PmbRnJXN7JM/sD5/APnRlzk=</latexit>

Di↵usion Model

<latexit sha1_base64="41WincqQVVpTHZI60nJQrVZEynw=">AAACLnicbVDLSgMxFM3UVx1fVZdugkVwVWa6UHFVFMFlhb6gM5RMJtOGZpIhyYhlmC9y46/oQlARt36GmbYLbb0Qcjjn3NzcEySMKu04b1ZpZXVtfaO8aW9t7+zuVfYPOkqkEpM2FkzIXoAUYZSTtqaakV4iCYoDRrrB+LrQu/dEKip4S08S4sdoyGlEMdKGGlRuPC4oDwnXtqfJgw6irGUuiAUPaWGhfJhDfOl5NoLJSGgBRQQR9DLMkFKQo5h4+aBSdWrOtOAycOegCubVHFRevFDgNDZzp+/0XSfRfoakppiR3PZSRRKEx2hI+gYWU5SfTdfN4YlhQhgJaQ4vvmrY3x0ZipWaxIFxxkiP1KJWkP9p/VRHF35GeZJqwvFsUJQyaJYusoMhlQRrNjEAYWniwRCPkERYm4RtE4K7uPIy6NRr7lmtflevNq7mcZTBETgGp8AF56ABbkETtAEGj+AZvIMP68l6tT6tr5m1ZM17DsGfsr5/AAcaqRk=</latexit>

Text conditioning c:
a photo of a {class name}

<latexit sha1_base64="y0jZ1XY01OvGgZow+oPnNb8N1Cc=">AAACCnicbVC7TgJBFJ31ifhCLW1GiYkV2aVQSyKNnZjIIwFCZoe7MDL7yMxdItlQ2/grNhYaY+sX2Pk3zgIxCp5kkpNz7p2Zc9xICo22/WUtLa+srq1nNrKbW9s7u7m9/ZoOY8WhykMZqobLNEgRQBUFSmhECpjvSqi7g3Lq14egtAiDWxxF0PZZLxCe4AyN1MkdtRDu0fWSsmRa/xj02r0DjmII404ubxfsCegicWYkT2aodHKfrW7IYx8C5OmlTceOsJ0whYJLGGdbsYaI8QHrQdPQgPmg28kkypieGKVLvVCZEyCdqL83EuZrPfJdM+kz7Ot5LxX/85oxehftRARRjBDw6UNeLCmGNO2FdoUygeXIEMaVMH+lvM8U42jay5oSnPnIi6RWLDhnheJNMV+6nNWRIYfkmJwSh5yTErkiFVIlnDyQJ/JCXq1H69l6s96no0vWbOeA/IH18Q1EGJtC</latexit>

Classification Objective

Figure 3.1: Overview of our Diffusion Classifier approach: Given an input image x and
a set of possible conditioning inputs (e.g., text for Stable Diffusion or class in-
dex for DiT, an ImageNet class-conditional model), we use a diffusion model to
choose the one that best fits this image. Diffusion Classifier is theoretically mo-
tivated through the variational view of diffusion models and uses the ELBO to
approximate logpθ(x | c). Diffusion Classifier chooses the conditioning c that
best predicts the noise added to the input image. Diffusion Classifier can be used
to extract a zero-shot classifier from Stable Diffusion and a standard classifier from DiT
without any additional training.

state-of-the-art generative model family, to revisit the classic generative vs. discrimi-
native classifier debate.

3.1.1 Method: Diffusion Classifier

We describe our approach for calculating class conditional density estimates in a
practical and efficient manner using diffusion models. We first provide an overview
of diffusion models (Sec. 3.1.2), discuss the motivation and derivation of our Dif-
fusion Classifier method (Sec. 3.1.2), and finally propose techniques to improve its
accuracy (Sec. 3.1.3).

3.1.2 Diffusion Model Preliminaries

Diffusion probabilistic models (“diffusion models” for short) [76, 173] are generative
models with a specific Markov chain structure. Starting at a clean sample x0, the
fixed forward process q(xt | xt−1) adds Gaussian noise, whereas the learned reverse
process pθ(xt−1 | xt, c) tries to denoise its input, optionally conditioning on a variable
c. In our setting, x is an image and c represents a low-dimensional text embedding

26

(for text-to-image synthesis) or class index (for class-conditional generation). Diffu-
sion models define the conditional probability of x0 as:

pθ(x0 | c) =
∫

x1:T
p(xT)

T∏
t=1

pθ(xt−1 | xt, c) dx1:T (3.1)

where p(xT) is typically fixed to N(0, I). Directly maximizing pθ(x0) is intractable due
to the integral, so diffusion models are instead trained to minimize the variational
lower bound (ELBO) of the log-likelihood:

logpθ(x0 | c) ⩾ Eq

[
log

pθ(x0:T , c)
q(x1:T | x0)

]
(3.2)

Diffusion models parameterize pθ(xt−1 | xt, c) as a Gaussian and train a neural net-
work to map a noisy input xt to a value used to compute the mean of pθ(xt−1 | xt, c).
Using the fact that each noised sample xt =

√
ᾱtx +

√
1− ᾱtϵ can be written as a

weighted combination of a clean input x and Gaussian noise ϵ ∼ N(0, I), diffusion
models typically learn a network ϵθ(xt, c) that estimates the added noise. Using this
parameterization, the ELBO can be written as:

−Eϵ

[
T∑

t=2

wt∥ϵ− ϵθ(xt, c)∥2 − logpθ(x0 | x1, c)

]
+C (3.3)

where C is a constant term that does not depend on c. Since T = 1000 is large
and logpθ(x0 | x1, c) is typically small, we choose to drop this term. Finally, [76]
find that removing wt improves sample quality metrics, and many follow-up works
also choose to do so. We found that deviating from the uniform weighting used
at training time hurts accuracy, so we set wt = 1. Thus, this gives us our final
approximation that we treat as the ELBO:

−Et,ϵ

[
∥ϵ− ϵθ(xt, c)∥2

]
+C (3.4)

classification with diffusion models In general, classification using a
conditional generative model can be done by using Bayes’ theorem on the model
predictions pθ(x | ci) and the prior p(c) over labels {ci}:

pθ(ci | x) =
p(ci) pθ(x | ci)∑
j p(cj) pθ(x | cj)

(3.5)

A uniform prior over {ci} (i.e., p(ci) = 1
N) is natural and leads to all of the p(c)

terms cancelling. For diffusion models, computing pθ(x | c) is intractable, so we use

27

Algorithm 2 Diffusion Classifier

1: Input: test image x, conditioning inputs {ci}ni=1 (e. g., text embeddings), # of trials
T per input

2: Initialize Errors[ci] = list() for each ci
3: for trial j = 1, . . . , T do
4: Sample t ∼ [1, 1000]; ϵ ∼ N(0, I)
5: xt =

√
ᾱtx +

√
1− ᾱtϵ

6: for conditioning ck ∈ {ci}ni=1 do
7: Errors[ck].append(∥ϵ− ϵθ(xt, ck)∥2)
8: end for
9: end for

10: return arg min
ci∈C

mean(Errors[ci])

the ELBO in place of logpθ(x | c) and use Eq. 3.4 and Eq. 3.5 to obtain a posterior
distribution over {ci}Ni=1:

pθ(ci | x) =
exp{−Et,ϵ[∥ϵ− ϵθ(xt, ci)∥2]}∑
j exp{−Et,ϵ[∥ϵ− ϵθ(xt, cj)∥2]}

(3.6)

We compute an unbiased Monte Carlo estimate of each expectation by sampling N

(ti, ϵi) pairs, with ti ∼ [1, 1000] and ϵ ∼ N(0, I), and computing:

1

N

N∑
i=1

∥∥∥ϵi − ϵθ(
√
ᾱtix +

√
1− ᾱtiϵi, cj)

∥∥∥
2

(3.7)

By plugging Eq. 3.7 into Eq. 3.6, we can extract a classifier from any conditional
diffusion model. We call this method Diffusion Classifier. Diffusion Classifier is a
powerful, hyperparameter-free approach to extracting classifiers from pretrained diffusion
models without any additional training. Diffusion Classifier can be used to extract a
zero-shot classifier from a text-to-image model like Stable Diffusion [154], to extract
a standard classifier from a class-conditional diffusion model like DiT [141], and so
on. We outline our method in Algorithm 2 and show an overview in Figure 3.1.

3.1.3 Variance Reduction via Difference Testing

At first glance, it seems that accurately estimating Et,ϵ
[
∥ϵ− ϵθ(xt, c)∥2

]
for each class

c requires prohibitively many samples. Indeed, a Monte Carlo estimate even using
thousands of samples is not precise enough to distinguish classes reliably. However,
a key observation is that classification only requires the relative differences between

28

0 500 1000

−150

−100

−50

0

50

E
rr

or
:
‖ε
−
ε θ

(x
t
,c

)‖
2

0 500 1000
−100

0

100

Samoyed

Great Pyrenees

0 500 1000

Timestep t

−50

−25

0

25

50

E
rr

or
:
‖ε
−
ε θ

(x
t
,c

)‖
2

0 500 1000

Timestep t

0

25

50

75

Figure 3.2: We show the ϵ-prediction error for an image of a Great Pyrenees dog and two
prompts (“Samoyed” and “Great Pyrenees”). Each subplot corresponds to a single
ϵi, with the error evaluated at every t ∈ {1, 2, ..., 1000}. Errors are normalized to be
zero-mean at each timestep across the 4 plots, and lower is better. Variance in ϵ-
prediction error is high across different ϵ, but the variance in the error difference
between prompts is much smaller.

the prediction errors, not their absolute magnitudes. We can rewrite the approximate
pθ(ci | x) from Eq. 3.6 as:

1∑
j exp

{
Et,ϵ[∥ϵ− ϵθ(xt, ci)∥2 − ∥ϵ− ϵθ(xt, cj)∥2]

} (3.8)

Eq. 3.8 makes apparent that we only need to estimate the difference in prediction
errors across each conditioning value. Practically, instead of using different random
samples of (ti, ϵi) to estimate the ELBO for each conditioning input c, we simply
sample a fixed set S = {(ti, ϵi)}Ni=1 and use the same samples to estimate the ϵ-
prediction error for every c. This is reminiscent of paired difference tests in statistics,
which increase their statistical power by matching conditions across groups and
computing differences.

In Figure 3.2, we use 4 fixed ϵi’s and evaluate ∥ϵi − ϵθ(
√
ᾱtx +

√
1− ᾱtϵi, c)∥2 for

every t ∈ 1, . . . , 1000, two prompts (“Samoyed dog” and “Great Pyrenees dog”), and
a fixed input image of a Great Pyrenees. Even for a fixed prompt, the ϵ-prediction
error varies wildly across the specific ϵi used. However, the error difference between

29

0 200 400 600 800 1000
Timestep used (1 trial)

20

40

A
cc

ur
ac

y

Figure 3.3: Pets accuracy, evaluating only a single timestep per class. Small t corresponds to
less noise added, and large t corresponds to significant noise. Accuracy is highest
when an intermediate amount of noise is added (t = 500).

each prompt is much more consistent for each ϵi. Thus, by using the same (ti, ϵi) for
each conditioning input, our estimate of pθ(ci | x) is much more accurate.

3.2 practical considerations

Our Diffusion Classifier method requires repeated error prediction evaluations for
every class in order to classify an input image. These evaluations naively require
significant inference time, even with the technique presented in Section 3.1.3. In
this section, we present further insights and optimizations that reduce our method’s
runtime.

3.2.1 Effect of timestep

Diffusion Classifier, which is a theoretically principled method for estimating pθ(ci |
x), uses a uniform distribution over the timestep t for estimating the ϵ-prediction
error. Here, we check if alternate distributions over t yield more accurate results.
Figure 3.3 shows the Pets accuracy when using only a single timestep evaluation per
class. Perhaps intuitively, accuracy is highest when using intermediate timesteps (t ≈
500). This begs the question: can we improve accuracy by oversampling intermediate
timesteps and undersampling low or high timesteps?

We try a variety of timestep sampling strategies, including repeatedly trying t =

500 with many random ϵ, trying N evenly spaced timesteps, and trying the middle
t−N/2, . . . , t+N/2 timesteps. The tradeoff between different strategies is whether
to try a few ti repeatedly with many ϵ or to try many ti once. Figure 3.4 shows that
all strategies improve when taking using average error of more samples, but simply

30

using evenly spaced timesteps is best. We hypothesize that repeatedly trying a small
set of ti scales poorly since this biases the ELBO estimate.

3.2.2 Efficient Classification

A naive implementation of our method requires C × N trials to classify a given
image, where C is the number of classes and N is the number of (t, ϵ) samples
to evaluate to estimate each conditional ELBO. However, we can do better. Since
we only care about arg maxc p(c | x), we can stop computing the ELBO for classes
we can confidently reject. Thus, one option to classify an image is to use an upper
confidence bound algorithm [5] to allocate most of the compute to the top candidates.
However, this requires assuming that the distribution of ∥ϵ− ϵθ(xt, cj)∥2 is the same
across timesteps t, which does not hold.

We found that a simpler method works just as well. We split our evaluation into
a series of stages, where in each stage we try each remaining ci some number of
times and then remove the ones that have the highest average error. This allows
us to efficiently eliminate classes that are almost certainly not the final output and
allocate more compute to reasonable classes. For example, on the Pets dataset, we
have Nstages = 2. We try each class 25 times in the first stage, then prune to the 5

classes with the smallest average error. Finally, in the second stage we try each of the
5 remaining classes 225 additional times. With this evaluation strategy, classifying
one Pets image requires 18 seconds on a RTX 3090 GPU.

Further reducing inference time could be a valuable avenue for future work. Infer-
ence is still impractical when there are many classes. Classifying a single ImageNet
image, with 1000 classes, takes about 1000 seconds with Stable Diffusion at 512× 512

resolution, even with our adaptive strategy. Table B.2 shows inference times for each
dataset, and we discuss promising approaches for speedups in Section 3.5.

3.3 experimental details

We provide setup details, baselines, and datasets for zero-shot and supervised clas-
sification.

3.3.1 Zero-shot Classification

diffusion classifier setup : Zero-shot Diffusion Classifier utilizes Stable Dif-
fusion 2.0 [154], a text-to-image latent diffusion model trained on a filtered subset of
LAION-5B [166]. Additionally, instead of using the squared ℓ2 norm to compute the
ϵ-prediction error, we leave the choice between ℓ1 and ℓ2 as a per-dataset inference

31

100 101 102

Number of trials per class

10

20

30

40

50

60

70

80

A
cc

ur
ac

y

Uniform
0, 500, 1000
0
500
1000
475, 500, 525
Even 5
Even 10

Figure 3.4: Zero-shot scaling curves for different timestep sampling strategies. We evaluate
a variety of strategies for choosing the timesteps at which we evaluate the ϵ-
prediction error. Each strategy name indicates which timesteps it uses— e.g., “0”
only uses the first timestep, “0, 500, 1000” uses only the first, middle and last,
“Even 10” uses 10 evenly spaced timesteps. We allocate more ϵ evaluations at
the chosen timesteps as the number of trials increases. Strategies that repeatedly
sample from a restricted set of timesteps, like “475, 500, 525”, scale poorly with
trials. Using timesteps uniformly from the full range [1, 1000] scales best.

hyperparameter. See Appendix B.3 for more discussion. We also use the adaptive
Diffusion Classifier from Algorithm 3.

baselines : We provide results using two strong discriminative zero-shot mod-
els: (a) CLIP ResNet-50 [146] and (b) OpenCLIP ViT-H/14 [35]. We provide these for
reference only, as these models are trained on different datasets with very different
architectures from ours and thus cannot be compared apples-to-apples. We further
compare our approach against two alternative ways to extract class labels from dif-
fusion models: (c) Synthetic SD Data: We train a ResNet-50 classifier on synthetic
data generated using Stable Diffusion (with class names as prompts), (d) SD Fea-
tures: This baseline is not a zero-shot classifier, as it requires a labeled dataset of
real-world images and class-names. Inspired by Label-DDPM [10], we extract Stable
Diffusion features (mid-layer U-Net features at a resolution [8× 8× 1024] at timestep
t = 100), and then fit a ResNet-50 classifier on the extracted features and correspond-
ing ground-truth labels. Details are in Appendix B.6.4.

datasets : We evaluate the zero-shot classification performance across eight datasets:
Food-101 [19], CIFAR-10 [100], FGVC-Aircraft [119], Oxford-IIIT Pets [138], Flow-
ers102 [131], STL-10 [39], ImageNet [43], and ObjectNet [11]. Due to computational

32

Zero-shot? Food CIFAR10 Aircraft Pets Flowers STL10 ImageNet ObjectNet

Synthetic SD Data ✓ 12.6 35.3 9.4 31.3 22.1 38.0 18.9 5.2
SD Features ✗ 73.0 84.0 35.2 75.9 70.0 87.2 56.6 10.2
Diffusion Classifier (ours) ✓ 77.7 88.4 26.4 87.3 66.3 95.4 61.4 43.4

CLIP ResNet-50 ✓ 81.1 75.6 19.3 85.4 65.9 94.3 58.2 40.0
OpenCLIP ViT-H/14 ✓ 92.7 97.3 42.3 94.6 79.9 98.3 76.8 69.2

Table 3.1: Zero-shot classification performance. Our zero-shot Diffusion Classifier method
(which utilizes Stable Diffusion) significantly outperforms the zero-shot diffusion
model baseline that trains a classifier on synthetic SD data. Diffusion Classifier
also generally outperforms the baseline trained on Stable Diffusion features, de-
spite “SD Features” using the entire training set to train a classifier. Finally, al-
though making a fair comparison is difficult due to different training datasets, our
generative approach surprisingly outperforms CLIP ResNet-50 and is competitive
with OpenCLIP ViT-H. We report average accuracy or mean-per-class accuracy in
accordance with [98].

constraints, we evaluate on 2000 test images for ImageNet. We also evaluate zero-
shot compositional reasoning ability on the Winoground benchmark [184].

3.3.2 Supervised Classification

diffusion classifier setup : We build Diffusion Classifier on top of Diffusion
Transformer (DiT) [141], a class-conditional latent diffusion model trained only on
ImageNet-1k [43]. We use DiT-XL/2 at resolution 2562 and 5122 and evaluate each
class 250 times per image.

baselines : We compare against the following discriminative models trained with
cross-entropy loss on ImageNet-1k: ResNet-18, ResNet-34, ResNet-50, and ResNet-
101 [72], as well as ViT-L/32, ViT-L/16, and ViT-B/16 [49].

datasets : We evaluate models on their in-distribution accuracy on ImageNet
[43] and out-of-distribution generalization to ImageNetV2 [150], ImageNet-A [74],
and ObjectNet [11]. ObjectNet accuracy is computed on the 113 classes shared with
ImageNet. Due to computational constraints, we evaluate Diffusion Classifier accu-
racy on 10,000 validation images for ImageNet. We compute the baselines’ ImageNet
accuracies on the same 10,000 image subset.

33

3.4 experimental results

In this section, we conduct detailed experiments aimed at addressing the following
questions:

1. How does Diffusion Classifier compare against zero-shot state-of-the-art classi-
fiers such as CLIP?

2. How does our method compare against alternative approaches for classifica-
tion with diffusion models?

3. How well does our method do on compositional reasoning tasks?
4. How well does our method compare to discriminative models trained on the

same dataset?
5. How robust is our model compared to discriminative classifiers over various

distribution shifts?

3.4.1 Zero-shot Classification Results

Table 3.1 shows that Diffusion Classifier significantly outperforms the Synthetic SD
Data baseline, an alternate zero-shot approach of extracting information from diffu-
sion models. This is likely because the model trained on synthetically generated data
learns to rely on features that do not transfer to real data. Surprisingly, our method
also generally outperforms the SD Features baseline, which is a classifier trained in a
supervised manner using the entire labeled training set for each dataset. In contrast, our
method is zero-shot and requires no additional training or labels. Finally, while it is
difficult to make a fair comparison due to training dataset differences, our method
outperforms CLIP ResNet-50 and is competitive with OpenCLIP ViT-H.

This is a major advancement in the performance of generative approaches, and
there are clear avenues for improvement. First, we performed no manual prompt
tuning and simply used the prompts used by the CLIP authors. Tuning the prompts
to the Stable Diffusion training distribution should improve its recognition abilities.
Second, we suspect that Stable Diffusion classification accuracy could improve with
a wider training distribution. Stable Diffusion was trained on a subset of LAION-5B
[166] filtered aggressively to remove low-resolution, potentially NSFW, or unaes-
thetic images. This decreases the likelihood that it has seen relevant data for many
of our datasets. The rightmost column in Table 3.2 shows that only 0-3% of the test
images in CIFAR10, Pets, Flowers, STL10, ImageNet, and ObjectNet would remain
after applying all three filters. Thus, many of these zero-shot test sets are completely
out-of-distribution for Stable Diffusion. Diffusion Classifier performance would likely
improve significantly if Stable Diffusion were trained on a less curated training set.

34

Dataset Resolution Aesthetic SFW A + S R + A + S

Food 61.5 90.5 99.9 90.5 56.3
CIFAR10 0.0 3.4 90.3 3.2 0.0
Aircraft 98.6 95.7 100.0 95.6 94.4
Pets 1.1 89.1 100.0 89.1 0.9
Flowers 0.0 82.4 100.0 82.4 0.0
STL10 0.0 31.6 93.1 30.6 0.0
ImageNet 4.5 84.1 98.0 82.5 3.4
ObjectNet 98.8 20.5 98.8 20.3 20.2

Table 3.2: How in-distribution is each test set for Stable Diffusion? We show the percent-
age of each test set that would remain after the Stable Diffusion 2.0 data filtering
process. The first three columns show the percentage of images that pass resolu-
tion (⩾ 5122), aesthetic (⩾ 4.5), and safe-for-work (⩽ 0.1) thresholds, respectively.
The last two columns show the proportion of images that pass multiple filters, and
the last column (R + A + S) corresponds to the actual filtering criteria used to train
SD 2.0.

3.4.2 Improved Compositional Reasoning Abilities

Large text-to-image diffusion models are capable of generating samples with impres-
sive compositional generalization. In this section, we test whether this generative
ability translates to improved compositional reasoning.

winoground benchmark : We compare Diffusion Classifier to contrastive mod-
els like CLIP [146] on Winoground [184], a popular benchmark for evaluating the
visio-linguistic compositional reasoning abilities of vision-language models. Each
example in Winoground consists of 2 (image, caption) pairs. Notably, both captions
within an example contain the exact same set of words, just in a different order.
Vision-language multimodal models are scored on Winoground by their ability to
match captions Ci to their corresponding images Ii. Given a model that computes
a score for each possible pair score(Ci, Ij), the text score of a particular example
((C0, I0), (C1, I1)) is 1 if and only if it independently prefers caption C0 over caption
C1 for image I0 and vice-versa for image I1. Precisely, the model’s text score on an
example is:

I[score(C0, I0) > score(C1, I0) AND
score(C1, I1) > score(C0, I1)]

(3.9)

Achieving a high text score is extremely challenging. Humans (via Mechanical Turk)
achieve 89.5% accuracy on this benchmark, but even the best models do barely above

35

Figure 3.5: Example visualizations of Winoground swap types. Each category corresponds
to a different type of linguistic swap in the caption. Object swaps noun phrases,
Relation swaps verbs, adjectives, or adverbs, and Both can swap entities of both
kinds.

chance. Models can only do well if they understand compositional structure within
each modality. CLIP has been found to do poorly on this benchmark since its embed-
dings tend to be more like a “bag of concepts” that fail to bind subjects to attributes
or verbs [198].

Each example is tagged by the type of linguistic swap (object, relation and both)
between the two captions:

1. Object: reorder elements like noun phrases that typically refer to real-world
objects/subjects.

2. Relation: reorder elements like verbs, adjectives, prepositions, and/or adverbs
that modify objects.

3. Both: a combination of the previous two types.
We show examples of each swap type in Figure 3.5.

results Table 3.3 compares Diffusion Classifier to two strong contrastive base-
lines: OpenCLIP ViT-H/14 (whose text embeddings Stable Diffusion conditions on)
and CLIP ViT-L/14. Diffusion Classifier significantly outperforms both discriminative ap-
proaches on Winoground. Our method is stronger on all three swap types, even the
challenging “Relation” swaps where the contrastive baselines do no better than ran-
dom guessing. This indicates that Diffusion Classifier’s generative approach exhibits

36

Model Object Relation Both Average

Random Chance 25.0 25.0 25.0 25.0
CLIP ViT-L/14 27.0 25.8 57.7 28.2
OpenCLIP ViT-H/14 39.0 26.6 57.7 33.0
Diffusion Classifier (ours) 46.1 29.2 80.8 38.5

Table 3.3: Compositional reasoning results on Winoground. Diffusion Classifier obtains
signficantly better text score (Eq. 3.9) than the contrastive baselines for all three
swap categories.

better compositional reasoning abilities. Since Stable Diffusion uses the same text
encoder as OpenCLIP ViT-H/14, this improvement comes from better cross-modal
binding of concepts to images. Overall, we find it surprising that Stable Diffusion,
trained with only sample generation in mind, can be repurposed into such a strong
classifier and reasoner without any additional training.

3.4.3 Supervised Classification Results

We compare Diffusion Classifier, leveraging the ImageNet-trained DiT-XL/2 model [141],
to ViTs [49] and ResNets [72] trained on ImageNet. This setting is particularly inter-
esting because it enables a fair comparison between models trained on the same
dataset. Table 3.4 shows that Diffusion Classifier outperforms ResNet-101 and ViT-
L/32. Diffusion Classifier achieves ImageNet accuracies of 77.5% and 79.1% at res-
olutions 2562 and 5122 respectively. To the best of our knowledge, we are the first to
show that a generative model trained to learn pθ(x | c) can achieve ImageNet classification
accuracy comparable to highly competitive discriminative methods.

3.4.3.1 Better Out-of-distribution Generalization

We find that Diffusion Classifier surprisingly has stronger out-of-distribution (OOD)
performance on ImageNet-A than all of the baselines. In fact, our method shows
qualitatively different and better OOD generalization behavior than discriminative
approaches. Previous work [181] evaluated hundreds of discriminative models and
found a tight linear relationship between their in-distribution (ID) and OOD accu-
racy — for a given ID accuracy, no models do better OOD than predicted by the
linear relationship. For models trained on only ImageNet-1k (no extra data), none of
a wide variety of approaches, from adversarial training to targeted augmentations
to different architectures, achieve better OOD accuracy than predicted. We show the
relationship between ID ImageNet accuracy (subsampled to the classes that over-

37

Method
ID OOD

IN IN-V2 IN-A ObjectNet

ResNet-18 70.3 57.3 1.1 27.2
ResNet-34 73.8 61.0 1.9 31.6
ResNet-50 76.7 63.2 0.0 36.4
ResNet-101 77.7 65.5 4.7 39.1
ViT-L/32 77.9 64.4 11.9 32.1
ViT-L/16 80.4 67.5 16.7 36.8
ViT-B/16 81.2 69.6 20.8 39.9

Diffusion Classifier 2562 77.5 64.6 20.0 32.1
Diffusion Classifier 5122 79.1 66.7 30.2 33.9

Table 3.4: Standard classification on ImageNet. We compare Diffusion Classifier (using DiT-
XL/2 at 2562 and 5122 resolutions) to discriminative models trained on ImageNet.
We highlight cells where Diffusion Classifier does better. All models (generative
and discriminative) have only been trained on ImageNet.

lap with ImageNet-A) and OOD accuracy on ImageNet-A for these discriminative
models as the blue points (“standard training”) in Figure 3.6. The OOD accuracy
is described well by a piecewise linear fit, with a kink at the ImageNet accuracy of
the ResNet-50 model used to identify the hard images that comprise ImageNet-A.
No discriminative models show meaningful “effective robustness,” which is the gap
between the actual OOD accuracy of a model and the OOD accuracy predicted by
the linear fit [181].

However, in contrast to these hundreds of discriminative models, Diffusion Classi-
fier achieves much higher OOD accuracy on ImageNet-A than predicted. Figure 3.6
shows that Diffusion Classifier lies far above the linear fit and achieves an effective
robustness of 15-25%. To the best of our knowledge, this is the first approach to achieve
significant effective robustness without using any extra data during training.

There are a few caveats to our finding. Diffusion Classifier does not show im-
proved effective robustness on the ImageNetV2 or ObjectNet distribution shifts,
though perhaps the nature of those shifts is different from that of ImageNet-A. Diffu-
sion Classifier may do better on ImageNet-A since its predictions could be less corre-
lated with the (discriminative) ResNet-50 used to find hard examples for ImageNet-
A. Nevertheless, the dramatic improvement in effective robustness on ImageNet-A is
exciting and suggests that generative classifiers are promising approaches to achieve
better robustness to distribution shift.

38

80 90 95 96 97
ImageNet (class-subsampled) (top-1, %)

5

10

20

30

40

Im
ag

eN
et

-A
 (t

op
-1

, %
)

Distribution Shift to Imagenet-A
Linear fit (piecewise)
Standard training
Diffusion Classifier

Figure 3.6: Diffusion Classifier exhibits effective robustness without using extra labeled
data. Compared to discriminative models trained on the same amount of labeled
data (“standard training”), Diffusion Classifier achieves much higher ImageNet-
A accuracy than predicted by its ImageNet accuracy. Diffusion Classifier points
correspond to DiT-XL/2 at resolution 2562 and 5122. Points are shown with 99.5%
Clopper-Pearson confidence intervals. The red lines show the linear relationship
between ID and OOD accuracy for discriminative models, with a “break” at the
accuracy of the model used to create ImageNet-A. The axes were adjusted using
logit scaling, since accuracies fall within [0, 100].

3.4.3.2 Stable Training and No Overfitting

Diffusion Classifier’s ImageNet accuracy is especially impressive since DiT was
trained with only random horizontal flips, unlike typical classifiers that use Random-
ResizedCrop, Mixup [207], RandAugment [41], and other tricks to avoid overfitting.
Training DiT with more advanced augmentations should further improve its accu-
racy. Furthermore, DiT training is stable with fixed learning rate and no regulariza-
tion other than weight decay [141]. This stands in stark contrast with ViT training,
which is unstable and frequently suffers from NaNs, especially for large models [69].
These results indicate that the generative objective logpθ(x | c) could be a promising
way to scale up training to even larger models without overfitting or instability.

3.4.3.3 Choice of classification objective

While Stable Diffusion parameterizes pθ(xt−1 | xt, c) as a Gaussian with fixed vari-
ance, DiT learns the variance Σθ(xt, c). A single network outputs ϵθ and Σθ, but they
are trained via two separate losses. ϵθ is trained via a uniform weighting of ℓ2 errors

39

Resolution Objective IN IN-v2 IN-A ObjectNet

ℓ2 77.5 64.6 20.0 33.9
2562 VLB 71.6 57.7 17.9 24.7

ℓ2 + VLB 77.5 64.6 20.0 33.8

ℓ2 79.1 66.7 30.2 33.9
5122 VLB 74.0 59.1 24.9 24.7

ℓ2 + VLB 79.0 66.6 30.2 33.8

Table 3.5: Effect of classification objective. DiT trains ϵθ with the uniformly weighted ℓ2
loss to evaluate

∑
twt∥ϵ − ϵθ(xt, c)∥2 from Eq. 3.3. DiT also trains the learned

variance Σθ of pθ(xt−1|xt) with the exact variational lower bound, which weights
timesteps unevenly. Since both of these weightings are involved in DiT training, we
try each objective, as well as their sum, to see which one achieves the best accuracy.
We find that uniformly weighting ℓ2 errors across timesteps performs best.

Eϵ,t[∥ϵ− ϵθ(xt, c)∥2], as this is found to improve sample quality. In contrast, Σθ is
trained with the exact variational lower bound. This keeps the timestep-dependent
weighting term wt in Eq. 3.3 and weights the ϵ-prediction errors by the inverse of
the variances Σθ (see [141] for more details). Since both losses are used at training
time, we run an experiment to see which objective yields the best accuracy as an
inference-time objective. Instead of choosing the class with the lowest error based
on uniform ℓ2 weighting, as is done in Algorithm 2, we additionally try using the
variational bound or the sum of the uniform weighting and the variational bound.
Table 3.5 shows that the uniform ℓ2 weighting does best across all datasets. This jus-
tifies the approximation we made to the ELBO in Eq. 3.4. The sum of the uniform ℓ2
and the variational bound does almost as well, likely because the magnitude of the
variational bound is much smaller than that of the uniformly weighted ℓ2, so their
sum is dominated by the ℓ2 term.

3.5 discussion

We investigated the zero-shot and standard classification abilities of diffusion mod-
els by leveraging them as conditional density estimators. By performing a simple,
unbiased Monte Carlo estimate of the learned conditional ELBO for each class, we
extract Diffusion Classifier—a powerful approach to turn any conditional diffusion model
into a classifier without any additional training. We find that this classifier narrows the
gap with state-of-the-art discriminative approaches on zero-shot and standard classi-

40

fication and significantly outperforms them on multimodal compositional reasoning.
Diffusion Classifier also exhibits far better “effective robustness” to distribution shift.

accelerating inference While inference time is currently a practical bottle-
neck, there are several clear ways to accelerate Diffusion Classifier. Decreasing reso-
lution from the default 512× 512 (for SD) would yield a dramatic speedup. Inference
at 256× 256 is at least 4× faster, and inference at 128× 128 would be over 16× faster.
Another option is to use a weak discriminative model to quickly eliminate classes
that are clearly incorrect. Appendix B.2 shows that this would simultaneously im-
prove accuracy and reduce inference time. Gradient-based search could backpropa-
gate through the diffusion model to solve arg maxc logp(x | c), which could elim-
inate the runtime dependency on the number of classes. New architectures could
be designed to only use the class conditioning c toward the end of the network,
enabling reuse of intermediate activations across classes. Finally, note that the error
prediction process is easily parallelizable. With sufficient scaling or better GPUs in
the future, all Diffusion Classifier steps can be done in parallel with the latency of a
single forward pass.

role of diffusion model design decisions Since we don’t change the base
diffusion model of Diffusion Classifier, the choices made during diffusion training
affect the classifier. For instance, Stable Diffusion [154] conditions the image gener-
ation on the text embeddings from OpenCLIP [84]. However, the language model
in OpenCLIP is much weaker than open-ended large-language models like T5-XXL
[148] because it is only trained on text data available from image-caption pairs, a
minuscule subset of total text data on the Internet. Hence, we believe that diffusion
models trained on top of T5-XXL embeddings, such as Imagen [161], should display
better zero-shot classification results, but these are not open-source to empirically
validate. Other design choices, such as whether to perform diffusion in latent space
(e.g. Stable Diffusion) or in pixel space (e.g. DALLE 2), can also affect the adversarial
robustness of the classifier and present interesting avenues for future work.

In conclusion, while generative models have previously fallen short of discrimina-
tive ones for classification, today’s pace of advances in generative modeling means
that they are rapidly catching up. Our strong classification, multimodal composi-
tional reasoning, and robustness results represent an encouraging step in this direc-
tion.

41

4
G E N E R AT I V E C L A S S I F I E R S AV O I D S H O RT C U T S O L U T I O N S

Ever since AlexNet [101], classification with neural networks has mainly been tackled
with discriminative methods, which train models to learn pθ(y | x). This approach
has scaled well for in-distribution performance [49, 72], but these methods are sus-
ceptible to shortcut learning [57], where they output solutions that work well on
the training distribution but may not hold even under minor distribution shift. The
brittleness of these models has been well-documented [150, 181], but beyond scaling
up the diversity of the training data [146] so that everything becomes in-distribution,
no approaches so far have made significant progress in addressing this problem.

In this paper, we examine whether this issue can be solved with an alternative
approach, called generative classifiers [130, 202, 210]. This method trains a class-
conditional generative model to learn pθ(x | y), and it uses Bayes’ rule at inference
time to compute pθ(y | x) for classification. We hypothesize that generative classi-
fiers may be better at avoiding shortcut solutions because their objective forces them
to model the input x in its entirety. This means that they cannot just learn spurious
correlations the way that discriminative models tend to do; they must eventually
model the core features as well. Furthermore, we hypothesize that generative classi-
fiers may have an inductive bias towards using features that are consistently predictive,
i.e., features that agree with the true label as often as possible. These are exactly the
core features that models should learn in order to do well under distribution shift.

Generative classifiers date back at least as far back as Fischer discriminant anal-
ysis [55]. Generative classifiers like Naive Bayes had well-documented learning ad-
vantages [130] but were ultimately limited by the lack of good generative modeling
techniques at the time. Today, however, we have extremely powerful generative mod-
els [21, 154], and some work is beginning to revisit generative classifiers with these
new models [37, 106]. Li et al. [106] in particular find that ImageNet-trained diffusion
models exhibit the first “effective robustness” [181] without using extra data, which
suggests that generative classifiers are have fundamentally different (and perhaps
better) inductive biases. However, their analysis is limited to ImageNet distribution
shifts and does not provide any understanding. Our paper focuses on carefully com-

42

Autoregressive

1

Transformer

Hello world

<latexit sha1_base64="bkn6tMM/p1U+JtuoQpNW6+fXJaI=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahXkpSRD0WvXisYD+gDWWz2bRLd5O4uymG0N/hxYMiXv0x3vw3btsctPXBwOO9GWbmeTFnStv2t1VYW9/Y3Cpul3Z29/YPyodHbRUlktAWiXgkux5WlLOQtjTTnHZjSbHwOO1449uZ35lQqVgUPug0pq7Aw5AFjGBtJDeuPg0c1BfMR+n5oFyxa/YcaJU4OalAjuag/NX3I5IIGmrCsVI9x461m2GpGeF0WuonisaYjPGQ9gwNsaDKzeZHT9GZUXwURNJUqNFc/T2RYaFUKjzTKbAeqWVvJv7n9RIdXLsZC+NE05AsFgUJRzpCswSQzyQlmqeGYCKZuRWREZaYaJNTyYTgLL+8Str1mnNZq99fVBo3eRxFOIFTqIIDV9CAO2hCCwg8wjO8wps1sV6sd+tj0Vqw8plj+APr8wc76JEb</latexit>

p(x1 | y)
<latexit sha1_base64="1q7cip27ETZhf8v8oxm2NyrF2UE=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBEqSEmKqMuiG5cV7APaECaTSTt0ZhJmJtIQ+ituXCji1h9x5984bbPQ1gMXDufcy733BAmjSjvOt7W2vrG5tV3aKe/u7R8c2keVjopTiUkbxyyWvQApwqggbU01I71EEsQDRrrB+G7md5+IVDQWjzpLiMfRUNCIYqSN5NuVpDbxG3DAaQgnvnsBs3Pfrjp1Zw64StyCVEGBlm9/DcIYp5wIjRlSqu86ifZyJDXFjEzLg1SRBOExGpK+oQJxorx8fvsUnhklhFEsTQkN5+rviRxxpTIemE6O9EgtezPxP6+f6ujGy6lIUk0EXiyKUgZ1DGdBwJBKgjXLDEFYUnMrxCMkEdYmrrIJwV1+eZV0GnX3qt54uKw2b4s4SuAEnIIacME1aIJ70AJtgMEEPINX8GZNrRfr3fpYtK5Zxcwx+APr8weJiZLT</latexit>

p(x2 | x1, y)
<latexit sha1_base64="4fkaKGTbWA59CgJq32IWZhP2sAA=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARKkhJqqi4KrpxWcE+oA1hMpm0Q2eSMDORhtiFv+LGhSJu/Q13/o3TNgutHrhwOOde7r3HixmVyrK+jMLC4tLySnG1tLa+sbllbu+0ZJQITJo4YpHoeEgSRkPSVFQx0okFQdxjpO0Nryd++54ISaPwTqUxcTjqhzSgGCktueZeXBm5J7DHqQ9HbmZf1sbHMD1yzbJVtaaAf4mdkzLI0XDNz54f4YSTUGGGpOzaVqycDAlFMSPjUi+RJEZ4iPqkq2mIOJFONr1/DA+14sMgErpCBafqz4kMcSlT7ulOjtRAznsT8T+vm6jgwsloGCeKhHi2KEgYVBGchAF9KghWLNUEYUH1rRAPkEBY6chKOgR7/uW/pFWr2mfV2u1puX6Vx1EE++AAVIANzkEd3IAGaAIMHsATeAGvxqPxbLwZ77PWgpHP7IJfMD6+AVVolGA=</latexit>

p(x3 | x1:2, y)

KV
Q

KV
Q

<latexit sha1_base64="tA6EB5xvVjriuxAt3mNfE12GWbg=">AAACAXicbVC7SgNBFJ2NrxhfURvBZjAIVmE3hVoGtbARIpgHJEuYndxNhsw+mLkrhiU2/oqNhSK2/oWdf+Mk2UITDwwczjmXO/d4sRQabfvbyi0tr6yu5dcLG5tb2zvF3b2GjhLFoc4jGamWxzRIEUIdBUpoxQpY4EloesPLid+8B6VFFN7hKAY3YP1Q+IIzNFK3eNBBeEDPT6+E7yeTGL2JeiDH3WLJLttT0EXiZKREMtS6xa9OL+JJACFyybRuO3aMbsoUCi5hXOgkGmLGh6wPbUNDFoB20+kFY3pslB71I2VeiHSq/p5IWaD1KPBMMmA40PPeRPzPayfon7upCOMEIeSzRX4iKUZ0UgftCQUc5cgQxpUwf6V8wBTjaEormBKc+ZMXSaNSdk7LldtKqXqR1ZEnh+SInBCHnJEquSY1UiecPJJn8krerCfrxXq3PmbRnJXN7JM/sD5/APnRlzk=</latexit>

Di↵usion Model
<latexit sha1_base64="1wWc0GGRaknl4pv1RRZvH9lz9zY=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVZIi6rLoxmUF+4AmlMl00g6dTMLMjVhCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATX6DjfVmltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrI0fBeoliJAoE6waT29zvPjKleSwfcJowPyIjyUNOCRrJ8yKC4yDMnmYDHFRrTt2Zw14lbkFqUKA1qH55w5imEZNIBdG67zoJ+hlRyKlgs4qXapYQOiEj1jdUkohpP5tnntlnRhnaYazMk2jP1d8bGYm0nkaBmcwz6mUvF//z+imG137GZZIik3RxKEyFjbGdF2APuWIUxdQQQhU3WW06JopQNDVVTAnu8pdXSadRdy/rjfuLWvOmqKMMJ3AK5+DCFTThDlrQBgoJPMMrvFmp9WK9Wx+L0ZJV7BzDH1ifP5I2kgo=</latexit>xt

<latexit sha1_base64="56hsVbtdGBpzTtu/VRwSPNgalD4=">AAAB+HicbZDLSsNAFIYnXmu9NOrSzWARXJWkiLosunFZwV6gCWUyPWmHTi7MnAg19EncuFDErY/izrdx2mahrT8MfPznHM6ZP0il0Og439ba+sbm1nZpp7y7t39QsQ+P2jrJFIcWT2SiugHTIEUMLRQooZsqYFEgoROMb2f1ziMoLZL4AScp+BEbxiIUnKGx+nbFg1QLadDDESDr21Wn5sxFV8EtoEoKNfv2lzdIeBZBjFwyrXuuk6KfM4WCS5iWvUxDyviYDaFnMGYRaD+fHz6lZ8YZ0DBR5sVI5+7viZxFWk+iwHRGDEd6uTYz/6v1Mgyv/VzEaYYQ88WiMJMUEzpLgQ6EAo5yYoBxJcytlI+YYhxNVmUTgrv85VVo12vuZa1+f1Ft3BRxlMgJOSXnxCVXpEHuSJO0CCcZeSav5M16sl6sd+tj0bpmFTPH5I+szx8uXJNv</latexit>✏✓

1

Diffusion-based
<latexit sha1_base64="OKybiDXjxNGrB5kqUa6EWxVi0Hw=">AAAB+XicbVDLSgNBEJyNrxhfqx69DAbBU9gNol6EoBePEcwDkiXMTnqTIbMPZnqDYcmfePGgiFf/xJt/4yTZgyYWNBRV3XR3+YkUGh3n2yqsrW9sbhW3Szu7e/sH9uFRU8ep4tDgsYxV22capIiggQIltBMFLPQltPzR3cxvjUFpEUePOEnAC9kgEoHgDI3Us+0uwhNmkvkg6Q2dTnp22ak4c9BV4uakTHLUe/ZXtx/zNIQIuWRad1wnQS9jCgWXMC11Uw0J4yM2gI6hEQtBe9n88ik9M0qfBrEyFSGdq78nMhZqPQl90xkyHOplbyb+53VSDK69TERJihDxxaIglRRjOouB9oUCjnJiCONKmFspHzLFOJqwSiYEd/nlVdKsVtzLSvXholy7zeMokhNySs6JS65IjdyTOmkQTsbkmbySNyuzXqx362PRWrDymWPyB9bnDzRMk2E=</latexit>

label = y

<latexit sha1_base64="OKybiDXjxNGrB5kqUa6EWxVi0Hw=">AAAB+XicbVDLSgNBEJyNrxhfqx69DAbBU9gNol6EoBePEcwDkiXMTnqTIbMPZnqDYcmfePGgiFf/xJt/4yTZgyYWNBRV3XR3+YkUGh3n2yqsrW9sbhW3Szu7e/sH9uFRU8ep4tDgsYxV22capIiggQIltBMFLPQltPzR3cxvjUFpEUePOEnAC9kgEoHgDI3Us+0uwhNmkvkg6Q2dTnp22ak4c9BV4uakTHLUe/ZXtx/zNIQIuWRad1wnQS9jCgWXMC11Uw0J4yM2gI6hEQtBe9n88ik9M0qfBrEyFSGdq78nMhZqPQl90xkyHOplbyb+53VSDK69TERJihDxxaIglRRjOouB9oUCjnJiCONKmFspHzLFOJqwSiYEd/nlVdKsVtzLSvXholy7zeMokhNySs6JS65IjdyTOmkQTsbkmbySNyuzXqx362PRWrDymWPyB9bnDzRMk2E=</latexit>

label = y
<latexit sha1_base64="w7u0D/lE7/ilUIsaBXDudnBM1Mw=">AAACMnicbVDLSgMxFM3UV62vqks3wSJUkDIjoi4Uim50p2C10KlDJk3b0CQzJHekZeg3ufFLBBe6UMStH2H6WGjrgcDhnHO5uSeMBTfguq9OZmZ2bn4hu5hbWl5ZXcuvb9yaKNGUVWgkIl0NiWGCK1YBDoJVY82IDAW7CzvnA//ugWnDI3UDvZjVJWkp3uSUgJWC/KUvohaOAx/aDAgudrEveQP3dvEp9k0ig5Sfev17hf/kit2Aj4LdID3h/T07EOQLbskdAk8Tb0wKaIyrIP/sNyKaSKaACmJMzXNjqKdEA6eC9XN+YlhMaIe0WM1SRSQz9XR4ch/vWKWBm5G2TwEeqr8nUiKN6cnQJiWBtpn0BuJ/Xi2B5nE95SpOgCk6WtRMBIYID/rDDa4ZBdGzhFDN7V8xbRNNKNiWc7YEb/LkaXK7X/IOS/vXB4Xy2biOLNpC26iIPHSEyugCXaEKougRvaB39OE8OW/Op/M1imac8cwm+gPn+wfFkKiq</latexit>

log p✓(x | y) =

nX

i=1

log p✓(xi | x<i, y)
<latexit sha1_base64="gz6hHeqRS3GF5S1YQyaCDxeUQuY=">AAACTnicbVFdaxNBFJ2NXzF+NNVHXy4GIUINu0HUx1IRfKxg2kJmXWYnN8nQ2Zlh5q40bPMLfRHf/Bm++NAiuptuQVsvDJx7zj3M3DO50ypQHH+POjdu3rp9p3u3d+/+g4db/e1HB8GWXuJEWm39US4CamVwQoo0HjmPosg1HubHbxv98DP6oKz5SCuHaSEWRs2VFFRTWR+5tgtwGaclkoDhCfBCzWD1HLhwztumF7TMc3iXVRxdUNqaHaD1lJ9etq15eJLRTuN8AZcK8NNP47TXy/qDeBRvCq6DpAUD1tZ+1v/GZ1aWBRqSWoQwTWJHaSU8Kalx3eNlQCfksVjgtIZGFBjSahPHGp7VzAzm1tfHEGzYvx2VKEJYFXk92ewWrmoN+T9tWtL8TVop40pCIy8umpcayEKTLcyUR0l6VQMhvarfCnIpvJBU/0ATQnJ15evgYDxKXo3GH14OdvfaOLrsCXvKhixhr9kue8/22YRJ9oX9YGfsPPoa/Yx+Rb8vRjtR63nM/qlO9w8rTrMl</latexit>

log p✓(x | y) ⇡ E✏,t[k✏✓(xt, y)� ✏k2]

Figure 4.1: Generative classifiers. We repurpose today’s best generative modeling algo-
rithms for classification. Generative classifiers predict arg maxy pθ(x | y)p(y). We
use diffusion-based generative classifiers on image tasks and autoregressive gen-
erative classifiers on text tasks, and find that they scale better out-of-distribution
than discriminative approaches.

paring deep generative classifiers against today’s discriminative methods on a com-
prehensive set of distribution shift benchmarks. We additionally conduct a thorough
analysis of the reasons and settings where they work. We list our contributions:

• Show significant advantages of generative classifiers on realistic distribution
shifts. Generative classifiers are simple and effective compared to previous dis-
tribution shift mitigations. They utilize existing generative modeling pipelines,
avoid additional hyperparameters or training stages, and do not require knowl-
edge of the spurious correlations to avoid. We run experiments on standard distri-
bution shift benchmarks across image and text domains and find that generative
classifiers consistently do better under distribution shift than discriminative ap-
proaches. Most notably, they are the first algorithmic approach to demonstrate “ef-
fective robustness” [181], where they do better out-of-distribution than expected
based on their in-distribution performance (see Figure 4.1, right). We also sur-
prisingly find better in-distribution accuracy on most datasets, indicating that
generative classifiers are also less susceptible to overfitting.

• Understand why generative classifiers work. We carefully test several hypotheses
for why generative classifiers do better. We conclude that the generative objective
p(x | y) provides more consistent learning signal by forcing the model to learn all
features of x.

• Provide insights from Gaussian data. We compare generative (linear discrimi-
nant analysis) and discriminative (logistic) classification methods on a simplified
setting. We find the existence of “generalization phases” that show which kind
of approach does better, depending on the strength of the spurious correlations

43

and noisy features in the data. These phases shed light on the inductive bias of
generative classifiers towards low-variance features.

4.1 related work

learning in the presence of spurious features It is well-known that
deep networks trained with empirical risk minimization (ERM) have a tendency to
rely on spurious correlations to predict the label, such as the background in an image
or the presence of certain words [14, 57, 120, 152]. Notably, overfitting to these short-
cuts causes a degradation in performance under distribution shift, since these spuri-
ous correlations may no longer be predictive [73, 155, 181]. The performance on rare
(“minority”) groups in particular tends to suffer [47, 159, 209], and this imbalance
is aggravated in highly overparametrized models [160]. Theoretical works attribute
this problem to the inductive bias of classifiers trained with cross-entropy loss; these
classifiers prefer to find max-margin solutions, and thus fit spurious features even
when they are not fully predictive like the core feature [128, 145]. To address these
failures in discriminative models, people use objectives that try to balance learning
across different groups [103, 159, 168], or add data augmentation to smooth out
the spurious feature [171]. However, these methods still tend to fail to capture the
core feature and often lead to degradations in in-distribution performance. Some
approaches focus on identifying the specific spurious features, annotating which
examples contain them, and using that to rebalance the data [60, 93, 197]. Unfortu-
nately, these approaches require significant manual effort, are not as scalable, and
may not work for problems where humans do not understand the learned features.
Ideally, we find an approach with the right inductive bias to generalize well under
distribution shift without requiring extra supervision.

classification with generative models Few deep learning approaches
have trained class-conditional generative models and used them directly for classi-
fication, perhaps due to the difficult task of modeling p(x | y) with weaker gener-
ative models. However, recent generative models have significantly improved, espe-
cially with better techniques in diffusion probabilistic models [76, 173], and deep
generative classification methods have recently been proposed [37, 106]. Li et al.
[106] showed that ImageNet-trained class-conditional diffusion models are compet-
itive with discriminative classifiers and achieve the first nontrivial “effective robust-
ness” [181] on ImageNet-A [75] without using extra data. Prabhudesai et al. [144]
show that a hybrid generative-discriminative classifier can use test-time adaptation
to improve performance on several synthetic corruptions. Other work [37, 86] has
shown that large pretrained generative models are more biased towards shape fea-

44

tures and more robust to synthetic corruptions, but this may be due to effect of pre-
training on extra data, or the fact that diffusion specifically confers resilience to input
perturbations. Other works have found that generative classifiers can improve adver-
sarial robustness [27, 28, 63, 213]. However, adversarial robustness has been shown to
not translate to robustness to distribution shift [164, 181]. Overall, it still remains un-
clear whether generative classifiers are more robust to the spurious correlations seen
in realistic distribution shifts or why they might be better.

4.2 preliminaries

4.2.1 Types of Distribution Shift

We consider classification under two types of distribution shift. In subpopulation
shift, there are high-level spurious features that are correlated with the label. For
example, on CelebA [115], where the task is to predict whether a person’s hair is
blond or not blond, the spuriously correlated feature is the gender. This occurs be-
cause there are very few blond men in the dataset, so models typically learn to
use the “man” feature. The spurious feature determines groups: the majority group
contains examples where the spurious feature is correct, and the minority group
contains examples where the spurious feature is incorrect. We also consider domain
shift, where the test domain’s data distribution is similar to the training domain’s
distribution. For example, training images in Camelyon17-WILDS [95] come from 3

hospitals, whereas the test images come from a disjoint 4th hospital. Spurious fea-
tures that worked on the training distribution, e.g., artifacts of the way slide staining
or sample collection was done, may hurt accuracy under distribution shift [97, 182,
191]. We examine 5 common distribution shift benchmarks in total: besides CelebA
and Camelyon, we use Waterbirds (Sagawa et al. [159]; subpopulation shift), FMoW
(Koh et al. [95]; both subpopulation and domain shift), and CivilComments (Koh
et al. [95]; subpopulation shift).

4.2.2 Shortcomings of Discriminative Classifiers

Discriminative classifiers, which seek to maximize pθ(y | x), can overly rely on the
spurious features and fall victim to shortcut solutions [57]. This is because they
can use the spuriously correlated features to correctly and confidently fit the ma-
jority group examples. After this happens, the loss on these examples flattens out,
and there is less gradient signal available to encourage the model to use core fea-
tures [109, 142]. The model then overfits to the remaining minority examples where
the spurious correlation does not help [128, 160]. These shortcut solutions often work

45

in-distribution but can fail, sometimes catastrophically, under even minor distribu-
tion shift. Significant effort has been put into preventing this, mainly by rebalancing
the data so that the spurious correlation no longer holds [93, 112, 159, 168]. However,
these methods all add additional hyperparameters and complexity to the training
process, and often require knowledge of the exact distribution shift to counteract,
which is impractical for realistic problems where there may be many spurious corre-
lations.

4.3 generative classifiers

We now present generative classifiers, a simple paradigm for classification with class-
conditional generative models. To classify an input x, generative classifiers first com-
pute pθ(x|y) with a class-conditional generative model and then utilize Bayes’ the-
orem to obtain pθ(y|x). This paradigm had been popular in machine learning with
methods like linear discriminant analysis and Naive Bayes [130], but has fallen out
of favor in the modern era of deep learning. We revisit this paradigm with deep
learning architectures and show its advantages for robustness to distribution shift in
Section 4.4. Algorithm 4 gives an overview of the generative classification procedure.

4.3.1 Intuition

Why could generative classifiers do better on these distribution shifts? In contrast
to discriminative classifiers, which can minimize their training objective using just a
few spurious features, generative classifiers need to model the entire input x. This
means that they cannot stop at just the spurious features; their training objective
requires them to learn both core and spurious features. This should translate to
better training signal throughout the course of the training. We confirm this in Sec-
tion 4.4.3. Note that learning both types of features does not mean that it uses them
equally when classifying an input. The generative classifier should learn which type
of features are more consistently correlated with the label and weight them accord-
ingly. Section 4.5.3 and 4.5.4 demonstrates this inductive bias in a simple setting with
Gaussian data.

4.3.2 Diffusion-based Generative Classifier

For image classification, we use diffusion models [76, 173], which are currently the
state-of-the-art approach for image modeling. Diffusion models are trained to itera-
tively denoise an image and do not have an exact likelihood that can be computed in
a single forward pass. They are typically trained with a reweighted variational lower

46

bound of logpθ(x | y). To use them in a generative classification framework, we use
that value to approximate logpθ(x | y):

logpθ(x | y) ≈ Eϵ,t[∥ϵθ(xt,y) − ϵ∥2] (4.1)

Training the class-conditional diffusion models is done as normal – we use off-the-
shelf training pipelines to train diffusion models from scratch, without modifying
any hyperparameters. At inference time, we follow the Diffusion Classifier algorithm
from [106], which samples multiple noises ϵ, adds them to the image to obtain noised
xt =

√
ᾱtx+

√
1− ᾱtϵ, and does multiple forward passes through the network to

obtain a Monte Carlo estimate of Eq. 4.1. This is done for each class, and the class
with the highest conditional likelihood logpθ(x | y), which corresponds to the lowest
denoising error, is chosen.

4.3.3 Autoregressive Generative Classifier

For text classification, we introduce generative classifiers built on autoregressive
Transformer models, as they are the dominant architecture for text modeling. Since
we need to now learn pθ(x | y), where x is a sequence of text tokens and y is a label,
we make a small modification to the training procedure. Instead of starting each
sequence of text tokens with a “beginning of sequence” (BOS) token, we allocate
C special class tokens in our vocabulary, one per class, and replace BOS with the
desired class token. Obtaining logpθ(x | y) can be done in a single forward pass:

logpθ(x | y) = log

(
n∏
i=1

pθ(xi | x<i,y)

)
=

n∑
i=1

logpθ(xi | x<i,y) (4.2)

We train our Transformer as usual using cross-entropy loss over the entire sequence,
with the ground truth label y∗ at the beginning. To classify a text sequence at in-
ference time, we do C forward passes, one with each possible class token. We then
choose the class token with the lowest cross-entropy loss over the entire sequence as
our prediction. Figure 4.1 (middle) shows a diagram of this method.

Overall, generative classifiers can be easily trained using existing generative mod-
eling pipelines and do not require any specialized architectures, extra hyperparame-
ters, data augmentation, multi-stage training, or knowledge of the specific shortcuts
to avoid. Training is also cheap: all of our generative models can be trained on a
single GPU in 2-3 days.

47

Method Waterbirds CelebA Camelyon FMoW CivilComments

ID WG ID WG ID OOD ID OOD WG ID WG

ERM 88.8 32.2 92.4 50.5 95.2 78.3 51.1 27.5 90.6 53.3
LfF [129] 86.4 28.9 90.8 34.0 90.5 66.3 49.6 31.0 87.9 49.4
JTT [112] 88.1 32.9 91.9 42.1 88.1 65.8 52.1 31.8 89.2 55.6
RWY/DFR 90.8 31.6 94.1 68.9 95.2 78.3 39.3 26.1 90.1 58.1
Generative (ours) 96.8 79.4 91.2 69.4 98.3 90.8 62.8 35.8 79.8 61.4

Table 4.1: Accuracy on distribution shift benchmarks. We show in-distribution (ID) and
either worst-group (WG) or out-of-distribution (OOD) accuracy, depending on the
type of shift in each dataset. Our generative approach performs the best on all five
distribution shifts and 3/5 ID datasets.

4.4 experiments

We now compare our generative classification approach to discriminative methods
that are commonly used today. We aim to answer the following questions in this sec-
tion. First, do generative classifiers have better robustness to distribution shift? If so,
why are they more robust than discriminative methods? We test multiple hypotheses
to determine which explanation is correct.

4.4.1 Setup

Benchmarks We use five standard benchmarks for distribution shift. Camelyon un-
dergoes domain shift, so we report its OOD accuracy on the test data. Waterbirds,
CelebA, and CivilComments undergo subpopulation shift, so we report worst group
accuracy. FMoW has both subpopulation shift over regions and a domain shift across
time, so we report OOD worst group accuracy. The first four are image benchmarks,
while CivilComments is text classification. Waterbirds and CelebA are natural im-
ages, whereas Camelyon contains whole-slide images of cells and FMoW contains
satellite images. In total, these benchmarks cover multiple shift types, modalities,
and styles.

model selection We believe that it is unrealistic or impractical to know the
exact distribution shift that will happen on the test set. Thus, we do not use knowl-
edge of the spurious correlation or distribution shift when training or performing
model selection, and instead tune hyperparameters and perform early stopping on
the in-distribution validation accuracy, not the worst-group accuracy. This is the most

48

valuable setting, as it matches how models are often deployed in practice, and thus
is a popular experimental setting for evaluating methods [95, 112, 168, 200]. We use
class-balanced accuracy for model selection as it uniformly improves performance
on each dataset for all methods [83].

baselines We compare generative classifiers against several discriminative base-
lines. ERM minimizes the average cross-entropy loss of the training set and is the
standard method for training classifiers. We additionally evaluate several methods
designed to combat spurious features. Learning from Failure (LfF) [129] simultane-
ously trains one network to be biased and uses it to identify samples that a second
network should focus on. Just Train Twice (JTT) [112] is a similar two-stage method
that first trains a standard ERM model for several epochs, and then heuristically
identifies worst-group examples as training points with high loss under the first
model. JTT then upsamples these points and trains a second classifier. DFR [93]
fine-tunes a model on a training set that has been carefully balanced to make the
spurious feature unpredictive. As in prior work [200], DFR samples data from each
class equally when there are no spurious feature annotations. This is equivalent to
RWY [83] and can help if there is class imbalance related to the spurious correla-
tion. For fairness, we train all models, generative and discriminative, from scratch to
eliminate the effect of differing pre-training datasets.

models For image-based tasks, all discriminative baselines use ResNet-50, ResNet-
101, and ResNet-152, whereas our generative classifier approach trains a class-conditional
U-Net-based latent diffusion model [154]. For text-based tasks, all discriminative
baselines use an encoder-only Transformer, whereas our generative classifier ap-
proach trains a Llama-style autoregressive language model [186] from scratch. See
Appendix C.2 for more details.

4.4.2 Results on Distribution Shift Benchmarks

main results Table 4.1 compares generative classifiers against discriminative
baselines on the distribution shift benchmarks. Compared to the discriminative base-
lines, generative classifiers have better worst-group or OOD accuracy on all five
datasets. Surprisingly, generative classifiers also achieve significantly better in-distribution
accuracy on three of the five datasets, which indicates less overfitting. These results
suggest that generative classifiers may have an advantage in both (a) learning core
features that generalize across distribution shifts, and (b) learning features that gen-
eralize from the training set to the ID test set.

49

85.0 87.5 90.0 92.5 95.0
ID Class-balanced Test Accuracy

20

40

60

80

OO
D

Te
st

 W
G

Ac
cu

ra
cy

Waterbirds
Discriminative
Generative

82.5 85.0 87.5 90.0 92.5
ID Class-balanced Test Accuracy

30

40

50

60

70

OO
D

Te
st

 W
G

Ac
cu

ra
cy

CelebA

80 85 90 95 100
ID Val Accuracy

50

60

70

80

90

OO
D

Te
st

 A
cc

ur
ac

y

Camelyon17

20 40 60
ID Val Accuracy

0

10

20

30

OO
D

Te
st

 W
G

Ac
cu

ra
cy

FMoW

70 80 90
ID Test Accuracy

40

45

50

55

60

OO
D

Te
st

 W
G

Ac
cu

ra
cy

CivilComments

Figure 4.2: In-distribution vs out-of-distribution accuracy for each dataset. Each point cor-
responds to a separate training run, other than the diffusion-based generative
classifier results, which are checkpoints of a run with default hyperparameters.
We observe better OOD scaling trends (i.e., effective robustness) for generative
classifiers on CelebA, CivilComments, and potentially Camelyon17, although re-
sults are noisy for this dataset (the red line in Camelyon17 denotes a linear fit for
the relationship between ID and OOD accuracy for discriminative models). On
the remaining two datasets, they follow the same trend and do better both ID and
OOD.

accuracy above the line Comparing the best generative classifier against
the best discriminative classifier provides a one-dimensional understanding of each
approach. To provide a better sense of which method may scale better in the future,
Figure 4.2 plots the in-distribution and out-of-distribution accuracies of each family
of methods. We can classify the benchmarks into two sets:

1. Generative classifiers are better both ID and OOD, and lay on the same trend line
as discriminative models. This includes Waterbirds and FMoW.

50

2. Generative classifiers have a significantly better OOD performance trend, but are
the same or worse in-distribution. This includes CelebA, CivilComments, and
potentially Camelyon.

The second case, where generative classifiers have better OOD accuracy than dis-
criminative classifiers at any ID accuracy, demonstrates “effective robustness” [181].
This suggests fundamentally better out-of-distribution behavior for generative clas-
sifiers in some scenarios and indicates that they may be the right approach to clas-
sification after further scaling. Our results corroborate findings from Li et al. [106],
which found some signs of effective robustness on ImageNet. Section 4.5 examines
a toy setting and provides insights into the cause of this “effective robustness.”

4.4.3 Why Do Generative Classifiers Do Better?

We test several hypotheses for how generative classifiers outperform the discrimina-
tive baselines.

learning more from majority examples Our intuition is that the genera-
tive objective logpθ(x | y) provides more consistent learning signal across epochs. In
contrast, discriminative models may use spurious features to make confident and cor-
rect predictions on the training set and lose the gradient signal necessary to use the
core features. We test this by measuring the gradient norm on majority and minority
examples across epochs. We compute the per-example gradient norm ∥∇θL(xi,yi)∥2
and average it over the majority and minority groups. We normalize this by the av-
erage majority group gradient norm at epoch 5 in order to fairly compare different
architectures that have different loss landscapes. Figure 4.3 shows these metrics on
CivilComments with toxic comments about the Black demographic as the minority
group. For the discriminative model, the majority group gradient quickly vanishes,
and the minority group gradient starts high but eventually decays. The generative
classifier, however, has very similar gradient norm across the majority and minority
groups, and the gradient norm actually slightly increases over training. These re-
sults support our intuition that the generative objective helps the model learn more
from examples with and without the spurious features. Note: the per-example gradi-
ent norm for generative classifiers does not go to 0, since there is always a way to
increase the likelihood of a single data point.

does an unconditional objective p(x) improve discriminative per-
formance? One hypothesis is that the generative classification objective pθ(x | y)

teaches the model better features in general, similar to how generative pre-training
methods [44, 70] learn features that are useful for fine-tuning. We test this on Civil-

51

25 50 75 100
Epoch

0

1

2

3

4

N
or

m
al

iz
ed

 G
ra

di
en

t M
ag

ni
tu

de

Disc, maj
Disc, min
Gen, maj
Gen, min

Figure 4.3: Gradient norms. Gradient
for the discriminative model
rapidly decays to 0, so its learn-
ing signal is reduced, while it
does not decay for generative
classifier.

75 80 85 90
ID Test Accuracy

10

20

30

O
O

D
 T

es
t W

G
 A

cc
ur

ac
y

ResNet-50
ResNet-101
ResNet-152

Figure 4.4: Scaling discriminative model
size does not improve accuracy
on Waterbirds. This shows that
model size is not a confounder
in our experiments.

Train Objective ID WG

p(y | x) 91.4 35.7
p(x) and p(y | x) 91.7 35.4
p(x | y) (ours) 79.8 61.4

Table 4.2: Alternative training objectives for an autoregressive model on CivilComments.
p(y | x) is a standard discriminative approach with cross-entropy loss, and
“p(y | x) and p(x)” tests if adding an unconditional generative modeling improves
performance.

Comments, as the architecture makes it simple to add an unconditional generative
objective p(x). Instead of placing the class-specific token at the beginning of the se-
quence, we place it at the end. Predicting the text tokens of x now corresponds to
predicting p(x), and predicting the class-specific token at the end corresponds to
p(y | x). Table 4.2 shows that adding the objective p(x) does not affect performance,
so we reject this hypothesis.

model size In our image classification experiments, our generative classifier
used a standard 395M parameter UNet [154], which is far more than the 26M param-
eters in its ResNet-50 [72] discriminative counterpart. Could the greater parameter

52

count could be responsible for the difference in performance and OOD behavior?
We first note that the discriminative classifier used for CivilComments in Table 4.1
contains 67M parameters, which is more than the 42M parameters we use in our
autoregressive generative classifier. Furthermore, the architectures and parameter
counts of the discriminative p(y | x) and generative p(x | y) classifiers are exactly
matched in Table 4.2. On image tasks, we test whether parameter count matters
by scaling from ResNet-50 up to ResNet-152 [72]. We perform a sweep over model
size and training hyperparameters (learning rate and weight decay). Figure 4.4 and
Figure C.1 show that increasing discriminative model size does not improve perfor-
mance. This aligns with previous work: Sagawa et al. [160] found that increasing
discriminative model size can actually hurt OOD performance.

4.5 illustrative setting

We explore a simplified Gaussian data setting and find that linear generative clas-
sifiers can also display better robustness to distribution shift compared to their dis-
criminative counterparts. We rigorously explore this behavior in order to understand
the inductive bias of generative classifiers. Finally, we connect our findings back to
practice and explain the varying empirical behavior for generative vs discriminative
classifiers.

4.5.1 Data

1 0 1
Core feature

1

0

1

Sp
ur

io
us

 fe
at

ur
e

y = + 1
y = 1

Figure 4.5: Visualization of fea-
tures (noise dims not shown).

Consider binary classification with label y ∈ {−1,+1}.
The features are x = (xcore, xspu, xnoise) ∈ Rd, where:

xcore | y = N(y,σ2) ∈ R (4.3)
xspu | y = yB w.p. ρ, else − yB ∈ R (4.4)

xnoise | y = N(0 ,σ2
noise) ∈ Rd−2 (4.5)

We set the spurious correlation ratio ρ = 0.9 and
core feature standard deviation σ = 0.15, which is
small enough that the data can be perfectly classified
by using only the core feature xcore and ignoring the
remaining features. Figure 4.5 shows a visualization
of the core and spurious features. The majority groups consist of samples where
the spurious and core features agree (top right and bottom left of Fig. 4.5), and the
minority groups consist of samples where the spurious and core features disagree
(top left and bottom right).

53

This synthetic dataset has previously been used to understand the failure modes
of discriminative classifiers in previous work [83, 160, 168] and is a natural simplified
setting for us to study the advantages of generative classifiers.

4.5.2 Algorithms

discriminative We analyze unregularized logistic regression, as is done in pre-
vious work [128, 160]. Since the data is linearly separable, logistic regression learns
the max-margin solution when trained via gradient descent [177].

generative We use linear discriminant analysis (LDA), a classic generative clas-
sification method that models each class as a multivariate Gaussian. It fits separate
class means µ−1 and µ+1 but learns a shared covariance matrix Σ for both classes.
Assuming balanced classes, LDA predicts:

arg max
y

p(x | y) = sign
(

log
p(x | y = +1)

p(x | y = −1)

)
= sign

(
log

N(x | µ+1,Σ)
N(x | µ−1,Σ)

)
(4.6)

This corresponds to a linear decision boundary with coefficients wLDA = Σ−1(µ+1 −

µ−1). We chose LDA because it has the least inductive bias among common lin-
ear generative classifiers (e.g., it is equivariant to rotations). For this reason, we re-
jected methods like Naive Bayes, which learns an axis-aligned generative model,
even though theoretical analysis would have been easier.

4.5.3 The Inductive Bias of LDA

We carefully examine a setting where the generative approach has the same in-
distribution performance, but it outperforms the discriminative approach on the
worst group (OOD). Figure 4.6 compares the behavior of LDA and logistic regres-
sion on toy data with data dimension d = 1026 and noise variance σ2

noise = 0.36. We
find that both methods have similar in-distribution accuracies, but LDA does signifi-
cantly better on the minority group. In fact, Figure 4.6 (middle) shows that LDA has
essentially no performance gap between the majority and minority groups, which
indicates that it does not use the spurious feature at all. In contrast, logistic regression
has a large performance gap between the groups. This can be explained by looking
at the linear coefficients learned by both methods. Figure 4.6 (right) shows the ratio
|wspu|/|wcore| between the weights on the shortcut and core features. Ideally, this
ratio goes to 0 as fast as possible as the model sees more data. Logistic regression,
however, places significant weight on the spurious feature until it gets thousands of
training examples. LDA is far more data-efficient and places almost no weight on

54

16 64 256 1024 4096
Number of training points

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Gen ID
Gen WG
Disc ID
Disc WG

16 64 256 1024 4096
Number of training points

0.0

0.1

0.2

0.3

A
cc

 G
ap

 (m
aj

or
ity

 -
m

in
or

ity
)

Gen
Disc

16 64 256 1024 4096
Number of training points

0

2

4

N
or

m
al

iz
ed

 W
ei

gh
t N

or
m

Disc |wspu|
|wcore|

Disc wnoise 2
|wcore|

Gen |wspu|
|wcore|

Gen wnoise 2
|wcore|

Figure 4.6: Illustrative setting for shortcut learning. Left: in-distribution accuracies are
roughly the same between generative (LDA) and discriminative (logistic regres-
sion) methods, but LDA achieves much higher minority group accuracy. Middle:
the difference between the majority and minority test accuracies as a function
of the number of training examples. The generative method displays better ro-
bustness to the spurious correlation. Right: spurious feature weights |wspu| and
noise feature weights ∥wnoise∥2, normalized by the magnitude of the core fea-
ture weight wcore. LDA puts much less weight on the spurious feature, even
with very little training data. Logistic regression puts more weight on the noise,
and only achieves good in-distribution accuracy by using the spurious feature.
Shading denotes ±1 standard deviation over 25 seeds.

the spurious feature with as few as 16 training examples. Interestingly, logistic re-
gression puts more weight on the noisy features than LDA does. It is only by putting
significant weight on the spurious feature that it achieves good in-distribution per-
formance, though this hurts worst group accuracy.

These differences in behavior indicate that LDA has a significantly different induc-
tive bias. We suspect that the most important factor is the core feature variance σ2.
We increased σ from 0.15 to 0.6 and reran the same analysis. Figure C.7 shows that
LDA now consistently underperforms logistic regression, both in-distribution and
out-of-distribution. Why is this? Intuitively, when the learned probability pθ(xi | y

∗)
of feature xi is low (i.e., the feature is not consistently correlated with the label)
compared to other features, the generative classifier downweights this feature in its
prediction. This helps improve robustness to distribution shift, since, by definition,
we believe that the core feature xcore should be the most consistently predictive.

55

4.5.4 Generalization Phase Diagrams

The feature dimension d, spurious feature scale B, noisy feature variance σ2
noise, and

core feature variance σ2 influence the solutions that models prefer to learn. Intu-
itively, the spurious feature scale B controls the saliency of the shortcut feature, and
larger B makes it easier for the model to learn this shortcut. The noisy feature vari-
ance σ2

noise controls how easy it is for a model to overfit to training examples [128].
The core feature variance σ2 controls how consistently the core feature predicts the la-
bel. Varying these properties of the data creates a family of datasets, and we use them
to understand when generative classifiers outperform their discriminative counter-
parts.

0.00 0.73 1.47 2.20 3.00
Spurious feature scale

0.64

0.35

0.15

0.04

0.00

N
oi

sy
 fe

at
ur

e
va

ria
nc

e

LDA better ID
and OOD

SVM better ID and OOD

n = 32, = 0.05

0.00 0.73 1.47 2.20 3.00
Spurious feature scale

0.64

0.35

0.15

0.04

0.00

N
oi

sy
 fe

at
ur

e
va

ria
nc

e Gen better ID
 and OOD

Disc better ID,
 Gen better OOD

Disc better ID and OOD

n = 32, = 0.15

0.00 0.73 1.47 2.20 3.00
Spurious feature scale

0.64

0.35

0.15

0.04

0.00

N
oi

sy
 fe

at
ur

e
va

ria
nc

e

Disc better ID,
 Gen better OOD

Disc better ID and OOD

n = 32, = 0.3

Figure 4.7: Generalization phase diagrams. We vary the scale B of the spurious feature and
the variance σ2

noise of the noise features and evaluate their effect on the ID and
OOD test accuracy of generative classifiers (LDA) vs discriminative classifiers (lo-
gistic regression). Each plot corresponds to a different variance σ2 of the core
feature, and the color of each pixel denotes which classifier does better for a
particular combination of B and σ2

noise. We observe three main phases of gener-
alization: (1) discriminative has better ID and OOD accuracy, (2) generative has
better ID and OOD accuracy, and (3) discriminative does better ID and genera-
tive does better OOD. Each plot corresponds to a different standard deviation σ

of the core feature. As σ increases, the core feature becomes less reliable, and the
generative classifier uses the spurious and noise features more. This shows the
inductive bias of generative classifiers: they prefer consistently predictive features.

Each plot in Figure 4.7 varies B and σ2
noise, for a given number of training ex-

amples n = 32 and d = 1024. Each successive subplot corresponds to increasingly
larger variance σ2 in the core feature, and each plot is divided into regions depend-
ing on which method does better ID or OOD for the given (B,σ2

noise) at that location.
We call this a generalization phase diagram, since it resembles a phase diagram which

56

shows the impact of pressure and temperature on the physical state of a substance.
In our case, there are four possible generalization phases:

1. The generative classifier is better both ID and OOD. This typically happens at
high σ2

noise, since the discriminative model overfits using the noise features.

2. The discriminative classifier is better both ID and OOD. This happens at low
σ2
noise.

3. The discriminative classifier is better ID, but the generative classifier is better
OOD. This phase occurs at a sweet spot of B and σ2

noise. Moderate noise allows
some overfitting, but the spurious feature is strong enough for the discrimi-
native model to achieve good ID accuracy. However, its heavy reliance on the
spurious feature reduces its OOD performance.

4. The generative classifier is better ID, but the discriminative classifier is better
OOD. This is exceedingly rare (see the dark, unlabeled regions in Figure 4.7).

Notably, there is no free lunch. Even in this setting, neither generative nor discrim-
inative classifiers are uniformly better than the other. However, we do note that B

and σ2
noise are unbounded above, and generative classifiers should do comparatively

better as the strength of shortcuts or noise increases.
Finally, while it is hard to map B and σ2

noise directly onto a realistic image or text
dataset, they do offer insights on important properties of the data that determine
which method is suitable for a given task. Indeed, we can categorize the distribution
shift benchmarks into these phases based on their generative vs discriminative behav-
ior. Waterbirds and FMoW fall in phase 1 (generative better ID and OOD), CelebA
and CivilComments fall in phase 3 (discriminative better ID and generative better
OOD), and Camelyon lies on the transition boundary between phase 1 and 3, since
the generative classifier achieves better OOD and similar ID accuracy compared to
discriminative baselines.

4.6 discussion

Discriminative approaches to classification have dominated the field since AlexNet
catalyzed the widespread adoption of deep learning. Despite their prevalence, these
methods face increasing limitations, including vulnerability to distribution shift and
escalating data requirements. In this thesis, we present a simple alternative. We
revisit the paradigm of generative classifiers and show that they have significant
advantages in both in-distribution and out-of-distribution performance on realistic
distribution shift benchmarks. We carefully analyze their behavior, and finally show

57

insights from a simplified, illustrative setting into when generative classifiers can be
expected to do better.

As deep generative classifiers have not been well-explored, there is significant
room for future work. The inference cost of these generative classifiers, especially
diffusion-based ones, is currently impractically high. It is also unclear how to incor-
porate complex augmentations, such as Mixup, into generative classifiers. Finally, the
ideas from this work may be useful in other contexts, such as language modeling.
Tasks like sentiment analysis, code completion, and reasoning are currently being
done in a discriminative approach: given a context x, predict the correct answer y by
sampling from pθ(y | x). Improving the performance and out-of-distribution robust-
ness of these models by doing a generative approach p(x | y) would be a particularly
exciting direction.

58

Part III

A L G O R I T H M D E S I G N

5
D I S C R E T E D I F F U S I O N I S G E N E R A L I Z E D A U T O R E G R E S S I O N

Language models today are extremely powerful, general-purpose algorithms that
can solve a wide variety of tasks, from coding to mathematics to other natural lan-
guage problems [21, 110]. These models are typically autoregressive, which generate
sequences one token at a time, from left to right. This typically works well in practice
but has several drawbacks. First, the left-to-right ordering may hurt generalization. It
can be difficult to properly put information in the context, such as when performing
infilling [13]. Some problems are also too difficult to solve from left-to-right, such
as Sudoku or addition. Second, sampling is slow. Generating one token per forward
pass makes sampling memory-bound, as the weights of the model have to be loaded
into accelerator memory once per generated token. This may be unacceptable in
certain latency-sensitive applications.

Diffusion language models [6, 62, 66, 108] offer a potential solution to both prob-
lems. They can flexibly condition on any input, and they can generate an entire
sequence in relatively few steps. Diffusion language models can either generate se-
quences in a continuous latent space [66, 108], or they can directly predict discrete
tokens in token space [6, 23, 117, 122]. Despite significant research into this area, it
is still not clear what the right formulation is.

In this chapter, we aim to make theoretical, architectural, and algorithmic improve-
ments to discrete diffusion language models and show that they offer a compelling
alternative to today’s autoregressive models. We first show that autoregression is a
special case of discrete diffusion and prove that the most successful type of discrete
diffusion – absorbing diffusion – can be cast as autoregression over a generalized
sequence ordering. Using this view, we propose Prism, a language model that can
generate sequences in any desired ordering (Figure 5.1). We measure scaling laws
and find that Prism is more expensive to train than autoregressive models, but the ex-
tra training compute spent training on generalized sequence orderings buys several
advantages. Prism can generate sequences with lower latency than autoregressive
models and higher throughput than previous diffusion models. Finally, we show im-

60

Autoregressive:
single order

Prism (ours):
train over all orders

Figure 5.1: Our method, Prism, learns to generate sequences in any order. We show in Sec-
tion 5.1 that this is equivalent to absorbing diffusion models, but this perspective
has significant computational advantages.

proved performance on reasoning tasks, especially when using a confidence-based
decoding strategy to determine which sampling order to use.

5.1 connecting discrete diffusion and autoregression

5.1.1 Preliminaries

In general, diffusion models are latent variable generative models with a correspond-
ing forward and reverse process. The forward process q(xt | xt−1) gradually adds
noise to the original data x0, whereas the learned reverse process pθ(xt | xt+1) learns
to undo this noise. Diffusion models are typically trained by minimizing a varia-
tional upper bound on the negative log-likelihood − logpθ(x) [76]:

Lvb = Eq(x0)

[
DKL (q(xT | x0) ∥p(xT)) − Eq(x1|x0) [logpθ(x0 | x1)] (5.1)

+

T∑
t=2

Eq(xt|x0) [DKL (q(xt−1 | xt, x0) ∥pθ(xt−1 | xt))]
]

(5.2)

For discrete diffusion, x0 corresponds to a sequence of discrete variables, and the
forward and reverse process are Markov processes that transition to other discrete
sequences. The most common type of discrete diffusion is absorbing (i.e., masked)
diffusion, which gradually replaces elements with a masked token M in each step
until the entire sequence has been masked. Empirically, this is the most effective type
of discrete diffusion [6, 117, 162] and we focus on it in this paper. For simplicity, we
consider a form of absorbing diffusion where a single unmasked token is randomly
chosen to become masked in every step. Figure 5.2 shows a visualization of the
absorbing forward process.

61

I am a good chatbot

I <MASK> a good chatbot

I <MASK> a <MASK> chatbot

I <MASK> a <MASK> <MASK>

<MASK> <MASK> a <MASK> <MASK>

<MASK> <MASK> <MASK> <MASK> <MASK>

F
o

rw
ar

d
 p

ro
ce

ss

Predict chatbot5

Predict a3

Predict I1

Predict good4

Predict am2

Implied generalized ordering: a3 I1 chatbot5 good4 am2

R
ev

erse p
ro

cess

t=0

t=T

Figure 5.2: Equivalence of absorbing diffusion and any-order autoregressive prediction.
Absorbing diffusion masks random tokens in the forward process, which requires
the model to predict masked tokens in the reverse process. Intuitively, this reverse
process is actually any-order autoregressive prediction: the model has to predict
the next token in a generalized ordering, where the ordering is determined by
the order that tokens were masked out during the forward masking process!

5.1.2 Equivalence to a Generalized Autoregressive Ordering

Absorbing diffusion may look complicated, but we can think intuitively about what
is really happening. Figure 5.2 shows that the forward process masks out elements of
x one-by-one, and the backward process roughly learns to fill the masked elements
back in, one-by-one. If we arrange these tokens predicted during the backwards
pass in order, it corresponds to predicting the next token in some permutation of
the original sequence x. This is very interesting: it says that absorbing diffusion is
an autoregressive model that predicts sequences permuted in any-order! Note that
Hoogeboom et al. [82] has a similar insight. We formalize this connection below.
First, we introduce notation for generalized autoregression:

Definition 5.1.1. (Generalized Ordering). A sequence x = (z1, . . . , zT) can be shuf-
fled following permutation π to produce xπ = (zπ(1), . . . , zπ(T)). There are T ! unique
orderings π, of which the standard left-to-right ordering (1, . . . , T) is just one, so we
call xπ a generalized ordering of x.

Definition 5.1.2. (Generalized Autoregression). Generalized autoregression consists
of factorizing pθ(x) autoregressively along all possible orderings:

pθ(x) = Eπ

[
T∑

t=1

p(zπ(t) | zπ(1), · · · , zπ(t−1))

]
(5.3)

62

By Jensen’s inequality, this has variational lower bound:

logpθ(x) ⩾
T∑

t=1

Eπ

[
logp(zπ(t) | zπ(1), · · · , zπ(t−1))

]
(5.4)

For simplicity, we will hereafter denote the sequence zπ(1), · · · , zπ(t−1) as zπ(1:t−1).

Now, we can formally show the equivalence between absorbing diffusion and any-
order autoregressive prediction.

Theorem 5.1.3. Absorbing discrete diffusion is equivalent to autoregression over a general-
ized ordering of the sequence. Both processes have the same variational lower bound for their
log-likelihoods.

First, note that q(xT | x0) = p(xT) = (M, . . . ,M), so the DKL (q(xT | x0) ∥p(xT))
term in Equation (5.1) is 0. Next, note that the Eq(x1|x0) [logpθ(x0 | x1)] term corre-
sponds to predicting a single element, conditioned on the rest, which is equivalent
to the t = T term in the any-order variational bound (Equation (5.4)). Finally, note
that q(xt−1 | xt, x0) corresponds a uniform distribution over t possibilities, each of
which is xt with a single element unmasked into the correct original element in
x0. Treating this newly unmasked element as the next element in the permutation,
DKL (q(xt−1 | xt, x0) ∥pθ(xt−1 | xt)) is then equivalent to Eπ

[
logp(zπ(T−t+1) | zπ(1:T−t))

]
.

In some sense, absorbing diffusion is a generalization of standard autoregressive
models, which only predict sequences in a single left-to-right order. This connection
may be why absorbing diffusion models do relatively well in practice compared to
other diffusion processes. In the next section, we translate the insights from this
section into a more efficient absorbing diffusion model.

5.2 methods

Existing absorbing diffusion models [6, 117, 162] are implemented as Transform-
ers [190] with bidirectional attention. These models take as input a partially masked
sequence (x1t , x2t , · · · , xTt) and make predictions at each of the masked locations. Sam-
pling with these models is computationally expensive compared to autoregressive
models, which can utilize key-value (KV) caching. KV caching only works with
causal attention masks, since the intermediate activations at earlier indices do not
depend on the intermediate activations at later indices. Keys and values at each lo-
cation can be computed once and then saved for use in future forward passes for
later indices. Bidirectional attention allows all tokens to attend to all tokens, so it
is incompatible with KV caching. A forward pass to sample new tokens now costs

63

Permutation: a3 I1 chatbot5 good4 am2

a
curr idx: 3
next idx: 1

I
curr idx: 1
next idx: 5

chatbot
curr idx: 5
next idx: 4

good
curr idx: 4
next idx: 2

I chatbot good am

Prism Transformer

Figure 5.3: Prism is both an absorbing diffusion model and an any-order autoregressive
model. It can predict the next token in any desired ordering of a sequence. At
each location, Prism takes as input a token, the true index of that token, and the
index of the next token to predict. Prism is a Transformer with one simple modi-
fication to the positional embedding: the Double RoPE presented in Section 5.2.2.

O(T2) operations, instead of O(T) operations with KV caching. This is impractically
expensive, especially as context lengths today begin to exceed 1 million tokens [114].

It is clear that adding some form of KV-caching is crucial for discrete diffusion to
scale. One potential approach divides a sequence into blocks of fixed size b, and does
absorbing diffusion within a block and autoregressive prediction across blocks [4].
This allows us to use KV caching for completed blocks but still has issues. Each
forward pass costs O(bT2). If b is too small, then it loses the benefits of discrete
diffusion, and if b too big, then each forward pass is too expensive.

How can we address this main limitation of discrete diffusion? We now show
that we can develop a better discrete diffusion model using insights drawn in the
previous section.

5.2.1 Generalized Autoregressive Transformer

We showed in Section 5.1 that absorbing diffusion is equivalent to any-order autore-
gressive prediction. Crucially, autoregressive prediction over a randomized ordering
enables using a causal attention mask over the permuted sequence. This unlocks
several new advantages. During training, the model can use all tokens as inputs and
all tokens as outputs, which reduces the variance of the training objective and makes
each step more efficient. During sampling, we can reduce the cost of a forward pass
by employing KV-caching. Due to these advantages, we propose Prism, an absorbing

64

Positional embedding Validation loss

Double Sinusoidal [137] 4.06

Double RoPE (ours) 3.70

Table 5.1: Our proposed Double RoPE positional embedding is more effective than previous
positional embeddings for any-order prediction.

discrete diffusion model that is implemented as an any-order autoregressive model.
We show a schematic of Prism’s inputs and outputs in Figure 5.3.

5.2.2 Double RoPE Positional Encoding

In left-to-right autoregressive models, the index of the next token to predict is implic-
itly provided: it is the current index +1. However, when we do any-order prediction,
the index of the next token to predict is no longer obvious, and we have to pro-
vide it to the model. σ-GPT handles this issue by adding two sinusoidal positional
embeddings to each token [137]. One corresponding to the index of the token, and
another corresponding to the index of the next token to predict. However, additive
positional embeddings may not have enough inductive bias. Most language models
use rotary positional embeddings (RoPE) [179], which rotates the queries and keys
of each token based on its index m or n within the sequence. Specifically, RoPE
uses a RD → Rd rotation matrix Rd

m. Then, the attention scores are determined
by (Rd

mqm)⊤(Rd
nkn) = q⊤m(Rd⊤

m Rd
n)kn, which is only affected by the relative distance

m − n between the two indices m and n. We’d like to take advantage of similar
inductive biases for Prism.

To make RoPE compatible with next-token prediction, we need to modify RoPE
to use both the current and next index. We do this by splitting the query q in half,
then rotating the first half based on the current index and the second half based
on the next index. The key is rotated based on the current index only. This ensures
that the attention score now depends on the relative distance between the query’s
“next index” and the query’s “current index“ as well as the standard relative distance
between the current indices. We call this Double RoPE, since it uses twice as many
indices into account. Table 5.1 shows that Double RoPE is better than the double
sinusoidal approach, and Prism uses it for all following experiments.

65

Method Sequential passes (∝ latency) ↓ Normalized flops (∝ 1/throughput) ↓

Autoregressive N C+N

Bidirectional diffusion F F× (C+N)

Prism (ours) F C+ (2N− F)

Table 5.2: Theoretical inference efficiency and speed. We consider the task of generating
N tokens from a prompt of length C. We display normalized flops, which define
as dividing by the cost to predict 1 token with an autoregressive model of the
same size. A standard autoregressive Tranformer requires N sequential forward
passes to generate N tokens, whereas diffusion-based approaches can generate
N tokens in F sequential forward passes, where F can be significantly less than
N. However, previous bidirectional diffusion models cannot use KV caching, so
each forward pass costs a full C+N flops. Prism utilizes KV caching and roughly
matches the flop count of autoregression while offering potentially massive gener-
ation speedups.

5.2.3 Data orderings

We showed in Theorem 5.1.3 that the standard absorbing diffusion process is equiva-
lent to training over all T ! permutations. However, some orderings are unnecessarily
hard. A fractal ordering like (1, T2 , T4 , 3T4 , . . .) requires the model to predict distant
tokens, which can generally be difficult for the model [137]. Decoding using these
orderings produces low-quality samples with issues like incoherence, so we should
avoid sampling or spending training compute on such orderings. Luckily, we can
train Prism over any distribution of data orderings we want and exclude those that
are too hard.

Natural text can be predicted in any order at local scales (perhaps on the order of a
single sentence) but may have some left-to-right structure at coarser scales. Thus, for
language models we may want to permute indices within small blocks of size b, but
still have blocks arranged in their original left-to-right ordering. More specifically,
this blockwise permutation may transform a sequence of indices from (1, . . . ,b,b+

1, . . . , 2b, . . . , T) into a new ordering shuffle(1, . . . ,b) + shuffle(b+ 1, . . . , 2b) + · · ·+
shuffle(T − b+ 1, . . . , T). This corresponds to an any-order view of the discrete dif-
fusion process in Arriola et al. [4]. This blockwise permutation strategy is a good
fit for modeling text, but for reasoning tasks in Section 5.3.3 we still use all possible
permutations.

66

5.2.4 Accelerated sampling

Many real-world applications are highly latency sensitive. For example, sequence
models used in robotics need to sample quickly enough for the robot to respond to
events in real time. Latency on typical hardware accelerators like GPUs and TPUs is
mainly determined by the number of sequential forward passes needed to generate
a sequence. Especially for autoregressive models, which typically generate a single
token per sequential forward pass, latency is constrained by the time to load the
weights into accelerator memory, which happens once per forward pass, rather than
the time spent executing matrix or vector operations.

Absorbing discrete diffusion models can reduce sampling latency by unmasking
multiple tokens per forward pass, reducing the total number of sequential forward
passes to generate T tokens from T to F. Prism, as an instance of an absorbing discrete
diffusion model, can also predict multiple tokens per forward pass. Interestingly, our
implementation of Prism as a causally masked autoregressive model also enables
accelerated exact sampling via speculative decoding. We highlight the advantages of
each approach below.

approximate sampling via absorbing diffusion view To sample multi-
ple tokens in a parallelized forward pass with Prism, we first fix an ordering π. Given
C tokens in the existing context and k new tokens that we want to predict, we can
sample each new token at location π(C+ i) independently via pθ(zπ(C+i) | zπ(1:C)).
This can be done in a single parallel forward pass by appropriately changing the
attention mask so that none of the k new tokens attend to each other. Note that
we do not have to recompute anything for any of the C tokens in context, since we
can use KV-caching. However, before the next forward pass, we do need to com-
pute proper KVs at k − 1 locations π(C + 2), . . . ,π(C + k). This is because Prism,
when generating subsequent tokens, expects location π(C+ k) to have attended to
π(1 : C+k− 1) (and so on) when computing keys and values for that location. We do
not have to recompute KVs for π(C+ 1) because it already conditioned on π(1 : C),
which is everything that it needs. The computational cost of one of these parallel
forward passes is O((2k− 1)T), and generating N tokens in F forward passes costs
O((2N− F)T) compute. Note that k = N

F must be less than the block size b (from
Section 5.2.3) since the model does not know how to predict more than b tokens out.
Overall, the absorbing diffusion view accelerates sampling by a factor of k tokens in
exchange for incurring discretization error.

exact sampling via generalized autoregressive view In general, causally
masked autoregressive models can use a trick called speculative decoding to re-

67

duce sampling latency [104, 208]. Given C context tokens, speculative decoding typ-
ically uses a small autoregressive model to quickly generate a draft continuation
(zC+1, . . . , zC+K). Then, the large base model can verify this sequence in a single
parallelized forward pass, performing rejection sampling to properly adjust for the
difference in distribution. Speculative decoding has the desirable property of being
exact: it samples exactly from the distribution of the base model. It reduces latency
in exchange for extra computation spent on the small draft model and wasted flops
spent on verifying tokens with the base model that follow any rejections. Speculative
decoding only relies on the fact that these models are causally masked, so the base
model can verify all generated tokens in a single forward pass.

Prism utilizes causal attention masks, so it can utilize speculative decoding, just as
other any-order autoregressive models can [137]. Interestingly, Prism does not need
a small draft model to quickly generate a continuation; it can self-generate k draft
tokens in a single forward pass, as done above. Verification works similarly to stan-
dard speculative decoding, except we are guaranteed 2 acceptances instead of just 1.
We are now guaranteed that the sample at location π(C+ 1) is always accepted, since
it was generated from the true model distribution pθ(zπ(C+1) | zπ(1:C)). Overall, self-
speculative decoding can generate between 2 to k+ 1 tokens without incurring any
discretization error. It is also not much more expensive than approximate sampling,
since the verification computes the KVs with the appropriate conditioning structure.
Thus, if we draft k tokens and accept j tokens on average per step, self-speculative
decoding costs O(2kT) per step, and requires k

j as many steps as the approximate
sampling approach. The main downside is that sometimes users are willing to pay
the discretization error in exchange for more tokens generated per forward pass.

We compare Prism’s latency and compute requirements against autoregressive
and bidirectional discrete diffusion models in Table 5.2.

5.2.5 Confidence-based decoding

How should we choose the data ordering π at sampling time? It turns out that
absorbing diffusion (and Prism by equivalence) will naively randomly choose the
next location to predict. We formalize this below:

Theorem 5.2.1. (Absorbing diffusion does not preferentially choose decoding locations).
Given a partially unmasked sequence xt, sampling from the true reverse process p(xt−1 | xt)

for absorbing diffusion will decode a token at a location that is uniformly chosen from the
currently masked indices.

68

First, note that masking during the forward process happens uniformly across all
locations. For a sequence of length T , p(xit = M) = t/T for all i, since there are t out
of T total locations are masked. Then, we have:

p(xit−1 ̸= M | xit = M) =
p(xit = M | xit−1 ̸= M)p(xit−1 ̸= M)

p(xit = M)
(5.5)

=
1/(T − t+ 1)(1− (t− 1)/T)

t/T
(5.6)

= 1/t (5.7)

Thus, each of the t masked locations is equally likely to be unmasked in the reverse
process.

choosing the decoding order In many cases, there is indeed an ordering
that makes the problem easier to solve [7, 212]. For instance, multi-digit addition is
much simpler when adding from right-to-left, since carrying happens locally. There
are also problems where the easiest ordering depends on the specific instance that is
being solved. For example, Sudoku is easier when filling in the next most constrained
square.

Unfortunately, previous approaches cannot easily take advantage of these “easy”
orderings. Autoregressive models always predict from left-to-right, and absorbing
diffusion models use a random ordering that is unlikely to be optimal. How do we
fix this?

Even though we train on all orderings, we do not have to choose a random or-
dering at sampling time. Inspired by MaskGIT [26], we use the model’s predictions
to determine the next location to decode at. Specifically, we get the model’s confi-
dence in the most likely token at each masked location. Then, we simply choose the
location with the highest confidence, and fix the most likely token at that location.
We test this in Section 5.3.3 and find that this is especially effective for algorithmic
problems like Sudoku or addition.

However, this does require us to make a prediction at each remaining masked loca-
tion, which could be expensive. One solution we found is to add a head that predicts
the confidence at each remaining location. After the initial pretraining phase, we use
a small calibration set and compute the confidences at each masked location. Then,
we freeze all original weights and train a linear head that uses the final represen-
tations (before the logits) to predict the confidences at each of the T locations. This
allows us to perform confidence-based decoding without the O(T2) cost of obtaining
true confidences. Instead, we can use the approximate confidences at just O(T) cost.
This empirically works well in practice.

69

Method Parameters Train FLOPs Validation NLL

Autoregressive [162] 110M 3.46× 1020 2.86

SEDD [117] 110M 3.46× 1020 ⩽ 3.18
MDLM [162] 110M 3.46× 1020 ⩽ 3.13
BD3-LMs b = 16 [4] 110M 3.98× 1020 ⩽ 3.10
BD3-LMs b = 8 [4] 110M 3.98× 1020 ⩽ 3.08
BD3-LMs b = 4 [4] 110M 3.98× 1020 ⩽ 3.03

Prism b = 256 654M 5× 1019 ⩽ 3.25
Prism b = 64 654M 5× 1019 ⩽ 3.19
Prism b = 16 654M 5× 1019 ⩽ 3.10
Prism b = 4 654M 5× 1019 ⩽ 2.92

Table 5.3: Validation loss on OpenWebText. Prism achieves better likelihoods using around
1/7th as much training compute as the discrete diffusion baselines, though it still
falls short of the autoregressive model that’s trained for 7x as long.

5.3 results

In this section, we test the effectiveness of the methods proposed in Section 5.2.

5.3.1 Scaling Laws

Prism, like almost all generative modeling algorithms, is consistent. With enough
compute, data, and parameters, it will eventually model all conditional probabilities
correctly and learn the true data distribution. Today, a more interesting question
is how scalable Prism is. Can it efficiently improve as we increase the amount of
training compute?

Kaplan et al. [91] showed that model log-likelihoods predictably follow a scaling
law that accurately predicts model performance across many orders of magnitude of
training compute. These scaling laws [81, 91] are crucial for understanding whether
an approach will be practical at the large scales used in practice. Previous investi-
gations into scaling laws for continuous diffusion language models [66] found that
they require 64× as much training compute as autoregressive models, which is im-
practically large. In this section, we investigate whether Prism faces similar issues
with scaling.

70

1017 1018

FLOPs

3.0

4.0

5.0

Lo
ss

 (l
og

-s
ca

le
)

AR
b = 4
b = 16
b = 64
b = 256

(a) Compute-optimal scaling laws

AR (1) 4 16 64 256
Block size

1

3

10

30

M
ul

tip
le

 o
f A

R
Co

m
pu

te

1.0

2.9

9.5

15.2

24.8

(b) Compute required to achieve a loss of 2.75.

Figure 5.4: Scaling law results for Prism on OpenWebText.

To measure a compute-optimal scaling law, we train models of varying sizes
{N1, . . . ,NM} for varying amounts of training FLOPs {C1, . . . ,CK} on OpenWebText [61].
We consider a standard approximation of the compute as C = 6ND, where D is the
number of training tokens and N excludes the embedding parameters. For a given
budget Ci, we can find the optimal loss L∗(Ci). We show this in Figure 5.4a, where
each point is a separately trained model with different block size b that does best
at a given budget. These scaling laws are roughly parallel on a log-log plot, which
indicates that Prism requires a constant factor as much compute as an autoregressive
model. If we fit the isoflop data using a power-law scaling law of form L∗(C) = αCβ,
we can extrapolate to predict how much compute is required to reach a target loss.
Figure 5.4b shows that the required FLOPs (as a factor of autoregressive compute)
increases as the block size b increases. This is expected, since a larger block size cor-
responds to the harder task of predicting more data orderings. However, this ratio
is relatively reasonable for b = 4 and b = 16, and we may be willing to pay this in
exchange for faster sampling (Section 5.3.2) and better reasoning (Section 5.3.3).

We can also fit scaling laws that determine the optimal model size N∗(C) for a
given compute budget. We find that the optimal ratio for Prism is roughly 19, which
matches up with the “Chinchilla optimal” size from Hoffmann et al. [81]. Using
these scaling laws, we train 654M parameter Prism models for 5× 1019 FLOPs and
compare against existing discrete diffusion models in Table 5.3. We find that Prism
outperforms existing methods and comes close to autoregressive models.

71

5.3.2 Accelerated sampling

We test whether the sampling methods in Section 5.2.4 decrease latency without
significantly hurting sample quality. Previous works have used a metric called gen-
erative perplexity [46, 67, 117, 162], which generates samples with a candidate model
and evaluates their perplexity with a reference model. Unfortunately, this metric has
several issues. It gives good scores to low-entropy output distributions, which is
not necessarily indicative of a better generative model. It is also prone to sampling
choices like temperature or precision which can unfairly affect results [211].

measuring discretization error Instead, we directly measure the discretiza-
tion error of multi-token prediction with respect to the validation loss. Recall that
Prism’s log-likelihood is bounded:

Ex∼D[logpθ(x)] ⩾
T∑

t=1

Ex,π
[
pθ(zπ(t) | zπ(1:t−1))

]
(5.8)

= −

T∑
t=1

Lt (5.9)

where empirically Lt−1 > Lt. When we sample more than one token at a time, this
corresponds to a new factorization of p(x), and we now have a new bound on the log-
likelihood that reallocates more weight to the Lt that was used [82, 193]. In particular,
we can write a sampling strategy as S = (n1, . . . ,nt, . . . ,nT), where we sample nt

tokens in parallel with t− 1 tokens in the context. Each nt is a nonnegative integer
with

∑
nt = T. Then our new discretized log-likelihood is:

Ldiscretized =

T∑
t=1

ntLt (5.10)

We can sample a fixed number of tokens per forward pass, e.g., we can sample 2 to-
kens per forward with S = (2, 0, 2, 0, . . .). We can also solve a dynamic programming
problem for the sampling strategy that uses a given number of forward passes and
minimizes the discretized loss [82, 193].

results Figure 5.5 shows the optimal discretized loss for models with varying
block size b. Interestingly, when doing naive multi-token prediction, small block
sizes incur major error when predicting multiple tokens per step. This makes sense:
we must indepedently predict tokens that are very close together (and are actually
dependent on each other). Our largest block size of b = 256 incurs very little error,
even when predicting up to 8-16 tokens per step.

72

1 2 4 8 16 32
Tokens/step

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

Lo
ss

 w
ith

 sa
m

pl
in

g
di

sc
re

tiz
at

io
n b = 4

b = 16
b = 64
b = 256

Spec. dec., b = 4
Spec. dec., b = 16
Spec. dec., b = 64
Spec. dec., b = 256

Figure 5.5: Discretized loss vs the number of tokens decoded per sequential forward pass.
We trained 4 Prism models with 654M parameters each, with different block sizes
b. We can directly sample k tokens independently on average from each model
and evaluate the validation loss under this factorization of the sequence (solid
line). This corresponds to treating Prism as a discrete diffusion model. Larger
block sizes b enable sampling more tokens per step without incurring large dis-
cretization error. We can also treat Prism as an any-order autoregressive model
and perform self-speculative decoding (stars). We see that the Pareto frontier of
loss vs tokens/step for self-speculation is better than the frontier for naive multi-
token prediction, though it is less flexible.

We also show how many tokens are sampled per step, on average, with our self-
speculative decoding approach. Recall that self-speculative decoding incurs no dis-
cretization error, as it can reject samples where the tokens are inconsistent with each
other. Figure 5.5 shows that this forms the entire Pareto frontier and is far more effec-
tive than the naive multi-token prediction strategy that absorbing diffusion models
typically employ. Self-speculative decoding is a major advantage of Prism, as stan-
dard absorbing diffusion models cannot verify draft tokens in parallel and cannot
use speculative decoding. Note that it does cost slightly more, since compute can be
wasted verifying tokens after a rejection already occurs. There are also significant
avenues for improvement here, as there is a large body of speculative decoding tech-
niques for autoregressive models that can be directly applied here [34, 199]. However,
one must be careful: Pannatier, Courdier, and Fleuret [137] propose running specu-
lative decoding for any-order models over multiple permutations and picking the
order with the longest acceptance, but this is not a valid rejection sampling strategy
and distorts the sampling distribution.

73

Model Decoding strategy Sudoku (hard) Path-star Addition

Autoregressive left to right - 20.1 0.0

left to right 2.0 19.9 0.0
right to left 1.3 100.0 100.0

Prism random 1.9 31.1 0.0
confidence-based 71.7 100.0 100.0
confidence-based (with head) 70.1 100.0 100.0

Table 5.4: Improved reasoning abilities on algorithmic tasks. Using confidence-based de-
coding to predict the next location to sample at drastically improves Prism’s per-
formance on all tasks.

5.3.3 Reasoning

In this section, we test whether our confidence-based method for dynamically deter-
mining decoding order (Section 5.2.3) is effective on algorithmic reasoning tasks.

benchmarks We evaluate our models on three problem-solving benchmarks:

• Sudoku (hard) [136]: We train models on 50000 randomly generated Sudoku
puzzles and evaluate their exact-solve accuracy on a hard test set with 17 pro-
vided clues. We do not evaluate autoregressive models on this task, as it is
difficult to incorporate the clues into their context.

• Path-star graph [7]: This task corresponds to a graph with a single central node
at the center with degree 5, and paths of length 5 that branch off the center.
Given the adjacency list of this graph and a target node that lies at the end of
one of these branches, the model must output an ordered list of intermediate
nodes on the path to that target. This task is hard when predicted from left-
to-right, because determining the first node on a branch requires multi-hop
reasoning. Right-to-left prediction is much easier since it only requires one-
step reads into the adjacency list, starting with the target node.

• Multi-digit addition: The model must predict the sum of two 20-digit numbers.
The numbers and outputs are presented with the most significant digit on the
left. This is difficult to solve from left-to-right because it requires accounting
for multiple steps of potential carries.

74

results We show results in Table 5.4. Autoregressive models do poorly on both
Path-star and addition. Instead of learning to do proper many-hop reasoning, they
overfit to the training set. Prism, which trains over randomized orderings of the data,
can fare much better. Using the confidence-based decoding method significantly im-
proves performance beyond the default random ordering. Using a linear head to
predict confidences for this decoding method is almost as effective, while greatly
reducing sampling compute by eliminating the need to do a forward pass for every
location.

5.4 discussion

Overall, we show a useful equivalence between absorbing discrete diffusion models
and any-order autoregressive models. Prism utilizes this insight for more efficient
training than alternative absorbing diffusion algorithms. Training on all orders also
enables lower-latency sampling than autoregressive models and more efficient sam-
pling than other absorbing diffusion models. Finally, any-order training also enables
strong performance on reasoning tasks, especially when using our confidence-based
decoding method to choose which location to sample at.

Prism does have several limitations. It costs more to pretrain than autoregressive
models. While it can dynamically do fewer forward passes to reduce sampling la-
tency, it cannot “think” for more than T steps and produce better samples. Handling
the EOS token is hard, and the absorbing diffusion framework makes it difficult
for the model to undo mistakes during sampling. We hope future work explores
solutions to these problems.

75

6
C O N C L U S I O N

Machine learning has vast potential to improve our lives. Yet, we must first figure
out how to reliably improve generalization if we want robots to help us in our daily
lives or automated scientists to discover new medicines.

In this thesis, we explored how to improve generalization by structuring learn-
ing problems to be harder. Chapter 2 proposed Internet Explorer, a method that au-
tonomously queries the Internet for hard data that induces high self-supervised loss
for our learner. Afterwards, we focused on how to extract more learning signal from
a fixed amount of data. Chapters 3 and 4 revisit the paradigm of generative classi-
fiers, which have the richer task of modeling logp(x | y). We develop techniques for
using today’s modern generative modeling algorithms, diffusion models and autore-
gressive models, as image and text classifiers. We show that generative classifiers
are the first method to have qualitatively better scaling for its out-of-distribution
accuracy (“effective robustness”). Generative classifiers often outperform discrimi-
native classifiers in-distribution as well. Finally, Chapter 5 proposed a new sequence
modeling algorithm called Prism. Prism is both an absorbing diffusion model and an
any-order autoregressive model. Prism requires more training compute compared to
autoregressive models, as it has the harder task of learning all orderings, but it has
several advantages at sampling time. It can dynamically decide which order to sam-
ple in, drastically improving generalization on algorithmic reasoning tasks. It can
also generate multiple tokens at once, so it can sample sequences with significantly
lower latencies than a left-to-right autoregressive model can.

6.1 frontiers

We still have a long way to go to match the level of generalization that we know
is possible. Animals like horses can begin walking just an hour after birth; humans
see far fewer images and hear far fewer words [17] than our large, pretrained vision-
language models, yet generalize far more reliably. Several promising directions for
future research include:

76

1. Cross-modal generalization: Most useful text data on the Internet is manually gen-
erated by humans, so we are rapidly running out of new tokens. However, we
still have a vast amount of video data, which encodes so much temporal infor-
mation about the world. Visual data is also often complementary to what is ex-
plicitly written in text [48, 80, 99], so it likely contains a huge amount of disjoint
knowledge that can only be learned through pixels. Numerous works [113, 206]
have tried training jointly on text, image, and video. However, we still haven’t
seen any improved text generalization from training on video or images. One
key ingredient may simply be model size: even text-only models require tens
of billions of parameters before seeing significant abstract (e.g., cross-lingual)
generalization [65]. Beyond scaling, I believe that fully utilizing this visual data
would require significant autonomous data curation, as we did with Internet
Explorer in Chapter 2. I did some preliminary web scraping, and I estimate
that YouTube has at least 2.5 billion videos and a total of at least 43 trillion
frames. Most of this data is likely useless, such as security camera videos or
nature livestreams with almost no movement. Applying scaled-up versions of
Internet Explorer or other data curation methods [1, 50, 102, 176] is necessarily
to filter for hard, interesting, and learnable videos. Finally, we may need to use
the right problem formulation and find good recipes for video tokenization,
captioning, conditioning, and model architecture.

2. Unifying generative classifiers with language models: Language models are begin-
ning to subsume all other tasks, due to their flexibility, large amount of pre-
training data, and ease of prompting. We would really like to take advantage of
the generalization benefits of generative classifiers within a language modeling
framework. However, it’s currently not clear how to efficiently do so. Translat-
ing the conditional likelihood pθ(x | y) into its equivalent in the autoregressive
LLM framework, we need to compute pθ(x1:t | xt+1) once per generated token.
This appears infeasibly expensive, as it would naively require O(TV) compute,
where V is the size of the vocabulary. Perhaps parameterizing pθ cleverly could
reduce the compute required per token sampled, while maintaining the gener-
alization benefits.

3. Dynamic compute: While Prism and other discrete diffusion models can use
fewer forward passes in exchange for faster samples, they don’t have an option
to increase the number of forward passes past the sequence length T in ex-
change for higher quality samples. This ability could be useful if we encounter
particularly difficult test scenarios that we need to “think harder” on. Current
approaches mainly approach this by spending more tokens in an intermediate
scratchpad [132, 194], but it’s unclear how to spend more compute per token.

77

One approach is to use do a variable number of forward passes with a recurrent
model before computing the logits [167]. In the limit, this resembles finding a
fixed point, and deep equilibrium models may be a promising avenue to better
generalization with more test-time compute [3, 8].

78

Part IV

A P P E N D I X

A
I N T E R N E T E X P L O R E R : TA R G E T E D R E P R E S E N TAT I O N
L E A R N I N G O N T H E O P E N W E B

a.1 learning from other sources of data

Google Images is an exceptionally useful data source for Internet Explorer. It offers
access to a large portion of the Internet’s images, and it ranks images using weak
supervision from the image caption, surrounding text, click rates, image features, in-
coming and outgoing hyperlinks, and other signals. This extra supervision is helpful
and should be utilized. Nonetheless, we show that Internet Explorer is agnostic to
the choice of text-to-image search engine and can still rapidly improve even when
the data source is much noisier.

To test Internet Explorer in the most minimal setting, we build a custom search
engine that finds images solely using their accompanying text—without using any
pre-trained visual features whatsoever. We use the LAION-5B dataset [166], which
consists of >5B noisy image-caption pairs. We filter the dataset to only include im-
ages of at least 5122 pixels with English captions. This leaves us with about 600M
text-image pairs. To find image results for a query, we find the 100 captions clos-
est to the query in text representation space, then return the associated images. We

 sunflowerShow me:

Figure A.1: Our custom LAION-5B search engine. We build a custom text-to-image search
engine that finds images within the LAION-5B dataset by doing nearest neighbor
search in text embedding space. This uses no image features whatsoever.

80

use a pre-trained text embedding model [151] to compute 384-dimensional text em-
beddings for each caption. Then, we use Faiss [88] to compute a fast, approximate
nearest-neighbors lookup index. Querying our custom search engine finds 100 image
results in less than a second. Figure A.1 shows that our search engine is reasonably
accurate, even without using any image features.

We also test Flickr’s photo search API as another text-to-image search engine, in
addition to Google Images and LAION. Figure A.3 shows that each data source has
its own tendencies. For the “spaghetti bolognese” query, Google Images is biased [30,
123] towards brightly-lit, photogenic images that typically come from food blogs.
Flickr mainly consists of amateur home photos, so it returns a messier variety of
images that perhaps better capture the real world. LAION images come from web
crawling, without any ranking, so they additionally contain many graphics with text
overlays. The same image can also frequently show up in the LAION results multiple
times, as a result of being posted on multiple separate pages.

Figure A.2 and Table 2.2 (main paper) show that Internet Explorer still improves
over time, even when the data comes from LAION or Flickr. Internet Explorer tends
to perform better with Flickr than with LAION, which makes sense. Flickr indexes
far more images, as our custom LAION search engine only uses 600M images, so
it can return more of the useful photos that Internet Explorer queries for. Flickr is
also slightly better at understanding descriptors, although both Flickr and LAION
tend to be thrown off by specific or odd descriptors. Nevertheless, Internet Explorer
significantly improves the starting model in less than a day of searching and training
even with noisy search results and no hyperparameter tuning. Overall, these results
prove that Internet Explorer can effectively utilize any window into the Internet’s
vast ocean of image data.

0 5 10 15 20
Iteration

90.0

92.5

95.0

97.5

k-
N

N
V

al
A

cc
ur

ac
y

(%
)

Flowers

0 5 10 15 20
Iteration

72

73

Food

0 10 20 30
Iteration

78

80

82

Pets

LAION (no label set) LAION (w/ label set) Flickr (no label set) Flickr (w/ label set)

Figure A.2: Learning from Flickr and LAION-5B. Even with the noisy search results re-
turned by Flickr and LAION, Internet Explorer still continuously improves per-
formance.

81

Food101 dataset: “Spaghetti Bolognese”

Google Images: “Spaghetti Bolognese”

Flickr: “Spaghetti Bolognese”

LAION-5B: “Spaghetti Bolognese”

Figure A.3: Comparison of different search engines. We show images for the “spaghetti
bolognese” class in the Food101 dataset, as well as 20 search results for “spaghetti
bolognese” from Google Images, Flickr, and LAION5B. Google images are typ-
ically well-lit, aesthetic food blog pictures. In comparison, Flickr images are
messier, darker, and capture a wider variety of real-world conditions. LAION-
5B images lie somewhere in the middle, but contain text overlays much more
frequently. Duplicate image results are also common.

82

Birdsnap Flowers Food Pets VOC2007

Target test set size 1849 6142 25246 3663 4952

No exploration
Target training set overlap 1 (0.05%) 5 (0.01%) 34 (0.13%) 21 (0.57%) 0 (0.00%)

Internet Explorer
Ours++ (no label set) 28 (+1.46%) 11 (+0.01%) 35 (+0.00%) 26 (+0.14%) 1 (+0.02%)

Ours++ (with label set) 57 (+3.03%) 27 (+0.36%) 35 (+0.00%) 43 (+0.60%) 1 (+0.02%)

Table A.1: Number of leaked test set images. We use image hashing to compute the frac-
tion of test images present in the set of images downloaded by Internet Explorer.
Surprisingly, the training/validation sets of these datasets already leak a small
fraction of the test sets—Pets is the most egregious, with 0.57% test leakage. For
each dataset, we show the test set size, the number of leaked test images, and
the percentage of the test set that this represents in blue. For each version of our
method, we show the total number of leaked images that the model had access
to, and the percentage increase this represents over the training set’s leakage in
blue. Leakage numbers for our methods include this train-test leakage, since our
methods also train on the target dataset’s training set. Internet Explorer only finds
a tiny fraction of test set images online, and it only uses them for self-supervised
training, so there is no label leakage. Internet Explorer’s large increase in accu-
racy cannot be explained by test set leakage, so its performance gains must come
through better feature learning and generalization.

a.2 are we finding the entire test set online?

One may be concerned that Internet Explorer improves performance mainly by find-
ing a significant portion of the test set images online. We address this concern by
checking how much test data Internet Explorer has downloaded. We use differ-
ence hashing (dHash) [22] to compute hashes for the target dataset’s training set, its
test set, and the ≈ 106 images that Internet Explorer has downloaded. We compare
hashes to determine how many test images were leaked, and we report the number
of collisions in Table A.1. Across all five datasets, Internet Explorer finds very few
test images. On Birdsnap, Internet Explorer finds 56 additional test set images that
were not leaked in the training set, which is roughly 3% of the test set. On the other
datasets, the amount leaked ranges from 0.003% to 0.6% of the test set. Additionally,
we only perform image-based self-supervised training on downloaded images, so it
is much harder for our model to cheat with the leaked images. Overall, given that
Internet Explorer outperforms its starting checkpoint by between 5 to 30 percentage
points, we conclude that its performance cannot be explained by cheating.

83

Test Img. Ranked Nearest Neighbors in Downloaded Images

Oxford-IIIT Pets

Figure A.4: Top-10 most similar online images to Pets101

In fact, we view it as a positive that Internet Explorer finds some test set images,
because it serves as confirmation that it is learning to search for relevant images—
and the most relevant images possible would be those from the dataset itself! But
beyond test set images, Internet Explorer finds a lot of internet images that are very
relevant to the dataset. We visualize the top-10 most similar downloaded images for
5 randomly selected test set images from multiple datasets in Figures A.4 to A.8. We
use CLIP ViT-L/14 to compute the representations of the test set images, as well as
the downloaded images. We then find the top-10 most similar online images given a
test set image (from the downloaded images using Ours++ (with label set)). We see
that Internet Explorer finds several images that are very similar but not identical to
the test set images.

a.3 method details

a.3.1 WordNet Lemmas

We draw our concepts from the WordNet hierarchy [124], which consists of 146,347
noun lemmas. For reference, here are 32 randomly sampled concepts:

"resolution", "lodgment", "phycobilin", "acidosis", "widening",

"human face", "family Crassulaceae", "sail", "Ipomoea imperialis",

"Davis", "prothrombin", "cease", "marsh clematis", "major power",

"chump change", "madcap", "junky", "pere david’s deer", "make-up",

"genus Rumex", "gape", "Brachychiton populneus", "bell morel", "wain",

84

Test Img. Ranked Nearest Neighbors in Downloaded Images

Food101

Figure A.5: Top-10 most similar online images to Food101

Test Img. Ranked Nearest Neighbors in Downloaded Images

Oxford Flowers 102

Figure A.6: Top-10 most similar online images to Flowers102

85

Test Img. Ranked Nearest Neighbors in Downloaded Images

VOC2007

Figure A.7: Top-10 most similar online images to PASCAL VOC2007

Test Img. Ranked Nearest Neighbors in Downloaded Images

ImageNet-100

Figure A.8: Top-10 most similar online images to IN100

86

"friendly", "Principe", "bottle green", "glycerol trimargarate",

"water-shield", "San Joaquin River", "woodsman", "pin".

a.3.2 GPT-J Descriptor Prompting

We use GPT-J-6B [192], a free, open-source autoregressive language model, to gener-
ate useful descriptors for a given concept. We use the following prompt template:

"What are some words that describe the quality of ‘{concept}’?

The {concept} is frail.

The {concept} is red.

The {concept} is humongous.

The {concept} is tall.

The {concept} is"

We sample completions with a temperature of 0.9 and a max length of 100 tokens.
We truncate the completion after the first comma, period, underscore, or newline
character (including the special character). If the truncated completion is degenerate
and contains a duplicate of the concept, we resample another completion. After suc-
cessfully sampling a descriptor, we prepend it to the concept and use the resulting
phrase as our search query.

For reference, here are 32 randomly sampled descriptors for “labrador retriever”:

"a good-looking dog", "very gentle", "a", "brown", "lovable", "a

strong runner", "a male or a female", "sturdy", "agile", "a strong",

"beautiful", "a male", "kind", "long-haired", "a male or a female",

"a good-looking dog", "gentle", "medium", "loyal", "very gentle",

"blue-eyed", "sturdy", "blue-eyed", "a retriever", "kind", "loyal",

"large", "brown", "good-natured", "gentle", "large", "small".

a.3.3 Concept Vocabulary Size

As stated in Section 2.1.2, our vocabulary comprises the 146,347 noun lemmas in the
WordNet hierarchy. Thus, in all our experiments, Internet Explorer only searches
for WordNet terms (plus the class names, if we have knowledge of the label set).
We found that this worked quite well for these standard benchmarks. Note that
expanding the vocabulary (e.g., adding technical terms relevant to a specific topic)

87

can easily be done by adding those terms to the list of possible concepts. One easy
extension would be to add page titles and frequent unigrams and bigrams from
Wikipedia, as was done to generate the CLIP training set [146]. Doing so would
expand our vocabulary to roughly 500,000 total concepts.

a.3.4 Query Model Details

temperature for concept distribution After estimating scores r(ci) for
each concept ci, we do a temperature-scaled softmax, followed by the tiering opera-
tion described in Section 2.6. We compute the temperature τ such that

SMR =
maxi r(ci) − mini r(ci)

τ
(A.1)

where the “softmax range” SMR ∈ R is the desired gap between the largest and
smallest scores after temperature scaling. After the softmax p(ci) ∝ exp(r(ci)/τ), the
softmax range determines the likelihood ratio of most likely concept to least likely
concept:

maxi p(ci)
mini p(ci)

=
maxi exp(r(ci)/τ)
mini exp(r(ci)/τ)

(A.2)

= exp
(

maxi r(ci) − mini r(ci)

τ

)
(A.3)

= exp(SMR) (A.4)

Thus, SMR is an easy way to specify the relative likelihood of the highest and lowest
scoring concepts and achieve a desired exploration-exploitation balance.

label set-guided vocabulary To reduce our search space in the label set-
guided setting, in which we know the English names of the classes a priori, we
generate a subset of the WordNet vocabulary that contains only the top-10% most
semantically-relevant concepts to each target dataset. We use a pre-trained text em-
bedding model [151] to generate 384-dimensional embeddings for each concept in
WordNet, using the same template described in Section 2.5 of the main paper:

{lemma} ({hypernym}): {definition}.

To generate a similar embedding for concepts in target datasets, we use the sum-
mary from Wikipedia in place of the definition and the “category” of the target
dataset (shown in Table A.2) in place of the hypernym:

{label} ({category}): {summary}.

88

Dataset Category

Oxford Flowers102 Flower
Oxford IIIT Pets Pet
Food101 Food
Birdsnap Bird
VOC2007 Object

Table A.2: Target Dataset “Category”.

After generating the embeddings for each concept in the target dataset, we find the
k-NN distance for each WordNet concept to the target dataset embeddings, where
k is chosen to be 1/3 the size of the class label set. We then rank the concepts in
WordNet by the distance and take the closest 10% of terms as our subset. This sub-
set is used for all methods in the label set-guided setting, including the random
exploration methods.

a.3.5 Training Details

In each iteration, we download roughly 25k candidate images, since we download
up to 100 images for each of the 256 queries. Given this set C of candidate images,
we sample PCR× |C| images from the union of the replay buffer B and the target
dataset training images D. PCR (past data to candidate data ratio) is a scalar value
that determines how much old data vs new data to train on at every iteration. We
set PCR = 2 for all experiments. We perform 10 epochs of training over the union of
the new candidate data and the sampled replay buffer and target dataset images.

a.3.6 Hyperparameters

Table A.3 shows our hyperparameter values, which are shared across datasets. We
perform minimal hyperparameter tuning and copy most of the values from the
MoCo-v3 [33] ResNet-50 configuration. Our code has been released at https://

github.com/internet-explorer-ssl/internet-explorer, which we hope will clar-
ify any remaining implementation details and make it easy for the community to
reproduce and build on our work.

89

https://github.com/internet-explorer-ssl/internet-explorer
https://github.com/internet-explorer-ssl/internet-explorer
https://github.com/internet-explorer-ssl/internet-explorer
https://github.com/internet-explorer-ssl/internet-explorer

Hyperparameter Value

Architecture Resnet-50 [72]
Optimizer LARS [201]
Batch size 224

Learning rate 0.8× 224
256

Learning rate schedule constant
MoCo momentum 0.9985
RandomResizedCrop min crop area 0.2
Queries per iteration 256

Requested images per query 100

Min images per query 10

Softmax range (SMR) 3

PCR 2

Epochs per iteration 10

Table A.3: Internet Explorer hyperparameters.

a.3.7 Image Licenses

Internet Explorer uses images that were indexed by a web crawler (Google Images
and LAION) or uploaded to Flickr. The images and their rights belong to their re-
spective owners; we use, download, and train on them under fair use guidelines for
research.

a.3.8 Domain Dataset Descriptor Details

When targeting a niche domain dataset—in which a practitioner almost surely has
useful a priori knowledge to impart—it is simple to modify Internet Explorer to
accelerate learning. Rather than using GPT to help provide variety to our queries for
a concept, we can use leverage our practitioner’s domain knowledge to help hone
our search from the start.

This amounts to defining a list of “descriptors” that help return relevant results
for arbitrary queries. For example, the below list of 16 descriptors was selected for
the FMoW satellite dataset to help return satellite imagery when prepended to con-
cepts (e. g., “tennis court”) instead of their more canonical views. This list was hand-

90

selected through trial & error using a variety of randomly selected concepts. Note
that this static list replaces the GPT-J generated descriptors for this dataset.

FMoW-WILDS Descriptors:

"a centered satellite photo of", "a satellite photo of", "a google

earth photo of", "satellite view of", "high resolution satellite",

"high resolution satellite imagery of", "aerial satellite", "aerial

satellite view", "aerial satellite view of", "satellite imagery,

centered photo of", "satellite imagery, photo of", "military highest

resolution satellite imagery of", "NASA imagery of", "geo high resolution

satellite", "land cover satellite image of", "european satellite

close up aerial image of", "super high resolution highest resolution

satellite imagery"

a.4 proof of Lemma 2 .1 .1

Here, we prove Lemma 2.1.1 from Section 2.1.6, which we repeat below:

Lemma 2.1.1. Let Tbase be the expected time to identify every relevant concept without the
GPR, and TGPR be the expected time when exploiting the additional knowledge from the GPR.
Then, Tbase = nHc·s, TGPR = nHc

s , and the speedup from GPR is Tbase
TGPR

≈ s log s.

Proof. This problem is a variant of the coupon collector problem. Let’s first compute
Tbase as the sum of expected times ti to identify the next relevant concept.

Tbase =

cs∑
i=1

ti (A.5)

=

cs∑
i=1

1

pi
(A.6)

=

cs∑
i=1

n

cs+ 1− i
(A.7)

= n

cs∑
i=1

1

cs+ 1− i
(A.8)

= nHcs (A.9)

91

where Hcs is the csth harmonic number. Similarly, we can compute TGPR as the sum
of expected times ti to identify the next relevant cluster.

TGPR =

c∑
i=1

ti (A.10)

=

c∑
i=1

1

pi
(A.11)

=

c∑
i=1

n

s(c+ 1− i)
(A.12)

=
n

s

c∑
i=1

1

c+ 1− i
(A.13)

=
nHc

s
(A.14)

The speedup is then Tbase
TGPR

= sHcs
Hc
≈ s log s.

We find that in practical settings (e.g., the Pets example analyzed in Figure 2.5),
we can accurately predict how many samples are required to discover all useful
concepts. If the vocabulary size is n ≈ 150,000, the number of clusters is about
c = 2 (one for cats and one for dogs), and the size of each cluster is about 150, then
TGPR = 1500, which roughly matches the 9 iterations ×256 queries/iteration = 1792

queries it took to discover both cats and dogs in the Pets dataset.

a.5 progression of downloaded images

Just as Figure 2.4 in the main paper showed how Internet Explorer progressively
discovers useful data when targeting the Pets dataset, Figures A.9 to A.12 show the
progression of downloaded images when targeting Birdsnap, Flowers, Food, and
VOC respectively. Note that this analysis is in the self-supervised setting, where
Internet Explorer has no knowledge of the label set. Thus, it is quite surprising that
Internet Explorer is able to identify relevant images in so few iterations.

92

Target dataset: Birdsnap

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure A.9: Progression of downloaded Birdsnap images. This corresponds to Ours++ with-
out using label set information.

Target dataset: Flowers

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure A.10: Progression of downloaded Flowers images. This corresponds to Ours++ with-
out using label set information.

93

Target dataset: Food

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure A.11: Progression of downloaded Food images. This corresponds to Ours++ without
using label set information.

Target dataset: VOC2007

Iteration 0 Iteration 1 Iteration 3 Iteration 6 Iteration 10 Iteration 15

Figure A.12: Progression of downloaded VOC2007 images. This corresponds to Ours++
without using label set information.

94

B
Y O U R D I F F U S I O N M O D E L I S S E C R E T LY A Z E R O - S H O T
C L A S S I F I E R

b.1 efficient diffusion classifier algorithm

Though Diffusion Classifier works straightforwardly with the procedure described
in Algorithm 2, we are interested in speeding up inference as described in Sec-
tion 3.2.2. Algorithm 3 shows the efficient Diffusion Classifier procedure that adap-
tively chooses which classes to continue evaluating. Table B.1 shows the evaluation
strategy used for each zero-shot dataset. We hand-picked the strategies based on the
number of classes in each dataset. Further gains in accuracy may be possible with
more evaluations.

Dataset Prompts kept per stage Evaluations per stage Avg. evaluations per class Total evaluations

Food101 20 10 5 1 20 50 100 500 50.7 5120

CIFAR10 5 1 50 500 275 2750

Aircraft 20 10 5 1 20 50 100 500 51 5100

Pets 5 1 25 250 51 1890

Flowers102 20 10 5 1 20 50 100 500 50.4 5140

STL10 5 1 100 500 300 3000

ImageNet 500 50 10 1 50 100 500 1000 100 100000

ObjectNet 25 10 5 1 50 100 500 1000 118.6 13400

Table B.1: Adaptive evaluation strategy for each zero-shot dataset.

b.2 inference costs and hybrid classification approach

Table B.2 shows the inference time of Diffusion Classifier when using the efficient
Diffusion Classifier algorithm (Algorithm 3). Classifying a single image takes any-
where between 18 seconds (Pets) to 1000 seconds (ImageNet). The issue with Ima-
geNet is that Diffusion Classifier inference time still approximately scales linearly

95

Algorithm 3 Diffusion Classifier (Adaptive)

1: Input: test image x, conditioning inputs C = {ci}ni=1 (e.g., text embeddings or
class indices), number of stages Nstages, list KeepList of number of ci to keep
after each stage, list TrialList of number of trials done by each stage

2: Initialize Errors[ci] = list() for each ci
3: Initialize PrevTrials = 0 // How many times we’ve tried each remaining

element of C so far
4: for stage i = 1, . . . ,Nstages do
5: for trial j = 1, . . . , TrialList[i] − PrevTrials do
6: Sample t ∼ [1, 1000]
7: Sample ϵ ∼ N(0, I)
8: xt =

√
ᾱtx +

√
1− ᾱtϵ

9: for conditioning ck ∈ C do
10: Errors[ck].append(∥ϵ− ϵθ(xt, ck)∥2)
11: end for
12: end for
13: C← arg min

S⊂C;
|S|=KeepList[i]

∑
ck∈S

mean(Errors[ck]) // Keep top KeepList[i] conditionings

ck with the lowest errors
14: PrevTrials = TrialList[i]
15: end for
16: return arg min

ci∈C
mean(Errors[ci])

96

Food101 CIFAR10 Aircraft Oxford Pets Flowers102 STL10 ImageNet

Diffusion Classifier 77.7 88.4 26.4 87.3 66.3 95.4 61.4
Time/img (s) 51 30 51 18 51 30 1000

Diffusion Classifier w/ discriminative pruning 78.7 88.4 26.8 86.4 67.0 95.4 62.6
Time/img (s) 35 30 35 18 35 30 150

Est. Time/img (s) at 1282 res 2 2 2 1 2 2 9

CLIP ResNet-50 81.1 75.6 19.3 85.4 65.9 94.3 58.2

Table B.2: Zero-shot accuracy and inference time with Stable Diffusion 512× 512. “Prun-
ing” away unlikely classes with a weak discriminative classifier (e.g., CLIP ResNet-
50) increases accuracy and reduces inference time. Additionally, reducing resolu-
tion to 128× 128 would reduce inference time by roughly 16×. However, its impact
on accuracy is difficult to estimate without retraining the Stable Diffusion model
to expect lower resolutions. All times are estimated using a RTX 3090 GPU.

with the number of classes, even when using the adaptive strategy. One way to ad-
dress this problem is to use a weak discriminative model to quickly “prune” away
classes that are almost certainly incorrect. Table B.2 shows that using Diffusion Clas-
sifier to choose among the top 20 class predictions made by CLIP ResNet-50 for an
image greatly reduces inference time, while even improving performance. This prun-
ing procedure only requires the top-20 accuracy of the fast discriminative model to
be high (close to 100%), so it works even when the top-1 accuracy of the ResNet-50

is low, like on Aircraft. We chose top-20 intuitively, without any hyperparameter
search, and tuning the k for top-k pruning will trade off between inference time and
accuracy. Note that no other results in this paper use the discriminative pruning pro-
cedure, to avoid conflating the capabilities of Diffusion Classifier with those of the
weak discriminative model used to prune.

b.3 inference objective function

Food101 CIFAR10 Aircraft Oxford Pets Flowers102 STL10 ImageNet ObjectNet

Squared ℓ2 77.7 84.4 26.4 86.3 62.2 95.4 61.4 43.4
ℓ1 73.8 88.4 22.1 87.3 66.3 95.4 59.6 36.8
Huber 77.7 84.6 26.7 86.6 62.6 95.4 60.9 43.5

Table B.3: Diffusion Classifier zero-shot performance with different loss functions L(ϵ−

ϵθ(xt, c)).

97

Resolution Objective ImageNet ImageNetV2 ImageNet-A ObjectNet

2562 Squared ℓ2 77.5 64.6 20.0 32.1
2562 ℓ1 74.9 60.5 9.7 24.7

5122 Squared ℓ2 79.1 66.7 30.2 33.9
5122 ℓ1 75.6 62.1 13.2 26.2

Table B.4: Diffusion Classifier supervised performance with different loss functions L(ϵ−

ϵθ(xt, c)).

While the theory in Section 3.1.1 justifies using ∥ϵ−ϵθ(xt, c)∥22 within the Diffusion
Classifier inference objective, we surprisingly find that other loss functions can work
better in some cases. Table B.3 shows that ∥ϵ− ϵθ(xt, c)∥1 (the ℓ1 loss) instead of the
squared ℓ2 loss does better on roughly half of the datasets that we use to evaluate
the Stable Diffusion-based zero-shot classifier. This is puzzling, since the ℓ1 loss is
neither theoretically justified nor appears in the Stable Diffusion training objective.
We hope followup work can explain the empirical success of the ℓ1 loss. Combining
these two losses does not get the “best of both worlds.” The Huber loss, which is
the squared ℓ2 loss for values less than 1 and is the ℓ1 loss for values greater than
1, roughly achieves the same performance as the theoretically-justified squared ℓ2
loss. We choose between squared ℓ2 and ℓ1 as a hyperparameter for Section 3.4.1.
Table B.4 shows that ℓ1 does not help with supervised classification (Section 3.4.3)
using DiT-XL/2.

b.4 interpretability via image generation

In contrast to discriminative classifiers, where it is difficult to understand what fea-
tures the model has learned or why a model has made a certain decision, generative
classifiers are easier to visualize. In this section, we examine how samples from the
generative model can help us understand class-dependent features that the model
has learned as well as failures in the model’s understanding.

experiment setup Given an input image, we first perform DDIM inversion [92,
175] (with 50 timesteps) using Stable Diffusion 2.0 and different captions as prompts:
BLIP [107] generated caption, human-refined BLIP generated caption, “a photo of
{correct-class-name}, a type of pet” and “a photo of {incorrect-class-name}, a type of
pet.”. Next, we leverage the inverted DDIM latent and the corresponding prompt to
attempt to reconstruct the original image (using a deterministic diffusion scheduler

98

Input Image DDIM Inversion
w/ BLIP caption

DDIM Inversion
w/ human-modified

BLIP caption

DDIM Inversion
w/ correct class name

as prompt

DDIM Inversion
w/ incorrect class
name as prompt

DDIM Inversion
w/ incorrect class
name as prompt

Figure B.1: Analyzing Diffusion Classifier for Zero-Shot Classification: We analyze the role
of different text/captions (BLIP, Human-modified BLIP, correct class-name, incor-
rect class-name) for zero-shot classification using text-based diffusion models. To
do so, we invert the input image using the corresponding caption and then re-
construct it using deterministic DDIM sampling. The image inverted and recon-
structed using a human-modified BLIP caption aligns the most with the input
image since this caption is the most descriptive. The images reconstructed using
correct class names as prompts (column 4) align much better with the input im-

age in terms of class-descriptive features of the underlying object than the images
reconstructed using incorrect class names as prompts (columns 5 and 6) . Row 3

(columns 4 and 5) demonstrates an example where the base Stable Diffusion does
not understand the difference between the two cat breeds, Birman and Ragdoll,
and hence cannot invert/sample them differently. As a result, our classifier also
fails.

[175]). The underlying intuition behind this experiment is that the inverted image
should look more similar to the original image when a correct and appropriate/de-
scriptive prompt is used for DDIM inversion and sampling.

experimental evaluation Figure B.1 shows the results of this experiment for
the Oxford-IIIT Pets dataset. The image inverted using a human-modified BLIP cap-
tion (column 3) is the most similar to the original image (column 1). This aligns
with our intuition as this caption is most descriptive of the input image. The human-
modified caption only adds the correct class name (Bengal Cat, American Bull Dog,
Birman Cat) ahead of the BLIP predicted “cat or dog” token for the foreground ob-
ject and slightly enhances the description for the background. Comparing the BLIP-
caption results (column 2) with the human-modified BLIP-caption results (column

99

3), we can see that by just using the class-name as the extra token, the diffusion
model can inherit class-descriptive features. The Bengal cat has stripes, the Ameri-
can Bulldog has a wider chin, and the Birman cat has a black patch on its face in the
reconstructed image.

Compared to the images generated using the human-generated caption as a prompt,
the images reconstructed using only class names as prompts (columns 4,5,6) align
less with the input image (column 1). This is expected, as class names by themselves
are not dense descriptions of the input images. Comparing the results of column 4

(correct class names as prompt) with those of column 5,6 (incorrect class names as
prompt), we can see that the foreground object has similar class-descriptive features
(brown and black stripes in row 1 and black face patches in row 3) to the input image
for the correct-prompt reconstructions. This highlights the fact that although using
class names as approximate prompts will not lead to perfect denoising (Eq. 3.7), for
the global prediction task of classification, the correct class names should provide enough
descriptive features for denoising, relative to the incorrect class names.

Row 3 of Figure B.1 further highlights an example of a failure mode where Stable
Diffusion generates very similar inverted images for correct Birman and incorrect
Ragdoll text prompts. As a result, our model also incorrectly classifies the Birman
cat as a Ragdoll. To fix this failure mode, we tried finetuning the Stable Diffusion
model on a dataset of Ragdoll/Birman cats (175 images in total). Using this fine-
tuned model, Diffusion Classifier accuracy on these two classes increases to 85%,
from an initial zero-shot accuracy of 45%. In addition to minimizing the standard ϵ-
prediction error ∥ϵ − ϵθ(xt, ci)∥2, we found that adding a loss term to increase the
error ∥ϵ − ϵθ(xt, cj)∥2 for the wrong class cj helped the model distinguish these
commonly-confused classes.

b.5 how does stable diffusion version affect zero-shot accuracy?

We investigate how much the Stable Diffusion checkpoint version affects Diffusion
Classifier’s zero-shot classification accuracy. Table B.5 shows zero-shot accuracy for
each Stable Diffusion release version so far. We use the same adaptive evaluation
strategy (Algorithm 3) for each version. Accuracy improves with each new release
for SD 1.x, as more training likely reduces underfitting on the training data. However,
accuracy actually decreases when going from SD 2.0 to 2.1. The cause of this is not
clear, especially without access to intermediate training checkpoints. One hypothesis
is that further training on 5122 resolution images causes the model to forget knowl-
edge from its initial 2562 resolution training set, which is closer to the distribution of
these zero-shot benchmarks. SD 2.1 was finetuned using a more permissive NSFW

100

SD Version Food101 CIFAR10 Aircraft Oxford Pets Flowers102 STL10 ImageNet ObjectNet

1.1 60.3 83.4 20.1 78.8 43.1 92.6 51.7 38.1
1.2 75.7 85.9 26.3 85.4 54.4 94.4 57.3 39.4
1.3 77.5 87.5 27.8 87.2 54.5 94.9 59.7 40.9
1.4 77.8 86.0 28.6 87.4 54.2 94.8 59.2 41.2
1.5 78.4 85.5 29.1 87.5 55.0 94.5 59.6 41.6

2.0 77.7 88.4 26.4 87.3 66.3 95.4 61.4 43.4
2.1 77.9 87.1 24.3 86.2 59.4 95.3 58.4 38.3

Table B.5: Effect of Stable Diffusion version on Diffusion Classifier zero-shot accuracy. We
bold the best version within SD 1.x and 2.x. For SD 1, accuracy tends to increase
with more training. The main exception is on low-resolution datasets like CIFAR10

and STL10. SD 2 performance consistently decreases from SD 2.0 to SD 2.1 on
almost every dataset.

threshold (⩾ 0.98 instead of ⩾ 0.1), so another hypothesis is that this introduced a
lot of human images that hurt performance on our object-centric benchmarks.

b.6 additional implementation details

b.6.1 Zero-shot classification using Diffusion Classifier

training data For our zero-shot Diffusion Classifier, we utilize Stable Diffu-
sion 2.0 [154]. This model was trained on a subset of the LAION-5B dataset, filtered
so that the training data is aesthetic and appropriately safe-for-work. LAION clas-
sifiers were used to remove samples that are too small (less than 512 × 512), po-
tentially not-safe-for-work (punsafe ⩾ 0.1), or unaesthetic (aesthetic score ⩽ 4.5).
These thresholds are conservative, since false negatives (NSFW or undesirable im-
ages left in the training set) are worse than removing extra images from a large
starting dataset. As discussed in Section 3.4.1, these filtering criteria bias the dis-
tribution of Stable Diffusion training data and likely negatively affect Diffusion
Classifier’s performance on datasets whose images do not satisfy these criteria. SD
2.0 was trained for 550k steps at resolution 256× 256 on this subset, followed by
an additional 850k steps at resolution 512 × 512 on images that are at least that
large. This checkpoint can be downloaded online through the diffusers repository at
stabilityai/stable-diffusion-2-0-base.

101

inference details We use FP16 and Flash Attention [42] to improve inference
speed. This enables efficient inference with a batch size of 32, which works across a
variety of GPUs, from RTX 2080Ti to A6000. We found that adding these two tricks
did not affect test accuracy compared to using FP32 without Flash Attention. Given
a test image, we resize the shortest edge to 512 pixels using bicubic interpolation,
take a 512 × 512 center crop, and normalize the pixel values to [−1, 1]. We then
use the Stable Diffusion autoencoder to encode the 512× 512× 3 RGB image into a
64×64×4 latent. We finally classify the test image by applying the method described
in Sections 3.1.1 and 3.2 to estimate ϵ-prediction error in this latent space.

b.6.2 Compositional reasoning using Diffusion Classifier

For our experiments on the Winoground benchmark [184], most details are the same
as the zero-shot details described in Appendix B.6.1. We use Stable Diffusion 2.0, and
we evaluate each image-caption pair with 1000 evenly spaced timesteps. We omit the
adaptive inference strategy since there are only 4 image-caption pairs to evaluate for
each Winoground example.

b.6.3 ImageNet classification using Diffusion Classifier

For this task, we use the recently proposed Diffusion Transformer (DiT) [141] as the
backbone of our Diffusion Classifier. DiT was trained on ImageNet-1k, which con-
tains about 1.28 million images from 1,000 classes. While it was originally trained
to produce high-quality samples with strong FID scores, we repurpose the model
and compare it against discriminative models with the same ImageNet-1k training
data. We use the DiT-XL/2 model size at resolution 2562 and 5122. Notably, DiT
achieves strong performance while using much weaker data augmentations than
what discriminative models are usually trained with. During training time for the
2562 checkpoint, the smaller edge of the input image is resized to 256 pixels. Then,
a 256× 256 center crop is taken, followed by a random horizontal flip, followed by
embedding with the Stable Diffusion autoencoder. A similar process is done for the
5122 model. At test time, we follow the same preprocessing pipeline, but omit the
random horizontal flip. Classification performance could improve if stronger aug-
mentations, like RandomResizedCrop or color jitter, are used during the diffusion
model training process.

102

b.6.4 Baselines for Zero-Shot Classification

synthetic sd data : We provide the implementation details of the “Synthetic
SD Data” baseline (row 1 of Table 3.1) for the task of zero-shot image classifica-
tion. Our Diffusion Classifier approach builds on the intuition that a model capable
of generating examples of desired classes should be able to directly discriminate
between them. In contrast, this baseline takes the simple approach of using our gen-
erative model, Stable Diffusion, as intended to generate synthetic training data for a
discriminative model. For a given dataset, we use pre-trained Stable Diffusion 2.0
with default settings to generate 10,000 synthetic 512× 512 pixel images per class
as follows: we use the English class name and randomly sample a template from
those provided by the CLIP [146] authors to form the prompt for each generation.
We then train a supervised ResNet-50 classifier using the synthetic data and the la-
bels corresponding to the class name that was used to generate each image. We use
batch size = 256, weight decay = 1e− 4, learning rate = 0.1 with a cosine schedule,
the AdamW optimizer, and use random resized crop & horizontal flip transforms.
We create a validation set using the synthetic data by randomly selecting 10% of the
images for each class; we use this for early stopping to prevent over-fitting. Finally,
we report the accuracy on the target dataset’s proper test set.

sd features : We provide the implementation details of the “SD Features” base-
line (row 2 of Table 3.1) for the task of image classification. This baseline is inspired
by Label-DDPM [10], a recent work on diffusion-based semantic segmentation. Un-
like Label-DDPM, which leverages a category-specific diffusion model, we directly
build on top of the open-sourced Stable Diffusion model (trained on the LAION
dataset). We then approach the task of classification as follows: given the pre-trained
Stable Diffusion model, we extract the intermediate U-Net features corresponding to
the input image. These features are then passed through a ResNet-based classifier to
predict logits for the potential classes. To extract the intermediate U-Net features, we
add a noise equivalent to the 100th timestep noise to the input image and evaluate
the corresponding noisy latent using the forward diffusion process. We then pass
the noisy latent through the U-Net model, conditioned on timestep t = 100 and text
conditioning (c) as an empty string, and extract the features from the mid-layer of
the U-Net at a resolution of [8 × 8 × 1024]. Next, we train a supervised classifier on
top of these features. Thus, this baseline is not zero-shot. The architecture of our clas-
sifier is similar to ResNet-18, with small modifications to make it compatible with
an input size of [8× 8× 1024]. Table B.6 defines these modifications. We set batch
size = 16, learning rate = 1e− 4, and use the AdamW optimizer. During training,
we apply image augmentations typically used by discriminative classifiers (Random-

103

Arch Conv1 Conv2 Conv3 x2 Conv4 x2 Conv5 x2

ResNet-18 7x7x64 3x3 max-pool 3x3x128 3x3x256 3x3x512

ResNet-18 (SD Features) 3x3x1280 - 3x3x1280 3x3x2560 3x3x2560

Table B.6: Comparison of SD Features’ ResNet-18 classifier architecture with the original
ResNet-18

ResizedCrop and horizontal flip). We do early stopping using the validation set to
prevent overfitting.

b.7 techniques that did not help

Diffusion Classifier requires many samples to accurately estimate the ELBO. In ad-
dition to using the techniques in Section 3.1.1 and 3.2, we tried several other options
for variance reduction. None of the following methods worked, however. We list
negative results here for completeness, so others do not have to retry them.

classifier-free guidance Classifier-free guidance [77] is a technique that im-
proves the match between a prompt and generated image, at the cost of mode cover-
age. This is done by training a conditional ϵθ(xt, c) and unconditional ϵθ(xt) denois-
ing network and combining their predictions at sampling time:

ϵ̃(xt, c) = (1+w)ϵθ(xt, c) −wϵθ(xt) (B.1)

where w is a guidance weight that is typically in the range [0, 10]. Most diffusion
models are trained to enable this trick by occasionally replacing the conditioning
c with an empty token. Intuitively, classifier-free guidance “sharpens” logpθ(x | c)
by encouraging the model to move away from regions that unconditionally have
high probability. We test Diffusion Classifier to see if using the ϵ̃ from classifier-free
guidance can improve confidence and classification accuracy. Our new ϵ-prediction
metric is now ∥ϵ− (1+w)ϵθ(xt, c) −wϵθ(xt)∥2. However, Figure B.2 shows that w =

0 (i.e., no classifier-free guidance) performs best. We hypothesize that this is because
Diffusion Classifier fails on uncertain examples, which classifier-free guidance affects
unpredictably.

error map cropping The ELBO Et,ϵ[∥ϵ − ϵθ(xt, c)∥2] depends on accurately
estimating the added noise at every location of the 64× 64× 4 image latent. We try
to reduce the impact of edge pixels (which are less likely to contain the subject) by

104

computing xt as normal, but only measuring the ELBO on a center crop of ϵ and
ϵθ(xt, c). We compute:

∥ϵ[i:−i,i:−i] − ϵθ(xt, c)[i:−i,i:−i]∥2 (B.2)

where i is the number of latent “pixels” to remove from each edge. However, Fig-
ure B.3 shows that any amount of cropping reduces accuracy.

2 0 2 4 6 8 10
Guidance Scale

0

25

50

75

A
cc

ur
ac

y

Figure B.2: Accuracy plot of classifier-free
guidance on Pets.

0 5 10 15 20 25 30
Amount cropped off each side

20

40

60

80

A
cc

ur
ac

y

Figure B.3: Cropping ϵ and ϵθ(xt, c) reduces
accuracy on Pets.

importance sampling Importance sampling is a common method for reduc-
ing the variance of a Monte Carlo estimate. Instead of sampling ϵ ∼ N(0, I), we sam-
ple ϵ from a narrower distribution. We first tried fixing ϵ = 0, which is the mode of
N(0, I), and only varying the timestep t. We also tried the truncation trick [20] which
samples ϵ ∼ N(0, I) but continually resamples elements that fall outside the interval
[a,b]. Finally, we tried sampling ϵ ∼ N(0, I) and rescaling them to the expected norm
(ϵ→ ϵ

∥ϵ∥2 Eϵ ′[∥ϵ ′∥2])) so that there are no outliers. Table B.7 shows that none of these
importance sampling strategies improve accuracy. This is likely because the noise ϵ

sampled with these strategies are completely out-of-distribution for the noise pre-
diction model. For computational reasons, we performed this experiment on a 10%
subset of Pets.

105

Sampling distribution for ϵ Pets accuracy

ϵ = 0 41.3
TruncatedNormal, [−1, 1] 49.9
TruncatedNormal, [−2.5, 2.5] 81.5
Expected norm 86.9
ϵ ∼ N(0, I) 87.5

Table B.7: Every importance sampling strategy underperforms sampling the noise ϵ from a
standard normal distribution.

106

C
G E N E R AT I V E C L A S S I F I E R S AV O I D S H O RT C U T S O L U T I O N S

c.1 additional analysis

c.1.1 Additional Results on the Effect of Discriminative Model Size

50 52 54
ID Test Accuracy

24

26

28

O
O

D
 T

es
t W

G
 A

cc
ur

ac
y

ResNet-50
ResNet-101
ResNet-152

(a) FMoW

92.5 95.0 97.5
ID Val Accuracy

50

60

70

80

O
O

D
 T

es
t A

cc
ur

ac
y

ResNet-50
ResNet-101
ResNet-152

(b) Camelyon17

Figure C.1: Scaling up discriminative model size does not improve performance. Each
point with the same color is a model trained with different hyperparameters
(learning rate and weight decay). Results on Waterbirds are shown in Figure 4.4.

We add additional results to our investigation into the role of discriminative model
size. Previously, our analysis of CivilComments in Section 4.4.3 showed that match-
ing the parameter count between the discriminative and generative classifiers did not
account for the qualitative differences in their generalization behavior. Furthermore,
Figure 4.4 showed that increasing model size on Waterbirds did not improve per-
formance. Figure C.1 shows additional results. On FMoW, scaling only helps when
going from ResNet-50 to ResNet-101; further scaling did not help. On Camelyon17,
increasing model size had no effect on performance. Overall, we can confidently
conclude that model size is not responsible for generative classifiers’ improved ro-
bustness to distribution shift.

107

c.1.2 Scaling Can Improve Generative Classifiers

50 55 60 65
ID Val Accuracy

26

28

30

32

34

36

OO
D

Te
st

 W
G

Ac
cu

ra
cy

FMoW
Model Size

69M
395M

70.0 72.5 75.0 77.5
Test Avg Acc

47.5

50.0

52.5

55.0

57.5

60.0

Te
st

 W
G

Ac
c

CivilComments

Model Size
15M
42M

96 97 98
ID Val Accuracy

84

86

88

90

92

OO
D

Te
st

 A
cc

ur
ac

y

Camelyon17
Model Size

69M
395M

Figure C.2: Effect of scaling up generative classifiers. Increasing the number of parameters
helps significantly on FMoW and CivilComments, but can sometimes hurt: OOD
accuracy drops on Camelyon17 with a larger generative classifier.

Scaling model size has proved extremely effective for generative models in other
settings [21, 81, 91]. This has typically been done in the “almost infinite data“ regime,
where only a few epochs are used, and overfitting is not an issue. Does scaling
similarly help here for our generative classifiers?

We tried different model scales on three of our distribution shift benchmarks:
FMoW, CivilComments, and Camelyon17. Figure C.2 shows the results of our inves-
tigation. On FMoW and CivilComments, scaling model size significantly improves
performance both in- and out-of-distribution. However, on Camelyon17, a smaller
model actually does significantly better out-of-distribution than a model that is 5.5
times as large. This indicates that overfitting can become an issue in this setting,
where we have limited training data and must be careful about overfitting. Over-
all, we are excited by the fact that scaling generative classifiers can be beneficial in
some settings, unlike discrimiminative classifiers, which consistently show poor use
of extra model capacity (see Figure 4.4, Table 4.2, Figure C.1).

c.1.3 Results on Additional Datasets

We additionally run experiments on two highly-used subpopulation shift bench-
marks from BREEDS [164]: Living-17 (with 17 animal classes) and Entity-30 (with 30

classes). As usual, we train our diffusion-based generative classifiers from scratch on
each training set and evaluate them on the in-distribution and out-of-distribution test
sets. We compare against discriminative baselines reported in the original BREEDS
paper, which includes interventions such as stronger augmentations or adversarial

108

70 80 90
ID Test Accuracy

35

40

45

50

55

O
O

D
 T

es
t A

cc
ur

ac
y

Entity-30

80 85 90 95
ID Test Accuracy

50

60

70

OO
D

Te
st

 A
cc

ur
ac

y

Living-17
Discriminative
Generative

Figure C.3: In-distribution vs out-of-distribution accuracy for additional subpopulation
shift datasets [164]. We again observe OOD scaling trends for generative clas-
sifiers. Each point for a discriminative model corresponds to a separate model
with a different architecture, augmentation, or adversarial training method. Ac-
curacies for the discriminative models are taken from Santurkar, Tsipras, and
Madry [164].

training. Figure C.3 displays the same trends here as our main results. Both datasets
display effective robustness (for a given ID accuracy, the OOD accuracy of the gen-
erative classifier is higher), though the effect is much stronger on Entity-30.

c.1.4 Correlation between Generative and Discriminative Performance

We take a careful look at how well generative capabilities like validation likelihood
and sample quality correlate with classification performance. Figure C.4 shows how
these three metrics evolve over the course of training for a diffusion-based generative
classifier on CelebA.

We first find that the model does not need to generate good samples in order to
have high classification accuracy. The first generation in Figure C.4 has significant
visual artifacts, yet the generative classifier already achieves 90% class-balanced ac-
curacy. This makes sense: for ground-truth class y∗, the classifier only needs pθ(x |

y∗) > pθ(x | y) for all other classes y ̸= y∗, so pθ(x | y∗) can be low as long as
pθ(x | y ̸= y∗) is even lower. In fact, given a generative classifier pθ(x | y), one can
construct another generative classifier p̃(x | y) = λpθ(x | y) + (1− λ)pother(x), which
has the same accuracy as pθ but generates samples that look increasingly like pother
as λ→ 0+.

However, even though sample quality is not necessary for high accuracy, we do
find that validation diffusion loss correlates well with class-balanced accuracy. As
the loss decreases, class-balanced accuracy correspondingly increases. Figure C.5

109

0 50 100 150 200
Epoch

0.13

0.14

0.15

D
iff

us
io

n
Va

lid
at

io
n

Lo
ss

90

91

92

C
ls

-b
al

an
ce

d
A

cc
ur

ac
y

Loss
Acc

Figure C.4: Correlation between accuracy and generative performance. Top: class-
conditional DDIM samples generated from the same noise using intermediate
checkpoints. Bottom: diffusion validation loss and class-balanced accuracy on
CelebA by training epoch. Main findings: First, high classification accuracy can
be achieved even without good sample quality (see the first generation). Second,
generative validation loss is highly correlated with classification accuracy. Third,
as training progresses, the minority group (blond men) becomes more likely, in-
dicating that the generative classifier correctly models less correlation between
hair color (causal) and gender (shortcut).

shows how an increase in validation diffusion loss due to overfitting translates to a
corresponding decrease in classification accuracy on Waterbirds.

Finally, Figure C.4 shows how we can check the samples to audit how the gen-
erative classifier models the spurious vs core features. The samples are generated
deterministically with DDIM [174] from a fixed starting noise, so the sample from
the last checkpoint shows that the model is increasing the probability of blond men
(the minority group in CelebA). This means that the model is modeling less correla-
tion between the hair color (causal for the blond vs not blond label) and the gender
(the shortcut feature). This is one additional advantage of generative classifiers: gen-
erating samples is a built-in interpretability method [106]. Again, as we note above,
generation of a specific feature is sufficient but not necessary to show that it is being
used for classification.

110

0 100 200 300 400 500
Epoch

0.165

0.170

0.175

0.180

0.185

D
iff

us
io

n
Va

lid
at

io
n

Lo
ss

94.0

94.5

95.0

95.5

C
ls

-b
al

an
ce

d
A

cc
ur

ac
y

Loss
Acc

Figure C.5: Overfitting in diffusion loss on Waterbirds directly translates to overfitting in
classification accuracy. We smooth the loss for better visual clarity.

Embedding model Waterbirds CelebA Camelyon

ID WG ID WG ID OOD

Pre-trained VAE [154] 96.8 79.4 91.2 69.4 98.3 90.8
PCA patch embeddings [31] 93.8 61.7 91.3 71.1 98.7 93.8

Table C.1: Effect of image embedding model. We compare different image encoders, which
map the image from 256× 256× 3 to 32× 32× 4. For our main results, we use the
pre-trained deep VAE released in the original LDM paper [154]. We compare it to
a PCA-based patch embedding that tokenizes each 8× 8× 3 patch independently
and is trained separately on each dataset. We find that the pre-trained VAE is not
consistently better, as it only does better on 1 of the 3 datasets that we tested the
PCA encoder on.

111

c.1.5 Effect of Image Embedding Model

For our image results in the main paper, we trained latent diffusion models from
scratch for each dataset. In order to be consistent with the generative modeling litera-
ture and keep the diffusion model training pipeline completely unmodified, we trained
the diffusion models on the latent space of a pre-trained VAE [154]. This VAE com-
presses 256× 256× 3 images into 32× 32× 4 latent embeddings, which are cheaper
to model. Perhaps our generative classifier is benefiting from an encoder that makes
use of extra pre-training data? We test this hypothesis by trying to remove as much
of the pre-trained encoding as possible. Following previous analysis work on diffu-
sion models [31], we replace the VAE network with a simple PCA-based encoding of
each image patch. Specifically, we turn each image into 32× 32 total 8× 8× 3 pixel
patches, and use PCA to find the top 4 principal components of the patches. When
encoding, we normalize by the corresponding singular values to ensure that the
PCA embeddings have approximately the same variance in each dimension. Overall,
we perform this process separately on each training dataset, which completely re-
moves the effect of pre-training, and train a diffusion model for each dataset within
the PCA latent space. Table C.1 compares this embedding model to the VAE and
finds that it actually performs better on 2 of the 3 datasets. We conclude that the
pre-trained encoder does not have a significant directional effect on our generative
classifier results.

c.1.6 Comparison with Pre-trained Discriminative Models

90 92
ID Val Accuracy

20

40

60

O
O

D
 T

es
t W

G
 A

cc
ur

ac
y

CelebA

Disc (pretrained)
Generative (scratch)

Figure C.6: Finetuning a pretrained discriminative model improves performance, but it still
does not achieve the same “effective robustness“ as our generative classifier.

All of our experiments so far train the classifier (whether discriminative or gen-
erative) from scratch. This is done to ensure a fair, apples-to-apples comparison

112

between methods. What happens if we use a pretrained discriminative model? In
preliminary comparisons, we use a ResNet-50 pretrained with supervised learning
on ImageNet-1k [101] and finetune it on CelebA. Figure C.6 shows the results of
this unfair comparison between a pretrained discriminative model versus our gener-
ative classifier trained from scratch. We find that pretraining helps, but it does not
significantly close the gap with the generative classifier. This is in spite of the fact
that the discriminative model has seen an extra 1.2 million labeled training images,
those labels have more bits (since there are 1000 classes instead of just two), and the
pretraining classification task has minimal spurious correlations that are relevant to
the downstream task.

113

c.1.7 Additional Plots for Generalization Phase Diagrams

16 64 256 1024 4096
Number of training points

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

Gen ID
Gen WG
Disc ID
Disc WG

16 64 256 1024 4096
Number of training points

0.0

0.1

0.2

0.3

0.4

A
cc

 G
ap

 (m
aj

or
ity

 -
m

in
or

ity
)

16 64 256 1024 4096
Number of training points

0.5

1.0

1.5

2.0

R
at

io
 |w

sp
u|/

|w
co

re
|

Disc
Gen

Figure C.7: Comparing logistic regression and LDA when the core feature variance has been
increased from σ = 0.15 to σ = 0.6. The generative approach’s accuracy drops
much more in this setting.

1 0 1
Causal feature

1.0

0.5

0.0

0.5

1.0

Sp
ur

io
us

 fe
at

ur
e

= 0.05

y = + 1
y = 1

1 0 1
Causal feature

= 0.15

1 0 1
Causal feature

= 0.3

Figure C.8: Effect of varying the standard deviation σ of the core feature. d− 2 noise dimen-
sions not shown. These correspond to the σ shown in Figure 4.7.

114

0.00 0.75 1.51 2.26 3.00
Spurious feature scale

0.64

0.36

0.16

0.04

0.00

N
oi

sy
 fe

at
ur

e
va

ria
nc

e Gen better ID
 and OOD

Disc better ID,
 Gen better OOD

Disc better ID and OOD

n=32

0.00 0.75 1.51 2.26 3.00
Spurious feature scale

0.64

0.36

0.16

0.04

0.00
N

oi
sy

 fe
at

ur
e

va
ria

nc
e

Gen better ID and OOD

Disc better ID,

 Gen better OOD

Disc better ID and OOD

n=64

0.00 0.75 1.51 2.26 3.00
Spurious feature scale

0.64

0.36

0.16

0.04

0.00

N
oi

sy
 fe

at
ur

e
va

ria
nc

e

Gen better ID and OOD

Disc better ID and OOD

n=256

Figure C.9: Each plot corresponds to a different number n of training examples.

16 64 256 1024 4096
Number of training points

0.6

0.7

0.8

0.9

1.0

Te
st

 A
cc

ur
ac

y

Gen ID
Gen WG
Disc ID
Disc WG

16 64 256 1024 4096
Number of training points

0.00

0.05

A
cc

 G
ap

 (m
aj

or
ity

 -
m

in
or

ity
)

Gen
Disc

16 64 256 1024 4096
Number of training points

0

10

20

N
or

m
al

iz
ed

 W
ei

gh
t N

or
m

Disc |wspu|
|wcore|

Disc wnoise 2
|wcore|

Gen |wspu|
|wcore|

Gen wnoise 2
|wcore|

2
noise = 0.01

16 64 256 1024 4096
Number of training points

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

Gen ID
Gen WG
Disc ID
Disc WG

16 64 256 1024 4096
Number of training points

0.0

0.1

0.2

0.3

A
cc

 G
ap

 (m
aj

or
ity

 -
m

in
or

ity
)

Gen
Disc

16 64 256 1024 4096
Number of training points

0

2

4

6

8

N
or

m
al

iz
ed

 W
ei

gh
t N

or
m

Disc |wspu|
|wcore|

Disc wnoise 2
|wcore|

Gen |wspu|
|wcore|

Gen wnoise 2
|wcore|

2
noise = 1.00

Figure C.10: Effect of σnoise on the generalization of SVM vs LDA. Larger σnoise makes it
easier for SVM to overfit, since it uses the high-norm noise features to increase
its margin. Lower σnoise makes it harder to overfit, since the noise features are
too small to significantly increase the margin.

c.2 experimental details

115

Algorithm 4 Generative Classifier

1: Input: Training set D = {(xi,yi)}
N
i=1

2: Training model pθ(x | y):
3: Minimize generative loss E(x,y)∼D[− logpθ(x | y)]

4: Classification of test input x:
5: for class yi ∈ Y do
6: Compute pθ(x|yi)

7: end for
8: Return arg maxyi pθ(x | yi)p(yi)

c.2.1 Image-based Experiments

c.2.1.1 Diffusion-based Generative Classifier

We train diffusion models from scratch in a lower-dimensional latent space [154]. We
use the default 395M parameter class-conditional UNet architecture and train it from
scratch with AdamW [116] with a constant base learning rate of 1e-6 and no weight
decay or dropout. We did not tune diffusion model hyperparameters and simply
used the default settings for conditional image generation. Again, we emphasize: we
achieved SOTA accuracies under distribution shift, using the default hyperparameters from
image generation.

Each diffusion model requires about 3 A6000 days to train. For inference on Wa-
terbirds, CelebA, and Camelyon, we sample 100 noises ϵ and use them with each of
the two classes. For FMoW, we use the adaptive strategy from Diffusion Classifier
[106] that uses 100 samples per class, then does an additional 400 samples for the
top 5 remaining classes.

c.2.1.2 Discriminative Baselines

We use the official training codebase released by Koh et al. [95] to train our discrim-
inative baselines. For image-based benchmarks, we train 3 model scales (ResNet-50,
ResNet-101, and ResNet-152) and sweep over 4 learning rates and 4 weight decay
parameters. We use standard augmentations: normalization, random horizontal flip,
and RandomResizedCrop.

116

c.2.2 Autoregressive Generative Classifier

For training, we pad shorter sequences to a length of 512 and only compute loss
for non-padded tokens. We use a Llama-style architecture [186] and train 15M and
42M parameter models from scratch. We train for up to 200k iterations, which can
take 2 A6000 days. We use a repository without default hyperparameters, so we
sweep over learning rate, weight decay, and dropout based on their effect on the
data log-likelihood. The resulting family of models is then shown in Figure 4.2.

c.2.2.1 Discriminative Baselines

For CivilComments, we use a randomly initialized encoder-only transformer with
the same architecture as DistilBert [163]. We train for 100 epochs and sweep over
dropout rate, learning rate, and weight decay.

117

B I B L I O G R A P H Y

[1] Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S Mor-
cos. “Semdedup: Data-efficient learning at web-scale through semantic dedu-
plication.” In: arXiv preprint arXiv:2303.09540 (2023).

[2] Ehab A AlBadawy, Ashirbani Saha, and Maciej A Mazurowski. “Deep learn-
ing for segmentation of brain tumors: Impact of cross-institutional training
and testing.” In: Medical physics 45.3 (2018), pp. 1150–1158.

[3] Cem Anil, Ashwini Pokle, Kaiqu Liang, Johannes Treutlein, Yuhuai Wu, Shao-
jie Bai, J Zico Kolter, and Roger B Grosse. “Path independent equilibrium
models can better exploit test-time computation.” In: Advances in Neural Infor-
mation Processing Systems 35 (2022), pp. 7796–7809.

[4] Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi,
Jiaqi Han, Subham Sekhar Sahoo, and Volodymyr Kuleshov. “Block Diffusion:
Interpolating Between Autoregressive and Diffusion Language Models.” In:
arXiv preprint arXiv:2503.09573 (2025).

[5] Peter Auer. “Using confidence bounds for exploitation-exploration trade-offs.”
In: Journal of Machine Learning Research 3.Nov (2002), pp. 397–422.

[6] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van
Den Berg. “Structured denoising diffusion models in discrete state-spaces.”
In: Advances in neural information processing systems 34 (2021), pp. 17981–17993.

[7] Gregor Bachmann and Vaishnavh Nagarajan. “The pitfalls of next-token pre-
diction.” In: arXiv preprint arXiv:2403.06963 (2024).

[8] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. “Deep equilibrium models.”
In: Advances in neural information processing systems 32 (2019).

[9] Hangbo Bao, Li Dong, and Furu Wei. “Beit: Bert pre-training of image trans-
formers.” In: arXiv preprint arXiv:2106.08254 (2021).

[10] Dmitry Baranchuk, Andrey Voynov, Ivan Rubachev, Valentin Khrulkov, and
Artem Babenko. “Label-Efficient Semantic Segmentation with Diffusion Mod-
els.” In: International Conference on Learning Representations. 2022. url: https:
//openreview.net/forum?id=SlxSY2UZQT.

118

https://openreview.net/forum?id=SlxSY2UZQT
https://openreview.net/forum?id=SlxSY2UZQT

[11] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang,
Dan Gutfreund, Joshua B. Tenenbaum, and Boris Katz. “ObjectNet: A large-
scale bias-controlled dataset for pushing the limits of object recognition mod-
els.” In: Neural Information Processing Systems. 2019.

[12] Adrien Bardes, Jean Ponce, and Yann LeCun. “Vicreg: Variance-invariance-
covariance regularization for self-supervised learning.” In: arXiv preprint arXiv:2105.04906
(2021).

[13] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Chris-
tine McLeavey, Jerry Tworek, and Mark Chen. “Efficient training of language
models to fill in the middle.” In: arXiv preprint arXiv:2207.14255 (2022).

[14] Sara Beery, Grant Van Horn, and Pietro Perona. “Recognition in terra incog-
nita.” In: Proceedings of the European conference on computer vision (ECCV). 2018,
pp. 456–473.

[15] Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L Alexander, David W
Jacobs, and Peter N Belhumeur. “Birdsnap: Large-scale fine-grained visual
categorization of birds.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2014, pp. 2011–2018.

[16] David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. “Variational Inference:
A Review for Statisticians.” In: Journal of the American Statistical Association
(2017).

[17] Roger Bohn and James E Short. “Info capacity| measuring consumer infor-
mation.” In: International Journal of Communication 6 (2012), p. 21.

[18] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. “Food-101–mining
discriminative components with random forests.” In: European conference on
computer vision. Springer. 2014, pp. 446–461.

[19] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. “Food-101 – Mining
Discriminative Components with Random Forests.” In: European Conference on
Computer Vision. 2014.

[20] Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large scale GAN train-
ing for high fidelity natural image synthesis.” In: arXiv preprint arXiv:1809.11096
(2018).

[21] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. “Language models are few-shot learners.” In: Advances in neural
information processing systems 33 (2020), pp. 1877–1901.

[22] Johannes Buchner. imagehash (fork). https://github.com/JohannesBuchner/
imagehash. 2021.

119

https://github.com/JohannesBuchner/imagehash
https://github.com/JohannesBuchner/imagehash

[23] Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George
Deligiannidis, and Arnaud Doucet. “A continuous time framework for dis-
crete denoising models.” In: Advances in Neural Information Processing Systems
35 (2022), pp. 28266–28279.

[24] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R
Hruschka, and Tom M Mitchell. “Toward an architecture for never-ending
language learning.” In: Twenty-Fourth AAAI conference on artificial intelligence.
2010.

[25] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Pi-
otr Bojanowski, and Armand Joulin. “Emerging properties in self-supervised
vision transformers.” In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2021, pp. 9650–9660.

[26] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. “Maskgit:
Masked generative image transformer.” In: Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition. 2022, pp. 11315–11325.

[27] Huanran Chen, Yinpeng Dong, Shitong Shao, Zhongkai Hao, Xiao Yang, Hang
Su, and Jun Zhu. “Your diffusion model is secretly a certifiably robust classi-
fier.” In: arXiv preprint arXiv:2402.02316 (2024).

[28] Huanran Chen, Yinpeng Dong, Zhengyi Wang, Xiao Yang, Chengqi Duan,
Hang Su, and Jun Zhu. “Robust classification via a single diffusion model.”
In: arXiv preprint arXiv:2305.15241 (2023).

[29] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton.
“A simple framework for contrastive learning of visual representations.” In:
preprint arXiv:2002.05709 (2020).

[30] Xinlei Chen and Abhinav Gupta. “Webly supervised learning of convolu-
tional networks.” In: Proceedings of the IEEE international conference on computer
vision. 2015, pp. 1431–1439.

[31] Xinlei Chen, Zhuang Liu, Saining Xie, and Kaiming He. “Deconstructing
denoising diffusion models for self-supervised learning.” In: arXiv preprint
arXiv:2401.14404 (2024).

[32] Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. “Neil: Extracting vi-
sual knowledge from web data.” In: Proceedings of the IEEE international con-
ference on computer vision. 2013, pp. 1409–1416.

[33] Xinlei Chen, Saining Xie, and Kaiming He. “An empirical study of training
self-supervised vision transformers.” In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 2021, pp. 9640–9649.

120

[34] Zhuoming Chen, Avner May, Ruslan Svirschevski, Yuhsun Huang, Max Ryabinin,
Zhihao Jia, and Beidi Chen. “Sequoia: Scalable, robust, and hardware-aware
speculative decoding.” In: arXiv preprint arXiv:2402.12374 (2024).

[35] Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel
Ilharco, Cade Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jit-
sev. “Reproducible scaling laws for contrastive language-image learning.” In:
arXiv preprint arXiv:2212.07143 (2022).

[36] Gordon Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. “Func-
tional Map of the World.” In: CVPR. 2018.

[37] Kevin Clark and Priyank Jaini. “Text-to-Image Diffusion Models are Zero
Shot Classifiers.” In: Advances in Neural Information Processing Systems 36 (2023).

[38] Joe Clinton. Google Images Download (fork). https://github.com/Joeclinton1/
google-images-download. 2020.

[39] Adam Coates, Andrew Ng, and Honglak Lee. “An Analysis of Single-Layer
Networks in Unsupervised Feature Learning.” In: Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics. Ed. by Geoffrey
Gordon, David Dunson, and Miroslav Dudík. Vol. 15. Proceedings of Machine
Learning Research. Fort Lauderdale, FL, USA: PMLR, 2011, pp. 215–223.

[40] David Cohn, Les Atlas, and Richard Ladner. “Improving generalization with
active learning.” In: Machine learning 15 (1994), pp. 201–221.

[41] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. “Randaugment:
Practical automated data augmentation with a reduced search space.” In: Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition
workshops. 2020, pp. 702–703.

[42] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. “FlashAt-
tention: Fast and Memory-Efficient Exact Attention with IO-Awareness.” In:
Advances in Neural Information Processing Systems. 2022.

[43] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Ima-
genet: A large-scale hierarchical image database.” In: 2009 IEEE conference on
computer vision and pattern recognition. Ieee. 2009, pp. 248–255.

[44] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert:
Pre-training of deep bidirectional transformers for language understanding.”
In: preprint arXiv:1810.04805 (2018).

[45] Prafulla Dhariwal and Alexander Nichol. “Diffusion models beat gans on
image synthesis.” In: NeurIPS (2021).

121

https://github.com/Joeclinton1/google-images-download
https://github.com/Joeclinton1/google-images-download

[46] Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav
Ganin, Pierre H Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor
Durkan, et al. “Continuous diffusion for categorical data.” In: arXiv preprint
arXiv:2211.15089 (2022).

[47] Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman.
“Measuring and mitigating unintended bias in text classification.” In: Proceed-
ings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society. 2018, pp. 67–
73.

[48] Pierre Dognin, Igor Melnyk, Youssef Mroueh, Inkit Padhi, Mattia Rigotti, Jar-
ret Ross, Yair Schiff, Richard A Young, and Brian Belgodere. “Image caption-
ing as an assistive technology: Lessons learned from vizwiz 2020 challenge.”
In: Journal of Artificial Intelligence Research 73 (2022), pp. 437–459.

[49] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. “An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale.” In: preprint arXiv:2010.11929 (2020).

[50] Talfan Evans, Shreya Pathak, Hamza Merzic, Jonathan Schwarz, Ryutaro Tanno,
and Olivier J Henaff. “Bad students make great teachers: Active learning ac-
celerates large-scale visual understanding.” In: arXiv preprint arXiv:2312.05328
(2023).

[51] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. “The pascal visual object classes (voc) challenge.” In:
IJCV (2010).

[52] Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao Wan, Vaishaal Shankar,
Achal Dave, and Ludwig Schmidt. “Data determines distributional robust-
ness in contrastive language image pre-training (clip).” In: International Con-
ference on Machine Learning. PMLR. 2022, pp. 6216–6234.

[53] Vitaly Feldman and Chiyuan Zhang. “What neural networks memorize and
why: Discovering the long tail via influence estimation.” In: Advances in Neu-
ral Information Processing Systems 33 (2020), pp. 2881–2891.

[54] Robert Fergus, Li Fei-Fei, Pietro Perona, and Andrew Zisserman. “Learning
object categories from google’s image search.” In: Tenth IEEE International
Conference on Computer Vision (ICCV’05) Volume 1. Vol. 2. IEEE. 2005, pp. 1816–
1823.

[55] Ronald A Fisher. “The use of multiple measurements in taxonomic prob-
lems.” In: Annals of eugenics 7.2 (1936), pp. 179–188.

122

[56] Weifeng Ge. “Deep metric learning with hierarchical triplet loss.” In: Proceed-
ings of the European Conference on Computer Vision (ECCV). 2018, pp. 269–285.

[57] Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland
Brendel, Matthias Bethge, and Felix A Wichmann. “Shortcut learning in deep
neural networks.” In: Nature Machine Intelligence 2.11 (2020), pp. 665–673.

[58] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix
A Wichmann, and Wieland Brendel. “ImageNet-trained CNNs are biased to-
wards texture; increasing shape bias improves accuracy and robustness.” In:
International conference on learning representations. 2018.

[59] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. “Made:
Masked autoencoder for distribution estimation.” In: International conference
on machine learning. PMLR. 2015, pp. 881–889.

[60] Shantanu Ghosh, Ke Yu, Forough Arabshahi, and Kayhan Batmanghelich.
“Route, Interpret, Repeat: Blurring the line between post hoc explainability
and interpretable models.” In: arXiv preprint arXiv:2307.05350 (2023).

[61] Aaron Gokaslan and Vanya Cohen. “OpenWebTextCorpus https://skylion007.
github. io.” In: OpenWebTextCorpus.</b (2019).

[62] Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong.
“Diffuseq: Sequence to sequence text generation with diffusion models.” In:
arXiv preprint arXiv:2210.08933 (2022).

[63] Will Grathwohl, Kuan-Chieh Wang, Joern-Henrik Jacobsen, David Duvenaud,
Mohammad Norouzi, and Kevin Swersky. “Your classifier is secretly an en-
ergy based model and you should treat it like one.” In: International Conference
on Learning Representations. 2020.

[64] Jean-Bastien Grill et al. “Bootstrap your own latent: A new approach to self-
supervised learning.” In: NeurIPS. 2020.

[65] Roger Grosse, Juhan Bae, Cem Anil, Nelson Elhage, Alex Tamkin, Amirhos-
sein Tajdini, Benoit Steiner, Dustin Li, Esin Durmus, Ethan Perez, et al. “Study-
ing large language model generalization with influence functions.” In: arXiv
preprint arXiv:2308.03296 (2023).

[66] Ishaan Gulrajani and Tatsunori B Hashimoto. “Likelihood-based diffusion
language models.” In: Advances in Neural Information Processing Systems 36

(2023), pp. 16693–16715.

[67] Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov. “Ssd-lm: Semi-autoregressive
simplex-based diffusion language model for text generation and modular con-
trol.” In: arXiv preprint arXiv:2210.17432 (2022).

123

[68] Ben Harwood, Vijay Kumar BG, Gustavo Carneiro, Ian Reid, and Tom Drum-
mond. “Smart mining for deep metric learning.” In: Proceedings of the IEEE
International Conference on Computer Vision. 2017, pp. 2821–2829.

[69] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Gir-
shick. “Masked Autoencoders Are Scalable Vision Learners.” In: arXiv:2111.06377
(2021).

[70] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross
Girshick. “Masked autoencoders are scalable vision learners.” In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022,
pp. 16000–16009.

[71] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. “Mo-
mentum contrast for unsupervised visual representation learning.” In: CVPR.
2020.

[72] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition.” In: CVPR. 2016.

[73] Dan Hendrycks and Thomas Dietterich. “Benchmarking neural network ro-
bustness to common corruptions and perturbations.” In: arXiv preprint arXiv:1903.12261
(2019).

[74] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song.
“Natural Adversarial Examples.” In: CVPR (2021).

[75] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song.
“Natural adversarial examples.” In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2021, pp. 15262–15271.

[76] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion probabilis-
tic models.” In: Advances in Neural Information Processing Systems 33 (2020),
pp. 6840–6851.

[77] Jonathan Ho and Tim Salimans. “Classifier-free diffusion guidance.” In: arXiv
preprint arXiv:2207.12598 (2022).

[78] Jonathan Ho et al. Imagen Video: High Definition Video Generation with Diffusion
Models. 2022.

[79] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory.” In:
Neural computation 9.8 (1997), pp. 1735–1780.

[80] Micah Hodosh, Peter Young, and Julia Hockenmaier. “Framing image de-
scription as a ranking task: Data, models and evaluation metrics.” In: Journal
of Artificial Intelligence Research 47 (2013), pp. 853–899.

124

[81] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, et al. “Training compute-optimal large language
models.” In: arXiv preprint arXiv:2203.15556 (2022).

[82] Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne
van den Berg, and Tim Salimans. “Autoregressive diffusion models.” In: arXiv
preprint arXiv:2110.02037 (2021).

[83] Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-
Paz. “Simple data balancing achieves competitive worst-group-accuracy.” In:
Conference on Causal Learning and Reasoning. PMLR. 2022, pp. 336–351.

[84] Gabriel Ilharco, Mitchell Wortsman, Nicholas Carlini, Rohan Taori, Achal
Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Ha-
jishirzi, Ali Farhadi, et al. “OpenCLIP.” In: Zenodo 4 (2021), p. 5.

[85] Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Alek-
sander Madry. “Datamodels: Predicting predictions from training data.” In:
arXiv preprint arXiv:2202.00622 (2022).

[86] Priyank Jaini, Kevin Clark, and Robert Geirhos. “Intriguing properties of gen-
erative classifiers.” In: arXiv preprint arXiv:2309.16779 (2023).

[87] Ziyu Jiang, Tianlong Chen, Ting Chen, and Zhangyang Wang. “Improving
contrastive learning on imbalanced data via open-world sampling.” In: Ad-
vances in Neural Information Processing Systems 34 (2021), pp. 5997–6009.

[88] Jeff Johnson, Matthijs Douze, and Hervé Jégou. “Billion-scale similarity search
with GPUs.” In: IEEE Transactions on Big Data 7.3 (2019), pp. 535–547.

[89] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,
Anna Potapenko, et al. “Highly accurate protein structure prediction with
AlphaFold.” In: Nature 596.7873 (2021), pp. 583–589.

[90] Amita Kamath, Christopher Clark, Tanmay Gupta, Eric Kolve, Derek Hoiem,
and Aniruddha Kembhavi. “Webly Supervised Concept Expansion for Gen-
eral Purpose Vision Models.” In: arXiv preprint arXiv:2202.02317 (2022).

[91] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin
Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
“Scaling laws for neural language models.” In: arXiv preprint arXiv:2001.08361
(2020).

125

[92] Gwanghyun Kim, Taesung Kwon, and Jong Chul Ye. “DiffusionCLIP: Text-
Guided Diffusion Models for Robust Image Manipulation.” In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
2022, pp. 2426–2435.

[93] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. “Last layer
re-training is sufficient for robustness to spurious correlations.” In: arXiv
preprint arXiv:2204.02937 (2022).

[94] Pang Wei Koh and Percy Liang. “Understanding black-box predictions via in-
fluence functions.” In: International conference on machine learning. PMLR. 2017,
pp. 1885–1894.

[95] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Mar-
vin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard
Lanas Phillips, Irena Gao, et al. “Wilds: A benchmark of in-the-wild distri-
bution shifts.” In: International conference on machine learning. PMLR. 2021,
pp. 5637–5664.

[96] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica
Yung, Sylvain Gelly, and Neil Houlsby. “Big transfer (BiT): General visual
representation learning.” In: ECCV. 2020.

[97] Daisuke Komura and Shumpei Ishikawa. “Machine learning methods for
histopathological image analysis.” In: Computational and structural biotechnol-
ogy journal 16 (2018), pp. 34–42.

[98] Simon Kornblith, Jonathon Shlens, and Quoc V Le. “Do better imagenet mod-
els transfer better?” In: Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition. 2019, pp. 2661–2671.

[99] Elisa Kreiss, Fei Fang, Noah D Goodman, and Christopher Potts. “Conca-
dia: Towards image-based text generation with a purpose.” In: arXiv preprint
arXiv:2104.08376 (2021).

[100] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. “CIFAR-10 (Canadian
Institute for Advanced Research).” In: (). url: http://www.cs.toronto.edu/
~kriz/cifar.html.

[101] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classifi-
cation with deep convolutional neural networks.” In: Advances in neural infor-
mation processing systems 25 (2012).

[102] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas
Eck, Chris Callison-Burch, and Nicholas Carlini. “Deduplicating training data
makes language models better.” In: arXiv preprint arXiv:2107.06499 (2021).

126

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

[103] Yoonho Lee, Huaxiu Yao, and Chelsea Finn. Diversify and Disambiguate: Learn-
ing From Underspecified Data. 2023. arXiv: 2202.03418 [cs.LG].

[104] Yaniv Leviathan, Matan Kalman, and Yossi Matias. “Fast inference from trans-
formers via speculative decoding.” In: International Conference on Machine Learn-
ing. PMLR. 2023, pp. 19274–19286.

[105] Alexander C Li, Alexei A Efros, and Deepak Pathak. “Understanding Col-
lapse in Non-Contrastive Siamese Representation Learning.” In: European
Conference on Computer Vision. Springer. 2022, pp. 490–505.

[106] Alexander C Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak
Pathak. “Your Diffusion Model is Secretly a Zero-Shot Classifier.” In: arXiv
preprint arXiv:2303.16203 (2023).

[107] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. “Blip: Bootstrap-
ping language-image pre-training for unified vision-language understanding
and generation.” In: International Conference on Machine Learning. PMLR. 2022,
pp. 12888–12900.

[108] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori
B Hashimoto. “Diffusion-lm improves controllable text generation.” In: Ad-
vances in Neural Information Processing Systems 35 (2022), pp. 4328–4343.

[109] Yuanzhi Li, Colin Wei, and Tengyu Ma. “Towards explaining the regulariza-
tion effect of initial large learning rate in training neural networks.” In: Ad-
vances in neural information processing systems 32 (2019).

[110] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et
al. “Competition-level code generation with alphacode.” In: Science 378.6624

(2022), pp. 1092–1097.

[111] Zhiheng Li, Ivan Evtimov, Albert Gordo, Caner Hazirbas, Tal Hassner, Cris-
tian Canton Ferrer, Chenliang Xu, and Mark Ibrahim. “A Whac-A-Mole Dilemma:
Shortcuts Come in Multiples Where Mitigating One Amplifies Others.” In:
arXiv preprint arXiv:2212.04825 (2022).

[112] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei
Koh, Shiori Sagawa, Percy Liang, and Chelsea Finn. “Just train twice: Improv-
ing group robustness without training group information.” In: International
Conference on Machine Learning. PMLR. 2021, pp. 6781–6792.

[113] Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. “World model on
million-length video and language with blockwise ringattention.” In: arXiv
preprint arXiv:2402.08268 (2024).

127

https://arxiv.org/abs/2202.03418

[114] Hao Liu, Matei Zaharia, and Pieter Abbeel. “Ring attention with blockwise
transformers for near-infinite context.” In: arXiv preprint arXiv:2310.01889 (2023).

[115] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep learning face
attributes in the wild.” In: Proceedings of the IEEE international conference on
computer vision. 2015, pp. 3730–3738.

[116] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization.”
In: arXiv preprint arXiv:1711.05101 (2017).

[117] Aaron Lou, Chenlin Meng, and Stefano Ermon. “Discrete diffusion mod-
eling by estimating the ratios of the data distribution.” In: arXiv preprint
arXiv:2310.16834 (2023).

[118] Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar
Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. “Explor-
ing the limits of weakly supervised pretraining.” In: ECCV. 2018.

[119] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. Fine-Grained Visual
Classification of Aircraft. Tech. rep. 2013. arXiv: 1306.5151 [cs-cv].

[120] R Thomas McCoy, Ellie Pavlick, and Tal Linzen. “Right for the wrong rea-
sons: Diagnosing syntactic heuristics in natural language inference.” In: arXiv
preprint arXiv:1902.01007 (2019).

[121] Ian R McKenzie, Alexander Lyzhov, Michael Pieler, Alicia Parrish, Aaron
Mueller, Ameya Prabhu, Euan McLean, Aaron Kirtland, Alexis Ross, Alisa
Liu, et al. “Inverse scaling: When bigger isn’t better.” In: arXiv preprint arXiv:2306.09479
(2023).

[122] Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. “Concrete
score matching: Generalized score matching for discrete data.” In: Advances
in Neural Information Processing Systems 35 (2022), pp. 34532–34545.

[123] Elad Mezuman and Yair Weiss. “Learning about canonical views from inter-
net image collections.” In: Advances in neural information processing systems 25

(2012).

[124] George A Miller. “WordNet: a lexical database for English.” In: Communica-
tions of the ACM 38.11 (1995), pp. 39–41.

[125] John P Miller, Rohan Taori, Aditi Raghunathan, Shiori Sagawa, Pang Wei
Koh, Vaishaal Shankar, Percy Liang, Yair Carmon, and Ludwig Schmidt. “Ac-
curacy on the line: on the strong correlation between out-of-distribution and
in-distribution generalization.” In: International conference on machine learning.
PMLR. 2021, pp. 7721–7735.

128

https://arxiv.org/abs/1306.5151

[126] Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar, Bishan
Yang, Justin Betteridge, Andrew Carlson, Bhavana Dalvi, Matt Gardner, Bryan
Kisiel, et al. “Never-ending learning.” In: Communications of the ACM 61.5
(2018), pp. 103–115.

[127] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. “When does la-
bel smoothing help?” In: Advances in neural information processing systems 32

(2019).

[128] Vaishnavh Nagarajan, Anders Andreassen, and Behnam Neyshabur. “Under-
standing the failure modes of out-of-distribution generalization.” In: arXiv
preprint arXiv:2010.15775 (2020).

[129] Junhyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin.
“Learning from failure: De-biasing classifier from biased classifier.” In: Ad-
vances in Neural Information Processing Systems 33 (2020), pp. 20673–20684.

[130] Andrew Y. Ng and Michael I. Jordan. “On Discriminative vs. Generative Clas-
sifiers: A Comparison of Logistic Regression and Naive Bayes.” In: MIT Press,
2001.

[131] Maria-Elena Nilsback and Andrew Zisserman. “Automated flower classifi-
cation over a large number of classes.” In: 2008 Sixth Indian Conference on
Computer Vision, Graphics & Image Processing. 2008.

[132] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski,
Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. “Show your work: Scratchpads for intermediate computa-
tion with language models.” In: (2021).

[133] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. “Deep metric
learning via lifted structured feature embedding.” In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, pp. 4004–4012.

[134] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning
with contrastive predictive coding.” In: preprint arXiv:1807.03748 (2018).

[135] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,
Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin
El-Nouby, et al. “Dinov2: Learning robust visual features without supervi-
sion.” In: arXiv preprint arXiv:2304.07193 (2023).

[136] Rasmus Palm, Ulrich Paquet, and Ole Winther. “Recurrent relational net-
works.” In: Advances in neural information processing systems 31 (2018).

[137] Arnaud Pannatier, Evann Courdier, and François Fleuret. “σ-GPTs: A New
Approach to Autoregressive Models.” In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer. 2024, pp. 143–159.

129

[138] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar.
“Cats and Dogs.” In: IEEE Conference on Computer Vision and Pattern Recogni-
tion. 2012.

[139] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. “Cats
and dogs.” In: 2012 IEEE conference on computer vision and pattern recognition.
IEEE. 2012, pp. 3498–3505.

[140] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. “Deep learn-
ing on a data diet: Finding important examples early in training.” In: Advances
in Neural Information Processing Systems 34 (2021), pp. 20596–20607.

[141] William Peebles and Saining Xie. “Scalable Diffusion Models with Transform-
ers.” In: arXiv preprint arXiv:2212.09748 (2022).

[142] Mohammad Pezeshki, Oumar Kaba, Yoshua Bengio, Aaron C Courville, Doina
Precup, and Guillaume Lajoie. “Gradient starvation: A learning proclivity
in neural networks.” In: Advances in Neural Information Processing Systems 34

(2021), pp. 1256–1272.

[143] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. “Dreamfusion:
Text-to-3d using 2d diffusion.” In: arXiv preprint arXiv:2209.14988 (2022).

[144] Mihir Prabhudesai, Tsung-Wei Ke, Alexander Cong Li, Deepak Pathak, and
Katerina Fragkiadaki. “Diffusion-TTA: Test-time Adaptation of Discrimina-
tive Models via Generative Feedback.” In: Thirty-seventh Conference on Neural
Information Processing Systems. 2023.

[145] Aahlad Manas Puli, Lily Zhang, Yoav Wald, and Rajesh Ranganath. “Don’t
blame dataset shift! shortcut learning due to gradients and cross entropy.” In:
Advances in Neural Information Processing Systems 36 (2023), pp. 71874–71910.

[146] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. “Learning transferable visual models from natural language supervi-
sion.” In: International Conference on Machine Learning. PMLR. 2021, pp. 8748–
8763.

[147] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. “Language models are unsupervised multitask learners.” In: ().

[148] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. “Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer.” In: (2020).

[149] Inioluwa Deborah Raji and Roel Dobbe. “Concrete problems in AI safety,
revisited.” In: arXiv preprint arXiv:2401.10899 (2023).

130

[150] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar.
“Do ImageNet Classifiers Generalize to ImageNet?” In: International Confer-
ence on Machine Learning. 2019.

[151] Nils Reimers and Iryna Gurevych. “Sentence-bert: Sentence embeddings us-
ing siamese bert-networks.” In: arXiv preprint arXiv:1908.10084 (2019).

[152] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “" Why should i
trust you?" Explaining the predictions of any classifier.” In: Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery and data
mining. 2016, pp. 1135–1144.

[153] Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. “Con-
trastive learning with hard negative samples.” In: arXiv preprint arXiv:2010.04592
(2020).

[154] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and
Björn Ommer. “High-resolution image synthesis with latent diffusion mod-
els.” In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 10684–10695.

[155] Amir Rosenfeld, Richard Zemel, and John K Tsotsos. “The elephant in the
room.” In: arXiv preprint arXiv:1808.03305 (2018).

[156] Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. “Domain-adjusted
regression or: Erm may already learn features sufficient for out-of-distribution
generalization.” In: arXiv preprint arXiv:2202.06856 (2022).

[157] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein,
and Kfir Aberman. “Dreambooth: Fine tuning text-to-image diffusion models
for subject-driven generation.” In: arXiv preprint arXiv:2208.12242 (2022).

[158] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning
internal representations by error propagation. 1985.

[159] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. “Dis-
tributionally robust neural networks for group shifts: On the importance of
regularization for worst-case generalization.” In: arXiv preprint arXiv:1911.08731
(2019).

[160] Shiori Sagawa, Aditi Raghunathan, Pang Wei Koh, and Percy Liang. “An in-
vestigation of why overparameterization exacerbates spurious correlations.”
In: International Conference on Machine Learning. PMLR. 2020, pp. 8346–8356.

131

[161] Chitwan Saharia et al. “Photorealistic Text-to-Image Diffusion Models with
Deep Language Understanding.” In: Advances in Neural Information Process-
ing Systems. Ed. by Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho. 2022. url: https : / / openreview . net / forum ? id = 08Yk -

n5l2Al.

[162] Subham Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marro-
quin, Justin Chiu, Alexander Rush, and Volodymyr Kuleshov. “Simple and
effective masked diffusion language models.” In: Advances in Neural Informa-
tion Processing Systems 37 (2024), pp. 130136–130184.

[163] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. “Distil-
BERT, a distilled version of BERT: smaller, faster, cheaper and lighter.” In:
arXiv preprint arXiv:1910.01108 (2019).

[164] Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. “Breeds: Bench-
marks for subpopulation shift.” In: arXiv preprint arXiv:2008.04859 (2020).

[165] Florian Schroff, Dmitry Kalenichenko, and James Philbin. “Facenet: A unified
embedding for face recognition and clustering.” In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 815–823.

[166] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross
Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell
Wortsman, et al. “LAION-5B: An open large-scale dataset for training next
generation image-text models.” In: arXiv preprint arXiv:2210.08402 (2022).

[167] Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin,
Micah Goldblum, and Tom Goldstein. “Can you learn an algorithm? general-
izing from easy to hard problems with recurrent networks.” In: Advances in
Neural Information Processing Systems 34 (2021), pp. 6695–6706.

[168] Amrith Setlur, Don Dennis, Benjamin Eysenbach, Aditi Raghunathan, Chelsea
Finn, Virginia Smith, and Sergey Levine. “Bitrate-constrained DRO: Beyond
worst case robustness to unknown group shifts.” In: arXiv preprint arXiv:2302.02931
(2023).

[169] Burr Settles. “Active learning literature survey.” In: (2009).

[170] Claude E Shannon. “A mathematical theory of communication.” In: The Bell
system technical journal 27.3 (1948), pp. 379–423.

[171] Ruoqi Shen, Sébastien Bubeck, and Suriya Gunasekar. “Data augmentation as
feature manipulation.” In: International conference on machine learning. PMLR.
2022, pp. 19773–19808.

132

https://openreview.net/forum?id=08Yk-n5l2Al
https://openreview.net/forum?id=08Yk-n5l2Al

[172] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. “Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm.” In: arXiv preprint arXiv:1712.01815 (2017).

[173] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Gan-
guli. “Deep unsupervised learning using nonequilibrium thermodynamics.”
In: International Conference on Machine Learning. PMLR. 2015, pp. 2256–2265.

[174] Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising diffusion im-
plicit models.” In: arXiv preprint arXiv:2010.02502 (2020).

[175] Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising Diffusion Im-
plicit Models.” In: International Conference on Learning Representations. 2021.
url: https://openreview.net/forum?id=St1giarCHLP.

[176] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari
Morcos. “Beyond neural scaling laws: beating power law scaling via data
pruning.” In: Advances in Neural Information Processing Systems 35 (2022), pp. 19523–
19536.

[177] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and
Nathan Srebro. “The implicit bias of gradient descent on separable data.”
In: Journal of Machine Learning Research 19.70 (2018), pp. 1–57.

[178] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. “Dropout: a simple way to prevent neural networks from
overfitting.” In: The journal of machine learning research 15.1 (2014), pp. 1929–
1958.

[179] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng
Liu. “Roformer: Enhanced transformer with rotary position embedding.” In:
Neurocomputing 568 (2024), p. 127063.

[180] Richard S Sutton. “Dyna, an integrated architecture for learning, planning,
and reacting.” In: ACM Sigart Bulletin 2.4 (1991), pp. 160–163.

[181] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht,
and Ludwig Schmidt. “Measuring Robustness to Natural Distribution Shifts
in Image Classification.” In: (2020). url: https : / / arxiv . org / abs / 2007 .

00644.

[182] David Tellez, Geert Litjens, Péter Bándi, Wouter Bulten, John-Melle Bokhorst,
Francesco Ciompi, and Jeroen Van Der Laak. “Quantifying the effects of data
augmentation and stain color normalization in convolutional neural networks
for computational pathology.” In: Medical image analysis 58 (2019), p. 101544.

133

https://openreview.net/forum?id=St1giarCHLP
https://arxiv.org/abs/2007.00644
https://arxiv.org/abs/2007.00644

[183] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl
Ni, Douglas Poland, Damian Borth, and Li-Jia Li. “YFCC100M: The new data
in multimedia research.” In: arXiv preprint arXiv:1503.01817 (2015).

[184] Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams,
Douwe Kiela, and Candace Ross. “Winoground: Probing vision and language
models for visio-linguistic compositionality.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022, pp. 5238–5248.

[185] Yonglong Tian, Dilip Krishnan, and Phillip Isola. “Contrastive multiview cod-
ing.” In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XI 16. Springer. 2020, pp. 776–794.

[186] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. “Llama: Open and efficient foundation language models.”
In: arXiv preprint arXiv:2302.13971 (2023).

[187] Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo
Larochelle. “Neural autoregressive distribution estimation.” In: Journal of Ma-
chine Learning Research 17.205 (2016), pp. 1–37.

[188] Vladimir Vapnik. The nature of statistical learning theory. Springer science &
business media, 1999.

[189] Hardik Vasa. Google Images Download. https://github.com/hardikvasa/
google-images-download. 2015.

[190] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you
need.” In: NeurIPS. 2017.

[191] Mitko Veta, Paul J Van Diest, Mehdi Jiwa, Shaimaa Al-Janabi, and Josien PW
Pluim. “Mitosis counting in breast cancer: Object-level interobserver agree-
ment and comparison to an automatic method.” In: PloS one 11.8 (2016),
e0161286.

[192] Ben Wang and Aran Komatsuzaki. GPT-J-6B: A 6 Billion Parameter Autoregres-
sive Language Model. https://github.com/kingoflolz/mesh-transformer-
jax. May 2021.

[193] Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. “Learn-
ing to efficiently sample from diffusion probabilistic models.” In: arXiv preprint
arXiv:2106.03802 (2021).

134

https://github.com/hardikvasa/google-images-download
https://github.com/hardikvasa/google-images-download
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

[194] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. “Chain-of-thought prompting elicits reasoning
in large language models.” In: Advances in neural information processing systems
35 (2022), pp. 24824–24837.

[195] Christopher Williams and Carl Rasmussen. “Gaussian processes for regres-
sion.” In: Advances in neural information processing systems 8 (1995).

[196] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp Krahenbuhl.
“Sampling matters in deep embedding learning.” In: Proceedings of the IEEE
international conference on computer vision. 2017, pp. 2840–2848.

[197] Shirley Wu, Mert Yuksekgonul, Linjun Zhang, and James Zou. “Discover and
cure: Concept-aware mitigation of spurious correlation.” In: International Con-
ference on Machine Learning. PMLR. 2023, pp. 37765–37786.

[198] Yutaro Yamada, Yingtian Tang, and Ilker Yildirim. “When are Lemons Purple?
The Concept Association Bias of CLIP.” In: arXiv preprint arXiv:2212.12043
(2022).

[199] Sen Yang, Shujian Huang, Xinyu Dai, and Jiajun Chen. “Multi-candidate spec-
ulative decoding.” In: arXiv preprint arXiv:2401.06706 (2024).

[200] Yuzhe Yang, Haoran Zhang, Dina Katabi, and Marzyeh Ghassemi. “Change is
hard: A closer look at subpopulation shift.” In: arXiv preprint arXiv:2302.12254
(2023).

[201] Yang You, Igor Gitman, and Boris Ginsburg. “Large Batch Training of Convo-
lutional Networks.” In: preprint arXiv:1708.03888 (2017).

[202] Alan Yuille and Daniel Kersten. “Vision as Bayesian inference: analysis by
synthesis?” In: Trends in cognitive sciences 10.7 (2006), pp. 301–308.

[203] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe,
and Youngjoon Yoo. “Cutmix: Regularization strategy to train strong classi-
fiers with localizable features.” In: Proceedings of the IEEE/CVF international
conference on computer vision. 2019, pp. 6023–6032.

[204] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. “Bar-
low Twins: Self-Supervised Learning via Redundancy Reduction.” In: arXiv
preprint arXiv:2103.03230 (2021).

[205] John R Zech, Marcus A Badgeley, Manway Liu, Anthony B Costa, Joseph
J Titano, and Eric Karl Oermann. “Variable generalization performance of
a deep learning model to detect pneumonia in chest radiographs: a cross-
sectional study.” In: PLoS medicine 15.11 (2018), e1002683.

135

[206] Hang Zhang, Xin Li, and Lidong Bing. “Video-llama: An instruction-tuned
audio-visual language model for video understanding.” In: arXiv preprint
arXiv:2306.02858 (2023).

[207] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz.
“mixup: Beyond empirical risk minimization.” In: arXiv preprint arXiv:1710.09412
(2017).

[208] Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad
Mehrotra. “Draft & verify: Lossless large language model acceleration via self-
speculative decoding.” In: arXiv preprint arXiv:2309.08168 (2023).

[209] Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang.
“Men also like shopping: Reducing gender bias amplification using corpus-
level constraints.” In: arXiv preprint arXiv:1707.09457 (2017).

[210] Chenyu Zheng, Guoqiang Wu, Fan Bao, Yue Cao, Chongxuan Li, and Jun Zhu.
“Revisiting discriminative vs. generative classifiers: Theory and implications.”
In: International Conference on Machine Learning. PMLR. 2023, pp. 42420–42477.

[211] Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qin-
sheng Zhang. “Masked diffusion models are secretly time-agnostic masked
models and exploit inaccurate categorical sampling.” In: arXiv preprint arXiv:2409.02908
(2024).

[212] Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh
Susskind, Samy Bengio, and Preetum Nakkiran. “What algorithms can trans-
formers learn? a study in length generalization.” In: arXiv preprint arXiv:2310.16028
(2023).

[213] Roland S Zimmermann, Lukas Schott, Yang Song, Benjamin A Dunn, and
David A Klindt. “Score-based generative classifiers.” In: arXiv preprint arXiv:2110.00473
(2021).

[214] Aditya Ramesh et al. Hierarchical Text-Conditional Image Generation with CLIP
Latents. 2022.

136

	Acknowledgments
	Contents
	1 Introduction
	1.1 Autonomously Acquiring Hard Data
	1.2 Harder Learning Objectives
	1.3 Dynamically choosing problem formulation at test-time

	Autonomous Data Acquisition
	2 Internet Explorer: Targeted Representation Learning on the Open Web
	2.1 Internet Explorer: An Online Agent
	2.1.1 Text-to-image Search
	2.1.2 Text Query Generation
	2.1.3 Self-supervised Training
	2.1.4 Image Relevance Reward
	2.1.5 Estimating Reward for Unseen Concepts
	2.1.6 Provable speedup in relevant query identification
	2.1.7 Query sampling distribution

	2.2 Experimental Setting
	2.2.1 Self-supervised Exploration
	2.2.2 Label Set-guided Exploration
	2.2.3 Datasets and Metrics

	2.3 Results and Analysis
	2.3.1 Self-supervised Results
	2.3.2 Self-supervised Exploration Behavior
	2.3.3 Label Set-guided Results
	2.3.4 Domain dataset results
	2.3.5 Learning from other sources of data
	2.3.6 Effect of image reward type
	2.3.7 Comparison to image-to-image search

	2.4 Related Work
	2.5 Discussion

	Harder Learning Objectives
	3 Learning Generative Models for Classification
	3.1 Classification via Diffusion Models
	3.1.1 Method: Diffusion Classifier
	3.1.2 Diffusion Model Preliminaries
	3.1.3 Variance Reduction via Difference Testing

	3.2 Practical Considerations
	3.2.1 Effect of timestep
	3.2.2 Efficient Classification

	3.3 Experimental Details
	3.3.1 Zero-shot Classification
	3.3.2 Supervised Classification

	3.4 Experimental Results
	3.4.1 Zero-shot Classification Results
	3.4.2 Improved Compositional Reasoning Abilities
	3.4.3 Supervised Classification Results

	3.5 Discussion

	4 Generative Classifiers Avoid Shortcut Solutions
	4.1 Related Work
	4.2 Preliminaries
	4.2.1 Types of Distribution Shift
	4.2.2 Shortcomings of Discriminative Classifiers

	4.3 Generative Classifiers
	4.3.1 Intuition
	4.3.2 Diffusion-based Generative Classifier
	4.3.3 Autoregressive Generative Classifier

	4.4 Experiments
	4.4.1 Setup
	4.4.2 Results on Distribution Shift Benchmarks
	4.4.3 Why Do Generative Classifiers Do Better?

	4.5 Illustrative Setting
	4.5.1 Data
	4.5.2 Algorithms
	4.5.3 The Inductive Bias of LDA
	4.5.4 Generalization Phase Diagrams

	4.6 Discussion

	Algorithm Design
	5 Discrete Diffusion is Generalized Autoregression
	5.1 Connecting Discrete Diffusion and Autoregression
	5.1.1 Preliminaries
	5.1.2 Equivalence to a Generalized Autoregressive Ordering

	5.2 Methods
	5.2.1 Generalized Autoregressive Transformer
	5.2.2 Double RoPE Positional Encoding
	5.2.3 Data orderings
	5.2.4 Accelerated sampling
	5.2.5 Confidence-based decoding

	5.3 Results
	5.3.1 Scaling Laws
	5.3.2 Accelerated sampling
	5.3.3 Reasoning

	5.4 Discussion

	6 Conclusion
	6.1 Frontiers

	Appendix
	A Internet Explorer: Targeted Representation Learning on the Open Web
	A.1 Learning from other sources of data
	A.2 Are we finding the entire test set online?
	A.3 Method Details
	A.3.1 WordNet Lemmas
	A.3.2 GPT-J Descriptor Prompting
	A.3.3 Concept Vocabulary Size
	A.3.4 Query Model Details
	A.3.5 Training Details
	A.3.6 Hyperparameters
	A.3.7 Image Licenses
	A.3.8 Domain Dataset Descriptor Details

	A.4 Proof of lemma:speedup
	A.5 Progression of downloaded images

	B Your Diffusion Model is Secretly a Zero-Shot Classifier
	B.1 Efficient Diffusion Classifier Algorithm
	B.2 Inference Costs and Hybrid Classification Approach
	B.3 Inference Objective Function
	B.4 Interpretability via Image Generation
	B.5 How Does Stable Diffusion Version Affect Zero-Shot Accuracy?
	B.6 Additional Implementation Details
	B.6.1 Zero-shot classification using Diffusion Classifier
	B.6.2 Compositional reasoning using Diffusion Classifier
	B.6.3 ImageNet classification using Diffusion Classifier
	B.6.4 Baselines for Zero-Shot Classification

	B.7 Techniques that did not help

	C Generative Classifiers Avoid Shortcut Solutions
	C.1 Additional Analysis
	C.1.1 Additional Results on the Effect of Discriminative Model Size
	C.1.2 Scaling Can Improve Generative Classifiers
	C.1.3 Results on Additional Datasets
	C.1.4 Correlation between Generative and Discriminative Performance
	C.1.5 Effect of Image Embedding Model
	C.1.6 Comparison with Pre-trained Discriminative Models
	C.1.7 Additional Plots for Generalization Phase Diagrams

	C.2 Experimental Details
	C.2.1 Image-based Experiments
	C.2.2 Autoregressive Generative Classifier

	Bibliography

