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Abstract

Some common assumptions when building machine learning pipelines
are: (1) the training data is sufficiently “clean” and well-behaved, so
that there are few or no outliers, or that the distribution of the data
does not have very long tails, (2) the testing data follows the same
distribution as the training data, and (3) the data is generated from
or is close to a known model class, such as a linear model or neural
network.

However, with easier access to computer, internet and various
sensor-based technologies, modern data sets that arise in various
branches of science and engineering are no longer carefully curated
and are often collected in a decentralized, distributed fashion. Con-
sequently, they are plagued with the complexities of heterogeneity,
adversarial manipulations, and outliers. As we enter this age of dirty
data, the aforementioned assumptions of machine learning pipelines
are increasingly indefensible.

For the widespread adoption of Machine Learning, we believe that
it is imperative that any model should have the following three basic
elements:

• Robustness: The model can be trained even with noisy and
corrupted data.

• Reliability: After training and when deployed in the real-world,
the model should not break down under benign shifts of the dis-
tribution.

• Resilience: The modeling procedure should work under model
mis-specification, i.e. even when the modeling assumption breaks
down, the model should find the best possible solution.
In this thesis, our goal is modify state of the art ML techniques

and design new algorithms so that they work even without the afore-
mentioned assumptions, and are robust, reliable and resilient. Our
contributions are as follows:

In chapter 2, we provide a new class of statisically-optimal esti-
mators that are provably robust to a variety of robustness settings,
such as arbitrary contamination, and heavy-tailed data, among oth-



ers. In Chapter 3, we complement our statistical optimal estimators
with a new class of computationally-efficient estimators for robust risk
minimization. These results provide some of the first computation-
ally tractable and provably robust estimators for general statistical
models such linear regression, logistic regression, among others. In
Chapter 4, we study the problem of learning Ising models in a setting
where some of the samples from the underlying distribution can be
arbitrarily corrupted. Finally, in Chapter 5, we discuss implications
of our results for modern machine learning.
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Chapter 1
Introduction

In classical analyses of statistical estimators, statistical guarantees are derived
under strong model assumptions, and in most cases these guarantees hold only
in the absence of arbitrary outliers, and other deviations from the model as-
sumptions. Strong model assumptions are rarely met in practice, and this has
motivated the development of robust inferential procedures, and which has a
rich history in statistics with seminal contributions due to Box [2], Tukey [3],
Huber [4], Hampel [5] and several others. These have led to rich statistical
concepts such as the influence function, the breakdown point, and the Huber
ε-contamination model, to assess the robustness of estimators. Despite this
progress however, the statistical methods with the strongest robustness guar-
antees are computationally intractable, for instance those based on non-convex
M -estimators [4], `1 tournaments [6, 7, 8] and notions of depth [9, 10, 11].

In this thesis, we aim to design estimators that applicable to a variety of
notions of robustness. and in particular, we focus on two canonical robustness
settings:
(a) Robustness to arbitrary outliers: In this setting, we focus on Huber’s

ε-contamination model, where rather than observe samples directly from
P in (3.1) we instead observe samples drawn from Pε which for an arbitrary
distribution Q is defined as:

Pε = (1− ε)P + εQ. (1.1)

The distribution Q allows for arbitrary outliers, which may correspond to
gross corruptions or more subtle deviations from the assumed model. This
model can be equivalently viewed as model mis-specfication in the Total
Variation (TV) metric.
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(b) Robustness to heavy-tails: In this setting, we are interested in devel-
oping estimators under weak moment assumptions. We assume that the
distribution P from which we obtain samples only has finite low-order mo-
ments (see Section 3.5.3 for a precise characterization). Such heavy-tailed
distributions arise frequently in the analysis of financial data and large-
scale biological datasets (see for instance examples in [12, 13]). In contrast
to classical analyses of empirical risk minimization [14], in this setting the
empirical risk is not uniformly close to the population risk, and methods
that directly minimize the empirical risk perform poorly (see Section 5.4).

1.1 Goals of Thesis and Roadmap.

In this thesis, our primary goal is to study statistical estimation under the
aforementioned notions of robustness. In particular, for any given parameter
estimation problem, we want to give answers to three different questions:

1. Information Theoretic Limits: Note that in the ε-contamination model,
since, we observe samples from a contaminated distribution Pε, we cannot
hope to recover the true underlying parameter. Hence, our first goal is
to derive information theoretic limits for different parameter estimation
tasks in this contaminated setup. In particular, we focus on studying the
dependence of bounds on the contamination level ε and its interplay with
characteristics of different distribution classes.

2. Statistically Optimal Estimators: Having studied the limits of esti-
mation, our next goal is to design statistically optimal estimators, which
match the information theoretic limits in the asymptotic regime and also
come with optimal dependence on the number of samples, dimension and
high-probability bounds.

3. Computationally Efficient Estimators: Finally, we also want to de-
sign estimators which are computationally efficient and come with provable
guarantees.

Next, we outline some of the concrete parameter estimation problems studied
in this thesis.

2



1.1.1 Mean and Covariance Estimation under Bounded 2k-moments.

Bounded 2k-moment Class. Let x be a random vector with mean µ and
covariance Σ. We say that x has bounded 2k-moments if for all v ∈ Sp−1,
E[(vT (x − µ))2k] ≤ C2k

(
E[(vT (x− µ))2]

)k. We let Pσ2

2k be the class of distri-
butions with bounded 2k moments with covariance matrix Σ . σ2Ip.

Informal Question. Suppose P is a multivariate distribution with mean µ, co-
variance Σ and bounded 2k-moments. Then given n-samples from the mixture
distribution (1.1), can we design statistically optimal estimators for mean and
covariance ?

We answer the above mentioned question affirmatively in Chapter 2. In
particular, we design statistically optimal estimators for mean, covariance and
other functionals both in the low and high-dimensional regime. Our workhorse
is a novel reduction to univariate estimation, which we leverage to provide a di-
mension boosting based meta-estimator that converts any univariate estimator
to the multivariate setting while maintaining its optimality.

1.1.2 Risk Minimization

In the setting of risk minimization, we assume that we have access to a differ-
entiable loss function L̄ : Θ × Z 7→ R, where Θ is a convex subset of Rp. Let
R(θ) = Ez∼P

[
L̄(θ; z)

]
be the population loss, also known as the risk, and let

θ∗ be the minimizer of the population risk R(θ), over the set Θ:

θ∗ = argmin
θ∈Θ

R(θ).

The goal of risk minimization is to minimize the population risk R(θ), given
only finite samples in order to estimate the unknown parameter θ∗. In this work
we assume that the population risk is convex to ensure tractable minimization.
The framework of risk minimization is a central paradigm of statistical esti-
mation and is widely applicable and includes canonical tasks such as linear
regression and generalized linear models.

Informal Question. Given n-samples from a contaminated mixture distribu-
tion (1.1), can we design a computationally efficient algorithm which minimizes
the population risk robustly and hence recovers the true unknown parameter?
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In Chapter 3, we introduce a new class of robust estimators for risk mini-
mization (3.1), which provide some of the first computationally tractable and
provably robust estimators for these canonical statistical models. These esti-
mators are based on robustly estimating gradients of the population risk to
then plug in to a projected gradient descent algorithm, and are computation-
ally tractable by design. We provide specific consequences of our theory for
linear regression, logistic regression and for canonical parameter estimation in
an exponential family.

1.1.3 Ising Models

Consider an undirected graph G = (V,E) defined over a set of vertices V =
{1, 2, . . . , p} with edges E ⊂ {(s, t) : s, t ∈ V, s 6= t}. The neighborhood of
any node s ∈ V is the subset N (s) ⊂ V given by N (s)

def
= {t|(s, t) ∈ E}, and

the degree of any vertex s is given by ds = |N (s)|. Then, the degree of a graph
d = maxs ds is the maximum vertex degree, and k = |E| is the total number of
edges. We obtain an MRF by associating a random variable Xv at each vertex
v ∈ V , and then considering a joint distribution P over the random vector
(X1, . . . , Xp). An Ising model is a special instantiation of an MRF where each
random variable Xs take values in {−1,+1}, and the joint probability mass
function is given by:

Pθ(x1, . . . , xp) ∝ exp

( ∑

1≤s<t≤p
θstxsxt

)
, (1.2)

where we view θ as the parameter vector of the distribution. Note that θ ∈ Rp×p

is such that θij = 0⇔ (i, j) 6∈ E and θ = θT .

Informal Question Suppose P is an ising model distribution. Then, given n-
samples from a contaminated mixture distribution (1.1), can one design an
estimator which recovers the true underlying graph?

In Chapter 4, we give the first statistically optimal estimator for learn-
ing Ising models under the ε-contamination model. Our estimators achieve a
dimension-independent asymptotic error as a function of the fraction of outliers
ε, while simultaneously achieving high probability deviation bounds.
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1.1.4 Efficient Heavy-Tailed Estimation.

In the heavy tailed model we observe n samples x1, . . . , xn drawn independently
from a distribution P , which is only assumed to have low-order moments be
finite (for instance, P might only have finite variance). The goal of past work
[15, 16, 17, 18] has been to design an estimator θ̂n of the true mean µ of P
which has a small `2-error with high-probability. Formally, for a given δ > 0,
we would like an estimator with minimal rδ such that,

P (‖θ̂n − µ‖2 ≤ rδ) ≥ 1− δ.

As a benchmark for estimators in the heavy-tailed model, we observe that
when P is the multivariate normal (or sub-Gaussian) distribution with mean
µ and covariance Σ, it can be shown (see Hanson and Wright [19]) that the
sample mean µ̂n = (1/n)

∑
i xi satisfies, with probability at least 1− δ

‖µ̂n − µ‖2 .

√
trace (Σ)

n
+

√
‖Σ‖2 log(1/δ)

n
. (1.3)

The bound is referred to as a sub-Gaussian-style error bound. However, for
heavy tailed distributions, it is well-known that the sample mea However, for
heavy tailed distributions, as for instance showed in Catoni [15], the sample
mean only satisfies the sub-optimal bound rδ = Ω(

√
trace (Σ) /nδ).

Informal Question. Suppose P is a distribution with only 4 moments. Then,
given n-samples can one design a computationally efficient and practical esti-
mator that achieves a sub-gaussian rate?

In Chapter 5, we propose and study practical estimators that in some cases
improve achieve a sub-Gaussian error bound. We use our practical mean esti-
mators to design provably near-optimal algorithms for heavy-tailed linear re-
gression and generalized linear models. We also conduct extensive synthetic ex-
periments which backup our theoretical improvements, and as one consequence
of our results, show improvement in training GANs using our algorithms.
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Chapter 2
A Robust Univariate Estimator is All You
Need

We study the problem of designing estimators when the data has heavy-tails
and is corrupted by outliers. In such an adversarial setup, we aim to design
statistically optimal estimators for flexible non-parametric distribution classes
such as distributions with bounded-2k moments and symmetric distributions.
Our primary workhorse is a conceptually simple reduction from multivariate
estimation to univariate estimation. Using this reduction, we design estima-
tors which are optimal in both heavy-tailed and contaminated settings. Our
estimators achieve an optimal dimension independent bias in the contaminated
setting, while also simultaneously achieving high-probability error guarantees
with optimal sample complexity. These results provide some of the first such
estimators for a broad range of problems including Mean Estimation, Sparse
Mean Estimation, Covariance Estimation, Sparse Covariance Estimation and
Sparse PCA.

2.1 Introduction

Modern data sets that arise in various branches of science and engineering are
characterized by their ever increasing scale and richness. This has been spurred
in part by easier access to computer, internet and various sensor-based tech-
nologies that enable the automated acquisition of such heterogeneous datasets.
On the flip side, these large and rich data-sets are no longer carefully curated,
are often collected in a decentralized, distributed fashion, and consequently are
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plagued with the complexities of heterogeneity, adversarial manipulations, and
outliers. The analysis of these huge datasets is thus fraught with methodological
challenges.

To understand the fundamental challenges and tradeoffs in handling such
“dirty data” is precisely the premise of the field of robust statistics. Here, the
aforementioned complexities are largely formalized under two different models
of robustness: (1) The heavy-tailed model: In this model the sampling dis-
tribution can have thick tails, for instance, only low-order moments of the distri-
bution are assumed to be finite; and (2) The ε-contamination model: Here
the sampling distribution is modeled as a well-behaved distribution contami-
nated by an ε fraction of arbitrary outliers. In each case, classical estimators
of the distribution (based for instance on the maximum likelihood estimator)
can behave considerably worse (potentially arbitrarily worse) than under stan-
dard settings where the data is better behaved, satisfying various regularity
properties. In particular, these classical estimators can be extremely sensitive
to the tails of the distribution or to the outliers and the broad goal in robust
statistics is to construct estimators that improve on these classical estimators
by reducing their sensitivity to outliers.

Heavy Tailed Model. Concretely, focusing on the fundamental problem
of robust mean estimation, in the heavy tailed model we observe n samples
x1, . . . , xn drawn independently from a distribution P , which is only assumed
to have low-order moments finite (for instance, P only has finite variance). The
goal of past work [15, 16, 17, 18] has been to design an estimator θ̂n of the true
mean µ of P which has a small `2-error with high-probability. Formally, for a
given δ > 0, we would like an estimator with minimal rδ such that,

P (‖θ̂n − µ‖2 ≤ rδ) ≥ 1− δ. (2.1)

As a benchmark for estimators in the heavy-tailed model, we observe that when
P is a multivariate normal distribution (or more generally is a sub-Gaussian
distribution) with mean µ and covariance Σ, it can be shown (see [19]) that the
sample mean µ̂n = (1/n)

∑
i xi satisfies, with probability at least 1− δ1,

‖µ̂n − µ‖2 .

√
trace (Σ)

n
+

√
‖Σ‖2 log(1/δ)

n
. (2.2)

1Here and throughout our paper we use the notation . to denote an inequality with universal constants
dropped for conciseness.
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where ‖Σ‖2 denotes the operator norm of the covariance matrix Σ.
The bound is referred to as a sub-Gaussian-style error bound. However,

for heavy tailed distributions, as for instance showed in [15], the sample mean
only satisfies the sub-optimal bound rδ = Ω(

√
d/nδ). Somewhat surprisingly,

recent work [17] showed that the sub-Gaussian error bound is achievable while
only assuming that P has finite variance, but by a carefully designed estimator.
In the univariate setting, the classical median-of-means estimator [20, 21, 22]
and Catoni’s M-estimator [15] achieve this surprising result but designing such
estimators in the multivariate setting has proved challenging. Estimators that
achieve truly sub-Gaussian bounds, but which are computationally intractable,
were proposed recently by Lugosi and Mendelson [17] and subsequently Catoni
and Giulini [18]. Hopkins [23] and Cherapanamjeri et al. [24] developed a sum-
of-squares based relaxation of Lugosi and Mendelson [17]’s estimator, thereby
giving a polynomial time algorithm which achieves optimal rates.

Huber’s ε-Contamination Model. In this setting, instead of observing
samples directly from the true distribution P , we observe samples drawn from
Pε, which for an arbitrary distribution Q is defined as a mixture model,

Pε = (1− ε)P + εQ. (2.3)

The distribution Q allows one to model arbitrary outliers, which may corre-
spond to gross corruptions, or subtle deviations from the true model. There
has been a lot of classical work studying estimators in the ε-contamination
model under the umbrella of robust statistics (see for instance [25] and refer-
ences therein). However, most of the estimators come that come with strong
guarantees are computationally intractable [3], while others are statistically sub-
optimal heuristics [26]. Recently, there has been substantial progress [27, 28,
29, 30, 31, 32] designing provably robust which are computationally tractable
while achieving near-optimal contamination dependence (i.e. dependence on
the fraction of outliers ε) for computing means and covariances. In the Huber
model, using information-theoretic lower bounds [28, 33, 34], it can be shown
that any estimator must suffer a non-zero bias (the asymptotic error as the
number of samples go to infinity). For example, for the class of distributions
with bounded variance, Σ - σ2Ip, the bias of any estimator is lower bounded
by Ω(σ

√
ε). Surprisingly, the optimal bias that can be achieved is often in-

dependent of the data dimension. In other words, in many interesting cases
optimally robust estimators in Huber’s model can tolerate a constant fraction
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ε of outliers, independent of the dimension.
While the aforementioned recent estimators for mean estimation under Hu-

ber contamination have a polynomial computational complexity, their corre-
sponding sample complexities are only known to be polynomial in the dimen-
sion p. For example, Kothari et al. [29] and Hopkins and Li [34] designed es-
timators which achieve optimal bias for distributions with certifiably bounded
2k-moments, but their statistical sample complexity scales as O(pk). Stein-
hardt et al. [35] studied mean estimation and presented an estimator which has
a sample complexity of Ω

(
p1.5
)
.

Despite their apparent similarity, developments of estimators that are ro-
bust in each of these models, have remained relatively independent. Focusing
on mean estimation we notice subtle differences, in the heavy-tailed model our
target is the mean of the sampling distribution whereas in the Huber model our
target is the mean of the decontaminated sampling distribution P . Beyond this
distinction, it is also important to note that as highlighted above the natural
focus in heavy-tailed mean estimation is on achieving strong, high-probability
error guarantees, while in Huber’s model the focus has been on achieving di-
mension independent bias.

Contributions. In this work, we aim to design estimators which are sta-
tistically optimally robust in both models simultaneously, i.e. they achieve
a dimension-independent asymptotic bias in the ε-contamination model and
achieve high probability deviation bounds similar to (5.3). Our main workhorse
is a conceptually simple way of reducing multivariate estimation to the uni-
variate setting. Then, by carefully solving mean estimation in the univariate
setting, we are able to design optimal estimators for multivariate mean and
covariance estimation for non-parametric distribution classes both in the low-
dimensional (n ≥ p) and high-dimensional (n < p) setting. We achieve these
rates for non-parametric distribution classes such as distributions with bounded
2k-moments and the class of symmetric distributions.

2.2 Background and Setup

In this section, we formally define two classes of distributions which we work
with in this paper, (1) Bounded-2k-Moment distributions and (2) Symmetric
Distributions.
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Bounded 2k-moment Class. Let x be a random vector with mean µ
and covariance Σ. We say that x has bounded 2k-moments if for all v ∈
Sp−1, E[(vT (x − µ))2k] ≤ C2k

(
E[(vT (x− µ))2]

)k. We let Pσ2

2k be the class of
distributions with bounded 2k moments with covariance matrix Σ . σ2Ip.

Symmetric Distributions. There exist several notions of symmetry for
multivariate distributions. We discuss these notions briefly, but refer the reader
to [36] for a detailed discussion. A random vector in Rp is centrally symmetric
about θ ∈ Rp, if, x − θ

d
= θ − x, where d

= denotes equal in distribution.
Equivalently, this corresponds to uT (x − θ)

d
= uT (θ − x) for all unit vectors

u ∈ Sp−1. Liu [37] introduced the broader notion of angular symmetry, where
a random vector x ∈ Rp is angularly symmetric about θ, if x−θ

‖x−θ‖2
d
= θ−x
‖x−θ‖2 , or

equivalently, x−θ
‖x−θ‖2 is centrally-symmetric. Central symmetry about θ implies

angular symmetry about θ (see Lemma 2.2 in [37]).

Halfspace(H)-Symmetry. For any unit vector u ∈ Sp−1, let Hu,t = {x :
uTx ≤ t} be a closed halfspace in Rp. Its interior is an open subspace and
the boundary {x : uTx = t} is a hyperplane. Recall that for any random
variable y ∈ R, the median of the distribution of y (med(y)) is defined to be
any number c such that Pr(y ≤ c) ≥ 0.5, Pr(y ≥ c) ≥ 0.5. Then, a random
vector in Rp is H-symmetric about θ ∈ Rp if, Pr(x ∈ H) ≥ 1

2 for all closed
halfspaces H with θ on boundary. Note that angular symmetry about a point
θ implies halfspace-symmetry about it as well (see Lemma 2.4 [36]). Moreover,
if we have that x is H-symmetric about θ, then (1) med(uTx) = uTθ, and
(2) Pr(uT (x − θ) ≥ 0) ≥ 1

2 for all u ∈ Sp−1 (see Theorem 2.1 [36]). Note
that till now, our discussion hasn’t required the distribution to have bounded
moments, in particular, it need not even have bounded first moments (mean).
However, if the distribution has a finite mean, then, it is easy to see that
med(uTx) = E[uTx] = uTθ. Our last assumption ensures that the median
is unique and hence identifiable. To this end, let Psym be the class of H-
symmetric distributions with unique center of H-symmetry. Moreover suppose
P t0,κsym ⊂ Psym is the class of distributions such that for any P ∈ P t0,κsym the CDF of
the univariate projection(uTP ) given by FuTP increases at least linearly around
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uTθ. Formally, for all x1 ∈ [med(uTP ), F−1
uTP

(1
2 + t0)] we have that

FuTP (x1)−
1

2
≥ 1

κu,P
(x1 −med(uTP ))

(2.4)

and for all x2 ∈ [F−1
uTP

(1
2 − t0),med(uTP )], we have that 1

2 − FuTP (x2) ≥
1

κu,P
(med(uTP )−x2) for κu,P ≤ κ. A higher κ corresponds to slower rate of in-

crease in CDF around the median. Note that κ can be thought of as a measure
of variance or dispersion. In particular, for example, in the case of univariate
Gaussian distribution, i.e. P = N (µ, σ2), κ(P ) = Cσ. Similarly for univariate
Cauchy distribution with scale γ, κ(P ) ≈ Cγ. Note that any univariate distri-
bution P ∈ Psym with density function p(x) such that min

|t|<t0
p(P−1

F (1
2 + t)) > 1

κ

also belongs to P t0,κsym.

2.3 Some Candidate Multivariate Estimators

In this section, we study some natural candidate estimators, to see if they
achieve an optimal asymptotic bias in the ε-contamination model. We assume
that the true distribution is a multivariate isotropic gaussian, P = N (0, Ip).
Observe that it lies in both Pσ2

2k and P t0,κsym for σ2 = 1, and κ = O(1), hence our
results for both distribution classes.

Convex M-estimation. M-estimators were originally proposed by Hu-
ber [38], and were shown to be robust in one dimension. Subsequent research
in 1970s showed that M-estimators perform poorly for multivariate data [39]. In
particular, Donoho and Gasko [40] showed that when the data is p-dimensional,
the breakdown point of M-estimators scales inversely with the dimension. Lai
et al. [28] and Diakonikolas et al. [27] derived similar negative results for the
specific case of geometric median. We further extend this observation, and show
that even at a very small contamination level,i.e. ε 7→ 0, the bias of certain
convex M-estimators which are Fisher-consistent for N (0, Ip) will necessarily
scale polynomially in the dimension.
Lemma 1. Let P = N (0, Ip) and consider the convex risk RP (θ) = Ez∼P [`(‖z−
θ‖2)] where ` : R 7→ R be any twice differentiable Fisher-consistent convex loss,
i.e. θ(P ) = argminθRP (θ) = 0. Then, there exists a corruption Q such that
lim
ε 7→0
‖θ(Pε)‖2 ≥ ε

√
p.
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Recall that when the true distribution P = N (0, Ip), then, the lower bound
on estimation in the Huber Model is Θ(ε) [11]. Our explicit dimension-dependent
lower bound on the bias of M-estimators shows their sub-optimality.

Subset Search. Having ruled out convex estimation to a certain extent,
we next turn our attention to non-convex methods. Perhaps the most simple
non-convex method is simple search. Intuitively, the squared loss measures the
fit between a parameter θ and samples Z , and if all samples don’t come from
the same distribution(i.e. have outliers), then the corresponding fit should be
bad. To capture this intuition algorithmically, one can (1) consider all subsets
of size b(1− ε)nc, (2) minimize the squared loss over these subsets, and then
(3) return the estimator corresponding to the subset with least squared loss or
best fit. To be precise, given n samples from Pε

S∗
def
= argmin

S s.t. |S|=(1−ε)n
min
θ

1

(1− ε)n
∑

xi∈S

‖xi − θ‖2
2

θ̂SRM
def
= min

θ

1

(1− ε)n
∑

xi∈S∗
‖xi − θ‖2

2 (2.5)

Our next result studies the asymptotic performance of this estimator.
Lemma 2. Let P = N (0, Ip), then as n 7→ ∞, we have that

sup
Q
‖θ̂SRM − Ex∼P [x]‖2 =

ε√
(1− ε)(1− 2ε)

√
p. (2.6)

The above result shows that, while subset-search has a finite dimension-
independent breakdown point(0.5), the bias of this estimator necessarily scales
with the dimension √p.

2.4 Optimal Univariate Estimation

In the previous section, we studied some natural candidate estimators and
showed that they don’t achieve the optimal asymptotic bias in ε-contamination
model for multivariate mean estimation. In this section, we take a step back,
and study univariate estimation.
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Algorithm 1 Robust Univariate Mean Estimation
function Interval1D({zi}2n

i=1,Corruption Level ε, Confidence Level δ)
Split the data into two subsets: Z1 = {zi}ni=1 and Z2 = {zi}2n

i=n+1.
Let α = max(ε, log(1/δ)

n
).

Using Z1, let Î = [a, b] be the shortest interval containing n(1 − 2α −
√

2α log(4/δ)
n
−

log(4/δ)
n

) points.
Use Z2 to identify points lying in [a, b].
return 1∑2n

i=n I{zi∈Î}
∑2n

i=n ziI
{
zi ∈ Î

}

end function

2.4.1 Bounded 2k-moments

We study the interval estimator which was initially proposed by [28]. The
estimator, presented in Algorithm 1, proceeds by using half of the samples to
identify the shortest interval containing at least (1− ε)n fraction of the points,
and then the remaining half of the points is used to return an estimate of the
mean.

We assume that the contamination level ε and confidence level δ are such
that,

2ε+

√
ε
log(4/δ)

n
+

log(4/δ)

n
<

1

2
.

Then, we have the following Lemma.
Lemma 3. Suppose P be any 2k-moment bounded distribution over R with
mean µ with variance bounded by σ2. Given, n samples {xi}ni=1 from the mix-
ture distribution (2.3), Algorithm 1 returns an estimate θ̂δ such that with prob-
ability at least 1− δ,

|θ̂δ − µ| .σmax(2ε,
log(1/δ)

n
)1− 1

2k

+σ(
log n

n
)1− 1

2k + σ

√
log(1/δ)

n

Observe that Algorithm 1 has an asymptotic bias of O(σε1−1/2k) in the
ε-contamination setting, which is known to be information theoretically opti-
mal [28, 34].

Moreover, observe that for ε = 0, P has atleast bounded 4th moment, i.e.
k ≥ 2, log(n)

n

1−1/2k
term can be ignored for large enough n. Hence, for k ≥ 2
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Algorithm 2 Sample Median
function Sample Median - 1D ({zi}2n+1

i=1 )
Let z[k] be kth order-statistic
return z[n+1]

end function

and large enough n, Algorithm 1 achieves the deviation rate of σ
√

log(1/δ)
n .

2.4.2 Symmetric Distributions

In the univariate setting, our estimator presented in Algorithm 2 simply returns
the sample median of the observed samples. While this idea is simple and cru-
cially exploits that the mean and median overlap for a symmetric distribution,
this leads to profound implications on the effect of contamination in the Huber
contamination model. Next, we present the theoretical bound achieved by this
estimator, which was also shown in [41].

We further assume that ε and δ are such that,

ε

2(1− ε)
+

1

(1− ε)

√
log(2/δ)

n
≤ t0.

Then we have that,
Lemma 4. Let P be any univariate distribution in P t0,κsym. Given n-samples
from the mixture distribution (2.3), we get that with probability at least 1− δ,
Algorithm 2 returns an estimate θ̂ such that,

|θ̂ − Ex∼P [x]| ≤ C1κε+ C2κ

√
log(1/δ)

n

Observe that Algorithm 2 has an asymptotic bias of O(κε), which is also in-
formation theoretically optimal. To see this, observe that N (·, κ2) lies in P t0,κsym
for some constant t0 and the fact that TV (N (µ1, κ

2),N (µ2, κ
2)) = O(|µ1 − µ2|/κ)(Theorem

1.3 [42]).

2.5 From 1D to p-D: A meta-estimator

In this section, we propose a general meta-estimator to extend any univariate
estimator to the multivariate setting. For any univariate estimator f(·), suppose
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that when given n-samples from the mixture model, it returns an estimate
f(Xn) such that with probability 1− δ,

|f(Xn, ε, δ)− µ(P )| ≤ ωf(ε, P, δ).

Note that ωf(ε, P, δ) is the error suffered by the univariate estimator at a con-
tamination level ε, and confidence level δ, when the true univariate distribution
is P .

2.5.1 Mean Estimation

The proposed meta-estimator proceeds by robustly estimating the mean along
almost every direction u, and returns an estimate θ̂, whose projection along
u(uT θ̂) is close to these univariate robust mean along that direction. In partic-
ular, let N 1/2(Sp−1) is the half-cover of the unit sphere Sp−1, i.e. ∀u ∈ Sp−1,
there exists a y ∈ N 1/2(Sp−1) such that u = y + z for some ‖z‖2 ≤ 1

2 . Then,
for any point θ ∈ Rp and any univariate estimator f(·), consider the following
loss,

Df(θ, {xi}ni=1) = sup
u∈N 1/2(Sp−1)

|uTθ − f({uTxi}ni=1, ε,
δ

5p
)|,

Then, we use it to construct the following multivariate meta-estimator, θ̂f which
takes in n-samples {xi}ni=1 and a univariate estimator f(·),

θ̂f({xi}ni=1) = argmin
θ

Df(θ, {xi}ni=1),

Such directional-control based estimators have been previously studied in the
context of heavy-tailed mean estimation by [43] and [18]. Joly et al. [43] used
the median-of-means estimator, while Catoni and Giulini [18] used Catoni’s
M-estimator [15] as their univariate estimator. Then, we have the following
result.
Lemma 5. Suppose P is a multivariate distribution with mean µ. Given n-
samples from the mixture distribution (2.3), we get that with probability at least
1− δ,

‖θ̂f(Xn)− µ‖2 . sup
u∈N 1/2(Sp−1)

ωf(ε, u
TP,

δ

5p
),

where uTP is the univariate distribution of P along u.
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Sparse Mean Estimation. In this setting, we further assume that the true
mean vector of the distribution P has only a few non-zero co-ordinates, i.e. it
is sparse. Such sparsity patterns are known to be present in high-dimensional
data(see [44] and references therein). Then, the goal is to design estimators
which can exploit this sparsity structure, while remaining robust under the
ε-contamination model. Formally, for a vector x ∈ Rp, let supp(x) = {i ∈
[p] s.t. x(i) 6= 0}. Then, x is s-sparse if |supp(x)| ≤ s. We further assume
that s ≤ p/2. Let Θs be the set of s-sparse vectors in Rp, and let N

1
2

2s(Sp−1)
is the half-cover of the set of unit vectors which are 2s-sparse. Then, for any
univariate estimator f(·), let

Df,s(θ, {xi}ni=1) = sup
u∈N 1/2

2s (Sp−1)

|uTθ − f(uTXn, ε,
δ

(6ep
s )s

)|.

Then, we can define the following meta-estimator,

θ̂f,s(Xn) = argmin
θ∈Θs

Df,s(θ,Xn),

which has the following error guarantee.
Lemma 6. Suppose P is a multivariate distribution with mean µ such that µ
is s-sparse. Given n-samples from the mixture distribution (2.3), we get that
with probability at least 1− δ,

‖θ̂f,s(Xn)− µ‖2 . sup
u∈N 1/2

2s (Sp−1)

ωf(ε, u
TP,

δ

(6ep
s )s

),

where uTP is the univariate distribution of P along u.

2.5.2 Covariance-Estimation

In this section, we study recovering the true covariance matrix, when given
samples from a mixture distribution. We first center our observations by defin-
ing pseudo-samples zi =

xi−xi+n/2√
2

. We can think of zi as being sampled from
the Huber Contamination P̃2ε, where P̃ = 1√

2
(P − P ). Let Zn = {zi}ni=1 be

the set of these pseudo-samples, and let uTZ⊗2
n = {(uTzi)2}ni=1. Let F = {Σ =

ΣT ∈ Rp×p : Σ � 0} be the class of positive semi-definite symmetric matrices.
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Then, for any matrix Θ ∈ F , let,

D⊗2
f (Θ,Zn) = sup

u∈N 1/4

|uTΘu− f(uTZ⊗2
n , ε,

δ

9p
)|

Then, consider the meta-estimator Θ̂f(Zn) given as,

Θ̂f(Zn) = argmin
Θ∈F

D⊗2
f (Θ,Zn)

Lemma 7. Suppose P is a multivariate distribution with covariance Σ. Given
n-samples from the mixture distribution (2.3), we get that with probability at
least 1− δ,

‖Θ̂f(Zn)− Σ‖2 . sup
u∈N 1/4(Sp−1)

ωf(2ε, u
T P̃⊗2,

δ

9p
),

where uT P̃⊗2 is the univariate distribution of (uTzi)
2 for zi ∼ P̃ .

Sparse Covariance Estimation. Next, we consider sparse covariance
matrices. In particular, we assume that there exists a subset S of |S| = s
covariates that are correlated with each other, and the remaining covariates
[p]\S are independent from this subset and from each other. Such sparsity
patterns arise naturally in various real-world data [45]. More concretely, for
a subset of co-ordinates S, define G(S)

def
= {G = (g)ij ∈ Rp×p, gij = 0 if i /∈

S or j /∈ S}, and let G(s) =
⋃
S⊂[p]:|S|≤s G(S). Consider the class of matrices

Fs such that,
Fs = {Σ = ΣT ,Σ � 0,Σ− diagΣ ∈ G(s)}

Then for any matrix Θ and univariate estimator f , let

Df,s(Θ,Zn) = sup
u∈N 1/4

2s (Sp−1)

|uTΘu− f(uTZ⊗2
n , ε,

δ

(9ep
s )s

)|.

Then, we can define the following estimator,

Θ̂f,s(Xn) = arginf
θ∈Fs

Df,s(Θ,Zn),
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Lemma 8. Suppose P is a multivariate distribution with covariance Σ such
that Σ ∈ Fs. Given n-samples from the mixture distribution (2.3), we get that
with probability at least 1− δ,

‖Θ̂f,s(Zn)− Σ‖2 . sup
u∈N 1/4

2s (Sp−1)

ωf(2ε, u
T P̃⊗2,

δ

(9ep
s )s

),

where uT P̃⊗2 is the univariate distribution of (uTzi)
2 for zi ∼ P̃ .

2.6 Consequences for Pσ2

2k

Next, we study the performance of our meta-estimator for multivariate esti-
mation for the class of distributions with bounded 2k-moments. In particular,
we use the interval estimator(IM) presented in Algorithm 1 as our univariate
estimator to instantiate our meta-estimator.

Multivariate Mean Estimation. In the multivariate setting, we further
assume that the contamination level ε, and confidence are such that,

2ε+

√
ε(
p

n
+

log(1/δ)

n
) +

p

n
+

log(4/δ)

n
< c,

for some small constant c > 0. Then, we have the following result.
Corollary 1. Suppose P has bounded 2k moments with mean µ and covariance
Σ. Given n samples {xi}ni=1 from the mixture distribution (2.3), we get that
with probability at least 1− δ,

‖θ̂IM(Xn)− µ‖2 . ‖Σ‖1/2
2 ε1−1/2k + ‖Σ‖1/2

2

√
log(1/δ)

n

+ ‖Σ‖1/2
2 (

√
p

n
+ (

log n

n
)1− 1

2k )

Observe that the proposed estimator achieves a dimension independent asymp-
totic bias of O(σε1−1/2k) in the ε-contamination model for multivariate mean
estimation, with a sample complexity of O(p).

Sparse Mean Estimation. In this setting, we assume that the contami-
nation level ε, and confidence are such that,

2ε+

√
ε(
s log p

n
+

log(1/δ)

n
) +

s log p

n
+

log(4/δ)

n
< c,
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for some small constant c > 0. Then, we have the following result.
Corollary 2. Suppose P has bounded 2k moments with mean µ and covari-
ance Σ, where µ is s-sparse. Then, given n samples {xi}ni=1 from the mixture
distribution (2.3), we get that with probability at least 1− δ,

‖θ̂IM,s(Xn)− µ‖2 . ‖Σ‖1/2
2,2sε

1−1/2k + ‖Σ‖1/2
2,2s

√
log(1/δ)

n

+ ‖Σ‖1/2
2,2s(

√
s log p

n
+ (

log n

n
)1− 1

2k ),

where ‖Σ‖2,2s = supu∈Sp−1,‖u‖0≤2s u
TΣu.

The above result shows that the proposed estimator exploits the under-
lying sparsity structure, and achieves the near-optimal sample complexity of
O(s log p), while simultaneously achieving the optimal asymptotic bias ofO(‖Σ‖1/2

2,2sε
1−1/2k).

Covariance Estimation. We begin by first calculating ωIM(2ε, uT P̃⊗2, δ).
To do this, recall that for fixed u, for the clean samples in zi, (uTzi)

2 has mean
uTΣ(P )u, and variance C4(u

TΣ(P )u)2. Note that the scalar random vari-
ables (uTzi)

2 have bounded k moments, whenever xi has bounded 2k-moments.
Hence, from Lemma 3, we have that

ωIM(2ε, uT P̃⊗2, δ) .(uTΣ(P )u)ε1−1/k

+ uTΣ(P )u

√
log 1/δ

n
.

We assume that the contamination level ε, and confidence are such that,

4ε+

√
2ε(

p

n
+

log(1/δ)

n
) +

p

n
+

log(4/δ)

n
< c,

for some small constant c > 0. Then, we have the following result.
Corollary 3. Suppose P has bounded 2k-moments, then, given Xn drawn from
the mixture model, then, we have that with probability at least 1− δ,

‖Θ̂IM − Σ(P )‖2 . ‖Σ(P )‖2ε
1−1/k + ‖Σ(P )‖2

√
p

n

+ ‖Σ(P )‖2

√
log 1/δ

n
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Observe that the proposed estimator achieves a dimension independent asymp-
totic bias of O(σ2ε1−1/k) in the ε-contamination model for multivariate covari-
ance estimation, with a sample complexity of O(p).

Sparse Covariance Estimation. In this setting, we assume that the
contamination level ε, and confidence δ are such that,

4ε+

√
2ε(

s log p

n
+

log(1/δ)

n
) +

s log p

n
+

log(4/δ)

n
< c,

for some small constant c > 0. Then, we have the following result.
Corollary 4. Suppose P has bounded 2k-moments and Σ(P ) ∈ Fs, then, given
Xn drawn from the mixture model, we have that with probability at least 1− δ,

‖Θ̂IM,s − Σ(P )‖2 . ‖Σ(P )‖2ε
1−1/k + ‖Σ(P )‖2

√
s log p

n

+ ‖Σ(P )‖2

√
log 1/δ

n

As before, even in this case, the proposed estimator achieves a dimension
independent bias of O(σ2ε1−1/k), with a sample complexity of O(s log p).

Sparse PCA in Spiked Covariance Model As an application of the
sparse-covariance estimation, we consider the following spiked covariance model,
where the true distribution P ∈ P2k is such that

Σ(P ) = V ΛV T + Ip, (2.7)

where V ∈ Rp×r is an orthonormal matrix, and Λ ∈ Rr×r is a diagonal matrix
with entries Λ1 ≥ Λ2 ≥ . . . ≥ Λr > 0. In this setting, suppose we observe
samples from a mixture distribution Pε, then the goal is to estimate the subspace
projection matrix V V T , i.e. construct V̂ such that ‖V̂ V̂ − V V T‖F is small.
Note that when V has only s non-zero rows, then the corresponding covariance
matrix Σ is s-sparse(Σ ∈ Fs).

We follow [11] to use our sparse covariance estimator Θ̂IM,s(Xn) to construct
V̂ ∈ Rp×r by setting its jth column to be the jth eigenvector of Θ̂IM,s(Xn).
Then, under the assumption that (ε, n) are such that

(1 + Λ1)ε
1−1/k + (1 + Λ1)

√
s log p

n
+ (1 + Λ1)

√
log 1/δ

n
.

Λr

2
,

we have the following result.
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Corollary 5. Suppose P has bounded 2k-moments, and Σ(P ) is of the form
of (2.7) and we are given n samples from the mixture distribution. Then, we
have that with probability at least 1− δ,

‖V̂ V̂ T − V V T‖2
F . (

1 + Λ1

Λr
)2(ε2−2/k)

+ (
1 + Λ1

Λr
)2(
s log p

n
+

log 1/δ

n
)

Discussion. Throughout this section, all our estimators achieve a dimension-
independent asymptotic bias. Hence, our proposed meta-estimator allows us to
escape the dimension dependence in the ε-contamination setting.

Next, we expand on a more subtle aspect of our estimators. Observe that
when ε = 0, i.e. there is no contamination, we see that the typical error rate
of our estimators for k ≥ 2(k ≥ 4 for covariance) is O(

√
p
n +

√
log(1/δ)

n ) is the

low dimensional setting, and O(
√

s log p
n +

√
log(1/δ)

n ) in the high-dimensional
setting. Typically, such high-probability bounds are achieved only under the
restrictive assumption that the true distribution is Gaussian or sub-gaussian.
In contrast, all our results are valid for the much broader class of distributions
with bounded 2k-moment. As discussed in the introduction, while such results
have been recently obtained for mean estimation, our simple meta-estimator
achieves these high-probability error guarantees for a much broader range of
problems. To the best of our knowledge, these are some of the first estimators
which get such high-probability deviation bounds for sparse-mean, covariance,
sparse-covariance and sparse-PCA.

2.7 Consequences for P t0,κsym

Next, we study the performance of our meta-estimator for multivariate estima-
tion for the class of symmetric distributions. In particular, we use the sample
median presented in Algorithm 2 as our univariate estimator to instantiate our
meta-estimator.

In the multivariate setting, we further assume that the contamination level
ε, and confidence level δ are such that,

ε

2(1− ε)
+

1

(1− ε)

√
p

n
+

log(2/δ)

n
≤ t0.
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Then, we have the following result.
Corollary 6. Suppose P ∈ P t0,κsym is a multivariate distribution with mean µ.
Given n samples {xi}ni=1 from the mixture distribution (2.3), we get that with
probability at least 1− δ,

‖θ̂Med(Xn)− µ‖2 . κε+ κ

√
log(1/δ)

n
+ κ

√
p

n

Observe that the proposed estimator achieves a dimension independent asymp-
totic bias of O(κε) in the ε-contamination model for multivariate mean estima-
tion, with a sample complexity of O(p).

Sparse Mean Estimation. In this setting, we assume that the contami-
nation level ε, and confidence are such that,

ε

2(1− ε)
+

1

(1− ε)

√
s log p

n
+

log(2/δ)

n
. t0.

Then, we have the following result.
Corollary 7. Suppose P ∈ P t0,κsym is a multivariate distribution with mean µ.
Given n samples {xi}ni=1 from the mixture distribution (2.3), we get that with
probability at least 1− δ,

‖θ̂Med,s(Xn)− µ‖2 . κε+ κ

√
log(1/δ)

n
+ κ

√
s log p

n

The above result shows that the proposed estimator exploits the under-
lying sparsity structure, and achieves the near-optimal sample complexity of
O(s log p), while simultaneously achieving the optimal asymptotic bias ofO(κε).
Moreover for the case of ε = 0, the proposed estimator achieves the near-optimal
deviation bound for sparse-mean estimation, for symmetric distributions with-
out moments. Note that similar results can be derived for other higher-order
moments.

Discussion. Observe the difference in achievable rates for P t0,κsym and Pσ2

2k .
In particular, for symmetric distributions including those which have no finite
variance, the maximum bias introduced by Huber Contamination Model is at
most O(κε). In contrast for distributions with bounded 2k-moments, the lower
bound for mean estimation is Ω(σε1−1/2k). Note that the depth based estimators
of [11] also implicitly assume that the underlying distribution is symmetric, and
hence obtain similar rates for elliptical distributions.

23



2.8 Conclusion and Future Directions.

In this work we provided a conceptually simple way of reducing multivariate
estimation to univariate estimation. In particular, we showed how to use any
robust univariate estimator to design statistically optimal robust estimators for
multivariate estimation. Through this reduction, we derived optimal estima-
tors for non-parametric distribution classes such as distributions with bounded
2k-moments and symmetrical distributions. Our estimators achieved optimal
asymptotic bias in the ε-contamination model, and also high-probability de-
viation bounds in the uncontaminated setting. There are several avenues for
future work, some of which we discuss below.

Extension to General Risk Minimization. Consider the setting of risk
minimization, where we assume that we have access to a differentiable loss
function L̄ : Rp × Z 7→ R. Let R(θ) = Ez∼P (L̄(θ; z)) be the population
loss. Moreover, let θ∗(P ) be the minimizer of the population risk. Then, in
this setting, given n-samples from the mixture model, the goal is to return
a parameter θ̂ which minimizes the population risk. Prasad et al. [1] and Di-
akonikolas et al. [46] observed that at any point θ, the population gradient
∇R(θ) = E[∇L̄(θ, z)] is essentially the mean of some distribution. Hence,
they proposed a robust-gradient based algorithm, in which, they used a robust
multivariate mean estimator to estimate the gradient robustly. In particular
the authors’ suggest the following update rule

θt+1 = θt − ηMVMean({∇L̄(θt, zi)}ni=1),

where MVMean(·) is a robust multivariate mean estimator. Our particular p-D
to 1-D reduction shows that as long as one has a robust univariate estimator,
one can do robust risk minimization for a broad range of problems. While
this approach gives near-optimal asymptotic bias, however, such an iterative
rule requires sample-splitting at each step and hence is not sample-efficient.
Getting past this sample splitting, requires developing mean estimators which
are uniformly robust over a function class and we leave that as an open problem.

Computationally Efficient Estimators. As noted in the introduction,
there has been a flurry of work in the theoretical computer science community
on designing polynomial time estimators for robust mean estimation. Design-
ing sample-efficient estimators for sparse-mean estimation for the bounded 2k-
moment class is an open problem. Similarly for covariance estimation, most
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existing work has focused on Frobenius norm, or Mahalanobis distance, and
designing estimators for covariance estimation in operator norm for general
bounded 2k-moment is an open problem. Another important challenge is to
design computationally and statistically efficient estimators for the mean of a
symmetric distributions.
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Chapter 3
Robust Estimation via Robust Gradient
Estimation

We provide a new computationally-efficient class of estimators for risk min-
imization. We show that these estimators are robust for general statistical
models, under varied robustness settings, including in the classical Huber ε-
contamination model, and in heavy-tailed settings. Our workhorse is a novel
robust variant of gradient descent, and we provide conditions under which our
gradient descent variant provides accurate estimators in a general convex risk
minimization problem. We provide specific consequences of our theory for lin-
ear regression, logistic regression and for canonical parameter estimation in an
exponential family. These results provide some of the first computationally
tractable and provably robust estimators for these canonical statistical models.
Finally, we study the empirical performance of our proposed methods on syn-
thetic and real datasets, and find that our methods convincingly outperform a
variety of baselines.

3.1 Introduction

In classical analyses of statistical estimators, statistical guarantees are derived
under strong model assumptions, and in most cases these guarantees hold only
in the absence of arbitrary outliers, and other deviations from the model as-
sumptions. Strong model assumptions are rarely met in practice, and this has
motivated the development of robust inferential procedures, and which has a
rich history in statistics with seminal contributions due to Box [2], Tukey [3],
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Huber [4], Hampel [5] and several others. These have led to rich statistical
concepts such as the influence function, the breakdown point, and the Huber
ε-contamination model, to assess the robustness of estimators. Despite this
progress however, the statistical methods with the strongest robustness guar-
antees are computationally intractable, for instance those based on non-convex
M -estimators [4], `1 tournaments [6, 7, 8] and notions of depth [9, 10, 11].

In this paper, we present a general class of estimators that are computa-
tionally tractable, and have strong robustness guarantees. The estimators we
propose are obtained by robustifying iterative updates of risk minimization, and
are broadly applicable to a wide-range of parametric statistical models. In the
risk minimization framework, the target parameter θ∗ is defined as the solution
to an optimization problem:

θ∗ = argmin
θ∈Θ

R(θ) ≡ argmin
θ∈Θ

Ez∼P
[
L̄(θ; z)

]
, (3.1)

where L̄ is an appropriate loss-function, R is the population risk and Θ is the
set of feasible parameters. The statistical inference problem within the risk
minimization framework is then to compute an approximate minimizer to the
above program when given access to samples Dn = {z1, . . . , zn}. A classical ap-
proach to do so is via empirical risk minimization (ERM), where we substitute
the empirical expectation given the samples for the population expectation in
the specification of the risk objective. While most modern statistical estimators
use the above empirical risk minimization framework, a standard assumption
that is imposed on Dn is that the data has no outliers, and has no arbitrary
deviations from model assumptions; i.e., it is typically assumed that each of
the zi’s are independent and identically distributed according to the distribu-
tion P . Moreover, many analyses of risk minimization further assume that P
follows a sub-Gaussian distribution, or has otherwise well-controlled tails in
order to appropriately control the deviation between the population risk and
its empirical counterpart. Due in part to these caveats with ERM, the seminal
work of M -estimation replaces the risk minimization objective with a robust
counterpart, so that the minimizer of the empirical expectation of the robust
counterpart is more robust than the ERMminimizer. As noted above, for strong
statistical guarantees, these in turn require solving computationally intractable
non-convex optimization programs.

In contrast to this classical work, we propose a class of estimators that have
a shift in perspective: rather than specify a robust objective, we consider an
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algorithm, namely projected gradient descent, that directly optimizes the pop-
ulation risk objective in Eq. (3.1), and focus on making this algorithm robust.
Thus, in contrast to specifying the robust parameter estimate as the solution to
an optimization program as in M -estimation, which in turn could be computa-
tionally intractable, we specify the robust parameter estimate as the limit of a
sequence of iterative updates that are individually robust as well as computa-
tionally tractable. We find that this shift in perspective leads to estimators that
are both computationally tractable as well with strong robustness guarantees,
that are as broadly applicable as ERM or M -estimators, and moreover with a
unified statistical treatment for varied statistical models.

In addition to being applicable to a variety of statistical models, our general
results are also applicable to a variety of notions of robustness. In this paper,
we derive corollaries in particular for two canonical robustness settings:
(a) Robustness to arbitrary outliers: In this setting, we focus on Huber’s

ε-contamination model, where rather than observe samples directly from
P in (3.1) we instead observe samples drawn from Pε which for an arbitrary
distribution Q is defined as:

Pε = (1− ε)P + εQ.

The distribution Q allows for arbitrary outliers, which may correspond to
gross corruptions or more subtle deviations from the assumed model. This
model can be equivalently viewed as model mis-specfication in the Total
Variation (TV) metric.

(b) Robustness to heavy-tails: In this setting, we are interested in devel-
oping estimators under weak moment assumptions. We assume that the
distribution P from which we obtain samples only has finite low-order mo-
ments (see Section 3.5.3 for a precise characterization). Such heavy-tailed
distributions arise frequently in the analysis of financial data and large-
scale biological datasets (see for instance examples in [12, 13]). In contrast
to classical analyses of empirical risk minimization [14], in this setting the
empirical risk is not uniformly close to the population risk, and methods
that directly minimize the empirical risk perform poorly (see Section 5.4).

While we provide corollaries demonstrating robustness with respect to the above
deviations, we emphasize that our framework is more general. Below, we pro-
vide an outline of our results and contributions.
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1. Estimators. Our first contribution is to introduce a new class of robust
estimators for risk minimization (3.1). These estimators are based on ro-
bustly estimating gradients of the population risk to then plug in to a
projected gradient descent algorithm, and are computationally tractable
by design. A crucial ingredient of our framework is the design of robust
gradient estimators for the population risk in (3.1). Our main insight is
that in this general risk minimization setting, the gradient of the popula-
tion risk is simply a multivariate mean vector, and we can leverage prior
work on mean estimation to design robust gradient estimators. Thus, for
our two canonical robustness cases, we develop such robust gradient esti-
mators building on prior work for robust mean estimation in the Huber
model [28], and in the heavy-tailed model [16]. Another perspective of
our framework is that it significantly generalizes the applicability of mean
estimation methods to general parametric models.

2. Empirical Investigations. Our estimators are computationally practi-
cal, and accordingly, our second contribution is to conduct extensive nu-
merical experiments on real and simulated data with our proposed class of
estimators. We provide guidelines for tuning parameter selection, and com-
pare the proposed estimators with several competitive baselines [4, 47, 48].
We find that our estimators consistently perform well across different set-
tings, and across various metrics.

3. Statistical Guarantees. Finally, we provide rigorous robustness guar-
antees for the estimators we propose for a variety of classical statistical
models: linear regression, logistic regression, and exponential family mod-
els. Our contributions in this direction are two-fold: building on prior
work [49] we provide a general result on the stability of gradient descent
for risk minimization, and show that under certain conditions, gradient de-
scent can be quite tolerant to inaccurate gradient estimates. Subsequently,
in concrete settings, we provide a careful analysis of the quality of gradi-
ent estimation afforded by our proposed gradient estimators, and combine
these results to obtain guarantees on our final parameter estimates.

Broadly, as we discuss in the sequel, our work suggests that our class of estima-
tors based on robust gradient estimation offer a variety of practical, conceptual,
statistical and computational advantages for robust estimation. They provide
the general applicability of classicalM -estimators, together with computational
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practicality even for large-scale models, as well as strong robustness guarantees.

3.1.1 Related Work

There has been extensive work in the broad area of robust statistics (see for
instance [5] and references therein); we focus this section on some lines of work
that are most related to this paper. For the robustness setting of ε-contaminated
models, several classical estimators have been developed that are optimally ro-
bust for a variety of inferential tasks, including hypothesis testing [38], mean
estimation [9], general parametric estimation [7, 8, 33], and non-parametric
estimation [6]. However, a major drawback with this classical line of work
has been that most of the estimators with strong robustness guarantees are
computationally intractable [3], while the remaining ones use heuristics and
are consequently not optimal [26]. A complementary line of recent research
[10, 11] has focused on providing minimax upper and lower bounds on the per-
formance of estimators under ε-contamination model, without the constraint of
computational tractability. Recently, there has been a flurry of research in the-
oretical computer science [27, 28, 50, 51] designing provably robust estimators
which are computationally tractable while achieving near-optimal contamina-
tion dependence, for special classes of problems such as computing means and
covariances. Some of the proposed algorithms are however not computationally
practical as they rely on the ellipsoid algorithm or require solving semi-definite
programs [27, 50, 51] which can be slow for modern problem sizes. Lecué and
Lerasle [52] proposed a median-of-means approach to solve ERM under the ε-
contaminated setting. While their estimator achieves good statistical rates, it is
not computationally efficient and in particular, involves solving a saddle point
problem. While in the general ε-contamination setting, the contamination dis-
tribution could be arbitrary, there has been a lot of work in settings where the
contamination distribution is restricted in various ways. For example, recent
work in high-dimensional statistics (for instance [53, 54, 55, 56, 57]) have stud-
ied problems like principal component analysis and linear regression under the
assumption that the corruptions are evenly spread throughout the dataset.

For the robustness setting of heavy-tailed distributions, robust estimators
aim to relax the sub-Gaussian or sub-exponential distributional assumptions
that are typically imposed on the target distribution, and allow it to be a heavy-
tailed distribution. Most approaches in this category substitute the empirical
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mean of the risk objective in risk minimization with robust mean estimators
such as [15, 58] that exhibit sub-Gaussian type concentration around the true
mean for distributions satisfying mild moment assumptions. The median-of-
means estimator [58] and Catoni’s mean estimator [15] are two popular exam-
ples of such robust mean estimators. In particular, Hsu and Sabato [59] use the
median-of-means estimator to solve the corresponding robust variant of ERM.
Although this estimator has strong theoretical guarantees, and is computation-
ally tractable, as noted by the authors in [59] it performs poorly in practice.
In recent work Brownlees et al. [60] use the Catoni’s mean estimator to solve
the corresponding robust variant of ERM. The authors provide risk bounds
similar to bounds one can achieve under sub-Gaussian distributional assump-
tions. However, their estimator is not easily computable and the authors do not
provide a practical algorithm to compute the estimator. Other recent work by
Lerasle and Oliveira [58], Lugosi and Mendelson [61] use similar ideas to derive
estimators that perform well theoretically, in heavy-tailed situations. However,
these approaches involve optimization of complex objectives for which no com-
putationally tractable algorithms exist. We emphasize that in contrast to our
work, these works focus on robustly estimating the population risk which does
not directly lead to a computable estimator. In contrast, we consider robustly
estimating the gradient of the population risk, and embedding these estimates
within the iterative algorithm of projected gradient descent, which leads natu-
rally to a computionally practical estimator.

3.1.2 Outline

We conclude this section with a brief outline of the remainder of the paper.
In Section 4.1.2, we provide some background on risk minimization and the
running robustness settings of Huber contamination, and heavy-tailed noise
models. In Section 3.3, we introduce our class of robust estimators, and pro-
vide concrete algorithms for the ε-contaminated and heavy-tailed settings. In
Section 5.4 we study the empirical performance of our estimator on a variety of
tasks and datasets. We complement our empirical results with theoretical guar-
antees in Sections 3.5, 3.6 and 3.7. We defer technical details to the Appendix.
Finally, we conclude in Section 3.8 with a discussion of some open problems.

32



3.2 Background and Problem Setup

In this section we provide the necessary background on risk minimization, gra-
dient descent, and introduce two notions of robustness that we consider in this
work.

3.2.1 Risk Minimization and Parametric Estimation

In the setting of risk minimization, we assume that we have access to a differ-
entiable loss function L̄ : Θ × Z 7→ R, where Θ is a convex subset of Rp. Let
R(θ) = Ez∼P

[
L̄(θ; z)

]
be the population loss, also known as the risk, and let

θ∗ be the minimizer of the population risk R(θ), over the set Θ:

θ∗ = argmin
θ∈Θ

R(θ). (3.2)

The goal of risk minimization is to minimize the population risk R(θ), given
only n samples Dn = {zi}ni=1, in order to estimate the unknown parameter θ∗.

In this work we assume that the population risk is convex to ensure tractable
minimization. Moreover, in order to ensure identifiability of the parameter
θ∗, we impose two standard regularity conditions [62] on the population risk.
These properties are defined in terms of the error of the first-order Taylor
approximation of the population risk, i.e. defining, τ(θ1, θ2) := R(θ1)−R(θ2)−
〈∇R(θ2), θ1 − θ2〉, we assume that

τ`
2
‖θ1 − θ2‖2

2 ≤ τ(θ1, θ2) ≤
τu
2
‖θ1 − θ2‖2

2, (3.3)

where the parameters τ`, τu > 0 denote the strong-convexity and smoothness
parameters respectively.

3.2.2 Illustrative Examples of Risk Minimization

The framework of risk minimization is a central paradigm of statistical estima-
tion and is widely applicable. In this section, we provide illustrative examples
that fall under this framework.

Linear Regression

Here we observe paired samples {(x1, y1), . . . (xn, yn)}, where each (xi, yi) ∈
Rp×R. We assume that the (x, y) pairs sampled from the true distribution P
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are linked via a linear model:

y = 〈x, θ∗〉+ w, (3.4)

where w is drawn from a zero-mean distribution such as normal distribution
with variance σ2 (N (0, σ2)) or a more heavy-tailed distribution such as student-
t or Pareto distribution. We suppose that under P the covariates x ∈ Rp, have
mean 0, and covariance Σ.

For this setting we use the squared loss as our loss function, which induces
the following population risk:

L̄(θ; (x, y)) =
1

2
(y − 〈x, θ〉)2 , and R(θ) =

1

2
(θ − θ∗)TΣ(θ − θ∗).

Note that the true parameter θ∗ is the minimizer of the population risk R(θ).
The strong-convexity and smoothness assumptions from (3.3) in this setting
require that τ` ≤ λmin(Σ) ≤ λmax(Σ) ≤ τu.

Generalized Linear Models

Here we observe paired samples {(x1, y1), . . . (xn, yn)}, where each (xi, yi) ∈
Rp × Y . We suppose that the (x, y) pairs sampled from the true distribution
P are linked via a linear model such that when conditioned on the covariates
x, the response variable has the distribution:

P (y|x) ∝ exp

(
y 〈x, θ∗〉 − Φ(〈x, θ∗〉)

c(σ)

)
(3.5)

Here c(σ) is a fixed and known scale parameter and Φ : R 7→ R is the link
function. We focus on the random design setting where the covariates x ∈ Rp,
have mean 0, and covariance Σ. We use the negative conditional log-likelihood
as our loss function, i.e.

L̄(θ; (x, y)) = −y 〈x, θ〉+ Φ(〈x, θ〉). (3.6)

Once again, the true parameter θ∗ is the minimizer of the resulting population
risk R(θ). It is easy to see that Linear Regression with Gaussian Noise lies in
the family of generalized linear models. A popular instance of such GLMs is a
logistic regression model.
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Logistic Regression. In this case the (x, y) pairs are linked as:

y =

{
1 with probability 1

1+exp(−〈x,θ∗〉) ,

0 otherwise.
(3.7)

This corresponds to setting Φ(t) = log(1 + exp(t)) and c(γ) = 1 in (5.10). The
hessian of the population risk is given by

∇2R(θ) = E
[

exp 〈x, θ〉
(1 + exp 〈x, θ〉)2

xxT
]
.

Note that as θ diverges, the minimum eigenvalue of the hessian approaches 0
and the loss is no longer strongly convex. To prevent this, in this case we take
the parameter space Θ to be bounded.

Exponential Families and Canonical Parameters.

Finally we consider the case where the true distribution P is in exponential
family with canonical parameters θ∗ ∈ Rp, and a vector of sufficient statistics
obtained from the map φ : Z 7→ Rp. Note that while the linear and logistic
regression models are indeed in an exponential family, our interest in those
cases was not in the canonical parameters.

In more details, we can write the true distribution P in this case as

P (z) = h(z) exp (〈φ(z), θ∗〉 − A(θ∗)) ,

where h(z) is some base measure. The negative log-likelihood gives us the
following loss function:

L̄(θ; z) = −〈φ(z), θ〉+ A(θ). (3.8)

The strong-convexity and smoothness assumptions require that there are con-
stants τ`, τu such that τ` ≤ ∇2A(θ) ≤ τu, for θ ∈ Θ.

3.2.3 Empirical Risk Minimization

Given data Dn = {zi}ni=1, empirical risk minimization (ERM) substitutes the
empirical expectation of the risk for the population risk in the risk minimization
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objective:

θ̂n = argmin
θ∈Θ

Rn(θ) :=
1

n

n∑

i=1

L̄(θ; zi).

Most modern statistical estimators follow this ERM recipe above. When the
loss is the log-likelihood of the statistical model, this reduces to the classical
Maximum Likelihood Estimation (MLE) principle. The empirical risk mini-
mizer is however a poor estimator of θ∗ in the presence of outliers in the data:
since ERM depends on the sample mean, outliers in the data can effect the
sample mean and lead ERM to sub-optimal estimates. This observation has
led to a large body of research that focuses on developing robust M-estimators,
where we substitute in the empirical expectation of a robust counterpart of the
loss function L̄; the resulting estimators have favorable statistical properties,
but are often computationally intractable.

3.2.4 Projected Gradient Descent

A popular approach for solving the empirical risk minimization problem is pro-
jected gradient descent. Projected gradient descent generates a sequence of
iterates {θt}∞t=0, by refining an initial parameter θ0 ∈ Θ via the update:

θt+1 = PΘ

(
θt − η∇Rn(θ

t)
)
,

where η > 0 is the step size and Pθ is the projection operator onto Θ. While
this gradient descent method is simple, it is not however robust to various devi-
ations, for general convex losses. Accordingly, we have a small shift in perspec-
tive: instead of performing gradient descent on the empirical risk, we perform
gradient descent on the population risk. Our work then relies on the impor-
tant observation that this gradient of the population risk (Ez∼P

[
∇L̄(θ; z)

]
) is

simply a mean vector: one that can be estimated robustly by leveraging recent
advances in robust mean estimation [16, 28]. This leads to a general method
for risk minimization based on embedding robust gradient estimation within a
projected gradient descent algorithm (see Algorithm 3).

3.2.5 Robust Estimation

One of the goals of this work is to develop general statistical estimation meth-
ods that are robust under varied robustness settings. We derive corollaries in
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particular for two robustness models: Huber’s ε-contamination model, and the
heavy-tailed model. We now briefly review these two notions of robustness.
(a) Huber’s ε-contamination model: Huber [38, 63] proposed the ε-

contamination model where we observe samples that are obtained from a
mixture of the form

Pε = (1− ε)P + εQ, (3.9)

where P is the true distribution, ε is the expected fraction of outliers and
Q is an arbitrary outlier distribution. Given i.i.d. observations drawn
from Pε, our objective is to estimate θ∗, the minimizer of the population
risk R(θ) = Ez∼P

[
L̄(θ; z)

]
, robust to the contamination from Q.

(b) Heavy-tailed model: In the heavy-tailed model it is assumed that
the data follows a heavy-tailed distribution (i.e, P is heavy-tailed). While
heavy-tailed distributions have various possible characterizations: in this
paper we consider a characterization via gradients. For a fixed θ ∈ Θ we let
P θ
g denote the multivariate distribution of the gradient of population loss,

i.e. ∇L̄(θ; z).We refer to a potentially heavy-tailed distribution as one for
which our only assumption on P θ

g is that it has finite second moments for
any θ ∈ Θ. As we illustrate in Section 3.7, in various concrete examples
this translates to relatively weak low-order moment assumptions on the
data distribution P .
Given n i.i.d observations from P , our objective is to estimate the mini-
mizer of the population risk. From a conceptual standpoint, the classical
analysis of risk-minimization which relies on uniform concentration of the
empirical risk around the true risk, fails in the heavy-tailed setting neces-
sitating new estimators and analyses [17, 59, 60, 61].

3.3 Robust Gradient Descent via Gradient Estimation

Gradient descent and its variants are at the heart of modern optimization and
are well-studied in the literature. Suppose we have access to the true distri-
bution Pθ∗. Then to minimize the population risk R(θ), we can use projected
gradient descent, where starting at some initial θ0 and for an appropriately
chosen step-size η, we update our estimate according to:

θt+1 ← PΘ(θt − η∇R(θt)). (3.10)
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However, we only have access to n samples Dn = {zi}ni=1. The key technical
challenges are then to estimate the gradient of R(θ) from samples Dn, and
to ensure that an appropriate modification of gradient descent is stable to the
resulting estimation error.

To address the first challenge we observe that the gradient of the pop-
ulation risk at any point θ is the mean of a multivariate distribution, i.e.
∇R(θ) = Ez∼P

[
∇L̄(θ; z)

]
. Accordingly, the problem of gradient estimation

can be reduced to a multivariate mean estimation problem, where our goal is
to robustly estimate the true mean ∇R(θ) from n samples {∇L̄(θ; zi)}ni=1. For
a given sample-size n and confidence parameter δ ∈ (0, 1) we define a gradient
estimator:
Definition 1. A function g(θ;Dn, δ) is a gradient estimator, if for functions α
and β, with probability at least 1−δ, at any fixed θ ∈ Θ, the estimator satisfies
the following inequality:

‖g(θ;Dn, δ)−∇R(θ)‖2 ≤ α(n, δ)‖θ − θ∗‖2 + β(n, δ). (3.11)

In subsequent sections, we will develop conditions under which we can obtain
gradient estimators with strong control on the functions α(n, δ) and β(n, δ) in
the Huber and heavy-tailed models. Furthermore, by investigating the stability
of gradient descent we will develop sufficient conditions on these functions such
that gradient descent with an inaccurate gradient estimator still returns an
accurate estimate.

To minimize R(θ), we replace ∇R(θ) in equation (3.10) with the gradient
estimator g(θ;Dn, δ) and perform projected gradient descent. In order to avoid
complex statistical dependency issues that can arise in the analysis of gradient
descent, for our theoretical results we consider a sample-splitting variant of the
algorithm where each iteration is performed on a fresh batch of samples. We
summarize the overall robust gradient descent algorithm via gradient estimation
in Algorithm 3. In contrast to M -estimation where we use robust estimates
of the overall loss function, here we use robust estimates of the gradient, a
small shift in perspective, but which has strong statistical and computational
consequences: we obtain a computationally practical algorithm, and moreover
with strong robustness guarantees via careful statistical analyses of the stability
of the resulting biased and inexact gradient descent iterates.

We further assume that the number of gradient iterations T is specified
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Algorithm 3 Robust Gradient Descent
function RGD (Gradient Estimator g(·), Data {z1, . . . , zn}, Step Size η, Number
of Iterations T , Confidence δ)

Split samples into T subsets {Zt}Tt=1 of size ñ.
for t = 0 to T − 1 do

θt+1 = argminθ∈Θ ‖θ −
(
θt − η g(θt;Zt, δ̃)

)
‖2

2.

end for
end function

a-priori, and accordingly we define:

ñ =
⌊n
T

⌋
and δ̃ =

δ

T
.

We discuss methods for selecting T , and the impact of sample-splitting in later
sections. As confirmed in our experiments (see Section 5.4), sample-splitting
should be viewed as a device introduced for theoretical convenience which can
likely be eliminated via developing uniformly robust gradient estimators. We
provide some partial results along these lines in Appendix B.17, noting that
these are more complex in our general setting where we do not even assume
smoothness of the robust gradient estimators; see also the work [49].

It can be seen that the key ingredient in the robust gradient descent Algorithm 3
is a robust estimator of the gradients. Next, we consider the two notions of
robustness described in Section 4.1.2, and derive specific gradient estimators for
each of the models using the framework described above. Although we derive
corollaries of our general results for these two settings of Huber contamination
and heavy-tailed models, we emphasize that our class of estimators are more
general and are not restricted to these two notions of robustness.

3.3.1 Gradient Estimation in Huber’s ε-contamination model

There has been a flurry of recent interest [27, 28, 50, 51] in designing mean
estimators which, under the Huber contamination model, can robustly esti-
mate the mean of a random vector. While some of these results are focused on
the case where the uncorrupted distribution is Gaussian, or isotropic, we are
interested in robust mean oracles for more general distributions. Diakoniko-
las et al. [31] and Lai et al. [28] proposed robust mean estimators for general
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distributions, satisfying weak moment assumptions. Although the estimator
proposed by [31] works under weak assumptions, it requires side information
about the true distribution, which, makes it hard to tune in practice. Hence,
in our methodology and experimental sections, we primarily leverage Lai et al.
[28]’s estimator to design a Huber gradient estimator g(θ;Dn, δ) which works
in the Huber contamination model. However, in our theoretical results, we do
provide an analysis of the gradient estimator obtained by using the robust mean
estimator of [31].

The estimator of Lai et al. [28] builds upon the fact that with a single dimen-
sion, it is relatively easy to estimate the gradient robustly. In higher dimen-
sions, the crucial insight of Lai et al. [28] is that the effect of the contamination
distribution Q on the mean of uncontaminated distribution P is effectively one-
dimensional provided we can accurately estimate the direction along which the
mean is shifted. In our context, if we can compute the gradient shift direction,
i.e. the direction of the difference between the sample (corrupted) mean gradi-
ent and the true (population) gradient, then the true gradient can be estimated
by using a robust 1D-mean algorithm along the gradient-shift direction and a
non-robust sample-gradient in the orthogonal direction since the contamination
has no effect on the gradient in this orthogonal direction. In order to identify
this gradient shift direction, we follow Lai et al. [28] and use a recursive Singular
Value Decomposition (SVD) based algorithm. In each stage of the recursion,
we first remove gross-outliers via a truncation algorithm (described in more de-
tail in the Appendix, and termed HuberOutlierGradientTruncation in
Algorithm 4). We subsequently identify two subspaces using an SVD – a clean
subspace where the contamination has a small effect on the mean and another
subspace where the contamination has a potentially larger effect. We use a sim-
ple sample-mean estimator in the clean subspace and recurse our computation
on the other subspace. Building on the work of Lai et al. [28], in Lemma 9 and
Appendix B.13 we provide a careful non-asymptotic analysis of this gradient
estimator.

Algorithm 4 presents the overall Huber gradient estimator g(θ;Dn, δ).
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Algorithm 4 Huber Gradient Estimator
function HuberGradientEstimator(Sample Gradients S = {∇L̄(θ; zi)}ni=1,
Corruption Level ε, Dimension p, δ)

S̃ = HuberOutlierGradientTruncation(S, ε, p, δ).
if p=1 then

return mean(S̃)
else

Let ΣS̃ be the covariance matrix of S̃.
Let V be the span of the top p/2 principal components of ΣS̃ and W be its com-

plement.
Set S1 := PV (S̃) where PV is the projection operation on to V .
Let µ̂V := HuberGradientEstimator(S1, ε, p/2, δ).
Let µ̂W := mean(PW S̃).
Let µ̂ ∈ Rp be such that PV (µ̂) = µ̂V , and PW (µ̂) = µ̂W .

return µ̂.
end if

end function

3.3.2 Gradient Estimation in the Heavy-Tailed model

To design gradient estimators for the heavy-tailed model, we leverage recent
work on designing robust mean estimators in this setting. These robust mean
estimators build on the classical work of Alon et al. [20], Nemirovski and Yudin
[21] and Jerrum et al. [22] on the so-called median-of-means estimator. For the
problem of one-dimensional mean estimation, Catoni [15], Lerasle and Oliveira
[58] propose robust mean estimators that achieve exponential concentration
around the true mean for any distribution with bounded second moment. In
this work we require mean estimators for multivariate distributions. Several
works ([16, 17, 59]) extend the median-of-means estimator of to general metric
spaces. Recently, Hopkins [23] developed a Sum-of-Squares based polynomial-
time algorithm(Median-SDP) that achieves optimal error for mean estimation.
However, even though Median-SDP is polynomial-time, it is not practically
implementable. We explore the theoretical properties of using Median-SDP
to design the gradient estimator g(θ;Dn, δ) in Appendix B.15, but given the
focus on practicality, we use the geometric median-of-means estimator (Gmom),
which was originally proposed and analyzed by Minsker [16], to design the
gradient estimator g(θ;Dn, δ).

The basic idea behind the Gmom estimator is to first split the samples
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into non-overlapping subsamples and estimate the sample mean of each of the
subsamples. Then the Gmom estimator is given by the median-of-means of the
subsamples. Formally, let {xi . . . xn} ∈ R be n i.i.d random variables sampled
from a distribution P . Then the Gmom estimator for estimating the mean of
P can be described as follows. Partition the n samples into b blocks B1, . . . Bb

each of size bn/bc. Let {µ̂1, . . . , µ̂b} be the sample means in each block, where
µ̂i = 1

|Bi|
∑

xj∈Bi xj. Then the Gmom estimator is given by median{µ̂1, . . . µ̂b}.
In high dimensions where different notions of the median have been considered
Minsker [16] uses geometric median:

µ̂ = argmin
µ

b∑

i=1

‖µ− µ̂i‖2.

Algorithm 5 presents the gradient estimator g(θ;Dn, δ) obtained using Gmom as
the mean estimator.

Algorithm 5 Heavy Tailed Gradient Estimator
function HeavyTailedGradientEstimator(Sample Gradients S =
{∇L̄(θ; zi)}ni=1, δ)

Define number of buckets b = 1 + b3.5 log 1/δc.
Partition S into b blocks B1, . . . Bb each of size bn/bc.
for i = 1 . . . n do

µ̂i = 1
|Bi|

∑

s∈Bi

s.

end for

Let µ̂ = argmin
µ

b∑

i=1

‖µ− µ̂i‖2.

return µ̂.
end function

To conclude this section, we note that the gradient estimators described
in Algorithm 4 depend on corruption level ε, which is typically not known
in advance. In Appendix B.1, we briefly discuss some heuristic methods for
adapting to the unknown ε that we use in our experiments.

3.4 Experiments

In this section we demonstrate our proposed methods for the Huber contamina-
tion and heavy-tailed models, on a variety of simulated and real data examples.
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3.4.1 Huber Contamination

We first consider the Huber contamination model and demonstrate the practical
utility of gradient-descent based robust estimator described in Algorithms 3 and
4.

Synthetic Experiments: Linear Regression
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Figure 3.1: Robust Linear Regression.

Recall the linear regression model described in (B.17) where we observe
paired samples {(xi, yi)}ni=1. We assume that the (x, y) pairs sampled from the
true distribution P are linked via a linear model: y = 〈x, θ∗〉 + w. We now
describe the experiment setup, the data model and present the results.

Setup. We fix the contamination level ε = 0.1 and σ2 = 0.1. Next, we generate
(1 − ε)n clean covariates from a multivariate Gaussian x ∼ N (0, Ip), and
we generate the corresponding clean responses using y = 〈x, θ∗〉 + w where
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θ∗ = [1, . . . , 1]T and w ∼ N (0, σ2). We simulate an outlier distribution by
drawing the covariates from N (0, p2Ip), and setting the responses to 0. The
total number of samples is set to be (10 p

ε2 ). We note that the sample size we
choose increases with the dimension. This scaling is used to ensure that the
statistical (minimax) error, in the absence of any contamination, is roughly
0.001. An optimally robust method should have error close to 0.1 (roughly
equal to corruption level), which ours does (see Figure 3.1).

Metric. We measure the parameter error in `2-norm. We also study the con-
vergence properties of our proposed method, for different contamination levels
ε. We use code provided by Lai et al. [28] to implement our gradient estimator.

Baselines. As our baselines, we use OLS, TORRENT [47], the Huber-loss M-
estimator, RANSAC and a plugin estimator (detailed further in Section 3.6.1,
and which in a nutshell robustly estimates the sufficient statistics required for
the OLS estimator). TORRENT is an iterative hard-thresholding based alter-
nating minimization algorithm, where in one step, it calculates an active set of
examples by keeping only (1 − ε)n samples which have the smallest absolute
values of residual r = y − 〈x, θt〉, and in the other step it updates the current
estimates by solving OLS on the active set. Bhatia et al. [47] have shown the
superiority of TORRENT over a variety of other convex-penalty based out-
lier techniques, hence, we do not compare against those methods. The plugin
estimator is implemented using Algorithm 4 to estimate both the mean vec-
tor 1

n

∑n
i=1 yixi and the covariance matrix 1

n

∑n
i=1 xix

T
i , which are the required

sufficient statistics for the OLS estimator.

Results. We summarize our main findings here.
• Error vs dimension p: All estimators except our proposed algorithm per-
form poorly with increasing dimension, as shown in Figure 3.1(a). Note that
the TORRENT algorithm has strong guarantees when only the response y
is corrupted but performs poorly in the Huber contamination model where
both x and y may be contaminated. We find that the error for the robust
plugin estimator increases with dimension. We investigate this theoretically
in Section 3.6.1, where we find that the error of the plugin estimator grows
with the norm of θ∗. In our experiments, we choose ‖θ∗‖2 =

√
p, and thus
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Figure 3.1(a) corroborates Corollary 10 in Section 3.6.1.
• Error vs ε: In Figure 3.1(b) we find that the parameter error ‖θ̂ − θ∗‖2

increases linearly with the contamination rate ε. Under a more general setting,
we study this in Section 3.6.1, and show that the error scales at most as

√
ε.

• Error vs iteration t: Finally, Figure 3.1(c) shows that the convergence
rate decreases with increasing contamination ε and after ε is high enough, the
algorithm remains stuck at θ0, corroborating Lemma 27 (in the Appendix).

• Hyper-parameter Tuning: In Figures 3.1(d) and 3.1(e), we find the final
solution chosen by our tournament based heuristic for hyper-parameter se-
lection (TournamentGD) has roughly the same performance as the algorithm
which knows the true value of ε (OracleGD). In particular, our final error
does not scale with p.

Next, we study the performance of our proposed method in the context of
classification.

Synthetic Experiments: Logistic Regression

Setup. We simulate a linearly separable classification problem, where the clean
covariates are sampled from N (0, Ip), the corresponding clean responses are
computed as y = sign(〈x, θ∗〉) where θ∗ = [1/

√
p, . . . , 1/

√
p]T . We set our

domain Θ to be the unit ball, i.e. Θ = θ s.t. ‖θ‖2 ≤ 1. Constraining the
domain to be the `2 ball makes the population risk function of logistic loss
strongly convex with the optimizer being at θ∗.

We simulate the outlier distribution by adding asymmetric noise, i.e. we flip
the labels of one class, and increase the variance of the corresponding covariates
by multiplying them by p2. The total number of samples are set to be (10p/ε2).

Metric. We measure the 0-1 classification error on a held-out (clean) test set.
We study how the 0-1 error changes with p and ε and the parameter estimation
error of our proposed method for different contamination levels ε.

Baselines. We use the logistic regression MLE and the linear Support Vector
Machine (SVM) as our baselines.

Results. We summarize our main findings below:
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Figure 3.2: Robust Logistic Regression.

• 0/1 Error vs dimension p: In Figure 3.2(a) we observe that both the SVM
and logistic regression MLE perform poorly with increasing dimension. The
logistic regression MLE completely flips the labels and has a 0-1 error close to
1, whereas the linear SVM outputs a random hyperplane classifier that flips
the label for roughly half of the dataset.

• 0/1 Error vs ε and t: Figures 3.2(b) and 3.2(c) show qualitatively similar
results to the linear regression setting, i.e. that the error of our proposed
estimator degrades gracefully (and grows linearly) with the contamination
level ε and that the gradient descent iterates converge linearly.
Finally, in Appendix B.2, we show the efficacy of our algorithm in a semi-

synthetic experiment where we attempt to reconstruct face images (from the
Cropped Yale Dataset [64]) that have been corrupted with heavy occlusion. In
this experiment, the occluding pixels play the role the outliers, and we show
that our proposed algorithm significantly outperforms TORRENT, SCRRR and
OLS.

3.4.2 Heavy-tailed Estimation

We now consider the heavy-tailed model and present experimental results on
synthetic datasets comparing the gradient descent based robust estimator de-
scribed in Algorithms 3 and 5 (which we call RobustGD) with ERM and several
other recent proposals. In these experiments we focus on the problem of linear
regression which is described in Section 3.4.1 and work with heavy-tailed noise
distributions.

46



Synthetic Experiments: Simple Linear Regression

Setup. The covariate x ∈ Rp is sampled from a zero-mean isotropic Gaussian
distribution. We set each entry of θ∗ to 1/

√
p. The noise w is sampled from

a Pareto distribution, with mean zero, variance σ2 and tail parameter β. The
tail parameter β determines the moments of the Pareto random variable. More
specifically, the moment of order k exists only if k < β, hence, smaller the β
the more heavy-tailed the distribution. In this setup, we keep the dimension p
fixed to 128 and vary n, σ and β. We always maintain the sample-size n to be
at least 4p.

Methods. We compare RobustGD with several baselines. Since we are always
in the low-dimensional (n ≥ p) setting, the solution to ERM has a closed form
expression and is simply the OLS solution. We also study OLS-GD, which
performs a gradient descent on ERM and is equivalent to using empirical mean
as the gradient oracle in our framework. We also compare against the robust
estimation techniques of Hsu and Sabato [59] and Namkoong and Duchi [65],
which we refer to as RobustHS, RobustDN and two classical techniques namely
the LASSO [66] and ridge regression. In our experiments, all the iterative
techniques are run until convergence.

Metrics. We use two metrics to compare the performance of various approaches:
a) parameter error which is defined as ‖θ− θ∗‖2 and b) to compare the perfor-
mance of two estimators θ̂1, θ̂2, we define the notion of relative efficiency:

RelEff(θ̂1, θ̂2) =
‖θ̂2 − θ∗‖2 − ‖θ̂1 − θ∗‖2

‖θ̂1 − θ∗‖2

.

Roughly, this corresponds to the percentage improvement in the parameter
error obtained using θ̂1 over θ̂2. Whenever RelEff(θ̂1, θ̂2) > 0, θ̂1 has a lower
parameter error, and higher the value, the more the fractional improvement.

Results. To reduce the variance in the plots presented here, we averaged results
over 20 repetitions. Figure 3.3 shows the benefits of using RobustGD over other
baselines.
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• Error vs number of iterations: In Figures 3.3(a), 3.3(b) we plot the excess
risk of various approaches against the number of iterations (for OLS, LASSO,
ridge regression and the method of Hsu and Sabato [59] we only plot the
excess risk of the final iterate). We see that upon convergence RobustGD has
a much lower parameter error. As expected, OLS-GD converges to OLS.

• Error vs number of samples: Next, in Figures 3.3(c), 3.3(d) we plot the
parameter error as n/p increases. We see that RobustGD is always better than
other baselines, even when the number of samples is 12 times the dimension
p.

• Relative Efficiency vs β, and σ: In Figure 3.3(e), we plot the relative
efficiency against β, the moment bound of Pareto distribution. This shows
that the percentage improvement in the excess risk by RobustGD decreases
as the moment bound β increases. This behavior is expected because as
we increase the moment bound the tails of the noise distribution become
lighter. This shows that there is more benefit in using RobustGD in the
heavy-tailed setting. We do a similar study to see the relative efficiency
against the variance of the noise distribution. Figure 3.3(f) plots relative
efficiency against standard deviation of the noise distribution.

3.5 Theoretical Preliminaries

In this section we develop some theoretical preliminaries. We first develop a
general theory on convergence of projected gradient descent in Section 3.5.1.
Next we analyze the gradient estimators defined in Algorithms 4 and 5 in Sec-
tions 3.5.2 and 3.5.3 respectively. Finally in Sections 3.6 and 3.7 we present
consequences of our general theory for the canonical examples of risk minimiza-
tion described in Section 3.2.2, under Huber contamination and heavy-tailed
models.

For some of our examples, we will assume certain mild moment conditions.
Concretely, for a random vector x ∈ Rp, let µ = E[x] and Σ be the covariance
matrix. Then x has bounded 2kth moments if there exists a constant C2k such
that for every unit vector v we have that

E
[
〈x− µ, v〉2k

]
≤ C2k

(
E
[
〈x− µ, v〉2

])k
. (3.12)
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Figure 3.3: Linear Regression: Performance comparison of RobustGD against baselines.

3.5.1 Stability of Gradient Descent

In this section we develop a general theory for the convergence of the projected
gradient descent described in Algorithm 3. Note that our gradient estimators
could be biased and are not guaranteed to be consistent estimators of the true
gradient ∇R(θ). This is especially true in the Huber contamination model
where it is impossible to obtain consistent estimators of the gradient of the
risk because of the non-vanishing bias caused by the contaminated samples.
Hence, we turn our attention to understanding the behavior of projected gra-
dient descent with a biased, inexact, gradient estimator of the form in (C.77).
Before we present our main result, we define the notion of stability of a gradient
estimator, which plays a key role in the convergence of gradient descent.
Definition 2 (Stability). A gradient estimator is stable for a given risk func-
tion R : Θ 7→ R if for some φ ∈ [0, τ`),

α(ñ, δ̃) < τ` − φ.
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We denote by κ the following contraction parameter:

κ :=

√
1− 2ητ`τu

τ` + τu
+ ηα(ñ, δ̃), (3.13)

and note that κ < 1. With these definitions in place we state our main result
on the stability of gradient descent:
Theorem 8. Suppose that the gradient estimator satisfies the condition in (C.77)
and is stable for the risk function R : Θ 7→ R. Then Algorithm 3 initialized
at θ0 with step-size η = 2/(τ` + τu), returns iterates {θ̂t}Tt=1 such that with
probability at least 1− δ for the contraction parameter κ above we have that,

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
1

1− κ
β(ñ, δ̃). (3.14)

We defer a proof of this result to the Appendix. For the bound (C.78), the first
term is decreasing in T , while the second term is increasing in T . This suggests
that for a given n and δ, we need to run just enough iterations for the first term
to be bounded by the second. Hence, we can fix the number of iterations T ∗ as
the smallest positive integer such that:

T ≥ log1/κ

(1− κ)‖θ0 − θ∗‖2

β(ñ, δ̃)
.

Since we obtain linear convergence, i.e. κ < 1, typically a logarithmic number
of iterations suffice to obtain an accurate estimate.

Theorem 56 provides a general result for risk minimization and parameter
estimation, and requires bounds on α(ñ, δ̃), β(ñ, δ̃) which capture the the er-
ror suffered by the gradient estimator for a given risk minimization problem.
In any concrete instantiation for a given gradient estimator, risk pair, we first
estimate these gradient estimator error bounds by studying the distribution of
the gradient of the risk, and then apply Theorem 56. In the next two sections,
we provide some general analyses of the gradient estimator in Algorithm 4 for
the Huber contamination model, and the gradient estimator in Algorithm 5
for the heavy-tailed model, and which apply to any risk minimization problem.
In Sections 3.6,3.7 we then instantiate these gradient estimator error results
for various illustrative statistical models such as linear regression, logistic re-
gression, and general exponential families. Plugging these into Theorem 56,
we then get consequences of our robustness guarantees for various statistical
model, robustness setting pairs.
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3.5.2 General Analysis of Huber Contamination Gradient Estima-
tors

We now analyze the gradient estimator described in Algorithm 4 for Huber
contamination model and study the error suffered by it. As stated before,
Algorithm 4 uses the robust mean estimator of Lai et al. [28]. Hence, while our
proof strategy mimics that of Lai et al. [28], we present a different result which
is obtained by a more careful non-asymptotic analysis of the algorithm.

We define:

γ(n, p, δ, ε) :=
(p log p log

(
n/(pδ)

)

n

)3/8

+
(εp2 log p log

(p log(p)
δ

)

n

)1/4

, (3.15)

and with this definition in place we have the following result:
Lemma 9. Let P be the true probability distribution of z and let Pθ be the true
distribution of the gradients ∇L̄(θ; z) on Rp with mean µθ = ∇R(θ), covari-
ance Σθ, and bounded fourth moments. There exists a positive constant C1 > 0,
such that given n samples from the distribution in (3.9), the Huber Gradient
Estimator described in Algorithm 4 when instantiated with the contamination
level ε, with probability at least 1− δ, returns an estimate µ̂ of µθ such that,

‖µ̂− µθ‖2 ≤ C1

(√
ε+ γ(n, p, δ, ε)

)
‖Σθ‖

1
2
2

√
log p.

We note in particular, if n → ∞ (with other parameters held fixed) then
γ(n, p, δ, ε)→ 0 and the error of our gradient estimator satisfies

‖µ̂− µθ‖2 ≤ C
√
‖Σθ‖2ε log p,

and has only a weak dependence on the dimension p.
We also analyze the gradient estimator obtained by the filtering technique of
Diakonikolas et al. [31]. The complete algorithm and is its proof are described in
Appendix B.16. Our analysis is obtained by a combination of martingale style
arguments along with tight non-asymptotic bounds. As a result, we obtain
high-probability bounds which are almost dimension independent (i.e. they
depend on the dimension primarily through tr(Σθ)).
Lemma 10. Let P be the true probability distribution of z and let Pθ be the
true distribution of the gradients ∇L̄(θ; z) on Rp with mean µθ = ∇R(θ), co-
variance Σθ, and bounded second moments. There exists a positive constant
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C1 > 0, such that given n samples from the distribution in (3.9), the Huber
Gradient Estimator described in Algorithm 10 when instantiated with the con-
tamination level ε, and knowledge of ‖Σθ‖2 and trace (Σθ), with probability at
least 1− δ, returns an estimate µ̂ of µθ such that,

‖µ̂− µθ‖2 ≤ C1‖Σθ‖
1
2
2 max(ε,

log(1/δ)

n
)

1
2 + C2

√
trace (Σθ) log(p/δ)

n

For Algorithm 10, we see that if n→∞ (with other parameters held fixed)
then the error of our gradient estimator satisfies ‖µ̂ − µθ‖2 ≤ C

√
‖Σθ‖2ε.

Comparing Algorithms 4 and 10, we see that Algorithm 10 achieves the same
asymptotic error rate at weaker assumptions. However, it requires knowledge
of an upper bound of the operator norm of the gradients at any point θ. For the
general cases of GLMs such as linear regression, ‖Σθ‖2 depends on ‖θ∗ − θ‖2,
i.e. it depends on how far the current point is from the true optimal. Since, we
don’t have this information, we cannot use Algorithm 10 as black-box gradient
estimator. We believe that one can typically have an iterative update rule for
Σθt,(decreasing it after every step), but we don’t explore it further. However,
in cases such as Exponential Family, one can show that ‖Σθ‖2 < C ∀ θ, and
we derive bounds achieved by using Algorithm 10 as a gradient estimator.

3.5.3 General Analysis of Heavy-tailed Model Gradient Estimator
in Algorithm 5

In this section we analyze the gradient estimator for heavy-tailed setting, de-
scribed in Algorithm 5. The following result shows that the gradient estimate
has exponential concentration around the true gradient, under the mild as-
sumption that the gradient distribution has bounded second moment. Its proof
follows directly from the analysis of geometric median-of-means estimator of
Minsker [16]. We use trace (Σθ) to denote the trace of the matrix Σθ.
Lemma 11. Let P be the probability distribution of z and Pθ be the distri-
bution of the gradients ∇L̄(θ; z) on Rp with mean µθ = ∇R(θ), covariance
Σθ. Then the heavy-tailed gradient estimator described in Algorithm 5 returns
an estimate µ̂ that satisfies the following exponential concentration inequality,
with probability at least 1− δ:

‖µ̂− µθ‖2 ≤ 11

√
trace (Σθ) log (1.4/δ)

n
.
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The results of the Lemmas 9 and 11 effectively ensure that under relatively
mild moment assumptions we can robustly estimate multivariate mean vectors
and in subsequent sections we show how to leverage these strong guarantees for
robust parametric estimation.

3.6 Consequences for Estimation under ε-Contaminated
Model

We now turn our attention to the examples introduced earlier, and present
specific applications of Theorem 56, for parametric estimation under Huber
contamination model. As shown in Lemma 9, we need the added assumption
that the true gradient distribution has bounded fourth moments, which suggests
the need for additional assumptions. We make our assumptions explicit and
defer the technical details to the Appendix.

3.6.1 Linear Regression

We assume that the covariates x ∈ Rp have bounded 8th-moments and the noise
w has bounded 4th moments.
Theorem 9 (Robust Linear Regression). Consider the statistical model in
(B.17), and suppose that the number of samples n is large enough such that
γ(ñ, p, δ̃) < C1τ`

‖Σ‖2
√

log p
and the contamination level is such that

ε <

(
C2τ`

‖Σ‖2

√
log p

− γ(ñ, p, δ̃)

)2

,

for some constants C1 and C2. Then, there are universal constants C3, C4,
such that if Algorithm 3 is initialized at θ0 with stepsize η = 2/(τu + τ`) and
Algorithm 4 as gradient estimator, then it returns iterates {θ̂t}Tt=1 such that for
a contraction parameter κ < 1, with probability at least 1− δ,

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
C3σ

√
‖Σ‖2 log p

1− κ

(
ε

1
2 + γ(ñ, p, δ̃)

)
. (3.16)

In the asymptotic setting when the number of samples n → ∞ (and other
parameters are held fixed), we see that for the Huber Gradient Estimator, the
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corresponding maximum allowed contamination level is

ε <
C1τ

2
`

τ 2
u log p

,

i.e. the better conditioned the covariance matrix Σ, the higher the contamina-
tion level we can tolerate.

Plugin Estimation. For linear regression, the true parameter can be written
in closed form as θ∗ = E[xxT ]−1E[xy]. A non-iterative way to estimate θ∗
is to separately estimate E[xxT ] and E[xy] using robust covariance and mean
oracles respectively. Under the assumption that x ∼ N (0, Ip), one can reduce
the problem to robustly estimating E[xy]. Under this setting, we now present
a result using our robust mean estimator (from Lemma 9) to directly estimate
E[xy]. Recall, the definition of γ in (3.15). We have the following result:
Corollary 10. Consider the model in (B.17) with the covariates drawn from
N (0, Ip) and w ∈ N (0, 1), then there are universal constants C1, C2 such that
if ε < C1, the plugin estimator θ̂ of E[xy] described above with probability at
least 1− δ satisfies:

‖θ̂ − θ∗‖2 ≤ C2

√
(1 + 2‖θ∗‖2

2) log p
(
ε

1
2 + γ(n, p, δ, ε)

)
. (3.17)

Corollary 10 suggests that even when the plugin estimator does not have to
estimate the covariance matrix, the error of the plugin estimator depends on
‖θ∗‖2, which would make the estimator vacuous if ‖θ∗‖2 scales with the dimen-
sion p. In Appendix B.2, we empirically verify that this upper bound((3.17))
is indeed tight, i.e. the asymptotic error of plugin estimator does indeed scale
linearly with ‖θ∗‖2. Intuitively, this dependence occurs because the variance of
the sufficient statistic xy scales with ‖θ∗‖2

2 and from minimax results for robust
mean estimation [11], it is known the dependence on variance is unavoidable in
the ε-contaminated setting. Next, we apply our estimator to generalized linear
models.

3.6.2 Generalized Linear Models

Here we assume that the covariates have bounded 8th moments. Additionally,
we assume smoothness of Φ′(·) around θ∗. In particular, we assume that there
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exist universal constants LΦ,2k, B2k such that

Ex
[
|Φ′(〈x, θ〉)− Φ′(〈x, θ∗〉)|2k

]
≤ LΦ,2k‖θ∗ − θ‖2k

2 +BΦ,2k, for k = 1, 2, 4

We also assume that Ex[
∣∣Φ(t)(〈x, θ∗〉)

∣∣k] ≤ MΦ,t,k where Φ(t)(·) is the tth-
derivative of Φ(·).
Theorem 11 (Robust Generalized Linear Models). Consider the statistical
model in (5.10), and suppose that the number of samples n is large enough
such that

γ(ñ, p, δ̃) <
C1τ`

√
log p‖Σ‖

1
2
2 [L

1
4

Φ,4 + L
1
2

Φ,2]
,

and the contamination level is such that,

ε <


 C2τ`
√

log p‖Σ‖
1
2
2 [L

1
4

Φ,4 + L
1
2

Φ,2]
− γ(ñ, p, δ̃)




2

,

for some constants C1 and C2. Then, there are universal constants C3, C4,
such that if Algorithm 3 is initialized at θ0 with stepsize η = 2/(τu + τ`) and
Algorithm 4 as gradient estimator, then it returns iterates {θ̂t}Tt=1 such that
with probability at least 1− δ

‖θ̂t − θ∗‖2 ≤κt‖θ0 − θ∗‖2

+
C3

√
log p‖Σ‖

1
2
2 [B

1
4

Φ,4 +B
1
2

Φ,2 + c(σ)
1
2M

1
4

Φ,2,2 + c(σ)
3
4M

1
4

Φ,4,1]

1− κ

(
ε

1
2 + γ(ñ, p, δ̃)

)
,

(3.18)

for some contraction parameter κ < 1.
Note that for the case of linear regression with Gaussian noise, it is relatively
straightforward to see that LΦ,2k = C2k‖Σ‖k2, BΦ,2k = 0, MΦ,t,k = 1 ∀(t =
2, k ∈ N ) and MΦ,t,k = 0 ∀(t ≥ 3, k ∈ N ) under the assumption of bounded
8th moments of the covariates; which essentially leads to an equivalence between
Theorem 37 and Theorem 11 for this setting. In the following section, we
instantiate the above Theorem for logistic regression and compare and contrast
our results to other existing methods.
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Logistic Regression

By observing that Φ(t)(·) is bounded for logistic regression for all t ≥ 1, we can
see that LΦ,2k = 0, and that there exists a universal constant C > 0 such that
BΦ,2k < C and MΦ,t,k < C ∀(t ≥ 1, k ∈ N ).
Corollary 12 (Robust Logistic Regression). Consider the model in (5.13), then
there are universal constants C1, C2, such that if ε < C1, then Algorithm 3
initialized at θ0 with stepsize η = 2/(τu + τ`) and Algorithm 4 as gradient
estimator, returns iterates {θ̂t}Tt=1, such that with probability at least 1− δ

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
C2

√
‖Σ‖2 log p

1− κ

(
ε

1
2 + γ(ñ, p, δ̃)

)
,

for some contraction parameter κ < 1.
Under the restrictive assumption that x ∼ N (0, Ip), Balakrishnan et al. [50]
exploited Stein’s trick to derive a plugin estimator for logistic regression. How-
ever, similar to the linear regression, the error of the plugin estimator scales
with ‖θ∗‖2, which is avoided in our robust gradient descent algorithm. We also
note that our algorithm extends to general covariate distributions.

3.6.3 Exponential Family

Here we assume that the random vector φ(z), z ∼ P has bounded 4th moments.
Theorem 13 (Robust Exponential Family 1). Consider the model in (3.8),
then there are universal constants C1, C2, such that if ε < C1, then Algorithm 3
initialized at θ0 with stepsize η = 2/(τu+τ`) and Algorithm 4 as gradient oracle,
returns iterates {θ̂t}Tt=1, such that with probability at least 1− δ

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
C2

√
τu log p

1− κ

(
ε

1
2 + γ(ñ, p, δ̃)

)
,

for some contraction parameter κ < 1.
We also state the results obtained for Exponential Families when using Al-

gorithm 10 as gradient estimator. In this case we only need bounded second
moment assumptions on the random vector φ(z), z ∼ P .
Theorem 14 (Robust Exponential Family 2). Consider the model in (3.8),
then there are universal constants C1, C2, such that if ε < C1, then Algorithm 3
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initialized at θ0 with stepsize η = 2/(τu + τ`) and Algorithm 10 as gradient
oracle, returns iterates {θ̂t}Tt=1, such that with probability at least 1− δ

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
C2

1− κ

(√
τuε

1
2 +

√
trace (∇2A(θ∗)) log 1/δ̃

ñ

)
,

for some contraction parameter κ < 1.

Plugin Estimation. Since the true parameter θ∗ is the minimizer of the nega-
tive log-likelihood, we know that E[∇L̄(θ∗)] = 0, which implies that ∇A(θ∗) =
Eθ∗[φ(Z)]. This shows that the true parameter θ∗ can be obtained by inverting
the ∇A operator, whenever possible. In the robust estimation framework, we
can use a robust mean of the sufficient statistics to estimate Eθ∗[φ(Z)]. We in-
stantiate this estimator using the mean estimator of [28] to estimate Eθ∗[φ(Z)]:
Corollary 15. Consider the model in (3.8), then there are universal constants
C1, C2 such that if ε < C1, then [28] returns an estimate µ̂ of E[φ(z)], such
that with probability at least 1− δ

‖PΘ

[
(∇A)−1µ̂

]
− θ∗‖2 ≤ C2

√
τu log p

τ`

(
ε

1
2 + γ(n, p, δ, ε)

)
, (3.19)

where PΘ [θ] = argminy∈Θ ‖y − θ‖2
2 is the projection operator onto the feasible

set Θ.

3.6.4 Discussion and Limitations

In the asymptotic setting of n→∞, Algorithm 3 with Algorithm 4 as gradient
estimator converges to a point θ̂ such that ‖θ̂−θ∗‖2 = O(

√
ε log p). Hence, our

error scales only logarithmically with the dimension p. This dependency on the
dimension p is a facet of using the estimator from Lai et al. [28] for gradient
estimation. Using better oracles will only improve our performance. Next, we
would like to point to the difference in the maximum allowed contamination
ε∗ between the three models. For logistic regression and exponential family,
ε∗ < C1, while for linear regression, ε∗ < C1τ

2
`

τ2
u log p . These differences are in

large part due to differing variances of the gradients, which naturally depend
on the underlying risk function. This scaling of the variance of gradients for
linear regression also provides insights into the limitations of our robust gradient
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descent approach in Algorithm 3. In the Appendix, we provide an upper bound
for the contamination level ε based on the initialization point θ0, above which,
Algorithm 3 would not work for any gradient estimator.

3.7 Consequences for Heavy-Tailed Estimation

In this section we present specific applications of Theorem 56 for parametric
estimation, under heavy-tailed setting. The proofs of the results can be found
in the Appendix.

3.7.1 Linear Regression

We first consider the linear regression model described in (B.17). We assume
that the covariates x ∈ Rp have bounded 4th-moments and the noise w has
bounded 2nd moments. This assumption is needed to bound the error in the
gradient estimator (see Lemma 11).
Theorem 16 (Heavy Tailed Linear Regression). Consider the statistical model
in (B.17). There are universal constants C1, C2 > 0 such that if

ñ >
trace (Σ) τu

τ 2
l

log 1/δ̃

and if Algorithm 3 is initialized at θ0 with stepsize η = 2/(τu + τ`) and Algo-
rithm 5 as gradient estimator, then it returns iterates {θ̂t}Tt=1 such that with
probability at least 1− δ

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
C2σ

1− κ

√
trace (Σ) log 1/δ̃

ñ
, (3.20)

for some contraction parameter κ < 1.

3.7.2 Generalized Linear Models

In this section we consider generalized linear models described in (5.10), where
the covariate x is allowed to have a heavy-tailed distribution. Here we as-
sume that the covariates have bounded 4th moment. Additionally, we assume
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smoothness of Φ′(·) around θ∗. Specifically, we assume that there exist universal
constants LΦ,2k, B2k such that

Ex
[
|Φ′(〈x, θ〉)− Φ′(〈x, θ∗〉)|2k

]
≤ LΦ,2k‖θ∗ − θ‖2k

2 +BΦ,2k, for k = 1, 2

We also assume that Ex[
∣∣Φ(t)(〈x, θ∗〉)

∣∣k] ≤MΦ,t,k for t ∈ {1, 2, 4}, where Φ(t)(·)
is the tth-derivative of Φ(·).
Theorem 17 (Heavy Tailed Generalized Linear Models). Consider the sta-
tistical model in (5.10). There are universal constants C1, C2 > 0 such that
if

ñ >
Ctrace (Σ)

√
C4

√
LΦ,4 log (1/δ̃)

τ 2
`

,

and if Algorithm 3 is initialized at θ0 with stepsize η = 2/(τu + τ`) and Algo-
rithm 5 as gradient estimator, it returns iterates {θ̂t}Tt=1 such that with proba-
bility at least 1− δ

‖θ̂t − θ∗‖2 ≤κt‖θ0 − θ∗‖2

+
C2

[
B

1
4

Φ,4 + c(σ)
1
2M

1
4

Φ,2,2 + c(σ)
3
4M

1
4

Φ,4,1

]

1− κ



√

trace (Σ) log(1/δ̃)

ñ


 ,

(3.21)

for some contraction parameter κ < 1.
We now instantiate the above Theorem for the logistic regression model.

Corollary 18 (Heavy Tailed Logistic Regression). Consider the model in (5.13).
There are universal constants C1, C2 > 0 such that if

ñ >
C2

1 trace (Σ)

τ 2
l

log (1/δ̃).

and if Algorithm 3 initialized at θ0 with stepsize η = 2/(τu+τ`) and Algorithm 5
as gradient estimator, it returns iterates {θ̂t}Tt=1 such that with probability at
least 1− δ

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
C2

1− κ



√

trace (Σ) log(1/δ̃)

ñ


 ,

for some contraction parameter κ < 1.
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3.7.3 Exponential Family

We now instantiate Theorem 56 for parameter estimation in heavy-tailed expo-
nential family distributions. Here we assume that the random vector φ(z), z ∼
P has bounded 2nd moments, and we obtain the following result:
Theorem 19 (Heavy Tailed Exponential Family). Consider the model in (3.8).
If Algorithm 3 is initialized at θ0 with stepsize η = 2/(τu+ τ`) and Algorithm 5
as gradient estimator, it returns iterates {θ̂t}Tt=1, such that with probability at
least 1− δ

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
1

1− κ
C

√
trace (∇2A(θ∗)) log 1/δ̃

ñ
,

for some contraction parameter κ < 1 and universal constant C.
Recently, Hopkins [23] developed a Sum-of-Squares based polynomial-time al-
gorithm that achieves optimal error for mean estimation. Although polynomial
time, their algorithm is not practically implementable. However, when we use
their algorithm to robustly estimate gradients, the theoretical results obtained
in this section can be improved substantially, and are near-optimal. In par-

ticular, instead of the O(

√
trace(Σ) log(1/δ̃)

ñ ) term obtained in this section, we

get results of the form O(

√
‖Σ‖2 log(1/δ̃)

ñ +
√

trace(Σ)
ñ ). Note that our proposed

estimators are the first polynomial time estimators, which achieve these ex-
ponential concentration in heavy-tailed models. We present these results in
Appendix B.15.

3.8 Discussion

In this paper we introduced a broad class of robust estimators, that leverage
the inherent robustness of gradient descent, together with the observation that
for risk minimization in most statistical models, the gradient of the risk takes
the form of a simple multivariate mean, which can be robustly estimated using
recent work on robust mean estimation. In contrast to classical M -estimators
that use robust estimates of the risk, our class of estimators employ a shift in
perspective, and use robust estimates of gradients of the risk instead, which can
then be embedded into a simple projected gradient descent iterative algorithm.
Our class of robust gradient descent estimators work well in practice and in
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many cases outperform other robust (and non-robust) estimators. We also
show that these estimators have strong robustness guarantees under Huber’s
ε-contamination model and for heavy-tailed distributions.

There are several avenues for future work, including a better understand-
ing of robust mean estimation, any improvement in which would immediately
translate to improved guarantees for our robust gradient descent estimators.
For example, our current algorithm requires sample-splitting which is waste-
ful. One way to get around this sample-splitting is to develop uniformly robust
gradient estimators. We provide some partial results along these lines in Ap-
pendix B.17. Finally, it would also be of interest to understand the extent to
which we can relax our assumption of strong convexity of the population risk.
In particular, our analysis relies on the linear convergence of the population
iterates (a consequence of strong convexity and smoothness but not equivalent
to it). Hence, we can, for instance, in a straightforward way analyze robust gra-
dient descent in certain non-convex problems, for instance those arising in the
estimation of a mixture of two Gaussians (under suitable initialization) [49] or
settings in which the Polyak-Lojasiewicz condition (a weaker condition allow-
ing interesting non-convex functions but still implying the linear convergence of
gradient descent iterates) holds [67]. Completely eliminating this assumption,
to instead consider cases where the risk is convex but not strongly-convex (for
instance) poses identifiability issues, and warrants further investigation and is
an interesting direction. In particular, it might necessitate focusing on predic-
tion error (in linear or logistic regression, and analogues in the other models)
as opposed to parameter error.
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Chapter 4
On Learning Ising Models under Huber’s
Contamination Model

We study the problem of learning Ising models in a setting where some of the
samples from the underlying distribution can be arbitrarily corrupted. In such
a setup, we aim to design statistically optimal estimators in a high-dimensional
scaling in which the number of nodes p, the number of edges k and the maximal
node degree d are allowed to increase to infinity as a function of the sample
size n. Our analysis is based on exploiting moments of the underlying distri-
bution, coupled with novel reductions to univariate estimation. Our proposed
estimators achieve an optimal dimension independent dependence on the frac-
tion of corrupted data in the contaminated setting, while also simultaneously
achieving high-probability error guarantees with optimal sample-complexity.
We corroborate our theoretical results by simulations.

4.1 Introduction

Undirected graphical models (also known as Markov random fields (MRFs))
have gained significant attention as a tool for discovering and visualizing de-
pendencies among covariates in multivariate data. Graphical models provide
compact and structured representations of the joint distribution of multiple ran-
dom variables using graphs that represent conditional independences between
the individual random variables. They are used in domains as varied as natural
language processing[68], image processing [69, 70, 71], spatial statistics [72] and
computational biology [73], among others. Given samples drawn from the dis-
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tribution, a key problem of interest is to recover the underlying dependencies
represented by the graph. A slew of recent results [74, 75, 76] have shown that it
is possible to learn such models even in domains and settings where the number
of samples is potentially smaller than the number of variables. These results
however make the common assumption that the sample data is clean, and have
no corruptions. However, modern data sets that arise in various branches of
science and engineering are no longer carefully curated. They are often col-
lected in a decentralized and distributed fashion, and consequently are plagued
with the complexities of outliers, and even adversarial manipulations.

Huber [63] proposed the ε-contamination model as a framework to study
such datasets with potentially arbitrary corruptions. In this setting, instead of
observing samples directly from the true distribution P?, we observe samples
drawn from Pε, which for an arbitrary distribution Q is defined as a mixture
model,

Pε = (1− ε)P? + εQ. (4.1)

Then, given n samples from Pε, the goal is to recover functionals of P?. There
has been a lot of classical work on estimators for the ε-contamination model
setting that largely trade off computational versus statistical efficiency (see [77]
and references therein). Moreover, there has been substantial progress [27, 28,
29, 30, 31, 32, 46, 78] on designing provably robust estimators which are com-
putationally tractable while achieving near-optimal contamination dependence
(i.e. dependence on the fraction of outliers ε). However, to the best of our
knowledge, there are no known results for learning general graphical models
robustly.

4.1.1 Related Work

In this work, we focus on the specific undirected graphical model sub-class
of Ising models [79]. There has been a lot of work for learning Ising models
in the uncontaminated setting dating back to the classical work of Chow and
Liu [80]. Csiszár and Talata [81] discuss pseudo likelihood based approaches
for estimating the neighborhood at a given node in MRFs. Subsequently, a
simple search based method is described in [82] with provable guarantees. Later,
Ravikumar et al. [76] showed that under an incoherence assumption, node-wise
(regularized) estimators provably recover the correct dependency graph with
a small number of samples. Recently, there has been a flurry of work [83,
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84, 85, 86, 87] to get computationally efficient estimators which recover the
true graph structure without the incoherence assumption, including extensions
to identity and independence testing [88]. However, all the aforementioned
results are in the uncontaminated setting. Recently, Lindgren et al. [89] derived
preliminary results for learning Ising models robustly. However, their upper and
lower bounds do not match. Moreover, their analysis primarily focuses on the
robustness of the Sparsitron algorithm in [84], and they do not explore the effect
of the underlying graph and correlation structures comprehensively.

Contributions. In this work, we give the first statistically optimal estimator
for learning Ising models under the ε-contamination model. Our estimators
achieve a dimension-independent asymptotic error as a function of the fraction
of outliers ε, while simultaneously achieving high probability deviation bounds.
As an important special case of our results, we also close known sample com-
plexity gaps in the uncontaminated setting for some classes of Ising models.
We finally corroborate our theoretical findings with simulation studies.

4.1.2 Background and Problem Setup

We begin with some background on Ising models and then provide the pre-
cise formulation of the problem. We follow the notation of Santhanam and
Wainwright [90] very closely.

Consider an undirected graph G = (V,E) defined over a set of vertices
V = {1, 2, . . . , p} with edges E ⊂ {(s, t) : s, t ∈ V, s 6= t}. The neighborhood
of any node s ∈ V is the subset N (s) ⊂ V given by N (s)

def
= {t|(s, t) ∈ E},

and the degree of any vertex s is given by ds = |N (s)|. Then, the degree
of a graph d = maxs ds is the maximum vertex degree, and k = |E| is the
total number of edges. We obtain an MRF by associating a random variable
Xv at each vertex v ∈ V , and then considering a joint distribution P over the
random vector (X1, . . . , Xp). An Ising model is a special instantiation of an
MRF where each random variable Xs take values in {−1,+1}, and the joint
probability mass function is given by:

Pθ(x1, . . . , xp) ∝ exp

( ∑

1≤s<t≤p
θstxsxt

)
, (4.2)
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where we view θ as the parameter vector of the distribution. Note that θ ∈ Rp×p

is such that θij = 0⇔ (i, j) 6∈ E and θ = θT .

Graph Classes. In this work, we consider two classes of Ising models (4.2)
based on the conditions imposed on the edge set:
1. Gp,d: the collection of graphs G with p vertices such that each vertex has

at most d neighbors for some d ≥ 1, and
2. Gp,k: the collection of graphs G with p vertices such that the total number

of edges in the graph is at most k for some k ≥ 1.
In addition to these structural properties, we also consider some subclasses
based on the parameters of the Ising model. We define the model width as:

ω∗(θ(G))
def
= max

u∈V

∑

v∈V

|θuv|.

It is well-known (see for instance [90]) that estimation in Ising models becomes
harder with increasing value of edge parameters, since, large values of edge
parameters may hide the contributions of other edges. Similarly, we define the
minimum edge weight as:

λ∗(θ(G))
def
= min

(s,t)∈E
|θst| .

With these structural and parameter properties in place, we define the classes
of Ising models that we will be studying in the rest of the paper. Given a pair
of positive numbers (λ, ω):
1. Gp,d(λ, ω): the set of all Ising models defined over a graphs G with p ver-

tices, with each vertex having degree at most d and parameters satisfying

λ∗(θ(G)) ≥ λ and ω∗(θ(G)) ≤ ω.

2. Gp,k(λ, ω): the set of all Ising models defined over a graphs G with p
vertices, with total number of edges at most k and parameters satisfying

λ∗(θ(G)) ≥ λ and ω∗(θ(G)) ≤ ω.

Furthermore, we work in the high temperature regime where we assume
that the model width bound ω∗(θ(G)) ≤ 1− α for some α > 0. Note that this
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assumption implies the Dobrushin condition [91], which in case of Ising models
is given by

max
u∈V

∑

v∈V

tanh(|θuv|) ≤ 1− α, α ∈ (0, 1). (4.3)

While this may seem restrictive, this assumption is widely popular for studying
Ising models, for example, see related works in statistical physics [92, 93], mixing
times of Glauber dynamics [94, 95], correlation decay [96] and more recently in
estimation and testing problems [88, 97].

Notation: Given a matrix M of dimensions l ×m, we will denote the ith row
of matrix by Mi and the (i, j)th element by Mij or M(i, j). M−i denotes the
sub-matrix formed by all rows except i, and analogouslyM:,−j denotes the sub-
matrix formed by all columns except j. M(i) denotes the vector [Mi]−i i.e.,
the ith row of M excluding element Mii. Given a vector v, ‖v‖p = p

√∑
i |vi|p

denotes its `p-norm, and its `∞-norm is given by ‖v‖max = maxi |vi|. For a
matrix M , ‖M‖p,q denotes the mixed `p,q-norm, which is the q-norm of the
collection of p-norms of the rows of M . We also use the shorthand [d] =
{1, 2, . . . , d}. We denote the total variation (TV) distance between two discrete
distributions p, q with support X by dTV(p, q) = 1

2

∑
x∈X |p(x)− q(x)|.

4.2 Information-theoretic bounds for the ε-contamination
model

Recall that in the ε-contamination model (4.1), we observe n samples from
Pε = (1− ε)P? + εQ. In this model, even in the asymptotic setting as n→∞,
we cannot expect to recover the true parameters exactly. To see this, suppose
that P?1,P?2 are such that there exist two distributions Q1 and Q2 such that

Pε = (1− ε)P?1 + εQ1 = (1− ε)P?2 + εQ2,

then, we cannot hope to distinguish between the two distributions. It is easy
to show (see [98]) that the above condition is equivalent to assuming that
dTV(P?1,P?2) = ε

1−ε . Thus, for any given contaminated distribution Pε, there
is a set of possible uncontaminated distributions (including the ground truth
uncontaminated distribution among others) within a ball of some fixed radius
with respect to the TV distance, any of which could give rise to the given
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contaminated distribution Pε. Thus, when estimating the uncontaminated dis-
tribution with respect to some loss function, in the worst case we could incur
loss corresponding to the farthest pair of distributions in the ball of some fixed
radius with respect to TV distance. This is captured by the geometric notion
of modulus of continuity [99], which can then be used to derive sharp bounds
on estimation in such a setting:
Definition 3 (TV modulus of continuity). Given a loss function L : Θ×Θ→
R+ defined over the parameter space Θ, a class of distributions D, a functional
f : D → Θ and a proximity parameter ε, the modulus of continuity ω(f,D, L, ε)
is defined as

ω(f,D, L, ε) def
= sup

P1,P2∈D
dTV(P1,P2)≤ε

L(f(P1), f(P2)). (4.4)

Intuitively, this quantity controls how far the functionals of two distributions
can be, subject to the constraint that the TV distance between them is ε. Note
that for general Ising models, there do not exist any results that directly relate
the total variation distance to the difference in parameters i.e. which study the
TV modulus of continuity for the parameters of an Ising model.

A key contribution of our work is to establish sharp upper bounds on the TV
modulus of continuity for parameter error in the high temperature regime. The
loss function is considered to be the `2,∞ norm i.e. for matrices x, y ∈ Rp×p,
L(x, y) = maxi ‖xi − yi‖2.
Theorem 20. Consider two Ising models defined over two graphs G(1) and G(2)

with p vertices with parameters θ(1) and θ(2) respectively, each of which satisfy
the high temperature condition (4.3) with constant α. If dTV (Pθ(1),Pθ(2)) ≤ ε,
then we have that:

‖θ(1)(i)− θ(2)(i)‖2 . 1ε

√
C1(α) log

(
2

ε

)
for all i ∈ [p],

where C1(α) is a constant depending on α.
Observe that Theorem 20 shows that the parameter error is independent of

the dimension p, degree d and the number of edges k. Furthermore, it is also
independent of the minimum edge weight λ. As expected, when ε→ 0, we see

1Here and throughout our paper we use the notation . to denote an inequality with universal constants
dropped for conciseness.
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that the parameters are equal providing an alternate route to showing that the
parameters of an Ising model are identifiable in the high temperature setting.
We also establish that the dependence on ε is tight upto logarithmic factors by
providing a complementary lower bound – proofs of which are made available
in the appendix (Sections D.3.1 and D.3.2).
Lemma 12. There exists two Ising models satisfying the properties in Theorem
20 whose parameters θ(1) and θ(2) satisfy:

‖θ(1)(i)− θ(2)(i)‖2 & ε for all i ∈ [p].

4.3 TV Projection Estimators

Recall the geometric picture of TV contamination discussed in the previous
section: given the contaminated distribution, there is a set of possible uncon-
taminated distributions within a ball of some fixed radius with respect to TV.
It is thus natural to consider the TV projection of the contaminated distribu-
tion onto the set of all possible uncontaminated distributions. These are also
called minimum distance estimators and were proposed by Donoho and Liu [8],
which we consider for our setting to learn Ising models robustly, leveraging our
Theorem 20.

4.3.1 Population Robust Estimators for Gp

Let us first consider the population setting i.e., in which we have distribu-
tion access to the contaminated distribution Pε = (1 − ε)Pθ∗ + εQ, where
Pθ∗ ∈ Gp(λ, ω) 2. In this setting, we use the minimum distance estimator [8] to
construct robust estimators. In particular, let Pθ̂MDE

be the minimum distance
estimate defined as

Pθ̂MDE
= argmin

Pθ∈Gp
dTV(Pθ,Pε). (4.5)

This estimator is effectively the TV projection of the contaminated distribution
onto the set of all Ising model distributions whose underlying graph lies in Gp.

Noting that dTV(Pθ∗,Pθ̂MDE
) ≤ ε, by an application of the triangle inequality

we have that dTV(Pθ∗,Pθ̂MDE
) ≤ 2ε. Combining this with Theorem 20, we get

2We define the class Gp(λ, ω) as the set of Ising models defined over p vertices with minimum edge weight
λ and model width ω
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that,

‖θ̂MDE(i)− θ∗(i)‖2 . ε

√
C(α) log

(
2

ε

)
for all i ∈ [p].

Corollary 21. Let Pθ̂MDE,λ
be the TV projection of the contaminated distribu-

tion Pε onto the class of Ising models Gp,d with minimum edge weight at least
λ. Define the edge set of Pθ̂MDE

as E(θ̂MDE,λ) = {(i, j) : |θ̂MDE,λ(i, j)| > λ
2}.

When ε
√
C(α) log

(
2
ε

)
≤ λ

2C1
, where C1 is a universal constant, the edge sets

of Pθ̂MDE,λ
and Pθ∗ coincide i.e.,

E(θ̂MDE,λ) = E(θ∗).

Observe that this result is interesting and surprising, because one would
generally not expect to be able to recover the true edge E(θ∗) under contam-
ination. Additionally, as mentioned earlier, there is no dependence on p, d or
k, which means that the irrespective of the size of graph, if the minimum edge
weight is sufficiently large or the level of contamination is sufficiently small, we
would be able to recover the true edge set in the infinite sample limit.

4.3.2 Empirical Robust Estimators for Gp,k
The minimum distance estimator is not suitable for non-asymptotic settings
since we do not have access to the population contaminated distribution, but
only to its discrete empirical counterpart, obtained via samples from the con-
taminated distribution. It would thus be ideal if there were an approximation
to the TV distance that is amenable to projections of discrete distributions,
and that preserves the optimality properties of the full TV projections.

Remarkably, Yatracos [100] proposed just such an approximation to TV
projections. Consider a class of distributions P . It is known that dTV(P,Q) =
supA |P (A)−Q(A)|, where the supremum is over all possible measurable sets
A ⊆ supp(P ). While uniform convergence fails over all sets, Yatracos [100]
showed that we can consider a much smaller collection of clevely chosen sets.
In particular, Yatracos [100] suggested approximating the TV distance between
distribution P,Q ∈ P as

dTV(P,Q) ≈ sup
A∈A
|P (A)−Q(A)|,
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where A are sets of the form

A = {A(P1,P2) : P1,P2 ∈ P}, (4.6)

and A(P1,P2) = {x : P1(x) > P2(x)}. This approximation allows us to con-
struct statistically optimal estimators for Gp,k.

Non-Asymptotic Robust Estimators for Gp,k

Given samples {x(i)}ni=1 from the mixture model Pε defined in (4.1), define

P̂n,ε(A) = 1
n

n∑
i=1

I
{
x(i) ∈ A

}
for all A ∈ A, where A is the same as defined in

(4.6) with the class of distributions Gp,k. Our estimator is defined as

Pθ̂ = argmin
Pθ∈Gp,k

sup
A∈A

∣∣∣Pθ(A)− P̂n,ε(A)
∣∣∣ . (4.7)

The following lemma characterizes the performance of our estimator.
Lemma 13. Given n samples from a contaminated distribution Pε, the Yatra-
cos estimate (4.7) satisfies with probability least 1− δ:

dTV(Pθ̂,Pθ?) ≤ 2ε+O

(√
k log(p2e/k)

n
+

√
log(1/δ)

n

)
.

The lemma above shows that the Yatracos estimate is close to the true
Ising model in TV distance with high-probability. Combining Lemma 13 and
Theorem 20, we get parameter error guarantees for the Yatracos estimate.
Corollary 22. Given n samples from Pε, the Yatracos’ estimator returns a θ̂
such that with probability at least 1− δ,

‖θ̂(i)−θ?(i)‖2 . 2ε
√

log(1/ε)+Õ

(√
k log(p2e/k)

n
+

√
log(1/δ)

n

)
for all i ∈ [p],

(4.8)
where Õ(.) hides logarithmic factors involving its argument.

Remarks. Note that the proposed estimator achieves the same (asymptotic)
dimension-independent error as the Minimum Distance Estimate discussed in
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Section 4.3.1, while simultaneously achieving an Õ
(√

k log p
n

)
error rate. More-

over, observe that in the uncontaminated setting, i.e., when ε = 0, this is the

first estimator to get an Õ
(√

k log p
n

)
error rate. As a consequence, Yatracos’

estimator followed by an additional thresholding step gives the first estimator
to recover the true edge set E(θ∗) with only Õ

(
k log(p)
λ2

)
samples. In contrast,

the estimator proposed by [90] posit that the sample size should satisfy O(1/λ4)
when the parameters are unknown. In the contaminated case, note that we
show a better dependence on ε – O(ε

√
log(1/ε)) vs.

√
ε in [89]. The proof for

Lemma 13 is presented in Section D.4.2 of the appendix. A similar analysis was
conducted in [101], however [101] study density estimation, and not parameter
estimation. The bound on the modulus of continuity obtained in Theorem 20
allows us to relate the TV distance between the estimated distribution and the
true distribution to the parameter error, thus giving us bounds for parameter
estimation.

Non-Asymptotic Robust Estimators for Gp,d

Under the same setting as considered for Gp,k, we see that directly employing
the estimator (4.7) would lead to a sub-optimal rate. Our guarantee for (4.7) for
Gp,k relies on the fact that parameters for Ising models in Gp,k contain at most k
non-zero elements, hence the subset A(θ(1), θ(2)) = {x : Pθ(1)(x) > Pθ(2)(x)} is a
half-space defined by a vector with at most 2k+1 non-zero elements. However,
these subsets defined with parameters θ(1), θ(2) of two Ising models in Gp,d is a
half-space defined by a vector that have at most pd+1 non-zero elements. This
leads to a rate term that is proportional to

√
pd log(p)/n, which does not scale

well in high-dimensional settings.

4.4 Robust Conditional Likelihood Estimators

In the previous section, we have seen that the estimator based on Yatracos
classes [100] provides an approximate TV projection for Gp,k but not for Gp,d.
The main caveat with this estimator is that it is not tractable and takes infinite
time. To circumvent this issue, we consider a more direct approach to robust
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estimation: we “robustify” the gradient samples obtained from samples {x(i)}ni=1

of the contaminated distribution Pε = (1− ε)Pθ∗ + εQ.

Neighborhood-based logistic regression. In a classical paper, Besag [102] made
the key structural observation that under model (4.2), the conditional distribu-
tion of node Xi given the other variables X−i = x−i is given by

Pθ∗(Xi = xi|X−i = x−i) =
exp(2xi

∑
t∈N (i) θ

∗
itxt)

exp(2xi
∑

t∈N (i) θ
∗
itxt) + 1

= σ(xi 〈2θ∗(i), x−i〉).

Thus the variable Xi can be viewed as the response variable in a logistic re-
gression model with X−i as the covariates and 2θ∗(i) as the regression vector.
In particular, this implies that Ex∼Pθ∗ [∇li(2θ∗(i);x)] = 0 where `i(θ(i);x) =
log σ(xi 〈θ(i), x−i〉) is the conditional log-likelihood of x under Pθ. Note that
for graphs with maximum degree at most d, the parameter vector θ∗(i) has
at most d non-zero entries, and for graphs with at most k edges, the param-
eter vector θ∗(i) has at most k non-zero entries. Ravikumar et al. [76] solved
an `1-regularized logistic regression to recover the node parameters for graphs
with bounded maximum degree. However, in our setting, the data is contami-
nated with outliers, and hence the minimizer of the likelihood can be arbitrarily
bad. While there has been recent work giving provably optimal algorithms for
robust logistic regression [78], all of these results are in the low-dimensional
setting. We propose the first statistically optimal estimator for sparse logistic
regression, and use that to provide estimators for learning Ising models.

Robust Sparse Logistic Regression. Our approach is based on a reduction to
robust univariate estimation initially proposed by [103]. In particular, note that
when we have clean data, then, in the population setting, θ∗(i) is the unique
solution to the equation ‖Ex∼Pθ∗ [∇`i(θ(i);x)] ‖2 = 0 or equivalently, it is the
unique minimizer for the following optimization problem:

θ∗(i) = argmin
w:‖w‖0≤s

sup
u∈Sp−2

∣∣Ex∼Pθ∗ [uT∇`i(w;x)]
∣∣ ,

where we have simply used the variational form of the norm of a vector. Observe
that Ex∼Pθ∗ [uT∇`i(w;x)] is simply the population (uncontaminated) mean of
the gradients, when projected along the direction u. Unfortunately, we only
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Algorithm 6 Robust1DMean - Robust univariate mean estimator
function Interval1D({zi}2n

i=1,Corruption Level ε, Confidence Level δ)
Split the data into two subsets: Z1 = {zi}ni=1 and Z2 = {zi}2n

i=n+1.
Let α = max(ε, log(1/δ)

n
).

Using Z1, let Î = [a, b] be the shortest interval containing n(1 − 2α −
√

2α log(4/δ)
n
−

log(4/δ)
n

) points.
Use Z2 to identify points lying in [a, b].
return 1∑2n

i=n I{zi∈Î}
∑2n

i=n ziI
{
zi ∈ Î

}

end function

have finite samples which are moreover contaminated. We can pass these uni-
variate projections of the gradient through a robust univariate mean estimator,
and return a point which has the smallest (robust) mean along any direction.
This leads to the following program,

θ̂(i) = argmin
w∈N γ

s (Sp−2)

sup
u∈N

1/2
2s (Sp−2)

∣∣∣Robust1DMean({uT∇`i(w;x(j))}nj=1)
∣∣∣ , (4.9)

where N γ
s (Sp−2) is a γ-cover of the unit sphere over p − 1 dimensions with s

non-zero entries i.e., for every x ∈ Sp−2 that has s non-zero entries, there exists
y ∈ N γ

s (Sp−2) such that ‖x−y‖2 ≤ γ. Our robust univariate mean estimator is
based on the shortest interval estimator (Shorth) studied in [28, 103, 104]. The
estimator, presented in Algorithm 6, proceeds by using half of the samples to
identify the shortest interval containing roughly (1− ε)n fraction of the points,
and then the remaining half of the points is used to return an estimate of
the mean. Intuitively, this estimator effectively trims distant outliers, thereby
limiting their influence on the estimate.

We assume that the contamination level ε, confidence parameter δ, and
sparsity s are such that,

2ε+

√
ε

(
s log(p)

n
+

log(p/δ)

n

)
+
s log(p)

n
+

log(4p/δ)

n
< c, (4.10)

for some small constant c > 0. As noted earlier, the sparsity parameter s is the
maximum degree d for Gp,d and the maximum number of edges k for Gp,k.
Theorem 23 (Guarantees for Gp,d). Under the setting considered in 4.4 along
with Assumption (4.3), the estimator in (4.9) returns estimates {θ̂(i)}pi=1 with
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γ = max
{
ε
p ,

log(1/δ)
np

}
returns with probability at least 1− δ

‖θ̂(i)−θ?(i)‖2 . ε

√
C(α) log

(
1

ε

)
+

√
C(α)

d

n
log

(
3ep2

dγ

)
+max

(
ε,

log(1/δ)

n

)
for all i ∈ [p].

Corollary 24 (Guarantees for Gp,k). Under the setup considered in Theorem
23, the estimator in (4.9) returns estimates {θ̂(i)}pi=1 with γ = max

{
ε
p ,

log(1/δ)
np

}

returns with probability at least 1− δ

‖θ̂(i)−θ?(i)‖2 . ε

√
C(α) log

(
1

ε

)
+

√
C(α)

k

n
log

(
3ep2

kγ

)
+max

(
ε,

log(1/δ)

n

)
for all i ∈ [p].

Remarks. Observe that our estimator achieves the same (asymptotic) bias as
the Minimum Distance Estimator, previously discussed in Section 4.3.1. De-
fine the recovered edge set as those edges (i, j) satisfying |θ̂ij| ≥ λ/2. When
ε = 0, i.e., no contamination, for Gp,d, we require the number of samples
n ≥ O

(
d log(p)
λ2

)
to recover the true edge set E(θ∗). Even in the uncontaminated

setting, there is no known estimator which achieves the same optimal sample
complexity as ours. In particular, Santhanam and Wainwright [90] achieve sim-
ilar rates when they assume that the structure is known, while other approaches
of [76, 86] have worse dependence on the degree d. Hence, our proposed esti-
mator has an optimal (asymptotic) bias and optimal high probability bounds.
For Gp,k, we obtain the same rate and sample complexity as Yatracos’ estimator
(4.7), which we remarked is optimal. The proof of Theorem 23 is presented in
Section D.5.1 of the appendix.

4.5 Synthetic Experiments

Our theoretical results crucially hinge on bounds on the TV modulus of conti-
nuity derived in Theorem 20, and we devote this section to corroborating these
bounds.

Setup. We consider two different ensembles. A graph G ∈ Gstar
p,d when one of

the p nodes is connected d other vertices, and no other edges are present in the
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Figure 4.1: Left: Variation of ‖θ(1) − θ(2)‖2,∞ with dTV(Pθ(1) ,Pθ(2)) for G(1), G(2) ∈ Gclique
15,4

(top) and G(1), G(2) ∈ Gstar
15,4 (bottom) graphs with varying ω. Middle: Variation of slope with

d for cliques (top) and star (bottom) with p = 12 and ω = 0.4. Right: Variation of slope
with ω for cliques (top) and star (bottom) with p = 15 and d = 5. The slope is defined as
‖θ(1)−θ(2)‖2,∞
dTV(P

θ(1) ,Pθ(2) )
.
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graph, resembling a star. A graph G ∈ Gclique
p,d contains b p

d+1c cliques of size
d+ 1, and the remainder of the nodes p mod (d+ 1) fully connected amongst
themselves. We generate our plots in the following manner: first we construct
two graphs with the same structure - either from Gclique

p,d of Gstar
p,d . We instantiate

parameters for the first graph with θ(1) with model width ω and then vary the
parameters for the second graph as θ(2) = θ(1) · i

25 for i ranging from 1 to 50.
We vary p ∈ {12, 15}, d ∈ {3 : 8 : 1} and ω ∈ {0.2 : 1.0 : 0.2} ∪ {1.5 : 10 :
0.5} where {a : b : c} denotes values between a and b (both inclusive) with
consecutive values differing by c.

Results. Figures 4.1(a) and 4.1(d) exhibits a linear relationship between dTV(Pθ(1),Pθ(2))
and ‖θ(1) − θ(2)‖2,∞, as suggested by our theoretical results from previous sec-
tions. Furthermore, we notice that the slope is not drastically affected by ω,
which also suggests that the constant C(α) appearing in our results is O(1).
We also note from Figures 4.1(b) and 4.1(e), that the slope is unaffected by a
change in degree. Finally, in Figures 4.1(c) and 4.1(f), we notice the variation
in the slope with increasing model width ω. While our current result study the
case when ω < 1, it is also interesting to note an increasing trend when ω ≥ 1
suggesting an explicit dependence on ω in the low-temperature regime.

4.6 Discussion and Future Work

In this work we provided the first statistically optimal robust estimators for
learning Ising models in the high temperature regime. Our estimators achieved
optimal asymptotic error in the ε-contamination model, and also high-probability
deviation bounds in the uncontaminated setting. There are several avenues for
future work, some of which we discuss below.

Beyond Dobrushin’s conditions. In the low-temperature setting, Lindgren et al.
[89] showed the existence of an estimator which gets an O(

√
ε) error. In Ap-

pendix D.1, we tighten this for edge-bounded graphs by providing estimators
which achieve O(min(

√
ε, ε
√
k)) error, where k is the maximum number of

edges in the graph. However, giving matching lower bounds in this setting is
an open problem. Our synthetic experiments surprisingly show that one may
expect similar rates in the two temperature regimes.
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Computationally Efficient Estimators. While in this work, we designed sta-
tistically optimal estimators that achieve an O(ε

√
log(1/ε)) parameter error,

whereas, existing computationally efficient approaches [84, 89] achieve a sub-
optimal error of O(

√
ε). Developing computationally efficient algorithms which

close this gap is an interesting open problem.

Other Contamination Models. In this work, our focus was on designing es-
timators for the ε-contaminated model, i.e., where a fraction of the data is
arbitrarily corrupted. Another model of corruption - motivated by sensor net-
works and distributed computation where node failures are common - is when
only a few features(nodes) get corrupted, and we still want to learn the ap-
propriate graph structure for the uncontaminated nodes. Recent work by Goel
et al. [105] discusses results for this model of contamination.

However, if used without prior analysis of the data presented, this could
potentially reduce the effect of outlier samples, which in the case of voting
patterns, are representative of a minority groups.
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Chapter 5
Efficient Estimators for Heavy-Tailed Machine
Learning

With a dramatic improvement in data collection technologies, our era has wit-
nessed a massive explosion in unstructured and heterogeneous data sets. This
has led to a prevalence of heavy tailed distributions across a broad range
of tasks in machine learning. In this work, we aim to develop estimators
which can handle such ill-behaved distributions. Our workhorse is a novel and
computationally-efficient estimator for mean estimation, which is both practical
and provably near-statistically-optimal. We provide specific consequences of our
theory for both supervised learning tasks such as linear regression, generalized
linear models and generative modeling tasks such as Generative Adversarial
Networks. We study the empirical performance of our proposed estimators
on synthetic and real-world data sets, and find that our methods convincingly
outperform a variety of practical baselines.

5.1 Introduction

Existing estimators in machine learning are largely designed for thin-tailed data,
such as those coming from a Gaussian distribution. In particular, it is well
known that in the absence of light tails, classical estimators based on minimizing
the empirical error perform poorly [15, 106].

Modern datasets however are frequently heavy-tailed, see for instance [12,
13, 107] and references therein for examples from domains ranging from large
scale biological datasets, and financial datasets, among others.
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Figure 5.1: Non-Gaussianity of Generator Gradients at Different Iterations.

There has also been a line of recent work showing that heavy-tailed distri-
butions occur even in intermediate outputs of machine learning algorithms. In
particular, Simsekli et al. [108] and Zhang et al. [109] recently showed that the
distribution of noise in stochastic gradients is heavy-tailed for popular deep
learning architectures such as attention models. We further validate this in our
experiments via an empirical investigation into the distribution of gradients
generative adversarial networks.

5.1.1 Empirical Study of Gradients in Generative Adversarial Net-
works.

Generative Adversarial Networks (GANs) [110] have risen to prominence in
machine learning as an unsupervised method for learning and efficient sampling
from complex distributions. At the population level, the GAN objective is based
on the following minimax problem:

min
G∼FG

max
D∼FD

EZ∼pZ [f(1−D(G(Z)))] + EX∼ν[f(D(X))]

Given a target distribution ν, the goal is to learn a map G from the generator
class FG that transforms samples from PZ (known as a prior distribution) and
minimizes the loss of the best test function D inside the discriminator class
FD. f is any monotone function. The loss can be minimized by obtaining
samples that are “similar” to those sampled from ν. In practice, deep neural
networks are used to represent both discriminator and generator classes. In
particular, suppose (φ, ψ) represent the parameters of the discriminator and
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generator respectively, then the classical instantiation of the GAN framework
is given by,

V (φ, ψ) = Ex∼pdata[log(Dφ(x))] + EZ∼pZ [log(1 − Dφ(Gψ(Z))] (5.1)

where pdata represents the given samples. Then, we finally estimate our param-
eters ψt and φt via an alternating procedure as,

φt = argmax
φ

V (φt−1, ψt−1) ψt = argmin
ψ

V (φt, ψt−1)

The above optimization problem is typically solved using first-order methods
such as stochastic gradient descent or adaptive methods such as ADAM [111].

In this section, our goal is to study the distribution of the gradients of the
generator ∇ψV (φ, ψ) at different iterations. For these experiments, we train a
deep convolutional GAN (DCGAN) [112] on the MNIST and CIFAR10 datasets
using SGD with a fixed learning rate of 3 · 10−4. We update our sequence of
estimates as described above and elaborate on the setup in Section 5.4.3.

Our investigation begins by plotting the distribution of `2 norms of the gen-
erator gradients over several iterations in Figure 5.1(a) for CIFAR10. Visually,
the distribution of the norms of the gradients clearly exhibit heavy-tailedness
with the degree of heavy-tailedness increasing as the iterations increase.
α-Index of Gradient Norms. To further quantify this effect, we use the

α-index estimator for α-stable distributions (which are a broad category of
heavy-tailed distributions) proposed by Mohammadi et al. [113] and used by
Simsekli et al. [108] as a heuristic measure of heavy-tailedness of the generated
gradients. Concretely, the α-index estimator for i.i.d. α-stable random vectors
X1, . . . ,XN whereN = mn is given as follows. ConstructYi =

∑m
j=1 Xj+(i−1)m

for i = 1, . . . , n from X1, . . . ,XN . Then, the α-index estimator is given by

1

α̂(m,n)
=

1

n logm

n∑

i=1

log |Yi| −
1

N logm

N∑

i=1

log |Xi|

Intuitively, this α-estimator is given by splitting the samplesX1, . . . ,XN into
m blocks of size n each, summing each block, and computing the discrepancy
between the average log norms of the blocks and the average log norms of
the samples. In order to satisfy the preconditions of this alpha-estimator, we
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center the data by subtracting the mean. A value of α = 2.0 corresponds to a
Gaussian distribution, while α = 1.0 corresponds to a Cauchy distribution. As
a soft signal, the lower the α-index is, the more heavy-tailed the distribution is.
In other words, as the α-index decreases, the central peak of the distribution
gets higher, the valley before the central peak gets deeper, and the tails get
heavier.

For calibration, we measure the α-index of the norms of random vectors
drawn from a multivariate normal distribution with zero mean and identity
covariance. In Figure 5.1(b), we can see that the our estimator returns an
estimate of 2.0 for random gaussian vectors. Moreover, Figure 5.1(b) also plots
the α-index of the gradient norms as iterations proceed. The plots clearly show
a decreasing trend of the α-index with increasing iterations, thereby confirming
our hypothesis regarding the heavy-tailedness of gradients in GANs.

Non-Gaussianity via Random Projections. Another step in our in-
vestigation is to confirm our hypothesis of heavy-tailed gradients (and non-
Gaussianity) via hypothesis tests. We borrow the empirical framework of Pan-
igrahi et al. [114] and (1) draw 10000 stochastic gradients every 500 iterations,
(2) project the data onto 1000 random directions, and (3) conduct Anderson-
Darling [1954] and Shapiro-Wilk [1965] normality tests for these univariate
projections of the gradients to find the proportion of accepted projection di-
rections and average confidence that the gradients are Gaussian respectively.
Figure 5.1(c) plots the results of the Gaussianity tests run on random pro-
jections of the stochastic gradients every 1000 iterations. The red circles de-
pict the proportion of accepted random directions out of 1000 as given by the
Anderson-Darling test, and the blue dots indicate the average confidence of the
Shapiro-Wilk test. The black (top) and green (middle) lines at indicate the
proportion of accepted directions and average confidence in the ideal scenario
of Gaussianity. The tests for the gradients fail extremely, thereby validating
with very high probability that the gradients are indeed non-Gaussian.

5.1.2 Theoretical Background and Setup

In the previous section, we showed that the stochastic gradients in certain
practical scenarios are not necessarily Gaussian and could be also heavy-tailed.
Informally, for such gradient distributions which do not enjoy Gaussian-like
concentration, the empirical expectation based estimates of the gradient do
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not necessarily point in the right descent direction leading to bad solutions,
prolonged training time, or a mixture of both.

More formally, this question can be studied by looking at concentration
of empirical averages to their population quantities, when the data has only
finite-order moments i.e. it is heavy-tailed. There has been a long line of
work in theoretical statistics focusing on designing efficient estimators which
work which for distributions with finite-order moments, which we describe next.
Concretely, focusing on the fundamental problem of robust mean estimation, in
the heavy tailed model we observe n samples x1, . . . , xn drawn independently
from a distribution P , which is only assumed to have low-order moments be
finite (for instance, P might only have finite variance). The goal of past work
[15, 16, 17, 18] has been to design an estimator θ̂n of the true mean µ of P
which has a small `2-error with high-probability. Formally, for a given δ > 0,
we would like an estimator with minimal rδ such that,

P (‖θ̂n − µ‖2 ≤ rδ) ≥ 1− δ. (5.2)

As a benchmark for estimators in the heavy-tailed model, we observe that
when P is the multivariate normal (or sub-Gaussian) distribution with mean
µ and covariance Σ, it can be shown (see Hanson and Wright [19]) that the
sample mean µ̂n = (1/n)

∑
i xi satisfies, with probability at least 1− δ1,

‖µ̂n − µ‖2 .

√
trace (Σ)

n
+

√
‖Σ‖2 log(1/δ)

n
. (5.3)

The bound is referred to as a sub-Gaussian-style error bound. However, for
heavy tailed distributions, as for instance showed in Catoni [15], the sample
mean only satisfies the sub-optimal bound rδ = Ω(

√
trace (Σ) /nδ). Only re-

cently did work by Lugosi and Mendelson [17] show that the sub-Gaussian error
bound is achievable while only assuming that P has finite variance, but by a
carefully designed impractical estimator. In the univariate setting, the classical
median-of-means estimator [20, 21, 22] and Catoni’s M-estimator [15] achieve
this surprising result but designing such estimators in the multivariate setting

1Here and throughout our paper we use the notation . to denote an inequality with universal constants
dropped for conciseness.
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has proved challenging. Minsker [16] proved results for the geometric median-of-
means (GMOM), which, (1) partitions the data into k = d3.5 log(1/δ)e blocks,
(2) computes sample mean within each block {µ̂i}ki=1 and (3) and returns the
geometric median θ̂MOM,δ = argminθ

∑
i ‖θ − µ̂i‖2. In particular, the paper [16]

showed that θ̂MOM,δ is such that, with probability at least 1− δ,

‖θ̂MOM,δ − µ‖2 .

√
trace (Σ) log(1/δ)

n
. (5.4)

Note that the GMOM estimator does not match the true sub-Gaussian bound (5.3).
Estimators that achieve truly sub-Gaussian bound, but which are computation-
ally intractable, were proposed recently by Lugosi and Mendelson [17] and sub-
sequently Catoni and Giulini [18]. Hopkins [23] and later Cherapanamjeri et al.
[24] developed a sum-of-squares based relaxation of Lugosi and Mendelson’s
estimator, thereby giving a polynomial time algorithm which achieves optimal
rates. However, while polynomial-time, these estimators are still far from being
implementable and/or practical.

Contributions. In this paper, we propose and study practical estimators that in
some cases improve on GMOM and in some cases achieve a sub-Gaussian error
bound. We use our practical mean estimators to design provably near-optimal
algorithms for heavy-tailed linear regression and generalized linear models. We
also conduct extensive synthetic experiments which backup our theoretical im-
provements, and as one consequence of our results, show improvement in train-
ing GANs using our algorithms.

Notation and some definitions. Let x be a random vector with mean µ and
covariance Σ. We say that the x has bounded 2k-moments if for all v ∈ Sp−1,
E[(vT (x− µ))2k] ≤ C2k

(
E[(vT (x− µ))2]

)k. We let,

OPTn,Σ,δ
def
=

√
trace (Σ)

n
+

√
‖Σ‖2 log(1/δ)

n
(5.5)

denote the sub-Gaussian deviation bound in (5.3), satisfied by the sample mean
of a sub-Gaussian distribution, at a confidence level δ. Let r(Σ)

def
= trace(Σ)

‖Σ‖2
be
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Algorithm 7 Heavy Tailed Mean Estimator
function FilterpD(S = {zi}ni=1, Num Steps: T ∗)

t = 1
while t ≤ T ∗ do

Let θ̂S = 1
|S|
∑|S|

i=1 zi be the sample mean.

Let ΣS = 1
|S|
∑|S|

i=1(zi − θ̂S)(zi − θ̂S)T be the sample covariance matrix.
Let (λ, v) be the largest eigenvalue,eigenvector of ΣS.

For each zi, let τi
def
=
(
vT (zi − θ̂S)

)2

to be its score
Randomly sample a point z from S according to

Pr(zi chosen) =
τi∑
j τj

Remove sample and update S = S\{z}.
t = t+ 1

end while
end function

the effective rank of Σ. Note that 1 ≤ r(Σ) ≤ r, where r is the rank of
Σ. Throughout the paper, we use c, c1, c2, . . . , C, C1, C2, . . . to denote positive
universal constants.

5.2 Efficient and Near-Optimal Mean Estimation.

In this section, we present our algorithm for near-optimal heavy-tailed mean
estimation. Our algorithm formally presented in Algorithm 7 is primarily
based on the SVD-based filtering algorithm, which has appeared in different
forms [117, 118] and was recently reused by Diakonikolas et al. [27, 31] for adver-
sarial mean estimation. However, the previous versions and their analysis, while
suited to bounds on the expected deviation, do not give tight high-probability
non-asymptotic rates. It proceeds in an iterative fashion, by (1) computing the
principal eigenvector of the empirical covariance matrix, (2) projecting points
along the the principal eigenvector, and (3) randomly sampling points based on
their projection scores. This procedure is repeated for a fixed number of steps.

Diakonikolas et al. [31] follow a similar procedure, but remove a subset of
points at a step, depending on if their projection score is above or below a
randomly chosen threshold. While only a modest difference from ours, deriving
high-probability results for their algorithm is not clear, and in particular, the

85



bounds provided by Diakonikolas et al. [31] are in expectation. In contrast our
variant of this iterative sample-and-remove procedure allows us to borrow tools
from martingale analysis [119, 120], and we are able to get tight non-asymptotic
high-probability bounds for mean estimation.

We present our first result for heavy-tailed mean estimation for the distri-
butions with bounded 4-moments. Given δ ∈ (0, 0.5), suppose the number of
samples n satisfies:

n ≥ Cr2(Σ)
log2(p/δ)

log(1/δ)
, (5.6)

for some small constant C > 0. Then, we have the following result.
Theorem 25. Suppose P has bounded 4th moment. Then, Algorithm 7 when
instantiated for T ∗ = dC log(1/δ)e steps returns an estimate θ̂δ such that, with
probability at least 1− 4δ,

‖θ̂δ − µ‖2 . OPTn,Σ,δ

Remark: If the number of samples n satisfies the condition in Eqn. (5.6),
then Algorithm 7 achieves the the optimal sub-Gaussian deviation bound. The
above presented result shows that it is possible to prune samples to get high-
probability bounds for the heavy-tailed problem. In comparison to the SDP
based algorithms of Hopkins [23], Cherapanamjeri et al. [24], our algorithm is
easy to implement and practical. In particular, our estimator can also be com-
puted in linear-time, requiring an overall runtime of O(np log(1/δ)) compared
to O(n4 + np) runtime of Cherapanamjeri et al. [24].

Next, we present our result for heavy-tailed mean estimation for distributions
with bounded 2nd moment.
Corollary 26. Suppose P has bounded 2nd moment. Then, Algorithm 7 when
instantiated for T ∗ = C(log(1/δ)) steps returns an estimate θ̂δ such that, with
probability at least 1− 4δ,

‖θ̂δ − µ‖2 .

√
trace (Σ) log(p/δ)

n

Remark: In the univariate setting, Corollary 26 shows that Algorithm 7
achieves the optimal sub-Gaussian deviation bound. As discussed in the intro-
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duction, even for the univariate setting, Catoni’s M-estimation [15] and Median-
of-Means [20, 21, 22] are the only known estimators to achieve these rates for
any 2nd moment bounded distribution. Algorithm 7 is the first sample-pruning
based estimator, which achieves these optimal bounds, without any further
assumptions.

In the multivariate setting, while our theoretical upper bounds are weaker
than the guarantees of GMOM, we conduct extensive simulations in Section 5.4
which suggest otherwise.

5.2.1 Proof Sketch.

In this section, we present a brief sketch of the proof of Theorem 25 and highlight
the key technical contributions. The detailed proofs for each of the presented
Lemmas can be found in Appendix C.1.

• Our first contribution is showing that given an arbitrary collection of points
S, and information about the size of an unknown subset G ⊂ S, then
Algorithm 7 approximates the mean of the points in G efficiently with
high probability.

Lemma 14. Let S be any arbitrary collection of points, and let G0 ⊂ S be
an unknown subset of size n0

G such that 8
n−nG0

n + 36 log(1/δ)
n < 1

4. Then, when
Algorithm 7 is run for T ∗ = d3(n− nG0) + 18 log(1/δ)e steps on S, it returns
an estimate θ̂δ such that with probability at least 1− δ,

∥∥∥θ̂δ −
1

nG0

∑

xi∈G0

xi

∥∥∥
2
. ‖ΣG0‖

1
2
2

(n− nG0

n
+

log(1/δ)

n

) 1
2

,

where ΣG0 is the covariance of the unknown subset of points.
• Our second contribution is showing that when given n samples from a
distribution with bounded moments, there exists a good subset of points.
This subset satisfies: such that (1) The size of the subset is big, (2) the
mean of the points within the subset concentrates strongly around the
true mean of P , and (3) the covariance of the points is well-behaved. In
particular, given n-samples from a distribution P , we define a good point
selector O : Rp 7→ {0, 1} by

O(x) = I {‖x− µ(P )‖2 ≤ R} , (5.7)
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and let G = {xi|O(xi) = 1} to be the set of points chosen by O. Note
that this (unknown) subset of points chosen by the `2-radius based point
selector, is precisely our unknown subset from the previous subsection. Let

µ̂n =
( n∑

i=1

O(xi)
)−1

n∑

i=1

xiO(xi),

be the sample mean of the points within the subsets, and let

Σ̂On = (
n∑

i=1

O(xi))
−1

n∑

i=1

(xi − µ̂n)(xi − µ̂n)TO(xi)

Then, we have that
Lemma 15. Let P be any distribution with mean µ and covariance Σ
and bounded 2k-moments for k ∈ {1, 2}. For any δ ∈ (0, 0.5) such that(√

trace(Σ)

R

)2k

+ log(1/δ)
n < c with probability at least 1− 3δ,

n− |G|
n

≤ C1
log(1/δ)

n
+

(
√

trace (Σ))2k

R2k

‖µ̂n − µ‖2 .OPTn,Σ,δ +
R log(1/δ)

n

+ ‖Σ‖
1
2
2

(√trace (Σ)

R

)2k−1

.

‖Σ̂On ‖2 . ‖Σ‖2 +R‖Σ‖
1
2
2

√
log(p/δ)

n
+
R2 log(p/δ)

n
.

• For distributions with bounded 4th-moment, we choose R =

√
trace(Σ)

(log(1/δ)/n)1/4

and recover Theorem 25. Similarly, for distributions with bounded 2nd

moment, we choose R =

√
trace(Σ)

(log(1/δ)/n)1/2 and recover Corollary 26.
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Algorithm 8 Robust Gradient Descent [1]
function RGD (Data {z1, . . . , zn}, Loss Function L̄, Step Size η, Number of
Iterations T , Confidence δ,)

Split samples into T subsets {Zt}Tt=1 of size ñ.
for t = 0 to T − 1 do

Let St = {∇L̄(θ; zi)|zi ∈ Zt}.
Set T ∗ = C log(δ/T ).
Let gt = FilterpD(St, T∗).
Update θt+1 = argminθ∈Θ ‖θ − (θt − ηgt)‖2

2.
end for

end function

5.3 Consequences for Generalized Linear Models

At this stage, with an optimal mean estimator in hand, we explore its conse-
quences for general supervised learning tasks. As before, our goal is to design
efficient estimators which work well in the presence of heavy-tailed data. To this
end, we borrow the robust gradient framework of Prasad et al. [1] and present it
in Algorithm 8. In particular, the algorithm presented in Algorithm 8 proceeds
by passing the gradients at the current iterate θt through our heavy-tailed mean
estimator. Note that Prasad et al. [1] used a similar algorithm in their work,
but used GMOM [16] as their mean estimator, which lead to weaker results in
the heavy-tailed setting. As our results show next, using Algorithm 7 as the
mean estimator automatically leads to better bounds and are also near-optimal.
The proofs for the technical results appearing in this section can be found in
Appendix C.2.

Linear Regression. In this setting, we observe paired samples {(x1, y1), . . . (xn, yn)},
where each (xi, yi) ∈ Rp × R. We assume that the (x, y) pairs sampled from
the true distribution P are linked via a linear model:

y = xTθ∗ + w, (5.8)

where w is drawn from a zero-mean distribution with bounded 4th moment
with variance σ2. We suppose that under P the covariates x ∈ Rp, have mean
0, covariance τ`Ip � Σx � τuIp and bounded 8th moments.
Corollary 27 (Heavy Tailed Linear Regression). Consider the statistical model
in (B.17). There are universal constants C1, C2 > 0 such that if
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n ≥ d2T log2(pT/δ)

C1 log(T/δ)

and if Algorithm 8 is initialized at 0 with stepsize η = 2/(τu+τ`) and confidence
δ then, it returns iterates {θ̂t}Tt=1 such that with probability at least 1− δ

‖θ̂t − θ∗‖2 ≤ κt‖θ∗‖2 +
C2σ

1− κ

(√
trace (Σx)

(n/T )

)

+
C2σ

1− κ

(√
‖Σx‖2 log T/δ

(n/T )

)
(5.9)

for some contraction parameter κ < 1.

Remark: Note that setting T ≈ log1/κ

(
σ
√

trace(Σx)
n +

√
‖Σx‖2 log 1/δ

n

)
sug-

gests that upto logarithmic factors, at a large enough sample size, we get an
error rate of

Õ

(
σ

(√
trace(Σx)

n
+

√
‖Σx‖2 log(1/δ)

n

))

where Õ(·) hides logarithmic factors. Note that even allowing for logarithmic
factors, our estimator is the first efficient and practical approach which gets
these rates for our assumptions. In particular, Prasad et al. [1], Hsu and Sabato

[59] get an error of Õ
(√

trace(Σx) log(1/δ)
n

)
. Other previous works in statistics

such as Fan et al. [107], Sun et al. [121] achieve similar rates, but under the
additional assumption that the covariates are sub-Gaussian. Recently, Chera-
panamjeri et al. [122] also studied the problem of heavy-tailed linear regression,
when the covariates are isotropic and have certifiably bounded 8th moments.
In this setting, barring logarithmic factors, they achieve the same rate as us,
but at a better sample complexity of d3/2. However, the proposed estimator is
based on a degree 8 sum-of-squares program and is not yet practical. We next
present results for the case of generalized linear models.
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Generalized Linear Models. In this setting, we observe data {(x1, y1), . . . (xn, yn)},
where each (xi, yi) ∈ Rp×Y . We suppose that the (x, y) pairs sampled from the
true distribution Pθ∗ are linked via a linear model such that when conditioned
on the covariates x, the response variable has the distribution:

P (y|x) ∝ exp

(
y 〈x, θ∗〉 − Φ(〈x, θ∗〉)

c(σ)

)
(5.10)

Here c(σ) is a fixed and known scale parameter and Φ : R 7→ R is the link
function. We focus on the random design setting where the covariates x ∈ Rp,
have mean 0, and covariance Σ. We use the negative conditional log-likelihood
as our loss function, i.e.

L̄(θ; (x, y)) = −y 〈x, θ〉+ Φ(〈x, θ〉) (5.11)

Here we assume that the covariates have bounded 8th moment and that
Φ′(·) is smooth around θ∗. Specifically, we assume that there exist universal
constants LΦ,2k, B2k such that

Ex
[
|Φ′(〈x, θ〉)− Φ′(〈x, θ∗〉)|2k

]
≤ LΦ,2k‖θ∗ − θ‖2k

2

+BΦ,2k, for k = 1, 2

We also assume that Ex[
∣∣Φ(t)(〈x, θ∗〉)

∣∣k] ≤MΦ,t,k for t ∈ {1, 2, 4}, where Φ(t)(·)
is the tth-derivative of Φ(·).
Corollary 28 (Heavy Tailed Generalized Linear Models). Consider the sta-
tistical model in (5.10). There are universal constants C1, C2 > 0 such that
if

n ≥ d2T log2(pT/δ)

C1 log(T/δ)

and if Algorithm 8 is initialized at 0 with stepsize η = 2/(τu+τ`) and confidence
δ then, it returns iterates {θ̂t}Tt=1 such that with probability at least 1− δ
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Figure 5.2: Mean Estimation for Multivariate Pareto Distribution

‖θ̂t − θ∗‖2 ≤κt‖θ∗‖2

+ C∗



√

trace(Σ)

ñ
+

√
‖Σ‖2 log(1/δ̃)

ñ


 , (5.12)

where C∗ =
C2

[
B

1
4
Φ,4+c(σ)

1
2M

1
4

Φ,2,2+c(σ)
3
4M

1
4

Φ,4,1

]

1−κ for some contraction parameter κ <
1.

Logistic Regression. In this case the (x, y) pairs are linked as:

P (y = 1|X = x) =
1

1 + exp(−〈x, θ∗〉)
(5.13)

This corresponds to setting Φ(t) = log(1 + exp(t)) and c(γ) = 1 in (5.10). The
hessian of the population risk is given by

∇2R(θ) = E
[

exp(〈x, θ〉)
(1 + exp(〈x, θ〉))2

xxT
]
.

Note that as θ diverges, the minimum eigenvalue of the hessian approaches 0
and the loss is no longer strongly convex. To prevent this, in this case we take
the parameter space Θ to be bounded in an `2 sense
Corollary 29. [Heavy-Tailed Logistic Regression] Consider the statistical model
in (5.13). There are universal constants C1, C2 > 0 such that if

n ≥ d2T log2(pT/δ)

C1 log(T/δ)
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and if Algorithm 8 is initialized at 0 with stepsize η = 2/(τu+τ`) and confidence
δ then, it returns iterates {θ̂t}Tt=1 such that with probability at least 1− δ

‖θ̂t − θ∗‖2 ≤κt‖θ∗‖2

+



√

trace (Σ)

ñ
+

√
‖Σ‖2 log(1/δ̃)

ñ


 , (5.14)

for some contraction parameter κ < 1.

5.4 Experiments

5.4.1 Mean Estimation

In this section, we conduct synthetic experiments to study the performance of
our proposed estimators for heavy-tailed mean estimation.

Setup. We generate x ∈ Rp from an isotropic zero-mean heavy-tailed dis-
tribution. We experiment with multivariate Pareto Distribution. For Pareto-
distribution with tail-parameter β, the kth order moments exists only if k < β,
hence, smaller the β, the more heavy-tailed the distribution. We fix k = 3. In
this setup, we experiment with different n, p and δ. For each setting of (n, p, δ),
cumulative metrics are reported over 2000 trials. We vary n from 100 to 500,
and p from 20 to 100.

Methods. We compare the filtering estimator with two baselines: (1) Sam-
ple mean, (2) Geometric Median of Means [16] which we refer to as GMOM.

Metric. For any estimator(θ̂n,δ), we use `(θ̂n,δ) = ‖θ̂ − µ(P )‖2 as our
primary metric. For each setting of (n, p, δ), we run the experiment for 2000
trials, which gives us access to the distribution of `θ̂n,δ . Since, we care about
the deviation performance, we also measure the quantile error of the estimator,
i.e. Qδ(θ̂) = inf{α : Pr(`(θ̂) > α) ≤ δ}. This can also be thought of as the
length of confidence interval for a confidence level of 1− δ.

Hyperparameter Tuning. Apart from sample mean, all other estimators
take into knowledge of δ, which is the desired confidence level. For GMOM,
we follow the recommendation of Minsker [16] and set the number of blocks k
is set to d3.5 log(1/δ)e. We also set the number of iterations for the filtering
estimator to d3.5 log(1/δ)e.
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Results. Figure 5.2 shows that our filtering estimator clearly outperforms
both baselines across several metrics. Figure5.2(a) show that for any confi-
dence level 1 − δ, the length of the oracle confidence interval (Qδ(θ̂)) for our
estimator is better than all baselines. We also see better sample dependence in
Figure 5.2(b), and better dimension dependence in Figure 5.2(c).
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Figure 5.3: Linear Regression with Pareto Noise

5.4.2 Linear Regression

Setup. We generate x ∈ Rp from an isotropic zero-mean heavy-tailed distribu-
tion and set the true regression parameter θ∗ = [1, 1, . . . , 1] ∈ Rp. The response
y is generated by y = xTθ∗ + w where w is drawn from a Pareto-distribution
with tail-parameter β, β = 3. In this setup, we experiment with different n, p
and δ. For each setting of (n, p, δ), cumulative metrics are reported over 2000
trials. We vary n from 100 to 500, and p from 20 to 100.

Methods. We compare the filtering based gradient descent estimator with
two baselines: (1) Ordinary Least Squares (OLS), (2) gradient descent estimator
which uses Algorithm 8 with GMOM as used in Prasad et al. [1]. Note that
Prasad et al. [1] had previously shown that RGD-GMOM outperformed several
other estimators like Hsu and Sabato [59] and ridge regression, hence, we skip
them in our comparison.

Metric and Hyperparameter Tuning For any estimator(θ̂n,δ), we use
`(θ̂n,δ) = ‖θ̂ − θ∗‖2 as our primary metric. As before in the mean setting, for
each setting of (n, p, δ), we run the experiment for 2000 trials, which gives us
access to the distribution of `θ̂n,δ and use the same quantile error in Section
5.4.1 as our metric. We use the same setting as our experiments for mean
estimation and set the number of blocks k is set to d3.5 log(1/δ)e to estimate
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gradient robustly. Similarly, for RGD-SVD, we set the number of iterations for
the filtering estimator to d3.5 log(1/δ)e.

Results. Figure 5.3 shows that our filtering estimator clearly outperforms
both baselines across several metrics. Figure 5.3(a) show that for any confi-
dence level 1 − δ, the length of the oracle confidence interval (Qδ(θ̂)) for our
estimator is better than all baselines. We also see better sample dependence in
Figure 5.3(b), and better dimension dependence in Figure 5.3(c).

5.4.3 Generative Adversarial Networks

In Section 5.1.1, we found conclusive evidence that the gradients of the gen-
erator are certainly non-Gaussian and in particular are heavy-tailed. In this
section, we study the effect of using our heavy-tailed mean estimator in training
GANs, which is motivated by the prior analyses in the paper.

Setup. The setup is the same as the one considered for our initial investiga-
tion. As a baseline, we train a DCGAN on the MNIST and CIFAR10 datasets
using mini-batch stochastic gradient descent. We use a batch size of 32 and
a learning rate of 3 · 10−4. As shown in Figure 5.1, we begin noticing heavy-
tailed characteristics of the gradients at iteration 1000 and while training on
CIFAR10, we noticed heavy-tailed behavior at around iteration 500. We refer
to refer iteration numbers as points of heavy-tailedness.

Methods. We run our filtering estimator on a copy of the GANs trained on
MNIST and CIFAR10 from the points of heavy-tailedness. We set the number
of steps in the heavy tailed mean estimator to 5, and retain the same batch size
and learning rate for a fair comparison. Both threads (using mini-batch SGD
and heavy-tailed mean estimator) are trained for 5000 iterations in total.

Metric. We keep note of the variation in objectives. Additionally, we also
compute the expected angle alignment with the true gradient i.e. cos∠θ̂, θ∗. We
use a large sample gradient computed using 105 samples of stochastic gradients
as a proxy for the true gradient, which is intractable to compute in this case. As
done in the previous experiments, we provide the `2 error as well. Finally, we
also compute the log-likelihood on the test dataset as given by the discriminator
for both models trained using mini-batch SGD (referred to as Mean and the
heavy tailed mean estimator (referred to as SVD).

Results. First, we observe that that the gradients returned by the heavy-
tailed mean estimator are better aligned with the large sample gradient, and
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achieves considerably lower `2-error for smaller batch sizes in Figure 5.4.3. Con-
sistent with this observation, in Figure 5.4.3, we see that our algorithm al-
lows achieving a higher objective function, both for the MNIST and CIFAR10
datasets. Table 5.1 shows that SVD achieves a considerably large log-likelihood
at the end of 5000 iterations for both the MNIST and CIFAR10 datasets.

(a) Expected Align
Alignment

(b) `2 Distance

Figure 5.4: Metrics computed on the sample mean and heavy-tailed mean estimator w.r.t.
Expected Align Alignment and `2 distance metrics at a specific iteration while training
MNIST.

Dataset Model Train Test
2*MNIST Mean -438.69 -60.21

SVD -221.25 -32.75
2*CIFAR10 Mean -341.65 -69.97

SVD -237.19 -48.55

Table 5.1: Log-likelihood on the train and test datasets for MNIST and CIFAR10 after 5000
iterations

(a) MNIST (b) CIFAR10

Figure 5.5: Variation of GAN objective (5.1) with iterations
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Chapter 6
Conclusion

In this thesis, we studied some fundamental problems in robust estimation. In
particular, we gave (1) first statistically optimal estimators for mean and covari-
ance estimation in the contaminated setting, (2) first computationally efficient
estimator for robust linear regression, (3) first statistically optimal estimator for
robustly learning Ising models, and (4) gave efficient and practical estimators
which give sub-gaussian rates under weak moment assumptions. We conclude
this thesis by highlighting some interesting open problems and directions for
future work.

Learning Symmetric Distributions Efficiently. In Chapter 2, we showed that for
symmetric distributions, we can recover the true mean upto an `2 error of Θ(ε).
This is a much faster rate than as compared to the worse rate of Ω(ε1−1/2k) for
2k-moment bounded distributions. However, our proposed estimator is compu-
tationally inefficient. It is an interesting open problem to give a computationally
efficient estimator for mean estimation for symmetric distributions which gives
an error of Θ(ε).

Robust Stochastic Optimization under Memory Constraints. In chapter 3, we
studied robust estimators for risk minimization via robust gradient descent.
However, our estimator relies on doing a full-batch gradient descent, which
is computationally prohibitive. Moreover, our estimator requires constructing
a covariance matrix of gradients, which requires storing Ω(p2) entries where
p is the dimensionality of the target parameter. It is an interesting problem
to design robust stochastic algorithms that have low memory-footprints. In
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particular, even the seemingly benign task of giving a robust mean estimator
that works with O(p) memory is an open problem.

Robust Modern Machine Learning. Training of Modern Machine Learning al-
gorithms such as Deep Reinforcement Learning based systems depend crucially
on a cleverly selection of hyper parameters. Recently, Garg et al. [123] at-
tributed the prevalence of clipping-style heuristics to the presence of inherently
heavy-tailed gradients in such reinforcement learning tasks. It is an interesting
line of future work to transfer some of the algorithms proposed in this thesis to
the training of modern machine learning systems.
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Appendix A
Supplementary Material for Chapter 2

A.1 Proofs

A.1.1 Proof of Lemma 1

Proof. Let P = N (0, Ip) be the isotropic normal distribution. Let RP (θ) =
Ez∼P [`(‖z−θ‖2)], where ` : R 7→ R is a convex loss, and let θ(P ) = argminθRP (θ)
be the minimizer of the population risk. We assume that ψ(·) = `′(·) < C is
bounded. Note that when the derivative is unbounded, it is easy to argue that
the corresponding risk will be non-robust. We also assumed that this risk is
fisher-consistent for the Gaussian-distribution, i.e. θ(P ) = 0. For notational
convenience, let u(t) = ψ(t)

t . Then,

∇RP (θ) = −Ez∼P



ψ(‖z − θ‖2)

‖z − θ‖2︸ ︷︷ ︸
u(‖z−θ‖2)

(z − θ)


 .

As before, let Pε = (1− ε)P + εQ. Then, we are interested in studying θ̂(Pε).
To do this, by first order optimality, we know that θ(Pε) is a solution to the
following equation:

(1− ε)∇RP (θ(Pε)) + ε∇RQ(θ(Pε)) = 0
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First we calculate the derivative of θ(Pε) w.r.t. ε using the fixed point above.
Taking derivative of the above equation w.r.t. ε

(1− ε)∇2RP (θ(Pε))θ̇(Pε)−∇RP (θ(Pε)) + ε∇2RQ(θ(Pε))θ̇(Pε) +∇RQ(θ(Pε)) = 0
(A.1)

Under our assumption that ψ is continuous, we get that at ε = 0,

θ̇(Pε)|ε=0 = (−∇2RP (θ(P )))−1∇RQ(θ(P )) (A.2)

By fisher consistency of ` for N (0, Ip), we have that θ(P ) = 0. Suppose that
Q is a point mass distribution with all mass on θQ. Then, we have that,

∇RQ(0) = −u(‖θQ‖2)θQ

Our next step is to lower bound the operator norm of −∇2RP (θ(P )). To do
this we show that for any unit vector v ∈ Sp−1, vT (−∇2RP (θ(P )))v ≤ C2√

p .

∇2RP (θ) = −Ez∼P
[
u(‖z − θ‖2)Ip +

u′(‖z − θ‖2)

‖z − θ‖2
((z − θ)(z − θ)T )

]

Now, by definition u(t) = ψ(t)/t, so u′(s) = (ψ′(s) − u(s))/s. Plugging this
above,

∇2RP (θ) = −Ez∼P

[
u(‖z − θ‖2)(Ip −

(z − θ)(z − θ)T )

‖z − θ‖2
2

) +
ψ′(‖z − θ‖2)

‖z − θ‖2
2

(z − θ)(z − θ)T ))

]

Hence, we get that

vT∇2RP (0)v = −Ez∼N(0,Ip)

[
u(‖z‖2)(‖v‖2

2 − (vT (z/‖z‖2))
2) + ψ′(‖z‖2)(v

T (z/‖z‖2))
2
]

Further for Isotropic Gaussian, ‖z‖2 and z/‖z‖2 are independent random vari-
ables. Also, since, z/‖z‖2 is uniformly distributed on unit sphere, we get that
Ez∼N(0,I)[(v

Tz/‖z‖2)
2)] = ‖v‖2

2/p.

(vT (−∇2RP (0))v) = Ez∼N(0,Ip) [u(‖z‖2)] (1− 1/p)︸ ︷︷ ︸
T1

+Ez∼N(0,Ip) [ψ′(‖z‖2)] /p︸ ︷︷ ︸
T2
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• Controlling T1

Ez∼N(0,Ip)[u(‖z‖2)] = Ez∼N (0,Ip)

[
ψ(‖z‖2)

‖z‖2

]

≤

√
CE

1

‖z‖2
2

≤
√
C1√
p− 2

, (A.3)

where we use that ψ is bounded by constant C. The last inequality is
combination of Jensen’s Inequality and plugging the mean of reciprocal of
inverse chi-squared random variable [124].

• Controlling T2. Under our assumption that ψ′(·) exists and is bounded,
we get that T2 ≤ C1

p and can be ignored.

Hence, for large p, we get that (vT (−∇2RP (0))v) ≤
√
C1/p. Now, if we put

θQ at ∞, and use that ψ(∞) = C1, we get that,

‖θ̇(Pε)‖2 = ψ(‖θQ‖2)‖∇2RP (0)
θQ
‖θQ‖2

‖2 ≥ C2
√
p
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A.1.2 Proof of Lemma 2

Proof. Let P = N(0, Ip). Every subset of size (1 − ε)n can be thought of
as samples from a mixture distribution defined in (2.3), where the mixture
proportion η, ranges from [0, ε/(1 − ε)]. In the asymptotic setting of n 7→ ∞,
the empirical squared loss over each subset corresponds to the population risk
with the sampling distribution as Pη. For a given contamination distribution
Q, let RPη(θ) = Ex∼Pη

[
‖x− θ‖2

2

]
and let θ(Pη)

def
= argminθRPη(θ), then subset

risk minimization returns,

θ̂SRM = θ(Pη∗) (A.4)
where η∗ = argmin

η∈[0, ε
1−ε ]

RPη(θ(Pη))

We are interested in bounding the bias of SRM i.e.

sup
Q
‖θ̂SRM − θ∗‖2

To do this, we know that for any contamination distribution Q, the solution of
SRM necessarily satisfies the following conditions.
Condition 1: Local Stationarity. θ(Pη) = argminθRPη(θ) is the minimizer
of the risk with respect to a mixture distribution iff

∇RPη(θ(Pη)) = (1− η)∇RP ∗θ
(θ(Pη))

+ η∇RQ(θ(Pη)) = 0. (A.5)

Condition 2: Global Fit Optimality. θ̂SRM = θ(Pη∗) is the global minimizer
of the population risk over all mixture distributions iff

RPη∗(θ(Pη∗)) = (1− η∗)RP0
(θ(Pη∗)) + η∗RQ(θ(Pη∗))

≤ RPη(θ(Pη)) ∀η ∈
[
0,

ε

1− ε

]
(A.6)

Using Conditions 1 and 2, we next derive the bias of SRM for mean estimation.
We make a few simple observations.
• Observation 1. For any distribution P , we have,

RP (θ) = trace (Σ(P )) + ‖θ − µ(P )‖2
2
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• Observation 2. Condition 1 reduces to,

µ(Pη) = θη = (1− η)µ(P ) + ηµ(Q),

where µ(·) is the Expectation functional.

Lemma 16. Under the mixture model in Equation (2.3), for the squared error,
we have that,

RPη(θη) = trace (Σ(Pη)) = (1−η)trace (Σ(P ∗))+ηtrace (Σ(Q))+η(1−η)‖µ(P ∗)−µ(Q)‖2
2.

Now, from Lemma 16, we know that

RPη(θη) = (1− η)trace (Σ(P )) + ηtrace (Σ(Q)) + η(1− η)‖µ(P )− µ(Q)‖2
2

As a function of η, RPη(θη) is a concave quadratic function. Hence, it is always
minimized at the end points of the interval [0, ε/(1− ε)], which implies that
η∗ ∈ {0, ε

1−ε}.

Hence, we have that,

θ̂SRM =

{
θ ε

1−ε
, if RP ε

1−ε
(θ ε

1−ε
) ≤ RP0

(θ0).

θ∗, otherwise.

From Lemma 16, RP ε
1−ε

(θ ε
1−ε

) ≤ RP0
(θ0) iff

(
1− ε

1− ε

)
‖µ(P )− µ(Q)‖2

2 ≤ trace (Σ(P ))− trace (Σ(Q))

Moreover, from Observation 2, we have that,

‖θ ε
1−ε
− µ(P )‖2 =

ε

1− ε
‖µ(P )− µ(Q)‖2

Combining the above two, we get that,

‖θ̂SRM − µ(P )‖2 =

[
ε

1− ε
‖µ(P )− µ(Q)‖2

]
.1
{
‖µ(P )− µ(Q)‖2

2 ≤
(

1− ε
1− 2ε

)
(trace (Σ(P ))− trace (Σ(Q)))

}
. (A.7)

Equation 2.6 follows from it.
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Proof of Lemma 16

Proof. We give two alternate proofs of the Lemma.
• Proof 1: This proceeds by expanding on the definition of risk.

RPη(θη) = Ez∼Pη [‖z − θη‖2
2]

= (1− η)Ez∼P0
[‖z − θη‖2

2] + ηEz∼Q[‖z − θη‖2
2] Expectation by conditioning.

= (1− η)
[
trace (Σ(P ∗)) + ‖θη − µ(P ∗)‖2

2

]

+ η
[
trace (Σ(Q)) + ‖θη − µ(Q)‖2

2

]
From Observation 1.

Now, using Observation 2 we get that,

‖θη − µ(Q)‖2 = (1− η)‖µ(P ∗)− µ(Q)‖2

‖θη − µ(P ∗)‖2 = η‖µ(P ∗)− µ(Q)‖2

Plugging this into above, we get,

RPη(θη) = (1− η)trace (Σ(P ∗)) + ηtrace (Σ(Q)) + ‖µ(P ∗)− µ(Q)‖2
2

(
η2(1− η) + (1− η)2η

)

which recovers the statement of the Lemma.
• Proof 2: This proceeds by Law of Total Variance, or the Law of Total
Cummulants. We know that RPη = trace (Σ(Pη)). Let Z ∼ Pη, and
let Y ∼ Bernoulli(1 − η) be the indicator if the sample is from the true
distribution. Then Z|Y = 1 ∼ P ∗, while Z|Y = 0 ∼ Q.

trace (Σ(Pη)) = (1− η)trace (Σ(P ∗)) + ηtrace (Σ(Q))︸ ︷︷ ︸
Var(E[Z|Y ])

+ η(1− η)‖µ(P ∗)− µ(Q)‖2
2︸ ︷︷ ︸

E[Var(Z|Y )]

.
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A.1.3 Proof of Lemma 3

Proof. Let Pε = (1 − ε)P ∗ + εQ. Let I∗ be the interval µ ± σ

δ
1
2k
1

, where µ =

Ex∼P ∗[x]. Moreover for notational convenience, let fn(u, v) =
√
u(1− u)

√
log(2/v)

n +
2
3

log(2/v)
n . Let Î = [a, b] be the interval obtained using Z1, i.e. the shortest in-

terval containing n(1− (δ1 + ε+ fn(ε+ δ1, δ3))) points of Z1. Note that in the
algorithm, we have δ1 = ε, and δ3 = δ/4. As a first step, we bound the length
of Î and show that Î and I∗ must necessarily intersect.

Claim 1. Let Î be the shortest interval containing 1 − δ4 fraction of points,
where δ4 = (δ1 + ε) + fn(ε + δ1, δ3). Further assume that δ4 <

1
2. Then with

probability at least 1− δ3,

length(Î) ≤ length(I∗) ≤ 2σ

δ
1
2k
1

,

Moreover, if δ4 <
1
2, then Î ∩ I

∗ 6= φ, which implies

|z − µ| ≤ 4σ

δ
1
2k
1

∀z ∈ Î

Proof. We first show that with probability at least 1− δ3, I∗ contains at least
n(1 − δ4) points(Claim 5). Hence, since our algorithm chooses the shortest
interval(Î) containing 1− δ4 fraction of points, length of Î is less than length
of I∗. Next, if δ4 is less than 1

2 , then there are two intervals Î and I∗ respectively,
which contain at least n/2 points. Hence, they must necessarily intersect.

Next, we control the final error of our estimator. Let |Î| =
∑

z∈Z2
I
{
zi ∈ Î

}

be the number of points which lie in Î. Similarly, let |ÎQ| and |ÎP ∗| number of
points which lie in Î, which are distributed according to Q and P ∗ respectively.

∣∣∣∣∣∣
1

|Î|

∑

xi∈Î

xi − µ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣

1

|Î|

∑

xi∈Î
xi∼Q

(xi − µ)

∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

T1

+

∣∣∣∣∣∣∣∣

1

|Î|

∑

xi∈Î
xi∼P ∗

(xi − µ)

∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

T2

(A.8)
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Control of T1. To control T1, we can write it as:

T1 =

∣∣∣∣∣∣∣∣

1

|Î|

∑

xi∈Î
xi∼Q

(xi − µ)

∣∣∣∣∣∣∣∣

≤ |ÎQ|
|Î|︸︷︷︸
T1a

max
xi∈Î
xi∼Q

|xi − µ|

︸ ︷︷ ︸
T1b

(A.9)

where ÎQ is the number of points in Î distributed according to Q. To control
T1a, we use Bernsteins inequality. To control T1b, we use Claim 1. The claim
below formally controls T1.

Claim 2. Let Î be the shortest interval containing n(1 − δ4) of the points,
where δ4 = (δ1 + ε) + fn(ε + δ1, δ3). Further assume that δ4 <

1
2. Then, with

probability at least 1− δ3 − δ5, we have that,

T1 ≤ |ÎQ|
|Î|

max
xi∈Î
xi∼Q

|xi − µ| ≤
ε+ fn(ε, δ5)

1− δ4

4σ

δ
1/2k
1

(A.10)

Proof. Using Bernstein’s bound, we know that wp at least 1− δ5,

|ÎQ| ≤ n(ε+
√
ε(1− ε)

√
log(1/δ5)

n
+

2

3

log(1/δ5)

n
),

This follows from the fact that number of points drawn from Q which lie in
Î is less than the total number of points drawn according to Q. In Claim 1,
we showed that when δ4 <

1
2 , then, with probability at least 1 − δ3, we get

that Î ∩ I∗ 6= φ, i.e. the intervals intersect, and that length(Î) < length(I∗).
Hence, we get,

max
xi∈Î
xi∼Q

|xi − µ| ≤
4σ

δ
1/2k
1
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Control of T2. To control T2, we write it as

T2 =

∣∣∣∣∣∣∣∣

|ÎP ∗|
|Î|




1

|ÎP ∗|

∑

xi∈Î
xi∼P ∗

(xi − µ)




∣∣∣∣∣∣∣∣
(A.11)

≤ |ÎP
∗|
|Î|

∣∣∣∣∣∣∣∣
(

1

|ÎP ∗|

∑

xi∈Î
xi∼P ∗

xi)− E[x|x ∈ Î , x ∼ P ∗]

∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

T2a

+
|ÎP ∗|
|Î|

∣∣∣E[x|x ∈ Î , x ∼ P ∗]− µ
∣∣∣

︸ ︷︷ ︸
T2b

(A.12)
• Control of T2a: To bound the distance between the mean of the points
from P ∗ within Î andE[x|x ∼ P ∗, x ∈ Î], we will use Bernsteins bound(Lemma 17)
for bounded random variables. We know that the random variables are in
a bounded interval b = length(Î) ≤ σ

δ
1
2k
, and that conditional variance of

the random variables, when conditioned on them lying in Î is controlled
using Lemma 20. In particular, Lemma 20 shows that for any event E,
which occurs with probability P (E) ≥ 1

2 ,

Ex∼P ∗[(x− E[x|x ∈ E])2|x ∈ E] ≤ σ2/P (E).

Using these arguments, we get that with probability at least 1− δ7,

T2a ≤

√
2σ2(log(3/δ7))

P ∗(Î)|ÎP ∗|
+

2σ

δ
1/2k
1

log(3/δ7)

|ÎP ∗|
, (A.13)

where P ∗(Î) is the probability that a random variable drawn according to
P ∗ lies in Î.

• Control of T2b: To control T2b, we use the general mean shift lemma (Lemma 6),
which controls how far the mean can move when conditioned on an event.
We get that,

T2b ≤ 2σ(P ∗(Î)c)1−1/(2k) (A.14)

Combining the bounds in (A.13) and (A.14), we get

T2 ≤ 2σ(P ∗(Î)c)1−1/(2k) +

√
2σ2(log(3/δ7))

P ∗(Î)|ÎP ∗|
+

2σ

δ
1/2k
1

log(3/δ7)

|ÎP ∗|
(A.15)
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Combining the upper bound on T1 in (A.10) with (A.15), we get that with
probability at least 1− δ3 − δ5 − δ6 − δ7

T1+T2 ≤ ε+ fn(ε, δ5)

1− δ4

4σ

δ
1/2k
1

+2σ(P ∗(Î)c)1−1/(2k)+

√
2σ2(log(3/δ7))

P ∗(Î)|ÎP ∗|
+

2σ

δ
1/2k
1

log(3/δ7)

|ÎP ∗|

We rearrange terms and use our assumption that ε is small enough that ÎP ∗ ≥
n/2. We also plugin the upper bound on (P ∗(Î)c)1−1/(2k) from Claim 3 and set
δ1 = ε, and δ5 = δ6 = δ3 = δ7 = δ/4. Hence, we get that with probability at
least 1− δ

T1 + T2 ≤ C1σε
1−1/2k + C2σ(

log n

n
)1− 1

2k + C3σ

√
log(1/δ)

n
+ C4σ

log(1/δ)

nε
1
2k

(A.16)

Since, we ensure that ε = max(ε, log(1/δ
n ) hence, log(1/δ)

nε
1
2k
≤ ε1−

1
2k . Note that

our assumption of δ4 <
1
2 boils down to ε being small enough such that 2ε +√

ε log(4/δ)
n + log(4/δ)

n < 1
2 . Hence, we recover the final statement of the theorem.

Auxillary Proofs

Claim 3. Let Î be the shorted interval containing n(1 − δ4) points from Z1.
Let P ∗(Î) is the probability that a random variable drawn according to P ∗ lies
in Î. Then, there exists universal constants C1, C2 > 0 such that wp at least
1− δ6, we have that

(P ∗(Î)c)1− 1
2k ≤ C1ε

1− 1
2k + C2δ

1− 1
2k

1 + C3(
log n

n
)1− 1

2k + C4(
log(1/δ6)

n
)1− 1

2k + C5(
log(1/δ3)

n
)1− 1

2k

(A.17)

Proof. Note that Î is obtained by choosing the shortest interval containing
n(1− δ4) points from Z1. We first bound P ∗n(Î), i.e. the empirical probability
of samples distributed according to P ∗ which lie in Î. To do this, note that in
Z1, number of points drawn from Q which lie in Î, say n̂Q is less than the total
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number of points drawn according to Q. Using Bernstein’s bound, we know
that wp at least 1− δ6,

|n̂Q| ≤ n(ε+
√
ε(1− ε)

√
log(1/δ6)

n
+

2

3

log(1/δ6)

n
)

Let n̂P ∗ be the number of points in Z1, which are drawn from P ∗ and which lie
in Î. Since |n̂Q| + |n̂P ∗| = |Î| = n(1 − δ4), hence the above implies that with
probability at least 1− δ6,

|n̂P ∗| ≥ n(1− δ4)− n(ε+
√
ε(1− ε)

√
log(1/δ6)

n
+

2

3

log(1/δ6)

n
),

Note that P ∗n(Î) = |n̂P∗ |∑
i I{xi∼P ∗}

. Hence, we get that,

P ∗n(Î) ≥ |n̂P
∗|

n
≥ 1− (ε+ δ4)− fn(ε, δ6) (A.18)

This implies that,

P ∗n(Î)c ≤ (ε+ δ4) + fn(ε, δ6)

≤ 2ε+ δ1 + fn(ε, δ6) + fn(ε+ δ1, δ3)

≤ 4ε+ 2δ1 + C1
log(1/δ6)

n
+ C2

log(1/δ3)

n
(A.19)

To finally bound the probability of a sample drawn from P ∗ to lie in Î, we use
the relative deviations VC bound(Lemma 18), which gives us,

P ∗(Î)c ≤ P ∗n(Î)c︸ ︷︷ ︸
A1

+4

√

(
P ∗n(Î)c logS[2n]

n
) + (

P ∗n(Î)c log(4/δ6)

n
) +

logS[2n]

n
+

log(4/δ6)

n

(A.20)

where S[2n] = O(n2). Using that
√
ab ≤ a+ b, ∀a, b ≥ 0, we get that,

P ∗(Î)c ≤ C1P
∗
n(Î)c + C2(

logS[2n]

n
+

log(4/δ6)

n
) (A.21)
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Hence, we get that,

(P ∗(Î)c)1− 1
2k ≤ C1ε

1− 1
2k + C2δ

1− 1
2k

1 + C3(
log n

n
)1− 1

2k + C4(
log(1/δ6)

n
)1− 1

2k + C5(
log(1/δ3)

n
)1− 1

2k

(A.22)

Claim 4. Let P ∗(I∗) be the probability that a sample drawn according from Pε
is distributed according to P ∗ and lies in I∗.

P ∗(I∗) ≥ (1− ε)(1− δ1) = 1− (ε+ δ1 − εδ1) ≥ 1− (ε+ δ1)︸ ︷︷ ︸
δ2

= 1− δ2

Proof. For any x ∼ Pε, define, zi = 1 if x ∼ P ∗. Now, for any x ∼ P ∗, we
know that, by chebyshevs we know that,

P (|x− µ| ≥ t) = P ((x− µ)2k ≥ t2k) ≤ E[(x− µ)2k]/t2k ≤ C2kσ
2k/t2k

Hence, we get that wp at least 1− δ1, x ∈ µ± σ/(δ1)
1/2k

The following claim lower bounds the empirical fraction of samples which
are distributed according to P ∗ and lie in I∗, when n samples are drawn from
Pε.
Claim 5. Let P ∗n(I∗) be the empirical fraction of points which are distributed
according to P ∗ and lie in I∗, when n samples are drawn from Pε. Then, with
probability at least 1− δ3,

P ∗n(I∗) ≥ 1− (δ2 +
√

(δ2(1− δ2))

√
log(1/δ3)

n
+

2

3

log(1/δ3)

n
)

︸ ︷︷ ︸
δ4=(δ1+ε)+fn(ε+δ1,δ3)

,

Proof. This follows from Bernstein’s inequality(Lemma 17).

Lemma 17. [Bernsteins bound,] Let X ∼ P ∗ be a scalar random variable such
that |X−E[x]| ≤ b with variance σ2. Then, given n samples {x1, x2, . . . , xn} ∼
P ∗, the empirical mean, x̄n = 1

n

n∑
i=1

xi is such that,

P (|x̄n − E[x]| > t) ≤ 2 exp(
−nt2

2σ2 + 2bt/3
)
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which can be equivalently re-written as. With probability at least 1− δ,

|x̄n − E[x]| ≤
√

2σ2 log(1/δ)

n
+

2b log(1/δ)

3n

Lemma 18. [Relative deviations, [125]] Let F be a function class consisting
of binary functions f . Then, with probability at least 1− δ,

sup
f∈F
|P (f)−Pn(f)| ≤ 4

√
Pn(f)

log(SF(2n)) + log(4/δ)

n
+C1

log(SF(2n)) + log(4/δ)

n
,

where SF(n) = sup
z1,z2,...,zn

|{(f(z1), f(z2), . . . , f(zn)) : f ∈ F}| is the growth

function, i.e. the maximum number of ways into which n-points can be classified
the function class.
Lemma 19. [General Mean shift, [126]] Suppose that a distribution P ∗ has
mean µ and variance σ2 with bounded 2kth-moments. Then, for any event A
which occurs with probability at least 1− ε ≥ 1

2,

|µ− E[x|A]| ≤ 2σε1−
1
2k

In particular, for just bounded second moments, we get that |µ − E[x|A]| ≤
2σ
√
ε.

Proof. For any event E, Let I {E} denote the indicator variable for E.

|Ex∼P ∗[x|E]− µ]| = |Ex∼P ∗((x− µ)I {E})|
P (E)

≤ E[|x− µ|p]
1
p (E[I {E}q]1/q)
P (E)

,

(A.23)

where p, q > 1 are such that 1/p+ 1/q = 1. Put p = 2k, we get,

|Ex∼P ∗[x|E]− µ]| ≤ σ

(P (E))1/2k

Now, we know that, |E[X|A] − µ| = 1−P (A)
P (A) |E[X|Ac] − µ|. Putting E = Ac,

we get,

|E[X|A]− µ| ≤ 1− P (A)

P (A)

σ

(1− P (A))1/2k
≤ 2σε(1−

1
2k ).
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Lemma 20. [Conditional Variance Bound] Suppose that a distribution P ∗ has
mean µ and variance σ2. Then, for any event A which occurs with probability
at least 1− ε, the variance of the conditional distribution is bounded as:

(E[(x− E[x|A])2|A]) ≤ σ2

(1− ε)

Proof. Let µA = E[y|A], d = µA − µ. From Lemma 6, we know, d ≤ σ2
√
ε.

Observe the following,

E[(y − µA)2|A] = E[(y − µ− d)2|A] = E[((y − µ)2 − 2d(y − µ) + d2)|A]

(A.24)
= E[(y − µ)2|A]− d2 (A.25)
≤ E[(y − µ)2|A] (A.26)

≤ σ2

1− ε
, (A.27)
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A.1.4 Proof of Lemma 5

Proof. For brevity, let θ̂δ = argmin
θ

sup
u∈N 1/2(Sp−1)

|uTθ− f({uTxi}ni=1, ε,
δ
5p )|, where

f is our univariate estimator. Let θ∗ = E[x] be the true mean. Then, we can
write the `2 error in its variational form.

‖θ̂δ − θ∗‖2 = sup
u∈Sp−1

|uT (θ̂δ − θ∗)| (A.28)

Suppose {yi} is a 1
2-cover of the net, so there exist a yj such that u = yj +v,

where ‖v‖2 ≤ ε.

‖θ̂δ − θ∗‖2 ≤ sup
u∈Sp−1

|yTj (θ̂δ − θ∗)|+ |vT (θ̂δ − θ∗)|

≤ sup
yj∈N

1
2 (Sp−1)

|yTj (θ̂δ − θ∗)|+ ‖v‖2‖θ̂δ − θ∗‖2

≤ 2 sup
yj∈N

1
2 (Sp−1)

|yTj (θ̂δ − θ∗)|

‖θ̂δ − θ∗‖2 ≤ 2 sup
u∈N 1/2

|uT (θ̂ − θ∗)| (A.29)

≤ 2

[
sup

u∈N 1/2

|uT θ̂ − f(uTPn, ε; δ̃)|+ sup
u∈N 1/2

|uTθ∗ − f(uTPn, ε; δ̃)|
]

(A.30)
≤ 4 sup

u∈N 1/2

|uTθ∗ − f(uTPn, ε; δ̃)| (A.31)

For a fixed u, the distribution uTP has mean uTθ∗, where θ∗ is the mean of
the multivariate distribution P . Hence, we get that, for a confidence level δ̃,
when the univariate estimator is applied to the projection of the data long u,
it returns a real number such that, with probability at least 1− δ̃

|f(uTPn; ε; δ̃)− uTθ∗| ≤ C1ωf(ε, u
TP, δ̃)

Taking a union bound over the elements of the cover, and using the fact that
|N 1/2(Sp−1)| ≤ 5p [127], we substitute δ̃ = δ/(5p) and recover the statement of
the Lemma.
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A.1.5 Proof of Lemma 6

Proof. Let θ̂δ = argmin
θ∈Θs

sup
u∈N 1/2

2s (Sp−1)

|uTθ− f({uTxi}ni=1, ε,
δ

(6ep/s)s )|, where f(·) is

our univariate estimator. Observe that since θ̂δ and the true mean θ∗ are both
s-sparse. Hence, the error vector θ̂−θ∗ is atmost 2s-sparse. Then, we can write
the `2 error in its variational form,

‖θ̂δ − θ∗‖2 = sup
u∈Sp−1∩B2s

|uT (θ̂δ − θ∗)|, (A.32)

where Sp−1 ∩ B2s is the set of unit vectors which are 2s-sparse. The remaining
of the proof follows along the lines of proof of Lemma 5, coupled with the fact
that the cardinality of the half-cover of an 2s-sparse ball, i.e.

∣∣∣N 1
2 (Sp−1)

∣∣∣ ≤
(6ep
s )s [128].

A.1.6 Proof of Lemma 7

Let Θ̂f = argminΘ∈F supu∈N 1/4(Sp−1) |uTΘu − f({(uTzi)2}ni=1, 2ε,
δ
9p )|, where f

is a univariate estimator, and zi are the pseudo-samples obtained by zi =
(xi+n/2 − xi)/

√
2. We begin by first using one-step discretization,

‖Θ̂f − Σ(P )‖2 = sup
u∈Sp−1

|uT (Θ̂f − Σ(P ))u|

≤ 1

1− 2γ
sup
y∈N γ

|yT (Θ̂IM − Σ(P ))y|,

where N γ is the γ-cover of the unit sphere. We set γ = 1/4.

‖Θ̂f − Σ(P )‖2 ≤ 2 sup
u∈N 1/4

|uT (Θ̂f − Σ(P ))u|

≤ 2 sup
u∈N 1/4

|uT Θ̂IMu− f({(uTzi)2}ni=1, 2ε,
δ

9p
))|

+ 2 sup
u∈N 1/4

|uTΣ(P )u− f({(uTzi)2}ni=1, 2ε,
δ

9p
)|

≤ 4 sup
u∈N 1/2

|uTΣ(P )u− f(uTXn, ε; δ̃)|
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For a fixed u, for the clean samples in zi, (uTzi)
2 has mean uTΣ(P )u, and

variance C4(u
TΣ(P )u)2. Note that the scalar random variables (uTzi)

2 have
bounded k moments, whenever xi has bounded 2k-moments. Hence, for a fixed
u, we get that with probability at least 1− δ,

|f({(uTzi)2}ni=1, 2ε,
δ

9p
)− uTΣ(P )u| . ωf(2ε, u

TP⊗2, δ̃)

Taking a union bound over the elements of the cover, and using the fact that
|N 1/4(Sp−1)| ≤ 9p [127], we substitute δ̃ = δ/(9p) and recover the statement of
the Lemma.

A.1.7 Proof of Lemma 8

Let Θ̂f,s = argminΘ∈Fs sup
u∈N 1/4

2s (Sp−1)
|uTΘu−f({(uTzi)2}ni=1, 2ε,

δ
(9ep/s)s )|, where

f is a univariate estimator, and zi are the pseudo-samples obtained by zi =
(xi+n/2 − xi)/

√
2.

Observe that since Θ̂f,s and the true covariance Σ(P ) are both in Fs. Hence,
the difference matrix Θ̂f,s−Σ(P ) has atmost 2s non-zero off diagonal elements.
Hence, we can write that ‖Θ̂f,s − Σ(P )‖2 = supu∈B2s∩Sp−1 |uT (Θ̂

(s)
IM − Σ(P ))u|,

where B2s ∩ Sp−1 is the set of unit vectors which are atmost 2s-sparse. Using
the one-step discretization, we get that,

‖Θ̂f,s − Σ(P )‖2 ≤ 2 sup
u∈N 1/4(B2s∩Sp−1)

|uT (Θ̂f,s − Σ(P ))u|

The remainder of the proof follows from the proof of Lemma 7 coupled with the
fact that the cardinality of the 1/4-cover of an 2s-sparse ball

∣∣N 1/4(Sp−1)
∣∣ ≤

(9ep
s )s [128].

A.1.8 Proof of Corollary 5

Proof. From Corollary 4, we know that the with probability at least 1−δ sparse
covariance estimator satisfies,

‖Θ̂IM,s − Σ(P )‖2 . ‖Σ(P )‖2ε
1−1/k + ‖Σ(P )‖2

√
s log p

n
+ ‖Σ(P )‖2

√
log 1/δ

n︸ ︷︷ ︸
T1
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Let Θ̂IM,s−Σ(P ) = ∆, then, we have that ‖∆‖2 ≤ T1. Using Weyl’s Inequality,
we know that,

|λr+1(Θ̂IM,s)− λr+1(Σ(P ))| ≤ ‖∆‖2

We know that λr+1(Σ(P )) = 1. Hence, we have that λr+1(Θ̂IM,s) ∈ 1 ± T1.
We also know that λr(Σ(P )) = 1 + Λr. Hence, we can now lower bound the
eigengap, i.e.

|λr(Σ)− λr+1(Θ̂IM,s)| ≥ Λr − T1

Under the assumption that T1 < 1
2Λr, and using Davis-Kahan Theorem [129],

we get that,

‖V V T − V̂ V̂ T‖F ≤
‖Θδ − Σ‖2

Λr − T1
≤ C

T1

Λr

A.1.9 Proof of Lemma 4

Note that the proof of this follows from Lemma 6 [41], but we provide it for
completeness. Let F be a CDF and let QL,F (p) = inf{x ∈ R : F (x) ≥ p} and
QR,F (p) = inf{x ∈ R : F (x) > p} be the left and right quantile functions. Let

RF (t) ≥ max{QR,F (
1

2
+ t)−m,m−QL,F (

1

2
− t)},

where m is the median. Then, given n-samples from the mixture model, let
m̂({xi}ni=1) be the empirical median. Then, we have that with probability at
least 1− δ,

|m̂−m| ≤ R(
ε

2(1− ε)
+

√
2 log(2/δ)

n
).

To see this, for each sample xi define an indicator variable Li ∈ {0, 1}.

Li = I
{
xi ∼ Q, or(xi ∼ P and xi ≥ QR,F (

1

2(1− ε)
+ a))

}
,

for a =

√
log(2/δ)

(1−ε)
√
n
. Note that

Pr(Li = 1) ≤ ε+ (1− ε)(1− (a+
1

2(1− ε)
))

≡ 1

2
− (1− ε)a
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m̂ ≥ QR,F (
1

2(1− ε)
+ a) =⇒

∑

i

Li ≥ n/2

Hence, we have that,

Pr(m̂ > QR,F (
1

2(1− ε)
+ a)) ≤ Pr(

∑

i

Li ≥ n/2) ≤ exp(−2n(1− ε)2a2) =
δ

2

The other side is also symmetric. Hence, we have that with probability at least
1− δ,

|m̂−m| ≤ R(
ε

2(1− ε)
+ a),

where a = 1
(1−ε)

√
log(2/δ)

n . Note that under our assumption that P ∈ P t0,κsym, we
have that R(t) ≤ κt for all t ≤ t0. Hence, as long as the contamination level ε,
and confidence level δ are such that,

ε

2(1− ε)
+

1

(1− ε)

√
log(2/δ)

n
≤ t0,

we have that with probability at least 1− δ,

|m̂−m| . κε+ κ

√
log(2/δ)

n
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Appendix B
Supplementary Material for Chapter 3

B.1 Choice of Hyper-Parameters

In this section, we discuss how to tune the hyperparameters for our algorithms.
In particular, note that the gradient estimators described in Algorithms 4, 5
depend on corruption level ε, and on confidence δ, which are not known in
advance.

Since the standard hyper-parameter selection techniques such as cross val-
idation, hold-out validation, pick hyper-parameters that minimize the empiri-
cal mean of the loss on validation data, they cannot be used in the presence
of outliers in the data. One criteria we could use in such cases is to choose
hyper-parameters that minimize a robust estimate of the population risk on
validation data. However, we cannot use any of the existing robust mean es-
timators to estimate the population risk because they themselves depend on
hyper-parameters such as corruption level ε.

Huber Contamination. We now consider the Huber contamination model and
propose a heuristic based on Scheffe’s tournament estimator [7, 130] for hyper-
parameter selection. In particular, we consider the gradient descent procedure
described in Algorithm 4 and explain our technique for choosing ε, δ using hold
out cross validation. Note that our goal is to pick hyper-parameters that min-
imize the population risk R(θ). Under the assumption of strong convexity of
R(θ), this is equivalent to picking hyper-parameters that minimize the param-
eter error ‖θ − θ∗‖2.

We begin with the problem of density estimation, where we are given n
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i.i.d samples {zi}ni=1 from (1 − ε)Pθ∗ + εQ, where Pθ∗ belongs to the class of
distributions {Pθ : θ ∈ Θ}, and Q is an arbitrary distribution. Our goal
is to estimate θ∗ ∈ Θ from the samples. Suppose

{
Pθ̂1

, Pθ̂2
, . . . , Pθ̂m

}
are

the candidate solutions returned by Algorithm 4 for different settings of ε, δ.
Consider the following pairwise test function:

φjk = I

{∣∣∣∣∣
1

nval

nval∑

i=1

I
{
pθ̂j(z

′
i) > pθ̂k(z

′
i)
}
− Pθ̂j(pθ̂j(z) > pθ̂k(z))

∣∣∣∣∣ >
∣∣∣∣∣

1

nval

nval∑

i=1

I
{
pθ̂j(z

′
i) > pθ̂k(z

′
i)
}
− Pθ̂k(pθ̂j(z) > pθ̂k(z))

∣∣∣∣∣

}
,

where pθ̂j is the probability density of Pθ̂j , {z
′
i}
nval

i=1 is the validation data and

I {.} is the indicator function. When φjk = 1, then θ̂k is favored over θ̂j and
when φjk = 0, then θ̂j is favored over θ̂k. Then, the final estimate Pθ̂j∗ is given
by

j∗ = argmin
j∈[m]

m∑

k=1
k 6=j

φjk

It can be shown, using standard techniques [130], that the above procedure
picks a j∗ such that Pθ̂j∗ is close to Pθ∗ in TV metric. For distributions {Pθ :

θ ∈ Θ} whose TV metric is roughly equivalent to the parameter error, the
above procedure results in hyper-parameters which minimize the parameter
error. This procedure can be extended to supervised learning problems such as
regression and classification.

Heavy-Tailed Distribution. For the heavy-tailed setting we experimented with
(a) empirical mean of the risk on validation data: 1

nval

∑nval

i=1 L̄(θ; z′i) where
{z′i}

nval

i=1 is the validation data, which does not require any tuning parameters,
as well as (b) median of means based mean of the risk on validation data, for
various confidence levels δ. However, both the techniques in the context of
hold-out validation resulted in models with similar performance. So, in our
experiments with heavy-tailed distributions, we present results obtained using
the empirical risk as in (a) on hold-out validation data.
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Table B.1: Fitting to original image error.
Best Possible Proposed TORRENT OLS SCRRR

Mean RMSE 0.05 0.09 0.175 0.21 0.13

B.2 Experiments with Semi-Synthetic Data: Robust Face
Reconstruction

Setup. In this experiment, we show the efficacy of our algorithm by attempt-
ing to reconstruct face images that have been corrupted with heavy occlusion,
where the occluding pixels play the role the outliers. We use the data from
the Cropped Yale Dataset [64] . The dataset contains 38 subjects, and each
image has 192×168 pixels. Following the methodology of Wang et al. [131], we
choose 8 face images per subject, taken under mild illumination conditions and
computed an eigenface set with 20 eigenfaces. Then given a new corrupted face
image of a subject, the goal is to get the best reconstruction/approximation
of the true face. To remove scaling effects, we normalized all images to [0, 1]
range. One image per person was used to test reconstruction. Occlusions were
simulated by randomly placing 10 blocks of size 30 × 30. We repeated this
10 times for each test image. In this setting, each image of a subject corre-
sponds to a different task; i.e. X is a common fixed eigenface basis, y is an
observed(occluded) image, and the goal is to reconstruct(de-noise) the given
image using the given basis. Note that in this example, we use a linear regres-
sion model as the uncontaminated statistical model, which is almost certainly
not an exact match for the unknown ground truth distribution. Despite this
model misspecification, as our results show, that robust mean based gradient
algorithms do well.

Metric. We use Root Mean Square Error (RMSE) between the original and
reconstructed image to evaluate the performance of the algorithms. We also
compute the best possible reconstruction of the original face image by using
the 20 eigenfaces.

Methods. Wang et al. [131] implemented popular robust estimators such as
RANSAC, Huber Loss etc. and showed their poor performance. Wang et al.
[131] then proposed an alternate robust regression algorithm called Self Scaled
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Regularized Robust Regression (SCRRR). Hence, use TORRENT, SCRRR and
OLS as baselines. We also compare against the best possible RMSE obtained
by reconstructing the un-occluded image using the eigenfaces.

Results. Table B.1 shows that the mean RMSE is best for our proposed gra-
dient descent based method and that the recovered images are in most cases
closer to the un-occluded original image. (Figure B.2). Figure B.1(c) shows a
case when none of the methods succeed in reconstruction.
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(a) Successful Reconstruction
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(b) Successful Reconstruction
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(c) Failed Reconstruction

Figure B.1: Robust Face recovery results: Top; in order from L to R: original image, occluded
image, best possible recovery with given basis. Bottom; in order from L to R: Reconstructions
using our proposed algorithm, TORRENT and ordinary least squares (OLS).

B.3 Proof of Theorem 56

In this section, we present the proof of our main result on projected gradient
descent with an inexact gradient estimator. To ease the notation we will often
omit {Dn, δ} from g(θ;Dn, δ). At any iteration step t ∈ {1, 2, . . . , T}, by
assumption we have that with probability at least 1− δ

T ,

‖g(θt;Dn, δ/T )−∇R(θt)‖2 ≤ α(n/T, δ/T )‖θ − θ∗‖2 + β(n/T, δ/T ). (B.1)

Taking union bound, (B.1) holds over all iteration steps t ∈ {1 . . . T}, with
probability at least 1 − δ. For the remainder of the analysis, we assume this
event to be true.

Notation. Let g(θk) = ∇R(θk)+ek be the noisy gradient. Let α = α(n/T, δ/T )
and β = β(n/T, δ/T ) for brevity.
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We have the following Lemma from Bubeck [62].
Lemma 21. [Lemma 3.11 [62]] Let f be M -smooth and m-strongly convex,
then for all x, y ∈ Rp, we have:

〈∇f(x)−∇f(y), x− y〉 ≥ mM

m+M
‖x− y‖2

2 +
1

m+M
‖∇f(y)−∇f(x)‖2

2.

By assumptions we have that: ‖∇R(θk)−g(θk)‖2 = ‖ek‖2 ≤ α‖θk−θ∗‖2+β.
Our update rule is θk+1 = PΘ

[
θk − ηg(θk)

]
. Then we have that:

‖θk+1 − θ∗‖2
2 = ‖PΘ[θk − ηg(θk)]− θ∗‖2

2 = ‖PΘ[θk − ηg(θk)]− PΘ[θ∗ − η∇R(θ∗)]‖2
2

≤ ‖θk − ηg(θk)− (θ∗ − η∇R(θ∗))‖2
2 (B.2)

= ‖θk − θ∗ − η(∇R(θk)−∇R(θ∗))− ηek‖2
2

≤ ‖θk − θ∗ − η(∇R(θk)−∇R(θ∗))‖2
2 + η2‖ek‖2

2

+ 2‖ek‖2‖θk − θ∗ − η(∇R(θk)−∇R(θ∗))‖2, (B.3)

where (B.2) follows from contraction property of projections. Now, we can
write ‖θk − θ∗ − η(∇R(θk)−∇R(θ∗))‖2 as

‖θk − θ∗ − η(∇R(θk)−∇R(θ∗))‖22 = ‖θk − θ∗‖22 + η2‖∇R(θk)−∇R(θ∗)‖22 − 2η
〈
∇R(θk)−∇R(θ∗), θk − θ∗

〉

≤ ‖θk − θ∗‖22 + η2‖∇R(θk)−∇R(θ∗)‖22 − 2η

(
τ`τu
τ` + τu

‖θk − θ∗‖22 +
1

τ` + τu
‖∇R(θk)−∇R(θ∗)‖22

)

= ‖θk − θ∗‖22(1− 2ητ`τu/(τ` + τu)) + η‖∇R(θk)−∇R(θ∗)‖22(η − 2/(τu + τ`))

= ‖θk − θ∗‖22(1− 2ητ`τu/(τ` + τu)), (B.4)

where the second step follows from Lemma 21 and the last step follows from the step size
η = 2/(τ` + τu).
Now, combining Equations (B.3) and (B.4), and using our assumption that ‖ek‖2 ≤ α‖θk −
θ∗‖2 + β, we get:

‖θk+1 − θ∗‖2
2 ≤

(
‖θk − θ∗‖2

√
(1− 2ητ`τu/(τ` + τu)) + η‖ek‖2

)2

‖θk+1 − θ∗‖2 ≤
[√

1− 2ητ`τu/(τ` + τu) + ηα
]
‖θk − θ∗‖2 + ηβ.

Let κ =
√

1− 2ητ`τu/(τ` + τu) + ηα. By the assumption on stability we have α < τ`.

κ =
√

1− 2ητ`τu/(τ` + τu) + ηα

<
√

1− 2ητ`τu/(τ` + τu) + ητ`.
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Since η = 2/(τ` + τu), we get that

κ <
√

1− 4τ 2
uτ

2
` /(τ` + τu)2 + 2τ`/(τu + τ`)

κ <
τu − τ`
τu + τ`

+ 2τ`/(τu + τ`)

κ < 1

Therefore, we have that,

‖θk+1 − θ∗‖2 ≤ κ‖θk − θ∗‖2 + ηβ.

for some κ < 1. Solving the induction,we get:

‖θk − θ∗‖2 ≤ κk‖θ0 − θ∗‖2 +
1

1− κ
ηβ.

B.4 Proof of Theorem 37
The proof of Theorem 37 follows from Theorem 11, where we study Generalized Linear
Models, which includes linear regression as a special case. For the case of linear regression
with Gaussian noise, it is relatively straightforward to see that the smoothness parameters
satisfy LΦ,2k = C2k‖Σ‖k2, BΦ,2k = 0, MΦ,t,k = 1 ∀(t ≥ 2, k ∈ N ) and MΦ,t,k = 0 ∀(t ≥
3, k ∈ N ) under the assumption of bounded 8th moments of the covariates. Substituting
these values in Theorem 11 gives us the required result.

B.5 Proof of Theorem 11
To prove our result on Robust Generalized Linear Models, we first study the distribution of
gradients of the corresponding risk function.
Lemma 22. Consider the model in (5.10), then there exist universal constants C1, C2 > 0
such that

‖Cov(∇L̄(θ)‖2 ≤C1‖∆‖2
2‖Σ‖2

(√
C4

√
LΦ,4 + LΦ,2

)

+ C2‖Σ‖2

(
BΦ,2 +

√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1

)
,

and

E
[[

(∇L̄(θ)− E[∇L̄(θ)])Tv
]4] ≤ C2(Var[∇L̄(θ)Tv])2.

Proof. The gradient ∇L̄(θ) and it’s expectation can be written as:

∇L̄(θ) = −y.x+ u(〈x, θ〉).x
E[∇L̄(θ)] = E[x

(
u(xT θ)− u(xT θ∗)

)
],
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where u(t) = Φ′(t).

‖E[∇L̄(θ)]‖2 = sup
y∈Sp−1

yTE[∇L̄(θ)]

≤ sup
y∈Sp−1

E[(yTx)
(
u(xT θ)− u(xT θ∗)

)
]

≤ sup
y∈Sp−1

√
E[(yTx)2]

√
E[(u(xT θ)− u(xT θ∗))2]

≤ C1‖Σ‖
1
2
2

√
LΦ,2‖∆‖2

2 +BΦ,2

where the last line follows from our assumption of smoothness.
Now, to bound the maximum eigenvalue of the Cov(∇L̄(θ)),

‖Cov(∇L̄(θ))‖2 = sup
z∈Sp−1

zT
(
E
[
∇L̄(θ)∇L̄(θ)T

]
− E[∇L̄(θ)]E[∇L̄(θ)]T

)
z

≤ sup
z∈Sp−1

zT
(
E
[
∇L̄(θ)∇L̄(θ)T

])
z + sup

z∈Sp−1

zT
(
E[∇L̄(θ)]E[∇L̄(θ)]T

)
z

≤ sup
z∈Sp−1

zT
(
E
[
xxT

(
u(xT θ)− y)

)2
])
z + ‖E[∇L̄(θ)]‖2

2

≤ sup
z∈Sp−1

E
[
zT
(
xxT

(
u(xT θ)− y

)2
)
z
]

+ ‖E[∇L̄(θ)]‖2
2

≤ sup
z∈Sp−1

√
E [(zTx)4]

√
E
[
(u(xT θ)− y)4]

]
+ ‖E[∇L̄(θ)]‖2

2

To bound E
[(
u(xT θ)− y

)4
]
, we make use of the Cr inequality.

Cr inequality. If X and Y are random variables such that E|X|r < ∞ and E|Y |r < ∞
where r ≥ 1 then:

E|X + Y |r ≤ 2r−1 (E|X|r + E|Y |r)
Using the Cr inequality, we have that

E
[(
u(xT θ)− y

)4
]
≤ 8

(
E
[(
u(xT θ)− u(xT θ∗)

)4
]

+ E
[(
u(xT θ∗)− y

)4
])

≤ C
(
LΦ,4‖∆‖4

2 +BΦ,4 + c(σ)3MΦ,4,1 + 3c(σ)2MΦ,2,2

)

where the last line follows from our assumption that Pθ∗(y|x) is in the exponential family,
hence, the cumulants are higher order derivatives of the log-normalization function.

‖Cov(∇L̄(θ))‖2 ≤
√
C
√
C4‖Σ‖2

(√
LΦ,4‖∆‖2

2 +
√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1

)
+ ‖E[∇L̄(θ)]‖2

2

≤
√
C
√
C4‖Σ‖2

(√
LΦ,4‖∆‖2

2 +
√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1

)
+ C2

1‖Σ‖2

(
LΦ,2‖∆‖2

2 +BΦ,2

)

≤ C‖∆‖2
2‖Σ‖2

(√
C4

√
LΦ,4 + LΦ,2

)
+ C6‖Σ‖2

(
BΦ,2 +

√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1

)
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Bounded Fourth Moment. To show that the fourth moment of the gradient distribution
is bounded, we have

E
[[

(∇L̄(θ)− E[∇L̄(θ])Tv
]4] ≤ E

[[∣∣(∇L̄(θ)− E[∇L̄(θ)])Tv
∣∣]4
]

≤ 8


E[|∇L̄(θ])Tv|4]︸ ︷︷ ︸

A

+E[|E[∇L̄(θ)]Tv|4]︸ ︷︷ ︸
B


 .

Control of A.

E[|∇L̄(θ])Tv|4] = E[(xTv)4(u(xT θ)− y)4]

≤
√
E[(xTv)8]

√
E[(u(xT θ)− y)8]

≤
√
C8‖Σ‖2

2

√
E[(u(xT θ)− u(xT θ∗))8] + E[(u(xT θ∗)− y)8]

≤
√
C8‖Σ‖2

2

√√√√LΦ,8‖∆‖8
2 +BΦ,8 +

8∑

t,k=2

gt,kMΦ,t,k

≤
√
C‖Σ‖2

2

√
LΦ,8‖∆‖4

2 +
√
BΦ,8 +

√√√√
8∑

t,k=2

gt,kMΦ,t,k

where the last step follows from the fact that the 8th central moment can be written as
a polynomial involving the lower cumulants, which in turn are the derivatives of the log-
normalization function.

Control of B.

E[|E[∇L̄(θ)]Tv|4] ≤ ‖E[∇L̄(θ)‖4
2 ≤ C1‖Σ‖2

2

(
L2

Φ,2‖∆‖2
2 +B2

Φ,2

)

By assumption LΦ,k, BΦ,k,MΦ,t,k are all bounded for k, t ≤ 8, which implies that there exist
constants c1, c2 > 0 such that

E
[[

(∇L̄(θ)− E[∇L̄(θ])Tv
]4] ≤ c1‖Σ‖2

2‖∆‖4
2 + c2

Previously, we say that ‖Cov∇L̄(θ)‖2 ≤ c3‖Σ‖2‖∆‖2
2 + c4, for some universal constants

c3, c4 > 0, hence the gradient ∇L̄(θ) has bounded fourth moments.

Having studied the distribution of the gradients, we use Lemma 9 to characterize the
stability of Huber Gradient estimator. Using Lemma 9, we know that at any point θ, the
Huber Gradient Estimator g(θ, δ/T ) satisfies that with probability 1− δ/T ,

‖g(θ, δ/T )−∇R(θ)‖2 ≤ C2

(
ε

1
2 + γ(ñ, p, δ̃)

)
‖Cov(∇L̄(θ))‖

1
2
2

√
log p.
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Substituting the upper bound on ‖Cov(∇L̄(θ))‖2 from Lemma 58, we get that there are
universal constants C1, C2 such that with probability at least 1 - δ/T

‖g(θ)−∇R(θ)‖2 ≤C1

(
ε

1
2 + γ(ñ, p, δ̃)

)√
log p‖Σ‖

1
2
2 [L

1
4
Φ,4 + L

1
2
Φ,2]

︸ ︷︷ ︸
α(ñ,δ̃)

‖∆‖2

+ C2

(
ε

1
2 + γ(ñ, p, δ̃)

)√
log p‖Σ‖

1
2
2 [B

1
4
Φ,4 +B

1
2
Φ,2 + c(σ)

1
2M

1
4

Φ,2,2 + c(σ)
3
4M

1
4

Φ,4,1]
︸ ︷︷ ︸

β(ñ,δ̃)

(B.5)

To ensure stability of gradient descent, we need that α(ñ, δ̃) < τ`. Using (B.5), we obtain
that gradient descent is stable as long as the number of samples n is large enough such that
γ(ñ, p, δ̃) < C1τ`

√
log p‖Σ‖

1
2
2 [L

1
4
Φ,4+L

1
2
Φ,2]

, and the contamination level is such that

ε <

(
C2τ`

√
log p‖Σ‖

1
2
2 [L

1
4
Φ,4+L

1
2
Φ,2]
− γ(ñ, p, δ̃)

)2

for some constants C1 and C2. Plugging the corre-

sponding ε and β(ñ, δ̃) into Theorem 56, we get back the result of Theorem 11.

B.6 Proof of Corollary 10

We begin by studying the distribution of the random variable xy = xxT θ∗ + x.w.
Lemma 23. Consider the model in (B.17), with x ∼ N (0, Ip) and w ∼ N (0, 1) then there
exist universal constants C1, C2 such that

E[xy] = θ∗

‖Cov(xy)‖2 = 1 + 2‖θ∗‖2
2

Bounded fourth moments E
[[

(xy − E[xy])Tv
]4] ≤ C2(Var[(xy)Tv])2.

Proof. Mean.

xy = xxT θ∗ + x.w

E[xy] = E[xxT θ∗ + x.w]

E[xy] = θ∗.

Covariance.

Cov(xy) = E[(xxT − I)θ∗ + x.w)((xxT − I)θ∗ + x.w)T )]

Cov(xy) = E[(xxT − I)θ∗θ∗T (xxT − I)] + Ip.
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Now, Z = (xxT − I)θ∗ can be written as:

(xxT−I)θ∗ =




(x2
1 − 1) x1x2 . . . x1xp
x1x2 (x2

2 − 1) . . . x2xp
...

...
...

...
x1xp x2xp . . . (x2

p − 1)







θ∗1
θ∗2
...
θ∗p


 =




θ∗1(x2
1 − 1) + x1x2θ

∗
2 + . . .+ x1xpθ

∗
p

x1x2θ
∗
1 + (x2

2 − 1)θ∗2 + . . .+ x2xpθ
∗
p

...
x1xpθ

∗
1 + x2xpθ

∗
2 + . . .+ (x2

p − 1)θ∗p


 .

Then,

E
[
ZZT

]
=




2θ∗1
2 + θ∗2

2 + . . .+ θ∗p
2 θ∗1θ

∗
2 . . . θ∗1θ

∗
p

θ∗1θ
∗
2 θ∗1

2 + 2θ∗2
2 + . . .+ θ∗p

2 . . . θ∗2θ
∗
p

...
... . . . ...

θ∗pθ
∗
1 θ∗2θ

∗
p . . . θ∗1

2 + θ∗2
2 + . . .+ 2θ∗p

2


 .

Hence the covariance matrix can be written as:

Cov(xy) = Ip(1 + ‖θ∗‖2
2) + θ∗θ∗T .

Therefore ‖Cov(xy)‖2 = 1 + 2‖θ∗‖2
2.

Bounded Fourth Moment. We start from the LHS

E
[[

(xy − E[xy])Tv
]4] ≤ E

[[∣∣(xy − E[xy])Tv
∣∣]4
]

= E
[∣∣((xxT − I)θ∗ + wx)Tv

∣∣]4

= E
[∣∣(θ∗Tx)(xTv)− θ∗Tv + wvTx

∣∣]4

≤ 8


8


E
∣∣(θ∗Tx)(xTv)

∣∣4
︸ ︷︷ ︸

A

+E
∣∣θ∗Tv

∣∣4
︸ ︷︷ ︸

B


+ E

∣∣w(xTv)
∣∣4

︸ ︷︷ ︸
C

.




The last line follows from two applications of the following inequality:

Cr inequality. If X and Y are random variables such that E|X|r < ∞ and E|Y |4 < ∞
where r ≥ 1 then:

E|X + Y |r ≤ 2r−1 (E|X|r + E|Y |r) .

Now to control each term on:

• Control of A. Using Cauchy Schwartz, and normality of 1D projections of normal
distribution

A ≤
√

E[|θ∗Tx|8]
√

E[|xTv|8]

- ‖θ∗‖4
2.

138



• Control of B, B ≤ ‖θ∗‖4
2.

• Control of C, C = O(1), using independence of w and normality of 1D projections
of normal distribution.

Therefore the E
[[

(xy − E[xy])Tv
]4]

- c+ ‖θ∗‖4
2.

For the RHS:
Var((xy)Tv)2 = (vTCov(xy)v)2 ≤ ‖Cov(xy)‖2

2.

We saw that the ‖Cov(xy)‖2 - c+‖θ∗‖2
2, so both the LHS and RHS scale with ‖θ∗‖4

2. Hence,
xy has bounded fourth moments.

Now that we’ve established that xy has bounded fourth moments implies that we can
use [28] as a mean estimation oracle. Using Theorem 1.3 [28], we know that the oracle of
[28] outputs an estimate θ̂ of E[xy] such that with probability at least 1− 1/pC1 , we have:

‖θ̂ − θ∗‖2 ≤ C2

√
‖Cov(xy)‖2 log p

(
ε

1
2 + γ(n, p, δ, ε)

)

Using Lemma 23 to subsitute ‖Cov(xy)‖2 ≤ 1 + 2‖θ∗‖2
2), we recover the statement of Corol-

lary 10.

B.7 Proof of Theorem 14
To prove our result on Robust Exponential Family, we first study the distribution of gradients
of the corresponding risk function.
Lemma 24. Consider the model in (3.8), then there exists a universal constant C1 such that

E[∇L̄(θ)] = ∇A(θ)−∇A(θ∗)

‖Cov[∇L̄(θ)]‖2 = ‖∇2A(θ∗)‖2

Bounded fourth moments E
[[

(∇L̄(θ)− E[∇L̄(θ)])Tv
]4] ≤ C1(Var[∇L̄(θ)Tv])2.

Proof. By Fisher Consistency of the negative log-likelihood, we know that

Eθ∗ [∇L̄(θ∗)] = 0

=⇒ ∇A(θ∗)− Eθ∗ [φ(z)] = 0

=⇒ ∇A(θ∗) = Eθ∗ [φ(z)].

For the mean,

∇L̄(θ) = ∇A(θ)− φ(z)

E[∇L̄(θ)] = ∇A(θ)− Eθ∗ [φ(z)]

E[∇L̄(θ)] = ∇A(θ)−∇A(θ∗).
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Now, for the covariance:

Covθ∗ [∇L̄(θ)] = Eθ∗
[(
∇L̄(θ)− Eθ∗ [∇L̄(θ)]

) (
∇L̄(θ)− Eθ∗ [∇(L̄(θ)]

)T]

= Eθ∗
[
(∇A(θ∗)− φ(z)) (∇A(θ∗)− φ(z))T

]

= Covθ∗
[
∇L̄(θ∗)

]
= ∇2A(θ∗).

Bounded moments follows from our assumption that the sufficient statistics have bounded
4th moments.

Having studied the distribution of the gradients, we use Lemma 9 to characterize the
stability of Huber Gradient estimator. Using Lemma 9, we know that at any point θ, the
Huber Gradient Estimator g(θ, δ/T ) satisfies that with probability 1− δ/T ,

‖g(θ, δ/T )−∇R(θ)‖2 ≤ C2

(
ε

1
2 + γ(ñ, p, δ̃)

)
‖Cov(∇L̄(θ))‖

1
2
2

√
log p.

Substituting the upper bound on ‖Cov(∇L̄(θ))‖2 from Lemma 24, we get that there are
universal constants C1, C2 such that

‖g(θ)−∇R(θ)‖2 ≤ C1

(
ε

1
2 + γ(ñ, p, δ̃)

)√
log p
√
τu

︸ ︷︷ ︸
β(ñ,δ̃)

.

In this case we have that α(ñ, δ̃) = 0 < τ` by assumption. Therefore we just have
that ε < C1 for some universal constant C1. Plugging the corresponding ε and β(ñ, δ̃) into
Theorem 56, we get back the result of Corollary 14.

B.8 Proof of Corollary 15
Using the contraction property of projections, we know that

‖PΘ

[
(∇A)−1µ̂

]
− θ∗‖2 = ‖PΘ

[
(∇A)−1µ̂

]
− PΘ [θ∗] ‖2 ≤ ‖(∇A)−1µ̂− θ∗‖2.

By Fisher Consistency of the negative log-likelihood, we know that

∇A(θ∗) = Eθ∗ [φ(z)].

The true parameter θ∗ can be obtained by inverting the ∇A operator whenever possible.

‖(∇A)−1µ̂− θ∗‖2 = ‖(∇A)−1µ̂− (∇A)−1Eθ∗ [φ(z)]‖2

= ‖∇A∗µ̂−∇A∗Eθ∗ [φ(z)]‖2.

where A∗ is the convex conjugate of A. We can use the following result to control the
Lipschitz smoothness A∗.
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Theorem 30. (Strong/Smooth Duality) Assume f(·) is closed and convex. Then f(·) is
smooth with parameter M if and only if its convex conjugate f(·) is strongly convex with
parameter m = 1

M
.

A proof of the above theorem can be found in [132]. Hence, we have that:

‖PΘ

[
(∇A)−1µ̂

]
− θ∗‖2 ≤

1

τ`
‖µ̂− Eθ∗ [φ(z)]‖2 (B.6)

By assumption, we have that the fourth moments of the sufficient statistics are bounded. We
also know that Cov(φ(z) = ∇2A(θ∗) which implies that we can use [28] as our oracle. Using
Lemma 9, we get that, there exists universal constants C1, C2 such that with probability at
least 1− 1/pC1 ,

‖µ̂− Eθ∗ [φ(z)]‖2 ≤ C2

√
τu log p

(
ε

1
2 + γ(n, p, δ, ε)

)
.

Combining the above with (B.6) recovers the result of Corollary 15.

B.9 Proof of Theorem 16

Before we present the proof of Theorem 16, we first study the distribution of gradients of
the loss function. This will help us bound the error in the gradient estimator.
Lemma 25. Consider the model in (B.17). Suppose the covariates x ∈ Rp have bounded
4th-moments and the noise w has bounded 2th moments. Then there exist universal constants
C1, C2 such that

E[∇L̄(θ)] = Σ∆

‖Cov(∇L̄(θ)‖2 ≤ σ2‖Σ‖2 + ‖∆‖2
2C4‖Σ‖2

2

trace
(
Cov(∇L̄(θ))

)
≤ σ2trace (Σ) + C4trace (Σ) ‖Σ‖2‖∆‖2

2,

where ∆ = θ − θ∗ and E[xxT ] = Σ.

Proof. We start by deriving the results for E[∇L̄(θ)].

L̄(θ) =
1

2
(y − xT θ)2 =

1

2
(xT (∆)− w)2

∇L̄(θ) = xxT∆− x.w
E[∇L̄(θ)] = Σ∆.

Next, we bound the operator norm of the covariance of the gradients ∇L̄(θ) at any point θ.

Covariance.

Cov(∇L̄(θ)) = E[∇L̄(θ)∇L̄(θ)T ]− E[∇L̄(θ)]E[∇L̄(θ)]T
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For any unit vector z ∈ Sp−1, we have that,

zTCov(∇L̄(θ))z = zTE[∇L̄(θ)∇L̄(θ)T ]z − (E[∇L̄(θ)]T z)2

≤ zTE[∇L̄(θ)∇L̄(θ)T ]z

=⇒ sup
z∈Sp−1

zTCov(∇L̄(θ))z ≤ sup
z∈Sp−1

zTE[∇L̄(θ)∇L̄(θ)T ]z

Hence, we have that

λmax(Cov(∇L̄(θ))) ≤ sup
z∈Sp−1

zTE[∇L̄(θ)∇L̄(θ)T ]z

= sup
z∈Sp−1

zTE[(xxT∆− x.w)(xxT∆− x.w)T ]z

= sup
z∈Sp−1

zT (E[xxT∆∆TxxT ] + σ2E[xxT ])z

≤ sup
z∈Sp−1

zT (E[xxT∆∆TxxT ])z + σ2‖Σ‖2

≤ σ2‖Σ‖2 + ‖∆‖2
2 sup
y,z∈Sp−1

E[(zTx)2(yT z)2]

≤ σ2‖Σ‖2 + ‖∆‖2
2 sup
y,z∈Sp−1

√
E [(yTx)4]

√
E [(zTx)4]

≤ σ2‖Σ‖2 + ‖∆‖2
2C4‖Σ‖2

2

where the second last step follows from Cauchy-Schwartz and the last step follows from our
assumption of bounded 4th moments (see (3.12)). Now to bound the trace of the covariance
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matrix,

Cov(∇L̄(θ)) = E[(xxT − Σ)∆− xw)(xxT − Σ)∆− xw)T ]

trace
(
Cov(∇L̄(θ))

)
= E[‖(xxT − Σ)∆− xw)‖2

2]

= E[‖(xxT − Σ)∆‖2
2]︸ ︷︷ ︸

T1

+E[‖x‖2
2w

2]︸ ︷︷ ︸
σ2trace(Σ)

T1 = E[‖(xxT − Σ)∆‖2
2] = ∆TE[(xxT − Σ)2]∆

= ∆TE[(xTx)xxT + Σ2 − ΣxxT − xxTΣ]∆

= ∆TE[(xTx)xxT ]∆−∆TΣ2∆

≤ ∆TE[(xTx)xxT ]∆

≤ ‖∆‖2
2E[(xTx)(xTu)2], where u =

∆

‖∆‖2

∈ Sp−1

≤ ‖∆‖2
2E[(xTx)2]

1
2 E[(xTu)4]

1
2︸ ︷︷ ︸

≤
√
C4‖Σ‖2

x
def
=

p∑

i=1

(xT qi)︸ ︷︷ ︸
νi

qi, where {qi}pi=1 are eigenvectors of Σ

E[(xTx)(xTx)] = E[(
∑

i

ν2
i )(
∑

i

ν2
i )]

= E[
∑

i

ν4
i + 2

∑

i<j

ν2
i ν

2
j ]

E[ν4
i ] = E[(xT qi)

4] ≤ C4E[(xT qi)
2]2 = C4λ

2
i

E[ν2
i ν

2
j ] ≤

√
E[ν4

i ]
√
E[ν4

j ] = C4λiλj

E[(xTx)(xTx)] ≤ C4(
∑

i

λ2
i + 2

∑

i<j

λiλj) = C4trace (Σ)2

trace
(
Cov(∇L̄(θ))

)
≤ σ2trace (Σ) + C4trace (Σ) ‖Σ‖2‖∆‖2

2

We now proceed to the proof of Theorem 16. From Lemma 11, we know that at any
point θ, the gradient estimator described in Algorithm 5, g(θ;Dñ, δ̃), satisfies the following
with probability at least 1− δ,

‖g(θ;Dñ, δ̃)−∇R(θ)‖2 ≤ C

√
tr(Cov(∇L̄(θ))) log 1/δ̃

ñ
.
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We substitute the upper bound for ‖Cov(∇L̄(θ))‖2 from Lemma 57 in the above equation

‖g(θ;Dñ, δ̃)−∇R(θ)‖2 ≤ C

√
tr(Cov(∇L̄(θ))) log 1/δ̃

ñ

≤ C

√
(σ2trace(Σ)+C4trace(Σ)‖Σ‖2‖∆‖22) log 1/δ̃

ñ

≤ C1

√
trace (Σ) ‖Σ‖2 log 1/δ̃

ñ︸ ︷︷ ︸
α(ñ,δ̃)

‖θ − θ∗‖2

+C2σ

√
trace (Σ) log 1/δ̃

ñ︸ ︷︷ ︸
β(ñ,δ̃)

.

To complete the proof of this theorem, we use the results from Theorem 56. Note that the
gradient estimator satisfies the stability condition if α(ñ, δ̃) < τl. This holds when

ñ >
trace (Σ) τu

τ 2
l

log 1/δ̃.

Now suppose ñ satisfies the above condition, then plugging β(ñ, δ̃) into Theorem 56 gives us
the required result.

B.10 Proof of Theorem 17

To prove the Theorem we first derive a useful Lemma 26.
Lemma 26. Consider the model in (5.10), then there exist universal constants C1, C2 > 0
such that

‖Cov(∇L̄(θ)‖2 ≤
√
C
√
C4‖Σ‖2(

√
LΦ,4‖∆‖2

2) +
√
C
√
C4‖Σ‖2

(√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1

)

trace
(
Cov(∇L̄(θ)

)
≤
√
C4trace (Σ)

√
LΦ,4‖∆‖2

2 +
√
C4trace (Σ) (

√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1)

Proof. The gradient ∇L̄(θ) and it’s expectation can be written as:

∇L̄(θ) = −y.x+ u(〈x, θ〉).x
E[∇L̄(θ)] = E[x

(
u(xT θ)− u(xT θ∗)

)
],
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where u(t) = Φ′(t).

‖E[∇L̄(θ)]‖2 = sup
y∈Sp−1

yTE[∇L̄(θ)]

≤ sup
y∈Sp−1

E[(yTx)
(
u(xT θ)− u(xT θ∗)

)
]

≤ sup
y∈Sp−1

√
E[(yTx)2]

√
E[(u(xT θ)− u(xT θ∗))2]

≤ C1‖Σ‖
1
2
2

√
LΦ,2‖∆‖2

2 +BΦ,2

where the last line follows from our assumption of smoothness.
Now, to bound the maximum eigenvalue of the Cov(∇L̄(θ)),

λmax(Cov(∇L̄(θ))) ≤ sup
z∈Sp−1

zTE[∇L̄(θ)∇L̄(θ)T ]z

= sup
z∈Sp−1

zT
(
E
[
xxT

(
u(xT θ)− y)

)2
])
z

≤ sup
z∈Sp−1

E
[
zT
(
xxT

(
u(xT θ)− y

)2
)
z
]

≤ sup
z∈Sp−1

√
E [(zTx)4]

√
E
[
(u(xT θ)− y)4]

]

To bound E
[(
u(xT θ)− y

)4
]
, we make use of the Cr inequality.

Cr inequality. If X and Y are random variables such that E|X|r < ∞ and E|Y |4 < ∞
where r ≥ 1 then:

E|X + Y |r ≤ 2r−1 (E|X|r + E|Y |r)

Using the Cr inequality, we have that

E
[(
u(xT θ)− y

)4
]
≤ 8

(
E
[(
u(xT θ)− u(xT θ∗)

)4
]

+ E
[(
u(xT θ∗)− y

)4
])

≤ C
(
LΦ,4‖∆‖4

2 +BΦ,4 + c(σ)3MΦ,4,1 + 3c(σ)2MΦ,2,2

)

where the last line follows from our assumption that Pθ∗(y|x) is in the exponential family,
hence, the cumulants are higher order derivatives of the log-normalization function.

‖Cov(∇L̄(θ))‖2 ≤
√
C
√
C4‖Σ‖2

(√
LΦ,4‖∆‖2

2 +
√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1

)
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Now, to control the trace. We have that,

Cov(∇L̄(θ)) = E[∇L̄(θ)∇L̄(θ)T ]− E[∇L̄(θ)]E[∇L̄(θ)]T

trace
(
Cov(∇L̄(θ))

)
= trace

(
E[∇L̄(θ)∇L̄(θ)T ]

)
− trace

(
E[∇L̄(θ)]E[∇L̄(θ)]T

)

≤ trace
(
E[∇L̄(θ)∇L̄(θ)T ]

)

≤ trace
(
E
[
xxT

(
u(xT θ)− y)

)2
])

= E
[
trace

(
xxT

(
u(xT θ)− y)

)2
)]

= E[trace
(
(xxT )

)
u(xT θ)− y)2] Because (u(xT θ)− y)2 ∈ R

≤
√
E[trace ((xxT ))2]

√
E[(u(xT θ)− y)4]

≤
√
C4trace (Σ)

(√
LΦ,4‖∆‖2

2 +
√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1

)

=
√
C4trace (Σ)

√
LΦ,4‖∆‖2

2 +
√
C4trace (Σ) (

√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1)

From Lemma 11, we know that at any point θ, the gradient estimator described in
Algorithm 5, g(θ;Dñ, δ̃), satisfies the following with probability at least 1− δ,

‖g(θ;Dñ, δ̃)−∇R(θ)‖2 ≤ C

√
tr(Cov(∇L̄(θ))) log 1/δ̃

ñ

≤ C

√
(A‖∆‖22+B) log 1/δ̃

ñ

≤ C1

√
A log 1/δ̃

ñ︸ ︷︷ ︸
α(ñ,δ̃)

‖θ − θ∗‖2

+C2

√
B log 1/δ̃

ñ︸ ︷︷ ︸
β(ñ,δ̃)

.

SubstitutingA =
√
C4trace (Σ)

√
LΦ,4, B =

√
C4trace (Σ) (

√
BΦ,4+c(σ)

√
3MΦ,2,2+

√
c(σ)3MΦ,4,1).

Note that the gradient estimator satisfies the stability condition if α(ñ, δ̃) < τl. This
holds when

ñ >
C2

1A log 1/δ̃

τ 2
`

=
Ctrace (Σ)

√
C4

√
LΦ,4 log 1/δ̃

τ 2
`

.

Now suppose ñ satisfies the above condition, then plugging β(ñ, δ̃) into Theorem 56 gives us
the required result.
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B.11 Proof of Theorem 19
The proof proceeds along similar lines as the proof of Theorem 17. To prove the Theorem we
utilize the result of Lemma 24, where we showed that Cov[∇L̄(θ)] = ∇2A(θ∗). Combining
this result with Lemma 11 we get that with probability at least 1− δ

‖g(θ;Dñ, δ̃)−∇R(θ)‖2 ≤ C

√
tr(Cov(∇L̄(θ))) log 1/δ̃

ñ

≤ C

√
trace (∇2A(θ∗)) log 1/δ̃

ñ︸ ︷︷ ︸
β(ñ,δ̃)

.

Since α(ñ, δ̃) = 0, the stability condition is always satisfied, as long as τl > 0. Substituting
β(ñ, δ̃) into Theorem 56 gives us the required result.

B.12 Upper bound on Contamination Level
We provide a complementary result, which gives an upper bound for the contamination
level ε based on the initialization point θ0, above which, Algorithm 1 would not work. The
key idea is that the error incurred by any mean estimation oracle is lower bounded by the
variance of the distribution, and that if the zero vector lies within that error ball, then any
mean oracle can be forced to output 0 as the mean. For Algorithm 1, this implies that, in
estimating the mean of the gradient, if the error is high, then one can force the mean to be
0 which forces the algorithm to converge. For the remainder of the section we consider the
case of linear regression with x ∼ N (0, Ip) in the asymptotic regime of n→∞.
Lemma 27. Consider the model in (B.17) with x ∼ N (0, Ip) and w ∼ N (0, 1), then there
exists a universal constant C1 such that if ε > C1

‖θ0−θ∗‖2√
1+2‖θ0−θ∗‖22

, then for every gradient oracle,

there exists a contamination distribution Q such that, Algorithm 1 will converge to θ0 even
when the number of samples n→∞.

Proof. Using Lemma 23, we know that for any point θ,

∇L̄(θ) = xxT∆− x.w
Eθ∗ [∇L̄(θ)] = (θ − θ∗) = ∆

‖Cov(∇L̄(θ)‖2 = 1 + 2‖∆‖2
2,

where ∆ = θ − θ∗.
Let P∇L̄(θ) represent the distribution ∇L̄θ. Similarly, let Pε,∇L̄(θ),Q represent the correspond-
ing ε-contaminated distribution. Then, using Theorem 2.1 [11], we know that the minimax
rate for estimating the mean of the distribution of gradients is given by:

inf
µ̂

sup
θ∈Rp,Q

Pε,∇L̄(θ),Q

{
‖µ̂− Eθ∗ [∇L̄(θ)]‖2

2 ≥ Cε2(1 + 2‖∆‖2
2)
}
≥ c.
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The above statement says that at any point θ, any mean oracle Ψ will always incur an
error of Ω(

√
Cε2(1 + 2‖∆‖2

2)) in estimating the gradient Eθ∗ [∇L̄(θ)].

‖Ψ(θ)− Eθ∗ [∇L̄(θ)]‖2 ≥ Cε
√

(1 + 2‖∆‖2
2) ∀ Ψ

For any oracle Ψ, there exists some adversarial contaminationQ, such that whenever ‖Eθ∗ [∇L̄(θ)]‖2 <

Cε
√

(1 + 2‖∆‖2
2), then ‖Ψ(θ)‖2 = 0.

Suppose that the contamination level ε is such that,

ε >
1

C

‖Eθ∗ [∇L̄(θ0)]‖2√
(1 + 2‖θ0 − θ∗‖2

2)
,

then for every oracle there exists a corresponding Q such that Algorithm 1 will remain stuck
at θ0.

Plugging Eθ∗ [∇L̄(θ0)] = θ0 − θ∗, we recover the statement of the lemma.

Chen et al. [11] provide a general minimax lower bound of Ω(ε) for ε-contamination models
in this setting. In contrast, using Algorithm 1 with [28] as oracle, we can only O(

√
ε log p)

close to the true parameter even when the contamination is small, which implies that our
procedure is not minimax optimal. Our approach is nonetheless the only practical algorithm
for robust estimation of general statistical models.

B.13 Proof of Lemma 9
In this section we present a refined, non-asymptotic analysis of the robust mean estimator
of Lai et al. [28], described in Algorithm 4. We begin by introducing some preliminaries.
We subsequently analyze the algorithm in 1-dimension and finally turn our attention to the
general algorithm.

B.13.1 Preliminaries
Unless otherwise stated, we assume throughout that the random variable X has bounded
fourth moments, i.e. for every unit vector v,

E
[
〈X − µ, v〉4

]
≤ C4

[
E
[
〈X − µ, v〉2

]]2
.

We summarize some useful results from [28], which bound the deviation of the conditional
mean/covariance from the true mean/covariance.
Lemma 28. [Lemma 3.11 [28]] Let X be a univariate random variable with bounded fourth
moments, and let A be any with event with probability P(A) = 1− γ ≥ 1

2
. Then,

|E(X|A)− E(X)| ≤ σ 4
√

8C4γ3.
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Lemma 29. [Lemma 3.12 [28]] Let X be a univariate random variable with E[X] = µ,
E ((X − µ)2) = σ2 and let E((X − µ)4) ≤ C4σ

4. Let A be any with event with probability
P(A) = 1− γ ≥ 1

2
. Then,

(1−
√
C4γ)σ2 ≤ E((X − µ)2|A) ≤ (1 + 2γ)σ2.

Corollary 31. [Corollary 3.13 [28]] Let A be any event with probability P(A) = 1− γ ≥ 1
2
,

and let X be a random variable with bounded fourth moments. We denote Σ|A = E(XXT |A)−
(E(X|A))(E(X|A))T to be the conditional covariance matrix. We have that,

(1−
√
C4γ −

√
8C4γ3)Σ � Σ|A � (1 + 2γ)Σ.

For random variables with bounded fourth moments we can use Chebyshev’s inequality to
obtain tail bounds.
Lemma 30. [Lemma 3.14 [28]] Let X have bounded fourth moments, then for every unit
vector v we have that,

P(| 〈X, v〉 − E[〈X, v〉]| ≥ t
√[

E
[
〈X − µ, v〉2

]]
) ≤ C4

t4
.

Our proofs also use the matrix Bernstein inequality for rectangular matrices. As a prelim-
inary, we consider a finite sequence {Zk} of independent, random matrices of size d1 × d2.
We assume that each random matrix satisfies E(Zk) = 0, and ‖Zk‖op ≤ R almost surely. We
define:

σ2 := max

{
‖
∑

k

E(ZkZ
T
k )‖op, ‖

∑

k

E(ZkZ
T
k )‖op

}
.

With these preliminaries in place we use the following result from [133].
Lemma 31. For all t ≥ 0,

P
(∥∥∥
∑

k

Zk

∥∥∥
op
≥ t
)
≤ (d1 + d2) exp

(
−t2/2

σ2 +Rt/3

)
.

Equivalently, with probability at least 1− δ,

∥∥∥
∑

k

Zk

∥∥∥
op
≤

√
2σ2 log

(
d1 + d2

δ

)
+

2R

3
log

(
d1 + d2

δ

)
.

We let I denote the set of all intervals in R. The following is a standard uniform convergence
result.
Lemma 32. Suppose X1, . . . , Xn ∼ P, then with probability at least 1− δ,

sup
I∈I

∣∣∣∣∣P(I)− 1

n

n∑

i=1

I(Xi ∈ I)

∣∣∣∣∣ ≤ 2

√
4 log(en) + 2 log(2/δ)

n
.
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Algorithm 9 Huber Outlier Gradients Truncation
function HuberOutlierGradientTruncation(Sample Gradients S, Corrup-
tion Level ε, Dimension p,δ)

if p=1 then

Let [a, b] be smallest interval containing
(

1− ε− C5

(√
1
|S| log

(
|S|
δ

)))
(1−ε) frac-

tion of points.
S̃ ← S ∩ [a, b].
return S̃

else
Let [S]i be the samples with the ith co-ordinates only, [S]i = {〈x, ei〉 |x ∈ S}
for i = 1 to p do

a[i] = HuberGradientEstimator([S]i, ε, 1, δ/p).
end for
Let B(r, a) be the ball of smallest radius centered at a containing (1 − ε −

Cp

(√
p
|S| log

(
|S|
pδ

))
(1− ε) fraction of points in S.

S̃ ← S ∩B(r, a).
return S̃

end if
end function

We now turn our attention to an analysis of Algorithm 4 for the 1-dimensional case.

B.13.2 The case when p = 1

Firstly, we analyze Algorithm 4 when p = 1.
Lemma 33. Suppose that, P ∗θ is a distribution on R1 with mean µ, variance σ2, and bounded
fourth moments. There exist positive universal constants C1, C2, C8 > 0, such that given n
samples from the distribution in (3.9), the algorithm with probability at least 1 − δ, returns
an estimate µ̂ such that,

‖µ̂− µ‖2 ≤ C1C
1
4
4 σ

(
ε+

√
log 3/δ

2n
+ t

) 3
4

+ C2σ

(
ε+

√
log 3/δ

2n
+ t

) 1
2
√

log(3/δ)

n

where t = C8

√
1
n

log
(
n
δ

)
. which can be further simplified to,

‖µ̂− µ‖2 ≤ C1C
1
4
4 σ

(
ε+ C8

√
1

n
log
(n
δ

)) 3
4

+ C2σ

(
ε+ C8

√
1

n
log
(n
δ

)) 1
2
√

log(1/δ)

n

Proof. By an application of Hoeffding’s inequality we obtain that with probability at least
1− δ/3, the fraction of corrupted samples (i.e. samples from the distribution Q) is less than
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ε +
√

log(3/δ)
2n

. We condition on this event through the remainder of this proof. We let η
denote the fraction of corrupted samples. Further, we let SP be the samples from the true
distribution. Let nP be the cardinality of this set, i.e. nP := |SP |.

Let I1−η be the interval around µ containing 1− η mass of P ∗θ . Then, using Lemma 30,
we have that:

lengthI1−η ≤
C

1
4
4 σ

η
1
4

.

Using Lemma 32 we obtain that with probability at least 1 − δ/3 the number of samples
from the distribution P that fall in the interval I1−η is at least 1 − η − t where t is upper
bounded as:

t ≤ 2

√
4 log(en) + 2 log(6/δ)

n
.

Now we let S̃ be the set of points in the smallest interval containing (1−η−t)(1−η) fraction
of all the points.

• Using VC theory, we know that for every interval I ⊂ R, there exists some universal
constant C3 such that

P (|(P (x ∈ I|x ∼ D)− P (x ∈ I|x ∈u SD))| > t/2) ≤ n2
D exp(−nDt2/8) (B.7)

This can be re-written as, that with probability at least (1 − δ/3), there exists a
universal constant C0 such that,

sup
I
|(P (x ∈ I|x ∼ D)− P (x ∈ I|x ∈u SD))| ≤ C0

√
1

nD
log
(nD
δ

)
≤ C5

√
1

n
log
(n
δ

)

︸ ︷︷ ︸
t

• Using (B.7), we know that (1− η − t) fraction of SD lie in I1−η.
Let S̃ be the set of points in the smallest interval containing (1− η− t)(1− η) fraction
of the points.

• We know that the length of minimum interval containing (1− η− t)(1− η) fraction of
the points of S is less than length of smallest interval containing (1− η− t) fraction of
points of SD, which in turn is less than length of I1−η.

• Now, I1−η and minimum interval containing (1 − η − t) fraction of points of SD need
to overlap. This is because, n is large enough such that t < 1

2
− η hence, the extreme

points for such an interval can be atmost 2lengthI1−η away.
• Hence, the distance of all chosen noise-points from µ will be within the lengthI1−η.
• Moreover, the interval of minimum length with (1 − η − t)(1 − η) fraction of S will
contain at least 1− 3η − t fraction of SD.

• Hence, we can bound the error of mean(S̃) by controlling the sources of error.
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All chosen noise points are within lengthI1−η, and there are atmost η of them,
hence the maximum error can be ηlengthI1−η.
Next, the mean of chosen good points will converge to the mean of the conditional
distribution. i.e. points sampled from D but conditioned to lie in the minimum
length interval. The variance of these random variables is upper bounded using
Lemma 29.
To control the distance between the mean(E(X) and the conditional mean(E(X|A)),
where A is the event that a sample x is in the chosen interval. We know that
P (A) ≥ 1 − 3η − t, hence, using Lemma 3.11[28], we get that there exists a
constant C13 such that,

|E[X]− E[X|A]| ≤ C13C
1
4
4 σ(η + t)

3
4

• Hence, with probability at least 1− δ/3, the mean of S̃ will be within

η × lengthI1−η + C13C
1
4
4 σ(η + t)

3
4 + C6σ(1 + 2η)

1
2

√
log(3/δ)

n

• Taking union-bound over all conditioning statements, and upper bounding, η with

ε+
√

log(3/δ)
2n

, we recover the statement of the lemma.

B.13.3 The case when p > 1

To prove the case for p > 1, we use a series of lemmas. Lemma 34 proves that the outlier
filtering constrains the points in a ball around the true mean. Lemma 36 controls the error in
the mean and covariance the true distribution after outlier filtering (D̃). Lemma 37 controls
the error for the mean of S̃ when projected onto the bottom span of the covariance matrix
ΣS̃.
Lemma 34. Suppose that, P ∗θ is a distribution on Rp with mean µ, covariance Σ, and
bounded fourth moments. There exist positive universal constants C1, C2, C8 > 0, such that
given n samples from the distribution in (3.9), we can find a vector a ∈ Rp such that with
probability at least 1− δ,

‖a− µ‖2 ≤C1C
1
4
4

√
trace (Σ)

(
ε+ C8

√
1

n
log
(np
δ

)) 3
4

+ C2

(
ε+ C8

√
1

n
log
(np
δ

)) 1
2 √

trace (Σ)

√
log(p/δ)

n

Proof. Pick n orthogonal directions v1, v2, . . . , vn, and use method for one-dimensions, and
using union bound, we can recover the result.
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Next, we prove the case when p > 1. Firstly, we prove that after the outlier step,
Lemma 35. After the outlier removal step, there exists universal constants C11 > 0 such
that with probability at least 1− δ, every remaining point x satisfies,

‖x− µ‖2 ≤ r∗1 + 2r∗2

where r∗1 = C10
C

1
4
4

√
p‖Σ‖2

η
1
4

and r∗2 = C1C
1
4
4

√
p‖Σ‖2(η + t)

3
4 + C2

√
p‖Σ‖2(η + t)

1
2

√
log(1/δ)

n
and

t = C8

√
1
n

log
(
np
δ

)
. Here η ≤ ε+

√
log(1/δ)

2n
is the fraction of samples corrupted.

Proof. • Let S̃ be the set of points chosen after the outlier filtering. Let S̃D be set of
good points chosen after the outlier filtering. Let S̃N be the set of bad points chosen
after the outlier filtering.

• Using VC theory we know that for every closed ball B(µ, r) = {x|‖x− µ‖2 ≤ r}, there
exists a constant C9 such that with probability at least 1− δ

sup
B
|P (x ∈ B|x ∼ D)− P (x ∈ B|x ∈u SD)| ≤ C9

√
p

n
log

(
n

pδ

)

︸ ︷︷ ︸
t2

• Let B∗ = B(µ, r∗) for r∗1 = C10
C

1
4
4

(η)
1
4

√
p‖Σ‖2. Then, we claim that

P (x ∈ B∗|x ∼ D) ≥ 1− η

To see this, suppose we have some x ∈ D. Let z = x− µ. Let zi = zTvi for some
orthogonal directions v1, v2, . . . , vp. Let Z2 =

∑
z2
i = ‖z‖2

2.

P

(
Z2 ≥ C

1
2
4 p‖Σ‖2

(η)
1
2

)
= P

(
Z4 ≥ C4p

2‖Σ‖2
2

(η)

)
≤ (η)E(Z4)

C4p2‖Σ‖2
2

Now, E(Z4) ≤ p2 maxiE(z4
i ) ≤ C4p

2‖Σ‖2
2. Plugging this in the above, we have

that P (x ∈ B∗|x ∼ D) ≥ 1− η.
• Hence, we have that P (x ∈ B∗|x ∈u SD) ≥ 1− η − t2.
• Using Lemma 34, we have that at least (1− η− t2) fraction of good points are r∗1 + r∗2
away from a. Hence, we have that the minimum radius of the ball containing all the
(1 − η − t2)(1 − η) has a radius of atmost r∗1 + r∗2, which when combined with the
triangle inequality recovers the statement of lemma.

As before, let S̃ be the set of points after outlier filtering. Let µS̃ = mean(S̃), µS̃D =

mean(S̃D), µS̃N = mean(S̃N).
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Lemma 36. Let S̃D be the set of clean points remaining after the outlier filtering. Then,
with probability at least 1− δ, we have that

‖µS̃D − µ‖2 ≤ C1C
1
4
4 (η + t2)

3
4

√
‖Σ‖2

(
1 +

log(p/δ)

n

)
+
√
‖Σ‖2

√
(1 + 2(η + t2)

√
1

n
log(p/δ)

+ C15
(r∗1 + 2r∗2)

n
log(p/δ)

and
‖ΣS̃D

‖2 ≤ β(n, δ)‖Σ‖2,

where

β(n, δ) =

(
1 + 2C(η + t2) +

(
1 +

p
√
C4√
η

+
√
C4p(η + t)

3
2 + (η + t2)

3
2

)(√
log(p/δ

n
+

log(p/δ)

n

))

Proof. We first prove the bounds on the mean shift.

‖µS̃D − µ‖2 ≤ ‖µS̃D − µD̃‖2︸ ︷︷ ︸
A

+ ‖µD̃ − µ‖2︸ ︷︷ ︸
B

• Control of B. We use Lemma 28 on X = xT
µ
D̃
−µ

‖µ
D̃
−µ‖2 for x ∼ D, and A be the event

that x is not removed by the outlier filtering.

‖µD̃ − µ‖2 ≤ C1C
1
4
4 (η + t2)

3
4

√
‖Σ‖2

• Control of A. Using Lemma 29,we have that ‖ΣD̃‖2 ≤ (1 + 2(η + t2))‖Σ‖2. Now, we
use Bernstein’s inequality . Lemma 31 with R = C(r∗1 + 2r∗2 + B), we get that, with
probability at least 1− δ,

‖µS̃D − µD̃‖2 ≤ C14

√
‖Σ‖2

√
(1 + 2(η + t2)

√
1

n
log(p/δ) + C15

(r∗1 + 2r∗2 +B)

n
log(p/δ)

Next, we prove the bound for covariance matrix.

‖ΣS̃D
‖2 ≤ ‖ΣS̃D

− ΣD̃‖2 + ‖ΣD̃ − Σ‖2︸ ︷︷ ︸
≤2C(η+t2)‖Σ‖2(By Corollary 31))

+‖Σ‖2

To control ‖ΣS̃D
−ΣD̃‖2, we use Bernstein’s inequality, with Zk =

(xk−µD̃)(xk−µD̃)T−Σ
D̃

n
. From,

Lemma 35, we know that the points are constrained in a ball. Plugging this into Lemma 31,

‖ΣS̃D
− ΣD̃‖2 ≤ C(‖Σ‖2 +R2)

(√
log(p/δ

n
+

log(p/δ)

n

)

where R2 = C
(
r∗

2

1 + r∗
2

2 +B2
)
.
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Plugging in the values, we get that,

‖ΣS̃D
− ΣD̃‖2 ≤ C‖Σ‖2

(
1 +

p
√
C4√
η

+
√
C4p(η + t)

3
2 + (η + t2)

3
2

)(√
log(p/δ

n
+

log(p/δ)

n

)

Finally, we have that,

‖ΣS̃D
‖2 ≤ ‖Σ‖2

(
1 + 2C(η + t2) +

(
1 +

p
√
C4√
η

+
√
C4p(η + t)

3
2 + (η + t2)

3
2

)(√
log(p/δ

n
+

log(p/δ)

n

))

︸ ︷︷ ︸
β(n,δ)

Lemma 37. Let W be the bottom p/2 principal components of the covariance matrix after
filtering ΣS̃. Then there exists a universal constant C > 0 such that with probability at least
1− δ, we have that

‖ηPW δµ‖2
2 ≤ Cη

(
β(n, δ) + γ(n, δ)C

1
2
4 )‖Σ‖2

)
,

where δµ = µS̃N−µS̃D , PW is the projection matrix on the bottom p/2-span of ΣS̃, β(n, δ)

is as defined in Lemma 36 and γ(n, δ) =
(
η

1
2 + (η + t)5/2 + η(η + t) log(1/δ)

n

)

Proof. We have

ΣS̃ = (1− η)ΣS̃D︸ ︷︷ ︸
E

+ ηΣS̃N
+ (η − η2)δµδµT︸ ︷︷ ︸

F

By Weyl’s inequality we have that,

λp/2(ΣS̃) ≤ λ1(E) + λp/2(F )

• Control of λp/2(F ).

λp/2(F ) ≤ trace (F )

p/2

≤ C15η
((r∗1)2 + (r∗2)2) +B2

p/2

≤ C16C
1
2
4 ‖Σ‖2

(
η

1
2 + (η + t)5/2 + η(η + t)

log(1/δ)

n

)

︸ ︷︷ ︸
γ(n,δ)

where t = C8

√
1
n

log
(
np
δ

)
.

• Control of λ1(E).

λ1(E) ≤ (1− η)β‖Σ‖2
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Hence, we have that:

λp/2(ΣS̃) ≤ (1− η)β‖Σ‖2 + C16γ
√
C4‖Σ‖2

Using that W is the space spanned by the bottom p/2 eigenvectors of ΣS̃ and PW is corre-
sponding projection operator, we have that:

P T
WΣS̃PW �

[
(1− η)β + C16γ

√
C4

]
‖Σ‖2Ip

Following some algebraic manipulation in [28], we get that,

‖ηPW δµ‖2
2 ≤ η

(
(β(n, δ) + γC

1
2
4 )‖Σ‖2

)

Having established all required results, we are now ready to prove Lemma 9. We first
present a result for general mean estimation. The proof of Lemma 9 then follows directly
from this result.
Lemma 38. Suppose that, P ∗θ is a distribution on Rp with mean µ, covariance Σ and bounded
fourth moments. There exist positive universal constant C > 0, such that given n samples
from the distribution in (3.9), the algorithm with probability at least 1−δ, returns an estimate
µ̂ such that,

‖µ̂− µ‖2 ≤ C‖Σ‖
1
2
2 (1 +

√
log p)


√η + C

1
4
4 (η + t2)

3
4 +

(
√
ηpC

1
2
4

√
log p log(p log(p/δ))

n

) 1
2




where η = ε+
√

log(p) log(log p/δ)
2n

and t2 =
√

p log(p) log(n/(pδ))
n

.

Proof. We divide n samples into blog(p)c different sets. We choose the first set and keep
that as our active set of samples. We run our outlier filtering on this set, and let the
remaining samples after the outlier filtering be S̃D. By orthogonality of subspaces spanned
by eigenvectors, coupled with triangle inequality and contraction of projection operators, we
have that

‖µ̂− µ‖2
2 ≤ 2‖PW (µ̂− µS̃D)‖2

2 + 2‖PW (µS̃D − µ)‖2
2 + ‖µ̂V − PV µ‖2

2

‖µ̂− µ‖2
2 ≤ 2‖PW (µ̂− µS̃D)‖2

2 + 2‖(µS̃D − µ)‖2
2 + ‖µ̂V − PV µ‖2

2

where V is the span of the top p/2 principal components of ΣS̃ and where µ̂V is the mean
vector of returned by the running the algorithm on the reduced dimensions dim(V ) = p/2.
From Lemma 37, both β(n, δ) and γ(n, δ) are monotonically increasing in the dimension;
moreover the upper bound in Lemma 36 is also monotonically increasing in the dimension
p, hence, the error at each step of the algorithm can be upper bounded by error incurred
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when running on dimension p, with n/ log(p) samples, and probability of δ/ log p. Hence,
the overall error for the recursive algorithm can be upper bounded as,

‖µ̂− µ‖2
2 ≤

(
2‖PW (µ̂− µS̃D)‖2

2 + 2‖µS̃D − µ‖
2
2

)
(1 + log p)

Combining Lemma 36 and Lemma 37 which are instantiated for n/ log p samples and
probability δ/ log p, we get,

‖µ̂− µ‖2 ≤ C‖Σ‖
1
2
2

√
log p


√η + C

1
4
4 (η + t2)

3
4 +

(
√
ηpC

1
2
4

√
log p log(p log(p/δ))

n

) 1
2



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B.14 Empirical Comparison to Robust Plugin Estima-
tion
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Figure B.2: Empirical Evaluation comparing Robust-GD and Robust Plugin Estimation

In this section, we conduct experiments to compare the performance of robust plugin-
estimator. In particular, we empirically show that the upper bound of Corollary 10 is tight,
i.e. the error of the estimator indeed scales with the signal strength ‖θ∗‖2.

Setup. We follow the setup of Section 3.4.1. At a given contamination level ε, we generate
(1− ε)n clean covariates from N (0, Ip), and we generate the corresponding clean responses
using y = 〈x, θ∗〉+w where θ∗ = κ[1/

√
p, . . . , 1/

√
p]T and w ∼ N (0, σ2). Note that kappa =

‖θ∗‖2 measures the signal strength. As before, we simulate an outlier distribution by drawing
the covariates from N (0, p2Ip), and setting the responses to 0. The total number of samples
is set to be (10 p

ε2
) to that statistical error, in the absence of contamination, is constant.

Plugin Estimator. The plugin estimator is given by θ̂PG = Σ̃−1ν̃, where we use Al-
gorithm 4 to estimate the mean vector 1

n

∑n
i=1 xiyi robustly(ν̃) and the covariance matrix

1
n

∑n
i=1 xix

T
i robustly(Σ̃).

Results. We summarize our main findings here.
• Error vs ‖θ∗‖2. Figure B.2(a) shows that the error of the robust plugin algorithm
scales linearly with the signal strength. This figure confirms that the upper bound
derived in Corollary 10 is tight. On the other hand, the error of the robust robust-gd
estimator doesn’t depend on the signal strength.

• Error vs ε. Figure B.2(b) shows that at any given contamination level ε, the error of
the plugin estimator is strictly larger than the error of the Robust-GD algorithm.

• Error vs p. Figure B.2(c) shows that the error of both estimators doesn’t seem to
depend on the dimension p.
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B.15 Improved Rates for Heavy-Tailed Estimation
In this section we analyze the Median-SDP gradient estimator for heavy-tailed settings. The
following result shows that the gradient estimate has exponential concentration around the
true gradient, under the mild assumption that the gradient distribution has bounded second
moment. Its proof follows directly from the analysis of Median-SDP of Hopkins [23].
Lemma 39. Let P be the probability distribution of z and Pθ be the distribution of the
gradients ∇L̄(θ; z) on Rp with mean µθ = ∇R(θ), covariance Σθ. Then the heavy-tailed
Median-SDP gradient estimator returns an estimate µ̂ that satisfies the following exponential
concentration inequality, with probability at least 1− δ:

‖µ̂− µθ‖2 ≤ C1

√
trace (Σθ)

n
+ C2

√
‖Σθ‖2 log (1/δ)

n

Next, we present results for parametric estimation under heavy-tailed distributions when
Median-SDP is used to estimate gradients. Our assumptions are similar to that of Section 3.7
but we state them for completeness.

B.15.1 Linear Regression
We consider the linear regression model described in (B.17). We assume that the covari-
ates x ∈ Rp have bounded 4th-moments and the noise w has bounded 2nd moments. This
assumption is needed to bound the error in the gradient estimator (see Lemma 39).
Corollary 32 (Heavy Tailed Linear Regression). Consider the statistical model in (B.17).
There are universal constants C1, C2 > 0 such that if

C1

√
‖Σ‖2

τ`
(

√
trace (Σ)

ñ
+

√
‖Σ‖2 log 1/δ̃

ñ
) < 1

and if Algorithm 3 is initialized at θ0 with stepsize η = 2/(τu + τ`) and Median-SDP as
gradient estimator, then it returns iterates {θ̂t}Tt=1 such that with probability at least 1− δ

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
C2σ

1− κ
(

√
trace (Σ)

ñ
+

√
‖Σ‖2 log 1/δ̃

ñ
), (B.8)

for some contraction parameter κ < 1.

B.15.2 Generalized Linear Models
In this section we consider generalized linear models described in (5.10), where the covariate
x is allowed to have a heavy-tailed distribution. Here we assume that the covariates have
bounded 4th moment. Additionally, we assume smoothness of Φ′(·) around θ∗. Specifically,
we assume that there exist universal constants LΦ,2k, B2k such that

Ex
[
|Φ′(〈x, θ〉)− Φ′(〈x, θ∗〉)|2k

]
≤ LΦ,2k‖θ∗ − θ‖2k

2 +BΦ,2k, for k = 1, 2
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We also assume that Ex[
∣∣Φ(t)(〈x, θ∗〉)

∣∣k] ≤ MΦ,t,k for t ∈ {1, 2, 4}, where Φ(t)(·) is the tth-
derivative of Φ(·).
Corollary 33 (Heavy Tailed Generalized Linear Models). Consider the statistical model in
(5.10). There are universal constants C1, C2 > 0 such that if

C1(

√
trace (Σ)

√
LΦ,4

ñ
+

√
‖Σ‖2

√
LΦ,4 log 1/δ̃

ñ
) < τ`,

and if Algorithm 3 is initialized at θ0 with stepsize η = 2/(τu + τ`) and Median-SDP as
gradient estimator, it returns iterates {θ̂t}Tt=1 such that with probability at least 1− δ

‖θ̂t − θ∗‖2 ≤κt‖θ0 − θ∗‖2

+
C2

[
B

1
4
Φ,4 + c(σ)

1
2M

1
4

Φ,2,2 + c(σ)
3
4M

1
4

Φ,4,1

]

1− κ



√

trace (Σ)

ñ
+

√
‖Σ‖2 log(1/δ̃)

ñ


 ,

(B.9)

for some contraction parameter κ < 1.
We now instantiate the above Theorem for logistic regression model.

Corollary 34 (Heavy Tailed Logistic Regression). Consider the model in (5.13). There are
universal constants C1, C2 > 0 such that if

C1(

√
trace (Σ)

ñ
+

√
‖Σ‖2 log 1/δ̃

ñ
) < τ`

and if Algorithm 3 initialized at θ0 with stepsize η = 2/(τu+τ`) and Median-SDP as gradient
estimator, it returns iterates {θ̂t}Tt=1 such that with probability at least 1− δ

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
C2

1− κ



√

trace (Σ)

ñ
+

√
‖Σ‖2 log 1/δ̃

ñ


 ,

for some contraction parameter κ < 1.

B.15.3 Exponential Family
We now instantiate Theorem 56 for parameter estimation in heavy-tailed exponential family
distributions. Here we assume that the random vector φ(z), z ∼ P has bounded 2nd moments,
and we obtain the following result:
Corollary 35 (Heavy Tailed Exponential Family). Consider the model in (3.8). If Algo-
rithm 3 is initialized at θ0 with stepsize η = 2/(τu+τ`) and Algorithm 5 as gradient estimator,
it returns iterates {θ̂t}Tt=1, such that with probability at least 1− δ

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
1

1− κ
C1(

√
tr(∇2A(θ∗)

ñ
+

√
‖∇2A(θ∗)‖2 log 1/δ̃

ñ
),

for some contraction parameter κ < 1 and universal constant C.
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B.16 Proof of Lemma 10
In this section, we present a Filtering based gradient estimator. The estimator (and its
analysis) are primarily based on the Filtering Algorithm of Diakonikolas et al. [31] but we
do a careful non-asymptotic analysis. In particular, we obtain high-probability bounds using
a martingale style analysis and our results are (almost) dimension independent (i.e. they
depend on the dimension primarily through tr(Σθ)).

Algorithm 10 Huber Gradient Filtering Estimator
function FilterGradientEst(Sample Gradients S = {∇L̄(θ;xi)}ni=1, Corrup-
tion Level ε,‖Σ‖2,trace (Σ),Confidence Level δ)

Let θ̂S = 1
|S|
∑|S|

i=1 zi be the sample mean.

Let ΣS = 1
|S|
∑|S|

i=1(zi − θ̂S)(zi − θ̂S)T be the sample covariance matrix.
Let (λ, v) be the largest eigenvalue,eigenvector of ΣS.
Let α = max(ε, log(1/δ)

n
)

if λ < C(‖Σ‖2 + trace(Σ) log(p/δ)
nα

) then
return θ̂S

else
For each zi, let τi

def
= (vT (zi − θ̂S))2 to be its score

Randomly sample a point z from S according to

Pr(zi chosen) =
τi∑
j τj

return FilterGradientEst(S\{z} ε,‖Σ‖2,trace (Σ), δ)
end if

end function

We first restate the result to ease readability.
Lemma 40. Let P be the true probability distribution of z and let Pθ be the true distribution
of the gradients ∇L̄(θ; z) on Rp with mean µθ = ∇R(θ), covariance Σθ, and bounded second
moments. There exists a positive constant C1 > 0, such that given n samples from the distri-
bution in (3.9), the Huber Gradient Estimator described in Algorithm 10 when instantiated
with the contamination level ε, and knowledge of ‖Σθ‖2 and trace (Σθ), with probability at
least 1− δ, returns an estimate µ̂ of µθ such that,

‖µ̂− µθ‖2 ≤ C1‖Σθ‖
1
2
2 max(ε,

log(1/δ)

n
)

1
2 +

√
trace (Σθ) log(p/δ)

n

Proof. We go over the main steps of the proof first and defer the intermediate lemmas.

1. We first show that at the start of the algorithm, there is a good set G0 which satisfies
three properties,
(a) A lot of the empirical mass lies in it.(nG0 is big.)

161



(b) The operator norm of the covariance of G0 given by ‖ΣG0‖2 is controlled.
(c) The empirical mean of G0 is close to the true mean. ‖θ̂G0 − θ∗‖2 is small.

To this end, let α = max(ε, log(1/δ)
n

). G0 def
=

{
xi ∈ S0, s.t. xi ∼ P ∗, |xi − θ∗| ≤

√
trace(Σ)

α

}
.

In Lemma 41, we prove the following results hold with probability at least 1− 3δ.

nG0 ≥ n(1− (ε+ α)− C1

√
(ε+ α)

log(1/δ)

n
− C2

log(1/δ)

n
)) (B.10)

‖θ̂G0 − θ∗‖2 ≤ C1‖Σ‖
1
2
2

√
α + C2

√
trace (Σ)

nG0

+ C3

√
trace (Σ) log(1/δ)

nG0

(B.11)

‖ΣG0‖2 ≤ C1‖Σ‖2 + ‖Σ‖
1
2
2 trace (Σ)

1
2 log(p/δ)

1
2

1√
nα

+ trace (Σ) log(p/δ)
1

nα
(B.12)

2. In Lemma 49, we show that the with probability at least 1−δ, the algorithm terminates
in at most T ∗δ = d18 log(1/δ) + 3(n− nG0)e.

3. In Lemma 50 we prove a result which shows that when the algorithm stops in m = T ∗δ
steps, the sample mean of points, θ̂Sm is close to the mean of G0. In particular,

‖θ̂G0 − θ̂Sm‖2 ≤ C1(8
n− nG0

n
+ 36

log(1/δ)

n
)

1
2‖ΣG0‖

1
2
2 (B.13)

Equipped with the above results, the final theorem statement follows from some algebra
which we show below.

‖θ∗ − θ̂Sm‖2 ≤ ‖θ̂G0 − θ̂Sm‖2 + ‖θ̂G0 − θ∗‖2

≤ C1(8
n− nG0

n
+ 36

log(1/δ)

n
)

1
2‖ΣG0‖

1
2
2 + ‖θ̂G0 − θ∗‖2 (B.14)

From Equation B.10 we know that

(n− nG0)/n ≤ (ε+ α) + C1

√
(ε+ α)

log(1/δ)

n
≤ Cα

where we used that α = max(ε, log(1/δ)
n

). Using this, we get that,

C1(8
n− nG0

n
+ 36

log(1/δ)

n
)

1
2 ≤ (Cα)

1
2
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From Equation B.12 we know that,

‖ΣG0‖2 ≤ C1‖Σ‖2 + ‖Σ‖
1
2
2 trace (Σ)

1
2 log(p/δ)

1
2

1√
nα

+ trace (Σ) log(p/δ)
1

nα

=⇒ ‖ΣG0‖
1
2
2

√
α ≤ C1‖Σ‖

1
2
2

√
α + (‖Σ‖

1
2
2 α

1
2 )

1
2 (
trace (Σ)

1
2 log(p/δ)

1
2

n
1
2

)
1
2

︸ ︷︷ ︸
‖Σ‖

1
2
2 α

1
2 +

√
trace(Σ) log(p/δ)

n

+
trace (Σ)

1
2 log(p/δ)

1
2

n
1
2

≤ C1‖Σ‖
1
2
2

√
α + C2

√
trace (Σ) log(p/δ)

n

The final statement follows by plugging the above and (B.11) into (B.14).

Lemma 41. Let G0 def
=

{
xi ∈ S0, s.t. xi ∼ P ∗, ‖xi − θ∗‖2 ≤

√
trace(Σ)

α

}
be some good set,

where α def
= max(ε, log(1/δ)

n
). Then, with probability at least 1− 3δ.

nG0 ≥ n(1− (ε+ α)− C1

√
(ε+ α)

log(1/δ)

n
− C2

log(1/δ)

n
))

‖θ̂G0 − θ∗‖2 ≤ C1‖Σ‖
1
2
2

√
α + C2

√
trace (Σ)

nG0

+ C3

√
trace (Σ) log(1/δ)

nG0

(B.15)

‖ΣG0‖2 ≤ C1‖Σ‖2 + ‖Σ‖
1
2
2 trace (Σ)

1
2 log(p/δ)

1
2

1√
nα

+ trace (Σ) log(p/δ)
1

nα
(B.16)

Proof. Consider the event E1 = x ∼ P , then Pε(E1) = 1 − ε. Consider the event E2 =

‖xi − θ∗‖2 ≤
√

trace(Σ)
α

, We have that Pε(E2|E1) = 1 − Pr(‖x − θ∗‖2 >
√

trace(Σ)
α
|x ∼ P ).

Using Chebyshev’s inequality, we have that,

P ∗(‖x− µ‖2 >

√
trace (Σ)

α
) ≤ E[‖x− µ‖2

2]

(
√

trace(Σ)
α

)2

= α

.

Pε(E1 ∩ E2) ≥ (1− ε)(1− α)

= 1 + εα− (ε+ α)

≥ 1− (ε+ α)

Now, given n-samples from Pε, we use Bernsteins bound to get the empirical probability, i.e.
we get that with probability at least 1− δ

Pε(E1 ∩ E2)− Pn,ε(E1 ∩ E2) ≤ C1

√
(ε+ α)

√
log(1/δ)

n
+ C2

log(1/δ)

n
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=⇒ nG0 ≥ n(1− (ε+ α)− C1

√
(ε+ α)

√
log(1/δ)

n
− C2

log(1/δ)

n
)

This proves the first claim in the Lemma.

Controlling ‖θ̂G0 − θ∗‖2.

1. Controlling ‖θ∗−E[θ̂G0 ]‖2 . This is a deterministic statement and essentially quantifies
the amount the mean can shift, when the random variable is conditioned on an event.
This Lemma has appeared in [28, 51].

Claim 6. [Mean shift] Suppose that a distribution P has mean µ and covariance Σ.
Then, for any event A which occurs with probability at least 1− ε ≥ 1

2
,

‖µ− E[x|A]‖2 ≤ 2‖Σ‖
1
2
2 ε

1
2

Proof. For any event A, Let I {A} denote the corresponding indicator variable.

‖Ex∼P [x|A]− µ]‖2 =
1

P (A)
‖Ex∼P ∗((x− µ)I {A})‖2 ≤ 2‖Ex∼P ∗((x− µ)I {A})‖2,

Ex∼P [(x− µ)I {x ∈ Ac}+ (x− µ)I {x ∈ A}] = Ex∼P [(x− µ)] = 0

=⇒ ‖Ex∼P [(x− µ)I {x ∈ Ac}]‖2 = ‖Ex∼P [(x− µ)I {x ∈ A}]‖2

‖Ex∼P [(x− µ)I {x ∈ Ac}]‖2 = sup
u∈Sp−1

|E(x∼P [uT (x− µ)I {x ∈ Ac}]|

(i)
≤ sup
u∈Sp−1

√
Ex∼P [uT (x− µ)(x− µ)Tu]

√
Ex∼P [I {x ∈ Ac}2]

= ‖Σ‖
1
2
2 P (Ac)

1
2 ≤ ‖Σ‖

1
2
2

√
ε

Now using this Claim, with A being the event that when x ∼ P ∗, ‖x−θ∗‖2 ≤
√

trace(Σ)
α

.

‖θ∗ − E[θ̂G0 ]‖2 ≤ ‖Σ‖
1
2
2

√
α

2. Controlling ‖θ̂G0 − E[θ̂G0 ]‖2. This term measures how quickly the samples within
G0 converge to their true mean. To show this we use vector version of Bernstein’s
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inequality. Let zi
def
= xi−E[θ̂G0 ] be the centered random variables. Then, we have that

‖zi‖2 ≤ ‖θ∗ − E[θ̂G0 ]‖2 + ‖xi − θ∗‖2

≤ 2‖Σ‖
1
2
2

√
α +

√
trace (Σ)

α

≤
√

trace (Σ)(2
√
α +

1√
α

)

≤ 2

√
trace (Σ)

α︸ ︷︷ ︸
B

, ∀α < 1

2

Similarly,

E[‖zi‖2
2] = E[‖x− E[x|A]‖2

2|x ∈ A]

=
E[‖x− E[x|A]‖2

2|I {x ∈ A}]
P (A)

≤ 2E[‖x− E[x|A]‖2
2]

≤ 2E[‖x− E[x]‖2
2] + 2‖θ∗ − E[x|A]‖2

2

≤ 2trace (Σ) + 4‖Σ‖2ε

≤ 4trace (Σ)

Now, we first state the vector version of Bernstein’s inequality.

Lemma 42. (Vector Bernstein [134]) Let (yk)
n
k=1 be a finite sequence of i.i.drandom

vectors. Suppose Eyk = 0, and ‖yk‖2 ≤ K a.s. for dome constant K>0. Let Z =
‖
∑n

k=1 yk‖2. Then for any t > 0, we have that,

P (Z −
√
E[Z2] > t) ≤ exp(− t2/2

EZ2 + 2K
√
EZ2 +Kt/3

)

where EZ2 =
∑n

k=1E[‖yk‖2
2].

We instantiate the above Lemma with yk = zk
nG0

. Hence, we have that Z = ‖
nG0∑
k=1

yk‖2 =

‖θ̂G0 − E[θ̂G0 ]‖2. We also have that, EZ2 ≤ nG0
1

n2
G0

4trace (Σ) ≤ Ctrace (Σ) /nG0 and

K = B
nG0

. Using vector Bernstein’s we get that with probability at least 1− δ,

‖θ̂G0 − E[θ̂G0 ]‖2 ≤ C1

√
trace (Σ)

nG0

+ C2

√
trace (Σ) log(1/δ)

nG0

+ C3
B log(1/δ)

nG0

+ C4

√
K
√
EZ2

√
log(1/δ)

Now, using that
√
ab < a+ b, ∀a, b ≥ 0. We get that,

√
K
√
EZ2

√
log(1/δ) ≤ K

√
log(1/δ) +

√
EZ2

√
log(1/δ)
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Substituting,K = B
nG0

= C
√

trace (Σ) 1√
α

1
nG0

=
√

trace(Σ)

n0
G

1√
αnG0

. Since, α ≥ log(1/δ)/n,

hence, we have that, 1√
αnG0

≤ 1√
log(1/δ)

√
n
nG0
≤ C√

log(1/δ)
. Hence, we get that, K =

B
nG0

= C
√

trace(Σ)
nG0

1√
log(1/δ)

. Plugging it above, we get that,

‖θ̂G0 − E[θ̂G0 ]‖2 ≤ C1

√
trace (Σ)

nG0

+ C2

√
trace (Σ) log(1/δ)

nG0

The final claim of (B.15) follows from triangle inequality.

‖θ̂G0 − θ∗‖2 ≤ ‖E[θ̂G0 ]‖2 + ‖θ̂G0 − E[θ̂G0 ]‖2

≤ C1‖Σ‖
1
2
2

√
α + C2

√
trace (Σ)

nG0

+ C3

√
trace (Σ) log(1/δ)

nG0

Controlling ‖ΣG0‖2. Using Triangle inequality, we have that

‖ΣG0‖2 ≤ ‖ΣG0 − E[ΣG0 ]‖2︸ ︷︷ ︸
T1

+ ‖E[ΣG0 ]‖2︸ ︷︷ ︸
T2

1. Controlling T2. Let µG be E[x|G0] be the mean of the points which lie in G0.

E[ΣG0 ] = E[(x− µG)(x− µG)T |x ∈ G0] = E[(x− θ∗)(x− θ∗)T |x ∈ G0] + (θ∗ − µG)(θ∗ − µG)T

=
E[(x− θ∗)(x− θ∗)T I {x ∈ G0}]

P (x ∈ G0)
+ (θ∗ − µG)(θ∗ − µG)T

‖E[ΣG0 ]‖2 ≤
‖Σ‖2

1− α
+ ‖θ∗ − µG‖2

2 ≤
‖Σ‖2

1− α
+ C1‖Σ‖2α ≤ C2‖Σ‖2

T2 ≤ C2‖Σ‖2

2. Controlling T1. Note that T1 essentially measures how far the sample covariance of
the points in G0 is from there true covariance. This is again a concentration of measure
argument, and in particular exploits concentration of covariance for bounded random
vectors.

Lemma 43. [Theorem 5.44 [135]] Let {yi}ni=1 samples such that yi ∈ Rp and ‖yi‖2 ≤√
m and E[yyT ] = Σ. Then, with probability at least 1− δ,

‖ 1

n

n∑

i=1

yiy
T
i − Σ‖2 ≤ max(‖Σ‖

1
2
2

√
log(p/δ)

√
m

n
, log(p/δ)

m

n
)
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T1 = ‖ 1

nG0

nG0∑

i=1

(xi − θ̂G0)(xi − θ̂G0)T − E[ΣG0 ]‖2

≤ ‖ 1

nG0

nG0∑

i=1

(xi − µG)(xi − µG)T − E[ΣG0 ]‖2

︸ ︷︷ ︸
T1a

+ ‖θ̂G0 − µG‖2
2︸ ︷︷ ︸

T1b

(a) Controlling T1a. We use Lemma 55 with yi = xi − µG. Observe that

‖xi−µG‖2 ≤ ‖xi−θ∗‖2+‖µG−θ∗‖2 ≤
√

trace (Σ)

α
+
√
‖Σ‖2

√
α ≤ 2

√
trace (Σ)

α
=
√
m

√
m

nG0

= C

√
trace (Σ)

nG0

1√
α

Also note that in controlling T2, we showed that ‖E[ΣG0 ]‖2 ≤ C‖Σ‖2 and when
proving the bound on mean, we showed that trace (E[ΣG0 ]) ≤ Ctrace (Σ). This
means that with probability 1− δ,

T1a ≤ C1‖Σ‖
1
2
2

√
trace (Σ) log(p)

nα
+ C2trace (Σ) log(p/δ)

1

nα

Note, we can ignore T1b as they are O(1/n) terms.

The final claim of (B.15) follows from triangle inequality.

Lemma 44. Given n samples from Pε. Then, with probability at least 1− 4δ, Algorithm 10
stops in at most T ∗δ =

⌈
8 log(1/δ) γ2

(γ−1)2 + 2Y 0 γ
γ−1

⌉
steps.

Proof. At each step of Algorithm 10, we remove one sample based on the probability distribu-
tion of the scores. Let l = 1, 2, . . . , n be the steps of the algorithm. Note that the steps of the
Algorithm are dependent, hence to obtain a high probability statement, we will have to use
martingale style analysis. The martingale analysis in the proof mostly follows from [119, 120].

Let F l be the filtration generated by the sets of events until step l. At step l, let Sl be the

set of samples, Gl be the set of good samples, i.e. {xi ∈ Sl|xi ∼ P ∗&‖xi−θ∗‖2 ≤
√

trace(Σ)
α
}

Let Bl = Sl\Gl be the remaining(bad) samples. Note that |Sl| = nl = n − l, and
Sl, Gl, Bl ∈ F l.

Let τi be some score for each point. Define E l be an event variable at step l which is True
if ∑

i∈Gl
τi ≥

1

(γ − 1)

∑

j∈Bl
τj,≡

∑

i∈Gl
τi ≥

1

γ

∑

j∈Sl
τj

167



for say γ = 3. Intuitively, this means the event is true when the sum of the scores of the
good points is larger compared to the bad points.

Now, when E l is false, we sample a point j according τj and remove it. Some algebra
shows, that when E l is false, then with constant probability of 2/3, we throw a point from
Bl.

Pr(sample removed at Step l ∈ Bl|F l) =

∑
i∈Bl

τi

∑
j∈Sl τj

≥ γ − 1

γ
= 2/3

Essentially, our argument shows that whenever E l is false, then we are more likely to
throw a point from the bad set. This means, that in the next iteration the fraction of bad
points will reduce. To argue more formally, let T def

= min{l : E l is true} be the first time that
E l is True. Then, our goal is to show that T is small.

To show this, based on T , define Y l, as

Y l =

{
|BT−1|+ γ−1

γ
(T − 1), if l ≥ T

|Bl|+ γ−1
γ
l, if l < T

Now, we show that {Y l,F l} is a supermartingale, i.e. E[Y l|F l−1] ≤ Y l−1. To see this, we
split it into three cases:

• Case 1. l < T . This means that E l is false.

Y l − Y l−1 = |Bl| − |Bl−1|+ γ − 1

γ
,

Now, |Bl| = |Bl−1| if no bad point is thrown, and |Bl| = |Bl−1| − 1 if the point thrown
is bad. Since, E l−1 is false, hence, we have that,

E[Y l − Y l−1|F l−1] = −1(Pr(sample removed at Step l − 1 ∈ Bl−1)) +
γ − 1

γ
(i)
≤0

where (i) is true because E l−1 is false.
• Case 2. l = T , This follows by construction, because at l = T , Y l = Y l−1.
• Case 3. l > T , This also follows by construction.

So, we have that Y l,F l is a supermartingale. Now, we need to bound the steps Tδ such that
the probability that the algorithm doesn’t stop in Tδ steps is less than δ, i.e.

Pr(

Tδ⋂

l=1

(E l)c) ≤ δ

Note, that,

Pr(

Tδ⋂

l=1

(E l)c) = Pr(T ≥ Tδ)
(ii)
≤ Pr(Y Tδ ≥ γ − 1

γ
Tδ)
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where (ii) follows because, if T > Tδ =⇒ Y Tδ = |BTδ |+ γ−1
γ
Tδ ≥ γ−1

γ
Tδ. Now,

Pr(Y Tδ ≥ γ − 1

γ
Tδ) = Pr(Y Tδ − Y 0 ≥ γ − 1

γ
Tδ − Y0)

Now, defining Dl = Y l − Y l−1, and let Z l = Dl − E[Dl|D1, D2, . . . , Dl−1]. Then,

Y Tδ − Y 0 =

Tδ∑

l=1

Dl =

Tδ∑

l=1

Z l +

Tδ∑

l=1

E[Dl|D1, D2, . . . , Dl−1]

Since, we know that {Y l,F l} is a supermartingale, hence the difference process is such that

E[Dl|D1, D2, . . . , Dl−1] ≤ 0

This implies that

Y Tδ − Y 0 ≤
Tδ∑

l=1

Z l =⇒ Pr(Y Tδ − Y 0 ≥ γ − 1

γ
Tδ − Y0) ≤ Pr(

Tδ∑

l=1

Z l ≥ γ − 1

γ
Tδ − Y0)

Since, |Dl| ≤ 1, and Z l ≤ 2 are bounded, hence we can use Azuma-Hoeffding to bound the
above probability. In particular,

Pr(

Tδ∑

l=1

Z l ≥ γ − 1

γ
Tδ − Y0) ≤ exp(−

(γ−1
γ
Tδ − Y0)2

8Tδ
)

Now, we want a Tδ such that, exp(− ( γ−1
γ
Tδ−Y0)2

8Tδ
) ≤ δ. Solving the quadratic, we need a Tδ

such that,

(
γ − 1

γ
)2T 2

δ − (8 log(1/δ) + 2Y 0γ − 1

γ
)Tδ + Y 2

0 ≥ 0

Some algebra shows that T ∗δ =
⌈
8 log(1/δ) γ2

(γ−1)2 + 2Y 0 γ
γ−1

⌉
satisifies the above equation.

Hence, we know that with probability at least 1− δ, there exists at least one good event in
1 to T ∗δ iterations. Note than Y 0 = nB0 = n− nG0 .

While we have established that there is at least one good event in 1 to T ∗δ iterations,
we need to show that whenever E l is True then Algorithm 10 stops, i.e. our checking
condition is violated. To show this, we first prove that for m ≤ Tδ∗ , when Em is true
then ‖ΣSm‖2 ≤ 16‖ΣGm‖2(See Claim 12). Coupling this with Claim 11, which shows that
‖ΣGm‖2 ≤ 2‖ΣG0‖2, we get that ‖ΣSm‖2 ≤ 32‖ΣG0‖2. Using the upper bound derived on
‖ΣG0‖2 in Lemma 41, we get that, whenever Em is True,

‖ΣSm‖2 ≤ C‖ΣG0‖2 ≤ C(‖Σ‖2 +
trace (Σ) log(p/δ)

n
)

which is just our checking condition. Hence, Algorithm 10 stops whenever Em is True.
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Lemma 45. Let φ =
nB0

n
. Then, under the assumption that 8φ + 36 log(1/δ)

n
< 1

4
, we have

that when Em is True,

‖θ̂G0 − θ̂Sm‖2 ≤ 10
√

2(8φ+ 36
log(1/δ)

n
)

1
2‖ΣG0‖

1
2
2

Proof. Using Lemma 52, we get that,

‖θ̂G0 − θ̂Sm‖2 ≤
√
TV (P1, P2)

1−
√
TV (P1, P2)

(‖ΣG0‖
1
2
2 + ‖ΣSm‖

1
2
2 ),

where P1 is the equal weight discrete distribution with support on Sm, and P2 is the equal
weight discrete distribution with support on G0. In Claim 10 we show that

TV (P1, P2) ≤ 8φ+ 36
log(1/δ)

n

When, Em is True, we know by contrapositive of Lemma 51 that ‖ΣSm‖2 ≤ 1+ψm
nSm
nGmγ

−ψm
‖ΣGm‖2,

where ψm = (

√
TV (P1,P3)

1−
√
TV (P1,P3)

)2. Coupling this with Claim 11, which shows that ‖ΣGm‖2 ≤
2‖ΣG0‖2, we get that ‖ΣSm‖2 ≤ 32‖ΣG0‖2.

‖ΣSm‖2 ≤ C‖ΣG0‖2

Hence, under our assumption that 8φ+ 36 log(1/δ)
n

< 1
4
, we get that,

‖θ̂G0 − θ̂Sm‖2 ≤ C(8φ+ 36
log(1/δ)

n
)

1
2‖ΣG0‖

1
2
2

Lemma 46. Given a collection of points S of size n. Let P1 and P2 be discrete empirical
distributions on n. Then, we have that,

‖Exi∼P1 [xi]− Exi∼P2[xi]‖2 ≤
√
TV (P1, P2)

1−
√
TV (P1, P2)

(‖Σ̂P1‖
1
2
2 + ‖Σ̂P2‖

1
2
2 )

where Σ̂P1 is the covariance matrix when xi ∼ P1, and Σ̂P2 is the empirical covariance matrix
of when xi ∼ P2

Proof. Consider a joint distribution(also called coupling) ω∗(z, z′) over S × S such that it’s
individual marginal distributions are equal to P1 and P2; i.e. ω(z) = P1 and ω(z′) = P2 and
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ω(z 6= z′) = TV (P1, P2). Then, we have that

‖Exi∼P1 [xi]− Exi∼P2[xi]‖2 = sup
v∈Sp−1

| 〈v,Ew∗ [z − z′]〉 |

≤ sup
v∈Sp−1

Ew∗ [| 〈v, z − z′〉 |]

≤ sup
v∈Sp−1

Ew∗ [1(z 6= z′) 〈v, z − z′〉 |]

≤ (Ew∗ [(1(z 6= z′))1/(1− 1
2

)])1− 1
2 sup
v∈Sp−1

Ew∗ [(〈v, z − z′〉)2]
1
2

≤ TV (P1, P2)
1
2 sup
v∈Sp−1

(Ew∗ [(〈v, z − Exi∼P1 [xi] + Exi∼P1 [xi]− Exi∼P2 [xi] + Exi∼P2 [xi]− z′〉)2]
1
2 )

≤ TV (P1, P2)
1
2 ( sup
v∈Sp−1

Ew∗ [(〈v, z − Exi∼P1 [xi]〉)2]
1
2 + ‖Exi∼P1 [xi]− Exi∼P2 [xi]‖2)

+ TV (P1, P2)
1
2 sup
v∈Sp−1

Ew∗ [(〈v, z − Exi∼P2 [xi]〉)2]
1
2

≤
√
TV (P1, P2)

1−
√
TV (P1, P2)

(
‖ΣP1‖

1
2
2 + ‖ΣP2‖

1
2
2

)

Lemma 47. Let S be a collection of n points. And let G be a subset of S containing nG
points. Define τi = (vT (xi− θ̂S))2, where v is the top unit-norm eigenvector of Σ̂S and θ̂S is
the sample mean of S. Let λ = ‖ΣS‖2. Then, we have the following

• If λ > 1+ψ
n

nGγ
−ψ‖ΣG‖2,

∑

i:xi∈G

τi<
1

γ

n∑

j=1

τj,

where ψ = ( 1√
n

n−nG
−1

)2 < n
nGγ

.

Proof. Let θ̂G be the sample mean of points in G.

1

nG

∑

i:xi∈G

τi =
1

nG

∑

i:xi∈G

vT (xi − θ̂S)(xi − θ̂S)Tv

= vT (
1

nG

∑

i:xi∈G

(xi − θ̂G)(xi − θ̂G)T )v + (vT (θ̂G − θ̂S))2

≤ vTΣGv + ‖θ̂G − θ̂S‖2
2

≤ vTΣGv + (
1√
n

n−nG
− 1

)2

︸ ︷︷ ︸
ψ

(‖ΣS‖2 + ‖ΣG‖2)

≤ ‖ΣG‖2(1 + ψ) + ψ‖ΣS‖2
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Now, if ‖ΣS‖2 ≥ 1+ψ
n

nGγ
−ψ‖ΣG‖2, then we have that

1

nG

∑

i:xi∈G

τi ≤
n

nGγ
‖ΣS‖2

=
n

nGγ

n∑

j=1

(vT (xj − θ̂S))2

=⇒
∑

i:xi∈G

τi ≤
1

γ

n∑

j=1

τj

Claim 7. Suppose P1 is the equal weight discrete distribution with support on Sm, and P2 is
the equal weight discrete distribution with support on G0. Then, when φ =

nB0

n
is such that

3φ+ 18 log(1/δ)
n

< 1
2
,

TV (P1, P2) ≤ 8φ+ 36
log(1/δ)

n

Proof. To bound the TV distance between P1 and P2, we use triangle inequality. Let P3 be
the equal weight discrete distribution with support on Gm. Let τ ∈ [Tδ] be the number of
"good" points thrown out in Tδ steps. For γ = 3, we have that,

Tδ = 18 log(1/δ) + 3nB0

TV (P1, P2) ≤ TV (P1, P3) + TV (P3, P2)

≤ nSm − nGm
nSm

+
nG0 − nGm

nG0

=
n− Tδ − (n− nB0 − τ)

n− Tδ
+

τ

n− nB0

=
nB0 + τ − Tδ

n− Tδ
+

τ

n− nB0

≤ nB0

n− Tδ
+

Tδ
n− nB0

=
φ

1− 18 log(1/δ)
n

− 3φ
+

18 log(1/δ)
n

+ 3φ

1− φ

where φ =
nB0

n
. Now under the assumption that 3φ + 18 log(1/δ)

n
< 1

2
, the first term is less

than 2φ.

Claim 8. Under the assumption that φ =
nB0

n
is such that 3φ+ 18 log(1/δ)

n
< 1

2
, and 2φ < 0.12,

then when Em is True, we have that,

‖ΣSm‖2 ≤ 16‖ΣGm‖2
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Proof. Suppose P1 is the equal weight discrete distribution with support on Sm and let P3

be the equal weight discrete distribution with support on Gm. When Em is True, we know by

contrapositive of Lemma 51 that ‖ΣSm‖2 ≤ 1+ψm
nSm
nGmγ

−ψm
‖ΣGm‖2, where ψm = (

√
TV (P1,P3)

1−
√
TV (P1,P3)

)2.

Note that for TV (P1, P3) =
nSm−nGm

nSm
. Hence, nSm

nGmγ
= 1

γ(1−TV (P1,P3))
For γ = 3, the term

1+ψm
nSm
nGmγ

−ψm
can be rewritten solely as a function of the TV (P1, P3). In particular, it can be

written as

f(x) =

(
1 +

(
x0.5

1 − x0.5

)2
)(

3 (1− x0.5)
2 (

1 + x(0.5)
))

1− x(0.5) − 3x− 3x(1.5)

Now TV (P1, P3) = nSm−nGm
nSm

=
(n−Tδ)−(n−nB0−τ)

n−Tδ
=

nB0+τ−Tδ
n−Tδ

≤ nB0

n−Tδ
= φ

1− 18 log(1/δ)
n

−3φ
. Hence,

under our assumptions, TV (P1, P3) < 0.12. Some algebra shows that under f(x) is mono-
tonically increasing for x < 0.12, and in particular, f(0.12) < 16. Hence, we get that
‖ΣSm‖2 ≤ 16‖ΣGm‖2.

Claim 9. Under the assumption that 4φ+ 18 log(1/δ)
n

< 1
2
, we have that,

‖ΣGm‖2 ≤ 2‖ΣG0‖2

Proof. We first show that ‖ΣGm‖2 ≤
nG0

nGm
‖ΣG0‖2.

ΣG0 =
1

nG0

∑

i∈G0

(xi − θ̂G0)(xi − θ̂G0)T

=
1

nG0

∑

i∈G0

(xi − θ̂G0)(xi − θ̂G0)T (I {xi ∈ Gm}+ I {xi 6∈ Gm})

=
1

nG0

∑

i∈G0

(xi − θ̂G0)(xi − θ̂G0)T (I {xi ∈ Gm}) +
1

nG0

∑

i∈G0

(xi − θ̂G0)(xi − θ̂G0)T (I {xi 6∈ Gm})

︸ ︷︷ ︸
T1

=
nGm

nG0

(ΣGm + (θ̂Gm − θ̂G0)(θ̂Gm − θ̂G0)T ) + T1

Now for v being the top eigenvector of ΣGm , we get that,
nGm

nG0

vTΣGmv +
nGm

nG0

(vT (θ̂Gm − θ̂G0))2

︸ ︷︷ ︸
≥0

+ vTT1v︸ ︷︷ ︸
≥0

= vTΣG0v

Hence, we get that,
‖ΣGm‖2 ≤

nG0

nGm
‖ΣG0‖2,

Now,

nG0

nGm
=

n− nB0

n− nB0 − τ
≤ n− nB0

n− nB0 − Tδ
=

n− nB0

n− 18 log(1/δ)− 4nB0

=
1− φ

1− 18 log(1/δ)
n
− 4φ

,

where φ =
nB0

n
. Under our assumption, we get that, nG0

nGm
< 2.
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Algorithm 11 Non Sample-Splitting Robust Gradient Descent
function RobustGD2(Initial Point θ0, Distance Estimate R, Gradient Esti-
mator g, Data {zi}ni=1, Cover Size ψ, Confidence Level δ)

Construct an ψ-cover of an `2 ball of radius R, say Nψ.
for t = 1, . . . ,∞ do

θt+1 = PNψ(θt − ηg(θt,Z, δ))
end for

end function

B.17 Non sample-splitting Approach
In this section, we introduce a slight variant of our robust gradient algorithm(See Algo-
rithm 11). which allows us to bypass sample-splitting at least theoretically. Our algorithm
proceeds by constructing a covering of a certain euclidean ball, where the granularity of the
covering is chosen to appropriately tradeoff estimation and approximation error.
Theorem 36. Suppose that the gradient estimator satisfies the condition in (C.77) for the
risk function R : Θ 7→ R. Then Algorithm 11 initialized at θ0, with step-size η = 2

τ`+τu
, upper

bound on distance R, and cover-size ψ returns iterates {θ̂}∞t=1 such that with probability at
least 1− δ, for κ in (3.13),

‖θt − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
ηβ(n, δ

(R/ψ)p
) + ψ

1− κ
.

Proof. Suppose we initialize at θ0 and let θ∗ be the true parameter. Let Nψ be an ψ-cover
of a ball of radius R centered around θ0. Consider the following update rule,

θt+1 = PNε(θt − ηg(θt, {zi}ni=1)),

where PNψ is the projection operator on Nψ and g(θt, {zi}ni=1) is the output of the gradient
estimator when called at θt using the data {zi}ni=1. Note that the cardinality of the ψ-cover
is upper bounded by |Nψ|. We know that at any point θ, the gradient estimator returns an
estimate of the population gradient such that with probability at least 1− δ

‖g(θ, {zi}ni=1)−∇R(θ)‖2 ≤ α(n, δ)‖θ − θ∗‖2 + β(n, δ)

Since the cover is constructed independent of the data, hence, by a union bound, we get that
with probability at least 1− δ

‖g(θ, {zi}ni=1)−∇R(θ)‖2 ≤ α(n,
δ

|Nψ|
) + β(n,

δ

|Nψ|
)‖θ − θ∗‖2for all θ ∈ Nψ

For brevity, let γt = θt − ηg(θt, {zi}ni=1). From proof of Theorem 1, we know that,

‖γt − θ∗‖2 ≤ κ‖θt − θ∗‖2 + ηβ(n,
δ

|Nψ|
),
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The projection operator returns a θt+1 such that ‖θt+1 − γt‖2 ≤ ψ. Hence, we get that,

‖θt+1 − θ∗‖2 ≤ κ‖θt − θ∗‖2 + ηβ(n,
δ

|Nε|
) + ψ,

Hence, we get that,

‖θT − θ∗‖2 ≤ κT‖θ0 − θ∗‖2 +
(ηβ(n, δ

|Nε|) + ψ)

1− κ
,

Recall that Nψ is an ψ-covering of an `2 ball of radius R = ‖θ0 − θ∗‖2. Hence, we have that
log(|Nψ|) = O(p log(R/ψ).

Observe the tradeoff between β(n, δ
|Nψ |

) and ψ. As the cover becomes finer, ψ decreases
but β(n, δ

|Nψ |
) increases. Hence, for our corollaries we will set ψ to balance the two terms.

To see a concrete instantiation of this algorithm, consider the following corollary for Linear
Regression in the ε-contamination model.

B.17.1 Linear Regression
Here we observe paired samples {(x1, y1), . . . (xn, yn)}, where each (xi, yi) ∈ Rp × R. We
assume that the (x, y) pairs sampled from the true distribution P are linked via a linear
model:

y = xT θ∗ + w, (B.17)

where w is drawn from a zero-mean distribution such as normal distribution with variance
σ2 (N (0, σ2)) or a more heavy-tailed distribution such as student-t or Pareto distribution.
We suppose that under P the covariates x ∈ Rp, have mean 0, and covariance Σ.

For this setting we use the squared loss as our loss function, which induces the following
population risk:

L̄(θ; (x, y)) =
1

2
(y − 〈x, θ〉)2 , and R(θ) =

1

2
(θ − θ∗)TΣ(θ − θ∗).

Note that the true parameter θ∗ is the minimizer of the population risk R(θ). The strong-
convexity and smoothness assumptions in this setting require that τ` ≤ λmin(Σ) ≤ λmax(Σ) ≤
τu.
Corollary 37 (Robust Linear Regression). Consider the statistical model in (B.17), and
suppose that the number of samples n is large enough such that γ̃(n, p, δ, ε) < C1τ`

‖Σ‖2
√

log p
and

the contamination level is such that

ε <

(
C2τ`

‖Σ‖2

√
log p

− γ̃(n, p, ε, δ)

)2

,

for some constants C1 and C2. Then, there are universal constants C3, C4, such that if Al-
gorithm 11 is initialized at 0 with stepsize η = 2/(τu + τ`), cover size ψ = σ

√
ε‖Σ‖2 log p,
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distance estimate R = ‖θ∗‖2 and the dimension halving estimator of [28] as gradient esti-
mator, then it returns iterates {θ̂t}∞t=1 such that for a contraction parameter κ < 1, with
probability at least 1− δ,

‖θt − θ∗‖2 ≤ κt‖θ∗‖2 +
1

1− κ
(2σ
√
‖Σ‖2

√
log p
√
ε+ σ

√
‖Σ‖2

√
log pγ̃(n, p, δ, ε)), (B.18)

where

γ̃(n, p, δ, ε) =
(p2 log p log( ‖θ∗‖2

σ
√
‖Σ‖2

√
log p
√
ε
)

n
+
p log p log

(
n/(pδ)

)

n

)3/8

+
(εp3 log p log( ‖θ∗‖2

σ
√
‖Σ‖2

√
log p
√
ε
)

n
+
εp2 log p log

(p log(p)
δ

)

n

)1/4

.

Before giving a detailed proof, we remark on the main differences between this result and
the result in Theorem 2 of our paper. This result applies to an algorithm which does not
use sample-splitting, and provides a similar guarantee as in Theorem 2, i.e. that the error of
robust GD decreases linearly up to an error floor roughly determined by ε and γ̃. However, γ̃
in this result is worse by a factor of (at most) p3/8 from the corresponding term in Theorem
2, indicating the statistical price for requiring uniform control of the distance between the
sample and population gradients over the entire ψ-cover.

Proof. We initialize the algorithm θ0 at 0, and suppose we know the signal strength ‖θ∗‖2.
Recall that the gradient estimator of [28] satisfies that with probability 1− δ,

‖g(θ,Zn, δ)−∇R(θ)‖2 ≤ C1(
√
ε+ γ(n, p, δ, ε))

√
log p‖Cov(∇L̄(θ, z))‖

1
2
2 ,

where γ(n, p, δ, ε) :=
(
p log p log

(
n/(pδ)

)
n

)3/8

+
(
εp2 log p log

(
p log(p)

δ

)
n

)1/4

. Moreover, recall that for
linear regression we have that,

‖Cov(∇L̄(θ, z))‖2 ≤ σ2‖Σ‖2 + C4‖∆‖2
2‖Σ‖2

2

α(n, δ) ≤ (
√
ε+ γ(n, p, δ))

√
log p‖Σ‖2

β(n, δ) ≤ (
√
ε+ γ(n, p, δ))

√
log pσ

√
‖Σ‖2

Setting ψ = σ
√
‖Σ‖2

√
log p
√
ε, we get that log(|Nψ|) ≤ Cp log( ‖θ∗‖2

σ
√
‖Σ‖2

√
log p
√
ε
). Note that

γ has only a logarithmic dependence on the confidence level. Hence, we only get hit by a
logarithmic term on the size of the covering. In particular, let γ̃(n, p, δ, ε) := γ(n, p, δ

|Nψ |
, ε),

then we have that

γ̃(n, p, δ, ε) =
(p2 log p log( ‖θ∗‖2

σ
√
‖Σ‖2

√
log p
√
ε
)

n
+
p log p log

(
n/(pδ)

)

n

)3/8

+
(εp3 log p log( ‖θ∗‖2

σ
√
‖Σ‖2

√
log p
√
ε
)

n
+
εp2 log p log

(p log(p)
δ

)

n

)1/4
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As stated above that, we get hit by only an additional multiplicative factor of p, and a
logarithmic factor of ‖θ∗‖2.

β(n,
δ

|Nψ|
) ≤ σ

√
‖Σ‖2

√
log p
√
ε+ σ

√
‖Σ‖2

√
log pγ̃(n, p, δ, ε).

Pluging the values of ψ and β(n, δ
|Nψ |

) into Theorem 36, we get that with probability at least
1− δ,

‖θt − θ∗‖2 ≤ κt‖θ∗‖2 +
1

1− κ
(2σ
√
‖Σ‖2

√
log p
√
ε+ σ

√
‖Σ‖2

√
log pγ̃(n, p, δ, ε))
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Appendix C
Supplementary Material for Chapter 5

C.1 Proof of Theorems and Lemmas in Section 5.2

C.1.1 Proof of Lemma 48

For completeness, we first restate Lemma 48 for sake of completeness.
Lemma 48. Let S be any arbitrary collection of points, and let G0 ⊂ S be an unknown
subset of size n0

G such that 8
n−nG0

n
+ 36 log(1/δ)

n
< 1

4
. Then, when Algorithm 7 is run for T ∗ =

d3(n− nG0) + 18 log(1/δ)e steps on S, it returns an estimate θ̂δ such that with probability at
least 1− δ, ∥∥∥θ̂δ −

1

nG0

∑

xi∈G0

xi

∥∥∥
2
. ‖ΣG0‖

1
2
2

(n− nG0

n
+

log(1/δ)

n

) 1
2
,

where ΣG0 is the covariance of the unknown subset of points.

Proof. Our proof is split into two keys Lemmas. Firstly, in Lemma 49, we show that the with
probability at least 1−δ, when the algorithm terminates after T ∗δ = d18 log(1/δ) + 3(n− nG0)e,
then the covariance of the remaining samples is well-behaved. Finally, in Lemma 50 we show
that under our assumptions that 8

n−nG0

n
+ 36 log(1/δ)

n
< 1

4
, when the algorithm stops after T ∗δ

steps, the sample mean of points, θ̂
S
T∗
δ
is close to the mean of G0. In particular, we show

that

‖θ̂G0 − θ̂
S
T∗
δ
‖2 ≤ C1(8

n− nG0

n
+ 36

log(1/δ)

n
)

1
2‖ΣG0‖

1
2
2 , (C.1)

which recovers the statement of the Lemma.

Lemma 49. When Algorithm 7 is instantiated on S0 for T ∗δ = d18 log(1/δ) + 3(n− nG0e
steps, then with probability 1− δ,

‖ΣST∗ )‖2 ≤ C2‖ΣG0‖2
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Proof. At each step of Algorithm 7, we remove one sample based on the probability distribu-
tion of the scores. Let l = 1, 2, . . . , n be the steps of the algorithm. Note that the steps of the
Algorithm are dependent, hence to obtain a high probability statement, we will have to use
martingale style analysis. The martingale analysis in the proof mostly follows from [119, 120].

Let F l be the filtration generated by the sets of events until step l. At step l, let Sl be
the set of samples, Gl be the subset of G0 stil in Sl, i.e. {xi ∈ Sl ∩G0}. Let Bl = Sl\Gl be
the remaining samples. Note that |Sl| = nl = n− l, and Sl, Gl, Bl ∈ F l.

Let τi be some score for each point. Define E l be an event variable at step l which is True
if ∑

i∈Gl
τi ≥

1

(γ − 1)

∑

j∈Bl
τj,≡

∑

i∈Gl
τi ≥

1

γ

∑

j∈Sl
τj

for say γ = 3. Intuitively, this means the event is true when the sum of the scores of the
good points is larger compared to the bad points. Now, when E l is false, we sample a point
j according τj and remove it. Some algebra shows, that when E l is false, then with constant
probability of 2/3, we throw a point from Bl.

Pr(sample removed at Step l ∈ Bl|F l) =

∑
i∈Bl

τi

∑
j∈Sl τj

≥ γ − 1

γ
= 2/3

Essentially, our argument shows that whenever E l is false, then we are more likely to
throw a point from the bad set. This means, that in the next iteration the fraction of bad
points will reduce. To argue more formally, let T def

= min{l : E l is true} be the first time that
E l is True. Then, our goal is to show that T is small.

To show this, based on T , define Y l, as

Y l =

{
|BT−1|+ γ−1

γ
(T − 1), if l ≥ T

|Bl|+ γ−1
γ
l, if l < T

Now, we show that {Y l,F l} is a supermartingale, i.e. E[Y l|F l−1] ≤ Y l−1. To see this, we
split it into three cases:

• Case 1. l < T . This means that E l is false.

Y l − Y l−1 = |Bl| − |Bl−1|+ γ − 1

γ
, (C.2)

Now, |Bl| = |Bl−1| if no bad point is thrown, and |Bl| = |Bl−1| − 1 if the point thrown
is bad. Since, E l−1 is false, hence, we have that,

E[Y l − Y l−1|F l−1] = −1(Pr(sample removed at Step l − 1 ∈ Bl−1)) +
γ − 1

γ
(i)
≤0

where (i) is true because E l−1 is false.
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• Case 2. l = T , This follows by construction, because at l = T , Y l = Y l−1.
• Case 3. l > T , This also follows by construction.

So, we have that Y l,F l is a supermartingale. Now, we need to bound the steps Tδ such that
the probability that the algorithm doesn’t stop in Tδ steps is less than δ, i.e.

Pr(

Tδ⋂

l=1

(E l)c) ≤ δ

Note, that,

Pr(

Tδ⋂

l=1

(E l)c) = Pr(T ≥ Tδ)
(ii)
≤ Pr(Y Tδ ≥ γ − 1

γ
Tδ) (C.3)

where (ii) follows because, if T > Tδ =⇒ Y Tδ = |BTδ |+ γ−1
γ
Tδ ≥ γ−1

γ
Tδ. Now,

Pr(Y Tδ ≥ γ − 1

γ
Tδ) = Pr(Y Tδ − Y 0 ≥ γ − 1

γ
Tδ − Y0)

Now, defining Dl = Y l − Y l−1, and let Z l = Dl − E[Dl|D1, D2, . . . , Dl−1]. Then,

Y Tδ − Y 0 =

Tδ∑

l=1

Dl =

Tδ∑

l=1

Z l +

Tδ∑

l=1

E[Dl|D1, D2, . . . , Dl−1]

Since, we know that {Y l,F l} is a supermartingale, hence the difference process is such that

E[Dl|D1, D2, . . . , Dl−1] ≤ 0

This implies that

Y Tδ − Y 0 ≤
Tδ∑

l=1

Z l =⇒ Pr(Y Tδ − Y 0 ≥ γ − 1

γ
Tδ − Y0) ≤ Pr(

Tδ∑

l=1

Z l ≥ γ − 1

γ
Tδ − Y0)

Since, |Dl| ≤ 1, and Z l ≤ 2 are bounded, hence we can use Azuma-Hoeffding to bound the
above probability. In particular,

Pr(

Tδ∑

l=1

Z l ≥ γ − 1

γ
Tδ − Y0) ≤ exp(−

(γ−1
γ
Tδ − Y0)2

8Tδ
)

Now, we want a Tδ such that, exp(− ( γ−1
γ
Tδ−Y0)2

8Tδ
) ≤ δ. Solving the quadratic, we need a Tδ

such that,

(
γ − 1

γ
)2T 2

δ − (8 log(1/δ) + 2Y 0γ − 1

γ
)Tδ + Y 2

0 ≥ 0
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Some algebra shows that T ∗δ =
⌈
8 log(1/δ) γ2

(γ−1)2 + 2Y 0 γ
γ−1

⌉
satisfies the above equation.

Hence, we know that with probability at least 1− δ, there exists at least one good event in
1 to T ∗δ iterations. Note than Y 0 = nB0 = n− nG0 .

While we have established that there is at least one good event in 1 to T ∗δ iterations,
suppose m ∈ [1, Tδ∗ ] is the first index such that Em is true. Next, we establish a series of
deterministic results.

• When Em is True, then ‖ΣSm‖2 ≤ 16‖ΣGm‖2(See Claim 12).
• Coupling this with Claim 11, which shows that ‖ΣGm‖2 ≤ 2‖ΣG0‖2, we get that
‖ΣSm‖2 ≤ 32‖ΣG0‖2.

• Hence, we have that with probability 1 − δ, there exists a point in time m ∈ [1, Tδ]
such that,

‖ΣSm‖2 ≤ 32‖ΣG0‖2

• Now, observe that ST ∗ ⊆ Sm, i.e. the final returned set of points is a subset of the
points at m. Claim 13 shows that the covariance at ST ∗ is such that ‖ΣST∗‖2 ≤
n−m
n−T ∗‖ΣSm‖2 ≤ C1‖ΣSm‖2.

Chaining the above arguments shows that ‖ΣT ∗‖2 ≤ C‖ΣG0‖2.

Next, we state and prove Lemma 50. Recall that E l is defined to be an event variable at
step l which is True if

∑

i∈Gl
τi ≥

1

(γ − 1)

∑

j∈Bl
τj,≡

∑

i∈Gl
τi ≥

1

γ

∑

j∈Sl
τj,

where Sl is set of samples at step l, and Gl = {xi ∈ Sl ∩G0} is the subset of samples from
G0 which are still in Sl. Also, recall that for Algorithm 7, the sampling weights τi at any
step ` are defined as τi = (vT (xi − θ̂Sl))2, where v is the top unit-norm eigenvector of Σ̂Sl

and θ̂Sl is the sample mean of Sl. Then, in Lemma 49 we showed that with probability 1−δ,

‖Σ
S
T∗
δ
‖2 ≤ C2‖ΣG0‖2.

Lemma 50. Let φ =
n−nG0

n
. Then, under the assumption that 8φ + 36 log(1/δ)

n
< 1

4
, we have

that for m = T ∗δ

‖θ̂G0 − θ̂Sm‖2 ≤ 10
√

2(8φ+ 36
log(1/δ)

n
)

1
2‖ΣG0‖

1
2
2 ,

Proof. Using Lemma 52, we get that,

‖θ̂G0 − θ̂Sm‖2 ≤
√
TV (P1, P2)

1−
√
TV (P1, P2)

(‖ΣG0‖
1
2
2 + ‖ΣSm‖

1
2
2 ),

where P1 is the equal weight discrete distribution with support on Sm, and P2 is the equal
weight discrete distribution with support on G0. Lemma 49 already controls tell us that for
m = T ∗δ , ‖ΣSm‖2 ≤ C2‖ΣG0‖2. We show next that

TV (P1, P2) ≤ 8φ+ 36
log(1/δ)

n
,

182



which finishes the proof of the Lemma.
To bound the TV distance between P1 and P2, we use triangle inequality. Let P3 be the

equal weight discrete distribution with support on Gm. Let τ ∈ [1,m] ≤ Tδ be the number
of "good" points thrown out in m ≤ Tδ steps. For γ = 3, we have that,

Tδ = 18 log(1/δ) + 3nB0

TV (P1, P2) ≤ TV (P1, P3) + TV (P3, P2) (C.4)

≤ nSm − nGm
nSm

+
nG0 − nGm

nG0

(C.5)

=
n− Tδ − (n− nB0 − τ)

n− Tδ
+

τ

n− nB0

(C.6)

=
nB0 + τ − Tδ

n− Tδ
+

τ

n− nB0

(C.7)

≤ nB0

n− Tδ
+

Tδ
n− nB0

(C.8)

=
φ

1− 18 log(1/δ)
n

− 3φ
+

18 log(1/δ)
n

+ 3φ

1− φ
(C.9)

where φ =
nB0

n
. Now under the assumption that 3φ + 18 log(1/δ)

n
< 1

2
, the first term is less

than 2φ.

Auxillary Results for Proof of Theorem 48

Lemma 51. Let S be a collection of n points. And let G be a subset of S containing nG
points. Define τi = (vT (xi− θ̂S))2, where v is the top unit-norm eigenvector of Σ̂S and θ̂S is
the sample mean of S. Let λ = ‖ΣS‖2. Then, we have the following

• If λ > 1+ψ
n

nGγ
−ψ‖ΣG‖2,

∑

i:xi∈G

τi<
1

γ

n∑

j=1

τj,

where ψ = ( 1√
n

n−nG
−1

)2 < n
nGγ

.
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Proof. Let θ̂G be the sample mean of points in G.

1

nG

∑

i:xi∈G

τi =
1

nG

∑

i:xi∈G

vT (xi − θ̂S)(xi − θ̂S)Tv (C.10)

= vT (
1

nG

∑

i:xi∈G

(xi − θ̂G)(xi − θ̂G)T )v + (vT (θ̂G − θ̂S))2 (C.11)

≤ vTΣGv + ‖θ̂G − θ̂S‖2
2 (C.12)

≤ vTΣGv + (
1√
n

n−nG
− 1

)2

︸ ︷︷ ︸
ψ

(‖ΣS‖2 + ‖ΣG‖2) (C.13)

≤ ‖ΣG‖2(1 + ψ) + ψ‖ΣS‖2 (C.14)

Now, if ‖ΣS‖2 ≥ 1+ψ
n

nGγ
−ψ‖ΣG‖2, then we have that

1

nG

∑

i:xi∈G

τi ≤
n

nGγ
‖ΣS‖2 (C.15)

=
n

nGγ

n∑

j=1

(vT (xj − θ̂S))2 (C.16)

=⇒
∑

i:xi∈G

τi ≤
1

γ

n∑

j=1

τj (C.17)

Claim 10. Suppose P1 is the equal weight discrete distribution with support on Sm, and P2

is the equal weight discrete distribution with support on G0. Then, when φ =
nB0

n
is such

that 3φ+ 18 log(1/δ)
n

< 1
2
,

TV (P1, P2) ≤ 8φ+ 36
log(1/δ)

n

Proof. To bound the TV distance between P1 and P2, we use triangle inequality. Let P3 be
the equal weight discrete distribution with support on Gm. Let τ ∈ [Tδ] be the number of
"good" points thrown out in Tδ steps. For γ = 3, we have that,

Tδ = 18 log(1/δ) + 3nB0

184



TV (P1, P2) ≤ TV (P1, P3) + TV (P3, P2) (C.18)

≤ nSm − nGm
nSm

+
nG0 − nGm

nG0

(C.19)

=
n− Tδ − (n− nB0 − τ)

n− Tδ
+

τ

n− nB0

(C.20)

=
nB0 + τ − Tδ

n− Tδ
+

τ

n− nB0

(C.21)

≤ nB0

n− Tδ
+

Tδ
n− nB0

(C.22)

=
φ

1− 18 log(1/δ)
n

− 3φ
+

18 log(1/δ)
n

+ 3φ

1− φ
(C.23)

where φ =
nB0

n
. Now under the assumption that 3φ + 18 log(1/δ)

n
< 1

2
, the first term is less

than 2φ.

Lemma 52. [29] Given a collection of points S of size n. Let P1 and P2 be discrete empirical
distributions on n. Then, we have that,

‖Exi∼P1 [xi]− Exi∼P2[xi]‖2 ≤
√
TV (P1, P2)

1−
√
TV (P1, P2)

(‖Σ̂P1‖
1
2
2 + ‖Σ̂P2‖

1
2
2 ) (C.24)

where Σ̂P1 is the covariance matrix when xi ∼ P1, and Σ̂P2 is the empirical covariance matrix
of when xi ∼ P2

Proof. Consider a joint distribution(also called coupling) ω∗(z, z′) over S × S such that it’s
individual marginal distributions are equal to P1 and P2; i.e. ω(z) = P1 and ω(z′) = P2 and
ω(z 6= z′) = TV (P1, P2). Then, we have that

‖Exi∼P1 [xi]− Exi∼P2[xi]‖2 = sup
v∈Sp−1

| 〈v,Ew∗ [z − z′]〉 | (C.25)

≤ sup
v∈Sp−1

Ew∗ [| 〈v, z − z′〉 |] (C.26)

≤ sup
v∈Sp−1

Ew∗ [1(z 6= z′) 〈v, z − z′〉 |] (C.27)

≤ (Ew∗ [(1(z 6= z′))1/(1− 1
2

)])1− 1
2 sup
v∈Sp−1

Ew∗ [(〈v, z − z′〉)2]
1
2 (C.28)

≤ TV (P1, P2)
1
2 sup
v∈Sp−1

(Ew∗ [(〈v, z − Exi∼P1 [xi] + Exi∼P1 [xi]− Exi∼P2 [xi] + Exi∼P2 [xi]− z′〉)2]
1
2 )

(C.29)

≤ TV (P1, P2)
1
2 ( sup
v∈Sp−1

Ew∗ [(〈v, z − Exi∼P1 [xi]〉)2]
1
2 + ‖Exi∼P1 [xi]− Exi∼P2 [xi]‖2)

+ TV (P1, P2)
1
2 sup
v∈Sp−1

Ew∗ [(〈v, z − Exi∼P2 [xi]〉)2]
1
2 (C.30)

≤
√
TV (P1, P2)

1−
√
TV (P1, P2)

(
‖ΣP1‖

1
2
2 + ‖ΣP2‖

1
2
2

)
(C.31)
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Claim 11. Under the assumption that 4φ+ 18 log(1/δ)
n

< 1
2
, we have that,

‖ΣGm‖2 ≤ 2‖ΣG0‖2

Proof. We first show that ‖ΣGm‖2 ≤
nG0

nGm
‖ΣG0‖2.

ΣG0 =
1

nG0

∑

i∈G0

(xi − θ̂G0)(xi − θ̂G0)T (C.32)

=
1

nG0

∑

i∈G0

(xi − θ̂G0)(xi − θ̂G0)T (I {xi ∈ Gm}+ I {xi 6∈ Gm}) (C.33)

=
1

nG0

∑

i∈G0

(xi − θ̂G0)(xi − θ̂G0)T (I {xi ∈ Gm}) +
1

nG0

∑

i∈G0

(xi − θ̂G0)(xi − θ̂G0)T (I {xi 6∈ Gm})

︸ ︷︷ ︸
T1

(C.34)

=
nGm

nG0

(ΣGm + (θ̂Gm − θ̂G0)(θ̂Gm − θ̂G0)T ) + T1 (C.35)

Now for v being the top eigenvector of ΣGm , we get that,

nGm

nG0

vTΣGmv +
nGm

nG0

(vT (θ̂Gm − θ̂G0))2

︸ ︷︷ ︸
≥0

+ vTT1v︸ ︷︷ ︸
≥0

= vTΣG0v

Hence, we get that,
‖ΣGm‖2 ≤

nG0

nGm
‖ΣG0‖2,

Now,

nG0

nGm
=

n− nB0

n− nB0 − τ
≤ n− nB0

n− nB0 − Tδ
=

n− nB0

n− 18 log(1/δ)− 4nB0

=
1− φ

1− 18 log(1/δ)
n
− 4φ

,

where φ =
nB0

n
. Under our assumption, we get that, nG0

nGm
< 2.

Claim 12. Under the assumption that φ =
nB0

n
is such that 3φ+ 18 log(1/δ)

n
< 1

2
, and 2φ < 0.12,

then when Em is True, we have that,

‖ΣSm‖2 ≤ 16‖ΣGm‖2

Proof. Suppose P1 is the equal weight discrete distribution with support on Sm and let P3

be the equal weight discrete distribution with support on Gm. When Em is True, we know by

contrapositive of Lemma 51 that ‖ΣSm‖2 ≤ 1+ψm
nSm
nGmγ

−ψm
‖ΣGm‖2, where ψm = (

√
TV (P1,P3)

1−
√
TV (P1,P3)

)2.

Note that for TV (P1, P3) =
nSm−nGm

nSm
. Hence, nSm

nGmγ
= 1

γ(1−TV (P1,P3))
For γ = 3, the term
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1+ψm
nSm
nGmγ

−ψm
can be rewritten solely as a function of the TV (P1, P3). In particular, it can be

written as

f(x) =

(
1 +

(
x0.5

1 − x0.5

)2
)(

3 (1− x0.5)
2 (

1 + x(0.5)
))

1− x(0.5) − 3x− 3x(1.5)

Now TV (P1, P3) = nSm−nGm
nSm

=
(n−Tδ)−(n−nB0−τ)

n−Tδ
=

nB0+τ−Tδ
n−Tδ

≤ nB0

n−Tδ
= φ

1− 18 log(1/δ)
n

−3φ
. Hence,

under our assumptions, TV (P1, P3) < 0.12. Some algebra shows that under f(x) is mono-
tonically increasing for x < 0.12, and in particular, f(0.12) < 16. Hence, we get that
‖ΣSm‖2 ≤ 16‖ΣGm‖2.

Claim 13. Let S1 be any collection of points of size n1. Let S2 ⊆ S1 be a subset of size
n2 ≤ n1. Then, we have that

‖ΣS2‖2 ≤
n1

n2

‖ΣS1‖2

Proof. Let θ̂S2 be the mean of points in S2. Similarly, let θ̂S1 be mean of points in S1.

ΣS1 =
1

n1

∑

i∈S1

(xi − θ̂S1)(xi − θ̂G0)T (C.36)

=
1

n1

∑

i∈S1

(xi − θ̂S1)(xi − θ̂S1)T (I {xi ∈ S2}+ I {xi 6∈ S2}) (C.37)

=
1

n1

∑

i∈S1

(xi − θ̂S1)(xi − θ̂S1)T (I {xi ∈ S2}) +
1

n1

∑

i∈S1

(xi − θ̂S1)(xi − θ̂S1)T (I {xi 6∈ S2})

︸ ︷︷ ︸
T1

(C.38)

=
n2

n1

(ΣS2 + (θ̂S2 − θ̂S1)(θ̂S2 − θ̂S1)T ) + T1 (C.39)

Now for v being the top eigenvector of ΣS2 , we get that,

n2

n1

vTΣS2v +
nS2

nS1

(vT (θ̂S2 − θ̂S1))2

︸ ︷︷ ︸
≥0

+ vTT1v︸ ︷︷ ︸
≥0

= vTΣS1v
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C.1.2 Proof of Lemma 15

For sake of completeness, we restate the complete Lemma. In particular, given n-samples
from a distribution P , we define a good point selector O : Rp 7→ {0, 1} by

O(x) = I {‖x− µ(P )‖2 ≤ R} , (C.40)

and let G = {xi|O(xi) = 1} to be the set of points chosen by O. Note that this (unknown)
subset of points chosen by the `2-radius based point selector, is precisely our unknown subset
from the previous subsection. Let

µ̂n =
( n∑

i=1

O(xi)
)−1

n∑

i=1

xiO(xi),

be the sample mean of the points within the subsets, and let

Σ̂On = (
n∑

i=1

O(xi))
−1

n∑

i=1

(xi − µ̂n)(xi − µ̂n)TO(xi).

Then, we have that
Lemma 53. Let P be any distribution with mean µ and covariance Σ and bounded 2k-

moments for k ∈ {1, 2}. For any δ ∈ (0, 0.5) such that (

√
trace(Σ)

R
)2k + log(1/δ)

n
< c with

probability at least 1− 3δ,

n− |G|
n

≤ C1
log(1/δ)

n
+

(
√

trace (Σ))2k

R2k

‖µ̂n − µ‖2 .OPTn,Σ,δ +
R log(1/δ)

n

+ ‖Σ‖
1
2
2

(√trace (Σ)

R

)2k−1

.

‖Σ̂On ‖2 . ‖Σ‖2 +R‖Σ‖
1
2
2

√
log(p/δ)

n
+
R2 log(p/δ)

n
.

Proof. Controlling size of Set |G|. Using Chebyshev’s inequality, we have that,

Pr(‖x− µ‖2 ≥ R) ≤ E[‖x− µ‖2k
2 ]

R2k

Now, to see that E[‖x−µ‖2k
2 ] ≤ C(

√
trace (Σ))2k. The case for k = 1 is clear. We now show

it for k = 2.
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• Let Σ = QΛQT and {qi}pi=1 be the eigenvectors of Σ and let λi = qTi Σqi be the
associated eigenvalue. Then,

(x− µ)T (x− µ) =
∑

i

(qTi (x− µ))2 =
∑

i

ν2
i , (C.41)

where νi = qTi (x − µ). Now, ‖x − µ‖4
2 = (

∑
i

ν2
i )2 =

∑
i ν

4
i + 2

∑
i 6=j ν

2
i ν

2
j . Now, since

we assume bounded fourth moments, we get that, E[ν4
i ] ≤ C(qTi Σqi)

2 = Cλ2
i , Using

Cauchy-Schwartz inequality, we get that E[ν2
i ν

2
j ] ≤

√
E[ν4

i ]
√

E[ν4
j ] = Cλiλj. Hence,

we have that,

E[‖x− µ‖4
2] ≤ C(

∑

i

λ2
i + 2

∑

i 6=j

λiλj) = C4trace (Σ)2

Pr(‖x− µ‖2 ≥ R) ≤ E[‖x− µ‖4
2]

R4
= C4

trace (Σ)2

R4

Hence, for k = 1, 2, we have that,

Pr(‖x− µ‖2 ≥ R) ≤
(
√

trace (Σ))2k

R2k
(C.42)

Hence, know that for xi ∼ P , Pr(O(xi) = 1) ≥ 1 − α, where α =
(
√

trace(Σ))2k

R2k . Now, let
G0 def

= {xi s.t. O(xi) = 1}. Then, using Bernstein’s inequality, we know that with probability
at least 1− δ.

nG0 = |G0| ≥ n(1− α− C1

√
α

log(1/δ)

n
− C2

log(1/δ

n
) (C.43)

Hence, we control the size of the good subset |G|.

Controlling the mean of G. Recall from our assumption that

α + C2
log(1/δ)

n
<

1

2
,

hence we have that |G| = |nG| > n/2. Let θ̂G0 = µ̂n be the mean of the points in G.

1. Controlling ‖µ−E[θ̂G0 ]‖2 . This is a deterministic statement and essentially quantifies
the amount the mean can shift, when the random variable is conditioned on an event.
We show this in Claim 14 which was shown in [28, 126]. We also provide a proof of
the statement for completeness in Section ??.

Claim 14. [General Mean shift,[28, 126]] Suppose that a distribution P has mean µ
and covariance Σ and bounded 2k moments. Then, for any event A which occurs with
probability at least 1− ε ≥ 1

2
,

‖µ− E[x|A]‖2 ≤ 2‖Σ‖
1
2
2 ε

1− 1
2k (C.44)
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Now using this Claim 14 with A being the event that O(x) = 1, we get that

‖µ− E[θ̂G0 ]‖2 ≤ 2‖Σ‖
1
2
2 α

1−1/(2k) (C.45)

2. Controlling ‖θ̂G0 − E[θ̂G0 ]‖2. This term measures how quickly the samples within
G0 converge to their true mean. To show this we use vector version of Bernstein’s
inequality. Let zi

def
= xi−E[θ̂G0 ] be the centered random variables. Then, we have that

‖zi‖2 ≤ ‖θ∗ − E[θ̂G0 ]‖2 + ‖xi − θ∗‖2

≤ 2‖Σ‖
1
2
2 α

1−1/(2k) +R

≤ 2R

Similarly,

E[‖zi‖2
2] = E[‖x− E[x|A]‖2

2|x ∈ A] (C.46)

=
E[‖x− E[x|A]‖2

2|I {x ∈ A}]
P (A)

(C.47)

≤ 2E[‖x− E[x|A]‖2
2] (C.48)

≤ 2E[‖x− E[x]‖2
2] + 2‖θ∗ − E[x|A]‖2

2 (C.49)

≤ 2trace (Σ) + 4‖Σ‖2α
2−1/(k) (C.50)

≤ 4trace (Σ) (C.51)

Now, we first state the vector version of Bernstein’s inequality.

Lemma 54. (Vector Bernstein, Corollary 8.45 [134]) Let Y1, . . . , YM be independent
copies of a random vector Y ∈ Cp satisfying EY = 0. Assume ‖Y ‖2 ≤ K for some
K > 0. Let,

Z = ‖
M∑

l=1

Yl‖2,E[Z2] = ME[‖Y ‖2
2], σ2 = sup

‖v‖2≤1

E[| 〈v, Y 〉 |2]

Then for t > 0,

Pr(Z ≥
√
EZ2 + t) ≤ exp(− t2/2

Mσ2 + 2K
√
EZ2 + tK/3

) (C.52)

We use the above lemma, with Yi = zi
nG0

. Hence, we have that, K = 2R
nG0

. Hence, we

have that Z = ‖
nG0∑
k=1

Yk‖2 = ‖θ̂G0 − E[θ̂G0 ]‖2. Hence, we have the following,

• E[Z2] ≤ n4trace(Σ)
n2 = 4 trace(Σ)

n
.
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• σ2 ≤ 4‖Σ‖2
n2 . To see this, for any v ∈ Sp−1,

E[(vTY )2] =
1

n2
E[(vT (x− µA))2|x ∈ A]

where µA is the conditional mean, and A is the event that x s.t. ‖x − µ‖2 ≤ R.
We know that P (A) ≥ 1/2. Hence, we get that,

E[(vTY )2] =
1

n2

E[(vT (x− µA))2I {x ∈ A}]
P (A)

≤ 2

n2
E[(vT (x− µA))2]

=
2

n2
(E[(vT (x− µ))2] + ‖µ− µA‖2

2)

=⇒ σ2 ≤ 2

n2
(‖Σ‖2 + ‖Σ‖2α)

≤ 4‖Σ‖2

n2

Hence, we get that, with probability at least 1− δ,

‖θ̂G0 − E[θ̂G0 ]‖2 ≤C1

√
trace (Σ)

nG0

+ C2‖Σ‖
1
2
2

√
log(1/δ)

nG0

+ C3R
1
2 (

√
trace (Σ)

nG0

)
1
2

√
log(1/δ)

n0
G

+ C4R
log(1/δ)

nG0

Now, we use that
√
ab ≤ a+ b ∀ a, b ≥ 0. Hence, we get that with probability at least

1− δ

‖θ̂G0 − E[θ̂G0 ]‖2 ≤ C5

√
trace (Σ)

nG0

+ C2‖Σ‖
1
2
2

√
log(1/δ)

nG0

︸ ︷︷ ︸
T1

+C3R
log(1/δ)

nG0

Using the bound on ‖E[θ̂G0 ]− µ‖2 from (C.45), we get that,

‖θ̂G0 − µ‖2 ≤ ‖E[θ̂G0 ]− µ‖2 + ‖θ̂G0 − E[θ̂G0 ]‖2 (C.53)

≤ T1 + C3R
log(1/δ)

nG0

+ 2‖Σ‖
1
2
2 ((

√
trace (Σ)

R
)2k)1−1/(2k) (C.54)

= T1 + C3R
log(1/δ)

nG0

+ 2‖Σ‖
1
2
2 (

(
√

trace (Σ))2k−1

R2k−1
) (C.55)

Under our assumption that (

√
trace(Σ)

R
)2k + log(1/δ)

n
< c, we know that nG0 ≥ n/2. Hence, we

get get that T1 - OPTn,Σ,δ.
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Controlling the covariance of points in |G|. Let G0 = {xi|O(xi) = 1} be the
empirical collection of points chosen by the oracle. Let nG0 = |G0|. Then, we study and
bound the operator norm of ΣG0 . Recall that all oracles have the form I {‖xi − µ‖2 ≤ R},
i.e., ∀xi s.t. O(xi) = 1, we have that ‖xi − µ‖2 ≤ R.

Note that from Proof of Theorem ??, we know that Pr(x ∈ G0) ≥ 1 − α, where α =

(

√
trace(Σ)

R
)2k. Let ΣG0 be the empirical covariance matrix. Then,

ΣG0 =
1

nG0

nG0∑

i=1

(xi − θ̂G0)(xi − θ̂G0)T ,

where θ̂G0 is the empirical mean of the points in G0. Recentering it around the true mean
θ∗ of P , we get that,

ΣG0 =
1

nG0

nG0∑

i=1

(xi − θ∗)(xi − θ∗)T − (θ̂G0 − θ∗)(θ̂G0 − θ∗)T

Hence, we have that ‖ΣG0‖2 ≤ ‖
1

nG0

nG0∑

i=1

(xi − θ∗)(xi − θ∗)T

︸ ︷︷ ︸
A

‖2. To control, ‖A‖2, we use

triangle inequality,

‖A‖2 ≤ ‖A− E[A]‖2︸ ︷︷ ︸
T1

+ ‖E[A]‖2︸ ︷︷ ︸
T2

(C.56)

1. Controlling T2. Note that E[A] = E[(x− θ∗)(x− θ∗)T |x ∈ G].

E[A] =
E[(x− θ∗)(x− θ∗)T I {x ∈ G0}]

P (x ∈ G0)
(C.57)

Let Pr(x ∈ G0) ≥ 1− α. Hence, for any v ∈ Sp−1,

vTE[A]v =
E[(vT (x− θ∗))2I {x ∈ G0}]

P (x ∈ G0)
≤ ‖Σ‖2

1− α

Under the assumption that α < 1
2
, we get that,

‖E[A]‖2 ≤ 2‖Σ‖2

2. Controlling T1. Note that T1 can be controlled using a concentration of measure
argument, and in particular exploits concentration of covariance for bounded random
vectors.
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Lemma 55. [Theorem 5.44 [135]] Let {yi}ni=1 samples such that yi ∈ Rp and ‖yi‖2 ≤√
m and E[yyT ] = Σ. Then, with probability at least 1− δ,

‖ 1

n

n∑

i=1

yiy
T
i − Σ‖2 ≤ max(‖Σ‖

1
2
2

√
log(p/δ)

√
m

n
, log(p/δ)

m

n
)

T1 = ‖ 1

nG0

nG0∑

i=1

(xi − θ∗)(xi − θ∗)T − E[A]‖2 (C.58)

We use Lemma 55 with yi = xi − θ∗. Note that
√
m = R. This means that with

probability 1− δ,

T1 ≤ C1R‖Σ‖
1
2
2

√
log(p/δ)

nG0

+R2 log(p/δ)

nG0

Hence, we get that under the assumption that α +
√
α
√

log(1/δ)
n

< 1
2
, we recover statement

of the result.
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C.1.3 Proof of Theorem 25

We consider the `2 oracle of O radius R =

√
trace(Σ)

(
log(1/δ)

n
)1/4

. Using chebychevs inequality, we know

that Pr(O(x) = 1) ≥ 1− α, where α = log(1/δ)
n

.
Suppose we are given n-samples from P . Let G0 be the set of points such that O(xi) = 1.

Using bernstein’s inequality we know that with probability 1− δ,

|nG0| ≥ n(1− C log(1/δ)

n
) (C.59)

Hence, we have that,

n− nG0

n
.

log(1/δ)

n
(C.60)

Let µ̂n and ΣG0 be the empirical mean and covariance of the points in G0.
Let θ̂δ be the output of Algorithm 7. Then, we know that with probability at least 1− δ,

‖θ̂δ − µ̂n‖2 . ‖ΣG0‖
1
2
2 (
n− nG0

n
+

log(1/δ)

n
)

1
2 (C.61)

Using Lemma 15, we bound ‖ΣG0‖
1
2
2 .

‖Σn,O‖2 ≤ C1‖Σ‖2 + C2R‖Σ‖
1
2
2

√
log(p/δ)

nG0

+R2 log(p/δ)

nG0

‖Σn,O‖
1
2
2 ≤ C1‖Σ‖

1
2
2 + C2R

1
2‖Σ‖1/4

2 (
log(p/δ)

nG0

)1/4 +R

√
log(p/δ)

nG0

(C.62)

Plugging R =

√
trace(Σ)

(
log(1/δ)

n
)1/4

, we get,

‖Σn,O‖
1
2
2 ≤ C1‖Σ‖

1
2
2 + C2trace (Σ)1/4 ‖Σ‖1/4

2

( log(p/δ)
nG0

)1/4

( log(1/δ)
n

)1/8

︸ ︷︷ ︸
T1

+
√

trace (Σ)

√
log(p/δ)
nG0

( log(1/δ)
n

)1/4

︸ ︷︷ ︸
T2

(C.63)

Plugging (C.60) and (C.63) into (C.61), we get that,

‖θ̂δ − µ̂n‖2 . ‖Σ‖1/2
2

√
log(1/δ)

n
+ T1

√
log(1/δ)

n
+ T2

√
log(1/δ)

n
(C.64)

When T1 and T2 are less than C
√
‖Σ‖2, then we have that,

‖θ̂δ − µ̂n‖2 . ‖Σ‖1/2
2

√
log(1/δ)

n
(C.65)
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Some algebra shows that when r(Σ)2 log2(p/δ)
n log(1/δ)

≤ C, the both T1 and T2 are O(
√
‖Σ‖2). Hence,

we get that,

‖θ̂δ − µ̂n‖2 . ‖Σ‖1/2
2

√
log(1/δ)

n
(C.66)

Using Lemma 15, and plugging R =

√
trace(Σ)

(
log(1/δ)

n
)1/4

, we get that with probability at least 1− δ,

‖µ(P )− µ̂n‖2 . OPTn,Σ,δ +
√

trace (Σ)(
log(1/δ)

n
)3/4

︸ ︷︷ ︸
T3

(C.67)

Under our assumption that r2(Σ) log(1/δ)
n
≤ C, T3 . ‖Σ‖1/2

2

√
log(1/δ)

n
. Combining the above

equation and C.66, we recover the theorem statement.
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C.1.4 Proof of Corollary 26

We consider the `2 oracle of O radius R =

√
trace(Σ)

(
log(1/δ)

n
)1/2

. Using chebychevs inequality, we know

that Pr(O(x) = 1) ≥ 1− α, where α = log(1/δ)
n

.
Suppose we are given n-samples from P . Let G0 be the set of points such that O(xi) = 1.

Using bernstein’s inequality we know that with probability 1− δ,

|nG0| ≥ n(1− C log(1/δ)

n
) (C.68)

Hence, we have that,

n− nG0

n
.

log(1/δ)

n
(C.69)

Let µ̂n and ΣG0 be the empirical mean and covariance of the points in G0.
Let θ̂δ be the output of Algorithm 7. Then, we know that with probability at least 1− δ,

‖θ̂δ − µ̂n‖2 . ‖ΣG0‖
1
2
2 (
n− nG0

n
+

log(1/δ)

n
)

1
2 (C.70)

Using Lemma 15, we bound ‖ΣG0‖
1
2
2 .

‖Σn,O‖2 ≤ C1‖Σ‖2 + C2R‖Σ‖
1
2
2

√
log(p/δ)

nG0

+R2 log(p/δ)

nG0

‖Σn,O‖
1
2
2 ≤ C1‖Σ‖

1
2
2 + C2R

1
2‖Σ‖1/4

2 (
log(p/δ)

nG0

)1/4 +R

√
log(p/δ)

nG0

(C.71)

Plugging R =

√
trace(Σ)

(
log(1/δ)

n
)1/2

, we get,

‖Σn,O‖
1
2
2 ≤ C1‖Σ‖

1
2
2 + C2trace (Σ)1/4 ‖Σ‖1/4

2 (
log(p/δ)

log(1/δ)
)1/4 +

√
trace (Σ)√

log(1/δ)
n

√
log(p/δ)

n
(C.72)

Plugging (C.69) and (C.72) into (C.70), we get that,

‖θ̂δ − µ̂n‖2 . ‖Σ‖1/2
2

√
log(1/δ)

n
+

√
trace (Σ) log(p/δ)

n
(C.73)

Using Lemma 15, and plugging R =

√
trace(Σ)

(
log(1/δ)

n
)1/2

, we get that with probability at least 1− δ,

‖µ(P )− µ̂n‖2 . OPTn,Σ,δ +

√
trace (Σ) log(p/δ)

n
(C.74)

Combining the above equation and C.73, we recover the corollary statement.
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C.2 Proofs for Section 5.3

C.2.1 Common Proof Template for Corollaries 27, 28 and 29.
. In this section, we provide the proofs of the technical results in Section 5.3. We follow the
template provided by [1] to prove the corollaries appearing in this section.

• In particular, given a distribution z ∼ P , and a loss function L̄(θ, z), we look at the
distribution of the gradients ∇L̄(θt, z) for any θt, and in particular calculate the trace
and operator norm of the covariance of gradient distribution Σ(L̄(θt, z)). We show that
for GLMs, they are of the form,

trace
(
Σ(L̄(θt, z))

)
≤ A‖θt − θ∗‖2

2 +B (C.75)

‖Σ(L̄(θt, z))‖2 ≤ C‖θt − θ∗‖2
2 +D (C.76)

• From Theorem 25, we know that given n samples the output of the mean estimator
satisfies the guarantee that with probability at least 1− δ,

‖E[∇L̄(θt, z)]−FilterpD({∇L̄(θt, zi)}ni=1)‖2 ≤

√
trace

(
Σ(L̄(θt, z))

)

n
+

√
‖Σ(L̄(θt, z))‖2 log(1/δ)

n
,

or equivalently,

‖E[∇L̄(θt, z)]−FilterpD({∇L̄(θt, zi)}ni=1)‖2 ≤ (

√
A

n
+

√
C

n
)‖θt−θ∗‖2+(

√
B

n
+

√
D log 1/δ

n
).

• The last step is to use the following result from [1] on the stability of gradient descent
with inexact gradients.
Lemma 56. [Prasad et al. [1]] For a given sample-size n and confidence parameter
δ ∈ (0, 1), suppose we have a gradient estimator g(θ; {∇L̄(θ, zi)}ni=1, δ) such that for
any fixed θ ∈ Θ, the estimator satisfies the following inequality:

‖g(θ; {∇L̄(θ, zi)}ni=1, δ)− E[∇L̄(θt, z)]‖2 ≤ α(n, δ)‖θ − θ∗‖2 + β(n, δ). (C.77)

Then Algorithm 8 initialized at θ0 with step-size η = 2/(τ`+τu), returns iterates {θ̂t}Tt=1

such that with probability at least 1− δ

‖θ̂t − θ∗‖2 ≤ κt‖θ0 − θ∗‖2 +
1

1− κ
β(ñ, δ̃), (C.78)

where ñ = n/T, δ̃ = δ/T , κ =
√

1− 2ητ`τu
τ`+τu

+ ηα(ñ, δ̃) < 1 is a contraction and θ∗ =

argminθ∈Θ E[L̄(θ, z)] is the minimizer of the population loss.
• Using the above we get that

‖θ̂t − θ∗‖2 . κt‖θ0 − θ∗‖2 +

√
B

(n/T )
+

√
D log(T/δ)

(Tn)
, (C.79)

as long as α(ñ, δ̃) < τ`.
• Hence, all that remains is to calculate (A,B,C,D) for linear regression and GLMs.
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C.2.2 Proof of Corollary 27.

We refer the reviewer to Section C.2.1 for a common proof template. In this section we
simply focus on deriving upper bounds for the gradient distribution for Linear Regression.
This result can also be found in [1], but we provide it for the sake of completeness. Recall
that for linear regression we have that, L̄(θ, (x, y)) = 1

2
(y − xT θ)2.

Lemma 57 (Prasad et al. [1]). Consider the model in (B.17). Suppose the covariates x ∈ Rp

have bounded 8th-moments and the noise w has bounded 4th moments. Then there exist
universal constants C1, C2 such that

E[∇L̄(θ)] = Σ∆

trace
(
Cov(∇L̄(θ))

)
≤ C4trace (Σ) ‖Σ‖2︸ ︷︷ ︸

A

‖∆‖2
2 + σ2trace (Σ)︸ ︷︷ ︸

B

,

‖Cov(∇L̄(θ)‖2 ≤ ‖∆‖2
2C4‖Σ‖2

2︸ ︷︷ ︸
C

+σ2‖Σ‖2︸ ︷︷ ︸
D

E
[[

(∇L̄(θ)− E[∇L̄(θ)])Tv
]4] ≤ C2(Var[∇L̄(θ)Tv])2

where ∆ = θ − θ∗ and E[xxT ] = Σ.
From the above lemma, we recover the values of (A,B,C,D) for linear regression which

we simply plug into (C.79) to recover the statement of the corollary.

Proof of Lemma 57

Proof. We start by deriving the results for E[∇L̄(θ)].

L̄(θ) =
1

2
(y − xT θ)2 =

1

2
(xT (∆)− w)2

∇L̄(θ) = xxT∆− x.w
E[∇L̄(θ)] = Σ∆.

Next, we bound the operator norm of the covariance of the gradients ∇L̄(θ) at any point θ.

Covariance.

Cov(∇L̄(θ)) = E[∇L̄(θ)∇L̄(θ)T ]− E[∇L̄(θ)]E[∇L̄(θ)]T

For any unit vector z ∈ Sp−1, we have that,

zTCov(∇L̄(θ))z = zTE[∇L̄(θ)∇L̄(θ)T ]z − (E[∇L̄(θ)]T z)2

≤ zTE[∇L̄(θ)∇L̄(θ)T ]z

=⇒ sup
z∈Sp−1

zTCov(∇L̄(θ))z ≤ sup
z∈Sp−1

zTE[∇L̄(θ)∇L̄(θ)T ]z
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Hence, we have that

λmax(Cov(∇L̄(θ))) ≤ sup
z∈Sp−1

zTE[∇L̄(θ)∇L̄(θ)T ]z

= sup
z∈Sp−1

zTE[(xxT∆− x.w)(xxT∆− x.w)T ]z

= sup
z∈Sp−1

zT (E[xxT∆∆TxxT ] + σ2E[xxT ])z

≤ sup
z∈Sp−1

zT (E[xxT∆∆TxxT ])z + σ2‖Σ‖2

≤ σ2‖Σ‖2 + ‖∆‖2
2 sup
y,z∈Sp−1

E[(zTx)2(yT z)2]

≤ σ2‖Σ‖2 + ‖∆‖2
2 sup
y,z∈Sp−1

√
E [(yTx)4]

√
E [(zTx)4]

≤ σ2‖Σ‖2 + ‖∆‖2
2C4‖Σ‖2

2
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where the second last step follows from Cauchy-Schwartz and the last step follows from our
assumption of bounded 4th moments. Now to bound the trace of the covariance matrix,

Cov(∇L̄(θ)) = E[(xxT − Σ)∆− xw)(xxT − Σ)∆− xw)T ]

trace
(
Cov(∇L̄(θ))

)
= E[‖(xxT − Σ)∆− xw)‖2

2]

= E[‖(xxT − Σ)∆‖2
2]︸ ︷︷ ︸

T1

+E[‖x‖2
2w

2]︸ ︷︷ ︸
σ2trace(Σ)

T1 = E[‖(xxT − Σ)∆‖2
2] = ∆TE[(xxT − Σ)2]∆

= ∆TE[(xTx)xxT + Σ2 − ΣxxT − xxTΣ]∆

= ∆TE[(xTx)xxT ]∆−∆TΣ2∆

≤ ∆TE[(xTx)xxT ]∆

≤ ‖∆‖2
2E[(xTx)(xTu)2], where u =

∆

‖∆‖2

∈ Sp−1

≤ ‖∆‖2
2E[(xTx)2]

1
2 E[(xTu)4]

1
2︸ ︷︷ ︸

≤
√
C4‖Σ‖2

x
def
=

p∑

i=1

(xT qi)︸ ︷︷ ︸
νi

qi, where {qi}pi=1 are eigenvectors of Σ

E[(xTx)(xTx)] = E[(
∑

i

ν2
i )(
∑

i

ν2
i )]

= E[
∑

i

ν4
i + 2

∑

i<j

ν2
i ν

2
j ]

E[ν4
i ] = E[(xT qi)

4] ≤ C4E[(xT qi)
2]2 = C4λ

2
i

E[ν2
i ν

2
j ] ≤

√
E[ν4

i ]
√
E[ν4

j ] = C4λiλj

E[(xTx)(xTx)] ≤ C4(
∑

i

λ2
i + 2

∑

i<j

λiλj) = C4trace (Σ)2

trace
(
Cov(∇L̄(θ))

)
≤ σ2trace (Σ) + C4trace (Σ) ‖Σ‖2‖∆‖2

2

Bounded Fourth Moment. We start from the LHS
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E
[[

(∇L̄(θ)− E[∇L̄(θ])Tv
]4] ≤ E

[[∣∣(∇L̄(θ)− E[∇L̄(θ)])Tv
∣∣]4
]

(C.80)

= E
[∣∣((xxT − Σ)∆− wx)Tv

∣∣4
]

(C.81)

= E
[∣∣(∆Tx)(xTv)− (Σ∆)Tv − wvTx

∣∣4
]

(C.82)

≤ 8


8


E
∣∣(∆Tx)(xTv)

∣∣4
︸ ︷︷ ︸

A

+E
∣∣(Σ∆)Tv

∣∣4
︸ ︷︷ ︸

B


+ E

∣∣w(xTv)
∣∣4

︸ ︷︷ ︸
C


 .

(C.83)

The last line follows from two applications of the following inequality:

Cr inequality. If X and Y are random variables such that E|X|r < ∞ and E|Y |4 < ∞
where r ≥ 1 then:

E|X + Y |r ≤ 2r−1 (E|X|r + E|Y |r) .
Now to control each term:
• Control of A. Using Cauchy Schwartz, that C8 is bounded for x

A ≤
√
E[|∆Tx|8]

√
E[|xTv|8] (C.84)

- ‖∆‖4
2C8‖Σ‖4

2. (C.85)

• Control of B, B - ‖∆‖4
2‖Σ‖4

2.
• Control of C, C - C4‖Σ‖2

2, using independence of w and bounded moments of x.

Therefore the E
[[

(∇L̄(θ)− E[∇L̄(θ])Tv
]4]

- c+ ‖Σ‖4
2‖∆‖4

2.

For the RHS:

Var(∇L̄(θ)Tv)2 = (vTCov(∇L̄(θ))v)2 ≤ ‖Cov(∇L̄(θ))‖2
2

We saw that the ‖Cov(∇L̄(θ))‖2 - c + ‖Σ‖2
2‖∆‖2

2, so both the LHS and RHS scale with
‖Σ‖4

2‖∆‖4
2.

C.2.3 Proof of Corollary 28
We refer the reviewer to Section C.2.1 for a common proof template. In this section we
simply focus on deriving upper bounds for the gradient distribution for Generalized Linear
Models. This result can also be found in [1], but we provide it for the sake of completeness.
Recall that for generalized linear models we have that,

L̄(θ; (x, y)) = −y 〈x, θ〉+ Φ(〈x, θ〉). (C.86)

.
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Lemma 58 ([1]). Consider the model in (5.10), then there exist universal constants C1, C2 >
0 such that

trace
(
Cov(∇L̄(θ)

)
≤
√
C4trace (Σ)

√
LΦ,4︸ ︷︷ ︸

A

‖∆‖2
2 +

√
C4trace (Σ) (

√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1)

︸ ︷︷ ︸
B

‖Cov(∇L̄(θ)‖2 ≤
√
C
√
C4‖Σ‖2(

√
LΦ,4)C‖∆‖2

2︸ ︷︷ ︸+
√
C
√
C4‖Σ‖2

(√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1

)

︸ ︷︷ ︸
D

and

E
[[

(∇L̄(θ)− E[∇L̄(θ)])Tv
]4] ≤ C2(Var[∇L̄(θ)Tv])2.

From the above lemma, we recover the values of (A,B,C,D) for GLMs which we simply
plug into (C.79) to recover the statement of the corollary.

Proof of Lemma 58

.

Proof. The gradient ∇L̄(θ) and it’s expectation can be written as:

∇L̄(θ) = −y.x+ u(〈x, θ〉).x
E[∇L̄(θ)] = E[x

(
u(xT θ)− u(xT θ∗)

)
],

where u(t) = Φ′(t).

‖E[∇L̄(θ)]‖2 = sup
y∈Sp−1

yTE[∇L̄(θ)]

≤ sup
y∈Sp−1

E[(yTx)
(
u(xT θ)− u(xT θ∗)

)
]

≤ sup
y∈Sp−1

√
E[(yTx)2]

√
E[(u(xT θ)− u(xT θ∗))2]

≤ C1‖Σ‖
1
2
2

√
LΦ,2‖∆‖2

2 +BΦ,2

where the last line follows from our assumption of smoothness.
Now, to bound the maximum eigenvalue of the Cov(∇L̄(θ)),

λmax(Cov(∇L̄(θ))) ≤ sup
z∈Sp−1

zTE[∇L̄(θ)∇L̄(θ)T ]z

= sup
z∈Sp−1

zT
(
E
[
xxT

(
u(xT θ)− y)

)2
])
z

≤ sup
z∈Sp−1

E
[
zT
(
xxT

(
u(xT θ)− y

)2
)
z
]

≤ sup
z∈Sp−1

√
E [(zTx)4]

√
E
[
(u(xT θ)− y)4]

]
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To bound E
[(
u(xT θ)− y

)4
]
, we make use of the Cr inequality.

Cr inequality. If X and Y are random variables such that E|X|r < ∞ and E|Y |4 < ∞
where r ≥ 1 then:

E|X + Y |r ≤ 2r−1 (E|X|r + E|Y |r)

Using the Cr inequality, we have that

E
[(
u(xT θ)− y

)4
]
≤ 8

(
E
[(
u(xT θ)− u(xT θ∗)

)4
]

+ E
[(
u(xT θ∗)− y

)4
])

≤ C
(
LΦ,4‖∆‖4

2 +BΦ,4 + c(σ)3MΦ,4,1 + 3c(σ)2MΦ,2,2

)

where the last line follows from our assumption that Pθ∗(y|x) is in the exponential family,
hence, the cumulants are higher order derivatives of the log-normalization function.

‖Cov(∇L̄(θ))‖2 ≤
√
C
√
C4‖Σ‖2

(√
LΦ,4‖∆‖2

2 +
√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1

)

Now, to control the trace. We have that,

Cov(∇L̄(θ)) = E[∇L̄(θ)∇L̄(θ)T ]− E[∇L̄(θ)]E[∇L̄(θ)]T

trace
(
Cov(∇L̄(θ))

)
= trace

(
E[∇L̄(θ)∇L̄(θ)T ]

)
− trace

(
E[∇L̄(θ)]E[∇L̄(θ)]T

)

≤ trace
(
E[∇L̄(θ)∇L̄(θ)T ]

)

≤ trace
(
E
[
xxT

(
u(xT θ)− y)

)2
])

= E
[
trace

(
xxT

(
u(xT θ)− y)

)2
)]

= E[trace
(
(xxT )

)
u(xT θ)− y)2] Because (u(xT θ)− y)2 ∈ R

≤
√
E[trace ((xxT ))2]

√
E[(u(xT θ)− y)4]

≤
√
C4trace (Σ)

(√
LΦ,4‖∆‖2

2 +
√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1

)

=
√
C4trace (Σ)

√
LΦ,4‖∆‖2

2 +
√
C4trace (Σ) (

√
BΦ,4 + c(σ)

√
3MΦ,2,2 +

√
c(σ)3MΦ,4,1)

Bounded Fourth Moment. To show that the fourth moment of the gradient distribution
is bounded, we have

E
[[

(∇L̄(θ)− E[∇L̄(θ])Tv
]4] ≤ E

[[∣∣(∇L̄(θ)− E[∇L̄(θ)])Tv
∣∣]4
]

≤ 8


E[|∇L̄(θ])Tv|4]︸ ︷︷ ︸

A

+E[|E[∇L̄(θ)]Tv|4]︸ ︷︷ ︸
B


 .
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Control of A.

E[|∇L̄(θ])Tv|4] = E[(xTv)4(u(xT θ)− y)4]

≤
√
E[(xTv)8]

√
E[(u(xT θ)− y)8]

≤
√
C8‖Σ‖2

2

√
E[(u(xT θ)− u(xT θ∗))8] + E[(u(xT θ∗)− y)8]

≤
√
C8‖Σ‖2

2

√√√√LΦ,8‖∆‖8
2 +BΦ,8 +

8∑

t,k=2

gt,kMΦ,t,k

≤
√
C‖Σ‖2

2

√
LΦ,8‖∆‖4

2 +
√
BΦ,8 +

√√√√
8∑

t,k=2

gt,kMΦ,t,k

where the last step follows from the fact that the 8th central moment can be written as
a polynomial involving the lower cumulants, which in turn are the derivatives of the log-
normalization function.

Control of B.

E[|E[∇L̄(θ)]Tv|4] ≤ ‖E[∇L̄(θ)‖4
2 ≤ C1‖Σ‖2

2

(
L2

Φ,2‖∆‖2
2 +B2

Φ,2

)

By assumption LΦ,k, BΦ,k,MΦ,t,k are all bounded for k, t ≤ 8, which implies that there exist
constants c1, c2 > 0 such that

E
[[

(∇L̄(θ)− E[∇L̄(θ])Tv
]4] ≤ c1‖Σ‖2

2‖∆‖4
2 + c2

Previously, we say that ‖Cov∇L̄(θ)‖2 ≤ c3‖Σ‖2‖∆‖2
2 + c4, for some universal constants

c3, c4 > 0, hence the gradient ∇L̄(θ) has bounded fourth moments.
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C.3 Architectures used for the GAN experiment

We implement the experiments and the networks using PyTorch, and use the default initial-
ization used.

C.3.1 Generator for MNIST and CIFAR10

v ∈ R100

y
Lineary

LeakyReLUy

ConvTranspose1

y
ReLUy

ConvTranspose2

y
ReLUy

ConvTranspose2

y
Tanhy

x̂ ∈ R28×28×1( MNIST)/x̂ ∈ R32×32×3 (CIFAR10)

For MNIST and CIFAR10, to generate a
sample, we use a 100-dimensional vector
sampled from a 100-dimensional Multivari-
ate Normal, with identity covariance. Lin-
ear denotes a fully connected layer which
is an affine transformation from R100 to
R4096. LeakyReLU is a layer that ap-
plies a function: f(x) = max{bx, x} for
b ∈ (0, 1) elementwise, and we choose
b = 0.2. ConvTranspose1, ConvTranspose2

and ConvTranspose3 are transposed convo-
lution layers. All of these have a kernel of
size 4 × 4; however for the MNIST case,
ConvTranspose1 uses a stride of 1, and no
padding and the other two use stride 2 and
add padding with width 1. For the CI-
FAR10 case, all the transposed convolution
layers have a stride of 2 and pad the input
with width 1.
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C.3.2 Discriminator for MNIST and CIFAR10
x ∈ R28×28×1 (MNIST)/x ∈ R32×32×3 (CIFAR10)y

Conv1

y
BatchNormy
LeakyReLUy

Conv2

y
BatchNormy
LeakyReLUy

Conv3

y
BatchNormy
LeakyReLUy
Lineary
Sigmoidy
p̂ ∈ [0, 1]

For MNIST and CIFAR10, to classify a sam-
ple as belonging to the distribution or not,
we pass it through a sequence of convolu-
tion, batch normalization and LeakyReLU
layers in succession. The LeakyReLU con-
stant is set to be 0.2, as done for the gener-
ator. All the convolution layers use a kernel
of size 4× 4. For the CIFAR10 dataset, we
maintain the stride and padding width as 2
and 1 respectively for all convolution layers,
whereas for the MNIST dataset, we use no
padding and a stride of 1 for Conv 3.
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Appendix D
Supplementary Material for Chapter 4

D.1 Beyond Dobrushin’s Conditions.

All of our previous results are under the high temperature condition (4.3), where we rely of
special properties of Ising models namely sub-Gaussianity of Ising models random variables.
Following this effort, we attempt to analyze classes of Ising models where this condition
doesn’t hold to present an even more general analysis. Towards this end, we present moduli
of continuity bounds as presented in Theorem 20. Here, we look out for dependence in the
model width parameter in addition to the effective dimensionality of the problem (d in the
case of Gp,d and k in the case of Gp,k, and the tolerance parameter ε.
Theorem 38. Consider two Ising models defined over two graphs G(1) and G(2) over p ver-
tices with parameters θ(1) and θ(2) respectively, satisfying ω(θ(1)), ω(θ(2)) ≤ ω. If dTV(Pθ(1) ,Pθ(2)) ≤
ε, then we have the following results for all i ∈ [p]:
(a) If G(1), G(2) ∈ Gp,d, then

‖θ(2)(i)− θ(1)(i)‖2 . min{
√
ε, ε
√
d} ω exp(O(ω)). (D.1a)

(b) If G1, G2 ∈ Gp,k, then

‖θ(2)(i)− θ(1)(i)‖2 . min{
√
ε, ε
√
k} ω exp(O(ω)). (D.1b)

Similar to Theorem 38, we get a modulus of continuity bound for the loss function defined
by the (2,∞)-norm. Note that as ε tends to 0, the bounds also tend to 0. However, it is
worth noting that our primitive analysis contains an additional factor in d/k based on the
graph class considered. The sub-optimality is clear when we set ω = O(1), and the bounds
while retaining a optimal dependence on ε have an additional dependence with d/k when
compared to the result in Theorem 20. Our analysis of the Yatracos estimator (4.7) does not
depend of any specific bounds on the model width, and hence with the derived modulus of
continuity bound, we arrive at the following corollary for the estimation error of the Yatracos
estimate:
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Corollary 39. Given n samples from the distribution Pε = (1 − ε)Pθ∗ + εQ, where Pθ∗ ∈
Gp,k(λ, ω) and Q is an arbitrary distribution supported over {−1,+1}p, the parameter of
Yatracos estimate (4.7) satisfies:

‖θ̂(i)− θ∗(i)‖2 .
√
kωeO(ω)ε+O

(
kωeO(ω)

√
log(p2e/k)

n
+

√
log(1/δ)

n

)
for all i ∈ [p].

Note that as n→∞, the bias of the estimator has optimal dependence on ε, but incurs
an additional dependence of

√
k. For ε = 0 i.e. no contamination, the rate we achieve is

approximately ωeO(ω)k
√

log(p)
n

, which leads to the number of samples n ≥ O
(
k2ω2eO(ω) log(p)

λ2

)

required to recover the true edge set E(θ∗), and this is comparable to existing sample com-
plexity results for learning Ising models belonging to Gp,k(λ, ω) [90]. We present the proof of
Theorem 38 in Section D.6.
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D.2 Useful Properties of Ising models
In this section, we summarize some useful properties of Ising models which we use judiciously
in our proofs. These results have appeared in previous work, but we state them for the sake
of completeness.

D.2.1 Sub-Gaussianity of Ising model distributions in the high tem-
perature regime

First, we present a result from [136], which states that a random variable distributed accord-
ing to an Ising model in the high temperature regime is sub-Gaussian.
Proposition 59 ([136, Theorem 1.4]). Let z ∼ P be a random variable whose distribution P
is an Ising model over p nodes in the high temperature regime (4.3) with constant α. Then
for v ∼ Rp:

Pr
z∼P

(|〈v, z〉| > t) ≤ 2 exp

(
− t2

C(α)||v||22

)
, (D.2)

where C(α) is a constant depending on α.

D.2.2 Strong convexity of the negative conditional log-likelihood

Here we present a proposition that states that the population negative conditional log-
likelihood is strongly convex. This proposition is obtained using a result by Dagan et al.
[97]. We first state the result by Dagan et al. [97] below, and then use it to show that the
population negative condition log-likelihood is strongly convex.
Proposition 60 ([97, Lemma 10]). Let z be a random variable distributed w.r.t. an Ising
model over p nodes whose parameter θ satisfies maxi∈[p] ‖θ(i)‖∞ ≤ ω and mini∈[p] Pθ(Xi =
1|X−i = x−i)(1− Pθ(Xi = 1|X−i = x−i)) ≥ γ. Then for any v ∈ Rp, we have that:

Var[〈v, z〉] ≥ C1γ
2||v||22
ω

,

where C1 is a universal constant.
Now, let Lθ,i(w) be the population negative conditional log-likelihood for node Xi, where

X is sampled from the Ising model distribution Pθ. Formally, Lθ,i(w) = −Ez∼Pθ [`i(w; z)],
where `i(w; z) is the conditional log-likelihood of z under Pθ with respect to the ith node. As
stated earlier, by the maximum likelihood principle, ∇Lθ,i(2θ(i)) = 0. With this definition,
we have the Hessian of the population negative conditional log-likelihood as ∇2Lθ,i(w) =
Ez∼Pθ [∇2`i(w; z)]. Then, we have the following result.
Proposition 61. Let Pθ be an Ising model over p nodes whose parameter satisfies maxi∈[p] ‖θ(i)‖∞ ≤
ω, and let w ∈ Rp−1 be such that ‖w‖1 ≤ 2ω. Then, for any vector v ∈ Rp−1, there exists a
universal constant C > 0 such that:

vT∇2Lθ,i(w)v ≥ C
exp(−O(ω))

ω
‖v‖2

2.
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Proof. First, observe that

∇2Lθ,i(w) = Ez∼Pθ
[
σ(zi〈w, z−i〉)(1− σ(zi〈w, z−i〉))z−izT−i

]

⇒ vT∇2Lθ,i(w)v = Ez∼Pθ
[
σ(zi〈w, z−i〉)(1− σ(zi〈w, z−i〉))〈z−i, v〉2

]
.

In Lemma 62, we show that for any ‖w‖1 ≤ 2ω, we have that

σ(zi〈w, z−i〉)(1− σ(zi〈w, z−i〉)) ≥
exp(−2ω)

4
. (D.3)

We now lower bound E[〈z−i, v〉2]. Since Ising model has zero mean field, we have that
E[〈z−i, v〉2] = Var[〈z−i, v〉]. Furthermore, due the assumptions placed on the parameter of
the Ising model, we obtain that for any x ∈ {−1,+1}p−1, Pθ(Xi = 1|X−i = x)(1− Pθ(Xi =
1|X−i = x)) ≥ 1

4
exp(−4ω). This can be shown as follows. For any z ∈ {−1,+1} and

x ∈ {−1,+1}p−1, we have that:

Pθ(Xi = z|X−i = x) =
1

1 + exp(−z 〈2θ(i,−i), x〉)
(i)

≥ 1

1 + exp(2ω)

≥ 1

2 exp(2ω)
=

exp(−2ω)

2

⇒ Pθ(Xi = 1|X−i = x)Pθ(Xi = 0|X−i = x) ≥ exp(−2ω)

2

exp(−2ω)

2

=
exp(−4ω)

4

where Step (i) uses Hölder’s inequality as: | 〈2θ(i,−i), x〉 | ≤ 2ω ⇒ −z 〈2θ(i,−i), x〉 ≤ 2ω.
Using this in Proposition 60, we have that:

Var[〈v, z−i〉] ≥ C
exp(−8ω)‖v‖2

2

ω
(D.4)

where C is a universal constant.
Combining (D.3) and (D.4), we obtain the statement of the lemma.

Auxiliary Lemmata

Lemma 62. If w ∈ Rp−1 such that ||w||1 ≤ 2ω, then for x, y ∈ {−1,+1}p−1 × {−1,+1}:

σ(y〈w, x〉)(1− σ(y〈w, x〉)) =
exp(−y〈w, x〉)

(1 + exp(−y〈w, x〉))2
≥ exp(−|y〈w, x〉|)

4
≥ exp(−2ω)

4
(D.5)

Proof. Consider f(a) = σ(a)(1− σ(a)) = exp(−a)
(1+exp(−a))2 = exp(a)

(1+exp(a))2 . Now for a > 0:

e−a < 1⇔ e−a + 1 < 2⇔ (e−a + 1)2 < 4⇔ exp(−a)

(1 + exp(−a))2
≥ exp(−a)

4
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For a < 0:

ea < 1⇔ ea + 1 < 2⇔ (ea + 1)2 < 4⇔ exp(a)

(1 + exp(a))2
≥ exp(a)

4

Therefore:
f(a) ≥ exp(−|a|)

4

By Hölder’s inequality, |y〈w, x〉| ≤ ||w||1||x||∞ ≤ 2ω. This implies that

σ(y〈w, x〉)(1− σ(y〈w, x〉)) = f(y〈w, x〉) ≥ exp(−|y〈w, x〉|)
4

≥ exp(−2ω)

4
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D.3 Proofs of Propositions in Section 4.2
In this section, we present the proofs for Theorem 20 and Lemma 12.

D.3.1 Proof of Theorem 20
Here, we derive bounds on the modulus of continuity defined in (4.4) with the loss function
given by the `2,∞ norm of the parameters.

Proof Sketch. We begin by giving a brief proof outline. Pθ(1) and Pθ(2) are two Ising models in
the high temperature regime (4.3) with constant α, and additionally satisfy dTV(Pθ(1) ,Pθ(2)) ≤
ε. Consider Lθ(1),i to be the population negative conditional log-likelihood for the ith node
with respect to Pθ(1) defined earlier. We earlier noted that ∇Lθ(1),i(2θ

(1)(i)) = 0 by the
maximum likelihood principle.

In Lemma 63, we show that under these conditions, the gradient∇Lθ(1),i(2θ
(2)(i)) satisfies

‖∇Lθ(1),i(2θ
(2)(i))‖2 ≤

√
C(α)ε

√
log(1/ε), where C(α) is a universal constant only depending

on α. With this intermediate result, we complete the proof of the theorem as follows.
Considering the Taylor series expansion of Lθ(1),i around 2θ(2)(i), we get

Lθ(1),i(2θ
(1)(i)) = Lθ(1),i(2θ

(2)(i)) +
〈
∇Lθ(1)(i)(2θ

(2)(i)),∆i

〉
+

1

2
∆T
i ∇2Lθ(1),i(w̃)∆i

(i)

≥ Lθ(1),i(2θ
(2)(i)) +

〈
∇Lθ(1)(i)(2θ

(2)(i)),∆i

〉
+
C

2

exp(−O(ω))

ω
‖∆i‖2

2

(ii)

≥ Lθ(1),i(2θ
(2)(i)) +

〈
∇Lθ(1)(i)(2θ

(2)(i)),∆i

〉
+ C ′

exp(−c(1− α))

1− α
‖∆i‖2

2,

where w̃ lies between 2θ(2)(i) and 2θ(1)(i), and ∆i = 2θ(1)(i)− 2θ(2)(i). In step (i), we have
used the result in Proposition 61 and in step (ii) we use the fact that ω ≤ 1− α.

We also know by the maximum likelihood principle that Lθ(1),i(2θ
(1)(i)) ≤ Lθ(1),i(2θ

(2)(i)),
and substituting this in the inequality above yields

C ′
exp(−c(1− α))

1− α
‖∆i‖2

2 ≤ −
〈
∇Lθ(1)(i)(2θ

(2)(i)),∆i

〉
≤
∣∣〈∇Lθ(1)(i)(2θ

(2)(i)),∆i

〉∣∣ .

Finally, we bound the right hand side using the Cauchy-Schwarz inequality and the result
from Lemma 63 to get

∣∣〈∇Lθ(1)(i)(2θ
(2)(i)),∆i

〉∣∣ ≤ ‖∇Lθ(1),i(2θ
(2)(i))‖2‖∆i‖2 ≤

√
C(α)ε

√
log(1/ε)‖∆i‖2,

and substituting this in the quadratic bound above gives

‖∆i‖2 ≤ C1(α)ε
√

log(1/ε), C1(α) =
1

C ′
(1− α) exp(c(1− α))

√
C(α).

We now state Lemma 63 and prove it below.
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Lemma 63. Let Pθ(1) and Pθ(2) be two Ising models in the high temperature regime (4.3) with
constant α that satisfies dTV(Pθ(1) ,Pθ(2)) ≤ ε. Then, there exists a universal constant C(α)
that only depends on α such that

‖∇Lθ(1),i(2θ
(2)(i))‖2 ≤

√
C(α)ε

√
log (1/ε) for all i ∈ [p]

Proof. Recall that Lθ(1),i(w) = Ez∼P
θ(1)

[`i(w; z)]. By the maximum likelihood principle, we
know that

∇Lθ(1),i(2θ
(1)(i)) = 0 ∇Lθ(2),i(2θ

(2)(i)) = 0

Since dTV(Pθ(1) ,Pθ(2)) ≤ ε, there exists an ε-coupling C between Pθ(1) and Pθ(2) . In particular,
C is a joint distribution over z1, z2 such that the respective marginals are z1 ∼ Pθ(1) and
z2 ∼ Pθ(2) , and Ez1,z2∼C[I {z1 6= z2}] ≤ ε.

The rest of the proof begins by making the observation that∇Lθ(1),i(2θ
(2)(i)) = Ez1,z2∼C[∇`i(2θ(2)(i); z1)].

By introducing indicator random variables for the cases when z1 and z2 are equal or not, we
have

∇Lθ(1),i(2θ
(2)(i)) = Ez1,z2∼C[∇`i(2θ(2)(i); z1)I {z1 6= z2}] + Ez1,z2∼C[∇`i(2θ(2)(i); z1)I {z1 = z2}]

= Ez1,z2∼C[∇`i(2θ(2)(i); z1)I {z1 6= z2}] + Ez1,z2∼C[∇`i(2θ(2)(i); z2)I {z1 = z2}]
(a)
= Ez1,z2∼C[∇`i(2θ(2)(i); z1)I {z1 6= z2}]− Ez1,z2∼C[∇`i(2θ(2)(i); z2)I {z1 6= z2}],

where step (a) follows from the stationarity of 2θ(2)(i) under Pθ(2) like so.

0 = ∇Lθ(2),i(2θ
(2)(i))

= Ez1,z2∼C[∇`i(2θ(2)(i); z2)]

= Ez1,z2∼C[∇`i(2θ(2)(i); z2)I {z1 = z2}] + Ez1,z2∼C[∇`i(2θ(2)(i); z2)I {z1 6= z2}].

Therefore, for any vector v ∈ Sp−2, we have that
∣∣〈v,∇Lθ(1),i(2θ

(2)(i))
〉∣∣ =

∣∣Ez1,z2∼C[
〈
v,∇`i(2θ(2)(i); z1)

〉
I {z1 6= z2}]

−Ez1,z2∼C[
〈
v,∇`i(2θ(2)(i); z2)

〉
I {z1 6= z2}]

∣∣
≤
∣∣Ez1,z2∼C[

〈
v,∇`i(2θ(2)(i); z1)

〉
I {z1 6= z2}]

∣∣
︸ ︷︷ ︸

T1

+
∣∣Ez1,z2∼C[

〈
v,∇`i(2θ(2)(i); z2)

〉
I {z1 6= z2}]

∣∣
︸ ︷︷ ︸

T2

.

Bounding T2: Note that ∇`i(w; z1) = (σ(〈w, z1(−i)〉z1(i)) − 1)z1(−i)z1(i). Since z1 ∼
{−1,+1}p, we have that |(σ(〈w, z1(−i)〉z1(i))−1)z1(i)| < 1, and hence we get |〈v,∇`i(w; z1)| <
|〈v, z1(−i)|.

This in turn implies

Pr(|〈v,∇`i(w; z1)〉| > t) ≤ Pr(|〈v, z1(−i)〉| > t)
(b)

≤ 2 exp

(
− t2

C(α)

)
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where step (b) follows from the sub-Gaussianity of random variables distributed with respect
to an Ising model in the high temperature regime (Proposition 59). Using standard tail
bounds (see [127, Chapter 2]), we obtain that E[exp(λ(〈v,∇`i(w; z1)〉))] ≤ exp

(
Cλ2C(α)

2

)
.

To finally bound T2, we use the following result from [137].

Proposition 64 ([137, Lemma 2.3]). Let Z be a random variable such that E[exp(λZ)] ≤
e
λ2σ2

2 . For any measurable event A, we have

|E[Z · I {A}]| ≤ σP (A)
√

log(1/P (A)).

In T2, the event A is z1 6= z2 and this occurs with probability less than ε. Hence, we get
T2 ≤ C

√
C(α)ε

√
log(1/ε).

Bounding T1: This can be bounded in an analogous manner as T2, thus yielding T1 ≤
C
√
C(α)ε

√
log(2/ε).

Plugging these bounds above, we get

‖∇Lθ(1),i(2θ
(2)(i))‖2 ≤ C

√
C(α)ε

√
log(1/ε,

which proves the statement of the lemma.

D.3.2 Proof of Lemma 12
Proof. Consider two Ising models with p vertices. For the first Ising model, consider one
edge with parameter 2ε. The second Ising model has no edges.

Via a simple calculation, the TV distance between these Ising models can be computed
to be 1

2
tanh(2ε) ≤ ε. Consequently, the `2,∞ norm of the difference in parameters is ε, and

this proves the lower bound.
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D.4 Proofs of Propositions in Section 4.3

D.4.1 A general result for estimators based on Yatracos classes

Here, we present a result for estimators of the form

Pest = argmin
P∈P

sup
A∈A

∣∣∣P(A)− P̂n,ε(A)
∣∣∣ , (D.6)

where P̂n,ε the empirical distribution of n samples from the mixture model Pε defined in (4.1)
and P is the class of all distributions. Recall that A is defined as

A = {A(P1,P2) : P1,P2 ∈ P}, and A(P1,P2) = {x : P1(x) > P2(x)}

The result in formally stated in Proposition 13.

Proposition 65. Given n samples from the mixture model Pε = (1−ε)P?+εQ, the estimator
Pest defined in (D.6) satisfies

dTV(Pest,P?) ≤ 2ε+ 2 sup
A∈A

∣∣∣∣∣
∑

x∈A

P̂n,ε(x)−
∑

x∈A

Pε(x)

∣∣∣∣∣

Proof. We begin by using 2dTV(Pest,P?) =
∑
x∈X
|Pest(x)− P?(x)|. Consider the sets B = {x :

Pest(x) > P?(x)} and C = {x : Pest(x) ≤ P?(x)}.
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This gives us:

∑

x∈X

|Pest(x)− P?(x)| = 2 max
A∈{B,C}

∣∣∣∣∣
∑

x∈A

Pest(x)− P?(x)

∣∣∣∣∣

≤ 2 sup
A∈A

∣∣∣∣∣
∑

x∈A

Pest(x)−
∑

x∈A

P?(x)

∣∣∣∣∣

= 2 sup
A∈A

∣∣∣∣∣
∑

x∈A

Pest(x)−
∑

x∈A

P̂n,ε(x) +
∑

x∈A

P̂n,ε(x)−
∑

x∈A

P?(x)

∣∣∣∣∣

≤ 2 sup
A∈A

∣∣∣∣∣
∑

x∈A

Pest(x)−
∑

x∈A

P̂n,ε(x)

∣∣∣∣∣+ 2 sup
A∈A

∣∣∣∣∣
∑

x∈A

P̂n,ε(x)−
∑

x∈A

P?(x)

∣∣∣∣∣
(i)

≤ 4 sup
A∈A

∣∣∣∣∣
∑

x∈A

P̂n,ε(x)−
∑

x∈A

P?(x)

∣∣∣∣∣

= 4 sup
A∈A

∣∣∣∣∣
∑

x∈A

P̂n,ε(x)−
∑

x∈A

Pε(x) +
∑

x∈A

Pε(x)−
∑

x∈A

P?(x)

∣∣∣∣∣

≤ 4 sup
A∈A

∣∣∣∣∣
∑

x∈A

P̂n,ε(x)−
∑

x∈A

Pε(x)

∣∣∣∣∣+ 4 sup
A∈A

∣∣∣∣∣
∑

x∈A

Pε(x)−
∑

x∈A

P?(x)

∣∣∣∣∣

= 4 sup
A∈A

∣∣∣∣∣
∑

x∈A

P̂n,ε(x)−
∑

x∈A

Pε(x)

∣∣∣∣∣+ 4dTV(Pε,P?)

(ii)

≤ 4 sup
A∈A

∣∣∣∣∣
∑

x∈A

P̂n,ε(x)−
∑

x∈A

Pε(x)

∣∣∣∣∣+ 4ε,

where in step (i) we have used the optimality of Pest and in step (ii) we have used the fact
that dTV(Pε,P?) ≤ ε and this completes the proof.

D.4.2 Proof of Lemma 13
With the general result for estimators based on Yatracos classes, we state the proof of Lemma
13.

Proof. For the estimator in (4.7), the class of distributions is Gp,k. Via Proposition 65, we
have that:

dTV(Pθ̂,Pθ∗) ≤ 2ε+ 2 sup
A∈A

∣∣∣∣∣
∑

x∈A

P̂n,ε(x)−
∑

x∈A

Pε(x)

∣∣∣∣∣
︸ ︷︷ ︸

T1

Note that distributions in Gp,k are Ising model distributions and are parameterized. Thus, we
can alternatively identify the sets A(P1,P2) via the parameters of Ising model distributions
as A(θ(1), θ(2)).
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Bounding T1: The set A(θ(1), θ(2)) is equivalent to

A(θ(1), θ(2)) = {x : logPθ(1)(x) > logPθ(2)(x)}

Recalling the definitions of Pθ(1) and Pθ(2) , and flattening the parameters to R(p2), we have:

A(θ(1), θ(2)) =
{
y :
〈
θ

(1)
flat − θ

(2)
flat, y

〉
+ log(Z(θ(2)))− log(Z(θ(1))) > 0

}
= {y : 〈w, ỹ〉 > 0}

where w = [θ
(1)
flat − θ

(2)
flat, log(Z(θ(2)))− log(Z(θ(1)))] and ỹ = [y, 1]. Z(θ) is the normalization

constant of the probability mass function of an Ising model Pθ and y ∈ R(p2) is a vector of
sufficient statistics. Since θ(1), θ(2) ∈ Gp,k, both θ

(1)
flat and θ

(2)
flat can have at most k entries.

Consequently, the vector w can have at most 2k + 1 non-zero entries. Hence, A can be
viewed as a collection of sets:

A = {I {〈w, y〉 > 0} : w ∈ R(p2), ||w||0 ≤ 2k + 1}

The following proposition bounds the VC-dimension of sparse linear classifiers:

Proposition 66 ([138, Corollary 1]). Consider the class of linear predictors, defined by the
set Ss = {v : ||v||0 ≤ s, v ∈ Rm} i.e. the set of s-sparse vectors. The VC-dimension of this
class is upper bounded as: O(s log(em/s)).

Therefore, from the above proposition, we have that the VC-dimension of A is bounded
from above by O (2k + 1) log(ep2/4k+2) which is O(k log(ep/k)). Hence, by a concentration of
measure argument, we have that with probability at least 1− δ:

T1 .

√
k log(ep/k)

n
+

√
log(1/δ)

n
.

Finally, we obtain

dTV(Pθ̂,Pθ∗) ≤ 2ε+O

(√
k log(ep/k)

n
+

√
log(1/δ)

n

)
,

and this recovers the statement of the lemma.
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D.5 Proof of Propositions in Section 4.4

D.5.1 Proof of Theorem 23
Proof Sketch. We give an outline of the proof of the theorem. Pθ∗ is an Ising model in the
high temperature regime with constant α. Recall the proposed estimator:

θ̂(i) = argmin
w∈N γd (Sp−2)

sup
u∈N

1/2
2d (Sp−2)

∣∣1DMean
(
{uT∇`i(w;x(j))}nj=1

)∣∣ . (D.7)

Proposition 61 states that the negative conditional log-likelihood Lθ∗,i is C2(α)-strongly con-
vex, where C2(α) is a universal constant only depending on α. Therefore, by the monotonicity
of the gradient of strongly-convex function, we bound the parameter error ‖θ̂(i)− θ∗(i)‖2 as

‖θ̂(i)− θ∗(i)‖2
2 ≤

1

C2(α)

〈
∇Lθ∗,i(θ̂(i))−∇Lθ∗,i(θ∗(i)), θ̂(i)− θ∗(i)

〉
.

Next, note that

‖θ̂(i)− θ∗(i)‖2 ≤
1

C2(α)

〈
∇Lθ∗,i(θ̂(i))−∇Lθ∗,i(θ∗(i)), θ̂(i)− θ∗(i)

〉

‖θ̂(i)− θ∗(i)‖2

(i)

≤ 1

C2(α)
sup

u∈N2d(Sp−2)

∣∣∣
〈
u,∇Lθ∗,i(θ̂(i))

〉∣∣∣

(ii)

≤ 2

C2(α)
sup

u∈N
1/2
2d (Sp−2)

∣∣∣
〈
u,∇Lθ∗,i(θ̂(i))

〉∣∣∣ ,

where in step (i) we have used the facts that 1) θ̂(i)−θ∗(i)
‖θ̂(i)−θ∗(i)‖2

is a unit vector with at most 2d

non-zero elements, and 2) ∇Lθ∗,i(θ∗(i)) = 0 by the maximum likelihood principle, and in
step (ii) we have constructed a 1/2-cover of the set N 1/2

2d (Sp−2).
We further analyze the right hand side by splitting it into two different terms as follows.

sup
u∈N

1/2
2d (Sp−2)

∣∣∣
〈
u,Lθ∗,i(θ̂(i))

〉∣∣∣ ≤

sup
u∈N

1/2
2d (Sp−2)

∣∣∣
〈
u,Lθ∗,i(θ̂(i))

〉
− 1DMean

(
{uT∇`i(θ̂(i), x(j))}nj=1

)∣∣∣
︸ ︷︷ ︸

T1

+ sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(θ̂(i), x(j))}nj=1

)∣∣∣
︸ ︷︷ ︸

T2

.

In Lemmas 67 and 68, considering γ = max
{
ε
p
, log(1/δ)

np

}
, and for sufficiently large n (4.10),

we bound T1 and T2 as T1 ≤
√
C(α)

{
ε
√

log
(

1
ε

)
+
√

d log(p)
n

+

√
d
n

log
(

3ep
dγ

)}
, and in Lemma
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68, we bound T2 as T2 ≤
√
C(α)

{
ε
√

log
(

1
ε

)
+
√

d log(p)
n

+

√
d
n

log
(

3ep
dγ

)}
+ max

(
ε, log(1/δ)

n

)

respectively.
Plugging these bound into the previous right hand side, we obtain

‖θ̂(i)−θ∗(i)‖2 .
√
C(α)

{
ε

√
log

(
1

ε

)
+

√
d log(p)

n
+

√
d

n
log

(
3ep

dγ

)}
+max

(
ε,

log(1/δ)

n

)
,

and this recovers the statement of the theorem.

We state Lemmas 67 and 68 and prove them below.
Lemma 67. Consider samples {x(j)}nj=1 from the mixture model Pε = (1− ε)Pθ∗+ εQ, where
Pθ∗ is an Ising model over p nodes in the high temperature regime (4.3) with constant α and
with maximum vertex degree d. Suppose n, confidence δ and contamination level ε satisfy
(4.10). Then, 1DMean satisfies

sup
w∈N γd (Sp−2)

sup
u∈N

1/2
d (Sp−2)

∣∣〈u,∇Lθ∗,i(w)〉 − 1DMean
(
{uT∇`i(w;x(j))}nj=1

)∣∣

≤
√
C(α)

{
ε

√
log

(
1

ε

)
+

√
d log(p)

n
+

√
d

n
log

(
3ep

dγ

)}
.

Proof. Let z ∼ Pθ∗ . In the proof of Lemma 63, we showed that

Pr(|〈u,∇`i(w; z)〉|) ≤ 2 exp

(
− t2

C(α)

)

holds due to the form of the gradient and the sub-Gaussianity of the Ising model distribution.
This implies that the gradients of `i due to non-outlier samples are sub-Gaussian. This allows
us to leverage techniques from [103] to produce a guarantee for the 1DMean algorithm when
the true distribution is sub-Gaussian in Lemma 69. This states that

∣∣〈u,∇Lθ∗,i(w)〉 − 1DMean
(
{uT∇`i(w;x(j))}nj=1

)∣∣ . ε

√
C(α) log

(
1

ε

)
+

√
C(α)

n
log

(
1

δ

)
,

where w ∈ N γ
d (Sp−2) and u ∈ N 1/2

d (Sp−2).
Finally, to convert the point-wise bound to a uniform bound, we perform a union bound

over all the elements in N γ
d (Sp−2) and N 1/2

d (Sp−2), and use the fact that the number of

elements in the cover can be bounded as |N γ
k (Sp−2)| ≤

(
3ep
kγ

)k
to recover the statement of

the result.

Lemma 68. Given samples {x(j)}nj=1 from the mixture model Pε = (1 − ε)Pθ∗ + εQ, where
Pθ∗ is an Ising model over p nodes in the high temperature regime (4.3) with constant α,
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there exists a constant C(α) that only depends on α such that:

sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(θ̂(i);x(j)}nj=1

)∣∣∣

≤
√
C(α)

{
ε

√
log

(
1

ε

)
+

√
d log(p)

n
+

√
d

n
log

(
3ep

dγ

)}
+ max

(
ε,

log(1/δ)

n

)

where θ̂(i) is as defined in (4.9) with γ = max
{
ε
p
, log(1/δ)

p

}
.

Proof. First, define Cγ(θ∗(i)) as the element closest to θ∗(i) in the set N γ
d (Sp−2).

We begin the proof by recognizing that

sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(θ̂(i);x(j))}nj=1

)∣∣∣

(i)

≤ sup
u∈N

1/2
2d (Sp−2)

∣∣1DMean
(
{uT∇`i(Cγ(θ∗(i));x(j))}nj=1

)∣∣

(ii)

≤ sup
u∈N

1/2
2d (Sp−2)

∣∣1DMean
(
{uT∇`i(Cγ(θ∗(i));x(j))}nj=1

)
− 〈u,∇Lθ∗,i(Cγ(θ∗(i)))〉

∣∣

︸ ︷︷ ︸
T2,1

+ sup
u∈N

1/2
2d (Sp−2)

|〈u,∇Lθ∗,i(Cγ(θ∗(i)))〉|

︸ ︷︷ ︸
T2,2

where Step (i) uses the optimality of θ̂(i) and Step (ii) performs splitting by addition and
subtraction as mentioned earlier.

Bounding T2,1: T2,1 can be bounded using Lemma 67, since it holds for any w ∈ N γ
d (Sp−2)

and Cγ(θ∗(i)) ∈ N γ
d (Sp−2 by definition. Therefore, we get

sup
u∈N

1/2
2d (Sp−2)

∣∣1DMean
(
{uT∇`i(Cγ(θ∗(i));x(j))}nj=1

)
− 〈u,∇Lθ∗,i(Cγ(θ∗(i)))〉

∣∣

≤
√
C(α)

{
ε

√
log

(
1

ε

)
+

√
d log(p)

n
+

√
d

n
log

(
3ep

dγ

)}
.

Bounding T2,2: T2,2 can be bounded as follows:

sup
u∈N

1/2
2d (Sp−2)

|〈u,∇Lθ∗,i(Cγ(θ∗(i)))〉| ≤ ‖∇Lθ∗,i(Cγ(θ∗(i)))‖2

= ‖∇Lθ∗,i(Cγ(θ∗(i)))−∇Lθ∗,i(θ∗(i))‖2

≤ L‖Cγ(θ∗(i))− θ∗(i)‖2 ≤ Lγ,
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where L is the Lipschitz constant of Lθ∗,i. A simple calculation reveals that:

∇2Lθ∗,i(w) = Ex∼Pθ∗ [σ(〈w, x(−i)〉xi)(1− σ(〈w, x(−i)〉xi))x(−i)x(−i)T ]

⇒ vT∇2Lθ∗,i(w)v = Ex∼Pθ∗ [σ(〈w, x(−i)〉xi)(1− σ(〈w, x(−i)〉xi))(〈v, x(−i)〉)2]

(i)

≤ 1

4
Ex∼Pθ∗ [(v

Txi)
2]

(ii)

≤ p

4
‖v‖2

2

where in Step (i) we have used the fact that σ(z)(1 − σ(z)) ≤ 1
4
and in Step (ii) we have

used the Cauchy-Schwarz inequality, leading to L = p.
With the choice of γ = max

{
ε
p
, log(1/δ)

n

}
, we have the final result

sup
u∈N

1/2
2d (Sp−2)

∣∣∣1DMean
(
{uT∇`i(θ̂(i);x(j))}nj=1

)∣∣∣

≤
√
C(α)

{
ε

√
log

(
1

ε

)
+

√
d log(p)

n
+

√
d

n
log

(
3ep

dγ

)}
+ max

(
ε,

log(1/δ)

n

)

and this completes the proof.

Auxiliary Results

Here we state and prove Lemma 69, which we use in the proof of Lemma 67.
Lemma 69 ([103, Lemma 3]). Suppose P? is a sub-Gaussian distribution with variance proxy
σ2 and mean µ = Ex∼P? [x]. Given n samples from the mixture distribution Pε = (1−ε)P?+εQ,
Algorithm 6 returns an estimate θ̂δ that satisfies

|θ̂δ − µ| . ε

√
σ2 log

(
1

ε

)
+

√
σ2 log

(
1/δ

n

)

with probability at least 1− δ.

Proof. The proof mostly follows the proof in [103].

Let I? be the interval µ ±
√
σ2 log

(
1
δ1

)
. For notational convenience, let fn(u, v) =

√
u(1− u)

√
log(1/v)

n
+ 2

3
log(1/v)

n
. Let Î = [a, b] be the interval obtained using the first split of

the sample set Z1 i.e. the shortest interval containing n(1− (δ1 + ε+ fn(ε+ δ1, δ3))) points
of Z1. In Algorithm 6, we have δ1 = ε and δ3 = δ/4.

From [103, Claim 5], we have that

length(Î) ≤ length(I?) ≤ 2

√
σ2 log

(
1

δ1

)
.
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To bound the error of the estimator, we analyze the quantity
∣∣∣∣∣

1

|Î|

∑

zi∈Z2

ziI
{
zi ∈ Î

}
− µ

∣∣∣∣∣ ,

where |Î| =
∑
zi∈Z2

I
{
zi ∈ Î

}
.

We do so by casing on whether a sample zi was sampled from P? or from Q, like so.

∣∣∣∣∣
1

|Î|

∑

zi∈Z2

ziI
{
zi ∈ Î

}
− µ

∣∣∣∣∣ =

∣∣∣∣∣∣∣
1

|Î|



∑

zi∈Z2
zi∼P?

ziI
{
zi ∈ Î

}
+
∑

zi∈Z2
zi∼Q

ziI
{
zi ∈ Î

}

− µ

∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣
1

|Î|

∑

zi∈Z2
zi∼P?

ziI
{
zi ∈ Î

}
− µ

∣∣∣∣∣∣∣
︸ ︷︷ ︸

T1

+

∣∣∣∣∣∣∣
1

|Î|

∑

zi∈Z2
zi∼Q

ziI
{
zi ∈ Î

}
− µ

∣∣∣∣∣∣∣
︸ ︷︷ ︸

T2

.

Bounding T1: From [103, Claim 6], we bound T1 with probability at least 1− δ3 − δ5 as

T1 ≤
ε+ fn(ε, δ5)

1− δ4

· 4

√
σ2 log

(
1

δ1

)
,

where δ4 = (δ1 + ε) + fn(δ1 + ε, δ3).

Bounding T2: To bound T2, we split the terms further.

T2 =

∣∣∣∣∣∣∣∣∣∣

1

|Î|

∑

zi∈Z2

zi∈Î
zi∼Q

(zi − µ)

∣∣∣∣∣∣∣∣∣∣

=
|ÎP?|
|Î|

∣∣∣∣∣∣∣∣∣∣

1

|ÎP?|

∑

zi∈Z2

zi∈Î
zi∼Q

(zi − µ)

∣∣∣∣∣∣∣∣∣∣

≤ |ÎP
?|
|Î|

∣∣∣∣∣∣∣∣∣∣




1

|ÎP?|

∑

zi∈Z2

zi∈Î
zi∼Q

zi



− E[x|x ∈ Î , x ∼ P?]

∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

T2,1

+
|ÎP?|
|Î|

∣∣∣E[x|x ∈ Î , x ∼ P?]− µ
∣∣∣

︸ ︷︷ ︸
T2,2

,

222



where |ÎP? | =
∑
zi∈Z2
zi∼P?

I
{
zi ∈ Î

}
is the number of elements in Z2 that were originally sampled

from P?.
T2,1 is the deviation of the mean of the samples originally sampled from Q and remain in

Î from the mean of P? conditioned on the event that they belong to Î as well. T2,2 measures
the deviation of the mean of P? from the mean of the same distribution conditioned on Î.

Bounding T2,1: We bound T2,1 using [103, Lemma 15]. With this result, we get that with
probability at least 1− δ7,

T2,1 ≤

√
2σ2 log(3/δ7)

P?(Î)
+ 2

√
σ2 log

(
1

δ1

)
log(3/δ7)

|ÎP?|
.

Bounding T2,2: To control T2,2 we make use of Proposition 64 in conjuction with [103,
Lemma 14] to get

T2,2 ≤ 2P?(Îc)

√√√√σ2 log

(
1

P?(Îc)

)
,

where P?(A) is the probability that z ∼ P? lies in A. Finally, we bound P?(Îc using [103,
Claim 7] to obtain with probability at least 1− δ6 that

P?(Îc) ≤ C1ε+ C2δ1 + C3
log(n)

n
+ C4

log(1/δ6)

n
+ C5

log(1/δ3)

n
,

where {Ci}6
i=1 are universal constants.

Therefore, combining the bounds for T1, T2,1 and T2,2, and setting δ1 = ε, δ3 = δ5 = δ6 =

δ7 = δ/4 and noting that for the choice of n |ÎP? | ≥ n
2
, we get the final deviation bound:

T1 + T2,1 + T2,2 . ε

√
σ2 log

(
1

ε

)
+

√
σ2 log

(
1/δ

n

)
,

and this completes the proof of the lemma.
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D.6 Proof of Theorem 38
In this section, we present the proof of Theorem D.6. The proof mostly follows the analysis
in the proofs of Lemma 63 and Theorem 20. The only difference is that we will not be able to
use the sub-Gaussianity of Ising model distributions anymore, as it is no longer applicable.

Proof. Following the proof of Lemma 63, we have for any v such that ‖v‖1 = 1 that
∣∣〈v,∇Lθ(1),i(2θ

(2)(i))
〉∣∣ ≤

∣∣Ez1,z2∼C
[〈
v,∇`i(2θ(2)(i); z1)

〉
I {z1 6= z2}

]∣∣
+
∣∣Ez1,z2∼C

[〈
v,∇`i(2θ(2)(i); z2)

〉
I {z1 6= z2}

]∣∣
(i)

≤ Ez1,z2∼C
[∣∣〈v,∇`i(2θ(2)(i); z1)

〉∣∣ I {z1 6= z2}
]

︸ ︷︷ ︸
T1

+ Ez1,z2∼C
[∣∣〈v,∇`i(2θ(2)(i); z2)

〉∣∣ I {z1 6= z2}
]

︸ ︷︷ ︸
T2

,

where in step (i), we have used Jensen’s inequality for f(x) = |x|.

Bounding T1: By Hölder’s inequality
∣∣〈v,∇Lθ(1),i(2θ

(2)(i))
〉∣∣ ≤ ‖v‖1

∥∥∇Lθ(1),i(2θ
(2)(i))

∥∥
∞.

Again by Jensen’s inequality, and the explicit form of ∇`i, we have
∥∥∇Lθ(1),i(2θ

(2)(i))
∥∥
∞ =∥∥E

[
∇`i(2θ(2)(i), z1)

]∥∥
∞ ≤ E

[
‖∇`i(2θ(2)(i), z1)‖∞

]
≤ 1. Therefore,

Ez1,z2∼C
[∣∣〈v,∇`i(2θ(2)(i); z1)

〉∣∣ I {z1 6= z2}
]
≤ Ez1,z2∼C [I {z1 6= z2}] ≤ ε.

Bounding T2: T2 can be bounded in the exact same way as T1.
Plugging these bounds, we get that

∣∣〈v,∇Lθ(1),i(2θ
(2)(i))

〉∣∣ ≤ 2ε.

Now, following the first part of the proof of Theorem 20, we have using Hölder’s inequality
and the bound above that

C

2

exp(−O(ω))

ω
‖∆i‖2

2 ≤
∣∣〈∆i,∇Lθ(1),i(2θ

(2)(i))
〉∣∣ ≤ ‖∆i‖1

∥∥∇Lθ(1),i(2θ
(2)(i))

∥∥
∞ ≤ 2ε‖∆i‖1

where ∆i = 2θ(1)(i) − 2θ(2)(i). Now, since θ(1) and θ(2) are parameters of Ising models
with maximum vertex degree d, ∆i = 2θ(1)(i) − 2θ(2)(i) has atmost 2d non-zero elements.
Consequently, we get ‖∆i‖1 ≤

√
d‖∆i‖2.

Finally, plugging the above norm inequality in the previous bound, we have:

‖∆i‖2 . ε
√
dω exp(O(ω)).

Analogously, since d ≤ k when G(1), G(2) ∈ Gp,k, we have

‖∆i‖2 . ε
√
kω exp(O(ω)),

224



Alternatively, note that by the triangle inequality: ‖∆i‖1 ≤ ‖2θ(1)(i)‖1 + ‖2θ(2)(i)‖1 ≤ 4ω.
This gives us:

‖∆i‖2 .
√
εω exp(O(ω))

Since both types of inequalities holds simultaneously, we recover the statements of the
theorem for Gp,d and Gp,k.
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