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Abstract

Today, machine learning is transitioning from research to widespread deployment.

�is transition requires algorithms that can learn from heterogeneous datasets and

models that can operate in complex, o�en multitask se�ings. So, is there a set of

principles we could follow when designing models and algorithms for such se�ings?

In this thesis, we approach this question from a probabilistic perspective, develop a

declarative framework for representing, analyzing, and solving di�erent multitask

learning problems, and consider multiple case studies ranging from multi-agent

games, to multilingual translation, to federated learning and personalization.

�e ideas presented in this thesis are organized as follows. First, we introduce our

core probabilistic multitask modeling framework. Starting with a general de�nition

of a learning task, we show how multiple related tasks can be assembled into

and represented by a joint probabilistic model. We then de�ne di�erent notions

of generalization in multitask se�ings and demonstrate how to derive practical

learning algorithms and consistent objective functions that enable certain types of

generalization using techniques from probabilistic learning and inference. Next,

we illustrate our proposed framework thorough multiple concrete case studies.

Each of our case studies is an independent vigne�e that focuses on a particular

domain and showcases the versatility of our framework. Not only we reinterpret

di�erent problems from a probabilistic standpoint, but we also develop new learning

algorithms and inference techniques that improve upon the current state-of-the-art

in each of the considered domains.
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Chapter 1
Introduction

Machine learning is one of the most successful approaches to building intelligent systems today.

At its core, learning amounts to extracting statistical pa�erns from data and building models

that exhibit generalization (i.e., can accurately predict unseen data). �is is typically done

through optimization of an objective function computed on a training dataset. In other words,

machine learning enables inductive inference (i.e., allows to discover functional dependencies

from examples) in a distributional sense—the learned models are accurate on unseen examples

as long as these examples originate from the same underlying distribution as the training data.

With the advent of deep learning (LeCun et al., 2015), training models on massive datasets

has led to many breakthroughs across di�erent areas of machine intelligence. Each of the modern

successes pertains to a single, well-de�ned learning problem within a speci�c, narrow domain

(e.g., machine translation between a pair of languages). As machine learning is transitioning

from research to widespread deployment in the real world, however, it has to face signi�cantly

more complex scenarios (Stoica et al., 2017), ranging from environments with dynamically

changing objectives to se�ings where a high degree of personalization is necessary. However,

many se�ings in which we wish to deploy machine learning models, unfortunately, o�en break

some of the assumptions required for distributional inductive inference to work.

In this thesis, we argue that many of the complex learning problems that arise in the real

world can be decomposed into parts and approached using multitask learning (Caruana, 1998).

As such, our main question of interest is the following:

Is there a set of common principles that we could follow when designing models and
algorithms for learning in a variety multitask se�ings that arise in practice?

Learning models that can handle multiple tasks has been a long-standing problem in machine

intelligence, with many di�erent formulations, approaches, and se�ings of interest. Back in

the late 80s and early 90s, Sejnowski and Rosenberg (1987) proposed the �rst multitask neural

network for speech synthesis, Ring (1994) introduced continual learning, and Caruana (1998)

explored the e�ects and demonstrated the power of training models on multiple prediction tasks

simultaneously. Fast forward to today, and multitask learning has almost become the default

approach with a rapidly growing toolbox of di�erent techniques (e.g., see Ruder, 2017).
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To name just a few: instead of training models from scratch, today they are o�en initially

pre-trained on massive datasets and then �ne-tuned for the task of interest, which has become a

best practice in Computer Vision (CV) (Yosinski et al., 2014; Kolesnikov et al., 2019), Natural

Language Processing (NLP) (Mikolov et al., 2013; Peters et al., 2018; Devlin et al., 2018; Radford

et al., 2019), and other domains; introducing auxiliary tasks and corresponding losses has shown

to be e�ective in improving performance on the main task of interest and used successfully

in Reinforcement Learning (RL) (Ng et al., 1999; Jaderberg et al., 2016); training models on

large collections of similar tasks has enabled extremely data-e�cient learning, which has been

successfully used in robotics (e.g., Duan et al., 2017) and beyond (Hospedales et al., 2020); methods

for reducing interference and inducing transfer between tasks is yet another very active area of

research (e.g., Chen et al., 2018; Zamir et al., 2018; Chen et al., 2020).

While the toolbox of di�erent multitask learning techniques is extremely rich and keeps

rapidly growing, a coherent methodological framework behind these developments is lacking.

Unfortunately, this makes most of the existing approaches ad-hoc, application-speci�c and

narrow, and it is o�en quite nontrivial to adapt them from one problem domain to another.
1

Moreover, what does it mean “to generalize” in a multitask se�ing? Without a formal framework,

the notion of generalization becomes somewhat vague and unclear.

1.1 Goals

�is thesis aims to develop a declarative framework for representing and solving a variety of

learning problems that can be approached from a multitask perspective. Our proposed framework

is based on Probabilistic Graphical Models (PGM) (Pearl, 1988; Lauritzen and Spiegelhalter,

1988; Koller and Friedman, 2009), which allow us to separate the declarative representation

(or description) of a multitask learning problem in a particular application domain from the

general-purpose algorithms used for learning and inference. In the past, graphical models have

entirely rede�ned the way how pa�ern discovery and data analysis are approached today, not

only giving rise to a variety of popular models (such as factor, topic, mixed membership, etc.)

but also providing a general algorithmic toolkit that has been applied across di�erent domains.

Similarly, as a step toward approaching multitask learning systematically, our goal is to develop

a Probabilistic Multitask Modeling (PMM) framework that can be used for many applications.

Complex
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Figure 1.1: �e three steps of probabilistic multitask modeling.

1
For example, a�er ImageNet pre-training had become standard in computer vision, it required developing new

architectures, designing custom loss functions, inventing new training techniques, and over more than 4 years of

research before pre-training started to work similarly well for natural language tasks (Ruder, 2018).
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�esis statement. �e following two claims are at the core of my thesis.

1. Many complex learning problems can be decomposed into multiple related learning tasks.

2. Using a joint probabilistic model over all tasks allows to de�ne di�erent notions of multitask
generalization as well as derive consistent objective functions for learning in such se�ings.

As we will see throughout this thesis, many complex learning scenarios—ranging from

learning under nonstationarity to personalization and model interpretability—can all be cast

as multitask learning problems. Once the problem is decomposed into multiple related tasks,

as depicted in Figure 1.1, we can represent them using a probabilistic graphical model and

de�ne a joint probability distribution over all the variables across all these tasks. Using this

joint distribution, we can further formally de�ne di�erent notions of generalization in each

se�ing of interest (e.g., zero-shot generalization, cross-task generalization, etc.). Further, using

probabilistic inference as a general-purpose tool, we will be able to derive objective functions

optimizing which will yield multitask models that exhibit the desired notions of generalization.

1.2 Contributions

�e main contributions of this thesis are two-fold.

1. Framework. First, it formalizes and presents the PMM framework as we sketched out

above. Starting with the general de�nition of a task, we show how multiple related tasks can be

assembled into and represented by probabilistic graphical models, in particular, factor graphs.
We then de�ne di�erent notions of generalization (i.e., formulate the classical inductive inference

with respect to conditionals or marginals of the joint multitask distribution) and demonstrate

how to derive consistent objective functions as well as design algorithms for optimizing them

using approximate probabilistic inference techniques.

2. Vignettes. Second, the framework is illustrated through multiple concrete case studies.

Each of the case studies is an independent vigne�e that focuses on a multitask se�ing within

a speci�c domain (ranging from natural language generation to multi-agent reinforcement

learning), showcasing the versatility of the proposed PMM framework. Each case study not

only reinterprets the problem from a probabilistic standpoint, but also develops new learning

algorithms and inference techniques that improve upon the state-of-the-art in the given domain.

�e Scope. Multitask learning is vast. �is thesis by no means a�empts to capture and re-

interpret all possible aspects, se�ings, and scenarios that appear, or may appear in the future, in

real world applications. Instead, the scope of this thesis is limited to the design principles of the

objective functions that enable a few select notions of (out-of-distribution) generalization in

multitask se�ings. Apart from the objective function design, there are other techniques that have

been shown to improve learning and generalization in multitask se�ings (e.g., data augmentation,

Andreas, 2019). Interpreting such other techniques from a probabilistic standpoint, while likely

possible and potentially fruitful, is beyond the scope of this thesis.

In the following section, we provide a brief overview of each of the contributions, including

the framework, each of the case studies, as well as highlight the key results.
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1.3 Overview

�is thesis is organized into three parts. �e �rst part describes the PMM framework in its full

generality and connects it with the related work in the multitask learning literature. �e second

part presents four independent case studies focused on concrete applications of our framework.

And the third and �nal part concludes this thesis, summarizes the key takeaways, and outlines

interesting directions of future work. Below, we brie�y overview each of the parts.

1.3.1 Overview of the Framework (Part I)

�e �rst part provides the necessary background on probabilistic graphical modeling and

probabilistic inference, introduces and discusses in detail each of the three steps of our framework,

illustrated in Figure 1.1, and concludes with a brief survey of modern multitask learning literature,

which is discussed from the perspective of the introduced framework.

Representing Multitask Learning Problems with Factor Graphs

�e �rst two questions that we ask in this part are: “What is a learning task?” and “How can we

describe and represent arbitrary multitask learning problems?” Following Mitchell et al. (2018),

we associate a learning task with a function (Figure 1.2a), i.e., a (not necessarily deterministic)

mapping from some inputs to outputs, where the goal is to �nd a function that �ts the data

well. A multitask learning problem, therefore, consists in learning a collection of such functions

(�nite or in�nite) from a given dataset. Since these functions o�en share variables, a good

representation of a multitask learning problem must capture such relationships. Moreover, it

must also allow us to evaluate the “goodness of �t” of the entire collection of functions jointly.

f

x1

x2

y

(a) function

potential

functions

random

variables

x2x1 x3

ψ1 ψ2

(b) factor graph

Figure 1.2: Examples of graphs that represent (a) a function and (b) a factor graph.

We show that factor graphs (Kschischang et al., 2001; Frey, 2002) are particularly suitable

for representing multitask learning problems. Factor graphs is a class of graphical models that

has a bipartite structure with a set of nodes that corresponds to random variables and another

set that corresponds to potential functions (Figure 1.2b). Such graphs allow us to explicitly and

unambiguously represent the factorization of the underlying joint distribution over the variables.

Assigning each learning task a potential function lets us de�ne a join probability distribution

over all the variables, tie together multiple tasks, and use standard techniques from probabilistic

inference for constructing objective functions and designing new multitask learning algorithms.
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De�ning Generalization inMultitask Settings and Deriving Consistent Loss Functions

Further, we show how di�erent kinds of multitask learning problems that arise in practice—

ranging from �xed collections to distributions over tasks or even subsets of related tasks—can

all be represented with factor graphs that de�ne the corresponding joint probabilistic models.

Moreover, we show that di�erent types of generalization in multitask se�ings (such as zero-shot,

few-shot, etc.) can be de�ned with respect to speci�c conditional and marginal distributions.

As a result, we get a very simple recipe for constructing loss functions for multitask learning:

use (variational) bounds or computationally tractable approximations to various log-conditional

and log-marginal likelihoods of interest. Such loss functions can be derived mechanistically

from the corresponding factor graph representations using standard tools from probabilistic

inference literature (Koller and Friedman, 2009). Moreover, we show that optimizing such loss

functions o�en provably leads to desired generalization properties of the resulting models, while

optimizing more common losses o�en does not.

Finally, we conclude this part with a discussion of alternative learning strategies beyond

optimization, such as posterior inference over model parameters (MacKay, 1992). Such inference

can be done tractably by minimizing a divergence between the true posterior and a variational

approximation using message passing algorithms (Minka, 2005), which can be executed very

e�ciently in distributed se�ings and can scale to massive numbers of tasks.

1.3.2 Overview of the Case Studies (Part II)

�e second part grounds the ideas behind our PMM framework by illustrating them through

multiple case studies. Each chapter in this part is focused on a concrete machine learning

application that can be cast as a multitask learning problem and is independent of other chapters.

Below, we overview the key contributions of each chapter.

Chapter 4: An Inferential Approach to Federated Learning

In our �rst case study, we focus on Federated Learning (FL)—a framework that enables learning

statistical models from heterogeneous datasets sca�ered across a large number of di�erent

entities (e.g., organizations, users, mobile devices, etc., all termed clients) without a direct access

to their data. �e ultimate goal of FL is to provide a best possible model for each client. As such,

we can view FL as a massively multitask learning problem where each client corresponds to a

learning task, the tasks are di�erent but related to each other, and the goal can be achieved by

learning a collection of optimal personalized models, one for each client. Depending on the

se�ing, the number of clients can be �xed or unlimited; in the la�er case, we have to deal with a

distribution over tasks which requires an ability to generalize to new tasks.

FL is not only an interesting problem to tackle due to its growing popularity and the increasing

number of real-world deployments (Kairouz et al., 2019), but also because it has simple multitask

structure that allows us to illustrate the key ideas and demonstrate the advantages of our

probabilistic approach before moving on to more complex scenarios in the chapters that follow.

5



Canonically, FL is formulated as a distributed optimization problem (McMahan et al., 2017).

While convenient, it turns out that this formulation has multiple disadvantages, such as issues

with convergence in heterogeneous se�ings. Much of the recent FL literature has focused

on di�erent ways to address some of these shortcomings without reconsidering the original

formulation, e.g., by introducing various regularization losses, learning rate schedules, etc.

In this chapter, we introduce a probabilistic view of FL that allows us to reformulate the

problem as distributed Bayesian inference rather than optimization. In this new formalism,

personalization corresponds to inference of the local parameters from the client data, while

learning corresponds to global posterior inference. Next, we design a new algorithm for e�cient

posterior inference in federated se�ings, termed federated posterior averaging (FedPA) which

generalizes the commonly used in practice federated averaging (FedAvg) (McMahan et al., 2017)

and addresses some of its limitations. We also show that FedPA is a special case of generalized
message-passing (Minka, 2005) and can be seen as a minimization of a divergence between the

true posterior and a variational approximation. Finally, we discuss inferential approaches to

personalization and empirically study combinations of FedPA with meta-learning algorithms.

Chapter 5: Reinforcement Learning under Nonstationarity

Learning under nonstationarity is a canonical example of a learning problem that we call complex.

Due to nonstationarity, the data distribution changes or dri�s over time, and thus the classical

notions of learning and generalization no longer apply in such se�ings. In this chapter, we study

RL in nonstationary environments that gradually change over time and develop methods for

training agents that can adapt to such changes.

Noting that any nonstationary process that gradually changes over time can be seen as

stationary on a certain time scale, following our main thesis, we propose to decompose such

nonstationary problems into sequences of stationary learning tasks represented with Markov

chains. As long as the transitions between tasks are predictable from the past observations, such

multitask representation allows us to solve nonstationary environments by slightly updating

(i.e., adapting) the policy before using it for each subsequent task. Further, since nonstationarity

allows for only a limited amount of interaction with each task before it changes, it immediately

puts learning into the few-shot regime, which requires data e�ciency.

In this chapter, we formalize these requirements and formulate few-shot generalization in

sequential multitask se�ings using our PMM framework. To do so, we �rst provide a probabilistic

re-interpretation of Model-agnostic Meta-Learning (MAML) (Finn et al., 2017), where our expo-

sition focuses on RL. �en, we extend our formalism to meta-RL on chains of tasks and derive a

new loss that can be directly plugged into MAML and optimized using policy gradients (Su�on

et al., 2000) to enable continuous adaptation from task to task in a few-shot regime. �e proposed

approach is extensively validated through an empirical study that compares it with multiple

baselines on nonstationary locomotion problems and complex multi-agent games and shows

that meta-learning-enabled continuous adaptation is superior to other methods. Finally, we

conclude this chapter with a discussion of some notable follow-up work that either builds on,

extends, or complements our contributions.
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Chapter 6: Zero-shot Consistent Multilingual Machine Translation

Typically, learning models that can e�ectively generalize to new tasks requires having access to

at least a few data samples from each target task, as it was the case in the previous chapters.

In this chapter, we focus on zero-shot generalization—a se�ing in which the goal is to train

models capable of solving new tasks without any access to the target data. In this case study,

we consider multilingual machine translation where tasks correspond to translation directions

between di�erent pairs of languages. Zero-shot generalization not only is desirable but critical

for building multilingual systems as the data for some tasks (i.e., pairs of languages) can o�en be

either extremely scarce or unavailable, which makes multilingual translation a perfect application

as well as test bed.

While multilingual translation is trivial to decompose into multiple tasks, representing all

these tasks with a joint model that enables zero-shot generalization is non-trivial. Again, applying

our PMM framework, we represent multiple translation tasks with a single factor graph and a

corresponding joint distribution over the so-called equivalent sentences. Computing or optimizing

the marginal likelihood under this model turns out to be intractable. So, we design a tractable

objective function, called agreement-based loss, which lower bounds the likelihood. We show

that optimizing our lower bound provably enables zero-shot generalization, while optimizing

the classical cross-entropy objective does not. Finally, we demonstrate the e�ectiveness of our

method on multiple zero-shot translation benchmark tasks, showing substantial improvement

of up to +2-3 BLEU points. We conclude with a brief discussion of recent follow up work that

extends our approach to unsupervised machine translation.

Chapter 7: A Multitask View of Model Interpretability

When a learning problem admits a natural multitask decomposition (as in Chapters 4 to 6), PMM

provides a systematic way to represent the problem, derive a loss function, and learn models

that exhibit the desired notions of generalization. In this chapter, we argue that, given additional

considerations such as interpretability of the model predictions, it might be advantageous to view

even classical single-task learning problems from a multitask perspective. But how so?

Many modern single-task learning problems (e.g., image classi�cation) rely on large datasets,

learning from which requires using a rich enough family of models that can represent the

complexity of pa�erns observed in the data. Using models that are too simple (e.g., linear), albeit

interpretable, is likely to result in sub-par performance, while complex models such as deep

neural nets are typically not designed to be human-intelligible. So, in one way or the other, we

have to cope with the accuracy vs. interpretability trade-o� if we approach the problem as stated.

Alternatively, we can decompose the original, complex learning problem into multiple “tasks”

each of which is simple enough to be solved with an interpretable model. In this case study, we

follow this alternative and decompose various prediction problems into tasks that correspond

to the same problem but on a sub-space of possible inputs, which we call the context. To this

end, we introduce a new class of model architectures, called Contextual Explanation Networks

(CENs) and show that if each task is solvable by di�erent contexts can be identi�ed reliably, our

approach enables overall accurate prediction along with interpretability within each context.
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We note that Chapters 4 to 7 present some the previously published results by the author

in light of the new unifying probabilistic multitask modeling framework (Chapter 3). As such,

our exposition here is more general. In addition, we also brie�y summarize and discuss notable

follow up work that builds on or extends our ideas at the end of each chapter. We hope that even

readers quite familiar with the original papers �nd our discussion interesting and insightful.

Open Source Contributions

�e work on this thesis resulted in multiple open source contributions, including the following:
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• keras-gp (h�ps://github.com/alshedivat/keras-gp): An library that provides GP layers

compatible with the Keras API, which can be used with arbitrary deep neural architectures.

• robosumo (h�ps://github.com/openai/robosumo): A set of custom competitive multi-

agent MuJoCo environments and pretrained models used for testing continuous adaptation.

• meta-blocks (h�ps://github.com/alshedivat/meta-blocks): An e�cient implementation of

popular meta-learning algorithms in TensorFlow along with tools for easy benchmarking.

• cen (h�ps://github.com/alshedivat/cen): Contextual explanation layers for TensorFlow

(Keras API), compatible with arbitrary arbitrary deep neural architectures.

• fedpa (h�ps://github.com/alshedivat/fedpa): A mini-library for running and visualizing

federated learning algorithms. A scalable version was also open sourced through Google.

Excluded Research Contributions

Besides the primary contributions presented in this thesis, there are multiple other notable

research developments that have been made throughout the author’s PhD journey, which were

excluded for clarity and summarized below:

• Deep Gaussian processes and spectral learning methods. During the �rst 1.5 years

of PhD, some of our initial work was focused on spectral learning of non-parametric

models (Kandasamy et al., 2016) as well as probabilistic (Bayesian) deep learning, with an

emphasis on predictive uncertainty quanti�cation in temporal prediction using Gaussian

Processes (GPs) with recurrent neural kernels (Al-Shedivat et al., 2017c).

• Learning in multi-agent settings. Starting with the internship at OpenAI, we have

made multiple contributions to the multi-agent learning literature: enabling agents to

learn to reciprocate in general-sum games (Foerster et al., 2018a), learning to model

behavior of other agents with policy embeddings (Grover et al., 2018b; Grover et al.,

2018a), new algorithms for learning from humans (Platanios et al., 2020). Along the way,

new methods for estimating high-order derivatives of stochastic objective functions have

been designed (Foerster et al., 2018b; Mao et al., 2019), which turned out to be instrumental

in the aforementioned projects.

• Interpretability of predictive models with applications to healthcare. In this the-

sis we will discuss model interpretability in some capacity (in particular, a multitask

perspective on the problem). Apart from that, we have also explored the properties and

implications of di�erent automatically generated explanations (Al-Shedivat et al., 2017b),

applied them to problems in digital healthcare (Al-Shedivat et al., 2017a; Lengerich et al.,

2020), and developed a new class of regularizers that can be used for arbitrary models and

signi�cantly improve post-hoc explanations of their predictions (Plumb et al., 2020).

• Miscellaneous. Finally, there are several other side-projects we had a pleasure to con-

tribute to: quanti�cation of complexity of exploration in reinforcement learning in navi-

gation environments (Al-Shedivat et al., 2018b), methods for controllable and progressive

generation of long text passages using large scale pretrained language models (Tan et al.,

2021), and the �eld guide to federated learning (Wang et al., 2021).
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1.5 How to Read�is �esis?

Each chapter of this thesis is wri�en to be as self-contained as possible. Chapter 3 is wri�en in

a tutorial style: it de�nes di�erent types of multitask learning problems, present the key ideas

behind our probabilistic approach, and connects them to the existing literature. As such, we

keep our discussion in Chapter 3 to be mostly application-agnostic and provide only simple

examples designed for illustration purposes. �roughout Chapter 3, however, we refer to case

studies presented in Chapters 4 to 7, each of which is independent of the other chapters and

dives deeper into a particular technique used in the context of a speci�c application.

�e recommended order of reading the reset of this thesis is the following: Chapter 3, then

Chapters 4 to 7 in any order (skipping any, depending on the reader’s interests and preferences),

and �nally the concluding Chapter 8. Readers are not expected to have detailed knowledge of

probabilistic machine learning or any of the subareas that we dive into in the case studies, as we

try to provide the necessary background in Chapter 2 and refer to it throughout.
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Probability theory is nothing but common sense reduced to calculation.

Lierre Simon Laplace

When we try to pick out anything by itself, we �nd that it is bound fast by a

thousand invisible cords that cannot be broken, to everything in the universe.

John Muir

Part I

Foundations

In this part, we introduce the probabilistic multitask modeling framework and discuss

its connections to some of the classical and modern developments in multitask

and meta-learning literature. Chapter 2 provides the necessary background on

probabilistic graphical modeling and probabilistic inference, and establishes the

notation that we use throughout the rest of this thesis. �en, Chapter 3 introduces

and discusses in detail the three steps of our framework, de�nes di�erent notions of

generalization in multitask se�ings, and presents some formal guarantees for our

methods, and brie�y surveys some of the popular and successful multitask learning

techniques from the literature, connecting them to the introduced framework.
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Chapter 2
Background & Preliminaries

2.1 Summary

�is chapter provides a minimal technical background on probabilistic modeling—touching

upon graphical representations of probability distribution and summarizing di�erent learning

and inference techniques—which is necessary to introduce the main contributions of this thesis

in the subsequent chapters. We also brie�y introduce reinforcement learning and some aspects

of deep learning such as encoder-decoder architectures. Readers familiar with most of these

concepts are encouraged to skip directly to Chapter 3.

2.2 Probability Distributions and Graphical Models

�roughout this thesis, we will work with probability distributions over random variables.

�e data (i.e., observations), di�erent latent states (if any), and parameters of the model will

all be represented with random variables, which are assumed to be high-dimensional vectors.

Probability distributions over these variables will be represented with graphs (Figure 2.1).

Ai

B

Ci

i ∈ [N ]

Ai

B
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i ∈ [N ]
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B

Ci

ψi

i ∈ [N ]

Figure 2.1: Directed (le�), undirected (middle), and factor (right) graph representations of p (A,B,C).

In the graphical representation of probabilistic models, random variables are represented

with nodes, where shaded nodes correspond to observed variables and blank nodes correspond

to unobserved (or latent) variables. Groups of indexed variables (e.g., those that correspond to
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di�erent data points) are scoped with plates. We will o�en times refer to variables within some

plates as local and outside the plates as global, where local variables will pertain to a particular

context (e.g., a user, an environment, or even a single data point) while global variables (which

will typically be latent) will be relevant across all contexts represented by the model.

While there are multiple di�erent types of graphical models (Koller and Friedman, 2009),

throughout this thesis we will use factor graphs which represent functional dependencies between

random variables explicitly using additional nodes (small black squares, “�”). Although factor

graphs generalize directed and undirected graphical models (Frey, 2002), in this thesis we mainly

use them for clarity—representing mutltitask learning problems using factor graphs would make

it transparent which functions and in what capacity are shared across di�erent tasks and on

which variables they operate on. Finally, factor graphs will allow us to de�ne joint probability

distributions using the exponential form (Wainwright and Jordan, 2008). For example, the joint

distribution for the factor graph in Figure 2.1 can be wri�en as follows:

p (A,B,C) = exp

{∑
i

ψi(Ai, Ci, B)− logZ

}
, (2.1)

where Z is the normalizing constant. Note that factors ψ are arbitrary functions which can be

implemented with neural networks.

A note on terminology. In machine learning, the word “model” can be ambiguous and used

to refer either to a probabilistic model (i.e., an object for which we can compute or estimate the

likelihood given some data) or a computational/predictive model (i.e., a function that maps some

inputs to some outputs). To avoid ambiguity, unless speci�ed otherwise, we will use “model” to

refer to probabilistic models, and refer to predictive models explicitly or use “predictor.”

2.3 Probabilistic Inference and Learning

Given a probabilistic model, we will o�en have two primary goals: (i) process the data and

estimate the posterior distribution (or its mode) over the latent variables (including local and

global parameters of the model), which entails learning, and (ii) estimate the predictive distri-

bution and compute predictions, which entails inference. While for certain types of models

both learning and inference can be done exactly and tractably (see Koller and Friedman (2009)

for background), in the majority of practical se�ings neither is computationally tractable and

requires approximations.

2.3.1 Intractability and Approximations

�e main source of intractability in probabilistic modeling comes from integration—computing

and optimizing the likelihood of the model, estimating posterior distributions, or computing

predictive distributions almost always require computation of intractable integrals. Notice that

even the joint likelihood in our simple example in Equation 2.1 already requires computation of

the normalizing constant Z—this, in turn, requires integration (or summation) over all possible

con�gurations of random variables A,B,C . We will give more concrete examples in Chapter 3.
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Monte Carlo Integration and Markov Chains

Monte Carlo methods allow to approximately compute intractable integrals using sampling.

In our example with two observed variables A and C and a latent variable B, computing the

likelihood p (A,C) requires integrating out the latent variable: p (A,C) =
∫
B∈B p (A,B,C) dB.

If p (A,B,C) factorizes into p (B | A) p (A) p (C | B), the integral is equivalent to computing

an expectation EB|A [p (C | B) p (A)], which can be approximated with sampling:

p (A,C) ≈
M∑
m=1

p (C | B = bm) p (A) , where bm ∼ p (B | A) (2.2)

Note that this approximation requires us to be able to draw samples from p (B | A). From

uniform, standard normal, and other simple distributions we can draw samples directly. However,

for more complex distributions it is not the case. Markov Chain Monte Carlo (MCMC) allows to

produce (approximate) samples from arbitrary distributions. In a nutshell, the main idea of the

method is to construct a Markov chain with a stationary distribution that matches the one that

we would like to sample from. �en, a�er running the chain for long enough, it should mix and

start producing samples from the target distribution.

In Chapter 4, we will use a variant of Langevin dynamics (Welling and Teh, 2011) for MCMC

which relies on stochastic gradient descent and will allow us to reinterpret popular distributed

optimization algorithms from an inferential perspective.

Variational Approximations

Another way to approximate intractable integrals that come up in probabilistic inference is to

convert integration into an optimization problem. �e key idea is to approximate an intractable

distribution p that requires integration (such as p (A,C) in our running example) with another

distribution from a tractable family q ∈ Q by minimizing a divergence between the two:

q? := arg min
q∈Q

D[p ‖ q], (2.3)

where D[· ‖ ·] is some divergence measure. In this thesis, we will mainly work with Kullback-

Leibler (KL), but using some other divergence measure is also possible and would usually come

with some advantages and tradeo�s (for a contemporary overview, see Li, 2018).

2.3.2 Distributed Inference and Message Passing

In Chapter 3, we will design a multitask modeling framework where variational inference is the

cornerstone of learning in multitask se�ings as well as inference of accurate task-speci�c models.

Interestingly, using certain types of divergence measures, such as exclusive KL[p ‖ q], makes the

optimization in Equation 2.3 nicely decompose into subproblems which can be solved e�ciently

in a distributed manner using Expectation Propagation (EP) and message passing algorithms.

�is will be particularly useful for scaling probabilistic methods to massively multitask se�ings

such as FL, as we will show in Chapter 4. For brevity, we omit description of message passing

approaches to inference and refer interested readers to an excellent tutorial by Minka (2005).
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2.4 Learning to Learn (or Meta-learning)

In Chapters 3 to 5, some of our discussion will focus on meta-learning, where the goal is to learn

a learning algorithm from a collection of training tasks that can produce accurate predictive

models for unseen tasks given only few data points per task. For this to be possible, all tasks

have to be related to each other in some sense. Typically, tasks are assumed to be sampled from

a common underlying task distribution (Baxter, 2000). We will give a general de�nition of a

task and show how a distribution of tasks can be represented using graphical models further

in Chapter 3. For now, assuming that tasks are de�ned by small datasets of labeled points,

Di := {(xi, yi)}nii=1, and there are M training tasks, we provide a brief background on popular

gradient-based and metric-based meta-learning algorithms.

2.4.1 Gradient-based Meta-learning

Model-agnostic Meta-Learning (MAML) (Finn et al., 2017) is one of the most popular gradient-

based methods. �e key idea of the method is simple: given a predictive model fθ parametrized

by θ, the method searches for an initialization θ?0 of the parameters such that a few gradient

updates on a few data points from a new task can yield a highly accurate model for that task.

Mathematically, MAML can be formulated as a nested optimization with inner and outer loops:

θ?0 = arg min
θ0

1

M

n∑
i=1

L(θ0, Qi), where L(θ0, D) =
1

|D|
∑

x,y∈D

`(fθi(θ0)(x), y),

θi(θ0) = θ0 −
T∑
t=1

αt∇θtL(fθt , Si), and Di = Si tQi

(2.4)

In the outer loop, the algorithm searches for optimal initialization θ?0 by optimizing a loss

L(θ0, Qi) computed on a subset of the data Qi for each task, averaged over all M training tasks.

In the inner loop, for each training task i, it takes one or more gradient steps on the loss function

computed on another data subset Si to compute θi as a function of the current initialization θ0.

One of the advantages of MAML and many other gradient-based methods is their model-

agnostic nature: they can be used with arbitrary models and loss functions, and as a results

applied to supervised, self-supervised, semi-supervised, and reinforcement learning se�ings. We

will also see in Chapters 3 and 4 that inner and outer loops in these methods can be generalized

and reinterpreted from a probabilistic inference standpoint.

2.4.2 Metric-based Meta-learning

Another popular class of meta-learning methods is known as metric-based, which include

Prototypical Networks (ProtoNets) (Snell et al., 2017) and Neural Processes (NPs) (Garnelo et al.,

2018). �e key idea of these methods is to learn a function that maps small datasets that de�ne

tasks to vectors in an embedding space. �en, these embedding vectors can be used to construct
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task-speci�c predictive models. In particular, if each task is a classi�cation problem, ProtoNets

compute embedding vectors for each class (called prototypes) and then de�ne predictive models

as a so� nearest neighbor classi�ers. Similarly, NPs map task data to one or more embeddings

and then uses these embeddings as extra inputs to the task-speci�c predictive model.

In practice, metric-based meta-learning methods are easier to train than gradient-based ones,

they are o�en more data e�cient (i.e., can work well when trained on fewer tasks and fewer data

points per task), but require commi�ing to a particular model (e.g., so� nearest neighbor). Note

that metric-based methods can be also viewed from as algorithms that have “inner” and “outer”

loops, where the inner loop computes task-speci�c embeddings and the outer loop optimizes

parameters of the predictive model that are shared across all tasks.

2.5 Reinforcement Learning

Even though most of the subsequent chapters are focused on supervised learning problems,

ideas presented in this thesis are not limited to it and, e.g., can be used for multitask learning

in Reinforcement Learning (RL) se�ings. In RL, instead of learning a predictive model from a

static dataset, the goal is o�en to learn a policy (i.e., a function that maps observations to actions)
which an agent can follow to interact with an environment and to achieve certain goals. Such

interactive se�ing is o�en formalized using Markov Decision Process (MDP) that de�nes a state

space X , an action space A, an initial state distribution p (x0), a probability p (xt+1 | xt, at) of

transitioning to the next state xt+1 given the current state xt and the taken action at, and a

reward function r(·) which measures the quality of a trajectory (i.e., a state-action sequence).

MDP essentially de�nes a learning task, in which we are not given any data but an opportunity

to interact with some environment in order to collect data (in the form of trajectories observation,

action, and reward sequences) and use that data to learn a policy that maximizes the rewards.

�us, similar to how meta-learning is de�ned for a distribution of supervised tasks (Baxter,

1998), meta reinforcement learning (or meta-RL) can be de�ned for a distribution of MDPs. In

meta-RL, the goal is to learn a reinforcement learning algorithm which can be used to solve new

MDPs (unseen at training time, sampled from the same distribution as training MDPs) having

access to a limited number of interactions with the corresponding environments.

�e interactive nature of the problem adds quite a bit of complexity to learning and can be

approached from many di�erent angles, giving rise to many di�erent RL and meta-RL techniques:

on-policy vs. o�-policy, online vs. o�ine, and model-based vs. model-free methods. Analyzing

and discussing all these methods is far beyond the scope of this thesis. In Chapter 5, we will

focus on on-policy, model-free meta-RL and present a probabilistic take on the problem.
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Chapter 3
Structure & Interpretation of Learning in

Multitask Se�ings

3.1 Summary

In this chapter, we introduce Probabilistic Multitask Modeling (PMM) framework. We start by

de�ning what a learning task is, what it means to solve a task (or multiple tasks), and introduce

three types of multitask learning problems. Further, we de�ne di�erent notions of generalization

that arise in each of the three se�ings. �en, we discuss how to represent multitask learning

problems using factor graphs and how to use these representations to derive consistent objective

functions and design algorithms for learning and inference. �e chapter concludes with a brief

survey the modern multitask learning techniques and a discussion of the key takeaways and the

limitations of the presented framework.

3.2 What is Multitask Learning?

What is a learning task? To build a formal framework, we need a de�nition that is, on the one

hand, general enough to encompass many di�erent problems and, on the other hand, precise

enough to be operational and allow us to distinguish between simple learning problems that

correspond to a single task from those that are more complex. Similar to Mitchell et al. (2018),

we say that “solving a learning task” means �nding a function that: (1) maps some inputs to

some outputs and (2) has a high utility according to some utility measure on the data sampled

i.i.d. from a speci�ed distribution. Formally, we can give the following de�nition.

De�nition 3.1: Learning Task

Learning task is de�ned with a tuple, T := (Z, p (Z) ,L), where Z := X × Y is the

space of inputs, X , and outputs, Y , p (Z) is a data distribution over Z , and L : (f : X 7→
Y)×Z 7→ R is the loss functional that measures the utility of a task solution f .
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De�nition 3.1 neither speci�es the family of functions nor the search algorithm that is used

to �nd functions of high utility, both of which are our design choices. For example, consider

supervised learning, where the goal is to learn a function that can predict some outputs given

some inputs. If we select a family of functions parameterized by a vector θ ∈ Θ and search for

functions of high utility by minimizing the average loss L on a dataset D := {(xn,yn)}Nn=1,

this corresponds to solving the task using the well-known Empirical Risk Minimization (ERM)

principle (Vapnik, 1999):

θ̂ ← arg min
θ∈Θ

{
Remp [θ, D] :=

1

N

N∑
n=1

L(f(·;θ),xn,yn)

}
(3.1)

Another approach is to de�ne a probabilistic model (also parametrized by some vector θ ∈ Θ) that

speci�es the conditional probability distribution p (y | x;θ), and then search for high-utility
1

functions of the form f(x;θ) := arg maxy∈Y p (y | x;θ) by maximizing the log likelihood of

the probabilistic model given the data (e.g., see Murphy, 2012):

θ̂ ← arg min
θ∈Θ

{
` [θ, Dn] := −

n∑
i=1

log p (yi | xi;θ)

}
(3.2)

Finally, we could take a fully-Bayesian approach (MacKay, 1992), de�ne a prior distribution over

the space of parameter vectors p (θ), and select the solution of the task to be a function derived

from the predictive posterior distribution p (y | x, D) (see Section 2.2):

f̂Bayes(x; θ) := arg max
y∈Y

{
p (y | x, Dn) :=

∫
Θ

p (y | x;θ) p (θ | D) dθ

}
(3.3)

Note that in this la�er case, we integrate over the parameter space instead of optimizing.
2

All three methods described above are valid approaches to solving single-task learning

problems, and all of them have advantages and disadvantages (e.g., computational complexity,

the number manually speci�ed hyper-parameters, etc.) and sound theory behind them. In this

chapter, we mainly focus on the probabilistic approaches and extend them to multiple tasks.

3.2.1 Di�erent Types of Multitask Learning Problems

We distinguish between three broad classes of multitask learning problems:

1 A �nite/�xed collection of tasks somehow related to each other.

2 An in�nite/growing collection of tasks sampled i.i.d. from an underlying task distribution.

3 An in�nite/growing collection of generally related tasks (sampled non-i.i.d.).

1
In this example, we assume that functions that predict outputs from inputs more accurately have higher utility.

2
How do we select a prior distribution p (θ)? �is is a good question and there are many methods, e.g., empirical

Bayes (Robbins et al., 1956). But it is not important for our discussion in this thesis. �roughout, whenever the

Bayesian approach comes up, we will simply assume that some prior is selected (e.g., uniform, etc.).
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Many problems in NLP, CV, and robotics known just as “multitask” correspond to our �rst

category since o�en there is a �xed collection of tasks of interest being solved (Ruder, 2017;

Zamir et al., 2018; Yu et al., 2020b). �e second category corresponds to the typical formulation of

meta-learning or learning-to-learn (�run and Pra�, 1998; Baxter, 1998; Finn et al., 2017), where

a�er training on a collection of training tasks sampled i.i.d. from some task distribution, we

would like to be able to (meta-)generalize to future tasks that come from the same distribution.

�e last category pertains to the so-called continual, lifelong, or never-ending learning (Ring,

1994; Mitchell et al., 2018), where new tasks keep arriving over time (generally, in a non-i.i.d.

fashion), all tasks may somehow depend on each other, and we are interested maintaining the

best possible performance either on all tasks or on the newly arrived tasks.

In this thesis, we mainly focus on the �rst two types of multitask learning problems. Note

that combinations of these types are also possible—e.g., in Chapter 5 we introduce the problem

of continuous adaptation (a special case of continual learning), which is a combination of 2 and

3 . We discuss related work on in more detail in the chapters that describe our case studies.

3.2.2 Generalization in Multitask Settings

In machine learning, we say that a model generalizes if its performance on new (unseen) data is

close to performance on the training data when both datasets come from the same underlying

distribution. Now, we extend this classical notion of generalization to multitask se�ings.

First, we de�ne two quantities: risk and its empirical estimate.

De�nition 3.2: Risk

Given a task T , a dataset D of size N , a function f that solves T :

• �e expected loss with respect to the data distribution is called (population) risk:

R (f, T ) := Ex,y∼T [LT (f,x,y)] (3.4)

• �e average loss of f on the dataset D is called empirical risk:

Remp (f, T,D) :=
1

|D|
∑

(x,y)∈D

LT (f,x,y) (3.5)

which is the empirical estimate of the risk.

Using these two quantities, we can de�ne generalization error of a learning algorithm.

De�nition 3.3: Generalization Error

Let A be a learning algorithm, which processes data and produces a function, A (D)→ f .

�e generalization error of algorithm A on task T given dataset D is de�ned as follows:

G (A, T,D) := Remp (A (D) , T,D)−R (A (D) , T ) (3.6)
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Further, we say that a learning algorithm A generalizes on task T if its generalization error

on that task vanishes as the amount of training data increases, i.e., lim|D|→∞ G (A, T,D) = 0.

Note that generalization error is not computable exactly since it requires computation of the

expectation with respect to the unknown data distribution. In practice, instead, we compute

stochastic estimates of the population risk and generalization error based on a holdout dataset.

In all multitask se�ings introduced in Section 3.2.1, we have multiple datasets and multiple

loss functions. �is allows us to de�ne and measure generalization in a few di�erent ways.

Generalization to Fixed Collections of Tasks

Given M tasks T1, . . . , TM , consider a learning algorithm A that processes data from all these

tasks, D1:M = D1 ∪ · · · ∪DM and returns a functions f1, . . . , fM that solve the corresponding

tasks. Denoting Ai (D1:M) := fi, we can de�ne multitask generalization of the algorithm A
with respect each individual task Ti in the collection as follows.

De�nition 3.4: Multitask Generalization Error

GMT (A, Ti, D1:M) := Remp (Ai (D1:M) , Ti, Di)−R (Ai (D1:M) , Ti) (3.7)

Moreover, at training time, we may be given data for only a subset of tasks, while interested

in measuring generalizing on one of the unseen tasks. �is is known as zero-shot generalization

to unseen tasks. Denoting the indices of tasks seen at training as Is ⊂ [M ], we can formally

de�ne zero-shot generalization of algorithm A to an unseen task Ti(i 6∈ Is) as follows.

De�nition 3.5: Zero-shot Generalization Error

GZS (A, Ti, DIs) := Remp (Ai (DIs) , Ti, Di)−R (Ai (DIs) , Ti) (3.8)

We note a couple of important points:

1. Zero-shot generalization is not always feasible, i.e., increasing the amount of data in the

training tasks DIs may not improve (or even a�ect) performance an unseen task. For

zero-shot generalization to be possible, not only tasks must be strongly coupled, but we

may also need a loss function that enables such generalization, as we show in Chapter 6.

2. Learning from multiple tasks may improve or worsen the generalization error when

compared to single-task learning. �e worsening can happen due to task interference or

negative transfer (McCloskey and Cohen, 1989; Schaul et al., 2019).

Both De�nitions 3.4 and 3.5 also apply to continual learning problems as well where the

collection of tasks grows over time. In that case, we can look at generalization error (or its

zero-shot version) on a particular task Ti as a function of time. �e temporal ordering of tasks

also allows us to consider forward transfer (i.e., zero-shot generalization on task Tt+1 given

T1, . . . , Tt) and backward transfer (i.e., generalization on one of the T1, . . . , Tt tasks a�er adding

Tt+1) as proposed by Lopez-Paz and Ranzato (2017).
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Generalization to Distributions of Tasks

In the distributional se�ing, all tasks are related to each other not arbitrarily but through the

underlying distribution. �is allows us to de�ne meta-generalization (Baxter, 2000), or the ability

of learning algorithms to generalize to new tasks from the same distribution.

To de�ne it formally, we �rst need the notion of transfer risk and its empirical estimate.

De�nition 3.6: Transfer Risk

LetP be a distribution of tasks,D1, . . . , DM be datasets that correspond to tasks T1, . . . , TM
sampled from P, and A is a learning algorithm. �en:

• �e expected risk of the functions produced byA on tasks fromP is called (population)

transfer risk:

R (A,P) := ET∼P [ED∼T [R (A(D), T )]] (3.9)

• �e estimate of the transfer risk on D1, . . . , DM is called empirical transfer risk:

Remp (A, T1:M , D1:M) :=
1

M

M∑
i=1

Remp (A(Di), Ti, Di) (3.10)

Note that transfer risk is de�ned for an algorithm that produces functions. Having transfer

risk de�ned, meta-generalization becomes a straightforward extension of classical generalization:

De�nition 3.7: Meta Generalization Error

Let A be a meta-learning algorithm, which processes data from multiple tasks and produces

a learning algorithm, A (T1:M , D1:M) → A. �e meta-generalization error of A on task

distribution P given datasets D1, . . . , DM from tasks T1, . . . , TM is de�ned as follows:

G (A,P) := Remp (A (T1:M , D1:M) , T1:MD1:M)−R (A (T1:M , D1:M) ,P) (3.11)

De�nitions 3.6 and 3.7 may seem cumbersome, but all they do is simply de�ne another level

of learning on top of learning from data (hence, “meta” in the name). In other words, given a set

of training tasks T1, . . . , TM and the corresponding training datasets D1, . . . , DM , we �rst run

some meta-learning algorithm A to get a learning algorithmA. �e obtained learning algorithm

is expected to be more suitable for learning from tasks that come from the same distribution as

T1, . . . , TM . In our probabilistic framework, things will become even more intuitive: both the

meta-algorithm and the algorithms it produces will correspond to inference of global and local

parameters in a multitask probabilistic model, respectively.

I To summarize, we have de�ned three types of learning problems in multitask se�ings. We

also introduced di�erent notions of generalization that can be used to measure the quality of

di�erent learning algorithms in each of these se�ings. All our de�nitions so far have been model-

and algorithm-agnostic. Next, we present a probabilistic framework that will allow to design

learning algorithms for a variety multitask problems systematically.
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3.3 Probabilistic Multitask Modeling Framework

Our framework (PMM) is based on Probabilistic Graphical Models (PGM) (Pearl, 1988; Lauritzen

and Spiegelhalter, 1988; Koller and Friedman, 2009). We emphasize that PMM does not contribute

anything new to PGM itself, which is a well-established area at the intersection of probability,

statistics, and computer science. Instead, we present a simple way to represent di�erent multitask

learning problems with PGMs, use such representations to encode our knowledge about the

relationships between the tasks, and derive loss functions and learning algorithms for solving

such problems more systematically.

3.3.1 Representing Multiple Tasks with Factor Graphs

We propose to represent tasks with factor graphs (Kschischang et al., 2001; Frey, 2002). Just

as an example, consider a collection of three independent tasks, T1, T2, T3. Representing each

individual task in a collection with a factor graph is straightforward as give on Figure 3.1 below.

Task 1: (X1,Y1), p1 (x,y) ,L1

Task 2: (X2,Y2), p2 (x,y) ,L2

Task 3: (X3,Y3), p3 (x,y) ,L3

convert into

factor graphs

ψ1

x1n y1n

n ∈ [N ]

θ1

ψ2

x2n y2n

n ∈ [N ]

θ2

ψ3

x3n y3n

n ∈ [N ]

θ3

Figure 3.1: Representation of individual tasks with factor graphs.

Each factor graph here represents a conditional probability distribution:

pi (yin | xin,θi) ∝ exp {ψi (xin,yin,θi)} , for i = 1, 2, 3 (3.12)

Note that when tasks are independent, none of the variables is shared between the tasks. To

couple the tasks, the main mechanism that we will be used in our probabilistic multitask modeling

framework is through sharing random variables between the factor graphs. Again, for the sake

of this example, assume that all three tasks share their inputs x and a subset of parameters θ.

�en, we can represent this multitask learning problem with a join factor graph (Figure 3.2).
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ψ1

x1n y1n

n ∈ [N ]

θ1

ψ2

x2n y2n

n ∈ [N ]

θ2

ψ3

x3n y3n

n ∈ [N ]

θ3

combine

factor graphs

ψ1 ψ2 ψ3

y1n y2n y3n

xn

n ∈ [N ]

θ′1 θ′2 θ′3θ

Figure 3.2: Representation of tasks with a joint factor graph.

Note that the shared inputs got collapsed into x while each θi got split into the shared θ
and individual θ′i parameters. Our resulting factor graph essentially corresponds to a multitask

learning problem that can be solved with a multi-output (or multi-head) neural net, originally

described by Caruana (1998). �e conditional probability distribution of all outputs (y1,y2,y3)
given the input x and all parameters takes the following form:

p (y1,y2,y3 | x,θ,θ′1,θ′2,θ′3) ∝ exp

{
3∑
i=1

ψi (x,yi,θ,θ
′
i)

}
∝

3∏
i=1

p (yi | x,θ,θ′i) (3.13)

Note that the distribution factorizes into a product of three conditionals that correspond to

each task since each factor ψi depends only on a single output. As a result, the log conditional

likelihood of this probabilistic multitask model decomposes into a sum of individual terms:

log p (y1,y2,y3 | x,θ,θ′1,θ′2,θ′3) =
3∑
i=1

log p (yi | x,θ,θ′i) (3.14)

In other words, the log conditional probability of the outputs given the inputs in the resulting

model recovers the classical multitask learning objective function: a linear combination of

individual task losses,
3

which correspond to log conditional likelihoods of individual outputs.

Learning parameters in this se�ing can be done either though likelihood maximization or

posterior inference.

While this example is trivial, the problem becomes much more interesting when outputs

of some tasks become inputs to other tasks and/or not all inputs and outputs are observed. In

3
In practice, one would typically use a weighted linear combination of individual task losses to emphasize the

“importance” of each task. In our probabilistic framework, the weights of individual likelihoods are proportional to

the number of training examples ni that have the corresponding output yi. In other words, by default, the task

“importance” is proportional to the number of times the task has been seen at training time.
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such cases, we will not be able to factorize the joint probability of the observed outputs and

the corresponding loss function will not be as straightforward to optimize or even compute.

We explore such non-trivial situations in the context of multilingual machine translation in

Chapter 6 and in the context of interpretability of predictive models in Chapter 7.

xin

yin

ψi

φi

θ

n ∈ [Ni]

task i data

i = 1, 2, . . .

task distribution

Figure 3.3: Representation

of a distribution of i.i.d. tasks.

Representing distributions of tasks. Graphical models allow

to easily represent task distributions using the plate notation and

additional latent variables. Figure 3.3 provides an example of such

representation. In this example, parameters θ are the only variables

shared across the tasks and φi’s represent task-speci�c latent vari-

ables shared across data points within each task. �e plates simply

denote replication of the corresponding variables (see Section 2.2)

that are sampled i.i.d. from the underlying distribution. Assuming

that there are M training tasks, the log likelihood of the training

data D1:M = D1 ∪D2 ∪ · · · ∪DM takes the following form:

log p (D | θ) =
M∑
i=1

log

∫
p (Di | φi,θ) p (φi) dφi (3.15)

where p (Di | φi,θ) =
∏Ni

n=1 p (yin | xin,φi,θ). �e tasks are tied together through the prior

over the local latent variables, p (φi), induced by the task distribution (i.e., there are no di-

rect dependencies between the task-speci�c variables). Due to marginalization of these lo-

cal variables, computing or maximizing the likelihood directly is non-trivial in this model

and requires approximation. Further, obtaining a function that solves a new task Tj , i.e.,
fj(x;θ) = arg maxy∈Yj p (y | x, Dj,θ), requires inference of the posterior predictive:

p (y | x, Dj,θ) =

∫
p (y | x,φ,θ) p (φ | Dj,θ) dφ (3.16)

which again involves generally intractable integral and requires approximation.

From this probabilistic perspective, we can now reinterpret meta-learning algorithms A as

procedures that approximately infer the global parameters θ; the learning algorithms A (pro-

duced by A) are approximately inferring the task-speci�c predictive posterior p (y | x, Dj,θ). In

that sense, di�erent meta-learning methods, such as MAML (Finn et al., 2017) or ProtoNets (Snell

et al., 2017), can all be viewed as di�erent ways to approximate the marginalization of the local

latent variables. �e connection between Bayesian inference and learning-to-learn has been

noticed and used in multiple previous works (Lawrence and Pla�, 2004; Al-Shedivat et al., 2018a;

Yoon et al., 2018; Finn et al., 2018; Grant et al., 2018).

We will further explore learning from distributions of tasks in the context of federated

learning in Chapter 4 and reinforcement learning in Chapter 5.

Representing growing collections of inter-dependent tasks. Finally, in continual learn-

ing (Ring, 1994; Mitchell et al., 2018), we have to solve an unbounded collection of tasks that

grows over time, where the newly added tasks somehow depend on (a subset of) previously

seen tasks (i.e., tasks are sampled non-i.i.d.). �is can be modeled as a succession of multitask
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Figure 3.4: Representation of a chain of dependent tasks.

learning problems: at each instance of time t, we receive a new task Tt, add it to the collection,

and solve a new multitask learning problem with T1, . . . , Tt. Depending on the application, we

might be interested in the solution that a�ains maximum utility on the most recent task Tt
or on all tasks up until Tt. In either case, at each time step, the problem reduces to multitask

learning with a �xed collection of tasks, but with a caveat: at each time step, we are not solving

the problem from scratch, but do have access to the previous solution(s), and can/must take

advantage of that for e�ciency purposes.

As an example, Figure 3.4 represents a chain of sequentially dependent tasks with a factor

graph that assumes markovian structure of dependencies between the task-speci�c local latent

variables (i.e., p
(
φt+1 | φ1, . . . ,φt

)
= p

(
φt+1 | φt

)
for all t). Assuming that we have previously

obtained θ̂t that solves tasks T1, . . . , Tt (as a �xed collection of dependent tasks), given a new task

Tt+1, our goal is to compute θ̂t+1 ← Update
(
θ̂t, Dt+1

)
. If we were to take the fully Bayesian

approach, instead of working with point-estimates of θ, we would be maintaining and updating

(approximately!) the posterior distribution p (θ | D1, . . . , Dt)→ p (θ | D1, . . . , Dt, Dt+1). We

will dive into the details of this approach in the context of RL under nonstationarity in Chapter 5.

Algorithm 3.1 Build PMM representation.

1: Decompose the given learning problem

into multiple tasks.

2: Represent each individual task with its

own factor graph.

3: Combine individual factor graphs into

the joint by merging shared variables

and adding necessary dependencies.

I To summarize, probabilistic graphical models

(and factor graphs in particular) provide an elegant

way to specify probability distributions that satisfy

the assumptions of di�erent multitask se�ings. To

construct a joint probabilistic model for a multitask

learning problem, we can follow three simple steps

summarized in Algorithm 3.1. Note that the �rst

step of the algorithm (i.e., decomposition of the

learning problem into multiple tasks) is problem-

speci�c and based on our design choices.

Constructing factor-graph-based representations of a complex learning problem is only the

�rst step of our framework. �e next step is to use the representations for algorithm design.

3.3.2 Solving Multiple Tasks: A Probabilistic Approach

Given the probabilistic representations, how do we solve all these multitask learning problems?

We propose to use variational Bayes (Jordan et al., 1999), i.e., infer an approximate posterior
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distribution over all the latent variables via divergence minimization:

min
q∈Q

D[p (l | e) ‖ q (l)] (3.17)

where e denotes all observable variables (stands for “evidence”), l denotes all unobserved

variables and parameters (stands for “latents”), Q is a variational family of distributions, and D
is a divergence measure (e.g., KL divergence, but can be some other divergence).

Why variational posterior inference? From a Bayesian perspective, once a probabilistic

model is de�ned, posterior is really all we need—it accurately summarizes all the information

contained in the data about the parameters and latent variables. Exact posterior inference is

almost never tractable, and therefore we have to use approximate inference.

To be�er understand Equation 3.17, we show how it is related to likelihood maximization

and then illustrate advantages of our probabilistic approach with a couple concrete examples.

Converting Posterior Inference into Maximum Likelihood

If we set D to be the exclusive KL divergence (i.e., KL[q ‖ p]), solving Equation 3.17 becomes

equivalent to maximizing the variational free energy:

min
q∈Q

{
F (q) := −Eq(l) [log p (e | l) + log p (l)]−H (q)

}
(3.18)

where H denotes Shannon entropy. Note that we may o�en be interested in obtaining an

approximate posterior distribution for only a subset of latent variables (typically, some hidden

states in the model) and a point estimate for the rest (typically, model parameters). Denoting

these subsets h and θ, respectively, such that l = (h,θ), we set q (h,θ) := q̃ (h) δ (θ − θ′),
where δ is the Dirac delta function, which reduces Equation 3.18 to the following:

min
θ,q̃∈Q

−Eq̃(h) [log p (e,h | θ)]− log p (θ)−H (q̃) (3.19)

Equation 3.19 is a variational lower bound on the log posterior log p (θ | e). If we assume a

uniform prior on θ (i.e., log p (θ) ∝ 1), it becomes a bound on the log likelihood log p (e | θ).
Finally, if we also do not have any other latent variables apart from model parameters (as in one

of our previous examples in Figure 3.2), Equation 3.19 reduces to likelihood maximization.

In other words, likelihood maximization is a special case of variational posterior inference.

But if in the end, all we have to do is optimize a likelihood that factorizes into independent

terms for each task (again, as in Figure 3.2), why go through all this trouble?

Solving a Collection of Tasks with Shared Variables

It turns out that in many interesting multitask se�ings the joint likelihood does not factorize.

Interestingly, substituting the joint likelihood with a weighted combination of independent

likelihoods for each task—which is known as the composite likelihood (Besag, 1975; Lindsay,

1988) and typically used in practice—might be a suboptimal decision. Here is why.
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Figure 3.5: Learning to translate

between data modalities.

Consider a multitask learning problem with three variables

x1,x2,x3, where tasks correspond to mappings from xi 7→ xj .
In computer vision, these variables may correspond to di�erent

representations of a scene (e.g., pixels, surface normals, depth,

shading, texture, occlusion, etc.) (Zamir et al., 2018). In natu-

ral language, these could be representations of the meaning

of a sentence in di�erent languages (Al-Shedivat and Parikh,

2019). More broadly, any problem of translation between dif-

ferent data modalities can be represented this way. Figure 3.5

illustrates the factor graph representation of this problem.

If all variables x1,x2,x3 were always observed, we would have been able to optimize the

log likelihood, which decomposes as follows:

log p (x1,x2,x3 | θ) ∝ log p (x2 | x1,θ)︸ ︷︷ ︸
ψ12(x1,x2,θ)

+ log p (x3 | x1,θ)︸ ︷︷ ︸
ψ13(x1,x3,θ)

+ log p (x3 | x2,θ)︸ ︷︷ ︸
ψ23(x2,x3,θ)

(3.20)

However, in practice, obtaining multi-parallel data that always contains all data modalities is

expensive, and we o�en end up having data samples of only a pair of variables (xi,xj) observed.

In Figure 3.5, modality x2 is unobserved, which results in the following log likelihood:

log p (x1,x3 | θ) ∝ log

∫
p (x2 | x1,θ) p (x3 | x1,θ) p (x3 | x2,θ) dx2 (3.21)

= log p (x3 | x1,θ) + log

∫
p (x2 | x1,θ) p (x3 | x2,θ) dx2 (3.22)

Note the additional term besides log p (x3 | x1,θ) makes the objective sensitive to the quality of

a chain of predictions, x1 7→ x2 7→ x3, which enforces consistency of the model.

Such consistency-enforcing losses have been �rst introduced in machine translation by

Al-Shedivat and Parikh (2019), which we discuss in more detail in Chapter 6. Later, similar

consistency losses were proposed for computer vision by Zamir et al. (2020) in an ad-hoc manner

(i.e., the additional terms were not derived from a probabilistic model, but played the same role).

�ese works suggest that optimizing the joint log likelihood results in a somehow more

“consistent” model. But what does consistency mean and why do we need consistent models?

One of the major advantages is that the resulting models can provably generalize zero-shot,

which is not the case for optimizing composite likelihoods, as stated in the following theorem.

Theorem 3.1: Zero-shot Generalization to Unseen Translation Tasks (Informal)

Given a total of K data modalities x1, . . . ,xK and training data for only M < K(K − 1)
tasks Tij that correspond to xi 7→ xj , let Ajoint be an algorithm that maximizes the joint

likelihood and Acomp be an algorithm that maximizes the composite likelihood. �en:

• Ajoint generalizes zero-shot on the unseen tasks Tik and Tkj for all intermediate k.

• Acomp does not exhibit zero-shot generalization on the unseen tasks.
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We prove a version of �eorem 3.1 in Chapter 6. Note a couple of important points:

• First, surprisingly, the result is fully agnostic to way the model is parametrized. In deep

learning, it is a common belief that generalization in multitask se�ings requires parameter

sharing between functions that solve di�erent tasks. �is turns out not to be true for

zero-shot generalization. Not only it additionally requires a loss that ensures consistency

(i.e., parameter sharing alone is not su�cient), but even if parameters are not shared at all,

maximizing the joint likelihood will still provably lead to zero-shot generalization.
4

• While our exposition here focused the problem of translation between di�erent data

modalities (which is already a very broad class of problems), generally, the same argument

applies to any se�ing that has hidden variables used as inputs or outputs of multiple tasks.

Finally, note that �eorem 3.1 requires optimization of the joint log likelihood which is

intractable due to marginalization of the latent variables. In Chapter 6, we design a variational

lower bound, called agreement-based loss, which can be computed and optimized e�ciently.

Here, we move on to our next example and show how to use PMM to solve distributions of tasks.

Solving Distributions of Tasks

In Section 3.3.1, we have shown how to represent distributions of tasks with a graphical model

(Figure 3.3) and provided an expression for the joint likelihood (Equation 3.15), which we

noted requires further approximation. Again, let T1, . . . , TM be our training tasks, with the

corresponding datasets D1, . . . , DM . Assuming a uniform prior on θ, the variational free energy

(or the lower bound on the join log likelihood) takes the following form:

F (θ, q1, . . . , qM) =
M∑
i=1

{
Fi (θ, qi) := −

Ni∑
n=1

Eqi(φi) [log p (yin,φi | xin,θ)] + H (qi)

}
(3.23)

where each qi (φi) is a variational distributions of the local latent variable φi and is selected to

approximate the local posterior p (φi | Di,θ).

Adaptation (or personalization) via local posterior inference. For now, assuming that θ
is already learned, given a new task Tj with dataset Dj , we can solve it in two steps:

1. Get a variational approximation qj
(
φj
)

of p
(
φj | Dj,θ

)
.

2. Compute the approximate predictive distribution p (y | x, Tj) := Eqj(φj)
[
p
(
y | x,φj,θ

)]
,

which provides us a function that solves Tj : fj(x) := arg maxy∈Yj p (y | x, Tj).

�e adaptation (or personalization) procedure of any learning-to-learn method can be viewed

as a way to approximate these two steps. For example, MAML (Finn et al., 2017) substitutes

qj
(
φj
)

with a point estimate φ̂j obtained by running (stochastic) gradient descent on the local

log likelihood log p (Dj | θ). Similarly, ProtoNets (Snell et al., 2017) and NPs (Garnelo et al.,

2018) can be viewed as amortized inference methods that compute point estimates of the local

parameters using a function applied to the local dataset, gw (Dj)→ φ̂j , shared across tasks.

4
�e lack of parameter sharing might worsen sample complexity, i.e., with the increase of data in supervised

tasks, the zero-shot error might decrease at a slower rate than for models that share parameters. Our proof does

not provide a convergence rate, however, and quantifying such an e�ect would require further analysis.
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Meta-learning via variational free energy minimization. Learning the global parameters

θ can be done by optimizing the variational free energy (Equation 3.23), using local posterior

inference as a sub-routine. �e approach is summarized in the following three steps:

1. Select a subset B ⊂ [M ] of training tasks.

2. For each task in B, compute its variational approximation qi (φi).

3. Compute F for the selected tasks and optimize it with respect to the global parameters.

Note that variational approximations of qi (φi) used in practice by MAML, ProtoNets, NPs, and

other methods are typically di�erent point estimates φ̂i, and hence the variational free energy

simply reduces to −∑M
i=1

∑Ni
n=1 log p

(
yin | xin, φ̂i,θ

)
.

I To sum up, starting from a generic graphical model that represents a distribution of tasks,

optimizing the variational free energy of such probabilistic model allowed us to recover many

of the popular meta-learning algorithms. In our probabilistic framework, “personalization” (or

“model adaptation”) corresponds to approximate local posterior inference done in the inner loop,

while “meta-learning” corresponds to the variational free energy minimization with respect to

the global parameters in the outer loop.

Finally, there is one interesting (and subtle!) question that remains: Computation of the

approximate local posterior qi (φi) in the inner loop and the free energy Fi (θ, qi) in the outer

loop for task Ti both need some data from that task. So, given a dataset Di, should it be re-used

twice (in the inner and outer loops) or split into two disjoint subsets each of which is used

only once (per iteration of the outer loop)? It turns out that both approaches are valid, but the

meta-generalization error as a function of the number of tasks and the number of data points

per task behaves di�erently for these methods, as given in the following theorem.

Theorem 3.2: Meta-generalization Bounds

Let the variational free energy lossF beL-Lipschitz and γ-smooth. GivenM training tasks

with at leastm data points per task, if the meta-learning algorithm A is a stochastic gradient

method that optimizes F by taking K steps with non-increasing step sizes αk ≤ c/k, with

probability at least 1− δ, we have the following:

1. If we use disjoint subsets data for local inference in the inner loop and computation

of the loss in the outer loop, then the following meta-generalization bound holds:

G (A,P) ≤ O

(
L2K

√
ln(1/δ)

M

)
(3.24)

2. If we re-use the same data and the inner loop inference is also done by running

stochastic gradient method on L′-Lipschitz and γ′-smooth loss by taking K ′ steps

with step sizes αk′ ≤ c′/k′, the corresponding bound is as follows:

G (A,P) ≤ O

(
L2K

√
ln(1/δ)

M
+ L′2K ′

1

m

)
(3.25)
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We prove the bounds in Appendix A.1. Interestingly, spli�ing the data of each task in to two

disjoint subsets—known as support (used in the inner loop) and query (used in the outer loop)

originally proposed by Vinyals et al. (2016)—leads to a bound that does not depend on the amount

of training data points per task additively, and hence enables learning in few-shot se�ings. �e

theorem has multiple other practical implications about the data e�ciency of meta-learning,

which have been con�rmed empirically (Al-Shedivat et al., 2021b).

Algorithms Beyond Likelihood Maximization

In the previous two examples, we have shown how to solve �xed collections and distributions of

tasks by maximizing (a lower bound on) the joint likelihood using stochastic gradient methods.

But recall that we started with the general posterior inference formulation (Equation 3.17), and

maximum likelihood is only a special case. What other alternatives do we have?

�ere is another broad class of so-called message-passing algorithms that can be used for

solving variational inference, which include expectation propagation (EP) (Minka, 2001) and

variational message-passing (VMP) (Winn and Bishop, 2005). �e key idea of these algorithms is to

solve Equation 3.17 using a �xed point iteration method that re�nes a variational approximation

of the posterior over the latents represented as a product of sub-posteriors:

p (l | o) ∝ p0 (l)
M∏
i=1

pi (l | o) approximated with q (l) ∝ q0 (l)
M∏
i=1

qi (l) (3.26)

At each iteration, the algorithm selects a subset of sub-posteriors {pi (l | e)}i∈B , solves the

inference problem for each them, then aggregates them, and the process repeats. �e approach

is called message-passing because the underlying computation can be represented in terms

of passing messages between the nodes in the factor graph. �e generalized version of such

algorithm was described by Minka (2005) and is summarized below.

Algorithm 3.2 Generalized Message Passing.

1: Initialize q0 (l) = p0 (l) and qi (l) ∝ 1 for i = 1, . . . , N .

2: repeat

3: Pick a batch of random factors B ⊂ [M ].
4: Compute log q−B (l) ∝ log q (l)−∑i∈B log qi (l).

5: for each factor i ∈ B do

6: Update q′i (l)← arg minqi∈QD[pi (l | e) q−B (l) ‖ qi (l) q−B (l)].
7: end for

8: Incorporate updated factors into q (l): log q (l) ∝ log q−B (l) +
∑

i∈B log q′i (l).

9: until convergence

Message passing algorithms somewhat fell out of fashion a�er introduction of black-box vari-

ational inference methods (Ranganath et al., 2014), but recently were shown to be particularly

suitable for distributed se�ings (e.g., Hasenclever et al., 2017; Vehtari et al., 2020). We con-

tinue this discussion in Chapter 4, where we design computation and communication-e�cient

algorithms akin to message passing for learning and personalization in federated se�ings.
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I think that it is a relatively good approximation to truth—which is much too

complicated to allow anything but approximations—that mathematical ideas

originate in empirics.

John von Neumann

Part II

Case Studies

In this part, we present four case studies that illustrate our framework. In fact, these

studies stem from four independent research projects that have led us to notice

the similarities between di�erent multitask problems in the �rst place and distill

them into a framework. In Chapter 4, we discuss federated learning and present

an inferential perspective that allows us to develop new e�cient algorithms both

for learning and personalization in massively multitask se�ings. Chapter 5 focuses

on reinforcement learning in nonstationary environments, how learning in such

environments can be decomposed into multiple tasks, and how agents can learn

to adapt to changes using approximate inference. Chapter 6 discusses zero-shot

generalization in the context of multilingual machine translation. Finally, Chapter 7

presents a non-traditional take on the problem of interpretability in machine learning

where we approach it from a multitask perspective.
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Chapter 4
Federated Learning: An Inferential Approach

4.1 Summary

Our �rst case study focuses on Federated Learning (FL)—a framework for learning statistical

models from heterogeneous data sca�ered across multiple entities (or clients) under the coordina-

tion of a central server that has no direct access to the local data (Kairouz et al., 2019). Motivated

by some of the limitations of distributed optimization methods in this se�ing, we present a

probabilistic approach to FL, viewing it as a distribution of learning tasks. Leveraging our PMM

framework, we design scalable and e�cient approximate posterior inference algorithms for

learning global and personalized models in federated se�ings.

4.2 Motivation and Goals

Canonically, FL is formulated as a distributed optimization problem with a few distinctive

properties such as unbalanced and non-i.i.d. data distribution across the clients and limited

communication. �e de facto standard algorithm for solving federated optimization is federated

averaging (FedAvg) (McMahan et al., 2017), which proceeds in rounds of communication between

the server and a random subset of clients, synchronously updating the server model a�er each

round (Bonawitz et al., 2019). By allowing the clients perform multiple local SGD steps (or

epochs) at each round, FedAvg can reduce the required communication by orders of magnitude

compared to mini-batch (MB) SGD, and as a result dramatically speed up training.

�e conceptual simplicity of FedAvg is very appealing—not only it can be used for learning

a single global model for all clients, but such model can be easily personalized via �ne-tuning.

However, a closer look at the problem reveals multiple fundamental trade o�s and limitations

that optimization-based techniques run into, both when the goal is to learn a single global model

for all clients or a collection of personalized models, one for each client.
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Limitations of Federated Optimization

Trade o�s when learning a single global model. In practice, due to statistical heterogeneity

of the client data, it turns out that more local computation o�en leads to biased client updates

and makes FedAvg stagnate at inferior optima. An example of such behavior is demonstrated on

Figure 4.1 on a toy 2D federated linear regression problem with two clients: as we increase the

number of local steps each client takes at every round, the rate of initial convergence improves,

but FedAvg also starts saturating at a point further away from the global optimum.
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Figure 4.1: An illustration of the FedAvg behavior on a toy 2D federated linear regression problem. Le�:

Contour plots of the client objectives, their local optima, as well as the corresponding global optimum.

Right: Learning curves for MB-SGD and FedAvg with 10 and 100 steps per round. FedAvg makes fast

progress initially, but converges to a point far away from the global optimum. Shaded regions denote

bootstrapped 95% CI based on 5 runs with di�erent initializations and random seeds. Best viewed in color.

�is behavior has been previously observed in multiple empirical studies (e.g., Charles and

Konecny, 2020; Pathak and Wainwright, 2020), and di�erent ways to remedy such convergence

issues have been proposed, ranging from regularizing local objective functions (e.g., Li et al.,

2018; Zhang et al., 2020; Acar et al., 2021) to using di�erent control variate methods (Karimireddy

et al., 2019; Pathak and Wainwright, 2020). However, most of these mitigation strategies

intentionally have to limit the optimization progress clients can make at each round. In other

words, approaching FL as a distributed optimization problem runs into a trade o� between the

amount of local progress allowed and the quality of the �nal solution. As we will see later in

this chapter, taking an inferential approach would allow us to combat this issue by utilizing the

available local computational resources more e�ciently.

Limitations of �ne-tuning-based personalization. A single global model may not be as

useful in practice if it is inferior compared to models that clients can obtain individually by

training on their own data, which may disincentivize the majority of clients from participating

in federated training (Yu et al., 2020a). �us, federated learning of personalized models is

o�en highly desirable. �e current go-to approach to personalization is simple �ne-tuning of a

global model on the local client’s data. However, this approach makes training and evaluation

disconnected, makes it harder to incorporate side information (e.g., meta-data) that can be

available on the clients, as well as requires all clients to be able to run local model optimization,

which might be computationally prohibitive for some client devices (e.g., with low memory).
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In this chapter, we present a probabilistic approach to federated learning that helps us address

the outlined limitations of federated optimization. �e major part of this chapter focuses on

learning a single global model, i.e., the non-personalized se�ing, which we extend to personalized

FL at the end. Our main contributions can be summarized as follows:

• We introduce a new perspective on federated learning through the lens of posterior inference

which broadens the design space for FL algorithms beyond purely optimization techniques.

• With this perspective, �rst, we design a computation- and communication-e�cient approxi-

mate posterior inference algorithm—federated posterior averaging (FedPA). Our algorithm

works with stateless clients, has the computational complexity and memory footprint similar

to FedAvg, but most importantly signi�cantly bene�ts from an increased amount of local

computation without stagnating at inferior optima.

• Next, we analyze convergence of FedAvg and FedPA and show that FedAvg with many

local steps is in fact a special case of FedPA that estimates local posterior covariances with

identities. �ese biased estimates are the source of inconsistent updates and explain why

FedAvg has suboptimal convergence even in simple quadratic se�ings.

• Further, we compare FedPA with multiple strong baselines on realistic FL benchmarks

introduced by Reddi et al. (2020) and achieve state-of-the-art results with respect to multiple

metrics of interest, such the test accuracy of the �nal model and convergence speed in terms

the number of communication rounds.

• Finally, we propose multiple ways to extend our framework to personalized FL, and demon-

strate that FedPA used in conjunctions with simple �ne-tuning or MAML improves the

quality of personalized models as well on our benchmarks.

4.3 Preliminaries

Federated learning is typically formulated as the following distributed optimization problem:

min
θ∈Rd

{
L(θ) :=

N∑
i=1

wi`i(θ)

}
, `i(θ) :=

1

Ni

Ni∑
j=1

`(θ, zij) (4.1)

where θ ∈ Rd
, the global objective function L(θ) is a weighted average of the local objectives

`i(θ) overN clients. Each client’s objective is the empirical risk with some loss `(θ; z) computed

on the local data Di and the weights {wi} are typically set proportional to the sizes of the local

datasets {Ni}, which makes L(θ) coincide with the training objective of the centralized se�ing.

In federated learning, we distinguish between two di�erent se�ings, called cross-device and

cross-silo (Kairouz et al., 2019). In the cross-device se�ing, clients are typically mobile or edge

devices and the number of clients could be extremely large (millions). In cross-silo, clients

correspond to larger entities, such as organizations (e.g., banks, hospitals, etc.). In this work,

we are interested in the cross-device FL, which relies on the following modeling assumption:

because of the very large number of clients, each client participates in training at most once (the
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majority of clients does not participate at all). As a consequence, we are interested in algorithms

that can work with stateless clients and do not require revisiting each client multiple times.

Algorithm 4.1 Generalized FedAvg

input initial θ, ClientUpdate, ServerUpdate

1: for each round t = 1, . . . , T do

2: Sample a subset S of clients

3: communicate θ to all clients i ∈ S
4: for each client i ∈ S in parallel do

5: ∆t
i, wi ← ClientUpdate(θ)

6: end for

7: communicate {∆t
i, wi}i∈S to the server

8: ∆t ← 1
|S|
∑

i∈S wi∆
t
i

9: θ ← ServerUpdate(θ,∆t)
10: end for

output �nal θ

Because the total number of clients N can be

extremely large, optimization ofL(θ) is done over

multiple rounds of communication between the

server and a small random subset of M clients at

every round. Reddi et al. (2020) reformulated Fe-

dAvg in a generalized form (Algorithm 4.1) using

two nested optimization loops, where the inner

loop corresponded to multiple steps (or epochs)

of local optimization done by each client partici-

pating in a given round (ClientUpdate), and the

outer loop corresponded to the server updating its

state by averaging and applying of the updates (or

deltas) returned by the clients (ServerUpdate).

�is formulation gives an additional �exibility of

using arbitrary functions for client and server updates. As a result, Algorithm 4.1 can represent

not only FedAvg, but a variety of other federated optimization algorithms (Wang et al., 2021).

�e algorithms designed in this chapter will be also represented in this general form.

4.4 Approach

In practice, the loss function `(θ; z) is typically a negative log likelihood of z under some

probabilistic model parametrized by θ, i.e., f(θ; z) := − log p (z | θ). For example, least squares

loss corresponds to likelihood under a Gaussian model, cross entropy loss corresponds to

likelihood under a categorical model, etc. (Murphy, 2012). �us, solving Equation 4.1 corresponds

to maximum likelihood estimation (MLE) of the model parameters θ.

But what is the probabilistic model here?

zin

ψi

θ

n ∈ [Ni]

client i data

i = 1, 2, . . .

client population

Figure 4.2: Factor graph

representation of the non-

personalized FL problem.

Federated learning can be seen as a massively multitask problem,

where each task corresponds to a client and we are interested in

learning from a subset of clients that participate in training and

generalizing to the rest of the client population. �us, FL is natural

to represent as a distribution of tasks (Figure 4.2). Note that when

we are interested in learning a single global model for all clients, we

have no local latent variables, only the global parameters θ.

Instead of solving this problem using likelihood maximization

(with FedAvg or some other federated optimization algorithm), we

take an alternative (Bayesian) approach and propose to infer an ap-

proximate posterior distribution p (θ | D ≡ D1 ∪ · · · ∪DN) by min-

imizing the exclusive KL divergence (cf. Section 3.3.2):

min
q∈Q

KL[p (θ | D) ‖ q (θ)] (4.2)
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�e posterior is proportional to the product of the likelihood and a prior, p(θ | D) ∝ p(D |
θ)p(θ). If the prior is uninformative (uniform), the modes of the global posterior coincide with

MLE solutions or optima of L(θ). While this simple observation establishes an equivalence

between the inference of the posterior mode and optimization, the advantage of this perspective

comes from the fact that the global posterior exactly decomposes into a product of local posteriors.

Proposition 4.1: Global Posterior Decomposition

Under the uniform prior, any global posterior distribution that exists decomposes into a

product of local posteriors: p (θ | D) ∝∏N
i=1 p (θ | Di).

Proof. Under the uniform prior, the following equivalence holds for p (θ | D) as a function of θ:

p (θ | D) ∝ p (D | θ) =
∏
z∈D

p (z | θ) =
N∏
i=1

∏
z∈Di

p (z | θ)︸ ︷︷ ︸
local likelihood

∝
N∏
i=1

p (θ | Di) (4.3)

�e proportionality constant between the le� and right hand side is

∏N
i=1 p (Di) /p (D).

Proposition 4.1 suggests to represent posterior approximation q (θ) also in the form of a

product, q (θ) =
∏N

i=1 qi (θ), where each component qi (θ) would approximate the correspond-

ing local posterior p (θ | Di), which would enable distributed inference. As we mentioned at

the end of Chapter 3, we can generally solve Equation 4.2 using expectation propagation (EP)

algorithm (Minka, 2001; Hasenclever et al., 2017, see Section 3.3.2). However, we would need to

make sure that the resulting algorithm can be e�ciently executed in cross-device FL se�ings.

To that end, we propose to approximate local posteriors with Gaussians, qi (θ) = N (θ;µiΣi),

which implies that the global approximations q (θ) will also be Gaussian. Moreover, note that in

the cross-device se�ing, we see each client at most once, and hence there is no need to explicitly

store estimates of each component qi (θ) on the server (as EP does), since they will not be

re-estimated during training more than once. �is allows us to simplify EP (Algorithm 4.2).

Algorithm 4.2 Simpli�ed EP for posterior inference in cross-devie FL

1: Initialize q(0) (θ) ∝ 1.

2: for each round t = 1, . . . , T do

3: Sample a subset St of M clients

4: for each client i ∈ St in parallel do do

5: q
(t)
i (θ)← arg minq∈QKL

[
pi (θ) q(t−1) (θ)

∥∥ q (θ)
]

6: end for

7: Aggregate the updates: q(t) (θ)← q(t−1) (θ)
∏

i∈St
q
(t)
i (θ)

q(t−1)(θ)

8: end for

output q(T ) (θ)

Note that Algorithm 4.2 is still impractical for realistically large models, because, naı̈vely, it

would require communicating covariance (or precision) matrices from the clients to the server.
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4.4.1 Federated Posterior Averaging: A Practical Algorithm

Note that we are only interested in computing the mode of q (θ) (which is the mean for Gaussians),

and hence can further improve the e�ciency of the distributed posterior inference algorithm.

Speci�cally, the inclusive KL minimization and aggregation steps in Algorithm 4.2 result in the

following updated mean of q(t) (θ) = N (θ;µt,Σt):

µt =

(
Σ−1
t−1 +

∑
i∈St

Σ−1
i

)−1(
Σ−1
t−1µt−1 +

∑
i∈St

Σ−1
i µi

)
(4.4)

We can see from Equation 4.4 that Algorithm 4.2 is an online �ltering algorithm—given informa-

tion about the local posteriors of a new subset of clients St, it is incorporated in the moment

estimates of the global posterior approximation. Note that a�er a su�cient number of rounds,

µt converges to the following approximate global posterior mode:

µ? =

(
N∑
i=1

Σ−1
i

)−1( N∑
i=1

Σ−1
i µi

)
(4.5)

Directly computing µt at each round is infeasible as it require O(d2) space and O(d3)
computation, both on the clients and on the server, which is very expensive for the typical

cross-device FL se�ing. Similarly, the communication cost would be O(d2). For comparison,

FedAvg requires only O(d) computation, communication, and storage. To arrive at a similarly

e�cient algorithm for posterior inference, we focus two questions: (a) how to estimate posterior

moments e�ciently? (b) how to communicate local statistics to the server e�ciently?

(1) E�cient global posterior inference. �ere are two issues with computing an estimate of

the global posterior mode directly using �ltering (Equation 4.4). First, it requires computing

the inverse of a d× d matrix on the server, which is an O(d3) operation. Second, it relies on

acquiring local means and inverse covariances, which would require O(d2) communication

from each client. We propose to solve both issues by converting the global posterior estimation

into an equivalent optimization problem.

Proposition 4.2: Global Posterior Inference

�e global posterior modeµ? given in Equation 4.5 is the minimizer of a quadraticQ(θ) :=
1
2
θ>Aθ − b>θ, where A :=

∑N
i=1 wiΣ

−1
i and b :=

∑N
i=1wiΣ

−1
i µi.

Proposition 4.2 allows us to obtain a good estimate of µ? by running stochastic optimization

of the quadratic objective Q(θ) on the server. �e stochastic gradient of Q(θ) is as follows:

∇Q(θ) :=
∑
i∈St

wiΣ
−1
i (θ − µi), (4.6)

�is suggests that we can obtain an approximate global posterior mode µ? using the same

generic Algorithm 4.1 as FedAvg but with slightly di�erent client updates: ∆i := Σ−1
i (θ − µi).

Importantly, as long as clients are able to compute ∆i’s e�ciently, this approach will result in

O(d) communication and O(d) server computation cost per round.
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Algorithm 4.3 IASG Sampling (ClientMCMC)

input initial θ, loss fi(θ), optimizer ClientOpt(α),
B: burn-in steps,K : steps per sample, `: # samples.

// Burn-in

1: for step t = 1, . . . , B do

2: θ ← ClientOpt(θ, ∇̂fi(θ))
3: end for

// Sampling

4: for sample s = 1, . . . , ` do
5: Sθ ← ∅ // Initialize iterates

6: for step t = 1, . . . ,K do

7: θ ← ClientOpt(θ, ∇̂fi(θ))
8: Sθ ← Sθ ∪ {θ}
9: end for

10: θs ← Average(Sθ) // Average iterates

11: end for

output samples {θ1, . . . ,θ`}

(2) E�cient local posterior inference.

To compute ∆i, each client needs to be able

to estimate the local posterior means and

covariances. We propose to use stochastic

gradient Markov chain Monte Carlo (SG-

MCMC, Welling and Teh, 2011; Ma et al.,

2015) for approximate sampling from local

posteriors on the clients, so that these sam-

ples can be used to estimate µ̂i’s and Σ̂i’s.

Speci�cally, we use a variant of SG-MCMC

with iterate averaging (IASG, Mandt et al.,

2017), which involves: (a) running local SGD

for some number of steps to mix in the

Markov chain, then (b) continued running of

SGD for more steps to periodically produce

samples via Polyak averaging (Polyak and

Juditsky, 1992) of the intermediate iterates

(Algorithm 4.3). �e more computation is

available locally on the clients each round,

the more posterior samples can be produced, resulting in be�er estimates of the local moments.

(3) E�cient computation of the deltas. Even if we can obtain samples {θ̂1, . . . , θ̂s} via

MCMC and use them to estimate local moments, µ̂i and Σ̂i, computing ∆i naı̈vely would still

require inverting a d × d matrix, i.e., O(d3) compute and O(d2) memory. �e good news is

that we can compute ∆i’s much more e�ciently, in O(d) time and memory, using a dynamic

programming algorithm and appropriate mean and covariance estimators.

Theorem 4.1: Linear-time Computation of Client Deltas

Given s approximate posterior samples {θ̂1, . . . , θ̂s}, let µ̂s be the sample mean, Ŝs be the

sample covariance, and Σ̂s := ρsI + (1− ρs)Ŝs be a shrinkage estimator (Ledoit and Wolf,

2004a) of the covariance with ρs := 1/(1 + (s− 1)ρ) for some ρ ∈ [0,+∞). �en, for any

θ, we can compute ∆̂s = Σ̂
−1

s (θ − µ̂s) in O(s2d) time and using O(sd) memory.

Proof sketch. We give a constructive proof by designing an e�cient algorithm for computing

∆̂s. Our approach is based on two key ideas:

1. We prove that the shrinkage estimator of the covariance has a recursive decomposition into

rank-1 updates, i.e., Σ̂t = Σ̂t−1 + ct · x>t xt, where ct is a constant and xt is some vector.

�is allows us to leverage the Sherman-Morrison formula for computing Σ̂
−1

s .

2. Further, we design a dynamic programming algorithm for computing ∆̂s exactly without

storing the covariance matrix or its inverse. Our algorithm is online and allows e�cient

updates of ∆̂s as more posterior samples become available.

See Appendix B.3 for the full proof and derivation of the algorithm.
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Algorithm 4.4 Client Update (FedAvg)

input initial θ0, loss fi(θ), optimizer ClientOpt

1: for k = 1, . . . ,K do

2: θk ← ClientOpt(θk−1, ∇̂fi(θk−1))
3: end for

output ∆ := θ0 − θK , client weight wi

Algorithm 4.5 Client Update (FedPA)

input initial θ0, loss fi(θ), sampler ClientMCMC

1: for k = 1, . . . ,K do

2: θk ∼ ClientMCMC(θk−1, fi)
3: end for

output ∆ := Σ̂
−1

(θ0 − µ̂), client weight wi

I To summarize, starting from a general posterior inference formulation (Equation 4.2), we

proposed to use an EP-style �ltering algorithm (Algorithm 4.2), which converges to the mode

of the approximate global posterior (Equation 4.5). While running Algorithm 4.2 is infeasible

in cross-device FL, we were able to further simplify it and improve its e�ciency by converting

computation of µ? into a stochastic optimization problem. Pu�ing all pieces together, we arrive

at a new algorithm—federated posterior averaging (FedPA)—which is a variant of generalized

federated optimization (Algorithm 4.1) with a new ClientUpdate procedure (Algorithm 4.5).

�e resulting algorithm is as e�cient as FedAvg in terms of computation, communication, and

memory footprint.

4.4.2 Analysis of the Algorithm

Does FedPA actually work? First, we test it on the toy 2D problem (Figure 4.1) which we initially

used to illustrate the convergence issues of FedAvg. �e results are presented on Figure 4.3. We

can clearly see the reverse trends: as we increase the amount of local computation on the clients

(used for producing more local posterior samples), FedPA converges faster and to a point much

closer to the global optimum. In the rest of this section, we discuss convergence, computational

and statistical e�ciency, comparing FedPA and FedAvg with each other, before moving to larger

experiments on realistic FL benchmark datasets.

Table 4.1: Computational complexity of the client

updates for methods that use 5 local epochs mea-

sured in milliseconds (% denotes relative increase).

Dim ∆̂FedAvg ∆̂` (DP) ∆̂` (exact)

100 72 91 +26% 82 +12%

1K 76 92 +21% 104 +36%

10K 80 93 +16% 797 +896%

100K 149 155 +4% —

Analysis of the computational overhead.

Note that the computational cost of ∆̂s consists

of two components: (i) the cost of producing s
approximate local posterior samples using IASG

and (ii) the cost of solving a linear system us-

ing dynamic programming. How much of an

overhead does it add compared to simply run-

ning local SGD? It turns out that in practical set-

tings the overhead is almost negligible. Table 4.1

shows the time it takes a client to compute the

updates based on 5 local epochs (100 steps per epoch) using di�erent algorithms (FedAvg vs.

our approach with exact or dynamic programming (DP) matrix inversion) on high-dimensional

synthetic problems. As the dimensionality grows, computational complexity of DP-based esti-

mation of ∆̂s becomes nearly identical to FedAvg, which indicates that the majority of the cost

in practice would come from SGD steps rather than our dynamic programming procedure.
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Figure 4.3: An illustration of federated learning in a toy 2D se�ing with two clients and quadratic

objectives. Le�: Contour plots of the client objectives, their local optima, as well as the corresponding

global optimum. Middle: Learning curves for MB-SGD and FedAvg with 10 and 100 steps per round.

FedAvg makes fast progress initially, but converges to a point far away from the global optimum. Right:

Learning curves for FedPA with 10 and 100 posterior samples per round and shrinkage ρ = 1. More

posterior samples (i.e., more local computation) results in faster convergence and allows FedPA to come

closer to the global optimum. Shaded regions denote 95% CI based on 5 runs. Best viewed in color.

Convergence analysis of FedAvg vs. FedPA. �anks to the similarity of the algorithms,

note that FedAvg can be viewed as a posterior inference algorithm that aims to converge to µ?

(Equation 4.4), but estimates local posterior covariances Σi with an identity and means with

the last iterate of multiple stochastic optimization steps. As a result, FedAvg obtains client

deltas ∆FedAvg := I(θ − θK), which are biased estimates of the gradients of the objective Q(θ)
(Equation 4.6). On the other hand, FedPA uses local posterior samples that help de-bias the

gradients, although may contribute to the variance. �us, from our probabilistic perspective, the

main di�erence between FedAvg and FedPA is the bias-variance trade o� in the server gradient

estimates∇Q(θ). As such, we can view both methods as biased SGD (Ajalloeian and Stich, 2020)

on the Q(θ) objective and reason about their convergence rates as well as distances between

their �xed points and correct global optima as functions of the gradient bias. We further discuss

formal convergence analysis in Appendix B.1.

�antifying empirically the bias and variance of ∆̂ for FedPA and FedAvg. To be�er

understand the di�erences in bias-variance trade o�s of both algorithms, we measure exactly

the empirical bias and variance of the client deltas computed by each method on the synthetic

least squares linear regression problems.
1

�e problems were generated as follows: for each

dimensionality (10, 100, and 1000 features), we generated 10 random least squares problems, each

of which consisted of 500 synthetic data points. Next, for each of the problems we generated 10

random initial model parameters {θ1, . . . ,θ10} and for each of the parameters we computed the

exact ∆i as well as ∆̂FedAvg,i and ∆̂FedPA,i for di�erent numbers of local steps. Using these sample

estimates, we computed the L2-norm of the bias and the Frobenius norm of the covariance

matrices of the produced deltas as functions of the number of local steps.
2

�e results are presented on Figure 4.4. From Figure 4.4a, we see that as the amount of

local computation increases, the bias in FedAvg delta estimates grows and the variance reduces.

For FedPA (Figure 4.4b), the trends turn out to be the opposite: as the number of local steps

1
�e problems were generated according to Guyon (2003) using the make regression function from

scikit-learn. h�ps://scikit-learn.org/stable/modules/generated/sklearn.datasets.make regression.html

2
For ∆̂FedPA we also varied the shrinkage hyperparameter ρ.
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(a) FedAvg bias and variance as functions of the number of local steps.
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(b) FedPA bias and variance as functions of the number of local steps. �e burn-in steps were not included. For

dimensionality 10, 100, and 1000, the shrinkage ρ was �xed to 0.01, 0.005, and 0.001, respectively.
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(c) FedPA bias and variance as functions of the shrinkage parameter. For dimensionality 10, 100, and 1000, the

number of local steps was �xed to 5,000, 10,000, and 50,000, respectively.

Figure 4.4: �e bias and variance trade o�s for FedAvg and FedPA.

increases, the bias consistently reduces; the variance initially goes up, but with enough samples

joins the downward trend. Note that the initial upward trend in the variance is due to the fact

that we used the same �xed shrinkage ρ regardless of the number of local steps just to avoid

varying multiple parameters at once. To avoid sharp increases in the variance, ρmust be selected

for each number of local steps separately; Figure 4.4c demonstrates how the bias and variance

depend on the shrinkage hyperparameter for some �xed number of local steps.
3

I To summarize, our analysis suggests that both FedAvg and FedPA can be seen as biased

stochastic gradient methods that aim to converge to the mode of the approximate global posterior.

While FedAvg can only reduce the bias by decreasing the amount of local optimization progress

made by the clients, FedPA de-biases its updates using local posterior samples (i.e., be�er utilizing

available local computational resources).

3
One could also use posterior samples to estimate the best possible ρ that balances the bias-variance tradeo�

(e.g., Chen et al., 2010) and avoids sharp increases in the variance.
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4.4.3 Posterior Inference for Personalization

So far, we have focused on federated learning of a single global model, then proposed to approach

the problem from a probabilistic standpoint (as a distribution of tasks, Figure 4.2), and designed

and analyzed a new algorithm for e�cient approximate posterior inference in federated se�ings.

But what about personalization? How does it �t into this picture?

zin

ψi

θ

φi
n ∈ [Ni]

client i data

i = 1, 2, . . .

client population

Figure 4.5: Factor graph

for personalized FL.

Our PMM framework introduced in Chapter 3 makes things ex-

tremely straightforward. First, we have to slightly change the rep-

resentation of the problem (Figure 4.5) and introduce client-speci�c

local latent variables, φi. �en, these additional variables allow

us to model local data of each clients with di�erent distributions

p (Di | φi,θ) due to conditioning on the client-speci�c latents. Now,

we can formulate personalized FL as approximate inference of the

posterior distribution over both local {φi} and global θ latent vari-

ables. In particular, at training time, we approximate p (θ | D) with

some q (θ) by solving the same divergence minimization problem

as before (Equation 4.2), where p (θ | D) would still factorize into a

product of local posteriors p (θ | Di) ∝ p (Di | θ), for which we have the following:

log p (Di | θ) =

negative variational free energy −Fqi (θ)︷ ︸︸ ︷
Eqi(φi|θ) [log p (Di | φi,θ) p (φi | θ)] + H (qi (φi | θ)) +

KL[qi (φi | θ) ‖ p (φi | Di,θ)]︸ ︷︷ ︸
divergence from the local posterior

(4.7)

Local variational free energy Fqi (θ) lower bounds the local log likelihood log p (Di | θ) and

is tight when qi (φi | θ) coincides with p (φi | Di,θ). �us, given access to a good enough

qi (φi | θ), we can drop-in replace the local log likelihood with Fqi (θ) and use it as the local

objective `i(θ) with FedPA or FedAvg for learning global parameters θ.

�e �nal question is how do we get qi (φi | θ) that approximates p (φi | Di,θ)? Recall

that the factor graph model in Figure 4.5 is identical to the one we would use to represent a

distribution of few-shot learning tasks that can be solved with meta-learning (Section 3.3.1). Also,

recall that “model adaptation” of di�erent meta-learning methods corresponds to di�erent ways

to approximate p (φi | Di,θ) (Section 3.3.2). �erefore, we can simply borrow adaptation from

any o�-the-shelf meta-learning method and use it to compute qi (φi | θ). Most meta-learning

methods approximate p (φi | Di,θ) with a point estimate φi(θ, Di), which is a function of θ
and Di. As a result, the variational free energy simpli�es to the following:

F̂i (θ) := − log p
(
Di | φ̂i(θ, Di),θ

)
(4.8)

I To sum up, in our framework, personalization corresponds to inference of the local latent

variables, which can be done approximately using any model adaptation technique from meta-

learning (e.g., MAML, ProtoNets, NPs, etc.). Training can be still performed with FedPA (or

FedAvg) using local variational free energy as the local objective.
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4.5 Experiments

In this �nal part of the chapter, we empirically evaluate FedPA on a suite of FL benchmarks

introduced by Reddi et al. (2020) against several competitive baselines: the best versions of

FedAvgwith adaptive optimizers as well asMIME (Karimireddy et al., 2020)—a recently-proposed

FedAvg variant that also works with stateless clients, but uses control-variates and server-level

statistics to improve convergence. Our evaluation is mainly focused on learning a single global

model (i.e., non-personalized FL), but we also provide a brief comparison of FedPA vs. FedAvg

combined with MAML against �ne-tuning baselines on one of the benchmarks at the very end.

Table 4.2: Statistics on the data and tasks. �e number of examples per client are given with one standard

deviation across the corresponding set of clients (denoted with±). See description of the tasks in the text.

Dataset Task # classes # clients (train/test) # examples p/ client (train/test)

EMNIST-62 CR 62 3,400 / 3,400 198± 77 / 23± 9
CIFAR-100 IR 100 500 / 100 100± 0 / 100± 0

StackOver�ow

LR 500

342,477 / 204,088 397± 1279 / 81± 301
NWP 10,000

4.5.1 �e Setup

Datasets and tasks. �e four benchmark tasks are based on the following three datasets

(Table 4.2): EMNIST (Cohen et al., 2017), CIFAR100 (Krizhevsky and Hinton, 2009), and Stack-

Over�ow (StackOver�ow, 2016). EMNIST (handwri�en characters) and CIFAR100 (RGB images)

are used for multi-class image classi�cation tasks. StackOver�ow (text) is used for next-word

prediction (also a multi-class classi�cation task, historically denoted NWP) and tag prediction

(a multi-label classi�cation task, historically denoted LR because a logistic regression model

is used). EMNIST was partitioned by authors (Caldas et al., 2018), CIFAR100 was partitioned

randomly into 600 clients with a realistic heterogeneous structure (Reddi et al., 2020), and

StackOver�ow was partitioned by its unique users. All datasets were preprocessed using the

code provided by Reddi et al. (2020).

Methods and models. We use a generalized framework for federated optimization (Algo-

rithm 4.1), which admits arbitrary adaptive server optimizers and expects clients to compute

model deltas. As a baseline, we use federated averaging with adaptive optimizers (or with

momentum) on the server and refer to it as FedAvg-1E or FedAvg-ME, which stands for 1

or multiple local epochs performed by clients at each round, respectively.
4

�e number of

local epochs in the multi-epoch versions is a hyperparameter. We use the same framework for

federated posterior averaging and refer to it as FedPA-ME. As our clients use IASG to produce

approximate posterior samples, collecting a single sample per epoch is optimal (Mandt et al.,

2017). �us FedPA-ME uses M samples to estimate client deltas and has the same local and global

4
Reddi et al. (2020) referred to federated averaging with adaptive server optimizers as FedAdam, FedYogi, etc.

Instead, we select the best optimizer for each task and refer to the corresponding method simply as FedAvg.
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computational complexity as FedAvg-ME but with two extra hyperparameters: the number

of burn-in rounds and the shrinkage coe�cient ρ from �eorem 4.1. As in Reddi et al. (2020),

we use the following model architectures for each task: CNN for EMNIST-62, ResNet-18 for

CIFAR-100, LSTM for StackOver�ow NWP, and multi-label logistic regression on bag-of-words

vectors for StackOver�ow LR (for details see Appendix B.4).

Hyperparameters. For hyperparameter tuning, we �rst ran small grid searches for FedAvg-

ME using hyperparameter grids from Reddi et al. (2020). �en, we used the best FedAvg-ME

con�guration and did a small grid search to tune the additional hyperparameters of FedPA-ME,

which turned out not to be very sensitive (i.e., many con�gurations provided results superior to

FedAvg). More hyperparameter details can be found in Appendix B.4.

Metrics. Since both speed of learning as well as �nal performance are important quantities

for federated learning, we measure: (i) the number of rounds it takes the algorithm to a�ain a

desired level of an evaluation metric and (ii) the best performance a�ained within a speci�ed

number of rounds. For EMNIST-62, we measure the number of rounds it takes di�erent methods

to achieve 84% and 86% evaluation accuracy
5
, and the best validation accuracy a�ained within

500 and 1500 rounds. For CIFAR-100, we use the same metrics but use 30% and 40% as evaluation

accuracy cuto�s and 1000 and 1500 as round number cuto�s. Finally, for StackOver�ow, we

measure the the number of rounds it takes to the best performance and evaluation accuracy

(for the NWP task) and precision, recall at 5, macro- and micro-F1 (for the LR task) a�ained

by round 1500. We note that the total number of rounds was selected based on computational

considerations (to ensure reproducibility within a reasonable amount of computational cost)

and the intermediate cuto�s were selected qualitatively to highlight some performance points

of interest. In addition, we provide plots of the evaluation loss and other metrics for all methods

over the course of training which show a much fuller picture of the behavior of the algorithms.

4.5.2 Results on Benchmark Tasks

�e e�ects of posterior correction of client deltas. As we demonstrated in Section 4.4.2,

FedPA essentially generalizes FedAvg and only di�ers in the computation done on the clients,

where we compute client deltas using an estimator of the local posterior inverse covariance

matrix, Σ−1
i , which requires sampling from the posterior. To be able to use SG-MCMC for local

sampling, we �rst run FedPA in the burn-in regime (which is identical to FedAvg) for a number

of rounds to bring the server state closer to the clients’ local optima,
6

a�er which we “turn on”

the local posterior sampling. �e e�ect of switching from FedAvg to FedPA for CIFAR-100 (a�er

400 burn-in rounds) and StackOver�ow LR (a�er 800 burn-in rounds) is presented on Figures 4.6a

and 4.6b, respectively.
7

During the burn-in phase, evaluation performance is identical for both

methods, but once FedPA starts computing client deltas using local posterior samples, the loss

5
Centralized optimization of the CNN model on EMNIST-62 a�ains the evaluation accuracy of 88%.

6
If SGD cannot reach the vicinity of clients’ local optima within the speci�ed number of local steps or epochs,

estimated local means and covariances based on the SGD iterates can be arbitrarily poor.

7
�e number of burn-in rounds is a hyperparamter and was selected for each task to maximize performance.

See more details in Appendix B.4.
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(a) CIFAR-100: Evaluation loss (le�) and accuracy (right) for FedAvg-ME and FedPA-ME.
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(b) StackOver�ow LR: Evaluation loss (le�) and macro-F1 (right) for FedAvg-ME and FedPA-ME.
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Figure 4.6: Evaluation metrics for FedAvg and FedPA computed at each training round on (a) CIFAR-100

and (b) StackOver�ow LR. During the initial rounds (“burn-in”), FedPA computes deltas the same way as

FedAvg; a�er that, FedPA computes deltas using Algorithm 4.5 and approximate posterior samples.

immediately drops and the convergence trajectory changes, indicating that FedPA is able to

avoid stagnation and make progress towards a be�er optimum. Similar e�ects are observed

across all other tasks (see Appendix B.5).

While the improvement of FedPA over FedAvg on some of the tasks is visually apparent

(Figure 4.6), we provide a more detailed comparison of the methods in terms of the speed of

learning and the a�ained performance on all four benchmark tasks, summarized in Table 4.3

and discussed below.

Results on EMNIST-62 and CIFAR-100. In Tables 4.3a and 4.3b, we present a comparison

of FedPA against: tuned FedAvg with a �xed client learning rate (denoted FedAvg-1E and

FedAvg-ME), the best variation of adaptive FedAvg from Reddi et al. (2020) with exponentially

decaying client learning rates (denoted AFO), and MIME of Karimireddy et al. (2020). With more

local epochs, we see signi�cant improvement in terms of speed of learning: both FedPA-ME and

FedAvg-ME achieve 84% accuracy on EMNIST-62 in under 100 rounds (similarly, both methods

a�ain 30% on CIFAR-100 by round 350). However, more local computation eventually hurts

FedAvg leading to worse optima: on EMNIST-62, FedAvg-ME is not able to consistently achieve

86% accuracy within 1500 rounds; on CIFAR-100, it takes extra 350 rounds for FedAvg-ME to

get to 40% accuracy.
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Table 4.3: Comparison of FedPA with baselines. All metrics were computed on the evaluation sets and

averaged over the last 100 rounds before the round limit was reached. �e “number of rounds to accuracy”

was determined based on the 10-round running average crossing the threshold for the �rst time. �e

arrows indicate whether higher (↑) or lower (↓) value is be�er. �e best performance is denoted in bold.

(a) EMNIST-62

accuracy (%, ↑) rounds (#, ↓)
Method \@ 500R 1500R 84% 86%

AFO
†

80.4 86.8 546 1291

MIME
‡

83.1 *84.9 464 *—

FedAvg-1E 83.9 86.5 451 1360

FedAvg-ME 85.8 85.9 86 —

FedPA-ME 86.5 87.3 84 92

(b) CIFAR-100

accuracy (%, ↑) rounds (#, ↓)
Method \@ 1000R 1500R 30% 40%

AFO
†

31.9 41.1 898 1401

MIME
‡

33.2 *33.9 680 *—

FedAvg-1E 24.2 31.7 1379 —

FedAvg-ME 40.2 42.1 348 896

FedPA-ME 44.3 46.3 348 543

(c) StackOver�ow

NWP LR (all metrics in %, ↑)
Method \ Metric accuracy (%, ↑) rounds (#, ↓) precision recall@5 ma-F1 mi-F1

AFO
†

23.4 1049 — 68.0 — —

FedAvg-1E 22.8 1074 74.58 69.1 14.9 43.8

FedAvg-ME 23.0 870 78.65 68.7 15.6 43.3

FedPA-ME 23.4 805 72.8 68.6 17.3 44.0

†
the best results taken from (Reddi et al., 2020).

‡
the best results taken from (Karimireddy et al., 2020).

* results were only available for the method trained to 1000 rounds.

Finally, federated posterior averaging achieves the best performance on both tasks in terms of

evaluation accuracy within the speci�ed limit on the number of training rounds. On EMNIST-62

in particular, the �nal performance of FedPA-ME a�er 1500 training rounds is 87.3%, which,

while only a 0.5% absolute improvement, bridges 41.7% of the gap between the centralized model

accuracy (88%) and the best federated accuracy from previous work (86.8%, Reddi et al., 2020).

Results on StackOver�ow NWP and LR. Results for StackOver�ow are presented in Ta-

ble 4.3c. Although not as pronounced as for image datasets, we observe some improvement

of FedPA over FedAvg here as well. For NWP, we have an accuracy gain of 0.4% over the

best baseline. For the LR task, we compare methods in terms of average precision, recall at

5, and macro-/micro-F1. �e �rst two metrics have appeared in some prior FL work, while

the la�er two are the primary evaluation metrics typically used in multi-label classi�cation

work (Gibaja and Ventura, 2015). Interestingly, while FedPA underperforms in terms of precision

and recall, it substantially outperforms in terms of micro- and macro-averaged F1, especially the

macro-F1. �is indicates that while FedAvg learns a model that can be�er predict high-frequency

labels, FedPA learns a model that be�er captures rare labels (Yang, 1999; Yang and Liu, 1999).

Interestingly, note while FedPA improves on F1 metrics and has almost the same recall at 5,

it’s precision a�er 1500 rounds is worse than FedAvg. A more detailed discussion along with

training curves for each evaluation metric are provided in Appendix B.5.
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4.5.3 Evaluating Personalization

Finally, we evaluate FedAvg and FedPA with di�erent personalization strategies on EMNIST-62.

�esetup. To evaluate for personalization, we randomly split 3,400 clients available for EMNIST-

62 into 2,500 training and 900 testing clients, each of which has a small training set and a small

testing set. At test time, clients receive a model from the server and either apply it directly

(baseline) or allowed to adapt it by �ne-tuning it on their small training sets for 5 epochs.
8

At

training time, we run FedAvg and FedPA on the training clients only for 1500 rounds with 5

client epochs per round; the algorithms either run as usual or use the variational free energy loss

(Equation 4.8) computed on test subset of the client data a�er the model parameters are adapted

using MAML on the training subset. We refer to the la�er as FedAvg-MAML and FedPA-MAML.

All in all, we have 4 di�erent training methods (FedAvg and FedPA with and without MAML)

and 2 di�erent evaluation methods (model with and without �ne-tuning).
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Figure 4.7: Results for personalized FL experiments. For each type of training (FedAvg and FedPA with

or without MAML), we evaluate the baseline and the �ne-tuned models on all test clients and report

25-th, 50-th, and 75-th test accuracy percentiles.

Results. �e results are presented on Figure 4.7. Observe the following. First, �ne-tuning

signi�cantly improves performance for all clients and clients that bene�t the most are the those

for which the baseline model is least accurate (the 25-th percentile in terms of test accuracy).

Next, using MAML objective for training further leads to improved performance post-�ne-tuning

for both FedAvg and FedPA, but results in worse performance of the baseline model, i.e., slightly

be�er initialization for �ne-tuning may not necessarily be a good model on its own. Finally,

and most interestingly, �ne-tuned FedPA models dominate FedAvg across all se�ings. Not

only FedPA is able to converge to a be�er initialization using MAML losses on the clients, it is

surprising to see that �ne-tuning a model obtained by FedPA outperforms FedAvg even with

standard losses—while the folklore belief (at least in the meta-learning community) is that the

�xed point of FedAvg, also known as Reptile (Nichol et al., 2018), is a be�er initialization for

subsequent �ne-tuning, our results (on EMNIST-62) suggest that �ne-tuning from a point closer

to the global optimum might actually be an equal or be�er strategy, at least in FL.

8
Note that the se�ing is di�erent from few-shot learning in that client data are extremely heterogeneous and

we neither control for the sizes nor the class balance of the training and testing sets.
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4.6 Conclusion

In this chapter, we presented a new perspective on FL based on the idea of global posterior

inference via local posterior averaging. Applying this perspective, we designed and analyzed a

new algorithm that generalizes federated averaging, is similarly practical, and able to utilize local

computation much more e�ciently, yielding state-of-the-art results on multiple challenging FL

benchmarks, both in non-personalized and personalized se�ings.

Our work sits at the intersection of two sub-�elds of machine learning—the younger �eld

of federated optimization and a more established �led of probabilistic inference—and a�empts

to bridge the two by reinterpreting and analyzing federated optimization from a probabilistic

standpoint. We note that message passing algorithms (Minka, 2005) have been known to be

e�ective for distributed or even asynchronous inference with sparse or infrequent communica-

tion. However, these techniques have been mainly applied to inference in small scale se�ings

until more recently (Hasenclever et al., 2017; Vehtari et al., 2020). Even though we derived

FedPA algorithm in this chapter as a special case of expectation propagation (EP) that can

scale to cross-device FL (Section 4.4), the algorithm was originally inspired by the sub-posterior

aggregation methods for scalable MCMC (Neiswanger et al., 2013; Sco� et al., 2016), as we were

not aware of this connection while working on the original paper (Al-Shedivat et al., 2021a).

Our algorithm required a number of speci�c approximations and design choices and has a few

limitations which we discuss below. Nevertheless, we believe that the underlying approach has

potential to signi�cantly broaden the design space for FL algorithms beyond purely optimization

techniques and hopefully inspire further research at the intersection of the two sub�elds.

4.6.1 Limitations and Future Work

• Convergence of FedPA highly depends on the quality of local posterior samples and the

robustness of the covariance estimator. Methods that can compute be�er estimates of

client deltas from fewer samples have the potential to dramatically improve convergence

speed. Our choice of client delta estimator was mainly driven by simplicity and scalability

considerations, and can be certainly improved.

• In experiments, we ran FedPA in the “burn-in” mode for a few rounds before switching to

local posterior sampling. Exploring more adaptive strategies that gradually transition from

FedAvg to FedPA over the course of training would be an interesting direction to explore.

• FedPA approximates the global posterior distribution with a Gaussian, which is extremely

crude and holds only locally within a neighborhood of di�erent local optima for neural

networks. While computing a mode of a Gaussian posterior is perhaps the best we can

do given the computation and communication constraints of federated learning, it would

be interesting try to represent multi-modal posteriors using ensemble methods or other

scalable techniques from Bayesian deep learning.

• Finally, while it is known, that posterior samples can be di�erentially private for free (Wang

et al., 2015), be�er understanding of privacy implications of posterior inference in federated

se�ings is an important and interesting direction of future work.
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Chapter 5
Learning under Nonstationarity

5.1 Summary

In this chapter, we consider the problem of Reinforcement Learning (RL) in nonstationary

environments. We observe that a nonstationary learning task can be decomposed into a sequence

of stationary few-shot learning tasks. �is decomposition allows us to reformulate the problem,

leverage our PMM framework, and design a gradient-based meta-learning algorithm that enables

continuous adaptation under nonstationarity. �e approach is demonstrated on simulated

nonstationary locomotion tasks and on challenging competitive multi-agent games.

5.2 Motivation and Goals

Recent progress in reinforcement learning (RL) has achieved very impressive results ranging

from playing games (Mnih et al., 2015; Silver et al., 2016), to applications in dialogue systems (Li

et al., 2016), to robotics (Levine et al., 2016). Despite the progress, the learning algorithms for

solving many of these tasks are designed to deal with stationary environments. On the other

hand, real-world is o�en nonstationary either due to complexity, changes in the dynamics or the

objectives in the environment over the life-time of a system, or presence of multiple learning

actors. Nonstationarity breaks the standard assumptions and requires agents to continuously

adapt, both at training and execution time, in order to succeed.

Learning under nonstationary conditions is challenging. �e classical approaches to dealing

with nonstationarity are usually based on context detection (Da Silva et al., 2006) and track-

ing (Su�on et al., 2007), i.e., reacting to the already happened changes in the environment by

continuously �ne-tuning the policy. Unfortunately, modern deep RL algorithms, while able

to achieve super-human performance on certain tasks, are known to be sample ine�cient.

Nevertheless, nonstationarity allows only for limited interaction before the properties of the

environment change. �us, it immediately puts learning into the few-shot regime and o�en

renders simple �ne-tuning methods impractical.
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A nonstationary environment can be seen as a sequence of stationary tasks, and hence we

propose to tackle it as a multi-task learning problem (Caruana, 1998). �e learning-to-learn (or

meta-learning) approaches (Schmidhuber, 1987; �run and Pra�, 1998) are particularly appealing

in the few-shot regime, as they produce �exible learning rules that can generalize from only a

handful of examples. Meta-learning has shown promising results in the supervised domain and

have gained a lot of a�ention from the research community recently (e.g., Santoro et al., 2016;

Ravi and Larochelle, 2016, inter alia). In this chapter, our goal is to develop a gradient-based

meta-learning algorithm similar to (Finn et al., 2017) and suitable for continuous adaptation of

RL agents in nonstationary environments. More concretely, our agents meta-learn to anticipate

the changes in the environment and update their policies accordingly.

While virtually any changes in an environment could induce nonstationarity (e.g., changes in

the physics or characteristics of the agent), environments with multiple agents are particularly

challenging due to complexity of the emergent behavior and are of practical interest with

applications ranging from multiplayer games (Peng et al., 2017) to coordinating self-driving

�eets (Cao et al., 2013). Multi-agent environments are nonstationary from the perspective of

any individual agent since all actors are learning and changing concurrently (Lowe et al., 2017).

�us, one of the central problems that we focus on solving in this chapter is the problem of

continuous adaptation to a learning opponent in a competitive multi-agent se�ing.

5.3 Related Work

�e problem of continuous adaptation considered in this work is a variant of continual learning
(Ring, 1994) and is related to lifelong (�run and Pra�, 1998; Silver et al., 2013) and never-ending
(Mitchell et al., 2015) learning. Life-long learning systems aim at solving a growing number

of tasks sequentially by e�ciently transferring and utilizing knowledge from already learned

tasks to new tasks while minimizing the e�ect of catastrophic forge�ing (McCloskey and Cohen,

1989; Kirkpatrick et al., 2017). Never-ending learning is concerned with mastering a �xed set

of tasks in iterations, where the set keeps growing over time and we are interested improving

performance on all the tasks in the set from iteration to iteration.

�e scope of continuous adaptation is narrower and more precise. While life-long and never-

ending learning se�ings are de�ned as general multi-task problems (Silver et al., 2013; Mitchell

et al., 2015), continuous adaptation targets to solve a single but complex and nonstationary

learning problem. While nonstationarity in the former two se�ings may exist, it is dictated by

some unknown process that generated the sequence of incoming tasks and, generally, is not

assumed to be predictable. In the case of continuous adaptation, we assume that nonstationarity

is caused by some underlying dynamics in the properties of a given environment (e.g., changes in

the behavior of other agents in a multi-agent se�ing), which is supposed to be more predictable.

Finally, in the life-long and never-ending scenarios the boundary between training and execution

is blurred as such systems constantly operate in the training regime. In continuous adaptation,

on the other hand, we distinguish between training and execution phases, and expect a trained

agent to have learned to adapt to the changes in a nonstationary environment at execution time

under the pressure of limited data or interaction experience between the changes.
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Nonstationarity of multi-agent environments is a well known issue that has been extensively

studied in the context of learning in simple multi-player iterated games (such as rock-paper-

scissors) where each episode is one-shot interaction (Singh et al., 2000; Bowling, 2005; Conitzer

and Sandholm, 2007). In such games, discovering and converging to a Nash equilibrium strategy

is a success for the learning agents. Modeling and exploiting opponents (Zhang and Lesser,

2010; Mealing and Shapiro, 2013) or even their learning processes (Foerster et al., 2018a) is

advantageous as it improves convergence or helps to discover equilibria of certain properties

(e.g., leads to cooperative behavior). In contrast to much of the prior work, each episode in the

environments that we consider here consists of multiple steps, happens in continuous time, and

requires learning a good intra-episodic controller. Finding Nash equilibria in such a se�ing is

hard. �us, fast adaptation becomes one of the few viable strategies against changing opponents.

5.4 Approach

�e problem of continuous adaptation in nonstationary environments immediately puts learning

into the few-shot regime: the agent must learn from only limited amount of experience that it

can collect before its environment changes. �erefore, we build our method upon the previous

work on Model-agnostic Meta-Learning (MAML) that has been shown successful in the few-shot

se�ings (Finn et al., 2017). Importantly, we show how to approach the problem using our PMM

framework, re-derive MAML for distributions of RL tasks from a probabilistic standpoint, and

then extend it to continuous adaptation under nonstationarity.

5.4.1 A Probabilistic View of Meta-RL and MAML

In this section, we show how to represent distributions of RL tasks using our PMM framework

and reinterpret meta reinforcement learning (meta-RL) as a way to approximate inference under

the assumed probabilistic model. Our discussion is particularly focused on MAML, which is

later extended to enable continuous adaptation.

Assume that we are given a distribution over tasks P where each task Ti ∼ P is a Markov

Decision Process (MDP), which can be de�ned by a tuple (cf. De�nition 3.1 in Section 3.2):

Ti := (Xi,Yi, pi,Li) (5.1)

Here, Xi and Yi are the state and action spaces, respectively (both are typically vector spaces).

pT is a probability distribution de�ned over sequences of states and actions of length H (stands

for horizon), called trajectories, denoted τ i := (xi0, ai1,xi1, . . . ,xiH−1, aiH) ∈ T , which de�nes

the Markovian dynamics of the environment in task T . �e loss function Li is de�ned for a

trajectory τ i through a reward function ri : X 7→ R as the negative cumulative reward of the

states visited along the trajectory, Li(τ ) := −∑H
t=1 ri(xt).

�e goal of meta-RL is to �nd an algorithmA which, given access to a limited experience on

a task sampled from P, can produce a good policy for solving it. While solving a distribution

of RL tasks is conceptually similar to solving a distribution of supervised tasks (Chapter 4),
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there is an important di�erence. In the supervised se�ing, we assumed that tasks come with (or

represented by) a small labeled dataset. In RL, however, tasks do not come with data but give the

agent an opportunity to interact with an environment and generate data (i.e., a few trajectories)

under some policy.
1

In other words in RL, the solution of a task (i.e., the policy) and the data it

is learned from are coupled. �us, to represent a distribution of RL tasks, we need a slightly

di�erent graphical model than what we used in Chapters 3 and 4.

Ti

τ i τ ′iπ

θ

φi

πi

i = 1, 2, . . .

task distribution

Figure 5.1: Factor graph for

a distribution of RL tasks.

Figure 5.1 presents a factor graph for a distribution of RL tasks.

Because trajectories depend on the policy used to interact with the

environment, to enable policy adaptation during the interaction, we

have to explicitly split trajectories into two subsets, τ i and τ ′i, where

τ i are obtained under the initial policy and τ ′i under the adapted

(task-speci�c) policy. �en, the adapted policy, represented by

factor πi, can depend on the the initial trajectories τ i, the local latent

variables φi, and the global parameters θ. Note that without rolling

out τ i under some initial policy, we would not have any information

about the corresponding RL task.
2

Finally, note that while τ i and

τ ′i depend on the dynamics and the reward function speci�ed by

the task Ti, we do not model them explicitly (i.e., consider model-

free RL), assuming that local latent variables φi can capture the

su�cient information about the task.

Under the speci�ed probabilistic model, we can represent meta-learning as inference of

the global parameters θ and policy adaptation as inference of the local latent variables φi.
More precisely, following Section 3.3.2, for a set of training tasks T1, . . . , TN , we can infer an

approximate local posterior qi (φi) for each task and obtain an estimate of θ by solving the

following general variational inference problem:

min
θ

1

N

N∑
i=1

{
Eqi(φi)

[
Eτ ′i∼pi(τ |θ,φi) [Li (τ ′i)]

]
+ H (qi)

}
(5.2)

where qi (φi) is selected to approximate p (φi | τ i,θ). MAML makes further approximations:

1. First, we assume that φi are parameters of the task-speci�c policy πi and θ is a common

initialization of these parameters. In other words, we have the same functional represen-

tation of the initial policy π and the task-speci�c policy πi and the di�erence is only in

the set of parameters being is used. To make these dependencies explicit in our notation,

we further refer to these policies as πθ and πφi and to the trajectories rolled out under

these policies as τ i,θ and τ i,φi , respectively.

2. Second, we approximate qi (φi) with a point estimate φi (θ), which is a function of θ
obtained by taking a gradient step from θ on the loss computed on K trajectories τ 1:K

i

1
In this chapter, we do not consider o�-line reinforcement learning, where the agent is expected to learn a

policy from a �xed set of trajectories, without interacting with an environment.

2
An alternative to having to interact with the environment under an initial policy is to have access to some

meta-data that describes the task Ti. Such meta-data could be, for example, a natural language description, which

we could condition the task-speci�c policy on instead. We do not consider such an extended setup here.
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sampled under the initial policy πθ:

φi (θ) := θ − α∇θ Eτ1:K
i,θ ∼pi(τ |θ)K

[
Li
(
τ 1:K
i,θ

)]︸ ︷︷ ︸
loss over τ i,θ sampled from Ti under πθ

(5.3)

where Li
(
τ 1:K
i,θ

)
:= 1

K

∑K
k=1 Li

(
τ ki,θ
)
. We call Equation 5.3 the adaptation update.

As a result, MAML applied to a distribution of RL tasks approximately solves Equation 5.2 by

optimizing the following objective function end-to-end with respect to θ:

min
θ

1

N

N∑
i=1

{
Li (θ) := Eτ i,θ∼pi(τ |θ)

[
Eτ i,φi∼pi(τ |φi(θ))

[
Li
(
τ i,φi

)
| τ 1:K

i,θ

]]}
(5.4)

where φi (θ) is computed in the inner loop as given in Equation 5.3. In practice, the expectations

are approximated by sampling, i.e., interacting with the environment and rolling out trajec-

tories under the speci�ed policies. �e objective can be optimized using the policy gradient

method (Williams, 1992), where the gradient of Li (θ) is as follows:

∇θLi (θ) = Eτ1:K
i,θ ∼pi(τ |θ)

τ i,φ∼pi(τ |φi)

[
Li
(
τ i,φi

) [
∇θ log πφi(τ i,φi) +∇θ

K∑
k=1

log πθ(τ
(k)
i,θ )

]]
(5.5)

�e meta-losses Li can be optimized using trust-region policy (TRPO) (Schulman et al., 2015a) or

proximal policy (PPO) (Schulman et al., 2017) optimization methods. For details and derivations

please refer to Appendix C.1.

5.4.2 Continuous Adaptation via Meta-learning

Up to this point, we discussed how use meta-learning for solving distributions of stationary

RL tasks. But is it possible to use a similar technique for solving distributions of nonstationary

RL tasks? Observe that we can view a nonstationary environment as stationary on a certain

timescale, and thus decompose a nonstationary RL problem into a sequence of stationary tasks

that depend on each other. Hence, we can exploit this dependence between consecutive tasks

and meta-learn a rule that keeps updating the policy in a way that minimizes the total expected

loss encountered during the interaction with the changing environment. For instance, in a

competitive multi-agent game, when playing against an opponent that changes its strategy

incrementally (e.g., due to learning), our agent should ideally meta-learn to anticipate the changes

and update its policy accordingly.

In the probabilistic language, a nonstationary environment can be represented by a Markov

chain of tasks. Moreover, our probabilistic representation makes it easy to extend a distribution

of RL tasks sampled i.i.d. (Figure 5.1) to a distribution over chains of tasks (Figure 5.2). Under

this new model, we can de�ne continuous adaptation as inference of p
(
φt+1
i | τ 0, . . . , τ t,θ

)
,

which we approximate in the same manner as MAML, i.e., with a point estimate obtained by

taking a few gradient steps on the inner loop objective starting from the common initialization.
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Figure 5.2: A probabilistic model that represents a distribution of nonstationary RL problems. Le�: A

factor graph that represents a nonstationary problem decomposed into a sequence of stationary RL tasks

(T 1
i , T

2
i , . . . ). Right: A graph that illustrates amortized inference of the task-speci�c variables.

To construct adapted parameters of the policy for task Ti+1, we start from θ and do multiple

meta-gradient steps with adaptive step sizes as follows (assuming the number of steps is M ):
3

φt+1
i,0 := θ, m = 1, . . . , (M − 1),

φt+1
i,m := φt+1

i,m−1 − αm∇φt+1
i,m−1
Lti
(
τ 1:K
i,φt+1

i,m−1

)
,

φt+1
i := φt+1

i,M−1 − αM∇φM−1
i
Lti
(
τ 1:K
i,φM−1

i

) (5.6)

where {αm}Mm=1 is a set of meta-gradient step sizes that are optimized jointly with θ. Note that

our procedure makes a simplifying approximation and computes φt+1
i by taking gradient steps

on the Lti objective instead of Lt+1
i , which implicitly relies on the similarity between Lti and

Lt+1
i and is likely to work only when consecutive tasks in the Markov chain are not too di�erent.

Under our adaptation update, given N sequences of L consecutive tasks each, Equation 5.2

reduces to the following optimization problem:

min
θ

1

NL

N∑
i=1

L−1∑
t=1

Lt,t+1
i (θ) (5.7)

where, exploiting the Markovian assumption, Lt,t+1
i (θ) is de�ned on pairs of consecutive tasks:

Lt,t+1
i (θ) := Eτ1:K

i,t ∼pti(τ i,t|θ)K

[
Eτ i,t+1∼pt+1

i (τ |φi)
[
Lt+1
i (τ i,t+1) | τ 1:K

i,t ,θ
]]

(5.8)

�e main di�erence between the loss in Equation 5.4 and Equation 5.8 is that trajectories τ 1:K
i,t

come from the current task, T ti , and are used to compute adapted policy parameters φt+1
i for the

3
Constructing φ via multiple gradient steps with adaptive step sizes tends to yield be�er results in practice.
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Algorithm 5.1 Meta-learning at training time.

input Distribution over pairs of tasks, P(Ti, Ti+1),
learning rate, β.

1: Randomly initialize θ and α.

2: repeat

3: Sample task pairs, {(Ti, Ti+1)}ni=1.

4: for all task pairs (Ti, Ti+1) in the batch do

5: Sample traj. τ 1:K
θ from Ti using πθ .

6: Compute φ = φ(τ 1:K
θ , θ, α).

7: Sample traj. τφ from Ti+1 using πφ.

8: end for

9: Compute ∇θLTi,Ti+1 and ∇αLTi,Ti+1 using

sampled trajectories τ 1:K
θ and τφ.

10: Update θ ← θ + β∇θLT (θ, α).
11: Update α← α+ β∇αLT (θ, α).
12: until Convergence

output Optimal θ∗ and α∗.

Algorithm 5.2 Adaptation at execution time.

input A stream of tasks, T1, T2, T3, . . . .
1: Initialize φ = θ.

2: while there are new incoming tasks do

3: Get a new task, Ti, from the stream.

4: Solve Ti using πφ policy.

5: While solving Ti, collect trajectories, τ 1:K
i,φ .

6: Update φ← φ(τ 1:K
i,φ , θ

∗, α∗) using

importance-corrected meta-update.

7: end while

Policy parameter space

upcoming task Ti+1. Hence, optimizing Lt,t+1
i (θ) is equivalent to truncated backpropagation

through time with a unit lag in the chain of tasks. To optimize Lt,t+1
i (θ), we can use policy

gradient method as well. �e analog of the policy gradient theorem (Su�on et al., 2000) for our

se�ing is formulated and proven in Appendix C.1.

Meta-learning at training time. Given a sequences of tasks generated by a nonstationary

environment, T 1
i , T

2
i , T

3
i , . . . , T

L
i , we use the set of all pairs of consecutive tasks, {(T ti , T t+1

i )}Lt=1,

to construct the meta-loss. �en, we can meta-learn the adaptation updates by optimizing θ and

α jointly with a gradient method, as given in Algorithm 5.1. We use πθ to collect trajectories

from Ti and πφ when interacting with Ti+1. Intuitively, the algorithm is searching for θ and α
such that the adaptation update Equation 5.6 computed on the trajectories from Ti brings us

to a policy, πφ, that is good for solving Ti+1. �e main assumption here is that the trajectories

from Ti contain some information about Ti+1. Note that we treat adaptation steps as part of the

computation graph and optimize θ and α via backpropagation through the entire graph, which

requires computing second order derivatives.

Adaptation at execution time. Note that to compute unbiased adaptation gradients at training

time, we have to collect experience in T ti using πθ. At test time, due to environment nonsta-

tionarity, we usually do not have the luxury to access to the same task multiple times. �us, we

keep acting according to πφ and re-use past experience to compute updates of φ for each new

incoming task, as summarized in Algorithm 5.2. To adjust for the fact that the past experience

was collected under a policy di�erent from πθ, we use importance weight correction. In case of

single step meta-update, we have:

φt+1
i := θ − α 1

K

K∑
k=1

(
πθ(τ ki,t)

πφti
(
τ ki,t
))∇θLti(τ ki,t), τ 1:K

i,t ∼ pti
(
τ | φti

)
, (5.9)
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(a) (b) (c)

Figure 5.3: Agents and environments used in our experiments. (a) �e three types of agents used in

experiments. �e robots di�er in the anatomy: the number of legs, their positions, and constraints on the

thigh and knee joints. (b) �e nonstationary locomotion environment. �e torques applied to red-colored

legs are scaled by a dynamically changing factor. (c) RoboSumo environment.

where πφti is used to rollout from T ti . Extending importance weight correction to multi-step

updates is straightforward and requires simply adding importance weights to each of the

intermediate steps in Equation 5.6.

5.5 Environments

We have designed a set of environments for testing di�erent aspects of continuous adaptation

methods in two scenarios: (i) simple environments that change from episode to episode according

to some underlying dynamics, and (ii) a competitive multi-agent environment, RoboSumo, that

allows di�erent agents to play sequences of games against each other and keep adapting to

incremental changes in each other’s policies. All our environments are based on MuJoCo physics

simulator (Todorov et al., 2012), and all agents are simple multi-leg robots (Figure 5.3a).

5.5.1 Nonstationary Locomotion

First, we consider the problem of robotic locomotion in a changing environment. We use a

six-leg agent (Figure 5.3b) that observes the absolute position and velocity of its body, the angles

and velocities of its legs, and it acts by applying torques to its joints. �e agent is rewarded

proportionally to its moving speed in a �xed direction. To induce nonstationarity, we select a

pair of legs of the agent and scale down the torques applied to the corresponding joints by a

factor that linearly changes from 1 to 0 over the course of 7 episodes. In other words, during the

�rst episode all legs are fully functional, while during the last episode the agent has two legs

fully paralyzed (even though the policy can generate torques, they are multiplied by 0 before

being passed to the environment). �e goal of the agent is to learn to adapt from episode to

episode by changing its gait so that it is able to move with a maximal speed in a given direction

despite the changes in the environment (cf. Cully et al., 2015). Also, there are 15 ways to select a

pair of legs of a six-leg creature which gives us 15 di�erent nonstationary environments. �is

allows us to use a subset of these environments for training and a separate held out set for

testing. �e training and testing procedures are described in the next section.
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Round 1 Round 2 Round 3 Round K

Opponent:
version 1 version 2 version 3 version K

Agent:

Episodes:

Figure 5.4: An agent competes with an opponent in an iterated adaptation games that consist of multi-

episode rounds. �e agent wins a round if it wins the majority of episodes (wins and losses illustrated

with color). Both agents may update their policies from round to round (denoted by the version number).

5.5.2 Competitive Multi-agent Games

Our multi-agent environment, RoboSumo, allows agents to compete in the 1-vs-1 regime

following the standard sumo rules
4
. We introduce three types of agents, Ant, Bug, and Spider,

with di�erent anatomies (Figure 5.3a). During the game, each agent observes positions of itself

and the opponent, its own joint angles, the corresponding velocities, and the forces exerted on

its own body (i.e., equivalent of tactile senses). �e action spaces are continuous.

Iterated adaptation games. To test adaptation, we de�ne the iterated adaptation game (Fig-

ure 5.4)—a game between a pair of agents that consists of K rounds each of which consists of

one or more �xed length episodes (500 time steps each). �e outcome of each round is either win,

loss, or draw. �e agent that wins the majority of rounds (with at least 5% margin) is declared

the winner of the game. �ere are two distinguishing aspects of our setup: First, the agents

are trained either via pure self-play or versus opponents from a �xed training collection. At

test time, they face a new opponent from a testing collection. Second, the agents are allowed to

learn (or adapt) at test time. In particular, an agent should exploit the fact that it plays against

the same opponent multiple consecutive rounds and try to adjust its behavior accordingly. Since

the opponent may also be adapting, the setup allows to test di�erent continuous adaptation

strategies, one versus the other.

Reward shaping. In RoboSumo, rewards are naturally sparse: the winner gets +2000, the

loser is penalized for -2000, and in case of a draw both opponents receive -1000 points. To

encourage fast learning at the early stages of training, we shape the rewards given to agents

in the following way: the agent (i) gets reward for staying closer to the center of the ring, for

moving towards the opponent, and for exerting forces on the opponent’s body, and (ii) gets

penalty inversely proportional to the opponent’s distance to the center of the ring. At test time,

the agents continue having access to the shaped reward as well and may use it to update their

policies. �roughout our experiments, we use discounted rewards with the discount factor,

γ = 0.995. More details are in Appendix C.4.2.

Calibration. To study adaptation, we need a well-calibrated environment in which none of the

agents has an initial advantage. To ensure the balance, we increased the mass of the weaker

agents (Ant and Spider) such that the win rates in games between one agent type versus the

other type in the non-adaptation regime became almost equal (for details, see Appendix C.4.3).

4
To win, the agent has to push the opponent out of the ring or make the opponent’s body touch the ground.

57



5.6 Experiments

Our goal is to test di�erent adaptation strategies in the proposed nonstationary RL se�ings.

However, it is known that the test-time behavior of an agent may highly depend on a variety of

factors besides the chosen adaptation method, including training curriculum, training algorithm,

policy class, etc. Hence, we �rst describe the precise setup that we use in our experiments to

eliminate irrelevant factors and focus on the e�ects of adaptation. Most of the low-level details

are deferred to appendices. Video highlights of our experiments are available online.

5.6.1 �e setup

Policies. We consider 3 types of policy networks: (i) a 2-layer MLP, (ii) embedding (i.e., 1

fully-connected layer replicated across the time dimension) followed by a 1-layer LSTM, and (iii)

RL
2

(Duan et al., 2016) of the same architecture as (ii) which additionally takes previous reward

and done signals as inputs at each step, keeps the recurrent state throughout the entire interaction

with a given environment (or an opponent), and resets the state once the la�er changes. For

advantage functions, we use networks of the same structure as for the corresponding policies

and have no parameter sharing between the two. Our meta-learning agents use the same policy

and advantage function structures as the baselines and learn a 3-step meta-update with adaptive

step sizes as given in Equation 5.6. Details on the architectures are given in Appendix C.2.

Meta-learning. We compute meta-updates via gradients of the negative discounted rewards

received during a number of previous interactions with the environment. At training time,

meta-learners interact with the environment twice, �rst using the initial policy, πθ, and then the

meta-updated policy, πφ. At test time, the agents are limited to interacting with the environment

only once, and hence always act according to πφ and compute meta-updates using importance-

weight correction (see Section 5.4.2 and Algorithm 5.2). Additionally, to reduce the variance of

the meta-updates at test time, the agents store the experience collected during the interaction

with the test environment (and the corresponding importance weights) into the experience bu�er

and keep re-using that experience to update πφ as in Equation 5.6. �e size of the experience

bu�er is �xed to 3 episodes for nonstationary locomotion and 75 episodes for RoboSumo. More

details are given in Appendix C.3.1.

Adaptation baselines. We consider the following three baseline strategies:

(i) naive (or no adaptation),

(ii) implicit adaptation via RL
2
, and

(iii) adaptation via tracking (Su�on et al., 2007) using PPO at execution time.

Training in nonstationary locomotion. We train all methods on the same collection of

nonstationary locomotion environments constructed by choosing all possible pairs of legs whose

joint torques are scaled except 3 pairs that are held out for testing (i.e., 12 training and 3 testing

environments for the six-leg creature). �e agents are trained on the environments concurrently,

i.e., to compute a policy update, we rollout from all environments in parallel and then compute,

aggregate, and average the gradients (for details, see Appendix C.3.2). LSTM policies retain
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Figure 5.5: Episodic rewards for 7 consecutive episodes in 3 held out nonstationary locomotion environ-

ments. We evaluate adaptation strategies in each environment for 7 episodes followed by a full reset of

the environment, policy, and meta-updates (repeated 50 times). Shaded regions correspond to 95% CI.

their state over the course of 7 episodes in each environment. Meta-learning agents compute

meta-updates for each nonstationary environment separately.

Training in RoboSumo. To ensure consistency of the training curriculum for all agents, we

�rst pre-train a number of policies of each type for every agent type via pure self-play with the

PPO algorithm (Schulman et al., 2017; Bansal et al., 2018). We snapshot and save versions of

the pre-trained policies at each iteration. �is lets us train other agents to play against versions

of the pre-trained opponents at various stages of mastery. Next, we train the baselines and

the meta-learning agents against the pool of pre-trained opponents
5

concurrently. At each

iteration k we (a) randomly select an opponent from the training pool, (b) sample a version of the

opponent’s policy to be in [1, k] (this ensures that even when the opponent is strong, sometimes

an undertrained version is selected which allows the agent learn to win at early stages), and (c)

rollout against that opponent. All baseline policies are trained with PPO; meta-learners also

used PPO as the outer loop for optimizing θ and α parameters. We retain the states of the LSTM

policies over the course of interaction with the same version of the same opponent and reset it

each time the opponent version is updated. Similarly to the locomotion setup, meta-learners

compute meta-updates for each opponent in the training pool separately. A more detailed

description of the distributed training is given in Appendix C.3.2.

Experimental design. We design our experiments to answer the following questions:

• When the interaction with the environment before it changes is strictly limited to one or

very few episodes, what is the behavior of di�erent adaptation methods in nonstationary

locomotion and competitive multi-agent environments?

• What is the sample complexity of di�erent methods, i.e., how many episodes is required

for a method to successfully adapt to the changes? We test this by controlling the amount

of experience the agent is allowed to get form the same environment before it changes.

Additionally, we ask the following questions speci�c to the competitive multi-agent se�ing:

5
In competitive multi-agent environments, besides self-play, there are plenty of ways to train agents, e.g., train

them in pairs against each other concurrently, or randomly match and switch opponents each few iterations. We

found that concurrent training o�en leads to an unbalanced population of agents that have been trained under

vastly di�erent curricula and introduces spurious e�ects that interfere with our analysis of adaptation. Hence, we

leave the study of adaptation in naturally emerging curricula in multi-agent se�ings to the future work.
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Figure 5.6: Win rates for di�erent adaptation strategies in iterated games versus 3 di�erent pre-trained

opponents. At test time, both agents and opponents started from versions 700. Opponents’ versions were

increasing with each consecutive round as if they were learning via self-play, while agents were allowed

to adapt only from the limited experience with a given opponent. Each round consisted of 3 episodes.

Each iterated game was repeated 100 times; shaded regions denote bootstrapped 95% CI; no smoothing.

• Given a diverse population of agents that have been trained under the same curriculum,

how do di�erent adaptation methods rank in a competition versus each other?

• When the population of agents is evolved for several generations—such that the agents

interact with each other via adaptation games, and those that lose disappear while the

winners get duplicated—what happens with the population?

5.6.2 Adaptation in the Few-shot Regime and Sample Complexity

Few-shot adaptation in nonstationary locomotion environments. Having trained base-

lines and meta-learning policies as described in Section 5.6.1, we selected 3 testing environments

that corresponded to disabling 3 di�erent pairs of legs of the six-leg agent: back, middle, and

front legs. �e results are presented on Figure 5.5. �ree observations: First, during the very �rst

episode, the meta-learned initial policy, πθ? , turns out to be suboptimal for the task (it underper-
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Figure 5.7: �e e�ect of increased number of episodes per round in the iterated adaptation games.

forms compared to other policies). However, a�er 1-2 episodes (and environment changes), it

starts performing on par with other policies. Second, by the 6th and 7th episodes, meta-updated

policies perform much be�er than the rest. Note that we use 3 gradient meta-updates for the

adaptation of the meta-learners; the meta-updates are computed based on experience collected

during the previous 2 episodes. Finally, tracking is not able to improve upon the baseline without

adaptation and sometimes leads to even worse results.

Adaptation in RoboSumo under the few-shot constraint. To evaluate di�erent adaptation

methods in the competitive multi-agent se�ing consistently, we consider a variation of the iter-

ated adaptation game, where changes in the opponent’s policies at test time are pre-determined

but unknown to the agents. In particular, we pre-train 3 opponents (1 of each type, Figure 5.3a)

with LSTM policies with PPO via self-play (the same way as we pre-train the training pool

of opponents, see Section 5.6.1) and snapshot their policies at each iteration. Next, we run

iterated games between our trained agents that use di�erent adaptation algorithms versus policy

snapshots of the pre-trained opponents. Crucially, the policy version of the opponent keeps

increasing from round to round as if it was training via self-play
6
. �e agents have to keep

adapting to increasingly more competent versions of the opponent (see Figure 5.4). �is setup

allows us to test di�erent adaptation strategies consistently against the same learning opponents.

�e results are given on Figure 5.6. We note that meta-learned adaptation strategies, in most

cases, are able to adapt and improve their win-rates within about 100 episodes of interaction

with constantly improving opponents. On the other hand, performance of the baselines o�en

deteriorates during the rounds of iterated games. Note that the pre-trained opponents were

observing 90 episodes of self-play per iteration, while all our agents (baselines and meta-learners)

had access to only 3 episodes per round.

Sample complexity of adaptation in RoboSumo. Meta-learning helps to �nd an update

suitable for fast or few-shot adaptation. However, how do di�erent adaptation methods behave

when more experience is available? To answer this question, we employ the same setup as

previously and vary the number of episodes per round in the iterated game. Each iterated game

is repeated 20 times, and we measure the win-rates during the last 25 rounds of the game.

�e results are presented on Figure 5.7. When the number of episodes per round goes

above 50, adaptation via tracking technically turns into “learning at test time,” and it is able

6
At the beginning of the iterated game, both agents and their opponent start from version 700, i.e., from the

policy obtained a�er 700 iterations (PPO epochs) of learning to ensure that the initial policy is reasonable.
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Figure 5.8: TrueSkill for the top-performing MLP- and LSTM-based agents computed based on outcomes

(win, loss, or draw) in 1000 iterated adaptation games (100 consecutive rounds per game, 3 episodes per

round) between randomly selected pairs of opponents from a population of 105 pre-trained agents.

to learn to compete against the self-trained opponents that it has never seen at training time.

�e meta-learned adaptation strategy performed near constantly the same in both few-shot

and standard regimes. �is suggests that the meta-learned strategy acquires a particular bias at

training time that allows it to perform be�er from limited experience but also limits its capacity

of utilizing more data. Note that, by design, the meta-updates are �xed to only 3 gradient steps

from θ? with step-sizes α? (learned at training), while tracking keeps updating the policy with

PPO throughout the iterated game. Allowing for meta-updates that become more �exible with

the availability of data can potentially help to overcome this limitation.

5.6.3 Evaluation on the Population-level

Combining di�erent adaptation strategies with di�erent policies and agents of di�erent mor-

phologies puts us in a situation where we have a diverse population of agents which we would

like to rank according to the level of their mastery in adaptation (or �nd the “��est”). To do so,

we use TrueSkill (Herbrich et al., 2007)—a metric similar to the ELO rating.

In this experiment, we consider a population of 105 trained agents: 3 agent types, 7 di�erent

policy and adaptation combinations, and 5 di�erent stages of training (from 500 to 2000 training

iterations). First, we assume that the initial distribution of any agent’s skill is N (25, 25/3) and

the default distance that guarantees about 76% of winning, β = 4.1667. Next, we randomly

generate 1000 matches between pairs of opponents and let them adapt while competing with

each other in 100-round iterated adaptation games. A�er each game, we record the outcome and

updated our belief about the skill of the corresponding agents using the TrueSkill algorithm
7
.

�e distributions of the skill for the agents of each type a�er 1000 iterated adaptation games

between randomly selected players from the pool are visualized in Figure 5.8.

�ere are a few observations we can make: First, recurrent policies were dominant. Second,

adaptation via RL
2

tended to perform equally or a li�le worse than plain LSTM with or without

tracking in this setup. Finally, agents that meta-learned adaptation rules at training time,

consistently demonstrated higher skill scores in each of the categories corresponding to di�erent

policies and agent types.

7
We used an implementation from h�p://trueskill.org/.
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Figure 5.9: Evolution of a population of 1050 agents for 10 generations (see also a video explanation).

Finally, we enlarge the population from 105 to 1050 agents by duplicating each of them 10

times and evolve it (in the “natural selection” sense) for several generations as follows. Initially,

we start with a balanced population of di�erent creatures. Next, we randomly match 1000

pairs of agents, make them play iterated adaptation games, remove the agents that lost from

the population and duplicate the winners. �e same process is repeated 10 times. �e result

is presented in Figure 5.9. We see that many agents quickly disappear form initially uniform

population and the meta-learners end up dominating.

5.7 Conclusion

In this chapter, we considered the problem reinforcement learning and adaptation in nonstation-

ary environments and designed a simple gradient-based meta-learning algorithm that enabled

continuous adaptation to Markovian nonstationarity. �e key idea of the method is to regard

nonstationarity as a sequence of stationary tasks and train agents to exploit the dependencies

between consecutive tasks such that they can handle similar nonstationarities at execution time.

Our approach was enabled by a probabilistic reformulation of meta-RL (and MAML in particu-

lar), which we further extended to distributions over sequences of dependent tasks. Finally, we

conducted an extensive empirical study, testing our algorithm in simulation on nonstationary

locomotion and on challenging competitive multi-agent games. In both cases, our meta-learned

continuous adaptation updates were more e�cient than the baselines in the few-shot regime.

Additionally, agents that meta-learned to adapt demonstrated the highest level of skill when

competing in iterated games against each other.

5.7.1 Limitations

�e problem of continuous adaptation in nonstationary and competitive environments is far

from being solved, and this work is the �rst a�empt to use meta-learning in a such setup. Our

meta-learning algorithm has a few limiting assumptions and design choices, many of which

have been made either due to simplicity or computational considerations. First, our continuous

adaptation update (Equation 5.6) is based on only one step lookahead and is computationally

similar to backpropagation through time with a unit time lag. �is could potentially be extended
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to fully recurrent meta-updates that take into account the full history of interaction with

the changing environment. Additionally, our meta-updates were based on the gradients of

a surrogate loss function. While such updates explicitly optimized the loss, they required

computing second order derivatives at training time, slowing down the training process by

an order of magnitude compared to baselines. Utilizing information provided by the loss but

avoiding explicit backpropagation through the gradients would be more appealing and scalable.

Finally, our approach is unlikely to work with sparse rewards as the meta-updates use policy

gradients and heavily rely on the reward signal. Introducing auxiliary dense rewards designed

to enable meta-learning is a potential way to overcome this issue.

5.7.2 Notable Follow-up Work

Since publication of the original paper that this chapter is based on (Al-Shedivat et al., 2018a),

multiple work have made further progress on reinforcement learning under nonstationarity,

either building on and/or extending ideas presented here in many interesting ways, or proposing

complementary approaches. We highlight a few notable directions that the author is aware of:

• While our work has been focused on model-free RL (and policy gradient methods in

particular), Nagabandi et al. (2018a) and Nagabandi et al. (2018b) proposed (online) meta-

learning methods for continuous adaptation in the context of model-based RL.

• Chandak et al. (2020) proposed a complementary (non-meta-learning) approach for solving

sequences of dependent MDPs using regret minimization and showed that their method

can compensate for the performance lag, which meta-learning does not fully address.

• Probabilistic (or Bayesian) interpretation of MAML (which we discussed more broadly

within our PMM framework in Chapter 3) was proposed concurrently for supervised

learning by Grant et al. (2018) and for reinforcement learning by Al-Shedivat et al. (2018a).

Using such probabilistic formulation, Finn et al. (2018) and Yoon et al. (2018) extended

MAML beyond point estimate approximation of the local posterior distributions, and

showed that representing uncertainty can be useful for solving ambiguous few-shot

learning problems, improving robustness, and enabling active learning at adaptation time.

• Finally, while we considered multi-agent games as a benchmark in this work, our evalua-

tion was centered on adaptation of a single agent, treating opponents as a nonstationary

part of the environment. Kim et al. (2020) extended our continuous adaptation method to

fully multi-agent se�ing and applied it to competitive and cooperative games.
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Chapter 6
Consistent Zero-shot Generalization

6.1 Summary

In this chapter, we consider the problem of multilingual machine translation, focusing on

zero-shot generalization—a challenging setup that tests models on translation directions they

have not been optimized for at training time. First, we reformulate multilingual translation as

probabilistic inference and show how to represent multiple translation tasks using our PMM

framework. �en, we de�ne the notion of zero-shot consistency and show why standard training

o�en results in models unsuitable for unseen tasks. Finally, we introduce a zero-shot consistent

training method, which encourages the model to produce equivalent translations of parallel

sentences in auxiliary languages, e�ectively optimizing a upper bound on the log likelihood

of the joint multilingual probabilistic model. Our method yields signi�cant improvements in

performance (up to 2-3 BLEU points, or +20% of relative improvement) over strong baselines

without any loss in performance on supervised translation directions.

6.2 Motivation and Goals

Machine Translation (MT) has made remarkable advances with the advent of deep learning

approaches (Bojar et al., 2016; Wu et al., 2016; Crego et al., 2016; Junczys-Dowmunt et al.,

2016). �e progress was largely driven by the encoder-decoder framework (Sutskever et al.,

2014; Cho et al., 2014), typically supplemented with an a�ention mechanism (Bahdanau et al.,

2014; Luong et al., 2015b). Compared to the traditional phrase-based MT systems (Koehn, 2009),

Neural Machine Translation (NMT) requires very large amounts of data in order to reach high

performance (Koehn and Knowles, 2017). Using NMT in a multilingual se�ing exacerbates the

problem by the fact that given k languages translating between all pairs would require O(k2)
parallel training corpora (and O(k2) models, if everything trained separately).

In an e�ort to address the problem, multiple di�erent multilingual NMT approaches have been

proposed. Luong et al. (2015a) and Firat et al. (2016a) proposed to use O(k) encoders/decoders

65



EnDe

En Fr

parallel data

FrDe FrEnLoss(           ,           ) agreement on Fr

DeEn DeFr
Loss(           ,           )agreement on De

Figure 6.1: Illustration of agreement-based training

of a multilingual NMT. At training time, given English-

French (En ↔ Fr) and English-German (En ↔ De)

parallel sentences, the model not only is trained to

translate between the pair but also to agree on trans-

lations into a third language.

that are then intermixed to translate between language pairs. Johnson et al. (2016) proposed to

use a single model and prepend special symbols to the source text to indicate the target language,

which has later been extended to other text preprocessing approaches (Ha et al., 2017) as well as

used in conjunction with language-conditional parameter generation (Platanios et al., 2018).

Johnson et al. (2016) also showed that a single multilingual system could potentially enable

zero-shot translation, i.e., translate between language pairs not seen in training. For example,

given 3 languages—German (De), English (En), and French (Fr)—and parallel data only for (De,

En) and (En, Fr), at test time, the system could additionally translate between (De, Fr).

Zero-shot translation is an important problem. Solving the problem could signi�cantly

improve data e�ciency—a single multilingual model would be able to generalize and translate

between any of the O(k2) language pairs a�er being trained only on O(k) parallel corpora.

However, zero-shot performance of NMT has been observed to be unstable and signi�cantly

lagging behind the supervised directions. Moreover, a�empts to improve zero-shot performance

by �ne-tuning o�en negatively impact other directions (Firat et al., 2016b; Sestorain et al., 2018).

In this chapter, we take a di�erent approach: instead of designing new architectures for NMT,

we aim to improve the training procedure of Johnson et al. (2016). First, we analyze multilingual

translation problem from a probabilistic perspective and de�ne the notion of zero-shot consistency
that gives insights as to why the vanilla training method may not yield models with good zero-

shot performance. Next, we propose a novel training objective and a modi�ed learning algorithm

that achieves consistency via agreement-based learning (Liang et al., 2006; Liang et al., 2008)

and improves zero-shot translation. Our training method encourages the model to produce

equivalent translations of parallel training sentences into an auxiliary language (Figure 6.1) and

provably leads to zero-shot generalization, as if we were to maximize the intractable joint log

likelihood (see �eorem 3.1 in Section 3.3.2). In addition, we make a simple change to the neural

decoder to make the agreement losses fully di�erentiable, which enables end-to-end training.

We demonstrate the e�cacy of our approach experimentally on IWSLT17 (Mauro et al.,

2017), UN corpus (Ziemski et al., 2016), and Europarl (Koehn, 2017), carefully removing complete

pivots from the training corpora. Agreement-based learning results in up to +3 BLEU zero-shot

improvement over the baseline, compares favorably (up to +2.4 BLEU) to other approaches in

the literature (Cheng et al., 2017; Sestorain et al., 2018), is competitive with pivoting, and does

not lose in performance on supervised directions.
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6.3 Preliminaries

We start by establishing more formal notation and brie�y reviewing some background on

encoder-decoder multilingual machine translation from a probabilistic point of view.

6.3.1 Notation

Languages. We assume that we are given a �xed collection of k languages, L1, . . . , Lk, that

share a common vocabulary, V . A language, Li, is de�ned by the marginal probability p (xi) it

assigns to sentences (i.e., sequences of tokens from the vocabulary), denoted xi := (x1, . . . , xl),

where l is the length of the sequence. All languages together de�ne a joint probability distribution,

p (x1, . . . ,xk), over k-tuples of equivalent sentences.1

Corpora. While each sentence may have an equivalent representation in all languages, we

assume that we have access to only partial sets of equivalent sentences, which form corpora. In

this work, we consider bilingual corpora, denoted Cij , that contain pairs of sentences sampled

from p (xi,xj) and monolingual corpora, denoted Ci, that contain sentences sampled from p (xi).

En
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Figure 6.2: Illustration of a trans-

lation graph for En, Es, Fr, Ru.

Translation. Finally, we de�ne a translation task from lan-

guage Li to Lj as learning to model the conditional distribution

p (xj | xi). �e set of k languages along with translation tasks

can be represented as a directed graph G(V , E) with a set of k
nodes, V , that represent languages and edges, E , that indicate

translation directions. We further distinguish between two dis-

joint subsets of edges: (i) supervised edges, Es, for which we

have parallel data, and (ii) zero-shot edges, E0, that correspond

to zero-shot translation tasks. Figure 6.2 presents an example

translation graph with supervised edges (En↔ Es, En↔ Fr,

En↔ Ru) and zero-shot edges (Es↔ Fr, Es↔ Ru, Fr↔ Ru).

We will use this graph as our running example.

6.3.2 Encoder-decoder Models

Consider a purely bilingual se�ing, where we learn to translate from a source language Ls to a

target language Lt. We can train a translation model by optimizing the conditional log-likelihood

of the bilingual data under the model:

θ̂ := arg min
θ∈θ

∑
xs,xt∈Cst

− log p (xt | xs,θ) (6.1)

where θ̂ are the estimated parameters of the model. �e encoder-decoder framework introduces

a latent sequence, u, and represents the model as:

p (xt | xs,θ) := pdec
θ (xt | u = f enc

θ (xs)) (6.2)

1
We say that sentences are equivalent if they carry the same meaning.
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where f enc
θ (xs) is the encoder that maps a source sequence to a sequence of latent representations,

u, and the decoder de�nes pdec
θ (xt | u).2 Note that u is usually deterministic with respect to

xs and accurate representation of the conditional distribution highly depends on the decoder.

In neural machine translation, the exact forms of encoder and decoder are speci�ed using

RNNs (Sutskever et al., 2014), CNNs (Gehring et al., 2016), and a�ention (Bahdanau et al., 2014;

Vaswani et al., 2017) as building blocks. �e decoding distribution pdec
θ (xt | u) is typically

modeled autoregressively, i.e., pdec
θ (xt | u) =

∏
i p

dec
θ

(
xit | u,x0:i−1

t

)
.

6.3.3 Multilingual Neural Machine Translation

In multilingual se�ings, we would like to learn to translate in all directions having access to only

few parallel bilingual corpora. In other words, we would like to learn a collection of models,

{p (xj | xi,θ)}i,j∈E . We can assume that models are independent and choose to learn them by

maximizing the following objective:

Lind(θ) =
∑

(i,j)∈Es

∑
(xi,xj)∈Cij

− log p (xj | xi,θ) (6.3)

In the statistics literature, this estimation approach is calledmaximum composite likelihood (Besag,

1975; Lindsay, 1988) as it composes the objective out of (sometimes weighted) terms that represent

conditional sub-likelihoods (in our example, p (xj | xi,θ)). Composite likelihoods are easy to

construct and tractable to optimize as they do not require representing the full likelihood, which

would involve integrating out variables unobserved in the data (as we mentioned in Section 3.3.2).

Johnson et al. (2016) proposed to train a multilingual NMT systems by optimizing a composite

likelihood objective (Equation 6.3) while representing all conditional distributions, p (xj | xi,θ),

with a shared encoder and decoder and using language tags, lt, to distinguish between translation

directions:

p (xt | xs) = pdec
θ (xt | ust = f enc

θ (xs, lt)) (6.4)

�is approach has numerous advantages including: (a) the simplicity of training and the

architecture (by slightly changing the training data, we seamlessly convert a bilingual NMT model

into a multilingual one), and (b) sharing parameters of the model between di�erent translation

tasks that may lead to be�er and more robust representations.
3

Johnson et al. (2016) also showed

that the resulting models seem to exhibit some degree of zero-shot generalization enabled by the

parameter sharing. However, since we lack data for zero-shot directions, composite likelihood

(Equation 6.3) misses the terms that correspond to the zero-shot models, and hence has no

guarantees what so ever for performance on zero-shot tasks.
4

2
Slightly abusing the notation, we use θ to denote all parameters of the model: embeddings, encoder, decoder.

3
It may also lead to destructive interference and negative transfer between the translation tasks, which Johnson

et al. (2016) did not observe in practice.

4
In fact, since the objective in Equation 6.3 assumes that the models are independent, plausible zero-shot

performance would be more indicative of the limited capacity of the model or artifacts in the data (e.g., presence of

multi-parallel sentences that the model picks up) rather than consistent zero-shot generalization.
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6.4 Approach

Multilingual translation is a multitask learning problem. �us we can de�ne the notion of zero-

shot generalization (see De�nition 3.5 in Section 3.2.2) and evaluate multilingual MT systems in

terms of zero-shot performance, or quality of translation along the directions they have not been

optimized for (e.g., due to lack of data).

Recall that we said that a learning algorithm generalizes if the corresponding generalization

error vanishes with the increase in the amount of training data. Here, we further re�ne that

de�nition and introduce the notion of zero-shot consistency of a learning algorithm.

De�nition 6.1: Zero-shot Consistency

Let Es and E0 be supervised and zero-shot translation tasks, respectively. Let `(·) be a

non-negative loss function andM be a model with maximum expected supervised loss

bounded by some ε > 0, i.e.:

max
(i,j)∈Es

Exi,xj [`(M)] < ε

We callM zero-shot consistent with respect to `(·) if there exists a function κ(·) such that:

max
(i,j)∈E0

Exi,xj [`(M)] < κ(ε)

where κ(ε) > 0 and κ(ε)→ 0 as ε→ 0.

In other words, we say that an MT system is zero-shot consistent if low error on supervised

tasks implies a low error on zero-shot tasks in expectation. �is notion of consistency somewhat

resembles error bounds in the domain adaptation literature (Ben-David et al., 2010).

Note that training NMT systems on more supervised data is known to reduce the error on

the corresponding supervised translation directions (i.e., ε → 0). In practice, it is a�ractive

to have NMT systems that are zero-shot consistent, which means that we can improve their

zero-shot performance without having to collect data for the zero-shot translation tasks, which

could be expensive or unavailable. While the training method of Johnson et al. (2016) does not

guarantee zero-shot consistency, we will show that our proposed approach does.

6.4.1 Composite vs. Joint Likelihood

Following the PMM framework introduced in Chapter 3, we can de�ne a join probabilistic model

that represents the distribution over tuples of k equivalent sentences as follows:

p (x1, . . . ,xk | θ) :=
1

Z

∏
(i,j)∈E

p (xj | xi,θ) =
1

Z
exp

 ∑
(i,j)∈E

ψij(xi,xj,θ)

 (6.5)
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(b) factor graph

Figure 6.3: Translation graph (a) and the corresponding factor graph (b) of the joint probabilistic

model. �e En-Fr language pair is observed, and the corresponding translation directions En↔ Fr are

denoted with black solid arrows. Translation directions from an observed language (En or Fr) to an

unobserved language (Es or Ru) are denoted in green; the reverse (unobserved to observed) are denoted

in blue; directions between unobserved languages are denoted in red. Dependencies of the factors on the

parameters θ are omi�ed for clarity. Best viewed in color.

Again, consider our running example in Figure 6.3a, which factor graph representation is

given in Figure 6.3b. Since the supervision is available only for pairs of languages at a time (e.g.,
En-Fr), the log marginal likelihood objective under this model takes the following form:

− L? (θ)

= log p (xEn,xFr | θ)

= log
∑

xEs,xRu

p (xEn,xEs,xFr,xRu | θ)

= const + log p (xEn | xFr,θ) + log p (xFr | xEn,θ) +

log
∑

xEs,xRu

p (xEs | xEn,θ) p (xRu | xEn,θ) p (xEs | xFr,θ) p (xRu | xFr,θ)×
p (xEn | xEs,θ) p (xEn | xRu,θ) p (xFr | xEs,θ) p (xFr | xRu,θ)×
p (xEs | xRu,θ) p (xRu | xEs,θ)

(6.6)

As in Figure 6.3, we denoted terms that correspond to translation directions with only one

observed sequences in blue and those that have both sequences unobserved in red.

�e standard objective Lind (θ) (Equation 6.3) includes only two factors with both observed

input and output sequences and ignores the rest. �us, increasing the amount of training data

for En-Fr pair and minimizing Lind (θ) can certainly improve performance on the supervised

tasks En ↔ Fr, but since Lind (θ) is not sensitive to other directions, it does not guarantee

zero-shot consistency of the resulting model. On the other hand, thanks to the additional terms,

L? (θ) is sensitive to the quality of all translation directions. However, L? (θ) is intractable to

compute since the summation is taken over all probable sentences in Es and Ru.

In the following section, we design a tractable objective that upper bounds L? (θ), ignoring

the terms marked blue and red and approximating the summation of the terms denoted in green.
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6.4.2 Agreement-based Likelihood

In this section, we derive a new objective function, called agreement-based likelihood. Consider

the composite likelihood Lind
EnFr

(θ) (Equation 6.3) for a pair of En-Fr sentences:

Lind
EnFr

(θ) = − log [p (xFr | xEn,θ) p (xEn | xFr,θ)]

= − log

∑
z′
Es
,z′

Ru

p (xFr, z
′
Es
, z′

Ru
| xEn,θ)×

∑
z′′
Es
,z′′

Ru

p (xEn, z
′′
Es
, z′′

Ru
| xFr,θ)

 (6.7)

where we introduced latent translations into Spanish (Es) and Russian (Ru) and marginalized

them out (by virtually summing over all sequences in the corresponding languages). Again, note

that this objective still assumes independence of En→ Fr and Fr→ En models, even though

the models share parameters θ.

Following Liang et al. (2008), we propose to tie together the single prime and the double

prime latent variables, zEs and zRu, to encourage agreement between p (xEn, zEs, zRu | xFr,θ)
and p (xFr, zEs, zRu | xEn,θ) on the latent translations. We interchange the sum and the product

operations inside the log in Equation 6.7, denote z := (zEs, zRu) to simplify notation, and arrive

at the following new objective function:

Lagree
EnFr

(θ) := − log
∑

z

p (xFr, z | xEn,θ) p (xEn, z | xFr,θ) (6.8)

Next, we factorize each term as p (x, z | y) = p (x | z,y) p (z | y). Assuming p (xFr | z,xEn,θ) ≈
p (xFr | xEn,θ),

5
the objective in Equation 6.8 decomposes into two terms:

Lagree
EnFr

(θ) ≈ − log p (xFr | xEn,θ)− log p (xEn | xFr,θ)︸ ︷︷ ︸
composite likelihood terms

− log
∑

z

p (z | xEn,θ) p (z | xFr,θ)︸ ︷︷ ︸
agreement term

(6.9)

We call the expression given in Equation 6.9 the negative agreement-based likelihood. Intuitively,

this objective is the likelihood of observing parallel sentences (xEn,xFr) and having sub-models

p (z | xEn,θ) and p (z | xFr,θ) agree on all translations into Es and Ru at the same time.

Upper bound. Summation in the agreement term over z (i.e., over all probable translations

into Es and Ru in our case) is intractable. Switching back from z to (zEs, zRu) notation and using

Jensen’s inequality, we upper bound it with cross-entropy:
6

− log
∑

z

p (z | xEn,θ) p (z | xFr,θ)

≤ −EzEs|xEn
[log p (zEs | xFr,θ)]− EzRu|xEn

[log p (zRu | xFr,θ)]

(6.10)

5
�is means that it is su�cient to condition on a sentence in one of the languages to determine probability of a

translation in any other language.

6
Note that the expectations in Equation 6.10 are conditional on xEn. Symmetrically, we can have an upper

bound with expectations conditional on xFr. In practice, we symmetrize the objective.
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We can estimate the expectations in the upper bound on the agreement terms by sampling

zEs ∼ p (zEs | xEn,θ) and zRu ∼ p (zRu | xEn,θ). In practice, instead of sampling we use greedy,

continuous decoding (with a �xed maximum sequence length), which also makes zEs and zRu

di�erentiable with respect to parameters of the model.

To summarize, we have introduced the agreement-based likelihood which complements the

composite likelihood objective with an agreement term. �e obtained loss Lagree
upper bounds

the full negative log likelihood objective L? (see Appendix D.1). To make it computable, we

further upper bound it with cross-entropy.

6.4.3 Consistency by Agreement

We argue that models produced by maximizing agreement-based likelihood are zero-shot con-

sistent. Informally, consider again our running example from Figure 6.3. Given a pair of parallel

sentences in (En, Fr), agreement loss encourages translations from En to {Es,Ru} and transla-

tions from Fr to {Es,Ru} to coincide. Note that En→ {Es, Fr,Ru} are supervised directions,

i.e., we have data for these directions. �erefore, agreement ensures that translations along the

zero-shot edges in the graph match supervised translations. Formally, we state it as follows.

Theorem 6.1: Zero-shot Consistency of the Agreement-based Learning

Let L1, L2, and L3 be a collection of languages with L1 ↔ L2 and L2 ↔ L3 be supervised

while L1 ↔ L3 be zero-shot directions. Let p (xj | xi,θ) be sub-models represented by a

multilingual MT model. If the expected agreement-based loss,Ex1,x2,x3 [Lagree
12 (θ) + Lagree

23 (θ)],
is bounded by some ε > 0, then, under some mild technical assumptions on the true distribu-

tion of the equivalent translations, the zero-shot cross-entropy lossEx1,x3 [− log pθ (x3 | x1)]
is bounded, too, by κ(ε) > 0, where κ(ε)→ 0 as ε→ 0.

A precise expression for κ(ε) along with a detailed proof are given in Appendix D.2. Note

that �eorem 6.1 is straightforward to extend from triplets of languages to arbitrary connected

graphs, as given in the following corollary.

Corollary 6.1. Agreement-based learning yields zero-shot consistent translation models (w.r.t.
cross-entropy) for arbitrary translation graphs as long as the supervised directions span the graph.

Alternative ways to ensure consistency. Note that there are other ways to ensure zero-shot

consistency, e.g., by �ne-tuning or post-processing a trained multilingual model. For instance,

pivoting, or translating through an intermediate (pivot) language, is also zero-shot consistent,

but the proof requires stronger assumptions about the quality of the supervised source-pivot

model.
7

Similarly, using model distillation (Kim and Rush, 2016; Chen et al., 2017) would be

also provably consistent under the same assumptions as given in �eorem 6.1, but for a single,

pre-selected zero-shot direction. Note that our proposed agreement-based learning framework

is provably consistent for all zero-shot directions and does not require any post-processing. For

discussion of the alternative approaches and consistency proof for pivoting, see Appendix D.3.

7
Intuitively, we have to assume that source-pivot model does not assign high probabilities to unlikely translations

as the pivot-target model may react to those unpredictably.
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Algorithm 6.1 Agreement-based multilingual NMT training

input Architecture (GNMT), agreement coe�cient (γ)

1: Initialize: θ ← θ0

2: while not (converged or step limit reached) do

3: Get a mini-batch of parallel source-target pairs, (Xs,Xt)
4: Compute the supervised cross-entropy loss: Lsup(θ)← log p (Xt | Xs,θ)

// compute agreement loss

5: Sample the auxiliary language: La ∼ Unif({1, . . . , k})
6: Compute auxiliary translations:

Za←s ← Decode (Za | f enc
θ (Xs, La)) , Za←t ← Decode (Za | f enc

θ (Xt, La))

7: Compute agreement log-probabilities:

`ta←s ← log p (Za←s | Xt,θ) , `sa←t ← log p (Za←t | Xs,θ)

8: Apply stop-gradients to `ta←s or `sa←t if either correspond to a supervised direction

// update parameters

9: Compute the total loss: Ltotal(θ)← Lsup(θ) + γ(`ta←s + `sa←t)
10: Update: θ ← optimizer update(Ltotal,θ)
11: end while

output θ

6.4.4 A Practical Learning Algorithm

Having derived a new objective function (Equation 6.9), we can now learn consistent multilingual

NMT models using stochastic gradient method with a couple of extra tricks (Algorithm 6.1). �e

computation graph for the agreement loss is given in Figure 6.4. We note a few critical points:

Subsampling auxiliary languages. Computing agreement over all languages for each pair of

sentences at training time would be quite computationally expensive (to agree on k translations,

we would need to encode-decode the source and target sequences k times each). However, since

the agreement upper bound is a sum over expectations (Equation 6.10), we can approximate it by

subsampling: at each training step (and for each sample in the mini-batch), we pick an auxiliary

language uniformly at random and compute stochastic approximation of the agreement upper

bound for that language only. �is stochastic approximation is simple, unbiased, and reduces

the computational overhead per step for the agreement term from O(k) to O(1).
8

Overview of the agreement loss computation. Given a pair of parallel sentences, xEn and

xFr, and an auxiliary language, say Es, an estimate of the upper bound on the agreement term

(Equation 6.10) is computed as follows: First, we concatenate Es language tags to both xEn and

xFr and encode the sequences so that both can be translated into Es (the encoding process is

depicted in Figure 6.4-A). Next, we decode each of the encoded sentences and obtain auxiliary

translations, zEs(xEn) and zEs(xFr), depicted as blue blocks in Figure 6.4-B. �is allows us to

8
In practice, note that there is still a constant factor overhead due to extra encoding-decoding steps to/from

auxiliary languages, which is about ×4 when training on a single GPU.
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<2En> Comment ça marche réellement?
How  does  this  actually  work?<2Fr>
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SubWord preprocessing

Agreement Loss
 log P(Es   | En)  log P(Es   | Fr)Fr En

Representation (target, <2Es>)

Comment ça marche réellement?

Representation (source, <2Es>)

How  does  this  actually  work?

A ADecoder        Greedy (continuous)

Decoder               Teacher forcing

Decoded embeddings       (Es   )

¿Cómo funciona esto realmente?

En

Decoder        Greedy (continuous)

Decoded embeddings       (Es   )

¿Cómo funciona realmente?

Fr
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A B

Figure 6.4: (A) Computation graph for the encoder. �e representations depend on the input sequence

and the target language tag. (B) Computation graph for the agreement loss. First, encode source and target

sequences with the auxiliary language tags. Next, decode zEs from both xEn and xFr using continuous

greedy decoder. Finally, evaluate log probabilities, log pθ (zEs(xEn) | xFr) and log pθ (zEs(xFr) | xEn), and

compute a sample estimate of the agreement loss.

treat pairs (xFr, zEs(xEn)) and (xEn, zEs(xFr)) as new parallel data for En → Es and Fr → Es.

Finally, using these pairs, we can compute two agreement terms:

`Fr
Es←En

:= log p (zEs(xFr) | xEn,θ) , `En
Es←Fr

:= log p (zEs(xEn) | xFr,θ) (6.11)

using encoding-decoding with teacher forcing (same way as typically done for the supervised

directions). Crucially, note that zEs(xEn) corresponds to a supervised direction, En → Es,

while zEs(xFr) corresponds to zero-shot, Fr→ Es. We these losses to (i) improve the zero-shot

direction while (ii) minimally a�ecting the supervised direction. To achieve (i), we use continuous

decoding, and for (ii) we use stop-gradient-based protection of the supervised directions. Both

techniques are described below.

Greedy continuous decoding. In order to make zEs(xEn) and zEs(xFr) di�erentiable with

respect to θ, at each decoding step t, we treat the output of the RNN, ht, as the key and use

dot-product a�ention over the vocabulary of embeddings, V, to construct zt
Es

:

zt
Es

:= softmax
{

(ht)>V
}

V (6.12)

In other words, auxiliary translations, zEs(xEn) and zEs(xFr), are �xed length sequences of

di�erentiable embeddings computed in a greedy fashion.

Protecting supervised directions. Algorithm 6.1 scales agreement losses by a small coe�cient

γ. We found experimentally that training could be sensitive to this hyperparameter since the

agreement loss also a�ects the supervised sub-models. For example, agreement of En →
Es (supervised) and Fr → Es (zero-shot) may push the former towards a worse translation,

especially at the beginning of training. To stabilize training, we apply the stop gradient
operator to the log probabilities and samples produced by the supervised sub-models before

computing the agreement terms (Equation 6.11), to zero-out the undesirable gradient updates.
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6.5 Experiments

We evaluate agreement-based training against baselines from the literature on three public

datasets that have multi-parallel evaluation data that allows assessing zero-shot performance.

We report results in terms of the BLEU score (Papineni et al., 2002).
9

6.5.1 Datasets

UN corpus. Following the setup introduced by Sestorain et al. (2018), we use two datasets,

UNcorpus-1 and UNcorpus-2, derived from the United Nations Parallel Corpus (Ziemski et al.,

2016).
10 UNcorpus-1 consists of data in three languages, En, Es, Fr, where UNcorpus-2 has Ru as

the 4th language. For training, we use parallel corpora between En and the rest of the languages,

each containing about 1 million sentences, sub-sampled from the o�cial training data in a way

that ensures no multi-parallel training data. �e dev and test sets contain 4,000 sentences and

are all multi-parallel, which is necessary for evaluation purposes only.

Europarl v7. We consider the following languages: De, En, Es, Fr. For training, again, we use

parallel data between En and the rest of the languages (about 1 million sentences per parallel

corpus), preprocessed to avoid multi-parallel sentences, as was also done by Cheng et al. (2017)

and Chen et al. (2017) and described below. �e dev and test sets contain 2,000 multi-parallel

sentences, again used for evaluation purposed only.

IWSLT17. We use data from the o�cial multilingual task: 5 languages (De, En, It, Nl, Ro), 20

translation tasks of which 4 zero-shot (De↔ Nl and It↔ Ro) and the rest 16 supervised. Note

that this dataset has a signi�cant overlap between parallel corpora in the supervised directions

(up to 100K sentence pairs per direction). �is implicitly makes the dataset multi-parallel and

defeats the purpose of zero-shot evaluation (Dabre et al., 2017). To avoid spurious e�ects, we

also derived IWSLT17
?

dataset from the original one by restricting supervised data to only

En↔ {De,Nl, It,Ro} and eliminating multi-parallel data by removing overlapping pivoting

sentences. We report results on both the o�cial and preprocessed datasets.

Preprocessing. To properly evaluate systems in terms of zero-shot generalization, we prepro-

cess Europarl and IWSLT
?

to avoid multi-lingual parallel sentences of the form source-pivot-target,
where source-target is a zero-shot direction. To do so, we follow Cheng et al. (2017) and Chen

et al. (2017) and randomly split the overlapping pivot sentences of the original source-pivot and

pivot-target corpora into two parts and merge them separately with the non-overlapping parts

for each pair. Along with each parallel training sentence, we save information about source

and target tags, a�er which all the data is combined and shu�ed. Finally, we use a shared

multilingual subword vocabulary (Sennrich et al., 2015) on the training data (with 32K merge

ops), separately for each dataset. Data statistics are provided in Appendix D.4.2.

9
�e score was computed using mteval-v13a.perl.

10
Description of the data is available at h�ps://github.com/liernisestorain/zero-shot-dual-MT.
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6.5.2 Training and Evaluation

Additional details on the hyperparameters can be found in Appendix D.4.1.

Models. We use a smaller version of the GNMT architecture (Wu et al., 2016) in all our ex-

periments: 512-dimensional embeddings (separate for source and target sides), 2 bidirectional

LSTM layers of 512 units each for encoding, and GNMT-style, 4-layer, 512-unit LSMT decoder

with residual connections from the 2nd layer onward. Multilingual translation was enabled by

prepending target language tags (of the form 〈fr〉) to the source-side sequences as was originally

proposed by Johnson et al. (2016).

Training. We trained the above model using the standard method of Johnson et al. (2016) and

using our proposed agreement-based training (Algorithm 6.1). In both cases, the model was

optimized using Adafactor (Shazeer and Stern, 2018) on a machine with four P100 GPUs for up

to 500K steps, with early stopping on the dev set.

Evaluation. We focus our evaluation on zero-shot performance of the following methods:

(a) Basic, which stands for directly evaluating a multilingual GNMT model a�er standard

training Johnson et al., 2016.

(b) Pivot, which performs pivoting-based inference using a multilingual GNMT model (a�er

standard training); o�en regarded as gold-standard.

(c) Agree, which applies a multilingual GNMT model trained with agreement losses directly

to zero-shot directions.

To ensure a fair comparison in terms of model capacity, all the techniques above use the same

multilingual GNMT architecture described in the previous section. All other results provided in

the tables are as reported in the literature.

Implementation. All our methods were implemented using TensorFlow (Abadi et al., 2016) on

top of the tensor2tensor library (Vaswani et al., 2018). Our code has been maid available

through the public repository of open source projects from the Google AI Language team.

6.5.3 Results on UN Corpus and Europarl

UN Corpus. Tables 6.1 and 6.2 show results on the UNCorpus datasets. Our approach consis-

tently outperforms Basic and Dual-0, despite the la�er being trained with additional monolin-

gual data (Sestorain et al., 2018). We see that models trained with agreement perform comparably

to Pivot, outperforming it in some cases, e.g., when the target is Russian, perhaps because it is

quite di�erent linguistically from the English pivot.

Furthermore, unlike Dual-0, Agree maintains high performance in the supervised directions

(within 1 BLEU point compared to Basic), indicating that our agreement-based approach is

e�ective as a part of a single multilingual system.
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Table 6.1: Results on UNCorpus-1.

Sestorain et al. (2018)
†

Our baselines

PBSMT NMT-0 Dual-0 Basic Pivot Agree

En→ Es 61.26 51.93 — 56.58 56.58 56.36

En→ Fr 50.09 40.56 — 44.27 44.27 44.80

Es→ En 59.89 51.58 — 55.70 55.70 55.24

Fr→ En 52.22 43.33 — 46.46 46.46 46.17

Supervised (avg.) 55.87 46.85 — 50.75 50.75 50.64

Es→ Fr 52.44 20.29 36.68 34.75 38.10 37.54

Fr→ Es 49.79 19.01 39.19 37.67 40.84 40.02

Zero-shot (avg.) 51.11 19.69 37.93 36.21 39.47 38.78

Table 6.2: Results on UNCorpus-2.

Sestorain et al. (2018)
†

Our baselines

PBSMT NMT-0 Dual-0 Basic Pivot Agree

En→ Es 61.26 47.51 44.30 55.15 55.15 54.30

En→ Fr 50.09 36.70 34.34 43.42 43.42 42.57

En→ Ru 43.25 30.45 29.47 36.26 36.26 35.89

Es→ En 59.89 48.56 45.55 54.35 54.35 54.33

Fr→ En 52.22 40.75 37.75 45.55 45.55 45.87

Ru→ En 52.59 39.35 37.96 45.52 45.52 44.67

Supervised (avg.) 53.22 40.55 36.74 46.71 46.71 46.27

Es→ Fr 52.44 25.85 34.51 34.73 35.93 36.02

Fr→ Es 49.79 22.68 37.71 38.20 39.51 39.94

Es→ Ru 39.69 9.36 24.55 26.29 27.15 28.08

Ru→ Es 49.61 26.26 33.23 33.43 37.17 35.01

Fr→ Ru 36.48 9.35 22.76 23.88 24.99 25.13

Ru→ Fr 43.37 22.43 26.49 28.52 30.06 29.53

Zero-shot (avg.) 45.23 26.26 29.88 30.84 32.47 32.29

†
Source: h�ps://openreview.net/forum?id=ByecAoAqK7.
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Table 6.3: Zero-shot results on Europarl. Note that Soft and Distill are not multilingual systems.

Previous work Our baselines

Soft
‡

Distill
†

Basic Pivot Agree

En→ Es — — 34.69 34.69 33.80

En→ De — — 23.06 23.06 22.44

En→ Fr 31.40 — 33.87 33.87 32.55

Es→ En 31.96 — 34.77 34.77 34.53

De→ En 26.55 — 29.06 29.06 29.07

Fr→ En — — 33.67 33.67 33.30

Supervised (avg.) — — 31.52 31.52 30.95

Es→ De — — 18.23 20.14 20.70

De→ Es — — 20.28 26.50 22.45

Es→ Fr 30.57 33.86 27.99 32.56 30.94

Fr→ Es — — 27.12 32.96 29.91

De→ Fr 23.79 27.03 21.36 25.67 24.45

Fr→ De — — 18.57 19.86 19.15

Zero-shot (avg.) — — 22.25 26.28 24.60

†
So� pivoting (Cheng et al., 2017).

‡
Distillation (Chen et al., 2017).

Europarl. Table 6.3 shows the results on the Europarl corpus. On this dataset, our approach

consistently outperforms Basic by 2-3 BLEU points but lags a bit behind Pivot on average

(except on Es→ De where it is be�er). Cheng et al. (2017)
11

and Chen et al. (2017) have reported

zero-resource results on a subset of these directions and our approach outperforms the former

but not the la�er on these pairs. Note that both Cheng et al. (2017) and Chen et al. (2017) train

separate models for each language pair and the approach of Chen et al. (2017) would require

training O(k2) models to encompass all the pairs. In contrast, we use a single multilingual

architecture which has more limited model capacity (although in theory, our approach is also

compatible with using separate models for each direction).

6.5.4 Analysis of IWSLT17 zero-shot tasks

Table 6.4a presents results on the original IWSLT17 task. We note that because of the large

amount of data overlap and presence of many supervised translation pairs (16) the vanilla training

method (Johnson et al., 2016) achieves very high zero shot performance, even outperforming

Pivot. While our approach gives small gains over these baselines, we believe the dataset’s

pecularities make it not reliable for evaluating zero-shot generalization.

On the other hand, on our proposed preprocessed IWSLT17
?

that eliminates the overlap and

reduces the number of supervised directions, there is a considerable gap between the supervised

and zero-shot performance of Basic. Agree performs be�er than Basic and slightly worse than

Pivot. Note that results on IWSLT17 and IWSLT17
?

cannot be compared directly.
12

11
We only show their best zero-resource results since some of their methods require direct parallel data.

12
�e IWSLT17 and IWSLT17

?
benchmarks contain di�erent tasks (IWSLT17

?
has fewer translation directions)

and even for the same tasks the amount of data is di�erent due to preprocessing.
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Table 6.4: Results on the o�cial IWSLT17 and our preprocessed IWSLT17
?

multilingual tasks. �e BLEU

scores are averaged over the supervised and zero-shot tasks, respectively.

(a) IWSLT17

Previous work Our baselines

SOTA
†

CPG
‡

Basic Pivot Agree

Supervised 24.10 19.75 24.63 24.63 23.97

Zero-shot 20.55 11.69 19.86 19.26 20.58

(b) IWSLT17
?

Basic Pivot Agree

Supervised 28.72 28.72 29.17

Zero-shot 12.61 17.68 15.23

†
From Dabre et al. (2017).

‡
From Platanios et al. (2018).

6.5.5 Small data regime

To be�er understand the dynamics of di�erent methods in the small data regime, we also trained

all our methods on subsets of the Europarl for 200K steps and evaluated on the dev set. �e

training set size varied from 50 to 450K parallel sentences. From Figure 6.5, Basic tends to

perform extremely poorly while Agree is the most robust (also in terms of variance across

zero-shot directions). We see that Agree generally upper-bounds Pivot, except for the (Es, Fr)
pair, perhaps due to fewer cascading errors along these directions.
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Figure 6.5: BLEU on the dev set for Agree and the baselines trained on smaller subsets of Europarl.
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6.6 Conclusion

In this chapter, we studied zero-shot generalization in the context of multilingual neural machine

translation. First, we introduced the concept of zero-shot consistency that implies generalization.

Next, we developed a provably consistent agreement-based learning approach for zero-shot

translation, which optimizes an upper bound on the negative log likelihood under a joint

probabilistic model of multilingual data which we constructed using the PMM framework.

Empirical results on three benchmark datasets showed that agreement-based learning yields up

to +3 BLEU zero-shot improvement over the Johnson et al. (2016) baseline, compares favorably

to other approaches in the literature (Cheng et al., 2017; Sestorain et al., 2018), is competitive

with pivoting, and does not lose in performance on supervised directions.

We emphasize that, while our case study was focused on multilingual machine translation,

our ideas and methods could be useful beyond translation, especially in arbitrary multi-modal

se�ings. For instance, it could be applied to tasks such as cross-lingual natural language

inference Conneau et al., 2018, style-transfer (Shen et al., 2017; Fu et al., 2017; Prabhumoye et al.,

2018), or multilingual image or video captioning. Another interesting future direction would be

to explore di�erent hand-engineered or learned data representations, which one could use to

encourage models to agree on during training (e.g., make translation models agree on latent

semantic parses, summaries, or potentially other data representations available at training time).

6.6.1 Limitations

�e probabilistic framework developed in this chapter is fairly universal, but the approximations

that we had to make to design a computationally e�cient learning algorithm have limitations.

First, computing agreement-based loss terms requires two extra encoding-decoding steps, which

adds a constant factor overhead. Further, in order to make the losses di�erentiable, we had

opt for a suboptimal greedy decoding strategy. Note that while it is possible to avoid decoding

altogether using heuristic losses on the encoded representations instead (e.g., Arivazhagan et al.,

2019), empirically, we found that agreement-based losses even with suboptimal greedy decoding

gave be�er results. An interesting direction to pursue next would be to �nd a way to substitute

the extra encoding-decoding steps in our approach architecture that does a single (multilingual)

encoding-decoding pass that computes comparable or be�er approximations of the agreement

terms in the loss.

6.6.2 Notable Follow-up Work

Since publication of the original paper that this chapter is based on (Al-Shedivat and Parikh,

2019), our probabilistic approach has been extended in unsupervised translation:

• Garcia et al. (2020) and Li et al. (2020) extended our probabilistic framework to encompass

unsupervised machine translation, i.e., a se�ing where the translation graph (Figure 6.2)

is disjoint and some languages have only mono-lingual corpora available.
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Chapter 7
A Multitask View of Interpretability

7.1 Summary

�is �nal case study is focused on the problem of interpretability of machine learning models.

We approach this problem in a non-traditional way: instead of trying to explain predictions of a

complex model trained to solve a single learning task, we show how to decompose the problem

into multiple tasks and learn to infer (or generate) interpretable models for each sub-task. To

this end, we introduce Contextual Explanation Networks (CENs)—a class of end-to-end trainable

neural architectures that enables such inference of task-speci�c interpretable models. Our

approach o�ers multiple advantages, including no loss in predictive performance and up to three

orders of magnitude faster generation of faithful explanations for each prediction compared to

commonly used alternative post-hoc model explanation methods.

7.2 Motivation and Goals

Model interpretability is a long-standing problem in machine learning that has become quite

acute with the accelerating pace of the widespread adoption of complex predictive algorithms.

While high performance o�en supports our belief in the predictive capabilities of a system,

perturbation analysis reveals that black-box models can be easily broken in an unintuitive

and unexpected manner (Szegedy et al., 2013; Nguyen et al., 2015). �erefore, for a machine

learning system to be used in a social context (e.g., in healthcare) it is imperative to provide

sound reasoning for each prediction or decision it makes.

To design such systems, we may restrict the class of models to only human-intelligible
(Caruana et al., 2015). However, such an approach is o�en limiting in modern practical se�ings.

Alternatively, we may �t a complex model and explain its predictions post-hoc, e.g., by searching

for linear local approximations of the decision boundary (Ribeiro et al., 2016). While such methods

achieve their goal, explanations are generated a posteriori require additional computation per

data instance and, most importantly, are never the basis for the predictions made in the �rst

place, which may lead to erroneous interpretations, as we show in this chapter.
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Figure 7.1: Illustration of the high-level functionality of CENs: �e context is represented by satellite

imagery and used to generate instance-speci�c linear models (explanations). �e la�er act on a set of

interpretable a�ributes from regional survey data to produce predictions.

Inspired by the human learning and decision process (Lombrozo, 2006), we introduce CENs—

a class of architectures that learn to predict and to explain jointly, alleviating the drawbacks of

the post-hoc methods. To make a prediction, CENs operate as follows (Figure 7.1). First, they

process a subset of inputs and generate parameters for a simple probabilistic model (e.g., sparse

linear model) which is regarded interpretable by a domain expert. �en, the generated model is

applied to another subset of inputs and produces a prediction. To motivate such an architecture,

we consider the following example.

A motivating illustration: One of the tasks we consider in this paper is classi�cation of

households into poor and not poor having access to satellite imagery and categorical data from

surveys (Jean et al., 2016). If a human were to solve this task, to make predictions, they might

assign weights to features in the categorical data and explain their predictions in terms of the

most relevant variables (i.e., come up with a linear model). Moreover, depending on the type of

the area (as seen from the imagery), they might select slightly di�erent weights for di�erent

areas (e.g., when features indicative of poverty are di�erent for urban and rural areas).

�e CEN architecture given in Figure 7.1 imitates this process by making predictions using

sparse linear models applied to interpretable categorical features. �e weights of the linear

models are contextual, generated by a learned encoder that maps images (the contexts) to weight

vectors (the explanations). �e learned encoder is sensitive to the infrastructure presented in

the input images and generates di�erent linear models for urban and rural areas. CENs can

represent complex model classes by using powerful encoders. At the same time, by o�se�ing

complexity into the encoding process, we achieve simplicity of the generated explanations and

can interpret predictions in terms the variables of interest.

�e proposed architecture opens a number of questions: What are the fundamental advan-

tages and limitations of CEN? How much of the performance should be a�ributed to the context

encoder and how much to the explanations? Finally, how do CEN-generated explanations

compare to alternatives? In the rest of this chapter, we formalize our intuitions and answer

these questions theoretically and experimentally.
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7.3 Preliminaries

We start by introducing the notation and reviewing post-hoc model explanations, with a focus

on Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al., 2016) as one of the

most popular frameworks to date.

Given a collection of data where each instance is represented by inputs, c ∈ C, and targets,

y ∈ Y , our goal is to learn an accurate predictive model, f : C 7→ Y . To explain predictions,

we can assume that each data point has another set of features, x ∈ X . Ribeiro et al. (2016)

originally proposed to construct explanations in the form of simpler models, gc : X 7→ Y , so

that they are consistent with the original model in the neighborhood of the corresponding

data instance, i.e., gc(x) = f(c). While the original inputs, c, can be of complex, low-level,

unstructured data types (e.g., text, image pixels, sensory inputs), we assume that x are high-level,

meaningful variables (e.g., categorical features).

In the post-hoc explanation literature, it is assumed that x are derived from c and are o�en

binary (Lundberg and Lee, 2017) (e.g., c can be images, while x can be vectors of binary indicators

over the corresponding super-pixels). We consider a more general se�ing where c and x are not

necessarily derived from each other. �roughout the chapter, we call c the context and x the

a�ributes or variables of interest.

Locally Interpretable Model-agnostic Explanations (LIME)

Given a trained model, f , and a data instance with features (c,x), LIME constructs an explanation,

gc, as follows:

gc = arg min
g∈G

L(f, g, πc) + Ω(g) (7.1)

where L(f, g, πc) is the loss that measures how well g approximates f in the neighborhood

de�ned by the similarity kernel, πc : X 7→ R+, in the space of a�ributes, X , and Ω(g) is the

penalty on the complexity of explanation.
1

Now more speci�cally, Ribeiro et al. (2016) assume

that G is the class of linear models, gc(x) := bc + wc · x, and de�ne the loss and the similarity

kernel as follows:

L(f, g, πc) :=
∑
x′∈X

πc(x′) (f(c′)− g(x′))
2
, πc(x′) := exp

{
−D(x,x′)2/σ2

}
(7.2)

where the data instance of interest is represented by (c,x), x′ and the corresponding c′ are

the perturbed features, D(x,x′) is some distance function, and σ is the scale parameter of the

kernel. �e regularizer, Ω(g), is o�en chosen to favor sparse explanations.

�e model-agnostic property is the key advantage of LIME (and variations)—we can solve

Equation 7.1 for any trained model, f , any class of explanations, G, at any point of interest, (c,x).

While elegant, predictive and explanatory models in this framework are learned independently

and hence never a�ect each other. In the next section, we propose a class of models that ties

prediction and explanation together in a joint probabilistic framework.

1
Ribeiro et al. (2016) argue that only simple models of low complexity (e.g., su�ciently sparse linear models) are

human-interpretable and support that by human studies.
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Figure 7.2: Probabilistic graphical representations of di�erent CENs: (a) CEN for a scalar prediction task

with linear explanations and a context encoder parameterized by w. (b) CEN for a structured prediction

task with linear CRF-based explanations and a context encoder parameterized by w.

7.4 Approach

We consider the same problem of learning from a collection of data represented by context vari-

ables, c ∈ C, a�ributes, x ∈ X , and targets, y ∈ Y . Our goal is to learn a model, p (y | x, c,w),

parametrized by w that can predict y from x and c. We de�ne contextual explanation networks

as probabilistic models that assume the following form (Figure 7.2):
2

p (y | x, c,w) =

∫
θ∈Θ

p (y | x,θ) p (θ | c,w) dθ (7.3)

where p (y | x,θ) is a predictive distribution parametrized by θ. We call such predictors explana-
tions, since they explicitly relate interpretable a�ributes, x, to the targets, y. For example, when

the targets are scalar and binary, explanations may take the form of linear logistic models; when

the targets are more complex, dependencies between the components of y can be represented

by a graphical model, e.g., Conditional Random Field (CRF) (La�erty et al., 2001).

CENs assume that each explanation is context-speci�c: p (θ | c,w) de�nes a conditional

probability of an explanation θ being valid in the context c. To make a prediction, we marginalize

out θ. To interpret a prediction, ŷ, for a given data instance with inputs (x, c), we must infer

the (approximate) posterior, p (θ | ŷ,x, c,w).

�e main advantage of our approach is to allow modeling conditional probabilities p (θ | c,w)
in a black-box fashion while keeping the family of explanations that de�ne p (y | x,θ) simple

and interpretable. For instance, when the context is given as raw text, we may choose p (θ | c,w)
to be represented with a recurrent neural network, while p (y | x,θ) can still be linear models.

Implications of these assumptions are discussed in Section 7.5. Here, we continue with a

discussion of a number of practical choices for p (θ | c,w) and p (v | x,θ) (see Table 7.1).

2
While we focus on predictive modeling, CENs are applicable beyond that. For example, instead of learning a

predictive distribution, p (y | x, c,w), we may want to learn a contextual marginal distribution, p (x | c,w), over

a set random variables x, where p (x | θ) is de�ned by an arbitrary graphical model.
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Table 7.1: Di�erent types of encoders and explanations used in CENs.

Encoder Parameter distribution, p (θ | c)
Deterministic δ (φ(c),θ) where φ(c) is arbitrary

Constrained δ (φ(c),θ) where φ(c) := α(c)>D

MoE

∑K
k=1 p (k | c) δ(θ,θk)

Explanation Predictive distribution, p (y | x,θ)

Linear softmax
(
θ>x

)
Structured ∝ exp {−Eθ(x,y)} where Eθ(·, ·) is

some energy function linear in θ

7.4.1 Context Encoders

In practice, we represent p (θ | c,w) with a neural network parameterized by w that encodes

the context into the parameter space of the explanation models. �ere are two simple ways to

construct an encoder, which we describe below.

Deterministic encoding

Let p (θ | c,w) := δ (φw(c),θ), where δ(·, ·) is the Dirac delta-function and φw(·) is a network

parametrized by w that maps c to θ. Collapsing the conditional distribution to a delta-function

makes θ depend deterministically on c and yields the following predictive distribution:

p (y | x, c,w) =

∫
θ∈Θ

p (y | x,θ) δ (φw(c),θ) dθ = p (y | x,θ = φw(c)) (7.4)

Modeling p (θ | cw) with a delta-function is convenient since the posterior, p (θ | y,x, c,w) ∝
p (y | x,θ) δ (φw(c),θ) also collapses to θ? = φw(c), and hence the inference is done via a

single forward pass and the posterior can be regularized by imposing L1 or L2 losses on φw(c).

Constrained deterministic encoding

�e downside of deterministic encoding is the lack of constraints on the generated explana-

tions. �ere are multiple reasons why this might be an issue: (i) when the context encoder is

unrestricted, it might generate unstable, over��ed local models, (ii) when we want to reason

about the pa�erns in the data as a whole, local explanations are not enough. To address these

issues, we constrain the space of explanations by introducing a context-independent, global dic-
tionary, D := {θk}Kk=1, where each atom, θk, is sparse. �e encoder generates context-speci�c

explanations using so� a�ention over the dictionary (Figure 7.3):

φw,D(c) :=
K∑
k=1

α(k)
w (c)θk = αw(c)>D,

K∑
k=1

α(k)
w (c) = 1, for all k : α(k)

w (c) ≥ 0 (7.5)

where αw(c) is the a�ention over the dictionary produced by the encoder. A�ention-based

construction of explanations using a global dictionary (i) forces the encoder to produce models

shared across di�erent contexts, (ii) allows us to interpret the learned dictionary atoms as global

“explanation modes.” Again, since pw (θ | c) is a delta-distribution, the likelihood is the same as

given in Equation 7.4 and inference is conveniently done via a forward pass.
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and transformed by a convolutional neural network encoder into an a�ention vector, which is used to

so�ly select parameters for a contextual linear probabilistic model.

�e two proposed context encoders represent p (θ | c) with delta-functions, which simpli�es

learning, inference, and interpretation of the model, and are used in our experiments. Other

ways to represent p (θ | c) include: (i) using a mixture of delta-functions (which makes CEN

function similar to a mixture-of-experts model and further discussed in Section 7.5.1), or (ii)

using variational autoencoding. More complex approaches are le� to future research.

7.4.2 Explanations

We consider two types of explanations: linear that can be used for regression or classi�cation

and structured that are suitable for structured prediction.

Linear Explanations

When solving classi�cation problems, linear explanations take the following form:

p (y = i | x,θ) :=
exp {(Wx + b)i}∑
j∈Y exp {(Wx + b)j}

, (7.6)

where θ := (W,b) and i, j index classes in Y . If x is d-dimensional and we are given m-class

classi�cation problem, then W ∈ Rm×d
and b ∈ Rm

. �e case of regression is similar.

In Section 7.5.4, we show that if we apply LIME to interpret CEN with linear explanations,

the local linear models inferred by LIME are guaranteed to recover the original CEN-generated

explanations. In other words, linear explanations generated by CEN have similar properties,

e.g., such as local faithfulness (Ribeiro et al., 2016). However, we emphasize the key di�erence

between LIME (or any post-hoc explanation technique) and CEN: the former regards explanation

as a post-processing step (done a�er training) while the la�er integrates explanation into the

learning process. We analyze the implications of this di�erence empirically later in this chapter.
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Structured Explanations

While post-hoc methods, such as LIME, can easily generate local linear explanations for scalar

outputs, using such methods for structured outputs is non-trivial. At the same time, CENs let us

represent p (y | x,θ) using arbitrary graphical models. To be concrete, we consider the case

where the targets are binary vectors, y ∈ {0, 1}m, and explanations are represented by CRFs

with linear potential functions (La�erty et al., 2001).

�e predictive distribution p (y | x,θ) represented by a CRF takes the following form:

p (y | x,θ) :=
1

Zθ(x)

∏
a∈A

Ψa(ya,xa;θ) (7.7)

where Zθ(x) is the normalizing constant and a ∈ A indexes subsets of variables in x and y that

correspond to the factors:

Ψa(ya,xa,θ) := exp

{
K∑
k=1

θakfak(xa,ya)

}
, (7.8)

where {fak(xa,ya)}Kk=1 is a collection of feature vectors associated with factor Ψa(ya,xa,θ).
For interpretability purposes, we are interested in CRFs with feature vectors that are linear or

bi-linear in x and y. �ere is a variety of application-speci�c CRF models developed in the

literature (e.g., see Su�on, McCallum, et al., 2012). While in the following section, we discuss

learning and inference more generally, in Section 7.6.3 we develop a CEN model with linear

chain CRF explanations for solving survival analysis tasks.

7.4.3 Inference and Learning

CENs with deterministic encoders are convenient since the posterior, p (θ | y,x, c), collapses

to a point θ? = φw(c). Inference in such models is done in two steps: (1) �rst, compute θ?,
then (2) using θ? as parameters, compute the predictive distribution, p (y | x,θ?). To train the

model, we can optimize its log likelihood on the training data. To make a prediction using

a trained CEN model, we infer ŷ = arg maxy p (y | x,θ?). For classi�cation (and regression)

computing predictions is straightforward. Below, we show how to compute predictions for CEN

with CRF-based explanations.

Inference for CEN with Structured Explanations

Given a CRF model Equation 7.7, we can make a prediction ŷ for inputs (c,x) by performing

inference:

ŷ(θ?) = arg max
y∈Y

p (y | x,θ?) = arg max
y∈Y

A∑
a=1

K∑
k=1

θ?akfak(xa,ya) (7.9)

Depending on the structure of the CRF model (e.g., linear chain, tree-structured model, etc.), we

could use di�erent inference algorithms, such the Viterbi algorithm or variational inference, in
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order to solve Equation 7.9 (for an overview and examples see Ch. 4, Su�on, McCallum, et al.,

2012). �e key point here is that having p (y | x,θ?) or ŷ(θ?) computable in an (approximate)

functional form, lets us construct di�erent objective functions, e.g., L({yi,xi, ci}Ni=1,w), and

learn parameters of the CEN model end-to-end using gradient methods, which are standard in

deep learning. In Section 7.6.3, we construct a speci�c objective function for survival analysis.

Learning via Likelihood Maximization and Posterior Regularization

In this chapter, we use the negative log likelihood (NLL) objective for learning CEN models:

L
(
{yi,xi, ci}Ni=1,w

)
:= − 1

N

N∑
i=1

log p (yi | xi,θ = φw(ci)) (7.10)

L1,L2, and other types of regularization imposed on θ can be added to the objective Equation 7.10.

Such regularizers, as well as the dictionary constraint introduced in Section 7.4.1, can be seen as

a form of posterior regularization (Ganchev et al., 2010) and are important for achieving the best

performance and interpretability.

7.5 Analysis

In this section, we dive into the analysis of CEN as a class of probabilistic models. First, we

mention special cases of CEN model class known in the literature, such as mixture-of-experts

(Jacobs et al., 1991) and varying-coe�cient models (Hastie and Tibshirani, 1993). �en, we discuss

implications of the CEN structure, a potential failure mode of CEN with deterministic encoders

and how to rectify it using conditional entropy regularization, and �nally analyze relationship

between CEN-generated and post-hoc explanations. Readers who are mostly interested in

empirical properties and applications may skip this section.

7.5.1 Special Cases of CEN

Mixtures of Experts. So far, we have represented p (θ | c,w) with a delta-function centered

around the output of the encoder. It is natural to extend p (θ | c,w) to a mixture of delta-

distributions, in which case CEN recovers the Mixture of Experts (MoE) (Jacobs et al., 1991). To

see this, let D be a dictionary of experts, and de�ne pw,D (θ | c) :=
∑K

k=1 pw (k | c) δ(θ,θk).
�e log-likelihood for CEN in such case is the same as for MoE:

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Mixture of Experts

dot
Attention

log pw,D (yi | xi, ci)

= log

∫
p (yi|xi,θ) pw,D (θ|ci) dθ

= log
K∑
k=1

pw (k|ci) p (yi|xi,θk)

(7.11)

88



As in Section 7.4.1, pw (k | c) is represented with a so� a�ention over the dictionary, D,

which is now used to combine predictions of the experts with parameters {θk}Kk=1 instead of

constructing a single context-speci�c explanation. Learning of MoE models is done either by

optimizing the likelihood or via expectation maximization. Note another di�erence between

CEN and MoE is that the la�er assumed that c ≡ x and that both p (y | x,θ) and p (θ | c) can

be represented by arbitrary complex model classes, ignoring interpretability.

Varying-Coe�cient Models. In statistics, there is a class of (generalized) regression models,

called Varying-Coe�cient Modelss (VCMs) (Hastie and Tibshirani, 1993), in which coe�cients

of linear models are allowed to be smooth deterministic functions of other variables (called

the “e�ect modi�ers”). Interestingly, the motivation for VCM was to increase �exibility of

linear regression. In the original work, Hastie and Tibshirani (1993) focused on simple dynamic

(temporal) linear models and on nonparametric estimation of the varying coe�cients, where

each coe�cient depended on a di�erent e�ect variable. CEN generalizes VCM by (i) allowing

parameters, θ, to be random variables that depend on the context, c, nondeterministically, (ii)

le�ing the “e�ect modi�ers” to be high-dimensional context variables (not just scalars), and (iii)

modeling the e�ects using deep neural networks. In other words, CEN alleviates the limitations

of VCM by leveraging the probabilistic graphical models and deep learning frameworks.

7.5.2 Implications of the Structure of CENs

CENs represent the predictive distribution in a compound form (Lindsay, 1995):

p (y | x, c) =

∫
p (y | x,θ) p (θ | c) dθ

and we assume that the data is generated according to y ∼ p (y | x,θ), θ ∼ p (θ | c). We would

like to understand:

Can CEN represent any conditional distribution, p (y | x, c), when the class of expla-
nations is limited (e.g., to linear models)? If not, what are the limitations?

Generally, CEN can be seen as a mixture of predictors. Such mixture models could be quite

powerful as long as the mixing distribution, p (θ | c), is rich enough. In fact, even a �nite

mixture exponential family regression models can approximate any smooth d-dimensional

density at a rate O(m−4/d) in the KL-divergence (Jiang and Tanner, 1999). �is result suggests

that representing the predictive distribution with contextual mixtures should not limit the

representational power of the model. However, there are two caveats:

(i) In practice, p (θ | c) is limited, since we represent it either with a delta-function, a �nite

mixture, or a simple distribution parametrized by a deep network.

(ii) Classical predictive mixtures (including MoE) do not separate input features into two

subsets, c and x. We do this intentionally to produce explanations in terms of speci�c

variables of interest that could be useful for interpretability or model diagnostics down the

line. However, it could be the case that x contains only some limited information about y,

which could limit the predictive power of the full model.
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To address point (i), we consider p (θ | c) that fully factorizes over the dimensions of θ:

p (θ | c) =
∏

j p (θj | c), and assume that explanations, p (y | x,θ), also factorize according

to some underlying graph, Gy = (Vy, Ey). �e following proposition shows that in such case

p (y | x, c) inherits the factorization properties of the explanation class.

Proposition 7.1: Factorization of the CEN’s predictive distribution

Let p (θ | c) :=
∏

j p (θj | c) and let p (y | x,θ) factorize according to some graph Gy =
(Vy, Ey). �en, p (y | x, c) de�ned by CEN with p (θ | c) encoder and p (y | x,θ) explana-

tions also factorizes according to G.

Proof. �e statement directly follows from the de�nition of CEN (see Appendix E.1.1).

Remark 7.1. All encoders, p (θ | c), considered in this paper, including delta functions and their
mixtures, fully factorize over the dimensions of θ.
Remark 7.2. �e proposition has no implications for the case of scalar targets, y. However, in case
of structured prediction, regardless of how good the context encoder is, CEN will strictly assume the
same set of independencies as given by the explanation class, p (y | x,θ).

As indicated in point (ii), CENs assume a �xed split of the input features into context, c,

and variables of interest, x, which has interesting implications. Ideally, we would like x to be

a good predictor of y in any context c. For instance, following our motivation example (see

Figure 7.1), if c distinguishes between urban and rural areas, x must encode enough information

for predicting poverty within urban or rural neighborhoods. However, since the variables of

interest are o�en manually selected (e.g., by a domain expert) and limited, we may encounter

the following (not mutually exclusive) situations:

(a) c may happen to be a strong predictor of y and already contain information available in x
(e.g., it is the case when x is derived from c).

(b) x may happen to be a poor predictor of y, even within the context speci�ed by c.

In both cases, CEN may learn to ignore x, leading to essentially meaningless explanations. In

the next section, we show that, if (a) is the case, regularization can help eliminate such behavior.

Additionally, if (b) is the case, i.e., x are bad features for predicting y (and for seeking explanation

in terms of these features), CEN must indicate that. It turns out that the accuracy of CEN depends

on the quality of x, as empirically shown in Section 7.6.2.

7.5.3 Conditional Entropy Regularization

CEN has a failure mode: when the context c is highly predictive of the targets y and the encoder

is represented by a powerful model, CEN may learn to rely entirely on the context variables.

In such case, the encoder would generate spurious explanations, one for each target class. For

example, for binary targets, y ∈ {0, 1}, CEN may learn to always map c to either θ0 or θ1 when

y is 0 or 1, respectively. In other words, θ (as a function of c) would become highly predictive of

y on its own, and hence p (y | x,θ) ≈ p (y | θ), i.e., y would be (approximately) conditionally
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C4

X1
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Figure 7.4: A toy synthetic dataset and two linear explanations (green and purple) produced by a CEN

model trained (a) with no regularization or (b) with conditional entropy regularization.

independent of x given θ. �is is problematic since explanations would become spurious, i.e.,
no longer actually used to make predictions from the variables of interest.

Note that such a model would be accurate only when the generated θ is always highly

predictive of y, i.e., when the conditional entropyH(y | θ) is low. Following this observation,

we propose to regularize the model by approximately maximizing H(y | θ). For a CEN with a

deterministic encoder (Section 7.4.1), we can compute an unbiased estimate ofH(y | θ) given a

mini-batch of samples from the dataset as follows:

H(y | θ) =

∫
p (y,θ) log p (y | θ) dydθ (7.12)

= Ec,x∼p(c,x)

[∫
p (y | x, φ(c)) logEx′∼p(x|c) [p (y | x′, φ(c))] dy

]
(7.13)

≈ 1

|B|
∑
i∈B

∫
p (y | xi, φ(ci)) log

 ∑
x′∼p(x|ci)

p (y | x′, φ(ci))

 dy (7.14)

In the given expressions, elements of B index training samples (e.g., B represents a mini-batch),

Equation 7.13 is obtained by using the de�nition of CEN and marginalizing out θ, Equation 7.14

is a stochastic estimate that approximates expectations using a mini-batch and samples from

p (x | ci). In practice, approximate samples x′ from the la�er distribution can be obtained either

by simply perturbing xi or �rst learning p (x | c) and then sampling from it. Intuitively, if the

predictions are accurate whileH(y | θ) is high, we can be sure that CEN learned to generate

contextual θ’s that are uncorrelated with the targets but result into accurate conditional models.

An illustration on synthetic data. To illustrate the problem, we consider a toy synthetic 3D

dataset with 2 classes that are not separable linearly (Figure 7.4). �e coordinates along the

vertical axis C correspond to di�erent contexts, and (X1, X2) represent variables of interest.
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Note we can perfectly distinguish between the two classes by using only the context information.

CEN with a dictionary of size 2 learns to select one of the two linear explanations for each

of the contexts. When trained without regularization (Figure 7.4a), selected explanations are

spurious hyperplanes since each of them is used for points of a single class only. Adding entropy

regularization (Figure 7.4b) makes CEN select hyperplanes that meaningfully distinguish between

the classes within di�erent contexts.

�antifying contribution of the explanations. Starting from the introduction, we have

argued that explanations are meaningful when they are used for prediction. In other words, we

would like explanations have a non-zero contribution to the overall accuracy of the model. �e

following proposition quanti�es the contribution of explanations to the predictive performance

of entropy-regularized CEN.

Proposition 7.2: Bound on the predictive contribution of explanations

Let CEN with linear explanations have the expected predictive accuracy

Ex,θ∼p(x,θ) [p (ŷ = y | x,θ)] ≥ 1− ε, (7.15)

where ε ∈ (0, 1) is small. Let also the conditional entropy beH(y | θ) ≥ δ for some δ ≥ 0.

�en, the expected contribution of the explanations to the predictive performance of CEN

is given by the following lower bound:

Ex,θ∼p(x,θ) [p (ŷ = y | x,θ)− p (ŷ = y | θ)] ≥ δ − 1

log |Y| − ε, (7.16)

where |Y| denotes the cardinality of the target space.

Proof. �e statement follows from Fano’s inequality. For details, see Appendix E.1.2.

Remark 7.3. �e proposition states that explanations are meaningful (as contextual models) only
when CEN is accurate ( i.e., the expected predictive error is less than ε) and the conditional entropy
H(y | θ) is high. High accuracy and low entropy imply spurious explanations. Low accuracy
and high entropy imply that x features are not predictive of y within the class of explanations,
suggesting to reconsider our modeling assumptions.

7.5.4 CEN-generated vs. Post-hoc Explanations

In this section, we analyze the relationship between CEN-generated and LIME-generated post-
hoc explanations. Given a trained CEN, we can use LIME to approximate its decision boundary

and compare the explanations produced by both methods. �e question we ask:

How does the local approximation, θ̂, relate to the actual explanation, θ?, generated
and used by CEN to make a prediction in the �rst place?
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For the case of binary classi�cation,
3

it turns out that when the context encoder is deterministic

and the space of explanations is linear, local approximations, θ̂, obtained by solving Equation 7.1

recover the original CEN-generated explanations, θ?. �e result is stated formally as follows.

Theorem 7.1

Let explanations and local approximations be linear models, p (y = 1 | x,θ) ∝ exp
{
x>θ

}
.

Further, let the encoder be L-Lipschitz and pick a sampling distribution πx,c that concen-

trates around the point (x, c) such that pπx,c (‖z′ − z‖ > t) < ε(t), where z := (x, c) and

ε(t)→ 0 as t→∞. �en, if for (xk, ck) ∼ πx,c the loss function is de�ned as:

L =
1

K

K∑
k=1

(logit {p (y = 1 | xk, ck)} − logit {p (y = 1 | xk,θ)})2
(7.17)

the solution of Equation 7.1 concentrates around θ? as:

Pπx,c
(
‖θ̂ − θ?‖ > t

)
≤ δK,L(t), δK,L −→

t→∞
0 (7.18)

Intuitively, by sampling from a distribution sharply concentrated around (x, c), we ensure that

θ̂ will recover θ? with high probability. A detailed proof is given in Appendix E.1.3.

�is result establishes an equivalence between the explanations generated by CEN and those

produced by LIME post-hoc when approximating CEN. Note that when LIME is applied to a

model other than CEN, equivalence between explanations is not guaranteed. Moreover, as

we further show experimentally, certain conditions such as incomplete or noisy interpretable

features may lead LIME to produce inconsistent and erroneous explanations.

7.6 Experiments and Results

In this section, we move to a number of case studies where we empirically analyze properties

of the proposed CEN framework on classi�cation and survival analysis tasks. In particular, we

evaluate CEN with linear explanations on a few classi�cation tasks that involve di�erent data

modalities of the context (e.g., images or text). For survival prediction, we design CEN architec-

tures with structured explanations, derive learning and inference algorithms, and showcase our

models on problems from the healthcare domain.

7.6.1 Solving Classi�cation using CEN with Linear Explanations

We start by examining the properties of CEN with linear explanations (Table 7.1) on a few

classi�cation tasks. Our experiments are designed to answer the following questions:

3
Analysis of the multi-class case can be reduced to the binary in the one-vs-all fashion.
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(i) When explanation is a part of the learning and prediction process, how does that a�ect

performance of the �nal predictive model quantitatively?

(ii) �alitatively, what kind of insight can we gain by inspecting explanations?

(iii) Finally, we analyze consistency of linear explanations generated by CEN versus those

generated using LIME (Ribeiro et al., 2016), a popular post-hoc method.

Details on our experimental setup, all hyperparameters, and training procedures are given in

the tables in Appendix E.2.3.

Poverty Prediction

We consider the problem of poverty prediction for household clusters in Uganda from satellite

imagery and survey data. Each household cluster is represented by a collection of 400 ×
400 satellite images (used as the context) and 65 categorical variables from living standards

measurement survey (used as the interpretable a�ributes). �e task is binary classi�cation of

the households into being either below or above the poverty line.

We follow the original study of Jean et al. (2016) and use a VGG-F network (pre-trained on

nightlight intensity prediction) to compute 4096-dimensional embeddings of the satellite images

on top of which we build contextual models. Note that this datasets is fairly small (500 training

and 142 test points), and so we keep the VGG-F part frozen to avoid over��ing.

Table 7.2: Performance on

the poverty prediction task.

Acc (↑) AUC (↑)

LRemb 62.5% 68.1%

LRatt 75.7% 82.2%

MLP 77.4% 78.7%

MoEatt 77.9% 85.4%

CENatt 81.5% 84.2%

Models. For baselines, we use logistic regression (LR) and multi-

layer perceptrons (MLP) with 1 hidden layer. �e LR uses either

VGG-F embeddings (LRemb) or the categorical a�ributes (LRatt)

as inputs. �e input of the MLP is concatenated VGG-F embed-

dings and categorical a�ributes. Context encoder of the CEN model

uses VGG-F to process images, followed by an a�ention layer over

a dictionary of 16 trainable linear explanations de�ned over the

categorical features (Figure 7.3). Finally, we evaluate a mixture-of-

experts (MoE) model of the same architecture as CEN, since it is a

special case (see Section 7.5.1). Both CEN and MoE are trained with

the dictionary constraint and L1 regularization over the dictionary

elements to encourage sparse explanations.

Performance. �e results are presented in Table 7.2. Both in terms of accuracy and AUC, CEN

models outperform both simple logistic regression and vanilla MLP. Even though the results

suggest that categorical features are be�er predictors of poverty than VGG-F embeddings

of images, note that using embeddings to contextualize linear models reduces the error. �is

indicates that di�erent linear models are optimal in di�erent contexts.

�alitative analysis. We have discovered that, on this task, CEN encoder tends to sharply

select one of the two explanations from the dictionary (denoted M1 and M2) for di�erent

household clusters in Uganda (Figure 7.5a). In the survey data, each household cluster is marked

as either urban or rural. Conditional on a satellite image, CEN tends to pick M1 more o�en for

urban areas and M2 for rural (Figure 7.5b). Notice that di�erent explanations weigh categorical
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Figure 7.5: �alitative results for the Satellite dataset: (a) Weights given to a subset of features by the

two models (M1/M2) discovered by CEN. (b) How frequently M1/M2 are selected for areas marked rural

or urban (top) and the average proportion of Tenement-type households in an urban/rural area for which

M1/M2 was selected. (c) M1/M2 models selected for di�erent areas on the Uganda map. M1 tends to be

selected for urban areas while M2 is selected for the rest. (d) Nightlight intensity of di�erent areas.

features, such as reliability of the water source or the proportion of houses with walls made of
unburnt brick, quite di�erently. When visualized on the map, we see that CEN selects M1 more

frequently around the major city areas (Figure 7.5c), which also correlates with high nightlight

intensity in those areas (Figure 7.5d).

�e estimated approximate conditional entropy of the binary targets (poor vs. not poor) given

the selected model: H(y | θ = M1) ≈ 77% andH(y | θ = M2) ≈ 72%. �e high performance

of CEN along with high conditional entropy makes us con�dent in the produced explanations

(Section 7.5.3) and allows us to draw conclusions about what causes the model to classify certain

households in di�erent neighborhoods as poor in terms of interpretable categorical variables.

Sentiment Analysis

�e next problem we consider is sentiment prediction of IMDB reviews (Maas et al., 2011a). �e

reviews are given in the form of English text (sequences of words) and the sentiment labels are

binary (good/bad movie). �is dataset has 25k labelled reviews used for training and validation,

25k labelled reviews that are held out for test, and 50k unlabelled reviews.

Models. Following Johnson and Zhang (2016), we use a bi-directional LSTM with max-pooling

as our baseline that predicts sentiment directly from text sequences. �e same architecture

is used as the context encoder in CEN that produces parameters for linear explanations. �e

explanations are applied to either (a) a bag-of-words (BoW) features (with a vocabulary limited

to 2,000 most frequent words excluding English stop-words) or (b) a 200-dimensional topic

representation produced by a separately trained o�-the-shelf topic model (Blei et al., 2003).

Performance. Table 7.3 compares CEN with other models from the literature. Not only CEN

achieves the state-of-the-art accuracy on this dataset in the supervised se�ing, it also outperforms

or comes close to many of the semi-supervised methods. �is indicates that the inductive biases
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Figure 7.6: Histograms of test weights assigned by CEN to six di�erent topics.

provided by the CEN architecture lead to a more signi�cant performance improvement than

most of the semi-supervised training methods on this dataset. We also remark that classi�ers

derived from large-scale language models pretrained on massive unsupervised corpora (e.g.,
Gray et al., 2017; Howard and Ruder, 2018; Xie et al., 2019) have become popular and now

dominate the leaderboard for this task.

�alitative analysis. A�er training CEN-tpc with linear explanations in terms of topics on

the IMDB dataset, we generate explanations for each test example and visualize histograms of the

weights assigned by the explanations to the 6 selected topics in Figure 7.6. �e 3 topics in the top

row are acting- and plot-related (and intuitively have positive, negative, or neutral connotation),

while the 3 topics in the bo�om are related to particular genre of the movies. Note that acting-

related topics turn out to be bimodal, i.e., contributing either positively, negatively, or neutrally

to the sentiment prediction in di�erent contexts. CEN assigns a high negative weight to the topic

related to “bad acting/plot” and a high positive weight to “great story/performance” in most of

the contexts (and treats those neutrally conditional on some of the reviews). Interestingly, genre-

related topics almost always have a negligible contribution to the sentiment which indicates

that the learned model does not have any particular bias towards or against a given genre.
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Table 7.3: Sentiment classi�cation error rate on IMDB dataset. �e standard error (±) is based on 5

di�erent runs. It is interesting to note that CENs establishes a new state of the art performance on the

supervised prediction task while also outperforming or coming close to many of the semi-supervised

methods that used additional 50k unlabeled reviews for pretraining. All current state of the art methods

leverage large-scale pretraining (the bo�om section of the table); these results are not directly comparable

with methods trained on IMDB data only and included for completeness.

Reference Method Error (↓, %)
Supervised (trained on 25K labeled reviews only)

Maas et al. (2011b) Full + BoW (bnc) 11.67

Dahl et al. (2012) WRRBM + BoW (bnc) 10.77

Wang and Manning (2012) NBSVM-bi 8.78

Johnson and Zhang (2015a) seq2-bown-CNN 7.67

Johnson and Zhang (2015b) oh-CNN (best) 8.39

Johnson and Zhang (2016) oh-2LSTMp (best) 7.33

�is work CENbow 6.52± 0.15
CEN tpc 6.24± 0.12

Semi-supervised (trained on 25K labeled + 50K unlabeled only)

Maas et al. (2011b) Full + Unlabeled + BoW 11.11

Le and Mikolov (2014) Paragraph vectors 7.42

Dai and Le (2015) wv-LSTM 7.24

Johnson and Zhang (2015b) oh-CNN 6.51

Johnson and Zhang (2016) oh-2LSTMp 5.94

Dieng et al. (2017) TopicRNN 6.28

Miyato et al. (2016) Virtual adversarial 5.94

�is work CENbow —

CENtpc 5.48± 0.09

Semi-supervised via large-scale pre-training (massive external data)

Gray et al. (2017) block-sparse LSTM 5.01

Howard and Ruder (2018) ULMFiT 4.60

Sachan et al. (2019) Mixed-objective LSTM 4.32

Xie et al. (2019) BERT-large 4.20

Haonan et al. (2019) Graph Star 4.00

Table 7.4: Prediction error of the models on image classi�cation tasks (averaged over 5 runs). �e

subscripts denote the features on which the linear models are built: pixels and HOG features.

MNIST (Error ↓, %) CIFAR10 (Error ↓, %)

LRpxl LRhog CNN MoEpxl MoEhog CENpxl CENhog LRpxl LRhog VGG MoEpxl MoEhog CENpxl CENhog

8.00 2.98 0.75 1.23 1.10 0.76 0.73 60.1 48.6 9.4 13.0 11.7 9.6 9.2
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Figure 7.7: Analysis of the behavior of di�erent CEN models with di�erent dictionary sizes (varied

between 1 and 512), feature types, trained on full or on a subset of the data. Shaded regions denote 95%

CI based on 5 runs with di�erent random seeds. (a) CEN is sensitive to the size of the dictionary—there is

a critical size such that models with dictionaries smaller than that tend to signi�cantly underperform. (b)

Sample complexity of CENs. Models are trained with early stopping based on validation performance.

Image Classi�cation

For the purpose of completeness, we also provide results on two classical image datasets: MNIST

and CIFAR-10. For CEN, full images are used as the context; to imitate high-level features, we

use (a) the original images cubically downscaled to 20× 20 pixels, gray-scaled and normalized,

and (b) HOG descriptors computed using 3× 3 blocks (Dalal and Triggs, 2005). For each task,

we use linear regression and vanilla convolutional networks as baselines (a small convnet for

MNIST and VGG-16 for CIFAR-10). �e results are reported in Table 7.4. CENs are competitive

with the baselines and do not exhibit deterioration in performance. Visualization and analysis

of the learned explanations is given in Appendix E.2.2 and the details on the architectures,

hyperparameters, and training are given in Appendix E.2.3

7.6.2 Properties of Explanations

In this section, we look at the explanations from the regularization and consistency point of

view. As we show next, prediction via explanation not only has a strong regularization e�ect,

but also always produces consistent locally linear models. Additionally, we analyze the e�ect

of entropy regularization, quantify how much CEN’s performance relies on explanations, and

discuss computational considerations and tradeo�s for CEN and LIME.

Explanations as a Regularizer

By controlling the dictionary size, we can control the expressivity of the model class speci�ed

by CEN. For example, when the dictionary size is 1, CEN becomes equivalent to a linear model.
4

For larger dictionaries, CEN becomes as �exible as a deep network (Figure 7.7a). Adding a small

4
Note that CENs with the dictionary size of 1 is still trained using stochastic optimization method as a neural

network, which tends to yield a somewhat worse performance than the vanilla logistic regression.
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(a) Validation error vs. entropy regularization.
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(b) Expected contribution of the explanations.

Figure 7.8: �e e�ects of entropy regularization on (a) the predictive performance of a CEN model and

(b) the lower bound on the contribution of the explanations to the relative predictive error reduction.

Shaded regions are 95% CI based on 5 runs with di�erent random seeds.

sparsity penalty to each element of the dictionary (between 10−6
and 10−3

, see Appendix E.2.3)

helps to avoid over��ing for very large dictionary sizes, so that the model learns to use only a

few dictionary atoms for prediction while shrinking the rest to zero. Generally, dictionary size

is a hyperparameter which optimal value depends on the data and the type of the interpretable

features (cf., CENbow and CENtpc on Figure 7.7a).

If explanations can act as a proper regularizer, we must observe improved sample e�ciency

of the model. To verify this, we trained CEN models on subsets of the data (size varied between

1% and 30% for MNIST and 2% and 50% for IMDB) with early stopping based on the validation

performance. �e test error on MNIST and IMDB for di�erent training set sizes is presented on

Figure 7.7b. On the IMBD dataset, CEN tpc required an order of magnitude fewer samples to

match the baseline’s performance, indicating e�cient use of explanations for prediction. Note

that such drastic sample e�ciency gains were observed on IMDB only for CEN tpc (i.e., when

using topics as interpretable features); gains for CEN bow were noticeable but moderate; no

sample e�ciency gains were observed on MNIST for any of our CEN models.

�antifying Contribution of the Explanations

Even though improved sample e�ciency and regularizing e�ects of explanations indicate their

non-trivial contribution indirectly, we wish to further quantify such contribution of explanations

to the predictive performance of CEN. To do so, we run a set of experiments where we vary

conditional entropy regularization coe�cient and measure (a) performance of CEN on the

validation set and (b) expected lower bound on the relative reduction of predictive error due to

explanations, de�ned as:

[p (ŷ 6= y | c)− p (ŷ 6= y | x, c)]
/
p (ŷ 6= y | c) (7.19)

As we have shown in Section 7.5.3, conditional entropy regularization encourages CEN

models to learn context representations that are minimally correlated with the targets, and hence

makes the model rely on the explanations rather than contextual information only. Figure 7.8a

shows that entropy regularization generally does not a�ect predictive performance of a CEN
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(b) Explanation test error vs. feature size.

Figure 7.9: �e e�ect of feature quality the explanations: (a) Test error vs. the level of the noise added to

the interpretable features. (b) Test error vs. the total number of interpretable features. Error bars: 95% CI.

model, unless the regularization coe�cient becomes too large (e.g., an order of magnitude larger

than the predictive cross-entropy loss). Increasing conditional entropy regularization leads to

CEN models whose performance relies more on explanations (Figure 7.8b). However, note that

even without entropy regularization, explanations have a signi�cant relative contribution to

the reduction of the predictive error of CEN, ranging between 10-20% on MNIST and 40-60% on

IMDB. �is indicates that, while conditional entropy regularization is bene�cial, even without it

CEN still learns to generate meaningful, non-spurious explanations.

Consistency of Explanations

While regularization is a useful aspect, the main use case for explanations is model diagnostics.

Linear explanations assign weights to the interpretable features, x, and thus the quality of

explanations depends on the quality of the selected features. In this section, we evaluate

explanations generated by CEN and LIME (a post-hoc method). In particular, we consider

two cases: (a) the features are corrupted with additive noise, and (b) the selected features are

incomplete. For analysis, we use MNIST and IMDB datasets. Our key question is:

Can we trust the explanations built on noisy or incomplete features?

�e e�ect of noisy features. In this experiment, we inject noise
5

into the features x and ask

LIME and CEN to �t explanations to the corrupted features. Note that a�er injecting noise,

each data point has a noiseless representation c and a noisy x. LIME constructs explanations by

approximating the decision boundary of the baseline model trained to predict y from c features

only. CEN is trained to construct explanations given c and then make predictions by applying

explanations to x. �e predictive performance of the produced explanations on noisy features is

given on Figure 7.9a. Since baselines take only c as inputs, their performance stays the same

(dashed line). Regardless of the noise level, LIME over�ts explanations—it is able to almost

perfectly approximate the decision boundary of the baselines essentially using pure noise. On

the other hand, performance of CEN degenerates with the increasing noise level indicating that

the model fails to learn when the selected interpretable representation is of very low quality.

5
We use Gaussian noise with zero mean and select variance for each signal-to-noise ratio level appropriately.
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�e e�ect of feature selection. Using the same setup, instead of injecting noise into x, we

construct x by randomly subsampling a set of dimensions.
6

Figure 7.9b demonstrates that while

performance of CENs degrades proportionally to the size of x (i.e., less informative features

imply worse performance for CEN), we see that, again, LIME is again able to perfectly �t

explanations to the decision boundary of the original models, despite the loss of information in

the interpretable features x.

�ese two experiments indicate a major drawback of explaining predictions post-hoc: when

constructed on poor, noisy, or incomplete features, such explanations can over�t an arbitrary

decision boundary of a predictor and are likely to be meaningless or misleading. For example,

predictions of a perfectly valid model might end up ge�ing absurd explanations which is

unacceptable from the decision support point of view.
7

On the other hand, if we use CEN to

generate explanations, high predictive performance would indicate presence of a meaningful

signal in the selected interpretable features and explanations.

Computational Overhead and Considerations

Table 7.5: Compute overhead.

Dataset CEN LIME

Training time overhead

MNIST 18.6± 1.7% —

IMDB 1.8± 0.5% —

Satellite 0.4± 0.1% —

Explanation time per instance

MNIST 0.05± 0.03 ms 77± 9 ms

IMDB 0.07± 0.03 ms 38± 5 ms

Satellite 0.01± 0.01 ms 22± 6 ms

Given all the advantages of CEN, such as o�en improved per-

formance and consistency of linear explanations, what is the

added computational overhead? It turns out that CEN compares

quite favorably against the typical bundle solution: a vanilla
deep network plus a post-hoc explanation system (e.g., LIME). �e

CEN architecture essentially adds a single bi-linear layer to the

top of a network, resulting in a mild overhead of O(D × |X |)
multiplication and addition operations during the forward pass

through the model. �e training time overhead in aggregate

does not exceed 20% when compared to a vanilla deep network

of the same architecture (Table 7.5). Note that the models we

used in our experiments are tiny by the modern standards, and

we expect CEN’s relative compute overhead to be even smaller

for modern large-scale architectures. Also note that CENs generate explanations more than three

orders of magnitude faster than LIME, manly because the la�er has to solve an optimization

problem for each instance of interest to obtain an explanation.

7.6.3 Solving Survival Analysis using CEN with Structured Outputs

In this �nal case study, we design CENs with structured explanations for survival prediction. We

provide some background on survival analysis and the structured prediction approach proposed

by Yu et al. (2011), then introduce CENs with linear CRF-based explanations for survival analysis,

and conclude with experimental results on two datasets from the healthcare domain.

6
Subsampling dimensions from x is done to resemble human subjectivity in selecting semantically meaningful

features for model interpretation.

7
Similar behavior has been observed in recent work that studied post-hoc explanation systems in adversarial

se�ings (Dombrowski et al., 2019; Lakkaraju and Bastani, 2019).
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Background on Survival Analysis via Structured Prediction

In survival time prediction, our goal is to estimate the risk and occurrence time of an undesirable

event in the future (e.g., death of a patient, earthquake, hard drive failure, customer turnover,

etc.). A common approach is to model the survival time, T , either for a population (i.e., average

survival time) or for each instance. Classical approaches, such as Aalen additive hazard (Aalen,

1989) and Cox proportional hazard (Cox, 1972) models, view survival analysis as continuous

time prediction and hence a regression problem.

Alternatively, the time can be discretized into intervals (e.g., days, weeks, etc.), and the

survival time prediction can be converted into a multi-task classi�cation problem (Efron, 1988).

Taking this approach one step further, Yu et al. (2011) noticed that the output space of such a

multitask classi�er is structured in a particular way, and proposed a model called sequence of
dependent regressors. �e model is essentially a CRF with a particular structure of the pairwise

potentials between the labels. We introduce the setup in our notation below.

Let the data instances be represented by tuples (c,x,y), where targets are now sequences of

m binary variables, y := (y1, . . . , ym), that indicate occurrence of an event at the corresponding

time intervals.
8

If the event occurred at time t ∈ [ti, ti+1), then yj = 0, ∀j ≤ i and yk = 1, ∀k >
i. If the event was censored (i.e., we lack information for times a�er t), we represent targets

(yi+1, . . . , ym) with latent variables. Importantly, only m+ 1 sequences are valid under these

conditions, i.e., assigned non-zero probability by the model. �is suggests a linear CRF model

de�ned as follows:

p
(
y = (y1, y2, . . . , ym) | x,θ1:m

)
∝ exp

{
m∑
t=1

yi(x>θt) + ω(yt, yt+1)

}
(7.20)

�e potentials between x and y1:m
are linear functions parameterized by θ1:m

. �e pairwise

potentials between targets, ω(yi, yi+1), ensure that non-permissible con�gurations where (yi =
1, yi+1 = 0) for some i ∈ {0, . . . ,m− 1} are improbable (i.e., ω(1, 0) = −∞ and ω(0, 0) = ω00,

ω(0, 1) = ω01, ω(1, 1) = ω10 are learnable parameters).

To train the model, Yu et al. (2011) optimize the following objective:

min
Θ

C1

m∑
t=1

‖θt‖2 + C2

m−1∑
t=1

‖θt+1 − θt‖2 − L(y,x;θ1:m) (7.21)

where the �rst two terms are regularization and the last term is the log of the likelihood:

L(y,x; Θ) =
∑
i∈NC

log p (T = ti | xi,Θ) +
∑
j∈C

log p (T > tj | xj,Θ) (7.22)

where NC denotes the set of non-censored instances (for which we know the outcome times, ti)
and C is the set of censored inputs (for which we only know the censorship times, tj).

8
We assume that the occurrence time is lower bounded by t0 = 0, upper bounded by some tm = T , and

discretized into intervals [ti, ti+1), where i ∈ {0, . . . ,m− 1}.
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Figure 7.10: CEN architectures used in our survival analysis experiments. Context encoders were (a)

single hidden layer MLP and (b) single hidden layer LSTM. Encoders produced inputs for another LSTM

over the output time intervals (denoted with h1
, h2

, h3
hidden states respectively).

�e likelihood of an uncensored and a censored event at time t ∈ [tj, tj+1) are as follows:

p
(
T = t | x,θ1:m

)
= exp

{
m∑
i=j

x>θi

}/
m∑
k=0

exp

{
m∑

i=k+1

x>θi

}

p
(
T ≥ t | x,θ1:m

)
=

m∑
k=j+1

exp

{
m∑

i=k+1

x>θi

}/
m∑
k=0

exp

{
m∑

i=k+1

x>θi

} (7.23)

CEN with Structured Explanations for Survival Analysis

To construct CEN for survival analysis, we follow the structured survival prediction setup

described in the previous section. We de�ne CEN with linear CRF explanations as follows:

θt ∼ pw

(
θt | c

)
, y ∼ p

(
y | x,θ1:m

)
,

p
(
y = (y1, y2, . . . , ym) | x,θ1:m

)
∝ exp

{
m∑
t=1

yi(x>θt) + ω(yt, yt+1)

}
,

pw

(
θt | c

)
:= δ(θt, φtw,D(c)), φtw,D(c) := α(ht)>D, ht := RNN(ht−1, c)

(7.24)

Note that an RNN-based context encoder generates di�erent explanations for each time point,

θt (Figure 7.10). All θt are generated using context- and time-speci�c a�ention α(ht) over the

dictionary D. We adopt the training objective from Equation 7.21 with the same likelihood

Equation 7.22. �e model is a special case of CENs with structured explanations (Section 7.4.2).

Survival Analysis of Patients in Intense Care Units

We evaluate the proposed model against baselines on two survival prediction tasks.
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Table 7.6: Performance of the baselines and CENs with structured explanations. �e numbers are

averages from 5-fold cross-validation; the std. are on the order of the least signi�cant digit. “Acc@K”

denotes accuracy at the K-th temporal quantile (see main text for explanation).

SUPPORT2 PhysioNet Challenge 2012

Model Acc@25 Acc@50 Acc@75 RAE Model Acc@25 Acc@50 Acc@75 RAE

Cox 84.1 73.7 47.6 0.90 Cox 93.0 69.6 49.1 0.24

Aalen 87.1 66.2 45.8 0.98 Aalen 93.3 78.7 57.1 0.31

CRF 84.4 89.3 79.2 0.59 CRF 93.2 85.1 65.6 0.14

MLP-CRF 87.7 89.6 80.1 0.62 LSTM-CRF 93.9 86.3 68.1 0.11

MLP-CEN 84.4 96.2 83.3 0.52 LSTM-CEN 94.8 87.5 70.1 0.09

Datasets. We use two publicly available datasets for survival analysis of of the intense care

unit (ICU) patients: (a) SUPPORT2,
9

and (b) data from the PhysioNet 2012 challenge.
10

�e data

was preprocessed and used as follows:

• SUPPORT2: �e data had 9105 patient records (7105 training, 1000 validation, 1000 test)

and 73 variables. We selected 50 variables for both c and x features (i.e., the context

and the variables of interest were identical). Categorical features (such as race or sex)

were one-hot encoded. �e values of all features were non-negative, and we �lled the

missing values with -1 to preserve the information about missingness. For CRF-based

predictors, we capped the survival timeline at 3 years and converted it into 156 discrete

7-day intervals.

• PhysioNet: �e data had 4000 patient records, each represented by a 48-hour irregularly

sampled 37-dimensional time-series of di�erent measurements taken during the patient’s

stay at the ICU. We resampled and mean-aggregated the time-series at 30 min frequency.

�is resulted in a large number of missing values that we �lled with 0. �e resampled

time-series were used as the context, c. For the a�ributes, x, we took the values of the

last available measurement for each variable in the series. For CRF-based predictors, we

capped the survival timeline at 60 days and converted into 60 discrete intervals.

Models. For baselines, we use classical Aalen and Cox models
11

and a CRF (Yu et al., 2011). All

the baselines used x as their inputs. We combine CRFs with neural encoders in two ways:

(i) We apply CRFs to the outputs from the neural encoders (the models denoted MLP-CRF and

LSTM-CRF).
12

Note that parameters of such CRF layer assign weights to the latent features

and are not interpretable in terms of the a�ributes of interest.

(ii) We use CENs with CRF-based explanations, that process the context variables, c, using the

same neural networks as in (i) and output the sequence of parameters θ1:m
for CRFs, while

the la�er act on the a�ributes, x, to make structured predictions.

9
h�p://biostat.mc.vanderbilt.edu/wiki/Main/DataSets.

10
h�ps://physionet.org/challenge/2012/.

11
Implementation based on h�ps://github.com/CamDavidsonPilon/lifelines.

12
Similar models have been very successful in the natural language applications (Collobert et al., 2011).

104

http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
https://physionet.org/challenge/2012/
https://github.com/CamDavidsonPilon/lifelines


0 10 20 30 40 50
Time after leaving hospital (weeks)

sfdm2_SIP>=30
sfdm2_Coma or Intub

ca_yes
hday
slos

avtisst
dementia

Patient ID: 3520 (Died)

0 10 20 30 40 50
Time after leaving hospital (weeks)

Patient ID: 1100 (Survived)

4
2

0
2
4

Figure 7.11: Weights of the CEN-generated CRF explanations for two patients from SUPPORT2 dataset

for a set of the most in�uential features: dementia (comorbidity), avtisst (avg. TISS, days 3-25),

slos (days from study entry to discharge), hday (day in hospital at study admit), ca yes (the patient

had cancer), sfdm2 Coma or Intub (intubated or in coma at month 2), sfdm2 SIP (sickness

impact pro�le score at month 2). Higher weight values correspond to higher contributions to the risk.

More details on the architectures and training are given in Appendix E.2.3.

Metrics. Following Yu et al. (2011), we use two metrics speci�c to survival analysis:

(a) Accuracy of correctly predicting survival of a patient at times that correspond to 25%, 50%,

75% population-level temporal quantiles (i.e., the time points such that the corresponding %

of the population in the data were discharged from the study due to censorship or death).

(b) �e relative absolute error (RAE) between the predicted and actual time of death for

non-censored patients.
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Figure 7.12: CEN-predicted survival

curves for 100 random test patients

from SUPPORT2. Color indicates death

within 1 year a�er leaving the hospital.

Shaded regions are 99% CI.

Performance. �e results for all models are given in Ta-

ble 7.6. Our implementation of the CRF baseline slightly

improves upon the performance reported by Yu et al. (2011).

MLP-CRF and LSTM-CRF improve upon plain CRFs but, as

we noted, can no longer be interpreted in terms of the orig-

inal variables. CENs outperform or closely match neural

CRF models on all metrics while providing interpretable

explanations for the predicted risk for each patient at each

point in time.

�alitative analysis. To inspect predictions of CENs

qualitatively, for any given patient, we can visualize the

weights assigned by the corresponding explanation to the

respective a�ributes. Figure 7.11 shows weights of the ex-

planations for a subset of the most in�uential features for

two patients from SUPPORT2 dataset who were predicted

as survivor/non-survivor. �ese temporal charts help us

(a) to be�er understand which features the model selects as the most in�uential at each point in

time, and (b) to identify potential inconsistencies in the model or the data—for example, using a

chart as in Figure 7.11 we identi�ed and excluded a feature (hospdead) from SUPPORT2 data,

which initially was included but leaked information about the outcome as it directly indicated in-

hospital death. Finally, explanations also allow us to be�er understand patient-speci�c temporal

dynamics of the contributing factors to the survival rates predicted by the model (Figure 7.12).
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7.7 Conclusion

In this chapter, we have introduced contextual explanation networks (CENs)—a class of models

that learn to predict by generating and leveraging intermediate context-speci�c explanations.

We have formally de�ned CENs as a class of probabilistic models, considered a number of

special cases (e.g., the mixture-of-experts model), and derived learning and inference algorithms

within the encoder-decoder framework for simple and sequentially-structured outputs. We

have shown that there are certain conditions when post-hoc explanations are erroneous and

misleading. Such cases are hard to detect unless explanation is a part of the prediction process

itself, as in CEN. Finally, learning to predict and to explain jointly turned out to have a number

of bene�ts, including strong regularization, consistency, and ability to generate explanations

with no computational overhead, as shown in our case studies.

7.7.1 Limitations

We would like to point out a few limitations of our approach and potential ways of addressing

those in the future work. Firstly, while each prediction made by CEN comes with an explanation,

the process of conditioning on the context is still uninterpretable. Ideas similar to context selec-

tion (Liu et al., 2017) or rationale generation (Lei et al., 2016) may help improve interpretability of

the conditioning. Secondly, the space of explanations considered in this work assumes the same

graphical model structure and parameterization for all explanations and uses a simple sparse

dictionary constraint. �is might be limiting, and one could imagine using a more hierarchically

structured space of explanations instead, so that di�erent types of explanations can be generated

for di�erent contexts. Nonetheless, we believe that the proposed class of models is useful not

only for improving prediction capabilities, but also for model diagnostics, pa�ern discovery,

and general data analysis, especially when machine learning is used for decision support in

high-stakes applications.

7.7.2 Notable Follow-up Work

Since the �rst preprint of the original paper that this chapter is based on, multiple work have

build on and/or extended CENs in various interesting ways:

• CENs have been successfully applied to digital pathology and enabled accurate discrimi-

native subtyping of cancers (Lengerich et al., 2020).

• Multiple works have used the same mechanism of parameter generation as CEN for

purposes other than interpretability (e.g., Platanios et al., 2018; Stoica et al., 2020).

• Alvarez-Melis and Jaakkola (2018) introduced the so-called self-explaining networks, which

is a simple extension of CEN that allows to learn interpretable features in addition to

learning to generate explanations. Raghu et al. (2021) further extend interpretable features

to arbitrary “supporting evidence” and tailored the model for clinical risk prediction.
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Alice: Would you tell me, please, which way I ought to go from here?

�e Cheshire Cat: �at depends a good deal on where you want to get to.

Alice: I don’t much care where.

�e Cheshire Cat: �en it doesn’t much ma�er which way you go.

Alice: …So long as I get somewhere.

�e Cheshire Cat: Oh, you’re sure to do that, if only you walk long enough.

Lewis Carroll (Alice in Wonderland)

Part III

Conclusion
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Chapter 8
Discussion

With a fast growing adoption of machine learning across many di�erent application areas,

the focus of the research community has shi�ed from solving well-de�ned statistical learning

problems to building models that can be useful in challenging, real-world scenarios. Recognizing

the importance and a central role that multitask learning plays today in solving such complex

learning problems, we started this thesis with a simple question:

Is there a set of common principles that we could follow when designing models and
algorithms for learning in a variety multitask se�ings that arise in practice?

To answer this question constructively, we have developed a probabilistic framework (Chapter 3)

that allowed us to represent arbitrary multitask learning problems using probabilistic graphical

models and then solve them using the same posterior inference principle (or maximum likelihood

as a special case). Further, we illustrated the generality of the proposed approach by applying

it to multiple areas of machine intelligence, ranging from federated learning (Chapter 4), to

multi-agent reinforcement learning (Chapter 5), to multilingual translation (Chapter 6), and

even demonstrated that it can be used to improve interpretability of complex predictive models

in se�ings that are classically considered non-multitask (Chapter 7).

On the one hand, the developed framework is general enough to encompass many exist-

ing multitask learning formulations and approaches, allowing us to reinterpret them from a

probabilistic perspective and giving us a sense of the common underlying structure of di�erent

methods. On the other hand, it is concrete enough and provides with a general blueprint for

solving a wide variety of multitask learning problems, which we used for designing new scalable

learning algorithms, consistent loss functions, and accurate inference techniques that helped us

improve upon the current state-of-the-art in each of the considered domains.

In this �nal chapter, we brie�y summarize the key takeaways from the results of this thesis.

We also step back and re�ect on the philosophy behind the proposed probabilistic modeling

approach, its advantages, limitations, and alternative perspectives. Finally, we conclude with a

discussion of interesting directions for future work.
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8.1 Takeaways, Advantages, and Limitations

In this thesis, we claimed that representing complex learning problems as collections of learning

tasks and modeling them probabilistically is worthwhile endeavor. To support our claim, we

presented a general probabilistic multitask modeling framework and four case studies with

multiple di�erent theoretical, algorithmic, and empirical contributions. Without enumerating

all the contributions (for details, see the respective chapters), we highlight two key advantages:

1. First, our probabilistic approach provides a level of abstraction that allows us to initially

reason about a multitask learning problem in a domain-agnostic manner. At this level of

abstraction, we only need to specify all the variables that describe the problem and the

presence or absence of functional dependencies between them. Without commi�ing to any

speci�c functional representations or computational techniques, our modeling framework

can be used to derive loss functions and learning algorithms with certain desirable properties

(e.g., consistent zero-shot generalization, convergence guarantee, etc.).

2. Second, the loss functions (or generic learning algorithms) obtained initially are would be

typically computationally intractable. �us, the next step is always to �gure out a tractable

approximation of the initial loss function (or algorithm), which would typically require

domain-speci�c techniques (e.g., a particular neural architecture, a data preprocessing

technique, etc.). In other words, instead of innovating on the problem formulation end (e.g.,
designing ad-hoc loss functions), our framework provides a consistent formulation and

allows to redirect the research e�ort into �guring out the important computational aspects.

Our framework also has multiple limitations. Perhaps the biggest limitation of our approach

is that it requires someone to specify the tasks and dependencies between them before using

framework. When tasks are unknown a priori or hard to specify (e.g., specifying reward functions

in RL is non-trivial), the framework may not be as useful or even applicable.

8.2 Where Do We Go from Here?

�ere are many directions we and others can pursue in the follow up work, including some

concrete ideas and open problems listed at the end of each chapter in Part II. On a higher level,

however, we see further automation of multitask learning as one of the most exciting directions.

What do we mean by automation? Our probabilistic framework can be seen as a tool for

systematizing and partially automating some of the e�orts of researchers and practitioners when

solving multitask learning problems (speci�cally, our framework, by and large, takes care of the

problem formulation). As a next step, we can imagine a fully automated system: given a problem

formulation (e.g., in natural language form or as a spec in some structured domain-speci�c

language), it is translated automatically into a probabilistic representation, then “compiled” into

a learning algorithm that satis�es certain properties (e.g., generalization guarantees) and is ready

to be executed on a particular hardware. Another step in that direction of automation would be

to automate decomposition of di�erent complex learning problems into multiple tasks.
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Appendix A
Probabilistic Multitask Modeling:

Additional Details

A.1 Proofs

�e meta-generalization bounds provided in �eorem 3.2 in Section 3.3.2 directly extend a

classical result by Maurer (2005), which in turn uses meta-learning formulation of Baxter (2000)

and is a direct adaptation of the algorithmic stability bounds of Bousquet and Elissee� (2002).

�e result is provided in the theorem below.
1

Theorem A.1: Maurer (2005), �eorem 1

Let the meta-algorithm A and ` loss satisfy the following two conditions:

C1. For every pair of meta-samples S = {S1, . . . , Sn}, S−i := S \ {Si}, and for any sample

S, we have |R̂(A(S), S)− R̂(A(S−i), S)| ≤ β′.

C2. For any pair of samples S = {(x1, y1), . . . , (xm, ym)}, S−j := S \ {(xj, yj)}, any algo-

rithmA produced by A, and any (x, y), we have |`(A(S)(x), y)−`(A(S−j)(x), y)| ≤ β.

�en for any task distribution P, with probability at least 1− δ the following holds:

R(A(S),P)− Lemp(A(S),S) ≤ 2β′ + (4nβ′ +M)

√
ln(1/δ)

2n
+ 2β, (A.1)

where Lemp(A(S),S) := 1
n

∑n
i=1 R̂(A(S), Si), R̂(A, Si) := 1

|Si|
∑

(x,y)∈Si `(A(Si)(x), y)

with the loss function ` bounded by M .

Conditions C1 and C2 in �eorem A.1 de�ne uniform stability (i.e., sensitivity of the algorithm

to removal of an arbitrary point from the training sample (Bousquet and Elissee�, 2002)) and state

1
In Section 3.3.2, our discussion was focused on optimizing the variational free energy of a probabilistic model

of a distribution of tasks. Here, theorems are formulated in terms of general continuous and smooth loss functions.
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that the bound holds if the meta-algorithm A and every algorithm A it produces are uniformly

β′- and β-stable with respect to the empirical risk R̂ and a loss function `, respectively. �e

bound becomes non-trivial when β′ = o(1/na), a ≥ 1/2 and β = o(1/mb), b ≥ 0.

�eorem A.1 provides a bound on the di�erence between the transfer riskR[A(S),P] and

its empirical estimator Lemp(A(S),S) based on meta-sample S, implying that a small Lemp(A,S)
guarantees meta-generalization within the bound. Denoting A ≡ A(S) to simplify our notation,

the bound is obtained as follows:

R(A,P)− Lemp(A,S) = ED∼P(T )

[
ES∼Dm

[
R̂(A, S)

]]
− 1

n

n∑
i=1

R̂(A, Si) + (A.2)

ED∼P(T )

[
ES∼Dm

[
R(A(S),D)− R̂(A, S)

]]
(A.3)

�e term (A.2) is the di�erence between the expected empirical risk over the true distribution

of tasks and its estimate Lemp(A,S) based on the meta-sample S. As long as A is β′-uniformly

stable with respect to R̂(A, S) (C1, �eorem A.1), this term is bounded by 2β′ + (4nβ′ +
M)
√

ln(1/δ)/2n, which follows from the classical result of Bousquet and Elissee� (2002).

�e term in Equation A.3 is the estimation error of a model f(·) = A(S) learned by A from

S with respect to the data distribution, computed in expectation over the distribution of tasks

P. Stability of the inner-loop (C2, �eorem A.1) directly implies a bound of 2β on this term

(see Maurer (2005), �eorem 6). Pu�ing together bounds of terms in Equations A.2 and A.3, we

arrive at Equation A.1.

Bounding Meta-generalization of Modern Meta-learning Algorithms

�e bound given in Equation A.1 is on the generalization error, i.e., the deviation of the true

transfer riskR from the empirical estimatorLemp, and has meaningful practical implications only

when the meta-algorithm A minimizesLemp. Note thatLemp(A,S) is the meta-training objective

function optimized by methods such as FedAvg (McMahan et al., 2017) or Reptile (Nichol et

al., 2018), and thus the bound from �eorem A.1 applies to them directly. However, MAML,

ProtoNets, and their variations optimize LQ(A,S), so we have to boundR(A,P)− LQ(A,S)

instead, which can be decomposed into two terms similar to Equations A.2 and A.3, where R̂ is

replaced by R̂Q and S is replaced by S \Q (since samples from the query set Q are not used in

the inner-loop). �e bound on the �rst term will not change much as we can still directly apply

results from stability theory with the only caveat that we would require β′Q-uniform stability of

the meta-algorithm with respect to R̂Q. �e second term, however, vanishes:

ES
[
R(A(S \Q), T )− R̂Q(A, S)

]
= ES\Q

R(A(S \Q), T )− EQ

 1

|Q|
∑

(x,y)∈Q

`(A(S \Q)(x), y)

 ≡ 0 (A.4)

�is allows us to reformulate �eorem A.1 and obtain the following generalization bound

applicable to any meta-learning method that optimizes R̂Q in the outer loop, including MAML

and ProtoNets.
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Theorem A.2

Let the meta-algorithm A and ` loss satisfy the following two conditions:

C1. For every pair of meta-samples S = {S1, . . . , Sn}, S−i := S \ {Si}, and for any sample

S, we have |R̂Q(A(S), S)− R̂Q(A(S−i), S)| ≤ β′Q.

C2. For any pair of samples S = {(x1, y1), . . . , (xm, ym)}, S−j := S \ {(xj, yj)}, any algo-

rithmA produced by A, and any (x, y), we have |`(A(S)(x), y)−`(A(S−j)(x), y)| ≤ β.

�en for any task distribution P, with probability at least 1− δ the following holds:

R(A(S),P)− LQ(A(S);S) ≤ 2β′Q + (4nβ′Q +M)

√
ln(1/δ)

2n
, (A.5)

whereLQ(A(S);S) := 1
n

∑n
i=1 R̂Q(A(S), Si), R̂Q(A, Si) := 1

|Qi|
∑

(x,y)∈Qi `(A(SiQi)(x), y)

with the loss function ` bounded by M .

Since MAML, Reptile, and ProtoNets use stochastic gradient method (SGM) for solving the

outer loop optimization problem, and Reptile additionally uses SGM in the inner loop as well,

we further adopt the following result from stability theory of SGM due to Hardt et al. (2015).

Lemma A.1: Hardt et al. (2015), �eorem 3.12

Let `(·, z) ∈ [0, 1] be L-Lipschitz and γ-smooth loss function for every z. Suppose that we

optimize
1
n

∑n
i=1 `(θ, zi) by running SGM for T steps with monotonically non-increasing

step sizes αt ≤ c/t. �en, SGM is β-uniformly stable with

β ≤ 1 + 1/(γc)

n− 1
(2cL2)1/(γc+1)T 1−1/(γc+1)

(A.6)

Combining �eorems A.1 and A.2 and Lemma A.1 we �nally arrive at the meta-generalization

error bounds for modern meta-learning algorithms.

Theorem A.3

Let the meta-algorithm A be an SGM that optimizes an L′-Lipschitz and γ′-smooth loss

L(A,S) by taking T ′ steps with non-increasing step sizes α′t ≤ c′/t. With probability at

least 1− δ, we have the following:

1. If L(A,S) is Q-estimator of the transfer risk, then the following bound holds:

R[A,P]− L(A,S) ≤ B′(n, T ′, L′, γ′, c′) ≈ O

(
L′2T ′

√
ln(1/δ)

n

)
(A.7)

2. If L(A;S) is the empirical estimator of the transfer risk and the inner loop learning

algorithm A is an SGM that optimizes L-Lipschitz and γ-smooth loss `(f(x), y) by
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taking T steps with non-increasing step sizes αt ≤ c/t, then:

R[A,P]− L(A,S) ≤ B′(n, T ′, L′, γ′, c′) +B(m,T, L, γ, c)

≤ O

(
L′2T ′

√
ln(1/δ)

n
+ L2T

1

m

)
(A.8)

Proof. Conditions of the theorem and Lemma A.1 imply that A is β′-(or β′Q-)uniformly stable

and the coe�cient can be expressed through the Lipschitz and smoothness constants of Lemp

(or LQ). �is leads to the following expression for B′(n, T ′, L′, γ′, c′):

B′(n, T ′, L′, γ′, c′) =
2C

n

(
1 +

1

n− 1

)
+ 2C

√
2 ln(1/δ)

n

(
1 +

1

n− 1
+
M

4C

)
, (A.9)

where C := (1 + 1/(γ′c′))(2c′L′2)1/(γ′c′+1)T ′1−1/(γ′c′+1)
. �e simpli�ed expression given in

Equation A.7 upper-bounds the one given in Equation A.9. Similarly, if each algorithm A
produced by the meta-algorithm A is an SGM on the Lemp objective, using Lemma A.1 we arrive

at the following expression for B(m,T, L, γ, c):

B(m,T, L, γ, c) = 2β ≤ 2
1 + 1/(γc)

m− 1
(2cL2)1/(γc+1)T 1−1/(γc+1) ≈ O

(
L2T

1

m

)
(A.10)

where the approximation ignores terms associated with c and γ. �e statement of the theorem

now follows from �eorems A.1 and A.2 and the derived expressions.
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Appendix B
Inferential Federated Learning:

Additional Details

B.1 Preliminary Analysis and Ablations

In Chapter 4, we derived federated posterior averaging (FedPA) starting with the global posterior

decomposition (Proposition 4.1, which is exact) and applying the following three approximations:

1. �e Laplace approximation of the local and global posterior distributions.

2. �e shrinkage estimation of the local moments.

3. Approximate sampling from the local posteriors using MCMC.

We have also observed that FedAvg is a special case of FedPA (from the algorithmic point of

view), since it can be viewed as also using the Laplace approximation for the posteriors, but

estimating local covariances Σ̂i’s with identities and local means using the �nal iterates of local

SGD.

In this section, we analyze the e�ects of approximations 2 and 3 on the convergence of

FedPA. Speci�cally, we �rst discuss the convergence rates of FedAvg and FedPA as biased
stochastic gradient optimization methods (Ajalloeian and Stich, 2020). We show how the bias

and variance of the client deltas behave for FedAvg and FedPA as functions of the number

samples. We also analyze the quality of samples produced by IASG (Mandt et al., 2017) and

how they depend on the amount of local computation and hyperparameters. Our analyses are

conducted empirically on synthetic data.

B.1.1 Discussion of the Convergence of FedPA vs. FedAvg

First, observe that if each client is able to perfectly estimate their ∆i = Σ−1
i (θ − µ), the

problem solved by Algorithm 4.1 simply becomes an optimization of a quadratic objective using

unbiased stochastic gradients, ∆ := 1
M

∑M
i=1 ∆i. �e noise in the gradients in this case comes

from the fact that the server interacts with only a small subset of M out of N clients in each
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round. �is is a classical stochastic optimization problem with well-known convergence rates

under some assumptions on the norm of the stochastic gradients (e.g., Nemirovski et al., 2009).

�e rate of convergence for SGD with a O(t−1) decaying learning rate used on the server is

O(1/
√
t). It can be further improved to O(1/t) using Polyak momentum (Polyak, 1964) or

iterate averaging (Polyak and Juditsky, 1992).

In reality, both FedAvg and FedPA produce biased estimates ∆̂FedAvg and ∆̂FedPA, respectively.

�us, we can analyze the problem as SGD with biased stochastic gradient estimates and let

∆̂t := ∇F (θt) + b(θt) + n(θt) where b(θt) and n(θt, ξ) are bias and noise terms. Following

Ajalloeian and Stich (2020), we can further assume that the bias and noise terms are norm-

bounded as follows.

Assumption B.1 (Bounded bias). �ere exist constants 0 ≤ m < 1 and ζ2 ≥ 0 such that

‖b(θ)‖2 ≤ m‖∇F (θ)‖2 + ζ2, ∀θ ∈ Rd. (B.1)

Assumption B.2 (Bounded noise). �ere exist constants 0 ≤M < 1 and σ2 ≥ 0 such that

Eξ
[
‖n(θ, ξ)‖2

]
≤M‖∇F (θ)‖2 + σ2, ∀θ ∈ Rd. (B.2)

Under these general assumptions, the following convergence result holds.

Theorem B.1: Ajalloeian and Stich (2020), �eorem 2

Let F (θ) be L-smooth. �en SGD with a learning rate α := min
{

1
L
, 1−m

2ML
,
(
LF
σ2T

)1/2
}

and

gradients that satisfy Assumptions B.1 and B.2 achieves the vicinity of a stationary point,

E [‖∇F (θ)‖2] = O
(
ε+ ζ2

1−m

)
, in T iterations, where

T = O
(

1

ε

[
1 +

M

1−m +
σ2

ε(1−m)

])
LF

1−m. (B.3)

Note that SGD with biased gradients is able to converge to a vicinity of the optimum

determined by the bias term ζ2/(1−m). For FedAvg, since the bias is not countered, this term

determines the distance between the stationary point and the true global optimum. For FedPA,

since ∆̂FedPA →∆ with more local samples, the bias should vanish as we increase the amount

of local computation.

Determining the precise statistical dependence of the gradient bias on the local samples is

beyond the scope of this work. However, to gain more intuition about the di�erences in behavior

of FedPA and FedAvg, below we conduct an empirical analysis of the bias and variance of

the estimated client deltas on synthetic least squares problems, for which exact deltas can be

computed analytically.

B.1.2 Analysis of the�ality of IASG-based Sampling and Covariance

�e more and be�er samples we can obtain locally, the lower the bias and variance of the

gradients of Q(θ) will be, resulting in faster convergence to a �xed point closer to the global
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optimum. For local sampling, we proposed to use a variant of SG-MCMC called Iterate Averaged

Stochastic Gradient (IASG) developed by Mandt et al. (2017), given in Algorithm 4.3. �e

algorithm generates samples by simply averaging every K intermediate iterates produced by

a client optimizer (typically, SGD with some a �xed learning rate α) a�er skipping the �rst B
iterates as a burn-in phase.

1

How good are the samples produced by IASG and how do di�erent parameters of the algorithm
a�ect the quality of the samples? To answer this question, we run IASG on synthetic least squares

problems, for which we can compute the actual posterior distribution and measure the quality

of the samples by evaluating the e�ective sample size (ESS, Liu, 1996; Owen, 2013). Given `
approximate posterior samples {θ1, . . . ,θ`}, the ESS statistic can be computed as follows:

ESS
(
{θi}`j=1

)
:=

(∑̀
j=1

wj

)2/∑̀
j=1

w2
j ,

where weights wj must be proportional to the posterior probabilities, or equivalently to the

loss.

E�ects of the dimensionality, the number of data points, and IASG parameters on ESS.

�e results of our synthetic experiments are presented below in Figure B.1. �e takeaways are

as follows:

• More burn-in steps (or epochs) generally improve the quality of samples.

• �e larger the number of steps per sample the be�er (less correlated) the samples are.

• �e learning rate is the most sensitive and important hyperparameter—if too large, IASG

might diverge (happened in the 1000 dimensional case); if too small, the samples become

correlated.

• Finally, the quality of the samples deteriorates with the increase in the number of dimensions.

1
Note that in our experiments in Section 4.5, instead of using B local steps for burn-in at each round, we used

several initial rounds as burn-in-only rounds, running FedPA in the FedAvg regime.

117



(a) ESS as a function of the number of burn-in steps. (Steps per sample: 50.)
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(b) ESS as a function of the number of steps per sample. (Burn-in steps: 100.)
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(c) ESS as a function of the learning rate. (Burn-in steps: 100, steps per sample: 50.)
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Figure B.1: �e ESS statistics for samples produced by IASG on random synthetic least squares linear

regression problems of dimensionality 10, 100, 1000. Total number of data points per problem: 500, batch

size: 10. In (a) and (b) the learning rate was set to 0.1 for 10 and 100 dimensions, and 0.01 for 1000

dimensions.
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B.2 Additional Proofs

Proposition 4.2: Global Posterior Inference

�e global posterior modeµ? given in Equation 4.5 is the minimizer of a quadraticQ(θ) :=
1
2
θ>Aθ − b>θ, where A :=

∑N
i=1 wiΣ

−1
i and b :=

∑N
i=1wiΣ

−1
i µi.

Proof. �e statement of the proposition (implicitly) assumes that all matrix inverses exist. �en,

the quadraticQ(θ) is positive de�nite (PD) since A is PD as a convex combination of PD matrices

Σ−1
i . �us, the quadratic has a unique solution θ? where the gradient of the objective vanishes:

Aθ? − b = 0 ⇒ θ? = A−1b =

(
N∑
i=1

qiΣ
−1
i

)−1 N∑
i=1

qiΣ
−1
i µi ≡ µ, (B.4)

which implies that µ is the unique minimizer of Q(θ).

B.3 E�cient Computation of Client Deltas

In this section, we provide a constructive proof for the following theorem by designing an

e�cient algorithm for computing ∆̂` := Σ̂
−1

` (θ − µ̂`) on the clients in time and memory linear

in the number of dimensions d of the parameter vector θ ∈ Rd
.

Theorem 4.1: Linear-time Computation of Client Deltas

Given s approximate posterior samples {θ̂1, . . . , θ̂s}, let µ̂s be the sample mean, Ŝs be the

sample covariance, and Σ̂s := ρsI + (1− ρs)Ŝs be a shrinkage estimator (Ledoit and Wolf,

2004a) of the covariance with ρs := 1/(1 + (s− 1)ρ) for some ρ ∈ [0,+∞). �en, for any

θ, we can compute ∆̂s = Σ̂
−1

s (θ − µ̂s) in O(s2d) time and using O(sd) memory.

�e naı̈ve computation of update vectors (i.e., where we �rst estimate µ̂` and Σ̂` from

posterior samples and use them to compute deltas) requires O(d2) storage and O(d3) compute

on the clients and is both computationally and memory intractable. We derive an algorithm that,

given ` posterior samples, computes ∆̂` using only O(`d) memory and O(`2d) compute.

�e algorithm makes use of the following two components:

1. �e shrinkage estimator of the covariance (Ledoit and Wolf, 2004a), which is known to be

well-conditioned even in high-dimensional se�ings (i.e., when the number of samples is

smaller than the number of dimensions) and is widely used in econometrics (Ledoit and

Wolf, 2004b) and computational biology (Schäfer and Strimmer, 2005).

2. Incremental computation of Σ̂
−1

` (θ` − µ̂`) that exploits the fact that each new posterior

sample only adds a rank-1 component to Σ̂` and applies the Sherman-Morrison formula

to derive a dynamic program for updating ∆̂`.
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Notation. For the sake of this discussion, we denote θ (i.e., the server state broadcasted to the

clients at round t) as x0, drop the client index i, denote posterior samples as xj , sample mean as

x̄` := 1
`

∑`
j=1 xj , and sample covariance as Ŝ` := 1

`−1

∑`
j=1(xj − x̄`)(xj − x̄`)

>
.

B.3.1 �e Shrinkage Estimator of the Covariance

Ledoit and Wolf (2004a) proposed to estimate a high-dimensional covariance matrix using a

convex combination of identity and sample covariance (known as the shrinkage estimator):

Σ̂`(ρ`) := ρ`I + (1− ρ`)S`, (B.5)

where ρ` is a scalar parameter that controls the bias-variance tradeo� of the estimator. As an

aside, while ρ` can be arbitrary and the optimal ρ` requires knowing the true covariance Σ, there

are near-optimal ways to estimate ρ̂` from the samples (Chen et al., 2010), which we discuss at

the end of this section.

In this section, we focus on deriving an expression for ρt as a function of t = 1, . . . , ` that

ensures that the di�erence between Σ̂t and Σ̂t−1 is a rank-1 matrix.

Derivation of a shrinkage estimator that admits rank-1 updates. Consider a matrix:

Σ̃t := I + βtŜt, (B.6)

where βt is a scalar function of t = 1, 2, . . . , `. We would like to �nd βt such that Σ̃t =
Σ̃t−1 + γtUt, where Ut is a rank-1 matrix, i.e., the following equality should hold:

βtŜt = βt−1Ŝt−1 + γtUt (B.7)

To determine the functional form of βt, we need recurrent relationships for x̄t and Ŝt. For the

former, note that the following relationship holds for two consecutive estimates of the sample

mean, x̄t−1 and x̄t:

x̄t =
(t− 1)x̄t−1 + xt

t
= x̄t−1 +

1

t
(xt − x̄t−1) (B.8)

�is allows us to expand Ŝt as follows:

(t− 1)Ŝt =
t∑

j=1

(xj − x̄t)(xj − x̄t)
>

=
t∑

j=1

(
xj − x̄t−1 −

xt − x̄t−1

t

)(
xj − x̄t−1 −

xt − x̄t−1

t

)>

=
t−1∑
j=1

(xj − x̄t−1) (xj − x̄t−1)>︸ ︷︷ ︸
=(t−2)Ŝt−1

−2
xt − x̄t−1

t

t−1∑
j=1

(xj − x̄t−1)>︸ ︷︷ ︸
=0

+

t− 1

t2
(xt − x̄t−1)(xt − x̄t−1)> +

(
t− 1

t

)2

(xt − x̄t−1)(xt − x̄t−1)>

= (t− 2)Ŝt−1 +
t− 1

t
(xt − x̄t−1)(xt − x̄t−1)>

(B.9)
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�us, we have the following recurrent relationship between Ŝt and Ŝt−1:

Ŝt =

(
t− 2

t− 1

)
Ŝt−1 +

1

t
(xt − x̄t−1)(xt − x̄t−1)> (B.10)

Now, we can plug (B.10) into (B.7) and obtain the following equation:

βt

(
t− 2

t− 1

)
Ŝt−1 +

βt
t

(xt − x̄t−1)(xt − x̄t−1)> = βt−1St−1 + γtUt, (B.11)

which implies that Ut := (xt − x̄t−1)(xt − x̄t−1)>, γt := βt/t, and the following telescoping

expressions for βt:

βt =

(
t− 1

t− 2

)
βt−1 =

(
t− 1

���t− 2
·�

��t− 2

t− 3

)
βt−2 = · · · = (t− 1)β2, (B.12)

where we set β2 ≡ ρ ∈ [0,+∞) to be a constant. �us, if we de�ne Σ̃t := I + ρ(t− 1)Ŝt, then

the following recurrent relationships will hold:

Σ̃1 = I,

Σ̃2 = I + ρŜ2 = Σ̃1 +
ρ

2
(x2 − x̄1)(x2 − x̄1)>,

Σ̃3 = I + 2ρŜ3 = Σ̃2 +
2ρ

3
(x3 − x̄2)(x3 − x̄2)>,

. . .

Σ̃t = I + (t− 1)ρŜt−1 = Σ̃t−1 +
(t− 1)ρ

t
(xt − x̄t−1)(xt − x̄t−1)> (B.13)

Finally, we obtain a shrinkage estimator of the covariance from Σ̃n by normalizing coe�cients:

Σ̂t :=
1

1 + (t− 1)ρ︸ ︷︷ ︸
ρt

I +
(t− 1)ρ

1 + (t− 1)ρ︸ ︷︷ ︸
1−ρt

Ŝt = ρtΣ̃t (B.14)

Note that Σ̂1 ≡ I and Σ̂t → St as t→∞.

B.3.2 Computing Deltas using Dynamic Programming

Since Σ̂` is proportional to Σ̃` and the la�er satis�es recurrent rank-1 updates given in Equa-

tion B.13, denoting u` := x`− x̄`−1, we can express Σ̂
−1

` = Σ̃
−1

` /ρ` using the Sherman-Morrison

formula:

Σ̃
−1

` = Σ̃
−1

`−1 −
γ`

(
Σ̃
−1

`−1u`u
>
` Σ̃
−1

`−1

)
1 + γ`

(
u>` Σ̃

−1

`−1u`

) (B.15)
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Note that we would like to estimate ∆̂` := Σ̂
−1

` (x0− x̄`), which can be done without computing

or storing any matrices if we know Σ̃
−1

`−1u` and Σ̃
−1

`−1(x0 − x̄`).

Denoting ∆̃t := Σ̃
−1

t (x0 − x̄t), and knowing that x0 − x̄` = (x0 − x̄`−1) − u`/` (which

follows from Equation B.8), we can compute ∆̂` using the following recurrence:

∆̃1 := x0 − x̄1, v1,2 := x2 − x̄1, // initial conditions (B.16)

ut := xt − x̄t−1, vt−1,t := Σ̃
−1

t−1ut // recurrence for ut and vt−1,t

(B.17)

∆̃t = ∆̃t−1 −

1 +
γt

(
tu>t ∆̃t−1 − u>t vt−1,t

)
1 + γt

(
u>t vt−1,t

)
 vt−1,t

t
// recurrence for ∆̃t (B.18)

∆̂t = ∆̃t/ρt // �nal step for ∆̂t (B.19)

Remember that our goal is to avoid storing d× d matrices throughout the computation. In the

above recursive equations, all expressions depend only on vector-vector products except the

one for vt−1,t which needs a matrix-vector product. To express the la�er one in the form of

vector-vector products, we need another 2-index recurrence on vi,j := Σ̃
−1

i uj :

v1,2 = u2, v1,3 = u3, . . . v1,t = ut // initial conditions (B.20)

vt−1,t =

Σ̃
−1

t−2 −
γt−1

(
Σ̃
−1

t−2ut−1u
>
t−1Σ̃

−1

t−2

)
1 + γt−1

(
u>t−1Σ̃

−1

t−2ut−1

)
ut // Sherman-Morrison (B.21)

= vt−2,t −
γt−1

(
v>t−2,t−1ut

)
1 + γt−1

(
v>t−2,t−1ut−1

)vt−2,t−1 (B.22)

= v1,t −
t−1∑
k=2

γk
(
v>k−1,kut

)
1 + γk

(
v>k−1,kuk

)vk−1,k // �nal expression for vt−1,t (B.23)

Now, equipped with these two recurrences, given a stream of samples x1,x2, . . . ,xt, . . . , we

compute ∆̂t for t ≥ 2 based on xt, {uk}t−1
k=1, {vk−2,k−1}t−1

k=1 and ∆̂t−1 using two steps:

1. Compute ut and vt−1,t using the second recurrence.

2. Compute ∆̂t from ut, vt−1,t, and ∆̂t−1 using the �rst recurrence.

For each new sample in the sequence, we repeat the two steps to obtain the updated ∆̂t

estimate, until we have processed all ` samples. Note that the �rst step requires O(t) vector-

vector multiplies, i.e., O(td) compute, and O(d) memory, and the second step a O(1) number

of vector-vector multiplies. As a result, the computational complexity of estimating ∆̂` is

O(`2d) and the storage needed for the dynamic programming state represented by a tuple(
{uk}t−1

k=1, {vk−2,k−1}t−1
k=1, ∆̂t−1

)
is O(`d).

�e any-time property of the resulting algorithm. Interestingly, the above algorithm is

online as well as any-time in the following sense: as we keep sampling more from the posterior,
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the estimate of ∆̂ keeps improving, but if stopped at any time, the algorithm still produces the

best possible estimate under the given time constraint. If the posterior sampler is stopped during

the burn-in phase or a�er having produced only 1 posterior sample, the returned delta will be

identical to FedAvg. By spending more compute on the clients (and a bit of extra memory), with

each additional posterior sample xt, we have ∆̂t −→
t→∞

Σ−1(x0 − µ).

Optimal selection of ρ. Note that to be able to run the above described algorithm in an online

fashion, we have to select and commit to a ρ before seeing any samples. Alternatively, if

the online and any-time properties of the algorithm are unnecessary, we can �rst obtain `
posterior samples {xk}`k=1, then infer a near-optimal ρ̂? from these samples—e.g., using the

Rao-Blackwellized version of the LW estimator (RBLW) or the oracle approximating shrinkage

(OAS), both proposed and analyzed by Chen et al. (2010)—and then use the inferred ρ̂? to compute

the corresponding delta using our dynamic programming algorithm.

B.4 Details on the Experimental Setup

In this part, we provide additional details on our experimental setup, including a more detailed

description of the datasets and tasks, models, methods, and hyperparameters.

B.4.1 Datasets, Tasks, and Models

Statistics of the datasets used in our empirical study can be found in Table 4.2. All the datasets

and tasks considered in our study are a subset of the tasks introduced by Reddi et al. (2020).

EMNIST-62. �e dataset is comprised of 28× 28 images of handwri�en digits and lower and

upper case English characters (62 di�erent classes total). �e federated version of the dataset

was introduced by Caldas et al. (2018), and is partitioned by the author of each character. �e

heterogeneity of the dataset is coming from the di�erent writing style of each author. We use

this dataset for the character recognition task, termed EMNIST CR in Reddi et al. (2020) and

the same model architecture, which is a 2-layer convolutional network with 3× 3 kernel, max

pooling, and dropout, followed by a 128-unit fully connected layer. �e model was adopted from

the TensorFlow Federated library: h�ps://bit.ly/3l41LKv.

CIFAR-100. �e federated version of CIFAR-100 was introduced by Reddi et al. (2020). �e

training set of the dataset is partitioned among 500 clients, 100 data points per client. �e

partitioning was created using a two-step latent Dirichlet allocation (LDA) over to “coarse” to

“�ne” labels which created a label distribution resembling a more realistic federated se�ing.

For the model, also following Reddi et al. (2020), we used a modi�ed ResNet-18 with group

normalization layer instead of batch normalization, as suggested by Hsieh et al. (2019). �e

model was adopted from the TensorFlow Federated library: h�ps://bit.ly/33jMv6g.

StackOver�ow. �e dataset consists of text (questions and answers) asked and answered by the

total of 342,477 unique users, collected from h�ps://stackover�ow.com. �e federated version of

the dataset partitions it into clients by the user. In addition, questions and answers in the dataset
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Table B.1: Selected optimizers for each task. For SGD, m is momentum. For Adam, β1 = 0.9, β2 = 0.99.

Hyperparameter EMNIST-62 CIFAR-100 StackOver�ow

NWP

StackOver�ow LR

ServerOpt SGD (m = 0.9) SGD (m = 0.9) Adam (τ = 10−3
) Adagrad (τ = 10−5

)

ClientOpt SGD (m = 0.9) SGD (m = 0.9) SGD (m = 0.0) SGD (m = 0.9)

# clients p/round 100 20 10 10

have associated metadata, which includes tags. We consider two tasks introduced by Reddi et al.

(2020): the next word prediction task (NWP) and the tag prediction task via multi-label logistic

regression. �e vocabulary of the dataset is restricted to 10,000 most frequently used words for

each task (i.e., the NWP task becomes a multi-class classi�cation problem with 10,000 classes).

�e tags are similarly restricted to 500 most frequent ones (i.e., the LR task becomes a multi-label

classi�cation proble with 500 labels).

For tag prediction, we use a simple linear regression model where each question or answer are

represented by a normalized bag-of-words vector. �e model was adopted from the TensorFlow

Federated library: h�ps://bit.ly/2EXjAeY.

For the NWP task, we restrict each client to the �rst 128 sentences in their dataset, perform

padding and truncation to ensure that sentences have 20 words, and then represent each sentence

as a sequence of indices corresponding to the 10,000 frequently used words, as well as indices

representing padding, out-of-vocabulary (OOV) words, beginning of sentence (BOS), and end of

sentence (EOS). We note that accuracy of next word prediction is measured only on the content

words and not on the OOV, BOS, and EOS symbols. We use an RNN model with 96-dimensional

word embeddings (trained from scratch), 670-dimensional LSTM layer, followed by a fully

connected output so�max layer. �e model was adopted from the TensorFlow Federated library:

h�ps://bit.ly/2SoSi3X.

B.4.2 Methods

As mentioned in the main text, we used FedAvg with adaptive server optimizers with 1 or

multiple local epochs per client as our baselines. For each task, we selected the best server

optimizer based on the results reported by Reddi et al. (2020), given in Table B.1. We emphasize,

even though we refer to all our baseline methods as FedAvg, the names of the methods as

given by Reddi et al. (2020) should be FedAvgM for EMNIST-62 and CIFAR-100, FedAdam for

StackOver�ow NWP and FedAdagrad for StackOver�ow LR. Another di�erence between our

baselines and Reddi et al. (2020) is that we ran SGD with momentum on the clients for EMNIST-62,

CIFAR-100, and StackOver�ow LR, as that improved performance of the methods with multiple

epochs per client.

Our FedPA methods used the same con�gurations as FedAvg baselines; moreover, FedPA

and FedAvg were identical (algorithmically) during the burn-in phase and only di�erent in the

client-side computation during the sampling phase of FedPA.
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Table B.2: Hyperparameter grids for each task.

Hyperparameter EMNIST-62 CIFAR-100 StackOver�ow

NWP

StackOver�ow

LR

Server learning

rate

{0.01, 0.05, 0.1, 0.5, 1, 5} {0.01, 0.05, 0.1, 0.5, 1} {0.1, 0.5, 1, 5, 10}

Client learning rate {0.001, 0.005, 0.01, 0.05, 0.1} {0.01, 0.05, 0.1} {1, 5, 10, 50, 100}
Client epochs {2, 5, 10, 20}
FedPA burn-in {100, 200, 400, 600, 800}
FedPA shrinkage {0.0001, 0.001, 0.01, 0.1, 1}

Table B.3: �e best selected hyperparameters for each task.

Hyperparameter EMNIST-62 CIFAR-100 StackOver�ow

NWP

StackOver�ow

LR

Server learning

rate

0.5 0.5 1.0 5.0

Client learning rate 0.01 0.01 0.1 50.0

Client epochs 5 10 5 5

FedPA burn-in 100 400 800 800

FedPA shrinkage 0.1 0.01 0.01 0.01

B.4.3 Hyperparameters and Grids

All hyperparameter grids are given in Table B.2. �e best server and client learning rates were se-

lected based on the FedAvg performance and used for FedPA. �e best selected hyperparameters

are given in Table B.3.

B.5 Additional Experimental Results

We provide additional experimental results. As mentioned in the main text, the results presented

in Table 4.3 were selected to highlight the di�erences between the methods with respect to

two metrics of interest: (i) the number of rounds until the desired performance, and (ii) the

performance achievable within a �xed number of rounds. A much fuller picture is given by the

learning curves of each method. �erefore, we plot evaluation losses, accuracies, and metrics of

interest over the course of training. On the plots, individual values at each round are indicated

with ×-markers and the 10-round running average with a line of the corresponding color.

EMNIST-62. Learning curves for FedAvg and FedPA on EMNIST-62 are given in Figure B.2.

Figure B.2a shows the best FedAvg-1E, FedAvg-5E, and FedPA-5E models and Figure B.2b shows

the best FedAvg-20E, and FedPA-20E. Apart from the fact that multi-epoch versions converge

signi�cantly faster than FedAvg-1E, note that the e�ect of bias reduction when switching from

the burn-in to sampling in FedPA becomes much more pronounced in the 20-epoch version.
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CIFAR-100 and StackOver�ow. Learning curves for various models on CIFAR-100 and Stack-

Over�ow tasks are presented in Figures B.3 and B.4. �e takeaways for CIFAR-100 and Stack-

Over�ow NWP are essentially the same as for EMNIST-62—much faster convergence with the

increased number of local epochs and visually noticeable improvement in losses and accuracies

due to sampling-based bias correction in client deltas a�er the burn-in phase is over. Interest-

ingly, we see that on StackOver�ow LR task FedAvg-1E clearly dominates multi-epoch methods

in terms of the loss and recall at 5, losing in precision and macro-F1. Even more puzzling is the

signi�cant drop in the average precision of FedPA-ME a�er the switching to sampling, while at

the same time a jump in recall and F1 metrics. �is indicates that the global model moves to a

di�erent �xed point where it over-predicts positive labels (i.e., less precise) but also less likely to

miss rare labels (i.e., higher recall on rare labels, and as a result a jump in macro-F1). �e reason

why this happens, however, is unclear.
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(a) EMNIST-62: Evaluation loss and accuracy for FedAvg-1E, FedAvg-5E, and FedPA-5E.
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(b) EMNIST-62: Evaluation loss and accuracy for FedAvg-20E and FedPA-20E.
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Figure B.2: Evaluation metrics for FedAvg and FedPA computed at each training round on EMNIST-62.
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(a) CIFAR-100: Evaluation loss and accuracy for FedAvg-1E, FedAvg-10E, and FedPA-10E.
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(b) StackOver�ow-NWP: Evaluation perplexity and accuracy for FedAvg-1E, FedAvg-5E, and FedPA-5E.
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Figure B.3: Evaluation metrics for FedAvg and FedPA computed at each training round on (a) CIFAR-100

and (b) StackOver�ow NWP tasks.
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Figure B.4: Evaluation metrics for FedAvg and FedPA computed at each training round on StackOver-

�ow LR. Evaluation loss, average precision and recall, and micro- and macro-averaged F1 for FedAvg-1E,

FedAvg-5E, and FedPA-5E.
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Appendix C
Learning under Nonstationarity:

Additional Details

C.1 Policy Gradient �eorem for Meta-RL

In this section, we derive the policy gradient update for MAML as well as formulate and

equivalent of the policy gradient theorem (Su�on et al., 2000) in the learning-to-learn se�ing.

Our derivation is not bound to a particular form of the adaptation update. In general, we are

interested in meta-learning a procedure, fθ, parametrized by θ, which, given access to a limited

experience on a task, can produce a good policy for solving it. Note that fθ is responsible for

both collecting the initial experience and constructing the �nal policy for the given task. For

example, in case of MAML (Finn et al., 2017), fθ is represented by the initial policy, πθ, and the

adaptation update rule Equation 5.5 that produces πφ with φ := θ − α∇θLT (τ 1:K
θ ).

More formally, a�er querying K trajectories, τ 1:K
θ , we want to produce πφ that minimizes

the expected loss w.r.t. the distribution over tasks:

L(θ) := ET∼D(T )

[
Eτ1:K

θ ∼pT (τ |θ)
[
Eτφ∼pT (τ |φ)

[
LT (τ φ) | τ 1:K

θ

]]]
(C.1)

Note that the inner-most expectation is conditional on the experience, τ 1:K
θ , which our meta-

learning procedure, fθ, collects to produce a task-speci�c policy, πφ. Assuming that the loss

LT (τ 1:K
θ ) is linear in trajectories, and using linearity of expectations, we can drop the superscript

1 : K and denote the trajectory sampled under φθ for task Ti simply as τ θ,i. At training time,

we are given a �nite sample of tasks from the distribution D(T ) and can search for θ̂ close to

optimal by optimizing over the empirical distribution:

θ̂ := arg min
θ
L̂(θ), where L̂(θ) :=

1

N

N∑
i=1

Eτ θ,i∼pTi (τ |θ)

[
Eτφ,i∼pTi (τ |φ) [LTi(τ φ,i) | τ θ,i]

]
(C.2)

We re-write the objective function for task Ti in Equation C.2 more explicitly by expanding
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the expectations:

LTi(θ) := Eτ θ,i∼pTi (τ |θ)

[
Eτφ,i∼pTi (τ |φ) [LTi(τ φ,i) | τ θ,i]

]
=∫

LTi(τ φ,i) pTi (τ φ,i | φ) pTi (φ | θ, τ θ,i) pTi (τ θ,i | θ) dτ φ,i dφ dτ θ,i
(C.3)

Trajectories, τ φ,i and τ θ,i, and parameters φ of the policy πφ can be thought as random variables

that we marginalize out to construct the objective that depends on θ only. �e adaptation update

rule Equation 5.5 assumes the following pTi (φ | θ, τ θ,i):

pTi (φ | θ, τ θ,i) := δ

(
θ − α∇θ

1

K

K∑
k=1

LTi(τ
k
θ,i)

)
(C.4)

Note that by specifying pTi (φ | θ, τ θ,i) di�erently, we may arrive at di�erent meta-learning

algorithms. A�er plugging Equation C.4 into Equation C.3 and integrating out φ, we get the

following expected loss for task Ti as a function of θ:

LTi(θ) = Eτ θ,i∼pTi (τ |θ)

[
Eτφ,i∼pTi (τ |φ) [LTi(τ φ,i) | τ θ,i]

]
=∫

LTi(τ φ,i) pTi

(
τ φ,i | θ − α∇θ

1

K

K∑
k=1

LTi(τ
k
θ,i)

)
pTi (τ θ,i | θ) dτ φ,i dτ θ,i

(C.5)

�e gradient of Equation C.5 will take the following form:

∇θLTi(θ) =

∫
[LTi(τ φ,i)∇θ log pTi (τ φ,i | φ)] pTi (τ φ,i | φ) pTi (τ θ,i | θ) dτ dτ θ,i+∫
[LTi(τ )∇θ log pTi (τ θ,i | θ)] pTi (τ | φ) pTi (τ θ,i | θ) dτ dτ θ,i

(C.6)

where φ = φ(θ, τ 1:K
θ,i ) as given in Equation C.5. Note that the expression consists of two terms:

the �rst term is the standard policy gradient w.r.t. the updated policy, πφ, while the second one

is the policy gradient w.r.t. the original policy, πφ, that is used to collect τ 1:K
θ,i . If we were to omit

marginalization of τ 1:K
θ,i (as it was done in the original paper (Finn et al., 2017)), the terms would

disappear. Finally, the gradient can be re-wri�en in a more succinct form:

∇θLTi(θ) = Eτ1:K
θ,i ∼pTi (τ |θ)
τ∼pTi (τ |φ)

[
LTi(τ )

[
∇θ log πφ(τ ) +∇θ

K∑
k=1

log πθ(τ k)

]]
(C.7)

�e update given in Equation C.7 is an unbiased estimate of the gradient as long as the loss

LTi is simply the sum of discounted rewards (i.e., it extends the classical REINFORCE algo-

rithm (Williams, 1992) to meta-learning). Similarly, we can de�ne LTi that uses a value or

advantage function and extend the policy gradient theorem Su�on et al., 2000 to make it suitable

for meta-learning.
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Theorem C.1: Meta Policy Gradient �eorem

For any MDP, gradient of the value function w.r.t. θ takes the following form:

∇θV
θ
T (x0) =

Eτ1:K∼pT (τ |θ)

[∑
x

dφT (x)
∑
a

∂πφ(a | x)

∂θ
Qφ
T (a,x)

]
+

Eτ1:K∼pT (τ |θ)

[(
∂

∂θ

K∑
k=1

log πθ(τ k)

)∑
a

πφ(a | x0)Qφ
T (a,x0)

]
,

(C.8)

where dφT (x) is the stationary distribution under policy πφ.

Proof. We de�ne task-speci�c value functions under the generated policy, πφ, as follows:

V φ
T (x0) = Eτ∼pT (τ |φ)

[
H∑
t=k

γtRT (xt) | x0

]
,

Qφ
T (x0, a0) = Eτ∼pT (τ |φ)

[
H∑
t=k

γtRT (xt) | x0, a0

]
,

(C.9)

where the expectations are taken w.r.t. the dynamics of the environment of the given task, T ,

and the policy, πφ. Next, we need to marginalize out τ 1:K :

V θ
T (x0) = Eτ1:K∼pT (τ |θ)

[
Eτ∼pT (τ |φ)

[
H∑
t=k

γtRT (xt) | x0

]]
, (C.10)

and a�er the gradient w.r.t. θ, we arrive at:

∇θV
θ
T (x0) =

Eτ1:K∼pT (τ |θ)

[∑
a

∂πφ(a | x0)

∂θ
Qφ
T (a,x0) + πφ(a | x0)

∂Qφ
T (a,x0)

∂θ

]
+

Eτ1:K∼pT (τ |θ)

[(
K∑
k=1

∂

∂θ
log πθ(τ k)

)∑
a

πφ(a | x0)Qφ
T (a,x0)

]
,

(C.11)

where the �rst term is similar to the expression used in the original policy gradient theorem (Sut-

ton et al., 2000) while the second one comes from di�erentiating trajectories τ 1:K that depend

on θ. Following Su�on et al. (2000), we unroll the derivative of the Q-function in the �rst term
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and arrive at the following �nal expression for the policy gradient:

∇θV
θ
T (x0) =

Eτ1:K∼pT (τ |θ)

[∑
x

dφT (x)
∑
a

∂πφ(a | x)

∂θ
Qφ
T (a,x)

]
+

Eτ1:K∼pT (τ |θ)

[(
∂

∂θ

K∑
k=1

log πθ(τ k)

)∑
a

πφ(a | x0)Qφ
T (a,x0)

] (C.12)

Remark C.1. �e same theorem is applicable to the continuous adaptation se�ing with the only
changes in the distributions used to compute expectations in Equations C.8 and C.9. In particular,
the outer expectation in Equation C.8 should be taken w.r.t. pTi(τ | θ) while the inner expectation
w.r.t. pTi+1

(τ | φ).

C.1.1 Multiple Adaptation Gradient Steps

All our derivations so far assumed single step gradient-based adaptation update. Experimentally,

we found that the multi-step version of the update o�en leads to a more stable training and

be�er test time performance. In particular, we construct φ via intermediate M gradient steps:

φ0 := θ, τ 1:K
θ ∼ PT (τ | θ),

φm := φm−1 − αm∇φm−1LT
(
τ 1:K
φm−1

)
, m = 1, . . . ,M − 1,

φ := φM−1 − αM∇φM−1LT
(
τ 1:K
φM−1

) (C.13)

where φm are intermediate policy parameters. Note that each intermediate step, m, requires

interacting with the environment and sampling intermediate trajectories, τ 1:K
φm . To compute

the policy gradient, we need to marginalize out all the intermediate random variables, πφm and

τ 1:K
φm , m = 1, . . . ,M . �e objective function Equation C.3 takes the following form:

LT (θ) =∫
LT (τ ) pT (τ | φ) pT

(
φ | φM−1, τ 1:K

φM−1

)
dτdφ×

M−2∏
m=1

pT
(
τ 1:K
φm+1 | φm+1

)
pT
(
φm+1 | φm, τ 1:K

φm

)
dτ 1:K

φm+1dφm+1×

pT
(
τ 1:K | θ

)
dτ 1:K

(C.14)

Since pT
(
φm+1 | φm, τ 1:K

φm

)
at each intermediate steps are delta functions, the �nal expression

for the multi-step MAML objective has the same form as Equation C.5, with integration taken

w.r.t. all intermediate trajectories. Similarly, an unbiased estimate of the gradient of the objective

gets M additional terms:

∇θLT = E{τ1:K
φm }

M−1
m=0 ,τ

[
LT (τ )

[
∇θ log πφ(τ ) +

M−1∑
m=0

∇θ

K∑
k=1

log πφm(τ kφm)

]]
, (C.15)
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Figure C.1: Policy and value function architectures.

where the expectation is taken w.r.t. trajectories (including all intermediate ones). Again,

note that at training time we do not constrain the number of interactions with each particular

environment and do rollout using each intermediate policy to compute updates. At testing time,

we interact with the environment only once and rely on the importance weight correction as

described in Section 5.4.2.

C.2 Additional details on the architectures

�e neural architectures used for our policies and value functions are illustrated in Figure C.1.

Our MLP architectures were memory-less and reactive. �e LSTM architectures had used a fully

connected embedding layer (with 64 hidden units) followed by a recurrent layer (also with 64

units). �e state in LSTM-based architectures was kept throughout each episode and reset to

zeros at the beginning of each new episode. �e RL
2

architecture additionally took reward and

done signals from the previous time step and kept the state throughout the whole interactions

with a given environment (or opponent). �e recurrent architectures were unrolled for T = 10
time steps and optimized with PPO via backprop through time.

C.3 Additional details on meta-learning and optimization

C.3.1 Meta-updates for continuous adaptation

Our meta-learned adaptation methods were used with MLP and LSTM policies (Figure C.1). �e

meta-updates were based on 3 gradient steps with adaptive step sizes α were initialized with

0.001. �ere are a few additional details to note:

1. θ and φ parameters were a concatenation of the policy and the value function parameters.

2. At the initial stages of optimization, meta-gradient steps o�en tended to “explode”, hence

we clipped them by values norms to be between -0.1 and 0.1.
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3. We used di�erent surrogate loss functions for the meta-updates and for the outer optimiza-

tion. For meta-updates, we used the vanilla policy gradients computed on the negative

discounted rewards, while for the outer optimization loop we used the PPO objective.

C.3.2 On PPO and its distributed implementation

As mentioned in the main text and similar to (Bansal et al., 2018), large batch sizes were used to

ensure enough exploration throughout policy optimization and were critical for learning in the

competitive se�ing of RoboSumo. In our experiments, the epoch size of the PPO was set 32,000

episodes and the batch size was set to 8,000. �e PPO clipping hyperparameter was set to ε = 0.2
and the KL penalty was set to 0. In all our experiments, the learning rate (for meta-learning,

the learning rate for θ and α) was set to 0.0003. �e generalized advantage function estimator

(GAE) (Schulman et al., 2015b) was optimized jointly with the policy (we used γ = 0.995 and

λ = 0.95).

To train our agents in reasonable time, we used a distributed implementation of the PPO

algorithm. To do so, we versioned the agent’s parameters (i.e., kept parameters a�er each update

and assigned it a version number) and used a versioned queue for rollouts. Multiple worker

machines were generating rollouts in parallel for the most recent available version of the agent

parameters and were pushing them into the versioned rollout queue. �e optimizer machine

collected rollouts from the queue and made a PPO optimization steps (see (Schulman et al., 2017)

for details) as soon as enough rollouts were available.

We trained agents on multiple environments simultaneously. In nonstationary locomotion,

each environment corresponded to a di�erent pair of legs of the creature becoming dysfunc-

tional. In RoboSumo, each environment corresponded to a di�erent opponent in the training

pool. Simultaneous training was achieved via assigning these environments to rollout workers

uniformly at random, so that the rollouts in each mini-batch were guaranteed to come from all

training environments.

C.4 Additional details on the environments

C.4.1 Observation and action spaces

Both observation and action spaces in RoboSumo continuous. �e observations of each agent

consist of the position of its own body (7 dimensions that include 3 absolute coordinates in the

global cartesian frame and 4 quaternions), position of the opponent’s body (7 dimensions), its

own joint angles and velocities (2 angles and 2 velocities per leg), and forces exerted on each

part of its own body (6 dimensions for torso and 18 for each leg) and forces exerted on the

opponent’s torso (6 dimensions). All forces were squared and clipped at 100. Additionally, we

normalized observations using a running mean and clipped their values between -5 and 5. �e

action spaces had 2 dimensions per joint. Table C.1 summarizes the observation and action

spaces for each agent type.
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Table C.1: Dimensionality of the observation and action spaces of the agents in RoboSumo.

Agent

Observation space

Action spaceSelf Opponent

Coordinates Velocities Forces Coordinates Forces

Ant 15 14 78 7 6 8

Bug 19 18 114 7 6 12

Spider 23 22 150 7 6 16

Note that the agents observe neither any of the opponents velocities, nor positions of the

opponent’s limbs. �is allows us to keep the observation spaces consistent regardless of the

type of the opponent. However, even though the agents are blind to the opponent’s limbs, they

can sense them via the forces applied to the agents’ bodies when in contact with the opponent.

C.4.2 Shaped rewards

In RoboSumo, the winner gets 2000 reward, the loser is penalized for -2000, and in case of draw

both agents get -1000. In addition to the sparse win/lose rewards, we used the following dense

rewards to encourage fast learning at the early training stages:

• �ickly push the opponent outside. �e agent got penalty at each time step pro-

portional to e−dopp where dopp was the distance of the opponent from the center of the

ring.

• Moving towards the opponent. Reward at each time step proportional to magnitude of

the velocity component towards the opponent.

• Hit the opponent. Reward proportional to the square of the total forces exerted on the

opponent’s torso.

• Control penalty. �e l2 penalty on the actions to prevent ji�ery/unnatural movements.

C.4.3 RoboSumo calibration

To calibrate the RoboSumo environment we used the following procedure. First, we trained

each agent via pure self-play with LSTM policy using PPO for the same number of iterations,

tested them one against the other (without adaptation), and recorded the win rates (Table C.2).

To ensure the balance, we kept increasing the mass of the weaker agents and repeated the

calibration procedure until the win rates equilibrated.

Table C.2: Win rates for the �rst agent in RoboSumo without adaptation before/a�er calibration.

Masses (Ant, Bug, Spider) Ant vs. Bug Ant vs. Spider Bug vs. Spider

Initial (10, 10, 10) 25.2± 3.9% 83.6± 3.1% 90.2± 2.7%
Calibrated (13, 10, 39) 50.6± 5.6% 51.6± 3.4% 51.7± 2.8%
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C.5 Additional details on experiments

C.5.1 Average win rates

Table C.3 gives average win rates for the last 25 rounds of iterated adaptation games played by

di�erent agents with di�erent adaptation methods (win rates for each episode are visualized in

Figure 5.6).

Table C.3: Average win-rates (95% CI) in the last 25 rounds of the 100-round iterated adaptation games

between di�erent agents and di�erent opponents. �e base policy and value function were LSTMs with

64 hidden units.

Agent Opponent

Adaptation Strategy

RL
2

LSTM + PPO-tracking LSTM + meta-updates

Ant

Ant 24.9 (5.4)% 30.0 (6.7)% 44.0 (7.7)%

Bug 21.0 (6.3)% 15.6 (7.1)% 34.6 (8.1)%

Spider 24.8 (10.5)% 27.6 (8.4)% 35.1 (7.7)%

Bug

Ant 33.5 (6.9)% 26.6 (7.4)% 39.5 (7.1)%

Bug 28.6 (7.4)% 21.2 (4.2)% 43.7 (8.0)%

Spider 45.8 (8.1)% 42.6 (12.9)% 52.0 (13.9)%

Spider

Ant 40.3 (9.7)% 48.0 (9.8)% 45.3 (10.9)%

Bug 38.4 (7.2)% 43.9 (7.1)% 48.4 (9.2)%

Spider 33.9 (7.2)% 42.2 (3.9)% 46.7 (3.8)%

C.5.2 TrueSkill rank of the top agents

Since TrueSkill represents the belief about the skill of an agent as a normal distribution (i.e.,

with two parameters, µ and σ), we can use it to infer a priori probability of an agent, a, winning

against its opponent, o, as follows (Herbrich et al., 2007):

P (a wins o) = Φ

(
µa − µo√

2β2 + σ2
a + σ2

o

)
, where Φ(x) :=

1

2

[
1 + erf

(
x√
2

)]
(C.16)

�e ranking of the top-5 agents with MLP and LSTM policies according to their TrueSkill is

given in Tab. 1 and the a priori win rates in �. Note that within the LSTM and MLP categories,

the best meta-learners are 10 to 25% more likely to win the best agents that use other adaptation

strategies.
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Rank Agent TrueSkill rank*

1 Bug + LSTM-meta 31.7

2 Ant + LSTM-meta 30.8

3 Bug + LSTM-track 29.1

4 Ant + RL
2 28.6

5 Ant + LSTM 28.4

6 Bug + MLP-meta 23.4

7 Ant + MLP-meta 21.6

8 Spider + MLP-meta 20.5

9 Spider + MLP 19.0

10 Bug + MLP-track 18.9

* �e rank is a conservative estimate of the skill, r = µ−3σ, to ensure

that the actual skill of the agent is higher with 99% con�dence.

1 2 3 4 5 6 7 8 9 10

Bug+LSTM-meta - 1

Ant+LSTM-meta - 2

Bug+LSTM-track - 3

Ant+LSTM-RL2 - 4

Ant+LSTM - 5

Bug+MLP-meta - 6

Ant+MLP-meta - 7

Spd+MLP-meta - 8

Spd+MLP - 9

Bug+MLP-track - 10

0.50 0.59 0.69 0.70 0.70 0.89 0.93 0.94 0.97 0.97

0.41 0.50 0.60 0.62 0.62 0.85 0.90 0.92 0.96 0.95

0.31 0.40 0.50 0.51 0.51 0.78 0.84 0.88 0.93 0.92

0.30 0.38 0.49 0.50 0.50 0.77 0.83 0.87 0.92 0.91

0.30 0.38 0.49 0.50 0.50 0.77 0.83 0.87 0.92 0.91

0.11 0.15 0.22 0.23 0.23 0.50 0.60 0.65 0.75 0.74

0.07 0.10 0.16 0.17 0.17 0.40 0.50 0.56 0.66 0.65

0.06 0.08 0.12 0.13 0.13 0.35 0.44 0.50 0.61 0.60

0.03 0.04 0.07 0.08 0.08 0.25 0.34 0.39 0.50 0.49

0.03 0.05 0.08 0.09 0.09 0.26 0.35 0.40 0.51 0.50

Table C.4 & Figure C.2: Top-5 agents with MLP and LSTM policies from the population ranked by

TrueSkill. �e heatmap shows a priori win-rates in iterated games based on TrueSkill for the top agents

against each other.
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Appendix D
Zero-shot Consistency: Additional Details

D.1 Consistency of the Full Likelihood

(�roughout this appendix chapter, we slightly alter our notation: instead of writing p (y | x,θ),

we write pθ (y | x), which means the same thing and slightly simpli�es notation.)

Recall from Section 6.4.1 that, a set of conditional models, {pθ (xj | xi)}, the full likelihood

over equivalent translations, (x1, . . . ,xk), can be wri�en as follows:

pθ (x1, . . . ,xk) :=
1

Z

∏
i,j∈E

pθ (xj | xi) (D.1)

where Z :=
∑

x1,...,xk

∏
i,j∈E pθ (xj | xi) is the normalizing constant and E denotes all edges in

the graph (Figure D.1). Given only bilingual parallel corpora, Cij for i, j ∈ Es, we can observe

only certain pairs of variables. �erefore, the log-likelihood of the data can be wri�en as:

L(θ) :=
∑
i,j∈Es

∑
xi,xj∈Cij

log
∑

z

pθ (x1, . . . ,xk) (D.2)

�e outer sum iterates over available corpora. �e middle sum iterates over parallel sentences in

a corpus. �e most inner sum marginalizes out unobservable sequences, denoted z := {xl}l 6=i,j ,
which are sentences equivalent under this model to xi and xj in languages other than Li and

Lj . Note that due to the inner-most summation, computing the log likelihood is intractable. We

claim the following.

Claim D.1

Maximizing the full log-likelihood yields zero-shot consistent models (De�nition 6.1).

Proof. To be�er understand why this is the case, let us consider example in Figure D.1 and
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Figure D.1: Probabilistic graphical model for a multilingual system with four languages (L1, L2, L3, L4).
Variables can only be observed only in pairs (shaded in the graph).

compute the log-likelihood of (x1,x2):

log pθ (x1,x2) = log
∑
x3,x4

pθ (x1,x2,x3,x4)

= const + log pθ (x1 | x2) + log pθ (x2 | x1) +

log
∑
x3,x4

pθ (x3 | x1) pθ (x3 | x2) pθ (x4 | x1) pθ (x4 | x2)×
pθ (x1 | x3) pθ (x2 | x3) pθ (x1 | x4) pθ (x2 | x4)×
pθ (x3 | x4) pθ (x4 | x3)

Note that the terms that encourage agreement on the translation into L3 are colored in green

(similarly, terms that encourage agreement on the translation into L4 are colored in blue). Since

all other terms are probabilities and bounded by 1, we have:

log pθ (x1,x2) + logZ ≤ log pθ (x1 | x2) + log pθ (x2 | x1) +

log
∑
x3,x4

pθ (x3 | x1) pθ (x3 | x2) pθ (x4 | x1) pθ (x4 | x2)

≡Lagree(θ)

In other words, the full log likelihood lower-bounds the agreement objective (up to a constant

logZ). Since optimizing for agreement leads to consistency (�eorem 6.1), and maximizing the

full likelihood would necessarily improve the agreement, the claim follows.

Remark D.1. Note that the other terms in the full likelihood also have a non-trivial purpose: (a)
the terms pθ (x1 | x3), pθ (x1 | x4), pθ (x2 | x3), pθ (x2 | x4), encourage the model to correctly
reconstruct x1 and x2 when back-translating from unobserved languages, L3 and L4, and (b) terms
pθ (x3 | x4), pθ (x4 | x3) enforce consistency between the latent representations. In other words,
full likelihood accounts for a combination of agreement, back-translation, and latent consistency.

D.2 Proof of �eorem 6.1

�e statement of �eorem 6.1 mentions an assumption on the true distribution of the equivalent

translations. �e assumption is as follows.
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Assumption D.1. Let p (xi | xj,xk) be the ground truth conditional distribution that speci�es the
probability of xi to be a translation of xj and xk into language Li, given that (xj,xk) are correct
translations of each other in languages Lj and Lk, respectively. We assume:

0 ≤ δ ≤ Exk|xi,xj [p (xi | xj,xk)] ≤ ξ ≤ 1

�is assumption means that, even though there might be multiple equivalent translations,

there must be not too many of them (implied by the δ lower bound) and none of them must be

much more preferable than the rest (implied by the ξ upper bound). Given this assumption, we

can prove the following simple lemma.

Lemma D.1

Let Li → Lj be one of the supervised directions, Exi,xj [− log pθ (xj | xi)] ≤ ε. �en the

following holds:

Exi|xj ,xk

[
pθ (xj | xi)
p (xj | xi,xk)

]
≥ log

1

ξ
− εδ

Proof. First, using Jensen’s inequality, we have:

logExi|xj ,xk

[
pθ (xj | xi)
p (xj | xi,xk)

]
≥ Exi|xj ,xk [log pθ (xj | xi)− log p (xj | xi,xk)]

�e bound on the supervised direction implies that

Exi|xj ,xk [log pθ (xj | xi)] ≥ −εδ

To bound the second term, we use Assumption D.1:

Exi|xj ,xk [− log p (xj | xi,xk)] ≥ log
1

ξ

Pu�ing these together yields the bound.

Now, using Lemma D.1, we can prove �eorem 6.1.

Proof. By assumption, the agreement-based loss is bounded by ε. �erefore, expected cross-

entropy on all supervised terms, L1 ↔ L2, is bounded by ε. Moreover, the agreement term

(which is part of the objective) is also bounded:

−Exi,xj

[∑
xk

pθ (xk | xj) log pθ (xk | xi)
]
≤ ε
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Expanding this expectation, we have:∑
xi,xj

p (xi,xj)
∑
xk

pθ (xk | xj) log pθ (xk | xi)]

=
∑

xi,xj ,xk

p (xi,xj,xk)
pθ (xk | xj)
p (xk | xi,xj)

log pθ (xk | xi)

=
∑
xi,xk

Exj |xi,xk

[
pθ (xk | xj)
p (xk | xi,xj)

]
p (xi,xk) log pθ (xk | xi)

Combining that with Lemma D.1, we have:

Exi,xk [− log pθ (xk | xi)] ≤
ε

log 1
ξ
− δε ≡ κ(ε)

Since by Assumption D.1, δ and ξ are some constants, κ(ε)→ 0 as ε→ 0.

D.3 Consistency of Distillation and Pivoting

As we mentioned in Chapter 6, distillation (Chen et al., 2017) and pivoting yield zero-shot

consistent models. Let us understand why this is the case.

In our notation, given L1 → L2 and L2 → L3 as supervised directions, distillation optimizes

a KL-divergence between pθ (x3 | x2) and pθ (x3 | x1), where the la�er is a zero-shot model

and the former is supervised. Noting that KL-divergence lower-bounds cross-entropy, it is a

loser bound on the agreeement loss. Hence, by ensuring that KL is low, we also ensure that the

models agree, which implies consistency (a more formal proof would exactly follow the same

steps as the proof of �eorem 6.1).

To prove consistency of pivoting, we need an additional assumption on the quality of the

source-pivot model.

Assumption D.2. Let pθ (xj | xi) be the source-pivot model. We assume the following bound
holds for each pair of equivalent translations, (xj,xk):

Exi|xj ,xk

[
pθ (xj | xi)
p (xj | xi,xk)

]
≤ C

where C > 0 is some constant.

Theorem D.1: Consistency of Pivoting

Given the conditions of �eorem 6.1 and Assumption D.2, pivoting is zero-shot consistent.

Proof. We can bound the expected error on pivoting as follows (using Jensen’s inequality and

the conditions from our assumptions):
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Exi,xk

− log
∑
xj

pθ (xj | xi) pθ (xk | xj)

 ≤ Exi,xj ,xk [−pθ (xj | xi) log pθ (xk | xj)]

≤
∑
xi,xk

Exj |xi,xk

[
pθ (xk | xj)
p (xk | xi,xj)

]
×

p (xi,xk) log pθ (xk | xi)
≤ Cε

D.4 Experimental details

D.4.1 Details on the models and training

Architecture. All our NMT models used the GNMT (Wu et al., 2016) architecture with Lu-

ong a�ention (Luong et al., 2015b), 2 bidirectional encoder, and 4-layer decoder with residual

connections. All hidden layers (including embeddings) had 512 units. Additionally, we used

separate embeddings on the encoder and decoder sides as well as tied weights of the so�max

that produced logits with the decoder-side (i.e., target) embeddings. Standard dropout of 0.2

was used on all hidden layers. Most of the other hyperparameters we set to default in the T2T

(Vaswani et al., 2018) library for the text2text type of problems.

Training and hyperparameters. We scaled agreement terms in the loss by γ = 0.01. �e

training was done using Adafactor (Shazeer and Stern, 2018) optimizer with 10,000 burn-in

steps at 0.01 learning rate and further standard square root decay (with the default se�ings

for the decay from the T2T library). Additionally, implemented agreement loss as a subgraph

as a loss was not computed if γ was set to 0. �is allowed us to start training multilingual

NMT models in the burn-in mode using the composite likelihood objective and then switch on

agreement starting some point during optimization (typically, a�er the �rst 100K iterations;

we also experimented with 0, 50K, 200K, but did not notice any di�erence in terms of �nal

performance). Since the agreement subgraph was not computed during the initial training phase,

it tended to accelerate training of agreement models.

D.4.2 Details on the datasets

Statistics of the IWSLT17 and IWSLT17
?

datasets are summarized in Table D.1. UNCorpus and

and Europarl datasets were exactly as described by Sestorain et al. (2018) and Chen et al. (2017)

and Cheng et al. (2017), respectively.
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Table D.1: Data statistics for IWSLT17 and IWSLT17
?
.

Corpus Directions Train Dev (dev2010) Test (tst2010)

IWSLT17

De→ En 206k 888 1568

De→ It 205k 923 1567

De→ Nl 0 1001 1567

De→ Ro 201k 912 1677

En→ De 206k 888 1568

En→ It 231K 929 1566

En→ Nl 237k 1003 1777

En→ Ro 220k 914 1678

It→ De 205k 923 1567

It→ En 231k 929 1566

It→ Nl 205k 1001 1669

It→ Ro 0 914 1643

Nl→ De 0 1001 1779

Nl→ En 237k 1003 1777

Nl→ It 233k 1001 1669

Nl→ Ro 206k 913 1680

Ro→ De 201k 912 1677

Ro→ En 220k 914 1678

Ro→ It 0 914 1643

Ro→ Nl 206k 913 1680

IWSLT17
?

De→ En 124k 888 1568

De→ It 0 923 1567

De→ Nl 0 1001 1567

De→ Ro 0 912 1677

En→ De 124k 888 1568

En→ It 139k 929 1566

En→ Nl 155k 1003 1777

En→ Ro 128k 914 1678

It→ De 0 923 1567

It→ En 139k 929 1566

It→ Nl 0 1001 1669

It→ Ro 0 914 1643

Nl→ De 0 1001 1779

Nl→ En 155k 1003 1777

Nl→ It 0 1001 1669

Nl→ Ro 0 913 1680

Ro→ De 0 912 1677

Ro→ En 128k 914 1678

Ro→ It 0 914 1643

Ro→ Nl 0 913 1680
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Appendix E
Contextual Explanation Networks:

Additional Details

E.1 Proofs

E.1.1 Proof of Proposition 7.1

Assume that p (Y | X,θ) factorizes as

∏
a∈VY p

(
Ya | YMB(a),X,θa

)
, where a denotes subsets

of the Y variables and MB(a) stands for the corresponding Markov blankets. Using the de�nition

of CEN given in �, we have:

p (Y | X,C) =

∫
p (Y | X,θ) p (θ | C) dθ

=

∫ ∏
a∈VY

p
(
Ya | YMB(a),X,θa

)∏
j

p (θj | C) dθ

=
∏

a∈VY

[∫
p
(
Ya | YMB(a),X,θa

)∏
j∈a

p (θj | C) dθa

]
=
∏

a∈VY

p
(
Ya | YMB(a),X,C

)
(E.1)

E.1.2 Proof of Proposition 7.2

To derive the lower bound on the contribution of explanations in terms of expected accuracy,

we �rst need to bound the probability of the error when only θ are used for prediction:

Pe := p
(
Ŷ(θ) 6= Y

)
= Eθ∼p(θ)

[
p
(
Ŷ 6= Y | θ

)]
,

which we bound using the Fano’s inequality (Ch. 2.11, Cover and �omas, 2012):

H (Pe) + Pe log (|Y| − 1) ≥ H (Y | θ) (E.2)
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Since the error (Ŷ(θ) 6= Y) is a binary random variable, thenH (Pe) ≤ 1. A�er weakening the

inequality and usingH (Y | θ) ≥ δ from the proposition statement, we get:

Eθ∼p(θ)

[
p
(
Ŷ 6= Y | θ

)]
≥ H (Y | θ)− 1

log |Y| ≥ δ − 1

log |Y| (E.3)

�e claimed lower bound Equation 7.16 follows a�er we combine Equation E.3 and the assumed

bound on the accuracy of the model in terms of ε given in Equation 7.15.

E.1.3 Proof of �eorem 7.1

To prove the theorem, consider the case when f is de�ned by a CEN, instead of x we have (c,x),

and the class of approximations, G, coincides with the class of explanations, and hence can be

represented by θ. In this se�ing, we can pose the same problem as:

θ̂ = arg min
θ
L(f,θ, πc,x) + Ω(θ) (E.4)

Suppose that CEN produces θ? explanation for the context c using a deterministic encoder, φ.

�e question is whether and under which conditions θ̂ can recover θ?. �eorem 7.1 answers

the question in a�rmative and provides a concentration result for the case when hypotheses

are linear. Here, we prove �eorem 7.1 for a li�le more general class of log-linear explanations:

logit {p (Y = 1 | x, θ)} = a(x)>θ, where a is a C-Lipschitz vector-valued function whose

values have a zero-mean distribution when (x, c) are sampled from πx,c
1
. For simplicity of the

analysis, we consider binary classi�cation and omit the regularization term, Ω(g). We de�ne

the loss function, L(f,θ, πx,c), as:

L =
1

K

K∑
k=1

(logit {p (Y = 1 | xk − x, ck)} − logit {p (Y = 1 | xk − x,θ)})2
(E.5)

where (xk, ck) ∼ πx,c and πx,c := πxπc is a distribution concentrated around (x, c). Without

loss of generality, we also drop the bias terms in the linear models and assume that a(xk − x)
are centered.

Proof. �e optimization problem Equation E.4 reduces to the least squares linear regression:

θ̂ = arg min
θ

1

K

K∑
k=1

(
logit {p (Y = 1 | xk − x, ck)} − a(xk − x)>θ

)2
(E.6)

We consider deterministic encoding, p (θ | c) := δ(θ,φ(c)), and hence we have:

logit {p (Y = 1 | xk − x, ck)} = logit {p (Y = 1 | xk − x,θ = φ(ck))}
= a(xk − x)>φ(ck)

(E.7)

1
In case of logistic regression, a(x) = [1, x1, . . . , xd]

>
.
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To simplify the notation, we denote ak := a(xk−x), φk := φ(ck), and φ := φ(c). �e solution

of Equation E.6 now can be wri�en in a closed form:

θ̂ =

[
1

K

K∑
k=1

aka
>
k

]+ [
1

K

K∑
k=1

aka
>
k φk

]
(E.8)

Note that θ̂ is a random variable since (xk, ck) are randomly generated from πx,c. To further

simplify the notation, denote M := 1
K

∑K
k=1 aka

>
k . To get a concentration bound on ‖θ̂ − θ?‖,

we will use the continuity of φ(·) and a(·), concentration properties of πx,c around (x, c), and

some elementary results from random matrix theory. To be more concrete, since we assumed

that πx,c factorizes, we further let πx and πc concentrate such that pπx (‖x′ − x‖ > t) < εx(t)
and pπc (‖c′ − c‖ > t) < εc(t), respectively, where εx(t) and εc(t) both go to 0 as t → ∞,

potentially at di�erent rates.

First, we have the following bound from the convexity of the norm:

p
(
‖θ̂ − θ?‖ > t

)
= p

(∥∥∥∥∥ 1

K

K∑
k=1

[
M+aka

>
k (φk − φ)

]∥∥∥∥∥ > t

)
(E.9)

≤ p

(
1

K

K∑
k=1

∥∥M+aka
>
k (φk − φ)

∥∥ > t

)
(E.10)

By making use of the inequality ‖Ax‖ ≤ ‖A‖‖x‖, where ‖A‖ denotes the spectral norm of

the matrix A, the L-Lipschitz property of φ(c), the C-Lipschitz property of a(x), and the

concentration of xk around x, we have

p
(
‖θ̂ − θ?‖ > t

)
≤ p

(
L

1

K

K∑
k=1

∥∥M+aka
>
k

∥∥ ‖ck − c‖ > t

)
(E.11)

≤ p

(
CL

∥∥M+
∥∥ 1

K

K∑
k=1

∥∥aka>k ∥∥ ‖ck − c‖ > t

)
(E.12)

≤ p

(
CL

λmin(M)

1

K

K∑
k=1

‖xk − x‖‖ck − c‖ > t

)
(E.13)

≤ p

(
CLτ 2

λmin(M)
> t

)
+ p

(
‖xk − x‖‖ck − c‖ > τ 2

)
(E.14)

≤ p

(
λmin

(
M/(Cτ)2

)
<

L

C2t

)
+ εx(τ) + εc(τ) (E.15)

Note that we used the fact that the spectral norm of a rank-1 matrix, a(xk)a(xk)
>

, is simply the

norm of a(xk), and the spectral norm of the pseudo-inverse of a matrix is equal to the inverse

of the least non-zero singular value of the original matrix: ‖M+‖ ≤ λmax(M+) = λ−1
min(M).

Finally, we need a concentration bound on λmin (M/(Cτ)2) to complete the proof. Note that

M
C2τ2

= 1
K

∑K
k=1

(
ak
Cτ

) (
ak
Cτ

)>
, where the norm of

(
ak
Cτ

)
is bounded by 1. If we denote µmin(Cτ)
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the minimal eigenvalue of Cov
[

ak
Cτ

]
, we can write the matrix Cherno� inequality (Tropp, 2012)

as follows:

p
(
λmin

(
M/(Cτ)2

)
< α

)
≤ d exp {−KD(α‖µmin(Cτ))} , α ∈ [0, µmin(Cτ)]

where d is the dimension of ak, α := L
C2t

, andD(a‖b) denotes the binary information divergence:

D(a‖b) = a log
(a
b

)
+ (1− a) log

(
1− a
1− b

)
.

�e �nal concentration bound has the following form:

p
(
‖θ̂ − θ?‖ > t

)
≤ d exp

{
−KD

(
L

C2t
‖µmin(Cτ)

)}
+ εx(τ) + εc(τ) (E.16)

We see that as τ → ∞ and t → ∞ all terms on the right hand side vanish, and hence θ̂
concentrates around θ?. Note that as long as µmin(Cτ) is far from 0, the �rst term can be made

negligibly small by sampling more points around (x, c). Finally, we set τ ≡ t and denote the

right hand side by δK,L,C(t) that goes to 0 as t → ∞ to recover the statement of the original

theorem.

Remark E.1. We have shown that θ̂ concentrates around θ? under mild conditions. With more
assumptions on the sampling distribution, πx,c, (e.g., sub-gaussian) one could derive precise con-
vergence rates. Note that we are in total control of any assumptions we put on πx,c since precisely
that distribution is used for sampling. �is is a major di�erence between the local approximation
setup here and the setup of linear regression with random design; in the la�er case, we have no
control over the distribution of the design matrix, and any assumptions we make could potentially
be unrealistic.
Remark E.2. Note that concentration analysis of a more general case when the loss L is a general
convex function and Ω(g) is a decomposable regularizer could be done by using results from the
M-estimation theory (Negahban et al., 2009), but would be much more involved and unnecessary
for our purposes.

E.2 Experimental Details

�is section provides details on the experimental setups including architectures, training proce-

dures, etc. Additionally, we provide and discuss qualitative results for CENs on the MNIST and

IMDB datasets.

E.2.1 Additional Details on the Datasets and Experiment Setups

MNIST. We used the classical split of the dataset into 50k training, 10k validation, and 10k

testing points. All models were trained for 100 epochs using the AMSGrad optimizer (Reddi et al.,

2019) with the learning rate of 10−3
. No data augmentation was used in any of our experiments.

HOG representations were computed using 3× 3 blocks.

148



CIFAR10. For this set of experiments, we followed the setup given by Zagoruyko (2015),

reimplemented in Keras (Chollet et al., 2015) with TensorFlow (Abadi et al., 2016) backend. �e

input images were global contrast normalized (a.k.a. GCN whitened) while the rescaled image

representations were simply standardized. Again, HOG representations were computed using

3× 3 blocks. No data augmentation was used in our experiments.

IMDB. We considered the labeled part of the data only (50,000 reviews total). �e data were split

into 20,000 train, 5,000 validation, and 25,000 test points. �e vocabulary was limited to 20,000

most frequent words (and 5,000 most frequent words when constructing BoW representations).

All models were trained with the AMSGrad optimizer () with 10−2
learning rate. �e models

were initialized randomly; no pre-training or any other unsupervised/semi-supervised technique

was used.

Satellite. As described in the main text, we used a pre-trained VGG-16 network
2

to extract

features from the satellite imagery. Further, we added one fully connected layer network with

128 hidden units used as the context encoder. For the VCEN model, we used dictionary-based

encoding with Dirichlet prior and logistic normal distribution as the output of the inference

network. For the decoder, we used an MLP of the same architecture as the encoder network. All

models were trained with Adam optimizer with 0.05 learning rate. �e results were obtained by

5-fold cross-validation.

Medical data. We have used minimal pre-processing of both SUPPORT2 and PhysioNet datasets

limited to standardization and missing-value �lling. We found that denoting missing values

with negative entries (−1) o�en led a slightly improved performance compared to any other

NA-�lling techniques. PhysioNet time series data was irregularly sampled across the time, so

we had to resample temporal sequences at regular intervals of 30 minutes (consequently, this

has created quite a few missing values for some of the measurements). All models were trained

using Adam optimizer with 10−2
learning rate.

E.2.2 More on�alitative Analysis

MNIST

Figures E.1a to E.1c visualize explanations for predictions made by CENpxl on MNIST. �e �gures

correspond to 3 cases where CEN (a) made a correct prediction, (b) made a mistake, and (c) was

applied to an adversarial example (and made a mistake). Each chart consists of the following

columns: true labels, input images, explanations for the top 3 classes (as given by the activation

of the �nal so�max layer), and a�ention vectors used to select explanations from the global

dictionary. A small subset of explanations from the dictionary is visualized in Figure E.1d (the

full dictionary is given in Figure E.2), where each image is a weight vector used to construct

the pre-activation for a particular class. Note that di�erent elements of the dictionary capture

di�erent pa�erns in the data (in Figure E.1d, di�erent styles of writing the 0 digit) which CEN

actually uses for prediction.

2
�e model was taken form h�ps://github.com/nealjean/predicting-poverty.
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Figure E.1: Explanations generated by CEN for the 3 top classes and the corresponding a�ention vectors

for (a) correctly classi�ed, (b) misclassi�ed, and (c) adversarially constructed images. Adversarial examples

were generated using the fast gradient sign method (FGSM) (Papernot et al., 2016). (d) Elements from the

learned 32-element dictionary that correspond to di�erent writing styles of 0 digits. (e) Histogram of

the a�ention entropy for correctly and incorrectly classi�ed test instances for CEN-pxl on MNIST and

CENtpc on IMDB.

Also note that con�dent correct predictions (Figure E.1a) are made by selecting a single

explanation from the dictionary using a sharp a�ention vector. However, when the model makes

a mistake, its a�ention is o�en dispersed (Figures E.1b and E.1c), i.e., there is uncertainty in

which pa�ern it tries to use for prediction. Figure E.1e further quanti�es this phenomenon

by plo�ing histogram of the a�ention entropy for all test examples which were correctly and

incorrectly classi�ed. While CENs are certainly not adversarial-proof, high entropy of the

a�ention vectors is indicative of ambiguous or out-of-distribution examples which is helpful for

model diagnostics.

IMDB

Similar to MNIST, we train CENtpc with linear explanations in terms of topics on the IMDB

dataset. �en, we generate explanations for each test example and visualize histograms of the

weights assigned by the explanations to 6 selected topics in �. �e 3 topics in the top row are

acting- and plot-related (and intuitively have positive, negative, or neutral connotation), while

the 3 topics in the bo�om are related to particular genre of the movies.

Note that acting-related topics turn out to be bi-modal, i.e., contributing either positively,

negatively, or neutrally to the sentiment prediction in di�erent contexts. As expected intuitively,

CEN assigns highly negative weight to the topic related to “bad acting/plot” and highly pos-
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itive weight to “great story/performance” in most of the contexts (and treats those neutrally

conditional on some of the reviews). Interestingly, genre-related topics almost always have a

negligible contribution to the sentiment (i.e., get almost 0 weights assigned by explanations)

which indicates that the learned model does not have any particular bias towards or against

a given genre. Importantly, inspecting summary statistics of the explanations generated by

CEN allows us to explore the biases that the model picks up from the data and actively uses for

prediction
3
.

Figure E.3 visualizes the full dictionary of size 16 learned by CENtpc. Each column corresponds

to a dictionary atom that represents a typical explanation pa�ern that CEN a�ends to before

making a prediction. By inspecting the dictionary, we can �nd interesting pa�erns. For instance,

atoms 5 and 11 assign inverse weights to topics [kid, child, disney, family]
and [sexual, violence, nudity, sex]. Depending on the context of the review,

CEN may use one of these pa�erns to predict the sentiment. Note that these two topics are

negatively correlated across all dictionary elements, which again is quite intuitive.

Satellite

We visualize the two explanations, M1 and M2, learned by CENatt on the Satellite dataset in full

in Figures E.4a and provide additional correlation plots between the selected explanation and

values of each survey variable in Figure E.4b.

E.2.3 Model Architectures

Architectures of the model used in our experiments are summarized in Tables E.1 to E.3.

3
If we wish to enforce or eliminate certain pa�erns from explanations (e.g., to ensure fairness), we may impose

additional constraints on the dictionary. However, this is beyond the scope of this work.
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0 1 2 3 4 5 6 7 8 9

Figure E.2: Visualization of the model dictionary learned by CEN on MNIST. Each row corresponds to a

dictionary element, and each column corresponds to the weights of the model voting for each class of

digits. Images visualize the weights of the models. Red corresponds to high positive values, dark gray to

high negative values, and white to values that are close to 0.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

[japanese, military, soldiers, history, world, american, war]   50
[director, page, shot, new, festival, documentary, film]   49

[action, really, story, like, character, good, movie]   48
[van, nancy, check, julia, drew, vampires, vampire]   47

[elvira, money, j, cast, danny, alex, tony]   46
[flynn, detective, jim, murder, anne, marie, powell]   45

[school, girl, teenage, family, dad, house, girls]   44
[best, great, role, hollywood, arthur, kelly, musical]   43

[laughs, hilarious, laugh, jokes, humor, funny, comedy]   42
[time, shows, season, episodes, tv, episode, series]   41
[won, award, actor, role, oscar, performance, best]   40

[school, religious, jesus, movie, church, christian, god]   39
[man, young, woman, father, family, life, love]   38

[question, think, don't, does, know, did, ?]   37
[wife, gets, murder, horror, man, house, killer]   36

[beautiful, earth, time, film, art, french, tarzan]   35
[watch, movies, really, good, like, just, movie]   34

[football, city, segment, world, paris, men, women]   33
[baseball, team, williams, santa, ben, match, christmas]   32

[charlie, batman, animated, cartoon, original, animation, like]   31
[scene, women, sexual, scenes, violence, nudity, sex]   30

[man, released, video, release, version, film, dvd]   29
[mr, hudson, emma, italian, soap, russian, opera]   28

[human, like, world, way, film, life, people]   27
[seagal, steven, bollywood, jeff, sandler, adam, indian]   26

[think, just, really, good, like, films, film]   25
[music, astaire, rogers, ted, fred, dancing, dance]   24

[maria, new, london, mr, young, movie, ford]   23
[sky, ship, trek, richard, captain, star, scott]   22
[john, tv, sam, candy, murphy, eddie, night]   21

[clark, street, africa, nightmare, south, freddy, superman]   20
[great, soundtrack, band, songs, song, rock, music]   19

[man, racist, like, film, american, white, black]   18
[films, beautiful, love, characters, great, story, film]   17

[really, don't, ?, just, like, bad, movie]   16
[rose, hardy, sutherland, titanic, steve, jack, george]   15

[robert, bank, roy, pacino, rob, mary, al]   14
[kid, child, little, disney, family, children, kids]   13
[camp, arts, martial, fight, action, lee, game]   12

[script, characters, just, acting, bad, plot, film]   11
[kate, caine, performance, alan, cast, role, peter]   10

[film, welles, noir, city, new, joe, york]    9
[cole, british, virus, time, bush, irish, james]    8

[oh, loved, li, totally, oliver, wow, !]    7
[budget, scary, zombie, effects, film, gore, horror]    6

[elvis, brando, stephen, jackson, chris, king, michael]    5
[luke, adaptation, version, jane, read, novel, book]    4

[don, man, t, stewart, u, western, s]    3
[jackie, chinese, japanese, dog, just, action, scene]    2

[students, version, branagh, high, shakespeare, school, play]    1
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Figure E.3: �e full dictionary learned by CENtpc model: rows correspond to topics and columns

correspond to dictionary atoms. Very small values were thresholded for visualization clarity. Di�er-

ent atoms capture di�erent prediction pa�erns; for example, atom 5 assigns a highly positive weight

to the [kid, child, disney, family] topic and down-weighs [sexual, violence,
nudity, sex], while atom 11 acts in an opposite manner. Given the context of the review, CEN

combines just a few atoms to make a prediction.
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(a) Full visualization of models M1 and M2 learned by CEN on Satellite data.
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Figure E.4: Additional visualizations for CENs trained on the Satellite data.
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Table E.1: Top-performing architectures used in our experiments on MNIST and IMDB datasets.

(a) MNIST

Convolutional Encoder

C
o

n
v
o

l
u

t
i
o

n
a
l

B
l
o

c
k

layer Conv2D

# �lters 32

kernel size 3× 3

strides 1× 1

padding valid

activation ReLU

layer Conv2D

# �lters 32

kernel size 3× 3

strides 1× 1

padding valid

activation ReLU

layer MaxPoo2D

pooling size 2× 2

dropout 0.25

layer Dense

units 128

dropout 0.50

# blocks 1

# params 1.2M

Contextual Explanations

model Logistic regr.

features HOG (3, 3)

# features 729

standardized Yes

dictionary 256

l1 penalty 5 · 10−5

l2 penalty 1 · 10−6

model Logistic reg.

features Pixels (20, 20)

# features 400

standardized Yes

dictionary 64

l1 penalty 5 · 10−5

l2 penalty 1 · 10−6

Contextual VAE

prior Dir(0.2)

sampler LogisticNormal

(b) IMDB

Squential Encoder

layer Embedding

vocabulary 20k

dimension 1024

layer LSTM

bidirectional Yes

units 256

max length 200

dropout 0.25

rec. dropout 0.25

layer MaxPool1D

# params 23.1M

Contextual Explanations

model Logistic reg.

features BoW

# features 20k

Dictionary 32

l1 penalty 5 · 10−5

l2 penalty 1 · 10−6

model Logistic reg.

features Topics

# features 50

Dictionary 16

l1 penalty 1 · 10−6

l2 penalty 1 · 10−8

Contextual VAE

Prior Dir(0.1)

Sampler LogisticNormal

Table E.2: Top-performing architectures used in our experiments on CIFAR10 and Satellite datasets.

VGG-16 architecture for CIFAR10 was taken from h�ps://github.com/szagoruyko/cifar.torch but imple-

mented in Keras with TensorFlow backend. Weights of the pre-trained VGG-F model for the Satellite

experiments were taken from h�ps://github.com/nealjean/predicting-poverty.

(a) CIFAR10

Convolutional Encoder

V
G

G
-
1
6 model VGG-16

pretrained No

�xed weights No

M
L

P

layer Dense

pretrained No

�xed weights No

units 16

dropout 0.25

activation ReLU

# params 20.0M

Contextual Explanations

model Logistic reg.

features HOG (3, 3)

# features 1024

dictionary 16

l1 penalty 1 · 10−5

l2 penalty 1 · 10−6

Contextual VAE

prior Dir(0.2)

sampler LogisticNormal

(b) Satellite

Convolutional Encoder

V
G

G
-
F model VGG-F

pretrained Yes

�xed weights Yes

M
L

P

layer Dense

pretrained No

�xed weights No

units 128

dropout 0.25

activation ReLU

# trainable params 0.5M

Contextual Explanations

model Logistic reg.

features Survey

# features 64

dictionary 16

l1 penalty 1 · 10−3

l2 penalty 1 · 10−4

# params

Contextual VAE

prior Dir(0.2)

sampler LogisticNormal
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Table E.3: Top-performing architectures used in our experiments on SUPPORT2 and PhysioNet.

(a) SUPPORT2

MLP Encoder

M
L

P

layer Dense

pretrained No

�xed weights No

units 64

dropout 0.50

activation ReLU

Contextual Explanations

model Linear CRF

features Measurements

# features 50

dictionary 16

l1 penalty 1 · 10−3

l2 penalty 1 · 10−4

(b) PhysioNet Challenge 2012

Sequential Encoder

L
S
T

M

layer LSTM

bidirectional No

units 32

max length 150

dropout 0.25

rec. dropout 0.25

Contextual Explanations

model Linear CRF

features Statistics

# features 111

dictionary 16

l1 penalty 1 · 10−3

l2 penalty 1 · 10−4
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[87] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. “Learning phrase representations using

RNN encoder-decoder for statistical machine translation”. In: arXiv preprint arXiv:1406.1078
(2014) (cit. on p. 65).

162

http://dl.acm.org/citation.cfm?id=3042573.3042723
http://dl.acm.org/citation.cfm?id=3042573.3042723
http://dl.acm.org/citation.cfm?id=2390665.2390688
http://dl.acm.org/citation.cfm?id=2390665.2390688


[88] �oc Le and Tomas Mikolov. “Distributed representations of sentences and documents”.

In: International Conference on Machine Learning. 2014, pp. 1188–1196 (cit. on p. 97).

[89] Rajesh Ranganath, Sean Gerrish, and David Blei. “Black box variational inference”. In:

Arti�cial intelligence and statistics. PMLR. 2014, pp. 814–822 (cit. on p. 30).

[90] Ilya Sutskever, Oriol Vinyals, and �oc V Le. “Sequence to sequence learning with neural

networks”. In: Advances in neural information processing systems. 2014, pp. 3104–3112

(cit. on pp. 65, 68).

[91] Jason Yosinski, Je� Clune, Yoshua Bengio, and Hod Lipson. “How transferable are features

in deep neural networks?” In: Advances in neural information processing systems. 2014,

pp. 3320–3328 (cit. on p. 2).

[92] Rich Caruana et al. “Intelligible models for healthcare: Predicting pneumonia risk and

hospital 30-day readmission”. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM. 2015, pp. 1721–1730 (cit. on

p. 81).

[93] François Chollet et al. Keras. h�ps://keras.io. 2015 (cit. on p. 149).

[94] Antoine Cully, Je� Clune, Danesh Tarapore, and Jean-Baptiste Mouret. “Robots that can

adapt like animals”. In: Nature 521.7553 (2015), pp. 503–507 (cit. on p. 56).

[95] Andrew M Dai and �oc V Le. “Semi-supervised sequence learning”. In: Advances in
Neural Information Processing Systems. 2015, pp. 3079–3087 (cit. on p. 97).

[96] Eva Gibaja and Sebastián Ventura. “A tutorial on multilabel learning”. In: ACMComputing
Surveys (CSUR) 47.3 (2015), pp. 1–38 (cit. on p. 46).

[97] Moritz Hardt, Benjamin Recht, and Yoram Singer. “Train faster, generalize be�er: Stability

of stochastic gradient descent”. In: arXiv preprint arXiv:1509.01240 (2015) (cit. on p. 113).

[98] Rie Johnson and Tong Zhang. “E�ective Use of Word Order for Text Categorization with

Convolutional Neural Networks”. In: Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2015, pp. 103–112 (cit. on p. 97).

[99] Rie Johnson and Tong Zhang. “Semi-supervised convolutional neural networks for text

categorization via region embedding”. In: Advances in neural information processing
systems. 2015, pp. 919–927 (cit. on p. 97).

[100] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. “Deep learning”. In: nature 521.7553

(2015), pp. 436–444 (cit. on p. 1).

[101] Minh-�ang Luong, �oc V Le, Ilya Sutskever, Oriol Vinyals, and Lukasz Kaiser. “Multi-

task sequence to sequence learning”. In: arXiv preprint arXiv:1511.06114 (2015) (cit. on

p. 65).

[102] Minh-�ang Luong, Hieu Pham, and Christopher D Manning. “E�ective approaches to

a�ention-based neural machine translation”. In: arXiv preprint arXiv:1508.04025 (2015)

(cit. on pp. 65, 143).

[103] Yi-An Ma, Tianqi Chen, and Emily Fox. “A complete recipe for stochastic gradient

MCMC”. In: Advances in Neural Information Processing Systems. 2015, pp. 2917–2925

(cit. on p. 38).

163

https://keras.io


[104] Tom M Mitchell, William W Cohen, Estevam R Hruschka Jr, Partha Pratim Talukdar,

Justin Be�eridge, Andrew Carlson, Bhavana Dalvi Mishra, Ma�hew Gardner, Bryan

Kisiel, Jayant Krishnamurthy, et al. “Never Ending Learning.” In: AAAI. 2015, pp. 2302–

2310 (cit. on p. 50).

[105] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.

“Human-level control through deep reinforcement learning”. In: nature 518.7540 (2015),

pp. 529–533 (cit. on p. 49).

[106] Anh Nguyen, Jason Yosinski, and Je� Clune. “Deep neural networks are easily fooled:

High con�dence predictions for unrecognizable images”. In: Proceedings of the IEEE
Conference on Computer Vision and Pa�ern Recognition. 2015, pp. 427–436 (cit. on p. 81).

[107] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. “Trust

region policy optimization”. In: Proceedings of the 32nd International Conference on
Machine Learning (ICML-15). 2015, pp. 1889–1897 (cit. on p. 53).

[108] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. “High-

dimensional continuous control using generalized advantage estimation”. In: arXiv
preprint arXiv:1506.02438 (2015) (cit. on p. 135).

[109] Rico Sennrich, Barry Haddow, and Alexandra Birch. “Neural machine translation of rare

words with subword units”. In: arXiv preprint arXiv:1508.07909 (2015) (cit. on p. 75).

[110] Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. “Privacy for free: Posterior sampling

and stochastic gradient monte carlo”. In: International Conference on Machine Learning.

2015, pp. 2493–2502 (cit. on p. 48).

[111] Sergey Zagoruyko. 92.45% on CIFAR-10 in Torch. h�p://torch.ch/blog/2015/07/30/cifar.

html. Blog. 2015 (cit. on p. 149).

[112] Martn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Je�rey Dean,

Ma�hieu Devin, Sanjay Ghemawat, Geo�rey Irving, Michael Isard, et al. “Tensor�ow: a

system for large-scale machine learning.” In: OSDI. Vol. 16. 2016, pp. 265–283 (cit. on

pp. 76, 149).

[113] Ondrej Bojar, Rajen Cha�erjee, Christian Federmann, Yve�e Graham, Barry Haddow,

Ma�hias Huck, Antonio Jimeno Yepes, Philipp Koehn, Varvara Logacheva, Christof Monz,

et al. “Findings of the 2016 Conference on Machine Translation.” In: ACL 2016 FIRST CON-
FERENCE ON MACHINE TRANSLATION (WMT16). �e Association for Computational

Linguistics. 2016, pp. 131–198 (cit. on p. 65).

[114] Josep Crego, Jungi Kim, Guillaume Klein, Anabel Rebollo, Kathy Yang, Jean Senellart,

Egor Akhanov, Patrice Brunelle, Aurelien Coquard, Yongchao Deng, et al. “SYSTRAN’s

Pure Neural Machine Translation Systems”. In: arXiv preprint arXiv:1610.05540 (2016)

(cit. on p. 65).

[115] Yan Duan, John Schulman, Xi Chen, Peter L Bartle�, Ilya Sutskever, and Pieter Abbeel.

“RL
2
: Fast Reinforcement Learning via Slow Reinforcement Learning”. In: arXiv preprint

arXiv:1611.02779 (2016) (cit. on p. 58).

[116] Orhan Firat, Kyunghyun Cho, and Yoshua Bengio. “Multi-way, multilingual neural ma-

chine translation with a shared a�ention mechanism”. In: arXiv preprint arXiv:1601.01073
(2016) (cit. on p. 65).

164

http://torch.ch/blog/2015/07/30/cifar.html
http://torch.ch/blog/2015/07/30/cifar.html


[117] Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan, Fatos T Yarman Vural, and Kyunghyun

Cho. “Zero-resource translation with multi-lingual neural machine translation”. In: arXiv
preprint arXiv:1606.04164 (2016) (cit. on p. 66).

[118] Jonas Gehring, Michael Auli, David Grangier, and Yann N Dauphin. “A convolutional

encoder model for neural machine translation”. In: arXiv preprint arXiv:1611.02344 (2016)

(cit. on p. 68).

[119] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,

David Silver, and Koray Kavukcuoglu. “Reinforcement learning with unsupervised auxil-

iary tasks”. In: arXiv preprint arXiv:1611.05397 (2016) (cit. on p. 2).

[120] Neal Jean, Marshall Burke, Michael Xie, W Ma�hew Davis, David B Lobell, and Stefano

Ermon. “Combining satellite imagery and machine learning to predict poverty”. In:

Science 353.6301 (2016), pp. 790–794 (cit. on pp. 82, 94).

[121] Melvin Johnson, Mike Schuster, �oc V Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen,

Nikhil �orat, Fernanda Viégas, Martin Wa�enberg, Greg Corrado, et al. “Google’s

multilingual neural machine translation system: enabling zero-shot translation”. In:

arXiv preprint arXiv:1611.04558 (2016) (cit. on pp. 66, 68, 69, 76, 78, 80).

[122] Rie Johnson and Tong Zhang. “Supervised and Semi-Supervised Text Categorization

using LSTM for Region Embeddings”. In: Proceedings of �e 33rd International Conference
on Machine Learning. 2016, pp. 526–534 (cit. on pp. 95, 97).

[123] Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu Hoang. “Is neural machine transla-

tion ready for deployment? A case study on 30 translation directions”. In: arXiv preprint
arXiv:1610.01108 (2016) (cit. on p. 65).

[124] Kirthevasan Kandasamy, Maruan Al-Shedivat, and Eric P Xing. “Learning HMMs with

nonparametric emissions via spectral decompositions of continuous matrices”. In: Ad-
vances in Neural Information Processing Systems (NeurIPS). 2016 (cit. on p. 9).

[125] Yoon Kim and Alexander M Rush. “Sequence-level knowledge distillation”. In: arXiv
preprint arXiv:1606.07947 (2016) (cit. on p. 72).

[126] Tao Lei, Regina Barzilay, and Tommi Jaakkola. “Rationalizing neural predictions”. In:

arXiv preprint arXiv:1606.04155 (2016) (cit. on p. 106).

[127] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. “End-to-end training of

deep visuomotor policies”. In: Journal of Machine Learning Research 17.39 (2016), pp. 1–40

(cit. on p. 49).

[128] Jiwei Li, Will Monroe, Alan Ri�er, Michel Galley, Jianfeng Gao, and Dan Jurafsky. “Deep

reinforcement learning for dialogue generation”. In: arXiv preprint arXiv:1606.01541
(2016) (cit. on p. 49).

[129] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. “Adversarial training methods for

semi-supervised text classi�cation”. In: arXiv preprint arXiv:1605.07725 (2016) (cit. on

p. 97).

[130] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and

Ananthram Swami. “Practical Black-Box A�acks against Deep Learning Systems using

Adversarial Examples”. In: arXiv preprint arXiv:1602.02697 (2016) (cit. on p. 150).

[131] Sachin Ravi and Hugo Larochelle. “Optimization as a model for few-shot learning”. In:

(2016) (cit. on p. 50).

165



[132] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why Should I Trust You?:

Explaining the Predictions of Any Classi�er”. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM. 2016, pp. 1135–

1144 (cit. on pp. 81, 83, 86, 94).

[133] Adam Santoro, Sergey Bartunov, Ma�hew Botvinick, Daan Wierstra, and Timothy

Lillicrap. “Meta-learning with memory-augmented neural networks”. In: International
conference on machine learning. 2016, pp. 1842–1850 (cit. on p. 50).

[134] Steven L Sco�, Alexander W Blocker, Fernando V Bonassi, Hugh A Chipman, Edward I

George, and Robert E McCulloch. “Bayes and big data: �e consensus Monte Carlo

algorithm”. In: International Journal of Management Science and Engineering Management
11.2 (2016), pp. 78–88 (cit. on p. 48).

[135] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schri�wieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. “Mastering the game of Go with deep neural networks and tree search”.

In: Nature 529.7587 (2016), pp. 484–489 (cit. on p. 49).

[136] StackOver�ow. Stack Over�ow Data. 2016. url: h�ps://www.kaggle.com/stackover�ow/

stackover�ow (cit. on p. 43).

[137] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wier-

stra. “Matching networks for one shot learning”. In: Proceedings of the 30th International
Conference on Neural Information Processing Systems. 2016, pp. 3637–3645 (cit. on p. 30).

[138] Yonghui Wu, Mike Schuster, Zhifeng Chen, �oc V Le, Mohammad Norouzi, Wolfgang

Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. “Google’s neural

machine translation system: Bridging the gap between human and machine translation”.

In: arXiv preprint arXiv:1609.08144 (2016) (cit. on pp. 65, 76, 143).

[139] Michal Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen. “�e United Nations

Parallel Corpus v1. 0.” In: LREC. 2016 (cit. on pp. 66, 75).

[140] Yun Chen, Yang Liu, Yong Cheng, and Victor OK Li. “A teacher-student framework for

zero-resource neural machine translation”. In: arXiv preprint arXiv:1705.00753 (2017)

(cit. on pp. 72, 75, 78, 142, 143).

[141] Yong Cheng, Qian Yang, Yang Liu, Maosong Sun, and Wei Xu. “Joint training for pivot-

based neural machine translation”. In: Proceedings of IJCAI. 2017 (cit. on pp. 66, 75, 78,

80, 143).

[142] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. “EMNIST:

Extending MNIST to handwri�en le�ers”. In: 2017 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2017, pp. 2921–2926 (cit. on p. 43).

[143] Raj Dabre, Fabien Cromieres, and Sadao Kurohashi. “Kyoto University MT System

Description for IWSLT 2017”. In: Proc. of IWSLT, Tokyo, Japan (2017) (cit. on pp. 75, 79).

[144] Adji B. Dieng, Chong Wang, Jianfeng Gao, and John William Paisley. “TopicRNN: A

Recurrent Neural Network with Long-Range Semantic Dependency”. In: International
Conference on Learning Representations. 2017 (cit. on p. 97).

[145] Yan Duan, Marcin Andrychowicz, Bradly C Stadie, Jonathan Ho, Jonas Schneider, Ilya

Sutskever, Pieter Abbeel, and Wojciech Zaremba. “One-shot imitation learning”. In: arXiv
preprint arXiv:1703.07326 (2017) (cit. on p. 2).

166

https://www.kaggle.com/stackoverflow/stackoverflow
https://www.kaggle.com/stackoverflow/stackoverflow


[146] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-agnostic meta-learning for fast

adaptation of deep networks”. In: International Conference on Machine Learning. PMLR.

2017, pp. 1126–1135 (cit. on pp. 6, 15, 19, 24, 28, 50, 51, 130, 131).

[147] Zhenxin Fu, Xiaoye Tan, Nanyun Peng, Dongyan Zhao, and Rui Yan. “Style transfer in

text: Exploration and evaluation”. In: arXiv preprint arXiv:1711.06861 (2017) (cit. on p. 80).

[148] Sco� Gray, Alec Radford, and Diederik P Kingma. “Gpu kernels for block-sparse weights”.

In: arXiv preprint arXiv:1711.09224 3 (2017) (cit. on pp. 96, 97).

[149] �anh-Le Ha, Jan Niehues, and Alexander Waibel. “E�ective Strategies in Zero-Shot

Neural Machine Translation”. In: arXiv preprint arXiv:1711.07893 (2017) (cit. on p. 66).

[150] Leonard Hasenclever, Stefan Webb, �ibaut Lienart, Sebastian Vollmer, Balaji Lakshmi-

narayanan, Charles Blundell, and Yee Whye Teh. “Distributed Bayesian learning with

stochastic natural gradient expectation propagation and the posterior server”. In: �e
Journal of Machine Learning Research 18.1 (2017), pp. 3744–3780 (cit. on pp. 30, 36, 48).

[151] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,

Andrei A Rusu, Kieran Milan, John �an, Tiago Ramalho, Agnieszka Grabska-Barwinska,

et al. “Overcoming catastrophic forge�ing in neural networks”. In: Proceedings of the
National Academy of Sciences (2017), p. 201611835 (cit. on p. 50).

[152] Philip Koehn. Europarl: A Parallel Corpus for Statistical Machine Translation. 2017 (cit. on

p. 66).

[153] Philipp Koehn and Rebecca Knowles. “Six challenges for neural machine translation”. In:

arXiv preprint arXiv:1706.03872 (2017) (cit. on p. 65).

[154] Liping Liu, Francisco Ruiz, and David Blei. “Context Selection for Embedding Models”. In:

Advances in Neural Information Processing Systems. 2017, pp. 4817–4826 (cit. on p. 106).

[155] David Lopez-Paz and Marc’Aurelio Ranzato. “Gradient episodic memory for continual

learning”. In: arXiv preprint arXiv:1706.08840 (2017) (cit. on p. 20).

[156] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. “Multi-

Agent Actor-Critic for Mixed Cooperative-Competitive Environments”. In: arXiv preprint
arXiv:1706.02275 (2017) (cit. on p. 50).

[157] Sco� Lundberg and Su-In Lee. “A uni�ed approach to interpreting model predictions”.

In: arXiv preprint arXiv:1705.07874 (2017) (cit. on p. 83).

[158] Stephan Mandt, Ma�hew D Ho�man, and David M Blei. “Stochastic gradient descent

as approximate bayesian inference”. In: �e Journal of Machine Learning Research 18.1

(2017), pp. 4873–4907 (cit. on pp. 38, 43, 115, 117).

[159] Ce�olo Mauro, Federico Marcello, Bentivogli Luisa, Niehues Jan, Stüker Sebastian, Sudoh
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