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Abstract
Interactive decision making is essential for the functioning of autonomous

agents in both software and embodied applications. Typically, agents interact
in a multi-agent environment with the goal of fulfilling individual or shared
objectives. In this thesis, we study the multi-agent adaptive decision making
problem in the framework of Multi-Agent Active Search (MAAS) with a focus on
applications like search and rescue, wildlife patrolling or environment monitoring
with multi-robot teams.

MAAS involves a team of robots (agents) deciding when and where to gather
information about their surroundings, conditioned on their past observations, in
order to estimate the presence and position of different objects of interest (OOIs)
or targets. Agents communicate with each other asynchronously, without rely-
ing on a central controller to coordinate the agents’ interactions. Realistically,
inter-agent communications may be unreliable, and robots in the wild have to
deal with noisy observations and stochastic environment dynamics. Our setup,
described in Chapter 1, formalizes MAAS with practical models of real-world
sensing, noise, and communication constraints for aerial and ground robots.

Part I of this thesis studies the benefits of non-myopic lookahead decision
making in MAAS with Thompson sampling and Monte Carlo Tree Search. Addi-
tionally, we consider a multi-objective pareto-optimization setup for cost-aware
active search, highlighting the challenges due to partial observability, decentral-
ized multi-agent decision making, and computational complexity of combina-
torial state and action spaces. In Part II, we focus on the practical challenges
due to observation noise and dynamic targets in multi-agent active search and
tracking. Our proposed algorithms using Bayesian filtering in these settings em-
pirically demonstrate the importance of uncertainty modeling for inference and
decision making. Part III shifts focus to generative models for decision making,
particularly denoising diffusion sampling for lookahead MAAS with observation
noise. Finally, we discuss the applicability and limitations of these methods in
the context of multi-agent decision making in robotics and other applications
with similar real world constraints.
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1 | Introduction

A large number of problems in scientific discovery can be characterized as the search for
a set of rare, optimal solutions to a query in a large solution space. For example, in
materials science and drug discovery, experiments are designed to identify compounds with
certain desirable properties. In computer science and engineering, designing efficient search
algorithms has been at the center of many of the advancements in technology over past
decades. Such approaches are often bottlenecked by the cost of identifying or labeling a
query response as optimal or not: for example, through synthetic experiments, clinical
trials or user studies which can be quite expensive. This necessitates strategic exploration
of the possible solution space with queries that can help maximize information or minimize
uncertainty about unknowns.

Machine learning based approaches to searching for objects of interest encompass a num-
ber of related topics which can be characterized broadly as methods for sequential decision
making under uncertainty. Adaptive experiment design proposes methods to maximize
information about a task conditioned on already available observations. Similarly, active
learning is concerned with identifying the most informative data for a task. Prior work
in these topics has built on Bayesian optimization (BO) and Multi-Armed Bandit (MAB)
algorithms, among others, for optimizing expensive functions. Bayesian optimization relies
on a surrogate model, which is often a Gaussian Process, to represent the unknown func-
tion, along with an acquisition function to guide the search for the next function evaluation
point with the goal of finding the global optimum. The Multi-Armed Bandit framework, on
the other hand, provides a simplistic model for decision-making under uncertainty, where
the goal is to maximize cumulative reward by balancing exploration and exploitation in the
decision (or action) space. In spite of such broad range of approaches, there are several
practical limitations to applying these methods in real world applications (Murphy, 2025).

The work presented in this thesis is motivated by the goal of developing autonomous
agents capable of interacting in the physical word. Consider, for example, search and rescue
missions using teams of robots looking for survivors in disaster zones. Although there have
been studies showing the effectiveness of deploying autonomous robots in the aftermath
of mining accidents (Murphy et al., 2009), forest fires (Wiki), earthquakes etc. (Murphy,
2004b; Murphy et al., 2011), we are yet to achieve scalable adoption of such systems (Carlson
and Murphy, 2005). Focusing on the algorithms in use for similar applications, some of the
immediate challenges to their scalable adoption include dependence on myopic or greedy
decision making which prevents sufficient exploration in the agent’s environment, misaligned
or overlooked objectives that lead to undesirable agent behavior, inefficient coordination
among agents leading to delays in achieving goals, as well as ineffective modeling of the
robot’s uncertainty about the environment or its task for active feedback and guidance in
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unknown scenarios. Recently, even with the application of foundation models for different
tasks in interactive decision making (Yang et al., 2023), there remain a number of open
challenges in terms of model training and deployment in the real world.

In this thesis, we propose the multi-agent active search framework to abstract away the
high level interactive decision making problem for active target recovery with multi-robot
teams. Our problem formulation is designed to capture the fundamental characteristics
of real world systems like unreliable inter-agent communication, accuracy-cost trade-off in
agent actions and the need for efficient, real-time online decision making. We focus on a
diverse range of methods spanning both machine learning and classical robotics approaches
to analyze their strengths and weaknesses in multi-agent active search and propose novel
advances toward developing robust autonomous agents for the real world.

Notation. We will assume the following conventions in the rest of this document. Non-
bold characters represent scalars. Lowercase and uppercase boldface letters represent col-
umn vectors and matrices respectively. X denotes a set of |X | elements. AT is the transpose
for a matrix A. In denotes an n × n identity matrix. The ith entry of a vector a is [a]i
and the (i, j)th entry of a matrix A is [A]ij . diag(a) is a square matrix with a on the main
diagonal. q ∗A indicates multiplication of scalar q with every element of A. 1n×1 indicates
a n× 1 dimensional vector of ones. In addition, for each chapter, please note the respective
use of notation as described therein.

1.1 Active Search

Active search focuses on online, adaptive sequential decision making for recovering targets
or objects of interest (OOI) in unknown environments (Ghods et al., 2021b). Assuming
the search space to be a set X ⊆ Rdim, with the dataset of previously collected query and
observations as Dt = {(x1, y1), (x2, y2), . . . , (xt, yt)}, an agent performing active search aims
to select subsequent query location xt+1 ∈ X such that all targets Xk = {x′1, x′2, . . . x′k} ⊂ X
are recovered after a finite number of decision making steps T , i.e. {(x′1, y′1), ..., (x′k, y′k)} ⊂
DT . The number of targets k or the target set Xk are not known in advance and targets are
sparsely distributed in the search space i.e. |Xk| ≪ |X |. Moreover, gathering observations
or labels y at query locations x is expensive, therefore T ≪ |X |.

In this thesis, agents are robots, for example, autonomous aerial drones or ground
vehicles. Active search with robots has a wide range of applications. In disasters like earth-
quakes, hurricanes or gas leaks, robots deployed to rescue the human survivors or identify
the leakage source should actively search the environment for targets, using their obser-
vations to guide the decision making in an unknown environment (Murphy et al., 2008).
Similarly, unmanned aerial vehicles (UAVs) or drones engaged in wildfire monitoring (Vis-
eras et al., 2019; Industries, 2022) should identify the high risk zones without requiring a
set of pre-defined waypoints which might not always be available. In such settings, each
robot selects its actions interactively in an online manner, based on its previous obser-
vations in its surroundings. Sensing actions cover contiguous regions of the search space
which the agent observes with its sensors, for example, camera used to take pictures of the
surroundings or lidar to measure distances to obstacles. Sensors provide noisy observations
which affect the agent’s subsequent decisions over sensing actions. This motivates the need
for appropriate abstractions in the robotics active search formulation, in order to design
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practical and scalable algorithms for real world applications.

1.1.1 Multi-Agent Active Search

When deployed at scale, robotic systems for search and rescue or environment monitoring
typically consist of a team of robots aiming to achieve a common task. In order to leverage
the benefit of such a multi-agent system, agents communicate with each other to share
observations or their beliefs about the environment or subsequent intended actions (Balch
and Arkin, 1995). But communication channels can be unreliable (Ramanathan and Redi,
2002) or require inter-agent coordinations to ensure communication connectivity (Zavlanos
et al., 2013). Moreover, reliance on synchronized communication can lead to increased idle
wait time for some agents or even failure of the entire system in extreme cases (Yan et al.,
2013a). Accounting for these challenges, we require our multi-agent system to be robust and
functional even with limited or unreliable communication. This further implies the need for
decentralization so that the agents do not rely on a central controller for communication
or decision making. Therefore in this thesis, we will focus on decentralized multi-agent
active search in which the agents communicate asynchronously when possible, but can
independently recover targets in the environment even when communication is unreliable.

1.1.2 Foundations of problem formulation

Following is an outline for understanding the environment and agent definitions that we
will consider in the rest of this thesis.

Search space. We will consider a bounded search region of length nℓ and width nw,
typically discretized into grid cells. The discretized search space can be represented as a
matrix of 0s and 1s - the k ground truth target locations indicated by 1s, with 0s elsewhere.
The flattened vector representation of the search space β ∈ Rn is the ground truth search
vector that should be recovered by agents over T time steps. Here, n = nℓ × nw is the size
of the search space.

Sensing action. Agents observe their surroundings with sensors that typically provide
noisy measurements from sensing actions. Most common sensing algorithms assume either
agents can always arbitrarily sense in the entire search region (Donoho, 2006b; Braun et al.,
2014) or sense point-wise at a time (Carpin et al., 2015; Rolf et al., 2020). Instead we
will consider a more realistic setup where the agents can choose from contiguous region
sensing actions of different widths or viewing directions for different fields of view which
provide different amounts of information about the environment (Ma et al., 2017). This
allows an agent to trade-off between a broader sensing action with a wider field of view
that can result in a noisier measurement, versus a sensing action over a smaller region
leading to a more precise observation. In other cases, agents may actively choose different
viewing directions to reduce uncertainty about observations over a sensed region. This is an
important consideration in the active search setting - some sensing actions can help quickly
reduce the agent’s uncertainty about the unknown environment with fewer actions, whereas
others can help eliminate false positives and accurately localize the targets in the search
space. Considering a discretized search space, a sensing action xt can be represented by a
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matrix of 0s and 1s (described in details later), where 1s indicate the regions in the agent’s
current field of view.

Sensing model. At each time step t, an agent j ∈ {1, . . . , J} executes a region sensing
action xt and receives a noisy measurement yt. Throughout, we will assume a linear sensing
model:

yt︸︷︷︸
observation

= xtβ︸︷︷︸
ground truth

+ ϵt︸︷︷︸
measurement noise

(1.1)

where ϵt is an additive i.i.d random white noise. xtβ indicates the ground truth location
of targets in the agent’s current field of view for xt.

Communication model. Following Section 1.1.1 and Fig. 1.1, agents asynchronously
broadcast their sensing actions and observations to their teammates. We do not assume
any central or distributed controller to coordinate agents’ actions and synchronize their
observations. The set of past sensing actions and measurements available to any agent j
at time t is denoted by Djt = {(x1,y1), . . . , (xt′ ,yt′)}, t′ ≤ t − 1, |Djt | < t. Note that Djt
includes all the measurements from sensing actions that the agent itself executed, as well
as action and observation pairs received from its peers in the multi-agent system.

Objective. At time t, agent j selects the sensing action xjt that maximizes its objective
R
(
xjt |Djt

)
conditioned on the past measurements Djt . In each chapter, we will describe the

individual problem setup and the corresponding decision making objective for multi-agent
active search.

We will measure the performance of our multi-agent active search algorithms in terms of
average recall, or the average number of targets that were fully recovered by all the agents
over T steps. We call this metric the full recovery rate.

1.1.3 Applications

In this thesis, we will primarily focus on understanding the challenges in multi-agent active
search applications in robotics and propose algorithms to address some of those. Our pro-
posed algorithms are evaluated in simulation with synthetic environments designed follow-
ing realistic modeling assumptions. Separately, concurrent work has successfully deployed
some of these algorithms on drones and ground vehicles for test applications (Bakshi et al.,
2023; Tabib et al., 2024). This validates the practicality and potential of this line of work
and the importance of addressing the remaining limitations in future work.

1.2 Thesis Overview

Chapter 2 sets the foundation for the multi-agent active search framework and introduces
Thompson sampling as a decentralized decision making algorithm which is repeatedly drawn
upon in the rest of the thesis.
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Figure 1.1: Synchronous vs. asynchronous MAAS. The small vertical lines indicate
the start of the t-th task. Agents may differ in the time taken to complete their respective
tasks. In a synchronous setup, agents have to wait for the entire team to complete their
respective tasks at every time step (shown by the shaded grey blocks), leading to loss of
processing time. In contrast, asynchronous MAAS ensures that agents can start their next
assigned task as soon as they become available without any additional idle wait time.

Part I. In the first part of this thesis, we study the problem of multi-objective optimiza-
tion (MOO) in multi-agent active search (MAAS). We particularly focus on cost-awareness
in active search with autonomous aerial robots, eg. drones, where each agent incurs a
sensing cost for executing its region sensing action and a travel cost for moving between
successive sensing locations. In this setting, agents aim to fully recover all targets by
optimizing over the number of measurements required as well as their associated cost.

Similar MOO problem settings have been addressed in prior work using scalarization
(Best et al., 2020) and / or assuming myopic decision making (Ghods et al., 2021a). More-
over, the assumption of full observability in prior work (Chen and Liu, 2019) also simplifies
the optimization problem. In contrast, we do not assume any knowledge about the number
or position of targets in the search space. Therefore, the agent maintains a belief about
the unknown environment using its noisy observations and must trade-off the expected
reward of a sensing action under its current belief with the total cost that it will incur.
Since the agent’s action affects the obtained measurement, which subsequently influences
the future sensing actions, so the MAAS agent would benefit from non-myopic multi-step
lookahead over the evolution of its belief from possible actions and observations to balance
the different optimization objectives.

In Banerjee et al. (2023a), we develop a cost-aware MAAS algorithm called CAST
(Cost-aware Active Search of Sparse Targets) by combining principles from Monte Carlo
Tree Search (for lookahead planning), Pareto-optimality (for multi-objective optimization)
and Thompson sampling (for decentralized multi-agent decision making). Our experimental
results demonstrate the need for cost-awareness in active search under different relative
weights of cost components due to traveling and sensing. We show that CAST outperforms
cost-agnostic and myopic baselines in multi-agent active search over unknown environments.

Part II. In the second part of this thesis, we will focus on designing MAAS algorithms
that can adapt to different sources of uncertainty in the agent’s observations. In Chapter 4,
we consider observation uncertainty due to sensor noise both from object detectors and
depth sensors when the targets are stationary. This is in contrast with prior work in signal
processing (Malloy and Nowak, 2014a; Rajan et al., 2015; Marchant and Ramos, 2012a) and
robotics (Miller et al., 2013; Zhou and Koltun, 2014; Chen et al., 2019a) which consider
measurement noise due to only one of target detection uncertainty and target location
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uncertainty respectively at a time. For example, sparse signal processing applications are
concerned with addressing the uncertainty in the detection label, usually obtained from
object detectors with some confidence score. But the perceived location of such detected
targets is assumed to be accurate. On the other hand, robotics applications like SLAM
(Simultaneous Localization and Mapping) (Huang et al., 2019) account for noisy depth
sensors which can make an observed target appear to be located closer to or farther away
from the agent than it actually is. In that case, the target detection uncertainty is abstracted
away by thresholding the detection label to 0 / 1. But in reality, these two types of
measurement noise almost never exist in isolation from one another in sensor observations.
Moreover, to the best of our knowledge, prior work has primarily been concerned with
state estimation given a set of measurements, but very rarely focused on the problem of
observation uncertainty aware decision making to actively gather those measurements.

In Banerjee et al. (2023b) we develop an inference method called UnIK (Uncertainty-
aware Inference with Kalman filter) that adapts the Kalman filter framework with a mea-
surement noise covariance matrix constructed to account for both target detection and
location uncertainty in the agent’s measurements. The recursive nature of UnIK makes it
computationally efficient and when augmented with a Thompson sampling (TS) decision
making step, TS-UnIK is scalable to decentralized and asynchronous MAAS. We demon-
strate in simulation the performance improvement obtained with UnIK and TS-UnIK com-
pared to baselines that individually consider either target location or detection uncertainty.

In Chapter 5, we focus on the multi-agent active search and tracking setting where
agents additionally face observation uncertainty due to dynamic targets. Prior work in tar-
get tracking algorithms assumes that agents continuously follow the targets being tracked
(Dames et al., 2017; Papaioannou et al., 2020), thereby observing their location over suc-
cessive time steps. Instead we consider the more realistic setting when there are fewer
agents than targets, so that tracking by continuous coverage is not possible. We argue that
it would be more practical if the agents were to adaptively switch between two modes -
i.e. searching the environment for new or previously undetected targets and tracking the
already detected targets by adaptively sensing to (re-)localize them in the search space. In
Banerjee and Schneider (2024), we extend the framework of Probability Hypothesis Den-
sity (PHD) filters by proposing two Thompson sampling approaches that leverage the PHD
posterior belief for multi-agent active search and tracking with non-stationary targets.

Part III. In the third part of this thesis, we shift our attention to generative sampling
based lookahead decision making for active search. Motivated by the success of diffusion
models for sequence modeling and planning (Song et al., 2021b; Janner et al., 2022), we pro-
pose a reward-gradient guided diffusion algorithm for cost-aware multi-agent active search.
We outline some of the challenges involved in applying generative models for similar settings
with partial observability and environment stochasticity. In particular, we highlight the op-
timism bias encountered during diffusion over the joint state-action space and appropriately
modify our modeling assumptions to mitigate it. Moreover, we address the training sample
inefficiency in higher dimensions by adopting an appropriate inductive bias in the network
architecture. We also propose a simple Thompson sampling based framework for decen-
tralized and asynchronous multi-agent active search with single-agent diffusion models. In
simulation, our experiments demonstrate the advantage of non-myopic decision making in
active search as well as improved (or competitive) inference-time cost-awareness compared
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to the search based cost optimization in CAST (Banerjee et al., 2023a).

Finally, we conclude in Chapter 7 with insights from the completed work in this thesis
and some outlines for future work in this direction.
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2 | Thompson Sampling for
Decentralized and Asynchronous
Multi-Agent Active Search

2.1 Introduction

Agents (robots) deployed in active search applications like detecting gas leaks, pollution
sources or search and rescue missions (Ma et al., 2017; Rolf et al., 2020; Flaspohler et al.,
2019) have to adaptively decide how to act in their environments to successfully complete
their tasks. Agents typically maintain a representation or model of the environment which
can be learned and updated over time and which conditions the agents’ behavior, especially
in unknown or unstructured surroundings. Equally significant, and our focus in this chapter,
is the decision making algorithm which selects the agent’s actions conditioned on the current
agent or environment state. In the active decision making domain, most of the existing
algorithms are deterministic in nature and developed for single-agent settings, therefore not
extendable to multi-agent scenarios. As an example, Braun et al. (2015) uses information
greedy approaches to decide on best sensing actions for its agent. If we were to use multiple
agents for this info-greedy method, all agents would make the same exact decision at each
time step, leading to redundant observations and resource (for example, battery power)
wastage. For other active learning algorithms that are extendable to multi agent scenarios,
they usually need a central control system to coordinate the sensing actions of all agents
(Azimi et al., 2012; Gu et al., 2014). Unfortunately, central coordination of agents is
often impractical in certain applications of surveillance, search and rescue or localization
and tracking (Sabattini et al., 2013). This is because in these applications connectivity
maintenance is especially difficult (Yan et al., 2013b; Robin and Lacroix, 2016). Moving
in an unknown or cluttered environment, it is very likely for robots to get trapped and
temporarily lose their connection to the center (Sabattini et al., 2013). As a result, a
central controller that expects synchronicity from all robots at all times is not feasible
as any agent failure or communication delay could disrupt the entire process (Queralta
et al., 2020; Best et al., 2019; Lauri et al., 2020; Murphy, 2004a; Feddema et al., 2002). To
clarify, there is still communication between agents to share information, otherwise they
are just independent actors and would not be a team. In this chapter, we are therefore
primarily interested in a decentralized multi-agent decision making setting where agents
can communicate asynchronously without a central controller. Our discussion on this topic
in the following sections will form the basis of our active decision making framework in the
rest of this thesis.
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Figure 2.1: (a) An illustration of multi-agent active search. Multiple aerial robots
are sensing an area looking for targets. Agents are free to move in all directions. If an
agent moves farther from the region, it can cover a larger portion in one lower-resolution
observation. Moving closer to the region covers a smaller region in one higher-resolution
observation. (b), (c) Single vs. multi-agent. Here, the small vertical lines indicate the
start of t’th task. In single-agent, tasks start sequentially. In asynchronous multi-agent,
task t can start before all previous t− 1 tasks are finished.

2.2 Problem Formulation

Figure 2.1a illustrates a multi agent active search problem for a two-dimensional environ-
ment. Our goal is to efficiently search for targets in an unknown environment by actively
deciding sensing actions given all the observations thus far.

We assume k targets are sparsely distributed in the environment. In a two-dimensional
space, we can represent the search region with a sparse matrix B ∈ Rnℓ×nw , where nℓ is
the length dimension and nw is the width dimension. Agents have no knowledge of the
true prior distribution of B other than knowing it is sparse. Defining β ∈ Rn as a flattened
(vectorized) version of matrix B with n = nℓ×nw, we will refer to β as the true search
vector. The agent’s task is to recover this search vector β with minimum measurements.

Another consideration of our multi-agent active search setup is a realistic assumption
on the sensing actions called region sensing, initially introduced by Ma et al. (2017). In
this chapter, we will consider aerial agents, for example a drone equipped with a downward
facing camera over its field of view. We assume that each agent senses an average value of
a contiguous region (block) of the space at each time step. The size of the sensing block
models the distance of the agent from the region. The agent’s sensing model is given by

yt = xT
t β + ϵt, ϵt ∼ N (0, σ2), t = 1, ..., T. (2.1)

Here, yt is the observation and vector xt ∈ Rn is the sensing action at time step t. We call
the set of (xt, yt) the measurement at time step t. In the d-dimensional search space, our
sensing action will be a d-dimensional contiguous rectangle (region) with weights wt inside
the rectangle (i.e. the agent’s field of view) and zeros outside. As an example, if d = 1, the
sensing action becomes xt = [0, ..., 0, wt, ..., wt, 0, ..., 0]

T. This constraint models a robot
sensing a region of the search space as illustrated in Figure 2.1a.

We also model noise in the observations in accordance to this distance. Specifically, we
dedicate a fixed amount of power to each sensing action by letting ∥xt∥2 = 1. This ensures
that sensing a larger contiguous region at a farther distance from the region (i.e. larger
field of view) inflicts a larger noise value on the resulting observation.
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Remark 1. By dedicating a fixed amount of power to each sensing action, we are modeling
noise as a function of distance from the region. In particular, by standing at a farther
distance from the area, an agent can cover a larger region in an observation. Spreading the
fixed amount of sensing power over this larger region would result in larger noise on the
observation (a lower resolution observation). Similarly, sensing a smaller region at a closer
distance to the environment would model smaller noise (higher resolution observation).
Fig. 2.1a illustrates practicality of this model.
Communication Setup. In order to achieve the objective above with multiple agents,
we need to first describe our communication setup which is motivated by real outdoor
multi-aerial robot systems in field tests. Despite unreliability in unknown environments,
communication becomes available sometimes and we want to take advantage of it when
possible. That leads to the following constraints for our algorithm:

• Agents share their past actions and observations when possible.
• There can be no requirement that the set of available past measurements remains

consistent across agents since communication problems can prevent it.
• here can be no part of the algorithm where an agent must wait for communication

from its teammates before acting since this wait could be arbitrarily long and thus
cause a loss of valuable sensing time.

We are now ready to describe the multi-agent setting. To actively locate targets, at each
time step t≤T , an agent j chooses a sensing action xjt given all the available measurements
thus far in the set Dj

t−1. The superscript j indicates the agent index. For a single agent this
procedure is sequential as in Figure 2.1b where at time step t the agent uses all previous
sequential measurements D1

t−1 = {(xt′ , yt′)| t′ = {1, .., t−1}} to make a decision. In this
thesis, however, we are interested in an asynchronous parallel approach with multiple agents
making data-collection decisions in a decentralized manner, as shown in Figure 2.1c. Here
asynchronicity means that agents don’t wait on results from other agents; instead, an
agent starts a new query immediately after its previous data acquisition is completed using
all the measurements available thus far. For example, in Figure 2.1c, the second agent
queries t = 6’th action before tasks 4 and 5 are completed using available measurements
D2

6={(xt′ , yt′)| t′={1, 2, 3}}.
For easier computations, we can define a compact sensing model with all the available

measurements in Dj
t−1 for agent j. For example for sequential D1

t−1, by defining y =
[y1, ..., yt−1]

T, X=[xT
1, ...,x

T
t−1]

T we can write the model in (2.1) as:

y = Xβ + ϵ, ϵ ∼ N (0, σ2It−1). (2.2)

2.3 Related Work

A prominent approach to estimating sparse signals is compressive sensing (CS) (Candès
et al., 2006; Donoho, 2006a). There has been a large number of work on adaptive CS
that enables the ability to make online and adaptive measurements to estimate sparse sig-
nals and thus is applicable to active search problems (Braun et al., 2015; Haupt et al.,
2009a,b; Davenport and Arias-Castro, 2012; Malloy and Nowak, 2014b). Unfortunately,
such adaptive CS methods are sequential and therefore not extendable to multi agent sce-
narios. Furthermore, CS algorithms in general assume that every measurement matrix can
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sense the entire environment with arbitrary coefficients which is not a practical assumption
for active search problems with region sensing constraints.

Another area of work are multi-armed bandits. Abbasi-Yadkori et al. (2012) and Car-
pentier and Munos (2012) propose multi-armed bandit algorithms that include a sparsity
assumption on their hyperparameter. However, they do not focus on estimating the sparse
parameter since the bandit algorithms optimize a different reward function. There have
been other Bayesian Optimization (BO) and active learning methods proposed for active
search. Marchant and Ramos (2012b) uses BO to develop a spatial mapping of a region
whereas we are interested in locating targeted signals. Carpin et al. (2015) uses BO for
localization of single wireless devices but only focuses on point sensing actions. Ma et al.
(2017); Rajan et al. (2015); Jedynak et al. (2012) aim at locating targets by optimizing
some notion of Shannon information. Unfortunately, all of the aforementioned active learn-
ing algorithms are developed for single agent applications, and except for Ma et al. (2017),
they mostly lack any realistic assumptions on sensing actions.

In multi-agent active learning, algorithms in prior work generally require a central plan-
ner to optimize a batch of actions for all agents at each time step and therefore are not
applicable to our problem setting (Azimi et al., 2012; Gu et al., 2014; Azimi et al., 2010).
Another multi-agent area of work are mobile sensor networks (MSN) (Nguyen, 2019; Chen
et al., 2019b; La et al., 2014) where multiple mobile sensors/agents reconstruct a scalar map
of sensory values in an entire area. MSNs typically consider some form of region sensing
assumption on their actions, however, they generally have a constricting sensor network
with strict communication patterns which differentiates them from our applications.

In robotics research, methods that deal with active search generally aim at autonomously
building topological (identify obstacles and clearways) and/or spatial maps of a region. Our
active search problem differs from topological mapping techniques such as SLAM (Leonard
and Durrant-Whyte, 1991; Huang et al., 2019) and can be most closely related to spa-
tial mapping. For example, Rolf et al. (2018) identifies strong signals in environments with
background information using trajectory planning with confidence intervals; but, unlike our
problem setting, their algorithm is developed for a single agent performing point sensing
observations. In the area of robotics information gathering, there has been more attention
towards the need for decentralized solutions recently (Queralta et al., 2020; Zhang et al.,
2021). However, existing methods for decentralized multi-agent systems either assume re-
liable communication requirements to share future plans (Best et al., 2019; Dames et al.,
2017; Li and Duan, 2017) or assume centralized sharing of observations following decen-
tralized execution (Lauri et al., 2020; Lowe et al., 2017). Instead, following our discussion
so far, our algorithms should benefit from observation sharing when it occurs, but never
depend on communication for coordination.

2.3.1 Naïve approach and challenges

In our multi-agent active search setup, agents communicate by broadcasting their measure-
ments to their teammates. Therefore a naïve decentralized decision making algorithm could
involve each agent selecting an action conditioned on its measurement set, which includes
its own observations as well as those received from other agents. Following prior work, each
agent may use an information-greedy objective for action selection. While this would en-
able decentralized and asynchronous active search with multi-agent teams, it still relies on
a deterministic decision making objective. This means that agents which perhaps operate
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at the same frequency and have identical measurement sets at a given time t would end up
choosing the exact same sensing action in the search space. Not only would this lead to
redundant observations, but agents have the possibility to collide as they compete for the
same sensing locations. Instead, our main insight is to introduce stochasticity in the decen-
tralized decision making setup so that agents implicitly select distributed sensing locations
covering the entire search space. Since our sensing model also accounts for observation
noise, we expect agents to collect multiple observations (distributed over the entire task
duration) at the same sensing location to reduce the uncertainty about presence of targets
in a particular region. This implies that the agents’ decision making algorithm should be
able to trade-off exploration (sensing locations not previously visited) with exploitation (re-
peated sensing at already visited location) in the search space. Moreover, recall that targets
are sparsely distributed, further supporting the need for effective exlpore-exploit trade-off.
While there have been many sparse recovery algorithms proposed in the literature, to the
best of our knowledge there is no algorithm proposed that develops sparse estimators for
active learning methods along with multi-agent structure and region sensing assumptions.
In this chapter, we show how sparsity in its nature limits the exploration factor in active
learning methods and how a practical region sensing assumption exacerbates this situa-
tion. Next we describe our proposed approach to strategically address such region sensing
assumptions to successfully recover sparse signals.

2.4 Thompson sampling in Active Decision Making

Thompson Sampling is an exploration-exploitation algorithm originally introduced for clin-
ical trials by Thompson (1933) and later rediscovered for multi-armed bandits (Wyatt,
1998; Strens, 2000; Russo et al., 2018). The key idea of TS is to balance exploration with
exploitation by maximizing the expected reward of its next action assuming that a sample
from the posterior is the true state of the world (Russo et al., 2018). This feature makes
TS an excellent candidate for our asynchronous multi-agent setup. Essentially, by using
TS’s posterior samples in our reward function, we enable a calculated randomness in each
agent’s reward function. As a result, multiple agents can take independent samples and
therefore solve for different reward values that equally contribute to the overall goal. Kan-
dasamy et al. (2018) used this feature of TS for Bayesian Optimization (BO) to develop
an asynchronous yet centralized parallel setting. We instead propose to develop TS in a
decentralized and asynchronous setting where each agent independently makes decisions
given the measurements available to it, i.e. Dj

t .
Because TS was originally proposed for bandit problems, one might question its ability

on active search and assume it might keep exploiting the same target. However, we are here
interested in an adaptation of TS to parameter learning which is in fact perfect for active
search. Having attracted a lot of attention in the past decade, TS has been successfully
adapted to a variety of online learning problems (Russo et al., 2018). Our active search
problem falls in the category of parameter estimation in active learning as developed by
Kandasamy et al. (2019) with the name Myopic Posterior Sampling(MPS). Similar to MPS,
our goal is to actively learn (estimate) parameter β by taking as few measurements as
possible. Since the goal of MPS is to learn parameter β, its reward function is designed
to keep exploring the space as long as there are unexplored (or loosely explored) locations
in the parameter space (i.e. it will not get stuck exploiting). We will next derive MPS for
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an asynchronous multi-agent setting. For the sake of similarity, we will use TS to refer to
MPS.

2.4.1 Decentralized Multi-Agent Thompson Sampling

First, we review TS for active learning and then develop it to a decentralized asynchronous
(async.) multi-agent setting. We start with the single agent setting as introduced by
Kandasamy et al. (2019). We are interested in recovering the n-dimensional vector β ∼ p0.

An agent actively queries action xt and observes outcome yt where the likelihood
p(yt|xt,β) is known. To query the best action, we maximize a reward function λ(β∗,D1

t )
where β∗ is our belief of the true β. In other words, an agent follows a myopic policy which
selects action xt that maximizes the expected reward of timestep t, i.e.

xt = argmax
x

λ+(β∗,D1
t ,x) = argmax

x
Ey|x,β∗ [λ(β∗,D1

t ∪ (x, y))]. (2.3)

Here the reward that matches the ground truth value of selecting an action would be the
one that has access to the true value of β i.e. for λ+(β,D1

t ,x) when β∗ = β. Not knowing
the true search vector β, TS proposes to sample it from the current posterior distribution
over β given the measurement set D1

t , i.e. β∗ ∼ p(β|D1
t ). Then the TS policy selects the

sensing action xt that maximizes Eq. (2.3) with the sampled β∗.
In the multi-agent setting, consider J agents tasked with active discovery over T mea-

surements in an environment. Suppose agent j executes its latest sensing action, commu-
nicates with its teammates and is ready to choose the t-th action. Using its measurement
set Dj

t (|Dj
t | ≤ t − 1), it updates the posterior and draws a sample (posterior sampling),

selects its next sensing action to maximize the reward (design), evaluates its action and
shares the next observation with other agents. Algorithm 1 summarizes this process.

Algorithm 1 Asynchronous Multi-Agent Thompson Sampling
Assume: prior β ∼ p0 and likelihood p(y|x,β)
For t = 1, ..., T

Wait for an agent to finish; For the free agent j:
Sample β⋆ ∼ p(β|Dj

t ) Posterior Sampling
Select xjt = argmaxx λ

+(β⋆,Dj
t−1,x) Design

Observe yjt given action xjt
Update & share measurements Dj

t+1 = Dj
t ∪ (xjt , y

j
t )

2.4.2 Thompson Sampling with Sparsity

To perform search and rescue, traditionally people have used coverage planning methods
with exhaustive search (Lin and Goodrich, 2009; Chien et al., 2010; Ryan and Hedrick,
2005). However, with the availability of high and low resolution observation points, an
optimized active search method can locate targets faster than exhaustive search in terms
of number of observations (refer Section 2.6). Such faster recovery is achievable due to
the concept of sparse signal recovery (compressive sensing) which says that we can recover
a sparse signal with length n by taking less than n low or high resolution measurements
(Candès et al., 2006; Donoho, 2006a). By using sparsity as the prior information for TS, we
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can create the right balance between exploring larger regions with low resolution and then
exploiting the ones we suspect of including a target with a closer look (higher resolution
observation). We will next develop TS in Algorithm 1 for our active search problem using
a sparse prior.

We start by first establishing the prior p(β) and likelihood distribution p(yt|xt,β). As
for the prior, our knowledge is limited to the presence of sparsity. First, let us assume
β has a Laplace distribution with independent entries and a tunable parameter b, i.e.
p(β) = 1

(2b)n exp(−∥β∥1
b ). Laplace distribution translates to an ℓ1-norm regularization term

in the cost function which has been shown to introduce sparsity into the estimator (Williams,
1995; Tibshirani, 1996; Chen et al., 2001). For the likelihood distribution, the sensing model
in Eq. (2.1) gives p(y|X,β) = N (Xβ, σ2It−1).
Design. Following Algorithm 1, agent j computes the expected reward λ+(β∗,Dj

t ,x)
and optimizes it for the next sensing action xjt . Since our goal is to recover the unknown
true search vector β, we use the reward function

λ(β∗,Dj
t ∪ (x, y)) = −∥β∗ − β̂(Dj

t ∪ (x, y))∥22. (2.4)

In order to compute the expected reward in Eq. (2.4), we need to design an estimator
β̂(Dj

t ∪ (x, y)) whose expectation we can compute. Unfortunately, for many of the well-
known thresholding or iterative algorihms proposed in the sparse recovery literature (Pati
et al., 1993; Needell and Tropp, 2010; Blumensath and Davies, 2009; Daubechies et al., 2004;
Maleki, 2011), computing Eq. (2.4) is intractable. Instead we propose using the maximum
a posteriori (MAP) estimate of the posterior p(β|Dj

t ) computed using an expectation-
maximization approach. This allows us to compute a closed form analytical expression for
Eq. (2.4) 1, but this preliminary implementation of a sparse estimator guided Thompson
sampling for active search was unsuccessful and its performance was observed to be com-
parable to a point sensing algorithm that exhaustively searches all locations one at a time.
Next we provide some intuition for this failure mode of TS in active decision making and
then describe our approach to mitigating this behavior.
Failure Mode of TS. We can associate this poor performance of our preliminary ap-
proach described above with one of the failure modes of TS discussed in Sec. 8.2 of the
tutorial by Russo et al. (2018). According to this tutorial, TS faces a dilemma when solving
certain kinds of active learning problems. One such scenario includes problems that require
a careful assessment of information gain. In general, by optimizing the expected reward, TS
always restricts its actions to those that have a chance of being optimal which in our case
are sparse sensing actions restricted further by the region sensing constraint. However, in
active learning problems such as ours, suboptimal actions (i.e. non-sparse sensing actions)
can carry additional information regarding the parameter of interest.

We provide the following example to better understand the challenge in applying TS
with a sparse estimator in our problem formulation of active search. Let us assume there
is no noise in the sensing model (Eq. (2.1)) i.e. ϵt = 0 and that there is only one non-zero
element (k = 1). Under such conditions, the active search task amounts to finding the
location ĩ of this non-zero element in the search vector β. Thus, for every action xt, the
observation yt = xT

t β is non-zero if ĩ is in the support of xt and it is zero otherwise. Clearly,
a binary search agent can locate ĩ in log(n) steps. TS, however, in each timestep selects the

1For complete mathematical derivation of this posterior update algorithm, please refer to Sec 3.2 in
Ghods et al. (2021b). The details of this approach are omitted here for brevity.
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sensing action xt which would maximize Eq. (2.4) by recovering the support of the sparse
sample β∗ in the estimate β̂(D1

t ∪ (x,xTβ∗)). So, unless β∗ is the true β, observation
yt from sensing action xt would be zero and TS will only manage to eliminate support of
β∗ from the list of possibly correct supports. Therefore, TS ends up eliminating wrong
supports one location at a time which explains its on par performance to an exhaustive
point sensing policy. Similarly, for k > 1 TS is always limited to picking sensing actions xt
that are in the support of the sparse estimates of the samples. Adding the region sensing
constraint will only aggravate this problem by further shrinking this support set. Next, we
address these limitations and propose our novel multi-agent active search algorithm called
SPATS for Sparse Parallel Asynchronous Thompson Sampling.

2.5 SPATS: Sparse Parallel Asynchronous Thompson Sam-
pling

Per our discussion in Section 2.4.2, introducing sparsity with Laplace prior into TS algo-
rithm limited its ability to explore queries. With this in mind, one might conclude that
choosing non-sparse samples in the posterior sampling stage of Algorithm 1 should solve
this problem. However, this strategy will still face the failure mode of TS because it is
the sparse estimator in the design stage that is limiting the feasible sensing actions. The
next logical solution would then be to make both the estimator and posterior sampling
procedures non-sparse. Even though with this strategy we will avoid the failure mode of
TS, without taking advantage of the prior information about sparsity, the resulting non-
sparse TS will be performing no better than exhaustively searching the entire space. To
overcome this issue, we propose making an assumption on the prior distribution of both
the sampling and estimation procedures that the neighbouring entries of the sparse vector
β are temporally correlated, i.e. β is block sparse. Such temporal correlation creates the
most compatible results to the region sensing constraint which only approves sensing actions
with a single non-zero block of sensors. Furthermore, we expect block sparsity to introduce
exploration ability while also keeping sparsity a useful information in the recovery process.
In particular, by gradually reducing the length of the blocks from a large value, we gently
trade exploration with exploitation capability over time.

2.5.1 Belief Representation

Borrowing ideas from a block sparse Bayesian framework introduced in Zhang and Rao
(2011), we use a block sparse prior

p(β) = N (0n×1,Σ0)

, where Σ0 = diag ([γ1B1, ..., γMBM ]) , with γm and Bm ∈ RL×L (m = 1, ...,M) as hyperpa-
rameters. γm controls the sparsity of each block as is the case in sparse Bayesian learning
methods (Tipping, 2001; Wipf and Rao, 2004), i.e. when γm = 0, the corresponding block
m is zero. L is the length of the blocks that we will gradually reduce in the TS process.
To avoid overfitting while estimating these hyperparameters, Zhang and Rao (2013) sug-
gests one matrix B to model all block covariances, namely Σ0 = diag(γ)⊗B, where, γ
is the vector containing all elements of γm for m = 1, ...,M . As before, γ ∈ RM and
B ∈ RL×L (M = n/L) are hyperparameters.
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For any agent j, the posterior with a Gaussian likelihood and Gaussian prior becomes:

p(β|Dj
t ,γ,B) = N (µβ(γ,B),Σβ(γ,B)), (2.5)

with

Σβ(γ,B) = ((Σ0)
−1 +

1

σ2
XTX)−1,

µβ(γ,B) =
1

σ2
Σβ(γ,B)XTy.

Using Expectation-Maximization proposed by Zhang and Rao (2011), we can estimate
the hyperparameters γ and B for p = 1, . . . , P iterations as follows.

E-step :µ
(p)
β = µβ(γ

(p−1),B(p−1)),

Σ
(p)
β = Σβ(γ

(p−1),B(p−1))

M-step :γ(p)m =
tr(B−1(Σm

β + µmβ (µmβ )T))

L
, (m = 1, . . . ,M)

B(p) =
1

M

M∑
m=1

Σmβ + µmβ (µmβ )T

γm
(2.6)

with µmβ = µ
(p)
β [(m−1)×L : m×L] and Σm

β = Σ
(p)
β [(m−1)×L : m×L, (m−1)×L : m×L].

2.5.2 Decision making in SPATS

Next, we will compute the objective in Eq. (2.4) in expectation over the observation likeli-
hood following Section 2.5.1. For the estimator β̂(Dj

t ) of agent j, we use the MAP estimate
µ
(P )
β . Specifically, we have

β̂(Dj
t ∪ (x, y)) = (σ2Σ0

−1 +
[
XT x

] [X
xT

]
)−1︸ ︷︷ ︸

Q

[
XT x

] [y
y

]
(2.7)

with Σ0 = diag(γ(P )) ⊗ B(P ). Now, following Eq. (2.3), Eq. (2.4), we can derive the
expected reward as follows:

λ+(β∗,Dj
t ,x) = Ey|x,β∗ [−∥β∗ − β̂(Dj

t ∪ (x, y))∥22]
= −Ey|x,β∗ [∥QXTy +Qxy − β∗∥22]
= −∥QXTy − β∗∥22 − ∥Qx∥22Ey|x,β∗ [y2]− 2(QXTy − β∗)TQxEy|x,β∗ [y]

= −∥QXTy − β∗∥22 − ∥Qx∥22(σ2 + (xTβ∗)2)− 2(QXTy − β∗)TQxxTβ∗

(2.8)

For best empirical performance, we need to initialize parameter Σ0 relative to signal
power. This concludes our specification of the Posterior sampling and Design stages from
Algorithm 1. Algorithm 2 describes our proposed algorithm called SPATS for asynchronous
and decentralized multi-agent active search.
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Algorithm 2 SPATS
1: Assume: Sensing model (2.2); sparse signal β; J agents; block length L
2: Set: Dj

0 = ∅; L = n/J ; γm = 1; B : random highly correlated covariance matrix
3: For t = 1, ..., T
4: Wait for an agent to finish; For the freed agent j:
5: Sample β⋆ ∼ p(β|Dj

t ,γ,B) from Eq. (2.5) in Section 2.5.1
6: Select xt=argmaxx λ

+(β⋆,Dj
t ,x) using Eq. (2.8) in Section 2.5.2

7: Observe yt given action xt
8: Update & share measurements Dj

t+1 = Dj
t ∪ (xt, yt)

9: Update hyper parameters γ and B using EM algorithm in Eq. (2.6) in Section 2.5.1
10: if t% J = 0 then L = L/2

2.5.3 Theoretical Bounds for a Sparse Model

We now provide theoretical analysis testifying to the benefits of SPATS. SPATS has two
aspects that distinguish it from a naïve TS developed for sparse signals. First, the posterior
belief update step in SPATS utilizes a block sparse prior with varying block length. Second,
SPATS builds on parallel asynchronous TS for multi-agent active search. Next we introduce
two theorems to investigate the benefits of each aspect separately. In this chapter, we will
explain the main takeaway from each in context of the subsequent work presented in this
thesis. Please refer to Ghods et al. (2021b) for complete proofs of both the theorems.

First in Theorem 1, for a sparse model with single agent setting we compute and compare
upper bounds on the expected regret of two TS algorithms with a 1-sparse and a 1-block
sparse prior with one nonzero block. The 1-block sparse prior closely imitates SPATS’s
performance with a region sensing assumption.
Theorem 1. Consider an active search problem with a 1-sparse true parameter β ∈ Rn and
reward function R(x,β)=(xβ)2 for action x∈Rn chosen from set of actions X that satisfy
region sensing in Section 2.2. Consider two single agent TS algorithms where one assumes
a 1-sparse prior and another uses a 1-block sparse prior with varying block length as defined
in Algorithm 2. Then, the expected regret E[Reg(T)]=E

[∑T
t=1R(x⋆,β)−R(xt,β)

]
for each

algorithm is upper-bounded by:

1-sparse prior : E[Reg(T )] ≤
(
log(|X |)∑min{T,n−1}

t=1
(1− t

n)(1−
1

n−t+1)
(n−t−1

n−t
log( n−t

n−t−1)+
1

n−t
log(n−t))

)1/2

(2.9)

1-block sparse prior : E[Reg(T )]≤
(
log(|X |)∑min{T,log2(n)}

t=1

(
1− 1

n−
(∑t−1

t′=1
n

2t
′

))2/log(2))1/2

(2.10)

A simple comparison of (2.9) and (2.10) in Theorem 1 shows that using TS with a block
sparse prior and varying block length significantly reduces the regret bounds comparing to
TS that is using the true 1-sparse prior. Next, we will compute and compare an upper bound
on the expected regret of a single-agent and an asynchronous multi-agent TS algorithm.
To the best of our knowledge, only theoretical analysis for asynchronous parallel TS has
been provided by Kandasamy et al. (2018) which is limited to Gaussian Processes. In the
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following theorem, we provide theoretical guarantees for an asynchronous multi-agent active
search problem with a sparse model.
Theorem 2. Consider the active search problem in Theorem 1. Let us propose two TS
algorithms with a 1-sparse prior where one is single agent and another uses g agents in an
asynchronous parallel setting. Then, the expected regret as defined in Theorem 1 for each
algorithms is:

single agent: E[Reg(T )] = Tn − Tn(Tn+1)
2n , Tn = min{T, n} (2.11)

multi agent: E[Reg(T )] ≤ Tn − Tn(Tn+1)
2n + Tn(2g−1)

n , Tn= min{T, n+g} (2.12)

A simple analysis of (2.12) shows that for g ≪ n and g ≪ T (which is a reasonable
assumption), the third term in the bound will be upper bounded by 2g+1. As a result, the
difference in expected regret between single agent and asynchronous multi agent is negligible
in terms of number of measurements T . Hence, we can conclude that by dividing the same
number of measurements T between g agents, multi agent algorithm achieves same regret
g times faster than single agent setting.
Remark 1. Theorem 2 shows that our asynchronous multi agent algorithm performs on
par with an optimal multi agent system with a central planner. This result is a consequence
of the central planner’s regret being bounded by the single agent in terms of number of
measurements T (Kandasamy et al., 2017).

2.6 Experiments

Next, we compare the performance of SPATS against the following competitive active search
baselines.

2.6.1 Baselines

Region Sensing Index (RSI). RSI is a single agent active search algorithm designed to
locate sparse signals by actively making data-collection decisions. Similar to our problem
formulation in Section 2.2, RSI makes a practical assumption that at each time step the
agent senses a contiguous region of the space. To decide on the next action, RSI at each
time step chooses the sensing action xt that maximizes the mutual information between
the next observation yt and the signal of interest β, i.e.

xt = argmax
x

I(β; y|x,D1
t )

where the mutual information is computed using posterior distribution

p(β|D1
t ) = p0(β)

t−1∏
τ=1

p(yτ |x,β)

with a k-sparse uniform prior p0(β) and same likelihood distribution as in Section 2.5.1.
Unfortunately, computing the mutual information I(β; y|x,D1

t ) has high complexity for
sparsity rates of k > 1. In order to reduce this complexity for k > 1 RSI recovers the
support of β by repeatedly applying RSI assuming k = 1. Note that this reward function is

19



deterministic, therefore in a multi-agent setting, all agents will solve for the same sequence
of sensing actions without any randomness in their decision making objective.
Laplace TS with Information gain (LATSI). LATSI, proposed in Ghods et al.
(2021b), is an asynchronous parallel Thompson Sampling algorithm using a sparse Laplace
prior (LaplaceTS), without the assumption of block-sparsity. The decision making objective
combines λ+ from Eq. (2.3) and Eq. (2.4) with the mutual information computed by RSI
to mitigate the challenges of TS with sparsity as discussed in Section 2.4.2.
Point Sensing (PS). Sequential PS is a deterministic search baseline where an agent
exhaustively searches the environment one location at a time following a predetermined
route (sometimes also referred to as lawnmower pattern in the path-planning literature).

2.6.2 2D search space discretized into 8× 16 grid cells

In this section, we focus on 2-dimensional search spaces where we estimate a k-sparse signal
β with length n = 8 × 16 and two sparsity rates of k = 1, 5. Here, β is generated with a
randomly uniform sparse vector. We set the noise variance to σ2 = 1. Note that in all of
the algorithms considered, agents are not aware of the true uniform sparse prior or sparsity
rate k. We then vary the number of measurements T and plot the mean and standard error
of the full recovery rate over 50 random trials. Recall that the full recovery rate is defined
as the rate at which an algorithm correctly recovers the entire vector β over random trials.

Single Agent

In a single agent setting, Figure 2.2 shows that for k = 1, RSI and LATSI outperform
SPATS. The reason is that RSI has a very accurate approximation of mutual information
for k = 1 and consequently it is difficult for SPATS to win over the information-optimal
algorithms of RSI and LATSI. All algorithms significantly outperform exhaustive search
(PS). On the other hand, for higher sparsity rate of k = 5, SPATS outperforms RSI and
LATSI. This is a result of poor approximation of mutual information for k > 1 by RSI.
Specifically, for k > 1 RSI recovers the support of β by repeatedly applying RSI assuming
k = 1. The authors use this strategy to avoid the large cost of computing mutual informa-
tion for k > 1. This strategy even allows PS to catch up and outperform RSI. Finally, since
LATSI is a combination of RSI and LaplaceTS, its performance is tied to that of both RSI
and SPATS.

Multi-Agent

Figure 2.4, 2.5 and 2.6 show the performance of SPATS, RSI and LATSI respectively in a
multi-agent setting. Each figure consists of 4 sub-figures where the top row illustrates the
full recovery rate for k = 1 and k = 5 as a function of number of measurements (T ) taken
by all the agents. To better demonstrate the multi-agent performance, in the bottom row
we plot full recovery rate as a function of time which is computed by dividing the number
of measurements T by the number of agents J . In each sub-figure we vary the number of
available agents between 1, 2, 4 and 8. Note that in all subsequent plots, LATSI-J, RSI-J
or SPATS-J indicate the corresponding algorithm with J agents.

SPATS: As evident in the two sub-figures in the bottom row of Figure 2.4, SPATS
becomes J times faster by using J number of agents compared to the single-agent setting.
From the two sub-figures in the top row, we can draw a similar conclusion. That is,
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Figure 2.2: Full recovery rate of SPATS, LATSI, RSI and PS (exhaustive) for a single agent
for sparsity k = 1, 5.
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Figure 2.3: Full recovery rate of SPATS, LATSI, RSI and PS (exhaustive) for 4 agents for
sparsity k = 1, 5.
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Figure 2.4: Full recovery rate of SPATS with 1, 2, 4 and 8 agents for sparsity rates k = 1, 5.
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Figure 2.5: Full recovery rate of RSI with 1, 2, 4 and 8 agents for sparsity rates k = 1, 5.
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Figure 2.6: Full recovery rate of LATSI with 1, 2, 4 and 8 agents for sparsity rates k = 1, 5.
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increasing the number of agents from 1 to 2 to 4 and 8 hardly changes the total number of
measurements required for a given recovery rate, i.e. the average number of sensing actions
per agent is improved about J times. This result demonstrates that SPATS can efficiently
perform active search in an asynchronous decentralized fashion.

RSI: We extend the RSI algorithm of Ma et al. (2017) to multi-agent setting by allowing
each agent to independently choose its sensing action given RSI’s acquisition function and
utilizing the available measurements from other agents. Looking at Figure 2.5 for both
k = 1 and k = 5, we see a significant deterioration in full recovery rate as a function of T
as the number of agents increases. The reason is that without randomness in RSI’s reward
function, agents that are working at the same time are repeating the same sensing actions.
For k = 5, this performance reduction is also obvious as a function of time. However,
for k = 1 RSI performs slightly better in time by increasing agents. The reason for this
contradicting behavior is that RSI’s performance for k = 1 is so close to optimal (binary
search) that it reaches recovery rate of 1 before the multi-agent system can negatively affect
it.

LATSI: Looking at Figure 2.6, we see that similar to SPATS, LATSI’s multi-agent
performance improves in time by increasing the number of agents.

SPATS vs. LATSI vs. RSI: In Figure 2.3, we plot all four algorithms against
each other for 4 agents. Here, for k = 1, RSI and LATSI outperform SPATS due to
their information-theoretic approach in computing the reward function. For k = 5, SPATS
outperforms both RSI and LATSI. This is because SPATS is carefully designed to use
randomness from TS in its reward function such that multiplying the number of agents
would multiply its recovery rate. Furthermore, LATSI performs significantly better than
RSI due to the probabilistic exploration aspect of TS in its reward function. All algorithms
outperform PS except for RSI with k > 5 due to its poor information approximation.

2.6.3 Robustness to unreliable inter-agent communication

Next we provide experimental results showing the robustness of SPATS to unreliable com-
munication among agents in asynchronous multi-agent active search. Using the same pa-
rameters and setting described above, we focus on a 2-dimensional search space where we
estimate a k-sparse signal β with length n = 8 × 16 and two sparsity rates of k = 1, 5.
Assuming J number of agents are actively searching for the targets and asynchronously
communicating their measurements to each other, we introduce unreliability in inter-agent
communication by randomly dropping, for each agent, up to three of its last received new
measurement messages from other agents. We measure the mean and standard error of the
full recovery rate as a function of the number of measurements T as well as time over 50
random trials. We vary the number of agents J between 2, 4 and 8. Figure 2.7 shows that
the agents are able to fully recover all targets even in this additionally introduced unreliable
communication setup. The probabilistic nature of SPATS allows the agents to maintain
their performance even when they cannot access all measurements from other agents.

2.7 Discussion

In the remainder of this thesis, we will repeatedly leverage asynchronous parallel Thomp-
son sampling as a decentralized decision making algorithm for multi-agent active search.
TS ensures stochasticity in decision making by sampling different plausible realizations of
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Figure 2.7: Full recovery rate of SPATS in the presence of communication failure with 2, 4
and 8 agents for sparsity rates k = 1, 5
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the ground truth from the posterior belief and selecting the best action to maximize the
desired reward for a particular sample. The uncertainty in the agent’s belief over the state
space is reflected in the posterior samples, which makes TS suitable for driving exploration
and exploration. As we have discussed in Section 2.2, this explore-exploit trade-off is an
essential aspect of multi-agent active search and it is one that we will repeatedly encounter
in subsequent chapters arising from different practical constraints on the problem setup. In
each case, we will observe that a TS-based approach with an appropriate belief model is
scalable, robust to unreliable communication and enables decentralized and asynchronous
active target recovery with multi-robot teams.
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Part I

Non-myopic multi-agent decision
making

29





3 | Multi-Agent Multi-objective op-
timization with lookahead

3.1 Introduction

Interactive decision making with autonomous agents is typically underlain by the need
to balance different, often conflicting, constraints over the task objective. For example,
many e-commerce or social media platforms are known to use algorithms that trade-off
different factors like user engagement or satisfaction, ads revenue, etc. in recommending
users’ products or posts. Similarly, in search and rescue missions with multi-robot teams,
agents have limited battery capacity which affects their choice of sensing actions to explore
the environment in search of survivors. This is because sensing a wider area might have
a different energy requirement than point sensing, whereas traveling between consecutive
sensing locations can incur additional energy costs. In such scenarios, agents are faced
with a multi-objective optimization problem where they must make cost-aware decisions,
for example, by trading-off the expected future reward of detecting a survivor with the
overall cost of traveling to the appropriate location and executing the sensing action. Un-
fortunately, Lim et al. (2016) show that even in the single-agent setting, this problem is
NP-hard. Moreover there is limited focus in prior work on the additional challenges intro-
duced by multi-objective decision making in multi-agent settings, especially for sequential
decision making and under partial observability (Rădulescu et al., 2019). In this chapter, we
focus on this problem formulation with the goal of enabling cost-awareness in decentralized
and asynchronous multi-agent active search.

3.2 Problem Formulation

Fig. 3.1 depicts the idea behind cost-aware active search. Each agent is actively sensing
regions of the search space looking for targets indicated by ‘×’. To plan its next sensing
action, the cost-aware agent has to trade-off the expected future reward of detecting a target
with the overall costs it will incur in travelling to the appropriate location and executing
the action. Given previous observations, it adaptively makes such data-collection decisions
online while minimizing the associated costs as much as possible.
Sensing model. We consider a gridded search environment of size n described by a
sparse matrix which is recovered through multi-agent active search. β ∈ {0, 1}n×1 denotes
the flattened vector representation of the environment having k non-zero entries at the true
locations of the k OOIs. β is the ground truth search vector. Both the number and location
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of targets is unknown to the agents. The sensing model for an agent j at time t is

yjt = xjt
T
β + ϵjt , where ϵjt ∼ N (0, σ2). (3.1)

xjt ∈ Rn is the (flattened) sensing action at time t, with a non-zero support over the
sensing region and zeros elsewhere. yjt is the agent’s observation and ϵjt is a random, i.i.d
added noise. The tuple (xjt , y

j
t ) is agent j’s measurement at time t. We define our action

space A (xjt ∈ A) to include only hierarchical spatial pyramid sensing actions (Lazebnik
et al., 2006). For example in Fig. 3.1, the two agents in the bottom right half of the search
space are sensing hierarchical 2 × 2 and 1 × 1 regions respectively. Since our search space
is discretized into grid cells, the hierarchical actions provide coverage over the search space
while reducing the size of the action space (Figs. 3.1b to 3.1d). Considering the search
vector β ∈ Rn of size n, the hierarchical pyramid action space A is of size O(n) rather than
O(n2) had we considered all possible contiguous region sensing actions.

Each sensing action xt ∈ Rn is a flattened vector whose non-zero support indicates the
grid cells being sensed, with 0s elsewhere. The support of the vector xt is appropriately
weighted so that ∥xt∥2 = 1 to ensure each sensing action has a constant power. This
helps us in modeling observation noise as a function of the agent’s distance from the region
(Ghods et al., 2021b). Since each action has a constant power and every observation y
has an i.i.d added noise with a constant variance σ2, the signal to noise ratio in the unit
(1× 1) squares comprising the rectangular sensing block reduces as the size of the sensing
region is increased with increasing distance between the agent and that region. Therefore
agents using this region sensing model must trade-off between sensing a wider area with
lower accuracy versus a highly accurate sensing action over a smaller region.
Cost model. Sensing actions for the agents are typically associated with different sources
of incurred costs. We consider the following two cost types: travel cost and sensing cost.
First, we consider that the agent travelling from location a to location b incurs a travel
time cost cd(a, b). For this, we assume a constant travelling speed and compute the time
taken to traverse the Euclidean distance between locations a and b. Second, we assume that
executing each sensing action at location b incurs a time cost cs(b). In our implementation,
we consider a constant value of cs. Therefore, T steps after starting from location x0

(corresponding to sensing action x0), an agent j executes actions
{
xjt

}T
t=1

and incurs a
total cost defined by

Cj(T ) =
T∑
t=1

(
cd

(
xjt−1, x

j
t

)
+ cs

)
.

Note that the cost-aware active search strategy may differ based on the relative per unit
costs for traveling or sensing: for example, if travelling per unit distance is much more
expensive than sensing, the agent might prefer sensing successive locations that are not too
far apart depending on the cumulative reward vs. cost trade-off.

In the multi-agent setting, we follow the same communication model outlined in Sec-
tion 1.1.2 in order to enable decentralized decision making with asynchronous inter-agent
communication.
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(a) (b) (c) (d)

Figure 3.1: Sensing model. (a) Active search with UAVs. ‘×’ indicate true targets.
Pyramids with shaded base indicate field of view (FOV) for each agent. (b), (c), (d)
Hierarchical pyramid region sensing actions of size 1× 1, 2× 2 and 4× 4 respectively in a
4× 4 search space.

3.3 Related Work

Previous studies have used various constraints and reductions to achieve resource efficient
adaptive search. Adaptive sensing applications in robotics typically reduce it to a planning
problem assuming full observability of the environment (Pěnička et al., 2019; Kent and
Chernova, 2020). Imposing a cost budget in such applications is modeled as constrained
path planning between the known start and goal locations. Unfortunately, this is in contrast
with the real world where the agent’s environment, the number of targets and their locations
may be unknown and the agent may have access only to noisy observations from sensing
actions. All these factors increase the difficulty of cost-aware active search.

Our active search formulation has close similarities with planning under uncertainty
using a Partially Observable Markov Decision Process (POMDP) (Kaelbling et al., 1998).
While computing exact optimal policies for POMDPs is generally intractable, they can
often be approximated using algorithms like Point-Based Value Iteration (PBVI) (Pineau
et al., 2003) or Monte Carlo methods. Monte Carlo Tree Search (MCTS) (Kocsis and
Szepesvári, 2006; Browne et al., 2012) is an online algorithm that combines tree search with
random sampling in a domain independent manner and has found success as a generic online
planning algorithm in large POMDPs (Silver and Veness, 2010). Prior work (Flaspohler
et al., 2019; Fischer and Tas, 2020) has proposed single agent MCTS algorithms for (single
objective) adaptive decision making using information theoretic reward in continuous state
and observation domain POMDPs.

Decentralized POMDP (Dec-POMDP) (Bernstein et al., 2002; Oliehoek et al., 2016)
is another framework for decentralized active information gathering using multiple agents
which is typically solved using offline, centralized planning followed by online, decentralized
execution (Lauri et al., 2020; Lauri and Oliehoek, 2020). Decentralized MCTS (Dec-MCTS)
algorithms have also been proposed for multi-robot active perception under a cost budget
(Sukkar et al., 2019; Best et al., 2020) but they typically rely on each agent optimizing
for a known global objective while maintaining a joint probability distribution over its own
belief as well as those of the other agents, that helps ensure inter-agent coordination.

Prior work in reinforcement learning and planning has typically focused on single ob-
jective optimization problems. In the multi-objective optimization (MOO) setting, some
algorithms consider a scalarized form of separate reward and cost value functions (Lee
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et al., 2018), but scalarization requires that the different objectives be weighted appropri-
ately and the policy has to be updated each time the scalarized objective changes. Several
multi-objective reinforcement learning (MORL) and planning algorithms have been pro-
posed that learn a single policy or multiple policies for different objectives, or predict a
pareto-front for the MOO problem. For a brief overview, pareto-optimization builds on
the idea that some solutions to the MOO problem are categorically worse than others and
are dominated by a set of pareto-optimal solution vectors forming a pareto front for the
optimization objective. Considering a set of D-dimensional vectors v ∈ V, we define the
following:

• v dominates v′ (denoted v ≻ v′) iff (1) ∀d ∈ {1, . . . , D}, [v]d ≥ [v′]d (2) ∃d ∈
{1, . . . , D}, [v]d > [v′]d

• v and v′ are incomparable (denoted v||v′) iff ∃d1, d2 ∈ {1, . . . , D} s.t. [v]d1 > [v′]d2
and [v]d2 < [v′]d2

• V∗ ⊆ V is the pareto-front of V iff (1)∀v ∈ V and ∀v′ ∈ V∗, v ̸≻ v′ (2) ∀v,v′ ∈ V∗,
v||v′.

Typically, each element of the vector v indicates an objective in the MOO problem and
the pareto-optimal set of vectors v∗ ∈ V∗ comprises feasible solutions that are pairwise
non-dominated or incomparable. Previously, Wang and Sebag (2012) introduced multi-
objective MCTS (MO-MCTS) for discovering global pareto-optimal decision sequences in
the search tree. Unfortunately, MO-MCTS is computationally expensive and unsuitable
for online planning. Further, Chen and Liu (2019) proposed the Pareto MCTS algorithm
for multi-objective informative path planning but they ignore uncertainty due to partial
observability in the search space. We refer to Hayes et al. (2022) for a comprehensive
overview of prior approaches to MORL.

Most of these methods are however limited to the single agent setting with full ob-
servability over the state space. In contrast, for multi-objective multi-agent active search,
learning to predict pareto-optimal actions would face the additional challenge of reason-
ing over the agent’s belief about the environment under partial observability, as well as
adapting to different team sizes and asynchronous inter-agent communication. Therefore
computing the entire pareto-optimal solution set may be intractable especially in non-
deterministic environments or with Monte Carlo methods that simulate rollouts over a
sequence of timesteps. Moreover, the reward from successive region sensing actions in our
active search setup follows adaptive submodularity (Golovin and Krause, 2011) and at any
timestep, the reward is also invariant to actions that are symmetric in terms of the agent’s
posterior belief updates. These distinctive characteristics of our problem setting compared
to prior work further motivate our study of cost-aware multi-agent active search.

3.3.1 Naïve approach and challenges

Given our previously described approach to multi-agent active search using Thompson
sampling and a sparse posterior belief update algorithm SPATS in Ghods et al. (2021b),
one might think of an extension to pareto-optimization over reward-cost vectors as an initial
approach to enabling cost-awareness in the agents. But this would still be limited to myopic
decision making which has been previously demonstrated to lead to worse performance
than lookahead based policies (Jiang et al., 2019). Following the MCTS-based algorithms,
a different approach could combine search-tree based belief-action space rollouts using the
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(a) (b)

Figure 3.2: Illustration of a search tree Tt with dmax = 2. b0 is the belief at the root node.
The action nodes (rectangles) indicate region sensing actions. The belief nodes (circles) are
shaded to indicate the evolving posterior belief in the search tree. (a) Top-down traversal for
episode m′. rLCB1 , c1, n1, rLCB2 , c2 and n2 are updated. (b) Bottom-up traversal for episode
m′. PV{1,2} are vectors, PF{1,2,3,4} are the pareto fronts at the respective belief and action
nodes. γ is the discount factor. ParetoFront() obtains the pareto-optimal vectors from an
input set. During backpropagation, only PV1, PF1 and PF3 are updated corresponding to
nodes encountered during top-down traversal.

UCT algorithm over lookahead expected reward-cost vectors for decision making. Note
that this method would lead to deterministic action selection in a multi-agent setting and
without a central controller, agents might end up choosing the same sensing action thereby
leading to redundant observations. Instead, our main insight is to leverage the decentralized
decision making ability of Thompson sampling with pareto-optimization over lookahead
reward-cost vectors estimated using finite horizon rollouts in MCTS.

3.4 CAST: Cost-Aware Active Search of Sparse Targets

Our proposed algorithm, CAST (Cost-aware Active Search of Sparse Targets) (Algorithm 3)
enables cost-aware lookahead multi-agent active search. It combines Thompson sampling
with Monte Carlo Tree Search for lookahead planning and multi-agent decision making,
along with Lower Confidence Bound (LCB) style pareto optimization to tradeoff expected
future reward with the associated costs.

3.4.1 Notation for CAST

Table 3.1 summarizes the various symbols and notations used in describing CAST.

3.4.2 Belief representation in CAST

Since the number of targets k and their locations are unknown, each agent must maintain
a belief or probability distribution over the targets in the search space. Assuming that
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Algorithm 3 CAST: Cost-Aware Active Search of Sparse Targets
1: procedure main ▷ Executed on each agent j
2: for t in {1, 2, . . . , T} do
3: xjt = SEARCH(Djt , x

j
t−1, b

j
t )

4: Execute xjt . Observe yjt . Djt+1 = Djt ∪ {xjt ,yjt }
5: Share {xjt ,yjt } asynchronously with teammates.
6: Update belief bjt+1 and estimate β̂(Djt+1).

7: procedure search(D, x, b)
8: Search tree T = ϕ
9: for each episode m′ ∈ {1 . . .m} do

10: Sample β̃ ∼ b. Discretize β̃ to get β̃m′ .
11: SIMULATE(β̃m′ ,D, x, 0)
12: A∗ =ParetoOptimalActionSet(T )
13: x∗ = argmaxx{x.r

LCB

x.cost |x ∈ A∗}
14: return x∗

15: procedure simulate(β̃,D, x, depth)
16: n(h)← n(h) + 1 ▷ Denote root (belief) node as h
17: if depth = dmax then return 0, 0 ▷ Reached leaf node
18: if ⌊n(h)αs⌋ > ⌊(n(h)− 1)αs⌋ then
19: add new child action node (h, a)
20: else select action node (h, a) using (3.9)
21: n(h, a)← n(h, a) + 1 ▷ a is the location corresponding to action a
22: o← aTβ, D′ := D ∪ {a,o}
23: if o was not previously observed at (h, a) then
24: append new node h′ due to o in branch hah′

25: rh′ = λ−(β,D′), ch′(x, a) = cd(x, a) + cs

26: Update rLCBh′ and gh′ =
[
rLCBh′ −ch′(x, a)

]T
27: r′, c′ = SIMULATE(β,D′, a, depth + 1)
28: r′′ = rh′ + γ × r′, c′′ = ch′ + c′

29: Q̄UCT (h, a) =
Q̄UCT (h,a)×(n(h,a)−1)+ r′′

c′′
n(h,a)

30: LCBParetoFrontUpdate(h′)
31: LCBParetoFrontUpdate((h, a))
32: return r′′, c′′
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Table 3.1: Symbols and notations in Section 3.4

Notation Definition

bt(β) Posterior belief over β at time step t
Djt Set of past actions and observations available to the agent j at time t
λ− One-step lookahead reward for a CAST agent
dmax Maximum lookahead depth of the search tree. Successive levels differ by

a depth of 0.5.
n Dimension of β
n(h) Number of times belief node h is visited in search tree Tt
n(h, a) Number of times action node (h, a) is visited in search tree Tt
x Position of an agent in the search space after executing sensing action x
a Position of an agent in the search space after executing sensing action a
cd(x, a) Time cost of agent travelling from position x to position a
cs Time cost of agent executing a sensing action x
γ Discount factor for computing multi-step lookahead reward over a finite

horizon
αs Progressive widening parameter
m Total number episodes of tree building in every decision making time

step
J Total number of agents performing active search

the targets are sparsely distributed in the environment, an agent’s belief over search vector
β ∈ Rn is modeled by a sparse prior b0:

b0 = p(β) = N (µ0,Σ0), (3.2)

where µ0 = 1
n ∗ 1n×1 and Σ0 = diag(τ ), with hyperparameter τ ∈ Rn. For any agent j,

given the measurement set Djt = {xji , y
j
i }t−1
i=1 we define Xj

t as the matrix [xj1
T
... xjt−1

T
]T

and yjt as the column vector [yj1 ... yjt−1]
T. From Eq. (3.1), the likelihood function is

p(yjt |Xj
t ,β) = N (Xj

t β, σ
2 ∗ It−1). Therefore, the posterior belief over β is

p(β|Djt , τ ) = N (µjβ(τ ),Σ
j
β(τ )) (3.3)

where

Σj
β(τ ) = ((Σ0)

−1 +
1

σ2
Xj
t

T
Xj
t )

−1 (3.4)

µjβ(τ ) = µ0 +
1

σ2
Σj

β(τ )X
j
t

T
(yjt −Xj

tµ0). (3.5)

The hyperparameter τ can be estimated using Expectation Maximization following Zhang
and Rao (2011) over p = 1, 2, . . . , nEM iterations as follows.

E-step: µ(p)
β = µβ(τ

(p−1)) Σ
(p)
β = Σβ(τ

(p−1)) (3.6)

M-step: ∀i = 1, . . . , n, [τ (p)]i = [Σ
(p)
β ]ii + ([µ

(p)
β ]i −

1

n
)2 (3.7)
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At time step t, after the agent executes action xjt and receives an observation yjt , we update
its estimate β̂(Djt ∪ {xjt , yjt }) using the MAP estimator given by:

β̂(Djt ∪ {xjt , yjt }) =
(
σ2 ∗Σ0

−1 +
[
Djt

T
xjt

] [Xj
t

xjt
T

] )−1
[
Xj
t

T
xjt

] [yjt
yjt

]
(3.8)

where Σ0 = diag(τ (nEM )).

3.4.3 Overview of CAST

We now describe our proposed algorithm CAST. At each time step t, on the basis of its
history Djt of past measurements, an agent j decides its next region sensing action xjt using
the SEARCH procedure of Algorithm 3. It starts with an empty tree T jt having just a root
node and gradually builds it up over m episodes. We assume a maximum tree depth dmax.

The search tree has two types of nodes - belief nodes and action nodes. A belief node h
is identified by the history of actions and observations accumulated in reaching that node.
An action node (h, a) is identified by the action a taken at the immediately preceding belief
node h in the search tree. The root as well as the leaves are belief nodes.

Each episode m′ ∈ {1, . . . ,m} comprises the following:
1. Sampling : First, a posterior sample is drawn at the root node from the belief bjt =

p
(
β|Djt

)
and discretized into a binary vector βjm′,t ∈ {0, 1}n (Line 10).

2. Selection and Expansion: Starting at the root node, a child action node selection
policy (tree policy, described later) is applied at every belief node h in a top-down
depth-first traversal till a leaf node is reached. In order to prevent tree width explo-
sion with increasing size of the action space, the progressive widening parameter αs
(Line 18) (Coulom, 2007) determines when a new action node is added to the tree.
Arriving at any action node (h, a), the corresponding maximum likelihood observa-
tion o = aTβjm′,t is computed (Line 22) which helps transition to its child belief node
h′. The one-step reward λ−m′ for β = βjm′,t and associated execution cost is computed
at each belief node visited in m′ (Line 25). Every belief and action node in m′ also
updates the number of times it has been visited so far (Lines 16 and 21).

3. Backpropagation: Once the maximum depth dmax is reached, the lookahead rewards
and associated costs are backpropagated up from the leaf to each belief and action
node visited in m′ (Line 17). Each action node stores the discounted cumulative
reward per unit cost averaged over n(h, a) simulations in the subtree rooted at that
node (Line 29). Further, each belief and action node builds a reward-cost pareto front
(Lines 30 and 31) using the backed up values from their respective subtrees which is
utilized in deciding xt after m episodes (Line 12).

Reward computation in CAST.

Our proposed formulation of active search for recovering the true search vector β is closely
related to the parameter estimation problem in active learning. Kandasamy et al. (2019)
proposed the Myopic Posterior Sampling (MPS) objective which selects actions that max-
imally reduce mean squared error between a posterior sample and the one-step lookahead
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(myopic) estimate. In other words, MPS chooses xjt that maximizes

E
yj
t |x

j
t ,β̃

j
t

[
λ
(
β̃jt ,D

j
t ∪
{
xjt ,y

j
t

})]
= E

yj
t |x

j
t ,β̃

j
t

[
−
∥∥∥β̃jt − β̂jt+1

∥∥∥2
2

]

where β̃jt ∼ bjt and β̂jt+1 is the MAP estimate

β̂jt+1 =

(
σ2 ∗Σ0

−1 +
[
Xj
t

T
xjt

][Xj
t

xjt
T

])−1[
Xj
t

T
xjt

][Y j
t

yjt

]

where
{
Xj
t ,Y

j
t

}
constitute the measurements in Djt . Essentially, λ

(
β̃jt ,D

j
t ∪
{
xjt ,y

j
t

})
is

designed so that the agent will choose xjt to keep exploring the search space as long as there
is uncertainty in the posterior samples β̃jt . Simultaneously, the posterior belief distribution
will contain uncertainty as long as there are unexplored or less explored locations in the
search space.

In this setting, we note that λ
(
β̃jt ,D

j
t ∪
{
xjt ,y

j
t

})
≤ 0, therefore if we simply extend

the MPS reward over multiple lookahead steps and try to maximize the value of cumulative
discounted reward divided by total incurred cost, it would erroneously favor costlier actions
for the same reward. Instead, we propose using

λ−
(
β̃jt ,D

j
t ∪
{
xjt ,y

j
t

})
= max

{
0,
∥∥∥β̃jt − β̂jt

∥∥∥2
2
−
∥∥∥β̃jt − β̂jt+1

∥∥∥2
2

}
as the one-step lookahead reward (Line 25). We design λ− to encourage information gath-
ering by favoring actions xt that reduce the uncertainty in the posterior sample β̃jt over
consecutive time steps. Additionally, λ− ≥ 0. Therefore, we can compute the u-step looka-
head reward Ru

(
xt, β̃

j
t

)
over the action sequence xt:t+u as the γ-discounted expected sum

of λ− over u steps.

Ru
(
xt, β̃

j
t

)
= Eyt:t+u

[
u∑

δt=1

γδt−1λ−
(
β̃jt ,D

j
t+δt

)]

We observe that Ru
(
·, β̃jt

)
is dependent on the posterior sample β̃jt . Particularly,

λ−
(
β̃jt ,D

j
t+1

)
is higher for sensing actions xt that identify the non-zero support elements of

the vector β̃jt . Moreover, maximizing Ru
(
xt, β̃

j
t

)
over all sequences xt:t+u for a sampled β̃jt

would exacerbate this problem by choosing a series of point-sensing actions that identify the
non-zero support of the particular sample. Section 8.2 of Russo et al. (2017) also highlights
this drawback of employing TS based exploration in active learning problems that require
a careful assessment of the information gained from actions. In order to overcome these
challenges, we propose generalizing the posterior sampling step to a sample size greater
than one and combine the information from these samples using confidence bounds over λ−

to evaluate the corresponding sensing actions (described later).

39



Tree policy.

UCT (Upper Confidence Bound applied to trees) (Kocsis and Szepesvári, 2006) is the tree
policy used in most MCTS implementations to balance exploration-exploitation in building
the search tree. UCT exploits action nodes based on their lookahead reward estimates
averaged over past episodes but does not account for the inter-episode variance in such
rewards. Particularly in our setting, the lookahead reward at any action node in an episode
m′ depends on the posterior sample βjm′ drawn at the root node and this stochasticity leads
to sample variance especially when the particular action node has been visited in only a few
episodes. We can account for this variance using the UCB-tuned policy (Audibert et al.,
2006) to guide action node selection. Separately, Shah et al. (2020) formalize a correction to
the UCT formula in an MDP framework replacing its logarithmic exploration term with an
appropriate polynomial. We extend it to our tree policy in CAST, called CAST-UCT (3.9),
by combining it with UCB-tuned to balance exploration with exploitation while building
the search tree in our partially observable state space. Specifically, CAST-UCT chooses

a∗ = argmax
a

Q(h, a) +

√
2σh,a

√
n(h)

n(h, a)
+

16
√
n(h)

3n(h, a)
. (3.9)

σ2h,a is the variance of the terms averaged in Q(h, a) (Line 29).

Pareto front construction with confidence bounds.

During the selection and expansion phase in any episode m′, the one-step lookahead reward
λ−m′ is computed at each visited belief node h (Line 25). We note that λ−m′ depends on
the posterior sample βm′ drawn for that episode. Assuming that a belief node h is visited
in n(h) episodes so far while building the search tree Tt, we account for the stochasticity
in the computed λ− by maintaining the Lower Confidence Bound (LCB) of these rewards
(denoted rLCBh ) using the Student’s t-distribution to estimate a 95% confidence interval
(Line 26). Denoting the cost of executing the action that transitions into the belief node
h as ch (Line 25), we define a LCB based immediate (one-step lookahead) reward-cost
vector at h, gh =

[
rLCBh −ch

]T which is essential to our multi-objective decision making
as described next. Fig. 3.2a highlights, in blue, these variables updated during the selection
and expansion phase in one episode.

Next, we compute the pareto front over the multi-step lookahead reward-cost vectors at
tree nodes visited during the backpropagation phase in episode m′. Fig. 3.2b illustrates this
process. Note that the search tree depth at the leaf nodes is dmax and consecutive action
and belief nodes differ in depth by 0.5. The lookahead reward-cost vector at the action
node at depth dmax − 0.5 is the weighted average of the reward-cost vectors ghℓ of all its
leaves hℓ, weights being in proportion of their visits. Next, the belief node at depth dmax−1
builds a pareto front from the lookahead reward-cost vectors of all its children action nodes.
It then takes a discounted sum of its immediate reward-cost vector with this pareto front
to build its lookahead reward-cost vector set since the pareto front may comprise multiple
non-dominated pareto-optimal vectors.

Repeating these steps in episode m′ all the way up to the root node, we alternate
between the following: 1) every action node builds its lookahead reward-cost vector set as
the pareto front computed from the weighted average of the lookahead vectors of its children
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belief nodes 2) every belief node builds its lookahead reward-cost vector set by taking the
discounted sum of its immediate reward-cost vector with the pareto front obtained from
its children action nodes. Note that all reward-cost vectors use the LCB of the rewards.
Therefore, at the end of m episodes, each child action node of the root has an LCB based
pareto front of lookahead reward-cost vectors. A∗

t (Line 12) is the pareto front at the
root node comprising the non-dominated lookahead reward-cost vectors among its children
action nodes. Finally, the agent selects the action node at the root having the maximum
value of reward per unit cost among its vectors in A∗

t (Line 13). This completes the agent’s
decision making step at time t.
Remark 1. In summary, posterior sampling based lookahead planning enables decentralized
and asynchronous multi-agent decision making in CAST so that each agent can select and
execute region sensing actions using its current posterior belief, which is updated with its
own previous measurements and those received from other agents. Additionally, LCB based
pareto front construction helps select actions taking into account the sample variability in
multi-step reward-cost trade-off computation.

3.5 Experiments

We now evaluate CAST by comparing in simulation the total cost incurred during multi-
agent active search using cost-aware agents against the cost agnostic active search algo-
rithms SPATS (Ghods et al., 2021b) and RSI (Ma et al., 2017). SPATS is a TS based
algorithm for asynchronous multi-agent active search, whereas RSI chooses sensing actions
that maximize its information gain. We also consider sequential point sensing (PS) as a
baseline for exhaustive coverage. Next we briefly review their key features.

3.5.1 Baselines

Region Sensing Index (RSI) (Ma et al., 2017) is a single agent myopic active search
algorithm wherein at any time step t, the agent selects the region sensing action xt which
would maximize the mutual information between the resulting observation yt and the search
vector β i.e.

xt = argmax
x

I(β;y|x,D1
t ). (3.10)

The mutual information I is computed using the posterior distribution

p(β|D1
t ) = b0

t−1∏
t′=1

p(yt′ |xt′ ,β)

with a k-sparse uniform prior b0, assuming k is known to the agent. Unfortunately, com-
puting I is cumbersome for sparsity k > 1 and RSI addresses this by iteratively identifying
the most likely target locations from its belief assuming k = 1 at each iteration.

Sparse Parallel Asynchronous Thompson Sampling (SPATS) (Ghods et al., 2021b)
is a multi-agent decentralized and asynchronous active search algorithm which uses Thomp-
son sampling (TS) to determine the next sensing action, i.e.

xjt = argmax
x

Ey|x,β̃[−∥β̃ − β̂(Djt ∪ {x,y})∥22] (3.11)
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where β̃ is a sample drawn from the posterior p(β|Djt ) which is a normal distribution
assuming a block sparse prior. Unfortunately, SPATS is myopic in nature and relies on a
carefully tuned block length reduction schedule in its posterior belief update to overcome
the limitations of purely TS based exploration strategy in active search.

Sequential Point Sensing (PS) is an exhaustive coverage baseline where an agent starts
from one corner on the grid and traverses every grid cell sequentially, executing point sensing
actions to cover the entire search space. In the multi-agent case, every agent follows the
same trajectory, so the incurred cost is expected to increase with larger team sizes due to
repetitive sensing actions.
Remark 2. Our purpose in contrasting these baselines with CAST is to demonstrate the
benefit of an explicit cost-aware approach to multi-agent active search. To the best of our
knowledge, there are no other cost-aware baselines for active search that we could compare
to CAST. Moreover, pareto-optimality in multi-agent multi-objective decision making under
uncertainty is not a well studied setting, so comparison to such algorithms is not considered
given our proposed problem setup.

Simulation setup.

In our experiments, we focus on 2-dimensional (2D) search spaces discretized into square
grid cells of width 10m. An agent can move horizontally or vertically at a constant speed of
5m/s. Each sensing action incurs a fixed cost of cs seconds (s), in addition to the travel time
between sensing locations. We note that the cost-aware active search strategy may differ
depending on the relative magnitudes of per action sensing cost and per unit travel cost.
Hence, for each setting, we will vary cs ∈ {0s, 50s} to simulate high travel cost and high
sensing cost respectively. Throughout, any agent is allowed to consider only hierarchical
spatial pyramid sensing actions. Our goal is to estimate a k-sparse signal β by detecting
all the k targets with J agents.

The search vector β is generated as a randomly uniform k-sparse vector in the search
space. The agents are unaware of k and the generative prior. We set the signal to noise
variance to 16. For CAST, we set γ = 0.97 and αs = 0.5. The hyperparameters in SPATS
and RSI follow Ghods et al. (2021b); Ma et al. (2017). We allow the agents to continue
searching the space until all targets have been recovered. Then, across 10 random trials
we measure the mean and standard error (s.e.) of the total cost incurred by the team in
recovering all k targets. We also plot the mean and s.e. of the full recovery rate achieved
as a function of the total cost incurred. Recall that the full recovery rate is defined as the
fraction of targets in β that are correctly identified. All agents start from the same location
at one corner of the search space, fixed across trials. However, the exact instantiation of
the search space varies across trials in terms of the position of the targets.
Remark 3. The size of the action space in our experiments is larger than what MCTS algo-
rithms commonly deal with, unless they are augmented with a neural policy network (Silver
et al., 2016, 2017). Having a continuous state vector gives rise to additional challenges
of exploding width at the belief nodes, making the tree too shallow to be useful and may
cause collapse of belief representations resulting in overconfidence in the estimated policy.
Further, the added observation noise would exacerbate these challenges. To address these,
Section 3.5.4 outlines some of the implementation strategies for CAST in our setup.
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3.5.2 2D search space discretized into 8× 8 grid cells

Table 3.2 compares the total cost incurred in fully recovering β at 2 different sparsity rates
k ∈ {1, 3} with J = 4 agents in an 8× 8 search space. For CAST, we varied the tree depth
dmax ∈ {2, 3, 4} and the number of simulation episodes m ∈ {5, 7.5, 10, 20}× 104. Table 3.2
reports the results corresponding to the best performing dmax and m in each case. CAST-1
indicates the performance with one-step lookahead i.e. dmax = 1 over m = 20×104 episodes
to emphasize the importance of multi-step lookahead over a finite horizon in our cost-aware
algorithm. Fig. 3.3 plots the corresponding full recovery rate across trials as a function
of the total cost incurred. Each agent can choose from |A| = 85 region sensing actions
over successive time steps. We observe that CAST outperforms SPATS, RSI and PS by
incurring a lower total cost. RSI being information-greedy and modeling the assumption
k = 1 in its hypothesis space is at an advantage in the single target setting. The stochastic
nature of TS based active search in SPATS favours it in the multi-target setting when
sensing is more expensive than travelling. Exhaustive coverage in PS is comparable only in
a single target setting if travelling is expensive. But in cases that do not match their most
favorable scenarios, all of them exhibit poor cost efficiency. In contrast, CAST’s ability
to perform adaptive lookahead plannning together with posterior sampling helps it achieve
cost efficiency across single-target, multi-target and different cost scenarios.

Table 3.2: Total cost (s) (mean and s.e. over 10 trials) to achieve full recovery in an 8× 8
grid with J = 4 agents.

Algorithm k cs = 0s cs = 50s

CAST 1 93.10 (12.35) 1268.98 (255.76)
CAST-1 168.83 (12.40) 2125.62 (74.97)
SPATS 238.84 (39.42) 1570.91 (225.71)
RSI 124.24 (13.43) 1321.21 (124.18)
PS 186.61 (51.27) 4887.01 (1330.73)

CAST 3 147.65 (16.11) 2392.21 (142.16)
CAST-1 186.61 (8.13) 2678.65 (176.75)
SPATS 343.25 (44.69) 2454.76 (221.91)
RSI 233.12 (15.25) 2851.48 (182.40)
PS 368.93 (29.92) 9774.93 (843.40)

3.5.3 2D search space discretized into 8× 16 grid cells

Table 3.3 compares the total cost incurred in fully recovering β at 2 different target sparsity
rates k ∈ {1, 5} with J = 3 agents in an 8×16 search space. Fig. 3.4 plots the corresponding
full recovery rate across trials as a function of the total cost incurred. We fixed the tree
depth in CAST at dmax = 2 and the number of simulation episodes m = 105. Each agent
can choose from |A| = 170 region sensing actions over successive time steps. In almost all
the settings, CAST outperforms SPATS, RSI and PS by choosing cost-aware actions that
reduce its total incurred cost. When sensing is so expensive that traveling cost is negligible
(cs = 50s), especially in the single target setting, we observe that the information gain based
algorithm RSI is at an advantage compared to the shallow lookahead in CAST. But when
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Figure 3.3: Full recovery rate versus total cost incurred in seconds in a 8 × 8 grid with
J = 4 agents and k targets. Shaded regions indicate s.e.

Table 3.3: Total cost in seconds (mean and s.e. over 10 trials) to achieve full recovery in
an 8× 16 grid with J = 3 agents.

Algorithm k cs = 0s cs = 50s

CAST 1 110.09 (30.48) 2616.90 (213.31)
SPATS 551.74 (120.52) 1931.28 (211.27)
RSI 135.56 (9.96) 1166.69 (84.72)
PS 183.80 (83.04) 7383.20 (2146.24)

CAST 5 258.04 (16.55) 3705.41 (211.81)
SPATS 1010.94 (89.86) 5250.94 (442.07)
RSI 398.01 (8.99) 4243.57 (95.50)
PS 631.80 (34.71) 16472.80 (894.30)

travelling is expensive, even with a lookahead horizon of 2 actions, CAST enables better cost
efficiency than RSI. Moreover, exhaustive coverage in PS also incurs lower cost compared
to SPATS when travelling is expensive, further indicating the need for cost awareness in
active search.

3.5.4 Mitigating computational complexity in CAST

The computational complexity of CAST (Algorithm 3) increases with the maximum depth
of the search tree (dmax) and the size n of the search vector β ∈ Rn. For a larger n,
the size of the action space being O(n) (considering spatial hierarchical pyramid sensing
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Figure 3.4: Full recovery rate versus total cost incurred in seconds in a 8 × 16 grid with
J = 3. Shaded regions indicate s.e.

actions) implies that the tree policy as well as the new action node addition policy has to
evaluate a larger set of feasible actions at every belief node encountered during the selection
and expansion phase and this quickly becomes computationally expensive with increasing
n. Moreover, increasing nmax further exacerbates the time complexity since it expands
the space of lookahead action sequences and as a result, more episodes are required for
effective exploration within the search tree. Additionally, as the tree width increases with
completion of more episodes, it also leads to an increase in the pareto front computation and
update time at each tree node. In what follows, we describe two heuristic strategies that
we implemented to scale CAST to a 16× 16 search space (results shown in Section 3.5.5).

Sampling from actions. In order to select the new action node to be added to the
search tree (Line 19,Algorithm 3), we iterate over all feasible next actions at a belief node
h (denoting the set by Ah) and for each such action x ∈ Ah, we compute the change in
entropy of the belief distribution per unit immediate cost incurred if x were executed. The
action x ∈ Ah with the maximum value of this quantity is selected and the tree expands
to include the new action node (h, a). This strategy leads to more directed exploration
within the search space than simple random sampling from Ah. Unfortunately, it becomes
computationally expensive as the size of the action space increases. Therefore, we propose
sampling a subset Ash of size s from the feasible action pool (Ash ⊂ Ah) and select the action
x′ ∈ Ash with the maximum change in entropy of the belief distribution per unit immediate
incurred cost. This not only reduces the computational cost of CAST, it also introduces
additional stochasticity in the search tree building phase in the multi-agent setting.
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Pruning the tree. In contrast to the progressive widening strategy followed while adding
children action nodes at the interior belief nodes in the search tree Tt, we observed that
CAST performs better when throughout the m episodes, the root node has as its children
all the feasible action nodes at time step t. Although it helps our CAST-UCT tree policy
to balance exploration-exploitation with the knowledge of the entire feasible action set, it
would not be scalable in terms of the number of episodes needed as the size of the action
space increases. Therefore, we propose a pruning technique using which we can prune the
action nodes at the root level of Tt after a pre-determined number of simulation episodes
are completed. Note that the particular episodes when we prune the tree is a tunable
hyperparameter that also determines the cost-aware performance. In order to achieve this,
in the backpropagation phase of each episode, we additionally maintain the upper confidence
bound (UCB) based reward-cost pareto front using the backed up values. In any episode
m′, the 1-step lookahead reward λ− is computed at a belief node h. We maintain the UCB
(rUCBh ) of these rewards over n(h) episodes using the Student’s t-distribution to compute
a 95% confidence interval. ch is the immediate cost of executing the action that would
result in transitioning to belief node h. At the leaf node hℓ for episode m′, we define the
UCB based immediate reward-cost vector g

′
hℓ

=
[
rUCBhℓ

−chℓ
]T. To distinguish it from

the LCB based vector gh defined in Section 3.4, we will refer to g
′
h as our UCB pruning

vector. During backpropagation, at each tree node visited in m′, we update the UCB based
lookahead reward-cost pareto-front in the same way as described for the LCB in Section 3.4.
Assuming that Tt is to be pruned at the m′′-th episode, we remove all those child actions at
the root whose UCB based pareto-front is dominated by the LCB based pareto-front over
all actions at the root. This pruned Tt is then used over subsequent simulation episodes at
time t.

Following are experimental results in a 2D 16×16 search space following the implemen-
tation strategies outlined above for computational efficiency.

3.5.5 2D search space discretized into 16× 16 grid cells

Fig. 3.5 shows the mean and s.e. of the full recovery rate versus total cost incurred over 10
trials with J agents looking for k = 5 targets in a 16× 16 search space. We vary the team
size J ∈ {4, 8, 12}. Table 3.4 indicates the corresponding mean and s.e. of the total cost to
correctly detect all targets. CAST simulates m = 25000 episodes with a lookahead horizon
of 2 actions (dmax = 2). Each agent can choose from |A| = 341 region sensing actions over
successive time steps.

We observe that CAST outperforms SPATS, RSI and PS, incurring a lower cost and a
higher full recovery rate across different team sizes and cost scenarios. RSI is information
greedy and deterministic in its decision making, so all agents choose the same actions lead-
ing to an increasing total cost with larger team sizes. On the other hand, the stochastic
nature of TS based active search in SPATS is suited to the asynchronous and decentral-
ized multi-agent setup and becomes competitive especially when sensing actions are more
expensive than travelling (cs = 50s) which aligns best with the objective of active informa-
tion gathering. Exhaustive coverage in PS is comparable only with a smaller team size in
case when travelling is expensive (J = 4, cs = 0s) but outperforms SPATS in that setting,
showing the need for cost-awareness in active search. Unfortunately in cases that do not
match their most favorable scenarios, all of these algorithms exhibit poor cost efficiency. In
contrast, the cost-aware agents using CAST’s posterior sampling based lookahead pareto-
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Figure 3.5: Full recovery rate versus total cost incurred in seconds in a 16× 16 grid with J
agents, k = 5 targets. Shaded regions indicate standard error over 10 trials. Compared to
baselines, CAST achieves a full recovery rate of 1 at a lower total cost, both when traveling
is costlier than sensing (cs = 0s) and when sensing is more expensive (cs = 50s).
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Table 3.4: Total cost (mean and s.e. over 10 trials) to achieve full recovery in a 16 × 16
grid with J agents, k = 5 targets. CAST outperforms all other baselines for different team
sizes and different relative costs for travelling and sensing.

Algorithm J cs = 0s cs = 50s

CAST 4 655.9 (39.4) 6852.3 (314.1)
SPATS 2988.8 (285.6) 12563.8 (1132.7)
RSI 797.4 (37.2) 6862.4 (252.8)
PS 1654.1 (64.4) 42753.3 (1742.6)

CAST 8 827.0 (48.4) 9529.7 (350.6)
SPATS 2482.3 (255.7) 10242.3 (1033.6)
RSI 1455.5 (59.8) 12815.5 (513.6)
PS 3414.9 (143.7) 88839.9 (3735.3)

CAST 12 991.6 (39.6) 7647.59 (445.4)
SPATS 2699.2 (240.1) 10764.2 (948.8)
RSI 2118.9 (71.0) 19023.9 (551.1)
PS 4827.0 (167.4) 125582.0 (4352.2)

optimal planning and stochastic decision making are able to achieve cost efficiency across
different cost scenarios with teams of varying sizes.

We also evaluate the robustness of CAST by comparing the total cost incurred to
correctly identify all targets as the number of targets increases in the search space. Table 3.5
and Fig. 3.6 show that CAST not only outperforms all others across multi-target and
cost scenarios, additionally the total cost incurred is hardly affected by k since CAST
enables cost awareness through decentralized decision making independent of team size J
and sparsity rate k. In contrast, SPATS being myopic in nature exhibits more randomness in
the actions selected, whereas RSI approximates its mutual information objective assuming
k = 1, thereby requiring more sensing actions to recover all targets as k increases.
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Figure 3.6: Total cost incurred versus number of targets k ∈ {4, 5, 8, 16} in a 16× 16 grid
with J = 8 agents. Baseline PS is excluded on the right for better visualization.

3.5.6 Comparison with myopic cost-aware variations of SPATS

As discussed earlier in Section 3.5.1, to the best of our knowledge, there are no existing
cost-aware active search baselines to compare against CAST. We therefore modify the
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Table 3.5: Total cost (mean and s.e. over 5 trials) to achieve full recovery in a 16 × 16
grid with J = 8 agents, k targets. For different number of targets, CAST incurs similar
total cost for the same grid size and teamsize. CAST also incurs a lower cost compared to
baselines.

Algorithm k cs = 0s cs = 50s

CAST 4 740.7 (26.5) 8130.4 (293.1)
SPATS 3404.4 (432.9) 13574.4 (1792.2)
RSI 1262.8 (73.4) 10242.8 (685.8)
PS 2698.3 (438.6) 70208.3 (11404.6)

CAST 8 735.3 (57.9) 9157.0 (476.7)
SPATS 3217.2 (461.5) 13267.2 (1737.3)
RSI 1968.4 (72.2) 18398.4 (500.3)
PS 3339.9 (151.7) 86889.9 (3945.2)

CAST 16 843.9 (29.9) 8880.8 (316.2)
SPATS 3032.7 (54.3) 13212.7 (321.0)
RSI 2734.4 (58.9) 30524.4 (871.3)
PS 3559.1 (83.7) 92589.1 (2176.8)

cost-agnostic myopic active search baseline SPATS (Ghods et al., 2021b) to incorporate
cost-awareness in two different ways.

SPATS-scalarize. First, we consider a scalarized cost-aware version of the SPATS deci-
sion making objective:

xjt = argmax
x

λrEy|x,β̃[−∥β̃ − β̂(Djt ∪ {x, y})∥22]− λdcd(xjt−1, x)− λscs (3.12)

Since the sensing cost cs is a constant for all actions, it does not affect the action selected for
different cs. Instead, the agent will optimize only for the reward vs. travel cost, weighted by
the reward coefficient λr and the travel cost coefficient λd. λs is the sensing cost coefficient,
such that λr + λd + λs = 1.

SPATS-pareto. Second, we consider a pareto-optimization approach to augment the
myopic decision making step of a SPATS agent. For each feasible action x, the agent

constructs a myopic reward-cost vector:

[
Ey|x,β̃[−∥β̃ − β̂(Djt ∪ {x, y})∥22]

−(cd(xjt−1, x) + cs)

]
. The pareto-

front over such reward-cost vectors would exclude all actions with a lower reward and a
higher cost. Then the agent selects the action from the pareto-front having the maximum
one-step reward per unit cost:

xjt = argmax
x

Ey|x,β̃[−∥β̃ − β̂(Djt ∪ {x, y})∥22]
cd(x

j
t−1, x) + cs

. (3.13)

Unlike SPATS-scalarize, SPATS-pareto does not depend on the chosen λd.
In Table 3.6 and Table 3.7, we observe that CAST still outperforms these modified

cost-aware myopic baselines, SPATS-scalarize and SPATS-pareto, across different number
of targets, different team sizes and different cost scenarios. For SPATS-scalarize, when
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cs=0s, grid search over λd indicates minimum cost incurred for λd=0.5, so we set λd=0.5,
λr=0.5 in our experiments. λs does not affect the action selected, so we set λs=0. When
cs=50s, SPATS-scalarize with λd=0.5 selects the same actions as when cs=0s, thus incur-
ring a noticeably higher cost compared to cost-agnostic SPATS with λd=0,λs=0. SPATS-
pareto selects the action from its pareto-front maximizing the one-step reward per unit
cost (Eq. (3.13)), which as we discussed in Section 3.4 would prefer actions with a higher
incurred cost for the same reward. As a result, SPATS-scalarize outperforms SPATS-pareto
in the same myopic decision making setting. In contrast, lookahead planning in CAST en-
ables cost-aware action selection and incurs a lower cumulative cost than these baselines.
CAST shows noticeable performance gain especially across different team sizes (J) with a
higher sensing cost (cs = 50s) or more number of targets (k) in the search space. These
observations therefore imply the need for careful consideration of how cost-awareness is
incorporated in multi-agent active search and validate our proposed new algorithm CAST
in this setting.

Table 3.6: Total cost (mean and s.e. over 10 trials) to achieve full recovery in a 16 × 16
grid with J agents, k = 5 targets. CAST outperforms the myopic cost-aware modifications
of SPATS across different team sizes and cost scenarios.

Algorithm J cs = 0s cs = 50s

CAST 4 655.9 (39.4) 6852.3 (314.1)
SPATS-scalarize 673.5 (61.5) 13853.6 (845.4)
SPATS-pareto 693.7 (33.5) 23470.7 (1341.9)

CAST 8 827.0 (48.4) 9529.7 (350.6)
SPATS-scalarize 851.2 (53.4) 16296.8 (956.8)
SPATS-pareto 1018.0 (74.8) 26783.4 (1392.1)

CAST 12 991.6 (39.6) 7647.6 (445.4)
SPATS-scalarize 1001.2 (64.7) 18598.6 (1067.6)
SPATS-pareto 1122.4 (146.6) 32472.2 (1487.6)

3.5.7 Visualizing cost-aware and cost-agnostic agent behavior

For further visualization, we refer to the webpage here1 demonstrating the multi-agent
active search behavior of CAST, SPATS and RSI with J=4 agents and k=3 targets,
cs={0s, 50s} in an 8×8 search space. CAST shows a distinct change in the nature of sensing
actions due to its cost-awareness. When sensing is expensive (cs = 50s), the CAST agents
initially prefer broader sensing actions to quickly adjust their belief regarding possible tar-
get positions in the search space; whereas when traveling is more expensive (cs = 0s),
the CAST agents are more conservative in their movement and tend to gradually make
their way through the search space with smaller region sensing actions that cover positions
adjacent to their current location.

1https://sites.google.com/view/cast-multiagent/home
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Table 3.7: Total cost (mean and s.e. over 5 trials) to achieve full recovery in a 16× 16 grid
with J = 8 agents, k targets. CAST outperforms the myopic cost-aware modifications of
SPATS for different number of targets in the search space, with increasing cost-efficiency
in comparison for higher k.

Algorithm k cs = 0s cs = 50s

CAST 4 740.7 (26.5) 8130.4 (293.1)
SPATS-scalarize 777.5 (66.7) 15522.7 (1563.5)
SPATS-pareto 909.0 (78.5) 26157.2 (1805.2)

CAST 8 735.3 (57.9) 9157.0 (476.7)
SPATS-scalarize 884.8 (67.5) 19669.7 (944.2)
SPATS-pareto 1010.4 (55.9) 29126.9 (752.3)

CAST 16 843.9 (29.9) 8880.8 (316.2)
SPATS-scalarize 976.6 (44.6) 21328.7 (918.3)
SPATS-pareto 1049.6 (49.5) 29651.4 (870.2)
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Part II

Uncertainty awareness in decision
making
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Extracting necessary information from noisy data is a central theme and of crucial
importance in almost all of science and engineering. In this part of the thesis, we focus
on the challenges due to observation noise in multi-agent active search. Specifically, in
Chapter 4 we consider observation noise due to different sensors providing detection and
location measurements to the agents, which requires joint modeling of epistemic uncertainty
in the agent’s posterior belief. Next, in Chapter 5 we consider observation noise when
targets are moving in the environment, which requires the agents to appropriately model
uncertainty over the target search space for adaptive search and tracking.
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4 | Observation noise in
target detection and location
measurements

4.1 Introduction

Agents that are tasked with searching for targets in an unknown environment observe
their surroundings with sensors like RGB-D cameras, Lidar, Sonar, etc. But observations
received by agents are not always accurate, rather the sensor measurements are corrupted
by noise. A part of this observation noise can be inherent to the sensor being used and
accounts for aleatoric uncertainty in posterior inference, whereas a part of it can be i.i.d
random. This epistemic uncertainty arising from the agent’s noisy observations due to the
latter (i.e. random noise) can be reduced with more observations of the same surroundings
or regions. This implicitly assumes that the targets and other objects in the surroundings
being observed are stationary, so subsequent observations only differ in terms of the i.i.d
random added noise. In contrast, if there are targets moving in the environment, the
agent must also account for the uncertainty in its posterior belief arising from such non-
stationarity in its surroundings. Since the agents in our active search setup have partial
observability over the search space, it further exacerbates the challenges in target recovery
from observations with different sources of observation noise.

Prior work studying the problem of state estimation from noisy observations can be
categorized into two domains focusing respectively on target location and detection uncer-
tainty, typically independent of each other. Due to noise in the sensing setup, an agent
may mistake something that is not a target to be an object of interest (OOI) or vice versa,
thereby giving rise to detection uncertainty. On the other hand, errors in the depth sensor
measurements may cause an agent to perceive OOIs to be located nearer to or farther from
itself than they actually are, leading to uncertainty about the target’s true location. In this
chapter, we instead propose an approach for observation noise-aware posterior inference
and decentralized asynchronous decision making that can jointly account for uncertainty in
both target detection and location.

4.2 Problem Formulation

Consider multiple ground robots searching a space to locate some OOIs (Fig. 4.1a). Each
robot moves around and observes certain regions of the search space by taking pictures to
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Figure 4.1: Problem setup. (a) Multiple agents sense different parts of the environment
looking for OOIs. True OOIs are crossed in black. Targets detected by the agent in its field
of view are crossed in red. (b) Due to location uncertainty, the observed depth of the true
OOI (“× ” in black) is shifted towards the agent, to the grid cell marked “× ” in red. (c)
An object detector becomes less confident about positive (1) as well as negative (0) labels
as its distance to the object increases (Eq. (4.1)). (d) Illustration of the depth dependant
variance levels for target detection in the FOV of a ground robot in our setup.
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detect OOIs and measuring their distances from its current location. We assume the robots
can localize themselves accurately. The colored cells in Fig. 4.1a illustrate each robot’s
sensing action using a camera with a 90° field of view (FOV). Each robot independently
decides its next sensing action given its current belief about OOIs in the search space.

Once a robot senses a region, it obtains information about both the presence (detection)
and corresponding depth (location) of objects in its FOV. For example, RGB-D sensors
coupled with an object detector like YOLOv3 (Redmon and Farhadi, 2018) can be used
to extract such information. The object detector identifies OOIs with a confidence score
that varies with distance from the camera. Objects farther away from the camera usually
have a lower probability of being correctly identified. This gives rise to target detection
uncertainty in the robot’s observation. Further, the depth sensor is prone to error in the
measured distance to the OOI. This leads to target location uncertainty in the robot’s
observation. Our objective is to account for both the detection and location uncertainty in
our observation model and utilize it to make improved active sensing decisions.

4.2.1 Ground truth model for target detection uncertainty

Let ξi ∈ {0, 1} denote the output of an object detector with perfect detection ability which
labels an object i at a distance li away from the camera accurately with either a ‘0’ (not
OOI) or a ‘1’ (OOI). Typically, the confidence score of the object detector gradually declines
as a function of the OOI’s distance from the camera. Prior work in Ghods et al. (2021a)
has characterized this behavior using a depth aware detection model where the output yi
of an imperfect object detector is the true object label modified by an additive one-sided
Gaussian noise:

yi = ξi + ndi , with ndi ∼ N+(0, σ2i (li)). (4.1)

Therefore, yi ∈ [0, 1] follows a one-sided normal distribution centered at ξi=0 for a true
negative and ξi=1 for a true positive label. The variance σ2i (·) is an increasing function
of li (Fig. 4.1d). So the probability of a false negative or a false positive OOI detection
increases at distances farther away from the camera. This is illustrated in Fig. 4.1c where
the horizontal axis indicates the detector’s yi and the curves indicate the varying probability
densities at different object distances li.

4.2.2 Ground truth model for target location uncertainty

Let ζi ∈ R denote the measurement from an accurate depth sensor of its true distance to an
object i. Real depth measurements have error along the agent’s line of sight. Prior work in
Belhedi et al. (2012) has characterized the error as a Gaussian distribution. In our setup,
we model the target location uncertainty as additive Gaussian noise so that

yi = ζi + nℓi , with nℓi ∼ N (0, r2u) (4.2)

where yi ∈ R is the measurement from an imperfect depth sensor and ru parameterizes the
uncertainty of such measurements along the agent’s line of sight. As depicted in Fig. 4.1b,
the measured depth follows a normal probability distribution centered on the true target
location.
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4.2.3 Sensing model

We consider a gridded search environment described by a sparse matrix which we want
to recover through multi-agent active search. M is the total number of grid cells. β ∈
{0, 1}M×1 denotes the flattened vector representation of the environment having k non-
zero entries at the true locations of the k OOIs. Xt ∈ {0, 1}Qt×M is the sensing action at
time t. Qt is the number of grid cells covered by the robot’s FOV under Xt. Each row of
Xt is a one hot vector {0, 1}1×M indicating the position of one of the sensed grid cells in
the robot’s FOV. Xtβ ∈ {0, 1}Qt×1 is the ground truth observation due to sensing action
Xt. yt ∈ RQt×1 is the agent’s observation vector indicating the noisy sensor measurement
from executing Xt. The sensing model is

yt︸︷︷︸
noisy measurement

= Xtβ︸︷︷︸
ground truth observation

+ nt︸︷︷︸
measurement noise

(4.3)

where nt ∈ RQt×1 is composed of the noise from (4.1), (4.2).
Remark 1. Note that the model described above is what our simulator considers to be
ground truth. Our algorithm and its agents are neither aware of the number of targets nor
their true locations, and only receive the measurement (Xt,yt).

4.2.4 Communication

We assume that communication, although unreliable, will be available sometimes and the
agents should communicate when possible. The agents share their measurements asyn-
chronously, and do not wait on inter-agent communications. Further, the set of available
past measurements need not remain consistent across agents due to communication unreli-
ability.
Remark 2. Since our goal is uncertainty-aware active sensing and not planning a con-
tinuous path, we only require a coarse discretization of our environment. For example, in
Section 4.7, we cover a 250m×250m region with square grid cells of size 15m. We also
assume that individual OOIs occupy an entire grid cell and the location uncertainty from
the depth sensor only affects which cell was determined to have the OOI, not the OOI’s
placement within the cell.

To recover the search vector β by actively identifying all the OOIs, at each time t, an
agent j chooses the best sensing action Xj

t based on its belief about the OOIs given the
measurements available thus far in its measurement set Dj

t . Assuming that all the agents
collectively obtain T measurements, our objective is to correctly estimate the sparse vector
β with as few measurements T as possible. For a single agent, our problem reduces to
sequential decision making with the measurement set D1

t = {(X1,y1), . . . , (Xt−1,yt−1)}
available to the agent at time t. In the multi-agent setting, following our communica-
tion constraints, we use a decentralized and asynchronous parallel approach with agents
independently deciding individual sensing actions (Kandasamy et al., 2018; Ghods et al.,
2021a,b).

4.3 Related Work

Target location uncertainty. The issue of location uncertainty has been studied by the
robotics community, particularly in tasks such as path planning, localization and tracking
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(Caglioti et al., 2006; Stroupe et al., 2001). Such problems are typically approached using
filtering algorithms that can recursively estimate the robot or target state and the associated
location uncertainty, while abstracting away the detection uncertainty by thresholding the
detection probability to zero or one. Sensor measurements from RGB cameras and depth
sensors used in typical robotic tasks like simultaneous localization and mapping (SLAM)
and navigation often introduce data association error due to pose mismatch between the
corresponding sensors (Basso et al., 2018). Further, depth images suffer from position de-
pendent geometric distortions and distance dependent measurement bias (Belhedi et al.,
2012). This also introduces location uncertainty in the sensor measurements. As a result
several sensor calibration algorithms have been proposed which mainly focus on param-
eterizing the error in the depth measurements and then learning those parameters from
carefully collected training data (Zhou and Koltun, 2014; Zuñiga-Noël et al., 2019; Chen
et al., 2019a; Miller et al., 2013; Basso et al., 2014). However such approaches typically
engineer away the need to account for detection uncertainty by using some predetermined
visual patterns in the collected dataset. Moreover, in contrast to our problem setup, they
do not focus on learning how to autonomously collect appropriate data for reducing the
location uncertainty in the sensor measurements.

Our goal of estimating the number and location of targets through sensing actions has
some similarities to the robotics problem of SLAM for mapping an unknown environment
while estimating a robot’s pose within it. Particularly, the data association problem in
SLAM is concerned with matching noisy sensor observations with map landmarks (land-
marks being identified can be thought as similar to recovering targets in active search) and
this problem setup has been studied extensively in the SLAM literature (Cadena et al.,
2016). Recently, Zhang et al. (2023) focused on this matching problem with an unknown
number of landmarks and unknown prior data association, and proposed a nested opti-
mization algorithm which iterates over the number of landmarks k and assuming a certain
k, optimizes the batch assignment of landmarks from noisy measurements. But their op-
timization method is only tractable assuming isotropic noise (a simpler noise model than
Section 4.2 and Section 4.4) and it was also not observed to be robust to increasing noise
levels. Moreover, there has been little focus on actively controlling the agent’s trajectory
for improved data association, or on decentralized multi-agent approaches for active SLAM
(Placed et al., 2023).

Target detection uncertainty. The domain of sparse signal recovery is primarily con-
cerned with the problem of choosing sensing actions in the face of detection uncertainty,
assuming that once the signal is detected then its location is accurate. Prior work in this
area has proposed algorithms that use principles from compressed sensing together with
constrained optimization to estimate the signal (Carmi et al., 2010; Needell and Vershynin,
2010). Ma et al. (2017) formulated this as an active search problem with realistic region
sensing actions and Igoe et al. (2022) proposed a reinforcement learning approach incor-
porating the detection uncertainty in the observations into a POMDP framework. Ghods
et al. (2021b,a) build on the former setup and go on to model detection uncertainty as a
function of the target’s distance from the sensing agent.

The discrete spatial search problem is also studied in search theory by considering
detection uncertainty through false positive detections in sensing individual cells (Kress
et al., 2008; Chung and Burdick, 2012; Cheng et al., 2019) but they do not relate the
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uncertainty with sensor capabilities and do not generalize to realistic region sensing actions.

Passive uncertainty modeling. The task of characterizing the uncertainty of detection
and location of objects in an image has also been extensively studied in computer vision
(Hall et al., 2020; Kampffmeyer et al., 2016; Gonzalez-Garcia et al., 2015; Caicedo and
Lazebnik, 2015; Wang et al., 2020). In contrast, our aim is to adaptively choose which
images to capture (i.e. decide where to sense and in which direction) by considering the
associated uncertainties so that the agents can physically locate the OOIs in a search space.

4.3.1 Naïve approach and challenges

In the context of the prior related work described above and our discussion of the multi-
agent active search setting so far, one might consider a preliminary approach to jointly
accounting for detection and location noise would be to simply plug-in the sensing model
from Eq. (4.3) to the SPATS algorithm (Chapter 2). Leaving aside the differences in
action space for UAVs in SPATS compared to the ground robots (Section 4.2), recall that
we assume a discretized search space, which would require carefully addressing how the
(continuous) location noise affects the observed target location. Moreover, the expectation-
maximization approach to posterior belief update in Ghods et al. (2021b) depends on a
tunable hyperparameter specific to the block-sparsity assumption which does not apply to
the ground robot’s action space. Keeping in mind these differences, we observed the need
for a novel approach to model the joint detection and location noise in this setting.

We now describe our approach to the multi-agent active search problem described in Sec-
tion 4.2 in two stages. First, in Section 4.4, we outline our inference procedure that agents
use to identify OOIs and estimate their locations given the set of available measurements
thus far. Next, in Section 4.6, we describe our decentralized and asynchronous multi-agent
decision making algorithm that utilizes the estimates from the proposed inference method.

4.4 UnIK: Uncertainty-aware Inference using Kalman filter

4.4.1 Belief representation

Following Section 4.2, we want to recover the ground truth search vector β by identifying all
the OOIs. Both the number of targets and their locations are unknown to the agents. We
therefore initialize each agent with a Gaussian prior over β, denoted by p0(β) = N (β̂0,P0).
Given the measurement set Djt available to the agent j at time t, we use a Kalman filter
(Kalman, 1960) to update its posterior belief p(β|Djt ) = N (β̂jt ,P

j
t ).

Kalman filter (KF) is a recursive linear state estimator that minimizes the mean squared
error between the predicted and true measurements (Kalman, 1960). It operates in two main
steps: prediction, where the belief state estimate is propagated forward using a dynamics
model, and update, where this predicted estimate is corrected based on the agent’s noisy
observations. KF assumes Gaussian observation noise and relies on covariance matrices to
balance uncertainty between the model and measurements. It is widely used in applications
like navigation, robotics, and signal processing where realtime state estimation is crucial.

In our problem setup, an agent j at time t maintains a belief over the search vector β
based on its measurements Djt . Note that the targets are static in this setting. Therefore,
we define the Kalman filter process model for our search vector β as βt = βt−1. The linear
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measurement model is zt = xtβt + νt, where the noise variable νt ∼ N (0,Σzt). Assuming
a uniform Gaussian prior over β, p0(β) = N

(
β̂0, P̂0

)
, Kalman filtering recursively updates

the belief pjt
(
β|Djt

)
= N

(
β̂t, P̂t

)
using the following alternate prediction and update steps.

Prediction: β̂−
t = β̂t−1, P̂

−
t = P̂t−1 (4.4)

Kalman gain: Kt = P̂−
t x

T
t (xtP̂

−
t x

T
t +Σzt + λtI)

−1 (4.5)

Update: β̂t = β̂−
t +Kt(yt − xtβ̂

−
t ) (4.6)

P̂t = (I−Ktxt)P̂
−
t (I−Ktxt)

T +KtΣztK
T
t (4.7)

Here λt is a regularization constant. As before, to recover all the OOIs, the agent’s MAP
belief mean estimate β̂ must identify the number and location of all targets in the unknown
search vector β.

4.4.2 Overview of UnIK

Our approach to jointly accounting for target detection and location uncertainty in noisy
sensor observations is based on suitably constructing the measurement noise covariance
matrix Σzt to update the posterior Kalman filter estimates (Eqs. (4.4) to (4.7)). First,
we initialize Σzt = diag

(
[σ2q (lq)]

Qt
q=1

)
to account for the OOI detection uncertainty in

the robot’s FOV using the distance dependent variance from Eq. (4.1). Next, the agent
estimates the possible OOI locations in its FOV by thresholding the noisy observation yt:
ythr,t = 1(yt >= cthr). For each possible OOI, the agent then determines its location
uncertainty field i.e. the grid cells in its FOV where this OOI might be truly located.

Following Fig. 4.2a, suppose ythr,t indicates an OOI in the position marked “ × ” in
red, whereas the OOI is actually located in the grid cell marked “ × ” in black. Along its
line of sight to the observed OOI location (“ × ” in red), the agent computes the location
uncertainty field using the radial uncertainty parameter ru (same as Eq. (4.2)) and an
angular uncertainty parameter θu shown in Fig. 4.2a. It will include all the grid cells
in the region bounded radially by [−ru, ru] around the observed OOI location within an
angular spread of [−θu, θu] relative to the line of sight to the agent. After that, the location
uncertainty field for each possible OOI index in ythr,t is used to compute the variance and
covariance due to location uncertainty in Σzt and we describe this next.

Table 4.1: Modeling the probability distribution for target location uncertainty in the
measurement model using the observed target location at q̃OOI = q3 and its uncertainty
field {q1, q2, q3, q4, q5}.

q̃OOI qOOI ϵℓt,qOOI

q3 q1 [ -1 0 1 0 0 · · · 0]T

q2 [ 0 -1 1 0 0 · · · 0]T

q3 [ 0 0 0 0 0 · · · 0]T

q4 [ 0 0 1 -1 0 · · · 0]T

q5 [ 0 0 1 0 -1 · · · 0]T
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(a) (b)

Figure 4.2: (a) Showing the location uncertainty field for an OOI detected in ythr,t at the
position marked “ × ” in red. It includes all grid cells in the region bounded radially by
[−ru, ru] around the observed OOI location within an angular spread of [−θu, θu] relative
to the line of sight to the agent. (b) Showing part of the additive noise vector due to target
location uncertainty in an agent’s observation (Eq. (4.3)) when an OOI is actually present
at q2 but observed at q3.

Using the computed location uncertainty field for an OOI at q̃OOI in its FOV, the agent
computes a probability function over the grid cells where the OOI could truly be located.
Referring to the observation noise due to location uncertainty ϵℓt in Eq. (4.2), we note that
in a discretized grid environment, it essentially results in swapping the OOI’s observed
location within a region around the true OOI location (Fig. 4.1b, Fig. 4.2b). This needs to
be captured in the measurement model for the agent’s KF. For example, following Fig. 4.2b,
if ythr,t indicates that an OOI is located at q̃OOI = q3 and its location uncertainty field
is {q1, q2, q3, q4, q5}, Table 4.1 shows the possible location swaps the agent reasons about
including the case where the OOI’s true location is also q3. In Table 4.1, q̃OOI is the
observed location, qOOI is the possible true location within the location uncertainty field
and ϵlt,qOOI

is the noise component due to location uncertainty that executes the position
swap between the true and observed OOI locations. The index with −1 indicates qOOI
and that with 1 indicates q̃OOI . After enumerating all feasible OOI position swaps in the
location uncertainty field, the agent updates the measurement noise covariance as Σq3,q3

zt +=
02× 1

5 +(1)2× (1− 1
5) and Σ

q1/2/4/5,q3
zt = Σ

q3,q1/2/4/5
zt += 1× (−1)× 1

5 +1×0× 3
5 +0×0× 1

5 .
This is repeated for all possible OOIs in the agent’s FOV. The constructed measurement
noise covariance Σzt is then used to update the agent’s KF with (xt,yt).

Algorithm 4 outlines our UnIK algorithm for target recovery from noisy observations
due to both detection and location uncertainty.

4.5 Experiments with UnIK

Our goal is to analyze the improvements using the inference method proposed in UnIK over
baselines that do not jointly account for both target location and detection uncertainty in
active search. We compare UnIK against two other inference methods: (1) NATS (Ghods
et al., 2021a), which only accounts for detection uncertainty and (2) LU, which is our
designed location uncertainty only baseline.
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Algorithm 4 UnIK (inference with random action selection)

1: Assume: Sensing model (4.3), sparse true state β
2: Set:Dj0 = ϕ, pj0(β) = N (β̂j0, P̂

j
0), β̂

j
0 =

1
n1n×1, P̂

j
0 = σ20I

3: for t in {1, . . . , T} do
4: Select xjt uniform randomly; observe yjt .
5: Update Djt = Djt−1 ∪ {(xjt ,yjt )}
6: Obtain yjthr,t = 1(yjt ≥ cthr)
7: Initialize Σzt to account for the target detection uncertainty in the current FOV
8: for each possible OOI in yjthr,t do ▷ Construct Σzt using yjthr,t
9: Obtain its location uncertainty field

10: Update Σzt to account for its location uncertainty
11: Estimate β̂jt , P̂

j
t using KF

4.5.1 Baselines

NATS (Ghods et al., 2021a) is a Thompson sampling based active search algorithm that
accounts for target detection uncertainty but does not consider location uncertainty. NATS
uses sparse Bayesian learning (SBL) (Tipping, 2001) to estimate β using the set of avail-
able measurements. The detection uncertainty is modeled as an increasing function of the
distance between the agent and the detected OOI. In order to ensure fair comparison, we
use the inference method of NATS with the same distance dependent detection uncertainty
model assumed for UnIK.

LU is our designed baseline inference algorithm that only accounts for the target’s location
uncertainty but not its detection uncertainty. For every observation yt received by an agent,
it is first thresholded to obtain ythr,t = (yt ≥ cLU ) where cLU is a parameter (constant).
Corresponding to each possible OOI location q in ythr,t, indicated by its non-zero indices,
we either initialize a Gaussian distribution N (q,Σq) centered at grid cell q or check to see
if there already exists a previously initialized Gaussian distribution N (q′,Σq′) subsuming
q with probability at least 95%. In the latter case, we update the already existing Gaussian
distribution using

q′′ = q′ +Σq′(Σq′ +Σq
zt)

−1(q − q′) (4.8)

Σq′′ = Σq′ −Σq′(Σq′ +Σq
zt)

−1Σq′ (4.9)

Note that q, q′ and q′′ are 2-dimensional vectors of x,y-coordinates. Correspondingly, Σq,
Σq′ and Σq′′ are 2 × 2 covariance matrices. We extract the target location uncertainty
at the position q (denoted σ2q,t,LU ) from the matrix Σzt constructed as described in Sec-
tion 4.4.2. Then, Σq

zt = σ2q,t,LU × I2. This helps ensure that LU uses the same target
location uncertainty model assumed for UnIK. Finally, LU estimates β̂t as the cumulative
probability density estimate over the search space due to all the Gaussian distributions.

4.5.2 Simulation setup

In the following experiments, we consider a 2-dimensional (2D) discretized search space
having J agents tasked with recovering the unknown search vector β which is randomly
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generated using a uniform sparse prior with k non-zero entries each with value 1. We assume
that agents are positioned at the centre of the grid cells they occupy and are free to move
in any direction in the search space. When positioned in a cell, an agent can look in one
of 4 possible directions: north, south, east or west to a maximum distance of 5 grid cells
ahead with a 90° FOV. The agents’ performance is measured using the full recovery rate.
The plots show mean values with shaded regions indicating standard error over multiple
trials, each trial differing only in the instantiation of the true position of the k OOIs in β.

4.5.3 2D search space discretized into 16× 16 grid cells

Fig. 4.3 illustrates the performance of UnIK compared to NATS and LU in a single agent
setting (J = 1) in a 16 × 16 search space, over 50 random trials. At each step, an action
is chosen uniformly at random and the agent receives the observation. The agent’s actions
and corresponding observations are the same across the three inference algorithms.
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Figure 4.3: (R) indicates uniformly random action selection. (a) Plot showing the full
recovery rate versus number of measurements for J = 1 agent in a 16 × 16 grid having
k = 5 targets. UnIK estimates the number and position of all targets with fewer
measurements. (b) Plot comparing the number of measurements needed by J = 1 agent
to fully recover all targets with increasing number of targets k ∈ {1, 5, 10, 15, 20, 25} in
a 16 × 16 search space. UnIK scales better i.e. shows a smaller increase in the
required number of measurements to achieve full recovery.

Fig. 4.3a shows the full recovery rate of an agent when there are k = 5 targets dis-
tributed in a 16 × 16 search space. Unlike NATS or LU, UnIK leverages the combined
target detection and location uncertainty modeling to detect all the OOIs with fewer mea-
surements. Fig. 4.3b further compares the scaling efficiency of the algorithms in terms of
number of measurements needed to achieve full recovery by varying the number of targets
k ∈ {1, 5, 10, 15, 20, 25}. With increasing k, NATS lacking the target location uncertainty
modeling requires an increasingly larger number of measurements compared to UnIK. On
the other hand, in the absence of target detection uncertainty modeling, LU’s performance
is sensitive to the detection threshold and declines faster, failing in all 50 trials to recover
all OOIs within T = 500 measurements for k > 5. In Fig. 4.3, LU achieved the best
performance at cLU = 2

3 for k = 1 and cLU = 3
4 for k = 5.
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4.6 TS-UnIK : Thompson sampling with UnIK

Following the discussion in Chapter 2, recall that parallelized asynchronous Thompson sam-
pling (TS) is an excellent candidate for a decentralized multi-agent algorithm (Kandasamy
et al., 2018; Ghods et al., 2021a,b). By using a posterior sample in the reward function,
TS enables multiple agents to independently choose distinct sensing actions that maximize
their respective rewards while incurring little additional regret compared to a centralized
planner. Therefore we adopt a TS approach for action selection and combine it with the
proposed inference method UnIK for a multi-agent active search algorithm that can recover
targets using noisy observations with both target detection and location uncertainty.

Next we describe our TS based reward formulation. At time t, an agent j having avail-
able measurements Djt−1 infers its posterior mean estimate β̂jt−1 and posterior covariance
matrix P̂j

t−1 using UnIK. It then draws a sample β̃jt ∼ N (β̂jt−1, P̂
j
t−1). Assuming β̃jt to

be the true search vector, the agent will prefer choosing an action xjt that will allow its
updated estimate β̂jt at time t to be as close as possible to β̃jt .

Objective. In particular, we want to maximize the reward function

R(β̃jt ,Djt−1,x
j
t ) =

E
zj
t |β̃

j
t ,x

j
t
[−||β̃jt − β̂jt ||22]

E
zj
t |β̃

j
t ,x

j
t
[||β̂jt ||22]

(4.10)

where zjt is the KF measurement variable. Note that β̂jt is a one-step lookahead estimate
assuming that xjt would result in an observation zjt following the KF measurement model
if βjt = β̃jt . The numerator favours actions xjt such that in expectation, the estimate
β̂jt is close to the assumed true state β̃jt . The denominator E

zj
t |β̃

j
t ,x

j
t
[||β̂jt ||22] is analogous

to the estimated strength of the signal, and since the numerator is non-positive, a larger
denominator will lead to an overall higher reward. Therefore, our formulated reward prefers
sensing actions that would maximally reduce the uncertainty in the agent’s current posterior
distribution.

Using β̂jt = β̂jt−1+Kj
t (z

j
t−xjt β̂jt−1) and zjt ∼ N (xjt β̃

j
t ,Σzj

t
), we can derive the following:

1. E
zj
t |β̃

j
t ,x

j
t
[−||β̃jt − β̂jt ||22] (4.11)

= E
zj
t |β̃

j
t ,x

j
t
[−||β̃jt − β̂jt−1 −Kj

t (z
j
t − xjt β̂

j
t−1)||22] (4.12)

= E
zj
t |β̃

j
t ,x

j
t
[−||β̃jt − β̂jt−1 +Kj

tx
j
t β̂

j
t−1 −Kj

tz
j
t ||22] (4.13)

= E
zj
t |β̃

j
t ,x

j
t
[−||β̃jt − β̂jt−1 +Kj

tx
j
t β̂

j
t−1||22 + 2(β̃jt − β̂jt−1 +Kj

tx
j
t β̂

j
t−1)

TKj
tz
j
t − ||Kj

tz
j
t ||2]

(4.14)

= −||β̃jt − β̂jt−1 +Kj
tx

j
t β̂

j
t−1||22 + 2(β̃jt − β̂jt−1 +Kj

tx
j
t β̂

j
t−1)

TKj
tx

j
t β̃

j
t

− ||Kj
t ||2F (tr

(
Σ

zj
t

)
+ ||xjt β̃jt ||22) (4.15)

The last equation uses zjt |β̃jt ,xjt ∼ N (xjt β̃
j
t ,Σzj

t
), so we get E

zj
t |β̃

j
t ,x

j
t
[zjt ] = xjt β̃

j
t and

E
zj
t |β̃

j
t ,x

j
t
[||zjt ||2] = tr

(
Σ

zj
t

)
+ ||xjt β̃jt ||22.
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2. E
zj
t |β̃

j
t ,x

j
t
[||β̂jt ||22] (4.16)

= E
zj
t |β̃

j
t ,x

j
t
[||β̂jt−1 +Kj

t (z
j
t − xjt β̂

j
t−1)||22] (4.17)

= ||β̂jt−1 −Kj
tx

j
t β̂

j
t−1||22 + ||Kj

t ||2F (tr
(
Σ

zj
t

)
+ ||xjt β̃jt ||22) + 2(β̂jt−1 −Kj

tx
j
t β̃

j
t )

TKj
tx

j
t β̃

j
t

(4.18)

Together, Eq. (4.15) and Eq. (4.18) can be substituted back in Eq. (4.10) to compute
the objective R

(
β̃jt ,D

j
t−1,x

j
t

)
. Finally, among all actions {xjt} at time t, agent j chooses

xjt
∗|β̃jt = argmax

xj
t
R(β̃jt ,Djt−1,x

j
t ). Algorithm 5 outlines this action selection process.

Algorithm 5 TS-UnIK
1: Assume: Sensing model (4.3), true state β, J agents
2: Set: Dj0 = ϕ, pj0(β) = N (β̂j0, P̂

j
0), β̂

j
0 =

1
n1n×1, P̂

j
0 = σ20I ∀j ∈ {1, . . . , J}

3: for t in {1, . . . , T} do ▷ For any available agent j
4: Sample β̃jt ∼ p(β|Djt−1) = N (β̂jt−1, P̂

j
t−1)

5: xjt
∗
= argmax

xj
t
R(β̃jt ,Djt−1,x

j
t ). Observe yjt .

6: Update Djt = Djt−1 ∪ {(xjt
∗
,yjt )}. Share (xjt

∗
,yjt ) asynchronously with teammates.

7: Estimate β̂jt , P̂
j
t using UnIK ( Line 6-Line 11)

Data association. TS based decision making ensures that each agent can independently
choose its next sensing location based on the uncertainty in its current posterior over the
search space, and subsequently update its individual posterior estimates using its own
measurements as well as those received from other agents. We therefore do not require
perfect data association between measurements from different agents on the same OOI, nor
a central controller for synchronization of observations across agents.

Computational complexity. Due to the Kalman filter based recursive nature of UnIK,
for any agent j, the time complexity of each inference step is the same and bounded by
O(n2.376). Additionally, TS-UnIK requires an agent to select the best (maximum reward)
among all feasible actions at each time step. Therefore Line 5 in Algorithm 5 results in
O(|A|n2) complexity at each time step where |A| is the size of the agent’s feasible action
space.

4.7 Experiments with TS-UnIK

We now demonstrate the efficiency of TS based action selection in combination with UnIK
for decentralized and asynchronous multi-agent active search.

UnIK (R) vs. TS-UnIK. Following our observations in Section 4.5 where UnIK outper-
formed other baselines in fully recovering all OOIs, we will now use UnIK with uniformly
random action selection (i.e. UnIK (R)) as the baseline against which we compare the
performance of TS-UnIK.
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Figure 4.4: (R) indicates uniformly random action selection. (a) For the same team size,
TS-UnIK enables efficient action selection requiring fewer measurements per agent to fully
recover all targets. As the team size increases in a 16×16 search space, the performance of
UnIK (R) catches up and upper bounds the number of measurements per agent required by
TS-UnIK. (b) TS-UnIK consistently outperforms UnIK (R) for different number of targets
k to be recovered in the search space by teams of different sizes J .

Fig. 4.4a plots the number of measurements needed per agent (T/J) to fully recover
k OOIs as the number of agents J increases. In a perfect sensing setup, we would expect
a single agent algorithm using the TS based action selection strategy to require J times
as many measurements as that required per agent in a team with J agents (Ghods et al.,
2021b). We observe this to hold for TS-UnIK, resulting in a J times improvement in
performance when the number of agents multiplies J times. As the team size becomes
larger, we observe that the full recovery performance plateaus in the absence of inter-agent
coordination or centralized control.

Fig. 4.4b shows the robustness of multi-agent active search with TS-UnIK in terms of
the number of measurements per agent required by a team to fully recover all OOIs as the
number of OOIs k increases. For different team sizes (J) (indicated as UnIK/TS-UnIK-J),
we observe that for both UnIK (R) and TS-UnIK to fully recover all OOIs, the average
number of measurements needed per agent in the team increases with more number of
OOIs in the search space. However in all the settings, TS-UnIK outperforms UnIK (R)
with uniform random action selection and the performance gap widens further with more
targets k for different J .

TS-UnIK vs. NATS. We now compare the performance of TS-UnIK against NATS
with TS based action selection (Ghods et al., 2021a). Fig. 4.5a shows the full recovery rate
within T = 150 measurements in a single agent setting (J = 1) when there is k = 1 target
in a 16 × 16 search space. In this setting, TS-UnIK outperforms NATS and enables the
single agent to achieve the desired recovery rate more efficiently with significantly fewer
measurements.

Fig. 4.5b further validates the superiority of TS-UnIK over NATS in a multi-agent set-
ting with multiple OOIs. For different team sizes J ∈ {4, 8, 16} with the same total number
of measurements T = 500, we compare the full recovery rate achieved by the team in terms
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Figure 4.5: (a) J = 1 agent is able to recover k = 1 targets in a 16 × 16 search space
with fewer measurements using TS-UnIK than NATS. Although both algorithms use
Thompson sampling for action selection, the joint uncertainty modeling in TS-
UnIK provides an advantage over only accounting for detection uncertainty in
the noisy sensor observations. (b) With k = 15 targets in a 16×16 search space, teams
with different number of agents J following TS-UnIK achieve full recovery of all targets with
fewer measurements per agent than those following NATS. The ability to model both
location and detection uncertainty becomes increasingly more advantageous
when there are more targets in the search space.

of the number of measurements required per agent. As before, we observe that TS-UnIK is
able to efficiently recover all the OOIs and demonstrates a J times improvement in perfor-
mance as the team size grows by a factor of J . On the other hand, with an identical team
size and the same number of measurements per agent, NATS fails to achieve full recovery
in the majority of trials. The deterioration in performance due to the absence of target
location uncertainty modeling in NATS’s inference method as observed in Section 4.5, is
further exacerbated in the decentralized multi-agent setting with asynchronous communi-
cation. In particular, when different agents perform overlapping sensing actions, they may
observe the same OOI at different locations due to observation noise arising from target
location uncertainty. As a result, the combined detection and location uncertainty model-
ing in UnIK not only helps better estimate the possible OOI positions but this improved
posterior belief also facilitates TS to choose effective sensing actions leading to efficient
recovery of all OOIs with TS-UnIK.

TS-UnIK in Unreal Engine 4 (UE4) with AirSim plugin We test TS-UnIK in a
pseudo-realistic environment created in UE4 with an AirSim plugin. It is a 250m×250m field
with trees and animals, discretized into 16×16 grid cells. There are k = 5 humans randomly
positioned within the field, who are the OOIs for our ground robot. We use YOLOv3
(Redmon and Farhadi, 2018) (off-the-shelf) as the agent’s object detector, which provides
a label and confidence score for OOIs in the agent’s FOV (Fig. 4.6). Using the depth
maps provided by AirSim, we implement our own depth sensor model that provides noisy
location measurements to the agent following Eq. (4.2). Using measurements from these
sensors, the agent decides its next sensing action following Eq. (4.10), with an additional
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Figure 4.6: OOI detections from YOLOv3 in the robot’s current FOV

travel distance penalization term. We refer to the video demonstrating the performance
of TS-UnIK in this environment at this site .1 Supporting the results in Section 4.7, the
agent successfully recovers all OOIs with sensing actions that decide where and how the
surroundings are observed to eliminate false or missed detections over time.

1https://sites.google.com/view/unik-icra23
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5 | Uncertainty due to
dynamic targets when
targets outnumber agents

5.1 Introduction

Searching for targets, detecting objects of interest (OOIs), localizing and following them
are tasks integral to several robotics applications. In our discussion of multi-agent active
search, we have so far focused on settings where the targets or objects of interest (OOIs)
are stationary. In such applications like informative path planning (Popović et al., 2020)
or simultaneous localization and mapping (SLAM) (Placed et al., 2023), when the OOIs
are fixed, an agent (or robot) adaptively selects actions to detect and localize the targets.
Here the environment (or, the target distribution) being stationary, an agent tends to
explore unseen parts of its surroundings more than exploit already observed viewpoints. In
contrast, when targets are dynamic, the environment is non-stationary. Therefore, agents
tracking an unknown number of moving targets should trade-off between exploring the
possibly unobserved parts of the environment and exploiting their own posterior estimates
to localize the previously detected targets at the current timestep. Unfortunately, prior
work in multi-target tracking (MTT) has often assumed that the environment is known
and exploration is not of primary concern (Robin and Lacroix, 2016). Moreover, with
multiple agents, existing MTT methods simplify the explore-exploit dilemma by separating
search and tracking into sequential tasks where each agent is assigned to track a target as
soon as it is found (Papaioannou et al., 2020). Another approach is to assign sub-teams
for executing these tasks separately (Chen and Dames, 2022). Further, majority of these
multi-agent multi-target tracking (MAMTT) algorithms require either a central controller
to coordinate joint tracking actions, facilitate target hand-offs among agents or they depend
on synchronized inter-agent communication for distributed inference and decision making.
Unfortunately, such conditions may not be feasible in practice: the environment may be
unstructured and unknown, OOIs may need to be simultaneously detected and localized
(i.e. without a separation between search and tracking phases), there may not be enough
agents to continuously monitor all the targets and unreliable communication channels may
hinder inter-agent synchronization at each timestep.

This motivates the need to develop a more practical approach to MAMTT. In particular,
we focus on the setting where agents are outnumbered by targets, so that the multi-agent
team is unable to continuously cover all targets in their fields of view. The number of
targets and their initial locations are unknown. Therefore, agents need to interact with
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the environment to collect observations by adaptively making explore-exploit decisions. It
is not feasible to continuously track all targets, but our goal is to produce an estimate
of the number and positions of all targets with time. In keeping with our discussion so
far, we assume that there is no central controller, and agents share their observations
asynchronously with teammates, whenever possible. In other words, agents do not wait to
receive observations, action selection policy or environment belief information from their
teammates and can continue their online decision making when communication is unreliable
or even unavailable.

5.2 Problem formulation

Consider a team of J UAVs tasked with search and tracking of an unknown number k of
moving targets in a 2-dimensional (2D) region G of length nl and width nw (Fig. 5.1a).
The agents can self-localize in a global coordinate system. They are equipped with noisy
sensors that provide location 2D coordinates of possible targets in their current field of
view (FOV). The targets can move in any direction in the search space at different speeds.
We assume that agents typically move faster than targets. Each agent’s FOV includes a
contiguous rectangular region of the search space, and agents may choose to observe a wider
(smaller) area at a greater (lower) vertical height but with more (less) observation noise.
We therefore consider a hierarchical region sensing action space for each agent. Agents can
communicate asynchronously with their teammates. Over time T , agents observe different
parts of the search space to detect and track all targets in the environment.

(a) (b)

Figure 5.1: Problem setup. (a) Agents sense different regions of the search space at
different vertical heights, receiving noisy 2D location coordinates of the possible targets in
their field of view, along with false positive measurements. The targets shown as black
crosses move in the search space with different velocities shown by the red arrows. (b) The
line at the top indicates the target’s continuous motion with time. In our asynchronous
multi-agent setup, agents can collect observations without waiting for their teammates
whereas in the synchronous setting, the solid boxes indicate the agents’ idle wait times.

5.2.1 Target and Measurement Representations

The state of each target is denoted by x =
[
lx, ly, vx, vy

]T, where 2D coordinates (lx, ly) ∈
[0, nw]× [0, nl] and velocity v =

[
vx, vy

]T, ∥v∥2 ≤ vmax. Since both the number of targets
and their true locations are unknown, we follow the Random Finite Set (RFS) representation
for the multi-target state space X = {x1, . . . ,x|X |}, where |X | follows a Poisson distribution
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and for a given cardinality, the set elements are sampled i.i.d from a uniform distribution
(Mahler, 2014). Following prior work, we use the Probability Hypothesis Density (PHD)
filter (Mahler, 2003) to maintain a belief over the RFS X .

The PHD ν(x) is the first statistical moment of a distribution over RFSs. In this case,
it is a density over the state space of targets so that for any region E ⊆ G, the expected
cardinality of the target RFS in that region is

∫
E ν(x)dx. The PHD filter tracks the evolving

target density over the search space using models of target motion and measurements
gathered by the agents. The measurements Z are also modeled as a (Poisson) RFS, as are
clutter κ(z) (false positives) and target births b(x).

5.2.2 Sensing model

An agent with pose q =
[
qx, qy

]T executes a sensing action xq, receiving a measurement
set Z = {z1, . . . , zm}. Any target x within the agent’s FOV may generate a measurement
z, with a probability of detection pd(x|q). Here we assume a constant pd(·) when the
target x is within the FOV at q, and 0 otherwise. The agent follows a linear sensing model
with additive i.i.d white noise: z = h(x) + ω, where h(x) =

[
lx, ly

]T and ω ∼ N (0, σ2hI).
Additionally, Z includes i.i.d false positives with clutter rate λq.

The (noisy) target dynamics from state ξ to x is captured by the target motion model
f(x|ξ). The survival probability ps(x) denotes the target’s chances of persisting over suc-
cessive time steps. The PHD filter formulates the following steps to propagate the posterior
density over target states.1

Prediction: ν̄t(x) = b(x) +
∫
E
f(x|ξ)ps(ξ)νt−1(ξ)dξ (5.1)

Update: νt(x) = (1− pd(x|q))ν̄t(x) +
∑
z∈Zt

ψz,q(x)ν̄t(x)
ηz(ν̄t)

(5.2)

ηz(ν) = κ(z|q) +
∫
E
ψz,q(x)ν(x)dx (5.3)

ψz,q(x) = g(z|x,q)pd(x|q) (5.4)

Here, ψz,q(x) is the probability that the agent at q receives the measurement z from a
target x and g(z|x,q) is the measurement likelihood model. The PHD filter can handle
appearing and disappearing targets by defining an appropriate birth density b(x) over the
search space, but we assume the number of ground truth targets k is fixed.
Remark 1. As Mahler (2003) explains, using the first order moment to approximate
the multi-target belief and deriving recursive PHD update equations to approximate the
evolving posterior is justifiable when both sensor covariances and false alarm densities are
small, so that (the distribution of) observations from true targets are centered around target
states with negligible spread and there is lower noise due to false alarms. Besides, in our
SMC-PHD implementation following Ristic et al. (2010), we also ensure we avoid particle
impoverishment during update and propagation of the posterior density estimate.

1For a detailed understanding of the PHD filter, please refer to Mahler (2014).
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Decentralized Asynchronous Multi-Agent Setup.

In our setup, each agent j∈{1, . . . , J} maintains its PHD estimate and decides its next
sensing action in a decentralized manner. There is no central controller and inter-agent
communication is asynchronous (Fig. 5.1b). Note that agents are not independent, since
they share their own observations and incorporate the measurements received from their
teammates in subsequent PHD filter update steps. Our setting is also different from the
distributed computation setup in prior work (Dames, 2020) where each agent completes a
part of the centralized update step and relies on inter-agent synchronized communication
to maintain a global PHD estimate across all agents.

Since targets are in continuous motion, our agents must be able to deal with the un-
certainty arising from observation noise as well as due to asynchronous communication of
time-dependant observations in their posterior PHD updates. In order to enable time-
ordered assimilation of received observations by all agents, we assume that any agent j
communicates the tuple (t,xqj

t ,Zjt ) where x
qj

t and Zjt are respectively the agent’s sensing
action and measurement set at time t.

5.3 Related work

Target detection and tracking are both widely studied problems, typically considered as dis-
tinct tasks in various applications like search and rescue (Murphy, 2004a), security surveil-
lance (Doitsidis et al., 2012), computer games (Oskam et al., 2009), etc. Robin and Lacroix
(2016) present a detailed survey of the many different approaches and taxonomy used in
robotics and related fields for such scenarios. Here, we discuss some of the most relevant
prior work in our context.

The single target state is commonly modeled assuming linear dynamics with additive
Gaussian noise, using the Kalman filter (Kalman, 1960) or using non-parametric particle
filters (Doucet et al., 2001). In multi-target settings, alternative approaches like Multiple
Hypothesis Tracker (MHT) (Blackman, 2004), Joint Probabilistic Data Association (JPDA)
(Fortmann et al., 1983) and Probability Hypothesis Density (PHD) filter (Mahler, 2003)
have been proposed, all of which differ in how they perform data association (Stone et al.,
2013). The PHD filter is particularly suited when unique identities for each target are not
required, for example, in search and rescue tasks, where agents should detect and localize
all survivors. Following the setup in Section 5.2, we build on the Sequential Monte Carlo
(SMC) formulation of the PHD filter presented in Ristic et al. (2010).

Prior work in MAMTT algorithms primarily considers centralized or distributed set-
tings, the latter still necessitating synchronized communication among subgroups of agents
at each time step. Coupled with a PHD filter, some of the common action selection meth-
ods previously proposed for tracking include mutual information and expected count based
objectives (Dames et al., 2017), Renyi divergence maximization (Papaioannou et al., 2020)
and Lloyd’s algorithm for Voronoi-cell based control (Dames, 2020; Chen and Dames, 2020).
Papaioannou et al. (2020) discuss the benefits of a simultaneous search-and-tracking algo-
rithm but their proposed method requires that agents transition from searching to tracking
upon target detection, foregoing further exploration. In similar spirit, Van Nguyen et al.
(2022) propose solving an information gain based multi-objective optimization problem
over a finite planning horizon to decide the best (greedy) joint action for a centralized
search-and-tracking task. In contrast with these deterministic objectives, Xin and Dames
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(2022) demonstrate the superior performance of stochastic optimization methods like Par-
ticle Swarm Optimization (PSO) and Simulated Annealing (SA) for better coverage and
localization in such settings. Unfortunately, none of these prior approaches are applied in
the decentralized and asynchronous multi-agent setup when agents are unable to support
continuous target coverage.

Recently, some learning based approaches have been proposed for tracking. Jeong et al.
(2021) consider the single-agent setting, assuming a known number of (one or two) targets
which only start moving after being first observed by the agent. Zhou et al. (2022a); Tzes
et al. (2023) both propose GNN-based algorithms, trained by imitation from a centralized
expert, and deployed in the distributed inference and decision making with synchronized
communication setup. While Zhou et al. (2022a) do not consider dynamic targets, Tzes
et al. (2023) simplify the problem to deterministic optimal control over a fixed horizon,
differing from our more complex setting.

5.3.1 Naïve approach and challenges

Following the theme of our prior multi-agent active search algorithms, our framework for
multi-agent active search and tracking should combine posterior belief update with asyn-
chronous decision making. Our first attempt at this involved using a Kalman filter, similar
to Chapter 4, for modeling the uncertainty-aware posterior belief. However this was unsuc-
cessful due to challenges in data association for maintaining a multi-modal joint posterior
belief over the entire search space. Rosencrantz et al. (2003) similarly observe the impor-
tance of tractable belief updates and use a particle filter for belief tracking in a game of laser
tag with robot teams. In contrast with our setting, the number of agents being tracked is
known a priori, observation detection noise is not modeled and agents select their actions in
a centralized greedy turn-based approach. In the absence of such simplifying assumptions,
next we describe our proposed algorithm to address some of the resulting challenges to
enable multi-agent active search and tracking with fewer agents than targets.

5.4 DecSTER: Decentralized Multi-Agent Active Search-and-
Tracking without continuous coverage

We now describe our algorithm DecSTER for multi-agent active search and tracking without
continuous coverage.
Notation. Agent j at time t has a history of available actions and observations Djt =

{(t′,aq
′
j

t′ ,Z
j′

t′ )}t′<t,j′∈{1,...,J}. Using Djt , it computes the PHD νjt (Eqs. (5.1) and (5.2)) over
the target RFS. In our SMC-PHD implementation, νjt = {(wjt,1,xjt,1), . . . , (wjt,ρ,xjt,ρ)} where
xjt,1, . . . ,x

j
t,ρ are the ρ particles with weights wjt,1, . . . , w

j
t,ρ.

The SMC-PHD filter propagation steps follow from Ristic et al. (2010). In our decen-
tralized setup, each agent maintains its own posterior PHD νjt . Next, we will describe the
decision making step executed by agent j at time t.
Thompson sampling for decision making. Prior work in multi-agent active search
with static targets has demonstrated the effectiveness of Thompson sampling (TS) as a de-
centralized decision making algorithm (Chapter 2), both in theory (Ghods et al., 2021b) and
in practice (Bakshi et al., 2023). TS ensures stochasticity in decision making by sampling
different plausible realizations of the ground truth from the posterior belief and selecting
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the best action to maximize the desired reward for a particular sample. The uncertainty
in the agent’s belief over the state space is reflected in the posterior samples, which makes
TS suitable for driving exploration and exploitation. Chen and Dames (2022) couples a
TS-based active search strategy with the deterministic Lloyd’s algorithm for tracking, but
in their setup, agents are pre-assigned to only one of search or tracking tasks. Instead, we
propose a TS strategy to enable agents to naturally trade-off exploratory sensing actions
that might discover undetected targets, with exploitative sensing actions that help localize
and track the previously detected dynamic targets in our simultaneous search-and-tracking
setting.

To the best of our knowledge, prior work has not studied the problem of TS in a
continuous (not discretized) search space with a PHD posterior. This is challenging because
the PHD is not a distribution and does not include second order uncertainty information,
whereas TS is typically applied in the Bayesian setting with the samples drawn from a
posterior distribution for which both first and second order moment estimates are available
(Russo et al., 2018). Prior work in Zhou et al. (2022b) has proposed particle Thompson
sampling (PTS) and regenerative PTS (RPTS) algorithms for particle filters where particles
are sampled proportional to their weights. Therefore, we adopt a similar principle in our
first proposed TS strategy for the SMC-PHD posterior, called TS-PHD-I (Algorithm 6).

Algorithm 6 TS-PHD-I
1: Input: PHD ν = {(w1,x1), . . . , (wρ,xρ)}.
2: Sample ρ̃ particles {xi}ρ̃i=1 from ν, proportional to the weights {w1, . . . , wρ}
3: Cluster the ρ̃ particles using k-means with ñ =

∑ρ̃
i=1wi centroids (X̃ = {x̃1, . . . , x̃ñ})

which form the TS

We note that this method has drawbacks. It tends to sample more particles from the
regions in the PHD where the agent already estimates targets might be present. The
samples drawn are thus more likely to be biased against regions of the target state space
where the agent might be less certain about its observations owing to false positives or
missed detections. Furthermore, this method does a poor job of modeling the uncertainty
about the number of true targets.

To address the drawbacks of Algorithm 6, we now describe a second proposed approach
to Thompson sampling from our SMC-PHD posterior (Algorithm 7). Recall that the ex-
pected cardinality of the target RFS X over a region E ⊆ G is given by n̂ =

∫
E ν(x)dx. In

case of the SMC-PHD representation, n̂ =
∑

iwi, ∀xi ∈ E (Ristic et al., 2010) i.e. the sum
of particle weights of the SMC-PHD in the region E is the expected cardinality of X in
that region. Further, Mahler (2003) shows that the PHD is the best Poisson approximation
of the multitarget posterior in terms of KL divergence. We therefore draw a sample ñ of
the cardinality of the target RFS from a Poisson distribution with mean n̂ =

∑
iwi (i.e.

ñ ∼ Poisson(n̂)). Then we sample ñ locations of the possible targets by drawing from a
mixture of already estimated target locations in the PHD and some locations drawn uni-
formly at random over the search space. These ñ particles X̃ = {x̃1, . . . , x̃ñ} form our
TS.
Objective. The Optimal Sub-Pattern Assignment (OSPA) metric is typically used in the
MTT literature for evaluating the tracking performance of an algorithm and is defined as
the error between two sets. Given sets X and Y, where |X | = m ≤ |Y| = n without loss of
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Algorithm 7 TS-PHD-II

1: Input: PHD ν={(w1,x1), . . . , (wρ,xρ)}. n̂G=
∑ρ

i=1wi. Target location estimates
X̂={x̂1, . . . , x̂n̂G} from ν.

2: Sample ñ ∼ Poisson(n̂G)
3: Sample uniformly random target locations X̃R
4: Sample ñ target locations (X̃ ) from X̂ ∪ X̃R as the TS

generality,

OSPA(X ,Y) =
( 1
n

min
π∈Πn

m∑
i=1

dc(xi, yπ(i))
p + cp(n−m)

) 1
p

where c is the cut-off distance, dc(x, y) = min(c, ||x − y||) and Πn is the set of all per-
mutations of the set {1, . . . , n}. The distance error component of the OSPA computes the
minimum cost assignment between X and Y, such that xi ∈ X is matched to yi′ ∈ Y only
when they are within a distance c of each other.

Given a true target set X = {x1, . . . ,x|X |} and an estimated set Y = {y1, . . . ,y|Y|} of
possible target locations, our goal is to minimize OSPA(X ,Y). Since the ground truth X
is unknown, each agent j instead draws a TS X̃ jt from the predicted PHD ν̄jt+1. Assuming
observations are generated by X̃ jt for any action x and Yjt is the estimated target set
following the PHD filter update, agent j then selects:

ajt = argmin
a

EYj
t |X̃

j
t ,a

[OSPA(X̃ jt ,Yjt )] (5.5)

Algorithm 8 outlines our proposed algorithm, called DecSTER. In our decentralized and
asynchronous multi-agent setting, each agent individually runs DecSTER with its own
sampled X̃ jt . Hence the stochasticity in the sampling procedure enables agents to make
decentralized explore-exploit decisions for simultaneous search-and-tracking in their action
space.

Algorithm 8 DecSTER for agent j at time t

1: Input: PHD νjt = {(wj1,xj1), . . . , (wjρ,xjρ)}
2: Compute predicted PHD ν̄jt+1 (Eq. (5.1)).
3: Draw TS X̃ jt ∼ ν̄jt+1.
4: Assuming pseudo-measurements at X̃ jt , estimate expected target set Yjt and select ac-

tion xjt (Eq. (5.5).
5: Observe Zjt . Update PHD νjt+1 (Eq. (5.2)).
6: Estimate target set X̂ jt+1 from νjt+1 (Ristic et al., 2010).
7: Asynchronously communicate (t,xjt ,Zjt ) with team.

Remark 2. Prior work in search-and-tracking (Papaioannou et al., 2020; Chen and
Dames, 2022) tends to separate the search and tracking phases of the task, and maintains
either a visit count or dynamic occupancy grid to compute the action selection objective
during the exploration phase. Such methods scale poorly with the size of the environment
since agents need to maintain a discretization over the search space (Van Nguyen et al.,
2022). In contrast, our SMC inference for multi-target belief is parallelizable over particles in
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the posterior PHD, while our TS-based decision making is scalable with increasing teamsize
J .

5.5 Experiments

We now describe our experimental setup. Consider a 2D search space with dimensions
nl × nw = 16 × 16. There are k targets moving in this region, whose starting locations
and velocities are chosen uniformly at random, such that vmax = 0.1. A team of J agents
are tasked with search-and-tracking of all the targets over T = 150 steps. The agents’
action space A consists of hierarchical region sensing actions of width 1 × 1, 2 × 2, 4 × 4
and 8 × 8, |A| = 340. Since actions with larger FOV receive noisier observations, we vary
the false positive (clutter) rate as λ ∈ {0.005, 0.04, 1, 5} for action widths 1, 2, 4 and 8
respectively. The survival probability in the PHD filter is set at ps = 1 and the detection
probability pd = 0.9 for targets in the agent’s FOV. In our SMC-PHD implementation
following Ristic et al. (2010), we initialize 100 new (birth) particles per observation and
re-sample 1000 particles per estimated target, following the low variance sampling method
in Thrun (2002). We choose ρ̃ = 100 (Algorithm 6).

The agents assume the target motion model xt+1 = Fxt+ϵ, where F =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

,

∆T = 1 and ϵ ∼ N (0,Q), Q =


0.03 0 0.05 0
0 0.03 0 0.05

0.05 0 0.1 0
0 0.05 0 0.1

. The sensing model is z =

Hx + ω, where H =

[
1 0 0 0
0 1 0 0

]
and ω ∼ N (0, σ2I), σ = 0.1. I is the identity matrix.

For the OSPA metric, we set c = 2 and p = 1.
Remark 3. Our experimental setup is intended to illustrate the abilities of DecSTER for
decentralized and asynchronous multi-agent multi-target search and tracking. The action
space is chosen so that there is a non-trivial explore-exploit decision to be made by the
agents. The maximum target speed is such that targets may cover a considerable distance
in the search space over T steps.

In the following experiments, we measure performance in terms of the average OSPA
for the entire team of agents. The plots show mean across 10 random trials with the
shaded regions indicating standard error. Each trial differs in the initialization of the
target locations and their velocities.

5.5.1 Comparing TS-PHD-I with TS-PHD-II

First, we compare the performance of DecSTER using the two proposed approaches for
Thompson sampling from a PHD posterior. Fig. 5.2 compares OSPA with number of mea-
surements per agent, for DecSTER-I and DecSTER-II using TS-PHD-I and TS-PHD-II
respectively in Line 3 of Algorithm 8. We observe that decision making with TS-PHD-II
consistently outperforms that with TS-PHD-I. Since TS-PHD-II samples both the cardi-
nality and locations of the target RFS from the PHD, the samples for different agents
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are sufficiently diverse to capture the uncertainty regarding the true multi-target ground
truth. In contrast, the samples from TS-PHD-I are generally clustered around the agent’s
current estimate of target locations. We also empirically observed an improvement in the
OSPA performance with TS-PHD-II when, for a particular sampled cardinality ñ, an agent
considers multiple samples of ñ target locations and averages the reward in Eq. (5.5) over
them. Our results using DecSTER-II consider 10 such samples per action selection step
for any agent j. We also allow DecSTER-I to similarly consider averaging over multiple
samples, but this does not improve the sample diversity and does not lead to performance
improvement.

Fig. 5.2 further demonstrates the scalability of TS in the decentralized multi-agent
active search-and-tracking setting. When teamsize increases n times, agents achieve similar
OSPA with n times fewer measurements per agent (Ghods et al., 2021b).
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Figure 5.2: Comparing the proposed TS methods. DecSTER-II using TS-PHD-II
consistently outperforms DecSTER-I using TS-PHD-I. Increasing team size J reduces the
number of measurements per agent required to achieve similar OSPA.

5.5.2 Baseline comparisons

We compare DecSTER-I and DecSTER-II with the following baselines. Note that all of
them use the same PHD filter inference method, but differ in the action selection policy.
1) RANDOM. Each agent j selects its next sensing action uniformly at random. 2)
RENYI. At t, agent j computes the predicted PHD ν̄jt+1 and generates a (pseudo) mea-
surement set Z̄jt for any action x ∈ A assuming the estimated target set X̂ jt from νjt as
ground truth. It then selects the action xjt that maximizes the Renyi divergence (with
α = 0.5) between ν̄jt+1 and its expected updated PHD ν ′jt+1 (Eq. (5.2)). With the SMC-
PHD formulation, the Renyi divergence is (Ristic et al., 2011):

ρ∑
i=1

w̄i +
α

1− α

ρ∑
i=1

w′
i −

1

1− α

ρ∑
i=1

w′α
i w̄

1−α
i (5.6)

where w̄i and w′
i are the weights of the particle i in ν̄jt+1 and ν ′jt+1 respectively. 3) TS-

RENYI. We modify RENYI to use X̃ jt ∼ ν̄jt+1 (with TS-PHD-II) for computing the
(pseudo) measurement set Z̄jt and the updated weights w′

i.
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Fig. 5.3 shows that our proposed method outperforms all the baselines for different
number of targets k and team sizes J . We observe that RENYI agents are information-
greedy, therefore the lack of stochasticity in their decision making objective leads different
agents to select the same action in the decentralized asynchronous multi-agent setting.
Moreover, the computation in Eq. (5.6) depends only on the particles in ν̄jt+1 and does not
account for previously undetected targets. This highlights the drawback of using Renyi
divergence as an optimization objective for explore-exploit decisions in the search-and-
tracking setting, in contrast with its success in the tracking setting where exploration is
not a concern (Papaioannou et al., 2020). This motivated us to propose the TS-RENYI
baseline in order to encourage exploration with samples drawn from TS-PHD-II. We observe
that TS-RENYI still does not perform noticeably better than RENYI. This is because the
weights of the particles in the SMC-PHD filter relate to the expected cardinality of the target
set, therefore Eq. (5.6) does not account for any measure of the distance error between X̂ jt
(or X̃ jt ) and the estimate X̂ ′j

t+1 from ν ′jt+1. In contrast, the OSPA objective accounts for
both localization error as well as cardinality error in the estimated target set. Thus we
observe that our algorithm DecSTER-I is competitive with or outperforms random sensing
and information-greedy baselines, and DecSTER-II consistently achieves the lowest OSPA
among all with the same number of measurements per agent. Based on these results, we
consider DecSTER-II as our best approach in this setting, labeled DecSTER in the following
experiments.
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Figure 5.3: Baseline comparisons. For different numbers of targets and with fewer agents
than targets, DecSTER with TS-PHD-II (denoted DecSTER-II) outperforms random sens-
ing (RANDOM) and information greedy baselines (RENYI, TS-RENYI) by achieving a
lower OSPA for the same number of measurements per agent.
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DecSTER vs. DecSTER-C. Motivated by prior work (Dames et al., 2017) that showed
the effectiveness of maximizing the expected number of target detections for action selection
in multi-agent tracking, we introduce the DecSTER-C baseline where agents select actions
minimizing only the cardinality error term of the OSPA. Unlike DecSTER, each agent
with DecSTER-C draws multiple samples of cardinality ñ ∼ Poisson(n̂) to consider the
uncertainty about the real number of targets in its objective. Fig. 5.4 shows that DecSTER
still outperforms DecSTER-C, indicating that jointly considering detection and localization
error in the decision making objective is more advantageous for TS-guided action selection
in our search-and-tracking setting. This further supports our earlier observations regarding
the drawbacks of using the particle weight based Renyi divergence optimization objective
in this setting.
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Figure 5.4: DecSTER vs. DecSTER-C. DecSTER-C optimizes only for the cardinality
error in the OSPA objective. DecSTER outperforms DecSTER-C indicating the advantage
of jointly optimizing detection and localization errors with TS-guided explore-exploit deci-
sions.

5.5.3 Robustness to communication delays

Multi-agent systems benefit from leveraging observations shared by their teammates. Agents
in our decentralized and asynchronous multi-agent setting benefit from any information
shared by their teammates but they can continue searching for and tracking targets with-
out waiting for such communication. Therefore, we now analyze the robustness of DecSTER
under unreliable inter-agent communication. In simulation, we consider each agent chooses
to communicate its own observation at time t, along with any prior observations it had
not shared with its teammates, with a probability p ∈ {0.05, 0.25, 0.50, 0.75, 1}. The p = 1
setting corresponds to our description and analysis of DecSTER in Fig. 5.3. We observe a
graceful decay in the OSPA performance with decreasing rates of inter-agent communica-
tion in Fig. 5.5, both when targets outnumber agents and vice versa. Compared to prior
work in the centralized or distributed multi-agent tracking setting (Robin and Lacroix,
2016), DecSTER does not depend on synchronized communication within the team, thus
agents can adapt and continue their search-and-tracking tasks even when communication
is unreliable or unavailable.
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Figure 5.5: Robustness to unreliable communication. When agents communicate
their actions and observations with decreasing probability p, DecSTER experiences a grace-
ful deterioration in OSPA performance and agents require increasingly more measurements
to estimate the number and locations of true targets in the search space.
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Part III

Generative models for decision
making in MAAS
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6 | Diffusion for multi-objective multi-
agent active search

6.1 Introduction

Agents interacting in an environment to accomplish tasks like target recovery, localization
or mapping do so over multiple time steps, adapting their actions to their observations
in the environment. In Chapter 3, we proposed CAST, a sequential decision making al-
gorithm over a finite lookahead horizon which outperformed myopic greedy approaches to
multi-agent active search. While effective, CAST encounters scalability challenges as the
dimension of the action space or search space increases. This is also a common drawback
in most tree search based approaches to long horizon planning, motivating our exploration
for methods that could be leveraged for sequential decision making while amortizing the
cost of rollouts in the search space. Therefore, in this chapter, we shift our focus to an
alternative paradigm: generative models for decision-making in multi-agent active search.
While many applications using generative models have focused on creative arts and media
entertainment, in robotics, there is an immense scope for using and improving upon such
approaches to effectively leverage information about the physical world from data (Yang
et al., 2024). Recently, diffusion models (Song et al., 2021b) have emerged as a popular
approach to generative modeling, particularly for image and video data. Diffusion has
shown great success in video generation as sequences of frames over consecutive time steps,
and prior work (Janner et al., 2022) has also proposed diffusion as a sequence modeling
technique in offline reinforcement learning. However extrapolating the success of diffusion
modeling to active search is non-trivial and in this chapter, we focus on some of these
challenges and possible approaches to mitigating them for lookahead decision making in
multi-agent active search.

6.2 Problem Formulation

We follow a similar setup as described in Section 4.2. Consider a team of J ground robots
searching a space to locate some objects of interest (OOIs) or targets (Fig. 6.1). As before,
we assume a gridded search environment described by a sparse matrix B ∈ {0, 1}nℓ×nw

which the agents recover through active search. β ∈ {0, 1}n is the flattened vector repre-
sentation of B and it is our search vector with k non-zero entries at the k target locations
unknown to the agents. n = nℓ × nw is the total number of grid cells where nℓ and nw are
respectively the length and width dimensions of B.
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Figure 6.1: Problem setup. Agents sense different parts of the environment looking for
OOIs. True OOIs are crossed in black. Targets detected by the agent in its field of view
are crossed in red.

6.2.1 Sensing model

xt ∈ {0, 1}Qt×n is a region sensing action at time t where Qt is the number of grid cells in
its field of view (FOV). Each row of this matrix is a one-hot vector indicating the grid cell
being sensed. As Fig. 6.1 shows, the colored cells illustrate each robot’s sensing action with
a 90° FOV in their respective viewing directions. We assume a linear sensing model with
i.i.d white noise at each grid cell:

yt = xtβ + ωt (6.1)

where ωt ∼ N (0, σ21Q×1), σ2 is the (constant) variance of observation noise. Unlike in
Chapter 4, we do not consider a distance dependent detection noise and we also do not
consider correlations among observations in different grid cells due to location noise. This
simplification is made to reduce the complexity of learning to model the observation noise
in the agent’s belief using the iterative noising and denoising procedure of the diffusion
model.

6.2.2 Cost model

Following Chapter 3, we consider associated travel and sensing costs for the agents’ actions
in active search. An agent travelling from sensing location xt (for sensing action xt) to xt+1

(for sensing action xt+1) incurs a travel time cost cd(xt, xt+1) when the Euclidean distance
d(xt, xt+1) is traveled at a constant speed v. Separately, executing the sensing action xt+1

at location xt+1 incurs a time cost cs(xt+1).

6.2.3 Communication

We follow the same communication model as before (Section 2.2), assuming that commu-
nication, although unreliable, will be available sometimes and agents should communicate
asynchronously when possible to leverage information sharing in a multi-agent team.
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To recover the search vector β by actively identifying all the targets, an agent j at time
t selects a sensing action xjt based on its set of available measurements Dj

t . In this work,
our goal is to learn a non-myopic policy for decentralized and asynchronous (multi-agent)
active search so that agents recover β with as few measurements T as possible while also
optimizing for the total incurred cost.

6.3 Related Work

6.3.1 Diffusion Probabilistic Models

Diffusion models provide a framework to generate samples from an unknown distribution p∗

by iteratively transforming samples from a simpler (i.e. easy to sample from) distribution,
for example, a standard Gaussian distribution. Following Song et al. (2021a,b); Nakkiran
et al. (2024), we provide a brief overview of the main ideas used in this chapter.

Given samples x ∼ p∗1, the diffusion process constructs a Markov chain to gradually
add Gaussian noise to the data over a series of timesteps:

q(xt̃|xt̃−1) = N (xt̃;

√
αt̃
αt̃−1

xt̃−1, (1− αt̃
αt̃−1

)I)

where αt̃ parameterizes the variance of the noise added over the t̃ = 1, . . . , Tdiff diffusion
timesteps. x0 = x. q(x0) = p∗. This assumes a discrete time process, the superscript
t̃ denoting the diffusion time step. The noise schedule (typically time dependant, fixed)
is designed so that the data is converted to pure noise at xTdiff . The reverse process is
also a Markov chain which attempts to recover the original data by gradually removing
this added noise. The generative model learns the distribution pθ(x) by approximating the
reverse denoising process:

pθ(x
0) =

∫
pθ(x

0:Tdiff)dx1:Tdiff where pθ(x0:Tdiff) = pθ(x
Tdiff)

∏
pθ(x

t̃−1|xt̃).

The parameters θ are trained to fit p∗ by maximizing the variational lower bound (Song
et al., 2021a):

max
θ

Eq(x0)[log pθ(x0)] ≤ max
θ

Eq(x0:Tdiff )[log pθ(x
0:Tdiff)− log q(x1:Tdiff |x0)].

If all the conditionals pθ(xt̃−1|xt̃) are modeled as Gaussians with trainable mean functions
and fixed variances, this objective can be simplified to:

L =

Tdiff∑
t̃=1

Ex∼q(x0),ϵt̃∼N (0,I)

[
∥ϵt̃θ(
√
αt̃x

0 +
√
1− αt̃ϵt̃)− ϵt̃∥22

]
where xt̃ = √αt̃x0 +

√
1− αt̃ϵt̃, ϵt̃ ∼ N (0, I). We can then sample from such a trained

model via Langevin dynamics (Ho et al., 2020).

1Notation x here is overloaded and does not refer to sensing location as described in Section 6.2.2.
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Controllable generation with diffusion models

During the reverse denoising process, the generated samples can be biased or guided towards
the support of the distribution with desirable properties. Dhariwal and Nichol (2021) and
Ho and Salimans (2022) propose two main approaches for diffusion guidance. In classifier-
free guidance (Dhariwal and Nichol, 2021), a conditional diffusion model is trained to gen-
erate samples given a particular value of the conditioning variable. In contrast, classifier
guidance (Ho and Salimans, 2022) uses the gradient from a separate model ∇ log ν(c|x) to
bias the sample generation process after training. Diffusion guidance has been widely used
for different applications like text generation (Li et al., 2022), video generation conditioned
on previously generated frames (Ho et al., 2022a,b) and in reinforcement learning, to sample
high reward trajectories or to condition on a certain goal (Janner et al., 2022).

6.3.2 Diffusion models in RL and robotics

Motivated by the performance of data-driven large scale training with sequence modeling
architectures in language and vision domains, recent works (Janner et al., 2022; Ajay et al.,
2023) have explored the use of diffusion models in offline RL tasks by framing RL as a
sequence modeling problem, where the goal is to determine a sequence of actions which
when executed in a sequence of observed states would lead to a desired outcome.

Janner et al. (2022) introduced diffusion models as planners in offline RL. Their model is
trained to generate a sequence of states and actions that achieve a certain goal using reward-
gradient guidance at sampling time. In practice, this approach promises to leverage the
multimodal distribution representation capacity of diffusion models to learn from real-world
interaction data and only uses the generated states (not the generated actions), alongwith
a separate low level controller to determine the actions for the generated state transitions.

Alonso et al. (2024) train a diffusion based world model that can be used for training RL
policies. In this work, the diffusion is only modeling the state for the RL agent conditioned
on its previous actions and observations. In contrast, Zhou et al. (2024) model diffusion over
both states and actions and demonstrate the superior performance of their reward-guided
MPC-style lookahead diffusion algorithm over standard RL baselines. But their evaluation
is limited to environments with deterministic state transitions where they have access to low
dimensional state information. As we discuss later, stochasticity in state transition due to
observation noise and unknown ground truth pose a significant challenge in the application
of diffusion models for decision making in active search.

Although discrete diffusion models have been explored for applications in language
modeling, their application in RL or robotics tasks is limited.

Diffusion models in multi-agent decision making

Some recent works have focused on leveraging diffusion models in multi-agent reinforcement
learning, following the centralized training with decentralized execution (CTDE) framework
in cooperative multi-agent settings. Zhu et al. (2023) introduce cross-attention in the
diffusion network to model the coordination among behaviors of different agents. In this
work, diffusion models the state dynamics whereas actions are derived from a separately
trained inverse dynamics model. During training, this approach relies on joint action and
observation data for centralized updates, whereas during decentralized execution, the per-
agent (state) diffusion model also doubles as a behavior model for its teammates. The size
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of this cross-attention layer has a quadratic dependency on the teamsize and would also
require expensive multi-agent behavior data during training. In Shaoul et al. (2024), a
multi-agent path finding approach is proposed by combining single-agent diffusion models
with constraint based local planning. Therefore it relies on a central controller to coordinate
the trajectories of the different agents. In contrast, there has been little focus on the
asynchronous decentralized multi-agent setting which is of interest in this thesis.

6.3.3 Inductive biases in reinforcement learning for active search

A key factor underlying the performance gains recently enjoyed by foundation models in
different applications like language modeling or video generation is that they often pro-
vide the appropriate inductive bias for the machine learning task. In reinforcement learn-
ing, prior work has explored equivariant representation learning in model-free RL (Mondal
et al., 2022) and training Q-learning or actor-critic algorithms with equivariant network
architectures (Nguyen et al., 2023; Wang et al., 2022) to improve the sample efficiency
and generalization performance in different tasks. Recently Igoe et al. (2024) showed that
graph neural networks improve the sample efficiency of RL algorithms for active search and
Bayesian optimization by modeling appropriate equivariances and invariances in the belief
and action space. But their observations were primarily limited to BO or active search set-
tings with a single target and single agent with a disjoint (non-overlapping) action space.
In this chapter, we expand on their observations and demonstrate the advantages of using
a graph attention architecture with diffusion, particularly for improving training sample
efficiency in 2D active search.

6.3.4 Naïve approach and challenges

Following the prior work discussed above, a feasible preliminary approach would be to
extend the diffuser framework from Janner et al. (2022) for finite-horizon lookahead in
active search. However there are a few assumptions made in most of the existing literature
in diffusion for RL which do not hold in our setup and which would affect the performance
of diffuser-like implementations for active target recovery. First, unlike standard offline RL
tasks which assume deterministic state-dependent observations, our active search setting
involves observation noise and an unknown ground truth search vector. This means that
across different runs (or episodes), the same sequence of actions could lead to different
observations and receive a high or low recovery reward depending on the search vector
for that particular run. Moreover, the posterior belief update is non-deterministic given a
sequence of actions, instead it also depends on the agent’s observations which are influenced
by observation noise and the unknown β. Therefore training a generative model to learn a
distribution over state-action sequences in active search is quite challenging and it involves
dealing with non-negligible stochasticity and multi-modality in the training data. Finally, in
active search, agents do not have fixed start and goal locations, instead agents must trade-
off exploration and exploitation over the search space and adapt their subsequent behavior
to prior observations. This leads to the optimism bias problem, addressed in Villaflor et al.
(2022) using transformers for modeling state-action sequences in similar stochastic MDP
formulations. In this chapter, we will focus on these challenges in the context of generative
modeling with diffusion for lookahead decision making in active search.
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6.4 Diffusion models for policy learning in active search

6.4.1 Belief representation

Following Section 6.2, agents recover the ground truth search vector β by actively identifying
all the targets. Both the number of targets and their locations are unknown to the agents.
Therefore we initialize each agent with a Gaussian prior over the search vector β:

p0(β) = N (β̂0, Σ̂0) (6.2)

where the prior mean vector β̂0 = 1
n1n×1 and the prior covariance matrix Σ̂0 = σ2In×n.

n = nℓ × nw is the size of the discretized search space. Since agents follow a linear sensing
model (Eq. (6.1)), we can use a Kalman filter (Kalman, 1960) (Section 4.4) to update the
posterior belief over the search space. Recall from Section 4.4.1, we can recursively update
the posterior belief pt(β) = N (β̂t, Σ̂t) using the following alternate prediction and update
steps.

Prediction: β̂−
t = β̂t−1, Σ̂

−
t = Σ̂t−1 (6.3)

Kalman gain: Kt = Σ̂−
t x

T
t (xtΣ̂

−
t x

T
t +Σyt)

−1 (6.4)

Update: β̂t = β̂−
t +Kt(yt − xtβ̂

−
t ) (6.5)

Σ̂t = (I−Ktxt)Σ̂
−
t (I−Ktxt)

T +KtΣytK
T
t (6.6)

Here, Kt is the Kalman gain. Σyt = σ2IQ where Q is the number of grid cells in the field
of view of action xt and σ follows from the sensing model Eq. (6.1). t denotes the decision
making time step.2

In the remainder of this chapter, we will refer to the state of an agent as st = (β̂t, Σ̂t).
Since our covariance matrix is diagonal, we will only account for the diagonal of Σ̂t in st.

6.4.2 Lookahead plan generation with diffusion models

We define the lookahead plan for an agent in state st as the sequence of actions τt = xt:t+H
to maximize an objective J(st, τt). Therefore a diffusion model following Janner et al. (2022)
can be trained to learn to generate samples g = {st′ ,xt′}t′=t...t+H from a joint distribution
over state-action sequences. Next we will describe the data collection, network architecture
and training method for this approach.

Data generation:

We first collect a dataset of trajectories comprising state-action-reward triples over episodes
of length T . To simulate episodes for active search, we select actions that maximize the
information gain in the agent’s posterior belief following Eq. (6.10) and simulate M trials of
single-agent single-target active search for T steps each. The ground truth target location
differs across trials in the dataset. Each trial leads to a sequence of length T , each time step

2Note that throughout this chapter, and for diffusion models in RL in general, we have to carefully
distinguish the diffusion timestep which we denote using superscript from the decision making timestep
which we denote using subscript.
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being labeled with the expected full recovery rate. In other words, for each action x ∈ τ at
state s, the reward is given by

r = Eβ̃∼N (β̂,Σ̂),y|x,β̃[1{β̃thr = β̂′
thr|(x,y)} − 1{β̃thr ̸= β̂′

thr|(x,y)}] (6.7)

where β̃ is a Thompson sample simulating a possible search vector consistent with the
present state estimate. β̂′ is the one-step lookahead posterior mean estimate assuming the
action x is executed with observation y, assuming β̃ as the ground truth. Note that β̃ and
β̂′ are continuous valued vectors in (0, 1)n, therefore we consider a threshold cthr ∈ (0, 1)
to get quantized vectors β̃thr and β̂′

thr in {0, 1}n. In other words, [β̃thr]i = 1{[β̃]i >=
cthr}, ∀i ∈ {1, . . . , n}. The per-step reward r computes the expected value of all targets
being recovered by action x in state s.

We slice each trial into sequences of length H given by (st:t+H ,xt:t+H , rt:t+H) at each
t ∈ {0, . . . , T −H}.

Trajectory representation:

Prior work in diffusion for RL attempts to fold as much of the planning stage as possible
into the generative model so that sequential decision making becomes equivalent to drawing
samples from a trained diffusion model (Janner et al., 2022; Chi et al., 2024). Considering
the matrix representation for st ∈ [0, 1]2×nℓ×nw and xt ∈ {0, 1}nℓ×nw , we can represent a
state-action sequence of length H as a sequence of 3-channel images, where each image in
the sequence is a concatenation of st and xt along the channel dimension. Following Janner
et al. (2022), we can then train a diffusion model to generate samples {st′ ,xt′}t+Ht′=t over
lookahead horizon H and consider xt:t+H as the generated action plan for the subsequent
steps. We observed that this resulted in the generation of overly optimistic state-action
sequences which did not select actions to balance exploration-exploitation in the search
region. We refer to this as the optimism bias for diffusion based planning in active search
and explain it further in Section 6.4.3.

To mitigate this challenge of optimism bias, we will instead generate a sequence of ac-
tions xt:t+H conditioned on the agent’s current state st. In other words, we model lookahead
decision making as denoising diffusion sampling over a sequence of single-channel images,
each image being a {0, 1}nℓ×nw matrix representation of a region sensing action.

Training loss:

Recall the diffusion training and inference framework briefly described in Section 6.3.1.
Since active search agents are tasked with recovering targets with as few measurements as
possible, we should sample action sequences from the diffusion model that would have a
higher expected full recovery reward (Eq. (6.7)). This conditional sampling framework is
captured by gradient guidance during denoising diffusion sampling (Janner et al., 2022) and
implies that we train both a trajectory generation model ρθ and a (discounted cumulative)
return estimation model νψ as described next.

Similar to Janner et al. (2022), we observe more consistent action sequences in the
generated samples by using the least squares objective in Eq. (6.8) as the training loss for
optimizing the trajectory diffusion model parameters θ.
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(Trajectory net) L(θ) = Et̃∼U(0,Tdiffusion)
s,τ∼DM

[∥τ − ρθ(s, τ t̃, t̃)∥22] (6.8)

We use the regression loss in Eq. (6.9) for training the return estimation model parame-
ters ψ. Note that we tried two approaches for this training framework: first, using diffusion
with the same noise schedule as in ρθ and second, without diffusion i.e. with no forward
noising. The latter was more stable in terms of training loss curves especially for larger 2D
search spaces.

(Return net) L(ψ) = Et̃∼U(0,Tdiffusion)
s,τ ,rτ∼DM

[∥
H−1∑
t′=0

γt
′
rτ [t+ t′]− νψ(s, τ t̃, t̃)∥22] (6.9)

Note that in Eq. (6.8) and Eq. (6.9), s indicates the agent’s belief state at a decision
timestep t, τ is ta sequence of actions xt:t+H , rτ is the reward sequence over τ (per step
reward follows Eq. (6.7)) and t̃ is the diffusion timestep.

Network architecture:

We explore two different neural network architectures for ρθ and νψ. This is motivated by
our observation that certain inductive biases ensure improved sample efficiency for training
in 2D active search, compared to the 1D setup.

• U-Net : The U-Net architecture, first proposed for image segmentation (Ronneberger
et al., 2015), has been widely used in image based diffusion. It consists of a contracting
part and an almost symmetric expansive part, giving the architecture a U-shape. The
contracting part is composed of blocks of convolution, activation, normalization and
pooling layers which successively reduce the spatial resolution of the input image
while increasing the number of features or channels. The expansive part mirrors the
block arrangement, but instead upsamples the spatial dimension while combining the
feature information from the contracting path through residual connections. In our
setup, we can think of the temporal dimension H of the sequence τ ∈ {0, 1}H×nℓ×nw

similar to the channel dimension in images, whereas the search space dimension nℓ×nw
is the spatial dimension for images. For ρθ, we define the U-Net blocks so that the
input and output dimensions are the same, corresponding to the sequence τ . Since
we will train a conditional diffusion model, we additionally use FiLM conditioning
(Perez et al., 2018) of the concatenated state s and diffusion timestep t̃ embedding.
Our implementation of this architecture follows Janner et al. (2022).

• GNN with attention: Graph Neural Networks (GNN) are particularly useful for tasks
where the input can be represented as a graph or which can benefit from geomet-
ric properties of a graph representation. Igoe et al. (2024) showed that GNNs are
particularly well-suited for learning based approaches in Bayesian experiment design
due to their domain permutation equivariance properties, resulting in multiple orders
of magnitude improvement to training sample efficiency compared to naive param-
eterizations like MLPs or CNNs. Here we extend their observations to the more
general active search setting and propose combining Graph Attention with diffusion
for state-conditioned reward-gradient guided lookahead action generation.
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In our graph representation, each node corresponds to a grid cell in the discretized
search space. Each node i is represented by a feature vector

fi = [τ t̃t:t+H,i β̂t,i Σ̂t,i t̃emb]1×(H+3).

Here β̂t,i and Σ̂t,i indicate the ith index element of the conditioning posterior mean
and variance. τ 0

t:t+H,i is the vector of 0s and 1s indicating whether the ith grid cell
is sensed (1) or not (0) for each of the H decision timesteps in τ . The superscript
0 indicates zero added diffusion noise and more generally, t̃ indicates the diffusion
(de)noising timestep. t̃emb is a (learnable) embedding of the diffusion timestep. We
further consider our graph to be fully connected with edge weights eij proportional
to the Manhattan distance between grid cell i and j in the search space. Therefore,
in this representation, the temporal dimension of the sequence modeling problem
is captured by the node features and the spatial dimension by the node adjacency
matrix.
In the trajectory generation network ρθ, the GNN output would model the sequence
of actions over H steps. On the other hand, for νψ, we further add a linear projection
layer to output a scalar value for the estimated return. In both cases, GNNs rely on
the pairwise message passing mechanism between graph nodes to learn the function
mapping between the input and output during training. Prior work (Veličković et al.,
2018) has proposed Graph Attention Networks (GAT) which introduce multi-head
attention for message-passing among neighborhood nodes. We use graph attention
layers in our network, where our edge weights are used to learn a soft attention
mask. Overall, this network architecture introduces permutation equivariance in ρθ
and permutation invariance in νψ over the belief state-action space.

We separately train ρθ and νψ with the training dataset DM described earlier. In order
to generate action sequences, we follow the gradient guided sampling framework similar to
Janner et al. (2022). Algorithm 9 outlines the inference algorithm for active search with
diffusion.

Cost awareness. In contrast with the classifier-free guidance framework, gradient guided
diffusion provides flexibility in composing different reward or constraint functions to bias
the generated samples at inference time. We leverage this to incorporate cost-awareness
in the active search algorithm (Line 6 and Line 7). Here we additionally train a distance
estimator dφ by minimizing the mean square error with respect to the euclidean distance
between two sensing locations in the search region.

Sampling batch size. We observe that the batchsize of the generated samples (Line 2)
affects the quality of action sequences that the active search agent chooses from. Addition-
ally, the coefficients α, λ in the gradient guidance term (Line 5) also influence the sampled
action sequences and thereby the performance of the active search agent.

6.4.3 Optimism bias with diffusion in active search

Section 6.3.4 briefly touches upon some of the reasons behind our observation of optimism
bias in this setting and why it has been overlooked in prior work which mostly evaluate
planning in deterministic MDPs. Recall that we use gradient guidance from the trained
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Algorithm 9 Cost-Aware Diffusion active search (CD-AS)
1: Input: ρθ, νψ, dφ, st, current location xt−1

2: for each of Ndiff samples do
3: Initialize τTdiff

t ∼ N (0, I)
4: for t̃ = Tdiff − 1, . . . , 0 do
5: τ t̃−1

t ∼ N (ρθ(st, τ
t̃, t̃) + αΣt̃

diff(∇νψ(st, τ t̃t , t̃)− λ∇dφ(st, τ t̃t , t̃)),Σt̃
diff)

6: Compute dτ0
t
: total distance traveled if τ 0

t were executed starting from xt−1

7: Select τ 0
t that maximizes νψ(st, τ 0

t , 0)− λ× dτ0
t

8: Execute the first action xt in τ 0
t . Observe yt.

9: Update st+1

return network to generate samples over state-action sequences that would lead to higher
expected full recovery reward. Since joint generation of states and actions does not disen-
tangle the effects of active decision making from the dynamics of state transition, therefore
gradient guided diffusion draws samples where the state-action sequence assumes the target
will be recovered at the very first decision timestep thereby achieving a high full recovery
reward. This happens because the generative process does not consider the ground truth
observation which would determine the posterior belief update and subsequent adaptive
action selection. Moreover the discounted cumulative return (used for gradient guidance)
estimates the expectation over possible sequences of posterior belief updates (st:t+H) given
the action sequence (xt:t+H) for different search vectors β, and therefore at inference, fails
to account for the stochasticity in the active search belief MDP.

6.4.4 Diffusion for decentralized and asynchronous multi-agent active
search

Algorithm 10 Multi-agent active search with diffusion

1: Input: ρθ, νψ, sjt = (β̂jt , Σ̂
j
t ), current location xjt−1

2: Sample τ 0
t,j following Algorithm 9

3: Execute the first action xt,j in τ 0
t,j . Observe yt,j .

4: Share (xt,j ,yt,j) with team.
5: Update st+1,j using (xt,j ,yt,j) and measurements received from other agents.

Algorithm 10 outlines our approach to decentralized and multi-agent cost-aware active
search using the trained models. Note that the training data was collected in a single-agent
setting, therefore we design each agent to draw its own samples independently over the
lookahead horizon conditioned on its current state. This is only meant as a preliminary
algorithm for diffusion in multi-agent active search and we leave this open as a potential
direction for future research.
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6.5 Experiments

6.5.1 Baselines

In this section, we will use the following algorithms as baselines to compare both cost-
awareness and measurement efficiency.

• Myopic information-greedy agent (IG) (Ma et al., 2017) selects an action to maximize
the expected information gain, which is equivalent to maximizing the reduction in
entropy of the posterior belief distribution following the action.

xt = argmax
x

Ey[H(p(β̂))−H(p(β̂|x,y))] (6.10)

• Myopic Thompson Sampling agent (TS) (Chapter 2) (Ghods et al., 2021b) selects an
action to maximize the expected one-step lookahead reward defined as:

xt = argmax
x

Ey|x,β̃t
[−∥β̃t − (β̂t+1|x,y)∥22] (6.11)

where β̃t is a Thompson sample from the posterior belief p(β) = N (β̂t, Σ̂t) and
β̂t+1|x,y is the one-step lookahead posterior mean if action x were executed with
observation y.

• Implicit Q-Learning (IQL) (Kostrikov et al., 2022) is an offline RL algorithm that
decouples policy improvement from value function estimation and uses expectile re-
gression to train a Q-function without querying unseen actions in the dataset, thereby
avoiding bootstrapping errors in the temporal difference loss. IQL outperforms other
approaches in offline RL particularly for tasks that require multi-step dyynamic pro-
gramming updates to extract optimal behavior by stitching together sub-optimal
training data. For our lookahead decision making task in active search, we have
access to simulated trials with a myopic policy. As the search space becomes larger,
our training dataset includes fewer number of optimal sequences of actions. Therefore,
we use IQL as a baseline algorithm which implicitly learns a policy from a Q-function
trained for multi-step dynamic programming updates. Note that unlike diffusion-
based approaches, IQL is not primarily focused on multi-modality in the dataset or
stochastic policies.

• CAST (Chapter 3) (Banerjee et al., 2023a), our previously proposed Thompson sam-
pling and pareto-optimization guided Monte Carlo Tree Search based algorithm is
adapted to the sensin model for ground robots. We consider CAST as an online, search
based lookahead decision making algorithm for active search and compare CAST to
our proposed diffusion modeling based generative approach to amortized lookahead
decision making. Additionally, we will also compare the performance of cost-aware ac-
tive search in CAST, with the inference-time cost-awareness of gradient-guided MPC
style lookahead decision making with our proposed approach.

• Diffusion policy (Chi et al., 2024) proposes representing a robot’s visuomotor policy as
a conditional denoising diffusion process and demonstrates advantages of using diffu-
sion in learning multimodal policies by behavior cloning. In contrast to our approach,
this framework does not involve a reward model or gradient guidance to generate

97



constraint-aware plans. We will consider the diffusion policy baseline, using open-
sourced code implementation (Cadene et al., 2024), to compare against our diffusion
based approach to active search.

6.5.2 1D grid discretized into 16 cells

We first consider a one-dimensional (1D) search space discretized into 16 grid cells. For a
single agent (J = 1) and a single target (k = 1), we simulate multiple trials where each
trial differs in the (unkown) ground truth target location. We consider two settings for
observation noise: σ = 1

16 and σ = 0.2.
During training, our diffusion based approach uses H = 8 length sequences and the U-

Net architecture for both ρθ and νψ, with 64 denoising diffusion steps. At evaluation, we use
a gradient guidance coefficient of α = 10. For each decision step, we sample Ndiff = 10000
action sequences of length H = 8 conditioned on the current belief state, execute the first
sensing action from the sequence and replan with the updated posterior belief at the next
timestep.

Fig. 6.2 shows that our diffusion based lookahead decision making outperforms myopic
and shallow lookahead baselines. EIG is a myopic active search baseline which only considers
a one-step lookahead reward. CAST is simulated with a search tree of depth 2 and 5000
simulation episodes. In both low and high observation noise settings, diffusion is able
to recover the target with minimum (optimal) number of measurements. Note that for
diffusion, it is important to sample a batch of action sequences at test time and select the
one with the highest estimated return.

Figure 6.2: Lookahead vs myopic decision making in 1D search space of size
n = 16. J = 1 agent. k = 1 target. Low (σ = 1

16) and high (σ = 0.2) observation
noise. Our diffusion based approach recovers the optimal sequence of actions and achieves
full recovery faster than the myopic and shallow search tree based baselines. Plots show
mean and standard error over 20 trials.

In Fig. 6.3, we compare the performance of online search (CAST) versus generative
sampling (CD-AS) for lookahead cost-aware decision making in active search. CAST com-
bines Monte Carlo Tree Search with pareto-optimization to trade-off travel cost and sensing
cost. When sensing cost is low (0 secs), CAST focuses on optimizing the total incurred
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travel cost and selects successive sensing locations close to one another. In contrast, when
sensing cost is much higher than travel cost (sensing cost 50 secs), CAST optimizes the
total number of measurements or sensing actions to minimize the incurred total cost. In
Fig. 6.3, when the observation noise is higher (σ = 0.2 instead of σ = 1

16), the total cost
incurred for full recovery increases for both CAST and CD-AS. However when sensing cost
is 0s, CAST outperforms CD-AS. This is because the pareto-front constructed by CAST
considers the ground truth total cost for a sequence of actions, whereas the cost-awareness
in CD-AS is determined by the parameters α, λ and the distance network dφ. We ob-
served that the network dφ (when trained on the same dataset samples as νψ) has poor
generalization over the combinatorial space of length 8 lookahead action sequences, which
explains the weaker cost-awareness of CD-AS. On the other hand, when sensing cost is 50s,
CD-AS outperforms CAST across both levels of observation noise, further supporting our
observation in Fig. 6.2 that diffusion based lookahead with gradient guidance recovers the
optimal sequence of adaptive sensing actions.

6.5.3 2D grid discretized into 8× 8 grid cells

Next, we focus on a two-dimensional (2D) search space discretized into 8 × 8 grid cells.
We will consider scenarios with two different teamsizes (J = 1, 3) and number of targets
(k = 1, 4). For each such scenario, we simulate multiple trials where every trial differs in
the ground truth target location(s). As before, we consider two levels of observation noise:
low noise with σ = 1

16 and high noise with σ = 0.2.
We train the diffusion model on sequences of length H = 10. We use the previously de-

scribed U-Net architecture for the trajectory network ρθ with Tdiff = 64 diffusion denoising
steps. For the return network νψ, we use the GNN architecture and optimize Eq. (6.9) with
Tdiff = 0 i.e. without diffusion noising. This was observed to lead to better training sample
efficiency and lower prediction error. At evaluation, we use a gradient guidance coefficient
of α = 10. For each decision step, we sample Ndiff = 100 action sequences of length H = 10
conditioned on the current belief state, execute the first action and replan conditioned on
the updated posterior belief at the next timestep (Algorithm 9).

Fig. 6.4 shows that our diffusion based lookahead decision making (D-AS) outperforms
myopic greedy as well as shallow online lookahead baselines. We do not focus on cost-
awareness in this comparison, therefore λ = 0 in Line 5. CAST is simulated with a budget
of 25000 state-action rollouts to build a search tree of depth 2 at each online decision mak-
ing step. In Section 6.5.5 we further discuss the trade-off between decision quality and
time per decision making step for CAST. Recall from Section 6.4.2 that EIG is the base-
line (behavior) policy used to collect the training data for our approach. It is a myopic
greedy algorithm, therefore EIG does not always recover the optimal action sequence. In
spite of sub-optimality in the training data, our gradient-guided diffusion model is able to
generate action sequences that recover the target with fewer measurements than the EIG
policy. We also consider IQL as a baseline due to its reported competitive performance in
offline RL benchmark environments that benefit from a multi-step dynamic programming
type algorithm to stitch together sub-optimal sequences into optimal plans or trajectories
(Kostrikov et al., 2022). Unfortunately, IQL does not consider stochastic policies or multi-
modality in action sequences for a task, which explains why IQL is unable to recover the
target(s) in active search. Diffusion policy is another baseline for decision making with
diffusion, but it follows the behavior cloning framework and as a result its performance
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Figure 6.3: Cost-aware decision making in 1D search space of size n = 16. J = 1
agent. k = 1 target. Low (σ = 1

16) and high (σ = 0.2) observation noise. Our
diffusion based approach called CD-AS incurs smaller or competitive total cost compared to
CAST when sensing cost is higher than traveling, but when sensing cost is low then CAST
selects sensing actions which incur a smaller total cost. Plots show mean and standard
error over 20 trials.
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Figure 6.4: Lookahead vs. myopic decision making in 2D search space of size
8 × 8. J = 1 agent. k = 1 target. Low (σ = 1

16) and high (σ = 0.2) observation
noise. Our diffusion based approach (D-AS) samples the optimal sequence of actions and
achieves full recovery with fewer measurements compared to myopic active search (EIG),
offline RL (IQL), behavior cloning based diffusion (diffusion policy) and shallow online tree
search (CAST) baselines. Plots show mean and standard error over 10 trials.

is limited by the quality of the training dataset. We observe that it is competitive with
some of the active search baselines in the low noise setting but its performance deteriorates
with higher observation noise. This is because the training dataset is collected with the
EIG behavior policy, which is myopic in nature and does not support behavior cloning
for lookahead decision making. In fact the lack of an optimal dataset is a practical and
important constraint for training learning based approaches for long horizon planning or
lookahead decision making in autonomous agents. The ability to utilize and learn from
sub-optimal action sequences is an advantage of our gradient-guided diffusion framework
as a generalizable and data-efficient algorithm for active search.

In Fig. 6.5, we compare the cost-aware performance of CAST versus our approach
CD-AS. Recall that CAST computes the ground truth cost of sensing actions during tree
search for online decision making, whereas cost-awareness in CD-AS is incorporated by
gradient guidance from the trained distance network dφ during denoising diffusion sampling.
We observe that CAST outperforms CD-AS under both cost scenarios. Spatial distance
estimation with neural networks is a difficult learning problem (Ramakrishnan et al., 2024),
therefore we observe that gradient guidance with a scalarized combination of νψ and dφ
does not sample cost-aware action sequences as effectively as constructing a pareto-front
with ground truth cost estimates.

6.5.4 Decentralized and asynchronous multi-agent active search

We assume there are J = 3 agents and k = 4 targets distributed in an 8× 8 search space.
Following Algorithm 10, each agent samples its own set of action sequences conditioned on
its belief state. In contrast, multi-agent CAST relies on Thompson sampling to build each
agent’s search tree. We observe that in Fig. 6.6, our diffusion based approach D-AS (with
λ = 0) outperforms CAST in terms of the number of measurements required to completely
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Figure 6.5: Cost-aware decision making in a 2D search space of size 8× 8. J = 1
agent. k = 1 target. Low (σ = 1

16) and high (σ = 0.2) observation noise. Our
diffusion based approach requires fewer number of measurements (Fig. 6.4) but incurs a
higher travel cost compared to CAST which combines cost-awareness with tree search based
planning. Plots show mean and standard error over 10 trials.

recover all targets. Fig. 6.7 further compares their cost-awareness. When sensing is more
expensive than traveling (sensing cost 50s), CD-AS is competitive with CAST in terms of
the total cost incurred for full recovery. But CAST outperforms CD-AS when sensing cost
is low (0s). In the latter case, CAST optimizes for the ground truth travel cost incurred in
active search and selects action sequences that incur a low travel cost but do not optimally
explore the search space. In contrast, CD-AS does not sample such low cost sequences since
the training dataset was collected with the EIG policy which is not cost-aware and does
not trade-off cost of sensing actions with information gain from exploring the search space.

Figure 6.6: Lookahead vs myopic decision making in 2D 8× 8 search space. J = 3
agents. k = 4 targets. Our diffusion based approach recovers the optimal sequence of
actions for full recovery faster compared to shallow lookahead multi-agent active search
with CAST. Plots show mean and standard error over 10 trials.
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Figure 6.7: Cost-aware decision making in 2D search space of size 8 × 8 . J = 3
agents. k = 4 targets. Our diffusion based approach CD-AS incurs a higher total cost
compared to CAST which combines cost-awareness with search tree based planning. Plots
show mean and standard error over 10 trials.

6.5.5 Amortizing the cost of lookahead decision making

Recall from Section 6.1 that our exploration of generative sampling approaches in this
setting was motivated by the goal of improving the time complexity of decision making
while preserving the performance advantages of lookahead in active search. In Table 6.1 we
compare the CPU wall clock time per decision making step in CAST with the GPU time
for sampling lookahead action sequences and selecting the next cost-aware sensing action in
CD-AS. For a 1D search space of size 1×16, at every decision step, CAST constructs a search
tree of depth 2 with 5000 rollouts for a measured wall clock time of 120.40 secs. In contrast,
CD-AS takes 78.68 secs to sample a batch of 10000 action sequences of lookahead depth 8
using 32 denoising steps. In the 2D search space of size 8× 8, while CAST requires 405.47
secs to build a search tree of depth 2 with 25000 rollouts, it only takes 132.75 secs for CD-
AS to sample a batch of 100 action sequences with lookahead depth 10 using 32 denoising
steps. In both settings, we observe that denoising diffusion sampling in CD-AS allows for
longer horizon rollouts at a lower time complexity. In future work, with higher quality
datasets and advanced training techniques, we believe that the inference time performance
of CD-AS can be further improved thereby providing an efficient alternative approach to
tree search for planning and lookahead decision making in active search.

nℓ × nw CAST CD-AS
1× 16 120.40 78.68
8× 8 405.47 132.75

Table 6.1: Comparing the average wall-clock time in seconds per decision making
step with CAST and our proposed CD-AS in both 1D and 2D search spaces.
CD-AS amortizes the time complexity of rolling out state-action sequences in tree search
based approaches for lookahead decision making and leads to more than 30% improvement
per decision step.
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7 | Conclusion

7.1 Thesis Summary

Interactive decision making with multi-agent teams is a ubiquitous component of applica-
tions with software agents as well as physical embodied robots. With the increasing adop-
tion of autonomous agents in our daily lives, ranging from companion chatbots, AI tutors
to even AI scientists and assistive robots, it becomes imperative to develop robust solutions
to many of the challenges faced by existing planning and decision making algorithms. In
this thesis, we proposed the multi-agent active search framework to characterize a practical
setting encompassing several applications like robotic search and rescue, wildlife patrolling,
environment monitoring and others. Our assumptions of decentralized decision making and
asynchronous inter-agent communication reflect real world constraints for deploying such
multi-robot teams. Specifically, we focused on the following four distinct challenges faced in
practice. In Chapter 3, we discussed cost-awareness in decision making with lookahead tree
search in CAST. Chapter 4 demonstrated the importance of uncertainty modeling due to
sensor noise in the agent’s belief representation and Chapter 5 discussed methods for mod-
eling non-stationarity in the posterior belief. Finally, in Chapter 6 we discussed generative
modeling approaches for adaptive lookahead decision making in active search.

7.2 Current Limitations and Future Directions

The algorithms proposed in this thesis demonstrate improvements in addressing the chal-
lenges we discussed in the respective problem settings. However we would be remiss not
to draw attention to the challenges that still remain to be solved for practical real world
deployment of multi-agent systems capable of active decison making.

The algorithms proposed in Part I and Part II involved online decision making ap-
proaches that can generalize to different search regions but might not be scalable to larger
action spaces. Part III, in contrast, showed that a learning based approach would be scal-
able but its ability to generalize across environments is limited by our ability to collect high
quality decision making datasets. This trade-off between decision quality versus decision
efficiency is an important practical consideration for developing real world systems. With
the current focus in the research community on developing foundation models for various
tasks, we observe similar ideas in approaches like Chain-of-Thought (Wei et al., 2022) pro-
posed for harder reasoning tasks. While these methods are being primarily developed with
software AI agents in mind, perhaps future work would also benefit from exploring how
such reasoning algorithms integrate with embodied agents that have diverse physical ca-
pabilities for different tasks in manipulation, navigation, etc. Preliminary research in this
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direction has developed methods like SayCan (Ahn et al., 2022) but they do not solve many
of the open problems in long horizon reasoning or ambiguity in task specification and are
primarily limited to single agent settings.

Throughout this thesis, we have leveraged the stochasticity in Thompson sampling (TS)
as a decentralized decision making algorithm in multi-agent systems with asynchronous
inter-agent communication. While TS provides a flexible framework that is scalable with
teamsize, Chapter 2 discussed the challenges involved with TS policies in information-
gathering tasks. Moreover, in Chapter 3, the batch size for TS at the root node of the
search tree is a parameter which needs to be carefully tuned so that agents do not end up
constructing the same search tree. Given these limitations, future work might benefit from
learning strategic decision making policies in multi-agent active search that can adaptively
enable inter-agent collaboration conditioned on the task or objectives. In scenarios with
environment non-stationarity where the agent’s policy can affect the behavior of targets,
future work can leverage the literature on principal-agent mechanism design for adaptive
decision making between strategic interacting agents (Ivanov et al., 2024; Banerjee et al.,
2023c).

Finally, in Chapter 6 we discussed some of the challenges involved in training trajectory
models, return and spatial distance estimators for active search. Although sequence models
like transformers, state space models and diffusion models are recently being explored for
different RL settings, Section 6.4.3 demonstrates the need for benchmarks that consider
environments with stochastic state dynamics, observation noise and partial observability.
Network architectures that consider symmetries in the state space and action space can im-
prove generalization to unseen environments as well as improve the sample efficiency during
model training. Moreover, with the increasing adoption of generative models in different
applications, it is crucial to evaluate the robustness of such approaches to different sources
of uncertainty in decision making tasks, for example, different levels of observation noise
during training and evaluation, variable number of interacting agents, etc. Consequently,
future work in learning based approaches to active decision making could involve exploring
alternate network architectures and training strategies that can address these challenges
with the goal of developing scalable and robust systems for real world applications of multi-
agent active search.
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