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Abstract

Black-box optimization (BBO) problems occur frequently in many engineer-
ing and scientific disciplines, where one has access to zeroth-order evaluations
of a function (black-box), that has to be optimized over a specified domain. In
many situations, the function is expensive to evaluate, and hence the number
of evaluations is limited by a budget. A popular class of algorithms known as
Bayesian Optimization model the black-box function via surrogates, and pro-
ceed by evaluating points that are most likely to lead to the optimum. Multi-
objective optimization (MOO) is another topic in optimization where the goal
is to simultaneously optimize for multiple objectives defined over a common
domain. Typically, these objectives do not achieve their optima for the same
inputs. In such scenarios, rather than searching for a single best solution, a set of
Pareto optimal solutions is desired. In this thesis, we study several optimization
strategies for BBO and MOO and their applications.

The first half of this thesis is about BBO for expensive functions. First,
we propose a simple and flexible approach for multi-objective black-box opti-
mization (MOBO) based on the idea of random scalarizations. We introduce a
notion of multi-objective regret and show that our strategy achieves zero regret
as the budget grows. Next, we study the effectiveness of neural networks for
expensive BBO. We show that a simple greedy approach can achieve a perfor-
mance close to that of Gaussian process Bayesian optimization. Using recently
studied connections between Gaussian processes and training dynamics of very
wide neural networks, we prove upper bounds on the regret of our proposed
algorithm. Lastly, we propose a cost-aware Bayesian optimization framework
that takes into account the cost of each evaluation. This approach is useful in
settings where the evaluation cost varies across the input domain and low cost
evaluations can provide a large amount of information about the maximum.

The second half of this thesis is about the application of MOO to two dif-
ferentiable MOO problems. Our first application is learning sparse embeddings
for fast retrieval using neural networks. The objectives to be optimized here are
retrieval accuracy and retrieval speed. We introduce a novel sparsity regularizer
and demonstrate an annealing strategy that yields a better Pareto frontier of the
objectives compared to other methods. For our second application, we consider
the problem of hierarchical time series forecasting, where multiple related time
series are organized as a hierarchy. We propose an approach that accounts for
the hierarchical structure, while being scalable to large hierarchies, and show
that it leads to an improved accuracy across most hierarchical levels. We also
treat this as a multi-objective problem and demonstrate the performance trade-
offs across various hierarchical levels.

To summarize our contributions, in this thesis we proposed strategies for
optimization of various types of black-box and multi-objective functions, with
experimental evaluation on synthetic or benchmark datasets.
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1 | Introduction

In a large variety of practical problems, we often have to deal with optimization of expensive
black-box functions. The term black-box refers to the fact that such functions only offer
zeroth order access to the function, that is, given a query point x belonging to some
domain X , the function can only yield the value of the function f(x). This is in contrast
to the first order access, where in addition to being able to compute f(x), we can also
compute the gradient ∇xf(x). Global optimization of black-box functions is an important
problem occurring in many scientific and engineering domains. Its recent popularity can
be attributed to machine learning applications such as hyperparameter tuning for machine
learning algorithms [119, 246], neural architecture search [118], and in general the broad
topic of AutoML [99]. However, black-box optimization problems (BBO) can be frequently
found in other practical applications such as experiment design [38, 171], online advertising,
scientific discovery [74, 91, 116, 226, 263] and others [165, 198] to name a few. The evaluation
of such functions can be expensive, for instance, the result of a machine learning experiment
for a set of given input hyper-parameters, or the result of a simulation experiment for
molecular discovery. As a result, optimization for such functions is often limited by a
budget.

Global optimization of black-box functions have been studied over many decades. Existing
approaches range from methods based on random walks [185, 208], evolutionary algorithms
[14, 52, 304], estimating derivatives using finite differences (often studied under the realm
of derivative free optimization) [143], to ones based on fitting a surrogate model or making
smoothness assumptions on the black-box function [29, 130, 157, 176]. Methods based on
random walks and evolutionary algorithms often require a large budget to find the optimum
reliably, on the other hand smoothness assumptions are often necessary for black-box under
a limited budget. Bayesian optimization [63, 96, 112, 251] is a popular class of methods
used for expensive black-box optimization that assume a Gaussian process prior [218],
thus essentially imposing a smoothness criterion on the function. Other kinds of surrogate
models such as regression trees [98], linear models [83], and more recently neural networks
[91, 125, 149, 247] have also been explored.

Several variations of the standard BBO have also gained recent interest including:

1. Multi-Fidelity optimization [115, 287]: where multiple levels of fidelity are available
for each evaluation. For instance, a simulation experiment can be run at a lower
accuracy setting requiring lesser computation resources, but producing a low fidelity
approximation of the black box function at the queried point.
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2. Cost-Aware optimization [9, 144, 201]: where each evaluation can have a variable cost.
Examples include chemical experiments requiring a different quantity of materials for
each experiment.

3. Multi-Objective optimization [89, 200]: where the goal is to optimize several objec-
tives defined on a shared domain. For example, in neural architecture search, the user
may want to maximize accuracy of a neural network classifier while minimizing com-
putations. The objectives are often competing in nature and hence improving one of
the objectives leads to worsening of the others. In such cases, a notion of optimality
known as Pareto optimality is often desired.

Multi-objective optimization (MOO) is not limited to the black-box / zeroth-order setting.
MOO problems can also be differentiable in nature, for instance, when training a classifier
on an imbalanced dataset, the class-wise losses (typically differentiable) are considered as
the multiple objectives that must be minimized.

In the first part of this thesis, we look at several problems in expensive black box optimiza-
tion. In particular, multi-objective Bayesian optimization, cost-aware Bayesian optimiza-
tion, and black-box optimization using neural networks. The second part of this thesis is
about two problems with aspects of differentiable multi-objective optimization.

Contributions. We briefly discuss our main contributions below. In the first part of the
thesis, we present our contributions in the domain of black-box optimization.

1. As discussed above, multi-objective optimization (MOO) problems occur in a variety
of practical applications. Often, these objectives are expensive to evaluate, and are
conflicting in nature – thus cannot be optimized simultaneously. Rather than optimiz-
ing for a single optimal point, most multi-objective optimization approaches aim to
recover the Pareto front, defined as the set of Pareto optimal points (see Section 1.1.2
for a definition). A lot of multi-objective problems are also black-boxes, thus amenable
to Bayesian optimization. Several prior approaches for multi-objective Bayesian opti-
mization (MOBO) have been proposed, which are either conceptually complex, com-
putationally expensive, or aim to estimate the whole Pareto front [89, 131, 207, 305].

In Chapter 2, we propose a method for multi-objective Bayesian optimization (MOBO)
based on random-scalarizations [200] in which a practitioner can encode their pref-
erences as a prior and steer the exploration strategy towards interesting regions of
the Pareto front. We propose a novel MOBO algorithm based on upper confidence
bounds (UCB) and Thompson sampling (TS) [260]. We demonstrate the effectiveness
of our approach on various synthetic and real world problems. We also introduce a
novel measure of regret in the multi-objective setting, and theoretically show that our
approach achieves a zero regret as the budget T increases to infinity. To the best of
our knowledge, this is the first work to introduce a notion of regret and theoretical
bounds in the multi-objective setting.

2. Gaussian processes are the most popular surrogates used in practice [73]. Neural
network based approaches are gaining importance as replacements for GPs due to
their ability to fit high dimensional and structured data [125, 289, 299]. Most existing
approaches are either not theoretically principled or do not perform well in practice.
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In Chapter 3 we show that a simple approach based on empirical risk minimization
with neural networks performs at par if not better than GPs on benchmark problems.
We also draw connections to the theory of wide neural networks [86, 147] and prove
upper bounds on the regret.

3. In the standard black-box optimization setup, it is assumed that the cost of each
query is uniform across the domain. In many situations the cost can vary based
on the query point, such as scientific experiments that require varying amounts of
resources in each experiments. To this end, in Chapter 4 we propose a cost-aware
approach to expensive black-box optimization [201] based on the idea of information
directed sampling [229]. We also derive theoretical upper bounds on the regret, and
discuss the theoretical limitations of such an approach.

In the second part of the thesis, we present two problems with aspects of multi-objective
optimization.

1. In Chapter 5, we propose a method for learning sparse representations for efficient
nearest neighbors search [202]. In this work, we leverage sparse representations to
compute fast dot products via sparse-matrix sparse-vector products. The goal here,
is to learn sparse representations while optimizing for two competing objectives -
to achieve a high recall, and a small retrieval time. We introduce a novel sparsity
regularizer that optimally balances the sparsity and retrieval accuracy. One of our key
observations is that, minimizing a standard regularized loss is not sufficient to yield
the best sparsity for a given accuracy. We propose a regularization annealing schedule
that helps both the objectives achieve better optima. We show the effectiveness of
our approach on multiple retrieval tasks. A comparison of the Pareto frontiers of the
two values shows an improved speed-vs-accuracy tradeoff for our proposed approach.

2. In Chapter 6, we consider the problem of hierarchical time series forecasting. To
motivate the problem, consider the example of demand forecasting for a large ecom-
merce retail chain. Given a hierarchy (represented as a rooted tree) of all available
products, forecasts can be made at various levels of hierarchy. Future demand fore-
casts can be made for a particular product occurring at the leaf of the hierarchy
(fine-grained), or the total demand of a class of products occurring higher up in the
hierarchy (aggregated/coarse-grained). The goal in this problem is to make accurate
forecasts for each node of the hierarchy. We measure the accuracy of our predictions
for each individual time series and aggregate the metrics at each hierarchical level.
We propose a scalable approach that incorporates the hierarchy into the training loss,
and show an improved overall performance across all hierarchical levels. We also treat
it as a multi-objective problem, where the aggregated metric at each hierarchical level
is an objective.

Broadly speaking, in this thesis we propose several strategies for black-box and multi-
objective optimization, that are applicable to many problems in practice.

1.1 Background

In this section we provide a brief introduction to the background for each of the topics.
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1.1.1 Gaussian Processes and Bayesian Optimization

Gaussian Processes. A Gaussian process (GP) defines a prior distribution over functions
defined on some input space X . GPs are characterized by a mean function µ : X 7→ R
and a kernel κ : X × X 7→ R. For any function f ∼ GP(µ, κ) and some finite set of
points x1, . . . ,xn ∈ X , the function values f(x1), . . . , f(xn) follow a multivariate Gaussian
distribution with mean µ and covariance Σ given by µi = µ(xi), Σij = κ(xi,xj) ∀1 ≤
i, j ≤ n. Examples of popular kernels include the squared exponential and the Matérn
kernel with smoothness parameter ν = 5/2.

kse(x,x
′) = σ2 exp

(
−‖x− x

′‖22
2`2

)
(1.1)

kmat,5/2(x,x′) = σ2

(
1 +

√
5d

ρ
+

5d2

3ρ2

)
exp

(
−
√

5d

ρ

)
(1.2)

Duvenaud [55] summarizes a variety of kernel functions with different properties in the
Kernel Cookbook1. The mean function µ is typically assumed to be 0 in the absence of
any domain knowledge. The posterior process, given observations D = {(xi, yi)}t−1

i=1 where
yi = f(xi) + εi ∈ R, εi ∼ N (µ, σ2), is also a GP with the mean and kernel function given
by

µt(x) = kT (Σ + σ2I)−1Y, κt(x,x
′) = κ(x,x′)− kT (Σ + σ2I)−1k′. (1.3)

where Y = [yi]
t
i=1 is the vector of observed values, Σ = [κ(xi,xj)]

t
i,j=1 is the Gram matrix,

k = [κ(x,xi)]
t
i=1, and k

′ = [κ(x′,xi)]
t
i=1. Further details on GPs can be found in [218].

Bayesian Optimization. We assume that the given black-box function is f : X 7→ R,
and querying any point x ∈ X returns a noisy value of the function y = f(x) + ε, where
ε ∼ N (0, σ2) is often assumed to be a zero mean Gaussian random variable.

BO methods operate sequentially, using past observations {(xi, yi)}t−1
i=1 to determine the

next point xt. Given t−1 observations, the posterior GP can be computed using Eq. (1.3).
An acquisition function is optimized to compute xt. Roughly speaking, an acquisition
function acq(xt) quantifies the additional benefit of observing xt towards estimating the
optimum of the black-box function. Several aquisition functions have been proposed in the
literature. Thompson Sampling (TS) [230, 260] draws a sample gt from the posterior GP.
The next candidate xt is choosen as xt = argmaxx∈X gt(x). GP-UCB [252] constructs an
upper confidence bound as Ut(x) = µt−1(x) +

√
βtσt−1(x), where µt−1 and σt−1 are the

posterior mean and covariances according to equations 1.3. βt is a function of t and the
dimensionality of the input domain X . The next point is selected as xt = argmaxx∈X Ut(x).
Expected improvement is a popularly used acquisition function as it often performs better
than others in practice. The expected improvement at a point is defined as EI(x) =
Ef |D[max(f(x)− ybest, 0)] where the expectation is over f conditioned on the observations
D. The next query xt is chosen as xt = argmaxx∈X EI(x). A typical BO loop is shown in
Algorithm 1.1 and Fig. 1.1. Fig. 1.2 illustrates a single iteration for a randomly sampled
black-box function.

1https://www.cs.toronto.edu/~duvenaud/cookbook/
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Figure 1.1: A typical BO loop. The dotted box denotes the decision making step which
includes computing the posterior and acquisition maximization.

Algorithm 1.1 Bayesian optimization loop
Input: Black-box function f , kernel κ, exploration budget Te, total budget T .
1: for t = 1→ Te do
2: Sample xt ∼ X
3: Observe yt = f(xt)

4: for t = Te + 1→ T do
5: Dt ← {(xi, yi)}t−1

i=1

6: GP(t) ← posterior (GP(0, κ) | Dt)
7: xt ← argmaxx∈X acq(x, GP(t))
8: Evaluate yt = f(xt)

9: b = argmaxTt=1 yt
10: return xb, yb

Regret. The performance of a BBO algorithm at iteration T is measured using one of
the following criteria:

Simple Regret:
T

min
t=1

f(xt)−min
x∈X

f(x),

Cumulative Regret:
T∑
t=1

f(xt)−min
x∈X

f(x),

where x1,x2, . . . ,xT are the sequence of points queried by the algorithm. Intuitively, the
regret measures how sub-optimal are the queried points compared to the true optimum
value.

1.1.2 Multi-Objective Optimization

Pareto optimality. Multiple objectives are often conflicting in nature and hence, cannot
be optimized simultaneously. Rather than optimizing for a single optimal point, most
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Figure 1.2: A visual illustration of a typical BO iteration. We consider a randomly sampled
one-dimensional function (blue) as our black-box. Given observations (red crosses), the
dashed red curve denotes the posterior mean and the grey region denotes the posterior
variance. The dashed green curve (right) denotes the UCB acquisition function which is
maximized to yield the next point xt denoted by the dashed black line.

multi-objective optimization approaches aim to recover the Pareto front, defined as the set
of Pareto optimal points. This is depicted in Fig. 1.3a for a two objective function f . A
formal definition of Pareto optimality is given below.

Pareto optimality. A point is Pareto optimal if it cannot be improved in any of the
objectives without degrading some other objective. More formally, given K objectives
f(x) = (f1(x), . . . , fK(x)) : X → RK over a compact domain X ⊂ Rd, a point x1 ∈ X
is Pareto dominated by another point x2 ∈ X iff fk(x1) ≤ fk(x2) ∀k ∈ [K]2 (pointwise
dominance) and ∃k ∈ [K] s.t. fk(x1) < fk(x2) (unequal points). We denote this by
f(x1) ≺ f(x2). A point is Pareto optimal if it is not Pareto dominated by any other
point. The Pareto frontier is defined as the set of all Pareto optimal values. We use X ?f to
denote the Pareto frontier for a multi-objective function f , and f(X ?f ) to denote the set of
Pareto optimal values, where function of a set is defined as the element-wise functions of
the elements of the set.3

Scalarizations. One of the standard approaches to multi-objective optimization is to
convert the vector valued function outputs to a scalar and optimize it. A linear scalarization,
for instance, is essentially a weighted sum of the elements of the vector. Given a vector
output y = f(x), and a weight vector λ ∈ RK , a linear scalarization is given by,

slin
λ (y) =

K∑
k=1

λkyk. (1.4)

As depicted in Fig. 1.3b, maximizing slin
λ (f(x)) yields a point on the Pareto front where

the tangent is orthogonal to the λ, provided that the tangent does not pass through the
interior of the feasible region. Linear scalarizations can be used to yield Pareto optimal

2We use [K] to denote the set {1, . . . ,K}.
3Define f(X) = {f(x) | x ∈X} for any set X.
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(a) (b)

Figure 1.3: (a) f1, f2 denote the two objectives. The green region denotes the feasible set
of possible function values. The red boundary denotes the set of Pareto optimal values and
the blue points denote samples of Pareto optimal values. Point 1 is example of a non-Pareto
optimal value, as it is dominated by point 2. (b) The blue points represent Pareto optimal
points that can be obtained using linear scalarizations λa,λb. No linear scalarization can
yield the red point in the non-‘convex’ region, as the projection of the blue points on any
λ will result in a higher value than the red point.

points in the ‘convex’4 regions of the Pareto front only. A different scalarization known as
the Tchebyshev scalarization, allows us to obtain points from all the regions of the Pareto
front including the non-‘convex’ regions as shown in Fig. 1.3b.

stch
λ (y) =

K
min
k=1

λk(yk − zk), where z is a given reference point. (1.5)

Constrained optimization. Multi-objective optimization is also closely related to con-
strained optimization. Consider convex functions f, g1, · · · , gk : X → R for some convex
set X , and the following optimization problem.

Let x∗ ∈ argmax
x∈X

f(x) subject to g1(x) ≥ c1, · · · , gk(x) ≥ ck. (1.6)

Then provided that the KKT conditions [25, 221] hold true, there exist

λ1 ≥ 0, · · · , λk ≥ 0, such that x∗ ∈ argmax
x∈X

f(x) + λ1g1(x) + · · ·+ λkgk(x). (1.7)

The converse can also be shown to hold true, that is, for any λ1, · · · , λk ≥ 0, there exist
constants c1, · · · , ck such that the optimum in Eq. (1.7) is also the optimum in Eq. (1.6).

4Refers to the convexity of the Pareto front, not the objectives themselves.
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Part I

Black Box Optimization
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2 | Multi-Objective Bayesian Opti-
mization

2.1 Introduction

Bayesian optimization (BO) is a popular recipe for optimizing expensive black-box functions
where the goal is to find a global maximizer of the function. In many practical applications
however, we are required to optimize multiple objectives, and moreover, these objectives
tend to be competing in nature. For instance, consider drug discovery, where each evaluation
of the functions is an in-vitro experiment and as the output of the experiment, we measure
the solubility, toxicity and potency of a candidate example. A chemist wishes to find a
molecule that has high solubility and potency, but low toxicity. This is an archetypal
example for Bayesian optimization as the lab experiment is expensive. Further, drugs that
are very potent are also likely to be toxic, so these two objectives are typically competing.
Other problems include creating fast but accurate neural networks. While smaller neural
networks are faster to evaluate, they suffer in terms of accuracy.

Due to their conflicting nature, all the objectives cannot be optimized simultaneously. As
a result, most multi-objective optimization (MOO) approaches aim to recover the Pareto
front, defined as the set of Pareto optimal points, as introduced in Section 1.1.2. The
traditional goal in the MOO optimization regime is to approximate the set of Pareto optimal
points [89, 131, 207, 305].

However, in certain scenarios, it is preferable to explore only a part of the Pareto front. For
example, consider the drug discovery application described above. A method which aims
to find the Pareto front, might also invest its budget to discover drugs that are potent,
but too toxic to administer to a human. Such scenarios arise commonly in many practical
applications. Therefore, we need flexible methods for MOO that can steer the sampling
strategy towards regions of the Pareto front that a domain expert may be interested in.
Towards this end, we propose a Bayesian approach based on random-scalarizations in which
the practitioner encodes their preferences as a prior on a set of scalarization functions.

A common approach to multi-objective optimization is to use scalarization functions1

sλ(y) : RK → R [222], parameterized by λ belonging to a set Λ, and y ∈ RK denoting K-
dimensional objective values. Scalarizations are often used to convert multi-objective values

1Also known as utility functions in decision theory literature. To avoid confusion with acquisition
functions which are sometimes referred to as utility functions in BO, we use the term scalarization function.
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to scalars, and standard Bayesian optimization methods for scalar functions are applied.
Since our goal is to sample points from the Pareto front, we need additional assumptions to
ensure that the utility functions are maximized for y ∈ f(X ?f ). Following Roijers et al. [222]
and Zintgraf et al. [302] we assume that sλ(y) are monotonically increasing in all coordi-
nates. Optimizing for a single fixed scalarization amounts to the following maximization
problem, which returns a single optimal point lying on the Pareto front.

x?λ = argmax
x∈X

sλ(f(x)) (2.1)

One can verify that x?λ ∈ Pf follows from the monotonicity of the scalarization. In this
problem, we are interested in a set of points X? = {x?i }Ti=1 of size at most T , spanning a
specified region of the Pareto front rather than a single point. To achieve this we take a
Bayesian approach and assume a prior p(λ) with support on Λ, which intuitively translates
to a prior on the set of scalarizations SΛ = {sλ | λ ∈ Λ}. Thus, in place of optimizing a
single scalarization, we aim to optimize over a set of scalarizations weighted by the prior
p(λ). Each λ ∈ Λ maps to a pareto optimal value f(x?λ) ∈ f(X ?f ). Thus, the prior p(λ)
defines a probability distribution over the set of Pareto optimal values, and hence encodes
user preference, which is depicted in Fig. 2.1.

We propose to minimize a Bayes regret which incorporates user preference through the prior
and scalarization specified by the user. We propose multi-objective extensions of classical
BO algorithms: upper confidence bound (UCB) [10], and Thompson sampling (TS) [260]
to minimize our proposed regret. At each step the algorithm computes the next point to
evaluate by randomly sampling a scalarization sλ using the prior p(λ), and optimizes it to
get x?λ. Our algorithm is fully amenable to changing priors in an interactive setting, and
hence can also be used with other interactive strategies in the literature. The complete
algorithm is presented in Algorithm 2.1 and discussed in detail in Section 2.2. While
random scalarizations have been previously explored by Knowles [131] and Zhang et al.
[294], our approach is different in terms of the underlying algorithm. Furthermore, we study
a more general class of scalarizations and also prove regret bounds. As we shall see, this
formulation fortunately gives rise to an extremely flexible framework that is much simpler
than the existing work for MOO and computationally less expensive. Our contributions
can summarized as follows:

1. We propose a flexible framework for MOO using the notion of random scalarizations.
Our algorithm is flexible enough to sample from the entire Pareto front or an arbitrary
region specified by the user. It is also naturally capable of sampling from non-convex
regions of the Pareto front. While other competing approaches can be modified to sample
from such complex regions, this seamlessly fits into our framework. In contrast to the
prior work on MOBO, we consider more general scalarizations that are only required to
be Lipschitz and monotonic.

2. We prove sublinear regret bounds making only assumptions of Lipschitzness and mono-
tonicity of the scalarization function. To our knowledge the only prior work discussing
theoretical guarantees for MOO algorithms is Pareto Active Learning [305] with sample
complexity bounds.

3. We compare our algorithm to other existing MOO approaches on synthetic and real-
life tasks. We demonstrate that our algorithm achieves the said flexibility and superior
performance in terms of the proposed regret, while being computationally inexpensive.
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Related Work

Most multi-objective bayesian optimization approaches aim at approximating the whole
Pareto front. Predictive Entropy Search (PESMO) by Hernández-Lobato et al. [89] is
based on reducing the posterior entropy of the Pareto front. SMSego by Ponweiser et al.
[207] uses an optimistic estimate of the function in an UCB fashion, and chooses the point
with the maximum hypervolume improvement. Pareto Active Learning (PAL) [305] and
ε-PAL [306] are similar to SMSego, and with theoretical guarantees. [32] introduce another
active learning approach that approximates the surface of the Pareto front. Expected
hypervolume improvement (EHI) [58] and Sequential uncertainty reduction (SUR) [205] are
two similar approaches based on maximizing the expected hypervolume. Computing the
expected hypervolume is an expensive process that renders EHI and SUR computationally
intractable in practice when there are several objectives.

The idea of random scalarizations has been previously explored in the following works aimed
at recovering the whole Pareto front: ParEGO [131] which uses random scalarizations to ex-
plore the whole Pareto front; MOEA/D [293], an evolutionary computing approach to MOO;
and MOEA/D-EGO [294], an extension of MOEA/D using Gaussian processes that evalu-
ates batches of points at a time instead of a single point. At each iteration, both ParEGO
and MOEA/D-EGO sample a weight vector uniformly from the K − 1 simplex, which is
used to compute a scalar objective. The next candidate point is chosen by maximizing an
off-the-shelf acquisition function over the GP fitted on the scalar objective. Our algorithm
on the other hand, maintains K different GPs, one for each objective. Furthermore, our
approach necessitates using acquisitions specially designed for the multi-objective setting
for any general scalarization; more specifically, they are generalizations of single-objective
acquisitions for multiple objectives (see Table 2.1). These differences with ParEGO are not
merely superficial – our approach gives rise to a theoretical regret bound, while no such
bound exists for the above methods.

Another line of work involving scalarizations include utility function based approaches.
Roijers et al. [222], Zintgraf et al. [302] propose scalar utility functions as an evaluation
criteria. Roijers et al. [223, 224], Zintgraf et al. [303] propose interactive strategies to
maximize an unknown utility. In contrast to our approach the utility in these works is
assumed to be fixed.

While there has been ample work on incorporating preferences in multi-objective optimiza-
tion using evolutionary techniques [27, 28, 51, 124, 259], there has been fewer on using
preferences for optimization, when using surrogate functions. Surrogate functions are es-
sential for expensive black-box optimization. PESC [64] is an extension of PESM allowing
to specify preferences as constraints. Hakanen and Knowles [80] propose an extension of
ParEGO in an interactive setting, where users provide feedback on the observations by
specifying constraints on the objectives in an online fashion. Yang et al. [291] propose an-
other way to take preferences into account by using truncated functions. An interesting idea
proposed by Sato et al. [237] uses a modified notion of Pareto dominance to prevent one or
more objectives from being too small. The survey by Ishibuchi et al. [105] on evolutionary
approaches to MOO can be referred for a more extensive review.

When compared to existing work for MOO, our approach enjoys the following advantages.
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1. Flexibility: Our approach allows the flexibility to specify any region of the Pareto front
including non-connected regions of the Pareto front, which is not an advantage enjoyed
by other methods. Furthermore, the approach is flexible enough to recover the entire
Pareto front when necessary. Our approach is not restricted to linear scalarization and
extends to a much larger class of scalarizations.

2. Theoretical guarantees: Our approach seamlessly lends itself to analysis using our pro-
posed notion of regret, and achieves sub-linear regret bounds.

3. Computational simplicity: The computational complexity of our approach scales linearly
with the number of objectives K. This is in contrast to EHI and SUR, whose complexity
scales exponentially with K. Our method is also computationally cheaper than other
entropy based methods such as PESMO.

Background. A brief background on Gaussian processes and Bayesian optimization can
be found in Section 1.1.1.

2.2 Our Approach

We first provide a formal description of random scalarizations, then we formulate a regret
minimization problem, and finally propose multi-objective extensions of the classical UCB
and TS algorithms to optimize it.

2.2.1 Random Scalarizations

As discussed earlier in Section 2.1, we consider a set of scalarizations sλ parameterized by
λ ∈ Λ. We assume a prior p(λ) with support Λ. We further assumed that, for all λ ∈ Λ, sλ
is Lλ-Lipschitz in the `1-norm and monotonically increasing in all the coordinates. More
formally,

sλ(y1)− sλ(y2) ≤ Lλ‖y1 − y2‖1, ∀λ ∈ Λ, y1,y2 ∈ Rd,
and, sλ(y1) < sλ(y2) whenever y1 ≺ y2.

(2.2)

The Lipschitz condition can also be generalized to `p-norms using the fact that ‖y‖1 ≥
K

1− 1
p ‖y‖p for any p ∈ [1,∞] and y ∈ RK . Monotonicity ensures that

x?λ = argmax
x∈X

sλ(f(x)) ∈ X ?f ,

since otherwise, if f(x?λ) ≺ f(x) for some x 6= x?λ, then we have sλ(f(x?λ)) < sλ(f(x)),
leading to a contradiction. Each λ ∈ Λ maps to an x?λ ∈ X ?f and a y? = f(x?λ) ∈ f(X ?f ).
Assuming the required measure theoretic regularity conditions hold, the prior p(λ) imposes
a probability distribution on f(X ?f ) through the above mapping as depicted in Fig. 2.1.

2.2.2 Bayes Regret

In contrast to Eq. (2.1), which returns a single optimal point, we aim to return a set of
points from the user specified region. Our goal is to compute a subset X ⊂ X such that
f(X) spans the high probability region of f(X ?f ). This can be achieved by minimizing the
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Figure 2.1: A prior p(λ) imposes a distribution on the set of Pareto optimal values. The
imposed probability density is illustrated using the dotted lines. The imposed distribution
leads to a concentration of the sampled values (blue circles) in the high probability region.

following Bayes regret denoted by RB,

RB(X) = Eλ∼p(λ)

(
max
x∈X

sλ(f(x))−max
x∈X

sλ(f(x))︸ ︷︷ ︸
Pointwise regret

)
,

X? = argmin
X⊂X ,|X|≤T

RB(X)

(2.3)

We now elaborate on the above expression. The pointwise regret maxx∈X sλ(f(x)) −
maxx∈X sλ(f(x)) quantifies the regret for a particular λ and is analogous to the simple
regret in the standard bandit setting [30]. RB(T ) similarly corresponds to the Bayes simple
regret in a bandit setting. The pointwise is minimized when x?λ = argmaxx∈X sλ(f(x))
belongs to X. Since X is finite, the minimum may not be achieved for all λ, as the set of
optimial points can be potentially infinite. However, the regret can be small when ∃x ∈X
such that f(x), f(x?λ) are close, from which it follows using the Lipschitz assumption that
sλ(f(x?λ))− sλ(f(x)) is small. Therefore, roughly speaking, the Bayes regret is minimized
when the points in X are Pareto optimal and f(X) well approximates the high probability
regions of f(X ?f ). In this case, sλ(f(x?λ))− sλ(f(x)) is small for λs with high probabilities.
Even though the rest of the regions are not well approximated, it does not affect the Bayes
regret since those regions do not dominate the expectation by virtue of their low probability.
This is what was desired from the beginning, that is, to compute a set of points with the
majority of them spanning the desired region of interest. This is also illustrated in Fig. 2.2
showing three scenarios which can incur a high regret.

It is interesting to ask, why cannot one simply maximize

max
x∈X

Eλ∼p(λ) [sλ(f(x))] .

The above expression can be maximized using a single point x which is not the purpose of
our approach. On the other hand, our proposed Bayes regret is not minimized by a single
point or multiple points clustered in a small region of the Pareto front. Minimizing the
pointwise regret for a single λ does not minimize the Bayes regret, as illustrated in Fig. 2.2.
Our proposed regret has some resemblance to the expected utility metric in Zintgraf et al.
[302]. However, the authors present it as an evaluation criteria, whereas we propose an
optimization algorithm for minimizing it and also prove regret bounds on it.
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Figure 2.2: Three scenarios which incur a high regret: (1) The points are clustered in a
small region. (2) The points are not from the desired distribution. (3) The points are not
Pareto optimal.

2.2.3 Scalarized Thompson Sampling and UCB

In this section we introduce Thompson Sampling and UCB based algorithms for minimizing
the Bayes regret. In contrast to other methods based on random scalarizations [131, 182],
our algorithm does not convert each observation to a scalar value and fit a GP on them,
but instead models them separately by maintaining a GP for each objective separately. In
each iteration, we first fit a GP for each objective using the previous observations. Then
we sample a λ ∼ p(λ), which is used to compute a multi-objective acquisition function
based on the scalarization sλ. The next candidate point is chosen to be the maximizer
of the acquisition function. The complete algorithm is presented in Algorithm 2.1 and
the acquisition functions are presented in Table 2.1. The acquisition function for UCB
is a scalarization of the individual upper bounds of each of the objectives. Similarly, the
acquisition function for TS is a scalarization of posterior samples of the K objectives.

The intuition behind our approach is to choose the xt that minimizes the pointwise regret
for the particular λt sampled in that iteration. Looking at the expression of the Bayes
regret, at a high level, it seems that it can be minimized by sampling a λ from the prior
and choosing an xt that minimizes the regret for the sampled λ. We prove regret bounds
for both TS and UCB in Section 2.3 and show that this idea is indeed true.

Practical Considerations. In practice, our method requires the prior and class of scalar-
ization functions to be specified by the user. These would typically be domain dependent.
In practice, a user would also interactively update their prior based on the observations, as
done in Hakanen and Knowles [80], Roijers et al. [223, 224]. Our approach is fully amenable
to changing the prior interactively, and changing regions of interest. We do not propose
any general methods for choosing or updating the prior, as it is not possible to do so for
any general class of scalarizations. The interested readers can refer to the literature on in-
teractive methods for MOBO. However, for the sake of demonstration we propose a simple
heuristic in the experimental section.

2.2.4 Computational Complexity

At each step all algorithms incur a cost of at most O(KT 3), for fitting K GPs, except for
ParEGO, which fits a single GP at each time step with a cost of O(T 3). The next step of
maximizing the acquisition function differs widely across the algorithms. Computing the
acquisition function at each point x costs O(T ) for ParEGO, and O(KT ) for our approach.
The additional factor K is the price one must pay when maintaining K GPs.

Apart from fitting the K GPs, SMSEgo requires computing the expected hypervolume gain
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Algorithm 2.1 MOBO using Random Scalarizations (MOBO-RS)

1: Init D(0) ← ∅, GP(0)
k ← GP(0, κ), ∀k ∈ [K]

2: for t = 1→ T do
3: Sample λt ∼ p(λ)
4: xt ← argmaxx∈X acq(x,λt) . See Table 2.1 for acquisition functions
5: Evaluate y = f(xt)
6: D(t) = D(t−1) ∪ {(xt,y)}
7: GP(t)

k ← post
(
GP(t−1)

k | (xt,yk)
)
,∀k ∈ [K]

return D(T )

Table 2.1: Acquisition functions used in Algorithm 2.1. µ(t)(x), σ(t)(x) are K dimensional
vectors denoting the posterior means and variances at x of the K objectives respectively,
in step t. c is a hyperparameter and d is dimension of the input space X . f ′k is randomly
sampled from the posterior of the kth objective function.

acq(x,λ)

UCB sλ
(
µ(t)(x) +

√
βtσ

(t)(x)
)
, βt = cd ln t

TS sλ(f ′(x)), where f ′k ∼ GP
(t)
k , k ∈ [K]

at each point which is much more expensive than computing the acquisitions for UCB or
TS. Computing the expected hypervolume improvement in EHI is expensive and grows
exponentially with K. PESM has a cost that is linear in K. However the computation
involves performing expensive steps of expectation-propagation and MC estimates, which
results in a large constant factor.

2.3 Regret Bounds

In this section we provide formal guarantees to prove upper bounds on the Bayes regret
RB which goes to zero as T → ∞. We also show that our upper bound is able to recover
regret bounds for single objectives when K = 1.

Analogous to the notion of regret in the single-objective setting [30], we first define the in-
stantaneous and cumulative regrets for the multi-objective optimization. The instantaneous
regret incurred by our algorithm in step t is defined as,

r(xt,λt) = max
x∈X

sλt(f(x))− sλt(f(xt)), (2.4)

where λt and xt are the same as in Algorithm 2.1. The cumulative regret till step T is
defined as,

RC(T ) =
T∑
t=1

r(xt,λt). (2.5)

For convenience, we do not explicitly mention the dependency of RC(T ) on {xt}Tt=1 and
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{λt}Tt=1. Next, we will make a slight abuse of notation here and define RB(T ), the Bayes
regret incurred till step T , as RB(XT ) (See Eq. (2.3)), where XT = {xt}Tt=1.

We further define the expected Bayes regret as ERB(T ), where the expectation is taken
over the random process f , noise ε and any other randomness occurring in the algorithm.
Similarly, we also define the expected cumulative regret as ERC(T ), where the expectation
is taken over all the aforementioned random variables and additionally {λt}Tt=1. We will
show that the expected Bayes regret can be upper bounded by the expected cumulative
regret, which can be further upper bounded using the maximum information gain.

Maximum Information Gain. The maximum information gain (MIG) captures the
notion of information gained about a random process f given a set of observations. For
any subset A ⊂ X define yA = {ya = f(a) + εa|a ∈ A}. The reduction in uncertainty
about a random process can be quantified using the notion of information gain given by
I(yA; f) = H(yA) − H(yA|f), where H denotes the Shannon entropy. The maximum
information gain after T observations is defined as

γT = max
A⊂X :|A|=T

I(yA; f). (2.6)

Regret Bounds. We assume that ∀k ∈ [K], t ∈ [T ], x ∈ X , fk(x) follows a Gaussian
distribution with marginal variances upper bounded by 1, and the observation noise εtk ∼
N (0, σ2

k) is drawn independently of everything else. Assume upper bounds Lλ ≤ L, σ2
k ≤

σ2, γTk ≤ γT , where γTk is the MIG for the k th objective. When X ⊆ [0, 1]d, the
cumulative regret after T observations can be bounded as follows.

Theorem 2.1. The expected cumulative regret for MOBO-RS after T observations can be
upper bounded for both UCB and TS as,

ERC(T ) = O

(
L

[
K2TdγT lnT

ln (1 + σ−2)

]1/2
)
. (2.7)

The proof follows from Theorem 2.2 in the appendix. The bound for single-objective BO
can be recovered by setting K = 1, which matches the bound of O(

√
TdγT lnT ) shown

in Russo and Van Roy [229], Srinivas et al. [252]. The proof is build on ideas for single
objective analyses for TS and UCB [117, 229].

Under further assumption of the space Λ being a bounded subset of a normed linear space,
and the scalarizations sλ being Lipschitz in λ, it can be shown that ERB(T ) ≤ 1

T ERC(T )+
o(1), which combined with Theorem 2.1 shows that the Bayes regret converges to zero as
T →∞. A complete proof can be found in Section 2.5.3.

2.4 Experimental Results

We experiment with both synthetic and real world problems. We compare our methods to
the other existing MOO approaches in the literature: PESM, EHI, SMSego, ParEGO, and
MOEA/D-EGO. EHI being computationally expensive is not feasible for more than two
objectives. Other than visually comparing the results for three or lesser objectives we also
compare them in terms of the Bayes regret defined in Eq. (2.3).
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Figure 2.3: The feasible region is shown in grey. The color of the sampled points corresponds
to the iteration they were sampled in, with brighter colors being sampled in the later
iterations.

While our method is valid for any scalarization satisfying the Lipschitz and monotonic-
ity conditions, we demonstrate the performance of our algorithm on two commonly used
scalarizations, the linear and the Tchebyshev scalarizations [182] defined as,

slin
λ (y) =

K∑
k=1

λkyk,

stch
λ (y) =

K
min
k=1

λk(yk − zk),

(2.8)

where z is some reference point. In both cases, Λ = {λ � 0 | ‖λ‖1 = 1}. It can be verified
that the Lipschitz constant in both cases is upper bounded by 1.

Choosing the weight distribution p(λ). While the user has the liberty to choose any
distribution best suited for the application at hand, for demonstration we show one possible
way. A popular way of specifying user preferences is by using bounding boxes [80], where
the goal is to satisfy fk(x) ∈ [ak, bk], ∀1 ≤ k ≤ K. We convert bounding boxes to a weight
distribution using a heuristic described below.

For the linear scalarization, it can be verified that the regret is minimized when y is pareto
optimal, and the normal vector at the surface of the Pareto front at y has the same direction
as λ. This is illustrated using a simple example in Fig. 2.3. Consider two simple objectives
f1(x, y) = xy, f2(x, y) = y

√
1− x2. Sampling λ =

[
u
u+1 ,

1
u+1

]
where u ∼ Unif (0, 0.3),

results in the first figure. In this example we have λ1 smaller than λ2, resulting in ex-
ploration of the region where f2(x, y) is high. Whereas sampling λ =

[
u
u+v ,

v
u+v

]
where

u, v ∼ Unif (0.5, 0.7) results in the second figure since both components of λ have simi-
lar magnitudes. This idea leads to the following heuristic to convert bounding boxes to a
sampling strategy. We sample as λ = u/‖u‖1 where uk ∼ Unif (ak, bk) , k ∈ [K]. The
intuition behind this approach is shown in Fig. 2.4. Such a weight distribution roughly
samples points from inside the bounding box.

For the Tchebychev scalarization, at the optimum, y−z is inversely proportional to λ. For
the purpose of demonstration and comparison we would like both the scalarization to obtain
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Figure 2.4: Weight distribution from bounding box.

similar objective values. Therefore, we reuse the λ sampled for the linear scalarization to
get λtch = λ′/‖λ′‖1 where λ′ = (1/λ1, . . . , 1/λK). We have normalized the vector so that
it lies in Λ.

In order to explore the whole Pareto front, one can also specify a flat distribution. For
instance consider the Dirichlet distribution on the simplex {x ∈ RK |

∑K
k=1 xk = 1,x � 0}.

One can sample from the Dirichlet distribution as λ ∼ Dir(1, . . . , 1), which roughly provides
equal weight to all the objectives leading to exploration of the whole Pareto front. Other
strategies include λ = |λ′|/‖λ′‖1 where λ′ ∼ N (0, I).

Other possible ways of choosing the weight vector includes learning the distribution of
the weight vector from interactive user feedback. In fact, our framework also allows us
to perform a joint posterior inference on the GP model and the weight distribution, thus
learning the weight distribution in a more principled manner. While we leave these methods
to future work, this demonstrates the flexibility of our framework.

Experimental Setup. For all our experiments, we use the squared exponential function
as the GP kernel (in practice, this is a hyperparameter that must be specified by the user),
given by κ(x1,x2) = s exp

(
−‖x1 − x2‖2/(2σ2)

)
, where s and σ are parameters that are

estimated during optimization. We perform experiments with both TS and UCB using
both kinds of scalarizations. In Eq. (2.3), we observe that the term Eλmaxx∈X sλ(f(x))
is independent of the algorithm, hence it is sufficient to plot −Eλmaxx∈X sλ(f(x)). In all
our experiments, we plot this expression, thus avoiding computing the global maximum of
an unknown function. For the purposes of computing the Bayes simple regret, we linearly
map the objective values to [0, 1] so that the values are of reasonable magnitude. This
however is not a requirement of our algorithm. Further experimental details can be found
in Section 2.7.

Synthetic two-objective function. We construct a synthetic two-objective optimization
problem using the Branin-4 and CurrinExp-4 functions as the two objectives respectively.
These are the 4-dimensional counterparts of the Branin and CurrinExp functions [156], each
mapping [0, 1]4 → R. For this experiment we specify the bounding boxes [(a1, b1), (a2, b2)].
We sample from three different regions, which we label as top: [(−110,−95), (23, 27)],
mid :[(−80,−70), (16, 22)], and flat : where we sample from a flat distribution. We also
sample from a mixture of the top and mid distributions denoted by top/mid, thus demon-
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Figure 2.5: The feasible region is shown in grey. The color of the sampled points corresponds
to the iteration they were sampled in, with brighter colors being sampled in the later
iterations. The figure titles denote the method used and the region sampled. A complete
set of results is presented in the Appendix.

strating sampling from non-connected regions in the Pareto front. Fig. 2.5 shows a scatter
plot of the sampled values for the various methods. The simple regret plots are shown in
Fig. 2.6.

Synthetic six-objective function. To show the viability of our method in high-dimensions,
we sample six random functions fk : R6 → R, fk ∼ GP(0, κ), k ∈ [6] where κ is the squared
exponential kernel. Devoid of any domain knowledge about this random function, we lin-
early transform the objectives values to [0, 1] for simplicity. We specify the bounding box
as [ak, bk] = [2/3, 1], ∀k ∈ [6] and denote it as the mid region, as the weight samples are of
similar magnitude. The simple regret plot for this experiment is shown in Fig. 2.7.

Locality Sensitive Hashing. Locality Sensitive Hashing (LSH) [5] is a randomized algo-
rithm for computing the k-nearest neighbours. LSH involves a number of tunable param-
eters: the number of hash tables, number of hash bits, and the number of probes to make
for each query. The parameters affect the average query time, precision and memory usage.
While increasing the number of hash tables results in smaller query times, it leads to an
increase in the memory footprint. Similarly, while increasing the number of probes leads
to a higher precision, it increases the query time. We explore the trade-offs between these
three objectives.
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Figure 2.6: Bayes regret plots for the synthetic two-objective function. The mean and the
90% confidence interval were computed over 10 independent runs. The figure titles denote
the sampling region and the scalarization used. We refer the reader to the appendix for
results on linear scalarization.

(a) Synthetic 6x6 function (b) LSH Glove (c) Viola Jones

Figure 2.7: Bayes regret plots. The mean and the 90% confidence interval were computed
over 5 runs. The figure titles denote the region sampled and the scalarization used. A
complete set of plots can be found in the appendix.

We run LSH using the publicly available FALCONN library2 on Glove word embeddings
[204]. We use the Glove Wikipedia-Gigaword dataset trained on 6B tokens with a vocab-
ulary size of 400K and 300-d embeddings. Given a word embedding, finding the nearest
word embedding from a dictionary of word embeddings is a common task in NLP applica-
tions. We consider the following three objectives to minimize with their respective bounding
boxes: Time (s) [0.0, 0.65], 1−Precision [0.0, 0.35], and the Memory (MB) [0, 1600]. The
SR plots are shown in Fig. 2.7 and the sampled objective values in Fig. 2.8.

Viola Jones. The Viola Jones algorithm [272] is a fast stagewise face detection algorithm.
At each stage a simple feature detector is run over the image producing a real value. If
the value is smaller than a threshold the algorithm exits with a decision, otherwise the
image is processed by the next stage and so on. The Viola Jones pipeline has 27 tunable
thresholds. We treat these thresholds as inputs and optimize for Sensitivity, Specificity,
and the Time per query. We consider the following three objectives to minimize with their
bounding boxes: 1−Sensitivity [0, 0.3], 1−Specificity [0, 0.13], and Time per query [0, 0.07].
Fig. 2.7 shows the regret plot for this experiment.

Results and Discussion. Figs. 2.5 and 2.8 show the sampling patterns of our proposed
approach for the synthetic 2-d and the LSH glove experiment. We observe that our approach

2https://github.com/falconn-lib/falconn
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Figure 2.8: Sampled values for the LSH-Glove experiment over 5 independent runs. The
figure titles denote the method used. A complete set of plots can be found in the appendix.

successfully samples from the specified region after some initial exploration, leading to a
high concentration of points in the desired part of the Pareto front in the later iterations.

In Figs. 2.6 and 2.7 we observe that the proposed approach achieves a smaller or comparable
regret compared to the other baselines. We notice that the improvement is most significant
for the high dimensional experiments. A plausible explanation for this could be that learning
high dimensional surfaces have a much higher sample complexity. However, our since our
approach learns only a part of the Pareto front, it is able to achieve a small regret in a few
number of samples, thus demonstrating the effectiveness of our approach.

2.5 Proofs

Russo and Van Roy [229] introduce a general approach to proving bounds on posterior
sampling by decomposing the regret into two sums, one capturing the fact that the UCB
upper bounds uniformly with high probability and the other that the UCB is not a loose
bound. We begin by making a similar decomposition and bounding each of the other terms.
Our proof for TS needs the assumption that the objectives are sampled independently from
their respective priors. However, no such assumption is needed for UCB.

Denote by HT the history until the T − 1th round {(xt,yt,λt)}T−1
t=1 . We assume fk ∼

GP(0, κk) have marginal variances upper bounded by 1 for all x ∈ X and 1 ≤ k ≤ K. Let
x?t = argmaxx∈X sλt(f(x)). Denote by Ut(λ,x) = sλ(µ(t)(x) +

√
βtσ

(t)(x)), the UCB as
defined in Table 2.1 where µ(t)(x), σ(t)(x) ∈ RK are the posterior means are variances of
the K objectives at x in step t.

We first compute regret bounds for a finite domain X , and then use a discretization argu-
ment to extend to continuous spaces. We begin by first proving the following decomposition
of ERC(T ), and then bound each of the decomposed terms.
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Lemma 2.1. For Ut as defined above, the following holds for both UCB and TS.

ERC(T ) = E

[
T∑
t=1

(
max
x∈X

sλt(f(x))− sλt(f(xt))

)]

≤ E

[
T∑
t=1

Ut(λt,xt)− sλt(f(xt))

]
+ E

[
T∑
t=1

sλt(f(x?t ))− Ut(λt,x?t )

] (2.9)

where x?t = argmaxx∈X sλt(f(x)).

Proof. For UCB, we use the fact that at each step the next point to evaluate is chosen as
xt = argmaxx∈X Ut(λt,x). Thus, conditioned on the history Ht, Ut(λt,xt) ≥ Ut(λt,x

?
t ).

The lemma follows using the tower property of expectation.

Thompson Sampling samples f ′1, . . . , f ′k independently from the posterior in each iteration
and produces an xt maximizing sλt(f(x)). Making use of the independence assumption of
the GP priors for TS, we observe that conditioned on the history Ht, xt has the same dis-
tribution as x?t , resulting in E[Ut(λt,xt)|Ht] = E[Ut(λt,x

?
t )|Ht]. We use the independence

assumption only at this point in the proof and specifically for TS.

Next we bound both the terms in the decomposition for finite |X |, and then use a dis-
cretization based argument to prove for continuous sets X .

2.5.1 Upper Bounds for Finite |X |

Lemma 2.2. For βt = 2 ln
(
t2|X |√

2π

)
, and Ut as defined earlier, the following can be bounded

as,

E

[
T∑
t=1

sλt(f(x?t ))− Ut(λt,x?t )

]
≤ π2

6
E[Lλ]K (2.10)

Proof. We first see that,

E [sλt(f(x?t ))− Ut(λt,x?t )] ≤ E
(
sλt(f(x?t ))− Ut(λt,x?t )

)
+

≤
∑
x∈X

E
(
sλt(f(x))− Ut(λt,x)

)
+

where (x)+ is defined as max(0, x). Using Lemma 2.6 and the definition of Ut we can further
bound,

E
(
sλt(f(x))− Ut(λt,x)

)
+
≤ E[Lλ]

K∑
k=1

E
[(
f(x)k − µ

(t)
k (x)−

√
βtσ

(t)
k (x)

)
+

]
.

Conditioned on Ht, f(x)k − µ
(t)
k (x)−

√
βtσ

(t)
k (x) follows a normal distribution

N
(
−
√
βtσ

(t)
k (x), σ

(t)
k

2
(x)

)
.
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Next we use the fact that for X ∼ N (µ, σ2) and µ ≤ 0,

E[X+] ≤ σ√
2π

exp

(
− µ2

2σ2

)
. (2.11)

Using the above,

E
[(
f(x)k − µ

(t)
k (x)−

√
βtσ

(t)
k (x)

)
+
| Ht

]
≤
σ

(t)
k (x)√

2π
exp

(
−βt

2

)
≤ 1

t2|X |

Using the tower property of expectation, it follows that,

E
[
sλt(f(x?t ))− Ut(λt,x?t )

]
≤ E[Lλ]

K

t2

Summing over t, we get

E

[
T∑
t=1

sλt(f(x?t ))− Ut(λt,x?t )

]
≤ E[Lλ]K

T∑
t=1

1

t2
≤ π2

6
E[Lλ]K

completing the proof.

Lemma 2.3. With the same conditions as in Lemma 2.2, it holds that

L̄λ

(
KTβT

K∑
k=1

γTk

ln(1 + σ−2
k )

)1/2

+
π2

6

KE[Lλ]

|X |
(2.12)

where L̄λ = E
[√

1
T

∑T
t=1 L

2
λt

]
.

Proof. Conditioned on C = (Ht,λt,xt), the following holds using Lemma 2.6,

E
[
Ut(λt,xt)− sλt(f(xt)) | C

]
≤ E

[
Lλt

K∑
k=1

(
µ

(t)
k (xt) +

√
βtσ

(t)
k (xt)− f(xt)

)
+

∣∣∣∣∣ C
]

≤ E

[
Lλt

K∑
k=1

(
µ

(t)
k (xt) +

√
βtσ

(t)
k (xt)− f(xt)

)
+ Lλt

K∑
k=1

(
f(xt)− µ(t)

k (xt)−
√
βtσ

(t)
k (xt)

)
+

∣∣∣∣∣ C
]

≤ E

[
Lλt

K∑
k=1

√
βtσ

(t)
k (xt) +

KLλt
t2|X |

∣∣∣∣∣ C
]

where the last inequality follows from Eq. (2.11). Using the tower property of expectation,

E
[
Ut(λt,xt)− sλt(f(xt))

]
≤ E

[
Lλt
√
βt

K∑
k=1

σ
(t)
k (xt) +

KLλt
t2|X |

]
(2.13)
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Summing over t, we get,

E

[
T∑
t=1

Ut(λt,xt)− sλt(f(xt))

]

≤ E

[
K∑
k=1

T∑
t=1

Lλt
√
βtσ

(t)
k (xt) +

T∑
t=1

KLλt
t2|X |

]

≤ E

[
K∑
k=1

T∑
t=1

Lλt
√
βtσ

(t)
k (xt)

]
+
π2

6

KE[Lλ]

|X |

≤ E

[(
KβT

T∑
t=1

L2
λt

)1/2( K∑
k=1

T∑
t=1

σ
(t)
k

2
(xt)

)1/2 ]
+
π2

6

KE[Lλ]

|X |

≤ E

[(
KβT

T∑
t=1

L2
λt

)1/2 (
K∑
k=1

γTk

ln(1 + σ−2
k )

)1/2 ]
+
π2

6

KE[Lλ]

|X |

where the second last step follows using Cauchy-Schwartz inequality, and the last step used
the upper bound in terms of the MIG as shown in Srinivas et al. [252]. Substituting L̄λ
gives us the desired result.

Proposition 2.1. The cumulative regret incurred in Algorithm 2.1 for both UCB and TS
is upper bounded as,

L̄λ

(
KTβT

K∑
k=1

γTk

ln(1 + σ−2
k )

)1/2

+
π2

3
KE[Lλ] (2.14)

Proof. The proof follows directly using Lemmas 2.1 to 2.3.

2.5.2 Extending to continuous X

We begin with the following result due to Ghosal and Roy [68]. For any differentiable
stationary kernel κ with 4th order derivatives and f ∼ GP(0, κ), we have the following
bound holds for some a, b > 0 such that for all J > 0, and for all i ∈ {1, . . . , d},

P
(

sup
x

∣∣∣∣∂f(x)

∂xi

∣∣∣∣ > J

)
≤ ae−(J/b)2

. (2.15)

Consider a continuous set X where X ⊂ Rd. For the sake of analysis, at each time step
t we construct a finite discretization Xt of X . Xt is constructed using a grid of uniformly
spaced points with a distance of τ−1

j between adjacent points in each coordinate. Therefore

|Xt| = τdj . Let [x]t denote the point closest to x in Xt. LetM = supi∈{1,...,d} supx∈X

∣∣∣∂f(x)
∂xi

∣∣∣.
E
[
|f(x)− f([x]t)|

]
can be bounded as

E
[
|f(x)− f([x]t)|

]
≤ d

τt
E[M ] ≤ d

τt

∫ ∞
0

P(M ≥ t)dt

≤ d

τt

∫ ∞
0

ae−(t/b)2
dt =

dab
√
π

2τt
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Let A = supKk=1 ak, B = supKk=1 bk where ak, bk correspond to the above constants for the
kth objective. It follows that,

E
[
|sλ(f(x))− sλ(f([x]t))|

]
≤ KE[Lλ]

dAB
√
π

2τt
(2.16)

We choose τt = t2dAB
√
π/2 which gives us

E
[
|sλ(f(x))− sλ(f([x]t))|

]
≤ KE[Lλ]

1

t2
(2.17)

Having bounded the approximation errors due to the discretization, we are in a position to
use the framework developed for the finite case. We begin with a similar decomposition as
Lemma 2.1, which includes the approximation factors [117]. For the continuous case, our
treatment differs slightly for TS and UCB. We first look at the decomposition for UCB,

Lemma 2.4. For the same conditions as in Lemma 2.1, and [x]t as defined above, we have
the following decomposition for TS,

TS:

ERC(T ) ≤ E

[
T∑
t=1

sλt(f([xt]t))− sλt(f(xt))

]
︸ ︷︷ ︸

A1

+E

[
T∑
t=1

Ut(λt, [xt]t)− sλt(f([xt]t))

]
︸ ︷︷ ︸

A2

+

E

[
T∑
t=1

sλt(f([x?t ]t))− Ut(λt, [x?t ]t)

]
︸ ︷︷ ︸

A3

+E

[
T∑
t=1

sλt(f(x?t ))− sλt(f([x?t ]t))

]
︸ ︷︷ ︸

A4

(2.18)

The proof is on the same lines as Lemma 2.1 using the fact that x?t and xt have the same
distribution, when conditioned on the Ht.

We now bound each of the individual terms. A1 and A4 can be bounded by C1KE[Lλ]

using Eq. (2.17)), for some global constant C1. Let βt = ln
(
t2|Xt|√

2π

)
. A2 + A3 can be

bounded in the same way as Lemmas 2.2 and 2.3 by considering the discretized set Xt at
each time step t instead of X .

For UCB, we have the following decomposition,

Lemma 2.5. For the same conditions as in Lemma 2.1, and [x]t as defined above, we have
the following decomposition for UCB,

UCB:

ERC(T ) ≤ E

[
T∑
t=1

Ut(λt,xt)− sλt(f(xt))

]
︸ ︷︷ ︸

B1

+

E

[
T∑
t=1

sλt(f([x?t ]t))− Ut(λt, [x?t ]t)

]
︸ ︷︷ ︸

B2

+E

[
T∑
t=1

sλt(f(x?t ))− sλt(f([x?t ]t))

]
︸ ︷︷ ︸

B3

(2.19)
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The proof follows in a similar way as Lemma 2.1 using the fact that Ut(λt,xt) ≥ Ut(λt, [x?t ]t).

We now bound each of the decomposed terms by considering the discretized Xt in each step,
and the corresponding βt. B3 can be bounded in the same way as A4 using Eq. (2.17). B1
can be bounded using Lemma 2.3. B2 can be bounded in the same way as Lemma 2.2.

This leads us to the following theorem.

Theorem 2.2. For βt = ln
(
t2|Xt|√

2π

)
, where |Xt| =

(
t2dAB

√
π

2

)d
, for some global constants

C1, C2 > 0, the following holds for both UCB and TS,

ERC(T ) ≤ C1KE[Lλ] + C2L̄λ

(
KT (d lnT + d ln d)

K∑
k=1

γTk

ln(1 + σ−2
k )

)1/2

(2.20)

2.5.3 Upper bound on Bayes regret

At a high level, optimizing the cumulative regret optimizes the pointwise regret for the
observed λt. However, it generalizes to the unseen λ in RB(T ) that are close to the
sampled λt. This requires us to define a notion of closeness or a metric on Λ. We assume
that Λ is a bounded subset of a RD. We make the assumption that sλ(y) is J-Lipschitz in
λ for all y ∈ RK , that is,

|sλ1(y)− sλ2(y)| ≤ J ‖λ1 − λ2‖1. (2.21)

Conditioned on the historyHT , consider the Wasserstein or Earth Movers distance [178, 271]
W1(p, p̂) between the sampling distribution p(λ) defined on Λ, and the empirical distribution
p̂ corresponding to the samples {λt}Tt=1,

W1(p, p̂) = inf
q

{
Eq‖X − Y ‖1, q(X) = p, q(Y ) = p̂

}
, (2.22)

where q is a joint distribution on the RVs X,Y , with marginal distributions equal to p and
p̂. We then have,

1

T

T∑
t=1

sλt(f(xt))− E
[
max
x∈X

sλ(f(x))

]
≤ 1

T

T∑
t=1

max
x∈X

sλt(f(x))− E
[
max
x∈X

sλ(f(x))

]
≤ Eq(X,Y )

[
max
x∈X

sY (f(x))−max
x∈X

sX(f(x))

]
≤ Eq(X,Y )

{
J‖X − Y ‖1

}
Taking the infimum w.r.t. q, and the expectation w.r.t. the history Ht, we get,

E

[
1

T

T∑
t=1

sλt(f(xt))

]
− E

[
max
x∈X

sλ(f(x))

]
≤ J EW1(p, p̂) (2.23)

Using the fact that E [maxx∈X sλ(f(x))] = E [maxx∈X sλt(f(x))], we get,

ERB(T ) ≤ 1

T
ERC(T )︸ ︷︷ ︸

I

+J EW1(p, p̂)︸ ︷︷ ︸
II

. (2.24)
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As T →∞, I converges to zero at a rate of O∗(T−1/2)3 as given by Theorem 2.2. Term II
converges to zero at a rate of O∗(T−1/D) when D ≥ 2, under mild regulatory conditions as
shown by Canas and Rosasco [33].

2.5.4 Auxilliary Results

Lemma 2.6. Suppose s : RD → R is L-Lipschitz in the `1-norm, and monotonically
increasing in all coordinates. Then it holds that,

(
s(x)− s(y)

)
+
≤ L

D∑
d=1

(xd − yd)+ (2.25)

where (x)+ is defined as max(0, x).

Proof. We first note that when s(x) ≤ s(y), it holds trivially. Now we assume s(x) > s(y).
Let Ud, 0 ≤ d ≤ D be defined as

Ud =


s(x), if d = 0

s(y), if d = D

s(y1, . . . ,yd,xd+1, . . . ,xD), otherwise

Then,

0 ≤ s(x)− s(y) =
D−1∑
d=0

Ud − Ud+1.

Using the facts that Ud, Ud+1 differ only in the d+ 1 component, and that s is increasing
in all the components, we get

0 ≤ s(x)− s(y) ≤
D−1∑
d=0

|Ud − Ud+1|I
(
xd+1 − yd+1 ≥ 0

)
≤

D−1∑
d=0

L|xd+1 − yd+1|I
(
xd+1 − yd+1 ≥ 0

)
= L

D∑
d=1

(xd − yd)+

concluding the proof.

2.6 Additional Experiments

Fig. 2.9 shows the sampling patterns for all baselines, and all combinations of the sampling
region, method and scalarization for our approach. Fig. 2.10 show the plots for the Bayes
for all sampling regions and scalarizations for the two-objective problem. Fig. 2.11 shows
the Bayes regret for all sampling regions and scalarizations for all the other multi-objective
problems. Fig. 2.12 shows the sampled objective values for the LSH Glove experiment.

3O∗ ignores logarithmic factors.
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Figure 2.9: The plots show the sampled values for various algorithms and sampling regions.
The feasible region is shown in grey. The color of the sampled points corresponds to the
iteration in which they were sampled. Brighter colors were sampled in the later iterations.
The figure titles denote the method used and the region sampled.
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Figure 2.10: Bayes regret plots for the synthetic two-objective function. The mean and the
90% confidence interval were computed over 10 independent runs. The figure titles denote
the sampling region and the scalarization used.

2.7 Implementation Details

The two-objective experiment was repeated 10 times with 150 iterations per run. All other
experiments were repeated 5 time with 120 iterations per run. MOEA/D-EGO supports
batch evaluation of points in every iteration. However, for fair comparison with the other
methods, we set the batch size to 1.

Domain space: For all our experiments we map the input domain appropriately such that
X = [0, 1]d.

Initial evaluations: Similar to Kandasamy et al. [114], we randomly choose ninit initial
points. We then evaluate the MO function at the initial points before using our optimization
strategy.

Hyper-parameter estimation: To estimate the GP hyper-parameters, the GP is fitted
to the observed data every 10 evaluations. We use the squared exponential kernel for all
our experiments. We have a separate bandwidth parameter for each dimension of the input
domain. The bandwidth, scale and noise variance are estimated by maximizing the marginal
likelihood [218]. We set the mean of the GP as the median of the observations.

UCB parameter βt: As discussed in Kandasamy et al. [114], βt as suggested in [252] is
too conservative in practice, and with unknown constants. Following the recommendation
in [114], we use βt = 0.125 log(2t+ 1) for all our experiments.

Optimizing the acquisition function We use the DiRect algorithm [111] for optimizing
the acquisition function in each iteration.

31



(a) Synthetic 6x6 function (b) LSH Glove (c) Viola Jones

(d) Synthetic 6x6 function (e) LSH Glove (f) Viola Jones

Figure 2.11: Bayes regret plots. The mean and the 90% confidence interval were computed
over 5 runs. The figure titles denote the region sampled and the scalarization used.

Figure 2.12: Sampled values for the LSH-Glove experiment over 5 independent runs. The
figure titles denote the method used.

32



3 | On Greedy Algorithms for Black-
box Optimization using Neural
Networks

Bayesian Optimization (BO), and in particular GP optimization, has been quite successful
in practice for black-box optimization and has become the de facto technique in indus-
try [73]. The main reason for this success is the simplicity and expressivity of GPs; that is,
GPs are easy to use, and impose minimal structural assumptions on the unknown blackbox
function.

Despite its success, GP optimization faces issues with scale and flexibility. In particular, the
computational complexity of GPs scales cubically with the number of function evaluations
[154]. This makes GPs less appealing in high-dimensional search spaces when a large number
of function evaluations are often needed to identify a good solution. In addition, GPs are
not easily extendable to structured domains involving objects such as images, audio, text,
and graphs [118, 266]. The design of appropriate kernels for such structured objects is
problem specific and is still an ongoing research problem with state-of-the-art structured
kernels not as performant as modern neural feature representations [125].

An emerging line of work has tried to address these issues by developing neural network
(NN) based blackbox optimization techniques [125, 220, 250, 299]. These approaches use
NNs as their surrogate models, and rely on standard acquisition functions such as EI [112],
TS (a.k.a posterior sampling) [229, 260], UCB [3] to determine the next query point. The
computational complexity of these approaches typically grows linearly with the number of
function evaluations, making them attractive for high-dimensional problems. In addition,
these techniques can be easily extended to structured domains involving objects such as
images, audio, and graphs, for which we have neural architectures that can encode priors
from the domain (for instance, convolutional neural networks).

One of the key challenges in designing NN based approaches lies in extending the classical
ideas of EI, TS, UCB to neural networks. For instance, UCB and EI require construction
of valid confidence intervals for the unknown function. While this is easy for simple mod-
els such as linear models [45], constructing such intervals is highly non-trivial for complex
models such as neural networks. TS, on the other hand, require computing the posterior dis-
tribution of Bayesian Neural Networks (BNNs), which, again, is non-trivial [250]. Existing
approaches overcome these issues by relying on a variety of heuristics. Snoek et al. [247], Xu
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Figure 3.1: Plots show the confidence bands estimated by various neural network based
BBO techniques on a 1D (noiseless) blackbox function. NeuralLinTS, NeuralUCB are the
techniques developed by Snoek et al. [247], Zhou et al. [299] respectively. SimpleSMB is our
greedy technique. It can be seen that our confidence bands are narrower for points close to
observations.

et al. [289] perform LinearUCB/LinearTS on top of the representation of the last layer of the
neural network. Zhang et al. [295], Zhou et al. [299] work in the infinite-width limit of NNs,
where the networks can be viewed as linear models, and perform LinearUCB/LinearTS on
the linearized networks. However, both these heuristics have several drawbacks: (a) they
often lead to conservative confidence bands, which in turn reduces the speed of convergence
of the algorithm (see Fig. 3.1), (b) some of these techniques are computation and memory
intensive as they involve manipulation of large matrices with sizes quadratic in the number
of NN parameters, in each iteration [295, 299], (c) some are geared towards finite search
spaces and their extension to continuous domains is non-trivial [295]. Another heuristic
that is often used involves mimicking the posterior distribution of BNNs using ensembles of
NNs [125, 220]. However, this heuristic requires a large number of models in the ensemble
to get a good approximation of the posterior distribution.

In this work, we show that one need not explicitly estimate the confidence sets or posterior
distributions for NN based blackbox optimization. We show that a simple greedy algorithm
which fits a NN to the current set of observations, and uses the learned network as the
acquisition function achieves better performance than existing NN based approaches. A
crucial aspect of our algorithm is that we train our neural network surrogate model from
scratch in each iteration, and rely on stochastic gradient descent with randomly initialized
weights. Our key insight is that such an approach mimics GP sampling and Thompson
sampling in wide neural networks [86, 147].

3.1 Related Work

Global optimization of expensive blackbox functions is a well studied problem. Numerous
techniques have been proposed for this problem over the years. We review some of the
relevant literature below.

Structural Assumptions. One category of works impose structural assumptions on the
unknown blackbox function f∗. For instance, Agrawal and Goyal [4], Filippi et al. [61]
assume f∗ is a linear function. Kveton et al. [141] assume f∗ can be modeled using a
generalized linear model (GLM). Several works assume convexity of f∗ [2, 13, 18, 241].
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No Structural Assumptions. The second category of works impose minimal assump-
tions on f . Bubeck et al. [29], Kleinberg et al. [130] impose Lipschitz continuity on f∗. In
GPs, it is typically assumed that f∗ lies in an RKHS [44, 251]. As previously mentioned
GPs do not scale well to high-dimensional problems. Consequently, several works have
attempted to speed-up GP inference [31, 154].

Neural network based approaches. A recent line of work assumes f∗ is a neural net-
work. While this might look like a structural assumption, it actually is not because NNs
have the power to arbitrarily approximate any continuous function. Early works relied
on Bayesian neural networks (BNN) to impose a prior over the unknown blackbox func-
tion [250]. These techniques relied on exact posterior sampling to compute acquisition
functions such as EI. A variety of algorithms have been developed for posterior sampling
on BNNs. These include Hamiltonian Monte Carlo [183], stochastic gradient Langevin
MCMC [134], variational inference methods [75]. A drawback with these techniques is that
they are very complex to implement in practice with a large number of hyper-parameters.
In addition, many of these techniques provide conservative estimates of the uncertainty
for points that are far from the observed data [250]. Recent works considered wide neu-
ral networks and relied on NTK theory to develop UCB and TS algorithms for neural
networks [295, 299]. Another class of approaches have relied on heuristics such as perform-
ing LinearUCB, LinearTS using features from a neural network [247, 289] or relying on
ensembles to mimic posterior sampling [125, 142].

Infinite-width limit of Neural Networks. Wide NNs and their infinite-width limits
have gained attention of late. Lee et al. [146], Matthews et al. [168] showed that wide NNs at
initialization are equivalent to GPs. Arora et al. [7], Jacot et al. [106] showed that training
wide NNs (with random initialization that leads to zero or small initial outputs) using
gradient descent is equivalent to performing kernel ridge regression with NTK kernel. Lee
et al. [147] showed that gradient descent on randomly initialized wide NNs is equivalent
to sampling from GPs. NTK theory was extended from feed forward networks to other
architectures such as convolutional networks [7], graph neural networks [54]. Arora et al. [6]
derived generalization bounds for 2 layer wide networks, that rely on NTK kernel. Eldan
et al. [56] derived non-asymptotic rates for the speed at which finite-width NN training
approaches the NTK regime.

3.2 Background

In this section, for the sake of completeness and introducing more compact notation, we
recap some of the background about black-box optimization, Gaussian processes, and in-
troduce some background about infinitely wide neural networks.

Blackbox Optimization. In blackbox optimization (BBO), our aim is to minimize a
(potentially non-convex) function f∗ over an action space X , given only zeroth-order oracle
access to the function. That is, the only information about f∗ comes via querying the
oracle at a point x ∈ X ⊆ Rd and observing y = f∗(x) + ξ. Here, ξ is the independent
noise, sampled from the Gaussian distribution N (0, σ2

∗). The special case of σ2
∗ = 0 is called

noiseless BBO.
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Gaussian Processes. A GP over X , denoted by GP(µ,K), is a collection of random
variables {f(x)}x∈X such that the joint distribution of every finite subset {f(xi)}ni=1 of them
is multivariate Gaussian with mean E [f(xi)] = µ(xi) and covariance Cov(f(xi), f(xj)) =
K(xi, xj) [217]. Here, µ,K are the mean and covariance functions of the GP. We assume
µ = 0 for GPs not conditioned on the data.

In BBO, GPs are often used to place a prior distribution over the unknown blackbox
function f∗. Suppose, we observe n datapoints D = {(xi, yi)}ni=1, where yi = f∗(xi) + ξi is
the output of the zeroth-order oracle when queried at xi. Conditioned on D, the posterior
distribution over f∗ is again a GP with the following mean and covariance functions

µn(x) = KxXn
(
KXnXn + σ2I

)−1 Yn, Kn(x, x′) = Kxx′ −KxXn
(
KXnXn + σ2I

)−1KXnx′ ,

where Xn = [xi]
n
i=1,Yn = [yi]

n
i=1. Here, KxXn ∈ R1×n with ith entry given by K(x, xi), and

KXnXn ∈ Rn×n with (i, j)th entry given by K(xi, xj).

Acquisition functions play a key role in BBO, as optimizing them helps us decide the next
query point. The acquisition function for Thompson sampling is given by αTS(x;D) =
f(x), where f is randomly sampled from the posterior GP(µn, ν

2
nKn). Here, νn is a scale

parameter that controls the exploration.

Neural Networks. In this chapter, we study neural network based BBO algorithms. We
consider feed-forward networks f(x, θ) with L hidden layers and dl neurons in the lth hidden
layer. Such a neural network can be defined using the following recurrence relation

α(l+1)(x, θ) = φ

(
σW√
dl
W (l)α(l)(x, θ) + σbb

(l)

)
, f(x, θ) =

σW√
dL
W (L)α(L)(x, θ) + σbb

(L),

with α(0)(x, θ) = x. Here, W (l) ∈ Rdl+1×dl , b(l) ∈ Rdl+1 are the weights of layer l, with
d0 = d, dL+1 = 1. φ is the elementwise nonlinearity (we set it to tanh in our experiments),
and the hyper-parameters γ = (σW , σb) are the weight and bias variances. This particular
parameterization of neural network is called Neural Tangent Kernel (NTK) parameteri-
zation [106]. In this parameterization, the weights θ = {W (≤L), b(≤L)} are initialized by
generating i.i.d samples from N (0, 1). We consider this particular initialization scheme for
our approach.

Infinite-width limit of NNs. Suppose the weights of a NN are initialized to θ0 using
the random initialization scheme described above. For sufficiently wide networks (a.k.a.
NTK regime), the outputs {f(x, θ0)}x∈X ′ , for any finite set X ′, converge to a multi-
variate Gaussian distribution [146]. To be precise, such randomly initialized networks
correspond to a GP with mean 0 and the following covariance function KNN(x, x′) =
limmin(d1,d2...dL)→∞ E [f(x, θ0)f(x′, θ0)].

Now, let’s suppose we train the network to minimize the following squared loss over
the training dataset {(xi, yi)}ni=1:

∑n
i=1(f(xi, θ) − yi)

2. Suppose we randomly initialize
the network at θ0 and use gradient descent (GD) to minimize the objective. For suf-
ficiently wide networks and small enough step-size, the GD iterates {θt}t>0 stay close
to θ0 [147]. Consequently, the NN can be well approximated using the following linear
model: f(x, θt) ≈ f(x, θ0) + 〈∇θf(x, θ0), θt − θ0〉. Letting φ(x) = ∇θf(x, θ0), the kernel
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Θ̂(x, x′) = 〈φ(x), φ(x′)〉 is called the empirical NTK kernel. Note that Θ̂ is a random
quantity. In the NTK regime, Θ̂(x, x′) converges in probability to a deterministic quantity
Θ(x, x′), which is called the NTK kernel [7]. As a consequence, GD on wide networks can be
viewed as performing kernel regression in the Reproducing Kernel Hilbert Space (RKHS)
associated with Θ. For large t, Lee et al. [147] showed that the neural network f(·, θt)
(which is a random function that depends on θ0), can be viewed as being sampled from a
GP with the following mean and covariance functions

µn(x) = ΘxXnΘ−1
XnXnYt, KNNGD

n (x, x′) = KNN(x, x′) + ΘxXnΘ−1
XnXnK

NN
XnXnΘ−1

XnXnΘXnx′

−
(
ΘxXnΘ−1

XnXnK
NN
Xnx′ + h.c.

)
,

where +h.c. denotes the Hermitian conjugate of its preceding term, and Xn = [xi]
n
i=1,Yn =

[yi]
n
i=1 are the features and response variables in the training dataset. Note that KNN,Θ,

and KNNGD
n all depend on the variance hyper-parameter γ.

3.3 Greedy Algorithm

We now present our greedy algorithm for Blackbox Optimization (BBO) (shown in Algo-
rithm 3.1). Our algorithm has three key hyper-parameters: initialization weight variance
γ, noise variance σ2, and scale parameter ν. γ dictates the kind of surrogate models we
fit to the data. Smaller values of γ lead to smoother surrogate models and larger values
lead to less smoother models. The scale parameter ν controls the exploration-exploitation
trade-off (set to 1 in our experiments). Larger values lead to more exploration.
There are two key steps in our algorithm, namely surrogate model building step (line 7
of Algorithm 3.1) and the acquisition step (line 8). Our acquisition step simply involves
minimizing the learned surrogate model. The first surrogate model builder we consider is
SimpleSMB which is described in Algorithm 3.2. For the noiseless case, where σ2 = 0,
this algorithm simply fits a neural network to the observed data by minimizing the squared
`2 loss. The network is learned using (stochastic) gradient descent with the parameters
randomly initialized using NTK initialization scheme described in Section 3.2. In the noisy
case, the algorithm regularizes the learned network to prevent over-fitting. Without regu-
larization, the learned network interpolates the data, which leads to undesirable behavior.
To avoid this, we use two forms of regularization in our algorithm. The first one involves
perturbing the response variables {yi}ni=1 with Gaussian noise. The second one is the
distance-from-initialization term (line 3) which biases the learned network to stay close to
the initialization. Both these forms of regularization play a key role in our algorithm. In
Section 3.3.1, we show that training the network in this way is equivalent to sampling from
GPs in the infinite-width limit.
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Algorithm 3.1 Neural Greedy

Input: NN initialization weight variance γ, noise variance σ2, scale parameter ν, budget
T , surrogate model building sub-routine: SurrModelBuilder

1: Initialization: D0 = {}
2: for t = 1, · · · , Te do . Random Exploration Phase
3: Sample xt randomly from the domain
4: Query blackbox function at xt and obtain yt
5: Dt ← Dt−1 ∪ {(xt, yt)}
6: for t = Te + 1, · · · , T do . Greedy Phase
7: f̃t ← SurrModelBuilder(Dt−1, γ, σ

2, ν)
8: xt ← argminx∈X f̃t(x)
9: Query blackbox function at xt to obtain yt

10: Dt ← Dt−1 ∪ {(xt, yt)}
11: return ybest = min({yt}Tt=1)

Algorithm 3.2 Simple Surrogate Model Builder (SimpleSMB)

Input: Data {(xi, yi)}t−1
i=1, initialization weight variance γ, noise variance σ2, scale param-

eter ν
1: Add i.i.d noise to targets: y′i = yi + νεi, where εi ∼ N (0, σ2)
2: Initialize θ0 ∼ NTK-Init(γ) . Random weight initialization
3: Solve minθ

∑t−1
i=1(y′i−νf(xi, θ))

2+σ2ν2‖θ−θ0‖22 using GD/SGD with θ0 as initialization,
and obtain θt

4: return ν × f(·, θt)

Discussion. While we show that Algorithm 3.1 results in a sample from a GP, and works
well in practice (as shown in Section 3.5), it doesn’t perform posterior sampling with respect
to any kernel. We propose a slight modification to SimpleSMB called PosteriorSMB
based on recent developments in wide neural network theory [86] which results in a poste-
rior sample with respect to the neural tangent kernel in the infinite-width limit. At a high
level, this method perturbs the surrogate model of SimpleSMB with a random function
that helps us sample from the posterior distribution. Further details about this method
can be found in Section 3.4.
Both the forms of regularization used in Algorithm 3.2 have been studied in the litera-
ture in various contexts. For instance, Nagarajan and Kolter [181] showed that controlling
‖θ − θ0‖2 helps in better generalization of the learned network. Kveton et al. [141] studied
reward perturbations in the context of GLM bandits. However, reward perturbation alone
doesn’t suffice for NNs. Not using ‖θ− θ0‖2 can lead to networks with poor generalization
and wider confidence bands which slows down the convergence of bandit algorithm (see
Section 3.3.1 for more details).
Kannan et al. [120] studied a greedy algorithm for linear contextual bandits. Unlike our
algorithm which perturbs the response variables, their algorithm perturbs the context vec-
tors (this corresponds to perturbing the actions x ∈ X in BBO setting). Riquelme et al.
[220] studied a neural greedy algorithm for contextual bandits. Their algorithm constructs
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the surrogate model by minimizing the following objective
∑n

i=1(yi− f(xi, θ))
2, and deter-

mines the next query point by minimizing the learned surrogate model. While this might
look similar to our algorithm, their algorithm differs from ours in two crucial aspects: (a)
their algorithm doesn’t differentiate noisy and noiseless settings and uses the same sur-
rogate model builder for both, (b) they only update their surrogate model once every 20
steps, and more importantly, they don’t train the model from scratch in each iteration.
They instead warm-start the training with the previous surrogate model. We note that
training the surrogate model from scratch in each iteration, with random initialization, is
crucial as it helps us explore the search space better (see Section 3.3.1). In a recent work,
Papalexopoulos et al. [198] used a neural greedy algorithm to solve constrained, discrete
BBO problems. However, they only considered noiseless setting and did not provide any
theoretical insights for the algorithm.
In Algorithm 3.1 we have an exploration phase that lasts for Te rounds. We note that
this is not the same as the exploration phase of classical explore-then-commit (ETC) algo-
rithms [245]. Te in our algorithm is independent of T (typically ≤ 10). Whereas, the number
of exploration rounds needed in ETC algorithms to achieve non-trivial regret guarantees
(i.e., o(T ) regret) scales polynomially with T .

3.3.1 Theoretical analysis of SimpleSMB in the infinite-width limit

In this section, we study our algorithm in the infinite-width limit of NNs. We show that in
each iteration of Algorithm 3.1, the learned network θt is sampled from a GP.

Proposition 3.1. Suppose the width of the NNs used in the Algorithm 3.1 approaches
infinity; that is, min(d1, d2 . . . dL)→∞. Suppose GD with small enough step size is used to
optimize the surrogate model objective ( i.e., line 3 of Algorithm 3.2). Consider the (t+ 1)th

iteration of the algorithm, for any t ≥ Te. Conditioned on Dt and the past randomness, the
surrogate model f̃t+1 can be viewed as being randomly sampled from a GP with the following
mean and covariance functions

µt(x) = ΘxXt
(
ΘXtXt + σ2I

)−1 Yt,

KNNGD
t (x, x′) = ν2KNN(x, x′)− ν2

(
ΘxXt

(
ΘXtXt + σ2I

)−1KNN
Xtx′ + h.c.

)
+ ν2ΘxXt

(
ΘXtXt + σ2I

)−1 (KNN
XtXt + σ2I

) (
ΘXtXt + σ2I

)−1
ΘXtx′ ,

where KNN,Θ are defined in Section 3.2. Here Xt = {xi}ti=1, and Yt = {yi}ti=1.

Discussion. The variance function KNNGD
t (x, x) is usually large at points far away from

the observed points Xt. This helps our algorithm explore unobserved areas of the action
space.

Instead of retraining the surrogate model from scratch at each iteration, suppose we warm-
start Algorithm 3.2 with the surrogate model from the previous step (as done in Riquelme
et al. [220]). Then the variance of θt+1 conditioned on the history is 0, and the algorithm
wouldn’t perform any exploration. This would in turn lead to poor performance. This is
also evident in the experiments of Riquelme et al. [220]. Next, let’s suppose we do not
use the regularization term ‖θ − θ0‖2 in Algorithm 3.2. Then a simple calculation shows
that the mean function µt(x) is equal to ΘxXtΘ

−1
XtXtYt. When evaluated at the observed

points Xt, this gives us µt(Xt) = Yt. This shows that without the regularization term,
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Algorithm 3.3 Posterior Corrected Surrogate Model Builder (PosteriorSMB)

Input: Data {(xi, yi)}t−1
i=1, initialization weight variance γ, noise variance σ2, scale param-

eter ν
1: Add i.i.d noise to targets y′i = yi + νεi, where εi ∼ N (0, σ2)
2: Initialize θ0, θ̃0 ∼ NTK-Init(γ)
3: Set the last layer parameters in θ̃0 to 0.

4: Let δ(x) =
〈
∇θf(x, θ0), θ̃0

〉
5: Solve minθ

∑t−1
i=1(y′i − νf(xi, θ) − νδ(xi))2 + σ2ν2‖θ − θ0‖22 using GD/SGD with θ0 as

initialization, and obtain θt
6: return ν × (f(·, θt) + δ(·))

the mean function interpolates the noisy data and leads to over-fitted models. Next, let’s
suppose we do not perturb the targets {yi}ni=1 in Algorithm 3.2. The covariance function
KNNGD
t (x, x′) in this case is similar to the one in Proposition 3.1, except for one difference:(
KNN
XtXt + σ2I

)
in the last term is replaced by KNN

XtXt . That is, not perturbing the targets
results in narrow confidence bands which can lead to poor exploration. This shows that
both forms of regularization are important for the algorithm to achieve good performance.

While our algorithm samples from a GP in each iteration, it doesn’t perform Thomp-
son/posterior sampling. TS would require us to sample from a GP with the following mean
and covariance functions

µt(x) = ΘxXt
(
ΘXtXt + σ2I

)−1 Yt, Kt(x, x′) = ν2Θxx′ − ν2ΘxXt
(
ΘXtXt + σ2I

)−1
ΘXtx′ .

In Section 3.4, we present a modification to our algorithm which lets us sample from the
above GP. Nevertheless, despite the lack of correspondence between our algorithm and GP-
TS, our algorithm achieves better performance than existing neural network based BBO
techniques (see Section 3.5).

3.4 Posterior Corrected Greedy Algorithm

In this section, we present a slight modification to Algorithm 3.2 that let’s us perform
posterior sampling in the infinite-width limit. This modification was originally proposed
by He et al. [86] for constructing deep Bayesian ensembles. In this work, we use it for BBO.
This modification involves adding a random perturbation δ(x) =

〈
∇θf(x, θ0), θ̃0

〉
to the

neural network f(x, θ). Here, θ0, θ̃0 are random weights generated using NTK initialization,
with the last layer weights of θ̃0 set to 0. Observe that δ(x) doesn’t have any trainable
parameters. All the trainable parameters in f(x, θ)+δ(x) come from the first term. The rest
of the algorithm for building the surrogate model remains the same as Algorithm 3.2, and
involves finding a θ that minimizes the regularized least squares objective (see Algorithm 3.3
for details).

3.4.1 Theoretical analysis of PosteriorSMB in the infinite-width limit

Similar to Section 3.3.1, we first present the following result which connects our algorithm
to GPs and Thompson sampling. The proof of this proposition follows from a similar result
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proved in He et al. [86].

Proposition 3.2. Suppose Algorithm 3.1 is run with Algorithm 3.3 as the surrogate model
builder. Suppose the width of the NNs used in the algorithm approaches infinity; that is,
min(d1, d2 . . . dL) → ∞. Suppose GD with small enough step size is used to optimize the
surrogate model objective ( i.e., line 5 of Algorithm 3.3). Consider the (t+ 1)th iteration of
the algorithm, for any t ≥ Te. Conditioned on Dt and the past randomness, the surrogate
model f̃t+1 can be viewed as being randomly sampled from a GP with the following mean
and covariance functions

µt(x) = ΘxXt
(
ΘXtXt + σ2I

)−1 Yt,

KNNGD-PC
t (x, x′) = ν2Θxx′ − ν2ΘxXt

(
ΘXtXt + σ2I

)−1
ΘXtx′ .

This shows that our algorithm is equivalent to performing GP-TS with NTK kernel, in
the infinite-width limit. We rely on this equivalence to derive regret bounds of our al-
gorithm (Theorem 3.1). For the purpose of the theorem, we let the scale parameter ν
vary with iteration, and let νt denote the scale parameter at iteration t. We assume that
Te = 0 ; that is, there is no exploration phase in the algorithm. If Te 6= 0, our re-
gret would have a O(Te) additive term. Next, we assume the NTK kernel Θ is bounded
and satisfies supx∈X ‖Θ(x, x)‖ ≤ 1. This assumption is not very restrictive. If instead,
supx∈X ‖Θ(x, x)‖ ≤ c, for some c > 1, our regret bounds would increase by a factor of c. Fi-
nally, we let It = maxA⊂X ,|A|=t I(yA; fA) be the information gain between fA = [f(x)]x∈A,
and yA = fA + ξA, where f ∼ GP(0,Θ), ξA ∼ N (0, σ2ν2

t I).

Theorem 3.1. Consider the setting of Proposition 3.2. Let X ⊆ [0, r]d be a compact and
convex set, and let γ be the initialization variance hyper-parameter used in Algorithm 3.1.
Finally, let H be the RKHS associated with the NTK kernel Θ. Suppose the true blackbox
function f∗ is Lipschitz and satisfies ‖f∗‖H ≤ B. Suppose Algorithm 3.1 is run with the
following hyper-parameters: σ2 = 1 + 2

T , νt = B + σ∗
√

2 (It−1 + 1 + log(2/δ)). Then
with probability at least 1 − δ, the cumulative regret of our algorithm is upper bounded by
O
(√

(IT + log(2/δ)) d log(BdT )
(√

TIT +B
√
T log(2/δ)

))
.

The proof of this Theorem can be found in the Appendix and relies on similar proof tech-
niques as in Chowdhury and Gopalan [44]. Notice the regret bound depends on information
gain IT . This quantity can be bounded in terms of the eigen-spectrum of the NTK kernel
Θ [264]. Let {λ1 ≥ λ2 ≥ . . . } be the eigen-spectrum of Θ w.r.t uniform measure over X .
Then IT depends on the tail function B(n) =

∑
t>n λt. Recent works have studied the tail

function of NTK kernel for 2-layer networks [35, 66]. These results can be used to derive
concrete regret bounds for Algorithm 3.1.

One can derive non-asymptotic versions of Theorem 3.1 using results of Arora et al. [7],
Eldan et al. [56] which characterize the rate at which wide NN training converges to the
infinite-width limit. Recent works have extended NTK theory to other architectures such as
convolution and graph neural networks. These results can be used to derive regret bounds
of our algorithm in the infinite-width limit of CNNs, GNNs.

Remark 3.1. For NTK kernel of a 1-hidden layer network, one can rely on the results
of Geifman et al. [66] to show that IT = O(T 1−d−1

). Plugging this into the bound of The-
orem 3.1, we obtain a regret bound of O(T 3/2−d−1

) which is vacuous. We note that the
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regret bounds of Zhang et al. [295], Zhou et al. [299] for NeuralUCB, NeuralTS also face
this issue. Deriving a TS style algorithm that achieves non-vacuous regret bound in this
setting is still an open problem.

3.5 Experiments

In this section, we present experimental results showing the effectiveness of the proposed
BBO algorithms.

Experiment Setup. We run our experiments on a set of synthetic functions that are
commonly used in blackbox optimization benchmarking and competitions [84, 158]. The
functions we chose vary in dimensionality, modality, smoothness, and structure (more de-
tails about them can be found in Section 3.7.2). The budget T for each function was set
based on the number of dimensions: functions of higher dimensions were allocated more
rounds.

Baselines. We consider the following baselines in our experiments.

1. GP-EI [112]: this performs GP optimization with EI as the acquisition function. We
chose EI over UCB and TS because EI has fewer hyper-parameters and is known
to achieve similar performance as the other two [246]. We used squared-exponential
kernel in our experiments, and relied on GPflow for the implementation [167]. GPflow
automatically sets the kernel hyper-parameters using maximum likelihood estimation.

2. NeuralLinTS [289]: this baseline performs linear TS on top of the feature representa-
tions of NN. It has two hyper-parameters: variance of the prior (diagonal) covariance
matrix γ and the observation noise variance σ2. We do a grid search for γ over
{10, 100, 1000} and for σ2 over {0.001, 0.01, 0.1}.

3. NeuralUCB [299]: this baseline constructs confidence bands that are motivated from
NTK theory. It has two hyper-parameters: γ used to scale the size of the confidence
interval, and λ a regularization parameter. We do grid search for γ over {0.01, 0.1},
and λ over {10−5, · · · , 10−2}.

4. NeuralEnsembles [125]: this baseline builds an ensemble of m neural networks with
identical architectures but different random initializations. This ensemble acts as
a surrogate model. The different predictions of networks in the ensemble can be
interpreted as samples from the posterior distribution. We use EI as the acquisition
function over the predictions from the ensembles. Similar to Kim et al. [125] at each
iteration, we warm-start the networks at their previous values and update the model
using GD. In our experiments, we set m = 10 and train the model to convergence at
each iteration.

For NeuralLinTS, NeuralEnsembles, we use a 1-hidden layer networks of widths 500 and
1000 respectively, as surrogate models. We use a smaller width for NeuralLinTS, since it
requires inversion of a df × df matrix, where df is the dimension of the feature extracted
from the neural network. For NeuralUCB, we can not use wide networks as it involves
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Figure 3.2: The plots show the minimum value observed over iterations for various baselines
on the blackbox functions. The dimensionality of the blackbox functions is provided in
parenthesis.

inversion of a p× p matrix, where p is the number of parameters in the NN. This can lead
to computational and memory overflow issues. So we use smaller but deeper models. In
particular, we use a 2-hidden layer network of width 20 as surrogate model. More details
about our implementation can be found in Section 3.7. Finally, we note that we neither im-
plement NeuralTS [295] as it is geared towards finite search spaces, nor NeuralLinUCB [289]
as it has similar performance as NeuralLinTS.

Results. The plots for the minimum value observed over iterations is shown in Fig. 3.2 for
the noiseless case. It can be seen that the SimpleSMB has the best performance over all
the neural network based techniques, and has similar (if not better) performance as GP-EI.
Moreover, while PosteriorSMB is better than all the neural baselines, it has slightly
worse performance than SimpleSMB. The experimental results indicate the effectiveness
of neural networks in BBO, especially in higher dimensions.

We also perform experiments with noisy versions of the blackbox functions. For all the
points sampled by the algorithm, we consider the true value of the point (in contrast to
the noisy value observed by the algorithm), and plot the minimum observed true value over
iterations in Fig. 3.3. We notice similar trends as the noiseless plots shown in Fig. 3.2, with
the notable exception of the Ackley function. We observe that neither of the methods are
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Figure 3.3: The plots show the minimum true value observed over iterations for all the
compared methods on noisy version of the blackbox functions. The true value denotes the
noise-free value of the black box function. The dimensionality of the blackbox functions is
provided in parenthesis. The confidence intervals are based on 10 independent runs. While
most of the plots follow similar trends as the noiseless plots in Fig. 3.2, we observe that
none of the methods are able to reliably minimize the Ackley function.

able to reliably find the optimum of the Ackley function within the specified budget. We
hypothesize that this is due to the fact that the Ackley function has a sharp global minima,
making it even harder to find in the presence of noise.

3.6 Proofs

3.6.1 Proof of Proposition 3.1

Since we are in the infinite width limit, the iterates of GD with small enough step size stay
close to the initialization θ0 [147]. So, the following first order approximation is accurate:
f(x, θ) = f(x, θ0) + 〈φ(x), θ − θ0〉, where φ(x) = ∇θf(x, θ0). Under this approximation, it
suffices to study the following objective

min
θ

t∑
i=1

(
y′i − νf(xi, θ0)− ν 〈φ(xi), θ − θ0〉

)2
+ σ2ν2‖θ − θ0‖22.
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This objective can equivalently be written as

min
θ

t∑
i=1

(yi
ν

+ εi − f(xi, θ0)− 〈φ(xi), θ − θ0〉
)2

+ σ2‖θ − θ0‖22.

Let φ(Xt) = [φ(x1)T ;φ(x2)T . . . ] be the matrix obtained by stacking the vectors {φ(xi)}ti=1

vertically. Let f(Xt, θ) = [f(x, θ)]x∈Xt , Yt = [yi]
t
i=1, and ε = [εi]

t
i=1. The minimizer θt+1 of

the above objective satisfies the following first order optimality conditions

φ(Xt)T
(
φ(Xt)(θt+1 − θ0) + f(Xt, θ0)− ε− Yt

ν

)
+ σ2(θt+1 − θ0) = 0.

Rearranging the terms, we get

θt+1 = θ0 +
(
φ(Xt)Tφ(Xt) + σ2I

)−1
φ(Xt)T

(
Yt
ν

+ ε− f(Xt, θ0)

)
.

Combining this with the linear approximation above, gives us the following expression for
our surrogate model f̃t+1(x) = νf(x, θt+1)

νf(x, θ0) +
〈
φ(x),

(
φ(Xt)Tφ(Xt) + σ2I

)−1
φ(Xt)T (Yt + νε− νf(Xt, θ0))

〉
.

Expectation. Consider any finite set X ′ ⊆ X . We now compute the mean function
µt(X ′) = E

[
f̃t+1(X ′)|Dt,Ht

]
, where Ht denotes the randomness from the past iterations.

µt(X ′) = νE
[
f(X ′, θ0)|Dt,Ht

]
+ νφ(X ′)

(
φ(Xt)Tφ(Xt) + σ2I

)−1
φ(Xt)TE [ε− f(Xt, θ0)|Dt,Ht]

+ φ(X ′)
(
φ(Xt)Tφ(Xt) + σ2I

)−1
φ(Xt)TYt.

Since f(·, θ0) ∼ GP(0,KNN) and ε is independent zero-mean Gaussian noise, the first two
terms in the RHS above are 0. This shows that

µt(X ′) = φ(X ′)
(
φ(Xt)Tφ(Xt) + σ2I

)−1
φ(Xt)TYt

(a)
= φ(X ′)φ(Xt)T

(
σ2I + φ(Xt)φ(Xt)T

)−1 Yt
(b)
= ΘX ′Xt(σ

2I + ΘXtXt)
−1Yt,

where (a) follows from Woodbury matrix identity1, and (b) follows from the fact that
〈φ(x), φ(x′)〉 converges in probability to the NTK kernel Θ(x, x′). This proves the first part
of the Proposition.

1(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)V A−1. Here, A ∈ Rn×n, C ∈ Rk×k, U, V T ∈ Rn×k
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Covariance. To simplify the notation, we defineMt =
(
φ(Xt)Tφ(Xt) + σ2I

)−1
. Consider

any finite set X ′ ⊆ X . The covariance function is given by

KNNGD
t (X ′,X ′) = E

[(
f̃t+1(X ′)− µt(X ′)

)(
f̃t+1(X ′)− µt(X ′)

)T
|Dt,Ht

]
(a)
= ν2E

[ (
f(X ′, θ0)− φ(X ′)Mtφ(Xt)T f(Xt, θ0)

)
(
f(X ′, θ0)− φ(X ′)Mtφ(Xt)T f(Xt, θ0)

)T |Dt,Ht]
+ σ2ν2φ(X ′)Mtφ(Xt)Tφ(Xt)Mtφ(X ′)T ,

where (a) follows from the fact that θ0, ε are independent of each other and E[εεT ] = σ2I.
Consequently, the cross terms involving θ0, ε are equal to 0. First consider the second term
in the RHS above. Using Woodbury matrix identity on Mt, together with the fact that
〈φ(x), φ(x′)〉 converges in probability to Θ(x, x′), it can be written as

φ(X ′)Mtφ(Xt)Tφ(Xt)Mtφ(X ′)T = ΘX ′Xt(σ
2I + ΘXtXt)

−2ΘXtX ′ .

Next, consider the first term

E
[(
f(X ′, θ0)− φ(X ′)Mtφ(Xt)T f(Xt, θ0)

) (
f(X ′, θ0)− φ(X ′)Mtφ(Xt)T f(Xt, θ0)

)T |Dt,Ht]
= E

[
f(X ′, θ0)f(X ′, θ0)T |Dt,Ht

]
+ φ(X ′)Mtφ(Xt)TE

[
f(Xt, θ0)f(Xt, θ0)T |Dt,Ht

]
φ(Xt)Mtφ(X ′)T

− φ(X ′)Mtφ(Xt)TE
[
f(Xt, θ0)f(X ′, θ0)T |Dt,Ht

]
− E

[
f(X ′, θ0)f(Xt, θ0)T |Dt,Ht

]
φ(Xt)Mtφ(X ′)T

(a)
= KNN

X ′X ′ + φ(X ′)Mtφ(Xt)TKNN
XtXtφ(Xt)Mtφ(X ′)T

− φ(X ′)Mtφ(Xt)TKNN
XtX ′ −K

NN
X ′Xtφ(Xt)Mtφ(X ′)T

(b)
= KNN

X ′X ′ + ΘX ′Xt(σ
2I + ΘXtXt)

−1KNN
XtXt(σ

2I + ΘXtXt)
−1ΘXtX ′

−ΘX ′Xt(σ
2I + ΘXtXt)

−1KNN
XtX ′ −K

NN
X ′Xt(σ

2I + ΘXtXt)
−1ΘXtX ′ ,

where (a) follows from the definition of KNN (recall, KNN(x, x′) = E[f(x, θ0)f(x′, θ0)]), and
(b) follows from Woodbury matrix identity. Substituting the above two expressions in the
expression for KNNGD

t (X ′,X ′) gives us the required result.

3.6.2 Proof of Proposition 3.2

The proof of the Proposition relies on similar arguments as in the proof of Proposition 3.1.
Since we are in the infinite width limit, the iterates of GD with small enough step size
stay close to the initialization θ0. So, the following first order approximation is accurate:
f(x, θ) = f(x, θ0) + 〈φ(x), θ − θ0〉, where φ(x) = ∇θf(x, θ0). Under this approximation, it
suffices to study the following objective

min
θ

t∑
i=1

(
y′i − νf(xi, θ0)− νδ(xi)− ν 〈φ(xi), θ − θ0〉

)2
+ σ2ν2‖θ − θ0‖22.
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To simplify the notation, we define fpc(x, θ0) = f(x, θ0) + δ(x). Using similar analysis
as in Proposition 3.1, we get the following expression for our surrogate model f̃t+1(x) =
νf(x, θt+1) + νδ(x)

νfpc(x, θ0) +
〈
φ(x),

(
φ(Xt)Tφ(Xt) + σ2I

)−1
φ(Xt)T (Yt + νε− νfpc(Xt, θ0))

〉
.

The key result we now use is that the function fpc(·, θ0) can be viewed as being sampled
from GP(0,Θ) [86]. In contrast, f(·, θ0) can be viewed as being sampled from GP(0,KNN).
The posterior correction term δ(x) essentially changes the covariance function from KNN

to Θ.

Expectation. Consider any finite set X ′ ⊆ X . We now compute the mean function
µt(X ′) = E

[
f̃t+1(X ′)|Dt,Ht

]
, where Ht denotes the randomness from the past iterations.

µt(X ′) = νE
[
fpc(X ′, θ0)|Dt,Ht

]
+ νφ(X ′)

(
φ(Xt)Tφ(Xt) + σ2I

)−1
φ(Xt)TE [ε− fpc(Xt, θ0)|Dt,Ht]

+ φ(X ′)
(
φ(Xt)Tφ(Xt) + σ2I

)−1
φ(Xt)TYt.

Since fpc(·, θ0) ∼ GP(0,Θ) and ε is independent zero-mean Gaussian noise, the first two
terms in the RHS above are 0. This shows that

µt(X ′) = φ(X ′)
(
φ(Xt)Tφ(Xt) + σ2I

)−1
φ(Xt)TYt

(a)
= φ(X ′)φ(Xt)T

(
σ2I + φ(Xt)φ(Xt)T

)−1 Yt
(b)
= ΘX ′Xt(σ

2I + ΘXtXt)
−1Yt,

where (a) follows from Woodbury matrix identity, and (b) follows from the fact that
〈φ(x), φ(x′)〉 converges in probability to the NTK kernel Θ(x, x′). This proves the first
part of the Proposition.

Covariance. Using similar arguments as in Proposition 3.1, we get the following expres-
sion for the covariance function

KNNGD-PC
t (X ′,X ′) = ν2E

[ (
fpc(X ′, θ0)− φ(X ′)Mtφ(Xt)T fpc(Xt, θ0)

)
(
fpc(X ′, θ0)− φ(X ′)Mtφ(Xt)T fpc(Xt, θ0)

)T |Dt,Ht]
+ σ2ν2φ(X ′)Mtφ(Xt)Tφ(Xt)Mtφ(X ′)T ,
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where Mt =
(
φ(Xt)Tφ(Xt) + σ2I

)−1
. Consider the first term in the RHS above

E
[ (
fpc(X ′, θ0)− φ(X ′)Mtφ(Xt)T fpc(Xt, θ0)

)(
fpc(X ′, θ0)− φ(X ′)Mtφ(Xt)T fpc(Xt, θ0)

)T |Dt,Ht]
= E

[
fpc(X ′, θ0)fpc(X ′, θ0)T |Dt,Ht

]
+ φ(X ′)Mtφ(Xt)TE

[
fpc(Xt, θ0)fpc(Xt, θ0)T |Dt,Ht

]
φ(Xt)Mtφ(X ′)T

− φ(X ′)Mtφ(Xt)TE
[
fpc(Xt, θ0)fpc(X ′, θ0)|Dt,Ht

]
− E

[
fpc(X ′, θ0)fpc(Xt, θ0)|Dt,Ht

]
φ(Xt)Mtφ(X ′)T

(a)
= ΘX ′X ′ + φ(X ′)Mtφ(Xt)TΘXtXtφ(Xt)Mtφ(X ′)T

− φ(X ′)Mtφ(Xt)TΘXtX ′ −ΘX ′Xtφ(Xt)Mtφ(X ′)T

(b)
= ΘX ′X ′ + ΘX ′Xt(σ

2I + ΘXtXt)
−1ΘXtXt(σ

2I + ΘXtXt)
−1ΘXtX ′

−ΘX ′Xt(σ
2I + ΘXtXt)

−1ΘXtX ′ −ΘX ′Xt(σ
2I + ΘXtXt)

−1ΘXtX ′ ,

where (a) follows from the fact that fpc(·, θ0) is sampled from GP(0,Θ), and (b) follows
from Woodbury matrix identity. Next, consider the second term. Using similar arguments
as in Proposition 3.1, it can be rewritten as

φ(X ′)Mtφ(Xt)Tφ(Xt)Mtφ(X ′)T = ΘX ′Xt(σ
2I + ΘXtXt)

−2ΘXtX ′ .

Substituting the above two expressions in the expression for KNNGD-PC
t (X ′,X ′) gives us the

required result.

3.6.3 Proof of Theorem 3.1

The proof follows from the regret bound of GP-TS derived by Chowdhury and Gopalan [44]
(similar proof techniques have been used to derive regret bounds of TS in various contexts
including linear, generalized linear models [141]). We provide a high level argument here for
the sake of completeness. For technical reasons, we consider a discretization of X , instead
of directly working with X (i.e., we replace the domain X with its discretized version in the
algorithm). In particular, in the tth iteration of the algorithm, we consider the discretization
X (t) ⊂ X which satisfies the following property: ∀x ∈ X , |f∗(x)−f∗([x]t)| ≤ 1

t2
, where [x]t

is the closest point to x in X (t). Such a discretization can be achieved because of the fact
that f∗ is Lipschitz continuous.

The instantaneous regret at any iteration t is given by

f∗(x∗)− f∗(xt) = f∗(x∗)− f∗([x∗]t) + f∗([x∗]t)− f∗(xt) ≤
1

t2
+ ∆t(xt),

where [x∗]t is the point closest to x∗ in the discretization X (t), and ∆t(xt) = f∗([x∗]t) −
f∗(xt). To bound the regret, it suffices to bound

∑T
t=1 ∆t(xt). To this end, we partition the

action space X (t) into two sets namely, saturated and unsaturated sets. The saturated set
consists of actions which satisfy the following condition: ∆t(x) ≥ ctσt−1(x), where σt(x) =√
KNNGD-PC
t (x, x) (intuitively this consists of actions that are clearly sub-optimal). The

unsaturated sets consist of points which satisfy the following condition: ∆t(x) < ctσt−1(x).
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The key technical part of the proof involves showing that the probability of playing a
saturated action is small. Once we have this result, the regret of the algorithm can be
bounded as O(

∑T
t=1 ctσt−1(xt)). As proved by Chowdhury and Gopalan [44], this quantity

is upper bounded by O(
√
ITT ), which is our desired regret bound.

3.7 Additional Experimental Details

3.7.1 Implementation details

Exploration budget. The exploration budget Te was set to 5d where d is the input
dimension, we also clip the exploration budget to lie between 2.5% and 7.5% of the total
budget, so as to not exhaust most of the budget on exploration. All experiments in this
chapter are repeated 10 times with different seeds, and the average and standard deviation
of the results are reported.

Neural network implementation details. We primarily use 1-hidden layer neural ar-
chitectures with a large number (> 1000) of hidden nodes, with the exception of neural
UCB, for which we use a 2-layer and 20-wide neural networks as described in [299]. The
weights of the neural network are initialized with independent samples from a normal distri-
bution N (0, γ2/layer input size). We initialize the biases of the hidden layers with indepen-
dent samples from a normal distribution N (0, γ2). We initialize the bias of the final layer
to 0, as is standard in neural network training. As described in the main text, γ is a hyper-
parameter that we tune for our proposed approaches SimpleSMBand PosteriorSMB.
We set γ = 1 for the baselines (as done in the original papers).

We implemented the above in python using Jax [26]. The networks (i.e., surrogate models)
were trained using the Adam optimizer [126] with a fixed learning rate of 0.001. We did not
notice any practical difference from SGD other than faster convergence. All our experiments
were run on a server with a 40 core Intel Xeon Silver 4210 CPU @ 2.20GHz and 187 GB
memory.

Acquisition optimization. Optimizing the acquisition function is an essential step in
all of the considered approaches. The acquisition function is built from the observed data.
It takes as input a point from the input domain and produces a scalar value denoting the
informativeness of the point. The acquisition function is optimized to select the most infor-
mative point to query next. Examples of acquisition functions include the upper confidence
bound [251] and expected improvement [112].

Acquisition functions over continuous domains are typically differentiable and amenable to
gradient based optimizers. We used standard gradient descent to optimize the acquisition
function. We initialize the starting point with a uniform random sample from the input
domain and perform 500 gradient descent steps with a fixed learning rate of 0.01. We repeat
this process 10 times and return the best point found.

Hyper-parameters and acquisition functions. For each of these methods, we fix the
number of hidden layers and the width. The rest of the tunable hyper-parameters are
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described below. Each hyper-parameter is tuned w.r.t. the cumulative regret over the last
T/2 steps of the algorithm, where T is the total budget.

SimpleSMB and PosteriorSMB: We set ν = 1, σ2 = 0, and set σW = σb within γ.
The only tuned hyper-parameter is the initialization variance parameter γ. We tune γ
in the range [0.5, 5.0]. For our methods, we use 1-hidden layer networks of fixed width
5000 as surrogate models. The effect of the initialization variance on the performance of
SimpleSMBis summarized in Figs. 3.4 and 3.5 for the noiseless and noisy cases respectively.
The aquisition function in this case is the surrogate function returned from Algorithms 3.2
and 3.3.

NeuralUCB: The hyper-parameters for this method include γ, the scale of the confidence
interval (Algorithm 1 in [299]) and λ the regularization parameter while training the sur-
rogate model on observations (Algorithm 2 in [299]). We tune the hyper-parameters over
the sets γ ∈ {0.01, 0.1, 1.0} and λ ∈ {10−e}5e=2.

NeuralEnsemble: This approach requires no hyper-parameters. We train 10 independent
neural networks to convergence in each iteration. The neural networks are warm started
with the weights from the previous iteration.

NeuralLinTS: Following Riquelme et al. [220], in this method we first train the neural
network on the observed data, extract the final hidden layer activations, and use them
for Bayesian linear regression. We assume a diagonal prior covariance γI on the linear
regression weights, and a Gaussian zero mean noise with variance σ2. We tune the hyper-
parameters over the sets γ ∈ {10, 100, 1000} and σ2 ∈ {0.001, 0.01, 0.1}. We vary γ over
relatively large values in order to not regularize the regression weights too much.

GP-EI: For this, we estimate the GP kernel parameters from the data by maximizing the
marginal likelihood of the observations [217]. We use the expected improvement acquisition
function [112] with the estimated kernel parameters to select the next observation point.

3.7.2 Benchmark black-box functions

We use a set of commonly used benchmark synthetic black-box functions to evaluate our
algorithm. Low-dimensional visualizations of the function are shown in Fig. 3.6. We refer
the reader to the excellent repository of benchmarking functions by Surjanovic and Bing-
ham [255] available at https://www.sfu.ca/~ssurjano/optimization.html, for the exact
expression of these functions.
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Figure 3.4: Hyper-parameter search plots for SimpleSMB: The plots show the minimum
value observed over iterations for various initialization variances γ in SimpleSMB, for
noiseless oracles. The dimensionality of the blackbox functions is provided in parenthesis.
These runs were not averaged over multiple runs due to lack of computational resources.
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Figure 3.5: Noisy hyper-parameter search plots for SimpleSMB. The plots show the min-
imum true value observed over iterations for various initialization variances γ in Sim-
pleSMB, for the noisy versions of the blackbox functions. The true value denotes the
noise-free value of the black box function. The dimensionality of the blackbox functions is
provided in parenthesis. These runs were not averaged over multiple runs due to lack of
computational resources.
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(a) Branin-Hoo (2) (b) Schwefel (3) (c) Hartmann (6)

(d) Styblinski-Tang (10) (e) Levy (15) (f) Ackley (20)

(g) Rosenbrock (40)

Figure 3.6: The figures show 2-dimensional versions of the respective benchmark functions
wherever available. Hartmann 6 does not have a 2-dimensional version, and hence the
equation is displayed instead. All figures are credited to Surjanovic and Bingham [255].
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4 | Cost-Aware BO via Information
Directed Sampling

4.1 Introduction

Black-box optimization techniques such as Bayesian optimization are often based on ex-
ploration and exploitation approaches to identify the best proportion in a small number
of experiments. Typically, BO approaches focus on achieving a small regret in a small
number of experiments, while ignoring the cost of each individual experiment. In practice
however, each experiment may utilize a different amount of resources. Furthermore, of-
ten cheap (or low fidelity) experiments are available that provide a significant amount of
information about the location of the optimum. Multi-Fidelity [62, 115] and cost-aware
[144] BO approaches address this by aiming to minimize the total experimental cost rather
than the number of experiments. The key idea behind such approaches is to utilize low
cost experiments for efficient exploration of the search space. We propose a method for
cost-aware BO using information directed sampling (IDS) [229].

There are various notions of regret in the literature [30]. We aim to minimize the simple
regret defined as the smallest regret among the individual regrets of all the sampled points.
This notion of simple regret however does not fit well in the multi-fidelity setting. In the
multi-fidelity we are often provided with low fidelity approximations of the true function.
However, when measuring the simple regret, one must ignore the low fidelity evaluations, as
they provide an inaccurate value of the function at that point, and hence cannot be used to
make any practical decisions. Such a formulation for the simple regret in the multi-fidelity
setting is also followed by Song et al. [249]. The main utility of the low-fidelity evaluations
is exploration rather than exploitation.

The usual notion of simple regret holds in the cost-aware setting since there is no concept of
fidelity and approximate evaluations. Hence all evaluations can be considered in the simple
regret. This does not eliminate the need for cheap evaluations as they may still be used to
gain information about the unknown function. In this chapter, we focus on the cost-aware
setting with the goal of minimizing the simple regret given some cost budget.

As a concrete example, consider the battery optimization problem described earlier. One
might have access to a simulator providing approximate evaluations. This is a multi-fidelity
setting, as the approximate results from the simulator cannot be relied on for making
decisions. One has to perform the highest fidelity evaluations eventually, in order to verify
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the best found points. On the other hand, consider the setting where each experiment
has a different cost – the cost-aware setting. This is a realistic setting since different
configurations can utilize different amount of resources (battery chemicals in this example).
All evaluations being exact in this scenario, they can be considered as reliable estimates of
function values and hence included in the regret. While our proposed method can also be
extended to the multi-fidelity setting, we focus on the cost-aware setting for simplicity of
analysis.

Balancing exploration and exploitation is the main idea behind BO and bandit algorithms.
In our setting, the cost must be factored in as well. At a high level, at each step, the
algorithm should incur a small regret (exploitation), gain information (exploration) while
using less resources (cost). Information Directed Sampling (IDS) [229] provides a principled
strategy for balancing regret and information gain. In this work, we follow a similar ap-
proach and propose CostIDS, a cost-aware acquisition function that balances cost, regret,
and information gain.

We propose a principled cost-aware acquisition function, which balances exploration, ex-
ploitation, and experimental cost. We show sub-linear regret bounds on the cumulative
regret, thus resulting in zero simple regret as the budget is increased (no-regret property).
Finally, we perform some preliminary experiments on a synthetic function and show promis-
ing results.

Compared to prior work, CostIDS enjoys a number of advantages. Our approach is a
theoretically motivated no-regret algorithm, while being much simpler conceptually. Fur-
thermore, our approach also does not require expensive entropy computations as PES [90],
MES [278], and Multi-Fidelity MES [258]. Consequently, CostIDS is applicable to models
beyond Gaussian processes where such entropy computations are prohibitive. Additionally,
CostIDS does not require a pre-defined budget as assumed by Song et al. [249].

4.2 Related Work

Bayesian optimization of black-box functions is a well explored topic. A number of acqui-
sition functions have been proposed in the literature including GP-UCB [251], Thompson
sampling [230], expected improvement (EI) [112] and entropy based methods [90, 278].
Multi-objective BO has also been well explored. We refer to [200], for a discussion on
multi-objective BO.

Experimental costs have been previously considered in BO in a variety of contexts. Kan-
dasamy et al. [115], Song et al. [249] consider the multi-fidelity setting, where approxima-
tions of the true function are available as cheap low fidelity evaluations. On the other hand,
Lee et al. [144], Takeno et al. [258] consider the cost-aware setting.

Information directed sampling (IDS) is a cumulative regret minimization approach that
aims to balance regret incurred and information gained. IDS has been shown to perform
well in cases where an action can provide information about other actions, also known as
the complex information scenario [231]. IDS has been used for reinforcement learning [190],
bandits with heteroscedastic noise [128], and linear partial monitoring [129].
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4.3 Background

A background on Gaussian processes and Bayesian optimization can be found in Sec-
tion 1.1.1.

Information Directed Sampling. Information Directed Sampling (IDS) is an informa-
tion theoretic approach for cumulative regret minimization [229]. IDS uses the concept
of information ratio which emerged in a related paper [231] on an information theoretic
analysis of Thompson sampling. For a finite domain X , a policy π is computed from which
the next action x with will be sampled. IDS stipulates choosing the policy that minimizes
the information ratio as defined below.

πt = argmin
π

(
Ex∼π [f(x∗)− f(x) | Dt−1]

)2

Ex∼πIG (x∗,x | Dt−1)︸ ︷︷ ︸
Information Ratio

, (4.1)

where x∗ denotes the optimal action, IG denotes the information gain, andDt = {(xi, yi)}ti=1

denotes the set of observations till step t. The next candidate is chosen as xt ∼ πt. The
optimal policy πt can potentially be a randomized policy, that is, πt can be supported on
more than one point in X . At a high level, IDS minimizes the regret per information-gain.
The key to bounding the regret of IDS is to bound the information ratio for the chosen pol-
icy πt. Denote such an upper bound at step t by Γt. The regret at step t is upper bounded
an increasing function of Γt. Further details and derivations can be found in Russo and
Van Roy [229].

4.4 Cost-aware Information Directed Sampling

We define a modified version of the information ratio for Gaussian processes.

xt = argmin
x∈X

E [f∗ − f(x) | Dt−1]2

IG (f,x | Dt−1)
(4.2)

This formulation differs from the original in quite a few aspects. The next candidate xt is
no longer randomized. While Russo and Van Roy [229] argue for randomized policies as
necessary for certain problems, GPs are nice in that randomized policies are not necessary
for optimization. GP-UCB [251] is an example of such a non-randomized policy. The other
difference is that information gain on the maximizer IG (x∗,x | Dt−1) is replaced by an
upper bound IG (f,x | Dt−1), and consequently a smaller information ratio. The resulting
regret bound is in terms of the maximum information gain of the function f rather than
the maximizer x∗.

The information ratio is dependent on the expected maximum of the posterior E[f∗ | Dt−1].
We bound it using a discretization technique similar to Kandasamy et al. [117, Lemma 12],
as summarized in the following lemma.

Proposition 4.1. At any iteration t,

E[f∗ | Dt−1] ≤ 1

t2
+ max
x∈X

µt(x) +
√
βσt(x)︸ ︷︷ ︸

Ut: max UCB at iteration t

, (4.3)
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where βt = C1d log t+C2, where C1, C2 are constants depending on the kernel κ of the GP.

Note that the upper bound is approximately the maximum UCB at iteration t, as 1/t2

tends to zero as t → ∞. We denote the maximum UCB by Ut and the maximizer by
xUCB
t . The remaining term E[f(x) | Dt−1] is a simply the posterior mean µt(x). Finally,

for GPs the information gain can be expressed in closed form as IG (f,x | Dt−1) = 1
2 log(1+

σ−2σt(x)2). However, in order to bound the information ratio we use σt(x)2 instead, which
is an increasing function of IG (f,x | Dt−1). As discussed earlier in Section 4.3, bounding
the information ratio is essential to bound the regret.

CostIDS. With all the above substitutions and modifications, the information ratio, and
the cost-aware information ratio are defined as,

Rt(x) =
(Ut − µt(x))2

σt(x)2
, Rcost

t (x) = λ(x)
(Ut − µt(x))2

σt(x)2
. (4.4)

The cost λ(x) is integrated as a multiplicative factor in Rt(x). The cost integrated ac-
quisition function is then optimized to yield the next candidate. In practice, optimizing
this directly can present some degenerate cases where extremely cheap points are chosen
repeatedly which provide little information. To avoid such a pathology, we propose the
following strategy.

xt = argmin
x∈X

Rcost
t (x) s.t. Rt(x) ≤ ρR∗t where R∗t = min

x∈X
Rt(x). (4.5)

The constant ρ > 1 is a user-defined tolerance factor. The constraint that Rt(x) is not too
far from the optimal R∗t ensures that there is some progress in each iteration.

4.5 Regret Bounds

A key step in bounding the regret for IDS based algorithms is bounding the information
ratio. We first assume the existence of upper bounds Γt and Γcost

t on Rt(xt) and Rcost
t (xt)

respectively. Thereafter, we define the simple and cumulative regrets both wrt the step t
and budget used Λ. Finally, we will also provide exact expressions for the upper bounds on
the information ratio.

Assumption 4.1. Assume that for all t > 0, the information ratios can be upper bounded
as

Rt(xt) ≤ Γt, Rcost
t (xt) ≤ Γcost

t almost surely, (4.6)

where Γt and Γcost
t are independent of the observations Dt−1 and non-decreasing in t.

Definition 4.1 (Regrets wrt. to t). Define the instantaneous, cumulative, and simple
regrets respectively, at step t as,

rt = f∗ − f(xt), Rt =
t∑
i=1

ri, st =
t

min
i=1

rt. (4.7)

Next, we will propose a notion of the simple regret wrt. the total budget Λ.
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Definition 4.2 (Regrets wrt. to Λ). Denote by Λ the total budget used. We define tΛ as a
random variable denoting largest time step such that the budget does exceed Λ.

tΛ = max

{
t

∣∣∣∣∣
t∑
i=1

λ(xi) ≤ Λ

}
(4.8)

Define the simple and (cost-weighted) cumulative regret random variables for budget Λ as,

sΛ =
tΛ

min
i=1

ri, RΛ =

tΛ∑
i=1

λ(xi)ri (4.9)

Theorem 4.1. The cumulative and simple regrets wrt. the budget is upper bounded as,

E[RΛ] ≤
√

ΛC1E[Γcost
tΛ

γtΛ ] + C2, E[sΛ] ≤ C3

√
E[Γcost

tΛ
γtΛ ]/Λ + C4, (4.10)

for all Λ > λmax, where C1 = 2(1 + σ−2)−1, C2 = λmaxπ
2/6, C3 =

√
C1(1 − λmax/Λ)−1,

C4 = π2/6(Λ/λmax − 1)−1, and γt denotes the maximum information gain.

Theorem 4.1 proof. We first show that E[sΛ] ≤ 1
Λ−λmax

E[RΛ].

E[sΛ] ≤ E

[∑tΛ
i=1 λ(xi)ri∑tΛ
i=1 λ(xi)

]
≤ E

[
RΛ

Λ− λmax

]
It remains to prove the upper bound on the cumulative regret.

E [RΛ] = E

[
tΛ∑
i=1

λ(xi)ri

]
= E

[
tΛ∑
i=1

λ(xi)(f
∗ − f(xi))

]

≤ E

[
tΛ∑
i=1

λ(xi)(Ui − f(xi))

]
+ E

[
tΛ∑
i=1

λmax

t2

]
(by Proposition 4.1)

≤ E

√√√√( tΛ∑
i=1

λ(xi)

)(
tΛ∑
i=1

λ(xi)(Ui − f(xi))2

)
+ λmax

π2

6
(by Cauchy Schwartz ineq.)

≤

√√√√ΛE

[
tΛ∑
i=1

Γcost
i σi(xi)2

]
+ λmax

π2

6
(by concavity of the square root function)

≤
√

ΛC1E
[
Γcost
tΛ

γtΛ
]

+ λmax
π2

6
(follows from Srinivas et al. [251, Lemma 5.4 proof])

The expectation in the last expression is with respect to tΛ. Next we provide explicit
expressions for the information ratio upper bounds, Γcost

t and Γt. Consider the information
ratio for xUCB

t , the maximizer of the UCB. This leads to R∗t ≤ Rt(xUCB
t ) = βt. Therefore,

Γt = βt is a valid upper bound. Consequently we have Rcost
t (xt+1) ≤ λmaxρβt, leading

to Γcost
t = λmaxρβt. Substituting them above, we get a simple regret bound of E[sΛ] ≤

O(
√
E[βtΛγtΛ ]λmax/Λ).
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Figure 4.1: Cost vs. Simple regret plot for the modified Branin function.

4.6 Experiments

We perform experiments on the Branin (2-dim) function denoted by b(x1, x2). We modify
it to simulate a hyper-parameter optimization problem for a ML model by adding a 3rd
dimension as B(x1, x2, l). The modified function denotes the validation error of hypothetical
ML model, l denotes the log of number of iterations the model is trained and x1, x2 denote
the hyper-parameters of the model. We define the modified function as B(x1, x2, l) =
b(x1, x2)− l to model the decrease in error with more training iterations. Furthermore, the
decrease in error diminishes with more training iterations, which is a standard phenomenon
in practice. The training cost for the tuple (x1, x2, l) is exp(l). We compare our algorithm
with MES, Multi-Fidelity MES (Cost MES), EI, Cost EI, GP-UCB, and standard IDS.
Fig. 4.1 shows the simple regret vs. the cost incurred. We observe that CostIDS achieves
a better cost vs. regret tradeoff.
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Part II

Multi-Objective Optimization
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5 | Minimizing FLOPs to Learn Ef-
ficient Sparse Representations

5.1 Introduction

Learning semantic representations using deep neural networks (DNN) is now a funda-
mental facet of applications ranging from visual search [78, 109], semantic text match-
ing [184], oneshot classification [132], clustering [193], and recommendation [242]. The
high-dimensional dense embeddings generated from DNNs however pose a computational
challenge for performing nearest neighbor search in large-scale problems with millions of
instances. In particular, when the embedding dimension is high, evaluating the distance of
any query to all the instances in a large database is expensive, so that efficient search with-
out sacrificing accuracy is difficult. Representations generated using DNNs typically have a
higher dimension compared to hand-crafted features such as SIFT [159], and moreover are
dense. The key caveat with dense features is that unlike bag-of-words features they cannot
be efficiently searched through an inverted index, without approximations.

Since accurate search in high dimensions is prohibitively expensive in practice [276], one has
to typically sacrifice accuracy for efficiency by resorting to approximate methods. Address-
ing the problem of efficient approximate Nearest-Neighbor Search (NNS) [107] or Maximum
Inner-Product Search (MIPS) [244] is thus an active area of research, which we review in
brief in the related work section. Most approaches [40, 107] aim to learn compact lower-
dimensional representations that preserve distance information. Achieving the optimal
trade-off (in a Pareto optimal sense) is often the goal in these approaches.

While there has been ample work on learning compact representations, learning sparse
higher dimensional representations have been addressed only recently [37, 108]. As a seminal
instance, Jeong and Song [108] propose an end-to-end approach to learn sparse and high-
dimensional hashes, showing significant speed-up in retrieval time on benchmark datasets
compared to dense embeddings. This approach has also been motivated from a biological
viewpoint [151] by relating to a fruit fly’s olfactory circuit, thus suggesting the possibility
of hashing using higher dimensions instead of reducing the dimensionality. Furthermore, as
suggested by Glorot et al. [72], sparsity can have additional advantages of linear separability
and information disentanglement.

In a similar vein, in this work, we propose to learn high dimensional embeddings that are
sparse and hence efficient to retrieve using sparse matrix multiplication operations. In
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contrast to compact lower-dimensional ANN-esque representations that typically lead to
decreased representational power, a key facet of our higher dimensional sparse embeddings
is that they can have the same representational capacity as the initial dense embeddings.
The core idea behind our approach is inspired by two key observations: (i) retrieval of d
(high) dimensional sparse embeddings with fraction p of non-zero values on an average, can
be sped up by a factor of 1/p. (ii) The speed up can be further improved to a factor of 1/p2

by ensuring that the non-zero values are evenly distributed across all the dimensions. This
indicates that sparsity alone is not sufficient to ensure maximal speedup; the distribution
of the non-zero values plays a significant role as well. This motivates us to consider the
effect of sparsity on the number of floating point operations (FLOPs) required for retrieval
with an inverted index. We propose a penalty function on the embedding vectors that is a
continuous relaxation of the exact number of FLOPs, and encourages an even distribution
of the non-zeros across the dimensions. This results in a multi-objective problem where the
objectives are retrieval accuracy and retrieval speed. However, as none of these quantities
are differentiable, we work with their respective surrogates: the representation learning loss
and the continuous relaxation of the FLOPs, respectively.

We apply our approach to the large scale metric learning problem of learning embeddings
for facial images. Our training loss consists of a metric learning [279] loss aimed at learning
embeddings that mimic a desired metric, and a FLOPs loss to minimize the number of oper-
ations. We perform an empirical evaluation of our approach on the Megaface dataset [122],
and show that our proposed method successfully learns high-dimensional sparse embed-
dings that are orders-of-magnitude faster. We compare our approach to multiple baselines
demonstrating an improved or similar speed-vs-accuracy trade-off.

The rest of the chapter is organized as follows. In Section 5.3 we analyze the expected
number of FLOPs, for which we derive an exact expression. In Section 5.4 we derive
a continuous relaxation that can be used as a regularizer, and optimized using gradient
descent. We also provide some analytical justifications for our relaxation. In Section 5.5
we then compare our method on a large metric learning task showing an improved speed-
accuracy trade-off compared to the baselines.

5.2 Related Work

Learning compact representations, ANN. Exact retrieval of the top-k nearest neigh-
bours is expensive in practice for high-dimensional dense embeddings learned from deep neu-
ral networks, with practitioners often resorting to approximate nearest neighbours (ANN)
for efficient retrieval. Popular approaches for ANN include Locality sensitive hashing (LSH)
[5, 70, 210] relying on random projections, Navigable small world graphs (NSW) [163] and
hierarchical NSW (HNSW) [164] based on constructing efficient search graphs by finding
clusters in the data, Product Quantization (PQ) [65, 107] approaches which decompose the
original space into a cartesian product of low-dimensional subspaces and quantize each of
them separately, and Spectral hashing [280] which involves an NP hard problem of com-
puting an optimal binary hash, which is relaxed to continuous valued hashes, admitting
a simple solution in terms of the spectrum of the similarity matrix. Overall, for compact
representations and to speed up query times, most of these approaches use a variety of care-
fully chosen data structures, such as hashes [186, 275], locality sensitive hashes [5], inverted
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file structure [16, 107], trees [212], clustering [11], quantization sketches [107, 191], as well
as dimensionality reductions based on principal component analysis and t-SNE [161].

End to end ANN. Learning the ANN structure end-to-end is another thread of work
that has gained popularity recently. Norouzi et al. [192] propose to learn binary representa-
tions for the Hamming metric by minimizing a margin based triplet loss. Erin Liong et al.
[59] use the signed output of a deep neural network as hashes, while imposing independence
and orthogonality conditions on the hash bits. Other end-to-end learning approaches for
learning hashes include [36, 148]. An advantage of end-to-end methods is that they learn
hash codes that are optimally compatible to the feature representations.

Sparse representations. Sparse representations have been previously studied from var-
ious viewpoints. Glorot et al. [72] explore sparse neural networks in modeling biological
neural networks and show improved performance, along with additional advantages such
as better linear separability and information disentangling. Lee et al. [145], Ranzato et al.
[215, 216] propose learning sparse features using deep belief networks. Olshausen and Field
[194] explore sparse coding with an overcomplete basis, from a neurobiological viewpoint.
Sparsity in auto-encoders have been explored by Kavukcuoglu et al. [121], Ng et al. [187].
Arpit et al. [8] provide sufficient conditions to learn sparse representations, and also further
provide an excellent review of sparse autoencoders. Dropout [253] and a number of its
variants [12, 177, 203] have also been shown to impose sparsity in neural networks.

High-dimensional sparse representations. Sparse deep hashing (SDH) [108] is an
end-to-end approach that involves starting with a pre-trained network and then performing
alternate minimization consisting of two minimization steps, one for training the binary
hashes and the other for training the continuous dense embeddings. The first involves
computing an optimal hash best compatible with the dense embedding using a min-cost-
max-flow approach. The second step is a gradient descent step to learn a dense embedding
by minimizing a metric learning loss. A related approach, k-sparse autoencoders [162] learn
representations in an unsupervised manner with at most k non-zero activations. The idea of
high dimensional sparse embeddings is also reinforced by the sparse-lifting approach [151]
where sparse high dimensional embeddings are learned from dense features. The idea is
motivated by the biologically inspired fly algorithm [48]. Experimental results indicated
that sparse-lifting is an improvement both in terms of precision and speed, when compared
to traditional techniques like LSH that rely on dimensionality reduction.

`1 regularization, lasso. The Lasso [261] is the most popular approach to impose spar-
sity and has been used in a variety of applications including sparsifying and compressing
neural networks [153, 282]. The group lasso [172] is an extension of lasso that encourages
all features in a specified group to be selected together. Another extension, the exclusive
lasso [133, 300], on the other hand, is designed to select a single feature in a group. Our
proposed regularizer, originally motivated by idea of minimizing FLOPs closely resembles
exclusive lasso. Our focus however is on sparsifying the produced embeddings rather than
sparsifying the parameters.
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Sparse matrix vector product (SpMV). Existing work for SpMV computations in-
clude [79, 138], proposing algorithms based on inverted indices. Inverted indices are however
known to suffer from severe cache misses. Linear algebra back-ends such as BLAS [21] rely
on efficient cache accesses to achieve speedup. Haffner [79], Krotkiewski and Dabrowski
[137], Mellor-Crummey and Garvin [173] propose cache efficient algorithms for sparse ma-
trix vector products. There has also been substantial interest in speeding up SpMV compu-
tations using specialized hardware such as GPUs [269, 270], FPGAs [296, 301], and custom
hardware [209].

Metric learning. While there exist many settings for learning embeddings [93, 123, 127],
we restrict our attention to the context of metric learning [279]. Some examples of metric
learning losses include large margin softmax loss for CNNs [155], triplet loss [238], and
proxy based metric loss [180].

5.3 Expected number of FLOPs

In this section we study the effect of sparsity on the expected number of FLOPs required
for retrieval and derive an exact expression for the expected number of FLOPs. Our main
idea is based on the key insight that if each of the dimensions of the embedding are non-zero
with a probability p (not necessarily independently), then it is possible to achieve a speedup
up to an order of 1/p2 using an inverted index on the set of embeddings. Consider two
embedding vectors u,v. Computing uTv requires computing only the pointwise product
at the indices k where both uk and vk are non-zero. This is the main motivation behind
using inverted indices and leads to the aforementioned speedup. Before we analyze it more
formally, we introduce some notation.

Let D = {(xi, yi)}ni=1 be a set of n independent training samples drawn from Z = X × Y
according to a distribution P, where X ,Y denote the input and label spaces respectively.
Let F = {fθ : X → Rd | θ ∈ Θ} be a class of functions parameterized by θ ∈ Θ, mapping
input instances to d-dimensional embeddings. Typically, for image tasks, the function is
chosen to be a suitable CNN [136]. SupposeX,Y ∼ P, then define the activation probability
pj = P(fθ(X)j 6= 0), and its empirical version p̄j = 1

n

∑n
i=1 I[fθ(xi)j 6= 0].

We now show that sparse embeddings can lead to a quadratic speedup. Consider a d-
dimensional sparse query vector uq = fθ(xq) ∈ Rd and a database of n sparse vectors
{vi = fθ(x

(i))}ni=1 ⊂ Rd forming a matrixD ∈ Rn×d. We assume that xq,x(i) (i = 1, . . . , n)
are sampled independently from P. Computing the vector matrix product Duq requires
looking at only the columns of D corresponding to the non-zero entries of uq given by
Nq = {j | 1 ≤ j ≤ d, (uq)j 6= 0}. Furthermore, in each of those columns we only need to
look at the non-zero entries. This can be implemented efficiently in practice by storing the
non-zero indices for each column in independent lists, as depicted in Fig. 5.2.

The number of FLOPs incurred is given by,

F (D,uq) =
∑
j∈Nq

∑
i:vij 6=0

1 =
n∑
i=1

d∑
j=1

I[(uq)j 6= 0 ∧ vij 6= 0]
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Taking the expectation on both sides w.r.t. xq,x(i) and using the independence of the data,
we get

E[F (D,uq)] =
n∑
i=1

d∑
j=1

P
(
(uq)j 6= 0

)
P
(
vij 6= 0

)
= n

d∑
j=1

P(fθ(X)j 6= 0)2 (5.1)

where X ∼ P. Since the expected number of FLOPs scales linearly with the number of
vectors in the database, a more suitable quantity is the mean-FLOPs-per-row defined as

F(fθ,P) = E[F (D,uq)]/n =
d∑
j=1

P(fθ(X)j 6= 0)2 =
d∑
j=1

p2
j . (5.2)

Note that for a fixed amount of sparsity
∑d

j=1 pj = d p, this is minimized when each of
the dimensions are non-zero with equal probability pj = p, ∀1 ≤ j ≤ d, upon which
F(fθ,P) = d p2 (so that as a regularizer, F(fθ,P) will in turn encourage such a uniform
distribution across dimensions). Given such a uniform distribution, compared to dense
multiplication which has a complexity of O(d) per row, we thus get an improvement by a
factor of 1/p2 (p < 1). Thus when only p fraction of all the entries is non-zero, and evenly
distributed across all the columns, we achieve a speedup of 1/p2. Note that independence
of the non-zero indices is not necessary due to the linearity of expectation – in fact, features
from a neural network are rarely uncorrelated in practice.

FLOPs versus speedup. While FLOPs reduction is a reasonable measure of speedup on
primitive processors of limited parallelization and cache memory. FLOPs is not an accurate
measure of actual speedup when it comes to mainstream commercial processors such as
Intel’s CPUs and Nvidia’s GPUs, as the latter have cache and SIMD (Single-Instruction
Multiple Data) mechanism highly optimized for dense matrix multiplication, while sparse
matrix multiplication are inherently less tailored to their cache and SIMD design [248].
On the other hand, there have been threads of research on hardwares with cache and
parallelization tailored to sparse operations that show speedup proportional to the FLOPs
reduction [81, 199]. Modeling the cache and other hardware aspects can potentially lead to
better performance but less generality and is left to future work.

5.4 Our Approach

The `1 regularization is the most common approach to induce sparsity. However, as we
will also verify experimentally, it does not ensure an uniform distribution of the non-zeros
in all the dimensions that is required for the optimal speed-up. Therefore, we resort to
incorporating the actual FLOPs incurred, directly into the loss function which will lead to
an optimal trade-off between the search time and accuracy. The FLOPs F(fθ,P) being a
discontinuous function of model parameters, is hard to optimize, and hence we will instead
optimize using a continuous relaxation of it.

Denote by `(fθ,D), any metric loss on D for the embedding function fθ. Our goal is to
minimize the loss while controlling the expected FLOPs F(fθ,P) defined in Eq. (5.2). Since
the distribution P is unknown, we use the samples to get an estimate of F(fθ,P). Recall
the empirical fraction of non-zero activations p̄j = 1

n

∑n
i=1 I[fθ(xi)j 6= 0], which converges
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Algorithm 5.1 Sparse Nearest Neighbour
1: (Build Index)
2: Input: Sparse matrix D
3: for j = 1 · · · d do
4: Init C[j]← {(i,Dij) | Dij 6= 0 ∧ 1 ≤ i ≤ n}
5: . Stores the non-zero values and their indices
6:
7: (Query)
8: Input: Sparse query uq, threshold t, number of NNs k
9: Init score vector s[i] = 0, 1 ≤ i ≤ n.

10: for j = 1 · · · d s.t. uq[j] 6= 0 do . SpMV product
11: for (i, v) ∈ C[j] do
12: s[i] += vuq[j]

13: S ← {(i, s[i]) | 1 ≤ i ≤ n, s[i] ≥ t} . Thresholding
14: Sk ← {i1, . . . , ik} top-k indices i of S based on s[i]
15: . Using nth_select from C++ STL
16: return Sk

Figure 5.2: SpMV product: The colored cells denote non-zero entries, and the arrows
indicate the list structure for each of the columns, with solid arrows denoting links that
were traversed for the given query. The green and grey cells denote the non-zero entries
that were accessed and not accessed, respectively. The non-zero values in Duq (blue) can
be computed using only the common non-zero values (green). Selecting top-k: The sparse
product vector is then filtered using a threshold t, after which the top-k indices are returned.

in probability to pj . Therefore, with a slight abuse of notation define F(fθ,D) =
∑d

j=1 p̄
2
j ,

which is a consistent estimator for F(fθ,P) based on the samples D. Note that F denotes
either the population or empirical quantities depending on whether the functional argument
is P or D. We now consider the following regularized loss.

min
θ∈Θ

`(fθ,D) + λF(fθ,D)︸ ︷︷ ︸
L(θ)

(5.3)

for some parameter λ that controls the FLOPs-accuracy tradeoff. The regularized loss poses
a further hurdle, as p̄j and consequently F(fθ,D) are not continuous due the presence of
the indicator functions. We thus compute the following continuous relaxation. Define the
mean absolute activation aj = E[|fθ(X)j |] and its empirical version āj = 1

n

∑n
i=1 |fθ(xi)j |,

which is the `1 norm of the activations (scaled by 1/n) in contrast to the `0 quasi norm
in the FLOPs calculation. Define the relaxations, F̃(fθ,P) =

∑d
j=1 a

2
j and its consistent

estimator F̃(fθ,D) =
∑d

j=1 ā
2
j . We propose to minimize the following relaxation, which can

be optimized using any off-the-shelf stochastic gradient descent optimizer. The resulting
loss is essentially a linear scalarization of our two surrogate objectives: the representation
learning loss and the continuous relaxation of the FLOPs.

min
θ∈Θ

`(fθ,D) + λF̃(fθ,D)︸ ︷︷ ︸
L̃(θ)

. (5.4)
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Sparse retrieval and re-ranking. During inference, the sparse vector of a query image is
first obtained from the learned model and the nearest neighbour is searched in a database of
sparse vectors forming a sparse matrix. An efficient algorithm to compute the dot product
of the sparse query vector with the sparse matrix is presented in Algorithm 5.1. This
consists of first building a list of the non-zero values and their positions in each column. As
motivated in Section 5.3, given a sparse query vector, it is sufficient to only iterate through
the non-zero values and the corresponding columns. Next, a filtering step is performed
keeping only scores greater than a specified threshold. Top-k candidates from the remaining
items are returned. The complete algorithm is presented in Algorithm 5.1. In practice, the
sparse retrieval step is not sufficient to ensure good performance. The top-k shortlisted
candidates are therefore further re-ranked using dense embeddings as done in SDH. This
step involves multiplication of a small dense matrix with a dense vector. The number of
shortlisted candidates k is chosen such that the dense re-ranking time does not dominate
the total time.

Comparison to SDH [108]. It is instructive to contrast our approach with that of
SDH [108]. In contrast to the binary hashes in SDH, our approach learns sparse real valued
representations. SDH uses a min-cost-max-flow approach in one of the training steps, while
we train ours only using SGD. During inference in SDH, a shortlist of candidates is first
created by considering the examples in the database that have hashes with non-empty
intersections with the query hash. The candidates are further re-ranked using the dense
embeddings. The shortlist in our approach on the other hand is constituted of the examples
with the top scores from the sparse embeddings.

Comparison to unrelaxed FLOPs regularizer. We provide an experimental compar-
ison of our continuous relaxation based FLOPs regularizer to its unrelaxed variant, showing
that the performance of the two are markedly similar. Setting up this experiment requires
some analytical simplifications based on recent deep neural network analyses. We first recall
recent results that indicate that the output of a batch norm layer nearly follows a Gaussian
distribution [236], so that in our context, we could make the simplifying approximation
that fθ(X)j (where X ∼ P) is distributed as ρ(Y ) where Y ∼ N (µj(θ), σ

2
j (θ)), ρ is the

ReLU activation used at the neural network output. We have modelled the pre-activation
as a Gaussian distribution with mean and variance depending on the model parameters θ.
We experimentally verify that this assumption holds by minimizing the KS distance [166]
between the CDF of ρ(Y ) where Y ∼ N (µ, σ2) and the empirical CDF of the activations.
The KS distance is minimized wrt. µ, σ. Fig. 5.3a shows the empirical CDF and the fitted
CDF of ρ(Y ) for two different architectures.

While µj(θ), σj(θ) (1 ≤ j ≤ d) cannot be tuned independently due to their dependence
on θ, in practice, the huge representational capacity of neural networks allows µj(θ) and
σj(θ) to be tuned almost independently. We consider a toy setting with 2-d embeddings.
For a tractable analysis, we make the simplifying assumption that, for j = 1, 2, fθ(X)j is
distributed as ReLU(Y ) where Y ∼ N (µj , σ

2
j ), thus losing the dependence on θ.

We now analyze how minimizing the continuous relaxation F̃(fθ,P) compares to minimiz-
ing F(fθ,P). Note that we consider the population quantities here instead of the empirical
quantities, as they are more amenable to theoretical analyses due to the existence of closed
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(a) The CDF of ρ(Y ) fitted to minimize the KS distance to the
empirical CDF of the activations for two different architectures.

(b) The trajectory of the acti-
vation probabilities when mini-
mizing the respective regulariz-
ers.

Figure 5.3: Figure (a) shows that the CDF of the activations (red) closely resembles the
CDF of ρ(Y ) (blue) where Y is a Gaussian random variable. Figure (b) shows that F and
F̃ behave similarly by sparsifying the less sparser activation at a faster rate when compared
to the `1 regularizer.

form expressions. We also consider the `1 regularizer as a baseline. We initialize with
(µ1, µ2, σ1, σ2) = (−1/4,−1.3, 1, 1), and minimize the three quantities via gradient descent
with infinitesimally small learning rates. For this contrastive analysis, we have not con-
sidered the effect of the metric loss. Note that while the discontinuous empirical quantity
F(fθ,D) cannot be optimized via gradient descent, it is possible to do so for its popula-
tion counterpart F(fθ,P) since it is available in closed form as a continuous function when
making Gaussian assumptions. The details of computing the gradients can be found in
Section 5.6.

We start with activation probabilities (p1, p2) = (0.4, 0.1), and plot the trajectory taken
when performing gradient descent, shown in Fig. 5.3b. Without the effect of the metric
loss, the probabilities are expected to go to zero as observed in the plot. It can be seen that,
in contrast to the `1-regularizer, F and F̃ both tend to sparsify the less sparse activation
(p1) at a faster rate, which corroborates the fact that they encourage an even distribution of
non-zeros.

F̃ promotes orthogonality. We next show that, when the embeddings are normalized
to have a unit norm, as typically done in metric learning, then minimizing F̃(fθ,D) is
equivalent to promoting orthogonality on the absolute values of the embedding vectors. Let
‖fθ(x)‖2 = 1, ∀x ∈ X , we then have the following:

F̃(fθ,D) =

d∑
j=1

(
1

n

n∑
i=1

|fθ(xi)j |

)2

=
1

n2

∑
p,q∈[1:n]

〈
|fθ(xp)|, |fθ(xq)|

〉
(5.5)

F̃(fθ,D) is minimized when the vectors {|fθ(xi)|}ni=1 are orthogonal. Metric learning losses
aim at minimizing the interclass dot product, whereas the FLOPs regularizer aims at mini-
mizing pairwise dot products irrespective of the class, leading to a tradeoff between sparsity
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and accuracy. This approach of pushing the embeddings apart, bears some resemblance
to the idea of spreading vectors [233] where an entropy based regularizer is used to uni-
formly distribute the embeddings on the unit sphere, albeit without considering any spar-
sity. Maximizing the pairwise dot product helps in reducing FLOPs as is illustrated by the
following toy example. Consider a set of d vectors {vi}di=1 ⊂ Rd (here n = d) satisfying
‖vi‖2 = 1, ∀i ∈ [1 : d]. Then

∑
p,q∈[1:d]

〈
|vp|, |vq|

〉
is minimized when vp = ep, where ep is

an one-hot vector with the p th entry equal to 1 and the rest 0. The FLOPs regularizer thus
tends to spread out the non-zero activations in all the dimensions, thus producing balanced
embeddings. This simple example also demonstrates that when the number of classes in
the training set is smaller or equal to the number of dimensions d, a trivial embedding that
minimizes the metric loss and also achieves a small number of FLOPs is fθ(x) = ey where
y is true label for x. This is equivalent to predicting the class of the input instance. The
caveat with such embeddings is that they might not be semantically meaningful beyond
the specific supervised task, and will naturally hurt performance on unseen classes, and
tasks where the representation itself is of interest. In order to avoid such a collapse in
our experiments, we ensure that the embedding dimension is smaller than the number of
training classes. Furthermore, as recommended by Sablayrolles et al. [232], we perform all
our evaluations on unseen classes.

Exclusive lasso. Also known as `1,2-norm, in previous works it has been used to induce
competition (or exclusiveness) in features in the same group. More formally, consider d fea-
tures indexed by {1, . . . , d}, and groups g ⊂ {1, . . . , d} forming a set of groups G ⊂ 2{1,...,d}.1

Let w denote the weight vector for a linear classifier. The exclusive lasso regularizer is de-
fined as,

ΩG(w) =
∑
g∈G
‖wg‖21,

where wg denotes the sub-vector (wi)i∈g, corresponding to the indices in g. G can be used
to induce various kinds of structural properties. For instance G can consist of groups of
correlated features. The regularizer prevents feature redundancy by selecting only a few
features from each group.

Our proposed FLOPs based regularizer has the same form as exclusive lasso. Therefore
exclusive lasso applied to the batch of activations, with the groups being columns of the
activation matrix (and rows corresponding to different inputs), is equivalent to the FLOPs
regularizer. It can be said that, within each activation column, the FLOPs regularizer
induces competition between different input examples for having a non-zero activation.

5.5 Experiments

We evaluate our proposed approach on a large scale metric learning dataset: the Megaface
[122] used for face recognition. This is a much more fine grained retrieval tasks (with 85k
classes for training) compared to the datasets used by Jeong and Song [108]. This dataset
also satisfies our requirement of the number of classes being orders of magnitude higher
than the dimensions of the sparse embedding. As discussed in Section 5.4, a few number of
classes during training can lead the model to simply learn an encoding of the training classes

1Denotes the powerset of {1, . . . , d}.

71



and thus not generalize to unseen classes. Face recognition datasets avoid this situation
by virtue of the huge number of training classes and a balanced distribution of examples
across all the classes.

Following standard protocol for evaluation on the Megaface dataset [122], we train on a
refined version of the MSCeleb-1M [77] dataset released by Deng et al. [53] consisting of
1 million images spanning 85k classes. We evaluate with 1 million distractors from the
Megaface dataset and 3.5k query images from the Facescrub dataset [188], which were not
seen during training. In our experiments, we vary the hyper-parameters of all our compared
methods, so as to explore the whole Pareto front. In particular, for our proposed method,
we vary the weight of the FLOPs regularizer λ.

Network architecture. We experiment with two architectures: MobileFaceNet [43], and
ResNet-101 [88]. We use ReLU activations in the embedding layer for MobileFaceNet,
and SThresh activations (defined below) for ResNet. The activations are `2-normalized
to produce an embedding on the unit sphere, and used to compute the Arcface loss [53].
We learn 1024 dimensional sparse embeddings for the `1 and F̃ regularizers; and 128, 512
dimensional dense embeddings as baselines. All models were implemented in Tensorflow [1]
with the sparse retrieval algorithm implemented in C++. The re-ranking step used 512-d
dense embeddings.

Activation function. In practice, having a non-linear activation at the embedding layer
is crucial for sparsification. Layers with activations such as ReLU are easier to sparsify due
to the bias parameter in the layer before the activation (linear or batch norm) which acts
as a direct control knob to the sparsity. More specifically, ReLU(x−λ) can be made more
(less) sparse by increasing (decreasing) the components of λ, where λ is the bias parameter
of the previous linear layer. We consider two types of activations: ReLU(x) = max(x,0),
and the soft thresholding operator SThresh(x) = sgn(x) max(|x| − 1/2, 0) [25]. ReLU
activations always produce positive values, whereas soft thresholding can produce negative
values as well.

Practical considerations. In practice, setting a large regularization weight λ from the
beginning is harmful for training. Sparsifying too quickly using a large λ leads to many
dead activations (saturated to zero) in the embedding layer and the model getting stuck
in a local minima. Therefore, we use an annealing procedure and gradually increase λ
throughout the training using a regularization weight schedule λ(t) : N 7→ R that maps the
training step to a real valued regularization weight. In our experiments we choose a λ(t)
that increases quadratically as λ(t) = λ(t/T )2, until step t = T , where T is the threshold
step beyond which λ(t) = λ.

Baselines. We compare our proposed F̃-regularizer, with multiple baselines: exhaustive
search with dense embeddings, sparse embeddings using `1 regularization, Sparse Deep
Hashing (SDH) [108], and PCA, LSH, PQ applied to the 512 dimensional dense embed-
dings from both the architectures. We train the SDH model using the aforementioned
architectures for 512 dimensional embeddings, with number of active hash bits k = 3. We
use numpy (using efficient MKL optimizations in the backend) for matrix multiplication
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required for exhaustive search in the dense and PCA baselines. We use the CPU version of
the Faiss [110] library for LSH and PQ (we use the IVF-PQ index from Faiss).

Further details on the training hyperparameters and the hardware used can be found in
Section 5.7.

5.5.1 Results

We report the recall and the time-per-query for various hyperparameters of our proposed ap-
proach and the baselines, yielding trade-off curves. The reported times include the time re-
quired for re-ranking. The trade-off curves for MobileNet and ResNet are shown in Figs. 5.4a
and 5.4c respectively. We observe that while vanilla `1 regularization is an improvement
by itself for some hyperparameter settings, the F̃ regularizer is a further improvement, and
yields the most optimal trade-off curve. SDH has a very poor speed-accuracy trade-off,
which is mainly due to the explosion in the number of shortlisted candidates with increas-
ing number of active bits leading to an increase in the retrieval time. On the other hand,
while having a small number of active bits is faster, it leads to a smaller recall. For the
other baselines we notice the usual order of performance, with PQ having the best speed-
up compared to LSH and PCA. While dimensionality reduction using PCA leads to some
speed-up for relatively high dimensions, it quickly wanes off as the dimension is reduced
even further.

We also report the sub-optimality ratio Rsub = F(fθ,D)/dp̄2 computed over the dataset D,
where p̄ = 1

d

∑d
j=1 p̄j is the mean activation probability estimated on the test data. Notice

that Rsub ≥ 1, and the optimal Rsub = 1 is achieved when p̄j = p̄, ∀1 ≤ j ≤ d, that is when
the non-zeros are evenly distributed across the dimensions. The sparsity-vs-suboptimality
plots for MobileNet and ResNet are shown in Figs. 5.4a and 5.4c respectively. We notice
that the F̃-regularizer yields values of Rsub closer to 1 when compared to the `1-regularizer.
For the MobileNet architecture we notice that the `1 regularizer is able to achieve values
of R close to that of F̃ in the less sparser region. However, the gap increases substantially
with increasing sparsity. For the ResNet architecture on the other hand the `1 regularizer
yields extremely sub-optimal embeddings in all regimes. The F̃ regularizer is therefore able
to produce more balanced distribution of non-zeros.

The sub-optimality is also reflected in the recall values. The gap in the recall values of the `1
and F̃ models is much higher when the sub-optimality gap is higher, as in the case of ResNet,
while it is small when the sub-optimality gap is smaller as in the case of MobileNet. This
shows the significance of having a balanced distribution of non-zeros. Additional results,
including results without the re-ranking step and performance on CIFAR-100 can be found
in Section 5.8.

5.6 Gradient computations for analytical experiments

As described in the main text, for purposes of an analytical toy experiment, we consider a
simplified setting with 2-d embeddings with the jth (j = 1, 2) activation being distributed as
(Yj)+ = ReLU(Yj) where Yj ∼ N (µj , σj). We assume µj ≤ 0, which is typical for sparse ac-
tivations (pj ≤ 0.5). Then the three compared regularizers are F(pθ,P) =

∑2
j=1 P((Yj)+ >

0)2, F̃(pθ,P) =
∑2

j=1 E[(Yj)+]2, and `1(pθ,P) =
∑2

j=1 E[(Yj)+]. Computing the regu-
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(a) Time per query vs recall for MobileNet. (b) Rsub vs sparsity for Mo-
bileNet.

(c) Time per query vs recall for ResNet. (d) Rsub vs sparsity for ResNet.

Figure 5.4: Figures (a) and (c) show the speed vs recall trade-off for the MobileNet and
ResNet architectures respectively. The trade-off curves produced by varying the hyper-
parameters of the respective approaches. The points with higher recall and lower time
(top-left side of the plots) are better. The SDH baseline being out of range of both the
plots is indicated using an arrow. Figures (b) and (d) show the sub-optimality ratio vs
sparsity plots for MobileNet and ResNet respectively. Rsub closer to 1 indicates that the
non-zeros are uniformly distributed across the dimensions.

larizer gradients thus boils down to computing the gradients of P((Yj)+ > 0)2,E[(Yj)+]2,
and E[(Yj)+] as provided in the following lemmas. We hide the subscript j for brevity, as
computations are similar for all j.

Lemma 5.1.

E[Y+] =
σ√
2π

exp

(
− µ2

2σ2

)
+ µ

(
1− Φ

(
−µ
σ

))
, (5.6)

and,

P(Y+ > 0) = 1− Φ
(
−µ
σ

)
, (5.7)

where Φ denotes the cdf of the Gaussian distribution.

74



Proof of Lemma 5.1. The proof is based on standard Gaussian identities.

E[Y+] =

∫ ∞
0

x√
2πσ2

exp

(
−(x− µ)2

2σ2

)
dx =

∫ ∞
−µ

x+ µ√
2πσ2

exp

(
− x2

2σ2

)
dx

=

∫ ∞
−µ

x√
2πσ2

exp

(
− x2

2σ2

)
dx+

∫ ∞
−µ

µ√
2πσ2

exp

(
− x2

2σ2

)
dx

=
σ√
2π

exp

(
− µ2

2σ2

)
+ µ

(
1− Φ

(
−µ
σ

))

P(Yj > 0) =

∫ ∞
0

1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
dx =

∫ ∞
−µ/σ

1√
2π

exp

(
−x

2

2

)
dx

= 1− Φ
(
−µ
σ

)

Lemma 5.2.

∂P(Y+ > 0)

∂µ
= −

∂Φ
(
−µ
σ

)
∂µ

=
1

σ
√

2π
exp

(
− µ2

2σ2

)
. (5.8)

∂P(Y+ > 0)

∂σ
= −

∂Φ
(
−µ
σ

)
∂σ

= − µ

σ2
√

2π
exp

(
− µ2

2σ2

)
. (5.9)

Proof of Lemma 5.2. Follows directly from the statement by standard differentiation.

Lemma 5.3.

∂E[Y+]

∂µ
= 1− Φ

(
−µ
σ

)
. (5.10)

∂E[Y+]

∂σ
=

1√
2π

exp

(
− µ2

2σ2

)
. (5.11)

Proof of Lemma 5.3.

∂E[Y+]

∂µ
= − µ

σ
√

2π
exp

(
− µ2

2σ2

)
+
∂
[
µ
(
1− Φ

(
−µ
σ

))]
∂µ

= 1− Φ
(
−µ
σ

)
where the last step follows from Lemma 5.2.

∂E[Y+]

∂σ
=

1√
2π

exp

(
− µ2

2σ2

)
+

µ2

σ2
√

2π
exp

(
− µ2

2σ2

)
+
∂
[
µ
(
1− Φ

(
−µ
σ

))]
∂σ

=
1√
2π

exp

(
− µ2

2σ2

)
where the last step follows from Lemma 5.2.
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Lemma 5.4.

∂E[Y+]2

∂µ
= 2E[Y+]

(
1− Φ

(
−µ
σ

))
. (5.12)

∂E[Y+]2

∂σ
= 2E[Y+]

1√
2π

exp

(
− µ2

2σ2

)
. (5.13)

Proof of Lemma 5.4. Follows directly from Lemma 5.3.

Lemma 5.5.

∂P(Y+ > 0)2

∂µ
= 2P(Y+ > 0)

1

σ
√

2π
exp

(
− µ2

2σ2

)
. (5.14)

∂P(Y+ > 0)2

∂σ
= −2P(Y+ > 0)

µ

σ2
√

2π
exp

(
− µ2

2σ2

)
. (5.15)

Proof of Lemma 5.5. Follows directly from Lemma 5.2.

5.7 Experimental details

All images were resized to size 112× 112 and aligned using a pre-trained aligner2. For the
Arcloss function, we used the recommended parameters of marginm = 0.5 and temperature
s = 64. We trained our models on 4 NVIDIA Tesla V-100 GPUs using SGD with a learning
rate of 0.001, momentum of 0.9. Both the architectures were trained for a total of 230k
steps, with the learning rate being decayed by a factor of 10 after 170k steps. We use a
batch size of 256 and 64 per GPU for MobileFaceNet for ResNet respectively.

Pre-training in SDH is performed in the same way as described above. The hash learning
step is trained on a single GPU with a learning rate of 0.001. The ResNet model is trained
for 200k steps with a batch size of 64, and the MobileFaceNet model is trained for 150k
steps with a batch size of 256. We set the number of active bits k = 3 and a pairwise cost
of p = 0.1.

Hyper-parameters for MobileNet models.

1. The regularization parameter λ for the F̃ regularizer was varied as 200, 300, 400, 600.

2. The regularization parameter λ for the `1 regularizer was varied as 1.5, 2.0, 2.7, 3.5.

3. The PCA dimension is varied as 64, 96, 128, 256.

4. The number of LSH bits were varied as 512, 768, 1024, 2048, 3072.

5. For IVF-PQ from the faiss library, the following parameters were fixed: nlist=4096,
M=64, nbit=8, and nprobe was varied as 100, 150, 250, 500, 1000.

2https://github.com/deepinsight/insightface
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Hyper-parameters for ResNet baselines.

1. The regularization parameter λ for the F̃ regularizer was varied as 50, 100, 200, 630.

2. The regularization parameter λ for the `1 regularizer was varied as 2.0, 3.0, 5.0, 6.0.

3. The PCA dimension is varied as 48, 64, 96, 128.

4. The number of LSH bits were varied as 256, 512, 768, 1024, 2048.

5. For IVF-PQ, the following parameters were the same as in MobileNet: nlist=4096,
M=64, nbit=8. nprobe was varied as 50, 100, 150, 250, 500, 1000.

Selecting top-k. We use the following heuristic to create the shortlist of candidates after
the sparse ranking step. We first shortlist all candidates with a score greater than some
confidence threshold. For our experiments we set the confidence threshold to be equal to
0.25. If the size of this shortlist is larger than k, it is further shrunk by consider the top k
scorers. For all our experiments we set k = 1000. This heuristic avoids sorting the whole
array, which can be a bottleneck in this case. The parameters are chosen such that the
time required for the re-ranking step does not dominate the total retrieval time.

Hardware.

1. All models were trained on 4 NVIDIA Tesla V-100 GPUs with 16G of memory.

2. System Memory: 256G.

3. CPU: Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz.

4. Number of threads: 32.

5. Cache: L1d cache 32K, L1i cache 32K, L2 cache 256K, L3 cache 46080K.

All timing experiments were performed on a single thread in isolation.

5.8 Additional Results

5.8.1 Results without re-ranking

Fig. 5.5 shows the comparison of the approaches with and without re-ranking. We notice
that there is a significant dip in the performance without re-ranking with the gap being
smaller for ResNet with FLOPs regularization. We also notice that the FLOPs regularizers
has a better trade-off curve for the no re-ranking setting as well.

5.8.2 FPR and TPR curves

In the main text we have reported the recall@1 which is a standard face recognition metric.
This however is not sufficient to ensure good face verification performance. The goal in
face verification is to predict whether two faces are similar or dissimilar. A natural metric
in such a scenario is the FPR-TPR curve. Standard face verification datasets include LFW
[97] and AgeDB [179]. We produce embeddings using our trained models, and use them to
compute similarity scores (dot product) for pairs of images. The similarity scores are used
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Figure 5.5: Time vs Recall@1 plots for retrieval with and without re-ranking. Results
from the same model and regularizer have same colors. Diamonds (♦) denote results with
re-ranking, and triangles (4) denote results without re-ranking.

to compute the FPR-TPR curves which are shown in Fig. 5.6. We notice that for curves
with similar probability of activation p, the FLOPs regularizer performs better compared
to `1. This demonstrates the efficient utilization of all the dimensions in the case of the
FLOPs regularizer that helps in learning richer representations for the same sparsity.

We also observe that the gap between sparse and dense models is smaller for ResNet, thus
suggesting that the ResNet model learns better representations due to increased model
capacity. Lastly, we also note that the gap between the dense and sparse models is smaller
for LFW compared to AgeDB, thus corroborating the general consensus that LFW is a
relatively easier dataset.

5.8.3 Cifar-100 results

We also experimented with the Cifar-100 dataset [135] consisting of 60000 examples and
100 classes. Each class consists of 500 train and 100 test examples. We compare the `1 and
FLOPs regularized approaches with the sparse deep hashing approach. All models were
trained using the triplet loss [238] and embedding dim d = 64. For the dense and DH
baselines, no activation was used on the embeddings. For the `1 and FLOPs regularized
models we used the SThresh activation. Similar to Jeong and Song [108], the train-test
and test-test precision values have been reported in Table 5.1. Furthermore, the reported
results are without re-ranking. Cifar-100 being a small dataset, we only report the FLOPs-
per-row, as time measurements can be misleading. In our experiments, we achieved slightly
higher precisions for the dense model compared to [108]. We notice that our models use
less than 50% of the computation compared to SDH, albeit with a slightly lower precision.
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Figure 5.6: FPR-TPR curves. The `1 curves are all shown in shades of red, where as the
FLOPs curves are all shown in shades of blue. The probability of activation is provided in
the legend for comparison. For curves with similar probability of activation p, the FLOPs
regularizer performs better compared to `1, thus demonstrating that the FLOPs regularizer
learns richer representations for the same sparsity.

Train Test
Model F prec@4 prec@16 prec@4 prec@16

Dense 64 61.53 61.26 57.31 56.95
SDH k = 1 1.18 62.29 61.94 57.22 55.87
SDH k = 2 3.95 60.93 60.15 55.98 54.42
SDH k = 3 8.82 60.80 59.96 55.81 54.10

F̃ no re-ranking 0.40 61.05 61.08 55.23 55.21
`1 no re-ranking 0.47 60.50 60.17 54.32 54.96

Table 5.1: Cifar-100 results using triplet loss and embedding size d = 64. For `1 and F̃
models, no re-ranking was used. F is used to denote the FLOPs-per-row (lower is better).
The SDH results have been reported from the original paper.
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6 | Hierarchically Regularized Deep
Forecasting

6.1 Introduction

Multivariate time series forecasting is a key problem in many domains such as retail de-
mand forecasting [24], financial predictions [298], power grid optimization [102], road traffic
modeling [152], and online ads optimization [46]. In many of these setting, the problem
involves simultaneously forecasting a large number of possibly correlated time series for
various downstream applications. In the retail domain, the time series may capture sales of
items in a product inventory, and in power grids, the time series may correspond to energy
consumption in a household. Often, these time series are arranged in a natural multi-level
hierarchy - for example in retail forecasting, items are grouped into subcategories and cate-
gories, and arranged in a product taxonomy. In the case of power consumption forecasting,
individual households are grouped into neighborhoods, counties, and cities. The hierarchi-
cal structure among the time series can usually be represented as a tree, with the leaf nodes
corresponding to time series at the finest granularity, and the edges representing parent-
child relationships. Fig. 6.1 illustrates a typical hierarchy in the retail forecasting domain
for time series of product sales.

In such settings, it is often required to obtain good forecasts, not just for the leaf level time-
series (fine grained forecasts), but also for the aggregated time-series corresponding to higher
level nodes (coarse gained forecasts). Furthermore, for interpretability and business decision
making purposes, it is often desirable to obtain predictions that are roughly coherent or
consistent [103] with respect to the hierarchy tree. This means that the predictions for
each parent time-series is equal to the sum of the predictions for its children time-series.

Figure 6.1: An example hierarchy for retail demand forecasting. The blue triangle represents
the sub-tree rooted at the node Store1 with leaves denoted by Item i.
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More importantly, incorporating coherence constraints in a hierarchical forecasting model
captures the natural inductive bias in most hierarchical datasets, where the ground truth
parent and children time series indeed adhere to additive constraints. For example, total
sales of a product category is equal to the sum of sales of all items in that category.

Some standard approaches for hierarchical forecasting include bottom-up aggregation, or
reconciliation-based approaches. Bottom-Up aggregation involves training a model to ob-
tain predictions for the leaf nodes, and then aggregate up along the hierarchy tree to obtain
predictions for higher-level nodes. Reconciliation methods [19, 104, 197, 257, 267, 283, 285]
make use of a trained model to obtain predictions for all nodes of the tree, and then,
in a separate post-processing phase, reconcile (or modify) them using various optimization
formulations to obtain coherent predictions. Both of these approaches suffer from shortcom-
ings in term of either aggregating noise as one moves to higher level predictions (bottom-up
aggregation), or not jointly optimizing the forecasting predictions along with the coherence
constraints (for instance, reconciliation).

At the same time, there have been several recent advances on using Deep Neural Network
models for multivariate forecasting, including Recurrent Neural Network (RNN), Convo-
lutional Neural Network (CNN) architectures [20, 195, 213, 235], and models designed for
multivariate time series based on dimensionality reduction techniques [50, 189, 219, 234,
239, 277], that have been shown to outperform classical time-series models such as autore-
gressive and exponential smoothing models [100, 101, 169], especially for large datasets.
However, most of these approaches do not explicitly address the question of how to model
the hierarchical relationships in the dataset. Deep forecasting models based on Graph
Neural Networks (GNN) [15, 34, 152, 288, 292] do offer a general framework for learning
on graph-structured data. However it is well known [22] that GNNs are hard to scale for
learning on graphs with a very large number of nodes, which in real-world settings such as
retail forecasting, could involve hundreds of thousands of time series. More importantly,
a desirable practical feature for multi-variate forecasting models is to let the prediction of
future values for a particular time series only require as input historical data from that time
series (along with covariates), without requiring access to historical data from all other time
series in the hierarchy. This allows for scalable training and inference of such models using
mini-batch gradient descent, without requiring each batch to contain all the time series in
the hierarchy. This is often not possible for GNN-based forecasting models, which require
batch sizes of the order of the number of time series.

Problem Statement: Based on the above motivations, our goal is to design a hierarchical
forecasting model with the following requirements: 1) The model can be trained using a
single-stage pipeline on all the time series data, without any separate post-processing, 2)
The model captures the additive coherence constraints along the edges of the hierarchy, 3)
The model is efficiently trainable on large datasets, without requiring, for instance, batch
sizes that scale with the number of time series. Furthermore, in this work we focus on point
forecasts only. We also emphasize that, improving forecast accuracy across all levels is our
main goal, without restricting to coherent predictions.

We propose a principled methodology to address all these above requirements for hierar-
chical forecasting. Our model comprises of two components, both of which can support
coherence constraints. The first component is purely a function of the historical values of
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a time series, without distinguishing between the individual time series themselves in any
other way. Coherence constraints on such a model correspond to imposing an additivity
property on the prediction function - which constrains the model to be a linear autore-
gressive model. However, crucially, our model uses time-varying autoregressive coefficients
that can themselves be nonlinear functions of the timestamp and other global features (lin-
ear versions of time-varying AR have been historically used to deal with non-stationary
signals [243]). We will refer to this component as the time-varying autoregressive model.

The second component focuses on modeling the global temporal patterns in the dataset
through identifying a small set of temporal global basis functions. The basis time-series,
when combined in different ways, can express the individual dynamics of each time series.
In our model, the basis time-series are encoded in a trained seq-2-seq model [256] model in
a functional form. Each time series is then associated with a learned embedding vector that
specifies the weights for decomposition along these basis functions. Predicting a time series
into the future using this model then just involves extrapolating the global basis functions
and combining them using its weight vector, without explicitly using the past values of that
time series. The coherence constraints therefore only impose constraints on the embedding
vectors of each time series, which can be easily modeled by a hierarchical regularization
function. We call this component a basis decomposition model. As we will see, this part of
the model is only approximately coherent unless the embedding constraints hold exactly.
In particular, we focus on improving the prediction accuracy rather than preserving exact
coherency. In Section 6.7.2, we also provide theoretical justification for how such hierarchical
regularization using basis decomposition results in improved prediction accuracy.

We experimentally evaluate our model on multiple publicly available hierarchical forecasting
datasets. We compare our approach to state-of-the-art (non-hierarchical) deep forecasting
models, GNN-based models and hierarchical models, and show that our approach can ob-
tain consistently more accurate predictions at all levels of the hierarchy tree. Lastly, we
consider the multi-objective aspects of this problem and demonstrate the tradeoff between
the aggregated metrics at various levels.

6.2 Related Work on Deep Hierarchical Models

In addition to the works referenced in the previous section, we now discuss a few works that
are more relevant to our approach. Specifically, we discuss some recent deep hierarchical
forecasting methods that do not require a post-processing reconciliation step. Hierarchical
forecasting methods can be roughly divided into two categories: point forecasters and prob-
abilistic forecasters. Mishchenko et al. [175] propose a point-forecasting approach which
imposes coherency on a base model via `2 regularization on the predictions. Gleason [71]
extend the idea further to impose the hierarchy on an embedding space rather than the
predictions directly. SHARQ [82] follows a similar `2 regularization based approach as
Mishchenko et al. [175], and also extends the idea to probabilistic forecasting. Their model
is trained separately for each of the hierarchical levels starting from the leaf level, thus
requiring a separate prediction model for each level.

Probabilistic forecasting methods include HierE2E [214] which produces perfectly coherent
forecasts by using a projection operation on base predictions from a DeepVAR model [234].
It requires the whole hierarchy of time series to be fed as input to the model leading to a
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large number of parameters, and hence may not scale well to large hierarchies. Yanchenko
et al. [290] take a fully Bayesian approach by modelling the hierarchy using conditional
distributions.

6.3 Problem Setting

We are given a set of N coherent time series of length T , arranged in a pre-defined hierarchy
consisting of N nodes. At time step t, the time series data can be represented as a vector
yt ∈ RN denoting the time series values of all N nodes. We compactly denote the set of
time series for all T steps as a matrix Y = [y1, · · · ,yT ]> ∈ RT×N . Also define y(i) as the
ith column of the matrix Y denoting all time steps of the i th time series, and y(i)

t as the
t th value of the i th time series. We compactly denote the H-step history of Y by YH =

[yt−H , · · · ,yt−1]> ∈ RH×N and the H-step history of y(i) by y(i)
H = [y

(i)
t−H , · · · ,y

(i)
t−1] ∈ RH .

Similarly define the F -step future of Y as YF = [yt, · · · ,yt+F−1]> ∈ RF×N . We use the ·̂
notation to denote predicted values, for example ŶF , ŷ

(i)
F and ŷt.

Time series forecasts can often be improved by using features as input to the model along
with historical time series. The features often evolve with time, for example, categorical
features such as type of holiday, or continuous features such as time of the day. We denote
the matrix of such features by X ∈ RT×D, where the t th row denotes the D-dimensional
feature vector at the t time step. For simplicity, we assume that the features are global,
meaning that they are shared across all time series. We similarly define XH and XF as
above.

Hierarchically Coherent Time Series: We assume that the time series data are co-
herent, that is, they satisfy the sum constraints over the hierarchy. The time series at each
node of the hierarchy is the equal to the sum of the time series of its children, or equiva-
lently, equal to the sum of the leaf time series of the sub-tree rooted at that node. Fig. 6.1
shows an example of a sub-tree rooted at a node.

As a result of aggregation, the data can have widely varying scales with the values at higher
level nodes being magnitudes higher than the leaf level nodes. It is well known that neural
network training is more efficient if the data are similarly scaled. Hence, we work with
rescaled time series data. The time series at each node is downscaled by the number of
leaves in the sub-tree rooted at the node, so that now they satisfy mean constraints rather
than sum constraints described above. Denote by L(p), the set of leaf nodes of the sub-tree
rooted at p. Hierarchically coherent data satisfy the following data mean property,

y(p) =
1

|L(p)|
∑
i∈L(p)

y(i) (Data Mean Property). (6.1)

6.4 Hierarchically Regularized Deep Forecasting - HiReD

We now introduce the two components in our model, namely the time-varying AR model
and the basis decomposition model. As mentioned in the introduction a combination of these
two components satisfy the three requirements in our problem statement. In particular,
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we shall see that the coherence property plays a central role in both the components. For
simplicity, in this section, all our equations will be for forecasting one step into the future
(F = 1), even though all the ideas trivially extend to multi-step forecasting. The defining
equation of our model can be written as,

ŷ
(i)
F = f(y

(i)
H ,XH,XF ,ZH, θi) =

〈
y

(i)
H , a(XH,XF ,ZH)

〉︸ ︷︷ ︸
Time varying AR (TVAR)

+
〈
θi, b(XH,XF ,ZH)

〉︸ ︷︷ ︸
Basis decomposition (BD)

. (6.2)

In the above equation, ZH is a latent state vector that summarizes the temporal informa-
tion about the whole dataset, and θi ∈ RK is the embedding/weight vector for time-
series i in the basis decomposition model. The functions a(XH,XF ,ZH) ∈ RH and
b(XH,XF ,ZH) ∈ RK are not dependent on y(i)

H and θi. The parameters of the func-
tions a, b and the embeddings θi are learned from the data. The above equation describes
our model for single future time step. It can be extended to multi-horizon prediction in a
straightforward manner as summarized in Fig. 6.2. We provide further details as we delve
into the individual components.

Summary Vector ZH: The vector ZH can be any relatively low-dimensional temporally
evolving variable that captures information about the global state of the dataset at a
particular time. While several dimensionality reduction approaches can be used here, in
our approach, we use the Non-Negative Matrix Factorization (NMF) algorithm by Gillis
and Vavasis [69] to select a small set of representative time series that encode the global
state. If the indices of the selected representative time-series is denoted by {i1, · · · , iR}
(R denotes the rank of the factorization), then we define Z = [Y (i1), · · · ,Y (iR)] ∈ RT×R.
Note that we only feed the past values ZH as input to the model, since future values are
not available when making future forecasts. Also, note that the final basis time-series is a
non-linear function of ZH. We tune the value of R in our experiments, and observe that
it is much smaller than N in all cases. Further details about Z including other possible
alternatives to dimensionality reduction can be found in Section 6.8.2.

Time-Varying AR (TVAR): The first part of the expression in Eq. (6.2) denoted
by Time Varying AR (TVAR) resembles a linear auto-regressive model with coefficients
a(XH,XF ,ZH) ∈ RH , that are a function of the input features, and thus can change with
time. The AR parameters of this model are shared across all time series and hence do
not encode any time-series specific information, a drawback that is overcome by the Basis
Decomposition part of our model. This component is coherent by design because it is a
shared linear AR model. However, even though the AR weights are shared across all the
time-series at a given time-point, they can crucially change with time, thus lending more
flexibility to the model.

Implementation: In order to model the sequential nature of the data, we use an LSTM
encoder to encode the past XH and ZH. Then, we use a fully connected (FC) decoder for
predicting the auto-regressive weights. Similar to Wen et al. [281]’s multi-horizon approach,
we use a different head of the decoder for each future time step resulting in a F -headed de-
coder producing F -step predictions for TVAR weights. The decoder also takes as input the
future covariates XF if available. The produced weights are then multiplied (inner prod-
uct) to the history to produce the final TVAR predictions. We illustrate this architecture
in Fig. 6.2 (bottom).
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Basis Decomposition (BD) with Hierarchical Regularization: Now we come to
the second part of our model in Eq. (6.2). As discussed before, this part of the model
has per time-series adaptivity, as different time-series can have different embeddings. It
resembles an expansion of the time series on a set of basis functions b(XH,XF ,ZH) ∈ RK ,
with the basis weights/embedding for time series i denoted by θi ∈ RK . Both the basis
functions and the time series specific weights are learned from the data, rather than fixing
a specific form such as Fourier or Wavelet basis.

The idea of using a basis has also been recently invoked in the time-series literature [239,
277]. The basis recovered in the implementation of Wang et al. [277] is allowed to vary for
each individual time-series and therefore is not a true basis. Sen et al. [239] do explicitly
recover an approximate basis in the training set through low-rank matrix factorization
regularized by a deep global predictive model alternatingly trained on the basis vectors,
thus not amenable to end-to-end optimization. We shall see that our model can be trained
in an end-to-end manner.

Embedding Regularization for Approximate Coherency: The TVAR part of our model is
coherent by design due to its linearity. The BD model however requires the embeddings of
the time-series to satisfy the mean property along the hierarchy. This directly translates to
coherency of the predictions due to linearity with respect to θ.

θp =
1

|L(p)|
∑
i∈L(p)

θi (Embedding Mean Property), (6.3)

We impose this constraint approximately via an `2 regularization on the embedding.

Ereg(θ) =

N∑
p=1

∑
i∈L(p)

‖θp − θi‖22. (6.4)

The purpose of this regularizer is two fold. Firstly, we observe that, when the leaf embed-
dings are kept fixed, the regularizer is minimized when the embeddings satisfy the mean
property in Eq. (6.3), thus encouraging coherency in the predictions. Secondly, it also
encodes the inductive bias present in the data corresponding to the hierarchical additive
constraints. We provide some theoretical justification for this hierarchical regularization in
Section 6.6.

Implementation: As before, we use an LSTM encoder to encode the past XH and ZH.
Then, we use the encoding from the encoder along with the future featuresXF (sequential in
nature) and pass them through an LSTM decoder to yield the F -step basis predictions which
are then multiplied with the embedding (inner product) to produce the final BD predictions.
Thus, a functional representation of the basis time-series is implicitly maintained within
the trained weights of the basis generating seq-2-seq model. Note that the embeddings are
also trained in our end-to-end model. We illustrate this architecture in Fig. 6.2 (top).

We emphasize that the main ideas in our model are agnostic to the specific type of neural
network architecture used. For our experiments, we specifically use an LSTM architecture
[94] for the encoder and decoder. Other types of architectures including transformers [268]
and temporal convolution networks [23] can also be used.
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Figure 6.2: In this figure we show the architectures of our two model components separately.
At the top we show the BD model, where the seq-2-seq model implicitly maintains the basis
in a functional form. Note that the time-series specific weights {θi} are also trained. At the
bottom, we show the TVAR model. The fully connected decoder has a different prediction
head for each future time-point.

Loss Function: During training, we minimize the mean absolute error (MAE) of the
predictions along with the embedding regularization term introduced above (our method
generalizes to other losses too, such as mean square error, or mean absolute percentage
error). For regularization weight λE , and ŷ

(i)
F defined as Eq. (6.2), and Θ denoting the

trainable parameters of a, b, our training loss function is,

`(Θ,θ) =
∑
i

∑
F
|y(i)
F − ŷ

(i)
F |︸ ︷︷ ︸

Prediction loss

+ λEEreg(θ)︸ ︷︷ ︸
Embedding regularization

. (6.5)

We minimize the above loss function using stochastic gradient descent. In each iteration,
the prediction loss computed using a mini-batch sampled from the training data, where as
the regularization loss is computed using all the embeddings. The embedding matrix being
relatively small in size does not affect the scalability of our approach.

Model Justification. We provide a more concrete justification of the above model. Our
goal is to learn a function f of the form ŷ

(i)
F = f(y

(i)
H ,XH,XF ,ZH, θi), with the main

objectives of our approach is to model coherency while being scalable. For our approach,
predictions for time series i only need access to the history of the ith time series y(i)

H and
θi. For a prediction function to be coherent, the prediction for a parent node must be equal
to the aggregated predictions of its children nodes. Assuming that θis satisfy Eq. (6.3), a
sufficient condition for the prediction function f to be coherent with respect to y(i)

H and θi
is for it to be linear with respect to y(i)

H and θi. Linearity leads to the final form of the
model shown in Eq. (6.2). The constraint in Eq. (6.3) leads to the regularization term in the
training loss shown in Eq. (6.5). This is one of the key motivations behind our approach.

6.5 Experiments

We implemented our proposed model in Tensorflow [1] and compared against multiple
baselines on popular hierarchical time-series datasets.

Datasets. We experimented with three hierarchical forecasting datasets - Two retail fore-
casting datasets, M5 [160] and Favorita [60]; and the Tourism [262] dataset consisting of
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tourist count data. The history length and forecast horizon (H,F ) were set to (28, 7), (28,
7) and (24, 4), for Favorita, M5 and Tourism respectively.

1. The M5 dataset1 consists of time series data of product sales from 10Walmart stores in
three US states. The data consists of two different hierarchies: the product hierarchy
and store location hierarchy. For simplicity, in our experiments we use only the
product hierarchy consisting of 3k nodes and 1.8k time steps. The validation scores
are computed using the predictions from time steps 1843 to 1877, and test scores on
steps 1878 to 1913.

2. The Favorita dataset2 is a similar dataset, consisting of time series data from Corpo-
ración Favorita, a South-American grocery store chain. As above, we use the product
hierarchy, consisting of 4.5k nodes and 1.7k time steps. The validation scores are
computed using the predictions from time steps 1618 to 1652, and test scores on steps
1653 to 1687.

3. The Australian Tourism dataset3 consists of monthly domestic tourist count data in
Australia across 7 states which are sub-divided into regions, sub-regions, and visit-
type. The data consists of around 500 nodes and 230 time steps. The validation
scores are computed using the predictions from time steps 122 to 156, and test scores
on steps 157 to 192.

We divide each of the datasets into training, validation and test sets, with details on the
splits provided in Section 6.8.1.

Baselines. We compare our proposed approach HiReD with the following baseline mod-
els:

1. RNN : We use an LSTM decoder and encoder to implement a seq-2-seq model shared
across all the time series, trained using mean absolute error loss.

2. DeepGLO [239]: We use the implementation released by the authors on Github4. We
modify the loss function, data handling and evaluation to adapt to our setting.

3. DCRNN [152]: DCRNN being a GNN based approach requires a correlation graph
as input. We use the official implementation released by the authors5 and provide the
hierarchy tree as the input graph. The implementation uses MAE loss by default.

4. Deep Factors (DF) [277]: The original implementation released by the authors makes
rolling probabilistic forecasts. We implement our own version in Tensorflow using an
LSTM encoder for the global model (producing point predictions) as in the original
implementation, while leaving out the probabilistic local model. We manually tune
the hyper-parameters for each of the datasets on the validation set.

5. L2Emb [71], which is an improvement over Mishchenko et al. [175]. We implement
this model using an LSTM decoder and encoder with MAE as the main training loss.

1https://www.kaggle.com/c/m5-forecasting-accuracy/
2https://www.kaggle.com/c/favorita-grocery-sales-forecasting/
3https://robjhyndman.com/publications/mint/
4https://github.com/rajatsen91/deepglo
5https://github.com/liyaguang/DCRNN/
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In addition, we also use node embeddings which are fed as input to the encoder and
decoder, and regularized according to the hierarchy as described by Gleason [71].

6. SHARQ [82]: We were not able to find an official release of SHARQ. We implemented
it using an LSTM based seq-to-seq model, with layer-wise training as described in the
paper. We used MAE as the data fit loss function and the default squared error
reconciliation loss regularizer (See Han et al. [82] for terminology).

7. HierE2E-PF is a modification of HierE2E [214]. The official implementation produces
rolling probabilistic forecasts. We adapt it to point forecasts by removing the variance
model and using the proposed projection step on outputs from a seq-2-seq model.

8. RNN+ERM [19]: We also compare with the recent ERM [19] reconciliation method
applied to the base forecasts from the RNN model. It has been shown in [19] to out-
perform many previous reconciliation techniques such as MinT [284]. This approach
involves learning a sparse projection matrix from data, resulting in coherent predic-
tions. We tune the sparsity parameter using the model accuracy on the validation
set.

For a fair comparison, we use the the same Mean Absolute Error loss functions for training,
and ensure that all the baseline models have similar number of parameters. We implement
some of baselines since the official implementations of some of the baselines either make
rolling probabilistic forecasts, or use a different set of covariates. Further details about the
baselines and training parameters can be found in Section 6.8.

Metrics. We compare the accuracy of the various approaches with respect to the following
two metrics. Denote the true values by y and the predicted values by ŷ, both n-dimensional
vectors.

1. Symmetric mean absolute percent error SMAPE = 2
n

∑
i
|ŷi−yi|
|yi|+|ŷi| .

2. Weighted absolute percentage error WAPE =
∑
i |ŷi−yi|∑
i |yi|

.

We report the metrics on the test data, for each level of the hierarchy (with level 0 denoting
the root) in Table 6.1. As a measure of the aggregate performance across all the levels, we
also report the mean of the metrics in all the levels of the hierarchy denoted by Mean.

6.5.1 Results

Table 6.1 shows the averaged test metrics for M5, Favorita, and Tourism datasets, along
with confidence intervals.

We find that for all three datasets, our proposed model either yields the smallest error or
close to the smallest error across most metrics and most levels. In particular, we find that
our proposed method achieves the smallest errors in the mean column for all datasets in
terms of WAPE and SMAPE, thus indicating good performance generally across all levels.
We find that RNN+ERM in general, yields an improvement over the base RNN predictions
for the higher levels closer to the root node (Levels 0 and 1), while, worsening at the lower
levels. DCRNN, despite using the hierarchy as a graph also does not perform as well as our
approach, especially in Tourism and M5 Datasets - possibly due to the fact that a GNN

89



Table 6.1: WAPE/SMAPE test metrics for all the three datasets, averaged over 10 runs.
The standard deviations are shown in the parenthesis. We bold the smallest mean in each
column and anything that comes within two standard deviations.

M5 Level 0 Level 1 Level 2 Level 3 Mean

HiReD 0.048
(0.0011)

/ 0.048
(0.0011)

0.055
(0.0006)

/ 0.053
(0.0006)

0.072
(0.0007)

/ 0.077
(0.0006)

0.279
(0.0003)

/ 0.511
(0.0012)

0.113
(0.0005)

/ 0.172
(0.0006)

RNN 0.059
(0.002)

/ 0.059
(0.003)

0.083
(0.013)

/ 0.083
(0.011)

0.085
(0.002)

/ 0.098
(0.004)

0.282
(0.006)

/ 0.517
(0.007)

0.127
(0.005)

/ 0.189
(0.005)

DF 0.055
(0.001)

/ 0.056
(0.001)

0.061
(0.001)

/ 0.060
(0.001)

0.076
(0.001)

/ 0.085
(0.002)

0.272
(0.000)

/ 0.501
(0.002)

0.116
(0.001)

/ 0.176
(0.001)

DeepGLO 0.077
(0.0003)

/ 0.081
(0.0004)

0.087
(0.0003)

/ 0.092
(0.0004)

0.099
(0.0003)

/ 0.113
(0.0003)

0.278
(0.0001)

/ 0.538
(0.0001)

0.135
(0.0003)

/ 0.206
(0.0003)

DCRNN 0.078
(0.006)

/ 0.079
(0.007)

0.096
(0.005)

/ 0.092
(0.004)

0.165
(0.003)

/ 0.193
(0.007)

0.282
(0.000)

/ 0.512
(0.000)

0.156
(0.002)

/ 0.219
(0.003)

L2Emb 0.055
(0.0016)

/ 0.056
(0.001)

0.064
(0.0014)

/ 0.063
(0.001)

0.080
(0.0011)

/ 0.092
(0.001)

0.269
(0.0003)

/ 0.501
(0.003)

0.117
(0.0009)

/ 0.178
(0.001)

SHARQ 0.093
(0.002)

/ 0.096
(0.002)

0.071
(0.004)

/ 0.062
(0.003)

0.099
(0.002)

/ 0.094
(0.001)

0.277
(0.000)

/ 0.528
(0.000)

0.135
(0.001)

/ 0.195
(0.001)

RNN+ERM 0.052
(0.001)

/ 0.052
(0.001)

0.066
(0.001)

/ 0.071
(0.002)

0.084
(0.001)

/ 0.104
(0.002)

0.286
(0.002)

/ 0.520
(0.004)

0.122
(0.001)

/ 0.187
(0.001)

HierE2E-PF 0.152
(0.002)

/ 0.160
(0.002)

0.152
(0.002)

/ 0.158
(0.002)

0.152
(0.002)

/ 0.181
(0.002)

0.396
(0.001)

/ 0.615
(0.002)

0.213
(0.002)

/ 0.278
(0.002)

HierE2E-PF Large 0.047
(0.002)

/ 0.050
(0.003)

0.057
(0.001)

/ 0.063
(0.001)

0.067
(0.001)

/ 0.080
(0.001)

0.347
(0.001)

/ 0.573
(0.001)

0.130
(0.001)

/ 0.192
(0.001)

Favorita Level 0 Level 1 Level 2 Level 3 Mean

HiReD 0.061
(0.002)

/ 0.061
(0.002)

0.094
(0.001)

/ 0.182
(0.002)

0.127
(0.001)

/ 0.267
(0.003)

0.210
(0.000)

/ 0.322
(0.004)

0.123
(0.001)

/ 0.208
(0.002)

RNN 0.067
(0.004)

/ 0.068
(0.003)

0.114
(0.003)

/ 0.197
(0.004)

0.134
(0.002)

/ 0.290
(0.005)

0.203
(0.001)

/ 0.339
(0.005)

0.130
(0.002)

/ 0.223
(0.004)

DF 0.064
(0.003)

/ 0.064
(0.004)

0.110
(0.002)

/ 0.194
(0.003)

0.135
(0.002)

/ 0.291
(0.007)

0.213
(0.001)

/ 0.343
(0.007)

0.130
(0.002)

/ 0.223
(0.004)

DeepGLO 0.098
(0.001)

/ 0.088
(0.001)

0.126
(0.001)

/ 0.197
(0.001)

0.156
(0.001)

/ 0.338
(0.001)

0.226
(0.001)

/ 0.404
(0.001)

0.151
(0.001)

/ 0.256
(0.001)

DCRNN 0.080
(0.004)

/ 0.080
(0.005)

0.120
(0.001)

/ 0.212
(0.002)

0.134
(0.000)

/ 0.328
(0.000)

0.204
(0.000)

/ 0.389
(0.000)

0.134
(0.001)

/ 0.252
(0.001)

L2Emb 0.070
(0.003)

/ 0.070
(0.003)

0.114
(0.002)

/ 0.199
(0.004)

0.136
(0.001)

/ 0.276
(0.006)

0.207
(0.001)

/ 0.321
(0.007)

0.132
(0.002)

/ 0.216
(0.004)

SHARQ 0.088
(0.002)

/ 0.085
(0.002)

0.142
(0.001)

/ 0.199
(0.001)

0.156
(0.001)

/ 0.335
(0.001)

0.230
(0.000)

/ 0.404
(0.000)

0.154
(0.000)

/ 0.256
(0.000)

RNN+ERM 0.056
(0.002)

/ 0.058
(0.002)

0.103
(0.001)

/ 0.185
(0.003)

0.129
(0.001)

/ 0.283
(0.005)

0.220
(0.001)

/ 0.348
(0.005)

0.127
(0.001)

/ 0.219
(0.003)

HierE2E-PF 0.120
(0.005)

/ 0.125
(0.006)

0.206
(0.003)

/ 0.334
(0.005)

0.247
(0.002)

/ 0.448
(0.006)

0.409
(0.007)

/ 0.573
(0.014)

0.245
(0.004)

/ 0.370
(0.007)

HierE2E-PF Large 0.082
(0.002)

/ 0.077
(0.002)

0.168
(0.003)

/ 0.263
(0.010)

0.190
(0.002)

/ 0.360
(0.003)

0.314
(0.002)

/ 0.440
(0.001)

0.189
(0.002)

/ 0.285
(0.003)

Tourism Level 0 Level 1 Level 2 Level 3 Level 4 Mean

HiReD 0.059
(0.001)

/ 0.061
(0.001)

0.125
(0.001)

/ 0.162
(0.003)

0.172
(0.001)

/ 0.225
(0.002)

0.229
(0.001)

/ 0.376
(0.004)

0.347
(0.001)

/ 0.786
(0.007)

0.186
(0.001)

/ 0.322
(0.002)

RNN 0.110
(0.001)

/ 0.106
(0.001)

0.148
(0.001)

/ 0.164
(0.002)

0.188
(0.001)

/ 0.231
(0.001)

0.240
(0.000)

/ 0.385
(0.006)

0.369
(0.001)

/ 0.782
(0.012)

0.211
(0.001)

/ 0.333
(0.002)

DF 0.097
(0.003)

/ 0.096
(0.002)

0.141
(0.002)

/ 0.170
(0.002)

0.187
(0.001)

/ 0.240
(0.002)

0.241
(0.001)

/ 0.380
(0.002)

0.355
(0.000)

/ 0.783
(0.014)

0.204
(0.001)

/ 0.334
(0.003)

DeepGLO 0.089
(0.0002)

/ 0.079
(0.0002)

0.126
(0.0001)

/ 0.158
(0.0001)

0.179
(0.0001)

/ 0.218
(0.0001)

0.234
(0.0001)

/ 0.372
(0.0001)

0.364
(0.0001)

/ 0.900
(0.0002)

0.199
(0.0001)

/ 0.346
(0.0001)

DCRNN 0.187
(0.003)

/ 0.171
(0.003)

0.231
(0.002)

/ 0.248
(0.003)

0.258
(0.001)

/ 0.279
(0.002)

0.293
(0.001)

/ 0.398
(0.001)

0.434
(0.000)

/ 0.865
(0.000)

0.281
(0.000)

/ 0.392
(0.001)

L2Emb 0.114
(0.007)

/ 0.115
(0.007)

0.153
(0.002)

/ 0.180
(0.004)

0.192
(0.002)

/ 0.244
(0.002)

0.245
(0.001)

/ 0.385
(0.002)

0.372
(0.002)

/ 0.789
(0.010)

0.215
(0.002)

/ 0.342
(0.003)

SHARQ 0.100
(0.005)

/ 0.104
(0.005)

0.164
(0.002)

/ 0.209
(0.001)

0.217
(0.003)

/ 0.260
(0.002)

0.265
(0.003)

/ 0.386
(0.001)

0.399
(0.003)

/ 0.931
(0.004)

0.229
(0.001)

/ 0.378
(0.001)

RNN+ERM 0.078
(0.005)

/ 0.079
(0.005)

0.155
(0.003)

/ 0.206
(0.006)

0.225
(0.004)

/ 0.291
(0.006)

0.307
(0.006)

/ 0.498
(0.008)

0.488
(0.009)

/ 1.013
(0.010)

0.251
(0.005)

/ 0.417
(0.006)

HierE2E-PF 0.110
(0.002)

/ 0.113
(0.002)

0.143
(0.002)

/ 0.161
(0.003)

0.187
(0.002)

/ 0.232
(0.003)

0.240
(0.001)

/ 0.371
(0.004)

0.358
(0.001)

/ 0.824
(0.003)

0.208
(0.001)

/ 0.340
(0.002)
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Table 6.2: We report the test WAPE/SMAPE metrics for an ablation study on the M5
dataset, for each of the components in the HiReD model. We compare our model with two
ablated variants: first, we remove the regularization (λE = 0), and second, we remove the
BD component (TVAR only).

M5 Abl Level 0 Level 1 Level 2 Level 3 Mean

HiReD 0.048 / 0.048 0.055 / 0.053 0.072 / 0.077 0.279 / 0.511 0.113 / 0.172

λE = 0 0.054 / 0.054 0.058 / 0.056 0.074 / 0.078 0.279 / 0.513 0.116 / 0.175

TVAR only 0.050 / 0.049 0.064 / 0.065 0.084 / 0.086 0.288 / 0.520 0.122 / 0.180

is not the most effective way to model the tree hierarchies. We notice that HierE2E-PF
performs reasonably well for the smaller Tourism while performing badly for the larger
M5 and Favorita datasets - a possible explanation being that this is a VAR model that
requires much more parameters to scale to large datasets. Therefore, for HierE2E-PF we
perform experiments with 50× more parameters for M5 and Favorita and report the results
in Table 6.1, showing that while the results improve, it still performs much worse than our
model. Overall, we find that our proposed method consistently works better or at par with
the other baselines at all hierarchical levels.

Ablation study. Next, we perform an ablation study of our proposed model to under-
stand the effects of its various components, the results of which are presented in Table 6.2.
We compare our proposed model, to the same model without any regularization (set λE = 0
in Eq. (6.5)), and a model consisting of only TVAR. We find that both these components
in our model are important, and result in improved accuracy in most metrics.

Coherence. We also compare the coherence of our predictions to that of the RNN model
and an ablated model with λE = 0. Specifically, for each node p we measure the deviation
of our forecast from c(p) = 1/L(p)

∑
i∈L(p) ŷ

(i), the mean of the leaf node predictions
of the corresponding sub-tree. Perfectly coherent predictions will have a zero deviation
from this quantity. In Table 6.3, we report the WAPE metric between the predictions
from our model ŷ and c, for each of the hierarchical levels. The leaf level predictions are
trivially coherent. We find that our proposed model consistently produces more coherent
predictions compared to both the models, indicating that our hierarchical regularization
indeed encourages coherency in predictions, in addition to improving accuracy.

Basis Visualization. We visualize the basis generated by the BD model for the M5
validation set in Fig. 6.3 (left). We notice that the bases capture various global temporal
patterns in the dataset. In particular, most of the bases have a period of 7, indicating
that they represent weekly patterns. We also show the predictions made from the various
components of our model at all hierarchical levels, in Fig. 6.3 (right). We notice that the
predictions from the BD part closely resemble the general patterns of the true time series
values, where as the AR model adds further adjustments to the predictions, including a
constant bias, for most time series. For the leaf level (Level 3) predictions however, the
final prediction is dominated by the AR model indicating that global temporal patterns
may be less useful in this case.
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Figure 6.3: Left: Plots of the basis generated on the validation set of the M5 dataset over
35 days. Right: We plot the true time series over the same time period, and compare it
with the predicted time series, AR predictions and BD predictions.

L0 L1 L2 L3

Favorita
HiReD 0.004 0.004 0.003 -
λE = 0 0.012 0.013 0.010 -
RNN 0.043 0.044 0.042 -

M5
HiReD 0.030 0.034 0.034 -
λE = 0 0.035 0.040 0.039 -
RNN 0.042 0.057 0.047 -

Tourism
HiReD 0.092 0.079 0.066 0.060
λE = 0 0.085 0.082 0.067 0.059
RNN 0.097 0.089 0.082 0.083

Table 6.3: Coherency metric for all our datasets, at all hierarchical levels. Leaf node metrics
are identically zero, and hence not reported in the table. Leaf nodes for Favorita and M5
are denoted by L3. Tourism has 5 hierarchical levels and hence L3 values are reported in
this case.
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Multi-Objective Considerations

So far, for our experiments, we do not perform any kind of loss function weighting for the
various hierarchical levels. As a result, the higher levels are extremely under represented in
the training loss due the presence of a large number of leaf nodes. In this section, we study
the effect of up-sampling the higher level nodes (in the training loss) on the mean metric
which is the average metric across all levels.

The loss function is the same as Eq. (6.5). When selecting a mini-batch, instead of randomly
sampling a subset of nodes uniformly, as described in Section 6.8.1, we non-uniformly sample
(with replacement) each node with probability proportional to,

πi ∝ α−d(i), where d(i) denotes the depth of node i. (6.6)

The depth of the root node is defined to be zero. The parameter α controls the how much
the probability distribution π diverges from the uniform distribution. The value of α = 1
corresponds to an uniform distribution, where as higher values of α correspond to over-
sampling the higher level nodes. For a complete n-ary tree, a value of α = n corresponds
to an uniform representation of each of the levels in the loss functions, meaning that the
number of nodes in a minibatch from each of the levels is almost equal. Note that since we
sample without replacement, the root is sampled more often to match the number of nodes
from the other levels. The rest of the training remains the same.

The results of this experiment are shown in Fig. 6.4. For each of the datasets, we plot the
level wise metrics for different values of α. Since the metrics vary widely across the levels,
we normalize the values to have a unit mean. The unnormalized values of the runs are
reported in Table 6.4.

We observe that in most cases, increasing the sampling rate of the higher level nodes results
in improvement of performance at the higher levels. We also notice that the optimum mean
performance is not necessarily achieved for α = 1, which corresponds to uniform sampling of
the nodes. The key take-away from this experiment is that, with the current approach, the
metrics at all levels cannot be optimized simultaneously. In practice, different prediction
model may be used for different levels.

6.6 Theoretical Justification for Hierarchical Modeling

In this section, we theoretically analyze the benefits of modeling hierarchical constraints
in a much simplified setting, and show how it can result in provably improved accuracy,
under some assumptions. Since analyzing our actual deep non-linear model for an arbitrary
hierarchical set of time series can be complex, we make some simplifying assumptions to
the problem and model. We assume that all the time series in the dataset is a linear
combination of a small set of basis time series. That is, Y = Bθ +w, where B ∈ RT×K
denotes the set of basis vectors, θ = [θ1, · · · , θN ] ∈ RK×N denotes the set of weight vectors
used in the linear combination for each time series, and w ∈ RT×N denotes the noise matrix
sampled i.i.d as w ∼ N (0, σ2) for the leaf nodes. A classical example of such a basis set
can be a small subset of Fourier or Wavelet basis [254, 265] that is relevant to the dataset.
Note that we ignore the TVAR model for the sake of analysis and focus mainly on the BD
model which includes the hierarchical regularization.
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Figure 6.4: The plots show the WAPE and SMAPE metrics when training with non-
uniformly sampled mini-batches. Since the metrics vary widely across levels, we normalize
all the metrics runs to have a mean of 1, in order to compare the relative improvements.
The bars denote 25-75% confidence intervals where as the whiskers show 5-95% confidence
intervals.
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Table 6.4: WAPE/SMAPE test metrics for all the three datasets, averaged over 10 runs,
with non-uniform mini-batch sampling. The standard deviations are shown in the paren-
thesis.

M5 Level 0 Level 1 Level 2 Level 3 Mean

α = 1 0.0488
(0.0012)

/ 0.0486
(0.0010)

0.0551
(0.0010)

/ 0.0529
(0.0010)

0.0711
(0.0009)

/ 0.0767
(0.0010)

0.2798
(0.0004)

/ 0.5127
(0.0010)

0.1137
(0.0008)

/ 0.1727
(0.0009)

α = 3 0.0510
(0.0023)

/ 0.0504
(0.0019)

0.0565
(0.0022)

/ 0.0540
(0.0020)

0.0731
(0.0020)

/ 0.0775
(0.0022)

0.2799
(0.0003)

/ 0.5133
(0.0007)

0.1151
(0.0017)

/ 0.1738
(0.0015)

α = 5 0.0477
(0.0008)

/ 0.0475
(0.0008)

0.0531
(0.0007)

/ 0.0507
(0.0008)

0.0699
(0.0006)

/ 0.0752
(0.0006)

0.2794
(0.0003)

/ 0.5114
(0.0009)

0.1125
(0.0005)

/ 0.1712
(0.0004)

α = 7 0.0476
(0.0011)

/ 0.0467
(0.0009)

0.0536
(0.0010)

/ 0.0513
(0.0010)

0.0707
(0.0011)

/ 0.0765
(0.0012)

0.2809
(0.0007)

/ 0.5097
(0.0011)

0.1132
(0.0008)

/ 0.1711
(0.0008)

α = 9 0.0449
(0.0006)

/ 0.0445
(0.0007)

0.0527
(0.0008)

/ 0.0514
(0.0010)

0.0709
(0.0006)

/ 0.0793
(0.0013)

0.2809
(0.0006)

/ 0.5095
(0.0008)

0.1123
(0.0005)

/ 0.1712
(0.0006)

Favorita Level 0 Level 1 Level 2 Level 3 Mean

α = 1 0.0581
(0.0015)

/ 0.0581
(0.0013)

0.0919
(0.0010)

/ 0.1828
(0.0030)

0.1252
(0.0008)

/ 0.2767
(0.0028)

0.2090
(0.0005)

/ 0.3256
(0.0037)

0.1211
(0.0008)

/ 0.2108
(0.0017)

α = 3 0.0614
(0.0023)

/ 0.0609
(0.0022)

0.0919
(0.0016)

/ 0.1768
(0.0033)

0.1266
(0.0015)

/ 0.2675
(0.0038)

0.2109
(0.0010)

/ 0.3222
(0.0046)

0.1227
(0.0015)

/ 0.2069
(0.0025)

α = 5 0.0606
(0.0028)

/ 0.0601
(0.0027)

0.0909
(0.0013)

/ 0.1742
(0.0016)

0.1257
(0.0012)

/ 0.2696
(0.0052)

0.2102
(0.0010)

/ 0.3224
(0.0054)

0.1219
(0.0015)

/ 0.2066
(0.0035)

α = 7 0.0597
(0.0018)

0.0587
(0.0017)

0.0909
(0.0009)

0.1737
(0.0022)

0.1266
(0.0008)

0.2727
(0.0060)

0.2113
(0.0006)

0.3327
(0.0057)

0.1221
(0.0009)

0.2095
(0.0032)

α = 9 0.0610
(0.0023)

/ 0.0597
(0.0023)

0.0908
(0.0011)

/ 0.1714
(0.0018)

0.1262
(0.0008)

/ 0.2694
(0.0037)

0.2114
(0.0007)

/ 0.3299
(0.0048)

0.1224
(0.0012)

/ 0.2076
(0.0018)

Tourism Level 0 Level 1 Level 2 Level 3 Level 4 Mean

α = 1 0.0636
(0.0030)

/ 0.0652
(0.0030)

0.1270
(0.0013)

/ 0.1642
(0.0027)

0.1735
(0.0011)

/ 0.2321
(0.0024)

0.2298
(0.0012)

/ 0.3860
(0.0048)

0.3499
(0.0008)

/ 0.7868
(0.0086)

0.1888
(0.0009)

/ 0.3269
(0.0026)

α = 3 0.0583
(0.0030)

/ 0.0594
(0.0033)

0.1271
(0.0028)

/ 0.1628
(0.0056)

0.1720
(0.0019)

/ 0.2349
(0.0058)

0.2303
(0.0024)

/ 0.4017
(0.0125)

0.3593
(0.0043)

/ 0.8057
(0.0080)

0.1894
(0.0020)

/ 0.3329
(0.0047)

α = 5 0.0502
(0.0027)

/ 0.0521
(0.0027)

0.1175
(0.0015)

/ 0.1454
(0.0019)

0.1653
(0.0012)

/ 0.2189
(0.0027)

0.2264
(0.0013)

/ 0.3911
(0.0073)

0.3574
(0.0026)

/ 0.7949
(0.0058)

0.1834
(0.0012)

/ 0.3205
(0.0019)

α = 7 0.0504
(0.0032)

/ 0.0512
(0.0026)

0.1176
(0.0031)

/ 0.1520
(0.0070)

0.1695
(0.0033)

/ 0.2287
(0.0077)

0.2341
(0.0044)

/ 0.4138
(0.0159)

0.3718
(0.0051)

/ 0.8039
(0.0101)

0.1887
(0.0036)

/ 0.3299
(0.0076)

α = 9 0.0534
(0.0027)

/ 0.0551
(0.0025)

0.1182
(0.0033)

/ 0.1508
(0.0021)

0.1699
(0.0015)

/ 0.2256
(0.0025)

0.2315
(0.0014)

/ 0.3958
(0.0060)

0.3765
(0.0017)

/ 0.8174
(0.0074)

0.1899
(0.0015)

/ 0.3290
(0.0019)

In this section, we consider a 2-level hierarchy of time-series, consisting of a single root
node (indexed by 0) with L children (denoted by L(0)). We will also assume that instead
of learning the K basis vectors B from scratch, the K basis vectors are assumed to come
from a much larger dictionary B̄ ∈ RT×D ofD (� K) vectors that is fixed and known to the
model. While the original problem learns the basis and the coefficients θ simultaneously,
in this case the goal is to select the basis from among a larger dictionary, and learn the
coefficients θ .

We analyze this problem, under the assumption that the parent embedding θ0 is close to all
the children embeddings θn. This assumption captures structural similarities of time series
that are close to each other in the hierarchy. We show that incorporating the hierarchical
constraints under such an assumption can result in a mean-square error at the leaf nodes
that is a multiplicative factor L smaller than the optimal mean-square error of any model
that does not use the hierarchical constraints. Our proposed HiReD model, when applied
in this setting would result in the following (hierarchically) regularized regression problem:

min
θ

1

NT
‖y −Bθ‖22 + λ

∑
n∈L(0)

‖θ0 − θn‖22. (6.7)

For the sake of analysis, we instead consider a two-stage version, described in Algorithm 6.1
and Algorithm 6.2: we first recover the support of the basis using Basis Pursuit [42]. We
then estimate the parameters of the root node, which is then plugged-in to solve for the
parameters of the children node. We also define the baseline (unregularized) optimization
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Algorithm 6.1 Basis Recovery

Input: Observed y, basis dict B̄, regularization parameter λL
Output: Estimated basis B
1: α̂0 ← argmin

α∈Rn
1

2T ‖y0 − B̄α‖22 + λL‖α‖1

2: Estimate support Ŝ = {i | |α̂0| > 0}
3: Estimate true basis B ← B̄

Ŝ

Algorithm 6.2 Parameter Recovery
Input: Observed time series y, estimated basis B, regularization parameter λE
Output: Estimated parameters θ
1: θ̂0 ← argminθ0

1
T ‖y0 −Bθ0‖22

2: for n ∈ L(0) do
3: θ̂n ← argminθn

1
T ‖yn −Bθn‖

2
2 + λE‖θ̂0 − θn‖22.

problem for the leaf nodes that does not use any hierarchical information, as

θ̃n = argmin
θn

1

T
‖yn −Bθn‖22 ∀n ∈ L(0). (6.8)

The basis support recovery follows from standard analysis [273] detailed in Lemma 6.1 in
the Appendix. We focus on the performance of Algorithm 6.2 here. The following theo-
rem bounds the error of the unregularized (θ̃n) and the hierarchically-regularized (θ̂n, see
Algorithm 6.2) optimization solutions. A proof of the theorem can be found in Section 6.7.2.

Theorem 6.1. Suppose the rows of B are norm bounded as ‖Bi‖2 ≤ r, and ‖θn−θ0‖2 ≤ β.
Define Σ = BTB/T as the empirical covariance matrix. For λE = σ2K

Tβ2 , θ̃n and θ̂n can be
bounded as,

E‖θ̃n − θn‖2Σ ≤
σ2K

T
, E‖θ̂n − θn‖2Σ ≤ 3

σ2K

T

1

1 + σ2K
Tr2β2

+ 6
σ2K

TL
. (6.9)

In fixed design linear regression ‖θ̂n − θn‖2Σ = ‖B(θ̂n − θn)‖2 is the population squared
error (see Section 6.6.1 for a bound on the parameter estimation error). The gains due
to the regularization can be understood by considering the case when β is upper bounded
by a sufficiently small quantity. Note that an upper bound on β essentially implies that
the children time-series have structural similarities as further elaborated in Section 6.6.1.
We show that the above assumption yields a smaller upper bound on the error. In fact, if
β = o(

√
K/T ), then the numerator 1+ σ2K

Tr2β2 in Eq. (6.9) is ω(1) resulting in E‖θ̂n−θn‖2Σ =

o(σ
2K
T ) which decays faster than σ2K

T . Furthermore, if β is even smaller as β = O(
√
K/LT ),

then following similar calculations, E‖θ̂n− θn‖2Σ = O(σ
2K
LT ) which is again smaller than the

unregularized bound.

6.6.1 Discussion

Upper bound ‖θn − θ0‖2 ≤ β: The upper bound β essentially bounds the distance
between sibling leaf embeddings belonging to the same parent. This is directly related to
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an upper bound on the distance between the parent embedding θ0 and the leaf embeddings
θn, as θn is essentially the mean of the leaf nodes (mean property). In many practical
scenarios, the children time series of a parent may not have too different seasonal trends
(for example power consumption of houses in the same neighborhood, or sales of items
under the same category) resulting in the parent time series following similar trends as
well.

Bounding ‖θn − θ0‖2: In most theoretical analyses of linear regression [274], the main
quantity of interest is the prediction error ‖θn− θ0‖Σ rather than the parameter estimation
error ‖θn − θ0‖2, as the former is directly related to the performance metric of the model.
However, a bound on the parameter estimation error can be easily established using the
property that ‖θn−θ0‖2 ≤ ‖θn−θ0‖Σ/

√
Cmin, where Cmin is the lower bound on the smallest

eigenvalue of the sample covariance matrix as defined in Assumption 6.1 in Section 6.7.3.

6.7 Proofs

6.7.1 Support Recovery

Lemma 6.1. Suppose B satisfies the lower eigenvalue condition (Assumption 6.1 in Sec-
tion 6.7.3) with parameter Cmin and the mutual incoherence condition (Assumption 6.2 in
Section 6.7.3) with parameter γ. Also assume that the columns of the basis pool B̄ are
normalized so that maxj∈Sc ‖B̄(j)‖ ≤

√
T , and the true parameter θ0 of the root satisfies

‖θ0‖∞ ≥ λL
[∣∣∣∣∣∣Σ−1

∣∣∣∣∣∣
∞ +

4σ√
LCmin

]
, (6.10)

where |||A|||∞ = maxi
∑

j |Aij | denotes matrix operator `∞ norm, and Σ = BTB/T denotes

the empirical covariance matrix. Then for λL ≥ 2
γ

√
2σ2 log d
LT , with probability least 1 −

4 exp(−c1Tλ
2) (for some constant c1), the support Ŝ = {i | |α̂0| > 0} recovered from the

Lasso solution (see Algorithm 6.1) is equal to the true support S.

Proof. We are given a pool of basis vectors B̄ from which the observed data is generated
using a subset ofK columns which we have denoted byB in the text. We denote the correct
subset of columns by S and recover them from the observed data using basis pursuit - also
known as the support recovery problem in the literature. Given the observed data and
the pool of basis vectors B̄, we recover the support from the following regression problem
corresponding to the root node time series.

y0 = B̄α+ w0, w0 ∼ N (0, σ2I/L), (6.11)

where α is K-sparse with the non-zero indices at S, and the non-zero values equal θ0 - the
true parameters of the root node. Here we have used the fact that the root node has a 1/L
times smaller variance due to aggregation. The true support S can be recovered from the
observed data y0, by solving the sparse regression problem (Lasso) given in Algorithm 6.2. A
number of standard Lasso assumptions are needed to ensure that the support is identifiable,
and that the non-zero parameters are large enough to be estimated. Assuming that B̄S (=
B) and α satisfy all the assumptions of Theorem 6.2, the theorem ensures that the true
support S is recovered with high probability.

97



6.7.2 Proof of Theorem 6.1 - Error Bounds for Regularized Estimators

For this proof, we assume that the support S is recovered and the true basis functionsB are
known with high probability (see Section 6.7.1). We divide the proof into multiple steps.

Step I: By Corollary 6.1, the OLS estimate θ̂0 (see Algorithm 6.2) of parameters of the
root node and the OLS estimate θ̃n (see Eq. (6.8)) can be bounded as,

E[‖θ̂0 − θ0‖2Σ] ≤ σ2K

TL
, E[‖θ̃n − θn‖2Σ] ≤ σ2K

T
∀n ∈ L(0). (6.12)

Step II: Next, using change of variables, we notice that the ridge regression loss for the
child nodes (see Algorithm 6.2) is equivalent to the following.

ψ̂n = argmin
ψn

1

T
‖yn −Bθ̂0 −Bψn‖22 + λ‖ψn‖22 ∀n ∈ L(0), (6.13)

where ψn = θn − θ̂0. The final estimate for the child parameters can be written as a sum
of the ψn estimate and the root node estimate, θ̂n = ψ̂n + θ̂0. We also consider a related
problem that will help us in computing the errors bounds.

ψ̃n = argmin
ψn

1

T
‖yn −Bθ0 −Bψn‖22 + λ‖ψn‖22 ∀n ∈ L(0). (6.14)

Here we have replaced θ̂0 with the true value θ0. Note that this regression problem cannot
be solved in practice since we do not have access to the true value of θ0. We will only use
it to assist in the analysis. Now we will bound the difference between the estimates ψ̂n and
ψ̃n. The closed form solution for ridge regression is well known in the literature.

ψ̂n = T−1(Σ + λI)−1BT (yn −Bθ̂0)

ψ̃n = T−1(Σ + λI)−1BT (yn −Bθ0),

where Σ = BTB/T , as defined earlier. The norm of the difference of the estimates can be
bounded as

ψ̂n − ψ̃n = T−1(Σ + λI)−1BTB(θ̃0 − θ̂0)

=⇒ ‖ψ̂n − ψ̃n‖2Σ = (θ̃0 − θ̂0)TΣ(Σ + λI)−1Σ(Σ + λI)−1Σ(θ̃0 − θ̂0)

= (θ̃0 − θ̂0)TΣ(Σ + λI)−1Σ(Σ + λI)−1Σ(θ̃0 − θ̂0)

= (θ̃0 − θ̂0)TV D

[
λ3
i

(λi + λ)2

]
V T (θ̃0 − θ̂0).

Here we have used an eigen-decomposition of the symmetric sample covariance matrix as
Σ = V D[λi]V

T . We use the notation D[λi] to denote a diagonal matrix with values λi on
the diagonal. The above can be further upper bounded using the fact that λi ≤ λi + λ.

‖ψ̂n − ψ̃n‖2Σ ≤ (θ̃0 − θ̂0)TV D[λi]V
T (θ̃0 − θ̂0) = ‖θ̃0 − θ̂0‖2Σ. (6.15)
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Step III: Now we will bound the error on ψ̃n and finally use it in the next step with
triangle inequality to prove our result. Note that yn−Bθ0 = B(θn−θ0)+wn. Therefore, we
can see from Eq. (6.14) that ψ̃n is an estimate for θn−θ0. Using the fact that ‖θn−θ0‖2 ≤ β
and Corollary 6.1, ψ̃n can be bounded as,

E[‖ψ̃ − (θn − θ0)‖2Σ] ≤ r2β2σ2K

Tr2β2 + σ2K
. (6.16)

Finally using triangle inequality, we bound the error of our estimate θ̂n.

‖θ̂n − θn‖2Σ = ‖ψ̂n + θ̂0 − θn‖2Σ (Using the decomposition from Step II).

≤ 3
(
‖ψ̂n − ψ̃n‖2Σ + ‖ψ̃n − (θn − θ0)‖2Σ + ‖θ̂0 − θ0‖2Σ

)
(Using triangle and Cauchy-Schwartz inequality)

≤ 3
(
‖ψ̃n − (θn − θ0)‖2Σ + 2‖θ̂0 − θ0‖2Σ

)
(Using Eq. (6.15)).

Taking the expectation of the both sides, and using Eqs. (6.12) and (6.16), we get the
desired result.

E‖θ̂n − θn‖2Σ ≤ 3
r2β2σ2K

Tr2β2 + σ2K
+ 6

σ2K

TL
.

6.7.3 Review of Sparse Linear Regression

We consider the following sparse recovery problem. We are given data (X, y) ∈ Rn×d×Rn
following the observation model y = Xθ∗ + w, where w ∼ N (0, σ2I), and θ∗ is supported
in the indices indexed by a set S (S-sparse). We estimate θ∗ using the following Lagrangian
Lasso program,

θ̂ ∈ argmin
θ∈Rn

{
1

2n
‖y −Xθ‖22 + λn‖θ‖1

}
(6.17)

We consider the fixed design setting, where the matrixX is fixed and not sampled randomly.
Following [273], we make the following assumptions required for recovery of the true support
S of θ∗.

Assumption 6.1 (Lower eigenvalue). The smallest eigenvalue of the sample covariance
sub-matrix indexed by S is bounded below:

Λmin

(
XT
SXS

n

)
≥ Cmin > 0 (6.18)

Assumption 6.2 (Mutual incoherence). There exists some γ ∈ (0, 1] such that∣∣∣∣∣∣XT
ScXS(XT

SXS)−1
∣∣∣∣∣∣
∞ ≤ 1− γ, (6.19)

where |||A|||∞ = maxi
∑

j |Aij | denotes matrix operator `∞ norm.
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Theorem 6.2 (Support Recovery, Wainwright [273]). Suppose the design matrix satisfies
Assumptions 6.1 and 6.2. Also assume that the design matrix has its n-dimensional columns
normalized so that maxj∈Sc ‖Xj‖2 ≤

√
n. Then for λn satisfying,

λn ≥
2

γ

√
2σ2 log d

n
, (6.20)

the Lasso solution θ̂ satisfies the following properties with a probability of at least 1 −
4 exp(−c1nλ

2
n):

1. The Lasso has a unique optimal solution θ̂ with its support contained within the true
support S(θ̂) ⊆ S(θ∗) and satisfies the `∞ bound

‖θ̂S − θ∗S‖∞ ≤ λn

[∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
(
XT
SXS

n

)−1
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∞

+
4σ√
Cmin

]
︸ ︷︷ ︸

g(λn)

, (6.21)

2. If in addition, the minimum value of the regression vector θ∗ is lower bounded by
g(λn), then it recovers the exact support.

6.7.4 Review of Ridge Regression

In this section we review the relevant background from [95] on fixed design ridge regression.
As usual, we assume data (X, y) ∈ Rn×d×Rn following the observation model y = Xθ∗+w,
where w ∼ N (0, σ2I). Define the ridge estimator θ̂ as the minimizer of the `2 regularized
mean squared error,

θ̂ ∈ argmin
θ∈Rn

{
1

n
‖y −Xθ‖22 + λ‖θ‖22

}
(6.22)

We denote the sample covariance matrix by Σ = XTX/n. Then for any parameter θ, the
expected `2 prediction error is given by, ‖θ− θ∗‖2Σ = ‖X(θ− θ∗)‖22/n. We also assume the
standard ridge regression setting of bounded ‖θ∗‖2 ≤ B. We have the following proposition
from Hsu et al. [95] on expected error bounds for ridge regression.

Proposition 6.1 (Hsu et al. [95]). For any regularization parameter λ > 0, the expected
prediction loss can be upper bounded as

E[‖θ̂ − θ∗‖2Σ] ≤
∑
j

λj
(λj/λ+ 1)2

θ∗j
2 +

σ2

n

∑
j

(
λj

λj + λ

)2

, (6.23)

where λi denote the eigenvalues of the empirical covariance matrix Σ.

Using the fact that λj ≤ tr (Σ), and x/(x+ c) is increasing in x for x ≥ 0, the above bound
can be simplified as,

E[‖θ̂ − θ∗‖2Σ] ≤ tr (Σ)

(tr (Σ) /λ+ 1)2
‖θ∗‖2 +

σ2d

n

(
tr (Σ)

tr (Σ) + λ

)2

≤ tr (Σ)B2λ2 + tr (Σ)2 σ2d/n

(tr (Σ) + λ)2
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Assuming that the covariate vectors Xi are norm bounded as ‖Xi‖2 ≤ r, and using the
fact that tr (Σ) ≤ r2, gives us the following corollary.

Corollary 6.1. When choosing λ = σ2d
nB2 , the prediction loss can be upper bounded as,

E[‖θ̂ − θ∗‖2Σ] ≤ r2B2σ2d

nr2B2 + σ2d
. (6.24)

The usual ordinary least squares bound of σ2d
n can be derived when considering the limit

B →∞, corresponding to λ = 0.

6.8 Further Experimental Details

6.8.1 Training Details

Table 6.5 presents all the hyperparameters used in our proposed model. All models were
trained via SGD using the Adam optimizer [126], and the training data was standardized
to mean zero and unit variance. The datasets were split into train, validation, and test
sets, the sizes of which are given in the Table 6.5. We used learning rate decay and early
stopping using the Mean WAPE score on the validation set, with a patience of 10 for all
models. We tuned the model hyper-parameters using the same metric. The various model
hyper-parameters are given in Table 6.5.

All our experiments were implemented in Tensorflow 2, and run on a Titan Xp GPU with
12GB of memory. The computing server we used, had 256GB of memory, and 32 CPU
cores, however, our code did not seem to use more than 10GB of memory and 4 CPU cores.

Mini-Batching: During each training iteration, we sample a minibatch of time series
for computing the gradients. For constructing a minibatch, first a time window (of length
H + F ) is uniformly randomly selected from the training time steps, after which a subset
of nodes is sampled from the hierarchy tree. The time series data corresponding to this
subset of nodes and the sampled time window constitutes our minibatch.

Predicting for new time steps: Once trained, our model can be used to predict for
new datapoints without any retraining. However, in practice it may be beneficial to retrain
the model with newer data to improve performance, even though this is not a constraint
for our proposed approach.

Knowledge of the hierarchy: Our proposed approach requires the hierarchy to be
known during training to be able to regularize the embeddings. In scenarios where new
aggregations are presented during test time, a reasonable prediction can be produced using
the following strategy: the embedding of the new aggregation is set to the mean of the em-
beddings of nodes in that aggregation - the rest of the model remains the same. Predictions
for unseen aggregations are made in the same way as with seen aggregations. This idea is
beyond the scope of this thesis, and hence left for future exploration.
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Table 6.5: Final model hyperparameters for various datasets tuned using the Mean WAPE
metric on the validation set.

Model hyperparameters M5 Favorita Tourism

LSTM hidden dim 42 24 14
Embedding dim K 8 8 6
NMF rank R 12 4 6
Multi-Horizon decoder hidden dim 24 16 12
Embedding regularization λE 3.4e-6 4.644e-4 7.2498e-8
History length H and forecast horizon F (28, 7) (28, 7) (24, 4)
No. of rolling val/test windows 5 5 3
Initial learning rate 0.004 0.002 0.07
Decay rate and decay interval (0.5, 6) (0.5, 6) (0.5, 6)
Early stopping patience 10 10 10
Training epochs 40 40 40
Batch size 512 512 512
Total #params 80k 80k 8k

6.8.2 Further details about global state Z

In many practical scenarios, the evolving global state of the set of time series may not
be captured by the global covariates X only. For instance, when there is an overall in-
crease/decrease in sales across all time series, it is captured in the past values Y rather
than X. As a result, it may be required to feed in past values of time series to the BD
model. However, since we cannot feed in the whole set of time series (order of 1000s) with-
out leading to scalability issues, we choose a small set of representative time series using
convex Non-negative Matrix Factorization, thus approximating the global state. NMF as-
sumes that the columns of the time series matrix Y ∈ RT×N lies in the convex set spanned
by a small subset of columns, that is Y = ZW + ε, where the columns of Z ∈ RT×R are
a subset of the columns of Y , and W ∈ RK×N+ denote weights of the convex combination.
Since this assumption may not hold exactly for most datasets, ε is used to account for the
modelling error resulting in an approximate factorization. We use Z as an approximation
to the global state, and compute it using the Algorithm of Gillis and Vavasis [69]. We would
also like to emphasize that our prediction model only sees the past values ZH as input since
the future time series values are unknown.

While NMF is one of the choices for Z, it is definitely not the only choice. Another option,
PCA (or equivalently SVD), may lead to latent vectors which do not have any temporal
dependencies thus requiring additional temporal regularization [239, 286]. One may also
use more sophisticated methods such as Temporal Latent Auto-Encoders [189]. We leave
this idea for future exploration.
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7 | Conclusion and Epilogue

Optimization in general is a significant step in many scientific and engineering fields. From
continuous optimization used for training neural networks [228] to discrete optimization for
chip placement [174], optimization problems occur in a wide variety flavors and settings.
Efficient solutions to such optimization problems have the potential to positively impact a
wide range of fields. In this thesis, we studied optimization problems broadly falling into
two categories: black-box optimization and multi-objective optimization. We proposed
solutions to a number of problems in each of the categories, and also demonstrated their
effectiveness on real world problems.

We summarize our a general summary, limitations, and possible future directions about
each of the topics below.

Black-box Optimization. As emphasized earlier, black-box optimization occurs in many
real world problems, from hyper-parameter optimization of machine learning algorithms
[246] to design of novel materials [49]. Gaussian process based Bayesian optimization is
often the method of choice, when it comes to optimization of low-dimensional black box
functions. Several Bayesian optimization approaches have been studied in the literature,
with expected improvement [112] being the most popular due to its superior performance
and lack of any hyper-parameters. A lot of the techniques in BO are inspired from the
bandit literature [229, 251], and depend on creating the right balance between exploration
and exploitation.

Since, GP based approaches do not scale to high dimensional or structured data, high
dimensional approaches often use models based on decision trees [98] or neural networks
[220], and are predominantly greedy approaches due to the lack of efficient methods for un-
certainty quantification in high dimensions. Recent theoretical works on high-dimensional
bandits [85, 150] have shown that in the case of sparse linear bandits, greedy approaches
are often optimal in the the data poor regime. The sample complexity typically grows
exponentially with the dimension of the input space for problems without any structure.
However, work on sparse linear bandits indicate that greedy approaches may in fact be
optimal for certain high-dimensional and structured problems. The data rich setting lies
on the other end of the spectrum, where high-dimensional models can shine because of the
abundance of data. In such cases, exploration does not lead to much improvement beyond
just exploitation (a.k.a. the greedy approach).

Black-box problems also vary in the core problem setting. Multi-objective black box func-
tions produce multiple output values when queried. Another setting, multi-fidelity opti-
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mization allows for function queries at lower fidelities (returns an approximation of the
true value), at a lower cost. In this thesis, we study multi-objective and cost-aware vari-
ants of black-box optimization. While the cost-aware setting is related to the multi-fidelity
setting, they differ significantly as will be discussed below.

In Chapter 2, we proposed a flexible approach to multi-objective Bayesian optimization for
efficient exploration of desired regions of the Pareto front. We show that our algorithm
can successfully sample from a specified region of the Pareto front as is required in many
applications, but is still flexible enough to sample from the whole Pareto front. Compared
to several other approaches [17, 89, 207], our algorithm is conceptually much simpler, com-
putationally cheap and scales linearly with the number of objectives. Our approach also
lends itself to a notion of regret in the MO setting that also captures user preferences; with
the regret being high if not sampled from the specified region or sampled outside of it. We
provided a theoretical proof of the fact that our algorithm achieves a zero regret in the limit
under necessary regularity assumptions. Finally, we performed experiments with synthetic
and real problems, and showed that our approach leads to a smaller or comparable multi-
objective regret compared to the baselines. An implementation can be found in Dragonfly1,
a publicly available python library for scalable Bayesian optimization [119].

A limitation of the above approach is that user preferences are often not explicitly known
(even by the user), and often need to be elicited [76, 227, 303]. While we use a simple
heuristic to specify the sampling distribution for our experiments, in practice, human feed-
back will be required to guide the algorithm to sample from the desired region of the Pareto
front.

In Chapter 4, we study black-box optimization with varying evaluation costs. While this
setup is similar in flavor to multi-fidelity optimization [115], it is different in the sense that,
in the latter the function can be evaluated at the same point at multiple fidelities (with
differing costs). Where as in the former, the fidelity remains the same and the cost varies.
We proposed a simple approach to cost aware Bayesian optimization based on Information
Directed Sampling [229], and theoretically showed that our algorithm is provably no-regret.
We also showed promising results on a synthetic function. We leave further experiments on
real functions to future work.

A limitation of the above approach is that, in the case where the cost of an evaluation is
arbitrarily close to zero, the algorithm will evaluate that point indefinitely as the information
gain from that point is quite large compared to the cost of evaluation. A potential way of
solving this problem is using a similar technique as Astudillo et al. [9]. More specifically,
instead of balancing the regret incurred with the information gained, a modified goal could
be to select a batch of candidates and balance the regret incurred with the information
gained from all of them, while ensuring that the total cost of evaluation is smaller than the
total allowed budget for the batch.

In Chapter 3, we study the effectiveness of greedy approaches for black-box optimization.
We presented two simple neural-greedy algorithms for global optimization of expensive BB
functions. Unlike prior works, our algorithms do not explicitly construct confidence in-
tervals or perform posterior sampling. We propose a simple approach that greedily fits a
surrogate model to the observed data and use the learned model as the acquisition function

1Dragonfly, https://github.com/dragonfly/dragonfly
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to determine the next query point. Our main approach SimpleSMB added random per-
turbations to the target variable before training to account for noise in the observations,
whereas our other approach, PosteriorSMB added random perturbations to both the
target variable and the output.

We derived theoretical regret bounds by using recently studied connections between GPs
and training dynamics of wide neural networks. In particular, we showed that PosteriorSMB
implicitly performs Thompson sampling, and rely on this connection to derive a bound on
its regret. Empirically, we showed that our algorithms have better performance than other
neural baselines and achieve similar performance as GP-EI, which is the gold standard for
blackbox optimization.

In our experiments, SimpleSMB achieved slightly better performance than PosteriorSMB.
This is worth investigating further SimpleSMB doesn’t perform Thompson sampling like
PosteriorSMB. In the future, we aim to derive regret bounds for SimpleSMB and un-
derstand the settings in which it achieves better performance than PosteriorSMB. There
have been criticisms of the NTK regime as not capturing the behavior of regular neural
networks [67]. An interesting future direction would be to study our algorithms in the
non-NTK regime and derive their regret bounds. Another important problem is to propose
an approach for automatically tuning γ, the initialization variance of the neural network
parameters. We noticed a significant impact of γ on the performance of our algorithm. An
important future direction is to rely on the connection between our algorithms and GPs to
automatically set this hyper-parameter using maximum likelihood estimation.

The core idea behind our method was to inflate the initialization variances of the neural
network model. While this works for shallow neural networks as in our experiments, for
deeper neural networks, this may cause significant problems due to exploding gradients
during training. Instead of inflating the variance of all the layers, one may consider inflating
the variance of only the last few layers. More extensive experiments have to be performed
in order to make any conclusions about best practices for neural network BBO.

Applications: Scaling black-box optimization algorithms to higher dimensions can lead to
a significant impact on a variety of applications from scientific discovery to large scale
recommender systems, requiring methods that scales to tens of thousands of observations.
Examples include molecular discovery [49, 196, 297], and controllers for nuclear fusion
[39, 170].

Multi-Objective Optimization. As discussed earlier, multi-objective optimization prob-
lems appear frequently in many machine learning applications such as multi-task learning
[240], imbalanced classification [41, 87], balancing competing objectives in public policy
[225], and neural architecture search [57]. The standard goal in MOO problems is to opti-
mize several competing objectives. Since they cannot be optimized simultaneously, instead
of looking for an optimum, the goal is to look for a set of Pareto optimal solutions. Each
Pareto optimal solution is essentially an optimal trade-off between the objectives.

Multi-objective optimization problems can vary widely in their characteristics. As discussed
above, MOO problems can also be black-boxes, several aspects of which are studied in
Chapter 2. The second part of this thesis is about strategies for differentiable MOO. A
standard solution to differentiable MOO is to linearly weight the objectives and optimize
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the resulting scalar. However, as we see in Chapter 5, directly applying weight multipliers
to the objectives does not always lead to the most Pareto optimal solution. We showed
that an annealing schedule to increase the weights slowly works well in practice.

As discussed in Section 1.1.2, MOO problems can also appear in the form of constrained
optimization problems. Although in many cases constrained optimization problems can be
written in the form of a Lagrangian, the parameters of the Lagrangian cannot usually be
computed in closed form. One way of setting the parameters automatically is to perform
alternating gradient ascent-descent to solve the min max problem,

max
x

min
λ≥0

f(x) + λT (c− g(x)) (see Eq. (1.6) for notation). (7.1)

Alternating gradient ascent descent on the above is also known as the differential method
of multipliers. It ensures that the weights of the constraint functions increase when the
constraints are violated. However, as beautifully summarized in a blog2 the most basic
version of the algorithm may not converge because of oscillations. A modified differential
method of multipliers [206] which includes a dampening strategy leads to a more robust
convergence. The modified method of multipliers combined with an annealing schedule
can be useful in many practical scenarios, including the problem of constrained language
generation [139, 140]. Next we summarize the applications of differentiable MOO that we
studied in this thesis.

In Chapter 5, we proposed a novel approach to learn high dimensional embeddings with
the goal of improving efficiency of retrieval tasks. We worked with two objectives, one
the retrieval accuracy, and the other the retrieval speed. Our approach integrates the
FLOPs incurred during retrieval into the loss function and optimizes it directly through a
continuous relaxation. We provide further insight into our approach by showing that the
proposed approach favors an even distribution of the non-zero activations across all the
dimensions. In order for our method to work in practice, we proposed a regularization
annealing schedule in order to ensure that the loss does not get stuck in a local minima.
Overall we were able to show that sparse embeddings can be around 50× faster compared
to dense embeddings without a significant loss of accuracy3.

The above work also raises several questions about the effectiveness of sparse embeddings.
Several works have motivated the benefit of high-dimensional and sparse embeddings for
information retrieval [48, 108]. In particular, Dasgupta et al. [48] show that fruit flies
effectively make use of wide and sparse representations to identify odors, essential for their
survival. In a way, this suggests that even from a evolutionary standpoint high dimensional
sparse embeddings are optimal. High-dimensionality retains the representational capacity,
where as sparsity helps in improving the retrieval speed.

Learning binary code representations [92] are another popular way of learning sparse rep-
resentations for data. One possible hypothesis is that binary codes are able to effectively
encode the contents of the data by encoding the various independent features present in the
data in different dimensions of the embedding. As a result the retrieval problem is reduced
to computing the number of common features (equivalent to a set intersection) between
the query embedding and the database embeddings. We use the term features here loosely

2https://www.engraved.blog/how-we-can-make-machine-learning-algorithms-tunable/
3The sparse embeddings code is available at https://github.com/biswajitsc/sparse-embed
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to denote the active bits of the binary embedding. The hypothesis is that each active bit
encodes the presence of a feature in the original data. Our proposed approach, on the other
hand, learns real valued sparse embeddings, and generalizes the above set intersection to
a dot product. This idea is quite reminiscent of TF-IDF [113, 211], where each feature
is weighted according to their degree of occurrence in the data. An interesting future di-
rection is to interpret the sparse features with the goal of understanding what each of the
dimensions correspond to.

In Chapter 6, we proposed a method for hierarchical time series forecasting. Our model
consists of two components, the time-varying auto-regressive (TVAR) model, and the basis
decomposition (BD) model. The TVAR model is coherent by design, whereas we regularize
the BD model to impose approximate coherency. Our model is fully differentiable and is
trainable via SGD, while also being scalable with respect to the number of nodes in the
hierarchy. Furthermore, it also does not require any additional pre-processing steps.

We empirically evaluated our method on three benchmark datasets and showed that our
model consistently improved over state of the art baselines for most levels of the hierarchy.
We perform an ablation study to justify the important components of our model and also
show empirically that our forecasts are more coherent than the RNN baseline. We also
consider the multi-objective aspect of the level-wise metrics, by up-sampling the higher
level nodes.

Our proposed model optimizes the training loss for all the hierarchical levels simultaneously.
Another class of methods known as top-down approaches operate in a layer-wise fashion.
They start by learning a model for the top-most (root) level and for each level of the
hierarchy tree, they make use of the predictions from the upper level to make predictions for
the current level. In a follow up work [47], we propose a top-down approach for probabilistic
coherent hierarchical forecasting. Our currently proposed model in this thesis, produces
point estimates only, in contrast to probabilistic predictions which predict a distribution
of values. An interesting direction would be to extend our current model to probabilistic
forecasting.

General Takeaways. At a high level, in this thesis we aimed at providing a range of
simple but practical strategies that can be a part of the scientists’ or engineers’ optimization
toolbox. Even though our methods are simple, they are often more effective than other
more sophisticated approaches which require a lot more hyper-parameters. We also provide
theoretical analysis for most of our contributions, thus showing that simple and practical
approaches can also be theoretically sound. Overall, progress in optimization techniques,
both black box and differential, can have a large impact on many other scientific and
engineering domains.
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