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Abstract
Machine learning classifiers typically provide scores for the different classes. These

scores are supplementary to class predictions and may be crucial for downstream

decision-making. However, can they be interpreted as probabilities? Scores produced

by a calibrated classifier satisfy such a probabilistic property, informally described

as follows. For binary classification with labels 0 and 1, a classifier is calibrated if on

the instances where it predicts a score s (in [0,1]), the probability of the true label

being 1 equals s.

The primary goal of this thesis is to demonstrate that a miscalibrated classifier

can be provably “post-hoc” calibrated using a small set of held-out datapoints, such

as a validation dataset. Such calibration can be achieved in two different senses: (a)

model calibration of a given classifier for a fixed data-generating distribution; and

(b) forecast calibration of a sequence of probabilistic forecasts for an online data

stream. These two views have been studied by two largely independent bodies of

literature; we draw from and contribute to both. In particular, we derive the first

calibration method that uses both model and forecast calibration techniques.

The algorithms we develop come with theoretical guarantees that hold under

mild or no assumptions. A majority of our work is in the “distribution-free” setting,

where we assume that the data is i.i.d., but make no parametric or smoothness

assumptions on the data-generating distribution. We show that using discretized

or binned scores is necessary and sufficient to achieve distribution-free calibration

(Chapters 3–5). The culminating work of this thesis goes beyond distribution-free

by altogether dispensing with the requirement that data is being generated from

a distribution. We show that even if the data is “adversarial”, calibration can be

provably achieved in a practically meaningful manner (Chapters 6 and 7).
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Part I

Introduction

Chapter 1 introduces the formal goal of calibration. We discuss techniques commonly

used to achieve calibration, with a focus on the post-hoc calibration of machine

learning classifiers.

Chapter 2 overviews the scientific contributions arising from this thesis.

1



Chapter 1
Background on calibration

Consider a canonical machine learning (ML) application. A bank that wants to build an ML

model for approving credit outsources this task to an ML firm. The firm reverts with a score-based
classification model; let us refer to this model as g : X Ñ r0, 1s. X is the space of some predictive

features for a loan/credit seeker and r0, 1s is the space of risk-scores. If we trust g, a higher

risk-score implies a higher chance of default on the loan.

The bank uses g to make a decision py : X Ñ t0 ” reject loan, 1 ” approve loanu by using some

decision threshold t P r0, 1s: pyp¨q :“ 1 tgp¨q ď tu. Say the bank uses t “ 0.1. Over the next year,

the bank finds that almost 95% of the credit seekers who were given a loan have good credit

standing and are paying back their loans on time. Thus the model 1 tgp¨q ď 0.1u appears to do

its job.

The bank sends the collected data over the year to the ML firm, and asks them to use it to

improve g. The firm offers a new model gnew and claims that it is much better than g. The bank

then deploys the new model with the same threshold, 0.1, pyp¨q “ 1 tgnewp¨q ď 0.1u. However,

over the next year only 80% of approved loans are paid back on time.

What happened? Perhaps gnew is not a better model as the ML firm claimed. However, it turns

out that the above situation is possible even if a perfect threshold exists for the new model, say

y “ 1 tgnewp¨q ď 0.05u, which would makes gnew an excellent model. What can the ML firm do

to ensure that the right threshold is used in downstream applications?

One solution is to ensure that the model produces calibrated scores: on the instances where

the score is p, the frequency of Y “ 1 is also p. This allows the bank to decide their threshold

independently, based on levels of risk tolerance that are unknown to the ML firm. Understanding

calibration and developing methods for building calibrated models is the primary goal of this

thesis.

In this chapter, we define the notion of calibration and discuss prior work on making calibrated

predictions. Chapters 3–9 discuss methods that achieve calibration. A question we do not discuss

in significant depth is, “Why calibration?” While we are not positioned to answer that question

conclusively, we discuss it briefly in Chapter 10.
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The topic of calibration can be placed under the broader field of “uncertainty quantification” in

machine learning, where the goal is to supplement point estimates such as class predictions or

regression outcomes with uncertainties. Unfortunately, the term “calibration” has appeared with

multiple meanings in this field. Unless explicitly specified, when we say “calibration”, we always

mean calibration of probabilistic forecasts over categorical events, such as class membership.

1.1 Two views: model calibration and forecast calibration

Calibration has been studied in two setups with limited knowledge crossover. A large focus in

this thesis is model calibration, where we are interested in learning calibrated ML models (Platt,

1999; Zadrozny and Elkan, 2001; Guo et al., 2017), such as the model g introduced earlier. Whether

a given model is calibrated depends on how the data is generated. A natural proposition is to

assume that data is being generated from some distribution P and ask if the model is calibrated

for this P .

On the other hand, calibration has also been studied in an online learning or individual sequence

style setup where data can be arbitrary/adversarial (Dawid, 1982; Foster and Vohra, 1998;

Fudenberg and Levine, 1999). We refer to this setup as forecast calibration.

The literature on model calibration has evolved quite independently of the literature on forecast

calibration. Neither setup perfectly represents the real world—data does not follow a distribution,

nor is it adversarial. Yet, studies in both setups have led to the development of interesting and

practically useful calibration algorithms. We place this thesis in context of both these rich

strands of literature. The culminating project of this thesis (Chapter 6) provides one way to tie

these views of calibration together.

1.1.1 Model calibration for binary classifiers

Let g : X Ñ r0, 1s be an ML model or binary classifier that takes as input a feature vector in

the feature space X and outputs a score in r0, 1s. Let P be the data distribution over X ˆ t0, 1u

and let pX, Y q „ P denote a random data-point. If g is a good model, we expect that higher

scores gpXq indicates a higher chance1
of Y “ 1. Model calibration requires that this hold in a

particular sense defined next.

Definition 1.1 (Model calibration). A model g : X Ñ r0, 1s is said to be calibrated if

P pY “ 1 | gpXqq “ gpXq. (1.1)

Exact model calibration, as defined above, is a guiding ideal rather than a practically achievable

goal. Even if real world data were being generated from some distribution P , we cannot learn

P exactly. Thus model calibration can only be satisfied approximately. We formalize such a

definition of approximate calibration in Chapter 3, which is based on Gupta et al. (2020).

1
The word “chance” in non-technical and refers to a predicted score without a formal probabilistic interpretation.

In particular, “chance” should not be interpreted as “probability”.

3



Definition 1.2 (pϵ, αq-calibration). Let ϵ P p0, 1q be a tolerance level of miscalibration and

α P p0, 1q be a tolerance level for probability of failure. A model g : X Ñ r0, 1s is said to be

pϵ, αq-calibrated (for the data-generating distribution P ) if

P p|P pY “ 1 | gpXqq ´ gpXq| ě ϵq ď α. (1.2)

ML models do not satisfy approximate calibration (for small pϵ, αq) out-of-the-box. However, even

if an ML model is not calibrated, we expect it to satisfy a rough monotonicity property—higher

scores should indicate a higher probability of the class being 1. For example, if g classifies well,

it means that there exists a classification threshold t P r0, 1s such that 1 tgp¨q ě tu is accurate.

This intuition is central to the paradigm of post-hoc calibration. Post-hoc calibration methods

produce calibrated models by recalibrating the scores produced by g. Section 1.2 discusses

past work on post-hoc calibration. One of the primary goals of this thesis is a distribution-free

analysis of post-hoc calibration techniques.

Historical context. It is natural to ask for the probabilities of ML classifiers to be meaningful,

or in particular be calibrated, and this question has been considered by a number of “classical”

papers (Platt, 1999; Zadrozny and Elkan, 2001; Zadrozny and Elkan, 2002; Provost and Domingos,

2003; Niculescu-Mizil and Caruana, 2005). Recently, interest in calibration has surged, stemming

largely from the finding that deep neural networks are overconfident and benefit from post-hoc

calibration (Guo et al., 2017). This has led to a number of empirical papers in the narrower field

of deep neural network calibration; see Section 1.3 for pointers to some of this work. Our focus

is on broad and fundamental calibration principles and post-hoc methods that can be applied on

top of any model.

1.1.2 Forecast calibration for individual sequences

Can we produce calibrated scores without knowing anything about the label-generating process—

even if the labels are being produced adversarially? That is, in the online learning setup popular-

ized by the seminal works of Cover (1991), Vovk (1995), and Freund and Schapire (1997), also

called individual sequences in information theory (Feder et al., 1992).

This fundamental question is formalized through the setup of forecast calibration. Forecast

calibration is often studied in a broader setting not restricted to machine learning, so when

discussing forecast calibration we typically switch terminology as follows:

scores Ñ forecasts, labels Ñ outcomes.

Thus the problem of producing “probability scores for binary labels” becomes the problem of

producing “probability forecasts for binary outcomes”.

Let y1, y2, . . . P t0, 1u8
be an infinite binary sequence generated by an unknown process. For

example, yt could be the indicator of whether it rains at a time t.2 At each time t, a forecast

2
Time is simply an index over the events we are interested in forecasting, with the understanding that the event

at time t “ 1 occurs before the event at time t “ 2 and so on.

4



Panel 1 Calibration-Game-I (nature is a prescient adversary)

(Parenthesized sentences instantiate the setup for the canonical example of rain prediction.)

At time t “ 1, 2, . . . ,

• The forecaster produces a forecast pt P r0, 1s. (In the case of rain prediction, pt is the belief

that the probability of rain at time t is pt.)

• Nature reveals the outcome yt P t0, 1u. (In the case of rain prediction, yt “ 0 means that

it does not rain at time t and yt “ 1 means that it rains at time t.)

Nature knows pt before revealing yt.

Panel 2 Calibration-Game-II (nature is adaptive, but not prescient)

At time t “ 1, 2, . . . ,

• Forecaster plays ut P ∆pr0, 1sq.

• Nature plays yt P t0, 1u.

• Forecaster predicts pt „ ut.

Nature knows ut, the distribution of pt, before revealing yt, but not pt itself.

pt P r0, 1s for the probability of yt is to be made. Before revealing pt, the forecaster knows

pps, ysq for s ď t. Before revealing yt, nature knows pps, ysq for s ď t, as well as pt. We put this

setup in Panel 1 and refer to it as Forecast-Calibration-Game-I.

We define what it means for the forecasts to be calibrated. For some x P r0, 1s, define

NT
x :“

T
ÿ

t“1

1 tpt “ xu

as the number of times the probability x was forecasted until time T . If NT
x ą 0,

pTx :“
T
ÿ

t“1

yt1 tpt “ xu {NT
x

is defined as the average of the outcomes yt when x was forecasted.

Definition 1.3 (Forecast calibration). Forecasts pp1, p2, . . .q P r0, 1s8
are said to be calibrated if

for all x such that lim
TÑ8

NT
x Ñ 8, we have lim

TÑ8
pTx “ x. (1.3)

In words, for each forecast x that is made infinitely often, the average of the observations yt
over instances on which x was forecasted, equals x.

The forecaster’s goal is to ensure that the forecasts satisfy (1.3) no matter how nature behaves.

Nature’s goal is to make the forecaster appear miscalibrated.

5
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Figure 1.1: Foster (1999)’s ϵ-calibrated forecaster on Pittsburgh hourly rain data (2008-2012). The

forecaster makes predictions on the grid p0.05, 0.15, . . . , 0.95q. In the long run, the forecaster

starts predicting 0.35 for every instance, closely matching the average number of instances on

which it rained (« 0.37).

Since nature sees pt, it is easy to satisfy her goal: play yt “ 1 tpt ď 0.5u.
3

However, forecast

calibration becomes possible with a mild weakening of nature. Namely, we allow the forecaster

to make randomized forecasts, and nature is allowed to see everything but the random bits of the

forecaster. Withholding access to the forecaster’s random bits is an extremely mild restriction

on nature—an equivalent way of stating it is that the pseudorandom bits on the forecaster’s

computer are statistically independent of the outcomes being forecasted using that computer.

This setup is capture in Forecast-Calibration-Game-II (Panel 2). The forecaster now plays a

ut P ∆r0, 1s, where ∆r0, 1s is the space of probability measures over r0, 1s. The actual forecast

pt is drawn from ut in parallel with nature’s play yt. That is, nature sees ut but not yt before

revealing yt. In a seminal result, Foster and Vohra (1998) showed that the forecaster can satisfy

(1.3) with probability one (over the random bits of the forecaster), irrespective of nature’s

strategy.

Although Foster and Vohra’s result guarantees calibrated forecasting, this does not immediately

imply that the forecasts are useful. To see this, suppose it rains on every alternate day, yt “

1 tt is odd u. The forecast pt “ 1 tt is odd u is calibrated and very useful (if you know pt, you

know yt). The forecast pt “ 0.5 (for every t) is also calibrated, but not very useful.

Thus we need to assess how a forecaster guaranteed to be calibrated for adversarial sequences

performs on real-world sequences. In order to do so, we implemented the calibrated forecaster

of Foster (1999) on Pittsburgh hourly rain data from January 1, 2008, to December 31, 2012. The

3
This simple construction has a significant implication for Bayesian statistics; it implies that nature can force a

Bayesian following the coherency principle into a Russel’s paradox (Dawid, 1982; Oakes, 1985; Dawid, 1985).
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Panel 3 Post-hoc calibration of a pre-learnt model using held-out calibration data

Given a

pre-learnt model g : X Ñ r0, 1s and calibration data D „ P n
,

produce an estimate

m : r0, 1s Ñ r0, 1s of the mapping gpXq ÞÑ P pY “ 1 | gpXqq.

If m is a good estimate, then

h :“ m ˝ g ” mpgp¨qq is better calibrated than g (for P ).

data was obtained from ncdc.noaa.gov/cdo-web/. All days on which the hourly precipitation in

inches (HPCP) was at least 0.01 were considered as instance of yt “ 1. There are many missing

rows in the data, but no complex data cleaning was performed since we are mainly interested in a

simple illustrative simulation. Foster (1999)’s forecaster makes forecasts on a discrete ϵ-grid and

achieves ϵ-calibration, a precursor to satisfying (1.3). We implement the algorithm for the grid

p0.05, 0.15, . . . , 0.95q. We observe (Figure 1.1) that after around 2000 instances, the forecaster

always predicts 0.35. This is close to the overall average number of instances that it did rain,

which is approximately 0.37.

Thus, while it is remarkable that calibration can be achieved against adversarial sequences, we

must do more than calibration. In the ML setting, informative features are available to predict

the label. The simplest way to capture this information is to assume that the data-points are

drawn identically and independently from some unknown distribution. Then the calibration of

an ML model can be assessed with respect to that unknown distribution. This is exactly what

model calibration captures (see previous subsection). However, even if the data points are not

independent and non-stationary, these predictive features contain useful information about the

label. How can we leverage this information?

The culminating project of this thesis is an algorithm that is simultaneously robust to worst-case

data and adaptive to the information offered by informative features (Chapters 6 and 7, which

are based on Gupta and Ramdas (2023) and Chung et al. (2023)). See Chapter 2 for a longer

preview of these works.

1.2 Achieving model calibration using post-hoc methods

Let g : X Ñ r0, 1s be any pre-learnt model, such as a deep-net, random forest, or SVM with a

sigmoid transformation (to ensure that the output is in r0, 1s). We suspect that g is miscalibrated

and want to calibrate it. Consider the function fpXq “ P pY “ 1 | gpXqq. It can be shown (see

Proposition 3.1) that f is calibrated irrespective of the calibration of g.

Post-hoc calibration or recalibration methods estimate f by fitting a function m : r0, 1s Ñ r0, 1s

that estimates the map gpXq ÞÑ P pY “ 1 | gpXqq is produced. Then h :“ m ˝ g ” mpgp¨qq is

7
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Figure 1.2: Post-hoc calibration of a logistic regression model g : X Ñ r0, 1s. The plot is made

on out-of-sample data not used while training g. The blue scatter plot is a reliability diagram for

the model g, as described in Section 1.4. The scatter points deviate from the perfect calibration

line, so we conclude that g is miscalibrated.

Post-hoc calibration methods produce an estimate m : r0, 1s Ñ r0, 1s of the mapping gpXq ÞÑ

P pY “ 1 | gpXqq. Platt scaling (Section 1.2.1) produces a smooth curve from a parametric family.

Histogram binning (Section 1.2.2) and isotonic regression (Section 1.2.3) produce a piecewise

constant curve—the interval r0, 1s is divided into a number of bins and all scores in a given bin

are mapped to a single output.

an estimate of f . The mapping m is learnt on fresh held-out i.i.d. data on which g was not learnt,

called the calibration data. We denote the calibration data as

D :“ pX1, Y1q, pX2, Y2q, . . . , pXn, Ynq
i.i.d.
„ P. (1.4)

The paradigm of post-hoc calibration methods is summarized in Panel 3. In a nutshell, post-hoc

methods allow the (typically complex) modeling of the feature space X to be controlled by the

method that is producing g. Once g is learnt, a simple scalar-to-scalar mapping can be learnt to

calibrate it.

In Chapter 3, which is based on Gupta et al. (2020), we formalize Panel 3 in a distribution-free

setup.

Three methods for post-hoc calibration were proposed in close succession: Platt scaling (Platt,

1999), histogram binning (Zadrozny and Elkan, 2001), and isotonic regression (Zadrozny and

Elkan, 2002). Each of these methods is based on the inductive bias that the predicted scores

gpXq are roughly monotonic with P pY “ 1 | gpXqq. We illustrate these methods on a UCI

credit default dataset (Figure 1.2), a binary dataset with about 78% occurence of Y “ 0 (no

credit default).
4

For better illustration, we subsampled the Y “ 0 instances to make them about

66%. There are 23 predictive features such as age, education, and past payment history. A

4https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients
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logistic regression model was trained on 10,000 training points to learn a model g. After training,

evaluation was performed on an unseen calibration set of size 5,000. The accuracy on this set was

around 70%. To assess calibration, the prediction scores gpxq were binned into consecutive bins

r0, 0.1q, r0.1, 0.2q, . . . r0.9, 1.0s and for each bin, the average gpxq and the fraction of instances

of y “ 1, were computed. These values are plotted as the blue scatter plot in Figure 1.1. The light

grey histogram also shows the distribution of the scores gpxq on the calibration data. If g was

approximately calibrated, the blue points would be close to the perfect calibration line.
5

However, g appears miscalibrated. So, we look to estimate the mappingm on the same calibration

data, as described in Panel 3. The estimates produced by the aforementioned methods—Platt

scaling, histogram binning, and isotonic regression—are plotted in Figure 1.2. In the following

subsections, we describe these methods, and other related ones.

1.2.1 Platt scaling and beta scaling

Platt scaling (Platt, 1999) learns the mapping from a parametric family

Mplatt “ tma,b : a, b P R2
u, (1.5)

where ma,b
is given by

ma,b
pzq “ sigmoidpa ¨ z ` bq “ 1{p1 ` e´paz`bq

q. (1.6)

The parameters pa, bq are learnt as those that maximize the likelihood of D, assuming each Yi is

independently drawn from Bernoullipma,bpgpXiqqq. In the credit default experiment (Figure 1.2),

the learnt parameters were a « 4.7 and b « ´2.3. Thus the inflection point of the curve is

roughly around 0.49 « 2.3{4.7.

A slightly different version of Platt scaling has the mapping ma,b
given by

ma,b
pzq “ sigmoidpa ¨ logitpzq ` bq “ 1{p1 ` e´paz`bq

q, (1.7)

where logitpzq “ logpz{1 ´ zq. This is the version we focus on in Chapter 6, since it seemed to

perform better in our experiments. We do not offer any detailed theory or comparison of the

two alternatives in this thesis, but we have sufficient evidence that (1.7) often works well.

A recalibration method closely related to Platt scaling is beta scaling (Kull et al., 2017). The beta

scaling mapping m has three parameters pa, b, cq P R3
:

ma,b,c
pzq :“ sigmoidpa ¨ logpzq ` b ¨ logp1 ´ zq ` cq.

Observe that enforcing b “ ´a recovers the Platt scaling mapping (1.7) since logitpzq “

logpzq ´ logp1 ´ zq.

In Chapter 3, which reproduces Gupta et al. (2020), we show that Platt scaling cannot satisfy

certain “distribution-free calibration guarantees”. See Chapter 2 for a longer preview of this

work.

5
This is typically called the X=Y line, referring to the X and Y axes. We include this in a footnote instead of the

main text to avoid confusion with the random variables X and Y .
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Algorithm 1.1 Histogram binning

1: Input: #bins B P N, calibration data D “ pX1, Y1q, pX2, Y2q, . . . , pXn, Ynq

2: Output: Recalibration mapping m : r0, 1s Ñ r0, 1s

3: Compute scores: pS1, S2, . . . , Snq Ð pgpX1q, gpX2q, . . . , gpXnqq

4: Sort scores: pSp1q, Sp2q, . . . , Spnqq Ð order-statisticspS1, S2, . . . , Snq

5: Set Yi values as per the ordering of pSp1q, Sp2q, . . . , Spnqq: pYp1q, Yp2q, . . . , Ypnqq

6: Set approximate #points-per-bin: ∆ Ð pn ` 1q{B

7: Create an array to store bin biases:
pΠ Ð empty array of size B

8: Create an array of indices: A Ð 0-indexed arraypr0, r∆s, r2∆s, . . . , n ` 1sq

9: for b Ð 1 to B do
10: Left order-statistic index: l Ð Ab´1

11: Right order-statistic index: u Ð Ab

12: Compute bias for bin b: pΠb Ð Mean(Ypl`1q, Ypl`2q, . . . , Ypu´1q)

13: end for
14: Set pSp0q, Spn`1qq Ð p0, 1q

15: Define final mapping: mp¨q Ð
řB

b“1 1
␣

SpAb´1q ď ¨ ă SpAbq

(

pΠb

Left endpoint 0.0 0.19 0.28 0.33 0.39 0.42 0.46 0.5 0.64 0.74

Right endpoint 0.19 0.28 0.33 0.39 0.42 0.46 0.5 0.64 0.74 1.0

Bin bias 0.24 0.3 0.34 0.29 0.32 0.36 0.39 0.53 0.78 0.90

Table 1.1: Approximate bin boundaries and biases learnt by histogram binning for a logistic

regression model on credit default data (Figure 1.2 experiment).

1.2.2 Histogram binning

In histogram binning (Zadrozny and Elkan, 2001) one learns a nonparametric mapping m. This

mapping is based on the idea of binning, wherein nearby values of gpxq are grouped together

into some number of bins, and a single estimate of the probability of Y “ 1 is computed for

each bin.

Algorithm 1.1 is a rendition of histogram binning directly borrowed from Gupta and Ramdas

(2021). There is one hyperparameter, B P N, the number of bins. The interval r0, 1s is partitioned

into B bins using the gpXiq values, to ensure that each bin has the same number of calibration

points (plus/minus one). Thus the bins have nearly uniform (probability) mass. Then, the

calibration points are assigned to bins depending on the interval to which the score gpXiq

belongs to, and the probability that Y “ 1 is estimated for each bin as the average of the observed

Yi-values in that bin (line 12). This average estimates the biases of the bin (
pΠb estimates). The

binning scheme and the bias estimates together define m (line 15).

The bins and biases estimated using histogram binning in the credit default experiment are

displayed visually in Figure 1.2) and numerically in Table 1.1.
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Left endpoint 0.0 0.41 0.47 0.69 0.72 0.74 0.79 0.996

Right endpoint 0.41 0.47 0.69 0.72 0.74 0.79 0.996 1.0

Bin bias 0.29 0.35 0.54 0.79 0.81 0.89 0.93 1.0

Table 1.2: Approximate bin boundaries and biases learnt by isotonic regression for a logistic

regression model on credit default data (Figure 1.2 experiment).

Naeini et al. (2015) described a generative post-hoc calibration model that has histogram binning

at its core, by specifying a prior over the number of bins and the bias parameters for each bin,

and the data likelihood under each value of the parameters. They called their method BBQ

for Bayesian Binning into Quantiles. Recently Valk and Kull (2023) suggested that instead of

estimating a single probability of Y “ 1 in each bin (like in Algorithm 1.1), we estimate the

calibration error in each bin. Then, the post-hoc model is created by adding this estimated

calibration error to the score of the pre-hoc model (see Figure 1 of their paper).

In Chapter 4, which reproduces Gupta and Ramdas (2021), we show that histogram binning

satisfies “distribution-free calibration guarantees”. These are the first such guarantees known

for any post-hoc calibration method. See Chapter 2 for a longer preview of our work.

1.2.3 Isotonic regression

Isotonic regression is a shape-constrained regression method popularized by Barlow and Brunk

(1972). The application to post-hoc calibration was considered by Zadrozny and Elkan (2002). The

isotonic regression family corresponds to the nonparametric class of monotonically increasing

mappings:

Misotonic “ tm : for all 0 ď x ď y ď 1,mpxq ď mpyqu. (1.8)

Let Zi “ gpXiq. The isotonic estimator is derived from a solution of the following shape-

constrained regression problem:

minimize

pµ1,pµ2,...,pµnPr0,1s

n
ÿ

i“1

pYi ´ pµiq
2,

such that @i, j, pµi ď pµj ðñ Zi ď Zj.

(1.9)

This solution can be learnt efficiently using the pool-adjacent-violators-algorithm (PAVA) (Ayer

et al., 1955; Barlow, 1972). Given an optimal solution pµ‹
1, pµ

‹
2, . . . , pµ

‹
n, m : r0, 1s Ñ r0, 1s assigns

to every z P r0, 1s, the pµi corresponding to the largest Zi to the left of z:

mpzq “ pµ‹
j ,where Zj “ maxtZi : Zi ď zu. (1.10)

The above can also be written (in a perhaps easier-to-follow form) as

mpzq “ maxtpµ‹
i : Zi ď zu, (1.11)
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because of the monotonicity constraint in the optimization problem (1.9).

Thus, like histogram binning, the isotonic regression solution is also a number of partition of

r0, 1s into bins, and bias estimates for each bin. The bins and biases estimated using isotonic

regression in the credit default experiment are displayed visually in Figure 1.2 and numerically

in Table 1.2. Notice that histogram binning forms fewer bins than histogram binning. This is

because of isotonic regression’s monotonicity constraint. Histogram binning allows the bias

for bin r0.28, 0.33q, which is 0.34, to be larger than the bias for bin r0.33, 0.39q, which is 0.29.

Due to the monotonicity constraint, isotonic regression is forced to merge as part of a single bin

r0, 0.41q.

A relaxation to the monotonicity constraint was considered by Tibshirani et al. (2011) and

consequently adapted for post-hoc calibration by Naeini et al. (2014). Other Bayesian and

ensemble versions of isotonic regression have also been considered (Allikivi and Kull, 2020;

Naeini and Cooper, 2016). Recently, a calibration guarantee for isotonic regression was claimed

by Laan et al. (2023).

1.3 Multiclass calibration

Consider the setup of multiclass classification, with L ě 3 classes and labels Y P rLs :“
t1, 2, . . . , L ě 3u. As in the binary case, we assume all (training and test) data is drawn i.i.d.

from a fixed distribution P , and denote a general point from this distribution as pX, Y q „ P .

Consider a typical multiclass predictor, h : X Ñ ∆L´1
, whose range ∆L´1

is the probability

simplex in RL
. A natural notion of calibration for h, called canonical calibration is the following:

for every l P rLs, P pY “ l | hpXq “ qq “ ql. Here, ql denotes the l-th component of q.

However, canonical calibration becomes infeasible to achieve or verify once L is even 4 or 5
(Vaicenavicius et al., 2019). Thus, there is interest in studying statistically feasible relaxations of

canonical notion, such as confidence calibration (Guo et al., 2017), top-label calibration (Gupta

and Ramdas, 2022b), class-wise calibration (Kull et al., 2017), and top-K-confidence calibration

(Gupta et al., 2021).

We unified these various relaxations of canonical calibration into a single “multiclass-to-binary”

framework (Gupta and Ramdas, 2022b). This paper is reproduced as Chapter 6. In this chapter,

we also introduced the aforementioned notion of top-label calibration, which focuses on a single

binary calibration requirement corresponding to the predicted top class, called the top-label in

this context. A brief description of top-label calibration is provided next.

Top-label calibration. A classifier is said to be top-label calibrated if the reported probability

for the top-label is calibrated (in a binary sense), conditioned on the top-label. Let c : X Ñ rLs

denote a class predictor (for the top-label) and h : X Ñ r0, 1s a function that provides a proba-

bility score for the top-label cpXq. For an L-dimensional predictor h : X Ñ ∆L´1
, one would

use cp¨q “ argmaxlPrLs hlp¨q and hp¨q “ hcp¨qp¨q (breaking ties arbitrarily). The forthcoming

definition is for top-label calibration of pc, hq; a vector-valued h is top-label calibrated if the

induced pc, hq is top-label calibrated.
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Definition 1.4 (Top-label calibration). The predictor pc, hq is said to be top-label calibrated (for

the data-generating distribution P ) if

P pY “ cpXq | cpXq, hpXqq “ hpXq. (1.12)

In other words, if conditioned on the top-label cpXq, when the reported confidence hpXq equals

p P r0, 1s, then the fraction of instances where the predicted label is correct also equals p.

Top-label calibration is related to and inspired from the popular notion of confidence calibration

(Guo et al., 2017), but solves a key interpretability issue, discussed in detail in Chapter 5.

We next discuss post-hoc multiclass calibration methods. The literature on multiclass calibration

has flourished since the finding that deep neural networks are overconfident and benefit from

post-hoc calibration (Guo et al., 2017). Due to the fast-moving nature of this field, we do not

provide an exhaustive review of all methods; the main focus of this thesis is on fundamental

calibration principles which are readily studied in the setup of binary calibration.

1.3.1 Multiclass variants of Platt scaling

The class probabilities for a neural network are a softmax over logits z P RL
learnt by the

network,

pl “
exp pzlq

řL
s“1 exp pzsq

,

where zs is the s-th component of z. The scaling methods we describe below are modifications

of the above mapping from logits to probabilities. Temperature, vector, and matrix scaling were

proposed by Guo et al. (2017) and Dirichlet calibration was proposed by Kull et al. (2019).

Temperature scaling is characterized by a scalar t ą 0 and the post-hoc class probabilities,

ql “
exp ptzlq

řL
s“1 exp ptzsq

. (1.13)

If t ą 1, the q-probabilities are more dispersed than the p-probabilities (larger ones becomes

larger, smaller ones become smaller). If t ă 1, the q-probabilities are more centered.

Vector scaling is characterized by two vectors t,b P RL
. The post-hoc class probabilities are

defined as,

ql “
exp ptlzl ` blq

řL
s“1 exp ptszs ` bsq

. (1.14)

Vector scaling is equivalent to having L Platt scaling mappings, one for each class, and then

normalizing the probabilities to sum to one.

Matrix scaling is characterized by a matrix M P RLˆL
and a vector b P RL

. The post-hoc class

probabilities are defined as,

ql “
exp ppMzql ` blq

řL
s“1 exp ppMzqs ` bsq

, (1.15)
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where pMzqs is the s-th component of the matrix-vector product of M and z. Matrix scaling

allows us to represent relationships between pairs of classes which is not possible by temperature

or vector scaling. For instance if M11 “ 0.8 and M12 “ 0.1, this can be interpreted as “high

values of p1 should contribute to a high value of q1 but also an increase in q2”. Restricted versions

of matrix scaling, where the degrees of freedom of M are limited in some manner, are naturally

derived and might be more practically suitable. Vector scaling is one such restriction, where the

matrix M is limited to be diagonal. Another regularization technique called “Off-Diagonal and

Intercept Regularisation” was proposed by Kull et al. (2019).

Dirichlet scaling is similar to matrix scaling but over logarithms of the p-probabilities, instead

of the logits. Below, logp is a component-wise natural logarithm applied to the vector p:

ql “
exp ppM logpql ` blq

řL
s“1 exp ppM logpqs ` bsq

. (1.16)

1.3.2 Multiclass calibration using binary methods

A natural approach to multiclass calibration is via reduction to L one-versus-all binary problems.

That is, to calibrate the pre-hoc model g : X Ñ ∆L´1
, we calibrate the l-th component of g

for the event 1 tY “ lu, for each l. A normalization can be performed in the end to make the

final calibrated probabilities sum to one. Any binary calibration method such as Platt scaling or

histogram binning can be used to solve the L binary problems.

The earliest reference to this one-versus-all reduction (that we are aware of) is in the work of

Zadrozny and Elkan (2002). This method was also used by Guo et al. (2017), as well as other

follow-up papers such as Kull et al. (2019) and Kumar et al. (2019).

In Chapter 5, which is a reproduction of Gupta and Ramdas (2022b), we expanded this one-

versus-all approach into a broader multiclass-to-binary (M2B) framework. Indeed, for each

popular relaxation of canonical calibration that has been proposed, we show that an M2B

reduction adapted to that relaxation can be derived. A one-versus-all reduction is then just a

special case related to the class-wise calibration notion (Definition 5.2). Binary calibration is a

cleaner problem more amenable to principled analysis, and an M2B reduction allows us to lift
well-established binary methods to multiclass calibration.

1.3.3 Other multiclass calibration methods

We review a few more multiclass calibration methods that are not either adaptations-of-Platt-

scaling or based on multiclass-to-binary reductions. Our review is not exhaustive by any means.

New methods are proposed frequently and we only cover a subset of them that have become

common baselines (as of 2023).

Intra-order preserving functions. Rahimi et al. (2020) characterized the class of mappings

from p P RL
to q P RL

that are continuous, do not change the internal order of probabilities

(the ranking of the L classes should be the same whether we rely on p or q), and order-invariant
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among the components of p (in a certain sense; see Definition 3 of their paper). A mapping

satisfying these properties is learnt based on a monotonic neural network (Wehenkel and Louppe,

2019), by optimizing regularized negative log-likelihood. See Section 4 in their paper for more

details.

Gaussian process calibration. Wenger et al. (2020) described a Bayesian approach to post-hoc

calibration. They described a Gaussian process prior over the post-hoc mapping, a categorical

likelihood of the data given the post-hoc mapping, and a variational inference procedure for

approximating the posterior.

Mutual information maximization-based binning. Patel et al. (2021) proposed a multiclass

binning method wherein bin boundaries are shared across classes. The common binning scheme

is identified so that the mutual information between the bin identities and the empirical class

distribution is maximized (see equation (2) in their paper).

The state of the field on multiclass post-hoc calibration is in some aspects similar to the state

of supervised learning prior to the advent and success of deep neural networks—a number of

interesting competitive methods exist, but none have been unequivocally demonstrated to be

better than all the rest. It is common to propose new methods that baseline against a slew of

existing methods, beat existing methods, but get beaten by a future method.

1.4 Measuring calibration of models or forecasts

Given access to some test points, we would like to know how calibrated a given model g or

sequence of forecasts is. In this section, we discuss some common techniques used for doing

this, such as binning, reliability diagrams, validity plots, and notions of calibration error. We

discuss binary calibration first, and multiclass calibration in Section 1.4.3.

Two peculiar technical difficulties arise when assessing calibration of a model g.

1. Estimation of conditional probabilities. For a test-point px, yq, gpxq is immediately

computed, but measuring calibration also requires estimating PpY “ 1 | gpXq “ gpxqq.

Compare this to measuring accuracy, F1-score, or AUROC, where we only need the

outcome y that is directly observed. Informally, it is clear that if Rangepgq is not a discrete

set, we are estimating infinitely many probabilities. This can only be done if we make

(untestable) smoothness assumptions on the Bayes function πpxq “ PpY “ 1 | gpXq “

gpxqq, or target a coarser functional of π.
6

2. Unbiased estimators do not exist for absolute deviation. Imminently, we will

describe a popular metric called ℓ1-calibration-error, which is the expected value of

|PpY “ 1 | gpXqq ´ gpXq|. Unbiased estimators do not exist for the ℓ1-CE, even if the

true value of PpY “ 1 | gpXqq is exactly known. (More broadly, unbiased estimators

do not exist for non-differentiable functionals such as the absolute value (Hirano and

6
See Lee and Barber (2021) for a relevant formal treatment. The difficulty in estimating conditional probabilities

is at the core of impossibility results in distribution-free uncertainty quantification by Barber (2020) and Gupta

et al. (2020) (see Theorem 3.3 in Chapter 3).
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Porter, 2012). For instance, given samples from N pµ, 1q, there is no unbiased estimator for

|µ|.) This issue is specific to the ℓ1-CE since debiased estimates can be derived for related

quantities such as pPpY “ 1 | gpXqq ´ gpXqq2.

Both these issues are mitigated in the online forecasting setting where instead of estimating

hypothetical population quantities, we can simply talk about calibration on the actual observed

data (in effect, following the weak prequential principle (Dawid and Vovk, 1999)). We return to

this in Section 1.4.2.

1.4.1 Binning-based calibration metrics

The common way of addressing the first issue above is by binning or discretizing g. The unit

interval r0, 1s is partitioned into B P N non-overlapping intervals tBbubPrBs, called bins. For

instance one could use the following fixed-width bins:

B1 “

„

0

B
,
1

B

˙

, B2 “

„

1

B
,
2

B

˙

, . . . , BB “

„

B ´ 1

B
, 1

ȷ

. (1.17)

We discuss a more popular strategy called uniform-mass binning shortly.

Let B : r0, 1s Ñ rBs be the binning function that maps a score gpxq to the bin Bb that contains

gpxq. B is often referred to as the “binning scheme”. A binning-scheme induces a discretized

version of g, gB : X Ñ r0, 1s given by

gBpxq “ mid-pointpBBpgpxqqq “ MPBpgpxqq, (1.18)

where MPb :“ mid-pointpBbq. Instead of talking about calibration of the continuous-output g,

we can now talk about calibraiton of gB. For gB, the conditional probabilities P pY “ 1 | gBpXqq

are the B probabilities P pY “ 1 | BpXq “ bq, and can be estimated using plugin estimates. For

a given a test dataset px1
1, y

1
1q, px1

2, y
1
2q, . . . , px1

m, y
1
mq, define,

FPb :“

ř

i:Bpx1
iq“b y

1
i

|ti : Bpx1
iq “ bu|

(fraction of positives in a bin),

PPb :“

ř

i:Bpx1
iq“b gpx1

iq

|ti : Bpx1
iq “ bu|

(mean predicted probability in a bin),

unless |ti : Bpx1
iq “ bu| “ 0 in which we case we set FPb “ PPb “ MPb. Also define

wb :“
|ti : BpX 1

iq “ bu|
m

(proportion of test points in bin b).

Instead of the earlier defined fixed-width bins, it is common to use uniform-mass binning where

the bins have equal mass under the distribution of gpXq, so that

w1 « w2 « . . . « wB.
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This can be ensured (almost) exactly if bin boundaries are defined using the test-data itself, or

approximately if bin boundaries are defined using the validation or calibration data.

Finally, we note that it is possible that the classifier g is already sufficiently discrete, in which

case the binning step can be skipped. For instance if m ď 50 ˆ Rangepgq, that is if more than 50

test-points-per-bin are available, then binning can be skipped.

Once the values FPb, PPb,MPb, wb are ascertained, calibration can be assessed in the following

ways.

1. (Expected) calibration error (Naeini et al., 2015). The ℓ1-calibration-error (ℓ1-CE) of a

model g, sometimes called the ℓ1-ECE for expected-calibration-error, is given by

ℓ1-CEpgq “ E |PpY “ 1 | gpXqq ´ gpXq| ,

where the expectation is over the distribution of X . A common way to estimate ℓ1-CE is

to use a plugin estimate of the ℓ1-CEpgBq:

{ℓ1-CEpgq “ {ℓ1-CEpgBq “
ÿ

bPrBs

wb ¨ |FPb ´ PPb| .

Sometimes, it may be of interest to compare deviations from the mid-point MP instead of

the mean predicted probability PP, so we get the following estimate:

{ℓ1-CEpgq “ {ℓ1-CEpgBq “
ÿ

bPrBs

wb ¨ |FPb ´ MPb| .

Instead of the ℓ1-CE, we can also consider the ℓp-CE,

ℓp-CEpgq :“ pE |PpY “ 1 | gpXqq ´ gpXq|pq
1{p

,

which can in turn be estimated using a plugin estimate of ℓp-CEpgBq. Of particular interest

in literature has been the ℓ2-CE and the ℓ8-CE. This ℓ8-CE also goes as the maximum

calibration error, since

ℓ8-CEpgq “ max
p

|PpY “ 1 | gpXq “ pq ´ p|.

The discretization-based estimation technique for ℓp-CE that we described here is a

heuristic. It is a straightforward consequence of Jensen’s inequality that ℓp-CEpgBq ď

ℓp-CEpgq, and this has been noted by a number of papers (Kumar et al., 2019; Zhang

et al., 2020; Widmann et al., 2019). Thus, using the plugin estimate for ℓp-CEpgBq is likely

to underestimate ℓp-CEpgq. However, we are not aware of interesting upper bounds on

|ℓp-CEpgBq ´ ℓp-CEpgq|. Nixon et al. (2020) provide a broader review of common practices

around the binning heuristic. We refer to Section 3.5 of this document for some more

references and historical remarks.

2. Reliability diagrams (DeGroot and Fienberg, 1983). A reliability diagram for a

classifier g is a plot of the fraction of positives in a bin (FP) versus the mean predicted
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based on fixed-width bins (1.17).

Figure 1.3: Two visual ways of assessing calibration.

probability in a bin (PP). In addition, it is common to plot the bin-weights w as a histogram

to show the frequency of the different bins. An example of a reliability diagram is the blue

scatter plot in Figure 1.2. Guo et al. (2017) plotted the reliability diagram as a bar chart

instead of a scatter plot, an unconventional choice that is now common in calibration

literature due to the popularity of their work.

3. Validity plots (Gupta and Ramdas (2021) and Chapter 4). The original work in this

thesis focuses on the validity of pϵ, αq-approximate-calibration (Definition 1.2). Validity

plots display the pϵ, αq for which approximate calibration is satisfied on the given test set.

Define the function V : r0, 1s Ñ r0, 1s given by V pϵq “ Pp|PpY “ 1 | gpXqq ´ gpXq| ď

ϵq. By definition of V , g is pϵ, 1 ´ V pϵqq-calibrated for every ϵ. V is estimated using FP

and PP as follows,

pV pϵq “

B
ÿ

b“1

wb1 t|FPb ´ PPb| ď ϵu .

The validity plot is a plot of
pV against ϵ. Figure is an example from later in the thesis

(Chapter 4). It turns out that the the area-over-the-curve of the validity plot is the plugin

ℓ1-CE estimate of g, as also illustrated in the figure.

In the following chapters, we use one or more of the techniques described above to assess

calibration. However, a few other ways of measuring miscalibration have also been been

proposed, and these are briefly reviewed below.

1. Kernel density estimation based CE estimator (Zhang et al., 2020). Instead of using

bins, a kernel can be used to estimate the density P pY “ 1 | gpXqq. Then, a plugin
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estimator gives us a CE estimate. Consistency can be shown under certain smoothness

conditions. Popordanoska et al. (2022) extended the kernel density estimation approach to

multiclass canonical calibration.

2. Kernel calibration error or KCE (Widmann et al., 2019). The notion of CE can be

generalized using a universal kernel, to give the KCE. Unbiased estimators for the squared-

KCE can be derived. While the KCE of a calibrated model must be zero, nonzero values of

the KCE may be less directly interpretable (compared to CE values).

3. Testing the hypothesis of calibration (Lee et al., 2022). If g is calibrated, the CE as

per any notion equals zero. Thus deviations of the CE from zero can be used to reject the

hypothesis that g is calibrated. In particular, the above paper considers unbiased estimates

of the squared ℓ2-CE as a test statistic.

1.4.2 Measuring miscalibration of forecasts

When assessing calibration of a model g, the test data is simply a “window” into the out-of-sample

performance of g on yet unseen data from the same distribution. On the other hand, when

discussing forecast calibration, the actual outcome-forecast sequence p1, y1, p2, y2, . . . , pT , yT P

pr0, 1s ˆ t0, 1uqT takes centerstage, and counterfactual or future behavior of the mechanism

generating forecasts is of lesser interest. Thus the question of the “true” conditional probability

of y “ 1 for instances where pt “ p becomes secondary. Assessing forecasts based solely on the

observed sequence is an instance of the weak prequential principle (Dawid and Vovk, 1999).

The implication of this philosophy in practice is that the binning scheme we use need not be

statistically optimal in any sense, but only practically meaningful. So for instance, it may be

natural to discretize probabilities of rain as 5%, 15%, 25%, etc. In this case, the fixed-width binning

(1.17) with B “ 10 is used. On the other hand, for an infrequent event such as occurrence of

a rare disease in a patient, we may be more interested in calibration close to 0. Then we can

(arbitrarily) define B1 “ r0, 0.01q, B2 “ r0.01, 0.05q, B3 “ r0.05, 0.1q, B4 “ r0.1, 1.0s.

Once a binning scheme is fixed, we compute FP, PP, w on the given sequence as described in

the previous subsection. Then we compute the CE or make reliability or validity plots. Again,

the benefit of the prequential view is that the bias of CE estimators for population quantities is

irrelevant. For instance, the biased ℓ1-CE estimator

ř

wb |FPb ´ MPb| is meaningful on its own

without viewing it as an estimate of anything else.

1.4.3 Measuring miscalibration in the multiclass setting

We devote Chapter 5 to discussing multiclass calibration. In that chapter, we show that most pop-

ular notions of multiclass calibration reduce to one or more statements about binary calibration.

Thus, to assess the multiclass notion, one can assess each of the individual binary calibration

notions, using techniques described earlier in this section. For instance, multiclass calibration

can be binarized as confidence calibration (Guo et al., 2017), so that the ℓ1-CE discussed earlier

becomes conf-CE, and the reliability diagram becomes a confidence reliability diagrams.
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Chapter 2
Thesis overview

In this thesis, we pursued a principled study of post-hoc calibration of machine learning models.

Our study took a “validity-first” perspective—first build a method/framework that guarantees cal-

ibration (making it valid), and then consider additional desirable properties such as accuracy. We

showed validity guarantees under minimal assumptions about the data-generating procedure—

specifically in the “distribution-free” setup (Chapter 3, Chapter 4, Chapter 5, Chapter 9) and the

“adversarial” setup (Chapter 6, Chapter 7, Chapter 8).

Chapters 3–7 reproduce published papers (one chapter per paper) on post-hoc calibration. The

following subsections provide a blurb on each paper that assumes knowledge of Chapter 1, but

is otherwise self-contained. A sequential reading provides an overarching “story” of our work.

Chapters 8 and 9 reproduce a couple of published papers on covariate-free online calibration and

conformal prediction respectively. These topics are broadly connected to post-hoc calibration

and were a source of understanding and inspiration. The blurb on these papers below also

identifies a specific relationship to post-hoc calibration. Two open-source contributions arising

from our work are described in Section 2.7. Chapter 10 concludes with a broad discussion and

avenues for future work.

2.1 Distribution-free binary calibration

While a number of empirical papers on post-hoc calibration existed previously, we first formalized

and studied a clean theoretical goal for post-hoc calibration, in the following work.

Chapter 3
Distribution-free binary classification: prediction sets, confidence intervals and calibration.

Chirag Gupta, Aleksandr Podkopaev, Aaditya Ramdas.

Advances in Neural Information Processing Systems (NeurIPS), 2020.

This goal was previewed in Definition 1.2. We also introduced a “distribution-free” version of
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this goal: learn a post-hoc mapping that is provably approximately calibrated, no matter how

the data is distributed, as long as it is i.i.d.

We then related calibration to two other objects in uncertainty quantification, prediction sets

and confidence sets, in the distribution-free framework. From this relationship, we deduced the

main result of our paper, an impossibility result for calibration. Namely, we showed that no

injective post-hoc calibration method, such as Platt scaling, can be distribution-free calibrated.

This result necessitates the usage of binning methods such as histogram binning and isotonic

regression to achieve distribution-free calibration.

This study inspired the following work where calibration guarantees are established for histogram

binning, a post-hoc calibration method introduced in Section 1.2.2.

Chapter 4
Distribution-free calibration guarantees for histogram binning without sample splitting

Chirag Gupta, Aaditya Ramdas

International Conference on Machine Learning (ICML), 2021

Histogram binning was proposed without formal guarantees by Zadrozny and Elkan (2001),

and has been shown to be practically competitive in a number of papers. When histogram

binning is performed without sample splitting, the same calibration data is used to identify

bin boundaries as well as estimate the bin biases. This “double-dipping” becomes a hurdle in

proving calibration guarantees for histogram binning. We use a certain Markov property of order

statistics to circumvent this issue. Our work shows that histogram binning is both practically

competitive and theoretically valid for calibration. Based on our theory, we provide certain

practical recommendations, that prove fruitful in our follow-up study on multiclass calibration.

2.2 Distribution-free multiclass calibration

As discussed in Section 1.3, there has been interest in binary relaxations of canonical multiclass

calibration. In the following paper, we studied these relaxations.

Chapter 5
Top-label calibration and multiclass-to-binary reductions

Chirag Gupta, Aaditya Ramdas

International Conference on Learning Representations (ICLR), 2022

We introduced the notion of top-label calibration, which focuses on calibration of the predicted

class. We showed how distribution-free top-label calibration is to be achieved using a modifica-

tion of the binary histogram binning procedure discussed in the previous subsection. Empirically,

top-label histogram binning gets close to state-of-the-art performance when used to calibrate

deep-nets on the CIFAR-10 and CIFAR-100 datasets Table 5.2.

Our second contribution was a unification of various notions of multiclass calibration into a

single multiclass-to-binary (M2B) framework. As a benefit of this unified view, for every M2B
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calibration notion, a separate post-hoc calibration method can be derived that first reduces the

multiclass dataset to a number of binary datasets, and then applies binary calibration to each

binary dataset. This methodology is shown to be theoretically valid and practically beneficial.

2.3 Online post-hoc calibration

In our distribution-free analysis, we make no assumptions other than that the data is i.i.d.

However, even assuming that data follows a distribution is a simplification of the real-world. In

the following work, we studied if calibration can be meaningfully achieved without assuming

that the data comes from a distribution.

Chapter 6
Online Platt Scaling with Calibeating

Chirag Gupta, Aaditya Ramdas

International Conference on Machine Learning (ICML), 2023

We model data as an adversarial or arbitrary feature-outcome stream pxt, ytq
8
t“1 P pX ˆ t0, 1uq8

.

It is expected that xt is statistically useful for predicting yt, however, the joint distribution of

pxt, ytq could change arbitrarily over time. Our solution is to combine post-hoc calibration with

ideas from the rich field of forecast calibration (introduced in Section 1.1.2). We propose an online

version of Platt scaling (Section 1.2.1), called OPS, and combine it with the forecast calibration

technique of calibeating (Foster and Hart, 2023). Our work leads to two OPS+calibeating

methods: one of them exhibits good performance and is guaranteed to be adversarially calibrated

guarantees; the other one does not have guarantees but performs the best in our experiments,

on a mixture of real-world and synthetic datasets. In particular, our methods are adaptive to

distribution drifts or shifts (Quinonero-Candela et al., 2008).

2.4 An application to regression

Previous works in this thesis were focused on achieving calibration. The following is the most

empirical work in this thesis, where we explored an application of our developed methods to

real-world problems.

Chapter 7
Parity Calibration

Youngseog Chung, Aaron Rumack, Chirag Gupta

Conference on Uncertainty in Artificial Intelligence (UAI), 2023

Specifically, we were interested in applying online Platt scaling to a time-series task with non-

stationary covariate-outcome distributions. While searching for such tasks, we realized that
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many interesting tasks were of real-valued forecasting, leading us to ask the question—what

regression task can be solved using post-hoc binary calibration?

A natural suggestion is to make calibrated forecasts for the increase-decrease event in a timeseries;

we called this “parity calibration”. A rich literature on making calibrated forecasts for regression

exists, but we show that existing regression forecasts are not parity calibrated (theoretically

or practically). Our online Platt scaling method, when adapted to this problem, works well

out-of-the-box.

2.5 A modification to the forecast calibration setup

In the following paper, we studied a slight modification of the (covariate-agnostic) forecast

calibration setup introduced in Chapter 1.1.2.

Chapter 8
Faster online calibration without randomization: interval forecasts and the power of two choices

Chirag Gupta, Aaditya Ramdas

Conference on Learning Theory (COLT), 2022

First, we showed a lower bound for forecaster in Calibration-Game-II (Panel 2), which is an

Ωp1{
?
T q-rate for a certain notion of calibration error. Then, we studied a slight change to the

setup: the forecaster is allowed to make two nearby probabilistic forecasts, or equivalently an

interval forecast of small width, and the endpoint closest to the revealed outcome is used to judge

calibration. This “power-of-two-choices” accords the forecaster with significant power—we

show that a faster calibration rate of Op1{T q can be achieved.

Relationship to post-hoc calibration. Due to our work in Chapter 6, we now know how to

use forecast calibration techniques for post-hoc calibration. Applying the power-of-two-choices

framework for post-hoc calibration is of potential interest.

2.6 Nested conformal prediction and data-efficient uncer-
tainty quantification

Another form of distribution-free uncertainty quantification that has been popular recently is

conformal prediction, where one is interested in prediction intervals (see Chapter 3). This is the

topic of the following work.

Chapter 9
Nested conformal prediction and quantile out-of-bag ensemble methods

Chirag Gupta, Arun Kumar Kuchibhotla, Aaditya Ramdas

Pattern Recognition 127 (Special Issue on Conformal Prediction), 2022
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In this work, we proposed an alternative formulation of conformal, called nested conformal,

that (in our view) is more natural than the traditional description. This work appeared on

arXiv in 2019, and since then, a number of papers have utilized the nested view when discuss

conformal prediction. Further, we proposed an efficient conformal prediction method based

on quantile prediction and out-of-bag ensembling. At the time of writing, our method was the

state-of-the-art method for conformal prediction.

Relationship to post-hoc calibration. A common technique in conformal prediction, split-

conformal (Papadopoulos et al., 2002), is similar to post-hoc calibration in that it relies on a

held-out dataset. Data efficient methods have been derived for conformal prediction that do not

involve sample splitting, such as cross-conformal (Vovk, 2015), jackknife+ (Barber et al., 2021),

out-of-bag methods (Johansson et al., 2014), and online conformal prediction (Gibbs and Candes,

2021). Our online Platt scaling method does online post-hoc calibration, but cross-validation

and out-of-bag approaches for calibration are yet to be discovered.

2.7 Open-source contributions

We released an open-source implementation of binary and top-label histogram binning (described

in Chapter 4 and Chapter 5) at the following link: https://github.com/AIgen/df-posthoc-calibration/.

We released an open-source version of our quantile out-of-bag conformal method (described in

Chapter 9) at the following link: https://github.com/AIgen/QOOB.
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Part II

Original contributions (primary)

This part collates novel research contributions made by the author on the main topic

of this thesis, post-hoc calibration. Each chapter reproduces a separate published

paper.
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Chapter 3
Distribution-free binary classification:

prediction sets, confidence intervals, and

calibration

This chapter is based on Gupta et al. (2020).

We study three notions of uncertainty quantification—calibration, confidence intervals and pre-
diction sets—for binary classification in the distribution-free setting, that is without making any
distributional assumptions on the data. With a focus towards calibration, we establish a ‘tripod’ of
theorems that connect these three notions for score-based classifiers. A direct implication is that
distribution-free calibration is only possible, even asymptotically, using a scoring function whose
level sets partition the feature space into at most countably many sets. Parametric calibration
schemes such as variants of Platt scaling do not satisfy this requirement, while nonparametric
schemes based on binning do. To close the loop, we derive distribution-free confidence intervals
for binned probabilities for both fixed-width and uniform-mass binning. As a consequence of
our ‘tripod’ theorems, these confidence intervals for binned probabilities lead to distribution-free
calibration. We also derive extensions to settings with streaming data and covariate shift.

3.1 Introduction

Let X and Y “ t0, 1u denote the feature and label spaces for binary classification. Consider a

predictor f : X Ñ Z that produces a prediction in some space Z . If Z “ t0, 1u, f corresponds

to a point prediction for the class label, but often class predictions are based on a ‘scoring

function’. Examples are, Z “ R for SVMs, and Z “ r0, 1s for logistic regression, random forests

with class probabilities, or deep models with a softmax top layer. In such cases, a higher value of

fpXq is often interpreted as higher belief that Y “ 1. In particular, if Z “ r0, 1s, it is tempting

to interpret fpXq as a probability, and hope that

fpXq « PpY “ 1 | Xq “ E rY | Xs . (3.1)

26



However, such hope is unfounded, and in general (3.1) will be far from true without strong

distributional assumptions, which may not hold in practice. Valid uncertainty estimates that

are related to (3.1) can be provided, but ML models do not satisfy these out of the box. This

chapter discusses three notions of uncertainty quantification: calibration, prediction sets (PS)

and confidence intervals (CI), defined next. A function f : X Ñ r0, 1s is said to be (perfectly)

calibrated if

E rY | fpXq “ as “ a a.s. for all a in the range of f . (3.2)

Define the set of all subsets of Y , L ” tt0u, t1u, t0, 1u,Hu, and fix α P p0, 1q. A function

S : X Ñ L is a p1 ´ αq-PS if

PpY P SpXqq ě 1 ´ α. (3.3)

In practice, PSs are typically studied for larger output sets, such as Yregression “ R or Ymulticlass “

t1, 2, . . . , L ą 2u, but in this chapter, we pursue fundamental results for binary classification.

Finally, let I denote the set of all subintervals of r0, 1s. A function C : X Ñ I is a p1 ´ αq-CI if

PpE rY | Xs P CpXqq ě 1 ´ α. (3.4)

All three notions are ‘natural’ in their own sense, but also different at first sight. We show that

they are in fact tightly connected (see Figure 3.1), and focus on the implications of this result

for calibration. Most of our results are in the distribution-free setting, where we are concerned

with understanding what uncertainty quantification is possible without making distributional

assumptions on the data. This chapter is based on the statistical setup of post-hoc uncertainty

quantification, described next.

Post-hoc uncertainty quantification setup. Let P denote the data-generating distribution

over X ˆY , and let pX, Y q „ P denote a general data point. Post-hoc uncertainty quantification

is a common paradigm where the available labeled data is split into a training set and a calibration
set. The training set is used to learn a predictor f : X Ñ r0, 1s, and the calibration set is used to

supplement f with uncertainty estimates (CIs or PSs), or learn a new calibrated predictor on

top of f . (In practice, the validation set is often used as the calibration set.) All results in this

chapter are conditional on the training set; thus the randomness is always over the calibration

and test data. We denote the calibration set as Dn “ tpXi, YiquiPrns, where n is the number

of calibration points, and we use the shorthand rns :“ t1, 2, . . . nu. A prototypical test point

is denoted as pXn`1, Yn`1q. The calibration and test data is assumed to be drawn i.i.d. from

P , denoted succinctly as tpXi, YiquiPrn`1s „ P n`1
. The learner observes realized values of all

random variables pXi, Yiq, except Yn`1. All sets and functions are implicitly assumed to be

measurable.

Our work relies on some key ideas in the works of Vovk et al. (2005a, Section 5), Barber (2020),

and Zadrozny and Elkan (2001). Other related work is cited as needed, and further discussed in

Section 3.5. All proofs appear ordered in the Appendix.

3.2 Calibration, confidence intervals and prediction sets

A few additional concepts and definitions are needed in order to formally study calibration, CIs

and PSs in the distribution-free post-hoc uncertainty quantification setup. These are defined
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next.

3.2.1 Approximate and asymptotic calibration

Calibration captures the intuition of (3.1) but is a weaker requirement, and was first studied in

the meteorological literature for assessing probabilistic rain forecasts (Brier, 1950; Sanders, 1963;

Murphy and Epstein, 1967; Dawid, 1982). Murphy and Epstein (1967) described the ideal notion

of calibration, called perfect calibration (3.2), which has also been referred to as calibration in the
small (Vovk and Petej, 2014), or sometimes simply as calibration (Guo et al., 2017; Vaicenavicius

et al., 2019; Dawid, 1982). The types of functions that can achieve perfect calibration can be

succinctly captured as follows.

Proposition 3.1. A function f : X Ñ r0, 1s is perfectly calibrated if and only if there exists a
space Z and a function g : X Ñ Z , such that

fpxq “ E rY | gpXq “ gpxqs almost surely PX . (3.5)

In other words, f is calibrated if and only if there exists another function g such that f is the

expected value of Y given the output of g. Vaicenavicius et al. (2019) stated and gave a short

proof for the ‘only if’ direction. While the other direction is also straightforward, together they

lead to an appealingly simple and complete characterization. The proof of Proposition 3.1 is in

Appendix 3.A.

It is helpful to consider two extreme cases of Proposition 3.1. First, setting g to be the identity

function yields that the Bayes classifier E rY |Xs is perfectly calibrated. Second, setting gp¨q

to any constant implies that E rY s is also a perfect calibrator. Naturally, we cannot hope to

estimate the Bayes classifier without assumptions, but even the simplest calibrator E rY s can

only be approximated in finite samples. Since Proposition 3.1 states that calibration is possible

iff the RHS of (3.5) is known exactly for some g, perfect calibration is impossible in practice.

Thus we resort to satisfying the requirement (3.2) approximately, which is implicitly the goal of

many empirical calibration techniques.

Definition 3.1 (Approximate calibration). A predictor f : X Ñ r0, 1s is pϵ, αq-calibrated for

some ϵ, α P r0, 1s if with probability at least 1 ´ α,

|E rY |fpXqs ´ fpXq| ď ϵ. (3.6)

Clearly, every predictor f is p1, 0q-calibrated and p0, 1q-calibrated. Further, if f is pϵ, αq-

calibrated, then it is also pϵ1, αq-calibrated for ϵ1 ą ϵ and pϵ, α1q-calibrated for α1 ą α, and

so we are typically only interested in the smallest “pareto optimal boundary” pairs of pϵ, αq for

which approximate calibration holds, or specifically for a fixed α like 0.1, what is the smallest ϵ
for which calibration holds.

Suppose f is not approximately calibrated for small values of ϵ and α. As mentioned in the

Introduction, we can ‘recalibrate’ f using a post-hoc calibration algorithm A. Such an A takes f
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(learnt on the training data) as input along with independent calibration dataDn “ tpXi, YiquiPrns,

and outputs ApDn, fq “ hn : X Ñ r0, 1s, a predictor with presumably improved calibration

properties compared to the original f . This setup was popularized by Guo et al. (2017); in their

work, f is a deep neural network and a proposed algorithm A is temperature scaling. In this

chapter, we study when A can be shown to satisfy distribution-free approximate calibration:

P n`1
p|E rY |hnpXn`1qs ´ hnpXn`1q| ď ϵq ě 1 ´ α for every f, P . (3.7)

Above, P n`1
denotes the product distribution of the i.i.d. calibration and test points, that

is tpXi, YiquiPrn`1s „ P n`1
. Note that hn “ ApDn, fq is random over the calibration data

Dn; we reinforce this by writing an n in the subscript. In the limit of infinite calibration

data, a good calibration algorithm should guarantee approximate calibration with vanishing ϵ.
This is formalized in the upcoming definition of asymptotic calibration. We use pX ˆ Yq˚ “
Ť

nPNpX ˆ Yqn to denote the space of the calibration data for arbitrary n, and r0, 1sX to denote

a function from X to r0, 1s (such as f ).

Definition 3.2 (Distribution-free asymptotic calibration). A post-hoc calibration algorithm

A : pX ˆ Yq˚ ˆ r0, 1sX Ñ r0, 1sX is said to be distribution-free asymptotically calibrated if

there exists an α P p0, 0.5q and a r0, 1s-valued sequence tϵnunPN with limnÑ8 ϵn “ 0, such that

for every n, hn “ ApDn, fq satisfies condition (3.7) with parameters pϵn, αq.

Note that condition (3.7) requires approximate calibration not only over all P , but also over all

f . Thus asymptotic calibration requires A to calibrate any fixed f over all distributions P .

3.2.2 Prediction sets and confidence intervals with respect to f

To motivate a new definition of PSs and CIs with respect to f , we review a recent result on

distribution-free CIs by Barber (2020), where the existence of ‘informative’ distribution-free CIs

was discussed.

PSs and CIs are only ‘informative’ if the sets or intervals produced by them are small. To quantify

this, we measure CIs using their width (denoted as |Cp¨q|), and PSs using their diameter (defined

as the width of the convex hull of the PS). For example, in the case of binary classification, the

diameter of a PS is 1 if the prediction set is t0, 1u, and 0 otherwise (since Y P t0, 1u always

holds, the set t0, 1u is ‘uninformative’). A short CI such as r0.39, 0.41s is more informative than

a wider one such as r0.3, 0.5s.

For a given distribution, one might expect the diameter of a p1 ´ αq-PS to be larger than the

width of a p1 ´ αq-CI, since we want to cover the actual value of Y and not its conditional

expectation. As an example, if E rY |X “ xs “ 0.5 for every x, then the shortest possible CI is

p0.5, 0.5s whose diameter is 0. However, a p1 ´ αq-PS has no choice but to output t0, 1u for at

least p1 ´ 2αq fraction of the points (and a random guess for the other 2α fraction), and thus

must have expected diameter ě 1 ´ 2α even in the limit of infinite data.

Recently, Barber (2020) built on an earlier result of Vovk et al. (2005a) to show that if an

algorithm provides p1 ´ αq-CI for all product distributions P n`1
(of the training data and test

point), then it also provides a p1 ´ αq-PS whenever the distribution of PX is nonatomic, that
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is, it does not contain any atoms or ‘point masses’. (If the CI function is C : X Ñ I , then the

corresponding PS function would be Sp¨q “ Cp¨q X t0, 1u.) Since this implication holds for all

nonatomic distributions PX , including the ones with E rY |Xs ” 0.5 discussed above, it implies

that distribution-free CIs must necessarily be wide. Specifically, their widths cannot shrink

to 0 as n Ñ 8. This can be treated as an impossibility result for the existence of informative

distribution-free CIs.

One way to circumvent the above impossibility result is to consider CIs at a ‘coarser resolution’.

We introduce the notion of a CI or PS ‘with respect to a function f ’ (w.r.t. f ).

Definition 3.3 (CI or PS w.r.t. f ). Fix a predictor f : X Ñ r0, 1s and let pX, Y q „ P . A function

C : r0, 1s Ñ I is said to be a p1 ´ αq-CI with respect to f if

PpE rY | fpXqs P CpfpXqqq ě 1 ´ α. (3.8)

Analogously, a function S : r0, 1s Ñ L is a p1 ´ αq-PS with respect to f if

PpY P SpfpXqqq ě 1 ´ α. (3.9)

These definitions can be extended in a natural way if Rangepfq ‰ r0, 1s, as we do in the published

version of this chapter (Gupta et al., 2020). If f is injective (one-to-one), then (3.8) and (3.9)

reduce to (3.4) and (3.3). The more interesting (and typical) case is when f is not injective. In this

case, the level sets of f partition X at a coarser ‘resolution’: X “ YzPr0,1stx : fpxq “ zu, and

we can ask the (easier) question of producing a single CI or PS with respect to every z P r0, 1s,

instead of every x P X .

Naturally, for (3.8) or (3.9) to hold, the functions C and S must depend on P . Similar to the

post-hoc calibration setting, we ask if C or S can be learnt using independent calibration data

Dn drawn from P . Let C denote an algorithm that produces a CI function using f and Dn, Cn “

CpDn, fq : r0, 1s Ñ I , where the notation Cn reinforces the dependence of the CI function on Dn.

Similarly, let S denote an algorithm that produces a PS function, Sn “ SpDn, fq : r0, 1s Ñ L.

Akin to distribution-free approximate calibration (3.7), we have the following definitions for

distribution-free CIs and PSs. Cn is said to be a distribution-free CI w.r.t. a fixed f if

P n`1
pE rYn`1 | fpXn`1qs P CnpfpXn`1qqq ě 1 ´ α for every P , (3.10)

and Sn is said to be a distribution-free PS w.r.t. a fixed f if

P n`1
pYn`1 P SnpfpXn`1qqq ě 1 ´ α for every P . (3.11)

Table 3.1 summarizes the notation introduced so far. In the rest of the chapter, whenever we

refer to objects with an ‘n’ in the subscript such as hn, Cn, Sn, they should be understood as the

outputs of some algorithms A, C,S when supplied with input Dn and f .

3.2.3 When is distribution-free post-hoc uncertainty quantification
possible?

Are distribution-free guarantees such as (3.7), (3.10), and (3.11) too restrictive, or can they be

achieved? We show that the answer for calibration and CIs (roughly) depends on how ‘large’
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Calibration data Dn “ tpXi, YiquiPrns

Test point pXn`1, Yn`1q

General data point pX, Y q

Probability over i.i.d. calibration and test data P, P n`1

Predictor learnt on (a split of the) training data f : X Ñ r0, 1s

General functions with unspecified sources of randomness f, C, S
Random functions of the calibration data Dn hn, Cn, Sn

Table 3.1: Notation used in this chapter to study post-hoc uncertainty quantification.

the range of f is. The result of Barber (2020) implies that if f is injective—that is f maps unique

elements to unique elements—then informative distribution-free CIs are impossible. On the

other hand, if f maps all of X to a single element, a short interval around the empirical mean of

the Yi’s achieves (3.10) since E rY | fpXqs “ E rY s. In this work, we characterize the transition

point between these two behaviors.

In Section 3.3, we extend the above impossibility result to all functions f whose range contains

any sub-interval of r0, 1s, a condition satisfied by all parametric machine learning models. On

the other hand, in Section 3.4 we propose algorithms that achieve distribution-free CIs for f
with finite range. We also show a close relationship between approximate calibration and CIs

w.r.t. f . Based on this relationship, the results for distribution-free CIs extend to distribution-free

calibration, and vice-versa. Specifically, no parametric (post-hoc) calibration algorithm, such

as Platt scaling (Platt, 1999) or temperature scaling (Guo et al., 2017), can be distribution-free

calibrated. On the other hand, distribution-free calibration guarantees can be shown for the

discrete binning method of histogram binning (Zadrozny and Elkan, 2001).

In contrast to CIs and calibration, it is well known that meaningful and informative distribution-

free PSs can be produced for any f , using a technique known as split conformal prediction

(Papadopoulos et al., 2002). The broader literature on (non-split) conformal prediction also deals

with techniques that produce distribution-free PSs without fixing an f learnt on a separate split

of the data (Vovk et al., 2005a; Gupta et al., 2022). We do not discuss algorithmic results for

distribution-free PSs in this chapter and refer the reader to one of the aforementioned papers on

conformal prediction.

3.3 Relating the notions of uncertainty quantification

The relationships between the notions of uncertainty quantification are summarized in Figure 3.1.

In this figure, and in the rest of the section, we denote the distribution of the random variable

Z “ fpXq as PfpXq. In Section 3.3.1, we show that if an algorithm provides a CI w.r.t. f , it can

be used to provide approximate calibration and vice-versa (Theorem 3.1). In Section 3.3.2, we

show that if an algorithm constructs a distribution-free CI w.r.t. f , then the constructed CIs

must also be PSs for a large class of distributions P for which PfpXq is nonatomic (Theorem 3.2).
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Approximate

Calibration for f

Confidence

Interval w.r.t. f
Prediction

Set w.r.t. f
Theorem 3.2

(if PfpXq is nonatomic)

Theorem 3.1+

Theorem 3.2Theorem 3.1

Figure 3.1: Relationship between notions of distribution-free uncertainty quantification.

Since we expect the width of CIs to be shorter than the diameter of PSs, this can be interpreted

as an impossibility result for informative distribution-free CIs (Corollary 3.1). Merging these two

results, in Section 3.3.3, we show that meaningful distribution-free calibration is not possible for

certain scoring functions and post-hoc calibration algorithms (Theorem 3.3).

3.3.1 Relating calibration and confidence intervals

Suppose we are given a predictor f : X Ñ r0, 1s that is pϵ, αq-calibrated. Then one can construct

a function C that is a p1 ´ αq-CI: for x P X ,

|E rY | fpxqs ´ fpxq| ď ϵ
looooooooooooooomooooooooooooooon

calibration

ùñ E rY | fpxqs P Cpfpxqq
looooooooooooomooooooooooooon

CI w.r.t. f

:“ rfpxq ´ ϵ, fpxq ` ϵs. (3.12)

On the other hand, given C : r0, 1s Ñ I that is a p1 ´ αq-CI w.r.t. f , define for z P r0, 1s, the

left-endpoint, right-endpoint, and midpoint functions respectively:

uCpzq :“ sup tt : t P Cpzqu , lCpzq :“ inf tt : t P Cpzqu , mCpzq :“ puCpzq ` lCpzqq{2. (3.13)

Consider the midpoint mCpfpxqq as a ‘corrected’ prediction for x P X :

rfpxq :“ mCpfpxqq, x P X , (3.14)

and let ϵ “ supzPRangepfq t|Cpzq|{2u be the largest interval radius. Then
rf is pϵ, αq-calibrated.

These claims are formalized next.

Theorem 3.1. Fix any α P p0, 1q. Let f : X Ñ r0, 1s be a predictor that is pϵ, αq-calibrated for
some ϵ P p0, 1q. Then the function C in (3.12) is a p1 ´ αq-CI with respect to f .

Conversely, fix a scoring function f : X Ñ r0, 1s. If C is a p1 ´ αq-CI with respect to f , then the
predictor rf in (3.14) is pϵ, αq-calibrated for ϵ “ supzPr0,1s t|Cpzq|{2u.

The proof of the theorem is in Appendix 3.B. Note that Theorem 3.1 is not restricted to the

post-hoc uncertainty quantification setting and the calibration and CI functions need not satisfy

distribution-free guarantees as defined in (3.7) or (3.10). In contrast, the relationship between

CIs and PSs stated in the following subsection is specific to the distribution-free setting.
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3.3.2 Relating confidence intervals and prediction sets in the distribution-
free setting

In this section, we relate CIs and PSs with respect to a fixed function f : X Ñ r0, 1s. Consider

the following set of distributions, whose motivation becomes clearly shortly:

Pf :“ tdistributions P over X ˆ Y : PfpXq is nonatomicu. (3.15)

PfpXq being nonatomic means that the distribution of fpXq, when pX, Y q „ P , contains no

atoms or ‘point masses’. Suppose Cn satisfies (3.10), that is, it provides a CI guarantee w.r.t. f
for all distributions P . We show that Cn can be used to provide a modified PS guarantee which

is not distribution-free but holds for all P P Pf :

P n`1
pYn`1 P SnpfpXn`1qqq ě 1 ´ α for every P P Pf . (3.16)

The following result is proved in Appendix 3.B.

Theorem 3.2. Fix f : X Ñ r0, 1s and α P p0, 1q. If Cn is a distribution-free confidence interval
with respect to f , as in (3.10), then Snp¨q “ Cnp¨q X t0, 1u is a p1 ´ αq-prediction set with respect
to f for every P P Pf , as in (3.16).

Above we transformed the CI function Cn to a PS function Sn by performing an intersection

with the t0, 1u. Based on the intuition discussed before Definition 3.3, Theorem 3.2 can be

interpreted as an impossibility result for distribution-free valid CIs that are ‘informative’ for all

distributions.

Corollary 3.1. Fix f : X Ñ r0, 1s and α P p0, 0.5q. If Cn is a distribution-free confidence interval
with respect to f (3.10), and Pf is non-empty, then there exists a distribution P P Pf such that

EPn`1 |CnpfpXn`1qq| ě 0.5 ´ α.

Note that for every P , there exists a CI function with expected width equal to zero: CP p¨q “

tEP rY | fpXq “ ¨su. A desirable property for Cn is consistency: given enough samples from P ,

does Cn recover CP ? Corollary 3.1 shows that if Pf is non-empty, then no distribution-free CI

function can be ‘distribution-free consistent’ for CP — there exist P P Pf for which the average

width of the CI is lower bound by a constant independent of n.

Thus we would like to know when Pf is non-empty. First, note that if the range of f is countable,

then for any P , PfpXq contains atoms (due to the subadditivity of measure, any distribution over

a countable set must contain atoms). Thus Pf is empty and Corollary 3.1 does not apply. On the

other hand, Lemma 3.1 in Appendix 3.B.5 shows that if the range of f is r0, 1s or contains any

sub-interval of r0, 1s, then Pf is non-empty (the proof relies on a technical probability theory

result of Ershov (1975)). Thus Corollary 3.1 applies to all standard parametric machine learning

models, whose range is usually r0, 1s or p0, 1q. In the following subsection, we use Corollary 3.1

to show an impossibility result for certain post-hoc calibration algorithms.

33



3.3.3 Impossibility result for distribution-free post-hoc calibration

Proposition 3.1 shows that a function f is calibrated if and only if it takes the form (3.5) for

some function g. Observe that g essentially provides a partition of X based on the level sets of g.

Denote this partition as tXzuzPZ , where Xz “ tx P X : gpxq “ zu. Then we may equivalently

define f in (3.5) through a set of values tfz “ P pY “ 1 | X P XzquzPZ , setting fp¨q “ fgp¨q.

In this sense, calibration can be viewed as a goal with two parts: (A) identify a ‘meaningful’

partition of X and (B) estimate the conditional probabilities for each partition.

Corollary 3.2 (to Proposition 3.1). Any calibrated classifier f is characterized by an index set Z ,

(A) a partition of X into subsets tXzuzPZ , and

(B) corresponding conditional probabilities tfzuzPZ .

This interpretation motivates the underlying principle of post-hoc calibration. Existing ML

techniques often implicitly do (A). They produce f that, while miscalibrated, may have some

rough monotonicity with respect to the true probability: fpx1q ě fpx2q ðñ PpY “

1 | X “ x1q ě PpY “ 1 | X “ x2q (see Zadrozny and Elkan (2002, Figures 1 and 2) for

examples when such a hypothesis roughly holds on real data). In other words, the partitioning

of X induced by the level sets of f , tXz “ tx : fpxq “ zuuzPr0,1s, is often informative, but

|z ´ PpY “ 1 | Xn`1 P Xzq| may be large. Post-hoc calibration techniques leverage the solution

of (A) provided by f , and focus on (B); they use calibration data Dn to estimate PpY “ 1 | X P

Xzq for every z P Rangepfq.

Thus a post-hoc calibration method ‘recalibrates’ f by mapping its output to a new value in r0, 1s.

Let hn “ ApDn, fq be the output of a post-hoc calibration method A and let mn : r0, 1s Ñ r0, 1s

be the implicit mapping function so that hnpxq “ mnpfpxqq. Consider three popular parametric

algorithms for post-hoc calibration: Platt scaling (Platt, 1999), temperature scaling (Guo et al.,

2017), and beta calibration (Kull et al., 2017). The mapping mn learnt by each of these methods

is strictly monotonic, and hence, injective (one-to-one).
1

Let us call these as ‘injective’ post-hoc

calibration algorithms. We now state the impossibility result for distribution-free calibration.

Theorem 3.3. It is impossible for an injective post-hoc calibration algorithm to be distribution-free
asymptotically calibrated.

The proof of Theorem 3.3 is in Appendix 3.B, but we briefly sketch its intuition below. Since the

mapping mn produced by A is injective, E rY | hnpXqs “ E rY | mnpfpXqqs “ E rY | fpXqs.

Thus a CI w.r.t. hn is also a CI w.r.t. f . As a consequence, if hn is distribution-free pϵn, αq-

calibrated, then by Theorem 3.1,

CnpfpXqq :“ rhnpXq ´ ϵn, hnpXq ` ϵns “ rmnpfpXqq ´ ϵn,mnpfpXqq ` ϵns,

is a distribution-free p1´αq-CI w.r.t. f . Consider any standard parametric function f . As shown

in Appendix 3.B.5, Pf is non-empty for such f . We can thus use Corollary 3.1 to conclude that

the width of any distribution-free CI such as Cn must be lower bounded by 0.5 ´ α (for all

1
This assumes that the parameters satisfy natural constraints as discussed in the original papers: a, b ě 0 for

beta scaling with at least one of them nonzero, A ă 0 for Platt scaling and T ą 0 for temperature scaling.
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n). Thus, 2ϵn ě 0.5 ´ α for all n, which is a constant lower bound on ϵn (since α ă 0.5q. We

conclude that limnÑ8 ϵn ą 0, and asymptotic calibration is impossible.

The implication of Theorem 3.3 is that injective algorithms such as Platt scaling, temperature

scaling, and beta scaling cannot satisfy distribution-free calibration in any meaningful way.

While all parameteric post-hoc calibration methods we are aware of are injective, we conjecture

that a result like Theorem 3.3 holds even more generally for any parametric post-hoc calibration

method, as long as its output is continuous.

Nonparametric calibration methods of isotonic regression (Zadrozny and Elkan, 2002) and his-

togram binning (Zadrozny and Elkan, 2001) are not injective, and thus can potentially satisfy

distribution-free asymptotic calibration guarantees. In the following section, we analyze his-

togram binning and show that any scoring function can be ‘binned’ to achieve distribution-free

calibration. We explicitly quantify the finite-sample approximate calibration guarantees that

automatically also lead to asymptotic calibration. We also discuss calibration in the online

setting and calibration under covariate shift.

3.4 Achieving distribution-free calibration

In Section 3.4.1, we prove a distribution-free approximate calibration guarantee given a fixed

partitioning of the feature space into finitely many sets. This calibration guarantee also leads

to distribution-free asymptotic calibration. In Section 3.4.2, we discuss a natural method for

obtaining such a partition using sample-splitting, called histogram binning. Histogram binning

inherits the bound in Section 3.4.1. This shows that binning schemes lead to distribution-free

approximate calibration. In Section 3.4.3 and 3.4.4 we discuss extensions of this scheme for

streaming data and covariate shift respectively.

3.4.1 Distribution-free calibration given a fixed sample-space partition

Suppose we have a fixed partition of X into B regions tXbubPrBs
, and let πb “ E rY | X P Xbs

be the expected label probability in region Xb. Denote the partition-identity function as B :
X Ñ rBs where Bpxq “ b if and only if x P Xb. Given a calibration set tpXi, YiquiPrns, let

Nb :“ |ti P rns : BpXiq “ bu| be the number of points from the calibration set that belong to

region Xb. In this subsection, we assume that Nb ě 1 (in Section 3.4.2 we show that the partition

can be constructed to ensure that Nb is Ωpn{Bq with high probability). Define

pπb :“
1

Nb

ÿ

i:BpXiq“b

Yi and
pVb :“

1

Nb

ÿ

i:BpXiq“b

pYi ´ pπbq
2

(3.17)

as the empirical average and variance of the Y values in a partition. We now deploy an empirical

Bernstein bound (Audibert et al., 2007) to produce a confidence interval for πb.
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Theorem 3.4. For any α P p0, 1q, with probability at least 1 ´ α,

|πb ´ pπb| ď

d

2pVb lnp3B{αq

Nb

`
3 lnp3B{αq

Nb

, simultaneously for all b P rBs.

The theorem is proved in Appendix 3.C. Using the crude deterministic bound
pVb ď 1 we get that

the width of the confidence interval for partition b is Op1{
?
Nbq. However, if for some b, Xb is

highly informative or homogeneous in the sense that πb is close to 0 or 1, we expect
pVb ! 1. In

this case, Theorem 3.4 adapts and provides an Op1{Nbq width confidence interval for πb. Let

b‹ “ argminbPrBs Nb denote the index of the region with the minimum number of calibration

examples.

Corollary 3.3. For α P p0, 1q, the function hnp¨q :“ pπBp¨q is distribution-free pϵ, αq-calibrated
with

ϵ “

d

2pVb‹ lnp3B{αq

Nb‹

`
3 lnp3B{αq

Nb‹

.

Thus, thnunPN is distribution-free asymptotically calibrated for any α.

The proof is in Appendix 3.C. Thus, any finite partition of X leads to asymptotic calibration.

However, the finite sample guarantee of Corollary 3.3 can be unsatisfactory if the sample-space

partition is chosen poorly, since it might lead to small Nb‹ . In Section 3.4.2, we present a data-

dependent partitioning scheme that provably guarantees that Nb‹ scales as Ωpn{Bq with high

probability. The calibration guarantee of Corollary 3.3 can also be stated conditional on a given

test point:

|E rY | fpXqs ´ fpXq| ď ϵ, almost surely PX . (3.18)

This holds since Theorem 3.4 provides simultaneously valid CIs for all regions Xb.

3.4.2 Identifying a data-dependent partition using sample splitting

Here, we describe ways of constructing the partition tXbubPrBs through fixed-width binning.

Binning uses a sample splitting strategy to learn the partition of X as described in Section 3.4.1.

A split of the data is used to learn the partition and an independent split is used to estimate

tpπbubPrBs. Formally, the labeled data is split at random into a training set Dtr and a calibration set

Dcal. Then Dtr is used to train a scoring function g : X Ñ r0, 1s (in general the range of g could

be any interval of R but for simplicity we describe it for r0, 1s). The scoring function g usually

does not satisfy a calibration guarantee out-of-the-box but can be calibrated using binning.

A binning scheme B is any partition of r0, 1s into B non-overlapping intervals I1, . . . , IB , such

that

Ť

bPrBs
Ib “ r0, 1s and Ib X Ib1 “ H for b ‰ b1

. B and g induce a partition of X as follows:

Xb “ tx P X : gpxq P Ibu , b P rBs. (3.19)

The simplest binning scheme corresponds to fixed-width binning. In this case, bins have the form

Ii “

„

i ´ 1

B
,
i

B

˙

, i “ 1, . . . , B ´ 1 and IB “

„

B ´ 1

B
, 1

ȷ

.
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However, fixed-width binning suffers from the drawback that there may exist bins with very

few calibration points (low Nb), while other bins may get many calibration points. For bins

with low Nb, the pπb estimates cannot be guaranteed to be well calibrated, since the bound of

Theorem 3.4 could be large. To remedy this, we consider uniform-mass binning, which aims to

guarantee that each region Xb contains approximately equal number of calibration points. This

is done by estimating the empirical quantiles of gpXq. First, the calibration set Dcal is randomly

split into two parts, D1
cal

and D2
cal

. For j P rB ´ 1s, the pj{Bq-th quantile of gpXq is estimated

from tgpXiq, i P D1
cal

u. Let us denote the empirical quantile estimates as pqj . Then, the bins are

defined as:

I1 “ r0, pq1q , Ii “ rpqi´1, pqis , i “ 2, . . . , B ´ 1 and IB “ ppqB´1, 1s .

This induces a partition of X as per (3.19). Now, only D2
cal

is used for calibrating the underlying

classifier, as per the calibration scheme defined in Section 3.4.1. Kumar et al. (2019) showed

that uniform-mass binning provably controls the number of calibration samples that fall into

each bin (see Appendix 3.F.2). Building on their result and Corollary 3.3, we show the following

guarantee.

Theorem 3.5. Fix g : X Ñ r0, 1s and α P p0, 1q. There exists a universal constant c such that if
|D1

cal| ě cB lnp2B{αq, then with probability at least 1 ´ α,

Nb‹ ě
∣∣D2

cal

∣∣ {2B ´

b

|D2
cal| lnp2B{αq{2.

Thus even if |D1
cal| does not grow with n, as long as |D2

cal| “ Ωpnq, uniform-mass binning is
distribution-free p rOp

a

B lnp1{αq{nq, αq-calibrated, and hence distribution-free asymptotically
calibrated for any α.

The proof is in Appendix 3.C. In words, if we use a small number of points (independent of

n) for uniform-mass binning, and the rest to estimate bin probabilities, we achieve approx-

imate/asymptotic distribution-free calibration. Note that the probability is conditional on a

fixed predictor g, and hence also conditional on the training data Dtr. Since Theorem 3.5 uses

Corollary 3.3, the calibration guarantee can also be stated conditionally on a fixed test point,

akin to equation (3.18).

3.4.3 Distribution-free calibration in the online setting

So far, we have considered the batch setting with a fixed calibration set of size n. However, often

a practitioner might want to query additional calibration data until a desired confidence level is

achieved. This is called the online or streaming setting. In this case, the results of Section 3.4 are

no longer valid since the number of calibration samples is unknown a priori and may even be

dependent on the data. In order to quantify uncertainty in the online setting, we use time-uniform
concentration bounds (Howard et al., 2021; Howard et al., 2020); these hold simultaneously for

all possible values of the calibration set size n P N.

Fix a partition of X , tXbubPrBs. For some value of n, let the calibration data be given as Dpnq

cal
. We

use the superscript notation to emphasize the dependence on the current size of the calibration
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set. Let tpXb
i , Y

b
i qu

iPrN
pnq

b s
be examples from the calibration set that fall into the partition Xb,

where N
pnq

b :“ |ti P rns : BpXiq “ bu| is the total number of points that are mapped to Xb. Let

the empirical label average and cumulative (unnormalized) empirical variance be denoted as

pV `
b “ 1 _

N
pnq

b
ÿ

i“1

´

Y b
i ´ Y

b
i´1

¯2
, where Y

b
i :“

1

i

i
ÿ

j“1

Y b
j for i P rN

pnq

b s. (3.20)

Note the normalization difference between
pV `
b and

pV b
used in the batch setting. The following

theorem constructs confidence intervals for tπbubPrBs that are valid uniformly for any value of n.

Theorem 3.6. For any α P p0, 1q, with probability at least 1 ´ α,

|πb ´ pπb| ď

7

c

pV `
b ln

´

1 ` ln pV `
b

¯

` 5.3 ln
`

6.3B
α

˘

N
pnq

b

, simultaneously for all b P rBs and all n P N.

(3.21)

The proof is in Appendix 3.C. Due to the crude bound:
pV `
b ď N

pnq

b , we can see that the width of

confidence intervals roughly scales as Op

b

lnp1`lnN
pnq

b q{Npnq

b q. In comparison to the batch setting,

only a small price is paid for not knowing beforehand how many examples will be used for

calibration.

3.4.4 Calibration under covariate shift

Here, we briefly consider the problem of calibration under covariate shift (Shimodaira, 2000).

In this setting, calibration data tpXi, YiquiPrns „ P n
is from a ‘source’ distribution P , while the

test point is from a shifted ‘target’ distribution pXn`1, Yn`1q „ rP “ rPX ˆ PY |X , meaning that

the ‘shift’ occurs only in the covariate distribution while PY |X does not change. We assume the

likelihood ratio (LR)

w : X Ñ R; wpxq :“ d rPXpxq{dPXpxq

is well-defined. The following is unambiguous: if w is arbitrarily ill-behaved and unknown,
the covariate shift problem is hopeless, and one should not expect any distribution-free guaran-
tees. Nevertheless, one can still make nontrivial claims using a ‘modular’ approach towards

assumptions:

Condition (A): wpxq is known exactly and is bounded.

Condition (B): an asymptotically consistent estimator pwpxq for wpxq can be constructed.

We show the following: under Condition (A), a weighted estimator using w delivers approximate

and asymptotic distribution-free calibration; under Condition (B), weighting with a plug-in

estimator for w continues to deliver asymptotic distribution-free calibration. It is clear that Con-

dition (B) will always require distributional assumptions: asymptotic consistency is nontrivial

for ill-behaved w. Nevertheless, the above two-step approach makes it clear where the burden

of assumptions lie: not with calibration step, but with the w estimation step. Estimation of w
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is a well studied problem in the covariate-shift literature and there is some understanding of

what assumptions are needed to accomplish it, but there has been less work on recognizing the

resulting implications for calibration. Luckily, many practical methods exist for estimating w
given unlabeled samples from

rPX (Bickel et al., 2007; Huang et al., 2007; Kanamori et al., 2009).

In summary, if Condition (B) is possible, then distribution-free calibration is realizable, and if

Condition (B) is not met (even with infinite samples), then it implies that w is probably very

ill-behaved, and so distribution-free calibration is also likely to be impossible.

For a fixed partition tXbubPrBs, one can use the labeled data from the source distribution to

estimate E
rP rY | X P Xbs (unlike EP rY | X P Xbs as before), given oracle access to w:

qπ
pwq

b :“

ř

i:BpXiq“bwpXiqYi
ř

i:BpXiq“bwpXiq
. (3.22)

As preluded to earlier, assume that

for all x P X , L ď wpxq ď U for some 0 ă L ď 1 ď U ă 8. (3.23)

The ‘standard’ i.i.d. assumption on the test point equivalently assumes w is known and

L “ U “ 1. We now present our first claim: qπ
pwq

b satisfies a distribution-free approximate

calibration guarantee. To show the result, we assume that the sample-space partition was

constructed via uniform-mass binning (on the source domain) with sufficiently many points, as

required by Theorem 3.5. This guarantees that all regions satisfy |ti : BpXiq “ bu| “ Ωpn{Bq

with high probability.

Theorem 3.7. Assume w is known and bounded (3.23). Then for an explicit universal constant
c ą 0, with probability at least 1 ´ α,∣∣∣qπpwq

b ´ E
rP rY | X P Xbs

∣∣∣ ď c

ˆ

U

L

˙2
c

B lnp6B{αq

2n
, simultaneously for all b P rBs,

as long as n ě cpU{Lq2B ln2
p6B{αq. Thus hnp¨q “ qπ

pwq

Bp¨q
is distribution-free asymptotically cali-

brated for any α.

The proof is in Appendix 3.D. Theorem 3.7 establishes distribution-free calibration under Con-

dition (A). For Condition (B), using k unlabeled samples from the source and target domains,

assume that we construct an estimator pwk of w that is consistent, meaning

sup
xPX

| pwkpxq ´ wpxq| P
Ñ 0. (3.24)

We now define an estimator qπ
p pwkq

b by plugging in pwk for w in the right hand side of (3.22):

qπ
p pwkq

b :“

ř

i:BpXiq“b pwkpXiqYi
ř

i:BpXiq“b pwkpXiq
.

Proposition 3.2. If pwk is consistent (3.24), then hnp¨q “ qπ
p pwkq

Bp¨q
is distribution-free asymptotically

calibrated for any α P p0, 0.5q.
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In Appendix 3.D, we illustrate through preliminary simulations that w can be estimated using

unlabeled data from the target distribution, and consequently approximate calibration can be

achieved on the target domain. Recently, Park et al. (2020) also considered calibration under

covariate shift through importance weighting, but they do not show validity guarantees in

the same sense as Theorem 3.7. For real-valued regression, distribution-free prediction sets

under covariate shift were constructed using conformal prediction (Tibshirani et al., 2019) under

Condition (A), and is thus a precursor to our modular approach.

3.5 Other related work

The problem of assessing the calibration of binary classifiers was first studied in the meteorologi-

cal and statistics literature (Brier, 1950; Sanders, 1963; Murphy and Epstein, 1967; Murphy, 1972a;

Murphy, 1972b; Murphy, 1973; Dawid, 1982; DeGroot and Fienberg, 1983; Bröcker, 2012; Ferro

and Fricker, 2012); we refer the reader to the review by Dawid (2014) for more details. These

works resulted in two common ways of measuring calibration: reliability diagrams (DeGroot

and Fienberg, 1983) and estimates of the squared expected calibration error (ECE) (Sanders,

1963): EpfpXq ´ E rY | fpXqsq2. Squared ECE can easily be generalized to multiclass settings

and some related notions such as absolute deviation ECE and top-label ECE have also been

considered, for instance (Guo et al., 2017; Naeini et al., 2015). ECE is typically estimated through

binning, which provably leads to underestimation of ECE for calibrators with continuous out-

put (Vaicenavicius et al., 2019; Kumar et al., 2019). Certain methods have been proposed to

estimate ECE without binning (Zhang et al., 2020; Widmann et al., 2019), but they require

distributional assumptions for provability.

While these papers have focused on the difficulty of estimating calibration error, ours is the

first formal impossibility result for achieving calibration. In particular, Kumar et al. (2019,

Theorem 4.1) show that the scaling-binning procedure achieves calibration error close to the best

within a fixed, regular, injective parametric class. However, as discussed in Section 3.3.3 (after

Theorem 3.3), we show that the best predictor in such an injective parametric class is itself not

distribution-free calibrated. In summary, our results show not only that (some form of) binning

is necessary for distribution-free calibration (Theorem 3.3), but also sufficient (Corollary 3.3).

Apart from classical methods for calibration (Platt, 1999; Zadrozny and Elkan, 2001; Zadrozny

and Elkan, 2002; Niculescu-Mizil and Caruana, 2005), some new methods have been proposed

recently, primarily for calibration of deep neural networks (Lakshminarayanan et al., 2017; Guo

et al., 2017; Kumar et al., 2018; Tran et al., 2019; Seo et al., 2019; Kuleshov et al., 2018; Kendall

and Gal, 2017; Wenger et al., 2020; Milios et al., 2018). These calibration methods perform well in

practice but do not have distribution-free guarantees. A calibration framework that generalizes

binning and isotonic regression is Venn prediction (Vovk et al., 2003; Vovk et al., 2005a; Vovk

and Petej, 2014; Vovk et al., 2015; Lambrou et al., 2015); we briefly discuss this framework and

show some connections to our work in Appendix 3.E.

Calibration has natural applications in numerous sensitive domains where uncertainty estimation

is desirable (healthcare, finance, forecasting). Recently, calibrated classifiers have been used as
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a part of the pipeline for anomaly detection (Hendrycks et al., 2019; Lee et al., 2018) and label

shift estimation (Saerens et al., 2002; Alexandari et al., 2020; Garg et al., 2020).

3.6 Conclusion

We analyzed post-hoc uncertainty quantification for binary classification problems from the

standpoint of robustness to distributional assumptions. By connecting calibration to confidence

intervals and prediction sets, we established that popular parametric ‘scaling’ methods cannot

provide informative calibration in the distribution-free setting. In contrast, we showed that a

nonparametric ‘binning’ method — histogram binning — satisfies approximate and asymptotic

calibration guarantees without distributional assumptions. We also established guarantees for

the cases of streaming data and covariate shift.

Takeaway message. Recent calibration methods that perform binning on top of parametric

methods (Platt-binning (Kumar et al., 2019) and IROvA-TS (Zhang et al., 2020)) have achieved

strong empirical performance. In light of our theoretical findings, we recommend some form of

binning as the last step of calibrated prediction due to the robust distribution-free guarantees

provided by Theorem 3.4.

3.7 Broader impact

Machine learning is regularly deployed in real-world settings, including areas having high impact

on individual lives such as granting of loans, pricing of insurance and diagnosis of medical

conditions. Often, instead of hard 0{1 classifications, these systems are required to produce soft

probabilistic predictions, for example of the probability that a startup may go bankrupt in the

next few years (in order to determine whether to give it a loan) or the probability that a person

will recover from a disease (in order to price an insurance product). Unfortunately, even though

classifiers produce numbers between 0 and 1, these are well known to not be ‘calibrated’ and

hence not be interpreted as probabilities in any real sense, and using them in lieu of probabilities

can be both misleading (to the bank granting the loan) and unfair (to the individual at the

receiving end of the decision).

Thus, following early research in meteorology and statistics, in the last couple of decades the

ML community has embraced the formal goal of calibration as a way to quantify uncertainty

as well as to interpret classifier outputs. However, there exist other alternatives to quantify

uncertainty, such as confidence intervals for the regression function and prediction sets for the

binary label. There is not much guidance on which of these should be employed in practice, and

what the relationship between them is, if any. Further, while there are many post-hoc calibration

techniques, it is unclear which of these require distributional assumptions to work and which

do not—this is critical because making distributional assumptions (for convenience) on financial

or medical data is highly suspect.

This chapter explicitly relates the three aforementioned notions of uncertainty quantification
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without making distributional assumptions, describes what is possible and what is not. Im-

portantly, by providing distribution-free guarantees on well-known variants of binning, we

identify a conceptually simple and theoretically rigorous way to ensure calibration in high-

risk real-world settings. Our tools are thus likely to lead to fairer systems, better estimates of

risks of high-stakes decisions, and more human-interpretable outputs of classifiers that apply

out-of-the-box in many real-world settings because of the assumption-free guarantees.
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Appendices for Chapter 3

The Appendix contains proofs of results in Chapter 3 ordered as they appear. Auxiliary results

needed for some of the proofs are stated in Appendix 3.F.

3.A Proof of Proposition 3.1

The ‘if’ part of the theorem is due to Vaicenavicius et al. (2019, Proposition 1); we reproduce it

for completeness. Let σpgq, σpfq be the sub σ-algebras generated by g and f respectively. By

definition of f , we know that f is σpgq-measurable and, hence, σpfq Ď σpgq. We now have:

E rY | fpXqs “ E rE rY | gpXqs | fpXqs (by tower rule since σpfq Ď σpgq)

“ E rfpXq | fpXqs (by property (3.5))

“ fpXq.

The ‘only if’ part can be verified for g “ f . Since f is perfectly calibrated,

E rY | fpXq “ fpxqs “ fpxq,

almost surely PX .

3.B Proofs of results in Section 3.3

3.B.1 Proof of Theorem 3.1

Assume that one is given a predictor f that is pϵ, αq-calibrated. Then the assertion follows from

the definition of pϵ, αq-calibration since:

|E rY | fpXqs ´ fpXq| ď ϵ ùñ E rY | fpXqs P CpfpXqq.

Now we show the proof in the other direction. If mC was injective, E rY | mCpfpXqqs “

E rY | fpXqs and thus if E rY | fpXqs P CpfpXqq (which happens with probability at least

1 ´ α), we would have E rY | mCpfpXqqs P CpfpXqq and so

|E rY | mCpfpXqqs ´ mCpfpXq| ď sup
zPRangepfq

t|Cpzq|{2u “ ϵ.
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This serves as an intuition for the proof in the general case, when mC need not be injective.

Note that,

|E rY | mCpfpXqqs ´ mCpfpXqq| “ |E rY | mCpfpXqqs ´ E rmCpfpXqq | mCpfpXqqs|
p1q
“ |E rE rY | fpXqs | mCpfpXqqs ´ E rmCpfpXqq | mCpfpXqqs|
p2q
“ |E rE rY | fpXqs ´ mCpfpXqq | mCpfpXqqs|
p3q

ď E r|E rY | fpXqs ´ mCpfpXqq| | mCpfpXqqs , (3.25)

where we use the tower rule in (1) (since mC is a function of f ), linearity of expectation in

(2) and Jensen’s inequality in (3). To be clear, the outermost expectation above is over fpXq

(conditioned on mCpfpXqq). Consider the event

A : E rY | fpXqs P CpfpXqq.

On A, by definition we have:

|E rY | fpXqs ´ mCpfpXqq| “
uCpfpXqq ´ lCpfpXqq

2
ď sup

zPRangepfq

ˆ

|Cpzq|

2

˙

“ ϵ.

By monotonicity property of conditional expectation, we also have that conditioned on A,

E r|E rY | fpXqs ´ mCpfpXqq| | mCpfpXqqs ď E rϵ | mCpfpXqqs “ ϵ,

with probability 1. Thus by the relationship proved in the series of equations ending in (3.25),

we have that conditioned on A, with probability 1,

|E rY | mCpfpXqqs ´ mCpfpXqq| ď ϵ.

Since we are given that C is a p1 ´ αq-CI with respect to f , PpAq ě 1 ´ α. For any event B, it

holds that P pBq ě P pB|AqPpAq. Setting

B : |E rY | mCpfpXqqs ´ mCpfpXqq| ď ϵ,

we obtain:

P p|E rY | mCpfpXqqs ´ mCpfpXqq| ď ϵq ě 1 ´ α.

Thus, we conclude that mCpfp¨qq is pϵ, αq-calibrated.

3.B.2 Proof of Theorem 3.2

In the proof, we denote the operation Cp¨q X t0, 1u as discpCq (for ‘discretize’). Suppose Cn is

a p1 ´ αq-CI with respect to f for all distributions P . We show that Cn covers the label Yn`1

itself for distributions P P Pf (and thus discpCnq would also cover the labels).
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Consider any distribution P P Pf is nonatomic. Fix a set of m ě n ` 1 samples from the distri-

bution P denoted as T “ tpApjq, BpjqqujPrms. Given T , consider a distribution Q corresponding

to the following sampling procedure for pX, Y q „ Q:

sample an index j uniformly at random from rms and set pX, Y q “ pApjq, Bpjq
q.

The distribution function for Q is given by

m´1
m
ÿ

j“1

δpApjq,Bpjqq.

where δpa,bq denotes the points mass at pa, bq. Note that Q is only defined conditional on T .

Observe the following facts about Q:

• supp(Qq “ tpApjq, BpjqqujPrms.

• Consider any px, yq P supppQq. Let px, yq “ pApjq, Bpjqq for some j P rms. Then

EQ rY | fpXq “ fpxqs “ EQ

“

Y | fpXq “ fpApjq
q
‰

ξ1
“ EQ

“

Y | X “ Apjq
‰

ξ2
“ Bpjq

“ y.

Above ξ1 holds since PfpXq is nonatomic so that the fpXpiqq’s are unique almost surely.

Note that PfpXq is nonatomic only if PX itself is nonatomic. Thus the Apjq
’s are unique

almost surely, and ξ2 follow. In other words, if pX, Y q „ Q, then we have

Y “ EQ rY | fpXqs . (3.26)

Suppose the data distribution was Q, that is tpXi, YiquiPrn`1s „ Qn`1
. Define the event that the

CI guarantee holds as

E1 : E rYn`1 | fpXn`1qs P CnpfpXn`1qq, (3.27)

and the event that the PS guarantee holds as

E2 : Yn`1 P CnpfpXn`1qq. (3.28)

Then due to (3.26), the events are exactly the same under Q:

E1
Q
” E2. (3.29)

In particular, this means

Qn`1
pE rYn`1 | fpXn`1qs P CnpfpXn`1qqq “ Qn`1

pYn`1 P CnpfpXn`1qqq. (3.30)

If Cn is a distribution-free CI, then Qn`1pE1q ě 1 ´ α and thus Qn`1pE2q ě 1 ´ α. This shows

that for Q, discpCnq is a p1 ´ αq-PI.
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Note that Q corresponds to sampling with replacement from a fixed set T , where each element

of T is drawn with respect to P . Although Q ‰ P , we expect that as m Ñ 8 (while n is fixed),

Q and P coincide. This would prove the result for general P . To formalize this intuition, we

describe a distribution which is close to Q but corresponds to sampling without replacement
from T instead.

For this, now suppose that tpXi, YiquiPrn`1s „ Rn`1
where Rn`1

corresponds to sampling

without replacement from T . Formally, to draw from Rn`1
, we first draw a surjective mapping

λ : rn ` 1s Ñ rms as

λ „ Unif pn-sized ordered subsets of rmsq,

and set pXi, Yiq “ pApλpiqq, Bpλpiqqq for i P rn ` 1s.

First we quantify precisely the intuition that as m Ñ 8, Qn`1
and Rn`1

are essentially iden-

tical. Consider the event “T : no index is repeated when sampling from Qn`1
”. Let PpT q “ τm

for some m and note that limmÑ8 τm “ 1. Now consider any probability event E over

tpXi, YiquiPrn`1s (such as E1 or E2). We have

Qn`1
pEq “ Qn`1

pE|T q ¨ PpT q ` Qn`1
pE|T c

q ¨ PpT c
q

P rQn`1
pE|T q ¨ PpT q, Qn`1

pE|T q ¨ PpT q ` PpT c
qs.

Now observe that Qn`1pE|T q “ Rn`1pEq to conclude

Qn`1
pEq P rRn`1

pEq ¨ PpT q, Rn`1
pEq ¨ PpT q ` PpT c

qs.

Since m ě n ` 1, PpT q ‰ 0 so we can invert the above and substitute τm “ PpT q to get

Rn`1
pEq P

“

τ´1
m pQn`1

pEq ´ p1 ´ τmqq, τ´1
m Qn`1

pEq
‰

. (3.31)

Consider E “ E2 defined in equation (3.28). We showed that Qn`1pE2q ě 1 ´ α. Thus from

(3.31),

Rn`1
pE2q ě τ´1

m p1 ´ α ´ p1 ´ τmqq.

The above is with respect to Rn`1
which is conditional on a fixed draw T . However since the

right hand side is independent of T , we can also include the randomness in T to say:

PRn`1,T pE2q ě τ´1
m p1 ´ α ´ p1 ´ τmqq. (3.32)

Observe that if we consider the marginal distribution over Rn`1
and T (that is we include the

randomness in T as above), tpXi, YiquiPrn`1s
iid
„ P . (This is not true if we do not marginalize

over T , since due to sampling without replacement, the pXi, Yiq’s are not independent.) Thus

equation (3.32) can be restated as

P n`1
pE2q ě τ´1

m p1 ´ α ´ p1 ´ τmqq,

Since m can be set to any number and limmÑ8 τm “ 1, we can indeed conclude

P n`1
pE2q ě 1 ´ α.

Recall that E2 is the event that Yn`1 P CnpXn`1q; equivalently Yn`1 P discpCnpXn`1qq. Thus

discpCnq provides a (1 ´ α)-PI for all P P Pf .
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3.B.3 Proof of Corollary 3.1

Consider any distribution Q P Pf such that QfpXq is nonatomic. Then define P such that

PX “ QX and P pY “ 1 | Xq “ 0.5 a.s. QX . Clearly, PfpXq “ QfpXq is nonatomic, so that

P P Pf . Further, EP rYn`1 | fpXqs “ 0.5 a.s. PfpXq.

Since Cn is a distribution-free CI w.r.t. f and P P Pf , by Theorem 3.2, Cn must provide both a

prediction set and a confidence interval for P :

P n`1
pE rYn`1 | fpXn`1qs P CnpfpXn`1qqq ě 1 ´ α,

and

P n`1
pYn`1 P CnpfpXn`1qqq ě 1 ´ α.

Thus by a union bound

P n`1
ptYn`1,E rYn`1 | fpXn`1qsu Ď CnpfpXn`1qqq ě 1 ´ 2α. (3.33)

Note that if

tYn`1,E rYn`1 | fpXn`1qsu Ď CnpfpXn`1qq,

then |CnpXn`1q| ě |Yn`1 ´ E rYn`1 | fpXn`1qs| ě 0.5. Thus

P n`1
p|CnpfpXn`1qq| ě 0.5q ě 1 ´ 2α.

Consequently we have

EPn`1 |CnpfpXn`1qq| ě 0.5p1 ´ 2αq

“ 0.5 ´ α.

This concludes the proof.

3.B.4 Proof of Theorem 3.3

Suppose A is distribution-free asymptotically calibrated for some α P p0, 0.5q and some tϵn P

r0, 1sunPN with limnÑ8 ϵn “ 0. We show that this assumption leads to a contradiction to

Corollary 3.1.

Consider any function f : X Ñ r0, 1s. By the definition of asymptotic calibration, hn “

ApDn, fq is pϵn, αq-calibrated for every n P N. Approximate calibration implies that for the

event E1 : |E rY | hnpXqs ´ hnpXq| ď ϵn, we have P n`1pE1q ě 1 ´ α. Following the intuition

of Theorem 3.1, observe that the event E1 is clearly identical to the event E2 : E rY | hnpXqs P

rhnpXq ´ ϵn, hnpXq ` ϵns. Thus P n`1pE2q ě 1 ´ α. Next, note that since the mapping mn

produced by A is injective, E rY | hnpXqs “ E rY | mnpfpXqqs “ E rY | fpXqs. Thus, defining

CnpfpXqq :“ rmnpfpXqq ´ ϵn,mnpfpXqq ` ϵns “ rhnpXq ´ ϵn, hnpXq ` ϵns, we have that

1 ´ α ď P n`1
pE2q
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“ P n`1
pE rY | hnpXqs P rhnpXq ´ ϵn, hnpXq ` ϵnsq

“ P n`1
pE rY | fpXqs P rhnpXq ´ ϵn, hnpXq ` ϵnsq

“ P n`1
pE rY | fpXqs P CnpfpXqqq,

showing that the defined Cn is a distribution-free p1 ´ αq-CI w.r.t. f . Further, since we have

that supzPr0,1s |Cnpzq| “ 2ϵn, for any distribution P , we have

lim
nÑ8

EPn`1|CnpfpXn`1qq| ď 2 lim
nÑ8

ϵn “ 0.

Thus, there exists a constant m such that for all n ě m and any distribution P ,

EPn`1 |CnpfpXn`1qq| ă 0.5 ´ α. (3.34)

(Note that this requires 0.5 ´ α ą 0, which is true since α P p0, 0.5q.)

Clearly, Corollary 3.1 is in contradiction to (3.34), as long as the assumptions required for

Corollary 3.1 hold. We already have that Cn is a distribution-free p1 ´ αq-CI w.r.t. f . All we

need to do is exhibit a function f such that Pf ‰ H. Indeed, Lemma 3.1 shows that any f whose

range contains an interval of r0, 1s suffices.

Having satisfied the assumptions of Corollary 3.1, we conclude that there exists a distribution

Q P Pf such that

EQn`1 |CnpfpXn`1qq| ě 0.5 ´ α.

This contradicts (3.34). Hence our hypothesis that A is distribution-free asymptotically calibrated

must be false, concluding the proof.

3.B.5 Characterizing a class of functions f for which Pf is non-empty

Lemma 3.1. If Rangepfq contains a sub-interval of r0, 1s, then Pf is non-empty.

Proof. Let the interval I “ ra, bs with a ă b P r0, 1s be contained in Rangepfq, that is,

@z P I, Dx P X : fpxq “ z. (3.35)

Let λ denote the Lebesgue measure on r0, 1s and Br0,1s the Borel σ-algebra on r0, 1s. Define the

uniform probability measure I on P 1
:

P 1
pSq “ λpS X Iq{λpIq; S P Br0,1s. (3.36)

This is well defined since λpIq “ b ´ a ą 0. Clearly, P 1
does not have atoms on Br0,1s.

We now want to construct a measure P ‹
on the Borel σ-algebra on X such that the push-forward

of P ‹
under f is P 1

. One can easily check that

␣

f´1pSq : S P Br0,1s

(

defines a σ-algebra on X .

Then, one can define a measure P ‹
over this σ-algebra as P ‹pf´1pSqq “ P 1pSq. Can P ‹

be

extended to the Borel σ-algebra over X ? Ershov (1975) studied this problem, leading to the

following result.
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Theorem 3.8 (Theorem 2.5 by Ershov (1975), adapted). Let X and Y be complete and separable
metric spaces with BX and BY being the corresponding Borel σ-algebras. Let f : pX ,BX q Ñ

pY ,BYq be a measurable mapping and ν a probability measure on pY ,BYq. If f satisfies

f´1
pBq ‰ H for all B P BY : νpBq ą 0, (3.37)

then there exists a probability measure µ on pX ,BX q satisfying

µpf´1
pBqq “ νpBq, @B P BY .

We invoke Ershov’s result with Y “ r0, 1s and ν “ P 1
. Assumption (3.35) guarantees that

condition (3.37) is fulfilled. We conclude that there exists a probability measure P ‹
on pX ,BX q,

for which P ‹
fpXq

“ P 1
is non-atomic. Thus P ‹ P Pf , concluding the proof.

3.C Proofs of results in Section 3.4 (other than Section 3.4.4)

3.C.1 Proof of Theorem 3.4

Let EBpxq be the event that pBpX1q, . . . ,BpXnqq “ pBpx1q, . . . ,Bpxnqq. On the event EBpxq,

within each region Xb, the number of point from the calibration set is known and the Yi’s in

each bin represent independent Bernoulli random variables that share the same mean πb “

E rY | X P Xbs. Consider any fixed region Xb, b P rBs. Using Theorem 3.11, we obtain that:

P

¨

˝|πb ´ pπb| ą

d

2pVb lnp3B{αq

Nb

`
3 lnp3B{αq

Nb

ˇ

ˇ

ˇ
EBpxq

˛

‚ď α{B.

Applying union bound across all regions of the sample-space partition, we get that:

P

¨

˝@b P rBs : |πb ´ pπb| ď

d

2pVb lnp3B{αq

Nb

`
3 lnp3B{αq

Nb

ˇ

ˇ

ˇ
EBpxq

˛

‚ě 1 ´ α.

Because this is true for any EBpxq, we can marginalize to obtain the assertion of the theorem in

unconditional form.

3.C.2 Proof of Corollary 3.3

We convert the per-bin confidence interval of Theorem 3.4 to a calibration guarantee using the

same intuition as that of Theorem 3.1. Define the function C : rBs Ñ I given by

Cnpbq “

»

–

pπb ´

¨

˝

d

2pVb lnp3B{αq

Nb

`
3 lnp3B{αq

Nb

˛

‚, pπb `

d

2pVb lnp3B{αq

Nb

`
3 lnp3B{αq

Nb

fi

fl ,
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for every b P rBs. Then by Theorem 3.4, Cn provides a ‘p1´αq-CI with respect to B : X Ñ rBs’.

While Definition 3.3 defined CIs with respect to a function whose range is r0, 1s, it can be naturally

extended for CIs with respect to functions with another range such as B. In Section 3.3.1, the

calibrated function constructed from C was defined as
rfpxq :“ mCpfpxqq; the same construction

applies even if Rangepfq ‰ r0, 1s. Specifically, for the C defined above,
rfpxq “ pπBpxq. The

arguments in the proof of the CI-to-calibration part of Theorem 3.1 give that
rf is pϵ, αq-calibrated

with

ϵ “ sup
bPrBs

|Cpbq| {2 “

d

2pVb‹ lnp3B{αq

Nb‹

`
3 lnp3B{αq

Nb‹

.

This shows the approximate calibration result. Next, we show the asymptotic calibration result.

Suppose some bin b has PpBpXq “ bq “ 0. Then, a test point Xn`1 almost surely does not

belong to the bin, and the bin can be ignored for our calibration guarantee. Thus without loss of

generality, suppose every b P rBs satisfies

PpBpXq “ bq ą 0.

Let minbPrBs PpBpXq “ bq “ τ ą 0. Then for a fixed number of samples n, any particular bin b,
and any constant α P p0, 1q we have by Hoeffding’s inequality with probability 1 ´ α{B

Nb ě nτ ´

c

n lnpB{αq

2
.

Taking a union bound, we have with probability 1 ´ α, simultaneously for every b P rBs,

Nb ě nτ ´

c

n lnpB{αq

2
“ Ωpnq,

and in particular Nb‹ “ Ωpnq where b‹ “ argminbPrBs Nb. Thus by the first part of this corollary,

hn is ϵn calibrated where ϵn “ Op
?
n´1q “ op1q. This concludes the proof.

3.C.3 Proof of Theorem 3.5

Denote |D2
cal| “ n. Let pj “ PpgpXq P Ijq be the true probability that a random point falls into

partition Xj . Assume c is such that we can use Lemma 3.2 to guarantee that with probability at

least 1 ´ α{2, uniform mass binning scheme is 2-well-balanced. Hence, with probability at least

1 ´ α{2:

1

2B
ď pj ď

2

B
, @j P rBs. (3.38)

Moreover, by Hoeffding’s inequality we get that for any fixed region of sample-space partition,

with probability at least 1 ´ α{2B, for a fixed j P rBs,

Nj ě npj ´

c

n lnp2B{αq

2
. (3.39)
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Hence, by union bound across applied accross all regions and using (3.38), we get that with

probability at least 1 ´ α{2:

Nb‹ ě
n

2B
´

c

n lnp2B{αq

2
,

where the first term dominates asymptotically (for fixed B). Hence, we get that with probability

at least 1´α, Nb‹ “ Ω pn{Bq. By invoking the result of Corollary 3.3 and observing that
pVb ď 1,

we conclude that uniform mass binning is pϵ, αq-calibrated with ϵ “ Op
a

B lnpB{αq{nq as

desired. This also leads to asymptotic calibration by Corollary 3.3.

3.C.4 Proof of Theorem 3.6

The proof is based on the result for an empirical-Bernstein confidence sequences for bounded

observations (Howard et al., 2021). We condition on the event E8
Bpxq

: pBpX1q,BpX1q, . . . q “

pBpx1q,Bpx2q, . . . q, that is the random variables denoting which partition the infinite stream of

samples fall in (thus allowing our bound to hold for every possible value of n). On E8
Bpxq

, the

label values within each partition of the sample-space partition represent independent Bernoulli

random variable that share the same mean πb “ E rY | X P Xbs , b P rBs. Consequently,

the bound obtained can be marginalized over E8
Bpxq

to obtain the assertion of the theorem in

unconditional form. Now we show the bound that applies conditionally on E8
Bpxq

.

Consider any fixed region of the sample-space partition Xb and the corresponding points
␣`

Xb
i , Y

b
i

˘(Nb

i“1
. Then St “

`
řt

i“1 Y
b
i

˘

´ tπb is a sub-exponential process with variance process:

pV `
t “

t
ÿ

i“1

´

Y b
i ´ Y

b

i´1

¯2

.

Howard et al. (2020, Proposition 2) implies that St is also a sub-gamma process with variance

process
pVt and the same scale c “ 1. Since the theorem holds for any sub-exponential uniform

boundary, we choose one based on analytical convenience. Recall definition of the polynomial

stitching function

Sαpvq :“
b

k2
1vlpvq ` k2

2c
2l2pvq ` k2clpvq, where

$

’

&

’

%

lpvq :“ lnhplnηpv{mqq ` lnpl0{αq,

k1 :“ pη1{4 ` η´1{4q{
?
2,

k2 :“ p
?
η ` 1q{

?
2.

where l0 “ 1 for the scalar case. Note that for c ą 0 it holds that Sαpvq ď k1
a

vlpvq ` 2ck2lpvq.

From Howard et al. (2021, Theorem 1), it follows that upvq “ Sαpv _ mq is a sub-gamma

uniform boundary with scale c and crossing probability α. Applying Theorem 3.10 with hpkq Ð

pk`1qsζpsq where ζp¨q is Riemann zeta function and parameters η Ð e, s Ð 1.4, c Ð 1, m Ð 1
and α Ð α{p2Bq, yields that k2 ď 1.88, k1 ď 1.46 and lpvq “ 1.4 ¨ ln ln pevq ` lnp2ζp1.4qB{αq.

Since Theorem 3.10 provides a bound that holds uniformly across time t, then it provides a

guarantee for t “ Nb, in particular. Hence, with probability at least 1 ´ α{B,

|πb ´ pπb| ď

1.46

c

pV `
b ¨ 1.4 ¨ ln ln

´

e
´

pV `
b _ 1

¯¯

` lnp6.3B{αq

Nb
`
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5.27 ¨ ln ln
´

e
´

pV `
b _ 1

¯¯

` 3.76 lnp6.3B{αq

Nb

ď

7

c

pV `
b ¨ ln ln

´

e
´

pV `
b _ 1

¯¯

` 5.3 lnp6.3B{αq

Nb
.

using that

?
x ` y ď

?
x `

?
y and ln lnpexq ď

?
x ln ln ex for x ě 1. Finally, we apply a

union bound to get a guarantee that holds simultaneously for all regions of the sample-space

partition.

3.D Calibration under covariate shift (including proofs of
results in Section 3.4.4)

The results from Section 3.4.4 are proved in Appendix 3.D.1 (Theorem 3.7) and 3.D.3 (Proposi-

tion 3.2). To show Theorem 3.7, we first propose and analyze a slightly different estimator than

(3.46) that is unbiased for π
pwq

b , but needs additional oracle access to the parameters tmbubPrBs

defined as

mb “ P pX P Xbq { rP pX P Xbq.

The ratio mb denotes the ‘relative mass’ of region Xb. (For simplicity, we assume that
rP pX P

Xbq ą 0 for every b since otherwise the test-point almost surely does not belong to Xb and

estimation in that bin is not relevant for a calibration guarantee.) We then show that mb can

be estimated using w, which would lead to the proposed estimator qπ
pwq

b . First, we establish the

following relationship between E
rP rY | X P Xbs and EP rY | X P Xbs.

Proposition 3.3. Under the covariate shift assumption, for any b P rBs,

E
rP rY | X P Xbs “ mb ¨ EP rwpXqY | X P Xbs .

Proof. Observe that

d rP pX | X P Xbq

dP pX | X P Xbq
“

d rP pXq

dP pXq
¨
P pX P Xbq

rP pX P Xbq
“ wpXq ¨ mb.

Thus we have,

E
rP rY | X P Xbs

p1q
“ E

rP

“

E
rP rY | Xs | X P Xb

‰

p2q
“ E

rP rEP rY | Xs | X P Xbs

p3q
“ EP

«

d rP pX | X P Xbq

dP pX | X P Xbq
¨ EP rY | Xs | X P Xb

ff

p4q
“ mb ¨ EP rwpXqEP rY | Xs | X P Xbs
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p5q
“ mb ¨ EP rEP rwpXqY | Xs | X P Xbs

p6q
“ mb ¨ EP rwpXqY | X P Xbs ,

where in (1) we use the tower rule, in (2) we use the covariate shift assumption, (3) can be seen

by using the integral form of the expectation, (4) uses the observation at the beginning of the

proof, (5) uses that wpXq is a function of X and finally, (6) uses the tower rule.

Let Nb denote the number of calibration points from the source domain that belong to bin b.
Given Proposition 3.3, a natural estimator for E

rP rY | X P Xbs is given by:

pπ
pwq

b :“
1

Nb

ÿ

i:BpXiq“b

mbwpXiqYi. (3.40)

Estimation properties of pπ
pwq

b are given by the following theorem.

Theorem 3.9. Assume that supxwpxq “ U ă 8. For any α P p0, 1q, with probability at least
1 ´ α,∣∣∣pπpwq

b ´ E
rP rY | X P Xbs

∣∣∣ ď

c

2pV
pwq

b lnp3B{αq

Nb
`

3mbU lnp3B{αq

Nb
, simultaneously for all b P rBs,

where pV
pwq

b “ 1
Nb

ř

i:BpXiq“bpmbwpXiqYi ´ pπ
pwq

b q2.

The proof is given in Appendix 3.D.2. Next, we discuss a way of estimating mb using likelihood

ratio w instead of relying on oracle access. Observe that

d rP pX | X P Xbq

dP pX | X P Xbq
“

d rP pXq

dP pXq
¨
P pX P Xbq

rP pX P Xbq
“ wpXq ¨ mb.

Thus we have,

EP rwpXq | X P Xbs “ m´1
b EP

«

d rP pX | X P Xbq

dP pX | X P Xbq
| X P Xb

ff

“ m´1
b , (3.41)

which suggests a possible estimator for mb given by

pmb “

˜

ř

i:BpXiq“bwpXiq

Nb

¸´1

, b P rBs. (3.42)

On substituting this estimate for mb in (3.40), we get a new estimator

ř

i:BpXiq“bwpXiqYi
ř

i:BpXiq“bwpXiq
,

which is exactly qπ
pwq

b . With this observation, we now prove Theorem 3.7.
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3.D.1 Proof of Theorem 3.7

Let us define rb :“ 1{mb and

prb “

ř

i:BpXiq“bwpXiq

Nb

. (3.43)

Step 1 (Uniform lower bound for Nb). Since the regions of the sample-space partition were

constructed using uniform-mass binning, the guarantee of Theorem 3.5 holds. Precisely, we

have that with probability at least 1 ´ α{3, simultaneously for every b P rBs,

Nb ě
n

2B
´

c

n lnp6B{αq

2
.

Step 2 (Approximating rb). Observe that the estimator (3.43) is an average of Nb random

variables bounded by the interval r0, U s. Let EBpxq be the event that pBpX1q, . . . ,BpXnqq “

pBpx1q, . . . ,Bpxnqq. On the event EBpxq, within each region Xb, the number of point from

the calibration set is known and the Yi’s in each bin represent independent Bernoulli random

variables that share the same mean E rwpXq | X P Xbs. Consider any fixed region Xb, b P rBs.

By Hoeffding’s inequality, it holds that

P

˜

|rb ´ prb| ą

d

U2 lnp6B{αq

2Nb

ˇ

ˇ

ˇ
EBpxq

¸

ď α{p3Bq.

Applying union bound across all regions of the sample-space partition, we get that:

P

˜

Db P rBs : |rb ´ prb| ą

d

U2 lnp6B{αq

2Nb

ˇ

ˇ

ˇ
EBpxq

¸

ď α{3.

Because this is true for any EBpxq, we can marginalize to obtain that with probability at least

1 ´ α{3,

@b P rBs, |rb ´ prb| ď

d

U2 lnp6B{αq

2Nb

. (3.44)

Step 3 (Going from rb to mb). Define r‹ “ minbPrBs E rwpXq | X P Xbs. Suppose @b P rBs,

|rb ´ prb| ď ϵ and ϵ ă r‹{2. Then, we have with probability at least 1 ´ α{3:

|mb ´ pmb| “

∣∣∣∣ 1rb ´
1

prb

∣∣∣∣ “

∣∣∣∣rb ´ prb
rb ¨ prb

∣∣∣∣ ď
ϵ

r2b |1 ´ ϵ{rb|
ď

2ϵ

r2b
“ 2m2

bϵ, @b P rBs. (3.45)

We now set ϵ “

b

U2 lnp6B{αq

2Nb
as specified in equation (3.44) and verify that ϵ ă r‹{2.

• First, from step 1, with probability at least 1´α{3, Nb‹ “ Ωpn{Bq and thus Nb “ Ωpn{Bq

for every b P rBs.
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• By the condition in the theorem statement, for every b P rBs,

ϵ “

d

U2 lnp6B{αq

2Nb

“ O

˜

c

U2B lnp6B{αq

n

¸

“ O

¨

˚

˝

g

f

f

e

U2B lnp6B{αq
´

U2B lnp6B{αq

L2

¯

˛

‹

‚

“ O pLq .

Finally recall that L ď r‹
. Thus we can pick c in the theorem statement to be large enough

such that ϵ ă L{2 ď r‹{2.

Thus for ϵ “

b

U2 lnp6B{αq

2Nb
, by a union bound over the event in (3.44) and step 1, the conditions

for (3.45) are satisfied with probability at least 1 ´ 2α{3. Hence we have for some large enough

constant c ą 0,

|mb ´ pmb| ď cm2
b ¨

c

U2B lnp6B{αq

2n
ď c ¨

U

L2

c

B lnp6B{αq

2n
.

The final inequality holds by observing that mb ď 1{L which follows from relationship (3.41)

and the assumption that infxwpxq ě L.

Step 4 (Computing the final deviation inequality for qπpwq

b ). Recall the definitions of the

two estimators:

pπ
pwq

b :“
1

Nb

ÿ

i:BpXiq“b

mbwpXiqYi,

and

qπ
pwq

b :“
1

Nb

ÿ

i:BpXiq“b

pmbwpXiqYi,

which differ by replacing mb by its estimator pmb defined in (3.42). By triangle inequality,

|qπb ´ E rY | X P Xbs| ď

∣∣∣qπpwq

b ´ pπ
pwq

b

∣∣∣ `

∣∣∣pπpwq

b ´ E rY | X P Xbs

∣∣∣ .
Theorem 3.9 bounds the term

∣∣∣pπpwq

b ´ E rY | X P Xbs

∣∣∣ with high probability. In the proof of

Theorem 3.9, we can replace the empirical Bernstein’s inequality by Hoeffding’s inequality to

obtain with probability at least 1 ´ α{3,

∣∣∣pπpwq

b ´ E rY | X P Xbs

∣∣∣ ď

d

U2 lnp6B{αq

2Nb

ď

ˆ

U

L

˙2
d

lnp6B{αq

2Nb

,

simultaneously for all b P rBs (the last inequality follows since L ď 1 ď U ). To bound∣∣∣pπpwq

b ´ qπ
pwq

b

∣∣∣, first note that:

∣∣∣pπpwq

b ´ qπ
pwq

b

∣∣∣ “

∣∣∣∣∣∣ 1

Nb

ÿ

i:BpXiq“b

ppmb ´ mbqwpXiqYi

∣∣∣∣∣∣
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ď U ¨

∣∣∣∣∣∣ 1

Nb

ÿ

i:BpXiq“b

ppmb ´ mbq

∣∣∣∣∣∣
“ U ¨ |pmb ´ mb| .

Then we use the results from steps 1 and 3 to conclude that with probability at least 1 ´ 2α{3,

∣∣∣qπpwq

b ´ pπ
pwq

b

∣∣∣ ď c ¨

ˆ

U

L

˙2
c

B lnp6B{αq

2n
, and Nb ě n{B ´

c

n lnp6B{αq

2
.

simultaneously for all b P rBs. Thus by union bound, we get that it holds with probability at

least 1 ´ α,

|qπb ´ E rY | X P Xbs| ď c ¨

ˆ

U

L

˙2
c

B lnp6B{αq

2n
,

simultaneously for all b P rBs and large enough absolute constant c ą 0. This concludes the

proof.

3.D.2 Proof of Theorem 3.9

Consider the event EBpxq defined as pBpX1q, . . . ,BpXnqq “ pBpx1q, . . . ,Bpxnqq. Conditioned on

EBpxq, since supx wpxq ď U , we get that pπ
pwq

b is an average of independent nonnegative random

variablesmbwpXiqYi that are bounded bymbU and share the same meanmb EP rwpXqY | X P Xbs “

E
rP rY | X P Xbs (by Proposition 3.3).Using Theorem 3.11 for a fixed b P rBs, we obtain:

P

¨

˝

∣∣∣pπpwq

b ´ E
rP rY | X P Xbs

∣∣∣ ą

d

2pVb lnp3B{αq

Nb

`
3mbU lnp3B{αq

Nb

ˇ

ˇ

ˇ
EBpxq

˛

‚ď α{B.

Applying a union bound over all b P rBs, we get:

P

¨

˝@b P rBs :
∣∣∣pπpwq

b ´ E
rP

rY | X P Xbs

∣∣∣ ď

d

2pVb lnp3B{αq

Nb
`

3mbU lnp3B{αq

Nb

ˇ

ˇ

ˇ
EBpxq

˛

‚ě 1 ´ α.

Because this is true for any EBpxq, we can marginalize to obtain the assertion of the theorem in

unconditional form.

3.D.3 Proof of Proposition 3.2

Fix any α P p0, 0.5q. For any k P N observe that by triangle inequality,∣∣∣qπp pwkq

b ´ E
rP rY | X P Xbs

∣∣∣ ď

∣∣∣qπpwq

b ´ E
rP rY | X P Xbs

∣∣∣ `

∣∣∣qπpwq

b ´ qπ
p pwkq

b

∣∣∣ .
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Consider any ϵ ą 0. Note that by Theorem 3.7, there exists sufficiently large n such that the first

term is larger than ϵ{2 with probability at most α{2 simultaneously for all b P rBs. Hence, it

suffices to show that there exists a large enough k such that the probability of the second term

exceeding ϵ{2 is at most α{2 simultaneously for all b P rBs. While analyzing the second term,

we treat n as a constant while leveraging the consistency of pwk as k Ñ 8. For simplicity, denote

∆k “ supx |wpxq ´ pwkpxq|. Then for any b P rBs:

∣∣∣qπpwq

b ´ qπ
p pwkq

b

∣∣∣ “

∣∣∣∣∣
ř

i:BpXiq“bwpXiqYi
ř

i:BpXiq“bwpXiq
´

ř

i:BpXiq“b pwkpXiqYi
ř

i:BpXiq“b pwkpXiq

∣∣∣∣∣
p1q

ď

∣∣∣∣∣
ř

i:BpXiq“bwpXiqYi
ř

i:BpXiq“bwpXiq
´

ř

i:BpXiq“b pwkpXiqYi
ř

i:BpXiq“bwpXiq

∣∣∣∣∣
`

∣∣∣∣∣
ř

i:BpXiq“b pwkpXiqYi
ř

i:BpXiq“bwpXiq
´

ř

i:BpXiq“b pwkpXiqYi
ř

i:BpXiq“b pwkpXiq

∣∣∣∣∣
p2q

ď n ¨ ∆k ¨

∣∣∣∣∣ 1
ř

i:BpXiq“bwpXiq

∣∣∣∣∣
`

∣∣∣∣∣ 1
ř

i:BpXiq“bwpXiq
´

1
ř

i:BpXiq“b pwkpXiq

∣∣∣∣∣
∣∣∣∣∣∣

ÿ

i:BpXiq“b

pwkpXiqYi

∣∣∣∣∣∣
p3q

ď
n

L
¨ ∆k `

ˆ

n ¨ ∆k

pL ´ ∆kqL

˙

¨ ppU ` ∆kq ¨ nq ,

where (1) is due to the triangle inequality, (2) is due to the facts that the number of points in

any bin is at most n and that absolute difference between pw and w is at most ∆k, (3) combines

the aforementioned reasons in (2) and the assumptions: L ď infxwpxq ď supxwpxq ď U . Since

∆k
P
Ñ 0, clearly there exists a large enough k such that:

P
´
∣∣∣qπpwq

b ´ qπ
p pwkq

b

∣∣∣ ě ϵ{2
¯

ď α{2.

Thus we conclude that qπ
p pwkq

Bp¨q
is asymptotically calibrated at level α.

3.D.4 Preliminary simulations

This section is structured as follows. We first describe the overall procedure for calibration under

covariate shift. The finite-sample calibration guarantee of Theorem 3.7 holds for oracle w whereas

in our experiments we will estimate w; to assess the loss in calibration due to this approximation,

we introduce some standard techniques used in literature. The preliminary experiments are

performed with simulated data which are described after this. Finally, we propose a modified

estimator rπ
p pwq

b of E
rP rY | X P Xbs which appears natural but has poor performance in practice.
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Procedure. We describe how to construct approximately calibrated predictions practically. This

involves approximating the importance weights w and the relatives mass terms tmbubPrBs. The

summarized calibration procedure consists of the following steps:

1. Split the calibration set into two parts and use the first to perform uniform mass binning

2. Given unlabeled examples from both source and target domain, estimate pw. The uncon-

strained Least-Squares Importance Fitting (uLSIF) procedure (Kanamori et al., 2009) is

used for this.

3. Compute for every b P rBs, the estimator as per (3.22), replacing w with pw:

qπ
p pwq

b :“

ř

i:BpXiq“b pwpXiqYi
ř

i:BpXiq“b pwpXiq
. (3.46)

4. On a new test point from the target distribution, output the calibrated estimate qπ
p pwq

BpXn`1q
.

Assessment through reliability diagrams and ECE. Given a test set (from the target dis-

tribution) of size m: tpX 1
i, Y

1
i quiPrms and a function g : X Ñ r0, 1s that outputs approximately

calibrated probabilities, we consider the reliability diagram to estimate its calibration properties.

A reliability diagram is constructed using splitting the unit interval r0, 1s into non-overlapping

intervals tIbubPrB1s for some B1
as

Ii “

„

i ´ 1

B1
,
i

B1

˙

, i “ 1, . . . , B1
´ 1 and IB1 “

„

B1 ´ 1

B1
, 1

ȷ

.

Let B1 : r0, 1s Ñ rB1s denote the binning function that corresponds to this binning. We then

compute the following quantities for each bin b P rB1s:

FPpIbq “

ř

i:B1pX 1
iq“b Y

1
i

|ti : B1pX 1
iq “ bu|

(fraction of positives in a bin),

MPpIbq “

ř

i:B1pX 1
iq“b gpX 1

iq

|ti : B1pX 1
iq “ bu|

(mean predicted probability in a bin).

If g is perfectly calibrated, the reliability diagram is diagonal. Define the proportion of points

that fall into various bins as:

ppb “
|ti : B1pX 1

iq “ bu|
m

, b P rB1
s.

Then ECE (or ℓ1-ECE) is defined as:

ECEpgq “
ÿ

bPrB1s

ppb ¨ |MPpIbq ´ FPpIbq| .

ECE can also be defined in the ℓp sense and for multiclass problems but we limit our attention to

the ℓ1-ECE for binary problems.
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Figure 3.2: In Figure 3.2a uncalibrated Random Forest (ECE « 0.023) is compared with calibration

that does not take the covariate shift into account (ECE « 0.047). In Figure 3.2b uncalibrated

Random Forest is compared with calibration that takes the covariate shift into account (ECE «

0.017).

Simulations with synthetic data. We illustrate the performance of our proposed estimator

(3.22) using the following simulated example, for which we can explicitly control the covariate

shift. Consider the following data generation pipeline: for the source domain each component

of the feature vector is drawn from Betapα, βq where α “ β “ 1, which corresponds to

uniform draws from the unit cube. For the target distribution each component can be drawn

independently from Betapα1, β1q. If the dimension is d, the true likelihood ratio is given as

wpxq “
d rPXpxq

dPXpxq
“

Bdpα; βq

Bdpα1; β1q

d
ź

i“1

pxpiqq
α1´1p1 ´ xpiqq

β1´1

pxpiqq
α´1p1 ´ xpiqq

β´1
,

where xpiq are the coordinates of feature vector x. We set d “ 3 and α1 “ 2, β1 “ 1 so that

wpxq “ 8 ¨xp1qxp2qxp3q. The labels for both source and target distributions are assigned according

to:

PpY “ 1 | X “ xq “
1

2

`

1 ` sin
`

ω
`

x2
p1q ` x2

p2q ` x2
p3q

˘˘˘

,

for ω “ 20. As the underlying classifier we use a Random Forest with 100 trees (fromsklearn).

14700 data points were used to train the underlying Random Forest classifier, 2000 data points

from both source and target were used for the estimation of importance weights. The parameters

σ and λ for uLSIF were tuned by leave-one-out cross-validation: we considered 25 equally spaced

values on a log-scale in range p10´2, 102q for σ and 100 equally spaced values on a log-scale

in range p10´3, 103q for λ. Uniform mass binning was performed with 10 bins and 1940 data

points from the source domain were used to estimate the quantiles. 7840 source data points

were used for the calibration and finally, 28000 data points from the target domain were used

for evaluation purposes. We note that this simulation is a ‘proof-of-concept’; the sample sizes

we used are not necessarily optimal can presumably be improved.
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We compare the unweighted estimator (3.17) which corresponds to weighing points in each bin

equally as we would do if there was no covariate shift, and the estimator (3.22) that uses an

estimate of w to account for covariate shift. The reliability diagrams are presented in Figure 3.2,

with the ECE reported in the caption. For the ECE estimation and reliability diagrams, we used

B1 “ 10.
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Figure 3.3: Calibration of Random Forest with mb estimated as per equation (3.42) (ECE « 0.05).

Alternative estimator formb. Estimator (3.42) is one way of estimating mb using the w values,

that leads to (3.22). However, there exists another natural estimator which we propose and show

some preliminary empirical results for. Suppose we have access to additional unlabeled data

from the source and target domains (tXs
i uiPrnss, and tX t

i uiPrnts respectively). From the definition

of mb “ PXpX P Xbq{ rPXpX P Xbq, a natural estimator is,

pmb “

1
ns

|ti P rnss : BpXs
i q “ bu|

1
nt
|ti P rnts : BpX t

i q “ bu|
, b P rBs. (3.47)

In this case, the estimator (3.40) reduces to:

rπ
p pwq

b “
pmb

Nb

ÿ

i:BpXiq“b

pwpXiqYi.

We show experimental results with this estimation procedure. We used 8500 data points from

the source domain and 8000 points from the target domain to compute (3.47). The reliability

diagram and ECE with this estimator is reported in Figure 3.3. On our simulated dataset, we

observe that the estimators rπ
p pwq

b perform significantly worse than the estimators qπ
p pwq

b . While

this is only a single experimental setup, we outline some drawbacks of this estimation method

that may lead to poor performance in general.
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1. rπ
p pwq

b requires access to additional unlabeled data from the source and target domains

without leading to increase in performance.

2. The denominator of pmb could be badly behaved if the number of points from the target

domain in bin b are small. We could perform uniform-mass binning on the target domain

to avoid this, but in this case Nb may be small which would lead to the estimator rπ
p pwq

b

performing poorly.

Our overall recommendation through these preliminary experiments is to use the estimator pπ
p pwq

b

as proposed in Section 3.4.4 instead of rπ
p pwq

b .

3.E Venn prediction

Venn prediction (Vovk et al., 2003; Vovk et al., 2005a; Vovk and Petej, 2014; Lambrou et al., 2015)

is a calibration framework that provides distribution-free guarantees, which are different from

the ones in Definitions 3.1 and 3.2. For a multiclass problem with L labels, Venn prediction

produces L predictions, one of which is guaranteed to be perfectly calibrated (although it is

impossible to know which one). These are called multiprobabilistic predictors, formally defined

as a collection of predictions pf1, f2, . . . fLq where each fi P tX Ñ ∆L´1u (here ∆L´1 is

the probability simplex in RL
). Vovk and Petej (2014) defined two calibration guarantees for

multiprobabilistic predictors, the first being oracle calibration.

Definition 3.4 (Oracle calibration). pf1, f2, . . . fLq is oracle calibrated if there exists an oracle

selector S such that fS is perfectly calibrated.

Venn predictors satisfy oracle calibration (Vovk and Petej, 2014, Theorem 1) with S “ Y . In

the binary case, this means that when Y “ 1, f1pXq is perfectly calibrated but we do not have

any guarantee on f0pXq; on the other hand if Y “ 0, f0pXq is perfectly calibrated but we

know nothing about f1pXq. Since Y is unknown, oracle calibration seems to us to primarily

serve as theoretical guidance, but does not give a clear prescription on what to output and what

theoretical guarantee that output satisfies. In practice, it seems reasonable to suspect that if

f0pXq and f1pXq are close, then their average should be approximately calibrated in the sense

of Definition 3.1, but to the best of our knowledge, such results have not been shown formally

(other aggregate functions apart from average are also suggested (without formal guarantees) by

Vovk and Petej (2014, Section 4)). For instance, it may be tempting to think that oracle calibration

of a multiprobabilistic predictor leads to approximate calibration in the following way. Consider

the prediction function

fpXq “
min fipXq ` max fipXq

2
,

and the radius of the interval rmin fipXq,max fipXqs:

ϵpXq “
max fipXq ´ min fipXq

2
.

Since Venn predictors satisfy oracle calibration, one might conjecture that f is pϵ, αq-calibrated

(per Definition 3.1) for the given function ϵ and for any α P p0, 1q. We examined this claim but
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were unable to prove such a guarantee formally. In fact, it seems that no general calibration

guarantee should be possible with the size of the calibration interval being OpϵpXqq; we evidence

this through the following construction.

Consider a setup, with no covariates and only label values Y , and a single bin that contains all

points (in the Venn prediction language: a taxonomy under which all points are equivalent). For

a test-point Yn`1 and any predictor f , note that E rYn`1 | f s is simply equal to E rYn`1s since

any information used to construct f is independent of Yn`1. To ensure calibration, we may look

for a guarantee of the following form for some δ:

|E rYn`1 | f s ´ f | “ |E rYn`1s ´ f | ď δ.

In essence, f is an estimator for the parameter E rY s with a corresponding deviation bound

of δ. Without distributional assumptions, we only expect to estimate such a parameter with

error at best δ “ Op1{
?
nq for a fixed constant probability of failure. On the other hand, the

Venn prediction interval rmin fi,max fis often has radius Op1{nq. Thus for valid approximate

calibration, we would need to provide a larger interval than rmin fi,max fis, even though one

of the fi’s is perfectly calibrated. Given this example, our conjecture is that it might be possible

to show that there always exists an fipXq that is pn´0.5
polylog p1{αqq, αq calibrated. Without

knowing which fipXq to pick, perhaps one can show that an aggregate point in the interval

rmin fi,max fis is ppmax fi ´ min fiq ` n´0.5
polylog p1{αq , αq-calibrated. In Section 3.4, we

showed such a result for histogram binning (which can be interpreted as a Venn predictor). It

would be interesting to study if such results can be shown for general Venn predictors.

Another guarantee for multiprobabilistic predictors is calibration in the large.

Definition 3.5 (Calibration in the large). pf1, f2, . . . fLq is calibrated in the large if the following

is satisfied: E rY s P rEmin fipXq,Emax fipXqs.

Vovk and Petej (2014, Theorem 2) show that Venn predictors satisfy calibration in the large. Due

to the expectation signs and the coverage of the marginal probability E rY s, calibration in the

large does not lead to a clear interpretable guarantee for uncertainty quantification, but rather a

minimum requirement that serves as a guiding principle.

3.F Auxiliary results

3.F.1 Concentration inequalities

Theorem 3.10 (Howard et al. (2021), Theorem 4). Suppose Zt P ra, bs a.s. for all t. Let p pZtq be
any ra, bs-valued predictable sequence, and let u be any sub-exponential uniform boundary with
crossing probability α for scale c “ b ´ a. Then:

P

¨

˚

˚

˝

@t ě 1 :
∣∣Zt ´ µt

∣∣ ă

u

ˆ

řt
i“1

´

Zi ´ pZi

¯2
˙

t

˛

‹

‹

‚

ě 1 ´ 2α.

62



Theorem 3.11 (Partial statement of Audibert et al. (2007), Theorem 1). Let X1, . . . , Xn be i.i.d.
random variables bounded in r0, ss, for some s ą 0. Let µ “ E rX1s be their common expected
value. Consider the empirical mean Xn and variance Vn defined respectively by

Xn “

řn
i“1Xi

n
, and Vn “

řn
i“1pXi ´ Xnq2

n
.

Then for any δ P p0, 1q, with probability at least 1 ´ δ,

∣∣Xn ´ µ
∣∣ ď

c

2Vn logp3{δq

n
`

3s logp3{δq

n
.

3.F.2 Uniform-mass binning

Kumar et al. (2019) defined well-balanced binning and showed that uniform mass-binning is

well-balanced.

Definition 3.6 (Well-balanced binning). A binning scheme B of size B is β-well-balanced

pβ ě 1q for some classifier g if

1

βB
ď P pgpXq P Ibq ď

β

B
,

simultaneously for all b P rBs.

To perform uniform-mass binning labeled examples are required at the stage of training the

base classifier gp¨q. We denote this data as D1
cal

. Procedures based on uniform-mass binning are

well-balanced if |D1
cal
| is sufficiently large.

Lemma 3.2 (Kumar et al. (2019), Lemma 4.3). For a universal constant c ą 0, if |D1
cal| ě

cB lnpB{αq, then with probability at least 1 ´ α, the uniform mass binning scheme B is 2-well-
balanced.

The calibration guarantees in Section 3.4 depend on the minimum number of training points

Nb‹ in any bin. Uniform mass-binning guarantees that Nb‹ “ Ωpn{Bq. This is used in the proof

of Theorem 3.5.
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Chapter 4
Distribution-free calibration guarantees for

histogram binning without sample splitting

This chapter is based on Gupta and Ramdas (2021).

We prove calibration guarantees for the popular histogram binning (also called uniform-mass
binning) method of Zadrozny and Elkan (2001). Histogram binning has displayed strong practical
performance, but theoretical guarantees have only been shown for sample split versions that avoid
‘double dipping’ the data. We demonstrate that the statistical cost of sample splitting is practically
significant on a credit default dataset. We then prove calibration guarantees for the original method
that double dips the data, using a certain Markov property of order statistics. Based on our results,
we make practical recommendations for choosing the number of bins in histogram binning. In
our illustrative simulations, we propose a new tool for assessing calibration—validity plots—which
provide more information than an ECE estimate. Code for this work has been made publicly
available at https://github.com/aigen/df-posthoc-calibration.

4.1 Introduction

In classification, the goal is to learn a model that uses observed feature measurements to make a

class prediction on the categorical outcome. However, for safety-critical areas such as medicine

and finance, a single class prediction might be insufficient and reliable measures of confidence

or certainty may be desired. Such uncertainty quantification is often provided by predictors

that produce not just a class label, but a probability distribution over the labels. If the predicted

probability distribution is consistent with observed empirical frequencies of labels, the predictor

is said to be calibrated (Dawid, 1982).

In this chapter we study the problem of calibration for binary classification; let X and Y “ t0, 1u

denote the feature and label spaces. We focus on the recalibration or post-hoc calibration setting,

a standard statistical setting where the goal is to recalibrate existing (‘pre-learnt’) classifiers that

are powerful and (statistically) efficient for classification accuracy, but do not satisfy calibration

properties out-of-the-box. This setup is popular for recalibrating pre-trained deep nets. For ex-
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ample, Guo et al. (2017, Figure 4) demonstrated that a pre-learnt ResNet is initially miscalibrated,

but can be effectively post-hoc calibrated. In the case of binary classification, the pre-learnt

model can be an arbitrary predictor function that provides a classification ‘score’ g P G, where G
is the space of all measurable functions from X Ñ r0, 1s. Along with g, we are given access to a

calibration dataset of size n P N, Dn “ tpXi, YiquiPrns, drawn independently from a distribution

P ” PX ˆPY |X . The goal is to define a calibrator H : G ˆ pX ˆ r0, 1sqn Ñ G, that ‘recalibrates’

g to an approximately calibrated predictor Hpg,Dnq (formally defined shortly). We denote

Hpg,Dnq as h. All probabilities in this chapter are conditional on g and thus conditional on the
data on which g is learnt.

Let E r¨s denote the expectation operator associated with P , interpreted marginally or con-

ditionally depending on the context. The predictor h is said to be perfectly calibrated if

E rY | hpXqs “ hpXq (almost surely). While perfect calibration is impossible in finite sam-

ples, we desire a framework to make transparent claims about how close h is to being perfectly

calibrated. The following notion proposed by Gupta et al. (2020) defines a calibrator that pro-

vides probably approximate calibration for chosen levels of approximation ϵ P p0, 1q and failure

α P p0, 1q. For brevity, we skip the qualification ‘probably approximate’.

Definition 4.1 (Marginal calibration
1
). A calibrator H : pg,Dnq ÞÑ h is said to be pϵ, αq-

marginally calibrated if for every predictor g P G and distribution P over X ˆ r0, 1s,

Pp|E rY |hpXqs ´ hpXq| ď ϵq ě 1 ´ α. (4.1)

The above probability is taken over both X and Dn since h “ Hpg,Dnq contains the randomness

of Dn. The qualification marginal signifies that the inequality |E rY | hpXqs ´ hpXq| ď ϵ
may not hold conditioned on X or hpXq, but holds only on average. We now define a more

stringent conditional notion of calibration, which requires that approximate calibration hold

simultaneously (or conditionally) for every value of the prediction.

Definition 4.2 (Conditional calibration). A calibrator H : pg,Dnq ÞÑ h is pϵ, αq-conditionally

calibrated if for every predictor g P G and distribution P over X ˆ r0, 1s,

Pp@r P Rangephq, |E rY | hpXq “ rs ´ r| ď ϵq ě 1 ´ α. (4.2)

In contrast to (4.1), the P above is only over Dn. Evidently, if H is conditionally calibrated,

it is also marginally calibrated. The conditional calibration property (4.2) has a PAC-style

interpretation: with probability 1 ´ α over Dn, h satisfies the following deterministic property:

@r P Rangephq, |E rY | hpXq “ rs ´ r| ď ϵ. (4.3)

Marginal calibration does not have such an interpretation; we cannot infer from (4.1) a statement

of the form “with probability 1 ´ γ over Dn, h satisfies ¨ ¨ ¨ ”.

Marginal and conditional calibration assess the truth of the event 1 t|E rY | hpXqs ´ hpXq| ď ϵu
for a given ϵ. Instead we can consider bounding the expected value of |E rY | hpXqs ´ hpXq|
for X „ PX . This quantity is known as the expected calibration error.

1
This definition is unrelated to that of Gneiting et al. (2007, Definition 1c), where marginal calibration refers to

an asymptotic notion of calibration in the regression setting.

65



Definition 4.3 (Expected Calibration Error (ECE)). For p P r1,8q, the ℓp-ECE of a predictor h is

ℓp-ECEphq “ pEX |E rY | hpXqs ´ hpXq|pq
1{p

. (4.4)

Note that the expectation above is only over X „ PX and not over Dn. We can ask for bounds on

the ECE of h “ Hpg,Dnq that hold with high-probability or in-expectation over the randomness

in Dn. The conditional calibration property (4.3) for h implies a bound on the ℓp-ECE for every

p, as formalized by the following proposition which also relates ℓp-ECE for different p.

Proposition 4.1. For any predictor h and 1 ď p ď q ă 8,

ℓp-ECEphq ď ℓq-ECEphq. (4.5)

Further, if (4.3) holds, then ℓp-ECEphq ď ϵ, @p P r1,8q.

The proof (in Appendix 4.A) is a straightforward application of Hölder’s inequality. Informally,

one can interpret the L.H.S. of (4.3) as the ℓ8-ECE of h so that (4.5) holds for 1 ď p ď q ď 8.

Thus conditional calibration is the strictest calibration property we consider: if H is pϵ, αq-

conditionally calibrated, then (a) H is pϵ, αq-marginally calibration and (b) with probability

1 ´ α, ℓp-ECEphq ď ϵ.

Example 4.1. We verify Proposition 4.1 on a simple example, which also helps build intuition

for the various notions of calibration. Suppose h takes just two values: PphpXq “ 0.2q “ 0.9
and PphpXq “ 0.8q “ 0.1. Let E rY | hpXq “ 0.2s “ 0.3 and E rY | hpXq “ 0.8s “ 0.6. Then

ℓ1-ECEphq “ 0.11 ă ℓ2-ECEphq « 0.114. Marginal calibration (4.1) for Hp¨, ¨q ” h is satisfied

for pϵ ě 0.1, α ď 0.9q, while the conditional calibration requirement (4.3) is only satisfied for

ϵ ě 0.2.

In this chapter, we show that the histogram binning method of Zadrozny and Elkan (2001),

described shortly, is calibrated in each of the above senses (marginal and conditional calibra-

tion; high-probability and in-expectation bounds on ECE), if the number of bins is chosen

appropriately.

Some safety-critical domains may require calibration methods that are robust to the data-

generating distribution. We refer to Definitions 4.1 and 4.2 as distribution-free (DF) guarantees

since they are required to hold for all distributions over pX, Y q without restriction. This chapter

is in the DF setting: the only assumption we make is that the calibration data Dn and pX, Y q

are independent and identically distributed (i.i.d.). Gupta et al. (2020, Theorem 3) showed that if

H is DF marginally calibrated with a meaningful value of ϵ (formally, ϵ can be driven to zero as

sample size grows to infinity), then H must necessarily produce only discretized predictions

(formally, Rangephq must be at most countable). We refer to such H as ‘binning methods’ — this

emphasizes that H essentially partitions the sample-space into a discrete number of ‘bins’ and

provides one prediction per bin (see Proposition 1 (Gupta et al., 2020)). Since our goal is DF

calibration, we focus on binning methods.
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4.1.1 Prior work on binning

Binning was initially introduced in the calibration literature for assessing calibration. Given a

continuous scoring function h, if we wish to plot a reliability diagram (Sanders, 1963; Niculescu-

Mizil and Caruana, 2005) or compute an ECE estimate (Miller, 1962; Sanders, 1963; Naeini et al.,

2015), then h must first be discretized using binning. A common binning scheme used for this

purpose is ‘fixed-width binning’, where r0, 1s is partitioned into B P N intervals (called bins) of

width 1{B each and a single prediction is assumed for every bin. For example, if B “ 10, then

the width of each bin is 0.1, and if (say) hpxq P r0.6, 0.7q then the prediction is assumed to be

0.65.

Gupta et al. (2020, Theorem 3) showed that some kind of binning is in fact necessary to achieve
DF calibration. The first binning method for calibration was proposed by Zadrozny and Elkan

(2001) to calibrate a naive Bayes classifier. Their procedure is as follows. First, the interval r0, 1s

is partitioned into B P N bins using the histogram of the gpXiq values, to ensure that each bin

has the same number of calibration points (plus/minus one). Thus the bins have nearly ‘uniform

(probability) mass’. Then, the calibration points are assigned to bins depending on the interval

to which the score gpXiq belongs to, and the probability that Y “ 1 is estimated for each bin as

the average of the observed Yi-values in that bin. This average estimates the ‘bias’ of the bin.

The binning scheme and the bias estimates together define h. A slightly modified version of this

procedure is formally described in Algorithm 4.1.

While Algorithm 4.1 was originally called histogram binning, it has also been referred to as

uniform-mass binning in some works. In the rest of this chapter, we use the latter terminology.

Specifically, we refer to it as UMD, short for Uniform-Mass-Double-dipping. This stresses that

the same data is used twice, both to determine inter-bin boundaries and to calculate intra-bin

biases. UMD continues to remain a competitive benchmark in empirical work (Guo et al., 2017;

Naeini et al., 2015; Roelofs et al., 2022), but no finite-sample calibration guarantees have been

shown for it. (See however the following paragraph.) Some asymptotic consistency results for

a histogram regression algorithm closely related to UMD were shown by Parthasarathy and

Bhattacharya (1961) (see also the work by Lugosi and Nobel (1996)).

After the publication of this chapter in ICML 2021, we found out about a paper by Naeini et al.

(2014), where a calibration bound for UMD is claimed (Theorem 3.1). However, their application

of Hoeffding’s inequality (namely quation (1)) in the proof of their result is incorrect, since it

has not been shown that the points over which Hoeffding’s inequality is applied are i.i.d. The

technical contribution of our paper is exactly to show how to rescue the i.i.d. structure despite

double dipping.

Zadrozny and Elkan (2002) proposed another popular binning method based on isotonic re-

gression, for which some non-DF analyses exist (see Dai et al. (2020) and references therein).

Recently, two recalibration methods closely related to UMD have been proposed, along with

some theoretical guarantees that rely on sample-splitting — scaling-binning (Kumar et al., 2019)

and sample split uniform-mass binning (Gupta et al., 2020).

In the scaling-binning method, the binning is performed on the output of another continuous

recalibration method (such as Platt scaling (Platt, 1999)), and the bias for each bin is computed
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as the average of the output of the scaling procedure in that bin. This is unlike other binning

methods, where the bias of each bin is computed as the average of the true outputs Yi in that

bin. Kumar et al. (2019, Theorem 4.1) showed that under some assumptions on the scaling class

(which includes injectivity), the ECE of the sample split scaling-binning procedure is ϵ-close to?
2 ℓ2-ECE of the scaling procedure if, roughly, n “ ΩplogB{ϵ2q. However, the results of Gupta

et al. (2020, Section 3.3) imply that there exist data distributions on which any injective scaling

procedure itself has trivial ECE.

In sample split uniform-mass binning, the first split of the data is used to define the bin boundaries

so that the bins are balanced. The second split of the data is used for estimating the bin biases,

using the average of the Yi-values in the bin. We refer to this version as UMS, for Uniform-Mass-

Sample-splitting. Gupta et al. (2020, Theorem 5) showed that UMS is pϵ, αq-marginally calibrated

if (roughly) n “ ΩpB logpB{αq{ϵ2q. To the best of our knowledge, this is the only known DF

guarantee for a calibration method. However, in Section 4.2 we demonstrate that the constants

in this guarantee are quite conservative, and the loss in performance due to sample splitting is

practically significant on a real dataset.

4.1.2 Our contribution

We show tight DF calibration guarantees for the original method proposed by Zadrozny and

Elkan (2001), UMD. While the existing theoretical analyses rely on sample splitting (Kumar et al.,

2019; Gupta et al., 2020), it has been observed in experiments that double dipping to perform

both bin formation and bias estimation on the same data leads to excellent practical performance

(Zadrozny and Elkan, 2001; Guo et al., 2017; Kumar et al., 2019; Roelofs et al., 2022). Our work

fills this gap in theory and practice.

We exploit a certain Markov property of order statistics, which are a set of classical, elegant

results that are not well known outside of certain subfields of statistics (for one exposition of the

Markov property, see Arnold et al. (2008, Chapter 2.4)). The strength of these probabilistic results

is not widely appreciated — judging by their non-appearance in the ML literature — nor have

they had implications for any modern AI applications that we are aware of. Thus, we consider

it a central contribution of this work to have recognized that these mathematical tools can be

brought to bear in order to shed light on a contemporary ML algorithm.

A simplified version of the Markov property is as follows: for order statistics Zp1q, Zp2q, . . . , Zpnq

of samples tZiuiPrns drawn i.i.d from any absolutely continuous distribution Q, and any indices

1 ă i ă j ď n, we have that

Zpjq K Zpi´1q, Zpi´2q, . . . , Zp1q | Zpiq.

For example, given the empirical median M , the points to its left are conditionally independent

of the points to its right. Further each of these have a distribution that is identical to that of

i.i.d. draws from Z „ Q when restricted to Z ă M (or Z ą M ). The implication is that if

we form bins using the order statistics of the scores as the bin boundaries, then (a) the points

within any bin are independent of the points outside that bin, and (b) conditioned on being in

a given bin, say Bi, the points in the bin are i.i.d. with distribution QZ|ZPBi
. When we split a
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calibration sample D and use one part D1 for binning and the other DzD1 for estimating bin

probabilities, the points in DzD1 that belong to Bi are also conditionally i.i.d. with distribution

QZ|ZPBi
, which is exactly what we accomplished without sample splitting. In short, the Markov

property allows us to ‘double dip’ the data, i.e., use the same data for binning and estimating

within-bin probabilities.

Organization. Section 4.2 motivates our research problem by showing that UMS is sample-

inefficient both in theory and practice. Empirical evidence is provided through a novel diagnostic

tool called validity plots (Section 4.2.1). Section 4.3 presents UMD formally along with its analysis

(main results in Theorems 4.1 and 4.2). Section 4.4 contains illustrative simulations. Proofs are

in the supplement.

4.2 Sample split uniform-mass binning is inefficient

The DF framework encourages development of algorithms that are robust to arbitrarily dis-

tributed data. At the same time, the hope is that the DF guarantees are adaptive to real data and

give meaningful bounds in practice. In this section, we assess if the practical performance of

uniform-mass-sample-splitting (UMS) is well explained by its DF calibration guarantee (Gupta

et al., 2020). As far as we know, this is the only known DF guarantee for a calibration method.

However, we demonstrate that the guarantee is quite conservative. Further, we demonstrate

that sample splitting leads to a drop in performance on a real dataset.

Suppose we wish to guarantee pϵ, αq “ p0.1, 0.1q-marginal calibration with B “ 10 bins using

UMS. We unpacked the DF calibration bound for UMS, and computed that to guarantee p0.1, 0.1q-

marginal calibration with 10 bins, roughly n ě 17500 is required. The detailed calculations can

be found in Appendix 4.B. This sample complexity seems conservative for a binary classification

problem. In Section 4.2.2, we use an illustrative experiment to show that the n required to

achieve the desired level of calibration is indeed much lower than 17500. Our experiment uses a

novel diagnostic tool called validity plots, introduced next.

4.2.1 Validity plots

Validity plots assess the marginal calibration properties of a calibration method by displaying

estimates of the LHS of (4.1) as ϵ varies. Define the function V : r0, 1s Ñ r0, 1s given by

V pϵq “ Pp|E rY | hpXqs ´ hpXq| ď ϵq. By definition of V , h is pϵ, 1 ´ V pϵqq-marginally

calibrated for every ϵ. For this reason, we call the graph of V , tpϵ, V pϵqq : ϵ P r0, 1su, as

the ‘validity curve’. (The term “curve” is used informally since V may have jumps.) Note the

following neat relationship between the ℓ1-ECE and the area-under-the-curve (AUC) of the

validity curve:

E rℓ1-ECEphqs “ E r|E rY | hpXqs ´ hpXq|s

“

ż 1

0

Pp|E rY | hpXqs ´ hpXq| ą ϵq dϵ
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(a) An illustrative validity plot. We

can read off that marginal cali-

bration is achieved for pϵ, αq “

p0.04, 0.1q and p0.03, 0.2q. The ℓ1-

ECE estimate is roughly 0.023.
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(b) Validity plots comparing UMD and UMS on the CREDIT
dataset. The plots show that UMD has higher validity V pϵq for

the same values of n, ϵ, and thus lower ℓ1-ECE. For example,

for n “ 1000 and ϵ “ 0.05, UMS has V pϵq « 0.63, while UMD

has V pϵq « 0.79.

Figure 4.1: Validity plots display estimates of V pϵq “ Pp|E rY | hpXqs ´ hpXq| ď ϵq as ϵ varies.

Validity plots are described in Section 4.2.1. The experimental setup for Figure 4.1b is presented

in Section 4.2.2.

“1 ´

ż 1

0

Pp|E rY | hpXqs ´ hpXq| ď ϵq dϵ

“1 ´

ż 1

0

V pϵq dϵ “ 1 ´ AUC(validity curve).

A validity plot is a finite sample estimate of the validity curve on a single calibration set Dn and

test set Dtest. We now outline the steps for constructing a validity plot. First, h is learned using

Dn and g. Next, if h is not a binning method, it must be discretized through binning in order to

enable estimation of E rY | hpXqs. This is identical to the binning step required by plugin ECE

estimators and reliability diagrams. For example, one can use fixed-width binning as described in

the first paragraph of Section 4.1.1. In this chapter, we empirically assess only binning methods,

and so an additional binning step is not necessary. Next, the empirical distribution on Dtest is

used as a proxy for the true distribution of pX, Y q, to estimate V pϵq:

pV pϵq “

ř

pXi,YiqPDtest

1
␣
∣∣E

pP rY | hpXq “ hpXiqs ´ hpXiq
∣∣ ď ϵ

(

|Dtest|
, where

E
pP rY | hpXq “ hpxqs ”

ř

pXi,YiqPDtest

Yi1 thpXiq “ hpxqu
ř

pXi,YiqPDtest

1 thpXiq “ hpxqu
. (4.6)

For different values of ϵ P r0, 1s on the X-axis, the estimate of V pϵq is plotted on the Y-axis to

form the validity plot. Like the AUC of a validity curve corresponds to E rℓ1-ECEs, the AUC of

a validity plot corresponds to the plugin ℓ1-ECE estimate (Naeini et al., 2015). (There may be

small differences in practice since we draw the validity plot for a finite grid of values in r0, 1s.)

Thus validity plots convey the ℓ1-ECE estimate and more.

Figure 4.1a displays an illustrative validity plot for a binning method with B “ 10. V is a

right-continuous step function with at most |Rangephq| ď B many discontinuities. Each ϵ for
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which there is a discontinuity in V corresponds to a bin that has |E rY | hpXq “ rs ´ r| “ ϵ,
and the incremental jump in the value of V , V pϵq ´ V pϵ´q, corresponds to the fraction of test

points in that bin. Figure 4.1a was created using UMD, and thus each jump corresponds to

roughly a 1{B “ 0.1 fraction of the test points. The ϵ values for the bins are approximately

10´3 ¨ p1.5, 2, 8, 16, 17, 19, 22, 29, 39, 71q.

Unlike reliability diagrams (Niculescu-Mizil and Caruana, 2005), validity plots do not convey

the predictions hpXq to which the ϵ values correspond to, or the direction of miscalibration

(whether hpXq is higher or lower than E rY | hpXqs). On the other hand, validity plots convey

the bin frequencies for every bin without the need for a separate histogram (such as the top

panel in Niculescu-Mizil and Caruana (2005, Figure 1)). In our view, validity plots also ‘collate’

the right entity; we can easily read off from a validity plot practically meaningful statements

such as “for 90% of the test points, the miscalibration is at most 0.04”.

We can create a smoother validity plot that better estimates V by using multiple runs based on

subsampled or bootstrapped data. To do this, for every ϵ P r0, 1s, pV pϵq is computed separately

for each run and the mean value is plotted as the estimate of V pϵq. In our simulations, we always

perform multiple runs, and also show ˘std-dev-of-mean in the plot. Figure 4.1b displays such

validity plots (further details presented in the following subsection).

It is well known that plugin ECE estimators for a binned method are biased towards slightly

overestimating the ECE (e.g., see Bröcker (2012), Kumar et al. (2019), and Widmann et al. (2019)).

For the same reasons,
pV pϵq is a biased underestimate of V pϵq. In other words, the validity

plot is on average below the true validity curve. The reason for this bias is that to estimate

ECE as well as to create validity plots, we compute

∣∣E
pP rY | hpXqs ´ hpXq

∣∣
which can be

written as |E rY | hpXqs ` mean-zero-noise ´ hpXq|. On average, the noise term will lead to

overestimating |E rY | hpXqs ´ hpXq|. However, the noise term is small if there is enough test

data (if nb is the number of test points in bin b, then the noise term is Op
a

1{nbq w.h.p.). Further,

it is highly unlikely that the noise will help some methods and hurts others. Thus validity plots

can be reliably used to make inferences on the relative performance of different calibration

methods. While there exist unbiased estimators for pℓ2-ECEq2 (Bröcker, 2012; Widmann et al.,

2019), we are not aware of any unbiased ℓ1-ECE estimators. If such an estimator is proposed in

the future, the same technique will also improve validity plots.

4.2.2 Comparing UMS and UMD using validity plots

Figure 4.1b uses validity plots to assess UMS and UMD on CREDIT, a UCI credit default dataset
2
.

The task is to accurately predict the probability of default. The experimental protocol is as follows.

The entire feature matrix is first normalized
3
. CREDIT has 30K (30,000) samples which are

randomly split (once for the entire experiment) into splits (A, B, C) = (10K, 5K, 15K). First, g is

formed by training a logistic regression model on split A and then re-scaling the learnt model

using Platt scaling on split B (Platt scaling before binning was suggested by Kumar et al. (2019);

we also observed that this helps in practice). Next, the calibration set Dn is formed by randomly

2
Yeh and Lien (2009); https://archive.ics.uci.edu/ml/datasets/default+of+credit+card+clients

3
using Python’s sklearn.preprocessing.scale
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subsampling n (ď10K) points from split C (without replacement). From the remaining points

in split C, a test set of size 5K is subsampled (without replacement). The entire subsampling

from split C is repeated 100 times to create 100 different calibration and test sets. For a given

subsample, UMS/UMD with B “ 10 is trained on the calibration set (with 50:50 sample splitting

for UMS), and
pV pϵq for every ϵ is estimated on the test set. Finally, the (mean˘std-dev-of-mean)

of
pV pϵq is plotted with respect to ϵ. This experimental setup assesses marginal calibration for a

fixed g, in keeping with our post-hoc calibration setting.

The validity plot in Figure 4.1b (left) indicates that the desired p0.1, 0.1q-marginal calibration is

achieved by UMS with just n “ 1000. Contrast this to n ě 17500 required by the theoretical

bound, as computed in Appendix 4.B. In fact, n “ 4000 nearly achieves p0.05, 0.1q-marginal

calibration. This gap occurs because the analysis of UMS is complex, with constants stacking up

at each step.

Next, consider the validity plot for UMD in Figure 4.1b (right). By avoiding sample splitting,

UMD achieves p0.1, 0.1q-marginal calibration at n “ 500. In Section 4.3 we show that n ě 1500
is provably sufficient for p0.1, 0.1q-marginal calibration and n ě 2900 is sufficient for p0.1, 0.1q-

conditional calibration. Some gap in theory and practice is expected since the theoretical bound

is DF, and thus applies no matter how anomalous the data distribution is. However, the gap is

much smaller compared to UMS, due to a clean analysis. In Section 4.4, we illustrate that the

gap nearly vanishes for larger n. Section 4.4 also introduces the related concept of conditional
validity plots that assess conditional calibration.

4.3 Distribution-free analysis of uniform-mass binning
without sample splitting

Define the random variables S “ gpXq; Si “ gpXiq for i P rns, called scores. Let pS, Y q „ Q
and S „ QS . In binning, we wish to use the calibration data tpSi, YiquiPrns „ Qn

to (a) define a

binning function B : r0, 1s Ñ rBs for some number of bins B P N, and (b) estimate the biases in

the bins tΠb :“ E rY | BpSq “ bsubPrBs. We denote the bias estimates as
pΠb. The approximately

calibrated function is then defined as hp¨q “ pΠBp¨q.

Suppose the number of recalibration points is n « 150. In the absence of known properties of

the data (i.e., in the DF setting), it seems reasonable to have B “ 1 and define Hpg,Dnq as the

constant function hp¨q :“ n´1
řn

i“1 Yi. Formally, n “ 150 leads to the following Hoeffding-based

confidence interval: with probability at least 0.9, |n´1
řn

i“1 Yi ´ EY | ď
a

logp2{0.1q{p2 ¨ 150q «

0.1. In other words, if n “ 150, H satisfies p0.1, 0.1q-marginal calibration. Of course, having a

single bin completely destroys sharpness of h, but it’s an instructive special case.

Suppose now that n « 300, and we wish to learn a non-constant h using two bins. If g is

informative, we hope that E rY | gpXq “ ¨s is roughly a monotonically increasing function. In

light of this belief, it seems reasonable to choose a threshold t and identify the two bins as:

gpXq ď t and gpXq ą t. A natural choice for t is M “ MedianpS1, . . . , Snq since this ensures

that both bins get the same number of points (plus/minus one). This is the motivation for UMD.
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In this case, h and
pΠ are defined as,

hp¨q :“

#

pΠ1 :“ AveragepYi : Si ď Mq if gp¨q ď M
pΠ2 :“ AveragepYi : Si ą Mq if gp¨q ą M.

(4.7)

Suppose M were the true median of QS instead of the empirical median. Then h has a calibration

guarantee obtained by applying a Bernoulli concentration inequality separately for both bins

and using a union bound (this is done formally by Gupta et al. (2020, Theorem 4)). In UMS, we

try to emulate the true median case by using one split of the data to estimate the median.
pΠ is

then computed on the second (independent) split of the data, and concentration inequalities can

be used to provide calibration guarantees.

UMD does not sample split: in equation (4.7) above, M is computed using the same data that is

later used to estimate
pΠ. On the face of it, this double dipping eliminates the independence of the

Yi values required to apply a concentration inequality. However, we show that the independence

structure can be retained if UMD is slightly modified. This subtle modification is to remove

a single point from the bias estimation, namely the Yi corresponding to the median M . (In

comparison, in UMS we typically remove a fixed ratio of n.) The informal argument is as follows.

For simplicity, suppose QS is absolutely continuous (with respect to the Lebesgue measure),

so that the Si’s are almost surely distinct, and suppose that the number of samples is odd:

n “ 2m ` 1. Denote the ordered scores as Sp1q ă Sp2q ă . . . ă Spnq and let Ypiq denote the

label corresponding to the score Spiq. Thus
pΠ1 “ m´1

řm
i“1 Ypiq and M “ Spm`1q. Clearly,

pSpiq, Ypiqq is not independent of Spm`1q for any i. However, it turns out that the following

property is true: conditioned on Spm`1q, the unordered values tpSpiq, YpiqquiPrms can be viewed as

m independent samples identically distributed as pS, Y q, given S ă Spm`1q. (Note that pS, Y q is

an unseen and independent random variable.) Thus, we can use Hoeffding’s inequality to assert:

Pp|E rY | M,S ă M s ´ pΠ1| ě ϵ | M,S ă Mq ď 2 exp p´2mϵ2q . This can be converted to a

calibration guarantee on the first bin. The same bound can be shown if S ą M , for the estimate

pΠ2 “ m´1
ř2m`1

i“m`1 Ypiq. Using a union bound gives a calibration guarantee that holds for both

bins simultaneously, which in turn gives conditional calibration.

In the following subsection, we show some key lemmas regarding the order statistics of the Si’s.

These lemmas formalize what was argued above: careful double dipping does not eliminate the
independence structure. In Section 4.3.2, we formalize the modified UMD algorithm, and prove

that it is DF calibrated. Based on the guarantee for the modified version, Corollary 4.1 finally

shows that the original UMD itself is DF calibrated.

Simplifying assumption. In the following analysis, we assume that gpXq is absolutely contin-

uous with respect to the Lebesgue measure, and thus has a probability density function (pdf).

This assumption is made at no loss of generality, for reasons discussed in Appendix 4.C.1.

4.3.1 Key lemmas on order statistics

Consider two indices i, j P rns. The score Si is not independent of the order statistic Spjq.

However, it turns out that conditioned on Spjq, the distribution of Si given Si ă Spjq, is identical
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to the distribution of an unseen score S, given S ă Spjq. The following lemmas (both proved in

Appendix 4.A) state versions of this fact that are useful for our analysis of UMD.

We first set up some notation. S is assumed to have a pdf, denoted as f . For some 1 ď l ă u ď n,

consider the set of indices ti : Splq ă Si ă Spuqu, and index them arbitrarily as tt1, t2, . . . , tu´l´1u.

This is just an indexing and not an ordering; in particular it is not necessary that St1 “ Spl`1q.

For j P tl ` 1, . . . , u ´ 1u, define Stju “ Stj´l
. Thus the set tStju : j P tl ` 1, . . . , u ´ 1uu

corresponds to the unordered Si values between Splq and Spuq.

Lemma 4.1. Fix l, u P rns such that l ă u. The conditional density of the unordered Si values
between the order statistics Splq, Spuq, fpStl`1u, . . . , Stu´1u | Splq, Spuqq, is identical to the density
of independent S 1

i „ QS , conditional on lying between Splq, Spuq:

fpS 1
1, . . . , S

1
u´l´1 | Splq, Spuq, Splq ă tS 1

iuiPru´l´1s ă Spuqq.

In the final analysis, Splq and Spuq will represent the scores at consecutive bin boundaries, which

define the binning scheme. Lemma 4.2 is similar to Lemma 4.1, but with conditioning on all

bin boundaries (order statistics) simultaneously. To state it concisely, define Sp0q :“ 0 and

Spn`1q :“ 1 as fixed hypothetical ‘order statistics’.

Lemma 4.2. Fix any B ´ 1 indices k1, k2, . . . kB´1 such that 0 “ k0 ă k1 ă . . . ă kB “ n ` 1.
For any b P rBs, the conditional density of the unordered Si values between the order statistics
Spkb´1q, Spkbq, fpStkb´1`1u, . . . , Stkb´1u | Spk0q, . . . , SpkBqq, is identical to the conditional density

fpS 1
1, . . . , S

1
kb´kb´1´1 | Spk0q, . . . , SpkBq,

for every i P rkb ´ kb´1 ´ 1s, Spkb´1q ă S 1
i ă Spkbqqq

of independent random variables S 1
i „ QS .

4.3.2 Main results

UMD is described in Algorithm 4.1 (in the description, t¨u and r¨s denote the floor and ceiling

operators respectively). UMD takes input pg,Dnq and outputs h. There is a small difference

between UMD as stated and the proposal by Zadrozny and Elkan (2001). The original version also

uses the calibration points that define the bin boundaries for bias estimation — this corresponds

to replacing line 12 with

line 12:
pΠb Ð MeanpYpl`1q, . . . , Ypu´1q,Ypuqq, for b ă B.

The two algorithms are virtually the same; after stating the calibration guarantee for UMD, we

show the result for the original proposal as a corollary.

By construction, every bin defined by UMD has at least tn{Bu ´ 1 many points for mean

estimation. Thus, UMD effectively ‘uses’ only B ´ 1 points for bin formulation using quantile

estimation. We prove the following calibration guarantee for UMD in Appendix 4.A.
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Algorithm 4.1 UMD: Uniform-mass binning without sample splitting

1: Input: Scoring function g : X Ñ r0, 1s, #bins B, calibration data

pX1, Y1q, pX2, Y2q, . . . , pXn, Ynq

2: Output: Approximately calibrated function h
3: pS1, S2, . . . , Snq Ð pgpX1q, gpX2q, . . . , gpXnqq

4: pSp1q, Sp2q, . . . , Spnqq Ð order-statspS1, S2, . . . , Snq

5: pYp1q, Yp2q, . . . , Ypnqq Ð pY1, Y2, . . . , Ynq ordered as per the ordering of pSp1q, Sp2q, . . . , Spnqq

6: ∆ Ð pn ` 1q{B

7:
pΠ Ð empty array of size B

8: A Ð 0-indexed arraypr0, r∆s, r2∆s, . . . , n ` 1sq

9: for b Ð 1 to B do
10: l Ð Ab´1

11: u Ð Ab

12:
pΠb Ð Mean(Ypl`1q, Ypl`2q, . . . , Ypu´1q)

13: end for
14: pSp0q, Spn`1qq Ð p0, 1q

15: hp¨q Ð
řB

b“1 1
␣

SpAb´1q ď gp¨q ă SpAbq

(

pΠb

Theorem 4.1. Suppose gpXq is absolutely continuous with respect to the Lebesgue measure and
n ě 2B. UMD is pϵ, αq-conditionally calibrated for any α P p0, 1q and

ϵ “

d

logp2B{αq

2ptn{Bu ´ 1q
. (4.8)

Further, for every distribution P , w.p. 1 ´ α over the calibration data Dn, for all p P r1,8q,
ℓp-ECEphq ď ϵ.

Note that since UMD is pϵ, αq-conditionally calibrated, it is also pϵ1, αq-conditionally calibrated

for any ϵ1 P pϵ, 1q. The absolute continuity requirement for gpXq can be removed with a

randomization trick discussed in Section 4.C.1, to make the result fully DF. The proof sketch

is as follows. Given the bin boundaries, the scores in each bin are independent, as shown

by Lemma 4.2. We use this to conclude that the Yi values in each bin b are independent and

distributed as BernpE rY | BpXq “ bsq. The average of the Yi values thus concentrates around

E rY | BpXq “ bs. Since each bin has at least ptn{Bu ´ 1q points, Hoeffding’s inequality along

with a union bound across bins gives conditional calibration for the value of ϵ in (4.8).

The convenient property that every bin has at least tn{Bu ´ 1 calibration points for mean

estimation is not satisfied deterministically even if we used the true quantiles of gpXq. In fact,

as long as B “ opnq, the ϵ in (4.8) approaches the ϵ we would get if all the data was used for

bias estimation, with at least tn{Bu points in each bin:

if B “ opnq, lim
nÑ8

∣∣∣∣∣
d

logp2B{αq

2ptn{Bu ´ 1q
´

d

logp2B{αq

2ptn{Buq

∣∣∣∣∣ “ 0.
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In comparison to the clean proof sketch above, UMS requires a tedious multi-step analysis:

1. Suppose the sizes of the two splits are n1 and n2. Performing reliable quantile estimation

on the first split of the data requires n1 “ ΩpB logpB{αqq (Kumar et al., 2019, Lemma

4.3)).

2. The estimated quantiles have the guarantee that the expected number of points falling into

a bin, on the second split is ě n2{2B. A high probability bound is used to lower bound the

actual number of points in each bin. This lower bound is pn2{2Bq ´
a

n2 logp2B{αq{2
(Gupta et al., 2020, Theorem 5).

This multi-step analysis leads to a loose bound due to constants stacking up, as discussed in

Section 4.2.

A guarantee for the original UMD procedure follows as an immediate corollary of Theorem 4.1.

This is because the modification to line 12 can change every estimate
pΠb by at most 1{ptn{Buq

due to the following fact regarding averages: for any b P N, a P t0, 1, . . . , bu,

max

ˆ
∣∣∣∣ a

b ` 1
´

a

b

∣∣∣∣ , ∣∣∣∣a ` 1

b ` 1
´

a

b

∣∣∣∣˙ ď
1

b ` 1
. (4.9)

Using (4.9), we prove the following corollary in Appendix 4.A.

Corollary 4.1. Suppose gpXq is absolutely continuous with respect to the Lebesgue measure and
n ě 2B. The original UMD algorithm (Zadrozny and Elkan, 2001) is pϵ, αq-conditionally calibrated
for any α P p0, 1q and

ϵ “

d

logp2B{αq

2ptn{Bu ´ 1q
`

1

tn{Bu
. (4.10)

Further, for every distribution P , w.p. 1 ´ α over the calibration data Dn, for all p P r1,8q,
ℓp-ECEphq ď ϵ.

As claimed in Section 4.2.2, if pn, α,Bq “ p2900, 0.1, 10q, (4.10) gives ϵ ă 0.1. The difference

between (4.10) and (4.8) is small. For example, we computed that if ϵ ď 0.1, α ď 0.5, B ě 5,

then (4.8) requires n{B ě 150, and thus the additional term in (4.10) is at most 0.007. Likewise,

in practice, we expect both versions to perform similarly.

At the end of the day, a practitioner may ask: “Given n points for recalibration, how should I use

Theorem 4.1 to decide B?” Smaller B gives better bounds on ϵ, but larger B implicitly means

that the h learnt is sharper. As n becomes higher, one may like to have higher sharpness (higher

B), but at the same time more precise calibration (lower ϵ and thus lower B). We provide a

(subjective) discussion on how to balance these two requirements.

First, we suggest fixing a rough domain-dependent probability of failure α. Since the dependence

of ϵ on α in (4.8) is logp1{αq, small changes in α do not affect ϵ too much. Typically, 10-20%

failure rate is acceptable, so let us set α “ 0.1. (For a highly sensitive domain, one can set

α “ 0.01.) Then, constraint (4.8) roughly translates to ϵ “
a

B logp20Bq{2n. For a fixed n, this

is a relationship between ϵ and B, that can be plotted as a curve with B as the independent

parameter and ϵ as the dependent parameter. Finally, one can eyeball the curve to identify a B.
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Figure 4.2: Plots displaying the relationship (4.8) between ϵ and B for α “ 0.1 and different

values of n. Some indicative suggestions based on the plot: if n “ 1K, choose B “ 5 (gives

ϵ ď 0.12); if n “ 5K, choose B “ 10 (gives ϵ ď 0.08); if n “ 20K, choose B “ 22 (gives

ϵ ď 0.06).

We plot such curves in Figure 4.2 for a range of values of n. The caption shows examples of how

one can choose B to balance calibration (small ϵ) and sharpness (high B).

While pϵ, αq-conditional calibration implies pϵ, αq-marginal calibration, we expect to have

marginal calibration with smaller ϵ. Such an improved guarantee can be shown if the bin

biases
pΠb estimated by Algorithm 4.1 are distinct. In Appendix 4.C, we propose a randomized

version of UMD (Algorithm 4.2) which guarantees uniqueness of the bin biases. Algorithm 4.2

satisfies the following calibration guarantee (proved in Appendix 4.A).

Theorem 4.2. Suppose n ě 2B and let δ ą 0 be an arbitrarily small randomization parameter.
Algorithm 4.2 is pϵ1, αq-marginally and pϵ2, αq-conditionally calibrated for any α P p0, 1q,

ϵ1 “

d

logp2{αq

2ptn{Bu ´ 1q
` δ, ϵ2 “

d

logp2B{αq

2ptn{Bu ´ 1q
` δ. (4.11)

Further, for every distribution P , (a) w.p. 1 ´ α over the calibration data Dn, for all p P r1,8q,
ℓp-ECEphq ď ϵ2, and (b) EDn rℓp-ECEphqs ď

a

B{2n ` δ for all p P r1, 2s.

In the proof, we use the law of total expectation to avoid taking a union bound in the marginal

calibration result; this gives a

a

logp2{αq term in ϵ1 instead of the

a

logp2B{αq in ϵ2. Theorem 4.2

also does not require absolute continuity of gpXq. As claimed in Section 4.2.2, if pn, α,Bq “

p1500, 0.1, 10q, (4.11) gives ϵ1 ă 0.1 (for small enough δ).

4.4 Simulations

We perform illustrative simulations on the CREDIT dataset with two goals: (a) to compare the

performance of UMD to other binning methods and (b) to show that the guarantees we have

77



0.025 0.050 0.075 0.100
0.80

0.85

0.90

0.95

1.00
V(

)
n = 3000, B = 10

0.025 0.050 0.075 0.100
0.80

0.85

0.90

0.95

1.00

V(
)

n = 7000, B = 10

(a) Marginal validity plots.

0.00 0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0

V(
)

n = 3000, B = 10

0.00 0.05 0.10 0.15
0.0

0.2

0.4

0.6

0.8

1.0

V(
)

n = 7000, B = 10

(b) Conditional validity plots.

Figure 4.3: UMD performs competitively on the CREDIT dataset. The guarantee of Theorem 4.2

closely matches empirical behavior.

shown are reasonably tight, and thus, practically useful.
4

In addition to validity plots, which

assess marginal calibration, we use conditional validity plots, that assess conditional calibration.

Let V : r0, 1s Ñ r0, 1s be given by V pϵq “ Pp@r P Rangephq, |E rY | hpXq “ rs ´ r| ď ϵq.
Given a test set Dtest, we first compute E

pP rY | hpXq “ hpxqs (defined in (4.6)), and then estimate

V pϵq as

pV pϵq “ 1

"

max
pXi,YiqPDtest

∣∣E
pP rY | hpXq “ hpXiqs ´ hpXiq

∣∣ ď ϵ

*

.

For a single Dn and Dtest,
pV pϵq is either 0 or 1. Thus to estimate V pϵq, we average

pV pϵq across

multiple calibration and test sets. The mean˘std-dev-of-mean of the
pV pϵq values are plotted as

ϵ varies. This gives us a conditional validity plot. It is easy to see that the conditional validity

plot is uniformly dominated by the (marginal) validity plot.

The experimental protocol for CREDIT is described in Section 4.2.2. In our experiments, we

used the randomized version of UMD (Algorithm 4.2). Figure 4.3 presents validity plots for UMD,

UMS, fixed-width binning, isotonic regression, scaling-binning, along with the Theorem 4.2 curve

for n “ 3K and n “ 7K. In Appendix 4.D, we also present plots for n “ 1K and n “ 5K. Fixed-

width binning refers to performing binning with equally spaced bins (r0, 1{Bq, . . . , r1´1{B, 1s).

UMS uses a 50:50 split of the calibration data. We do not rescale in scaling-binning, since it

is already done on split B (for all compared procedures) — instead the comparison is between

averaging the predictions of the scaling method (as is done in scaling-binning), against averaging

the true outputs in each bin (as is done by all other methods). To have a fair comparison, we use

double dipping for scaling-binning (thus scaling-binning and UMD are identical except what is

being averaged). We make the following observations:

• Isotonic regression and fixed-width binning perform well for marginal calibration, but

fail for conditional calibration. This is because both these methods tend to have bins with

skewed masses, leading to small ϵ in bins with many points, and high ϵ in bins with few

points.

• Scaling-binning is competitive with UMD for n “ 3K, ϵ ą 0.05. If n “ 7K or ϵ ď 0.05,

4
Relevant code can be found at https://github.com/aigen/df-posthoc-calibration
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UMD outperforms scaling-binning. In Appendix 4.D, we show that for n “ 1K, scaling-

binning is nearly the best method.

• UMD always performs better than UMS, and the performance of UMD is almost perfectly

explained by the theoretical guarantee. Paradoxically, for n “ 7K, the theoretical curve

crosses the validity plot for UMD. This can occur since validity plots are based on a finite

sample estimate of E rY | hpXqs, and the estimation error leads to slight underestimation
of validity. This phenomenon is the same as the bias of plugin ECE estimators, and is

discussed in detail in the last paragraph of Section 4.2.1. The curve-crossing shows that

Theorem 4.2 is so precise that 5K test points are insufficient to verify it.

Overall, our experiment indicates that UMD performs competitively in practice and our theoret-

ical guarantee closely explains its performance.

4.5 Conclusion

We used the Markov property of order statistics to prove distribution-free calibration guarantees

for the popular uniform-mass binning method of Zadrozny and Elkan (2001). We proposed a

novel assessment tool called validity plots, and used this tool to demonstrate that our theoretical

bound closely tails empirical performance on a UCI credit default dataset. To the best of our

knowledge, we demonstrated for the first time that it is possible to show informative calibration

guarantees for binning methods that double dip the data (to both estimate bins and the probability

of Y “ 1 in a bin). Popular calibration methods such as isotonic regression (Zadrozny and Elkan,

2002), probability estimation trees (Provost and Domingos, 2003), random forests (Breiman,

2001) and Bayesian binning (Naeini et al., 2015) perform exactly this style of double dipping. We

thus open up the exciting possibility of providing DF calibration guarantees for one or more of

these methods.

Another recent line of work for calibration in data-dependent groupings, termed as multicalibra-

tion, uses a discretization step similar to fixed-width binning (Hébert-Johnson et al., 2018). Our

uniform-mass binning techniques can potentially be extended to multicalibration. A number of

non-binned methods for calibrating neural networks have displayed good performance on some

tasks (Guo et al., 2017; Kull et al., 2017; Lakshminarayanan et al., 2017). However, the results of

Gupta et al. (2020) imply that these methods cannot have DF guarantees. Examining whether

they have guarantees under some (weak) distributional assumptions is also interesting future

work.
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Appendices for Chapter 4

4.A Proofs

4.A.1 Proof of Proposition 4.1

Define the random variables upXq “ |E rY | hpXqs ´ hpXq|p and vpXq “ 1. Then, by Hölder’s

inequality for r “ q{p and s “ p1 ´ 1{rq´1
,

pℓp-ECEphqq
p

“ E rupXqs

“ E r|upXqvpXq|s
ď E r|upXq|rs1{r E r|vpXq|ss1{s

“ E r|upXq|rs1{r

“ E r|E rY | hpXqs ´ hpXq|qsp{q

“ pℓq-ECEphqq
p,

which proves (4.5). If h satisfies (4.3), then upXq ď ϵp a.s. Thus ℓp-ECEphq “ E rupXqs
1{p

ď

ϵ.

4.A.2 Proof of Lemma 4.1

Let F denote the cdf corresponding to f . The structure of the proof is as follows:

• We first compute the conditional density of the order statistics Spl`1q, Spl`2q, . . . , Spu´1q,

given Splq and Spuq, in terms of f and F (the expression for this is (4.15)). The basic building

block for this computation is a result on the conditional density of order statistics given a

single order statistic (equation (4.12)).

• Next, we compute the conditional density of the order statistics of the independent random

variables tS 1
iuiPru´l´1s, given Splq, Spuq, and Splq ă S 1

i ă Spuq for all i P ru ´ l ´ 1s (the

expression for this is (4.16)).

• We verify that (4.15) and (4.16) are identical, which shows that the conditional density of

the order statistics matches. Finally, we conclude that the unordered random variables

must themselves have the same conditional density. This completes the argument.
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Let 0 ď s1 ă . . . ă sl´1 ă a ă sl`1 ă . . . ă sn ď 1. The conditional density of all the order

statistics given Splq

fpSp1q “ s1, Sp2q “ s2, . . . , Spl´1q “ sl´1, Spl`1q “ sl`1, . . . , Spnq “ sn | Splq “ aq

is given by
ˆ

pl ´ 1q! Πl´1
i“1

fpsiq

F paq

˙

¨

ˆ

pn ´ lq! Πn
i“l

fpsiq

1 ´ F paq

˙

.

For one derivation, see Ahsanullah et al. (2013, Chapter 5, equation (5.2)). This implies that the

order statistics larger than Splq are independent of the order statistics smaller than Splq given

Splq, and

fpSpl`1q “ sl`1, . . . , Spnq “ snq | Splq “ aq “

ˆ

pn ´ lq! Πn
i“l`1

fpsiq

1 ´ F paq

˙

. (4.12)

Suppose we draw n´l independent samples T1, T2, . . . , Tn´l from the distribution whose density

is given by

gpsq “

#

fpsq

1´F paq
if s P ra, 1s ,

0 otherwise.

(This is the conditional density of S given S ą Splq “ a where S is an independent random

variable distributed as QS .) Consider the order statistics Tp1q, Tp2q, . . . , Tpn´lq of these n ´ l
samples. It is a standard result — for example, see Arnold et al. (2008, Chapter 2, equation (2.2.3))

— that the density of the order statistics is

gpTp1q “ sl`1, Tp2q “ sl`2, . . . , Tpn´lq “ snq “ pn ´ lq! Πn´l
i“1gpsl`1q,

which is identical to (4.12). Thus we can see the following fact:

the density of the order statistics larger than Splq, given Splq “ a,

is the same as the density of the order statistics Tp1q, Tp2q, . . . , Tpn´lq.
(4.13)

Now consider the distribution of the order statistics Tp1q, Tp2q, . . . , Tpu´l´1q given Tpu´lq. Let

0 ă sl`1 ă . . . ă su´1 ă b ď 1. Using the same series of steps that led to equation (4.12), we

have

gpTp1q “ sl`1, Tp2q “ sl`2, . . . , Tpu´l´1q “ su´1 | Tpu´lq “ bq

“ pu ´ l ´ 1q! Πu´l´1
i“1

gpsl`iq

Gpbq
, (4.14)

where G is the cdf of g:

Gpsq “

$

&

%

F psq´F paq

1´F paq
if s P ra, 1s ,

0 if s P p´8, aq ,
1 if s P p1,8q .
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Due to fact (4.13), the density of pTp1q, . . . , Tpu´l´1qq given Tpu´lq “ b is the same as the density

of pSpl`1q, . . . , Spu´1qq given Spuq “ b and Splq “ a. Thus,

fpSpl`1q “ sl`1, . . . , Spu´1q “ su´1 | Splq “ a, Spuq “ bq “ pu ´ l ´ 1q! Πu´l´1
i“1

gpsl`iq

Gpbq
.

Writing g and G in terms of f and F , we get

fpSpl`1q “ sl`1, . . . , Spu´1q “ su´1 | Splq “ a, Spuq “ bq “ pu ´ l ´ 1q! Πu´l´1
i“1

fpsl`iq

F pbq ´ F paq
.

(4.15)

Now consider the independent random variables tZiu
u´l´1
i“1 , where the density of each Zi is the

same as the conditional density of S 1
i, given Splq “ a ă S 1

i ă b “ Spuq.

Thus the density h of each Zi is given by

hpsq “

#

fpsq

F pbq´F paq
if s P ra, bs ,

0 otherwise.

The density of the order statistics Zp1q, . . . , Zpu´l´1q is given by

hpZp1q “ sl`1, . . . , Zpu´l´1q “ su´1q “ pu ´ l ´ 1q! Πu´l´1
i“1 hpsl`iq, (4.16)

which exactly matches the right hand side of (4.15). Thus,

fpSpl`1q “ sl`1, . . . , Spu´1q “ su´1 | Splq “ a, Spuq “ bq

“ hpZp1q “ sl`1, . . . , Zpu´l´1q “ su´1q

“ fpS 1
p1q “ sl`1, . . . , S

1
pu´l´1q “ su´1 | Splq “ a, Spuq “ b, @ i P ru ´ l ´ 1s, Splq ă S 1

i ă Spuqq.

Since the conditional densities of the order statistics match, the conditional densities of the

unordered random variables must also match. This gives us the claimed result.

4.A.3 Proof of Lemma 4.2

The sequence of order statistics Sp1q, Sp2q, . . . , Spnq form a Markov chain (Arnold et al., 2008,

Theorem 2.4.3). Thus

`

Spki´1`1q, . . . , Spki´1q KK Spk0q, . . . , Spki´2q, Spki`1q, . . . , SpkBq

˘

| Spki´1q, Spkiq.

Consequently, for the unordered set of random variables Stki´1`1u, . . . , Stki´1u, we have:

`

Stki´1`1u, . . . , Stki´1u KK Spk0q, . . . , Spki´2q, Spki`1q, . . . , SpkBq

˘

| Spki´1q, Spkiq.

Thus,

fpStki´1`1u, . . . , Stki´1u | Spk0q, . . . , SpkBqq “ fpStki´1`1u, . . . , Stki´1u | Spki´1q, Spkiqq.

Using Lemma 4.1, the result follows.
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4.A.4 Proof of Theorem 4.1

For b P t0, 1, . . . , Bu, define kb “ rbpn ` 1{Bqs. Let Sp0q :“ 0 and Spn`1q :“ 1 be fixed

hypothetical ‘order-statistics’. The rest of this proof is conditional on the observed set S :“
pSpk1q, Spk2q, . . . , SpkB´1qq. (Marginalizing over S gives the theorem result as stated.) Let B :
X Ñ rBs be the binning function: for all x, Bpxq “ b ðñ Spkb´1q ď gpxq ă Spkbq. Note that

given S , the binning function B is deterministic. In particular, this means that for every b P rBs,

E rY | BpXq “ bs is a fixed number that is not random on the calibration data or pX, Y q.

Let us fix some b P rBs and denote l “ kb´1, u “ kb. By Lemma 4.2, the scores Stl`1u, . . . , Stu´1u

are independent and identically distributed given S , and the conditional distribution of each

of them equals that of gpXq given BpXq “ b. Thus Ytl`1u, Ytl`2u, . . . , Ytu´1u are indepen-

dent and identically distributed given S , and the conditional distribution of each of them is

BernoullipE rY | BpXq “ bsq. Thus for any t P p0, 1q, by Hoeffding’s inequality, with probability

at least 1 ´ t, ∣∣∣E rY | BpXq “ bs ´ pΠb

∣∣∣ ď

d

logp2{tq

2tu ´ l ´ 1u
ď

d

logp2{tq

2ptn{Bu ´ 1q
. (4.17)

The second inequality holds since for any b,

u ´ l “ kb ´ kb´1

“ tpb ` 1qpn ` 1q{Bu ´ tbpn ` 1q{Bu

“ tU ` pn ` 1q{Bu ´ tU u, where U “ bpn ` 1q{B,

ě tpn ` 1q{Bu ě tn{Bu.

Next, we set t “ α{B in (4.17), and take a union bound over all b P B. Thus, with probability at

least 1 ´ α, the event

E : for every b P rBs,
∣∣∣E rY | BpXq “ bs ´ pΠb

∣∣∣ ď ϵ

occurs. To prove the final calibration guarantee, we need to change the conditioning from BpXq

to hpXq. Specifically, we have to be careful about the possibility of multiple bins having the

same
pΠ values, in which case, conditioning on BpXq and conditioning on hpXq is not the same.

Given that E occurs (which happens with probability at least 1 ´ α),

|E rY | hpXqs ´ hpXq|
“ |E rE rY | BpXq, hpXqs | hpXqs ´ hpXq| (applying tower rule)

“ |E rE rY | BpXqs | hpXqs ´ hpXq| (E rY | BpXq, hpXqs “ E rY | BpXqs)

“ |E rE rY | BpXqs ´ hpXq | hpXqs|

“

∣∣∣E ”

E rY | BpXqs ´ pΠBpXq | hpXq

ı∣∣∣ (by definition of h)

ď E
”
∣∣∣E rY | BpXqs ´ pΠBpXq

∣∣∣ | hpXq

ı

(Jensen’s inequality)

ď ϵ (since E occurs).

This completes the proof of the conditional calibration guarantee. The ECE bound follows by

Proposition 4.1.
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4.A.5 Proof of Corollary 4.1

Conditioned on S (defined in the proof of Theorem 4.1), for some b P rBs, l “ kb´1 and u “ kb,
we showed in the proof of Theorem 4.1 that with probability at least 1 ´ α{B,

∣∣E rY | BpXq “ bs ´ Mean(Ypl`1q, Ypl`2q, . . . , Ypu´1q)

∣∣ ď

d

logp2B{αq

2ptn{Bu ´ 1q
.

Thus for b P rB ´ 1s,∣∣∣E rY | BpXq “ bs ´ pΠb

∣∣∣ ď
∣∣E rY | BpXq “ bs ´ Mean(Ypl`1q, Ypl`2q, . . . , Ypu´1q)

∣∣
`
∣∣
Mean(Ypl`1q, Ypl`2q, . . . , Ypu´1q) ´ Mean(Ypl`1q, Ypl`2q, . . . , Ypuq)

∣∣
ď

d

logp2B{αq

2ptn{Bu ´ 1q
`

1

tn{Bu
(by fact (4.9))

ď ϵ.

The rest of the argument can be completed exactly as in the proof of Theorem (4.1) after

equation (4.17).

4.A.6 Proof of Theorem 4.2

Let tpΠ1
bubPrBs denote the the pre-randomization values of

pΠb as computed in line 13 of Algo-

rithm 4.2. Due to the randomization in line (15), no two
pΠb values are the same. Formally,

consider any two indices 1 ď a ‰ b ď B. Then,
pΠa “ pΠb if and only if δpVa ´ Vbq “ pΠ1

a ´ pΠ1
b,

which happens with probability zero. Thus for any 1 ď a ‰ b ď B,
pΠa ‰ pΠb (with probability

one).

The rest of the proof is conditional on S , as defined in the proof of Theorem 4.1. (Marginalizing

over S gives the theorem result as stated.) As noted in that proof, conditioning on S makes the

binning function B deterministic, which simplifies the proof significantly.

First, we prove a per bin concentration bound for
pΠb of the form of (4.17). The δ randomization

changes this bound as follows. For any b P rBs, t P p0, 1q, with probability at least 1 ´ t,∣∣∣E rY | BpXq “ bs ´ pΠb

∣∣∣ ď

∣∣∣E rY | BpXq “ bs ´ pΠ1
b

∣∣∣ `

∣∣∣pΠb ´ pΠ1
b

∣∣∣
ď

d

logp2{tq

2ptn{Bu ´ 1q
`

∣∣∣p1 ` δq
´1

ppΠ1
b ` δq ´ pΠ1

b

∣∣∣
(Hoeffding’s inequaliity (4.17))

ď

d

logp2{tq

2ptn{Bu ´ 1q
` δ. (4.18)

84



Given this concentration bound for every bin, the pϵ2, αq-conditional calibration bound can be

shown following the arguments in the proof of Theorem 4.1 after inequality (4.17). We now

show the marginal calibration guarantee. Note that since no two
pΠb values are the same, BpXq

is known given
pΠBpXq, and so E rY | hpXqs “ E rY | BpXqs. Thus,

Pp|E rY | hpXqs ´ hpXq| ď ϵ1q

“

B
ÿ

b“1

Pp|E rY | hpXqs ´ hpXq| ď ϵ1 | BpXq “ bq PpBpXq “ bq (law of total probability)

“

B
ÿ

b“1

Pp|E rY | BpXqs ´ hpXq| ď ϵ1 | BpXq “ bq PpBpXq “ bq (E rY | hpXqs “ E rY | BpXqs)

“

B
ÿ

b“1

Pp

∣∣∣E rY | BpXqs ´ pΠBpXq

∣∣∣ ď ϵ1 | BpXq “ bq PpBpXq “ bq (by definition of h)

ě

B
ÿ

b“1

p1 ´ αq PpBpXq “ bq (t “ α in (4.18))

“ 1 ´ α.

This proves pϵ1, αq-marginal calibration.

For the ECE bound, note that for every bin b P rBs, pΠ1
b is the average of at least tn{Bu ´ 1

Bernoulli random variables with bias E rY | BpXq “ bs. We know the exact form of the variance

of averages of Bernoulli random variables with a given bias, giving the following:

VarppΠ1
bq ď

E rY | BpXq “ bs p1 ´ E rY | BpXq “ bsq

tn{Bu ´ 1
ď

1

4ptn{Bu ´ 1q
. (4.19)

We now rewrite the expectation of the square of the ℓ2-ECE in terms of VarppΠ1
bq. Recall that all

expectations and probabilities in the entire proof are conditional on S , so that B is known; the

same is true for all expectations in the forthcoming panel of equations. To aid readability, when

we apply the tower law, we are explicit about the remaining randomness in Dn.

EDn

“

pℓ2-ECEphqq
2
‰

“ EDn

“

EpX,Y q

“

pE rY | hpXqs ´ hpXqq
2

| Dn

‰‰

“ EDn

«

B
ÿ

b“1

pE rY | BpXq “ bs ´ pΠbq
2PpBpXq “ bq

ff

“

B
ÿ

b“1

EDn

”

pE rY | BpXq “ bs ´ pΠbq
2PpBpXq “ bq

ı

“

B
ÿ

b“1

EDn

”

pE rY | BpXq “ bs ´ pΠbq
2
ı

PpBpXq “ bq.

The first equality is by the tower rule. The second equality uses the same simplifications as the

panel of equations used to prove the marginal calibration guarantee (law of total probability,
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using E rY | hpXqs “ E rY | BpXqs, and the definition of h). The third equality uses linearity

of expectation. The fourth equality follows since B is deterministic given S . Now note that

EDnpE rY | BpXq “ bs ´ pΠbq
2

“ EDnpE rY | BpXq “ bs ´ pΠ1
b ` pΠ1

b ´ pΠbq
2

ď VarppΠ1
bq ` δ2,

since E rY | BpXq “ bs “ EDnppΠ1
bq and

∣∣∣pΠ1
b ´ pΠb

∣∣∣ ď δ deterministically. Thus by bound (4.19),

EDn

“

pℓ2-ECEphqq
2
‰

ď

B
ÿ

b“1

ˆ

1

4ptn{Bu ´ 1q
` δ2

˙

PpBpXq “ bq “
1

4ptn{Bu ´ 1q
`δ2 ď

B

2n
`δ2.

The last inequality holds since n ě 2B implies that tn{Bu ´ 1 ě n{2B. Jensen’s inequality now

gives the final result:

EDn rℓ2-ECEphqs ď
a

EDn rpℓ2-ECEphqq2s (Jensen’s inequality)

ď

c

B

2n
` δ2 ď

c

B

2n
` δ.

The bound on EDn rℓp-ECEphqs for p P r1, 2q follows by Proposition 4.1.

4.B Assessing the theoretical guarantee of UMS

We compute the number of calibration pointsn required to guarantee pϵ, αq “ p0.1, 0.1q-marginal

calibration with B “ 10 bins using UMS, based on Theorem 5 of Gupta et al. (2020). Follow-

ing their notation, if the minimum number of calibration points in a bin is denoted as Nb‹ ,

then the Hoeffding-based bound on ϵ, with probablity of failure δ, is

a

logp2B{δq{2Nb‹ . (The

original bound is based on empirical-Berstein which is often tighter in practice, but Hoeffding

is tighter in the worst case.) Let us set δ “ α{2 “ 0.05 since the remaining failure budget

α{2 is for the bin estimation to ensure that Nb‹ is lower bounded. Thus, the requirement
a

logp2 ¨ 10{0.05q{2Nb‹ ď ϵ “ 0.1 translates roughly to Nb‹ ě 300.

To ensure Nb‹ ě 300, we define the bins to each have roughly 1{B fraction of the calibration

points in the first split of the data. Lemma 4.3 (Kumar et al., 2019) shows that w.p. ě 1 ´ δ,

the true mass of the estimated bins is at least 1{2B, as long as the first split of the data has

at least cB logp10B{δq points, for a universal constant c. The original proof is for a c ě 2000,

but let us suppose that with a tighter analysis it can be improved to (say) c “ 100. Then for

δ “ α{4 “ 0.025, the first split of the data must have at least 100 ¨ 10 ¨ logp100{0.025q ě 8000
calibration points. Finally, we use Theorem 5 (Gupta et al., 2020) to bound Nb‹ . If n1

is the

cardinality of the second split (denoted as |D2
cal
| in the original result), then they show that for

δ “ 0.025, Nb‹ ě n1{2B ´
a

n1{ logp2B{δq{2 « n1{20 ´ 1.8
?
n1

. Since we require Nb‹ ě 300,

we must have approximately n1 ě 9500. Overall, the theoretical guarantee for UMS requires

n ě 17500 points to guarantee p0.1, 0.1q-marginal calibration with 10 bins.
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Algorithm 4.2 Randomized UMD

1: Input: Scoring function g : X Ñ r0, 1s, #bins B, calibration data

pX1, Y1q, pX2, Y2q, . . . , pXn, Ynq,

randomization parameter δ ą 0 (arbitrarily small)

2: Output: Approximately calibrated function h
3: pU1, U2, . . . , Unq „ Unifr0, 1sn

4: pS1, S2, . . . , Snq Ð p1 ` δq´1pgpX1q ` δU1, gpX2q ` δU2, . . . , gpXnq ` δUnq

5: pSp1q, Sp2q, . . . , Spnqq Ð order-statspS1, S2, . . . , Snq

6: pYp1q, Yp2q, . . . , Ypnqq Ð pY1, Y2, . . . , Ynq ordered as per the ordering of pSp1q, Sp2q, . . . , Spnqq

7: ∆ Ð pn ` 1q{B

8:
pΠ Ð empty array of size B

9: A Ð 0-indexed arraypr0, r∆s, r2∆s, . . . , n ` 1sq

10: for b Ð 1 to B do
11: l Ð Ab´1

12: u Ð Ab

13:
pΠb Ð Mean(Ypl`1q, Ypl`2q, . . . , Ypu´1q)

14: Vb „ Unifr0, 1s

15:
pΠb Ð p1 ` δq´1ppΠb ` δVbq

16: end for
17: pSp0q, Spn`1qq Ð p0, 1q

18: hp¨q Ð
řB

b“1 1
␣

SpAb´1q ď p1 ` δq´1pgp¨q ` δUq ă SpAbq

(

pΠb, for U „ Unifr0, 1s

4.C Randomized UMD

We now describe the randomized version of UMD (Algorithm 4.2) that is nearly identical to

the non-randomized version in practice, but for which we are able to show better theoretical

properties. In this sense, we view randomized UMD as a theoretical tool rather than a novel

algorithm (nevertheless, all experimental results in this chapter use randomized UMD). Algo-

rithm 4.2 takes as input a randomization parameter δ ą 0 which can be arbitrarily small, such as

10´20
. The specific lines that induce randomization, in comparison to Algorithm 4.1, are lines 3,

4, 14, 15 and 18. This δ perturbation leads to a better theoretical result than the non-randomized

version — in comparison to Theorem 4.1, Theorem 4.2 does not require absolute continuity of

gpXq and provides an improved marginal calibration guarantee.

4.C.1 Absolute continuity of gpXq

In Theorem 4.1, we assumed that gpXq is absolutely continuous with respect to the Lebesgue

measure, or equivalently, it has a pdf. This may not always be the case. For example, X may

contain atoms, or g may have discrete outputs in r0, 1s. If gpXq does not have a pdf, a simple
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randomization trick can be used to ensure that the results hold in full generality (we performed

this randomization in our experiments as well).

First, we append the features X with Unifr0, 1s random variables U so that pX,Uq „ PX ˆ

Unifr0, 1s. Next, for an arbitrarily small value δ ą 0, such as 10´20
, we define rg : X ˆ r0, 1s Ñ

r0, 1s as rgpx, uq “ p1 ` δq´1pgpxq ` δuq. Thus for every x, rgpx, ¨q is arbitrarily close to gpxq,

and we do not lose the informativeness of g. However, now rgpX,Uq is guaranteed to be

absolutely continuous with respect to the Lebesgue measure. The precise implementation

details are as follows: (a) to train, draw pUiqiPrns „ Unifr0, 1sn and call Algorithm 4.1 with

rg, tppXi, Uiq, YiquiPrns; (b) to test, draw a new Unifr0, 1s random variable for each test point.

Algorithm 4.2 packages this randomization into the pseudocode; see lines 3, 4 and 18.

The above process is a technical way of describing the following intuitive methodology: “break

ties among the scores arbitrarily but consistently”. Lemmas 4.1 and 4.2 fail if two data points

have Si “ Sj and one of them is the order statistics we are conditioning on. However, if we fix

an arbitrary secondary order through which ties can be broken even if Si “ Sj or S “ Si, the

lemmas can be made to go through. The noise term δU in rg implicitly provides a strict secondary

order.

4.C.2 Improved marginal calibration guarantee

The marginal calibration guarantee of Theorem 4.2 hinges on the bin biases
pΠb being unique.

Lines 14 and 15 in Algorithm 4.2 ensure that this is satisfied almost surely by adding an in-

finitesimal random perturbation to each
pΠb. This is identical to the technique described in

Section 4.C.1. Due to the perturbation, the ϵ required to satisfy calibration as per equation (4.11)

has an additional δ term. However the δ can be chosen to be arbitrarily small, and this term is

inconsequential.

We make an informal remark that may be relevant to practitioners. In practice, we expect that the

bin biases computed using Algorithm 4.1 are unique with high probability without the need for

randomization. As long as the bin biases are unique, the marginal calibration and ECE guarantees

of Theorem 4.2 apply to Algorithm 4.1 as well. Thus, the
pΠ-randomization can be skipped if

‘simplicity’ or ‘interpretability’ is desired. Note that the gpXq randomization (Section 4.C.1) is

still crucial since we envision many practical scenarios where gpXq is not absolutely continuous.

In summary, randomized UMD uses a small random perturbation to ensure that (a) the score

values and (b) the bin bias estimates, are unique. The particular randomization strategy we

proposed is not special; any other strategy that achieves the aforementioned goals is sufficient

(for example, using a (truncated) Gaussian random variable instead of uniform).

4.D Additional experiments

We present additional experiments to supplement those presented in the Chapter 4.

In Section 4.4, we compared UMD to other binning methods on the CREDIT dataset, for n “ 3K
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and n “ 7K. Here, we present plots for n “ 1K and n “ 5K (for easier comparison, we also

show the plots for n “ 3K and n “ 7K). The marginal validity plots are in Figure 4.4, and

the conditional validity plots are in Figure 4.5. Apart from additional evidence for the same

observations made in Section 4.4, we also see some interesting behavior in the low sample case

(n “ 1K). First, the Theorem 4.2 curve does not explain performance as well as the other plots.

We tried the Clopper Pearson exact confidence interval (Clopper and Pearson, 1934) instead of

Hoeffding and obtained nearly identical results (plots not presented). It would be interesting

to explore if a tighter guarantee can be shown for small sample sizes. Second, for n “ 1K,

scaling-binning performs better than UMD in both the marginal and conditional validity plots,

and is competitive with isotonic regression in the marginal validity plot. This behavior occurs

since in the small sample regime, while all other binning methods attempt to re-estimate the

biases of the bins using very little data, scaling-binning relies on the statistical efficiency of the

learnt g which was trained on 15K training points. A similar phenomenon was observed by

Niculescu-Mizil and Caruana (2005) when comparing Platt scaling and isotonic regression: Platt

scaling performs better at small sample sizes since it relies more on the underlying efficiency of

g, compared to isotonic regression.

While the experiments considered so far use 10K points for training logistic regression, 5K points

for Platt scaling, and between 0.5-10K points for binning, a practically common setting is where

most points are used for training the base model, and a small fraction of points are used for

recalibration. On recommendation of one of the ICML reviewers, we ran experiments with 14K

points for training logistic regression, 1K for Platt scaling, and 1K for binning. The marginal and

conditional validity plots for this experiment are displayed in Figure 4.6. We observe that these

plots are very similar to the marginal and conditional validity plots in Figures 4.4 and 4.5 for

n “ 1K, and the same conclusions described in the previous paragraph can be drawn.
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Figure 4.4: Marginal validity plots comparing UMD to other binning methods. The performance

of UMD improves at higher values of n and ϵ, and the performance of UMD is closely explained

by its theoretical guarantee. Isotonic regression and fixed-width binning perform well at small

values of ϵ.
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Figure 4.5: Conditional validity plots comparing UMD to other binning methods. UMD and

scaling-binning are the best methods for conditional calibration at nearly all values of n, ϵ.
Scaling-binning performs slightly better for small n whereas UMD performs slightly better for

large n. The performance of UMD is closely explained by its theoretical guarantee.
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(a) Marginal validity plot.
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Figure 4.6: Validity plots comparing UMD to other binning methods with fewer points used for

recalibration. Namely, 14K points are used for training logistic regression, 1K for Platt scaling,

and 1K for binning. Overall, scaling-binning performs quite well, since it relies on the underlying

efficiency of logistic regression more than the other methods.
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Chapter 5
Top-label calibration and multiclass-to-binary

reductions

This chapter is based on Gupta and Ramdas (2022b).

A multiclass classifier is said to be top-label calibrated if the reported probability for the predicted
class—the top-label—is calibrated, conditioned on the top-label. This conditioning on the top-label
is absent in the closely related and popular notion of confidence calibration, which we argue
makes confidence calibration difficult to interpret for decision-making. We propose top-label
calibration as a rectification of confidence calibration. Further, we outline a multiclass-to-binary
(M2B) reduction framework that unifies confidence, top-label, and class-wise calibration, among
others. As its name suggests, M2B works by reducing multiclass calibration to numerous binary
calibration problems, each of which can be solved using simple binary calibration routines. We
instantiate the M2B framework with the well-studied histogram binning (HB) binary calibrator,
and prove that the overall procedure is multiclass calibrated without making any assumptions
on the underlying data distribution. In an empirical evaluation with four deep net architectures
on CIFAR-10 and CIFAR-100, we find that the M2B + HB procedure achieves lower top-label and
class-wise calibration error than other approaches such as temperature scaling. Code for this work
is available at https://github.com/aigen/df-posthoc-calibration.

5.1 Introduction

In this chapter, we study calibration for multiclass classification, with L ě 3 classes and the

label Y P rLs :“ t1, 2, . . . , L ě 3u. We assume all (training and test) data is drawn i.i.d. from a

fixed distribution P , and denote a general point from this distribution as pX, Y q „ P . Consider

a typical multiclass predictor, h : X Ñ ∆L´1
, whose domain is a feature space X and range

∆L´1
is the probability simplex in RL

. A natural notion of calibration for h, called canonical
calibration is the following: for every l P rLs, P pY “ l | hpXq “ qq “ ql (ql denotes the l-th
component of q). However, canonical calibration becomes infeasible to achieve or verify once L
is even 4 or 5 (Vaicenavicius et al., 2019). Thus, there is interest in studying statistically feasible
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relaxations of canonical notion, such as confidence calibration (Guo et al., 2017) and class-wise

calibration (Kull et al., 2017).

In particular, the notion of confidence calibration (Guo et al., 2017) has been popular recently. A

model is confidence calibrated if the following is true: “when the reported confidence for the

predicted class is q P r0, 1s, the accuracy is also q”. In any practical setting, the confidence q is

never reported alone; it is always reported along with the actual class prediction l P rLs. One

may expect that if a model is confidence calibrated, the following also holds: “when the class l is

predicted with confidence q, the probability of the actual class being l is also q”? Unfortunately,

this expectation is rarely met—there exist confidence calibrated classifier for whom the latter

statement is grossly violated for all classes (Example 5.1). On the other hand, our proposed

notion of top-label calibration enforces the latter statement. It is philosophically more coherent,

because it requires conditioning on all relevant reported quantities (both the predicted top label

and our confidence in it). In Section 5.2, we argue further that top-label calibration is a simple

and practically meaningful replacement of confidence calibration.

In Section 5.3, we unify top-label, confidence, and a number of other popular notions of multiclass

calibration into the framework of multiclass-to-binary (M2B) reductions. The M2B framework

relies on the simple observation that each of these notions internally verifies binary calibration

claims. As a consequence, each M2B notion of calibration can be achieved by solving a number of

binary calibration problems. With the M2B framework at our disposal, all of the rich literature on

binary calibration can now be used for multiclass calibration. We illustrate this by instantiating

the M2B framework with the binary calibration algorithm of histogram binning or HB (Zadrozny

and Elkan, 2001; Gupta and Ramdas, 2021). The M2B + HB procedure achieves state-of-the-art

results with respect to standard notions of calibration error (Section 5.4). Further, we show that

our procedure is provably calibrated for arbitrary data-generating distributions. The formal

theorems are delayed to Appendices 5.B, 5.C, but an informal result is presented in Section 5.4.

5.2 Modifying confidence calibration to top-label calibra-
tion

Let c : X Ñ rLs denote a classifier or top-label predictor and h : X Ñ r0, 1s a function that

provides a confidence or probability score for the top-label cpXq. The predictor pc, hq is said to

be confidence calibrated (for the data-generating distribution P ) if

PpY “ cpXq | hpXqq “ hpXq. (5.1)

In other words, when the reported confidence hpXq equals p P r0, 1s, then the fraction of

instances where the predicted label is correct also equals p. Note that for an L-dimensional

predictor h : X Ñ ∆L´1
, one would use cp¨q “ argmaxlPrLs hlp¨q and hp¨q “ hcp¨qp¨q; ties are

broken arbitrarily. Then h is confidence calibrated if the corresponding pc, hq satisfies (5.1).

Confidence calibration is most applicable in high-accuracy settings where we trust the label

prediction cpxq. For instance, if a high-accuracy cancer-grade-prediction model predicts a patient
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as having “95% grade III, 3% grade II, and 2% grade I”, we would suggest the patient to undergo an

invasive treatment. However, we may want to know (and control) the number of non-grade-III

patients that were given this suggestion incorrectly. In other words, is Prpcancer is not grade III |

cancer is predicted to be of grade III with confidence 95%q equal to 5%? It would appear that

by focusing on the the probability of the predicted label, confidence calibration enforces such

control.

However, as we illustrate next, confidence calibration fails at this goal by providing a guarantee

that is neither practically interpretable, nor actionable. Translating the probabilistic statement

(5.1) into words, we ascertain that confidence calibration leads to guarantees of the form: “if

the confidence hpXq in the top-label is 0.6, then the accuracy (frequency with which Y equals

cpXq) is 0.6”. Such a guarantee is not very useful. Suppose a patient P is informed (based on

their symptoms X), that they are most likely to have a certain disease D with probability 0.6.

Further patient P is told that this score is confidence calibrated. P can now infer the following:

“among all patients who have probability 0.6 of having some unspecified disease, the fraction

who have that unspecified disease is also 0.6.” However, P is concerned only about disease D, and

not about other diseases. That is, P wants to know the probability of having D among patients
who were predicted to have disease D with confidence 0.6, not among patients who were predicted

to have some disease with confidence 0.6. In other words, P cares about the occurrence of D

among patients who were told the same thing that P has been told. It is tempting to wish that

the confidence calibrated probability 0.6 has any bearing on what P cares about. However, this

faith is misguided, as the above reasoning suggests, and further illustrated through the following

example.

Example 5.1. Suppose the instance space is pX, Y q P ta, bu ˆ t1, 2, . . .u. (X can be seen as the

random patient, and Y as the disease they are suffering from.) Consider a predictor pc, hq and

let the values taken by pX, Y, c, hq be as follows:

Feature x P pX “ xq Class prediction cpxq Confidence hpxq P pY “ cpXq | X “ xq

a 0.5 1 0.6 0.2
b 0.5 2 0.6 1.0

The table specifies only the probabilities P pY “ cpXq | X “ xq; the probabilities P pY “ l |

X “ xq, l ‰ cpxq, can be set arbitrarily. We verify that pc, hq is confidence calibrated:

PpY “ cpXq | hpXq “ 0.6q “ 0.5pPpY “ 1 | X “ aq`PpY “ 2 | X “ bqq “ 0.5p0.2`1q “ 0.6.

However, whether the actual instance is X “ a or X “ b, the probabilistic claim of 0.6
bears no correspondence with reality. If X “ a, hpXq “ 0.6 is extremely overconfident since

P pY “ 1 | X “ aq “ 0.2. Contrarily, if X “ b, hpXq “ 0.6 is extremely underconfident.

The reason for the strange behavior above is that the probability PpY “ cpXq | hpXqq is

not interpretable from a decision-making perspective. In practice, we never report just the

confidence hpXq, but also the class prediction cpXq (obviously!). Thus it is more reasonable to

talk about the conditional probability of Y “ cpXq, given what is reported, that is both cpXq
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and hpXq. We make a small but critical change to (5.1); we say that pc, hq is top-label calibrated
if

PpY “ cpXq | hpXq, cpXqq “ hpXq. (5.2)

(See the disambiguating Remark 5.2 on terminology.) Going back to the patient-disease example,

top-label calibration would tell patient P the following: “among all patients, who (just like you)
are predicted to have disease D with probability 0.6, the fraction who actually have disease D is

also 0.6.” Philosophically, it makes sense to condition on what is reported—both the top label

and its confidence—because that is what is known to the recipient of the information; and there

is no apparent justification for not conditioning on both.

A commonly used metric for quantifying the miscalibration of a model is the expected-calibration-

error (ECE) metric. The ECE associated with confidence calibration is defined as

conf-ECEpc, hq :“ EX |PpY “ cpXq | hpXqq ´ hpXq| . (5.3)

We define top-label-ECE (TL-ECE) in an analogous fashion, but also condition on cpXq:

TL-ECEpc, hq :“ EX |PpY “ cpXq | cpXq, hpXqq ´ hpXq| . (5.4)

d Higher values of ECE indicate worse calibration performance. The predictor in Example 5.1

has conf-ECEpc, hq “ 0. However, it has TL-ECEpc, hq “ 0.4, revealing its miscalibration.

More generally, it can be deduced as a straightforward consequence of Jensen’s inequality that

conf-ECEpc, hq is always smaller than the TL-ECEpc, hq (see Proposition 5.4 in Appendix 5.H).

As illustrated by Example 5.1, the difference can be significant. In the following subsection we

illustrate that the difference can be significant on a real dataset as well. First, we make a couple

of remarks.

Remark 5.1 (ECE estimation using binning). Estimating the ECE requires estimating probabili-

ties conditional on some prediction such as hpxq. A common strategy to do this is to bin together

nearby values of hpxq using binning schemes (Nixon et al., 2020, Section 2.1), and compute a sin-

gle estimate for the predicted and true probabilities using all the points in a bin. The calibration

method we espouse in this work, histogram binning (HB), produces discrete predictions whose

ECE can be estimated without further binning. Based on this, we use the following experimental

protocol: we report unbinned ECE estimates while assessing HB, and binned ECE estimates for

all other compared methods, which are continuous output methods (deep-nets, temperature

scaling, etc). It is commonly understood that binning leads to underestimation of the effective

ECE (Vaicenavicius et al., 2019; Kumar et al., 2019). Thus, using unbinned ECE estimates for

HB gives HB a disadvantage compared to the binned ECE estimates we use for other methods.

(This further strengthens our positive results for HB.) The binning scheme we use is equal-width

binning, where the interval r0, 1s is divided into B equal-width intervals. Equal-width binning

typically leads to lower ECE estimates compared to adaptive-width binning (Nixon et al., 2020).

Remark 5.2 (Terminology). The term conf-ECE was introduced by Kull et al. (2019). Most

works refer to conf-ECE as just ECE (Guo et al., 2017; Nixon et al., 2020; Mukhoti et al., 2020;

Kumar et al., 2018). However, some papers refer to conf-ECE as top-label-ECE (Kumar et al.,
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(a) Confidence reliability diagram (points

marked ‹) and top-label reliability diagram

(points marked `) for a ResNet-50 model on

the CIFAR-10 dataset; see further details in

points (a) and (b) below. The gray bars de-

note the fraction of predictions in each bin.

The confidence reliability diagram (mistakenly)

suggests better calibration than the top-label

reliability diagram.

(b) Class-wise and zoomed-in version of Figure 5.1a for

bin 6 (top) and bin 10 (bottom); see further details in

point (c) below. The ‹ markers are in the same position

as Figure 5.1a, and denote the average predicted and true

probabilities. The colored points denote the predicted and

true probabilities when seen class-wise. The histograms

on the right show the number of test points per class

within bins 6 and 10.

Figure 5.1: Confidence reliability diagrams misrepresent the effective miscalibration.

2019; Zhang et al., 2020), resulting in two different terms for the same concept. We call the older

notion as conf-ECE, and our definition of top-label calibration/ECE (5.4) is different from previous
ones.

5.2.1 An illustrative experiment with ResNet-50 on CIFAR-10

We now compare confidence and top-label calibration using ECE estimates and reliability

diagrams (Niculescu-Mizil and Caruana, 2005). This experiment can be seen as a less malignant

version of Example 5.1. Here, confidence calibration is not completely meaningless, but can

nevertheless be misleading. Figure 5.1 illustrates the (test-time) calibration performance of a

ResNet-50 model (He et al., 2016) on the CIFAR-10 dataset (Krizhevsky, 2009). In the following

summarizing points, the pc, hq correspond to the ResNet-50 model.

(a) The ‹ markers in Figure 5.1a form the confidence reliability diagram (Guo et al., 2017),

constructed as follows. First, the hpxq values on the test set are binned into one of B “ 10
bins, r0, 0.1q, r0.1, 0.2q, . . . , r0.9, 1s, depending on the interval to which hpxq belongs. The

gray bars in Figure 5.1a indicate the fraction of hpxq values in each bin—nearly 92%
points belong to bin r0.9, 1s and no points belong to bin r0, 0.1q. Next, for every bin b,
we plot ‹ “ pconfb, accbq, which are the plugin estimates of E rhpXq | hpXq P Bin bs and

PpY “ cpXq | hpXq P Bin bq respectively. The dashed X “ Y line indicates perfect
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confidence calibration.

(b) The ` markers in Figure 5.1a form the top-label reliability diagram. Unlike the confi-

dence reliability diagram, the top-label reliability diagram shows the average miscalibration
across classes in a given bin. For a given class l and bin b, define

∆b,l :“ |pPpY “ cpXq | cpXq “ l, hpXq P Bin bq ´ pE rhpXq | cpXq “ l, hpXq P Bin bs |,

where
pP, pE denote empirical estimates based on the test data. The overall miscalibration

is then

∆b :“ Weighted-averagep∆b,lq “
ř

lPrLs
pPpcpXq “ l | hpXq P Bin bq ∆b,l.

Note that ∆b is always non-negative and does not indicate whether the overall miscalibra-

tion occurs due to under- or over-confidence; also, if the absolute-values were dropped

from ∆b,l, then ∆b would simply equal accb ´ confb. In order to plot ∆b in a reliability

diagram, we obtain the direction for the corresponding point from the confidence reli-

ability diagram. Thus for every ‹ “ pconfb, accbq, we plot ` “ pconfb, confb ` ∆bq if

accb ą confb and ` “ pconfb, confb ´ ∆bq otherwise, for every b. This scatter plot of the

`’s gives us the top-label reliability diagram.

Figure 5.1a shows that there is a visible increase in miscalibration when going from
confidence calibration to top-label calibration. To understand why this change occurs,

Figure 5.1b zooms into the sixth bin (hpXq P r0.5, 0.6q) and bin 10 (hpXq P r0.9, 1.0s), as

described next.

(c) Figure 5.1b displays the class-wise top-label reliability diagrams for bins 6 and 10. Note

that for bin 6, the ‹ marker is nearly on theX “ Y line, indicating that the overall accuracy

matches the overall confidence of 0.545. However, the true accuracy when class 1 was

predicted is « 0.2 and the true accuracy when class 8 was predicted is « 0.9 (a very similar

scenario to Example 5.1). For bin 10, the ‹ marker indicates a miscalibration of « 0.01;

however, when class 4 was predicted (roughly 8% of all test-points) the miscalibration is

« 0.05.

Figure 5.2 displays the aggregate effect of the above phenomenon (across bins and classes)

through estimates of the conf-ECE and TL-ECE. The precise experimental setup is described in

Section 5.4. These plots display the ECE estimates of the base model, as well as the base model

when recalibrated using temperature scaling (Guo et al., 2017) and our upcoming formulation

of top-label histogram binning (Section 5.3). Since ECE estimates depend on the number of

bins B used (see Roelofs et al. (2022) for empirical work around this), we plot the ECE estimate

for every value B P r5, 25s in order to obtain clear and unambiguous results. We find that

the TL-ECE is significantly higher than the conf-ECE for most values of B, the architectures,

and the pre- and post- recalibration models. This figure also previews the performance of our

forthcoming top-label histogram binning algorithm. Top-label HB has smaller estimated TL-ECE

than temperature scaling for most values of B and the architectures. Except for ResNet-50, the

conf-ECE estimates are also better.

To summarize, top-label calibration captures the intuition of confidence calibration by focusing

on the predicted class. However, top-label calibration also conditions on the predicted class,
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Figure 5.2: Conf-ECE (dashed lines) and TL-ECE (solid lines) of four deep-net architectures on

CIFAR-10, as well as with recalibration using histogram binning and temperature scaling. The

TL-ECE is often 2-3 times the conf-ECE, depending on the number of bins used to estimate ECE,

and the architecture. Top-label histogram binning typically performs better than temperature

scaling.

Calibration notion Quantifier Prediction (predpXq) Binary calibration statement

Confidence - hpXq P pY “ cpXq | predpXqq “ hpXq

Top-label - cpXq, hpXq P pY “ cpXq | predpXqq “ hpXq

Class-wise @l P rLs hlpXq P pY “ l | predpXqq “ hlpXq

Top-K-confidence @k P rKs hpkqpXq P pY “ cpkqpXq | predpXqq “ hpkqpXq

Top-K-label @k P rKs cpkqpXq, hpkqpXq P pY “ cpkqpXq | predpXqq “ hpkqpXq

Table 5.1: Multiclass-to-binary (M2B) notions internally verify one or more binary calibration

statements/claims. The statements in the rightmost column are required to hold almost surely.

which is always part of the prediction in any practical setting. Further, TL-ECE estimates can be

substantially different from conf-ECE estimates. Thus, while it is common to compare predictors

based on the conf-ECE, the TL-ECE comparison is more meaningful, and can potentially be

different.

5.3 Calibration algorithms from calibration metrics

In this section, we unify a number of notions of multiclass calibration as multiclass-to-binary

(or M2B) notions, and propose a general-purpose calibration algorithm that achieves the cor-

responding M2B notion of calibration. The M2B framework yields multiple novel post-hoc

calibration algorithms, each of which is tuned to a specific M2B notion of calibration.
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5.3.1 Multiclass-to-binary (M2B) notions of calibration

In Section 5.2, we defined confidence calibration (5.1) and top-label calibration (5.2). These

notions verify calibration claims for the highest predicted probability. Other popular notions of

calibration verify calibration claims for other entries in the full L-dimensional prediction vector.

A predictor h “ ph1, h2, . . . , hLq is said to be class-wise calibrated (Kull et al., 2017) if

(class-wise calibration) @l P rLs, PpY “ l | hlpXqq “ hlpXq. (5.5)

Another recently proposed notion is top-K confidence calibration (Gupta et al., 2021). For some

l P rLs, let cplq : X Ñ rLs denote the l-th highest class prediction, and let hplq : X Ñ rLs denote

the confidence associated with it (c “ cp1q
and h “ hp1q

are special cases). For a given K ď L,

(top-K-confidence calibration) @k P rKs, PpY “ cpkq
pXq | hpkq

pXqq “ hpkq
pXq. (5.6)

As we did in Section 5.2 for confidenceÑtop-label, top-K-confidence calibration can be modified

to the more interpretable top-K-label calibration by further conditioning on the predicted labels:

(top-K-label calibration) @k P rKs, PpY “ cpkq
pXq | hpkq

pXq, cpkq
pXqq “ hpkq

pXq. (5.7)

Each of these notions reduce multiclass calibration to one or more binary calibration require-

ments, where each binary calibration requirement corresponds to verifying if the distribution
of Y , conditioned on some prediction predpXq, satisfies a single binary calibration
claim associated with predpXq. Table 5.1 illustrates how the calibration notions discussed

so far internally verify a number of binary calibration claims, making them M2B notions. For

example, for class-wise calibration, for every l P rLs, the conditioning is on predpXq “ hlpXq,

and a single binary calibration statement is verified: P pY “ l | predpXqq “ hlpXq. Based on

this property, we call each of these notions multiclass-to-binary or M2B notions.

The notion of canonical calibration mentioned in the introduction is not an M2B notion. Canon-

ical calibration is discussed in detail in Appendix 5.G. Due to the conditioning on a multi-

dimensional prediction, non-M2B notions of calibration are harder to achieve or verify. For the

same reason, it is possibly easier for humans to interpret binary calibration claims when taking

decisions/actions.

5.3.2 Achieving M2B notions of calibration using M2B calibrators

The M2B framework illustrates how multiclass calibration can typically be viewed via a reduc-

tion to binary calibration. The immediate consequence of this reduction is that one can now

solve multiclass calibration problems by leveraging the well-developed methodology for binary

calibration.

The upcoming M2B calibrators belong to the standard recalibration or post-hoc calibration

setting. In this setting, one starts with a fixed pre-learnt base model g : X Ñ ∆L´1
. The

base model g can correspond to a deep-net, a random forest, or any 1-v-all (one-versus-all)

binary classification model such as logistic regression. The base model is typically optimized
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M2B calibrators. Input in each case: Binary calibratorAt0,1u : r0, 1sX ˆpXˆt0, 1uq‹ Ñ r0, 1sX ,

base multiclass predictor g : X Ñ ∆L´1
, calibration data D “ pX1, Y1q, . . . , pXn, Ynq.

Algorithm 5.1 Confidence calibrator

1: c Ð classifier or top-class based on g
2: g Ð top-class-probability based on g
3: D1 Ð tpXi,1 tYi “ cpXiquq : i P rnsu

4: h Ð At0,1upg,D1q

5: return pc, hq

Algorithm 5.2 Top-label calibrator

1: c Ð classifier or top-class based on g
2: g Ð top-class-probability based on g
3: for l Ð 1 to L do
4: Dl Ð tpXi,1 tYi “ luq : cpXiq “ lqu

5: hl Ð At0,1upg,Dlq

6: end for
7: hp¨q Ð hcp¨qp¨q (predict hlpxq if cpxq “ l)
8: return pc, hq

Algorithm 5.3 Class-wise calibrator

1: Write g “ pg1, g2, . . . , gLq

2: for l Ð 1 to L do
3: Dl Ð tpXi,1 tYi “ luq : i P rnsu

4: hl Ð At0,1upgl,Dlq

5: end for
6: return ph1, h2, . . . , hLq

Algorithm 5.4 Normalized calibrator

1: Write g “ pg1, g2, . . . , gLq

2: for l Ð 1 to L do
3: Dl Ð tpXi,1 tYi “ luq : i P rnsu

4:
rhl Ð At0,1upgl,Dlq

5: end for
6: Normalize: for every l P rLs, hlp¨q :“

rhlp¨q{
řL

k“1
rhkp¨q

7: return ph1, h2, . . . , hLq

for classification accuracy and may not be calibrated. The goal of post-hoc calibration is to use

some given calibration data D “ pX1, Y1q, pX2, Y2q, . . . , pXn, Ynq P pX ˆ rLsqn, typically data

on which g was not learnt, to recalibrate g. In practice, the calibration data is usually the same

as the validation data.

To motivate M2B calibrators, suppose we want to verify if g is calibrated on a certain test set,

based on a given M2B notion of calibration. Then, the verifying process will split the test data

into a number of sub-datasets, each of which will verify one of the binary calibration claims. In

Appendix 5.A.2, we argue that the calibration data can also be viewed as a test set, and every

step in the verification process can be used to provide a signal for improving calibration.

M2B calibrators take the form of wrapper methods that work on top of a given binary calibrator.

Denote an arbitrary black-box binary calibrator as At0,1u : r0, 1sX ˆ pX ˆ t0, 1uq‹ Ñ r0, 1sX ,

where the first argument is a mapping X Ñ r0, 1s that denotes a (miscalibrated) binary predicor,

and the second argument is a calibration data sequence of arbitrary length. The output is a

(better calibrated) binary predictor. Examples of At0,1u are histogram binning (Zadrozny and

Elkan, 2001), isotonic regression (Zadrozny and Elkan, 2002), and Platt scaling (Platt, 1999). In

the upcoming descriptions, we use the indicator function 1 ta “ bu P t0, 1u which takes the

value 1 if a “ b, and 0 if a ‰ b.

The general formulation of our M2B calibrator is delayed to Appendix 5.A since the description
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is a bit involved. To ease readability, in the main part of the chapter we describe the calibrators

corresponding to top-label, class-wise, and confidence calibration (Algorithms 5.1–5.3). Each of

these calibrators are different from the classical M2B calibrator (Algorithm 5.4) that has been

used by Zadrozny and Elkan (2002), Guo et al. (2017), Kull et al. (2019), and most other papers we

are aware of, with the most similar one being Algorithm 5.3. Top-K-label and top-K-confidence

calibrators are also explicitly described in Appendix 5.A (Algorithms 5.6 and 5.7).

Top-label calibration requires that for every class l P rLs, PpY “ l | cpXq “ l, hpXqq “ hpXq.

Thus, to achieve top-label calibration, we must solve L calibration problems. Algorithm 5.2

constructs L datasets tDl : l P rLsu (line 4). The features in Dl are the Xi’s for which cpXiq “ l,
and the labels are 1 tYi “ lu. Now for every l P rLs, we calibrate g to hl : X Ñ r0, 1s using

Dl and any binary calibrator. The final probabilistic predictor is hp¨q “ hcp¨qp¨q (that is, it

predicts hlpxq if cpxq “ l). The top-label predictor c does not change in this process. Thus the

accuracy of pc, hq is the same as the accuracy of g irrespective of which At0,1u is used. Unlike

the top-label calibrator, the confidence calibrator merges all classes together into a single dataset

D1 “
Ť

lPrLs
Dl.

To achieve class-wise calibration, Algorithm 5.3 also solves L calibration problems, but these

correspond to satisfying PpY “ l | hlpXqq “ hlpXq. Unlike top-label calibration, the dataset

Dl for class-wise calibration contains all the Xi’s (even if cpXiq ‰ l), and hl is passed to

At0,1u instead of h. Also, unlike confidence calibration, Yi is replaced with 1 tYi “ lu instead of

1 tYi “ cpXiqu. The overall process is similar to reducing multiclass classification to L 1-v-all

binary classification problem, but our motivation is intricately tied to the notion of class-wise

calibration.

Most popular empirical works that have discussed binary calibrators for multiclass calibration

have done so using the normalized calibrator, Algorithm 5.4. This is almost identical to Algo-

rithm 5.3, except that there is an additional normalization step (line 6 of Algorithm 5.4). This

normalization was first proposed by Zadrozny and Elkan (2002, Section 5.2), and has been used

unaltered by most other works
1

where the goal has been to simply compare direct multiclass

calibrators such as temperature scaling, Dirichlet scaling, etc., to a calibrator based on binary

methods (for instance, see Section 4.2 of Guo et al. (2017)). In contrast to these papers, we

investigate multiple M2B reductions in an effort to identify the right reduction of multiclass

calibration to binary calibration.

To summarize, the M2B characterization immediately yields a novel and different calibrator

for every M2B notion. In the following section, we instantiate M2B calibrators on the binary

calibrator of histogram binning (HB), leading to two new algorithms: top-label-HB and class-wise-

HB, that achieve strong empirical results and satisfy distribution-free calibration guarantees.
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Metric Dataset Architecture Base TS VS DS N-HB TL-HB

Top-

label-

ECE

CIFAR-10

ResNet-50 0.025 0.022 0.020 0.019 0.018 0.020

ResNet-110 0.029 0.022 0.021 0.021 0.020 0.021

WRN-26-10 0.023 0.023 0.019 0.021 0.012 0.018

DenseNet-121 0.027 0.027 0.020 0.020 0.019 0.021

CIFAR-100

ResNet-50 0.118 0.114 0.113 0.322 0.081 0.143

ResNet-110 0.127 0.121 0.115 0.353 0.093 0.145

WRN-26-10 0.103 0.103 0.100 0.304 0.070 0.129

DenseNet-121 0.110 0.110 0.109 0.322 0.086 0.139

Top-

label-

MCE

CIFAR-10

ResNet-50 0.315 0.305 0.773 0.282 0.411 0.107
ResNet-110 0.275 0.227 0.264 0.392 0.195 0.077
WRN-26-10 0.771 0.771 0.498 0.325 0.140 0.071

DenseNet-121 0.289 0.289 0.734 0.294 0.345 0.087

CIFAR-100

ResNet-50 0.436 0.300 0.251 0.619 0.397 0.291

ResNet-110 0.313 0.255 0.277 0.557 0.266 0.257

WRN-26-10 0.273 0.255 0.256 0.625 0.287 0.280

DenseNet-121 0.279 0.231 0.235 0.600 0.320 0.289

Table 5.2: Top-label-ECE and top-label-MCE for deep-net models (above: ‘Base’) and various

post-hoc calibrators: temperature-scaling (TS), vector-scaling (VS), Dirichlet-scaling (DS), top-

label-HB (TL-HB), and normalized-HB (N-HB). Best performing method in each row is in bold.

Metric Dataset Architecture Base TS VS DS N-HB CW-HB

Class-

wise-

ECE

ˆ102

CIFAR-10

ResNet-50 0.46 0.42 0.35 0.35 0.50 0.28
ResNet-110 0.59 0.50 0.42 0.38 0.53 0.27
WRN-26-10 0.44 0.44 0.35 0.39 0.39 0.28

DenseNet-121 0.46 0.46 0.36 0.36 0.48 0.36

CIFAR-100

ResNet-50 0.22 0.20 0.20 0.66 0.23 0.16
ResNet-110 0.24 0.23 0.21 0.72 0.24 0.16
WRN-26-10 0.19 0.19 0.18 0.61 0.20 0.14

DenseNet-121 0.20 0.21 0.19 0.66 0.24 0.16

Table 5.3: Class-wise-ECE for deep-net models and various post-hoc calibrators. All methods

are same as Table 5.2, except TL-HB is replaced with class-wise-HB (CW-HB).

5.4 Experiments: M2B calibration with histogram binning

Histogram binning or HB was proposed by Zadrozny and Elkan (2001) with strong empirical

results for binary calibration. In HB, a base binary calibration model g : X Ñ r0, 1s is used

to partition the calibration data into a number of bins so that each bin has roughly the same

1
the only exception we are aware of is the recent work of Patel et al. (2021) who also suggest skipping

normalization (see their Appendix A1); however they use a common I-Max binning scheme across classes, whereas

in Algorithm 5.3 the predictor hl for each class is learnt completely independently of other classes
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number of points. Then, for each bin, the probability of Y “ 1 is estimated using the empirical

distribution on the calibration data. This estimate forms the new calibrated prediction for that bin.

Recently, Gupta and Ramdas (2021) showed that HB satisfies strong distribution-free calibration

guarantees, which are otherwise impossible for scaling methods (Gupta et al., 2020).

Despite these results for binary calibration, studies for multiclass calibration have reported that

HB typically performs worse than scaling methods such as temperature scaling (TS), vector

scaling (VS), and Dirichlet scaling (DS) (Kull et al., 2019; Roelofs et al., 2022; Guo et al., 2017). In

our experiments, we find that the issue is not HB but the M2B wrapper used to produce the HB

baseline. With the right M2B wrapper, HB beats TS, VS, and DS. A number of calibrators have

been proposed recently (Zhang et al., 2020; Rahimi et al., 2020; Patel et al., 2021; Gupta et al.,

2021), but VS and DS continue to remain strong baselines which are often close to the best in

these papers. We do not compare to each of these calibrators; our focus is on the M2B reduction

and the message that the baselines dramatically improve with the right M2B wrapper.

We use three metrics for comparison: the first is top-label-ECE or TL-ECE (defined in (5.4)),

which we argued leads to a more meaningful comparison compared to conf-ECE. Second, we

consider the more stringent maximum-calibration-error (MCE) metric that assesses the worst

calibration across predictions (see more details in Appendix 5.E.3). For top-label calibration

MCE is given by

TL-MCEpc, hq :“ max
lPrLs

sup
rPRangephq

|PpY “ l | cpXq “ l, hpXq “ rq ´ r| .

To assess class-wise calibration, we use class-wise-ECE defined as the average calibration error

across classes:

CW-ECEpc,hq :“ L´1
řL

l“1 EX |PpY “ l | hlpXqq ´ hlpXq| .

All ECE/MCE estimation is performed as described in Remark 5.1. For further details, see

Appendix 5.E.2.

Formal algorithm and theoretical guarantees. Top-label-HB (TL-HB) and class-wise-HB

(CW-HB) are explicitly stated in Appendices 5.B and 5.C respectively; these are instantiations of

the top-label calibrator and class-wise calibrator with HB. N-HB is the the normalized calibrator

(Algorithm 5.4) with HB, which is the same as CW-HB, but with an added normalization step.

In the Appendix, we extend the binary calibration guarantees of Gupta and Ramdas (2021)

to TL-HB and CW-HB (Theorems 5.1 and 5.2). We informally summarize one of the results

here: if there are at least k calibration points-per-bin, then the expected-ECE is bounded as:

E r(TL-) or (CW-) ECEs ď
a

1{2k, for TL-HB and CW-HB respectively. The outer E above is

an expectation over the calibration data, and corresponds to the randomness in the predictor

learnt on the calibration data. Note that the ECE itself is an expected error over an unseen i.i.d.

test-point pX, Y q „ P .

Experimental details. We experimented on the CIFAR-10 and CIFAR-100 datasets, which

have 10 and 100 classes each. The base models are deep-nets with the following architectures:

ResNet-50, Resnet-110, Wide-ResNet-26-10 (WRN) (Zagoruyko and Komodakis, 2016), and

DenseNet-121 (Huang et al., 2017). Both CIFAR datasets consist of 60K (60,000) points, which are
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split as 45K/5K/10K to form the train/validation/test sets. The validation set was used for post-

hoc calibration and the test set was used for evaluation through ECE/MCE estimates. Instead

of training new models, we used the pre-trained models of Mukhoti et al. (2020). We then ask:

“which post-hoc calibrator improves the calibration the most?” We used their Brier score and focal

loss models in our experiments (Mukhoti et al. (2020) report that these are the empirically best

performing loss functions). All results in the main chaoter are with Brier score, and results with
focal loss are in Appendix 5.E.4. Implementation details for TS, VS, and DS are in Appendix 5.E.

Findings. In Table 5.2, we report the binned ECE and MCE estimates when B “ 15 bins are

used by HB, and for ECE estimation. We make the following observations:

(a) For TL-ECE, N-HB is the best performing method for both CIFAR-10 and CIFAR-100.

While most methods perform similarly across architectures for CIFAR-10, there is high

variation in CIFAR-100. DS is the worst performing method on CIFAR-100, but TL-HB

also performs poorly. We believe that this could be because the data splitting scheme of

the TL-calibrator (line 4 of Algorithm 5.2) splits datasets across the predicted classes, and

some classes in CIFAR-100 occur very rarely. This is further discussed in Appendix 5.E.6.

(b) For TL-MCE, TL-HB is the best performing method on CIFAR-10, by a huge margin. For

CIFAR-100, TS or VS perform slightly better than TL-HB. Since HB ensures that each bin

gets roughly the same number of points, the predictions are well calibrated across bins,

leading to smaller TL-MCE. A similar observation was also made by Gupta and Ramdas

(2021).

(c) For CW-ECE, CW-HB is the best performing method across the two datasets and all

four architectures. The N-HB method which has been used in many CW-ECE baseline

experiments performs terribly. In other words, skipping the normalization step leads to a

large improvement in CW-ECE. This observation is one of our most striking findings.
To shed further light on this, we note that the distribution-free calibration guarantees for

CW-HB shown in Appendix 5.C no longer hold post-normalization. Thus, both our theory

and experiments indicate that skipping normalization improves CW-ECE performance.

Additional experiments in the Appendix. In Appendix 5.E.5, we report each of the results

in Tables 5.2 and 5.3 with the number of bins taking every value in the range r5, 25s. Most

observations remain the same under this expanded study. In Appendix 5.B.2, we consider top-

label calibration for the class imbalanced COVTYPE-7 dataset, and show that TL-HB adapts to

tail/infrequent classes.

5.5 Conclusion

We make two contributions to the study of multiclass calibration: (i) defining the new notion of

top-label calibration which enforces a natural minimal requirement on a multiclass predictor—

the probability score for the top-label should be calibrated conditioned on the reported top-label;

(ii) developing a multiclass-to-binary (M2B) framework which posits that various notions of

multiclass calibration can be achieved via reduction to binary calibration, balancing practical

utility with statistically tractability. Since it is important to identify appropriate notions of
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calibration in any structured output space (Kuleshov et al., 2018; Gneiting et al., 2007), we

anticipate that the philosophy behind the M2B framework could find applications in other

structured spaces.

5.6 Reproducibility

Some reproducibility desiderata, such as external code and libraries that were used are sum-

marized in Appendix 5.E.1. Most of our experiments can be reproduced using the code at

https://github.com/aigen/df-posthoc-calibration. Our base models were pre-trained deep-net

models generated by Mukhoti et al. (2020), obtained from www.robots.ox.ac.uk/„viveka/focal

calibration/ (corresponding to ‘brier score’ and ‘focal loss adaptive 53’ at the above link). By

avoiding training of new deep-net models with multiple hyperparameters, we also conse-

quently avoided selection biases that inevitably creep in due to test-data-peeking. The predic-

tions of the pre-trained models were obtained using the code at https://github.com/torrvision/

focal calibration.
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Appendices for Chapter 5

5.A Addendum to Section 5.3 “Calibration algorithms from
calibration metrics”

In Section 5.3, we introduced the concept of M2B calibration, and showed that popular calibration

notions are in fact M2B notions (Table 5.1). We showed how the calibration notions of top-label,

class-wise, and confidence calibration can be achieved using a corresponding M2B calibrator.

In the following subsection, we present the general-purpose wrapper Algorithm 5.5 that can

be used to derive an M2B calibrator from any given M2B calibration notion that follows the

rubric specified by Table 5.1. In Appendix 5.A.2, we illustrate the philosophy of M2B calibration

using a simple example with a dataset that contains 6 points. This example also illustrates the

top-label-calibrator, the class-wise-calibrator, and the confidence-calibrator.

5.A.1 General-purpose M2B calibrator

Denote some M2B notion of calibration as C. Suppose C corresponds to K binary calibration

claims. The outer for-loop in Algorithm 5.5, runs over each such claim in C. For example, for class-

wise calibration, K “ L and for confidence and top-label calibration, K “ 1. Corresponding

to each claim, there is a probability-predictor that the conditioning is to be done on, such as

g or gl or gpkq. Additionally, there may be conditioning on the label predictor such as c or cpkq.

These are denoted as prc, rgq in Algorithm 5.5. For confidence and top-label calibration, rc “ c, the

top-label-confidence. For class-wise calibration, when rg “ gl, we have rcp¨q “ l.

If there is no label conditioning in the calibration notion, such as in confidence, top-K-confidence,

and class-wise calibration, then we enter the if-condition inside the for-loop. Here hk is learnt

using a single calibration dataset and a single call to At0,1u. Otherwise, if there is label condi-

tioning, such as in top-label and top-K-label calibration, we enter the else-condition, where we

learn a separate hk,l for every l P rLs, using a different part of the dataset Dl in each case. Then

hkpxq equals hk,lpxq if rcpxq “ l.

Finally, since C is verifying a sequence of claims, the output of Algorithm 5.5 is a sequence of

predictors. Each original prediction prc, rgq corresponding to the C is replaced with prc, hkq. This is

the output of the M2B calibrator. Note that the rc values are not changed. This output appears

abstract, but normally, it can be represented in an interpretable way. For example, for class-wise

calibration, the output is just a sequence of predictors, one for each class: ph1, h2, . . . , hLq.
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Algorithm 5.5 Post-hoc calibrator for a given M2B calibration notion C
Require: Base (uncalibrated) multiclass predictor g, calibration data D “

pX1, Y1q, . . . , pXn, Ynq, binary calibrator At0,1u : r0, 1sX ˆ pX ˆ t0, 1uq‹ Ñ r0, 1sX

1: K Ð number of distinct calibration claims that C verifies

2: for each claim k P rKs do
3: From g, infer prc, rgq Ð plabel-predictor, probability-predictorq corresponding to claim k
4: Dk Ð tpXi, Ziqu, where Zi Ð 1 tYi “ rcpXiqu

5: if conditioning does not include class prediction rc then
6: — (confidence, top-K-confidence, and class-wise calibration) —

7: hk Ð At0,1uprg,Dkq

8: else
9: — (top-label and top-K-label calibration) —

10: for l P rLs do
11: Dk,l Ð tpXi, Ziq P Dk : rcpXiq “ lqu

12: hk,l Ð At0,1uprg,Dk,lq

13: end for
14: hkp¨q Ð hk,rcp¨qp¨q (hk predicts hk,lpxq if rcpxq “ l)
15: end if
16: end for
17: — (the new predictor replaces each rg with the corresponding hk) —

18: return plabel-predictor, hkq corresponding to each claim k P rKs

This general-purpose M2B calibrators can be used to achieve any M2B calibration notion: top-

label calibration (Algorithm 5.2), class-wise calibration (Algorithm 5.3), confidence calibration

(Algorithm 5.1), top-K-label calibration (Algorithm 5.6), and top-K-confidence calibration

(Algorithm 5.7).

5.A.2 An example to illustrate the philosophy of M2B calibration

Figure 5.3a shows the predictions of a given base model g on a given dataset D. Suppose D is

a test set, and we are testing confidence calibration. Then the only predictions that matter are

the top-predictions corresponding to the shaded values. These are stripped out and shown in

Figure 5.3b, in the gp¨q row. Note that the indicator 1 tY “ cp¨qu is sufficient to test confidence

calibration and given this, the cpXq are not needed. Thus the second row in Figure 5.3b only

shows these indicators. Verifying top-label calibration is similar (Figure 5.3c), but in addition

to the predictions gp¨q, we also retain the values of cp¨q. Thus the gp¨q and 1 tY “ cp¨qu are

shown, but split across the 4 classes. Class-wise calibration requires access to all the predictions,

however, each class is considered separately as indicated by Figure 5.3d. Canonical calibration

looks at the full prediction vector in each case. However, in doing so, it becomes unlikely that

gpxq “ gpyq for any x,y since the number of values that g can take is now exponential.

Let us turn this around and suppose that D were a calibration set instead of a test set. We
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Algorithm 5.6 Top-K-label calibrator

Require: Base multiclass predictor g, calibra-

tion data D “ pX1, Y1q, . . . , pXn, Ynq

1: For every k P rKs, infer from g the k-th

largest class predictor cpkq
and the associ-

ated probability gpkq

2: for k Ð 1 to K do
3: for l Ð 1 to L do
4: Dk,l Ð tpXi,1 tYi “ luq :

cpkqpXiq “ lu
5: hpk,lq Ð At0,1upgpkq,Dk,lq

6: end for
7: hpkq Ð hpk,cpkqp¨qqp¨q

8: end for
9: return php1q, hp2q, . . . , hpKqq

Algorithm 5.7 Top-K-confidence calibrator

Require: Base multiclass predictor g, cali-

bration data D “ pX1, Y1q, . . . , pXn, Ynq

1: For every k P rKs, infer from g the k-th

largest class predictor cpkq
and the asso-

ciated probability gpkq

2: for k Ð 1 to K do
3: Dk Ð tpXi,1 tYi “ luq : i P rnsu

4: hpkq Ð At0,1upgpkq,Dkq

5: end for
6: return php1q, hp2q, . . . , hpKqq

argue that D should be used in the same way, whether testing or calibrating. Thus, if confidence

calibration is to be achieved, we should focus on the pg,1 tY “ cp¨quq corresponding to g. If

top-label calibration is to be achieved, we should use the pc, gq values. If class-wise calibration

is to be achieved, we should look at each gl separately and solve L different problems. Finally,

for canonical calibration, we must look at the entire g vector as a single unit. This is the core

philosophy behind M2B calibrators: if binary claims are being verified, solve binary calibration

problems.

5.B Distribution-free top-label calibration using histogram
binning

In this section, we formally describe histogram binning (HB) with the top-label-calibrator

(Algorithm 5.2) and provide methodological insights through theory and experiments.

5.B.1 Formal algorithm and theoretical guarantees

Algorithm 5.8 describes the top-label calibrator formally using HB as the binary calibration

algorithm. The function called in line 6 is Algorithm 2 of Gupta and Ramdas (2021). The first

argument in the call is the top-label confidence predictor, the second argument is the dataset

to be used, the third argument is the number of bins to be used, and the fourth argument is a

tie-breaking parameter (described shortly). While previous empirical works on HB fixed the

number of bins per class, the analysis of Gupta and Ramdas (2021) suggests that a more principled

way of choosing the number of bins is to fix the number of points per bin. This is parameter k of
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(a) Predictions of a fixed

base model g : X Ñ ∆3

on calibration/test data

D “ tpa, 3q, pb, 4q, . . . , pf, 1qu.

(b) Confidence calibration

(c) Top-label calibration

(d) Class-wise calibration

(e) Canonical calibration

Figure 5.3: Illustrative example for Section 5.A.2. The numbers in plot (a) correspond to the

predictions made by g on a dataset D. If D were a test set, plots (b–e) show how it should be

used to verify if g satisfies the corresponding notion of calibration. Consequently, we argue

that if D were a calibration set, and we want to achieve one of the notions (b–e), then the data

shown in the corresponding plots should be the data used to calibrate g as well.

Algorithm 5.8 Top-label histogram binning

Require: Base multiclass predictor g, calibration data D “ pX1, Y1q, . . . , pXn, Ynq

Require: # points per bin k P N (say 50), tie-breaking parameter δ ą 0 (say 10´10
)

Ensure: Top-label calibrated predictor pc, hq

1: c Ð classifier or top-class based on g
2: g Ð top-class-probability based on g
3: for l Ð 1 to L do
4: Dl Ð tpXi,1 tYi “ luq : cpXiq “ lu and

5: nl Ð |Dl|

6: hl Ð Binary-histogram-binningpg,Dl, tnl{ku , δq

7: end for
8: hp¨q Ð hcp¨qp¨q

9: return pc, hq

Algorithm 5.8. Given k, the number of bins is decided separately for every class as tnl{ku where

nl is the number of points predicted as class l. This choice is particularly relevant for top-label

calibration since nl can be highly non-uniform (we illustrate this empirically in Section 5.B.2).

The tie-breaking parameter δ can be arbitrarily small (like 10´10
), and its significance is mostly

theoretical—it is used to ensure that outputs of different bins are not exactly identical by chance,

so that conditioning on a calibrated probability output is equivalent to conditioning on a bin;
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this leads to a cleaner theoretical guarantee.

HB recalibrates g to a piecewise constant function h that takes one value per bin. Con-

sider a specific bin b; the h value for this bin is computed as the average of the indicators

t1 tYi “ cpXiqu : Xi P Bin bu. This is an estimate of the bias of the binPpY “ cpXq | X P Bin bq.

A concentration inequality can then be used to bound the deviation between the estimate and

the true bias to prove distribution-free calibration guarantees. In the forthcoming Theorem 5.1,

we show high-probability and in-expectation bounds on the the TL-ECE of HB. Additionally,

we show marginal and conditional top-label calibration bounds, defined next. These notions

were proposed in the binary calibration setting by Gupta et al. (2020) and Gupta and Ramdas

(2021). In the definition below, A refers to any algorithm that takes as input calibration data D
and an initial classifier g to produce a top-label predictor c and an associated probability map h.

Algorithm 5.8 is an example of A.

Definition 5.1 (Marginal and conditional top-label calibration). Let ϵ, α P p0, 1q be some given

levels of approximation and failure respectively. An algorithm A : pg,Dq ÞÑ pc, hq is

(a) pϵ, αq-marginally top-label calibrated if for every distribution P over X ˆ rLs,

P
´

|PpY “ cpXq | cpXq, hpXqq ´ hpXq| ď ϵ
¯

ě 1 ´ α. (5.8)

(b) pϵ, αq-conditionally top-label calibrated if for every distribution P over X ˆ rLs,

P
´

@ l P rLs, r P Rangephq, |PpY “ cpXq | cpXq “ l, hpXq “ rq ´ r| ď ϵ
¯

ě 1 ´ α.

(5.9)

To clarify, all probabilities are taken over the test point pX, Y q „ P , the calibration data D „ P n
,

and any other inherent algorithmic randomness in A; these are all implicit in pc, hq “ ApD,gq.

Marginal calibration asserts that with high probability, on average over the distribution of

D, X , PpY “ cpXq | cpXq, hpXqq is at most ϵ away from hpXq. In comparison, TL-ECE is the

average of these deviations over X . Marginal calibration may be a more appropriate metric for

calibration than TL-ECE if we are somewhat agnostic to probabilistic errors less than some fixed

threshold ϵ (like 0.05). Conditional calibration is a strictly stronger definition that requires the

deviation to be at most ϵ for every possible prediction pl, rq, including rare ones, not just on

average over predictions. This may be relevant in medical settings where we want the prediction

on every patient to be reasonably calibrated. Algorithm 5.8 satisfies the following calibration

guarantees.

Theorem 5.1. Fix hyperparameters δ ą 0 (arbitrarily small) and points per bin k ě 2, and
assume nl ě k for every l P rLs. Then, for any α P p0, 1q, Algorithm 5.8 is pϵ1, αq-marginally and
pϵ2, αq-conditionally top-label calibrated for

ϵ1 “

d

logp2{αq

2pk ´ 1q
` δ, and ϵ2 “

d

logp2n{kαq

2pk ´ 1q
` δ. (5.10)
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(a) Top-label histogram binning (Algorithm 5.8) with k “ 100 points per bin. Class 4 has only 183

calibration points. Algorithm 5.8 adapts and uses only a single bin to ensure that the TL-ECE on class

4 is comparable to the TL-ECE on class 2. Overall, the random forest classifier has significantly higher

TL-ECE for the least likely classes (4, 5, and 6), but the post-calibration TL-ECE using binning is quite

uniform.
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(b) Histogram binning with B “ 50 bins for every class. Compared to Figure 5.4a, the post-calibration

TL-ECE for the most likely classes decreases while the TL-ECE for the least likely classes increases.

Figure 5.4: Recalibration of a random forest using histogram binning on the class imbalanced

COVTYPE-7 dataset (class 2 is roughly 100 times likelier than class 4). By ensuring a fixed number

of calibration points per bin, Algorithm 5.8 obtains relatively uniform top-label calibration across

classes (Figure 5.4a). In comparison, if a fixed number of bins are chosen for all classes, the

performance deteriorates for the least likely classes (Figure 5.4b).

Further, for any distribution P over X ˆ rLs, we have P pTL-ECEpc, hq ď ϵ2q ě 1 ´ α, and
E rTL-ECEpc, hqs ď

a

1{2k ` δ.

The proof in Appendix 5.H is a multiclass top-label adaption of the guarantee in the binary setting

by Gupta and Ramdas (2021). The
rOp1{

?
kq dependence of the bound relies on Algorithm 5.8

delegating at least k points to every bin. Since δ can be chosen to be arbitrarily small, setting

k “ 50 gives roughly ED rTL-ECEphqs ď 0.1. Base on this, we suggest setting k P r50, 150s in

practice.

5.B.2 Top-label histogram binning adapts to class imbalanced datasets

The principled methodology of fixing the number of points per bin reaps practical benefits.

Figure 5.4 illustrates this through the performance of HB for the class imbalanced COVTYPE-7

dataset (Blackard and Dean, 1999) with class ratio approximately 36% for class 1 and 49% for

class 2. The entire dataset has 581012 points which is divided into train-test in the ratio 70:30.

Then, 10% of the training points are held out for calibration (n “ |D| “ 40671). The base classifier
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is a random forest (RF) trained on the remaining training points (it achieves around 95% test

accuracy). The RF is then recalibrated using HB. The top-label reliability diagrams in Figure 5.4a

illustrate that the original RF (in orange) is underconfident on both the most likely and least likely

classes. Additional figures in Appendix 5.F show that the RF is always underconfident no matter

which class is predicted as the top-label. HB (in green) recalibrates the RF effectively across

all classes. Validity plots (Gupta and Ramdas, 2021) estimate how the LHS of condition (5.8),

denoted as V pϵq, varies with ϵ. We observe that for all ϵ, V pϵq is higher for HB. The rightmost

barplot compares the estimated TL-ECE for all classes, and also shows the class proportions.

While the original RF is significantly miscalibrated for the less likely classes, HB has a more

uniform miscalibration across classes. Figure 5.4b considers a slightly different HB algorithm

where the number of points per class is not adapted to the number of times the class is predicted,

but is fixed beforehand (this corresponds to replacing tnl{ku in line 6 of Algorithm 5.8 with a

fixed B P N). While even in this setting there is a drop in the TL-ECE compared to the RF model,

the final profile is less uniform compared to fixing the number of points per bin.

The validity plots and top-label reliability diagrams for all the 7 classes are reported in Figure 5.9

in Appendix 5.F, along with some additional observations.

5.C Distribution-free class-wise calibrationusinghistogram
binning

In this section, we formally describe histogram binning (HB) with the class-wise-calibrator

(Algorithm 5.3) and provide theoretical guarantees for it. The overall procedure is called class-

wise-HB. Further details and background on HB are contained in Appendix 5.B, where top-label-

HB is described.

5.C.1 Formal algorithm

To achieve class-wise calibration using binary routines, we learn each component function hl in

a 1-v-all fashion as described in Algorithm 5.3. Algorithm 5.9 contains the pseudocode with the

underlying routine as binary HB. To learn hl, we use a dataset Dl, which unlike top-label HB

(Algorithm 5.8), contains Xi even if cpXiq ‰ l. However the Yi is replaced with 1 tYi “ lu. The

number of points per bin kl can be different for different classes, but generally one would set

k1 “ . . . “ kL “ k P N. Larger values of kl will lead to smaller ϵl and δl in the guarantees, at

loss of sharpness since the number of bins tn{klu would be smaller.

5.C.2 Calibration guarantees

A general algorithm A for class-wise calibration takes as input calibration data D and an initial

classifier g to produce an approximately class-wise calibrated predictor h : X Ñ r0, 1sL. Define

the notation ε “ pϵ1, ϵ2, . . . , ϵLq P p0, 1qL and α “ pα1, α2, . . . , αLq P p0, 1qL.
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Algorithm 5.9 Class-wise histogram binning

Require: Base multiclass predictor g : X Ñ ∆L´1
, calibration dataD “ pX1, Y1q, . . . , pXn, Ynq

Require: # points per bin k1, k2, . . . , kl P NL
(say each kl “ 50), tie-breaking parameter δ ą 0

(say 10´10
)

Ensure: L class-wise calibrated predictors h1, h2, . . . , hL

1: for l Ð 1 to L do
2: Dl Ð tpXi,1 tYi “ luq : i P rnsu

3: hl Ð Binary-histogram-binningpgl,Dl, tn{klu , δq

4: end for
5: return ph1, h2, . . . , hLq

Definition 5.2 (Marginal and conditional class-wise calibration). Let ε,α P p0, 1qL be some

given levels of approximation and failure respectively. An algorithm A : pg,Dq ÞÑ h is

(a) pε,αq-marginally class-wise calibrated if for every distribution P over X ˆ rLs and for

every l P rLs

P
´

|PpY “ l | hlpXqq ´ hlpXq| ď ϵl

¯

ě 1 ´ αl. (5.11)

(b) pε,αq-conditionally class-wise calibrated if for every distribution P over X ˆ rLs and for

every l P rLs,

P
´

@r P Rangephlq, |PpY “ l | hlpXq “ rq ´ r| ď ϵl

¯

ě 1 ´ αl. (5.12)

Definition 5.2 requires that each hl is pϵl, αlq calibrated in the binary senses defined by Gupta

et al. (2021, Definitions 1 and 2). From Definition 5.2, we can also uniform bounds that hold

simultaneously over every l P rLs. Let α “
řL

l“1 αl and ϵ “ maxlPrLs ϵl. Then (5.11) implies

P
´

@l P rLs, |PpY “ l | hlpXqq ´ hlpXq| ď ϵ
¯

ě 1 ´ α, (5.13)

and (5.12) implies

P
´

@l P rLs, r P Rangephlq, |PpY “ l | hlpXq “ rq ´ r| ď ϵ
¯

ě 1 ´ α. (5.14)

The choice of not including the uniformity over L in Definition 5.2 reveals the nature of our class-

wise HB algorithm and the upcoming theoretical guarantees: (a) we learn the hl’s separately for

each l and do not combine the learnt functions in any way (such as normalization), (b) we do

not combine the calibration inequalities for different rLs in any other way other than a union

bound. Thus the only way we can show (5.13) (or (5.14)) is by using a union bound over (5.11)

(or (5.12)).

We now state the distribution-free calibration guarantees satisfied by Algorithm 5.9.

Theorem 5.2. Fix hyperparameters δ ą 0 (arbitrarily small) and points per bin k1, k2, . . . , kl ě 2,
and assume nl ě kl for every l P rLs. Then, for every l P rLs, for any αl P p0, 1q, Algorithm 5.9 is
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pεp1q,αq-marginally and pεp2q,αq-conditionally class-wise calibrated with

ϵ
p1q

l “

d

logp2{αlq

2pkl ´ 1q
` δ, and ϵ

p2q

l “

d

logp2n{klαlq

2pkl ´ 1q
` δ. (5.15)

Further, for any distribution P over X ˆ rLs,

(a) P pCW-ECEpc, hq ď maxlPrLs ϵ
p2q

l q ě 1 ´
ř

lPrLs
αl, and

(b) E rCW-ECEpc, hqs ď maxlPrLs

a

1{2kl ` δ.

Theorem 5.2 is proved in Appendix 5.H. The proof follows by using the result of Gupta and

Ramdas (2021, Theorem 2), derived in the binary calibration setting, for each hl separately. Gupta

and Ramdas (2021) proved a more general result for general ℓp-ECE bounds. Similar results can

also be derived for the suitably defined ℓp-CW-ECE.

As discussed in Section 5.3.2, unlike previous works (Zadrozny and Elkan, 2002; Guo et al., 2017;

Kull et al., 2019), Algorithm 5.9 does not normalize the hl’s. We do not know how to derive

Theorem 5.2 style results for a normalized version of Algorithm 5.9.

5.D Figures for Appendix 5.E

Appendix 5.E begins on page 119. The relevant figures for Appendix 5.E are displayed on the

following pages.
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(a) TL-ECE estimates on CIFAR-10 with Brier score. TL-HB is close to the best in each case. While CW-HB

performs the best at B “ 15, the ECE estimate may not be reliable since it is highly variable across bins.
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(b) TL-ECE estimates on CIFAR-100 with Brier score. N-HB is the best performing method, while DS is

the worst performing method, across different numbers of bins. TL-HB performs worse than TS and VS.
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(c) TL-MCE estimates on CIFAR-10 with Brier score. The only reliably and consistently well-performing

method is TL-HB.
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(d) TL-MCE estimates on CIFAR-100 with Brier score. DS is the worst performing method. Other methods

perform across different values of B.

Figure 5.5: Table 5.2 style results with the number of bins varied as B P r5, 25s. See Ap-

pendix 5.E.5 for further details. The captions summarize the findings in each case. In most cases,

the findings are similar to those with B “ 15. The notable exception is that performance of

N-HB on CIFAR-10 for TL-ECE while very good at B “ 15, is quite inconsistent when seen

across different bins. In some cases, the blue base model line and the orange temperature scaling

line coincide. This occurs since the optimal temperature on the calibration data was learnt to be

T “ 1, which corresponds to not changing the base model at all.
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(a) TL-ECE estimates on CIFAR-10 with focal loss. TL-HB is close to the best in each case. While CW-HB

performs the best at B “ 15, the ECE estimate may not be reliable since it is highly variable across bins.
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(b) TL-ECE estimates on CIFAR-100 with focal loss. N-HB is the best performing method, while DS is the

worst performing method, across different numbers of bins. TL-HB performs worse than TS and VS.
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(c) TL-MCE estimates on CIFAR-10 with focal loss. The only reliably and consistently well-performing

method is TL-HB.
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(d) TL-MCE estimates on CIFAR-100 with focal loss. DS is the worst performing method. Other methods

perform across different values of B.

Figure 5.6: Table 5.4 style results with the number of bins varied as B P r5, 25s. See Ap-

pendix 5.E.5 for further details. The captions summarize the findings in each case. In most cases,

the findings are similar to those with B “ 15. In some cases, the blue base model line and the

orange temperature scaling line coincide. This occurs since the optimal temperature on the

calibration data was learnt to be T “ 1, which corresponds to not changing the base model at

all.
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(a) CW-ECE estimates on CIFAR-10 with Brier score. CW-HB is the best performing method across bins,

and N-HB is quite unreliable.
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(b) CW-ECE estimates on CIFAR-100 with Brier score. CW-HB is the best performing method. DS and

N-HB are the worst performing methods.

Figure 5.7: Table 5.3 style results with the number of bins varied as B P r5, 25s. The captions

summarize the findings in each case, which are consistent with those in the table. See Ap-

pendix 5.E.5 for further details.
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(a) CW-ECE estimates on CIFAR-10 with focal loss. CW-HB is the best performing method across bins,

and N-HB is quite unreliable.
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(b) CW-ECE estimates on CIFAR-100 with focal loss. CW-HB is the best performing method. DS and

N-HB are the worst performing methods.

Figure 5.8: Table 5.5 style results with the number of bins varied as B P r5, 25s. The captions

summarize the findings in each case, which are consistent with those in the table. See Ap-

pendix 5.E.5 for further details.
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5.E Additional experimental details and results for CIFAR-
10 and CIFAR-100

We present additional details and results to supplement the experiments with CIFAR-10 and

CIFAR-100 in Sections 5.2 and 5.4 of the main chapter.

5.E.1 External libraries used

All our base models were pre-trained deep-net models generated by Mukhoti et al. (2020), ob-

tained from www.robots.ox.ac.uk/„viveka/focal calibration/ and used

along with the code athttps://github.com/torrvision/focal calibration
to obtain base predictions. We focused on the models trained with Brier score and focal loss,

since it was found to perform the best for calibration. All results in the main chapter are with

the Brier score; in Appendix 5.E.4, we report corresponding results with focal loss.

We also used the code athttps://github.com/torrvision/focal calibration
for temperature scaling (TS). For vector scaling (VS) and Dirichlet scaling (DS), we used the code

of Kull et al. (2019), hosted athttps://github.com/dirichletcal/dirichlet python.

For VS, we used the file dirichletcal/calib/vectorscaling.py, and for DS, we

used the file dirichletcal/calib/fulldirichlet.py. No hyperparameter tun-

ing was performed in any of our histogram binning experiments or baseline experiments; default

settings were used in every case. The random seed was fixed so that every run of the experiment

gives the same result. In particular, by relying on pre-trained models, we avoid training new

deep-net models with multiple hyperparameters, thus avoiding any selection biases that may

arise due to test-data peeking across multiple settings.

5.E.2 Further comments on binning for ECE estimation

As mentioned in Remark 5.1, ECE estimates for all methods except TL-HB and CW-HB was done

using fixed-width bins r0, 1{Bq, r1{B, 2{Bq, . . . r1 ´ 1{B, 1s for various values of B P r5, 25s.

For TL-HB and CW-HB, B is the number of bins used for each call to binary HB. For TL-HB, note

that we actually proposed that the number of bins-per-class should be fixed; see Section 5.B.2.

However, for ease of comparison to other methods, we simply set the number of bins to B for

each call to binary HB. That is, in line 6, we replace tnl{ku with B. For CW-HB, we described

Algorithm 5.9 with different values of kl corresponding to the number of bins per class. For

the CIFAR-10 and CIFAR-100 comparisons, we set each k1 “ k2 “ . . . “ kL “ k, where k P N
satisfies tn{ku “ B.

Tables 5.2,5.3, 5.4, and 5.5 report estimates with B “ 15, which has been commonly used in

many works (Guo et al., 2017; Kull et al., 2019; Mukhoti et al., 2020). Corresponding to each table,

we have a figure where ECE estimates with varying B are reported to strengthen conclusions:

these are Figure 5.5,5.7, 5.6, and 5.8 respectively. Plugin estimates of the ECE were used, same

as Guo et al. (2017). Further binning was not done for TL-HB and CW-HB since the output is
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already discrete and sufficiently many points take each of the predicted values. Note that due to

Jensen’s inequality, any further binning will only decrease the ECE estimate (Kumar et al., 2019).

Thus, using unbinned estimates may give TL-HB and CW-HB a disadvantage.

5.E.3 Some remarks on maximum-calibration-error (MCE)

Guo et al. (2017) defined MCE with respect to confidence calibration, as follows:

conf-MCEpc, hq :“ sup
rPRangephq

|PpY “ cpXq | hpXq “ rq ´ r| . (5.16)

Conf-MCE suffers from the same issue illustrated in Figure 5.2 for conf-ECE. In Figure 5.1b, we

looked at the reliability diagram within two bins. These indicate two of the values over which

the supremum is taken in equation (5.16): these are the Y-axis distances between the ‹ markers

and the X “ Y line for bins 6 and 10 (both are less than 0.02). On the other hand, the effective

maximum miscalibration for bin 6 is roughly 0.15 (for class 1), and roughly 0.045 (for class 4),

and the maximum should be taken with respect to these values across all bins. To remedy the

underestimation of the effective MCE, we can consider the top-label-MCE, defined as

TL-MCEpc, hq :“ max
lPrLs

sup
rPRangephq

|PpY “ l | cpXq “ l, hpXq “ rq ´ r| . (5.17)

Interpreted in words, the TL-MCE assesses the maximum deviation between the predicted and

true probabilities across all predictions and all classes. Following the same argument as in the

proof of Proposition 5.4, it can be shown that for any c, h, conf-MCEpc, hq ď TL-MCEpc, hq.

The TL-MCE is closely related to conditional top-label calibration (Definition 5.1b). Clearly,

an algorithm is pϵ, αq-conditionally top-label calibrated if and only if for every distribution

P , P pTL-MCEpc, hq ď ϵq ě 1 ´ α. Thus the conditional top-label calibration guarantee of

Theorem 5.1 implies a high probability bound on the TL-MCE as well.

5.E.4 Table 5.2 and 5.3 style results with focal loss

Results for top-label-ECE and top-label-MCE with the base deep net model being trained using

focal loss are reported in Table 5.4. Corresponding results for class-wise-ECE are reported in

Table 5.5. The observations are similar to the ones reported for Brier score:

1. For TL-ECE, TL-HB is either the best or close to the best performing method on CIFAR-10,

but suffers on CIFAR-100. This phenomenon is discussed further in Appendix 5.E.6. N-HB

is the best or close to the best for both CIFAR-10 and CIFAR-100.

2. For TL-MCE, TL-HB is the best performing method on CIFAR-10, by a huge margin. For

CIFAR-100, TS or VS perform better than TL-HB, but not by a huge margin.

3. For CW-ECE, CW-HB is the best performing method across the two datasets and all four

architectures.
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Metric Dataset Architecture Base TS VS DS N-HB TL-HB

Top-

label-

ECE

CIFAR-10

ResNet-50 0.022 0.023 0.018 0.019 0.023 0.019

ResNet-110 0.025 0.024 0.022 0.021 0.020 0.020
WRN-26-10 0.024 0.019 0.016 0.017 0.019 0.018

DenseNet-121 0.023 0.023 0.021 0.021 0.025 0.021

CIFAR-100

ResNet-50 0.109 0.107 0.107 0.332 0.086 0.148

ResNet-110 0.124 0.117 0.105 0.316 0.115 0.153

WRN-26-10 0.100 0.100 0.101 0.293 0.074 0.135

DenseNet-121 0.106 0.108 0.105 0.312 0.091 0.147

Top-

label-

MCE

CIFAR-10

ResNet-50 0.298 0.443 0.368 0.472 0.325 0.082
ResNet-110 0.378 0.293 0.750 0.736 0.535 0.089
WRN-26-10 0.741 0.582 0.311 0.363 0.344 0.075

DenseNet-121 0.411 0.411 0.243 0.391 0.301 0.099

CIFAR-100

ResNet-50 0.289 0.355 0.234 0.640 0.322 0.273

ResNet-110 0.293 0.265 0.274 0.633 0.366 0.272

WRN-26-10 0.251 0.227 0.256 0.663 0.229 0.270

DenseNet-121 0.237 0.225 0.239 0.597 0.327 0.248

Table 5.4: Top-label-ECE and top-label-MCE for deep-net models and various post-hoc calibrators.

All methods are same as Table 5.2. Best performing method in each row is in bold.

Metric Dataset Architecture Base TS VS DS N-HB CW-HB

Class-

wise-

ECE

ˆ102

CIFAR-10

ResNet-50 0.42 0.42 0.35 0.37 0.52 0.35
ResNet-110 0.48 0.44 0.36 0.35 0.51 0.29
WRN-26-10 0.41 0.31 0.31 0.35 0.49 0.27

DenseNet-121 0.41 0.41 0.40 0.39 0.63 0.30

CIFAR-100

ResNet-50 0.22 0.20 0.20 0.66 0.23 0.16
ResNet-110 0.24 0.23 0.21 0.72 0.24 0.16
WRN-26-10 0.19 0.19 0.18 0.61 0.20 0.14

DenseNet-121 0.20 0.21 0.19 0.66 0.24 0.16

Table 5.5: Class-wise-ECE for deep-net models and various post-hoc calibrators. All methods are

same as Table 5.2, except top-label-HB is replaced with class-wise-HB or Algorithm 5.3 (CW-HB).

Best performing method in each row is in bold.

5.E.5 ECE and MCE estimates with varying number of bins

Corresponding to each entry in Tables 5.2 and 5.4, we perform an ablation study with the number

of bins varying as B P r5, 25s. This is in keeping with the findings of Roelofs et al. (2022) that the

ECE/MCE estimate can vary with different numbers of bins, along with the relative performance

of the various models.

The results are reported in Figure 5.5 (ablation of Table 5.2) and Figure 5.7 (ablation of Table 5.3).

The captions of these figures contain further details on the findings. Most findings are similar to

those in the main chapter, but the findings in the tables are strengthened through this ablation.
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The same ablations are performed for focal loss as well. The results are reported in Figure 5.6

(ablation of Table 5.4) and Figure 5.8 (ablation of Table 5.5). The captions of these figures contain

further details on the findings. The ablation results in the figures support those in the tables.

5.E.6 Analyzing the poor performance of TL-HB on CIFAR-100

CIFAR-100 is an imbalanced dataset with 100 classes and 5000 points for validation/calibration

(as per the default splits). Due to random subsampling, the validation split we used had one

of the classes predicted as the top-label only 31 times. Thus, based on Theorem 5.1, we do

not expect HB to have small TL-ECE. This is confirmed by the empirical results presented in

Tables 5.2/5.4, and Figures 5.5b/5.6b. We observe that HB has higher estimated TL-ECE than

all methods except DS, for most values of the number of bins. The performance of TL-HB for

TL-MCE however is much much closer to the other methods since HB uses the same number

of points per bin, ensuring that the predictions are somewhat equally calibrated across bins

(Figures 5.5d/5.6d). In comparison, for CW-ECE, CW-HB is the best performing method. This is

because in the class-wise setting, 5000 points are available for recalibration irrespective of the

class, which is sufficient for HB.

The deterioration in performance of HB when few calibration points are available was also

observed in the binary setting by Gupta and Ramdas (2021, Appendix C). Niculescu-Mizil and

Caruana (2005) noted in the conclusion of their paper that Platt scaling (Platt, 1999), which is

closely related to TS, performs well when the data is small, but another nonparametric binning

method, isotonic regression (Zadrozny and Elkan, 2002) performs better when enough data

is available. Kull et al. (2019, Section 4.1) compared HB to other calibration techniques for

class-wise calibration on 21 UCI datasets, and found that HB performs the worst. On inspecting

the UCI repository, we found that most of the datasets they used had fewer than 5000 (total)

data points, and many contain fewer than 500.

Overall, comparing our results to previous empirical studies, we believe that if sufficiently many

points are available for recalibration, or the number of classes is small, then HB performs quite

well. To be more precise, we expect HB to be competitive if at least 200 points per class can be

held out for recalibration, and the number of points per bin is at least k ě 20.

5.F Additional experimental details and results forCOVTYPE-
7

We present additional details and results for the top-label HB experiment of Section 5.B.2. The

base classifier is an RF learnt using thesklearn.ensemblemodule, with default parameters.

The base RF is a nearly continuous base model since most predictions are unique. Thus, we need

to use binning to make reliability diagrams, validity plots, and perform ECE estimation, for the

base model. To have a fair comparison, instead of having a fixed binning scheme to assess the

base model, the binning scheme was decided based on the unique predictions of top-label HB.

Thus for every l, and r P Rangephlq, the bins are defined as tx : cpxq “ l, hlpxq “ ru. Due to
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(a) Top-label HB with k “ 100 points per bin.
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(b) Top-label HB with B “ 50 bins per class.

Figure 5.9: Top-label histogram binning (HB) calibrates a miscalibrated random-forest on the

class imbalanced COVTYPE-7 dataset. For the less likely classes (4, 5, and 6), the left column is

better calibrated than the right column. Similar observations are made on other datasets, and so

we recommend adaptively choosing a different number of bins per class, as Algorithm 5.8 does.
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this, while the base model in Figures 5.4a and 5.4b are the same, the reliability diagrams and

validity plots in orange are different. As can be seen in the bar plots in Figure 5.4, the ECE

estimation is not affected significantly.

When k “ 100, the total number of bins chosen by Algorithm 5.8 was 403, which is roughly

57.6 bins per class. The choice of B “ 50 for the fixed bins per class experiment was made on

this basis.

Figure 5.9 supplements Figure 5.4 in the main chapter by presenting reliability diagrams and

validity plots of top-label HB for all classes. Figure 5.9a presents the plots with adaptive number

of bins per class (Algorithm 5.8), and Figure 5.9b presents these for fixed number of bins per

class. We make the following observations.

(a) For every class l P rLs, the RF is overconfident. This may seem surprising at first since we

generally expect that models may be overconfident for certain classes and underconfident

for others. However, note that all our plots assess top-label calibration, that is, we are

assessing the predicted and true probabilities of only the predicted class. It is possible

that a model is overconfident for every class whenever that class is predicted to be the

top-label.

(b) For the most likely classes, namely classes 1 and 2, the number of bins in the adaptive case

is higher than 50. Fewer bins leads to better calibration (at the cost of sharpness). This can

be verified through the validity plots for classes 1 and 2—the validity plots in the fixed

bins case is slightly above the validity plot in the adaptive bin case. However both validity

plots are quite similar.

(c) The opposite is true for the least likely classes, namely classes 4, 5, 6. The validity plot in

the fixed bins case is below the validity plot in the adaptive bins case, indicating higher

TL-ECE in the fixed bins case. The difference between the validity plots is high. Thus if a

fixed number of bins per class is pre-decided, the performance for the least likely classes

significantly suffers.

Based on these observations, we recommend adaptively choosing the number of bins per class,

as done by Algorithm 5.8.

5.G Binning-based calibrators for canonical multiclass cal-
ibration

Canonical calibration is a notion of calibration that does not fall in the M2B category. To define

canonical calibration, we use Y to denote the output as a 1-hot vector. That is, Yi “ eYi
P

∆L´1
, where el corresponds to the l-th canonical basis vector in Rd

. Recall that a predictor

h “ ph1, h2, . . . , hLq is said to be canonically calibrated if PpY “ l | hpXqq “ hlpXq for every

l P rLs. Equivalently, this can be stated as E rY | hpXqs “ hpXq. Canonical calibration implies

class-wise calibration:

Proposition 5.1. If E rY | hpXqs “ hpXq, then for every l P rLs, PpY “ l | hlpXqq “ hlpXq.

124



The proof in Appendix 5.H is straightforward, but the statement above is illuminating, because

there exist predictors that are class-wise calibrated but not canonically calibrated (Vaicenavicius

et al., 2019, Example 1).

Canonical calibration is not an M2B notion since the conditioning occurs on the L-dimensional

prediction vector predpXq “ hpXq, and after this conditioning, each of the L statements

P pY “ l | predpXqq “ hlpXq should simultaneously be true. On the other hand, M2B notions

verify only individual binary calibration claims for every such conditioning. Since canonical

calibration does not fall in the M2B category, Algorithm 5.5 does not lead to a calibrator for

canonical calibration. In this section, we discuss alternative binning-based approaches to

achieving canonical calibration.

For binary calibration, there is a complete ordering on the interval r0, 1s, and this ordering is

leveraged by binning based calibration algorithms. However, ∆L´1
, for L ě 3 does not have

such a natural ordering. Hence, binning algorithms do not obviously extend for multiclass

classification. In this section, we briefly discuss some binning-based calibrators for canonical

calibration. Our descriptions are for general L ě 3, but we anticipate these algorithms to work

reasonably only for small L, say if L ď 5.

As usual, denote g : X Ñ ∆L´1
as the base model and h : X Ñ ∆L´1

as the model learnt

using some post-hoc canonical calibrator. For canonical calibration, we can surmise binning

schemes that directly learn h by partitioning the prediction space ∆L´1
into bins and estimating

the distribution of Y in each bin. A canonical calibration guarantee can be showed for such a

binning scheme using multinomial concentration (Podkopaev and Ramdas, 2021, Section 3.1).

However, since Volp∆L´1q “ 2ΘpLq
, there will either be a bin whose volume is 2ΩpLq

(meaning

that h would not be sharp), or the number of bins will be 2ΩpLq
, entailing 2ΩpLq

requirements on

the sample complexity—a curse of dimensionality. Nevertheless, let us consider some binning

schemes that could work if L is small.

Formally, a binning scheme corresponds to a partitioning of ∆L´1
into B ě 1 bins. We denote

this binning scheme as B : ∆L´1 Ñ rBs, where Bpsq corresponds to the bin to which s P ∆L´1

belongs. To learn h, the calibration data is binned to get sets of data-point indices that belong to

each bin, depending on the gpXiq values:

for every b P rBs, Tb :“ ti : BpgpXiqq “ bu, nb “ |Tb| .

We then compute the following estimates for the label probabilities in each bin:

for every pl, bq P rLs ˆ rBs, pΠl,b :“

ř

iPTb
1 tYi “ lu

nb

if nb ą 0 else
pΠl,b “ 1{B.

The binning predictor h : X Ñ ∆L´1
is now defined component-wise as follows:

for every l P rLs, hlpxq “ pΠl,Bpxq.

In words, for every bin b P rBs, h predicts the empirical distribution of the Y values in bin b.

Using a multinomial concentration inequality (Devroye et al., 1983; Qian et al., 2020; Weissman

et al., 2003), calibration guarantees can be shown for the learnt h. Podkopaev and Ramdas
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∆2 q “ 1 q “ 2 q “ 3

Figure 5.10: Sierpinski binning for L “ 3. The leftmost triangle represents the probability

simplex ∆2
. Sierpinski binning divides ∆2

recursively based on a depth parameter q P N.

(2021, Theorem 3) show such a result using the Bretagnolle-Huber-Carol inequality. All of these

concentration inequality give bounds that depend inversely on nb or

?
nb.

In the following subsections, we describe some binning schemes which can be used for canonical

calibration based on the setup illustrated above. First we describe fixed schemes that are not

adaptive to the distribution of the data: Sierpinski binning (Appendix 5.G.1) and grid-style

binning (Appendix 5.G.2). These are analogous to fixed-width binning for L “ 2. Fixed binning

schemes are not adapted to the calibration data and may have highly imbalanced bins leading

to poor estimation of the distribution of Y in bins with small nb. In the binary case, this issue

is remedied using histogram binning to ensure that each bin has nearly the same number of

calibration points (Gupta and Ramdas, 2021). While histogram binning uses the order of the

scalar gpXiq values, there is no obvious ordering for the multi-dimensional gpXiq values. In

Appendix 5.G.3 we describe a projection based histogram binning scheme that circumvents

this issue and ensures that each nb is reasonably large. In Appendix 5.G.4, we present some

preliminary experimental results using our proposed binning schemes.

Certain asymptotic consistency results different from calibration have been established for

histogram regression and classification in the nonparametric statistics literature (Nobel, 1996;

Lugosi and Nobel, 1996; Gordon and Olshen, 1984; Breiman, 2017; Devroye, 1988); further

extensive references can be found within these works. The methodology of histogram regression

and classification relies on binning and is very similar to the one we propose here. The main

difference is that these works consider binning the feature space X directly, unlike the post-hoc

setting where we are essentially interested in binning ∆L´1
. In terms of theory, the results these

works target are asymptotic consistency for the (Bayes) optimal classification and regression

functions, instead of canonical calibration. It would be interesting to consider the (finite-sample)

canonical calibration properties of the various algorithms proposed in the context of histogram

classification. However, such a study is beyond the scope of our work.

5.G.1 Sierpinski binning

First, we describe Sierpinski binning for L “ 3. The probability simplex for L “ 3, ∆2
, is a

triangle with vertices e1 “ p1, 0, 0q, e2 “ p0, 1, 0q, and e3 “ p0, 0, 1q. Sierpinski binning is a

recursive partitioning of this triangle based on the fractal popularly known as the Sierpinski

triangles. Some Sierpinski bins for L “ 3 are shown in Figure 5.10. Formally, we define Sierpinski
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binning recursively based on a depth parameter q P N. Given an x P X , let s “ gpxq. For q “ 1,

the number of bins is B “ 4, and the binning scheme B is defined as:

Bpsq “

$

’

’

&

’

’

%

1 if s1 ą 0.5
2 if s2 ą 0.5
3 if s3 ą 0.5
4 otherwise.

(5.18)

Note that since s1 ` s2 ` s3 “ 1, only one of the above conditions can be true. It can be verified

that each of the bins have volume equal to p1{4q-th the volume of the probability simplex ∆2
. If

a finer resolution of ∆2
is desired, B can be increased by further dividing the partitions above.

Note that each partition is itself a triangle; thus each triangle can be mapped to ∆2
to recursively

define the sub-partitioning. For i P r4s, define the bins bi “ ts : Bpsq “ iu. Consider the bin b1.

Let us reparameterize it as pt1, t2, t3q “ p2s1 ´ 1, 2s2, 2s3q. It can be verified that

b1 “ tpt1, t2, t3q : s1 ą 0.5u “ tpt1, t2, t3q : t1 ` t2 ` t3 “ 1, t1 P p0, 1s, t2 P r0, 1q, t3 P r0, 1qu.

Based on this reparameterization, we can recursively sub-partition b1 as per the scheme (5.18),

replacing s with t. Such reparameterizations can be defined for each of the bins defined in (5.18):

b2 “ tps1, s2, s3q : s2 ą 0.5u : pt1, t2, t3q “ p2s1, 2s2 ´ 1, 2s3q,

b3 “ tps1, s2, s3q : s3 ą 0.5u : pt1, t2, t3q “ p2s1, 2s2, 2s3 ´ 1q,

b4 “ tps1, s2, s3q : si ď 0.5 for all iu : pt1, t2, t3q “ p1 ´ 2s1, 1 ´ 2s2, 1 ´ 2s3q,

and thus every bin can be recursively sub-partitioned as per (5.18). As illustrated in Figure 5.10,

for Sierpinski binning, we sub-partition only the bins b1, b2, b3 since the bin b4 corresponds to

low confidence for all labels, where finer calibration may not be needed. (Also, in the L ą 3
case described shortly, the corresponding version of b4 is geometrically different from ∆L´1

,

and the recursive partitioning cannot be defined for it.) If at every depth, we sub-partition all

bins except the corresponding b4 bins, then it can be shown using simple algebra that the total

number of bins is p3q`1 ´ 1q{2. For example, in Figure 5.10, when q “ 2, the number of bins is

B “ 14, and when q “ 3, the number of bins is B “ 40.

As in the case of L “ 3, Sierpinski binning for general L is defined through a partitioning

function of ∆L´1
into L ` 1 bins, and a reparameterization of the partitions so that they can be

further sub-partitioned. The L ` 1 bins at depth q “ 1 are defined as

Bpsq “

"

l if sl ą 0.5,
L ` 1 otherwise.

(5.19)

While this looks similar to the partitioning (5.18), the main difference is that the bin bL`1

has a larger volume than other bins. Indeed for l P rLs, volpblq “ volp∆L´1q{2L´1
, while

volpbL`1q “ volp∆L´1qp1´L{2L´1q ě volp∆L´1q{2L´1
, with equality only occuring for L “ 3.

Thus the bin bL`1 is larger than the other bins. If gpxq P bL`1, then the prediction for x may

be not be very sharp, compared to if gpxq were in any of the other bins. On the other hand, if
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Figure 5.11: Grid-style binning for L “ 3.

gpxq P bL`1, the score for every class is smaller than 0.5, and sharp calibration may often not be

desired in this region.

In keeping with this understanding, we only reparameterize the bins b1, b2, . . . , bL so that they

can be further divided:

bl “ tps1, s2, . . . , sLq : sl ą 0.5u : pt1, t2, . . . , tLq “ p2s1, . . . , 2sl ´ 1, . . . , 2sLq.

For every l P rLs, under the reparameterization above, it is straightforward to verify that

tpt1, t2, . . . , tLq : sl ą 0.5u “ tpt1, t2, . . . , tLq :
ÿ

uPrLs

tu “ 1, tl P p0, 1s, tu P r0, 1q @u ‰ lu.

Thus every bin can be recursively sub-partitioned following (5.19). For Sierpinski binning with

L labels, the number of bins at depth q is given by pLq`1 ´ 1q{pL ´ 1q.

5.G.2 Grid-style binning

Grid-style binning is motivated from the 2D reliability diagrams of Widmann et al. (2019, Figure 1),

where they partitioned ∆2
into multiple equi-volume bins in order to assess canonical calibration

on a 3-class version of CIFAR-10. For L “ 3, ∆2
can be divided as shown in Figure 5.11. This

corresponds to gridding the space ∆2
, just the way we think of gridding the real hyperplane.

However, the mathematical description of this grid for general L is not apparent from Figure 5.11.

We describe grid-style binning formally for general L ě 3.

Consider some τ ą 0 such that K :“ 1{τ P N. For every tuple k “ pk1, k2, . . . , kLq in the set

I “ tk P NL : maxpL,K ` 1q ď
ÿ

lPrLs

kl ď K ` pL ´ 1qu, (5.20)

define the bins

bk :“ ts P ∆L´1 : for every l P rLs, slK P rkl ´ 1, kls. (5.21)

These bins are not mutually disjoint, but intersections can only occur at the edges. That is, for

every s that belongs to more than one bin, at least one component sl satisies slK P N. In order
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to identify a single bin s, ties can be broken arbitrarily. One strategy is to use some ordering on

NL
; say for k1 ‰ k2 P NL

, k1 ă k2 if and only if for the first element of k1 that is unequal to

the corresponding element of k2 the one corresponding to k1 is smaller. Then define the binning

function B : ∆L´1 Ñ |I| as Bpsq “ mintk : s P bku. The following propositions prove that a)

each s belongs to at least one bin, and b) that every bin is an L ´ 1 dimensional object (and thus

a meaningful partition of ∆L´1
).

Proposition 5.2. The bins tbk : k P Iu defined by (5.21) mutually exhaust ∆L´1.

Proof. Consider any s P ∆L´1
. For slK R N “ t1, 2, . . .u, set kl “ maxp1, rslKsq ą slK .

Consider the condition

C : for all l such that slK R N, slK “ 0.

If C is true, then for l such that slK P N, set kl “ slK . If C is not true, then for l such that

slK P N, set exactly one kl “ slK ` 1, and for the rest set kl “ slK . Based on this setting of k,

it can be verified that s P bk.

Further, note that for every l, kl ě slK , and there exists at least one l such that kl ą slK . Thus

we have:

L
ÿ

l“1

kl ą

L
ÿ

l“1

slK

“ K.

Since

řL
l“1 kl P N, we must have

řL
l“1 kl ě K ` 1. Further since each kl P N,

řL
l“1 kl ě L.

Next, note that for every l, kl ď slK ` 1. If C is true, then there is at least one l such that

slK P N, and for this l, we have set kl “ slK ă slK ` 1. If C is not true, then either there

exists at least one l such that slK R NY t0u for which kl “ rslKs ă slK ` 1, or every slK P N,

in which case we have set kl “ slK for one of them. In all cases, note that there exists an l such

that kl ă slK ` 1. Thus,

L
ÿ

l“1

kl ă

L
ÿ

l“1

pslK ` 1q

“ K ` L.

Since

řL
l“1 kl P N, we must have

řL
l“1 kl ď K ` L ´ 1.

Next, we show that each bin indexed by k P I contains a non-zero volume subset of ∆L´1
,

where volume is defined with respect to the Lebesgue measure in RL´1
. This can be shown by

arguing that bk contains a scaled and translated version of ∆L´1
.

Proposition 5.3. For every k P I , there exists some u P RL and v ą 0 such that u` v∆L´1 Ď bk.
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Proof. Fix some k P I . By condition (5.20),

řL
l“1 kl P rmaxpL,K ` 1q, K ` L ´ 1s. Based on

this, we claim that there exists a τ P r0, 1q such that

L
ÿ

l“1

pkl ´ 1q ` τL ` p1 ´ τq “ K. (5.22)

Indeed, note that for τ “ 0,

řL
l“1pkl ´ 1q ` τL ` p1 ´ τq ď pK ´ 1q ` 1 “ K and for τ “ 1,

řL
l“1pkl ´ 1q ` τL ` p1 ´ τq “

řL
l“1 kl ą K . Thus, there exists a τ that satisfies (5.22) by the

intermediate value theorem.

Next, define u “ K´1pk` pτ ´ 1q1Lq and v “ K´1p1´ τq ą 0, where 1L denotes the vector in

RL
with each component equal to 1. Consider any s P u ` v∆L´1

. Note that for every l P rLs,

slK P rkl ´ 1, kls and by property (5.22),

L
ÿ

l“1

slK “

˜

L
ÿ

l“1

pkl ` pτ ´ 1qq

¸

` v “

L
ÿ

l“1

pkl ´ 1q ` τL ` p1 ´ τq “ K.

Thus, s P ∆L´1
and by the definition of bk, s P bk. This completes the proof.

The previous two propositions imply that B satisfies the property we require of a reasonable

binning scheme. ForL “ 3, grid-style binning gives equi-volume bins as illustrated in Figure 5.11;

however this is not true for L ą 3. We now describe a histogram binning based partitioning

scheme.

5.G.3 Projection based histogram binning for canonical calibration

Some of the bins defined by Sierpinski binning and grid-style binning may have very few

calibration points nb, leading to poor estimation of
pΠ. In the binary calibration case, this can

be remedied using histogram binning which strongly relies on the scoring function g taking

values in a fully ordered space r0, 1s. To ensure that each bin contains Ωpn{Bq points, we

estimate the quantiles of gpXq and created the bins as per these quantiles. However, there are

no natural quantiles for unordered prediction spaces such as ∆L´1
(L ě 3). In this section,

we develop a histogram binning scheme for ∆L´1
that is semantically interpretable and has

desirable statistical properties.

Our algorithm takes as input a prescribed number of bins B and an arbitrary sequence of vectors

q1, q2, . . . , qB´1 P RL
with unit ℓ2-norm: }qi}2 “ 1. Each of these vectors represents a direction

on which we will project ∆L´1
in order to induce a full order on ∆L´1

. Then, for each direction,

we will use an order statistics on the induced full order to identify a bin with exactly tpn`1q{Bu´1
calibration points (except the last bin, which may have more points). The formal algorithm is

described in Algorithm 5.10. It uses the following new notation: given m vectors v1, v2, . . . , vm P

RL
, a unit vector u, and an index j P rms, let order-statisticsptv1, v2, . . . , vmu, u, jq denote the

j-th order-statistics of tvT1 u, v
T
2 u, . . . , v

T
muu.
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Algorithm 5.10 Projection histogram binning for canonical calibration

Require: Base multiclass predictor g : X Ñ ∆L´1
, calibration data D “

tpX1, Y1q, pX2, Y2q, . . . , pXn, Ynqu

Ensure: Approximately calibrated scoring function h
1: S Ð tgpX1q,gpX2q, . . . ,gpXnqu

2: T Ð empty array of size B
3: c Ð tn`1

B
u

4: for b Ð 1 to B ´ 1 do
5: Tb Ð order-statisticspS, qb, cq
6: S Ð Sztv P S : vT qb ď Tbu

7: end for
8: TB Ð 1.01
9: Bpgp¨qq Ð mintb P rBs : gp¨qT qb ă Tbu

10:
pΠ Ð empty matrix of size B ˆ L

11: for b Ð 1 to B do
12: for l Ð 1 to L do
13:

pΠb,l Ð Meant1 tYi “ lu : BpgpXiqq “ b and @s P rBs, gpXiq
T qs ‰ Tsu

14: end for
15: end for
16: for l Ð 1 to L do
17: hlp¨q Ð pΠBpgp¨qq,l

18: end for
19: return h

We now briefly describe some values computed by Algorithm 5.10 in words to build intuition.

The array T , which is learnt on the data, represents the identified thresholds for the directions

given by q. Each pqb, Tbq pair corresponds to a hyperplane that cuts ∆L´1
into two subsets given

by tx P ∆L´1 : xT qb ă Tbu and tx P ∆L´1 : xT qb ě Tbu. The overall partitioning of ∆L´1
is

created by merging these cuts sequentially. This defines the binning function B. By construction,

the binning function is such that each bin contains at least tn`1
B

u ´ 1 many points in its interior.

As suggested by Gupta and Ramdas (2021), we do not include the points that lie on the boundary,

that is, points Xi that satisfy gpXiq
T qs “ Ts for some s P rBs. The interior points bins are then

used to estimate the bin biases
pΠ.

No matter how the q-vectors are chosen, the bins created by Algorithm 5.10 have at least

X

n
B

\

´1
points for bias estimation. However, we discuss some simple heuristics for setting q that are

semantically meaningful. For some intuition, note that the binary version of histogram binning

Gupta and Ramdas (2021, Algorithm 1) is essentially recovered by Algorithm 5.10 if L “ 2 by

setting each qb as e2 (the vector r0, 1s). Equivalently, we can set each qb to ´e1 since both are

equivalent for creating a projection-based order on ∆2. Thus for L ě 3, a natural strategy for

the q-vectors is to rotate between the canonical basis vectors: q1 “ ´e1, q2 “ ´e2, . . . , qL “

´eL, qL`1 “ ´e1, . . . , and so on. Projecting with respect to ´el focuses on the class l by

forming a bin corresponding to the largest values of glpXiq among the remaining Xi’s which
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have not yet been binned. (On the other hand, projecting with respect to el will correspond to

forming a bin with the smallest values of glpXiq.)

The q-vectors can also be set adaptively based on the training data (without seeing the calibration

data). For instance, if most points belong to a specific class l P rLs, we may want more sharpness

for this particular class. In that case, we can choose a higher ratio of the q-vectors to be ´el.

5.G.4 Experiments with the COVTYPE dataset

In Figure 5.12 we illustrate the binning schemes proposed in this section on a 3-class version

of the COVTYPE-7 dataset considered in Section 5.B.2. As noted before, this is an imbalanced

dataset where classes 1 and 2 dominate. We created a 3 class problem with the classes 1, 2, and

other (as class 3). The entire dataset has 581012 points and the ratio of the classes is approximately

36%, 49%, 15% respectively. The dataset was split into train-test in the ratio 70:30. The training

data was further split into modeling-calibration in the ratio 90:10. A logistic regression model g
using sklearn.linear model.LogisticRegression was learnt on the modeling

data, and g was recalibrated on the calibration data.

The plots on the right in Figure 5.12 are recalibration diagrams. The base predictions gpXq on

the test-data are displayed as a scatter plot on ∆2
. Points in different bins are colored using one

of 10 different colors (since the number of bins is larger than 10, some colors correspond to more

than one bin). For each bin, an arrow is drawn, where the tail of the arrow corresponds to the

average gpXq predictions in the bin and the head of the arrow corresponds to the recalibrated

hpXq prediction for the bin. For bins that contained very few points, the arrows are suppressed

for visual clarity.

The plots on the left in Figure 5.12 are validity plots (Gupta and Ramdas, 2021). Validity plots

display estimates of

V pϵq “ Ptest-data p}E rY | gpXqs ´ gpXq}1 ď ϵq ,

as ϵ varies (g corresponds to the validity plot for logistic regression; replacing g with h above

gives plots for the binning based classifier h). For logistic regression, the same binning scheme

as the one provided by h is used to estimate V pϵq.

Overall, Figure 5.12 shows that all of the binning approaches improve the calibration of the

original logistic regression model across different ϵ. However, the recalibration does not change

the original model significantly. Comparing the different binning methods to each other, we find

that they all perform quite similarly. It would be interesting to further study these and other

binning methods for post-hoc canonical calibration.

5.H Proofs

Proofs appear in separate subsections, in the same order as the corresponding results appear in

the main chapter and Appendix. Proposition 5.4 was stated informally, so we state it formally as

well.
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5.H.1 Statement and proof of Proposition 5.4

Proposition 5.4. For any predictor pc, hq, conf-ECEpc, hq ď TL-ECEpc, hq.

Proof. To avoid confusion between the the conditioning operator and the absolute value operator

|¨|, we use abs p¨q to denote absolute values below. Note that,

abs pPpY “ cpXq | hpXqq ´ hpXqq “ abs pE r1 tY “ cpXqu | hpXqs ´ hpXqq

“ abs pE r1 tY “ cpXqu ´ hpXq | hpXqsq

“ abs pE rE r1 tY “ cpXqu ´ hpXq | hpXq, cpXqs | hpXqsq

ď E rabs pE r1 tY “ cpXqu ´ hpXq | hpXq, cpXqsq | hpXqs

(by Jensen’s inequality)

“ E rabs pPpY “ cpXq | hpXq, cpXqq ´ hpXqq | hpXqs .

Thus,

conf-ECEpc, hq “ E rabs pPpY “ cpXq | hpXqq ´ hpXqqs

ď E rE rabs pPpY “ cpXq | hpXq, cpXqq ´ hpXqq | hpXqss

“ E rabs pPpY “ cpXq | hpXq, cpXqq ´ hpXqqs

“ TL-ECEpc, hq.

5.H.2 Proof of Theorem 5.1

The proof strategy is as follows. First, we use the bound of Gupta and Ramdas (2021, Theorem

4) (henceforth called the GR21 bound), derived in the binary calibration setting, to conclude

marginal, conditional, and ECE guarantees for each hl. Then, we show that the binary guarantees

for the individual hl’s leads to a top-label guarantee for the overall predictor pc, hq.

Consider any l P rLs. LetPl denote the conditional distribution of pX,1 tY “ luq given cpXq “ l.
Clearly, Dl is a set of nl i.i.d. samples from Pl, and hl is learning a binary calibrator with respect

to Pl using binary histogram binning. The number of data-points is nl and the number of bins is

Bl “ tnl{ku bins. We now apply the GR21 bounds on hl. First, we verify that the condition they

require is satisfied:

nl ě k tnl{ku ě 2Bl.

Thus their marginal calibration bound for hl gives,

P

˜

|P pY “ l | cpXq “ l, hlpXqq ´ hlpXq| ď δ `

d

logp2{αq

2ptnl{Blu ´ 1q
| cpXq “ l

¸

ě 1 ´ α.
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Note that since tnl{Blu “ tnl{ tnl{kuu ě k,

ϵ1 “ δ `

d

logp2{αq

2pk ´ 1q
ě δ `

d

logp2{αq

2ptnl{Blu ´ 1q
.

Thus we have

P p|P pY “ l | cpXq “ l, hlpXqq ´ hlpXq| ď ϵ1 | cpXq “ lq ě 1 ´ α.

This is satisfied for every l. Using the law of total probability gives us the top-label marginal

calibration guarantee for pc, hq:

P p|P pY “ cpXq | cpXq, hpXqq ´ hpXq| ď ϵ1q

“

L
ÿ

l“1

P pcpXq “ lqP p|P pY “ cpXq | cpXq, hpXqq ´ hpXq| ď ϵ1 | cpXq “ lq

(law of total probability)

“

L
ÿ

l“1

P pcpXq “ lqP p|P pY “ l | cpXq “ l, hlpXqq ´ hlpXq| ď ϵ1 | cpXq “ lq

(by construction, if cpxq “ l, hpxq “ hlpxq)

ě

L
ÿ

l“1

P pcpXq “ lqp1 ´ αq

“ 1 ´ α.

Similarly, the in-expectation ECE bound of GR21, for p “ 1, gives for every l,

E |P pY “ l | cpXq “ l, hlpXqq ´ hlpXq | cpXq “ l| ď
a

Bl{2nl ` δ

“
a

tnl{ku {2nl ` δ

ď
a

1{2k ` δ.

Thus,

E|P pY “ cpXq | cpXq, hlpXqq ´ hpXq|

“

L
ÿ

l“1

P pcpXq “ lqE|P pY “ l | cpXq “ l, hlpXqq ´ hlpXq| | cpXq “ l

ď

L
ÿ

l“1

P pcpXq “ lqp
a

1{2k ` δq

“
a

1{2k ` δ.

Next, we show the top-label conditional calibration bound. Let B “
řL

l“1Bl and αl “ αBl{B.

Note that B ď
řL

l“1 nl{k “ n{k. The binary conditional calibration bound of GR21 gives
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P

˜

@r P Rangephlq, |P pY “ l | cpXq “ l, hlpXq “ rq ´ r| ď δ `

d

logp2Bl{αlq

2ptnl{Blu ´ 1q
| cpXq “ l

¸

ě 1 ´ αl.

Note that

d

logp2Bl{αlq

2ptnl{Blu ´ 1q
“

d

logp2B{αq

2ptnl{Blu ´ 1q

ď

d

logp2n{kαq

2ptnl{Blu ´ 1q
(since B ď n{k)

ď

d

logp2n{kαq

2pk ´ 1q
(since k ď tnl{Blu).

Thus for every l P rLs,

P p@r P Rangephlq, |P pY “ l | cpXq “ l, hlpXq “ rq ´ r| ď ϵ2q ě 1 ´ αl.

By construction of h, conditioning on cpXq “ l and hlpXq “ r is the same as conditioning on

cpXq “ l and hpXq “ r. Taking a union bound over all L gives

P p@l P rLs, r P Rangephq, |P pY “ cpXq | cpXq “ l, hpXq “ rq ´ r|q ď ϵ2q

ě 1 ´

L
ÿ

l“1

αl “ 1 ´ α,

proving the conditional calibration result. Finally, note that if for every l P rLs, r P Rangephq,

|P pY “ cpXq | cpXq “ l, hpXq “ rq ´ r| ď ϵ2,

then also

TL-ECEpc, hq “ E|PpY “ cpXq | hpXq, cpXqq ´ hpXq| ď ϵ2.

This proves the high-probability bound for the TL-ECE.

Remark 5.3. Gupta and Ramdas (2021) proved a more general result for general ℓp-ECE bounds.

Similar results can also be derived for the suitably defined ℓp-TL-ECE. Additionally, it can be

shown that with probability 1 ´ α, the TL-MCE of pc, hq is bounded by ϵ2. (TL-MCE is defined

in Appendix 5.E, equation (5.17).)

5.H.3 Proof of Proposition 5.1

Consider a specific l P rLs. We use hl to denote the l-th component function of h and Yl “

1 tY “ lu. Canonical calibration implies

PpY “ l | hpXqq “ E rYl | hpXqs “ hlpXq. (5.23)
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We can then use the law of iterated expectations (or tower rule) to get the final result:

E rYl | hlpXqs “ E rE rYl | hpXqs | hlpXqs

“ E rhlpXq | hlpXqs (by the canonical calibration property (5.23))

“ hlpXq.

5.H.4 Proof of Theorem 5.2

We use the bounds of Gupta and Ramdas (2021, Theorem 4) (henceforth called the GR21 bounds),

derived in the binary calibration setting, to conclude marginal, conditional, and ECE guarantees

for each hl. This leads to the class-wise results as well.

Consider any l P rLs. Let Pl denote the distribution of pX,1 tY “ luq. Clearly, Dl is a set of

n i.i.d. samples from Pl, and hl is learning a binary calibrator with respect to Pl using binary

histogram binning. The number of data-points is n and the number of bins is Bl “ tn{klu bins.

We now apply the GR21 bounds on hl. First, we verify that the condition they require is satisfied:

n ě kl tn{klu ě 2Bl.

Thus the GR21 marginal calibration bound gives that for every l P rLs, hl satisfies

P

˜

|P pY “ l | hlpXqq ´ hlpXq| ď δ `

d

logp2{αlq

2ptn{Blu ´ 1q

¸

ě 1 ´ αl.

The class-wise marginal calibration bound of Theorem 5.2 follows since tn{Blu “ tn{ tn{kluu ě

kl, and so

ϵ
p1q

l ě δ `

d

logp2{αlq

2ptn{Blu ´ 1q
.

Next, the GR21 conditional calibration bound gives for every l P rLs, hl satisfies

P

˜

@r P Rangephlq, |P pY “ l | hlpXq “ rq ´ r| ď δ `

d

logp2Bl{αlq

2ptn{Blu ´ 1q

¸

ě 1 ´ αl.

The class-wise marginal calibration bound of Theorem 5.2 follows since Bl “ tn{klu ď n{kl and

tn{Blu “ tn{ tn{kluu ě kl, and so

ϵ
p2q

l ě δ `

d

logp2Bl{αlq

2ptn{Blu ´ 1q
.

Let k “ minlPrLs kl. The in-expectation ECE bound of GR21, for p “ 1, gives for every l,

E rbinary-ECE-for-class-l phlqs ď
a

Bl{2nl ` δ
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“
a

tn{klu {2n ` δ

ď
a

1{2kl ` δ

ď
a

1{2k ` δ.

Thus,

E rCW-ECEpc, hqs “ E

«

L´1
L
ÿ

l“1

binary-ECE-for-class-l phlq

ff

ď L´1
L
ÿ

l“1

p
a

1{2k ` δq

“
a

1{2k ` δ,

as required for the in-expectation CW-ECE bound of Theorem 5.2. Finally, for the high probability

CW-ECE bound, let ϵ “ maxlPrLs ϵ
p2q

l and α “
řL

l“1 αl. By taking a union bound over the the

conditional calibration bounds for each hl, we have, with probability 1 ´ α, for every l P rLs

and r P Rangephq,

|P pY “ l | cpXq “ l, hpXq “ rq ´ r| ď ϵ
p2q

l ď ϵ.

Thus, with probability 1 ´ α,

CW-ECEpc, hq “ L´1
L
ÿ

l“1

E|PpY “ l | hlpXqq ´ hlpXq| ď ϵ.

This proves the high-probability bound for the CW-ECE.
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(a) Calibration using Sierpinski binning at depth q “ 2.

(b) Calibration using grid-style binning with K “ 5, τ “ 0.2.

(c) Projection-based HB with B “ 27 projections: q1 “ ´e1, q2 “ ´e2, . . . , q4,´e1, . . ., and so on.

(d) Projection-based HB with B “ 27 random projections (qi drawn uniformly from the ℓ2-unit-ball in

R3
).

Figure 5.12: Canonical calibration using fixed and histogram binning on a 3-class version of the

COVTYPE-7 dataset. The reliability diagrams (left) indicate that all forms of binning improve

the calibration of the base logistic regression model. The recalibration diagrams (right) are a

scatter plot of the predictions gpXq on the test data with the points colored in 10 different colors

depending on their bin. For every bin, the arrow-tail indicates the mean probability predicted

by the base model g whereas the arrow-head indicates the probability predicted by the updated

model h.
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Chapter 6
Online Platt scaling with calibeating

This chapter is based on Gupta and Ramdas (2023).

We present an online post-hoc calibration method, called Online Platt Scaling (OPS), which combines
the Platt scaling technique with online logistic regression. We demonstrate that OPS smoothly adapts
between i.i.d. and non-i.i.d. settings with distribution drift. Further, in scenarios where the best
Platt scaling model is itself miscalibrated, we enhance OPS by incorporating a recently developed
technique called calibeating to make it more robust. Theoretically, our resulting OPS+calibeating
method is guaranteed to be calibrated for adversarial outcome sequences. Empirically, it is effective
on a range of synthetic and real-world datasets, with and without distribution drifts, achieving
superior performance without hyperparameter tuning. Finally, we extend all OPS ideas to the beta
scaling method.

6.1 Introduction

In the past two decades, there has been significant interest in the ML community on post-hoc

calibration of ML classifiers (Zadrozny and Elkan, 2002; Niculescu-Mizil and Caruana, 2005; Guo

et al., 2017). Consider a pretrained classifier f : X Ñ r0, 1s that produces scores in r0, 1s for

covariates in X . Suppose f is used to make probabilistic predictions for a sequence of points

pxt, ytq
T
t“1 where yt P t0, 1u. Informally, f is said to be calibrated (Dawid, 1982) if the predictions

made by f match the empirically observed frequencies when those predictions are made:

for all p P r0, 1s,Averagetyt : fpxtq « pu « p. (6.1)

In practice, for well-trained f , larger scores fpxq indicate higher likelihoods of y “ 1, so that f
does well for accuracy or a ranking score like AUROC. Yet we often find that f does not satisfy

(some formalized version of) condition (6.1). The goal of post-hoc calibration, or recalibration, is

to use additional held-out data to learn a low-complexity mapping m : r0, 1s Ñ r0, 1s so that

mpfp¨qq retains the good properties of f—accuracy, AUROC, sharpness—as much as possible,

but is better calibrated than f .
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(a) Platt scaling

Initialize weights w1 P Rd “ X
At time t “ 1, 2, . . . , T

•
Observe features xt P Rd

•
Predict pt “ p1 ` e´w

⊺
t xt q´1

•
Observe yt P t0, 1u

•
Compute updated weight wt`1 P Rd

Goal: minimize regret

řT
t“1 lpyt, ptq, where

lpy, pq “ ´y log p ´ p1 ´ yq logp1 ´ pq.

(b) Online logistic regression

Expert (OPS)

The 
probability of rain 

is 75%.

Hedging (HOPS)

Tracking (TOPS)
When you said 

75% in the past, it has 
rained 85% of the time. So 

I will forecast 85%. 

Calibeating

I will play a 
hedging game on the 

instances where you said 
75% so an adversary 

cannot fool me. 
{

(c) Calibeating + online Platt scaling

Figure 6.1: The combination of Platt scaling and online logistic regression yields Online Platt

Scaling (OPS). Calibeating is applied on top of OPS to achieve further empirical improvements

and theoretical validity.

The focus of this work is on a recalibration method proposed by Platt (1999), commonly known

as Platt scaling (PS). The PS mapping m is a sigmoid transform over f parameterized by two

scalars pa, bq P R2
:

ma,b
pfpxqq :“ sigmoidpa ¨ logitpfpxqq ` bq. (6.2)

This set of mappings includes the identity mapping m1,0
that recovers f . Figure 6.1a has

additional illustrative ma,b
plots; these are easily interpreted—if f is overconfident, that is if

fpxq values are skewed towards 0 or 1, we can pick a P p0, 1q to improve calibration; if f is

underconfident, we can pick a ą 1; if f is systematically biased towards 0 (or 1), we can pick

b ą 0 (or b ă 0). The counter-intuitive choice a ă 0 can also make sense if f ’s predictions oppose

reality (perhaps due to a distribution shift). Given a batch of held-out data points, pa, bq is usually

learnt by minimizing log-loss over calibration data or equivalently maximizing log-likelihood

under the model yi
iid

„ Bernoullipma,bpfpxiqqq.

Although a myriad of recalibration methods now exist, PS remains an empirically strong baseline.

In particular, PS is effective when few samples are available for recalibration (Niculescu-Mizil

and Caruana, 2005; Gupta and Ramdas, 2021). Scaling before subsequent binning has emerged

as a useful methodology (Kumar et al., 2019; Zhang et al., 2020). Multiclass adaptations of PS,

called temperature, vector, and matrix scaling have become popular (Guo et al., 2017). Being

a parametric method, however, PS comprises a limited family of post-hoc corrections—for

instance, since ma,b
is always a monotonic transform, PS must fail even for i.i.d. data for some

data-generating distributions (see Gupta et al. (2020) for a formal proof). Furthermore, we are

interested in going beyond i.i.d. data to data with drifting/shifting distribution. This brings us to

our first question,

(Q1) Can Platt scaling (PS) be extended to handle

shifting or drifting data distributions?

A separate view of calibration that pre-dates the ML post-hoc calibration literature is the

online adversarial calibration framework (DeGroot and Fienberg, 1981; Foster and Vohra, 1998).
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Learn  
on training data

f : 𝒳 → [0,1] Online learn post-hoc 
mapping  mt : [0,1] → [0,1]

Calibeat 
mt ∘ f

Pre-training
Post-hoc calibration + calibeating on 

streaming test data (xt, yt)t≥1

+

Figure 6.2: Online adversarial post-hoc calibration.

Through the latter work, we know that calibration can be achieved for arbitrary yt sequences

without relying on a pretrained model f or doing any other modeling over available features.

This is achieved by hedging or randomizing over multiple probabilities, so that “the past track

record can essentially only improve, no matter the future outcome” (paraphrased from Foster

and Hart (2021)). For interesting classification problems, however, the yt sequence is far from

adversarial and informative covariates xt are available. In such settings, covariate-agnostic

algorithms achieve calibration by predicting something akin to an average

řt
s“1 ys{t at time

t ` 1 (see Appendix 6.D). Such a prediction, while calibrated, is arguably not useful. A natural

question is:

(Q2) Can informative covariates (features) be used

to make online adversarial calibration practical?

We answer (Q1) by developing an online version of Platt scaling, and (Q2) by leveraging the

recently developed framework of calibeating (Foster and Hart, 2023). The method of calibeating,

illustrated in Figure 6.1c, is to perform certain corrections on top of pre-existing expert forecasts

to improve their calibration. A key calibeating idea that we use was already discovered by

Kuleshov and Ermon (2017) to resolve (Q2) in a manner similar to ours. Namely, they first

proposed the idea of binning and hedging on top of an expert, as we do in HOPS (Section 6.3.3).

We return to a more detailed comparison between our work and Kuleshov and Ermon’s in

Section 6.3.3. To reiterate, while we repeatedly use the term “calibeating” coined by Foster and

Hart, the main idea in resolving (Q2) can equally be credited to Kuleshov and Ermon.

Unlike previous papers, the online expert is not a black-box but a centerpiece of our work. In

the forthcoming proposal, we describe an end-to-end pipeline, where first, a covariate-based and

time-adaptive expert is constructed using post-hoc calibration (OPS), and then it is calibeaten to

achieve adversarial calibration (TOPS, HOPS).

6.1.1 Online adversarial post-hoc calibration

The proposal, summarized in Figure 6.2, is as follows. First, train any probabilistic classifier f
on some part of the data. Then, perform online post-hoc calibration on top of f to get online

adaptivity. In effect, this amounts to viewing fpxtq as a scalar “summary” of xt, and the post-hoc

mapping pmt : r0, 1s Ñ r0, 1sqtě1 becomes the time-series model over the scalar feature fpxtq.

Finally, apply calibeating on the post-hoc predictions mtpfpxtqq to obtain adversarial validity.
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Figure 6.2 highlights our choice to do both post-hoc calibration and calibeating simultaneously

on the streaming test data pxt, ytqtě1.

Such an online version of post-hoc calibration has not been previously studied to the best

of our knowledge. We show how one would make PS online, to obtain Online Platt Scaling

(OPS). OPS relies on a simple but crucial observation: PS is a two-dimensional logistic regression

problem over “pseudo-features” logitpfpxtqq. Thus the problem of learning OPS parameters is the

problem of online logistic regression (OLR, see Figure 6.1b for a brief description). Several regret

minimization algorithms have been developed for OLR (Hazan et al., 2007; Foster et al., 2018;

Jézéquel et al., 2020). We consider these and find an algorithm with optimal regret guarantees

that runs in linear time. These regret guarantees imply that OPS is guaranteed to perform as well

as the best fixed PS model in hindsight for an arbitrarily distributed online stream pxt, ytqtě1,

which includes the entire range of distribution drifts—i.i.d. data, data with covariate/label drift,

and adversarial data. We next present illustrative experiments where this theory bears out

impressively in practice.

Then, Section 6.2 presents OPS, Section 6.3 discusses calibeating, Section 6.4 presents baseline

experiments on synthetic and real-world datasets. Section 6.5 discusses the extension of all OPS

ideas to a post-hoc technique called beta scaling.

6.1.2 Illustrative experiments with distribution drift

Covariate drift. We generated data as follows. For t “ 1, 2, . . . , 6000,

Xt „ N ppt ´ 1q{250, 4q;

Yt|Xt „

"

Berp0.1q if modptXt{5u , 2q “ 0,
Berp0.9q if modptXt{5u , 2q “ 1.

(6.3)

Thus the distribution of Yt given Xt is a fixed periodic function, but the distribution of Xt

drifts over time. The solid yellow line in Figure 6.3 plots PrpY “ 1 | X “ xq against x. We

featurized x as a 48-dimensional vector with the components sin
´

x
freq

` translation

¯

, where

freq P t1, 2, 3, 4, 5, 6u and translation P t0, π{4, π{2, . . . 7π{4u.

A logistic regression base model f is trained over this 48-dimensional representation using the

points pXt, Ytq
1000
t“1 , randomly permuted and treated as a single batch of exchangeable points,

which we will call training points. The points pXt, Ytq
6000
t“1001 form a supervised non-exchangeable

test stream: we use this stream to evaluate f , recalibrate f using OPS, and evaluate the OPS-

calibrated model.

Figure 6.3 displays f and the recalibrated OPS models at four ranges of t (one per plot). The

training data has most xt-values in the range r´5, 10s as shown by the (height-normalized)

histogram in the top-left plot. In this regime, f is visually accurate and calibrated—the dotted

light blue line is close to the solid yellow truth. We now make some observations at three

test-time regimes of t:

(a) t “ 1501 to t “ 2000 (the histogram shows the distribution of pxtq
2000
t“1501). For these values
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OPS 62.16% 0.36
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Base 23.60% 0.64

OPS 87.76% 0.13

(a) Accuracy and calibration error (CE) val-

ues of the base model and OPS for indicated

values of t.

Figure 6.3: The adaptive behavior of Online Platt scaling (OPS) for the covariate drift dataset de-

scribed in Section 6.1.2. The title of each panel indicates the time-window that panel corresponds

to. The histogram of Xt values in the corresponding time window is plotted with maximum

height normalized to 1. Also plotted is the true curve for PrpY “ 1 | X “ xq and two predictive

curves: a base model trained on t “ 1 to t “ 1000, and OPS-calibrated models with parameter

values fixed at the start of the time window. The base model is accurate for the training data

which is mostly in r´5, 10s, but becomes inaccurate and miscalibrated with the covariate-shifted

values for larger t (bottom two subplots). OPS adapts well, agreeing with the base model in the

top-right subplot, but flipping the base model predictions in the bottom-right subplot.

of t, the test data is only slightly shifted from the training data, and f continues to perform

well. The OPS model recognizes the good performance of f and does not modify it much.

(b) t “ 3500 to t “ 4000. Here, f is “out-of-phase” with the true distribution, and Platt

scaling is insufficient to improve f by a lot. OPS recognizes this, and it offers slightly

better calibration and accuracy by making less confident predictions between 0.2 and 0.4.

(c) t “ 5500 to t “ 6000. In this regime, f makes predictions opposing reality. Here, the OPS

model flips the prediction, achieving high accuracy and calibration.

These observations are quantitatively supported by the accuracy and ℓ1-calibration error (CE)

values reported by the table in Figure 6.3a. Accuracy and CE values are estimated using the known

true distribution of Yt | Xt and the observed Xt values, making them unbiased and avoiding

some well-known issues with CE estimation. More details are provided in Appendix 6.A.2.

Label drift. For t “ 1, 2, . . . , 6000, data is generated as:

143



2 0 2 40.0

0.2

0.4

0.6

0.8

1.0
t = 1 to t = 1000 (training)

2 0 2 40.0

0.2

0.4

0.6

0.8

1.0
t = 1501 to t = 2000

4 2 0 2 40.0

0.2

0.4

0.6

0.8

1.0
t = 3501 to t = 4000

2 0 2 40.0

0.2

0.4

0.6

0.8

1.0
t = 5501 to t = 6000

0.0 0.2 0.4 0.6 0.8 1.0
Value of x

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
/p

re
di

ct
ed

   
Pr

(Y
=

1
X

=
x)

(a) OPS with label drift.
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(b) OPS with regression-function drift.

Figure 6.4: The adaptive behavior of OPS for the simulated label shift and regression-function

drift datasets described in Section 6.1.2. For more details on the contents of the figure, please

refer to Figure 6.3. The improvement in calibration and accuracy of OPS over the base model is

visually apparent, but for completeness, {Acc, CE} values are reported in the Appendix as part

of Figures 6.10 and 6.11.

Yt „ Bernoullip0.95p1 ´ αtq ` 0.05αtq,

where αt “ pt ´ 1q{6000q;

Xt|Yt „ 1 tYt “ 0uN p0, 1q ` 1 tYt “ 1uN p2, 1q.

(6.4)

Thus, Xt | Yt is fixed while the label distribution drifts. We follow the same training and test

splits described in the covariate drift experiment, but without sinusoidal featurization of Xt; the

base logistic regression model is trained directly on the scalar Xt’s. The gap between f and the

true model increases over time but OPS adapts well (Figure 6.4a).

Regression-function drift. For t “ 1, 2, . . . , 6000, the data is generated as follows: αt “

pt ´ 1q{5000,

Xt „ N p0, 10q and Yt|Xt „ Bernoullipptq, where (6.5)

pt “

"

0.1p1 ´ αtq ` 0.5αt if modptXt{5u , 2q “ 0,
0.9p1 ´ αtq ` 0.5αt if modptXt{5u , 2q “ 1.

Thus the distribution of Xt is fixed, but the regression function PrpYt “ 1 | Xtq drifts over time.

We follow the same training and test splits described in the covariate drift experiment, as well

as the 48-dimensional featurization and logistic regression modeling. The performance of the

base model worsens over time, while OPS adapts (Figure 6.4b).
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6.2 Online Platt scaling (OPS)

In a batch post-hoc setting, the Platt scaling parameters are set to those that minimize log-loss

over the calibration data. If we view the first t instances in our stream as the calibration data,

the fixed-batch Platt scaling parameters are,

ppat,pbtq “ argmin
pa,bqPR2

t
ÿ

s“1

lpma,b
pfpxsqq, ysq, (6.6)

where lpp, yq “ ´y log p ´ p1 ´ yq logp1 ´ pq and ma,b
is defined in (6.2). Observe that this is

exactly logistic regression over the dataset plogitpfpxsqq, ysq
t
s“1.

The thesis of OPS is that as more data is observed over time, we should use it to update the

Platt scaling parameters. Define pOPS

t :“ mat,btpfpxtqq, where pat, btq depends (in some yet

undefined fashion) on tpfpx1q, y1q, . . . , pfpxt´1q, yt´1qu.
1

One way to compare methods in

this online setting is to consider regret RT with respect to a reference ℓ2-ball of radius B,

B :“ tpa, bq P R2 : a2 ` b2 ď B2u:

RT “

T
ÿ

t“1

lppOPS

t , ytq ´ min
pa,bqPB

T
ÿ

t“1

lpma,b
pfpxtqq, ytq. (6.7)

RT is the difference between the total loss incurred when playing pat, btq at times t ď T and the

total loss incurred when playing the single optimal pa, bq P B for all t ď T . Typically, we are

interested in algorithms that have low RT irrespective of how pxt, ytq is generated.

6.2.1 Logarithmic worst-case regret bound for OPS

OPS regret minimization is exactly online logistic regression (OLR) regret minimization over

“pseudo-features” logitpfpxtqq. Thus our OPS problem is immediately solved using OLR methods.

A number of OLR methods have been proposed, and we consider their regret guarantees and

running times for the OPS problem. These bounds typically depend on T and two problem-

dependent parameters: the dimension (say d) and B, the radius of B.

1. In our case, d “ 2 since there is one feature logitpfpxqq and a bias term. Thus d is a

constant.

2. B could technically be large, but in practice, if f is not highly miscalibrated, we expect

small values of a and b which would in turn lead to small B. This was true in all our

experiments.

Regret bounds and running times for candidate OPS methods are presented in Table 6.1, which

is an adaptation of Table 1 of Jézéquel et al. (2020) with all polypdq terms removed. Based on this

table, we identify AIOLI and Online Newton Step (ONS) as the best candidates for implementing

OPS, since they both have Oplog T q regret and
rOpT q running time. In the following theorem,

1
A variant of this setup also allows pat, btq to depend on fpxtq (Foster et al., 2018).
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Algorithm Regret Running time

Online Gradient Descent (OGD) (Zinkevich, 2003) B
?
T T

Online Newton Step (ONS) (Hazan et al., 2007) eB log T T
AIOLI (Jézéquel et al., 2020) B logpBT q T log T

Aggregating Algorithm (AA) (Vovk, 1990; Foster et al., 2018) logpBT q B18T 24

Table 6.1: Asymptotic regret and running times of online logistic regression (OLR) algorithms

for OPS as functions of the radius of reference class B and time-horizon T . For general OLR,

regret and running times also depend on the dimension of X . However, OPS effectively reduces

the dimensionality of X to 2, so that a second-order method like ONS runs almost as fast as a

first-order method like OGD. Also note that B “
?
a2 ` b2 is small if the base model f is not

highly miscalibrated. ONS with fixed hyperparameters was chosen for all OPS experiments; see

Section 6.2.2 for implementation details.

we collect explicit regret guarantees for OPS based on ONS and AIOLI. Since the log-loss can be

unbounded if the predicted probability equals 0 or 1, we require some restriction on fpxtq.

Theorem 6.1. Suppose @t, fpxtq P r0.01, 0.99s, B ě 1, and T ě 10. Then, for any sequence
pxt, ytq

T
t“1, OPS based on ONS satisfies

RT pONSq ď 2peB ` 10Bq log T ` 1, (6.8)

while OPS based on AIOLI satisfies

RT pAIOLIq ď 22B logpBT q. (6.9)

The ONS result follows from Hazan (2016, Theorem 4.5) and the AIOLI result follows from

Jézéquel et al. (2020, Theorem 1), plugging in the appropriate values for problem-dependent

parameters; more details are in Appendix 6.E. Since log-loss is a proper scoring rule (Gneiting

and Raftery, 2007), minimizing it has implications for calibration (Bröcker, 2009). However, no

“absolute” calibration bounds can be shown as discussed shortly in Section 6.2.4.

6.2.2 Hyperparameter-free ONS implementation

In our experiments, we found ONS to be significantly faster than AIOLI while also giving better

calibration. Further, ONS worked without any hyperparameter tuning after an initial investi-

gation was done to select a single set of hyperparameters. Thus we used ONS for experiments

based on a verbatim implementation of Algorithm 12 in Hazan (2016), with γ “ 0.1, ρ “ 100,

and K “ tpa, bq : }pa, bq}2 ď 100u. Algorithm 6.1 in the Appendix contains pseudocode for our

final OPS implementation.
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6.2.3 Follow-The-Leader as a baseline for OPS

The Follow-The-Leader (FTL) algorithm sets pat, btq “ ppat´1,pbt´1q (defined in (6.6)) for t ě 1.

This corresponds to solving a logistic regression optimization problem at every time step, making

the overall complexity of FTL ΩpT 2q. Further, FTL has ΩpT q worst-case regret. Since full FTL

is intractably slow to implement even for an experimental comparison, we propose to use a

computationally cheaper variant, called Windowed Platt Scaling (WPS). In WPS the optimal

parameters given all current data, ppat,pbtq, are computed and updated every Op100q steps instead

of at every time step. We call this a window and the exact size of the window can be data-

dependent. The optimal parameters computed at the start of the window are used to make

predictions until the end of that window, then they are updated for the next window. This

heuristic version of FTL performs well in practice (Section 6.4).

6.2.4 Limitations of regret analysis

Regret bounds are relative with respect to the best in class, so Theorem 6.1 implies that OPS will

do no worse than the best Platt scaling model in hindsight. However, even for i.i.d. data, the

best Platt scaling model is itself miscalibrated on some distributions (Gupta et al., 2020, Theorem

3). This latter result shows that some form of binning must be deployed to be calibrated for

arbitrarily distributed i.i.d. data. Further, if the data is adversarial, any deterministic predictor

can be rendered highly miscalibrated (Oakes, 1985; Dawid, 1985); a simple strategy is to set

yt “ 1 tpt ď 0.5u. In a surprising seminal result, Foster and Vohra (1998) showed that adversarial

calibration is possible by randomizing/hedging between different bins. The following section

shows how one can perform such binning and hedging on top of OPS, based on a technique

called calibeating.

6.3 Calibeating the OPS forecaster

Calibeating (Foster and Hart, 2023) is a technique to improve or “beat” an expert forecaster. The

idea is to first use the expert’s forecasts to allocate data to representative bins. Then, the bins

are treated nominally: they are just names or tags for “groups of data-points that the expert

suggests are similar”. The final forecasts in the bins are computed using only the outcome (yt)
values of the points in the bin (seen so far), with no more dependence on the expert’s original

forecast. The intuition is that forecasting inside each bin can be done in a theoretically valid

sense, irrespective of the theoretical properties of the expert.

We will use the following “ϵ-bins” to perform calibeating:

B1 “ r0, ϵq, B2 “ rϵ, 2ϵq, . . . , Bm “ r1 ´ ϵ, 1s. (6.10)

Here ϵ ą 0 is the width of the bins, and for simplicity we assume that m “ 1{ϵ is an integer.

For instance, one could set ϵ “ 0.1 or the number of bins m “ 10, as we do in the experiments
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in Section 6.4. Two types of calibeating—tracking and hedging—are described in the following

subsections. We suggest recalling our illustration of calibeating in the introduction (Figure 6.1c).

6.3.1 Calibeating via tracking past outcomes in bins

Say at some t, the expert forecasts pt P r0.7, 0.8q. We look at the instances s ă t when

ps P r0.7, 0.8q and compute

ȳbt´1 “ Averagetys : s ă t, ps P r0.7, 0.8qu.

Suppose we find that ȳbt´1 “ 0.85. That is, when the expert forecasted bin r0.7, 0.8q in the past,

the average outcome was 0.85. A natural idea now is to forecast 0.85 instead of 0.75. We call

this process “Tracking”, and it is the form of calibeating discussed in Section 4 of Foster and

Hart (2023). In our case, we treat OPS as the expert and call the tracking version of OPS as TOPS.

If pOPS

t P Bb, then

pTOPS

t :“ Averagetys : s ă t, pOPS

s P Bbu. (6.11)

The average is defined as the mid-point of Bb if the set above is empty.

Foster and Hart (2023) showed that the Brier-score of the TOPS forecasts pTOPS

t , defined as

1
T

řT
t“1pyt ´ pTOPS

t q2, is better than the corresponding Brier-score of the OPS forecasts pOPS

t ,

by roughly the squared calibration error of pOPS

t (minus a log T term). In the forthcoming

Theorem 6.2, we derive a result for a different object that is often of interest in post-hoc calibration,

called sharpness.

6.3.2 Segue: defining sharpness of forecasters

Recall the ϵ-bins introduced earlier (6.10). DefineNb “ |tt ď T : pt P Bbu| and pyb “ 1
Nb

ř

tďT,ptPBb
yt

if Nb ą 0, else pyb “ 0. Sharpness is defined as,

SHPpp1:T q :“
1

T

m
ÿ

b“1

Nb ¨ py2b .
2

(6.12)

If the forecaster is perfectly knowledgeable and forecasts pt “ yt, its SHP equals

řT
t“1 yt{T “:

ȳT . On the other hand, if the forecaster puts all points into a single bin b, its SHP equals

p
řT

t“1 yt{T q2 “ ȳ2T . The former forecaster is precise or sharp, while the latter is not, and

SHP captures this—it can be shown that ȳ2T ď SHPpp1:T q ď ȳT . We point the reader to Bröcker

(2009) for further background. One of the goals of effective forecasting is to ensure high

sharpness (Gneiting et al., 2007). OPS achieves this goal by relying on the log-loss, a proper

scoring rule. The following theorem shows that TOPS suffers a small loss in SHP compared to

OPS.

2
The original definition of sharpness (Murphy, 1973) was (essentially): ´T´1

řm
b“1 Nbpybp1 ´ pybq, which equals

SHPpp1:T q ´ ȳT . We add the forecast-independent term ȳT on both sides and define the (now non-negative)

quantity as SHP.
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Theorem 6.2. The sharpness of TOPS forecasts satisfies

SHPppTOPS
1:T q ě SHPppOPS

1:T q ´ ϵ ´
ϵ2

4
´

log T ` 1

ϵT
. (6.13)

The proof (in Appendix 6.E) uses Theorem 3 of Foster and Hart (2023) and relationships between

sharpness, Brier-score, and a quantity called refinement. If T is fixed and known, setting

ϵ «
a

log T {T (including constant factors), or equivalently, the number of bins B «
a

T { log T

gives a rate of
rOp
a

1{T q for the SHP difference term. While we do not show a calibration

guarantee, TOPS had the best calibration performance in most experiments (Section 6.4)

6.3.3 Calibeating via hedging or randomized prediction

All forecasters introduced so far—the base model f , OPS, and TOPS—make forecasts pt that are

deterministic given the past data until time t ´ 1. If the yt sequence is being generated by an

adversary that acts after seeing pt, then the adversary can ensure that each of these forecasters

is miscalibrated by setting yt “ 1 tpt ď 0.5u.

Suppose instead that the forecaster is allowed to hedge—randomize and draw the forecast from

a distribution instead of fixing it to a single value—and the adversary only has access to the

distribution and not the actual pt. Then there exist hedging strategies that allow the forecaster

to be arbitrarily well-calibrated (Foster and Vohra, 1998). In fact, Foster (1999, henceforth F99)

showed that this can be done while hedging between two arbitrarily close points in r0, 1s.

In practice, outcomes are not adversarial, and covariates are available. A hedging algorithm

that does not use covariates cannot be expected to give informative predictions. We verify

this intuition through an experiment in Appendix on historical rain data 6.D—F99’s hedging

algorithm simply predicts the average yt value in the long run.

A best-of-both-worlds result can be achieved by using the expert forecaster to bin data using xt

values, just like we did in Section 6.3.1. Then, inside every bin, a separate hedging algorithm

is instantiated. For the OPS predictor, this leads to HOPS (OPS + hedging). Specifically, in our

experiments and the upcoming calibration error guarantee, we used F99:

pHOPS

t :“ F99pys : s ă t, ps P Bbq. (6.14)

A standalone description of F99 is included in Appendix 6.C. F99 hedges between consecutive

mid-points of the ϵ-bins defined earlier (6.10). The only hyperparameter for F99 is ϵ. For the

experiments in Section 6.4, we set ϵ “ 0.1; other ϵ values are considered for a limited set of

experiments in Appendix 6.A.3. To be clear, pt is binned on the ϵ-bins, and the hedging inside

each bin is again over the ϵ-bins.

The upcoming theorem shows a SHP lower bound on HOPS. In addition, we show an assumption-

free upper bound on the (ℓ1-)calibration error, defined as

CEpp1:T q :“
1

T

m
ÿ

b“1

Nb ¨ |ppb ´ pyb| , (6.15)
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where Nb, pyb were defined in Section 6.3.2, and ppb “ 1
Nb

ř

tďT,ptPBb
pt, if Nb ą 0, else ppb “

mid-pointpBbq. Achieving small CE is one formalization of (6.1). The following result is condi-

tional on the y1:T , pOPS

1:T sequences. The expectation is over the randomization in F99.

Theorem 6.3. For adversarially generated data, the expected sharpness of HOPS forecasts using
the forecast hedging algorithm of Foster (1999) is lower bounded as

E
“

SHPppHOPS
1:T q

‰

ě SHPppOPS
1:T q ´

ˆ

ϵ `
log T ` 1

ϵ2T

˙

, (6.16)

and the expected calibration error of HOPS satisfies,

E
“

CEppHOPS
1:T q

‰

ď ϵ{2 ` 2
a

1{ϵ2T . (6.17)

The proof in Appendix 5.H is based on Theorem 5 of Foster and Hart (2023) and a CE bound for

F99 based on Blackwell approachability (Blackwell, 1956). With ϵ “ rΘpT´1{3q, the difference

term in the SHP bound is
rOpT´1{3q and with ϵ “ rΘpT´1{4q, the CE bound is

rOpT´1{4q. Compare

(6.17) to the usual (without calibeating) calibration bound of Opϵ ` 1{
?
ϵT q which leads to

OpT´1{3q (Foster and Vohra, 1998). High-probability versions of (6.17) can be derived using

probabilistic Blackwell approachability lemmas, such as those in Perchet (2014)

The “Online Recalibration” method of Kuleshov and Ermon (2017, Algorithm 1) amounts to

performing the same binning and hedging that we have described, but on top of a black-box

expert. We used a specific expert, OPS, and experimentally demonstrate its benefits on multiple

datasets (Section 6.1.2 and 6.4). Theoretically, our calibration bound (6.17) is identical to their

Lemma 3 (if Lemma 3 is instantiated with F99). Their Lemma 2 shows a bound on the expected

increase of any bounded proper loss on performing the calibeating step. For the case of Brier-loss

their bound is Opϵ ` 1{ϵ2
?
T q. Our proof of (6.16) can be used to show an improved bound of

Opϵ ` log T {ϵ2T q, as stated formally in Appendix 6.E (Theorem 6.4)

6.4 Experiments

We perform experiments with synthetic and real-data, in i.i.d. and distribution drift setting. Code

to reproduce the experiments can be found at https://github.com/aigen/df-posthoc-calibration

(see Appendix 6.A.4 for more details). All baseline and proposed methods are described in

Collection 1 on the following page. In each experiment, the base model f was a random forest

(sklearn’s implementation). All default parameters were used, except n estimators was

set to 1000. No hyperparameter tuning on individual datasets was performed for any of the

recalibration methods.

Metrics. We measured the SHP and CE metrics defined in (6.12) and (6.15) respectively. Although

estimating population versions of SHP and CE in statistical (i.i.d.) settings is fraught with several

issues (Kumar et al. (2019) and Roelofs et al. (2022) and several other works), our definitions
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Collection 1. Proposed and baseline methods for online post-hoc calibration. Final forecasts

are identified in blue.

Input: f : X Ñ r0, 1s, any pre-learnt model

Input: px1, y1q, px2, y2q, . . . , pxT , yT q P X ˆ t0, 1u

Input: calibration-set-size Tcal ă T , window-size W

Fixed Platt scaling: paFPS, bFPSq Ð ppaT
cal
,pbT

cal
q (eq. 6.6)

Windowed Platt scaling: paWPS, bWPSq Ð paFPS, bFPSq

Online Platt scaling: paOPS

1 , bOPS

1 q Ð p1, 0q

for t “ 2 to T do
paOPS

t , bOPS

t q Ð ONSppx1, y1q, . . . , pxt´1, yt´1qq

(ONS is Algorithm 6.1 in the Appendix)

end for
for t “ Tcal ` 1 to T do
pBM

t Ð fpxtq

pFPS

t Ð sigmoidpaFPS ¨ logitpfpxtqq ` bFPSq

pWPS

t Ð sigmoidpaWPS ¨ logitpfpxtqq ` bWPSq

pOPS

t Ð sigmoidpaOPS

t ¨ logitpfpxtqq ` bOPS

t q

pTOPS

t is set using past pys, p
OPS

s q values as in (6.11)

pHOPS

t is set using past pys, p
OPS

s q values as in (6.14)

If mod pt ´ Tcal,W q “ 0, paWPS, bWPSq Ð ppat,pbtq
end for

target actual observed quantities which are directly interpretable without reference to population

quantities.

Reading the plots. The plots we report show CE values at certain time-stamps starting from

Tcal ` 2W and ending at T (see third line of Collection 1). Tcal and W are fixed separately for

each dataset (Table 6.2 in Appendix). We also generated SHP plots, but these are not reported

since the drop in SHP was always very small.

6.4.1 Experiments on real datasets

We worked with four public datasets in two settings. Links to the datasets are in Appendix 6.A.1.

Distribution drift. We introduced synthetic drifts in the data based on covariate values, so this

is an instance of covariate drift. For example, in the bank marketing dataset (leftmost plot in

Figure 6.5), the problem is to predict which clients are likely to subscribe to a term deposit if they

are targeted for marketing, using covariates like age, education, and bank-balance.

We ordered the available 12000 rows roughly by age by adding a random number uniformly

from t´1, 0, 1u to age and sorting all the data. Training is done on the first 1000 points,

Tcal “ 1000, and W “ 500. Similar drifts are induced for the other datasets, and Tcal,W values

are set depending on the total number of points; further details are in Appendix 6.A.1.

All simulations were performed 100 times and the average CE and SHP values with ˘ std-

deviation errorbars were evaluated at certain time-steps. Thus, our lines correspond to estimates
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Figure 6.5: Drifting data. CE (calibration error) values over time of considered models on four

datasets with synthetically induced drifts. The plots have invisible error bars since variation

across the 100 runs was small. OPS consistently performs better than BM, FPS, and WPS, while

TOPS is the best-performing among all methods across datasets and time. All methods had

roughly the same SHP values at a given time-step, so the SHP plots are delayed to Appendix 6.A

(Figure 6.8).
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Figure 6.6: IID data. CE values over time of considered models with four randomly shuffled (ie,

nearly i.i.d.) datasets. The plots have invisible error bars since variation across runs was small.

TOPS achieves the smallest values of CE throughout.

of the expected values of CE and SHP, as indicated by the Y-axis labels. We find that across

datasets, OPS has the least CE among non-calibeating methods, and both forms of calibeating

typically improve OPS further (Figure 6.5). Specifically, TOPS performs the best by a margin

compared to other methods. We also computed SHP values, which are reported in Appendix 6.A

(Figure 6.8). The drop in SHP is insignificant in each case (around 0.005).

IID data. This is the usual batch setting formed by shuffling all available data. Part of the data is

used for training and the rest forms the test-stream. We used the same values of Tcal and W as

those used in the data drift experiments (see Appendix 6.A.1). In our experiments, we find that

the gap in CE between BM, FPS, OPS, and WPS is smaller (Figure 6.6). However, TOPS performs

the best in all scenarios, typically by a margin. Here too, the change in SHP was small, so those

plots were delayed to Appendix 6.A (Figure 6.9).
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6.4.2 Synthetic experiments

In all experiments with real data, WPS performs almost as good as OPS. In this subsection, we

consider some synthetic data drift experiments where OPS and TOPS continue performing well,

but WPS performs much worse.

Covariate drift. Once for the entire process, we draw random orthonormal vectors v1,v2 P R10

(∥v1∥2 “ ∥v2∥2 “ 1, v⊺
1v2 “ 0), a random weight vector w P t´1, 1u

10`p10
2 q

with each

component set to 1 or ´1 independently with probability 0.5, and set a drift parameter δ ě 0.

The data is generated as follows:

ut “ v1 cospδtq ` v2 sinpδtq, Xt „ N p0, I10 ` 10utu
⊺
t q,

Yt|Xt „ Bernoullipsigmoidpw⊺
rXtqq, where

rXt “ rx1, . . . , x10, x1x2, x1x3, . . . , x9x10s P R10`p10
2 q.

Thus the distribution of Yt given Xt is fixed as a logistic model over the expanded representation

rXt that includes all cross-terms (this is unknown to the forecaster who only sees Xt). The

features Xt themselves are normally distributed with mean 0 and a time-varying covariance

matrix. The principal component (PC) of the covariance matrix is a vector ut that is rotating on

the two-dimensional plane containing the orthonormal vectors v1 and v2. The first 1000 points

are used as training data, the remaining T “ 5000 form a test-stream, and W “ 500. We report

results in two settings: one is i.i.d., that is δ “ 0, and the other is where the u for the first and

last point are at a 180˝
angle (Figure 6.7a).

Label drift. Given some δ ą 0, pXt, Ytq is generated as:

Yt „ Bernoullip0.5 ` δtq,

Xt|Yt „ 1 tYt “ 0uN p0,R10
q ` 1 tYt “ 1uN pe1,R10

q.

Thus P pY1 “ 1q “ 0.5 ` δ and for the last test point, P pY6000 “ 1q “ 0.5 ` 6000δ. This final

value can be set to control the extent of label drift; we show results with no drift (i.e., δ “ 0,

Figure 6.7b left) and δ set so that final bias 0.5 ` 6000δ “ 0.9 (Figure 6.7b right). The number of

training points is 1000, T “ 5000, and W “ 500.

6.4.3 Changing ϵ, histogram binning, beta scaling

In Appendix 6.A.3, we report versions of Figures 6.5, 6.6 with ϵ “ 0.05, 0.2 (instead of ϵ “ 0.1)

with similar conclusions (Figures 6.12, 6.13). We also perform comparisons with a windowed

version of the popular histogram binning method (Zadrozny and Elkan, 2001) and online versions

of the beta scaling method, as discussed in the forthcoming Section 6.5.

6.5 Online beta scaling with calibeating

A recalibration method closely related to Platt scaling is beta scaling (Kull et al., 2017). The beta

scaling mapping m has three parameters pa, b, cq P R3
, and corresponds to a sigmoid transform
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(a) Left plot: i.i.d. data, right plot: covariate drift.
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(b) Left plot: i.i.d. data, right plot: label drift.

Figure 6.7: Experiments with synthetic data. In all cases, TOPS has the lowest CE across time.

over two pseudo-features derived from fpxq: logpfpxqq and logp1 ´ fpxqq,

ma,b,c
pfpxqq :“ sigmoidpa ¨ logpfpxqq ` b ¨ logp1 ´ fpxqq ` cq.

Observe that enforcing b “ ´a recovers Platt scaling since logitpzq “ logpzq ´ logp1 ´ zq.

The beta scaling parameters can be learnt following identical protocols as Platt scaling: (i) the

traditional method of fixed batch post-hoc calibration akin to FPS, (ii) a natural benchmark

of windowed updates akin to WPS, and (iii) regret minimization based method akin to OPS.

This leads to the methods FBS, WBS, and OBS, replacing the “P” of Platt with the “B” of beta.

Tracking + OBS (TOBS) and Hedging + OBS (HOBS) can be similarly derived. Further details on

all beta scaling methods are in Appendix 6.B, where we also report plots similar to Figures 6.5,

6.6 for beta scaling (Figure 6.15). In a comparison between histogram binning, beta scaling, Platt

scaling, and their tracking versions, TOPS and TOBS are the best-performing methods across

experiments (Figure 6.14).

6.6 Conclusion

We provided a way to bridge the gap between the online (typically covariate-agnostic) calibration

literature, where data is assumed to be adversarial, and the (typically i.i.d.) post-hoc calibration
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literature, where the joint covariate-outcome distribution takes centerstage. First, we adapted the

post-hoc method of Platt scaling to the online setting, based on a reduction to logistic regression,

to give our OPS algorithm. Second, we showed how calibeating can be applied on top of OPS to

give further improvements.

The TOPS method we proposed has the lowest calibration error in all experimental scenarios we

considered. On the other hand, the HOPS method which is based on online adversarial calibration

provably controls miscalibration at any pre-defined level and could be a desirable choice in

sensitive applications. The good performance of OPS+calibeating lends further empirical backing

to the thesis that scaling+binning methods perform well in practice, as has also been noted

in prior works (Zhang et al., 2020; Kumar et al., 2019). Our theoretical results formalize this

empirical observation.

We note a few directions for future work. First, online algorithms that control regret on the

most recent data have been proposed (Hazan and Seshadhri, 2009; Zhang et al., 2018). These

approaches could give further improvements on ONS, particularly for drifting data. Second, while

this chapter entirely discusses calibration for binary classification, all binary routines can be lifted

to achieve multiclass notions such as top-label or class-wise calibration, as discussed in Chapter 5.

Alternatively, multiclass versions of Platt scaling (Guo et al., 2017) such as temperature and

vector scaling can also be targeted directly using online multiclass logistic regression (Jézéquel

et al., 2021).
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Appendices for Chapter 6
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Figure 6.8: Sharpness results with drifting data. SHP values over time of considered models

on four datasets with synthetically induced drifts (Section 6.4.1). The plots have invisible error

bars since variation across the 100 runs was small. The drop in expected sharpness is below

0.005 at all times except on the Fetal Health Dataset.
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Figure 6.9: Sharpness results with i.i.d. data. SHP values over time of considered models on

four shuffled (ie, nearly i.i.d.) datasets (Section 6.4.1). The drop in expected sharpness is less than

0.005 in all cases except for the HOPS forecaster on the Fetal Health dataset, where it is 0.01.

6.A Experimental details and additional results

Some implementation details, metadata, information on metrics, and additional results and

figures are collected here.
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Name Ttrain T
cal

W Sort-by Link to dataset

Bank marketing 1000 1000 500 Age https://www.kaggle.com/datasets/kukuroo3/bank-marketing-response-predict

Credit default 1000 1000 500 Sex https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset

Customer churn 1000 1000 500 Location https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling

Fetal health 626 300 100 Acceleration https://www.kaggle.com/datasets/andrewmvd/fetal-health-classification

Table 6.2: Metadata for datasets used in Section 6.4.1. The sort-by column indicates which

covariate was used to order data points. All datasets are under the Creative Commons CC0

license.

6.A.1 Metadata for datasets used in Section 6.4.1

Table 6.2 contains metadata for the datasets we used in Section 6.4.1. Ttrain refers to the number of

training examples. The “sort-by” column indicates which covariate was used to order data points.

In each case some noise was added to the covariate in order to create variation for the experiments.

The exact form of drift can be found in the python file sec 4 experiments core.py
in the repository https://github.com/AIgen/df-posthoc-calibration/tree/main/Online%20Platt%

20Scaling%20with%20Calibeating.

6.A.2 Additional plots and details for label drift and regression-function
drift experiments from Section 6.1

Figures 6.3, 6.10, and 6.11 report accuracy (Acc) and calibration error (CE) values for the base

model and the OPS model in the three dataset drift settings we considered. The Acc values are

straightforward averages and can be computed without issues. However, estimation of CE on

real datasets is tricky and requires sophisticated techniques such as adaptive binning, debiasing,

heuristics for selecting numbers of bins, or kernel estimators (Kumar et al., 2019; Roelofs et al.,

2022; Widmann et al., 2019). The issue typically boils down to the fact that PrpY “ 1 | X “ xq

cannot be estimated for every x P X without making smoothness assumptions or performing

some kind of binning. However, in the synthetic experiments of Section 6.1, PrpY “ 1 | Xq is

known exactly, so such techniques are not required. For some subset of forecasts ps, p2, . . . , pt,
we compute

CE “
1

t ´ s ` 1

t
ÿ

i“s

|pi ´ PrpYi “ 1 | Xi “ xiq| ,

on the instantiated values of Xs, Xs`1, . . . , Xt. Thus, what we report is the true CE given

covariate values.
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Figure 6.10: The adaptive behavior of OPS for the simulated label drift scenario described in

Section 6.1.2.

6.A.3 Additional results with windowed histogram binning and chang-
ing bin width

Comparison to histogram binning (HB). HB is a recalibration method that has been shown

to have excellent empirical performance as well as theoretical guarantees (Zadrozny and Elkan,

2001; Gupta and Ramdas, 2021). There are no online versions of HB that we are aware of, so we

use the same windowed approach as windowed Platt and beta scaling for benchmarking (see

Section 6.2.3 and the second bullet in Section 6.B). This leads to windowed histogram binning

(WHB), the fixed-batch HB recalibrator that is updated every Op100q time-steps. We compare

WHB to OPS and OBS (see Section 6.5). Since tracking improves both OPS and OBS, we also

consider tracking WHB. Results are presented in Figure 6.14.

We find that WHB often performs better than OPS and OBS in the i.i.d. case, and results are mixed

in the drifting case. However, since WHB is a binning method, it inherently produces something

akin to a running average, and so tracking does not improve it further. The best methods (TOPS,

TOBS) are the ones that combine one of our proposed parametric online calibrators (OPS, OBS)

with tracking.

Changing the bin width ϵ. In the main chapter, we used ϵ “ 0.1 and defined corresponding
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Figure 6.11: The adaptive behavior of OPS for the simulated regression-function drift scenario

described in Section 6.1.2.

bins as in (6.10). This binning reflects in three ways on the experiments we performed. First,

ϵ-binning is used to divide forecasts into representative bins before calibeating (equations (6.11),

(6.14)). Second, ϵ-binning is used to define the sharpness and calibration error metrics. Third,

the hedging procedure F99 requires specifying a binning scheme, and we used the same ϵ-bins.

Here, we show that the empirical results are not dependent on the chosen representative value

of ϵ “ 0.1. We run the same experiment used to produce Figures 6.5 and 6.6 but with ϵ “ 0.05
(Figure 6.12) and ϵ “ 0.2 (Figure 6.13). The qualitative results remain identical, with TOPS still

the best performer and hardly affected by the changing epsilon. In fact, the plots for all methods

except HOPS are indistinguishable from their ϵ “ 0.1 counterparts at first glance. HOPS is

slightly sensitive to ϵ: the performance improves slightly with ϵ “ 0.05, and worsens slightly

with ϵ “ 0.2.
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(a) Calibration error for i.i.d. data streams.
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(b) Calibration error for drifting data streams.

Figure 6.12: Results for the same experimental setup as Figures 6.5 and 6.6, but with ϵ “ 0.05.
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(a) Calibration error for i.i.d. data streams.
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(b) Calibration error for drifting data streams.

Figure 6.13: Results for the same experimental setup as Figures 6.5 and 6.6, but with ϵ “ 0.2.
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(a) Calibration error for i.i.d. data streams.
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(b) Calibration error for drifting data streams.

Figure 6.14: Comparing the performance of windowed histogram binning (WHB), online Platt

scaling (OPS), online beta scaling (OBS), and their tracking variants on real datasets with and

without distribution drifts. Among non-tracking methods (dotted lines), WHB performs well

with i.i.d. data, while OBS performs well for drifting data. Among tracking methods (solid lines),

TOBS and TOPS are the best-performing methods in every plot. Tracking typically does not

improve WHB much since WHB is already a binning method (so tracking is implicit).
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Algorithm 6.1 Online Newton Step for OPS (based on Hazan (2016, Algorithm 12))

Input: K “ tpx, yq : }px, yq}2 ď 100u, time horizon T , and initialization parameter

paOPS

1 , bOPS

1 q “ p1, 0q “: θ1 P K
Hyperparameters: γ “ 0.1, ρ “ 100
Set A0 “ ρI2
for t “ 1 to T do

Play θt, observe log-loss lpmθtpfpxtqq, ytq and its gradient ∇t :“ ∇θtlpm
θtpfpxtqq, ytq

At “ At´1 ` ∇t∇⊺
t

Newton step:
rθt`1 “ θt ´ 1

γ
A´1

t ∇t

Projection: paOPS

t`1, b
OPS

t`1q “ θt`1 “ argminθPKprθt`1 ´ θq⊺Atp
rθt`1 ´ θq

end for

6.A.4 Reproducibility

All results in this chapter can be reproduced exactly, including the randomization, using the

IPython notebooks that can be found at https://github.com/aigen/df-posthoc-calibration in

the folder Online Platt scaling with Calibeating. The README page in the

folder contains a table describing which notebook to run to reproduce individual figures from

this chapter.

6.B Online beta scaling

This is an extended version of Section 6.5, with some repetition but more details. A recalibration

method closely related to Platt scaling is beta scaling (Kull et al., 2017). The beta scaling mapping

m has three parameters pa, b, cq P R3
, and corresponds to a sigmoid transform over two pseudo-

features derived from fpxq: logpfpxqq and logp1 ´ fpxqq:

ma,b,c
pfpxqq :“ sigmoidpa ¨ logpfpxqq ` b ¨ logp1 ´ fpxqq ` cq. (6.18)

Observe that enforcing b “ ´a recovers Platt scaling since logitpzq “ logpzq ´ logp1 ´ zq. The

beta scaling parameters can be learnt following identical protocols as Platt scaling.

• The traditional method is to optimize parameters by minimizing the log-likelihood

(equivalently, log-loss) over a fixed held-out batch of points.

• A natural benchmark for online settings is to update the parameters at some frequency

(such as every 50 or 100 steps). At each update, the beta scaling parameters are set to the

optimal value based on all data seen so far, and these parameters are used for prediction

until the next update occurs. We call this benchmark windowed beta scaling (WBS); it

is analogous to the windowed Platt scaling (WPS) benchmark considered in the main

chapter.

• Our proposed method for online settings, called online Beta scaling (OBS), is to use a

log-loss regret minimization procedure, similar to OPS. Analogously to (6.7), RT for OBS
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(b) Calibration error for drifting data streams.

Figure 6.15: Performance of online beta scaling (OBS) and its calibeating variants on real datasets

with and without distribution drift. OBS further improves upon OPS in most cases. In each plot,

TOBS is the best-performing method.

predictions pOBS

t “ mat,bt,ctpfpxtqq is defined as

RT pOBSq “

T
ÿ

t“1

lppOBS

t , ytq ´ min
pa,b,cqPB

T
ÿ

t“1

lpma,b,c
pfpxtqq, ytq, (6.19)

where B :“ tpa, b, cq P R3 : a2 ` b2 ` c2 ď B2u for some B P R, and l is the log-loss. We

use online Newton step (Algorithm 6.1) to learn pat, bt, ctq, with the following initialization

and hyperparameter values:

K “ tpx, y, zq : }px, y, zq}2 ď 100u, paOBS

1 , bOBS

1 , cOBS

1 q “ p1, 1, 0q;

γ “ 0.1, ρ “ 25, A0 “ ρI3.

These minor changes have to be made simply because the dimensionality changes from

two to three. The empirical results we present shortly are based on an implementation

with exactly these fixed hyperparameter values that do not change across the experiments

(that is, we do not do any hyperparameter tuning).

Due to the additional degree of freedom, beta scaling is more expressive than Platt scaling. In

the traditional batch setting, it was demonstrated by Kull et al. (2017) that this expressiveness

typically leads to better (out-of-sample) calibration performance. We expect this relationship

between Platt scaling and beta scaling to hold for their windowed and online versions as well.

We confirm this intuition through an extension of the real dataset experiments of Section 6.4.1

to include WBS and OBS (Figure 6.15). In the main chapter we reported that the base model (BM)
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and fixed-batch Platt scaling model (FPS) perform the worst by a margin, so these lines are not

reported again. We find that OBS performs better than both OPS and WBS, so we additionally

report the performance of calibeating versions of OBS instead of OPS. That is, we replace OPS +

tracking (TOPS) with OBS + tracking (TOBS), and OPS + hedging (HOPS) with OBS + hedging

(HOBS).

A regret bound similar to Theorem 6.1 can be derived for OBS by instantiating ONS and AIOLI

regret bounds with d “ 3 (instead of d “ 2 as done for OPS). The calibeating theorems (6.2 and

6.3) hold regardless of the underlying expert, and so also hold for OBS.

6.C F99 online calibration method

We describe the F99 method proposed by Foster (1999), and used in our implementation of

HOPS (Section 6.3.3). The description is borrowed with some changes from Gupta and Ramdas

(2022a). Recall that the F99 forecasts are the mid-points of the ϵ-bins (6.10): B1 “ r0, ϵq, B2 “

rϵ, 2ϵq, . . . , Bm “ r1 ´ ϵ, 1s. For b P rms :“ t1, 2, . . . ,mu and t ě 1, define:

(mid-point of Bb) mb “ pb ´ 0.5q{m “ bϵ ´ ϵ{2,

(left end-point of Bb) lb “ pb ´ 1q{m “ pb ´ 1qϵ,

(right end-point of Bb) rb “ b{m “ bϵ,

F99 maintains some quantities as more data set is observed and forecasts are made. These are,

(frequency of forecasting mb) N t
b “ |t1 tps “ mbu : s ď tu| ,

(observed average when mb was forecasted) ptb “

#

řt
s“1 ys1 tps “ mbu {N t

b if N t
b ą 0

mb if N t
b “ 0,

(deficit) dtb “ lb ´ ptb,

(excess) etb “ ptb ´ rb.

The terminology “deficit” is used to indicate that ptb is smaller lb similarly. “Excess” is used

to indicate that ptb is larger than rb similarly. The F99 algorithm is as follows. Implicit in the

description is computation of the quantities defined above.
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F99: the online adversarial calibration method of Foster (1999)
• At time t “ 1, forecast p1 “ m1.

• At time t ` 1 (t ě 1q, if

condition A: there exists an b P rms such that dtb ď 0 and etb ď 0,

is satisfied, forecast pt`1 “ mb for any i that verifies condition A. Otherwise,

condition B: there exists a b P rm ´ 1s such that etb ą 0 and dtb`1 ą 0,

must be satisfied (see Lemma 5 (Gupta and Ramdas, 2022a)). For any index b that satisfies

condition B, forecast

pt`1 “

$

&

%

mb with probability

dtb`1

dtb`1`etb

mb`1 with probability
etb

dtb`1`etb
.

These randomization probabilities are revealed before yt`1 is set by the agent that is

generating outcomes, but the actual pt value is drawn after yt`1 is revealed.

6.D Forecasting climatology to achieve calibration

Although Foster and Vohra’s result (1998) guarantees that calibrated forecasting is possible

against adversarial sequences, this does not immediately imply that the forecasts are useful in

practice. To see this, consider an alternating outcome sequence, yt “ 1 tt is odd u. The forecast

pt “ 1 tt is odd u is calibrated and perfectly accurate. The forecast pt “ 0.5 (for every t) is also

calibrated, but not very useful.

Thus we need to assess how a forecaster guaranteed to be calibrated for adversarial sequences

performs on real-world sequences. In order to do so, we implemented the F99 forecaster

(described in Appendix 6.C), on Pittsburgh’s hourly rain data from January 1, 2008, to December

31, 2012. The data was obtained from ncdc.noaa.gov/cdo-web/. All days on which the hourly

precipitation in inches (HPCP) was at least 0.01 were considered as instances of yt “ 1. There are

many missing rows in the data, but no complex data cleaning was performed since we are mainly

interested in a simple illustrative simulation. F99 makes forecasts on an ϵ-grid with ϵ “ 0.1:

that is, the grid corresponds to the points p0.05, 0.15, . . . , 0.95q. We observe (Figure 6.16) that

after around 2000 instances, the forecaster always predicts 0.35. This is close to the average

number of instances that it did rain which is approximately 0.37 (this long-term average is also

called climatology in the meteorology literature). Although forecasting climatology can make

the forecaster appear calibrated, it is arguably not a useful prediction given that there exist

expert rain forecasters who can make sharp predictions for rain that change from day to day.
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Figure 6.16: Foster (1999)’s ϵ-calibrated forecaster on Pittsburgh’s hourly rain data (2008-2012).

The forecaster makes predictions on the grid p0.05, 0.15, . . . , 0.95q. In the long run, the forecaster

starts predicting 0.35 for every instance, closely matching the average number of instances on

which it rained (« 0.37).

6.E Proofs

Proof of Theorem 6.1. The regret bounds for ONS and AIOLI depend on a few problem-dependent

parameters.

• The dimension d “ 2.

• The radius of the reference class B.

• Bound on the norm of the gradient, which for logistic regression is also the radius of the

space of input vectors. Due to the assumption on fpxtq, the norm of the input is at most
a

logitp0.01q2 ` 12 “
a

logitp0.99q2 ` 12 ď 5.

The AIOLI bound (6.9) follows from Theorem 1, equation (4) of Jézéquel et al. (2020), setting

d “ 2 and R “ 10.

The ONS bound (6.8) follows from Theorem 4.5 of Hazan (2016), plugging in G “ 5, D “ 2B,

and α “ e´B
which is the known exp-concavity constant of the logistic loss over a ball of radius

B (Foster et al., 2018).

In writing the proofs of the results in Section 6.3, we will use an object closely connected to

sharpness called refinement. For a sequence of forecasts p1:T and outcome sequence y1:T , the
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refinement R is defined as

Rpp1:T q :“
1

T

m
ÿ

b“1

Nb ¨ pybp1 ´ pybq, (6.20)

where pyb is the average of the outcomes in every ϵ-bin; see the beginning of Section 6.3.2 where

sharpness is defined. The function xpP r0, 1sq ÞÑ xp1 ´ xq is minimized at the boundary points

t0, 1u and maximized at 1{2. Thus refinement is lower if pyb is close to 0 or 1, or in other words

if the bins discriminate points well. This is captured formally in the following (well-known)

relationship between refinement and sharpness.

Lemma 6.1 (Sharpness-refinement lemma). For any forecast sequence p1:T , the refinement R
defined in (6.20) and the sharpness SHP defined in (6.12) are related as:

Rpp1:T q “ ȳT ´ SHPpp1:T q,

where ȳT “ 1
T

řT
t“1 yt.

Proof. Observe that

Rpp1:T q “
1

T

B
ÿ

b“1

Nbpyb ´
1

T

B
ÿ

b“1

Nbpy
2
b “

1

T

B
ÿ

b“1

Nbpyb ´ SHPpp1:T q.

The final result follows simply by noting that

B
ÿ

b“1

Nbpyb “

B
ÿ

b“1

˜

ÿ

tďT,ptPBb

yt

¸

“

T
ÿ

t“1

yt.

We now state a second lemma, that relates R to the Brier-score BS defined as

BSpp1:T q :“

řT
t“1pyt ´ ptq

2

T
. (6.21)

Unlike R and SHP, BS is not defined after ϵ-binning. It is well-known (see for example equation

(1) of FH23) that if refinement is defined without ϵ-binning (or if the Brier-score is defined with

ϵ-binning), then refinement is at most the Brier-score defined above. Since we define R defined

with binning, further work is required to relate the two.

Lemma 6.2 (Brier-score-refinement lemma). For any forecast sequence p1:T and outcome sequence
y1:T , the refinement R and the Brier-score BS are related as

Rpp1:T q ď BSpp1:T q `
ϵ2

4
` ϵ, (6.22)

where ϵ is the width of the bins used to define R (6.10).
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Proof. Define the discretization function disc : r0, 1s Ñ r0, 1s as discppq “ mid-pointpBbq ðñ

p P Bb. Note that for all p P r0, 1s, |p ´ discppq| ď ϵ{2. Based on standard decompositions (such

as equation (1) of FH23), we know that

Rpp1:T q ď

řT
t“1pyt ´ discppTOPS

t qq2

T
. (6.23)

We now relate the RHS of the above equation to BS

T
ÿ

t“1

pyt ´ discpptqq
2

“

T
ÿ

t“1

pyt ´ pt ` pt ´ discpptqq
2

“ T ¨ BSpp1:T q `

T
ÿ

t“1

ppt ´ discpptqq
2

` 2
T
ÿ

t“1

pyt ´ ptqppt ´ discpptqq

ď T ¨ BSpp1:T q ` T pϵ{2q
2

` 2
T
ÿ

t“1

|yt ´ pt| pϵ{2q.

ď T ¨ BSpp1:T q ` T pϵ{2q
2

` Tϵ.

The result of the theorem follows by dividing by T on both sides.

Proof of Theorem 6.2. The calibeating paper (Foster and Hart, 2023) is referred to as FH23 in this

proof for succinctness.

We use Theorem 3 of FH23, specifically equation (13), which gives an upper bound on the

Brier-score of a tracking forecast (Bc
t in their notation) relative to the refinement (6.20) of the

base forecast. In our case, the tracking forecast is TOPS, the base forecast is OPS, and FH23’s

result gives,

BSppTOPS

1:T q “

řT
t“1pyt ´ pTOPS

t q2

T
ď RppTOPS

1:T q `
log T ` 1

ϵT
. (6.24)

Using the Brier-score-refinement lemma 6.2 to lower bound BSppTOPS

1:T q gives

RppTOPS

1:T q ´
ϵ2

4
´ ϵ ď RppOPS

1:T q `
log T ` 1

ϵT
. (6.25)

Finally, using the sharpness-refinement lemma 6.1, we can replace each R with ȳT ´ SHP.

Rearranging terms gives the final bound.

Proof of Theorem 6.3. The calibeating paper (Foster and Hart, 2023) is referred to as FH23 in this

proof for succinctness.

Sharpness bound (6.16). Theorem 5 of FH23 showed that the expected Brier-score for a different

hedging scheme (instead of F99), is at most the expected refinement score of the base forecast

plus ϵ2 `
log T`1
ϵ2T

. In our case, the second term remains unchanged, but because we use F99, the

ϵ2 needs to be replaced, and we show that it can be replaced by ϵ next.
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Let us call the combination of OPS and the FH23 hedging method as FH23-HOPS, and the

calibeating forecast as pFH23-HOPS

1:T . The source of the ϵ2 term in Theorem 5 of FH23 is the following

property of FH23-HOPS: for both values of yt P t0, 1u,

Et´1

“

pyt ´ pFH23-HOPS

t q
2

´ pyt ´ Averagetys : s ă t, pOPS

s “ pOPS

t , pFH23-HOPS

s “ pFH23-HOPS

t uq
2
‰

ď ϵ2,

where Et´1 r¨s is the expectation conditional on py1:t´1, p
FH23-hedging

1:t´1 , pOPS

1:t´1q (all that’s happened

in the past, and the current OPS forecast). For HOPS, we will show that

Qt :“ Et´1

“

pyt ´ pHOPS

t q
2

´ pyt ´ Averagetys : s ă t, pOPS

s “ pOPS

t , pHOPS

s “ pHOPS

t uq
2
‰

ď ϵ,

for yt P t0, 1u, which would give the required result.

At time t, the F99 forecast falls into one of two scenarios which we analyze separately (see

Appendix 6.C for details of F99 which would help follow the case-work).

• Case 1. This corresponds to condition A in the description of F99 in Section 6.C. There

exists a bin index b such that q “ mid-pointpBbq satisfies∣∣
Averagetys : s ă t, pOPS

s “ pOPS

t , pHOPS

s “ qu ´ q
∣∣ ď ϵ{2.

In this case, F99 would set pHOPS

t “ q (deterministically) for some q satisfying the above.

Thus,

Qt “ pyt ´ qq
2

´ pyt ´ Averagetys : s ă t, pOPS

s “ pOPS

t , pHOPS

s “ quq
2

ď maxppyt ´ qq
2

´ pyt ´ q ´ ϵ{2q
2, pyt ´ qq

2
´ pyt ´ q ` ϵ{2q

2
q

ď pϵ{2qp2 |yt ´ q| ` ϵ{2q ă ϵ,

irrespective of yt, since q P rϵ{2, 1 ´ ϵ{2s.

• Case 2. This corresponds to condition B in the description of F99 in Section 6.C. If Case 1

does not hold, F99 randomizes between two consecutive bin mid-pointsm´ϵ{2 andm´ϵ{2,

where m is one of the edges of the ϵ-bins (6.10). Define n1 :“ Averagetys : s ă t, pOPS

s “

pOPS

t , pHOPS

s “ m ´ ϵ{2u and n2 :“ Averagetys : s ă t, pOPS

s “ pOPS

t , pHOPS

s “ m ` ϵ{2u.

The choice of m in F99 guarantees that n2 ă m ă n1, and the randomization probabilities

are given by

Pt´1pp
HOPS

t “ m ´ ϵ{2q “
m ´ n2

n1 ´ n2

, and Pt´1pp
HOPS

t “ m ` ϵ{2q “
n1 ´ m

n1 ´ n2

,

where Pt´1 is the conditional probability in the same sense as Et´1. We now bound Qt. If

yt “ 1,

Qt “ Et´1

“

pyt ´ pHOPS

t q
2

´ pyt ´ Averagetys : s ă t, pOPS

s “ pOPS

t , pHOPS

s “ pHOPS

t uq
2
‰

“
m ´ n2

n1 ´ n2

`

p1 ´ pm ´ ϵ{2qq
2

´ p1 ´ n1q
2
˘

`
n1 ´ m

n1 ´ n2

`

p1 ´ pm ` ϵ{2qq
2

´ p1 ´ n2q
2
˘

“
m ´ n2

n1 ´ n2

`

p1 ´ mq
2

´ p1 ´ n1q
2
˘

`
n1 ´ m

n1 ´ n2

`

p1 ´ mq
2

´ p1 ´ n2q
2
˘

looooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooon

“:A1
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` 2 ¨ pϵ{2q ¨
pm ´ n2qp1 ´ mq ´ pn1 ´ mqp1 ´ mq

n1 ´ n2
loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

“:A2

` pϵ{2q
2

¨
n1 ´ n2

n1 ´ n2

.

A1 and A2 simplify as follows.

A1 “
pm ´ n2qpn1 ´ mqp2 ´ pn1 ` mqq ` pn1 ´ mqpn2 ´ mqp2 ´ pn2 ` mqq

n1 ´ n2

“
pm ´ n2qpn1 ´ mqpn2 ´ n1q

n1 ´ n2

ă 0,

since n2 ă m ă n1.

A2 “ ϵ ¨
pm ´ n2qp1 ´ mq

n1 ´ n2

` ϵ ¨
pm ´ n1qp1 ´ mq

n1 ´ n2

ă ϵ ¨
pm ´ n2qp1 ´ mq

n1 ´ n2

(since m ă n1)

ă ϵp1 ´ mq.

Overall, we obtain that for yt “ 1,

Qt ă ϵp1 ´ mq ` pϵ2{4q ă ϵ,

where the final inequality holds since m is an end-point between two bins, and thus m ě ϵ.
We do the calculations for yt “ 0 less explicitly since it essentially follows the same steps:

Qt “ Et´1

“

p0 ´ pHOPS

t q
2

´ p0 ´ Averagetys : s ă t, pOPS

s “ pOPS

t , pHOPS

s “ pHOPS

t uq
2
‰

“
m ´ n2

n1 ´ n2

`

pm ´ ϵ{2q
2

´ n2
1

˘

`
n1 ´ m

n1 ´ n2

`

pm ` ϵ{2q
2

´ n2
2

˘

“
pm ´ n2qpm ´ n1qpm ` n1q ` pn1 ´ mqpm ´ n2qpm ` n2q

n1 ´ n2

` ϵ ¨
pn2 ´ mqm ` pn1 ´ mqm

n1 ´ n2

`
ϵ2

4

ă 0 ` ϵm ` pϵ2{4q ă ϵ.

Finally, by Proposition 1 of FH23 and the above bound on Qt, we obtain,

E
“

RppHOPS

1:T q
‰

ď E
“

BSppHOPS

1:T q
‰

ď ϵ ` RppOPS

1:T q `
log T ` 1

ϵ2T
. (6.26)

Using the sharpness-refinement lemma 6.1, we replace each R with ȳT ´ SHP. Rearranging

terms gives the sharpness result.

Calibration bound (6.17). Recall that the number of bins is m “ 1{ϵ. For some bin indices

b, b1 P t1, 2, . . . ,mu, let SbÑb1 “ tt ď T : pOPS

t P Bb, p
HOPS

t “ mid-pointpBb1qu be the set of
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time instances at which the OPS forecast pOPS

t belonged to bin b, but the HOPS forecast pHOPS

t

belonged to bin b1
(and equals the mid-point of bin b1

). Also, let Sb “ tt ď T : pOPS

t P Bbu be the

set of time instances at which the pOPS

t forecast belonged to bin b. Thus Sb “
Ťm

b1“1 SbÑb1 . Also

define NOPS

b “ |Sb| and NHOPS

b “ |tt ď T : pHOPS

t “ mid-pointpBbqu|.
Now for any specific b, consider the sequence pytqtPSb

. On this sequence, the HOPS forecasts

correspond to F99 using just the outcomes (with no regard for covariate values once the bin of

pOPS

t is fixed). Thus, within this particular bin, we have a usual CE guarantee that F99’s algorithm

has for any arbitrary sequence:

E

»

–

1

NOPS

b

m
ÿ

b1“1

∣∣∣∣∣∣
ÿ

tPSbÑb1

pyt ´ pHOPS

t q

∣∣∣∣∣∣
fi

fl

l jh n

this is the expected CE over the Sb instances

ď
ϵ

2
`

2
a

ϵ ¨ NOPS

b

. (6.27)

This result is unavailable in exactly this form in Foster (1999) which just gives the reduction to

Blackwell approachability, after which any finite-sample approachability bound can be used. The

above version follows from Theorem 1.1 of Perchet (2014). The precise details of the Blackwell

approachability set, reward vectors, and how the distance to the set can be translated to CE can

be found in Gupta and Ramdas (2022a, Section 4.1).

Jensen’s inequality can be used to lift this CE guarantee to the entire sequence:

E
“

CEppHOPS

1:T q
‰

“ E

«

m
ÿ

b“1

|NHOPS

b ppyHOPS

b ´ ppHOPS

b q|
T

ff

“ E

»

–

m
ÿ

b“1

∣∣∣řT
t“1pyt ´ pHOPS

t q1 tpHOPS

t P Bbu

∣∣∣
T

fi

fl

“ E

»

–

m
ÿ

b“1

∣∣∣řm
b1“1

ř

tPSb1Ñb
pyt ´ pHOPS

t q

∣∣∣
T

fi

fl

ď E

»

–

m
ÿ

b“1

m
ÿ

b1“1

∣∣∣řtPSb1Ñb
pyt ´ pHOPS

t q

∣∣∣
T

fi

fl (Jensen’s inequality)

“

m
ÿ

b1“1

E

»

–

m
ÿ

b“1

∣∣∣řtPSb1Ñb
pyt ´ pHOPS

t q

∣∣∣
T

fi

fl

ď

m
ÿ

b1“1

NOPS

b1

´

ϵ{2 ` 2{
a

ϵ ¨ NOPS

b1

¯

T
(by (6.27))

“
ϵ

2
`

2
?
ϵ

¨

řm
b1“1

a

NOPS

b1
řm

b1“1N
OPS

b1

(since T “

B
ÿ

b1“1

NOPS

b1 )
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p‹q

ď
ϵ

2
`

2
?
ϵ

¨

c

m

T
“

ϵ

2
` 2

c

1

ϵ2T
,

as needed to be shown. The inequality p‹q holds because, by Jensen’s inequality (or AM-QM

inequality),
c

řm
b1“1N

OPS

b1

m
ě

řm
b1“1

a

NOPS

b1

m
,

so that

řm
b1“1

a

NOPS

b1
řm

b1“1N
OPS

b1

“

řm
b1“1

a

NOPS

b1

a

řm
b1“1N

OPS

b1

¨
1

a

řm
b1“1N

OPS

b1

ď

?
m

a

řm
b1“1N

OPS

b1

“
a

m{T .

Theorem 6.4. For adversarially generated data, the expected Brier-score of HOPS forecasts using
the forecast hedging algorithm of Foster (1999) is upper bounded as

E
“

BSppHOPS
1:T q

‰

ď BSppOPS
1:T q `

ˆ

2ϵ `
ϵ2

4
`

log T ` 1

ϵ2T

˙

. (6.28)

Proof. In the proof of the sharpness result of Theorem 6.3, we showed equation (6.26), which

immediately yields (6.28) since RppOPS

1:T q ď BSppOPS

1:T q ` ϵ ` ϵ2{4 by Lemma 6.2.
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Chapter 7
Parity Calibration

This chapter is based on Chung et al. (2023).

In a sequential regression setting, a decision-maker may be primarily concerned with whether the
future observation will increase or decrease compared to the current one, rather than the actual
value of the future observation. In this context, we introduce the notion of parity calibration, which
captures the goal of calibrated forecasting for the increase-decrease (or “parity”) event in a timeseries.
Parity probabilities can be extracted from a forecasted distribution for the output, but we show
that such a strategy leads to theoretical unpredictability and poor practical performance. We then
observe that although the original task was regression, parity calibration can be expressed as binary
calibration. Drawing on this connection, we use an online binary calibration method to achieve
parity calibration. We demonstrate the effectiveness of our approach on real-world case studies in
epidemiology, weather forecasting, and model-based control in nuclear fusion.

7.1 Introduction

Many tasks in the scope of prediction and decision making are sequential in nature. A weather

forecaster who uses some procedure to make predictions for tomorrow, may find that tomorrow’s

events falsify these predictions. A good forecaster must then update their model before using

it on the following days. In this work, we study the sequential forecasting setting where the

goal is to make predictions about a sequence of real-valued outcomes y1, y2, . . . P Y Ď R using

informative covariates x1,x2, . . . P X . In the presence of inherent stochasticity or insufficient

data, forecasters who provide rich predictions in the form of complete distributions over the

output allow us to reason about the inherent uncertainties in the data stream (Gneiting et al.,

2007). If a distributional prediction is available, a downstream decision-maker can account for

risks that were unknown at the time of forecasting.

Often, a distributional forecast for the real-valued yt takes the form of a predictive cdf (cumulative

distribution function) for yt, which in this chapter we typically denote as F̂t : Y Ñ r0, 1s. We

sometimes write F̂t as F̂tp¨|xtq or F̂tp¨|xt, yt´1,xt´1, . . . , y1,x1q; this overloaded notation allows

us to be succinct when defining what it means for F̂t to be calibrated, but explicit when it is

173



necessary to stress that F̂t depends on all available knowledge. We also refer to F̂t’s as regression

forecasts, as it models a continuous distribution over the real-valued output.

In this work, we are interested in the question: can we forecast whether the future outcome

yt`1 will be greater or less than the current outcome yt? To motivate this question, consider

a hospital in the midst of a fast moving pandemic such as COVID-19. It may be difficult for

the hospital to comprehend absolute numbers of patients requiring hospitalization. However,

relative numbers are perhaps easier to interpret: hospitals know the situation today, and would

like to know if it is going to worsen or improve tomorrow.

A domain expert (e.g. epidemiologist) may have produced a regression forecast F̂t for yt. The

downstream user (e.g. hospital) can then extract from F̂t a natural implied probability of the

next observation decreasing:

for t ě 2, p̂t “ F̂tpyt´1 | xtq. (7.1)

The hope of the hospital is that the forecasted probabilities p̂t are parity calibrated, as defined

next.

Definition 7.1 (Parity calibration). The forecasts tp̂t P r0, 1sut“2,...,T are said to be parity

calibrated if
řT

t“2 1 tyt ď yt´1u1 tp̂t “ pu
řT

t“2 1 tp̂t “ pu
Ñ p, @p P r0, 1s. (7.2)

In words, whenever a parity calibrated forecaster predicts with probability p that yt ď yt´1,

the event 1 tyt ď yt´1u actually occurs with empirical frequency p (in the long run). To avoid

confusion with usage of the term “parity” in fairness literature, we remark that our context is

purely in comparing two consecutive values.

Our first contribution is showing that even if F̂t is calibrated (based on some accepted notions of

calibration), the seemingly reasonable strategy mentioned above (7.1) can have devastating and

unpredictable behavior (Section 7.1.1). Yet, it stands to reason that the expert’s rich forecast F̂t

should be used in some way. Our second contribution is a methodology for doing this (Sections

7.2 and 7.3). Our main methodology described in Section 7.2.2 is based on the key observation

that although the parity calibration problem is derived from a regression problem, it naturally

reduces to a problem of forecasting binary events.

7.1.1 Regression calibration does not give parity calibration

A popular notion of calibration in regression is probabilistic calibration (Gneiting et al., 2007).

The sequence F̂1, F̂2, . . . is said to be probabilistically calibrated if

1

T

T
ÿ

t“1

FtpF̂
´1
t ppqq Ñ p, @p P r0, 1s, (7.3)

where Ft denotes the ground truth distribution. Probabilistic calibration is also referred to as

quantile calibration, since it focuses on the quantile function being valid. In other works, it has
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also been referred to as average calibration (Zhao et al., 2020; Chung et al., 2021b; Sahoo et al.,

2021), or simply calibration (Kuleshov et al., 2018; Cui et al., 2020; Charpentier et al., 2022; Marx

et al., 2022). We will henceforth refer to this notion as quantile calibration.

Another notion of calibration in regression is distributional calibration (Song et al., 2019), which

assesses the convergence of the full distribution of the observations to the predictive distribution.

A distribution calibrated forecaster satisfies @p P r0, 1s, @F P F ,

řT
t“1 1

!

F̂t “ F
)

FtpF̂
´1
t ppqq

řT
t“1 1

!

F̂t “ F
) Ñ p, (7.4)

where F is the space of distributions predicted by F̂t. However, distributional calibration is an

idealistic notion that cannot be achieved in practice (Song et al., 2019).

Recently, Sahoo et al. (2021) paired calibration with the notion of threshold decisions and

proposed threshold calibration. Forecasts are said to be threshold calibrated if,

řT
t“1 1

!

F̂tpy0q ď α
)

FtpF̂
´1
t ppqq

řT
t“1 1

!

F̂tpy0q ď α
) Ñ p, @y0 P Y , @α P r0, 1s, @p P r0, 1s.

Sahoo et al. (2021) show that distribution calibration implies threshold calibration, but the

converse may not hold.

A common aspect of the aforementioned notions of calibration is that they all assess how well-

aligned the predictive quantiles are to their empirical counterparts. The key difference among

the notions is the conditioning over which this assessment is performed.

Since calibration is regarded as a desirable quality of distributional forecasts, one may wonder

whether a calibrated F̂t is sufficient for parity calibration of the implied probabilities as per Eq.

(7.1). We show that this is not the case with the following examples.

Synthetic example. Let N´ and N` denote the standard normal distributions truncated at

0, with density functions f´pxq “ 1 tx ă 0u
a

2{πe´x2{2
and f`pxq “ 1 tx ě 0u

a

2{πe´x2{2

respectively. Let F´ and F` be the cdfs of N´ and N`. Suppose the target sequence pYtq
8
t“1 is

distributed as

Yt „

#

N´ if t is odd,

N` if t is even.

Consider the following predictive cdf targeting Yt,

F̂t “
1

2
F´ `

1

2
F` “

#

1
2
F´pyq, if y ă 0,

0.5 ` 1
2
F`pyq, if y ě 0.

.

We note that when y ă 0, 1
2
F´pyq P r0, 0.5q, and when y ě 0.5, 0.5 ` 1

2
F`pyq P r0.5, 1s. It can

be verified that the corresponding quantile function is

F̂´1
t ppq “

#

F´1
´ p2pq, if p ă 0.5

F´1
` p2p ´ 1q, if p ě 0.5.
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Figure 7.1: Snapshot of the first 300 points from one of our experiment datasets (Pressure from

Section 7.3.2) shows a quantile calibrated forecaster that is highly parity miscalibrated. (top) The

expert forecasts F̂t are Gaussians, expressed in the plot as prediction intervals rµ̂t´2σ̂t, µ̂t`2σ̂ts.

This prediction interval almost always contains yt and its reliability diagram in Figure 7.4 (plot

titled “Quantile Calibration”) confirms that F̂t is in fact quantile calibrated when considering the

full timeseries. (bottom) For t P r0, 40s and t P r230, 300s, the parity probabilities p̂t “ F̂tpyt´1q

assign ě 0.8 probability (red shaded areas) to 1 tyt ď yt´1u. But yt actually decreases with

much lower frequency during these timesteps as can be seen from the top figure. The parity

miscalibration when considering the full timeseries is confirmed by Figure 7.4 (plot titled

“Prehoc”).

We verify that F̂t is quantile calibrated (following Eq. (7.3)).

When t is odd, Ft “ F´.

• @p P r0, 0.5q, FtpF̂
´1
t ppqq “ F´pF´1

´ p2pqq “ 2p.

• @p P r0.5, 1s, F̂´1
t ppq “ F´1

` p2p ´ 1q ě 0, thus FtpF̂
´1
t ppqq “ F´pF´1

` p2p ´ 1qq “ 1.

When t is even, Ft “ F`.

• @p P r0, 0.5q, F̂´1
t ppq “ F´1

´ p2pq ă 0, thus FtpF̂
´1
t ppqq “ F`pF´1

´ p2pqq “ 0.

• @p P r0.5, 1s, FtpF̂
´1
t ppqq “ F`pF´1

` p2p ´ 1qq “ 2p ´ 1.

Therefore, for p P r0, 0.5q, 1
T

řT
t“1 FtpF̂

´1
t ppqq “ 1

T

ř

t is odd
2p “ p ` op 1

T
q Ñ p, and the same

can be verified for p P r0.5, 1s, showing that F̂t is quantile calibrated.

We can easily show that F̂t is also distribution and threshold calibrated. Since F̂t is constant

for all t, following Eq. (7.4), the space of predicted distributions is a singleton. Thus, measuring

distribution calibration is equivalent to measuring quantile calibration, and F̂t is distribution
calibrated. Since distribution calibration implies threshold calibration (Sahoo et al., 2021), F̂t is
threshold calibrated.

However, as we show next, F̂t is not parity calibrated.

When t is odd, Yt „ F´ and Yt´1 „ F`. Thus Yt ă Yt´1 whereas p̂t “ F̂tpYt´1q ě 0.5.
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When t is even, Yt „ F` and Yt´1 „ F´. Thus Yt ą Yt´1 whereas p̂t “ F̂tpYt´1q ă 0.5.

Therefore, @p̂t ě 0.5, 1 tyt ď yt´1u “ 1 and @p̂t ă 0.5, 1 tyt ď yt´1u “ 0, thus F̂t is parity
miscalibrated for all p̂t P p0, 1q, i.e. all p̂t ‰ 0 or 1. l

Intuitively, the sequential aspect of predictions and observations is central to the notion of parity

calibration, whereas traditional notions of calibration effectively treat the datapoints as an i.i.d.

or exchangeable batch of points. Figure 7.1 provides a visualization of how this pitfall can be

manifested in a practical example.

The implication is that methods designed to achieve traditional notions of calibration in regres-

sion cannot be expected to provide parity calibration. The following section introduces the

post-hoc binary calibration framework that can instead be used to achieve parity calibrated

forecasts.

7.2 Parity calibration via binary calibration

Define the parity outcomes as

for t ě 2, ryt :“ 1 tyt ď yt´1u , (7.5)

and observe that the parity calibration condition (Eq. (7.2)) is equivalently written as,

řT
t“2 ryt1 tp̂t “ pu
řT

t“2 1 tp̂t “ pu
Ñ p, @p P r0, 1s. (7.6)

Thus parity calibration is in fact targeting the binary sequence ryt, instead of yt. In this section,

we show how this connection allows us to leverage powerful techniques from the rich literature

of binary calibration that goes back four decades (DeGroot and Fienberg, 1981; Dawid, 1982;

Foster and Vohra, 1998). Of specific interest to us will be a class of methods that have been

proposed for post-hoc calibration of machine learning (ML) classifiers, which we review next.

7.2.1 Post-hoc binary calibration

This subsection recalls basic post-hoc calibration ideas to enable independent reading. It can be

skipped if the reader is familiar with Chapter 1.

Let f : X Ñ r0, 1s be a binary classifier that takes as input a feature vector in feature space X
and outputs a score in r0, 1s. Suppose a feature-label pair pX, Y q is drawn from some distribution

P over X ˆ t0, 1u. Then, f is said to be calibrated (in the binary sense) if

P pY “ 1 | fpXqq “ fpXq. (7.7)

The terms on either side of the equal sign are random variables and the equality is understood

almost-surely. The connection between (7.6) and (7.7) is evident: p̂t is like fpXq, conditioning
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on the random variable fpXq is akin to using indicators in the numerator/denominator, and ryt
is like Y .

We do not expect ML models to be calibrated “out-of-the-box”. So, if f is a logistic regression or

neural network trained on some training data, it is unlikely to satisfy an approximate version of

(7.7) on unseen data. Post-hoc calibration techniques transform f to a function that is better

calibrated by using a so-called calibration dataset Dcal “ tpx1, y1q, px2, y2q, . . . , pxc, ycqu. Dcal is

a set of points on which f was not trained—in practice Dcal is often just the validation dataset.

Dcal is used to a learn a mapping m : r0, 1s Ñ r0, 1s so that m ˝ f is better calibrated than f .

By way of an example, we now introduce the popular Platt scaling technique (Platt, 1999) that

will be central to this work (henceforth, Platt scaling is referred to as PS). Given a pair of real

numbers pa, bq P R2
, the PS mapping ma,b : r0, 1s Ñ r0, 1s is defined as,

ma,b
pzq “ sigmoidpa ¨ logitpzq ` bq.

Here logitpzq “ logp z
1´z

q and sigmoidpzq “ 1{p1 ` e´zq are inverses of each other. Thus PS is

a logistic model on top of the f -induced one-dimensional feature logitpfpxqq P r0, 1s, instead

of on the raw feature x P X . In the post-hoc setting, pa, bq are set to the values that minimize

log-loss (equivalently cross entropy loss) on Dcal:

ppa,pbq “ argmin
pa,bqPR2

ÿ

pxs,ysqPD
cal

lpma,b
pfpxsqq, ysq, (7.8)

where lpp, yq “ ´y log p ´ p1 ´ yq logp1 ´ pq.

We briefly note some other popular post-hoc calibration methods. These broadly fall under

two categories: parametric scaling methods such as beta scaling (Kull et al., 2017), temperature

scaling (Guo et al., 2017), and PS (platt1999probabilistic); and nonparametric methods such

as binning (Zadrozny and Elkan, 2001; Gupta et al., 2020; Gupta and Ramdas, 2021), isotonic

regression (Zadrozny and Elkan, 2002), and Bayesian binning (Naeini et al., 2015).

7.2.2 Parity calibration using online versions of Platt Scaling (PS)

To achieve parity calibration using post-hoc techniques, we start with a base cdf predictor

G : X Ñ ∆pYq derived from an expert—such as an epidemiologist, a weather forecaster, or

a stock trader. Here, ∆pYq refers to the space of distributions over Y . If the expert is an ML

engineer, such a G can be obtained using Gaussian processes (Rasmussen, 2004) or probabilistic

neural networks (Nix and Weigend, 1994; Lakshminarayanan et al., 2017), among other methods.

The test-stream occurs after G has been trained and fixed. This G gives us a F̂t as described in

the introduction: F̂t “ Gpxtq. Recall that the strategy Eq. (7.1) is to forecast p̂t “ F̂tpyt´1q. If F̂t

were the true cdf of yt given the past, the above p̂t would be the true probability of ryt “ 1, and

thus the most useful parity forecast possible.

However, in Section 7.1.1 we showed that we must modify p̂t in order to achieve parity calibration.

We propose using PS to perform this modification (any post-hoc calibration method can be

used; we focus on PS in this work). A natural possibility would be to use an initial part of the
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Algorithm 7.1 Platt scaling (PS) variants for parity calibration

1: Input: Any base forecaster G : X Ñ ∆pYq, covariate-outcome pairs px1, y1q, px2, y2q, . . . P

X ˆ Y , update-frequency uf, moving-window-size ws.

2: Output: PS forecasts pp̂IW

t , p̂MW

t , p̂OPS

t q8
t“2

3: Initialize IW, MW, OPS parameters:

paIW, bIWq “ paMW, bMWq “ paOPS, bOPSq Ð p1, 0q

4: for t “ 2 to T do
5: ryt “ 1 tyt ď yt´1u

6: p̂t “ Gpxtqryt´1s

7: p̂IW

t Ð sigmoidpaIW ¨ logitpp̂tq ` bIWq

8: p̂MW

t Ð sigmoidpaMW ¨ logitpp̂tq ` bMWq

9: p̂OPS

t Ð sigmoidpaOPS ¨ logitpp̂tq ` bOPSq

10: if t is a multiple of uf then
11: paIW, bIWq Ð optimal PS parameters

based on (7.8) setting Dcal “ pxs, rysq
t
s“1

12: paMW, bMWq Ð optimal PS parameters

based on (7.8) setting Dcal “ pxs, rysq
t
s“t´ws`1

13: end if
14: paOPS, bOPSq Ð OPSppx1, ry1q, . . . , pxt, rytqq

15: (OPS is Algorithm 7.2 in Appendix 7.D)

16: end for

test-stream to learn fixed PS parameters once, as described in the previous subsection. However,

real-world regression sequences (weather, stocks, etc) have non-stationary shifting behavior

across time. Therefore, a fixed model is unlikely to remain calibrated over time.

In Algorithm 7.1 we outline three ways to mitigate this. Increasing Window (IW) updates the

PS parameters using all datapoints until some recent time step, such as every 100 timesteps

(t “ 100, 200, etc). A related alternative, Moving Window (MW) is to use only the most recent

datapoints when updating the PS parameters (instead of all the points). The third alternative is

Online Platt Scaling (OPS) based on our own recent work (Gupta and Ramdas, 2023).

In the following section, we compare these online versions of Platt scaling on three real-world

sequential prediction tasks. We find that OPS performs better than the base model, MW, and

IW, across multiple settings. Further, while MW and IW involve re-fitting the PS parameters

from scratch, OPS makes a constant time update at each step, hence the overall computational

complexity of OPS is OpT q.

Brief note on theory and limitations of OPS. OPS satisfies a regret bound with respect to

the Platt scaling class for log-loss (Gupta and Ramdas, 2023, Theorem 2.1). This means that the

OPS forecasts do as well as forecasts of the single best Platt scaling model in hindsight. However,

we note that OPS could fail if the best Platt scaling model is itself not good. This limitation can

be overcome by combining OPS with a method called calibeating, as discussed in Gupta and

Ramdas (2023). We do not pursue calibeating in this work since OPS already performs well on

the data we considered.
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7.3 Real-world case studies

We study parity calibration in three real-world scenarios: 1) forecasting COVID-19 cases in the

United States, 2) forecasting weather, and 3) predicting plasma state evolution in nuclear fusion

experiments. This diverse set of domains, datasets, and expert forecasters provides an attractive

test-bed to demonstrate the parity calibration concept and the performance of the calibration

methods from Section 7.2.2.

In each setting, the prediction target is real-valued, and we assume an expert forecaster provides

regression forecasts F̂t for the target. We also refer to F̂t : Y Ñ r0, 1s as the base regression model.
The expert forecaster implicitly provides parity probabilities p̂t (following Eq. (7.1)). We refer to

p̂t as the prehoc probabilities, in contrast to the post-hoc probabilities that the calibration methods

produce. We calibrate p̂t with the calibration methods from Section 7.2.2 to produce the post-hoc

probabilities p̂1
t. Each calibration method requires a set of hyperparameters, which we tune with

a validation set. Details regarding hyperparameter tuning are provided in Appendix 7.C.

Metrics. Given a test dataset Dtest “ txt, ytu
T
t“1, we initially assess the quantile calibration of

F̂t and the parity calibration of p̂t and p̂1
t by visualizing the reliability diagrams and measuring

calibration errors.

To assess quantile calibration of F̂t, we produce the reliability diagram using the Uncertainty Tool-

box (Chung et al., 2021a), which takes a finite set of quantile levels P “ tpi P r0, 1su, computes

the empirical coverage of the predictive quantile F̂´1
t ppiq as pi,obs “ 1

T

řT
t“1 1

!

yt ď F̂´1
t ppiq

)

,

and plots each pi against pi,obs. Calibration error is then summarized into a single scalar with

Quantile Calibration Error (QCE), which is computed as
1

|P|

ř

i | pi,obs ´ pi |. In our experiments,

we set P to be 100 equi-spaced quantile levels in r0, 1s.

To assess parity calibration of a parity probability p̂t, we follow the standard method of producing

reliability diagrams in binary calibration (DeGroot and Fienberg, 1981; Niculescu-Mizil and

Caruana, 2005). Noting that p̂t is a predicted probability of the binary parity outcome ryt :“
1 tyt ď yt´1u, we first bin p̂t into a finite set of fixed width bins B “ tBmu, then for each bin

Bm, we compute the average outcome as obspBmq “ 1
|Bm|

ř

t:p̂tPBm
1 tryt “ 1u and the average

prediction as predpBmq “ 1
|Bm|

ř

t:p̂tPBm
p̂t, and finally, we plot predpBmq against obspBmq to

produce the reliability diagram. Parity Calibration Error (PCE) summarizes the diagram following

the standard definition of (ℓ1-)expected calibration error (ECE):

ř

m
|Bm|

T
| obspBmq´predpBmq |.

In our experiments, we set B to be 30 fixed-width bins: r0, 1
30

q, r 1
30
, 2
30

q, . . . r29
30
, 1s.

For the parity probabilities p̂t and p̂1
t, we additionally report sharpness and two metrics for

accuracy: binary accuracy and area under the ROC curve. Sharpness (Sharp) is computed as
ř

m
|Bm|

T
¨ obspBmq2 and measures the degree to which the forecaster can discriminate events

with different outcomes. Binary accuracy (Acc) and area under the ROC curve (AUROC) are

computed following their standard definitions in binary classification. Appendix 7.A provides

the full set of details on how each metric is computed. Lastly, in reporting the metrics in numeric

tables, we denote each metric with their orientation, e.g. Ò indicates that a higher value is more

Code is available at https://github.com/YoungseogChung/parity-calibration
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(b) Reliability diagrams for the prehoc parity probabilities from the expert

forecasts (left) and OPS calibrated probabilities (right). Blue bars denote

the frequency of predictions in each bin.

Figure 7.2: The prehoc parity probabilities for the COVID-19 single-timeseries setting are

miscalibrated and un-sharp. Post-hoc calibration via OPS improves both aspects.

desirable and vice versa.

7.3.1 Case Study 1: COVID-19 cases in the US

In response to the COVID-19 pandemic, research groups across the world have created models

to predict the short-term future of the pandemic. The COVID-19 Forecast Hub (Cramer et al.,

2021) solicits and collects quantile forecasts of weekly incident COVID-19 cases in each US

state (plus Washington D.C.), among other targets. Each week, the Hub generates an ensemble

forecast from the dozens of submitted forecasts. This ensemble has proven to be more reliable

and accurate than any constituent individual forecast in predicting other targets of interest

(e.g. mortality (Cramer et al., 2022)). Thus, we take the ensemble forecast as the expert forecast

and use its historical forecasts made between 2020-07-20 and 2022-10-24, which span a total

of 119 weeks. Denoting the target y as the number of cases, there are effectively 51 timeseries,

tys,tu: one for each US state s P {Alabama, Alaska, Arizona, …, Wisconsin, Wyoming}, and

t P t1, . . . , 119u. For any given s, t, the expert forecast is provided by the Hub as seven forecasted
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Prehoc OPSalpha-order OPSrand100

PCE Ó 0.0599 0.0216 0.0246 ˘ 0.0002
Sharp Ò 0.2953 0.3087 0.3090 ˘ 0.00002
Acc Ò 0.6309 0.6727 0.6737 ˘ 0.0001
AUROC Ò 0.6922 0.7355 0.7357 ˘ 0.00002

Table 7.1: In the COVID-19 single-timeseries setting, OPS improves the prehoc parity probabilities

w.r.t all metrics. ˘ indicates mean ˘ 1 standard error across 100 state orders.

Prehoc MW IW OPS

PCE Ó 0.0599 0.0748 0.0406 0.0328
Sharp Ò 0.2953 0.2882 0.2839 0.2993
Acc Ò 0.6309 0.6237 0.6055 0.6522
AUROC Ò 0.6922 0.6622 0.6403 0.7035

Table 7.2: In the COVID-19 sequential-batch setting, OPS outperforms prehoc and alternative

PS methods. Best value for each metric is in bold.

quantiles for the distribution of ys,t. Therefore, we must interpolate the quantiles to produce F̂t

(see Appendix 7.B.1 for details).

The observed targets ys,t are the incident number of cases actually reported from each state, for

each week. Figure 7.2a visualizes a summary of the target timeseries: the total incident number

of cases in the US p“
ř

s ys,tq. We can observe high non-stationarity, with periods of rapid

increases and falls, and other periods of long monotonic trends.

Parity calibration of expert forecasts and OPS

Note that the underlying timeseries tys,tu is indexed by both state and time. We transform this to

a fully sequential timeseries by concatenating tys,tu chronologically across t and in alphabetical

order across s. In other words, within a given week, we observe the number of cases for the

states in alphabetical order. We refer to this experiment setting as the single-timeseries setting.

The reliability diagram in Figure 7.2b (left) shows that the prehoc probabilities implied by

the expert forecast (p̂t) are parity calibrated in the r0.25, 0.75s region (i.e. higher predicted

probabilities result in higher empirical frequencies), but are miscalibrated otherwise. The

distribution of p̂t displayed by the blue bars further indicate that p̂t is centered around 0.5, an

uninformative or less sharp prediction.

Figure 7.2b (right) displays the reliability diagram of p̂OPS

t . We observe significant improvements

in both parity calibration and sharpness, i.e. p̂OPS

t is much more dispersed compared to p̂t. The

second column of Table 7.1 (labeled OPSalpha-order) show these improvements via the PCE and

Sharp metrics, and we can also observe improvement in accuracy.

One may question whether this improvement by OPS is specific to the alphabetical order of
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Figure 7.3: (Decision making on the COVID-19 dataset) (left) The Bayes optimal action for each

predicted probability of increase in number of cases. (right) Frequency of each action taken by

each method.

states. In the third column of Table 7.1 (labeled OPSrand100), we show the mean and standard

error of each of the metrics across 100 different random orders of the states, and observe that

the improvements provided by OPS over prehoc are fairly robust.

Comparing calibration methods

We perform an additional experiment to compare the performance of MW, IW and OPS. In this

experiment, we assume a more realistic test setting for the data-stream. At each timestep t, we

assume we observe cases from all 51 states, tys,tu
51
s“1, and update the PS parameters with this

batch of data. We then fix the PS parameters and calibrate the next full batch of predictions for

timestep t` 1. This settings assumes that PS parameters are updated once per week based on all

the data observed during the week. We refer to this experiment setting as the sequential-batch
setting.

The first 20 weeks of data (i.e. 20 weeks ˆ 51 states = 1020 datapoints) were used to tune

the hyperparameters of each method. The subsequent 99 weeks of data was used for testing.

Table 7.2 displays the results of the sequential batch setting (note that the prehoc values are the

same for this setting as in Table 7.1). OPS is the best performing method on all metrics when

compared with MW, IW, and prehoc.

Decision-making with parity probabilities

In this section, we demonstrate the utility of OPS in a decision-making setting where parity

outcomes (Eq. (7.5)) dictate the loss incurred. Using the same COVID-19 dataset, we assume

a setting where a policymaker (i.e. the decision-maker) at each timestep must decide among
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Figure 7.4: OPS significantly improves both parity calibration and sharpness of the base regres-

sion model predicting Pressure. The left two plots display the quantile calibration and parity

calibration of the base model (Prehoc): it is nearly perfectly quantile calibrated, but terribly

parity calibrated. Blue bars denote the frequency of predictions in each bin.

three levels of restrictions for disease spread prevention: Tight, Mild, or None. For any chosen

level of restriction, the loss is dictated by the parity outcome in the number of cases, and the

policymaker’s goal is to minimize cumulative loss. A Bayes optimal policymaker will always

choose an action which minimizes the expected loss, calculated with a predictive distribution

over the loss (Lehmann and Casella, 2006). Hence the policymaker will assess the optimality of

each action based on predicted parity probabilities.

We design an exemplar loss function ltruth, decision as follows:

# Cases Tight = 1 Mild = 2 None = 3

Increase = 1 l1,1 “ 0.3 l1,2 “ 0.6 l1,3 “ 1 (max)

Decrease = 2 l2,1 “ 0.5 l2,2 “ 0.2 l2,3 “ 0 (min)

Given this loss function, the Bayes optimal action is visualized in Figure 7.3 (left). On computing

the the cumulative loss incurred with the predicted parity probabilities, we find that OPS incurs

the lowest cumulative loss.

Prehoc MW IW OPS

Loss Ó 2119 2177 2196 2050

Figure 7.3 (right) shows the frequency of each action chosen by each method. We observe that

OPS chooses Mild with relatively low frequency, which is a result of sharper and more accurate

parity probabilities. We further note that IW results in a worse loss than prehoc despite being

better parity calibrated (Table 7.2). To understand this, notice that IW is also less sharp and less

accurate than Prehoc. Thus calibration, while a desirable quality, is not the only aspect to assess

for good uncertainty quantification—sharpness and accuracy could also affect decision making.

7.3.2 Case Study 2: Weather forecasting

Our second case study examines weather forecasting using the benchmark Jena climate model-

ing dataset (2016), which records the weather conditions in Jena, Germany, with 14 different
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Figure 7.5: Snapshots of 4 years from the Temperature and Pressure timeseries display noise

around a cyclical trend.

measurements, in 10 minute intervals, for the years 2009—2016. We did not have access to

historical predictions from an expert weather forecaster, so instead we trained our own base

regression model.

We follow the Keras tutorial on Timeseries Forecasting for Weather Prediction1
to define our

specific problem setup and train our base regression model. In summary, the regression model

is implemented with an LSTM network (Hochreiter and Schmidhuber, 1997) which predicts the

mean and variance of a Gaussian distribution. We trained 7 different models that each predict

one of 7 weather features: Pressure, Temperature, Saturation vapor pressure, Vapor pressure

deficit, Specific humidity, Airtight, and Wind speed. Appendix 7.B.2 provides more details on

the problem setup.

Lastly, we note that unlike the COVID-19 data, the weather data (Figure 7.5) displays high levels

of noise around a cyclical, repeating trend.

QCE Ó PCE Ó Sharp Ò Acc Ò AUROC Ò

Prehoc 0.0181˘0.0026 0.3493˘0.0015 0.3019˘0.0004 0.4044˘0.0006 0.3525˘0.0012

MW N/A 0.0278˘0.0005 0.3005˘0.0004 0.6124˘0.0008 0.6410˘0.0012

IW N/A 0.0322˘0.0005 0.3013˘0.0004 0.6147˘0.0009 0.6450˘0.0013

OPS N/A 0.0148˘0.0002 0.3172˘0.0004 0.6525˘0.0007 0.7056˘0.0010

Table 7.3: OPS improves the overall quality of parity probabilities from the base regression

model predicting Pressure. ˘ indicates mean ˘ 1 standard error, across 50 test trials. Best value

for each metric is in bold.

Results on Pressure timeseries. We first examine results from one of the 7 models predicting

Pressure. Figure 7.4 displays quantile calibration (i.e. probabilistic calibration) of the base

1
https://keras.io/examples/timeseries/timeseries weather forecasting/
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PCE Ó Sharp Ò Acc Ò AUROC Ò

Prehoc 0.0258˘0.0005 0.3008˘0.0007 0.6069˘0.0011 0.6474˘0.0016

MW 0.0201˘0.0005 0.3002˘0.0007 0.6050˘0.0012 0.6439˘0.0017

IW 0.0166˘0.0003 0.3003˘0.0008 0.6068˘0.0010 0.6456˘0.0016

OPS 0.0150˘0.0001 0.3232˘0.0006 0.6665˘0.0007 0.7275˘0.0007

Table 7.4: While MW, IW, OPS all improve parity calibration of the base classification model for

Pressure (Prehoc), OPS is the only method that improves all metrics simultaneously. ˘ indicates

mean ˘ 1 standard error, across 50 test trials. Best value for each metric is in bold.

model, and parity calibration before and after MW, IW and OPS are applied to the prehoc parity

probabilities. We first note that the base model is almost perfectly quantile calibrated, but

terribly parity calibrated, which corroborates our argument from Section 7.1.1, that calibration

in regression does not imply parity calibration. In the same plot, we can see that MW, IW and

OPS are all able to improve parity calibration, but the numerical results in Table 7.3 show that

OPS produces superior parity probabilities w.r.t. all of the metrics considered.
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Figure 7.6: The base classification model for Pressure (Prehoc) is better parity calibrated than

the base regression model (Figure 7.4 Prehoc), but OPS still improves its parity calibration and

sharpness.

Binary classifiers as expert forecasters. While we have so far assumed that the expert

forecaster provides regression models F̂t, one may argue that an expert forecaster may be well-

aware that the downstream user is primarily concerned with parity probabilities. Accordingly, the

expert may choose to directly model parity probabilities in the context of a binary classification

problem.

In Figure 7.6 and Table 7.4, we show results from training a base binary classifier with parity
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Figure 7.7: All methods (MW, IW, OPS) perform equally well in calibrating the Prehoc parity

probabilities of the nuclear fusion dynamics model. The left two plots display the quantile

calibration and parity calibration of the base dynamics model.

QCE Ó PCE Ó Sharp Ò Acc Ò AUROC Ò

Prehoc 0.0108˘0.0003 0.2571˘0.0003 0.3243˘0.0002 0.7727˘0.0003 0.8536˘0.0002
MW N/A 0.0266˘0.0002 0.3345˘0.0002 0.7665˘0.0003 0.8463˘0.0002

IW N/A 0.0291˘0.0002 0.3385˘0.0002 0.7726˘0.0003 0.8533˘0.0002
OPS N/A 0.0261˘0.0002 0.3334˘0.0002 0.7629˘0.0002 0.8440˘0.0002

Table 7.5: MW, IW, and OPS all improve parity calibration and sharpness of the Prehoc fusion

dynamics model predicting βN , while maintaining roughly the same level of accuracy. ˘

indicates mean ˘ 1 standard error, across 50 test trials. Best value for each metric is in bold.

outcome labels and applying post-hoc calibration. As expected, the prehoc parity probabilities

of the binary classification model is significantly better calibrated than the regression model.

Post-hoc calibration still improves parity calibration further, especially in the case of OPS. In

fact, OPS is the only method which improves all of the metrics simultaneously, while MW and

IW notably worsen sharpness and AUROC. The full set of reliability diagrams is provided in

Figure 7.10 in Appendix 7.B.2.

Results across all 7 timeseries. Table 7.6 in Appendix 7.B.2 shows each metric averaged across

all 7 prediction targets: Table 7.6a displaying results with the base regression model, and 7.6b

that of the base classification model. The pattern observed for the Pressure timeseries tend to

hold on average across all 7 timeseries.

7.3.3 Case Study 3: Model-based Control for nuclear fusion

Nuclear fusion is the physical process during which atomic nuclei combine together to form heav-

ier atomic nuclei, while releasing atomic particles and energy. Although fusion is possibly a safe,

clean, and fuel-abundant technology for the future (Morse, 2018), there are various challenges to

realizing fusion power, one of which is controlling nuclear fusion reactions (Humphreys et al.,

2015).

Recently, model-based control methods, where a dynamics model of the system is learned

and used to optimize control policies, has emerged as an effective control method for fusion

devices (Abbate et al., 2023). To the experimenter utilizing the dynamics model, it is of significant
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Figure 7.8: State transitions of the βN signal during nuclear fusion experiments (“shots”) con-

catenated across 50 training shots resemble trend-less noise.

interest to know when certain signals will increase, and whether the dynamics model assigns

correct probabilities to the events (Char et al., 2021). In this section, we consider the problem of

predicting the parity of βN , which is a signal indicating reaction efficiency in a fusion device

called a tokamak.

To this end, we design our empirical case study as follows. We take a pretrained dynamics

model which was trained with a logged database of 10294 fusion experiments (referred to as

“shots”) conducted on the DIII-D tokamak (Luxon, 2002), a device in San Diego, CA, USA. This

pretrained model has been used for model-based policy optimization for deployment in actual

fusion experiments on this device (Char et al., 2021; Seo et al., 2021; Abbate et al., 2021). The

model architecture is a recurrent probabilistic neural network (RPNN), which is a recurrent

neural network with a Gaussian output head. We refer the reader to Appendix 7.B.3 for more

details of the dynamics model and dataset. For testing, we allocate a set of 900 held-out test

shots. On this test set, we produce the model’s distributional predictions for βN as the expert

forecast. We concatenate the forecasts and the actual observed βN values across the 900 test

shots in chronological order into a single timeseries to assess parity calibration.

Figure 7.7 and Table 7.5 indicate that the expert forecast (Prehoc) is quantile calibrated but

parity miscalibrated. The accuracy metrics in Table 7.5 indicate that despite prehoc’s poor parity

calibration, the model is still highly predictive, with an AUROC ą 0.85. MW, IW and OPS

significantly improve parity calibration and sharpness, while maintaining roughly the same

level of accuracy.

We note that the βN timeseries, as displayed in Figure 7.8, tends to fluctuate rapidly, between

timesteps and between shots, almost resembling white noise. The pretrained model still manages

to model the signal well, and assigns correct tendencies of increases/decreases in βN : the relibility

diagram of prehoc in Figure 7.7 shows that although the parity probabilities are not aligned
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with the empirical frequencies, they predict higher probabilities for actually higher frequency

events. We believe this provides for a relatively easy post-hoc calibration problem, thus all

methods (MW, IW, OPS) perform equally well. Hence, this case study highlights the significance

of the base model’s initial parity probabilities, especially in alleviating the difficulty of post-hoc

calibration.

7.4 Conclusion

We considered the problem of forecasting whether a continuous-valued sequence is going to

increase or decrease at the next time step. Such scenarios, where relative changes are more

interpretable than actual values, are ubiquitous: COVID-19 cases per day, weather, or stock

prices. In this context, we proposed the notion of parity calibration. To be parity calibrated, a

forecaster must predict probabilities for the outcome increasing at the next time step, and these

probabilities should be calibrated in the binary sense.

A decision-maker may attempt to achieve parity calibration by using regression forecasts

produced by an expert forecaster. However, this is unlikely to give parity calibration. Instead,

we proposed the usage of post-hoc binary calibration techniques to achieve parity calibration.

Specifically, we advocated for a recently proposed online Platt scaling algorithm (OPS) in this

setting. In three real-world empirical case studies, OPS consistently improves the overall quality

of parity probabilities compared to the expert forecaster.
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Appendices for Chapter 7

7.A Details on Evaluation: reliability diagrams and metrics

We provide details on how we assess a sequence of distributional forecasts tF̂tu
T
t“1 and parity

probabilities tp̂tu
T
t“1, given a test dataset Dtest “ txt, ytu

T
t“1. We assess distributional forecasts

via Quantile Calibration, and the parity probabilities via Parity Calibration, Sharpness, and

Accuracy metrics.

• Quantile Calibration: reliability diagram and calibration error
To assess the quantile calibration of the distributional forecast F̂t, we produce the reliability

diagram using the Uncertainty Toolbox (Chung et al., 2021a). This process works as follows.

We take 100 equi-spaced quantile levels in r0, 1s: pi P np.linspace(0, 1, 100),

and for each pi, we compute the empirical coverage of the predictive quantile F̂´1
t ppiq

with
1
T

řT
t“1 1

!

yt ď F̂´1
t ppiq

)

, and we denote this quantity as pi,obs. Note that pi,obs

is an empirical estimate of the term
1
T

řT
t“1 FtpF̂

´1
t ppiqq, from Eq. (7.3). The reliability

diagram is produced by plotting tpiu on the x-axis against tpi,obsu on the y-axis. Quantile

Calibration Error (QCE) is then computed as the average of the absolute difference between

pi and pi,obs over the 100 values of pi:
1

100

ř100
i“1 | pi,obs ´ pi |.

• Parity Calibration: reliability diagram and calibration error
For parity calibration, we produce the reliability diagram following the standard method

in binary classification (DeGroot and Fienberg, 1981; Niculescu-Mizil and Caruana, 2005).

Note that the parity probability p̂t is a prediction for the parity outcome ryt :“ 1 tyt ď yt´1u

(Eq. (7.5)). Specifically, we first take 30 fixed-width bins of the predicted parity probabilities:

tBmu30m“1, where Bm “ rm´1
30

, m
30

q for m ă 30 and B30 “ r29
30
, 1s. The average outcome in

bin Bm is computed as obspBmq “ 1
|Bm|

ř

t:p̂tPBm
1 tryt “ 1u, and the average prediction

of bin Bm is computed as predpBmq “ 1
|Bm|

ř

t:p̂tPBm
p̂t. The reliability diagram is then

produced by plotting predpBmq on the x-axis against obspBmq on the y-axis. The blue bars

in the background of each parity calibration reliability diagram represents the size of the

bin: |Bm|. Parity Calibration Error (PCE) is then computed with this reliability diagram

following the standard definition of (ℓ1-)expected calibration error (ECE):

ř30
m“1

|Bm|

T
|

obspBmq ´ predpBmq |.

• Sharpness
Assuming the same notation as above, sharpness is computed as:

řM
m“1

|Bm|

T
¨ obspBmq2,
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where M is the total number of bins. As indicated above, we use M “ 30 in all of our ex-

periments. We provide some additional intuition on this metric. A perfectly knowledgeable

forecaster which outputs p̂t “ ryt will place all predictions in either B1 or BM and achieve

sharpness “
|B1|

T
¨ obspB1q

2 `
|BM |

T
¨ obspBMq2 “

|B1|

T
¨ 02 `

|BM |

T
¨ 12 “

|BM |

T
“

řT
t“1 ryt
T

.

On the other hand, if the forecaster places all predictions into a single bin Bk, then its

sharpness will be obspBkq2 “

´

řT
t“1 ryt
T

¯2

. It can be shown that sharpness is always within

the closed interval

„

´

řT
t“1 ryt
T

¯2

,
řT

t“1 ryt
T

ȷ

(Bröcker, 2009). Intuitively, sharpness measures

the degree to which the forecaster attributes different valued predictions to events with

different outcomes (i.e. labels). Hence, a sharper, or more precise, forecaster has more

discriminative power, and this is reflected in a higher sharpness metric.

• Accuracy metrics (Acc and AUROC)
Accuracy is measured in the binary classification sense, where the true labels are the

observed parity outcomes: 1 tyt ď yt´1u (Eq. (7.5)).

Binary accuracy (Acc) is computed by regarding p̂t ě 0.5 as the positive class

prediction, and the opposite case as the negative class prediction.

Area under the ROC curve (AUROC) is computed using the scikit-learn
Python package, which implements the standard definition of the score. Specifi-

cally, we called the function sklearn.metrics.roc auc score with the

predictions tp̂tu and labels 1 tyt ď yt´1u.

7.B Additional Details on Case Studies

7.B.1 Additional Details on COVID-19 Case Study

Details on Interpolating Expert Forecasts for COVID-19 Case Study

The expert forecast provided by the COVID-19 Forecast Hub is represented as a set of quantiles.

To derive the parity probabilities p̂s,t, we need to interpolate the expert forecast, as the forecast

contains predicted quantiles at only 7 quantile levels : t0.025, 0.1, 0.25, 0.5, 0.75, 0.9, 0.975u.

We interpolate under the assumption that the density between two adjacent quantiles τk and

τk`1 are defined by the normal distribution specified by those two quantiles. Specifically, for

two quantiles τk and τk`1 and forecast values x
ps,tq
k and x

ps,tq
k`1 , we compute

σ
ps,tq
k “

x
ps,tq
k`1 ´ x

ps,tq
k

Φ´1pτk`1q ´ Φ´1pτkq
,

µ
ps,tq
k “ x

ps,tq
k ´ σ

ps,tq
k Φ´1

pτkq,
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where Φ is the standard normal cdf. For each forecast, if x
ps,tq
k ď ys,t´1 ă x

ps,tq
k`1 , then the parity

probability

p̂s,t “ Φ

˜

ys,t´1 ´ µ
ps,tq
k

σ
ps,tq
k

¸

.

If ys,t´1 ă x
ps,tq
1 , we can extrapolate using µ

ps,tq
1 and σ

ps,tq
1 , and if ys,t´1 ą“ x

ps,tq
7 , we can

extrapolate using µ
ps,tq
6 and σ

ps,tq
6 . However, this never occurs with the forecasts and observations

in this dataset. Figure 7.9 provides a visualization of this interpolation scheme.

Figure 7.9: We use a piece-wise Gaussian interpolation of the expert forecast quantiles to estimate

the predictive cdf, from which we then calculate the parity probabilities.

Details on Experiment Setup for COVID-19 Case Study

Section 7.3.1 compares the expert forecaster, its parity probabilities and post-hoc calibration by

OPS. We did not tune OPS hyperparameters in this experiment, so the full 119 weeks’ worth of

data was used for testing and reporting the results.

For Section 7.3.1, the first 20 weeks’ worth of data was used for tuning hyperparameters, and

the reported results are based on the remaining 99 weeks’ worth of data as the test set.

For the decision-making experiment in Section 7.3.1, we used the parity probabilities produced

from Section 7.3.1.

Although the chosen loss function is just one example, we observe that similar results hold with

any loss function that satisfies: l2,3 ď l2,2 ď l1,1 ď l2,1 ď l1,2 ď l1,3.

7.B.2 Additional Details on Weather Forecasting Case Study

Details on Experiment Setup for Weather Forecasting Case Study

We used the modeling and training infrastructure provided by the Keras tutorial on Time-
series Forecasting for Weather Prediction2

which models this same dataset with an LSTM net-

work (Hochreiter and Schmidhuber, 1997). We made one change to the model provided by the

2
https://keras.io/examples/timeseries/timeseries weather forecasting/
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tutorial: since we are interested in probabilistic forecasts instead of point forecasts, we changed

the head of the model and the loss function from a point output trained with mean squared error

loss to a mean and variance output that parameterizes a Gaussian distribution and trained it

with the Gaussian likelihood loss. Such a model is also referred to as a mean-variance network

or a probabilistic neural network (Lakshminarayanan et al., 2017; Nix and Weigend, 1994), and

it is one of the most popular methods currently used in probabilistic regression.

While the tutorial’s setup takes as input the past 120 hours’ window of 7 features to predict the

value of one feature (Temperature) 12 hours into the future, we expand the setting to predict all

7 features: Pressure, Temperature, Saturation vapor pressure, Vapor pressure deficit, Specific

humidity, Airtight, and Wind speed. We thus train 7 separate base regression models, one for

each prediction target.

For the in-text experiment Binary classifers as expert forecasts, we trained binary classifica-

tion base models with parity outcomes (Eq. (7.5)) as the labels and took this model as the expert

forecaster. We adopted the same model architecture as the base regression model and changed

the last layer to output a logit. We then trained the model with the cross entropy loss.

The full Jena dataset spans from the beginning of January 2009 to the end of December 2016, with

420, 551 datapoints in total. In chronological order, we set 272, 638 datapoints to train the base

models (both the regression and classification model) and the subsequent 83, 390 datapoints for

validation. Following the same model training procedure as the tutorial, training was stopped

early if the validation loss did not increase for 20 training epochs.

Afterwards, in running the post-hoc calibration methods (MW, IW, and OPS), we used the last

8, 640 datapoints of the validation set to tune the hyperparameters of each calibration method,

and used subsequent windows of 8, 640 ˆ 3 “ 25, 920 datapoints for testing.

We run 50 test trials with a moving test timeframe to produce the mean and standard errors

reported in Tables 7.3 and 7.4. Denoting the first test window as rt ` 1, t ` Hs (i.e. H is set to

25, 920), we move this frame by a multiple of a fixed offset c into the future, and repeat this 50

times, to create a new set of 50 test sets. The resulting new test timeframes are rt` 1` pckq, t`

H ` pckqs, where k “ 0, 1, 2, . . . 49, and c was set to 336.
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Figure 7.10: Reliability diagrams with a binary classification base model predicting Pressure.

This is the full set of reliability diagrams for Figure 7.6 from Section 7.3.2. The left-most plot

shows parity calibration of the base classification model (Prehoc), and the next three plots show

the effects of MW, IW and OPS in calibrating the Prehoc parity probabilities. OPS produces the

most calibrated and sharp parity probabilities.
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QCE Ó PCE Ó Sharp Ò Acc Ò AUROC Ò

Prehoc 0.0266 ˘ 0.0052 0.2794 ˘ 0.0161 0.2915 ˘ 0.0117 0.4902 ˘ 0.0159 0.4806 ˘ 0.0249
MW N/A 0.0233 ˘ 0.0048 0.2913 ˘ 0.0117 0.5610 ˘ 0.0106 0.5419 ˘ 0.0195
IW N/A 0.0188 ˘ 0.0047 0.2913 ˘ 0.0118 0.5630 ˘ 0.0099 0.5403 ˘ 0.0209
OPS N/A 0.0159 ˘ 0.0009 0.2961 ˘ 0.0122 0.5790 ˘ 0.0122 0.5830 ˘ 0.0217

(a) Numerical results averaged across all 7 prediction settings where the base model is a Gaussian

regression model. The base regression model (Prehoc) tends to be well quantile calibrated (QCE) but

terribly parity calibrated (PCE). All methods (MW, IW, OPS) improve parity calibration, but OPS is the

only method which improves all metrics simultaneously. Best value for each metric is in bold.

PCE Ó Sharp Ò Acc Ò AUROC Ò

Prehoc 0.0247 ˘ 0.0016 0.3049 ˘ 0.0074 0.6078 ˘ 0.0099 0.6348 ˘ 0.0136
MW 0.0170 ˘ 0.0018 0.3049 ˘ 0.0075 0.6061 ˘ 0.0102 0.6340 ˘ 0.0143
IW 0.0156 ˘ 0.0012 0.3047 ˘ 0.0074 0.6075 ˘ 0.0098 0.6340 ˘ 0.0136
OPS 0.0135 ˘ 0.0013 0.3134 ˘ 0.0075 0.6278 ˘ 0.0121 0.6643 ˘ 0.0183

(b) Numerical results averaged across all 7 prediction settings where the base model is a binary classi-

fication model trained with parity outcome labels. The base classification model (Prehoc) tends to be

much better parity calibrated than when a regression base model is used (above Table 7.6a). All methods

(MW, IW, OPS) improve parity calibration further, but OPS is the only method which improves all metrics

simultaneously. Notably, MW and IW tends to decrease the accuracy of the parity probabilities. Best

value for each metric is in bold.

Table 7.6: Numerical results from the weather forecasting case study (Section 7.3.2), averaged

across all 7 forecasting targets. Table 7.6a displays results with the Gaussian regression base

model, and Table 7.6b displays results with the binary classification base model. ˘ indicates

mean ˘ 1 standard error, across the 7 prediction target settings.

Additional Results on Weather Forecasting Case Study

We shows additional plots and tables from the experimental results in Section 7.3.2 of the main

chapter.

Figure 7.10 displays the full set of reliability diagrams for Figure 7.6, which corresponds to the

in-text experiment Binary classifiers as expert forecasts in Section 7.3.2.

Table 7.6 displays the numerical results from the weather forecasting case study when averaged

across all 7 prediction target settings. This corresponds to the in-text experiment Results across
all 7 timeseries in Section 7.3.2. To produce these results, we fixed the test timeframe to be the

first test timeframe rt ` 1, t ` Hs for all prediction target settings, then computed the mean and

standard errors across the 7 sets of metrics produced (one set for each prediction target).
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7.B.3 Additional Details on Control in Nuclear Fusion Case Study

Details on Experiment Setup for Control in Nuclear Fusion Case Study

The expert forecaster for the nuclear fusion experiment in Section 7.3.3 is provided by a pretrained

dynamics models that was used to optimize control policies for deployment on the DIII-D

tokamak (Luxon, 2002), a nuclear fusion device in San Diego that is operated by General Atomics.

The dynamics model was trained with logged data from past experiments (referred to as “shots”)

on this device. Each shot consists of a trajectory of (state, action, next state) transitions, and one

trajectory consists of „ 20 transitions (i.e. 20 timesteps).

As input, the model takes the current state of the plasma and the actuator settings (i.e. actions).

The model outputs a multi-dimensional predictive distribution over the state variables in the

next timestep. The state is represented by three signals: βN (the ratio of plasma pressure over

magnetic pressure), density (the line-averaged electron density), and li (internal inductance).

For the actuators, the model takes in the amount of power and torque injected from the neutral

beams, the current, the magnetic field, and four shape variables (elongation, aminor, triangularity-
top, and triangularity-bottom). This, along with the states, makes for an input dimension of 11

and output dimension of 3 for the states.

The model was implemented with a recurrent probabilistic neural network (RPNN), which

features an encoding layer by an RNN with 64 hidden units followed by a fully connected layer

with 256 units, and a decoding layer of fully connected layers with [128, 512, 128] units, which

finally outputs a 3-dimensional isotropic Gaussian parameterized by the mean and a log-variance

prediction.

The training dataset consisted of trajectories from 10294 shots, and the model was trained with

the Gaussian likelihood loss, with a learning rate of 0.0003 and weight decay of 0.0001. In

using dynamics models to sample trajectories and train policies, the key metric practitioners

are concerned with is explained variance, hence explained variance on a held out validation

set of 1000 shots was monitored during training. Training was stopped early if there was no

improvement in explained variance over the validation set for more than 250 epochs. The test

dataset consisted of another held-out set of 900 shots, with which we report all results presented

in Section 7.3.3.

In all of our experiments, since βN is the key signal of interest in our problem setting, we just

examine the predictive distribution for βN in the model outputs and ignore the other dimensions

of the outputs.

In running the post-hoc calibration methods (MW, IW, and OPS), we used the same validation set

to tune the hyperparameters of each calibration method, and used windows of 15, 000 datapoints

from the concatenated test shot data for testing.

We run 50 test trials with a moving test timeframe to produce the mean and standard errors

reported in Tables 7.5. Denoting the first test window as rt ` 1, t ` Hs (i.e. H is set to 15, 000),

we move this frame by a multiple of a fixed offset c into the future, and repeat this 50 times, to

create a set of 50 test datasets. The resulting test timeframes are rt ` 1 ` pckq, t ` H ` pckqs,

where k “ 0, 1, 2, . . . 49, and c was set to 100.
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7.C Details on Hyperparameters

Each of the three calibration methods we consider in Section 7.2.2, which we use in our experi-

ments in Section 7.3, requires a set of hyperparameters.

• MW requires uf and ws.

uf determines how often the PS parameters paMW, bMWq are updated.

ws determines the size of the calibration set that is used to update the PS parameters

• IW requires uf.

uf determines how often the PS parameters paIW, bIWq are updated.

Note that IW always uses all of the data seen so far to update the PS parameters.

• OPS requires γ and D.

γ can be understood as step size for the OPS updates.

D can be understood as regularization for the OPS updates.

We provide details on how these hyperparameters were tuned for each of the three case studies.

7.C.1 Hyperparameters for COVID-19 Case Study

We observed that OPS performed well with the default hyperparameters, so we did not tune

hyperparameters for OPS for the COVID-19 case study. The default hyperparameter values used

for OPS were γ “ 0.001 and D “ 10.

For MW and IW, we tuned hyperparameters by optimizing parity calibration error (PCE, Sec-

tion 7.3) on the first 20 weeks’ worth of data as the validation set, over the following grids:

• uf P r1, 2, 3, 4, 5, 6, 7, 8, 9, 10s, separately for MW and IW

• ws P r1, 2, 3, 4, 5, 6, 7, 8, 9, 10s, for MW.

The COVID-19 dataset records data for each week, so the grid size of 1 represents 1 week.

The tuned hyperparameters we used for MW and IW are as follows:

• MW: uf “ 1,ws “ 10

• IW: uf “ 5

7.C.2 Hyperparameters for Weather Forecasting Case Study

For each calibration method, the hyperparameters were tuned by optimizing parity calibration

error (PCE, Section 7.3) on the validation dataset over the following grids:

• uf P r1, 24, 168, 336, 720, 2160s, separately for MW and IW

• ws P r24, 168, 336, 720, 2160, 4320, 8640s, for MW

• γ P [1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2], for OPS
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• D P r1, 10, 30, 50, 70, 100, 150, 200s, for OPS.

The hyperparameters were tuned separately for each base model setting (regression and classifi-

cation), for each method (MW, IW, and OPS), and for each base model predicting one of 7 targets

(Pressure, Temperature, Saturation vapor pressure, Vapor pressure deficit, Specific humidity,

Airtight, and Wind speed).

The tuned hyperparameters we used are as follows:

• Base Regression Model
Pressure Model

´ MW: uf “ 2160,ws “ 8640

´ IW: uf “ 2160

´ OPS: γ “ 1e-5,D “ 50

Temperature Model

´ MW: uf “ 336,ws “ 8640

´ IW: uf “ 168

´ OPS: γ “ 1e-5,D “ 30

Saturation Vapor Pressure Model

´ MW: uf “ 2160,ws “ 2160

´ IW: uf “ 336

´ OPS: γ “ 1e-4,D “ 10

Vapor Pressure Deficit Model

´ MW: uf “ 1,ws “ 4320

´ IW: uf “ 1

´ OPS: γ “ 1e-3,D “ 1

Specific Humidity Model

´ MW: uf “ 1,ws “ 4320

´ IW: uf “ 168

´ OPS: γ “ 1e-5,D “ 30

Airtight Model

´ MW: uf “ 2160,ws “ 2160

´ IW: uf “ 720

´ OPS: γ “ 5e-5,D “ 10

Wind Speed Model

´ MW: uf “ 1,ws “ 168

´ IW: uf “ 24

´ OPS: γ “ 1e-4,D “ 10
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• Base Classification Model
Pressure Model

´ MW: uf “ 2160,ws “ 8640

´ IW: uf “ 720

´ OPS: γ “ 5e-5,D “ 30

Temperature Model

´ MW: uf “ 1,ws “ 4320

´ IW: uf “ 168

´ OPS: γ “ 1e-5,D “ 150

Saturation Vapor Pressure Model

´ MW: uf “ 336,ws “ 4320

´ IW: uf “ 720

´ OPS: γ “ 1e-4,D “ 30

Vapor Pressure Deficit Model

´ MW: uf “ 1,ws “ 168

´ IW: uf “ 1

´ OPS: γ “ 1e-5,D “ 70

Specific Humidity Model

´ MW: uf “ 1,ws “ 2160

´ IW: uf “ 2160

´ OPS: γ “ 1e-5,D “ 50

Airtight Model

´ MW: uf “ 24,ws “ 4320

´ IW: uf “ 336

´ OPS: γ “ 1e-3,D “ 10

Wind Speed Model

´ MW: uf “ 24,ws “ 2160

´ IW: uf “ 1

´ OPS: γ “ 1e-5,D “ 10.

7.C.3 Hyperparameters for Control in Nuclear Fusion Case Study

The nuclear fusion dataset records measurements in 25 millisecond intervals. Therefore, in

tuning hyperparameters, we design the search grid to represent lengths of time during which

evolution of various plasma states are expected to be observable.
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For each calibration method, the hyperparameters were tuned by optimizing parity calibration

error (PCE, Section 7.3) on a validation dataset consisting of 1000 shot’s worth of data, over the

following grids:

• uf P r1, 2, 4, 8, 24s, separately for MW and IW

• ws P r2, 8, 16, 24, 48, 60, 80, 100, 200s, for MW

• γ P [1e-5, 5e-5, 1e-4, 5e-4, 1e-3, 5e-3, 1e-2], for OPS

• D P r1, 10, 30, 50, 70, 100, 150, 200s, for OPS

The tuned hyperparameters we used are as follows:

• MW: uf “ 1,ws “ 60

• IW: uf “ 8

• OPS: γ “ 5e-3,D “ 150.

7.D Online Platt Scaling Algorithm

Algorithm 7.2 Online Platt Scaling (based on Gupta and Ramdas (2023), notation adapted)

Input: K “ tpx, yq : ∥px, yq∥2 ď 100u, time horizon H , and initialization parameter

paOPS

1 , bOPS

1 q “ p1, 0q “: θ1 P K
Hyperparameters and default values: γ “ 0.1, D “ 1, A0 “ p1{γDq2 I2
for t “ 1 to H do

Play θt, observe log-loss lpmθtpfpxtqq, ytq and its gradient ∇t :“ ∇θtlpm
θtpfpxtqq, ytq

At “ At´1 ` ∇t∇⊺
t

Newton step:
rθt`1 “ θt ´ 1

γ
A´1

t ∇t

Projection: paOPS

t`1, b
OPS

t`1q “ θt`1 “ argminθPKprθt`1 ´ θq⊺Atp
rθt`1 ´ θq

end for
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Part III

Original contributions (related)

This part collates novel research contributions made by the author on the topic of

uncertainty quantification, with broad connections to post-hoc calibration. Each

chapter reproduces a separate published paper.
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Chapter 8
Faster online calibration without

randomization: interval forecasts and the

power of two choices

This chapter is based on Gupta and Ramdas (2022a).

We study the problem of making calibrated probabilistic forecasts for a binary sequence generated
by an adversarial nature. Following the seminal paper of Foster and Vohra (1998), nature is often
modeled as an adaptive adversary who sees all activity of the forecaster except the randomization
that the forecaster may deploy. A number of papers have proposed randomized forecasting strategies
that achieve an ϵ-calibration error rate of Op1{

?
T q, which we prove is tight in general. On the other

hand, it is well known that it is not possible to be calibrated without randomization, or if nature also
sees the forecaster’s randomization; in both cases the calibration error could be Ωp1q. Inspired by
the equally seminal works on the power of two choices and imprecise probability theory, we study a
small variant of the standard online calibration problem. The adversary gives the forecaster the
option of making two nearby probabilistic forecasts, or equivalently an interval forecast of small
width, and the endpoint closest to the revealed outcome is used to judge calibration. This power of
two choices, or imprecise forecast, accords the forecaster with significant power—we show that a
faster ϵ-calibration rate of Op1{T q can be achieved even without deploying any randomization.

8.1 Introduction

A number of machine learning and statistics applications rely on probabilistic predictions. In

economics, the influential discrete choice framework uses probabilistic modeling at its core

(McFadden, 1974). Spiegelhalter (1986) argued that when predictive models are used in medicine

for detecting disease, categorizing patient risk, and clinical trials, it is imperative that they

provide accurate probabilities, in order to appropriately guide downstream decisions. Weather

forecasters (and their audiences) would like to know the probability of precipitation on a given

day (Brier, 1950).
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We study the problem of producing probabilistic forecasts for binary events, that are calibrated

without any assumptions on the data-generating process. Informally, a forecaster is calibrated if,

on all the days that the forecaster produces a forecast pt that is approximately equal to p P r0, 1s,

the empirical average of the observations yt P t0, 1u is also approximately equal to p, and this is

true for every p P r0, 1s that is frequently close to a forecast (Dawid, 1982). We formalize this

next.

8.1.1 Calibration games and ϵ-calibration

Calibration-Game-I (classical)
(nature is an adaptive adversary)

At time t “ 1, 2, . . . ,
• Forecaster plays ut P ∆pr0, 1sq.

• Nature plays vt P ∆pt0, 1uq.

• Forecaster predicts pt „ ut.

• Nature reveals yt „ vt.

Calibration-Game-II (POTC)
(nature is an adaptive adversary,

forecaster has two nearby choices)

Fix ϵ ą 0. At time t “ 1, 2, . . . ,
• Forecaster plays pt0, pt1 P r0, 1s, such that

pt0 ď pt1 and |pt1 ´ pt0| ď 2ϵ.

• Nature reveals yt P t0, 1u.

• If yt “ 1, set pt “ pt1; else set pt “ pt0.

Calibration-Game-I models the problem as a game between a forecaster and nature. The fore-

caster produces a randomized forecast ut P ∆pr0, 1sq, which is a distribution over the space of

forecasts r0, 1s. ∆pSq denotes the set of probability distributions over the set S (in every case, S
is a standard set like r0, 1s with a canonical σ-algebra). Nature observes ut and responds with a

Bernoulli distribution for the outcome vt P ∆pt0, 1uq “ r0, 1s. We abuse notation slightly and

use vt to denote both the Bernoulli distribution and its parameter in r0, 1s. Then forecaster and

nature draw their actual actions, the forecast pt „ ut and the outcome yt „ vt, simultaneously.

At time T ą 1, the prior activities put, vt, pt, ytq
T´1
t“1 are known to both players. The goal of the

forecaster is to appear calibrated, defined shortly. Nature wishes to prevent the forecaster from

appearing calibrated. Such a nature is typically referred to as an adaptive adversary.

Even before defining calibration formally, we can see that randomization is essential for the

forecaster to demonstrate any semblance of being calibrated. If the forecaster is forced to put all

his mass on a single pt at each time (or equivalently if nature is an adaptive offline adversary),

nature can play vt “ yt “ 1 tpt ď 0.5u to render the forecaster highly miscalibrated (Oakes,

1985; Dawid, 1985).

In anticipation of a forthcoming definition of ϵ-calibration error (equation (8.1)), we note that

it will suffice for forecasters to only make discrete forecasts. Let ϵ ą 0 be a discretization or

tolerance level, which is a small constant such as 0.1 or 0.01 depending on the application. For

technical simplicity, we assume that ϵ “ 1{2m for some integer m ě 2. Consider the ϵ-cover of

r0, 1s given by the m intervals I1 “ r0, 1{mq, I2 “ r1{m, 2{mq, . . . , Im “ r1 ´ 1{m, 1s. At time

t, the forecaster makes a forecast on the ‘2ϵ-grid’ of the mid-points of these intervals:

pt P tM1 :“ 1{2m “ ϵ,M2 :“ 3{2m “ 3ϵ, . . . ,Mm :“ 1 ´ 1{2m “ 1 ´ ϵu.
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Denote the total number of times the forecast is pt “ Mi until time T ě 1 as

NT
i :“ |tt ď T : pt “ Miu| ,

and the observed average of the yt’s when pt “ Mi as

pTi :“

#

1
NT

i

ř

tďT :pt“Mi
yt if NT

i ą 0,

Mi otherwise.

Following Foster (1999), the (ℓ1-)calibration error at time T , CET , is defined as the weighted sum

of the prediction errors for each possible forecast:

CET :“
m
ÿ

i“1

NT
i

T
¨
∣∣Mi ´ pTi

∣∣
, or equivalently

m
ÿ

i“1

∣∣∣∣∣ 1T
T
ÿ

t“1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣ .
Finally, we define the ϵ-calibration error pϵ-CET q as the calibration error with a slack of ϵ:

ϵ-CET :“ maxpCET ´ ϵ, 0q. (8.1)

In Calibration-Game-I, the forecaster and nature are allowed to randomize, thus ϵ-CET is a

random quantity. A commonly studied object is its expected value. A forecaster is said to be

ϵ-calibrated if, for any strategy of nature, the forecaster satisfies

lim
TÑ8

E rϵ-CET s “ 0, or equivalently E rϵ-CET s “ oT p1q
ljhn

fpT q

. (8.2)

We are interested in the worst case value of E rϵ-CET s against an adversarial nature, denoted as

fpT q, henceforth called the ϵ-calibration rate or simply calibration rate. We show results about

the asymptotic dependence of fpT q as T Ñ 8, holding ϵ as a fixed problem parameter on which

f may depend arbitrarily.

8.1.2 Related work and our contributions

A number of papers have proposed ϵ-calibrated forecasting algorithms which guarantee fpT q “

Op1{
?
T q—the first was the seminal work of Foster and Vohra (1998), followed by a number of

alternative proofs and generalizations of their result (Foster (1999), Fudenberg and Levine (1999),

Vovk et al. (2005b), Mannor and Stoltz (2010, Section 4.1), Abernethy et al. (2011, Theorem 22),

Perchet (2015, Section 4.2)).

In Theorem 8.3, we show that the Op1{
?
T q rate achieved by these algorithms is tight. There is

a strategy for nature that ensures fpT q “ Ωp1{
?
T q. Our proof uses a non-constructive lower

bound for Blackwell approachability games (Mannor and Perchet, 2013).

Qiao and Valiant (2021) recently showed that the worst-case calibration error without the ϵ-
slack, E rCET s, is ΩpT´0.472q. In contrast, we treat ϵ as a small constant fixed ahead of time,
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and consider lower bounds on E rϵ-CET s. Neither goal subsumes the other, so our lower bound

complements theirs. In particular, observe that E rCET s “ ΩpT´1{2q can be forced by nature by

playing a non-adaptive Bernoulli strategy, drawing independently each yt „ Bernoullippq for

some p. This strategy seems insufficient for deriving a useful lower bound on E rϵ-CET s. These

comparisons are further discussed in Section 8.4.6.

Foster (1999) showed that calibration is a Blackwell approachability instance (see Section 8.4.1),

and while the rate fpT q “ Ωp1{
?
T q has not been formally established earlier (to the best of our

knowledge), it is the rate one expects from a general Blackwell approachability instance (Cesa-

Bianchi and Lugosi, 2006, Remark 7.7). Instead, the community has looked to establish positive

results for alternative notions: calibration with more stringent tests than ϵ-calibration (Perchet,

2015; Rakhlin et al., 2011), calibration where the output space takes more than two values

(Mannor and Stoltz, 2010), calibration with checking rules (Lehrer, 2001; Sandroni et al., 2003;

Vovk et al., 2005b), weak calibration (Kakade and Foster, 2004), and smooth calibration (Foster

and Hart, 2018). In particular, while no deterministic forecaster playing Calibration-Game-I can

be ϵ-calibrated, there exist deterministic forecasters who are weakly/smoothly calibrated (Foster

and Hart, 2018).

In our work, we take a slightly different approach from these papers. We retain the classical

definition of ϵ-calibration but change the calibration game. In Calibration-Game-II, also called

the Power-Of-Two-Choices (POTC) game, the forecaster reveals two forecasts pt0, pt1 P r0, 1s,

such that pt0 ď pt1 and |pt1 ´ pt0| ď 2ϵ. Since the earlier binning scheme used a 2ϵ-grid, that

is 1{m “ 2ϵ, this effectively allows the forecaster to choose a full bin as their forecast (rather

than its midpoint), or equivalently to choose two consecutive bin midpoints. Thus there is no

randomization, and nature knows the two forecasts. If nature chooses to play yt “ 0, pt “ pt0 is

used to judge the calibration of the forecaster, and if nature chooses to play yt “ 1, pt “ pt1 is

used. (One could say that the forecast closer to reality is used for measuring calibration, or that

the forecaster decides which one of the two forecasts to use; these are all equivalent.) Obviously,

without the restriction of pt0, pt1 being 2ϵ-close, the problem is trivial: the forecaster would

predict pt0 “ 0 and pt1 “ 1 in each round, and achieve zero error in every round. Requiring

|pt1 ´ pt0| ď 2ϵ makes the problem interesting. The POTC setup may appear surprising to some

and we devote Section 8.2 to motivating it.

The summary of our main result (Theorem 8.1) is as follows. In the POTC game, the forecaster

can ensure—deterministically—that

ϵ-CET “ Op1{T q. (8.3)

Compared to (8.2), there is no expectation operator anymore since the forecaster is deterministic

and nature being fully adaptively adversarial does not benefit from randomizing.

Our forecaster is a variant of Foster (1999). While Foster’s forecaster randomizes over two

nearby forecasts (making it almost deterministic in the sense of Foster and Hart (2021)), our

forecaster predicts both these values and is judged with respect to the better one (and is actually,

not almost, deterministic).

Remark 8.1 (Generalization from binary to bounded outputs). The POTC game can be modified

for bounded, instead of binary, outputs. That is, nature can play vt P r0, 1s and calibration would
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be judged with respect to the average of the vt’s on the instances when pt “ Mi. Note that this

is not the same as nature playing yt „ Bernoullipvtq, since the calibration loss (left-hand-side

of (8.3)) is not linear in yt. With bounded outputs, the same Op1{T q calibration rate can be

achieved by a minor modification to our proposed forecasting strategy; see Appendix 8.C for

more details. A similar remark holds for Calibration-Game-I and the corresponding lower bound

of Ωp1{
?
T q. This latter fact is evident without further details since the lower bound can only

increase if nature is given more flexibility.

Organization. Section 8.2 provides further context and motivation for the POTC game. Sec-

tion 8.3 presents our algorithm for the POTC game and proves the fast calibration rate of Op1{T q

for it (Theorem 8.1). Section 8.4 reviews the well-known equivalence between calibration and

Blackwell’s approachability theorem (Blackwell, 1956), using which we prove the slow calibra-

tion rate of Ωp1{
?
T q for Calibration-Game-I (Theorem 8.3). Most proofs are presented alongside

the results. Section 8.5 concludes with a discussion.

8.2 Motivation for the POTC calibration game

Calibration-Game-II or the POTC game is motivated by two rich fields of literature: imprecise

probability and the power of two choices.

8.2.1 A practical perspective via imprecise probability

The reader may wonder what the practical usefulness of the POTC game is. Why would we

judge the forecaster in such a manner? The answer is that our earlier problem was phrased in a

fashion that makes the connection to the power of two choices transparent. But one can also

re-cast the problem in the language of imprecise probability. In this area, one is typically not

restricted to work with single, unique probability measures, but instead the axioms of probability

are relaxed, and added flexibility is provided in order to work with upper and lower probability

measures (Walley and Fine, 1982).

In the context of our problem, instead of saying that the probability of rain is 0.3, a forecaster

is allowed to say 0.3 ˘ ϵ. One may just say that the forecaster is slightly uncertain and does

not wish to commit to a point forecast, and indeed we may not force a forecaster to announce a

point forecast against their will. From a Bayesian or game-theoretic perspective, we may say

that the forecaster allows bets against their forecast, represented as a contract which pays off yt,
but the forecaster’s prices for buying and selling such a contract are slightly different. From

a practical perspective, this type of interval forecast arguably has almost the same utility and

interpretability to a layman as the corresponding point forecast. The use of upper and lower

forecasts (translated to prices or betting odds) is standard in game-theoretic probability (Shafer

and Vovk, 2019). Separately, the recent work of Cooman and De Bock (2022) establishes that

randomness is inherently imprecise in a formal sense, and provides a different justification for the

use of interval forecasts for binary sequences.
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Remarkably, this small and seemingly insignificant change in reporting leads to a huge change

in our ability to achieve calibration. (This gain can be rather puzzling: we were binning/gridding

anyway, so why not report a full bin rather than its midpoint? How could that possibly improve

our calibration error?!) Of course, we must figure out how to judge the quality of such an

interval forecast: we must swap out 1 tpt “ Miu pMi ´ ytq in CET for a generalized notion of

error that dictates how far yt was from the forecasted interval At :“ rpt0, pt1s. To do this, we

use the distance from a point to a convex set: we replace Mi with the projection of yt onto At,

denoted projpyt, Atq. This is exactly what our POTC version does, just expressed differently.

When we generalize the definition of calibration, it is notationally simpler to restrict the fore-

casted interval endpoints to be the same m gridpoints, meaning that At “ rMi,Mi`1s for some

i ď m ´ 1 (rather than At “ Ii, the intervals whose midpoints are Mi). In this case, we call a

method that produces interval forecasts pItqtě1 as being ϵ-calibrated if:

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T
ÿ

t“1

1 tprojpyt, Atq “ Miu distpyt, Atq

∣∣∣∣∣ ´ ϵ, 0

¸

“ op1q, (8.4)

where distpy, Aq :“ |y ´ projpy, Aq| is the distance of y to interval A. (When the interval is

a single point, we recover the original definition of calibration, but in this case we know that

randomization is necessary for ϵ-calibration.)

Imprecise probability has also made an intriguing appearance in the simpler setting commonly

considered in machine learning, of achieving calibration in offline binary classification in the

presence of i.i.d. data. This is a problem where theoretical progress has been made on designing

distribution-free algorithms that have calibration guarantees by just assuming that the covariate-

label pairs of data are i.i.d., while also performing well on real data (Gupta et al., 2020; Gupta

and Ramdas, 2021; Gupta and Ramdas, 2022b). Venn predictors are a class of distribution-free

algorithms that produce imprecise probability forecasts (Vovk et al., 2003; Vovk and Petej,

2014). On observing the covariates of a new point, Venn predictors output a particular interval

of probabilities rp0, p1s for the unknown binary label. A strong, but slightly odd, calibration

property holds: the authors prove that pY (a random and unknown prediction, since Y is

unknown and random) achieves exact calibration in finite samples. One can, in some sense,

view our work as extending the use of such imprecise interval forecasts to the online calibration

setting with adversarial data.

8.2.2 The varied applications of the power of two choices

The power of two choices (POTC) refers to a remarkable result by Azar et al. (1994) for the

problem of load balancing. Suppose n balls are placed independently and uniformly at random

into n bins. It can be shown that with high probability, the maximum number of balls in a bin

(the maximum load) will be
rΘplog nq. Consider a different setup where the balls are placed

sequentially, and for each ball, two bin indices are drawn uniformly at random and offered to a

load-balancer who gets to decide which of the two bins to place the ball in. The load-balancer

attempts to reduce the maximum load by following a natural strategy: at each step, place the
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ball in the bin with lesser load. It turns out that with this strategy the maximum load drops

exponentially to
rΘplog log nq.

The POTC result has led a number of applications. In a network where one of many servers can

fulfil a request, it is exponentially better to choose two servers (instead of one) at random and

allocate the server with fewer existing requests (Azar et al., 1994). Using two hashes instead

of one significantly reduces the load of a single hash bucket (Broder and Mitzenmacher, 2001).

In circuit routing, selecting one of two possible circuits provably leads to decongestion (Cole

et al., 1998). When allocating a task to one of many resources where an intensive query needs to

be made about the resource capacity, querying two resources is often better than querying all

resources, or querying a single resource (Azar et al., 1994). Recently, Dwivedi et al. (2019) used

the POTC to develop an online thinning algorithm that produces low-discrepancy sequences on

hypercubes, with applications to quasi Monte Carlo integration. For further applications and a

survey of mathematical techniques, we refer the reader to the thesis of Mitzenmacher (1996), or

the survey by Mitzenmacher et al. (2001).

In this work, we find yet another intriguing phenomenon involving the POTC, this time in the

context of calibration. We modify the classical setup of calibration (Calibration-Game-I) to the

POTC setup (Calibration-Game-II), by offering the forecaster two nearby choices. We show

that this change accords the forecaster with significant power, enabling faster calibration, even

without randomization.

8.3 Main results: algorithm and analysis

Consider the POTC game (Calibration-Game-II). Recall that the forecaster’s probabilities cor-

respond to the mid-points of the intervals I1 “ r0, 1{mq, . . . , Im “ r1 ´ 1{m, 1s, given by

M1 “ 1{2m, . . . ,Mm “ 1 ´ 1{2m. The forecaster can play either ppt0, pt1q “ pMi,Miq or

ppt0, pt1q “ pMi,Mi`1q for some i. We can also say that the forecaster predicts one of the two

intervals tMiu or rMi,Mi`1s respectively.

We introduce some notation to describe the algorithm. For i P rms :“ t1, 2, . . . ,mu and t ě 1,

define:

(left endpoint of interval i) li “ pi ´ 1q{m,

(right endpoint of interval i) ri “ i{m,

(frequency of interval i) N t
i “ |t1 tps “ Miu : s ď tu| ,

(observed average when Mi was forecasted) pti “

#

řt
s“1 ys1 tps “ Miu {N t

i if N t
i ą 0

Mi if N t
i “ 0,

(deficit) dti “ li ´ pti,

(excess) eti “ pti ´ ri.

The terminology ‘deficit’ alludes to the fact that if pti is smaller than desired (to the left of li),
then dti ą 0 (pti is ‘in deficit’). ‘Excess’ has the opposite interpretation.
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POTC-Cal: Algorithm for forecaster in Calibration-Game-II
(for notation, see Section 8.3 below)

• At time t “ 1, play pp10, p11q “ pM1,M1q. Thus p1 “ M1.

• At time t ` 1 (t ě 1q, if

condition A: there exists an i P rms such that dti ď 0 and eti ď 0,

is satisfied, play pMi,Miq for any i that verifies condition A (that is, pt`1 “ Mi). Otherwise,

condition B: there exists an i P rm ´ 1s such that eti ą 0 and dti`1 ą 0,

must be satisfied (see Lemma 8.5). Play pMi,Mi`1q for any index i that verifies condition

B (that is, pt`1 “ Mi if yt`1 “ 0 and pt`1 “ Mi`1 if yt`1 “ 1).

8.3.1 Forecasting algorithm

The algorithm, presented on top of this page, is a variant of the one proposed by Foster (1999).

Foster’s forecaster isolates two relevant Mi’s and randomizes over them; we use the same Mi’s

to form the reported interval. At time t ` 1, if there is a forecast Mi that is already ‘good’

in the sense that pti P rli, ris, the forecaster predicts Mi. Otherwise, the forecaster finds two

consecutive values pMi,Mi`1q such that pti is in excess and pti`1 is in deficit (such an i exists

by Lemma 8.5, Appendix 8.A). The forecaster plays pMi,Mi`1q. If nature reveals yt`1 “ 0, then

pt`1 “ Mi, and the excess of pti decreases. If nature reveals yt`1 “ 1, then pt`1 “ Mi`1, and the

deficit of pti`1 decreases.

8.3.2 Analysis of POTC-Cal

We now present our main result along with a short proof.

Theorem 8.1. POTC-Cal satisfies, at any time T ě 1, for any strategy of nature,

ϵ-CET ď m{T. (8.5)

Proof. Consider any t ě 1. We write each of the m terms in the calibration error at time t, CEt,

as follows: ∣∣∣∣∣1t
t
ÿ

s“1

1 tps “ Miu pMi ´ ysq

∣∣∣∣∣ “
N t

i |Mi ´ pti|
t

“
N t

i pϵ ` maxpdti, e
t
iqq

t
.

Define E
piq
t :“ N t

i maxpdti, e
t
iq, and observe that

ϵ-CET “ max

˜

m
ÿ

i“1

NT
i ϵ ` E

piq
T

T
´ ϵ, 0

¸

“ max

˜

m
ÿ

i“1

E
piq
T

T
, 0

¸

.
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We will show that for every i P rms, E
piq
T ď 1, proving the theorem.

Consider some specific i P rms. If action i is never played, then NT
i “ 0, and E

piq
T “ 0. Suppose

an action i has NT
i ą 0. For each 1 ď t ă T , if at`1 ‰ i, then E

piq
t`1 “ E

piq
t . If at`1 “ i, then by

Lemmas 8.1 and 8.2 (stated and proved below), E
piq
t`1 ď maxpE

piq
t , 1q. In other words, at all t, the

value of E
piq
t`1 either stays bounded by 1, or decreases compared to the previous value E

piq
t . A

trivial inductive argument thus implies E
piq
T ď 1. For completeness, we verify the base case:

since p1 “ M1, E
pi‰1q

1 “ 0 and E
p1q

1 ď 1 (as d11 ď 0 and e11 ď 1).

Lemma 8.1. Suppose condition A was satisfied at time t` 1 and the forecast was pt`1 “ Mi. Then,
N t`1

i maxpdt`1
i , et`1

i q ď 1.

Proof. Since pt`1 “ Mi, N
t`1
i “ N t

i ` 1, and N t`1
i pt`1

i “ N t
i p

t
i ` yt`1. Then,∣∣dt`1

i ´ dti
∣∣ “

∣∣et`1
i ´ eti

∣∣ “
∣∣pt`1

i ´ pti
∣∣ “

∣∣∣∣N t
i p

t
i ` yt`1

N t
i ` 1

´
N t

i p
t
i ` pti

N t
i ` 1

∣∣∣∣
“

∣∣∣∣yt`1 ´ pti
N t

i ` 1

∣∣∣∣ ď
1

N t
i ` 1

“
1

N t`1
i

.

(8.6)

Since by condition A, maxpdti, e
t
iq ď 0, we obtain maxpdt`1

i , et`1
i q ď 1{N t`1

i .

Lemma 8.2. Suppose condition A was not satisfied at time t ` 1 and the forecast was pt`1 “ Mi,
following condition B. Then N t`1

i maxpdt`1
i , et`1

i q ď maxpN t
i maxpdti, e

t
iq, 1q.

Proof. Suppose yt`1 “ 0. Since we are playing as per condition B, eti ą 0. Since dti ` eti “

li ´ ri “ ´1{m, we have that dti ă 0. Thus,

yt`1 “ 0 ùñ eti ą 0 and dti ă 0.

Similarly, it can be verified that yt`1 “ 1 ùñ eti ă 0 and dti ą 0. Below we assume without

loss of generality that yt`1 “ 0. (A similar argument goes through for the case yt`1 “ 1.)

We derive how N t
i maxpdti, e

t
iq changes when going from t to t ` 1. There are two cases:

et`1
i ě dt`1

i or et`1
i ă dt`1

i . If et`1
i ě dt`1

i , then

N t`1
i maxpdt`1

i , et`1
i q “ N t`1

i et`1
i “ N t`1

i pt`1
i ´ N t`1

i ri

“ N t
i p

t
i ´ N t`1

i ri (since yt`1 “ 0)

“ N t
i e

t
i ´ ri

“ N t
i maxpdti, e

t
iq ´ ri ď N t

i maxpdti, e
t
iq.

On the other hand if et`1
i ă dt`1

i , then,

N t`1
i maxpdt`1

i , et`1
i q “ N t`1

i dt`1
i

ď N t`1
i pdti `

∣∣dt`1
i ´ dti

∣∣q
p˚q

ă N t`1
i p0 ` 1{N t`1

i q “ 1.

Inequality p˚q holds since dti ă 0 and

∣∣dt`1
i ´ dti

∣∣ ď 1{N t`1
i (see set of equations (8.6)).
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8.4 Ωp1{
?
T q lower bound for the classical calibration game

Calibration-Game-I can be viewed as a repeated game with vector-valued payoffs/rewards.

Such games were studied by Blackwell (1956), and are now commonly referred to as Blackwell

approachability games. We review the reduction from calibration to Blackwell approachability

and use it to prove the lower bound. Throughout this section, we denote the action space of the

forecaster as X “ tM1,M2, . . . ,Mmu and that of nature as Y “ t0, 1u. The random plays of

the forecaster lie in ∆pX q which is a probability simplex in m dimensions. We embed ∆pX q in

Rm
to simplify discussion.

8.4.1 Calibration as an instance of Blackwell approachability

The fact that calibration can be modelled as a Blackwell approachability instance is well-known

(since Foster (1999) and Hart and Mas-Colell (2000)). Suppose the actions of the forecaster and

nature give a reward r : X ˆ Y Ñ Rm
defined as follows: the i-th component of the reward

vector a “ rpp P X , y P Yq P Rm
is given by

ai “ 1 tp “ Miu ¨ pMi ´ yq. (8.7)

Let āT :“
řT

i“1 rppt, ytq{T be the average reward vector given component-wise by āTi “
řT

t“1 1 tpt “ Miu pMi ´ ytq{T . Let Bϵ be the ℓ1-ball with radius ϵ, and dist the ℓ1-distance

function. Note that

distpāT , Bϵq “ max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T
ÿ

t“1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣ ´ ϵ, 0

¸

“ ϵ-CET .

Thus, the ϵ-calibration condition (8.2) is equivalent to limTÑ8 E
“

distpāT , Bϵq
‰

“ 0. If this

condition is satisfied, we say that āT approaches Bϵ in the limit. Blackwell (1956) established

necessary and sufficient conditions for approachability.

Theorem 8.2 (Corollary to Theorem 3 by Blackwell (1956)). Assume the same setup as Calibration-
Game-I, but the players receive a vector-valued reward r, as defined component-wise in (8.7). The
forecaster can ensure that limTÑ8 E

“

distpāT , Bϵq
‰

“ 0 if and only if for every v P ∆pYq “ r0, 1s,
there exists u P ∆pX q such that the expected reward belongs to Bϵ:

@v P ∆pYq, Du P ∆pX q : Ep„u,y„v rrpp, yqs “

m
ÿ

i“1

uipp1´vq¨rpMi, 0q`v ¨rpMi, 1qq P Bϵ. (8.8)

The hypothetical situation considered in the theorem is akin to a one-shot game but with the

order of the players reversed: nature plays v first and the forecaster responds with u. If the

forecaster can respond to every play by nature and ensure that the expected reward lies in Bϵ,

then the forecaster can ensure that āT approaches Bϵ in the sequential game (where nature

goes second each time). Abernethy et al. (2011) call this response-satisfiability; in their words,

Theorem 8.2 is interepreted as response-satisfiability ðñ approachability.
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Proposition 8.1. The forecaster can exhibit response satisfiability (8.8). Thus the forecaster playing
Calibration-Game-I can ensure limTÑ8 E

“

distpāT , Bϵq
‰

“ 0 and be ϵ-calibrated (8.2).

The proof of this well-known result is in Appendix 8.A.3. A second question is of the rate at

which the expected reward vector approaches the desired set. As reviewed in the introduction,

a number of papers have shown that the rate of approachability for the ϵ-calibration game is

Op1{
?
T q. We show that this rate cannot be improved.

8.4.2 Ωp1{
?
T q lower bound for the ϵ-calibration error rate

Theorem 8.3. A forecaster playing Calibration-Game-I against an adversarial nature cannot
achieve ϵ-calibration at a rate faster than Op1{

?
T q. That is, for every strategy of the forecaster,

there is a strategy of nature that ensures

E rϵ-CET s “ Ωp1{
?
T q. (8.9)

Mannor and Perchet (2013) analyzed the convergence rate in approachability games and charac-

terized conditions, which if satisfied by a target set C, entail that nature can ensureE
“

distpāT , Cq
‰

“

Ωp1{
?
T q. In particular, if these conditions are satisfied Bϵ, Theorem 8.3 follows immediately

since distpāT , Cq “ ϵ-CET .

Theorem 8.4 (Theorem 6.ii by Mannor and Perchet (2013)). Let C be a closed convex set that is (i)
minimal approachable, and (ii) mixed approachable. Then C cannot be approached at a rate faster
than Op1{

?
T q, or in other words, E

“

distpāT , Cq
‰

“ Ωp1{
?
T q, where āT is the average reward

vector.

In what follows, we introduce the conditions (i) minimal approachability and (ii) mixed ap-

proachability in the context of our calibration game, and show that they are satisfied by Bϵ

(Lemma 8.3 and Lemma 8.4 respectively).

8.4.3 Minimal approachability

For a point u P Rm
and a convex set K Ď Rm

, define the distance of u from K as dKpuq “

infu1PK }u ´ u1}2. For any λ ą 0, a convex set K 1 Ď K is said to be a λ-shrinkage of K if

tu : dK1puq ď λu Ď K . In the following definition of minimal approachability, we implicitly

assume that the set of action sets of the players and the corresponding rewards have been fixed,

and the goal is to characterize which convex sets are approachable and which are not.

Definition 8.1. A set K is minimal approachable if K is approachable, but no λ-shrinkage of

K is approachable.

We now show the first condition required by Theorem 8.4.

Lemma 8.3. The set Bϵ is minimal approachable.
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Proof. Proposition 8.1 shows that Bϵ is approachable so it remains to show that the minimality

condition holds. Let K be a λ-shrinkage of Bϵ for some λ ą 0. We first argue that K Ď Bϵ´λ.

Suppose this were not the case, that is, there exists u P K such that u R Bϵ´λ. By definition of

the ℓ1-ball Bϵ´λ, this means that }u}1 ą ϵ ´ λ. We will show that such a u cannot belong to any

λ-shrinkage of Bϵ, in particular it cannot belong to K , leading to a contradiction.

Consider the point u1 “ u ` pλ{}u}2qu. Note that dKpu1q ď }u ´ u1}2 “ λ. Since K is a

λ-shrinkage of Bϵ, this implies that u1 P Bϵ, or }u1}1 ď ϵ. On the other hand, we have,

pϵ ěq }u1
}1 “ }u}1p1 ` λ{}u}2q

ě }u}1p1 ` λ{}u}1q (for any vector v P Rm
, }v}1 ě }v}2)

“ }u}1 ` λ ą pϵ ´ λq ` λ “ ϵ,

which is a contradiction. Thus K Ď Bϵ´λ, as claimed.

It follows thatK is approachable only ifBϵ´λ is approachable. We now show that for every λ ą 0,

Bϵ´λ is not approachable. As in the proof of Proposition 8.1, the i-th component of the reward

vector is given by uipMi ´ vq. Suppose v “ 1{m. Then for every Mi, |Mi ´ v| ě 1{2m “ ϵ,
by definition of m. Thus |uipMi ´ vq| ě uiϵ, and

řm
i“1 |uipMi ´ vq| ě

ř

uiϵ “ ϵ. Equivalently,

E rrpp, yqs R Bϵ´λ. By Theorem 8.2, Bϵ´λ is not approachable.

In order to describe the second condition required by Theorem 8.4 and show that it holds for Bϵ,

we need additional technical setup. The following subsection serves this purpose.

8.4.4 Reducing approachability to scalar-valued games

The vector-valued approachability game induces a number of scalar-valued min-max games, one

for each direction in Rm
. The value of these scalar games is closely connected to the question of

approachability.

Consider the approachability of Bϵ with respect to individual directions, represented by arbitrary

vectors q P Rm
(for intuition, one may equivalently think of q being direction vectors, those

with ℓ2-norm equal to one, but this restriction is technically unnecessary; we stick to q P Rm
).

Let c P Bϵ be such that q belongs to the normal cone of Bϵ at c, that is, xc, qy “ supc1PBϵ
xc1, qy “

ϵ ∥q∥
8

. We call such a pair pc, qq as admissible. Consider the following one-shot min-max game

defined for every admissible pc, qq:

Valpc, qq “ min
uP∆pX q

max
vPr0,1s

xEp„u,y„v rrpp, yqs ´ c, qy

“ min
uP∆pX q

max
vPr0,1s

˜

m
ÿ

i“1

uiqipp1 ´ vqMi ` vpMi ´ 1qq ´ xc, qy

¸

“ min
uP∆pX q

max
vPr0,1s

˜

m
ÿ

i“1

uiqipMi ´ vq ´ ϵ ∥q∥
8

¸

.

To appreciate the relationship between the Valpc, qq games and the Bϵ-approachability game,

consider the following. Suppose the forecaster can guarantee one-shot approachability, that
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is, there exists a fixed u‹ P ∆pX q such that for every v P r0, 1s, Ep„u‹,y„v rrpp, yqs P Bϵ.

By definition of the normal cone, for every admissible pc, qq, and any c1 P Bϵ, it holds that

xc1 ´ c, qy ď 0. In particular, Ep„u‹,y„v rrpp, yqs P Bϵ is such a c1
. It follows that for every

admissible pc, qq, Val(c, q) ď 0.

This observation does not hold in the reverse direction: even if Valpc, qq ď 0 for every admissible

pc, qq, one-shot approachability need not hold. The intuition is that the optimal u for different

pc, qq can be different, and it is unclear how to merge them to achieve one-shot forecasting for

the approachability game. In a remarkable result, Blackwell (1956) showed that the result does

hold in the reverse direction for the repeated approachability game (as opposed to the one-shot

approachability game).

Theorem 8.5 (Theorem 1 by Blackwell (1956)). A convex set K is approachable if and only if for
every admissible pc, qq, Valpc, qq ď 0.

This condition has also been termed as halfspace-satisfiability by Abernethy et al. (2011). The

result was stated in the language of convex cones by Mannor and Perchet (2013). Notice that for

our problem, the min-max game does not depend on c, once we replace xc, qy with ϵ ∥q∥
8

. We

thus simplify notation and index our games only by q P Rm
:

Valpqq :“ min
uP∆pX q

max
vPr0,1s

˜

m
ÿ

i“1

uiqipMi ´ vq ´ ϵ ∥q∥
8

¸

. (8.10)

We know that Bϵ is approachable (Proposition 8.1) and hence by Blackwell’s result, halfspace-

satisfiability must hold. That is, for every q P Rm
, Valpqq ď 0. For completeness, we verify this

in Proposition 8.2 (Appendix 8.A).

Having defined the Valpqq games, we are now ready to define mixed approachability.

8.4.5 Pure‹ game and mixed approachability

In order to achieve a small value in the Valpqq game, the forecaster may play a randomized

strategy, that is, u‹ ‰ ei, where ei is one of the canonical basis vectors of Rm
. On the other hand,

since nature goes second, she has no incentive to randomize: there will exist an optimal strategy

v‹ P t0, 1u. In the following ‘pure’ game, the forecaster is also not allowed to randomize over

his actions.

Val
p

pqq :“ min
pPX

max
yPt0,1u

xrpp, yq, qy ´ ϵ ∥q∥
8
. (8.11)

The superscript ‘p’ in Val
pp¨q refers to the min-max game being over pure actions p P X and

y P t0, 1u. Let us refer to this as the pure game, and the game (8.10) as the mixed game.

Suppose the approaching player (forecaster in our case) can ensure halfspace-satisfiability using

only pure actions: @q, Val
ppqq ď 0. Mannor and Perchet (2013) showed that if this is true then

then the approaching player can ensure approachability at a fast rate of Op1{nq. However, it

is possible to achieve the fast rate even if the above condition is not true. Characterizing a
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situation where the fast rate is unachievable requires considering another game, whose value

lies between the pure and mixed games. Define

X ‹
“ tp P X : p P supportpu‹

q, where u‹
is some optimal mixed strategy for the forecasteru;

Y‹
“ ty P t0, 1u : y P supportpv‹

q, where v‹
is some optimal mixed strategy for natureu.

Then define the pure
‹

game and its value as follows,

Val
‹
pqq :“ min

pPX ‹
max
yPY‹

xrpp, yq, qy ´ ϵ ∥q∥
8
. (8.12)

It can be shown that for any q, Valpqq ď Val
‹pqq ď Val

ppqq (Mannor and Perchet, 2013). We now

define mixed approachability.

Definition 8.2. An approachable set is said to be mixed approachable if there exists a q P Rm

such that while Valpqq “ 0, Val
‹pqq ą 0.

The following lemma witnesses a q that shows that the mixed approachability condition required

by Theorem 8.4 is satisfied. The witnessed q in the proof is identified based on case (d) in the

proof of Proposition 8.2.

Lemma 8.4. There exists a q P Rm such that Val‹pqq ą Valpqq “ 0. Thus Bϵ is mixed approachable.

Proof. Set q1:m´1 “ ´1 (i.e. qi “ ´1 for all i P rm ´ 1s) and qm “ 1. Let us compute Valpqq.

The game for nature reduces to maximizing p
řm´1

i“1 ui ´ umqv which can be done by playing

v “ 1
␣

um ď
řm´1

i“1 ui

(

. We perform case work to identify the optimal play for the forecaster.

• If

řm´1
i“1 ui ď um, vpum ´

řm´1
i“1 uiq “ 0. The objective for the forecaster reduces to:

min
uP∆pX q,

řm´1
i“1 uiďum

umMm ´

m´1
ÿ

i“1

uiMi ´ ϵ.

Note that 0 ă M1 ă M2 ă . . . ă Mm. Thus the forecaster would set the minimum possible

value of um, which under the constraints is equal to 0.5. For the second term, the largest

coefficient of a ui in the summation is Mm´1. Thus in order to minimize, the forecaster would

set the maximum possible value of um´1, which under the constraints is 1 ´ um “ 0.5. We

conclude that the minimum occurs at um “ um´1 “ 0.5, uiRtm´1,mu “ 0. The objective value

is equal to 0.5pMm ´ Mm´1q ´ ϵ “ 0.

• If

řm´1
i“1 ui ě um, v “ 1 is an optimal play for nature. The objective for the forecaster reduces

to:

min
uP∆pX q,

řm´1
i“1 uiěum

umpMm ´ 1q ´

m´1
ÿ

i“1

uipMi ´ 1q ´ ϵ.

As in the other case, this game is solved by observing that since M1 ă M2 ă . . . ă Mm ă 1,

the forecaster would want to put the maximum possible value on um which is 0.5 under the

constraints. Among u1:m´1, the multiplier of pMm´1 ´ 1q hurts the least. Thus the forecaster

sets um´1 “ 0.5 and uiRtm´1,mu. The objective value at the minimum is equal to 0.
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In each case, the forecaster’s optimal play is um “ um´1 “ 0.5, uiRtm´1,mu “ 0. This essentially

makes nature’s action irrelevant; nature’s optimal response is any v P r0, 1s. Thus we have

shown that Valpqq “ 0, X ‹ “ tMm´1,Mmu, and Y‹ “ t0, 1u. Let us now compute

Val
‹
pqq “ min

pPX ‹
max
yPY‹

p1 tp “ Mmu pMm ´ yq ´ 1 tp “ Mm´1u pMm´1 ´ yq ´ ϵq .

If the forecast is p “ Mm, nature can respond y “ 0 to achieve an overall objective of 1´2ϵ ą 0.

(We have assumed m ě 2 so that ϵ ă 0.5.) If the forecast is p “ Mm“1, nature can respond

y “ 1 to achieve an overall objective of 2ϵ ą 0. Thus, Val
‹pqq ą 0.

8.4.6 Relationship to previous lower bounds for calibration

Qiao and Valiant (2021) recently constructed a strategy of nature that ensures that the calibration

error of any forecaster playing Calibration-Game-I satisfies E rCET s “ ΩpT´0.472q. This bound is

interesting on its own and neither weaker nor stronger than the bound we show in Theorem 8.3.

By studying E rϵ-CET s, we allow the forecaster a slack of ϵ in his calibration error, which is

standard in several earlier cited works (see Section 8.1.2), and may be sufficient in practice given

that the forecasts are themselves on a 2ϵ-grid.

Qiao and Valiant (2021) also noted that E rCET s “ ΩpT´0.5q can be forced using a Bernoulli
strategy: at each time step, nature plays yt „ Bernoullippq for some fixed p P r0, 1s unknown to

the forecaster. However, in Appendix 8.B, we provide initial (but not conclusive) evidence that

the Bernoulli strategy seems insufficient to guarantee E rϵ-CET s “ ΩpT´0.5q. We construct an

ϵ-calibrated forecaster that satisfies E rCET ´ ϵs ď Oppolyplog T q{T q for the Bernoulli strategy

(polyplog T q corresponds to polynomial terms in logpT q). We conjecture that the stronger

statement E rϵ-CET s “ E rmaxpCET ´ ϵ, 0qs ď Oppolyplog T q{T q also holds, which would

mean that the Bernoulli strategy is insufficient to derive a Ωp1{
?
T q bound on the ϵ-calibration

rate (as shown by Theorem 8.3).

8.5 Summary

This work connects three rich areas of the literature in a natural way: online calibration, the

power of two choices, and imprecise probability. In summary, we show that by allowing the

forecaster to output a deterministic short interval of probabilities (of length at most 2ϵ), we can

achieve a faster rate of Op1{T q for ϵ-calibration against a fully adaptive adversarial reality who

presents the binary outcome after observing the interval forecast. This should be compared to

the Θp1{
?
T q rate achievable with randomized point forecasts (the upper bound is a seminal

result by Foster and Vohra (1998), the lower bound is ours), or the Θp1q for deterministic point

forecasts.

Arguably, such narrow intervals are as practically interpretable as point forecasts, and since some

sort of binning anyway underlies most calibration algorithms, it also feels natural to allow the
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forecaster to express their uncertainty in this fashion, especially since it avoids randomization

and improves calibration. Thus, we view our work as a theoretical contribution with clear

practical implications.

Several open questions remain, since we open a rather new line of investigation. We mention

two: (a) lower bounds for our setting are unknown, and (b) we don’t know if models providing

more than two choices could possibly improve the rate further. We suspect that 1{T is the

optimal rate since it corresponds to constant cumulative calibration error (without normalization

by T ), which is incurred at t “ 1 itself and seems unavoidable. Finally, it would be interesting

to (c) figure out multidimensional analogs of our work. We leave these for future work.

We also note some POTC-style results in online learning. Neu and Zhivotovskiy (2020) show

that for expert-based classification, providing the learner the choice to abstain from making a

prediction improves the regret from Ωp1{
?
T q to Op1{T q, similar to what we obtain in Theo-

rem 8.1. In zero-order convex optimization or bandit convex optimization, allowing the learner

two function evaluations enables the unknown gradient to be estimated using finite difference,

leading to significantly improved rates (Agarwal et al. (2010) and follow-up work). For example,

in the strongly convex case the rate improves from Ωp
?
T q to Oplog T q. Such improvements

also hold for non-smooth functions (Shamir, 2017). It would be interesting to consider POTC

setups for multi-armed bandits (two arm-pulls instead of one) or expert-based online learning

(choosing two experts instead of randomizing or choosing one expert).
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Appendices for Chapter 8

8.A Supplementary results and deferred proofs

8.A.1 Lemma 8.5 with proof

Lemma 8.5. In POTC-Cal, for any t ě 1, if condition A is not satisfied, then condition B must be
satisfied.

Proof. Note that for all t, dt1 ď 0 and etm ď 0, since l1 “ 0 and rm “ 1 (there cannot be a deficit

for interval 1 or an excess for interval m). If condition A does not hold for i “ m, dtm ą 0. Since

dt1 ď 0 and dtm ą 0, there exists an i P rm ´ 1s such that, dti ď 0 and dti`1 ą 0. If condition A

does not hold, then dti ď 0 implies eti ą 0. Thus we have that dti`1 ą 0 and eti ą 0; in other

words, condition B holds at the exhibited i.

8.A.2 Proposition 8.2 with proof

Proposition 8.2. The forecaster in Calibration-Game-I can ensure halfspace-satisfiability. That is,
for every q P Rm, Valpqq ď 0.

Proof. Our construction is directly inspired by the proof of calibration by Foster (1999). We

perform a case analysis for different values of q:

(a) Suppose any qi “ 0. Then, playing ui “ 1 and uj‰i “ 0 gives the objective value of

´ϵ ∥q∥
8

ď 0 irrespective of the value of v.

(b) Suppose q1 ą 0. Then, playing u1 “ 1 and ują1 “ 0 gives the objective value as

q1pM1 ´ vq ´ ϵ ∥q∥
8

ď q1ϵ ´ ϵ ∥q∥
8

ď 0 (note that M1 “ ϵ and v ě 0).

(c) Suppose qm ă 0. Then, playing um “ 1 and ujăm “ 0 gives the objective value as

qmpMm ´ vq ´ ϵ ∥q∥
8

ď |qm| ϵ ´ ϵ ∥q∥
8

ď 0 (note that Mm “ 1 ´ ϵ and v ď 1).

(d) Suppose that neither of cases (a), (b), or (c) hold. Namely, q1 ă 0, qm ą 0 and qi ‰ 0 for

any i. Let j P rm ´ 1s be the smallest index such that qj ă 0 and qj`1 ą 0. Then consider

u given by

uj “
|qj`1|

|qj| ` |qj`1|
, uj`1 “

|qj|
|qj| ` |qj`1|

, uiRtj,j`1u “ 0.

217



Observe two facts. First,

řm
i1
uiqiv “ pujqj ` uj`1qj`1qv “ 0 since the value inside the

brackets is itself equal to 0 (any play v of nature is thus rendered ineffective). Second,

m
ÿ

i1

uiqiMi “ ujqjMj ` uj`1qj`1Mj`1

“ pujqj ` uj`1qj`1qMj ` uj`1qj`1pMj`1 ´ Mjq

“ 0 ` 2uj`1qj`1ϵ

“
2 |qj| |qj`1| ϵ
|qj| ` |qj`1|

ď
∥q∥

8
|qj| ϵ

|qj| ` |qj`1|
`

∥q∥
8
|qj`1| ϵ

|qj| ` |qj`1|
“ ∥q∥

8
ϵ.

Thus the overall objective value is at most 0.

The cases considered for q are exhaustive, and in each case we verified that the forecaster can

guarantee that the objective value is at most 0.

8.A.3 Proof of Proposition 8.1

The i-th component of the expected reward vector (8.8) is uirp1 ´ vqMi ` vpMi ´ 1qs “

uipMi ´ vq. Suppose v P Ij . Consider playing u P ∆pX q given by uj “ 1, ui‰j “ 0. Then

|Ep„u,y„v rrpp, yqs| “ |
řm

i“1 uipMi ´ vq| “ |Mj ´ v|. Since v P Ij , Mj is the mid-point of Ij ,
and the radius of each interval is ϵ, |Mj ´ v| ď ϵ. Thus Eu,v rrpp, yqs P Bϵ.

8.B Bernoulli strategy seems insufficient to prove anΩp1{
?
T q

lower bound on the ϵ-calibration rate

This section is in the setup of Calibration-Game-I. Nature plays the ‘Bernoulli strategy’: for

a fixed p P r0, 1s (unknown to the forecaster), nature plays yt „ Bernoullippq each time. We

describe a strategy for the forecaster that satisfies E rϵ-CET s “ Op1{
?
T q against a general

strategy of nature; however, if nature is playing the Bernoulli strategy (instead of an arbitrary

strategy), then our proposed strategy satisfiesE rCET ´ ϵs ď Oppolyplog T q{T q. Our result stops

short of proving the following stronger statement against the Bernoulli strategy: E rϵ-CET s “

E rmaxpCET ´ ϵ, 0qs ď Oppolyplog T q{T q. We conjecture that this stronger statement holds

as well, meaning that the Bernoulli strategy is insufficient to derive a Ωp1{
?
T q bound on the

ϵ-calibration rate as shown in Theorem 8.3.
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PI-F99: pre-initialized version of the ϵ-calibrated strategy by Foster (1999)

Fix T0 P N. Set Tk :“ 2kT0, Kk as in (8.13), T p0q :“ 0, and T pkq :“
řk´1

j“1 Tj “ p2k ´ 1qT0.

For each time t “ 1, 2, . . .
• Identify smallest k P N such that t ď T pkq

.

• Play PI-F99pTk´1q based on observations from T pk´1q ` 1 until t:

if t ď T pk´1q ` mKk (initialization phase):

identify j such that t ´ T pk´1q P ppj ´ 1qKk ` jKks and predict Mj .

if t ą T pk´1q ` mKk:

follow Foster’s strategy based on observations from T pk´1q ` 1 until t.

8.B.1 The strategy

The strategy we propose is a pre-initialized version of the ϵ-calibration strategy of Foster (1999)—

we call it PI-F99 (for pre-initialized-Foster-99). PI-F99 relies on a few constants: a large

enough doubling horizon T0 P N, doubled versions of T0, namely Tk “: 2kT0 for k P N, and an

initialization parameter

Kk :“
P

p0.85 log Tk{ϵq2plog logpTk{2q ` 0.72 logp5.2mT 2
k qq

T

(8.13)

defined for each k. Kk is the sufficient number of samples required to estimate the bias of m
Bernoulli random variables simultaneously and uniformly across time to a certain degree of

reliability; further details become clear when analyzing. The constants in the definition of Kk

are not crucial (looser constants still lead to the same asymptotic dependence on T ), but we

identify them nevertheless in order to be precise.

PI-F99 is a concatenation of certain sub-strategies PI-F99pTkq for k P N, each of which

are strategies for Calibration-Game-I assuming the game only goes on until time t “ Tk. The

forecaster playing PI-F99pTkq first forecasts pt “ Mi, Kk times each, for each i P rms (thus

until time t ď mKk). This is the initialization phase. Then, for t P tmKk ` 1, . . . , Tku, the

forecaster follows Foster’s strategy initialized with current empirical frequencies for each bin,

based on what has been observed so far in the initialization phase.

The actual strategy of the forecaster corresponds to a concatenation of PI-F99pT0q,PI-F99pT1q,

PI-F99pT2q, and so on. This is a version of the doubling trick (Cesa-Bianchi and Lugosi, 2006).

The forecaster first plays PI-F99pT0q from t “ 1 to t “ T0, then plays PI-F99pT1q from

t “ T0 ` 1 to t “ T0 ` T1, then PI-F99pT2q and so on. To be clear, when switching from

PI-F99pTk´1q to PI-F99pTkq, the forecaster completely ignores the forecasts and observa-

tions so far, and restarts. The overall strategy is described in the box on top of the previous

page.
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8.B.2 Analysis

Ignoring terms in m and ϵ which are constants in Tk, mKk “ Oplog2 Tkq !
?
Tk (for sufficiently

large T0 and all k ě 0). Assuming a worst case error of 1 for each time until T ď mKk, we can

show that the ϵ-calibration error of PI-F99pTkq at any time T ď Tk satisfies the following:

E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T
ÿ

t“1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣ ´ ϵ, 0

¸ff

ď E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
mKk
ÿ

t“1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣ `

m
ÿ

i“1

∣∣∣∣∣ 1T
T
ÿ

t“mKk`1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣ ´ ϵ, 0

¸ff

ď
mKk

T
` E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T
ÿ

t“mKk`1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣ ´ ϵ, 0

¸ff

ď
Op

?
Tkq

T
` E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T
ÿ

t“mKk`1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣ ´ ϵ, 0

¸ff

.

To bound the second term, note that Foster’s strategy has a calibration rate of Op1{
?
T q starting

with any initialization. Thus,

E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T
ÿ

t“mKk`1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣ ´ ϵ, 0

¸ff

ď
Op

?
T ´ mKkq

T
ď

C
?
Tk

T
,

(8.14)

for some constant C independent of T0 and k. Thus for PI-F99pTkq at any time T ď Tk,

we have shown that E rϵ-CET s ď Op1{
?
T q. From this, it follows that the overall strategy

PI-F99 satisfies fpT q “ Op1{
?
T q asymptotically. This is shown in Proposition 8.4, later in

this subsection. Next, we perform the analysis for the Bernoulli strategy.

Proposition 8.3. PI-F99 satisfies E rCET s ď ϵ ` Oppolyplog T q{T q if nature follows the
Bernoulli strategy.

Proof. Following the notation of Section 8.3, let NT
i denote the number of times the mid-point

Mi is forecasted until time T . We have,

E

«

m
ÿ

i“1

∣∣∣∣∣ 1T
T
ÿ

t“1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣
ff

“

ř

iPrms:|p´Mi|ąϵ E
”

NT
i

∣∣∣Mi ´
řT

t“1 1 tpt “ Miu yt{N
T
i

∣∣∣ı
T

l jh n

E1

`

ř

iPrms:|p´Mi|ďϵ E
”

NT
i

∣∣∣Mi ´
řT

t“1 1 tpt “ Miu yt{N
T
i

∣∣∣ı
T

l jh n

E2

.
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We will show that

E1 “ Oppolyplog T q{T q,

and

E2 “ ϵ ` Op1{T q,

which will complete the argument. To this end, define AT
as the number of times that the

forecast is ϵ-close to p, until time T :

AT :“
ÿ

iPrms:|p´Mi|ďϵ

NT
i . (8.15)

Lemma 8.6 shows that PI-F99 satisfies E
“

AT
‰

“ T ´Oppolyplog T qq. This immediately leads

to the bound for E1; note that

∣∣∣Mi ´
řT

t“1 1 tpt “ Miu yt{N
T
i

∣∣∣ ď 1, and thus

E1 ď

ř

iPrms:|p´Mi|ąϵ E
“

NT
i

‰

T
“ 1 ´

E
“

AT
‰

T
“ Oppolyplog T q{T q.

Bounding E2 takes more work. The proof relies on the following ‘good’ event occurring with

high probability:

G ” GT : for every i P rms,

∣∣∣∣∣p ´

T
ÿ

t“1

1 tpt “ Miu yt{N
T
i

∣∣∣∣∣ ď ϵ{2.

Due to the pre-initialization steps in PI-F99, it can be guaranteed that PrpGq “ PrpGT q “

1 ´ Op1{T q. For the details, we refer the reader to the proof of Lemma 8.6 (see case (a) in the

proof), where we show a stronger version of this fact (namely, with ϵ{ log Tk instead of ϵ{2), for

PI-F99pTkq using a time-uniform concentration inequality (due to the time uniformity, the

implication holds for PI-F99 as well). We now do case work to bound E2.

(a) Suppose there exists an index j P rms such that |p ´ Mj| ď ϵ{2. This index must be unique

since the Mj’s are 2ϵ apart. Further, no i ‰ j can satisfy |p ´ Mi| ď ϵ. We now obtain the

following (below, we use absp¨q instead of |¨| to avoid confusion with the conditioning operator):

T ¨ E2 “ E

«

NT
j abspMj ´

T
ÿ

t“1

1 tpt “ Mju yt{N
T
j q

ff

ď E

«

NT
j abspMj ´

T
ÿ

t“1

1 tpt “ Mju yt{N
T
j q | G

ff

` p1 ´ PrpGqq ¨ T

“ E

«

NT
j abspMj ´

T
ÿ

t“1

1 tpt “ Mju yt{N
T
j q | G

ff

` Op1q

ď T ¨ E

«

abspMj ´

T
ÿ

t“1

1 tpt “ Mju yt{N
T
j q | G

ff

` Op1q
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ď T ¨ E

«

|Mj ´ p| ` abspp ´

T
ÿ

t“1

1 tpt “ Miu yt{N
T
j q | G

ff

` Op1q

ď T pϵ{2 ` ϵ{2q ` Op1q “ Tϵ ` Op1q,

where the inequality in the last line follows by the case assumption and the definition of G.

Thus for this case, we have shown that E2 “ ϵ ` Op1{T q.

(b) Suppose p is such that for every i, |p ´ Mi| ą ϵ{2. To bound E2, we are interested in the

Mi’s for which |p ´ Mi| ď ϵ. There can be at most two such Mi’s: an Mj that satisfies

Mj P pp ` ϵ{2, p ` ϵs, and an Ml that satisfies Mj P rp ´ ϵ, p ´ ϵ{2q.

Suppose there is an Mj satisfying Mj P pp` ϵ{2, p` ϵs. Set R “ 1
T

řT
t“1 1 tpt “ Mju pMj ´ytq

and note that R P r´1, 1s. By Lemma 8.7, E r|R|s ď E rRs ` 2 ¨ PrpR ă 0q. Note that

PrpR ě 0q ě PrpGq, since if G holds,

R ¨ T “

T
ÿ

t“1

1 tpt “ Mju pMj ´ ytq

“

T
ÿ

t“1

1 tpt “ Mju ppMj ´ pq ` pp ´ ytqq

ě

T
ÿ

t“1

1 tpt “ Mju pϵ{2 ` pp ´ ytqq

“ NT
i ϵ{2 `

T
ÿ

t“1

1 tpt “ Mju pp ´ ytq

ě NT
i ϵ{2 ´

∣∣∣∣∣ T
ÿ

t“1

1 tpt “ Mju pp ´ ytq

∣∣∣∣∣
ě NT

i ϵ{2 ´ NT
i ϵ{2 “ 0,

where the inequality in the last line is implied by G. Thus, PrpR ă 0q ď 1 ´ PrpGq “ Op1{T q.

Next, we bound E rRs.

E rRs “
1

T

T
ÿ

t“1

E r1 tpt “ Mju pMj ´ ytqs

“
1

T

T
ÿ

t“1

E r1 tpt “ Mju pMj ´ E ryt | py1, . . . , yt´1q, pp1, . . . , ptqsqs

“
1

T

T
ÿ

t“1

E r1 tpt “ Mju pMj ´ pqs

“
ENT

j pMj ´ pq

T
ď

ENT
j

T
¨ ϵ.

Putting it together, we obtain E r|R|s ď
ENT

j

T
¨ ϵ ` Op1{T q.
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Similarly, suppose there is an Ml satisfying Ml P rp ´ ϵ, p ´ ϵ{2q. For this l, define S “
1
T

řT
t“1 1 tpt “ Mlu pMl ´ ytq. An identical argument as the one used for R goes through; we

use the inequality E r|S|s ď E r´Ss ` 2 ¨ PrpS ą 0q (from Lemma 8.7) and the relationship of

PrpS ą 0q to G to obtain E r|S|s ď
ENT

l

T
¨ ϵ ` Op1{T q.

Finally, we conclude if both Mk and Ml with the given relationship to p exist, then E2 ď

E r|R| ` |S|s; if only Mj exists, then E2 ď E r|R|s; if only Ml exists, then E2 ď E r|S|s. In

each case,

E2 ď
E
“

AT
‰

¨ ϵ

T
` Op1{T q ď ϵ ` Op1{T q.

Since the two cases considered are exhaustive, this completes the proof.

Lemma 8.6 (for proving Proposition 8.3). PI-F99 satisfies E
“

AT
‰

“ T ´ Oppolyplog T qq,
where AT is defined in the proof of Proposition 8.3.

Proof. We first show PI-F99pTkq satisfies E
“

AT
‰

“ T ´ Oppolyplog T qq for T ď Tk once k
is large enough. We do so via two cases.

(a) For the first case, suppose p “ rj “ lj`1 for some j P rm ´ 1s, that is, the bias of the

Bernoulli is exactly at the common endpoint of two intervals. In other words, AT “

NT
j ` NT

j`1. We show that with high probability, the forecaster will learn this index j in

the initialization phase of each PI-F99pTkq, and continue playing either Mj or Mj`1

until he switches to PI-F99pTk`1q.

Consider the strategy PI-F99pTkq for some k ě 0. From time t “ mKk onwards,

each Mi has been forecasted at least Kk times, so that the value of pti is close to p. To

formalize close, we will use a time-uniform sub-Gaussian concentration inequality shown

by Howard et al. (2021, equation (3.4)). We use their inequality, replacing each instance of

t with Kk{4, since a Bernoulli is p1{4q-sub-Gaussian and each Mi has been forecasted at

least Kk times. Additionally, we replace α with 1{mT 2
k . It can be verified that the final

deviation term inside the brackets is at most ϵ{ log Tk; in other words, with probability at

least 1 ´ 1{T 2
k , the following ‘good’ event occurs:

for all times mKk ď t ď Tk, max
iPrms

∣∣pti ´ p
∣∣ ď ϵ{ log Tk ď ϵ.

The radius of each interval is ϵ. Thus if the above event occurs, it follows that for intervals

i ă j, the right-endpoint ri ă p ´ ϵ ď pti, so we have an excess (eTi ą 0) until Tk; and

for intervals i ą j ` 1, the left-endpoint li ą p ` ϵ ě pti, so we have a deficit (dTi ą 0)

until Tk. For interval j, either both dtj, e
t
j ď 0 or etj ą 0; for interval j ` 1, either both

dtj, e
t
j ď 0 or dtj ą 0. Overall, with probability at least 1 ´ 1{T 2

k , for times mKk ă t ď Tk,

Foster’s algorithm randomizes between Mj and Mj`1 (possibly playing one of them

deterministically).
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(b) The other case is when p belongs to the interior of some interval Ij , j P rms, or p P t0, 1u.

Then, there exists some δ ą 0 such that |p ´ Mi| ě ϵ ` δ for all i ‰ j. For a sufficiently

large value of
rk P N, δ ą ϵ{ logpT

rkq. Consider the strategy PI-F99pTkq for k ě rk. As

noted in the previous case, our choice of Kk ensures that with probability at least 1´1{T 2
k ,

for all times mKk ď t ď Tk, maxiPrms |pti ´ p| ď ϵ{ log Tk ă δ. Using triangle inequality,

we conclude that

∣∣ptj ´ Mj

∣∣ ď ϵ and |pti ´ Mi‰j| ą ϵ. It follows that for every i ‰ j, there

is either a deficit or an excess, and for j there is neither. Thus with probability at least

1 ´ 1{T 2
k , Foster’s algorithm plays Mj after time mKk.

Cases (a) and (b) lead to a lower bound on E
“

AT
‰

for PI-F99pTkq, the expected number of

times an Mi is forecasted that is ϵ-close to p. Namely, we obtain that for k ě rk, for the strategy

PI-F99pTkq that plays assuming a horizon of Tk from t “ 1 itself, we have for T ď Tk:

E
“

AT
‰

ě p1 ´ 1{T 2
k qpT ´ mKkq

ě T p1 ´ 1{T 2
k q ´ Oppolyplog Tkqq

ě T ´ Oppolyplog T qq. (8.16)

The final inequality above holds since T ď Tk.

We derive the implication for the overall strategy that is actually played, PI-F99. Recall the

notation T p0q “ 0 and T pkq “ T0 ` T1 ` . . . ` Tk´1. In PI-F99, the PI-F99pTkq strategy is

played from time T pk´1q `1 to time T pk´1q `Tk “ T pkq
. Let T be such that T P rT pkq `1, T pk`1qs

for any k ě rk. Then by (8.16),

E
”

AT
´ AT pkq

ı

ě T ´ T pkq
´ Oppolyplog T qq.

Again by (8.16), the above holds with T Ð T pkq
, T pkq Ð T pk´1q

, if k ě rk ` 1 (Ð corresponds to

replacing the term on the left with the term on the right):

E
”

AT pkq

´ AT pk´1q
ı

ě T pkq
´ T pk´1q

´ Oppolyplog T qq.

Instantiating this recursively for all k ě rk ` 1, and adding the inequalities together gives us:

E
“

AT
‰

ě T ´ T prkq
´ logpT q ¨ Oppolyplog T qq “ T ´ Oppolyplog T qq,

since
rk is some fixed constant (given p). This completes the argument.

Lemma 8.7. For any bounded random variable R P r´a, as,

E r|R|s ď minpE rRs ` 2a ¨ PrpR ă 0q,E r´Rs ` 2a ¨ PrpR ą 0qq. (8.17)

Proof. Note that,

E r|R|s “ E rR ¨ 1 tR ě 0u ´ R ¨ 1 tR ă 0us
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“ E rR ¨ 1 tR ě 0u ` R ¨ 1 tR ă 0u ´ 2R ¨ 1 tR ă 0us

“ E rR ´ 2R ¨ 1 tR ă 0us

ď E rR ` 2a ¨ 1 tR ă 0us

“ E rRs ` 2a ¨ PrpR ă 0q.

In the above proof, we can replace R with ´R everywhere, since ´R P r´a, as as well. Thus

we also obtain,

E r|R|s “ E r|´R|s ď E r´Rs ` 2a ¨ PrpR ą 0q.

Proposition 8.4. PI-F99 achieves a calibration rate of Op1{
?
T q against any strategy of nature.

Proof. Define T p0q “ 0 and T pkq “ T0 `T1 ` . . .`Tk´1 “ p2k ´ 1qT0, for k ě 1. Further, define

the cumulative (non-normalized) calibration error corresponding only to the times t “ t1 ` 1 to

t2 as follows:

CEpt1, t2q :“ E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ t2
ÿ

t“t1`1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣ , ϵpt2 ´ t1q

¸ff

.

From (8.14), PI-F99 satisfies, for every k P N and T pk´1q ă t ď T pkq
,

CEpT pk´1q, tq ď ϵpt ´ T pk´1q
q ` C

a

Tk´1 (8.18)

for some universal constant C that does not depend on k.

Now for a given T ą T p2q
, let k ě 3 be such that T pk´1q ă T ď T pkq

. By triangle inequality and

(8.18),

E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ T
ÿ

t“1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣ , ϵT
¸ff

ď

k´1
ÿ

i“1

CEpT pi´1q, T piq
q ` CEpT pk´1q, T q

ď

k´1
ÿ

i“1

pϵpT piq
´ T pi´1q

q ` C
a

Ti´1q

` ϵpT ´ T pk´1q
q ` C

a

Tk´1

“ ϵT `

k
ÿ

i“1

C
a

Ti´1

“ ϵT ` Cp
a

T0 `
a

2T0 `
a

4T0 ` . . . `
a

2k´1T0q

ď ϵT ` C
a

T0 ¨

?
2k ´ 1

?
2 ´ 1
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ď ϵT ` C ¨

?
2kT0

?
2 ´ 1

.

ď ϵT ` C 1
?
T ,

where C 1 “ C ¨ 2{p
?
2 ´ 1q. The final inequality holds since for k ě 3,

a

2kT0 ď
a

4p2k´1 ´ 1qT0 “
?
4T pk´1q ă 2

?
T .

Dividing by T and taking ϵ to the left-hand-size, we get that for all T ą T p2q
,

E

«

max

˜

m
ÿ

i“1

∣∣∣∣∣ 1T
T
ÿ

t“1

1 tpt “ Miu pMi ´ ytq

∣∣∣∣∣ ´ ϵ, 0

¸ff

ď C 1
?
T “ Op1{

?
T q,

as needed.

8.C Generalization of POTC-Cal to bounded outputs

If the output is bounded instead of binary (see Remark 8.1), then POTC-Cal can be modified as

follows. The forecaster maintains pTi as in the original algorithm, but these are now the mean

of the vt values instead of yt values. The choice of the index i and the final forecast ppt0, pt1q is

made identically to the original POTC-Cal. Finally, the forecaster plays

pt “ pt0 if vt ď ri, and pt “ pt1 if vt ą ri. (8.19)

Note that ri “ li`1 is the right (left) endpoint of interval i (interval i ` 1), and thus a natural

threshold for deciding which of the two intervals to play.

Lemmas 8.1 and 8.2 hold for this modified setup and algorithm, and thus the Op1{T q rate

showed by Theorem 8.1 also holds. Lemma 8.1 goes through since the set of equations (8.6) can

be modified as follows:∣∣dt`1
i ´ dti

∣∣ “
∣∣et`1

i ´ eti
∣∣ “

∣∣∣∣vt`1 ´ pti
N t

i ` 1

∣∣∣∣ ď
1

N t`1
i

.

In the proof of Lemma 8.2, we assumed without loss of generality that yt`1 “ 0. This assumption

can be modified to vt`1 ď ri in keeping with the forecaster’s updated strategy (8.19). The case

et`1
i ă dt`1

i goes through since it is a consequence of the set of equations (8.6). For the case

et`1
i ě dt`1

i , we have

N t`1
i maxpdt`1

i , et`1
i q “ N t

i p
t
i ` vt`1 ´ N t`1

i ri

“ N t
i e

t
i ` pvt`1 ´ riq ď N t

i maxpdti, e
t
iq,

where the last inequality follows by the case assumption vt`1 ď ri.
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Chapter 9
Nested conformal prediction and quantile

out-of-bag ensemble methods

This chapter is based on Gupta et al. (2022).

Conformal prediction is a popular tool for providing valid prediction sets for classification and
regression problems, without relying on any distributional assumptions on the data. While the
traditional description of conformal prediction starts with a nonconformity score, we provide an
alternate (but equivalent) view that starts with a sequence of nested sets and calibrates them to find
a valid prediction set. The nested framework subsumes all nonconformity scores, including recent
proposals based on quantile regression and density estimation. While these ideas were originally
derived based on sample splitting, our framework seamlessly extends them to other aggregation
schemes like cross-conformal, jackknife+ and out-of-bag methods. We use the framework to derive
a new algorithm (QOOB, pronounced cube) that combines four ideas: quantile regression, cross-
conformalization, ensemble methods and out-of-bag predictions. We develop a computationally
efficient implementation of cross-conformal, that is also used by QOOB. In a detailed numerical
investigation, QOOB performs either the best or close to the best on all simulated and real datasets.

9.1 Introduction

Traditional machine learning algorithms provide point predictions, such as mean estimates for

regression and class labels for classification, without conveying uncertainty or confidence. How-

ever, sensitive applications like medicine and finance often require valid uncertainty estimates.

In this work, we discuss quantification of predictive uncertainty through predictive inference,

wherein we provide prediction sets rather than point predictions.

Formally, the problem of distribution-free predictive inference is described as follows: given

dataset Dn ” tpXi, Yiquni“1 drawn i.i.d. from PXY “ PX ˆ PY |X on X ˆ Y1
, and Xn`1 „ PX ,

1
The spaces X and Y are without restriction. For example, take X ” Rd

and let Y be a subset of R, or a discrete

space such as in multiclass classification. Though it is not formally required, it may be helpful think of Y as a totally

ordered set or a metric space.
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we must construct a prediction set CpDn, α,Xn`1q ” CpXn`1q for Yn`1 that satisfies:

for any distribution PXY , PpYn`1 P CpXn`1qq ě 1 ´ α. (9.1)

Here the probability is taken over all n` 1 points and α P p0, 1q is a predefined confidence level.

As long as (9.1) is true, the ‘size’ of CpXn`1q conveys how certain we are about the prediction

at Xn`1. Methods with property (9.1) are called marginally valid to differentiate them from

conditional validity:

@PXY , PpYn`1 P CpXn`1q | Xn`1 “ xq ě 1 ´ α, for PX-almost all x.

Conditional validity is known to be impossible without assumptions on PXY ; see Balasubrama-

nian et al. (2014, Section 2.6.1) and Barber et al. (2020). If Yn`1 P CpXn`1q, we say that CpXn`1q

covers Yn`1, and we often refer to marginal (conditional) validity as marginal (conditional)

coverage. In this work, we develop methods that are (provably) marginally valid, but have

reasonable conditional coverage in practice, using conformal prediction.

Conformal prediction is a universal framework for constructing marginally valid prediction

sets. It acts like a wrapper around any prediction algorithm; in other words, any black-box

prediction algorithm can be “conformalized” to produce valid prediction sets instead of point

predictions. We refer the reader to the works of Vovk et al. (2005a) and Balasubramanian et al.

(2014) for details on the original framework. In this work, we provide an alternate and equivalent

viewpoint for accomplishing the same goals, called nested conformal prediction.

Conformal prediction starts from a nonconformity score. As we will see with explicit examples

later, these nonconformity scores are often rooted in some underlying geometric intuition about

how a good prediction set may be discovered from the data. Nested conformal acknowledges

this geometric intuition and makes it explicit: instead of starting from a score, it instead starts

from a sequence of all possible prediction sets tFtpxqutPT for some ordered set T . Just as we

suppressed the dependence of set Cp¨q on the labeled data Dn in property (9.1), here too Ftp¨q

will actually depend on Dn but we suppress this for notational simplicity.

These prediction sets are ‘nested’, that is, for every t1 ď t2 P T , we require that Ft1pxq Ď Ft2pxq;

also Finf T “ H and Fsup T “ Y . Thus large values of t correspond to larger prediction sets.

Given a tolerance α P r0, 1s, we wish to identify the smallest t P T such that

PpY P FtpXqq ě 1 ´ α.

In a nutshell, nested conformal learns a data-dependent mapping α Ñ tpαq using the conformal

principle. Note that the mapping must be decreasing; lower tolerance values α naturally lead to

larger prediction sets.

We now briefly describe the steps involved in split/inductive conformal prediction Papadopoulos

et al., 2002, Lei et al., 2018, Balasubramanian et al., 2014, Chapter 2.3, and use it to illustrate the

nested principle. First, split Dn into a training set D1 ” tpXi, Yiqu1ďiďm and a calibration set

D2 ” tpXi, Yiqumăiďn. Using D1, construct an estimate pµp¨q of the conditional mean of Y given

X . Then construct the nonconformity score as the residuals of pµ on D2: ri :“ |Yi´pµpXiq|, for i P

D2. Finally, define

CpXn`1q “

!

y P R : |y ´ pµpXn`1q| ă Q1´αptriuiPD2q

)

,
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where Q1´αpAq for a finite set A represents the p1´αq-th quantile of elements in A. Due to the

exchangeability of order statistics, Cp¨q can be shown to be marginally valid (see Proposition 9.1).

We now give an alternate derivation of the above set using nested conformal:

1. After learning pµ using D1 (as done before), construct a sequence of nested prediction sets

corresponding to symmetric intervals around pµp¨q:

tFtp¨qutě0 :“ trpµp¨q ´ t, pµp¨q ` ts : t ě 0u.

Note that Ftp¨q is a random set since it is based on pµp¨q which is random through D1. It is

clear that regardless of pµ, for any distribution of pX, Y q, and any α P r0, 1s, there exists a

(minimal) t “ tpαq such that PpY P FtpXqq ě 1 ´ α. Hence we can rewrite our nested

family as

!

rpµp¨q ´ t, pµp¨q ` ts : t ě 0
)

“

!

rpµp¨q ´ tpαq, pµp¨q ` tpαqs : α P r0, 1s

)

.

2. The only issue now is that we do not know the map α ÞÑ tpαq, that is, given α we do

not know which of these prediction intervals to use. Hence we use the calibration data

to “estimate” the map α Ñ tpαq. This is done by finding the smallest t such that FtpXiq

contains Yi for at least 1 ´ α fraction of the calibration points pXi, Yiq (we provide formal

details later). Because the sequence tFtp¨qutě0 is increasing in t, finding the smallest t
leads to the smallest prediction set within the nested family.

Embedding nonconformity scores into our nested framework allows for easy comparison be-

tween the geometric intuition of the scores; see Table 9.1. Further, this interpretation enables us

to extend these nonconformity scores beyond the split/inductive conformal setting that they

were originally derived in. Specifically, we seamlessly derive cross-conformal, jackknife+ and

OOB versions of these methods, including our new method called QOOB (pronounced cube).

A final reason that the assumption of nestedness is natural is the fact that the optimal pre-

diction sets are nested: Suppose Z1, . . . , Zn are exchangeable random variables with a com-

mon distribution that has density pp¨q with respect to some underlying measure. The “oracle”

prediction set (Lei et al., 2013) for a future observation Zn`1 is given by the level set of the

density with valid coverage, that is, tz : ppzq ě tpαqu with tpαq defined by largest t such that

PpppZn`1q ě tq ě 1 ´ α. Because tz : ppzq ě tu is decreasing with t, tz : ppzq ě tpαqu is

decreasing with α P r0, 1s, forming a nested sequence of sets. See 9.F for more details.

9.1.1 Organization and contributions

For simplicity, our discussion focuses on the regression setting: Y “ R. However, all ideas are

easily extended to other prediction settings including classification. The chapter is organized as

follows:

1. In Section 9.2, we formalize the earlier discussion and present split/inductive conformal (Pa-

padopoulos et al., 2002; Lei et al., 2018) in the language of nested conformal prediction,

and translate various conformity scores developed in the literature for split conformal

into nested prediction sets.
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2. In Section 9.3, we rephrase the jackknife+ (Barber et al., 2021) and cross-conformal pre-

diction (Vovk, 2015) in terms of the nested framework. This allows the jackknife+ to use

many recent score functions, such as those based on quantiles, which were originally

developed and deployed in the split framework. In Section 9.3.3 we provide an efficient

implementation of cross-conformal that matches the jackknife+ prediction time for a large

class of nested sets that includes all standard nested sets.

3. In Section 9.4, we extend the Out-of-Bag conformal (Johansson et al., 2014) and jackknife+

after bootstrap (Kim et al., 2020) methods to our nested framework. These are based on

ensemble methods such as random forests, and are relatively computationally efficient

because only a single ensemble needs to be built.

4. In Section 9.5, we consolidate the ideas developed in this work to construct a novel

conformal method called QOOB (Quantile Out-of-Bag, pronounced cube), that is both

computationally and statistically efficient. QOOB combines four ideas: quantile regres-

sion, cross-conformalization, ensemble methods and out-of-bag predictions. Section 9.6

demonstrates QOOB’s strong empirical performance.

In 9.A, we show that nested conformal is equivalent to the standard conformal prediction based

on nonconformity scores. We also formulate full transductive conformal prediction in the

nested framework. In 9.B we derive K-fold variants of jackknife+/cross-conformal in the nested

framework and in 9.C, we develop the other aggregated conformal methods of subsampling

and bootstrap in the nested framework. In 9.D, we discuss cross-conformal computation and

the jackknife+ in the case when our nested sequence could contain empty sets. This is a subtle

but important issue to address when extending these methods to quantile-based nested sets of

Romano et al. (2019), and thus relevant to QOOB as well. 9.E contains all proofs.

9.2 Split conformal based on nested prediction sets

In the introduction, we showed that in a simple regression setup with the nonconformity scores

as held-out residuals, split conformal intervals can be naturally expressed in terms of nested sets.

Below, we introduce the general nested framework and recover the usual split conformal method

with general scores using this framework. We show how existing nonconformity scores in

literature exhibit natural re-interpretations in the nested framework. The following description

of split conformal follows descriptions by Papadopoulos et al. (2002) and Lei et al. (2018) but

rewrites it in terms of nested sets.

Suppose pXi, Yiq P X ˆ Y , i P rns denotes the training dataset. Let rns “ I1 Y I2 be a partition

of rns. For T Ď R and each x P X , let tFtpxqutPT (with Ftpxq Ď Y) denote a nested sequence of

sets constructed based on the first split of training data tpXi, Yiq : i P I1u, that is, Ftpxq Ď Ft1pxq

for t ď t1
. The sets Ftpxq are not fixed but random through I1. We suppress this dependence for

notational simplicity. Consider the score

rpx, yq :“ inftt P T : y P Ftpxqu, (9.2)

where r is a mnemonic for “radius” and rpx, yq can be informally thought of as the smallest

“radius” of the set that captures y (and perhaps thinking of a multivariate response, that is
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Y Ď Rd
, and tFtpxqu as representing appropriate balls/ellipsoids might help with that intuition).

Define the scores for the second split of the training data tri “ rpXi, YiquiPI2 and set

Q1´αpr, I2q :“ rp1 ´ αqp1 ` 1{|I2|qs-th quantile of triuiPI2 .

(that is, Q1´αpr, I2q is the rp1 ´ αqp1 ` 1{|I2|qs-th largest element of the set triuiPI2). The final

prediction set is given by

Cpxq :“ FQ1´αpr,I2qpxq “ ty P Y : rpx, yq ď Q1´αpr, I2qu. (9.3)

The following well known sample coverage guarantee holds true (Papadopoulos et al., 2002; Lei

et al., 2018).

Proposition 9.1. If tpXi, YiquiPrnsYtn`1u are exchangeable, then the prediction set Cp¨q in (9.3)

satisfies
P pYn`1 P CpXn`1q | tpXi, Yiq : i P I1uq ě 1 ´ α.

If the scores tri, i P I2u are almost surely distinct, then Cp¨q also satisfies

P pYn`1 P CpXn`1q | tpXi, Yiq : i P I1uq ď 1 ´ α `
1

|I2| ` 1
. (9.4)

See 9.E.1 for a proof. Equation (9.2) is the key step that converts a sequence of nested sets

tFtpxqutPT into a nonconformity score r. Through two examples, we demonstrate how natural

sequences of nested sets in fact give rise to standard nonconformity scores considered in

literature, via equation (9.2).

1. Split/Inductive Conformal (Papadopoulos et al., 2002; Lei et al., 2018). Let pµp¨q be

an estimator of the regression function ErY |Xs based on pXi, Yiq, i P I1, and consider

nested sets corresponding to symmetric intervals around the mean estimate:

Ftpxq :“ rpµpxq ´ t, pµpxq ` ts, t P T “ R`.

Observe now that

inftt ě 0 : y P Ftpxqu “ inftt ě 0 : pµpxq ´ t ď y ď pµpxq ` tu

“ inftt ě 0 : ´t ď y ´ pµpxq ď tu “ |y ´ pµpxq|,

which is exactly the nonconformity score of split conformal.

2. Conformalized Quantiles (Romano et al., 2019). For any β P p0, 1q, let the func-

tion qβp¨q be the conditional quantile function. Specifically, for each x, define qβpxq :“
supta : PpY ď a | X “ xq ď β}. Let pqα{2p¨q, pq1´α{2p¨q be any conditional quantile

estimators based on pXi, Yiq, i P I1. If the quantile estimates are good, we hope that

PpY P rpqα{2pXq, pq1´α{2pXqsq « 1´α, but this cannot be guaranteed in a distribution-free

or assumption lean manner. However, it may be possible to achieve this with a sym-

metric expansion or shrinkage of the interval rpqα{2pXq, pq1´α{2pXqs (assuming pqα{2pXq ď

pq1´α{2pXq). Following the intuition, consider

Ftpxq :“ rpqα{2pxq ´ t, pq1´α{2pxq ` ts, t P R. (9.5)
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Note that the sets in (9.5) are increasing in t if pqα{2pxq ď pq1´α{2pxq, and

inftt P R : y P Ftpxqu “ inftt P R : pqα{2pxq ´ t ď y ď pq1´α{2pxq ` tu

“ maxtpqα{2pxq ´ y, y ´ pq1´α{2pxqu.

Hence rpXi, Yiq “ maxtpqα{2pXiq ´ Yi, Yi ´ pq1´α{2pXiqu for i P I2. This recovers exactly

the nonconformity score proposed by Romano et al. (2019).

We believe that it is more intuitive to start with the shape of the predictive set, like we did above,

than a nonconformity score. In this sense, nested conformal is a formalized technique to go

from statistical/geometric intuition about the shape of the prediction set to a nonconformity

score. See Table 9.1 for more translations between scores and nested sets.

Table 9.1: Examples from the literature covered by nested conformal framework. The methods

listed are split conformal, locally weighted conformal, CQR, CQR-m, CQR-r, distributional

conformal and conditional level-set conformal. Functions pqa represents a conditional quantile

estimate at level a, and
pf represents a conditional density estimate.

Reference Ftpxq T Estimates

Lei et al. (2018) rpµpxq ´ t, pµpxq ` ts r0,8q pµ
Lei et al. (2018) rpµpxq ´ tpσpxq, pµpxq ` tpσpxqs r0,8q pµ, pσ
Romano et al. (2019) rpqα{2pxq ´ t, pq1´α{2pxq ` ts p´8,8q pqα{2, pq1´α{2

Kivaranovic et al. (2020) p1 ` tqrpqα{2pxq, pq1´α{2pxqs ´ tpq1{2pxq p´8,8q pqα{2, pq1´α{2, pq1{2

Sesia and Candès (2020) rpqα{2pxq, pq1´α{2pxqs ˘ tppq1´α{2pxq ´ pqα{2pxqq p´1{2,8q pqα{2, pq1´α{2

Chernozhukov et al. (2021) rpqtpxq, pq1´tpxqs p0, 1{2q tpqαuαPr0,1s

Izbicki et al. (2020) ty : pfpy|xq ě qtδpxqu2 r0, 1s pf

Split conformal prediction methods are often thought of as being statistically inefficient because

they only make use of one split of the data for training the base algorithm, while the rest is

held-out for calibration. Recently many extensions have been proposed (Carlsson et al., 2014;

Vovk, 2015; Johansson et al., 2014; Boström et al., 2017; Barber et al., 2021; Kim et al., 2020) that

make use all of the data for training. All of these methods can be rephrased easily in terms of

nested sets; we do so in Sections 9.3 and 9.4. This understanding also allows us to develop our

novel method QOOB in Section 9.5.

9.3 Cross-conformal and Jackknife+ using nested sets

In the previous section, we used a part of training data to construct the nested sets and the

remaining part to calibrate them for finite sample validity. This procedure, although computa-

tionally efficient, can be statistically inefficient due to the reduction of the sample size used for

calibrating. Instead of splitting into two parts, it is statistically more efficient to split the data

into multiple parts. In this section, we describe such versions of nested conformal prediction

2
qtδpxq is an estimator of tδpxq, where tδpxq is defined the largest t such that PpfpY |Xq ě tδpXq

ˇ

ˇX “ xq ě

1 ´ δ; see (Izbicki et al., 2020, Definition 3.3) for details.
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sets and prove their validity. These versions in the score-based conformal framework are called

cross-conformal prediction and the jackknife+, and were developed by Vovk (2015) and Barber

et al. (2021), but the latter only for a specific score function.

9.3.1 Rephrasing leave-one-out cross-conformal using nested sets

We now derive leave-one-out cross-conformal in the language of nested prediction sets. Suppose

tF´i
t pxqutPT for each x P X , i P rns denotes a collection of nested sets constructed based only

on tpXj, Yjqu jPrnsztiu. We assume that tF´i
t pxqutPT is constructed invariantly to permutations

of the input points tpXj, Yjqu jPrnsztiu ; note that this is also required in the original description

of cross-conformal (Vovk, 2015). The i-th nonconformity score ri induced by these nested sets is

defined as ripx, yq “ inftt P T : y P F´i
t pxqu. The leave-one-out cross-conformal prediction

set is given by

CLOO
pxq :“

#

y P R :
n
ÿ

i“1

1tripXi, Yiq ă ripx, yqu ă p1 ´ αqpn ` 1q

+

. (9.6)

For instance, given a conditional mean estimator pµ´ip¨q trained on tpXj, Yjqu jPrnsztiu, we can

consider the nested sets F´i
t pxq “ rpµ´ipxq ´ t, pµ´ipxq ` ts to realize the absolute deviation

residual function ripx, yq “ |y ´ pµ´ipxq|. We now state the coverage guarantee that CLOOp¨q

satisfies.

Theorem 9.1. If tpXi, YiquiPrn`1s are exchangeable and the sets F´i
t pxq constructed based on

tpXj, YjqujPrnsztiu are invariant to their ordering, then

PpYn`1 P CLOO
pXn`1qq ě 1 ´ 2α.

See 9.E.2 for a proof of Theorem 9.1, which follows the proof of Theorem 1 in Barber et al.

(2021) except with the new residual defined based on nested sets. In particular, Theorem 9.1

applies when the nested sets are constructed using conditional quantile estimators as in the

conformalized quantile example discussed in Section 9.2. The discussion in this section can be

generalization to cross-conformal and the CV+ methods of Vovk (2015) and Barber et al. (2021),

which construct K-fold splits of the data and require training an algorithm only n{K times

(instead of n times in the leave-one-out case). These are discussed in the nested framework in

9.B.

In a regression setting, one may be interested in constructing prediction sets that are intervals

(since they are easily interpretable), whereas CLOOpxq need not be an interval in general. Also,

it is not immediately evident how one would algorithmically compute the prediction set defined

in (9.6) without trying out all possible values y P Y . We discuss these concerns in Sections 9.3.2

and 9.3.3.
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9.3.2 Jackknife+ and other prediction intervals that contain CLOOpxq

In a regression setting, prediction intervals may be more interpretable or ‘actionable’ than

prediction sets that are not intervals. To this end, intervals that contain CLOOpxq are good

candidates for prediction intervals since they inherit the coverage validity of Theorem 9.1. For

the residual function ripx, yq “ |y´pµ´ipxq|, Barber et al. (2021) provided an interval that always

contains CLOOpxq, called the jackknife+ prediction interval. In this section, we discuss when the

jackknife+ interval can be defined for general nested sets. Whenever jackknife+ can be defined,

we argue that another interval can be defined that contains CLOOpxq and is guaranteed to be no

longer in width than the jackknife+ interval.

For general nonconformity scores, an analog of the jackknife+ interval may not exist. However,

in the special case when the nested sets F´i
t pxq are themselves either intervals or empty sets,

an analog of the jackknife+ interval can be derived. Note that all the examples listed in Table 9.1

(except for the last one) result in Ftpxq being either a nonempty interval or the empty set. For

clarity of exposition, we discuss the empty case separately in 9.D. Below, suppose F´i
ripXi,Yiq

pxq

is a nonempty interval and define the notation

rℓipxq, uipxqs :“ F´i
ripXi,Yiq

pxq.

With this notation, the cross-conformal prediction set can be re-written as

CLOO
pxq “

#

y :
n
ÿ

i“1

1ty R rℓipxq, uipxqsu ă p1 ´ αqpn ` 1q

+

“

#

y : αpn ` 1q ´ 1 ă

n
ÿ

i“1

1ty P rℓipxq, uipxqsu

+

. (9.7)

Suppose y ă q´
n,αptℓipxquq, where q´

n,αptℓipxquq denotes the tαpn ` 1qu-th smallest value of

tℓipxquni“1. Clearly,

n
ÿ

i“1

1ty P rℓipxq, uipxqsu ď

n
ÿ

i“1

1ty ě lipxqu ď tαpn ` 1qu ´ 1,

and hence y R CLOOpxq. Similarly it can be shown that if y ą q`
n,αptuipxquq (where q`

n,αptuipxquq

denotes the rp1 ´ αqpn ` 1qs-th smallest value of tuipxquni“1), y R CLOOpxq. Hence, defining the

jackknife+ prediction interval as

CJP
pxq :“ rq´

n,αptℓipxquq, q`
n,αptuipxquqs, (9.8)

we conclude

CLOO
pxq Ď CJP

pxq for all x P X . (9.9)

However, there exists an even shorter interval containing CLOOpxq: its convex hull; this does

not require the nested sets to be intervals. The convex hull of CLOOpxq is defined as the smallest

interval containing itself. Hence,

CLOO
pxq Ď ConvpCLOO

pxqq Ď CJP
pxq. (9.10)
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Because of (9.10), the coverage guarantee from Theorem 9.1 continues to hold forConvpCLOOpxqq

and CJPpxq. Interestingly, CLOOpxq can be empty but CJPpxq is non-empty if each F´i
ripXi,Yiq

pxq is

non-empty (in particular it contains the medians of tℓipxqu and tuipxqu). Further,ConvpCLOOpxqq

can be a strictly smaller interval than CJPpxq; see Section 9.6.4 for details.

9.3.3 Efficient computation of the cross-conformal prediction set

Equation (9.6) defines CLOOpxq implicitly, and does not address the question of how to compute

the mathematically defined prediction set efficiently. If the nested sets F´i
t pxq are themselves

guaranteed to either be intervals or empty sets, jackknife+ seems like a computationally feasible

alternative since it just relies on the quantiles q´
n,αptℓipxquq, q`

n,αptuipxquq which can be computed

efficiently. However, it turns out that CLOOpxq,ConvpCLOOpxqq, and CJPpxq can all be computed

in near linear in n time. In this section, we provide an algorithm for near linear time computation

of the aforementioned prediction sets. We will assume for simplicity that F´i
t pxq is always an

interval; the empty case is discussed separately in 9.D.

First, notice that the inclusion in (9.6) need not be ascertained for every y P Y but only for a

finite set of values in Y . These values are exactly the ones corresponding to the end-points

of the intervals produced by each training point F´i
ripXi,Yiq

pxq “ rℓipxq, uipxqs. This is because

none of the indicators 1tripXi, Yiq ă ripx, yqu change value between two consecutive interval

end-points. Since ℓipxq and uipxq can be repeated, we define the bag of all these values (see

footnote
3

for H¨I notation):

Yx :“
n
ď

i“1

Hℓipxq, uipxqI. (9.11)

Thus we only need to verify the condition

n
ÿ

i“1

1ty P rℓipxq, uipxqsu ą αpn ` 1q ´ 1 (9.12)

for the 2n values of y P Yx
and construct the prediction sets suitably. Done naively, verifying

(9.12) itself is an Opnq operation for an overall time of Opn2q. However, (9.12) can be verified

for all y P Yx
in one pass on the sorted Yx

for a running time of Opn log nq; we describe how to

do so.

Let the sorted order of the points Yx
be yx1 ď yx2 ď . . . ď yx

|Yx|
. If Yx

contains repeated

elements, we require that the left end-points ℓi come earlier in the sorted order than the right

end-points ui for the repeated elements. Also define the bag of indicators Sx
with elements

sx1 ď sx2 ď . . . ď sx
|Yx|

, where

sxi :“

#

1 if yxi corresponds to a left end-point

0 if yxi corresponds to a right end-point.
(9.13)

3
A bag denoted by H¨I is an unordered set with potentially repeated elements. Bag unions respect the number

of occurrences of the elements, eg H1, 1, 2I Y H1, 3I “ H1, 1, 1, 2, 3I.
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Algorithm 9.1 Efficient cross-conformal style aggregation

Require: Training data tpXi, Yiquni“1, desired coverage level α; Yx
and Sx

computed as defined

in equations (9.11), (9.13) using the training data tpXi, Yiquni“1, test point x, and any sequence

of nested sets F´i
t p¨q.

Ensure: Prediction set Cx Ď Y
1: threshold Ð αpn ` 1q ´ 1; if threshold ă 0, then return R and stop

2: Cx Ð H, count Ð 0, left endpoint Ð 0
3: for i Ð 1 to |Yx| do
4: if sxi “ 1 then
5: count Ð count ` 1
6: if count ą threshold and count ´ 1 ď threshold then
7: left endpoint Ð yxi
8: end if
9: else

10: if count ą threshold and count ´ 1 ď threshold then
11: Cx Ð Cx Y trleft endpoint, yxi su

12: end if
13: count Ð count ´ 1
14: end if
15: end for
16: return Cx

Given Yx
and Sx

, Algorithm 9.1 describes how to compute the cross-conformal prediction set

in one pass (thus time Opnq) for every test point. Thus the runtime (including the sorting) is

Opn log nq time to compute the predictions F´i
ripXi,Yiq

pxq for every i. If each prediction takes

time ď T , the overall time is Opn log nq ` Tn, which is the same as jackknife+.
4

Proposition 9.2. Algorithm 9.1 correctly computes the cross-conformal prediction set 9.6 given Yx

and Sx.

The proof of the proposition is in 9.E.4. The proof proceeds through a step-wise description

of the algorithm that makes it transparent how the algorithm verifies (9.12) for every value of

y P Yx
.

9.4 Extending ensemble based out-of-bag conformal meth-
ods using nested sets

Cross-conformal, jackknife+, and their K-fold versions perform multiple splits of the data and

for every training point pXi, Yiq, a residual function ri is defined using a set of training points

4
For jackknife+, using quick-select, we could obtain Opnq ` Tn randomized, but the testing time Tn usually

dominates the additional n log n required to sort.
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that does not include pXi, Yiq. In the previous section, our description required training the

base algorithm multiple times on different splits of the data. Often each of these individual

algorithms is itself an ensemble algorithm (such as random forests). As described in this section,

an ensemble algorithm naturally provide multiple (random) splits of the data from a single run

and need not be re-trained on different splits to produce conformal prediction sets. This makes

the conformal procedure computationally efficient. At the same time, like cross-conformal,

the conformal prediction sets produced here are often shorter than split conformal because

they use all of the training data for prediction. In a series of interesting papers (Johansson

et al., 2014; Boström et al., 2017; Linusson et al., 2019; Kim et al., 2020), many authors have

exhibited promising empirical evidence that these ensemble algorithms improve the width of

prediction sets without paying a computational cost. We call this the OOB-conformal method

(short for out-of-bag). Linusson et al. (2019) provided an extensive empirical comparison of

OOB-conformal to other conformal methods but without formal validity guarantees.

We now describe the procedure formally within the nested conformal framework, thus extending

it instantly to residual functions that have hitherto not been considered. Our procedure can be

seen as a generalization of the OOB-conformal method (Linusson et al., 2019) or the jackknife+

after bootstrap method (Kim et al., 2020):

1. Let tMju
K
j“1 denote K ě 1 independent and identically distributed random sets drawn

uniformly from tM : M Ă rns, |M | “ mu. This is the same as subsampling. Alternatively

tMju
K
j“1 could be i.i.d. random bags, where each bag is obtained by drawing m samples

with replacement from rns. This procedure corresponds to bootstrap.

2. For every i P rns, define

M´i :“ tj : i R Mju,

which contains the indices of the training sets that are out-of-bag for the i-th data point.

3. The idea now is to use an ensemble learning method that, for every i, aggregates |M´i|

many predictions to identify a single collection of nested sets tF´i
t pxqutPT . For instance,

one can obtain an estimate pµjp¨q of the conditional mean based on the training data

corresponding to Mj , for every j, and then construct

F´i
t pxq “ rpµ´ipxq ´ t, pµ´ipxq ` ts,

where pµ´ip¨q is some combination (such as the mean) of tpµjp¨qutj:iRMju.

4. The remaining conformalization procedure is identical to CLOOpxq described in Section 9.3.

Define the residual score ripx, yq :“ inf
␣

t P T : y P F´i
t pxq

(

.

Using the cross-conformal scheme, the prediction set for any x P X is given as

COOB
pxq :“

#

y :
n
ÿ

i“1

1tripXi, Yiq ă ripx, yqu ă p1 ´ αqpn ` 1q

+

. (9.14)

If F´i
t pxq is an interval for all 1 ď i ď n and x P X , then following the discussion in Section 9.3.2,

we could also derive a jackknife+ style prediction interval that is guaranteed to be non-empty:

COOB-JP
pxq :“ rq´

n,αpℓipxqq, q`
n,αpuipxqqs. (9.15)
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If F´i
t pxq could further contain empty sets, a jackknife+ interval can still be derived following

the discussion in 9.D, but we skip these details here. Once again, we have that for every

x P X , COOBpxq Ď COOB-JPpxq; see Equation (9.9) for details. The computational discussion of

Section 9.3.3 extends to COOB
.

Recently, Kim et al. (2020) provided a 1 ´ 2α coverage guarantee of the OOB-conformal method

when F´i
t pxq “ rpµ´ipxq ´ t, pµ´ipxq ` ts where pµ´ip¨q represents the aggregation of conditional

mean estimate from tMjuiRMj
. We generalize their result to any sequence of nested sets and

extend it to the cross-conformal style aggregation scheme. In order to obtain a coverage

guarantee, the conformal method must ensure a certain exchangeability requirement is satisfied.

To do so, the argument of Kim et al. (2020) required the number of random resamples K to

itself be drawn randomly from a binomial distribution. We assert the same requirement in the

following theorem (proved in 9.E.3).

Theorem 9.2. Fix a permutation invariant ensemble technique that constructs sets tF´i
t utPT given

a collection of subsets of rns. Fix integers rK,m ě 1 and let

K „ Binomial

ˆ

rK,

ˆ

1 ´
1

n ` 1

˙m˙

pin the case of baggingq, or,

K „ Binomial

ˆ

rK, 1 ´
m

n ` 1

˙

pin the case of subsamplingq.

Then PpYn`1 P COOBpXn`1qq ě 1 ´ 2α.

Because COOBpxq Ď COOB-JPpxq for every x P X , the validity guarantee continues to hold

for COOB-JPp¨q. While we can only prove a 1 ´ 2α coverage guarantee, it has been observed

empirically that the OOB-conformal method with regression forests as the ensemble scheme

and nested sets trpµpxq ´ tpσpxq, pµpxq ` tpσpxqsutPR` satisfies 1 ´ α coverage while providing the

shortest prediction sets on average (Boström et al., 2017). On the other hand, the best empirically

performing nested sets are the ones introduced by Romano et al. (2019): trpqβpxq´t, pqβpxq`tsutPR
(for an appropriately chosen β). Using nested conformal, we show how these these two ideas

can be seamlessly integrated: quantile based nested sets with an OOB-style aggregation scheme.

In Section 9.5 we formally develop our novel method QOOB, and in Section 9.6 we empirically

verify that it achieves competitive results in terms of the length of prediction sets.

9.5 QOOB: A novel conformal method using nested sets

The nested conformal interpretation naturally separates the design of conformal methods into

two complementary aspects:

(a) identifying an information efficient nonconformity score based on a set of nested intervals,

and

(b) performing sample efficient aggregation of the nonconformity scores while maintaining

validity guarantees.
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In this section, we leverage this dichotomy to merge two threads of ideas in the conformal

literature and develop a novel conformal method that empirically achieves state-of-the-art results

in terms of the width of prediction sets.

First, we review what is known on aspect (b). While split-conformal based methods are compu-

tationally efficient, they lose sample efficiency due to sample splitting. Aggregated conformal

methods such as cross-conformal, jackknife+, and OOB-conformal do not have this drawback

and are the methods of choice for computationally feasible and sample efficient prediction sets.

Among all aggregation techniques, the OOB-conformal method has been observed empirically

to be the best aggregation scheme which uses all the training data efficiently (Boström et al.,

2017).

Next, we consider aspect (a), the design of the nested sets. The nested sets considered by Boström

et al. (2017) are trpµpxq´tpσpxq, pµpxq`tpσpxqsutPR` based on mean and variance estimates obtained

using out-of-bag trees. On the other hand, it has been demonstrated that nested sets based on

quantile estimates pqspxq given by trpqβpxq ´ t, pq1´βpxq ` tsutPR perform better than those based

on mean-variance estimates in the split conformal setting (Romano et al., 2019; Sesia and Candès,

2020).

Building on these insights, we make the following suggestion: Quantile Out-of-Bag (QOOB)

conformal; pronounced “cube” conformal. This method works in the following way. First,

a quantile regression based on random forest (Meinshausen, 2006) with T trees is learnt by

subsampling or bagging the training data T times. Next, the out-of-bag trees for every training

point pXi, Yiq are used to learn a quantile estimator function pq´i
s p¨q for s “ β and s “ 1 ´ β.

Here β “ kα for some constant k. Now for every i and some x P X , we define the nested sets as

F´i
t pxq :“ rpq´i

β pxq ´ t, pq´i
1´βpxq ` ts.

The nonconformity scores based on these nested sets are aggregated to provide a prediction set

as described by COOBpxq in (9.14) of Section 9.4. Algorithm 9.2 describes QOOB procedurally.

Following Section 9.3.3, the aggregation step of QOOB (line 13, Algorithm 9.2) can be performed

in time Opn log nq.

Since QOOB is a special case of OOB-conformal, it inherits an assumption-free 1 ´ 2α coverage

guarantee from Theorem 9.2 if K is drawn from an appropriate binomial distribution as described

in the theorem. In practice, we typically obtain 1 ´ α coverage with a fixed K . In Section 9.6,

we empirically demonstrate that QOOB achieves state-of-the-art performance on multiple

real-world datasets. We also discuss three aspects of our method:

(a) how to select the nominal quantile level β “ kα,

(b) the effect of the number of trees T on the performance, and

(c) the performance of the jackknife+ version of our method (QOOB-JP), which corresponds

to the OOB-JP style aggregation (equation (9.15)) of quantile-based nonconformity scores.
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Algorithm 9.2 Quantile Out-of-Bag conformal (QOOB)

Require: Training data tpXi, Yiquni“1, test point x, desired coverage level α, number of trees T ,

nominal quantile level β (default “ 2α)

Ensure: Prediction set Cx Ď Y
1: tMju

T
j“1 Ð training bags drawn independently from rns using subsampling or bootstrap

2: tM´iu
n
i“1 Ð tj : i R Mju

3: for j Ð 1 to T do
4: ϕj Ð Quantile regression trees learnt using the data-points in Mj

5: (this step could include subsampling of features)

6: end for
7: for i Ð 1 to n do
8: Φ´i Ð tϕj : j P M´iu

9: pq´ip¨q Ð quantile regression forest using the trees Φ´i

10: F´i
t p¨q Ð rpq´i

β p¨q ´ t, pq´i
1´βp¨q ` ts

11: rip¨, ¨q Ð ppx, yq Ñ inf
␣

t P T : y P F´i
t pxq

(

q

12: end for
13: Cx Ð OOB prediction set defined in Equation (9.14); (call Algorithm 9.1 with Yx

, Sx

computed using F´i
t p¨q, the training data tpXi, Yiquni“1 and test point x as described in

equations (9.11), (9.13))

14: return Cx

9.6 Numerical comparisons

We compare several methods discussed in this chapter using synthetic and real datasets. MATLAB

code to execute QOOB and reproduce the experiments in this section is provided at https:

//github.com/AIgen/QOOB. Some experiments on synthetic data are discussed in Section 9.6.5;

the rest of this section discusses results on real datasets. We use the following six datasets from

the UCI repository: blog feedback, concrete strength, superconductivity, news popularity, kernel

performance and protein structure. Metadata and links for these datasets are provided in 9.G. In

order to assess the coverage and width properties, we construct multiple version of each of these

three datasets. For each dataset, we obtain 100 versions by independently drawing 1000 data

points randomly (without replacement) from the full dataset. Then we split each such version

into two parts: training and testing of sizes 7685
and 232 respectively. Hence corresponding to

each of the six datasets, we get 100 different datasets with 768 training and 232 testing points.

For each conformal method, we report the following two metrics:

• Mean-width: For a prediction set Cpxq Ď Y “ R its width is defined as its Lebesgue

measure. For instance, if Cpxq is an interval, then the width is its length and if Cpxq is a

union of two or more disjoint intervals, then the width is the sum of the lengths of these

5
the number of training points is divisible by many factors, which is useful for creating a varying number of

folds for K-fold methods
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disjoint intervals. We report the average over the mean-width given by

Ave-Mean-Width :“
1

100

100
ÿ

b“1

˜

1

232

232
ÿ

i“1

widthpCbpX
b
i qq

¸

. (9.16)

Here Cbp¨q is a prediction set learnt from the b-th version of a dataset. The outer mean is

the average over 100 versions of a dataset. The inner mean is the average of the width

over the testing points in a particular version of a dataset.

• Mean-coverage: We have proved finite-sample coverage guarantees for all our methods and

to verify (empirically) this property, we also report the average over the mean-coverage

given by

Ave-Mean-Coverage :“
1

100

100
ÿ

b“1

˜

1

232

232
ÿ

i“1

1tY b
i P CbpX

b
i qu

¸

. (9.17)

In addition to reporting the average over versions of a dataset, we also report the estimated

standard deviation of the average (to guage the fluctuations). In the rest of the discussion, the

qualification ‘average’ may be skipped for succinctness, but all reports and conclusions are to be

understood as comments on the average value for mean-width and mean-coverage.

Random forest (RF) based regressors perform well across different conformal methods and will

be used as the base regressor in our experiments, with varying T , the number of trees. Each

tree is trained on an independently drawn bootstrap sample from the training set (containing

about p1 ´ 1{eq100% « 63.2% of all training points). The numerical comparisons will use the

following methods:

1. SC-T : Split conformal (Papadopoulos et al., 2002; Lei et al., 2018) with nested sets trpµpxq ´

t, pµpxq ` tsutPR` and T trees.

2. Split-CQR-T (2α): Split conformalized quantile regression (Romano et al., 2019) with

T trees and nominal quantile level 2α. This corresponds to the nested sets trpq´i
2αpxq ´

t, pq´i
1´2αpxq ` tsutPR. Quantile conformal methods require the nominal quantile level to be

set carefully, as also noted by Sesia and Candès (2020). In our experiments, we observe

that Split-CQR-T performs well at the nominal quantile level 2α. This is discussed more

in Section 9.6.1.

3. 8-fold-CC-T : 8-fold cross-conformal (Vovk, 2015; Barber et al., 2021) with T trees learnt for

every fold and the nested sets trpµpxq ´ t, pµpxq ` tsutPR` . Leave-one-out cross-conformal

is computationally expensive if T trees are to be trained for each fold, and does not lead

to significantly improved performance compared to OOB-CC in our experiments. Hence

we did not report a detailed comparison across all datasets.

4. OOB-CC-T : OOB-cross-conformal (Johansson et al., 2014; Kim et al., 2020) with T trees.

This method considers the nested sets trpµpxq ´ t, pµpxq ` tsutPR` where pµ is the average

of the mean-predictions for x on out-of-bag trees.

5. OOB-NCC-T : OOB-normalized-cross-conformal (Boström et al., 2017) with T trees. This

method considers nested sets trpµpxq´tpσpxq, pµpxq`tpσpxqsutPR` where pσpxq is the standard

deviation of mean-predictions for x on out-of-bag trees.
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6. QOOB-T (2α): OOB-quantile-cross-conformal with T trees and nominal quantile level

β “ 2α. This is our proposed method. In our experiments, we observe that QOOB-T

performs well at the nominal quantile level 2α. We elaborate more on the nominal quantile

selection in Section 9.6.1.

Table 9.2: Mean-width (9.16) of conformal methods with regression forests (α “ 0.1).

Average values across 100 simulations are reported with the standard deviation in brackets.

Method Blog Protein Concrete News Kernel Superconductivity

SC-100 25.54 16.88 22.29 12491.84 452.71 54.46

(0.71) (0.08) (0.14) (348.07) (5.10) (0.37)

Split-CQR-100 (2α) 12.22 14.20 21.45 7468.15 295.49 39.59

(0.35) (0.09) (0.12) (136.93) (3.09) (0.27)

8-fold-CC-100 24.83 16.42 19.23 12461.40 411.81 50.30

(0.44) (0.05) (0.04) (263.54) (3.4299) (0.24)

OOB-CC-100 24.76 16.38 18.69 12357.58 402.97 49.31

(0.50) (0.04) (0.03) (213.72) (3.13) (0.24)

OOB-NCC-100 20.31 14.87 18.66 11500.22 353.35 39.55

(0.42) (0.05) (0.06) (320.91) (2.95) (0.22)

QOOB-100 (2α) 14.43 13.74 18.19 7941.19 300.04 37.04
(0.38) (0.05) (0.05) (89.21) (2.70) (0.18)

Table 9.3: Mean-coverage (9.17) of conformal methods with regression forests (α “ 0.1). The

standard deviation of these average mean-widths are zero upto two significant digits.

Method Blog Protein Concrete News Kernel Superconductivity

SC-100 0.90 0.90 0.90 0.90 0.90 0.90

Split-CQR-100 (2α) 0.91 0.90 0.90 0.90 0.90 0.90

8-fold-CC-100 0.91 0.91 0.91 0.91 0.91 0.90

OOB-CC-100 0.90 0.91 0.91 0.91 0.91 0.90

OOB-NCC-100 0.92 0.91 0.91 0.92 0.93 0.91

QOOB-100 (2α) 0.92 0.91 0.92 0.91 0.93 0.91

Tables 9.2 and 9.3 report the mean-width and mean-coverage that these conformal methods

achieve on 6 datasets. Here, the number of trees T is set to 100 for all the methods. We draw

the following conclusions:

• Our novel method QOOB achieves the shortest or close to the shortest mean-width

compared to other methods while satisfying the 1 ´ α coverage guarantee. The closest

competitor is Split-CQR. As we further investigate in Section 9.6.2, even on datasets where

Split-CQR performs better than QOOB, if the number of trees are increased beyond 100,

QOOB shows a decrease in mean-width while Split-CQR does not improve. For example,

on the kernel dataset, QOOB outperforms Split-CQR at 400 trees.
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• In Table 9.2, QOOB typically has low values for the standard deviation of the average-

mean-width across all methods. This entails more reliability to our method, which may be

desirable in some applications. In Sections 9.6.1 and 9.6.2, we observe that this property is

true across different number of trees and nominal quantile levels as well.

• On every dataset, QOOB achieves coverage higher than the prescribed value of 1 ´ α,

with a margin of 1-3%. Surprisingly this is true even if it shortest mean-width among all

methods. It may be possible to further improve the performance of QOOB in terms of

mean-width by investigating the cause for this over-coverage.

• OOB-CC does better than 8-fold-CC with faster running times. Thus, to develop QOOB,

we chose to work with out-of-bag conformal.

We now present additional experiments to demonstrate the following key insights into the

behavior of QOOB:

• In Section 9.6.1, we discuss the significant impact that nominal quantile selection has on

the performance of QOOB and Split-CQR. We observe that 2α is an appropriate nominal

quantile recommendation for both methods.

• In Section 9.6.2, we show that increasing the number of trees T leads to decreasing mean-

widths for QOOB, while this is not true for its closest competitor Split-CQR. QOOB also

outperforms other competing OOB methods across different values for the number of

trees T .

• In Section 9.6.3, we compare QOOB and Split-CQR in the small sample size (small n)

regime where we expect sample splitting methods to lose statistical efficiency. We confirm

that QOOB significnatly outperforms Split-CQR on all six datasets we have considered for

n ď 100.

• In Section 9.6.4, we compare the related methods of cross-conformal and jackknife+ and

demonstrate that there exist settings where cross-conformal leads to shorter intervals

compared to jackknife+, while having a similar computational cost (as discussed in Sec-

tion 9.3.3).

• In Section 9.6.5, we demonstrate that QOOB achieves conditional coverage on a synthetic

dataset. We use the data distribution designed by Romano et al. (2019) for demonstrating

the conditional coverage of Split-CQR.

9.6.1 Nominal quantile selection has a significant effect on QOOB

QOOB and Split-CQR both use nominal quantiles pqβ , pq1´β from a learnt quantile prediction

model. In the case of Split-CQR, as observed by Romano et al. (2019) and Sesia and Candès (2020),

tuning β leads to improved performance. We perform a comparison of QOOB and Split-CQR at

different values of β. Figure 9.1 reports mean-widths for QOOB-100 (kα) and Split-CQR-100 (kα),

with OOB-NCC-100 as a fixed baseline (that does not vary with k). We observe that the nominal

quantile level significantly affects the performance of Split-CQR and QOOB. Both methods

perform well at the nominal quantile of about 2α. We encourage a more detailed study on the

theoretical and empirical aspects of nominal quantile selection in future work. We also note that
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Figure 9.1: QOOB and Split-CQR are sensitive to the nominal quantile level β “ kα. At β « 2α,

QOOB performs better than OOB-NCC for all datasets (OOB-NCC does not require nominal

quantile tuning and is a constant baseline). For the plots above, α “ 0.1. All methods plotted

have empirical mean-coverage at least 1 ´ α. The mean-width values are averaged over 100

subsamples. The shaded area denotes ˘1 std-dev for the average of mean-width.

for all values of k, QOOB typically has smaller standard deviation of the average-mean-width

compared to Split-CQR, implying more reliability in the predictions.

9.6.2 QOOB has shorter prediction intervals as we increase the number
of trees

In this experiment, we investigate the performance of the competitive conformal methods from

Table 9.2 as the number of trees T are varied. For QOOB and Split-CQR, we fix the quantile

level to β “ 2α. We also compare with OOB-NCC and another quantile based OOB method

described as follows. Like QOOB, suppose we are given a quantile estimator pqsp¨q. Consider the

quantile-based construction of nested sets suggested by Chernozhukov et al. (2021):

Ftpxq “ rpqtpxq, pq1´tpxqstPp0,1{2q.

Using these nested sets and the OOB conformal scheme (Section 9.4) leads to the QOOB-D

method (for ‘distributional’ conformal prediction as the original authors called it). Since QOOB-D
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Figure 9.2: The performance of QOOB (2α) improves with increasing number of trees T , while

the performance of Split-CQR (2α) does not. QOOB (2α) beats every other method except

Split-CQR (2α) for all values of T . For the plots above, α “ 0.1 and all methods plotted have

empirical mean-coverage at least 1´α. The mean-width values are averaged over 100 iterations.

The shaded area denotes ˘1 std-dev for the average of mean-width.

does not require nominal quantile selection, we considered this method as a possible solution to

the nominal quantile problem of QOOB and Split-CQR (Section 9.6.1). The results are reported

in Figure 9.2 for T ranging from 50 to 400.

We observe that with increasing T , QOOB continues to show improving performance in terms

of the width of prediction intervals. Notably, this is not true for Split-CQR, which does not

show improving performance beyond 100 trees. In the results reported in Table 9.2, we noted

that Split-CQR-100 outperformed QOOB-100 on the blog feedback, news popularity and kernel

performance datasets. However, from Figure 9.2 we observe that for T “ 400, QOOB performs

almost the same as Split-CQR on blog feedback and news popularity, and in fact does significantly

better than Split-CQR on kernel performance. Further, QOOB shows lower values for the standard

deviation of the average-mean-width. The QOOB-D method performs worse than QOOB for

every dataset, and hence we did not report it in the other comparisons in this chapter.
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Figure 9.3: The performance of QOOB and Split-CQR with varying number of training points

n. QOOB has shorter mean-width than Split-CQR across datasets for small n and also smaller

standard-deviation of the average mean-width. For the plots above, α “ 0.1 and all methods

plotted have empirical mean-coverage at least 1 ´ α. The mean-width values are averaged over

100 iterations. The shaded area denotes ˘1 std-dev for the average of mean-width.

9.6.3 QOOB outperforms Split-CQR at small sample sizes

QOOB needs n times more computation than Split-CQR to produce prediction intervals, since

one needs to make n individual predictions. If fast prediction time is desired, our experiments in

Sections 9.6.1 and 9.6.2 indicate that Split-CQR is a competitive quick alternative. However, here

we demonstrate that at the small sample regime, QOOB significantly outperforms Split-CQR on

all six datasets that we have considered.

To make this comparison, we subsample the datasets to a smaller sample size and consider the

mean-width and mean-coverage properties of QOOB (2α) and Split-CQR (2α) with T “ 100.

Figure 9.3 contains the results with n ranging from 30 to 240. We observe that at small n, QOOB

does significantly better than Split-CQR. This behavior is expected since at smaller values of n,

the statistical loss due to sample splitting is most pronounced. Since the overall computation

time decreases as n decreases, QOOB is a significantly better alternative in the small sample

regime on all fronts.
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9.6.4 Cross-conformal outperforms jackknife+

Cross-conformal prediction sets are always smaller than the corresponding jackknife+ prediction

sets by construction; see Section 9.3.2 and (9.9). However, the fact that cross-conformal may not

give an interval might be of practical importance. In this subsection, we show that the jackknife+

prediction interval can sometimes be strictly larger than the smallest interval containing the

cross-conformal prediction set (this is the convex hull of the cross-conformal prediction set and

we call it QOOB-Conv).

Table 9.4 reports the performance of QOOB, QOOB-JP, and QOOB-Conv on the blog feedback

dataset. Here QOOB-JP refers to the OOB-JP version (9.15). For each of these, we set the nominal

quantile level to 0.5 instead of 2α as suggested earlier (this led to the most pronounced difference

in mean-widths).

Table 9.4: Mean-width ofCOOBpxq,ConvpCOOBpxqq, andCOOB-JPpxq for the blog feedback dataset

with QOOB method. The base quantile estimator is quantile regression forests, and α “ 0.1.

Average values across 100 simulations are reported with the standard deviation in brackets .

Method Mean-width Mean-coverage
QOOB-100 (β “0.5) 14.67 (0.246) 0.908 (0.002)

QOOB-Conv-100 (β “0.5) 14.73 (0.249) 0.908 (0.002)

QOOB-JP-100 (β “0.5) 15.36 (0.248) 0.911 (0.002)

While this is a specific setting, our goal is to provide a proof of existence. In other settings, cross-

conformal style aggregation and jackknife+ style aggregation may have identical prediction sets.

However, because the cross-conformal prediction set as well as its convex hull can be computed

in nearly the same time (see Section 9.3.3) and have the same marginal validity guarantee, one

should always prefer cross-conformal over jackknife+.

9.6.5 QOOB demonstrates conditional coverage empirically

To demonstrate that Split-CQR exhibits conditional coverage, Romano et al. (2019, Appendix B)

designed the following data-generating distribution for PXY :

ϵ1 „ Np0, 1q, ϵ2 „ Np0, 1q, u „ Unifr0, 1s, and X „ Unifr0, 1s,

Y „ Poispsin2
pXq ` 0.1q ` 0.03Xϵ1 ` 251tu ă 0.01uϵ2.

We use the same distribution to demonstrate the conditional coverage of QOOB. Additionally,

we performed the experiments at a small sample size (n ď 300) to understand the effect of

sample size on both methods (the original experiments had n “ 2000, for which QOOB and

Split-CQR perform identically). Figure 9.4 summarizes the results.

For this experiment, the number of trees T are set to 100 for both methods. To choose the

nominal quantile level, we first ran the python notebook at https://github.com/yromano/cqr to
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(a) n “ 100. (QOOB) MW = 2.16, MC = 0.91. (Split-CQR) MW = 2.23, MC = 0.92.
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(b) n “ 200. (QOOB) MW = 1.99, MC = 0.92. (Split-CQR) MW = 2.18, MC = 0.91.
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(c) n “ 300. (QOOB) MW = 1.86, MC = 0.89. (Split-CQR) MW = 1.94, MC = 0.89.

Figure 9.4: The performance of QOOB-100 and Split-CQR-100 on synthetic data with varying

number of training points n (α “ 0.1). MW refers to mean-width and MC refers to mean-

coverage. QOOB shows conditional coverage at smaller values of n than Split-CQR. Section 9.6.5

contains more experimental details.

reproduce the original experiments performed by Romano et al. (2019). Their code first learns a

nominal quantile level for Split-CQR by cross-validating. On executing their code, we typically

observed values near 0.1 for α “ 0.1 and hence we picked this nominal quantile level for our

experiments as well (for both Split-CQR and QOOB). For our simple 1-dimensional distribution,

deeper trees lead to wide prediction sets. This was also observed in the original Split-CQR

experiments. To rectify this, the minimum number of training data-points in the tree leaves was

set to 40; we do this in our experiments as well.
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9.7 Conclusion

We introduced an alternative framework to score-based conformal prediction which is based

on a sequence of nested prediction sets. We argued that the nested conformal prediction

framework is more natural and intuitive. We demonstrated how to translate a variety of existing

nonconformity scores into nested prediction sets. We showed how cross-conformal prediction,

the jackknife+, and out-of-bag conformal can be described in our nested framework. The

interpretation provided by nested conformal opens up new procedures to practitioners. We

propose one such procedure — QOOB — which uses quantile regression forests to perform

out-of-bag conformal prediction. We proposed an efficient cross-conformalization algorithm

(Algorithm 9.1) that makes cross-conformal as efficient as jackknife+. QOOB relies on this

efficient cross-conformalization procedure. We demonstrated empirically that QOOB achieves

state-of-the-art performance on multiple real-world datasets.

QOOB has certain limitations. First, without making additional assumptions, we can only

guarantee 1 ´ 2α coverage for QOOB. On the other hand, we observe that in practice QOOB

has coverage slightly larger than 1 ´ α. Second, QOOB is designed specifically for real-valued

responses; extending it to classification and other settings would be interesting. Third, QOOB is

computationally intensive compared to the competitive alternative Split-CQR (at least when

sample-sizes are high; see Section 9.6.3 for more details). We leave the resolution of these

limitations to future work.
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Appendices for Chapter 9

9.A Equivalence between score-based conformal prediction
and nested conformal

We show that every instance of score-based conformal prediction can be cast in terms of nested

conformal prediction, and vice versa. 9.A.1 argues this fact for non-transductive conformal

methods which are the focus of the main chapter. 9.A.2 describes full transductive conformal

prediction using nested sets and argues the equivalence in that setting as well.

9.A.1 Equivalence for non-transductive conformal methods

Non-transductive conformal methods define a score function r : X ˆ Y Ñ R using some

part of the training data (a split, a leave-one-out set, a fold, a subsample, etc). Thus unlike full

(tranductive) conformal, the r does not depend on the point px, yq that it is applied to (of course

the value rpx, yq depends on px, yq but not r itself).

Given a nested family, tFtp¨qutPR learnt on some part of the data, a nonconformity score can be

constructed per equation (9.2). We now argue the other direction. Given any nonconformity

score r and an x P X , consider the family of nested sets tFtpxqutPR defined as:

Ftpxq :“ ty P Y : rpx, yq ď tu.

Clearly, y P Ftpxq if and only if rpx, yq ď t. Hence,

inf tt P T : y P Ftpxqu “ inf tt P T : rpx, yq ď tu “ rpx, yq.

Thus, for any nonconformity score r, there exists a family of nested sets that recovers it.

The randomness in r (through the data on which it is learnt) is included in the conformal validity

guarantees of split conformal, cross-conformal, OOB conformal, etc. Similarly, the guarantees

based on nested conformal implicitly include the randomness in tFtp¨qutPT .

9.A.2 An equivalent formulation of full transductive conformal using
the language of nested sets

For simpler exposition, in this subsection, we skip the qualification ‘transductive’ and just

say ‘conformal’. Each instance of conformal refers to transductive conformal. We follow the
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description of a conformal prediction set as defined by Balasubramanian et al. (2014). Conformal

can be defined for any space Z ; in the predictive inference setting of this chapter, one can think

of z “ px, yq P Z “ X ˆ Y .

A (non-)conformityN -measure is a measurable functionA that assigns every sequence pz1, . . . , zNq

of N examples to a corresponding sequence pα1, . . . , αNq of N real numbers that is equivariant

with respect to permutations, meaning that for any permutation π : rN s Ñ rN s,

pα1, . . . , αNq “ Apz1, . . . , zNq ñ pαπp1q, . . . , απpNqq “ Apzπp1q, . . . , zπpNqq.

For some training set z1, z2, . . . , zn and a candidate point z, define the nonconformity score as

pαz
1, . . . , α

z
n`1q :“ Apz1, . . . , zn, zq.

For each z, define

pz :“
|ti P rn ` 1s : αz

i ě αz
n`1u|

n ` 1
.

Then the conformal prediction set determined by A as a nonconformity measure is defined by

Γα
pz1, . . . , znq :“ tz : pz ą αu. (9.18)

In predictive inference, we have a fixed x and wish to learn a prediction set for y. This set takes

the form

ty : ppx,yq
ą αu.

If the training and test-data are exchangeable, it can be shown that the above prediction set is

marginally valid at level α (Proposition 1.2 (Balasubramanian et al., 2014)).

The nested (transductive) conformal predictor starts with a nested sequence of sets. For any

N ě 1 and sequence pz1, . . . , zNq, let tFtpz1, . . . , zNqutPT be a sequence of nested sets that are

invariant to permutations of indices. For observations Z1, . . . , Zn and a possible future z, define

the scores

rzi :“ inftt P T : Zi P FtptZ1, . . . , Zn, zuqu, i P rns,

rzn`1 :“ inftt P T : z P FtptZ1, . . . , Zn, zuqu.

The nested conformal predictor is then given by

CαpZ1, . . . , Znq :“ tz : pz ą αu, where pz :“
|ti P rn ` 1s : rzi ě rzn`1u|

n ` 1
.

It is clear that nested conformal prediction is a special case of (transductive) conformal prediction

with scores defined based on nested sets rather than a function A. Below, we prove that the

converse also holds.

Proposition 9.3. Suppose tΓαpZ1, . . . , ZnquαPr0,1s represents a conformal prediction set. Then
there exists a nested sequence such that the nested conformal set matches with the conformal
prediction set.
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Proof of Proposition 9.3. For anyN ě 1 andw1, . . . , wN , defineFtpw1, . . . , wNq :“ Γ1´tpw1, . . . , wNq

for t P r0, 1s. From the definition (9.18), it is clear that Ft is increasing in t P r0, 1s. For notational

convenience, set Z :“ tZ1, . . . , Zn, zu. Now define scores

rzi :“ inftt P r0, 1s : Zi P FtpZztZiuqu, for i P rns,

rzn`1 :“ inftt P r0, 1s : z P FtpZztzuqu.

The statement Zi P FtpZztZiuq is equivalent to

|tj P rn ` 1s : αz
j ě αz

i u|

n ` 1
ą 1 ´ t.

This equivalence follows from the fact that A is a nonconformity score and hence equivariant to

permutations. Therefore,

rzi “ 1 ´
|tj P rn ` 1s : αz

j ě αz
i u|

n ` 1

“
n ´ |tj P rn ` 1sztiu : αz

j ě αz
i u|

n ` 1
“

|tj P rn ` 1sztiu : αz
j ă αz

i u|

n ` 1
.

Because prz1, . . . , r
z
n`1q is an increasing ranking transformation of pαz

1, . . . , α
z
n`1q, the pz defini-

tions based on pαz
i q or przi q are equal. Hence for any conformal prediction set there exists an

equivalent nested conformal prediction set.

Proposition 1.3 of Balasubramanian et al., 2014 shows that conformal prediction is universal in a

particular sense (informally, any valid scheme for producing assumption-free confidence sets can

be replaced by a conformal prediction scheme that is at least as efficient). Since everything that

can be accomplished via nested conformal prediction can also be done via conformal prediction

and vice versa, nested conformal prediction is also universal in the same sense.

9.B K-fold cross-conformal and CV+ using nested sets

In Section 9.3 we rephrased leave-one-out cross-conformal and jackknife+ in the nested frame-

work. In this section, we will now describe their K-fold versions.

9.B.1 Extending K-fold cross-conformal using nested sets

Suppose S1, . . . , SK denotes a disjoint partition of t1, 2, . . . , nu such that |S1| “ |S2| “ ¨ ¨ ¨ “

|SK |. For exchangeability, this equality of sizes is very important. Let m “ n{K (assume m is

an integer). Let tF´Sk
t pxqutPT be a sequence of nested sets computed based on t1, 2, . . . , nuzSk.

Define the score

ripx, yq :“ inf
!

t P T : y P F´Skpiq

t pxq

)

,
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where kpiq P rKs is such that i P Skpiq. The cross-conformal prediction set is now defined as

Ccross
K pxq :“

#

y :
n
ÿ

i“1

1tripXi, Yiq ă ripx, yqu ă p1 ´ αqpn ` 1q

+

.

It is clear that if K “ n then Ccross
K pxq “ CLOOpxq for every x. The following result proves the

validity of Ccross
K p¨q as an extension of Theorem 4 of Barber et al. (2021). This clearly reduces to

Theorem 9.1 if K “ n.

Theorem 9.3. If pXi, Yiq, i P rns Y tn ` 1u are exchangeable and sets F´Sk
t pxq constructed based

on tpXi, Yiq : i P rnszSku are invariant to their ordering, then

PpYn`1 P Ccross
K pXn`1qq ě 1 ´ 2α ´ min

"

1 ´ K{n

K ` 1
,
2pK ´ 1qp1 ´ αq

n ` K

*

.

See 9.E.2 for a proof. Although the construction of Ccross
K pxq is based on a K fold split of

the data. The form is exactly the same as that of CLOOpxq in (9.6). Hence the computation of

Ccross
K pxq can be done based on the discussion in Section 9.3.3. In particular, if each of the nested

sets Ftpxq are either intervals or empty sets, the Ccross
K pxq aggregation step (after computing

the residuals) can be performed in time Opn log nq.

9.B.2 Extending CV+ using nested sets

The prediction sets Ccrosspxq and Ccross
K pxq are defined implicitly and are in general not

intervals. The sets Ccrosspxq and Ccross
K pxq can be written in terms of nested sets as

Ccross
K pxq :“

#

y :
n
ÿ

i“1

1
␣

y R F´Skpiq

ripXi,Yiq
pxq

(

ă p1 ´ αqpn ` 1q

+

.

In this subsection, we show that there exists an explicit interval that always contains Ccross
K pxq

whenever tFtpxqutPT is a collection of nested intervals (instead of just nested sets). This is

a generalization of the CV+ interval defined by Barber et al. (2021). The discussion of this

subsection can be extended to the case whenever the nested sets are either intervals or the

empty set just like we did for leave-one-out cross-conformal and jackknife+ in 9.D.

If each Ftpxq is an interval, we can write F´Skpiq

ripXi,Yiq
pxq “ rℓipxq, uipxqs for some ℓip¨q, uip¨q. Using

this notation, we can write Ccross
K pxq as

Ccross
K pxq :“

#

y :
n
ÿ

i“1

1ty R rℓipxq, uipxqsu ă p1 ´ αqpn ` 1q

+

.

Following the same arguments as in Section 9.3.2 we can define the CV+ prediction interval as

follows

CCV+
K pxq :“ rq´

n,αpℓipxqq, q`
n,αpuipxqqs Ě Ccross

K pxq, (9.19)
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where q´
n,αpℓipxqq denotes the tαpn`1qu-th smallest value of tℓipxquni“1. and q`

n,αpuipxqq denotes

the rp1 ´ αqpn ` 1qs-th smallest value of tuipxquni“1. For K “ n, CCV+
K pxq reduces to the

jackknife+ prediction interval CJPpxq. CCV+pxq and CJPpxq are always non-empty intervals if

each of the Ftpxq are non-empty intervals. Because Ccross
K pxq Ď CCV+

K pxq for all x, we obtain a

validity guarantee from Theorem 9.3: for all 2 ď K ď n,

P
`

Yn`1 P CCV+
K pXn`1q

˘

ě 1 ´ 2α ´ min

"

1 ´ K{n

K ` 1
,
2pK ´ 1qp1 ´ αq

n ` K

*

.

Note that the convex hull of the K-fold cross-conformal prediction set is also an interval smaller

than the CV+ interval

Ccross
K pxq Ď ConvpCcross

K pxqq Ď CCV+
K pxq.

In some cases, the containment above can be strict, and hence we recommend the K-fold cross

conformal or its convex hull over CV+.

9.C Nested conformal based onmultiple repetitions of splits

In Section 9.2, we described the nested conformal version of split conformal which is based on

one particular split of the data into two parts, and in 9.B we discussed partitions of the data into

2 ď K ď n parts. In practice, however, to reduce the additional variance due to randomization,

one might wish to consider several (say M ) different splits of data into two parts combine these

predictions. Lei et al. (2018) discuss a combination of M split conformal prediction sets based

on Bonferroni correction and in this section, we consider an alternative combination method

that we call subsampling conformal. The same idea can also be used for cross-conformal version

where the partition of the data into K folds can be repeatedly performed M times. The methods

to be discussed are related to those proposed by Carlsson et al. (2014), Vovk (2015), and Linusson

et al. (2017) and Linusson et al. (2019), but these papers do not provide validity results for their

methods.

9.C.1 Subsampling conformal based on nested prediction sets

Fix a number K ě 1 of subsamples. Let M1, M2, . . ., MK denote independent and identically

distributed random sets drawn uniformly from tM : M Ă rnsu; one can also restrict to

tM : M Ă rns, |M | “ mu for some m ě 1. For each set Mk, define the p-value for the new

prediction y at Xn`1 as

pykpxq :“
|ti P M c

k : rkpx, yq ď rkpXi, Yiqu| ` 1

|M c
k | ` 1

,

where the scores rkpXi, Yiq and rkpx, yq are computed as

rkpXi, Yiq :“ inftt P T : Yi P FMk
t pXiqu, i P M c

k ,
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rkpx, yq :“ inftt P T : y P FMk
t pxqu,

based on nested sets tFMk
t pxqutPT computed based on observations in Mk. Define the prediction

set as

Csubsamp
K pxq :“

#

y :
1

K

K
ÿ

k“1

|ti P M c
k : rkpx, yq ď rkpXi, Yiqu| ` 1

|M c
k | ` 1

ą α

+

.

It is clear that for K “ 1, Csubsamp
K pxq is same as the split conformal prediction set discussed in

Section 9.2. The following results proves the validity of Csubsamp
K p¨q.

Theorem 9.4. If pXi, Yiq, i P rns Y tn ` 1u are exchangeable, then for any α P r0, 1s and K ě 1,
P
´

Yn`1 R Csubsamp
K pXn`1q

¯

ď mint2, Kuα.

See 9.E.6 for a proof. Note that we can write pykpxq as pypx;Mkq by adding the argument for

observations used in computing the nested sets. Using this notation, we can write for K large

1

K

K
ÿ

k“1

pypx;Mkq « EM rpypx;Mqs, (9.20)

where the expectation is taken with respect to the random “variable” M drawn uniformly from

a collection of subsets of rns such as tS : S Ă rnsu or tS : S Ă rns, |S| “ mu for some m ě 1.

Because any uniformly drawn element in tS : S Ă rnsu can be obtained by sampling from

rns without replacement (subsampling), the above combination of prediction intervals can be

thought as subbagging introduced in (Bühlmann and Yu, 2002).

Lei et al. (2018, Section 2.3) combine the p-values pykpxq by taking the minimum. They define the

set

Csplit
K pxq :“

K
č

k“1

ty : pykpxq ą α{Ku “

"

y : K min
1ďkďK

pykpxq ą α

*

.

Because py1pxq, py2pxq, . . . , pyKpxq are independent and identically distributed (conditional on the

data), averaging is a natural stabilizer than the minimum; all the p-values should get equal

contribution towards the stabilizer but the minimum places all its weight on one p-value.

Vovk (2015, Appendix B) describes a version of Csubsamp
K p¨q using bootstrap samples instead

of subsamples and this corresponds to bagging. We consider this version in the following

subsection.

9.C.2 Bootstrap conformal based on nested prediction sets

The subsampling prediction set Csubsamp
K pxq is based on sets Mk obtained by sampling without

replacement. Statistically a more popular alternative is to form sets Mk by sampling with

replacement, which corresponds to bootstrap.
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Let B1, . . . , BK denote independent and identically distributed bags (of size m) obtained by

random sampling with replacement from rns “ t1, 2, . . . , nu. For each 1 ď k ď K , consider

scores

rkpXi, Yiq :“ inftt P T : Yi P FBk
t pXiqu, i P Bc

k,

rkpx, yq :“ inftt P T : y P FBk
t pxqu,

based on nested sets tFBk
t pxqutPT computed based on observations pXi, Yiq, i P Bk; Bk should

be thought of as a bag rather than a set of observations because of repititions of indices. Consider

the prediction interval

Cboot
α,K pxq :“

#

y :
1

K

K
ÿ

k“1

|ti P rnszBk : rkpx, yq ď rkpXi, Yiqu| ` 1

|rnszBk| ` 1
ą α

+

.

This combination of prediction interval based on bootstrap sampling is a version of bagging and

was considered in Vovk (2015, Appendix B). The following result proves a validity bound for

Cboot
α,K pXn`1q.

Theorem 9.5. If pXi, Yiq, i P rns Y tn ` 1u are exchangeable, then for any α P r0, 1s and K ě 1,
PpYn`1 R Cboot

α,K pXn`1qq ď mint2, Kuα.

See 9.E.6 for a proof. Carlsson et al. (2014, Proposition 1) provide a similar result in the context

of aggregated conformal prediction but require an additional consistent sampling assumption.

The computation of the subsampling and the bootstrap conformal prediction sets is no different

from that of cross-conformal and the techniques discussed in susbection 9.3.3 are still applicable.

Linusson et al. (2019) demonstrated that aggregated conformal methods tend to be conservative.

We also observed this in our simulations. Because of this, we did not present these methods in

our experiments.

9.D Cross-conformal and Jackknife+ ifFtpxq could be empty

The definition of cross-conformal (9.6) is agnostic to the interval interpretation throughF´i
ripXi,Yiq

pxq

since ripXi, Yiq and ripx, yq are well-defined irrespective of whether Ftpxq is an interval or not.

However, the discussion in Sections 9.3.2 and 9.3.3 indicates that the interval interpretation

is useful for interpretability as well as to be able to compute CLOOpxq efficiently. In these sub-

sections, we assumed that Ftpxq is always an interval. However there exist realistic scenarios

in which Ftpxq is always either an interval or an empty set. Fortunately, it turns out that the

discussion about jackknife+ and efficient cross-conformal computation can be generalized to

this scenario as well.

9.D.1 When can Ftpxq be empty?

Consider the quantile estimate based set entailed by the CQR formulation of Romano et al.

(2019): Ftpxq “ rpqα{2pxq ´ t, pq1´α{2pxq ` ts. Ftpxq is implicitly defined as the empty set if
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t ă 0.5ppqα{2pxq´pq1´α{2pxqq. Notice that since t can be negative, the problem we are considering

is different from the quantile crossing problem which has separately been discussed by Romano

et al. (2019, Section 6), and may occur even if the quantile estimates satisfy pqα{2pxq ď pq1´α{2pxq

for every x. In the cross-conformal or jackknife+ setting, F´i
ripXi,Yiq

pxq is empty for a test point x
if

ripXi, Yiq ă 0.5ppq´i
α{2pxq ´ pq´i

1´α{2pxqq,

where pq´i
are the quantile estimates learnt leaving pXi, Yiq out. If the above is true, it implies that

ripXi, Yiq ă ripx, yq for every possible y. From the conformal perspective, the interpretation

is that px, yq is more ‘non-conforming’ than pXi, Yiq for every y P Y . In our experiments, we

observe this does occur occasionally for cross-conformal (or out-of-bag conformal described in

Section 9.4) with quantile-based nested sets. In hindsight, it seems reasonable that this would

happen at least once across multiple training and test points.

9.D.2 Jackknife+ and efficiently computing CLOOpxq in the presence of
empty sets

Suppose Ftpxq is an interval whenever it is non-empty. Define

Λx :“ ti : F´i
ripXi,Yiq

pxq is not emptyu,

Equivalently we can write Λx :“ ti : Dy, y P rℓipxq, uipxqsu. The key observation of this section

is that for jackknife+ and the computation, only the points in Λx need to be considered. To see

this, we re-write the interval definition of the cross-conformal prediction (9.7):

CLOO
pxq “

#

y : αpn ` 1q ´ 1 ă

n
ÿ

i“1

1ty P rℓipxq, ripxqsu

+

“

#

y : αpn ` 1q ´ 1 ă
ÿ

iPΛx

1ty P rℓipxq, ripxqsu

+

, (9.21)

since if i R Λx, no y satisfies y P rℓipxq, uipxqs. Following the same discussion as in Section 9.3.2,

we can define the jackknife+ prediction interval as

CJP
pxq :“ rq´

n,αptℓipxquiPΛxq, ´q´
n,αpt´uipxquiPΛxqs

where q´
n,αptℓipxquiPΛxq denotes the tαpn`1qu-th smallest value of tℓipxquiPΛx and q´

n,αpt´uipxquiPΛxq

denotes the tαpn ` 1qu-th smallest value of t´uipxquiPΛx (if |Λx| “ n the above definition can

be verified to be exactly the same as the one provided in equation (9.8)). It may be possible that

tαpn ` 1qu ą |Λx| in which case the jackknife+ interval (and the cross-conformal prediction set)

should be defined to be empty. The 1 ´ 2α coverage guarantee continues to hold marginally

even though we may sometimes return empty sets.

To understand the computational aspect, we note that the discussion of Section 9.3.3 continues

to hold with Yx
(equation (9.11)) redefined to only include the intervals end-points for intervals
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which are defined:

Yx :“
ď

iPΛx

Hℓipxq, uipxqI, (9.22)

and Sx
defined only for these points. This also follows from the re-definition of CLOOpxq in (9.21).

With the definition above, Algorithm 9.1 works generally for the case where Ftpxq could be an

interval or an empty set.

9.E Proofs

9.E.1 Proofs of results in Section 9.2

Proof of Proposition 9.1. Set rn`1 :“ rpXn`1, Yn`1q. By the construction of the prediction inter-

val, we have

Yn`1 P CpXn`1q if and only if rn`1 ď Q1´αpr, I2q.

Hence

PpYn`1 P CpXn`1q
ˇ

ˇtpXi, Yiq : i P I1uq “ Pprn`1 ď Q1´αpr, I2q
ˇ

ˇtpXi, Yiq : i P I1uq.

Exchangeability of pXi, Yiq, i P rns Y tn ` 1u implies the exchangeability of pXi, Yiq, i P

I2 Y tn` 1u conditional on pXi, Yiq, i P I1. This in turn implies that ri, i P I2 Y tn` 1u are also

exchangeable (conditional on the first split of the training data) and thus Lemma 2 of Romano

et al. (2019) yields

Pprn`1 ď Q1´αpr, I2q|tpXi, Yiq : i P I1uq ě 1 ´ α,

and the assumption of almost sure distinctness of r1, . . . , rn implies (9.4).

9.E.2 Proof of Theorem 9.1

Define the matrix D P Rpn`1qˆpn`1q
with entries

Di,j :“

#

`8, if i “ j,

rpi,jqpXi, Yiq, if i ‰ j,

where rpi,jqpx, yq :“ inftt P T : y P F´pi,jq

t pxqu, with F´pi,jq

t pxq defined analogues to F´i
t pxq

computed based on tpXk, Ykq : k P rn ` 1szti, juu. It is clear that Di,n`1 “ ripXi, Yiq, and

Dn`1,i “ ripXn`1, Yn`1q. Therefore,

Yn`1 R CLOO
pXn`1q if and only if p1 ´ αqpn ` 1q ď

n`1
ÿ

i“1

1tDi,n`1 ă Dn`1,iu,

which holds if and only if n`1 P IpDq, with IpDq is defined as in (9.23). Hence from Theorem 9.6

the result is proved, if its assumption is verified. This assumption follows from the fact that

F´pi,jq

t pxq treats its training data symmetrically.
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9.E.3 Proof of Theorem 9.2

The OOB-conformal procedure treats the training data tpXi, YiquiPrns exchangeably but not

the test point pXn`1, Yn`1q. To prove a validity guarantee, we first lift the OOB-conformal

procedure to one that treats all points tpXi, YiquiPrn`1s exchangeably. This is the reason we

require a random value of K , as will be evident shortly.

The lifted OOB-conformal method is described as follows. Construct a collection of sets tĂMiu
rK
i“1,

where each
ĂMi is independently drawn using bagging or subsampling m samples from rn ` 1s

(instead of rns). Following this, for every pi, jq P rn` 1s ˆ rn` 1s with i ‰ j define tF´pi,jq

t utPT
as the sequence of nested sets learnt by ensembling samples M´pi,jq :“ tMk : i, j R Mku. The

nested sets tF´pi,jq

t utPT are then used to compute residuals on pXi, Yiq and pXj, Yjq: we define

a matrix D P Rpn`1qˆpn`1q
with entries

Di,j :“

#

`8, if i “ j,

rpi,jqpXi, Yiq, if i ‰ j,

where rpi,jqpx, yq :“ inftt P T : y P F´pi,jq

t pxqu.

We will now invoke Theorem 9.6 for the exchangeable random variables tZi “ pXi, Yiqu
n`1
i“1 .

The assumption of Theorem 9.6 holds for the elements Di,j since the ensemble method we use

to learn tF´pi,jq

t utPT treats all random variables apart from Zi, Zj symmetrically. Thus for every

j P rn ` 1s,

P pj R IpDqq ď 2α ´
1

n ` 1
ď 2α,

for IpDq defined in (9.23). We will now argue that for i P rns, Di,n`1 “ ripXi, Yiq, and

Dn`1,i “ ripXn`1, Yn`1q. Notice that for every j P r rKs,

if we use bagging: P pn ` 1 R ĂMjq “

ˆ

1 ´
1

n ` 1

˙m

;

if we use subsampling: P pn ` 1 R ĂMjq “

ˆ

1 ´
m

n ` 1

˙

.

and so K “ |tj : n ` 1 R ĂMju| „ Binp rK, p1 ´ 1
n`1

qmq for bagging and K „ Binp rK, 1 ´ m
n`1

q

for subsampling. Evidently, we can conclude that conditioned on the set tj : n ` 1 R ĂMju,

tMju
K
j“1

d
“ tĂMj : n ` 1 R ĂMju. In other words, the OOB-conformal bagging or subsampling

procedure is embedded in its lifted version. Therefore,

P pYn`1 R COOB
pXn`1qq “ P pp1 ´ αqpn ` 1q ď

n`1
ÿ

i“1

1tDi,n`1 ă Dn`1,iuq

“ P pn ` 1 P IpDqq (per definition (9.23)),

which as we have shown happens with probability at most 2α. This completes the proof.
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9.E.4 Proof of Proposition 9.2

To see why Algorithm 9.1 works, we describe it step by step along with variable definitions.

To simplify understanding, assume that Yx
does not contain repeated elements (Algorithm 9.1

continues to correctly compute the cross-conformal prediction set even if this is not true; the

requirement mentioned on the ordering of elements in Yx
before definition (9.13) is crucial for

Algorithm 9.1 to remain correct with repeated elements). As we make a single pass over Yx
in

sorted order, at every iteration i, when we are on line 6 or line 10, the variable count stores the

number of training points that are more nonconforming than px, yxi q; count is increased by 1
whenever a left end-point is seen (line 5) and is decreased by 1 after a right end-point is seen

(line 13). Thus count correctly computes the left hand side of condition (9.12) for the current

value of y P Yx
. The rest of the algorithm compares the value in count to the right hand side of

condition (9.12), which is stored in threshold, to compute the prediction set Cx
.

If count is strictly larger than αpn ` 1q ´ 1, then by (9.12), yxi P CLOOpxq. If this were not true

for yxi´1 (as checked in line 6), then for every y P pyxi´1, y
x
i q, we have y R CLOOpxq. Hence yxi is

a left end-point for one of the intervals in CLOOpxq. We store this value of y in left endpoint
until the right end-point is discovered (line 7). Next, if we are at a right end-point, if the current

value of count is larger than αpn` 1q ´ 1, and if count is at most αpn` 1q ´ 1 after the interval

ends (condition on line 10), then yxi P CLOOpxq and for every y P pyxi , y
x
i`1q, y R CLOOpxq. Thus

yxi is a right end-point for some interval in Cx
, with the left end-point given by the current value

of left endpoint. We update Cx
accordingly in line 11.

9.E.5 Auxiliary lemmas used in 9.E.2

For any matrix A P RNˆN
and α P r0, 1s, define

IpAq :“

#

i P rN s :
N
ÿ

j“1

1tAji ă Aiju ě p1 ´ αqN

+

. (9.23)

Lemma 9.1 (Section 5.3 of Barber et al. (2021)). For any matrix A,

|IpAq|

N
ď 2α ´

1

N
.

Lemma 9.2 (Section 5.2 of Barber et al. (2021)). If A is a matrix of random variables such that for
any permutation matrix Π, A d

“ ΠAΠJ, then for all 1 ď j ď N ,

Ppj P IpAqq “
Er|IpAq|s

N
ď 2α ´

1

N
.

Remark 9.1. The condition A
d
“ ΠAΠJ

(for any permutation matrix Π) is equivalent to

pAi,jq
d
“ pAπpiq,πpjqq for any permutation π : rN s Ñ rN s
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Consider the following form of matrices:

Ai,j “

#

`8, if i “ j,

GpZi, tZ1, . . . , ZNuztZi, Zjuq, if i ‰ j,
(9.24)

for exchangeable random variables Z1, . . . , ZN .

Lemma 9.3. If Z1, . . . , ZN are exchangeable and Gp¨, ¨q treats the elements of its second argument
symmetrically, then the matrix A defined by (9.24) satisfies

A
d
“ ΠAΠJ,

for any permutation matrix Π.

Proof. Observe that for any i, Ai,i “ Aπpiq,πpiq deterministically. For any i ‰ j, and πpiq “ k ‰

πpjq “ ℓ,

Ai,j :“ GpZi, tZ1, . . . , ZNuztZi, Zjuq,

Ak,ℓ :“ GpZk, tZ1, . . . , ZNuztZk, Zℓuq.

Exchangeability of Z1, . . . , ZN implies that for any permutation π : rN s Ñ rN s and any function

F that depends symmetrically on Z1, . . . , ZN

F pZi, Zjq
d
“ F pZπpiq, Zπpjqq.

The result follows by taking F pZi, Zjq :“ GpZi, tZ1, . . . , ZNuztZi, Zjuq.

Theorem 9.6. If Gp¨, ¨q is a function that treats the elements of its second argument symmetrically,
then for any set of exchangeable random variables Z1, . . . , ZN , and matrix A defined via (9.24),
we have

Ppj P IpAqq ď 2α ´
1

N
for all j P rN s.

Proof. The proof follows by combining Lemmas 9.1, 9.2, 9.3.

9.E.6 Proofs of results in 9.C

Proof of Theorem 9.4. Conditional on the randomness of Mk, p
Yn`1

k pXn`1q is a valid p-value and

hence conditional on M1, . . . ,MK , p2{Kq
řK

k“1 p
Yn`1

k pXn`1q is a valid p-value, by Proposition

18 of Vovk and Wang (2018). Therefore, for any α P r0, 1s,

P

˜

1

K

K
ÿ

k“1

p
Yn`1

k pXn`1q ď α

¸

ď mint2, Kuα, (9.25)

which implies the result. (The factor 2 follows from (Vovk and Wang, 2018) for K ě 2 and for

K “ 1 the factor 2 is not necessary because p
Yn`1

1 pXn`1q is a valid p-value.)
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Proof of Theorem 9.5. Fix 1 ď k ď K . Conditional onBk, the scores rkpXi, Yiq, i P Bc
k, rkpXn`1, Yn`1q

are exchangeable because tpXi, Yiq : i P Bc
k Y tn ` 1uu are exchangeable by the assumption.

Therefore, p
Yn`1

k pXn`1q is a valid p-value conditional on the bag pXi, Yiq, i P Bk, where

pykpxq :“
|ti P rnszBk : rkpx, yq ď rkpXi, Yiqu| ` 1

|rnszBk| ` 1
.

This is similar to the conclusion of Proposition 9.1 where we only need exchangeability of

pXi, Yiq, i P I2 Y tn ` 1u. The result now follows from Proposition 18 of Vovk and Wang

(2018).

9.F Imitating the optimal conditionally-valid prediction
set

Prediction sets that are intervals may not be suitable (or well-defined) unless Y is a totally

ordered set. For example, Y is not totally ordered for classification problems. Furthermore,

even if Y is ordered, it is well known (see introduction of Lei et al. (2013)) that the optimal

conditionally-valid prediction regions are level sets of conditional densities (with respect to an

appropriate underlying measure), which need not be intervals. Formally, suppose PY |X has a

density ppy|xq with respect to some measure µ on Y . For a given miscoverage level α P r0, 1s

we wish to identify an optimal set C Ď Y that satisfies 1 ´ α coverage for Y | X “ x, ie

ż

yPC

ppy|xqdy ě 1 ´ α.

For simplicity, suppose that the conditional density pp¨|xq is injective. Then, it is easy to see that

the smallest set (with respect to the measure µ) that satisfies coverage 1 ´ α must correspond to

an upper level set ty P Y : ppy|xq ě tu for some t ě 0. In particular, the appropriate value of t
depends on x and α, and is given by

tαpxq :“ sup

"

t ě 0 :

ż

ppy|xqět

ppy|xqdy ě 1 ´ α

*

. (9.26)

Clearly the set ty P Y : ppy|xq ě tαpxqu satisfies 1 ´ α coverage and is the smallest set to do

so. If an oracle provides us access to ppy|xq for every x, y, we may thus compute the optimal

prediction set at level α as

Coracle
α pxq :“ ty P Y : ppy|xq ě tαpxqu. (9.27)

Note that the prediction regions

␣

Coracle
δ pxq

(

δPr0,1s
form a sequence of nested sets. This

motivates us to imitate/approximate Coracle
α pxq through the nested framework as follows.

Let ppp¨|xq be any estimator of the conditional density, and let pgxptq be defined as

pgxptq :“

ż

y: pppy|xqět

pppy|xqdy,
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which represents the estimated conditional probability of a level set with threshold t. Now, in

our effort to mimic (9.26), for any δ P r0, 1s, define ptδpxq as the plugin threshold estimator:

ptδpxq :“ sup tt ě 0 : pgxptq ě 1 ´ δu . (9.28)

Last, define the nested sets tFδpxquδPr0,1s as

Fδpxq :“ ty : pppy|xq ě ptδpxqu.

It is clear that for any x, the function δ ÞÑ ptδpxq is monotonically decreasing and hence for any x,

the sets tFδpxquδPr0,1s are nested. It is also clear that if ppp¨|xq “ pp¨|xq, then Fαpxq “ Coracle
α pxq.

Following this, we conjecture that if ppp¨|xq is consistent for pp¨|xq in supremum norm, then

µpFαpxq∆Coracle
α pxqq Ñ 0 as n Ñ 8. (The notation A∆B represents symmetric difference.)

An important distinguishing fact about nested sets Fδpxq, in comparison with the examples in

Section 9.2, is that these are not intervals in general, and are also useful for prediction in the

context of classification.

Applying nested split-conformal method from (9.3) to the nested sets above yields the prediction

set

pCoracle
α pxq :“ F

pδpαq
pxq,

where
pδpαq is obtained from the second split I2 of the data. Unlike the definition in Section 9.2,

pδpαq here is given by the equation

1 ´ pδpαq “ rp1 ´ αqp1 ` 1{|I2|qs ´ th quantile of 1 ´ δpXi, Yiq, i P I2,

where δpXi, Yiq :“ suptδ P r0, 1s : pppYi|Xiq ě ptδpXiqu. This difference is because the nested

sets here are decreasing in δ instead of increasing as in Section 9.2. Proposition 9.1 readily yields

the validity guarantee

PpYn`1 P pCoracle
α pXn`1qq ě 1 ´ α.

It is important to realize that the prediction set
pCoracle
α pXn`1q is only marginally valid, although

it is motivated through the optimal conditionally valid prediction regions.

Izbicki et al., 2020 propose a prediction set similar to
pCoracle
α but use an alternative estimate of

tδpxq via a notion of “profile distance” between points, which they defined as

dpx, x1
q :“

ż 8

0

ppgxptq ´ pgx1ptqq
2dt.

For every x, let Nmpx; dq represent the indices of the first m nearest neighbors of x with respect

to the profile distance d. The prediction set described by Izbicki et al. (2020) is

qtδpxq :“ p1 ´ δq-th quantile of tpppyi|xiq : i P Nmpx; dq}. (9.29)

Formulating their procedure in terms of the nested sets

FISS
δ pxq :“ ty P Y : pppy|xq ě qtδpxqu,
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Table 9.5: Meta-data for the datasets used in our experiments. N refers to the total number

of data-points from which we create 100 versions by independently drawing 1000 data points

randomly (as described in the beginning of Section 9.6). d refers to the feature dimension.

Dataset N d URL (http://archive.ics.uci.edu/ml/datasets/*)
Blog 52397 280 BlogFeedback

Protein 45730 8 Physicochemical+Properties+of+Protein+Tertiary+Structure

Concrete 1030 8 Concrete+Compressive+Strength

News 39644 59 Online+News+Popularity

Kernel
6

241600 14 SGEMM+GPU+kernel+performance

Superconductivity 21263 81 Superconductivty+Data

Proposition 9.1 readily yields marginal validity.

We conjecture an improvement over the proposal of Izbicki et al. (2020). Because the optimal

prediction set (9.27) depends directly on tδpxq, it is more important to combine information from

those xi’s which are close to x in terms of tδpxq. For example, we may define a “revised” profile

distance as

rdpx, x1q :“
ş1

0
pptδpxq ´ ptδpx

1qq2wpδqdδ,

where the function wp¨q provides more weight on values close to zero. (We use such w because

often one is interested in coverage levels close to 1 or equivalently small values of the miscoverage

level α.) Using this new distance, we can use various alternative estimators of the threshold, for

example using
rd in (9.29), or kernel-smoothed variants of (9.28) and (9.29).

In this chapter, we focus on the problem of valid prediction region in the context of regression

in which case one often wants to report an interval. For this reason, we leave the discussion of

optimal prediction regions discussed herein at this stage, although a more detailed enquiry in

this direction would be fruitful for complicated response spaces.

9.G Additional information on experiments

Details for the datasets used in our experiments are provided in Table 9.5. All our experiments

were conducted in MATLAB using the TreeBagger class for training regression forests and

quantile regression forests. Default parameters were used for all datasets apart from the synthetic

dataset of Section 9.6.5.

6
The GPU kernel dataset contains four output variables corresponding to four measurements of the same entity.

The output variable is the average of these values.

264

http://archive.ics.uci.edu/ml/datasets/*
BlogFeedback
Physicochemical+Properties+of+Protein+Tertiary+Structure
Concrete+Compressive+Strength
Online+News+Popularity
SGEMM+GPU+kernel+performance
Superconductivty+Data


265



Chapter 10
Conclusion and future work

We have shown that ML classifiers can be calibrated, provably and efficiently, using held-out

data. Apart from the specific methods and findings reported in the papers/chapters of this thesis,

we point out some themes that recur across chapters.

• Nonparametric binning followed by parametric scaling works well in practice.
While scaling techniques like Platt, beta, temperature, and matrix scaling are popular, we

showed in Chapter 3 that they can fail for some distributions. In practice, the best perfor-

mance is often obtained by first scaling, and then discretizing using fixed-width binning,

histogram binning, or isotonic regression. Chapter 6 presents compelling experiments

in support of this observation (in the online calibration setting). Further, if the binning

step is done on a held-out (independent) batch of data that is identically distributed as the

test data, then distribution-free calibration guarantees can be established, such as those in

Chapter 4, making them suitable for risk-sensitive domains like medicine.

• The validation data can be used for more than hyperparameter tuning. Holding out

a small subset of the data (aka the validation data) has proven to be useful for providing

good estimates of the unknown test error. The success of post-hoc calibration shows

that the traditional train-validate split can actually be repurposed as a train-(validate +

calibrate) split. Experiments in Chapters 3, 4, 5, and 6 provide further backing to this

observation. While training on validation data makes us prone to overfitting since we can

no longer reliably estimate test error, post-hoc calibrating on validation data improves

calibration without sacrificing generalization accuracy or other metrics of interest. We

expect there to be further interesting ways to utilize the statistical information present in

validation data.

• Calibration as a post-hoc “correction” step. It is impossible to learn the true data-

generating distribution.
1

Thus good forecasts are not perfect but have some desirable

properties like small log loss, misclassification error, squared error, or pinball loss. At a

1
For that matter, even assuming that data comes from a distribution is a useful, but unfalsifiable—and thus

unscientific, model of the world. However, notions of calibration can typically be formalized without talking about

distributions since they typically boil down to tallying forecasts with actual observed “counts” of an event.

266



high level, when we calibrate, we retain the good properties of the forecasts but perform

a “correction” for something the forecast is not good at. In Chapter 7, we demonstrated

this through the concept of parity calibration where we target the up-down event in a

regression time-series. We showed that the performance of real-world domain experts can

be drastically improved for parity calibration using post-hoc techniques. In Chapter 5, we

showed that while calibrating the full multiclass prediction vector is challenging, simpler

and useful binary-calibration-like properties can be achieved in multiclass settings.

• Post-hoc calibration gives adaptivity to distribution drifts and shifts. In Chapter 3,

we discussed post-hoc calibration under covariate shift if certain “importance weights” can

be estimated well. In Chapter 6 we demonstrated adaptivity in miscellaneous distribution

drift scenarios (including covariate and label drift), in an online supervised learning setting.

We now turn to discuss a few problems in calibration that, to the best of our knowledge, are

open and of interest to the community. The question “how do we achieve calibration?” was the

focus of this thesis and has been studied extensively elsewhere as well. While there are certainly

interesting calibration methods yet to be discovered, the pressing academic question today is,

“why calibration?” Answers to this question could revolve around the following considerations.

• Calibration as a tool for task-specific deployment of ML models. Often, the down-

stream user of the ML model is separated from the engineering or research team that

built the ML model. Since the scores of a calibrated model exhibit an easy-to-interpret

statistical property, it gives the downstream user more control when using the model for

miscellaneous tasks. The bullet point “Calibration as a post-hoc correction step. . . ” in the

previous list mentioned a related point: calibration can seen as a way of adapting a complex

model for specific simpler tasks. These high-level ideas are formalized to some extent

using the frameworks of checking rules (Sandroni et al., 2003) and defensive forecasting

(Vovk et al., 2005b). However, these frameworks remain theoretical ideas and have not

had impact outside a narrow community.

• Calibration, decision-making, and humans. If classification scores have no probabilis-

tic meaning, they are uninterpretable for decision-makers, especially if the decision-maker

lacks ML expertise. Consider how you would interpret a forecasted chance of rain of

30% or a disease risk score of 5% if these scores are not calibrated. However, calibration

is insufficient on its own. Decision-makers are human beings. Their statistical biases

and prior views affect the decision-making process and need to be taken into account

(Vodrahalli et al., 2022; Benz and Rodriguez, 2023). A weaker property than calibration,

called monotonicity has also been considered in this context (Wang et al., 2022). A related

question to decision-making is the effect of calibration (or broadly, uncertainty quantifi-

cation) on trust in the ML model (Yin et al., 2019). HCI (Human-Computer-Interaction)

studies on the interplay between calibration, monotonicity, uncertainty quantification,

decision-making, and trust are of interest.

• Calibrated models for robust ML pipelines. Often, the output of an ML model is not

directly used for decision-making, but becomes the input for another model. Such an ML

pipeline may involve multiple models one after another. Srivastava et al. (2020) give an

example of the problem of detecting if a paper receipt is fraudulent or genuine. This could
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be done via a three-stage ML pipeline: text localization, then optical character recognition,

and then fraud detection. If different models in the pipeline are trained by different entities,

it could lead to unexpected behavior (e.g. see Bansal et al. (2019)). Calibrating a model

“standardizes” it in a certain sense, and such standardization could enable the model’s

deployment in practice to be more robust. Theoretical and empirical studies on the role of

calibration in ML pipelines would be of significant interest to ML practitioners.

We conclude by emphasizing two key takeaways of this thesis. One, post-hoc calibration is

essentially “free” if validation data has already been held out, as is often the case. Two, binning

based calibration methods are reliable and almost parameter-free. We recommend post-hoc

calibrating as the last step of training a classification model, and hope that this practice becomes

commonplace over the years.
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Günnemann. “Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Ex-

ponential Family Distributions”. In: International Conference on Learning Representations.
2022 (cit. on p. 175).
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